abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
67.3 kB
1
00:00:05,300 --> 00:00:13,060
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุฏุณุฉ ู…ุณุงู‚ ุชุญู„ูŠู„
2
00:00:13,060 --> 00:00:18,680
ุญู‚ูŠู‚ุฉ 2 ู„ุทู„ุจุฉ ู‚ุณู… ุฑูŠุงุถูŠุงุช ุจูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ุจุงู„ุฌุงู…ุนุฉ
3
00:00:18,680 --> 00:00:23,220
ุงู„ุฅุณู„ุงู…ูŠุฉ ุจุบุฒุฉ. ุงู„ุญุฏูŠุซ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ูŠูƒูˆู† ุญูˆู„
4
00:00:23,220 --> 00:00:30,200
ู‚ูˆุงุนุฏ ู„ูˆุจูŠุชุงู„ (L'Hรดpital's Rules)
5
00:00:30,200 --> 00:00:38,320
ุจุชู…ุฑ ููŠ ุงู„ุชูุงุถู„ ูˆุงู„ุชูƒุงู…ู„ (calculus) ุจุชู…ุฑ ู…ู† ู†ุงุญูŠุฉ
6
00:00:38,320 --> 00:00:45,100
ุนู…ู„ูŠุฉ ุงุณุชุฎุฏุงู…ู‡ุง ูˆุชูˆุธูŠูู‡ุง ู„ุญู„ ุงู„ู„ูŠ ู‡ูŠ ุจุนุถ ุงู„ู†ู‡ุงูŠุงุช
7
00:00:45,100 --> 00:00:50,400
ุงู„ู„ูŠ ุจูŠูƒูˆู† .. ุงู„ู„ูŠ ู‡ูˆ ุนุฌุฒู†ุง ุนู† ุญู„ู‡ุง ุจุทุฑู‚ ุนุงุฏูŠุฉ
8
00:00:51,750 --> 00:00:57,550
ู‡ู†ุดูˆู ุงู„ุขู† ููŠ ุงู„ุญุฏูŠุซ ุนู† ู‚ูˆุงุนุฏ ู„ูˆุจูŠุชุงู„ ุญูˆู„ ุงู„ู„ูŠ
9
00:00:57,550 --> 00:01:01,570
ู‡ูˆ ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ ุฃู† ู†ุจุฑู‡ู† ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ูˆุงุนุฏ ูƒูŠู ู†ุดุชู‚
10
00:01:01,570 --> 00:01:06,310
ู‡ุฐู‡ ุงู„ู‚ูˆุงุนุฏ ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ ุฃูŠุถู‹ุง ุจุดูƒู„ ุณุฑูŠุน ุญูˆู„ ุงู„ู„ูŠ
11
00:01:06,310 --> 00:01:12,490
ู‡ูŠ ุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ู‚ูˆุงุนุฏ ุทุจุนู‹ุง
12
00:01:12,490 --> 00:01:16,430
ููŠ ุงู„ุฃูˆู„ ู‡ู†ุชุญุฏุซ ุนู† ุงู„ูƒู…ูŠุงุช ุงู„ุบูŠุฑ ู…ุนูŠู†ุฉ
13
00:01:17,020 --> 00:01:23,580
(indeterminate forms) ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุชุนุงู„ุฌู‡ุง ุงู„ู„ูŠ ู‡ูŠ
14
00:01:23,580 --> 00:01:28,840
ู‚ูˆุงุนุฏ ู„ูˆุจูŠุชุงู„ (L'Hรดpital's Rules) ุนู†ุฏูŠ ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ู„ูˆ ุฌูŠู†ุง ุฃุฎุฏู†ุง
15
00:01:28,840 --> 00:01:37,090
ุงู„ู€ limit ุงู„ู„ูŠ ู‡ูˆ x ุนู„ู‰ x<sup>3</sup> ุนู„ู‰ x<sup>2</sup> ู…ุซู„ู‹ุง as x
16
00:01:37,090 --> 00:01:44,730
goes to zero ุงู„ู€ limit ฮฑx ุนู„ู‰ x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ุฒูŠุฑูˆ
17
00:01:44,730 --> 00:01:50,670
ุงู„ู€ limit ุงู„ู„ูŠ ู‡ูˆ x<sup>2</sup> ุนู„ู‰ x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ุฒูŠุฑูˆ
18
00:01:50,670 --> 00:01:59,900
ุงู„ู€ limit x ุนู„ู‰ x<sup>3</sup> ู„ู…ุง x ุชุฑูˆุญ ู„ู„ุฒูŠุฑูˆ ุงู„ู€ limit ู…ุซู„ู‹ุง
19
00:01:59,900 --> 00:02:07,100
-x ุนู„ู‰ x<sup>3</sup> ู„ู…ุง x ุชุฑูˆุญ ู„ู€ 0 ู„ูˆ ุทู„ุนู†ุง ุนู„ู‰
20
00:02:07,100 --> 00:02:11,440
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ limits ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูƒู„ู‡ุง ุนู„ู‰ ุตูˆุฑุฉ
21
00:02:11,440 --> 00:02:16,260
ุงู„ู„ูŠ ู‡ูŠ ู„ูˆ ุชุนูˆูŠุถ ู…ุจุงุดุฑ ู‡ู†ู„ุงู‚ูŠู‡ุง ุนู„ู‰ ุตูˆุฑุฉ 0 ุนู„ู‰ 0
22
00:02:16,960 --> 00:02:21,420
ุงู„ุขู† ูƒู…ูŠุฉ 0 ุนู„ู‰ 0 ุจุงู„ุทุฑู‚ ุงู„ุณุงุจู‚ุฉ ูƒุงู† ุงู„ู„ูŠ ู‡ูˆ ุฃู†ู‡
23
00:02:21,420 --> 00:02:27,620
ุงุญู†ุง ุตุนุจ ุงู„ู„ูŠ ู‡ูˆ ู†ุชุนุงู…ู„ ู…ุนู‡ุง ู„ูƒู† ููŠ ุจุนุถ ุงู„ุฃุญูŠุงู† ุฒูŠ
24
00:02:27,620 --> 00:02:30,520
ุงู„ุญุงู„ุฉ ู‡ุฐู‡ ู‡ู†ู„ุงู‚ูŠ ุฃู†ู‡ ุงุญู†ุง ุจู†ุนุฑู ู†ุชุนุงู…ู„ ู…ุนู‡ุง ูˆ
25
00:02:30,520 --> 00:02:36,140
ุจู†ุนุฑู ู†ุญูƒู… ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ู„ุงุญุธ ุฃู†ู‡ ูƒู„ ุฑุบู… ุฃู† ูƒู„ู‡ุง 0
26
00:02:36,140 --> 00:02:41,100
ุนู„ู‰ 0 ุฅู„ุง ุฃู†ู‡ุง ุจุชุนุทูŠ ููŠ ูƒู„ ุญุงู„ุฉ ุดูŠุก ู…ุฎุชู„ู ุนู†
27
00:02:41,100 --> 00:02:47,350
ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุขู† ู‡ุฐู‡ ู…ุซู„ู‹ุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ limit 1 ุนู„ู‰ x
28
00:02:47,350 --> 00:02:51,030
ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ 0 ุทุจุนู‹ุง 1 ุนู„ู‰ x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ 0 ุฅูŠุด
29
00:02:51,030 --> 00:02:53,710
ู…ุงู„ู‡ุงุŸ does not exist ู„ุฃู†ู‡ ู…ู† ุงู„ูŠู…ูŠู† ุจุชุนุทูŠ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
30
00:02:53,710 --> 00:02:56,790
ูˆู…ู† ุงู„ูŠุณุงุฑ ุจุชุนุทูŠ ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุนุดุงู† ู‡ูŠูƒ
31
00:02:56,790 --> 00:03:02,510
ูƒุฏู‡ ูŠุจู‚ู‰ ู†ู‚ูˆู„ ุนู†ู‡ุง does not exist ู„ุฃู† ุงู„ู€ limit ฮฑx
32
00:03:02,510 --> 00:03:06,210
ุนู„ู‰ x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ 0 ู‡ูˆ ูŠุณุงูˆูŠ ุนุจุงุฑุฉ ุนู† ฮฑ
33
00:03:06,960 --> 00:03:09,720
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุญู‚ูŠู‚ูŠ (real number) ู„ูˆ ูุฑุถู†ุง ุฃู†ู‡ ฮฑ
34
00:03:09,720 --> 00:03:13,480
ู…ุงุฎุฏูŠู†ู‡ุง ุงุญู†ุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ (real number) ุฅุฐุง ุฃู†ุง ุฃุนุทุชู†ูŠ ุนุฏุฏ
35
00:03:13,480 --> 00:03:16,320
ุฃูˆู„ ู…ุง ุฃุนุทุชู†ูŠ ุงู„ู„ูŠ ู‡ูŠ ุฃู†ุง ุฃุนุทุชู†ูŠ does not exist
36
00:03:16,320 --> 00:03:20,620
ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุจุชุทู„ุน ุงู„ู€ limit x ู„ู…ุง x ุชุฑูˆุญ ู„
37
00:03:20,620 --> 00:03:24,330
0 ุจุฑุถู‡ ุฃุนุทุชู†ุง ุฅูŠู‡ุŸ ุฃุนุทุชู†ุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ (real number) ููŠ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ
38
00:03:24,330 --> 00:03:28,670
ุจุนุฏู‡ุง ุฃุนุทุชู†ุง ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ limit 1 ุนู„ู‰ x<sup>2</sup>
39
00:03:28,670 --> 00:03:32,790
ู„ู…ุง x ุชุฑูˆุญ ู„ู„ุตูุฑ ูŠุนู†ูŠ ุฃุนุทุชู†ุง ุฅูŠุดุŸ ู…ุงู„ู‡ุงุŸ ุฒุงุฆุฏ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
40
00:03:32,790 --> 00:03:37,070
ููŠ ุงู„ุญุงู„ุฉ ุงู„ุซุงู„ุซ ุงู„ุฃุฎูŠุฑุฉ ู‡ุชุนุทูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ
41
00:03:37,070 --> 00:03:42,770
ู†ุงู‚ุต ุงู„ู€ limit 1 ุนู„ู‰ x<sup>2</sup> ู„ู…ุง x ุชุฑูˆุญ ู„ู„ุฒูŠุฑูˆ ุจู…ุนู†ู‰
42
00:03:42,770 --> 00:03:46,700
ุขุฎุฑ ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ ุงู„ู€ Indeterminate Form Zero
43
00:03:46,700 --> 00:03:51,880
ุนู„ู‰ Zero ุฃุนุทุชู†ุง ุงู„ู„ูŠ ู‡ูˆ ุฃุฌูˆุจุฉ ุฃูˆ ู‚ูŠู… ู…ุฎุชู„ูุฉ ุชุงุจุนู‹ุง
44
00:03:51,880 --> 00:03:56,280
ู„ุทุจูŠุนุฉ ูƒู„ ุญุงู„ุฉ ู…ู† ุงู„ุญุงู„ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู…ุฑุฉ ุฃุนุทุชู†ุง
45
00:03:56,280 --> 00:03:59,700
doesn't exist ู…ุฑุฉ ุฃุนุทุชู†ุง ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู…ุฑุฉ ุฃุนุทุชู†ุง ู…ุง ู„ุง
46
00:03:59,700 --> 00:04:03,640
ู†ู‡ุงูŠุฉ ูˆ1 5 6 ู†ุงู‚ุต 1 ุงู„ู„ูŠ ุจุฏู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูˆ
47
00:04:03,640 --> 00:04:09,020
ู†ุงู‚ุต ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ุขู† ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
48
00:04:09,020 --> 00:04:13,780
ุงู„ู€ Indeterminate form ู‡ุฐู‡ ุงู„ู„ูŠ ุงู„ุขู† ูŠุนู†ูŠ ุจุฏู†ุง
49
00:04:13,780 --> 00:04:19,780
ู†ุญุงูˆู„ ู†ุนุงู„ุฌู‡ุง ุจู€
50
00:04:19,780 --> 00:04:25,400
ู†ุญุงูˆู„ ู†ุนุงู„ุฌู‡ุง ุจู€ ุงู„ู€ ุงู„ู€ ุจู‚ูˆุงุนุฏ ู„ูˆุจูŠุชุงู„ (L'Hรดpital's Rules) ุงู„ู€
51
00:04:25,400 --> 00:04:28,640
Indeterminate Form ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ 0 ุนู„ู‰ 0 ุทุจุนู‹ุง
52
00:04:28,640 --> 00:04:33,240
ููŠ Indeterminate Form ุฃุฎุฑู‰ ุจุฑุถู‡ ู‡ุชุนุงู„ุฌู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ L
53
00:04:33,240 --> 00:04:38,620
'Hรดpital's Rule ุฃูˆ Rules ุงู„ู„ูŠ ู‡ูŠ ุฒูŠ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุนู„ู‰
54
00:04:39,400 --> 00:04:43,280
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุฃูŠุถู‹ุง ู‡ุฐูˆู„ ุงู„ุดุบู„ุชูŠู† ุงู„ุฃุณุงุณูŠุงุช ุงู„ู„ูŠ
55
00:04:43,280 --> 00:04:47,480
ู‡ุชุนุงู„ุฌู‡ุง ุงู„ู„ูŠ ุจู‚ูˆุงุนุฏ ู„ูˆุจูŠุชุงู„ (L'Hรดpital's Rule) ู…ุจุงุดุฑุฉ ุจู†ุธุฑูŠุงุช ู…ุจุงุดุฑุฉ
56
00:04:47,480 --> 00:04:51,240
ุนู„ูŠู‡ุง ุฃูŠุถู‹ุง ู‡ุชุธู‡ุฑ ู„ูˆ ุธู‡ุฑุช ุนู†ุฏู†ุง ู…ุซู„ู‹ุง ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู†ุงู‚ุต
57
00:04:51,240 --> 00:04:55,640
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ู‡ูˆ Zero to Infinity Infinity to Zero
58
00:04:55,640 --> 00:05:01,160
ุฅู„ู‰ ุขุฎุฑู‡ ู‡ุฐูˆู„ู‡ ุญุงู„ุงุช ุฃุฎุฑู‰ ุงู„ู„ูŠ ู‡ูˆ ุจู†ู‚ุฏุฑ ู†ุญูˆู„ู‡ู… ุนู†
59
00:05:01,160 --> 00:05:04,800
ุทุฑูŠู‚ ุงู„ู€ ln ุฃูˆ ุนู† ุทุฑูŠู‚ ุงู„ู€ exponential ุฃูˆ ุจุทุฑู‚
60
00:05:04,800 --> 00:05:08,820
ู…ุนูŠู†ุฉ ู„ู„ู‘ูŠ ู‡ูŠ ุงู„ู€ formula ู‡ุฐู‡ ูˆู…ู† ุซู… ุงุณุชุฎุฏุงู… ุงู„ู„ูŠ
61
00:05:08,820 --> 00:05:12,240
ู‡ูˆ ู‚ูˆุงุนุฏ ู„ูˆุจูŠุชุงู„ (L'Hรดpital's Rules) ู‡ุฐู‡ ุนุงุฏุฉ ุงู„ุดุบู„ุงุช ุงู„ู„ูŠ ูƒุงู†ุช
62
00:05:12,240 --> 00:05:16,460
ุชุนุงู„ุฌู‡ุง ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ calculus ุฃูˆ ุงู„ุชูุงุถู„ ุงู„ู„ูŠ
63
00:05:16,460 --> 00:05:20,500
ุฃุฎุฏู†ุงู‡ ููŠ ุณู†ุฉ ุฃูˆู„ู‰ ุฃูˆ ุณู†ุฉ ุฃูˆู„ู‰ ุฃูˆ ุณู†ุฉ ุซุงู†ูŠุฉ ู†ุทู„ุน
64
00:05:20,500 --> 00:05:26,260
ู„ููˆู‚ ู†ูŠุฌูŠ ุงู„ุขู† ู†ุฃุฎุฐ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ู„ู‚ูˆุงุนุฏ
65
00:05:26,260 --> 00:05:30,540
ู„ูˆุจูŠุชุงู„ ุงู„ุฃูˆู„ู‰ ุงู„ู€ formula ุงู„ุฃูˆู„ู‰ ุฃูˆ ุงู„ุตูˆุฑุฉ ุงู„ุฃูˆู„ู‰
66
00:05:30,540 --> 00:05:35,660
ู†ุธุฑูŠุฉ ุจุณูŠุทุฉ ูˆู†ุธุฑูŠุฉ ู…ุฑุช ุนู„ูŠูƒู… ูˆุฅุซุจุงุชู‡ุง ุฃูŠุถู‹ุง
67
00:05:35,660 --> 00:05:41,200
ู‡ุชู„ุงุญุธูˆุง ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุจุณูŠุท ุฅูŠุด ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ุŸ ุจุชู‚ูˆู„
68
00:05:41,200 --> 00:05:43,680
ู…ุง ูŠู„ูŠ ุนู†ุฏูŠ
69
00:05:45,330 --> 00:05:51,250
Let F be defined ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ A ูˆB ูˆู†ูุชุฑุถ ุฃู†
70
00:05:51,250 --> 00:05:55,630
F of A ูˆG of A ู…ุง ูŠุณุงูˆูŠุŸ ุตูุฑ ูˆู†ูุชุฑุถ ุฃู† G of X ู„ุง
71
00:05:55,630 --> 00:06:00,470
ุชุณุงูˆูŠ ุตูุฑ ููŠ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุจูŠู† A ูˆB ูˆู†ูุชุฑุถ ู„ูˆ
72
00:06:00,470 --> 00:06:04,420
ูƒุงู†ุช F ูˆG differentiable ุนู†ุฏ ุงู„ู€ A ูˆG' ุนู†ุฏ ุงู„ู€ A
73
00:06:04,420 --> 00:06:07,880
ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ู…ูุชุฑุถูŠู† G' ู„ุง ูŠุณุงูˆูŠ ุตูุฑ then the
74
00:06:07,880 --> 00:06:14,240
limit of F ุนู„ู‰ G at A exist ูˆุชุณุงูˆูŠ F' ุนู„ู‰ G' ูˆ
75
00:06:14,240 --> 00:06:19,580
ุฅุฐุง ูƒุงู† ุชุญุช ูƒู„ ู‡ุฐุง ุงู„ุดุฑูˆุท ุจูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„
76
00:06:19,580 --> 00:06:24,320
limit had exist ูˆุจุงู„ุถุจุท ู‡ุฐุง ุงู„ู€ limit ุจูŠุณุงูˆูŠ F' ุนู„ู‰
77
00:06:24,320 --> 00:06:29,780
G' of A ุนู„ู‰ F' of A ู†ุดูˆู ุงู„ู†ุธุฑูŠุฉ ูˆู†ุดูˆู ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ
78
00:06:29,780 --> 00:06:38,960
(theorem) ุนู†ุฏูŠ ู…ุงุฎุฏ ุงู„ู€ F ูˆุงู„ู€ G ุนุจุงุฑุฉ ุนู† ุฏูˆุงู„ ู…ู† A
79
00:06:38,960 --> 00:06:47,280
ูˆB ู„ุนู†ุฏ R ู…ูุชุฑุถ ุฃู† ุงู„ู€ F of A ุจูŠุณุงูˆูŠ ุงู„ู€ G of A
80
00:06:47,280 --> 00:06:53,680
ุจูŠุณุงูˆูŠ ุฅูŠุดุŸ ุจูŠุณุงูˆูŠ ุตูุฑ ูˆู…ูุชุฑุถ ุฃู† ุงู„ู€ G of X
81
00:06:58,040 --> 00:07:09,500
ู„ุง ุชุณุงูˆูŠ 0 ู„ูƒู„ X ูˆู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ A ูˆB ูุฑุถู†ุง
82
00:07:09,500 --> 00:07:16,260
ูƒู…ุงู† F ูˆG differentiable ุนู†ุฏ ุงู„ู€ A F prime
83
00:07:16,260 --> 00:07:22,740
of A ูˆG prime of A exists 60 2 ูˆู‡ุฐู‡ ู„ุง ุชุณุงูˆูŠ
84
00:07:22,740 --> 00:07:29,900
ุฅูŠุดุŸ ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุชุญุช ู‡ุฐู‡ ุงู„ุธุฑูˆู ูƒู„ู‡ุง ุจูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู€ limit
85
00:07:29,900 --> 00:07:38,410
f of x ุนู„ู‰ g of x as x ุจุชุฑูˆุญ ู„ู„ a ุทุจุนู‹ุง ุงู„ a ุงู„ูุชุฑุฉ
86
00:07:38,410 --> 00:07:43,390
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ูŠ ูุชุฑุฉ ู…ู† ูˆูŠู†ุŸ ู…ู† ุนู†ุฏ a ู„ุนู†ุฏ b ุฅุฐุง
87
00:07:43,390 --> 00:07:46,270
ุฃูƒูŠุฏ ุงู„ x ุฅุฐุง ุชุฑูˆุญ ู„ู„ a ู…ุง ููŠุด ู…ุฌุงู„ ู„ู‡ุง ุงู„ x ุงู„ู„ูŠ
88
00:07:46,270 --> 00:07:49,210
ุจุชุฑูˆุญ ู„ู„ a ุงู„ู„ูŠ ู…ู† ูˆูŠู†ุŸ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ู„ุฃู†ู‡ ู‡ูŠ
89
00:07:49,210 --> 00:07:52,450
ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ุฃู†ุง ุนู…ุงู„ ู‚ุงุนุฏ ุจุดุชุบู„ ููŠู‡ุง ุงู„ูุชุฑุฉ ู…ู† a ู„
90
00:07:52,450 --> 00:07:57,870
b ุฅุฐุง ุงู„ x ุจุชุฑูˆุญ ู„ู„ a ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ู‡ูŠุณุงูˆูŠ ุงู„ู„ูŠ
91
00:07:57,870 --> 00:08:06,930
ู‡ูˆ f prime ุนู†ุฏ ุงู„ a ุนู„ู‰ g prime ุนู†ุฏ ุงู„ู€ A ูŠุนู†ูŠ
92
00:08:06,930 --> 00:08:09,910
ุจู…ุนู†ู‰ ุขุฎุฑ ุฅูŠุด ุงู„ู„ูŠ .. ุฅูŠุด .. ุฅูŠุด .. ุฅูŠุด .. ูƒูŠู ู‡ู…
93
00:08:09,910 --> 00:08:13,650
ู†ุทุจู‚ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉุŸ ูƒุงู†ุช ุชุนุฑุถ ุนู„ูŠู†ุง ุงู„ู€ limit ู†ูŠุฌูŠ
94
00:08:13,650 --> 00:08:19,650
ูŠู‚ูˆู„ ู„ู†ุง ุฃูˆุฌุฏ ุงู„ู€ limit ู„ู„ู€ F of X ุนู„ู‰ G of X ู„ู…ุง X
95
00:08:19,650 --> 00:08:25,090
ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ A ู…ู† ุงู„ูŠู…ูŠู† ู†ูŠุฌูŠ ุงู„ุขู† ุงู„ู€ F of A ู†ุนูˆุถ
96
00:08:25,090 --> 00:08:29,500
ุชุนูˆูŠุถ ู…ุจุงุดุฑ ุฏู‡ ุทู„ุนุช ุนู†ุฏ 0 ุนู„ู‰ 0 ูˆูƒุงู†ุช ุนู†ุฏูŠ ุงู„ุดุฑูˆุท
97
00:08:29,500 --> 00:08:32,520
ู‡ุฐู‡ ู…ูƒุชู…ู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ F ูˆุงู„ู€ G differentiable ูˆ
98
00:08:32,520 --> 00:08:36,080
ุงู„ู€ F prime ูˆุงู„ู€ G prime ู…ูˆุฌูˆุฏุงุช ุนู†ุฏ ุงู„ู€ A ุนู„ู‰ ุทูˆู„
99
00:08:36,080 --> 00:08:42,420
ู†ุญุท ู‡ุฐู‡ ุฅูŠุดุŸ ุจุชุณุงูˆูŠ F prime of A ุนู„ู‰ G prime of A
100
00:08:42,420 --> 00:08:48,880
ู…ุนุงูŠุง ูู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ ู‡ูŠ .. ูƒูŠููŠุฉ ุชุทุจูŠู‚
101
00:08:48,880 --> 00:08:53,500
ุงู„ู†ุธุฑูŠุฉ ู†ูŠุฌูŠ ู„ุฅุซุจุงุช ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ ุงู„ุจุฑู‡ุงู† ุจุณูŠุท
102
00:08:53,500 --> 00:08:54,680
ุนู†ุฏูŠ
103
00:08:59,270 --> 00:09:11,330
ุฎุฐ ุนู†ุฏูŠ for x ุจูŠู† a ูˆุจูŠู† b ู„ูˆ ุฌูŠุช ุญุณุจุช ุงู„ู‡ุฏู
104
00:09:11,330 --> 00:09:18,970
ุงู„ู‡ุฏู ุงู„ู…ูˆุฌูˆุฏุฉ ู‡ุฐู‡ ุงู„ู€ f of x ุนู„ู‰ g of x ุฅูŠุด ู‡ุชุณุงูˆูŠุŸ
105
00:09:18,970 --> 00:09:28,250
ู‡ุชุณุงูˆูŠ f of x ู†ุงู‚ุต f of a ุนู„ู‰ g of x ู†ุงู‚ุต g of a ู„ูŠุดุŸ
106
00:09:28,250 --> 00:09:31,110
ู„ุฃู† ุงู„ู€ f of a ูˆุงู„ู€ d of a ู„ูŠุดุŸ ู…ุง ุฃุนุทูŠู†ุง ุฅูŠุงู‡ู… ุจูŠุณุงูˆูŠ
107
00:09:31,110 --> 00:09:34,170
ุตูุฑ ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒุŸ ู„ุฃ ุจุฏุฃุช ุฃุนู…ู„ ุฃูƒุซุฑ ู…ู† ู‡ูŠ ุจุฏุฃุช ุฃุนู…ู„
108
00:09:34,170 --> 00:09:39,110
ุฃู‚ุณู… ู‡ุฐุง ุนู„ู‰ x minus a ูˆู‡ุฐุง ุนู„ู‰ x ู…ุง ู„ู‡ุง minus a
109
00:09:40,060 --> 00:09:43,580
ุทุจูŠุนูŠ ุงู„ x ู„ุง ุชุณุงูˆูŠ ุงู„ a ุงู„ุขู† ุฃู†ุง ุจุงุฎุฏ ุงู„ู€ limit
110
00:09:43,580 --> 00:09:47,620
ู„ู„ุฌู‡ุชูŠู† ูˆุจุชุฌุฑุฃ ูˆุจุฃุฎุฏ ู…ูˆุฒุน ู„ุฃู† ุฃู†ุง ุถุงู…ู† ู…ู† ุงู„ู€ F
111
00:09:47,620 --> 00:09:51,260
prime of A ู…ูˆุฌูˆุฏุฉ ูˆุงู„ู€ G prime of A ู…ูˆุฌูˆุฏุฉ ูˆู…ุด ู‡ูŠูƒ
112
00:09:51,260 --> 00:09:54,160
ูˆูƒู…ุงู† ุงู„ู€ G prime of A ู„ุง ุชุณุงูˆูŠ 0 ุฅุฐุง ูƒู„ ุฃู…ูˆุฑูŠ ุชู…ุงู…
113
00:09:54,160 --> 00:09:58,220
ุงู„ุชู…ุงู… ุฅุฐุง ุจุฃุฎุฐ ุงู„ู€ limit ู„ู„ุฌู‡ุชูŠู† ู„ู…ุง X ุชุฑูˆุญ ู„ู„ A
114
00:09:58,220 --> 00:10:04,040
ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ ุงู„ู€ limit ู„ู…ุง X ุชุฑูˆุญ ู„ู„ A ู…ู† ุงู„ูŠู…ูŠู†
115
00:10:05,480 --> 00:10:09,560
ูˆุงู„ุดูŠุก ุงู„ู„ูŠ ุชุญุช ูˆุฒุนุช ู„ูŠุด ูˆุฒุนุชุŸ ุถุงู…ู† ุฃู† ุงู„ู€ limit
116
00:10:09,560 --> 00:10:14,520
exist ูˆุงู„ู€ limit ุงู„ู„ูŠ ุชุญุช ูƒู…ุงู† ู„ุง ุชุณุงูˆูŠ ุตูุฑ ู‡ุฐู‡
117
00:10:14,520 --> 00:10:20,400
ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ู‡ุฐู‡ ุชุนุฑูŠู F prime of A ูˆู‡ุฐู‡
118
00:10:20,400 --> 00:10:26,660
ุชุนุฑูŠู G prime of A ุจูƒูˆู† ุฃู†ุง ุญุตู„ุช ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ
119
00:10:26,660 --> 00:10:33,300
ุจุฏูŠ ุฅูŠุงู‡ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„
120
00:10:33,300 --> 00:10:37,890
section ุงู„ู„ูŠ ูŠุนู†ูŠ ุจุชุญุฐูŠุฑ ุจู‚ูˆู„ ู„ูƒ ุฃู†ู‡ ุฃู†ุช ูŠุนู†ูŠ ุชุนุฑุถุช
121
00:10:37,890 --> 00:10:46,230
ุนู„ูŠูƒ ุงู„ู€ limit 17x ูˆู„ุง .. ู‚ุฏุงุดุŸ ู…ุด ู…ุดูƒู„ุฉ x ุฒุงุฆุฏ 17 ุฃูŠู†
122
00:10:46,230 --> 00:10:51,750
ูƒุงู†ุช ุจู†ูุน x ุฒุงุฆุฏ 17 ุนู„ู‰ 2x ุฒุงุฆุฏ 3 ู…ุซู„ู‹ุง ู„ู…ุง x ุชุฑูˆุญ
123
00:10:51,750 --> 00:10:55,500
ู„ู…ูŠู†ุŸ ู„ู„ุตูุฑ ู‡ูˆ ู…ุด ู…ูŠู‚ูˆู… ู„ู…ุง ู†ุดูˆู ุนู„ู‰ ุทูˆู„ ูˆู†ุฑูˆุญ
124
00:10:55,500 --> 00:11:00,960
ู†ูุงุถู„ ุจู†ูุนุด ุฃู†ุช ูŠุนู†ูŠ ุจุชู„ุชุจุณ ุจูŠุตูŠุฑ ู†ูุงุถู„ ุงู„ุฌู‡ุชูŠู†
125
00:11:00,960 --> 00:11:06,340
ุจูŠุทู„ุน 1 ุนู„ู‰ 2 ู„ุฃ ู‡ูˆ ุฃู†ุง ุจู‚ูˆู„ ุจุชุณุงูˆูŠ ุงู„ู€ f
126
00:11:06,340 --> 00:11:10,720
prime ุนู„ู‰ g prime ุนู†ุฏ ุงู„ zero ู„ู…ุง ู†ูƒูˆู† ู‡ุฏูŠ zero ูˆ
127
00:11:10,720 --> 00:11:16,080
ู‡ุฏูŠ zero ู„ูƒู† ู„ุง ู‡ุฏูŠ zero ูˆู„ุง ู‡ุฏูŠ zero ุฅุฐุง ุจู†ูุนุด
128
00:11:16,260 --> 00:11:21,280
ุชุญุฏูŠุฏ ู‡ุฐุง ู†ู‚ูˆู„ ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ limit ู…ู† ูุนุด ู†ู‚ูˆู„
129
00:11:21,280 --> 00:11:24,540
ุจุชุณุงูˆูŠ ุงู„ู€ limit 1 ุนู„ู‰ 2 ุนู„ู‰ ุงุนุชุจุงุฑ ูุงุถู„ู†ุง
130
00:11:24,540 --> 00:11:28,800
ูˆูŠุณุงูˆูŠ ู†ุตู ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุบูŠุฑ ุตุญูŠุญ ู„ุฃู† ุงู„ู€ limit ุฒูŠ ู…ุง
131
00:11:28,800 --> 00:11:32,800
ุฃู†ุชู… ุนุงุฑููŠู† ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุงู„ุชุนูˆูŠุถ ุงู„ู…ุจุงุดุฑ ู‡ูˆ
132
00:11:32,800 --> 00:11:42,780
ุนุจุงุฑุฉ ุนู† 17 ุนู„ู‰ 3 ู‡ุฐุง ูƒู„ุงู… ุณู‡ู„ ู†ุฃุฎุฐ ู…ุซุงู„ ุชุทุจูŠู‚ูŠ
133
00:11:42,780 --> 00:11:48,310
ุนู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู…ุซุงู„ ุงู„ุชุทุจูŠู‚ูŠ ุจุฑุถู‡ ู…ุซุงู„
134
00:11:48,310 --> 00:11:56,530
ู…ุจุงุดุฑ ุนุฑุถ ุนู„ูŠู†ุง ุงู„ุขู† example ุนุฑุถ
135
00:11:56,530 --> 00:12:04,830
ุนู„ูŠู†ุง ุจู‚ูˆู„ ุฃูˆ ุฌุฏ ุงู„ู€ limit x<sup>2</sup> ุฒุงุฆุฏ x ุนู„ู‰ sin 2x
136
00:12:04,830 --> 00:12:09,530
ู„ู…ุง x ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ุฒูŠุฑูˆ ุจุงู„ู…ู†ุงุณุจุฉุŒ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุจู„
137
00:12:09,530 --> 00:12:13,070
ุจุดูˆูŠุฉ ุญูƒูŠู†ุง ุนู†ู‡ุง ุณูˆุงุก ูƒุงู†ุช ุงู„ู€ A ุงู„ู„ูŠ ุจุชุฑูˆุญ ู„ู‡ุง end
138
00:12:13,070 --> 00:12:17,150
point ุฃูˆ ู†ู‚ุทุฉ ุฏุงุฎู„ูŠุฉ ุฃูˆ ุญุชู‰ left end point ุจุชุธุจุท
139
00:12:17,150 --> 00:12:22,150
ุนู„ูŠู‡ุง ุงู„ู†ุธุฑูŠุฉ ูˆุงู„ุจุฑู‡ุงู† similarly ู…ุงุดูŠ ุงู„ุญุงู„ุŸ ูˆุงุถุญ
140
00:12:22,150 --> 00:12:28,430
ู‡ุงู‡ุŸ ุทูŠุจุŒ ูˆุฅูŠู‡ ุงู„ุณุจุจุŸ
141
00:12:28,430 --> 00:12:34,390
ู„ุฃู† ุงู„ุงุฎุชุจุงุฑ ุตูุฑ ุนู„ู‰ ุตูุฑ ู‡ุฐู‡ differentiable ูˆู‡ุฐู‡
142
00:12:34,390 --> 00:12:38,970
differentiable ูƒู„ ุฃู…ูˆุฑู‡ุง ู…ูŠุฉ ูˆูƒูˆูŠุณุฉ ูˆู…ุด ู‡ูŠ ูƒู…ุงู†
143
00:12:38,970 --> 00:12:43,730
ูˆู„ูˆ ูุถู„ุช ู‡ุชู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ู†ุง ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุนู„ู‰ ุทูˆู„
144
00:12:43,730 --> 00:12:50,410
ุจู‚ูˆู„ 2x ุนู†ุฏ ุงู„ู€ zero ุจูุงุถู„ ุฌุงุนุฏ ูˆุจุนูˆุถ ูŠุนู†ูŠ ู‡ุฐู‡
145
00:12:50,410 --> 00:12:56,950
ุณู…ูŠุชู‡ุง ูˆูƒุฃู†ู‡ุง F ูˆู‡ุฐู‡ g f of x ูˆู‡ุฐู‡ g of x ุจุนูˆุถ f
146
00:12:56,950 --> 00:13:02,190
prime of zero ุจุนูˆุถ ู‡ู†ุง g prime of zero ุงู„ุขู† f
147
00:13:02,190 --> 00:13:06,490
prime of zero 2x ุฒุงุฆุฏ 1 ููŠ ุตูุฑ ุจูŠุตูŠุฑ 2
148
00:13:06,490 --> 00:13:11,850
ููŠ ุตูุฑ ุฒุงุฆุฏ 1 ูˆุชุญุช ุงู„ู„ูŠ ู‡ูˆ ุชูุงุถู„ู‡ุง 2 cosine
149
00:13:11,850 --> 00:13:16,970
2x ุจูŠุตูŠุฑ 2 cosine 2x ูˆุนูˆุถ ุจุตูุฑ ุจูŠุตูŠุฑ
150
00:13:16,970 --> 00:13:25,500
2 cosine 2 ููŠ ุตูุฑ ูˆู‡ุฐุง ูŠุนู†ูŠ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
151
00:13:25,500 --> 00:13:30,140
1 ุนู„ู‰ 2 ุนู„ู‰ ุงุนุชุจุงุฑ ูƒูˆุตุงู„ุฉ Zero ุจูŠุณุงูˆูŠ 1
152
00:13:30,140 --> 00:13:36,760
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุชุทุจูŠู‚ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ู†ูŠุฌูŠ ุงู„ุขู† ู„ู„ู€
153
00:13:36,760 --> 00:13:40,480
Cauchy Mean Value Theorem ุงู„ู€ Cauchy Mean Value
154
00:13:40,480 --> 00:13:46,140
Theorem ุชุนู…ูŠู… ู„ู„ู€ Mean Value Theorem ุงู„ู„ูŠ ุงุญู†ุง
155
00:13:46,140 --> 00:13:52,050
ุนุงุฑููŠู†ู‡ุง ุจุฏู„ ู…ุง ู‡ูˆ ุนู„ู‰ ุฏุงู„ุฉ ู†ุญูƒูŠ ุนู† ุฅูŠุด ุนู† ุฏุงู„ุชูŠู†
156
00:13:52,050 --> 00:14:00,930
ู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠ ู„ุฃู†
157
00:14:00,930 --> 00:14:11,690
theorem ุนู†ุฏ F ูˆ G ุฏุงู„ุชูŠู† ู…ู† A ูˆ B ู…ุงุฎุฏู‡ู… ู…ู† A ูˆ B
158
00:14:11,690 --> 00:14:17,390
ู„ุนู†ุฏ R ุฌุงูŠ ู„ูŠ ู†ูุณ ุดุฑูˆุท ุงู„ู€ mean value theorem
159
00:14:17,390 --> 00:14:22,150
ุงู„ุนุงุฏูŠุฉ ุจุฏู„ ู…ุง ู‡ูŠ ุนู„ู‰ ุฏุงู„ุฉ ุฏุงู„ุชูŠู† ุฌุงูŠ ู„ูŠ F ูˆ G
160
00:14:22,150 --> 00:14:35,270
continuous on A ูˆ B and differentiable on O B ู…ุงุดูŠ
161
00:14:35,270 --> 00:14:42,230
ุงู„ุญุงู„ ูˆู…ุนุทูŠู†ูŠ ุฃูŠุถุงู‹ ุจูŠู‚ูˆู„ูŠ ุงู„ู€ G prime ู„ู„ X ู„ุง ุชุณุงูˆูŠ
162
00:14:42,230 --> 00:14:49,110
ุตูุฑ ู„ูƒู„ X ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€A ูˆุงู„ู€B ุงู„ู„ูŠ ุฃู†ุง
163
00:14:49,110 --> 00:14:59,190
ุจูŠู‚ูˆู„ ู„ู‡ ุงู„ู†ุชูŠุฌุฉ then there exist ู„ู†ุชูŠุฌุฉ then then
164
00:14:59,190 --> 00:15:09,250
ู‡ุฐุง ูƒู„ู‡ ู…ุนุทู‰ if this hold then then
165
00:15:09,250 --> 00:15:18,160
there exist C Element in A ูˆ B such that G ุฃูˆ F
166
00:15:18,160 --> 00:15:25,820
prime of C ุนู„ู‰ G prime of C ุจูŠุณุงูˆูŠ F of B ู†ุงู‚ุต F of
167
00:15:25,820 --> 00:15:35,360
A ุนู„ู‰ G of B ู†ุงู‚ุต G of A ุงู„ู€ proof ุฏู‡ ูƒู„ุงู… ุณู‡ู„
168
00:15:35,360 --> 00:15:38,140
ูƒู…ุงู† ุงู„ู€ proof ู†ุดูˆู ูƒุฏู‡
169
00:15:41,590 --> 00:15:46,050
ุนู†ุฏูŠ ูŠุง ุฌู…ุงุนุฉ ุฃูˆู„ ุฅุดูŠ ู‡ูˆ ู…ุนุทูŠู†ูŠ ุฅูŠุด ู…ุงู„ู‡ุง g prime
170
00:15:46,050 --> 00:15:51,650
of x ุฅูŠุด ู…ุงู„ู‡ุง ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุฅุฐุง by rules theorem
171
00:15:51,650 --> 00:15:58,490
ู‡ูŠูƒูˆู† g of b ู„ุง ุชุณุงูˆูŠ ู…ูŠู† g of a ูƒูŠู ุฃุฐูƒุฑูƒู… ุฃุฐูƒุฑูƒู…
172
00:15:58,490 --> 00:16:03,950
ูƒูŠู ุงู„ุขู† ุฅูŠุด rules theorem ูƒุงู†ุช ุจุชู‚ูˆู„ g ู…ู† a ูˆ b
173
00:16:03,950 --> 00:16:14,130
ู„ุนู†ุฏ r continuous on a ูˆ b ูˆ differentiable on a ูˆ
174
00:16:14,130 --> 00:16:21,270
b ู‡ุฐุง ู…ุง ุฃุนุทูŠู†ุง ุฅูŠุงู‡ ู‡ูˆ ู…ุงุดูŠ ุงู„ุญุงู„ ุจูŠู‚ูˆู„ ู„ูŠ if g of
175
00:16:21,270 --> 00:16:28,350
a ุจูŠุณุงูˆูŠ g of b ุจูŠุณุงูˆูŠ ุตูุฑ then ู‡ูˆ ููŠ ุงู„ูˆุงู‚ุน ุฒูŠ ู…ุง
176
00:16:28,350 --> 00:16:31,510
ู‚ู„ู†ุง ุฃู† ุงู„ role theorem ุชู†ูุน ู„ูˆ ู‚ู„ู†ุง g of a ุจูŠุณุงูˆูŠ
177
00:16:31,510 --> 00:16:37,710
g of b ูˆุณูƒุชู†ุง ู„ุฃู†ู‡ ุงู„ุดุงู‡ุฏ ููŠ ุงู„ู…ูˆุถูˆุน ุฃู†ู‡ ุงู„ู…ู…ุงุณ
178
00:16:37,710 --> 00:16:41,920
ูŠูƒูˆู† ู…ุนุงู‡ ู…ูˆุงุฒูŠ ู„ู…ุญูˆุฑ ุงู„ุตูŠู†ุงุช ุฃู‡ ูˆู„ู…ุง ุชูƒูˆู† ุงู„ู€ G of
179
00:16:41,920 --> 00:16:45,440
A ุจูŠุณุงูˆูŠ ุงู„ู€ G of B ูˆุณูƒุชู†ุง ุฃูŠ ู‚ุงุทุน ุจูŠู†ู‡ู… ู‡ูŠูƒูˆู†
180
00:16:45,440 --> 00:16:48,520
ุนุจุงุฑุฉ ุนู† ู…ูˆุงุฒูŠ ู„ู…ุญูˆุฑ ุงู„ุณูŠู†ุงุช ูŠุนู†ูŠ ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ
181
00:16:48,520 --> 00:16:52,220
ู…ู…ุงุซู„ ุงู„ู„ูŠ ุจูŠุฌูŠ ู‡ูŠูƒูˆู† ู…ูˆุงุฒูŠ ู„ู‡ุฐุง ูŠุนู†ูŠ ู…ูˆุงุฒูŠ ู„ู…ุญูˆุฑ
182
00:16:52,220 --> 00:16:57,740
ุงู„ุณูŠู†ุงุช ุทูŠุจ then .. then there exists C element in
183
00:16:57,740 --> 00:17:03,520
A ูˆ B such that G prime of C ุจูŠุณุงูˆูŠ ุฅูŠุด ุจูŠุณุงูˆูŠ ุตูุฑ
184
00:17:03,520 --> 00:17:10,560
ุงู„ุขู† ู‡ุฐุง ู…ุนุทู‰ ู…ูุฑุบ ู…ู†ู‡ ุงู„ู„ูŠ ููˆู‚ ู…ุนุทู‰ ุนู†ุฏูŠ ุงู„ุขู† ุนู†ุฏูŠ
185
00:17:10,560 --> 00:17:14,640
ู„ูˆ ูƒุงู† g of a ุจูŠุณุงูˆูŠ g of b ุจูŠุนุทูŠู†ุง ุฃู†ู‡ ูŠูˆุฌุฏ ุตูุฑ ุจูŠู†
186
00:17:14,640 --> 00:17:18,000
ุงู„ู€ a ูˆุงู„ู€ b ุจุญูŠุซ ุฃู† g prime of c ุฅุดู…ุงู„ู‡ ู„ุง ุชุณุงูˆูŠ
187
00:17:18,000 --> 00:17:23,260
ุตูุฑ ู„ูƒู† ู‡ูˆ ู…ูุชุฑุถ ู„ูŠ ุฃู† g prime of x ู„ุง ุชุณุงูˆูŠ ุตูุฑ ู„ูƒู„
188
00:17:23,260 --> 00:17:26,540
x ููŠ ุงู„ู€ a ูˆุงู„ู€ b ูŠุนู†ูŠ ุงู„ุขู† ุงู„ู€ Contraposition ู‡ูˆ
189
00:17:26,540 --> 00:17:30,800
ุงู„ู„ูŠ hold hand ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุฃู†ู‡ ุจู…ุง ุฃู†ู‡ G prime
190
00:17:30,800 --> 00:17:36,160
of X ู„ุง ุชุณุงูˆูŠ 0 ู„ูƒู„ X element in A ูˆ B ู‡ูŠุนุทูŠู†ุง ู‡ุฐุง
191
00:17:36,160 --> 00:17:40,940
ู†ููŠู‡ B implies Q ุชูƒุงูุฆ not Q implies not B ูˆู‡ุฐุง
192
00:17:40,940 --> 00:17:46,240
ู„ุณู‡ ุนู…ู„ู‡ ุฃู†ุง ุจู…ุง ุฃู† g prime of x ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ู„ูƒู„
193
00:17:46,240 --> 00:17:51,840
x ุทุจุนุงู‹ ููŠ ุงู„ู„ูŠ ู‡ูˆ b ุฅุฐุง g of a ู„ุง ูŠุณุงูˆูŠ ู…ูŠู†ุŸ g of
194
00:17:51,840 --> 00:17:59,900
b ูˆุงุถุญุŸ ุทูŠุจ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุฃูˆู„ ุญุงุฌุฉ by Rolle's
195
00:17:59,900 --> 00:18:09,850
theorem g of a ู„ุง ูŠุณุงูˆูŠ g of b because G prime of X
196
00:18:09,850 --> 00:18:15,670
ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ู„ูƒู„ X ูˆุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€A ูˆุงู„ู€B ู‡ุฐู‡
197
00:18:15,670 --> 00:18:22,850
ุฃูˆู„ ู†ู‚ุทุฉ ุฎู„ุตู†ุง ู‡ุฐู‡ ุจุฑุฑู†ุงู‡ุง ู†ูŠุฌูŠ ุงู„ุขู† ุฒูŠ ู…ุง ุนู…ู„ู†ุง
198
00:18:22,850 --> 00:18:26,270
ููŠ ุฅุซุจุงุช ุงู„ู€Mean Value Theorem ุฅุฐุง ุจุชุชุฐูƒุฑูˆุง ุจุฏูŠ
199
00:18:26,270 --> 00:18:29,630
ุฃุนุฑู ุฏุงู„ุฉ ุฃุทุจู‚ ุนู„ูŠู‡ุง ุจุฑุถู‡ ุฎู„ูŠ ุฑูˆู„ุฒ ุงู„ู€Theorem
200
00:18:29,630 --> 00:18:32,890
ู…ุทุจู‚ุฉ ุฃูˆ ุงู„ู€Mean Value Theorem ู…ุทุจู‚ุฉ ูˆุฃุญุตู„ ุนู†
201
00:18:32,890 --> 00:18:38,260
ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠู‡ุง ุงู„ุขู† ู‡ูŠ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุจุฏูŠู‡ุง ุจุฏูŠ
202
00:18:38,260 --> 00:18:45,680
ุฃุฎุฏ H of X let ุฃูˆ define H of X ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
203
00:18:45,680 --> 00:18:52,740
ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู„ูŠ ุจุฏูŠู‡ F of B ู†ุงู‚ุต F of A ุนู„ู‰ G of
204
00:18:52,740 --> 00:18:57,910
B minus G of A ุจุชุฎู„ูŠ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ูŠุชุตูุฑ ููŠ
205
00:18:57,910 --> 00:19:00,650
ุญุงู„ุฉ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
206
00:19:00,650 --> 00:19:00,870
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
207
00:19:00,870 --> 00:19:00,910
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
208
00:19:00,910 --> 00:19:00,970
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
209
00:19:00,970 --> 00:19:01,090
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
210
00:19:01,090 --> 00:19:01,850
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
211
00:19:01,850 --> 00:19:01,890
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
212
00:19:01,890 --> 00:19:02,850
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
213
00:19:02,850 --> 00:19:07,410
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
214
00:19:07,410 --> 00:19:12,650
ุงู„ ..
215
00:19:12,650 --> 00:19:16,510
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
216
00:19:16,510 --> 00:19:24,170
ุงู„ .. ุงู„ ..
217
00:19:25,340 --> 00:19:30,660
H of A ุจูŠุทู„ุน ุตูุฑ ู„ุฃู† ุจุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ
218
00:19:30,660 --> 00:19:39,320
ู‡ูŠูŠุฌูŠุจ ู„ูŠ ู‚ูŠู…ุฉ ู…ูŠู† ู‚ูŠู…ุฉ ุงู„ู€ F ู†ุงู‚ุต G G of B ู†ุงู‚ุต G of
219
00:19:39,320 --> 00:19:44,060
A ุฃูˆ G of X ู†ุงู‚ุต H of A ุนุดุงู† ู†ุฑูˆุญู‡ู… ู…ุน ุจุนุถ ู†ุงู‚ุต F
220
00:19:44,060 --> 00:19:50,880
of X ู†ุงู‚ุต F of A ุงู„ุขู† ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒ ุนุดุงู† ุฃุญุตู„ H of
221
00:19:50,880 --> 00:19:53,180
A H of A ู‡ุฐู‡ ุตูุฑ
222
00:19:55,780 --> 00:20:02,140
ูˆู‡ุฏูŠ ุฅูŠู‡ ุฅูŠู‡ ุจูŠุตูŠุฑ ุตูุฑ H of B ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ H of A
223
00:20:02,140 --> 00:20:09,360
ุจูŠุณุงูˆูŠ ุตูุฑ ูˆ H of B ุญุท H of B ุจูŠุตูŠุฑ ู‡ุฏูŠ ุจูŠู‡ ู‡ุฏูŠ
224
00:20:09,360 --> 00:20:13,780
ุจุชุฑูˆุญ ู…ุน ู‡ุฏูŠ ุจูŠุตูŠุฑ F of B ู†ุงู‚ุต F of A ู†ุงู‚ุต F of B
225
00:20:13,780 --> 00:20:16,800
ู†ุงู‚ุต F of A ุจูŠุฑูˆุญู† ู…ุน ุจุนุถ ุจูŠุตูŠุฑ H ุจุฑุถู‡ ุจูŠุณุงูˆูŠ ุตูุฑ
226
00:20:16,800 --> 00:20:22,300
ุฅุฐุง ู‡ุฏูŠ ุฃูƒูŠุฏ ุจุฑุถู‡ ุจุชุณุงูˆูŠ H of B ุงู„ุขู†
227
00:20:24,650 --> 00:20:28,050
ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู€ differentiable ูˆ continuous ูˆู‡ุฐุง ุงู„ู€
228
00:20:28,050 --> 00:20:31,210
differentiable ูˆ continuous ุนู„ู‰ ู…ุง ูŠู†ุงุณุจู‡ุง ู…ู† a ูˆ
229
00:20:31,210 --> 00:20:35,750
b ุฃูˆ ุนู„ู‰ ุงู„ a ูˆ b ุงู„ a ูˆ b ุงู„ู„ูŠ ู‡ูˆ open
230
00:20:35,750 --> 00:20:38,770
differentiable ูˆุนู„ู‰ ุงู„ a ูˆ b closed continuous
231
00:20:38,770 --> 00:20:43,350
ุชุจุนุงู‹ ู„ู‡ุง ู‡ุชุทู„ุน ุฃู†ู‡ ุซุงุจุช ู‡ุฐุง ูˆู‡ุฏูˆู„ู‡ ุซูˆุงุจุช ุญูŠุซ ุฃู†
232
00:20:43,350 --> 00:20:50,330
ุนู†ุฏูŠ ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถ continuous ุตุงุฑ ุนู†ุฏูŠ H is
233
00:20:50,330 --> 00:20:59,130
continuous on A ูˆ B ูˆ differentiable on A ูˆ B open
234
00:20:59,130 --> 00:21:03,930
ู„ุฃู†ู‡ ุฃู†ุง ู…ู† ุฑุฃุณ ุงู„ุฏูˆุฑุฉ ุงู„ู€ H of X ู…ุนุฑูู‡ุง ุงู„ู„ูŠ ู‡ูŠ
235
00:21:03,930 --> 00:21:10,740
ุงู„ู€ H for every X element in A ูˆ B H of X ุจูŠุณุงูˆูŠ ูƒุฏู‡
236
00:21:10,740 --> 00:21:15,360
ู…ุงุนูŠุด ูŠุง ุจุงุจุง ุตุงุฑุช ุงู„ุขู† ุฃู†ุง ุญู‚ู‚ุช ูƒู„ ุดุฑูˆุท ุงู„ู€ roles
237
00:21:15,360 --> 00:21:19,780
theorem ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ H continuous ุนู„ู‰ ุงู„ู€ A ูˆ B ูˆุงู„ู€
238
00:21:19,780 --> 00:21:23,360
differential ุนู„ู‰ ุงู„ู€ A ูˆ B open ุฃูˆ H of A ุจูŠุณุงูˆูŠ ูˆ
239
00:21:23,360 --> 00:21:27,260
H of B ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ุตูุฑ ุฅุฐุง ุญุณุจ roles theorem
240
00:21:27,260 --> 00:21:31,720
ุฅุฐุง by roles theorem by ุฃูˆ ุญุชู‰ by main value
241
00:21:31,720 --> 00:21:38,180
theorem by roles theorem there exists C element ุงู„
242
00:21:38,180 --> 00:21:46,290
A ูˆ B such that ุงุชุด prime of c ุฅูŠุด ู‡ูŠุณุงูˆูŠ ุตูุฑ ู‡ุฐุง
243
00:21:46,290 --> 00:21:52,190
ุญุณุจ ุงู„ู€ mean value theorem ู…ุนุงูŠุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุขู†
244
00:21:52,190 --> 00:21:57,130
ุจุชูุงุถู„ ู‡ุฐู‡ ุฏู„ู†ุง ุฃูˆุฌุฏ ุชูุงุถู„ ู‡ุฐู‡ ุชูุงุถู„ ู‡ุฐู‡ ู…ุนู„ูŠุด
245
00:21:57,130 --> 00:22:04,760
ุฎู„ูŠู†ุง ู†ูƒุชุจู‡ุง ู„ุฅู†ู‡ ู†ุฏุฎู„ ุนู„ู‰ ุงู„ุนุงู„ู€ slide ุจุฏูŠ ุฃูุงุถู„
246
00:22:04,760 --> 00:22:09,740
ู‡ุฐู‡ ูุงุถู„ุฉ H prime of X ุงู„ู„ูŠ ู‡ูŠ ุนู†ุฏ ุงู„ู€ C ุจุชุณุงูˆูŠ
247
00:22:09,740 --> 00:22:15,580
ุตูุฑ ุตูุฑ ุจูŠุณุงูˆูŠ H prime of C ุชุณุงูˆูŠ ูุงุถู„ ู‡ุฐู‡ ูˆุฃุนูˆุถ
248
00:22:15,580 --> 00:22:20,420
ุนู† ุงู„ู€ X ุจุตูุฑ ู„ุฃู† ู‡ุฐุง ุซุงุจุช ูˆู‡ุฐุง ุซุงุจุช ุฏู‡ ุจูŠุตูŠุฑ ุตูุฑ
249
00:22:20,420 --> 00:22:23,420
ุชูุงุถู„ ู‡ุฐุง ู…ุน ู‡ุฐุง ู„ุฃู† ู…ุน ู‡ุฐุง ุจูŠุตูŠุฑ G prime of X
250
00:22:23,420 --> 00:22:29,220
ู…ุถุฑูˆุจ ููŠ ู‡ุฐุง ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุจูŠุณุงูˆูŠ F of B ู†ุงู‚ุต F of A
251
00:22:30,080 --> 00:22:36,100
ุนู„ู‰ g of b ู†ุงู‚ุต g of a ู…ุถุฑูˆุจ ููŠ ู…ูŠู†ุŸ ูุถู„ุช ููŠ g
252
00:22:36,100 --> 00:22:40,920
prime of x ูˆุฃู†ุง ุจุฏูŠ ุฃุญุณุจู‡ุง ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ cุŒ ุฅุฐุง g
253
00:22:40,920 --> 00:22:45,320
prime of c ู†ุงู‚ุต ุชูุงุถู„ ู‡ุฐู‡ุŒ ู‡ุฐุง ุซุงุจุช ุตูุฑ ู„ุฃู† ู‡ุฐุง
254
00:22:45,320 --> 00:22:50,620
ู‚ุฏุงุด ุชูุงุถู„ู‡ุง ู†ุงู‚ุต f prime ุนู†ุฏ ุงู„ู€ x ูˆุฃู†ุง ุจุงุฎุฏู‡ุง ุนู†ุฏ
255
00:22:50,620 --> 00:22:56,280
ุงู„ู€ c ุงู„ู„ูŠ ู‡ูŠ h of c, ูู€ h prime of c ูุจูŠุตูŠุฑ ู†ุงู‚ุต f
256
00:22:56,280 --> 00:23:02,200
prime of c ุงู„ุขู† ุจุชุฏู†ุฌู„ ู‡ุฐู‡ ุนู„ู‰ ุฌู‡ุฉ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ
257
00:23:02,200 --> 00:23:10,720
ุงู„ุขู† f prime of c ู†ุฌู„ุชู‡ ู‡ุงู† ูˆุฃุฌุณู…ู‡ุง ุฌูŠ ุจุฑุงูŠู… of c
258
00:23:10,720 --> 00:23:15,840
ู„ุฃู† ุฌูŠ ุจุฑุงูŠู… of c ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุจูŠุณุงูˆูŠ f of b ู†ุงู‚ุต f
259
00:23:15,840 --> 00:23:25,710
of a ุนู„ู‰ g of b ู†ุงู‚ุต g of a ูˆู‡ูŠูƒ ุจูŠูƒูˆู† ุญุตู„ู†ุง ุนู„ู‰ C
260
00:23:25,710 --> 00:23:31,630
ููŠ ุงู„ู€A ูˆB ุจุญูŠุซ ุฃู†ู‡ ู‡ุฐู‡ ุชุชุญู‚ู‚ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู‡ุฐู‡ ุงู„ู„ูŠ
261
00:23:31,630 --> 00:23:37,190
ุจูŠุณู…ูŠู‡ุง Cauchy Mean Value Theorem ู‡ุฐู‡ ุชุนู…ูŠู… ู„ู…ูŠู†ุŸ
262
00:23:37,190 --> 00:23:41,590
ุชุนู…ูŠู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€Mean Value Theorem ุจุณ ุฎุฏ ุงู„ู„ูŠ ู‡ูˆ
263
00:23:41,590 --> 00:23:47,230
G of X ุจุชุณุงูˆูŠ X G of X ุจูŠุณุงูˆูŠ X ูˆ G of X ุจูŠุณุงูˆูŠ X
264
00:23:47,230 --> 00:23:49,190
ุงู„ู„ูŠ ู‡ูŠ ุชุญู‚ู‚ ูƒู„ ุงู„ุดุฑูˆุท ุงู„ differential
265
00:23:49,190 --> 00:23:53,470
ุจุงู„ู€ continuous ูˆุงู„ุงุฎุฑู‡ ู…ุงุดูŠ ุงู„ุญุงู„ ุจูŠุตูŠุฑ ุนู†ุฏูŠ
266
00:23:53,470 --> 00:23:58,110
ุงู„ู„ูŠ ู‡ูŠ ููŠ ุญุงู„ุฉ G of X ุจุชุณุงูˆูŠ X ู…ุนุงูŠุง ูŠุง ุดุจุงุจ
267
00:23:58,110 --> 00:24:02,450
ุจูŠุตูŠุฑ G of BB ูˆ G of AA ูˆู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ G prime ุงู„ู„ูŠ
268
00:24:02,450 --> 00:24:05,510
ู‡ูŠ 1 ูุจูŠุตูŠุฑ F prime of C ุจูŠุณุงูˆูŠ F of B ู†ุงู‚ุต F of
269
00:24:05,510 --> 00:24:10,470
A ุนู„ู‰ B minus A ุฅุฐุง F
270
00:24:15,650 --> 00:24:21,210
ุฃู…ุณุญ ุงู„ุจุฑู‡ุงู† ุจุณ ุงู„ุขู†
271
00:24:21,210 --> 00:24:31,930
ุงู„ู€ note ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู€ note ูƒู…ุง ูŠู„ูŠ note if
272
00:24:31,930 --> 00:24:42,820
g of x ุจูŠุณุงูˆูŠ x then we get from ุงู„ู€ theorem ู‡ุฐู‡
273
00:24:42,820 --> 00:24:51,140
ุงู„ู„ูŠ ุจู‚ูˆู„ ุนู„ูŠู‡ุง ูƒูˆุดูŠ mean value theorem we get the
274
00:24:51,140 --> 00:24:59,500
mean value theorem ูƒูŠู ุงู„ู€ g of x ุจูŠุณุงูˆูŠ x ู…ุนู†ุงู‡
275
00:24:59,500 --> 00:25:04,160
ุงู†ุชุตุงุฑ ุงู„ู€ g of b ุจูŠุณุงูˆูŠ b ูˆ g of a ุจูŠุตูŠุฑ a ูŠุนู†ูŠ
276
00:25:04,160 --> 00:25:10,530
ู‡ุฐุง ุจูŠุตูŠุฑ a, b ูˆู‡ุฐู‡ ุจูŠุตูŠุฑ A ูˆ G prime of C ุงู„ู„ูŠ ู‡ูŠ
277
00:25:10,530 --> 00:25:14,070
ุจูŠุตูŠุฑ 1 ูุจูŠุตูŠุฑ F prime of C ุจูŠุณุงูˆูŠ F of B ู†ุงู‚ุต F
278
00:25:14,070 --> 00:25:20,590
of A ุนู„ู‰ B minus A ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ู€ main value theorem
279
00:25:21,280 --> 00:25:24,720
ูˆุงุถุญ .. ุงู‡ .. ุทูŠุจ ุงุทู„ุน ู„ู„ูŠ ุจุนุฏู‡ ู„ุฃู† ุงุญู†ุง ุงู„ู„ูŠ
280
00:25:24,720 --> 00:25:26,820
ุจูŠู‡ู…ู†ุง ู‡ุฐุง ุงู„ูƒูˆุดูŠ ุจูŠู† ุงู„ู€ value theorem ุงุญู†ุง
281
00:25:26,820 --> 00:25:31,980
ุญูƒูŠู†ุงู‡ุง ุฃุตู„ุงู‹ ุนุดุงู† ุฎุงุทุฑ ุฃู†ู‡ ุงุญู†ุง ู†ุญูƒูŠ ุนู† ุงู„ู„ูŠ ู‡ูˆ
282
00:25:31,980 --> 00:25:37,960
L'Hรดpital's rule ุงู„ form ุงู„ู„ูŠ ุนู†ุฏู‡ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ุฏูƒุชูˆุฑ
283
00:25:37,960 --> 00:25:41,860
ุฌุฏูŠุฏ ููŠ ุงู„ุณุคุงู„ ููŠ ุบูŠุฑูƒ ู…ูู‡ูˆู… ุฅู† ุฃู†ุง ุฌุณู…ุช ุนู„ู‰ X
284
00:25:41,860 --> 00:25:46,640
minus A ุนู„ู‰ E minus A ุงู„ุทุฑููŠู† ุฃุตู„ุงู‹ ุฃู†ุช ุจุชุตูŠุฑ F ุฃูˆ
285
00:25:46,640 --> 00:25:48,580
P ู†ู‚ุต F ุฃูˆ A ุนู„ู‰ B minus A
286
00:26:01,110 --> 00:26:06,630
ุงู„ุจุฑู‡ุงู† ู…ุด ุตุนุจ ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ุŒ ูƒุชูŠุฑ ุณู‡ู„ุŒ ู…ุง ู‡ูˆ ุงู„ู€ C
287
00:26:06,630 --> 00:26:09,970
ุงู„ู„ูŠ ู„ุงุฌูŠู†ุงู‡ุง ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ุŒ ู‡ู„ ู‡ูŠ ุงู„ุซุงู†ูŠุฉุŸ ุฅุฐุง
288
00:26:09,970 --> 00:26:13,390
ูƒู†ุช ุชุชุนุงู…ู„ ุจู€ Mean Value Theorem ุฃู†ุชุŸ ู…ุด ุจุฏูƒ ุชุทุจู‘ู‚
289
00:26:13,390 --> 00:26:16,170
ุงู„ู€ Mean Value Theorem ุจุฏูƒ ุชุทุจู‘ู‚ ุงู„ู€ Mean Value Theorem ู„ุฃู†
290
00:26:16,170 --> 00:26:21,090
there exists c1 such that f prime of c1 ุจูŠุณุงูˆูŠ f of
291
00:26:21,090 --> 00:26:24,030
b minus f of a ุนู„ู‰ b minus a ู…ุง ููŠุด ููŠู‡ุง ู…ุดูƒู„ุฉ
292
00:26:24,030 --> 00:26:27,950
there exists c2 such that g prime of c2 ุจูŠุณุงูˆูŠ g of
293
00:26:27,950 --> 00:26:32,550
b ู†ู‚ุต g of a ุนู„ู‰ b minus a ุงู„ู€ c1 ู‡ุฐู‡ ู…ุด ุดุฑุท ูŠูƒูˆู†
294
00:26:32,550 --> 00:26:39,630
ู‡ูŠ ู†ูุณู‡ุง ุงู„ู€ c2 ุฃูˆ ุงุญู†ุง ู„ุงุฒู… ู†ุซุจุชู‡ุง ู‡ูŠ ู†ูุณู‡ุง ุงู‡ ู .. ูˆ
295
00:26:39,630 --> 00:26:44,780
ุจุนุฏูŠู† ุงู„ุจุฑู‡ุงู† ุณู‡ู„ ู…ุงุดูŠ .. ู†ุญู† ุงู„ูˆุงุญุฏ ูŠููƒุฑ 100% ..
296
00:26:44,780 --> 00:26:50,780
ุฌู…ูŠู„ ู„ูƒู† .. ูŠุนู†ูŠ .. ุจุณ ุฃู†ู‡ ุงุญู†ุง .. ุงู„ู€ C ู‡ุฐู‡ ู…ุด
297
00:26:50,780 --> 00:26:53,700
ุถู…ู†ูŠุงู‹ ุชุณุงูˆูŠ ุงู„ู€ C2 ูˆ ุจุฏู†ุง ู†ุซุจุช ุฃู†ู‡ุง ุชุณุงูˆูŠู‡ุง .. ุฅุฐุง
298
00:26:53,700 --> 00:26:59,920
ูƒุงู†ุช ุจุชุณุงูˆูŠู‡ุง ุทูŠุจ .. ู†ูŠุฌูŠ ู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
299
00:26:59,920 --> 00:27:05,840
ุจุนูŠุฏู‡ุง ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุนูŠุฏู‡ุง .. ุฃู†ุง ู…ุฑุถูŠุชุด ุฃู…ุณุญ ุงู„ู„ูˆุญ
300
00:27:05,840 --> 00:27:08,800
ุฃุณุงุณูŠ ู…ู†ู‚ุฑุฑู‡ุง ู…ู† ุงู„ู€ theory ู…ู† ุงู„ุฃูˆู„ู‰
301
00:27:11,650 --> 00:27:30,050
ู†ุดูˆู ู†ุทู„ุน ุฅูŠุด ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ู†ูุณ
302
00:27:30,050 --> 00:27:35,710
ุงู„ู„ูŠ ู‡ู†ุง F ูˆ G differentiable on A ูˆ B ู…ุนุงูŠุง ุฃู‡ุŸ
303
00:27:35,710 --> 00:27:42,150
ุงู„ุขู† such that G prime of X ุฏู‡ ูŠุณุงูˆูŠ ุตูุฑ G prime of
304
00:27:42,150 --> 00:27:47,970
X ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ุฃู†ุง ู…ุด ู…ูˆุฌูˆุฏุฉ For all X elements in
305
00:27:47,970 --> 00:27:55,070
A ูˆ B ูˆู†ูุชุฑุถ ุฃู† limit F of X limit F of X ู„ู…ุง X
306
00:27:55,070 --> 00:27:59,570
ุชุฑูˆุญ ุฅู„ู‰ ุงู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ู…ูˆุฌูˆุฏุฉ ูˆ ุจุชุณุงูˆูŠ ุฅูŠุดุŸ ุตูุฑ
307
00:27:59,570 --> 00:28:02,490
ูˆ limit G of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ุงู„ู€ A ู…ู† ุงู„ูŠู…ูŠู†
308
00:28:02,490 --> 00:28:09,580
ุจุชุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุตุงุฑ limit ุงู„ุญุงุตู„ ุงู„ู‚ุณู…ุฉ ู„ุฃู† ุจูŠุณุงูˆูŠ f
309
00:28:09,580 --> 00:28:14,300
prime of a ุนู„ู‰ g prime of a ุจูŠุณุงูˆูŠ limit f of x
310
00:28:14,300 --> 00:28:19,580
ุนู„ู‰ g of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ a ุจุงู„ูŠู…ูŠู† ูŠุนู†ูŠ ูˆูƒุฃู†ู‡ ู‡ู†ุง
311
00:28:19,580 --> 00:28:25,460
ุญูˆู„ ุงู„ุญุฏูŠุซ ูƒู„ู‡ ู…ู† ุงูุชุฑุงุถ ุฃู†ู‡ ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูŠ F'
312
00:28:25,780 --> 00:28:31,240
ูˆ G' ู…ูˆุฌูˆุฏุฉ ูˆู„ุง ุชุณุงูˆูŠ ุตูุฑ ูˆุญูˆู„ ุงู„ุญุฏูŠุซ ู…ู† ุฅู† ุงู„ุชุนูˆูŠุถ
313
00:28:31,240 --> 00:28:35,280
ุงู„ู…ุจุงุดุฑ ุฃู† F of A ูˆ G of A ุจุชุณุงูˆูŠ ุตูุฑ ู„ู€ limit ู„ู€ ..
314
00:28:35,280 --> 00:28:39,220
limit ู„ู„ Function ู„ู…ุง X ุชุฑูˆุญ ู„ู€ A ุตูุฑ ูˆ limit ู„ู„
315
00:28:39,220 --> 00:28:42,040
Function ู„ู…ุง .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ X .. ุงู„ X ุจุชุฑูˆุญ
316
00:28:42,040 --> 00:28:48,920
ู„ุณูุฑ .. ู„ู„ A ุจุชุณุงูˆูŠ ุตูุฑ ูˆุญูˆู„ ุฃูŠุถุงู‹ ุทู„ุจ ุฌูŠ ุจุฑุงูŠู… ู†ูุณู‡
317
00:28:48,920 --> 00:28:54,680
ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุชูƒูˆู† ู„ุง ุชุณุงูˆูŠ ุตูุฑ ู…ุด ุนู†ุฏ ุงู„ู†ู‚ุทุฉ
318
00:28:54,680 --> 00:29:03,060
ุจุณ ูˆู‚ุงู„ ู„ูƒ ุฅู†ู‡ ุญุชู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุชูŠุฌุฉ ู‡ุชุทู„ุน ุจู€ limit
319
00:29:03,060 --> 00:29:07,940
ู…ุด ู‡ุชุทู„ุน ุจู€ F prime of A ุนู„ู‰ G prime of A ูŠุนู†ูŠ ุงู„ู„ูŠ
320
00:29:07,940 --> 00:29:14,980
ุจู‚ุตุฏู‡ ุฅู†ู‡ ุงู„ุขู† ุทูˆุฑ ู‡ุฐู‡ ุงู„ุญุฏูŠุซ ู‡ู†ุง ุฅู†ู‡ ู„ู…ุง ุชูุนุฑุถ
321
00:29:14,980 --> 00:29:21,580
ุนู„ูŠู†ุง limit F of X ุนู„ู‰ G of X ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ A ู…ู†
322
00:29:21,580 --> 00:29:24,360
ุงู„ูŠู…ูŠู† ุฃูˆ ุฅู† ูƒุงู†ุช ุญุชู‰ ู„ูˆ ููŠ ุงู„ู€ interior point ุงู„ู€ X
323
00:29:24,360 --> 00:29:31,300
ุจุชุฑูˆุญ ู„ู„ู€ A ุจุฑุถู‡ ุตุญูŠุญุฉ ุงู„ุขู† ุจุนุฏูŠ ุนู†ุฏูŠ ุฅุฐุง ู„ุฌูŠุช limit
324
00:29:31,300 --> 00:29:34,480
ุงู„ุฃูˆู„ู‰ุŒ ุงู„ู„ูŠ ุฃู†ุง ุจุญูƒูŠ ุนู† limit ุณูŠุฑุฉ ู…ุด ุนู† ุชุนูˆูŠุถ
325
00:29:34,480 --> 00:29:38,340
ู…ุจุงุดุฑ ุฒูŠ ุงู„ู„ูŠ ุฌุงุจู„ู‡ุŒ ุงู„ุขู† limit f of x ู„ู…ุง x ุชุฑูˆุญ
326
00:29:38,340 --> 00:29:41,780
ู„ู€ a ู…ู† ุงู„ูŠู…ูŠู† ูˆ limit f of x ู„ู…ุง x ุชุฑูˆุญ ู„ู€ a ู…ู†
327
00:29:41,780 --> 00:29:46,700
ุงู„ูŠู…ูŠู†ุŒ ุฅุฐุง ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ูˆ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ูˆ ุทู„ุน ุนู†ุฏูŠ 0
328
00:29:46,700 --> 00:29:51,060
ุนู„ู‰ 0ุŒ ูŠุนู†ูŠ ุทู„ุน ุงู„ limit ุนุจุงุฑุฉ ุนู† 0 ุนู„ู‰ 0ุŒ ู‡ู†ุง ุจุฏูˆ
329
00:29:51,060 --> 00:29:57,200
ูŠุญุฏุซ ุงู„ุนู„ุงุฌุŒ ุฅุฐุง ูƒุงู†ุช ุงู„ุขู† ุงู„ู€ limit ุงู„ู„ูŠ ุทู„ุนุช ุนู†ุฏูŠ
330
00:29:57,200 --> 00:30:02,000
F prime of X ุนู„ู‰ G prime of X ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ A ู…ู†
331
00:30:02,000 --> 00:30:06,780
ุงู„ูŠู…ูŠู† ุฅุฐุง ุทู„ุนุช ุนุจุงุฑุฉ ุนู† ู‚ูŠู…ุฉ ุฎู„ุงุต ุงุฑุชุงุญ ู‡ุฐู‡ ุงู„ู„ูŠ
332
00:30:06,780 --> 00:30:12,450
ุทู„ุนุช ู‡ูŠ ู…ูŠู† ูู‡ู…ุช ุงู„ู€ limit ู…ุงุดูŠ ุงู„ุญุงู„ ู„ูˆ ุทู„ุนุช ูƒู…ุงู†
333
00:30:12,450 --> 00:30:18,230
ู…ุฑุฉ zero ุนู„ู‰ zero ุงู„ู„ูŠ ู‡ูˆ ูˆ ุจุชุญู‚ู‚ ูƒู„ ุงู„ุดุฑูˆุท ุงู„ู„ูŠ
334
00:30:18,230 --> 00:30:21,950
.. ุงู„ู„ูŠ ููŠ ุงู„ุฃูˆู„ ุจุฑุถู‡ ุจุฃุนู…ู„ ูƒู…ุงู† ู…ุฑุฉ ุจูุงุถู„ ู„ู…ุง
335
00:30:21,950 --> 00:30:26,430
ุจุชุทู„ุน ู„ูƒู† ู„ูˆ ุทู„ุนุช ุงู„ limit ู‡ุฐู‡ does not exist ุจุณูƒุช
336
00:30:26,430 --> 00:30:31,130
ูˆ ุจุฌุงูˆุจูŠ ุนู…ุด .. ุจุฏู†ุง ู†ุฏูˆุฑ ุนู„ู‰ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ูˆุงุถุญุŸ ุงู„ุขู†
337
00:30:31,130 --> 00:30:34,990
ู„ูˆ ุทู„ุนุช ู‡ุฐู‡ infinity ุฃูˆ ุณุงู„ุจ infinity ู‡ุฐู‡ ุขุณู
338
00:30:34,990 --> 00:30:38,900
infinity ุฃูˆ ุณุงู„ุจ infinity ุจุฑุถู‡ ุฅู† ุงู„ู†ุธุฑูŠุฉ ุตุญูŠุญุฉ ุงู„ู„ูŠ
339
00:30:38,900 --> 00:30:45,290
ู‡ูˆ ู‡ุฏู…ูŠู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู†ุธุฑูŠุฉ if limit f prime
340
00:30:45,290 --> 00:30:48,450
ุนู„ู‰ g prime ุจูŠุณุงูˆูŠ L ุจูŠุณุงูˆูŠ infinity ุฃูˆ ุณุงู„ุจ
341
00:30:48,450 --> 00:30:52,190
infinity ู‡ุชุทู„ุน ุงู„ limit ุนู„ู‰ ุทูˆู„ ู„ู„ F ุนู„ู‰ G ุงู„ู„ูŠ
342
00:30:52,190 --> 00:30:56,350
ุจุจุญุซ ุนู†ู‡ุง ุฅูŠุด ู‡ุชุณุงูˆูŠ ุจุฑุถู‡ ุงู„ infinity ุฃูˆ ุณุงู„ุจ
343
00:30:56,350 --> 00:31:00,670
infinity ุญุณุจ ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุฅุฐุง ุฃูŠ ุฅู† ูƒุงู†ุช ุงู„ู„ูŠ ู‡ูŠ ุงู„
344
00:31:00,670 --> 00:31:05,190
limit ู…ุงุฏุงู…ูŽ exist ุณูˆุงุก ุงู„ existence ุนุจุงุฑุฉ ุนู†
345
00:31:05,190 --> 00:31:09,210
element in R ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต infinity ุฃูˆ
346
00:31:09,210 --> 00:31:18,100
ุณุงู„ุจ infinity ูุฅู† ุงู„ู†ุธุฑูŠุฉ ุตุญูŠุญุฉ ูˆุงุถุญุŸ ุฃูŠ ุณุคุงู„ุŸ ุทูŠุจ
347
00:31:18,100 --> 00:31:27,200
ุตู„ู‘ู‰ ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุฎู„ูŠู†ุง
348
00:31:27,200 --> 00:31:31,360
ู†ูŠุฌูŠ ู„ู„ู†ุธุฑูŠุฉ ูˆู†ุจุฑู‡ู†ู‡ุง
349
00:31:45,860 --> 00:31:50,880
Theorem ูƒุฏู‡ ุดุŸ ู†ุฒู„ูŠ ุจุณ ุงู„ู†ุต ูŠุง ู…ุญู…ุฏ ุงู„ู„ูŠ ู‡ูŠ theorem
350
00:31:50,880 --> 00:31:59,580
6 3 3 ุฅูŠุด ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ุŸ ุจุชู‚ูˆู„ ู…ุง ูŠุนู†ูŠ ุนู†ุฏูŠ ุทุจุนุงู‹
351
00:31:59,580 --> 00:32:04,540
ู…ุงุฎุฏ ุงู„ู€ a ุฃุตุบุฑ ู…ู† ุงู„ู€ b strictly ูˆ a ู…ู…ูƒู† ุญุชู‰ ุชุฃุฎุฏ ุณุงู„ุจ
352
00:32:04,540 --> 00:32:07,580
infinity ูˆุงู„ู€ b ุชุฃุฎุฏ infinity ูŠุนู†ูŠ ู…ู…ูƒู† ุชูƒูˆู†
353
00:32:07,580 --> 00:32:11,040
ุงู„ูุชุฑุฉ ู…ู† a .. ุงู„ูุชุฑุฉ ูƒู„ู‡ุง a ู…ู…ูƒู† ุชูƒูˆู† ุฃูŠ ูุชุฑุฉ sub
354
00:32:11,040 --> 00:32:16,710
interval ู…ู† ุงู„ู„ูŠ ู‡ูˆ 100 ู…ู† ุงู„ู€ real numbers ูุฑุถู†ุง f
355
00:32:16,710 --> 00:32:26,190
ูˆ g ู…ู† a ูˆ b ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ r ูˆุฅุฐุง ูƒุงู†ุช a infinity
356
00:32:26,190 --> 00:32:30,130
ุฃูˆ ุณุงู„ุจ infinity ุขุณู ุฅุฐุง ูƒุงู†ุช a ุณุงู„ุจ infinity ุฃูˆ b
357
00:32:30,130 --> 00:32:33,610
infinity ุจุชูƒูˆู† o ู…ู† ุฒู…ู† ุจุนุฑููŠ ู„ุฃู† ุนุดุงู† ุงู„ู„ูŠ ู‡ูˆ
358
00:32:33,610 --> 00:32:36,890
ู†ุงุฎุฏู‡ุง ู…ู† real number ู„ู€ real number ู„ุฐุง ู†ูุชุฑุถ f ูˆ
359
00:32:36,890 --> 00:32:46,080
g ู…ู† a ูˆ b ู„ุนู†ุฏ ุงู„ู€ R ูˆู†ูุชุฑุถ ุฅู† f ูˆ g differentiable
360
00:32:46,080 --> 00:32:54,620
on a ูˆ b ู…ุงุดูŠ ุงู„ุญุงู„ ูˆ differentiable on a ูˆ b ุงู„ุขู†
361
00:32:54,620 --> 00:32:57,900
ู…ุด ู„ุงุฒู… ูŠูƒูˆู†ูˆุง continue ูˆ ุชุนู†ุฏู‰ ูˆ ูƒุฏู‡ ู„ุฃู†ู‡ ุฃู†ุง ู‡ุฏุฎู„
362
00:32:57,900 --> 00:33:02,240
ู„ุฌูˆู‡ ุดุบู„ ู‡ูŠูƒูˆู† ู„ุฌูˆู‡ ู‡ู„ ุฌูŠุช ุจุชุดูˆู ุฅูŠุด ู…ุนู†ู‰ ู„ุฌูˆู‡
363
00:33:02,240 --> 00:33:08,620
such that g prime of x g prime of x ู„ุง ุชุณุงูˆูŠ ุตูุฑ
364
00:33:08,620 --> 00:33:17,430
ู„ูƒู„ x ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ a ูˆ b ุงู„ุขู† ุจู‚ูˆู„ ู„ูŠ ุฅุฐุง
365
00:33:17,430 --> 00:33:27,170
ูƒุงู†ุช limit limit ุงู„ู„ูŠ ู‡ูŠ f of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ a ู…ู†
366
00:33:27,170 --> 00:33:32,190
ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ limit g of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ a ู…ู†
367
00:33:32,190 --> 00:33:40,980
ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ ุตูุฑ ู‡ุฐุง ูƒู„ู‡ ู…ูˆุถูˆุน ุงู„ุขู† ุจุฏูˆ ูŠูˆุตู„ ุจุฏูŠ
368
00:33:40,980 --> 00:33:46,200
ุฃู‚ูˆู„ูƒ ูƒูŠู ุฃู†ุง ุจุฏูŠ ุฃุญุตู„ ุนู„ู‰ ู†ุชูŠุฌุฉ limit f of x ุนู„ู‰
369
00:33:46,200 --> 00:33:51,060
g of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ a ู…ู† ุงู„ูŠู…ูŠู† ุจู‚ูˆู„ูƒ ุฅุฐุง ูƒุงู† ุฃู†ุช
370
00:33:51,060 --> 00:33:59,180
if ู„ุฃู† ุฅูŠู‡ if limit f prime of x ุนู„ู‰ g prime of x
371
00:33:59,180 --> 00:34:06,520
ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ a ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ L then ุฃุชุฌุฑุง ุฃู‚ูˆู„
372
00:34:06,520 --> 00:34:12,020
ูุงุด ุนู†ุฏูŠ ู…ุดูƒู„ุฉ limit f of x ุงู„ู„ูŠ ุจุจุญุซ ุนู†ู‡ุง ุนู„ู‰ g
373
00:34:12,020 --> 00:34:17,360
of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ุฅูŠู‡ ู…ู† ุงู„ูŠู…ูŠู† ุจุฑุถู‡ ุฅูŠุด ู‡ูŠุณุงูˆูŠุŸ
374
00:34:17,360 --> 00:34:29,740
ู‡ูŠุณุงูˆูŠ ุงู„ .. ู…ู† ูŠุญูŠุงุชูŠ ู‡ุฐู‡ ู‡ูŠูƒูˆู† ุตุญูŠุญุฉ ุทูŠุจ ุฎู„ูŠู†ุง
375
00:34:29,740 --> 00:34:38,330
ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุจุฑู‡ุงู† ุดูˆู ุนู„ูŠู‡ุง ูˆุงุถุญ ุงู„ู†ุธุฑูŠุฉ ุดุฑุญู†ุงู‡ุง
376
00:34:38,330 --> 00:34:45,050
ูŠุนู†ูŠ ู†ุต ุงู„ู†ุธุฑูŠุฉ ุดุฑุญู†ุงู‡ุง ุจุดูƒู„ ูƒุงู…ู„ ุงู„ุขู† since limit
377
00:34:45,050 --> 00:34:51,730
F prime of X ุนู„ู‰ G prime of X ู„ู…ุง X ุชุฑูˆุญ ู„ู€ A ู…ู†
378
00:34:51,730 --> 00:35:00,690
ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ู‡ูŠุนู†ุฏูŠ ุงู„ูุชุฑุฉ A ูˆ B ุญุชู‰ ู„ูˆ ูƒุงู†ุช
379
00:35:00,690 --> 00:35:05,580
ู…ู†ุชู‡ูŠุฉ ูˆูŠู† ู…ุง ุจุฏู‡ุงุŒ ู‡ูŠ ุญุงุถุฑุฉ ุงู„ุขู† ุนู†ุฏูŠ X ุชุฐู‡ุจ ุฅู„ู‰
380
00:35:05,580 --> 00:35:09,760
ุงู„ูŠู…ูŠู† ุงู„ูŠู…ูŠู† ูุจุฏูŠ ู…ู† ุงู„ุฌู‡ุฉ ุฏูŠ ุทุจูŠุนูŠ ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ
381
00:35:09,760 --> 00:35:15,800
ุงู„ู€ then for every epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ ู„ุฃูŠ epsilon
382
00:35:15,800 --> 00:35:20,440
ุฃูƒุจุฑ ู…ู† ุตูุฑ ุฃูŠ epsilon there exists delta ุฃูƒุจุฑ ู…ู†
383
00:35:20,440 --> 00:35:24,660
ุตูุฑ such that ู„ุฃู† X ุชุฐู‡ุจ ุฅู„ู‰ ุงู„ุงู…ู† ูˆูŠู† ู…ู† ุงู„ูŠู…ูŠู†
384
00:35:24,660 --> 00:35:27,460
ุฅุฐู† ุงู„ุฌูˆุงุฑ ุงู„ู„ูŠ ุญูˆุงู„ู‡ุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฌูˆุงุฑ ู…ู† A ู„ุนู†ุฏ
385
00:35:27,460 --> 00:35:32,340
ู…ูŠู† ุงู„ู€ A ุฒูŠ ุงู„ู€ Delta ู„ุนู†ุฏ ุงู„ู€ A ุฒูŠ ุงู„ู€ Delta ุตุญ ูˆู„ุง ู„ุฃ
386
00:35:32,340 --> 00:35:36,260
ุฅุฐู† ู„ูƒู„ ู…ุง ุฏุงู…ุช ุงู„ู€ limit ู‡ูŠ ุฏูŠ ุจูŠุณุงูˆูŠ LุŒ ุฏู‡ ู„ูƒู„
387
00:35:36,260 --> 00:35:41,480
ุฅุจุณู„ูˆู† ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ Delta ุจุญูŠุซ ุฃู† X element ููŠ A ูˆ
388
00:35:41,480 --> 00:35:46,400
A ุฒุงุฆุฏ Delta ู X element ููŠ A ูˆ A ุฒุงุฆุฏ DeltaุŒ then
389
00:35:46,400 --> 00:35:52,180
ู‚ุทุนุงู‹ .. then ู‚ุทุนุงู‹ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ F prime of X ุนู„ู‰ G
390
00:35:52,180 --> 00:35:58,030
prime of X ู†ู‚ุต LุŒ ุฐูˆูŠูƒูˆู† ุฃุตุบุฑ ู…ู† 100 ู…ู† ุฅุจุณู„ูˆู† ู‡ุฐุง
391
00:35:58,030 --> 00:36:02,370
ุชุนุฑูŠู ุงู„ู€ limit ู„ู„ู€ F prime of X ุนู„ู‰ G prime of X
392
00:36:02,370 --> 00:36:06,510
ุจุณู‡ูˆู„ุฉ ู„ู…ุง X ุชุฑูˆุญ ู„ู…ู†ุŸ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ู‡ูˆ ูƒุงุชุจู‡ุง
393
00:36:06,510 --> 00:36:11,110
ู‡ุฐู‡ A ุฒุงุฆุฏ Delta C ููŠ ุงู„ูƒุชุงุจ ูŠุนู†ูŠ ู…ุณู…ูŠู‡ุง C ูŠุนู†ูŠ
394
00:36:11,110 --> 00:36:16,090
ู…ุณู…ูŠ ุฅู†ู‡ ู„ูƒู„ X there exists C ุจุญูŠุซ ุฅู†ู‡ ู„ูƒู„ X ููŠ ุงู„
395
00:36:16,090 --> 00:36:20,650
A ุงู„ู„ูŠ ุนู†ุฏ ุงู„ู€ A ู„ู„ู€ C ุจูƒูˆู† ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุชุญู‚ู‚ ุฃู†ุง
396
00:36:20,650 --> 00:36:23,510
ุญุจูŠุช ุฃูƒุชุจ ู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุนุฑูŠู ุงู„ุฏุงุฑุฌูŠ ุงู„ู„ูŠ ุฃู†ุช ุฏู‡
397
00:36:23,510 --> 00:36:27,700
ูƒุณู„ู‡ ูƒู…ุงู† ููŠ ุงู„ .. ููŠ ุงู„ุญู„ ูˆุงุถุญ ู„ุญุฏ ุชู„ุงุชุฉ
398
00:36:38,080 --> 00:36:42,520
ู…ุงุดูŠ ุงู„ุญุงู„ ุจุณ ู‡ูŠ ูƒ .. ู‡ุฐู‡ .. ูˆ ู‡ุฐู‡ ูƒ ุตุญ ูˆ ู‡ุฐู‡ ูƒ ุตุญ
399
00:36:42,520 --> 00:36:47,040
ูˆ ู‡ุฐู‡ ูƒ ุตุญ ุงู„ู„ูŠ ูƒุงุชุจู‡ุง ุตุญ ุจุณ ู‡ุฐู‡ ู„ู„ุทุงู„ุจ ุฃุณู‡ู„ู‡ ููŠ
400
00:36:47,040 --> 00:36:49,960
ุงู„ .. ููŠ ุงู„ .. ู„ุฅู†ู‡ .. ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ู„ูŠ ุฏุงุฑุฌ
401
00:36:49,960 --> 00:36:54,640
ุนู„ูŠู‡ ููŠ ุงู„ .. ููŠ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุนุจูŠุฑ ุนู† ุงู„ .. ู„ูƒู„ x
402
00:36:54,640 --> 00:36:58,940
ููŠ ุงู„ุฌูˆุงุฑ ุงู„ุฌูˆุงุฑ ู‡ุฐุง ุณู‡ู„ ูˆ .. ูˆ .. ูˆ .. ูˆุนุจู‘ุฑู†ุง
403
00:36:58,940 --> 00:36:59,200
ุนู†ู‡
404
00:37:02,810 --> 00:37:07,630
-A ู‡ูˆ ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุฏู„ุชุฉ ุจุฑุถู‡ ู‡ูŠูƒ ุตุญ ุตุญูŠุญ
405
00:37:07,630 --> 00:37:11,910
ู†ูุณ ุงู„ุดูŠุก ุทูŠุจ
406
00:37:11,910 --> 00:37:15,050
ุงู„ุขู†
407
00:37:15,050 --> 00:37:23,590
ู‡ุฐุง ุงู„ูƒู„ุงู… i.e. ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ that is ู‡ูŠูƒูˆู† ู‡ุฐุง ุงู„ู„ูŠ
408
00:37:23,590 --> 00:37:31,230
ู‡ูˆ F prime of X ู†ุงู‚ุต G prime of X ุฃุตุบุฑ ู†ุงู‚ุต L
409
00:37:31,230 --> 00:37:37,150
ุจุชุบูŠุฑู‡ุง ุนุดุงู† ุฃุตุบุฑ ู…ู† Y ูˆุฃูƒุจุฑ ู…ู† 200 ู…ู† ุณุงู„ุจ Y ุดูŠู„
410
00:37:37,150 --> 00:37:43,470
ุงู„ู€ L ู‡ุฐู‡ ุจุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† L ุฒุงุฆุฏ Y ูˆุฃูƒุจุฑ ู…ู† L
411
00:37:43,470 --> 00:37:49,430
ู†ุงู‚ุต Y ู‡ุฐุง ู…ุชุญู‚ู‚ ู„ู…ูŠู†ุŸ ู„ูƒู„ X ูˆ N ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ
412
00:37:49,430 --> 00:37:53,550
ู…ู† A ู„ุนู†ุฏ A ุฒุงุฆุฏ Delta ูˆ ุงูƒุชุจ ู„ูŠ ู‡ุฐุง ุณู…ูŠู„ูŠ
413
00:37:56,530 --> 00:38:03,990
ูˆุงุญุฏ ู…ุงุดูŠ ุงู„ุญุงู„ ุณู…ูŠู„ูŠู‡ ูˆุงุญุฏ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุดุฑูˆุท
414
00:38:03,990 --> 00:38:06,850
ุงู„ู€ Mean Value Theorem ุงู„ูƒูˆุดูŠ Mean Value Theorem
415
00:38:06,850 --> 00:38:10,130
ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู€ F ูˆุงู„ู€ G differentiable ุนู„ู‰ ุงู„ู€ A
416
00:38:10,130 --> 00:38:16,170
ูˆ ุงู„ู€ B ุงู‡ ูˆ ุงู„ู€ G prime of X ู„ุง ุชุณุงูˆูŠ ุตูุฑ ูˆ ุงู„ ..
417
00:38:16,170 --> 00:38:22,490
ุฃูˆ .. ุฅูŠุด ูƒู…ุงู† ูƒู„ู‘ู‡ ู…ุชุญู‚ู‚ ุจุณ ุฎู„ูŠู†ุง ู†ู‚ูˆู„
418
00:38:26,140 --> 00:38:31,240
ุจุฏูŠ ุงู„ุขู† ูˆูŠู† ุฃุทุจู‘ู‚ ุงู„ู€ Mean Value Theorem ุจุฏูŠ
419
00:38:31,240 --> 00:38:37,720
ุฃุทุจู‘ู‚ู‡ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฌูˆุง ุนู†ุฏูŠ ู„ุฏุงุฎู„ ุงู„ู€ Mean
420
00:38:37,720 --> 00:38:44,560
ู„ุฏุงุฎู„ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุนุดุงู† ุฃุดุชุบู„ ูˆูŠู† ุงู„ู„ูŠ ุจุชุทู„ุน ุนู†ุฏูŠ
421
00:38:44,560 --> 00:38:48,490
ุฃุถู…ู† ุชูƒูˆู† ู‡ู†ุง ุนุดุงู† ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ุชุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ
422
00:38:48,490 --> 00:38:53,170
ุจุชุญู‚ู‚ู‡ุง ุชูƒูˆู† ุจุชุญู‚ู‚ ุงู„ู„ูŠ ุจุชุทู„ุน ุนู†ุฏูŠ ูˆ ุจุชุญู‚ู‚ู‡ุง ุฏูŠ
423
00:38:53,170 --> 00:38:57,730
ุนุดุงู† ู‡ูŠ ูƒุตุญ ุงู„ู„ูŠ ุฃุนูˆุถ ู…ูƒุงู† ุจุนุถ ู…ุงุดูŠ ุงู„ุญุงู„ ุฎุฏ ุงู„ุขู†
424
00:38:57,730 --> 00:39:07,030
ู„ุฌุฏ ุชูู‡ู…ูˆุง ุฅูŠุด ุงู„ู„ูŠ ุจู‚ุตุฏู‡ู… ุฎุฏ ุงู„ุขู† four alpha ุฃูƒุจุฑ
425
00:39:07,030 --> 00:39:16,040
ู…ู† a ูˆ ุฃุตุบุฑ ู…ู† beta ูˆ ุฃุตุบุฑ ู…ู† a ุฒุงุฆุฏ delta ูŠุนู†ูŠ ุฃู†ุง
426
00:39:16,040 --> 00:39:20,060
ุบุฑุถูŠ ุฃู† ุฃู†ุง ุฃุดุชุบู„ .. ุฃู† ุฃู†ุง ุฑุงูŠุญ .. ุจุฏูŠ ุฃู†ุง limit
427
00:39:20,060 --> 00:39:24,580
ุฃุตู„ู‹ุง ูˆ ุงู„ limit ุจุฏูŠู‡ุง ู„ู…ุง ุฃุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ A ูŠุนู†ูŠ ุจุฏูŠ
428
00:39:24,580 --> 00:39:29,760
ููŠ ุงู„ุฌูˆุงุฑ ุงู„ู„ูŠ ุญูˆุงู„ูŠู† ุงู„ A ูˆ ุฌุงูŠ ู†ุงุญูŠุชู‡ุง ู‡ุฐุง ุงู„ู„ูŠ
429
00:39:29,760 --> 00:39:31,740
ุจู‡ู…ุŒ ุงู„ู„ูŠ ู…ุง ุฃู†ุงุด ุณุบุงุฏุงุดุŒ ุจูŠูƒูˆู† ุงู„ุชุตุฑู ู…ุงููŠุด ..
430
00:39:31,740 --> 00:39:36,980
ู…ุงููŠุด ุนู†ุฏู‡ ู…ุดูƒู„ุฉ ุงู„ุขู† ู‡ูŠ ุงู„ alpha ุฃุฎุฏุชู‡ุง ู‡ู†ุง ูˆ ู‡ูŠ
431
00:39:36,980 --> 00:39:37,420
ุงู„ beta
432
00:39:41,900 --> 00:39:44,540
ุฃุตุบุฑ ู…ู† Alpha ุฃุตุบุฑ ู…ู† Beta ุฃุตุบุฑ ู…ู† a ุฒูŠ ุงู„ู€
433
00:39:44,540 --> 00:39:54,060
DeltaุŸ By Cauchy Mean Value Theorem there exists
434
00:39:54,060 --> 00:40:03,220
ุณู…ูˆู‡ุง ู‡ูˆ ู†ุณู…ูŠู‡ุง U Element in mean in Alpha ูˆ Beta
435
00:40:03,220 --> 00:40:10,110
ูˆ ุงู„ Alpha ูˆ Beta ุฌุฒุก ู…ู† ู‡ุฐูˆู„ุŒ ุฅุฐุง ุงู„ู„ูŠ ุจู†ุทุจู‚
436
00:40:10,110 --> 00:40:14,750
ุนู„ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ุจู†ุทุจู‚ ุนู„ู‰ .. ุงู„ู„ูŠ ุจู†ุทุจู‚ ุนู„ู‰ ู‡ุฐู‡ ุจู†ุทุจู‚
437
00:40:14,750 --> 00:40:19,790
ุนู„ู‰ ู‡ุฐู‡ุŒ ู…ุธุจูˆุทุŸ ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ U ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ุจู†ุทุจู‚
438
00:40:19,790 --> 00:40:22,210
ุนู„ูŠู‡ุง ุงู„ูƒู„ุงู… ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ F prime of U ุนู„ู‰ D prime
439
00:40:22,210 --> 00:40:27,510
of U ุจูŠู† ู‡ุฐู‡ ูˆ ุจูŠู† ู‡ุฐู‡ ูˆุงุถุญุŒ ูˆ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ู‡ู… ุทูŠุจุŒ
440
00:40:27,510 --> 00:40:34,640
there exists U such that F prime of U ุนู„ู‰ g prime
441
00:40:34,640 --> 00:40:39,240
of u ุจูŠุณุงูˆูŠ ุฅูŠุด ูŠุง ุฌู…ุงุนุฉ ุจูŠุณุงูˆูŠ f of b ุฃูˆ beta
442
00:40:39,240 --> 00:40:50,260
ู†ุงู‚ุต f of alpha ุนู„ู‰ g of beta ู†ุงู‚ุต g of alpha ูˆุงุถุญ
443
00:40:50,260 --> 00:41:00,020
ุขู‡ุŸ ู‡ุฐุง ุณู…ูˆู„ูŠ ูŠู…ูŠู† ู‡ูˆ ุงุชู†ูŠู† ุงู„ุขู† ุนู†ุฏ ู‡ุฐู‡ ุงู„ู„ูŠ
444
00:41:00,020 --> 00:41:05,260
ู„ุฌูŠุชู‡ุง ู‡ู†ุง ุงู„ู„ูŠ ุจุชุญู‚ู‚ ู‡ุฐู‡ ู‡ูŠ ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ู…ู† ุถู…ู†
445
00:41:05,260 --> 00:41:12,980
ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุจุชุญู‚ู‚ ู‡ุฐู‡ ู„ูƒู„ X ู‡ู†ุง ูˆู‡ุฐู‡ ุฌุฒุก ู…ู†ู‡ุง ุฅุฐุง
446
00:41:12,980 --> 00:41:18,100
F prime of X of U ุนู„ู‰ G prime of U ุจูŠู† ุงู„ L ู†ุงู‚ุต
447
00:41:18,100 --> 00:41:22,020
ุฅุจุณู„ูˆู† ูˆ ุงู„ L ุฒุงุฆุฏ ู…ูŠู†ุŸ ุฅุจุณู„ูˆู† ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช F
448
00:41:22,020 --> 00:41:25,860
prime of U ู‡ุฐู‡ ุงู„ู„ูŠ ู„ู‚ูŠุชู‡ุง G prime of U ุจูŠุณุงูˆูŠ ู‡ุฐุง
449
00:41:25,860 --> 00:41:29,840
ุฅุฐุง from ูˆุงุญุฏ
450
00:41:30,390 --> 00:41:40,070
ูˆ ุงุชู†ูŠู† we get ุงู„ู„ูŠ ู‡ูˆ F prime of U ุนู„ู‰ G prime of
451
00:41:40,070 --> 00:41:47,610
U ุจุณุชุจุฏู„ู‡ุง ูˆ ุจูŠุตูŠุฑ F of Beta ู†ุงู‚ุต F of Alpha ุนู„ู‰ G
452
00:41:47,610 --> 00:41:54,070
of Beta ู†ุงู‚ุต G of Alpha ุจุญูŠุซ ุฃู†ู‡ ู‡ุฐุง ูŠูƒูˆู† ุฃูƒุจุฑ ู…ู†
453
00:41:54,070 --> 00:42:03,630
L ู†ุงู‚ุต Y ูˆ ุฃุตุบุฑ ู…ู† 100 ู…ู† L ุฒุงุฆุฏ Y ู„ุฃู† ู‡ุฐุง ุตุญูŠุญ ู„ุฃูŠ
454
00:42:03,630 --> 00:42:09,750
Alpha ูˆ Beta ุจุดูƒู„ู‡ู… ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ Alpha ุฃุตุบุฑ ู…ู† Beta
455
00:42:09,750 --> 00:42:15,570
ูˆ Alpha ุจูŠู† ุงู„ A ูˆ ุจูŠู† ู…ูŠู†ุŸ ุงู„ A ุฒุงุฆุฏ ุฏู„ุชุง ุฅุฐุง
456
00:42:15,570 --> 00:42:22,150
ุงู„ุฃู„ูุฉ ู‡ุฐู‡ ุญุฑุฉ ููŠ ูƒู„ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ุจู†ูุน ูŠุนู†ูŠ ุงู„ุฃู„ูุฉ
457
00:42:22,150 --> 00:42:26,530
ู‡ุฐู‡ ู„ูˆ ุจุฏู‡ุง ุชุฑูˆุญ ู„ู„ A ุญุฏ ู…ุด ุจู…ู†ุนู‡ุง ุงู„ุฃู„ูุฉ ุชุฑูˆุญ ู„ู‡ุง
458
00:42:26,530 --> 00:42:31,060
ู„ุฃู†ู‡ ุตุญูŠุญ ุนู„ู‰ ูƒู„ ู‡ุฐู‡ ุงู„ุฃู„ูุงุช ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ู‡ุฐู‡ ุงู„ุขู†
459
00:42:31,060 --> 00:42:40,340
let alpha goes to mean to a ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู†
460
00:42:40,340 --> 00:42:45,720
ู…ุงุดูŠุŸ ู…ู‚ุฏุฑ ูˆ ู„ู† ุชุคุซุฑ ู„ุฃ ุนู„ู‰ ุงู„ beta ูˆู„ุง ุนู„ูŠู‡ุง ุฒูŠ
461
00:42:45,720 --> 00:42:50,980
ุงู„ุฏู„ุชูŠุฉ ุงู„ุญุฑุฉ ุจุชุฑูˆุญ ู„ู‡ุฐู‡ ูˆู‡ุฐู‡ ุฒูŠ ู…ุง ู‡ูŠ ูŠุนู†ูŠ ุชุตุฑู
462
00:42:50,980 --> 00:42:58,540
alpha ูŠุฑูˆุญ ู„ุฃูŠ a beta ุจุงู„ู†ุณุจุฉ ู„ู‡ุง ุซุงุจุช ูˆู„ุง ุชุชุฃุซุฑ ู‡ุฐุง
463
00:42:58,540 --> 00:43:03,500
ุงู„ูƒู„ุงู… ู…ู‡ู… ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู„ู…ุง Alpha ุชุฑูˆุญ ู„ุฃ ู…ู†
464
00:43:03,500 --> 00:43:10,700
ุงู„ูŠู…ูŠู† ุงู„ up of Alpha ุจูŠุตูŠุฑ ุนู†ุฏูŠ limit ุงู„ up of
465
00:43:10,700 --> 00:43:17,780
Alpha ู„ู…ุง ุงู„ Alpha ุชุฑูˆุญ ู„ุฃ ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ ู‡ูˆ ููŠ
466
00:43:17,780 --> 00:43:21,980
ุงู„ูˆุงู‚ุน limitู‡ุง limitู‡ุง ู‡ุฐู‡ Alpha ุงู„ู„ูŠ ูƒู†ุง ู†ุณู…ูŠู‡ุง X
467
00:43:21,980 --> 00:43:23,980
ู…ุซู„ู‹ุง ุงู„ up of X ุณู…ู‰ X ุชุฑูˆุญ ู„ุฃ ู…ู† ุงู„ูŠู…ูŠู† ู„ุฃ ู…ู†
468
00:43:23,980 --> 00:43:29,480
ุงู„ูŠู…ูŠู† ุงู„ุขู† ุงู„ Alpha ุฑุงุญุช ู„ู„ูŠู…ูŠู† ุงู„ูŠู…ูŠู† limitู‡ุง
469
00:43:29,480 --> 00:43:35,020
ุฃู†ุง ู…ุง ุนุทูŠู†ูŠ ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ ุตูุฑุŒ ู…ุง ุนุทูŠู†ูŠ
470
00:43:35,020 --> 00:43:37,080
limit f of x ุนู†ุฏู…ุง x ุชุฑูˆุญ ู„ู„ูŠู…ูŠู† ุงู„ูŠู…ูŠู† ุฅูŠุด
471
00:43:37,080 --> 00:43:40,540
ุจูŠุณุงูˆูŠุŸ ุตูุฑุŒ ุฃู†ุง ุณู…ูŠุชู‡ุง ุฅูŠุด ุฃู†ุงุŸ Alpha ู‡ุฐู‡ ุงู„ู„ูŠ
472
00:43:40,540 --> 00:43:46,660
ุจุชุชุญุฑูƒุŒ ุฅุฐุง ู‡ุฐุง ุงู„ limit ุฅูŠุด ู‡ูŠุณุงูˆูŠุŸ ุจู†ูุณ ุงู„ุณุจุจ ุฃูˆ
473
00:43:46,660 --> 00:43:52,940
ู„ู†ูุณ ุงู„ุณุจุจ limitG of Alpha ู„ู…ุง Alpha ุชุฑูˆุญ ู„ู„ A ู…ู†
474
00:43:52,940 --> 00:43:59,680
ุงู„ูŠู…ูŠู† ุจุฑุถู‡ ู…ุด ู‡ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุงู„ุขู† ุจุฑุฌุน ู„ู‡ุฐู‡ ุจุฑุฌุน
475
00:43:59,680 --> 00:44:09,060
ู„ู‡ุฐู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ุญุตู„ุชู‡ ูƒู„ู‡ ุนู„ู‰ ุจุนุถู‡ ู„ูƒู„ ูŠ
476
00:44:09,060 --> 00:44:17,130
ุฃูƒุจุฑ ู…ู† ุตูุฑ ู…ุงุดูŠ ุงู„ุญุงู„ ู„ gate Delta ุจุญูŠุซ ุฃู†ู‡ ุงู„ Alpha
477
00:44:17,130 --> 00:44:20,050
ูˆ beta ุจุดูƒู„ ู‡ุฐุง ุฃูƒุจุฑ ู…ู† a ูˆ ุฃู‚ู„ ุฒูŠ ุงู„ Delta
478
00:44:20,050 --> 00:44:24,570
ุณูŠุจูƒ ู…ู† ุงู„ L Alpha ุฎู„ุงุต ุฑุฏูŠุชู‡ุง ุฃู†ุง beta ุฃูƒุจุฑ ู…ู† a ูˆ
479
00:44:24,570 --> 00:44:29,170
ุฃุตุบุฑ ู…ู† a ุฒูŠ ุงู„ Delta ุทู„ุน ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ
480
00:44:29,170 --> 00:44:33,170
ู…ู† L ุฒูŠ ุงู„ ุฅุจุณู„ูˆู† ูˆ ุฃูƒุจุฑ ู…ู† L ู†ุงู‚ุต ุฅุจุณู„ูˆู† ู…ุงุดูŠุŸ
481
00:44:33,170 --> 00:44:37,300
ุงู„ุขู† ุฑุฏูŠุช ูˆ ุฃุฎุฏุชู‡ ู…ู† ุงู„ limit ุงู„ุขู† ุจุฏูŠ ุฃุฎุฏ ุงู„
482
00:44:37,300 --> 00:44:40,940
limit ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูƒู„ู‡ ู„ู…ุง ุงู„ alpha ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„
483
00:44:40,940 --> 00:44:45,240
a ู…ู† ุงู„ูŠู…ูŠู† ุงู„ุขู† ู„ู…ุง ุฃุฎุฏ ุงู„ limit ู„ู‡ุฐุง ุฒูŠ ู…ุง ู‚ู„ุช
484
00:44:45,240 --> 00:44:48,500
ุงู„ beta ู…ุงู„ู‡ุงุด ุนู„ุงู‚ุฉ ุจุงู„ alpha ุงู„ beta ุซุงุจุชุฉ
485
00:44:48,500 --> 00:44:50,920
ุจุงู„ู†ุณุจุฉ ู„ู„ alpha ูุงู„ alpha ุชุฑูˆุญ ู„ู„ a ู…ู† ุงู„ูŠู…ูŠู† ุฒูŠ
486
00:44:50,920 --> 00:44:55,100
ู…ุง ุจุฏู‡ุง ู„ู† ุชุชุฃุซุฑ beta ูุจูŠุตูŠุฑ limit ุงู„ู„ูŠ ููˆู‚ ุนู„ู‰
487
00:44:55,100 --> 00:44:59,520
limit ุงู„ู„ูŠ ุชุญุช ู‡ุฐุง ุซุงุจุช ูˆ ู‡ุฐุง ุซุงุจุช ูˆ ู‡ุฐุง limit ู‡ูˆ
488
00:44:59,520 --> 00:45:04,300
ุงู„ู„ูŠ ู‡ูˆ ุตูุฑ ูˆ ู‡ุฐุง limit ู‡ูˆ ุตูุฑ ูˆ ู‡ุฐูˆู„ ุฃุนุฏุงุฏ ุฅุฐุง
489
00:45:04,300 --> 00:45:11,220
ุฃุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุนู†ุฏูŠ take the limit ุจูŠุตูŠุฑ ุนู†ุฏูŠ L
490
00:45:11,220 --> 00:45:18,100
ู†ุงู‚ุต Epsilon ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ F of Beta ุนู„ู‰ G
491
00:45:18,100 --> 00:45:23,660
of Beta ุฃุตุบุฑ ู…ู† L ุฒุงุฆุฏ Epsilon ู…ู† ูˆูŠู† ุญุตู„ุชู‡ ู‡ุฐุงุŸ
492
00:45:23,660 --> 00:45:29,160
when I take the limit of this inequality as Alpha
493
00:45:29,160 --> 00:45:37,460
goes to A from right ูˆุงุถุญุŸ ู‡ุฐุง ุญุตู„ุช ุนู„ูŠู‡ ู‡ุฐุง ุนุฑูุช
494
00:45:37,460 --> 00:45:40,600
ุซุงู†ูˆูŠุฉ ู‡ุฐุง ุญุตู„ุช ุนู„ูŠู‡ ู…ู† ูˆูŠู† ุฃู† ุฃุฎุฏุช ุงู„ limit
495
00:45:40,600 --> 00:45:44,660
ู„ู„ุฌู‡ุงุช ุงู„ุชู„ุงุชุฉ as Alpha ุชุฑูˆุญ ู„ู„ A ู…ู† ุงู„ูŠู…ูŠู†
496
00:45:44,660 --> 00:45:48,780
ูˆุงุณุชุฎุฏู…ุช ู‡ุฐู‡ ุงู„ุญู‚ูŠู‚ุฉ ุฃู† ู‡ุฐุง ุตูุฑ ูˆ ู‡ุฐุง ุตูุฑ ุตุงุฑ ู‡ุฐุง
497
00:45:48,780 --> 00:45:53,360
ุงู„ู…ู‚ุฏุงุฑ ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจูŠู† ู‡ุฐุง ูˆ ู‡ุฐุง ุฅุฐู† ุงู„ู„ูŠ ุญุตู„ุช
498
00:45:53,360 --> 00:46:02,380
ุนู„ูŠู‡ ุงู„ุขู† ู‡ูˆ ู…ุง ูŠู„ูŠู‡ ู„ูƒู„ epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ ู„ุฌู‡ุฉ
499
00:46:02,380 --> 00:46:07,610
Delta ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ such that ู‡ุฐู‡ beta ูƒุงู†ุช
500
00:46:07,610 --> 00:46:14,650
arbitrary ุจูŠู† a ูˆ ุจูŠู† ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ such that if
501
00:46:14,650 --> 00:46:26,150
beta ุจูŠู† ุงู„ a ูˆ ุงู„ a ุฒุงุฆุฏ delta we have then ุฅูŠุด
502
00:46:26,150 --> 00:46:31,990
ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ f of beta ุนู„ู‰ f of alpha
503
00:46:33,100 --> 00:46:38,720
ุตุงุฑุช ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ L ุฒุงูŠุฏ ุฅุจุณู„ูˆู† ูˆ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
504
00:46:38,720 --> 00:46:47,620
ุฅุจุณู„ูˆู† ู†ุงู‚ุต L ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ IE F of Beta ุนู„ู‰ F of
505
00:46:47,620 --> 00:46:53,340
Alpha ู†ุงู‚ุต L absolute value ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅุจุณู„ูˆู†
506
00:46:53,340 --> 00:47:02,280
ูˆ ู‡ุฐุง ู‡ุฐุง this means that hence limit
507
00:47:03,350 --> 00:47:13,590
f of beta ุนู„ู‰ f of alpha as ุงู„ู„ูŠ ู‡ูˆ limit of ูุฏูŠ g
508
00:47:13,590 --> 00:47:23,970
ู…ุงู„ูƒู… ูุฏูŠ g ุจุณุงูƒุชูŠู† g of beta ูุฏูŠ g of beta limit
509
00:47:23,970 --> 00:47:28,270
of beta ุนู„ู‰ g of beta ู…ุธุจูˆุทุŸ
510
00:47:29,140 --> 00:47:33,140
as ุงู„ู„ูŠ ู‡ูˆ ุทุจุนู‹ุง ุงู„ุขู† ุจูŠุช ุฅูŠู‡ ุดู…ุงู„ู‡ุง ู„ูƒู„ ุจูŠุชู‡ุง
511
00:47:33,140 --> 00:47:37,620
ูŠุนู†ูŠ ุจูŠุชู‡ุง ูˆูŠู† ุฑุงุญุชุŸ ุนู„ู‰ ุงู„ูŠู…ูŠู† ุงู„ูŠู…ูŠู† ู‡ุงู† ู„ูƒู„ ุจูŠุชู‡ุง
512
00:47:37,620 --> 00:47:49,320
ูˆูŠู†ุŸ ููŠ ุงู„ุฌูˆุงุฑ ู‡ุฐุง ุงู„ุขู† ุจูŠุณุงูˆูŠ ุงู„ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู…ุด
513
00:47:49,320 --> 00:47:53,440
ุนุงุฌุจูƒ ุจูŠุชูƒ ุชุจู‚ู‰ ุชูƒุณุฑ ุฃูŠ ุณุคุงู„
514
00:47:56,950 --> 00:48:01,030
ุจุชุตูˆุฑ ู‡ูŠูƒ ุงู„ู…ุธู‡ุฑูŠุฉ ูˆุงุถุญุฉ ุชู…ุงู…ู‹ุง ู‡ูŠ ุชู„ุช ุฎุทูˆุงุช ููŠ
515
00:48:01,030 --> 00:48:05,530
ุงู„ูˆุงู‚ุน ุชู„ุช ุฎุทูˆุงุช ู…ูŠู† ู‡ู…ุงุŸ ู‡ูˆ ุทุจุนู‹ุง ููŠ ุงู„ูƒุชุงุจ ูŠุนู†ูŠ ู„ูˆ
516
00:48:05,530 --> 00:48:12,190
ู„ุงุญุธุช ู‡ุชู„ุงู‚ูŠ ูŠุนู†ูŠ ุฃู†ู‡ ุจุฏู‡ุง ุจุณ ุชุฑุชูŠุจ ุงู„ุขู† ู„ุฃ ุจุฏู‡ุง
517
00:48:12,190 --> 00:48:19,150
ุชุฑุชูŠุจ ุทู„ุน ุนู„ูŠู‡ุง ุงู„ุขู† ุนู†ุฏูƒ ู‡ุฐุง ุงู„ุขู† ุงุณุชุฎุฏู…ุช ุฃู†ุง ู‡ุฐุง
518
00:48:19,150 --> 00:48:23,370
ููŠ ุงู„ุฃูˆู„ ุจุงู„ุนู…ุฏุงู† ูˆุงุณุชุฎุฏู… ู‡ุฐุง ุงุณุชุฎุฏู…ุช ู‡ุฐุง ุนุดุงู†
519
00:48:23,370 --> 00:48:27,150
ุฃู‚ูˆู„ ู„ูƒ ู‡ุฐู‡ ุงู„ inequality ุตุญูŠุญ ุนู„ู‰ ูƒู„ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ู„ุฃู†
520
00:48:27,150 --> 00:48:33,170
ู„ุฌูŠุช U ู„ุฃู† ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง U ุฃู†ุง ู„ุฌูŠุชู‡ุง ู„ุฌูŠุช ุงู„ U ูˆ
521
00:48:33,170 --> 00:48:36,070
ุฃุฎุฏุช ุงู„ูุชุฑุฉ ู‡ู†ุง ุนุดุงู† ุฃู‚ูˆู„ ู„ูƒ ุงู„ U ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ููŠ
522
00:48:36,070 --> 00:48:41,570
ุฏุงุฎู„ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุงู„ุญุฏูŠุซ ู‡ุฐู‡ ุฌุงูŠุจ ุนู† ู‡ุฐู‡ ุจุนู…ู„
523
00:48:41,570 --> 00:48:45,750
confusion ุนู†ุฏ ุงู„ุทุงู„ุจ ู„ุฃู† ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ู…ู† ู‚ุงู„ ุฅู†ู‡
524
00:48:45,750 --> 00:48:49,970
ู‡ู†ุง ู…ูˆุฌูˆุฏุฉ ู…ุง ู‡ูŠ ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ู‡ู†ุง ูˆูŠู† ู„ุฌูŠุชู‡ุงุŸ ุจูŠู† A
525
00:48:49,970 --> 00:48:56,050
ูˆ B ุจูŠู† A ูˆ B ุฃูˆ ุจูŠู† Alpha ูˆ Beta ูŠุนู†ูŠ ุจุฏู‡ุง ูŠุตูŠุฑ
526
00:48:56,050 --> 00:49:05,880
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ F prime ุงู„ F prime ุนู†ุฏูŠ ุงู„ limit
527
00:49:05,880 --> 00:49:11,140
.. ุงู„ limit ู„ู„ .. ุฎู„ูŠู†ูŠ ุฃูƒุชุจู‡ุง ูŠุง ุดูŠุฎ ู„ูŠุดุŸ ู‡ุง ..
528
00:49:11,140 --> 00:49:16,120
ู‡ุฐุง ุจูŠุณุงูˆูŠ ุงู„ .. ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุดุŸ ู…ุง ู„ุฃ ุจุฃุฎุฐ ุงู„
529
00:49:16,120 --> 00:49:20,740
infinity ุจุทู„ุน ุญุฏ ุจุฑุถู‡ ุฅูŠุดุŸ infinity ูŠุนู†ูŠ ุงู„ุญุงู„ุฉ
530
00:49:20,740 --> 00:49:26,250
ุงู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ F ุจุณุงูˆุฉ infinity ู‡ูŠูƒูˆู† ุงู„ limit ู„ู„
531
00:49:26,250 --> 00:49:33,570
F ุนู„ู‰ G ุดู…ุงู„ู‡ุง ุจูŠุณุงูˆูŠ infinity ุงู„ุขู† ุจุฏู‡ุง ูŠุตูŠุฑ ุนู†ุฏู‡
532
00:49:33,570 --> 00:49:38,750
ุจุฏู„ ู…ุง ุฃู‚ูˆู„ limit F prime ุนู„ู‰ G prime ุจูŠุณุงูˆูŠ L ุจุฏู‡ุง
533
00:49:38,750 --> 00:49:43,310
ูŠุตูŠุฑ ุฃุดู‡ุฑ ุจูŠุณุงูˆูŠ infinity ูƒูŠู ุจู†ุนุจุฑ ุนู„ู‰ ุฅู†ู‡ ุงู„ุฑู‚ู…
534
00:49:43,310 --> 00:49:47,190
ูŠุฑูˆุญ ู„ู…ุง ู„ู†ู‡ุงูŠุฉ ุงู„ limit ุฃู†ู‡ ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุตุฑู†ุง
535
00:49:47,190 --> 00:49:50,250
ู…ุชุนุงุฑููŠู† for every ุฅุจุณุท ุฅู†ู‡ ูƒุงู†ุช ุนุจุงุฑุฉ ุนู† ุฅูŠุดุŸ ุตุบูŠุฑ
536
00:49:50,250 --> 00:49:55,190
for every K Element in R ุทุจุนู‹ุง ู„ูˆ ุฃุฎุฏุช K positive
537
00:49:55,190 --> 00:49:58,050
ุจุฑุถู‡ ุจู†ูุนู„ู‡ ู„ุฅุฐุง .. ุฅุฐุง ุจูŠูƒูˆู† ุฃูƒุจุฑ ู…ู† ุงู„ positive
538
00:49:58,050 --> 00:50:01,170
ุฃูƒูŠุฏ ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ negative for every K
539
00:50:01,170 --> 00:50:05,450
element in R there exists delta such that ู„ูƒู„ X ููŠ
540
00:50:05,450 --> 00:50:12,970
ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุจูŠุทู„ุน ุงู„ู„ูŠ ู‡ูˆ F prime of X ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง
541
00:50:12,970 --> 00:50:16,630
.. ุจู‚ู‰ ุงู„ู„ูŠ ุจู…ุณุญู‡ ู‡ุฐุง ุจู…ุณุญ ู…ู† ุงู„ุชุนุฑูŠู ุฐุงูƒ ู„ู„ุชุนุฑูŠู
542
00:50:16,630 --> 00:50:20,920
limit F prime ุนู„ู‰ G prime ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ู…ุง ู„ู„ู‡ุงูŠ ุจู…ุง
543
00:50:20,920 --> 00:50:23,800
ุฃู† ู‡ุฐุง ุจูŠุณุงูˆูŠ ู…ุง ู„ู†ู‡ุงูŠุฉ ุฃูŠุถู‹ุง ู„ุฃ ูƒู„ K ุงู„ู…ุชู†ุงุฑุฉ ุจูŠู† X
544
00:50:23,800 --> 00:50:28,200
ุฒูŠ ุงู„ุฒู„ุชุฉ such that ู„ู…ุง ุชูƒูˆู† X ูŠุนู†ูŠ ุจูŠู† ุงู„ A ูˆ ุจูŠู†
545
00:50:28,200 --> 00:50:31,060
Z ุฒูŠ ุงู„ุฏู„ุชุฉ ูŠุนู†ูŠ ุฑูˆุญุช ููŠ ุงู„ A ู…ู† ุงู„ูŠู…ูŠู† then F
546
00:50:31,060 --> 00:50:35,800
ุจุฑุงูŠู… ุนู„ู‰ D ุจุฑุงูŠู… ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† K ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ูˆ
547
00:50:35,800 --> 00:50:39,540
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ ุนู†ุฏูŠ ูˆ ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ูƒู„ุงู…
548
00:50:39,540 --> 00:50:46,340
ุดู…ุงู„ู‡ ู†ูุณ ุงู„ุดูŠุก ู…ุชุญู‚ู‚ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุจุฃุณุชุจุฏู„ ู‡ุฐุง ู‡ุฐุง
549
00:50:46,340 --> 00:50:50,270
ู…ุงููŠุด ุฏุงุนูŠ ู„ู‡ ุจูŠุตูŠุฑ ุงู„ุชูุงุตูŠู„ ู‡ู†ุง ูˆ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ุฐุง
550
00:50:50,270 --> 00:50:55,110
ู„ุฌูŠุชู‡ ุฅุฐุง from ูˆุงุญุฏ ุนู†ุฏ ุงุชู†ูŠู† we have ุงู„ู„ูŠ ู‡ูˆ
551
00:50:55,110 --> 00:51:01,370
ู†ุนู…ู„ู‡ุง ู…ุน ุจุนุถ ุจุฃุณุชุจุฏู„ ู‡ุฐุง ุจุฃุญุทู‡ ู‡ุงู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ f
552
00:51:01,370 --> 00:51:11,330
prime f of beta ู†ุงู‚ุต f of alpha ุนู„ู‰ g of beta ู†ุงู‚ุต
553
00:51:11,330 --> 00:51:17,220
g of alpha ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† K ู…ุงุดูŠ ุงู„ุญุงู„ ูˆู†ูุณ ุงู„ุณุจุจ
554
00:51:17,220 --> 00:51:21,260
ุงู„ุฃูˆู„ุงู†ูŠ ุงู„ alpha ุงู„ู„ูŠ ู‡ูˆ limit ู‡ุฐู‡ ุตูุฑ ูˆ limit
555
00:51:21,260 --> 00:51:26,260
ู‡ุฐู‡ ุตูุฑ ุงู„ู…ุนุทูŠู„ุฉ ู‡ูŠ ู‡ูˆ ุจูŠุตูŠุฑ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ู„ู…ุง ุงู„
556
00:51:26,260 --> 00:51:28,700
alpha ุชุฑูˆุญ ู„ู„ beta ูุจูŠุตูŠุฑ ุนู†ุฏ f ููŠ beta ูˆ d ููŠ
557
00:51:28,700 --> 00:51:33,060
beta ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† K ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู„ูƒู„ K element
558
00:51:33,060 --> 00:51:38,360
in R ู„ุฌู‡ุฉ Delta ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง ุชูƒูˆู† Beta ุจูŠู† ุงู„ A ูˆ
559
00:51:38,360 --> 00:51:43,660
A ุฒุงุฆุฏ Delta ุญุตู„ุช ุนู„ู‰ ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† K ูˆู‡ุฐุง
560
00:51:43,660 --> 00:51:50,080
ุงู„ู„ูŠ ู‡ูˆ ุฅูŠู‡ ุดู…ุงู„ู‡ุŸ ู‡ูˆ ุชุนุฑูŠู limit F of Beta ุนู„ู‰ G
561
00:51:50,080 --> 00:51:58,480
of Beta as Beta ุฑูˆุญ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ุณูˆู‰ ู…ู„ุง ู†ู‡ุงูŠุฉ
562
00:51:58,480 --> 00:52:01,440
ูˆู„ูˆ ุจุฏู†ุง ุณุงู„ุจ ู…ู„ุง ู†ู‡ุงูŠุฉ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุฏู‡ ุจุชู‚ูˆู„ for
563
00:52:01,440 --> 00:52:07,660
every K K ุณุงู„ู…ุฉ ุจูŠุตูŠุฑ ุฃุตุบุฑ ูˆู†ูุณ ุงู„ูƒู„ุงู…
564
00:52:07,660 --> 00:52:13,110
examples .. ู†ุดูˆู ุงู„ู€ examples ุงู„ู„ูŠ ุนู†ุฏู†ุง
565
00:52:13,110 --> 00:52:20,890
ู†ูŠุฌูŠ ู„ู„ู€ examples ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ุฃูˆู„ู‰ ูŠุนู†ูŠ limit
566
00:52:22,440 --> 00:52:28,260
Sin X ุนู„ู‰ ุฌุฏุฑ X ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู†ุŒ
567
00:52:28,260 --> 00:52:33,740
ู„ูŠุณ ุจุณู‡ู„ุŒ ุฏุนูˆู†ุง ู†ุดุฑุญ ุนู† ุงู„ู€ ุงู„ูˆุญุด ูˆุจุงู„ูƒุงู„ูƒูˆู„ุณ ู‡ุฐู‡ ู„ุฃู†
568
00:52:33,740 --> 00:52:36,820
limit Sin X ุนู„ู‰ ุฌุฏุฑ X ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ู…ู† ูˆูŠู†ุŸ ู…ู†
569
00:52:36,820 --> 00:52:40,620
ุงู„ูŠู…ูŠู†ุŒ ุงู„ุขู† ุงู„ู€ limit ุงู„ู„ูŠ ููˆู‚ ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ู…ู†
570
00:52:40,620 --> 00:52:43,920
ุงู„ูŠู…ูŠู†ุŒ ุตูุฑ ูˆ ุงู„ู„ูŠ ุชุญุช ุตูุฑุŒ ุฅุฐุง ุตุงุฑ ุนุจุงุฑุฉ ุนู† 0 ุนู„ู‰
571
00:52:43,920 --> 00:52:48,020
0 ูˆูƒู„ ุฃู…ูˆุฑู‡ุง ุฅูŠุด ู…ุง ู„ู‡ุง ู…ุชุญู‚ู‚ุฉ ุงู„ู€ differential
572
00:52:48,020 --> 00:52:51,190
ุงู„ู€ continuous ูˆ ู‡ูˆ ูˆ ู‡ูˆ ูˆ ุงู„ุฃุฎุฑู‰ ูˆ ุงู„ุฃุฎุฑู‰ ุฅุฐุง ุจู†ูุถู„
573
00:52:51,190 --> 00:52:53,330
ุงู„ู„ูŠ ููˆู‚ ูˆ ุจู†ูุถู„ ุงู„ู„ูŠ ุชุญุช ูุถู„ู†ุง ุงู„ู„ูŠ ููˆู‚ ูˆ ุทู„ุนู†ูŠ
574
00:52:53,330 --> 00:52:58,430
cos X ูˆ ุงู„ู„ูŠ ุชุญุช 1 ุนู„ู‰ 2 ููŠ ุฌุฏุฑ ุงู„ู€ X ุงู„ุขู† ุงู„ู„ูŠ ..
575
00:52:58,430 --> 00:53:00,150
ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
576
00:53:00,150 --> 00:53:00,750
ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
577
00:53:00,750 --> 00:53:01,710
ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
578
00:53:01,710 --> 00:53:01,750
ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
579
00:53:01,750 --> 00:53:01,830
ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
580
00:53:01,830 --> 00:53:01,850
ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
581
00:53:01,850 --> 00:53:02,510
ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
582
00:53:02,510 --> 00:53:09,470
ุงู„ู„ูŠ .. ุงู„ู„ูŠ ..
583
00:53:09,470 --> 00:53:10,410
ุงู„ู„ูŠ ..
584
00:53:15,260 --> 00:53:20,220
ุงู„ุขู† ุงู„ู„ูŠ ุจุนุฏู‡ุง 1-sin x ุนู„ู‰ x ุชุฑุจูŠุน ู„ู…ุง x ุชุฑูˆุญ
585
00:53:20,220 --> 00:53:23,520
ู„ู…ูŠู† ู„ุณู‡ ููŠ ุฑุฌูˆู„ู†ุง ุงู„ู†ุธุฑูŠุฉ ุตุญูŠุญุฉ ุจุฑุถู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู„ูŠ
586
00:53:23,520 --> 00:53:27,900
.. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ุจุฏู†ุง ู†ุฑูˆุญู„ู‡ุง ุฌูˆุง ู†ู‚ุทุฉ interior ุฃูˆ
587
00:53:27,900 --> 00:53:30,700
ุนู„ู‰ ุงู„ู€ end points ูƒู„ู‡ุง ุตุญูŠุญุฉ ูˆุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุงู„ุจุฑู‡ุงู†
588
00:53:30,700 --> 00:53:34,700
ุฒูŠ ู…ุง ุจุฑู‡ู†ู†ุง ุนู† ุงู„ูŠู…ูŠู† ุจู†ุจุฑู‡ู† ููŠ ุงู„ูˆุณุท ูุจู†ุงุฎุฏ ุจุฏู„
589
00:53:34,700 --> 00:53:37,700
ู…ุง ู‡ูˆ ุงู„ุฌูˆุงุฑ ู…ู† a ู„ุนู†ุฏ a ุฒุงุฆุฏ delta ุฅุฐุง ูƒุงู†ุช ุฌูˆุง
590
00:53:37,700 --> 00:53:40,640
ู…ู† a ู†ุงู‚ุต delta ู„ุนู†ุฏ a ุฒุงุฆุฏ delta ูˆุฏู‡ ูƒุงู† ุนู„ู‰
591
00:53:40,640 --> 00:53:47,360
ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† a ู†ุงู‚ุต delta ู„ุนู†ุฏ ุงู„ู€ a ูุงู‡ู…ูŠู†
592
00:53:47,360 --> 00:53:51,060
ุนู„ูŠู‡ุง ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจุฑุถู‡ ุนุจุงุฑุฉ ุนู† ู„ูˆ ุฃุฎุฏู†ุง limit ู„ู„ูŠ
593
00:53:51,060 --> 00:53:54,780
ููˆู‚ ุตูุฑ ูˆ limit ู„ู„ูŠ ุชุญุช ุตูุฑ ุฅู„ู‰ ุฃู† ูุถู„ู†ุง ุงู„ู„ูŠ ููˆู‚
594
00:53:54,780 --> 00:53:58,940
ูˆ ูุถู„ู†ุง ุงู„ู„ูŠ ุชุญุช ุทุงู„ุน ุนู†ุฏูŠ sin x ุนู„ู‰ 2x ุฅู„ู‰ ุฃู† ุทู„ุน
595
00:53:58,940 --> 00:54:04,360
ุนู†ุฏูŠ 0 ุนู„ู‰ 0 ูƒู…ุงู† ู…ุฑุฉ ูˆ ู…ุชุญู‚ู‚ ูƒู„ ุฃู…ูˆุฑู‡ุง ุฅุฐุง ุจู†ุดุชู‚ู„
596
00:54:04,360 --> 00:54:07,520
ูƒู…ุงู† ู…ุฑุฉ ุจูŠุตูŠุฑ cosine x ุนู„ู‰ 2 ูˆ ูŠุณุงูˆูŠ ู†ุต ูˆ ู‡ูƒุฐุง
597
00:54:07,520 --> 00:54:09,180
ุงู„ู„ูŠ ุจุนุฏู‡ุง
598
00:54:11,950 --> 00:54:16,150
limit e to the x ู†ู‚ุต ูˆุงุญุฏ ุนู„ู‰ x ู„ู…ุง x ุชุฑูˆุญ ู„ู…ูŠู†
599
00:54:16,150 --> 00:54:20,730
ู„ู„ุตูุฑ ุจุฑุถู‡ ู†ูุณ ุงู„ุงุดูŠ ู‡ุฐูŠ ุจูŠุตูŠุฑ ุตูุฑ ุนู„ู‰ ุตูุฑ ู„ู€ limit
600
00:54:20,730 --> 00:54:24,750
ุงู„ุฃูˆู„ู‰ ุจู†ุดุชู‚ ุฃู† ุชุทู„ุน ุนู†ุฏูŠ ูˆุงุญุฏ
601
00:54:28,600 --> 00:54:33,500
ุงู„ุขู† ุงู„ุฃุฎูŠุฑุฉ ู†ูุณ ุงู„ุดูŠุก ู„ุฅู† ุงู„ู€ X ุนู„ู‰ X minus ูˆุงุญุฏ
602
00:54:33,500 --> 00:54:36,560
ุจุฑุถู‡ ู†ูุณ ุงู„ุดูŠุก Zero ุน Zero ุจูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
603
00:54:36,560 --> 00:54:39,240
ุจุงู„ูุงุถู„ ู‡ุฐูŠ ุจุชุทู„ุน ูˆุงุญุฏ ุนู„ู‰ X ุจุงู„ูุงุถู„ ู‡ุฐูŠ ูˆุงุญุฏ
604
00:54:39,240 --> 00:54:44,220
ุจูŠุตูŠุฑ ุงู„ุขู† ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ูˆุงุญุฏ ุจูŠุณุงูˆูŠ ุงู„ูˆุงุญุฏ ุฃุทู„ุน
605
00:54:44,220 --> 00:54:48,920
ู„ููˆู‚ ุจูŠูƒูˆู† ูˆุตู„ู†ุง ุงุญู†ุง ุนู†ุฏ ู…ูŠู† ุนู†ุฏ ุขุฎุฑ ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
606
00:54:48,920 --> 00:54:56,000
ู‡ูŠ Lobitals Rule ุงู„ู„ูŠ ู‡ูŠ ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุฅู†ู‘ู‡ุง ุชุทู„ุน
607
00:54:56,000 --> 00:54:59,960
ุนู†ุฏูŠ infinity ุงูˆ ู†ุงู‚ุต infinity ุงู„ู€ limit ูŠุนู†ูŠ ุงู„ู€
608
00:54:59,960 --> 00:55:03,280
indeterminate form ุงู„ู„ูŠ ู‡ูˆ infinity ุนู„ู‰ infinity
609
00:55:03,280 --> 00:55:07,080
ุงูˆ ู†ุงู‚ุต infinity ุนู„ู‰ infinity ุจุฑุถู‡ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุฅู†
610
00:55:07,080 --> 00:55:07,620
ุดุงุก ุงู„ู„ู‡