|
1 |
|
00:00:11,170 --> 00:00:17,190 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุฑูู
ุฎู
ุณุฉ ุนุดุฑ |
|
|
|
2 |
|
00:00:17,190 --> 00:00:25,090 |
|
ูู
ุณุงู ุชุญููู ุญูููู 2 ูุทูุจุฉ ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ |
|
|
|
3 |
|
00:00:25,090 --> 00:00:31,380 |
|
ุงูุฅุณูุงู
ูุฉ ูููุฉ ุงูุนููู
ูุณู
ุงูุฑูุงุถูุงุช ุงูู
ุญุงุถุฑุฉ ุงูููู
|
|
|
|
4 |
|
00:00:31,380 --> 00:00:35,940 |
|
ุฅู ุดุงุก ุงููู ุงูุชู ุณุชููู ุนูู ุฌุฒุฆูู ุงูุฌุฒุก ุงูุฃูู |
|
|
|
5 |
|
00:00:35,940 --> 00:00:40,940 |
|
ุณููู
ู ู
ุง ุจุฏุฃูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุงูุฐู ูู ุณููู
ู |
|
|
|
6 |
|
00:00:40,940 --> 00:00:45,100 |
|
ุงูุฐู ูู ุชุทุจููุงุช ุนูู ุงูู Fundamental Theorem of |
|
|
|
7 |
|
00:00:45,100 --> 00:00:50,540 |
|
Calculus ุงูุฌุฒุก ุงูุฃูู ูุฐุง ุงูุชุทุจูู ุทุจุนูุง ูู ุณูููู ุนู |
|
|
|
8 |
|
00:00:50,540 --> 00:00:53,880 |
|
evaluation of integrals ุจุฑุถู ููุง ููู ุงูู
ุฑุฉ |
|
|
|
9 |
|
00:00:53,880 --> 00:00:58,220 |
|
ุงูู
ุงุถูุฉ ูุณููู
ูู ุงูููู
ุฅู ุดุงุก ุงููู ุงูุฌุฒุก ุงูุซุงูู ู
ู |
|
|
|
10 |
|
00:00:58,220 --> 00:01:04,180 |
|
ุงูู
ุญุงุถุฑุฉ ุณูุชุญุฏุซ ุนู ุงูุฐู ูู ุงูุชูุงู
ู ุฃู ูุฏุฎู |
|
|
|
11 |
|
00:01:04,180 --> 00:01:08,620 |
|
ููุชุนุงู
ููุฉ ุงูุชูุงู
ู ุจุทุฑููุฉ ุบูุฑ ุงู upper sum ูุงู lower |
|
|
|
12 |
|
00:01:08,620 --> 00:01:15,060 |
|
sum ุนู ุทุฑูู ุดูุก ุงุณู
ู Riemann sum ูุฐุง ุงูุขู ูู ุงูุฌุฒุก |
|
|
|
13 |
|
00:01:15,060 --> 00:01:19,080 |
|
ุงูุซุงูู ุงูุขู ุจุฏูุง ูุจุฏุฃ ูู ุงูุฌุฒุก ุงูุฃูู ุจุณ ุนูู ุงูุณุฑูุน |
|
|
|
14 |
|
00:01:19,080 --> 00:01:22,540 |
|
ูุทูุน ุนูู ู
ุง ุชุญุฏุซูุง ุนูู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ููุง ุชุญุฏุซูุง ุนู |
|
|
|
15 |
|
00:01:22,540 --> 00:01:26,120 |
|
ุงูู Fundamental Theorem of Calculus ูุชุญุฏุซูุง ุนู ุงูุฐู |
|
|
|
16 |
|
00:01:26,120 --> 00:01:30,800 |
|
ูู ุงูู Two Forms ุฅููุง ุฃู ุงูุชูุงุถู ูุงูุชูุงู
ู ูู
ุง |
|
|
|
17 |
|
00:01:30,800 --> 00:01:35,240 |
|
ุชุญุฏุซูุง ูุชูุงู
ู ุงูุชูุงุถู Roughly ุงูููุงู
ูุจุนุฏูู ุฃุชููุง |
|
|
|
18 |
|
00:01:35,240 --> 00:01:38,980 |
|
ูุจุนุถ ุงูู
ูุงุญุธุงุช ูุจุนุถ ุงูุชุนุฑููุงุช ูุชุญุฏุซูุง ุนู ุงูู |
|
|
|
19 |
|
00:01:38,980 --> 00:01:42,780 |
|
evaluation of integralsุจุฏุฃูุง ูู evaluation of |
|
|
|
20 |
|
00:01:42,780 --> 00:01:46,600 |
|
integrals ุงูุฐู ูู ุงูุฐู ูู
ุซู ุงูุฌุฒุก ุงูุฃูู ู
ู ูุฐู |
|
|
|
21 |
|
00:01:46,600 --> 00:01:51,320 |
|
ุงูู
ุญุงุถุฑุฉ ุงูููู
ุชุญุฏุซูุง ุนู ุงูุฐู ูู ุงู integration by |
|
|
|
22 |
|
00:01:51,320 --> 00:01:55,480 |
|
parts ุงู integration by parts ุชุญุฏุซูุง ุนูู ุงูู
ุฑุฉ |
|
|
|
23 |
|
00:01:55,480 --> 00:02:02,130 |
|
ุงูู
ุงุถูุฉ ูุดุฑุญูุงู ูููููุง ุนูุฏ ุงูุฐู ูู ุงูู ุงู .. ุงู .. |
|
|
|
24 |
|
00:02:02,130 --> 00:02:06,230 |
|
ุงู .. ุงู .. ุงู first substitution form ุงูุฐู ุณูุจุฏุฃ |
|
|
|
25 |
|
00:02:06,230 --> 00:02:10,650 |
|
ููู ุงูููู
ุฅู ุดุงุก ุงููู ุงูุขู ุงู first substitution |
|
|
|
26 |
|
00:02:10,650 --> 00:02:15,310 |
|
form ุฃู ุงูุฐู ูู ุงูุชูุงู
ู ุจุงูุชุนููุถ ุนู ุทุฑูู ุงูุฐู ูู |
|
|
|
27 |
|
00:02:15,310 --> 00:02:18,870 |
|
ุงูุชุนููุถ ููุฐู ุทุจุนูุง ุทุฑููุฉ ููุง ูุณุชุฎุฏู
ูุง ูู
ุง |
|
|
|
28 |
|
00:02:18,870 --> 00:02:22,670 |
|
ุงุณุชุฎุฏู
ูุง ุงูุฐู ูู ุทุฑููุฉ ุงู integration by parts ูู |
|
|
|
29 |
|
00:02:22,670 --> 00:02:27,910 |
|
calculus B ุฃูุถูุง ุงุณุชุฎุฏู
ูุง ุงูุฐู ูู ุงูุชูุงู
ู ุจุงูุชุนููุถ |
|
|
|
30 |
|
00:02:27,910 --> 00:02:36,840 |
|
ููุฅูุฌุงุฏ ุฃู ูุนู
ููุฉ ุฅูุฌุงุฏ ุงูุฐู ูู ุงูุชูุงู
ู ุงูุขู ุจุฏูุง |
|
|
|
31 |
|
00:02:36,840 --> 00:02:41,720 |
|
ูุนุทู ุงููุธุฑูุฉ ุงูุชู ุชุดุฑุญ ููุง ุฃู ูุซุจุช ุงููุธุฑูุฉ ุงูุชู |
|
|
|
32 |
|
00:02:41,720 --> 00:02:46,840 |
|
ุชุณู
ุญ ููุง ุจุงูุชูุงู
ู ุจุงูุชุนููุถ ูุฌู ูุทูุน ููุธุฑูุชูุง |
|
|
|
33 |
|
00:02:46,840 --> 00:02:51,120 |
|
ุงูุชู ูู ุงู first substitution theorem ููุฌู ูุงุฎุฐ |
|
|
|
34 |
|
00:02:51,120 --> 00:02:55,300 |
|
ุงูุฐู ูู ุงู J ูุชุฑุฉ ุนุจุงุฑุฉ ุนู ุงู closed interval Alpha |
|
|
|
35 |
|
00:02:55,300 --> 00:03:01,120 |
|
ู Beta ุฅู ูุฃุฎุฐ ฮฆ function ู
ู J ูุนูุฏ R have a |
|
|
|
36 |
|
00:03:01,120 --> 00:03:04,620 |
|
continuous derivative on J ูุนูู ุฃุฎุฐูุง ุงูุขู ูุง |
|
|
|
37 |
|
00:03:04,620 --> 00:03:09,660 |
|
ุฌู
ุงุนุฉ ฮฆ ุนุจุงุฑุฉ ุนู function ู
ู ุงูุชู ูู ุงููุชุฑุฉ |
|
|
|
38 |
|
00:03:09,660 --> 00:03:17,090 |
|
Alpha ู Beta ูุนูุฏ R ููุฑุถูุง ุฅู ูุฐู ุงูุฏุงูุฉ ุงูุชู ูู |
|
|
|
39 |
|
00:03:17,090 --> 00:03:22,050 |
|
ฮฆ ุงู derivative ููุง ู
ูุฌูุฏุฉ ูููุณูุง ู
ุดุชูุชูุง |
|
|
|
40 |
|
00:03:22,050 --> 00:03:26,690 |
|
continuous ุฅุฐุง ูุฑุถูุง ุฅู ุงูุฐู ูู ุงูู ฮฆ have a |
|
|
|
41 |
|
00:03:26,690 --> 00:03:31,230 |
|
continuous derivative on the interval J ุงูุชู |
|
|
|
42 |
|
00:03:31,230 --> 00:03:35,080 |
|
ุณู
ููุงูุง ููู Alpha ู Beta ูุฃู ูู ูุงู ูู ุนูุฏู function |
|
|
|
43 |
|
00:03:35,080 --> 00:03:39,300 |
|
F is continuous on any interval I containing ฮฆ |
|
|
|
44 |
|
00:03:39,300 --> 00:03:46,160 |
|
of J ูุฃู ูุฑุถูุง ุฃู F ุฏุงูุฉ ุนูู I ุชุญุชูู ฮฆ of J ุนุดุงู |
|
|
|
45 |
|
00:03:46,160 --> 00:03:51,180 |
|
ุฅู ุจุนุฏ ุดููุฉ ูุนุฑูู .. ูููุฒู
ูู ุงูุฐู ูู composition |
|
|
|
46 |
|
00:03:51,180 --> 00:03:55,160 |
|
of two functions ุนุดุงู ููู ุฃูุง ุจุงุฎุฏ ุงู F ุนุจุงุฑุฉ ุนู |
|
|
|
47 |
|
00:03:55,160 --> 00:04:00,840 |
|
function ู
ู I ูุนูุฏ ู
ูุ ูุนูุฏ ุงู R ุฅูุด ุงู I ูุฐูุ |
|
|
|
48 |
|
00:04:00,840 --> 00:04:08,290 |
|
ูุฐู I interval ุจุชุญุชูู ุงูุชู ูู ู
ู ุงูู ฮฆ of J ุงูุชู |
|
|
|
49 |
|
00:04:08,290 --> 00:04:13,790 |
|
ุนูุฏูุ ูุนูู ููุตูุฑ ุนูุฏู ุจูุงุก ุนูููุง ููุตูุฑ ุนูุฏู F of |
|
|
|
50 |
|
00:04:13,790 --> 00:04:20,270 |
|
ฮฆ of I T ููู ุงูุชู ูู ุงูู J ุนุจุงุฑุฉ ุนู ููู
ุฉ ู
ุนุฑูุฉ |
|
|
|
51 |
|
00:04:20,270 --> 00:04:24,790 |
|
ุนุดุงู ุชููู ุงู composition ู
ุนุฑูุฉุ ุฅุฐุง ุงูุขู ุจุงุฎุชุตุงุฑ |
|
|
|
52 |
|
00:04:24,790 --> 00:04:28,010 |
|
ฮฆ ุงูุชู ูู ุงู derivative ุงูุชู ู
ูุฌูุฏุฉ ูุงูู |
|
|
|
53 |
|
00:04:28,010 --> 00:04:31,670 |
|
derivative continuous ูุงู function F ุงูุตุบูุฑุฉ ูุฐู is |
|
|
|
54 |
|
00:04:31,670 --> 00:04:35,510 |
|
continuous ูููุง ุงู interval Iุ then ุงูุขู ูุฌู |
|
|
|
55 |
|
00:04:35,510 --> 00:04:40,050 |
|
ูููุชูุฌุฉ ุงูุชู ูุญู ูู
ุงุฑุณูุง ุนู
ูููุง ุฏุงุฆู
ูุง ุงูุชู ูู |
|
|
|
56 |
|
00:04:40,050 --> 00:04:46,790 |
|
ุจููู ุนูุฏู ุงู integration ู
ู Alpha ู Beta ูF of ฮฆ |
|
|
|
57 |
|
00:04:46,790 --> 00:04:53,960 |
|
of T ฮฆ prime of T DT ูุญู ูุฏุนู ุจุชุณุงูู ููุง ูุฌู |
|
|
|
58 |
|
00:04:53,960 --> 00:04:58,100 |
|
ู
ุงุฐุง ููุนู ูุฃุฎุฐ ูุฐู ุงูุชู ูู ูุนูุถ ุนู ฮฆ of T ุจ X |
|
|
|
59 |
|
00:04:58,100 --> 00:05:03,360 |
|
ุจูุงุก ุนููู ุจูุตูุฑ ุนุจุงุฑุฉ ุนู ูุฐุง ุงู integration F of |
|
|
|
60 |
|
00:05:03,360 --> 00:05:09,920 |
|
X ู ฮฆ prime of T ูุนูุถ ุนู ฮฆ of T ุจ X ูุจูุตูุฑ |
|
|
|
61 |
|
00:05:09,920 --> 00:05:14,200 |
|
ุนูุฏ ฮฆ prime of T DT ูู ุนุจุงุฑุฉ ุนู ู
ู DX ููุง ููู |
|
|
|
62 |
|
00:05:14,200 --> 00:05:17,890 |
|
ููุนู ูู ุงู calculus ุงูุขู ูุฌู ูููู DX ุจูุณููุก ฮฆ |
|
|
|
63 |
|
00:05:17,890 --> 00:05:22,670 |
|
prime T DT ุฃู DX ุนูู DT ุจูุณููุก ฮฆ prime of T ููุดูู |
|
|
|
64 |
|
00:05:22,670 --> 00:05:26,630 |
|
ฮฆ prime of T DT ููุญุท ู
ูุงููุง ุดู
ุงููุง DX ุญุฏูุฏ ุงู |
|
|
|
65 |
|
00:05:26,630 --> 00:05:30,110 |
|
integration ูุงูุช ู
ู Alpha ู Beta ูุนูู ูู
ุง ูุงูุช T |
|
|
|
66 |
|
00:05:30,110 --> 00:05:33,350 |
|
ุจ Alpha ุจุตูุฑ X ุงูุชู ูู ฮฆ of T ุงูุชู ูู ฮฆ of |
|
|
|
67 |
|
00:05:33,350 --> 00:05:39,190 |
|
Alpha ุจุชุฑูุญ ูู
ูุ ู ุงูุฐู ูู ฮฆ of ู
ูุ ฮฆ of |
|
|
|
68 |
|
00:05:39,190 --> 00:05:45,180 |
|
Beta ูู
ุงุฐุงุ ูุฃูู ูู
ุง ูุงูุช T ุจุณุงูู Beta ุฃููุฏ ุงูู X |
|
|
|
69 |
|
00:05:45,180 --> 00:05:48,760 |
|
ุงูุชู ูู ฮฆ of T ุจุชุณุงูู ุงูู X ุจุชุณุงูู ฮฆ of Tุ ุงูู |
|
|
|
70 |
|
00:05:48,760 --> 00:05:53,640 |
|
X ุจุชุณุงูู ฮฆ of Beta ุฅุฐู ูุธุฑูุชูุง ูุฐู ุงูุชู ุฃู
ุงู
ูุง |
|
|
|
71 |
|
00:05:53,640 --> 00:05:59,160 |
|
ูู ูุธุฑูุฉ ุฅุญูุง ูุนูู ุงุณุชุนู
ููุงูุง ุฃู ุจูุณุชุนู
ููุง ุนุงุฏุฉ ูู |
|
|
|
72 |
|
00:05:59,160 --> 00:06:02,600 |
|
ุงูุฐู ูู ุฅูุฌุงุฏ ุงูู integration ูุฅุญุฏู ุงูุทุฑู ูุฅูุฌุงุฏ |
|
|
|
73 |
|
00:06:02,600 --> 00:06:07,860 |
|
ุงูู integration ูุนูุฏู |
|
|
|
74 |
|
00:06:07,860 --> 00:06:14,140 |
|
ุงูุขู ูุฐู ุงูุขู ูุธุฑูุชูุงุ ุจุฏูุง ูุจุฑูู ูุฐู ุงููุธุฑูุฉ ููุดูู |
|
|
|
75 |
|
00:06:14,140 --> 00:06:18,840 |
|
ููู ูุจุฑูููุงุ ุจุฑูุงููุง ุจุณูุทุ ุงูุขู ูู ุงูุชู ุจุฏูุง |
|
|
|
76 |
|
00:06:18,840 --> 00:06:23,280 |
|
ูุจุฑูููุ ุฎูููุง ูุดูู ููู ุงูุจุฑูุงูุฉ ูููู ูุจุฑูู |
|
|
|
77 |
|
00:06:23,280 --> 00:06:26,380 |
|
ุงููุชุงุจุ |
|
|
|
78 |
|
00:06:26,380 --> 00:06:32,520 |
|
ุนูุฏู ูุฌููุง ุนุฑููุงุ ุจุฏูุง ูุนุฑู function Fุ ูุฃู ุนุฑุด |
|
|
|
79 |
|
00:06:32,520 --> 00:06:35,990 |
|
function F ูุง ุชูุณูุง ูุฐุง ุงูู Function ู
ุงุฐุง ู
ุงููุง ูุง |
|
|
|
80 |
|
00:06:35,990 --> 00:06:40,070 |
|
ุฌู
ุงุนุฉุ Continuous ููุฐุง ูุนูู ูุซูุฑ ุจุงููุณุจุฉ ููู |
|
|
|
81 |
|
00:06:40,070 --> 00:06:43,210 |
|
Fundamental Theorem ุฃุนุฑู ุงูู Function F ู
ู ุงูู |
|
|
|
82 |
|
00:06:43,210 --> 00:06:50,310 |
|
Interval I ูุนูุฏ ู
ู R F Capital ุฃุนุฑู ุงูู F Capital |
|
|
|
83 |
|
00:06:50,310 --> 00:06:59,070 |
|
F of U ุจุณุงูู ุงูู Integration ู
ู ุงูุฐู ูู ุนูุฏ ุงูู I |
|
|
|
84 |
|
00:06:59,070 --> 00:07:04,870 |
|
ุจุชุญุชูู ู
ู ุงูู ฮฆ of J ูุนูู ูู ุงูู Interval I ูู |
|
|
|
85 |
|
00:07:04,870 --> 00:07:08,870 |
|
ุงูู interval I ููู ุฏุงุฎููุง ฮฆ of J ฮฆ of J ุทุจุนูุง |
|
|
|
86 |
|
00:07:08,870 --> 00:07:12,330 |
|
ูู ุนูุฏ ฮฆ of Alpha ูุนูุฏ ฮฆ of Beta ูู ูุงูุช ุงูุชู |
|
|
|
87 |
|
00:07:12,330 --> 00:07:15,590 |
|
ูู Alpha ุฃูุจุฑ ู
ู Beta ุงูุฃุฎุฑู ฮฆ of J ุงูุชู ูู
|
|
|
|
88 |
|
00:07:15,590 --> 00:07:19,990 |
|
ู
ูุชุฑุถูููุง ูุญู ุฃูู ูู ุฏุงุฎู ุงููุชุฑุฉ ุงูุชู ุฃู
ุงู
ู ุงูุขู |
|
|
|
89 |
|
00:07:19,990 --> 00:07:24,050 |
|
ุจุชุฃุฎุฐ ุงู integration ุชุนุฑูู ู
ู ุนูุฏ ฮฆ of Alpha |
|
|
|
90 |
|
00:07:24,050 --> 00:07:29,980 |
|
ูุนูุฏ ู
ู U ุงูู U ุงูู
ุชุบูุฑุฉ ุงูุชู ุณุชููู ุฃูู ู
ูุฌูุฏุฉ ูู |
|
|
|
91 |
|
00:07:29,980 --> 00:07:35,240 |
|
ุฏุงุฎู ุงูู I ุงูุชู ุชุญุชูู ุงูู ฮฆ of G ุฅุฐุง ุนุฑููุง |
|
|
|
92 |
|
00:07:35,240 --> 00:07:37,440 |
|
function f of u ุจูุณุชูู ุงู integration ู
ู ฮฆ of |
|
|
|
93 |
|
00:07:37,440 --> 00:07:42,780 |
|
Alpha ุซุงุจุช ฮฆ of Alpha ูุง ุฌู
ุงุนุฉ ูุนูุฏ U ูู
ูุ ูู f |
|
|
|
94 |
|
00:07:42,780 --> 00:07:49,410 |
|
of x dx ูุงุญุธ ูุฐู ุงูุฏุงูุฉ ุงูุชู ุนูุฏู ุงูุชู ุนุฑูุชูุง ู
ู |
|
|
|
95 |
|
00:07:49,410 --> 00:07:53,830 |
|
ุงูู Fundamental theorem ุจู
ุง ุฃู F is continuous ุฅุฐุง |
|
|
|
96 |
|
00:07:53,830 --> 00:07:58,810 |
|
ูุฐุง ููู ุงูุขู ุงูุฐู ูู ุตุงุฑ function ูู U ุนุจุงุฑุฉ ุนู |
|
|
|
97 |
|
00:07:58,810 --> 00:08:03,990 |
|
differentiable ูู
ุด ููู ูู
ุงู ู F prime of U ุณุชุณุงูู |
|
|
|
98 |
|
00:08:03,990 --> 00:08:11,090 |
|
ู
ูุ ุงูุชู ูู ุงูุฏุงูุฉ F of U ุฅุฐุง ู
ู ุงูู Fundamental |
|
|
|
99 |
|
00:08:11,090 --> 00:08:15,350 |
|
theorem ุจู
ุง ุฃู F is continuous ุฅุฐุง F prime of U |
|
|
|
100 |
|
00:08:15,350 --> 00:08:20,210 |
|
ุจุชุณุงูู F of U ุงูุชู ูู by Fundamental theorem of |
|
|
|
101 |
|
00:08:20,210 --> 00:08:23,370 |
|
calculus ุฅุฐุง by Fundamental theorem of calculus ู F |
|
|
|
102 |
|
00:08:23,370 --> 00:08:27,710 |
|
of X .. F of U ุทุจุนูุง ูุฐู ููุทููุง ุจุณูุก ุงู integration |
|
|
|
103 |
|
00:08:27,710 --> 00:08:32,200 |
|
ู
ู C .. C ุงูุฐู ูู ูุญู ูุณู
ูู ููุง ูู ุงูุชู ูู ฮฆ of |
|
|
|
104 |
|
00:08:32,200 --> 00:08:35,820 |
|
Alpha ู
ุง ุฃุฑูุฏ ุฃู ุฃุฎุจุฑูู
ูู ุงูุชุณู
ูุงุช ุนูู ุทูู ู
ู ฮฆ of |
|
|
|
105 |
|
00:08:35,820 --> 00:08:40,140 |
|
Alpha ูุนูุฏ ู
ู ูุนูุฏู ุฅุฐุง ุงูุฐู ูุนูุชู ุฃูุง ุจุณ ูุญุชู |
|
|
|
106 |
|
00:08:40,140 --> 00:08:46,340 |
|
ุงูุขู ุฅู ุนุฑููุง ุฏุงูุฉ ุงูุชู ูู ุงู func ุงู F Capital ูุฐู |
|
|
|
107 |
|
00:08:46,340 --> 00:08:53,760 |
|
ุงู F Capital ุนุฑููุงูุง ู
ู I ู
ู I ูุนูุฏ R by F of U |
|
|
|
108 |
|
00:08:53,760 --> 00:08:58,060 |
|
ุจุณุค ุงู integration ู
ู C ู U F of X DX for U |
|
|
|
109 |
|
00:08:58,060 --> 00:09:03,310 |
|
element ู
ู in ุงู interval I ุงูุขู ูุงุนุฏ ุฃุญุถุฑ ููู |
|
|
|
110 |
|
00:09:03,310 --> 00:09:08,630 |
|
ุฃุฑูุฏูุง and now consider the function H ู
ู J ูุนูุฏ R |
|
|
|
111 |
|
00:09:08,630 --> 00:09:12,690 |
|
ุจุนุฏ ู
ุง ุนุฑููุง ุงู function F ูุฐู ุงูุชู ุฃู
ุงู
ู ุจุฏู |
|
|
|
112 |
|
00:09:12,690 --> 00:09:18,330 |
|
ุฃุนุฑู ููู
ุฏุงูุฉ ุซุงููุฉ ุงูุฏุงูุฉ ุงูุชู ุฃุฑูุฏ ุฃู ุฃุนุฑููุง ูุง ุฌู
ุงุนุฉ |
|
|
|
113 |
|
00:09:18,330 --> 00:09:26,530 |
|
ูู ุนุจุงุฑุฉ ุนู HH ูุฐู ุฃุฑูุฏ ุฃู ุฃุนุฑููุง ู
ู J ูุนูุฏ R ุดูู ููู |
|
|
|
114 |
|
00:09:26,530 --> 00:09:30,510 |
|
ุฃุฑูุฏ ุฃู ุฃุนุฑููุง ุจุทุฑููุฉ ุงูุชู ูู ุชุฎุฏู
ูู ุจุนุฏ ุดููุฉ ูููุตูู |
|
|
|
115 |
|
00:09:30,510 --> 00:09:36,730 |
|
ูููุชูุฌุฉ ุงูุชู ุฃุฑูุฏูุง ุงูุชู ูู H of T ุฃุฑูุฏ ุฃู ุฃุนุฑููุง H of |
|
|
|
116 |
|
00:09:36,730 --> 00:09:46,170 |
|
T ุจุณุงูู F Capital ูุฐู ุงูุชู ุนุฑููุงูุง of ฮฆ of T ฮฆ |
|
|
|
117 |
|
00:09:46,170 --> 00:09:52,220 |
|
of T ุงูุขู ุฌูุฉ ุฏู ุงููู
ูู ูู ุงููุชุฑุฉ Alpha ู Beta ฮฆ |
|
|
|
118 |
|
00:09:52,220 --> 00:09:57,740 |
|
of T ุงูุชู ูู ุฅุฐุง T ู
ู ูู J ฮฆ of T ู
ุนุฑููุฉ ุนูู ุงููJ |
|
|
|
119 |
|
00:09:57,740 --> 00:10:03,440 |
|
ุงููJ ฮฆ of T ู
ุดุชูุชูุง ู
ุนุฑููุฉ ุนูู ุงููJ ุงููF ููุง |
|
|
|
120 |
|
00:10:03,440 --> 00:10:07,640 |
|
ู
ุนุฑููุฉ ูุฃู ุงููF domainูุง I ุงูุฐู ูู ุงูุฐู ูุญุชูู ฮฆ |
|
|
|
121 |
|
00:10:07,640 --> 00:10:11,360 |
|
of J ูุนูู ูุนููุง ฮฆ of T ู
ูุฌูุฏุฉ ูู ฮฆ of J ุงูุชู ูู |
|
|
|
122 |
|
00:10:11,360 --> 00:10:14,600 |
|
ู
ูุฌูุฏุฉ ูู ู
ู ูู I ุฅุฐุง ุงูู
ุนุฑูุฉ ุงูุชู ุฏุงููุง H of T |
|
|
|
123 |
|
00:10:14,600 --> 00:10:23,370 |
|
ุจูุณุงูู ฮฆ of I of T ุทูุจ ุงูุขู ุงูู F ุชูุงุฌุฃูุง ููู F |
|
|
|
124 |
|
00:10:23,370 --> 00:10:27,030 |
|
ูุฐู ุฅููุง differentiable ุงูู F ูุงุจูุชุงู ูุงูู ฮฆ |
|
|
|
125 |
|
00:10:27,030 --> 00:10:29,470 |
|
differentiable ูู
ุงุฐุง differentiableุ ูุฃู ฮฆ prime |
|
|
|
126 |
|
00:10:29,470 --> 00:10:32,390 |
|
ู
ูุฌูุฏุฉ ู continuous ุฅุฐุง ุฃูุฏุฑ .. ูู ุฃูุงุถู ูุฐู |
|
|
|
127 |
|
00:10:32,390 --> 00:10:38,340 |
|
ุงูุฏุงูุฉ ุฅุฐุง ุฃูุฏุฑ ุฃู ุฃููู ุฅูู ุนูุฏ ุงูู H prime of T |
|
|
|
128 |
|
00:10:38,340 --> 00:10:44,340 |
|
ุจูุณุงูู F' ฮฆ of T ุชุดูุฑู ุฑูู ุทุจุนูุง ูุง ุฌู
ุงุนุฉ ูู ฮฆ |
|
|
|
129 |
|
00:10:44,340 --> 00:10:51,460 |
|
prime of T ูุฅุฐุง ุชูุงุถู ุงู H' ูู F' ูู ฮฆ prime of |
|
|
|
130 |
|
00:10:51,460 --> 00:10:59,000 |
|
T ูู
ุง ูุญู ุฐูุฑูุง ูู ุจุฑูุงู ุงููุธุฑูุฉ ููุง ุงูุขู ุนูุฏู |
|
|
|
131 |
|
00:10:59,000 --> 00:11:03,540 |
|
ุฃูุถูุง ูุญู ูููุง ุงู F prime of U ู
ุงุฐุง ุชุณุงูู F of U |
|
|
|
132 |
|
00:11:03,540 --> 00:11:08,920 |
|
ููููุง ูู
ุงุฐุง ุงูุณุจุจ ุงูุขู ูู ุฃุชููุง ูู ูุฐุง ุชุญุถูุฑ ููู |
|
|
|
133 |
|
00:11:08,920 --> 00:11:13,980 |
|
ุฃุฑูุฏูุง ุจุนุฏ ุดููุฉ ุงูู
ุนููู
ุงุช ูุฐู ุงูุขู ุนูุฏู ุงุญุณุจ ูู H of |
|
|
|
134 |
|
00:11:13,980 --> 00:11:22,380 |
|
Alpha H of Alpha ู
ู ูุฐู H of Alpha ุฃููุฏ ูููู
ุดุงูุฏ |
|
|
|
135 |
|
00:11:22,380 --> 00:11:29,960 |
|
ุฃู H of Alpha ุจุชุณุงูู ุนูุถ ุจุชุณุงูู F of ฮฆ of Alpha |
|
|
|
136 |
|
00:11:29,960 --> 00:11:33,560 |
|
ุตุญูุญุฉ ูุง ุฌู
ุงุนุฉ ููุณุงูู F of ฮฆ of Alpha ุทุจ ู
ุงุฐุง |
|
|
|
137 |
|
00:11:33,560 --> 00:11:37,980 |
|
ุชุนุฑูู F of Uุ ูู ุนุจุงุฑุฉ ุนู ุงู integration ู
ู ฮฆ of |
|
|
|
138 |
|
00:11:37,980 --> 00:11:43,520 |
|
Alpha ูุนูุฏ U U ุฃูุง ุงูุขู ู
ุงุฐุง ููุ ุงุณู
ูุง U ุงูุชู ูู 5 |
|
|
|
139 |
|
00:11:43,520 --> 00:11:46,420 |
|
Alpha ุฅุฐุง ู
ู 5 Alpha ู 5 Alpha ูุนูู ุงู integration |
|
|
|
140 |
|
00:11:46,420 --> 00:11:51,100 |
|
ู
ุงุฐุง ุณููุณุงูู ูุฐุงุ ูุณุงูู ุตูุฑ ุฅุฐุง ูุฑู Alpha ูุนูุงู ู
ุงุฐุง |
|
|
|
141 |
|
00:11:51,100 --> 00:11:55,200 |
|
ุจุชุณุงูู .. ุจุชุณุงูู ุฅูุด .. ุจุชุณุงูู ุตูุฑ ุฅุฐุง ุชูุช ุญุงุฌุงุช |
|
|
|
142 |
|
00:11:55,200 --> 00:11:59,860 |
|
ุงูุขู ุนุฑูุช ุงูู F ู
ู I ูู ุนูุฏ R ุจุงูุทุฑููุฉ ุงููู ุฃู
ุงู
ู |
|
|
|
143 |
|
00:12:00,190 --> 00:12:05,030 |
|
ูุฌุฏุช ุฃู F' ุจูุณุงูู F of U ุงูุดุบู ุงูุซุงูู ุนุฑูุช H of T |
|
|
|
144 |
|
00:12:05,030 --> 00:12:08,530 |
|
ุจูุณุงูู F of Phi of T ุงููู ูู F is differentiable, |
|
|
|
145 |
|
00:12:08,590 --> 00:12:11,950 |
|
Phi is differentiable ุฅุฐุงู ููุณู H is differentiable |
|
|
|
146 |
|
00:12:11,950 --> 00:12:14,850 |
|
ู ุงูู derivative ุฅูููุง ุฅููุ ุงูุดู
ุงู ูุฐู ุจูุณุงูู ุงููู |
|
|
|
147 |
|
00:12:14,850 --> 00:12:19,670 |
|
ุฃู
ุงู
ู ู ุงูุดุบู ุงูุซุงูู ุงููู ุญุตููุง ุนููู ุฃู H of |
|
|
|
148 |
|
00:12:19,670 --> 00:12:25,010 |
|
Alpha ุฅูุด ููุณุงูู ูุง ุดุจุงุจุ ูู ูุณุงูู 0 ููุฌู ุงูุขู |
|
|
|
149 |
|
00:12:25,010 --> 00:12:31,250 |
|
ุจุฏูุง ููุตู ูู
ูู ุฅุญูุงุ ุฅุญูุง ูุฏููุง ูุง ุฌู
ุงุนุฉ ุงููู ูู |
|
|
|
150 |
|
00:12:31,250 --> 00:12:38,310 |
|
ูุฏููุง ุณุงู
ุญููุง ุนูู ุงูููุญ ุงูุตุบูุฑ ุงูููุญ ูุฏููุง ูู ุงูู |
|
|
|
151 |
|
00:12:38,310 --> 00:12:47,210 |
|
integration ู
ู Alpha ูุนูุฏ Beta F of Phi of T Phi |
|
|
|
152 |
|
00:12:47,210 --> 00:12:54,670 |
|
prime of T dt ุจุณุงูู ุงูู integration ููู F of X DX ู
ู |
|
|
|
153 |
|
00:12:54,670 --> 00:12:59,290 |
|
Phi of Alpha ูุนูุฏ Phi of Beta ูุฐุง ุงููู ุจุฏูุง ูุซุจุชู |
|
|
|
154 |
|
00:12:59,290 --> 00:13:09,190 |
|
ุดูู ููู ุจุฏูุง ูุตู ููุฐุง ุงููู ูู ุงูู
ุทููุจ ููุฌู |
|
|
|
155 |
|
00:13:09,190 --> 00:13:16,090 |
|
ููุฐุง ุงูู integration ุงููู ูุจููุง ูุฐุง ุงููู ูู ุงูุทุฑู |
|
|
|
156 |
|
00:13:16,090 --> 00:13:20,580 |
|
ุงููู ุฅุญูุง ุจุฏูุง ูุซุจุชู ุจุณุงูู ูุฐุง ุงูุทุฑู ูุฐุง ุงูุทุฑู ุงููู |
|
|
|
157 |
|
00:13:20,580 --> 00:13:23,340 |
|
ุฃูุง ุณุงููู ูุฐุงุ ูุจุฏุฃ ุจูุฐุง ุงูุทุฑู ุงููู ููุง ููุจูู |
|
|
|
158 |
|
00:13:23,340 --> 00:13:26,920 |
|
ุงูู
ุนููู
ุงุช ููุญุตู ุนูู ุงููู ุจุฏูุง ุฅูุงู ุจูู ุณูููุฉ ุงูุขู ุงูู |
|
|
|
159 |
|
00:13:26,920 --> 00:13:29,920 |
|
integration ู
ู Alpha ูุนูุฏ ุงูู Beta F of five T five |
|
|
|
160 |
|
00:13:29,920 --> 00:13:35,620 |
|
prime of T DT ุจุชุณุงูู ุงูุขู ุงูู F ูุฐู ูู ุงููุงูุน ู
ูู |
|
|
|
161 |
|
00:13:35,620 --> 00:13:41,850 |
|
ููุ ูุฐู ูู ุนุจุงุฑุฉ ุนู F prime ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ูุฐุง |
|
|
|
162 |
|
00:13:41,850 --> 00:13:45,790 |
|
ุงูู
ูุฏุงุฑ ูู ุนุจุงุฑุฉ ุนู f prime of five a t five prime |
|
|
|
163 |
|
00:13:45,790 --> 00:13:51,350 |
|
a ุดู
ุงูู of t ูุนูู ููุฃููู ู
ูู ุจูุงุถูุ ุฃูุง ุจูุงุถู ูู |
|
|
|
164 |
|
00:13:51,350 --> 00:13:58,890 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ุทูุน ู
ูู ููุ h prime of t ููู ุฃู
ูุฑู ุญููุฉ |
|
|
|
165 |
|
00:13:58,890 --> 00:14:05,170 |
|
ูู
ุญุชุฑู
ุฉ ุงูู f ุงููู ูู continuous ูุงูู Phi prime |
|
|
|
166 |
|
00:14:05,170 --> 00:14:09,090 |
|
continuous ู
ุนุทููู ุฅูุงูุง ุฅุฐุงู ูุฐู ุตุงุฑุช ุงูู H' ูููุง ู
ุงููุง |
|
|
|
167 |
|
00:14:09,090 --> 00:14:11,970 |
|
continuous ุฅุฐุง ุงูู integration ู
ู Alpha ูู Beta |
|
|
|
168 |
|
00:14:11,970 --> 00:14:17,390 |
|
ูู H' of T ุงููู ูู ุงูู integration ุจู cancel ุงูู |
|
|
|
169 |
|
00:14:17,390 --> 00:14:19,990 |
|
differentiation ุงููู ูู ุงูุฌุฒุก ุงูุฃูู ู
ู ุงูู |
|
|
|
170 |
|
00:14:19,990 --> 00:14:22,790 |
|
fundamental theorem of calculus ูุง ุฌู
ุงุนุฉ ูุจูุตูุฑ |
|
|
|
171 |
|
00:14:22,790 --> 00:14:29,910 |
|
ุฅูุด ุจูุณุงูู ุงูุฌูุงุจุ H of Beta ูุงูุต H of mean of |
|
|
|
172 |
|
00:14:29,910 --> 00:14:33,960 |
|
Alpha ุฅุฐู ุตุงุฑ ุนูุฏู ุงูุขู h of alpha ูุจู ุดููุฉ ุดููุฉ |
|
|
|
173 |
|
00:14:33,960 --> 00:14:36,720 |
|
ูุฐููุฑ ู ูุฏู ูุณู ูุงุชุจ ุฅููุง ุฅูุด ุจุชุณุงูู ุตูุฑ ุฅุฐุง ุตุงุฑ |
|
|
|
174 |
|
00:14:36,720 --> 00:14:41,860 |
|
ุงูู
ูุฏุงุฑ ูุฐุง ููู ุงููู ุฃูุง ุจุฏู ุฅูุงู ุฅูุด ุตุงุฑ ุจูุณุงููุ h of |
|
|
|
175 |
|
00:14:41,860 --> 00:14:47,720 |
|
Beta ุฅุฐุง ุงููู ุฃุซุจุชุชู ุชูุฑูุจุงู ุนูุฏู ุฎูุตุช ุฃุซุจุชุช ุฅู ุงูู |
|
|
|
176 |
|
00:14:47,720 --> 00:14:54,080 |
|
integration ุงููู ุฃู
ุงู
ู ูุฐุง ููู ุจูุณุงูู ู
ููุ H of Beta |
|
|
|
177 |
|
00:14:54,080 --> 00:15:01,480 |
|
ุฎููููุง ูุญุณุจ H of Beta H of T ุฅุญูุง F of Phi of T ุฅุฐุง H |
|
|
|
178 |
|
00:15:01,480 --> 00:15:08,220 |
|
of Beta ุจูุณุงูู F of Phi of Beta H of Beta ุจูุณุงูู F of |
|
|
|
179 |
|
00:15:08,220 --> 00:15:14,040 |
|
Phi of Beta ุงูุขู ู
ุง ูุณุงููุ ุงูู integration .. ุงูู |
|
|
|
180 |
|
00:15:14,040 --> 00:15:17,260 |
|
integration ุณุจูููุง ู
ู ุงูู D ูุฃู ุฃูุง ู
ุง ุฃุณุชุฎุฏู
ุด ุงูุฑู
ูุฒ |
|
|
|
181 |
|
00:15:17,260 --> 00:15:23,040 |
|
ูุฐู ุฅูุด ูุฐุง ุจูุณุงููุ ุจูุตูุฑ ุนูุฏู F .. F ุงููู ูู of |
|
|
|
182 |
|
00:15:23,040 --> 00:15:28,260 |
|
Phi of Beta ุญุณุจ ุงูุชุนุฑูู F of U ูุงู ู ุฃู
ุงูู ุจูุณุงูู ุงูู |
|
|
|
183 |
|
00:15:28,260 --> 00:15:37,600 |
|
integration ู
ู Phi of Alpha ูุนูุฏ Phi of Beta F of X |
|
|
|
184 |
|
00:15:37,600 --> 00:15:45,960 |
|
DX ููู ูุฐุง ุงูู
ุทููุจ ุตุงุฑ ุนูุฏู ุงูู integration ูู .. ุงููู |
|
|
|
185 |
|
00:15:45,960 --> 00:15:49,600 |
|
ูู F of X DX ู
ู five of alpha ูุนูุฏ five of beta |
|
|
|
186 |
|
00:15:49,600 --> 00:15:54,460 |
|
ุงููู ูู H of Beta ุจุณุงูู ุงููู ูู ุงูู integration ุงููู |
|
|
|
187 |
|
00:15:54,460 --> 00:16:02,040 |
|
ุฃู
ุงู
ู ููู ุงูู
ุทููุจ ุทูุจ ููุฌู ุงูุขู ูููุธุฑูุฉ ุงูุซุงููุฉ |
|
|
|
188 |
|
00:16:02,040 --> 00:16:08,740 |
|
ุงููุธุฑูุฉ ุงูุซุงููุฉ ุงููู ูู second substitution |
|
|
|
189 |
|
00:16:08,740 --> 00:16:20,020 |
|
theorem ุงููู ูู .. ุฃูุถูุง ุจูุณุชุฎุฏู
ูุง ูุญูุดูู ุฅูุด ุงููู |
|
|
|
190 |
|
00:16:20,020 --> 00:16:26,260 |
|
ูู ูุฐู ุงููุธุฑูุฉ ูููู ูุจุฑูู ุงููุธุฑูุฉ ูุงูุจุฑูุงู ุจุฑุถู |
|
|
|
191 |
|
00:16:26,260 --> 00:16:33,080 |
|
ู
ุด ุตุนุจ ุฃู ุงูุจุฑูุงู ุงููู ูู ุณูู ููุดูู ุงูู second |
|
|
|
192 |
|
00:16:33,080 --> 00:16:36,960 |
|
substitution theorem ุจุชููู ู
ุง ููู ุนูุฏ ูู function |
|
|
|
193 |
|
00:16:38,340 --> 00:16:42,180 |
|
ูุงู ู
ู J ูุนูุฏ ุจุงุฑ J ูู ููุณ ุงููุชุฑุฉ ุงููู .. ุงููุชุฑุฉ |
|
|
|
194 |
|
00:16:42,180 --> 00:16:45,700 |
|
ุงููู ุฅุญูุง ุญูููุง ุนููุง ุงููู ูู ุนุจุงุฑุฉ ุนู Alpha ู Beta |
|
|
|
195 |
|
00:16:45,700 --> 00:16:49,980 |
|
ุจุฏูุง ููุชุฑุถ ุฃู ุงูู ูุงู ูุฐู have a continuous |
|
|
|
196 |
|
00:16:49,980 --> 00:16:57,700 |
|
derivative ุจุฑุถู ููุณ ุงููู ูู ุงูู
ุนุชุงุฏ ุฃููุงูู ูููุชุฑุถ I |
|
|
|
197 |
|
00:16:57,700 --> 00:17:02,700 |
|
ุนุจุงุฑุฉ ุนู interval ุจุชุญุชูู Phi of J ููุณ ุงูู
ุนุชุงุฏ ูู |
|
|
|
198 |
|
00:17:02,700 --> 00:17:07,220 |
|
ุงููุธุฑูุฉ ุงูุณุงุจูุฉ ุงูุขู ุงูู
ุนุชุงุฏ ุฌุฏูุฏ ุจุฏูุง ููุชุฑุถ ุฃูู |
|
|
|
199 |
|
00:17:07,220 --> 00:17:12,160 |
|
ููู function ฯ ู
ู I ูุนูุฏ R ุจู a function ุงููู ูู |
|
|
|
200 |
|
00:17:12,160 --> 00:17:16,740 |
|
inverse ูู ู
ูู ุงููู ูู ุงูู Phi ูุนูู ุนูุฏู Phi |
|
|
|
201 |
|
00:17:16,740 --> 00:17:24,140 |
|
ุจุดุฑูุท ุงููุธุฑูุฉ ุงููู ูุงุชุช ู
ู J ูุนูุฏ ู
ููุ ูุนูุฏ R ูุนูุฏู |
|
|
|
202 |
|
00:17:24,140 --> 00:17:29,800 |
|
ุจู Psi ู
ู ุนูุฏ I ูุนูุฏ R ูู
ูุชุฑุถูู ุฃูู ุจู Psi ูู ุงูู |
|
|
|
203 |
|
00:17:29,800 --> 00:17:33,940 |
|
inverse ูู ู
ูู ููู Phi ูุนูู Phi composite ุจู Psi |
|
|
|
204 |
|
00:17:35,340 --> 00:17:39,940 |
|
ุจุณุงูู ู
ููุ ุงูู identity function ุฃู Psi composite ุงูู |
|
|
|
205 |
|
00:17:39,940 --> 00:17:45,960 |
|
Phi ุนุจุงุฑุฉ ุนู ุงูู identity function ููู ุงููู ูู ุนูุฏู |
|
|
|
206 |
|
00:17:45,960 --> 00:17:53,460 |
|
ู
ูุชุฑุถูู ุฃู Phi of J subset ู
ู ู
ููุ ู
ู ุงูู I ุนุดุงู |
|
|
|
207 |
|
00:17:53,460 --> 00:18:00,680 |
|
ูููู ุงููู ูู ุงูู composition ู
ุนุฑู ุฅุญูุง |
|
|
|
208 |
|
00:18:08,270 --> 00:18:15,850 |
|
ุตุงุฑุช ุจู Psi ูู ุงูู inverse ูู Phi ู F ุจุฑุถู ููุณ |
|
|
|
209 |
|
00:18:15,850 --> 00:18:20,230 |
|
ุงูู
ุนุทูุงุช ุงููุงุชุฑุฉ continuous on I ุฅุฐุง ู
ุง ูุนููุ ุฅุฐุง |
|
|
|
210 |
|
00:18:20,230 --> 00:18:25,190 |
|
ูุนูู ุงููู ุจุญููู ููุฃูู ููุณ ุดุฑูุท ุงููุธุฑูุฉ ุงูุณุงุจูุฉ ุจุณ |
|
|
|
211 |
|
00:18:25,190 --> 00:18:30,190 |
|
ุงููู ุฃุถููุง ุฅู ุงูู Phi ุงููู ุนูุฏูุง ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
212 |
|
00:18:30,190 --> 00:18:35,220 |
|
ููู ุฅููุง inverse ููู ููุง inverse ูุจุชุนุทููู ู
ุฌุงู |
|
|
|
213 |
|
00:18:35,220 --> 00:18:39,900 |
|
ููุชุญุฑู ุฃูุซุฑ ู
ู ุงูุฃููู ุฅููุง ุฏู ุจุชูุชุฑุถุด ุฃูู ูู |
|
|
|
214 |
|
00:18:39,900 --> 00:18:42,900 |
|
ููุง inverse ูุจูุจุฏุฃ ุจูุนููุถ ุฒู ู
ุง ุนูุถูุง ูุจู ุฅูุด |
|
|
|
215 |
|
00:18:42,900 --> 00:18:48,580 |
|
ุงููุชูุฌุฉ ุทูุจ ุงููุชูุฌุฉ ูู ู
ุง ููู ุงููู ูู ุฅุฐุง ุงูู |
|
|
|
216 |
|
00:18:48,580 --> 00:18:56,560 |
|
integration ุฃุจู ุญุณูู ุงุฒูุญู ุจุณ ูุฌุงุนู ุดููุฉ |
|
|
|
217 |
|
00:19:03,530 --> 00:19:21,050 |
|
ุงููุต ุงููู ูุฏู ุนูู ุงูุญูุท ุฃุตูุง ุงูุณูุงู
|
|
|
|
218 |
|
00:19:21,050 --> 00:19:22,150 |
|
ุนูููู
ุงูุณูุงู
ุนูููู
|
|
|
|
219 |
|
00:19:41,080 --> 00:19:43,960 |
|
ุฎูุงุต ุณุงุนุฉ ุณุจุนุฉ ูุง ุนุฒูุฒู ุฎูุงุต ุฎูุงุต |
|
|
|
220 |
|
00:19:46,210 --> 00:19:50,670 |
|
ุฅุฐุง ุงูุขู ุงูู .. ุงูู .. ุงูู .. ุงูู .. second |
|
|
|
221 |
|
00:19:50,670 --> 00:19:54,290 |
|
substitution theorem ููุณ ุดุฑูุท ุงููู ูู ุงูู fair |
|
|
|
222 |
|
00:19:54,290 --> 00:19:58,590 |
|
substitution theorem ุจุณ ุงูุขู ุงููู ููุถูููุง ุนูููุง ุฃูู |
|
|
|
223 |
|
00:19:58,590 --> 00:20:02,150 |
|
ุจู Psi ุนูุฏู ูุฑุถูุง ุฃูู ูู ุนูุฏู Psi function ู
ู I |
|
|
|
224 |
|
00:20:02,150 --> 00:20:07,270 |
|
ูุนูุฏ R ูู ุนุจุงุฑุฉ ุนู ุงูู inverse ูู
ููุ ููุงู ุจูุงุก .. |
|
|
|
225 |
|
00:20:07,270 --> 00:20:12,990 |
|
ุจูุงุก ุนููู ููุตูุฑ ุงูู integration ู
ู Alpha ูุนูุฏ Beta F |
|
|
|
226 |
|
00:20:12,990 --> 00:20:19,230 |
|
of Phi of T DT ูุฃู ู
ุด ุธุงูุฑุฉ ุนูุฏูุง ููุง ู
ูู ุงูู |
|
|
|
227 |
|
00:20:19,230 --> 00:20:23,650 |
|
derivative ูู
ููุ ูุฅู ุงููู ูู ุงูู Phi ุจุงูุฑุบู
ู
ู ููู |
|
|
|
228 |
|
00:20:23,650 --> 00:20:27,470 |
|
ููุทูุน ุนูุฏู ุจุณุงูู ุงูู integration F of X ุจู Phi prime |
|
|
|
229 |
|
00:20:27,470 --> 00:20:31,810 |
|
of X DX ุงููู ูู ุนูุฏู ู
ู Phi of Alpha ูุนูุฏ ู
ููุ |
|
|
|
230 |
|
00:20:31,810 --> 00:20:33,770 |
|
ูุนูุฏ Phi of Beta |
|
|
|
231 |
|
00:20:36,860 --> 00:20:42,520 |
|
ุงูุขู ูุดูู ุงููู ูู ููู ูุจุฑูู ูุธุฑูุชูุง ุฎูููุง ููุชุจ |
|
|
|
232 |
|
00:20:42,520 --> 00:20:46,800 |
|
ูุฐู ุนูู ุฌูุฉ ุนุดุงู ูุนุฑู ุฅุญูุง ูููู ุฑุงูุญูู ุงูู |
|
|
|
233 |
|
00:20:46,800 --> 00:20:55,880 |
|
integration ู
ู Alpha ูุนูุฏ Beta F of Phi of T dt |
|
|
|
234 |
|
00:20:55,880 --> 00:21:08,520 |
|
ุจุณุงูู ุงูู integration ูู Psi of Alpha F of ุฃู F of X |
|
|
|
235 |
|
00:21:08,520 --> 00:21:21,440 |
|
Phi prime of .. Psi prime of X DX Phi prime of X |
|
|
|
236 |
|
00:21:21,440 --> 00:21:27,600 |
|
DX ู
ู Phi of Alpha ูุนูุฏ |
|
|
|
237 |
|
00:21:27,600 --> 00:21:36,060 |
|
Phi of Beta ุฏุนููุง ูุดูู ููู .. ููุฌู ูุดูู ุงูุจุฑูุงู ุฌุฑุจ |
|
|
|
238 |
|
00:21:36,060 --> 00:21:42,560 |
|
ุงูุช ูุญุงูู ุนูุถ ุงููู ูู ุนุดุงู ุชุดูู ู
ูุทููุฉ ุงููุธุฑูุฉ ุฒู |
|
|
|
239 |
|
00:21:42,560 --> 00:21:49,880 |
|
ู
ุง ููุง ูุนูุถ ูู ุงูู calculus ุนูุถ ุนู X ุจู Phi of T ูุง |
|
|
|
240 |
|
00:21:49,880 --> 00:21:55,540 |
|
ููุทูุน ุนูุฏู ุงููู ูู ูู ุงูููุงูุฉ DT ูู ุนุจุงุฑุฉ ุนู ูู |
|
|
|
241 |
|
00:21:55,540 --> 00:21:59,890 |
|
ูุฐู ูู ุนูุถุช ุทุจุนุงู ุจุงุณุชุฎุฏุงู
ุงููู ูู ุงูุนูุงูุฉ ุจูู ุงูู |
|
|
|
242 |
|
00:21:59,890 --> 00:22:03,170 |
|
.. ุงู .. ุงูู inverse ุงููู ูู ุงูู Psi ุฅููุง inverse |
|
|
|
243 |
|
00:22:03,170 --> 00:22:07,210 |
|
ุนูู Phi ูุชุญุตู ุนูู ุงููู ูู .. ุงููู ูู ูู ูุฐุง |
|
|
|
244 |
|
00:22:07,210 --> 00:22:12,750 |
|
ุงูู
ูุฏุงุฑ ูู ููุทูุน ู
ูู ููุ ุฏู T ู ูุชุตูุฑ ุจุฏู Alpha Phi |
|
|
|
245 |
|
00:22:12,750 --> 00:22:15,550 |
|
of Alpha ู Beta Phi of Beta ุฒู ู
ุง ุฃูุชู
ุนุงุฑููู |
|
|
|
246 |
|
00:22:15,550 --> 00:22:19,490 |
|
ูุฃูู ูู
ุง ูุงูุช T ุจุชุณุงูู Alpha ุทูุนุช ุงููู ูู Phi of |
|
|
|
247 |
|
00:22:19,490 --> 00:22:21,970 |
|
T ูุนูุถุฉ ู
ูุงููุง ุงููู ูู Phi of Alpha ู ุงูุซุงููุฉ |
|
|
|
248 |
|
00:22:21,970 --> 00:22:29,420 |
|
ูุชุทูุน Phi of Beta ุทุจ ููุฌู ุงูุขู ูุจุฑูุงู ุงููุธุฑูุฉ ุงูุขู |
|
|
|
249 |
|
00:22:29,420 --> 00:22:34,860 |
|
ุนูุฏู ุฃูู ุญุงุฌุฉ five prime of T ุจุนุทููุง ุฅูุงูุง ุดู
ุงูู |
|
|
|
250 |
|
00:22:34,860 --> 00:22:39,660 |
|
ูุง ุชุณุงูู ุตูุฑ ุทุจุนุงู ูุฐุง ูุฒูู
ูุฒูู
ุฃู ุชููู ุงูู inverse |
|
|
|
251 |
|
00:22:39,660 --> 00:22:44,900 |
|
ู
ูุฌูุฏุฉ five prime of T ูุง ุชุณุงูู ุตูุฑ ูุนูู ุงูุขู five |
|
|
|
252 |
|
00:22:44,900 --> 00:22:49,180 |
|
prime of T ูุง ุฃูุจุฑ ู
ู ุตูุฑ ูุง ุฃุตุบุฑ ู
ู ุตูุฑ ุนูุฏู |
|
|
|
253 |
|
00:22:49,180 --> 00:22:52,680 |
|
ุงูู
ูุทู ุงููู ููููู ุนูุฏู ุงููู ูู strictly increasing |
|
|
|
254 |
|
00:22:52,680 --> 00:22:55,860 |
|
ุฃู strictly decreasing ุนูู ุงูู
ูุทูุฉ ุงููู ูู ูููุง |
|
|
|
255 |
|
00:22:55,860 --> 00:23:00,060 |
|
ุฅุฐุง ูู ุนูุฏู ุจู
ุนูู ุขุฎุฑ strictly monotone ู
ุฏุงู
|
|
|
|
256 |
|
00:23:00,060 --> 00:23:04,940 |
|
strictly monotone ุฅุฐุง ุงูู inverse ุฅููุง ู
ูุฌูุฏ ู ูู |
|
|
|
257 |
|
00:23:04,940 --> 00:23:08,900 |
|
ุจุชุณุงูู ุงูู inverse ุฒู ู
ุง ูู ู
ุนุทููุง ุฅูุงูุง ุทุจุนุงู ุฅุญูุง |
|
|
|
258 |
|
00:23:08,900 --> 00:23:14,410 |
|
ู
ุนุทููุง ุงูู ููุงูู Phi ู
ุด differentiable ุจุณ Phi ู
ุด |
|
|
|
259 |
|
00:23:14,410 --> 00:23:17,990 |
|
differentiable ุงููู ูู ุงูู derivative ู
ูุฌูุฏุฉ ู |
|
|
|
260 |
|
00:23:17,990 --> 00:23:22,310 |
|
ุดู
ุงูู continuous ุทูุจ ูุฃู ุจู
ุง ุฃูู ุงููู ูู Phi |
|
|
|
261 |
|
00:23:22,310 --> 00:23:27,850 |
|
prime exist ุฅุฐุง ุจูุธุฑูุฉ ุฃุฎุฐูุงูุง ุงููู ูู 6 1 9 ูุชููู |
|
|
|
262 |
|
00:23:27,850 --> 00:23:32,170 |
|
ุงูู Phi prime exist ูุจุชุณุงูู ูุงุญุฏ ุนูู ูู ุจุฑุงูู
ูู |
|
|
|
263 |
|
00:23:32,170 --> 00:23:36,350 |
|
ู
ููุ ูู ุจุณุงู ูู
ุงู ู
ุฑุฉ ูุง ุฌู
ุงุนุฉ ุฃุฐูุฑูู
ูู ุงููุธุฑูุฉ |
|
|
|
264 |
|
00:23:36,350 --> 00:23:41,410 |
|
ุงูุขู ุนูุฏู ู
ุฏุงู
ุฉ ุจุณุงู ุจุณุงูู ูู ุงููุฑุณ ูุงููู ููุณูุง |
|
|
|
265 |
|
00:23:41,410 --> 00:23:45,450 |
|
ุนุจุงุฑุฉ ุนู differentiable ูุชููู ุงูู inverse ุงููู ูู |
|
|
|
266 |
|
00:23:45,450 --> 00:23:48,910 |
|
ุจุณุงู is differentiable ูุงูู derivative ุงููู ูู ุจุณุงู |
|
|
|
267 |
|
00:23:48,910 --> 00:23:53,490 |
|
ุจุฑุงูู
ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู ูู ุจุฑุงูู
ู
ุงููุ composite |
|
|
|
268 |
|
00:23:53,490 --> 00:23:58,400 |
|
ุจุณุงู ุงููู ูู .. ุฃู ู
ุด ููู ูุชุทูุน .. ูุชุทูุน continuous |
|
|
|
269 |
|
00:23:58,400 --> 00:24:01,500 |
|
ููุด continuousุ ูุฃูู ุฃุตูุงู ู
ุง ููุด ุฃุณูุงุฑ ูู ุงูู
ูุงู
|
|
|
|
270 |
|
00:24:01,500 --> 00:24:05,100 |
|
ุฃููุฏ ูุนูุฏ Phi prime ููุณูุง Phi prime ููุณูุง |
|
|
|
271 |
|
00:24:05,100 --> 00:24:08,520 |
|
continuous ู
ุนุทููู ุฅูุงูุง ู ุจู Psi is continuous ูุฃููุง |
|
|
|
272 |
|
00:24:08,520 --> 00:24:11,800 |
|
ุฃุตููุง differentiable ููุชุทูุน ุนูุฏู ุงููู ูู ุจู Psi prime |
|
|
|
273 |
|
00:24:11,800 --> 00:24:17,180 |
|
ุจุฑุถู ู
ุงููุงุ is continuous ุฅุฐู ุงููู ุงุณุชูุชุฌูุงู ุงูุขู |
|
|
|
274 |
|
00:24:17,180 --> 00:24:22,590 |
|
ุฃู ุงูู inverse function is continuous ูููู
ุชูุง ุงูู |
|
|
|
275 |
|
00:24:22,590 --> 00:24:26,310 |
|
Derivative ุฅูููุง ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู Psi Prime ูู |
|
|
|
276 |
|
00:24:26,310 --> 00:24:31,890 |
|
Phi Prime ูู ู
ููุ ูู Psi ูุดูู ุงูุขู ุจุฏูุง ูุนุฑู ุงููู |
|
|
|
277 |
|
00:24:31,890 --> 00:24:36,850 |
|
ูู ุจุฃุณููุจ ู
ุดุงุจู ูุจู ุจุดููุฉ ุฃูู ูุนุฑู ุฏูุงู ุจุญูุซ ุฃูู |
|
|
|
278 |
|
00:24:36,850 --> 00:24:41,810 |
|
ูู
ุง ููุฌู ุงููู ูู ูุงุฎุฏู ุชุจูู derivative ูุดูุก ุณูู |
|
|
|
279 |
|
00:24:41,810 --> 00:24:45,210 |
|
ุฅูุฌุงุฏู ููู
ุง ูุงุฎุฏู ูู ุงูู integration ูุทูุน ุงููู ูู |
|
|
|
280 |
|
00:24:45,210 --> 00:24:48,350 |
|
ููุณ ุงูุฏุงูุฉ ุนูุฏ ููุทุฉ ุงูุฃููู ูุงูุต ุงูููุทุฉ ุงูุซุงููุฉ |
|
|
|
281 |
|
00:24:48,350 --> 00:24:50,950 |
|
ุงููู ูู ุจุงุณุชุนู
ุงูู ูู ุฃูุธู
ุฉ ุงูุชูููุฑู
ูููุงูููุงุณ ุฃูุด |
|
|
|
282 |
|
00:24:50,950 --> 00:24:55,480 |
|
ุงููู ุจููููุ ุฎููููู ูุดููู ุงููู ููุนุฑูู ูููุง ุฌู
ุนุฉ ุฌู |
|
|
|
283 |
|
00:24:55,480 --> 00:24:59,360 |
|
ู
ู ุฌู ูุนูุฏ R ุงููู ูู ุนุจุงุฑุฉ ุนู ู ูููุง ุฃููุง ุชููู |
|
|
|
284 |
|
00:24:59,360 --> 00:25:02,960 |
|
ุฅูู ุดู
ุงููุง Anti-derivative ููู continuous function |
|
|
|
285 |
|
00:25:02,960 --> 00:25:06,500 |
|
of composite phiF composite Phi continuousุ ุฃู |
|
|
|
286 |
|
00:25:06,500 --> 00:25:09,440 |
|
continuous ูุฃู ุงูู Phi is continuous ูููุง ุงู |
|
|
|
287 |
|
00:25:09,440 --> 00:25:12,160 |
|
derivative ุฅูููุง continuous ูู
ุงู ู
ุด ูุงูููุง ุจุณ ู ุงู |
|
|
|
288 |
|
00:25:12,160 --> 00:25:16,340 |
|
F ู
ุนุทููุง ุฅูุงูุง continuous ููู
ูุง ุฃููู ุฅู ุนุฑู G |
|
|
|
289 |
|
00:25:16,340 --> 00:25:19,180 |
|
ูุชููู antiderivative ูู
ูู ูุฐูุ ุทุจ ูุฏู ุฅูุงูุง |
|
|
|
290 |
|
00:25:19,180 --> 00:25:21,320 |
|
antiderivativeุ ุฃู ู
ุฏุงู
continuous ู ุงูู
ุฑุฉ ุงููู |
|
|
|
291 |
|
00:25:21,320 --> 00:25:23,260 |
|
ูุงุชุช ููููุง ุฏู ูุงูุช ุงูุฏุงูุฉ continuous ุนูู ุทูู ููู |
|
|
|
292 |
|
00:25:23,260 --> 00:25:26,640 |
|
ุฅูููุง antiderivative ุฅูุด ูุนููุ ูุนูู ุงูู G prime |
|
|
|
293 |
|
00:25:26,640 --> 00:25:33,270 |
|
ูุชููู ู
ููุ ุงูู F composite Phi ุทูุจ ุงูุขู ุฏู ุฅุฐุง ู
ุฏุงู
|
|
|
|
294 |
|
00:25:33,270 --> 00:25:37,130 |
|
ุงููู ูู ุงูู G Antiderivative ููู F Composite Phi |
|
|
|
295 |
|
00:25:37,130 --> 00:25:40,530 |
|
ุฅุฐุง ุงูู G' Exists ุฅุฐุง ุงูู G Differentiable ู ูู |
|
|
|
296 |
|
00:25:40,530 --> 00:25:42,690 |
|
ุจุตู Differentiable ุฅุฐุง ุงูู Composition ุงููู ูู ุฅูุด |
|
|
|
297 |
|
00:25:42,690 --> 00:25:47,870 |
|
ุจุฑุถู ููุทูุน Differentiable ุฅูุด ูุนููุ ุทูุจ .. ุทุจ ูุฅูุด |
|
|
|
298 |
|
00:25:47,870 --> 00:25:50,950 |
|
ูุนูู ุงูู differentiableุ ูุง .. ูุงูู gate ูููุตูููู |
|
|
|
299 |
|
00:25:50,950 --> 00:25:54,290 |
|
ูุฅู Decomposite Phi Prime of X ุฏู ูุฌูุฏ ุงูู |
|
|
|
300 |
|
00:25:54,290 --> 00:25:56,970 |
|
derivative ุจูุนุฑู ุฃูู ูุฌูุฏ ุงูู derivative ูู ุนุจุงุฑุฉ |
|
|
|
301 |
|
00:25:56,970 --> 00:26:01,610 |
|
ุนู D Prime of Psi of X Psi Prime of X ุงููู ูู |
|
|
|
302 |
|
00:26:01,610 --> 00:26:07,600 |
|
Chain Rule ุงุณุชุฎุฏุงู
ุงูู Chain Rule ููุณุงูู ูุฃููููุง |
|
|
|
303 |
|
00:26:07,600 --> 00:26:11,480 |
|
ุฌู ุจุฑุงูู
ูู ู
ููุ ุงูู F composite ูู ุฅุฐุง ุจุดูู ุงูุฌู |
|
|
|
304 |
|
00:26:11,480 --> 00:26:15,320 |
|
ุจุฑุงูู
ู ุจุญุท ู
ูุงููุง F composite ุฅูุด ูุง ุฌู
ุงุนุฉ ูู ูู |
|
|
|
305 |
|
00:26:15,320 --> 00:26:19,840 |
|
ุจุณุงู of X ุงููู ูู ูููุง F composite .. ูู ุฏู ุจุฏููุง |
|
|
|
306 |
|
00:26:19,840 --> 00:26:24,720 |
|
F composite ูู of ุจุณุงู of X ูู ุจุณุงู ุจุฑุงูู
ู
ู of X |
|
|
|
307 |
|
00:26:24,720 --> 00:26:32,120 |
|
ู ูุณุงูู F of ุงููู ูู ูู composite ุจุณุงู of X ูู |
|
|
|
308 |
|
00:26:32,120 --> 00:26:37,570 |
|
ุจุณุงู ุจุฑุงูู
ู
ู of X ูุชุจุชูุง ุจุณ ุนูู ุตูุฑุฉ ูู ุงููู ูู |
|
|
|
309 |
|
00:26:37,570 --> 00:26:41,510 |
|
ูููุช ุงู composition ุฅูู ุงูุขูุ ููุด ุนู
ูุช ูููุ ุนุดุงู |
|
|
|
310 |
|
00:26:41,510 --> 00:26:44,530 |
|
ุฃุณูู ุนูููู
ูุฃููููู
ุฃุญูุง ุจูููููุง Psi ุฃุดู
ูู ุงู |
|
|
|
311 |
|
00:26:44,530 --> 00:26:47,310 |
|
inverse ููู Phi ู
ุฒุงู
ุงูู inverse ู
ุน ุจุนุถ ุฏู ูู ุงู |
|
|
|
312 |
|
00:26:47,310 --> 00:26:49,850 |
|
identity ุฏู ูู ุงูู identity of X ุฏู ูู ุงูู X ูุนูู |
|
|
|
313 |
|
00:26:49,850 --> 00:26:54,850 |
|
ูููุง ูุชุตูุฑ F of X Psi prime ุฅุฐุง ุตุงุฑ ุนูุฏู ูุฐุง |
|
|
|
314 |
|
00:26:54,850 --> 00:27:02,220 |
|
ุดุงูููููุ ูู ุนุจุงุฑุฉ ุนู F small of X ูู Psi prime of X |
|
|
|
315 |
|
00:27:02,220 --> 00:27:07,800 |
|
ุทูุจ ุณููุฉ ุงูู
ูุถูุน ุงูุขู ุฅุฐุง ูุงุฎุฏ ุงู integration ู
ู |
|
|
|
316 |
|
00:27:07,800 --> 00:27:11,100 |
|
Phi of Alpha ูู Phi of Beta ูู F of X ุจู Psi prime of |
|
|
|
317 |
|
00:27:11,100 --> 00:27:15,540 |
|
X DX ุฅูุด ูุฐูุ ุฃู ูุฐู ุงููู ุจุฏูุง ุฅูุงูุง ูููุง Psi |
|
|
|
318 |
|
00:27:15,540 --> 00:27:20,130 |
|
prime of X DX ุฅุฐุง ููุตููุง ุฅุฐุง ุงูู integration ูุฐุง |
|
|
|
319 |
|
00:27:20,130 --> 00:27:23,290 |
|
ุจูุณุงูู ุงูู integration ููุฐุง ุงูู integration ููุฐุง |
|
|
|
320 |
|
00:27:23,290 --> 00:27:30,570 |
|
ุนูุฏู ูุฐู ุงููู ูุงู ุฌู ููู
ูุฒูุช ูู ุจุณุงูุฏ ุงููู ุจุฑุงูู
|
|
|
|
321 |
|
00:27:30,570 --> 00:27:37,870 |
|
of x dx ุงูุงู ุงูุงู ููุง ุงูู domain ูุฐู ุงููู ููููู ู
ู |
|
|
|
322 |
|
00:27:37,870 --> 00:27:42,600 |
|
ุนูุฏู ุงููู ูู ุงูู I ูุนูู ูู
ุง ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
323 |
|
00:27:42,600 --> 00:27:43,320 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
324 |
|
00:27:43,320 --> 00:27:43,440 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
325 |
|
00:27:43,440 --> 00:27:44,420 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
326 |
|
00:27:44,420 --> 00:27:45,660 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
327 |
|
00:27:45,660 --> 00:27:50,280 |
|
.. |
|
|
|
328 |
|
00:27:50,280 --> 00:27:54,440 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
329 |
|
00:27:54,440 --> 00:27:55,100 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
330 |
|
00:27:55,100 --> 00:27:57,300 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
331 |
|
00:27:57,300 --> 00:28:06,760 |
|
.. ุงู .. ุงู .. ุงู ..ุงูุขู ุตุงุฑุช ุงูู derivative ุฅููุง |
|
|
|
332 |
|
00:28:06,760 --> 00:28:09,620 |
|
ุงูู integration ูููุบู ุงูู derivative ุงููู ูู by |
|
|
|
333 |
|
00:28:09,620 --> 00:28:12,300 |
|
fundamental theorem of calculus ููู ุงูุดุฑูุท ุฒู ู
ุง |
|
|
|
334 |
|
00:28:12,300 --> 00:28:17,420 |
|
ูููุง ู ุงูุชุญูููุง ููุตูุฑ ูุฐู ุงููู ุฌูุง ุนูุฏ ูุฐู ู ูุฐู |
|
|
|
335 |
|
00:28:17,420 --> 00:28:24,060 |
|
ุงููู ุฌูุง ุนูุฏ ูุฐู ุญุงุตู ุทุฑุญูู ุงููู ูู G Phi |
|
|
|
336 |
|
00:28:24,060 --> 00:28:29,140 |
|
Composite Psi ุงููู of a G composed of Psi ุงููู of |
|
|
|
337 |
|
00:28:29,140 --> 00:28:33,540 |
|
Phi of X ุงููู ูู ุงูู X ูู ูุฐู ุงูุญุงูุฉ ุฅูุด ุงุณู
ูุง ุงููู |
|
|
|
338 |
|
00:28:33,540 --> 00:28:39,600 |
|
ูู Alpha ู
ุนูุด ู ูุฐู ุงูุซุงููุฉ ุงูู Beta ุขุณู ุงููู ููููุง |
|
|
|
339 |
|
00:28:39,600 --> 00:28:44,660 |
|
Beta ุญุฏ ุงูุฃูู ู ูุฐู ุงูุญุฏ ุงููู ุชุญุช Alpha ู
ุงุดู |
|
|
|
340 |
|
00:28:44,660 --> 00:28:49,430 |
|
ุงูุญุงูุฉ ูุฐู ูุนูู ูููุง ุนูู ุจุนุถ ุฒู ู
ุง ุนู
ููุง ูุจู ููู |
|
|
|
341 |
|
00:28:49,430 --> 00:28:53,370 |
|
ุงูู Psi ู ุงูู Phi ุงููู ูู ุนุจุงุฑุฉ ุนู inverse ูุจุนุถุ ุฅุฐุง |
|
|
|
342 |
|
00:28:53,370 --> 00:28:58,530 |
|
ุงูู Identity ูุนูู ูุชุตูุฑ ุงูู G of Beta ู ูุฐุง ูุชุตูุฑ |
|
|
|
343 |
|
00:28:58,530 --> 00:29:04,270 |
|
ุงูู G of Alphaุ ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูู
ูุฏุงุฑ ุงููู ุฃู
ุงู
ู ูุฐุง |
|
|
|
344 |
|
00:29:04,270 --> 00:29:11,130 |
|
ุงููู ูู ุงููู ุฃูุง ุจุจุญุซ ุนููุ ูุฐุง ุงูู
ูุฏุงุฑุ ุดุงูููููุ |
|
|
|
345 |
|
00:29:11,130 --> 00:29:15,790 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ุทูุน ุนุจุงุฑุฉ ุนู ุนุดุงู ุงุณุชุฎุฏู
ู ุจุนุฏ ุดููุฉ |
|
|
|
346 |
|
00:29:15,790 --> 00:29:22,650 |
|
ุฎูููุง ูู
ูู ุฃูุถุญ ูููู ููุตูุฑ ุนุจุงุฑุฉ ุนู g of beta ูุงูุต |
|
|
|
347 |
|
00:29:22,650 --> 00:29:26,910 |
|
g of alpha ุจุชุซุจุช ููู
ุงูุซุงูู ุจุฑุถู ููููู g of beta |
|
|
|
348 |
|
00:29:26,910 --> 00:29:31,850 |
|
ูุงูุต g of alpha ู ุจููู ุฎูุตูุง ุงููู ูู ุจุฑูุงู ุงููุธุฑูุฉ |
|
|
|
349 |
|
00:29:31,850 --> 00:29:36,990 |
|
ุฎูุตูุง ูุฐุง ุงูุฌุฒุก ููุฌู ู ุงููู ูู ุงูุฌุฒุก ุงูุซุงูู ุงููู |
|
|
|
350 |
|
00:29:36,990 --> 00:29:38,410 |
|
ุฃุณูู ูู
ุงู |
|
|
|
351 |
|
00:29:41,370 --> 00:29:44,990 |
|
ุดูู ูุง ุฌู
ุงุนุฉ ุตูู ุงููู ุนููู ูุณูู
ุจุงูุณูุงู
ุฉ ุงุญูุง ูููุง |
|
|
|
352 |
|
00:29:44,990 --> 00:29:47,790 |
|
ุงูู G ูู ุงูู antiderivative ููุฐู ูุนูู ุงูู G' ุจุณุงููุฉ |
|
|
|
353 |
|
00:29:47,790 --> 00:29:51,850 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ุฅุฐุง ุงูุขู ุจููุฏุฑ ูุณุชุฎุฏู
ุงููู ูู ุงู |
|
|
|
354 |
|
00:29:51,850 --> 00:29:53,930 |
|
fundamental theorem of calculus ุฃู ุงููู ูู ุงู |
|
|
|
355 |
|
00:29:53,930 --> 00:29:58,090 |
|
corollary ููุง ุจููู ุนูุฏ ุงู integration ููู ููู
ูุฏุงุฑ |
|
|
|
356 |
|
00:29:58,090 --> 00:30:02,790 |
|
ูุฐุง ููุทูุน ููู ุงููู ูู ู
ุจุงุดุฑุฉ ุจุณุงููุฉ ูุนูู ู
ู
ูู |
|
|
|
357 |
|
00:30:02,790 --> 00:30:07,230 |
|
ุจุนุถูู
ูุงุญุธ ุงูุงุดู ุงููู ุจุชุณููู ู
ู ูุจู ู
ุง ุงุดุฑุญ ุงูุขู ุงู |
|
|
|
358 |
|
00:30:07,230 --> 00:30:09,670 |
|
integration f of I of T ู
ู Alpha ูู Beta ุฅูุด |
|
|
|
359 |
|
00:30:09,670 --> 00:30:14,370 |
|
ุจูุณุงููุ ูุฐุง ููู ุจุฏู ุชุดูู ู
ูุงูู ู
ูููุ ุชุญุทู G' ุงู |
|
|
|
360 |
|
00:30:14,370 --> 00:30:19,390 |
|
integration ูู G' of T dt ู
ู Alpha ูุนูุฏ Beta ููุณ |
|
|
|
361 |
|
00:30:19,390 --> 00:30:22,690 |
|
ุงูุญุฏูุฏ ูุฃูู ู
ุง ุบูุฑูุงุด ุงููู ูู ุงูู variability ุงููู |
|
|
|
362 |
|
00:30:22,690 --> 00:30:26,170 |
|
ุจุฏูุง ููุงู
ู ุจุงููุณุจุฉ ููุ ู
ุง ูุณุงูู ุนูู ุทูู ูุฐู ุงููู ูู |
|
|
|
363 |
|
00:30:26,170 --> 00:30:30,330 |
|
ุชูุงุถู ุจู cancel ุงููู ูู ุฃู ุงูุชูุงู
ู ุจู cancel ุงูุชูุงุถู |
|
|
|
364 |
|
00:30:30,330 --> 00:30:32,730 |
|
ุงููู ูู ุงูู corollary ุงููู ุญูููุง ุนููุง ุงููู ูู |
|
|
|
365 |
|
00:30:32,730 --> 00:30:36,090 |
|
corollary of fundamental theorem of calculus ุจุณุงููุฉ |
|
|
|
366 |
|
00:30:36,090 --> 00:30:41,480 |
|
G of beta ูุงูุต g of alpha ุงูุขู ูุฐู ุตุงุฑุช g of beta |
|
|
|
367 |
|
00:30:41,480 --> 00:30:44,620 |
|
ูุงูุต g of alpha ู ูุฐู ุตุงุฑุช g of beta ูุงูุต g of |
|
|
|
368 |
|
00:30:44,620 --> 00:30:48,320 |
|
alpha ุฅุฐุง ุตุงุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ุจุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
369 |
|
00:30:48,320 --> 00:30:51,400 |
|
ุฃู ุงูู integration ุจุณุงูู ุงูู integration ู ุจููู ููู |
|
|
|
370 |
|
00:30:51,400 --> 00:30:55,160 |
|
ุฃุซุจุชูุง ุงููู ูู ุงููุธุฑูุฉ ุงูุซุงููุฉ ุฃู ุงููู ูู second |
|
|
|
371 |
|
00:30:55,160 --> 00:31:00,200 |
|
substitution theorem ุงูุขู ุชุทุจููุงุช ูุฐู ุงููุธุฑูุงุช ู
ุง |
|
|
|
372 |
|
00:31:00,200 --> 00:31:04,500 |
|
ูู ูุฏููุฉ ุชุทุจููุงุชูู
ุงููู ูู ุฅุดุจุนูุง ูููุง ู
ู Calculus |
|
|
|
373 |
|
00:31:04,500 --> 00:31:04,780 |
|
B |
|
|
|
374 |
|
00:31:08,400 --> 00:31:14,420 |
|
ูุจุตูุฑ ุจุณ ุงูู ุงูุช ูุญุงูู ูู ุงูุจูุช ูู ูุนุฏุช ู ุนู
ูุชูู |
|
|
|
375 |
|
00:31:14,420 --> 00:31:18,380 |
|
ุณุคุงู ุณุคุงููู ุนูู ุงู substitution ูู ุงูุญุงูุชูู ุจุชููู |
|
|
|
376 |
|
00:31:18,380 --> 00:31:23,680 |
|
ุงููู ูู ุฎูููู ูููู ุนู
ูุช ุงูู
ูููู
ุนูุฏู ุจุดูู ุฃูุจุฑ |
|
|
|
377 |
|
00:31:23,680 --> 00:31:30,370 |
|
ููุฌู ุงูุขู ูุญูู ุนู ุงููู ูู ุงุญูุง ุทุจุนุง ุญูููุง ุนู ุงูู |
|
|
|
378 |
|
00:31:30,370 --> 00:31:32,690 |
|
mean value theorem ุฃู ูุธุฑูุฉ ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ูู |
|
|
|
379 |
|
00:31:32,690 --> 00:31:36,730 |
|
ุญุงูุฉ ุงู differentiation ุงูุขู ููุญูู ุนู ุงูููู
ุฉ |
|
|
|
380 |
|
00:31:36,730 --> 00:31:44,470 |
|
ุงูู
ุชูุณุทุฉ ูู ุญุงูุฉ ุงู integration ุงููู |
|
|
|
381 |
|
00:31:44,470 --> 00:31:48,190 |
|
ูู ููุฌููุง |
|
|
|
382 |
|
00:31:49,730 --> 00:31:53,670 |
|
ุฃุฎุฐูุง ู
ุซูุง ุฎููููู ุฃุฎุฏ ุงูู
ูุทูุฉ ุงูู
ูุฌุจ ุนุดุงู ุฃุณูู ูู |
|
|
|
383 |
|
00:31:53,670 --> 00:31:57,850 |
|
ุงูุญุฏูุซ ูู ุนูุฏู ุงููู ูู function f ุนูู ุงููุชุฑุฉ ู
ู a |
|
|
|
384 |
|
00:31:57,850 --> 00:32:02,790 |
|
ูุนูุฏ b ุงูุขู ุจุชููู ูู ุงููู ูู ุจุชููู ูู ูุฐุง ุทุจุนุง ูุธุฑู |
|
|
|
385 |
|
00:32:02,790 --> 00:32:06,010 |
|
ุฃูุซุฑ ู
ู ููู ุฃุจุนุฏ ู
ู ููู ุจุณ ุฎููููู ุฃููู ุฎููููู ุฃุฎุฏ |
|
|
|
386 |
|
00:32:06,010 --> 00:32:11,370 |
|
ุงูุญุงูุฉ ุงูุณููุฉ ุฃู ุฎููููู ุฃุฎุฏ ุงูุญุงูุฉ ุงููู ุจุชูุถุญ |
|
|
|
387 |
|
00:32:11,370 --> 00:32:17,210 |
|
ู
ุนุงูุง ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ุงูุขู ููู
ุฉ ุงู integration ู
ู |
|
|
|
388 |
|
00:32:17,210 --> 00:32:23,660 |
|
a ูุนูุฏ b ูู ุนุจุงุฑุฉ ุนู ุงูู
ูุทูุฉ ูุฐู ููู ู
ุณุงุญุชูุง ูู |
|
|
|
389 |
|
00:32:23,660 --> 00:32:31,070 |
|
ุฌุณู
ูุงูุง ุนูู ุงูู B minus A ููุฃููุง ุจูุงุฎุฏ ู
ุชูุณุท ููู
ุฉ |
|
|
|
390 |
|
00:32:31,070 --> 00:32:34,850 |
|
ุงูุฏุงูุฉ ูุฅูู ูู ุงุชุฎูููุง ุฅูู ูู ููู
ุฉ ุงูุฏุงูุฉ ู |
|
|
|
391 |
|
00:32:34,850 --> 00:32:38,810 |
|
ุจูุถุฑุจูุง ูุนูู ุชุฎูู ุฅููุง ุฏู ู
ุณุงุญุฉ ุฎุท ุฌูุจ ุฎุท ุฌูุจ ุฎุท |
|
|
|
392 |
|
00:32:38,810 --> 00:32:42,070 |
|
ุฌูุจ ุฎุท ุฌูุจ ุฎุท ูู
ุง ุงุชุฎูุต ุฃุฏูููุง ุฅูู ุฃู ุญุตู ุถุฑุจ |
|
|
|
393 |
|
00:32:42,070 --> 00:32:45,530 |
|
ุงููุชุฑุฉ ูุฐู ูููุง P minus A ูู ููู
ุฉ ุงู .. ุงููุง ุฏู |
|
|
|
394 |
|
00:32:45,530 --> 00:32:48,530 |
|
ุงููู ูู ุงููู ุนูุฏู ูู ูุฑุถูุง ุฅููู
ูุนูู ุงู .. ุงู .. |
|
|
|
395 |
|
00:32:48,530 --> 00:32:52,550 |
|
ุงู .. ูุฐู ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ููู
ูุนูู ู
ุชูุณุทูู
ูุจุตูุฑ |
|
|
|
396 |
|
00:32:52,550 --> 00:32:57,080 |
|
ุนูุฏ ูููู ุนูู ุจุนุถ ุงูู
ุณุงุญุฉ ุจุณุงูู ุงููู ูู ุญุตู ุถุฑุจ P |
|
|
|
397 |
|
00:32:57,080 --> 00:33:02,700 |
|
minus A ูู ู
ุชูุณุท ููู
ุฉ ุงูุชูุงู
ู ุงููู ูู ุนูุฏ ููุทุฉ |
|
|
|
398 |
|
00:33:02,700 --> 00:33:07,370 |
|
ู
ุนุงู ููุฐุง ุงููู ุจุชูููู ูู ุจุชููู ุฅุฐุง ูุงูุช F ุงููู ูู |
|
|
|
399 |
|
00:33:07,370 --> 00:33:11,370 |
|
ูู ุดุฑูุท ู
ุนููุฉ ุจููู ุนูุฏ F of X DX ุนูู B minus A |
|
|
|
400 |
|
00:33:11,370 --> 00:33:18,210 |
|
ุจุณุงูุฉ F of C for some C ููู ู
ูุฌูุฏุฉ ุจูู ุงูู A ู ุงูู |
|
|
|
401 |
|
00:33:18,210 --> 00:33:23,230 |
|
B ู ูุฐู ุงููู ูู ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ููู
ุณุงุญุฉ ุฃู ููู
ุฉ ุงู |
|
|
|
402 |
|
00:33:23,230 --> 00:33:27,930 |
|
integration ุนูู ุทูู ุงููู ูู ุงููุชุฑุฉ ุฅุฐู ูุฐู ุงููู ูู |
|
|
|
403 |
|
00:33:27,930 --> 00:33:34,290 |
|
ุฎููููู ุฃููู ุญุงูุฉ ุฎุงุตุฉ ู
ู ูุธุฑูุฉ ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ |
|
|
|
404 |
|
00:33:34,290 --> 00:33:38,300 |
|
ุงููู ุจุตูุฑุฉ ุนุงู
ุฉ ุงููู ูู .. ุงููู ูู .. ุงููู ูุณู
ููุง |
|
|
|
405 |
|
00:33:38,300 --> 00:33:41,960 |
|
ุงูู Mean Value Theorem for Integrals ูุดูู ุงูููุงู
ุ |
|
|
|
406 |
|
00:33:41,960 --> 00:33:45,800 |
|
ูู
ูู ุงูุขู ุงูููุงู
ูููู ุฃูุถุญ ูู ุงูู
ู .. ุจุดูู ุฃูุถุญ |
|
|
|
407 |
|
00:33:45,800 --> 00:33:48,920 |
|
ูู
ุง ูุจุฑูู ุงููุธุฑูุฉ ู ูุงุฎุฏ ูุตูุง ู ูุงุฎุฏ ุงูู Corollary |
|
|
|
408 |
|
00:33:48,920 --> 00:33:54,070 |
|
ุงููู ุนูููุง ุงููู ูู ุงูุญุงูุฉ ุงููู ุฐูุฑุชู ุงูุขู ู
ุง ุจุญููู |
|
|
|
409 |
|
00:33:54,070 --> 00:33:57,170 |
|
ุนุจุงุฑุฉ ุนู ุงูู Mean Value Theorem for ุงููู ูู ุฃูุงุด |
|
|
|
410 |
|
00:33:57,170 --> 00:34:01,910 |
|
integrals ูุธุฑูุฉ ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ุนูู ุงูุชูุงู
ู ุทุจุนุง |
|
|
|
411 |
|
00:34:01,910 --> 00:34:05,470 |
|
ุฃูุชู
ู
ุชุฐูุฑูู ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ุงูุนุงุฏูุฉ ุฃูู ูู ูุงูุช F |
|
|
|
412 |
|
00:34:05,470 --> 00:34:08,410 |
|
is continuous ุนูู closed interval differentiable |
|
|
|
413 |
|
00:34:08,410 --> 00:34:11,710 |
|
ุนูู ุงูู open ุฅุฐุงู there exists C element in A ู B |
|
|
|
414 |
|
00:34:11,710 --> 00:34:17,310 |
|
such that ุงููู ูู F prime of C ุณูู F of B ูุงูุต F |
|
|
|
415 |
|
00:34:17,310 --> 00:34:22,940 |
|
of A ุนูู B minus A ููุง ุงูุขู ุจููู ูู ุงููู ูู ุงูุฌุฒุฆูุฉ |
|
|
|
416 |
|
00:34:22,940 --> 00:34:28,020 |
|
ูุฐู ุฃู F is continuous ุนูู ุงูู A ู ุงูู B ุฅุฐู there |
|
|
|
417 |
|
00:34:28,020 --> 00:34:32,220 |
|
exists C ูู ุงูู A ู ุงูู B such that ุงู integration ู
ู |
|
|
|
418 |
|
00:34:32,220 --> 00:34:38,160 |
|
A ูุนูุฏ B F of X DX ุจุณุงูู F of C ุนูู B minus A |
|
|
|
419 |
|
00:34:38,160 --> 00:34:44,180 |
|
ุจุณุงูุฉ ู
ููุ ุจุณุงูู ุงููู ูู ุงูู F of C roughly .. |
|
|
|
420 |
|
00:34:44,180 --> 00:34:47,940 |
|
roughly .. roughly .. roughly ุงุชุฎูู ุฃูู ุงูุขู ูุฐู |
|
|
|
421 |
|
00:34:47,940 --> 00:34:51,880 |
|
ุนุจุงุฑุฉ ุนู ุงููderivative F ูุฐุง ุซุงุจุช ุทุจุนุง ุงู |
|
|
|
422 |
|
00:34:51,880 --> 00:34:54,920 |
|
derivative F prime of C ููุฐู ุงููู ุฎุฏูุง derivative |
|
|
|
423 |
|
00:34:54,920 --> 00:34:58,580 |
|
ูุฃู integration ูุงู ุงููู ูู ุงููู ูู ู
ุชุบูุฑุงุช ูุจูุตูุฑ |
|
|
|
424 |
|
00:34:58,580 --> 00:35:00,580 |
|
ุนูุฏ F of B ุจูุฑูุญ ุงู integration ู
ุน ุงู |
|
|
|
425 |
|
00:35:00,580 --> 00:35:04,040 |
|
differentiation ุจูุตูุฑ F of B ูุงูุต F of A ุงููู ููู |
|
|
|
426 |
|
00:35:04,040 --> 00:35:07,300 |
|
ูุฐุง ุงูููุงู
ุฑููู ุจุณ ุนูู ุฃุณุงุณ ุฃู ูู ุฃู ุฃูุช ุงููู ูู |
|
|
|
427 |
|
00:35:07,300 --> 00:35:11,260 |
|
ุชุณุชุฐูุฑ ุงูุนูุงูุฉ ุงููู ูู ุจูู ูุฐู ูุจูู ุงููู ูู |
|
|
|
428 |
|
00:35:11,260 --> 00:35:16,550 |
|
ุงูุฃุตููุฉุ ุฃู
ุง ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ุงูู
ูููู
ุจุงูู
ุชูุณุท ุงููู |
|
|
|
429 |
|
00:35:16,550 --> 00:35:20,510 |
|
ูู ู
ุณุงุญุฉ ุงููู ูู ููู
ุฉ ุงู integration ุนูู ุทูู ูุชุฑุชู |
|
|
|
430 |
|
00:35:20,510 --> 00:35:24,370 |
|
ุงููู ูู ุจุชุทูุน ููู
ุฉ ู
ุชูุณุทุฉุ ูุฐู ุงูููู
ุฉ ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
431 |
|
00:35:24,370 --> 00:35:29,050 |
|
ุนู ู
ุชูุณุท ููู
ุฉ ููุฃูู ูู ุงููู ูู ููู
ุฉ ุงู integration |
|
|
|
432 |
|
00:35:29,050 --> 00:35:33,630 |
|
ุนูุฏู ุงููู ูู ุชุญุช ุงููู ูู ุงูููุทุฉ ุงููู ุนูุฏู ูู F of |
|
|
|
433 |
|
00:35:33,630 --> 00:35:37,150 |
|
C ุจุชุณุงูู ููู
ุฉ ูุฐุง ุงู integration ุนูู B minus A ุฃู |
|
|
|
434 |
|
00:35:37,150 --> 00:35:41,590 |
|
ู
ุชูุณุท ุงูู
ุณุงุญุฉ ุนูู ุทูู ุงููุชุฑุฉ ุงููู ูู ุจุชุณุงูู ููู
ุฉ |
|
|
|
435 |
|
00:35:41,590 --> 00:35:47,800 |
|
ุงูุฏุงูุฉ F of Cุ ููุนูุง ุงูู C ู
ูุฌูุฏุฉ ูู ุงูู
ูู
ุฃู ุงูู C |
|
|
|
436 |
|
00:35:47,800 --> 00:35:51,000 |
|
ูู ุฏู ูุนูุง ูููุงูููุง ู
ูุฌูุฏุฉ ูุจุชู
ุซู ููู
ุฉ ุงู |
|
|
|
437 |
|
00:35:51,000 --> 00:35:54,620 |
|
integration ุนูู ุทูู ุงููุชุฑุฉุ ููุฐุง ู
ุนูุงู ุงููู ูู |
|
|
|
438 |
|
00:35:54,620 --> 00:35:58,340 |
|
ุงูู
ุชูุณุท ููู
ุฉ ุงู integration ุนูู ุทูู ุงููุชุฑุฉ ูููุงููู |
|
|
|
439 |
|
00:35:58,340 --> 00:36:02,620 |
|
ูุนูุง ุจูู
ุซูู ู
ูุทุน ุจูู ุงู A ู ุงู B ููุฐุง ุจุณู
ููุง |
|
|
|
440 |
|
00:36:02,620 --> 00:36:08,510 |
|
ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ mean value theorem for integrals |
|
|
|
441 |
|
00:36:08,510 --> 00:36:12,930 |
|
let F be continuous on I and let B be integrable |
|
|
|
442 |
|
00:36:12,930 --> 00:36:16,920 |
|
function on I ุงูู B ูุฐู ุฃูุง ู
ุง ุฃุฎุฏูุง ุจุชูุจู ุจุดููุฉ ูู |
|
|
|
443 |
|
00:36:16,920 --> 00:36:22,680 |
|
ู
ุซุงู ุนูู ุฃููุง ุจุชุณุงูู ูุงุญุฏ ุทูุจ let F be continuous |
|
|
|
444 |
|
00:36:22,680 --> 00:36:25,560 |
|
on I of A ู B and let B be an integrable function |
|
|
|
445 |
|
00:36:25,560 --> 00:36:29,740 |
|
on I and ููุชุฑุถ ุฃู B of X ุฃูุจุฑ ูุณุงูู ุตูุฑ for every |
|
|
|
446 |
|
00:36:29,740 --> 00:36:32,900 |
|
X element in I then there exists C element in I |
|
|
|
447 |
|
00:36:32,900 --> 00:36:37,880 |
|
such that ุงูุขู ูุงู ุงูู C ุงููู ูู ุจุฏูุง ุชู
ุซู ุงููู ูู |
|
|
|
448 |
|
00:36:37,880 --> 00:36:40,980 |
|
ุงูููุทุฉ ุงููู ุจููุงูููุง ูู ุงูู I ุจุญูุซ ุฃู ุงู |
|
|
|
449 |
|
00:36:40,980 --> 00:36:46,230 |
|
integration ู
ู A ูB F of X DX DX ุนูู ุงููู ูู ุงู |
|
|
|
450 |
|
00:36:46,230 --> 00:36:48,170 |
|
integration ู
ู a ุฅูู b ุจูููู
ุจุงููู
ุจุงููู
ุจุงููู
|
|
|
|
451 |
|
00:36:48,170 --> 00:36:49,190 |
|
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
|
|
|
|
452 |
|
00:36:49,190 --> 00:36:50,170 |
|
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
|
|
|
|
453 |
|
00:36:50,170 --> 00:36:55,050 |
|
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
|
|
|
|
454 |
|
00:36:55,050 --> 00:36:55,210 |
|
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
|
|
|
|
455 |
|
00:36:55,210 --> 00:36:56,930 |
|
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
ุจุงููู
|
|
|
|
456 |
|
00:36:56,930 --> 00:37:02,790 |
|
ุจุงููู
ุจุงููู
|
|
|
|
457 |
|
00:37:02,790 --> 00:37:04,290 |
|
ุจ |
|
|
|
458 |
|
00:37:11,900 --> 00:37:19,760 |
|
ุงูู integration ู
ู a ู b f of x b of x dx ุนูู ุงู |
|
|
|
459 |
|
00:37:19,760 --> 00:37:23,820 |
|
integration ููุชุฑุถ ุฃูู ููุณ ูุงุฑู ุจูู ุจูู ุจูู ุจูู ุจูู |
|
|
|
460 |
|
00:37:23,820 --> 00:37:25,260 |
|
ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู |
|
|
|
461 |
|
00:37:25,260 --> 00:37:26,640 |
|
ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู |
|
|
|
462 |
|
00:37:26,640 --> 00:37:29,220 |
|
ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู |
|
|
|
463 |
|
00:37:29,220 --> 00:37:38,400 |
|
ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู ุจูู |
|
|
|
464 |
|
00:37:38,400 --> 00:37:43,710 |
|
ุจู ุจูุตูุฑ ูุฐู ูุงุญุฏ ุงููู ูู ุจูุตูุฑ ูุฐู B minus A ุงููู |
|
|
|
465 |
|
00:37:43,710 --> 00:37:48,390 |
|
ููุช ูุจู ุดููุฉ ุงููู ูู ููู
ุฉ ุงูู
ุณุงุญุฉ ุฃู ููู
ุฉ ุงู |
|
|
|
466 |
|
00:37:48,390 --> 00:37:52,670 |
|
integration ุนูู ุทูู ุงููุชุฑุฉ ุจูุณุงูู ูุนูุง ู
ูุทุน ูุนูู |
|
|
|
467 |
|
00:37:52,670 --> 00:38:00,790 |
|
ูู ุงููุชุฑุฉ Iุ ููุฌู ูุจุฑูู ุฃู ูุฐู ูู ุจุตูุฑุฉ ุนุงู
ุฉ ุนูุฏ F |
|
|
|
468 |
|
00:38:00,790 --> 00:38:08,600 |
|
continuous ุฅุฐุง F is integrable and so F ุงููู ูู A |
|
|
|
469 |
|
00:38:08,600 --> 00:38:12,760 |
|
of X ูู B of X is Integrable ูุฃู B Integrable ู F |
|
|
|
470 |
|
00:38:12,760 --> 00:38:15,300 |
|
Integrable ุตุงุฑ ุงูู composition ุงููู ููุง Integrable |
|
|
|
471 |
|
00:38:15,300 --> 00:38:19,280 |
|
ุงููู ููุง Integrable ุงููู ููุง Integrable ุงููู ููุง |
|
|
|
472 |
|
00:38:19,280 --> 00:38:19,580 |
|
Integrable ุงููู ููุง Integrable ุงููู ููุง Integrable |
|
|
|
473 |
|
00:38:19,580 --> 00:38:20,220 |
|
ุงููู ููุง Integrable ุงููู ููุง Integrable ุงููู ููุง |
|
|
|
474 |
|
00:38:20,220 --> 00:38:20,300 |
|
Integrable ุงููู ููุง Integrable ุงููู ููุง Integrable |
|
|
|
475 |
|
00:38:20,300 --> 00:38:20,360 |
|
ุงููู ููุง Integrable ุงููู ููุง Integrable ุงููู ููุง |
|
|
|
476 |
|
00:38:20,360 --> 00:38:20,380 |
|
Integrable ุงููู ููุง Integrable ุงููู ููุง Integrable |
|
|
|
477 |
|
00:38:20,380 --> 00:38:21,740 |
|
ุงููู ููุง Integrable ุงููู ููุง Integrable ุงููู ููุง |
|
|
|
478 |
|
00:38:21,740 --> 00:38:23,080 |
|
Integrable ุงููู ููุง Integrable ุงููู ููุง Integrable |
|
|
|
479 |
|
00:38:23,080 --> 00:38:25,040 |
|
ุงููู ููุง Integrable ุงููู ููุง Integrable ุงููู ููุง |
|
|
|
480 |
|
00:38:25,040 --> 00:38:27,280 |
|
Integrable ุงููู ููุง Integrable ุงููู ููุง Integrable |
|
|
|
481 |
|
00:38:27,280 --> 00:38:34,460 |
|
ุงููู ููุง Integrable ุงููู ููุง Integ |
|
|
|
482 |
|
00:38:42,230 --> 00:38:46,930 |
|
ุนูุฏู F continuous ุฅุฐุง ุงูุชูุฌุฑุงุจู ู B-integrable ุฅุฐุง |
|
|
|
483 |
|
00:38:46,930 --> 00:38:52,610 |
|
FB-integrable ุณู
ูููู ุงูู M small ูู ุงูู infimum ููู |
|
|
|
484 |
|
00:38:52,610 --> 00:38:55,830 |
|
F of I ู
ูุฌูุฏุฉ ุฃู ุทุจุนุง ู ูู F is integrable is |
|
|
|
485 |
|
00:38:55,830 --> 00:39:00,610 |
|
unbounded M capital ุจูุณุงูู ุงู supremum ูู
ููุ ูู F of |
|
|
|
486 |
|
00:39:00,610 --> 00:39:05,210 |
|
Iุ ุฅุฐู ุงูุขู ุงูุฏุฑูุจ ุตุงุฑุช ุนูุฏู ุงู F of X ุจูู ุงู M |
|
|
|
487 |
|
00:39:05,210 --> 00:39:09,030 |
|
small ู ุจูู ุงู M capital ุงูุฏุฑูุจ ููู ุงููู
ูู ูู B of |
|
|
|
488 |
|
00:39:09,030 --> 00:39:14,190 |
|
Xุ ูุจููุฏุฑ ุฃู ุจููุฏุฑ ูุฅู ุจู ุจูุถุงููุง ุฒู ู
ุง ูู ุฃู ูุฅู |
|
|
|
489 |
|
00:39:14,190 --> 00:39:20,450 |
|
ุจู ู
ูุฌุจุฉุ ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ูุฐู ุงู inequality ุตุญูุญุฉ |
|
|
|
490 |
|
00:39:20,450 --> 00:39:23,830 |
|
ู ูููุง integrable ุฅุฐุง ุงู integration ุนูู ุงูุฃููู |
|
|
|
491 |
|
00:39:23,830 --> 00:39:26,350 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู ุงู integration ุนูู ุงูุซุงููุฉ ุฃุตุบุฑ ุฃู ูุณุงูู |
|
|
|
492 |
|
00:39:26,350 --> 00:39:29,850 |
|
ุงู integration ุนูู ุงูุซุงูุซุฉ ู ุงู M ุจุชุทูุน ุจุฑุง ูุฅูู |
|
|
|
493 |
|
00:39:29,850 --> 00:39:38,110 |
|
ุงู M ูุดู
ููุง ุซุงุจุชุฉ ุงูุขู ูู ุงู integration ูู .. ูู |
|
|
|
494 |
|
00:39:38,110 --> 00:39:44,710 |
|
.. ูู .. ูู B ุจูุณุงูู 0 ุฅุฐุง ุงู integration ููููู ุงููู |
|
|
|
495 |
|
00:39:44,710 --> 00:39:49,730 |
|
ูู ุงููู ููู ุงู .. ุงู .. ุงู .. ุงู .. ุงููุธุฑูุฉ ุจุชุตูุญ |
|
|
|
496 |
|
00:39:49,730 --> 00:39:55,930 |
|
ูุฃู ููู
ุฉ ุงููู ูู ููู C ูุฃู ููููู ุฅูุด ุจูุณุงูู .. |
|
|
|
497 |
|
00:39:55,930 --> 00:40:00,310 |
|
ุฃูุง ุฃุทูุนููู
ููู ูุฃู ูู ูุฑุถูุง ุงู integration ููู B |
|
|
|
498 |
|
00:40:00,310 --> 00:40:05,930 |
|
ุจูุณุงูู ุตูุฑ integration ููู B ุจูุณุงูู ุตูุฑ ุจูุตูุฑ ุงููู |
|
|
|
499 |
|
00:40:05,930 --> 00:40:10,990 |
|
ูู ูุฐู ุจุฑุถู ุงู integration ูุฐุง ููุณุงูู ุฅูุดุ ููุณุงูู |
|
|
|
500 |
|
00:40:10,990 --> 00:40:14,810 |
|
ุตูุฑ ุนุงุฑููู ููุดุ ูุฃู ู
ุงุฏุงู
ุงู integration ูุฐุง ุตูุฑ |
|
|
|
501 |
|
00:40:14,810 --> 00:40:16,710 |
|
ู ุงู integration ูุฐุง ุตูุฑ ุฅุฐุง ุงู integration ุงููู |
|
|
|
502 |
|
00:40:16,710 --> 00:40:22,170 |
|
ูู ุงููุต ุฅูุด ููุณุงููุ ุตูุฑ ุฅุฐุง ุตุงุฑุช ูุฐุง ุงูู
ูุฏุงุฑ ุตูุฑ |
|
|
|
503 |
|
00:40:22,170 --> 00:40:28,430 |
|
ููุฐุง ุตูุฑ ุฅูุด ู
ุง ุชุฎุชุงุฑ C ูุชุชุญูู ุงููู ูู ู
ููุ ุทุฑูู |
|
|
|
504 |
|
00:40:28,430 --> 00:40:33,790 |
|
ุงูู
ุนุงุฏูุฉุ ุฅุฐู ุงูุขู ุญุงูุฉ ุงูุตูุฑ is a trivial case ูุนูู |
|
|
|
505 |
|
00:40:33,790 --> 00:40:36,890 |
|
ุญุงูุฉ ุฃู ุชููู ูุฐู ุตูุฑ is a trivial case ูุฃู |
|
|
|
506 |
|
00:40:36,890 --> 00:40:39,890 |
|
automatic ุฒู ู
ุง ูููุง ู
ุฏุงู
ุฉ ูุฐู ุตูุฑ ููุฐู ุตูุฑ ู
ุฏุงู
ูุง |
|
|
|
507 |
|
00:40:39,890 --> 00:40:43,310 |
|
ูู ุงููุต ุตูุฑ ุฅุฐู ุงููู ูู ุฃู ุงุฎุชูุงุฑ ูููC ููููู ุทุฑู |
|
|
|
508 |
|
00:40:43,310 --> 00:40:47,410 |
|
ุฃู ู
ุนุงุฏูุฉ ุตุญูุญุฉ ูุนูู ุงููู ูู ุงู equality ุชุจุนุชูุง |
|
|
|
509 |
|
00:40:47,410 --> 00:40:51,470 |
|
ุตุญูุญุฉุ ุงูุขู ุจุฏูุง ููุฌู ูู
ูู ูุง ุฌู
ุงุนุฉุ ุฅูุด ุบุฑุถูุงุ |
|
|
|
510 |
|
00:40:51,470 --> 00:40:56,460 |
|
ุบุฑุถูุง ููุงูู C ุจุญูุซ ุฃู ูุฐุง ุจูุณุงูู ูุฐุง ุฎูุตูุง ุญุงูุฉ ุงููู |
|
|
|
511 |
|
00:40:56,460 --> 00:40:59,240 |
|
ูู ุงู integration ุจูุณุงูู ุตูุฑุ ููุชุฑุถ ุฃู ุงู |
|
|
|
512 |
|
00:40:59,240 --> 00:41:02,480 |
|
integration ู
ุด ุตูุฑุ ููุดุ ุฃูู ุจุฏู ุฃูุณุจ ุนูู ุฅุฐุง ุตุงุฑ |
|
|
|
513 |
|
00:41:02,480 --> 00:41:05,860 |
|
ุนูุฏู ุงู integration ุฃูุณุจ ุงูุฌูุชูู ุนู ุงู integration |
|
|
|
514 |
|
00:41:05,860 --> 00:41:09,360 |
|
ูู B ุงู integration ูู B ุงููู ูุฑุถูุง ุฃูู ู
ุด ุตูุฑ ุฅุฐุง |
|
|
|
515 |
|
00:41:09,360 --> 00:41:11,580 |
|
ุตุงุฑ ุงู integration ูุฐุง ุนูู ุงู integration ูุฐุง ุจูู |
|
|
|
516 |
|
00:41:11,580 --> 00:41:16,840 |
|
ุงู M small ู ุงู M ุฃุดู
ุงููุง capital ู
ุงุดูุ ุงูุญุงูุฉ ุงูุขู |
|
|
|
517 |
|
00:41:16,840 --> 00:41:25,420 |
|
ุงุญูุง ุจูููู ุฃู ูุฐุง ุตุงุฑ ุฑูู
ุจูู ุงูู M small ูุงูู M |
|
|
|
518 |
|
00:41:25,420 --> 00:41:35,540 |
|
capitalุ ูุจูููู ุฃู F continuous on ุงููุชุฑุฉ A ูB then |
|
|
|
519 |
|
00:41:35,540 --> 00:41:46,560 |
|
ุฃู ุฑูู
.. ุฃู ุฑูู
ุงูุขู ููุฏุงูุฉ ุงููู ูู .. ููุถุญ ููู
|
|
|
|
520 |
|
00:41:46,560 --> 00:41:48,900 |
|
ูู .. ุฃุฐูุฑูู
ุงูู intermediate value theorem ุงููู |
|
|
|
521 |
|
00:41:48,900 --> 00:41:53,720 |
|
ูุณููุง ูู ุนูุฏู ู
ุซูุง ูู ุฃุนูู ููู
ุฉ ุฃูู ููู
ุฉ ููู ุฃุนูู |
|
|
|
522 |
|
00:41:53,720 --> 00:42:02,140 |
|
ููู
ุฉุ ูุฐู ุงูุขู ุงูู function f of x ุงููู ูู ุจูู ุงููู |
|
|
|
523 |
|
00:42:02,140 --> 00:42:12,640 |
|
ูู M capital M small ุฃู ุจูู ู
ููุ M capitalุ ุงูุขู |
|
|
|
524 |
|
00:42:12,640 --> 00:42:20,220 |
|
ูู ุฅุฌููุง ุฃุฎุฏูุง ุฃู ููู
ุฉ ุฃู ููู
ุฉ ุนุฏุฏ ุฃู ุนุฏุฏ A ุจูู ุงูู |
|
|
|
525 |
|
00:42:20,220 --> 00:42:23,980 |
|
M small ูุงูู M capitalุ ู
ุชุงู
ุฉ ุงูู F continuously ุนู |
|
|
|
526 |
|
00:42:23,980 --> 00:42:28,200 |
|
ุฃู ููู
ุฉ ููุง ุฃุฎุฏูุงูุง ููู
ุฉ ูููุงูู ุงููู ูู there |
|
|
|
527 |
|
00:42:28,200 --> 00:42:32,040 |
|
exists C element ูู ุงููุชุฑุฉ A ูB ุงูู
ุนุฑู ุนูููุง |
|
|
|
528 |
|
00:42:32,040 --> 00:42:38,040 |
|
ุงูุฏุงุฆุฑุฉ ูุชุณู
ููุง C ู
ุซูุง ุฃู D ูููุงูู ุงูู C ูู ุงููุชุฑุฉ |
|
|
|
529 |
|
00:42:38,040 --> 00:42:45,030 |
|
ุจูู A ูB ุจุญูุซ ุฃู F of C ูู ู
ููุ ุงูููู
ุฉ F of D ุงููู |
|
|
|
530 |
|
00:42:45,030 --> 00:42:47,050 |
|
ูู ุงูู Intermediate Value Theorem ุงููู ุฃูุชู |
|
|
|
531 |
|
00:42:47,050 --> 00:42:50,790 |
|
ุนุงุฑููููุง ุงููู ูู For Continuous Functionุ ุฅุฐุง ุจู
ุง |
|
|
|
532 |
|
00:42:50,790 --> 00:42:55,790 |
|
ุฃู ุงูู function F is continuous ู ูุฐู ุงูููู
ุฉ ุจูู |
|
|
|
533 |
|
00:42:55,790 --> 00:43:00,490 |
|
ุฃุนูู ููู
ุฉ .. ุจูู ุฃุนูู ููู
ุฉ ู ุฃูู ููู
ุฉ ููุฏุงูุฉ ุฅุฐุง |
|
|
|
534 |
|
00:43:00,490 --> 00:43:05,950 |
|
ุฃููุฏ ููุฏุฑ ุฃูุงูู C element in I ุจุญูุซ ุฃู F of C |
|
|
|
535 |
|
00:43:05,950 --> 00:43:10,830 |
|
ุจูุณุงูู ูุฐุง ุงูุฑูู
ุงููู ูู ูุฐู ุงูููู
ุฉ ุงููู ูู ุงู |
|
|
|
536 |
|
00:43:10,830 --> 00:43:16,520 |
|
integration ุจูุณุงูู ุงููู ูู F of C ูู ุงูููู
ุฉ ูุฐู ููู |
|
|
|
537 |
|
00:43:16,520 --> 00:43:22,000 |
|
ุงูู
ุทููุจ ูุนูู ุงููุธุฑูุฉ ุจุฑูุงูุฉ ุจุณูุทุฉ ูุง ุฌู
ุงุนุฉ ุจุณ ู
ุฏุงู
|
|
|
|
538 |
|
00:43:22,000 --> 00:43:27,740 |
|
ุญุตุฑูุง ููู
ุฉ ููููู
ุฉ ูุฐู ุงููู ูู ุจูู ุงููู ูู ุงู M ู |
|
|
|
539 |
|
00:43:27,740 --> 00:43:30,840 |
|
ุงู M ุฅุฐุง ุจุงู intermediate value theorem ูู C |
|
|
|
540 |
|
00:43:30,840 --> 00:43:37,500 |
|
ูุฎูุตูุง ุทูุจ ุงููู ุจุนุฏู ุงู corollary ุญููุชูุง ูุฐู ุฅู |
|
|
|
541 |
|
00:43:37,500 --> 00:43:38,360 |
|
ูู ูุงูุช F |
|
|
|
542 |
|
00:43:43,100 --> 00:43:47,820 |
|
ุงูู Corollary ุญููุชูุง ูู ูุงูุช F continuous ุนูู ุงููู |
|
|
|
543 |
|
00:43:47,820 --> 00:43:50,940 |
|
ูู ุงูู closed interval A ู B ูููุงูู ุงููC ูู ุงููI |
|
|
|
544 |
|
00:43:50,940 --> 00:43:53,720 |
|
ุจุญูุซ ุฃู ุงู integration ู
ู A ูB ููF ุณูุงุก F of C ูู |
|
|
|
545 |
|
00:43:53,720 --> 00:44:00,900 |
|
B minus Aุ ูููุง ูุฐู ุงููู ูู ุญุงูุฉ ุฎุงุตุฉ ู
ู ุงููุธุฑูุฉ ุจุณ |
|
|
|
546 |
|
00:44:00,900 --> 00:44:08,160 |
|
ุญุท ูู ุงููF ุงููB of X ุจูุณุงูู 1ุ ุญุงูุฉ ุฎุงุตุฉ ู
ู ุงููุธุฑูุฉ |
|
|
|
547 |
|
00:44:08,160 --> 00:44:10,480 |
|
ุงููุธุฑูุชูุง |
|
|
|
548 |
|
00:44:11,580 --> 00:44:17,340 |
|
ุฃู ุงูู integration ููู F ูู B ุจูุณุงูู F of C ูู ุงูู |
|
|
|
549 |
|
00:44:17,340 --> 00:44:21,320 |
|
integration ููู B ู
ู Alpha ูุนูุฏ Beta ู ูุง ู
ู A |
|
|
|
550 |
|
00:44:21,320 --> 00:44:29,620 |
|
ูุนูุฏ B ู
ู A ูุนูุฏ B for some C element in Iุ ู
ุธุจูุทุ |
|
|
|
551 |
|
00:44:29,620 --> 00:44:33,180 |
|
ุงูุขู ุจููู ูู ุงููู ูู ุงู integration ููู F ุจูุณุงูู F |
|
|
|
552 |
|
00:44:33,180 --> 00:44:36,720 |
|
of C ูู B minus A for some Cุ ุญุท ุงูู B ุจูุณุงููุ |
|
|
|
553 |
|
00:44:36,720 --> 00:44:41,420 |
|
ูุชุฌุณู ุงู integration ููู F ุจุณ ุจู ุจู ุจู ุจู ุจู ุจู ุจู |
|
|
|
554 |
|
00:44:41,420 --> 00:44:48,320 |
|
ุจู ุจู ุจู ุจู ุจู ุจู ุจู |
|
|
|
555 |
|
00:44:51,410 --> 00:44:58,470 |
|
ุงููู ูู dx y ุจูุณุงูู ุงููู ูู f of c ูุฏู b minus a ููู |
|
|
|
556 |
|
00:44:58,470 --> 00:45:02,690 |
|
ุงูู
ุทููุจ ูููุญูู ูู
ุงู ู
ุฑุฉุ ุฅุฐุง ุงูู Corollary ุงููู |
|
|
|
557 |
|
00:45:02,690 --> 00:45:09,030 |
|
ูู ุงููู ุฃู
ุงู
ูุง ุชู
ุจุฑูุงููุง ู
ุฑุฉ ุฃุฎุฑูุ ููุฌู ุงูุขู ููู |
|
|
|
558 |
|
00:45:09,030 --> 00:45:13,310 |
|
ูู Taylor's theorem ุฃุฎุฏูุงูุง Taylor's theorem ูุงู |
|
|
|
559 |
|
00:45:13,310 --> 00:45:20,900 |
|
ุงู remainder ุงููู ูู ุงููู ูู ุดูุก ู
ูุถู ุฃู ุงูู |
|
|
|
560 |
|
00:45:20,900 --> 00:45:26,560 |
|
Taylor's theorem ุฅุฐุง ุตุญ ุงูุชุนุจูุฑ for integration ู |
|
|
|
561 |
|
00:45:26,560 --> 00:45:29,500 |
|
Taylor's theorem for differentiations ุงูุขู ุงูุฌุฒุก |
|
|
|
562 |
|
00:45:29,500 --> 00:45:33,060 |
|
ุงููู ูู ุงูู for integration ูุดูู ุดูุก ุงููู ุจูููู |
|
|
|
563 |
|
00:45:35,050 --> 00:45:38,890 |
|
suppose that the function f and its derivatives f |
|
|
|
564 |
|
00:45:38,890 --> 00:45:43,030 |
|
prime up to f n and f n ุฒุงุฆุฏ ูุงุญุฏ are ูููู
|
|
|
|
565 |
|
00:45:43,030 --> 00:45:46,330 |
|
ุฃูู ุดู
ุงููู
continuous ูุนูู ููุชุฑุถ ุฃู ุงูู |
|
|
|
566 |
|
00:45:46,330 --> 00:45:49,710 |
|
derivative ุงูู n ุฒุงุฆุฏ ูุงุญุฏ derivative is |
|
|
|
567 |
|
00:45:49,710 --> 00:45:53,890 |
|
continuous exist ูcontinuous ููุชุฑุถ ุฃู ุงูุฏุงูุฉ f |
|
|
|
568 |
|
00:45:53,890 --> 00:45:59,610 |
|
ุนุจุงุฑุฉ ุนู ุฏุงูุฉ ูุงุจูุฉ ููุงุดุชูุงู n ุฒุงุฆุฏ ูุงุญุฏ ู
ู ุงูู
ุฑุงุช |
|
|
|
569 |
|
00:45:59,610 --> 00:46:05,310 |
|
ูุชููู ุงูู n ุฒุงุฆุฏ ูุงุญุฏ ูู
ุงู ููุณูุง continuous ู
ุงุดูุฉ ุนูู |
|
|
|
570 |
|
00:46:05,310 --> 00:46:10,290 |
|
ุงููุชุฑุฉ a ู b then ุจููู ูู ุงููู ูู f of b ุจูุณุงูู f |
|
|
|
571 |
|
00:46:10,290 --> 00:46:14,170 |
|
of a ุฒุงุฆุฏ f prime of a ุนูู 1 factorial ูู b minus a |
|
|
|
572 |
|
00:46:14,170 --> 00:46:18,990 |
|
ุฒุงุฆุฏ f double prime of a ุนูู 2 factorial ูู b minus |
|
|
|
573 |
|
00:46:18,990 --> 00:46:22,410 |
|
a ุชุฑุจูุน ุฒุงุฆุฏ ูู
ุง ุฃุตู ุนูุฏ f n of a ุนูู n factorial |
|
|
|
574 |
|
00:46:22,410 --> 00:46:26,530 |
|
ูู b minus a ุงูููู ุฃูุณู n ูุฐุง ููู ุฅูุด ู
ุนูุงูุ ุนุงุฑูููู ูุจู |
|
|
|
575 |
|
00:46:26,530 --> 00:46:30,050 |
|
ูุฏู ูุนู
ููุง ุฒุงุฆุฏ ู
ููุ ุงูู remainder are n ุงูู |
|
|
|
576 |
|
00:46:30,050 --> 00:46:34,730 |
|
remainder are n ูุชุจูุง ุนูู ุตูุฑุฉ integration ุจุณ ุงูู |
|
|
|
577 |
|
00:46:34,730 --> 00:46:37,550 |
|
remainder are n ูุชุจ ุนูู ุตูุฑุฉ ูุงุญุฏุฉ ุงูู N factorial |
|
|
|
578 |
|
00:46:37,550 --> 00:46:41,150 |
|
ูู ุงูู integration ู
ู a ูู b ุจู ู
ุงููุณ ุชู ุฃูุณู n f n ุฒุงุฆุฏ |
|
|
|
579 |
|
00:46:41,150 --> 00:46:50,010 |
|
ูุงุญุฏ of T ุฏู ุชู ุฅุฐู ุงูุขู ุจููู ูู f of b f of |
|
|
|
580 |
|
00:46:50,010 --> 00:47:02,410 |
|
b ุจูุณุงูู ุงูู summation f .. f N ูู f k of a ุนูู |
|
|
|
581 |
|
00:47:02,410 --> 00:47:10,470 |
|
k factorial ูู b minus a ุฃูุณู k k ู
ู ุนูุฏ 0 .. ู
ู ุตูุฑ |
|
|
|
582 |
|
00:47:10,470 --> 00:47:19,390 |
|
k ู
ู ุนูุฏ ุตูุฑ ูุนูุฏ ู
ููุ ูุนูุฏ n ุฒุงุฆุฏ ุงูู remainder ู
ููุ |
|
|
|
583 |
|
00:47:19,390 --> 00:47:27,090 |
|
r n ุงูู remainder are n ู
ูู ููุ ุจูุณุงูู ุงููู ูู 1 ุนูู n |
|
|
|
584 |
|
00:47:27,090 --> 00:47:35,390 |
|
factorial ูู ุงูู integration ู
ู a ูุนูุฏ b b minus t |
|
|
|
585 |
|
00:47:35,390 --> 00:47:45,690 |
|
ุฃูุณู n ูู f n ุฒุงุฆุฏ 1 of T ุฏู ุชู ูุซุจุช ููู
ุฅู ุงูู f of b |
|
|
|
586 |
|
00:47:45,690 --> 00:47:52,520 |
|
can be written as this ุญูุซ ุงูู r n ูู ูุฐุง ุงูุขู |
|
|
|
587 |
|
00:47:52,520 --> 00:47:59,500 |
|
ุงูููุฑุฉ ูู ุงูุญู ุฃู ุงูููุฑุฉ ูู ุงูุจุฑูุงู ุฃูู ุฃูุง ุจุฏู |
|
|
|
588 |
|
00:47:59,500 --> 00:48:05,260 |
|
ุฃุฌู ุฃูุฌุฏ ููู
ุฉ ุงูู remainder r n ุงููู ูู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
589 |
|
00:48:05,260 --> 00:48:10,700 |
|
ู ุจุฏู ุฃุซุจุช ููู
ุฃู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ู
ูู ุจูุฏุฑ ุฃูุชุจ |
|
|
|
590 |
|
00:48:10,700 --> 00:48:14,040 |
|
ุงููู ูู ูุนูู ุงูู r n ุฃุซุจุช ููู
ูู ุนุจุงุฑุฉ ุนู f of b |
|
|
|
591 |
|
00:48:14,040 --> 00:48:19,720 |
|
ูุงูุต ูุฐุง ุงูู summation ูุนูู ุจุฏู ุฃุซุจุช ููู
ุฃู ุงูู r n |
|
|
|
592 |
|
00:48:19,720 --> 00:48:23,560 |
|
ุจุชุณุงูู f of b ูุงูุต ุงูู
ุฌู
ูุน ูุฐุง ูุนูู ุจุฏู ุฃุจุฏุฃ |
|
|
|
593 |
|
00:48:23,560 --> 00:48:30,700 |
|
ุจูุฐุง ุงูุขู ูุนูู ุจุฏู ุฃุจุฏุฃ ุจุงูู r n ุจูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
594 |
|
00:48:30,700 --> 00:48:34,740 |
|
ุดุงููููู ูุฐุง ุงูู
ูุฏุงุฑ ู
ู a ูุนูุฏ b ูุงุญุฏ ุนูู n factorial |
|
|
|
595 |
|
00:48:34,740 --> 00:48:42,380 |
|
ุจุฏู ุฃูุงู
ูู ุฃูุงู
ูู by parts ุขู ุจุฏูู ูุงู
ู ูุดูููุง ููู |
|
|
|
596 |
|
00:48:42,380 --> 00:48:47,280 |
|
ุจุชุทูุน ุงูุฃู
ูุฑ ุฅู ุดุงุก ุงููู ุณูุณุฉ ูู
ููุญุฉ by parts ุฎุฏูุง |
|
|
|
597 |
|
00:48:47,280 --> 00:48:53,160 |
|
ุงูู u ุนุจุงุฑุฉ ููุณูู
ููุง ุนุจุงุฑุฉ ุนู u ููุฐู ุณููุณู
ููุง ุฅูุด ูุง |
|
|
|
598 |
|
00:48:53,160 --> 00:48:59,970 |
|
ุฌู
ุงุนุฉ dv ู
ุงุดู ุงูุญุงู ุจูุตูุฑ ุงููุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู |
|
|
|
599 |
|
00:48:59,970 --> 00:49:07,490 |
|
ูู u dv ูุนูู ุจูุณุงูู uv ูุงูุต v du ุชุญุช ู
ููุ ุชุญุช ุงูู |
|
|
|
600 |
|
00:49:07,490 --> 00:49:11,310 |
|
integration ูุฐุง ููุงู
ุชุนุฑููู ุฃูุชู
ุงูุขู ุจุฑุถู ู
ู ููู |
|
|
|
601 |
|
00:49:11,310 --> 00:49:16,150 |
|
ููููุ ู
ู a ูุนูุฏ b ุนูู ุงูุณุฑูุน ุนุดุงู ุงููู ูู ุชุฃุฎุฐูุง |
|
|
|
602 |
|
00:49:16,150 --> 00:49:20,100 |
|
ุงูููุฑุฉ ุงููู ูู ุงูุญุณุงุจุงุช ุฃูุช ุจุชุนุฑู ุชุนู
ูููุง ุงูููู |
|
|
|
603 |
|
00:49:20,100 --> 00:49:24,620 |
|
ุจูุนุฑู ูุนู
ููุง ูู ุฃุฎุฐูุง ุงูู u ุฒู ู
ุง ุฃุฎุฐูุงูุง ููุง |
|
|
|
604 |
|
00:49:24,620 --> 00:49:30,200 |
|
ูุชุจุชูุง ุนูู ุงูููุญ ููู ุงูู dv ูููุง ูู f n ุฒุงุฆุฏ ูุงุญุฏ of T |
|
|
|
605 |
|
00:49:30,200 --> 00:49:36,300 |
|
dt ุงูุขู ุงูู du ุฃููุฏ ุงููู ูู ุชูุงุถู ูุฐุง n ูู b minus |
|
|
|
606 |
|
00:49:36,300 --> 00:49:41,100 |
|
t ุฃูุณู n ูุงูุต ูุงุญุฏ ูู ุชูุงุถู ุงููู ูู ุงููู ุฌูุง ูุงูุต |
|
|
|
607 |
|
00:49:41,100 --> 00:49:45,900 |
|
ูุงุญุฏ ุจูุตูุฑ ุนูุฏู ูุงูุต n ูู b minus t ุฃูุณู n ูุงูุต ูุงุญุฏ |
|
|
|
608 |
|
00:49:45,900 --> 00:49:51,040 |
|
dt ูุฐู ู
ูู ููุ ุงูู du ุงููู ุจุฏู ุฃุญุทูุง ูุงู ุงูุขู ุงูู v |
|
|
|
609 |
|
00:49:51,040 --> 00:49:57,380 |
|
ุงูู dv ูููุง ุงูู v ูุชุทูุน ุงูู integration ูุฐู ุจูุฎูู |
|
|
|
610 |
|
00:49:57,380 --> 00:50:01,340 |
|
ูุงุญุฏ ู
ู ุงูู derivatives ุจูุตูุฑ ุนูุฏู f n of T ุทุจุนุงู |
|
|
|
611 |
|
00:50:01,340 --> 00:50:05,620 |
|
ูุงูู
ูู ุฅูุด ุจูููุ ุงูู v ุจูุณุงูู f n of T ุงูุขู ุจูุฌู |
|
|
|
612 |
|
00:50:05,620 --> 00:50:09,260 |
|
ุจูุนููุถ ุจูุตูุฑ ุนูุฏู ุนุจุงุฑุฉ ุนู ุงูู integration ุงููู ูู |
|
|
|
613 |
|
00:50:09,260 --> 00:50:15,160 |
|
ุจูุณุงูู ุงูู r n ุจูุณุงูู u ูู v u ุงููู ูู ุนุจุงุฑุฉ ุนู b |
|
|
|
614 |
|
00:50:15,160 --> 00:50:24,580 |
|
minus t ุฃูุณู n ูู u ูุฐู u ูู v v ุงููู ูู ุนุจุงุฑุฉ ุนู f n |
|
|
|
615 |
|
00:50:24,580 --> 00:50:37,200 |
|
of Tุ ู
ุธุจูุทุ ูุฐุง ุงููู ูู u ุทุจุนุงู ุงูู r n ุงุญูุง ู
ุถุฑูุจ |
|
|
|
616 |
|
00:50:37,200 --> 00:50:41,730 |
|
ููู ูู 1 ุนูู n factorial ูุฃูููุง ูู ุงููู ูุถููุง |
|
|
|
617 |
|
00:50:41,730 --> 00:50:47,110 |
|
ูู ุงูุฌุฒุก ุงููู ุญุณุจูุงู ูุฐุง 1 ุนูู n factorial ู
ูุฌูุฏุฉ |
|
|
|
618 |
|
00:50:47,110 --> 00:50:50,490 |
|
ูููุง 1 ุนูู n factorial ุจูุตูุฑ ููุง ุจุฑุถู ุนูู n |
|
|
|
619 |
|
00:50:50,490 --> 00:51:00,050 |
|
factorial ุจุฏุฃุช ุฃู
ูุฑูุง ุชุธูุฑ ูุงูุต 1 ุนูู n factorial |
|
|
|
620 |
|
00:51:00,050 --> 00:51:06,310 |
|
ูู ุงูู integration ู
ู a ูุนูุฏ b v ุ v ูู f |
|
|
|
621 |
|
00:51:08,970 --> 00:51:18,530 |
|
of T ู
ุธุจูุท dt ูู du du ุฅูุด duุ du ุงููู ูู |
|
|
|
622 |
|
00:51:18,530 --> 00:51:30,650 |
|
ูุงูุต n ูุงูุต n ูู b minus t ุฃูุณู |
|
|
|
623 |
|
00:51:30,650 --> 00:51:32,330 |
|
n ูุงูุต ูุงุญุฏ |
|
|
|
624 |
|
00:51:35,190 --> 00:51:43,550 |
|
ูุงุถุญุฉ ุงูุตูุฑุฉ ูุฌู ูุฎูู ุงูุตูุฑุฉ ู
ููุญุฉ b-t ุฃูุณู n ุนูู n |
|
|
|
625 |
|
00:51:43,550 --> 00:51:51,210 |
|
factorial f n of T ุฎูุตูุง ู
ูู ูุฐุง ูุงูุต ููุฐุง ูุงูุต |
|
|
|
626 |
|
00:51:51,210 --> 00:51:56,250 |
|
ูุตุจุญ ุฒุงุฏ ูุตุจุญ ูุฐุง ุฃุดู
ู ูู ูุงุญุฏ ุนูู n ูุงุญุฏ factorial |
|
|
|
627 |
|
00:51:56,250 --> 00:52:04,450 |
|
ูู ุงูู integration ู
ู a ูุนูุฏ b b-t ุฃูุณู n ูุงูุต ูุงุญุฏ |
|
|
|
628 |
|
00:52:04,450 --> 00:52:12,530 |
|
f n of T dt ู
ุธุจูุทุ ู
ุธุจูุท ูุฐุง ุฃูุฌุฏูุง ู
ููุ ุงูู r n |
|
|
|
629 |
|
00:52:12,530 --> 00:52:18,350 |
|
ุจูุณุงูู ูุฐุง ุฒุงุฆุฏ ูุฐุง ุทูุจ ุงููู ุนู
ููุงู ู
ูู ูู ูุฐุง ุฃุตูุงู |
|
|
|
630 |
|
00:52:18,350 --> 00:52:23,570 |
|
ุงูู r n ุงููู ุฃูุฌุฏูุงู ูู ุงููู ูู b-1 t ุฃูุณู n f n ุฒุงุฆุฏ |
|
|
|
631 |
|
00:52:23,570 --> 00:52:29,370 |
|
ูุงุญุฏ of T dt ุทูุน ุนุจุงุฑุฉ ุนู ุงููู ูู ุงููู ุฌูุง ูุฐุง ุจุฃุณู |
|
|
|
632 |
|
00:52:29,370 --> 00:52:38,770 |
|
n ููุฐุง ุฒู ู
ุง ูู ุฃูุณู n ูุงูุต ุจูุตูุฑ ูู ูุฐุง ุฒุงุฆุฏ ูุงุญุฏ ุตุงุฑ |
|
|
|
633 |
|
00:52:38,770 --> 00:52:42,670 |
|
ุฒุงุฆุฏ ุทุจุนุงู ู
ุง ุนุฑูุชู
ููู ุตุงุฑุช ุฒุงุฆุฏ ูุงุญุฏ ุนูู n |
|
|
|
634 |
|
00:52:42,670 --> 00:52:46,130 |
|
ูุงูุต ูุงุญุฏ factorial ูุงุญุฏ ุนูู n ูุงูุต ูุงุญุฏ |
|
|
|
635 |
|
00:52:46,130 --> 00:52:49,850 |
|
factorial ูู ูุฐุง ุงูู
ูุฏุงุฑ ูุงุญุธูุง ุฃู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
636 |
|
00:52:49,850 --> 00:52:56,610 |
|
ุดุจูู ุจุงูู remainder ูุนูู ุจุงูุถุจุท ุงููู ุนู
ููุงู ุนูู ุงูู |
|
|
|
637 |
|
00:52:56,610 --> 00:53:01,750 |
|
remainder ุจูุนู
ูู ูุงู ุจูุนู
ูู ุนูู ูุฐุง ุงููู ููุนู
ูู ูุงู |
|
|
|
638 |
|
00:53:01,750 --> 00:53:05,810 |
|
ูููุทูุน ู
ูุฏุงุฑ ุฒู ูุฐุง ูู
ูุฏุงุฑ ุฒู ูุฐุง ุจุณ ููููุต ูู
ุงู |
|
|
|
639 |
|
00:53:05,810 --> 00:53:09,770 |
|
ูุงุญุฏ ุงููู n ููุตูุฑ ูุฐุง n ูุงูุต ุงุซููู ูุงู n .. ูุงู |
|
|
|
640 |
|
00:53:09,770 --> 00:53:13,210 |
|
n ุตุงุฑ ููุตูุฑ n ูุงูุต ุงุซููู ูุงูุฎุทูุฉ ุงููู ุจุนุฏูุง |
|
|
|
641 |
|
00:53:13,210 --> 00:53:15,850 |
|
ุจูุนู
ู ูู
ุงู ู
ุฑุฉ ุจููุฌุฏ ุจูุตูุฑ n ูุงูุต ุซูุงุซุฉ ูn ูุงูุต |
|
|
|
642 |
|
00:53:15,850 --> 00:53:20,070 |
|
ุฃุฑุจุนุฉ ูู ุงูุขุฎุฑ ุงูู and finite ุฅุฐุง ููุตู ููููุงูุฉ ุฅุฐุง |
|
|
|
643 |
|
00:53:20,070 --> 00:53:29,950 |
|
ูุฐุง ููุตูุฑ ุจูุณุงูู b-t ุฃูุณู n ุนูู n factorial f n of t |
|
|
|
644 |
|
00:53:29,950 --> 00:53:35,250 |
|
ุฒุงุฆุฏ ูุฐุง ุจุชุนู
ูู ุจุงูุถุจุท ุฒู ู
ุง ุนู
ูุช ู
ููุ ุฒู ู
ุง ุนู
ูุช |
|
|
|
645 |
|
00:53:35,250 --> 00:53:42,150 |
|
ุงูู r n ูุนูู ููุฃูู ุงุณู
ูุฐุง r n-1 ุจูุตูุฑ ุจููุณ ุงูุฃุณููุจ b |
|
|
|
646 |
|
00:53:42,150 --> 00:53:49,410 |
|
minus t ุฃูุณู n ูุงูุต ูุงุญุฏ ุนูู n ูุงูุต ูุงุญุฏ factorial f |
|
|
|
647 |
|
00:53:49,410 --> 00:54:00,270 |
|
n ูุงูุต ูุงุญุฏ of t ุฒุงุฆุฏ ุจุนุชูุฏ |
|
|
|
648 |
|
00:54:00,270 --> 00:54:08,770 |
|
ุจุณ ูู ูุงูุต ููุง ูู ุงูู u ูู v u ูู v |
|
|
|
649 |
|
00:54:17,570 --> 00:54:22,590 |
|
ุขู ู
ุง ุญุณุจูุงุด ุนูุฏ a ู b ุขู ุจุณ ูุฐุง ูุณููุง ูุญุณุจ ูุฐุง ุนูุฏ |
|
|
|
650 |
|
00:54:22,590 --> 00:54:27,990 |
|
bุ ู
ู ุนูุฏ a ูุนูุฏ bุ ู
ุนูุด ุณุงู
ุญููุงุ ู
ู ุนูุฏ a ูุนูุฏ b |
|
|
|
651 |
|
00:54:27,990 --> 00:54:33,230 |
|
ูุฐุง ุงูููุงู
ุตุญูุญุ ุจุณ ุจุฏู ุฃุญุณุจู ู
ู a ูุนูุฏ bุ ุนูุฏ b |
|
|
|
652 |
|
00:54:33,230 --> 00:54:38,250 |
|
ุตูุฑุ ุตุญุ ุนูุฏ b ุตูุฑุ ู
ุด ุงุญูุง ุญุณุจูุง ููู
ุฉ ุงูู |
|
|
|
653 |
|
00:54:38,250 --> 00:54:40,830 |
|
remainderุ ููู
ุฉ ุงูู integrationุ ูุฐุง ุงูู integration |
|
|
|
654 |
|
00:54:40,830 --> 00:54:47,820 |
|
ุงููู ูู ู
ู ููู ููููุ ู
ู a ูุนูุฏ b ุงูุขู ูุฐุง ู
ู a ูุนูุฏ |
|
|
|
655 |
|
00:54:47,820 --> 00:54:56,920 |
|
b ุจูุตูุฑ ุนูุฏ b ูุงูุต b ุจูุตูุฑ ุตูุฑ ุงูุขู ูุงูุต ู
ู b ูุงูุต |
|
|
|
656 |
|
00:54:56,920 --> 00:55:01,680 |
|
a ูุจูุตูุฑ ูุฐู ุดู
ุงููุง b ูุงูุต a ูููุง ูุงูุต ูููุง a |
|
|
|
657 |
|
00:55:01,680 --> 00:55:06,760 |
|
ุดู
ุงููุง f of a ูุฃูู ุนูุถูุง ุนู ู
ููุ ุนู a ูุจูุตูุฑ ุนูุฏ b |
|
|
|
658 |
|
00:55:06,760 --> 00:55:11,220 |
|
ูุงูุต a ุฃูุณู n ุจุงูุณุงูุจ ุนูู n factor of n of a ุฒุงุฆุฏ |
|
|
|
659 |
|
00:55:11,220 --> 00:55:15,190 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ูุฃูู ูุฐุง ุงูู
ูุฏุงุฑ ุฒู ูุฐุง ุงูู
ูุฏุงุฑ ูุฐุง |
|
|
|
660 |
|
00:55:15,190 --> 00:55:19,010 |
|
ุงูู
ูุฏุงุฑ ุจููุณ ุงูุฃุณููุจ ุฒู ู
ุง ูููุง ุจูุตูุฑ ุนุจุงุฑุฉ ุนู ุฒู |
|
|
|
661 |
|
00:55:19,010 --> 00:55:24,650 |
|
ูุฐุง ู
ุงุดู ุจุณ ุจุฑุถู ููุทูุน ูู ุฅูุดุ ุจุฑุถู ููุทูุน ูู ููุต ูู
ุง |
|
|
|
662 |
|
00:55:24,650 --> 00:55:27,730 |
|
ูุนูุถ ุจูุตูุฑ b minus a ุฃุณุฆูุฉ ูุงูุต ูุงุญุฏุฉ ุงูุขู ูุงูุต |
|
|
|
663 |
|
00:55:27,730 --> 00:55:33,830 |
|
ูุงุญุฏุฉ factorial f n ูุงูุต ูุงุญุฏ of 2 of a ุฒุงุฆุฏ ุงููู |
|
|
|
664 |
|
00:55:33,830 --> 00:55:38,630 |
|
ุจูุทูุน ููุง n ูุงูุต 2 factorial ูู ุงูู integration ู
ู |
|
|
|
665 |
|
00:55:38,630 --> 00:55:47,770 |
|
a ูู b b minus t ุฃุณุฆูุฉ ูุงูุต 2 ุงูุขู ููุฐู f n ูุงูุต |
|
|
|
666 |
|
00:55:47,770 --> 00:55:55,740 |
|
ูุงุญุฏุฉ of t dt ููุณ |
|
|
|
667 |
|
00:55:55,740 --> 00:55:59,960 |
|
ุงููู ุนู
ูุชู ุนูู ูุฐุง ุจุฏู ุฃุนู
ูู ุนูู ูุฐุง ูุฃุธูู ู
ุณุชู
ุฑู |
|
|
|
668 |
|
00:55:59,960 --> 00:56:10,880 |
|
ูู
ุง ููุตู ุนูุฏู ุงููู ูู .. ููู ุจุฏู ุฃูุชุจุ |
|
|
|
669 |
|
00:56:10,880 --> 00:56:12,360 |
|
ุฎูููู ุฃูุชุจ ููู |
|
|
|
670 |
|
00:56:16,010 --> 00:56:22,150 |
|
ุงูุขู ุชูุฌูุฃูุง ูุง ุฌู
ุงุนุฉ ุฅูู ุงูู r n ูู ูู ูุฐุง ุงููู ูู r n |
|
|
|
671 |
|
00:56:22,150 --> 00:56:28,690 |
|
ุจูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ูุงูุต ูุฐุง ุงูู
ูุฏุงุฑ ูุงูุต ูุงูุต ุฒุงุฆุฏ |
|
|
|
672 |
|
00:56:28,690 --> 00:56:34,370 |
|
ูุฐุง ุฅุฐุง ุตุงุฑ ุนูุฏ ุงูู r n ุจูุณุงูู |
|
|
|
673 |
|
00:56:34,370 --> 00:56:49,900 |
|
ูุงูุต b minus a ุฃูุณู n ุนูู n factorial f n of a ูุงูุต b |
|
|
|
674 |
|
00:56:49,900 --> 00:56:54,740 |
|
minus a ุฒุงุฆุฏ n ูุงูุต ูุงุญุฏ ุนูู n ูุงูุต ูุงุญุฏ factorial |
|
|
|
675 |
|
00:56:54,740 --> 00:57:04,840 |
|
f n ูุงูุต ูุงุญุฏ of a ุฒุงุฆุฏ ุงูู
ูุฏุงุฑ ูุฐุง ุงูุขู ุจุชุนู
ููุง |
|
|
|
676 |
|
00:57:04,840 --> 00:57:09,500 |
|
ูุฐุง ุงููู ุนู
ูุชู ู
ุน ุฌุงุจูู ููุธูููุง ุจููุณ ุงูุฃุณููุจ ู
ุงุดู |
|
|
|
677 |
|
00:57:10,430 --> 00:57:17,990 |
|
ูู
ุง ุฃุตู ูุนูุฏ ุงููู ูู ุขุฎุฑ term ุงููู ูู ููููู ุนูุฏู |
|
|
|
678 |
|
00:57:17,990 --> 00:57:28,270 |
|
ูููุทูุน ุนูุฏู ุงููู ูู b minus a ูู f ูุนูู n ุงููู ูู |
|
|
|
679 |
|
00:57:28,270 --> 00:57:41,300 |
|
ุจูุตูุฑ ุจุงุชููู b minus a ูู f prime of a ุนูู ุงููู ูู |
|
|
|
680 |
|
00:57:41,300 --> 00:57:46,360 |
|
1 factorial ุฒู ู
ุง ูู ุฒุงุฆุฏ ุงููู ุจุนุฏูุง ุงูู |
|
|
|
681 |
|
00:57:46,360 --> 00:57:51,200 |
|
integration ุชุจุนูุง ุงููู ูู ูุฐู ุนูุฏ n ุจุฌุฏูุงุดูุง ุฃูุง ุจู 2 |
|
|
|
682 |
|
00:57:51,200 --> 00:57:56,060 |
|
n ุจู 2 ุงููู ูู ุจูุตูุฑ 1 ุฅูู 0 factorial ูุนูู ุจูุตูุฑ |
|
|
|
683 |
|
00:57:56,060 --> 00:58:00,060 |
|
ุงููู ูู 1 ุจู
ุนูู ุขุฎุฑ ูุงูู integration ู
ู a ูุนูุฏ b |
|
|
|
684 |
|
00:58:00,060 --> 00:58:06,660 |
|
ููุฐุง ุจูุตูุฑ b minus t ุฃูุณู 0 ูุนูู 1 ูู f prime of dt |
|
|
|
685 |
|
00:58:08,080 --> 00:58:12,180 |
|
ูู
ุง ุฃูุฑูุฑ ุงูุนู
ููุฉ ุฃุธูู ุฃูุฑูุฑูุง ูู
ุง ุฃุตู ููุฐู ุงูุฎุทูุฉ |
|
|
|
686 |
|
00:58:12,180 --> 00:58:17,620 |
|
ูุญููุชู ูุฃูู ุงูู n is finite ููุณุงูู ุงููู ูู ุงูู
ูุฏุงุฑ |
|
|
|
687 |
|
00:58:17,620 --> 00:58:20,220 |
|
ูุฐุง ููู ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูู summation ุทุจุนุงู ููู |
|
|
|
688 |
|
00:58:20,220 --> 00:58:23,060 |
|
ุจุงูุณุงูุจ ูุฐุง ู
ุน ูุฐุง ุงูุฃุฎูุฑ ุจุงูู
ูุฌุจ ุจูุตูุฑ ูุงูุต ุงูู |
|
|
|
689 |
|
00:58:23,060 --> 00:58:32,660 |
|
summation ูู b minus a ุฃูุณู k ุนูู k factorial ูู f k of |
|
|
|
690 |
|
00:58:32,660 --> 00:58:43,520 |
|
a k ุงูุขู ู
ู ุนูุฏ ุงููู ูู ูุงุญุฏ ุนูุฏ ูุงุญุฏ ูููุง ูุนูุฏ ู
ูู |
|
|
|
691 |
|
00:58:43,520 --> 00:58:51,280 |
|
ูุนูุฏ n ูุฐุง ู
ุฌู
ูุน ู
ู ููุง ู
ู ููุง ูููุง ูุฐุง ููู ูู |
|
|
|
692 |
|
00:58:51,280 --> 00:58:56,640 |
|
ููุจ ูุงุญุฏ ุจุชุทูุน ูุฐู kูุจ 2 ุจุชุทูุน ุงููู ูุงู kูุจ 3 ูู
ุง |
|
|
|
693 |
|
00:58:56,640 --> 00:58:59,580 |
|
ููุตูุง ูููุจ n ุจุชุทูุน ุงููู ุนูุฏูุง ูุงู ุฒุงุฆุฏ ุงูู |
|
|
|
694 |
|
00:58:59,580 --> 00:59:02,580 |
|
integration ูุฐุง ุงูู integration ูุฐุง ุงููู ูู f |
|
|
|
695 |
|
00:59:02,580 --> 00:59:05,660 |
|
continuous ุงููู ุนูุฏ ุงูู integration ููู f ุทุจุนุงู ุงูู f |
|
|
|
696 |
|
00:59:05,660 --> 00:59:08,820 |
|
ููุณูุง ูุงูุช continuous ูุงูู integration ูุฐุง ุจูุฑุถ ุถู
ู |
|
|
|
697 |
|
00:59:08,820 --> 00:59:11,140 |
|
ุงูู fundamental of calculus ุนูู ุทูู ุจูุทูุน ุนุจุงุฑุฉ ุนู f |
|
|
|
698 |
|
00:59:11,140 --> 00:59:20,780 |
|
of b ูุงูุต ู
ู f of a ู
ุงุดู ุงูุญุงู ูุจูุตูุฑ ุงูุขู ุงููู ูู |
|
|
|
699 |
|
00:59:20,780 --> 00:59:28,010 |
|
ูุตููุง ููู ุจุฏููุง ุฅูุงู ูููุ ุดูู ููู ูุตููุง ูููุชูุฌุฉ ุงูุขู |
|
|
|
700 |
|
00:59:28,010 --> 00:59:37,210 |
|
ุทูุนุช ุนูุฏู ุฎููู ุงููู ูู ุงูู remainder ุงุญูุง ุงูู f of |
|
|
|
701 |
|
00:59:37,210 --> 00:59:42,430 |
|
P ุฎูููุง ูู ุงูุฌูุฉ ูุฐู ูุงููู ููู ููุง ูุจูุตูุฑ F of P |
|
|
|
702 |
|
00:59:42,430 --> 00:59:48,760 |
|
ุจุณุงูู ูุฐู ุจุชูุถู ููุฐู ู
ุง ูู ูุงูุต ุงูุซุงููุฉ ุจูุตูุฑ .. |
|
|
|
703 |
|
00:59:48,760 --> 00:59:51,380 |
|
ูู
ุง ุชูุฌู ุงูุฌูุชูู ุนูู ุงูุฌูุชูู ุจูุตูุฑ ู
ูุฌุฉ ุจุณ |
|
|
|
704 |
|
00:59:51,380 --> 00:59:57,440 |
|
summation ูู B minus A ุฃูุณ K FK the derivative ูุฐู |
|
|
|
705 |
|
00:59:57,440 --> 01:00:04,160 |
|
of A ุนูู K factorial K ุงูู N ู
ู ูุงุญุฏ ูุนูุฏ N ููุฐู |
|
|
|
706 |
|
01:00:04,160 --> 01:00:09,340 |
|
ุญุงูุฉ ุงูุณูุฑ K ู
ู ุตูุฑ ูุนูุฏ N ุฒุงุฆุฏ ู
ูู ุงูู remainder |
|
|
|
707 |
|
01:00:09,340 --> 01:00:13,900 |
|
are n ููุด ุญุงูุฉ ุงูุณูุฑ ูุฐู ูุฃู ูู ุญุงูุฉ K ุจุตูุฑ ุจูุตูุฑ |
|
|
|
708 |
|
01:00:13,900 --> 01:00:17,500 |
|
ูุฐุง ูุงุญุฏ ููุฐุง ูุงุญุฏ ููุฐุง ู
ุงููุด derivative ูุนูู |
|
|
|
709 |
|
01:00:17,500 --> 01:00:22,320 |
|
ุจูุตูุฑ F of A ูุจูุตูุฑ ุนูุฏู ุงููู ูู F of B ุจุณุงูู ุงู |
|
|
|
710 |
|
01:00:22,320 --> 01:00:25,160 |
|
summation ุฒุงุฆุฏ ุงู remainder are n the remainder |
|
|
|
711 |
|
01:00:25,160 --> 01:00:30,500 |
|
ุงููู ูู ุงููู ุงุญูุง ุจุฏุฃูุง ููู ููู ุงูู
ุทููุจ ูุนูุง ุฃูุง |
|
|
|
712 |
|
01:00:30,500 --> 01:00:36,940 |
|
ูุฏุฑุช ุฃูุชุจ ุงููู ูู ุงู F of B ุนูู ุงูุตูุฑุฉ ุงููู ุฃู
ุงู
ู |
|
|
|
713 |
|
01:00:36,940 --> 01:00:42,600 |
|
ููู ุจูููู ุงุญูุง ุจุฑููุง Taylor's theorem ููู ุขุฎุฑ |
|
|
|
714 |
|
01:00:42,600 --> 01:00:48,860 |
|
ุฌุฒุก ูู ูุฐุง ุงู section ูุงูุขู ุฅู ุดุงุก ุงููู ุจููู |
|
|
|
715 |
|
01:00:48,860 --> 01:00:54,800 |
|
ุฎูุตูุง ุงูุฌุฒุก ุงูุฃูู ู
ู ุงูู
ุญุงุถุฑุฉ ููุจุฏุฃ ุฅู ุดุงุก ุงููู |
|
|
|
716 |
|
01:00:54,800 --> 01:00:58,740 |
|
ุจุนุฏ ุดููุฉ ูู ุงูุฌุฒุก ุงูุซุงูู ุจุงุฑู ุงููู ูููู
|
|
|