abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
107 kB
1
00:00:04,910 --> 00:00:07,650
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡ ุฑุจ ุงู„ุนุงู„ู…ูŠู†
2
00:00:07,650 --> 00:00:10,710
ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏ ุงู„ู…ุณุงู„ูŠู† ุณูŠุฏู†ุง ู…ุญู…ุฏ ุนู„ู‰
3
00:00:10,710 --> 00:00:15,510
ุขู„ู‡ ูˆุตุญุจู‡ ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… ูˆุงุญุฏ ูˆุนุดุฑูŠู†
4
00:00:15,510 --> 00:00:19,630
ููŠ ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ุฉ ู†ูŠู† ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ
5
00:00:19,630 --> 00:00:26,460
ุงู„ุฅุณู„ุงู…ูŠุฉ ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช ููŠ ูƒู„ูŠุฉ ุงู„ุนู„ู…ู‡ู†ูƒู…ู„ ุงู„ุญุฏูŠุซ
6
00:00:26,460 --> 00:00:32,660
ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Sequence of Functions ุฎู„ุตู†ุง ู…ู†
7
00:00:32,660 --> 00:00:36,180
ุณูŠูƒุดู† ุงู„ู€ Pointwise ุฃูˆ ุงู„ู€ Uniform Convergence
8
00:00:36,180 --> 00:00:40,340
ุงู„ุขู† ุจุฏู†ุง ู†ุดูˆู ุชุฃุซูŠุฑ ุงู„ู€ Pointwise ูˆ ุงู„ู€ Uniform
9
00:00:40,340 --> 00:00:44,700
Convergence ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุจุนุถ ุงู„ู€ Sequence of
10
00:00:44,700 --> 00:00:49,040
Functions ุฅูŠุด ุจุชุณูˆูŠ ููŠู‡ุงุงู„ุงู† ุชุญุช ุนู†ูˆุงู† 82
11
00:00:49,040 --> 00:00:53,900
interchange of limits ู‡ู†ุฌูŠ ู†ุดูˆู ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
12
00:00:53,900 --> 00:00:57,160
sequence of continuous functions ู„ูˆ ูƒุงู†ุช ุงู„ู„ูŠ ู‡ูŠ
13
00:00:57,160 --> 00:01:01,620
pointwise convergence ู‡ู„ ุตุญ ุดุฑุท ุงู†ู‡ ู„ูˆ ู„ู…ูŠู† ุจุชุฑูˆุญ
14
00:01:01,620 --> 00:01:04,680
ููŠ ุงู„ pointwise convergence ุงู† ูŠูƒูˆู† continuous ูˆู„ุง
15
00:01:04,680 --> 00:01:09,780
ุจู„ุฒู…ู‡ุง ุฏุนู… ุดูˆูŠุฉ ู†ุฎู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู„ ุงู„ pointwise
16
00:01:09,780 --> 00:01:13,220
convergence ู†ุฎู„ูŠู‡ uniform ูˆ ุงู„ uniform ูŠูˆุฏูŠุงู„ู€
17
00:01:13,220 --> 00:01:16,040
function ุงู„ู„ูŠ ุจุชุทู„ุน ุชุทู„ุน continuous ูˆู„ุง ู„ุฃุŸ ู‡ู†ุดูˆู
18
00:01:16,040 --> 00:01:19,680
ุงู„ูƒู„ุงู… ู‡ุฐุง ุงู„ุดุบู„ ุงู„ุซุงู†ูŠ ู‡ู†ุดูˆู ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„
19
00:01:19,680 --> 00:01:23,360
function is integrable ู‡ู„ ุงู„ sequence of functions
20
00:01:23,360 --> 00:01:27,640
is integrableุŸ ู‡ู„ ุงู„ limit ุงู„ู„ูŠ ู„ู…ุง ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ
21
00:01:27,640 --> 00:01:32,080
ุงู„ Fn ุจุชุฑูˆุญ ู„ู„ F point twice ุฃูˆ ุงู„ Fn ุจุชุฑูˆุญ ู„ู„ F
22
00:01:32,080 --> 00:01:37,850
uniform convergenceุŸู‡ู„ ู‡ุฐุง ูˆุงุญุฏ ู…ู†ู‡ู… ุจูŠู‚ุฏู‘ูŠ ุงู†ู‡ ุงู„
23
00:01:37,850 --> 00:01:39,850
integration ู„ู„ limit ุจูŠุณุงูˆูŠ ุงู„ limit ู„ู„
24
00:01:39,850 --> 00:01:42,730
integration ูŠุนู†ูŠ ุงู„ limit ุจุชุฏุฎู„ ุฌูˆุง ุงู„ integration
25
00:01:42,730 --> 00:01:46,990
ูˆู„ุง ู„ุฃุŸ ู‡ู„ ุฏุฎูˆู„ู‡ุง ูŠุนู†ูŠ ุจุงู„ point wise ุจุญุงูุธ ุนู„ู‰
26
00:01:46,990 --> 00:01:50,170
ุงู„ู…ุณุงูˆุงุฉ ูˆู„ุง ู„ุฃ ุจุงู„ ุฒู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ uniform
27
00:01:50,170 --> 00:01:54,730
convergenceุŸ ู‡ู†ุดูˆูู‡ ูˆุงู„ุดุบู„ ุงู„ุชุงู„ุซุฉ ู‡ู„ ุงู†ู‡ ู„ูˆ ูƒุงู†
28
00:01:54,730 --> 00:01:59,150
ููŠ ุนู†ุฏูŠ sequence of differentiable functions ู‡ุชุทู„ุน
29
00:01:59,150 --> 00:02:04,040
ุงู† ู‡ูˆ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ F unconverged ุฒูŠ ุงู„ Fู‡ูŠุทู„ุน ุนู†ุฏูŠ
30
00:02:04,040 --> 00:02:06,460
ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
31
00:02:06,460 --> 00:02:07,500
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
32
00:02:07,500 --> 00:02:07,620
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
33
00:02:07,620 --> 00:02:08,200
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
34
00:02:08,200 --> 00:02:08,300
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
35
00:02:08,300 --> 00:02:08,340
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
36
00:02:08,340 --> 00:02:09,020
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
37
00:02:09,020 --> 00:02:10,060
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
38
00:02:10,060 --> 00:02:11,000
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
39
00:02:11,000 --> 00:02:13,560
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
40
00:02:13,560 --> 00:02:13,560
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
41
00:02:13,560 --> 00:02:13,720
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
42
00:02:13,720 --> 00:02:23,020
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
43
00:02:28,280 --> 00:02:34,340
ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ู‡ุงูŠ ููŠ ุนู†ุฏู‰ example 821 g
44
00:02:34,340 --> 00:02:38,900
n of x ุจุณุงูˆูŠุฉ x ุฃูุณ n ู‡ุฐุง ุดูู†ุงู‡ุง ูŠุง ุฌู…ุงุนุฉ ุนู„ู‰
45
00:02:38,900 --> 00:02:43,640
ุงู„ูุชุฑุฉ x 01 is continuous ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function
46
00:02:43,640 --> 00:02:47,540
ู‡ุฐู‡ g 1 of x ุจุณุงูˆูŠุฉ x g 2 of x ุจุณุงูˆูŠุฉ x ุชุฑุจูŠุน g 3
47
00:02:47,540 --> 00:02:52,110
of x ุจุณุงูˆูŠุฉ x ุชูƒุนูŠุจ ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ุฏูˆุงู„ ู…ุชุตู„ุฉุงู„ุงู†
48
00:02:52,110 --> 00:02:55,950
and even continuously differentiable ุจูŠู‚ูˆู„ูƒ ุฃุตู„ุง
49
00:02:55,950 --> 00:03:00,430
ู‡ูŠุทู„ุน ู…ุด ุฏู‡ continuous ู„ุฃ ูˆ ุงู„ derivative L ู‡ุชุทู„ุน
50
00:03:00,430 --> 00:03:03,190
ู…ูˆุฌูˆุฏุฉ ูˆ ุงู„ derivative continuous ูŠุนู†ูŠ
51
00:03:03,190 --> 00:03:06,510
continuously differentiable ุจุงู„ุฑุบู… ู…ู† ุฃู†ู‡ุง ุงู„ู‚ูˆุฉ
52
00:03:06,510 --> 00:03:09,650
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ sequence g of n of x ู…ู† ู†ุงุญูŠุฉ
53
00:03:09,650 --> 00:03:14,220
ุงู†ู‡ุง continuously differentiableุฅู„ุง ุฅู†ู‡ ู„ู…ุง ุฌูŠู†ุง
54
00:03:14,220 --> 00:03:17,880
ู†ุงุฎุฏ limit GN of X as N goes to infinity ุทู„ุนุช
55
00:03:17,880 --> 00:03:21,280
ุจุชุณุงูˆูŠ G of X ุงู„ู„ูŠ ู‡ูŠ 0 X ููŠ ุงู„ูุชุฑุฉ 01 ูˆ 1 ููŠ
56
00:03:21,280 --> 00:03:25,180
ุงู„ูุชุฑุฉ X ุงู„ู„ูŠ ู‡ูˆ ุจุชุณุงูˆูŠ 1 ูŠุนู†ูŠ ุงู„ู„ูŠ ุทู„ุนุชู„ู†ุง ุงู„
57
00:03:25,180 --> 00:03:31,040
limit ุฅู„ู‡ุง ุทู„ุนุชู„ู†ุง ุฅูŠุงู‡ุง is not continuousูŠุนู†ูŠ
58
00:03:31,040 --> 00:03:35,080
ุจุงู„ุฑุบู… ุฅู† ุงู„ limit ู…ูˆุฌูˆุฏุฉ ุทุจุนุง ู‡ุฐุง pointwise
59
00:03:35,080 --> 00:03:38,520
convergence ุงู„ู„ูŠ ู‡ูˆ ุงู„ pointwise convergence ู‡ู†ุง
60
00:03:38,520 --> 00:03:44,660
ุทู„ุนู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sequence of functions GN limitู‡ุง
61
00:03:44,660 --> 00:03:48,820
ู…ุด continuous ู…ุงู‚ุฏุฑุด ูŠุทู„ุน ุงู„ู„ูŠ ู‡ูˆ continuous
62
00:03:48,820 --> 00:03:52,560
function ู‡ุฐุง ุงู„ pointwise convergence ุจุงู„ุฑุบู… ุฅู†ู‡
63
00:03:52,560 --> 00:03:56,740
GN of X is ุงู„ู„ูŠ ู‡ูˆ continuously differentiable
64
00:03:56,740 --> 00:04:03,550
ุงู„ุขู† ู†ุงุฎุฏ ู…ุซุงู„ ุขุฎุฑ ุฅุฐุงุฅุฐุง ูƒุงู†ุช GN ู‡ูŠ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ
65
00:04:03,550 --> 00:04:04,930
ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ
66
00:04:04,930 --> 00:04:15,930
ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ
67
00:04:15,960 --> 00:04:19,840
ุทูŠุจ ู†ุดูˆู ุงู„ example ุงู„ู„ูŠ ุจุนุฏู‡ ุงู„ุงู† ุงู„ example ุงู„ู„ูŠ
68
00:04:19,840 --> 00:04:25,400
ุจุนุฏู‡ ุจู‚ูˆู„ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ let FN be ู‡ุฐู‡ let FN ู…ู† 0
69
00:04:25,400 --> 00:04:30,460
ู„ุนู†ุฏ 1 ู…ู† 01 ู„ุนู†ุฏ R be defined for N ุฃูƒุจุฑ ุณูˆุงุก 2
70
00:04:30,460 --> 00:04:37,150
by ู…ุฑุงูƒุจูŠู† ุฏุงู„ุฉ ุชุดูˆู ู‡ุฐู‡ ุงู„ุฏุงู„ุฉุนู†ุฏูŠ Fn of X ุจุณุงูˆูŠ
71
00:04:37,150 --> 00:04:42,490
N ุชุฑุจูŠุน X ุงู„ู€ N ู‡ุฐุง ุฏุงู„ุฉ ุงู„ู…ุชุบูŠุฑ X ู‡ุฐู‡ ุงู„ู€ Fn ูˆ
72
00:04:42,490 --> 00:04:45,030
ุงู„ู€ N ุชุฑุจูŠุญุฉ ุฏูˆู„ุฉ ุงู„ู„ูŠ ู‡ู†ุง ุงู„ู„ูŠ ุจุฏู„ู† ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
73
00:04:45,030 --> 00:04:49,810
ุงู„ู€ sequence F1, F2, F3, F4 ุฃู…ุง ุงู„ุฏุงู„ุฉ ู‡ูŠ F ู…ู†ูŠู†
74
00:04:49,810 --> 00:04:55,280
ุจุฏู„ุงู„ุฉ X ุงู„ู€ Fn ุจุฏู„ุงู„ุฉ Xุฅุฐุงู‹ ู‡ุฐุง ุนุฏุฏ ูŠุนู†ูŠ ู‡ุฐู‡
75
00:04:55,280 --> 00:04:59,280
Linear ุงู„ุฏู„ุฉ N ุชุฑุจูŠุน X ููŠ ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุนู†ุฏ ู…ูŠู†
76
00:04:59,280 --> 00:05:03,140
ูˆุงุญุฏุฉ ุนู„ู‰ N ู„ูˆ ุฌูŠู†ุง ุฑุณู…ู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ N ุชุฑุจูŠุน ุนู†ุฏ
77
00:05:03,140 --> 00:05:07,620
ุทุจุนุง ุฏูŠ ุฎุทูŠุฉ ุจูƒููŠ ู†ู‚ุทูŠู† ู†ุฑุณู… ุนุดุงู† ู†ุญุท ุฎุท ุจูŠู†ู‡ู… ุนู†ุฏ
78
00:05:07,620 --> 00:05:12,900
X ุจุตูุฑ ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ N ุชุฑุจูŠุน X ุตูุฑ
79
00:05:12,900 --> 00:05:16,540
ุงู„ X ูˆุงุญุฏุฉ ุนู„ู‰ N ุจูŠุตูŠุฑ ูˆุงุญุฏุฉ ุนู„ู‰ N ููŠ N ุชุฑุจูŠุน
80
00:05:16,540 --> 00:05:19,640
ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏุฉ ุนู„ู‰ N ู‡ูŠ ูˆุงุญุฏุฉ ุนู„ู‰ N ุจุชุทู„ุน
81
00:05:19,640 --> 00:05:23,760
ูˆุงุญุฏุฉ ุนู„ู‰ Nุจุชุทู„ุน ู‚ูŠู…ุฉ as an ุฃุณู an ุชุฑุจูŠุน ููŠ ูˆุงุญุฏุฉ
82
00:05:23,760 --> 00:05:30,260
ุงู„ุงู† ุจุชุทู„ุน an ุฅุฐุง ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุท ู‡ูŠู‡ ู„ู„ุฌุฒุก ุงู„ู„ูŠ
83
00:05:30,260 --> 00:05:33,760
ู‡ูˆ ุงู„ุฃูˆู„ุงู†ูŠ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุจุฏุฃ ู…ู† ุนู†ุฏ
84
00:05:33,760 --> 00:05:36,520
ูˆุงุญุฏุฉ ุงู„ุงู† ุนู†ุฏ ู…ูŠู† ูˆุงุญุฏุฉ ุงู„ุงู† ุนู†ุฏ ุงุชู†ูŠู† ุงู† ุฎู„ูŠู†ุง
85
00:05:36,520 --> 00:05:41,150
ู†ุฑุณู…ู‡ู‡ุฐุง ุจุฑุถู‡ ุงูŠุด ู…ุนู„ู‡ ุฏู‡ ุงู„ู„ูŠ ุฎุทูŠุฉ ู„ุฅู†ู‡ ุงูŠุด ู…ุงุฎุฏู‡
86
00:05:41,150 --> 00:05:46,190
ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต N ุชุฑุจูŠุน ููŠ X ู†ุงู‚ุต 2 ุนู„ู‰ N ู‡ุฐูŠ ุซุงุจุช ูˆ
87
00:05:46,190 --> 00:05:50,190
ู‡ุฐูŠ ุซุงุจุช ุจุงู„ู†ุณุจุงู„ูŠ X ุงู„ุงู† X ู„ุญู‚ู‡ุง ุฅุฐุง ุฏู‡ ุงู„ู„ูŠ ุฎุทูŠุฉ
88
00:05:50,190 --> 00:05:53,890
ุจุฑุถู‡ ูˆ ุฏู‡ ุงู„ุฎุท ุฎู„ูŠู†ูŠ ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูŠ X ุจุชุณุงูˆูŠ 1 ุนู„ู‰ N
89
00:05:53,890 --> 00:05:58,010
ุฎุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต 2 ุนู„ู‰ N ุจูŠุทู„ุน ู†ุงู‚ุต 1 ุนู„ู‰ N ููŠ ู†ุงู‚ุต
90
00:05:58,010 --> 00:06:01,790
N ุชุฑุจูŠุน ุจูŠุทู„ุน 1 ุนู„ู‰ N ูุนู„ุง 1 ุนู„ู‰ N ุจูŠุทู„ุน 1 ุนู„ู‰ N ูˆ
91
00:06:01,790 --> 00:06:06,150
N ูุจูŠุทู„ุน ู…ูŠู†ุŸู„ุฃู† ู‡ุฐุง ุจูŠุทู„ุน ูˆุงุญุฏุฉ ุงู„ุงู† ููŠ ู†ุงู‚ุต ุงู†
92
00:06:06,150 --> 00:06:09,850
ุชุฑุจูŠุน ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต ูˆุงุญุฏุฉ ุงู„ุงู† ููŠ ู†ุงู‚ุต ุงู†
93
00:06:09,850 --> 00:06:13,990
ุชุฑุจูŠุน ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ุงู† ุงู† ุฅุฐุง ู‡ุฐู‡ ูˆุงุญุฏุฉ ุงู„ุงู† ุจุชุทู„ุน
94
00:06:13,990 --> 00:06:17,590
ุฃูŠู‡ุงุด ุจุงู„ุณุงูˆุก ุงู„ู„ูŠ ุจุนูŠุฏู‡ุง ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎูŠุฑุฉ ุงุชู†ูŠู† ุนู„ู‰
95
00:06:17,590 --> 00:06:20,370
ุงู† ุงุชู†ูŠู† ุนู„ู‰ ุงู„ู†ุงู‚ุต ุงุชู†ูŠู† ุนู„ู‰ ุงู„ุงู† ุณูุฑ ู‡ุฐูŠ ุจูŠุตูŠุฑ
96
00:06:20,370 --> 00:06:24,480
ุฃูŠู‡ุงุด ุณูุฑ ุชุฑุฌุน ูˆูŠู† ุนู„ู‰ ุณูุฑ ูุจุชู†ุฒู„ ููŠ ุงู„ุดูƒู„ ู‡ุฐุงุจุงุฌูŠ
97
00:06:24,480 --> 00:06:27,540
ุงู„ุฏุงู„ุฉ ู…ู† ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ุทุจุนุง ู…ุนุฑู ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ูุชุฑุฉ
98
00:06:27,540 --> 00:06:31,720
Zero ูˆ ูˆุงุญุฏ ู‡ูŠ ู…ู† Zero ู„ุนู†ุฏูŠ ุงุชู†ูŠู† ุนู„ู‰ N ุงู„ุงู† N
99
00:06:31,720 --> 00:06:34,340
ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุงูˆ ุงุชู†ูŠู† ุงูˆ ุชู„ุงุชุฉ ุงูˆ ุงุฑุจุน ุงูˆ ุฎู…ุณ ุงูˆ
100
00:06:34,340 --> 00:06:37,580
ุณุชุฉ ู„ุจุฏูƒูŠุฉ ูƒู„ ุฏุงู„ุฉ ู…ู† ู‡ู†ุง ุจุชุฎุชู„ู ุนู† ุงู„ุชุงู†ูŠุฉ ูŠุนู†ูŠ
101
00:06:37,580 --> 00:06:43,220
ู‡ุฐู‡ FN in general F ูˆุงุญุฏ F ุงุชู†ูŠู† F ุชู„ุงุชุฉ ุจุชูŠุฌูŠ
102
00:06:43,220 --> 00:06:46,360
ู„ู‡ูŠูƒ ุงูˆ ุจุชุฑูˆุญ ู„ู‡ูŠูƒ ุจุณ ุจู†ูุณ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุดูƒู„ ุงู„ุฃู…ุงู…ูŠ
103
00:06:46,700 --> 00:06:49,900
ุฅูŠุด ุนู†ุฏูŠ ููŠ ูุชุฑุฉ ู…ุงุชู†ูŠู† ุนู„ู‰ ุฃู„ุง ูˆุงุญุฏุŒ ู…ุงุชู†ูŠู† ุนู„ู‰
104
00:06:49,900 --> 00:06:53,340
ุฃู„ุง ูˆุงุญุฏุŒ ุงู„ูุชุฑุฉ ู‡ุง ุฏูŠ ู…ุงุฎุฏูŠู† ุงู„ุฏุงู„ุฉ ุฅูŠุด ุจุชุณุงูˆูŠุŸ
105
00:06:53,340 --> 00:06:57,440
ุจุชุณุงูˆูŠ ุฅูŠุดุŸ ุณูุฑ ูˆุงุถุญ ุฅู† ุงู„ุฏุงู„ุฉ ู‡ูŠ ุงู„ุฏุงู„ุฉ ู…ุญุชุฑู…ุฉ
106
00:06:57,440 --> 00:07:02,880
ุฏุงู„ุฉ is continuousMadame Continuous ุฃูƒูŠุฏ ุงุดู…ุงู„ู‡ุง
107
00:07:02,880 --> 00:07:08,060
is integrable ุฅุฐุง ุงู„ุฏูˆุงู„ ู‡ุฐูˆู„ ุฃู ูˆุงุญุฏ ูˆ ุฃู ุงุชู†ูŠู† ูˆ
108
00:07:08,060 --> 00:07:11,480
ุฃู ุชู„ุงุชุฉ ูˆ ุฃู ุฃุฑุจุนุฉ ูˆ ุฃู ุฎู…ุณุฉ ูˆ ุฃู ุณุชุฉ ุฅู„ู‰ ู…ุง ู„ุง
109
00:07:11,480 --> 00:07:17,380
ู†ู‡ุงูŠุฉ ู…ู† ุงู„ุฃูุงู†ุฒ ุจุชูƒูˆู† ุนุจุงุฑุฉ ุนู† .. ุนุจุงุฑุฉ ุนู†
110
00:07:17,380 --> 00:07:21,600
integrable ุฃูˆ ุฃู ุงุชู†ูŠู† ูˆ ุทุงู„ุนIntegrable Functions
111
00:07:21,600 --> 00:07:25,760
ู…ู† ุฃู† ูˆ ุทุงู„ุน .. ู…ู† ุฃู† ูˆุงุญุฏ ุจูŠุตูŠุฑ ููŠ ุงู„ู…ุดูƒู„ุฉ ุทูŠุจ
112
00:07:25,760 --> 00:07:29,520
Note that Fn of X is continuous ู„ูƒู„ ุฃู† ุฃูƒุจุฑ ุณุงูˆูŠุฉ
113
00:07:29,520 --> 00:07:34,180
ุงุชู†ูŠู† ู†ุงุฎุฏ ุงู„ููƒุฑุฉ ุงุญู†ุง Hence, Integrable and ุงู„
114
00:07:34,180 --> 00:07:38,520
integration ู…ู† ุตูุฑ ู„ุฃู† ูˆุงุญุฏ Fn of X DX ุงูŠุด ุจูŠุณุงูˆูŠุŸ
115
00:07:38,520 --> 00:07:42,060
ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุจุชุนุฑููˆุง ุชุญุณุจูˆู‡ุง ู‡ูŠ ู…ุณุงุญุฉ ..
116
00:07:42,060 --> 00:07:48,500
ู…ุณุงุญุฉ ุงู„ู…ุชู„ุช ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ุนู„ู‰ ุฃู†ุงู„ู„ูŠ ู‡ูˆ ู…ุถุฑูˆุจ
117
00:07:48,500 --> 00:07:54,360
ููŠ ู…ูŠู† ูุงู† ุจุทู„ุน ุฌุฏุงุด ุงุชู†ูŠู† ููŠ ู†ุต ุจุทู„ุน ูˆุงุญุฏ ุนุงุฑู ุงู†
118
00:07:54,360 --> 00:07:56,880
ุงู„ู†ุต ุงู„ู‚ุงุนุฏุฉ ููŠ ุงู„ุงุฑุชูุงุน ุฅุฐุง ุงู„ุฌุฏุงุด ุจุทู„ุน ุนู†ุฏู‰ ุงู„ู„ูŠ
119
00:07:56,880 --> 00:08:00,100
ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ integration ู‡ุฐุง ุจุณุงูˆูŠ ูˆุงุญุฏ ู„ุฃู† ู‡ุฐุง
120
00:08:00,100 --> 00:08:04,060
ุงู„ู…ู†ุทู‚ุฉ ุฅูŠู‡ ุดู…ุงู„ู‡ุง ุณูุฑ ุฅุฐุง ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠู…ุฉ ุงู„
121
00:08:04,060 --> 00:08:08,480
integration ู‡ุฐุง ุจุณุงูˆูŠ ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ function of
122
00:08:08,480 --> 00:08:12,980
ands integrable ูˆู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ integration ุจุณุงูˆูŠ
123
00:08:12,980 --> 00:08:18,850
ูˆุงุญุฏ ู„ูƒู„ and ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงุชู†ูŠู†ุงู† ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
124
00:08:18,850 --> 00:08:21,490
ุงุนูˆุถู‡ุง ู„ุญุงู„ูƒ ูˆุดูˆู ุงูŠุด ุงู„ู„ูŠ ุจูŠุตูŠุฑ Note that as n
125
00:08:21,490 --> 00:08:25,490
goes to infinity ุงู„ู„ูŠ
126
00:08:25,490 --> 00:08:31,310
ู‡ูˆ ุงู„ูุชุฑุงุช ุงู„ู„ูŠ ุนู„ูŠู‡ุง ุนุดุงู† ู†ูˆุฑุฌูŠูƒู… ุฅูŠุงู‡ุงุทูŠุจ ู‡ุฐู‡
127
00:08:31,310 --> 00:08:35,230
ุงู„ุฏุงู„ุฉ ู…ุนุฑูู‡ุง as n goes to infinity ู‡ุฐู‡ ุงู„ูุชุฑุฉ
128
00:08:35,230 --> 00:08:39,050
ุจุชุตูŠุฑ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ู‚ุทุฉ zero ูˆ ู‡ุฐู‡ ุงู„ูุชุฑุฉ
129
00:08:39,050 --> 00:08:43,130
ุจุชุตูŠุฑ ุงู„ู†ู‚ุทุฉ zero ูˆ ุงู„ูุชุฑุฉ 2 ุนู„ู‰ n ุจุชุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ
130
00:08:43,130 --> 00:08:48,430
mean zero ู„ ุนู†ุฏ ูˆุงุญุฏ and so ุงู„ุฏุงู„ุฉ ุฅูŠุด ู‡ุชุตูŠุฑ limit
131
00:08:48,430 --> 00:08:54,410
fn of x ุจุชุณุงูˆูŠ f of x ุฅูŠุด ู‡ุชุณุงูˆูŠ ู‡ุชุณุงูˆูŠ zeroูŠุนู†ูŠ
132
00:08:54,410 --> 00:08:59,450
ุงู„ุงู† ู„ู…ุง ุงู† ุชุฑูˆุญ ู„ู…ุง ู„ู†ู‡ุงูŠุฉ ู‡ุฐู‡ ูƒู„ู‡ุง ุงูŠุด ู…ุงู„ู‡ุง
133
00:08:59,450 --> 00:09:03,870
ุจุชู†ุทุจู‚ ุนุงู„ู…ูŠู† ู„ุฅู† ูƒู„ ู…ุง ูƒุจุฑุช ุงู† ุจุชูุฑุฏ ู‡ุฐู‡ ุจุชูุฑุฏ
134
00:09:03,870 --> 00:09:07,170
ู‡ุฐู‡ ุจุชูุฑุฏ ู‡ุฐู‡ ู„ุฅู† as n goes to infinity ู‡ุฐุง ุงู„ูƒู„ุงู…
135
00:09:07,170 --> 00:09:12,210
ุฏู‡ ุงู„ู„ูŠ ู‡ุชูุฑุฏ ูˆ ุชู…ุดูŠ ุนุงู„ู…ูŠู† ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุณูุฑ
136
00:09:12,210 --> 00:09:16,250
ู„ุนู†ุฏ ูˆุงุญุฏ ู‡ุชุธู„ู‡ุง ุงูŠุด ู‚ูŠู…ุชู‡ุง ู‚ูŠู…ุชู‡ุง ุณูุฑ ูุงู‡ู…ูŠู† ุนู„ูŠุด
137
00:09:16,250 --> 00:09:21,600
ุจู‚ูˆู„ ุงู„ุงู† as n goes to infinityู‡ุฐู‡ ุงู„ุขู† ุจุชุจุฏุฃ ุงู„ู„ูŠ
138
00:09:21,600 --> 00:09:26,000
ู‡ูŠ .. ู‡ุฐูŠ ุจูŠุตูŠุฑ ุงู„ุงู† ู†ุต .. ู‡ุฐูŠ ุงู„ู…ู†ุทู‚ุฉ ูƒู„ู‡ุง .. ุขุณู
139
00:09:26,000 --> 00:09:28,040
.. ู‡ุฐูŠ ุงู„ู…ู†ุทู‚ุฉ ูƒู„ู‡ุง ู‡ุฐุง ุงู„ู„ูŠ ุจูŠุชู…ุฏ .. ู…ุด ู‡ุฏูˆู„ู‡ ..
140
00:09:28,040 --> 00:09:31,440
ู‡ุฐูŠ ุงู„ู„ูŠ ุจูŠุชู…ุฏ ุงู„ู„ูŠ ู‡ูŠ ุงุชู†ูŠู† ุนู„ู‰ ุงู† ุจุชุฌุฑุจู‡ุง ุงู† ..
141
00:09:31,440 --> 00:09:34,220
ุจุชุตุบุฑ as and goes to infinity ูˆุงุญุฏุฉ ุนู„ู‰ ุงู† ุจุชุฌุฑุจู‡ุง
142
00:09:34,220 --> 00:09:37,850
ุงู†ู„ุฃู† as n goes to infinity ุจูŠู‡ุฏููƒ ุจุฑูˆุญ ู„ู…ูŠู† ููŠ ุฏุง
143
00:09:37,850 --> 00:09:42,750
ุงู„ุณูุฑ ูŠุนู†ูŠ ุจูŠุตูŠุฑ ุฏู‡ ู„ูƒู„ู‡ุง ู…ู† ู…ุนุฑูุฉ ูƒ zero function
144
00:09:42,750 --> 00:09:46,370
ูŠุนู†ูŠ limit of n of x as n goes to infinity ุจูŠุณุงูˆูŠ
145
00:09:46,370 --> 00:09:54,030
ุงู„ู„ูŠ ู‡ูŠ ุณูุฑ ู„ูƒู„ x limit ุงู„ูุชุฑุฉ 01 ู…ุฏุงู… ุณูุฑุฃู‡ ุฅุฐุง
146
00:09:54,030 --> 00:09:57,530
ุตุงุฑ ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ู„ุงุญุธูˆุง ุงู„ convergence point wise
147
00:09:57,530 --> 00:10:01,350
convergence ุจุนุชู…ุฏ ุนุงู„ู…ูŠุง ุนู„ู‰ x ููŠ ูƒู„ ุญุงุฌุฉ ุงู„ู„ูŠ ู‡ูˆ
148
00:10:01,350 --> 00:10:05,010
ุงู„ integration ู…ู† ุณูุฑ ุงู„ู„ูŠ ุนู†ุฏู‡ ูˆุงุญุฏ f of x dx ุฅูŠุด
149
00:10:05,010 --> 00:10:09,630
ู‡ูŠุณุงูˆูŠุŸ ู‡ูŠุณุงูˆูŠ zero ู„ุฃู† ู‚ูŠู…ุฉ ุงู„ function ูƒู„ู‡ ูˆูŠู†
150
00:10:09,630 --> 00:10:14,510
ู‡ุชูŠุฌูŠ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุณูุฑ ูุจูƒูˆู† ุงู„ integration ุงู„ู„ูŠ
151
00:10:14,510 --> 00:10:19,770
ุจูŠุณุงูˆูŠ zero ุงู„ู„ูŠ ุจุฏูŠ ุฃู†ุง .. ุงู„ู„ูŠ ุจุฏูŠ ุฃูู„ู‡ ู†ู„ุงุญุธ
152
00:10:20,580 --> 00:10:27,480
ุงู„ู„ูŠ ูˆุตู„ุชู„ู‡ ุงู† ุงู„ integration ู…ู† 0 ูˆ 1 ู„ู„ F of X
153
00:10:27,480 --> 00:10:33,040
DX ุจูŠุณุงูˆูŠ 0 ุฃูƒูŠุฏ ุจูŠุณูˆูŠุด 1 ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
154
00:10:33,040 --> 00:10:39,510
ู…ูŠู† ู‡ุฐุง ุงู„ูˆุงุญุฏ limit ู„ู„ integrationู…ู† zero and
155
00:10:39,510 --> 00:10:46,170
ูˆุงุญุฏ F N of X DX as N goes to infinity ู…ุธุจูˆุทุŸ ู„ุฃู†
156
00:10:46,170 --> 00:10:49,530
ุงู„ integration ู‡ุฐุง ุทู„ุน ุฏุงูŠู…ุง ุฅูŠุด ุญูŠุณุงูˆูŠุŸ ุญูŠุณุงูˆูŠ
157
00:10:49,530 --> 00:10:54,130
ูˆุงุญุฏ ุจุบุถ ุงู„ู†ุธุฑ ุนู† ู‚ูŠู…ุฉ ุงู„ N ุฅุฐุง ู‡ุฐุง ุงู„ limit ู„ู„
158
00:10:54,130 --> 00:10:59,270
integration ู‡ุงูŠ ุงู„ู„ูŠ ุจุชูˆุตู„ู‡ ูˆู„ูŠุณ ุดุฑุท ูŠุณุงูˆูŠ ุฅูŠุด ุงู„
159
00:10:59,270 --> 00:11:03,250
integration ู„ู„ limit ุฑุบู… ุฅู† ุงู„ F ุทู„ุนุช ู…ุงู„ู‡ุง
160
00:11:03,250 --> 00:11:09,070
Integrable ุงู„ limit ูŠุนู†ูŠ ุงู„ N limitุฃู ุงู† of X ู„ู…ุง
161
00:11:09,070 --> 00:11:14,810
ุงู† ุชุฑูˆุญ ู„ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงูŠุด ุจูŠุณุงูˆูŠ F of X ุจุงู„ุฑุบู…
162
00:11:14,810 --> 00:11:19,810
ู…ู† ู‡ูŠูƒ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ X ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ู„ูƒู„ X
163
00:11:19,810 --> 00:11:25,990
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ 01 ุจุงู„ุฑุบู… ู…ู† ู‡ูŠูƒุงู„ุงู† ุงู„ู€
164
00:11:25,990 --> 00:11:31,790
integration limit ู„ู„ู€ integration ู…ู† C1 ู„ู€ F of X,
165
00:11:32,290 --> 00:11:39,570
N of X, DX ู…ุง ุณูˆุงุด ู„ู„ integration ู…ู† 0 ู„1 limit ู„ู€
166
00:11:39,570 --> 00:11:45,070
F, N of XูŠุนู†ูŠ ุงูŠุด ุงู„ู„ูŠ ุจู‚ุตุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ุงู‚ุฏุฑุชุด ุงู„
167
00:11:45,070 --> 00:11:49,710
limit ุชุฏุฎู„ ู„ุฌูˆู‡ ุงู„ integration ููŠ ุถูˆุก ุงู„ pointwise
168
00:11:49,710 --> 00:11:53,470
convergence ูˆููŠ ุถูˆุก ุงู† ุงู„ limit ู†ูุณู‡ุง ุทู„ุนุช
169
00:11:53,470 --> 00:11:58,050
integrable ุงุฐุง ุงู„ุงู† ู‡ู†ุง ุงู„ pointwise convergence
170
00:11:58,050 --> 00:12:02,570
ู‚ุฏ ูŠุนุทูŠ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ function ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ
171
00:12:02,570 --> 00:12:07,560
integrable ู„ูƒู† ู„ุง ูŠู…ูƒู†ุฅู†ู‡ .. ุฃูˆ .. ุฃูŠู‡ .. ุฃูˆ ..
172
00:12:07,560 --> 00:12:11,280
ุขุณู ู„ูŠุณ ุดุฑุทุง ุฃู† ูŠูƒูˆู† limit ู„ู„ integration ุจุณุงูˆูŠ ุงู„
173
00:12:11,280 --> 00:12:14,600
integration ู„ู„ limit ุฅุฐุง ุจุฏู†ุง ุฏูุนุฉ ุฃูƒุจุฑ ู…ู† ุงู„
174
00:12:14,600 --> 00:12:17,820
pointwise convergence ูˆ ุงู„ุญุงู„ุชูŠู† ุงู„ continuity ูˆ
175
00:12:17,820 --> 00:12:21,600
ุงู„ integrability ู‡ุงู†ูุชู†ุชูŠู† ุงู„ุฏูุนุฉ ู‡ุฐู‡ ู‡ูŠ ุงู„
176
00:12:21,600 --> 00:12:25,970
uniform convergence ูˆ ู‡ู†ุดูˆู ู‡ุฐุง ุงู„ูƒู„ุงู…ู…ู† ุฎู„ุงู„
177
00:12:25,970 --> 00:12:31,770
ุงู„ู†ุธุฑูŠุงุช ุงู„ู‚ุงุฏู…ุฉ ุฃูˆู„ ู†ุธุฑูŠุฉ ุนู†ุฏู†ุง ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
178
00:12:31,770 --> 00:12:35,750
ู‡ูŠ ู‡ุชุชุนู„ู‚ ุจุงู„ู€ sequence of continuous functions
179
00:12:35,750 --> 00:12:40,090
ูƒูŠู ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู„ูŠ ู‡ูŠ sequence of continuous
180
00:12:40,090 --> 00:12:43,570
functions converts uniformly to some function F
181
00:12:43,570 --> 00:12:46,690
then F must be continuous
182
00:12:49,500 --> 00:12:54,300
ุทูŠุจ ูŠุง ุฌู…ุงุนุฉ ุงู„ุงู† ู†ูŠุฌูŠ theorem 8.2.2 ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠ
183
00:12:54,300 --> 00:12:57,520
ุงู„ุงู† ู†ุชู‚ู ุงู† ุจูŠู‡ a sequence of continuous
184
00:12:57,520 --> 00:13:02,860
functionson a set A subset ู…ู† RุŒ ุฅุฐุงู‹ Fn ุนุจุงุฑุฉ ุนู†
185
00:13:02,860 --> 00:13:07,300
ู…ุชุชุงุจุนุฉ ู…ู† ุงู„ุฏูˆุงู„ูŠ ุงู„ู…ุชุตู„ุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ A subset ู…ู†
186
00:13:07,300 --> 00:13:12,360
R and suppose that ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Fn converges
187
00:13:12,360 --> 00:13:15,640
uniformly on A to a function F ู…ู† A ู„ุนู†ุฏ RุŒ ุจู‚ูˆู„
188
00:13:15,640 --> 00:13:21,200
ุฅุฐุง ูˆู„ุง ูŠู‡ู…ูƒ ู…ุถู…ูˆู† ุฅู† ุงู„ู€ F ู†ูุณู‡ุง ุชูƒูˆู† ุฅูŠุด ู…ุง ู„ู‡ุง
189
00:13:21,200 --> 00:13:24,400
is a continuous functionุŒ ุฅุฐุงู‹
190
00:13:30,480 --> 00:13:36,500
ุงู„ู…ู‚ุงูˆู…ุฉ ู„ู„ู…ุนุงู…ู„ุงุช ุงู„ู…ุณุชู…ุฑุฉ ู‡ูŠ ู…ุณุชู…ุฑุฉ ุจุงุณุชุฎุฏุงู…
191
00:13:36,500 --> 00:13:41,880
ุงู„ู…ุนุงู…ู„ุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
192
00:13:41,880 --> 00:13:43,080
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
193
00:13:43,080 --> 00:13:43,760
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
194
00:13:43,760 --> 00:13:43,760
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
195
00:13:43,760 --> 00:13:43,760
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
196
00:13:43,760 --> 00:13:43,760
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
197
00:13:43,760 --> 00:13:43,760
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
198
00:13:43,760 --> 00:13:43,760
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
199
00:13:43,760 --> 00:13:43,760
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ
200
00:13:43,760 --> 00:13:50,400
ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชู…ุฑุฉ ุงู„ู…ุณุชุฃูˆ ู†ุตู„
201
00:13:50,400 --> 00:13:54,440
ุฅู„ู‰ ุฃู† ุงู„ู€ F ู†ูุณู‡ุง continuous ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู€ A
202
00:13:54,440 --> 00:13:59,280
element ุงู„ู€ R ุฎู„ู‘ูŠู†ุง ุจุณ ู†ุฑุชุจ ุญุงุฌุฉ ุฏู‡ ุจู…ุง ุฃู† F
203
00:13:59,280 --> 00:14:03,180
unconverts uniform ู„ู„ู€ F on A ุฅุฐุง ุญุณุจ ุงู„ุชุนุฑูŠู ุงู„ู€
204
00:14:03,180 --> 00:14:05,820
uniform convergence ู„ูƒู„ ูŠุณูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ there
205
00:14:05,820 --> 00:14:10,690
exists actuallyof epsilon ุงู„ู„ูŠ ู‡ูˆ such that ุฃูˆ
206
00:14:10,690 --> 00:14:13,530
there exists H such that ุงู„ู€H ู‡ุชุชู…ุฏ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰
207
00:14:13,530 --> 00:14:16,630
ุงู„ู€Epsilon if N ุฃูƒุจุฑ ูŠุณูˆู‰ H ู„ุฃู†ู‡ for convergence
208
00:14:16,630 --> 00:14:20,470
ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† such that if N ุฃูƒุจุฑ ูŠุณูˆู‰ H then
209
00:14:20,470 --> 00:14:24,610
F N of X ู†ุงู‚ุต F of X ุฃุตุบุฑ ู…ู† Epsilon ุน ุชู„ุงุชุฉ ุญุฑู†
210
00:14:24,610 --> 00:14:27,230
ุฃุตุบุฑ ู…ู† Epsilon ููŠ ุงู„ุฏู†ูŠุง ู…ู† ุถู…ู†ู‡ุง ู…ูŠู†ุŸ Epsilon
211
00:14:27,230 --> 00:14:32,010
ุนู„ู‰ ุชู„ุงุชุฉ for all X element in ู…ูŠู†ุŸ in A ุฅุฐุง ุงู„ุฃู†
212
00:14:32,010 --> 00:14:41,540
ุฃูˆู„ ุญุงุฌุฉ ู„ูƒู„ Epsilonุฃูƒุจุฑ ู…ู† 0 ู„ุฌูŠู†ุง H such that
213
00:14:41,540 --> 00:14:46,780
element of N ุทุจุนุงู‹ such that for every N ุฃูƒุจุฑ ุฃูˆ
214
00:14:46,780 --> 00:14:55,100
ูŠุณุงูˆูŠ H ุนู†ุฏูŠ F N of X ู†ู‚ุต F of X ุฃุตุบุฑ ู…ู† Y ุน ุชู„ุงุชุฉ
215
00:14:55,100 --> 00:15:04,390
ู„ูƒู„ X element ู…ู† A ู‡ุฐู‡ ุฃูˆู„ ูˆุงุญุฏุฉู„ุฃู† let C element
216
00:15:04,390 --> 00:15:09,870
in A be arbitrary but fixed ู„ูŠุดุŸ ุจุฏูŠ ุฃุซุจุชู„ูƒ ุฃู† F
217
00:15:09,870 --> 00:15:16,050
continuous on AุŒ F ุชุจุนุชู†ุงุŒ ู‡ูŠ ุงู„ู…ุทู„ูˆุจูƒูŠู ุจุฏู‰
218
00:15:16,050 --> 00:15:20,150
ุฃุซุจุชู‡ุงุŸ ุจุฏู‰ ุฃุฎุฏ ุฃูŠ C Fixed ู„ูƒู† Arbitrary ุฅู† ุฅูŠู‡
219
00:15:20,150 --> 00:15:23,230
ุจู…ุง ุฅู†ู‡ C Arbitrary ู„ูˆ ุฃุซุจุชู†ุง F Continuous and
220
00:15:23,230 --> 00:15:26,190
ุงู„ู€C ุจุชูƒูˆู† F Continuous ุนู„ู‰ ูƒู„ ุงู„ู€Main ุงู„ู€A ูƒูŠู
221
00:15:26,190 --> 00:15:31,530
ุจุฏู‰ ุฃุซุจุชู‡ุงุŸ ุจุฏู‰ ุฃุซุจุชู„ูƒ Limit F of X ู„ู…ุง X ุจุชุฑูˆุญ
222
00:15:31,530 --> 00:15:36,430
ู„ู„ู€C ุฃุด ุจุชุณุงูˆูŠ F of C ุฅูŠุด ู…ุนู†ุงุชู‡ ู‡ุฐุงุŸ ู…ุนู†ุงุชู‡ ู„ูƒู„ ูŠ
223
00:15:36,430 --> 00:15:40,910
ุฃูƒุจุฑ ู…ู† ุตูุฑ ุจุฏู‰ ู„ุงุฌูŠ K element none such that as
224
00:15:40,910 --> 00:15:49,500
ุชู„ุงู‚ูŠ Deltaุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ู…ู† ุณูุฑ such that X minus C
225
00:15:49,500 --> 00:15:55,280
ุฃุตุบุฑ ู…ู† Delta ูŠุนุทูŠู†ูŠ F of X ู†ุงู‚ุต F of C ุฃุตุบุฑ ู…ู†
226
00:15:55,280 --> 00:16:00,260
ู…ูŠู† ู…ู† Y ู‡ุฐุง ุงู„ู„ูŠ ุจุฏุฃ ุฃุซุจุชู‡ ุนุดุงู† ุฃุตู„ ู„ู…ูŠู† ู„ู„ F
227
00:16:00,260 --> 00:16:04,440
continuous ุนู†ุฏ ุงู„ C ุงู„ู„ูŠ ู‡ูŠ ูƒุงู†ุช arbitrary ููŠ ุงู„ A
228
00:16:04,440 --> 00:16:08,620
ุฅุฐุง F continuous ุนู„ู‰ ูƒู„ ุงู„ A ุฏู‡ ู‡ู†ุดูˆูู‡ ุงู„ุขู† ุทูŠุจ
229
00:16:10,260 --> 00:16:13,740
ุงุณุชุฎุฏู…ู‡ุง ู…ุนู†ุงู‡ ุงู„ู€ for convergence ู‡ูŠู‡ ูˆุฃุฎุฏุช C
230
00:16:13,740 --> 00:16:18,800
arbitrary point but fixed in A then ุงู„ุขู† ุงุญุณุจ ู…ุงู„ูŠ
231
00:16:18,800 --> 00:16:24,420
ุงู .. ุทุจุนุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุณ ุฌุงุจ ุงู„ู…ุจุฏุฃ ู‡ู†ุง ู‡ุฐุง ุตุญูŠุญ
232
00:16:24,420 --> 00:16:31,800
ู„ูƒู„ N ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ H ู…ู† ุถู…ู†ู‡ุง ุตุญูŠุญ ู„ู„ู€H ูŠุนู†ูŠ
233
00:16:31,800 --> 00:16:36,260
ู‡ู„ุงุฌูŠ ุงู† FH of X ู†ุงู‚ุต F of X ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
234
00:16:36,260 --> 00:16:41,540
ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ู„ูƒู„ X element in Aุจุฑุถู‡ ุตุญูŠุญ ู„ู„ F H
235
00:16:41,540 --> 00:16:48,840
of C ู†ุงู‚ุต F of C ุฃุตุบุฑ ู…ู† F3 ู„ูƒู„ X element A ุตุญูŠุญ
236
00:16:48,840 --> 00:16:52,340
ู…ู† ุถู…ู† ุงู„ X ูˆุงู„C ูˆุบูŠุฑ ูˆ ุงู„ุงุฎุฑ ู‡ูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
237
00:16:52,340 --> 00:16:57,520
ููŠ ุงู„ Aุฃุญุณุจู„ูŠ ุงู„ุขู† F of X ู†ุงู‚ุต F of C ุฃุตุบุฑ ุฃูˆ
238
00:16:57,520 --> 00:17:03,120
ุฃุณุงูˆูŠ F of X ู†ุงู‚ุต F H of X ุฒุงุฏ F H of X ู†ุงู‚ุต F H
239
00:17:03,120 --> 00:17:06,980
of C ุฒุงุฏ F H of C ู†ุงู‚ุต F of C ูŠุนู†ูŠ ุฅูŠุด ุงู„ู„ูŠ ุณูˆูŠุชู‡
240
00:17:06,980 --> 00:17:11,680
ุงู„ู„ูŠ ู‡ูˆ ุถูุช ู‚ู…ุชูŠู† ูˆ ุทุฑุญุชูŠู† ุถูุช ุงู„ H of X F H of X
241
00:17:11,680 --> 00:17:16,320
ูˆุถูุช ุงู„ F H of C ุนุดุงู† ุจุฏูŠ ุฃุณุชุฎุฏู… ุงู„ู„ูŠ ููˆู‚ ุนุดุงู† ุฃุตู„
242
00:17:16,320 --> 00:17:24,660
ู„ู„ูŠ ุจุฏูŠู‡ุง ุดูˆู ูƒูŠู ุงู„ู„ูŠ ุนู†ุฏูŠุงู„ู€ Fx ู†ุงู‚ุต Fh of X ู…ู†
243
00:17:24,660 --> 00:17:29,320
ุงู„ู„ูŠ ููˆู‚ ุฃุตุบุฑ ู…ู† ูŠ ุนู„ู‰ ุชู„ุงุชุฉ ู‡ุฐู‡ ู†ุฒู„ูˆู‡ุง ุฒูŠ ู…ุง ู‡ูŠ
244
00:17:29,320 --> 00:17:33,240
ุชุณูŠุจูˆูƒูˆุง ู…ู†ู‡ุง ู‡ุฐู‡ Fh of C ู†ุงู‚ุต F of C ุฃุตุบุฑ ู…ู† ูŠ
245
00:17:33,240 --> 00:17:38,760
ุจุฑุถู‡ ู…ู† ูŠ ุนู„ู‰ ุชู„ุงุชุฉ ุฅุฐุง ุงู„ุขู† ุงู„ู„ูŠ ุญุตู„ุชู‡ ู„ูƒู„ ูŠ ุฃูƒุจุฑ
246
00:17:38,760 --> 00:17:45,620
ู…ู† 0 ู„ุฌูŠุช H ุฃุจุญุซ
247
00:17:46,530 --> 00:17:54,690
ุฅู†ู‡ ู„ูƒู„ N ุฃูƒุจุฑ ุฃูˆ ุณูˆุก H ุทู„ุน ุนู†ุฏูŠ F X ู†ุงู‚ุต F of C
248
00:17:54,690 --> 00:18:00,470
ุฃุตุบุฑ ู…ู† Epsilon ุน ุชู„ุงุชุฉ ูˆุฒุงุฆุฏ Epsilon ุน ุชู„ุงุชุฉ ูŠุนู†ูŠ
249
00:18:00,470 --> 00:18:04,910
ุงุชู†ูŠู† Epsilon ุน ุชู„ุงุชุฉ ุฒุงุฆุฏ ุงู„ absolute value ู„ F H
250
00:18:04,910 --> 00:18:14,170
of X ู†ุงู‚ุต F H of C ู‡ุฐู‡ ุงู„ุขู†ุงู„ู„ูŠ ู‡ูŠุณุนูู†ูŠ ุงู† ู‡ูˆ
251
00:18:14,170 --> 00:18:18,610
ู…ูุชุฑุถ ู„ูŠ ุงู† ุงู„ FN ุงู„ู„ูŠ ู‡ูŠ ุงู„ sequence ูƒู„ู‡ุง
252
00:18:18,610 --> 00:18:24,010
continuous ุนู†ุฏ ุงู„ A ูƒู„ู‡ุงุŒ ุงุฐุง ุงูƒูŠุฏ ุงู„ FH ุงู„ู„ูŠ ู‡ูŠ
253
00:18:24,010 --> 00:18:27,810
ูˆุงุญุฏุฉ ู…ู† ุงู„ sequence is continuous ุนู†ุฏ ู…ูŠู†ุŒ ุนู†ุฏ ูƒู„
254
00:18:27,810 --> 00:18:31,930
ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠ ุงู„ AุŒ ู…ู† ุถู…ู† ู‡ู†ุง ุงู„ C ุงู„ู„ูŠ ุฃุฎุฏุช
255
00:18:31,930 --> 00:18:37,490
fixed but arbitrary ูˆ ู‡ูŠูƒุŒ ู‡ุจุชูƒูˆู† ุฃู†ุง ุจุฏูŠุช ุฃู†ู‡ูŠ
256
00:18:37,490 --> 00:18:42,700
ุงู„ุจุฑู‡ุงู†ุŒ ุดูˆู ูƒูŠูู‡ุฐู‡ ุญุตู„ู†ุงู‡ุง ุทูŠุจ ุงู„ุฃู† ุฃูƒูŠุฏ ู‡ูŠู‚ูˆู„ู†ุง
257
00:18:42,700 --> 00:18:47,860
since FH is continuous at C ู…ุฏุงู… continuous at C
258
00:18:47,860 --> 00:18:53,800
ุฅุฐุง ู„ูƒู„ ูŠ ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ Delta ุงู„ู€ Delta
259
00:18:53,800 --> 00:18:57,700
ู‡ุฐู‡ ุทุจุนุง ุจุฏูŠ ู†ูˆู‘ู‡ู„ูƒ ูˆูŠู‚ูˆู„ูƒ ุงู„ู€ Delta ุฃูƒูŠุฏ ู‡ุชุนุชู…ุฏ
260
00:18:57,700 --> 00:19:01,920
ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู€ Y ูˆู‡ุชุนุชู…ุฏ ุนู„ู‰ ุงู„ู€ C ู„ุฃู†ู‡ ุฃู†ุง ุจุงุฎุฏ
261
00:19:01,920 --> 00:19:06,790
ุงู„ continuity ู„ุนู†ุฏ ู…ูŠู† ุนู†ุฏ ุงู„ู†ู‚ุทุฉ Cูˆู‡ุชุนุชู…ุฏ ุนู„ู‰ ุงู„
262
00:19:06,790 --> 00:19:11,470
FH ู„ุฃู†ู‡ ู…ุงุงุฎุฏ ุงู„ continuity ู„ู…ู† ุฃู†ุง ู„ู„ FH ุฅุฐุง
263
00:19:11,470 --> 00:19:17,610
ุงู„ุฏู„ุชุง ู‡ุฐู‡ ู‡ูŠ ุจุชุนุชู…ุฏ ุนู„ู‰ ุงู„ FH ูˆ C ู„ู„ Y ุนู„ู‰ 3 ู„ุฅู†ู‡
264
00:19:17,610 --> 00:19:24,650
ุฃู†ุง ุจุฏุฃ ุงุณุชุฎุฏู… limit FH of X ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€C ุจุณูˆุก
265
00:19:24,650 --> 00:19:30,590
FH of C ูŠุนู†ูŠ ู„ูƒู„ Y ุฃูƒุจุฑ ู…ู† 0 there exists Delta
266
00:19:30,590 --> 00:19:35,630
ุงู„ู€Delta ู‡ุฐู‡ ู„ู…ูŠู† ุชุนุชู…ุฏ ุนู„ู‰ ุงู„ู€C ูˆุชุนุชู…ุฏ ุนู„ู‰ ุงู„ู€FH
267
00:19:35,630 --> 00:19:40,470
ูˆุชุนุชู…ุฏ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€Y ุงู„ู„ูŠ ุจุชุงุฎุฏู‡ุง
268
00:19:40,470 --> 00:19:45,340
arbitrarily ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจุฅุฐุง ุงู„ุชุนุฑูŠู ู‡ุฐุง ุจุฏูŠ
269
00:19:45,340 --> 00:19:48,860
ุฃุชุฑุฌู…ู‡ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุตูุฑ there exist ุงู„ู„ูŠ ู‡ูŠ
270
00:19:48,860 --> 00:19:53,300
Delta ุฃูƒุจุฑ ู…ู† ุตูุฑ such that ู„ู…ุง X minus C ูƒุงู† ุฃุตุบุฑ
271
00:19:53,300 --> 00:19:57,420
ู…ู† Delta ูˆุงู„ู€ X ููŠ ุงู„ู€ A ูŠุนุทูŠู†ูŠ ุงู„ูุฑู‚ ุจูŠู† ุงู„ุชู†ุชูŠู†
272
00:19:57,420 --> 00:20:00,620
ู‡ุฏูˆู„ุฉ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ู…ู† ุถู…ู†
273
00:20:00,620 --> 00:20:04,820
ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ูˆุงุถุญุฉ ุงู„ุตูˆุฑุฉ ุงู„ุขู† ู‡ุฐู‡ ุงู„ุขู† ุจุฏูŠ
274
00:20:04,820 --> 00:20:09,090
ุฃุฏู…ุฌู‡ุง ู…ุน ุญุฏ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ู„ูƒู„ ุฅุจุณู„ูˆู†ุฃูƒุจุฑ ู…ู† ุณูุฑ
275
00:20:09,090 --> 00:20:13,330
there exist Delta ุฃูƒุจุฑ ู…ู† ุณูุฑ such that for every
276
00:20:13,330 --> 00:20:18,610
X element in A ุจุชุญู‚ู‚ X minus C ุฃุตุบุฑ ู…ู† Delta ุงู„ู„ูŠ
277
00:20:18,610 --> 00:20:26,230
ู‡ูˆ ุจูŠุนุทูŠู†ูŠ then F of X ู†ุงู‚ุต F of C ุฃุตุบุฑ ู…ู† 2 Y ุน 3
278
00:20:27,010 --> 00:20:31,930
ูˆู…ู† ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ูŠ ุนู„ู‰ ุชู„ุงุชุฉ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ุฃุตุบุฑ ู…ู†
279
00:20:31,930 --> 00:20:37,270
ูŠ ูˆู‡ุฐุง ุจุงู„ุธุจุท ู…ุนู†ุงุชู‡ ุฃู†ู‡ limit f of x ู„ู…ุง x ุชุฑูˆุญ ู„
280
00:20:37,270 --> 00:20:40,570
c ุจูŠุณุงูˆูŠ f of c ูˆู‡ุฐุง ูƒุงู†ุช c element in a
281
00:20:40,570 --> 00:20:46,170
arbitrarily ุฅุฐุง f is continuous on a ุฅุฐุง ุฎู„ุตู†ุง
282
00:20:46,170 --> 00:20:51,690
ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุชุชุนู„ู‚ ุจุงู„ sequence of
283
00:20:51,690 --> 00:20:52,430
continuous functions
284
00:20:58,670 --> 00:21:05,130
ุทูŠุจ ู†ุดูˆู ุงู„ .. ุงู„ remark ูŠุง ุฌู…ุงุนุฉ ุงู„
285
00:21:05,130 --> 00:21:07,430
remark ุจูŠู‚ูˆู„ ู„ูŠ the limit of a sequence of
286
00:21:07,430 --> 00:21:10,370
continuous functions may be continuous but the
287
00:21:10,370 --> 00:21:13,590
convergence is pointwise ูŠุนู†ูŠ ุจูŠู‚ูˆู„ูƒ ูŠุนู†ูŠ ู…ู…ูƒู† ุฃู†ุช
288
00:21:13,590 --> 00:21:17,250
ุชู„ุงู‚ูŠู„ูƒ ุงู„ู„ูŠ ู‡ูˆ sequence of functions continuous
289
00:21:17,250 --> 00:21:20,870
ูˆูŠูƒูˆู† ุงู„ pointwise convergence ูˆูŠุฑูˆุญ ู„ู…ูŠู† ู„
290
00:21:20,870 --> 00:21:25,660
continuous functions ุทุจุนุง ู…ู…ูƒู† ุฃูƒูŠุฏูˆ ุฌุจู„ู†ุง ุฏูˆุงู„ ..
291
00:21:25,660 --> 00:21:30,920
ุฏูˆุงู„ ู…ู† ู‡ุงู„ู†ูˆุน ุงู„ู„ูŠ ู‡ูˆ ูƒุงู† ุนู†ุฏู‰ ุงู„ู„ูŠ ู‡ู‰ ุงู„ .. ุงุฐุง
292
00:21:30,920 --> 00:21:37,480
ุจุชุชุฐูƒุฑูˆุง ุงุธู† ุงู†ุชุจู‡ุชู†ุง ู‚ุจู„ ุดูˆูŠุฉ ุงู†ู‡
293
00:21:37,480 --> 00:21:48,100
fn of x ุจุณุงูˆู‰ x ุนู„ู‰ n ู‡ุฐู‡ continuous ุทุจุนุง on Rูˆ F
294
00:21:48,100 --> 00:21:53,840
of X ุงู„ู„ูŠ ู‡ูŠ limitู‡ุง limit F N of X ู„ู…ุง N ุชุฑูˆุญ ู„ู…ุง
295
00:21:53,840 --> 00:21:57,940
ู†ู‡ุงูŠุฉ ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุณูุฑ ู‡ุฐู‡ ุจุฑุถู‡ ุงูŠ
296
00:21:57,940 --> 00:22:02,000
ุดู…ุงู„ู‡ุง continuous function ุจุงู„ุฑุบู… ู…ู† ุงู† ุงู„ F N
297
00:22:02,000 --> 00:22:06,780
ุจุชุฑูˆุญ ู„ู„ F point twice but ุงู„ F N does not
298
00:22:06,780 --> 00:22:10,660
converge ู„ู„ F uniformly ุฒูŠ ู…ุง ุฃุซุจุชู†ุง ูŠุนู†ูŠ ู…ู…ูƒู†
299
00:22:10,660 --> 00:22:14,280
ุงู„ู„ูŠ ู‡ูˆ ุงู„ point twice convergence ูŠูƒูˆู† limitู‡
300
00:22:14,280 --> 00:22:16,420
continuous function ู„ู…ุง ุชูƒูˆู† sequence of
301
00:22:16,420 --> 00:22:20,810
continuous functionsุทุจูŠุนูŠ ู„ูƒู† ุงุญู†ุง ุจู†ู‚ูˆู„ ุงู„ุถู…ุงู†
302
00:22:20,810 --> 00:22:25,010
ุงู†ู‡ ูŠุทู„ุน continuous ุงู†ู‡ุง ุชูƒูˆู† uniform convergence
303
00:22:25,010 --> 00:22:30,830
ูˆุฌุจู†ุง ู…ุซุงู„ ุนู„ู‰ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ sequence of
304
00:22:30,830 --> 00:22:34,130
continuous functions converge pointwise to some
305
00:22:34,130 --> 00:22:36,730
function that is not continuous ุฒูŠ ู…ุง ุดูˆูู†ุง ููŠ
306
00:22:36,730 --> 00:22:41,610
ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ู†ูŠุฌูŠ ุงู„ุขู† ู†ุญูƒูŠ ุนู† ู…ูˆุถูˆุน ุงูˆ ุงู„ุฌุฒุก
307
00:22:41,610 --> 00:22:47,770
ุงู„ู…ุชุนู„ู‚ ุจู…ูŠู†ุงู„ุฌุฒุก ุงู„ู…ุชุนู„ู‚ ุจุงู„ู€ Integrable
308
00:22:47,770 --> 00:22:54,370
Functions ุงู„ุขู† ู†ุดูˆู ุฃูŠุด ุงู„ุนู„ุงุฌ ู„ุฅู†ู‡ ู†ุถู…ู† ุงู„ู€ Limit
309
00:22:54,370 --> 00:22:56,730
ู„ู„ู€ Integration ุจุณุงูˆูŠ ุงู„ู€ Integration ู„ู„ู€ Limit ุฃูˆ
310
00:22:56,730 --> 00:22:59,850
ุงู„ู„ูŠ ู‡ูˆ ู„ู…ุง ู†ุฏุฎู„ ุงู„ู€ Limit ู„ู„ู€ Integration ู…ุชู‰
311
00:22:59,850 --> 00:23:04,590
ุจู†ู‚ุฏุฑ ู†ุฏุฎู„ู‡ ูˆูŠุธู„ ุงู„ู…ุญุงูุธุฉ ุนู„ู‰ ุงู„ู…ุณุงูˆูŠุฉ Let FN be a
312
00:23:04,590 --> 00:23:07,750
sequence of functions that are integrable on A ูˆB
313
00:23:08,610 --> 00:23:13,110
and suppose that FN converges uniformly ู…ู† A ูˆ B
314
00:23:13,110 --> 00:23:19,150
to F then ุฅุฐุง ู„ู…ุง ุชูƒูˆู† ุงู„ convergence uniform then
315
00:23:19,150 --> 00:23:23,850
ุงู„ F is integrable ู…ู† A ูˆ B ู‡ุงูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุงู„
316
00:23:23,850 --> 00:23:27,210
integration ู„ู„ F of X DX ู…ู† A ู„ุนูŠู† B ุจุณูˆุก ุงู„ limit
317
00:23:27,210 --> 00:23:29,870
ู„ู„ integration ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ุงู„ limit ู„ู„
318
00:23:29,870 --> 00:23:33,910
integration ุจุณูˆุก ุงู„ integration ู„ู„ limitู„ู…ุง ู†ูƒูˆู†
319
00:23:33,910 --> 00:23:38,490
ู‡ุฐุง ู…ุงู„ู‡ uniform convergence ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ุงู„ู„ูŠ ู‡ูˆ
320
00:23:38,490 --> 00:23:43,270
ุงู„ุจุฑู‡ุงู† ุงู„ุงู† ุฎู„ู‘ูŠู†ุง ู†ุณู…ูŠ ุงู„ูุชุฑุฉ ุชุจุนุชู†ุง let J
321
00:23:43,270 --> 00:23:47,950
ุจุชุณุงูˆูŠ A ูˆB ุงู„ุงู† ุจู…ุง ุฃู† FN ุจุชุฑูˆุญ ู„ู„ F uniform ุงู„ู„ูŠ
322
00:23:47,950 --> 00:23:53,540
ููŠ ุตู†ุงุนุฉ ุงู„ูƒู„ุงู… ู‡ุฐุงุงู„ุงู† ุชู†ุณูˆุด ุงู† ุงู„ู€ Fn is
323
00:23:53,540 --> 00:23:56,320
integrable ูŠุนู†ูŠ ุงูŠุด ู…ุง ู„ู‡ุง bounded ูŠุนู†ูŠ ุงู„
324
00:23:56,320 --> 00:23:58,200
sequence of bounded functions ูˆ ุฒูŠ ู…ุง ุตุงุฑุช ุงู„
325
00:23:58,200 --> 00:24:01,980
sequence of bounded functions ุงุฐุง automatic ุจุชุชุญู‚ู‚
326
00:24:01,980 --> 00:24:05,900
ุงู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู…ุง ุงู„ู„ูŠ ู‡ูŠ ุชุจุนุช ุงู„ norm ู„ู„ F ู†ุงู‚ุต
327
00:24:05,900 --> 00:24:13,130
Fm ุงู„ู„ูŠ ู‡ูˆ ุจุชุฑูˆุญ ู„ู„ุณูุฑ ูŠุนู†ูŠ Fn ูŠุนู†ูŠ Fnุจุชุฑูˆุญ ู„ู„ู€ F
328
00:24:13,130 --> 00:24:18,850
uniformly ู…ุนู†ุงุชู‡ Fn ู†ุงู‚ุต F ุงู„ู„ูŠ ู‡ูˆ ุงูŠู‡ ุดู…ุงู„ู‡ over
329
00:24:18,850 --> 00:24:22,650
some .. over ุงูŠู‡ ุงูˆ ุงู„ู„ูŠ ู…ุณู…ูŠู‡ุง J goes to mean to
330
00:24:22,650 --> 00:24:26,890
zero ูŠุนู†ูŠ normal Fn ู†ุงู‚ุต ุงู„ู€ F ุฃุตุบุฑ ู…ู† ูŠุจุณุทู‡ ูŠุนู†ูŠ
331
00:24:26,890 --> 00:24:29,190
forever ูŠุจุณุทู‡ ู†ู‚ูˆู… ู†ุณูŠู it there exists ูƒูŠ ู„ู…
332
00:24:29,190 --> 00:24:31,710
ุชู†ุณุงุด that forever ุฃู† ุฃูƒุจุฑ ุดู‡ูˆ K ุฃูู‚ู† ู†ุงู‚ุต ุฃูู‚ุฑ
333
00:24:31,710 --> 00:24:36,150
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู€ Y ุนุงุฑููŠู† ู‡ุงู„ู‚ุตุฉ ุทูŠุจ .. ุทูŠุจ ู†ูŠุฌูŠ
334
00:24:36,150 --> 00:24:40,630
ุงู„ุฃู†ู„ุช ุฌูŠุจ ุณูˆุงุก a ูˆ b since fn converts uniformly
335
00:24:40,630 --> 00:24:44,650
to f ูˆ since fn is integrable then fn is bounded
336
00:24:44,650 --> 00:24:48,830
then we can use our lemma then for every epsilon
337
00:24:48,830 --> 00:24:52,510
there exists k of epsilon such that if n ุฃูƒุจุฑ ุณูˆุงุก
338
00:24:52,510 --> 00:24:58,940
k of epsilon ู‡ุฐู‡ we have f ู†ุงู‚ุต fnุฃุตุบุฑ ู…ู† Epsilon
339
00:24:58,940 --> 00:25:01,540
ุนู„ู‰ ุฃุฑุจุนุฉ ููŠ B minus A ุฃุตุบุฑ ู…ู† Epsilon ููŠ ุงู„ุฏู†ูŠุง
340
00:25:01,540 --> 00:25:04,280
ู…ู† ุถู…ู†ู‡ุง Epsilon ุนู„ู‰ ุฃุฑุจุนุฉ ููŠ B minus A ู‡ุฐู‡
341
00:25:04,280 --> 00:25:08,760
ู„ู„ุญุณุงุจุงุช ุฒูŠ ุงู„ุนุงุฏุฉ ู…ุง ุจู†ุญูƒูŠ ููŠู‡ุง ุจุญูƒูŠ ุนู†ู‡ุง ูˆ ุทุจุนุง
342
00:25:08,760 --> 00:25:14,400
ููŠ ู„ู‡ุง ุชูุณูŠุฑ ูˆ ูุณุฑู†ุง ูƒุชูŠุฑ ููŠ ุฃูˆู‚ุงุช
343
00:25:14,400 --> 00:25:19,580
ุณุงุจู‚ุฉ ู‡ุฐู‡ ุณู…ูŠู‡ุง ูˆุงุญุฏ ุงู„ุขู† ุงู„ู„ูŠ ุณู…ูŠู†ุง ุงู„ K of
344
00:25:19,580 --> 00:25:23,520
Epsilon ู‡ุฐู‡ ุณู…ูŠู†ุง ู‡ูŠ ุฅูŠุด K ู„ู„ุชุณู‡ูŠู„ ุจุณ ุงู„ุงู† FK is
345
00:25:23,520 --> 00:25:28,590
integrableุฃู‡ then ู…ุฏุงู… integrable ุงุฐุง there exist
346
00:25:28,590 --> 00:25:33,730
a partition ุจูŠ ุงุจุณู„ูˆู† ู„ู„ FK ู‡ุฐู‡ X not X ูˆุงุญุฏ X and
347
00:25:33,730 --> 00:25:37,470
such that ุงู„ U ุจูŠ ุงุจุณู„ูˆู† ูˆ FK ู†ู‚ุต ุงู„ ุงุจุณู„ูˆู† ุจูŠ
348
00:25:37,470 --> 00:25:40,190
ุงุจุณู„ูˆู† ูˆ FK ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฃูŠ ุงุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง
349
00:25:40,190 --> 00:25:43,370
ู†ุถูŠุจ ุงู†ู‡ุง ุงุจุณู„ูˆู† ุนู„ู‰ ุงุชู†ูŠู† ุนุงุฑููŠู† ู‡ุฐูŠ ุงูŠุด ู‡ุฐูŠ ู‡ุฐูŠ
350
00:25:43,370 --> 00:25:45,950
ุงู„ู„ูŠ ู‡ูŠ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
351
00:25:45,950 --> 00:25:46,930
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
352
00:25:46,930 --> 00:25:46,950
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
353
00:25:46,950 --> 00:25:47,750
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
354
00:25:47,750 --> 00:25:49,330
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
355
00:25:49,330 --> 00:25:49,930
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
356
00:25:49,930 --> 00:25:53,420
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰
357
00:25:53,420 --> 00:25:57,640
ุงู„ุขู† ู…ู† ุงู„ู€ Integrability ู„ู„ู€ FK ุญุตู„ู†ุง ุน ุจุงุฑุชูŠุดูŠู†
358
00:25:57,640 --> 00:26:01,100
ุจูŠ ุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู† ุงู„ Upper ู†ู‚ุต ุงู„ Lower ุฃุตุบุฑ ู…ู†
359
00:26:01,100 --> 00:26:07,800
ุงู„ู€ Y ุนู„ู‰ 2 ู„ู‡ุฐุง ุงู„ ุจุงุฑุชูŠุดูŠู† ุงู„ุขู† ุนู†ุฏู‰ ููˆู‚ F of X
360
00:26:07,800 --> 00:26:11,520
ู†ู‚ุต FK of X ุฃุตุบุฑ ู…ู† Y ุนู„ู‰ 2 ุนู„ู‰ 4 B minus A for
361
00:26:11,520 --> 00:26:16,410
every X element in A by 2 by 1 thenุฎู„ู‘ูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ
362
00:26:16,410 --> 00:26:20,850
ู†ูƒู…ู„ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ุจุฑู‡ุงู† ู‡ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
363
00:26:20,850 --> 00:26:29,290
ุฎู„ู‘ูŠู†ุง ุงูƒุชุจู‡ุง ุนุดุงู† ุงู„ู„ูŠ ู‡ูˆ ู†ุชุฐูƒุฑ ุงู„ู„ูŠ ู‡ูŠ ู†ู„ู…
364
00:26:29,290 --> 00:26:37,950
ุงู„ุฎุทูˆุงุช ุชุจุนุชู†ุง ุงู„ู„ูŠ ุนู†ุฏูŠ FMF ู†ุงู‚ุต FM ุฃูˆ FN ุฃุตุบุฑ ู…ู†
365
00:26:37,950 --> 00:26:40,910
ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ ููŠ B minus A ู‡ุฐู‡ B minus A ุทูˆู„
366
00:26:40,910 --> 00:26:44,970
ุงู„ูุชุฑุฉ ุชุจุนุช AJ ุงู„ู€ J ุงู„ุขู† ุงู„ู€ partition ุนู†ุฏูŠ ุงู„ู„ูŠ
367
00:26:44,970 --> 00:26:52,410
ู‡ูˆ U ุจุฅุจุณู„ูˆู† ุฃูˆ F ู†ุงู‚ุต FH ุฃูˆ FK ู†ุงู‚ุต ู…ู†ู‡ุง ู†ุงู‚ุต L
368
00:26:52,410 --> 00:26:59,370
ุจุฅุจุณู„ูˆู† ูˆ FK ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุนู„ู‰ ูƒุฏู‡ุŸ ุนู„ู‰ ุงุชู†ูŠู†
369
00:26:59,370 --> 00:27:07,470
ู„ู„ุญุณุงุจุงุช ุทูŠุจ ุงู„ุขู†ุจู‚ูˆู„ ู„ูŠ ู…ู† ู‡ุฐู‡ ู…ู† ู‡ุฐู‡ ุฃูƒูŠุฏ ุฃูƒุจุฑ
370
00:27:07,470 --> 00:27:12,650
ุฃูˆ ูŠุณุงูˆูŠ F ู†ุงู‚ุต FN of X ูŠุนู†ูŠ ู…ู† ู‡ุฐู‡ ุจู†ู‚ุฏุฑ ู†ุญุตู„ ู‡ุฐุง
371
00:27:12,650 --> 00:27:17,850
ุตุญูŠุญ ู„ูƒู„ N ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ K ู…ู† ุถู…ู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ N ุฅูŠุด
372
00:27:17,850 --> 00:27:21,890
ุจุชุณุงูˆูŠ ุฒูŠ ู…ุง ุงุญู†ุง ู…ุชุนูˆุฏูŠู† ุจู†ุณุชุฎุฏู… ุงู„ู„ูŠ ุจู„ุฒู…ู†ุง ุงู„ู„ูŠ
373
00:27:21,890 --> 00:27:28,910
ู‡ูŠ FK ูŠุนู†ูŠ ุจูŠุตูŠุฑ ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠุงู„ู„ูŠ ู‡ูˆ f of x
374
00:27:28,910 --> 00:27:35,250
ู†ุงู‚ุต fn of x ู„ูƒู„ x element in J ู„ุฃู† ู…ู† ุถู…ู† ุงู„ุฃู†ุงุช
375
00:27:35,250 --> 00:27:40,010
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ main ุงู„ู€ K ูŠุนู†ูŠ ุจูŠุตูŠุฑ ุนู†ุฏู‡ fn ุฃูˆ ุฒูŠ ู…ุง
376
00:27:40,010 --> 00:27:47,110
ู‡ูˆ ู…ุณู…ูŠู‡ุง f of x ู†ุงู‚ุต fk of x absolute value ุตุงุฑ
377
00:27:47,110 --> 00:27:53,430
ุฃุตุบุฑ ู…ู† ูŠ ุนู„ู‰ ุฃุฑุจุนุฉุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€-
378
00:27:53,430 --> 00:27:53,490
ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€
379
00:27:53,490 --> 00:27:54,170
- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€-
380
00:27:54,170 --> 00:27:59,490
ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€
381
00:27:59,490 --> 00:27:59,490
- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€-
382
00:27:59,490 --> 00:27:59,490
ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€- ุจู€
383
00:27:59,490 --> 00:28:06,630
- ุจู€- ุจู€- ุจู€- ุจู€ููƒู†ุง ู‡ุฐู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุงู† F of X
384
00:28:06,630 --> 00:28:12,090
ู†ุงู‚ุต Y ุนู„ู‰ 4 ููŠ B minus A ุฃุฐุฑ ุฃูˆ ูŠุณุงูˆูŠ FK of X
385
00:28:12,090 --> 00:28:16,450
ุนุงุฑููŠู† ุทุจุนุง ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ุฃุฐุฑ ูŠุณุงูˆูŠ ูˆ ุฃูƒุจุฑ ุณุงูˆูŠ
386
00:28:16,450 --> 00:28:21,350
ู†ุงู‚ุตู‡ุง ุงู„ู„ูŠ FK ู†ุฌู„ุช ู‡ู†ุง ุจูŠุตูŠุฑ F of X ูˆุฌุจุชู‡ุง ุฏูŠ ู‡ู†ุง
387
00:28:21,350 --> 00:28:24,310
ุจูŠุตูŠุฑ F of X ู†ุงู‚ุต Y ุนู„ู‰ 4 ููŠ B minus A ุฃุฐุฑ ูŠุณุงูˆูŠ
388
00:28:24,310 --> 00:28:30,250
FK of Xูˆู‡ุฐู‡ ู†ูุณู‡ุง fk of x ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„
389
00:28:30,250 --> 00:28:34,410
absolute value ู„ู„ fk of x ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ูˆุงู„
390
00:28:34,410 --> 00:28:36,550
absolute value ู„ู„ fk of x ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„
391
00:28:36,550 --> 00:28:42,230
supremum ู„ู„ absolute value ู„ู‡ ุงู„ู…ุตูˆุฑุฉ ุนุงู…ุฉ ุงู„ู„ูŠ ู‡ูˆ
392
00:28:42,230 --> 00:28:45,550
ุนู„ู‰ ุงู„ูุชุฑุฉ xj minus ูˆุงุญุฏ ู„ู„ xj ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด ุงู„ู„ูŠ
393
00:28:45,550 --> 00:28:50,760
ุจู†ุณู…ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ mj ุงู„ู„ูŠ ู‡ูˆ ุชุจุน ุงู„ upper sumุงู„ุงู†
394
00:28:50,760 --> 00:28:58,040
ุตุงุฑ ุนู†ุฏูŠ ุงู„ F of X ุงู„ F of X ู†ุณุฌู„ู‡ุง ู‡ุฐู‡ F of X ุฃุซุฑ
395
00:28:58,040 --> 00:29:08,440
ุฃูˆ ุณุงูˆูŠ Y ุนู„ู‰ 4 ููŠ B minus A ุฒุงุฆุฏ MJ of FK ู„ูƒู„ X
396
00:29:08,440 --> 00:29:17,970
ู„ูƒู„ ุฅูŠุดุŸ ุงู„ู„ูŠ ู‡ูŠ X X ูˆูŠู† ููŠ ุงู„ูุชุฑุฉุŸ ุงู„ู„ูŠ ู‡ูˆ XJุฃูˆ
397
00:29:17,970 --> 00:29:23,890
ู†ุงู‚ุต ูˆุงุญุฏ ูˆ XJ ูˆู‡ุฐุง ูˆูŠู† ูŠุง ุฌู…ุงุนุฉ ู†ูุณู‡ ุงู„ู„ูŠ ู‡ูˆ ู„ูƒู„
398
00:29:23,890 --> 00:29:31,510
J ู…ู† ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ู„ุนู†ุฏ ู…ูŠู† ุงู„ุงู† ุทูŠุจ ู„ุฃ
399
00:29:31,510 --> 00:29:36,450
ู‡ุฐู‡ ุญุชู‰ ู„ูƒู„ X ู„ุฃู† ู‡ุฐู‡ ุงู„ X ู‡ุฐู‡ ุฃุฎุฏู†ุงู‡ุง arbitrarily
400
00:29:36,450 --> 00:29:47,720
ููŠ ุงู„ J ู‡ุฐู‡ ู„ูƒู„ X ููŠ ุงู„ J ู†ุนู… ุฎู„ูŠู†ุง ู†ุณุฌู„ ุตุญ ุทูŠุจุฅุฐุง
401
00:29:47,720 --> 00:29:49,960
ุงุณุชุฎุฏู…ู†ุง ุงู„ู„ูŠ ู‡ูˆ ู…ุนู†ุงุชู‡ ุงู„ uniform convergence
402
00:29:49,960 --> 00:29:54,640
ุญุตู„ู†ุง ุนู„ู‰ ู‡ุฐู‡ ุงุณุชุฎุฏู…ู†ุง ุงู„ integrability ู„ู„ FK ุงู„ู„ูŠ
403
00:29:54,640 --> 00:29:57,820
ู„ุงุฌูŠู†ุงู‡ุง ู‡ุฐู‡ ุงู„ู…ุฑุชุจุทุฉ ุจุงู„ K ุงู„ู„ูŠ ู„ุงุฌูŠู†ุงู‡ุง ุนุดุงู†ู‡ุง
404
00:29:57,820 --> 00:30:02,340
ุงู„ู„ูŠ ู‡ูŠ N ุฃูƒูˆุง ุณูˆุง K ูˆู…ู†ู‡ุง ุงุณุชุฎุฏู…ู†ุง ุงู„ู„ูŠ ู‡ูˆ
405
00:30:05,130 --> 00:30:10,310
ุงู„ู„ูŠ ููˆู‚ ู„ู„ FK ุจุงู„ุฐุงุช ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ู‡ุฐู‡ ูˆู‡ุฐู‡ ุญุตู„ู†ุง
406
00:30:10,310 --> 00:30:13,730
ุนู„ู‰ ุงู„ inequality ู‡ุฐู‡ ุนุดุงู† ุจุถุฑูˆุญ ุฃุซุจุช ุงู„
407
00:30:13,730 --> 00:30:17,430
integrability ู„ู…ูŠู† ู„ู„ F ู†ูุณู‡ุง ุดูˆููˆุง ูƒูŠูู†ุง ู†ุซุจุช
408
00:30:17,430 --> 00:30:23,690
ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู†F of X ุฃุตุบุฑ ุณูˆุงุก ู‡ุฐุง ููŠ ู‡ุฐุง
409
00:30:23,690 --> 00:30:28,770
ูˆุนุงุฑููŠู† ุฅูŠุด ู…ุนู†ุงุช ุงู„ู„ูŠ ู‡ูˆ M J of F K ุงู„ุงู† M J of F
410
00:30:28,770 --> 00:30:31,090
ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ุฅูŠุด ุจุชุณุงูˆูŠ ุงู„ supermom ู„ F of X
411
00:30:31,090 --> 00:30:35,370
ุงู„ู„ูŠ ุนู„ู‰ ูุชุฑุฉ ู…ูŠู† X ุงู„ู„ูŠ ู‡ูŠ ููŠ J minus ูˆุงุญุฏ ูˆJ
412
00:30:35,370 --> 00:30:40,670
ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ ู‡ุง ุฏูŠ ู‡ุชูƒูˆู† ุฃุตุบุฑ ู…ู† Y ุนู„ู‰ 4 ููŠ B
413
00:30:40,670 --> 00:30:48,220
minus A ุฒุงุฆุฏ M J ุนู„ูŠู‡ุง ุนุงุฑููŠู† ู„ูŠุด ู„ุฃู† ุงู„ F of XF
414
00:30:48,220 --> 00:30:52,440
of X ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ู‡ุฐุง ุงู„ู‚ูŠู…ุฉุŒ ู…ุธุจูˆุทุŸ ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡
415
00:30:52,440 --> 00:30:56,940
ุงู„ู‚ูŠู…ุฉ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ upper bound of the mean
416
00:30:56,940 --> 00:31:01,580
ู„ู„ู€ F of XุŒ ู…ุงุดูŠ ุงู„ุญุงู„ ุตุงุฑุช ู‡ุฐู‡ upper boundุŒ ุฅุฐุง
417
00:31:01,580 --> 00:31:04,820
ุงู„ least upper boundุŒ ุงู„ supremumุŒ ู‡ูŠุธู„ ุฃุตุบุฑ ุฃูˆ
418
00:31:04,820 --> 00:31:09,140
ุณุงูˆูŠ ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉุŒ ู„ุฃู† ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุนุจุงุฑุฉ ุนู† ุนุฏุฏุŒ ุตุงุฑ
419
00:31:09,140 --> 00:31:13,420
ุงู„ุขู† M J of F ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุฑุŒ ูˆุถุญูƒุฉ ู‡ุฐู‡
420
00:31:13,420 --> 00:31:19,780
ุฃุนู…ู„ู†ุงู‡ุง ูƒุชูŠุฑุŒ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ MJ of Fุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
421
00:31:19,780 --> 00:31:28,060
MJ of FK ุฒุงูŠุฏ ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ ููŠ B minus A ู‡ุฐุง
422
00:31:28,060 --> 00:31:33,240
ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‡ูˆ ู„ูƒู„ ุงู„ู„ูŠ ู‡ูŠ ู…ู† J ูˆุงุญุฏ ูˆุงุชู†ูŠู† ุนู†ุฏ
423
00:31:33,240 --> 00:31:36,760
ุงู„ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ุจุงู‚ูŠ ุงู†ุชูˆุง ุนุงุฑููŠู†ู‡ ุฏุงูŠู…ุง ุจู†ุนู…ู„ู‡ ุงุถุฑุจ
424
00:31:36,760 --> 00:31:43,520
ู„ู‡ู†ุง ููŠ XJ ู†ุงู‚ุต XJ minus ูˆุงุญุฏ ูˆุงุถุฑุจ ู‡ู†ุง ููŠ XJ ู†ุงู‚ุต
425
00:31:43,520 --> 00:31:49,300
XJ minus ูˆุงุญุฏ ูˆู‡ู†ุง ููŠ XJ minus XJ minus ูˆุงุญุฏุถุฑุจู†ุง
426
00:31:49,300 --> 00:31:54,200
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุฑููŠู‡ ุงู„ู…ุชุจุงูŠู†ุฉ ููŠ XJ minus XJ minus
427
00:31:54,200 --> 00:31:58,780
ูˆุงุญุฏ ูˆ ุจุนุฏูŠู† ุฃุฎุฏู†ุง ุงู„ summation J ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ
428
00:31:58,780 --> 00:32:02,700
N ูˆ ุฃุฎุฏู†ุง ุงู„ summation J ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ูˆ
429
00:32:02,700 --> 00:32:06,880
ุฃุฎุฏู†ุง ุงู„ summation J ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ู‡ุฐุง ูƒู„ู‡
430
00:32:06,880 --> 00:32:11,020
ุนู„ู‰ ุจุนุถู‡ ุทุจุนุง ูƒู„ ุดุบู„ู†ุง ุนู„ู‰ ุงู„ BY ุงู„ู„ูŠ ู„ุงุฌู†ุงู‡ุง ุงู„
431
00:32:11,020 --> 00:32:15,180
partition ุงู„ู„ูŠ ู„ุงุฌู†ุงู‡ุง ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ู‡ุฐุง ุนุจุงุฑุฉ
432
00:32:15,180 --> 00:32:23,430
ุนู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ Uof ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ partition ุจูŠ ุงุจุณู„ูˆู†
433
00:32:23,430 --> 00:32:28,290
ุงู„ู„ูŠ ุจุฏูŠ ุงุดุชุบู„ ุนู„ูŠู‡ ู‡ุฏูˆู„ุฉ ุงู„ู‡ู† ูˆ mean ูˆ A ุงู„ู„ูŠ ู‡ูŠ
434
00:32:28,290 --> 00:32:34,250
ุงู„ function F ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง mean ู‡ูˆ ุงู„ U ุงู„ู„ูŠ
435
00:32:34,250 --> 00:32:40,010
ู‡ูˆ ุงู„ ุจูŠ ุงุจุณู„ูˆู† ูˆ ุงู„ FK ูˆ ู‡ุฏ ุงูŠุด ู‡ุชูƒูˆู† ุนุจุงุฑุฉ ุนู†
436
00:32:40,010 --> 00:32:44,320
ุงูŠุด ุนุดุงู† ู‡ูŠูƒ ุฃุฎุฏู†ุง ุจูŠ ู…ุงูŠู„ูˆุณ ุงูŠู‡ ู‡ุชุดูˆููˆู‡ุงุงู„ุขู† ู‡ุฐู‡
437
00:32:44,320 --> 00:32:50,400
y ุฒุงุฆุฏ y ุนู„ู‰ ุฃุฑุจุนุฉ ููŠ b minus a ุงู„ summation ู‡ุฐุง
438
00:32:50,400 --> 00:32:54,160
ู„ู„ sub intervals ุงู„ู„ูŠ ู‡ูˆ ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† x ูˆุงุญุฏ
439
00:32:54,160 --> 00:32:57,780
ู†ู‚ุต x not ุฒุงุฆุฏ x ุงุชู†ูŠู† ู†ู‚ุต x ูˆุงุญุฏ ู„ู…ุง ุฃุตู„ ู„ xn ู†ู‚ุต
440
00:32:57,780 --> 00:33:01,600
xn ู†ู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ูŠุถู„ ููŠ ุงู„ุขุฎุฑ xn ู†ู‚ุต x not ูŠุนู†ูŠ b
441
00:33:01,600 --> 00:33:06,980
minus a ููŠ b minus a ู‡ุฐู‡ ุจุชุฑูˆุญ ู…ุน ู‡ุฐู‡ ูุจุตูŠุฑ ุนู†ุฏูŠ
442
00:33:06,980 --> 00:33:13,610
ุงู„ uุฃุตุบุฑ ู…ู† ุงู„ู€ U ู‡ุฐุง ุฒูŠ ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ ุงู„ู„ูŠ
443
00:33:13,610 --> 00:33:17,450
ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ U ุจุฅุจุณู„ูˆู† F ุฃุตุบุฑ ูŠุณูˆูŠ U ุจุฅุจุณู„ูˆู†
444
00:33:17,450 --> 00:33:21,570
FK ุฒูŠ ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ Similarly ูˆูุนู„ุง Similarly
445
00:33:21,570 --> 00:33:25,690
ุจุนุฏ ุจุฏู„ ู…ุง ู†ุดุชุบู„ ุนู„ู‰ ุงู„ุฃุจุฑุงู„ู„ูŠ ููˆู‚ ุจุฏู„ ู…ุง ู†ุดุชุบู„
446
00:33:25,690 --> 00:33:30,870
ุนู„ู‰ ุงู„ุฃุจุฑ ู‡ู†ุง ุจู†ุดุชุบู„ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู„ุงูˆุฑ ุงู„ู„ูŠ ุจูŠุทู„ุน
447
00:33:30,870 --> 00:33:34,350
ุนู†ุฏ ุงู„ ุงู„ ุจ ุฅุจุณู„ูˆู† ูˆ ุฃู ู‡ุฐุง ุจูŠุจู‚ู‰ ู„ูƒู… ุงู„ ุจ ุฅุจุณู„ูˆู†
448
00:33:34,350 --> 00:33:38,030
ูˆ ุฃู ูƒูŠู‡ ู†ุงู‚ุต ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุน ุฃุตุบุฑ ู…ู† ุงู„ ุจ ุฅุจุณู„ูˆู†
449
00:33:38,030 --> 00:33:44,490
ูˆ ุฃู ุฅุฐุง ุงู„ู„ูŠ ูˆุตู„ู†ุง ู„ู‡ ู…ุง ู‡ูŠ ู„ูŠู‡ ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ
450
00:33:44,490 --> 00:33:55,110
ูˆุตู„ู†ุง ู„ู‡ ุงู†ู‡ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† 0ู‡ู†ุงูƒ ุจูŠ ุฅุจุณู„ูˆู†
451
00:33:55,110 --> 00:34:05,870
ู…ุซู„ู‹ุง U ุจูŠ ุฅุจุณู„ูˆู† ูˆ F ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ U ุจูŠ ุฅุจุณู„ูˆู† ูˆ
452
00:34:05,870 --> 00:34:09,990
FK ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ
453
00:34:13,830 --> 00:34:20,130
ุจุฅุจุณู„ูˆู† ูˆ FK ู†ุงู‚ุต ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ ุฃุตุบุฑู‡ ูŠุณุงูˆูŠ L
454
00:34:20,130 --> 00:34:25,830
ุจูŠุจุณู„ูˆู† ูˆ F ู‡ุฐู‡ ุงู„ู„ูŠ ูˆุตู„ู†ุง ู„ู‡ ู„ุญุฏ ุงู„ุขู† ู†ูŠุฌูŠ ุงู„ุงู†
455
00:34:25,830 --> 00:34:32,230
ู†ุฑุชุจู‡ู… ู…ุน ุจุนุถ ูˆ ู†ุตู„ ู„ู„ูŠ ุจุฏู†ุงู‡ ุงุดูŠ ู…ุนู‡ูˆุฏ ุฎุฏูˆุง ุงู„ุงู†
456
00:34:32,230 --> 00:34:38,530
U ุจูŠุจุณู„ูˆู† ูˆ Fู†ุงู‚ุต ุงู„ู€ P,Y,F ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ู„ู…ุง ุถุฑูˆู
457
00:34:38,530 --> 00:34:43,510
ู‡ุฐู‡ ููŠ ู†ุงู‚ุต ุจูŠุตูŠุฑ ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ู…ุนู‡ูˆุฏุฉ ูˆู‡ุฐู‡ ุจูŠุตูŠุฑ
458
00:34:43,510 --> 00:34:46,690
ู†ุงู‚ุต ูˆู‡ุฐู‡ ุจูŠุตูŠุฑ ุฒุงุฆุฏ ูˆู‡ุฐู‡ ุจูŠุตูŠุฑ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
459
00:34:46,690 --> 00:34:52,570
ุจุชุฌู…ุน ู‡ุฐู‡ ู„ู‡ุฐู‡ ูŠุนู†ูŠ ุจูŠุตูŠุฑ ุนุฏู‰ ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ุฃุตุบุฑ ู…ู†
460
00:34:52,570 --> 00:34:59,130
ุงู„ู€ U,P,Y,F ู‡ูŠู‡ุงุฒุงุฆุฏ ู‡ุงุฏูŠ ู†ุงู‚ุต ู‡ุงุฏูŠ ุฒุงุฆุฏ ู‡ุงุฏูŠ ูŠุนู†ูŠ
461
00:34:59,130 --> 00:35:03,010
ุจูŠุตูŠุฑ ุนู†ุฏู‡ ู‡ุงุฏูŠ ูŠูˆ ุจูŠ ุฅุจุณู„ ูˆ ุฃู ูƒูŠู‡ ู†ุงู‚ุต ุงู„ุจูŠ ุฅุจุณู„
462
00:35:03,010 --> 00:35:06,190
ูˆ ุฃู ูƒูŠู‡ ุฒุงุฆุฏ ุฅุจุณู„ ุนู„ู‰ ุฃุฑุจุนุฉ ูˆุฅุจุณู„ ุนู„ู‰ ุฃุฑุจุนุฉ ุงู„ู„ูŠ
463
00:35:06,190 --> 00:35:10,690
ู‡ูˆ ุฅุจุณู„ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงุชู†ูŠู† ูˆู‡ุฐู‡ ู…ู† ุงู„ุฃูˆู„ ู„ู…ุง
464
00:35:10,690 --> 00:35:15,630
ู†ุณุชุฎุฏู…ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€Riemann criterion for
465
00:35:15,630 --> 00:35:19,640
integrability ู„ู„ุฃู ูƒูŠู‡ุงู„ู„ูŠ ู‡ูˆ ุฃูˆุฌุฏุชู†ุง ุงู„ู€ Py ู‡ูˆ
466
00:35:19,640 --> 00:35:23,220
ุฃูˆุฌุฏุชู†ุง ุฃู† ู‡ุฐู‡ ู†ุงู‚ุตุฉ ุฃุตุบุฑ ู…ู† Y ุนู„ู‰ 2 ูŠุนู†ูŠ ุตุงุฑ ุนู†ุฏูŠ
467
00:35:23,220 --> 00:35:26,820
Y ุนู„ู‰ 2 ูˆY ุนู„ู‰ 2 ุฅุจุณู„ูˆู† ู…ุนู†ุงุชู‡ ู‡ุฐู‡ ุตุงุฑุช ุฃุตุบุฑ ู…ู†
468
00:35:26,820 --> 00:35:30,080
ุฅุจุณู„ูˆู† ูˆ ุจุงู„ุฑู…ุงู†ูŠ criterion for integrability
469
00:35:30,080 --> 00:35:36,560
ุจุชุทู„ุน ุงู„ู€ F is ุฅูŠุด is integrable ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ
470
00:35:36,560 --> 00:35:41,200
ุงู„ุฅุซุจุงุช ู„ุฅู† ุงู„ function F is integrable ุฏู„ ู†ุซุจุช
471
00:35:41,200 --> 00:35:43,500
ุงู„ู„ูŠ ู‡ูˆ limit ู„ู„ integration ุจุณุงูˆูŠ integration ู„ู„
472
00:35:43,500 --> 00:35:46,630
limitูˆู‡ุฐุง ู…ู† ุฎู„ุงู„ ุงู„ุฎุทูˆุงุช ุงู„ู„ูŠ ุทู„ุนุช ุนู†ุฏู†ุง ุญู„ู‘ุฌูŠ
473
00:35:46,630 --> 00:35:55,030
ูŠุทู„ุน ุจุดูƒู„ ุณู‡ู„ ูˆุจุดูƒู„ ุณู„ุณ ูˆุฎู„ู‘ูŠู†ุง ู†ุดูˆูู‡ ุงู„ุงู† since
474
00:35:55,030 --> 00:35:58,130
epsilon was arbitrary then f is integrable on j ุฒูŠ
475
00:35:58,130 --> 00:36:02,750
ู…ุง ู‚ู„ู†ุง ุฎุฏ ุงู„ integration ู…ู† a ู„b f of x dx ู†ู‚ุต ุงู„
476
00:36:02,750 --> 00:36:07,950
integration ู…ู† a ู„b fn of x dx ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆุงู„ู€
477
00:36:07,950 --> 00:36:10,830
absolute value ุทุจุนุงู‹ ุตุงุฑุช ู‡ุฐู‡ integrable ูˆู‡ุฐู‡
478
00:36:10,830 --> 00:36:14,470
integrable ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ุงู„ integration ู‡ุฐุง ู†ู‚ุต
479
00:36:14,470 --> 00:36:17,010
ุงู„ integration ู‡ุฐุง ุจุณุงูˆูŠ ุงู„ integration ู„ู‡ุฐุง ู†ู‚ุต
480
00:36:17,010 --> 00:36:20,210
ู‡ุฐุง ุงู„ูƒู„ ุฅูŠุด ู…ุงู„ู‡ DX ู…ู† ุฎูˆุงุต ุงู„ุชูƒุงู…ู„ ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง
481
00:36:20,210 --> 00:36:25,370
ุณุงุจู‚ุงู‹ ูˆู‡ุฐุง ู†ูุณู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„
482
00:36:25,370 --> 00:36:28,750
integration ู…ู† a ู„b ูˆุงุฎุฏู†ุงู‡ุง ุณุงุจู‚ุงู‹ absolute value
483
00:36:28,750 --> 00:36:34,370
of f of x ู…ุงู‚ุต fn of x ู„ูƒู„ ุงูŠุด ู…ุงู„ู‡ dx ุงู„ absolute
484
00:36:34,370 --> 00:36:36,490
value integration ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ integration ู„ู„
485
00:36:36,490 --> 00:36:42,340
absolute value ูˆู‡ุฐุง ู†ูุณู‡ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ norm
486
00:36:42,340 --> 00:36:47,060
ุงู„ู€ F ู†ุงู‚ุต ุงู„ู€ Fn over ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ interval J
487
00:36:47,060 --> 00:36:51,320
ู…ุงุดูŠุŒ ุงู„ุขู† ุจูŠุตูŠุฑ ุนู†ุฏู‰ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„
488
00:36:51,320 --> 00:36:56,840
integration ู…ู† A ู„ B norm ุงู„ู€ F ู†ุงู‚ุต ุงู„ู€ Fn over J
489
00:36:56,840 --> 00:37:03,720
ุงู„ูƒู„ ุฅูŠุด ู…ุงู„ู‡ุŸ DX ุงู„ุขู† ู‡ุฐุง ูŠุง ุฌู…ุงุนุฉ ุซุงุจุช ุจูŠุทู„ุน
490
00:37:03,720 --> 00:37:09,520
ุจุฑุงุชู‡ ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† ูŠุณุงูˆูŠ ุงู„ absolute valueุงู„ู€
491
00:37:09,520 --> 00:37:13,700
norm ู„ู„ู€ f ู†ุงู‚ุต ุงู„ู€ fn over j ููŠ ุงู„ integration ู…ู†
492
00:37:13,700 --> 00:37:20,600
a ุฅู„ู‰ b dx ู‡ุฐุง ู‡ูŠู‡ุงู† ูˆู‡ุฐุง ุงู„ integration ู…ู† a ุฅู„ู‰
493
00:37:20,600 --> 00:37:25,840
b ุฅู„ู‰ dx ู‡ูˆ ุนุจุงุฑุฉ ุนู† b minus a ุตุงุฑ ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง
494
00:37:25,840 --> 00:37:31,200
ุฃุตุบุฑ ู…ู† ู‡ุฐุง ููŠ b minus a ุงู„ุขู† as n goes to
495
00:37:31,200 --> 00:37:34,920
infinity as n goes to infinity ุตุงุฑ ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ
496
00:37:34,920 --> 00:37:42,930
ูŠุณุงูˆูŠ ุณูุฑูˆู‡ุฐุง ู‡ูŠูˆุทู„ุน ู„ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ู‡ูŠู‡ุง ู‡ุฐู‡ ุจุณ ุฎุฏ
497
00:37:42,930 --> 00:37:46,170
ุงู„ limit ู„ู„ุฌู‡ุชูŠู† as n goes to infinity ู‡ุฐุง ุจูŠุตูŠุฑ
498
00:37:46,170 --> 00:37:51,590
ุงู„ limit ู‡ู†ุงas n goes to infinity ูˆู‡ู†ุง ุงู„ limit as
499
00:37:51,590 --> 00:37:54,170
n goes to infinity ุทุจุนุง ู‡ุฐุง one ู‡ูŠุฑูˆุญ ู„ุฅู†ู‡ ุฃูู†
500
00:37:54,170 --> 00:37:57,910
ุจุชุฑูˆุญ ู„ู„ุฃู uniformly ู‡ุฐุง ุจุชุฑูˆุญ ูƒู„ู‡ ู„ู…ูŠู† ู„ู„ุตูุฑ ุฅุฐุง
501
00:37:57,910 --> 00:38:01,330
as n goes to infinity ุงู„ limit ู‡ุฐุง ุฅูŠุด ุจูŠุณุงูˆูŠ ุตูุฑ
502
00:38:01,330 --> 00:38:04,990
ู…ุฏุงู… ุงู„ limit ู‡ุฐุง ุตุงุฑ ุจูŠุณุงูˆูŠ ุตูุฑ ู‡ุฐุง independent
503
00:38:04,990 --> 00:38:09,170
of the limit ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ููŠุด ููŠู‡ n ุตุงุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ
504
00:38:09,170 --> 00:38:12,990
ู‡ูˆ ู…ุถุญูƒุฉ
505
00:38:12,990 --> 00:38:19,770
ุจุชุตูˆุฑ ุงู„ุตูˆุฑุฉ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุฃู† limitู‡ุฐุง ุจูŠุณุงูˆูŠ ุงูŠุด ุตุงุฑ
506
00:38:19,770 --> 00:38:24,770
ุจูŠุณุงูˆูŠ ุณูุฑ limit ู„ุงู„ absolute value ู…ู† a ู„ุนู†ุฏ b f
507
00:38:24,770 --> 00:38:32,170
of x dx ู†ู‚ุต integration fn of x dx ู…ู† a ู„ุนู†ุฏ b
508
00:38:32,170 --> 00:38:35,710
limit as angles to infinity limit ุงู„ absolute
509
00:38:35,710 --> 00:38:38,810
value ุตุงุฑ ุณูุฑ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ limit ุจุฏูˆู† absolute
510
00:38:38,810 --> 00:38:42,690
value ุจูŠุณุงูˆูŠ ุณูุฑ ู‡ุฐุง independent of the limit ุฅุฐุง
511
00:38:42,690 --> 00:38:48,210
ุจูŠุตูŠุฑ ุจุณุงูˆูŠ ุงู„ integration ู…ู† a ู„b f of x dxุจุชุฏุฎู„
512
00:38:48,210 --> 00:38:54,370
ุงู„ limit ู†ุงู‚ุต limit ุงู„ integration fn of x dx ู…ู† a
513
00:38:54,370 --> 00:38:59,310
ู„ ุนู†ุฏ ุจูŠู‡ ู…ุงุดูŠ ุงู„ุญู„ ูˆ ู„ุง ู†ุถุญูƒ ุงู„ุตูˆุฑุฉ ู‡ุฐุง ุตุงุฑ ุนู„ูŠู‡ุŸ
514
00:38:59,310 --> 00:39:05,780
ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ุตุงุฑ ุจุณุงูˆูŠ ุณูุฑุฅุฐุง ุงู„ู€ limit ู†ู†ุฌู„
515
00:39:05,780 --> 00:39:08,620
ู‡ุฐุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ุจูŠุตูŠุฑ limit ุงู„ integration
516
00:39:08,620 --> 00:39:15,080
ู…ู† a ู„ b fn of x dx as n goes to infinity ุจุณุงูˆูŠ
517
00:39:15,080 --> 00:39:20,900
ุงู„ู„ูŠ ุจูŠุธู„ ู‡ู†ุง ู…ู† a ู„ b f of x dx ูˆู‡ุฐุง ู…ุนู†ุงุชู‡ ุฅู†ู‡
518
00:39:20,900 --> 00:39:24,310
ููŠ ุญุงู„ุฉ ุงู„ uniform convergenceุงู„ู€ FN sequence of
519
00:39:24,310 --> 00:39:27,030
integrable functions ู‡ุชุฑูˆุญ ู„ู€ integrable function
520
00:39:27,030 --> 00:39:29,450
ูˆ ู‡ูŠุทู„ุน ุนู†ุฏู‡ limit ู„ู„ integration ุจูŠุณุงูˆูŠ ุงู„
521
00:39:29,450 --> 00:39:32,150
integration ู„ limit ูˆ ุจู‡ูŠ .. ูˆ ู‡ูŠูƒูˆู† ูƒูˆู† ุงุญู†ุง
522
00:39:32,150 --> 00:39:37,110
ุนู„ุฌู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุงุถุฑุฉ
523
00:39:37,110 --> 00:39:42,270
ุถุงู„ ุนู†ุฏูŠ ู†ู‚ุทุฉ ุฃุฎูŠุฑุฉ ุจุณ ู‚ุจู„ู‡ุง ุฎู„ูŠู†ูŠ ู†ุฐูƒุฑ ู‡ุงู„ ู†ุธุฑูŠุฉ
524
00:39:42,270 --> 00:39:47,470
ุงู„ู„ูŠ ู‡ูŠ ุจุฑู‡ุงู†ุฉ ุฎุงุฑุฌ ู†ุทุงู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ูƒุชุงุจ ูˆ ู†ุดูˆู
525
00:39:47,470 --> 00:39:49,110
ุงู„ู„ูŠ ู‡ูˆ
526
00:39:53,380 --> 00:39:58,540
ุฅูŠุด ุจุชู‚ูˆู„ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉุŸ ุฅูŠุด ุจุชู‚ูˆู„ bounded
527
00:39:58,540 --> 00:40:02,310
convergence theoremุŸุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ let FN be a
528
00:40:02,310 --> 00:40:07,150
sequence of functions that are integrable in A ูˆB
529
00:40:07,150 --> 00:40:12,530
ู…ูุชุฑุถูŠู† ุฅู†ู‡ุง integrable and suppose that ุจุฏูŠ ูŠุจุนุฏ
530
00:40:12,530 --> 00:40:14,850
ุนู† ุงู„ uniform convergence ุจุชู‚ูˆู„ ู„ูˆ ุดูŠู„ู†ุง ุงู„
531
00:40:14,850 --> 00:40:18,550
uniform convergence ู…ู…ูƒู† ู†ุจุฏู„ู‡ ุจุฅูŠุด ุฅูŠู‡ุŸ ูˆูŠุธู„
532
00:40:18,550 --> 00:40:20,850
ู…ุญุงูุธู†ุง ุนู„ู‰ ุงู„ limit ู„ู„ integration ุจุณุงูˆูŠ ุงู„
533
00:40:20,850 --> 00:40:24,920
integration ู„ู„ limitุŸ ุขู‡ุŒ ุจู†ูุนุŒ ู†ุดูˆู ูƒูŠูู„ุช ุฃูุฃู† ุจู€
534
00:40:24,920 --> 00:40:27,340
sequence of functions that are integrable in A ูˆB
535
00:40:27,340 --> 00:40:30,380
ุจุณ ุจุฏู‡ ูŠุฏูุน ุซู…ู† ุจุฑุถู‡ integrable in A ูˆB and
536
00:40:30,380 --> 00:40:34,400
suppose that ุฃูุฃู† converts in A ูˆB to an
537
00:40:34,400 --> 00:40:37,780
integrable function F ูŠุนู†ูŠ ุฃูุฃู† ุจุชุฑูˆุญ ู„ู„ู€ F ุนู„ู‰
538
00:40:37,780 --> 00:40:44,700
ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ point twice ู…ุงุฌุงู„ุด uniformly ุจุณ
539
00:40:44,700 --> 00:40:50,770
ุงู„ุขู† ุจุฏู‡ ูŠูุชุฑุถ ุดุบู„ุฉ ุจุฏู‡ ูŠู‚ูŠุฏ ุงู„ุฃูุฃู†ุจุดุบู„ุฉ ู…ุนูŠู†ุฉ
540
00:40:50,770 --> 00:40:54,950
ุดุบู„ุฉ ูƒุจูŠุฑุฉ ุจุฑุถู‡ ุงู„ุชู‚ูŠูŠุฏ ู…ุด ุฌู„ูŠู„ ุทุจุนุง ู„ูƒู† ุจูŠุถู„ ุงุดูŠ
541
00:40:54,950 --> 00:40:59,830
ูŠุนู†ูŠ ู…ู†ูุฐ ุชุงู†ูŠ suppose also that there exist B
542
00:40:59,830 --> 00:41:05,870
ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจุญูŠุซ ุงู†ู‡ FN of X ุฃุตุบุฑ ุดู‡ุฑ ุจูŠู‡ ู„ูƒู„ X
543
00:41:05,870 --> 00:41:09,750
element in A ูˆ B ูˆ ู„ูƒู„ N element in B ู‡ุฐุง ููŠ
544
00:41:09,750 --> 00:41:14,690
ุงู„ูˆุงู‚ุน ุงู„ู„ูŠ ู‡ูˆ uniform boundedness ู„ูŠุดุŸ ู„ุฃู† ู‡ูˆ
545
00:41:14,690 --> 00:41:21,200
ู…ูุชุฑุถ ุงู† ุงู„ sequence FN of Xุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
546
00:41:21,200 --> 00:41:28,140
B ู„ูƒู„ X element in A ูˆB ูˆู„ูƒู„ N element in N ู‡ูˆ ู…ุด
547
00:41:28,140 --> 00:41:32,360
ู…ูุชุฑุถ ุฅู† ุงู„ู€ Fn ู†ูุณู‡ุง ุชูƒูˆู† bounded ูŠุนู†ูŠ F1 ุงู„ู„ูŠ
548
00:41:32,360 --> 00:41:35,580
ุญุงู„ู‡ุง boundedุŒ F2 boundedุŒ F3 bounded ูƒู„ ุฅู† ู‡ูŠูƒูˆู†
549
00:41:35,580 --> 00:41:39,940
bounded ุตุญุŒ ุจุณ ุงู„ู„ูŠ ุทุงู„ุจู‡ ุฃูƒุซุฑ ุงู„ู„ูŠ ุทุจุนุง ููŠ ุญุงู„ุฉ
550
00:41:39,940 --> 00:41:47,640
ุงู„ู€ F1 boundedุŒ F2 boundedุŒ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ Fnof X ุฃุตุบุฑ
551
00:41:47,640 --> 00:41:52,480
ุฃูˆ ุณุงูˆู‰ BN F4
552
00:41:53,890 --> 00:41:58,290
ุฃู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุขู† ุจู†ู‚ูˆู„ ุนู† FN ู†ูุณู‡ุง bounded ุฃู†ู‡
553
00:41:58,290 --> 00:42:02,750
there exists B ู„ู‡ุงุŒ B ู„ู…ู†ุŸ ู„ู„ FN ู„ูˆ ูุฑุถู†ุง ุฃู† FN
554
00:42:02,750 --> 00:42:05,950
ุงู„ุญุงู„ู‡ุง boundedุŒ there exists B ู„ู„ู€N ุณู…ูŠุชู‡ุง BN
555
00:42:05,950 --> 00:42:11,850
ุตุดุฏุชู‡ุงุŒ ุฏูŠ ุฃุตุบุฑ ูŠุณุงูˆูŠ BN ู„ูƒู„ X element in A ูˆB ู‡ุฐุง
556
00:42:11,850 --> 00:42:16,650
ู„ูˆ ูุฑุถู†ุง ุฃู†ู‡ ูƒู„ ูˆุงุญุฏุฉ ุนู„ู‰ ุญุฏุฉ A bounded ู‡ูˆ ุทุงู„ุจ
557
00:42:16,650 --> 00:42:24,260
ุฃูƒุซุฑ ุฌุงูŠ ุงู„ู€ bound ู‡ุฐุงุจู†ูุน ู„ูƒู„ ุงู„ู€ mean ู„ู„ู€ F1 ูˆ
558
00:42:24,260 --> 00:42:30,980
ู„ู„ู€ F2 ูˆ ู„ู„ู€ F3 ูˆ ู„ู„ู€ F4 ูŠุนู†ูŠ ูุงุฑุถ ุฃู† FN of X ุฃุตุบุฑ
559
00:42:30,980 --> 00:42:35,920
ุฃูˆ ูŠุดูˆูŠ ูŠุนู†ูŠ ุฏุฑุฌ ZEF ุจุฃูƒุจุฑ ู…ู† ุตูุฑ such that FN of
560
00:42:35,920 --> 00:42:42,040
X ุฃุตุบุฑ ุดู‡ุฑ ูˆ B ู„ูƒู„ N element N ูˆ ู„ูƒู„ X element ู…ูŠู†
561
00:42:42,040 --> 00:42:48,760
in ุงู„ interval ุงู„ู„ูŠ ู‡ูŠ A ุฃูˆ B ุทุจุนุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃูƒูŠุฏ
562
00:42:48,760 --> 00:42:52,940
ุจูŠุนุทูŠ ู‡ุฐุง ู„ูƒู† ู‡ุฐุง ู…ุด ุดุฑุท ูŠุนุทูŠ ู‡ุฐุง ู„ุฃู† ู‡ุฐุง ุงู„ BN ู„ู„
563
00:42:52,940 --> 00:42:57,540
F1 ููŠู‡ B1 ุงู„ F2 ุจูŠู‡ F2 F3 ุจูŠู‡ F3 F4 ุจูŠู‡ F4 ู‡ู„ ููŠู‡
564
00:42:57,540 --> 00:43:01,770
ุงู„herosoprimam ู‡ุฏูˆู„ุฉ ู„ูŠุณ ุดุฑุทุงู…ุงู‚ุฏุฑุด ู†ู‚ูˆู„ ุฃู‡ ุนุดุงู†
565
00:43:01,770 --> 00:43:06,070
ู‡ูŠูƒ ุทู„ุจู‡ ูƒุจูŠุฑ ุทุจุนุง ุงู„ุจุฑู†ุงู…ุฌ ุฎุงุฑุฌ ุนู† ู†ุทุงู‚ ุงู„ course
566
00:43:06,070 --> 00:43:10,250
ุณุจุนู†ุง ุงู„ุงู† ุชุญุช ู‡ุฐุง ุงู„ condition ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡
567
00:43:10,250 --> 00:43:14,190
condition ู…ุงู‚ุฏุฑู†ุง ู†ู‚ูˆู„ ูˆุงุฒู† then ุงู„ integration ู…ู†
568
00:43:14,190 --> 00:43:17,450
a ู„ b of x dx ุจุณูˆุก limit ู„ู„ integration ู…ู† a b ู„ f
569
00:43:17,450 --> 00:43:20,610
n of x dx ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ limit ู„ู„ integration ุจุณูˆุก
570
00:43:20,610 --> 00:43:24,950
ุงู„ integration ู„ู„ limitุงู„ุงู† ู†ูŠุฌูŠ ู„ุฌุฒูŠู‡ ุงู„ุซุงู„ุซ ู…ู†
571
00:43:24,950 --> 00:43:29,350
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ุจุชุนู„ู‚ ุจุงู„ู€ sequence of
572
00:43:29,350 --> 00:43:32,550
differentiable functions ุฎู„ูŠู†ุง ู†ุดูˆู ุงู„ู…ุซุงู„ ุฃูˆู„ ุงุดูŠ
573
00:43:32,550 --> 00:43:37,570
ูˆ ุจุนุฏูŠู† ู†ูŠุฌูŠ ู„ู†ุธุฑูŠุชู†ุง let fn of x ุจุณุงูˆูŠ summation
574
00:43:37,570 --> 00:43:42,270
2 to the minus k cosine 3k x k ู…ู† 1 ู„ุนูŠู† ุฏู‡ ูŠุนู†ูŠ
575
00:43:42,270 --> 00:43:47,950
ุงู„ุงู†F1 of X ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 2 ุชุฑู‡ ู…ุงูŠู†ุณ ูˆุงุญุฏ ูƒุณุงูŠู†
576
00:43:47,950 --> 00:43:52,810
ุชู„ุงุชุฉ X F2 of X ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 2 ุชุฑู‡ ู…ุงูŠู†ุณ ูˆุงุญุฏ
577
00:43:52,810 --> 00:43:56,930
ูƒุณุงูŠู† ุชู„ุงุชุฉ X ุฒุงุฆุฏ 2 ุชุฑู‡ ู…ุงูŠู†ุณ ุงุชู†ูŠู† ูƒุณุงูŠู† ุชู„ุงุชุฉ
578
00:43:56,930 --> 00:44:01,070
ุชุฑุจูŠุน X ูˆ ู‡ูƒุฐุงFn of X ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€Summation ู‡ุฐุง
579
00:44:01,070 --> 00:44:04,690
ู…ู† ูˆุงุญุฏ ู„ู€&N ูˆู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† Sequence of Functions
580
00:44:04,690 --> 00:44:09,070
ูˆุงุถุญ ุฃู† ู‡ุฐู‡ Sequence of Functions ู‡ูŠ ุนุจุงุฑุฉ ุนู†
581
00:44:09,070 --> 00:44:12,570
Sequence of Differentiable FunctionsุŒ ู„ู…ุงุฐุงุŸ ู„ุฃู†
582
00:44:12,570 --> 00:44:16,450
ูƒู„ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ุนุจุงุฑุฉ ุนู† SummationุŒ Finite Summation
583
00:44:16,450 --> 00:44:20,570
ู„ู€Cos Function ูˆุงู„ู€Cos Function ู…ุณุชู…ุฑ ููŠ ูƒู„ ู…ูƒุงู†
584
00:44:20,570 --> 00:44:25,510
ูˆDifferentiable ููŠ ูƒู„ ู…ูƒุงู†ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ู€ F1 ูˆ
585
00:44:25,510 --> 00:44:29,330
ุงู„ู€ F2 ูˆ ุงู„ู€ F3 ูˆ ุงู„ู€ Fn ุนุงู…ุฉ R ุงู„ู€ differential
586
00:44:29,330 --> 00:44:33,930
of the function on R ู„ูƒู† ุดูˆูุช ุนู„ู‰ ุงู„ู€ limit ุงุญู†ุง
587
00:44:33,930 --> 00:44:37,890
ุฎุฏู†ุง ุงู„ู…ุซุงู„ ู‡ุฐุง but limit Fn of X as N plus
588
00:44:37,890 --> 00:44:41,970
infinity ุจุณุงูˆุฉ summation ูƒู…ู† ุนู†ุฏ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง
589
00:44:41,970 --> 00:44:47,150
ู†ู‡ุงูŠุฉ ุจุชุตูŠุฑ ู…ุงุดูŠ ุงู„ุญุงู„ุฉ2 to the minus k cosine 3kx
590
00:44:47,150 --> 00:44:51,150
ู‡ุฐู‡ ุฃุฎุฏู†ุง ู…ุซุงู„ ุนู„ู‰ function is continuous
591
00:44:51,150 --> 00:44:54,590
everywhere ูˆ is not differentiable anywhere ูˆ ู‚ู„ู†ุง
592
00:44:54,590 --> 00:44:59,930
ุจุฑู‡ุงู†ุฉ ุฎุงุฑุฌ ู†ุทุงู‚ ุงู„ู„ูŠ ู‡ูˆ ุงูƒุชุจู†ุง ูู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุนุจุงุฑุฉ
593
00:44:59,930 --> 00:45:04,790
ุนู† ุงู„ limit ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุทู„ุนุช ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ูŠุนู†ูŠ limit
594
00:45:04,790 --> 00:45:08,590
ุงู„ function ู‡ุฐู‡ ุฏุงู„ุฉ ู‡ุฐุง ุงู„ limit is not
595
00:45:08,590 --> 00:45:12,710
differentiable at any x element in R ูŠุนู†ูŠ ู‡ุฐุง
596
00:45:12,710 --> 00:45:16,620
ุนุจุงุฑุฉ ุนู† ู…ุซุงู„ุนู„ู‰ sequence of functions FN
597
00:45:16,620 --> 00:45:25,100
differentiable on R but its limit FN ู‡ู†ุดูˆู
598
00:45:25,100 --> 00:45:32,970
converts ูƒู…ุงู† uniformly ู„ F ูˆุงู„ู€ F andF can
599
00:45:32,970 --> 00:45:36,950
converge uniformly to F but ุงู„ู€ F ุฒูŠ ู…ุง ู‚ู„ู†ุง is
600
00:45:36,950 --> 00:45:44,430
not differentiable at any X element in R ูˆูƒุฃู†ู‡ ุงู„ู€
601
00:45:44,430 --> 00:45:50,980
uniform convergence ู‡ู†ุง ุจุฑุถู‡ ูˆุตูุฉ ู…ุง ู†ูุนุชุดุฅู† ู†ุฌูŠุจ
602
00:45:50,980 --> 00:45:54,340
ุงู„ู€ sequence of differentiable functions ุชุทู„ุน
603
00:45:54,340 --> 00:45:57,220
differentiable function ูŠุนู†ูŠ ุงู„ uniform
604
00:45:57,220 --> 00:46:01,220
convergence ูƒู…ุงู† ู†ูุณู‡ ุจุฏู‡ ุฏุนู…ุฉ ุฃูˆ ุจุฏู†ุง condition
605
00:46:01,220 --> 00:46:05,280
ุบูŠุฑ ู‡ูŠูƒ ูŠูˆุตู„ู†ุง ู„ู„ูŠ ุจุฏู†ุงูŠุง ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sequence
606
00:46:05,280 --> 00:46:08,060
of differentiable functions ุชู‚ูˆู„ ุฅู„ู‰
607
00:46:08,060 --> 00:46:13,940
differentiable function ุฏู‡ ู†ุดูˆู ู†ูƒู…ู„ .. ู†ูƒู…ู„ุงู„ุงู†
608
00:46:13,940 --> 00:46:18,300
ู‡ู†ุดูˆู ูƒูŠู ูŠู†ูุฑุฌ .. ูŠู†ูุฑุฌ .. ูŠู†ูุฑุฌ ูŠู†ูุฑุฌ ูŠู†ูุฑุฌ
609
00:46:18,300 --> 00:46:19,940
ูŠู†ูุฑุฌ ูŠู†ูุฑุฌ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ
610
00:46:19,940 --> 00:46:20,360
ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ
611
00:46:20,360 --> 00:46:21,560
ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ
612
00:46:21,560 --> 00:46:21,960
ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ
613
00:46:21,960 --> 00:46:23,120
ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ
614
00:46:23,120 --> 00:46:24,740
ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ
615
00:46:24,740 --> 00:46:28,440
ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ ุนุงู…ุฉ
616
00:46:29,930 --> 00:46:34,590
ู‡ุฐุง ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ absolute value of
617
00:46:34,590 --> 00:46:36,130
summation ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ summation ู„ู„ absolute
618
00:46:36,130 --> 00:46:39,650
value ูˆุงู„ cosine ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠุฉ ุญุฏุซ ุงู† ุตุงุฑ ุนุจุงุฑุฉ ุนู†
619
00:46:39,650 --> 00:46:41,890
ุงู„ summation ุงู„ absolute value of summation ู‡ุฐุง
620
00:46:41,890 --> 00:46:44,910
ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ two to the minus k ูƒู…ู† ุนู†ุฏ n ุฒุงุฆุฏ
621
00:46:44,910 --> 00:46:49,430
ูˆุงุญุฏ ุฅู„ู‰ ู…ูŠู† ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉูˆู‡ุฐุง as n goes to
622
00:46:49,430 --> 00:46:53,210
infinity ู‡ุฐุง ุจุฑูˆุญ ู„ู„ zero ู…ุงุดูŠ ุงู„ุญุงู„ ุฎู„ูŠู‡ุง ููŠ
623
00:46:53,210 --> 00:46:59,350
ุงู„ุฐุงูƒุฑู‡ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ f of x ู†ู‚ุต fn of x ุฃุตุบุฑ ุฃูˆ
624
00:46:59,350 --> 00:47:04,450
ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ุฑู‚ู… ู…ุงุดูŠ ู…ุด ู…ุนุชู…ุฏ ุนู„ู‰ x ุตุงุฑ ู‡ุฐุง ุฃุตุบุฑ
625
00:47:04,450 --> 00:47:08,050
ุฃูˆ ุณุงูˆูŠ ู‡ุฐุง ุตุงุฑ ู‡ุฐุง upper bound ู„ู‡ุฐู‡ู…ุฏุงู… upper
626
00:47:08,050 --> 00:47:10,210
bound ุฅุฐุง ุงู„ upper bound ุฃูƒุจุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ least
627
00:47:10,210 --> 00:47:14,170
upper bound ุงู„ู„ูŠ ู‡ูˆ ู†ูˆู… ู„ู„ F ู†ุงู‚ุต FN over R ุฃุตุบุฑ
628
00:47:14,170 --> 00:47:17,310
ุฃูˆ ุณุงูˆูŠ ู‡ุฐุง as N goes to infinity ู‡ุฐุง ุจูŠุฑูˆุญ ู„ู„
629
00:47:17,310 --> 00:47:21,250
zero ุฅุฐุง ุงู„ F ู†ุงู‚ุต FN over R ุจุชุฑูˆุญ ู„ู„ zero ูˆู‡ุฐุง
630
00:47:21,250 --> 00:47:27,570
ู…ุนู†ุงุชู‡ ุฃู† FN ุจุชุฑูˆุญ ู„ู„ F ุงู„ู„ูŠ ู‡ูˆ on mean on R ูŠุนู†ูŠ
631
00:47:27,570 --> 00:47:31,250
ุงู„ convergence ุฅูŠุด ู…ุงู„ู‡ uniform convergence ุจุงู„ุฑุบู…
632
00:47:31,250 --> 00:47:35,880
ุฅู† ุงู„ uniform convergence ุญุงุฏุซูˆุงู„ู€ Fn sequence of
633
00:47:35,880 --> 00:47:40,200
differentiable functions ุงู„ู€ F ุฅูŠุด ู…ุง ู„ู‡ุง ุทู„ุนุชุด
634
00:47:40,200 --> 00:47:44,840
differentiable ุฅุฐุง ุจุงู„ุฒู…ู† ุงู„ู„ูŠ ู‡ูˆ condition ุฃูˆ
635
00:47:44,840 --> 00:47:49,900
conditions ุชุถู…ู†ู„ูŠ ุฃู†ู‡ ู„ู…ุง Fn ุชุฑูˆุญ ู„ู„ู€ F ูˆ Fn
636
00:47:49,900 --> 00:47:52,580
sequence of differentiable functions ุชุทู„ุนู„ูŠ ุงู„ู€ F
637
00:47:52,580 --> 00:47:56,930
differentiable ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ู†ุธุฑูŠุชู†ุง ุงู„ู„ูŠ ู‡ูŠุฃุฎุฑ ุฌุฒุก
638
00:47:56,930 --> 00:48:00,990
ููŠ ุงู„ section ูˆ ููŠ ุงู„ chapter ุงู„ู„ูŠ ุจุฏู†ุง ู†ุงุฎุฏู‡ ู…ู†ู‡
639
00:48:00,990 --> 00:48:07,070
ุงู„ู„ูŠ ู‡ูŠ ุจุชุฌุงูˆุจู†ุง ุนู„ู‰ ู‡ุฐุง ุงู„ุฃู…ุฑ ูˆ ู†ุดูˆู ุฃูŠุด ุงู„ู†ุธุฑูŠุฉ
640
00:48:07,070 --> 00:48:12,630
ุจุชู‚ูˆู„ู‡ ูˆ ู…ู† ุซู… ุจุนุฏ ุฃู†ูุฉ ู…ู† ู†ุต ู†ุจุฑู‡ู† ุงู„ู†ุธุฑูŠุฉ ู†ุดูˆู
641
00:48:12,630 --> 00:48:17,400
let J subset ู…ู† R be a bounded intervalbounded
642
00:48:17,400 --> 00:48:21,340
interval open ู…ุด open ู…ุด ูุงุฑู‚ุฉ ู…ุนุงู‡ a closed ู…ุด
643
00:48:21,340 --> 00:48:24,560
closed ู…ุด ูุงุฑู‚ุฉ ุงู„ุงู† and let fn be a sequence of
644
00:48:24,560 --> 00:48:29,360
functions on j ูŠุนู†ูŠ ุนุจู‚ู‰ ุนู†ุฏูŠ ุนู†ุฏูŠ fn sequence of
645
00:48:29,360 --> 00:48:33,940
functions fn sequence of functions ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰
646
00:48:33,940 --> 00:48:38,180
ุงู„ู€ j ุงู„ู„ูŠ ู‡ูŠ ุงู„ interval ุงู„ู„ูŠ ุนู†ุฏูŠ ู„ุนู†ุฏ ุงุฑู ูˆุงุญุฏุฉ
647
00:48:38,180 --> 00:48:43,700
ุงุชู†ูŠู† ุงุฑู ุชู„ุงุชุฉ ุงู„ุงุฎุฑูŠู† ูˆุจุฏู†ุง ู†ูุชุฑุถุงู„ู„ูŠ ู‡ูˆ suppose
648
00:48:43,700 --> 00:48:49,880
that there exist x0 element in j ุจุญูŠุซ ุฃู† fn of x0
649
00:48:49,880 --> 00:48:56,440
converges ุงู„ู„ูŠ ู‡ูˆ to some limit ุงู„ุงู† ุงูŠุด ู…ูุชุฑุถ ุงู†
650
00:48:56,440 --> 00:49:03,520
ููŠ ุนู†ุฏูŠ x0ููŠ ุงู„ู€ J ุจุญูŠุซ ุฃู† FN of X0 ู‡ุฐู‡ ุตุงุฑุช
651
00:49:03,520 --> 00:49:07,840
sequence of numbers ู‡ุฐู‡ converges to some number
652
00:49:07,840 --> 00:49:12,560
ุงูŠุด ู‡ูˆ ู…ุด ุนุงุฑููŠู†ู‡ ุงู„ุงู† and that ูˆู…ุนุทูŠูƒ ูƒู…ุงู† ุดุบู„ุฉ
653
00:49:12,560 --> 00:49:18,800
ู‡ุฐู‡ ู…ุนุทูŠูƒูŠุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ and converges ุนู†ุฏ ู…ู‚ุทุฉ ู…ุญุฏุฏุฉ
654
00:49:18,800 --> 00:49:24,320
ุงุณู…ู‡ุง X0 ููŠ ุงู„ู€ J and the sequence FN prime of
655
00:49:24,320 --> 00:49:29,510
derivatives exist on JูŠุนู†ูŠ ู…ูุชุฑุถ ุฅู† ุงู„ู€ F N'
656
00:49:29,830 --> 00:49:32,910
exists ูŠุนู†ูŠ F N sequence of differentiable
657
00:49:32,910 --> 00:49:36,390
functions ู…ูุชุฑุถ ุฅู† F N sequence of differentiable
658
00:49:36,390 --> 00:49:40,210
functions ูˆู…ุด ู‡ูŠูƒุŒ ูˆุจูŠู‚ูˆู„ูƒ ุฅู† ู‡ุฐู‡ ุงู„ู€ F N'
659
00:49:40,750 --> 00:49:45,230
converts uniformly on J to some function F ูŠุนู†ูŠ
660
00:49:45,230 --> 00:49:50,950
ุจูŠู‚ูˆู„ูƒ F N' existsFN ุจุฑุงูŠู… exist ู„ูƒู„ N ูˆู‡ุฐุง ุงู„ู€
661
00:49:50,950 --> 00:49:55,430
sequence ุจูŠู‚ูˆู„ ู„ูƒ converges uniformly to some
662
00:49:55,430 --> 00:50:00,130
function ุงุณู…ู‡ุง ู…ูŠู†ุŸ ุงุณู…ู‡ุง J ุฅุฐู† sequence of
663
00:50:00,130 --> 00:50:05,510
functions ู„ุฃู† ููŠ X0 ููŠ ุงู„ู€ J ุจุญูŠุซ ุฃู† FN of X0
664
00:50:05,510 --> 00:50:10,830
ู†ูุณู‡ุง ุชูƒูˆู† converges FN ุจุฑุงูŠู… converges uniformly
665
00:50:10,830 --> 00:50:17,150
to some Gto some G ุจูƒู„ ุงู„ุฃู†ุธู… ู…ุน ูˆุฌูˆุฏ ู‡ุฐู‡ ุงู„ุดุฑูˆุท
666
00:50:17,150 --> 00:50:23,210
ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู„ูŠู‡ุง then the sequence FN converges
667
00:50:23,210 --> 00:50:32,330
uniformly to a function F ุจุนุฏ ู‡ุฐุง ุจุนุฏ ู‡ุฐุง ุจู†ู„ุงู‚ูŠ
668
00:50:32,330 --> 00:50:37,370
ุฃู† FN ุบุตุจ ุฅู† ุนู†ุง ู„ุงุฒู… ุชูƒูˆู† converges uniformly to
669
00:50:37,370 --> 00:50:44,660
some function mean F ูˆู…ุด ู‡ูŠูƒูˆุงู„ู€ function F ู‡ุฐู‡
670
00:50:44,660 --> 00:50:51,260
ุชุทู„ุน ุงู„ู€ derivative ุชุจุนุชู‡ุง ู‡ูŠ ู…ูŠู†ุŸ ู‡ูŠ ุงู„ู€ G ูŠุนู†ูŠ
671
00:50:51,260 --> 00:51:01,310
ูˆูƒุฃู†ู‡ ุฃู† ุงู„ู€ F N converges uniformly to Fุงู„ู„ูŠ ู‡ูŠ
672
00:51:01,310 --> 00:51:07,270
ุงู„ู€ derivative ู„ู‡ุง ู…ูŠู† ุงู„ุงุด ุงู„ู€ G ูŠุนู†ูŠ F N ุจุฑุงูŠู…
673
00:51:07,270 --> 00:51:10,510
ุจุชูƒูˆู† uniformly convergence to some function G
674
00:51:10,510 --> 00:51:17,890
ู‡ุชุทู„ุน ุงู„ู€ F N converge uniformly ู„ู„ function ุงู„ู„ูŠ
675
00:51:17,890 --> 00:51:24,570
ุชูุถู„ู‡ุง ู‡ูˆ ู…ูŠู† ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ GุทูŠุจ ุฅุฐุง ููŠ ุนู†ุฏูŠ
676
00:51:24,570 --> 00:51:28,210
ุดุบู„ุชูŠู† ุจุฏู†ุง ู†ุซุจุช ุงู† FN can form convergence to F
677
00:51:28,210 --> 00:51:35,690
ูˆุงู„ู€ F' ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุจุชุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ G ูŠุนู†ูŠ
678
00:51:35,690 --> 00:51:42,830
ู‡ุชุตูŠุฑ ุฅู†ู‡ ุงู„ู€ FN' ุงู„ู„ูŠ ู‡ูˆ sequence of
679
00:51:42,830 --> 00:51:45,770
differentiable functions ุจุชุทู„ุน ุนู†ุฏูŠ ู‡ุฐู‡ sequence
680
00:51:45,770 --> 00:51:49,210
of differentiable functions converge to function
681
00:51:49,210 --> 00:51:54,110
ุจุชูƒูˆู† differentiableู„ูŠุดุŸ ู„ุฃู† F' ุงูŠุด ุจุชุชุณุงูˆูŠ GุŸ
682
00:51:54,110 --> 00:51:57,590
ูŠุนู†ูŠ F is differentiable ูŠุนู†ูŠ ู‡ุฐู‡ ุจุชู‚ูˆู„ ุฅู†ู‡ ู„ูˆ
683
00:51:57,590 --> 00:52:00,950
ุงู„ุดุฑุทุฉ ุฏู‡ ูˆ ุงู„ุดุฑุทุฉ ุฏู‡ ุชุชุญู‚ู‚ูˆุง ุฅุฐู† ุงู„ sequence of
684
00:52:00,950 --> 00:52:06,290
differentiable functions FN ู‡ุชูƒูˆู† converges to ..
685
00:52:06,290 --> 00:52:09,110
uniform converges ุทุจุนุง to a differentiable
686
00:52:09,110 --> 00:52:13,310
function F ุฅุฐู† ุงู„ุดุบู„ุชูŠู† ู‡ุฏูˆู„ุฉ ุฅุญู†ุง ุจุฏู†ุง ู†ุซุจุชู‡ู…
687
00:52:13,310 --> 00:52:18,330
ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู ู†ุซุจุช ู‡ุฏูˆู„ุฉ ุงู„ุดุบู„ุชูŠู† ุจุฏู†ุง ู†ุซุจุช ุฅู†ู‡
688
00:52:18,330 --> 00:52:23,460
FNConverse Uniform ู„ู„ู€ F ูˆุจุฏู†ุง ู†ุซุจุช ุฃู† F' ุจูŠุณูˆุง G
689
00:52:23,460 --> 00:52:29,760
ูŠุนู†ูŠ ุจุฏู†ุง ู†ุซุจุช ู„ูƒ ููŠ ุงู„ู†ู‡ุงูŠุฉ ุฃู†ู‡ limit F
690
00:52:31,240 --> 00:52:37,940
of X ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ F of X ุฒุงุฆุฏ Delta X ู…ุซู„ุง ุฃูˆ F of
691
00:52:37,940 --> 00:52:45,520
X ู†ุงู‚ุต F of C ุนู„ู‰ X minus C as X ุจุชุฑูˆุญ ู„ู„ู€ C ุจุฏู†ุง
692
00:52:45,520 --> 00:52:51,980
ู†ุซุจุช ุฃู†ู‡ exist ูˆูŠุณุงูˆูŠ G of meanof C ูŠุนู†ูŠ ุจู…ุนู†ู‰ ู‡ุฐุง
693
00:52:51,980 --> 00:52:56,460
for arbitrary C element in main NG ูŠุนู†ูŠ ูƒุฃู†ู‡ ููŠ
694
00:52:56,460 --> 00:53:01,300
ุงู„ู†ู‡ุงูŠุฉ ุจุฏู†ุง ู†ุซุจุช ู„ูƒ ุงู†ู‡ ู‡ุฐุง exist ูŠุนู†ูŠ F prime of
695
00:53:01,300 --> 00:53:05,840
C exist ูˆูŠุณุงูˆูŠ main G of C ุงูˆ ุจู…ุนู†ู‰ ุงุฎุฑ ุจุฏู†ุง ู†ุซุจุช
696
00:53:05,840 --> 00:53:08,320
ู„ูƒ ุงู†ู‡ for every Y colon of Z there exists delta
697
00:53:08,320 --> 00:53:14,490
such that X minus Cุฃุตุบุฑ ู…ู† Delta ูŠุคุฏูŠ ุฅู„ู‰ F of X
698
00:53:14,490 --> 00:53:20,270
ู†ุงู‚ุต F of C ุนู„ู‰ X minus C ู†ุงู‚ุต G of C ูŠูƒูˆู† ุฃุตุบุฑ ู…ู†
699
00:53:20,270 --> 00:53:24,530
ู…ูŠู† ู…ู† Y ุฅุฐุง ุฃุซุจุชู†ุง ู‡ุฐุง ู…ุนู†ุงุชู‡ ูˆ ุฃุซุจุชู†ุง ุฅู† ู‡ุฐุง
700
00:53:24,530 --> 00:53:28,460
ุงู„ู„ูŠ ู‡ูˆ limit existูŠุนู†ูŠ ุงู„ู€ F' exist ูˆูŠุณุงูˆู‰ ู…ูŠู†
701
00:53:28,460 --> 00:53:31,920
ุงู„ู€ G of C ูˆุงู„ู€ C ูƒูˆู† ุจุชูƒูˆู† ุฃุฎุฏูŠู‡ุง Arbitrary ููŠ
702
00:53:31,920 --> 00:53:36,680
ุงู„ู€ G ูุจูƒูˆู† ุฎู„ุตู†ุง ุฃู† ุงู„ู€ F' ุจูŠุณุงูˆู‰ ุงู„ู€ G ูˆู‡ุฐุง ูƒู„ู‡
703
00:53:36,680 --> 00:53:40,920
ุจุนุฏ ู…ุง ู†ุซุจุช ุฃู† ุงู„ู€ F ุฃู†ู‡ conversion form ู„ู„ู…ูŠู† ู„ู„ู€
704
00:53:40,920 --> 00:53:48,280
F ูˆ ุชุนุงู„ูˆุง ู„ุชูุงุตูŠู„ ุงู„ุจุฑู‡ุงู† ุทูŠุจ ู†ูŠุฌูŠ ู†ุดูˆู ุจุฑู‡ุงู†ู†ุง
705
00:53:48,280 --> 00:53:51,020
ุดูˆููˆุง ุทุงูˆู„ูˆุง ุฑูˆุญูƒู… ุนู„ูŠู†ุง
706
00:53:55,700 --> 00:53:58,860
ุนุดุงู† ู†ุนุฑู ุจุณ ู†ุดุชุบู„ ู„ุจู†ู‰ ุญูŠูƒุฉ ุฎู„ู‘ูŠู†ุง ู†ุณู…ูŠ ุงู„ end
707
00:53:58,860 --> 00:54:02,960
points ุฌูŠู‡ ูˆุงุญุฏุฉ ุงุณู…ู‡ุง A ูˆุงุญุฏุฉ ุงุณู…ู‡ุง B ูŠุนู†ูŠ let A
708
00:54:02,960 --> 00:54:06,440
ุฃุฒุฑุน ู…ู† ุจูŠ ุจูŠ the end points of J ุฌูŠู‡ ู…ูุชูˆุญ ู…ูุชูˆุญ
709
00:54:06,440 --> 00:54:08,020
ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ
710
00:54:08,020 --> 00:54:08,080
ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ
711
00:54:08,080 --> 00:54:08,580
ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ
712
00:54:08,580 --> 00:54:13,580
ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆุญ ู…ูุชูˆูˆุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ X ุจู€
713
00:54:13,580 --> 00:54:17,700
Arbitrary Point ููŠ ุงู„ู€ J ุฃุญู†ุง ุจู†ุญูƒูŠ ุนู† ุฃูŠ X ูˆูŠู† ู…ุง
714
00:54:17,700 --> 00:54:26,420
ู„ุง ููŠ ุงู„ู€ J ุงู„ู„ูŠ ู‡ูŠ .. if M and N element in N
715
00:54:26,420 --> 00:54:29,320
then F minus N is differentiable on the closed
716
00:54:29,320 --> 00:54:34,550
interval within points X0 and X ุฃูƒูŠุฏู…ูุชุฑุถูŠู† ุงุญู†ุง
717
00:54:34,550 --> 00:54:41,010
ุงู† ุงู„ู€ F M' exist ู…ุธุจูˆุท ู…ุฏุงู… exist ุงุฐุง F M
718
00:54:41,010 --> 00:54:44,850
differentiable ูˆ F N differentiable ุงุฐุง F M ู†ู‚ุต F
719
00:54:44,850 --> 00:54:48,910
N differentiable ุนู„ู‰ ูƒู„ ู…ูŠู†ุŸ ุนู„ู‰ ูƒู„ ุงู„ู€ J ุงู„ู„ูŠ ุงู†ุง
720
00:54:48,910 --> 00:54:52,950
ุจุฏูŠ ุงุดุชุบู„ ุนู„ู‰ ูุชุฑุฉ ู…ุญุฏุฏุฉ ุงู†ุง ุงุฎุฏุช X element in J
721
00:54:52,950 --> 00:54:57,490
arbitraryูˆู‡ูˆ ู…ุนุทูŠู„ ููŠ ุงู„ู†ุธุฑูŠุฉ X0 ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุงู„ู„ูŠ
722
00:54:57,490 --> 00:55:02,110
ู‡ูŠ Fn of X0 converts ุจุญูƒูŠ ุนู† X0 ู‡ุฐู‡ ุงู„ู…ู‚ุตูˆุฏุฉ ููŠ
723
00:55:02,110 --> 00:55:08,170
ุงู„ู†ุธุฑูŠุฉ ุจุฏูŠ ุฃุทุจู‘ุฌ ุนู„ูŠู‡ุง ุนู†ุฏูŠ ุจู…ุง ุฃู† Fm ู†ุงู‚ุต Fn is
724
00:55:08,170 --> 00:55:11,730
differentiable ุนู„ู‰ closed interval within points
725
00:55:11,730 --> 00:55:18,090
X0 ูˆ X ูŠุนู†ูŠ ูŠุง X0 ูˆ X ูŠุง X ูˆ X0 ุญุณุจ ู…ูˆู‚ุน ูƒู„ ู…ู† X ูˆ
726
00:55:18,090 --> 00:55:23,440
X0ุฅุฐุง ุตุงุฑุช Fm ู†ุงู‚ุต Fn ุนุจุงุฑุฉ ุนู† ุงู„ู€ differential
727
00:55:23,440 --> 00:55:26,120
ุจุงู„ู€ function ุนู„ู‰ ู‡ุฐู‡ ุงู„ู€ closed bounded interval
728
00:55:26,120 --> 00:55:30,320
ุฅุฐุง ุฃูƒูŠุฏ continuous ุนู„ูŠู‡ุง ูƒู…ุงู† ุฅุฐุง ุจุงู„ู€ mean value
729
00:55:30,320 --> 00:55:33,940
theorem ู…ุทุจู‚ุฉ ุงู„ู€ mean value theorem ุฏู‡ ุทุจู‚ู‡ุง ุนู„ู‰
730
00:55:33,940 --> 00:55:39,300
ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ ุนู„ู‰ ุงู„ู€ Fm ู†ุงู‚ุต Fn ูŠุนู†ูŠ ู‡ุฐู‡ ุฏุงู„ุชู†ุง
731
00:55:39,300 --> 00:55:43,660
ุงู„ู„ูŠ ุจุฏู†ุง ู†ุทุจู‚ ุนู„ูŠู‡ุง ุงู„ู€ mean value theorem ุฅุฐุง by
732
00:55:43,660 --> 00:55:47,760
mean value theorem there exists Y ุจูŠู† ุงู„ู€ X0 ูˆุงู„ู€
733
00:55:47,760 --> 00:55:53,380
X ุจุญูŠุซุฅู† ุงู„ู€ Derivative ู„ู‡ุฐู‡ ุจูŠุณุงูˆูŠ F M ู†ุงู‚ุต F N
734
00:55:53,380 --> 00:55:59,440
ุนู†ุฏ ุงู„ู„ูŠ ู‡ูŠ X ู†ุงู‚ุต F M ู†ุงู‚ุต F Note ุนู†ุฏ ุงู„ู€ X Note
735
00:55:59,440 --> 00:56:05,640
ุจูŠุณุงูˆูŠ F M ู†ุงู‚ุต F N Prime ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ ุงู„ู€ Yby
736
00:56:05,640 --> 00:56:09,840
mean value theorem there exists y between x0 and x
737
00:56:09,840 --> 00:56:13,700
such that ู‡ุฐุง ุงู„ุฏู„ุฉ ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ ุนู†ุฏ ุงู„ x fm of x
738
00:56:13,700 --> 00:56:19,300
ู†ู‚ุต fn of x ู‡ุฐุง ุงู„ุฏู„ุฉ ู†ุงู‚ุต fm of x0 ู†ู‚ุต fn of x0
739
00:56:19,300 --> 00:56:25,060
ู‡ุฐุง ุงู„ุฏู„ุฉ ุนู†ุฏ ุงู„ู†ู‚ุทุฉ x0 ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ x minus x0ูู‰
740
00:56:25,060 --> 00:56:30,520
ุงู„ู„ู‰ ู‡ูˆ ุงู„ derivative ู„ู‡ุฐู‡ ุนู†ุฏ ู…ูŠู† ุนู†ุฏู‡ ุงู„ู†ู‚ุทุฉ Y
741
00:56:30,520 --> 00:56:34,700
ุงู„ู„ู‰ ู‡ู‰ F M prime of Y ู†ู‚ุต F M prime of Y ุฅุฐุง
742
00:56:34,700 --> 00:56:47,340
ุญุตู„ู†ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุทูŠุจ ุงู„ุขู† ู„ูˆ ุฃุฌูŠุช ุจุณ
743
00:56:47,340 --> 00:56:50,140
ุนุดุงู† ุจุฏูŠ ุฃู„ุงู‚ูŠ ู…ูƒุงู† ู„ู…ุง ููŠู‡ ูƒู„ุงู… ูƒุชูŠุฑ ุจุฏูŠ ุฃูƒุชุจู‡
744
00:56:50,140 --> 00:56:57,540
ู‡ุฐุง ุนู†ุฏูŠ ุงู„ู…ูุฑูˆุถุฎู„ู‘ูŠู†ูŠ ุฃูƒุชุจ ุฅู† ู‡ุฐูˆู„ุฉ ุนู†ุฏูŠ ุงู„ู…ุนุทูŠุงุช
745
00:56:57,540 --> 00:57:07,950
ุงู„ู„ูŠ ู‡ูŠ FN of X0 Converges ูˆู…ุนุงูŠุง ุงู„ู„ูŠ ู‡ูˆ FNprime
746
00:57:07,950 --> 00:57:14,250
converging formally to the G ู‡ุฐุง ุงู„ู…ุทู„ูˆุจ ุฃู† FN
747
00:57:14,250 --> 00:57:20,290
converging formally to F ูˆ F' ู‡ูŠ ู…ูŠู† ุงู„ู€ G ู‡ุฐู‡
748
00:57:20,290 --> 00:57:24,450
ุงู„ู…ุนุทูŠุงุช ูˆู‡ูŠ ุงู„ู…ุทู„ูˆุจ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ู„ุฎุตู‡ุง ุฎู„ูŠู†ุง ู†ุดูˆู
749
00:57:24,450 --> 00:57:31,590
ุนุดุงู† ุฃู†ู‡ ุงุญู†ุง ู†ุจุฏุฃ ุงู„ู„ูŠ ู‡ูˆ ุฃูุณู„ูƒู… ูƒู„ ุฎุทูˆุฉ ุงู„ู„ูŠ ู‡ูˆ
750
00:57:31,590 --> 00:57:35,270
ู…ุง ูƒุงู†ุช ู…ุด ู…ูุณุฑุฉ ููŠ ุงู„ุชู„ุฎูŠุต ู†ูุณู„ูƒู… ุฅูŠุงู‡ุง ุจุงู„ุชูุตูŠู„
751
00:57:36,790 --> 00:57:43,750
ุงู„ุงู† ูˆุฌุฏู†ุง ู‡ุฐู‡ ูŠุง ุฌู…ุงุนุฉ ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุงู† ุนู†ุฏูŠ ู‡ุฐุง
752
00:57:43,750 --> 00:57:47,830
ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู„ x ุนู†ุฏูŠ ุทุจุนุง x note ู†ุญูƒูŠ ุนู† x note
753
00:57:47,830 --> 00:57:56,530
ู…ุญุฏุฏุฉ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† fm of x ู†ุงู‚ุต fn of x ู‡ุฐู‡ ุตุงุฑุช
754
00:57:56,530 --> 00:58:01,600
absolute valueุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุจุฏูŠ ุฃู†ุฌู„ ู‡ุฐู‡ ุนู„ู‰ ุงู„ู†ุทู‚
755
00:58:01,600 --> 00:58:04,420
ู‡ุฐู‡ ูˆุฃู‚ูˆู„ absolute value ู‡ุฐู‡ ุจุณุงูˆูŠ ุงู„ absolute
756
00:58:04,420 --> 00:58:07,720
value ู‡ุฐู‡ ูˆุฃุฎุฏ triangle inequality ุจูŠุตูŠุฑ ุฃุตุบุฑ ุฃูˆ
757
00:58:07,720 --> 00:58:17,260
ูŠุณุงูˆูŠ ุงู„ absolute value ู„ู‡ุฐู‡ Fn of X0 ู†ุงู‚ุต Fn of
758
00:58:17,260 --> 00:58:26,650
X0 ุฒุงุฆุฏ ุงู„ absolute value ู„ู„ X minus X0ููŠ ุงู„ู€ F M
759
00:58:26,650 --> 00:58:34,930
prime of Y ู†ุงู‚ุต F M F N prime of mean of Y ู…ุงุดูŠ
760
00:58:34,930 --> 00:58:39,650
ุงู„ุญุงู„ ู‡ุฐุง mean ู…ุงู„ู‡ ู‡ุฐุง ุจุงู„ mean value ุจุงู„
761
00:58:39,650 --> 00:58:42,550
triangle inequality ุจุนุฏ ู…ุง ู†ุฌู„ุชู‡ุง ุนู„ู‰ ุงู„ุฌู‡ุฉ
762
00:58:42,550 --> 00:58:50,310
ุงู„ุซุงู†ูŠุฉ ุงู„ุขู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑุงู„ู„ูŠ ู‡ูˆ ุฃูƒูŠุฏ
763
00:58:50,310 --> 00:58:54,790
ู‡ุฐุง ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ูŠุณุงูˆูŠ ู‡ุฐุง ูˆู‡ุฐุง ุฃุตุบุฑ
764
00:58:54,790 --> 00:59:05,090
ูŠุณุงูˆูŠ FM of X not FM of X not ู†ุงู‚ุต FM of X not
765
00:59:05,090 --> 00:59:12,730
ุฒุงุฆุฏ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู…ู† ุนู†ุฏ A
766
00:59:12,730 --> 00:59:17,890
ู„ุนู†ุฏ BX ูˆ X0 ุจุบุถ ุงู„ู†ุธุฑ ุงู„ู…ูˆู‚ุน ู‡ู†ุงุฏูŠ ุฃูˆ ู‡ู†ุงุฏูŠ ููŠ
767
00:59:17,890 --> 00:59:22,470
ุงู„ุขุฎุฑ ุงู„ู„ูŠ ู‡ูŠ B minus A ุฃูƒูŠุฏ ุฃูƒุจุฑ ู…ู† X minus X0
768
00:59:22,470 --> 00:59:29,670
ุฃูƒูŠุฏ ุฅุฐุง ุฒุงุฆุฏ B minus A ููŠู‡ ู‡ุฐุง ู‡ุฐุง ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ
769
00:59:29,670 --> 00:59:36,890
ูŠุณุงูˆูŠ ู…ูŠู† ุงู„ norm ู„ F M prime ู†ุงู‚ุต F N prime over
770
00:59:36,890 --> 00:59:40,550
ู…ูŠู† ุงู„ุฌูŠู„ ุงู„ู„ูŠ ุนู†ุฏูŠ ู„ูŠุด ู„ุฃู† ู‡ุฐุง supremum ู„ู„ูŠ ููˆู‚
771
00:59:40,550 --> 00:59:45,630
ุตุงุฑ ู‡ุฐุง ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ุฑู‚ู…ู‡ุฐุง ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ุฑู‚ู… ู‡ุฐุง
772
00:59:45,630 --> 00:59:51,650
ุงู„ุฑู‚ู… ุงู„ุขู† ุฃูƒุจุฑ ุฃูˆ ุณุงูˆูŠ ู‡ุฐู‡ ู„ูƒู„ X ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ
773
00:59:51,650 --> 00:59:55,350
ุงู„ุฌูŠู„ ู„ุฃู†ู‡ ุฃุฎุฏุช X ู…ุงู„ู‡ุง ู…ู† ุฑุฃุณ ุงู„ุฏูˆุฑ ุฃุฎุฏุช X is
774
00:59:55,350 --> 01:00:00,290
arbitrary point ู…ุงุดูŠ ุงู„ุญุงู„ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู‡ุฐุง ุตุงุฑ
775
01:00:00,290 --> 01:00:04,650
upper bound ู„ู‡ุฐู‡ ุนุฏู†ุงู‡ุง ู…ุงุฆุฉ ู…ุฑุฉ ุฅุฐุง ุตุงุฑ ุนู†ุฏ ู‡ุฐุง
776
01:00:04,650 --> 01:00:07,250
ุงู„ upper bound ุฃูƒุจุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ least upper bound
777
01:00:07,250 --> 01:00:10,010
ุงู„ู„ูŠ ู‡ูˆ ุงู„ supremum ุฅุฐุง ุตุงุฑ ุนู†ุฏ ุงู„ supremum ุงู„ู„ูŠ
778
01:00:10,010 --> 01:00:15,810
ู‡ูˆ norm ุงู„ FMู†ุงู‚ุต FN over J ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ู…ู‚ุฏุงุฑ
779
01:00:15,810 --> 01:00:20,570
ู‡ุฐุง ูˆู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ ุญุตู„ู†ุง ุนู„ูŠู‡ ู‡ู†ุง ูˆุชูุณูŠุฑู‡ ู‡ูŠ ุงู„ู„ูŠ
780
01:00:20,570 --> 01:00:26,130
ูุณุฑุชู„ูƒู… ุฅูŠุงู‡ ููˆู‚ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ FM ู†ุงู‚ุต FN over J
781
01:00:26,130 --> 01:00:29,490
ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ FN of X node ู†ุงู‚ุต FN of X node ุฒุงุฏ B
782
01:00:29,490 --> 01:00:36,990
minus A ููŠ ุงู„ู†ูˆุฑ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ุงู„ุขู† ุงู„ู„ุงุญุธ ุฃู† FN of X
783
01:00:36,990 --> 01:00:41,760
node convergeุงู„ู„ูŠ ู‡ูˆ and FN' is uniformly
784
01:00:41,760 --> 01:00:46,480
convergent in J then by the inequality above and
785
01:00:46,480 --> 01:00:50,520
theorem 8.11 we have FN is uniformly convergent
786
01:00:50,520 --> 01:00:55,300
ุฑู…ุงู‡ุง ุนู„ู‰ ุทูˆู„ ุฎู„ู‘ูŠู†ูŠ ุฃูุณุฑู„ูƒู… ุฃูŠู‡ุง ู‡ุฐู‡ ุฎู„ู‘ูŠู†ูŠ
787
01:00:55,300 --> 01:01:01,260
ุฃูุณุฑู„ูƒู… ุงู„ู„ูŠ ุญูƒุงู‡ ู‡ู†ุง ูˆูƒูŠู ูˆุตู„ ุฃู† FN converges
788
01:01:01,260 --> 01:01:07,570
uniformly ู…ู† ู…ูŠู† ู„ู„ FNู†ูุณุฑู‡ุง ูˆุงู„ุชูุณูŠุฑ ูŠู…ูƒู† ู…ุฑุฉ ู‚ุจู„
789
01:01:07,570 --> 01:01:17,510
ู‡ูŠูƒ ุงู„ุงู† ุดูˆููˆุง ู…ุนุงูŠุง ุจู…ุง ุงู†ู‡ ุนู†ุฏูŠ ุงู„ FN of X0
790
01:01:17,510 --> 01:01:25,950
converges ุงุฐุง it is Cauchy ู…ุธุจูˆุท is it is a Cauchy
791
01:01:25,950 --> 01:01:32,270
sequence ู…ุนุงูŠุง ู…ุฏุงู… Cauchy sequenceุฃูŠุถุง ุงู„ู…ุนุฑูˆู
792
01:01:32,270 --> 01:01:35,790
ุงูŠุด ู…ุนู†ุงู‡ ุงู„ู€ Cauchy Sequence ุงู† ู„ูƒู„ ุฃุจุณู„ูˆู† ุฃูƒุจุฑ
793
01:01:35,790 --> 01:01:43,440
ู…ู† ุณูุฑ there exist ุงู„ู„ูŠ ู‡ูˆ ู…ุซู„ุง ู†ุณู…ูŠู‡ุง H1ุงู„ู„ูŠ ู‡ูˆ
794
01:01:43,440 --> 01:01:49,220
element in N such that for every N ูˆ M ุฃูƒุจุฑ ุฃูˆ
795
01:01:49,220 --> 01:01:57,500
ูŠุณุงูˆูŠ H1 ุจูƒูˆู† ุนู†ุฏูŠ FN of X0 ู†ุงู‚ุต FN of X0 ุฃุตุบุฑ ู…ู†
796
01:01:57,500 --> 01:02:02,740
ู…ูŠู†ุŸ ู…ู† ูŠุจุณู„ูˆู† ุนู„ู‰ ุงุชู†ูŠู† ู…ุซู„ุง ูŠุจุณู„ูˆู† ุนู„ู‰ ุงุชู†ูŠู†
797
01:02:02,740 --> 01:02:07,220
ู…ุงุดูŠุŸ ู‡ุฐุง ู…ู† ูˆูŠู† ุฌุจุชู‡ุŸ ู…ู† ุฃู† FN of X0 converges
798
01:02:07,220 --> 01:02:12,910
ู‡ุฐู‡ ุงู„ุฃูˆู„ู‰ ุฎู„ูŠู‡ุง ู‡ุฐู‡ ุงุณู…ู‡ุง ูˆุงุญุฏ ุงู„ุงู†ุนู†ุฏูŠ ู…ุนุทูŠู†ุฉ
799
01:02:12,910 --> 01:02:19,030
ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ FN ุงู„ู€ Prime Uniform Convergence
800
01:02:22,150 --> 01:02:28,730
Converges uniformly Converges uniformly Converges
801
01:02:28,730 --> 01:02:32,450
uniformly Converges
802
01:02:32,450 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
803
01:02:34,190 --> 01:02:34,190
Converges uniformly Converges uniformly Converges
804
01:02:34,190 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
805
01:02:34,190 --> 01:02:34,190
Converges uniformly Converges uniformly Converges
806
01:02:34,190 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
807
01:02:34,190 --> 01:02:34,190
Converges uniformly Converges uniformly Converges
808
01:02:34,190 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
809
01:02:34,190 --> 01:02:34,190
Converges uniformly Converges uniformly Converges
810
01:02:34,190 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
811
01:02:34,190 --> 01:02:34,190
Converges uniformly Converges uniformly Converges
812
01:02:34,190 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
813
01:02:34,190 --> 01:02:34,190
Converges uniformly Converges uniformly Converges
814
01:02:34,190 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
815
01:02:34,190 --> 01:02:34,190
Converges uniformly Converges uniformly Converges
816
01:02:34,190 --> 01:02:34,190
uniformly Converges uniformly Converges uniformly
817
01:02:34,190 --> 01:02:34,190
Converges usually Converges usually Converges
818
01:02:34,190 --> 01:02:34,290
usually Converges usually Converges usually
819
01:02:34,290 --> 01:02:34,530
Converges usually Converges usually Converges
820
01:02:34,530 --> 01:02:38,430
usually Converges usually Converges usually
821
01:02:38,430 --> 01:02:44,130
Converges usually Converges usually Converges
822
01:02:44,130 --> 01:02:51,420
usually Converges usually Converges usuallyุงู„ู„ูŠ ู‡ูˆ
823
01:02:51,420 --> 01:03:00,120
Normal Fn-Fm ุฃุตุบุฑ ู…ู† Epsilon ุนู„ู‰ B-A ููŠ 2 ุญุฑู‘ุง ุฃูŠ
824
01:03:00,120 --> 01:03:02,860
Epsilon ููŠ ุงู„ุฏู†ูŠุง ู†ุถุจ ู„ู‡ุง Epsilon ุนู„ู‰ B-A ููŠ 2
825
01:03:02,860 --> 01:03:07,640
ุงู„ุงู† ุจุฏูŠ ุงุณุชุฎุฏู… ู‡ุฐู‡ ูˆุงุณุชุฎุฏู… ู‡ุฐู‡ ุจุฏูŠ ุงุณุชุฎุฏู… ุงู† ุงู„ุงู†
826
01:03:07,640 --> 01:03:11,020
ูˆ ุงู„ุงู… ุจุชูƒูˆู† ุฃูƒุจุฑ ู…ู† H2 ูˆ ุงู„ุงู† ูˆ ุงู„ุงู… ุฃูƒุจุฑ ู…ู† ู…ูŠู†
827
01:03:11,020 --> 01:03:15,420
ู…ู† H1 ุฅุฐุง for every Epsilonุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ there
828
01:03:15,420 --> 01:03:18,700
exist H ุจุชุณุงูˆูŠ ุงู„ู…ุงูƒุณู…ุง ุนุดุงู† ุงู†ุง ุงู‚ุฏุฑ ุงุณุชุฎุฏู…
829
01:03:18,700 --> 01:03:24,360
ุงู„ุชู†ุชูŠู† ุงู„ maximum ุจูŠู† H1 ูˆH2 such that for every
830
01:03:24,360 --> 01:03:29,180
N ูˆ M ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ H ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ H ู‡ูŠูƒูˆู† ุนู†ุฏู‰
831
01:03:29,180 --> 01:03:36,260
norm norm ู‡ุฐู‡ ุตุญูŠุญุฉ ู„ูƒู„ M ูˆ N ููŠ ุงู„ุฏู†ูŠุง ุงู„ FM ู†ุงู‚ุต
832
01:03:36,260 --> 01:03:42,800
FN over J ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุฃูˆู„ู‰ ุฒุงุฆุฏ ุงู„ุชุงู†ูŠุฉ ุงู„ุฃูˆู„ู‰
833
01:03:42,800 --> 01:03:47,930
ู‡ุฐู‡ุงู„ุฃูˆู„ู‰ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู†ู‡ุง ู†ุงุฆุจ ุณู† ุนู„ู‰ ุงุชู†ูŠู†
834
01:03:49,210 --> 01:03:52,890
ู…ุธุจูˆุท ู„ุฃู† ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† 100 ุนู„ู‰ 2 ู„ูƒู„ ุงู„ู€ N ูˆ ุงู„ู€ M
835
01:03:52,890 --> 01:03:56,670
ุงู„ุฃูƒุจุฑ ูŠุณุงูˆูŠ H ุงู„ู„ูŠ ู‡ูŠ ุฃูƒูŠุฏ ุงู„ู€ H ุฃูƒุจุฑ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ
836
01:03:56,670 --> 01:04:00,330
ุงู„ู„ูŠ ู‡ูŠ H1 ูŠุนู†ูŠ N ูˆ M ุงู„ู„ูŠ ุจูŠูƒูˆู† ุฃูƒุจุฑ ูŠุณุงูˆูŠ H ุฃูƒูŠุฏ
837
01:04:00,330 --> 01:04:04,690
ุจูŠูƒูˆู† ุงู„ู€ H1 ุงู„ู„ูŠ ุฃู†ุง ุจุงู„ูุนู„ ุฃุณุชุฎุฏู…ู‡ุง ุฒุงุฆุฏ ุงู„ุชุงู†ูŠุฉ
838
01:04:04,690 --> 01:04:10,090
ุจุฑุถู‡ ุงู„ู€ F M' ู†ุงู‚ุต F M' ุฃุตุบุฑ ู…ู† ู…ูŠู† ู‡ู†ุงุŸ M' ู‡ุฐุง
839
01:04:10,090 --> 01:04:13,050
ุทุจุนุงุŒ ู‡ุฐูŠ Prime ูˆ ู‡ุฐูŠ Prime ู„ุฃู† F M' ุงู„ู€Prime ุงู„ู€
840
01:04:13,050 --> 01:04:19,730
Convergent ู„ู…ู†ุŸ ู„ู„ Gุฅุจุณู„ูˆู† ููŠ ุงุชู†ูŠู† ููŠ B minus A
841
01:04:19,730 --> 01:04:24,890
ุงู„ู„ูŠ ูƒุงู† ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู† ููŠ B minus A ูุจุตูŠุฑ ู‡ุฐุง
842
01:04:24,890 --> 01:04:27,250
ุฅุจุณู„ูˆู† ุนู„ู‰ ุงุชู†ูŠู† ูˆ ุฅุจุณู„ูˆู† ุนู„ู‰ ู‡ุฐูŠ ุจูŠุตูŠุฑ ุฑูˆุญ ู…ุญ ู‡ุฐูŠ
843
01:04:27,250 --> 01:04:30,450
ูˆ ู‡ูŠ ุณูˆู‰ ุฅุจุณู„ูˆู† ุฅุฐุง ุงู„ู„ูŠ ุญุตู„ุชู‡ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู†
844
01:04:30,450 --> 01:04:34,830
zero there exists H such that ู„ูƒู„ N ุฃูƒุจุฑ ุณูˆู‰ H ุทู„ุน
845
01:04:34,830 --> 01:04:39,590
ุนู†ุฏูŠ FN ู†ู‚ุต FN ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง by Cauchy
846
01:04:39,590 --> 01:04:46,420
criterion ูŠูƒูˆู† ุนู†ุฏ ุงู„ FNconverges uniformly to
847
01:04:46,420 --> 01:04:52,180
some function mean F ู…ุด ุนุงุฑููŠู† ู„ุณู‡ ุนู†ู‡ุง ุญุงุฌุฉ ุฅุฐุง
848
01:04:52,180 --> 01:04:57,600
ุงู„ู„ูŠ ุฃุซุจุชู†ุงู‡ ุงู„ุฃู† ุฃู† F is uniformly convergent to
849
01:04:57,600 --> 01:05:02,880
some function F ู…ูŠู† ู‡ูŠ ู…ุด ุนุงุฑููŠู†ู‡ุง ู„ุณู‡ ุฃู…ุง ุฃุซุจุชู†ุง
850
01:05:02,880 --> 01:05:07,280
ูˆุฌูˆุฏู‡ุง ุฃุซุจุชู†ุง ุฃู† F converges uniformly ู„ F ุฅุฐุง
851
01:05:07,280 --> 01:05:16,630
ุจู‚ุฏุฑ ุฃุฌุฑู‘ุฃ ูˆุฃู‚ูˆู„Limit ุงู„ู€ Fm ุฃูˆ ุงู„ู€ Fn as n goes
852
01:05:16,630 --> 01:05:21,430
to infinity ุชุณุงูˆูŠ F ู…ุงู‚ุฏุฑ ุฃุชุฌุฑุฃ ู„ุฅู† ุฃุซุจุชุช ูˆุฌูˆุฏู‡ุง
853
01:05:21,430 --> 01:05:27,570
ุงู„ุงู† ู„ุงุญุธูˆุง ุจุณ ุดุบู„ุฉ Fn is differentiable is a
854
01:05:27,570 --> 01:05:31,360
continuousู…ุฏุงู… continuous ูˆ ุฃุซุจุชุช FM ุจุชุฑูˆุญ
855
01:05:31,360 --> 01:05:35,080
converts uniformly ู„ู‡ุง ุฅุฐุง ุงู„ limit ู‡ุฐู‡ ู‡ุชุทู„ุน ุจุฑุถู‡
856
01:05:35,080 --> 01:05:40,260
ุฅูŠุด ู…ุงู„ู‡ is continuous ูˆ ู‡ุฐู‡ ุฎู„ูˆู‡ุง ููŠ ุงู„ุฐุงูƒุฑุฉ ู…ูƒูˆู†
857
01:05:40,260 --> 01:05:47,340
ุงุญู†ุง ุฃูˆุตู„ู†ุง ุฃูˆ ุฃุซุจุชู†ุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุฃู† FM
858
01:05:47,340 --> 01:05:53,820
converts uniformly to F ูˆ ุงู„ limit ู„ู‡ุง ุณู…ู†ุงู‡ุง F ูˆ
859
01:05:53,820 --> 01:05:57,720
ู‡ูŠุทู„ุน ู„ู†ุง ุนุจุงุฑุฉ ุนู† continuous function ุดูˆููˆุง ูŠุง
860
01:05:57,720 --> 01:05:58,420
ุฌู…ุงุนุฉ ุงู„ุขู†
861
01:06:02,600 --> 01:06:09,330
ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู†ุฃุซุจุชู†ุง ุฃู† Fn ุชุชุนุงู…ู„ ุจุดูƒู„ ู…ุฑุชุจุท ุณู…ูŠู†ุง
862
01:06:09,330 --> 01:06:13,050
limit Fn ุจุณูˆุก F which is continuous because Fn ุฒูŠ
863
01:06:13,050 --> 01:06:14,670
ู…ุง ู‚ู„ู†ุง is continuous ู„ุฃู†ู‡ ููŠ ุงู„ุฃุตู„ ู‡ูŠ
864
01:06:14,670 --> 01:06:18,610
differentiable ูˆ Fn ุจุชุฑูˆุญ ู„ู„ F ุฅุฐู† ุตุงุฑุช ุงู„ F ุงู„ู„ูŠ
865
01:06:18,610 --> 01:06:23,330
ู‡ูŠ ู†ูุณู‡ุง continuous ุงู„ุขู† ุจุฏูŠ ุฃุณุชุฎุฏู… ุงู„ continuity
866
01:06:23,330 --> 01:06:29,090
ุนู†ุฏ ุงู„ F ุจุฏูŠ ุฃุตู„ ุงู„ู„ูŠ ุจุฏูŠู‡ ุทูŠุจ ุฎุฏ C ุงู„ุขู† ุจ any
867
01:06:29,090 --> 01:06:35,950
fixed point in J ุงู„ุขู† ุจุฏูŠ ุฃุฑูˆุญ ุฅู„ู‰ ุฅุซุจุงุช ุฃู†ู‡ุงู„ู€
868
01:06:35,950 --> 01:06:43,810
Limit ู„ู„ู€ F of X ู†ุงู‚ุต F of C ุนู„ู‰ X minus C as X
869
01:06:43,810 --> 01:06:46,970
ุจุชุฑูˆุญ ู„ู„ู€ C ู‡ุฐู‡ ุงู„ู€ C ูˆูŠู†ู‡ุงุŸ ุงู„ู€ C ุฃุฎุฐู†ุงู‡ุง
870
01:06:46,970 --> 01:06:51,470
arbitrary ููŠ X in J ุฅุฐุง ุฃุซุจุชุช ู„ู‡ุฐุง ุงู„ู€ C ุงู„ู„ูŠ ู‡ูˆ
871
01:06:51,470 --> 01:06:56,870
ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ G of Cู…ุนู†ุงุชู‡ ุฅุฐุง ุฃุซุจุชุช ู‡ุฐุง ู…ุนู†ุงุชู‡
872
01:06:56,870 --> 01:07:02,150
ุฃุซุจุชุช ุฃู† F' of C exist ูˆู‡ูŠ ุณุงูˆูŠ G of C ูˆู…ุนู†ุงุชู‡
873
01:07:02,150 --> 01:07:08,310
ุฃุซุจุชุช ุฃู† F ุจุชุณุงูˆูŠ G ุนู„ู‰ ูƒู„ J ู„ุฃู† C ู…ุงุฎุฏู‡ุง
874
01:07:08,310 --> 01:07:12,610
arbitrary but fixed ูŠุนู†ูŠ ุฅูŠุด ุจุฏู‡ ุฃุซุจุช ููŠ ู‡ุฐุงุŸูŠุนู†ูŠ
875
01:07:12,610 --> 01:07:16,910
ุฒูŠ ู…ุง ู‚ู„ู†ุง ููŠ ุงู„ุฃูˆู„ ุฒูŠ ู…ุง ู‚ู„ู†ุง ููŠ ุงู„ุฃูˆู„ ุจุฏู†ุง ู†ุซุจุช
876
01:07:16,910 --> 01:07:21,970
ู„ูƒู… ุงู„ุขู† ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ there exists Delta
877
01:07:21,970 --> 01:07:27,350
ุฃูƒุจุฑ ู…ู† ุณูุฑ such that X minus C ุฃุตุบุฑ ู…ู† Delta ูŠุคุฏูŠ
878
01:07:27,350 --> 01:07:34,990
ุฅู„ู‰ ุงู„ู„ูŠ ู‡ูˆ F of X ู†ุงู‚ุต F of C ุนู„ู‰ X minus C ู†ุงู‚ุต
879
01:07:34,990 --> 01:07:39,630
G of C ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฏู‡ ุฃุซุจุชุช ุจูƒูˆู† ุฎู„ุตุช ุฅุฐุง ุฃุซุจุชุช
880
01:07:39,630 --> 01:07:44,780
ู‡ุฐุง ุจูƒูˆู† ุฎู„ุตุช ุงู„ู„ูŠ ู‡ูˆุงู„ุฅุซุจุงุช ุชู†ุดูˆู ุทูŠุจ ุตู„ูˆุง ุนู„ู‰
881
01:07:44,780 --> 01:07:50,120
ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ู†ูŠุฌูŠ ุงู„ุขู† ู‚ูˆู„ู†ุง C N of X
882
01:07:50,120 --> 01:07:54,020
point in J F M ู†ุงู‚ุต F N is differentiable on the
883
01:07:54,020 --> 01:07:58,020
closed interval with endpoints C and X ุงู„ุงู† F N
884
01:07:58,020 --> 01:08:00,840
ู†ุงู‚ุต F N differentiable ุนู„ู‰ ุงู„ closed interval
885
01:08:00,840 --> 01:08:06,120
ุงู„ู„ูŠ ู‡ูŠ C ูˆู…ูŠู† ูˆุงู„ X ุงู„ XR ุงู„ู„ูŠ ุฎุฏู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ
886
01:08:06,120 --> 01:08:10,770
arbitraryู…ุงุดูŠุŒ ุงู„ุขู† ุจุฏุฃ ุงุณุชุฎุฏู… ุงู„ู€ Mean Value
887
01:08:10,770 --> 01:08:14,010
TheoremุŒ then by mean value theorem ูƒู…ุงู† ู…ุฑุฉ there
888
01:08:14,010 --> 01:08:19,250
exists z between c and x such that fm of x ู†ุงู‚ุต fn
889
01:08:19,250 --> 01:08:22,130
of x ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ุŒ ู†ุงู‚ุต fm of c ู†ุงู‚ุต fn of c
890
01:08:22,130 --> 01:08:26,270
ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู†ูŠุฉ ุจุณุงูˆูŠ x minus c ู…ุถุฑูˆุจุฉ ููŠ fn prime
891
01:08:26,270 --> 01:08:32,390
of z ู†ุงู‚ุต fn prime ุงู„ู„ูŠ ู‡ูˆ fm prime of zู…ุงุดูŠ ุงู„ุญุงู„
892
01:08:32,390 --> 01:08:35,350
ุทุจู‚ุช ุงู„ู€ Mean Value Theorem ุนู„ู‰ ุงู„ุฏุงู„ุฉ ุงู„ .. ุงู„ู„ูŠ
893
01:08:35,350 --> 01:08:41,770
ู‡ูŠ Fm ู†ุงู‚ุต Fn ู„ูƒู„ M O N ุงู„ุงู† ุฎุฏูˆุง ุงู„ุญุณุจุฉ ุงู„ุงู† ุฎุฏ X
894
01:08:41,770 --> 01:08:44,690
ู„ุง ุชุณุงูˆู‰ C ู„ุฅู†ู‡ .. X ู„ุง ุชุณุงูˆู‰ C ู„ุฅู† ุงู†ุง ุจุฏุฃูˆ ุฃุฏูŠ X
895
01:08:44,690 --> 01:08:48,430
ุนุงู„ู…ูŠุง ุนู„ู‰ C ูŠุนู†ูŠ X minus C ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† Delta
896
01:08:48,430 --> 01:08:52,760
ูŠุนู†ูŠ X ุจุฏุฃูˆ ุฃุฏูŠู‡ุง ุนู„ู‰ Cุงู„ุงู† ุงุฌุณู…ูˆุง ูƒู„ ุงู„ุฃุทุฑุงู ุนู„ู‰
897
01:08:52,760 --> 01:09:00,820
x-c ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ fm ู†ุงู‚ุต fm of c ุนู„ู‰ x-c ู†ุงู‚ุต
898
01:09:00,820 --> 01:09:08,500
ุงู„ุงู† fn of x ู‡ูŠ ู‡ุงู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ FN of C
899
01:09:08,500 --> 01:09:13,300
ู‡ูŠ ู†ุงู‚ุต ูˆู‡ูŠ ู†ุงู‚ุต ุฅุฐุง ุจูŠุทู„ุน ุตุญูŠุญ ุนู„ู‰ X minus C
900
01:09:13,300 --> 01:09:18,400
ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ F M prime of Z ู†ุงู‚ุต FN prime of Z
901
01:09:18,400 --> 01:09:24,340
ู„ุฅู†ู‡ ุฌุณู…ุช ุนู„ู‰ X minus C ุงู„ุขู† ุฃูƒูŠุฏ ู‡ุฐู‡ .. ู‡ุฐู‡ ุฃุตุบุฑ
902
01:09:24,340 --> 01:09:27,460
ุฃูˆ ูŠุณุงูˆูŠ ู†ูˆุฑู…ู‡ุง ู„ุฃู† ู†ูˆุฑู… ู‡ูˆ ุงู„ supermom ุฅู„ู‡ุง ุตุงุฑ
903
01:09:27,460 --> 01:09:31,320
ุนู†ุฏูŠ ุงู„ุขู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
904
01:09:31,950 --> 01:09:37,770
ุงู„ุงู† ุงู„ุงู† ุงู ุงู… ุงุจุฑุงู‡ูŠู… converged uniformly ุงุฐุง
905
01:09:37,770 --> 01:09:40,110
ู„ูƒู„ ุงุจุณู„ูˆู† ุงูƒุจุฑ ู…ู† ุณูุฑ there exists delta such
906
01:09:40,110 --> 01:09:42,390
there exists such ูˆ ููŠ ุงุจุณู„ูˆู† ูˆ such ุฐุงุช ู‡ุฐุง ุงุตุบุฑ
907
01:09:42,390 --> 01:09:44,990
ู…ู† ู…ูŠู† some ุงุจุณู„ูˆู† ุงูˆ ุงุจุณู„ูˆู† ุนู„ู‰ ุงุชู†ูŠู† ุงูˆ ุงู„ู„ูŠ
908
01:09:44,990 --> 01:09:52,710
ุจุฏูƒู…ูŠุง ุงู„ุงู† ุงุฐุง ู†ูƒู…ู„ ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡ ุดูˆูSince Fn'
909
01:09:53,010 --> 01:09:57,510
converges uniformly on J ุฅุฐุง ู„ูƒู„ ูŠ ุฃูƒุจุฑ ู…ู† 0 there
910
01:09:57,510 --> 01:10:03,770
exists H of ูŠ H of ูŠ such that if M ูˆ N ุฃูƒุจุฑ ุณูˆุงุก
911
01:10:03,770 --> 01:10:10,230
H of ูŠ then ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ูŠ
912
01:10:10,230 --> 01:10:16,590
ูŠุนู†ูŠ ุตุงุฑ ูƒู„ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ูŠ ู„ู…ูŠู†ุŸ ู„ุฃ ุงู„ M ูˆ
913
01:10:16,590 --> 01:10:25,840
ุงู„ N ู„ุฃุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† H of Epsilon ู„ุงู† ุตุงุฑ ุนู†ุฏูŠ
914
01:10:25,840 --> 01:10:31,280
ู„ุงู† ู„ูƒู„ M ูˆ N ุฃูƒุจุฑ ุณูˆู‰ H of Epsilon ุตุงุฑ ุงู„ู…ู‚ุฏุงุฑ
915
01:10:31,280 --> 01:10:35,140
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ุณูˆู‰ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู†
916
01:10:35,140 --> 01:10:37,860
Epsilon ุฎู„ูŠู‡ุง ููŠ ุงู„ุฐุงูƒุฑุฉ ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
917
01:10:37,860 --> 01:10:42,740
Epsilonุงู„ุงู† take the limit of both sides as M goes
918
01:10:42,740 --> 01:10:46,160
to infinity ุจุณ ู‡ุงู† ุนุดุงู† ุจูŠุงุฎุฏ M ุฑุงูŠุญุฉ ู„ู…ุง ู„ู†ู‡ุงูŠุฉ
919
01:10:46,160 --> 01:10:50,000
ุจุฏู†ุง ู†ุงุฎุฏ ู„ู„ M ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ H N ุนุดุงู† ู„ู…ุง ุงู„ M
920
01:10:50,000 --> 01:10:53,340
ุชุฑูˆุญ ู„ู…ุง ู„ู†ู‡ุงูŠุฉ M ุชุจู‚ู‰ ู…ุฑุชุงุญุฉ ุฒูŠ 100 ูˆ M ู„ุง ุชุชุญุฑูƒุด
921
01:10:53,340 --> 01:11:01,520
ุจุฏู†ุง ุฅูŠุงู‡ุง ุชุชุญุฑูƒ ุจูŠุตูŠุฑ ุนู†ุฏู‰ as M goes to infinity
922
01:11:01,520 --> 01:11:08,350
ุงู„ limit ู„ู„ F M of X ู‡ูŠุณุงูˆูŠ F of Xู„ุฃู†ู‡ ุตุงุฑุช
923
01:11:08,350 --> 01:11:14,670
uniformly ุงู„ู€ Fm ุฃุซุจุชู†ุงู‡ุง ุจุชุฑูˆุญ ู„ู„ู€ F uniformly
924
01:11:14,670 --> 01:11:19,830
ุฅุฐู† limit Fm of X ู‡ูŠ F of X ูˆ limit Fm of C ู‡ูŠ F
925
01:11:19,830 --> 01:11:25,490
of C ุนู„ู‰ X minus C ู…ุนุงูŠุง ู‡ุฐุง Fn of X ู†ุงู‚ุต Fn of C
926
01:11:25,490 --> 01:11:29,370
ุนู„ู‰ X minus C ุฒูŠ ู…ุง ู‡ูŠ ู„ุฅู† ุฃู†ุง ุฅุจุณู„ุชู‡ุง ุฒูŠ ู…ุง ู‡ูŠ
927
01:11:29,370 --> 01:11:32,890
ู…ูŠู† ุงู„ู„ูŠ ุทูŠุฑุชู‡ุง ุงู„ูƒุจูŠุฑุฉ ุงู„ู„ูŠ ู‡ูŠ M ุฅุฐุง ุตุงุฑ ู‡ุฐุง
928
01:11:32,890 --> 01:11:38,130
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุฅุจุณู„ูˆู†ููŠ ุญุงู„ ู…ูŠู†ุŸ ููŠ
929
01:11:38,130 --> 01:11:43,930
ุญุงู„ X ู„ุง ุชุณุงูˆูŠ C ูˆ ู„ู„ุฃู†ุงุช ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† H of
930
01:11:43,930 --> 01:11:49,710
Y ุฃู†ุง ุชุญุช ู‡ุฐู‡ ุงู„ุดุฑูˆุท ู…ุงุดูŠ ุทูŠุจ ุนู…ุงู„ูŠ ู‚ุงุนุฏ ุจุฌุฑุจ ุนู„ู‰
931
01:11:49,710 --> 01:11:58,400
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‡ุฏู ุชุจุนูŠ ุดูˆู ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู†ู‡ุฐู‡ ุงู„ู€
932
01:11:58,400 --> 01:12:03,740
Inquality ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ู…ุชุญู‚ู‚ู‡ุง ู„ูƒู† ุฃู†ุง ุจุนุฑู ุฃู†ู‡
933
01:12:03,740 --> 01:12:07,780
limit of F N prime of C ุฃุดู‡ุฑ ุจุณุงูˆูŠ G of C ู„ุฃู†ู‡
934
01:12:07,780 --> 01:12:12,440
ุงุญู†ุง ู…ูุชุฑุถูŠู† ู…ู† ุฑุฃุณ ุงู„ุฏูˆุฑ ุฃู†ู‡ F N prime converges
935
01:12:12,440 --> 01:12:18,470
uniformly to ู…ูŠู†ุŸู„ู„ู€ G .. ุทูŠุจ ู„ุฃู† sense limit F N
936
01:12:18,470 --> 01:12:22,330
prime of C ุจูŠุณูˆูŠ G of C ุฅุฐุง there exists N of
937
01:12:22,330 --> 01:12:25,590
ุฅุจุณู„ูˆู† such that for every N ุฃูƒุจุฑ ุจูŠุณูˆูŠ N of
938
01:12:25,590 --> 01:12:29,910
ุฅุจุณู„ูˆู† ุญูŠูƒูˆู† F N prime of C ู†ุงู‚ุต G of C ุงู„ู„ูŠ ู‡ูˆ
939
01:12:29,910 --> 01:12:38,310
ุฃุตุบุฑ ู…ู† ุฅูŠุด ู…ู† ุฅุจุณู„ูˆู†ุงู„ุงู† ุตุงุฑ ุนู†ุฏู‰ ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉ ู„ู„ุงู†
940
01:12:38,310 --> 01:12:43,430
ุฃูƒุจุฑ ุณูˆุงุก H ูˆ ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉ ู„ู„ุงู† ุงู„ุฃูƒุจุฑ ุณูˆุงุก N ุนุดุงู†
941
01:12:43,430 --> 01:12:47,750
ุงุณุชุฎุฏู… ุงู„ุชู†ุชูŠู† ุจุชุงุฎุฏ ุงู„ maximum ุจูŠู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡ ูˆ
942
01:12:47,750 --> 01:12:52,630
ุงู‚ูˆู„ let K ุจุณูˆุก ุงู„ maximum ุจูŠู† H of epsilon ูˆ N
943
01:12:52,630 --> 01:12:59,130
epsilon ุงุฐุง ุงู„ุงู† ุตุงุฑ ุนู†ุฏู‰ ุงู„ุชู†ุชูŠู† ู…ุชุญู‚ู‚ุงุช ู„ูƒู„ N
944
01:12:59,130 --> 01:13:04,530
ุฃูƒุจุฑ ุงูˆ ูŠุณุงูˆูŠ K ูˆู…ุดุฑูˆุน ุงุณุชุฎุฏุงู…ู‡ุงู„ุขู† ู…ู† ุฌู‡ุฉ ุซุงู†ูŠุฉ
945
01:13:04,530 --> 01:13:07,750
ุจุฏูŠ ุงุณุชุฎุฏู… ุงู„ู€ FK' of C ุฅู†ู‡ุง exist
946
01:13:11,040 --> 01:13:14,540
ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ู‡ุฐู‡ ุฒูŠ ู…ุง ู‚ู„ู†ุง ูˆู‡ุฐู‡ ู‡ุงุชูŠู† ุชุงู† ุจุญุฌู„ู‡
947
01:13:14,540 --> 01:13:18,620
ุงุณุชุฎุฏู…ู‡ู… ู„ูƒู„ ุงู† ุฃูƒุจุฑ ุฃูˆ ุณุงูˆ ูƒูŠ ุจุฏูŠ ุงุณุชุฎุฏู… ู‡ุฐู‡ ูƒู…ุงู†
948
01:13:18,620 --> 01:13:22,900
ูˆ ุฃุฑุจุท ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ูˆ ุฃุฎู„ุต ุงู„ู„ูŠ ุจุฏูŠู‡ุง since fk prime
949
01:13:22,900 --> 01:13:26,860
of c exist ู…ูŠู† ุงู„ K ู‡ุฐู‡ ุงู„ K ู‡ุฐู‡ ุงู„ู„ูŠ ุฎุฏุชู‡ุง ุงู„
950
01:13:26,860 --> 01:13:31,660
superman ุจูŠู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡ ุนุดุงู† ูŠู†ูุน ุงุณุชุฎุฏู… ู‡ุฐู‡ ูˆ ู‡ุฐู‡
951
01:13:31,660 --> 01:13:37,760
ูˆ ู‡ุฐู‡ ุจุนุฏ ุดูˆูŠุฉthen ู…ุฏุงู… fk prime of c exist then
952
01:13:37,760 --> 01:13:42,080
if x minus c ุฃูƒุจุฑ ู…ู† ุตูุฑ ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ุฏู„ุชุง k ุทุจุนุง
953
01:13:42,080 --> 01:13:46,480
ุงู„ุฏู„ุชุง ู‡ุชุนุชู…ุฏ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ epsilon ู†ุณู…ูŠู‡ุง ุฏู„ุชุง k
954
01:13:46,480 --> 01:13:49,360
ู„ุฅู†ู‡ุง ุงุนุชู…ุฏุช ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ูƒู„ ูŠุนู†ู‰ then there
955
01:13:49,360 --> 01:13:53,380
exists ุฏู„ุชุง k ุจุญูŠุซ x minus c ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ูŠุนุทูŠู†ูŠ
956
01:13:53,380 --> 01:13:57,540
fk of x ู†ุงู‚ุต fk of c ุนู„ู‰ x minus c ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต fk
957
01:13:57,540 --> 01:14:04,140
prime of c ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูุงู‡ู…ูŠู† ู‡ุฐุงุŸ ู…ุฏุงู… fkprime
958
01:14:04,140 --> 01:14:09,260
of c ุจูŠุณุงูˆ limit exist ุฅุฐุง ุญุณุงูˆ limit f of x ู†ุงู‚ุต
959
01:14:09,260 --> 01:14:14,280
f of c ุจprime ุนู„ู‰ x minus c ุทุจุนุง ูƒูƒ ูƒู„ู‡ as x ุจุชุฑูˆุญ
960
01:14:14,280 --> 01:14:17,620
ู„ู„ c ุตุงุฑ exist ูŠุนู†ูŠ forever epsilon ุฃูƒุจุฑ ู…ู† 0
961
01:14:17,620 --> 01:14:21,740
exist ุฏู„ุชุง ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง ุชูƒูˆู† x minus c ุฃุตุบุฑ ู…ู†
962
01:14:21,740 --> 01:14:24,360
ุฏู„ุชุง ูŠุนุทูŠู†ูŠ ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ุฃุตุบุฑ ู…ู† epsilon ูˆู‡ุฐุง ู‡ูˆ
963
01:14:24,360 --> 01:14:28,400
ุงู„ู…ูƒุชูˆุจู„ุฐู† ุตุงุฑ ุนู†ุฏู‰ ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆู‡ูŠ ุงุชู†ูŠู† ูˆู‡ูŠ ุชู„ุงุชุฉ
964
01:14:28,400 --> 01:14:33,020
ู„ุฃู† ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ุจุฏูŠ ุงุตู„ ุงู„ู„ูŠ ุจุฏูŠู‡ ุฎู„ูŠู†ุง
965
01:14:33,020 --> 01:14:35,720
ู†ูƒุชุจ ู‡ู†ุง ุนุดุงู† ู…ุง ู†ุฌู„ุจุด ุงู„ุตูุญุฉ ุนุดุงู† ูŠุธู„ูˆุง ูƒู„ู‡
966
01:14:35,720 --> 01:14:43,880
ู‚ุฏุงู…ูƒู… ุงู„ุงู† ุงู„ู„ูŠ ูˆุตู„ุช ุงู„ูŠู‡ ู…ุงู„ูŠ for every epsilon
967
01:14:43,880 --> 01:14:46,660
ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจู‚ูˆู„ there exists delta ุฃูƒุจุฑ ู…ู† ุณูุฑ
968
01:14:46,660 --> 01:14:49,740
such that if
969
01:14:51,280 --> 01:14:57,660
x-c ุฃุตุบุฑ ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุฏู„ุชุง then ุดูˆู ุงู„ุขู†
970
01:14:57,660 --> 01:15:02,400
then ุฅูŠุด ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ู…ูŠู† ุฃู†ุง ู‡ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠู‡ุง f of
971
01:15:02,400 --> 01:15:12,880
x minus f of c ุนู„ู‰ x minus c ู†ุงู‚ุต g of c ุฃุตุบุฑ
972
01:15:12,880 --> 01:15:18,120
ุฃูˆ ูŠุณุงูˆูŠ ู…ุงุดูŠ ุงู„ุญุงู„ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุจุฏูŠ ุฃุจุฏุฃ ุงู„ุขู†
973
01:15:18,120 --> 01:15:24,240
ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠ ู‡ุฐู‡ุจุฏูŠ ุฃุฏุฎู„ู‡ุง ุฏูŠุŒ ุนุดุงู†ุŸ ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ
974
01:15:24,240 --> 01:15:32,300
ุงู„ู„ูŠ ู‡ูˆ F of X ู†ุงู‚ุต F of C ุนู„ู‰ X minus C ู†ุงู‚ุต FN
975
01:15:32,300 --> 01:15:39,840
of X ู†ุงู‚ุต FN of C ุนู„ู‰ X minus C ุฒุงุฆุฏ ุงู„ู„ูŠ ุฏุฎู„ุชู‡ุง
976
01:15:39,840 --> 01:15:51,830
ุฏูŠ FN of X ู†ุงู‚ุต FN of C ุนู„ู‰ X minus C ู†ุงู‚ุตุงู„ู„ูŠ ู‡ูˆ
977
01:15:51,830 --> 01:15:56,850
ุงูŠุด
978
01:15:56,850 --> 01:16:03,170
ุงู„ุชุงู†ูŠุฉ ููƒ
979
01:16:03,170 --> 01:16:13,890
prime of c a ุฒุงุฆุฏ ููƒ
980
01:16:13,890 --> 01:16:21,820
prime of c ู†ุงู‚ุต ูู†ู‚ุต ู…ู† ุงู„ู„ูŠ ุถุงู„ G of C ุจุธุจุท ู‡ูŠูƒ ุง
981
01:16:21,820 --> 01:16:26,460
ุงุธู† ุชุดูˆู ุนู„ูŠู‡ุง ุงู„ุงู† ุงู†ุง ุจุชู„ุฒู…ู†ูŠุด ูƒู„ ุงู„ุงู†ุงุช ุจุชู„ุฒู…ู†ูŠ
982
01:16:26,460 --> 01:16:31,480
ุจุณ ุงู„ ู…ูŠู† ุงู„ K ู„ุฃู†ู‡ ุงู„ุงู† ุงู†ุง ุจุญูƒูŠ ุนู„ู‰ ุงุณุชุฎุฏุงู… ุงู„ K
983
01:16:31,480 --> 01:16:39,280
K K ูˆ ู‡ุงุฏ ุงูŠู‡ุงุด K ุทูŠุจ ุงู„ุงู† ู†ูŠุฌูŠ ู†ุชุทู„ุนุงู„ู€ K ุชุจุนุชู†ุง
984
01:16:39,280 --> 01:16:42,040
ู‡ุฐู‡ ุจู†ุญูƒูŠ ุนู† K ู…ุญุฏุฏุฉ ุงู„ู€ K ุงู„ู„ูŠ ู‡ูŠ superman ุจูŠู† H
985
01:16:42,040 --> 01:16:46,320
ูˆ ุจูŠู† N ูŠุนู†ูŠ ุงู„ู€ K ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ H ูˆ ุงู„ู€ K ุฃูƒุจุฑ ุฃูˆ
986
01:16:46,320 --> 01:16:51,600
ูŠุณุงูˆูŠ ู…ูŠู† ุงู„ู€ N ูŠุนู†ูŠ ุจุญุฌุฌู„ูŠ ุฃุณุชุฎุฏู… F K of C F K
987
01:16:51,600 --> 01:16:55,020
prime of C ู†ุงู‚ุต G of C ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆ ุจุญุฌุฌู„ูŠ
988
01:16:55,020 --> 01:16:58,320
ุฃุณุชุฎุฏู… ู‡ุฐู‡ ู†ุงู‚ุต F K of K ููŠ K ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
989
01:16:58,320 --> 01:17:04,540
ุฅุจุณู„ูˆู† ุงู„ุขู† ู‡ุฐู‡ ู‡ุฐู‡ ู‡ูŠ ู‡ุงู† ุงู„ุฃูˆู„ู‰ ุฅุฐุง ุฃุตุบุฑ ุฃูˆ
990
01:17:04,540 --> 01:17:13,170
ูŠุณุงูˆูŠ ู‡ุฐู‡ ู…ู† ูˆุงุญุฏepsilon ุฒุงุฆุฏ ู‡ุฐู‡ ุงู„ุชุงู†ูŠุฉ ู…ู† ู…ูŠู†
991
01:17:13,170 --> 01:17:19,250
ู…ู† ุงู„ู„ูŠ ู‡ูŠ ุชู„ุงุชุฉ ู‡ูŠ fk of x ู†ู‚ุต fk of c ุนู„ูŠูƒ x
992
01:17:19,250 --> 01:17:23,490
minus c ู†ู‚ุต fk prime ุฃุตุบุฑ ุจุฑุถู‡ ู…ู† ู…ูŠู† ู…ู† epsilon
993
01:17:23,490 --> 01:17:29,290
ู‡ุฐู‡ ู…ู† ุชู„ุงุชุฉ ูˆู‡ุฐู‡ ู…ู† ูˆุงุญุฏ ู‡ุฐู‡ ุฃูƒูŠุฏ ู…ู† ู…ูŠู† ู‡ุณุชุฎุฏู…ู‡ุง
994
01:17:29,290 --> 01:17:35,610
ู…ู† ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ n ู‡ุฐู‡ ู„ูƒู„ n ุฃูƒุจุฑ ุณูˆู‰ nูˆุนู†ุฏูŠ ุงู„ู€ K
995
01:17:35,610 --> 01:17:38,190
ุฃุตู„ุง ุฃูƒุจุฑ ุฃูˆูŠ ุณูˆุงุก ู„ุฅู†ู‡ุง ุงู„ maximum ุจูŠู† ุงู„ team
996
01:17:38,190 --> 01:17:42,910
ุชุงู† ุฅุฐุง ู‡ุฐู‡ ุจุฑุถู‡ ุจุญู‚ ุงู„ู„ู‡ ุฃุณุชุฎุฏู…ู‡ุง ุฃู…ู† ุงุชู†ูŠู† ุฃุตุบุฑ
997
01:17:42,910 --> 01:17:47,470
ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ููˆู‚ ุฃุตุบุฑ
998
01:17:47,470 --> 01:17:52,290
ู…ู† ุชู„ุงุชุฉ ุฅุจุณู„ูˆู† ูˆุฅุจุณู„ูˆู† was arbitrarily ุฅุฐุง ุตุงุฑ
999
01:17:52,290 --> 01:17:57,210
ุนู†ุฏูŠ limit ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ G of C ุฅูŠุด ู…ุนู†ุงู‡
1000
01:17:57,210 --> 01:18:01,430
limit ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ G of C ู…ุนู†ุงุชู‡ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ
1001
01:18:01,430 --> 01:18:08,730
ุงู„ F primeof C ู‡ูˆ ุงู„ู€ G of C ูˆุฒูŠ ู…ุง ู‚ู„ู†ุง ููŠ ุงู„ุฃูˆู„
1002
01:18:08,730 --> 01:18:12,530
since C was arbitrary in G then ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ F
1003
01:18:12,530 --> 01:18:18,990
ุจุชุณุงูˆูŠ G ุนู„ู‰ ูƒู„ ู…ูŠู† ุนู„ู‰ ูƒู„ ุงู„ู€ G ูˆู‡ูŠูƒ ุจู†ูƒูˆู† ุฎู„ุตู†ุง
1004
01:18:18,990 --> 01:18:23,330
ุงู„ู†ุธุฑูŠุฉ ูˆุงู†ู‡ูŠู†ุง ุงู„ section ุงู„ู„ูŠ ู‡ูˆ ุชู…ุงู†ูŠุฉ ุงุชู†ูŠู†
1005
01:18:23,330 --> 01:18:26,370
ูˆู‡ูŠูƒ ุจู†ูƒูˆู† ุฎู„ุตู†ุง ุงู„ุญุฏูŠุซ ุงู„ู„ูŠ ุจู†ุชุญุฏุซู‡ ููŠ chapter
1006
01:18:26,370 --> 01:18:30,370
ุชู…ุงู†ูŠุฉ ูˆุนู†ุฏู†ุง ุทุจุนุง ุงู„ุฃุณุฆู„ุฉ ุงู„ู…ุทู„ูˆุจุฉ ู‡ูŠู‡ุง ููŠ ู†ู‡ุงูŠุฉ
1007
01:18:30,370 --> 01:18:33,430
ูƒู„ section ุชู…ุงู†ูŠุฉ ูˆุงุญุฏ ูˆุชู…ุงู†ูŠุฉ ุงุชู†ูŠู† ูˆุฅู„ู‰ ู„ู‚ุงุก