abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
78 kB
1
00:00:11,170 --> 00:00:17,190
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… ุฎู…ุณุฉ ุนุดุฑ
2
00:00:17,190 --> 00:00:25,090
ู„ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ 2 ู„ุทู„ุจุฉ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ
3
00:00:25,090 --> 00:00:31,380
ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู…
4
00:00:31,380 --> 00:00:35,940
ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ุชูŠ ุณุชูƒูˆู† ุนู„ู‰ ุฌุฒุฆูŠู† ุงู„ุฌุฒุก ุงู„ุฃูˆู„
5
00:00:35,940 --> 00:00:40,940
ุณู†ูƒู…ู„ ู…ุง ุจุฏุฃู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ุฐูŠ ู‡ูˆ ุณู†ูƒู…ู„
6
00:00:40,940 --> 00:00:45,100
ุงู„ุฐูŠ ู‡ูˆ ุชุทุจูŠู‚ุงุช ุนู„ู‰ ุงู„ู€ Fundamental Theorem of
7
00:00:45,100 --> 00:00:50,540
Calculus ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู‡ุฐุง ุงู„ุชุทุจูŠู‚ ุทุจุนู‹ุง ู‡ูˆ ุณูŠูƒูˆู† ุนู†
8
00:00:50,540 --> 00:00:53,880
evaluation of integrals ุจุฑุถู‡ ูƒู†ุง ููŠู‡ ุงู„ู…ุฑุฉ
9
00:00:53,880 --> 00:00:58,220
ุงู„ู…ุงุถูŠุฉ ูˆุณู†ูƒู…ู„ู‡ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู†
10
00:00:58,220 --> 00:01:04,180
ุงู„ู…ุญุงุถุฑุฉ ุณู†ุชุญุฏุซ ุนู† ุงู„ุฐูŠ ู‡ูˆ ุงู„ุชูƒุงู…ู„ ุฃู† ู†ุฏุฎู„
11
00:01:04,180 --> 00:01:08,620
ู„ู„ุชุนุงู…ู„ูŠุฉ ุงู„ุชูƒุงู…ู„ ุจุทุฑูŠู‚ุฉ ุบูŠุฑ ุงู„ upper sum ูˆุงู„ lower
12
00:01:08,620 --> 00:01:15,060
sum ุนู† ุทุฑูŠู‚ ุดูŠุก ุงุณู…ู‡ Riemann sum ู‡ุฐุง ุงู„ุขู† ู‡ูˆ ุงู„ุฌุฒุก
13
00:01:15,060 --> 00:01:19,080
ุงู„ุซุงู†ูŠ ุงู„ุขู† ุจุฏู†ุง ู†ุจุฏุฃ ููŠ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุจุณ ุนู„ู‰ ุงู„ุณุฑูŠุน
14
00:01:19,080 --> 00:01:22,540
ู†ุทู„ุน ุนู„ู‰ ู…ุง ุชุญุฏุซู†ุง ุนู†ู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูƒู†ุง ุชุญุฏุซู†ุง ุนู†
15
00:01:22,540 --> 00:01:26,120
ุงู„ู€ Fundamental Theorem of Calculus ูˆุชุญุฏุซู†ุง ุนู† ุงู„ุฐูŠ
16
00:01:26,120 --> 00:01:30,800
ู‡ูˆ ุงู„ู€ Two Forms ุฅูŠู‡ุง ุฃูˆ ุงู„ุชูุงุถู„ ูˆุงู„ุชูƒุงู…ู„ ูƒู…ุง
17
00:01:30,800 --> 00:01:35,240
ุชุญุฏุซู†ุง ูˆุชูƒุงู…ู„ ุงู„ุชูุงุถู„ Roughly ุงู„ูƒู„ุงู… ูˆุจุนุฏูŠู† ุฃุชูŠู†ุง
18
00:01:35,240 --> 00:01:38,980
ู„ุจุนุถ ุงู„ู…ู„ุงุญุธุงุช ูˆุจุนุถ ุงู„ุชุนุฑูŠูุงุช ูˆุชุญุฏุซู†ุง ุนู† ุงู„ู€
19
00:01:38,980 --> 00:01:42,780
evaluation of integralsุจุฏุฃู†ุง ููŠ evaluation of
20
00:01:42,780 --> 00:01:46,600
integrals ุงู„ุฐูŠ ู‡ูˆ ุงู„ุฐูŠ ูŠู…ุซู„ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ู‡ุฐู‡
21
00:01:46,600 --> 00:01:51,320
ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ุชุญุฏุซู†ุง ุนู† ุงู„ุฐูŠ ู‡ูˆ ุงู„ integration by
22
00:01:51,320 --> 00:01:55,480
parts ุงู„ integration by parts ุชุญุฏุซู†ุง ุนู†ู‡ ุงู„ู…ุฑุฉ
23
00:01:55,480 --> 00:02:02,130
ุงู„ู…ุงุถูŠุฉ ูˆุดุฑุญู†ุงู‡ ูˆูˆู‚ูู†ุง ุนู†ุฏ ุงู„ุฐูŠ ู‡ูˆ ุงู„ู€ ุงู„ .. ุงู„ ..
24
00:02:02,130 --> 00:02:06,230
ุงู„ .. ุงู„ .. ุงู„ first substitution form ุงู„ุฐูŠ ุณู†ุจุฏุฃ
25
00:02:06,230 --> 00:02:10,650
ููŠู‡ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ุขู† ุงู„ first substitution
26
00:02:10,650 --> 00:02:15,310
form ุฃูˆ ุงู„ุฐูŠ ู‡ูˆ ุงู„ุชูƒุงู…ู„ ุจุงู„ุชุนูˆูŠุถ ุนู† ุทุฑูŠู‚ ุงู„ุฐูŠ ู‡ูŠ
27
00:02:15,310 --> 00:02:18,870
ุงู„ุชุนูˆูŠุถ ูˆู‡ุฐู‡ ุทุจุนู‹ุง ุทุฑูŠู‚ุฉ ูƒู†ุง ู†ุณุชุฎุฏู…ู‡ุง ูƒู…ุง
28
00:02:18,870 --> 00:02:22,670
ุงุณุชุฎุฏู…ู†ุง ุงู„ุฐูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„ integration by parts ููŠ
29
00:02:22,670 --> 00:02:27,910
calculus B ุฃูŠุถู‹ุง ุงุณุชุฎุฏู…ู†ุง ุงู„ุฐูŠ ู‡ูˆ ุงู„ุชูƒุงู…ู„ ุจุงู„ุชุนูˆูŠุถ
30
00:02:27,910 --> 00:02:36,840
ู„ู„ุฅูŠุฌุงุฏ ุฃูˆ ู„ุนู…ู„ูŠุฉ ุฅูŠุฌุงุฏ ุงู„ุฐูŠ ู‡ูŠ ุงู„ุชูƒุงู…ู„ ุงู„ุขู† ุจุฏู†ุง
31
00:02:36,840 --> 00:02:41,720
ู†ุนุทูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ุชูŠ ุชุดุฑุญ ู„ู†ุง ุฃูˆ ู†ุซุจุช ุงู„ู†ุธุฑูŠุฉ ุงู„ุชูŠ
32
00:02:41,720 --> 00:02:46,840
ุชุณู…ุญ ู„ู†ุง ุจุงู„ุชูƒุงู…ู„ ุจุงู„ุชุนูˆูŠุถ ู†ุฌูŠ ู†ุทู„ุน ู„ู†ุธุฑูŠุชู†ุง
33
00:02:46,840 --> 00:02:51,120
ุงู„ุชูŠ ู‡ูŠ ุงู„ first substitution theorem ู†ูŠุฌูŠ ู†ุงุฎุฐ
34
00:02:51,120 --> 00:02:55,300
ุงู„ุฐูŠ ู‡ูˆ ุงู„ J ูุชุฑุฉ ุนุจุงุฑุฉ ุนู† ุงู„ closed interval Alpha
35
00:02:55,300 --> 00:03:01,120
ูˆ Beta ุฅู† ู†ุฃุฎุฐ ฮฆ function ู…ู† J ู„ุนู†ุฏ R have a
36
00:03:01,120 --> 00:03:04,620
continuous derivative on J ูŠุนู†ูŠ ุฃุฎุฐู†ุง ุงู„ุขู† ูŠุง
37
00:03:04,620 --> 00:03:09,660
ุฌู…ุงุนุฉ ฮฆ ุนุจุงุฑุฉ ุนู† function ู…ู† ุงู„ุชูŠ ู‡ูŠ ุงู„ูุชุฑุฉ
38
00:03:09,660 --> 00:03:17,090
Alpha ูˆ Beta ู„ุนู†ุฏ R ูˆูุฑุถู†ุง ุฅู† ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ุชูŠ ู‡ูŠ
39
00:03:17,090 --> 00:03:22,050
ฮฆ ุงู„ derivative ู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ูˆู†ูุณู‡ุง ู…ุดุชู‚ุชู‡ุง
40
00:03:22,050 --> 00:03:26,690
continuous ุฅุฐุง ูุฑุถู†ุง ุฅู† ุงู„ุฐูŠ ู‡ูˆ ุงู„ู€ ฮฆ have a
41
00:03:26,690 --> 00:03:31,230
continuous derivative on the interval J ุงู„ุชูŠ
42
00:03:31,230 --> 00:03:35,080
ุณู…ูŠู†ุงู‡ุง ู„ูŠู‡ Alpha ูˆ Beta ู„ุฃู† ู„ูˆ ูƒุงู† ููŠ ุนู†ุฏูŠ function
43
00:03:35,080 --> 00:03:39,300
F is continuous on any interval I containing ฮฆ
44
00:03:39,300 --> 00:03:46,160
of J ู„ุฃู† ูุฑุถู†ุง ุฃู† F ุฏุงู„ุฉ ุนู„ู‰ I ุชุญุชูˆูŠ ฮฆ of J ุนุดุงู†
45
00:03:46,160 --> 00:03:51,180
ุฅู† ุจุนุฏ ุดูˆูŠุฉ ู‡ุนุฑู‘ู .. ู‡ูŠู„ุฒู…ู†ูŠ ุงู„ุฐูŠ ู‡ูˆ composition
46
00:03:51,180 --> 00:03:55,160
of two functions ุนุดุงู† ู‡ูŠูƒ ุฃู†ุง ุจุงุฎุฏ ุงู„ F ุนุจุงุฑุฉ ุนู†
47
00:03:55,160 --> 00:04:00,840
function ู…ู† I ู„ุนู†ุฏ ู…ู†ุŸ ู„ุนู†ุฏ ุงู„ R ุฅูŠุด ุงู„ I ู‡ุฐู‡ุŸ
48
00:04:00,840 --> 00:04:08,290
ู‡ุฐู‡ I interval ุจุชุญุชูˆูŠ ุงู„ุชูŠ ู‡ูŠ ู…ู† ุงู„ู€ ฮฆ of J ุงู„ุชูŠ
49
00:04:08,290 --> 00:04:13,790
ุนู†ุฏูŠุŒ ูŠุนู†ูŠ ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุจู†ุงุก ุนู„ูŠู‡ุง ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ F of
50
00:04:13,790 --> 00:04:20,270
ฮฆ of I T ููŠู‡ ุงู„ุชูŠ ู‡ูŠ ุงู„ู€ J ุนุจุงุฑุฉ ุนู† ู‚ูŠู…ุฉ ู…ุนุฑูุฉ
51
00:04:20,270 --> 00:04:24,790
ุนุดุงู† ุชูƒูˆู† ุงู„ composition ู…ุนุฑูุฉุŒ ุฅุฐุง ุงู„ุขู† ุจุงุฎุชุตุงุฑ
52
00:04:24,790 --> 00:04:28,010
ฮฆ ุงู„ุชูŠ ู‡ูŠ ุงู„ derivative ุงู„ุชูŠ ู…ูˆุฌูˆุฏุฉ ูˆุงู„ู€
53
00:04:28,010 --> 00:04:31,670
derivative continuous ูˆุงู„ function F ุงู„ุตุบูŠุฑุฉ ู‡ุฐูŠ is
54
00:04:31,670 --> 00:04:35,510
continuous ูˆู‡ู†ุง ุงู„ interval IุŒ then ุงู„ุขู† ู†ุฌูŠ
55
00:04:35,510 --> 00:04:40,050
ู„ู„ู†ุชูŠุฌุฉ ุงู„ุชูŠ ู†ุญู† ู†ู…ุงุฑุณู‡ุง ุนู…ู„ูŠู‹ุง ุฏุงุฆู…ู‹ุง ุงู„ุชูŠ ู‡ูˆ
56
00:04:40,050 --> 00:04:46,790
ุจูƒูˆู† ุนู†ุฏูŠ ุงู„ integration ู…ู† Alpha ู„ Beta ู„F of ฮฆ
57
00:04:46,790 --> 00:04:53,960
of T ฮฆ prime of T DT ู†ุญู† ู†ุฏุนูŠ ุจุชุณุงูˆูŠ ูƒู†ุง ู†ุฌูŠ
58
00:04:53,960 --> 00:04:58,100
ู…ุงุฐุง ู†ูุนู„ ู†ุฃุฎุฐ ู‡ุฐู‡ ุงู„ุชูŠ ู‡ูŠ ู†ุนูˆุถ ุนู† ฮฆ of T ุจ X
59
00:04:58,100 --> 00:05:03,360
ุจู†ุงุก ุนู„ูŠู‡ ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† ู‡ุฐุง ุงู„ integration F of
60
00:05:03,360 --> 00:05:09,920
X ูˆ ฮฆ prime of T ู†ุนูˆุถ ุนู† ฮฆ of T ุจ X ูุจูŠุตูŠุฑ
61
00:05:09,920 --> 00:05:14,200
ุนู†ุฏ ฮฆ prime of T DT ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ู† DX ูƒู†ุง ู‡ูŠูƒ
62
00:05:14,200 --> 00:05:17,890
ู†ูุนู„ ููŠ ุงู„ calculus ุงู„ุขู† ู†ุฌูŠ ู†ู‚ูˆู„ DX ุจูุณููˆุก ฮฆ
63
00:05:17,890 --> 00:05:22,670
prime T DT ุฃูˆ DX ุนู„ู‰ DT ุจูุณููˆุก ฮฆ prime of T ูˆู†ุดูŠู„
64
00:05:22,670 --> 00:05:26,630
ฮฆ prime of T DT ูˆู†ุญุท ู…ูƒุงู†ู‡ุง ุดู…ุงู„ู‡ุง DX ุญุฏูˆุฏ ุงู„
65
00:05:26,630 --> 00:05:30,110
integration ูƒุงู†ุช ู…ู† Alpha ู„ Beta ูŠุนู†ูŠ ู„ู…ุง ูƒุงู†ุช T
66
00:05:30,110 --> 00:05:33,350
ุจ Alpha ุจุตูŠุฑ X ุงู„ุชูŠ ู‡ูŠ ฮฆ of T ุงู„ุชูŠ ู‡ูŠ ฮฆ of
67
00:05:33,350 --> 00:05:39,190
Alpha ุจุชุฑูˆุญ ู„ู…ู†ุŸ ู„ ุงู„ุฐูŠ ู‡ูŠ ฮฆ of ู…ู†ุŸ ฮฆ of
68
00:05:39,190 --> 00:05:45,180
Beta ู„ู…ุงุฐุงุŸ ู„ุฃู†ู‡ ู„ู…ุง ูƒุงู†ุช T ุจุณุงูˆูŠ Beta ุฃูƒูŠุฏ ุงู„ู€ X
69
00:05:45,180 --> 00:05:48,760
ุงู„ุชูŠ ู‡ูŠ ฮฆ of T ุจุชุณุงูˆูŠ ุงู„ู€ X ุจุชุณุงูˆูŠ ฮฆ of TุŒ ุงู„ู€
70
00:05:48,760 --> 00:05:53,640
X ุจุชุณุงูˆูŠ ฮฆ of Beta ุฅุฐู† ู†ุธุฑูŠุชู†ุง ู‡ุฐู‡ ุงู„ุชูŠ ุฃู…ุงู…ู†ุง
71
00:05:53,640 --> 00:05:59,160
ู‡ูŠ ู†ุธุฑูŠุฉ ุฅุญู†ุง ูŠุนู†ูŠ ุงุณุชุนู…ู„ู†ุงู‡ุง ุฃูˆ ุจู†ุณุชุนู…ู„ู‡ุง ุนุงุฏุฉ ููŠ
72
00:05:59,160 --> 00:06:02,600
ุงู„ุฐูŠ ู‡ูˆ ุฅูŠุฌุงุฏ ุงู„ู€ integration ูˆุฅุญุฏู‰ ุงู„ุทุฑู‚ ู„ุฅูŠุฌุงุฏ
73
00:06:02,600 --> 00:06:07,860
ุงู„ู€ integration ูุนู†ุฏูŠ
74
00:06:07,860 --> 00:06:14,140
ุงู„ุขู† ู‡ุฐู‡ ุงู„ุขู† ู†ุธุฑูŠุชู†ุงุŒ ุจุฏู†ุง ู†ุจุฑู‡ู† ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ูˆู†ุดูˆู
75
00:06:14,140 --> 00:06:18,840
ูƒูŠู ู†ุจุฑู‡ู†ู‡ุงุŒ ุจุฑู‡ุงู†ู‡ุง ุจุณูŠุทุŒ ุงู„ุขู† ู‡ูŠ ุงู„ุชูŠ ุจุฏู†ุง
76
00:06:18,840 --> 00:06:23,280
ู†ุจุฑู‡ู†ู‡ุŒ ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู ุงู„ุจุฑู‡ุงู†ุฉ ูˆูƒูŠู ู†ุจุฑู‡ู†
77
00:06:23,280 --> 00:06:26,380
ุงู„ูƒุชุงุจุŒ
78
00:06:26,380 --> 00:06:32,520
ุนู†ุฏู‡ ูŠุฌูŠู†ุง ุนุฑูู†ุงุŒ ุจุฏู†ุง ู†ุนุฑู function FุŒ ู„ุฃู† ุนุฑุด
79
00:06:32,520 --> 00:06:35,990
function F ู„ุง ุชู†ุณูˆุง ู‡ุฐุง ุงู„ู€ Function ู…ุงุฐุง ู…ุงู„ู‡ุง ูŠุง
80
00:06:35,990 --> 00:06:40,070
ุฌู…ุงุนุฉุŸ Continuous ูˆู‡ุฐุง ูŠุนู†ูŠ ูƒุซูŠุฑ ุจุงู„ู†ุณุจุฉ ู„ู„ู€
81
00:06:40,070 --> 00:06:43,210
Fundamental Theorem ุฃุนุฑู ุงู„ู€ Function F ู…ู† ุงู„ู€
82
00:06:43,210 --> 00:06:50,310
Interval I ู„ุนู†ุฏ ู…ู† R F Capital ุฃุนุฑู ุงู„ู€ F Capital
83
00:06:50,310 --> 00:06:59,070
F of U ุจุณุงูˆูŠ ุงู„ู€ Integration ู…ู† ุงู„ุฐูŠ ู‡ูˆ ุนู†ุฏ ุงู„ู€ I
84
00:06:59,070 --> 00:07:04,870
ุจุชุญุชูˆูŠ ู…ู† ุงู„ู€ ฮฆ of J ูŠุนู†ูŠ ู‡ูŠ ุงู„ู€ Interval I ู‡ูŠ
85
00:07:04,870 --> 00:07:08,870
ุงู„ู€ interval I ูˆููŠ ุฏุงุฎู„ู‡ุง ฮฆ of J ฮฆ of J ุทุจุนู‹ุง
86
00:07:08,870 --> 00:07:12,330
ููŠ ุนู†ุฏ ฮฆ of Alpha ู„ุนู†ุฏ ฮฆ of Beta ู„ูˆ ูƒุงู†ุช ุงู„ุชูŠ
87
00:07:12,330 --> 00:07:15,590
ู‡ูŠ Alpha ุฃูƒุจุฑ ู…ู† Beta ุงู„ุฃุฎุฑู‰ ฮฆ of J ุงู„ุชูŠ ู‡ู…
88
00:07:15,590 --> 00:07:19,990
ู…ูุชุฑุถูŠู†ู‡ุง ู†ุญู† ุฃูŠู† ููŠ ุฏุงุฎู„ ุงู„ูุชุฑุฉ ุงู„ุชูŠ ุฃู…ุงู…ูŠ ุงู„ุขู†
89
00:07:19,990 --> 00:07:24,050
ุจุชุฃุฎุฐ ุงู„ integration ุชุนุฑูู‡ ู…ู† ุนู†ุฏ ฮฆ of Alpha
90
00:07:24,050 --> 00:07:29,980
ู„ุนู†ุฏ ู…ู† U ุงู„ู€ U ุงู„ู…ุชุบูŠุฑุฉ ุงู„ุชูŠ ุณุชูƒูˆู† ุฃูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ
91
00:07:29,980 --> 00:07:35,240
ุฏุงุฎู„ ุงู„ู€ I ุงู„ุชูŠ ุชุญุชูˆูŠ ุงู„ู€ ฮฆ of G ุฅุฐุง ุนุฑูู†ุง
92
00:07:35,240 --> 00:07:37,440
function f of u ุจูŠุณุชูˆูŠ ุงู„ integration ู…ู† ฮฆ of
93
00:07:37,440 --> 00:07:42,780
Alpha ุซุงุจุช ฮฆ of Alpha ูŠุง ุฌู…ุงุนุฉ ู„ุนู†ุฏ U ู„ู…ู†ุŸ ู„ู„ f
94
00:07:42,780 --> 00:07:49,410
of x dx ู„ุงุญุธ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ุชูŠ ุนู†ุฏูŠ ุงู„ุชูŠ ุนุฑูุชู‡ุง ู…ู†
95
00:07:49,410 --> 00:07:53,830
ุงู„ู€ Fundamental theorem ุจู…ุง ุฃู† F is continuous ุฅุฐุง
96
00:07:53,830 --> 00:07:58,810
ู‡ุฐุง ูƒู„ู‡ ุงู„ุขู† ุงู„ุฐูŠ ู‡ูˆ ุตุงุฑ function ููŠ U ุนุจุงุฑุฉ ุนู†
97
00:07:58,810 --> 00:08:03,990
differentiable ูˆู…ุด ู‡ูŠูƒ ูƒู…ุงู† ูˆ F prime of U ุณุชุณุงูˆูŠ
98
00:08:03,990 --> 00:08:11,090
ู…ู†ุŸ ุงู„ุชูŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ F of U ุฅุฐุง ู…ู† ุงู„ู€ Fundamental
99
00:08:11,090 --> 00:08:15,350
theorem ุจู…ุง ุฃู† F is continuous ุฅุฐุง F prime of U
100
00:08:15,350 --> 00:08:20,210
ุจุชุณุงูˆูŠ F of U ุงู„ุชูŠ ู‡ูŠ by Fundamental theorem of
101
00:08:20,210 --> 00:08:23,370
calculus ุฅุฐุง by Fundamental theorem of calculus ู F
102
00:08:23,370 --> 00:08:27,710
of X .. F of U ุทุจุนู‹ุง ู‡ุฐู‡ ู†ู†ุทู‚ู‡ุง ุจุณูˆุก ุงู„ integration
103
00:08:27,710 --> 00:08:32,200
ู…ู† C .. C ุงู„ุฐูŠ ู‡ูˆ ู†ุญู† ู†ุณู…ูŠู‡ ู‡ู†ุง ู‡ูŠ ุงู„ุชูŠ ู‡ูŠ ฮฆ of
104
00:08:32,200 --> 00:08:35,820
Alpha ู…ุง ุฃุฑูŠุฏ ุฃู† ุฃุฎุจุฑูƒู… ููŠ ุงู„ุชุณู…ูŠุงุช ุนู„ู‰ ุทูˆู„ ู…ู† ฮฆ of
105
00:08:35,820 --> 00:08:40,140
Alpha ู„ุนู†ุฏ ู…ู† ู„ุนู†ุฏู‡ ุฅุฐุง ุงู„ุฐูŠ ูุนู„ุชู‡ ุฃู†ุง ุจุณ ู„ุญุชู‰
106
00:08:40,140 --> 00:08:46,340
ุงู„ุขู† ุฅู† ุนุฑูู†ุง ุฏุงู„ุฉ ุงู„ุชูŠ ู‡ูŠ ุงู„ func ุงู„ F Capital ู‡ุฐู‡
107
00:08:46,340 --> 00:08:53,760
ุงู„ F Capital ุนุฑูู†ุงู‡ุง ู…ู† I ู…ู† I ู„ุนู†ุฏ R by F of U
108
00:08:53,760 --> 00:08:58,060
ุจุณุค ุงู„ integration ู…ู† C ู„ U F of X DX for U
109
00:08:58,060 --> 00:09:03,310
element ู…ู† in ุงู„ interval I ุงู„ุขู† ู‚ุงุนุฏ ุฃุญุถุฑ ู„ู„ูŠ
110
00:09:03,310 --> 00:09:08,630
ุฃุฑูŠุฏู‡ุง and now consider the function H ู…ู† J ู„ุนู†ุฏ R
111
00:09:08,630 --> 00:09:12,690
ุจุนุฏ ู…ุง ุนุฑูู†ุง ุงู„ function F ู‡ุฐู‡ ุงู„ุชูŠ ุฃู…ุงู…ูŠ ุจุฏูŠ
112
00:09:12,690 --> 00:09:18,330
ุฃุนุฑู ู„ูƒู… ุฏุงู„ุฉ ุซุงู†ูŠุฉ ุงู„ุฏุงู„ุฉ ุงู„ุชูŠ ุฃุฑูŠุฏ ุฃู† ุฃุนุฑูู‡ุง ูŠุง ุฌู…ุงุนุฉ
113
00:09:18,330 --> 00:09:26,530
ู‡ูŠ ุนุจุงุฑุฉ ุนู† HH ู‡ุฐู‡ ุฃุฑูŠุฏ ุฃู† ุฃุนุฑูู‡ุง ู…ู† J ู„ุนู†ุฏ R ุดูˆู ูƒูŠู
114
00:09:26,530 --> 00:09:30,510
ุฃุฑูŠุฏ ุฃู† ุฃุนุฑูู‡ุง ุจุทุฑูŠู‚ุฉ ุงู„ุชูŠ ู‡ูŠ ุชุฎุฏู…ู†ูŠ ุจุนุฏ ุดูˆูŠุฉ ู„ู„ูˆุตูˆู„
115
00:09:30,510 --> 00:09:36,730
ู„ู„ู†ุชูŠุฌุฉ ุงู„ุชูŠ ุฃุฑูŠุฏู‡ุง ุงู„ุชูŠ ู‡ูŠ H of T ุฃุฑูŠุฏ ุฃู† ุฃุนุฑูู‡ุง H of
116
00:09:36,730 --> 00:09:46,170
T ุจุณุงูˆูŠ F Capital ู‡ุฐู‡ ุงู„ุชูŠ ุนุฑูู†ุงู‡ุง of ฮฆ of T ฮฆ
117
00:09:46,170 --> 00:09:52,220
of T ุงู„ุขู† ุฌู‡ุฉ ุฏูŠ ุงู„ูŠู…ูŠู† ู‡ูŠ ุงู„ูุชุฑุฉ Alpha ูˆ Beta ฮฆ
118
00:09:52,220 --> 00:09:57,740
of T ุงู„ุชูŠ ู‡ูŠ ุฅุฐุง T ู…ู† ููŠ J ฮฆ of T ู…ุนุฑู‘ูุฉ ุนู„ู‰ ุงู„ู€J
119
00:09:57,740 --> 00:10:03,440
ุงู„ู€J ฮฆ of T ู…ุดุชู‚ุชู‡ุง ู…ุนุฑู‘ูุฉ ุนู„ู‰ ุงู„ู€J ุงู„ู€F ู„ู‡ุง
120
00:10:03,440 --> 00:10:07,640
ู…ุนุฑู‘ูุฉ ู„ุฃู† ุงู„ู€F domainู‡ุง I ุงู„ุฐูŠ ู‡ูˆ ุงู„ุฐูŠ ูŠุญุชูˆูŠ ฮฆ
121
00:10:07,640 --> 00:10:11,360
of J ูŠุนู†ูŠ ูุนู„ู‹ุง ฮฆ of T ู…ูˆุฌูˆุฏุฉ ููŠ ฮฆ of J ุงู„ุชูŠ ู‡ูŠ
122
00:10:11,360 --> 00:10:14,600
ู…ูˆุฌูˆุฏุฉ ููŠ ู…ู† ููŠ I ุฅุฐุง ุงู„ู…ุนุฑูุฉ ุงู„ุชูŠ ุฏุงู„ู‡ุง H of T
123
00:10:14,600 --> 00:10:23,370
ุจูŠุณุงูˆูŠ ฮฆ of I of T ุทูŠุจ ุงู„ุขู† ุงู„ู€ F ุชูุงุฌุฃู†ุง ู„ู„ู€ F
124
00:10:23,370 --> 00:10:27,030
ู‡ุฐู‡ ุฅู†ู‡ุง differentiable ุงู„ู€ F ูƒุงุจูŠุชุงู„ ูˆุงู„ู€ ฮฆ
125
00:10:27,030 --> 00:10:29,470
differentiable ู„ู…ุงุฐุง differentiableุŸ ู„ุฃู† ฮฆ prime
126
00:10:29,470 --> 00:10:32,390
ู…ูˆุฌูˆุฏุฉ ูˆ continuous ุฅุฐุง ุฃู‚ุฏุฑ .. ู‡ูŠ ุฃูุงุถู„ ู‡ุฐู‡
127
00:10:32,390 --> 00:10:38,340
ุงู„ุฏุงู„ุฉ ุฅุฐุง ุฃู‚ุฏุฑ ุฃู† ุฃู‚ูˆู„ ุฅู†ู‡ ุนู†ุฏ ุงู„ู€ H prime of T
128
00:10:38,340 --> 00:10:44,340
ุจูŠุณุงูˆูŠ F' ฮฆ of T ุชุดูŠุฑู† ุฑูˆู„ ุทุจุนู‹ุง ูŠุง ุฌู…ุงุนุฉ ููŠ ฮฆ
129
00:10:44,340 --> 00:10:51,460
prime of T ูุฅุฐุง ุชูุงุถู„ ุงู„ H' ู‡ูˆ F' ููŠ ฮฆ prime of
130
00:10:51,460 --> 00:10:59,000
T ูƒู…ุง ู†ุญู† ุฐูƒุฑู†ุง ููŠ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ ู‡ู†ุง ุงู„ุขู† ุนู†ุฏูŠ
131
00:10:59,000 --> 00:11:03,540
ุฃูŠุถู‹ุง ู†ุญู† ู‚ู„ู†ุง ุงู„ F prime of U ู…ุงุฐุง ุชุณุงูˆูŠ F of U
132
00:11:03,540 --> 00:11:08,920
ูˆู‚ู„ู†ุง ู„ู…ุงุฐุง ุงู„ุณุจุจ ุงู„ุขู† ู„ูˆ ุฃุชูŠู†ุง ูƒู„ ู‡ุฐุง ุชุญุถูŠุฑ ู„ู„ูŠ
133
00:11:08,920 --> 00:11:13,980
ุฃุฑูŠุฏู‡ุง ุจุนุฏ ุดูˆูŠุฉ ุงู„ู…ุนู„ูˆู…ุงุช ู‡ุฐู‡ ุงู„ุขู† ุนู†ุฏูŠ ุงุญุณุจ ู„ูŠ H of
134
00:11:13,980 --> 00:11:22,380
Alpha H of Alpha ู…ู† ู‡ุฐู‡ H of Alpha ุฃูƒูŠุฏ ูƒู„ูƒู… ุดุงู‡ุฏ
135
00:11:22,380 --> 00:11:29,960
ุฃู† H of Alpha ุจุชุณุงูˆูŠ ุนูˆุถ ุจุชุณุงูˆูŠ F of ฮฆ of Alpha
136
00:11:29,960 --> 00:11:33,560
ุตุญูŠุญุฉ ูŠุง ุฌู…ุงุนุฉ ูˆูŠุณุงูˆูŠ F of ฮฆ of Alpha ุทุจ ู…ุงุฐุง
137
00:11:33,560 --> 00:11:37,980
ุชุนุฑูŠู F of UุŸ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ integration ู…ู† ฮฆ of
138
00:11:37,980 --> 00:11:43,520
Alpha ู„ุนู†ุฏ U U ุฃู†ุง ุงู„ุขู† ู…ุงุฐุง ู‡ูŠุŸ ุงุณู…ู‡ุง U ุงู„ุชูŠ ู‡ูŠ 5
139
00:11:43,520 --> 00:11:46,420
Alpha ุฅุฐุง ู…ู† 5 Alpha ู„ 5 Alpha ูŠุนู†ูŠ ุงู„ integration
140
00:11:46,420 --> 00:11:51,100
ู…ุงุฐุง ุณูŠูุณุงูˆูŠ ู‡ุฐุงุŸ ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ู†ุฑู‰ Alpha ูุนู„ุงู‹ ู…ุงุฐุง
141
00:11:51,100 --> 00:11:55,200
ุจุชุณุงูˆูŠ .. ุจุชุณุงูˆูŠ ุฅูŠุด .. ุจุชุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุชู„ุช ุญุงุฌุงุช
142
00:11:55,200 --> 00:11:59,860
ุงู„ุขู† ุนุฑูุช ุงู„ู€ F ู…ู† I ู„ู€ ุนู†ุฏ R ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ
143
00:12:00,190 --> 00:12:05,030
ูˆุฌุฏุช ุฃู† F' ุจูŠุณุงูˆูŠ F of U ุงู„ุดุบู„ ุงู„ุซุงู†ูŠ ุนุฑูุช H of T
144
00:12:05,030 --> 00:12:08,530
ุจูŠุณุงูˆูŠ F of Phi of T ุงู„ู„ูŠ ู‡ูˆ F is differentiable,
145
00:12:08,590 --> 00:12:11,950
Phi is differentiable ุฅุฐุงู‹ ู†ูุณูŠ H is differentiable
146
00:12:11,950 --> 00:12:14,850
ูˆ ุงู„ู€ derivative ุฅู„ูŠู‡ุง ุฅูŠู‡ุŸ ุงู„ุดู…ุงู„ ู‡ุฐู‡ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ
147
00:12:14,850 --> 00:12:19,670
ุฃู…ุงู…ูŠ ูˆ ุงู„ุดุบู„ ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ ุฃู† H of
148
00:12:19,670 --> 00:12:25,010
Alpha ุฅูŠุด ู‡ูŠุณุงูˆูŠ ูŠุง ุดุจุงุจุŸ ู‡ูˆ ูŠุณุงูˆูŠ 0 ู†ูŠุฌูŠ ุงู„ุขู†
149
00:12:25,010 --> 00:12:31,250
ุจุฏู†ุง ู†ูˆุตู„ ู„ู…ูŠู† ุฅุญู†ุงุŸ ุฅุญู†ุง ู‡ุฏูู†ุง ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูˆ
150
00:12:31,250 --> 00:12:38,310
ู‡ุฏูู†ุง ุณุงู…ุญูˆู†ุง ุนู„ู‰ ุงู„ู„ูˆุญ ุงู„ุตุบูŠุฑ ุงู„ู„ูˆุญ ู‡ุฏูู†ุง ู‡ูˆ ุงู„ู€
151
00:12:38,310 --> 00:12:47,210
integration ู…ู† Alpha ู„ุนู†ุฏ Beta F of Phi of T Phi
152
00:12:47,210 --> 00:12:54,670
prime of T dt ุจุณุงูˆูŠ ุงู„ู€ integration ู„ู„ู€ F of X DX ู…ู†
153
00:12:54,670 --> 00:12:59,290
Phi of Alpha ู„ุนู†ุฏ Phi of Beta ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ุซุจุชู‡
154
00:12:59,290 --> 00:13:09,190
ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุตู„ ู„ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู†ูŠุฌูŠ
155
00:13:09,190 --> 00:13:16,090
ู„ู‡ุฐุง ุงู„ู€ integration ุงู„ู„ูŠ ู‚ุจู„ู†ุง ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุทุฑู
156
00:13:16,090 --> 00:13:20,580
ุงู„ู„ูŠ ุฅุญู†ุง ุจุฏู†ุง ู†ุซุจุชู‡ ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ุทุฑู ู‡ุฐุง ุงู„ุทุฑู ุงู„ู„ูŠ
157
00:13:20,580 --> 00:13:23,340
ุฃู†ุง ุณุงูˆูŠู‡ ู‡ุฐุงุŒ ู†ุจุฏุฃ ุจู‡ุฐุง ุงู„ุทุฑู ุงู„ู„ูŠ ู‡ู†ุง ูˆู†ุจู†ูŠ
158
00:13:23,340 --> 00:13:26,920
ุงู„ู…ุนู„ูˆู…ุงุช ูˆู†ุญุตู„ ุนู„ู‰ ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ุจูƒู„ ุณู‡ูˆู„ุฉ ุงู„ุขู† ุงู„ู€
159
00:13:26,920 --> 00:13:29,920
integration ู…ู† Alpha ู„ุนู†ุฏ ุงู„ู€ Beta F of five T five
160
00:13:29,920 --> 00:13:35,620
prime of T DT ุจุชุณุงูˆูŠ ุงู„ุขู† ุงู„ู€ F ู‡ุฐู‡ ููŠ ุงู„ูˆุงู‚ุน ู…ูŠู†
161
00:13:35,620 --> 00:13:41,850
ู‡ูŠุŸ ู‡ุฐู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู† F prime ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู‡ุฐุง
162
00:13:41,850 --> 00:13:45,790
ุงู„ู…ู‚ุฏุงุฑ ู‡ูˆ ุนุจุงุฑุฉ ุนู† f prime of five a t five prime
163
00:13:45,790 --> 00:13:51,350
a ุดู…ุงู„ู‡ of t ูŠุนู†ูŠ ูˆูƒุฃู†ู†ูŠ ู…ูŠู† ุจูุงุถู„ุŸ ุฃู†ุง ุจูุงุถู„ ูƒู„
164
00:13:51,350 --> 00:13:58,890
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุทู„ุน ู…ูŠู† ู‡ูˆุŸ h prime of t ูˆูƒู„ ุฃู…ูˆุฑู‡ ุญู„ูˆุฉ
165
00:13:58,890 --> 00:14:05,170
ูˆู…ุญุชุฑู…ุฉ ุงู„ู€ f ุงู„ู„ูŠ ู‡ูŠ continuous ูˆุงู„ู€ Phi prime
166
00:14:05,170 --> 00:14:09,090
continuous ู…ุนุทูŠู†ูŠ ุฅูŠุงู‡ุง ุฅุฐุงู‹ ู‡ุฐู‡ ุตุงุฑุช ุงู„ู€ H' ูƒู„ู‡ุง ู…ุงู„ู‡ุง
167
00:14:09,090 --> 00:14:11,970
continuous ุฅุฐุง ุงู„ู€ integration ู…ู† Alpha ู„ู€ Beta
168
00:14:11,970 --> 00:14:17,390
ู„ู€ H' of T ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ integration ุจู€ cancel ุงู„ู€
169
00:14:17,390 --> 00:14:19,990
differentiation ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู€
170
00:14:19,990 --> 00:14:22,790
fundamental theorem of calculus ูŠุง ุฌู…ุงุนุฉ ูุจูŠุตูŠุฑ
171
00:14:22,790 --> 00:14:29,910
ุฅูŠุด ุจูŠุณุงูˆูŠ ุงู„ุฌูˆุงุจุŸ H of Beta ู†ุงู‚ุต H of mean of
172
00:14:29,910 --> 00:14:33,960
Alpha ุฅุฐู† ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† h of alpha ู‚ุจู„ ุดูˆูŠุฉ ุดู‡ูŠุฉ
173
00:14:33,960 --> 00:14:36,720
ู†ุฐูƒู‘ุฑ ูˆ ูƒุฏู‡ ู„ุณู‡ ูƒุงุชุจ ุฅู†ู‡ุง ุฅูŠุด ุจุชุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุตุงุฑ
174
00:14:36,720 --> 00:14:41,860
ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠ ุฅูŠุงู‡ ุฅูŠุด ุตุงุฑ ุจูŠุณุงูˆูŠุŸ h of
175
00:14:41,860 --> 00:14:47,720
Beta ุฅุฐุง ุงู„ู„ูŠ ุฃุซุจุชุชู‡ ุชู‚ุฑูŠุจุงู‹ ุนู†ุฏูŠ ุฎู„ุตุช ุฃุซุจุชุช ุฅู† ุงู„ู€
176
00:14:47,720 --> 00:14:54,080
integration ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ู‡ุฐุง ูƒู„ู‡ ุจูŠุณุงูˆูŠ ู…ูŠู†ุŸ H of Beta
177
00:14:54,080 --> 00:15:01,480
ุฎู„ู‘ูŠู†ุง ู†ุญุณุจ H of Beta H of T ุฅุญู†ุง F of Phi of T ุฅุฐุง H
178
00:15:01,480 --> 00:15:08,220
of Beta ุจูŠุณุงูˆูŠ F of Phi of Beta H of Beta ุจูŠุณุงูˆูŠ F of
179
00:15:08,220 --> 00:15:14,040
Phi of Beta ุงู„ุขู† ู…ุง ูŠุณุงูˆูŠุŸ ุงู„ู€ integration .. ุงู„ู€
180
00:15:14,040 --> 00:15:17,260
integration ุณุจูˆูƒูˆุง ู…ู† ุงู„ู€ D ู„ุฃู† ุฃู†ุง ู…ุง ุฃุณุชุฎุฏู…ุด ุงู„ุฑู…ูˆุฒ
181
00:15:17,260 --> 00:15:23,040
ู‡ุฐู‡ ุฅูŠุด ู‡ุฐุง ุจูŠุณุงูˆูŠุŸ ุจูŠุตูŠุฑ ุนู†ุฏูŠ F .. F ุงู„ู„ูŠ ู‡ูˆ of
182
00:15:23,040 --> 00:15:28,260
Phi of Beta ุญุณุจ ุงู„ุชุนุฑูŠู F of U ู‡ุงูŠ ูˆ ุฃู…ุงู†ูŠ ุจูŠุณุงูˆูŠ ุงู„ู€
183
00:15:28,260 --> 00:15:37,600
integration ู…ู† Phi of Alpha ู„ุนู†ุฏ Phi of Beta F of X
184
00:15:37,600 --> 00:15:45,960
DX ูˆู‡ูˆ ู‡ุฐุง ุงู„ู…ุทู„ูˆุจ ุตุงุฑ ุนู†ุฏูŠ ุงู„ู€ integration ู„ู€ .. ุงู„ู„ูŠ
185
00:15:45,960 --> 00:15:49,600
ู‡ูŠ F of X DX ู…ู† five of alpha ู„ุนู†ุฏ five of beta
186
00:15:49,600 --> 00:15:54,460
ุงู„ู„ูŠ ู‡ูˆ H of Beta ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ integration ุงู„ู„ูŠ
187
00:15:54,460 --> 00:16:02,040
ุฃู…ุงู…ูŠ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† ู„ู„ู†ุธุฑูŠุฉ ุงู„ุซุงู†ูŠุฉ
188
00:16:02,040 --> 00:16:08,740
ุงู„ู†ุธุฑูŠุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ second substitution
189
00:16:08,740 --> 00:16:20,020
theorem ุงู„ู„ูŠ ู‡ูŠ .. ุฃูŠุถู‹ุง ุจู†ุณุชุฎุฏู…ู‡ุง ูˆุญู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ
190
00:16:20,020 --> 00:16:26,260
ู‡ูŠ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ูˆูƒูŠู ู†ุจุฑู‡ู† ุงู„ู†ุธุฑูŠุฉ ูˆุงู„ุจุฑู‡ุงู† ุจุฑุถู‡
191
00:16:26,260 --> 00:16:33,080
ู…ุด ุตุนุจ ุฃูˆ ุงู„ุจุฑู‡ุงู† ุงู„ู„ูŠ ู‡ูˆ ุณู‡ู„ ู‡ู†ุดูˆู ุงู„ู€ second
192
00:16:33,080 --> 00:16:36,960
substitution theorem ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠ ุนู†ุฏ ููŠ function
193
00:16:38,340 --> 00:16:42,180
ูุงูŠ ู…ู† J ู„ุนู†ุฏ ุจุงุฑ J ู‡ูŠ ู†ูุณ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ .. ุงู„ูุชุฑุฉ
194
00:16:42,180 --> 00:16:45,700
ุงู„ู„ูŠ ุฅุญู†ุง ุญูƒูŠู†ุง ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† Alpha ูˆ Beta
195
00:16:45,700 --> 00:16:49,980
ุจุฏู†ุง ู†ูุชุฑุถ ุฃู† ุงู„ู€ ูุงูŠ ู‡ุฐู‡ have a continuous
196
00:16:49,980 --> 00:16:57,700
derivative ุจุฑุถู‡ ู†ูุณ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุชุงุฏ ุฃูˆู„ุงู†ูŠ ูˆู†ูุชุฑุถ I
197
00:16:57,700 --> 00:17:02,700
ุนุจุงุฑุฉ ุนู† interval ุจุชุญุชูˆูŠ Phi of J ู†ูุณ ุงู„ู…ุนุชุงุฏ ููŠ
198
00:17:02,700 --> 00:17:07,220
ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุงู„ุขู† ุงู„ู…ุนุชุงุฏ ุฌุฏูŠุฏ ุจุฏู†ุง ู†ูุชุฑุถ ุฃู†ู‡
199
00:17:07,220 --> 00:17:12,160
ููŠู‡ function ฯˆ ู…ู† I ู„ุนู†ุฏ R ุจู€ a function ุงู„ู„ูŠ ู‡ูˆ
200
00:17:12,160 --> 00:17:16,740
inverse ู„ู€ ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Phi ูŠุนู†ูŠ ุนู†ุฏูŠ Phi
201
00:17:16,740 --> 00:17:24,140
ุจุดุฑูˆุท ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ูุงุชุช ู…ู† J ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ R ูˆุนู†ุฏูŠ
202
00:17:24,140 --> 00:17:29,800
ุจู€ Psi ู…ู† ุนู†ุฏ I ู„ุนู†ุฏ R ูˆู…ูุชุฑุถูŠู† ุฃู†ู‡ ุจู€ Psi ู‡ูŠ ุงู„ู€
203
00:17:29,800 --> 00:17:33,940
inverse ู„ู€ ู…ูŠู† ู„ู„ู€ Phi ูŠุนู†ูŠ Phi composite ุจู€ Psi
204
00:17:35,340 --> 00:17:39,940
ุจุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ู€ identity function ุฃูˆ Psi composite ุงู„ู€
205
00:17:39,940 --> 00:17:45,960
Phi ุนุจุงุฑุฉ ุนู† ุงู„ู€ identity function ูˆูƒู„ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ
206
00:17:45,960 --> 00:17:53,460
ู…ูุชุฑุถูŠู† ุฃู† Phi of J subset ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ I ุนุดุงู†
207
00:17:53,460 --> 00:18:00,680
ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ composition ู…ุนุฑู ุฅุญู†ุง
208
00:18:08,270 --> 00:18:15,850
ุตุงุฑุช ุจู€ Psi ู‡ูŠ ุงู„ู€ inverse ู„ู€ Phi ูˆ F ุจุฑุถู‡ ู†ูุณ
209
00:18:15,850 --> 00:18:20,230
ุงู„ู…ุนุทูŠุงุช ุงู„ูุงุชุฑุฉ continuous on I ุฅุฐุง ู…ุง ูŠุนู†ูŠุŒ ุฅุฐุง
210
00:18:20,230 --> 00:18:25,190
ูŠุนู†ูŠ ุงู„ู„ูŠ ุจุญูƒูŠู‡ ูˆูƒุฃู†ู‡ ู†ูุณ ุดุฑูˆุท ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุจุณ
211
00:18:25,190 --> 00:18:30,190
ุงู„ู„ูŠ ุฃุถูู†ุง ุฅู† ุงู„ู€ Phi ุงู„ู„ูŠ ุนู†ุฏู†ุง ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
212
00:18:30,190 --> 00:18:35,220
ููŠู‡ ุฅู„ู‡ุง inverse ููŠู‡ ู„ู‡ุง inverse ูุจุชุนุทูŠู†ูŠ ู…ุฌุงู„
213
00:18:35,220 --> 00:18:39,900
ู„ู„ุชุญุฑูƒ ุฃูƒุซุฑ ู…ู† ุงู„ุฃูˆู„ู‰ ุฅู„ู‡ุง ุฏูŠ ุจุชูุชุฑุถุด ุฃู†ู‡ ููŠ
214
00:18:39,900 --> 00:18:42,900
ู„ู‡ุง inverse ูˆุจู†ุจุฏุฃ ุจู†ุนูˆู‘ุถ ุฒูŠ ู…ุง ุนูˆุถู†ุง ู‚ุจู„ ุฅูŠุด
215
00:18:42,900 --> 00:18:48,580
ุงู„ู†ุชูŠุฌุฉ ุทูŠุจ ุงู„ู†ุชูŠุฌุฉ ู‡ูŠ ู…ุง ูŠู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุฅุฐุง ุงู„ู€
216
00:18:48,580 --> 00:18:56,560
integration ุฃุจูˆ ุญุณูŠู† ุงุฒูŠุญู‡ ุจุณ ู†ุฌุงุนูŠ ุดูˆูŠุฉ
217
00:19:03,530 --> 00:19:21,050
ุงู„ู†ุต ุงู„ู„ูŠ ู„ุฏูƒ ุนู„ู‰ ุงู„ุญูŠุท ุฃุตู„ุง ุงู„ุณู„ุงู…
218
00:19:21,050 --> 00:19:22,150
ุนู„ูŠูƒู… ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
219
00:19:41,080 --> 00:19:43,960
ุฎู„ุงุต ุณุงุนุฉ ุณุจุนุฉ ูŠุง ุนุฒูŠุฒูŠ ุฎู„ุงุต ุฎู„ุงุต
220
00:19:46,210 --> 00:19:50,670
ุฅุฐุง ุงู„ุขู† ุงู„ู€ .. ุงู„ู€ .. ุงู„ู€ .. ุงู„ู€ .. second
221
00:19:50,670 --> 00:19:54,290
substitution theorem ู†ูุณ ุดุฑูˆุท ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ fair
222
00:19:54,290 --> 00:19:58,590
substitution theorem ุจุณ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠุถูŠูู†ุง ุนู„ูŠู‡ุง ุฃู†ู‡
223
00:19:58,590 --> 00:20:02,150
ุจู€ Psi ุนู†ุฏูŠ ูุฑุถู†ุง ุฃู†ู‡ ููŠ ุนู†ุฏูŠ Psi function ู…ู† I
224
00:20:02,150 --> 00:20:07,270
ู„ุนู†ุฏ R ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ inverse ู„ู…ูŠู†ุŸ ู„ูุงูŠ ุจู†ุงุก ..
225
00:20:07,270 --> 00:20:12,990
ุจู†ุงุก ุนู„ูŠู‡ ู‡ูŠุตูŠุฑ ุงู„ู€ integration ู…ู† Alpha ู„ุนู†ุฏ Beta F
226
00:20:12,990 --> 00:20:19,230
of Phi of T DT ู„ุฃู† ู…ุด ุธุงู‡ุฑุฉ ุนู†ุฏู†ุง ู‡ู†ุง ู…ูŠู† ุงู„ู€
227
00:20:19,230 --> 00:20:23,650
derivative ู„ู…ูŠู†ุŸ ู„ุฅูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Phi ุจุงู„ุฑุบู… ู…ู† ู‡ูŠูƒ
228
00:20:23,650 --> 00:20:27,470
ู‡ูŠุทู„ุน ุนู†ุฏูŠ ุจุณุงูˆูŠ ุงู„ู€ integration F of X ุจู€ Phi prime
229
00:20:27,470 --> 00:20:31,810
of X DX ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ู…ู† Phi of Alpha ู„ุนู†ุฏ ู…ูŠู†ุŸ
230
00:20:31,810 --> 00:20:33,770
ู„ุนู†ุฏ Phi of Beta
231
00:20:36,860 --> 00:20:42,520
ุงู„ุขู† ู†ุดูˆู ุงู„ู„ูŠ ู‡ูˆ ูƒูŠู ู†ุจุฑู‡ู† ู†ุธุฑูŠุชู†ุง ุฎู„ูŠู†ุง ู†ูƒุชุจ
232
00:20:42,520 --> 00:20:46,800
ู‡ุฐู‡ ุนู„ู‰ ุฌู‡ุฉ ุนุดุงู† ู†ุนุฑู ุฅุญู†ุง ู„ูˆูŠู† ุฑุงูŠุญูŠู† ุงู„ู€
233
00:20:46,800 --> 00:20:55,880
integration ู…ู† Alpha ู„ุนู†ุฏ Beta F of Phi of T dt
234
00:20:55,880 --> 00:21:08,520
ุจุณุงูˆูŠ ุงู„ู€ integration ู„ู€ Psi of Alpha F of ุฃูˆ F of X
235
00:21:08,520 --> 00:21:21,440
Phi prime of .. Psi prime of X DX Phi prime of X
236
00:21:21,440 --> 00:21:27,600
DX ู…ู† Phi of Alpha ู„ุนู†ุฏ
237
00:21:27,600 --> 00:21:36,060
Phi of Beta ุฏุนูˆู†ุง ู†ุดูˆู ูƒูŠู .. ู†ูŠุฌูŠ ู†ุดูˆู ุงู„ุจุฑู‡ุงู† ุฌุฑุจ
238
00:21:36,060 --> 00:21:42,560
ุงู†ุช ู„ุญุงู„ูƒ ุนูˆุถ ุงู„ู„ูŠ ู‡ูˆ ุนุดุงู† ุชุดูˆู ู…ู†ุทู‚ูŠุฉ ุงู„ู†ุธุฑูŠุฉ ุฒูŠ
239
00:21:42,560 --> 00:21:49,880
ู…ุง ูƒู†ุง ู†ุนูˆุถ ููŠ ุงู„ู€ calculus ุนูˆุถ ุนู† X ุจู€ Phi of T ู‡ุง
240
00:21:49,880 --> 00:21:55,540
ู‡ูŠุทู„ุน ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ู†ู‡ุงูŠุฉ DT ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูƒู„
241
00:21:55,540 --> 00:21:59,890
ู‡ุฐู‡ ู„ูˆ ุนูˆุถุช ุทุจุนุงู‹ ุจุงุณุชุฎุฏุงู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ู€
242
00:21:59,890 --> 00:22:03,170
.. ุงู„ .. ุงู„ู€ inverse ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Psi ุฅู†ู‡ุง inverse
243
00:22:03,170 --> 00:22:07,210
ุนู„ู‰ Phi ู‡ุชุญุตู„ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ู‡ูˆ ูƒู„ ู‡ุฐุง
244
00:22:07,210 --> 00:22:12,750
ุงู„ู…ู‚ุฏุงุฑ ู‡ูˆ ู‡ูŠุทู„ุน ู…ูŠู† ู‡ูˆุŸ ุฏูŠ T ูˆ ู‡ุชุตูŠุฑ ุจุฏู„ Alpha Phi
245
00:22:12,750 --> 00:22:15,550
of Alpha ูˆ Beta Phi of Beta ุฒูŠ ู…ุง ุฃู†ุชู… ุนุงุฑููŠู†
246
00:22:15,550 --> 00:22:19,490
ู„ุฃู†ู‡ ู„ู…ุง ูƒุงู†ุช T ุจุชุณุงูˆูŠ Alpha ุทู„ุนุช ุงู„ู„ูŠ ู‡ูŠ Phi of
247
00:22:19,490 --> 00:22:21,970
T ู„ุนูˆุถุฉ ู…ูƒุงู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ Phi of Alpha ูˆ ุงู„ุซุงู†ูŠุฉ
248
00:22:21,970 --> 00:22:29,420
ู‡ุชุทู„ุน Phi of Beta ุทุจ ู†ูŠุฌูŠ ุงู„ุขู† ู„ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ ุงู„ุขู†
249
00:22:29,420 --> 00:22:34,860
ุนู†ุฏูŠ ุฃูˆู„ ุญุงุฌุฉ five prime of T ุจุนุทูŠู†ุง ุฅูŠุงู‡ุง ุดู…ุงู„ู‡
250
00:22:34,860 --> 00:22:39,660
ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุทุจุนุงู‹ ู‡ุฐุง ู„ุฒูˆู… ู„ุฒูˆู… ุฃู† ุชูƒูˆู† ุงู„ู€ inverse
251
00:22:39,660 --> 00:22:44,900
ู…ูˆุฌูˆุฏุฉ five prime of T ู„ุง ุชุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุงู„ุขู† five
252
00:22:44,900 --> 00:22:49,180
prime of T ูŠุง ุฃูƒุจุฑ ู…ู† ุตูุฑ ูŠุง ุฃุตุบุฑ ู…ู† ุตูุฑ ุนู†ุฏูŠ
253
00:22:49,180 --> 00:22:52,680
ุงู„ู…ู†ุทู‚ ุงู„ู„ูŠ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ strictly increasing
254
00:22:52,680 --> 00:22:55,860
ุฃูˆ strictly decreasing ุนู„ู‰ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ู‡ูŠ ููŠู‡ุง
255
00:22:55,860 --> 00:23:00,060
ุฅุฐุง ููŠ ุนู†ุฏูŠ ุจู…ุนู†ู‰ ุขุฎุฑ strictly monotone ู…ุฏุงู…
256
00:23:00,060 --> 00:23:04,940
strictly monotone ุฅุฐุง ุงู„ู€ inverse ุฅู„ู‡ุง ู…ูˆุฌูˆุฏ ูˆ ููŠ
257
00:23:04,940 --> 00:23:08,900
ุจุชุณุงูˆูŠ ุงู„ู€ inverse ุฒูŠ ู…ุง ู‡ูˆ ู…ุนุทูŠู†ุง ุฅูŠุงู‡ุง ุทุจุนุงู‹ ุฅุญู†ุง
258
00:23:08,900 --> 00:23:14,410
ู…ุนุทูŠู†ุง ุงู„ู€ ููŠุงู„ู€ Phi ู…ุด differentiable ุจุณ Phi ู…ุด
259
00:23:14,410 --> 00:23:17,990
differentiable ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ derivative ู…ูˆุฌูˆุฏุฉ ูˆ
260
00:23:17,990 --> 00:23:22,310
ุดู…ุงู„ู‡ continuous ุทูŠุจ ู„ุฃู† ุจู…ุง ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูŠ Phi
261
00:23:22,310 --> 00:23:27,850
prime exist ุฅุฐุง ุจู†ุธุฑูŠุฉ ุฃุฎุฐู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ 6 1 9 ู‡ุชูƒูˆู†
262
00:23:27,850 --> 00:23:32,170
ุงู„ู€ Phi prime exist ูˆุจุชุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ููŠ ุจุฑุงูŠู… ููŠ
263
00:23:32,170 --> 00:23:36,350
ู…ูŠู†ุŸ ููŠ ุจุณุงูŠ ูƒู…ุงู† ู…ุฑุฉ ูŠุง ุฌู…ุงุนุฉ ุฃุฐูƒุฑูƒู… ููŠ ุงู„ู†ุธุฑูŠุฉ
264
00:23:36,350 --> 00:23:41,410
ุงู„ุขู† ุนู†ุฏูŠ ู…ุฏุงู…ุฉ ุจุณุงูŠ ุจุณุงูˆูŠ ููŠ ุงู†ูุฑุณ ูˆุงู„ููŠ ู†ูุณู‡ุง
265
00:23:41,410 --> 00:23:45,450
ุนุจุงุฑุฉ ุนู† differentiable ู‡ุชูƒูˆู† ุงู„ู€ inverse ุงู„ู„ูŠ ู‡ูŠ
266
00:23:45,450 --> 00:23:48,910
ุจุณุงูŠ is differentiable ูˆุงู„ู€ derivative ุงู„ู„ูŠ ู‡ูŠ ุจุณุงูŠ
267
00:23:48,910 --> 00:23:53,490
ุจุฑุงูŠู… ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ ููŠ ุจุฑุงูŠู… ู…ุงู„ู‡ุŸ composite
268
00:23:53,490 --> 00:23:58,400
ุจุณุงูŠ ุงู„ู„ูŠ ู‡ูŠ .. ุฃูˆ ู…ุด ู‡ูŠูƒ ู‡ุชุทู„ุน .. ู‡ุชุทู„ุน continuous
269
00:23:58,400 --> 00:24:01,500
ู„ูŠุด continuousุŸ ู„ุฃู†ู‡ ุฃุตู„ุงู‹ ู…ุง ููŠุด ุฃุณูุงุฑ ููŠ ุงู„ู…ู‚ุงู…
270
00:24:01,500 --> 00:24:05,100
ุฃูƒูŠุฏ ูˆุนู†ุฏ Phi prime ู†ูุณู‡ุง Phi prime ู†ูุณู‡ุง
271
00:24:05,100 --> 00:24:08,520
continuous ู…ุนุทูŠู†ูŠ ุฅูŠุงู‡ุง ูˆ ุจู€ Psi is continuous ู„ุฃู†ู‡ุง
272
00:24:08,520 --> 00:24:11,800
ุฃุตู„ู‹ุง differentiable ูู‡ุชุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุจู€ Psi prime
273
00:24:11,800 --> 00:24:17,180
ุจุฑุถู‡ ู…ุงู„ู‡ุงุŸ is continuous ุฅุฐู† ุงู„ู„ูŠ ุงุณุชู†ุชุฌู†ุงู‡ ุงู„ุขู†
274
00:24:17,180 --> 00:24:22,590
ุฃู† ุงู„ู€ inverse function is continuous ูˆู‚ูŠู…ุชู‡ุง ุงู„ู€
275
00:24:22,590 --> 00:24:26,310
Derivative ุฅู„ูŠู‡ุง ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ Psi Prime ููŠ
276
00:24:26,310 --> 00:24:31,890
Phi Prime ููŠ ู…ูŠู†ุŸ ููŠ Psi ู†ุดูˆู ุงู„ุขู† ุจุฏู†ุง ู†ุนุฑู ุงู„ู„ูŠ
277
00:24:31,890 --> 00:24:36,850
ู‡ูˆ ุจุฃุณู„ูˆุจ ู…ุดุงุจู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ุฃู†ู‡ ู†ุนุฑู ุฏูˆุงู„ ุจุญูŠุซ ุฃู†ู‡
278
00:24:36,850 --> 00:24:41,810
ู„ู…ุง ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุงุฎุฏู‡ ุชุจู‚ู‰ derivative ู„ุดูŠุก ุณู‡ู„
279
00:24:41,810 --> 00:24:45,210
ุฅูŠุฌุงุฏู‡ ูˆู„ู…ุง ู†ุงุฎุฏู‡ ู„ู‡ ุงู„ู€ integration ูŠุทู„ุน ุงู„ู„ูŠ ู‡ูˆ
280
00:24:45,210 --> 00:24:48,350
ู†ูุณ ุงู„ุฏุงู„ุฉ ุนู†ุฏ ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ
281
00:24:48,350 --> 00:24:50,950
ุงู„ู„ูŠ ู‡ูˆ ุจุงุณุชุนู…ุงู„ู‡ ููŠ ุฃู†ุธู…ุฉ ุงู„ุชู„ููŠุฑู…ูˆููƒุงู„ูƒู„ุงุณ ุฃูŠุด
282
00:24:50,950 --> 00:24:55,480
ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ุŸ ุฎู„ู‘ูŠู†ูŠ ู†ุดูˆูู‡ ุงู„ู„ูŠ ู‡ู†ุนุฑู‘ู ู„ูŠู‡ุง ุฌู…ุนุฉ ุฌูŠ
283
00:24:55,480 --> 00:24:59,360
ู…ู† ุฌูŠ ู„ุนู†ุฏ R ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู ู„ูŠู‡ุง ุฃู†ู‡ุง ุชูƒูˆู†
284
00:24:59,360 --> 00:25:02,960
ุฅูŠู‡ ุดู…ุงู„ู‡ุง Anti-derivative ู„ู„ู€ continuous function
285
00:25:02,960 --> 00:25:06,500
of composite phiF composite Phi continuousุŸ ุฃู‡
286
00:25:06,500 --> 00:25:09,440
continuous ู„ุฃู† ุงู„ู€ Phi is continuous ู‚ู„ู†ุง ุงู„
287
00:25:09,440 --> 00:25:12,160
derivative ุฅู„ูŠู‡ุง continuous ูƒู…ุงู† ู…ุด ูƒุงูŠูƒูˆุง ุจุณ ูˆ ุงู„
288
00:25:12,160 --> 00:25:16,340
F ู…ุนุทูŠู†ุง ุฅูŠุงู‡ุง continuous ูู„ู…ู‘ุง ุฃู‚ูˆู„ ุฅู† ุนุฑู G
289
00:25:16,340 --> 00:25:19,180
ู‡ุชูƒูˆู† antiderivative ู„ู…ูŠู† ู‡ุฐู‡ุŸ ุทุจ ู‡ุฏูŠ ุฅูŠุงู‡ุง
290
00:25:19,180 --> 00:25:21,320
antiderivativeุŸ ุฃู‡ ู…ุฏุงู… continuous ูˆ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ
291
00:25:21,320 --> 00:25:23,260
ูุงุชุช ู‚ูˆู„ู†ุง ุฏู‡ ูƒุงู†ุช ุงู„ุฏุงู„ุฉ continuous ุนู„ู‰ ุทูˆู„ ููŠู‡
292
00:25:23,260 --> 00:25:26,640
ุฅู„ูŠู‡ุง antiderivative ุฅูŠุด ูŠุนู†ูŠุŸ ูŠุนู†ูŠ ุงู„ู€ G prime
293
00:25:26,640 --> 00:25:33,270
ู‡ุชูƒูˆู† ู…ูŠู†ุŸ ุงู„ู€ F composite Phi ุทูŠุจ ุงู„ุขู† ุฏูŠ ุฅุฐุง ู…ุฏุงู…
294
00:25:33,270 --> 00:25:37,130
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ G Antiderivative ู„ู„ู€ F Composite Phi
295
00:25:37,130 --> 00:25:40,530
ุฅุฐุง ุงู„ู€ G' Exists ุฅุฐุง ุงู„ู€ G Differentiable ูˆ ู„ูˆ
296
00:25:40,530 --> 00:25:42,690
ุจุตูŠ Differentiable ุฅุฐุง ุงู„ู€ Composition ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด
297
00:25:42,690 --> 00:25:47,870
ุจุฑุถู‡ ู‡ูŠุทู„ุน Differentiable ุฅูŠุด ูŠุนู†ูŠุŸ ุทูŠุจ .. ุทุจ ูˆุฅูŠุด
298
00:25:47,870 --> 00:25:50,950
ูŠุนู†ูŠ ุงู„ู€ differentiableุŸ ู‡ุง .. ู‡ุงู„ู€ gate ู‡ูŠูˆุตู‘ู„ู†ูŠ
299
00:25:50,950 --> 00:25:54,290
ู„ุฅู† Decomposite Phi Prime of X ุฏู‡ ูˆุฌูˆุฏ ุงู„ู€
300
00:25:54,290 --> 00:25:56,970
derivative ุจู†ุนุฑู ุฃู†ู‡ ูˆุฌูˆุฏ ุงู„ู€ derivative ู‡ูŠ ุนุจุงุฑุฉ
301
00:25:56,970 --> 00:26:01,610
ุนู† D Prime of Psi of X Psi Prime of X ุงู„ู„ูŠ ู‡ูŠ
302
00:26:01,610 --> 00:26:07,600
Chain Rule ุงุณุชุฎุฏุงู… ุงู„ู€ Chain Rule ูˆูŠุณุงูˆูŠ ู„ุฃู†ู‚ู„ู†ุง
303
00:26:07,600 --> 00:26:11,480
ุฌูŠ ุจุฑุงูŠู… ู‡ูŠ ู…ูŠู†ุŸ ุงู„ู€ F composite ููŠ ุฅุฐุง ุจุดูŠู„ ุงู„ุฌูŠ
304
00:26:11,480 --> 00:26:15,320
ุจุฑุงูŠู… ูˆ ุจุญุท ู…ูƒุงู†ู‡ุง F composite ุฅูŠุด ูŠุง ุฌู…ุงุนุฉ ููŠ ููŠ
305
00:26:15,320 --> 00:26:19,840
ุจุณุงูŠ of X ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠู‡ุง F composite .. ู‡ูŠ ุฏูŠ ุจุฏู„ู‡ุง
306
00:26:19,840 --> 00:26:24,720
F composite ููŠ of ุจุณุงูŠ of X ููŠ ุจุณุงูŠ ุจุฑุงูŠู… ู…ู† of X
307
00:26:24,720 --> 00:26:32,120
ูˆ ูŠุณุงูˆูŠ F of ุงู„ู„ูŠ ู‡ูˆ ููŠ composite ุจุณุงูŠ of X ููŠ
308
00:26:32,120 --> 00:26:37,570
ุจุณุงูŠ ุจุฑุงูŠู… ู…ู† of X ูƒุชุจุชู‡ุง ุจุณ ุนู„ู‰ ุตูˆุฑุฉ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ
309
00:26:37,570 --> 00:26:41,510
ููƒู‘ุช ุงู„ composition ุฅูŠู‡ ุงู„ุขู†ุŸ ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒุŸ ุนุดุงู†
310
00:26:41,510 --> 00:26:44,530
ุฃุณู‡ู„ ุนู„ูŠูƒู… ูˆุฃู‚ูˆู„ูƒู… ุฃุญู†ุง ุจูŠู‚ูˆู„ูˆุง Psi ุฃุดู…ู„ู† ุงู„
311
00:26:44,530 --> 00:26:47,310
inverse ู„ู„ู€ Phi ู…ุฒุงู… ุงู„ู€ inverse ู…ุน ุจุนุถ ุฏู‡ ู‡ูˆ ุงู„
312
00:26:47,310 --> 00:26:49,850
identity ุฏู‡ ู‡ูˆ ุงู„ู€ identity of X ุฏู‡ ู‡ูˆ ุงู„ู€ X ูŠุนู†ูŠ
313
00:26:49,850 --> 00:26:54,850
ูƒู„ู‡ุง ู‡ุชุตูŠุฑ F of X Psi prime ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง
314
00:26:54,850 --> 00:27:02,220
ุดุงูŠููŠู†ู‡ุŸ ู‡ูˆ ุนุจุงุฑุฉ ุนู† F small of X ููŠ Psi prime of X
315
00:27:02,220 --> 00:27:07,800
ุทูŠุจ ุณู‡ู„ุฉ ุงู„ู…ูˆุถูˆุน ุงู„ุขู† ุฅุฐุง ู†ุงุฎุฏ ุงู„ integration ู…ู†
316
00:27:07,800 --> 00:27:11,100
Phi of Alpha ู„ู€ Phi of Beta ู„ู€ F of X ุจู€ Psi prime of
317
00:27:11,100 --> 00:27:15,540
X DX ุฅูŠุด ู‡ุฐู‡ุŸ ุฃู‡ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ุง ู‡ูŠู‡ุง Psi
318
00:27:15,540 --> 00:27:20,130
prime of X DX ุฅุฐุง ู†ูˆุตู„ู†ุง ุฅุฐุง ุงู„ู€ integration ู‡ุฐุง
319
00:27:20,130 --> 00:27:23,290
ุจูŠุณุงูˆูŠ ุงู„ู€ integration ู„ู‡ุฐุง ุงู„ู€ integration ู„ู‡ุฐุง
320
00:27:23,290 --> 00:27:30,570
ุนู†ุฏูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ุงู† ุฌูŠ ูƒูˆู…ูŠุฒูŠุช ููŠ ุจุณุงูŠุฏ ุงู„ูƒู„ ุจุฑุงูŠู…
321
00:27:30,570 --> 00:27:37,870
of x dx ุงู„ุงู† ุงู„ุงู† ู‡ู†ุง ุงู„ู€ domain ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠูƒูˆู† ู…ู†
322
00:27:37,870 --> 00:27:42,600
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ I ูŠุนู†ูŠ ู„ู…ุง ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
323
00:27:42,600 --> 00:27:43,320
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
324
00:27:43,320 --> 00:27:43,440
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
325
00:27:43,440 --> 00:27:44,420
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
326
00:27:44,420 --> 00:27:45,660
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
327
00:27:45,660 --> 00:27:50,280
..
328
00:27:50,280 --> 00:27:54,440
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
329
00:27:54,440 --> 00:27:55,100
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
330
00:27:55,100 --> 00:27:57,300
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
331
00:27:57,300 --> 00:28:06,760
.. ุงู„ .. ุงู„ .. ุงู„ ..ุงู„ุขู† ุตุงุฑุช ุงู„ู€ derivative ุฅู„ู‡ุง
332
00:28:06,760 --> 00:28:09,620
ุงู„ู€ integration ู‡ูŠู„ุบูŠ ุงู„ู€ derivative ุงู„ู„ูŠ ู‡ูŠ by
333
00:28:09,620 --> 00:28:12,300
fundamental theorem of calculus ูˆูƒู„ ุงู„ุดุฑูˆุท ุฒูŠ ู…ุง
334
00:28:12,300 --> 00:28:17,420
ู‚ู„ู†ุง ูˆ ุงู†ุชุญู‚ู‚ู‡ุง ู‡ูŠุตูŠุฑ ู‡ุฐู‡ ุงู„ู„ูŠ ุฌูˆุง ุนู†ุฏ ู‡ุฐู‡ ูˆ ู‡ุฐู‡
335
00:28:17,420 --> 00:28:24,060
ุงู„ู„ูŠ ุฌูˆุง ุนู†ุฏ ู‡ุฐู‡ ุญุงุตู„ ุทุฑุญูŠู† ุงู„ู„ูŠ ู‡ูŠ G Phi
336
00:28:24,060 --> 00:28:29,140
Composite Psi ุงู„ูƒู„ of a G composed of Psi ุงู„ูƒู„ of
337
00:28:29,140 --> 00:28:33,540
Phi of X ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ X ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฅูŠุด ุงุณู…ู‡ุง ุงู„ู„ูŠ
338
00:28:33,540 --> 00:28:39,600
ู‡ูŠ Alpha ู…ุนู„ุด ูˆ ู‡ุฐู‡ ุงู„ุซุงู†ูŠุฉ ุงู„ู€ Beta ุขุณู ุงู„ู„ูŠ ู‚ูˆู„ู‡ุง
339
00:28:39,600 --> 00:28:44,660
Beta ุญุฏ ุงู„ุฃูˆู„ ูˆ ู‡ุฐู‡ ุงู„ุญุฏ ุงู„ู„ูŠ ุชุญุช Alpha ู…ุงุดูŠ
340
00:28:44,660 --> 00:28:49,430
ุงู„ุญุงู„ุฉ ู‡ุฐู‡ ูŠุนู†ูŠ ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ู‡ูŠูƒ
341
00:28:49,430 --> 00:28:53,370
ุงู„ู€ Psi ูˆ ุงู„ู€ Phi ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† inverse ู„ุจุนุถุŒ ุฅุฐุง
342
00:28:53,370 --> 00:28:58,530
ุงู„ู€ Identity ูŠุนู†ูŠ ู‡ุชุตูŠุฑ ุงู„ู€ G of Beta ูˆ ู‡ุฐุง ู‡ุชุตูŠุฑ
343
00:28:58,530 --> 00:29:04,270
ุงู„ู€ G of AlphaุŒ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ู‡ุฐุง
344
00:29:04,270 --> 00:29:11,130
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฃู†ุง ุจุจุญุซ ุนู†ู‡ุŒ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑุŒ ุดุงูŠููŠู†ู‡ุŸ
345
00:29:11,130 --> 00:29:15,790
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุทู„ุน ุนุจุงุฑุฉ ุนู† ุนุดุงู† ุงุณุชุฎุฏู…ู‡ ุจุนุฏ ุดูˆูŠุฉ
346
00:29:15,790 --> 00:29:22,650
ุฎู„ูŠู†ุง ูŠู…ูƒู† ุฃูˆุถุญ ูŠูƒูˆู† ู‡ูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† g of beta ู†ุงู‚ุต
347
00:29:22,650 --> 00:29:26,910
g of alpha ุจุชุซุจุช ู„ูƒู… ุงู„ุซุงู†ูŠ ุจุฑุถู‡ ู‡ูŠูƒูˆู† g of beta
348
00:29:26,910 --> 00:29:31,850
ู†ุงู‚ุต g of alpha ูˆ ุจูƒูˆู† ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ
349
00:29:31,850 --> 00:29:36,990
ุฎู„ุตู†ุง ู‡ุฐุง ุงู„ุฌุฒุก ู†ูŠุฌูŠ ู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ
350
00:29:36,990 --> 00:29:38,410
ุฃุณู‡ู„ ูƒู…ุงู†
351
00:29:41,370 --> 00:29:44,990
ุดูˆู ูŠุง ุฌู…ุงุนุฉ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู… ุจุงู„ุณู„ุงู…ุฉ ุงุญู†ุง ู‚ู„ู†ุง
352
00:29:44,990 --> 00:29:47,790
ุงู„ู€ G ู‡ูŠ ุงู„ู€ antiderivative ู„ู‡ุฐู‡ ูŠุนู†ูŠ ุงู„ู€ G' ุจุณุงูˆูŠุฉ
353
00:29:47,790 --> 00:29:51,850
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฅุฐุง ุงู„ุขู† ุจู†ู‚ุฏุฑ ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„
354
00:29:51,850 --> 00:29:53,930
fundamental theorem of calculus ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„
355
00:29:53,930 --> 00:29:58,090
corollary ู„ู‡ุง ุจูƒูˆู† ุนู†ุฏ ุงู„ integration ู‡ูŠู‡ ู„ู„ู…ู‚ุฏุงุฑ
356
00:29:58,090 --> 00:30:02,790
ู‡ุฐุง ู‡ูŠุทู„ุน ู„ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ุจุงุดุฑุฉ ุจุณุงูˆูŠุฉ ูŠุนู†ูŠ ู…ู…ูƒู†
357
00:30:02,790 --> 00:30:07,230
ุจุนุถูƒู… ู„ุงุญุธ ุงู„ุงุดูŠ ุงู„ู„ูŠ ุจุชุณูˆูŠู‡ ู…ู† ู‚ุจู„ ู…ุง ุงุดุฑุญ ุงู„ุขู† ุงู„
358
00:30:07,230 --> 00:30:09,670
integration f of I of T ู…ู† Alpha ู„ู€ Beta ุฅูŠุด
359
00:30:09,670 --> 00:30:14,370
ุจูŠุณุงูˆูŠุŸ ู‡ุฐุง ูƒู„ู‡ ุจุฏูƒ ุชุดูŠู„ ู…ูƒุงู†ู‡ ู…ู†ูŠู†ุŸ ุชุญุทู‡ G' ุงู„
360
00:30:14,370 --> 00:30:19,390
integration ู„ู€ G' of T dt ู…ู† Alpha ู„ุนู†ุฏ Beta ู†ูุณ
361
00:30:19,390 --> 00:30:22,690
ุงู„ุญุฏูˆุฏ ู„ุฃู†ู‡ ู…ุง ุบูŠุฑู†ุงุด ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ variability ุงู„ู„ูŠ
362
00:30:22,690 --> 00:30:26,170
ุจุฏู†ุง ู†ูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ ู„ู‡ุŒ ู…ุง ูŠุณุงูˆูŠ ุนู„ู‰ ุทูˆู„ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
363
00:30:26,170 --> 00:30:30,330
ุชูุงุถู„ ุจู€ cancel ุงู„ู„ูŠ ู‡ูŠ ุฃูˆ ุงู„ุชูƒุงู…ู„ ุจู€ cancel ุงู„ุชูุงุถู„
364
00:30:30,330 --> 00:30:32,730
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ corollary ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ
365
00:30:32,730 --> 00:30:36,090
corollary of fundamental theorem of calculus ุจุณุงูˆูŠุฉ
366
00:30:36,090 --> 00:30:41,480
G of beta ู†ุงู‚ุต g of alpha ุงู„ุขู† ู‡ุฐู‡ ุตุงุฑุช g of beta
367
00:30:41,480 --> 00:30:44,620
ู†ุงู‚ุต g of alpha ูˆ ู‡ุฐู‡ ุตุงุฑุช g of beta ู†ุงู‚ุต g of
368
00:30:44,620 --> 00:30:48,320
alpha ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
369
00:30:48,320 --> 00:30:51,400
ุฃูˆ ุงู„ู€ integration ุจุณุงูˆูŠ ุงู„ู€ integration ูˆ ุจูƒูˆู† ู‡ูŠูƒ
370
00:30:51,400 --> 00:30:55,160
ุฃุซุจุชู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ุซุงู†ูŠุฉ ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ second
371
00:30:55,160 --> 00:31:00,200
substitution theorem ุงู„ุขู† ุชุทุจูŠู‚ุงุช ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุงุช ู…ุง
372
00:31:00,200 --> 00:31:04,500
ู‡ูˆ ู‡ุฏูˆู„ุฉ ุชุทุจูŠู‚ุงุชู‡ู… ุงู„ู„ูŠ ู‡ูˆ ุฅุดุจุนู†ุง ููŠู‡ุง ู…ู† Calculus
373
00:31:04,500 --> 00:31:04,780
B
374
00:31:08,400 --> 00:31:14,420
ูุจุตูŠุฑ ุจุณ ุงู†ู‡ ุงู†ุช ู„ุญุงู„ูƒ ููŠ ุงู„ุจูŠุช ู„ูˆ ู‚ุนุฏุช ูˆ ุนู…ู„ุชู„ูƒ
375
00:31:14,420 --> 00:31:18,380
ุณุคุงู„ ุณุคุงู„ูŠู† ุนู„ู‰ ุงู„ substitution ููŠ ุงู„ุญุงู„ุชูŠู† ุจุชูƒูˆู†
376
00:31:18,380 --> 00:31:23,680
ุงู„ู„ูŠ ู‡ูˆ ุฎู„ูŠู†ูŠ ู†ู‚ูˆู„ ุนู…ู‚ุช ุงู„ู…ูู‡ูˆู… ุนู†ุฏูƒ ุจุดูƒู„ ุฃูƒุจุฑ
377
00:31:23,680 --> 00:31:30,370
ู†ูŠุฌูŠ ุงู„ุขู† ู†ุญูƒูŠ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงุญู†ุง ุทุจุนุง ุญูƒูŠู†ุง ุนู† ุงู„ู€
378
00:31:30,370 --> 00:31:32,690
mean value theorem ุฃูˆ ู†ุธุฑูŠุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ ููŠ
379
00:31:32,690 --> 00:31:36,730
ุญุงู„ุฉ ุงู„ differentiation ุงู„ุขู† ู‡ู†ุญูƒูŠ ุนู† ุงู„ู‚ูŠู…ุฉ
380
00:31:36,730 --> 00:31:44,470
ุงู„ู…ุชูˆุณุทุฉ ููŠ ุญุงู„ุฉ ุงู„ integration ุงู„ู„ูŠ
381
00:31:44,470 --> 00:31:48,190
ู‡ูˆ ู†ูˆุฌูŠู†ุง
382
00:31:49,730 --> 00:31:53,670
ุฃุฎุฐู†ุง ู…ุซู„ุง ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู…ูˆุฌุจ ุนุดุงู† ุฃุณู‡ู„ ููŠ
383
00:31:53,670 --> 00:31:57,850
ุงู„ุญุฏูŠุซ ู‡ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ function f ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† a
384
00:31:57,850 --> 00:32:02,790
ู„ุนู†ุฏ b ุงู„ุขู† ุจุชู‚ูˆู„ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุชู‚ูˆู„ ู„ูŠ ู‡ุฐุง ุทุจุนุง ู†ุธุฑูŠ
385
00:32:02,790 --> 00:32:06,010
ุฃูƒุซุฑ ู…ู† ู‡ูŠูƒ ุฃุจุนุฏ ู…ู† ู‡ูŠูƒ ุจุณ ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„ ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ
386
00:32:06,010 --> 00:32:11,370
ุงู„ุญุงู„ุฉ ุงู„ุณู‡ู„ุฉ ุฃูˆ ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ุจุชูˆุถุญ
387
00:32:11,370 --> 00:32:17,210
ู…ุนุงู†ุง ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ ุงู„ุขู† ู‚ูŠู…ุฉ ุงู„ integration ู…ู†
388
00:32:17,210 --> 00:32:23,660
a ู„ุนู†ุฏ b ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ูƒูƒู„ ู…ุณุงุญุชู‡ุง ู„ูˆ
389
00:32:23,660 --> 00:32:31,070
ุฌุณู…ู†ุงู‡ุง ุนู„ู‰ ุงู„ู€ B minus A ูˆูƒุฃู†ู†ุง ุจู†ุงุฎุฏ ู…ุชูˆุณุท ู‚ูŠู…ุฉ
390
00:32:31,070 --> 00:32:34,850
ุงู„ุฏุงู„ุฉ ู„ุฅู†ู‡ ู„ูˆ ุงุชุฎูŠู„ู†ุง ุฅู†ู‡ ู‡ูŠ ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ ูˆ
391
00:32:34,850 --> 00:32:38,810
ุจู†ุถุฑุจู‡ุง ูŠุนู†ูŠ ุชุฎูŠู„ ุฅู†ู‡ุง ุฏูŠ ู…ุณุงุญุฉ ุฎุท ุฌู†ุจ ุฎุท ุฌู†ุจ ุฎุท
392
00:32:38,810 --> 00:32:42,070
ุฌู†ุจ ุฎุท ุฌู†ุจ ุฎุท ู„ู…ุง ุงุชุฎู„ุต ุฃุฏูˆู„ู‡ุง ุฅู„ู‰ ุฃู† ุญุตู„ ุถุฑุจ
393
00:32:42,070 --> 00:32:45,530
ุงู„ูุชุฑุฉ ู‡ุฐู‡ ูƒู„ู‡ุง P minus A ููŠ ู‚ูŠู…ุฉ ุงู„ .. ุงู„ู‡ุง ุฏูŠ
394
00:32:45,530 --> 00:32:48,530
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุนู†ุฏู‡ ู„ูˆ ูุฑุถู†ุง ุฅู†ู‡ู… ูŠุนู†ูŠ ุงู„ .. ุงู„ ..
395
00:32:48,530 --> 00:32:52,550
ุงู„ .. ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ ู„ู‡ู… ูŠุนู†ูŠ ู…ุชูˆุณุทู‡ู… ูุจุตูŠุฑ
396
00:32:52,550 --> 00:32:57,080
ุนู†ุฏ ูƒู„ู‘ู‡ ุนู„ู‰ ุจุนุถ ุงู„ู…ุณุงุญุฉ ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุญุตู„ ุถุฑุจ P
397
00:32:57,080 --> 00:33:02,700
minus A ููŠ ู…ุชูˆุณุท ู‚ูŠู…ุฉ ุงู„ุชูƒุงู…ู„ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏ ู†ู‚ุทุฉ
398
00:33:02,700 --> 00:33:07,370
ู…ุนุงู‡ ูˆู‡ุฐุง ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ ู‡ูŠ ุจุชู‚ูˆู„ ุฅุฐุง ูƒุงู†ุช F ุงู„ู„ูŠ ู‡ูŠ
399
00:33:07,370 --> 00:33:11,370
ููŠ ุดุฑูˆุท ู…ุนูŠู†ุฉ ุจูƒูˆู† ุนู†ุฏ F of X DX ุนู„ู‰ B minus A
400
00:33:11,370 --> 00:33:18,210
ุจุณุงูˆุฉ F of C for some C ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ุจูŠู† ุงู„ู€ A ูˆ ุงู„ู€
401
00:33:18,210 --> 00:33:23,230
B ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ ู„ู„ู…ุณุงุญุฉ ุฃูˆ ู‚ูŠู…ุฉ ุงู„
402
00:33:23,230 --> 00:33:27,930
integration ุนู„ู‰ ุทูˆู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุฅุฐู† ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
403
00:33:27,930 --> 00:33:34,290
ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„ ุญุงู„ุฉ ุฎุงุตุฉ ู…ู† ู†ุธุฑูŠุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ
404
00:33:34,290 --> 00:33:38,300
ุงู„ู„ูŠ ุจุตูˆุฑุฉ ุนุงู…ุฉ ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ ู†ุณู…ูŠู‡ุง
405
00:33:38,300 --> 00:33:41,960
ุงู„ู€ Mean Value Theorem for Integrals ู†ุดูˆู ุงู„ูƒู„ุงู…ุŒ
406
00:33:41,960 --> 00:33:45,800
ูŠู…ูƒู† ุงู„ุขู† ุงู„ูƒู„ุงู… ูŠูƒูˆู† ุฃูˆุถุญ ููŠ ุงู„ู…ู† .. ุจุดูƒู„ ุฃูˆุถุญ
407
00:33:45,800 --> 00:33:48,920
ู„ู…ุง ู†ุจุฑู‡ู† ุงู„ู†ุธุฑูŠุฉ ูˆ ู†ุงุฎุฏ ู†ุตู‡ุง ูˆ ู†ุงุฎุฏ ุงู„ู€ Corollary
408
00:33:48,920 --> 00:33:54,070
ุงู„ู„ูŠ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ุฐูƒุฑุชู‡ ุงู„ุขู† ู…ุง ุจุญูƒูŠู‡
409
00:33:54,070 --> 00:33:57,170
ุนุจุงุฑุฉ ุนู† ุงู„ู€ Mean Value Theorem for ุงู„ู„ูŠ ู‡ูŠ ุฃูŠุงุด
410
00:33:57,170 --> 00:34:01,910
integrals ู†ุธุฑูŠุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ ุนู„ู‰ ุงู„ุชูƒุงู…ู„ ุทุจุนุง
411
00:34:01,910 --> 00:34:05,470
ุฃู†ุชู… ู…ุชุฐูƒุฑูŠู† ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ ุงู„ุนุงุฏูŠุฉ ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช F
412
00:34:05,470 --> 00:34:08,410
is continuous ุนู„ู‰ closed interval differentiable
413
00:34:08,410 --> 00:34:11,710
ุนู„ู‰ ุงู„ู€ open ุฅุฐุงู‹ there exists C element in A ูˆ B
414
00:34:11,710 --> 00:34:17,310
such that ุงู„ู„ูŠ ู‡ูŠ F prime of C ุณูˆู‰ F of B ู†ุงู‚ุต F
415
00:34:17,310 --> 00:34:22,940
of A ุนู„ู‰ B minus A ู‡ู†ุง ุงู„ุขู† ุจู‚ูˆู„ ู„ูƒ ุงู„ู„ูŠ ููŠ ุงู„ุฌุฒุฆูŠุฉ
416
00:34:22,940 --> 00:34:28,020
ู‡ุฐู‡ ุฃู† F is continuous ุนู„ู‰ ุงู„ู€ A ูˆ ุงู„ู€ B ุฅุฐู† there
417
00:34:28,020 --> 00:34:32,220
exists C ููŠ ุงู„ู€ A ูˆ ุงู„ู€ B such that ุงู„ integration ู…ู†
418
00:34:32,220 --> 00:34:38,160
A ู„ุนู†ุฏ B F of X DX ุจุณุงูˆูŠ F of C ุนู„ู‰ B minus A
419
00:34:38,160 --> 00:34:44,180
ุจุณุงูˆุฉ ู…ูŠู†ุŸ ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ F of C roughly ..
420
00:34:44,180 --> 00:34:47,940
roughly .. roughly .. roughly ุงุชุฎูŠู„ ุฃู†ู‡ ุงู„ุขู† ู‡ุฐู‡
421
00:34:47,940 --> 00:34:51,880
ุนุจุงุฑุฉ ุนู† ุงู„ู€derivative F ู‡ุฐุง ุซุงุจุช ุทุจุนุง ุงู„
422
00:34:51,880 --> 00:34:54,920
derivative F prime of C ูˆู‡ุฐู‡ ุงู„ู„ูŠ ุฎุฏู†ุง derivative
423
00:34:54,920 --> 00:34:58,580
ู„ุฃู† integration ูƒุงู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ู…ุชุบูŠุฑุงุช ูุจูŠุตูŠุฑ
424
00:34:58,580 --> 00:35:00,580
ุนู†ุฏ F of B ุจูŠุฑูˆุญ ุงู„ integration ู…ุน ุงู„
425
00:35:00,580 --> 00:35:04,040
differentiation ุจูŠุตูŠุฑ F of B ู†ุงู‚ุต F of A ุงู„ู„ูŠ ููˆู‚
426
00:35:04,040 --> 00:35:07,300
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฑูู„ูŠ ุจุณ ุนู„ู‰ ุฃุณุงุณ ุฃู† ู‡ูˆ ุฃู† ุฃู†ุช ุงู„ู„ูŠ ู‡ูˆ
427
00:35:07,300 --> 00:35:11,260
ุชุณุชุฐูƒุฑ ุงู„ุนู„ุงู‚ุฉ ุงู„ู„ูŠ ู‡ูˆ ุจูŠู† ู‡ุฐู‡ ูˆุจูŠู† ุงู„ู„ูŠ ู‡ูŠ
428
00:35:11,260 --> 00:35:16,550
ุงู„ุฃุตู„ูŠุฉุŒ ุฃู…ุง ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ ุงู„ู…ูู‡ูˆู… ุจุงู„ู…ุชูˆุณุท ุงู„ู„ูŠ
429
00:35:16,550 --> 00:35:20,510
ู‡ูˆ ู…ุณุงุญุฉ ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ integration ุนู„ู‰ ุทูˆู„ ูุชุฑุชู‡
430
00:35:20,510 --> 00:35:24,370
ุงู„ู„ูŠ ู‡ูˆ ุจุชุทู„ุน ู‚ูŠู…ุฉ ู…ุชูˆุณุทุฉุŒ ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ
431
00:35:24,370 --> 00:35:29,050
ุนู† ู…ุชูˆุณุท ู‚ูŠู…ุฉ ูˆูƒุฃู†ู‡ ูƒู„ ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠู…ุฉ ุงู„ integration
432
00:35:29,050 --> 00:35:33,630
ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุชุญุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุนู†ุฏู‡ ููŠ F of
433
00:35:33,630 --> 00:35:37,150
C ุจุชุณุงูˆูŠ ู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ integration ุนู„ู‰ B minus A ุฃูˆ
434
00:35:37,150 --> 00:35:41,590
ู…ุชูˆุณุท ุงู„ู…ุณุงุญุฉ ุนู„ู‰ ุทูˆู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุจุชุณุงูˆูŠ ู‚ูŠู…ุฉ
435
00:35:41,590 --> 00:35:47,800
ุงู„ุฏุงู„ุฉ F of CุŒ ูˆูุนู„ุง ุงู„ู€ C ู…ูˆุฌูˆุฏุฉ ู‡ูŠ ุงู„ู…ู‡ู… ุฃู† ุงู„ู€ C
436
00:35:47,800 --> 00:35:51,000
ู‡ูŠ ุฏูŠ ูุนู„ุง ู‡ู†ู„ุงู‚ูŠู‡ุง ู…ูˆุฌูˆุฏุฉ ูˆุจุชู…ุซู„ ู‚ูŠู…ุฉ ุงู„
437
00:35:51,000 --> 00:35:54,620
integration ุนู„ู‰ ุทูˆู„ ุงู„ูุชุฑุฉุŒ ูˆู‡ุฐุง ู…ุนู†ุงู‡ ุงู„ู„ูŠ ู‡ูˆ
438
00:35:54,620 --> 00:35:58,340
ุงู„ู…ุชูˆุณุท ู‚ูŠู…ุฉ ุงู„ integration ุนู„ู‰ ุทูˆู„ ุงู„ูุชุฑุฉ ู‡ู†ู„ุงู‚ูŠู‡
439
00:35:58,340 --> 00:36:02,620
ูุนู„ุง ุจูŠู…ุซู„ู‡ ู…ู‚ุทุน ุจูŠู† ุงู„ A ูˆ ุงู„ B ูˆู‡ุฐุง ุจุณู…ูŠู‡ุง
440
00:36:02,620 --> 00:36:08,510
ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ mean value theorem for integrals
441
00:36:08,510 --> 00:36:12,930
let F be continuous on I and let B be integrable
442
00:36:12,930 --> 00:36:16,920
function on I ุงู„ู€ B ู‡ุฐู‡ ุฃู†ุง ู…ุง ุฃุฎุฏู‡ุง ุจุชู‚ุจู„ ุจุดูˆูŠุฉ ููŠ
443
00:36:16,920 --> 00:36:22,680
ู…ุซุงู„ ุนู„ู‰ ุฃู†ู‡ุง ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุทูŠุจ let F be continuous
444
00:36:22,680 --> 00:36:25,560
on I of A ูˆ B and let B be an integrable function
445
00:36:25,560 --> 00:36:29,740
on I and ู†ูุชุฑุถ ุฃู† B of X ุฃูƒุจุฑ ูŠุณุงูˆูŠ ุตูุฑ for every
446
00:36:29,740 --> 00:36:32,900
X element in I then there exists C element in I
447
00:36:32,900 --> 00:36:37,880
such that ุงู„ุขู† ู‡ุงูŠ ุงู„ู€ C ุงู„ู„ูŠ ู‡ูŠ ุจุฏู‡ุง ุชู…ุซู„ ุงู„ู„ูŠ ู‡ูŠ
448
00:36:37,880 --> 00:36:40,980
ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุจู†ู„ุงู‚ูŠู‡ุง ููŠ ุงู„ู€ I ุจุญูŠุซ ุฃู† ุงู„
449
00:36:40,980 --> 00:36:46,230
integration ู…ู† A ู„B F of X DX DX ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„
450
00:36:46,230 --> 00:36:48,170
integration ู…ู† a ุฅู„ู‰ b ุจูŠู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู…
451
00:36:48,170 --> 00:36:49,190
ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู…
452
00:36:49,190 --> 00:36:50,170
ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู…
453
00:36:50,170 --> 00:36:55,050
ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู…
454
00:36:55,050 --> 00:36:55,210
ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู…
455
00:36:55,210 --> 00:36:56,930
ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู… ุจุงู‚ูˆู…
456
00:36:56,930 --> 00:37:02,790
ุจุงู‚ูˆู… ุจุงู‚ูˆู…
457
00:37:02,790 --> 00:37:04,290
ุจ
458
00:37:11,900 --> 00:37:19,760
ุงู„ู€ integration ู…ู† a ู„ b f of x b of x dx ุนู„ู‰ ุงู„
459
00:37:19,760 --> 00:37:23,820
integration ู†ูุชุฑุถ ุฃู†ู‡ ู„ูŠุณ ูุงุฑู‚ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡
460
00:37:23,820 --> 00:37:25,260
ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡
461
00:37:25,260 --> 00:37:26,640
ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡
462
00:37:26,640 --> 00:37:29,220
ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡
463
00:37:29,220 --> 00:37:38,400
ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡ ุจูŠู‡
464
00:37:38,400 --> 00:37:43,710
ุจูŠ ุจูŠุตูŠุฑ ู‡ุฐู‡ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ ู‡ุฐู‡ B minus A ุงู„ู„ูŠ
465
00:37:43,710 --> 00:37:48,390
ู‚ู„ุช ู‚ุจู„ ุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ู…ุณุงุญุฉ ุฃูˆ ู‚ูŠู…ุฉ ุงู„
466
00:37:48,390 --> 00:37:52,670
integration ุนู„ู‰ ุทูˆู„ ุงู„ูุชุฑุฉ ุจูŠุณุงูˆูŠ ูุนู„ุง ู…ู‚ุทุน ูุนู„ูŠ
467
00:37:52,670 --> 00:38:00,790
ููŠ ุงู„ูุชุฑุฉ IุŒ ู†ูŠุฌูŠ ู†ุจุฑู‡ู† ุฃู† ู‡ุฐู‡ ู‡ูŠ ุจุตูˆุฑุฉ ุนุงู…ุฉ ุนู†ุฏ F
468
00:38:00,790 --> 00:38:08,600
continuous ุฅุฐุง F is integrable and so F ุงู„ู„ูŠ ู‡ูˆ A
469
00:38:08,600 --> 00:38:12,760
of X ููŠ B of X is Integrable ู„ุฃู† B Integrable ูˆ F
470
00:38:12,760 --> 00:38:15,300
Integrable ุตุงุฑ ุงู„ู€ composition ุงู„ู„ูŠ ู‡ู†ุง Integrable
471
00:38:15,300 --> 00:38:19,280
ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง
472
00:38:19,280 --> 00:38:19,580
Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable
473
00:38:19,580 --> 00:38:20,220
ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง
474
00:38:20,220 --> 00:38:20,300
Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable
475
00:38:20,300 --> 00:38:20,360
ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง
476
00:38:20,360 --> 00:38:20,380
Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable
477
00:38:20,380 --> 00:38:21,740
ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง
478
00:38:21,740 --> 00:38:23,080
Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable
479
00:38:23,080 --> 00:38:25,040
ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง
480
00:38:25,040 --> 00:38:27,280
Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integrable
481
00:38:27,280 --> 00:38:34,460
ุงู„ู„ูŠ ู‡ู†ุง Integrable ุงู„ู„ูŠ ู‡ู†ุง Integ
482
00:38:42,230 --> 00:38:46,930
ุนู†ุฏูŠ F continuous ุฅุฐุง ุงู†ุชูŠุฌุฑุงุจู„ ูˆ B-integrable ุฅุฐุง
483
00:38:46,930 --> 00:38:52,610
FB-integrable ุณู…ู‘ูŠู„ูŠ ุงู„ู€ M small ู‡ูŠ ุงู„ู€ infimum ู„ู„ู€
484
00:38:52,610 --> 00:38:55,830
F of I ู…ูˆุฌูˆุฏุฉ ุฃู‡ ุทุจุนุง ูˆ ู‡ูŠ F is integrable is
485
00:38:55,830 --> 00:39:00,610
unbounded M capital ุจูŠุณุงูˆูŠ ุงู„ supremum ู„ู…ูŠู†ุŸ ู„ู„ F of
486
00:39:00,610 --> 00:39:05,210
IุŒ ุฅุฐู† ุงู„ุขู† ุงู„ุฏุฑูˆุจ ุตุงุฑุช ุนู†ุฏูŠ ุงู„ F of X ุจูŠู† ุงู„ M
487
00:39:05,210 --> 00:39:09,030
small ูˆ ุจูŠู† ุงู„ M capital ุงู„ุฏุฑูˆุจ ู„ูƒู„ ุงู†ูู…ูŠู† ููŠ B of
488
00:39:09,030 --> 00:39:14,190
XุŒ ูˆุจู†ู‚ุฏุฑ ุฃู‡ ุจู†ู‚ุฏุฑ ู„ุฅู† ุจูŠ ุจูŠุถุงู„ู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ุฃู‡ ู„ุฅู†
489
00:39:14,190 --> 00:39:20,450
ุจูŠ ู…ูˆุฌุจุฉุŒ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู‡ุฐู‡ ุงู„ inequality ุตุญูŠุญุฉ
490
00:39:20,450 --> 00:39:23,830
ูˆ ูƒู„ู‡ุง integrable ุฅุฐุง ุงู„ integration ุนู„ู‰ ุงู„ุฃูˆู„ู‰
491
00:39:23,830 --> 00:39:26,350
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ุนู„ู‰ ุงู„ุซุงู†ูŠุฉ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
492
00:39:26,350 --> 00:39:29,850
ุงู„ integration ุนู„ู‰ ุงู„ุซุงู„ุซุฉ ูˆ ุงู„ M ุจุชุทู„ุน ุจุฑุง ู„ุฅู†ู‡
493
00:39:29,850 --> 00:39:38,110
ุงู„ M ูŠุดู…ู„ู‡ุง ุซุงุจุชุฉ ุงู„ุขู† ู„ูˆ ุงู„ integration ู„ู„ .. ู„ู„
494
00:39:38,110 --> 00:39:44,710
.. ู„ู„ .. ู„ู„ B ุจูŠุณุงูˆูŠ 0 ุฅุฐุง ุงู„ integration ู‡ูŠูƒูˆู† ุงู„ู„ูŠ
495
00:39:44,710 --> 00:39:49,730
ู‡ูˆ ุงู„ู„ูŠ ููˆู‚ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ู†ุธุฑูŠุฉ ุจุชุตู„ุญ
496
00:39:49,730 --> 00:39:55,930
ู„ุฃูŠ ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ู„ู„ู€ C ู„ุฃู† ู‡ูŠูƒูˆู† ุฅูŠุด ุจูŠุณุงูˆูŠ ..
497
00:39:55,930 --> 00:40:00,310
ุฃู†ุง ุฃุทู„ุนู„ูƒู… ููˆู‚ ู„ุฃู† ู„ูˆ ูุฑุถู†ุง ุงู„ integration ู„ู„ู€ B
498
00:40:00,310 --> 00:40:05,930
ุจูŠุณุงูˆูŠ ุตูุฑ integration ู„ู„ู€ B ุจูŠุณุงูˆูŠ ุตูุฑ ุจูŠุตูŠุฑ ุงู„ู„ูŠ
499
00:40:05,930 --> 00:40:10,990
ู‡ูˆ ู‡ุฐู‡ ุจุฑุถู‡ ุงู„ integration ู‡ุฐุง ู‡ูŠุณุงูˆูŠ ุฅูŠุดุŸ ู‡ูŠุณุงูˆูŠ
500
00:40:10,990 --> 00:40:14,810
ุตูุฑ ุนุงุฑููŠู† ู„ูŠุดุŸ ู„ุฃู† ู…ุงุฏุงู… ุงู„ integration ู‡ุฐุง ุตูุฑ
501
00:40:14,810 --> 00:40:16,710
ูˆ ุงู„ integration ู‡ุฐุง ุตูุฑ ุฅุฐุง ุงู„ integration ุงู„ู„ูŠ
502
00:40:16,710 --> 00:40:22,170
ููŠ ุงู„ู†ุต ุฅูŠุด ู‡ูŠุณุงูˆูŠุŸ ุตูุฑ ุฅุฐุง ุตุงุฑุช ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุตูุฑ
503
00:40:22,170 --> 00:40:28,430
ูˆู‡ุฐุง ุตูุฑ ุฅูŠุด ู…ุง ุชุฎุชุงุฑ C ู‡ุชุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ ุทุฑููŠ
504
00:40:28,430 --> 00:40:33,790
ุงู„ู…ุนุงุฏู„ุฉุŒ ุฅุฐู† ุงู„ุขู† ุญุงู„ุฉ ุงู„ุตูุฑ is a trivial case ูŠุนู†ูŠ
505
00:40:33,790 --> 00:40:36,890
ุญุงู„ุฉ ุฃู† ุชูƒูˆู† ู‡ุฐู‡ ุตูุฑ is a trivial case ู„ุฃู†
506
00:40:36,890 --> 00:40:39,890
automatic ุฒูŠ ู…ุง ู‚ู„ู†ุง ู…ุฏุงู…ุฉ ู‡ุฐู‡ ุตูุฑ ูˆู‡ุฐู‡ ุตูุฑ ู…ุฏุงู…ู†ุง
507
00:40:39,890 --> 00:40:43,310
ููŠ ุงู„ู†ุต ุตูุฑ ุฅุฐู† ุงู„ู„ูŠ ู‡ูˆ ุฃูŠ ุงุฎุชูŠุงุฑ ู„ู„ู€C ู‡ูŠูƒูˆู† ุทุฑู
508
00:40:43,310 --> 00:40:47,410
ุฃูŠ ู…ุนุงุฏู„ุฉ ุตุญูŠุญุฉ ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ equality ุชุจุนุชู†ุง
509
00:40:47,410 --> 00:40:51,470
ุตุญูŠุญุฉุŒ ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ ุฅูŠุด ุบุฑุถู†ุงุŸ
510
00:40:51,470 --> 00:40:56,460
ุบุฑุถู†ุง ู†ู„ุงู‚ูŠ C ุจุญูŠุซ ุฃู† ู‡ุฐุง ุจูŠุณุงูˆูŠ ู‡ุฐุง ุฎู„ุตู†ุง ุญุงู„ุฉ ุงู„ู„ูŠ
511
00:40:56,460 --> 00:40:59,240
ู‡ูŠ ุงู„ integration ุจูŠุณุงูˆูŠ ุตูุฑุŒ ู†ูุชุฑุถ ุฃู† ุงู„
512
00:40:59,240 --> 00:41:02,480
integration ู…ุด ุตูุฑุŒ ู„ูŠุดุŸ ุฃู†ู‡ ุจุฏูŠ ุฃูƒุณุจ ุนู†ู‡ ุฅุฐุง ุตุงุฑ
513
00:41:02,480 --> 00:41:05,860
ุนู†ุฏูŠ ุงู„ integration ุฃูƒุณุจ ุงู„ุฌู‡ุชูŠู† ุนู† ุงู„ integration
514
00:41:05,860 --> 00:41:09,360
ู„ู„ B ุงู„ integration ู„ู„ B ุงู„ู„ูŠ ูุฑุถู†ุง ุฃู†ู‡ ู…ุด ุตูุฑ ุฅุฐุง
515
00:41:09,360 --> 00:41:11,580
ุตุงุฑ ุงู„ integration ู‡ุฐุง ุนู„ู‰ ุงู„ integration ู‡ุฐุง ุจูŠู†
516
00:41:11,580 --> 00:41:16,840
ุงู„ M small ูˆ ุงู„ M ุฃุดู…ุงู„ู‡ุง capital ู…ุงุดูŠุŒ ุงู„ุญุงู„ุฉ ุงู„ุขู†
517
00:41:16,840 --> 00:41:25,420
ุงุญู†ุง ุจู†ู‚ูˆู„ ุฃู† ู‡ุฐุง ุตุงุฑ ุฑู‚ู… ุจูŠู† ุงู„ู€ M small ูˆุงู„ู€ M
518
00:41:25,420 --> 00:41:35,540
capitalุŒ ูˆุจู†ู‚ูˆู„ ุฃู† F continuous on ุงู„ูุชุฑุฉ A ูˆB then
519
00:41:35,540 --> 00:41:46,560
ุฃูŠ ุฑู‚ู… .. ุฃูŠ ุฑู‚ู… ุงู„ุขู† ู„ู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ .. ู‡ูˆุถุญ ู„ูƒู…
520
00:41:46,560 --> 00:41:48,900
ู‡ูŠ .. ุฃุฐูƒุฑูƒู… ุงู„ู€ intermediate value theorem ุงู„ู„ูŠ
521
00:41:48,900 --> 00:41:53,720
ู†ุณูŠู‡ุง ู‡ูŠ ุนู†ุฏูŠ ู…ุซู„ุง ู‡ูŠ ุฃุนู„ู‰ ู‚ูŠู…ุฉ ุฃู‚ู„ ู‚ูŠู…ุฉ ูˆู‡ูŠ ุฃุนู„ู‰
522
00:41:53,720 --> 00:42:02,140
ู‚ูŠู…ุฉุŒ ู‡ุฐู‡ ุงู„ุขู† ุงู„ู€ function f of x ุงู„ู„ูŠ ู‡ูŠ ุจูŠู† ุงู„ู„ูŠ
523
00:42:02,140 --> 00:42:12,640
ู‡ูˆ M capital M small ุฃูˆ ุจูŠู† ู…ูŠู†ุŸ M capitalุŒ ุงู„ุขู†
524
00:42:12,640 --> 00:42:20,220
ู„ูˆ ุฅุฌูŠู†ุง ุฃุฎุฏู†ุง ุฃูŠ ู‚ูŠู…ุฉ ุฃูŠ ู‚ูŠู…ุฉ ุนุฏุฏ ุฃูŠ ุนุฏุฏ A ุจูŠู† ุงู„ู€
525
00:42:20,220 --> 00:42:23,980
M small ูˆุงู„ู€ M capitalุŒ ู…ุชุงู…ุฉ ุงู„ู€ F continuously ุนู†
526
00:42:23,980 --> 00:42:28,200
ุฃูŠ ู‚ูŠู…ุฉ ู‡ู†ุง ุฃุฎุฏู†ุงู‡ุง ู‚ูŠู…ุฉ ู‡ู†ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ there
527
00:42:28,200 --> 00:42:32,040
exists C element ููŠ ุงู„ูุชุฑุฉ A ูˆB ุงู„ู…ุนุฑู ุนู„ูŠู‡ุง
528
00:42:32,040 --> 00:42:38,040
ุงู„ุฏุงุฆุฑุฉ ู‡ุชุณู…ูŠู‡ุง C ู…ุซู„ุง ุฃูˆ D ู‡ู†ู„ุงู‚ูŠ ุงู„ู€ C ููŠ ุงู„ูุชุฑุฉ
529
00:42:38,040 --> 00:42:45,030
ุจูŠู† A ูˆB ุจุญูŠุซ ุฃู† F of C ู‡ูŠ ู…ูŠู†ุŸ ุงู„ู‚ูŠู…ุฉ F of D ุงู„ู„ูŠ
530
00:42:45,030 --> 00:42:47,050
ู‡ูŠ ุงู„ู€ Intermediate Value Theorem ุงู„ู„ูŠ ุฃู†ุชูˆ
531
00:42:47,050 --> 00:42:50,790
ุนุงุฑููŠู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ For Continuous FunctionุŒ ุฅุฐุง ุจู…ุง
532
00:42:50,790 --> 00:42:55,790
ุฃู† ุงู„ู€ function F is continuous ูˆ ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุจูŠู†
533
00:42:55,790 --> 00:43:00,490
ุฃุนู„ู‰ ู‚ูŠู…ุฉ .. ุจูŠู† ุฃุนู„ู‰ ู‚ูŠู…ุฉ ูˆ ุฃู‚ู„ ู‚ูŠู…ุฉ ู„ู„ุฏุงู„ุฉ ุฅุฐุง
534
00:43:00,490 --> 00:43:05,950
ุฃูƒูŠุฏ ู‡ู‚ุฏุฑ ุฃู„ุงู‚ูŠ C element in I ุจุญูŠุซ ุฃู† F of C
535
00:43:05,950 --> 00:43:10,830
ุจูŠุณุงูˆู‰ ู‡ุฐุง ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„
536
00:43:10,830 --> 00:43:16,520
integration ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ F of C ููŠ ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ูˆู‡ูˆ
537
00:43:16,520 --> 00:43:22,000
ุงู„ู…ุทู„ูˆุจ ูŠุนู†ูŠ ุงู„ู†ุธุฑูŠุฉ ุจุฑู‡ุงู†ุฉ ุจุณูŠุทุฉ ูŠุง ุฌู…ุงุนุฉ ุจุณ ู…ุฏุงู…
538
00:43:22,000 --> 00:43:27,740
ุญุตุฑู†ุง ู‚ูŠู…ุฉ ู„ู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ M ูˆ
539
00:43:27,740 --> 00:43:30,840
ุงู„ M ุฅุฐุง ุจุงู„ intermediate value theorem ููŠ C
540
00:43:30,840 --> 00:43:37,500
ูˆุฎู„ุตู†ุง ุทูŠุจ ุงู„ู„ูŠ ุจุนุฏู‡ ุงู„ corollary ุญูƒูŠุชู‡ุง ู‡ุฐู‡ ุฅู†
541
00:43:37,500 --> 00:43:38,360
ู„ูˆ ูƒุงู†ุช F
542
00:43:43,100 --> 00:43:47,820
ุงู„ู€ Corollary ุญูƒูŠุชู‡ุง ู„ูˆ ูƒุงู†ุช F continuous ุนู„ู‰ ุงู„ู„ูŠ
543
00:43:47,820 --> 00:43:50,940
ู‡ูŠ ุงู„ู€ closed interval A ูˆ B ู‡ู†ู„ุงู‚ูŠ ุงู„ู€C ููŠ ุงู„ู€I
544
00:43:50,940 --> 00:43:53,720
ุจุญูŠุซ ุฃู† ุงู„ integration ู…ู† A ู„B ู„ู„F ุณูˆุงุก F of C ููŠ
545
00:43:53,720 --> 00:44:00,900
B minus AุŒ ู‚ู„ู†ุง ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุญุงู„ุฉ ุฎุงุตุฉ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุจุณ
546
00:44:00,900 --> 00:44:08,160
ุญุท ู„ูŠ ุงู„ู€F ุงู„ู€B of X ุจูŠุณุงูˆูŠ 1ุŒ ุญุงู„ุฉ ุฎุงุตุฉ ู…ู† ุงู„ู†ุธุฑูŠุฉ
547
00:44:08,160 --> 00:44:10,480
ุงู„ู†ุธุฑูŠุชู†ุง
548
00:44:11,580 --> 00:44:17,340
ุฃู† ุงู„ู€ integration ู„ู„ู€ F ููŠ B ุจูŠุณุงูˆูŠ F of C ููŠ ุงู„ู€
549
00:44:17,340 --> 00:44:21,320
integration ู„ู„ู€ B ู…ู† Alpha ู„ุนู†ุฏ Beta ูˆ ู„ุง ู…ู† A
550
00:44:21,320 --> 00:44:29,620
ู„ุนู†ุฏ B ู…ู† A ู„ุนู†ุฏ B for some C element in IุŒ ู…ุธุจูˆุทุŸ
551
00:44:29,620 --> 00:44:33,180
ุงู„ุขู† ุจู‚ูˆู„ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ integration ู„ู„ู€ F ุจูŠุณุงูˆูŠ F
552
00:44:33,180 --> 00:44:36,720
of C ููŠ B minus A for some CุŒ ุญุท ุงู„ู€ B ุจูŠุณุงูˆูŠุŒ
553
00:44:36,720 --> 00:44:41,420
ู‡ุชุฌุณูŠ ุงู„ integration ู„ู„ู€ F ุจุณ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ
554
00:44:41,420 --> 00:44:48,320
ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ ุจูŠ
555
00:44:51,410 --> 00:44:58,470
ุงู„ู„ูŠ ู‡ูˆ dx y ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ f of c ู‡ุฏู b minus a ูˆู‡ูˆ
556
00:44:58,470 --> 00:45:02,690
ุงู„ู…ุทู„ูˆุจ ู‡ู†ู„ุญู‚ู‡ ูƒู…ุงู† ู…ุฑุฉุŒ ุฅุฐุง ุงู„ู€ Corollary ุงู„ู„ูŠ
557
00:45:02,690 --> 00:45:09,030
ู‡ูŠ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุชู… ุจุฑู‡ุงู†ู‡ุง ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู†ูŠุฌูŠ ุงู„ุขู† ู„ู„ูŠ
558
00:45:09,030 --> 00:45:13,310
ู‡ูŠ Taylor's theorem ุฃุฎุฏู†ุงู‡ุง Taylor's theorem ูƒุงู†
559
00:45:13,310 --> 00:45:20,900
ุงู„ remainder ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ ุดูŠุก ู…ูุถู„ ุฃูˆ ุงู„ู€
560
00:45:20,900 --> 00:45:26,560
Taylor's theorem ุฅุฐุง ุตุญ ุงู„ุชุนุจูŠุฑ for integration ูˆ
561
00:45:26,560 --> 00:45:29,500
Taylor's theorem for differentiations ุงู„ุขู† ุงู„ุฌุฒุก
562
00:45:29,500 --> 00:45:33,060
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ for integration ู†ุดูˆู ุดูŠุก ุงู„ู„ูŠ ุจู‚ูˆู„ู‡
563
00:45:35,050 --> 00:45:38,890
suppose that the function f and its derivatives f
564
00:45:38,890 --> 00:45:43,030
prime up to f n and f n ุฒุงุฆุฏ ูˆุงุญุฏ are ูƒู„ู‡ู…
565
00:45:43,030 --> 00:45:46,330
ุฃูŠู‘ ุดู…ุงู„ู‡ู… continuous ูŠุนู†ูŠ ู†ูุชุฑุถ ุฃู† ุงู„ู€
566
00:45:46,330 --> 00:45:49,710
derivative ุงู„ู€ n ุฒุงุฆุฏ ูˆุงุญุฏ derivative is
567
00:45:49,710 --> 00:45:53,890
continuous exist ูˆcontinuous ู†ูุชุฑุถ ุฃู† ุงู„ุฏุงู„ุฉ f
568
00:45:53,890 --> 00:45:59,610
ุนุจุงุฑุฉ ุนู† ุฏุงู„ุฉ ู‚ุงุจู„ุฉ ู„ู„ุงุดุชู‚ุงู‚ n ุฒุงุฆุฏ ูˆุงุญุฏ ู…ู† ุงู„ู…ุฑุงุช
569
00:45:59,610 --> 00:46:05,310
ูˆุชูƒูˆู† ุงู„ู€ n ุฒุงุฆุฏ ูˆุงุญุฏ ูƒู…ุงู† ู†ูุณู‡ุง continuous ู…ุงุดูŠุฉ ุนู„ู‰
570
00:46:05,310 --> 00:46:10,290
ุงู„ูุชุฑุฉ a ูˆ b then ุจู‚ูˆู„ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ f of b ุจูŠุณุงูˆูŠ f
571
00:46:10,290 --> 00:46:14,170
of a ุฒุงุฆุฏ f prime of a ุนู„ู‰ 1 factorial ููŠ b minus a
572
00:46:14,170 --> 00:46:18,990
ุฒุงุฆุฏ f double prime of a ุนู„ู‰ 2 factorial ููŠ b minus
573
00:46:18,990 --> 00:46:22,410
a ุชุฑุจูŠุน ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ุนู†ุฏ f n of a ุนู„ู‰ n factorial
574
00:46:22,410 --> 00:46:26,530
ููŠ b minus a ุงู„ูƒู„ู‘ ุฃูุณู‘ n ู‡ุฐุง ูƒู„ู‡ ุฅูŠุด ู…ุนู†ุงู‡ุŸ ุนุงุฑููŠู†ู‡ ู‚ุจู„
575
00:46:26,530 --> 00:46:30,050
ูƒุฏู‡ ูˆุนู…ู„ู†ุง ุฒุงุฆุฏ ู…ูŠู†ุŸ ุงู„ู€ remainder are n ุงู„ู€
576
00:46:30,050 --> 00:46:34,730
remainder are n ูƒุชุจูˆุง ุนู„ู‰ ุตูˆุฑุฉ integration ุจุณ ุงู„ู€
577
00:46:34,730 --> 00:46:37,550
remainder are n ูƒุชุจ ุนู„ู‰ ุตูˆุฑุฉ ูˆุงุญุฏุฉ ุงู„ู€ N factorial
578
00:46:37,550 --> 00:46:41,150
ููŠ ุงู„ู€ integration ู…ู† a ู„ู€ b ุจู€ ู…ุงูŠู†ุณ ุชูŠ ุฃูุณู‘ n f n ุฒุงุฆุฏ
579
00:46:41,150 --> 00:46:50,010
ูˆุงุญุฏ of T ุฏูŠ ุชูŠ ุฅุฐู† ุงู„ุขู† ุจู‚ูˆู„ ู„ูƒ f of b f of
580
00:46:50,010 --> 00:47:02,410
b ุจูŠุณุงูˆูŠ ุงู„ู€ summation f .. f N ู‡ูˆ f k of a ุนู„ู‰
581
00:47:02,410 --> 00:47:10,470
k factorial ููŠ b minus a ุฃูุณู‘ k k ู…ู† ุนู†ุฏ 0 .. ู…ู† ุตูุฑ
582
00:47:10,470 --> 00:47:19,390
k ู…ู† ุนู†ุฏ ุตูุฑ ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ n ุฒุงุฆุฏ ุงู„ู€ remainder ู…ูŠู†ุŸ
583
00:47:19,390 --> 00:47:27,090
r n ุงู„ู€ remainder are n ู…ูŠู† ู‡ูˆุŸ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 1 ุนู„ู‰ n
584
00:47:27,090 --> 00:47:35,390
factorial ููŠ ุงู„ู€ integration ู…ู† a ู„ุนู†ุฏ b b minus t
585
00:47:35,390 --> 00:47:45,690
ุฃูุณู‘ n ููŠ f n ุฒุงุฆุฏ 1 of T ุฏูŠ ุชูŠ ู†ุซุจุช ู„ูƒู… ุฅู† ุงู„ู€ f of b
586
00:47:45,690 --> 00:47:52,520
can be written as this ุญูŠุซ ุงู„ู€ r n ู‡ูˆ ู‡ุฐุง ุงู„ุขู†
587
00:47:52,520 --> 00:47:59,500
ุงู„ููƒุฑุฉ ููŠ ุงู„ุญู„ ุฃูˆ ุงู„ููƒุฑุฉ ููŠ ุงู„ุจุฑู‡ุงู† ุฃู†ู‡ ุฃู†ุง ุจุฏูŠ
588
00:47:59,500 --> 00:48:05,260
ุฃุฌูŠ ุฃูˆุฌุฏ ู‚ูŠู…ุฉ ุงู„ู€ remainder r n ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
589
00:48:05,260 --> 00:48:10,700
ูˆ ุจุฏูŠ ุฃุซุจุช ู„ูƒู… ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ู…ู†ู‡ ุจู‚ุฏุฑ ุฃูƒุชุจ
590
00:48:10,700 --> 00:48:14,040
ุงู„ู„ูŠ ู‡ูˆ ูŠุนู†ูŠ ุงู„ู€ r n ุฃุซุจุช ู„ูƒู… ู‡ูŠ ุนุจุงุฑุฉ ุนู† f of b
591
00:48:14,040 --> 00:48:19,720
ู†ุงู‚ุต ู‡ุฐุง ุงู„ู€ summation ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ู„ูƒู… ุฃู† ุงู„ู€ r n
592
00:48:19,720 --> 00:48:23,560
ุจุชุณุงูˆูŠ f of b ู†ุงู‚ุต ุงู„ู…ุฌู…ูˆุน ู‡ุฐุง ูŠุนู†ูŠ ุจุฏูŠ ุฃุจุฏุฃ
593
00:48:23,560 --> 00:48:30,700
ุจู‡ุฐุง ุงู„ุขู† ูŠุนู†ูŠ ุจุฏูŠ ุฃุจุฏุฃ ุจุงู„ู€ r n ุจูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
594
00:48:30,700 --> 00:48:34,740
ุดุงูŠููŠู†ู‡ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู…ู† a ู„ุนู†ุฏ b ูˆุงุญุฏ ุนู„ู‰ n factorial
595
00:48:34,740 --> 00:48:42,380
ุจุฏูŠ ุฃูƒุงู…ู„ู‡ ุฃูƒุงู…ู„ู‡ by parts ุขู‡ ุจุฏู‘ู‡ ูƒุงู…ู„ ูˆุดูˆููˆุง ูƒูŠู
596
00:48:42,380 --> 00:48:47,280
ุจุชุทู„ุน ุงู„ุฃู…ูˆุฑ ุฅู† ุดุงุก ุงู„ู„ู‡ ุณู„ุณุฉ ูˆู…ู†ูŠุญุฉ by parts ุฎุฏูˆุง
597
00:48:47,280 --> 00:48:53,160
ุงู„ู€ u ุนุจุงุฑุฉ ู‡ู†ุณู‘ู…ูŠู‡ุง ุนุจุงุฑุฉ ุนู† u ูˆู‡ุฐู‡ ุณู†ู‘ุณู…ูŠู‡ุง ุฅูŠุด ูŠุง
598
00:48:53,160 --> 00:48:59,970
ุฌู…ุงุนุฉ dv ู…ุงุดูŠ ุงู„ุญุงู„ ุจูŠุตูŠุฑ ุงู„ู‚ุงู†ูˆู† ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ
599
00:48:59,970 --> 00:49:07,490
ู‡ูˆ u dv ูŠุนู†ูŠ ุจูŠุณุงูˆูŠ uv ู†ุงู‚ุต v du ุชุญุช ู…ูŠู†ุŸ ุชุญุช ุงู„ู€
600
00:49:07,490 --> 00:49:11,310
integration ู‡ุฐุง ูƒู„ุงู… ุชุนุฑููˆู‡ ุฃู†ุชู… ุงู„ุขู† ุจุฑุถู‡ ู…ู† ูˆูŠู†
601
00:49:11,310 --> 00:49:16,150
ู„ูˆูŠู†ุŸ ู…ู† a ู„ุนู†ุฏ b ุนู„ู‰ ุงู„ุณุฑูŠุน ุนุดุงู† ุงู„ู„ูŠ ู‡ูˆ ุชุฃุฎุฐูˆุง
602
00:49:16,150 --> 00:49:20,100
ุงู„ููƒุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญุณุงุจุงุช ุฃู†ุช ุจุชุนุฑู ุชุนู…ู„ูˆู‡ุง ุงู„ูƒู„ู‘
603
00:49:20,100 --> 00:49:24,620
ุจูŠุนุฑู ูŠุนู…ู„ู‡ุง ู‡ูŠ ุฃุฎุฐู†ุง ุงู„ู€ u ุฒูŠ ู…ุง ุฃุฎุฐู†ุงู‡ุง ู‡ู†ุง
604
00:49:24,620 --> 00:49:30,200
ูƒุชุจุชู‡ุง ุนู„ู‰ ุงู„ู„ูˆุญ ูˆู‡ูŠ ุงู„ู€ dv ู‡ูŠู‡ุง ู„ู€ f n ุฒุงุฆุฏ ูˆุงุญุฏ of T
605
00:49:30,200 --> 00:49:36,300
dt ุงู„ุขู† ุงู„ู€ du ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุชูุงุถู„ ู‡ุฐุง n ููŠ b minus
606
00:49:36,300 --> 00:49:41,100
t ุฃูุณู‘ n ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุชูุงุถู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฌูˆุง ู†ุงู‚ุต
607
00:49:41,100 --> 00:49:45,900
ูˆุงุญุฏ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ู†ุงู‚ุต n ููŠ b minus t ุฃูุณู‘ n ู†ุงู‚ุต ูˆุงุญุฏ
608
00:49:45,900 --> 00:49:51,040
dt ู‡ุฐู‡ ู…ูŠู† ู‡ูŠุŸ ุงู„ู€ du ุงู„ู„ูŠ ุจุฏูŠ ุฃุญุทู‡ุง ู‡ุงู† ุงู„ุขู† ุงู„ู€ v
609
00:49:51,040 --> 00:49:57,380
ุงู„ู€ dv ู‡ูŠู‡ุง ุงู„ู€ v ู‡ุชุทู„ุน ุงู„ู€ integration ู‡ุฐู‡ ุจูŠุฎูู‘
610
00:49:57,380 --> 00:50:01,340
ูˆุงุญุฏ ู…ู† ุงู„ู€ derivatives ุจูŠุตูŠุฑ ุนู†ุฏูŠ f n of T ุทุจุนุงู‹
611
00:50:01,340 --> 00:50:05,620
ูุงู‡ู…ูŠู† ุฅูŠุด ุจู‚ูˆู„ุŸ ุงู„ู€ v ุจูŠุณุงูˆูŠ f n of T ุงู„ุขู† ุจูŠุฌูŠ
612
00:50:05,620 --> 00:50:09,260
ุจู†ุนูˆู‘ุถ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ integration ุงู„ู„ูŠ ู‡ูˆ
613
00:50:09,260 --> 00:50:15,160
ุจูŠุณุงูˆูŠ ุงู„ู€ r n ุจูŠุณุงูˆูŠ u ููŠ v u ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† b
614
00:50:15,160 --> 00:50:24,580
minus t ุฃูุณู‘ n ููŠ u ู‡ุฐู‡ u ููŠ v v ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† f n
615
00:50:24,580 --> 00:50:37,200
of TุŒ ู…ุธุจูˆุทุŸ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ u ุทุจุนุงู‹ ุงู„ู€ r n ุงุญู†ุง ู…ุถุฑูˆุจ
616
00:50:37,200 --> 00:50:41,730
ูƒู„ู‡ ููŠ 1 ุนู„ู‰ n factorial ู„ุฃู†ู‘ู‡ุง ู‡ูŠ ุงู„ู„ูŠ ูุถู„ู†ุง
617
00:50:41,730 --> 00:50:47,110
ู‡ูŠ ุงู„ุฌุฒุก ุงู„ู„ูŠ ุญุณุจู†ุงู‡ ู‡ุฐุง 1 ุนู„ู‰ n factorial ู…ูˆุฌูˆุฏุฉ
618
00:50:47,110 --> 00:50:50,490
ููŠู‡ุง 1 ุนู„ู‰ n factorial ุจูŠุตูŠุฑ ู‡ู†ุง ุจุฑุถู‡ ุนู„ู‰ n
619
00:50:50,490 --> 00:51:00,050
factorial ุจุฏุฃุช ุฃู…ูˆุฑู†ุง ุชุธู‡ุฑ ู†ุงู‚ุต 1 ุนู„ู‰ n factorial
620
00:51:00,050 --> 00:51:06,310
ููŠ ุงู„ู€ integration ู…ู† a ู„ุนู†ุฏ b v ุŒ v ู‡ูŠ f
621
00:51:08,970 --> 00:51:18,530
of T ู…ุธุจูˆุท dt ููŠ du du ุฅูŠุด duุŸ du ุงู„ู„ูŠ ู‡ูˆ
622
00:51:18,530 --> 00:51:30,650
ู†ุงู‚ุต n ู†ุงู‚ุต n ููŠ b minus t ุฃูุณู‘
623
00:51:30,650 --> 00:51:32,330
n ู†ุงู‚ุต ูˆุงุญุฏ
624
00:51:35,190 --> 00:51:43,550
ูˆุงุถุญุฉ ุงู„ุตูˆุฑุฉ ู†ุฌูŠ ู†ุฎู„ูŠ ุงู„ุตูˆุฑุฉ ู…ู†ูŠุญุฉ b-t ุฃูุณู‘ n ุนู„ู‰ n
625
00:51:43,550 --> 00:51:51,210
factorial f n of T ุฎู„ุตู†ุง ู…ู†ู‡ ู‡ุฐุง ู†ุงู‚ุต ูˆู‡ุฐุง ู†ุงู‚ุต
626
00:51:51,210 --> 00:51:56,250
ูŠุตุจุญ ุฒุงุฏ ูŠุตุจุญ ู‡ุฐุง ุฃุดู…ู„ ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ n ูˆุงุญุฏ factorial
627
00:51:56,250 --> 00:52:04,450
ููŠ ุงู„ู€ integration ู…ู† a ู„ุนู†ุฏ b b-t ุฃูุณู‘ n ู†ุงู‚ุต ูˆุงุญุฏ
628
00:52:04,450 --> 00:52:12,530
f n of T dt ู…ุธุจูˆุทุŸ ู…ุธุจูˆุท ู‡ุฐุง ุฃูˆุฌุฏู†ุง ู…ูŠู†ุŸ ุงู„ู€ r n
629
00:52:12,530 --> 00:52:18,350
ุจูŠุณุงูˆูŠ ู‡ุฐุง ุฒุงุฆุฏ ู‡ุฐุง ุทูŠุจ ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ ู…ูŠู† ู‡ูˆ ู‡ุฐุง ุฃุตู„ุงู‹
630
00:52:18,350 --> 00:52:23,570
ุงู„ู€ r n ุงู„ู„ูŠ ุฃูˆุฌุฏู†ุงู‡ ู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ b-1 t ุฃูุณู‘ n f n ุฒุงุฆุฏ
631
00:52:23,570 --> 00:52:29,370
ูˆุงุญุฏ of T dt ุทู„ุน ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฌูˆุง ู‡ุฐุง ุจุฃุณู‘
632
00:52:29,370 --> 00:52:38,770
n ูˆู‡ุฐุง ุฒูŠ ู…ุง ู‡ูˆ ุฃูุณู‘ n ู†ุงู‚ุต ุจูŠุตูŠุฑ ู‡ูˆ ู‡ุฐุง ุฒุงุฆุฏ ูˆุงุญุฏ ุตุงุฑ
633
00:52:38,770 --> 00:52:42,670
ุฒุงุฆุฏ ุทุจุนุงู‹ ู…ุง ุนุฑูุชู… ูƒูŠู ุตุงุฑุช ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n
634
00:52:42,670 --> 00:52:46,130
ู†ุงู‚ุต ูˆุงุญุฏ factorial ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต ูˆุงุญุฏ
635
00:52:46,130 --> 00:52:49,850
factorial ููŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู„ุงุญุธูˆุง ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
636
00:52:49,850 --> 00:52:56,610
ุดุจูŠู‡ ุจุงู„ู€ remainder ูŠุนู†ูŠ ุจุงู„ุถุจุท ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ ุนู„ู‰ ุงู„ู€
637
00:52:56,610 --> 00:53:01,750
remainder ุจู†ุนู…ู„ู‡ ู‡ุงู† ุจู†ุนู…ู„ู‡ ุนู„ู‰ ู‡ุฐุง ุงู„ู„ูŠ ู‡ู†ุนู…ู„ู‡ ู‡ุงู†
638
00:53:01,750 --> 00:53:05,810
ู‡ูŠูŠุทู„ุน ู…ู‚ุฏุงุฑ ุฒูŠ ู‡ุฐุง ูˆู…ู‚ุฏุงุฑ ุฒูŠ ู‡ุฐุง ุจุณ ู‡ูŠู†ู‚ุต ูƒู…ุงู†
639
00:53:05,810 --> 00:53:09,770
ูˆุงุญุฏ ุงู„ู„ูŠ n ู‡ูŠุตูŠุฑ ู‡ุฐุง n ู†ุงู‚ุต ุงุซู†ูŠู† ูƒุงู† n .. ูƒุงู†
640
00:53:09,770 --> 00:53:13,210
n ุตุงุฑ ู‡ูŠุตูŠุฑ n ู†ุงู‚ุต ุงุซู†ูŠู† ูˆุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง
641
00:53:13,210 --> 00:53:15,850
ุจู†ุนู…ู„ ูƒู…ุงู† ู…ุฑุฉ ุจู†ูˆุฌุฏ ุจูŠุตูŠุฑ n ู†ุงู‚ุต ุซู„ุงุซุฉ ูˆn ู†ุงู‚ุต
642
00:53:15,850 --> 00:53:20,070
ุฃุฑุจุนุฉ ููŠ ุงู„ุขุฎุฑ ุงู„ู€ and finite ุฅุฐุง ู‡ู†ุตู„ ู„ู„ู†ู‡ุงูŠุฉ ุฅุฐุง
643
00:53:20,070 --> 00:53:29,950
ู‡ุฐุง ู‡ูŠุตูŠุฑ ุจูŠุณุงูˆูŠ b-t ุฃูุณู‘ n ุนู„ู‰ n factorial f n of t
644
00:53:29,950 --> 00:53:35,250
ุฒุงุฆุฏ ู‡ุฐุง ุจุชุนู…ู„ู‡ ุจุงู„ุถุจุท ุฒูŠ ู…ุง ุนู…ู„ุช ู…ูŠู†ุŸ ุฒูŠ ู…ุง ุนู…ู„ุช
645
00:53:35,250 --> 00:53:42,150
ุงู„ู€ r n ูŠุนู†ูŠ ูˆูƒุฃู†ู‡ ุงุณู… ู‡ุฐุง r n-1 ุจูŠุตูŠุฑ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ b
646
00:53:42,150 --> 00:53:49,410
minus t ุฃูุณู‘ n ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต ูˆุงุญุฏ factorial f
647
00:53:49,410 --> 00:54:00,270
n ู†ุงู‚ุต ูˆุงุญุฏ of t ุฒุงุฆุฏ ุจุนุชู‚ุฏ
648
00:54:00,270 --> 00:54:08,770
ุจุณ ููŠ ู†ุงู‚ุต ู‡ู†ุง ููŠ ุงู„ู€ u ููŠ v u ููŠ v
649
00:54:17,570 --> 00:54:22,590
ุขู‡ ู…ุง ุญุณุจู†ุงุด ุนู†ุฏ a ูˆ b ุขู‡ ุจุณ ู‡ุฐุง ู†ุณูŠู†ุง ู†ุญุณุจ ู‡ุฐุง ุนู†ุฏ
650
00:54:22,590 --> 00:54:27,990
bุŒ ู…ู† ุนู†ุฏ a ู„ุนู†ุฏ bุŒ ู…ุนู„ุด ุณุงู…ุญูˆู†ุงุŒ ู…ู† ุนู†ุฏ a ู„ุนู†ุฏ b
651
00:54:27,990 --> 00:54:33,230
ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญุŒ ุจุณ ุจุฏูŠ ุฃุญุณุจู‡ ู…ู† a ู„ุนู†ุฏ bุŒ ุนู†ุฏ b
652
00:54:33,230 --> 00:54:38,250
ุตูุฑุŒ ุตุญุŸ ุนู†ุฏ b ุตูุฑุŒ ู…ุด ุงุญู†ุง ุญุณุจู†ุง ู‚ูŠู…ุฉ ุงู„ู€
653
00:54:38,250 --> 00:54:40,830
remainderุŒ ู‚ูŠู…ุฉ ุงู„ู€ integrationุŒ ู‡ุฐุง ุงู„ู€ integration
654
00:54:40,830 --> 00:54:47,820
ุงู„ู„ูŠ ู‡ูˆ ู…ู† ูˆูŠู† ู„ูˆูŠู†ุŸ ู…ู† a ู„ุนู†ุฏ b ุงู„ุขู† ู‡ุฐุง ู…ู† a ู„ุนู†ุฏ
655
00:54:47,820 --> 00:54:56,920
b ุจูŠุตูŠุฑ ุนู†ุฏ b ู†ุงู‚ุต b ุจูŠุตูŠุฑ ุตูุฑ ุงู„ุขู† ู†ุงู‚ุต ู…ู† b ู†ุงู‚ุต
656
00:54:56,920 --> 00:55:01,680
a ูุจูŠุตูŠุฑ ู‡ุฐู‡ ุดู…ุงู„ู‡ุง b ู†ุงู‚ุต a ูˆู‡ู†ุง ู†ุงู‚ุต ูˆู‡ู†ุง a
657
00:55:01,680 --> 00:55:06,760
ุดู…ุงู„ู‡ุง f of a ู„ุฃู†ู‘ ุนูˆุถู†ุง ุนู† ู…ูŠู†ุŸ ุนู† a ูุจูŠุตูŠุฑ ุนู†ุฏ b
658
00:55:06,760 --> 00:55:11,220
ู†ุงู‚ุต a ุฃูุณู‘ n ุจุงู„ุณุงู„ุจ ุนู„ู‰ n factor of n of a ุฒุงุฆุฏ
659
00:55:11,220 --> 00:55:15,190
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู„ุฃู†ู‘ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฒูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง
660
00:55:15,190 --> 00:55:19,010
ุงู„ู…ู‚ุฏุงุฑ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† ุฒูŠ
661
00:55:19,010 --> 00:55:24,650
ู‡ุฐุง ู…ุงุดูŠ ุจุณ ุจุฑุถู‡ ู‡ูŠุทู„ุน ู„ูŠ ุฅูŠุดุŸ ุจุฑุถู‡ ู‡ูŠุทู„ุน ู„ูŠ ู†ู‚ุต ู„ู…ุง
662
00:55:24,650 --> 00:55:27,730
ู†ุนูˆุถ ุจูŠุตูŠุฑ b minus a ุฃุณุฆู„ุฉ ู†ุงู‚ุต ูˆุงุญุฏุฉ ุงู„ุขู† ู†ุงู‚ุต
663
00:55:27,730 --> 00:55:33,830
ูˆุงุญุฏุฉ factorial f n ู†ุงู‚ุต ูˆุงุญุฏ of 2 of a ุฒุงุฆุฏ ุงู„ู„ูŠ
664
00:55:33,830 --> 00:55:38,630
ุจูŠุทู„ุน ู‡ู†ุง n ู†ุงู‚ุต 2 factorial ููŠ ุงู„ู€ integration ู…ู†
665
00:55:38,630 --> 00:55:47,770
a ู„ู€ b b minus t ุฃุณุฆู„ุฉ ู†ุงู‚ุต 2 ุงู„ุขู† ูˆู‡ุฐู‡ f n ู†ุงู‚ุต
666
00:55:47,770 --> 00:55:55,740
ูˆุงุญุฏุฉ of t dt ู†ูุณ
667
00:55:55,740 --> 00:55:59,960
ุงู„ู„ูŠ ุนู…ู„ุชู‡ ุนู„ู‰ ู‡ุฐุง ุจุฏูŠ ุฃุนู…ู„ู‡ ุนู„ู‰ ู‡ุฐุง ู‡ุฃุธู„ู‘ ู…ุณุชู…ุฑู‘
668
00:55:59,960 --> 00:56:10,880
ู„ู…ุง ูŠูˆุตู„ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ .. ูˆูŠู† ุจุฏูŠ ุฃูƒุชุจุŸ
669
00:56:10,880 --> 00:56:12,360
ุฎู„ูŠู†ูŠ ุฃูƒุชุจ ููˆู‚
670
00:56:16,010 --> 00:56:22,150
ุงู„ุขู† ุชูุฌู‘ุฃู†ุง ูŠุง ุฌู…ุงุนุฉ ุฅู†ู‘ ุงู„ู€ r n ู‡ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ r n
671
00:56:22,150 --> 00:56:28,690
ุจูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ุงู‚ุต ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ุงู‚ุต ู†ุงู‚ุต ุฒุงุฆุฏ
672
00:56:28,690 --> 00:56:34,370
ู‡ุฐุง ุฅุฐุง ุตุงุฑ ุนู†ุฏ ุงู„ู€ r n ุจูŠุณุงูˆูŠ
673
00:56:34,370 --> 00:56:49,900
ู†ุงู‚ุต b minus a ุฃูุณู‘ n ุนู„ู‰ n factorial f n of a ู†ุงู‚ุต b
674
00:56:49,900 --> 00:56:54,740
minus a ุฒุงุฆุฏ n ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต ูˆุงุญุฏ factorial
675
00:56:54,740 --> 00:57:04,840
f n ู†ุงู‚ุต ูˆุงุญุฏ of a ุฒุงุฆุฏ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ุขู† ุจุชุนู…ู„ูˆุง
676
00:57:04,840 --> 00:57:09,500
ู‡ุฐุง ุงู„ู„ูŠ ุนู…ู„ุชู‡ ู…ุน ุฌุงุจู„ูˆ ู‡ูŠุธู„ู‘ูˆุง ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ู…ุงุดูŠ
677
00:57:10,430 --> 00:57:17,990
ู„ู…ุง ุฃุตู„ ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ุขุฎุฑ term ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ
678
00:57:17,990 --> 00:57:28,270
ู‡ูŠูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ b minus a ููŠ f ูŠุนู†ูŠ n ุงู„ู„ูŠ ู‡ูŠ
679
00:57:28,270 --> 00:57:41,300
ุจูŠุตูŠุฑ ุจุงุชู†ูŠู† b minus a ููŠ f prime of a ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
680
00:57:41,300 --> 00:57:46,360
1 factorial ุฒูŠ ู…ุง ู‡ูŠ ุฒุงุฆุฏ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู€
681
00:57:46,360 --> 00:57:51,200
integration ุชุจุนู‡ุง ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุนู†ุฏ n ุจุฌุฏู‘ุงุดู‡ุง ุฃู†ุง ุจู€ 2
682
00:57:51,200 --> 00:57:56,060
n ุจู€ 2 ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ 1 ุฅู„ู‰ 0 factorial ูŠุนู†ูŠ ุจูŠุตูŠุฑ
683
00:57:56,060 --> 00:58:00,060
ุงู„ู„ูŠ ู‡ูˆ 1 ุจู…ุนู†ู‰ ุขุฎุฑ ูุงู„ู€ integration ู…ู† a ู„ุนู†ุฏ b
684
00:58:00,060 --> 00:58:06,660
ูˆู‡ุฐุง ุจูŠุตูŠุฑ b minus t ุฃูุณู‘ 0 ูŠุนู†ูŠ 1 ููŠ f prime of dt
685
00:58:08,080 --> 00:58:12,180
ู„ู…ุง ุฃูƒุฑู‘ุฑ ุงู„ุนู…ู„ูŠุฉ ุฃุธู„ู‘ ุฃูƒุฑู‘ุฑู‡ุง ู„ู…ุง ุฃุตู„ ู„ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ
686
00:58:12,180 --> 00:58:17,620
ูˆุญู†ู‘ุชูŠ ู„ุฃู†ู‘ ุงู„ู€ n is finite ูˆูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู‚ุฏุงุฑ
687
00:58:17,620 --> 00:58:20,220
ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ summation ุทุจุนุงู‹ ูƒู„ู‡
688
00:58:20,220 --> 00:58:23,060
ุจุงู„ุณุงู„ุจ ู‡ุฐุง ู…ุน ู‡ุฐุง ุงู„ุฃุฎูŠุฑ ุจุงู„ู…ูˆุฌุจ ุจูŠุตูŠุฑ ู†ุงู‚ุต ุงู„ู€
689
00:58:23,060 --> 00:58:32,660
summation ู„ู€ b minus a ุฃูุณู‘ k ุนู„ู‰ k factorial ููŠ f k of
690
00:58:32,660 --> 00:58:43,520
a k ุงู„ุขู† ู…ู† ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุนู†ุฏ ูˆุงุญุฏ ู‡ูŠู‡ุง ู„ุนู†ุฏ ู…ูŠู†
691
00:58:43,520 --> 00:58:51,280
ู„ุนู†ุฏ n ู‡ุฐุง ู…ุฌู…ูˆุน ู…ู† ู‡ู†ุง ู…ู† ู‡ู†ุง ู„ู‡ู†ุง ู‡ุฐุง ูƒู„ู‡ ููŠ
692
00:58:51,280 --> 00:58:56,640
ู‚ูŠุจ ูˆุงุญุฏ ุจุชุทู„ุน ู‡ุฐู‡ kูŠุจ 2 ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ุงู† kูŠุจ 3 ู„ู…ุง
693
00:58:56,640 --> 00:58:59,580
ู†ู‚ุตู‡ุง ู„ูƒูŠุจ n ุจุชุทู„ุน ุงู„ู„ูŠ ุนู†ุฏู‡ุง ู‡ุงู† ุฒุงุฆุฏ ุงู„ู€
694
00:58:59,580 --> 00:59:02,580
integration ู‡ุฐุง ุงู„ู€ integration ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ f
695
00:59:02,580 --> 00:59:05,660
continuous ุงู„ู„ูŠ ุนู†ุฏ ุงู„ู€ integration ู„ู„ู€ f ุทุจุนุงู‹ ุงู„ู€ f
696
00:59:05,660 --> 00:59:08,820
ู†ูุณู‡ุง ูƒุงู†ุช continuous ูุงู„ู€ integration ู‡ุฐุง ุจูุฑุถ ุถู…ู†
697
00:59:08,820 --> 00:59:11,140
ุงู„ู€ fundamental of calculus ุนู„ู‰ ุทูˆู„ ุจูŠุทู„ุน ุนุจุงุฑุฉ ุนู† f
698
00:59:11,140 --> 00:59:20,780
of b ู†ุงู‚ุต ู…ู† f of a ู…ุงุดูŠ ุงู„ุญุงู„ ูุจูŠุตูŠุฑ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ
699
00:59:20,780 --> 00:59:28,010
ูˆุตู„ู†ุง ู„ู„ูŠ ุจุฏู‘ู†ุง ุฅูŠุงู‡ ูƒูŠูุŸ ุดูˆู ูƒูŠู ูˆุตู„ู†ุง ู„ู„ู†ุชูŠุฌุฉ ุงู„ุขู†
700
00:59:28,010 --> 00:59:37,210
ุทู„ุนุช ุนู†ุฏูŠ ุฎู„ู‘ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ remainder ุงุญู†ุง ุงู„ู€ f of
701
00:59:37,210 --> 00:59:42,430
P ุฎู„ูŠู‡ุง ููŠ ุงู„ุฌู‡ุฉ ู‡ุฐู‡ ูˆุงู†ู‚ู„ ูƒู„ู‡ ู‡ู†ุง ูุจูŠุตูŠุฑ F of P
702
00:59:42,430 --> 00:59:48,760
ุจุณุงูˆูŠ ู‡ุฐู‡ ุจุชู†ุถู ู„ู‡ุฐู‡ ู…ุง ู‡ูŠ ู†ุงู‚ุต ุงู„ุซุงู†ูŠุฉ ุจูŠุตูŠุฑ ..
703
00:59:48,760 --> 00:59:51,380
ู„ู…ุง ุชูŠุฌูŠ ุงู„ุฌู‡ุชูŠู† ุนู„ูŠ ุงู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ ู…ูˆุฌุฉ ุจุณ
704
00:59:51,380 --> 00:59:57,440
summation ู„ู€ B minus A ุฃูุณ K FK the derivative ู‡ุฐู‡
705
00:59:57,440 --> 01:00:04,160
of A ุนู„ู‰ K factorial K ุงู„ู€ N ู…ู† ูˆุงุญุฏ ู„ุนู†ุฏ N ูˆู‡ุฐู‡
706
01:00:04,160 --> 01:00:09,340
ุญุงู„ุฉ ุงู„ุณูุฑ K ู…ู† ุตูุฑ ู„ุนู†ุฏ N ุฒุงุฆุฏ ู…ูŠู† ุงู„ู€ remainder
707
01:00:09,340 --> 01:00:13,900
are n ู„ูŠุด ุญุงู„ุฉ ุงู„ุณูุฑ ู‡ุฐู‡ ู„ุฃู† ููŠ ุญุงู„ุฉ K ุจุตูุฑ ุจูŠุตูŠุฑ
708
01:00:13,900 --> 01:00:17,500
ู‡ุฐุง ูˆุงุญุฏ ูˆู‡ุฐุง ูˆุงุญุฏ ูˆู‡ุฐุง ู…ุงููŠุด derivative ูŠุนู†ูŠ
709
01:00:17,500 --> 01:00:22,320
ุจูŠุตูŠุฑ F of A ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ F of B ุจุณุงูˆูŠ ุงู„
710
01:00:22,320 --> 01:00:25,160
summation ุฒุงุฆุฏ ุงู„ remainder are n the remainder
711
01:00:25,160 --> 01:00:30,500
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุงุญู†ุง ุจุฏุฃู†ุง ููŠู‡ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ูุนู„ุง ุฃู†ุง
712
01:00:30,500 --> 01:00:36,940
ู‚ุฏุฑุช ุฃูƒุชุจ ุงู„ู„ูŠ ู‡ูŠ ุงู„ F of B ุนู„ู‰ ุงู„ุตูˆุฑุฉ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ
713
01:00:36,940 --> 01:00:42,600
ู‡ูŠูƒ ุจู†ูƒูˆู† ุงุญู†ุง ุจุฑู‡ู†ุง Taylor's theorem ูˆู‡ูŠ ุขุฎุฑ
714
01:00:42,600 --> 01:00:48,860
ุฌุฒุก ููŠ ู‡ุฐุง ุงู„ section ูˆุงู„ุขู† ุฅู† ุดุงุก ุงู„ู„ู‡ ุจูƒูˆู†
715
01:00:48,860 --> 01:00:54,800
ุฎู„ุตู†ุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู…ุญุงุถุฑุฉ ูˆู†ุจุฏุฃ ุฅู† ุดุงุก ุงู„ู„ู‡
716
01:00:54,800 --> 01:00:58,740
ุจุนุฏ ุดูˆูŠุฉ ููŠ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุจุงุฑูƒ ุงู„ู„ู‡ ููŠูƒู