|
1 |
|
00:00:05,300 --> 00:00:13,060 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุญุงุถุฑุฉ ุงูุณุงุฏุณุฉ ู
ุณุงู ุชุญููู |
|
|
|
2 |
|
00:00:13,060 --> 00:00:18,680 |
|
ุญูููุฉ 2 ูุทูุจุฉ ูุณู
ุฑูุงุถูุงุช ุจูููุฉ ุงูุนููู
ุจุงูุฌุงู
ุนุฉ |
|
|
|
3 |
|
00:00:18,680 --> 00:00:23,220 |
|
ุงูุฅุณูุงู
ูุฉ ุจุบุฒุฉ. ุงูุญุฏูุซ ุงูููู
ุฅู ุดุงุก ุงููู ููููู ุญูู |
|
|
|
4 |
|
00:00:23,220 --> 00:00:30,200 |
|
ููุงุนุฏ ููุจูุชุงู (L'Hรดpital's Rules) |
|
|
|
5 |
|
00:00:30,200 --> 00:00:38,320 |
|
ุจุชู
ุฑ ูู ุงูุชูุงุถู ูุงูุชูุงู
ู (calculus) ุจุชู
ุฑ ู
ู ูุงุญูุฉ |
|
|
|
6 |
|
00:00:38,320 --> 00:00:45,100 |
|
ุนู
ููุฉ ุงุณุชุฎุฏุงู
ูุง ูุชูุธูููุง ูุญู ุงููู ูู ุจุนุถ ุงูููุงูุงุช |
|
|
|
7 |
|
00:00:45,100 --> 00:00:50,400 |
|
ุงููู ุจูููู .. ุงููู ูู ุนุฌุฒูุง ุนู ุญููุง ุจุทุฑู ุนุงุฏูุฉ |
|
|
|
8 |
|
00:00:51,750 --> 00:00:57,550 |
|
ููุดูู ุงูุขู ูู ุงูุญุฏูุซ ุนู ููุงุนุฏ ููุจูุชุงู ุญูู ุงููู |
|
|
|
9 |
|
00:00:57,550 --> 00:01:01,570 |
|
ูู ููู ุงููู ูู ุฃู ูุจุฑูู ูุฐู ุงููู ูู ุงูููุงุนุฏ ููู ูุดุชู |
|
|
|
10 |
|
00:01:01,570 --> 00:01:06,310 |
|
ูุฐู ุงูููุงุนุฏ ููู ุงููู ูู ุฃูุถูุง ุจุดูู ุณุฑูุน ุญูู ุงููู |
|
|
|
11 |
|
00:01:06,310 --> 00:01:12,490 |
|
ูู ุงุณุชุฎุฏุงู
ูุฐู ุงูููุงุนุฏ ุทุจุนูุง |
|
|
|
12 |
|
00:01:12,490 --> 00:01:16,430 |
|
ูู ุงูุฃูู ููุชุญุฏุซ ุนู ุงููู
ูุงุช ุงูุบูุฑ ู
ุนููุฉ |
|
|
|
13 |
|
00:01:17,020 --> 00:01:23,580 |
|
(indeterminate forms) ุงููู ูู ุงููู ุจุชุนุงูุฌูุง ุงููู ูู |
|
|
|
14 |
|
00:01:23,580 --> 00:01:28,840 |
|
ููุงุนุฏ ููุจูุชุงู (L'Hรดpital's Rules) ุนูุฏู ุนูู ุณุจูู ุงูู
ุซุงู ูู ุฌููุง ุฃุฎุฏูุง |
|
|
|
15 |
|
00:01:28,840 --> 00:01:37,090 |
|
ุงูู limit ุงููู ูู x ุนูู x<sup>3</sup> ุนูู x<sup>2</sup> ู
ุซููุง as x |
|
|
|
16 |
|
00:01:37,090 --> 00:01:44,730 |
|
goes to zero ุงูู limit ฮฑx ุนูู x ูู
ุง x ุชุฑูุญ ููุฒูุฑู |
|
|
|
17 |
|
00:01:44,730 --> 00:01:50,670 |
|
ุงูู limit ุงููู ูู x<sup>2</sup> ุนูู x ูู
ุง x ุชุฑูุญ ููุฒูุฑู |
|
|
|
18 |
|
00:01:50,670 --> 00:01:59,900 |
|
ุงูู limit x ุนูู x<sup>3</sup> ูู
ุง x ุชุฑูุญ ููุฒูุฑู ุงูู limit ู
ุซููุง |
|
|
|
19 |
|
00:01:59,900 --> 00:02:07,100 |
|
-x ุนูู x<sup>3</sup> ูู
ุง x ุชุฑูุญ ูู 0 ูู ุทูุนูุง ุนูู |
|
|
|
20 |
|
00:02:07,100 --> 00:02:11,440 |
|
ุงููู ูู ุงูู limits ุงููู ู
ูุฌูุฏุฉ ููุง ูููุง ุนูู ุตูุฑุฉ |
|
|
|
21 |
|
00:02:11,440 --> 00:02:16,260 |
|
ุงููู ูู ูู ุชุนููุถ ู
ุจุงุดุฑ ูููุงูููุง ุนูู ุตูุฑุฉ 0 ุนูู 0 |
|
|
|
22 |
|
00:02:16,960 --> 00:02:21,420 |
|
ุงูุขู ูู
ูุฉ 0 ุนูู 0 ุจุงูุทุฑู ุงูุณุงุจูุฉ ูุงู ุงููู ูู ุฃูู |
|
|
|
23 |
|
00:02:21,420 --> 00:02:27,620 |
|
ุงุญูุง ุตุนุจ ุงููู ูู ูุชุนุงู
ู ู
ุนูุง ููู ูู ุจุนุถ ุงูุฃุญูุงู ุฒู |
|
|
|
24 |
|
00:02:27,620 --> 00:02:30,520 |
|
ุงูุญุงูุฉ ูุฐู ูููุงูู ุฃูู ุงุญูุง ุจูุนุฑู ูุชุนุงู
ู ู
ุนูุง ู |
|
|
|
25 |
|
00:02:30,520 --> 00:02:36,140 |
|
ุจูุนุฑู ูุญูู
ุนูููุง ุงููู ููุงุญุธ ุฃูู ูู ุฑุบู
ุฃู ูููุง 0 |
|
|
|
26 |
|
00:02:36,140 --> 00:02:41,100 |
|
ุนูู 0 ุฅูุง ุฃููุง ุจุชุนุทู ูู ูู ุญุงูุฉ ุดูุก ู
ุฎุชูู ุนู |
|
|
|
27 |
|
00:02:41,100 --> 00:02:47,350 |
|
ุงูุญุงูุฉ ุงูุซุงููุฉ ุงูุขู ูุฐู ู
ุซููุง ุนุจุงุฑุฉ ุนู ุงูู limit 1 ุนูู x |
|
|
|
28 |
|
00:02:47,350 --> 00:02:51,030 |
|
ูู
ุง x ุชุฑูุญ ููู 0 ุทุจุนูุง 1 ุนูู x ูู
ุง x ุชุฑูุญ ููู 0 ุฅูุด |
|
|
|
29 |
|
00:02:51,030 --> 00:02:53,710 |
|
ู
ุงููุงุ does not exist ูุฃูู ู
ู ุงููู
ูู ุจุชุนุทู ู
ุง ูุง ููุงูุฉ |
|
|
|
30 |
|
00:02:53,710 --> 00:02:56,790 |
|
ูู
ู ุงููุณุงุฑ ุจุชุนุทู ุณุงูุจ ู
ุง ูุง ููุงูุฉ ุนุดุงู ููู |
|
|
|
31 |
|
00:02:56,790 --> 00:03:02,510 |
|
ูุฏู ูุจูู ูููู ุนููุง does not exist ูุฃู ุงูู limit ฮฑx |
|
|
|
32 |
|
00:03:02,510 --> 00:03:06,210 |
|
ุนูู x ูู
ุง x ุชุฑูุญ ููู 0 ูู ูุณุงูู ุนุจุงุฑุฉ ุนู ฮฑ |
|
|
|
33 |
|
00:03:06,960 --> 00:03:09,720 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู ุนุฏุฏ ุญูููู (real number) ูู ูุฑุถูุง ุฃูู ฮฑ |
|
|
|
34 |
|
00:03:09,720 --> 00:03:13,480 |
|
ู
ุงุฎุฏูููุง ุงุญูุง ุนุฏุฏ ุญูููู (real number) ุฅุฐุง ุฃูุง ุฃุนุทุชูู ุนุฏุฏ |
|
|
|
35 |
|
00:03:13,480 --> 00:03:16,320 |
|
ุฃูู ู
ุง ุฃุนุทุชูู ุงููู ูู ุฃูุง ุฃุนุทุชูู does not exist |
|
|
|
36 |
|
00:03:16,320 --> 00:03:20,620 |
|
ุงูุญุงูุฉ ุงูุซุงููุฉ ุงููู ูู ุจุชุทูุน ุงูู limit x ูู
ุง x ุชุฑูุญ ู |
|
|
|
37 |
|
00:03:20,620 --> 00:03:24,330 |
|
0 ุจุฑุถู ุฃุนุทุชูุง ุฅููุ ุฃุนุทุชูุง ุนุฏุฏ ุญูููู (real number) ูู ุงูุญุงูุฉ ุงููู |
|
|
|
38 |
|
00:03:24,330 --> 00:03:28,670 |
|
ุจุนุฏูุง ุฃุนุทุชูุง ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูู limit 1 ุนูู x<sup>2</sup> |
|
|
|
39 |
|
00:03:28,670 --> 00:03:32,790 |
|
ูู
ุง x ุชุฑูุญ ููุตูุฑ ูุนูู ุฃุนุทุชูุง ุฅูุดุ ู
ุงููุงุ ุฒุงุฆุฏ ู
ุง ูุง ููุงูุฉ |
|
|
|
40 |
|
00:03:32,790 --> 00:03:37,070 |
|
ูู ุงูุญุงูุฉ ุงูุซุงูุซ ุงูุฃุฎูุฑุฉ ูุชุนุทููุง ุงููู ูู |
|
|
|
41 |
|
00:03:37,070 --> 00:03:42,770 |
|
ูุงูุต ุงูู limit 1 ุนูู x<sup>2</sup> ูู
ุง x ุชุฑูุญ ููุฒูุฑู ุจู
ุนูู |
|
|
|
42 |
|
00:03:42,770 --> 00:03:46,700 |
|
ุขุฎุฑ ุณุงูุจ ู
ุง ูุง ููุงูุฉ ูุนูู ุงูู Indeterminate Form Zero |
|
|
|
43 |
|
00:03:46,700 --> 00:03:51,880 |
|
ุนูู Zero ุฃุนุทุชูุง ุงููู ูู ุฃุฌูุจุฉ ุฃู ููู
ู
ุฎุชููุฉ ุชุงุจุนูุง |
|
|
|
44 |
|
00:03:51,880 --> 00:03:56,280 |
|
ูุทุจูุนุฉ ูู ุญุงูุฉ ู
ู ุงูุญุงูุงุช ุงููู ู
ูุฌูุฏุฉ ู
ุฑุฉ ุฃุนุทุชูุง |
|
|
|
45 |
|
00:03:56,280 --> 00:03:59,700 |
|
doesn't exist ู
ุฑุฉ ุฃุนุทุชูุง ู
ุง ูุง ููุงูุฉ ูู
ุฑุฉ ุฃุนุทุชูุง ู
ุง ูุง |
|
|
|
46 |
|
00:03:59,700 --> 00:04:03,640 |
|
ููุงูุฉ ู1 5 6 ูุงูุต 1 ุงููู ุจุฏูุงูุง ุงููู ูู |
|
|
|
47 |
|
00:04:03,640 --> 00:04:09,020 |
|
ูุงูุต ู
ุง ูุง ููุงูุฉ ูู
ุง ูุง ููุงูุฉ ุงูุขู ุงูู ุงูู ุงูู ุงูู |
|
|
|
48 |
|
00:04:09,020 --> 00:04:13,780 |
|
ุงูู Indeterminate form ูุฐู ุงููู ุงูุขู ูุนูู ุจุฏูุง |
|
|
|
49 |
|
00:04:13,780 --> 00:04:19,780 |
|
ูุญุงูู ูุนุงูุฌูุง ุจู |
|
|
|
50 |
|
00:04:19,780 --> 00:04:25,400 |
|
ูุญุงูู ูุนุงูุฌูุง ุจู ุงูู ุงูู ุจููุงุนุฏ ููุจูุชุงู (L'Hรดpital's Rules) ุงูู |
|
|
|
51 |
|
00:04:25,400 --> 00:04:28,640 |
|
Indeterminate Form ุงููู ุนูุฏูุง ุงููู ูู 0 ุนูู 0 ุทุจุนูุง |
|
|
|
52 |
|
00:04:28,640 --> 00:04:33,240 |
|
ูู Indeterminate Form ุฃุฎุฑู ุจุฑุถู ูุชุนุงูุฌูุง ุงููู ูู ุงูู L |
|
|
|
53 |
|
00:04:33,240 --> 00:04:38,620 |
|
'Hรดpital's Rule ุฃู Rules ุงููู ูู ุฒู ู
ุง ูุง ููุงูุฉ ุนูู |
|
|
|
54 |
|
00:04:39,400 --> 00:04:43,280 |
|
ู
ุง ูุง ููุงูุฉ ุฃูุถูุง ูุฐูู ุงูุดุบูุชูู ุงูุฃุณุงุณูุงุช ุงููู |
|
|
|
55 |
|
00:04:43,280 --> 00:04:47,480 |
|
ูุชุนุงูุฌูุง ุงููู ุจููุงุนุฏ ููุจูุชุงู (L'Hรดpital's Rule) ู
ุจุงุดุฑุฉ ุจูุธุฑูุงุช ู
ุจุงุดุฑุฉ |
|
|
|
56 |
|
00:04:47,480 --> 00:04:51,240 |
|
ุนูููุง ุฃูุถูุง ูุชุธูุฑ ูู ุธูุฑุช ุนูุฏูุง ู
ุซููุง ู
ุง ูุง ููุงูุฉ ูุงูุต |
|
|
|
57 |
|
00:04:51,240 --> 00:04:55,640 |
|
ู
ุง ูุง ููุงูุฉ ุงููู ูู Zero to Infinity Infinity to Zero |
|
|
|
58 |
|
00:04:55,640 --> 00:05:01,160 |
|
ุฅูู ุขุฎุฑู ูุฐููู ุญุงูุงุช ุฃุฎุฑู ุงููู ูู ุจููุฏุฑ ูุญูููู
ุนู |
|
|
|
59 |
|
00:05:01,160 --> 00:05:04,800 |
|
ุทุฑูู ุงูู ln ุฃู ุนู ุทุฑูู ุงูู exponential ุฃู ุจุทุฑู |
|
|
|
60 |
|
00:05:04,800 --> 00:05:08,820 |
|
ู
ุนููุฉ ูููู ูู ุงูู formula ูุฐู ูู
ู ุซู
ุงุณุชุฎุฏุงู
ุงููู |
|
|
|
61 |
|
00:05:08,820 --> 00:05:12,240 |
|
ูู ููุงุนุฏ ููุจูุชุงู (L'Hรดpital's Rules) ูุฐู ุนุงุฏุฉ ุงูุดุบูุงุช ุงููู ูุงูุช |
|
|
|
62 |
|
00:05:12,240 --> 00:05:16,460 |
|
ุชุนุงูุฌูุง ุงููู
ูู ุงููู ูู ุงูู calculus ุฃู ุงูุชูุงุถู ุงููู |
|
|
|
63 |
|
00:05:16,460 --> 00:05:20,500 |
|
ุฃุฎุฏูุงู ูู ุณูุฉ ุฃููู ุฃู ุณูุฉ ุฃููู ุฃู ุณูุฉ ุซุงููุฉ ูุทูุน |
|
|
|
64 |
|
00:05:20,500 --> 00:05:26,260 |
|
ูููู ููุฌู ุงูุขู ูุฃุฎุฐ ุงููุธุฑูุฉ ุงูุฃููู ุงููู ูู ูููุงุนุฏ |
|
|
|
65 |
|
00:05:26,260 --> 00:05:30,540 |
|
ููุจูุชุงู ุงูุฃููู ุงูู formula ุงูุฃููู ุฃู ุงูุตูุฑุฉ ุงูุฃููู |
|
|
|
66 |
|
00:05:30,540 --> 00:05:35,660 |
|
ูุธุฑูุฉ ุจุณูุทุฉ ููุธุฑูุฉ ู
ุฑุช ุนูููู
ูุฅุซุจุงุชูุง ุฃูุถูุง |
|
|
|
67 |
|
00:05:35,660 --> 00:05:41,200 |
|
ูุชูุงุญุธูุง ุฃูู ุงููู ูู ุจุณูุท ุฅูุด ุงููุธุฑูุฉ ุจุชูููุ ุจุชููู |
|
|
|
68 |
|
00:05:41,200 --> 00:05:43,680 |
|
ู
ุง ููู ุนูุฏู |
|
|
|
69 |
|
00:05:45,330 --> 00:05:51,250 |
|
Let F be defined ุนูู ุงููุชุฑุฉ ุงูู
ุบููุฉ A ูB ูููุชุฑุถ ุฃู |
|
|
|
70 |
|
00:05:51,250 --> 00:05:55,630 |
|
F of A ูG of A ู
ุง ูุณุงููุ ุตูุฑ ูููุชุฑุถ ุฃู G of X ูุง |
|
|
|
71 |
|
00:05:55,630 --> 00:06:00,470 |
|
ุชุณุงูู ุตูุฑ ูู ุงููุชุฑุฉ ุงููู ูู ุจูู A ูB ูููุชุฑุถ ูู |
|
|
|
72 |
|
00:06:00,470 --> 00:06:04,420 |
|
ูุงูุช F ูG differentiable ุนูุฏ ุงูู A ูG' ุนูุฏ ุงูู A |
|
|
|
73 |
|
00:06:04,420 --> 00:06:07,880 |
|
ูุง ูุณุงูู ุตูุฑ ู
ูุชุฑุถูู G' ูุง ูุณุงูู ุตูุฑ then the |
|
|
|
74 |
|
00:06:07,880 --> 00:06:14,240 |
|
limit of F ุนูู G at A exist ูุชุณุงูู F' ุนูู G' ู |
|
|
|
75 |
|
00:06:14,240 --> 00:06:19,580 |
|
ุฅุฐุง ูุงู ุชุญุช ูู ูุฐุง ุงูุดุฑูุท ุจูุทูุน ุนูุฏู ุงููู ูู ุงู |
|
|
|
76 |
|
00:06:19,580 --> 00:06:24,320 |
|
limit had exist ูุจุงูุถุจุท ูุฐุง ุงูู limit ุจูุณุงูู F' ุนูู |
|
|
|
77 |
|
00:06:24,320 --> 00:06:29,780 |
|
G' of A ุนูู F' of A ูุดูู ุงููุธุฑูุฉ ููุดูู ุจุฑูุงู ุงููุธุฑูุฉ |
|
|
|
78 |
|
00:06:29,780 --> 00:06:38,960 |
|
(theorem) ุนูุฏู ู
ุงุฎุฏ ุงูู F ูุงูู G ุนุจุงุฑุฉ ุนู ุฏูุงู ู
ู A |
|
|
|
79 |
|
00:06:38,960 --> 00:06:47,280 |
|
ูB ูุนูุฏ R ู
ูุชุฑุถ ุฃู ุงูู F of A ุจูุณุงูู ุงูู G of A |
|
|
|
80 |
|
00:06:47,280 --> 00:06:53,680 |
|
ุจูุณุงูู ุฅูุดุ ุจูุณุงูู ุตูุฑ ูู
ูุชุฑุถ ุฃู ุงูู G of X |
|
|
|
81 |
|
00:06:58,040 --> 00:07:09,500 |
|
ูุง ุชุณุงูู 0 ููู X ูู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ A ูB ูุฑุถูุง |
|
|
|
82 |
|
00:07:09,500 --> 00:07:16,260 |
|
ูู
ุงู F ูG differentiable ุนูุฏ ุงูู A F prime |
|
|
|
83 |
|
00:07:16,260 --> 00:07:22,740 |
|
of A ูG prime of A exists 60 2 ููุฐู ูุง ุชุณุงูู |
|
|
|
84 |
|
00:07:22,740 --> 00:07:29,900 |
|
ุฅูุดุ ูุง ุชุณุงูู ุตูุฑ ุชุญุช ูุฐู ุงูุธุฑูู ูููุง ุจูููู ุนูุฏู ุงูู limit |
|
|
|
85 |
|
00:07:29,900 --> 00:07:38,410 |
|
f of x ุนูู g of x as x ุจุชุฑูุญ ูู a ุทุจุนูุง ุงู a ุงููุชุฑุฉ |
|
|
|
86 |
|
00:07:38,410 --> 00:07:43,390 |
|
ุงููู ุนูุฏูุง ูู ูุชุฑุฉ ู
ู ูููุ ู
ู ุนูุฏ a ูุนูุฏ b ุฅุฐุง |
|
|
|
87 |
|
00:07:43,390 --> 00:07:46,270 |
|
ุฃููุฏ ุงู x ุฅุฐุง ุชุฑูุญ ูู a ู
ุง ููุด ู
ุฌุงู ููุง ุงู x ุงููู |
|
|
|
88 |
|
00:07:46,270 --> 00:07:49,210 |
|
ุจุชุฑูุญ ูู a ุงููู ู
ู ูููุ ู
ู ุฌูุฉ ุงููู
ูู ูุฃูู ูู |
|
|
|
89 |
|
00:07:49,210 --> 00:07:52,450 |
|
ุงูู
ูุทูุฉ ุงููู ุฃูุง ุนู
ุงู ูุงุนุฏ ุจุดุชุบู ูููุง ุงููุชุฑุฉ ู
ู a ู |
|
|
|
90 |
|
00:07:52,450 --> 00:07:57,870 |
|
b ุฅุฐุง ุงู x ุจุชุฑูุญ ูู a ู
ู ูููุ ู
ู ุงููู
ูู ููุณุงูู ุงููู |
|
|
|
91 |
|
00:07:57,870 --> 00:08:06,930 |
|
ูู f prime ุนูุฏ ุงู a ุนูู g prime ุนูุฏ ุงูู A ูุนูู |
|
|
|
92 |
|
00:08:06,930 --> 00:08:09,910 |
|
ุจู
ุนูู ุขุฎุฑ ุฅูุด ุงููู .. ุฅูุด .. ุฅูุด .. ุฅูุด .. ููู ูู
|
|
|
|
93 |
|
00:08:09,910 --> 00:08:13,650 |
|
ูุทุจู ูุฐู ุงููุธุฑูุฉุ ูุงูุช ุชุนุฑุถ ุนูููุง ุงูู limit ููุฌู |
|
|
|
94 |
|
00:08:13,650 --> 00:08:19,650 |
|
ูููู ููุง ุฃูุฌุฏ ุงูู limit ููู F of X ุนูู G of X ูู
ุง X |
|
|
|
95 |
|
00:08:19,650 --> 00:08:25,090 |
|
ุชุฑูุญ ูู
ููุ ูู A ู
ู ุงููู
ูู ููุฌู ุงูุขู ุงูู F of A ูุนูุถ |
|
|
|
96 |
|
00:08:25,090 --> 00:08:29,500 |
|
ุชุนููุถ ู
ุจุงุดุฑ ุฏู ุทูุนุช ุนูุฏ 0 ุนูู 0 ููุงูุช ุนูุฏู ุงูุดุฑูุท |
|
|
|
97 |
|
00:08:29,500 --> 00:08:32,520 |
|
ูุฐู ู
ูุชู
ูุฉ ุงููู ูู ุงูู F ูุงูู G differentiable ู |
|
|
|
98 |
|
00:08:32,520 --> 00:08:36,080 |
|
ุงูู F prime ูุงูู G prime ู
ูุฌูุฏุงุช ุนูุฏ ุงูู A ุนูู ุทูู |
|
|
|
99 |
|
00:08:36,080 --> 00:08:42,420 |
|
ูุญุท ูุฐู ุฅูุดุ ุจุชุณุงูู F prime of A ุนูู G prime of A |
|
|
|
100 |
|
00:08:42,420 --> 00:08:48,880 |
|
ู
ุนุงูุง ููุฐู ุงููู ูู .. ุงููู ูู .. ููููุฉ ุชุทุจูู |
|
|
|
101 |
|
00:08:48,880 --> 00:08:53,500 |
|
ุงููุธุฑูุฉ ููุฌู ูุฅุซุจุงุช ุจุฑูุงู ุงููุธุฑูุฉ ุงูุจุฑูุงู ุจุณูุท |
|
|
|
102 |
|
00:08:53,500 --> 00:08:54,680 |
|
ุนูุฏู |
|
|
|
103 |
|
00:08:59,270 --> 00:09:11,330 |
|
ุฎุฐ ุนูุฏู for x ุจูู a ูุจูู b ูู ุฌูุช ุญุณุจุช ุงููุฏู |
|
|
|
104 |
|
00:09:11,330 --> 00:09:18,970 |
|
ุงููุฏู ุงูู
ูุฌูุฏุฉ ูุฐู ุงูู f of x ุนูู g of x ุฅูุด ูุชุณุงููุ |
|
|
|
105 |
|
00:09:18,970 --> 00:09:28,250 |
|
ูุชุณุงูู f of x ูุงูุต f of a ุนูู g of x ูุงูุต g of a ููุดุ |
|
|
|
106 |
|
00:09:28,250 --> 00:09:31,110 |
|
ูุฃู ุงูู f of a ูุงูู d of a ููุดุ ู
ุง ุฃุนุทููุง ุฅูุงูู
ุจูุณุงูู |
|
|
|
107 |
|
00:09:31,110 --> 00:09:34,170 |
|
ุตูุฑ ููุด ุนู
ูุช ูููุ ูุฃ ุจุฏุฃุช ุฃุนู
ู ุฃูุซุฑ ู
ู ูู ุจุฏุฃุช ุฃุนู
ู |
|
|
|
108 |
|
00:09:34,170 --> 00:09:39,110 |
|
ุฃูุณู
ูุฐุง ุนูู x minus a ููุฐุง ุนูู x ู
ุง ููุง minus a |
|
|
|
109 |
|
00:09:40,060 --> 00:09:43,580 |
|
ุทุจูุนู ุงู x ูุง ุชุณุงูู ุงู a ุงูุขู ุฃูุง ุจุงุฎุฏ ุงูู limit |
|
|
|
110 |
|
00:09:43,580 --> 00:09:47,620 |
|
ููุฌูุชูู ูุจุชุฌุฑุฃ ูุจุฃุฎุฏ ู
ูุฒุน ูุฃู ุฃูุง ุถุงู
ู ู
ู ุงูู F |
|
|
|
111 |
|
00:09:47,620 --> 00:09:51,260 |
|
prime of A ู
ูุฌูุฏุฉ ูุงูู G prime of A ู
ูุฌูุฏุฉ ูู
ุด ููู |
|
|
|
112 |
|
00:09:51,260 --> 00:09:54,160 |
|
ููู
ุงู ุงูู G prime of A ูุง ุชุณุงูู 0 ุฅุฐุง ูู ุฃู
ูุฑู ุชู
ุงู
|
|
|
|
113 |
|
00:09:54,160 --> 00:09:58,220 |
|
ุงูุชู
ุงู
ุฅุฐุง ุจุฃุฎุฐ ุงูู limit ููุฌูุชูู ูู
ุง X ุชุฑูุญ ูู A |
|
|
|
114 |
|
00:09:58,220 --> 00:10:04,040 |
|
ู
ู ุงููู
ูู ุจูุณุงูู ุงูู limit ูู
ุง X ุชุฑูุญ ูู A ู
ู ุงููู
ูู |
|
|
|
115 |
|
00:10:05,480 --> 00:10:09,560 |
|
ูุงูุดูุก ุงููู ุชุญุช ูุฒุนุช ููุด ูุฒุนุชุ ุถุงู
ู ุฃู ุงูู limit |
|
|
|
116 |
|
00:10:09,560 --> 00:10:14,520 |
|
exist ูุงูู limit ุงููู ุชุญุช ูู
ุงู ูุง ุชุณุงูู ุตูุฑ ูุฐู |
|
|
|
117 |
|
00:10:14,520 --> 00:10:20,400 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ููุ ูุฐู ุชุนุฑูู F prime of A ููุฐู |
|
|
|
118 |
|
00:10:20,400 --> 00:10:26,660 |
|
ุชุนุฑูู G prime of A ุจููู ุฃูุง ุญุตูุช ุนูู ุงููู ูู ุงููู |
|
|
|
119 |
|
00:10:26,660 --> 00:10:33,300 |
|
ุจุฏู ุฅูุงู ูุฐู ุงููู ูู ุงููุธุฑูุฉ ุงูุฃููู ูู ุงููู ูู ูุฐุง ุงู |
|
|
|
120 |
|
00:10:33,300 --> 00:10:37,890 |
|
section ุงููู ูุนูู ุจุชุญุฐูุฑ ุจููู ูู ุฃูู ุฃูุช ูุนูู ุชุนุฑุถุช |
|
|
|
121 |
|
00:10:37,890 --> 00:10:46,230 |
|
ุนููู ุงูู limit 17x ููุง .. ูุฏุงุดุ ู
ุด ู
ุดููุฉ x ุฒุงุฆุฏ 17 ุฃูู |
|
|
|
122 |
|
00:10:46,230 --> 00:10:51,750 |
|
ูุงูุช ุจููุน x ุฒุงุฆุฏ 17 ุนูู 2x ุฒุงุฆุฏ 3 ู
ุซููุง ูู
ุง x ุชุฑูุญ |
|
|
|
123 |
|
00:10:51,750 --> 00:10:55,500 |
|
ูู
ููุ ููุตูุฑ ูู ู
ุด ู
ูููู
ูู
ุง ูุดูู ุนูู ุทูู ููุฑูุญ |
|
|
|
124 |
|
00:10:55,500 --> 00:11:00,960 |
|
ููุงุถู ุจููุนุด ุฃูุช ูุนูู ุจุชูุชุจุณ ุจูุตูุฑ ููุงุถู ุงูุฌูุชูู |
|
|
|
125 |
|
00:11:00,960 --> 00:11:06,340 |
|
ุจูุทูุน 1 ุนูู 2 ูุฃ ูู ุฃูุง ุจููู ุจุชุณุงูู ุงูู f |
|
|
|
126 |
|
00:11:06,340 --> 00:11:10,720 |
|
prime ุนูู g prime ุนูุฏ ุงู zero ูู
ุง ูููู ูุฏู zero ู |
|
|
|
127 |
|
00:11:10,720 --> 00:11:16,080 |
|
ูุฏู zero ููู ูุง ูุฏู zero ููุง ูุฏู zero ุฅุฐุง ุจููุนุด |
|
|
|
128 |
|
00:11:16,260 --> 00:11:21,280 |
|
ุชุญุฏูุฏ ูุฐุง ูููู ุจุชุณุงูู ุงููู ูู ุงูู limit ู
ู ูุนุด ูููู |
|
|
|
129 |
|
00:11:21,280 --> 00:11:24,540 |
|
ุจุชุณุงูู ุงูู limit 1 ุนูู 2 ุนูู ุงุนุชุจุงุฑ ูุงุถููุง |
|
|
|
130 |
|
00:11:24,540 --> 00:11:28,800 |
|
ููุณุงูู ูุตู ููุฐุง ุงูููุงู
ุบูุฑ ุตุญูุญ ูุฃู ุงูู limit ุฒู ู
ุง |
|
|
|
131 |
|
00:11:28,800 --> 00:11:32,800 |
|
ุฃูุชู
ุนุงุฑููู ููุฐุง ุงูู
ูุฏุงุฑ ุจุงูุชุนููุถ ุงูู
ุจุงุดุฑ ูู |
|
|
|
132 |
|
00:11:32,800 --> 00:11:42,780 |
|
ุนุจุงุฑุฉ ุนู 17 ุนูู 3 ูุฐุง ููุงู
ุณูู ูุฃุฎุฐ ู
ุซุงู ุชุทุจููู |
|
|
|
133 |
|
00:11:42,780 --> 00:11:48,310 |
|
ุนูู ุงููุธุฑูุฉ ุงููู ุนูุฏูุง ุงูู
ุซุงู ุงูุชุทุจููู ุจุฑุถู ู
ุซุงู |
|
|
|
134 |
|
00:11:48,310 --> 00:11:56,530 |
|
ู
ุจุงุดุฑ ุนุฑุถ ุนูููุง ุงูุขู example ุนุฑุถ |
|
|
|
135 |
|
00:11:56,530 --> 00:12:04,830 |
|
ุนูููุง ุจููู ุฃู ุฌุฏ ุงูู limit x<sup>2</sup> ุฒุงุฆุฏ x ุนูู sin 2x |
|
|
|
136 |
|
00:12:04,830 --> 00:12:09,530 |
|
ูู
ุง x ุชุฑูุญ ูู
ููุ ููุฒูุฑู ุจุงูู
ูุงุณุจุฉุ ุงููุธุฑูุฉ ุงููู ูุจู |
|
|
|
137 |
|
00:12:09,530 --> 00:12:13,070 |
|
ุจุดููุฉ ุญูููุง ุนููุง ุณูุงุก ูุงูุช ุงูู A ุงููู ุจุชุฑูุญ ููุง end |
|
|
|
138 |
|
00:12:13,070 --> 00:12:17,150 |
|
point ุฃู ููุทุฉ ุฏุงุฎููุฉ ุฃู ุญุชู left end point ุจุชุธุจุท |
|
|
|
139 |
|
00:12:17,150 --> 00:12:22,150 |
|
ุนูููุง ุงููุธุฑูุฉ ูุงูุจุฑูุงู similarly ู
ุงุดู ุงูุญุงูุ ูุงุถุญ |
|
|
|
140 |
|
00:12:22,150 --> 00:12:28,430 |
|
ูุงูุ ุทูุจุ ูุฅูู ุงูุณุจุจุ |
|
|
|
141 |
|
00:12:28,430 --> 00:12:34,390 |
|
ูุฃู ุงูุงุฎุชุจุงุฑ ุตูุฑ ุนูู ุตูุฑ ูุฐู differentiable ููุฐู |
|
|
|
142 |
|
00:12:34,390 --> 00:12:38,970 |
|
differentiable ูู ุฃู
ูุฑูุง ู
ูุฉ ููููุณุฉ ูู
ุด ูู ูู
ุงู |
|
|
|
143 |
|
00:12:38,970 --> 00:12:43,730 |
|
ููู ูุถูุช ูุชูุงูู ุงููู ููุง ูุง ูุณุงูู ุตูุฑ ุฅุฐุง ุนูู ุทูู |
|
|
|
144 |
|
00:12:43,730 --> 00:12:50,410 |
|
ุจููู 2x ุนูุฏ ุงูู zero ุจูุงุถู ุฌุงุนุฏ ูุจุนูุถ ูุนูู ูุฐู |
|
|
|
145 |
|
00:12:50,410 --> 00:12:56,950 |
|
ุณู
ูุชูุง ููุฃููุง F ููุฐู g f of x ููุฐู g of x ุจุนูุถ f |
|
|
|
146 |
|
00:12:56,950 --> 00:13:02,190 |
|
prime of zero ุจุนูุถ ููุง g prime of zero ุงูุขู f |
|
|
|
147 |
|
00:13:02,190 --> 00:13:06,490 |
|
prime of zero 2x ุฒุงุฆุฏ 1 ูู ุตูุฑ ุจูุตูุฑ 2 |
|
|
|
148 |
|
00:13:06,490 --> 00:13:11,850 |
|
ูู ุตูุฑ ุฒุงุฆุฏ 1 ูุชุญุช ุงููู ูู ุชูุงุถููุง 2 cosine |
|
|
|
149 |
|
00:13:11,850 --> 00:13:16,970 |
|
2x ุจูุตูุฑ 2 cosine 2x ูุนูุถ ุจุตูุฑ ุจูุตูุฑ |
|
|
|
150 |
|
00:13:16,970 --> 00:13:25,500 |
|
2 cosine 2 ูู ุตูุฑ ููุฐุง ูุนูู ุจูุณุงูู ุงููู ูู |
|
|
|
151 |
|
00:13:25,500 --> 00:13:30,140 |
|
1 ุนูู 2 ุนูู ุงุนุชุจุงุฑ ููุตุงูุฉ Zero ุจูุณุงูู 1 |
|
|
|
152 |
|
00:13:30,140 --> 00:13:36,760 |
|
ูุฐู ุงููู ูู ุชุทุจูู ุงููุธุฑูุฉ ุงููู ุนูุฏู ููุฌู ุงูุขู ููู |
|
|
|
153 |
|
00:13:36,760 --> 00:13:40,480 |
|
Cauchy Mean Value Theorem ุงูู Cauchy Mean Value |
|
|
|
154 |
|
00:13:40,480 --> 00:13:46,140 |
|
Theorem ุชุนู
ูู
ููู Mean Value Theorem ุงููู ุงุญูุง |
|
|
|
155 |
|
00:13:46,140 --> 00:13:52,050 |
|
ุนุงุฑููููุง ุจุฏู ู
ุง ูู ุนูู ุฏุงูุฉ ูุญูู ุนู ุฅูุด ุนู ุฏุงูุชูู |
|
|
|
156 |
|
00:13:52,050 --> 00:14:00,930 |
|
ูุดูู ุฅูุด ุงููู ุจููููู ุงููุธุฑูุฉ ุจุชููู ู
ุง ููู ูุฃู |
|
|
|
157 |
|
00:14:00,930 --> 00:14:11,690 |
|
theorem ุนูุฏ F ู G ุฏุงูุชูู ู
ู A ู B ู
ุงุฎุฏูู
ู
ู A ู B |
|
|
|
158 |
|
00:14:11,690 --> 00:14:17,390 |
|
ูุนูุฏ R ุฌุงู ูู ููุณ ุดุฑูุท ุงูู mean value theorem |
|
|
|
159 |
|
00:14:17,390 --> 00:14:22,150 |
|
ุงูุนุงุฏูุฉ ุจุฏู ู
ุง ูู ุนูู ุฏุงูุฉ ุฏุงูุชูู ุฌุงู ูู F ู G |
|
|
|
160 |
|
00:14:22,150 --> 00:14:35,270 |
|
continuous on A ู B and differentiable on O B ู
ุงุดู |
|
|
|
161 |
|
00:14:35,270 --> 00:14:42,230 |
|
ุงูุญุงู ูู
ุนุทููู ุฃูุถุงู ุจููููู ุงูู G prime ูู X ูุง ุชุณุงูู |
|
|
|
162 |
|
00:14:42,230 --> 00:14:49,110 |
|
ุตูุฑ ููู X ููู ู
ูุฌูุฏุฉ ูู ุงููA ูุงููB ุงููู ุฃูุง |
|
|
|
163 |
|
00:14:49,110 --> 00:14:59,190 |
|
ุจูููู ูู ุงููุชูุฌุฉ then there exist ููุชูุฌุฉ then then |
|
|
|
164 |
|
00:14:59,190 --> 00:15:09,250 |
|
ูุฐุง ููู ู
ุนุทู if this hold then then |
|
|
|
165 |
|
00:15:09,250 --> 00:15:18,160 |
|
there exist C Element in A ู B such that G ุฃู F |
|
|
|
166 |
|
00:15:18,160 --> 00:15:25,820 |
|
prime of C ุนูู G prime of C ุจูุณุงูู F of B ูุงูุต F of |
|
|
|
167 |
|
00:15:25,820 --> 00:15:35,360 |
|
A ุนูู G of B ูุงูุต G of A ุงูู proof ุฏู ููุงู
ุณูู |
|
|
|
168 |
|
00:15:35,360 --> 00:15:38,140 |
|
ูู
ุงู ุงูู proof ูุดูู ูุฏู |
|
|
|
169 |
|
00:15:41,590 --> 00:15:46,050 |
|
ุนูุฏู ูุง ุฌู
ุงุนุฉ ุฃูู ุฅุดู ูู ู
ุนุทููู ุฅูุด ู
ุงููุง g prime |
|
|
|
170 |
|
00:15:46,050 --> 00:15:51,650 |
|
of x ุฅูุด ู
ุงููุง ูุง ุชุณุงูู ุตูุฑ ุฅุฐุง by rules theorem |
|
|
|
171 |
|
00:15:51,650 --> 00:15:58,490 |
|
ููููู g of b ูุง ุชุณุงูู ู
ูู g of a ููู ุฃุฐูุฑูู
ุฃุฐูุฑูู
|
|
|
|
172 |
|
00:15:58,490 --> 00:16:03,950 |
|
ููู ุงูุขู ุฅูุด rules theorem ูุงูุช ุจุชููู g ู
ู a ู b |
|
|
|
173 |
|
00:16:03,950 --> 00:16:14,130 |
|
ูุนูุฏ r continuous on a ู b ู differentiable on a ู |
|
|
|
174 |
|
00:16:14,130 --> 00:16:21,270 |
|
b ูุฐุง ู
ุง ุฃุนุทููุง ุฅูุงู ูู ู
ุงุดู ุงูุญุงู ุจูููู ูู if g of |
|
|
|
175 |
|
00:16:21,270 --> 00:16:28,350 |
|
a ุจูุณุงูู g of b ุจูุณุงูู ุตูุฑ then ูู ูู ุงููุงูุน ุฒู ู
ุง |
|
|
|
176 |
|
00:16:28,350 --> 00:16:31,510 |
|
ูููุง ุฃู ุงู role theorem ุชููุน ูู ูููุง g of a ุจูุณุงูู |
|
|
|
177 |
|
00:16:31,510 --> 00:16:37,710 |
|
g of b ูุณูุชูุง ูุฃูู ุงูุดุงูุฏ ูู ุงูู
ูุถูุน ุฃูู ุงูู
ู
ุงุณ |
|
|
|
178 |
|
00:16:37,710 --> 00:16:41,920 |
|
ูููู ู
ุนุงู ู
ูุงุฒู ูู
ุญูุฑ ุงูุตููุงุช ุฃู ููู
ุง ุชููู ุงูู G of |
|
|
|
179 |
|
00:16:41,920 --> 00:16:45,440 |
|
A ุจูุณุงูู ุงูู G of B ูุณูุชูุง ุฃู ูุงุทุน ุจูููู
ููููู |
|
|
|
180 |
|
00:16:45,440 --> 00:16:48,520 |
|
ุนุจุงุฑุฉ ุนู ู
ูุงุฒู ูู
ุญูุฑ ุงูุณููุงุช ูุนูู ู
ุนูุงุชู ุงููู |
|
|
|
181 |
|
00:16:48,520 --> 00:16:52,220 |
|
ู
ู
ุงุซู ุงููู ุจูุฌู ููููู ู
ูุงุฒู ููุฐุง ูุนูู ู
ูุงุฒู ูู
ุญูุฑ |
|
|
|
182 |
|
00:16:52,220 --> 00:16:57,740 |
|
ุงูุณููุงุช ุทูุจ then .. then there exists C element in |
|
|
|
183 |
|
00:16:57,740 --> 00:17:03,520 |
|
A ู B such that G prime of C ุจูุณุงูู ุฅูุด ุจูุณุงูู ุตูุฑ |
|
|
|
184 |
|
00:17:03,520 --> 00:17:10,560 |
|
ุงูุขู ูุฐุง ู
ุนุทู ู
ูุฑุบ ู
ูู ุงููู ููู ู
ุนุทู ุนูุฏู ุงูุขู ุนูุฏู |
|
|
|
185 |
|
00:17:10,560 --> 00:17:14,640 |
|
ูู ูุงู g of a ุจูุณุงูู g of b ุจูุนุทููุง ุฃูู ููุฌุฏ ุตูุฑ ุจูู |
|
|
|
186 |
|
00:17:14,640 --> 00:17:18,000 |
|
ุงูู a ูุงูู b ุจุญูุซ ุฃู g prime of c ุฅุดู
ุงูู ูุง ุชุณุงูู |
|
|
|
187 |
|
00:17:18,000 --> 00:17:23,260 |
|
ุตูุฑ ููู ูู ู
ูุชุฑุถ ูู ุฃู g prime of x ูุง ุชุณุงูู ุตูุฑ ููู |
|
|
|
188 |
|
00:17:23,260 --> 00:17:26,540 |
|
x ูู ุงูู a ูุงูู b ูุนูู ุงูุขู ุงูู Contraposition ูู |
|
|
|
189 |
|
00:17:26,540 --> 00:17:30,800 |
|
ุงููู hold hand ูุนูู ุจู
ุนูู ุขุฎุฑ ุฃูู ุจู
ุง ุฃูู G prime |
|
|
|
190 |
|
00:17:30,800 --> 00:17:36,160 |
|
of X ูุง ุชุณุงูู 0 ููู X element in A ู B ููุนุทููุง ูุฐุง |
|
|
|
191 |
|
00:17:36,160 --> 00:17:40,940 |
|
ูููู B implies Q ุชูุงูุฆ not Q implies not B ููุฐุง |
|
|
|
192 |
|
00:17:40,940 --> 00:17:46,240 |
|
ูุณู ุนู
ูู ุฃูุง ุจู
ุง ุฃู g prime of x ูุง ูุณุงูู ุตูุฑ ููู |
|
|
|
193 |
|
00:17:46,240 --> 00:17:51,840 |
|
x ุทุจุนุงู ูู ุงููู ูู b ุฅุฐุง g of a ูุง ูุณุงูู ู
ููุ g of |
|
|
|
194 |
|
00:17:51,840 --> 00:17:59,900 |
|
b ูุงุถุญุ ุทูุจ ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุฃูู ุญุงุฌุฉ by Rolle's |
|
|
|
195 |
|
00:17:59,900 --> 00:18:09,850 |
|
theorem g of a ูุง ูุณุงูู g of b because G prime of X |
|
|
|
196 |
|
00:18:09,850 --> 00:18:15,670 |
|
ูุง ูุณุงูู ุตูุฑ ููู X ูุงููู ู
ูุฌูุฏุฉ ูู ุงููA ูุงููB ูุฐู |
|
|
|
197 |
|
00:18:15,670 --> 00:18:22,850 |
|
ุฃูู ููุทุฉ ุฎูุตูุง ูุฐู ุจุฑุฑูุงูุง ููุฌู ุงูุขู ุฒู ู
ุง ุนู
ููุง |
|
|
|
198 |
|
00:18:22,850 --> 00:18:26,270 |
|
ูู ุฅุซุจุงุช ุงููMean Value Theorem ุฅุฐุง ุจุชุชุฐูุฑูุง ุจุฏู |
|
|
|
199 |
|
00:18:26,270 --> 00:18:29,630 |
|
ุฃุนุฑู ุฏุงูุฉ ุฃุทุจู ุนูููุง ุจุฑุถู ุฎูู ุฑููุฒ ุงููTheorem |
|
|
|
200 |
|
00:18:29,630 --> 00:18:32,890 |
|
ู
ุทุจูุฉ ุฃู ุงููMean Value Theorem ู
ุทุจูุฉ ูุฃุญุตู ุนู |
|
|
|
201 |
|
00:18:32,890 --> 00:18:38,260 |
|
ูุชูุฌุฉ ุงููู ุฃูุง ุจุฏููุง ุงูุขู ูู ุงูุดูู ุงููู ุจุฏููุง ุจุฏู |
|
|
|
202 |
|
00:18:38,260 --> 00:18:45,680 |
|
ุฃุฎุฏ H of X let ุฃู define H of X ุจูุณุงูู ุงููู ูู |
|
|
|
203 |
|
00:18:45,680 --> 00:18:52,740 |
|
ุงูู
ูุฏุงุฑ ูุฐุง ุงููู ุจุฏูู F of B ูุงูุต F of A ุนูู G of |
|
|
|
204 |
|
00:18:52,740 --> 00:18:57,910 |
|
B minus G of A ุจุชุฎูู ุงูู
ูุฏุงุฑ ูุฐุง ุงููู ูู ูุชุตูุฑ ูู |
|
|
|
205 |
|
00:18:57,910 --> 00:19:00,650 |
|
ุญุงูุฉ ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
206 |
|
00:19:00,650 --> 00:19:00,870 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
207 |
|
00:19:00,870 --> 00:19:00,910 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
208 |
|
00:19:00,910 --> 00:19:00,970 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
209 |
|
00:19:00,970 --> 00:19:01,090 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
210 |
|
00:19:01,090 --> 00:19:01,850 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
211 |
|
00:19:01,850 --> 00:19:01,890 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
212 |
|
00:19:01,890 --> 00:19:02,850 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
213 |
|
00:19:02,850 --> 00:19:07,410 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
214 |
|
00:19:07,410 --> 00:19:12,650 |
|
ุงู .. |
|
|
|
215 |
|
00:19:12,650 --> 00:19:16,510 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
216 |
|
00:19:16,510 --> 00:19:24,170 |
|
ุงู .. ุงู .. |
|
|
|
217 |
|
00:19:25,340 --> 00:19:30,660 |
|
H of A ุจูุทูุน ุตูุฑ ูุฃู ุจุฏู ุงููู ูู ุงูุฌุฒุก ุงูุซุงูู ุงููู |
|
|
|
218 |
|
00:19:30,660 --> 00:19:39,320 |
|
ูููุฌูุจ ูู ููู
ุฉ ู
ูู ููู
ุฉ ุงูู F ูุงูุต G G of B ูุงูุต G of |
|
|
|
219 |
|
00:19:39,320 --> 00:19:44,060 |
|
A ุฃู G of X ูุงูุต H of A ุนุดุงู ูุฑูุญูู
ู
ุน ุจุนุถ ูุงูุต F |
|
|
|
220 |
|
00:19:44,060 --> 00:19:50,880 |
|
of X ูุงูุต F of A ุงูุขู ููุด ุนู
ูุช ููู ุนุดุงู ุฃุญุตู H of |
|
|
|
221 |
|
00:19:50,880 --> 00:19:53,180 |
|
A H of A ูุฐู ุตูุฑ |
|
|
|
222 |
|
00:19:55,780 --> 00:20:02,140 |
|
ููุฏู ุฅูู ุฅูู ุจูุตูุฑ ุตูุฑ H of B ุฅุฐุง ุตุงุฑุช ุนูุฏู H of A |
|
|
|
223 |
|
00:20:02,140 --> 00:20:09,360 |
|
ุจูุณุงูู ุตูุฑ ู H of B ุญุท H of B ุจูุตูุฑ ูุฏู ุจูู ูุฏู |
|
|
|
224 |
|
00:20:09,360 --> 00:20:13,780 |
|
ุจุชุฑูุญ ู
ุน ูุฏู ุจูุตูุฑ F of B ูุงูุต F of A ูุงูุต F of B |
|
|
|
225 |
|
00:20:13,780 --> 00:20:16,800 |
|
ูุงูุต F of A ุจูุฑูุญู ู
ุน ุจุนุถ ุจูุตูุฑ H ุจุฑุถู ุจูุณุงูู ุตูุฑ |
|
|
|
226 |
|
00:20:16,800 --> 00:20:22,300 |
|
ุฅุฐุง ูุฏู ุฃููุฏ ุจุฑุถู ุจุชุณุงูู H of B ุงูุขู |
|
|
|
227 |
|
00:20:24,650 --> 00:20:28,050 |
|
ุนูุฏู ูุฐุง ุงูู differentiable ู continuous ููุฐุง ุงูู |
|
|
|
228 |
|
00:20:28,050 --> 00:20:31,210 |
|
differentiable ู continuous ุนูู ู
ุง ููุงุณุจูุง ู
ู a ู |
|
|
|
229 |
|
00:20:31,210 --> 00:20:35,750 |
|
b ุฃู ุนูู ุงู a ู b ุงู a ู b ุงููู ูู open |
|
|
|
230 |
|
00:20:35,750 --> 00:20:38,770 |
|
differentiable ูุนูู ุงู a ู b closed continuous |
|
|
|
231 |
|
00:20:38,770 --> 00:20:43,350 |
|
ุชุจุนุงู ููุง ูุชุทูุน ุฃูู ุซุงุจุช ูุฐุง ููุฏููู ุซูุงุจุช ุญูุซ ุฃู |
|
|
|
232 |
|
00:20:43,350 --> 00:20:50,330 |
|
ุนูุฏู ูุฐุง ููู ุนูู ุจุนุถ continuous ุตุงุฑ ุนูุฏู H is |
|
|
|
233 |
|
00:20:50,330 --> 00:20:59,130 |
|
continuous on A ู B ู differentiable on A ู B open |
|
|
|
234 |
|
00:20:59,130 --> 00:21:03,930 |
|
ูุฃูู ุฃูุง ู
ู ุฑุฃุณ ุงูุฏูุฑุฉ ุงูู H of X ู
ุนุฑููุง ุงููู ูู |
|
|
|
235 |
|
00:21:03,930 --> 00:21:10,740 |
|
ุงูู H for every X element in A ู B H of X ุจูุณุงูู ูุฏู |
|
|
|
236 |
|
00:21:10,740 --> 00:21:15,360 |
|
ู
ุงุนูุด ูุง ุจุงุจุง ุตุงุฑุช ุงูุขู ุฃูุง ุญููุช ูู ุดุฑูุท ุงูู roles |
|
|
|
237 |
|
00:21:15,360 --> 00:21:19,780 |
|
theorem ุงููู ูู ุงูู H continuous ุนูู ุงูู A ู B ูุงูู |
|
|
|
238 |
|
00:21:19,780 --> 00:21:23,360 |
|
differential ุนูู ุงูู A ู B open ุฃู H of A ุจูุณุงูู ู |
|
|
|
239 |
|
00:21:23,360 --> 00:21:27,260 |
|
H of B ุจูุณุงูู ุงููู ูู ุตูุฑ ุฅุฐุง ุญุณุจ roles theorem |
|
|
|
240 |
|
00:21:27,260 --> 00:21:31,720 |
|
ุฅุฐุง by roles theorem by ุฃู ุญุชู by main value |
|
|
|
241 |
|
00:21:31,720 --> 00:21:38,180 |
|
theorem by roles theorem there exists C element ุงู |
|
|
|
242 |
|
00:21:38,180 --> 00:21:46,290 |
|
A ู B such that ุงุชุด prime of c ุฅูุด ููุณุงูู ุตูุฑ ูุฐุง |
|
|
|
243 |
|
00:21:46,290 --> 00:21:52,190 |
|
ุญุณุจ ุงูู mean value theorem ู
ุนุงูุง ูุง ุฌู
ุงุนุฉ ุงูุขู |
|
|
|
244 |
|
00:21:52,190 --> 00:21:57,130 |
|
ุจุชูุงุถู ูุฐู ุฏููุง ุฃูุฌุฏ ุชูุงุถู ูุฐู ุชูุงุถู ูุฐู ู
ุนููุด |
|
|
|
245 |
|
00:21:57,130 --> 00:22:04,760 |
|
ุฎูููุง ููุชุจูุง ูุฅูู ูุฏุฎู ุนูู ุงูุนุงูู slide ุจุฏู ุฃูุงุถู |
|
|
|
246 |
|
00:22:04,760 --> 00:22:09,740 |
|
ูุฐู ูุงุถูุฉ H prime of X ุงููู ูู ุนูุฏ ุงูู C ุจุชุณุงูู |
|
|
|
247 |
|
00:22:09,740 --> 00:22:15,580 |
|
ุตูุฑ ุตูุฑ ุจูุณุงูู H prime of C ุชุณุงูู ูุงุถู ูุฐู ูุฃุนูุถ |
|
|
|
248 |
|
00:22:15,580 --> 00:22:20,420 |
|
ุนู ุงูู X ุจุตูุฑ ูุฃู ูุฐุง ุซุงุจุช ููุฐุง ุซุงุจุช ุฏู ุจูุตูุฑ ุตูุฑ |
|
|
|
249 |
|
00:22:20,420 --> 00:22:23,420 |
|
ุชูุงุถู ูุฐุง ู
ุน ูุฐุง ูุฃู ู
ุน ูุฐุง ุจูุตูุฑ G prime of X |
|
|
|
250 |
|
00:22:23,420 --> 00:22:29,220 |
|
ู
ุถุฑูุจ ูู ูุฐุง ุฅุฐุง ุตุงุฑ ุนูุฏู ุจูุณุงูู F of B ูุงูุต F of A |
|
|
|
251 |
|
00:22:30,080 --> 00:22:36,100 |
|
ุนูู g of b ูุงูุต g of a ู
ุถุฑูุจ ูู ู
ููุ ูุถูุช ูู g |
|
|
|
252 |
|
00:22:36,100 --> 00:22:40,920 |
|
prime of x ูุฃูุง ุจุฏู ุฃุญุณุจูุง ุนูุฏ ู
ููุ ุนูุฏ cุ ุฅุฐุง g |
|
|
|
253 |
|
00:22:40,920 --> 00:22:45,320 |
|
prime of c ูุงูุต ุชูุงุถู ูุฐูุ ูุฐุง ุซุงุจุช ุตูุฑ ูุฃู ูุฐุง |
|
|
|
254 |
|
00:22:45,320 --> 00:22:50,620 |
|
ูุฏุงุด ุชูุงุถููุง ูุงูุต f prime ุนูุฏ ุงูู x ูุฃูุง ุจุงุฎุฏูุง ุนูุฏ |
|
|
|
255 |
|
00:22:50,620 --> 00:22:56,280 |
|
ุงูู c ุงููู ูู h of c, ูู h prime of c ูุจูุตูุฑ ูุงูุต f |
|
|
|
256 |
|
00:22:56,280 --> 00:23:02,200 |
|
prime of c ุงูุขู ุจุชุฏูุฌู ูุฐู ุนูู ุฌูุฉ ูุฐู ุจูุตูุฑ ุนูุฏู |
|
|
|
257 |
|
00:23:02,200 --> 00:23:10,720 |
|
ุงูุขู f prime of c ูุฌูุชู ูุงู ูุฃุฌุณู
ูุง ุฌู ุจุฑุงูู
of c |
|
|
|
258 |
|
00:23:10,720 --> 00:23:15,840 |
|
ูุฃู ุฌู ุจุฑุงูู
of c ูุง ุชุณุงูู ุตูุฑ ุจูุณุงูู f of b ูุงูุต f |
|
|
|
259 |
|
00:23:15,840 --> 00:23:25,710 |
|
of a ุนูู g of b ูุงูุต g of a ูููู ุจูููู ุญุตููุง ุนูู C |
|
|
|
260 |
|
00:23:25,710 --> 00:23:31,630 |
|
ูู ุงููA ูB ุจุญูุซ ุฃูู ูุฐู ุชุชุญูู ููู ุงูู
ุทููุจ ูุฐู ุงููู |
|
|
|
261 |
|
00:23:31,630 --> 00:23:37,190 |
|
ุจูุณู
ููุง Cauchy Mean Value Theorem ูุฐู ุชุนู
ูู
ูู
ููุ |
|
|
|
262 |
|
00:23:37,190 --> 00:23:41,590 |
|
ุชุนู
ูู
ุงููู ูู ุงููMean Value Theorem ุจุณ ุฎุฏ ุงููู ูู |
|
|
|
263 |
|
00:23:41,590 --> 00:23:47,230 |
|
G of X ุจุชุณุงูู X G of X ุจูุณุงูู X ู G of X ุจูุณุงูู X |
|
|
|
264 |
|
00:23:47,230 --> 00:23:49,190 |
|
ุงููู ูู ุชุญูู ูู ุงูุดุฑูุท ุงู differential |
|
|
|
265 |
|
00:23:49,190 --> 00:23:53,470 |
|
ุจุงูู continuous ูุงูุงุฎุฑู ู
ุงุดู ุงูุญุงู ุจูุตูุฑ ุนูุฏู |
|
|
|
266 |
|
00:23:53,470 --> 00:23:58,110 |
|
ุงููู ูู ูู ุญุงูุฉ G of X ุจุชุณุงูู X ู
ุนุงูุง ูุง ุดุจุงุจ |
|
|
|
267 |
|
00:23:58,110 --> 00:24:02,450 |
|
ุจูุตูุฑ G of BB ู G of AA ููุฐู ุงููู ูู G prime ุงููู |
|
|
|
268 |
|
00:24:02,450 --> 00:24:05,510 |
|
ูู 1 ูุจูุตูุฑ F prime of C ุจูุณุงูู F of B ูุงูุต F of |
|
|
|
269 |
|
00:24:05,510 --> 00:24:10,470 |
|
A ุนูู B minus A ุฅุฐุง F |
|
|
|
270 |
|
00:24:15,650 --> 00:24:21,210 |
|
ุฃู
ุณุญ ุงูุจุฑูุงู ุจุณ ุงูุขู |
|
|
|
271 |
|
00:24:21,210 --> 00:24:31,930 |
|
ุงูู note ุงููู ุนูุฏู ุงูู note ูู
ุง ููู note if |
|
|
|
272 |
|
00:24:31,930 --> 00:24:42,820 |
|
g of x ุจูุณุงูู x then we get from ุงูู theorem ูุฐู |
|
|
|
273 |
|
00:24:42,820 --> 00:24:51,140 |
|
ุงููู ุจููู ุนูููุง ููุดู mean value theorem we get the |
|
|
|
274 |
|
00:24:51,140 --> 00:24:59,500 |
|
mean value theorem ููู ุงูู g of x ุจูุณุงูู x ู
ุนูุงู |
|
|
|
275 |
|
00:24:59,500 --> 00:25:04,160 |
|
ุงูุชุตุงุฑ ุงูู g of b ุจูุณุงูู b ู g of a ุจูุตูุฑ a ูุนูู |
|
|
|
276 |
|
00:25:04,160 --> 00:25:10,530 |
|
ูุฐุง ุจูุตูุฑ a, b ููุฐู ุจูุตูุฑ A ู G prime of C ุงููู ูู |
|
|
|
277 |
|
00:25:10,530 --> 00:25:14,070 |
|
ุจูุตูุฑ 1 ูุจูุตูุฑ F prime of C ุจูุณุงูู F of B ูุงูุต F |
|
|
|
278 |
|
00:25:14,070 --> 00:25:20,590 |
|
of A ุนูู B minus A ููุฐู ูู ุงูู main value theorem |
|
|
|
279 |
|
00:25:21,280 --> 00:25:24,720 |
|
ูุงุถุญ .. ุงู .. ุทูุจ ุงุทูุน ููู ุจุนุฏู ูุฃู ุงุญูุง ุงููู |
|
|
|
280 |
|
00:25:24,720 --> 00:25:26,820 |
|
ุจููู
ูุง ูุฐุง ุงูููุดู ุจูู ุงูู value theorem ุงุญูุง |
|
|
|
281 |
|
00:25:26,820 --> 00:25:31,980 |
|
ุญูููุงูุง ุฃุตูุงู ุนุดุงู ุฎุงุทุฑ ุฃูู ุงุญูุง ูุญูู ุนู ุงููู ูู |
|
|
|
282 |
|
00:25:31,980 --> 00:25:37,960 |
|
L'Hรดpital's rule ุงู form ุงููู ุนูุฏู ุงููู ุฃู
ุงู
ู ุฏูุชูุฑ |
|
|
|
283 |
|
00:25:37,960 --> 00:25:41,860 |
|
ุฌุฏูุฏ ูู ุงูุณุคุงู ูู ุบูุฑู ู
ูููู
ุฅู ุฃูุง ุฌุณู
ุช ุนูู X |
|
|
|
284 |
|
00:25:41,860 --> 00:25:46,640 |
|
minus A ุนูู E minus A ุงูุทุฑููู ุฃุตูุงู ุฃูุช ุจุชุตูุฑ F ุฃู |
|
|
|
285 |
|
00:25:46,640 --> 00:25:48,580 |
|
P ููุต F ุฃู A ุนูู B minus A |
|
|
|
286 |
|
00:26:01,110 --> 00:26:06,630 |
|
ุงูุจุฑูุงู ู
ุด ุตุนุจ ุงููู ูููุงูุ ูุชูุฑ ุณููุ ู
ุง ูู ุงูู C |
|
|
|
287 |
|
00:26:06,630 --> 00:26:09,970 |
|
ุงููู ูุงุฌููุงูุง ูู ุงูุญุงูุฉ ุงูุฃูููุ ูู ูู ุงูุซุงููุฉุ ุฅุฐุง |
|
|
|
288 |
|
00:26:09,970 --> 00:26:13,390 |
|
ููุช ุชุชุนุงู
ู ุจู Mean Value Theorem ุฃูุชุ ู
ุด ุจุฏู ุชุทุจูู |
|
|
|
289 |
|
00:26:13,390 --> 00:26:16,170 |
|
ุงูู Mean Value Theorem ุจุฏู ุชุทุจูู ุงูู Mean Value Theorem ูุฃู |
|
|
|
290 |
|
00:26:16,170 --> 00:26:21,090 |
|
there exists c1 such that f prime of c1 ุจูุณุงูู f of |
|
|
|
291 |
|
00:26:21,090 --> 00:26:24,030 |
|
b minus f of a ุนูู b minus a ู
ุง ููุด ูููุง ู
ุดููุฉ |
|
|
|
292 |
|
00:26:24,030 --> 00:26:27,950 |
|
there exists c2 such that g prime of c2 ุจูุณุงูู g of |
|
|
|
293 |
|
00:26:27,950 --> 00:26:32,550 |
|
b ููุต g of a ุนูู b minus a ุงูู c1 ูุฐู ู
ุด ุดุฑุท ูููู |
|
|
|
294 |
|
00:26:32,550 --> 00:26:39,630 |
|
ูู ููุณูุง ุงูู c2 ุฃู ุงุญูุง ูุงุฒู
ูุซุจุชูุง ูู ููุณูุง ุงู ู .. ู |
|
|
|
295 |
|
00:26:39,630 --> 00:26:44,780 |
|
ุจุนุฏูู ุงูุจุฑูุงู ุณูู ู
ุงุดู .. ูุญู ุงููุงุญุฏ ูููุฑ 100% .. |
|
|
|
296 |
|
00:26:44,780 --> 00:26:50,780 |
|
ุฌู
ูู ููู .. ูุนูู .. ุจุณ ุฃูู ุงุญูุง .. ุงูู C ูุฐู ู
ุด |
|
|
|
297 |
|
00:26:50,780 --> 00:26:53,700 |
|
ุถู
ููุงู ุชุณุงูู ุงูู C2 ู ุจุฏูุง ูุซุจุช ุฃููุง ุชุณุงูููุง .. ุฅุฐุง |
|
|
|
298 |
|
00:26:53,700 --> 00:26:59,920 |
|
ูุงูุช ุจุชุณุงูููุง ุทูุจ .. ููุฌู ููุง ุงููู ูู ุงููุธุฑูุฉ ุงููู |
|
|
|
299 |
|
00:26:59,920 --> 00:27:05,840 |
|
ุจุนูุฏูุง ุงููุธุฑูุฉ ุงููู ุจุนูุฏูุง .. ุฃูุง ู
ุฑุถูุชุด ุฃู
ุณุญ ุงูููุญ |
|
|
|
300 |
|
00:27:05,840 --> 00:27:08,800 |
|
ุฃุณุงุณู ู
ููุฑุฑูุง ู
ู ุงูู theory ู
ู ุงูุฃููู |
|
|
|
301 |
|
00:27:11,650 --> 00:27:30,050 |
|
ูุดูู ูุทูุน ุฅูุด ุงููู ุจุชูููู ูุฐู ุงููุธุฑูุฉ ููุณ |
|
|
|
302 |
|
00:27:30,050 --> 00:27:35,710 |
|
ุงููู ููุง F ู G differentiable on A ู B ู
ุนุงูุง ุฃูุ |
|
|
|
303 |
|
00:27:35,710 --> 00:27:42,150 |
|
ุงูุขู such that G prime of X ุฏู ูุณุงูู ุตูุฑ G prime of |
|
|
|
304 |
|
00:27:42,150 --> 00:27:47,970 |
|
X ูุง ูุณุงูู ุตูุฑ ุฃูุง ู
ุด ู
ูุฌูุฏุฉ For all X elements in |
|
|
|
305 |
|
00:27:47,970 --> 00:27:55,070 |
|
A ู B ูููุชุฑุถ ุฃู limit F of X limit F of X ูู
ุง X |
|
|
|
306 |
|
00:27:55,070 --> 00:27:59,570 |
|
ุชุฑูุญ ุฅูู ุงูู A ู
ู ุงููู
ูู ู
ูุฌูุฏุฉ ู ุจุชุณุงูู ุฅูุดุ ุตูุฑ |
|
|
|
307 |
|
00:27:59,570 --> 00:28:02,490 |
|
ู limit G of X ูู
ุง X ุชุฑูุญ ุฅูู ุงูู A ู
ู ุงููู
ูู |
|
|
|
308 |
|
00:28:02,490 --> 00:28:09,580 |
|
ุจุชุณุงูู ุตูุฑ ุฅุฐุง ุตุงุฑ limit ุงูุญุงุตู ุงููุณู
ุฉ ูุฃู ุจูุณุงูู f |
|
|
|
309 |
|
00:28:09,580 --> 00:28:14,300 |
|
prime of a ุนูู g prime of a ุจูุณุงูู limit f of x |
|
|
|
310 |
|
00:28:14,300 --> 00:28:19,580 |
|
ุนูู g of x ูู
ุง x ุชุฑูุญ ูู a ุจุงููู
ูู ูุนูู ููุฃูู ููุง |
|
|
|
311 |
|
00:28:19,580 --> 00:28:25,460 |
|
ุญูู ุงูุญุฏูุซ ููู ู
ู ุงูุชุฑุงุถ ุฃูู ุนูุฏ ุงูููุทุฉ ุงููู ูู F' |
|
|
|
312 |
|
00:28:25,780 --> 00:28:31,240 |
|
ู G' ู
ูุฌูุฏุฉ ููุง ุชุณุงูู ุตูุฑ ูุญูู ุงูุญุฏูุซ ู
ู ุฅู ุงูุชุนููุถ |
|
|
|
313 |
|
00:28:31,240 --> 00:28:35,280 |
|
ุงูู
ุจุงุดุฑ ุฃู F of A ู G of A ุจุชุณุงูู ุตูุฑ ูู limit ูู .. |
|
|
|
314 |
|
00:28:35,280 --> 00:28:39,220 |
|
limit ูู Function ูู
ุง X ุชุฑูุญ ูู A ุตูุฑ ู limit ูู |
|
|
|
315 |
|
00:28:39,220 --> 00:28:42,040 |
|
Function ูู
ุง .. ุงููู .. ุงููู ูู ุงู X .. ุงู X ุจุชุฑูุญ |
|
|
|
316 |
|
00:28:42,040 --> 00:28:48,920 |
|
ูุณูุฑ .. ูู A ุจุชุณุงูู ุตูุฑ ูุญูู ุฃูุถุงู ุทูุจ ุฌู ุจุฑุงูู
ููุณู |
|
|
|
317 |
|
00:28:48,920 --> 00:28:54,680 |
|
ุนูู ูู ุงููุชุฑุฉ ุงููู ุชููู ูุง ุชุณุงูู ุตูุฑ ู
ุด ุนูุฏ ุงูููุทุฉ |
|
|
|
318 |
|
00:28:54,680 --> 00:29:03,060 |
|
ุจุณ ููุงู ูู ุฅูู ุญุชู ุงููู ูู ุงููุชูุฌุฉ ูุชุทูุน ุจู limit |
|
|
|
319 |
|
00:29:03,060 --> 00:29:07,940 |
|
ู
ุด ูุชุทูุน ุจู F prime of A ุนูู G prime of A ูุนูู ุงููู |
|
|
|
320 |
|
00:29:07,940 --> 00:29:14,980 |
|
ุจูุตุฏู ุฅูู ุงูุขู ุทูุฑ ูุฐู ุงูุญุฏูุซ ููุง ุฅูู ูู
ุง ุชูุนุฑุถ |
|
|
|
321 |
|
00:29:14,980 --> 00:29:21,580 |
|
ุนูููุง limit F of X ุนูู G of X ูู
ุง X ุชุฑูุญ ููู A ู
ู |
|
|
|
322 |
|
00:29:21,580 --> 00:29:24,360 |
|
ุงููู
ูู ุฃู ุฅู ูุงูุช ุญุชู ูู ูู ุงูู interior point ุงูู X |
|
|
|
323 |
|
00:29:24,360 --> 00:29:31,300 |
|
ุจุชุฑูุญ ููู A ุจุฑุถู ุตุญูุญุฉ ุงูุขู ุจุนุฏู ุนูุฏู ุฅุฐุง ูุฌูุช limit |
|
|
|
324 |
|
00:29:31,300 --> 00:29:34,480 |
|
ุงูุฃูููุ ุงููู ุฃูุง ุจุญูู ุนู limit ุณูุฑุฉ ู
ุด ุนู ุชุนููุถ |
|
|
|
325 |
|
00:29:34,480 --> 00:29:38,340 |
|
ู
ุจุงุดุฑ ุฒู ุงููู ุฌุงุจููุ ุงูุขู limit f of x ูู
ุง x ุชุฑูุญ |
|
|
|
326 |
|
00:29:38,340 --> 00:29:41,780 |
|
ูู a ู
ู ุงููู
ูู ู limit f of x ูู
ุง x ุชุฑูุญ ูู a ู
ู |
|
|
|
327 |
|
00:29:41,780 --> 00:29:46,700 |
|
ุงููู
ููุ ุฅุฐุง ูุฐู ู
ูุฌูุฏุฉ ู ูุฐู ู
ูุฌูุฏุฉ ู ุทูุน ุนูุฏู 0 |
|
|
|
328 |
|
00:29:46,700 --> 00:29:51,060 |
|
ุนูู 0ุ ูุนูู ุทูุน ุงู limit ุนุจุงุฑุฉ ุนู 0 ุนูู 0ุ ููุง ุจุฏู |
|
|
|
329 |
|
00:29:51,060 --> 00:29:57,200 |
|
ูุญุฏุซ ุงูุนูุงุฌุ ุฅุฐุง ูุงูุช ุงูุขู ุงูู limit ุงููู ุทูุนุช ุนูุฏู |
|
|
|
330 |
|
00:29:57,200 --> 00:30:02,000 |
|
F prime of X ุนูู G prime of X ูู
ุง X ุชุฑูุญ ููู A ู
ู |
|
|
|
331 |
|
00:30:02,000 --> 00:30:06,780 |
|
ุงููู
ูู ุฅุฐุง ุทูุนุช ุนุจุงุฑุฉ ุนู ููู
ุฉ ุฎูุงุต ุงุฑุชุงุญ ูุฐู ุงููู |
|
|
|
332 |
|
00:30:06,780 --> 00:30:12,450 |
|
ุทูุนุช ูู ู
ูู ููู
ุช ุงูู limit ู
ุงุดู ุงูุญุงู ูู ุทูุนุช ูู
ุงู |
|
|
|
333 |
|
00:30:12,450 --> 00:30:18,230 |
|
ู
ุฑุฉ zero ุนูู zero ุงููู ูู ู ุจุชุญูู ูู ุงูุดุฑูุท ุงููู |
|
|
|
334 |
|
00:30:18,230 --> 00:30:21,950 |
|
.. ุงููู ูู ุงูุฃูู ุจุฑุถู ุจุฃุนู
ู ูู
ุงู ู
ุฑุฉ ุจูุงุถู ูู
ุง |
|
|
|
335 |
|
00:30:21,950 --> 00:30:26,430 |
|
ุจุชุทูุน ููู ูู ุทูุนุช ุงู limit ูุฐู does not exist ุจุณูุช |
|
|
|
336 |
|
00:30:26,430 --> 00:30:31,130 |
|
ู ุจุฌุงูุจู ุนู
ุด .. ุจุฏูุง ูุฏูุฑ ุนูู ุทุฑููุฉ ุฃุฎุฑู ูุงุถุญุ ุงูุขู |
|
|
|
337 |
|
00:30:31,130 --> 00:30:34,990 |
|
ูู ุทูุนุช ูุฐู infinity ุฃู ุณุงูุจ infinity ูุฐู ุขุณู |
|
|
|
338 |
|
00:30:34,990 --> 00:30:38,900 |
|
infinity ุฃู ุณุงูุจ infinity ุจุฑุถู ุฅู ุงููุธุฑูุฉ ุตุญูุญุฉ ุงููู |
|
|
|
339 |
|
00:30:38,900 --> 00:30:45,290 |
|
ูู ูุฏู
ูู ุงูุฌุฒุก ุงูุซุงูู ู
ู ุงููุธุฑูุฉ if limit f prime |
|
|
|
340 |
|
00:30:45,290 --> 00:30:48,450 |
|
ุนูู g prime ุจูุณุงูู L ุจูุณุงูู infinity ุฃู ุณุงูุจ |
|
|
|
341 |
|
00:30:48,450 --> 00:30:52,190 |
|
infinity ูุชุทูุน ุงู limit ุนูู ุทูู ูู F ุนูู G ุงููู |
|
|
|
342 |
|
00:30:52,190 --> 00:30:56,350 |
|
ุจุจุญุซ ุนููุง ุฅูุด ูุชุณุงูู ุจุฑุถู ุงู infinity ุฃู ุณุงูุจ |
|
|
|
343 |
|
00:30:56,350 --> 00:31:00,670 |
|
infinity ุญุณุจ ุงูููู
ุฉ ูุฐู ุฅุฐุง ุฃู ุฅู ูุงูุช ุงููู ูู ุงู |
|
|
|
344 |
|
00:31:00,670 --> 00:31:05,190 |
|
limit ู
ุงุฏุงู
ู exist ุณูุงุก ุงู existence ุนุจุงุฑุฉ ุนู |
|
|
|
345 |
|
00:31:05,190 --> 00:31:09,210 |
|
element in R ุฃู ุงููู ูู ุนุจุงุฑุฉ ุนู ูุงูุต infinity ุฃู |
|
|
|
346 |
|
00:31:09,210 --> 00:31:18,100 |
|
ุณุงูุจ infinity ูุฅู ุงููุธุฑูุฉ ุตุญูุญุฉ ูุงุถุญุ ุฃู ุณุคุงูุ ุทูุจ |
|
|
|
347 |
|
00:31:18,100 --> 00:31:27,200 |
|
ุตููู ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ุฎูููุง |
|
|
|
348 |
|
00:31:27,200 --> 00:31:31,360 |
|
ููุฌู ูููุธุฑูุฉ ููุจุฑูููุง |
|
|
|
349 |
|
00:31:45,860 --> 00:31:50,880 |
|
Theorem ูุฏู ุดุ ูุฒูู ุจุณ ุงููุต ูุง ู
ุญู
ุฏ ุงููู ูู theorem |
|
|
|
350 |
|
00:31:50,880 --> 00:31:59,580 |
|
6 3 3 ุฅูุด ุงููุธุฑูุฉ ุจุชูููุ ุจุชููู ู
ุง ูุนูู ุนูุฏู ุทุจุนุงู |
|
|
|
351 |
|
00:31:59,580 --> 00:32:04,540 |
|
ู
ุงุฎุฏ ุงูู a ุฃุตุบุฑ ู
ู ุงูู b strictly ู a ู
ู
ูู ุญุชู ุชุฃุฎุฏ ุณุงูุจ |
|
|
|
352 |
|
00:32:04,540 --> 00:32:07,580 |
|
infinity ูุงูู b ุชุฃุฎุฏ infinity ูุนูู ู
ู
ูู ุชููู |
|
|
|
353 |
|
00:32:07,580 --> 00:32:11,040 |
|
ุงููุชุฑุฉ ู
ู a .. ุงููุชุฑุฉ ูููุง a ู
ู
ูู ุชููู ุฃู ูุชุฑุฉ sub |
|
|
|
354 |
|
00:32:11,040 --> 00:32:16,710 |
|
interval ู
ู ุงููู ูู 100 ู
ู ุงูู real numbers ูุฑุถูุง f |
|
|
|
355 |
|
00:32:16,710 --> 00:32:26,190 |
|
ู g ู
ู a ู b ูุนูุฏ ุงููู ูู r ูุฅุฐุง ูุงูุช a infinity |
|
|
|
356 |
|
00:32:26,190 --> 00:32:30,130 |
|
ุฃู ุณุงูุจ infinity ุขุณู ุฅุฐุง ูุงูุช a ุณุงูุจ infinity ุฃู b |
|
|
|
357 |
|
00:32:30,130 --> 00:32:33,610 |
|
infinity ุจุชููู o ู
ู ุฒู
ู ุจุนุฑูู ูุฃู ุนุดุงู ุงููู ูู |
|
|
|
358 |
|
00:32:33,610 --> 00:32:36,890 |
|
ูุงุฎุฏูุง ู
ู real number ูู real number ูุฐุง ููุชุฑุถ f ู |
|
|
|
359 |
|
00:32:36,890 --> 00:32:46,080 |
|
g ู
ู a ู b ูุนูุฏ ุงูู R ูููุชุฑุถ ุฅู f ู g differentiable |
|
|
|
360 |
|
00:32:46,080 --> 00:32:54,620 |
|
on a ู b ู
ุงุดู ุงูุญุงู ู differentiable on a ู b ุงูุขู |
|
|
|
361 |
|
00:32:54,620 --> 00:32:57,900 |
|
ู
ุด ูุงุฒู
ูููููุง continue ู ุชุนูุฏู ู ูุฏู ูุฃูู ุฃูุง ูุฏุฎู |
|
|
|
362 |
|
00:32:57,900 --> 00:33:02,240 |
|
ูุฌูู ุดุบู ููููู ูุฌูู ูู ุฌูุช ุจุชุดูู ุฅูุด ู
ุนูู ูุฌูู |
|
|
|
363 |
|
00:33:02,240 --> 00:33:08,620 |
|
such that g prime of x g prime of x ูุง ุชุณุงูู ุตูุฑ |
|
|
|
364 |
|
00:33:08,620 --> 00:33:17,430 |
|
ููู x ููู ู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ a ู b ุงูุขู ุจููู ูู ุฅุฐุง |
|
|
|
365 |
|
00:33:17,430 --> 00:33:27,170 |
|
ูุงูุช limit limit ุงููู ูู f of x ูู
ุง x ุชุฑูุญ ููู a ู
ู |
|
|
|
366 |
|
00:33:27,170 --> 00:33:32,190 |
|
ุงููู
ูู ุจูุณุงูู limit g of x ูู
ุง x ุชุฑูุญ ููู a ู
ู |
|
|
|
367 |
|
00:33:32,190 --> 00:33:40,980 |
|
ุงููู
ูู ุจูุณุงูู ุตูุฑ ูุฐุง ููู ู
ูุถูุน ุงูุขู ุจุฏู ููุตู ุจุฏู |
|
|
|
368 |
|
00:33:40,980 --> 00:33:46,200 |
|
ุฃูููู ููู ุฃูุง ุจุฏู ุฃุญุตู ุนูู ูุชูุฌุฉ limit f of x ุนูู |
|
|
|
369 |
|
00:33:46,200 --> 00:33:51,060 |
|
g of x ูู
ุง x ุชุฑูุญ ููู a ู
ู ุงููู
ูู ุจูููู ุฅุฐุง ูุงู ุฃูุช |
|
|
|
370 |
|
00:33:51,060 --> 00:33:59,180 |
|
if ูุฃู ุฅูู if limit f prime of x ุนูู g prime of x |
|
|
|
371 |
|
00:33:59,180 --> 00:34:06,520 |
|
ูู
ุง x ุชุฑูุญ ููู a ู
ู ุงููู
ูู ุจูุณุงูู L then ุฃุชุฌุฑุง ุฃููู |
|
|
|
372 |
|
00:34:06,520 --> 00:34:12,020 |
|
ูุงุด ุนูุฏู ู
ุดููุฉ limit f of x ุงููู ุจุจุญุซ ุนููุง ุนูู g |
|
|
|
373 |
|
00:34:12,020 --> 00:34:17,360 |
|
of x ูู
ุง x ุชุฑูุญ ููุฅูู ู
ู ุงููู
ูู ุจุฑุถู ุฅูุด ููุณุงููุ |
|
|
|
374 |
|
00:34:17,360 --> 00:34:29,740 |
|
ููุณุงูู ุงู .. ู
ู ูุญูุงุชู ูุฐู ููููู ุตุญูุญุฉ ุทูุจ ุฎูููุง |
|
|
|
375 |
|
00:34:29,740 --> 00:34:38,330 |
|
ุงูุขู ุงููู ูู ุงูุจุฑูุงู ุดูู ุนูููุง ูุงุถุญ ุงููุธุฑูุฉ ุดุฑุญูุงูุง |
|
|
|
376 |
|
00:34:38,330 --> 00:34:45,050 |
|
ูุนูู ูุต ุงููุธุฑูุฉ ุดุฑุญูุงูุง ุจุดูู ูุงู
ู ุงูุขู since limit |
|
|
|
377 |
|
00:34:45,050 --> 00:34:51,730 |
|
F prime of X ุนูู G prime of X ูู
ุง X ุชุฑูุญ ูู A ู
ู |
|
|
|
378 |
|
00:34:51,730 --> 00:35:00,690 |
|
ูููุ ู
ู ุงููู
ูู ููุนูุฏู ุงููุชุฑุฉ A ู B ุญุชู ูู ูุงูุช |
|
|
|
379 |
|
00:35:00,690 --> 00:35:05,580 |
|
ู
ูุชููุฉ ููู ู
ุง ุจุฏูุงุ ูู ุญุงุถุฑุฉ ุงูุขู ุนูุฏู X ุชุฐูุจ ุฅูู |
|
|
|
380 |
|
00:35:05,580 --> 00:35:09,760 |
|
ุงููู
ูู ุงููู
ูู ูุจุฏู ู
ู ุงูุฌูุฉ ุฏู ุทุจูุนู ู
ู ุงููู
ูู ุจูุณุงูู |
|
|
|
381 |
|
00:35:09,760 --> 00:35:15,800 |
|
ุงูู then for every epsilon ุฃูุจุฑ ู
ู ุตูุฑ ูุฃู epsilon |
|
|
|
382 |
|
00:35:15,800 --> 00:35:20,440 |
|
ุฃูุจุฑ ู
ู ุตูุฑ ุฃู epsilon there exists delta ุฃูุจุฑ ู
ู |
|
|
|
383 |
|
00:35:20,440 --> 00:35:24,660 |
|
ุตูุฑ such that ูุฃู X ุชุฐูุจ ุฅูู ุงูุงู
ู ููู ู
ู ุงููู
ูู |
|
|
|
384 |
|
00:35:24,660 --> 00:35:27,460 |
|
ุฅุฐู ุงูุฌูุงุฑ ุงููู ุญูุงููุง ูู ุนุจุงุฑุฉ ุนู ุฌูุงุฑ ู
ู A ูุนูุฏ |
|
|
|
385 |
|
00:35:27,460 --> 00:35:32,340 |
|
ู
ูู ุงูู A ุฒู ุงูู Delta ูุนูุฏ ุงูู A ุฒู ุงูู Delta ุตุญ ููุง ูุฃ |
|
|
|
386 |
|
00:35:32,340 --> 00:35:36,260 |
|
ุฅุฐู ููู ู
ุง ุฏุงู
ุช ุงูู limit ูู ุฏู ุจูุณุงูู Lุ ุฏู ููู |
|
|
|
387 |
|
00:35:36,260 --> 00:35:41,480 |
|
ุฅุจุณููู ุจูุฏุฑ ุฃูุงูู Delta ุจุญูุซ ุฃู X element ูู A ู |
|
|
|
388 |
|
00:35:41,480 --> 00:35:46,400 |
|
A ุฒุงุฆุฏ Delta ู X element ูู A ู A ุฒุงุฆุฏ Deltaุ then |
|
|
|
389 |
|
00:35:46,400 --> 00:35:52,180 |
|
ูุทุนุงู .. then ูุทุนุงู ููููู ุนูุฏู F prime of X ุนูู G |
|
|
|
390 |
|
00:35:52,180 --> 00:35:58,030 |
|
prime of X ููุต Lุ ุฐููููู ุฃุตุบุฑ ู
ู 100 ู
ู ุฅุจุณููู ูุฐุง |
|
|
|
391 |
|
00:35:58,030 --> 00:36:02,370 |
|
ุชุนุฑูู ุงูู limit ููู F prime of X ุนูู G prime of X |
|
|
|
392 |
|
00:36:02,370 --> 00:36:06,510 |
|
ุจุณูููุฉ ูู
ุง X ุชุฑูุญ ูู
ูุ ููู A ู
ู ุงููู
ูู ูู ูุงุชุจูุง |
|
|
|
393 |
|
00:36:06,510 --> 00:36:11,110 |
|
ูุฐู A ุฒุงุฆุฏ Delta C ูู ุงููุชุงุจ ูุนูู ู
ุณู
ููุง C ูุนูู |
|
|
|
394 |
|
00:36:11,110 --> 00:36:16,090 |
|
ู
ุณู
ู ุฅูู ููู X there exists C ุจุญูุซ ุฅูู ููู X ูู ุงู |
|
|
|
395 |
|
00:36:16,090 --> 00:36:20,650 |
|
A ุงููู ุนูุฏ ุงูู A ููู C ุจููู ูุฐุง ุงูููุงู
ู
ุชุญูู ุฃูุง |
|
|
|
396 |
|
00:36:20,650 --> 00:36:23,510 |
|
ุญุจูุช ุฃูุชุจ ูู ุงููู ูู ุงูุชุนุฑูู ุงูุฏุงุฑุฌู ุงููู ุฃูุช ุฏู |
|
|
|
397 |
|
00:36:23,510 --> 00:36:27,700 |
|
ูุณูู ูู
ุงู ูู ุงู .. ูู ุงูุญู ูุงุถุญ ูุญุฏ ุชูุงุชุฉ |
|
|
|
398 |
|
00:36:38,080 --> 00:36:42,520 |
|
ู
ุงุดู ุงูุญุงู ุจุณ ูู ู .. ูุฐู .. ู ูุฐู ู ุตุญ ู ูุฐู ู ุตุญ |
|
|
|
399 |
|
00:36:42,520 --> 00:36:47,040 |
|
ู ูุฐู ู ุตุญ ุงููู ูุงุชุจูุง ุตุญ ุจุณ ูุฐู ููุทุงูุจ ุฃุณููู ูู |
|
|
|
400 |
|
00:36:47,040 --> 00:36:49,960 |
|
ุงู .. ูู ุงู .. ูุฅูู .. ุฎููููู ุฃููู ูุฐุง ุงููู ุฏุงุฑุฌ |
|
|
|
401 |
|
00:36:49,960 --> 00:36:54,640 |
|
ุนููู ูู ุงู .. ูู .. ุงููู ูู ุงูุชุนุจูุฑ ุนู ุงู .. ููู x |
|
|
|
402 |
|
00:36:54,640 --> 00:36:58,940 |
|
ูู ุงูุฌูุงุฑ ุงูุฌูุงุฑ ูุฐุง ุณูู ู .. ู .. ู .. ูุนุจูุฑูุง |
|
|
|
403 |
|
00:36:58,940 --> 00:36:59,200 |
|
ุนูู |
|
|
|
404 |
|
00:37:02,810 --> 00:37:07,630 |
|
-A ูู ุฃูุจุฑ ู
ู ุตูุฑ ูุฃุตุบุฑ ู
ู ุฏูุชุฉ ุจุฑุถู ููู ุตุญ ุตุญูุญ |
|
|
|
405 |
|
00:37:07,630 --> 00:37:11,910 |
|
ููุณ ุงูุดูุก ุทูุจ |
|
|
|
406 |
|
00:37:11,910 --> 00:37:15,050 |
|
ุงูุขู |
|
|
|
407 |
|
00:37:15,050 --> 00:37:23,590 |
|
ูุฐุง ุงูููุงู
i.e. ุฃู ุจู
ุนูู ุขุฎุฑ that is ููููู ูุฐุง ุงููู |
|
|
|
408 |
|
00:37:23,590 --> 00:37:31,230 |
|
ูู F prime of X ูุงูุต G prime of X ุฃุตุบุฑ ูุงูุต L |
|
|
|
409 |
|
00:37:31,230 --> 00:37:37,150 |
|
ุจุชุบูุฑูุง ุนุดุงู ุฃุตุบุฑ ู
ู Y ูุฃูุจุฑ ู
ู 200 ู
ู ุณุงูุจ Y ุดูู |
|
|
|
410 |
|
00:37:37,150 --> 00:37:43,470 |
|
ุงูู L ูุฐู ุจุตูุฑ ุงููู ูู ุฃุตุบุฑ ู
ู L ุฒุงุฆุฏ Y ูุฃูุจุฑ ู
ู L |
|
|
|
411 |
|
00:37:43,470 --> 00:37:49,430 |
|
ูุงูุต Y ูุฐุง ู
ุชุญูู ูู
ููุ ููู X ู N ู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ |
|
|
|
412 |
|
00:37:49,430 --> 00:37:53,550 |
|
ู
ู A ูุนูุฏ A ุฒุงุฆุฏ Delta ู ุงูุชุจ ูู ูุฐุง ุณู
ููู |
|
|
|
413 |
|
00:37:56,530 --> 00:38:03,990 |
|
ูุงุญุฏ ู
ุงุดู ุงูุญุงู ุณู
ูููู ูุงุญุฏ ุงูุขู ุนูุฏู ุงููู ูู ุดุฑูุท |
|
|
|
414 |
|
00:38:03,990 --> 00:38:06,850 |
|
ุงูู Mean Value Theorem ุงูููุดู Mean Value Theorem |
|
|
|
415 |
|
00:38:06,850 --> 00:38:10,130 |
|
ุงููู ูุจู ุจุดููุฉ ุงูู F ูุงูู G differentiable ุนูู ุงูู A |
|
|
|
416 |
|
00:38:10,130 --> 00:38:16,170 |
|
ู ุงูู B ุงู ู ุงูู G prime of X ูุง ุชุณุงูู ุตูุฑ ู ุงู .. |
|
|
|
417 |
|
00:38:16,170 --> 00:38:22,490 |
|
ุฃู .. ุฅูุด ูู
ุงู ูููู ู
ุชุญูู ุจุณ ุฎูููุง ูููู |
|
|
|
418 |
|
00:38:26,140 --> 00:38:31,240 |
|
ุจุฏู ุงูุขู ููู ุฃุทุจูู ุงูู Mean Value Theorem ุจุฏู |
|
|
|
419 |
|
00:38:31,240 --> 00:38:37,720 |
|
ุฃุทุจูููุง ุนูู ุงููู ูู ุงููู ุฌูุง ุนูุฏู ูุฏุงุฎู ุงูู Mean |
|
|
|
420 |
|
00:38:37,720 --> 00:38:44,560 |
|
ูุฏุงุฎู ุงููุชุฑุฉ ูุฐู ุนุดุงู ุฃุดุชุบู ููู ุงููู ุจุชุทูุน ุนูุฏู |
|
|
|
421 |
|
00:38:44,560 --> 00:38:48,490 |
|
ุฃุถู
ู ุชููู ููุง ุนุดุงู ุงูููู
ุฉ ุงููู ูุชุทูุน ุนูุฏู ุงููู |
|
|
|
422 |
|
00:38:48,490 --> 00:38:53,170 |
|
ุจุชุญูููุง ุชููู ุจุชุญูู ุงููู ุจุชุทูุน ุนูุฏู ู ุจุชุญูููุง ุฏู |
|
|
|
423 |
|
00:38:53,170 --> 00:38:57,730 |
|
ุนุดุงู ูู ูุตุญ ุงููู ุฃุนูุถ ู
ูุงู ุจุนุถ ู
ุงุดู ุงูุญุงู ุฎุฏ ุงูุขู |
|
|
|
424 |
|
00:38:57,730 --> 00:39:07,030 |
|
ูุฌุฏ ุชููู
ูุง ุฅูุด ุงููู ุจูุตุฏูู
ุฎุฏ ุงูุขู four alpha ุฃูุจุฑ |
|
|
|
425 |
|
00:39:07,030 --> 00:39:16,040 |
|
ู
ู a ู ุฃุตุบุฑ ู
ู beta ู ุฃุตุบุฑ ู
ู a ุฒุงุฆุฏ delta ูุนูู ุฃูุง |
|
|
|
426 |
|
00:39:16,040 --> 00:39:20,060 |
|
ุบุฑุถู ุฃู ุฃูุง ุฃุดุชุบู .. ุฃู ุฃูุง ุฑุงูุญ .. ุจุฏู ุฃูุง limit |
|
|
|
427 |
|
00:39:20,060 --> 00:39:24,580 |
|
ุฃุตููุง ู ุงู limit ุจุฏููุง ูู
ุง ุฃุฑูุญ ูู
ููุ ูู A ูุนูู ุจุฏู |
|
|
|
428 |
|
00:39:24,580 --> 00:39:29,760 |
|
ูู ุงูุฌูุงุฑ ุงููู ุญูุงููู ุงู A ู ุฌุงู ูุงุญูุชูุง ูุฐุง ุงููู |
|
|
|
429 |
|
00:39:29,760 --> 00:39:31,740 |
|
ุจูู
ุ ุงููู ู
ุง ุฃูุงุด ุณุบุงุฏุงุดุ ุจูููู ุงูุชุตุฑู ู
ุงููุด .. |
|
|
|
430 |
|
00:39:31,740 --> 00:39:36,980 |
|
ู
ุงููุด ุนูุฏู ู
ุดููุฉ ุงูุขู ูู ุงู alpha ุฃุฎุฏุชูุง ููุง ู ูู |
|
|
|
431 |
|
00:39:36,980 --> 00:39:37,420 |
|
ุงู beta |
|
|
|
432 |
|
00:39:41,900 --> 00:39:44,540 |
|
ุฃุตุบุฑ ู
ู Alpha ุฃุตุบุฑ ู
ู Beta ุฃุตุบุฑ ู
ู a ุฒู ุงูู |
|
|
|
433 |
|
00:39:44,540 --> 00:39:54,060 |
|
Deltaุ By Cauchy Mean Value Theorem there exists |
|
|
|
434 |
|
00:39:54,060 --> 00:40:03,220 |
|
ุณู
ููุง ูู ูุณู
ููุง U Element in mean in Alpha ู Beta |
|
|
|
435 |
|
00:40:03,220 --> 00:40:10,110 |
|
ู ุงู Alpha ู Beta ุฌุฒุก ู
ู ูุฐููุ ุฅุฐุง ุงููู ุจูุทุจู |
|
|
|
436 |
|
00:40:10,110 --> 00:40:14,750 |
|
ุนูู ูุฐู ุงููู ุจูุทุจู ุนูู .. ุงููู ุจูุทุจู ุนูู ูุฐู ุจูุทุจู |
|
|
|
437 |
|
00:40:14,750 --> 00:40:19,790 |
|
ุนูู ูุฐูุ ู
ุธุจูุทุ ูุนูู ูุฐู ุงู U ุงููู ูุฌูุชูุง ุจูุทุจู |
|
|
|
438 |
|
00:40:19,790 --> 00:40:22,210 |
|
ุนูููุง ุงูููุงู
ูุฐุง ุงููู ูู F prime of U ุนูู D prime |
|
|
|
439 |
|
00:40:22,210 --> 00:40:27,510 |
|
of U ุจูู ูุฐู ู ุจูู ูุฐู ูุงุถุญุ ู ูุฐุง ุงูููุงู
ู
ูู
ุทูุจุ |
|
|
|
440 |
|
00:40:27,510 --> 00:40:34,640 |
|
there exists U such that F prime of U ุนูู g prime |
|
|
|
441 |
|
00:40:34,640 --> 00:40:39,240 |
|
of u ุจูุณุงูู ุฅูุด ูุง ุฌู
ุงุนุฉ ุจูุณุงูู f of b ุฃู beta |
|
|
|
442 |
|
00:40:39,240 --> 00:40:50,260 |
|
ูุงูุต f of alpha ุนูู g of beta ูุงูุต g of alpha ูุงุถุญ |
|
|
|
443 |
|
00:40:50,260 --> 00:41:00,020 |
|
ุขูุ ูุฐุง ุณู
ููู ูู
ูู ูู ุงุชููู ุงูุขู ุนูุฏ ูุฐู ุงููู |
|
|
|
444 |
|
00:41:00,020 --> 00:41:05,260 |
|
ูุฌูุชูุง ููุง ุงููู ุจุชุญูู ูุฐู ูู ููู ู
ูุฌูุฏุฉ ู
ู ุถู
ู |
|
|
|
445 |
|
00:41:05,260 --> 00:41:12,980 |
|
ุงูููุงุท ุงููู ุจุชุญูู ูุฐู ููู X ููุง ููุฐู ุฌุฒุก ู
ููุง ุฅุฐุง |
|
|
|
446 |
|
00:41:12,980 --> 00:41:18,100 |
|
F prime of X of U ุนูู G prime of U ุจูู ุงู L ูุงูุต |
|
|
|
447 |
|
00:41:18,100 --> 00:41:22,020 |
|
ุฅุจุณููู ู ุงู L ุฒุงุฆุฏ ู
ููุ ุฅุจุณููู ููู ููุณ ุงูููุช F |
|
|
|
448 |
|
00:41:22,020 --> 00:41:25,860 |
|
prime of U ูุฐู ุงููู ูููุชูุง G prime of U ุจูุณุงูู ูุฐุง |
|
|
|
449 |
|
00:41:25,860 --> 00:41:29,840 |
|
ุฅุฐุง from ูุงุญุฏ |
|
|
|
450 |
|
00:41:30,390 --> 00:41:40,070 |
|
ู ุงุชููู we get ุงููู ูู F prime of U ุนูู G prime of |
|
|
|
451 |
|
00:41:40,070 --> 00:41:47,610 |
|
U ุจุณุชุจุฏููุง ู ุจูุตูุฑ F of Beta ูุงูุต F of Alpha ุนูู G |
|
|
|
452 |
|
00:41:47,610 --> 00:41:54,070 |
|
of Beta ูุงูุต G of Alpha ุจุญูุซ ุฃูู ูุฐุง ูููู ุฃูุจุฑ ู
ู |
|
|
|
453 |
|
00:41:54,070 --> 00:42:03,630 |
|
L ูุงูุต Y ู ุฃุตุบุฑ ู
ู 100 ู
ู L ุฒุงุฆุฏ Y ูุฃู ูุฐุง ุตุญูุญ ูุฃู |
|
|
|
454 |
|
00:42:03,630 --> 00:42:09,750 |
|
Alpha ู Beta ุจุดูููู
ุงููู ู
ูุฌูุฏ Alpha ุฃุตุบุฑ ู
ู Beta |
|
|
|
455 |
|
00:42:09,750 --> 00:42:15,570 |
|
ู Alpha ุจูู ุงู A ู ุจูู ู
ููุ ุงู A ุฒุงุฆุฏ ุฏูุชุง ุฅุฐุง |
|
|
|
456 |
|
00:42:15,570 --> 00:42:22,150 |
|
ุงูุฃููุฉ ูุฐู ุญุฑุฉ ูู ูู ุงูู
ูุทูุฉ ูุฐู ุจููุน ูุนูู ุงูุฃููุฉ |
|
|
|
457 |
|
00:42:22,150 --> 00:42:26,530 |
|
ูุฐู ูู ุจุฏูุง ุชุฑูุญ ูู A ุญุฏ ู
ุด ุจู
ูุนูุง ุงูุฃููุฉ ุชุฑูุญ ููุง |
|
|
|
458 |
|
00:42:26,530 --> 00:42:31,060 |
|
ูุฃูู ุตุญูุญ ุนูู ูู ูุฐู ุงูุฃููุงุช ุงููู ูุฌูุชูุง ูุฐู ุงูุขู |
|
|
|
459 |
|
00:42:31,060 --> 00:42:40,340 |
|
let alpha goes to mean to a ู
ู ูููุ ู
ู ุงููู
ูู |
|
|
|
460 |
|
00:42:40,340 --> 00:42:45,720 |
|
ู
ุงุดูุ ู
ูุฏุฑ ู ูู ุชุคุซุฑ ูุฃ ุนูู ุงู beta ููุง ุนูููุง ุฒู |
|
|
|
461 |
|
00:42:45,720 --> 00:42:50,980 |
|
ุงูุฏูุชูุฉ ุงูุญุฑุฉ ุจุชุฑูุญ ููุฐู ููุฐู ุฒู ู
ุง ูู ูุนูู ุชุตุฑู |
|
|
|
462 |
|
00:42:50,980 --> 00:42:58,540 |
|
alpha ูุฑูุญ ูุฃู a beta ุจุงููุณุจุฉ ููุง ุซุงุจุช ููุง ุชุชุฃุซุฑ ูุฐุง |
|
|
|
463 |
|
00:42:58,540 --> 00:43:03,500 |
|
ุงูููุงู
ู
ูู
ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ูู
ุง Alpha ุชุฑูุญ ูุฃ ู
ู |
|
|
|
464 |
|
00:43:03,500 --> 00:43:10,700 |
|
ุงููู
ูู ุงู up of Alpha ุจูุตูุฑ ุนูุฏู limit ุงู up of |
|
|
|
465 |
|
00:43:10,700 --> 00:43:17,780 |
|
Alpha ูู
ุง ุงู Alpha ุชุฑูุญ ูุฃ ู
ู ุงููู
ูู ุจูุณุงูู ูู ูู |
|
|
|
466 |
|
00:43:17,780 --> 00:43:21,980 |
|
ุงููุงูุน limitูุง limitูุง ูุฐู Alpha ุงููู ููุง ูุณู
ููุง X |
|
|
|
467 |
|
00:43:21,980 --> 00:43:23,980 |
|
ู
ุซููุง ุงู up of X ุณู
ู X ุชุฑูุญ ูุฃ ู
ู ุงููู
ูู ูุฃ ู
ู |
|
|
|
468 |
|
00:43:23,980 --> 00:43:29,480 |
|
ุงููู
ูู ุงูุขู ุงู Alpha ุฑุงุญุช ูููู
ูู ุงููู
ูู limitูุง |
|
|
|
469 |
|
00:43:29,480 --> 00:43:35,020 |
|
ุฃูุง ู
ุง ุนุทููู ุฅูุด ุจูุณุงููุ ุจูุณุงูู ุตูุฑุ ู
ุง ุนุทููู |
|
|
|
470 |
|
00:43:35,020 --> 00:43:37,080 |
|
limit f of x ุนูุฏู
ุง x ุชุฑูุญ ูููู
ูู ุงููู
ูู ุฅูุด |
|
|
|
471 |
|
00:43:37,080 --> 00:43:40,540 |
|
ุจูุณุงููุ ุตูุฑุ ุฃูุง ุณู
ูุชูุง ุฅูุด ุฃูุงุ Alpha ูุฐู ุงููู |
|
|
|
472 |
|
00:43:40,540 --> 00:43:46,660 |
|
ุจุชุชุญุฑูุ ุฅุฐุง ูุฐุง ุงู limit ุฅูุด ููุณุงููุ ุจููุณ ุงูุณุจุจ ุฃู |
|
|
|
473 |
|
00:43:46,660 --> 00:43:52,940 |
|
ูููุณ ุงูุณุจุจ limitG of Alpha ูู
ุง Alpha ุชุฑูุญ ูู A ู
ู |
|
|
|
474 |
|
00:43:52,940 --> 00:43:59,680 |
|
ุงููู
ูู ุจุฑุถู ู
ุด ููุณุงูู ุตูุฑ ุฅุฐุง ุงูุขู ุจุฑุฌุน ููุฐู ุจุฑุฌุน |
|
|
|
475 |
|
00:43:59,680 --> 00:44:09,060 |
|
ููุฐู ุจูุตูุฑ ุนูุฏู ุงูุขู ุงููู ุญุตูุชู ููู ุนูู ุจุนุถู ููู ู |
|
|
|
476 |
|
00:44:09,060 --> 00:44:17,130 |
|
ุฃูุจุฑ ู
ู ุตูุฑ ู
ุงุดู ุงูุญุงู ู gate Delta ุจุญูุซ ุฃูู ุงู Alpha |
|
|
|
477 |
|
00:44:17,130 --> 00:44:20,050 |
|
ู beta ุจุดูู ูุฐุง ุฃูุจุฑ ู
ู a ู ุฃูู ุฒู ุงู Delta |
|
|
|
478 |
|
00:44:20,050 --> 00:44:24,570 |
|
ุณูุจู ู
ู ุงู L Alpha ุฎูุงุต ุฑุฏูุชูุง ุฃูุง beta ุฃูุจุฑ ู
ู a ู |
|
|
|
479 |
|
00:44:24,570 --> 00:44:29,170 |
|
ุฃุตุบุฑ ู
ู a ุฒู ุงู Delta ุทูุน ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ |
|
|
|
480 |
|
00:44:29,170 --> 00:44:33,170 |
|
ู
ู L ุฒู ุงู ุฅุจุณููู ู ุฃูุจุฑ ู
ู L ูุงูุต ุฅุจุณููู ู
ุงุดูุ |
|
|
|
481 |
|
00:44:33,170 --> 00:44:37,300 |
|
ุงูุขู ุฑุฏูุช ู ุฃุฎุฏุชู ู
ู ุงู limit ุงูุขู ุจุฏู ุฃุฎุฏ ุงู |
|
|
|
482 |
|
00:44:37,300 --> 00:44:40,940 |
|
limit ููุฐุง ุงูู
ูุฏุงุฑ ููู ูู
ุง ุงู alpha ุชุฑูุญ ูู
ููุ ูู |
|
|
|
483 |
|
00:44:40,940 --> 00:44:45,240 |
|
a ู
ู ุงููู
ูู ุงูุขู ูู
ุง ุฃุฎุฏ ุงู limit ููุฐุง ุฒู ู
ุง ููุช |
|
|
|
484 |
|
00:44:45,240 --> 00:44:48,500 |
|
ุงู beta ู
ุงููุงุด ุนูุงูุฉ ุจุงู alpha ุงู beta ุซุงุจุชุฉ |
|
|
|
485 |
|
00:44:48,500 --> 00:44:50,920 |
|
ุจุงููุณุจุฉ ูู alpha ูุงู alpha ุชุฑูุญ ูู a ู
ู ุงููู
ูู ุฒู |
|
|
|
486 |
|
00:44:50,920 --> 00:44:55,100 |
|
ู
ุง ุจุฏูุง ูู ุชุชุฃุซุฑ beta ูุจูุตูุฑ limit ุงููู ููู ุนูู |
|
|
|
487 |
|
00:44:55,100 --> 00:44:59,520 |
|
limit ุงููู ุชุญุช ูุฐุง ุซุงุจุช ู ูุฐุง ุซุงุจุช ู ูุฐุง limit ูู |
|
|
|
488 |
|
00:44:59,520 --> 00:45:04,300 |
|
ุงููู ูู ุตูุฑ ู ูุฐุง limit ูู ุตูุฑ ู ูุฐูู ุฃุนุฏุงุฏ ุฅุฐุง |
|
|
|
489 |
|
00:45:04,300 --> 00:45:11,220 |
|
ุฃุตุงุฑ ุนูุฏู ุงูุขู ุนูุฏู take the limit ุจูุตูุฑ ุนูุฏู L |
|
|
|
490 |
|
00:45:11,220 --> 00:45:18,100 |
|
ูุงูุต Epsilon ุฃุตุบุฑ ุฃู ูุณุงูู ุงููู ูู F of Beta ุนูู G |
|
|
|
491 |
|
00:45:18,100 --> 00:45:23,660 |
|
of Beta ุฃุตุบุฑ ู
ู L ุฒุงุฆุฏ Epsilon ู
ู ููู ุญุตูุชู ูุฐุงุ |
|
|
|
492 |
|
00:45:23,660 --> 00:45:29,160 |
|
when I take the limit of this inequality as Alpha |
|
|
|
493 |
|
00:45:29,160 --> 00:45:37,460 |
|
goes to A from right ูุงุถุญุ ูุฐุง ุญุตูุช ุนููู ูุฐุง ุนุฑูุช |
|
|
|
494 |
|
00:45:37,460 --> 00:45:40,600 |
|
ุซุงูููุฉ ูุฐุง ุญุตูุช ุนููู ู
ู ููู ุฃู ุฃุฎุฏุช ุงู limit |
|
|
|
495 |
|
00:45:40,600 --> 00:45:44,660 |
|
ููุฌูุงุช ุงูุชูุงุชุฉ as Alpha ุชุฑูุญ ูู A ู
ู ุงููู
ูู |
|
|
|
496 |
|
00:45:44,660 --> 00:45:48,780 |
|
ูุงุณุชุฎุฏู
ุช ูุฐู ุงูุญูููุฉ ุฃู ูุฐุง ุตูุฑ ู ูุฐุง ุตูุฑ ุตุงุฑ ูุฐุง |
|
|
|
497 |
|
00:45:48,780 --> 00:45:53,360 |
|
ุงูู
ูุฏุงุฑ ู ูุฐุง ุงูู
ูุฏุงุฑ ุจูู ูุฐุง ู ูุฐุง ุฅุฐู ุงููู ุญุตูุช |
|
|
|
498 |
|
00:45:53,360 --> 00:46:02,380 |
|
ุนููู ุงูุขู ูู ู
ุง ูููู ููู epsilon ุฃูุจุฑ ู
ู ุตูุฑ ูุฌูุฉ |
|
|
|
499 |
|
00:46:02,380 --> 00:46:07,610 |
|
Delta ุฃูุจุฑ ู
ู ุงูุตูุฑ such that ูุฐู beta ูุงูุช |
|
|
|
500 |
|
00:46:07,610 --> 00:46:14,650 |
|
arbitrary ุจูู a ู ุจูู ู
ูู ุงููู ูู such that if |
|
|
|
501 |
|
00:46:14,650 --> 00:46:26,150 |
|
beta ุจูู ุงู a ู ุงู a ุฒุงุฆุฏ delta we have then ุฅูุด |
|
|
|
502 |
|
00:46:26,150 --> 00:46:31,990 |
|
ุงููู ุญุตููุง ุนููู ุงููู ูู f of beta ุนูู f of alpha |
|
|
|
503 |
|
00:46:33,100 --> 00:46:38,720 |
|
ุตุงุฑุช ุฃุตุบุฑ ุฃู ูุณุงูู L ุฒุงูุฏ ุฅุจุณููู ู ุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
504 |
|
00:46:38,720 --> 00:46:47,620 |
|
ุฅุจุณููู ูุงูุต L ุฃู ุจู
ุนูู ุขุฎุฑ IE F of Beta ุนูู F of |
|
|
|
505 |
|
00:46:47,620 --> 00:46:53,340 |
|
Alpha ูุงูุต L absolute value ุฃุตุบุฑ ุฃู ูุณุงูู ุฅุจุณููู |
|
|
|
506 |
|
00:46:53,340 --> 00:47:02,280 |
|
ู ูุฐุง ูุฐุง this means that hence limit |
|
|
|
507 |
|
00:47:03,350 --> 00:47:13,590 |
|
f of beta ุนูู f of alpha as ุงููู ูู limit of ูุฏู g |
|
|
|
508 |
|
00:47:13,590 --> 00:47:23,970 |
|
ู
ุงููู
ูุฏู g ุจุณุงูุชูู g of beta ูุฏู g of beta limit |
|
|
|
509 |
|
00:47:23,970 --> 00:47:28,270 |
|
of beta ุนูู g of beta ู
ุธุจูุทุ |
|
|
|
510 |
|
00:47:29,140 --> 00:47:33,140 |
|
as ุงููู ูู ุทุจุนูุง ุงูุขู ุจูุช ุฅูู ุดู
ุงููุง ููู ุจูุชูุง |
|
|
|
511 |
|
00:47:33,140 --> 00:47:37,620 |
|
ูุนูู ุจูุชูุง ููู ุฑุงุญุชุ ุนูู ุงููู
ูู ุงููู
ูู ูุงู ููู ุจูุชูุง |
|
|
|
512 |
|
00:47:37,620 --> 00:47:49,320 |
|
ูููุ ูู ุงูุฌูุงุฑ ูุฐุง ุงูุขู ุจูุณุงูู ุงู ูู ุงูู
ุทููุจ ู
ุด |
|
|
|
513 |
|
00:47:49,320 --> 00:47:53,440 |
|
ุนุงุฌุจู ุจูุชู ุชุจูู ุชูุณุฑ ุฃู ุณุคุงู |
|
|
|
514 |
|
00:47:56,950 --> 00:48:01,030 |
|
ุจุชุตูุฑ ููู ุงูู
ุธูุฑูุฉ ูุงุถุญุฉ ุชู
ุงู
ูุง ูู ุชูุช ุฎุทูุงุช ูู |
|
|
|
515 |
|
00:48:01,030 --> 00:48:05,530 |
|
ุงููุงูุน ุชูุช ุฎุทูุงุช ู
ูู ูู
ุงุ ูู ุทุจุนูุง ูู ุงููุชุงุจ ูุนูู ูู |
|
|
|
516 |
|
00:48:05,530 --> 00:48:12,190 |
|
ูุงุญุธุช ูุชูุงูู ูุนูู ุฃูู ุจุฏูุง ุจุณ ุชุฑุชูุจ ุงูุขู ูุฃ ุจุฏูุง |
|
|
|
517 |
|
00:48:12,190 --> 00:48:19,150 |
|
ุชุฑุชูุจ ุทูุน ุนูููุง ุงูุขู ุนูุฏู ูุฐุง ุงูุขู ุงุณุชุฎุฏู
ุช ุฃูุง ูุฐุง |
|
|
|
518 |
|
00:48:19,150 --> 00:48:23,370 |
|
ูู ุงูุฃูู ุจุงูุนู
ุฏุงู ูุงุณุชุฎุฏู
ูุฐุง ุงุณุชุฎุฏู
ุช ูุฐุง ุนุดุงู |
|
|
|
519 |
|
00:48:23,370 --> 00:48:27,150 |
|
ุฃููู ูู ูุฐู ุงู inequality ุตุญูุญ ุนูู ูู ุงูู
ูุทูุฉ ูุฐู ูุฃู |
|
|
|
520 |
|
00:48:27,150 --> 00:48:33,170 |
|
ูุฌูุช U ูุฃู ุงููู ูุฌูุชูุง U ุฃูุง ูุฌูุชูุง ูุฌูุช ุงู U ู |
|
|
|
521 |
|
00:48:33,170 --> 00:48:36,070 |
|
ุฃุฎุฏุช ุงููุชุฑุฉ ููุง ุนุดุงู ุฃููู ูู ุงู U ุงููู ูุฌูุชูุง ูู |
|
|
|
522 |
|
00:48:36,070 --> 00:48:41,570 |
|
ุฏุงุฎู ุงููุชุฑุฉ ูุฐู ุงูุญุฏูุซ ูุฐู ุฌุงูุจ ุนู ูุฐู ุจุนู
ู |
|
|
|
523 |
|
00:48:41,570 --> 00:48:45,750 |
|
confusion ุนูุฏ ุงูุทุงูุจ ูุฃู ุงููู ูุฌูุชูุง ู
ู ูุงู ุฅูู |
|
|
|
524 |
|
00:48:45,750 --> 00:48:49,970 |
|
ููุง ู
ูุฌูุฏุฉ ู
ุง ูู ุงููู ูุฌูุชูุง ููุง ููู ูุฌูุชูุงุ ุจูู A |
|
|
|
525 |
|
00:48:49,970 --> 00:48:56,050 |
|
ู B ุจูู A ู B ุฃู ุจูู Alpha ู Beta ูุนูู ุจุฏูุง ูุตูุฑ |
|
|
|
526 |
|
00:48:56,050 --> 00:49:05,880 |
|
ุนูุฏู ุงููู ูู ุงู F prime ุงู F prime ุนูุฏู ุงู limit |
|
|
|
527 |
|
00:49:05,880 --> 00:49:11,140 |
|
.. ุงู limit ูู .. ุฎูููู ุฃูุชุจูุง ูุง ุดูุฎ ููุดุ ูุง .. |
|
|
|
528 |
|
00:49:11,140 --> 00:49:16,120 |
|
ูุฐุง ุจูุณุงูู ุงู .. ุงููู ูู ุฅูุดุ ู
ุง ูุฃ ุจุฃุฎุฐ ุงู |
|
|
|
529 |
|
00:49:16,120 --> 00:49:20,740 |
|
infinity ุจุทูุน ุญุฏ ุจุฑุถู ุฅูุดุ infinity ูุนูู ุงูุญุงูุฉ |
|
|
|
530 |
|
00:49:20,740 --> 00:49:26,250 |
|
ุงูุชุงููุฉ ุงููู ูู F ุจุณุงูุฉ infinity ููููู ุงู limit ูู |
|
|
|
531 |
|
00:49:26,250 --> 00:49:33,570 |
|
F ุนูู G ุดู
ุงููุง ุจูุณุงูู infinity ุงูุขู ุจุฏูุง ูุตูุฑ ุนูุฏู |
|
|
|
532 |
|
00:49:33,570 --> 00:49:38,750 |
|
ุจุฏู ู
ุง ุฃููู limit F prime ุนูู G prime ุจูุณุงูู L ุจุฏูุง |
|
|
|
533 |
|
00:49:38,750 --> 00:49:43,310 |
|
ูุตูุฑ ุฃุดูุฑ ุจูุณุงูู infinity ููู ุจูุนุจุฑ ุนูู ุฅูู ุงูุฑูู
|
|
|
|
534 |
|
00:49:43,310 --> 00:49:47,190 |
|
ูุฑูุญ ูู
ุง ูููุงูุฉ ุงู limit ุฃูู ูุงุฎุฏ ุงููู ูู ุตุฑูุง |
|
|
|
535 |
|
00:49:47,190 --> 00:49:50,250 |
|
ู
ุชุนุงุฑููู for every ุฅุจุณุท ุฅูู ูุงูุช ุนุจุงุฑุฉ ุนู ุฅูุดุ ุตุบูุฑ |
|
|
|
536 |
|
00:49:50,250 --> 00:49:55,190 |
|
for every K Element in R ุทุจุนูุง ูู ุฃุฎุฏุช K positive |
|
|
|
537 |
|
00:49:55,190 --> 00:49:58,050 |
|
ุจุฑุถู ุจููุนูู ูุฅุฐุง .. ุฅุฐุง ุจูููู ุฃูุจุฑ ู
ู ุงู positive |
|
|
|
538 |
|
00:49:58,050 --> 00:50:01,170 |
|
ุฃููุฏ ููููู ุฃูุจุฑ ู
ู ู
ููุ ู
ู ุงู negative for every K |
|
|
|
539 |
|
00:50:01,170 --> 00:50:05,450 |
|
element in R there exists delta such that ููู X ูู |
|
|
|
540 |
|
00:50:05,450 --> 00:50:12,970 |
|
ูุฐู ุงูู
ูุทูุฉ ุจูุทูุน ุงููู ูู F prime of X ุงููู ูู ูุฐุง |
|
|
|
541 |
|
00:50:12,970 --> 00:50:16,630 |
|
.. ุจูู ุงููู ุจู
ุณุญู ูุฐุง ุจู
ุณุญ ู
ู ุงูุชุนุฑูู ุฐุงู ููุชุนุฑูู |
|
|
|
542 |
|
00:50:16,630 --> 00:50:20,920 |
|
limit F prime ุนูู G prime ุฅูุด ุจูุณุงููุ ู
ุง ูููุงู ุจู
ุง |
|
|
|
543 |
|
00:50:20,920 --> 00:50:23,800 |
|
ุฃู ูุฐุง ุจูุณุงูู ู
ุง ูููุงูุฉ ุฃูุถูุง ูุฃ ูู K ุงูู
ุชูุงุฑุฉ ุจูู X |
|
|
|
544 |
|
00:50:23,800 --> 00:50:28,200 |
|
ุฒู ุงูุฒูุชุฉ such that ูู
ุง ุชููู X ูุนูู ุจูู ุงู A ู ุจูู |
|
|
|
545 |
|
00:50:28,200 --> 00:50:31,060 |
|
Z ุฒู ุงูุฏูุชุฉ ูุนูู ุฑูุญุช ูู ุงู A ู
ู ุงููู
ูู then F |
|
|
|
546 |
|
00:50:31,060 --> 00:50:35,800 |
|
ุจุฑุงูู
ุนูู D ุจุฑุงูู
ุฃูุจุฑ ู
ู ู
ููุ ู
ู K ู
ุงุดู ุงูุญุงูุฉ ู |
|
|
|
547 |
|
00:50:35,800 --> 00:50:39,540 |
|
ูุฐุง ุงููู ูู ุงููุงุญุฏ ุนูุฏู ู ูุฐุง ููู ุงููู ูู ููุงู
|
|
|
|
548 |
|
00:50:39,540 --> 00:50:46,340 |
|
ุดู
ุงูู ููุณ ุงูุดูุก ู
ุชุญูู ูุจูุตูุฑ ุนูุฏู ุจุฃุณุชุจุฏู ูุฐุง ูุฐุง |
|
|
|
549 |
|
00:50:46,340 --> 00:50:50,270 |
|
ู
ุงููุด ุฏุงุนู ูู ุจูุตูุฑ ุงูุชูุงุตูู ููุง ู ุจูุตูุฑ ุนูุฏู ูุฐุง |
|
|
|
550 |
|
00:50:50,270 --> 00:50:55,110 |
|
ูุฌูุชู ุฅุฐุง from ูุงุญุฏ ุนูุฏ ุงุชููู we have ุงููู ูู |
|
|
|
551 |
|
00:50:55,110 --> 00:51:01,370 |
|
ูุนู
ููุง ู
ุน ุจุนุถ ุจุฃุณุชุจุฏู ูุฐุง ุจุฃุญุทู ูุงู ุจูุตูุฑ ุนูุฏู f |
|
|
|
552 |
|
00:51:01,370 --> 00:51:11,330 |
|
prime f of beta ูุงูุต f of alpha ุนูู g of beta ูุงูุต |
|
|
|
553 |
|
00:51:11,330 --> 00:51:17,220 |
|
g of alpha ุฃูุจุฑ ู
ู ู
ููุ ู
ู K ู
ุงุดู ุงูุญุงู ูููุณ ุงูุณุจุจ |
|
|
|
554 |
|
00:51:17,220 --> 00:51:21,260 |
|
ุงูุฃููุงูู ุงู alpha ุงููู ูู limit ูุฐู ุตูุฑ ู limit |
|
|
|
555 |
|
00:51:21,260 --> 00:51:26,260 |
|
ูุฐู ุตูุฑ ุงูู
ุนุทููุฉ ูู ูู ุจูุตูุฑ ูุฐู ุนุจุงุฑุฉ ุนู ูู
ุง ุงู |
|
|
|
556 |
|
00:51:26,260 --> 00:51:28,700 |
|
alpha ุชุฑูุญ ูู beta ูุจูุตูุฑ ุนูุฏ f ูู beta ู d ูู |
|
|
|
557 |
|
00:51:28,700 --> 00:51:33,060 |
|
beta ุฃูุจุฑ ู
ู ู
ููุ ู
ู K ุตุงุฑ ุนูุฏู ุงูุขู ููู K element |
|
|
|
558 |
|
00:51:33,060 --> 00:51:38,360 |
|
in R ูุฌูุฉ Delta ุจุญูุซ ุฃูู ูู
ุง ุชููู Beta ุจูู ุงู A ู |
|
|
|
559 |
|
00:51:38,360 --> 00:51:43,660 |
|
A ุฒุงุฆุฏ Delta ุญุตูุช ุนูู ูุฐู ุฃูุจุฑ ู
ู ู
ููุ ู
ู K ููุฐุง |
|
|
|
560 |
|
00:51:43,660 --> 00:51:50,080 |
|
ุงููู ูู ุฅูู ุดู
ุงููุ ูู ุชุนุฑูู limit F of Beta ุนูู G |
|
|
|
561 |
|
00:51:50,080 --> 00:51:58,480 |
|
of Beta as Beta ุฑูุญ ููู A ู
ู ุงููู
ูู ุณูู ู
ูุง ููุงูุฉ |
|
|
|
562 |
|
00:51:58,480 --> 00:52:01,440 |
|
ููู ุจุฏูุง ุณุงูุจ ู
ูุง ููุงูุฉ ุจููุณ ุงูุฃุณููุจ ุฏู ุจุชููู for |
|
|
|
563 |
|
00:52:01,440 --> 00:52:07,660 |
|
every K K ุณุงูู
ุฉ ุจูุตูุฑ ุฃุตุบุฑ ูููุณ ุงูููุงู
|
|
|
|
564 |
|
00:52:07,660 --> 00:52:13,110 |
|
examples .. ูุดูู ุงูู examples ุงููู ุนูุฏูุง |
|
|
|
565 |
|
00:52:13,110 --> 00:52:20,890 |
|
ููุฌู ููู examples ุงููู ุนูุฏู ุงูุฃููู ูุนูู limit |
|
|
|
566 |
|
00:52:22,440 --> 00:52:28,260 |
|
Sin X ุนูู ุฌุฏุฑ X ูู
ุง X ุชุฑูุญ ูู 0 ู
ู ูููุ ู
ู ุงููู
ููุ |
|
|
|
567 |
|
00:52:28,260 --> 00:52:33,740 |
|
ููุณ ุจุณููุ ุฏุนููุง ูุดุฑุญ ุนู ุงูู ุงููุญุด ูุจุงููุงููููุณ ูุฐู ูุฃู |
|
|
|
568 |
|
00:52:33,740 --> 00:52:36,820 |
|
limit Sin X ุนูู ุฌุฏุฑ X ูู
ุง X ุชุฑูุญ ูู 0 ู
ู ูููุ ู
ู |
|
|
|
569 |
|
00:52:36,820 --> 00:52:40,620 |
|
ุงููู
ููุ ุงูุขู ุงูู limit ุงููู ููู ูู
ุง X ุชุฑูุญ ูู 0 ู
ู |
|
|
|
570 |
|
00:52:40,620 --> 00:52:43,920 |
|
ุงููู
ููุ ุตูุฑ ู ุงููู ุชุญุช ุตูุฑุ ุฅุฐุง ุตุงุฑ ุนุจุงุฑุฉ ุนู 0 ุนูู |
|
|
|
571 |
|
00:52:43,920 --> 00:52:48,020 |
|
0 ููู ุฃู
ูุฑูุง ุฅูุด ู
ุง ููุง ู
ุชุญููุฉ ุงูู differential |
|
|
|
572 |
|
00:52:48,020 --> 00:52:51,190 |
|
ุงูู continuous ู ูู ู ูู ู ุงูุฃุฎุฑู ู ุงูุฃุฎุฑู ุฅุฐุง ุจููุถู |
|
|
|
573 |
|
00:52:51,190 --> 00:52:53,330 |
|
ุงููู ููู ู ุจููุถู ุงููู ุชุญุช ูุถููุง ุงููู ููู ู ุทูุนูู |
|
|
|
574 |
|
00:52:53,330 --> 00:52:58,430 |
|
cos X ู ุงููู ุชุญุช 1 ุนูู 2 ูู ุฌุฏุฑ ุงูู X ุงูุขู ุงููู .. |
|
|
|
575 |
|
00:52:58,430 --> 00:53:00,150 |
|
ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. |
|
|
|
576 |
|
00:53:00,150 --> 00:53:00,750 |
|
ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. |
|
|
|
577 |
|
00:53:00,750 --> 00:53:01,710 |
|
ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. |
|
|
|
578 |
|
00:53:01,710 --> 00:53:01,750 |
|
ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. |
|
|
|
579 |
|
00:53:01,750 --> 00:53:01,830 |
|
ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. |
|
|
|
580 |
|
00:53:01,830 --> 00:53:01,850 |
|
ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. |
|
|
|
581 |
|
00:53:01,850 --> 00:53:02,510 |
|
ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. ุงููู .. |
|
|
|
582 |
|
00:53:02,510 --> 00:53:09,470 |
|
ุงููู .. ุงููู .. |
|
|
|
583 |
|
00:53:09,470 --> 00:53:10,410 |
|
ุงููู .. |
|
|
|
584 |
|
00:53:15,260 --> 00:53:20,220 |
|
ุงูุขู ุงููู ุจุนุฏูุง 1-sin x ุนูู x ุชุฑุจูุน ูู
ุง x ุชุฑูุญ |
|
|
|
585 |
|
00:53:20,220 --> 00:53:23,520 |
|
ูู
ูู ูุณู ูู ุฑุฌูููุง ุงููุธุฑูุฉ ุตุญูุญุฉ ุจุฑุถู ูู ูุงูุช ุงููู |
|
|
|
586 |
|
00:53:23,520 --> 00:53:27,900 |
|
.. ุงููู .. ุงููู ุจุฏูุง ูุฑูุญููุง ุฌูุง ููุทุฉ interior ุฃู |
|
|
|
587 |
|
00:53:27,900 --> 00:53:30,700 |
|
ุนูู ุงูู end points ูููุง ุตุญูุญุฉ ูุจููุณ ุงูุฃุณููุจ ุงูุจุฑูุงู |
|
|
|
588 |
|
00:53:30,700 --> 00:53:34,700 |
|
ุฒู ู
ุง ุจุฑูููุง ุนู ุงููู
ูู ุจูุจุฑูู ูู ุงููุณุท ูุจูุงุฎุฏ ุจุฏู |
|
|
|
589 |
|
00:53:34,700 --> 00:53:37,700 |
|
ู
ุง ูู ุงูุฌูุงุฑ ู
ู a ูุนูุฏ a ุฒุงุฆุฏ delta ุฅุฐุง ูุงูุช ุฌูุง |
|
|
|
590 |
|
00:53:37,700 --> 00:53:40,640 |
|
ู
ู a ูุงูุต delta ูุนูุฏ a ุฒุงุฆุฏ delta ูุฏู ูุงู ุนูู |
|
|
|
591 |
|
00:53:40,640 --> 00:53:47,360 |
|
ุงูุฌูุฉ ุงูุซุงููุฉ ู
ู a ูุงูุต delta ูุนูุฏ ุงูู a ูุงูู
ูู |
|
|
|
592 |
|
00:53:47,360 --> 00:53:51,060 |
|
ุนูููุง ูุฐู ุงููู ูู ุจุฑุถู ุนุจุงุฑุฉ ุนู ูู ุฃุฎุฏูุง limit ููู |
|
|
|
593 |
|
00:53:51,060 --> 00:53:54,780 |
|
ููู ุตูุฑ ู limit ููู ุชุญุช ุตูุฑ ุฅูู ุฃู ูุถููุง ุงููู ููู |
|
|
|
594 |
|
00:53:54,780 --> 00:53:58,940 |
|
ู ูุถููุง ุงููู ุชุญุช ุทุงูุน ุนูุฏู sin x ุนูู 2x ุฅูู ุฃู ุทูุน |
|
|
|
595 |
|
00:53:58,940 --> 00:54:04,360 |
|
ุนูุฏู 0 ุนูู 0 ูู
ุงู ู
ุฑุฉ ู ู
ุชุญูู ูู ุฃู
ูุฑูุง ุฅุฐุง ุจูุดุชูู |
|
|
|
596 |
|
00:54:04,360 --> 00:54:07,520 |
|
ูู
ุงู ู
ุฑุฉ ุจูุตูุฑ cosine x ุนูู 2 ู ูุณุงูู ูุต ู ููุฐุง |
|
|
|
597 |
|
00:54:07,520 --> 00:54:09,180 |
|
ุงููู ุจุนุฏูุง |
|
|
|
598 |
|
00:54:11,950 --> 00:54:16,150 |
|
limit e to the x ููุต ูุงุญุฏ ุนูู x ูู
ุง x ุชุฑูุญ ูู
ูู |
|
|
|
599 |
|
00:54:16,150 --> 00:54:20,730 |
|
ููุตูุฑ ุจุฑุถู ููุณ ุงูุงุดู ูุฐู ุจูุตูุฑ ุตูุฑ ุนูู ุตูุฑ ูู limit |
|
|
|
600 |
|
00:54:20,730 --> 00:54:24,750 |
|
ุงูุฃููู ุจูุดุชู ุฃู ุชุทูุน ุนูุฏู ูุงุญุฏ |
|
|
|
601 |
|
00:54:28,600 --> 00:54:33,500 |
|
ุงูุขู ุงูุฃุฎูุฑุฉ ููุณ ุงูุดูุก ูุฅู ุงูู X ุนูู X minus ูุงุญุฏ |
|
|
|
602 |
|
00:54:33,500 --> 00:54:36,560 |
|
ุจุฑุถู ููุณ ุงูุดูุก Zero ุน Zero ุจูุทูุน ุนูุฏู ุงููู ูู |
|
|
|
603 |
|
00:54:36,560 --> 00:54:39,240 |
|
ุจุงููุงุถู ูุฐู ุจุชุทูุน ูุงุญุฏ ุนูู X ุจุงููุงุถู ูุฐู ูุงุญุฏ |
|
|
|
604 |
|
00:54:39,240 --> 00:54:44,220 |
|
ุจูุตูุฑ ุงูุขู ูู
ุง ุงูู X ุชุฑูุญ ูููุงุญุฏ ุจูุณุงูู ุงููุงุญุฏ ุฃุทูุน |
|
|
|
605 |
|
00:54:44,220 --> 00:54:48,920 |
|
ูููู ุจูููู ูุตููุง ุงุญูุง ุนูุฏ ู
ูู ุนูุฏ ุขุฎุฑ ูุธุฑูุฉ ุงููู |
|
|
|
606 |
|
00:54:48,920 --> 00:54:56,000 |
|
ูู Lobitals Rule ุงููู ูู ูู ุญุงูุฉ ุงููู ูู ุฅูููุง ุชุทูุน |
|
|
|
607 |
|
00:54:56,000 --> 00:54:59,960 |
|
ุนูุฏู infinity ุงู ูุงูุต infinity ุงูู limit ูุนูู ุงูู |
|
|
|
608 |
|
00:54:59,960 --> 00:55:03,280 |
|
indeterminate form ุงููู ูู infinity ุนูู infinity |
|
|
|
609 |
|
00:55:03,280 --> 00:55:07,080 |
|
ุงู ูุงูุต infinity ุนูู infinity ุจุฑุถู ุงูู
ุฑุฉ ุงูุฌุงูุฉ ุฅู |
|
|
|
610 |
|
00:55:07,080 --> 00:55:07,620 |
|
ุดุงุก ุงููู |
|
|