|
1 |
|
00:00:04,910 --> 00:00:07,650 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุญู
ุฏ ููู ุฑุจ ุงูุนุงูู
ูู |
|
|
|
2 |
|
00:00:07,650 --> 00:00:10,710 |
|
ูุงูุตูุงุฉ ูุงูุณูุงู
ุนูู ุณูุฏ ุงูู
ุณุงููู ุณูุฏูุง ู
ุญู
ุฏ ุนูู |
|
|
|
3 |
|
00:00:10,710 --> 00:00:15,510 |
|
ุขูู ูุตุญุจู ุฃุฌู
ุนูู ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุฑูู
ูุงุญุฏ ูุนุดุฑูู |
|
|
|
4 |
|
00:00:15,510 --> 00:00:19,630 |
|
ูู ู
ุณุงู ุชุญููู ุญูููุฉ ููู ูุทูุงุจ ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ |
|
|
|
5 |
|
00:00:19,630 --> 00:00:26,460 |
|
ุงูุฅุณูุงู
ูุฉ ูุณู
ุงูุฑูุงุถูุงุช ูู ูููุฉ ุงูุนูู
ูููู
ู ุงูุญุฏูุซ |
|
|
|
6 |
|
00:00:26,460 --> 00:00:32,660 |
|
ุนู ุงููู ูู ุงูู Sequence of Functions ุฎูุตูุง ู
ู |
|
|
|
7 |
|
00:00:32,660 --> 00:00:36,180 |
|
ุณููุดู ุงูู Pointwise ุฃู ุงูู Uniform Convergence |
|
|
|
8 |
|
00:00:36,180 --> 00:00:40,340 |
|
ุงูุขู ุจุฏูุง ูุดูู ุชุฃุซูุฑ ุงูู Pointwise ู ุงูู Uniform |
|
|
|
9 |
|
00:00:40,340 --> 00:00:44,700 |
|
Convergence ุนูู ุงููู ูู ุจุนุถ ุงูู Sequence of |
|
|
|
10 |
|
00:00:44,700 --> 00:00:49,040 |
|
Functions ุฅูุด ุจุชุณูู ูููุงุงูุงู ุชุญุช ุนููุงู 82 |
|
|
|
11 |
|
00:00:49,040 --> 00:00:53,900 |
|
interchange of limits ููุฌู ูุดูู ุงููู ูู ุงูู |
|
|
|
12 |
|
00:00:53,900 --> 00:00:57,160 |
|
sequence of continuous functions ูู ูุงูุช ุงููู ูู |
|
|
|
13 |
|
00:00:57,160 --> 00:01:01,620 |
|
pointwise convergence ูู ุตุญ ุดุฑุท ุงูู ูู ูู
ูู ุจุชุฑูุญ |
|
|
|
14 |
|
00:01:01,620 --> 00:01:04,680 |
|
ูู ุงู pointwise convergence ุงู ูููู continuous ููุง |
|
|
|
15 |
|
00:01:04,680 --> 00:01:09,780 |
|
ุจูุฒู
ูุง ุฏุนู
ุดููุฉ ูุฎูู ุงููู ูู ุจุฏู ุงู pointwise |
|
|
|
16 |
|
00:01:09,780 --> 00:01:13,220 |
|
convergence ูุฎููู uniform ู ุงู uniform ููุฏูุงูู |
|
|
|
17 |
|
00:01:13,220 --> 00:01:16,040 |
|
function ุงููู ุจุชุทูุน ุชุทูุน continuous ููุง ูุฃุ ููุดูู |
|
|
|
18 |
|
00:01:16,040 --> 00:01:19,680 |
|
ุงูููุงู
ูุฐุง ุงูุดุบู ุงูุซุงูู ููุดูู ุฃูู ูู ูุงูุช ุงู |
|
|
|
19 |
|
00:01:19,680 --> 00:01:23,360 |
|
function is integrable ูู ุงู sequence of functions |
|
|
|
20 |
|
00:01:23,360 --> 00:01:27,640 |
|
is integrableุ ูู ุงู limit ุงููู ูู
ุง ูููู ุงููู ูู |
|
|
|
21 |
|
00:01:27,640 --> 00:01:32,080 |
|
ุงู Fn ุจุชุฑูุญ ูู F point twice ุฃู ุงู Fn ุจุชุฑูุญ ูู F |
|
|
|
22 |
|
00:01:32,080 --> 00:01:37,850 |
|
uniform convergenceุูู ูุฐุง ูุงุญุฏ ู
ููู
ุจููุฏูู ุงูู ุงู |
|
|
|
23 |
|
00:01:37,850 --> 00:01:39,850 |
|
integration ูู limit ุจูุณุงูู ุงู limit ูู |
|
|
|
24 |
|
00:01:39,850 --> 00:01:42,730 |
|
integration ูุนูู ุงู limit ุจุชุฏุฎู ุฌูุง ุงู integration |
|
|
|
25 |
|
00:01:42,730 --> 00:01:46,990 |
|
ููุง ูุฃุ ูู ุฏุฎูููุง ูุนูู ุจุงู point wise ุจุญุงูุธ ุนูู |
|
|
|
26 |
|
00:01:46,990 --> 00:01:50,170 |
|
ุงูู
ุณุงูุงุฉ ููุง ูุฃ ุจุงู ุฒู
ู ุงููู ูู ุงู uniform |
|
|
|
27 |
|
00:01:50,170 --> 00:01:54,730 |
|
convergenceุ ููุดููู ูุงูุดุบู ุงูุชุงูุซุฉ ูู ุงูู ูู ูุงู |
|
|
|
28 |
|
00:01:54,730 --> 00:01:59,150 |
|
ูู ุนูุฏู sequence of differentiable functions ูุชุทูุน |
|
|
|
29 |
|
00:01:59,150 --> 00:02:04,040 |
|
ุงู ูู ูู ูุงู ุนูุฏู F unconverged ุฒู ุงู Fููุทูุน ุนูุฏู |
|
|
|
30 |
|
00:02:04,040 --> 00:02:06,460 |
|
ุงููู ูู ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
31 |
|
00:02:06,460 --> 00:02:07,500 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
32 |
|
00:02:07,500 --> 00:02:07,620 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
33 |
|
00:02:07,620 --> 00:02:08,200 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
34 |
|
00:02:08,200 --> 00:02:08,300 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
35 |
|
00:02:08,300 --> 00:02:08,340 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
36 |
|
00:02:08,340 --> 00:02:09,020 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
37 |
|
00:02:09,020 --> 00:02:10,060 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
38 |
|
00:02:10,060 --> 00:02:11,000 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
39 |
|
00:02:11,000 --> 00:02:13,560 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
40 |
|
00:02:13,560 --> 00:02:13,560 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
41 |
|
00:02:13,560 --> 00:02:13,720 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
42 |
|
00:02:13,720 --> 00:02:23,020 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
43 |
|
00:02:28,280 --> 00:02:34,340 |
|
ุงูู
ุซุงู ุงูุฃูู ุงููู ุฃู
ุงู
ูุง ูุงู ูู ุนูุฏู example 821 g |
|
|
|
44 |
|
00:02:34,340 --> 00:02:38,900 |
|
n of x ุจุณุงููุฉ x ุฃูุณ n ูุฐุง ุดููุงูุง ูุง ุฌู
ุงุนุฉ ุนูู |
|
|
|
45 |
|
00:02:38,900 --> 00:02:43,640 |
|
ุงููุชุฑุฉ x 01 is continuous ุฃููุฏ ุงููู ูู ุงู function |
|
|
|
46 |
|
00:02:43,640 --> 00:02:47,540 |
|
ูุฐู g 1 of x ุจุณุงููุฉ x g 2 of x ุจุณุงููุฉ x ุชุฑุจูุน g 3 |
|
|
|
47 |
|
00:02:47,540 --> 00:02:52,110 |
|
of x ุจุณุงููุฉ x ุชูุนูุจ ููู ุนุจุงุฑุฉ ุนู ุฏูุงู ู
ุชุตูุฉุงูุงู |
|
|
|
48 |
|
00:02:52,110 --> 00:02:55,950 |
|
and even continuously differentiable ุจููููู ุฃุตูุง |
|
|
|
49 |
|
00:02:55,950 --> 00:03:00,430 |
|
ููุทูุน ู
ุด ุฏู continuous ูุฃ ู ุงู derivative L ูุชุทูุน |
|
|
|
50 |
|
00:03:00,430 --> 00:03:03,190 |
|
ู
ูุฌูุฏุฉ ู ุงู derivative continuous ูุนูู |
|
|
|
51 |
|
00:03:03,190 --> 00:03:06,510 |
|
continuously differentiable ุจุงูุฑุบู
ู
ู ุฃููุง ุงูููุฉ |
|
|
|
52 |
|
00:03:06,510 --> 00:03:09,650 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงู sequence g of n of x ู
ู ูุงุญูุฉ |
|
|
|
53 |
|
00:03:09,650 --> 00:03:14,220 |
|
ุงููุง continuously differentiableุฅูุง ุฅูู ูู
ุง ุฌููุง |
|
|
|
54 |
|
00:03:14,220 --> 00:03:17,880 |
|
ูุงุฎุฏ limit GN of X as N goes to infinity ุทูุนุช |
|
|
|
55 |
|
00:03:17,880 --> 00:03:21,280 |
|
ุจุชุณุงูู G of X ุงููู ูู 0 X ูู ุงููุชุฑุฉ 01 ู 1 ูู |
|
|
|
56 |
|
00:03:21,280 --> 00:03:25,180 |
|
ุงููุชุฑุฉ X ุงููู ูู ุจุชุณุงูู 1 ูุนูู ุงููู ุทูุนุชููุง ุงู |
|
|
|
57 |
|
00:03:25,180 --> 00:03:31,040 |
|
limit ุฅููุง ุทูุนุชููุง ุฅูุงูุง is not continuousูุนูู |
|
|
|
58 |
|
00:03:31,040 --> 00:03:35,080 |
|
ุจุงูุฑุบู
ุฅู ุงู limit ู
ูุฌูุฏุฉ ุทุจุนุง ูุฐุง pointwise |
|
|
|
59 |
|
00:03:35,080 --> 00:03:38,520 |
|
convergence ุงููู ูู ุงู pointwise convergence ููุง |
|
|
|
60 |
|
00:03:38,520 --> 00:03:44,660 |
|
ุทูุนูู ุงููู ูู ุงู sequence of functions GN limitูุง |
|
|
|
61 |
|
00:03:44,660 --> 00:03:48,820 |
|
ู
ุด continuous ู
ุงูุฏุฑุด ูุทูุน ุงููู ูู continuous |
|
|
|
62 |
|
00:03:48,820 --> 00:03:52,560 |
|
function ูุฐุง ุงู pointwise convergence ุจุงูุฑุบู
ุฅูู |
|
|
|
63 |
|
00:03:52,560 --> 00:03:56,740 |
|
GN of X is ุงููู ูู continuously differentiable |
|
|
|
64 |
|
00:03:56,740 --> 00:04:03,550 |
|
ุงูุขู ูุงุฎุฏ ู
ุซุงู ุขุฎุฑ ุฅุฐุงุฅุฐุง ูุงูุช GN ูู ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
65 |
|
00:04:03,550 --> 00:04:04,930 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
66 |
|
00:04:04,930 --> 00:04:15,930 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
67 |
|
00:04:15,960 --> 00:04:19,840 |
|
ุทูุจ ูุดูู ุงู example ุงููู ุจุนุฏู ุงูุงู ุงู example ุงููู |
|
|
|
68 |
|
00:04:19,840 --> 00:04:25,400 |
|
ุจุนุฏู ุจููู ูู ุงููู ูู let FN be ูุฐู let FN ู
ู 0 |
|
|
|
69 |
|
00:04:25,400 --> 00:04:30,460 |
|
ูุนูุฏ 1 ู
ู 01 ูุนูุฏ R be defined for N ุฃูุจุฑ ุณูุงุก 2 |
|
|
|
70 |
|
00:04:30,460 --> 00:04:37,150 |
|
by ู
ุฑุงูุจูู ุฏุงูุฉ ุชุดูู ูุฐู ุงูุฏุงูุฉุนูุฏู Fn of X ุจุณุงูู |
|
|
|
71 |
|
00:04:37,150 --> 00:04:42,490 |
|
N ุชุฑุจูุน X ุงูู N ูุฐุง ุฏุงูุฉ ุงูู
ุชุบูุฑ X ูุฐู ุงูู Fn ู |
|
|
|
72 |
|
00:04:42,490 --> 00:04:45,030 |
|
ุงูู N ุชุฑุจูุญุฉ ุฏููุฉ ุงููู ููุง ุงููู ุจุฏูู ุนูู ุงููู ูู |
|
|
|
73 |
|
00:04:45,030 --> 00:04:49,810 |
|
ุงูู sequence F1, F2, F3, F4 ุฃู
ุง ุงูุฏุงูุฉ ูู F ู
ููู |
|
|
|
74 |
|
00:04:49,810 --> 00:04:55,280 |
|
ุจุฏูุงูุฉ X ุงูู Fn ุจุฏูุงูุฉ Xุฅุฐุงู ูุฐุง ุนุฏุฏ ูุนูู ูุฐู |
|
|
|
75 |
|
00:04:55,280 --> 00:04:59,280 |
|
Linear ุงูุฏูุฉ N ุชุฑุจูุน X ูู ุงููุชุฑุฉ ู
ู Zero ูุนูุฏ ู
ูู |
|
|
|
76 |
|
00:04:59,280 --> 00:05:03,140 |
|
ูุงุญุฏุฉ ุนูู N ูู ุฌููุง ุฑุณู
ูุงูุง ุงููู ูู N ุชุฑุจูุน ุนูุฏ |
|
|
|
77 |
|
00:05:03,140 --> 00:05:07,620 |
|
ุทุจุนุง ุฏู ุฎุทูุฉ ุจููู ููุทูู ูุฑุณู
ุนุดุงู ูุญุท ุฎุท ุจูููู
ุนูุฏ |
|
|
|
78 |
|
00:05:07,620 --> 00:05:12,900 |
|
X ุจุตูุฑ ุจุชุทูุน ุงููู ูู ุงูุฃููู ุงููู ูู N ุชุฑุจูุน X ุตูุฑ |
|
|
|
79 |
|
00:05:12,900 --> 00:05:16,540 |
|
ุงู X ูุงุญุฏุฉ ุนูู N ุจูุตูุฑ ูุงุญุฏุฉ ุนูู N ูู N ุชุฑุจูุน |
|
|
|
80 |
|
00:05:16,540 --> 00:05:19,640 |
|
ุจุชุทูุน ุงููู ูู ูุงุญุฏุฉ ุนูู N ูู ูุงุญุฏุฉ ุนูู N ุจุชุทูุน |
|
|
|
81 |
|
00:05:19,640 --> 00:05:23,760 |
|
ูุงุญุฏุฉ ุนูู Nุจุชุทูุน ููู
ุฉ as an ุฃุณู an ุชุฑุจูุน ูู ูุงุญุฏุฉ |
|
|
|
82 |
|
00:05:23,760 --> 00:05:30,260 |
|
ุงูุงู ุจุชุทูุน an ุฅุฐุง ูุฐู ุงููู ูู ุงูุฎุท ููู ููุฌุฒุก ุงููู |
|
|
|
83 |
|
00:05:30,260 --> 00:05:33,760 |
|
ูู ุงูุฃููุงูู ุงูุฌุฒุก ุงูุซุงูู ุงููู ูู ุจูุจุฏุฃ ู
ู ุนูุฏ |
|
|
|
84 |
|
00:05:33,760 --> 00:05:36,520 |
|
ูุงุญุฏุฉ ุงูุงู ุนูุฏ ู
ูู ูุงุญุฏุฉ ุงูุงู ุนูุฏ ุงุชููู ุงู ุฎูููุง |
|
|
|
85 |
|
00:05:36,520 --> 00:05:41,150 |
|
ูุฑุณู
ููุฐุง ุจุฑุถู ุงูุด ู
ุนูู ุฏู ุงููู ุฎุทูุฉ ูุฅูู ุงูุด ู
ุงุฎุฏู |
|
|
|
86 |
|
00:05:41,150 --> 00:05:46,190 |
|
ุนุจุงุฑุฉ ุนู ูุงูุต N ุชุฑุจูุน ูู X ูุงูุต 2 ุนูู N ูุฐู ุซุงุจุช ู |
|
|
|
87 |
|
00:05:46,190 --> 00:05:50,190 |
|
ูุฐู ุซุงุจุช ุจุงููุณุจุงูู X ุงูุงู X ูุญููุง ุฅุฐุง ุฏู ุงููู ุฎุทูุฉ |
|
|
|
88 |
|
00:05:50,190 --> 00:05:53,890 |
|
ุจุฑุถู ู ุฏู ุงูุฎุท ุฎูููู ูุงุฎุฏ ุงููู ูู X ุจุชุณุงูู 1 ุนูู N |
|
|
|
89 |
|
00:05:53,890 --> 00:05:58,010 |
|
ุฎุฏ 1 ุนูู N ูุงูุต 2 ุนูู N ุจูุทูุน ูุงูุต 1 ุนูู N ูู ูุงูุต |
|
|
|
90 |
|
00:05:58,010 --> 00:06:01,790 |
|
N ุชุฑุจูุน ุจูุทูุน 1 ุนูู N ูุนูุง 1 ุนูู N ุจูุทูุน 1 ุนูู N ู |
|
|
|
91 |
|
00:06:01,790 --> 00:06:06,150 |
|
N ูุจูุทูุน ู
ููุูุฃู ูุฐุง ุจูุทูุน ูุงุญุฏุฉ ุงูุงู ูู ูุงูุต ุงู |
|
|
|
92 |
|
00:06:06,150 --> 00:06:09,850 |
|
ุชุฑุจูุน ุจุชุทูุน ุงููู ูู ูุงูุต ูุงุญุฏุฉ ุงูุงู ูู ูุงูุต ุงู |
|
|
|
93 |
|
00:06:09,850 --> 00:06:13,990 |
|
ุชุฑุจูุน ุจุชุทูุน ุงููู ูู ุงู ุงู ุฅุฐุง ูุฐู ูุงุญุฏุฉ ุงูุงู ุจุชุทูุน |
|
|
|
94 |
|
00:06:13,990 --> 00:06:17,590 |
|
ุฃููุงุด ุจุงูุณุงูุก ุงููู ุจุนูุฏูุง ุงูููุทุฉ ุงูุฃุฎูุฑุฉ ุงุชููู ุนูู |
|
|
|
95 |
|
00:06:17,590 --> 00:06:20,370 |
|
ุงู ุงุชููู ุนูู ุงููุงูุต ุงุชููู ุนูู ุงูุงู ุณูุฑ ูุฐู ุจูุตูุฑ |
|
|
|
96 |
|
00:06:20,370 --> 00:06:24,480 |
|
ุฃููุงุด ุณูุฑ ุชุฑุฌุน ููู ุนูู ุณูุฑ ูุจุชูุฒู ูู ุงูุดูู ูุฐุงุจุงุฌู |
|
|
|
97 |
|
00:06:24,480 --> 00:06:27,540 |
|
ุงูุฏุงูุฉ ู
ู ุนูุฏ ุงููู ูู ุทุจุนุง ู
ุนุฑู ุนุงูู
ูุง ุนูู ุงููุชุฑุฉ |
|
|
|
98 |
|
00:06:27,540 --> 00:06:31,720 |
|
Zero ู ูุงุญุฏ ูู ู
ู Zero ูุนูุฏู ุงุชููู ุนูู N ุงูุงู N |
|
|
|
99 |
|
00:06:31,720 --> 00:06:34,340 |
|
ุจุชุณุงูู ูุงุญุฏ ุงู ุงุชููู ุงู ุชูุงุชุฉ ุงู ุงุฑุจุน ุงู ุฎู
ุณ ุงู |
|
|
|
100 |
|
00:06:34,340 --> 00:06:37,580 |
|
ุณุชุฉ ูุจุฏููุฉ ูู ุฏุงูุฉ ู
ู ููุง ุจุชุฎุชูู ุนู ุงูุชุงููุฉ ูุนูู |
|
|
|
101 |
|
00:06:37,580 --> 00:06:43,220 |
|
ูุฐู FN in general F ูุงุญุฏ F ุงุชููู F ุชูุงุชุฉ ุจุชูุฌู |
|
|
|
102 |
|
00:06:43,220 --> 00:06:46,360 |
|
ูููู ุงู ุจุชุฑูุญ ูููู ุจุณ ุจููุณ ุงููู ูู ุงูุดูู ุงูุฃู
ุงู
ู |
|
|
|
103 |
|
00:06:46,700 --> 00:06:49,900 |
|
ุฅูุด ุนูุฏู ูู ูุชุฑุฉ ู
ุงุชููู ุนูู ุฃูุง ูุงุญุฏุ ู
ุงุชููู ุนูู |
|
|
|
104 |
|
00:06:49,900 --> 00:06:53,340 |
|
ุฃูุง ูุงุญุฏุ ุงููุชุฑุฉ ูุง ุฏู ู
ุงุฎุฏูู ุงูุฏุงูุฉ ุฅูุด ุจุชุณุงููุ |
|
|
|
105 |
|
00:06:53,340 --> 00:06:57,440 |
|
ุจุชุณุงูู ุฅูุดุ ุณูุฑ ูุงุถุญ ุฅู ุงูุฏุงูุฉ ูู ุงูุฏุงูุฉ ู
ุญุชุฑู
ุฉ |
|
|
|
106 |
|
00:06:57,440 --> 00:07:02,880 |
|
ุฏุงูุฉ is continuousMadame Continuous ุฃููุฏ ุงุดู
ุงููุง |
|
|
|
107 |
|
00:07:02,880 --> 00:07:08,060 |
|
is integrable ุฅุฐุง ุงูุฏูุงู ูุฐูู ุฃู ูุงุญุฏ ู ุฃู ุงุชููู ู |
|
|
|
108 |
|
00:07:08,060 --> 00:07:11,480 |
|
ุฃู ุชูุงุชุฉ ู ุฃู ุฃุฑุจุนุฉ ู ุฃู ุฎู
ุณุฉ ู ุฃู ุณุชุฉ ุฅูู ู
ุง ูุง |
|
|
|
109 |
|
00:07:11,480 --> 00:07:17,380 |
|
ููุงูุฉ ู
ู ุงูุฃูุงูุฒ ุจุชููู ุนุจุงุฑุฉ ุนู .. ุนุจุงุฑุฉ ุนู |
|
|
|
110 |
|
00:07:17,380 --> 00:07:21,600 |
|
integrable ุฃู ุฃู ุงุชููู ู ุทุงูุนIntegrable Functions |
|
|
|
111 |
|
00:07:21,600 --> 00:07:25,760 |
|
ู
ู ุฃู ู ุทุงูุน .. ู
ู ุฃู ูุงุญุฏ ุจูุตูุฑ ูู ุงูู
ุดููุฉ ุทูุจ |
|
|
|
112 |
|
00:07:25,760 --> 00:07:29,520 |
|
Note that Fn of X is continuous ููู ุฃู ุฃูุจุฑ ุณุงููุฉ |
|
|
|
113 |
|
00:07:29,520 --> 00:07:34,180 |
|
ุงุชููู ูุงุฎุฏ ุงูููุฑุฉ ุงุญูุง Hence, Integrable and ุงู |
|
|
|
114 |
|
00:07:34,180 --> 00:07:38,520 |
|
integration ู
ู ุตูุฑ ูุฃู ูุงุญุฏ Fn of X DX ุงูุด ุจูุณุงููุ |
|
|
|
115 |
|
00:07:38,520 --> 00:07:42,060 |
|
ุจูุณุงูู ุงููู ูู ูุงุญุฏ ุจุชุนุฑููุง ุชุญุณุจููุง ูู ู
ุณุงุญุฉ .. |
|
|
|
116 |
|
00:07:42,060 --> 00:07:48,500 |
|
ู
ุณุงุญุฉ ุงูู
ุชูุช ูุฐุง ุงููู ูู ุงุชููู ุนูู ุฃูุงููู ูู ู
ุถุฑูุจ |
|
|
|
117 |
|
00:07:48,500 --> 00:07:54,360 |
|
ูู ู
ูู ูุงู ุจุทูุน ุฌุฏุงุด ุงุชููู ูู ูุต ุจุทูุน ูุงุญุฏ ุนุงุฑู ุงู |
|
|
|
118 |
|
00:07:54,360 --> 00:07:56,880 |
|
ุงููุต ุงููุงุนุฏุฉ ูู ุงูุงุฑุชูุงุน ุฅุฐุง ุงูุฌุฏุงุด ุจุทูุน ุนูุฏู ุงููู |
|
|
|
119 |
|
00:07:56,880 --> 00:08:00,100 |
|
ูู ููู
ุฉ ุงู integration ูุฐุง ุจุณุงูู ูุงุญุฏ ูุฃู ูุฐุง |
|
|
|
120 |
|
00:08:00,100 --> 00:08:04,060 |
|
ุงูู
ูุทูุฉ ุฅูู ุดู
ุงููุง ุณูุฑ ุฅุฐุง ุงููู ูู ููู
ุฉ ุงู |
|
|
|
121 |
|
00:08:04,060 --> 00:08:08,480 |
|
integration ูุฐุง ุจุณุงูู ูุงุญุฏ ูุนูู ุงู function of |
|
|
|
122 |
|
00:08:08,480 --> 00:08:12,980 |
|
ands integrable ูููู
ุฉ ุงููู ูู ุงู integration ุจุณุงูู |
|
|
|
123 |
|
00:08:12,980 --> 00:08:18,850 |
|
ูุงุญุฏ ููู and ุฃูุจุฑ ุฃู ูุณุงูู ุงุชูููุงู ุจูุณุงูู ูุงุญุฏ |
|
|
|
124 |
|
00:08:18,850 --> 00:08:21,490 |
|
ุงุนูุถูุง ูุญุงูู ูุดูู ุงูุด ุงููู ุจูุตูุฑ Note that as n |
|
|
|
125 |
|
00:08:21,490 --> 00:08:25,490 |
|
goes to infinity ุงููู |
|
|
|
126 |
|
00:08:25,490 --> 00:08:31,310 |
|
ูู ุงููุชุฑุงุช ุงููู ุนูููุง ุนุดุงู ููุฑุฌููู
ุฅูุงูุงุทูุจ ูุฐู |
|
|
|
127 |
|
00:08:31,310 --> 00:08:35,230 |
|
ุงูุฏุงูุฉ ู
ุนุฑููุง as n goes to infinity ูุฐู ุงููุชุฑุฉ |
|
|
|
128 |
|
00:08:35,230 --> 00:08:39,050 |
|
ุจุชุตูุฑ ุนุจุงุฑุฉ ุนู ุงููู ูู ุงูููุทุฉ zero ู ูุฐู ุงููุชุฑุฉ |
|
|
|
129 |
|
00:08:39,050 --> 00:08:43,130 |
|
ุจุชุตูุฑ ุงูููุทุฉ zero ู ุงููุชุฑุฉ 2 ุนูู n ุจุชุตูุฑ ุงููู ูู |
|
|
|
130 |
|
00:08:43,130 --> 00:08:48,430 |
|
mean zero ู ุนูุฏ ูุงุญุฏ and so ุงูุฏุงูุฉ ุฅูุด ูุชุตูุฑ limit |
|
|
|
131 |
|
00:08:48,430 --> 00:08:54,410 |
|
fn of x ุจุชุณุงูู f of x ุฅูุด ูุชุณุงูู ูุชุณุงูู zeroูุนูู |
|
|
|
132 |
|
00:08:54,410 --> 00:08:59,450 |
|
ุงูุงู ูู
ุง ุงู ุชุฑูุญ ูู
ุง ูููุงูุฉ ูุฐู ูููุง ุงูุด ู
ุงููุง |
|
|
|
133 |
|
00:08:59,450 --> 00:09:03,870 |
|
ุจุชูุทุจู ุนุงูู
ูู ูุฅู ูู ู
ุง ูุจุฑุช ุงู ุจุชูุฑุฏ ูุฐู ุจุชูุฑุฏ |
|
|
|
134 |
|
00:09:03,870 --> 00:09:07,170 |
|
ูุฐู ุจุชูุฑุฏ ูุฐู ูุฅู as n goes to infinity ูุฐุง ุงูููุงู
|
|
|
|
135 |
|
00:09:07,170 --> 00:09:12,210 |
|
ุฏู ุงููู ูุชูุฑุฏ ู ุชู
ุดู ุนุงูู
ูู ุนูู ุงููู ูู ู
ู ุณูุฑ |
|
|
|
136 |
|
00:09:12,210 --> 00:09:16,250 |
|
ูุนูุฏ ูุงุญุฏ ูุชุธููุง ุงูุด ููู
ุชูุง ููู
ุชูุง ุณูุฑ ูุงูู
ูู ุนููุด |
|
|
|
137 |
|
00:09:16,250 --> 00:09:21,600 |
|
ุจููู ุงูุงู as n goes to infinityูุฐู ุงูุขู ุจุชุจุฏุฃ ุงููู |
|
|
|
138 |
|
00:09:21,600 --> 00:09:26,000 |
|
ูู .. ูุฐู ุจูุตูุฑ ุงูุงู ูุต .. ูุฐู ุงูู
ูุทูุฉ ูููุง .. ุขุณู |
|
|
|
139 |
|
00:09:26,000 --> 00:09:28,040 |
|
.. ูุฐู ุงูู
ูุทูุฉ ูููุง ูุฐุง ุงููู ุจูุชู
ุฏ .. ู
ุด ูุฏููู .. |
|
|
|
140 |
|
00:09:28,040 --> 00:09:31,440 |
|
ูุฐู ุงููู ุจูุชู
ุฏ ุงููู ูู ุงุชููู ุนูู ุงู ุจุชุฌุฑุจูุง ุงู .. |
|
|
|
141 |
|
00:09:31,440 --> 00:09:34,220 |
|
ุจุชุตุบุฑ as and goes to infinity ูุงุญุฏุฉ ุนูู ุงู ุจุชุฌุฑุจูุง |
|
|
|
142 |
|
00:09:34,220 --> 00:09:37,850 |
|
ุงููุฃู as n goes to infinity ุจููุฏูู ุจุฑูุญ ูู
ูู ูู ุฏุง |
|
|
|
143 |
|
00:09:37,850 --> 00:09:42,750 |
|
ุงูุณูุฑ ูุนูู ุจูุตูุฑ ุฏู ููููุง ู
ู ู
ุนุฑูุฉ ู zero function |
|
|
|
144 |
|
00:09:42,750 --> 00:09:46,370 |
|
ูุนูู limit of n of x as n goes to infinity ุจูุณุงูู |
|
|
|
145 |
|
00:09:46,370 --> 00:09:54,030 |
|
ุงููู ูู ุณูุฑ ููู x limit ุงููุชุฑุฉ 01 ู
ุฏุงู
ุณูุฑุฃู ุฅุฐุง |
|
|
|
146 |
|
00:09:54,030 --> 00:09:57,530 |
|
ุตุงุฑ ุนูุฏู ุงููู ูู ูุงุญุธูุง ุงู convergence point wise |
|
|
|
147 |
|
00:09:57,530 --> 00:10:01,350 |
|
convergence ุจุนุชู
ุฏ ุนุงูู
ูุง ุนูู x ูู ูู ุญุงุฌุฉ ุงููู ูู |
|
|
|
148 |
|
00:10:01,350 --> 00:10:05,010 |
|
ุงู integration ู
ู ุณูุฑ ุงููู ุนูุฏู ูุงุญุฏ f of x dx ุฅูุด |
|
|
|
149 |
|
00:10:05,010 --> 00:10:09,630 |
|
ููุณุงููุ ููุณุงูู zero ูุฃู ููู
ุฉ ุงู function ููู ููู |
|
|
|
150 |
|
00:10:09,630 --> 00:10:14,510 |
|
ูุชูุฌู ุนูู ุงููู ูู ุงูุณูุฑ ูุจููู ุงู integration ุงููู |
|
|
|
151 |
|
00:10:14,510 --> 00:10:19,770 |
|
ุจูุณุงูู zero ุงููู ุจุฏู ุฃูุง .. ุงููู ุจุฏู ุฃููู ููุงุญุธ |
|
|
|
152 |
|
00:10:20,580 --> 00:10:27,480 |
|
ุงููู ูุตูุชูู ุงู ุงู integration ู
ู 0 ู 1 ูู F of X |
|
|
|
153 |
|
00:10:27,480 --> 00:10:33,040 |
|
DX ุจูุณุงูู 0 ุฃููุฏ ุจูุณููุด 1 ุงููู ูู ุจูุณุงูู ุงููู ูู |
|
|
|
154 |
|
00:10:33,040 --> 00:10:39,510 |
|
ู
ูู ูุฐุง ุงููุงุญุฏ limit ูู integrationู
ู zero and |
|
|
|
155 |
|
00:10:39,510 --> 00:10:46,170 |
|
ูุงุญุฏ F N of X DX as N goes to infinity ู
ุธุจูุทุ ูุฃู |
|
|
|
156 |
|
00:10:46,170 --> 00:10:49,530 |
|
ุงู integration ูุฐุง ุทูุน ุฏุงูู
ุง ุฅูุด ุญูุณุงููุ ุญูุณุงูู |
|
|
|
157 |
|
00:10:49,530 --> 00:10:54,130 |
|
ูุงุญุฏ ุจุบุถ ุงููุธุฑ ุนู ููู
ุฉ ุงู N ุฅุฐุง ูุฐุง ุงู limit ูู |
|
|
|
158 |
|
00:10:54,130 --> 00:10:59,270 |
|
integration ูุงู ุงููู ุจุชูุตูู ูููุณ ุดุฑุท ูุณุงูู ุฅูุด ุงู |
|
|
|
159 |
|
00:10:59,270 --> 00:11:03,250 |
|
integration ูู limit ุฑุบู
ุฅู ุงู F ุทูุนุช ู
ุงููุง |
|
|
|
160 |
|
00:11:03,250 --> 00:11:09,070 |
|
Integrable ุงู limit ูุนูู ุงู N limitุฃู ุงู of X ูู
ุง |
|
|
|
161 |
|
00:11:09,070 --> 00:11:14,810 |
|
ุงู ุชุฑูุญ ูููุงูุฉ ุงููู ุนูุฏู ุงูุด ุจูุณุงูู F of X ุจุงูุฑุบู
|
|
|
|
162 |
|
00:11:14,810 --> 00:11:19,810 |
|
ู
ู ููู ุงููู ูู ูุฐุง ุงูููุงู
ููู X ููู ู
ูุฌูุฏุฉ ููู X |
|
|
|
163 |
|
00:11:19,810 --> 00:11:25,990 |
|
ู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ 01 ุจุงูุฑุบู
ู
ู ูููุงูุงู ุงูู |
|
|
|
164 |
|
00:11:25,990 --> 00:11:31,790 |
|
integration limit ููู integration ู
ู C1 ูู F of X, |
|
|
|
165 |
|
00:11:32,290 --> 00:11:39,570 |
|
N of X, DX ู
ุง ุณูุงุด ูู integration ู
ู 0 ู1 limit ูู |
|
|
|
166 |
|
00:11:39,570 --> 00:11:45,070 |
|
F, N of Xูุนูู ุงูุด ุงููู ุจูุตุฏู ุงููู ูู ู
ุงูุฏุฑุชุด ุงู |
|
|
|
167 |
|
00:11:45,070 --> 00:11:49,710 |
|
limit ุชุฏุฎู ูุฌูู ุงู integration ูู ุถูุก ุงู pointwise |
|
|
|
168 |
|
00:11:49,710 --> 00:11:53,470 |
|
convergence ููู ุถูุก ุงู ุงู limit ููุณูุง ุทูุนุช |
|
|
|
169 |
|
00:11:53,470 --> 00:11:58,050 |
|
integrable ุงุฐุง ุงูุงู ููุง ุงู pointwise convergence |
|
|
|
170 |
|
00:11:58,050 --> 00:12:02,570 |
|
ูุฏ ูุนุทู ุงูู ุงููู ูู ุงู function ุชููู ุงููู ูู |
|
|
|
171 |
|
00:12:02,570 --> 00:12:07,560 |
|
integrable ููู ูุง ูู
ููุฅูู .. ุฃู .. ุฃูู .. ุฃู .. |
|
|
|
172 |
|
00:12:07,560 --> 00:12:11,280 |
|
ุขุณู ููุณ ุดุฑุทุง ุฃู ูููู limit ูู integration ุจุณุงูู ุงู |
|
|
|
173 |
|
00:12:11,280 --> 00:12:14,600 |
|
integration ูู limit ุฅุฐุง ุจุฏูุง ุฏูุนุฉ ุฃูุจุฑ ู
ู ุงู |
|
|
|
174 |
|
00:12:14,600 --> 00:12:17,820 |
|
pointwise convergence ู ุงูุญุงูุชูู ุงู continuity ู |
|
|
|
175 |
|
00:12:17,820 --> 00:12:21,600 |
|
ุงู integrability ูุงููุชูุชูู ุงูุฏูุนุฉ ูุฐู ูู ุงู |
|
|
|
176 |
|
00:12:21,600 --> 00:12:25,970 |
|
uniform convergence ู ููุดูู ูุฐุง ุงูููุงู
ู
ู ุฎูุงู |
|
|
|
177 |
|
00:12:25,970 --> 00:12:31,770 |
|
ุงููุธุฑูุงุช ุงููุงุฏู
ุฉ ุฃูู ูุธุฑูุฉ ุนูุฏูุง ูุฐู ุงููุธุฑูุฉ ุงููู |
|
|
|
178 |
|
00:12:31,770 --> 00:12:35,750 |
|
ูู ูุชุชุนูู ุจุงูู sequence of continuous functions |
|
|
|
179 |
|
00:12:35,750 --> 00:12:40,090 |
|
ููู ุฃูู ูู ูุงูุช ุงููู ูู sequence of continuous |
|
|
|
180 |
|
00:12:40,090 --> 00:12:43,570 |
|
functions converts uniformly to some function F |
|
|
|
181 |
|
00:12:43,570 --> 00:12:46,690 |
|
then F must be continuous |
|
|
|
182 |
|
00:12:49,500 --> 00:12:54,300 |
|
ุทูุจ ูุง ุฌู
ุงุนุฉ ุงูุงู ููุฌู theorem 8.2.2 ุจุชููู ู
ุง ููู |
|
|
|
183 |
|
00:12:54,300 --> 00:12:57,520 |
|
ุงูุงู ูุชูู ุงู ุจูู a sequence of continuous |
|
|
|
184 |
|
00:12:57,520 --> 00:13:02,860 |
|
functionson a set A subset ู
ู Rุ ุฅุฐุงู Fn ุนุจุงุฑุฉ ุนู |
|
|
|
185 |
|
00:13:02,860 --> 00:13:07,300 |
|
ู
ุชุชุงุจุนุฉ ู
ู ุงูุฏูุงูู ุงูู
ุชุตูุฉ ุนูู ุงููุชุฑุฉ A subset ู
ู |
|
|
|
186 |
|
00:13:07,300 --> 00:13:12,360 |
|
R and suppose that ุงููู ูู ุงูู Fn converges |
|
|
|
187 |
|
00:13:12,360 --> 00:13:15,640 |
|
uniformly on A to a function F ู
ู A ูุนูุฏ Rุ ุจููู |
|
|
|
188 |
|
00:13:15,640 --> 00:13:21,200 |
|
ุฅุฐุง ููุง ููู
ู ู
ุถู
ูู ุฅู ุงูู F ููุณูุง ุชููู ุฅูุด ู
ุง ููุง |
|
|
|
189 |
|
00:13:21,200 --> 00:13:24,400 |
|
is a continuous functionุ ุฅุฐุงู |
|
|
|
190 |
|
00:13:30,480 --> 00:13:36,500 |
|
ุงูู
ูุงูู
ุฉ ููู
ุนุงู
ูุงุช ุงูู
ุณุชู
ุฑุฉ ูู ู
ุณุชู
ุฑุฉ ุจุงุณุชุฎุฏุงู
|
|
|
|
191 |
|
00:13:36,500 --> 00:13:41,880 |
|
ุงูู
ุนุงู
ูุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
192 |
|
00:13:41,880 --> 00:13:43,080 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
193 |
|
00:13:43,080 --> 00:13:43,760 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
194 |
|
00:13:43,760 --> 00:13:43,760 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
195 |
|
00:13:43,760 --> 00:13:43,760 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
196 |
|
00:13:43,760 --> 00:13:43,760 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
197 |
|
00:13:43,760 --> 00:13:43,760 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
198 |
|
00:13:43,760 --> 00:13:43,760 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
199 |
|
00:13:43,760 --> 00:13:43,760 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ |
|
|
|
200 |
|
00:13:43,760 --> 00:13:50,400 |
|
ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชู
ุฑุฉ ุงูู
ุณุชุฃู ูุตู |
|
|
|
201 |
|
00:13:50,400 --> 00:13:54,440 |
|
ุฅูู ุฃู ุงูู F ููุณูุง continuous ุนุงูู
ูุง ุนูู ุงูู A |
|
|
|
202 |
|
00:13:54,440 --> 00:13:59,280 |
|
element ุงูู R ุฎููููุง ุจุณ ูุฑุชุจ ุญุงุฌุฉ ุฏู ุจู
ุง ุฃู F |
|
|
|
203 |
|
00:13:59,280 --> 00:14:03,180 |
|
unconverts uniform ููู F on A ุฅุฐุง ุญุณุจ ุงูุชุนุฑูู ุงูู |
|
|
|
204 |
|
00:14:03,180 --> 00:14:05,820 |
|
uniform convergence ููู ูุณูู ุฃูุจุฑ ู
ู ุณูุฑ there |
|
|
|
205 |
|
00:14:05,820 --> 00:14:10,690 |
|
exists actuallyof epsilon ุงููู ูู such that ุฃู |
|
|
|
206 |
|
00:14:10,690 --> 00:14:13,530 |
|
there exists H such that ุงููH ูุชุชู
ุฏ ุนูู ู
ููุ ุนูู |
|
|
|
207 |
|
00:14:13,530 --> 00:14:16,630 |
|
ุงููEpsilon if N ุฃูุจุฑ ูุณูู H ูุฃูู for convergence |
|
|
|
208 |
|
00:14:16,630 --> 00:14:20,470 |
|
ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู such that if N ุฃูุจุฑ ูุณูู H then |
|
|
|
209 |
|
00:14:20,470 --> 00:14:24,610 |
|
F N of X ูุงูุต F of X ุฃุตุบุฑ ู
ู Epsilon ุน ุชูุงุชุฉ ุญุฑู |
|
|
|
210 |
|
00:14:24,610 --> 00:14:27,230 |
|
ุฃุตุบุฑ ู
ู Epsilon ูู ุงูุฏููุง ู
ู ุถู
ููุง ู
ููุ Epsilon |
|
|
|
211 |
|
00:14:27,230 --> 00:14:32,010 |
|
ุนูู ุชูุงุชุฉ for all X element in ู
ููุ in A ุฅุฐุง ุงูุฃู |
|
|
|
212 |
|
00:14:32,010 --> 00:14:41,540 |
|
ุฃูู ุญุงุฌุฉ ููู Epsilonุฃูุจุฑ ู
ู 0 ูุฌููุง H such that |
|
|
|
213 |
|
00:14:41,540 --> 00:14:46,780 |
|
element of N ุทุจุนุงู such that for every N ุฃูุจุฑ ุฃู |
|
|
|
214 |
|
00:14:46,780 --> 00:14:55,100 |
|
ูุณุงูู H ุนูุฏู F N of X ููุต F of X ุฃุตุบุฑ ู
ู Y ุน ุชูุงุชุฉ |
|
|
|
215 |
|
00:14:55,100 --> 00:15:04,390 |
|
ููู X element ู
ู A ูุฐู ุฃูู ูุงุญุฏุฉูุฃู let C element |
|
|
|
216 |
|
00:15:04,390 --> 00:15:09,870 |
|
in A be arbitrary but fixed ููุดุ ุจุฏู ุฃุซุจุชูู ุฃู F |
|
|
|
217 |
|
00:15:09,870 --> 00:15:16,050 |
|
continuous on Aุ F ุชุจุนุชูุงุ ูู ุงูู
ุทููุจููู ุจุฏู |
|
|
|
218 |
|
00:15:16,050 --> 00:15:20,150 |
|
ุฃุซุจุชูุงุ ุจุฏู ุฃุฎุฏ ุฃู C Fixed ููู Arbitrary ุฅู ุฅูู |
|
|
|
219 |
|
00:15:20,150 --> 00:15:23,230 |
|
ุจู
ุง ุฅูู C Arbitrary ูู ุฃุซุจุชูุง F Continuous and |
|
|
|
220 |
|
00:15:23,230 --> 00:15:26,190 |
|
ุงููC ุจุชููู F Continuous ุนูู ูู ุงููMain ุงููA ููู |
|
|
|
221 |
|
00:15:26,190 --> 00:15:31,530 |
|
ุจุฏู ุฃุซุจุชูุงุ ุจุฏู ุฃุซุจุชูู Limit F of X ูู
ุง X ุจุชุฑูุญ |
|
|
|
222 |
|
00:15:31,530 --> 00:15:36,430 |
|
ูููC ุฃุด ุจุชุณุงูู F of C ุฅูุด ู
ุนูุงุชู ูุฐุงุ ู
ุนูุงุชู ููู ู |
|
|
|
223 |
|
00:15:36,430 --> 00:15:40,910 |
|
ุฃูุจุฑ ู
ู ุตูุฑ ุจุฏู ูุงุฌู K element none such that as |
|
|
|
224 |
|
00:15:40,910 --> 00:15:49,500 |
|
ุชูุงูู Deltaุงููู ูู ุฃูุจุฑ ู
ู ุณูุฑ such that X minus C |
|
|
|
225 |
|
00:15:49,500 --> 00:15:55,280 |
|
ุฃุตุบุฑ ู
ู Delta ูุนุทููู F of X ูุงูุต F of C ุฃุตุบุฑ ู
ู |
|
|
|
226 |
|
00:15:55,280 --> 00:16:00,260 |
|
ู
ูู ู
ู Y ูุฐุง ุงููู ุจุฏุฃ ุฃุซุจุชู ุนุดุงู ุฃุตู ูู
ูู ูู F |
|
|
|
227 |
|
00:16:00,260 --> 00:16:04,440 |
|
continuous ุนูุฏ ุงู C ุงููู ูู ูุงูุช arbitrary ูู ุงู A |
|
|
|
228 |
|
00:16:04,440 --> 00:16:08,620 |
|
ุฅุฐุง F continuous ุนูู ูู ุงู A ุฏู ููุดููู ุงูุขู ุทูุจ |
|
|
|
229 |
|
00:16:10,260 --> 00:16:13,740 |
|
ุงุณุชุฎุฏู
ูุง ู
ุนูุงู ุงูู for convergence ููู ูุฃุฎุฏุช C |
|
|
|
230 |
|
00:16:13,740 --> 00:16:18,800 |
|
arbitrary point but fixed in A then ุงูุขู ุงุญุณุจ ู
ุงูู |
|
|
|
231 |
|
00:16:18,800 --> 00:16:24,420 |
|
ุงู .. ุทุจุนุง ูุฐุง ุงูููุงู
ุจุณ ุฌุงุจ ุงูู
ุจุฏุฃ ููุง ูุฐุง ุตุญูุญ |
|
|
|
232 |
|
00:16:24,420 --> 00:16:31,800 |
|
ููู N ุฃูุจุฑ ุฃู ูุณุงูู H ู
ู ุถู
ููุง ุตุญูุญ ูููH ูุนูู |
|
|
|
233 |
|
00:16:31,800 --> 00:16:36,260 |
|
ููุงุฌู ุงู FH of X ูุงูุต F of X ุฃุตุบุฑ ู
ู ู
ููุ ู
ู |
|
|
|
234 |
|
00:16:36,260 --> 00:16:41,540 |
|
ุฅุจุณููู ุน ุชูุงุชุฉ ููู X element in Aุจุฑุถู ุตุญูุญ ูู F H |
|
|
|
235 |
|
00:16:41,540 --> 00:16:48,840 |
|
of C ูุงูุต F of C ุฃุตุบุฑ ู
ู F3 ููู X element A ุตุญูุญ |
|
|
|
236 |
|
00:16:48,840 --> 00:16:52,340 |
|
ู
ู ุถู
ู ุงู X ูุงูC ูุบูุฑ ู ุงูุงุฎุฑ ูู ูู ุงูุนูุงุตุฑ ุงููู |
|
|
|
237 |
|
00:16:52,340 --> 00:16:57,520 |
|
ูู ุงู Aุฃุญุณุจูู ุงูุขู F of X ูุงูุต F of C ุฃุตุบุฑ ุฃู |
|
|
|
238 |
|
00:16:57,520 --> 00:17:03,120 |
|
ุฃุณุงูู F of X ูุงูุต F H of X ุฒุงุฏ F H of X ูุงูุต F H |
|
|
|
239 |
|
00:17:03,120 --> 00:17:06,980 |
|
of C ุฒุงุฏ F H of C ูุงูุต F of C ูุนูู ุฅูุด ุงููู ุณููุชู |
|
|
|
240 |
|
00:17:06,980 --> 00:17:11,680 |
|
ุงููู ูู ุถูุช ูู
ุชูู ู ุทุฑุญุชูู ุถูุช ุงู H of X F H of X |
|
|
|
241 |
|
00:17:11,680 --> 00:17:16,320 |
|
ูุถูุช ุงู F H of C ุนุดุงู ุจุฏู ุฃุณุชุฎุฏู
ุงููู ููู ุนุดุงู ุฃุตู |
|
|
|
242 |
|
00:17:16,320 --> 00:17:24,660 |
|
ููู ุจุฏููุง ุดูู ููู ุงููู ุนูุฏูุงูู Fx ูุงูุต Fh of X ู
ู |
|
|
|
243 |
|
00:17:24,660 --> 00:17:29,320 |
|
ุงููู ููู ุฃุตุบุฑ ู
ู ู ุนูู ุชูุงุชุฉ ูุฐู ูุฒูููุง ุฒู ู
ุง ูู |
|
|
|
244 |
|
00:17:29,320 --> 00:17:33,240 |
|
ุชุณูุจูููุง ู
ููุง ูุฐู Fh of C ูุงูุต F of C ุฃุตุบุฑ ู
ู ู |
|
|
|
245 |
|
00:17:33,240 --> 00:17:38,760 |
|
ุจุฑุถู ู
ู ู ุนูู ุชูุงุชุฉ ุฅุฐุง ุงูุขู ุงููู ุญุตูุชู ููู ู ุฃูุจุฑ |
|
|
|
246 |
|
00:17:38,760 --> 00:17:45,620 |
|
ู
ู 0 ูุฌูุช H ุฃุจุญุซ |
|
|
|
247 |
|
00:17:46,530 --> 00:17:54,690 |
|
ุฅูู ููู N ุฃูุจุฑ ุฃู ุณูุก H ุทูุน ุนูุฏู F X ูุงูุต F of C |
|
|
|
248 |
|
00:17:54,690 --> 00:18:00,470 |
|
ุฃุตุบุฑ ู
ู Epsilon ุน ุชูุงุชุฉ ูุฒุงุฆุฏ Epsilon ุน ุชูุงุชุฉ ูุนูู |
|
|
|
249 |
|
00:18:00,470 --> 00:18:04,910 |
|
ุงุชููู Epsilon ุน ุชูุงุชุฉ ุฒุงุฆุฏ ุงู absolute value ู F H |
|
|
|
250 |
|
00:18:04,910 --> 00:18:14,170 |
|
of X ูุงูุต F H of C ูุฐู ุงูุขูุงููู ููุณุนููู ุงู ูู |
|
|
|
251 |
|
00:18:14,170 --> 00:18:18,610 |
|
ู
ูุชุฑุถ ูู ุงู ุงู FN ุงููู ูู ุงู sequence ูููุง |
|
|
|
252 |
|
00:18:18,610 --> 00:18:24,010 |
|
continuous ุนูุฏ ุงู A ูููุงุ ุงุฐุง ุงููุฏ ุงู FH ุงููู ูู |
|
|
|
253 |
|
00:18:24,010 --> 00:18:27,810 |
|
ูุงุญุฏุฉ ู
ู ุงู sequence is continuous ุนูุฏ ู
ููุ ุนูุฏ ูู |
|
|
|
254 |
|
00:18:27,810 --> 00:18:31,930 |
|
ุงูุนูุงุตุฑ ุงููู ูู ุงู Aุ ู
ู ุถู
ู ููุง ุงู C ุงููู ุฃุฎุฏุช |
|
|
|
255 |
|
00:18:31,930 --> 00:18:37,490 |
|
fixed but arbitrary ู ูููุ ูุจุชููู ุฃูุง ุจุฏูุช ุฃููู |
|
|
|
256 |
|
00:18:37,490 --> 00:18:42,700 |
|
ุงูุจุฑูุงูุ ุดูู ููููุฐู ุญุตููุงูุง ุทูุจ ุงูุฃู ุฃููุฏ ููููููุง |
|
|
|
257 |
|
00:18:42,700 --> 00:18:47,860 |
|
since FH is continuous at C ู
ุฏุงู
continuous at C |
|
|
|
258 |
|
00:18:47,860 --> 00:18:53,800 |
|
ุฅุฐุง ููู ู ุฃูุจุฑ ู
ู ุณูุฑ ุจูุฏุฑ ุฃูุงูู Delta ุงูู Delta |
|
|
|
259 |
|
00:18:53,800 --> 00:18:57,700 |
|
ูุฐู ุทุจุนุง ุจุฏู ูููููู ูููููู ุงูู Delta ุฃููุฏ ูุชุนุชู
ุฏ |
|
|
|
260 |
|
00:18:57,700 --> 00:19:01,920 |
|
ุนุงูู
ูุง ุนูู ุงูู Y ููุชุนุชู
ุฏ ุนูู ุงูู C ูุฃูู ุฃูุง ุจุงุฎุฏ |
|
|
|
261 |
|
00:19:01,920 --> 00:19:06,790 |
|
ุงู continuity ูุนูุฏ ู
ูู ุนูุฏ ุงูููุทุฉ Cููุชุนุชู
ุฏ ุนูู ุงู |
|
|
|
262 |
|
00:19:06,790 --> 00:19:11,470 |
|
FH ูุฃูู ู
ุงุงุฎุฏ ุงู continuity ูู
ู ุฃูุง ูู FH ุฅุฐุง |
|
|
|
263 |
|
00:19:11,470 --> 00:19:17,610 |
|
ุงูุฏูุชุง ูุฐู ูู ุจุชุนุชู
ุฏ ุนูู ุงู FH ู C ูู Y ุนูู 3 ูุฅูู |
|
|
|
264 |
|
00:19:17,610 --> 00:19:24,650 |
|
ุฃูุง ุจุฏุฃ ุงุณุชุฎุฏู
limit FH of X ูู
ุง X ุชุฑูุญ ูููC ุจุณูุก |
|
|
|
265 |
|
00:19:24,650 --> 00:19:30,590 |
|
FH of C ูุนูู ููู Y ุฃูุจุฑ ู
ู 0 there exists Delta |
|
|
|
266 |
|
00:19:30,590 --> 00:19:35,630 |
|
ุงููDelta ูุฐู ูู
ูู ุชุนุชู
ุฏ ุนูู ุงููC ูุชุนุชู
ุฏ ุนูู ุงููFH |
|
|
|
267 |
|
00:19:35,630 --> 00:19:40,470 |
|
ูุชุนุชู
ุฏ ุนูู ู
ูู ุนูู ุงููู ูู ุงููY ุงููู ุจุชุงุฎุฏูุง |
|
|
|
268 |
|
00:19:40,470 --> 00:19:45,340 |
|
arbitrarily ู
ุงุดู ุงูุญุงู ุทูุจุฅุฐุง ุงูุชุนุฑูู ูุฐุง ุจุฏู |
|
|
|
269 |
|
00:19:45,340 --> 00:19:48,860 |
|
ุฃุชุฑุฌู
ู ููู ุฅุจุณููู ุฃูุจุฑ ู
ู ุตูุฑ there exist ุงููู ูู |
|
|
|
270 |
|
00:19:48,860 --> 00:19:53,300 |
|
Delta ุฃูุจุฑ ู
ู ุตูุฑ such that ูู
ุง X minus C ูุงู ุฃุตุบุฑ |
|
|
|
271 |
|
00:19:53,300 --> 00:19:57,420 |
|
ู
ู Delta ูุงูู X ูู ุงูู A ูุนุทููู ุงููุฑู ุจูู ุงูุชูุชูู |
|
|
|
272 |
|
00:19:57,420 --> 00:20:00,620 |
|
ูุฏููุฉ ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฃู ุฅุจุณููู ูู ุงูุฏููุง ู
ู ุถู
ู |
|
|
|
273 |
|
00:20:00,620 --> 00:20:04,820 |
|
ุฅุจุณููู ุน ุชูุงุชุฉ ูุงุถุญุฉ ุงูุตูุฑุฉ ุงูุขู ูุฐู ุงูุขู ุจุฏู |
|
|
|
274 |
|
00:20:04,820 --> 00:20:09,090 |
|
ุฃุฏู
ุฌูุง ู
ุน ุญุฏ ุจูุตูุฑ ุนูุฏู ููู ุฅุจุณูููุฃูุจุฑ ู
ู ุณูุฑ |
|
|
|
275 |
|
00:20:09,090 --> 00:20:13,330 |
|
there exist Delta ุฃูุจุฑ ู
ู ุณูุฑ such that for every |
|
|
|
276 |
|
00:20:13,330 --> 00:20:18,610 |
|
X element in A ุจุชุญูู X minus C ุฃุตุบุฑ ู
ู Delta ุงููู |
|
|
|
277 |
|
00:20:18,610 --> 00:20:26,230 |
|
ูู ุจูุนุทููู then F of X ูุงูุต F of C ุฃุตุบุฑ ู
ู 2 Y ุน 3 |
|
|
|
278 |
|
00:20:27,010 --> 00:20:31,930 |
|
ูู
ู ูุฐู ุฃุตุบุฑ ู
ู ู ุนูู ุชูุงุชุฉ ูุนูู ุจู
ุนูู ุฃุฎุฑ ุฃุตุบุฑ ู
ู |
|
|
|
279 |
|
00:20:31,930 --> 00:20:37,270 |
|
ู ููุฐุง ุจุงูุธุจุท ู
ุนูุงุชู ุฃูู limit f of x ูู
ุง x ุชุฑูุญ ู |
|
|
|
280 |
|
00:20:37,270 --> 00:20:40,570 |
|
c ุจูุณุงูู f of c ููุฐุง ูุงูุช c element in a |
|
|
|
281 |
|
00:20:40,570 --> 00:20:46,170 |
|
arbitrarily ุฅุฐุง f is continuous on a ุฅุฐุง ุฎูุตูุง |
|
|
|
282 |
|
00:20:46,170 --> 00:20:51,690 |
|
ุงููุธุฑูุฉ ุงูุฃููู ุงููู ูู ุงููู ุจุชุชุนูู ุจุงู sequence of |
|
|
|
283 |
|
00:20:51,690 --> 00:20:52,430 |
|
continuous functions |
|
|
|
284 |
|
00:20:58,670 --> 00:21:05,130 |
|
ุทูุจ ูุดูู ุงู .. ุงู remark ูุง ุฌู
ุงุนุฉ ุงู |
|
|
|
285 |
|
00:21:05,130 --> 00:21:07,430 |
|
remark ุจูููู ูู the limit of a sequence of |
|
|
|
286 |
|
00:21:07,430 --> 00:21:10,370 |
|
continuous functions may be continuous but the |
|
|
|
287 |
|
00:21:10,370 --> 00:21:13,590 |
|
convergence is pointwise ูุนูู ุจููููู ูุนูู ู
ู
ูู ุฃูุช |
|
|
|
288 |
|
00:21:13,590 --> 00:21:17,250 |
|
ุชูุงูููู ุงููู ูู sequence of functions continuous |
|
|
|
289 |
|
00:21:17,250 --> 00:21:20,870 |
|
ููููู ุงู pointwise convergence ููุฑูุญ ูู
ูู ู |
|
|
|
290 |
|
00:21:20,870 --> 00:21:25,660 |
|
continuous functions ุทุจุนุง ู
ู
ูู ุฃููุฏู ุฌุจููุง ุฏูุงู .. |
|
|
|
291 |
|
00:21:25,660 --> 00:21:30,920 |
|
ุฏูุงู ู
ู ูุงูููุน ุงููู ูู ูุงู ุนูุฏู ุงููู ูู ุงู .. ุงุฐุง |
|
|
|
292 |
|
00:21:30,920 --> 00:21:37,480 |
|
ุจุชุชุฐูุฑูุง ุงุธู ุงูุชุจูุชูุง ูุจู ุดููุฉ ุงูู |
|
|
|
293 |
|
00:21:37,480 --> 00:21:48,100 |
|
fn of x ุจุณุงูู x ุนูู n ูุฐู continuous ุทุจุนุง on Rู F |
|
|
|
294 |
|
00:21:48,100 --> 00:21:53,840 |
|
of X ุงููู ูู limitูุง limit F N of X ูู
ุง N ุชุฑูุญ ูู
ุง |
|
|
|
295 |
|
00:21:53,840 --> 00:21:57,940 |
|
ููุงูุฉ ุจุณุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู ุณูุฑ ูุฐู ุจุฑุถู ุงู |
|
|
|
296 |
|
00:21:57,940 --> 00:22:02,000 |
|
ุดู
ุงููุง continuous function ุจุงูุฑุบู
ู
ู ุงู ุงู F N |
|
|
|
297 |
|
00:22:02,000 --> 00:22:06,780 |
|
ุจุชุฑูุญ ูู F point twice but ุงู F N does not |
|
|
|
298 |
|
00:22:06,780 --> 00:22:10,660 |
|
converge ูู F uniformly ุฒู ู
ุง ุฃุซุจุชูุง ูุนูู ู
ู
ูู |
|
|
|
299 |
|
00:22:10,660 --> 00:22:14,280 |
|
ุงููู ูู ุงู point twice convergence ูููู limitู |
|
|
|
300 |
|
00:22:14,280 --> 00:22:16,420 |
|
continuous function ูู
ุง ุชููู sequence of |
|
|
|
301 |
|
00:22:16,420 --> 00:22:20,810 |
|
continuous functionsุทุจูุนู ููู ุงุญูุง ุจูููู ุงูุถู
ุงู |
|
|
|
302 |
|
00:22:20,810 --> 00:22:25,010 |
|
ุงูู ูุทูุน continuous ุงููุง ุชููู uniform convergence |
|
|
|
303 |
|
00:22:25,010 --> 00:22:30,830 |
|
ูุฌุจูุง ู
ุซุงู ุนูู ุงูู ุงููู ูู ุงููู ูู sequence of |
|
|
|
304 |
|
00:22:30,830 --> 00:22:34,130 |
|
continuous functions converge pointwise to some |
|
|
|
305 |
|
00:22:34,130 --> 00:22:36,730 |
|
function that is not continuous ุฒู ู
ุง ุดูููุง ูู |
|
|
|
306 |
|
00:22:36,730 --> 00:22:41,610 |
|
ุงูู
ุซุงู ุงูุฃูู ููุฌู ุงูุขู ูุญูู ุนู ู
ูุถูุน ุงู ุงูุฌุฒุก |
|
|
|
307 |
|
00:22:41,610 --> 00:22:47,770 |
|
ุงูู
ุชุนูู ุจู
ููุงูุฌุฒุก ุงูู
ุชุนูู ุจุงูู Integrable |
|
|
|
308 |
|
00:22:47,770 --> 00:22:54,370 |
|
Functions ุงูุขู ูุดูู ุฃูุด ุงูุนูุงุฌ ูุฅูู ูุถู
ู ุงูู Limit |
|
|
|
309 |
|
00:22:54,370 --> 00:22:56,730 |
|
ููู Integration ุจุณุงูู ุงูู Integration ููู Limit ุฃู |
|
|
|
310 |
|
00:22:56,730 --> 00:22:59,850 |
|
ุงููู ูู ูู
ุง ูุฏุฎู ุงูู Limit ููู Integration ู
ุชู |
|
|
|
311 |
|
00:22:59,850 --> 00:23:04,590 |
|
ุจููุฏุฑ ูุฏุฎูู ููุธู ุงูู
ุญุงูุธุฉ ุนูู ุงูู
ุณุงููุฉ Let FN be a |
|
|
|
312 |
|
00:23:04,590 --> 00:23:07,750 |
|
sequence of functions that are integrable on A ูB |
|
|
|
313 |
|
00:23:08,610 --> 00:23:13,110 |
|
and suppose that FN converges uniformly ู
ู A ู B |
|
|
|
314 |
|
00:23:13,110 --> 00:23:19,150 |
|
to F then ุฅุฐุง ูู
ุง ุชููู ุงู convergence uniform then |
|
|
|
315 |
|
00:23:19,150 --> 00:23:23,850 |
|
ุงู F is integrable ู
ู A ู B ูุงู ูุงุญุฏ ุงุชููู ุงู |
|
|
|
316 |
|
00:23:23,850 --> 00:23:27,210 |
|
integration ูู F of X DX ู
ู A ูุนูู B ุจุณูุก ุงู limit |
|
|
|
317 |
|
00:23:27,210 --> 00:23:29,870 |
|
ูู integration ูุนูู ุจู
ุนูู ุฃุฎุฑ ุงู limit ูู |
|
|
|
318 |
|
00:23:29,870 --> 00:23:33,910 |
|
integration ุจุณูุก ุงู integration ูู limitูู
ุง ูููู |
|
|
|
319 |
|
00:23:33,910 --> 00:23:38,490 |
|
ูุฐุง ู
ุงูู uniform convergence ุฎููููุง ูุดูู ุงููู ูู |
|
|
|
320 |
|
00:23:38,490 --> 00:23:43,270 |
|
ุงูุจุฑูุงู ุงูุงู ุฎููููุง ูุณู
ู ุงููุชุฑุฉ ุชุจุนุชูุง let J |
|
|
|
321 |
|
00:23:43,270 --> 00:23:47,950 |
|
ุจุชุณุงูู A ูB ุงูุงู ุจู
ุง ุฃู FN ุจุชุฑูุญ ูู F uniform ุงููู |
|
|
|
322 |
|
00:23:47,950 --> 00:23:53,540 |
|
ูู ุตูุงุนุฉ ุงูููุงู
ูุฐุงุงูุงู ุชูุณูุด ุงู ุงูู Fn is |
|
|
|
323 |
|
00:23:53,540 --> 00:23:56,320 |
|
integrable ูุนูู ุงูุด ู
ุง ููุง bounded ูุนูู ุงู |
|
|
|
324 |
|
00:23:56,320 --> 00:23:58,200 |
|
sequence of bounded functions ู ุฒู ู
ุง ุตุงุฑุช ุงู |
|
|
|
325 |
|
00:23:58,200 --> 00:24:01,980 |
|
sequence of bounded functions ุงุฐุง automatic ุจุชุชุญูู |
|
|
|
326 |
|
00:24:01,980 --> 00:24:05,900 |
|
ุงู ุงููู ูู ุงููู ู
ุง ุงููู ูู ุชุจุนุช ุงู norm ูู F ูุงูุต |
|
|
|
327 |
|
00:24:05,900 --> 00:24:13,130 |
|
Fm ุงููู ูู ุจุชุฑูุญ ููุณูุฑ ูุนูู Fn ูุนูู Fnุจุชุฑูุญ ููู F |
|
|
|
328 |
|
00:24:13,130 --> 00:24:18,850 |
|
uniformly ู
ุนูุงุชู Fn ูุงูุต F ุงููู ูู ุงูู ุดู
ุงูู over |
|
|
|
329 |
|
00:24:18,850 --> 00:24:22,650 |
|
some .. over ุงูู ุงู ุงููู ู
ุณู
ููุง J goes to mean to |
|
|
|
330 |
|
00:24:22,650 --> 00:24:26,890 |
|
zero ูุนูู normal Fn ูุงูุต ุงูู F ุฃุตุบุฑ ู
ู ูุจุณุทู ูุนูู |
|
|
|
331 |
|
00:24:26,890 --> 00:24:29,190 |
|
forever ูุจุณุทู ูููู
ูุณูู it there exists ูู ูู
|
|
|
|
332 |
|
00:24:29,190 --> 00:24:31,710 |
|
ุชูุณุงุด that forever ุฃู ุฃูุจุฑ ุดูู K ุฃููู ูุงูุต ุฃููุฑ |
|
|
|
333 |
|
00:24:31,710 --> 00:24:36,150 |
|
ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุงูู Y ุนุงุฑููู ูุงููุตุฉ ุทูุจ .. ุทูุจ ููุฌู |
|
|
|
334 |
|
00:24:36,150 --> 00:24:40,630 |
|
ุงูุฃููุช ุฌูุจ ุณูุงุก a ู b since fn converts uniformly |
|
|
|
335 |
|
00:24:40,630 --> 00:24:44,650 |
|
to f ู since fn is integrable then fn is bounded |
|
|
|
336 |
|
00:24:44,650 --> 00:24:48,830 |
|
then we can use our lemma then for every epsilon |
|
|
|
337 |
|
00:24:48,830 --> 00:24:52,510 |
|
there exists k of epsilon such that if n ุฃูุจุฑ ุณูุงุก |
|
|
|
338 |
|
00:24:52,510 --> 00:24:58,940 |
|
k of epsilon ูุฐู we have f ูุงูุต fnุฃุตุบุฑ ู
ู Epsilon |
|
|
|
339 |
|
00:24:58,940 --> 00:25:01,540 |
|
ุนูู ุฃุฑุจุนุฉ ูู B minus A ุฃุตุบุฑ ู
ู Epsilon ูู ุงูุฏููุง |
|
|
|
340 |
|
00:25:01,540 --> 00:25:04,280 |
|
ู
ู ุถู
ููุง Epsilon ุนูู ุฃุฑุจุนุฉ ูู B minus A ูุฐู |
|
|
|
341 |
|
00:25:04,280 --> 00:25:08,760 |
|
ููุญุณุงุจุงุช ุฒู ุงูุนุงุฏุฉ ู
ุง ุจูุญูู ูููุง ุจุญูู ุนููุง ู ุทุจุนุง |
|
|
|
342 |
|
00:25:08,760 --> 00:25:14,400 |
|
ูู ููุง ุชูุณูุฑ ู ูุณุฑูุง ูุชูุฑ ูู ุฃููุงุช |
|
|
|
343 |
|
00:25:14,400 --> 00:25:19,580 |
|
ุณุงุจูุฉ ูุฐู ุณู
ููุง ูุงุญุฏ ุงูุขู ุงููู ุณู
ููุง ุงู K of |
|
|
|
344 |
|
00:25:19,580 --> 00:25:23,520 |
|
Epsilon ูุฐู ุณู
ููุง ูู ุฅูุด K ููุชุณููู ุจุณ ุงูุงู FK is |
|
|
|
345 |
|
00:25:23,520 --> 00:25:28,590 |
|
integrableุฃู then ู
ุฏุงู
integrable ุงุฐุง there exist |
|
|
|
346 |
|
00:25:28,590 --> 00:25:33,730 |
|
a partition ุจู ุงุจุณููู ูู FK ูุฐู X not X ูุงุญุฏ X and |
|
|
|
347 |
|
00:25:33,730 --> 00:25:37,470 |
|
such that ุงู U ุจู ุงุจุณููู ู FK ููุต ุงู ุงุจุณููู ุจู |
|
|
|
348 |
|
00:25:37,470 --> 00:25:40,190 |
|
ุงุจุณููู ู FK ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฃู ุงุจุณููู ูู ุงูุฏููุง |
|
|
|
349 |
|
00:25:40,190 --> 00:25:43,370 |
|
ูุถูุจ ุงููุง ุงุจุณููู ุนูู ุงุชููู ุนุงุฑููู ูุฐู ุงูุด ูุฐู ูุฐู |
|
|
|
350 |
|
00:25:43,370 --> 00:25:45,950 |
|
ุงููู ูู ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
351 |
|
00:25:45,950 --> 00:25:46,930 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
352 |
|
00:25:46,930 --> 00:25:46,950 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
353 |
|
00:25:46,950 --> 00:25:47,750 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
354 |
|
00:25:47,750 --> 00:25:49,330 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
355 |
|
00:25:49,330 --> 00:25:49,930 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
356 |
|
00:25:49,930 --> 00:25:53,420 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงูุฅุฐุง ุตุงุฑ ุนูุฏู |
|
|
|
357 |
|
00:25:53,420 --> 00:25:57,640 |
|
ุงูุขู ู
ู ุงูู Integrability ููู FK ุญุตููุง ุน ุจุงุฑุชูุดูู |
|
|
|
358 |
|
00:25:57,640 --> 00:26:01,100 |
|
ุจู ุฅุจุณููู ุจุญูุซ ุฃู ุงู Upper ููุต ุงู Lower ุฃุตุบุฑ ู
ู |
|
|
|
359 |
|
00:26:01,100 --> 00:26:07,800 |
|
ุงูู Y ุนูู 2 ููุฐุง ุงู ุจุงุฑุชูุดูู ุงูุขู ุนูุฏู ููู F of X |
|
|
|
360 |
|
00:26:07,800 --> 00:26:11,520 |
|
ููุต FK of X ุฃุตุบุฑ ู
ู Y ุนูู 2 ุนูู 4 B minus A for |
|
|
|
361 |
|
00:26:11,520 --> 00:26:16,410 |
|
every X element in A by 2 by 1 thenุฎููููุง ุงููู ูู |
|
|
|
362 |
|
00:26:16,410 --> 00:26:20,850 |
|
ููู
ู ุงู .. ุงู .. ุงู .. ุงูุจุฑูุงู ูู ูุฐู ุงููู ูู |
|
|
|
363 |
|
00:26:20,850 --> 00:26:29,290 |
|
ุฎููููุง ุงูุชุจูุง ุนุดุงู ุงููู ูู ูุชุฐูุฑ ุงููู ูู ููู
|
|
|
|
364 |
|
00:26:29,290 --> 00:26:37,950 |
|
ุงูุฎุทูุงุช ุชุจุนุชูุง ุงููู ุนูุฏู FMF ูุงูุต FM ุฃู FN ุฃุตุบุฑ ู
ู |
|
|
|
365 |
|
00:26:37,950 --> 00:26:40,910 |
|
ุฅุจุณููู ุนูู ุฃุฑุจุนุฉ ูู B minus A ูุฐู B minus A ุทูู |
|
|
|
366 |
|
00:26:40,910 --> 00:26:44,970 |
|
ุงููุชุฑุฉ ุชุจุนุช AJ ุงูู J ุงูุขู ุงูู partition ุนูุฏู ุงููู |
|
|
|
367 |
|
00:26:44,970 --> 00:26:52,410 |
|
ูู U ุจุฅุจุณููู ุฃู F ูุงูุต FH ุฃู FK ูุงูุต ู
ููุง ูุงูุต L |
|
|
|
368 |
|
00:26:52,410 --> 00:26:59,370 |
|
ุจุฅุจุณููู ู FK ุฃุตุบุฑ ู
ู ุฅุจุณููู ุนูู ูุฏูุ ุนูู ุงุชููู |
|
|
|
369 |
|
00:26:59,370 --> 00:27:07,470 |
|
ููุญุณุงุจุงุช ุทูุจ ุงูุขูุจููู ูู ู
ู ูุฐู ู
ู ูุฐู ุฃููุฏ ุฃูุจุฑ |
|
|
|
370 |
|
00:27:07,470 --> 00:27:12,650 |
|
ุฃู ูุณุงูู F ูุงูุต FN of X ูุนูู ู
ู ูุฐู ุจููุฏุฑ ูุญุตู ูุฐุง |
|
|
|
371 |
|
00:27:12,650 --> 00:27:17,850 |
|
ุตุญูุญ ููู N ุฃูุจุฑ ุฃู ูุณุงูู K ู
ู ุถู
ููุง ุงููู ูู N ุฅูุด |
|
|
|
372 |
|
00:27:17,850 --> 00:27:21,890 |
|
ุจุชุณุงูู ุฒู ู
ุง ุงุญูุง ู
ุชุนูุฏูู ุจูุณุชุฎุฏู
ุงููู ุจูุฒู
ูุง ุงููู |
|
|
|
373 |
|
00:27:21,890 --> 00:27:28,910 |
|
ูู FK ูุนูู ุจูุตูุฑ ูุฐุง ุฃูุจุฑ ุฃู ูุณุงููุงููู ูู f of x |
|
|
|
374 |
|
00:27:28,910 --> 00:27:35,250 |
|
ูุงูุต fn of x ููู x element in J ูุฃู ู
ู ุถู
ู ุงูุฃูุงุช |
|
|
|
375 |
|
00:27:35,250 --> 00:27:40,010 |
|
ูุฐู ุงููู ูู main ุงูู K ูุนูู ุจูุตูุฑ ุนูุฏู fn ุฃู ุฒู ู
ุง |
|
|
|
376 |
|
00:27:40,010 --> 00:27:47,110 |
|
ูู ู
ุณู
ููุง f of x ูุงูุต fk of x absolute value ุตุงุฑ |
|
|
|
377 |
|
00:27:47,110 --> 00:27:53,430 |
|
ุฃุตุบุฑ ู
ู ู ุนูู ุฃุฑุจุนุฉุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- |
|
|
|
378 |
|
00:27:53,430 --> 00:27:53,490 |
|
ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู |
|
|
|
379 |
|
00:27:53,490 --> 00:27:54,170 |
|
- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- |
|
|
|
380 |
|
00:27:54,170 --> 00:27:59,490 |
|
ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู |
|
|
|
381 |
|
00:27:59,490 --> 00:27:59,490 |
|
- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- |
|
|
|
382 |
|
00:27:59,490 --> 00:27:59,490 |
|
ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู- ุจู |
|
|
|
383 |
|
00:27:59,490 --> 00:28:06,630 |
|
- ุจู- ุจู- ุจู- ุจููููุง ูุฐู ุจูุตูุฑ ุนูุฏู ุงูุงู F of X |
|
|
|
384 |
|
00:28:06,630 --> 00:28:12,090 |
|
ูุงูุต Y ุนูู 4 ูู B minus A ุฃุฐุฑ ุฃู ูุณุงูู FK of X |
|
|
|
385 |
|
00:28:12,090 --> 00:28:16,450 |
|
ุนุงุฑููู ุทุจุนุง ููู ุงููู ูู ุฃูุจุฑ ุฃุฐุฑ ูุณุงูู ู ุฃูุจุฑ ุณุงูู |
|
|
|
386 |
|
00:28:16,450 --> 00:28:21,350 |
|
ูุงูุตูุง ุงููู FK ูุฌูุช ููุง ุจูุตูุฑ F of X ูุฌุจุชูุง ุฏู ููุง |
|
|
|
387 |
|
00:28:21,350 --> 00:28:24,310 |
|
ุจูุตูุฑ F of X ูุงูุต Y ุนูู 4 ูู B minus A ุฃุฐุฑ ูุณุงูู |
|
|
|
388 |
|
00:28:24,310 --> 00:28:30,250 |
|
FK of Xููุฐู ููุณูุง fk of x ุฃููุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ุงู |
|
|
|
389 |
|
00:28:30,250 --> 00:28:34,410 |
|
absolute value ูู fk of x ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู ูุงู |
|
|
|
390 |
|
00:28:34,410 --> 00:28:36,550 |
|
absolute value ูู fk of x ุฃุตุบุฑ ุฃู ูุณุงูู ุงู |
|
|
|
391 |
|
00:28:36,550 --> 00:28:42,230 |
|
supremum ูู absolute value ูู ุงูู
ุตูุฑุฉ ุนุงู
ุฉ ุงููู ูู |
|
|
|
392 |
|
00:28:42,230 --> 00:28:45,550 |
|
ุนูู ุงููุชุฑุฉ xj minus ูุงุญุฏ ูู xj ุงููู ูู ุฅูุด ุงููู |
|
|
|
393 |
|
00:28:45,550 --> 00:28:50,760 |
|
ุจูุณู
ูู ุงููู ูู ุงู mj ุงููู ูู ุชุจุน ุงู upper sumุงูุงู |
|
|
|
394 |
|
00:28:50,760 --> 00:28:58,040 |
|
ุตุงุฑ ุนูุฏู ุงู F of X ุงู F of X ูุณุฌููุง ูุฐู F of X ุฃุซุฑ |
|
|
|
395 |
|
00:28:58,040 --> 00:29:08,440 |
|
ุฃู ุณุงูู Y ุนูู 4 ูู B minus A ุฒุงุฆุฏ MJ of FK ููู X |
|
|
|
396 |
|
00:29:08,440 --> 00:29:17,970 |
|
ููู ุฅูุดุ ุงููู ูู X X ููู ูู ุงููุชุฑุฉุ ุงููู ูู XJุฃู |
|
|
|
397 |
|
00:29:17,970 --> 00:29:23,890 |
|
ูุงูุต ูุงุญุฏ ู XJ ููุฐุง ููู ูุง ุฌู
ุงุนุฉ ููุณู ุงููู ูู ููู |
|
|
|
398 |
|
00:29:23,890 --> 00:29:31,510 |
|
J ู
ู ูุงุญุฏ ู ุงุชููู ูุนูุฏ ู
ูู ุงูุงู ุทูุจ ูุฃ |
|
|
|
399 |
|
00:29:31,510 --> 00:29:36,450 |
|
ูุฐู ุญุชู ููู X ูุฃู ูุฐู ุงู X ูุฐู ุฃุฎุฏูุงูุง arbitrarily |
|
|
|
400 |
|
00:29:36,450 --> 00:29:47,720 |
|
ูู ุงู J ูุฐู ููู X ูู ุงู J ูุนู
ุฎูููุง ูุณุฌู ุตุญ ุทูุจุฅุฐุง |
|
|
|
401 |
|
00:29:47,720 --> 00:29:49,960 |
|
ุงุณุชุฎุฏู
ูุง ุงููู ูู ู
ุนูุงุชู ุงู uniform convergence |
|
|
|
402 |
|
00:29:49,960 --> 00:29:54,640 |
|
ุญุตููุง ุนูู ูุฐู ุงุณุชุฎุฏู
ูุง ุงู integrability ูู FK ุงููู |
|
|
|
403 |
|
00:29:54,640 --> 00:29:57,820 |
|
ูุงุฌููุงูุง ูุฐู ุงูู
ุฑุชุจุทุฉ ุจุงู K ุงููู ูุงุฌููุงูุง ุนุดุงููุง |
|
|
|
404 |
|
00:29:57,820 --> 00:30:02,340 |
|
ุงููู ูู N ุฃููุง ุณูุง K ูู
ููุง ุงุณุชุฎุฏู
ูุง ุงููู ูู |
|
|
|
405 |
|
00:30:05,130 --> 00:30:10,310 |
|
ุงููู ููู ูู FK ุจุงูุฐุงุช ูุฐู ุฃุตุบุฑ ู
ู ูุฐู ููุฐู ุญุตููุง |
|
|
|
406 |
|
00:30:10,310 --> 00:30:13,730 |
|
ุนูู ุงู inequality ูุฐู ุนุดุงู ุจุถุฑูุญ ุฃุซุจุช ุงู |
|
|
|
407 |
|
00:30:13,730 --> 00:30:17,430 |
|
integrability ูู
ูู ูู F ููุณูุง ุดูููุง ููููุง ูุซุจุช |
|
|
|
408 |
|
00:30:17,430 --> 00:30:23,690 |
|
ุงูุขู ุตุงุฑ ุนูุฏู ุงูุขูF of X ุฃุตุบุฑ ุณูุงุก ูุฐุง ูู ูุฐุง |
|
|
|
409 |
|
00:30:23,690 --> 00:30:28,770 |
|
ูุนุงุฑููู ุฅูุด ู
ุนูุงุช ุงููู ูู M J of F K ุงูุงู M J of F |
|
|
|
410 |
|
00:30:28,770 --> 00:30:31,090 |
|
ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู ุฅูุด ุจุชุณุงูู ุงู supermom ู F of X |
|
|
|
411 |
|
00:30:31,090 --> 00:30:35,370 |
|
ุงููู ุนูู ูุชุฑุฉ ู
ูู X ุงููู ูู ูู J minus ูุงุญุฏ ูJ |
|
|
|
412 |
|
00:30:35,370 --> 00:30:40,670 |
|
ุฃููุฏ ุงููู ูู ุงู ูุง ุฏู ูุชููู ุฃุตุบุฑ ู
ู Y ุนูู 4 ูู B |
|
|
|
413 |
|
00:30:40,670 --> 00:30:48,220 |
|
minus A ุฒุงุฆุฏ M J ุนูููุง ุนุงุฑููู ููุด ูุฃู ุงู F of XF |
|
|
|
414 |
|
00:30:48,220 --> 00:30:52,440 |
|
of X ุฃุตุบุฑ ุฃู ุณุงูู ูุฐุง ุงูููู
ุฉุ ู
ุธุจูุทุ ุฅุฐุง ุตุงุฑุช ูุฐู |
|
|
|
415 |
|
00:30:52,440 --> 00:30:56,940 |
|
ุงูููู
ุฉ ุนุจุงุฑุฉ ุนู ุงููู ูู upper bound of the mean |
|
|
|
416 |
|
00:30:56,940 --> 00:31:01,580 |
|
ููู F of Xุ ู
ุงุดู ุงูุญุงู ุตุงุฑุช ูุฐู upper boundุ ุฅุฐุง |
|
|
|
417 |
|
00:31:01,580 --> 00:31:04,820 |
|
ุงู least upper boundุ ุงู supremumุ ููุธู ุฃุตุบุฑ ุฃู |
|
|
|
418 |
|
00:31:04,820 --> 00:31:09,140 |
|
ุณุงูู ูุฐู ุงูููู
ุฉุ ูุฃู ูุฐู ุงูููู
ุฉ ุนุจุงุฑุฉ ุนู ุนุฏุฏุ ุตุงุฑ |
|
|
|
419 |
|
00:31:09,140 --> 00:31:13,420 |
|
ุงูุขู M J of F ุฃุตุบุฑ ุฃู ุณุงูู ูุฐุง ุงูู
ูุฏุฑุ ูุถุญูุฉ ูุฐู |
|
|
|
420 |
|
00:31:13,420 --> 00:31:19,780 |
|
ุฃุนู
ููุงูุง ูุชูุฑุ ุฅุฐุง ุตุงุฑ ุนูุฏู MJ of Fุฃุตุบุฑ ุฃู ูุณุงูู |
|
|
|
421 |
|
00:31:19,780 --> 00:31:28,060 |
|
MJ of FK ุฒุงูุฏ ุฅุจุณููู ุนูู ุฃุฑุจุนุฉ ูู B minus A ูุฐุง |
|
|
|
422 |
|
00:31:28,060 --> 00:31:33,240 |
|
ุงูููุงู
ุงููู ูู ููู ุงููู ูู ู
ู J ูุงุญุฏ ูุงุชููู ุนูุฏ |
|
|
|
423 |
|
00:31:33,240 --> 00:31:36,760 |
|
ุงููุงูุต ูุงุญุฏ ุงูุจุงูู ุงูุชูุง ุนุงุฑูููู ุฏุงูู
ุง ุจูุนู
ูู ุงุถุฑุจ |
|
|
|
424 |
|
00:31:36,760 --> 00:31:43,520 |
|
ูููุง ูู XJ ูุงูุต XJ minus ูุงุญุฏ ูุงุถุฑุจ ููุง ูู XJ ูุงูุต |
|
|
|
425 |
|
00:31:43,520 --> 00:31:49,300 |
|
XJ minus ูุงุญุฏ ูููุง ูู XJ minus XJ minus ูุงุญุฏุถุฑุจูุง |
|
|
|
426 |
|
00:31:49,300 --> 00:31:54,200 |
|
ุงููู ูู ุงูุชุฑููู ุงูู
ุชุจุงููุฉ ูู XJ minus XJ minus |
|
|
|
427 |
|
00:31:54,200 --> 00:31:58,780 |
|
ูุงุญุฏ ู ุจุนุฏูู ุฃุฎุฏูุง ุงู summation J ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ |
|
|
|
428 |
|
00:31:58,780 --> 00:32:02,700 |
|
N ู ุฃุฎุฏูุง ุงู summation J ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ N ู |
|
|
|
429 |
|
00:32:02,700 --> 00:32:06,880 |
|
ุฃุฎุฏูุง ุงู summation J ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ N ูุฐุง ููู |
|
|
|
430 |
|
00:32:06,880 --> 00:32:11,020 |
|
ุนูู ุจุนุถู ุทุจุนุง ูู ุดุบููุง ุนูู ุงู BY ุงููู ูุงุฌูุงูุง ุงู |
|
|
|
431 |
|
00:32:11,020 --> 00:32:15,180 |
|
partition ุงููู ูุงุฌูุงูุง ููู ุงููู ูู ุนูุฏู ูุฐุง ุนุจุงุฑุฉ |
|
|
|
432 |
|
00:32:15,180 --> 00:32:23,430 |
|
ุนู ุงููู ูู ุงู Uof ุงููู ูู ุงูู partition ุจู ุงุจุณููู |
|
|
|
433 |
|
00:32:23,430 --> 00:32:28,290 |
|
ุงููู ุจุฏู ุงุดุชุบู ุนููู ูุฏููุฉ ุงููู ู mean ู A ุงููู ูู |
|
|
|
434 |
|
00:32:28,290 --> 00:32:34,250 |
|
ุงู function F ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง mean ูู ุงู U ุงููู |
|
|
|
435 |
|
00:32:34,250 --> 00:32:40,010 |
|
ูู ุงู ุจู ุงุจุณููู ู ุงู FK ู ูุฏ ุงูุด ูุชููู ุนุจุงุฑุฉ ุนู |
|
|
|
436 |
|
00:32:40,010 --> 00:32:44,320 |
|
ุงูุด ุนุดุงู ููู ุฃุฎุฏูุง ุจู ู
ุงูููุณ ุงูู ูุชุดููููุงุงูุขู ูุฐู |
|
|
|
437 |
|
00:32:44,320 --> 00:32:50,400 |
|
y ุฒุงุฆุฏ y ุนูู ุฃุฑุจุนุฉ ูู b minus a ุงู summation ูุฐุง |
|
|
|
438 |
|
00:32:50,400 --> 00:32:54,160 |
|
ูู sub intervals ุงููู ูู ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู x ูุงุญุฏ |
|
|
|
439 |
|
00:32:54,160 --> 00:32:57,780 |
|
ููุต x not ุฒุงุฆุฏ x ุงุชููู ููุต x ูุงุญุฏ ูู
ุง ุฃุตู ู xn ููุต |
|
|
|
440 |
|
00:32:57,780 --> 00:33:01,600 |
|
xn ููุต ูุงุญุฏ ูุนูู ููุถู ูู ุงูุขุฎุฑ xn ููุต x not ูุนูู b |
|
|
|
441 |
|
00:33:01,600 --> 00:33:06,980 |
|
minus a ูู b minus a ูุฐู ุจุชุฑูุญ ู
ุน ูุฐู ูุจุตูุฑ ุนูุฏู |
|
|
|
442 |
|
00:33:06,980 --> 00:33:13,610 |
|
ุงู uุฃุตุบุฑ ู
ู ุงูู U ูุฐุง ุฒู ุฅุจุณููู ุนูู ุฃุฑุจุนุฉ ุงููู |
|
|
|
443 |
|
00:33:13,610 --> 00:33:17,450 |
|
ุนูุฏู ุงููู ูู ุงูู U ุจุฅุจุณููู F ุฃุตุบุฑ ูุณูู U ุจุฅุจุณููู |
|
|
|
444 |
|
00:33:17,450 --> 00:33:21,570 |
|
FK ุฒู ุฅุจุณููู ุนูู ุฃุฑุจุนุฉ Similarly ููุนูุง Similarly |
|
|
|
445 |
|
00:33:21,570 --> 00:33:25,690 |
|
ุจุนุฏ ุจุฏู ู
ุง ูุดุชุบู ุนูู ุงูุฃุจุฑุงููู ููู ุจุฏู ู
ุง ูุดุชุบู |
|
|
|
446 |
|
00:33:25,690 --> 00:33:30,870 |
|
ุนูู ุงูุฃุจุฑ ููุง ุจูุดุชุบู ุนุงูู
ูุง ุนูู ุงููุงูุฑ ุงููู ุจูุทูุน |
|
|
|
447 |
|
00:33:30,870 --> 00:33:34,350 |
|
ุนูุฏ ุงู ุงู ุจ ุฅุจุณููู ู ุฃู ูุฐุง ุจูุจูู ููู
ุงู ุจ ุฅุจุณููู |
|
|
|
448 |
|
00:33:34,350 --> 00:33:38,030 |
|
ู ุฃู ููู ูุงูุต ุฅุจุณููู ุนูู ุฃุฑุจุน ุฃุตุบุฑ ู
ู ุงู ุจ ุฅุจุณููู |
|
|
|
449 |
|
00:33:38,030 --> 00:33:44,490 |
|
ู ุฃู ุฅุฐุง ุงููู ูุตููุง ูู ู
ุง ูู ููู ูุง ุฌู
ุงุนุฉ ุงููู |
|
|
|
450 |
|
00:33:44,490 --> 00:33:55,110 |
|
ูุตููุง ูู ุงูู ููู ุฅุจุณููู ุฃูุจุฑ ู
ู 0ููุงู ุจู ุฅุจุณููู |
|
|
|
451 |
|
00:33:55,110 --> 00:34:05,870 |
|
ู
ุซููุง U ุจู ุฅุจุณููู ู F ุฃุตุบุฑ ุฃู ูุณุงูู U ุจู ุฅุจุณููู ู |
|
|
|
452 |
|
00:34:05,870 --> 00:34:09,990 |
|
FK ุฒุงุฆุฏ ุฅุจุณููู ุนูู ุฃุฑุจุนุฉ |
|
|
|
453 |
|
00:34:13,830 --> 00:34:20,130 |
|
ุจุฅุจุณููู ู FK ูุงูุต ุฅุจุณููู ุนูู ุฃุฑุจุนุฉ ุฃุตุบุฑู ูุณุงูู L |
|
|
|
454 |
|
00:34:20,130 --> 00:34:25,830 |
|
ุจูุจุณููู ู F ูุฐู ุงููู ูุตููุง ูู ูุญุฏ ุงูุขู ููุฌู ุงูุงู |
|
|
|
455 |
|
00:34:25,830 --> 00:34:32,230 |
|
ูุฑุชุจูู
ู
ุน ุจุนุถ ู ูุตู ููู ุจุฏูุงู ุงุดู ู
ุนููุฏ ุฎุฏูุง ุงูุงู |
|
|
|
456 |
|
00:34:32,230 --> 00:34:38,530 |
|
U ุจูุจุณููู ู Fูุงูุต ุงูู P,Y,F ูุฐู ูุงูุต ูุฐู ูู
ุง ุถุฑูู |
|
|
|
457 |
|
00:34:38,530 --> 00:34:43,510 |
|
ูุฐู ูู ูุงูุต ุจูุตูุฑ ูุฐู ูุงูุต ูุฐู ู
ุนููุฏุฉ ููุฐู ุจูุตูุฑ |
|
|
|
458 |
|
00:34:43,510 --> 00:34:46,690 |
|
ูุงูุต ููุฐู ุจูุตูุฑ ุฒุงุฆุฏ ููุฐู ุจูุตูุฑ ุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
459 |
|
00:34:46,690 --> 00:34:52,570 |
|
ุจุชุฌู
ุน ูุฐู ููุฐู ูุนูู ุจูุตูุฑ ุนุฏู ูุฐู ูุงูุต ูุฐู ุฃุตุบุฑ ู
ู |
|
|
|
460 |
|
00:34:52,570 --> 00:34:59,130 |
|
ุงูู U,P,Y,F ูููุงุฒุงุฆุฏ ูุงุฏู ูุงูุต ูุงุฏู ุฒุงุฆุฏ ูุงุฏู ูุนูู |
|
|
|
461 |
|
00:34:59,130 --> 00:35:03,010 |
|
ุจูุตูุฑ ุนูุฏู ูุงุฏู ูู ุจู ุฅุจุณู ู ุฃู ููู ูุงูุต ุงูุจู ุฅุจุณู |
|
|
|
462 |
|
00:35:03,010 --> 00:35:06,190 |
|
ู ุฃู ููู ุฒุงุฆุฏ ุฅุจุณู ุนูู ุฃุฑุจุนุฉ ูุฅุจุณู ุนูู ุฃุฑุจุนุฉ ุงููู |
|
|
|
463 |
|
00:35:06,190 --> 00:35:10,690 |
|
ูู ุฅุจุณู ุนูู ู
ููุ ุนูู ุงุชููู ููุฐู ู
ู ุงูุฃูู ูู
ุง |
|
|
|
464 |
|
00:35:10,690 --> 00:35:15,630 |
|
ูุณุชุฎุฏู
ูุง ุงููู ูู ุงููRiemann criterion for |
|
|
|
465 |
|
00:35:15,630 --> 00:35:19,640 |
|
integrability ููุฃู ูููุงููู ูู ุฃูุฌุฏุชูุง ุงูู Py ูู |
|
|
|
466 |
|
00:35:19,640 --> 00:35:23,220 |
|
ุฃูุฌุฏุชูุง ุฃู ูุฐู ูุงูุตุฉ ุฃุตุบุฑ ู
ู Y ุนูู 2 ูุนูู ุตุงุฑ ุนูุฏู |
|
|
|
467 |
|
00:35:23,220 --> 00:35:26,820 |
|
Y ุนูู 2 ูY ุนูู 2 ุฅุจุณููู ู
ุนูุงุชู ูุฐู ุตุงุฑุช ุฃุตุบุฑ ู
ู |
|
|
|
468 |
|
00:35:26,820 --> 00:35:30,080 |
|
ุฅุจุณููู ู ุจุงูุฑู
ุงูู criterion for integrability |
|
|
|
469 |
|
00:35:30,080 --> 00:35:36,560 |
|
ุจุชุทูุน ุงูู F is ุฅูุด is integrable ููุฐุง ุงููู ูู |
|
|
|
470 |
|
00:35:36,560 --> 00:35:41,200 |
|
ุงูุฅุซุจุงุช ูุฅู ุงู function F is integrable ุฏู ูุซุจุช |
|
|
|
471 |
|
00:35:41,200 --> 00:35:43,500 |
|
ุงููู ูู limit ูู integration ุจุณุงูู integration ูู |
|
|
|
472 |
|
00:35:43,500 --> 00:35:46,630 |
|
limitููุฐุง ู
ู ุฎูุงู ุงูุฎุทูุงุช ุงููู ุทูุนุช ุนูุฏูุง ุญููุฌู |
|
|
|
473 |
|
00:35:46,630 --> 00:35:55,030 |
|
ูุทูุน ุจุดูู ุณูู ูุจุดูู ุณูุณ ูุฎููููุง ูุดููู ุงูุงู since |
|
|
|
474 |
|
00:35:55,030 --> 00:35:58,130 |
|
epsilon was arbitrary then f is integrable on j ุฒู |
|
|
|
475 |
|
00:35:58,130 --> 00:36:02,750 |
|
ู
ุง ูููุง ุฎุฏ ุงู integration ู
ู a ูb f of x dx ููุต ุงู |
|
|
|
476 |
|
00:36:02,750 --> 00:36:07,950 |
|
integration ู
ู a ูb fn of x dx ุจุณุงูู ุงููู ููุงูู |
|
|
|
477 |
|
00:36:07,950 --> 00:36:10,830 |
|
absolute value ุทุจุนุงู ุตุงุฑุช ูุฐู integrable ููุฐู |
|
|
|
478 |
|
00:36:10,830 --> 00:36:14,470 |
|
integrable ู
ุงุดู ุงูุญุงู ุฅุฐุง ุงู integration ูุฐุง ููุต |
|
|
|
479 |
|
00:36:14,470 --> 00:36:17,010 |
|
ุงู integration ูุฐุง ุจุณุงูู ุงู integration ููุฐุง ููุต |
|
|
|
480 |
|
00:36:17,010 --> 00:36:20,210 |
|
ูุฐุง ุงููู ุฅูุด ู
ุงูู DX ู
ู ุฎูุงุต ุงูุชูุงู
ู ุงููู ุฃุฎุฏูุงูุง |
|
|
|
481 |
|
00:36:20,210 --> 00:36:25,370 |
|
ุณุงุจูุงู ููุฐุง ููุณู ุฃุตุบุฑ ุฃู ูุณุงููุฃุตุบุฑ ูุณุงูู ุงู |
|
|
|
482 |
|
00:36:25,370 --> 00:36:28,750 |
|
integration ู
ู a ูb ูุงุฎุฏูุงูุง ุณุงุจูุงู absolute value |
|
|
|
483 |
|
00:36:28,750 --> 00:36:34,370 |
|
of f of x ู
ุงูุต fn of x ููู ุงูุด ู
ุงูู dx ุงู absolute |
|
|
|
484 |
|
00:36:34,370 --> 00:36:36,490 |
|
value integration ุฃุตุบุฑ ูุณุงูู ุงู integration ูู |
|
|
|
485 |
|
00:36:36,490 --> 00:36:42,340 |
|
absolute value ููุฐุง ููุณูุงููู ูู ุฃุตุบุฑ ุฃู ูุณุงูู norm |
|
|
|
486 |
|
00:36:42,340 --> 00:36:47,060 |
|
ุงูู F ูุงูุต ุงูู Fn over ุงููู ูู ุงูู interval J |
|
|
|
487 |
|
00:36:47,060 --> 00:36:51,320 |
|
ู
ุงุดูุ ุงูุขู ุจูุตูุฑ ุนูุฏู ูุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู ุงู |
|
|
|
488 |
|
00:36:51,320 --> 00:36:56,840 |
|
integration ู
ู A ู B norm ุงูู F ูุงูุต ุงูู Fn over J |
|
|
|
489 |
|
00:36:56,840 --> 00:37:03,720 |
|
ุงููู ุฅูุด ู
ุงููุ DX ุงูุขู ูุฐุง ูุง ุฌู
ุงุนุฉ ุซุงุจุช ุจูุทูุน |
|
|
|
490 |
|
00:37:03,720 --> 00:37:09,520 |
|
ุจุฑุงุชู ุจูุตูุฑ ุนุจุงุฑุฉ ุนู ูุณุงูู ุงู absolute valueุงูู |
|
|
|
491 |
|
00:37:09,520 --> 00:37:13,700 |
|
norm ููู f ูุงูุต ุงูู fn over j ูู ุงู integration ู
ู |
|
|
|
492 |
|
00:37:13,700 --> 00:37:20,600 |
|
a ุฅูู b dx ูุฐุง ูููุงู ููุฐุง ุงู integration ู
ู a ุฅูู |
|
|
|
493 |
|
00:37:20,600 --> 00:37:25,840 |
|
b ุฅูู dx ูู ุนุจุงุฑุฉ ุนู b minus a ุตุงุฑ ูุฐุง ูุงูุต ูุฐุง |
|
|
|
494 |
|
00:37:25,840 --> 00:37:31,200 |
|
ุฃุตุบุฑ ู
ู ูุฐุง ูู b minus a ุงูุขู as n goes to |
|
|
|
495 |
|
00:37:31,200 --> 00:37:34,920 |
|
infinity as n goes to infinity ุตุงุฑ ูุฐุง ุฃูุจุฑ ุฃู |
|
|
|
496 |
|
00:37:34,920 --> 00:37:42,930 |
|
ูุณุงูู ุณูุฑููุฐุง ูููุทูุน ููุฐู ุงูู
ูุทูุฉ ูููุง ูุฐู ุจุณ ุฎุฏ |
|
|
|
497 |
|
00:37:42,930 --> 00:37:46,170 |
|
ุงู limit ููุฌูุชูู as n goes to infinity ูุฐุง ุจูุตูุฑ |
|
|
|
498 |
|
00:37:46,170 --> 00:37:51,590 |
|
ุงู limit ููุงas n goes to infinity ูููุง ุงู limit as |
|
|
|
499 |
|
00:37:51,590 --> 00:37:54,170 |
|
n goes to infinity ุทุจุนุง ูุฐุง one ููุฑูุญ ูุฅูู ุฃูู |
|
|
|
500 |
|
00:37:54,170 --> 00:37:57,910 |
|
ุจุชุฑูุญ ููุฃู uniformly ูุฐุง ุจุชุฑูุญ ููู ูู
ูู ููุตูุฑ ุฅุฐุง |
|
|
|
501 |
|
00:37:57,910 --> 00:38:01,330 |
|
as n goes to infinity ุงู limit ูุฐุง ุฅูุด ุจูุณุงูู ุตูุฑ |
|
|
|
502 |
|
00:38:01,330 --> 00:38:04,990 |
|
ู
ุฏุงู
ุงู limit ูุฐุง ุตุงุฑ ุจูุณุงูู ุตูุฑ ูุฐุง independent |
|
|
|
503 |
|
00:38:04,990 --> 00:38:09,170 |
|
of the limit ูุฐุง ุนุจุงุฑุฉ ุนู ููุด ููู n ุตุงุฑ ุนูุฏู ุงููู |
|
|
|
504 |
|
00:38:09,170 --> 00:38:12,990 |
|
ูู ู
ุถุญูุฉ |
|
|
|
505 |
|
00:38:12,990 --> 00:38:19,770 |
|
ุจุชุตูุฑ ุงูุตูุฑุฉ ุตุงุฑ ุนูุฏู ุงูุฃู limitูุฐุง ุจูุณุงูู ุงูุด ุตุงุฑ |
|
|
|
506 |
|
00:38:19,770 --> 00:38:24,770 |
|
ุจูุณุงูู ุณูุฑ limit ูุงู absolute value ู
ู a ูุนูุฏ b f |
|
|
|
507 |
|
00:38:24,770 --> 00:38:32,170 |
|
of x dx ููุต integration fn of x dx ู
ู a ูุนูุฏ b |
|
|
|
508 |
|
00:38:32,170 --> 00:38:35,710 |
|
limit as angles to infinity limit ุงู absolute |
|
|
|
509 |
|
00:38:35,710 --> 00:38:38,810 |
|
value ุตุงุฑ ุณูุฑ ุฅุฐุง ุฃููุฏ ุงู limit ุจุฏูู absolute |
|
|
|
510 |
|
00:38:38,810 --> 00:38:42,690 |
|
value ุจูุณุงูู ุณูุฑ ูุฐุง independent of the limit ุฅุฐุง |
|
|
|
511 |
|
00:38:42,690 --> 00:38:48,210 |
|
ุจูุตูุฑ ุจุณุงูู ุงู integration ู
ู a ูb f of x dxุจุชุฏุฎู |
|
|
|
512 |
|
00:38:48,210 --> 00:38:54,370 |
|
ุงู limit ูุงูุต limit ุงู integration fn of x dx ู
ู a |
|
|
|
513 |
|
00:38:54,370 --> 00:38:59,310 |
|
ู ุนูุฏ ุจูู ู
ุงุดู ุงูุญู ู ูุง ูุถุญู ุงูุตูุฑุฉ ูุฐุง ุตุงุฑ ุนูููุ |
|
|
|
514 |
|
00:38:59,310 --> 00:39:05,780 |
|
ูุฐุง ููู ุนูู ุจุนุถ ุตุงุฑ ุจุณุงูู ุณูุฑุฅุฐุง ุงูู limit ููุฌู |
|
|
|
515 |
|
00:39:05,780 --> 00:39:08,620 |
|
ูุฐุง ุนูู ุงูุฌูุฉ ุงูุซุงููุฉ ุจูุตูุฑ limit ุงู integration |
|
|
|
516 |
|
00:39:08,620 --> 00:39:15,080 |
|
ู
ู a ู b fn of x dx as n goes to infinity ุจุณุงูู |
|
|
|
517 |
|
00:39:15,080 --> 00:39:20,900 |
|
ุงููู ุจูุธู ููุง ู
ู a ู b f of x dx ููุฐุง ู
ุนูุงุชู ุฅูู |
|
|
|
518 |
|
00:39:20,900 --> 00:39:24,310 |
|
ูู ุญุงูุฉ ุงู uniform convergenceุงูู FN sequence of |
|
|
|
519 |
|
00:39:24,310 --> 00:39:27,030 |
|
integrable functions ูุชุฑูุญ ูู integrable function |
|
|
|
520 |
|
00:39:27,030 --> 00:39:29,450 |
|
ู ููุทูุน ุนูุฏู limit ูู integration ุจูุณุงูู ุงู |
|
|
|
521 |
|
00:39:29,450 --> 00:39:32,150 |
|
integration ู limit ู ุจูู .. ู ููููู ููู ุงุญูุง |
|
|
|
522 |
|
00:39:32,150 --> 00:39:37,110 |
|
ุนูุฌูุง ุงููู ูู ุงูููุทุฉ ุงูุซุงููุฉ ูู ุงููู ูู ุงูู
ุญุงุถุฑุฉ |
|
|
|
523 |
|
00:39:37,110 --> 00:39:42,270 |
|
ุถุงู ุนูุฏู ููุทุฉ ุฃุฎูุฑุฉ ุจุณ ูุจููุง ุฎูููู ูุฐูุฑ ูุงู ูุธุฑูุฉ |
|
|
|
524 |
|
00:39:42,270 --> 00:39:47,470 |
|
ุงููู ูู ุจุฑูุงูุฉ ุฎุงุฑุฌ ูุทุงู ุงููู ูู ุงููุชุงุจ ู ูุดูู |
|
|
|
525 |
|
00:39:47,470 --> 00:39:49,110 |
|
ุงููู ูู |
|
|
|
526 |
|
00:39:53,380 --> 00:39:58,540 |
|
ุฅูุด ุจุชููู ูุฐู ุงููู ูู ุงููุธุฑูุฉุ ุฅูุด ุจุชููู bounded |
|
|
|
527 |
|
00:39:58,540 --> 00:40:02,310 |
|
convergence theoremุุงููุธุฑูุฉ ุจุชููู let FN be a |
|
|
|
528 |
|
00:40:02,310 --> 00:40:07,150 |
|
sequence of functions that are integrable in A ูB |
|
|
|
529 |
|
00:40:07,150 --> 00:40:12,530 |
|
ู
ูุชุฑุถูู ุฅููุง integrable and suppose that ุจุฏู ูุจุนุฏ |
|
|
|
530 |
|
00:40:12,530 --> 00:40:14,850 |
|
ุนู ุงู uniform convergence ุจุชููู ูู ุดูููุง ุงู |
|
|
|
531 |
|
00:40:14,850 --> 00:40:18,550 |
|
uniform convergence ู
ู
ูู ูุจุฏูู ุจุฅูุด ุฅููุ ููุธู |
|
|
|
532 |
|
00:40:18,550 --> 00:40:20,850 |
|
ู
ุญุงูุธูุง ุนูู ุงู limit ูู integration ุจุณุงูู ุงู |
|
|
|
533 |
|
00:40:20,850 --> 00:40:24,920 |
|
integration ูู limitุ ุขูุ ุจููุนุ ูุดูู ููููุช ุฃูุฃู ุจู |
|
|
|
534 |
|
00:40:24,920 --> 00:40:27,340 |
|
sequence of functions that are integrable in A ูB |
|
|
|
535 |
|
00:40:27,340 --> 00:40:30,380 |
|
ุจุณ ุจุฏู ูุฏูุน ุซู
ู ุจุฑุถู integrable in A ูB and |
|
|
|
536 |
|
00:40:30,380 --> 00:40:34,400 |
|
suppose that ุฃูุฃู converts in A ูB to an |
|
|
|
537 |
|
00:40:34,400 --> 00:40:37,780 |
|
integrable function F ูุนูู ุฃูุฃู ุจุชุฑูุญ ููู F ุนูู |
|
|
|
538 |
|
00:40:37,780 --> 00:40:44,700 |
|
ุงููุชุฑุฉ ูุฐู ุงููู ูู point twice ู
ุงุฌุงูุด uniformly ุจุณ |
|
|
|
539 |
|
00:40:44,700 --> 00:40:50,770 |
|
ุงูุขู ุจุฏู ููุชุฑุถ ุดุบูุฉ ุจุฏู ูููุฏ ุงูุฃูุฃูุจุดุบูุฉ ู
ุนููุฉ |
|
|
|
540 |
|
00:40:50,770 --> 00:40:54,950 |
|
ุดุบูุฉ ูุจูุฑุฉ ุจุฑุถู ุงูุชูููุฏ ู
ุด ุฌููู ุทุจุนุง ููู ุจูุถู ุงุดู |
|
|
|
541 |
|
00:40:54,950 --> 00:40:59,830 |
|
ูุนูู ู
ููุฐ ุชุงูู suppose also that there exist B |
|
|
|
542 |
|
00:40:59,830 --> 00:41:05,870 |
|
ุฃูุจุฑ ู
ู ุณูุฑ ุจุญูุซ ุงูู FN of X ุฃุตุบุฑ ุดูุฑ ุจูู ููู X |
|
|
|
543 |
|
00:41:05,870 --> 00:41:09,750 |
|
element in A ู B ู ููู N element in B ูุฐุง ูู |
|
|
|
544 |
|
00:41:09,750 --> 00:41:14,690 |
|
ุงููุงูุน ุงููู ูู uniform boundedness ููุดุ ูุฃู ูู |
|
|
|
545 |
|
00:41:14,690 --> 00:41:21,200 |
|
ู
ูุชุฑุถ ุงู ุงู sequence FN of Xุฃุตุบุฑ ุฃู ูุณุงูู ุงููู ูู |
|
|
|
546 |
|
00:41:21,200 --> 00:41:28,140 |
|
B ููู X element in A ูB ูููู N element in N ูู ู
ุด |
|
|
|
547 |
|
00:41:28,140 --> 00:41:32,360 |
|
ู
ูุชุฑุถ ุฅู ุงูู Fn ููุณูุง ุชููู bounded ูุนูู F1 ุงููู |
|
|
|
548 |
|
00:41:32,360 --> 00:41:35,580 |
|
ุญุงููุง boundedุ F2 boundedุ F3 bounded ูู ุฅู ููููู |
|
|
|
549 |
|
00:41:35,580 --> 00:41:39,940 |
|
bounded ุตุญุ ุจุณ ุงููู ุทุงูุจู ุฃูุซุฑ ุงููู ุทุจุนุง ูู ุญุงูุฉ |
|
|
|
550 |
|
00:41:39,940 --> 00:41:47,640 |
|
ุงูู F1 boundedุ F2 boundedุ ููููู ุนูุฏู Fnof X ุฃุตุบุฑ |
|
|
|
551 |
|
00:41:47,640 --> 00:41:52,480 |
|
ุฃู ุณุงูู BN F4 |
|
|
|
552 |
|
00:41:53,890 --> 00:41:58,290 |
|
ุฃูู ุงููู ูู ุงูุขู ุจูููู ุนู FN ููุณูุง bounded ุฃูู |
|
|
|
553 |
|
00:41:58,290 --> 00:42:02,750 |
|
there exists B ููุงุ B ูู
ูุ ูู FN ูู ูุฑุถูุง ุฃู FN |
|
|
|
554 |
|
00:42:02,750 --> 00:42:05,950 |
|
ุงูุญุงููุง boundedุ there exists B ูููN ุณู
ูุชูุง BN |
|
|
|
555 |
|
00:42:05,950 --> 00:42:11,850 |
|
ุตุดุฏุชูุงุ ุฏู ุฃุตุบุฑ ูุณุงูู BN ููู X element in A ูB ูุฐุง |
|
|
|
556 |
|
00:42:11,850 --> 00:42:16,650 |
|
ูู ูุฑุถูุง ุฃูู ูู ูุงุญุฏุฉ ุนูู ุญุฏุฉ A bounded ูู ุทุงูุจ |
|
|
|
557 |
|
00:42:16,650 --> 00:42:24,260 |
|
ุฃูุซุฑ ุฌุงู ุงูู bound ูุฐุงุจููุน ููู ุงูู mean ููู F1 ู |
|
|
|
558 |
|
00:42:24,260 --> 00:42:30,980 |
|
ููู F2 ู ููู F3 ู ููู F4 ูุนูู ูุงุฑุถ ุฃู FN of X ุฃุตุบุฑ |
|
|
|
559 |
|
00:42:30,980 --> 00:42:35,920 |
|
ุฃู ูุดูู ูุนูู ุฏุฑุฌ ZEF ุจุฃูุจุฑ ู
ู ุตูุฑ such that FN of |
|
|
|
560 |
|
00:42:35,920 --> 00:42:42,040 |
|
X ุฃุตุบุฑ ุดูุฑ ู B ููู N element N ู ููู X element ู
ูู |
|
|
|
561 |
|
00:42:42,040 --> 00:42:48,760 |
|
in ุงู interval ุงููู ูู A ุฃู B ุทุจุนุง ูุฐุง ุงูููุงู
ุฃููุฏ |
|
|
|
562 |
|
00:42:48,760 --> 00:42:52,940 |
|
ุจูุนุทู ูุฐุง ููู ูุฐุง ู
ุด ุดุฑุท ูุนุทู ูุฐุง ูุฃู ูุฐุง ุงู BN ูู |
|
|
|
563 |
|
00:42:52,940 --> 00:42:57,540 |
|
F1 ููู B1 ุงู F2 ุจูู F2 F3 ุจูู F3 F4 ุจูู F4 ูู ููู |
|
|
|
564 |
|
00:42:57,540 --> 00:43:01,770 |
|
ุงูherosoprimam ูุฏููุฉ ููุณ ุดุฑุทุงู
ุงูุฏุฑุด ูููู ุฃู ุนุดุงู |
|
|
|
565 |
|
00:43:01,770 --> 00:43:06,070 |
|
ููู ุทูุจู ูุจูุฑ ุทุจุนุง ุงูุจุฑูุงู
ุฌ ุฎุงุฑุฌ ุนู ูุทุงู ุงู course |
|
|
|
566 |
|
00:43:06,070 --> 00:43:10,250 |
|
ุณุจุนูุง ุงูุงู ุชุญุช ูุฐุง ุงู condition ุงููู ูููุง ุนูู |
|
|
|
567 |
|
00:43:10,250 --> 00:43:14,190 |
|
condition ู
ุงูุฏุฑูุง ูููู ูุงุฒู then ุงู integration ู
ู |
|
|
|
568 |
|
00:43:14,190 --> 00:43:17,450 |
|
a ู b of x dx ุจุณูุก limit ูู integration ู
ู a b ู f |
|
|
|
569 |
|
00:43:17,450 --> 00:43:20,610 |
|
n of x dx ูุนูู ุจู
ุนูู ุฃุฎุฑ limit ูู integration ุจุณูุก |
|
|
|
570 |
|
00:43:20,610 --> 00:43:24,950 |
|
ุงู integration ูู limitุงูุงู ููุฌู ูุฌุฒูู ุงูุซุงูุซ ู
ู |
|
|
|
571 |
|
00:43:24,950 --> 00:43:29,350 |
|
ุงูู
ุญุงุถุฑุฉ ุงููู ุจุชุนูู ุจุงูู sequence of |
|
|
|
572 |
|
00:43:29,350 --> 00:43:32,550 |
|
differentiable functions ุฎูููุง ูุดูู ุงูู
ุซุงู ุฃูู ุงุดู |
|
|
|
573 |
|
00:43:32,550 --> 00:43:37,570 |
|
ู ุจุนุฏูู ููุฌู ููุธุฑูุชูุง let fn of x ุจุณุงูู summation |
|
|
|
574 |
|
00:43:37,570 --> 00:43:42,270 |
|
2 to the minus k cosine 3k x k ู
ู 1 ูุนูู ุฏู ูุนูู |
|
|
|
575 |
|
00:43:42,270 --> 00:43:47,950 |
|
ุงูุงูF1 of X ุจูุณุงูู ุงููู ูู 2 ุชุฑู ู
ุงููุณ ูุงุญุฏ ูุณุงูู |
|
|
|
576 |
|
00:43:47,950 --> 00:43:52,810 |
|
ุชูุงุชุฉ X F2 of X ุจูุณุงูู ุงููู ูู 2 ุชุฑู ู
ุงููุณ ูุงุญุฏ |
|
|
|
577 |
|
00:43:52,810 --> 00:43:56,930 |
|
ูุณุงูู ุชูุงุชุฉ X ุฒุงุฆุฏ 2 ุชุฑู ู
ุงููุณ ุงุชููู ูุณุงูู ุชูุงุชุฉ |
|
|
|
578 |
|
00:43:56,930 --> 00:44:01,070 |
|
ุชุฑุจูุน X ู ููุฐุงFn of X ูู ุนุจุงุฑุฉ ุนู ุงููSummation ูุฐุง |
|
|
|
579 |
|
00:44:01,070 --> 00:44:04,690 |
|
ู
ู ูุงุญุฏ ูู&N ููุฐู ุนุจุงุฑุฉ ุนู Sequence of Functions |
|
|
|
580 |
|
00:44:04,690 --> 00:44:09,070 |
|
ูุงุถุญ ุฃู ูุฐู Sequence of Functions ูู ุนุจุงุฑุฉ ุนู |
|
|
|
581 |
|
00:44:09,070 --> 00:44:12,570 |
|
Sequence of Differentiable Functionsุ ูู
ุงุฐุงุ ูุฃู |
|
|
|
582 |
|
00:44:12,570 --> 00:44:16,450 |
|
ูู ูุงุญุฏุฉ ู
ููู
ุนุจุงุฑุฉ ุนู Summationุ Finite Summation |
|
|
|
583 |
|
00:44:16,450 --> 00:44:20,570 |
|
ููCos Function ูุงููCos Function ู
ุณุชู
ุฑ ูู ูู ู
ูุงู |
|
|
|
584 |
|
00:44:20,570 --> 00:44:25,510 |
|
ูDifferentiable ูู ูู ู
ูุงูุฅุฐุง ุตุงุฑุช ุนูุฏู ุงูู F1 ู |
|
|
|
585 |
|
00:44:25,510 --> 00:44:29,330 |
|
ุงูู F2 ู ุงูู F3 ู ุงูู Fn ุนุงู
ุฉ R ุงูู differential |
|
|
|
586 |
|
00:44:29,330 --> 00:44:33,930 |
|
of the function on R ููู ุดููุช ุนูู ุงูู limit ุงุญูุง |
|
|
|
587 |
|
00:44:33,930 --> 00:44:37,890 |
|
ุฎุฏูุง ุงูู
ุซุงู ูุฐุง but limit Fn of X as N plus |
|
|
|
588 |
|
00:44:37,890 --> 00:44:41,970 |
|
infinity ุจุณุงูุฉ summation ูู
ู ุนูุฏ ูุงุญุฏ ุฅูู ู
ุง ูุง |
|
|
|
589 |
|
00:44:41,970 --> 00:44:47,150 |
|
ููุงูุฉ ุจุชุตูุฑ ู
ุงุดู ุงูุญุงูุฉ2 to the minus k cosine 3kx |
|
|
|
590 |
|
00:44:47,150 --> 00:44:51,150 |
|
ูุฐู ุฃุฎุฏูุง ู
ุซุงู ุนูู function is continuous |
|
|
|
591 |
|
00:44:51,150 --> 00:44:54,590 |
|
everywhere ู is not differentiable anywhere ู ูููุง |
|
|
|
592 |
|
00:44:54,590 --> 00:44:59,930 |
|
ุจุฑูุงูุฉ ุฎุงุฑุฌ ูุทุงู ุงููู ูู ุงูุชุจูุง ููุฐู ุงูุฏุงูุฉ ุนุจุงุฑุฉ |
|
|
|
593 |
|
00:44:59,930 --> 00:45:04,790 |
|
ุนู ุงู limit ูุฐู ุงููู ูู ุทูุนุช ูุฐู ุงูุฏุงูุฉ ูุนูู limit |
|
|
|
594 |
|
00:45:04,790 --> 00:45:08,590 |
|
ุงู function ูุฐู ุฏุงูุฉ ูุฐุง ุงู limit is not |
|
|
|
595 |
|
00:45:08,590 --> 00:45:12,710 |
|
differentiable at any x element in R ูุนูู ูุฐุง |
|
|
|
596 |
|
00:45:12,710 --> 00:45:16,620 |
|
ุนุจุงุฑุฉ ุนู ู
ุซุงูุนูู sequence of functions FN |
|
|
|
597 |
|
00:45:16,620 --> 00:45:25,100 |
|
differentiable on R but its limit FN ููุดูู |
|
|
|
598 |
|
00:45:25,100 --> 00:45:32,970 |
|
converts ูู
ุงู uniformly ู F ูุงูู F andF can |
|
|
|
599 |
|
00:45:32,970 --> 00:45:36,950 |
|
converge uniformly to F but ุงูู F ุฒู ู
ุง ูููุง is |
|
|
|
600 |
|
00:45:36,950 --> 00:45:44,430 |
|
not differentiable at any X element in R ููุฃูู ุงูู |
|
|
|
601 |
|
00:45:44,430 --> 00:45:50,980 |
|
uniform convergence ููุง ุจุฑุถู ูุตูุฉ ู
ุง ููุนุชุดุฅู ูุฌูุจ |
|
|
|
602 |
|
00:45:50,980 --> 00:45:54,340 |
|
ุงูู sequence of differentiable functions ุชุทูุน |
|
|
|
603 |
|
00:45:54,340 --> 00:45:57,220 |
|
differentiable function ูุนูู ุงู uniform |
|
|
|
604 |
|
00:45:57,220 --> 00:46:01,220 |
|
convergence ูู
ุงู ููุณู ุจุฏู ุฏุนู
ุฉ ุฃู ุจุฏูุง condition |
|
|
|
605 |
|
00:46:01,220 --> 00:46:05,280 |
|
ุบูุฑ ููู ููุตููุง ููู ุจุฏูุงูุง ุงูู ุงููู ูู ุงู sequence |
|
|
|
606 |
|
00:46:05,280 --> 00:46:08,060 |
|
of differentiable functions ุชููู ุฅูู |
|
|
|
607 |
|
00:46:08,060 --> 00:46:13,940 |
|
differentiable function ุฏู ูุดูู ููู
ู .. ููู
ูุงูุงู |
|
|
|
608 |
|
00:46:13,940 --> 00:46:18,300 |
|
ููุดูู ููู ูููุฑุฌ .. ูููุฑุฌ .. ูููุฑุฌ ูููุฑุฌ ูููุฑุฌ |
|
|
|
609 |
|
00:46:18,300 --> 00:46:19,940 |
|
ูููุฑุฌ ูููุฑุฌ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
610 |
|
00:46:19,940 --> 00:46:20,360 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
611 |
|
00:46:20,360 --> 00:46:21,560 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
612 |
|
00:46:21,560 --> 00:46:21,960 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
613 |
|
00:46:21,960 --> 00:46:23,120 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
614 |
|
00:46:23,120 --> 00:46:24,740 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
615 |
|
00:46:24,740 --> 00:46:28,440 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
616 |
|
00:46:29,930 --> 00:46:34,590 |
|
ูุฐุง ุฃููุฏ ุฃุตุบุฑ ุฃู ุณุงูู ุงููู ูู ุงู absolute value of |
|
|
|
617 |
|
00:46:34,590 --> 00:46:36,130 |
|
summation ุฃุตุบุฑ ุฃู ุณุงูู ุงู summation ูู absolute |
|
|
|
618 |
|
00:46:36,130 --> 00:46:39,650 |
|
value ูุงู cosine ุฃุตุบุฑ ุฃู ุณุงููุฉ ุญุฏุซ ุงู ุตุงุฑ ุนุจุงุฑุฉ ุนู |
|
|
|
619 |
|
00:46:39,650 --> 00:46:41,890 |
|
ุงู summation ุงู absolute value of summation ูุฐุง |
|
|
|
620 |
|
00:46:41,890 --> 00:46:44,910 |
|
ุฃุตุบุฑ ุฃู ุณุงูู two to the minus k ูู
ู ุนูุฏ n ุฒุงุฆุฏ |
|
|
|
621 |
|
00:46:44,910 --> 00:46:49,430 |
|
ูุงุญุฏ ุฅูู ู
ูู ุฅูู ู
ุง ูุง ููุงูุฉููุฐุง as n goes to |
|
|
|
622 |
|
00:46:49,430 --> 00:46:53,210 |
|
infinity ูุฐุง ุจุฑูุญ ูู zero ู
ุงุดู ุงูุญุงู ุฎูููุง ูู |
|
|
|
623 |
|
00:46:53,210 --> 00:46:59,350 |
|
ุงูุฐุงูุฑู ุงูุขู ุตุงุฑ ุนูุฏู f of x ููุต fn of x ุฃุตุบุฑ ุฃู |
|
|
|
624 |
|
00:46:59,350 --> 00:47:04,450 |
|
ูุณุงูู ูุฐุง ุงูุฑูู
ู
ุงุดู ู
ุด ู
ุนุชู
ุฏ ุนูู x ุตุงุฑ ูุฐุง ุฃุตุบุฑ |
|
|
|
625 |
|
00:47:04,450 --> 00:47:08,050 |
|
ุฃู ุณุงูู ูุฐุง ุตุงุฑ ูุฐุง upper bound ููุฐูู
ุฏุงู
upper |
|
|
|
626 |
|
00:47:08,050 --> 00:47:10,210 |
|
bound ุฅุฐุง ุงู upper bound ุฃูุจุฑ ุฃู ุณุงูู ุงู least |
|
|
|
627 |
|
00:47:10,210 --> 00:47:14,170 |
|
upper bound ุงููู ูู ููู
ูู F ูุงูุต FN over R ุฃุตุบุฑ |
|
|
|
628 |
|
00:47:14,170 --> 00:47:17,310 |
|
ุฃู ุณุงูู ูุฐุง as N goes to infinity ูุฐุง ุจูุฑูุญ ูู |
|
|
|
629 |
|
00:47:17,310 --> 00:47:21,250 |
|
zero ุฅุฐุง ุงู F ูุงูุต FN over R ุจุชุฑูุญ ูู zero ููุฐุง |
|
|
|
630 |
|
00:47:21,250 --> 00:47:27,570 |
|
ู
ุนูุงุชู ุฃู FN ุจุชุฑูุญ ูู F ุงููู ูู on mean on R ูุนูู |
|
|
|
631 |
|
00:47:27,570 --> 00:47:31,250 |
|
ุงู convergence ุฅูุด ู
ุงูู uniform convergence ุจุงูุฑุบู
|
|
|
|
632 |
|
00:47:31,250 --> 00:47:35,880 |
|
ุฅู ุงู uniform convergence ุญุงุฏุซูุงูู Fn sequence of |
|
|
|
633 |
|
00:47:35,880 --> 00:47:40,200 |
|
differentiable functions ุงูู F ุฅูุด ู
ุง ููุง ุทูุนุชุด |
|
|
|
634 |
|
00:47:40,200 --> 00:47:44,840 |
|
differentiable ุฅุฐุง ุจุงูุฒู
ู ุงููู ูู condition ุฃู |
|
|
|
635 |
|
00:47:44,840 --> 00:47:49,900 |
|
conditions ุชุถู
ููู ุฃูู ูู
ุง Fn ุชุฑูุญ ููู F ู Fn |
|
|
|
636 |
|
00:47:49,900 --> 00:47:52,580 |
|
sequence of differentiable functions ุชุทูุนูู ุงูู F |
|
|
|
637 |
|
00:47:52,580 --> 00:47:56,930 |
|
differentiable ุฎููููุง ูุดูู ูุธุฑูุชูุง ุงููู ููุฃุฎุฑ ุฌุฒุก |
|
|
|
638 |
|
00:47:56,930 --> 00:48:00,990 |
|
ูู ุงู section ู ูู ุงู chapter ุงููู ุจุฏูุง ูุงุฎุฏู ู
ูู |
|
|
|
639 |
|
00:48:00,990 --> 00:48:07,070 |
|
ุงููู ูู ุจุชุฌุงูุจูุง ุนูู ูุฐุง ุงูุฃู
ุฑ ู ูุดูู ุฃูุด ุงููุธุฑูุฉ |
|
|
|
640 |
|
00:48:07,070 --> 00:48:12,630 |
|
ุจุชูููู ู ู
ู ุซู
ุจุนุฏ ุฃููุฉ ู
ู ูุต ูุจุฑูู ุงููุธุฑูุฉ ูุดูู |
|
|
|
641 |
|
00:48:12,630 --> 00:48:17,400 |
|
let J subset ู
ู R be a bounded intervalbounded |
|
|
|
642 |
|
00:48:17,400 --> 00:48:21,340 |
|
interval open ู
ุด open ู
ุด ูุงุฑูุฉ ู
ุนุงู a closed ู
ุด |
|
|
|
643 |
|
00:48:21,340 --> 00:48:24,560 |
|
closed ู
ุด ูุงุฑูุฉ ุงูุงู and let fn be a sequence of |
|
|
|
644 |
|
00:48:24,560 --> 00:48:29,360 |
|
functions on j ูุนูู ุนุจูู ุนูุฏู ุนูุฏู fn sequence of |
|
|
|
645 |
|
00:48:29,360 --> 00:48:33,940 |
|
functions fn sequence of functions ุนูู ู
ููุ ุนูู |
|
|
|
646 |
|
00:48:33,940 --> 00:48:38,180 |
|
ุงูู j ุงููู ูู ุงู interval ุงููู ุนูุฏู ูุนูุฏ ุงุฑู ูุงุญุฏุฉ |
|
|
|
647 |
|
00:48:38,180 --> 00:48:43,700 |
|
ุงุชููู ุงุฑู ุชูุงุชุฉ ุงูุงุฎุฑูู ูุจุฏูุง ููุชุฑุถุงููู ูู suppose |
|
|
|
648 |
|
00:48:43,700 --> 00:48:49,880 |
|
that there exist x0 element in j ุจุญูุซ ุฃู fn of x0 |
|
|
|
649 |
|
00:48:49,880 --> 00:48:56,440 |
|
converges ุงููู ูู to some limit ุงูุงู ุงูุด ู
ูุชุฑุถ ุงู |
|
|
|
650 |
|
00:48:56,440 --> 00:49:03,520 |
|
ูู ุนูุฏู x0ูู ุงูู J ุจุญูุซ ุฃู FN of X0 ูุฐู ุตุงุฑุช |
|
|
|
651 |
|
00:49:03,520 --> 00:49:07,840 |
|
sequence of numbers ูุฐู converges to some number |
|
|
|
652 |
|
00:49:07,840 --> 00:49:12,560 |
|
ุงูุด ูู ู
ุด ุนุงุฑูููู ุงูุงู and that ูู
ุนุทูู ูู
ุงู ุดุบูุฉ |
|
|
|
653 |
|
00:49:12,560 --> 00:49:18,800 |
|
ูุฐู ู
ุนุทูููุงูุง ุงููู ูู and converges ุนูุฏ ู
ูุทุฉ ู
ุญุฏุฏุฉ |
|
|
|
654 |
|
00:49:18,800 --> 00:49:24,320 |
|
ุงุณู
ูุง X0 ูู ุงูู J and the sequence FN prime of |
|
|
|
655 |
|
00:49:24,320 --> 00:49:29,510 |
|
derivatives exist on Jูุนูู ู
ูุชุฑุถ ุฅู ุงูู F N' |
|
|
|
656 |
|
00:49:29,830 --> 00:49:32,910 |
|
exists ูุนูู F N sequence of differentiable |
|
|
|
657 |
|
00:49:32,910 --> 00:49:36,390 |
|
functions ู
ูุชุฑุถ ุฅู F N sequence of differentiable |
|
|
|
658 |
|
00:49:36,390 --> 00:49:40,210 |
|
functions ูู
ุด ูููุ ูุจููููู ุฅู ูุฐู ุงูู F N' |
|
|
|
659 |
|
00:49:40,750 --> 00:49:45,230 |
|
converts uniformly on J to some function F ูุนูู |
|
|
|
660 |
|
00:49:45,230 --> 00:49:50,950 |
|
ุจููููู F N' existsFN ุจุฑุงูู
exist ููู N ููุฐุง ุงูู |
|
|
|
661 |
|
00:49:50,950 --> 00:49:55,430 |
|
sequence ุจูููู ูู converges uniformly to some |
|
|
|
662 |
|
00:49:55,430 --> 00:50:00,130 |
|
function ุงุณู
ูุง ู
ููุ ุงุณู
ูุง J ุฅุฐู sequence of |
|
|
|
663 |
|
00:50:00,130 --> 00:50:05,510 |
|
functions ูุฃู ูู X0 ูู ุงูู J ุจุญูุซ ุฃู FN of X0 |
|
|
|
664 |
|
00:50:05,510 --> 00:50:10,830 |
|
ููุณูุง ุชููู converges FN ุจุฑุงูู
converges uniformly |
|
|
|
665 |
|
00:50:10,830 --> 00:50:17,150 |
|
to some Gto some G ุจูู ุงูุฃูุธู
ู
ุน ูุฌูุฏ ูุฐู ุงูุดุฑูุท |
|
|
|
666 |
|
00:50:17,150 --> 00:50:23,210 |
|
ุงููู ุญูููุง ุนูููุง then the sequence FN converges |
|
|
|
667 |
|
00:50:23,210 --> 00:50:32,330 |
|
uniformly to a function F ุจุนุฏ ูุฐุง ุจุนุฏ ูุฐุง ุจููุงูู |
|
|
|
668 |
|
00:50:32,330 --> 00:50:37,370 |
|
ุฃู FN ุบุตุจ ุฅู ุนูุง ูุงุฒู
ุชููู converges uniformly to |
|
|
|
669 |
|
00:50:37,370 --> 00:50:44,660 |
|
some function mean F ูู
ุด ููููุงูู function F ูุฐู |
|
|
|
670 |
|
00:50:44,660 --> 00:50:51,260 |
|
ุชุทูุน ุงูู derivative ุชุจุนุชูุง ูู ู
ููุ ูู ุงูู G ูุนูู |
|
|
|
671 |
|
00:50:51,260 --> 00:51:01,310 |
|
ููุฃูู ุฃู ุงูู F N converges uniformly to Fุงููู ูู |
|
|
|
672 |
|
00:51:01,310 --> 00:51:07,270 |
|
ุงูู derivative ููุง ู
ูู ุงูุงุด ุงูู G ูุนูู F N ุจุฑุงูู
|
|
|
|
673 |
|
00:51:07,270 --> 00:51:10,510 |
|
ุจุชููู uniformly convergence to some function G |
|
|
|
674 |
|
00:51:10,510 --> 00:51:17,890 |
|
ูุชุทูุน ุงูู F N converge uniformly ูู function ุงููู |
|
|
|
675 |
|
00:51:17,890 --> 00:51:24,570 |
|
ุชูุถููุง ูู ู
ูู ูู ุนุจุงุฑุฉ ุนู ุงูู Gุทูุจ ุฅุฐุง ูู ุนูุฏู |
|
|
|
676 |
|
00:51:24,570 --> 00:51:28,210 |
|
ุดุบูุชูู ุจุฏูุง ูุซุจุช ุงู FN can form convergence to F |
|
|
|
677 |
|
00:51:28,210 --> 00:51:35,690 |
|
ูุงูู F' ุฅูุด ุจุชุณุงููุ ุจุชุณุงูู ู
ููุ ุงููู ูู ุงูู G ูุนูู |
|
|
|
678 |
|
00:51:35,690 --> 00:51:42,830 |
|
ูุชุตูุฑ ุฅูู ุงูู FN' ุงููู ูู sequence of |
|
|
|
679 |
|
00:51:42,830 --> 00:51:45,770 |
|
differentiable functions ุจุชุทูุน ุนูุฏู ูุฐู sequence |
|
|
|
680 |
|
00:51:45,770 --> 00:51:49,210 |
|
of differentiable functions converge to function |
|
|
|
681 |
|
00:51:49,210 --> 00:51:54,110 |
|
ุจุชููู differentiableููุดุ ูุฃู F' ุงูุด ุจุชุชุณุงูู Gุ |
|
|
|
682 |
|
00:51:54,110 --> 00:51:57,590 |
|
ูุนูู F is differentiable ูุนูู ูุฐู ุจุชููู ุฅูู ูู |
|
|
|
683 |
|
00:51:57,590 --> 00:52:00,950 |
|
ุงูุดุฑุทุฉ ุฏู ู ุงูุดุฑุทุฉ ุฏู ุชุชุญูููุง ุฅุฐู ุงู sequence of |
|
|
|
684 |
|
00:52:00,950 --> 00:52:06,290 |
|
differentiable functions FN ูุชููู converges to .. |
|
|
|
685 |
|
00:52:06,290 --> 00:52:09,110 |
|
uniform converges ุทุจุนุง to a differentiable |
|
|
|
686 |
|
00:52:09,110 --> 00:52:13,310 |
|
function F ุฅุฐู ุงูุดุบูุชูู ูุฏููุฉ ุฅุญูุง ุจุฏูุง ูุซุจุชูู
|
|
|
|
687 |
|
00:52:13,310 --> 00:52:18,330 |
|
ุฎูููุง ูุดูู ููู ูุซุจุช ูุฏููุฉ ุงูุดุบูุชูู ุจุฏูุง ูุซุจุช ุฅูู |
|
|
|
688 |
|
00:52:18,330 --> 00:52:23,460 |
|
FNConverse Uniform ููู F ูุจุฏูุง ูุซุจุช ุฃู F' ุจูุณูุง G |
|
|
|
689 |
|
00:52:23,460 --> 00:52:29,760 |
|
ูุนูู ุจุฏูุง ูุซุจุช ูู ูู ุงูููุงูุฉ ุฃูู limit F |
|
|
|
690 |
|
00:52:31,240 --> 00:52:37,940 |
|
of X ุฒุงุฆุฏ ุงููู ูู F of X ุฒุงุฆุฏ Delta X ู
ุซูุง ุฃู F of |
|
|
|
691 |
|
00:52:37,940 --> 00:52:45,520 |
|
X ูุงูุต F of C ุนูู X minus C as X ุจุชุฑูุญ ููู C ุจุฏูุง |
|
|
|
692 |
|
00:52:45,520 --> 00:52:51,980 |
|
ูุซุจุช ุฃูู exist ููุณุงูู G of meanof C ูุนูู ุจู
ุนูู ูุฐุง |
|
|
|
693 |
|
00:52:51,980 --> 00:52:56,460 |
|
for arbitrary C element in main NG ูุนูู ูุฃูู ูู |
|
|
|
694 |
|
00:52:56,460 --> 00:53:01,300 |
|
ุงูููุงูุฉ ุจุฏูุง ูุซุจุช ูู ุงูู ูุฐุง exist ูุนูู F prime of |
|
|
|
695 |
|
00:53:01,300 --> 00:53:05,840 |
|
C exist ููุณุงูู main G of C ุงู ุจู
ุนูู ุงุฎุฑ ุจุฏูุง ูุซุจุช |
|
|
|
696 |
|
00:53:05,840 --> 00:53:08,320 |
|
ูู ุงูู for every Y colon of Z there exists delta |
|
|
|
697 |
|
00:53:08,320 --> 00:53:14,490 |
|
such that X minus Cุฃุตุบุฑ ู
ู Delta ูุคุฏู ุฅูู F of X |
|
|
|
698 |
|
00:53:14,490 --> 00:53:20,270 |
|
ูุงูุต F of C ุนูู X minus C ูุงูุต G of C ูููู ุฃุตุบุฑ ู
ู |
|
|
|
699 |
|
00:53:20,270 --> 00:53:24,530 |
|
ู
ูู ู
ู Y ุฅุฐุง ุฃุซุจุชูุง ูุฐุง ู
ุนูุงุชู ู ุฃุซุจุชูุง ุฅู ูุฐุง |
|
|
|
700 |
|
00:53:24,530 --> 00:53:28,460 |
|
ุงููู ูู limit existูุนูู ุงูู F' exist ููุณุงูู ู
ูู |
|
|
|
701 |
|
00:53:28,460 --> 00:53:31,920 |
|
ุงูู G of C ูุงูู C ููู ุจุชููู ุฃุฎุฏููุง Arbitrary ูู |
|
|
|
702 |
|
00:53:31,920 --> 00:53:36,680 |
|
ุงูู G ูุจููู ุฎูุตูุง ุฃู ุงูู F' ุจูุณุงูู ุงูู G ููุฐุง ููู |
|
|
|
703 |
|
00:53:36,680 --> 00:53:40,920 |
|
ุจุนุฏ ู
ุง ูุซุจุช ุฃู ุงูู F ุฃูู conversion form ููู
ูู ููู |
|
|
|
704 |
|
00:53:40,920 --> 00:53:48,280 |
|
F ู ุชุนุงููุง ูุชูุงุตูู ุงูุจุฑูุงู ุทูุจ ููุฌู ูุดูู ุจุฑูุงููุง |
|
|
|
705 |
|
00:53:48,280 --> 00:53:51,020 |
|
ุดูููุง ุทุงูููุง ุฑูุญูู
ุนูููุง |
|
|
|
706 |
|
00:53:55,700 --> 00:53:58,860 |
|
ุนุดุงู ูุนุฑู ุจุณ ูุดุชุบู ูุจูู ุญููุฉ ุฎููููุง ูุณู
ู ุงู end |
|
|
|
707 |
|
00:53:58,860 --> 00:54:02,960 |
|
points ุฌูู ูุงุญุฏุฉ ุงุณู
ูุง A ูุงุญุฏุฉ ุงุณู
ูุง B ูุนูู let A |
|
|
|
708 |
|
00:54:02,960 --> 00:54:06,440 |
|
ุฃุฒุฑุน ู
ู ุจู ุจู the end points of J ุฌูู ู
ูุชูุญ ู
ูุชูุญ |
|
|
|
709 |
|
00:54:06,440 --> 00:54:08,020 |
|
ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ |
|
|
|
710 |
|
00:54:08,020 --> 00:54:08,080 |
|
ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ |
|
|
|
711 |
|
00:54:08,080 --> 00:54:08,580 |
|
ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ |
|
|
|
712 |
|
00:54:08,580 --> 00:54:13,580 |
|
ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชูุญ ู
ูุชููุฎููููู ุฃุฎุฏ X ุจู |
|
|
|
713 |
|
00:54:13,580 --> 00:54:17,700 |
|
Arbitrary Point ูู ุงูู J ุฃุญูุง ุจูุญูู ุนู ุฃู X ููู ู
ุง |
|
|
|
714 |
|
00:54:17,700 --> 00:54:26,420 |
|
ูุง ูู ุงูู J ุงููู ูู .. if M and N element in N |
|
|
|
715 |
|
00:54:26,420 --> 00:54:29,320 |
|
then F minus N is differentiable on the closed |
|
|
|
716 |
|
00:54:29,320 --> 00:54:34,550 |
|
interval within points X0 and X ุฃููุฏู
ูุชุฑุถูู ุงุญูุง |
|
|
|
717 |
|
00:54:34,550 --> 00:54:41,010 |
|
ุงู ุงูู F M' exist ู
ุธุจูุท ู
ุฏุงู
exist ุงุฐุง F M |
|
|
|
718 |
|
00:54:41,010 --> 00:54:44,850 |
|
differentiable ู F N differentiable ุงุฐุง F M ููุต F |
|
|
|
719 |
|
00:54:44,850 --> 00:54:48,910 |
|
N differentiable ุนูู ูู ู
ููุ ุนูู ูู ุงูู J ุงููู ุงูุง |
|
|
|
720 |
|
00:54:48,910 --> 00:54:52,950 |
|
ุจุฏู ุงุดุชุบู ุนูู ูุชุฑุฉ ู
ุญุฏุฏุฉ ุงูุง ุงุฎุฏุช X element in J |
|
|
|
721 |
|
00:54:52,950 --> 00:54:57,490 |
|
arbitraryููู ู
ุนุทูู ูู ุงููุธุฑูุฉ X0 ุงููู ุนูุฏูุง ุงููู |
|
|
|
722 |
|
00:54:57,490 --> 00:55:02,110 |
|
ูู Fn of X0 converts ุจุญูู ุนู X0 ูุฐู ุงูู
ูุตูุฏุฉ ูู |
|
|
|
723 |
|
00:55:02,110 --> 00:55:08,170 |
|
ุงููุธุฑูุฉ ุจุฏู ุฃุทุจูุฌ ุนูููุง ุนูุฏู ุจู
ุง ุฃู Fm ูุงูุต Fn is |
|
|
|
724 |
|
00:55:08,170 --> 00:55:11,730 |
|
differentiable ุนูู closed interval within points |
|
|
|
725 |
|
00:55:11,730 --> 00:55:18,090 |
|
X0 ู X ูุนูู ูุง X0 ู X ูุง X ู X0 ุญุณุจ ู
ููุน ูู ู
ู X ู |
|
|
|
726 |
|
00:55:18,090 --> 00:55:23,440 |
|
X0ุฅุฐุง ุตุงุฑุช Fm ูุงูุต Fn ุนุจุงุฑุฉ ุนู ุงูู differential |
|
|
|
727 |
|
00:55:23,440 --> 00:55:26,120 |
|
ุจุงูู function ุนูู ูุฐู ุงูู closed bounded interval |
|
|
|
728 |
|
00:55:26,120 --> 00:55:30,320 |
|
ุฅุฐุง ุฃููุฏ continuous ุนูููุง ูู
ุงู ุฅุฐุง ุจุงูู mean value |
|
|
|
729 |
|
00:55:30,320 --> 00:55:33,940 |
|
theorem ู
ุทุจูุฉ ุงูู mean value theorem ุฏู ุทุจููุง ุนูู |
|
|
|
730 |
|
00:55:33,940 --> 00:55:39,300 |
|
ู
ูู ูุง ุฌู
ุงุนุฉุ ุนูู ุงูู Fm ูุงูุต Fn ูุนูู ูุฐู ุฏุงูุชูุง |
|
|
|
731 |
|
00:55:39,300 --> 00:55:43,660 |
|
ุงููู ุจุฏูุง ูุทุจู ุนูููุง ุงูู mean value theorem ุฅุฐุง by |
|
|
|
732 |
|
00:55:43,660 --> 00:55:47,760 |
|
mean value theorem there exists Y ุจูู ุงูู X0 ูุงูู |
|
|
|
733 |
|
00:55:47,760 --> 00:55:53,380 |
|
X ุจุญูุซุฅู ุงูู Derivative ููุฐู ุจูุณุงูู F M ูุงูุต F N |
|
|
|
734 |
|
00:55:53,380 --> 00:55:59,440 |
|
ุนูุฏ ุงููู ูู X ูุงูุต F M ูุงูุต F Note ุนูุฏ ุงูู X Note |
|
|
|
735 |
|
00:55:59,440 --> 00:56:05,640 |
|
ุจูุณุงูู F M ูุงูุต F N Prime ุนูุฏ ู
ููุ ุนูุฏ ุงูู Yby |
|
|
|
736 |
|
00:56:05,640 --> 00:56:09,840 |
|
mean value theorem there exists y between x0 and x |
|
|
|
737 |
|
00:56:09,840 --> 00:56:13,700 |
|
such that ูุฐุง ุงูุฏูุฉ ูููุง ุนูู ุจุนุถ ุนูุฏ ุงู x fm of x |
|
|
|
738 |
|
00:56:13,700 --> 00:56:19,300 |
|
ููุต fn of x ูุฐุง ุงูุฏูุฉ ูุงูุต fm of x0 ููุต fn of x0 |
|
|
|
739 |
|
00:56:19,300 --> 00:56:25,060 |
|
ูุฐุง ุงูุฏูุฉ ุนูุฏ ุงูููุทุฉ x0 ุจุณุงูู ุงููู ูู x minus x0ูู |
|
|
|
740 |
|
00:56:25,060 --> 00:56:30,520 |
|
ุงููู ูู ุงู derivative ููุฐู ุนูุฏ ู
ูู ุนูุฏู ุงูููุทุฉ Y |
|
|
|
741 |
|
00:56:30,520 --> 00:56:34,700 |
|
ุงููู ูู F M prime of Y ููุต F M prime of Y ุฅุฐุง |
|
|
|
742 |
|
00:56:34,700 --> 00:56:47,340 |
|
ุญุตููุง ุนูู ูุฐู ุงูููุทุฉ ุทูุจ ุงูุขู ูู ุฃุฌูุช ุจุณ |
|
|
|
743 |
|
00:56:47,340 --> 00:56:50,140 |
|
ุนุดุงู ุจุฏู ุฃูุงูู ู
ูุงู ูู
ุง ููู ููุงู
ูุชูุฑ ุจุฏู ุฃูุชุจู |
|
|
|
744 |
|
00:56:50,140 --> 00:56:57,540 |
|
ูุฐุง ุนูุฏู ุงูู
ูุฑูุถุฎููููู ุฃูุชุจ ุฅู ูุฐููุฉ ุนูุฏู ุงูู
ุนุทูุงุช |
|
|
|
745 |
|
00:56:57,540 --> 00:57:07,950 |
|
ุงููู ูู FN of X0 Converges ูู
ุนุงูุง ุงููู ูู FNprime |
|
|
|
746 |
|
00:57:07,950 --> 00:57:14,250 |
|
converging formally to the G ูุฐุง ุงูู
ุทููุจ ุฃู FN |
|
|
|
747 |
|
00:57:14,250 --> 00:57:20,290 |
|
converging formally to F ู F' ูู ู
ูู ุงูู G ูุฐู |
|
|
|
748 |
|
00:57:20,290 --> 00:57:24,450 |
|
ุงูู
ุนุทูุงุช ููู ุงูู
ุทููุจ ูุฐุง ุงููู ูู ู
ูุฎุตูุง ุฎูููุง ูุดูู |
|
|
|
749 |
|
00:57:24,450 --> 00:57:31,590 |
|
ุนุดุงู ุฃูู ุงุญูุง ูุจุฏุฃ ุงููู ูู ุฃูุณููู
ูู ุฎุทูุฉ ุงููู ูู |
|
|
|
750 |
|
00:57:31,590 --> 00:57:35,270 |
|
ู
ุง ูุงูุช ู
ุด ู
ูุณุฑุฉ ูู ุงูุชูุฎูุต ููุณููู
ุฅูุงูุง ุจุงูุชูุตูู |
|
|
|
751 |
|
00:57:36,790 --> 00:57:43,750 |
|
ุงูุงู ูุฌุฏูุง ูุฐู ูุง ุฌู
ุงุนุฉ ู
ุงุดู ุงูุญุงู ุงูุงู ุนูุฏู ูุฐุง |
|
|
|
752 |
|
00:57:43,750 --> 00:57:47,830 |
|
ุงูููุงู
ุตุญูุญ ููู x ุนูุฏู ุทุจุนุง x note ูุญูู ุนู x note |
|
|
|
753 |
|
00:57:47,830 --> 00:57:56,530 |
|
ู
ุญุฏุฏุฉ ุตุงุฑ ุนูุฏู ุงูุงู fm of x ูุงูุต fn of x ูุฐู ุตุงุฑุช |
|
|
|
754 |
|
00:57:56,530 --> 00:58:01,600 |
|
absolute valueุฃุตุบุฑ ุฃู ูุณุงูู ุจุฏู ุฃูุฌู ูุฐู ุนูู ุงููุทู |
|
|
|
755 |
|
00:58:01,600 --> 00:58:04,420 |
|
ูุฐู ูุฃููู absolute value ูุฐู ุจุณุงูู ุงู absolute |
|
|
|
756 |
|
00:58:04,420 --> 00:58:07,720 |
|
value ูุฐู ูุฃุฎุฏ triangle inequality ุจูุตูุฑ ุฃุตุบุฑ ุฃู |
|
|
|
757 |
|
00:58:07,720 --> 00:58:17,260 |
|
ูุณุงูู ุงู absolute value ููุฐู Fn of X0 ูุงูุต Fn of |
|
|
|
758 |
|
00:58:17,260 --> 00:58:26,650 |
|
X0 ุฒุงุฆุฏ ุงู absolute value ูู X minus X0ูู ุงูู F M |
|
|
|
759 |
|
00:58:26,650 --> 00:58:34,930 |
|
prime of Y ูุงูุต F M F N prime of mean of Y ู
ุงุดู |
|
|
|
760 |
|
00:58:34,930 --> 00:58:39,650 |
|
ุงูุญุงู ูุฐุง mean ู
ุงูู ูุฐุง ุจุงู mean value ุจุงู |
|
|
|
761 |
|
00:58:39,650 --> 00:58:42,550 |
|
triangle inequality ุจุนุฏ ู
ุง ูุฌูุชูุง ุนูู ุงูุฌูุฉ |
|
|
|
762 |
|
00:58:42,550 --> 00:58:50,310 |
|
ุงูุซุงููุฉ ุงูุขู ูุฐุง ุงูู
ูุฏุงุฑ ูุฐุง ุงูู
ูุฏุงุฑุงููู ูู ุฃููุฏ |
|
|
|
763 |
|
00:58:50,310 --> 00:58:54,790 |
|
ูุฐุง ุจูุตูุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ูุณุงูู ูุฐุง ููุฐุง ุฃุตุบุฑ |
|
|
|
764 |
|
00:58:54,790 --> 00:59:05,090 |
|
ูุณุงูู FM of X not FM of X not ูุงูุต FM of X not |
|
|
|
765 |
|
00:59:05,090 --> 00:59:12,730 |
|
ุฒุงุฆุฏ ูุฐู ุงููู ูู ุงููู ูู ู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ ู
ู ุนูุฏ A |
|
|
|
766 |
|
00:59:12,730 --> 00:59:17,890 |
|
ูุนูุฏ BX ู X0 ุจุบุถ ุงููุธุฑ ุงูู
ููุน ููุงุฏู ุฃู ููุงุฏู ูู |
|
|
|
767 |
|
00:59:17,890 --> 00:59:22,470 |
|
ุงูุขุฎุฑ ุงููู ูู B minus A ุฃููุฏ ุฃูุจุฑ ู
ู X minus X0 |
|
|
|
768 |
|
00:59:22,470 --> 00:59:29,670 |
|
ุฃููุฏ ุฅุฐุง ุฒุงุฆุฏ B minus A ููู ูุฐุง ูุฐุง ุฃููุฏ ุฃุตุบุฑ ุฃู |
|
|
|
769 |
|
00:59:29,670 --> 00:59:36,890 |
|
ูุณุงูู ู
ูู ุงู norm ู F M prime ูุงูุต F N prime over |
|
|
|
770 |
|
00:59:36,890 --> 00:59:40,550 |
|
ู
ูู ุงูุฌูู ุงููู ุนูุฏู ููุด ูุฃู ูุฐุง supremum ููู ููู |
|
|
|
771 |
|
00:59:40,550 --> 00:59:45,630 |
|
ุตุงุฑ ูุฐุง ููู ุนุจุงุฑุฉ ุนู ุฑูู
ูุฐุง ููู ุนุจุงุฑุฉ ุนู ุฑูู
ูุฐุง |
|
|
|
772 |
|
00:59:45,630 --> 00:59:51,650 |
|
ุงูุฑูู
ุงูุขู ุฃูุจุฑ ุฃู ุณุงูู ูุฐู ููู X ููู ู
ูุฌูุฏุฉ ูู |
|
|
|
773 |
|
00:59:51,650 --> 00:59:55,350 |
|
ุงูุฌูู ูุฃูู ุฃุฎุฏุช X ู
ุงููุง ู
ู ุฑุฃุณ ุงูุฏูุฑ ุฃุฎุฏุช X is |
|
|
|
774 |
|
00:59:55,350 --> 01:00:00,290 |
|
arbitrary point ู
ุงุดู ุงูุญุงู ุตุงุฑ ุนูุฏู ุงูุขู ูุฐุง ุตุงุฑ |
|
|
|
775 |
|
01:00:00,290 --> 01:00:04,650 |
|
upper bound ููุฐู ุนุฏูุงูุง ู
ุงุฆุฉ ู
ุฑุฉ ุฅุฐุง ุตุงุฑ ุนูุฏ ูุฐุง |
|
|
|
776 |
|
01:00:04,650 --> 01:00:07,250 |
|
ุงู upper bound ุฃูุจุฑ ุฃู ุณุงูู ุงู least upper bound |
|
|
|
777 |
|
01:00:07,250 --> 01:00:10,010 |
|
ุงููู ูู ุงู supremum ุฅุฐุง ุตุงุฑ ุนูุฏ ุงู supremum ุงููู |
|
|
|
778 |
|
01:00:10,010 --> 01:00:15,810 |
|
ูู norm ุงู FMูุงูุต FN over J ุฃุตุบุฑ ุฃู ุณุงูู ุงูู
ูุฏุงุฑ |
|
|
|
779 |
|
01:00:15,810 --> 01:00:20,570 |
|
ูุฐุง ููู ุงููู ูู ุญุตููุง ุนููู ููุง ูุชูุณูุฑู ูู ุงููู |
|
|
|
780 |
|
01:00:20,570 --> 01:00:26,130 |
|
ูุณุฑุชููู
ุฅูุงู ููู ุฅุฐุง ุตุงุฑ ุนูุฏู FM ูุงูุต FN over J |
|
|
|
781 |
|
01:00:26,130 --> 01:00:29,490 |
|
ุฃุตุบุฑ ุฃู ุณุงูู FN of X node ูุงูุต FN of X node ุฒุงุฏ B |
|
|
|
782 |
|
01:00:29,490 --> 01:00:36,990 |
|
minus A ูู ุงูููุฑ ุงููู ุฃู
ุงู
ู ุงูุขู ุงููุงุญุธ ุฃู FN of X |
|
|
|
783 |
|
01:00:36,990 --> 01:00:41,760 |
|
node convergeุงููู ูู and FN' is uniformly |
|
|
|
784 |
|
01:00:41,760 --> 01:00:46,480 |
|
convergent in J then by the inequality above and |
|
|
|
785 |
|
01:00:46,480 --> 01:00:50,520 |
|
theorem 8.11 we have FN is uniformly convergent |
|
|
|
786 |
|
01:00:50,520 --> 01:00:55,300 |
|
ุฑู
ุงูุง ุนูู ุทูู ุฎููููู ุฃูุณุฑููู
ุฃููุง ูุฐู ุฎููููู |
|
|
|
787 |
|
01:00:55,300 --> 01:01:01,260 |
|
ุฃูุณุฑููู
ุงููู ุญูุงู ููุง ูููู ูุตู ุฃู FN converges |
|
|
|
788 |
|
01:01:01,260 --> 01:01:07,570 |
|
uniformly ู
ู ู
ูู ูู FNููุณุฑูุง ูุงูุชูุณูุฑ ูู
ูู ู
ุฑุฉ ูุจู |
|
|
|
789 |
|
01:01:07,570 --> 01:01:17,510 |
|
ููู ุงูุงู ุดูููุง ู
ุนุงูุง ุจู
ุง ุงูู ุนูุฏู ุงู FN of X0 |
|
|
|
790 |
|
01:01:17,510 --> 01:01:25,950 |
|
converges ุงุฐุง it is Cauchy ู
ุธุจูุท is it is a Cauchy |
|
|
|
791 |
|
01:01:25,950 --> 01:01:32,270 |
|
sequence ู
ุนุงูุง ู
ุฏุงู
Cauchy sequenceุฃูุถุง ุงูู
ุนุฑูู |
|
|
|
792 |
|
01:01:32,270 --> 01:01:35,790 |
|
ุงูุด ู
ุนูุงู ุงูู Cauchy Sequence ุงู ููู ุฃุจุณููู ุฃูุจุฑ |
|
|
|
793 |
|
01:01:35,790 --> 01:01:43,440 |
|
ู
ู ุณูุฑ there exist ุงููู ูู ู
ุซูุง ูุณู
ููุง H1ุงููู ูู |
|
|
|
794 |
|
01:01:43,440 --> 01:01:49,220 |
|
element in N such that for every N ู M ุฃูุจุฑ ุฃู |
|
|
|
795 |
|
01:01:49,220 --> 01:01:57,500 |
|
ูุณุงูู H1 ุจููู ุนูุฏู FN of X0 ูุงูุต FN of X0 ุฃุตุบุฑ ู
ู |
|
|
|
796 |
|
01:01:57,500 --> 01:02:02,740 |
|
ู
ููุ ู
ู ูุจุณููู ุนูู ุงุชููู ู
ุซูุง ูุจุณููู ุนูู ุงุชููู |
|
|
|
797 |
|
01:02:02,740 --> 01:02:07,220 |
|
ู
ุงุดูุ ูุฐุง ู
ู ููู ุฌุจุชูุ ู
ู ุฃู FN of X0 converges |
|
|
|
798 |
|
01:02:07,220 --> 01:02:12,910 |
|
ูุฐู ุงูุฃููู ุฎูููุง ูุฐู ุงุณู
ูุง ูุงุญุฏ ุงูุงูุนูุฏู ู
ุนุทููุฉ |
|
|
|
799 |
|
01:02:12,910 --> 01:02:19,030 |
|
ุจุฑุถู ุงููู ูู FN ุงูู Prime Uniform Convergence |
|
|
|
800 |
|
01:02:22,150 --> 01:02:28,730 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
801 |
|
01:02:28,730 --> 01:02:32,450 |
|
uniformly Converges |
|
|
|
802 |
|
01:02:32,450 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
803 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
804 |
|
01:02:34,190 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
805 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
806 |
|
01:02:34,190 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
807 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
808 |
|
01:02:34,190 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
809 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
810 |
|
01:02:34,190 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
811 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
812 |
|
01:02:34,190 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
813 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
814 |
|
01:02:34,190 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
815 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges uniformly Converges uniformly Converges |
|
|
|
816 |
|
01:02:34,190 --> 01:02:34,190 |
|
uniformly Converges uniformly Converges uniformly |
|
|
|
817 |
|
01:02:34,190 --> 01:02:34,190 |
|
Converges usually Converges usually Converges |
|
|
|
818 |
|
01:02:34,190 --> 01:02:34,290 |
|
usually Converges usually Converges usually |
|
|
|
819 |
|
01:02:34,290 --> 01:02:34,530 |
|
Converges usually Converges usually Converges |
|
|
|
820 |
|
01:02:34,530 --> 01:02:38,430 |
|
usually Converges usually Converges usually |
|
|
|
821 |
|
01:02:38,430 --> 01:02:44,130 |
|
Converges usually Converges usually Converges |
|
|
|
822 |
|
01:02:44,130 --> 01:02:51,420 |
|
usually Converges usually Converges usuallyุงููู ูู |
|
|
|
823 |
|
01:02:51,420 --> 01:03:00,120 |
|
Normal Fn-Fm ุฃุตุบุฑ ู
ู Epsilon ุนูู B-A ูู 2 ุญุฑูุง ุฃู |
|
|
|
824 |
|
01:03:00,120 --> 01:03:02,860 |
|
Epsilon ูู ุงูุฏููุง ูุถุจ ููุง Epsilon ุนูู B-A ูู 2 |
|
|
|
825 |
|
01:03:02,860 --> 01:03:07,640 |
|
ุงูุงู ุจุฏู ุงุณุชุฎุฏู
ูุฐู ูุงุณุชุฎุฏู
ูุฐู ุจุฏู ุงุณุชุฎุฏู
ุงู ุงูุงู |
|
|
|
826 |
|
01:03:07,640 --> 01:03:11,020 |
|
ู ุงูุงู
ุจุชููู ุฃูุจุฑ ู
ู H2 ู ุงูุงู ู ุงูุงู
ุฃูุจุฑ ู
ู ู
ูู |
|
|
|
827 |
|
01:03:11,020 --> 01:03:15,420 |
|
ู
ู H1 ุฅุฐุง for every Epsilonุฃูุจุฑ ู
ู ุงูุตูุฑ there |
|
|
|
828 |
|
01:03:15,420 --> 01:03:18,700 |
|
exist H ุจุชุณุงูู ุงูู
ุงูุณู
ุง ุนุดุงู ุงูุง ุงูุฏุฑ ุงุณุชุฎุฏู
|
|
|
|
829 |
|
01:03:18,700 --> 01:03:24,360 |
|
ุงูุชูุชูู ุงู maximum ุจูู H1 ูH2 such that for every |
|
|
|
830 |
|
01:03:24,360 --> 01:03:29,180 |
|
N ู M ุฃูุจุฑ ุฃู ูุณุงูู H ุฃูุจุฑ ุฃู ูุณุงูู H ููููู ุนูุฏู |
|
|
|
831 |
|
01:03:29,180 --> 01:03:36,260 |
|
norm norm ูุฐู ุตุญูุญุฉ ููู M ู N ูู ุงูุฏููุง ุงู FM ูุงูุต |
|
|
|
832 |
|
01:03:36,260 --> 01:03:42,800 |
|
FN over J ุฃุตุบุฑ ุฃู ูุณุงูู ุงูุฃููู ุฒุงุฆุฏ ุงูุชุงููุฉ ุงูุฃููู |
|
|
|
833 |
|
01:03:42,800 --> 01:03:47,930 |
|
ูุฐูุงูุฃููู ุฃุตุบุฑ ุฃู ูุณุงูู ู
ููุง ูุงุฆุจ ุณู ุนูู ุงุชููู |
|
|
|
834 |
|
01:03:49,210 --> 01:03:52,890 |
|
ู
ุธุจูุท ูุฃู ูุฐู ุฃุตุบุฑ ู
ู 100 ุนูู 2 ููู ุงูู N ู ุงูู M |
|
|
|
835 |
|
01:03:52,890 --> 01:03:56,670 |
|
ุงูุฃูุจุฑ ูุณุงูู H ุงููู ูู ุฃููุฏ ุงูู H ุฃูุจุฑ ูุณุงูู ู
ููุ |
|
|
|
836 |
|
01:03:56,670 --> 01:04:00,330 |
|
ุงููู ูู H1 ูุนูู N ู M ุงููู ุจูููู ุฃูุจุฑ ูุณุงูู H ุฃููุฏ |
|
|
|
837 |
|
01:04:00,330 --> 01:04:04,690 |
|
ุจูููู ุงูู H1 ุงููู ุฃูุง ุจุงููุนู ุฃุณุชุฎุฏู
ูุง ุฒุงุฆุฏ ุงูุชุงููุฉ |
|
|
|
838 |
|
01:04:04,690 --> 01:04:10,090 |
|
ุจุฑุถู ุงูู F M' ูุงูุต F M' ุฃุตุบุฑ ู
ู ู
ูู ููุงุ M' ูุฐุง |
|
|
|
839 |
|
01:04:10,090 --> 01:04:13,050 |
|
ุทุจุนุงุ ูุฐู Prime ู ูุฐู Prime ูุฃู F M' ุงููPrime ุงูู |
|
|
|
840 |
|
01:04:13,050 --> 01:04:19,730 |
|
Convergent ูู
ูุ ูู Gุฅุจุณููู ูู ุงุชููู ูู B minus A |
|
|
|
841 |
|
01:04:19,730 --> 01:04:24,890 |
|
ุงููู ูุงู ู
ุถุฑูุจุฉ ูู ู
ูู ูู B minus A ูุจุตูุฑ ูุฐุง |
|
|
|
842 |
|
01:04:24,890 --> 01:04:27,250 |
|
ุฅุจุณููู ุนูู ุงุชููู ู ุฅุจุณููู ุนูู ูุฐู ุจูุตูุฑ ุฑูุญ ู
ุญ ูุฐู |
|
|
|
843 |
|
01:04:27,250 --> 01:04:30,450 |
|
ู ูู ุณูู ุฅุจุณููู ุฅุฐุง ุงููู ุญุตูุชู ููู ุฅุจุณููู ุฃูุจุฑ ู
ู |
|
|
|
844 |
|
01:04:30,450 --> 01:04:34,830 |
|
zero there exists H such that ููู N ุฃูุจุฑ ุณูู H ุทูุน |
|
|
|
845 |
|
01:04:34,830 --> 01:04:39,590 |
|
ุนูุฏู FN ููุต FN ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฅุจุณููู ุฅุฐุง by Cauchy |
|
|
|
846 |
|
01:04:39,590 --> 01:04:46,420 |
|
criterion ูููู ุนูุฏ ุงู FNconverges uniformly to |
|
|
|
847 |
|
01:04:46,420 --> 01:04:52,180 |
|
some function mean F ู
ุด ุนุงุฑููู ูุณู ุนููุง ุญุงุฌุฉ ุฅุฐุง |
|
|
|
848 |
|
01:04:52,180 --> 01:04:57,600 |
|
ุงููู ุฃุซุจุชูุงู ุงูุฃู ุฃู F is uniformly convergent to |
|
|
|
849 |
|
01:04:57,600 --> 01:05:02,880 |
|
some function F ู
ูู ูู ู
ุด ุนุงุฑููููุง ูุณู ุฃู
ุง ุฃุซุจุชูุง |
|
|
|
850 |
|
01:05:02,880 --> 01:05:07,280 |
|
ูุฌูุฏูุง ุฃุซุจุชูุง ุฃู F converges uniformly ู F ุฅุฐุง |
|
|
|
851 |
|
01:05:07,280 --> 01:05:16,630 |
|
ุจูุฏุฑ ุฃุฌุฑูุฃ ูุฃูููLimit ุงูู Fm ุฃู ุงูู Fn as n goes |
|
|
|
852 |
|
01:05:16,630 --> 01:05:21,430 |
|
to infinity ุชุณุงูู F ู
ุงูุฏุฑ ุฃุชุฌุฑุฃ ูุฅู ุฃุซุจุชุช ูุฌูุฏูุง |
|
|
|
853 |
|
01:05:21,430 --> 01:05:27,570 |
|
ุงูุงู ูุงุญุธูุง ุจุณ ุดุบูุฉ Fn is differentiable is a |
|
|
|
854 |
|
01:05:27,570 --> 01:05:31,360 |
|
continuousู
ุฏุงู
continuous ู ุฃุซุจุชุช FM ุจุชุฑูุญ |
|
|
|
855 |
|
01:05:31,360 --> 01:05:35,080 |
|
converts uniformly ููุง ุฅุฐุง ุงู limit ูุฐู ูุชุทูุน ุจุฑุถู |
|
|
|
856 |
|
01:05:35,080 --> 01:05:40,260 |
|
ุฅูุด ู
ุงูู is continuous ู ูุฐู ุฎูููุง ูู ุงูุฐุงูุฑุฉ ู
ููู |
|
|
|
857 |
|
01:05:40,260 --> 01:05:47,340 |
|
ุงุญูุง ุฃูุตููุง ุฃู ุฃุซุจุชูุง ุงูุฌุฒุก ุงูุฃูู ู
ู ุงููุธุฑูุฉ ุฃู FM |
|
|
|
858 |
|
01:05:47,340 --> 01:05:53,820 |
|
converts uniformly to F ู ุงู limit ููุง ุณู
ูุงูุง F ู |
|
|
|
859 |
|
01:05:53,820 --> 01:05:57,720 |
|
ููุทูุน ููุง ุนุจุงุฑุฉ ุนู continuous function ุดูููุง ูุง |
|
|
|
860 |
|
01:05:57,720 --> 01:05:58,420 |
|
ุฌู
ุงุนุฉ ุงูุขู |
|
|
|
861 |
|
01:06:02,600 --> 01:06:09,330 |
|
ุตุงุฑ ุนูุฏู ุงูุขูุฃุซุจุชูุง ุฃู Fn ุชุชุนุงู
ู ุจุดูู ู
ุฑุชุจุท ุณู
ููุง |
|
|
|
862 |
|
01:06:09,330 --> 01:06:13,050 |
|
limit Fn ุจุณูุก F which is continuous because Fn ุฒู |
|
|
|
863 |
|
01:06:13,050 --> 01:06:14,670 |
|
ู
ุง ูููุง is continuous ูุฃูู ูู ุงูุฃุตู ูู |
|
|
|
864 |
|
01:06:14,670 --> 01:06:18,610 |
|
differentiable ู Fn ุจุชุฑูุญ ูู F ุฅุฐู ุตุงุฑุช ุงู F ุงููู |
|
|
|
865 |
|
01:06:18,610 --> 01:06:23,330 |
|
ูู ููุณูุง continuous ุงูุขู ุจุฏู ุฃุณุชุฎุฏู
ุงู continuity |
|
|
|
866 |
|
01:06:23,330 --> 01:06:29,090 |
|
ุนูุฏ ุงู F ุจุฏู ุฃุตู ุงููู ุจุฏูู ุทูุจ ุฎุฏ C ุงูุขู ุจ any |
|
|
|
867 |
|
01:06:29,090 --> 01:06:35,950 |
|
fixed point in J ุงูุขู ุจุฏู ุฃุฑูุญ ุฅูู ุฅุซุจุงุช ุฃููุงูู |
|
|
|
868 |
|
01:06:35,950 --> 01:06:43,810 |
|
Limit ููู F of X ูุงูุต F of C ุนูู X minus C as X |
|
|
|
869 |
|
01:06:43,810 --> 01:06:46,970 |
|
ุจุชุฑูุญ ููู C ูุฐู ุงูู C ููููุงุ ุงูู C ุฃุฎุฐูุงูุง |
|
|
|
870 |
|
01:06:46,970 --> 01:06:51,470 |
|
arbitrary ูู X in J ุฅุฐุง ุฃุซุจุชุช ููุฐุง ุงูู C ุงููู ูู |
|
|
|
871 |
|
01:06:51,470 --> 01:06:56,870 |
|
ุจุณุงูู ุงููู ูู G of Cู
ุนูุงุชู ุฅุฐุง ุฃุซุจุชุช ูุฐุง ู
ุนูุงุชู |
|
|
|
872 |
|
01:06:56,870 --> 01:07:02,150 |
|
ุฃุซุจุชุช ุฃู F' of C exist ููู ุณุงูู G of C ูู
ุนูุงุชู |
|
|
|
873 |
|
01:07:02,150 --> 01:07:08,310 |
|
ุฃุซุจุชุช ุฃู F ุจุชุณุงูู G ุนูู ูู J ูุฃู C ู
ุงุฎุฏูุง |
|
|
|
874 |
|
01:07:08,310 --> 01:07:12,610 |
|
arbitrary but fixed ูุนูู ุฅูุด ุจุฏู ุฃุซุจุช ูู ูุฐุงุูุนูู |
|
|
|
875 |
|
01:07:12,610 --> 01:07:16,910 |
|
ุฒู ู
ุง ูููุง ูู ุงูุฃูู ุฒู ู
ุง ูููุง ูู ุงูุฃูู ุจุฏูุง ูุซุจุช |
|
|
|
876 |
|
01:07:16,910 --> 01:07:21,970 |
|
ููู
ุงูุขู ููู ุฅุจุณููู ุฃูุจุฑ ู
ู ุณูุฑ there exists Delta |
|
|
|
877 |
|
01:07:21,970 --> 01:07:27,350 |
|
ุฃูุจุฑ ู
ู ุณูุฑ such that X minus C ุฃุตุบุฑ ู
ู Delta ูุคุฏู |
|
|
|
878 |
|
01:07:27,350 --> 01:07:34,990 |
|
ุฅูู ุงููู ูู F of X ูุงูุต F of C ุนูู X minus C ูุงูุต |
|
|
|
879 |
|
01:07:34,990 --> 01:07:39,630 |
|
G of C ุฃุตุบุฑ ู
ู ุฅุจุณููู ุฏู ุฃุซุจุชุช ุจููู ุฎูุตุช ุฅุฐุง ุฃุซุจุชุช |
|
|
|
880 |
|
01:07:39,630 --> 01:07:44,780 |
|
ูุฐุง ุจููู ุฎูุตุช ุงููู ููุงูุฅุซุจุงุช ุชูุดูู ุทูุจ ุตููุง ุนูู |
|
|
|
881 |
|
01:07:44,780 --> 01:07:50,120 |
|
ุงููุจู ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ููุฌู ุงูุขู ููููุง C N of X |
|
|
|
882 |
|
01:07:50,120 --> 01:07:54,020 |
|
point in J F M ูุงูุต F N is differentiable on the |
|
|
|
883 |
|
01:07:54,020 --> 01:07:58,020 |
|
closed interval with endpoints C and X ุงูุงู F N |
|
|
|
884 |
|
01:07:58,020 --> 01:08:00,840 |
|
ูุงูุต F N differentiable ุนูู ุงู closed interval |
|
|
|
885 |
|
01:08:00,840 --> 01:08:06,120 |
|
ุงููู ูู C ูู
ูู ูุงู X ุงู XR ุงููู ุฎุฏูุงูุง ุงููู ูู |
|
|
|
886 |
|
01:08:06,120 --> 01:08:10,770 |
|
arbitraryู
ุงุดูุ ุงูุขู ุจุฏุฃ ุงุณุชุฎุฏู
ุงูู Mean Value |
|
|
|
887 |
|
01:08:10,770 --> 01:08:14,010 |
|
Theoremุ then by mean value theorem ูู
ุงู ู
ุฑุฉ there |
|
|
|
888 |
|
01:08:14,010 --> 01:08:19,250 |
|
exists z between c and x such that fm of x ูุงูุต fn |
|
|
|
889 |
|
01:08:19,250 --> 01:08:22,130 |
|
of x ุงูููุทุฉ ุงูุฃูููุ ูุงูุต fm of c ูุงูุต fn of c |
|
|
|
890 |
|
01:08:22,130 --> 01:08:26,270 |
|
ุงูููุทุฉ ุงูุชุงููุฉ ุจุณุงูู x minus c ู
ุถุฑูุจุฉ ูู fn prime |
|
|
|
891 |
|
01:08:26,270 --> 01:08:32,390 |
|
of z ูุงูุต fn prime ุงููู ูู fm prime of zู
ุงุดู ุงูุญุงู |
|
|
|
892 |
|
01:08:32,390 --> 01:08:35,350 |
|
ุทุจูุช ุงูู Mean Value Theorem ุนูู ุงูุฏุงูุฉ ุงู .. ุงููู |
|
|
|
893 |
|
01:08:35,350 --> 01:08:41,770 |
|
ูู Fm ูุงูุต Fn ููู M O N ุงูุงู ุฎุฏูุง ุงูุญุณุจุฉ ุงูุงู ุฎุฏ X |
|
|
|
894 |
|
01:08:41,770 --> 01:08:44,690 |
|
ูุง ุชุณุงูู C ูุฅูู .. X ูุง ุชุณุงูู C ูุฅู ุงูุง ุจุฏุฃู ุฃุฏู X |
|
|
|
895 |
|
01:08:44,690 --> 01:08:48,430 |
|
ุนุงูู
ูุง ุนูู C ูุนูู X minus C ุงููู ูู ุฃุตุบุฑ ู
ู Delta |
|
|
|
896 |
|
01:08:48,430 --> 01:08:52,760 |
|
ูุนูู X ุจุฏุฃู ุฃุฏููุง ุนูู Cุงูุงู ุงุฌุณู
ูุง ูู ุงูุฃุทุฑุงู ุนูู |
|
|
|
897 |
|
01:08:52,760 --> 01:09:00,820 |
|
x-c ุจูุตูุฑ ุงููู ูู fm ูุงูุต fm of c ุนูู x-c ูุงูุต |
|
|
|
898 |
|
01:09:00,820 --> 01:09:08,500 |
|
ุงูุงู fn of x ูู ูุงูุงูุต ุงููู ูู ูุฐู ุงููู ูู FN of C |
|
|
|
899 |
|
01:09:08,500 --> 01:09:13,300 |
|
ูู ูุงูุต ููู ูุงูุต ุฅุฐุง ุจูุทูุน ุตุญูุญ ุนูู X minus C |
|
|
|
900 |
|
01:09:13,300 --> 01:09:18,400 |
|
ุจุณุงูู ุงููู ูู F M prime of Z ูุงูุต FN prime of Z |
|
|
|
901 |
|
01:09:18,400 --> 01:09:24,340 |
|
ูุฅูู ุฌุณู
ุช ุนูู X minus C ุงูุขู ุฃููุฏ ูุฐู .. ูุฐู ุฃุตุบุฑ |
|
|
|
902 |
|
01:09:24,340 --> 01:09:27,460 |
|
ุฃู ูุณุงูู ููุฑู
ูุง ูุฃู ููุฑู
ูู ุงู supermom ุฅููุง ุตุงุฑ |
|
|
|
903 |
|
01:09:27,460 --> 01:09:31,320 |
|
ุนูุฏู ุงูุขู ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
904 |
|
01:09:31,950 --> 01:09:37,770 |
|
ุงูุงู ุงูุงู ุงู ุงู
ุงุจุฑุงููู
converged uniformly ุงุฐุง |
|
|
|
905 |
|
01:09:37,770 --> 01:09:40,110 |
|
ููู ุงุจุณููู ุงูุจุฑ ู
ู ุณูุฑ there exists delta such |
|
|
|
906 |
|
01:09:40,110 --> 01:09:42,390 |
|
there exists such ู ูู ุงุจุณููู ู such ุฐุงุช ูุฐุง ุงุตุบุฑ |
|
|
|
907 |
|
01:09:42,390 --> 01:09:44,990 |
|
ู
ู ู
ูู some ุงุจุณููู ุงู ุงุจุณููู ุนูู ุงุชููู ุงู ุงููู |
|
|
|
908 |
|
01:09:44,990 --> 01:09:52,710 |
|
ุจุฏูู
ูุง ุงูุงู ุงุฐุง ููู
ู ุงููู ุจููููู ุดููSince Fn' |
|
|
|
909 |
|
01:09:53,010 --> 01:09:57,510 |
|
converges uniformly on J ุฅุฐุง ููู ู ุฃูุจุฑ ู
ู 0 there |
|
|
|
910 |
|
01:09:57,510 --> 01:10:03,770 |
|
exists H of ู H of ู such that if M ู N ุฃูุจุฑ ุณูุงุก |
|
|
|
911 |
|
01:10:03,770 --> 01:10:10,230 |
|
H of ู then ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ุฃุตุบุฑ ู
ู ู
ูู ู
ู ู |
|
|
|
912 |
|
01:10:10,230 --> 01:10:16,590 |
|
ูุนูู ุตุงุฑ ูู ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ู ูู
ููุ ูุฃ ุงู M ู |
|
|
|
913 |
|
01:10:16,590 --> 01:10:25,840 |
|
ุงู N ูุฃุฃูุจุฑ ู
ู ู
ูู ู
ู H of Epsilon ูุงู ุตุงุฑ ุนูุฏู |
|
|
|
914 |
|
01:10:25,840 --> 01:10:31,280 |
|
ูุงู ููู M ู N ุฃูุจุฑ ุณูู H of Epsilon ุตุงุฑ ุงูู
ูุฏุงุฑ |
|
|
|
915 |
|
01:10:31,280 --> 01:10:35,140 |
|
ูุฐุง ุงููู ูู ุฃุตุบุฑ ุฃู ุณูู ูุฐุง ุงููู ูู ุฃุตุบุฑ ู
ู |
|
|
|
916 |
|
01:10:35,140 --> 01:10:37,860 |
|
Epsilon ุฎูููุง ูู ุงูุฐุงูุฑุฉ ูุฐู ุฃุตุบุฑ ู
ู ู
ูู ู
ู |
|
|
|
917 |
|
01:10:37,860 --> 01:10:42,740 |
|
Epsilonุงูุงู take the limit of both sides as M goes |
|
|
|
918 |
|
01:10:42,740 --> 01:10:46,160 |
|
to infinity ุจุณ ูุงู ุนุดุงู ุจูุงุฎุฏ M ุฑุงูุญุฉ ูู
ุง ูููุงูุฉ |
|
|
|
919 |
|
01:10:46,160 --> 01:10:50,000 |
|
ุจุฏูุง ูุงุฎุฏ ูู M ุฃูุจุฑ ุฃู ูุณุงูู H N ุนุดุงู ูู
ุง ุงู M |
|
|
|
920 |
|
01:10:50,000 --> 01:10:53,340 |
|
ุชุฑูุญ ูู
ุง ูููุงูุฉ M ุชุจูู ู
ุฑุชุงุญุฉ ุฒู 100 ู M ูุง ุชุชุญุฑูุด |
|
|
|
921 |
|
01:10:53,340 --> 01:11:01,520 |
|
ุจุฏูุง ุฅูุงูุง ุชุชุญุฑู ุจูุตูุฑ ุนูุฏู as M goes to infinity |
|
|
|
922 |
|
01:11:01,520 --> 01:11:08,350 |
|
ุงู limit ูู F M of X ููุณุงูู F of Xูุฃูู ุตุงุฑุช |
|
|
|
923 |
|
01:11:08,350 --> 01:11:14,670 |
|
uniformly ุงูู Fm ุฃุซุจุชูุงูุง ุจุชุฑูุญ ููู F uniformly |
|
|
|
924 |
|
01:11:14,670 --> 01:11:19,830 |
|
ุฅุฐู limit Fm of X ูู F of X ู limit Fm of C ูู F |
|
|
|
925 |
|
01:11:19,830 --> 01:11:25,490 |
|
of C ุนูู X minus C ู
ุนุงูุง ูุฐุง Fn of X ูุงูุต Fn of C |
|
|
|
926 |
|
01:11:25,490 --> 01:11:29,370 |
|
ุนูู X minus C ุฒู ู
ุง ูู ูุฅู ุฃูุง ุฅุจุณูุชูุง ุฒู ู
ุง ูู |
|
|
|
927 |
|
01:11:29,370 --> 01:11:32,890 |
|
ู
ูู ุงููู ุทูุฑุชูุง ุงููุจูุฑุฉ ุงููู ูู M ุฅุฐุง ุตุงุฑ ูุฐุง |
|
|
|
928 |
|
01:11:32,890 --> 01:11:38,130 |
|
ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ุฃู ูุณุงูู ู
ููุ ุฅุจุณููููู ุญุงู ู
ููุ ูู |
|
|
|
929 |
|
01:11:38,130 --> 01:11:43,930 |
|
ุญุงู X ูุง ุชุณุงูู C ู ููุฃูุงุช ุงููู ุฃูุจุฑ ู
ู ู
ูู ู
ู H of |
|
|
|
930 |
|
01:11:43,930 --> 01:11:49,710 |
|
Y ุฃูุง ุชุญุช ูุฐู ุงูุดุฑูุท ู
ุงุดู ุทูุจ ุนู
ุงูู ูุงุนุฏ ุจุฌุฑุจ ุนูู |
|
|
|
931 |
|
01:11:49,710 --> 01:11:58,400 |
|
ุงููู ูู ุงููุฏู ุชุจุนู ุดูู ุตุงุฑ ุนูุฏู ุงูุขููุฐู ุงูู |
|
|
|
932 |
|
01:11:58,400 --> 01:12:03,740 |
|
Inquality ูุงุญุฏ ุงููู ูู ู
ุชุญูููุง ููู ุฃูุง ุจุนุฑู ุฃูู |
|
|
|
933 |
|
01:12:03,740 --> 01:12:07,780 |
|
limit of F N prime of C ุฃุดูุฑ ุจุณุงูู G of C ูุฃูู |
|
|
|
934 |
|
01:12:07,780 --> 01:12:12,440 |
|
ุงุญูุง ู
ูุชุฑุถูู ู
ู ุฑุฃุณ ุงูุฏูุฑ ุฃูู F N prime converges |
|
|
|
935 |
|
01:12:12,440 --> 01:12:18,470 |
|
uniformly to ู
ููุููู G .. ุทูุจ ูุฃู sense limit F N |
|
|
|
936 |
|
01:12:18,470 --> 01:12:22,330 |
|
prime of C ุจูุณูู G of C ุฅุฐุง there exists N of |
|
|
|
937 |
|
01:12:22,330 --> 01:12:25,590 |
|
ุฅุจุณููู such that for every N ุฃูุจุฑ ุจูุณูู N of |
|
|
|
938 |
|
01:12:25,590 --> 01:12:29,910 |
|
ุฅุจุณููู ุญูููู F N prime of C ูุงูุต G of C ุงููู ูู |
|
|
|
939 |
|
01:12:29,910 --> 01:12:38,310 |
|
ุฃุตุบุฑ ู
ู ุฅูุด ู
ู ุฅุจุณูููุงูุงู ุตุงุฑ ุนูุฏู ูุฐู ู
ุชุญููุฉ ููุงู |
|
|
|
940 |
|
01:12:38,310 --> 01:12:43,430 |
|
ุฃูุจุฑ ุณูุงุก H ู ูุฐู ู
ุชุญููุฉ ููุงู ุงูุฃูุจุฑ ุณูุงุก N ุนุดุงู |
|
|
|
941 |
|
01:12:43,430 --> 01:12:47,750 |
|
ุงุณุชุฎุฏู
ุงูุชูุชูู ุจุชุงุฎุฏ ุงู maximum ุจูู ูุฐู ู ูุฐู ู |
|
|
|
942 |
|
01:12:47,750 --> 01:12:52,630 |
|
ุงููู let K ุจุณูุก ุงู maximum ุจูู H of epsilon ู N |
|
|
|
943 |
|
01:12:52,630 --> 01:12:59,130 |
|
epsilon ุงุฐุง ุงูุงู ุตุงุฑ ุนูุฏู ุงูุชูุชูู ู
ุชุญููุงุช ููู N |
|
|
|
944 |
|
01:12:59,130 --> 01:13:04,530 |
|
ุฃูุจุฑ ุงู ูุณุงูู K ูู
ุดุฑูุน ุงุณุชุฎุฏุงู
ูุงูุขู ู
ู ุฌูุฉ ุซุงููุฉ |
|
|
|
945 |
|
01:13:04,530 --> 01:13:07,750 |
|
ุจุฏู ุงุณุชุฎุฏู
ุงูู FK' of C ุฅููุง exist |
|
|
|
946 |
|
01:13:11,040 --> 01:13:14,540 |
|
ุฅุฐุง ุตุงุฑุช ุนูุฏู ูุฐู ุฒู ู
ุง ูููุง ููุฐู ูุงุชูู ุชุงู ุจุญุฌูู |
|
|
|
947 |
|
01:13:14,540 --> 01:13:18,620 |
|
ุงุณุชุฎุฏู
ูู
ููู ุงู ุฃูุจุฑ ุฃู ุณุงู ูู ุจุฏู ุงุณุชุฎุฏู
ูุฐู ูู
ุงู |
|
|
|
948 |
|
01:13:18,620 --> 01:13:22,900 |
|
ู ุฃุฑุจุท ูุฐู ู
ุน ูุฐู ู ุฃุฎูุต ุงููู ุจุฏููุง since fk prime |
|
|
|
949 |
|
01:13:22,900 --> 01:13:26,860 |
|
of c exist ู
ูู ุงู K ูุฐู ุงู K ูุฐู ุงููู ุฎุฏุชูุง ุงู |
|
|
|
950 |
|
01:13:26,860 --> 01:13:31,660 |
|
superman ุจูู ูุฐู ู ูุฐู ุนุดุงู ูููุน ุงุณุชุฎุฏู
ูุฐู ู ูุฐู |
|
|
|
951 |
|
01:13:31,660 --> 01:13:37,760 |
|
ู ูุฐู ุจุนุฏ ุดููุฉthen ู
ุฏุงู
fk prime of c exist then |
|
|
|
952 |
|
01:13:37,760 --> 01:13:42,080 |
|
if x minus c ุฃูุจุฑ ู
ู ุตูุฑ ุฃุตุบุฑ ู
ู ุฏูุชุง ุฏูุชุง k ุทุจุนุง |
|
|
|
953 |
|
01:13:42,080 --> 01:13:46,480 |
|
ุงูุฏูุชุง ูุชุนุชู
ุฏ ุนูู ุงููู ูู ุงู epsilon ูุณู
ููุง ุฏูุชุง k |
|
|
|
954 |
|
01:13:46,480 --> 01:13:49,360 |
|
ูุฅููุง ุงุนุชู
ุฏุช ุนูู ู
ููุ ุนูู ุงููู ูุนูู then there |
|
|
|
955 |
|
01:13:49,360 --> 01:13:53,380 |
|
exists ุฏูุชุง k ุจุญูุซ x minus c ุฃุตุบุฑ ู
ู ุฏูุชุง ูุนุทููู |
|
|
|
956 |
|
01:13:53,380 --> 01:13:57,540 |
|
fk of x ูุงูุต fk of c ุนูู x minus c ุงููู ูู ูุงูุต fk |
|
|
|
957 |
|
01:13:57,540 --> 01:14:04,140 |
|
prime of c ุฃุตุบุฑ ู
ู ุฅุจุณููู ูุงูู
ูู ูุฐุงุ ู
ุฏุงู
fkprime |
|
|
|
958 |
|
01:14:04,140 --> 01:14:09,260 |
|
of c ุจูุณุงู limit exist ุฅุฐุง ุญุณุงู limit f of x ูุงูุต |
|
|
|
959 |
|
01:14:09,260 --> 01:14:14,280 |
|
f of c ุจprime ุนูู x minus c ุทุจุนุง ูู ููู as x ุจุชุฑูุญ |
|
|
|
960 |
|
01:14:14,280 --> 01:14:17,620 |
|
ูู c ุตุงุฑ exist ูุนูู forever epsilon ุฃูุจุฑ ู
ู 0 |
|
|
|
961 |
|
01:14:17,620 --> 01:14:21,740 |
|
exist ุฏูุชุง ุจุญูุซ ุฃูู ูู
ุง ุชููู x minus c ุฃุตุบุฑ ู
ู |
|
|
|
962 |
|
01:14:21,740 --> 01:14:24,360 |
|
ุฏูุชุง ูุนุทููู ูุฐุง ูุงูุต ูุฐุง ุฃุตุบุฑ ู
ู epsilon ููุฐุง ูู |
|
|
|
963 |
|
01:14:24,360 --> 01:14:28,400 |
|
ุงูู
ูุชูุจูุฐู ุตุงุฑ ุนูุฏู ูุฐุง ู
ูุฌูุฏ ููู ุงุชููู ููู ุชูุงุชุฉ |
|
|
|
964 |
|
01:14:28,400 --> 01:14:33,020 |
|
ูุฃู ูุงุญุฏ ู ุงุชููู ู ุชูุงุชุฉ ุจุฏู ุงุตู ุงููู ุจุฏูู ุฎูููุง |
|
|
|
965 |
|
01:14:33,020 --> 01:14:35,720 |
|
ููุชุจ ููุง ุนุดุงู ู
ุง ูุฌูุจุด ุงูุตูุญุฉ ุนุดุงู ูุธููุง ููู |
|
|
|
966 |
|
01:14:35,720 --> 01:14:43,880 |
|
ูุฏุงู
ูู
ุงูุงู ุงููู ูุตูุช ุงููู ู
ุงูู for every epsilon |
|
|
|
967 |
|
01:14:43,880 --> 01:14:46,660 |
|
ุฃูุจุฑ ู
ู ุณูุฑ ุจููู there exists delta ุฃูุจุฑ ู
ู ุณูุฑ |
|
|
|
968 |
|
01:14:46,660 --> 01:14:49,740 |
|
such that if |
|
|
|
969 |
|
01:14:51,280 --> 01:14:57,660 |
|
x-c ุฃุตุบุฑ ุฃูุจุฑ ู
ู ุตูุฑ ูุฃุตุบุฑ ู
ู ุฏูุชุง then ุดูู ุงูุขู |
|
|
|
970 |
|
01:14:57,660 --> 01:15:02,400 |
|
then ุฅูุด ุงููู ูู ุจุฏู ู
ูู ุฃูุง ูู ูู ุงููู ุจุฏููุง f of |
|
|
|
971 |
|
01:15:02,400 --> 01:15:12,880 |
|
x minus f of c ุนูู x minus c ูุงูุต g of c ุฃุตุบุฑ |
|
|
|
972 |
|
01:15:12,880 --> 01:15:18,120 |
|
ุฃู ูุณุงูู ู
ุงุดู ุงูุญุงู ุฃุตุบุฑ ุฃู ูุณุงูู ุจุฏู ุฃุจุฏุฃ ุงูุขู |
|
|
|
973 |
|
01:15:18,120 --> 01:15:24,240 |
|
ุงููู ูู ูู ูุฐูุจุฏู ุฃุฏุฎููุง ุฏูุ ุนุดุงูุ ุฃุตุบุฑ ุฃู ุณุงูู |
|
|
|
974 |
|
01:15:24,240 --> 01:15:32,300 |
|
ุงููู ูู F of X ูุงูุต F of C ุนูู X minus C ูุงูุต FN |
|
|
|
975 |
|
01:15:32,300 --> 01:15:39,840 |
|
of X ูุงูุต FN of C ุนูู X minus C ุฒุงุฆุฏ ุงููู ุฏุฎูุชูุง |
|
|
|
976 |
|
01:15:39,840 --> 01:15:51,830 |
|
ุฏู FN of X ูุงูุต FN of C ุนูู X minus C ูุงูุตุงููู ูู |
|
|
|
977 |
|
01:15:51,830 --> 01:15:56,850 |
|
ุงูุด |
|
|
|
978 |
|
01:15:56,850 --> 01:16:03,170 |
|
ุงูุชุงููุฉ ูู |
|
|
|
979 |
|
01:16:03,170 --> 01:16:13,890 |
|
prime of c a ุฒุงุฆุฏ ูู |
|
|
|
980 |
|
01:16:13,890 --> 01:16:21,820 |
|
prime of c ูุงูุต ูููุต ู
ู ุงููู ุถุงู G of C ุจุธุจุท ููู ุง |
|
|
|
981 |
|
01:16:21,820 --> 01:16:26,460 |
|
ุงุธู ุชุดูู ุนูููุง ุงูุงู ุงูุง ุจุชูุฒู
ููุด ูู ุงูุงูุงุช ุจุชูุฒู
ูู |
|
|
|
982 |
|
01:16:26,460 --> 01:16:31,480 |
|
ุจุณ ุงู ู
ูู ุงู K ูุฃูู ุงูุงู ุงูุง ุจุญูู ุนูู ุงุณุชุฎุฏุงู
ุงู K |
|
|
|
983 |
|
01:16:31,480 --> 01:16:39,280 |
|
K K ู ูุงุฏ ุงููุงุด K ุทูุจ ุงูุงู ููุฌู ูุชุทูุนุงูู K ุชุจุนุชูุง |
|
|
|
984 |
|
01:16:39,280 --> 01:16:42,040 |
|
ูุฐู ุจูุญูู ุนู K ู
ุญุฏุฏุฉ ุงูู K ุงููู ูู superman ุจูู H |
|
|
|
985 |
|
01:16:42,040 --> 01:16:46,320 |
|
ู ุจูู N ูุนูู ุงูู K ุฃูุจุฑ ุฃู ูุณุงูู H ู ุงูู K ุฃูุจุฑ ุฃู |
|
|
|
986 |
|
01:16:46,320 --> 01:16:51,600 |
|
ูุณุงูู ู
ูู ุงูู N ูุนูู ุจุญุฌุฌูู ุฃุณุชุฎุฏู
F K of C F K |
|
|
|
987 |
|
01:16:51,600 --> 01:16:55,020 |
|
prime of C ูุงูุต G of C ุฃุตุบุฑ ู
ู ุฅุจุณููู ู ุจุญุฌุฌูู |
|
|
|
988 |
|
01:16:55,020 --> 01:16:58,320 |
|
ุฃุณุชุฎุฏู
ูุฐู ูุงูุต F K of K ูู K ุฃุตุบุฑ ู
ู ู
ูู ู
ู |
|
|
|
989 |
|
01:16:58,320 --> 01:17:04,540 |
|
ุฅุจุณููู ุงูุขู ูุฐู ูุฐู ูู ูุงู ุงูุฃููู ุฅุฐุง ุฃุตุบุฑ ุฃู |
|
|
|
990 |
|
01:17:04,540 --> 01:17:13,170 |
|
ูุณุงูู ูุฐู ู
ู ูุงุญุฏepsilon ุฒุงุฆุฏ ูุฐู ุงูุชุงููุฉ ู
ู ู
ูู |
|
|
|
991 |
|
01:17:13,170 --> 01:17:19,250 |
|
ู
ู ุงููู ูู ุชูุงุชุฉ ูู fk of x ููุต fk of c ุนููู x |
|
|
|
992 |
|
01:17:19,250 --> 01:17:23,490 |
|
minus c ููุต fk prime ุฃุตุบุฑ ุจุฑุถู ู
ู ู
ูู ู
ู epsilon |
|
|
|
993 |
|
01:17:23,490 --> 01:17:29,290 |
|
ูุฐู ู
ู ุชูุงุชุฉ ููุฐู ู
ู ูุงุญุฏ ูุฐู ุฃููุฏ ู
ู ู
ูู ูุณุชุฎุฏู
ูุง |
|
|
|
994 |
|
01:17:29,290 --> 01:17:35,610 |
|
ู
ู ุงุชููู ุงููู ูู n ูุฐู ููู n ุฃูุจุฑ ุณูู nูุนูุฏู ุงูู K |
|
|
|
995 |
|
01:17:35,610 --> 01:17:38,190 |
|
ุฃุตูุง ุฃูุจุฑ ุฃูู ุณูุงุก ูุฅููุง ุงู maximum ุจูู ุงู team |
|
|
|
996 |
|
01:17:38,190 --> 01:17:42,910 |
|
ุชุงู ุฅุฐุง ูุฐู ุจุฑุถู ุจุญู ุงููู ุฃุณุชุฎุฏู
ูุง ุฃู
ู ุงุชููู ุฃุตุบุฑ |
|
|
|
997 |
|
01:17:42,910 --> 01:17:47,470 |
|
ู
ู ุฅุจุณููู ุฅุฐุง ุตุงุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ููู ุฃุตุบุฑ |
|
|
|
998 |
|
01:17:47,470 --> 01:17:52,290 |
|
ู
ู ุชูุงุชุฉ ุฅุจุณููู ูุฅุจุณููู was arbitrarily ุฅุฐุง ุตุงุฑ |
|
|
|
999 |
|
01:17:52,290 --> 01:17:57,210 |
|
ุนูุฏู limit ูุฐุง ุงูู
ูุฏุงุฑ ุจุณุงูู G of C ุฅูุด ู
ุนูุงู |
|
|
|
1000 |
|
01:17:57,210 --> 01:18:01,430 |
|
limit ูุฐุง ุงูู
ูุฏุงุฑ ุจุณุงูู G of C ู
ุนูุงุชู ุฃูู ุงููู ูู |
|
|
|
1001 |
|
01:18:01,430 --> 01:18:08,730 |
|
ุงู F primeof C ูู ุงูู G of C ูุฒู ู
ุง ูููุง ูู ุงูุฃูู |
|
|
|
1002 |
|
01:18:08,730 --> 01:18:12,530 |
|
since C was arbitrary in G then ุตุงุฑุช ุงููู ูู F |
|
|
|
1003 |
|
01:18:12,530 --> 01:18:18,990 |
|
ุจุชุณุงูู G ุนูู ูู ู
ูู ุนูู ูู ุงูู G ูููู ุจูููู ุฎูุตูุง |
|
|
|
1004 |
|
01:18:18,990 --> 01:18:23,330 |
|
ุงููุธุฑูุฉ ูุงููููุง ุงู section ุงููู ูู ุชู
ุงููุฉ ุงุชููู |
|
|
|
1005 |
|
01:18:23,330 --> 01:18:26,370 |
|
ูููู ุจูููู ุฎูุตูุง ุงูุญุฏูุซ ุงููู ุจูุชุญุฏุซู ูู chapter |
|
|
|
1006 |
|
01:18:26,370 --> 01:18:30,370 |
|
ุชู
ุงููุฉ ูุนูุฏูุง ุทุจุนุง ุงูุฃุณุฆูุฉ ุงูู
ุทููุจุฉ ูููุง ูู ููุงูุฉ |
|
|
|
1007 |
|
01:18:30,370 --> 01:18:33,430 |
|
ูู section ุชู
ุงููุฉ ูุงุญุฏ ูุชู
ุงููุฉ ุงุชููู ูุฅูู ููุงุก |
|
|
|
|