|
1 |
|
00:00:04,960 --> 00:00:09,520 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุฑูู
27 ู
ุณุงู |
|
|
|
2 |
|
00:00:09,520 --> 00:00:14,620 |
|
ุชุญููู ุญูููู 2 ุทูุงุจ ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ูููุฉ |
|
|
|
3 |
|
00:00:14,620 --> 00:00:19,740 |
|
ุงูุนููู
ูุณู
ุฑูุงุถูุงุช ุงููู ูููู
ู ุงูููู
ุฅู ุดุงุก ุงููู |
|
|
|
4 |
|
00:00:19,740 --> 00:00:23,560 |
|
ุงููู ุจุฏุฃูุงูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุงููู ูู tests for |
|
|
|
5 |
|
00:00:23,560 --> 00:00:26,400 |
|
absolute convergence tests for absolute |
|
|
|
6 |
|
00:00:26,400 --> 00:00:29,770 |
|
convergence ุญูููุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุนูู ุงูู Comparison |
|
|
|
7 |
|
00:00:29,770 --> 00:00:33,870 |
|
Test ููููุง ุฅูู ุงูู Comparison Test ุจููุฌู ุจููุงุฑู |
|
|
|
8 |
|
00:00:33,870 --> 00:00:37,610 |
|
ุงููู ูู Series ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... |
|
|
|
9 |
|
00:00:37,610 --> 00:00:37,790 |
|
.. ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู |
|
|
|
10 |
|
00:00:37,790 --> 00:00:39,290 |
|
ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู |
|
|
|
11 |
|
00:00:39,290 --> 00:00:39,890 |
|
.. ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู |
|
|
|
12 |
|
00:00:39,890 --> 00:00:40,250 |
|
ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู |
|
|
|
13 |
|
00:00:40,250 --> 00:00:40,570 |
|
.. ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู |
|
|
|
14 |
|
00:00:40,570 --> 00:00:42,550 |
|
ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู |
|
|
|
15 |
|
00:00:42,550 --> 00:00:44,930 |
|
.. ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู ... ุงูู |
|
|
|
16 |
|
00:00:44,930 --> 00:00:49,270 |
|
ุงูู converges ููู ูุงูุช ุงููู ูู ุงูุตุบูุฑุฉ diverges ู
ู |
|
|
|
17 |
|
00:00:49,270 --> 00:00:52,690 |
|
ุจุงุจ ุฃููู ูุชููู ุงููู ุฃูุจุฑ diverges ูุฐุง ุงู |
|
|
|
18 |
|
00:00:52,690 --> 00:00:55,250 |
|
comparison test ูุจุนุฏูู ุฃุฎุฐูุง ุงู limit comparison |
|
|
|
19 |
|
00:00:55,250 --> 00:00:59,570 |
|
test ุงููู ูู ุงููู ุจููุงุฑู ุจูู ุงููู ูู limit XN ุนูู |
|
|
|
20 |
|
00:00:59,570 --> 00:01:05,070 |
|
YN ูู ูุงู ุนูุฏู ูุง ูุณุงูู ุตูุฑ ู
ุนูุงุชู ูุชุฃูุฏ ูู ุงู then |
|
|
|
21 |
|
00:01:05,070 --> 00:01:07,930 |
|
ุงููู ูู summation ููู XN converges ู YN ุฏูู ุงู |
|
|
|
22 |
|
00:01:07,930 --> 00:01:10,450 |
|
summation converges ูุนูู ุงูุชูุชูู ูุนูู converges |
|
|
|
23 |
|
00:01:10,450 --> 00:01:14,980 |
|
ุงูุชูุชูู diverges ููู ุงูู N ูู ูุงู ุงู limit ูู ุงูู .. |
|
|
|
24 |
|
00:01:14,980 --> 00:01:19,860 |
|
ูู ุงูู ... ูู ุงูู ... ูู ุงูู limit XN ุนูู YN ุจูุณุงูู 0 |
|
|
|
25 |
|
00:01:19,860 --> 00:01:24,040 |
|
ูู ุณุงูู 0 ููุงูุช ุงููู ูู ุงููู ุชุญุช ุงููู ูู is |
|
|
|
26 |
|
00:01:24,040 --> 00:01:26,980 |
|
convergent ุฃููุฏ ุงููู ูู ุงููู ููู ูุชููู is |
|
|
|
27 |
|
00:01:26,980 --> 00:01:31,950 |
|
convergent ุงูุขู ุงููู ูู ุจุนุฏ ููู ุฃุฎุฐูุง ุงููู ูู ุงูู |
|
|
|
28 |
|
00:01:31,950 --> 00:01:35,350 |
|
Root and Ratio Test ุงูู Root and Ratio Test ูููุง |
|
|
|
29 |
|
00:01:35,350 --> 00:01:38,470 |
|
ุงููู ูู ุงููู ุจููุฌู ุจููุญุต ุงููู ูู Absolute Value ูู |
|
|
|
30 |
|
00:01:38,470 --> 00:01:42,030 |
|
XN ุฃุตุบุฑ ู
ู 1 ู N ูู ู
ู ุนูุฏ N ุฃูุจุฑ ู
ู ุฃู ูุณุงูู K ุทุงูุน |
|
|
|
31 |
|
00:01:42,030 --> 00:01:45,650 |
|
ุงููู ูู ุนูุฏู XN ุฃุตุบุฑ ู
ู 1 ู N ุฃุตุบุฑ ู
ู R ุงูุขู |
|
|
|
32 |
|
00:01:45,650 --> 00:01:48,910 |
|
ุงู Series ุงููู ุนูุฏู ูุฐู ุจุชููู ุดุงู
ููุง Absolutely |
|
|
|
33 |
|
00:01:48,910 --> 00:01:53,610 |
|
Convergent ูู
ุง ุชููู ุงูู R ุฃุตุบุฑ ู
ู 1 ูู ูุงู ุงููู ูู |
|
|
|
34 |
|
00:01:53,610 --> 00:01:58,870 |
|
ุทูุน ุนูุฏู ุงูู Xn-1 ูุฃู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู 1 ููู n ุฃูุจุฑ |
|
|
|
35 |
|
00:01:58,870 --> 00:02:01,630 |
|
ู
ู ุฃู ูุณุงูู K ุจูููู ุงู series ุงููู ูู summation Xn |
|
|
|
36 |
|
00:02:01,630 --> 00:02:06,030 |
|
ุดุงู
ููุง is divergent ุฃุฎุฐูุง ููุฑููุฑู ุนูููุง ุงููู ูู |
|
|
|
37 |
|
00:02:06,030 --> 00:02:10,150 |
|
ุจุฏู ู
ุง ุนูู ุงู terms ุฃุฎุฐูุง ุงู limit ููู Xn-1 ูุฃู |
|
|
|
38 |
|
00:02:10,150 --> 00:02:13,270 |
|
ุงููู ูู ูู ูุฌูุงูุง ุจุชุณุงูู R ุจูููู ุงู summation |
|
|
|
39 |
|
00:02:13,270 --> 00:02:16,770 |
|
absolutely convergent ูู
ุง R ุฃุตุบุฑ ู
ู 1 ู |
|
|
|
40 |
|
00:02:16,770 --> 00:02:24,020 |
|
divergent ูู
ุง R ุฃูุจุฑ ู
ู 1 ุฃู ูู
ุง ุงูู R ุจุชุณุงูู |
|
|
|
41 |
|
00:02:24,020 --> 00:02:28,360 |
|
ูุงุญุฏ No conclusion ุจุนุฏูู ุงุฌููุง ุฃุฎุฐูุง ุงู ratio test |
|
|
|
42 |
|
00:02:28,360 --> 00:02:32,500 |
|
ุงู ratio test ุงููู ูู ู
ูุงุฑูุฉ ูู ุฏุงุฎู ุงู series |
|
|
|
43 |
|
00:02:32,500 --> 00:02:37,060 |
|
ููุณูุง ูุนูู ุงูู XN ุฒุงุฆุฏ ูุงุญุฏ ุนูู XN ุงููู ูู ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
44 |
|
00:02:37,060 --> 00:02:43,470 |
|
R ูุฌูุงูุง ููู N ุฃูุจุฑ ู
ู ุฃู ูุณุงูู K ููุงูููุง ุงูู R ููุง ุฃุตุบุฑ ู
ู |
|
|
|
45 |
|
00:02:43,470 --> 00:02:46,290 |
|
ูุงุญุฏ ูุจุตูุฑ ุงู submission ููุฅูุณุงุช is absolutely |
|
|
|
46 |
|
00:02:46,290 --> 00:02:50,030 |
|
convergent ูู ูุงูุช ุงููู ุทูุนุช ุนูุฏู ูุฐู ุฃูุจุฑ ู
ู ุฃู |
|
|
|
47 |
|
00:02:50,030 --> 00:02:54,670 |
|
ูุณุงูู ูุงุญุฏ ุจุชููู ุงู series is divergent ูุฐุง ุญูููุงู |
|
|
|
48 |
|
00:02:54,670 --> 00:02:57,850 |
|
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ููููุง ุจุฑุถู ุงููู ูู ูู ุนูุฏู Corollary |
|
|
|
49 |
|
00:02:57,850 --> 00:03:01,130 |
|
ูู ูุงู ุฃุฎุฐูุง limit ููุฅูุณุงุช ุฒูุงุฏุฉ ูุงุญุฏ ุนูู ุงูุฅูุณุงุช ููููุงูุง |
|
|
|
50 |
|
00:03:01,130 --> 00:03:05,090 |
|
ุจุณุงูู R ุงูุขู ุญุณุจ ุงููู ูู R ุฏู ูุงูุช R ุฃูุจุฑ ู
ู ูุงุญุฏ |
|
|
|
51 |
|
00:03:05,090 --> 00:03:08,670 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู Convergent ููู ูุงูุช R ุฃูุจุฑ ู
ู |
|
|
|
52 |
|
00:03:08,670 --> 00:03:11,830 |
|
ูุงุญุฏ ุจุชููู Divergent ูุนูุฏ R ุจูุณุงูู ูุงุญุฏ ุงู test ูุนููุง |
|
|
|
53 |
|
00:03:12,390 --> 00:03:15,930 |
|
ุงูุขู ุฃูุตููุง ูุนูุฏ ู
ูู ูุนูุฏ ุงูู Integral Test |
|
|
|
54 |
|
00:03:15,930 --> 00:03:19,450 |
|
ูุฎูููุง ุงูููู
ุงููู ูู ูุจุญุซ ูู ุงููู ูู ุงูู Integral |
|
|
|
55 |
|
00:03:19,450 --> 00:03:23,770 |
|
Test ููุดูู ููู ูุจุฑูู ุงููู ูู ุงูู Integral Test |
|
|
|
56 |
|
00:03:23,770 --> 00:03:31,720 |
|
ููุดูู ุฅูุด ูู ุงูุขู ุฎูููู
ู
ุนูุง ุงู Integral Test ุงูู |
|
|
|
57 |
|
00:03:31,720 --> 00:03:36,740 |
|
927 let F be a positive decreasing function on T, |
|
|
|
58 |
|
00:03:36,800 --> 00:03:40,760 |
|
T ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ูุงุญุฏ ูุนูู ุงูู F ุนุจุงุฑุฉ ุนู positive ู |
|
|
|
59 |
|
00:03:40,760 --> 00:03:44,720 |
|
decreasing function ูุนูู ููู ุงููู ูู ุงูู X-axis ู |
|
|
|
60 |
|
00:03:44,720 --> 00:03:48,580 |
|
decreasing ุนุงูู
ูู ุนูู ุงููุชุฑุฉ ู
ู ูุงุญุฏ ุฅูู ู
ุง ูุง |
|
|
|
61 |
|
00:03:48,580 --> 00:03:56,530 |
|
ููุงูุฉ ุงูุนููุงู ุซู
ุงูุณูุฑูุฒ summation ููุฃู ุฃู ุชุชุนุงู
ู ุฅุฐุง |
|
|
|
62 |
|
00:03:56,530 --> 00:04:03,170 |
|
ุงูุชููุช ู
ู ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ f of t dt ุจูุณุงูู limit ู
ู |
|
|
|
63 |
|
00:04:03,170 --> 00:04:07,010 |
|
ูุงุญุฏ ุนูุฏ n as n goes to infinity f of t dt exists |
|
|
|
64 |
|
00:04:07,590 --> 00:04:12,570 |
|
ุฅุฐู ุงูุขู ููุฃูู ุญูููุง ุงูุญุฏูุซ ู
ู ุงู convergence ุงููู |
|
|
|
65 |
|
00:04:12,570 --> 00:04:17,470 |
|
ูู series ุฅูู convergence of proper integral ูุนูู |
|
|
|
66 |
|
00:04:17,470 --> 00:04:21,690 |
|
ุงูุขู ุจูููู ุฅู ุงู series ูุฐู summation f of n |
|
|
|
67 |
|
00:04:21,690 --> 00:04:26,290 |
|
converges ุฅุฐุง ูููุท ุฅุฐุง ูุงู ุงู proper integral ู
ู 1 |
|
|
|
68 |
|
00:04:26,290 --> 00:04:31,780 |
|
ุฅูู ู
ุง ูุง ููุงูุฉ ุงูู f of t dt is convergent In this case |
|
|
|
69 |
|
00:04:31,780 --> 00:04:35,940 |
|
ูู ูุงู ูู ุงู convergence ุญุงุฏุซ In this case ุฃู in |
|
|
|
70 |
|
00:04:35,940 --> 00:04:40,420 |
|
the case of convergence The partial sum Sn ูุงู |
|
|
|
71 |
|
00:04:40,420 --> 00:04:43,460 |
|
partial sum ุงููู ูู sequence of partial sum ุฒุงุฆุฏ Sn |
|
|
|
72 |
|
00:04:43,460 --> 00:04:46,900 |
|
and ุงููู ุจูุณุงูู summation F of K, K ู
ู ุนูุฏ ูุงุญุฏ |
|
|
|
73 |
|
00:04:46,900 --> 00:04:51,520 |
|
ูุนูุฏ N and the sum S ุจูุณุงูู ุงู summation ููู F of |
|
|
|
74 |
|
00:04:51,520 --> 00:04:55,820 |
|
K, K ู
ู ุนูุฏ ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ satisfy the |
|
|
|
75 |
|
00:04:55,820 --> 00:05:02,530 |
|
estimate ุงูุชุงููุฏุงูู
ูุง ูููุงูู ุงูู
ุณุงูุฉ ุจูู ุงูู S ูุงู |
|
|
|
76 |
|
00:05:02,530 --> 00:05:05,710 |
|
ุงูู Sn S ูุงูุต Sn ูุชููู ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงู |
|
|
|
77 |
|
00:05:05,710 --> 00:05:09,150 |
|
integration ู
ู N ุฅูู ู
ุง ูุง ููุงูุฉ ููู F of T DT ู |
|
|
|
78 |
|
00:05:09,150 --> 00:05:13,010 |
|
ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงู integration ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ |
|
|
|
79 |
|
00:05:13,010 --> 00:05:16,550 |
|
ู
ุง ูุง ููุงูุฉ ูุนูู ุงูู S minus Sn S ุงููู ูู ู
ุฌู
ูุน ุงูู |
|
|
|
80 |
|
00:05:16,550 --> 00:05:19,890 |
|
series ูุงูุต Sn ุงููู ูู ุนุจุงุฑุฉ ุนู ุงู partial sum ู
ู |
|
|
|
81 |
|
00:05:19,890 --> 00:05:23,780 |
|
ูุงุญุฏ ูุนูุฏ N ุงูุญุงุตู ุฏู ูุซุจุช ุฏุงุฆู
ุงู ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงูู |
|
|
|
82 |
|
00:05:23,780 --> 00:05:27,300 |
|
integration ู
ู N ุฅูู ู
ุง ูุง ููุงูุฉ ููู F of T ู ุฃูุจุฑ ู
ู ุฃู |
|
|
|
83 |
|
00:05:27,300 --> 00:05:31,340 |
|
ูุณุงูู ุงู N ุฒุงุฆุฏ 1 ูุนูุฏ ู
ุง ูุง ููุงูุฉ ูุฐุง ููู ูู ุญุงู ุฃู |
|
|
|
84 |
|
00:05:31,340 --> 00:05:34,780 |
|
ุงูู series ุงููู ูู is convergent ุฃู ุงูู improper |
|
|
|
85 |
|
00:05:34,780 --> 00:05:40,240 |
|
integral is convergent ุฎูููุง ูุจุฑูู ุงููู ู
ูุฌูุฏ |
|
|
|
86 |
|
00:05:40,240 --> 00:05:46,560 |
|
ุงูุขู ุนูุฏู ุงูู function F is positive and |
|
|
|
87 |
|
00:05:46,560 --> 00:05:51,380 |
|
decreasing ู
ุงุดู ุงูุญุงู ุนูุฏู ุงูู function is |
|
|
|
88 |
|
00:05:51,380 --> 00:05:55,620 |
|
decreasing ุนูู ูู ุงููุชุฑุฉ ู
ู ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ |
|
|
|
89 |
|
00:05:55,620 --> 00:06:00,280 |
|
ูุนูู ุงูุขู ุนูุฏู ูู ุงููู ูู ู
ู ูุงุญุฏ ุงูู function ู
ู |
|
|
|
90 |
|
00:06:00,280 --> 00:06:03,420 |
|
ุนูุฏ ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ ุนุงู
ููุง ุดุงู
ููุง decreasing |
|
|
|
91 |
|
00:06:04,130 --> 00:06:07,430 |
|
ุงูุขู ุจูู ุฌุจุช ุฃุฌุณู
ุงููู ูู ุฎูููู ุฃุฎุฏ ุงููุชุฑุฉ ูุฐู |
|
|
|
92 |
|
00:06:07,430 --> 00:06:12,210 |
|
ุจุจุฏุฃ ู
ู ุนูุฏ X knot ุจูุงุญุฏ X ุจูุงุญุฏ ุจุตูุฑ ุงุซููู ุงููู |
|
|
|
93 |
|
00:06:12,210 --> 00:06:19,470 |
|
ูู X ูุงุญุฏ ุจุตูุฑ ู
ุซููุง X ูุงุญุฏ ููุฐุง X knot ููุฐุง X |
|
|
|
94 |
|
00:06:19,470 --> 00:06:24,410 |
|
ุซูุงุซุฉ ุงุซููู X ุซูุงุซุฉ ูุนูุฏ ุงููุชุฑุฉ ุงููู
ูุฐุฌูุฉ XK ู XK |
|
|
|
95 |
|
00:06:24,410 --> 00:06:30,700 |
|
ูุงูุต ูุงุญุฏ ู XK ุงูุขู ูุฐู ุงููุชุฑุฉ ุจุฏู ุฃุฎุฏ ุงูุชุฌุฒุฆุฉ |
|
|
|
96 |
|
00:06:30,700 --> 00:06:36,760 |
|
ุจุนุฏ ุฅุฐููู
ุงูู X12 ูุงูู X23 ูุงูู XK-1 ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
97 |
|
00:06:36,760 --> 00:06:41,560 |
|
ุนู K-1 ููุฐู ู
ูููุ ุงูู K ุญุฑ ุฃูุง ุจุฏู ุฃุฌุฒุก ุจุงูุชุฌุฒุฆุฉ |
|
|
|
98 |
|
00:06:41,560 --> 00:06:45,540 |
|
ุงููู ุฃู
ุงู
ู ุงููู ูุชุฎุฏู
ูู ู
ุงุดู ุงูุญุงู ุงูุขู ุนูู ุงููุชุฑุฉ |
|
|
|
99 |
|
00:06:45,540 --> 00:06:46,020 |
|
ูุฐู |
|
|
|
100 |
|
00:06:48,590 --> 00:06:53,010 |
|
ุนูู ุงููุชุฑุฉ ูุฐู ูููุง ุนูุฏู ุงููู ูู ูุฐู ุทูููุง ุฅูู |
|
|
|
101 |
|
00:06:53,010 --> 00:06:56,930 |
|
ุดุงู
ููุง ุทูููุง ุจูุณุงูู ูุงุญุฏ ูุฃูู ู
ู K ูุงูุต ูุงุญุฏ ูุนูุฏ |
|
|
|
102 |
|
00:06:56,930 --> 00:07:01,790 |
|
ู
ูู ูุนูุฏ K ุงููู ูู ูุฃุฎุฏุช ุทูู ูู ูุงุญุฏ ุฃุฌุฏุงุด ุนุจุงุฑุฉ |
|
|
|
103 |
|
00:07:01,790 --> 00:07:05,950 |
|
ุนู ูุงุญุฏ ูุตุงุฑุช ูุฐู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุงูุขู ุจุฏู ุฃุฏุฑุณ ุงููู |
|
|
|
104 |
|
00:07:05,950 --> 00:07:11,670 |
|
ูู ูุฐู ุงูู
ูุทูุฉ ูุฃูุงุฑููุง ุงููู ูู ุจุงูู
ุณุงุญุฉ ุฅูู ุงูู F |
|
|
|
105 |
|
00:07:11,670 --> 00:07:17,970 |
|
of K ู F of K-1 ููุดูู ุฅูุด ุงููู ุจุญูู ุนุดุงู ุฃุตู ูููู |
|
|
|
106 |
|
00:07:17,970 --> 00:07:23,070 |
|
ุจุฏูู ุฃูุช ุจุชุญูู ุงูุขู ูู ุฌููุง ุทูุนูุง ูุนูุฏ ... ุนูุฏ ... |
|
|
|
107 |
|
00:07:23,070 --> 00:07:28,830 |
|
ู
ู ุนูุฏ K-1 ูุนูุฏ K ูุฃู K ูุฐู ุฃููุฏ K ุนูุฏู ุงููู ูู ู
ู |
|
|
|
108 |
|
00:07:28,830 --> 00:07:33,050 |
|
ุงุซููู ุทุงูุน ู
ุงุดู ุงูุญุงู ุฅู ุงููุทุฑ ุชุจุฏุฃ ู
ู ุนูุฏ ู
ูู ู
ู |
|
|
|
109 |
|
00:07:33,050 --> 00:07:36,670 |
|
ุนูุฏ ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ ุฅุฐุง ุนูุฏู K ุจุชุณุงูู ุงุซููู ุฃู |
|
|
|
110 |
|
00:07:36,670 --> 00:07:40,390 |
|
ุซูุงุซุฉ ุฃู ุฃุฑุจุนุฉ ุฃู ุฎู
ุณุฉ ุฅูู ุงููู ุจุฏู ุฅูุงู ุงููู ููุฎูููู |
|
|
|
111 |
|
00:07:40,390 --> 00:07:45,670 |
|
ุฃุฌู ุงูู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญูู ูุฐุง ุงูู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญูู ูุฐุง |
|
|
|
112 |
|
00:07:45,670 --> 00:07:49,290 |
|
ูู ุนุจุงุฑุฉ ุนู ููู
ุฉ ุงู integration ูู function ุชุจุนุชูุง |
|
|
|
113 |
|
00:07:49,290 --> 00:07:53,190 |
|
ูุฐู ุงููู ูู decreasing ู
ู ููู ูู ุนูุฏ K ูุงูุต ูุงุญุฏ |
|
|
|
114 |
|
00:07:53,190 --> 00:07:56,910 |
|
ูุนูุฏ ู
ูู ูุนูุฏ K ุฅุฐุง ุงู integration ู
ู K ูุงูุต ูุงุญุฏ |
|
|
|
115 |
|
00:07:56,910 --> 00:08:00,630 |
|
ูุนูุฏ K f of t dt ูุฃู ุงู function positive ุชู
ุซู ูุฐู |
|
|
|
116 |
|
00:08:00,630 --> 00:08:06,260 |
|
ุงูู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญูู ุทูุจุ ุงูุขู ูู ุฌููุง ููู
ุณุงุญุฉ ุงููู |
|
|
|
117 |
|
00:08:06,260 --> 00:08:11,580 |
|
ูู ุงูุขู ูุฐุง ุทููู ููู
ุชู ูุงุญุฏ ููุฐุง ุงูุขู ููู
ุชู ูููุง |
|
|
|
118 |
|
00:08:11,580 --> 00:08:16,820 |
|
F of K ูุงูุต ูุงุญุฏ ุงูู
ุณุงุญุฉ ูุฐู ูููุง ุงูุดูู ูุฐุง |
|
|
|
119 |
|
00:08:16,820 --> 00:08:21,660 |
|
ู
ุณุงุญุชู ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ุณุงุญุฉ ุงูู
ุณุชุทูู ุงููู ุทููู |
|
|
|
120 |
|
00:08:21,660 --> 00:08:26,060 |
|
... ุงููู ุนุฑุถู ูุงุญุฏ ูุทููู ู
ููุ F of K ูุงูุต ูุงุญุฏ |
|
|
|
121 |
|
00:08:26,060 --> 00:08:29,880 |
|
ุงูุขู F of K ูุงูุต ูุงุญุฏ ูู ูุงุญุฏ ุฃููุฏ ูุฐู ุงูู
ุณุงุญุฉ |
|
|
|
122 |
|
00:08:29,880 --> 00:08:34,380 |
|
ูุงุถุญุฉ ุฅููุง ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงู integration ุงููู ุนูุฏู |
|
|
|
123 |
|
00:08:34,380 --> 00:08:39,060 |
|
ุงูุขู ุฃู ุงูู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญูู ุงูุขู ูู ุงูู
ูุงุจู ูู |
|
|
|
124 |
|
00:08:39,060 --> 00:08:46,420 |
|
ุฌููุง ุชุทูุนูุง ูุฃ ุงููู ูู ุงูู
ุณุงุญุฉ ุงููู ุจูู
ุซููุง F of K |
|
|
|
125 |
|
00:08:46,420 --> 00:08:51,910 |
|
F of K ูู ุทููู ูู ู
ูู ูู ุงููู ูู ูุงุญุฏ ูุฐุง ูุงุญุฏ ุทููู |
|
|
|
126 |
|
00:08:51,910 --> 00:08:56,870 |
|
ูุฐู ุงูุขู ู
ุณุงุญุชูุง ุฃููุฏ ุฃุตุบุฑ ู
ู ู
ุณุงุญุฉ ู
ูู ุงููู ูู |
|
|
|
127 |
|
00:08:56,870 --> 00:09:00,890 |
|
ุงูู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญูู ูุนูู ุจู
ุนูู ุขุฎุฑ ููููู ูุฐู |
|
|
|
128 |
|
00:09:00,890 --> 00:09:04,770 |
|
ุงูู
ุณุงุญุฉ ุงููู ูู F of K ูู ูุงุญุฏ ุงููู ูู F of K ูุนูู |
|
|
|
129 |
|
00:09:04,770 --> 00:09:09,010 |
|
ุฃุตุบุฑ ู
ู integration ุงููู ุฃู
ุงู
ู ุงููู ุนูุฏู ูุนูู |
|
|
|
130 |
|
00:09:09,010 --> 00:09:12,530 |
|
ูุฐุง ุงููู ูู ุชู
ุงู
ูุฐุง ุงููู ุฃูุง ู
ุณู
ููุง ุชุณุนุฉ ุฃู |
|
|
|
131 |
|
00:09:12,530 --> 00:09:17,260 |
|
ุซู
ุงููุฉ ุฃู ุงููู ูู ูุฐู ููููู ุนูุฏู ุงูู
ุณุงุญุฉ ุงููุจูุฑุฉ |
|
|
|
132 |
|
00:09:17,260 --> 00:09:19,960 |
|
ูุฐู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงูู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญุงูุฉ ุงูู |
|
|
|
133 |
|
00:09:19,960 --> 00:09:26,140 |
|
integration ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุฃู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงูู
ุณุงุญุฉ |
|
|
|
134 |
|
00:09:26,140 --> 00:09:30,680 |
|
ุงูุฃุฎูุฑุฉ ุงููู ูู ุงูู
ุณุชุทูู ูุฐุง ุงููู ุทููู F of K ูู |
|
|
|
135 |
|
00:09:30,680 --> 00:09:38,690 |
|
ู
ูู ุฃู ุนุฑุถู ูุงุญุฏ ูุนูู K ูู ุงููุงุญุฏ ูุนูู F of K ุฃุตุบุฑ ู
ู |
|
|
|
136 |
|
00:09:38,690 --> 00:09:39,770 |
|
ุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ู |
|
|
|
137 |
|
00:09:39,770 --> 00:09:42,770 |
|
ุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ู |
|
|
|
138 |
|
00:09:42,770 --> 00:09:43,150 |
|
ุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ู |
|
|
|
139 |
|
00:09:43,150 --> 00:09:44,770 |
|
ุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ู |
|
|
|
140 |
|
00:09:44,770 --> 00:09:56,800 |
|
ุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃุตุบุฑ ูุฃ |
|
|
|
141 |
|
00:09:56,800 --> 00:10:02,120 |
|
ุงููู ูู ูุฐุง ุงูู
ูุฏุงุฑ ููู ู
ู ุนูุฏ N ู
ู ุนูุฏ 1 ูุนูุฏ N |
|
|
|
142 |
|
00:10:02,120 --> 00:10:08,720 |
|
ูุนูู ุตุงุฑ ุนูุฏู ุงูุขู ุงูู summation ุงูู summation ููู F |
|
|
|
143 |
|
00:10:08,720 --> 00:10:14,560 |
|
of K ูู ู
ู ุนูุฏ 2 ูุนูุฏ N ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู |
|
|
|
144 |
|
00:10:14,560 --> 00:10:22,220 |
|
integration summation ุทุจุนุงู K-1 ูุนูุฏ K F of T DT K |
|
|
|
145 |
|
00:10:22,220 --> 00:10:27,360 |
|
ู
ู ุนูุฏ 2 ูุนูุฏ N ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู summation F of K |
|
|
|
146 |
|
00:10:27,360 --> 00:10:35,100 |
|
-1 K ู
ู ุนูุฏ 2 ูุนูุฏ N ุชูุงุญุธ ูุฐุง ุงูู summation ุงููู |
|
|
|
147 |
|
00:10:35,100 --> 00:10:41,060 |
|
ูู ู
ู ุนูุฏ 2 ูุนูู ุงูู integration ู
ู 1 ู 2 ุฒุงุฏ ุงูู |
|
|
|
148 |
|
00:10:41,060 --> 00:10:46,820 |
|
integration ู
ู 2 ู 3 ุฒุงุฏ ู
ู 3 ู 4 ูู
ุง ููุตู ู
ู ุนูุฏ |
|
|
|
149 |
|
00:10:46,820 --> 00:10:52,140 |
|
ุงููู ูู N ูุงูุต 1 ู ุนูุฏ ุงูู N ูุนูู ูู ู
ุฌู
ูุน ูุฐุง |
|
|
|
150 |
|
00:10:52,140 --> 00:10:56,800 |
|
ููุจูู ุนุจุงุฑุฉ ุนู ุงูู integration ู
ู 1 ู ุนูุฏ ุงูู N ูุฐุง |
|
|
|
151 |
|
00:10:56,800 --> 00:11:02,360 |
|
F of T DT ุฃุฒุฑุน ูุณุงูู ุงูู summation ูุฐุง ุงููู ูู |
|
|
|
152 |
|
00:11:02,360 --> 00:11:10,170 |
|
ุนุจุงุฑุฉ ุนู F of K ู
ู ุนูุฏ 2 F of 2 ูุงูุต F of 1 ูุนูู F of |
|
|
|
153 |
|
00:11:10,170 --> 00:11:18,810 |
|
ูุงุญุฏ ุฒุงุฆุฏ F of 2 ุฒุงุฆุฏ F of N ูุงูุต 1 ู
ุงุดู ุงูุญุงู ุงูุขู ูุฐุง |
|
|
|
154 |
|
00:11:18,810 --> 00:11:22,610 |
|
ุฃูุจุฑ ุฃู ูุณุงูู ูุฐุง ุงูู summation ุนุจุงุฑุฉ ุนู ู
ูู ูุง |
|
|
|
155 |
|
00:11:22,610 --> 00:11:27,670 |
|
ุฌู
ุงุนุฉ ุงููู ูู ุนุจุงุฑุฉ ุนู F of 2 ุฒู F of 3 ูู
ุง ุฃุตู |
|
|
|
156 |
|
00:11:27,670 --> 00:11:32,450 |
|
ุนูุฏ ุขุฎุฑ ูุงุญุฏ ุงููู ูู F of N ูู ุงููุงูุน ูุฐุง ู
ูู ูุฐุง |
|
|
|
157 |
|
00:11:32,450 --> 00:11:38,130 |
|
ุนุจุงุฑุฉ ุนู S N ููุณู ุจุณ ุฎุงุณุณ ู
ูู ู
ูู ุงูู F of 1 ูุนูู |
|
|
|
158 |
|
00:11:38,130 --> 00:11:42,050 |
|
ูุงูุต F of 1 ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู integration ู
ู 1 ูู N |
|
|
|
159 |
|
00:11:42,050 --> 00:11:46,970 |
|
F of T DT ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง ุนุจุงุฑุฉ ุนู ุงูู summation |
|
|
|
160 |
|
00:11:46,970 --> 00:11:51,450 |
|
ูู
ูู ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ N ูุงูุต ูุงุญุฏ ูุนูู S N ูุงูุต |
|
|
|
161 |
|
00:11:51,450 --> 00:11:55,910 |
|
ูุงุญุฏ ูุฐุง ุญุตููุง ุนูู ุงููู ูู ุงูู equality ุงููู ุฃู
ุงู
ู |
|
|
|
162 |
|
00:11:55,910 --> 00:12:00,910 |
|
ุงููู ูู ุงูุชุงููุฉ ุนูุฏ ุงูู integration ู
ู ูุงุญุฏ ูุนูุฏ N |
|
|
|
163 |
|
00:12:00,910 --> 00:12:06,190 |
|
F of PDT ุตุงุฑุช ุจูู ุงูู S N ูุงูุต ูุงุญุฏ ูุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
164 |
|
00:12:06,190 --> 00:12:13,290 |
|
S N ูุงูุต ุงููู ูู F of ูุงุญุฏ ุทูุจ ููุฌู ุงูุขู ููู
ู ุงููู |
|
|
|
165 |
|
00:12:13,940 --> 00:12:21,700 |
|
ุจุฏูุง ุฅูุงู ุฃู ูุตู ููู ุจุฏูุง ุฅูุงู ุงูุขู ุนูุฏู ุงููู ูู |
|
|
|
166 |
|
00:12:21,700 --> 00:12:27,300 |
|
ุตุงุฑ ุงููู ูู ุงูููู
ุฉ ูุฐู ูููุง ุจูู ุงููู ูู S N ูุงูุต |
|
|
|
167 |
|
00:12:27,300 --> 00:12:33,020 |
|
ูุงุญุฏ ูุฃูุจุฑ ุฃู ูุณุงูู S N ูุงูุต ู
ูู F of ูุงุญุฏ ุงูุขู |
|
|
|
168 |
|
00:12:33,020 --> 00:12:36,980 |
|
ูู ูุฑุถูุง ุฃู ุงูู limit ููู S N exist ูุนูู ุงูู series |
|
|
|
169 |
|
00:12:36,980 --> 00:12:40,940 |
|
ูุฐู ุงูู summation ู
ุน ููุงูุชูุง F of K ู
ู ูุงุญุฏ ูู
ุง ููุง |
|
|
|
170 |
|
00:12:40,940 --> 00:12:44,960 |
|
ููุงูุฉ ุฃู ู
ู ุงุซููู ูู
ุง ููุงูุชูุง exist ููููู ุนูุฏู ูุฐุง |
|
|
|
171 |
|
00:12:44,960 --> 00:12:48,840 |
|
exist ููุฐุง exist ูุงุฒู
ุงูู limit ุงููู ูู ุงููุต ุฅูุด |
|
|
|
172 |
|
00:12:48,840 --> 00:12:52,500 |
|
ู
ุงูู ุจุฑุถู ูุทูุน ุฅูุด ู
ุงูู exist ุฅุฐุง ุตุงุฑ limit |
|
|
|
173 |
|
00:12:52,500 --> 00:12:55,680 |
|
ููู improper integral exist ูุนูู ูู ูุงูุช ุงูู series |
|
|
|
174 |
|
00:12:55,680 --> 00:13:00,280 |
|
converges ูุชููู ุงูู improper integral ุฅูุด ู
ุงูู converts |
|
|
|
175 |
|
00:13:00,580 --> 00:13:04,540 |
|
ุงูุขู ุจููุณ ุงูุทุฑููุฉ ููุนู
ู ู
ููุ ููุนู
ู ุงููู ูู |
|
|
|
176 |
|
00:13:04,540 --> 00:13:08,820 |
|
ุจุงููุณุจุฉ ูู
ููุ ุจุงููุณุจุฉ ููู ูู conversely ุจุฏูุง |
|
|
|
177 |
|
00:13:08,820 --> 00:13:12,440 |
|
ููุชุฑุถ ุฃู ุงูู improper integral converge ููุตู ุฃูู |
|
|
|
178 |
|
00:13:12,440 --> 00:13:19,180 |
|
ุงูู series converge ุงูุขู ุฒู ู
ุง ูููุง Sn ูุงูุต F of 1 |
|
|
|
179 |
|
00:13:19,180 --> 00:13:23,720 |
|
ุทูุนุช ุนูุฏู ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู integration ู
ู 1 ูู N F |
|
|
|
180 |
|
00:13:23,720 --> 00:13:30,360 |
|
of T DT ููุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู Sn ูุงูุต 1 ุงูุขู ุฃูุง ุฒู ู
ุง |
|
|
|
181 |
|
00:13:30,360 --> 00:13:35,360 |
|
ุญุตุฑุช ุงููู ูู ูุฑุถุช ุฃูุง limit ุงูู Sn exist ูุญุตุฑุช ุงูู |
|
|
|
182 |
|
00:13:35,360 --> 00:13:38,640 |
|
integration ุจูู ุงููู ูู ุงุซููู ุงูู summation ูุฏูู ุงูู |
|
|
|
183 |
|
00:13:38,640 --> 00:13:41,960 |
|
partial sums ููููุง ูุฐุง exist ุงูู limit ูู ููุฐุง |
|
|
|
184 |
|
00:13:41,960 --> 00:13:45,660 |
|
exist ูู ุฅุฐุง ูุฐุง ุฅูู ุงูู ุงูุดู
ุงู ุงููู ุฌูุง exist ุจุฏู |
|
|
|
185 |
|
00:13:45,660 --> 00:13:50,280 |
|
ุฃุนู
ู ูู ุงูู integration ุฃู ูู ุงูู integration ุงููู |
|
|
|
186 |
|
00:13:50,280 --> 00:13:53,580 |
|
ุนู
ูุชู ู
ุน ุงููู ูู ู
ูู ุงููู ูู ุงูู partial sums ุฃู |
|
|
|
187 |
|
00:13:53,580 --> 00:13:58,310 |
|
ุงูู improper integral ู
ุน ุงูู series ูููุ ูุฃู ูุฐุง ุตุญูุญ |
|
|
|
188 |
|
00:13:58,310 --> 00:14:04,050 |
|
ููู N ู
ุงุดู ุงูุญุงู ุงูุขู ุนูุฏู ูุฐุง ุฃููุฏ ุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
189 |
|
00:14:04,050 --> 00:14:08,310 |
|
ุงูุขู ูู ูููุง ุฃุตุบุฑ ุฃู ูุณุงูู Sn ูุงูุต ูุงุญุฏ ุนูุฏู |
|
|
|
190 |
|
00:14:08,310 --> 00:14:11,530 |
|
Sn ูุงูุต F of ูุงุญุฏ ุฃูุจุฑ ุฃู ูุณุงูู ูุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู |
|
|
|
191 |
|
00:14:11,530 --> 00:14:15,930 |
|
ูุฐุง ููุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู ู
ููุ ุงูุซุงูู ุงููู ุนูุฏู ูุฐุง |
|
|
|
192 |
|
00:14:15,930 --> 00:14:21,830 |
|
ุงูุขู ุนูุฏู ุจุฏู ุฃุญุตุฑ ูุฐุง ุฃุฎููู ุจูู two integrations |
|
|
|
193 |
|
00:14:21,830 --> 00:14:26,090 |
|
ุฃู ุฃุฎูู ูุฐุง ุจูู two integrations ุฃู ูุงุญุฏ ู
ููู
ุจููุน |
|
|
|
194 |
|
00:14:26,680 --> 00:14:30,780 |
|
ุงูุขู ุนูุฏู ู
ู ูุฐุง ููุณู ุงูู integration ู
ู ูุงุญุฏ ูุนูุฏ |
|
|
|
195 |
|
00:14:30,780 --> 00:14:39,500 |
|
f of t dt ุตุงุฑ ุงููู ูู ุฒุงุฆุฏ F of ูุงุญุฏ ุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
196 |
|
00:14:39,500 --> 00:14:45,860 |
|
ู
ูู ุงูู Sn ู
ุงุดู ุงูู S N ู
ู ููุง ู
ู ููุง ุงูู S N ุฃูุจุฑ ุฃู |
|
|
|
197 |
|
00:14:45,860 --> 00:14:49,460 |
|
ูุณุงูู ุงููู ูู ุงูู integration ู
ู ูุงุญุฏ ุจุฏู ุงูู N ููุต |
|
|
|
198 |
|
00:14:49,460 --> 00:14:54,040 |
|
ูุงุญุฏ ุญุทูุช ู
ูู ุงูู N ู
ุงุดู ูุจูุตูุฑ ุนูุฏ ูุฐู ุจุฏู ุงูู N |
|
|
|
199 |
|
00:14:54,040 --> 00:14:58,740 |
|
ุจุฑุถู ุจุชุตูุฑ ุงูู integration ู
ู F of T DT ู
ู ูุงุญุฏ |
|
|
|
200 |
|
00:14:58,740 --> 00:15:02,240 |
|
ูุนูุฏ N ุฒุงุฆุฏ ูุงุญุฏ ูุฃูู ูุฐู ุฃูุจุฑ ู
ู ูุฐู ุจุฒูุงุฏุฉ ูุงุญุฏ |
|
|
|
201 |
|
00:15:02,240 --> 00:15:05,900 |
|
ูู ูุฐู ุฃูุจุฑ ู
ู ูุฐู ุจูุงุญุฏ ู
ู ููู ุฅุฐุง ุตุงุฑ ุนูุฏ ุงูู S |
|
|
|
202 |
|
00:15:05,900 --> 00:15:10,300 |
|
N ุจูู ูุฐู ุงููู
ูุฉ ููุฐู ุงููู
ูุฉ ูุฃู ูู ูุฑุถูุง ุฃูู ุงูู |
|
|
|
203 |
|
00:15:10,300 --> 00:15:16,770 |
|
limit ููู integration ู
ู 1 ูู N F of T DT as N goes |
|
|
|
204 |
|
00:15:16,770 --> 00:15:21,690 |
|
to infinity exist ู
ุฏุงู
ูุฐุง exist ุงูู limit ุฅุฐุง ุญุตู |
|
|
|
205 |
|
00:15:21,690 --> 00:15:25,630 |
|
ูุฐุง ููู ุนูู ุจุนุถู ูุฐุง limit exist ููุฐุง ููุชูุน exist |
|
|
|
206 |
|
00:15:25,630 --> 00:15:29,370 |
|
ุฅุฐุง ุงููู ููุชูุน ุนูุฏู limit ุงุซุฑ ุฅู ุฅูุด exist ุฅุฐุง |
|
|
|
207 |
|
00:15:29,370 --> 00:15:32,650 |
|
similarly if limit ููู integration ุฃู ุงูู improper |
|
|
|
208 |
|
00:15:32,650 --> 00:15:37,090 |
|
integral exist ุฅุฐุง ููุชูุน limit ููุฃุซุฑ ุฅู exist ูู |
|
|
|
209 |
|
00:15:37,090 --> 00:15:42,860 |
|
ูุนูู ูุถุญุชูุง ุฃู
ุงู
ูู
therefore ุงููู ุฃุซุจุชูุงู ุฅูู ุงูู |
|
|
|
210 |
|
00:15:42,860 --> 00:15:45,860 |
|
summation ููู F of N N ู
ู ูุงุญุฏ ูู
ุง ูุง ููุงูุฉ ุงููู ูู |
|
|
|
211 |
|
00:15:45,860 --> 00:15:49,580 |
|
ุงูู series exist ูุนูู limit ููู S n exist if and |
|
|
|
212 |
|
00:15:49,580 --> 00:15:52,360 |
|
only if ุงูู improper integral exist ูุนูู limit ุงูู |
|
|
|
213 |
|
00:15:52,360 --> 00:15:56,100 |
|
integration ูุงุญุฏ ูุนูุฏ N exist ูุฐุง ุงููู ูู ุงููู |
|
|
|
214 |
|
00:15:56,100 --> 00:16:00,820 |
|
ุฃุซุจุชูุงู ูุญุชู ุงูุขู ุงูุขู ุถุงู ุนูู ุฃุซุจุช ุงูุฌุฒุก ุงูุซุงูู |
|
|
|
215 |
|
00:16:00,820 --> 00:16:08,360 |
|
ู
ู ุงููู ูู ุงููุธุฑูุฉ ุงููู ูู ูู ุญุงูุฉ ู
ูู ุงูู |
|
|
|
216 |
|
00:16:08,360 --> 00:16:14,140 |
|
Convergence ูู ุญุงูุฉ ุงูู Convergence ูู Series ุฃู |
|
|
|
217 |
|
00:16:14,140 --> 00:16:19,300 |
|
ูู Improper Integral ุจุฏูุง ูุญูู ุงูู Estimate ุงููู |
|
|
|
218 |
|
00:16:19,300 --> 00:16:25,220 |
|
ูู... ุงููู ูู ุนูุฏู S ูุงูุต S N ูููู ุจูู ุงููู ูู ุงูู |
|
|
|
219 |
|
00:16:25,220 --> 00:16:29,160 |
|
Two Integration ุงููู ุญูููุง ุนูู ุฅุดู ุงููู ุจูููู ูุดูู |
|
|
|
220 |
|
00:16:29,160 --> 00:16:32,600 |
|
ุงูุขู |
|
|
|
221 |
|
00:16:32,600 --> 00:16:41,210 |
|
ููุฌู ูุฑูุฒ ุงูุขู finally assuming ุงูู relation a for k |
|
|
|
222 |
|
00:16:41,210 --> 00:16:46,810 |
|
ุจุณุงูู N summing the relation a for k ุจุงูู ุฒุงุฆุฏ |
|
|
|
223 |
|
00:16:46,810 --> 00:16:49,890 |
|
ูุงุญุฏ ูุนูุฏ N we obtain ุฅูุด ูู ุงูู relation ุงููู |
|
|
|
224 |
|
00:16:49,890 --> 00:16:53,530 |
|
ุญุทูุชูุง ูุจู ุดููุฉ ุงููู ุนุจุงุฑุฉ ุนู ุงูู integration ู
ู |
|
|
|
225 |
|
00:16:53,530 --> 00:16:58,430 |
|
ูุงุญุฏ ูุนูุฏ N F of T DT ุฃุตุบุฑ ุฃู ูุณุงูู ูุชุจุชุฏู |
|
|
|
226 |
|
00:16:58,430 --> 00:17:02,490 |
|
ุงุณุชุฎุฏุงู
ูุง ูู
ุงู ู
ุฑุฉ ูููุตูู ููู estimation ุงููู ุจุฏู ุฅูุงูุง |
|
|
|
227 |
|
00:17:03,180 --> 00:17:07,240 |
|
ุฃุธูุฑ ูุณุงูู Sn ูุงูุต ูุงุญุฏ ูุฃูุจุฑ ุฃู ูุณุงูู ู
ูู ูุง |
|
|
|
228 |
|
00:17:07,240 --> 00:17:13,400 |
|
ุฌู
ุงุนุฉ ุงููู ูู Sn ูุงูุต F of ูุงุญุฏ ุงูุขู ูุฐู ุจุฏูุง |
|
|
|
229 |
|
00:17:13,400 --> 00:17:17,780 |
|
ุงููู ูู ูุนู
ู summation ููุง ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ |
|
|
|
230 |
|
00:17:17,780 --> 00:17:24,440 |
|
ู
ูู ูุนูุฏ M ูุนูู ุจุฏู ุฃุฌู ุงููู ูู ุฃุนู
ู ุงูู summation |
|
|
|
231 |
|
00:17:24,440 --> 00:17:38,450 |
|
ุงููู ุฃู
ุงู
ู ูุจูุตูุฑ ุนูุฏู ุงูู Summation ูู
ูุ ูู N ุฒุงุฆุฏ |
|
|
|
232 |
|
00:17:38,450 --> 00:17:43,410 |
|
ูุงุญุฏ ูุนูุฏ ู
ูู ูุนูุฏ N ุฎูููุง ูุฌู
ุญูุง ุฎุฏ ุงูู |
|
|
|
233 |
|
00:17:43,410 --> 00:17:48,490 |
|
Summation ุงูู summation ุนูุฏู ูู ุนูุฏู ุจูุตูุฑ ุงูู |
|
|
|
234 |
|
00:17:48,490 --> 00:17:54,990 |
|
summation ู ุงูู integration ุงููู |
|
|
|
235 |
|
00:17:54,990 --> 00:17:59,390 |
|
ุฃู
ุงู
ู ุฎูููู ุฃุฑุฌุน ููู
ููุง ุจุณ ุนุดุงู ุชููู ุงูุฃู
ูุฑ ุช... |
|
|
|
236 |
|
00:17:59,390 --> 00:18:03,530 |
|
ุช... ู
ู ููู... ูุจู... ูุฃ ุขุณู ู
ุด ูุฐู ููุฌู ููุง ุงููู |
|
|
|
237 |
|
00:18:03,530 --> 00:18:07,370 |
|
ูู ุชุณุนุฉ ุงููู ูุงูุฉ ูุฃู ูุฐู ุจุนุฏ ู
ุง ุงูุชุฌู
ุนุช ุงูุขู ุจุฏู |
|
|
|
238 |
|
00:18:07,370 --> 00:18:14,830 |
|
ุฃุฌู
ุนูุง ู
ู ุนูุฏ ุงููู ูู N ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ ุงููู ูู |
|
|
|
239 |
|
00:18:17,110 --> 00:18:23,930 |
|
ุญูุซ M ุฃูุจุฑ ู
ู N ุฎูููู ุฃุฌู
ุญูุง ูุฐู ูุฃู ูุฐู ู
ุฌู
ูุนุฉ |
|
|
|
240 |
|
00:18:23,930 --> 00:18:29,230 |
|
ุฎุงูุตุฉ ุฎูููู ุฃุฌู
ุญ ูุฐู ูุฃู ุฎุฏ ุงุฌู
ุน ูู ูุฐู ุนูุฏู ุฎุฏ |
|
|
|
241 |
|
00:18:29,230 --> 00:18:33,610 |
|
summation ุญุณุงุจุงุช summation K ู
ู ุนูุฏ N ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
242 |
|
00:18:33,610 --> 00:18:39,300 |
|
ูุนูุฏ M ุญูุซ ุงููู ูู ุงูู N ู
ูุชุฑุถูุง ุฃูุจุฑ ู
ู N ุงููู ูู |
|
|
|
243 |
|
00:18:39,300 --> 00:18:43,060 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู summation K ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ M |
|
|
|
244 |
|
00:18:43,060 --> 00:18:48,460 |
|
ุญุณุงุจุงุช summation K ู
ู ุนูุฏ M ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ ู
ูู |
|
|
|
245 |
|
00:18:48,460 --> 00:18:55,170 |
|
ูุนูุฏ M ุงูุขู ูุฐุง ูู ุงููุงูุน ูุง ุฌู
ุงุนุฉ ุงุญูุง ูููุง ุงูู S N |
|
|
|
246 |
|
00:18:55,170 --> 00:19:02,070 |
|
ูู summation ููู F of K K ู
ู ุนูุฏ ุงููู ูู ูุงุญุฏ ูุนูุฏ |
|
|
|
247 |
|
00:19:02,070 --> 00:19:07,430 |
|
ู
ูู ูุนูุฏ N ููููุง ุงูู S N ุทุจูุนู ูุชููู summation ููู F |
|
|
|
248 |
|
00:19:07,430 --> 00:19:14,690 |
|
of K K ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ N ุงูุขู ุงุทุฑุญ ูุฐู ู
ู ูุฐู ููุธู |
|
|
|
249 |
|
00:19:14,690 --> 00:19:17,870 |
|
ุงูู summation ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ ู
ูู ุนูุฏ N ูุนูู |
|
|
|
250 |
|
00:19:17,870 --> 00:19:23,030 |
|
ูุฐู ูู ุงููุงูุน ูู ุนุจุงุฑุฉ ุนู S M ูุงูุต ุฅูุด ูุงูุต S N |
|
|
|
251 |
|
00:19:23,030 --> 00:19:27,610 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู summation ุงููู ุฃู
ุงู
ู ุงูู summation |
|
|
|
252 |
|
00:19:27,610 --> 00:19:34,130 |
|
ูุฐุง ุงููู ูู ู
ู ุนูุฏ N ุฒุงุฆุฏ ูุงุญุฏ ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ |
|
|
|
253 |
|
00:19:34,130 --> 00:19:44,700 |
|
N ูู
ู N ูุนูุฏ N ุฒุงุฆุฏ ุงุซููู ูู
ู N ุฒุงุฆุฏ 2 ูุนูุฏ N ุฒุงุฆุฏ |
|
|
|
254 |
|
00:19:44,700 --> 00:19:48,900 |
|
3 ูู
ุง ุฃุตู ู
ู ุนูุฏ M ูุงูุต ูุงุญุฏ ูุนูุฏ M ุฒู ู
ุง ุนู
ููุง |
|
|
|
255 |
|
00:19:48,900 --> 00:19:58,590 |
|
ูุจู ุดููุฉ ููุทูุน ุนุจุงุฑุฉ ุนู ู
ู N ูู
ูู ูุนูุฏ M DT ูุฐุง |
|
|
|
256 |
|
00:19:58,590 --> 00:20:02,770 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู ุงููู ูู ุงูู summation ุงููู ูู ุงูุฃุฎูุฑ |
|
|
|
257 |
|
00:20:02,770 --> 00:20:09,050 |
|
ุจููุณ ุงูุฃุณููุจ ููุดูู ุฅูุด ุงููู ูููุฒู
ูุง ุนูุฏู ูุฐุง ุฒู ู
ุง |
|
|
|
258 |
|
00:20:09,050 --> 00:20:11,790 |
|
ุนู
ูุช ููู ุจุงูุธุจุท ุจุณ ูุฐู ุจุชุงุฎุฏูุง ูู ุนูู ุงูุงุนุชุจุงุฑ ุฅู |
|
|
|
259 |
|
00:20:11,790 --> 00:20:16,970 |
|
ูู ุจุชุจุฏุฃ ู
ู ุนูุฏ ู
ู ุนูุฏ K-1 ูุนูู ุงููู ูู ูุฐู ุจุชุจุฏุฃ |
|
|
|
260 |
|
00:20:16,970 --> 00:20:22,930 |
|
ุชุตูุฑ N ูุนูุฏ ุงููู ูู ู
ูู ุงููู ูู M-1 ูุนูู ุจู
ุนูู ุขุฎุฑ |
|
|
|
261 |
|
00:20:22,930 --> 00:20:29,530 |
|
ุนุจุงุฑุฉ ุนู S M-1 Sn ูุงูุต ูุงุญุฏ ุญุณุจ ู
ุง ุงููู ูู ุญุณุจูุง |
|
|
|
262 |
|
00:20:29,530 --> 00:20:34,530 |
|
ููู ุฃู ุฒู ู
ุง ุญุณุจูุง ููู ูุจูููู ุญุตููุง ุนูู ูุฐู ุงูู |
|
|
|
263 |
|
00:20:34,530 --> 00:20:38,310 |
|
Inequality ูุดูู ูุฐู ุงูู Inequality ููู ุจุฏูุง ูุณุชุฎุฏู
ูุง |
|
|
|
264 |
|
00:20:38,310 --> 00:20:43,750 |
|
ูููุตูู ููู ุจุฏูุง ุฅูุงู ุงูุขู M ุฃูุจุฑ ู
ู N ุฃููุฏ ูุนูุฏู Sn |
|
|
|
265 |
|
00:20:43,750 --> 00:20:48,870 |
|
ูุงูุต Sn ุงููู ูู ุตุงุฑุช ุงููู ูู ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู |
|
|
|
266 |
|
00:20:48,870 --> 00:20:52,490 |
|
integration ู
ู N ูุนูุฏ M ุงููู ุฃูุฌุฏุชูุง ูุฃุตุบุฑ ุฃู |
|
|
|
267 |
|
00:20:52,490 --> 00:20:55,910 |
|
ูุณุงูู ุงูู Sn ูุงูุต ูุงุญุฏ ูุงูุต Sn ูุงูุต ูุงุญุฏ ุฒู ู
ุง |
|
|
|
268 |
|
00:20:55,910 --> 00:21:01,280 |
|
ูููุง ุงููู ูุฐุง ุณู
ููุงูุง ุฅูู ูุง ุฃุณุชุงุฐ ุงูุขู ู
ู ุงูู star |
|
|
|
269 |
|
00:21:01,280 --> 00:21:06,560 |
|
ุฎูููุง ูุฑูุฒ ุนูู ุงูู
ูุทูุฉ ุงููู ูู ุงูุขู ุจุชุงุฎุฏ ุงูู |
|
|
|
270 |
|
00:21:06,560 --> 00:21:11,220 |
|
integration ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ุนูุฏ M ุฒุงุฆุฏ ูุงุญุฏ F of T |
|
|
|
271 |
|
00:21:11,220 --> 00:21:16,420 |
|
DT ู
ุงุดู ุงูุญุงู ููุตูุฑ ุนุจุงุฑุฉ ุนู N ุฒุงุฆุฏ ูุงุญุฏ ููุฐุง M |
|
|
|
272 |
|
00:21:16,420 --> 00:21:20,000 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุจูุงุก ุนูููุง ูุชุตูุฑ M ุฒุงุฆุฏ ูุงุญุฏ ูุงูุต ูุงุญุฏ |
|
|
|
273 |
|
00:21:20,000 --> 00:21:24,000 |
|
ูุนูู M ู N ุฒุงุฆุฏ ูุงุญุฏ ูุงูุต ูุงุญุฏ ูุนูู N ูุจูุตูุฑ ุงูู |
|
|
|
274 |
|
00:21:24,000 --> 00:21:27,340 |
|
integration ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ุนูุฏ M ุฒุงุฆุฏ ูุงุญุฏ F of T |
|
|
|
275 |
|
00:21:27,340 --> 00:21:30,360 |
|
DT ุฃุตุบุฑ ูุฃุตุบุฑ ู Sn ูุงูุต ู
ู SN |
|
|
|
276 |
|
00:21:33,320 --> 00:21:39,900 |
|
ุงูุขู ุจุชูุชูู ู
ุน ุจุนุถ ุงููู ูู Sm ูุงูุต ู Sn ูููุง ุฃุตุบุฑ |
|
|
|
277 |
|
00:21:39,900 --> 00:21:43,740 |
|
ุฃู ูุณุงูู ุงูู integration ู
ู N ูุนูุฏ M F of T DT ูู |
|
|
|
278 |
|
00:21:43,740 --> 00:21:49,340 |
|
ูุฐู ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐู ูุชุจุช ููุง ููุฐู ูุชุจุช ููุง Sm |
|
|
|
279 |
|
00:21:49,340 --> 00:21:51,660 |
|
ูุงูุต ู Sn ุฃูุจุฑ ู
ู ุงูู integration ู
ู N ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
280 |
|
00:21:51,660 --> 00:21:56,850 |
|
ูุนูุฏ ู
ูู ูุนูุฏ M ุฒุงุฆุฏ ูุงุญุฏ ูุฃู ุงุญูุง ู
ุชูููู ุฅู ุงูู |
|
|
|
281 |
|
00:21:56,850 --> 00:22:00,870 |
|
series converge ู the proper integral converge ุฅุฐุง |
|
|
|
282 |
|
00:22:00,870 --> 00:22:04,030 |
|
ุงูุขู ุฎุฐ ูู M ููุฏููุง ูู
ุง ูุง ููุงูุฉ ูู
ุง ุฅุญูุง ู
ุงุฎุฏูู ุงู |
|
|
|
283 |
|
00:22:04,030 --> 00:22:07,590 |
|
M ุดู
ุงููุง ุฃูุจุฑ ู
ู ุงูุขู ุจูุฏููุง ุฒู ู
ุง ุจุฏู ูุจุชุธููุง |
|
|
|
284 |
|
00:22:07,590 --> 00:22:11,570 |
|
ุงูุขู ุฒู ู
ุง ุจุฏูุง ุงูุขู as M goes to infinity ูุชุตูุฑ |
|
|
|
285 |
|
00:22:11,570 --> 00:22:15,030 |
|
ูุฐู ุนุจุงุฑุฉ ุนู ุงูู summation ููู series ูุนูู ูุชุตูุฑ S |
|
|
|
286 |
|
00:22:15,030 --> 00:22:18,600 |
|
ูุฐู ุฅุฐุงู ูุฐุง ุณูุตุจุญ S ููุฐุง ุณูุตุจุญ ูู proper integral |
|
|
|
287 |
|
00:22:18,600 --> 00:22:21,860 |
|
ู
ู N ุฒุงุฆุฏ ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ ููุฐุง ุณูุตุจุญ ูู |
|
|
|
288 |
|
00:22:21,860 --> 00:22:26,260 |
|
proper integral ู
ู N ุฅูู ู
ุง ูุง ููุงูุฉ ูุนูู ุณูุตุจุญ |
|
|
|
289 |
|
00:22:26,260 --> 00:22:31,360 |
|
ูุฏู ุจุงูุถุจุท ุงูู S ูุงูุต S N ุฃูุจุฑ ุฃู ูุณุงูู ู
ู N ุฒุงุฆุฏ |
|
|
|
290 |
|
00:22:31,360 --> 00:22:36,340 |
|
ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ ูู
ู N ุฅูู ู
ุง ูุง ููุงูุฉ ููู ูุฐุง |
|
|
|
291 |
|
00:22:36,340 --> 00:22:42,040 |
|
ุงููู ู
ุทููุจ ุงููู ุฅุญูุง ุทูุจูุงู ู
ู ุฃูู ุงููุธุฑูุฉ ููููุง |
|
|
|
292 |
|
00:22:42,040 --> 00:22:46,760 |
|
ุญูุซ ุงูู S ูู ุงููู ุจุชู
ุซู ุงููู ูู limit ูู SM ุฃู ูู |
|
|
|
293 |
|
00:22:46,760 --> 00:22:51,460 |
|
ุนุจุงุฑุฉ ุนู ููู
ุฉ ุงูู series ู
ู ูุงุญุฏ ุฅูู ู
ุง ูุง ููุงูุฉ |
|
|
|
294 |
|
00:22:51,820 --> 00:22:58,540 |
|
examples ุจุฏูุง ุงูุขู ูุญุงูู ูุณุชุฎุฏู
ุงููู ูู ุงููุธุฑูุงุช |
|
|
|
295 |
|
00:22:58,540 --> 00:23:03,360 |
|
ุงููู ูุจู ุจุดููุฉ ููุธููุง ููู examples ุงููู ุนูุฏูุง ููุฐู |
|
|
|
296 |
|
00:23:03,360 --> 00:23:07,200 |
|
ุทุจุนุงู ูุชูุงูููุง ู
ุนุธู
ูุง ุฅูุชูุง ุฃุฎุฏุชููุง ูู ุงูู calculus |
|
|
|
297 |
|
00:23:07,200 --> 00:23:11,700 |
|
ูุฐูุฑูุง ุจุดูู ุณุฑูุน ุจุณ ุนุดุงู ุฅูู ูุดูู ุงูู applications |
|
|
|
298 |
|
00:23:11,700 --> 00:23:16,440 |
|
ููุฐู ุงููุธุฑูุงุช ุงููู ุฅุญูุง ู
ุฑูุฒูู ุนูู ุงููู ูู ุงููุธู |
|
|
|
299 |
|
00:23:16,440 --> 00:23:20,520 |
|
ุฑ ุงูุชุญููููุฉ ููุง ุฃู ุจู
ุนูู ุขุฎุฑ ุนูู ุจุฑุงููู ุงููู ูู |
|
|
|
300 |
|
00:23:20,520 --> 00:23:24,020 |
|
ุงููุธุฑูุงุช Show that the b series summation 1 ุฏู ูุฃู |
|
|
|
301 |
|
00:23:24,020 --> 00:23:29,440 |
|
b diverges for b ุฃุตุบุฑ ุฃู ูุณุงูู 1 ุงูุขู ุจุฏูุง ูุณุชุฎุฏู
|
|
|
|
302 |
|
00:23:29,440 --> 00:23:34,920 |
|
ุงูู comparison test ูุนูุฏู ุงูุขู ุฅู ูุต ุจู ุฃุตุบุฑ ุฃู |
|
|
|
303 |
|
00:23:34,920 --> 00:23:38,940 |
|
ูุณุงูู ุฃู ุฃููุฏ ููู ุฃู element in N ู ุงูู ุจู ุดู
ุงููุง |
|
|
|
304 |
|
00:23:38,940 --> 00:23:42,120 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู ูุงุญุฏ ูุนูู ูู ุงูู ุจู ุงููู ุฃุตุบุฑ ู
ู ูุงุญุฏ |
|
|
|
305 |
|
00:23:42,120 --> 00:23:47,080 |
|
ููููู ุฃู ูุต ุจู ุฃููุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ู
ู ุฃู ุงูุขู ู
ููุจู |
|
|
|
306 |
|
00:23:47,080 --> 00:23:50,140 |
|
ูููููุจ ูุงุญุฏุฉ ูุฃู ุจู ุฃูุจุฑ ุฃู ูุณุงูู ูุงุญุฏุฉ ูุฃู ุงูุขู |
|
|
|
307 |
|
00:23:50,140 --> 00:23:54,800 |
|
ุงูู summation ูุฐุง ุงููู diverse ุฅุฐุง ู
ู ุจุงุจ ุฃููู ููููู |
|
|
|
308 |
|
00:23:54,800 --> 00:23:58,380 |
|
ุงููุจูุฑ by comparison test diverse ุฅุฐุง ุงูู summation |
|
|
|
309 |
|
00:23:58,380 --> 00:24:01,400 |
|
ูุงุญุฏ ุนูู N ุจูู diverse for ุจูู ุฃุตุบุฑ ุฃู ูุณุงูู ูุงุญุฏ |
|
|
|
310 |
|
00:24:01,400 --> 00:24:04,860 |
|
ููุฐุง ุงูููุงู
ุณูู ูุฅูุชูุง ุจุชุนุฑููู ุฅุฐุง ููุฌู ููู |
|
|
|
311 |
|
00:24:04,860 --> 00:24:08,540 |
|
summation ูุงุญุฏ ุนูู N ุชุฑุจูุน ุจุฏูุง ูุดูู ููู ูู ุฅูุงู |
|
|
|
312 |
|
00:24:08,540 --> 00:24:12,740 |
|
converse ุจุฏูุง ุงูุขู ููุงุฑููุง ุจู Series ุฅุญูุง ุฃุฎุฏูุงูุง |
|
|
|
313 |
|
00:24:12,740 --> 00:24:15,620 |
|
ุฅููุง ุถุนููุฉ Converse ู
ูู ุงูู Series ุงููู ุฃุฎุฏูุงูุง |
|
|
|
314 |
|
00:24:15,620 --> 00:24:18,100 |
|
ุงูู Converse ุงููู ูู ุงูู Telescoping ุงููู ูู |
|
|
|
315 |
|
00:24:18,100 --> 00:24:21,620 |
|
Summation ูุงุญุฏุฉ ูู N ูู N ุฒุงุฆุฏ ูุงุญุฏ ูููุง ุนููุง ุฏู |
|
|
|
316 |
|
00:24:21,620 --> 0:24:24,220 |
|
ุฅูุด ู
ุงููุง ุฃุซุจุชูุงูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุฅููุง Converse |
|
|
|
317 |
|
00:24:24,220 --> 00:24:28,640 |
|
ุทูุจุ ุงูุขู ูุฐู ู
ุฏุงู
ูู ูุช Converge ุงูู series ุงููู ุนูุฏ |
|
|
|
318 |
|
00:24:28,640 --> 00:24:34,160 |
|
ุงูู series ูุช Converge ุฅุฐุง by example ุงููู ูู 918E ูุช |
|
|
|
319 |
|
00:24:34,160 --> 00:24:37,840 |
|
Converge ุจุฏูุง ุงููู ูู ูุณุชุฎุฏู
ุงููู ูู ุงูู |
|
|
|
320 |
|
00:24:37,840 --> 00:24:41,180 |
|
Comparison Test ุงูุขู ู
ุงูุฏุฑุด ูุณุชุฎุฏู
ุงูู direct ููุด |
|
|
|
321 |
|
00:24:41,180 --> 00:24:45,280 |
|
ู
ุงูุฏุฑุด ูุณุชุฎุฏู
ุงูู direct ูุฅูู ุงูุขู ุงูู summation |
|
|
|
322 |
|
00:24:45,280 --> 00:24:50,440 |
|
ุงููู ูู ุงูู ุงูู ุงูู ูุงุญุฏ ุนูู n ูู n ุฒุงุฆุฏ ูุงุญุฏ ุงููู ูู |
|
|
|
323 |
|
00:24:50,440 --> 00:24:53,880 |
|
ุงูู convergence ูุฐู ุงููู ูู ุฃุตุบุฑ ุฃู ูุณุงูู ูุงุญุฏ ุนูู |
|
|
|
324 |
|
00:24:53,880 --> 00:24:57,800 |
|
ู
ูู ุนูู n ุชุฑุจูุน ูุงูุขู ูุฐู convergence ุตุญ ููู ุงููู |
|
|
|
325 |
|
00:24:57,800 --> 00:25:00,120 |
|
ุฃูุจุฑ ู
ููุง ู
ุด ุดุฑุท ุฅููุง ุชููู convergence ูู
ุงูุฏุฑุด |
|
|
|
326 |
|
00:25:00,120 --> 00:25:04,080 |
|
ูุญูู
ุงูู comparison test ุฅุฐุง ุจุฏูุง ูุณุชุฎุฏู
ุงูู limit |
|
|
|
327 |
|
00:25:04,080 --> 00:25:07,380 |
|
comparison test ุฎุฐ ุงูู limit ุงููู ูู 1 ุนูู n ูุงู |
|
|
|
328 |
|
00:25:07,380 --> 00:25:11,040 |
|
ุฒุงุฆุฏ 1 ุนูู 1 ุนูู n ุชุฑุจูุน ุจูุตูุฑ limit ุนุจุงุฑุฉ ุนู n |
|
|
|
329 |
|
00:25:11,040 --> 00:25:14,680 |
|
ุนูู n ุฒุงุฆุฏ 1 ู
ุน ุงูุงุฎุชุตุงุฑุงุช ุงููู ูู ุทุจุนุงู ูุฐุง ุงู |
|
|
|
330 |
|
00:25:14,680 --> 00:25:17,360 |
|
limit ุงููู ูู as n goes to infinity ูุฐู ุจูุตูุฑ 1 |
|
|
|
331 |
|
00:25:17,360 --> 00:25:20,820 |
|
ุนูู 1 ุฒุงุฆุฏ 1 ุนูู n ูุฐู ุจุชุฑูุญ ููุณูุฑ ูุจุชุธููุง 1 ู ุงู |
|
|
|
332 |
|
00:25:20,820 --> 00:25:24,140 |
|
1 ุฃููุฏ ู
ุด ุณูุฑ ู
ุง ุฒู ู
ุง ูุทูุน ุนูุฏ ุงูู limit ูุฃ ุงููู |
|
|
|
333 |
|
00:25:24,140 --> 00:25:28,310 |
|
ูู ุงู .. ุงู .. ุงู .. ุงู ..ุงูู .. ุงู .. ุงู .. ุงู |
|
|
|
334 |
|
00:25:28,310 --> 00:25:30,870 |
|
limit ูู ุงู .. ุงู .. ุงู comparison test ุฃู ุงููู ูู |
|
|
|
335 |
|
00:25:30,870 --> 00:25:33,990 |
|
ุงูู two series ูุฐูู ุงููู ุนูู ุจุนุถ ุงูู XN ุนูู ุงูู YN |
|
|
|
336 |
|
00:25:33,990 --> 00:25:37,610 |
|
ุจูุณุงูู ุฑูู
ุฅุฐุง ุงูุชูุชูู converged ุฃู ุงูุชูุชูู |
|
|
|
337 |
|
00:25:37,610 --> 00:25:41,550 |
|
diverged ูุจูุงุก ุนูู ุงูุญุฏูุซ ุฅูู ุจู
ุง ุฅูู ูุฐู ุงููู ูู |
|
|
|
338 |
|
00:25:41,550 --> 00:25:45,090 |
|
ุงูู telescope ูุงูุช converged ุฅุฐุง ุงููุงุญุฏ ุนูู N ุชุฑุจูุน |
|
|
|
339 |
|
00:25:45,090 --> 00:25:50,530 |
|
ุฃู ุตู
ุดู ูููุงุญุฏ ุนูู N ุชุฑุจูุน is convergent ุทูุจ ูุฐุง |
|
|
|
340 |
|
00:25:50,530 --> 00:25:56,030 |
|
ููุงู
ููู ุฅูุชูุง ุทุจุนุงู ุจุชุงุฎุฏูู ูู ุงูู .. ูู ุฃุฎุฏุชู ูุซูุฑ |
|
|
|
341 |
|
00:25:56,030 --> 00:25:58,830 |
|
ู
ูู ูู ุงูู calculus ูููู ุฅุญูุง ุนุดุงู ููุชู
ู ุงูู
ูุถูุน |
|
|
|
342 |
|
00:25:58,830 --> 00:26:02,770 |
|
ุจุฏูุง ูุงุฎุฏ ุฃู
ุซูุฉ ุนูู ุงููู ุจุฑูููุงูู
ุงููู ูุงู show |
|
|
|
343 |
|
00:26:02,770 --> 00:26:08,190 |
|
that summation 1 ุนูู n ุจู converts for b ูุดู
ู ุฃูุจุฑ |
|
|
|
344 |
|
00:26:08,190 --> 00:26:12,370 |
|
ุฃู ูุณุงูู ูุงุญุฏ ุจู ุฃูุจุฑ ุฃู ูุณุงูู ุฃุณู ุฃูุจุฑ ู
ู ูุงุญุฏ |
|
|
|
345 |
|
00:26:12,370 --> 00:26:15,270 |
|
strictly P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
346 |
|
00:26:15,270 --> 00:26:16,850 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
347 |
|
00:26:16,850 --> 00:26:22,690 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
348 |
|
00:26:22,690 --> 00:26:25,810 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
349 |
|
00:26:25,810 --> 00:26:28,150 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
350 |
|
00:26:28,150 --> 00:26:29,090 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
351 |
|
00:26:29,090 --> 00:26:30,170 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
352 |
|
00:26:30,170 --> 00:26:30,770 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
353 |
|
00:26:30,770 --> 00:26:34,550 |
|
ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P ุฃูุจุฑ ุฃู P |
|
|
|
354 |
|
00:26:34,550 --> 00:26:40,020 |
|
ุฃูุจุฑ ุงูู second method ุจููููู ุฃูุง ุจุฏู ุงุณุชุฎุฏู
ุงู |
|
|
|
355 |
|
00:26:40,020 --> 00:26:44,000 |
|
limit comparison test ุงููู ูู 1 ุนูู N ุฃูุต ุจู ุนูู 1 |
|
|
|
356 |
|
00:26:44,000 --> 00:26:48,360 |
|
ุนูู N ุชุฑุจูุน ุจูุณุงูู limit 1 ุนูู N ุจู minus 2 ู ุจู |
|
|
|
357 |
|
00:26:48,360 --> 00:26:53,000 |
|
ุฃูุจุฑ ู
ู ุฃู ูุณุงูู 2 ุฅุฐุง 1 ุนูู N ุจู minus 2 ุงููู ูู |
|
|
|
358 |
|
00:26:53,000 --> 00:26:57,660 |
|
ููุณุงูู limit 0 ู
ุฏุงู
ุงูู limit 0 ูุนูุฏู ุงููู ูู ุงููู |
|
|
|
359 |
|
00:26:57,660 --> 00:27:02,000 |
|
ุชุญุช converge ุฅุฐุง ู
ู ุจุงุจ ุฃููู ุงููู ููู ุชููู |
|
|
|
360 |
|
00:27:02,000 --> 00:27:06,130 |
|
converge ุฅุฐุง summation 1 ุนูู N ุจู ุงููู ูู convert |
|
|
|
361 |
|
00:27:06,130 --> 00:27:14,370 |
|
by limit comparison test ุทูุจ show |
|
|
|
362 |
|
00:27:14,370 --> 00:27:19,170 |
|
that the ratio and the root tests fail in the case |
|
|
|
363 |
|
00:27:19,170 --> 00:27:22,570 |
|
of B series ูุนูู ุงูุขู ูู ุจุฏูุง ูุฌุฑุจ ูุณุชุฎุฏู
ุงูู ratio |
|
|
|
364 |
|
00:27:22,570 --> 00:27:26,310 |
|
test ู ุงูู root test ู
ุด ูุชุธุจุท ุทุจุนุงู ุงูู limit ุจููุตุชู |
|
|
|
365 |
|
00:27:26,310 --> 00:27:31,680 |
|
ููุดุ ุจูููู ูู ุฌููุง ุฃุฎุฏูุง limit ุงูู 1 ุนูู N ุฃูุณ B |
|
|
|
366 |
|
00:27:31,680 --> 00:27:36,080 |
|
ุฃูุณ 1 ุนูู N ุงูู N through test ูุฐุง ุจูุณุงูู ุงูู limit |
|
|
|
367 |
|
00:27:36,080 --> 00:27:41,200 |
|
ู N ุฃูุณ 1 ุนูู N ุฃูุณ minus B ู
ุงุดู ุงูู N ุฃูุณ 1 ุนูู N |
|
|
|
368 |
|
00:27:41,200 --> 00:27:43,840 |
|
ุงูู limit ุงููู ููุง ู
ู example ุฃุฎุฏูุงูุง ูู ุดุจุทุฑ 3 ูู |
|
|
|
369 |
|
00:27:43,840 --> 00:27:49,080 |
|
ุงููุตู ุงูู
ุงุถู ุฃู ูู ุชุญููู 1 ูุฐุง ูุจุฑุถู ุจุชูู ุชุนู
ููุง |
|
|
|
370 |
|
00:27:49,080 --> 00:27:52,340 |
|
ุฃุตูุงู ูุญุงููู
ุงูู limit ูู ุจูุณุงูู ูุงุญุฏ ุฅุฐุง ุตุงุฑ ุนูุฏู |
|
|
|
371 |
|
00:27:52,340 --> 00:27:56,580 |
|
ูุงุญุฏ ุฃูุตู minus b ุฅุฐุง ุจูุณุงูู ุฅูุด ูุงุญุฏ ุงูุขู ู
ุฏุงู
|
|
|
|
372 |
|
00:27:56,580 --> 00:28:01,500 |
|
ุทุงูุน ุนูุฏู ุงูู limit ุงููู ูู ุงูู Xn ุฃูุตู ูุงุญุฏุฉ ุงูุขู |
|
|
|
373 |
|
00:28:01,500 --> 00:28:05,020 |
|
ุจูุณุงูู ูุงุญุฏ ุฅุฐุง ุจูููู ุงูู test failed ุงูุขู |
|
|
|
374 |
|
00:28:05,020 --> 00:28:10,320 |
|
similarly ูู ุฌุฑุจูุง ุงููู ูู ุงูู ratio test ูุงุญุฏุฉ |
|
|
|
375 |
|
00:28:10,320 --> 00:28:13,300 |
|
ุงูุขู ุฒูุงุฏุฉ ูุงุญุฏุฉ ุฃูุตู b ุนูู ูุงุญุฏุฉ ุฃู ุฃูุตู b ุจูุณุงูู |
|
|
|
376 |
|
00:28:13,300 --> 00:28:18,930 |
|
ุงูู limit ูุง ุงููู ูู 1 ุนูู 1 ุฒุงุฆุฏ 1 ุนูู ุฃููุต ุจู |
|
|
|
377 |
|
00:28:18,930 --> 00:28:23,130 |
|
ุนุงุฑููู ุฅูุด ุงููู ุณููุงู ุงููู ูู ุฌุณู
ูุง ุงููู ูู ุงููู |
|
|
|
378 |
|
00:28:23,130 --> 00:28:26,770 |
|
ููุง ุนูู ุฃููุต ุจู ูููุง ุนูู ุฃููุต ุจู ุตุงุฑุช 1 ูุฐุง ุนูู |
|
|
|
379 |
|
00:28:26,770 --> 00:28:29,910 |
|
ุฃููุต ุจู ููุฐุง ุนูู ุฃููุต ุจู ุจูุตูุฑ 1 ุฒุงุฆุฏ 1 ูุฃู ูู ุฃุณ |
|
|
|
380 |
|
00:28:29,910 --> 00:28:34,080 |
|
ุจู ุงูุขู ุตุงุฑ ุนูุฏู limit as n goes to infinity ูุงุฒู
|
|
|
|
381 |
|
00:28:34,080 --> 00:28:39,040 |
|
ูุตูุฑ 1 ุฅุฐุง ุงูู test ุจุฑุถู ุงูู ratio test ูุงุดู ุฅุฐุง |
|
|
|
382 |
|
00:28:39,040 --> 00:28:46,700 |
|
ู
ุงููุนุด ุงูุญู ุงูู b series by ุงูู ratio test ู ูุง ุงู |
|
|
|
383 |
|
00:28:46,700 --> 00:28:48,200 |
|
anthro test |
|
|
|
384 |
|
00:28:55,790 --> 00:29:01,050 |
|
ุงูุขู ุจููู ูู ุฅูุด ุฑุงูู ุชุณุชุฎุฏู
ูุง ุงููู ูู ุงูู |
|
|
|
385 |
|
00:29:01,050 --> 00:29:06,360 |
|
Integral Test ุชุดููู ุจูุธุจุท ูู ุงูู B Series ููุง ูุฃ ุงูุช |
|
|
|
386 |
|
00:29:06,360 --> 00:29:11,680 |
|
F of T ุจูุณุงูู T Os minus B ุฏู ุงูู
ุคููุฉ ุฅููุง ุงููู ูู |
|
|
|
387 |
|
00:29:11,680 --> 00:29:16,560 |
|
ุชููู ุงููู ูู ุงูุงุณุชุฎุฏุงู
ุงููู ูู 1 ุนูู T ุฃูุณ ุจู |
|
|
|
388 |
|
00:29:16,560 --> 00:29:21,320 |
|
1 ุนูู T ุฃูุณ ุจู ุงูุขู ููุฐู ุงูู series decreasing |
|
|
|
389 |
|
00:29:21,320 --> 00:29:24,960 |
|
ููู
ุญูุงูุง ุฅูู ุขุฎุฑู and recalled that ุงูู integration |
|
|
|
390 |
|
00:29:24,960 --> 00:29:28,580 |
|
ู
ู 1 ูุนูุฏ ุฅู 1 ุนูู T DT ุฅูุด ุจูุณุงูู ุณูู |
|
|
|
391 |
|
00:29:28,580 --> 00:29:31,820 |
|
ุฅูุฌุงุฏูุง ูู
ุงู ุนุจุงุฑุฉ ุนู ูู ุงูุงู ูุงูุต ูู ุงููุงุญุฏ ูู |
|
|
|
392 |
|
00:29:31,820 --> 00:29:36,080 |
|
ุงููุงุญุฏ ุณูุฑ ูุนูู ุจุชุจูู ุนูุฏ ูู ุงูุงู ููู as n goes to |
|
|
|
393 |
|
00:29:36,080 --> 00:29:39,700 |
|
infinity ูุงุถุญ ุฅู ูุฐุง ู
ุจุงุดุฑุฉ ููุฑูุญ ุฅูู ู
ุง ูุง ููุงูุฉ |
|
|
|
394 |
|
00:29:39,700 --> 00:29:45,020 |
|
ูุนูู ูุฐุง ุนุจุงุฑุฉ ุนู diverse ุฅุฐุง ุตุงุฑุช ุนูุฏู ุงูู summation |
|
|
|
395 |
|
00:29:45,020 --> 00:29:49,040 |
|
ูููุงุญุฏ ุงูุงู diverse by integral test ุนูุฏู ุทุจุนุงู ุงูู |
|
|
|
396 |
|
00:29:49,040 --> 00:29:55,360 |
|
b ุดู
ุงููุง ุจู ุฃุตุบุฑ ุฃู ุชุณุงูู ุงููุงุญุฏ ุงูุขู ูู ุญุงูุฉ |
|
|
|
397 |
|
00:29:55,360 --> 00:30:00,040 |
|
.. ูุง ูุง ุขุณู ุงูู b ููุง ุจุชุณุงูู ุงููุงุญุฏ ุงูุขู ุจุฏูุง ูุดูู |
|
|
|
398 |
|
00:30:00,040 --> 00:30:06,420 |
|
ู
ูู ุฅู ูู ุงูุญุงูุงุช ุงูุชุงููุฉ ูู ุฌููุง ุงูู integration |
|
|
|
399 |
|
00:30:06,420 --> 00:30:12,560 |
|
ุฅุญูุง ุฃุซุจุชูุง ูู
ูู ูู B ุจุชุณุงูู ูุงุญุฏ ุงูุขู also recall |
|
|
|
400 |
|
00:30:12,560 --> 00:30:16,780 |
|
that ุงูู integration 1 ุนูู T ูุต ุจู ุฏู T ู
ู 1 |
|
|
|
401 |
|
00:30:16,780 --> 00:30:21,120 |
|
ูุนูุฏ ู
ูู 1 ูุนูุฏ ุฃูุง ุจููุถู ุนูุฏูุง ุงูู ุจู ุดู
ุงููุง ููุง |
|
|
|
402 |
|
00:30:21,120 --> 00:30:26,040 |
|
ูุง ุชุณุงูู 1 ูู
ูุฉ ุงูุขู ุจูุตูุฑ 1 ุนูู 1 minus |
|
|
|
403 |
|
00:30:26,040 --> 00:30:30,480 |
|
ุจู ุงููุต 1 ุนูู minus ุจู ูุงูุต 1 ุจุนุฏ ู
ุง ุนูุถูุง |
|
|
|
404 |
|
00:30:30,480 --> 00:30:31,860 |
|
ุงูุขู ูุฐู |
|
|
|
405 |
|
00:30:34,860 --> 00:30:41,960 |
|
as n goes to infinity ููุงูุช ุงูู b ุฃูุจุฑ ู
ู 1 ุฅุฐุง |
|
|
|
406 |
|
00:30:41,960 --> 00:30:46,520 |
|
ุงูู b ุฃูุจุฑ ู
ู 1 ุฅุฐุง ุงูู b ุฃูุจุฑ ู
ู 1 ููุฏููุง n |
|
|
|
407 |
|
00:30:46,520 --> 00:30:52,400 |
|
ุฅูู ู
ุง ูุง ููุงูุฉ ูุฐุง ุณูุตุจุญ ุนุจุงุฑุฉ ุนู ุณูุฑ ููุฐุง ุนุจุงุฑุฉ |
|
|
|
408 |
|
00:30:52,400 --> 00:30:56,240 |
|
ุนู ูุงูุต 1 ูุนูู ุงูู limit ูุฐู as n goes to |
|
|
|
409 |
|
00:30:56,240 --> 00:31:00,060 |
|
infinity ูู ุญุงูุฉ ุงูู B ุฃูุจุฑ ู
ู 1 ูุชุตูุฑ ูุฐู ุนุจุงุฑุฉ |
|
|
|
410 |
|
00:31:00,060 --> 00:31:03,940 |
|
ุนู ูุงูุต 1 ูู ูุฐู ุจูุตูุฑ 1 ุนูู B minus 1 |
|
|
|
411 |
|
00:31:03,940 --> 00:31:08,540 |
|
ูุฐุง ูู ุญุงูุฉ ุงูู B ุฃูุจุฑ ู
ู 1 ุฅุฐุง ุตุงุฑุช ุงููู ูู ุงูู |
|
|
|
412 |
|
00:31:08,540 --> 00:31:12,640 |
|
integration ูุฐุง converge ูุจูุงุก ุนููู ูุชููู ุงูู B |
|
|
|
413 |
|
00:31:12,640 --> 00:31:16,180 |
|
series ูู ุญุงูุฉ ุงูู B ุฃูุจุฑ ู
ู 1 by integral test |
|
|
|
414 |
|
00:31:16,180 --> 00:31:21,460 |
|
ุจุฑุถู ุฅูุงู converge ููู ูู ูุงูุช ุงูู B ุฃุตุบุฑ ู
ู 1 |
|
|
|
415 |
|
00:31:22,000 --> 00:31:25,480 |
|
ุงูุขู ูุจูุตูุฑ ุนูุฏู ูุฐุง ุงููู ูู ุจูุฑูุญ ุฅูู ู
ุง ูุง ููุงูุฉ |
|
|
|
416 |
|
00:31:25,480 --> 00:31:29,260 |
|
ูุจูุตูุฑ ุนูุฏู ูุฃู ุงูู B ุฃุตุบุฑ ู
ู 1 ูุจูุตูุฑ ุนูุฏู ุงูู |
|
|
|
417 |
|
00:31:29,260 --> 00:31:33,500 |
|
integration ูุฐุง as N goes to infinity diverges ู |
|
|
|
418 |
|
00:31:33,500 --> 00:31:37,400 |
|
ุจูุงุก ุนููู summation 1 ุนูู N B diverges ูุฐุง ูู |
|
|
|
419 |
|
00:31:37,400 --> 00:31:42,060 |
|
ุญุงูุฉ ุงูู B ุดู
ุงููุง ุฃุตุบุฑ ู
ู 1 ู ุจููู ููู ุฅุญูุง |
|
|
|
420 |
|
00:31:42,060 --> 00:31:46,220 |
|
ุงุณุชุฎุฏู
ูุง ุงู .. ุงู .. ุงู B series ูู ุฅุซุจุงุช ุงู .. ุงู |
|
|
|
421 |
|
00:31:46,220 --> 00:31:49,620 |
|
.. ุงู integral test ูู ุฅุซุจุงุช ุฃูู ุงูู B series |
|
|
|
422 |
|
00:31:49,620 --> 00:31:56,810 |
|
converges for b ุฃูุจุฑ ู
ู ูุงุญุฏ and diverges for b ุฃูุด |
|
|
|
423 |
|
00:31:56,810 --> 00:32:01,950 |
|
ู
ุง ููุง ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ูุงุญุฏ ููุฐู ุงููู ูู ุฃูุชู |
|
|
|
424 |
|
00:32:01,950 --> 00:32:07,310 |
|
ุนุงุฑููููุง ุงููB Series ุงูู
ุดููุฑุฉ ููุฌู ุงูุขู ุจุฏูุง ูุญูู |
|
|
|
425 |
|
00:32:07,310 --> 00:32:12,990 |
|
ุนู ุงููู ูู root test ุฃุญูุงูุง ุงููู ูู ู
ุฏุงู
ุฉ ุงููู ูู |
|
|
|
426 |
|
00:32:12,990 --> 00:32:18,560 |
|
ุงู ratio test ุงููู ูู fails ูู ุญุงูุฉ ุงู limit ูุทูุน |
|
|
|
427 |
|
00:32:18,560 --> 00:32:24,380 |
|
ููุง ูุงุญุฏ ุฃู ูุณุงูู ูุงุญุฏ ูุจุฏูุง ุฅูุด ูุฎููููุง ูููู ูุญูููุง |
|
|
|
428 |
|
00:32:24,380 --> 00:32:28,700 |
|
ู
ุดููุฉ ุงููู ูู ุงู failure for .. for .. for ุงููู ูู |
|
|
|
429 |
|
00:32:28,700 --> 00:32:33,240 |
|
ุธููุฑ ุงู limit ุจุณุงูุฉ ูุงุญุฏ ููุง ุนูุฏู root test |
|
|
|
430 |
|
00:32:33,240 --> 00:32:38,640 |
|
ุจุชุนุงูุฌ ุงูุฃู
ุฑ fx ุจุณุงูุฉ xn is a sequence of non-zero |
|
|
|
431 |
|
00:32:38,640 --> 00:32:46,670 |
|
elements ูู ูุฌุฏูุง real number a ุฃูุจุฑ ู
ู ูุงุญุฏ and a |
|
|
|
432 |
|
00:32:46,670 --> 00:32:50,990 |
|
natural number k such that xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู xn |
|
|
|
433 |
|
00:32:50,990 --> 00:32:54,990 |
|
ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ูุงุญุฏ ูุงูุต a ุนูู n for n ุฃูุจุฑ ู
ู ุฃู ูุณุงูู k then ุงู |
|
|
|
434 |
|
00:32:54,990 --> 00:32:58,890 |
|
summation ูู xn is absolutely ุงูุด ู
ุงูู convergent |
|
|
|
435 |
|
00:32:59,220 --> 00:33:02,500 |
|
ุฅุฐุง ูุงู ููุงู a ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ูุงุญุฏ ูุดูู ุงูู K ุทุจูุนู |
|
|
|
436 |
|
00:33:02,500 --> 00:33:06,500 |
|
ูุฐูู ุงูู absolute value of xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู xn |
|
|
|
437 |
|
00:33:06,500 --> 00:33:11,100 |
|
ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ูุงุญุฏ ูุงูุต a ุนูู n for n ุฃูุจุฑ ู
ู ุฃู ูุณุงูู k ูุฅู |
|
|
|
438 |
|
00:33:11,100 --> 00:33:15,880 |
|
ุณูุณูุฉ xn ููุณุช ู
ุทููุง ู
ุชูุงุฑุจุฉ ูุนูู ุจุงุฎุชุตุงุฑ ุนุดุงู ุฃุฑูุญูู
|
|
|
|
439 |
|
00:33:15,880 --> 00:33:21,920 |
|
ุฅูุด ุจูุณูู ุจูุญุณุจููุง ุงูู xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู xn ุฅุฐุง |
|
|
|
440 |
|
00:33:21,920 --> 00:33:26,480 |
|
ูุฌุฏูุง .. ุฅุฐุง ูุฌุฏูุง ููุงุฑู ูุฐู xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู xn |
|
|
|
441 |
|
00:33:26,480 --> 00:33:31,280 |
|
ุจุงูู
ูุฏุงุฑ ูุงุญุฏ ูุงูุต a ุนูู n ุฅุฐุง ูุฌููุง ุฅู ูุฐุง |
|
|
|
442 |
|
00:33:31,280 --> 00:33:34,540 |
|
ุงูู
ูุฏุงุฑ .. ุงูู
ูุฏุงุฑ ุงุณู
ู ูุงุญุฏ ูุงูุต a ุนูู n ุฅุฐุง |
|
|
|
443 |
|
00:33:34,540 --> 00:33:38,950 |
|
ูุฌููุง ูุฐุง ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู 1 ูุงูุต ุนูู a ุนูู n ููุงูุช |
|
|
|
444 |
|
00:33:38,950 --> 00:33:43,050 |
|
ุงูู A ุฃูุจุฑ ู
ู 1 ุนูู ุทูู ุจูุญูู
ุนูู ุงูู Absolutely |
|
|
|
445 |
|
00:33:43,050 --> 00:33:47,030 |
|
Convergent ููู Series ููู ูู ูุฌููุง ูุฐุง ุงูู
ูุฏุงุฑ ุจุนุฏ |
|
|
|
446 |
|
00:33:47,030 --> 00:33:51,690 |
|
ู
ุง ุญุณุจูุงู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู 1 ูุงูุต A ุนูู N ุญุชู ูู ูุงูุช |
|
|
|
447 |
|
00:33:51,690 --> 00:33:56,040 |
|
A ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู 1 ุตุบูุฑุฉ ูุจูููู ุฅูู ูู ูุฐู ุงูุญุงูุฉ ุจูุญูู
|
|
|
|
448 |
|
00:33:56,040 --> 00:33:59,760 |
|
ุนูู ุฅูุด ุนูู ุฅูู ุงู series is not absolutely |
|
|
|
449 |
|
00:33:59,760 --> 00:34:03,500 |
|
convergent ูุนูู ุงูุนู
ููุฉ ุนู
ููุฉ ุญุณุงุจุงุช ูุฐู ุนูู ูุฐู |
|
|
|
450 |
|
00:34:03,500 --> 00:34:08,660 |
|
ููุฌูุจูุง ุจุฏูุงูุฉ 1 minus a ุนูู n ุฃู ุจููุฑููุง ุจ 1 |
|
|
|
451 |
|
00:34:08,660 --> 00:34:12,840 |
|
minus a ุนูู n 1 minus a ุนูู n ูู ุญุงูุฉ ุฅู ุงู a ุฃุตุบุฑ |
|
|
|
452 |
|
00:34:12,840 --> 00:34:16,380 |
|
ู
ู ุฃู ูุณุงูู ูุงุญุฏ ูุชุทูุน ููุง ุงููู ูู ููุง ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
453 |
|
00:34:16,380 --> 00:34:19,140 |
|
it's not absolutely convergent ูู ุญุงูุฉ ุงู a ุฃูุจุฑ |
|
|
|
454 |
|
00:34:19,140 --> 00:34:24,710 |
|
ู
ู ูุงุญุฏ is absolutely convergent ูุฎููููุง ูุดูู ุงููู |
|
|
|
455 |
|
00:34:24,710 --> 00:34:33,230 |
|
ูู ุงูุจุฑูุงู ูุงููู ูู ูุฐู ุงููุธุฑูุฉ suppose that ุนุดุฑุฉ |
|
|
|
456 |
|
00:34:33,230 --> 00:34:39,730 |
|
holds ุนุดุฑุฉ ุนุดุฑุฉ ู ุงููู ูู ุงููู ูุจู ุจุดููุฉ ุญูููุงูุง |
|
|
|
457 |
|
00:34:39,730 --> 00:34:42,930 |
|
ุนุดุงู ุชููููุง ูู ุตูุฑุฉ ูููููู
ุนุดุฑุฉ ูุฐูุฑูู
ูููุง ูุฐู |
|
|
|
458 |
|
00:34:42,930 --> 00:34:50,840 |
|
ุนุดุฑุฉ ุงููู ูู xn ุฒุงุฆุฏ ูุงุญุฏ xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู xn ุฃุตุบุฑ |
|
|
|
459 |
|
00:34:50,840 --> 00:34:57,220 |
|
ู
ู ุฃู ูุณุงูู 1 ูุงูุต a ุนูู n a ุฃูุจุฑ ู
ู 1 ู n ุฃูุจุฑ ู
ู ุฃู ูุณุงูู k |
|
|
|
460 |
|
00:34:57,220 --> 00:35:01,500 |
|
ุงูุชุงูู ูุฐุง ุงููู ุณู
ููุงูุง ุนุดุฑุฉ ุงููู ุณู
ููุงูุง 11 ุงููู |
|
|
|
461 |
|
00:35:01,500 --> 00:35:07,700 |
|
ูู xn ุฒุงุฆุฏ 1 ุนูู absolute value xn ุฃูุจุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
462 |
|
00:35:07,700 --> 00:35:16,820 |
|
ุงููู ูู 1 ูุงูุต a ุนูู n ู a ุงููู ูู a ุดู
ุงููุง ุฃุตุบุฑ ู
ู |
|
|
|
463 |
|
00:35:17,510 --> 00:35:23,610 |
|
ุฃู ูุณุงูู ุงููุงุญุฏ ู
ุงุดู ุงูุญุงู ุทูุจ ูู ูุฐุง ุนุดุฑุฉ ููุฐุง |
|
|
|
464 |
|
00:35:23,610 --> 00:35:28,150 |
|
ุงุญุฏ ุนุดุฑุฉ ุนุดุงู ุจุนุฏ ุดููุฉ ููุณุชุฎุฏู
ูู
ูู ุงูุจุฑูุงู ุฎููููุง |
|
|
|
465 |
|
00:35:28,150 --> 00:35:32,800 |
|
ู
ุนูุง ุงู ุดุงุก ุงููู ุงูุจุฑูุงู ู
ุด ุตุนุจ ุงูุขู suppose that |
|
|
|
466 |
|
00:35:32,800 --> 00:35:39,080 |
|
ุงูู ุนุดุฑุฉ holds ูู for M ุฃูุจุฑ ู
ู ุฃู ูุณุงูู K ุงูุขู ุงุถุฑุจ |
|
|
|
467 |
|
00:35:39,080 --> 00:35:43,280 |
|
ูุทุฑููู ูู ูุณุทูู ุงุถุฑุจ ูุฐู ูู ูุฐู ุจูุตูุฑ ุนูุฏู ูุจุฏู a |
|
|
|
468 |
|
00:35:43,280 --> 00:35:48,980 |
|
ุง ุจุฏู ุงุณุชุฎุฏู
ุงููู ูู M ุนูุฏู ุจุฏู M ุฒุงุฆุฏ ูุงุญุฏ ุฎูููู |
|
|
|
469 |
|
00:35:48,980 --> 00:35:51,880 |
|
ุจูุตูุฑ ุนูุฏ ู
ูุญ ุฏุนุด ุนุดุงู ุงูุง ุงุฌูุจ ููู
ูุงุฏู ููู ุงุฌุช |
|
|
|
470 |
|
00:35:51,880 --> 00:35:56,870 |
|
absolute value ู X M ุฒุงุฆุฏ ูุงุญุฏ ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงูู |
|
|
|
471 |
|
00:35:56,870 --> 00:36:02,750 |
|
absolute value ููู XM ู
ุถุฑูุจุฉ ูู ูุงุญุฏ ูุงูุต A ุนูู Mุ |
|
|
|
472 |
|
00:36:02,750 --> 00:36:07,970 |
|
ู
ุธุจูุทุ ุทูุจุ ุงูุขู ุงุถุฑุจููู ุงูุฌูุชูู ูู ู
ููุ ูู M |
|
|
|
473 |
|
00:36:07,970 --> 00:36:14,640 |
|
ูุจุตูุฑ M ููุงุ ุจุตูุฑ M ูู ููุง ูู ุจูููู ุญุตููุง ุนูู M ูู |
|
|
|
474 |
|
00:36:14,640 --> 00:36:19,700 |
|
ูุฐู ู M ูู ูุฐุง ุงูู
ูุฏุงุฑ ุฏุฎูููู ุงู M ุงูุขู ุฌูุง ูุจุตูุฑ |
|
|
|
475 |
|
00:36:19,700 --> 00:36:23,580 |
|
absolute value XM ุฒู ู
ุง ูู ุฃูุง ุจุตูุฑ M ูุงูุต ุงููู ูู |
|
|
|
476 |
|
00:36:23,580 --> 00:36:31,020 |
|
A ุงูุขู ูุฐู ุจุชุณุงูู ุงูุขู ูุชุจุชูุง ุนูู ุตูุฑุฉ ุงูุขู ุถูุช |
|
|
|
477 |
|
00:36:31,020 --> 00:36:35,720 |
|
ุงููู ูู ูุงุญุฏ ู ุทุฑุญุช ูุงุญุฏ ุงููู ูู ูู ุนูุฏู ููุง ุทุฑุญุช |
|
|
|
478 |
|
00:36:35,720 --> 00:36:39,800 |
|
ูุงุญุฏ ู ููุง ุถูุช ุงููุงุญุฏ ูุตุงุฑุช ุนุจุงุฑุฉ ุนู M ูุงูุต ูุงุญุฏ |
|
|
|
479 |
|
00:36:39,800 --> 00:36:44,830 |
|
XM ูุงูุต A ูุงูุต ูุงุญุฏ XM ุฃูุจุฑ ู
ู ุฃู ูุณุงูู K ุตุงุฑ ูุฐุง |
|
|
|
480 |
|
00:36:44,830 --> 00:36:50,110 |
|
ุงูู
ูุฏุงุฑ ุจุนุฏ ู
ุง ุถูุช ุงููู ูู ูุงูุต XM ูุทุฑุญุช ูุงูุต ุงู |
|
|
|
481 |
|
00:36:50,110 --> 00:36:56,590 |
|
XM ูุถูุช ุงููู ูู ูุงูุต ุงููู ูู ุถูุฉ ุงู XM ูุตุงุฑ ุนูุฏู |
|
|
|
482 |
|
00:36:56,590 --> 00:37:00,630 |
|
ุงูู
ูุฏุงุฑ ูู ููุณู ูุฐุง ุฒู ู
ุง ููุช ููู
ูุฃู ู
ู ููุทุฉ ูููุณ |
|
|
|
483 |
|
00:37:00,630 --> 00:37:06,680 |
|
ุฐุงุช ุนูุฏู ุงู M ูุงูุต ูุงุญุฏ ูู ุงู XM ูุงูุต ุฌูุจูู ูุฐู ููุง |
|
|
|
484 |
|
00:37:06,680 --> 00:37:13,940 |
|
ููุฐู ูุฏููุง ููุงู ูุจุตูุฑ ุนูุฏู M-1 ูู XM ูุงูุต ูุบุงูุฉ M |
|
|
|
485 |
|
00:37:13,940 --> 00:37:17,820 |
|
ูู XM ุฒู 1 ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ู
ูู ุงููู ุฌุช ููุง ูุฐู ุงููู |
|
|
|
486 |
|
00:37:17,820 --> 00:37:24,290 |
|
A-1 ูู XM ุงููู ูู ูุฐู ูุชููู ุฃูุจุฑ ู
ู 0 for M ุฃูุจุฑ |
|
|
|
487 |
|
00:37:24,290 --> 00:37:28,390 |
|
ู
ู ุฃู ูุณุงูู K ูุฃู ุงููA ุงููู ุนูุฏูุง ุฅูุด ู
ูุชุฑุถูููุง ุฃูุจุฑ |
|
|
|
488 |
|
00:37:28,390 --> 00:37:32,250 |
|
ู
ู 1 ููุฐุง absolute value ุฅุฐุง ุตุงุฑ ุงูู
ูุฏุงุฑ ูุฐุง ุฃูุจุฑ |
|
|
|
489 |
|
00:37:32,250 --> 00:37:38,640 |
|
ู
ู 0 ูุฐุง ุฅูู ู
ุนูุงูุ ู
ุนูุงู ุฃู ุงูู sequence ุงููู ุงูู |
|
|
|
490 |
|
00:37:38,640 --> 00:37:44,560 |
|
M X M ุฒุงุฆุฏ ูุงุญุฏ is decreasing sequence ูุฃู ุงููู |
|
|
|
491 |
|
00:37:44,560 --> 00:37:49,040 |
|
ูุจู ูุงูุต ุงููู ุจุนุฏ ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุณูุฑ ูุนูู ุตุงุฑ ุงููู |
|
|
|
492 |
|
00:37:49,040 --> 00:37:54,940 |
|
ูู ุงููู ุจุนุฏ ุดู
ุงูู ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุงููู ูุจู ูุนูู |
|
|
|
493 |
|
00:37:54,940 --> 00:37:59,960 |
|
ุตุงุฑุช ุงู sequence M X M ุฒุงุฆุฏ ูุงุญุฏ is a decreasing |
|
|
|
494 |
|
00:37:59,960 --> 00:38:05,790 |
|
sequence for ู
ูู M ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงุชููู ุงูุขู ูุฐู |
|
|
|
495 |
|
00:38:05,790 --> 00:38:11,430 |
|
ุงููู ูู ุงู relation ุงููู ุนูุฏู ุงููู ูู 12 ุจุฏูุง ุงููู |
|
|
|
496 |
|
00:38:11,430 --> 00:38:19,070 |
|
ูู ูุฌู
ุนูุง for K for M ุจุชุณุงูู K ูุนูุฏ ู
ูู ูุนูุฏ and |
|
|
|
497 |
|
00:38:19,070 --> 00:38:24,290 |
|
and we note the left side ุชูุณููุจ ุงููู ูู ูุดูู ููู |
|
|
|
498 |
|
00:38:24,290 --> 00:38:28,750 |
|
ุงู left side ูุฐุง ุชูุณููุจ ูุงุถุญ ุงูู ุชูุณููุจ we find |
|
|
|
499 |
|
00:38:28,750 --> 00:38:37,180 |
|
ุนูุฏู ุฃุฎุฏ ุงู summation ู
ู ุนูุฏ N ู
ู ุนูุฏ K ูุนูุฏ N |
|
|
|
500 |
|
00:38:37,180 --> 00:38:43,840 |
|
ุนู
ููู
ุฅูุงูุง ูุงู ู
ู ุนูุฏ K ุจุชุณุงูู ุฃู ู
ู ุนูุฏ M ุจุชุณุงูู |
|
|
|
501 |
|
00:38:43,840 --> 00:38:51,220 |
|
K ูุนูุฏ ู
ูู ูุนูุฏ N ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงู summation ู
ู M |
|
|
|
502 |
|
00:38:51,220 --> 00:38:58,280 |
|
ุจุชุณุงูู K ูุนูุฏ ู
ูู ูุนูุฏ N ูุฐู ุจุชุตูุฑ ุงููู ูู K ูุงูุต |
|
|
|
503 |
|
00:38:58,280 --> 00:39:07,350 |
|
ูุงุญุฏ fixed K ูุงูุต ุงููู ูู K ูู X K ุฒุงุฆุฏ ูุงุญุฏ ุงููู |
|
|
|
504 |
|
00:39:07,350 --> 00:39:12,190 |
|
ุจุนุฏูุง K ุฒุงุฆุฏ ูุงุญุฏ ุงููู ูู ุจูุตูุฑ K ูู X K ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
505 |
|
00:39:12,190 --> 00:39:15,250 |
|
ุฑุงุญุช ู
ุน ุงูุฃููู ูุงูุต ูุฏู ููู ูุงุญุฏุฉ ุจุช cancel |
|
|
|
506 |
|
00:39:15,250 --> 00:39:19,570 |
|
ุงูุซุงููุฉ ุจุชุธูุฑ ุฃูู ูุงุญุฏุฉ ู ุขุฎุฑ ูุงุญุฏุฉ ุงููู ูู ุฃูู |
|
|
|
507 |
|
00:39:19,570 --> 00:39:25,470 |
|
ูุงุญุฏุฉ K ูุงูุต ูุงุญุฏ ูู X K ูุงูุต ุขุฎุฑ ูุงุญุฏุฉ ุงููู ูู N |
|
|
|
508 |
|
00:39:25,470 --> 00:39:30,110 |
|
ูู X N ุฒุงุฆุฏ ูุงุญุฏ ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงู summation ูุฐุง |
|
|
|
509 |
|
00:39:30,110 --> 00:39:34,560 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู A ูุงูุต ูุงุญุฏ ุนุงู
ุงูู
ุดุชุฑู ูุฃูู ูููุง |
|
|
|
510 |
|
00:39:34,560 --> 00:39:39,620 |
|
ุจูุช ู
ุถุฑูุจ ู
ุถุฑูุจ ูู ู
ููุ ูู ุงููู ุจุถุฑ ู
ู ุนูุฏ K ูุนูุฏ |
|
|
|
511 |
|
00:39:39,620 --> 00:39:44,400 |
|
ู
ููุ ูุนูุฏ XK XK ุฒุงุฆุฏ ูุงุญุฏ ูุนูุฏ ู
ููุ ูุนูุฏ X ุจููู |
|
|
|
512 |
|
00:39:44,400 --> 00:39:51,380 |
|
ุญุตูุช ุนูู ูุฐู ุงููู ูู ุงู inequality ุงูุขู ูุงุญุธูุง ู
ุง |
|
|
|
513 |
|
00:39:51,380 --> 00:39:57,930 |
|
ูููู ุญุตูุช ูุง ุฌู
ุงุนุฉ ุงูู ุงูู Series ูุฐู ุฃู ุงูู |
|
|
|
514 |
|
00:39:57,930 --> 00:40:02,770 |
|
Sequence ูุฐู ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ู
ููุง ู
ุฏุงู
ุงูู |
|
|
|
515 |
|
00:40:02,770 --> 00:40:08,810 |
|
Decreasing ุญุตูุช ู ุฌู
ุนูุง ู ุงุณุชุฎุฏู
ูุง ุงูู Telescoping |
|
|
|
516 |
|
00:40:08,810 --> 00:40:15,640 |
|
ุญุตููุง ูุฐู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ูุฐู ุทูุจ ุงูุขู ูุฐุง ูุธูุฑ ุฃู ุงูู |
|
|
|
517 |
|
00:40:15,640 --> 00:40:20,900 |
|
partial sums Sn of ุณู
ูุด ุงูู Xn ุงููู ูู ุตุงุฑ ุนูุฏูุงู |
|
|
|
518 |
|
00:40:20,900 --> 00:40:25,920 |
|
ุงููู ูู ุงูู Sn ู
ุธุจูุท ูุฐุง ุงูู Sn ูุฃูู ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
519 |
|
00:40:25,920 --> 00:40:29,740 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ุนูู A-1 ูA-1 ุนุจุงุฑุฉ ุนู ุฅููุ ุนุดุงู ุซุงุจุช |
|
|
|
520 |
|
00:40:30,560 --> 00:40:34,860 |
|
ุงูุขู ุงูู sequence of partial sums Sn ุงููู ูู summation |
|
|
|
521 |
|
00:40:34,860 --> 00:40:40,220 |
|
Xn are bounded ู
ุฏุงู bounded ุฅุฐุง ุฅูุด ุจุฏู ููููุ ุจุฏู |
|
|
|
522 |
|
00:40:40,220 --> 00:40:46,580 |
|
ูููู convergent ุฏู ูุดูู ุฅูุด ุงููู ุจูููู ุฃูุชุจ ููู |
|
|
|
523 |
|
00:40:46,580 --> 00:40:53,420 |
|
ููุง .. ุทูุจ ุดูููุง ุนูุฏู ุฅูุด |
|
|
|
524 |
|
00:40:53,420 --> 00:40:58,990 |
|
ุงููู ุญุตููุง ุนูููุ ุงููู ูู ุงูู Sn ุจุณุงูู ุงููู ูู ุงู |
|
|
|
525 |
|
00:40:58,990 --> 00:41:00,810 |
|
summation absolute value ูู |
|
|
|
526 |
|
00:41:04,710 --> 00:41:10,610 |
|
ุงูู XK ุฃู ูุจู ุญุชู ูุจู ุงูุฃุณุฆูุฉ ุญุตูููุง ุนูู ุงูู A-1 |
|
|
|
527 |
|
00:41:10,610 --> 00:41:16,390 |
|
ูู ุงูู XK ุฒุงุฆุฏ absolute value ูู XN ูุฐุง ููู ุนูู |
|
|
|
528 |
|
00:41:16,390 --> 00:41:23,690 |
|
ุจุนุถู ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงููู ูู K-1 ุจุญูููุง K-1 ุฃูุดู |
|
|
|
529 |
|
00:41:23,690 --> 00:41:29,950 |
|
ู
ุนูู K ูุฃูู ู
ู ุนูุฏูุง M ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ู
ู K K ุฃูุดู |
|
|
|
530 |
|
00:41:29,950 --> 00:41:36,200 |
|
ู
ุนูู K-1 ูู ุงู absolute value ูXK ูุงูุต N ูู ุงูู |
|
|
|
531 |
|
00:41:36,200 --> 00:41:41,040 |
|
absolute value XN ุฒุงุฆุฏ ูุงุญุฏ ู
ุงุดู ุงูุญุงู ูุฐู ุงูู N |
|
|
|
532 |
|
00:41:41,040 --> 00:41:51,800 |
|
ุนุงูู
ูู ุนูู ุงู A ูุงูุต ูุงุญุฏ ูุฃู ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ุฃู |
|
|
|
533 |
|
00:41:51,800 --> 00:41:58,040 |
|
ูุณุงูู ูุฐุง ููุฐุง ุฃููุฏ ุฃููุฏ ูุฐุง ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงู K |
|
|
|
534 |
|
00:41:58,040 --> 00:42:03,400 |
|
ูุงูุต ูุงุญุฏ ูู absolute value XK ุนูู A ูุงูุต ูุงุญุฏ |
|
|
|
535 |
|
00:42:03,860 --> 00:42:07,840 |
|
ูุฃูู ุงูุขู ุงูู Schilt ุงููู ูู ุงูู
ูุฏุงุฑ ูุฐุง ุงูุณุงูุจ |
|
|
|
536 |
|
00:42:07,840 --> 00:42:12,520 |
|
ุงููู ู
ุทุฑูุญ ุฅุฐุงู ูุฐุง ุจููุจุฑ ูุตุงุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ุฃู |
|
|
|
537 |
|
00:42:12,520 --> 00:42:17,700 |
|
ูุณุงูู ูุฐุง ูุฐุง ุงู K ุนุจุงุฑุฉ ุนู fixed ุฑูู
fixed number |
|
|
|
538 |
|
00:42:17,700 --> 00:42:21,120 |
|
ุงููู ูู ูุฅูู ุงุญูุง ุจุฏูู ู
ู ุนูุฏ K ุฃูุจุฑ ุฃู ุฃูุจุฑ ูุณุงูู |
|
|
|
539 |
|
00:42:21,120 --> 00:42:26,080 |
|
K ุฅุฐุงู K ุฅุดู ู
ุนูู ุจุญูู ุนูู ุฅุฐุงู ูุฐุง ุงูู
ูุฏุงุฑ ู
ู XK |
|
|
|
540 |
|
00:42:26,080 --> 00:42:30,720 |
|
ูุนูุฏ ุงู XN ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ูุฐุงู
ุงุดู ุงูุญุงู ุฅุฐุง ุตุงุฑ |
|
|
|
541 |
|
00:42:30,720 --> 00:42:42,880 |
|
ุนูุฏู ุงููู ูู ุงูู
ูุฏุงุฑ ูุฐุง ูู ุนุจุงุฑุฉ ุนู sn-sk-1 ู
ุธุจูุท |
|
|
|
542 |
|
00:42:42,880 --> 00:42:47,780 |
|
ููุง ูุฃุ ุฃููุฏ ููู absolute values ุทุจุนุงู ูุนูู ุจู
ุนูู |
|
|
|
543 |
|
00:42:47,780 --> 00:42:52,720 |
|
ุขุฎุฑ ุตุงุฑ Sn ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู Sk-1 ุจุฑุถู ุนุฏุฏ ุนุฏุฏ ุนุฏุฏ |
|
|
|
544 |
|
00:42:52,720 --> 00:43:01,500 |
|
ู
ุนูู ุฒุงุฆุฏ ุงููู ูู K-1 ูู XK ุนูู A-1 ุตุงุฑ ูุฐุง Sn |
|
|
|
545 |
|
00:43:01,500 --> 00:43:08,570 |
|
ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ูุฐุงููู N ุฃูุจุฑ ู
ู ุฃู ูุณุงูู K ูุนูู ุตุงุฑุช |
|
|
|
546 |
|
00:43:08,570 --> 00:43:11,850 |
|
ุงูู S N is bounded ูุนูู ุจู
ุนูู ุฃุฎุฑุ ุทุจุนุง ูุฐุง ุฃูุจุฑ |
|
|
|
547 |
|
00:43:11,850 --> 00:43:15,390 |
|
ู
ู ุฃู ูุณุงูู ุณูุฑ ุฃููุฏ ุงูู Nุ ุฅุฐุง limit ุงูู S N as N |
|
|
|
548 |
|
00:43:15,390 --> 00:43:19,910 |
|
goes to infinity ู
ูู
ุง ูุจุฑุช ุงูู Nุ ูุฐู ู
ุง ููุงุด |
|
|
|
549 |
|
00:43:19,910 --> 00:43:23,650 |
|
ุนูุงูุฉ ูููุง ุงูู N ูุฃูู N ุฃูุจุฑ ู
ู ุฃู ูุณุงูููุงุ ุฅุฐุง ุฃุตุบุฑ |
|
|
|
550 |
|
00:43:23,650 --> 00:43:27,560 |
|
ู
ู ุฃู ูุณุงูู ุงูู S K ูุงูุต ูุงุญุฏ ุฒุงุฆุฏ K ูุงูุต ูุงุญุฏ ูู |
|
|
|
551 |
|
00:43:27,560 --> 00:43:31,660 |
|
ุงูู absolute value of xk ุนูู a-1 ุจู
ุนูู ุขุฎุฑ ุตุงุฑุช |
|
|
|
552 |
|
00:43:31,660 --> 00:43:36,640 |
|
ุงูู Sn is convergent ุฃู ุจู
ุนูู ุขุฎุฑ ุงูุตู
ู
ุด ูู |
|
|
|
553 |
|
00:43:36,640 --> 00:43:40,040 |
|
absolute value of xn is convergent ูุนูู ูุชุตูุฑ |
|
|
|
554 |
|
00:43:40,040 --> 00:43:44,660 |
|
ุงูุณูุฑูุฒ ุนูุฏู is absolutely convergent |
|
|
|
555 |
|
00:43:46,650 --> 00:43:51,190 |
|
ุทูุจ ููุฌู ุงูุขู ูุฐุง ุชูุณูุฑ ุงูู ุงููู ูู this shows the |
|
|
|
556 |
|
00:43:51,190 --> 00:43:53,510 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
557 |
|
00:43:53,510 --> 00:43:53,850 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
558 |
|
00:43:53,850 --> 00:43:54,190 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
559 |
|
00:43:54,190 --> 00:43:56,030 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
560 |
|
00:43:56,030 --> 00:43:57,570 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
561 |
|
00:43:57,570 --> 00:43:57,730 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
562 |
|
00:43:57,730 --> 00:43:57,890 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
563 |
|
00:43:57,890 --> 00:43:57,990 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
564 |
|
00:43:57,990 --> 00:43:58,010 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
565 |
|
00:43:58,010 --> 00:43:58,330 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
566 |
|
00:43:58,330 --> 00:44:04,710 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
567 |
|
00:44:04,710 --> 00:44:06,150 |
|
ุงู .. ุงู .. |
|
|
|
568 |
|
00:44:15,000 --> 00:44:24,940 |
|
ูุฃุฎุฐ ุงูุฌุฒุก ุงูุซุงูู ุงูู similarly ูุดูู ููู suppose |
|
|
|
569 |
|
00:44:24,940 --> 00:44:29,660 |
|
that suppose that the relation 11 ูููุง ุงู relation |
|
|
|
570 |
|
00:44:29,660 --> 00:44:34,700 |
|
11 holds for n ุฃูุจุฑ ุฃู ูุณุงูู k ูุทุจุนุง ุงุญูุง ู
ูุชุฑุถูู ุงู |
|
|
|
571 |
|
00:44:34,700 --> 00:44:39,640 |
|
a ุฃุตุบุฑ ุฃู ูุณุงูู ูุงุญุฏ ุงูุขู ุตุงุฑ ุนูุฏู ุงู n ุถุฑุจูุง ุทุฑููู |
|
|
|
572 |
|
00:44:39,640 --> 00:44:42,800 |
|
ูู ูุณุทูู ููุณ ุงูุดูุก ูุจูุตูุฑ ุนูุฏู ุฒู ู
ุง ุนู
ููุง ูุจู |
|
|
|
573 |
|
00:44:42,800 --> 00:44:47,880 |
|
ุดููุฉ ุถุฑุจูุง ูุฐุง ุจูุตูุฑ ุนูุฏู ุงู n ุงููู ูู xn ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
574 |
|
00:44:48,690 --> 00:44:53,530 |
|
a ุฃุตุบุฑ ุฃูุจุฑ ุฃู ูุณุงูู ูุฐุง ูู ูุฐุง ูุถุฑุจูุง ูู n ูุตุงุฑุช |
|
|
|
575 |
|
00:44:53,530 --> 00:44:57,890 |
|
ุงู n ูู xn ุฒุงุฆุฏ ูุงุญุฏ ุฃูุจุฑ ุฃู ูุณุงูู ูู
ุง ุถุฑุจุช ุงู n |
|
|
|
576 |
|
00:44:57,890 --> 00:45:04,070 |
|
ููุง ุจูุตูุฑ n ูุงูุต a ูู ุงู absolute value ูู xn ุงูุขู |
|
|
|
577 |
|
00:45:04,070 --> 00:45:08,910 |
|
ุงู a ุฃุตุบุฑ ูุณุงูู ูุงุญุฏ ุฅุฐุง ูุงูุต ุงู a ุฃูุจุฑ ูุณุงูู ูุงูุต |
|
|
|
578 |
|
00:45:08,910 --> 00:45:12,230 |
|
ูุงุญุฏ ูู
ุง ุฏุงู
ูุงูุต ุงู a ุฃูุจุฑ ูุณุงูู ูุงูุต ูุงุญุฏ ุฅุฐุง |
|
|
|
579 |
|
00:45:12,230 --> 00:45:15,710 |
|
ุตุงุฑุช ุนูุฏู n ูุงูุต a ูู absolute value xn ุฃูุจุฑ ูุณุงูู |
|
|
|
580 |
|
00:45:15,710 --> 00:45:19,070 |
|
n ูุงูุต ูุงุญุฏ ูู absolute value xn ููู n ูุงูุตุฉ ูk |
|
|
|
581 |
|
00:45:19,070 --> 00:45:24,200 |
|
ูุฐู ูุฃู ุงู a ุฃุตุบุฑ ูุณุงูู ูุงุญุฏ ุงูุขู ุตุงุฑ ุนูุฏู ุงูุขู ูุงุถุญ |
|
|
|
582 |
|
00:45:24,200 --> 00:45:28,580 |
|
ุฃูู ุงู sequence ุงููู ูู ุงูุขู xn ุฒุงุฆุฏ ูุงุญุฏ ุฃูุจุฑ ุฃู |
|
|
|
583 |
|
00:45:28,580 --> 00:45:31,960 |
|
ูุณุงูู n ูุงูุต ูุงุญุฏ xn ูุนูู ุงู sequence ูุฐู ุตุงุฑุช |
|
|
|
584 |
|
00:45:31,960 --> 00:45:35,900 |
|
increasing for n ุฃูุจุฑ ุฃู ูุณุงูู k ู
ุง ุฒู
increasing |
|
|
|
585 |
|
00:45:35,900 --> 00:45:40,680 |
|
ุฅุฐุง there exists c such that ุงูุขู ูู ุงู absolute |
|
|
|
586 |
|
00:45:40,680 --> 00:45:45,300 |
|
value xn ุฒุงุฆุฏ ูุงุญุฏ ุฃูุจุฑ ู
ู ู
ููุ ู
ู c for n ุฃูุจุฑ ุฃู |
|
|
|
587 |
|
00:45:45,300 --> 00:45:49,750 |
|
ูุณุงูู k ู
ุงุดู ุงูุญุงู ุตุงุฑุช ู
ุฏุงู
ูุฐู ุงู series increasing |
|
|
|
588 |
|
00:45:49,750 --> 00:45:55,630 |
|
ุฅุฐุง ุฃููุฏ ูุชููู ุฃูุจุฑ ู
ู ุฃู ุดูุก ูู
ู some c ูุฃููุง |
|
|
|
589 |
|
00:45:55,630 --> 00:46:00,630 |
|
ุจุชุชุฒุงูุฏ ู
ุฏุงู
ุตุงุฑุช ุฃูุจุฑ ู
ู some c ููููู ุงูุญุฏ ุงูุฃูู |
|
|
|
590 |
|
00:46:00,630 --> 00:46:05,230 |
|
ู
ุซูุง and some absolute value xn ุฒุงุฆุฏ ูุงุญุฏ ุฃุตุบุฑ ู
ู |
|
|
|
591 |
|
00:46:05,230 --> 00:46:11,300 |
|
c ุนุงูู
ูู ุนูู ุงู and ูุณู
ูุง ุนูู ู
ููุ ุนูู ุงูุขู ุงูุขู ูุฐู |
|
|
|
592 |
|
00:46:11,300 --> 00:46:15,460 |
|
ุงู series diverse ุชุจุนุชูุง ุงู series ูุฐู ุชุจุนุช ุงููู |
|
|
|
593 |
|
00:46:15,460 --> 00:46:18,760 |
|
ูู ูุงุญุฏุฉ ุงูุขู diverse ุฅุฐุง ู
ู ุจุงุจ ุฃููู ุจุงู |
|
|
|
594 |
|
00:46:18,760 --> 00:46:23,100 |
|
comparison test ูุฐู ุชููู diverse ุฃู ุจู
ุนูู ุขุฎุฑ ุงู |
|
|
|
595 |
|
00:46:23,100 --> 00:46:27,580 |
|
series summation xn is not absolutely convergent |
|
|
|
596 |
|
00:46:27,930 --> 00:46:33,170 |
|
ููุฐุง ูู ุงูู Reopts Test ุงูุขู ูุงุฎุฐ ุงูู Corollary ูู |
|
|
|
597 |
|
00:46:33,170 --> 00:46:37,150 |
|
ุงูู Corollary ุทุจุนุง ูุชูุณุญุจ ุนูู ุฅูุด ูุง ุฌู
ุงุนุฉุ |
|
|
|
598 |
|
00:46:37,150 --> 00:46:41,110 |
|
ูุชูุณุญุจ ุฒู ู
ุง ูู ุงูู
ููุฌ ุงููู ุจูุนู
ูู ุฅุญูุง ุจูุงุฎุฏ ุงู |
|
|
|
599 |
|
00:46:41,110 --> 00:46:44,910 |
|
test ูุจูุงุฎุฏ ุงู limit ุชุจุนู ุฃู limit test ุชุจุนู ูููุง |
|
|
|
600 |
|
00:46:44,910 --> 00:46:48,870 |
|
ุงู limit test ุชุจุน ุงู Reopts Test ูุดูู ุฅูุด ุงููู |
|
|
|
601 |
|
00:46:48,870 --> 00:46:51,770 |
|
ุจูุนุทููุง ุฅูุงู ูุนุงุฏุฉ ุงููู ูู ุงู limits ุจุชููู ูู |
|
|
|
602 |
|
00:46:51,770 --> 00:46:56,150 |
|
ุงูุบุงูุจ ุฃุณูู ุฃู ุฃุณูู ูู ุงูุชุนุงู
ู ู
ู ุงููู ูู ุงู |
|
|
|
603 |
|
00:46:56,150 --> 00:47:01,180 |
|
comparison ุงูุนุงุฏู Latex ุจูุณุงูู XN ุจูู sequence of |
|
|
|
604 |
|
00:47:01,180 --> 00:47:05,340 |
|
non-zero real numbers ูุนูู ุฅูุด ู
ุงููุง sequence of |
|
|
|
605 |
|
00:47:05,340 --> 00:47:08,320 |
|
non-zero real numbers ู
ุงุดู ู
ุด .. ู
ุด .. ู
ุด ุตูุงุฑ |
|
|
|
606 |
|
00:47:08,320 --> 00:47:11,580 |
|
ูุนูู ุนุดุงู ููู ุฃุตูุง ููู ุงุญูุง ูู
ุง ุฃุฎุฐูุง strictly |
|
|
|
607 |
|
00:47:11,580 --> 00:47:16,040 |
|
ุฃูุจุฑ ู
ู C ูุฅูู ููุง .. ููุง .. ููุง ูุนูู ู
ุฒุงู
|
|
|
|
608 |
|
00:47:16,040 --> 00:47:22,130 |
|
sequence of non-zero ุงููู ูู numbers ุนุดุงู ูู ุญุฏ ุณุฃู |
|
|
|
609 |
|
00:47:22,130 --> 00:47:27,250 |
|
ุนู ุงููู ููู ูุฐู ููู ุฃูุจุฑ ู
ู C ุงููู ูู strictly |
|
|
|
610 |
|
00:47:27,250 --> 00:47:31,190 |
|
ูุฐูู non-zero ูู ูุงู ุฃูู ูุงุญุฏ non-zero ุฅุฐุง ููู
ุชู |
|
|
|
611 |
|
00:47:31,190 --> 00:47:34,550 |
|
strictly ุฃูุจุฑ ู
ู 0 ูุนูู ูู ููู
ุฉ ู
ุญุฏุฏุฉ ูุงูุจุนุฏู ุจูููู |
|
|
|
612 |
|
00:47:34,550 --> 00:47:38,750 |
|
ุฃูุจุฑ ู
ูู ุฅุฐุง ุฃููุฏ ูู ุนูุฏู ุจุฏูุช ู
ู ุฑูู
C ุงููู ูู |
|
|
|
613 |
|
00:47:38,750 --> 00:47:43,010 |
|
ุงููู ูู ุงู term ุงูุฃูู ุงููู ูู ุงู XK ู
ุซูุง ูุจุนุฏู |
|
|
|
614 |
|
00:47:43,010 --> 00:47:46,370 |
|
ุจูุตูุฑ ูู ุงููู ุจุนุฏู ุฃูุจุฑ ู
ูู ุงููู ูู ุฃูุจุฑ strictly |
|
|
|
615 |
|
00:47:46,370 --> 00:47:52,310 |
|
ู
ู C ูุฒู ู
ุง ูุตููุง ุงููู ูู diversity ุฅุฐุง ุงูุขู let X |
|
|
|
616 |
|
00:47:52,310 --> 00:47:55,310 |
|
ุจูุณุงูู XN ุจูุจูู sequence of non-zero real numbers |
|
|
|
617 |
|
00:47:55,310 --> 00:48:01,110 |
|
and let A ุจูุณุงูู limit N ูู ูุงุญุฏ ูุงูุต XN ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
618 |
|
00:48:01,110 --> 00:48:04,850 |
|
ุนูู XN whenever this limit exists then the series |
|
|
|
619 |
|
00:48:04,850 --> 00:48:08,030 |
|
summation XN is absolutely convergent when A ุฃูุจุฑ |
|
|
|
620 |
|
00:48:08,030 --> 00:48:10,930 |
|
ู
ู ูุงุญุฏ and this series is not absolutely |
|
|
|
621 |
|
00:48:10,930 --> 00:48:13,790 |
|
convergent ูู A ุฃุตุบุฑ ู
ู ูุงุญุฏ ูุฐุง ูุงู let A ุจูุณุงูู |
|
|
|
622 |
|
00:48:13,790 --> 00:48:17,450 |
|
ูุงุญุฏ ูุนูุง ุทูุจ ูุนูู ุฅูุด ุจูููู ููุ ุจูููู ูู ุชุนุงู ุงุญุณุจ |
|
|
|
623 |
|
00:48:18,370 --> 00:48:23,390 |
|
ุงุญุณุจ ูู ุงููู ูู limit n ูู 1 ูุงูุต xn ุฒุงุฆุฏ 1 ุนูู xn |
|
|
|
624 |
|
00:48:23,390 --> 00:48:26,490 |
|
ุฅุฐุง ุฌูุช ุงู limit as n goes to infinity ููุฐุง |
|
|
|
625 |
|
00:48:26,490 --> 00:48:30,230 |
|
ุงูู
ูุฏุงุฑ ูุจููุณูููู ุฃุตูุง ุฅุฐุง ุฌูุช ุงู limit ุจูุณุงูู |
|
|
|
626 |
|
00:48:30,230 --> 00:48:34,890 |
|
ุฑูู
a ุฅุฐุง ูุงู ุงููู ูุฏู exist ูุนูู ููู ุฌูุช ุจุณุงูู a |
|
|
|
627 |
|
00:48:34,890 --> 00:48:39,990 |
|
ุจุชูุฌู ุงูุขู ููุญูู
ุฅุฐุง a ุจูุณุงูู 1 ุจุชุญูู ูู ุฅุฐุง ุงูู A |
|
|
|
628 |
|
00:48:39,990 --> 00:48:43,990 |
|
ุฃูุจุฑ ู
ู ูุงุญุฏ ุนูู ุชููู ุจุชููู converge ูุฅุฐุง ูุงูุช ุงูู |
|
|
|
629 |
|
00:48:43,990 --> 00:48:47,570 |
|
A ุฃุตุบุฑ ู
ู ูุงุญุฏ ุจุชููู ุฅููุ ุงุดู
ุงูู is not absolutely |
|
|
|
630 |
|
00:48:47,570 --> 00:48:50,990 |
|
convergent ุญุชู ู
ุด converge absolutely convergent |
|
|
|
631 |
|
00:48:50,990 --> 00:48:54,650 |
|
ูู ุงูุฃููู ูู
ุง ุชููู A ุฃูุจุฑ ู
ู ูุงุญุฏ was not |
|
|
|
632 |
|
00:48:54,650 --> 00:48:59,370 |
|
absolutely convergent for A ุงููู ูู ุฃุตุบุฑ ู
ู ูุงุญุฏ |
|
|
|
633 |
|
00:48:59,370 --> 00:49:05,370 |
|
ููุฌู ุงูุขู ู ุงููู ูู ููุชุฑุถ ุฃูู ุงู limit ูุฐู exist |
|
|
|
634 |
|
00:49:05,370 --> 00:49:11,180 |
|
ููุตู ู ุงููู ุจุฏูุง ุฅูุงู ุงูุขู ูุฐู ุงูููุฑุฉ ุนู
ููุงูุง ูุจู ููู |
|
|
|
635 |
|
00:49:11,180 --> 00:49:15,940 |
|
ูู ุงู proof of Corolla 926 ุงูุขู ุจุฏูุง ููุชุฑุถ suppose |
|
|
|
636 |
|
00:49:15,940 --> 00:49:21,040 |
|
that limit 1100-Xn ุฒู 1Xn ูุณุงูู ุฅููุ ุฃูุจุฑ ู
ู ู
ููุ ู
ู |
|
|
|
637 |
|
00:49:21,040 --> 00:49:25,800 |
|
ูุงุญุฏ ุงูุขู suppose that |
|
|
|
638 |
|
00:49:33,400 --> 00:49:40,040 |
|
limit n ูู 1 ูุงูุต xn ุฒู 1 ุนูู xn ุจูุณุงูู a ุฃูุจุฑ ู
ู 1 |
|
|
|
639 |
|
00:49:40,040 --> 00:49:43,820 |
|
ู
ุฏุงู
ุงู limit ูุฐุง exist ุฅุฐุง ููู y ุฃูุจุฑ ู
ู 0 ููุฌุฏ |
|
|
|
640 |
|
00:49:43,820 --> 00:49:47,900 |
|
ููุฌุฏ ุงููู ูู k such that ูุฐุง ุงูู
ูุฏุงุฑ ูุงูุต a ุฃุตุบุฑ |
|
|
|
641 |
|
00:49:47,900 --> 00:49:51,280 |
|
ู
ู y for every n ุฃูุจุฑ ูุณุงูู k ุงููู ูุนูู ุงู epsilon |
|
|
|
642 |
|
00:49:51,280 --> 00:49:54,480 |
|
ุงููู ุจุฏุฃ ุงุฎุชุงุฑูุง ุจุฏุฃ ุชุฎุฏู
ูู ุฒู ู
ุง ุนู
ููุง ูุจู ููู ูู |
|
|
|
643 |
|
00:49:54,480 --> 00:49:59,320 |
|
ุงู proof ุชุจุน 109 ุงููู ูู 6 ุงูุขู ุจู
ุง ุฃูู a ุฃูุจุฑ ู
ู |
|
|
|
644 |
|
00:49:59,320 --> 00:50:04,180 |
|
ูุงุญุฏ ูุนูู ุงููุชุฑุฉ ุจูู a ูุงููุงุญุฏ ูุงู a ุฃููุฏ ูู a |
|
|
|
645 |
|
00:50:04,180 --> 00:50:09,740 |
|
ูุงุญุฏ ุจูููู
ุงูุขู ุนูุฏู ุงู a ูุงุญุฏ ุงู a ูุงุญุฏ ุงู |
|
|
|
646 |
|
00:50:09,740 --> 00:50:14,620 |
|
element ูุงุญุฏ ูุงู a ูู ุฌูุช ูุนูู ุจู
ุนูู ุขุฎุฑ ุงู a ูุงุญุฏ |
|
|
|
647 |
|
00:50:14,620 --> 00:50:19,620 |
|
ุฃูุจุฑ ู
ู ุงู a ูุฃุตุบุฑ ู
ู ุงู a ุงูุขู ุฎุฐ ุงู epsilon let |
|
|
|
648 |
|
00:50:19,620 --> 00:50:24,900 |
|
epsilon ุจูุณุงูู a minus a ูุงุญุฏ ุฃูุจุฑ ู
ู 0 ุงูุขู if |
|
|
|
649 |
|
00:50:24,900 --> 00:50:30,410 |
|
there exist then There exists K element in N such |
|
|
|
650 |
|
00:50:30,410 --> 00:50:35,390 |
|
that for every N ุฃูุจุฑ ุฃู ูุณุงูู K ููููู ุนูุฏู ุงููู ูู ุงู |
|
|
|
651 |
|
00:50:35,390 --> 00:50:39,990 |
|
N ูู ุงููุงุญุฏ ูุงูุต absolute value XN ุฒุงุฆุฏ ูุงุญุฏ ุนูู |
|
|
|
652 |
|
00:50:39,990 --> 00:50:46,090 |
|
ุงู absolute value ูู XN ูุงูุต ุงู A ุฃุตุบุฑ ู
ู ู
ููุ ู
ู Y |
|
|
|
653 |
|
00:50:46,090 --> 00:50:51,050 |
|
ุงููู ูู ุงู A minus A ูุงุญุฏ ููู ูุฐุง ุงูู
ูุฏุงุฑ ููุตูุฑ |
|
|
|
654 |
|
00:50:51,050 --> 00:50:56,730 |
|
ุนุจุงุฑุฉ ุนู ูุฐุง absolute value ุฃุตุบุฑ ู
ู ูุฐุง ูุฃูุจุฑ ู
ู |
|
|
|
655 |
|
00:50:56,730 --> 00:51:01,650 |
|
ุงููู ูู A ูุงูุต ุฃู A ูุงุญุฏ ูุงูุต A ูุฐุง ุงููู ููู
ูู |
|
|
|
656 |
|
00:51:01,650 --> 00:51:06,370 |
|
ุงูุขู ุงูุขู ูุชูุงุญุธ ุฅู ุฅู ูู ูุงุญุฏ ูุงูุต absolute value |
|
|
|
657 |
|
00:51:06,370 --> 00:51:10,630 |
|
of xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู absolute value of xn ุงููู ูู |
|
|
|
658 |
|
00:51:10,630 --> 00:51:17,530 |
|
ุฃุตุบุฑ ุฌูุจ ูุฐู hand ุจูุตูุฑ ุนูุฏู ุงููู ูู ูุงูุต ุฅูู |
|
|
|
659 |
|
00:51:21,840 --> 00:51:25,820 |
|
ุฃู ุฎูููุง ูุฃ ู
ู ุงูุฌูุฉ ุงูุซุงููุฉ ุฃูุง ู
ุด ุงูุฌูุฉ ุฏู ุฃูุจุฑ |
|
|
|
660 |
|
00:51:25,820 --> 00:51:30,260 |
|
ู
ู a ูุงุญุฏ ูุงูุต a ููุงูุต a ุจุฌูุจูุง ุนูู ุงูุฌูุฉ ุงูุซุงููุฉ |
|
|
|
661 |
|
00:51:30,260 --> 00:51:35,260 |
|
ุจูุตูุฑ ุฒุงุฆุฏ a ุจูุตูุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุฃูุจุฑ ู
ู a ุฒุงุฆุฏ a |
|
|
|
662 |
|
00:51:35,260 --> 00:51:40,670 |
|
ูุงุญุฏ ูุงูุต a ูุนูู ุจุชุฑูุญ ุงู a ู
ุน ุงู A ููุต ูุงุญุฏ ูุจุตูุฑ |
|
|
|
663 |
|
00:51:40,670 --> 00:51:45,090 |
|
ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ุฃูุจุฑ ู
ู A ูุงุญุฏ ุญูุซ ุงู A ูุงุญุฏ |
|
|
|
664 |
|
00:51:45,090 --> 00:51:50,890 |
|
ุฃูุจุฑ ู
ู ูุงุญุฏ ุฅุฐุง ุตุงุฑ ุนูุฏู A ูุงุญุฏ ุฃุตุบุฑ ู
ู ูุฐุง |
|
|
|
665 |
|
00:51:50,890 --> 00:51:56,100 |
|
ุงูู
ูุฏุงุฑ ููู N ุฃูุจุฑ ุฃู ูุณุงูู K ูู
ูู ุฎูููุง ุจูุฌูุจ |
|
|
|
666 |
|
00:51:56,100 --> 00:52:01,680 |
|
ุงููู ูู ุจูุฌุณู
ุนูู N ุจูุตูุฑ ุงููู ูู ูุฐุง ุงูู
ูุฏุงุฑ 1 |
|
|
|
667 |
|
00:52:01,680 --> 00:52:06,480 |
|
ูุงูุต ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู A1 ุนูู N ุจูุฌูุจ ุงูู
ูุฏุงุฑ |
|
|
|
668 |
|
00:52:06,480 --> 00:52:09,840 |
|
ูุฐุง N ูุจูุฌูุจ ูุฐุง N ุจูุตูุฑ ุนูุฏู XN ุฒุงุฆุฏ 1 ุนูู XN |
|
|
|
669 |
|
00:52:09,840 --> 00:52:15,300 |
|
ุฃุตุบุฑ ู
ู 1 ูุงูุต ุงููู ูู A1 ุนูู N ุทุจุนุง ุจุนุฏ ู
ุง ูุณู
ูุง |
|
|
|
670 |
|
00:52:15,300 --> 00:52:18,840 |
|
ูุฐุง ุฃูู ุดูุก ูุจุนุฏูู ุจูุฌูุจ ูุฐุง N ุจุนุฏ ู
ุง ูุณู
ูุงู |
|
|
|
671 |
|
00:52:18,840 --> 00:52:22,120 |
|
ูุจูุฌูุจ ูุฐุง N ุจูุทูุน ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ููุฑุฃู ุฃูุจุฑ |
|
|
|
672 |
|
00:52:22,120 --> 00:52:26,400 |
|
ุดููุฉ ุตุงุฑุช ุงููู ูู ุงูุตูุฑุฉ ูุฐู ุตูุฑุฉ ู
ููุ ุตูุฑุฉ ุงููู |
|
|
|
673 |
|
00:52:26,400 --> 00:52:31,140 |
|
ูู ุงูุฑุงูุจุณุช ุงูุฃููู ุฅุฐุง ุจูู ุฑูุงุจุณุช ููููู ุนูุฏู ุงููู |
|
|
|
674 |
|
00:52:31,140 --> 00:52:36,990 |
|
ูู ุจู
ุง ุฃูู A ูุงุญุฏ ุฃูุจุฑ ู
ู ูุงุญุฏ ูุฃูู ุจูู ุงููุงุญุฏ ุจูู |
|
|
|
675 |
|
00:52:36,990 --> 00:52:41,070 |
|
ุงููุงุญุฏ ูุงู A ููุตูุฑ ุนูุฏู ุงููู ูู ุจูุฑุงุจุณุชูุณ |
|
|
|
676 |
|
00:52:41,070 --> 00:52:46,890 |
|
ุงูุตู
ู
ุดู ูู ุฅูุณุงู is absolutely convergent ูุฃุตุบุฑ ู
ู |
|
|
|
677 |
|
00:52:46,890 --> 00:52:52,630 |
|
ูุงุญุฏ ูุฃุตุบุฑ ู
ู ูุงุญุฏ ุจุฏู ูุตูุฑ ุงูู
ูุถูุน ุงูุขู ู
ุดุงุจู ุจุณ |
|
|
|
678 |
|
00:52:52,630 --> 00:52:56,090 |
|
ุจุชุฎุชูู ู
ู ููุง ุฎูู ุฃุชู ูุดูู ููู
ุฅูุงู ููู ุจูุฎุชูู |
|
|
|
679 |
|
00:52:56,090 --> 00:53:03,220 |
|
ุงูุขู for a ุฃุตุบุฑ ู
ู ู
ููุ ู
ู ูุงุญุฏ ูู
ุง ุชููู a ุฃุตุบุฑ ู
ู |
|
|
|
680 |
|
00:53:03,220 --> 00:53:06,040 |
|
ูุงุญุฏ ุจุฏุง ุชุจุชูููุง ูุง ูู from national exam is not |
|
|
|
681 |
|
00:53:06,040 --> 00:53:10,420 |
|
absolutely convergent a ุฃุตุบุฑ ู
ู ูุงุญุฏ ู
ุนูุงุชู ุฃูู ูู |
|
|
|
682 |
|
00:53:10,420 --> 00:53:14,680 |
|
ุจูููู
a ูุงุญุฏ ุฎูุฌููุง ูููู a ุฃุตุบุฑ ู
ู ูุงุญุฏ ูุฅูู |
|
|
|
683 |
|
00:53:14,680 --> 00:53:16,680 |
|
between any two real numbers there exists a real |
|
|
|
684 |
|
00:53:16,680 --> 00:53:21,080 |
|
number ุงููู ูู a ูุงุญุฏ ุจูู ุงู a ู ุจูู ุงููู ูู ู
ููุ |
|
|
|
685 |
|
00:53:21,080 --> 00:53:26,810 |
|
ุงููุงุญุฏ ุงููู ุนุงููุฉ epsilon a ูุงุญุฏ ูุงูุต a A1-A ููู |
|
|
|
686 |
|
00:53:26,810 --> 00:53:30,010 |
|
ุฃูุจุฑ ู
ู 0 ูููู ููุณู ุฒู ู
ุง ูู there exists such |
|
|
|
687 |
|
00:53:30,010 --> 00:53:38,030 |
|
that ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู A 1-A ูู ุฃูุจุฑ ู
ู ุงููู ูู |
|
|
|
688 |
|
00:53:38,030 --> 00:53:42,530 |
|
ุณุงูุจ ุงููู ูู A-A1 ูุฐู ุงูู
ูุทูุฉ ุจุฏูุด ุฅูุงูุง ุจุงุฎุฐ |
|
|
|
689 |
|
00:53:42,530 --> 00:53:46,010 |
|
ุงูู
ูุทูุฉ ูุฐู ุจูุตูุฑ ุนูุฏู ุงููู ูู ุฒู ู
ุง ุนู
ููุง ูุจู |
|
|
|
690 |
|
00:53:46,010 --> 00:53:50,110 |
|
ุจุงูุถุจุท ุจูุตูุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ูุจุฌูุจ ูุฐุง ุงู A ูุงู
|
|
|
|
691 |
|
00:53:50,110 --> 00:53:54,210 |
|
ุจูุตูุฑ ุฃุตุบุฑ ูู
ุง ูุงูุต A ุชุฌูุงู ุจูุตูุฑ ุฒุงุฆุฏ A ู
ุน ูุงูุต A |
|
|
|
692 |
|
00:53:54,210 --> 00:53:58,710 |
|
ุจุชุฑูุญ ุจูุตูุฑ ุฃุตุบุฑ ู
ู ู
ููุ ู
ู A ูุงุญุฏ ุงูุขู ูุฐุง ุฃุตุบุฑ ู
ู |
|
|
|
693 |
|
00:53:58,710 --> 00:54:02,130 |
|
A ูุงุญุฏ ุฅุฐุง ุจูุตูุฑ ุนูุฏู ุจูุณุจ ุงูุฌูุชูู ุนูู N ุจูุตูุฑ ุนูู |
|
|
|
694 |
|
00:54:02,130 --> 00:54:06,090 |
|
N ููุฐู ุจูุฌููุง ุนูู ุงูุฌูุฉ ูุฐู ููุฐู ุจุฌูุจูุง ููุง |
|
|
|
695 |
|
00:54:06,090 --> 00:54:10,030 |
|
ุจูุตูุฑ ูุงุญุฏ ูุงูุต A ูุงุญุฏ ุนูู N ุฃุตุบุฑ ู
ู absolute |
|
|
|
696 |
|
00:54:10,030 --> 00:54:15,270 |
|
value XN ุฒุงุฆุฏ 1 ุนูู ุงู absolute ูู XN ุจููู ุญุตููุง |
|
|
|
697 |
|
00:54:15,270 --> 00:54:20,250 |
|
ุนูู ูุฐุง ุงูู
ูุฏุงุฑ ุฃูุจุฑ ู
ู ูุงุญุฏ ูุงูุต A ูุงุญุฏ ุนูู N ููุฐุง |
|
|
|
698 |
|
00:54:20,250 --> 00:54:25,270 |
|
ุงููู ูู ููู N ุฃูุจุฑ ุฃู ูุณุงูู K ุฅุฐุง ุญุณุจ B ูู ุฑูุงุจ ุงู |
|
|
|
699 |
|
00:54:25,270 --> 00:54:30,190 |
|
test ุจู
ุง ุฃู A ูุงุญุฏ ุงููู ูู ุฃุตุบุฑ ู
ู ูุงุญุฏ ุฅุฐุง ูุฐู |
|
|
|
700 |
|
00:54:30,190 --> 00:54:33,450 |
|
ุงููู ูู ุงู series ุงููู ูู summation ูู X absolute |
|
|
|
701 |
|
00:54:33,450 --> 00:54:36,810 |
|
value XN is not convergent ุฃู ุจู
ุนูู ุขุฎุฑ summation |
|
|
|
702 |
|
00:54:36,810 --> 00:54:40,690 |
|
ุงูู XN is not absolutely convergent ุฅุฐุง ุงู exercise |
|
|
|
703 |
|
00:54:40,690 --> 00:54:45,390 |
|
ูุฐุง ูููู ูุถุญุช ููู
ูุง ุฌู
ุงุนุฉ ุทูุจ |
|
|
|
704 |
|
00:54:47,450 --> 00:54:51,130 |
|
ูุฃู ูู ุญุงูุฉ ุงููู ูู ุฅูุง ุฅูู ุจุงูุณุงุนุฉ ูุงุญุฏ ูููุง No |
|
|
|
705 |
|
00:54:51,130 --> 00:54:54,870 |
|
conclusion where either convergence or divergence |
|
|
|
706 |
|
00:54:54,870 --> 00:55:00,490 |
|
is possible ุทูุจ ุฎูููุง ูุดูู ุงููู ูู examples ุนูู |
|
|
|
707 |
|
00:55:00,490 --> 00:55:04,670 |
|
ุงููู ูู ุงูู Raab's test ููุฑุฌุน ูู
ููุ ููุฑุฌุน ููู ูู |
|
|
|
708 |
|
00:55:04,670 --> 00:55:08,970 |
|
ุงูู B series ุชุจุนูุง ููุดูู ููู ููุถุญ ุงููู ูู ุงู test |
|
|
|
709 |
|
00:55:08,970 --> 00:55:12,230 |
|
ุชุจุนูุง ุงูู Raab's test ุฃู ุงูู Corollary ุงููู ุนููู |
|
|
|
710 |
|
00:55:12,230 --> 00:55:25,120 |
|
ููู ุงููู ูู ูุณุชุฎุฏู
ูุง ุนูุฏูุง ูู ุฃู
ุซูุชูุง ุงูุขู ุฃุฎุฐูุง |
|
|
|
711 |
|
00:55:25,120 --> 00:55:28,780 |
|
ุงู limit ุนูู ุทูู ุงููู ูู ุงู X ุฒุงุฆุฏ N ุฒุงุฆุฏ ูุงุญุฏ ุนูู |
|
|
|
712 |
|
00:55:28,780 --> 00:55:33,520 |
|
ุงู Xn ุทุจุนูุง ูุฐู ุฌุงูุฒุฉ ู positive ุฃุตููุง ุจูุตูุฑ ุนูุฏู |
|
|
|
713 |
|
00:55:33,520 --> 00:55:37,980 |
|
ุงููู ูู xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุงู xn ูุงุญุฏ ูุงูุตูุง ูู n |
|
|
|
714 |
|
00:55:37,980 --> 00:55:42,380 |
|
ุญุณุจุชูุง ู ูุณุงูู limit n ูู ูุงุญุฏ ูุงูุต ูุงุญุฏ ุนูู n |
|
|
|
715 |
|
00:55:42,380 --> 00:55:47,140 |
|
ุบูุจุชูุง ุตุงุฑุช n<sup>b</sup> ุนูู ูุงุญุฏ ุนูู n ุฒุงุฆุฏ ูุงุญุฏ ุงููู ุฃุณ b ู |
|
|
|
716 |
|
00:55:47,140 --> 00:55:52,860 |
|
ูุณุงูู limit ุนูุฏู ุงู n ุงููู ูู ุฃุญุทุช ุงูู
ูุงู
ุงุช ูุตุงุฑุช N |
|
|
|
717 |
|
00:55:52,860 --> 00:55:56,060 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุฃุณ b N ุฃุณ b ุนูู N ุฒุงุฆุฏ ูุงุญุฏ ููู ุฃุณ b ูู |
|
|
|
718 |
|
00:55:56,060 --> 00:56:03,020 |
|
ู
ูู ูู N ููุณุงูู ุงู N ุนุจุงุฑุฉ ุนู N ุฒุงุฆุฏ ูุงุญุฏ ุฃุณ b ูุงูุต |
|
|
|
719 |
|
00:56:03,020 --> 00:56:08,660 |
|
N ุฃุณ b ุนูู ูุงุญุฏ ุนูู N ููุฐู ุฌุจุช ู
ูู ูุญุงููุง ูุงุญุฏ |
|
|
|
720 |
|
00:56:08,660 --> 00:56:12,300 |
|
ุนูู N ุฒุงุฆุฏ ูุงุญุฏ ุฃุณ b ูุนูู ุฌุจุช ูุฐู ููุง ููุฐู ูุตูุช |
|
|
|
721 |
|
00:56:12,300 --> 00:56:17,280 |
|
ูุญุงููุง ุตุงุฑุช ูุฐู ูู ูุฐู ูุฃู ูุฐู limit ู
ุนุฑูู ุตุงุฑ ุงู N |
|
|
|
722 |
|
00:56:17,280 --> 00:56:22,980 |
|
limit ุงููู ูู ูุฐุง ุงูู
ูุฏุงุฑ ุงูุขู ูุงุญุฏ ุนูู n ุฌูุช ุงููู |
|
|
|
723 |
|
00:56:22,980 --> 00:56:29,860 |
|
ูู ุฌุณู
ุช ููู ุนูู n ุฃุณ b ู ุชุญุช ุนูู n ุฃุณ b ู
ุงุดู |
|
|
|
724 |
|
00:56:29,860 --> 00:56:33,760 |
|
ูู
ุง ุฌุณู
ุช ูุฐุง ุนูู n ุฃุณ b ุตุงุฑ ูุฐุง ุนุจุงุฑุฉ ุนู ูุงุญุฏ |
|
|
|
725 |
|
00:56:33,760 --> 00:56:37,760 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ูู ุฃุณ b ููุฐู ูุงุญุฏ ูุงูุต ูุงุญุฏ |
|
|
|
726 |
|
00:56:37,760 --> 00:56:41,140 |
|
ููุฐู ุฒู ู
ุง ูู ุฏูุช ููู
ุง ุฌุณู
ุช ูุฐุง ุนูู n ุฃุณ b |
|
|
|
727 |
|
00:56:41,140 --> 00:56:45,770 |
|
ุตุงุฑุช ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ุฃุณ b ุงูุขู ู ูุณุงููุ |
|
|
|
728 |
|
00:56:45,770 --> 00:56:50,550 |
|
ุงูุขู limit ุงูุฃูู ูู limit ู
ููุ ุงูุซุงูู ุงูุขู limit |
|
|
|
729 |
|
00:56:50,550 --> 00:56:54,730 |
|
ุงูุซุงูู ูุฐุง ุณูู ุจูุณุงูู ูุงุญุฏ ุงููู ููู ุตุงุฑ ุนุจุงุฑุฉ ุนู |
|
|
|
730 |
|
00:56:54,730 --> 00:56:59,210 |
|
ุงูุขู ุงููู ูู ุตูุฑ ุนูู ุตูุฑุ ููุดุ ูุฃู as n goes to |
|
|
|
731 |
|
00:56:59,210 --> 00:57:02,110 |
|
infinityุ ูุฐู ุจูุตูุฑ ุตูุฑุ ูุฐู ุจูุตูุฑ ูุงุญุฏุ ู ูุงุญุฏ |
|
|
|
732 |
|
00:57:02,110 --> 00:57:05,030 |
|
ุจูุทูุน ุตูุฑุ ู ูุฐู ุตูุฑุ ุตูุฑ ุนูู ุตูุฑุ ุฏู ูุณุชุฎุฏู
ุงููู |
|
|
|
733 |
|
00:57:05,030 --> 00:57:07,610 |
|
ูู ุจุงูุชุงูู ุงูู L'Hรดpital's Rule ุงุณุชุฎุฏู
ุช ุงูู |
|
|
|
734 |
|
00:57:07,610 --> 00:57:11,450 |
|
ูุงุดุชููุช ุงููู ููู ู ุงููู ุชุญุช ุจุงููุณุจุฉ ูู n ุทุจุนูุง ูุฐุง |
|
|
|
735 |
|
00:57:11,450 --> 00:57:14,970 |
|
ุงู limit ุทูุน ู ุฎูุตูุง ูุงุญุฏ ุงุดุชูููุง ุทุงูุน ุนุจุงุฑุฉ ุนู b |
|
|
|
736 |
|
00:57:14,970 --> 00:57:18,870 |
|
ูู ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ูู ุฃุณ b ูุงูุต ูุงุญุฏ ูุทูุน |
|
|
|
737 |
|
00:57:18,870 --> 00:57:22,050 |
|
ุฏูู ุฌูุง ูุงูุต ูุงุญุฏ ุนูู n ุชุฑุจูุน ูู
ุง ูุถูุช ุงููู ุชุญุช |
|
|
|
738 |
|
00:57:22,050 --> 00:57:25,570 |
|
ุจุฑุถู ููุทูุน ููู ูุงูุต ูุงุญุฏ ุนูู n ุชุฑุจูุน ูุฐุง ุจูุฑูุญ ู
ุน |
|
|
|
739 |
|
00:57:25,570 --> 00:57:28,490 |
|
ุญุฏูู ุจูุตูุฑ ุนูุฏู as n goes to infinity ูุฐุง ุจูุฑูุญ |
|
|
|
740 |
|
00:57:28,490 --> 00:57:32,310 |
|
ููุตูุฑ ุฅุฐุง ุจูุตูุฑ ุฅูุด ุจูุณุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู b ูู |
|
|
|
741 |
|
00:57:32,310 --> 00:57:36,510 |
|
ูุงุญุฏ ุฃุณ b ูุงูุต ูุงุญุฏ ูุนูู ุนุจุงุฑุฉ ุนู ุฅููุ ุนู b ุงูุขู |
|
|
|
742 |
|
00:57:36,510 --> 00:57:40,390 |
|
ู
ุง ุฏุงู
b ู b ุฃูุจุฑ ุฃู ูุณุงูู ูุงุญุฏุ ุฅุฐุง ู
ู ุงูู Corollary |
|
|
|
743 |
|
00:57:40,390 --> 00:57:47,350 |
|
ุงููู ูุจู ุจุดููุฉ ุงูู B Series ุฅูุด ู
ุงููุงุ converges |
|
|
|
744 |
|
00:57:47,350 --> 00:57:53,140 |
|
for b ุฃูุจุฑ ู
ู ู
ูู ู
ู ูุงุญุฏ ุงูุขู ูู ุญุงูุฉ ุงููุงุญุฏ ูููุง |
|
|
|
745 |
|
00:57:53,140 --> 00:57:56,460 |
|
ุงููู ูู ูู
ุง ุงูู b ุจุชุทูุน ูุงุญุฏ ุงูู limit ุจูููู ุงู |
|
|
|
746 |
|
00:57:56,460 --> 00:58:00,720 |
|
test fail ูุนูู ูุฐู ุงููู ูู ุจุณ ุจูุณุชุฎุฏู
ูููุง ุงู test |
|
|
|
747 |
|
00:58:00,720 --> 00:58:04,560 |
|
for convergence ุจุณ ูู ุญุงูุฉ ุงููู ูู ู
ูู ุงููู ูู ุงู |
|
|
|
748 |
|
00:58:04,560 --> 00:58:08,800 |
|
b ุฃูุจุฑ ู
ู ูุงุญุฏ ุฃุซุจุชูุง ุฅูู converge ุจุทุฑููุฉ ุงููู |
|
|
|
749 |
|
00:58:08,800 --> 00:58:14,260 |
|
ูุฑูุจ ุงู test ุงูุขู |
|
|
|
750 |
|
00:58:14,260 --> 00:58:20,270 |
|
ูู ูุงูุช b ุฃูุจุฑ ู
ู ูุงุญุฏ ูู ูุงูุช b ุฃูุจุฑ ู
ู ูุงุญุฏ |
|
|
|
751 |
|
00:58:20,270 --> 00:58:26,270 |
|
ูููุง ุงููู ูู convergence |
|
|
|
752 |
|
00:58:26,270 --> 00:58:31,570 |
|
ู for b ุจูุณุงูู ูุงุญุฏ ุงููู ูู no conclusion ุทูุจ ููุฌู |
|
|
|
753 |
|
00:58:31,570 --> 00:58:38,400 |
|
ุงูุขู ูู
ุซุงู ุขุฎุฑ use the Raab's test to the series |
|
|
|
754 |
|
00:58:38,400 --> 00:58:42,040 |
|
summation ุงููู ุฃู
ุงู
ูุง ุงููู ูู ุจููุณ ุงูุฃุณููุจ ุจุฏูุง |
|
|
|
755 |
|
00:58:42,040 --> 00:58:48,240 |
|
ูุฃุฎุฐ ุงููู ูู limit ุงู xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู xn ุจูุณุงูู |
|
|
|
756 |
|
00:58:48,240 --> 00:58:51,940 |
|
ูุนูู ุจุฏู ูููู ูู ุฃูู ุงุญูุง ู
ุง .. ู
ุง ุธุจุทุด ู
ุนูู ุงููู ูู |
|
|
|
757 |
|
00:58:51,940 --> 00:58:55,920 |
|
ู
ูู ุงู ratio test ุงูุนุงุฏู ูุจุฏูุง ูุณุชุฎุฏู
ุงููู ูู ู
ูู |
|
|
|
758 |
|
00:58:55,920 --> 00:58:59,980 |
|
ุงู Raab's test ุทูุจ ุดูููุง ู
ุนุงูุง limit xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู |
|
|
|
759 |
|
00:58:59,980 --> 00:59:04,480 |
|
xn ุงู xn ุฒุงุฆุฏ ูุงุญุฏ ุงููู ูู n ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ุฒุงุฆุฏ |
|
|
|
760 |
|
00:59:04,480 --> 00:59:08,340 |
|
ูุงุญุฏ ููู ุชุฑุจูุน ุฒุงุฆุฏ ูุงุญุฏ ูุฅู ุชุฑุจูุน ุฒุงุฆุฏ ูุงุญุฏ ุนูู n |
|
|
|
761 |
|
00:59:08,340 --> 00:59:11,960 |
|
ุงููู ูู ุงู xn ูุฐู ูู
ุง ุฌุณู
ุช ุทุจุนูุง ูุฌูุจุช ูู ุงูุขุฎุฑ |
|
|
|
762 |
|
00:59:11,960 --> 00:59:19,970 |
|
ูุจูุตูุฑ ุนูุฏู ุงู n ุจูุณุงูู ุฌุณู
ุช ุงููู ูู ูุฐู ุนูู n ุจูุตูุฑ |
|
|
|
763 |
|
00:59:19,970 --> 00:59:23,150 |
|
ุนุจุงุฑุฉ ุนู ูุฐู ุฌุณู
ุชูุง ุนูู ูุฐุง n ุฒุงุฆุฏ ูุงุญุฏ ุนูู |
|
|
|
764 |
|
00:59:23,150 --> 00:59:26,270 |
|
ุงู n ุชุทูุน ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุงู n ููุฐู ุฒู |
|
|
|
765 |
|
00:59:26,270 --> 00:59:29,710 |
|
ู
ุง ูู n ุชุฑุจูุน ุฒุงุฆุฏ ูุงุญุฏ ุนูู ูุฐู ููู ุชุณุงูู limit |
|
|
|
766 |
|
00:59:29,710 --> 00:59:35,630 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ููุง ุจุฑุถู ุฌุณู
ุช ุนูู ู
ูู ุนูู n ุชุฑุจูุน ุตุงุฑ |
|
|
|
767 |
|
00:59:35,630 --> 00:59:39,230 |
|
ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ุชุฑุจูุน ูููุง ุนูู n ุชุฑุจูุน ุตุงุฑุช |
|
|
|
768 |
|
00:59:39,230 --> 00:59:43,650 |
|
ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุงู n ุงููู ุชุฑุจูุน ุฒุงุฆุฏ ูุงุญุฏ ุนูู |
|
|
|
769 |
|
00:59:43,650 --> 00:59:47,920 |
|
ู
ูู n ุชุฑุจูุน ูุฃู as n goes to infinity ูุฐู ูุงุญุฏ as |
|
|
|
770 |
|
00:59:47,920 --> 00:59:51,940 |
|
n goes to infinity ูุฐู ูุงุญุฏ ููุฐู ุตูุฑ ููุฐู ูุงุญุฏ |
|
|
|
771 |
|
00:59:51,940 --> 00:59:54,920 |
|
ูุนูู ุงูู
ุญุตูุฉ ูุงุญุฏ ุฅุฐุง ูุงุญุฏ ุนูู ูุงุญุฏ ุจูุณุงูู ูุงุญุฏ |
|
|
|
772 |
|
00:59:54,920 --> 01:00:01,380 |
|
ุงูุขู ุฅุฐุง ุจูุตู by corollary 926 does not apply ุฃู |
|
|
|
773 |
|
01:00:01,380 --> 01:00:05,640 |
|
corollary 926 ุงููู ูู ุงู ratio limit limit ratio |
|
|
|
774 |
|
01:00:05,640 --> 01:00:12,830 |
|
limit ratio test does not ููุง ุงููู ูู applied ููุดุ |
|
|
|
775 |
|
01:00:12,830 --> 01:00:16,970 |
|
ูุฃู ุงู limit ุงููู ุนูุฏู ูุงุญุฏ ุฅุฐุง ุตุงุฑ ุนูุฏู ุจุฏูุง ุงููู |
|
|
|
776 |
|
01:00:16,970 --> 01:00:22,790 |
|
ูู ูุญุงูู ููุฌุฏ ุทุฑููุฉ ุฃุฎุฑู ูู ุฌูุช ุฃู ูุฌุฏุช ุงููู ูู |
|
|
|
777 |
|
01:00:22,790 --> 01:00:27,370 |
|
ุจุฑุถู ุจุงู Raab's test ุงููู ูู limit n ูู 1 ูุงูุต xn ุฒู |
|
|
|
778 |
|
01:00:27,370 --> 01:00:31,190 |
|
1 ุนูู xn ุงููู ูู ุญุงูู ุชูุฌุฏ ุงู limit ุจููุณ ุงูุฃุณููุจ |
|
|
|
779 |
|
01:00:31,190 --> 01:00:34,330 |
|
ุงููู ููู ุจุณ ุฅูู ูุฐุง ุงูู
ูุฏุงุฑ ุงุญุณุจูู 1 ูุงูุต ูุฐู |
|
|
|
780 |
|
01:00:34,330 --> 01:00:37,130 |
|
ูุจุนุฏูู ุงุถุฑุจ ู
ู ูู ุงู n ุญุงูู ุชูุฌุฏ ุงู limit ูุชูุงููู |
|
|
|
781 |
|
01:00:37,130 --> 01:00:41,230 |
|
ุจูุณุงูู 1 ุฅุฐุง ุตุงุฑ ุนูุฏู ุงููู ูู Raab's test ุจุฑุถู ุฃูุง |
|
|
|
782 |
|
01:00:41,230 --> 01:00:51,310 |
|
ุฃุดู
ูู does not apply ููู ูู ุฌูุช ูู ุฌูุช ุงุทูุนุช ุนูู |
|
|
|
783 |
|
01:00:51,310 --> 01:00:56,760 |
|
ุงูู
ูุงุญุธุฉ ุงูุชูููุฉ ุฃุจุฏูุง ููุฌุฏ ุญูู ุฃู
ุฑ Xn ุฒุงุฆุฏ ูุงุญุฏ ุนูู |
|
|
|
784 |
|
01:00:56,760 --> 01:01:00,240 |
|
Xn ูุชูุงูู n ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ุฒุงุฆุฏ ูุงุญุฏ ูู ุชุฑุจูุน |
|
|
|
785 |
|
01:01:00,240 --> 01:01:03,740 |
|
ุฒุงุฆุฏ ูุงุญุฏ ูู n ุชุฑุจูุน ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ูุฐุง ุงููู ููู |
|
|
|
786 |
|
01:01:03,740 --> 01:01:09,800 |
|
ูุฐุง ุงููู ูู Xn ุฒุงุฆุฏ ูุงุญุฏ ููุฐุง ู
ูููุจ ู
ู Xn ุงูุขู ูู |
|
|
|
787 |
|
01:01:09,800 --> 01:01:16,060 |
|
ุฌูุช ุญุณุจุช ูุฐู ุฌุฑุจ ุฃูุช ุงุญุณุจ ูู ุฃุซุจุช ูู ุฃูู it is an |
|
|
|
788 |
|
01:01:16,060 --> 01:01:19,220 |
|
exercise to show that ุงู Xn ุฒูุงุฏุฉ ูุงุญุฏุฉ ูู Xn ุฃูู |
|
|
|
789 |
|
01:01:19,220 --> 01:01:22,400 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ูู ุงููู ุทูุน ุนูุฏู ูุชูุงููู ุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
790 |
|
01:01:22,400 --> 01:01:28,150 |
|
n ูุงูุต ูุงุญุฏ ุนูู ู
ูู ุนูู n ุงูุขู ู
ุง ุฏุงู
ูุฐุง ุฃูุจุฑ ู
ู ูุฐุง |
|
|
|
791 |
|
01:01:28,150 --> 01:01:32,550 |
|
ููุฐุง ุนุจุงุฑุฉ ุนู ุงููู ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ูุงูุต ูุงุญุฏ ุนูู |
|
|
|
792 |
|
01:01:32,550 --> 01:01:36,770 |
|
n therefore by Raab's test ุงููู ูู b the series |
|
|
|
793 |
|
01:01:36,770 --> 01:01:41,290 |
|
ุฅูุด ู
ุงููุง diverges ูุฃูู ูุชุจุช ุนูู ุตูุฑุฉ ูุงุญุฏ ูุงูุต |
|
|
|
794 |
|
01:01:41,290 --> 01:01:45,710 |
|
ูุงุญุฏ ุนูู n ููุฐุง ุงู a ุชุณุงูู ูุงุญุฏ ู
ุนูุงู ุจุงู Raab's |
|
|
|
795 |
|
01:01:45,710 --> 01:01:49,450 |
|
test ููููู ุงู series ูุฐู ุงููู ูู ุงู summation ูู x |
|
|
|
796 |
|
01:01:49,450 --> 01:01:52,570 |
|
and is not convergence is not absolutely |
|
|
|
797 |
|
01:01:52,570 --> 01:01:57,310 |
|
convergence ุฃู ุจู
ุนูู ุขุฎุฑ diverges ูุจููู ููู ุงุญูุง |
|
|
|
798 |
|
01:01:57,310 --> 01:02:02,250 |
|
ุงููููุง ุงููู ูู section ุงููู ูู ุชุณุนุฉ ุงุซููู ูุงูู |
|
|
|
799 |
|
01:02:02,250 --> 01:02:03,310 |
|
ููุงุก ุขุฎุฑ |
|
|