abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
97.1 kB
1
00:00:04,720 --> 00:00:09,780
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 11 ููŠ
2
00:00:09,780 --> 00:00:16,040
ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ 2 ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ
3
00:00:16,040 --> 00:00:24,760
ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ูˆู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฃูˆู„ู‰ ุจุนุฏ ุฅุนู„ุงู† ุงู„ุทูˆุงุฑุฆ
4
00:00:24,760 --> 00:00:32,580
ุจุฎุตูˆุต ุฃูˆ ุจู…ูˆุงุฌู‡ุฉ ููŠุฑูˆุณ ูƒูˆุฑูˆู†ุง ุงู„ู…ู†ุชุดุฑ ุงุชุญุฏุชู†ุง
5
00:00:32,580 --> 00:00:37,960
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉุจุฏุฃู†ุง ููŠ ุงู„ู„ูŠ ู‡ูˆ chapter 7 ุงู„ู„ูŠ ูƒุงู†
6
00:00:37,960 --> 00:00:41,280
ุงู„ุญุฏูŠุซ ุนู† ุงู„ riman integral ุฃูˆ ุชูƒุงู…ู„ ุงู„ riman
7
00:00:41,280 --> 00:00:45,860
ุจุฏุฃู†ุง ููŠ ุงู„ section ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุชุญุช ุนู†ูˆุงู† riman
8
00:00:45,860 --> 00:00:50,740
integrability ุนุฑูู†ุง ุดุบู„ุชูŠู† ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ upper sum
9
00:00:50,740 --> 00:00:55,960
ูˆ ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ lower sum ูˆ ู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ lower
10
00:00:55,960 --> 00:01:00,290
sumู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ summation ู„ู„ู€ mk ุงู„ู€ mk ู‡ุฐู‡
11
00:01:00,290 --> 00:01:06,410
ุชู…ุซู„ ููŠ xk minus xk minus 1 ุญูŠุซ mk ูƒุงู†ุช ุชู…ุซู„ ุฃูˆ m
12
00:01:06,410 --> 00:01:10,910
small k ูƒุงู†ุช ุชู…ุซู„ ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum ู„ู„ุฏุงู„ุฉ ุนู„ู‰
13
00:01:10,910 --> 00:01:15,520
ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุฐูƒูˆุฑุฉุงู„ุงู† ุงู„ .. ุงู„ .. ุงู„ other
14
00:01:15,520 --> 00:01:19,380
sum ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ summation ู„ู†ูุณ ุงู„ sum ุงู„ุนู„ูˆูŠ
15
00:01:19,380 --> 00:01:24,520
ูˆู„ูƒู† ุจุฏู„ุง ู…ู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ M K capital ุงู„ู„ูŠ ูƒุงู†ุช ุชู…ุซู„
16
00:01:24,520 --> 00:01:28,280
ุงู„ supremum ู„ ุงู„ F of X ูˆุงู„ X ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ููŠ
17
00:01:28,280 --> 00:01:34,110
ุงู„ูุชุฑุฉ ุงู„ู…ุฐูƒูˆุฑุฉ ุงู„ู„ูŠ ุนู†ุฏูŠุงู„ุขู† ุฃุฎุฏู†ุง ุฃูˆู„ ู„ู…ู‘ุฉ ุงู„ู…ุฑุฉ
18
00:01:34,110 --> 00:01:38,190
ุงู„ู…ุงุถูŠุฉ ูˆู‚ู„ู†ุง ุฅุฐุง ูƒุงู†ุช F ู…ู† I ู„R bounded ูˆ B any
19
00:01:38,190 --> 00:01:43,230
partition of I ุจุฏูŠ ูŠูƒูˆู† ุงู„ lower ุงู„ู„ูŠ ู‡ูˆ sum ู„ุฃูŠ
20
00:01:43,230 --> 00:01:47,810
partition B ูˆ function F ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ upper
21
00:01:47,810 --> 00:01:52,470
sum ู„ู†ูุณ ุงู„ partition ูˆ ู„ู†ูุณ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function F
22
00:01:52,470 --> 00:01:58,710
ุจุนุฏ ู‡ูŠ ุทุจุนุง ุฎุทูŠู†ุง ุฎุทูˆุฉ ุฃุฎุฑู‰ูˆ ุฌูŠู†ุง ุนุฑูู†ุง ุงู„ู„ูŠ ู‡ูˆ ุดูˆ
23
00:01:58,710 --> 00:02:03,110
ู…ุนู†ุงุชู‡ ุงู†ู‡ุง ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ partition Q refinement
24
00:02:03,110 --> 00:02:08,610
ู„ู„ partition B ู‚ู„ู†ุง Q ุงู„ู„ูŠ ู‡ูˆ ุชุญุณูŠู† ู„ B ุฅุฐุง ูƒุงู†ุช B
25
00:02:08,610 --> 00:02:13,940
ุจูŠ ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู† Qูˆ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ
26
00:02:13,940 --> 00:02:19,440
ู‚ู„ู†ุง ุงู† ุงูŠ ุงู„ู„ูŠ ู‡ูˆ sub interval xk-1xk ู…ู† ุงู„
27
00:02:19,440 --> 00:02:23,520
partition B ูŠู…ูƒู† ูƒุชุงุจุชู‡ุง ุนู„ู‰ ุตูˆุฑุฉ union of sub
28
00:02:23,520 --> 00:02:27,680
intervals ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุญุณูŠู† ุงู„ู„ูŠ ู‡ูˆ EQ
29
00:02:31,060 --> 00:02:36,380
ุงู„ุงู† ุฌูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุจู†ุงุก ุนู„ู‰ ู‡ุฐุง ุงู„ุชุนุฑูŠู ุฌูŠู†ุง ู‚ูˆู„ู†ุง
30
00:02:36,380 --> 00:02:40,480
ู„ูˆ ูƒุงู†ุช F is ู…ู† I ู„ุนู†ุฏ R is bounded ูˆ B is any
31
00:02:40,480 --> 00:02:45,780
partition of I ูˆ Q refinement ู„ู„ Bู…ุฏุงู… ุงู„ู„ูŠ ู‡ูˆ Q
32
00:02:45,780 --> 00:02:50,420
-refinement ุฅุฐุง ุงู„ lower sum ู‡ูŠุนู„ู‰ ูˆ ุงู„ upper sum
33
00:02:50,420 --> 00:02:54,820
ู‡ูŠู†ุฒู„ ุนู„ู‰ ุฃุณุงุณ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ู†ู‡ุงูŠุฉ ูŠู„ุชู‚ูŠ ุงู„
34
00:02:54,820 --> 00:02:58,740
upper ู…ุน ุงู„ lower ูˆ ู†ุตู„ ู„ุงู„ู„ูŠ ู‡ูˆ ุงู„ integrability
35
00:02:58,740 --> 00:03:02,800
ุฃูˆ ู…ุนู†ู‰ ุงู„ integrability ูƒู…ุง ุณู†ุฑู‰ ู„ุงุญู‚ุง ุนู„ู‰ ุงู„ุฃู‚ู„
36
00:03:02,800 --> 00:03:06,560
ููŠ ุงู„ู„ูŠ ู‡ูˆ ูŠูƒูˆู† ูˆุงุถุญ ู…ู† ุฎู„ุงู„ ุงู„ุฑุณู… ููŠ ุงู„ู„ูŠ ู‡ูŠ
37
00:03:06,560 --> 00:03:13,890
ุงู„ุฏูˆุงู„ ุงู„ู…ูˆุฌุจุฉ ูƒู…ุง ุฐูƒุฑู†ุง ุณุงุจู‚ุงุงู„ู„ูŠ ุจุญูƒูŠู‡ ุฅู†ู‡ ู„ูˆ
38
00:03:13,890 --> 00:03:17,330
ูƒุงู†ุช ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ F ู…ู† I ู„ R bounded ูˆB partition
39
00:03:17,330 --> 00:03:22,750
ูˆQ ูˆrefinement ู„ู„ู€ B ู‡ูŠูƒูˆู† ุนู†ุฏูŠ lower sum ู„ู„
40
00:03:22,750 --> 00:03:28,570
partition B ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ lower sum ู„ู„ุชุญุณูŠู† ุนู…ุงู„ู‡
41
00:03:28,570 --> 00:03:32,850
ุงู„ุชุญุณูŠู† ุจูƒุจุฑ ู„ู…ุง ุจุฏู‡ ูŠุตู„ ู„ูุนู„ุง ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ุฉ
42
00:03:32,850 --> 00:03:39,470
ููŠ ุญุงู„ุฉ ุงู„ุฏูˆุงู„ ุงู„ู…ูˆุฌุจุฉุงู„ู‚ุจุฑ ุตู… ู„ู€ Q ูˆ F ุณูŠุจุฏุฃ ูŠุตุบุฑ
43
00:03:39,470 --> 00:03:42,850
ูˆูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ุงู„ุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ุจุฑ ุตู… ู„ู€ P ูˆ F
44
00:03:42,850 --> 00:03:47,310
ุงู„ุชุญุณูŠู† ูŠุนู†ูŠ ุณูŠุตุบุฑู‡ ุจู…ุนู†ู‰ ุขุฎุฑ ุณูŠุจุฏุฃ ูŠู„ุชู‚ูˆุง ุฅู„ู‰
45
00:03:47,310 --> 00:03:51,770
ุฃุณูู„ ู„ู…ุง ู†ุตู„ ุฅู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ู…ุณุงูˆุงุฉ ููŠ ุญุงู„ุฉ ุงู„ู€
46
00:03:51,770 --> 00:03:55,730
Integrability ู„ู…ุง ู†ูƒูˆู† ุนู†ุฏู†ุง ุฃุฎุฏู†ุง ุงู„ู€ Supremum
47
00:03:55,730 --> 00:04:01,340
ู„ูƒู„ L ูˆ Fุงู„ู€ L ูˆุงู„ู€ infimum ู„ูƒู„ ุงู„ู€ U ุจูŠุตูŠุฑ ุจู†ุณู…ูŠ
48
00:04:01,340 --> 00:04:04,800
ุจุนุฏ ุดูˆูŠุฉ ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ lower integral ูˆุงู„ upper
49
00:04:04,800 --> 00:04:08,980
integral ูˆุจุฑู‡ู†ู†ุง ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ูˆ ุจุนุฏูŠู† ุฌูŠู†ุง ู„ู„ู„ู…ุฉ ูˆ
50
00:04:08,980 --> 00:04:13,520
ุจุนุฏูŠู† ุฌูŠู†ุง ู„ู„ู„ู…ุฉ ุฃุฎุฑู‰ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ูƒุงู†ุช F ู…ู† I ู„ R
51
00:04:13,520 --> 00:04:17,600
bounded ูˆB1 ูˆB2 ุงูŠ partitions ุงู„ุขู† ู„ุฃูŠ partitions
52
00:04:17,600 --> 00:04:22,480
ู‡ูŠูƒูˆู† ุงู„lower ุฏุงูŠู…ุง ุจุบุถ ุงู„ู†ุธุฑ ุนู† ุงู„ partition ุงู„ู„ูŠ
53
00:04:22,480 --> 00:04:26,120
ู‡ูˆ ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุฃุจุฑ ุจุบุถ ุงู„ู†ุธุฑ ุนู† ุงู„
54
00:04:26,120 --> 00:04:28,660
partition B2 ูŠุนู†ูŠ ู…ุด ู„ู†ูุณ ุงู„ partition ุฒูŠ ู…ุง ู‚ู„ู†ุง
55
00:04:28,660 --> 00:04:33,180
ููŠ ุงู„ู„ู…ุจุฉ 7 1 1 ู„ุฃ ู„ุฃูŠ two partitions ุฏุงูŠู…ุง
56
00:04:33,180 --> 00:04:37,170
ุงู„lower ู…ุง ู‡ูˆ ู‡ูŠูƒูˆู† ุชุญุชุฃุณูู„ ุงู„ู…ู†ุญู†ู‰ ูˆุงู„ู€ Upper
57
00:04:37,170 --> 00:04:41,350
ู‡ูŠูƒูˆู† ุฃุนู„ู‰ ุงู„ู…ู†ุญู†ู‰ ุจุบุถ ุงู„ู†ุธุฑ ุนู† ุงู„ partitions ุงู„ู„ูŠ
58
00:04:41,350 --> 00:04:45,690
ุนู†ุฏู‰ ุทุจุนุง ุงู„ุชู…ุซูŠู„ ู‡ุฐุง ููŠ ุญุงู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ F is a
59
00:04:45,690 --> 00:04:49,130
positive function ุนู„ู‰ ุงู„ interval ุงู„ู…ุฐูƒูˆุฑุฉ ุงู„ุขู†
60
00:04:49,130 --> 00:04:52,730
ุจุนุฏ ู‡ูŠูƒุฉ ุงุฌูŠู†ุง ูˆุนุฑูู†ุง ุดูˆ ู…ุนู†ุงู‡ ุงู„ lower integral
61
00:04:52,730 --> 00:04:55,510
ูˆุดูˆ ู…ุนู†ุงู‡ ุงู„ upper integral ู‚ูˆู„ู†ุง ุงู„ lower
62
00:04:55,510 --> 00:05:00,050
integral ูƒู…ุง ู‡ูˆ ู…ุชูˆู‚ุน ุณู…ูŠู†ุงู‡ ุงู„ู F ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„
63
00:05:00,050 --> 00:05:05,660
supremum ู„ู„ lowersูˆุงู„ .. ูˆ ุงู„ .. ูˆ ุงู„ .. ูˆ ุงู„
64
00:05:05,660 --> 00:05:10,440
upper ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum ู„ู„ uppers ุญุชู‰ ู„ูˆ
65
00:05:10,440 --> 00:05:14,300
ุงู„ุชู‚ุช ุงู„ุงู„ูˆ ุฃู ู…ุน ุงู„ุงู„ูˆ ุฃู ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุฃุนู„ู‰ ู…ุน
66
00:05:14,300 --> 00:05:17,940
ุงู„ุฃุณูู„ ู‡ูŠูƒูˆู†ูˆุง ุงู„ุชู‚ูˆุง ุจุงู„ุธุจุท ุนู†ุฏ .. ู…ู† ู…ุณุงุญุฉ ุชุญุช
67
00:05:17,940 --> 00:05:20,960
ุงู„ู…ู†ุญู†ู‰ ููŠ ุญุงู„ุฉ ุงู„ุฏุงู„ุฉ ุงู„ู…ูˆุฌุจุฉ ูˆู‡ุฐู‡ .. ููŠ ู‡ุฐู‡
68
00:05:20,960 --> 00:05:24,300
ุงู„ุญุงู„ุฉ ุจู†ุณู…ูŠ ุฅุฐุง ูƒุงู†ุช ุงู„ upper ุชุณุงูˆูŠ ุงู„ lower
69
00:05:24,300 --> 00:05:27,920
ุจู†ุณู…ูŠ ุงู„ function ุนู„ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉ is integral ูˆ ู‡ุฐุง
70
00:05:27,920 --> 00:05:31,900
ุงู„ูƒู„ุงู… ูƒู„ู‡ ุชุญุฏุซู†ุง ููŠู‡ ุนุดุงู† ู‡ูŠูƒ ุฃู†ุง ู…ุณุฑุน ุดูˆูŠุฉู‡ูˆ
71
00:05:31,900 --> 00:05:37,160
ุญูƒูŠู†ุง ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุฏุงูŠู…ุง ุงู„ lower sum ู„ู„ F ุฃุฎุฏู†ุง
72
00:05:37,160 --> 00:05:40,760
ู†ุธุฑูŠุฉ ู‚ูˆู„ู†ุง ุงู„ lower integral ุฃุณู ุงู„ lower
73
00:05:40,760 --> 00:05:45,100
integral ุฏุงูŠู…ุง ุฃุตุบุฑ ูŠุณุงูˆูŠ ู…ูŠู† ุงู„ upper integral
74
00:05:45,100 --> 00:05:46,860
ุฅุฐู† ุงู„ุขู† ุงู„ู†ุธุฑูŠุฉ
75
00:05:49,600 --> 00:05:52,760
ุงู„ุฅุนู„ุงู† ุงู„ู…ู‡ู… ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ูƒุงู†ุช F ู…ู† I ู„ุนู†ุฏ R
76
00:05:52,760 --> 00:05:56,000
bounded function ุนู„ู‰ closed bounded interval A ูˆB
77
00:05:56,000 --> 00:05:59,720
ุจุฏูŠ ูŠูƒูˆู† ุงู„ lower integral L of F ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ุงู„
78
00:05:59,720 --> 00:06:04,930
upper integral U of F ุจุตูˆุฑุฉ ุนุงู…ุฉู‡ุฐู‡ ู‡ูŠ ุงู„ู€
79
00:06:04,930 --> 00:06:08,050
definition ุงู„ู„ูŠ ุฐูƒุฑุชู‡ ู‚ุจู„ ูˆ ุดูˆูŠุฉ ู†ู‚ูˆู„ ุนู† ุงู„ู€
80
00:06:08,050 --> 00:06:15,150
function F ุนู„ู‰ bounded sub interval A ูˆ B ุฃูˆ
81
00:06:15,150 --> 00:06:18,650
closed bounded interval A ูˆ B ูˆ ูƒุงู†ุช ุงู„ู€ F ุนุจุงุฑุฉ
82
00:06:18,650 --> 00:06:22,080
ุนู† bounded functionุจู†ุนุฑู ุฃู† ุงู„ู€ F is remain
83
00:06:22,080 --> 00:06:26,840
integrable on I ุฅุฐุง ูƒุงู†ุช ุงู„ lower of F ุจุณุงูˆูŠ ุงู„
84
00:06:26,840 --> 00:06:30,080
upper of F ู…ุนู†ุงุชู‡ ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ F is remain
85
00:06:30,080 --> 00:06:34,460
integrable if and only if ุงู„ lower sum ูŠุณุงูˆูŠ ุงู„
86
00:06:34,460 --> 00:06:39,240
upper sum ู‡ุฐุง ูƒู„ู‡ ุฐูƒุฑู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆ ุฃูŠุถุง
87
00:06:39,240 --> 00:06:42,520
ุนุฑูู†ุง .. ู‚ู„ู†ุง ููŠ ู‡ุฐุง ุงู„ุญู„ู‚ุฉ ุฃู† ูƒู„ integration ู…ู† A
88
00:06:42,520 --> 00:06:47,890
ู„ B ู‡ูˆ ุงู„ lower ุฃูˆ ุงู„ upper ุงู„ู…ุชุณุงูˆูŠูŠู†ูˆุนุฑูู†ุง ุงูŠุถุง
89
00:06:47,890 --> 00:06:50,610
ุชุนุฑูŠู ุงุฎุฑ ู‚ูˆู„ู†ุง ุงู„ integration ู…ู† a ู„ b ุจุณุงูˆูŠ ู†ุงู‚ุต
90
00:06:50,610 --> 00:06:53,830
ุงู„ integration ู…ู† b ู„ a ูˆุนุฑูู†ุง ุงู„ integration ู…ู† a
91
00:06:53,830 --> 00:06:59,410
ู„ a ุจุณุงูˆูŠ ุตูุฑ ู‡ุฐุง ูƒู„ู‡ ุญูƒูŠู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู…ุด ู‡ูŠูƒ
92
00:06:59,410 --> 00:07:03,820
ูƒู…ุงู† ูˆุงุฎุฏู†ุง ุงู„ู…ุซุงู„ุงู„ู„ูŠ ู‡ูˆ ุฃุซุจุชู†ุง ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูˆ g of
93
00:07:03,820 --> 00:07:07,880
x ุจูŠุณุงูˆูŠ x is integrable on i ุงุณุชู†ุงุฏู‹ุง ุนู„ู‰ ุฅู†ู‡
94
00:07:07,880 --> 00:07:11,020
ุฃูˆุฌุฏู†ุง ุงู„ lower sum ุงู„ lower integral ูˆ ุงู„ upper
95
00:07:11,020 --> 00:07:13,300
integral ุฃุซุจุชู†ุง ุฅู† ุงู„ lower integral ูˆ ุงู„ upper
96
00:07:13,300 --> 00:07:16,300
integral are equal ูˆ ู…ู† ุซู… ุฃุซุจุชู†ุง ุฅู†ู‡ ุงู„
97
00:07:16,300 --> 00:07:19,940
integration exist ู„ู„ function x ุนู„ู‰ ุงู„ูุชุฑุฉ 0 ูˆ 1
98
00:07:19,940 --> 00:07:26,810
ูˆุฃูˆุฌุฏู†ุง ู‚ูŠู…ุฉ ุงู„ integration ููŠ ุญูŠู†ู‡ูˆุตู„ู†ุง ุฅู„ู‰ ุงู„ู„ูŠ
99
00:07:26,810 --> 00:07:33,290
ู‡ูˆ ู…ุซุงู„ู†ุง ุงู„ุชุงู„ูŠ ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช F ู…ู† I ู„ุนู†ุฏ .. F ู…ู† I
100
00:07:33,290 --> 00:07:40,090
ุงู„ู„ูŠ ู‡ูŠ 01 ู„ุนู†ุฏ ุงู„ .. ุงู„ R be defined by ุฃุฎุฏู†ุง
101
00:07:40,090 --> 00:07:45,990
ุงู„ุฏุงู„ุฉ ูƒู…ุง ูŠู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ู‚ูˆู„ู†ุง ุฃู† F of X F of X
102
00:07:45,990 --> 00:07:53,040
ุจุณุงูˆูŠ ูˆุงุญุฏุฅุฐุง ูƒุงู†ุช x rational number element in Q
103
00:07:53,040 --> 00:08:00,100
ูˆุจุณุงูˆูŠ 0 ุฅุฐุง ูƒุงู†ุช x element in IQ ุฃูˆ element in Q
104
00:08:00,100 --> 00:08:04,660
complement ุงู„ู„ูŠ ู‡ูŠ ุงู„ rational numbers ุงู„ุขู† ุจุฏู†ุง
105
00:08:04,660 --> 00:08:11,200
ู†ุซุจุช ุจู‚ูˆู„ show that this function Fุทุจุนุง ุฃู†ุง method
106
00:08:11,200 --> 00:08:17,340
F ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Q ุชู‚ุงุทุน ุทุจุนุง ุงู„ู€ 0 ูˆ 1 ุงู„ู„ูŠ ู‡ูŠ
107
00:08:17,340 --> 00:08:19,920
ุงู„ู€ interval ุงู„ู„ูŠ ุจุฏุฃ ุนู„ูŠู‡ุง ุงู„ุชู‚ุงุทุน ุงู„ู€ 0 ูˆ 1
108
00:08:19,920 --> 00:08:25,160
ุจู…ุนู†ู‰ ุฅู† ุฏุงู„ุช F ุตุงุฑุช ู…ู† I ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† 0 ูˆ 1
109
00:08:26,040 --> 00:08:29,380
ุงู„ู„ูŠ ุนู†ุฏ R ูˆุงุถุญ ุงู† ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ is a bounded
110
00:08:29,380 --> 00:08:33,560
function ุงู„ุงู† ุจุฏุฃ ุฃุซุจุช ู„ูƒู… ุงู† ู‡ุฐุง ุงู„ุฏุงู„ุฉ is not
111
00:08:33,560 --> 00:08:38,120
integrable on this interval is not integrable on
112
00:08:38,120 --> 00:08:44,100
this interval ุงู„ุงู† ุนู„ุดุงู† ุฃุตู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู†
113
00:08:44,100 --> 00:08:48,180
ู‡ุฐุง ุงู„ุฏุงู„ุฉ ุบูŠุฑ ู‚ุงุจู„ุฉ ุชูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ ู„ุชูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ
114
00:08:48,180 --> 00:08:55,650
ู„ุชูƒุงู…ู„ ุงู„ุฑูŠู…ุงู† ุจุฏูŠ ุงุฎุฏ ุงู„ุงู† Bุฃุฎุฏูˆุง ุฃูŠ partition X0
115
00:08:55,650 --> 00:09:02,550
X1 ู„ุนู†ุฏ Xn ู‡ุฐุง any partition ู„ุฅูŠู‡ ุงู„ interval ุงู„ู„ูŠ
116
00:09:02,550 --> 00:09:06,790
ู‡ูŠ ุงู„ูุชุฑุฉ ู…ูŠู† Zero ูˆ ูˆุงุญุฏ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุชูŠุช ู„ู„ูุชุฑุฉ
117
00:09:06,790 --> 00:09:14,030
Zero ูˆ ูˆุงุญุฏ ูˆ ุฌุฒู‚ุชู‡ุง X0 X1 ู„ุนู†ุฏ ู…ุคุตู„ ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ
118
00:09:14,030 --> 00:09:18,610
Xn ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุจุชุณุงูˆูŠ ุจุชุณุงูˆูŠ ูˆุงุญุฏุงู„ุงู† ู‡ุฐุง ุงู„
119
00:09:18,610 --> 00:09:22,130
partition ุงุฎุฏุชู‡ arbitrarily ุงู„ู„ู‰ ู‡ูˆ partition
120
00:09:22,130 --> 00:09:31,790
ู„ูุชุฑุฉ L ุนู†ุฏู‰ ุงู„ุงู† ุจุฏู‰ ุงุญุณุจ ุงู„ Lof B ูˆ F ู„ู‡ุฐุง ุงู„
121
00:09:31,790 --> 00:09:34,990
partition ุฃูŠุด ุจุชุณุงูˆูŠ ุญุณุจ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ุง ุณุงุจู‚ุง ุจุชุณุงูˆูŠ
122
00:09:34,990 --> 00:09:40,610
ุงู„ summation ู„ู„ M K ููŠ X K minus X K minus ูˆุงุญุฏ K
123
00:09:40,610 --> 00:09:46,330
ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูŠ N ูˆูŠุณุงูˆูŠ ุงู„ุขู† ุงู„
124
00:09:46,330 --> 00:09:52,450
M K ุนุฑูู†ุงู‡ุง ุงู„ M K ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ infimum ู„ู‚ูŠู…ุฉ ุงู„
125
00:09:52,450 --> 00:09:56,470
function F of X ุญูŠุซ X ุชู†ุชู…ูŠ ุฅู„ู‰ ุงู„ูุชุฑุฉ X K minus
126
00:09:56,470 --> 00:10:02,210
ูˆุงุญุฏ ู„ุนู†ุฏ X Kุทุจุนุงู‹ ุงู„ู„ูŠ ู‡ูŠ F of X ู…ุนุฑูุฉ ุนู„ู‰
127
00:10:02,210 --> 00:10:05,130
ุฃุณุงุณูŠู‡ุง ูŠุง ุฅู…ุง ูˆุงุญุฏ ูŠุง ุฅู…ุง ุณูุฑ ุญุณุจ ุฅู†ู‡ุง ุชูƒูˆู†
128
00:10:05,130 --> 00:10:08,030
rational ุฃูˆ ุฅูŠุด ุงู„ rational ูŠุนู†ูŠ ุงู„ function F
129
00:10:08,030 --> 00:10:11,910
ุฃุตู„ุง ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠู…ุชูŠู† ุจุณ ุฅุฐุง ุงู„ุฃู† ุงู„ infimum ู„ู„ F of
130
00:10:11,910 --> 00:10:16,630
X ุนู†ุฏู‡ุง ูŠุง ู‡ูŠูƒูˆู† ูˆุงุญุฏ ูŠุง ู‡ูŠูƒูˆู† ุณูุฑ ู„ูŠุดุŸ ู„ุฃู† ุฃุตู„ุง
131
00:10:16,630 --> 00:10:23,340
ุงู„ูุชุฑุฉ ู‡ุฐู‡ููŠู‡ุง ุฃูŠ ูุชุฑุฉ subinterval xk-1xk ููŠู‡ุง
132
00:10:23,340 --> 00:10:27,620
rational ูˆirrational ุฅุฐุง ู‚ูŠู…ุฉ ุงู„ up of x ููŠ ุงู„ูุชุฑุฉ
133
00:10:27,620 --> 00:10:31,260
ู‡ุชู„ุงู‚ูŠ ุนู†ุฏ ู‚ูŠู… ูˆุงุญุฏ ู‡ุชู„ุงู‚ูŠ ุฃูƒูŠุฏ ุนู†ุฏ ู‚ูŠู… ุฃุด ุจุชุณุงูˆูŠ
134
00:10:31,260 --> 00:10:35,000
ุจุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุงู„ infimum ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
135
00:10:35,000 --> 00:10:42,320
ุฅูŠุด ูŠุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุงู„ summation ู„ 0 ููŠ xk-xk-1 ูƒุงู…ู„
136
00:10:42,320 --> 00:10:46,120
ุนู†ุฏ ูˆุงุญุฏ ุนู†ุฏ ุฃู†ู‡ ุทุจูŠุนูŠ ู‡ุฐุง ุจุฏูŠู‡ูŠ ุฅูŠุด ู‡ูŠุณุงูˆูŠ ุจุณุงูˆูŠ
137
00:10:46,120 --> 00:10:52,410
ุณูุฑุฃุฐู† ุงู„ุงู† L of F ุจูŠ ูˆ F ุณุงูˆุฉ ุณูุฑ ููˆุฑ ุฃูŠ ุจูˆุฑุชูŠุดู†
138
00:10:52,410 --> 00:10:59,370
ุจูŠู‡ ุฅุฐุง ุงู„ L of F ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ุฃูˆ ุงู„ู€
139
00:10:59,370 --> 00:11:06,070
Supremum ุงู„ู€ Supremum ู„ูƒู„ ุงู„ู€ L of B ูˆ F Such that
140
00:11:06,070 --> 00:11:09,890
B element in the set of all partitions ุงู„ู„ูŠ ู‡ูˆ B
141
00:11:09,890 --> 00:11:14,090
of I ู‡ูŠูƒูˆู† ุงู„ .. ุงู„ Supremum ุงู„ู„ูŠ ู‡ูŠู† ุตูุฑ ู„ุฅู† ูƒู„
142
00:11:14,090 --> 00:11:18,350
ุงู„ู„ูŠ ู‡ูŠู† ุฃุตู„ุง ุฅุดู‚ ุจุชู†ุทู„ุน .. ุชู†ุทู„ุน ุจุณุงูˆูŠ ุตูุฑ ุฅุฐุง
143
00:11:18,350 --> 00:11:23,070
ู‡ุฐุง ุฅูŠุด ู‡ูŠุณุงูˆูŠ ูŠุง ุดุจุงุจุŸ ู‡ูˆ ูŠุณุงูˆูŠ Zeroุฅุฐุง ุทู„ุน ุนู†ุฏู‰
144
00:11:23,070 --> 00:11:28,150
ุงู„ lower sum ุจุณุงูˆุฉ 0 ุงู„ุงู† ุจุฏูŠ ุฃุญุณุจู„ูƒู… ู…ูŠู† ุฃุญุณุจู„ูƒู…
145
00:11:28,150 --> 00:11:31,390
ุงู„ upper sum ุณุงู…ุญูˆู†ูŠ ุฃูƒุชุจ ู‡ู†ุง ุจุณ ุนุณุงุณ ุงู„ู„ูŠ ูŠุจู‚ู‰
146
00:11:31,390 --> 00:11:39,670
ูƒู„ู‡ ู…ูƒุชูˆุจ ุนู†ุฏู‰ ู†ูˆุฌุฏ ุงู„ upper sum ุงู„ upper sum ุงู„ู„ูŠ
147
00:11:39,670 --> 00:11:45,510
ู‡ูŠ ุงู„ UPUF ุจุณุงูˆุฉ summation ู„ู„ุงู† K capital ููŠ XK
148
00:11:45,510 --> 00:11:51,740
minus XK minus ูˆุงุญุฏ K ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุงู„ุงู†ุงู„ุงู†
149
00:11:51,740 --> 00:11:55,900
ู‡ุฐุง ุจูŠุณุงูˆูŠ ุงู„ Mk ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„ ู‡ูŠูƒ ุงู„ Mk ุจุฏู„ ู…ุง
150
00:11:55,900 --> 00:11:59,400
ู‡ูŠ ุงู„ M ููŠ ู…ู…ูŠุฒุฉ ุงุณุชุนุฑูŠูู‡ุง ุงู„ Mk ุจุชุณุงูˆูŠ ุงู„
151
00:11:59,400 --> 00:12:03,780
supremum ู„ู‡ุฐู‡ ุงู„ 6 ูˆุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ 6 ู‡ุฐู‡ ููŠ ุฏุงุฎู„ู‡ุง
152
00:12:03,780 --> 00:12:08,400
ูŠุง ูˆุงุญุฏ ูŠุง ุฒูŠุฑูˆ ู†ุธุฑุง ู„ุฅู† ุงู„ู„ูŠ ู‡ูˆ ุฃูŠ sub interval
153
00:12:08,400 --> 00:12:11,820
ู‡ูŠูƒูˆู† ููŠู‡ุง rational ูˆ irrational ูˆุชุจุนุง ุฅู„ู‡ุง ู‡ูŠูƒูˆู†
154
00:12:11,820 --> 00:12:16,060
ู‚ูŠู…ุฉ ุงู„ function ููŠ ุฏุงุฎู„ู‡ุง ูˆุงุญุฏ ุฃูˆ ุณูุฑ ูˆุงุญู†ุง ุจู†ุจุญุซ
155
00:12:16,060 --> 00:12:19,280
ุนู† ุงู„ supremum ุฅุฐุง ู‡ูŠูƒูˆู† ุงู„ supremum ููŠ ูƒู„ ุงู„ุฃุญูˆุงู„
156
00:12:19,280 --> 00:12:25,600
ุงู„ Mk ุจุชุณุงูˆูŠ ูˆุงุญุฏู…ุถุฑูˆุจุฉ ููŠ xk-xk-1 k ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ
157
00:12:25,600 --> 00:12:30,700
n ู†ูุฑุฏู‡ุง ู‡ุฐู‡ ูˆูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ู†ุจุตูŠุฑ k ู…ู† ุนู†ุฏ 1 ูŠุนู†ูŠ x1
158
00:12:30,700 --> 00:12:39,570
-x0 ุฒุงุฏ x2-x1 ุฒุงุฏ ุฅู„ู‰ ุฃุฎูŠุฑ ู„ู…ุง ุฃุตู„ ู„ุนู†ุฏ xn-1ู†ู‚ุต xn
159
00:12:39,570 --> 00:12:44,550
ู†ู‚ุต ูˆุงุญุฏ ุทุจุนุง ูˆุงุถุญ ุงู†ู‡ ุนู†ุฏูŠ ุงู„ x ูˆุงุญุฏ ู‡ุช cancel ู…ุน
160
00:12:44,550 --> 00:12:48,270
ู†ุงู‚ุต x ูˆุงุญุฏ ูˆ ุงู„ x ุงุชู†ูŠู† ู…ุน ู†ุงู‚ุต x ุงุชู†ูŠู† ู„ู…ุง ู†ุตู„
161
00:12:48,270 --> 00:12:52,450
ู„ู„ุงุฎุฑ ู‡ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ ุงุช cancel ุงู„ุฌู…ูŠุน ุจุณ ุถุงู„ ุนู†ุฏูŠ
162
00:12:52,450 --> 00:12:58,170
ุงู„ xn ูˆ ุงู„ x note ูˆ ู‡ุฏ ุจุชุณุงูˆูŠ xn ู†ุงู‚ุต x note ูˆ
163
00:12:58,170 --> 00:13:01,750
ูŠุณุงูˆูŠ ุงู„ xn ุทุจุนุง ุงูŠุด ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ูˆ ุงู„ x note
164
00:13:01,750 --> 00:13:07,190
ุงูŠุด ู‡ูŠ ุดุจู‡ ุณูุฑ ูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต ุณูุฑ ูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ
165
00:13:07,570 --> 00:13:12,930
ุฅุฐุง ุทู„ุน ุนู†ุฏูŠ ุงู„ู€ Upper Sum ู„ุฃูŠ Bar ุชุดู‡ู… ุจูŠู‡ุŒ ู‡ูŠุชู„ุน
166
00:13:12,930 --> 00:13:18,510
ุงูŠุด ุจุณุงูˆุฉุŸ ุจุณุงูˆุฉ ูˆุงุญุฏุฉ ุฅุฐุง ุงู„ุงู† ู„ู…ุง ุจุฏูŠ ุฃุฎุฏ ุงู„ U
167
00:13:18,510 --> 00:13:23,510
of F ุงู„ู„ูŠ ู‡ูˆ Upper Integral ู‡ูŠุณุงูˆุฉ ุนุจุงุฑุฉ ุนู† ุงู„
168
00:13:23,510 --> 00:13:30,220
Infimumู„ู…ูŠู†ุŸ ู„ู„ู€ U, B ูˆF such that B element in
169
00:13:30,220 --> 00:13:34,580
the set of all partitions B of I ูˆุงู„ู€ U, B ูˆF
170
00:13:34,580 --> 00:13:38,840
ู‚ูŠู…ุชู‡ ุซุงุจุชุฉ for ุฃูŠ partition ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง ุงู„ู€
171
00:13:38,840 --> 00:13:43,300
infimum ู„ูƒู„ ุงู„ู„ูŠ ู‡ู†ุง ุนุจุงุฑุฉ ุนู† ุจุฑุถู‡ ุฅูŠุด ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
172
00:13:43,300 --> 00:13:47,410
ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู†lower integral ูˆ ุงู„ upper integral
173
00:13:47,410 --> 00:13:51,110
have different values ูˆุงุญุฏ ุจูŠุณุงูˆูŠ ุตูุฑ ูˆุงุญุฏ ุจูŠุณุงูˆูŠ
174
00:13:51,110 --> 00:13:56,890
ูˆุงุญุฏ ูˆุจู†ุงุก ุนู„ูŠู‡ ุจุชูƒูˆู† ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ F is not
175
00:13:56,890 --> 00:14:03,150
Riemann integrable ุงูŠ ุณุคุงู„ุŸ ุทูŠุจ ู…ุงุดูŠ ุงู„ุญุงุฌุฉ
176
00:14:03,150 --> 00:14:10,930
ุงู„ุงู†ุตุงุฑ ุนู†ุฏู‰ ุงุฎุฏู†ุง ู…ุซู„ูŠู† ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ุงู„ู„ูŠ ู‡ูˆ
177
00:14:10,930 --> 00:14:16,770
ุฃุซุจุชู†ุง ุฅู† off of x ุจูŠุณุงูˆูŠ x is integrable ุนู„ู‰
178
00:14:16,770 --> 00:14:22,010
ุงู„ูุชุฑุฉ 0 ูˆ1 ูˆ ุฃุซุจุชู†ุงู‡ุง ุจูˆุงุณุทุฉ ุงู„ุชุนุฑูŠู ูˆุฃูŠุถุง ุฃุซุจุชู†ุง
179
00:14:22,010 --> 00:14:26,190
ู…ุซุงู„ ุขุฎุฑ ู„bounded function ุฃูŠุถุง ูˆูƒุงู†ุช is not
180
00:14:26,190 --> 00:14:31,250
remain integrable ุงู„ู„ูŠ ู‡ูŠ off of x ุจูŠุณุงูˆูŠ 1 ุฅุฐุง
181
00:14:31,250 --> 00:14:36,090
ูƒุงู†ุช x rational ูˆูŠุณุงูˆูŠ 0 ุฅุฐุง ูƒุงู†ุช x irrational ู‡ุฐุง
182
00:14:36,090 --> 00:14:43,040
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠุงู„ุงู† ู†ูŠุฌูŠ ู„ุงู„ู„ูŠ ู‡ูˆ criterion
183
00:14:43,040 --> 00:14:49,280
ู…ู‡ู…ุฉ ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† remain
184
00:14:49,280 --> 00:14:54,800
criterion for
185
00:14:54,800 --> 00:15:01,490
integrabilityุฃุญู†ุง ุทุจุนุง ุงุชุญุฏุซู†ุง ุนู† ุงู„ู€ Remain
186
00:15:01,490 --> 00:15:05,330
Integrability ูƒูŠู ู†ุซุจุช ุฃู†ู‡ Remain Integrable ุนู†
187
00:15:05,330 --> 00:15:09,470
ุทุฑูŠู‚ ุงู„ุชุนุฑูŠู ุทุจุนุง ุงู„ุขู† ู…ุด ุฏุงูŠู…ุง ุจุฏู†ุง ู†ุซุจุช ุนู† ุทุฑูŠู‚
188
00:15:09,470 --> 00:15:14,350
ุงู„ุชุนุฑูŠู ุฅุฐุง ุจุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ุทุฑู‚ ุฃุฎุฑู‰ ู†ุญุงูˆู„ ุงู„ู„ูŠ ู‡ูˆ
189
00:15:14,350 --> 00:15:21,780
ู†ูˆุณุน ุงู„ู„ูŠ ู‡ูŠุฅู…ูƒุงู†ูŠุงุชู†ุง ููŠ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ุฏุงู„ุฉ ุฅู†ู‡ุง
190
00:15:21,780 --> 00:15:26,860
integrable ุฃูˆ ู…ุด integrable ูˆู‡ุฐู‡ ุงู„ุฅู…ูƒุงู†ูŠุฉ ุงู„ุฃุฎุฑู‰
191
00:15:26,860 --> 00:15:31,400
ุบูŠุฑ ุงู„ุชุนุฑูŠู ู‡ูŠ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑูŠู…ุงู†
192
00:15:31,400 --> 00:15:36,500
integrability criterion ุฃูˆ criterion for
193
00:15:36,500 --> 00:15:41,340
integrability ู†ุดูˆู ุฃูŠุด ุจูŠู‚ูˆู„ ุงู„ู†ุธุฑูŠุฉ
194
00:15:43,700 --> 00:15:48,060
ู„ุช I ุจุณุงูˆุฉ A ูˆB ูˆ ู„ุช F ู…ู† I ู„ู€ R ุจูŠู€ bounded ู†ูุชุฑุถ
195
00:15:48,060 --> 00:15:51,360
ุฃู† F ุนุจุงุฑุฉ ุนู† ุฅูŠู‡ ุงุดู…ุงู„ ูŠุง ุฌู…ุงุนุฉุŸ bounded function
196
00:15:51,360 --> 00:15:57,500
then F is integrable on I if and only if for each
197
00:15:57,500 --> 00:16:00,340
epsilon ุฃูƒุจุฑ ู…ู† 0 there exists a partition B
198
00:16:00,340 --> 00:16:04,660
epsilon of I such that U B epsilon ู†ู‚ุต ุงู„ู€ B
199
00:16:04,660 --> 00:16:10,730
epsilon ุฅูŠู‡ ุฅุดู…ุงู„ู‡ ุฃุตุบุฑ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุฅุจุณู„ูˆู†ุฅุฐู† ุงู„ู„ูŠ
200
00:16:10,730 --> 00:16:16,410
ู‡ูˆ ูˆุงุถุญ ุฅู†ู‡ ุนู†ุฏูŠ ูุตุงุฑ ููŠู‡ test ู„ู„ integrability ุฃูˆ
201
00:16:16,410 --> 00:16:20,150
ุงู„ู„ูŠ ู‡ูˆ ุทุฑูŠู‚ุฉ ู„ู„ุญูƒู… ุนู„ู‰ ุงู„ integrability ุฃุฎุฑู‰ ุบูŠุฑ
202
00:16:20,150 --> 00:16:26,430
ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ู‡ูˆ ุจุชู‚ูˆู„ F is integrable
203
00:16:28,870 --> 00:16:32,890
if and only if ุทุจุนุงู‹ ู‡ุฐู‡ ู„ู…ูŠู† ุงู„ู€ FุŸ F ุนุจุงุฑุฉ ุนู† ุฒูŠ
204
00:16:32,890 --> 00:16:36,190
ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† bounded function ู„ุฅู†ู‡ ูƒู„ ุดุบู„ู†ุง
205
00:16:36,190 --> 00:16:40,010
ุฃุตู„ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ remaining integrability ุฃู†ู‡ ู†ูุชุฑุถ
206
00:16:40,010 --> 00:16:43,210
ุฃู†ู‡ ุงู„ู€ F bounded ุนุดุงู† ุงู„ู„ูŠ ู‡ูˆ ุชูƒูˆู† ุงู„ supremum ูˆ
207
00:16:43,210 --> 00:16:46,330
ุงู„ infimum ุงู„ู„ูŠ ู…ุจู†ูŠ ุนู„ูŠู‡ุง ุงู„ุชุนุฑูŠู ุชูƒูˆู† ู…ุถู…ูˆู† ุฅู†ู‡ุง
208
00:16:46,330 --> 00:16:49,870
ู…ูˆุฌูˆุฏุฉ ุนุดุงู† ู‡ูŠูƒ ุจู†ุญูƒูŠ ุฃู† F is bounded function ุทูŠุจ
209
00:16:49,870 --> 00:16:56,140
ุฅุฐุง ุงู„ู€ F is integrable if and only ifุงู„ู„ูŠ ู‡ูŠ ู„ูƒู„
210
00:16:56,140 --> 00:17:00,620
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† 0 there exists a partition P ุฅุจุณู„ูˆู†
211
00:17:00,620 --> 00:17:04,240
ู‡ุฐุง ุงู„ P ุงู„ู„ูŠ ู‡ูˆ ุงู„ partition ูŠุนุชู…ุฏ ุนุงู„ู…ูŠุง ุนู„ู‰
212
00:17:04,240 --> 00:17:07,820
ุฅุจุณู„ูˆู† ู„ูƒู„ ุฅุจุณู„ูˆู† ุจุงู„ู„ู‡ ุฏูŠ partition P ุฅุจุณู„ูˆู† ู„ู…ูŠู†
213
00:17:07,820 --> 00:17:11,840
ุงู„ partition ุทุจุนุง ู„ู„ interval ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูŠ R
214
00:17:11,840 --> 00:17:17,040
there exists P ุฅุจุณู„ูˆู† a partition of I such that
215
00:17:17,040 --> 00:17:25,210
ุงู„ P ุงู„ U ุงู„ P ุฅุจุณู„ูˆู†ูˆุงู„ู€ F ู†ุงู‚ุต ุงู„ู€ L ุจูŠ ุฅุจุณู„ูˆู† ูˆ
216
00:17:25,210 --> 00:17:31,050
F ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุงู„ุขู† ุฅุฐุง ูƒุงู† ู„ุฌูŠู†ุง
217
00:17:31,050 --> 00:17:34,190
ู„ูƒู„ ุฅุจุณู„ูˆู† ู„ุฌูŠู†ุง ุจูŠ ุฅุจุณู„ูˆู† ุจุญูŠุซ ู‡ุฐุง ูŠุชุญู‚ู‚ ู…ุนู†ุงุชู‡ F
218
00:17:34,190 --> 00:17:37,590
is integrable and conversely if F is integrable
219
00:17:37,590 --> 00:17:42,550
ุฃูƒูŠุฏ ู„ูƒู„ ุฅุจุณู„ูˆู† ู‡ู„ุฌูŠ ุจูŠ ุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู† ู‡ุฐุง ูŠุชุญู‚ู‚
220
00:17:42,550 --> 00:17:48,170
ุฎู„ูˆู†ุง ู†ูŠุฌูŠ ุงู„ุขู† ู†ุจุฑู‡ู… ูˆ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุจุฑู‡ู…
221
00:17:48,170 --> 00:17:53,880
ู†ุธุฑูŠุชู†ุงุงู„ุงู† ุจุฏู†ุง ู†ูุชุฑุถ ุงู† F ุงูŠ ุดู…ุงู„ู‡ุง is
222
00:17:53,880 --> 00:18:00,240
integrable ูˆู†ุตู„ ู…ู†ู‡ุง ู„ู„ูŠ ุนูŠุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ partition
223
00:18:00,240 --> 00:18:07,040
ุงู„ู„ูŠ ู…ุฐูƒูˆุฑ ู…ุฏุงู… F is integrable ุงุฐุง ูƒุงู†ุช ..ุงู„ุงู†
224
00:18:07,040 --> 00:18:16,100
ุจู†ู‚ูˆู„ suppose that F is integrable ู…ุฏุงู… integrable
225
00:18:16,100 --> 00:18:22,090
ูŠุง ุดุจุงุจุฃูƒูŠุฏ ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ U of F ุจุณุงูˆูŠ L of
226
00:18:22,090 --> 00:18:29,490
ุฅูŠุดุŸ Of FุŒ ู…ุธุจูˆุทุŸ ุฃูƒูŠุฏ ุงู„ู€ L of .. ุงู„ู€ U of F
227
00:18:29,490 --> 00:18:33,410
ุจุณุงูˆูŠ ุงู„ู€ L of F ุฅูŠุด ุงู„ู„ูŠ ุจูŠุฏุซุจุชู‡ุŸ ุจูŠุฏุซุจุชู‡ ู„ุฃูŠ
228
00:18:33,410 --> 00:18:35,810
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจุฏู„ุงุฌูŠ ุจุฅุจุณู„ูˆู†ุŒ ุดูˆููˆุง ูƒูŠู
229
00:18:35,810 --> 00:18:41,090
ุจู†ู„ุงุฌูŠู‡ุŒ ุงู„ุขู† ู†ูุชุฑุถ ุฅู† ุฅุจุณู„ูˆู† let ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู†
230
00:18:41,090 --> 00:18:47,810
ุณูุฑ be givenุŒ ู…ุงุดูŠ ุงู„ุญุงู„ุฉุนู†ุฏูŠ ุงู„ู€ U of F ู‡ูˆ ุฅูŠุด ูŠุง
231
00:18:47,810 --> 00:18:54,910
ุดุจุงุจุŸ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum ู„ู„ู€ L of B ูˆ F such
232
00:18:54,910 --> 00:19:01,170
that B element in B of IุŒ ู…ุธุจูˆุทุŸ ุฅุฐุง ุงู„ู€ U of F
233
00:19:01,170 --> 00:19:05,830
ุนุจุงุฑุฉ ุนู† infimum ูŠุนู†ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† greatest lower
234
00:19:05,830 --> 00:19:11,630
boundู„ูˆ ู‡ุฐุง ุงู„ู€ greatest lower bound ุถูู†ุง ุฅู„ูŠู‡ ุฃูŠ
235
00:19:11,630 --> 00:19:17,230
ูƒู…ูŠุฉ ู‡ูŠุจุท ุงู„ู„ุงูˆุฑ ุจุงูˆู†ุฏ ู„ุฃู† ู‡ูˆ ุฃุตู„ุง ุฅูŠุด ุงุณู…ู‡
236
00:19:17,230 --> 00:19:23,510
greatest lower bound ุฅุฐุง ู„ูˆ ุงู„ู€U of F ุถูุชู„ู‡ Y ุนู„ู‰
237
00:19:23,510 --> 00:19:28,610
2 ู…ุซู„ุง ุทุจุนุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ูŠุจุท ุงู„ู„ุงูˆุฑ ุจุงูˆู†ุฏ ุฅูŠุด
238
00:19:28,610 --> 00:19:33,690
ู…ุนู†ุงุชู‡ ุจุท ุงู„ู„ุงูˆุฑ ุจุงูˆู†ุฏุŸ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ูŠูƒูˆู† ููŠ
239
00:19:33,690 --> 00:19:44,080
ุนู†ุฏ ุฅุดูŠ ุฃุตุบุฑ ู…ู†ู‡ู‡ูŠูƒูˆู† ุนู†ุฏู‰ ุฃุตุบุฑ ู…ู† ุงู„ U of F ุฃูˆ ุจูŠ
240
00:19:44,080 --> 00:19:49,740
ูˆุงุญุฏ ู…ุซู„ุง ูˆ F for some mean ุจูŠ ูˆุงุญุฏ ุฅุฐุง ู„ู…ุง ู†ุดูŠู„
241
00:19:49,740 --> 00:19:54,600
ู…ู† ุงู„ infimum ุฅุจุณู„ูˆู†
242
00:19:54,600 --> 00:19:57,740
ุนู„ู‰ ุงุชู†ูŠู† ู‡ูŠุจุทู„ ู‡ุฐุง lower bound ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ
243
00:19:57,740 --> 00:20:03,280
ู‡ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ lower bound
244
00:20:07,660 --> 00:20:12,140
ุนู†ุฏ ุงู„ู€ Y ุฃูƒุจุฑ ู…ู† 0 ุฎู„ู‘ูŠู†ูŠ ุฃุจุฏุฃ ู„ุช Y ุฃูƒุจุฑ ู…ู† 0 ุจูŠ
245
00:20:12,140 --> 00:20:17,940
given ุฅุฐุง ุนู†ุฏูŠ ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ู„ูƒ ุจุฏูŠ ุฃุฌูŠุจ ู„ูƒ
246
00:20:17,940 --> 00:20:21,440
partition ุจูŠุจุณู„ูˆู† ุจุญูŠุซ ุฃู†ู‡ ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ูŠูƒูˆู† ุฃุตุบุฑ
247
00:20:21,440 --> 00:20:26,070
ู…ู† ู…ูŠู† ู…ู† ุงุจุณู„ูˆู† ุดูˆู ูƒูŠู ุจุฏูŠ ุฃุนู…ู„ุงู„ุงู† ุงู†ุง ุนู†ุฏูŠ ุงู„
248
00:20:26,070 --> 00:20:30,710
U of F ุงูŠุด ุจูŠุณุงูˆูŠ ูŠุง ุฌู…ุงุนุฉ ุงู„ U of F ุจูŠุณุงูˆูŠ ุงู„
249
00:20:30,710 --> 00:20:39,590
infimum ู„ู„ L ุจูŠู‚ู ุจ element I ุทูŠุจ ุงู„ U of F ุงุณู ูŠุง
250
00:20:39,590 --> 00:20:43,010
ุฌู…ุงุนุฉ ุงู„ U of F ุจูŠุณุงูˆูŠ ุงู„ infimum ู„ู…ูŠู† ู„ู„ U ุจูŠู‚ู
251
00:20:43,720 --> 00:20:49,780
ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุงู† ุงูŠุด ู…ุนู†ุงู‡ ุงู†ู‡ ู‡ุฐุง infimum ู…ุนู†ุงุชู‡
252
00:20:49,780 --> 00:20:55,100
ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ greatest lower bound ู…ุฏุงู… ุงู„
253
00:20:55,100 --> 00:20:59,450
greatest lower bound ุงุฐุง ุงู„ lower bound ู‡ุฐุงุฃูˆ ุงู„ู€
254
00:20:59,450 --> 00:21:03,330
Greatest Lower Bound ู„ูˆ ุถูุชู„ู‡ ุฃูŠ ุฑู‚ู… ูŠุงุจุณูˆู† ุนู„ู‰
255
00:21:03,330 --> 00:21:06,370
ุงุชู†ูŠู† ู…ุซู„ุง ุจุงู„ุฐู†ุจ ูŠุงุจุณูˆู† ุนู„ู‰ ุงุชู†ูŠู† ุงู„ู€ game
256
00:21:06,370 --> 00:21:09,670
ุจุชุนุฑููˆุง ู„ูŠุด ูŠุงุจุณูˆู† ุนู„ู‰ ุงุชู†ูŠู† ูŠุนู†ูŠ ู„ูˆ ุถูุชู„ู‡ ุฃูŠ ุฑู‚ู…
257
00:21:09,670 --> 00:21:14,730
ุจูŠุจุทู„ Lower Bound ุฅูŠุด ู…ุนู†ุงุชู‡ ุจูŠุจุทู„ Lower Bound
258
00:21:14,730 --> 00:21:21,830
ูŠุนู†ูŠ ู‡ูŠุตูŠุฑ ู‡ุฐุง ุฃูƒุจุฑ ู…ู† ุงู„ UB 1 of F for some B
259
00:21:21,830 --> 00:21:27,510
ูˆุญุฏู‡ุงู„ุฃู†ู‡ ุจุทู„ ุฃุด ู…ุงู„ู‡ ู‡ุฐุง ุจุทู„ lower bound ุจุทู„ ูŠูƒูˆู†
260
00:21:27,510 --> 00:21:32,670
ุฃุตุบุฑ ู…ู† ุงู„ูƒู„ ู…ู† ู‡ุงู† ูŠุนู†ูŠ ู‡ู„ุงุฌูŠ ูˆุงุญุฏ ู…ู† ู‡ุงู† ู‡ูˆ ู…ุด
261
00:21:32,670 --> 00:21:36,830
ุฃุตุบุฑ ู…ู†ู‡ ุฃูˆ ุจู…ุนู†ู‰ ุฃุฎุฑ U, P, 1 ูˆ F ุฃุตุบุฑ ู…ู† ุงู„ู„ูŠ ู‡ูˆ
262
00:21:36,830 --> 00:21:44,850
ู‡ุฐุง ุงู„ู…ู‚ุฏุฑ ุทูŠุจ similarly ุงู„ L of F ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„
263
00:21:44,850 --> 00:21:52,050
supremum ู„ู„ L, P ูˆ F such that P elemented P of I
264
00:21:53,040 --> 00:21:57,780
ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ูŠุง ุฌู…ุงุนุฉ ุงู„ L of F ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฅูŠุด ุงู„
265
00:21:57,780 --> 00:22:04,040
least upper bound ูŠุนู†ูŠ ู‡ุฐุง ู„ูˆ least upper bound
266
00:22:04,040 --> 00:22:07,200
Upper bound ู„ูˆ ูƒุงู† ุฃุตุบุฑ ูˆ ุฃุญุฏ ู„ูˆ ู‡ุฐุง least upper
267
00:22:07,200 --> 00:22:11,000
bound ุฑุงุญุช ู…ู†ู‡ ุนุฏุฏ ูˆู„ูˆ ุตุบูŠุฑ ุฌุฏุง ูˆ ู„ูŠูƒู† ูŠุจุณู„ูˆู† ุนู„ู‰
268
00:22:11,000 --> 00:22:16,800
ุงุชู†ูŠู†ู‡ูŠุจุทู„ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† upper bound ูŠุนู†ูŠ ู‡ู„ุงู‚ูŠ
269
00:22:16,800 --> 00:22:24,280
ูˆุงุญุฏ ู…ู† ุงู„ู„ูŠ ู‡ุงู† ุงู„ู„ูŠ ู‡ูˆ L of B2 ูˆF ู…ุซู„ุง ุฃูƒุจุฑ ู…ู†ู‡
270
00:22:24,280 --> 00:22:30,560
ู„ุฃู†ู‡ ู‡ูŠุจุทู„ ู‡ุฐุง ุฃุดู…ุงู„ู‡ upper bound ู„ุฃู†ู‡ ู‡ูˆ ุงู„ least
271
00:22:30,560 --> 00:22:35,780
ู„ู…ุง ุทู„ุนุช ู…ู†ู‡ ุจุทู„ ู…ู† ุงู„ upper bounds ูŠุนู†ูŠ ู„ุฌูŠุช ูˆุงุญุฏ
272
00:22:35,780 --> 00:22:43,120
ู…ู† ู‡ุฐูˆู„ ุฃูƒุจุฑ ู…ู†ู‡ ุฅุฐุง ุตุงุฑ ููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆู„ุฌูŠุช ุจูŠ
273
00:22:43,120 --> 00:22:53,960
ูˆุงุญุฏ ุจุญู‚ู‚ ุงู„ุฃูˆู„ู‰ ูˆ ุจูŠุชู†ูŠู† ุจุญู‚ู‚ ุงู„ุชุงู†ูŠุฉ ู„ุฃู† ุฎุฏ ุงู„ุขู†
274
00:22:53,960 --> 00:22:58,840
ุฎุฏู„ูŠ ุจูŠ ุฅุจุณู„ูˆู† ู‡ุฐุง ุงู„ู„ูŠ ุจุฏูŠู‡ุง ู‡ุฐุง ุงู„ุญู‚ู‚ ุงู„ู„ูŠ ุงู„ู„ูŠ
275
00:22:58,840 --> 00:23:03,600
ุจุฏูŠู‡ุง ุฎุฏ ุจูŠ ุฅุจุณู„ูˆู† ุฅูŠุด ุจุณุงูˆูŠ ุงู„ ุจูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู„ุฌูŠุชู‡
276
00:23:03,600 --> 00:23:12,050
ู‡ู†ุงุงุชุญุงุฏ ุงู„ู€ B2 ุงู„ู„ูŠ ู„ุฌูŠุชู‡ ู‡ุงู† ุงุชุญุงุฏ ู…ูŠู†ุŸ B2 ุตุงุฑ
277
00:23:12,050 --> 00:23:18,510
ุนู†ุฏู‰ .. ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ู…ุน ุจุนุถ ุฎู„ูŠู†ูŠ ุฃู…ุณุญ ูุฃู‚ูˆู…ุŒ
278
00:23:18,510 --> 00:23:22,170
ู…ู‡ู…ุดุŸ
279
00:23:22,170 --> 00:23:31,670
ุตุงุฑ
280
00:23:31,670 --> 00:23:41,110
ุนู†ุฏู‰ ู…ุง ูŠู„ูŠู‡ุŸ ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู†L of F ู†ู‚ุต
281
00:23:41,110 --> 00:23:53,490
Y ุนู„ู‰ 2 ุฃุตุบุฑ ู…ู† L of B2 Fุงู„ู„ูŠ ู‡ูˆ ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ
282
00:23:53,490 --> 00:23:59,750
ูŠุณุงูˆูŠ L of By ู‚ูู‚ูŽูุŒ ู„ูŠุดุŸ ู„ุฃู† ุงู„ู€By ูŠุง ุฌู…ุงุนุฉ ุนุจุงุฑุฉ
283
00:23:59,750 --> 00:24:04,570
ุนู† refinement ู„ู„ู€B2 ูˆุงู„lower ู„ู…ุง ูŠุตูŠุฑ ููŠู‡ ุชุญุณูŠู†
284
00:24:04,570 --> 00:24:08,510
ุจูƒุจุฑุŒ ุจุฑูˆุญ ู†ุญูˆ ุงุชุฌุงู‡ ู†ูŠู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู†ุญู†ุฉ ุงู„ุชุงู„ูŠุฉ
285
00:24:08,510 --> 00:24:14,010
ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ุฉ ุงู„ูƒู„ูŠุฉ ู„ุฃู† ุฃูŠุถุง ู„ูˆ ุฌูŠุช ู‚ูˆู„ุฉ ุงู„ู€U
286
00:24:14,010 --> 00:24:24,400
of Fุฒุงุฏ ุฅุจุณู„ูˆู† ุนู„ู‰ ุงุชู†ูŠู† ู‡ุชู„ุงู‚ูŠู‡ุง ุฃูƒุจุฑ ู…ู† ุงู„ U ุจูŠ
287
00:24:24,400 --> 00:24:30,410
ูˆุงุญุฏ ูˆ FูˆุฃูƒูŠุฏ ุนู†ุฏูŠ ุงู„ู€ U of F ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ุนุฏู†ุงู†
288
00:24:30,410 --> 00:24:34,490
ุฃูƒุจุฑ ู…ู† ุงู„ู€ U B1 of F ู‡ูŠูƒูˆู† ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€
289
00:24:34,490 --> 00:24:39,610
U B epsilon of F ู„ุฃู† ุงู„ู€ B epsilon refinement ู„ู…ูŠู†
290
00:24:39,610 --> 00:24:44,790
ุจุฑุถู‡ุŸ ู„ู„ู€ B1 ุจุฒุงู… refinement ุฅุฐู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุญุณูŠู†
291
00:24:44,790 --> 00:24:50,270
ุจูŠุฒุบุฑ ุงู„ู‚ุจุฑ ูˆุจุฑูˆุญ ู†ุงุญูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู†ุญู†ุฉ ุฅุฐู† ุงู„ุขู†
292
00:24:50,270 --> 00:24:55,480
ู…ู† ุงู„ู€ tip 2 ู‡ุฐูˆู„ุฉูˆุงุฌุฏู†ุง ุทุจุนุง ุงุญู†ุง ุชู†ุณูˆุด ุงู† ุงุญู†ุง
293
00:24:55,480 --> 00:24:59,100
ู…ูุชุฑุถูŠู† ู…ู† ุฑุฃุณ ุงู„ุฏูˆู„ ุงู† U of F is integrable ูŠุนู†ูŠ
294
00:24:59,100 --> 00:25:05,340
ู…ูุชุฑุถูŠู† ุงู† ุงู„ L of F ุงูŠุด ุจุชุณุงูˆูŠ U of F ุชู†ุณูˆุงุด ู‡ุฐู‡
295
00:25:05,340 --> 00:25:12,540
ู„ูŠู‡ ุฌูŠุช ุชู†ุชุฑ ู…ุน ุจุนุถ ุฏูˆู„ ุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ุญุตู„ ุนู„ู‰ L of F
296
00:25:12,540 --> 00:25:22,970
ู†ุงู‚ุต Y ุนู„ู‰ 2 ุงู„ู„ูŠ ู‡ูˆ ุงุตุบุฑ ู…ู† Lof B, Epsilon ูˆ F
297
00:25:22,970 --> 00:25:30,110
ูˆุงู„ู€ L ูˆ ุงู„ู€ U of F ุฒุงุฆุฏ Epsilon ุนู„ู‰ 2 ุฃูƒุจุฑ ู…ู† U,
298
00:25:30,190 --> 00:25:35,290
B, Epsilon ูˆ F ุฃู†ุง ุฅูŠุด ุบุฑุถูŠุŸ ุบุฑุถูŠ ุฃุซุจุช ุฅู† U, B,
299
00:25:35,350 --> 00:25:39,130
Epsilon ูˆ F ู†ุงู‚ุต L, B, Epsilon ูˆ F ุฃุตุบุฑ ู…ู† Epsilon
300
00:25:39,130 --> 00:25:42,890
ูŠู„ู‘ุง ุงุชุฑุญู„ ู…ู† ุจุนุถุŒ ุฅุฐุง ุจุตูŠุฑ ุนู†ุฏูŠุŒ ุจุชุญุตู„ ุงู„ุจุฏูƒูŠุฉ
301
00:25:42,890 --> 00:25:48,570
ุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ุขู†ุŒ ุจุทุฑุญ ุญูŠุงุฉ ุฏูŠุŒ ุจู‚ูˆู„ U, B, Epsilon ูˆ
302
00:25:48,570 --> 00:25:53,240
Fู†ุงู‚ุต ู„ุฃู†ู‡ ู„ู…ุง ู†ุถุฑุจ ู‡ุฐุง ููŠ ู†ุงู‚ุต ู‡ุชู†ุนูƒุณ ูŠุนู†ูŠ ู‡ุชุตูŠุฑ
303
00:25:53,240 --> 00:25:57,100
ู‡ุฐู‡ ุฌู…ุงุนุฉ ู†ุงู‚ุต ูˆู‡ุฐู‡ ุฒุงุฆุฏ ูˆู‡ุฐู‡ ู‡ุชู†ุนูƒุณ ู‡ูŠูƒ ูˆู‡ูŠุตูŠุฑ
304
00:25:57,100 --> 00:26:05,600
ุงู„ุงุด ู†ุงู‚ุต ุจูŠุตูŠุฑ ุนู†ุฏูŠ U ุจูŠ ูˆ F ู†ุงู‚ุต ุงู„ ุจูŠ ูˆ F ู‡ูŠุตูŠุฑ
305
00:26:05,600 --> 00:26:11,820
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ู†ุงู‚ุต L of F ู†ุงุฎุฏ ู‡ุฐุง ู‚ุจู„ ุฒูŠ ู…ุง ุงุญู†ุง
306
00:26:11,820 --> 00:26:20,690
ู…ุฑุชุจูŠู†ู‡ุง U of F ุฒุงุฆุฏ ูŠ ุนู„ู‰ 2 ู†ุงู‚ุตL of F ุฒูŠ ุฅุจุณู„ูˆู†
307
00:26:20,690 --> 00:26:24,790
ุนู„ู‰ 2 ูˆุทุจุนุง ุฅุญู†ุง ุฌุงูŠู„ูŠู† ุฅู† F is integrable ูŠุนู†ูŠ
308
00:26:24,790 --> 00:26:28,770
ุงู„ู€ U of F ุจุณูˆุก L of F ุฅุฐุง ู‡ุฐูŠ ุจุชุฑูˆุญ ู…ุน ู‡ุฐูŠ ุจุธู„
309
00:26:28,770 --> 00:26:33,610
ุฅูŠู‡ ุดู…ุงู„ู‡ุŸ ุจุธู„ ุฅุจุณู„ูˆู† ุฅุฐุง ุฅุญู†ุง ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู†
310
00:26:33,610 --> 00:26:36,950
ุณูุฑ ู„ุฌูŠู†ุง ุจูŠ ุฅุจุณู„ูˆู† ู‡ูŠ ููŠ ุงู„ูˆุงู‚ุน ุจูŠ ุฅุจุณู„ูˆู† ุงู„ู„ูŠ
311
00:26:36,950 --> 00:26:39,970
ู„ุฌูŠู†ุงู‡ุง ุจูŠ ูˆุงุญุฏ ุงุชุญุงุฏ ุจูŠ ุงุชู†ูŠู† ุญูŠุซ ุจูŠ ูˆุงุญุฏ ุงู„ู„ูŠ
312
00:26:39,970 --> 00:26:44,120
ู„ุฌูŠู†ุงู‡ ู‡ุงู† ูˆุงู„ ุจูŠ ุงุชู†ูŠู† ุงู„ู„ูŠ ู„ุฌูŠู†ุงู‡ ู‡ุงู†such that U
313
00:26:44,120 --> 00:26:49,120
P Y of F ู†ู‚ุต L P Y of F ุฃุตุบุฑ ู…ู† ุงู„ู„ูŠ ู‡ูˆ Epsilon
314
00:26:49,120 --> 00:26:57,480
ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุฃูŠ ุณุคุงู„ุŸ ุทูŠุจุŒ ู…ุงุดูŠ ูŠุง ุดุจุงุจุŒ ุงู„ุขู† ุฎู„ุตู†ุง
315
00:26:57,480 --> 00:27:04,420
ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู†ุธุฑูŠุฉุฃุซุจุชู†ุง ุงู„ู„ูŠ ุจุฏู†ุง ูŠุง ุงู†ู‡ ุงู„ู„ูŠ
316
00:27:04,420 --> 00:27:08,860
ู‡ูˆ ู‡ุฐู‡ ุงู„ุนู„ุงู‚ุฉ ุตุญูŠุญุฉ ู„ุฃู†ู†ุง ู†ูุชุฑุถ ุงู†ู‡ suppose that
317
00:27:08,860 --> 00:27:12,380
star holds ุงู„ู„ูŠ ู‡ูŠ star ู„ูŠู‡ ู‡ุฐู‡ ู†ูุชุฑุถ ุงู† ู„ูƒู„
318
00:27:12,380 --> 00:27:15,380
epsilon ุฃูƒุจุฑ ู…ู† 0 there exists B of epsilon such
319
00:27:15,380 --> 00:27:18,680
that U B Epsilon ูˆ F ู†ู‚ุตู‡ุง ุฏูŠ ุฃุตุบุฑ ู…ู† Epsilon ูˆ
320
00:27:18,680 --> 00:27:24,280
ุจุฏู†ุง ู†ุตู„ ู…ู† ุฎู„ุงู„ู‡ุง ู„ุฅูŠุด ู„ุฃู† ุงู„ F is integrable
321
00:27:24,280 --> 00:27:25,760
ูู†ุดูˆู
322
00:27:40,480 --> 00:27:47,440
ุงู„ุจุฑู‡ุงู… ุจุณูŠุท ู„ูˆ ุทู„ุนู†ุง ุนู„ูŠู‡ ู…ุจุงุดุฑุฉ ุนู„ู‰ ุงู„ู„ูˆุญ ุงู„ุขู†
323
00:27:47,440 --> 00:27:52,140
ุจุฏู†ุง ู†ูุชุฑุถ ุฃู† ู‡ุฐู‡ ุชุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูˆ ู†ูุชุฑุถ ุฃู†ู‡ ู„ูƒู„ ูŠ
324
00:27:52,140 --> 00:27:57,020
ุฃูƒุจุฑ ู…ู† 0 ูŠูˆุฌุฏ ุจูŠ ุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ ุชุชุญู‚ู‚
325
00:27:57,020 --> 00:28:01,620
ุนู„ุดุงู† ุฃุตู„ ุจุฏูŠ ุฃุตู„ูƒู… ููŠ ุงู„ู†ู‡ุงูŠุฉ ุฃู† L of F ู‡ูŠ ุฅูŠุด
326
00:28:01,620 --> 00:28:05,810
ุจุชุณุงูˆูŠ U of F ุดูˆู ูƒูŠู ุฏู‡ ุตู„ู‡ุงุงู„ู„ูŠ ู‡ุจุฏุฃ ุฃู‚ูˆู„ู„ูƒ ุงู„ู„ูŠ
327
00:28:05,810 --> 00:28:08,650
ู‡ูˆ ู†ูุชุฑุถ ุงู†ู‡ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู†ู‡ star holds ุงู„ู„ูŠ ุญูƒูŠู†ุง
328
00:28:08,650 --> 00:28:12,990
ุนู†ู‡ุง ู„ุฃู† for any partition B ู‡ูŠูƒูˆู† ุงู„ L B of F
329
00:28:12,990 --> 00:28:17,970
ุฃุตุบุฑ ุฃุณุงูˆูŠ L of F ูˆ ุงู„ U of F ุฃุตุบุฑ ุฃุณุงูˆูŠ ู…ูŠู† ุงู„ U
330
00:28:17,970 --> 00:28:25,970
B of F ูˆุงุถุญุŸ ุฅุฐุง ุฃุตุงุฑ ุนูŠุฏูŠ ุงู„ุขู† L ูŠู…ูƒู† ุฃูˆุถุญู„ูƒู… ุนู„ู‰
331
00:28:25,970 --> 00:28:35,790
ุงู„ู„ูˆุญ L of B of F ุฏู‡ ุงู„ B ุฃูŠ partition ุฃุตุบุฑู…ุธุจูˆุท
332
00:28:35,790 --> 00:28:40,910
ุฃูˆ ูŠุณุงูˆูŠ ุงู„ L of A H of F ู„ุงู†ู‡ ุงู„ L of F ูŠุง ุฌู…ุงุนุฉ
333
00:28:40,910 --> 00:28:47,330
ู‡ูˆ ุงู„ supremum ุงู„ู„ูŠ ู‡ู†ุง ูˆ ุงู„ U ุจูŠู‚ู
334
00:28:47,330 --> 00:28:53,130
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ U of F ู„ุงู†ู‡ ุงู„ U of F H ูŠุง ุฌู…ุงุนุฉ
335
00:28:53,130 --> 00:28:57,950
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุนุจุงุฑุฉ ุนู† ุงู„ infimumุฃุชุฑุญูˆู„ูŠ ุงู„ุฌู‡ุฉ
336
00:28:57,950 --> 00:29:01,410
ุชุงู†ูŠุฉ ู‡ุฐุง ุทุจุนุง ู„ูƒู„ ู…ูŠู† ู„ูƒู„ ุงู„ partitions ุงู„ู„ูŠ ููŠ
337
00:29:01,410 --> 00:29:06,750
ุงู„ุฏู†ูŠุง ู…ู† ุถู…ู†ู‡ู… ุงู„ P Epsilon ุงู„ู„ูŠ ุงุญู†ุง ู…ุงุนุทูŠู†ุงูŠุง
338
00:29:06,750 --> 00:29:12,250
ููŠ ุงู„ .. ุงู„ู„ูŠ ู‡ูˆ ู†ุต ุงู„ู†ุธุฑูŠุฉ ุงุฐุง ุจุณูŠุฑูŠ ุนู†ุฏู‰ ู„ุฃู† ู„ูˆ
339
00:29:12,250 --> 00:29:19,990
ุงุฌูŠุจ ุทุฑุญุฉ ุงู„ U F ู†ุงู‚ุต L F ุงู„ U F ู†ุงู‚ุต L Fู‡ูŠุตูŠุฑ ุงูŠุด
340
00:29:19,990 --> 00:29:23,850
ู…ุงู„ู‡ ูŠุง ุฌู…ุงุนุฉุŸ ูŠุนู†ูŠ ุทุฑูŠู‚ุฉ ุฑุญู„ุฉ ู…ู† ู‡ุฐู‡ ุจูŠุตูŠุฑ ุฃุตุบุฑ
341
00:29:23,850 --> 00:29:28,510
ุฃูˆ ูŠุณุงูˆูŠ ู„ุฅู† ู‡ุฐู‡ ุจุชุถุฑุจู‡ุง ููŠ ู†ุงู‚ุต ูˆ ู‡ุฐู‡ ู†ุงู‚ุต ูˆ
342
00:29:28,510 --> 00:29:32,750
ุจุชู†ู‚ู„ุจ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ูˆ ุดูˆูŠุฉ ุจูŠุตูŠุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
343
00:29:32,750 --> 00:29:43,640
U P of Fู†ู‚ุต ุงู„ B of F ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ุฅูŠุด ู„ูƒู„
344
00:29:43,640 --> 00:29:48,200
partition ููŠ ุงู„ุฏู†ูŠุง ู…ู† ุถู…ู†ู‡ุง ุงู„ู…ูŠู† ุงู„ partition
345
00:29:48,200 --> 00:29:52,580
ุงู„ู…ูˆุงุทุน ู„ู†ุง ูŠุนู†ูŠ ุญูŠุตูŠุฑ ุนู†ุฏ ู‡ุฐุง ูŠู†ุทุจู‚ ุจุฑุถู‡ ุนู„ู‰ ุงู„
346
00:29:52,580 --> 00:29:57,500
ุจูŠ ุฅุจุณู„ูˆู† ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุฃุตุบุฑ ูŠุณูˆูŠ ุจูŠ ุฅุจุณู„ูˆู† ู†ู‚ุต ุงู„
347
00:29:57,500 --> 00:30:01,740
ุจูŠ ุฅุจุณู„ูˆู† of F ุทูŠุจ ู‡ู… ูŠุนุทูŠูŠู† ุฅู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฅูŠุด
348
00:30:01,740 --> 00:30:06,260
ู…ุงู„ู‡ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู„ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุงู‡ูˆ ุฃู†ุง
349
00:30:06,260 --> 00:30:10,580
ุจุนุฑู ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ูุณู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅูŠุด ุณูุฑ ุตุงุฑ
350
00:30:10,580 --> 00:30:17,720
ุนู†ุฏู‰ ุงู„ุขู† ุงู„ U of F ู†ุงู‚ุต ุงู„ L of F ุฏุงูŠู…ุง ุฃุตุบุฑ ู…ู†
351
00:30:17,720 --> 00:30:23,420
ุฅุจุณู„ูˆู† ูˆ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ
352
00:30:23,420 --> 00:30:28,260
ุฅุฐุง ุนู„ู‰ ุทูˆู„ ู…ู† ู†ุธุฑูŠุฉ ููŠ ุชุญู„ูŠู„ ูˆุงุญุฏ ู‡ูŠูƒูˆู† ู‡ุฐุง ุงู„ู„ู‰
353
00:30:28,260 --> 00:30:36,250
ุนู†ุฏู‰ ุฅุฐุง U of Fู†ู‚ุต L of F ุจูŠุณุงูˆูŠ ุณูุฑ ุฅุฐุง U of F
354
00:30:36,250 --> 00:30:44,850
ุจูŠุณุงูˆูŠ L of F ูˆู‡ุฐุง ูŠุนู†ูŠ F is a Riemann Integral ู‡ูˆ
355
00:30:44,850 --> 00:30:52,110
ุงู„ู…ุทู„ูˆุจ ุจูŠูƒูˆู† ุงุญู†ุง ู‡ูŠูƒ ุฃุซุจุชู†ุง ุงู„ู„ูŠ ู‡ูˆIntegrable
356
00:30:52,110 --> 00:30:58,350
criterion ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุทุฑูŠู‚ุฉ ู„ุชุญุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„
357
00:30:58,350 --> 00:31:02,270
function is integrable ุฃูˆ ู„ุง ุบูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุทุฑูŠู‚ุฉ
358
00:31:02,270 --> 00:31:07,110
ุงู„ุชุนุฑูŠู ุงู„ุขู† ููŠ ุนู†ุฏ ูƒูˆุฑูˆู„ุงุฑูŠ ุจุนุฏู‡ุง ูƒูˆุฑูˆู„ุงุฑูŠ
359
00:31:07,110 --> 00:31:11,530
ุงู„ูƒูˆุฑูˆู„ุงุฑูŠ
360
00:31:11,530 --> 00:31:16,230
ู‡ูŠ ุชู‚ูˆู„ ูƒู…ุง ูŠู„ูŠู‡ ุงู„ุขู† ุจุฏู†ุง ู†ุชุฑุฌู… ุงู„ุญุฏูŠุซ ุจุฏู„ ู…ุง ูƒุงู†
361
00:31:16,230 --> 00:31:22,710
ุจุฅุจุณู„ูˆู† ู†ุญูƒูŠ ุนู† ู…ูŠู†ุŸ ุนู† ุงู„ู„ูŠ ู‡ูˆsequence of
362
00:31:22,710 --> 00:31:29,870
partitions ุทุจุนุงู‹ ู‡ูˆ ู‡ุฐุง ู…ุนู‡ูˆุฏ ุงู„ุชุญูˆูŠู„ ููŠ ู†ุธุฑูŠุงุช
363
00:31:29,870 --> 00:31:34,590
ู…ุดุงุจู‡ุฉ ููŠ ุญุชู‰ ููŠ ูƒูˆุฑุณุงุช ุฃุฎุฑู‰ ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ุนู†ุฏู†ุง
364
00:31:34,590 --> 00:31:38,790
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุงูŠุด ุจ .. ุงูˆ ุงู„ูƒูˆุฑู„ุฑูŠ ุงูŠุด ุจุชู‚ูˆู„
365
00:31:38,790 --> 00:31:43,350
ุจุชู‚ูˆู„ let I ุจุณุงูˆุฉ A ูˆ B and let F ู…ู† I ู„R be a
366
00:31:43,350 --> 00:31:48,600
bounded functionู„ุฃู† ู„ูˆ ูุฑุถู†ุง ุจูŠ ุฃู† ุฃู† element none
367
00:31:48,600 --> 00:31:52,300
is a sequence of partitions of I ุจุญูŠุซ ุฃู† ุงู„ limit
368
00:31:52,300 --> 00:31:55,920
ู‡ุฐุง ุจูŠุณุงูˆูŠ ุณูุฑ then f is integrable and ุงู„ limit
369
00:31:55,920 --> 00:31:58,040
ู„ู„ integration ุจูŠุณุงูˆูŠ ุงู„ integration ุจูŠุณุงูˆูŠ ุงู„
370
00:31:58,040 --> 00:32:04,480
limit ุงู„ ุฃุณู ุงู„ limit ู„ู„ lower p and f ุจูŠุณุงูˆูŠ ุงู„
371
00:32:04,480 --> 00:32:07,020
limit ู„ู„ upper p and f ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„
372
00:32:07,020 --> 00:32:13,000
integration ุญุชู‰ ุงู„ converse ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูˆุงู„ู„ูŠ ู‚ุจู„
373
00:32:13,000 --> 00:32:16,820
ุจุดูˆูŠุฉ ุงู„ู„ูŠ ูƒุงู† .. ุงู„ู„ูŠ ู‡ูŠ ูƒุงู†ุช F ุฃู†ุฏูˆู„ูŠ F ู„ุฃู† ู„ูˆ
374
00:32:16,820 --> 00:32:21,520
ูƒุงู†ุช F is integrable ุฃูƒูŠุฏ ู‡ู„ุงู‚ูŠ sequence ู…ู†
375
00:32:21,520 --> 00:32:25,380
partitions ุจุญูŠุซ ุฃู†ู‡ ุงู„ limit ุงู„ู„ูŠ ุญุงุตู„ ุงู„ุทุฑุญ ุจุณุงูˆูŠ
376
00:32:25,380 --> 00:32:29,760
ุณูุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุจุฑู‡ุงู† ู…ุดุงุจู‡ ู„ุฅูŠ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ููŠู‡ ุงู„ู„ูŠ
377
00:32:29,760 --> 00:32:34,500
ู‡ูˆ ุจุฑู‡ุงู† ุฅูŠุฌุงุฏ ุงู„ู€ B epsilon ูˆู„ูƒู† ู‡ู†ุง ุจู†ุฌุฏุงู„ู„ูŠ ู‡ูˆ
378
00:32:34,500 --> 00:32:37,380
ุงู„ู€ Epsilon ุจุณุงูˆูŠุฉ ูˆุงุญุฏุฉ ู„ุงู† ูุจู†ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„
379
00:32:37,380 --> 00:32:42,380
sequence ู‡ุฐู‡ ููŠ ุงู„ corollary .. ููŠ ู…ู† ู…ุดุงุจู‡ .. ุดูŠุก
380
00:32:42,380 --> 00:32:45,900
ู…ุดุงุจู‡ ููŠ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ูˆ
381
00:32:45,900 --> 00:32:49,360
ูŠุงุฑูŠุช ุชุฌุฑุจูˆู‡ุง ุนู†ุฏูƒู… ุฎู„ูŠู†ุง ู†ุงุฎุฏ ุงู„ู„ูŠ .. ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
382
00:32:49,360 --> 00:32:54,160
ุญุงู„ูŠุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุชุฌุงู‡ ู‡ุฐุง ุงู† ู„ูˆ ู„ุฌูŠู†ุง sequence of
383
00:32:54,160 --> 00:32:59,430
partitionsูˆูƒุงู† ุงู„ limit ู„ู„ U P N ูˆ F ู†ู‚ุต ุงู„ P N ูˆ
384
00:32:59,430 --> 00:33:02,870
F ุจุณุงูˆุฉ ุณูุฑ ุฅุฐุง ู‡ุชูƒูˆู† F is integrable ูˆ ู‡ุชูƒูˆู† ุงู„
385
00:33:02,870 --> 00:33:07,990
limit ู„ู„ุฃูˆู„ู‰ ุจุณุงูˆุฉ limit ู„ู„ุซุงู†ูŠุฉ ุจุณุงูˆุฉ ู‚ูŠู…ุฉ ุงู„
386
00:33:07,990 --> 00:33:08,970
integration
387
00:33:12,900 --> 00:33:17,500
ุนู†ุฏ ู…ุง ุฃุนุทูŠู†ูŠ limit ู‡ุฐุง ุฅูŠุด ุจุณุงูˆูŠุŸ ุณูุฑ ุฎู„ู‘ูŠู†ุง ู†ุฏุฎู„
388
00:33:17,500 --> 00:33:20,580
ุนู„ู‰ ุงู„ุชุนุฑูŠู ู…ุจุงุดุฑุฉ ุชุนุฑูŠู ุงู„ limit ุจุชุนุฑููˆุง ุชุนุฑูŠู ุงู„
389
00:33:20,580 --> 00:33:23,140
limit ูŠุง ุดุจุงุจุŸ ุงู„ู„ูŠ ู‡ูˆ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ
390
00:33:23,140 --> 00:33:26,160
there exist k such that ู„ูƒู„ ุฃู† ุฃูƒุจุฑ ุณูˆู‰ k ุจูŠุตูŠุฑ
391
00:33:26,160 --> 00:33:33,200
ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุฅุจุณู„ูˆู† ูˆู‡ุฐุง
392
00:33:33,200 --> 00:33:35,980
ุนู„ู‰ ุทูˆู„ ูŠุนุทูŠู†ุง as integral ุฎู„ู‘ูŠุด ุชุดูˆู ุฃูŠุด ุงู„ู„ูŠ
393
00:33:35,980 --> 00:33:43,000
ุจูŠู‚ูˆู„ู‡ ู„ุฃู† since ุนู†ุฏ ู…ุง ุฃุนุทูŠู†ูŠ limitU P N ูˆ F ู†ุงู‚ุต
394
00:33:43,000 --> 00:33:51,240
ุงู„ P N ูˆ F as N goes to infinity ุจุณุงูˆุฉ ุณูุฑุŒ ู…ุธุจูˆุทุŸ
395
00:33:51,240 --> 00:33:56,220
ู‡ูŠ ูƒู„ ู…ุง ุฃุนุทูŠู†ูŠู‡ุง ู†ุฌูŠ ู„ู„ุชุนุฑูŠูุŒ ุฅุฐุง ุชุนุฑูŠู ุงู„
396
00:33:56,220 --> 00:33:58,880
sequence ุนุงุฏูŠุฉ for every epsilon ุฃูƒุจุฑ ู…ู† ุณูุฑ there
397
00:33:58,880 --> 00:34:02,680
exists K element in N such that for every N ุฃูƒุจุฑ
398
00:34:02,680 --> 00:34:13,090
ุณูˆุง K ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ุงู„ U P N ูˆ F ู†ุงู‚ุตุจู† ูˆ F ุฃุตุบุฑ ู…ู†
399
00:34:13,090 --> 00:34:19,010
ุฅุจุณู„ูˆู† ุฅุฐุง ู…ุด ู„ุฌูŠู†ุง ุจุงุฑุชุดู† ูˆุงุญุฏ ู„ุฌูŠู†ุง ุจุงุฑุชุดู† ุจูƒ ูˆ
400
00:34:19,010 --> 00:34:22,710
ุจูƒ ุฒุงุฏ ูˆุงุญุฏ ูˆ ุจูƒ ุฒุงุฏ ุงุชู†ูŠู† ูˆ ุจูƒ ุฒุงุฏ ุชู„ุงุชุฉ ูƒู„ู‡ู…
401
00:34:22,710 --> 00:34:29,110
ุจุณุจุจ ุฅู† ุงู„ UBK ุฃูˆ ุงู„ UBK ุฒุงุฏ ูˆุงุญุฏ ุฃูˆ ุงู„ุงุฎุฑู‡ ู†ุงู‚ุต
402
00:34:29,110 --> 00:34:32,590
ุงู„ู‚ู„ู„ู‡ุง ุฃุตุบุฑ ู…ู† 100 ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง ุงู„ criterion
403
00:34:32,590 --> 00:34:36,550
ุงู„ู„ูŠ ููŠ ุงู„ูƒูˆุฑูˆู„ุงุฑูŠุช ุญู‚ู‚ุช ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ู‡ุฐู‡ ุฅุฐุง F
404
00:34:36,550 --> 00:34:41,830
is integrableูŠุนู†ูŠ ู…ุด ุจูŠ ุฅุจุณู„ูˆู† ูˆุงุญุฏ ุงู„ู„ูŠ ุฌูŠู†ุง ู„ุฃ
405
00:34:41,830 --> 00:34:46,550
ู…ู† ุนู†ุฏ ุจูƒ ูˆุทุงู„ุน ูƒู„ ุงู„ partitions ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจูƒ ูˆ
406
00:34:46,550 --> 00:34:49,950
ุจูƒ ุฒุงุฆุฏ ูˆุงุญุฏ ูˆ ุจูƒ ุฒุงุฆุฏ ุงุชู†ูŠู† ุจุชุนู…ู„ ุนู…ู„ ุงู„ ุจูŠ
407
00:34:49,950 --> 00:34:53,510
ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ููŠ ูˆูŠู† ููŠ ุงู„ู†ุธุฑูŠุฉ ุฅุฐุง ุงู„ F ุฃุดู…ุงู„ู‡ุง
408
00:34:53,510 --> 00:34:58,750
ุตุงุฑุช ุงู„ F ุนุจุงุฑุฉ ุนู† Integrable ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ
409
00:34:58,750 --> 00:35:05,200
ุงู„ุขู† ุงู„ุฏูˆุฑ ุฏู„ ุฃู† ู†ุซุจุช ู…ูŠู† ุฃู† ุงู„ limitู„ุฃ ุงู„ู„ูŠ ู‡ูˆ
410
00:35:05,200 --> 00:35:09,260
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ูˆ limit ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ ุฅูŠุด ุงู„ู„ูŠ
411
00:35:09,260 --> 00:35:12,540
ุฌูˆุง ุทุจุนุง ู‡ูˆ ู„ูˆ ูƒุงู†ุช ูŠุง ุฌู…ุงุนุฉ limit ู‡ุฐุง ู†ู‚ุต ู‡ุฐุง ุณูุฑ
412
00:35:12,540 --> 00:35:15,920
ู…ุด ู…ุนู†ุงุชู‡ ุงู„ limit ุงู„ุฃูˆู„ ูˆ limit ุงู„ุซุงู†ูŠ exist ู‡ุงูŠ
413
00:35:15,920 --> 00:35:20,610
ู…ุซู„ุง ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช ู‡ุฐู‡ un ุชุฑุจูŠุน ูˆู‡ุฐู‡ unUnterm .. ุขุณู
414
00:35:20,610 --> 00:35:24,610
UnุชุฑุจูŠุน ูˆ UnุชุฑุจูŠุน ุฃูˆ Un ูˆ Un limit Un ู†ู‚ุต Un ุนู„ู‰
415
00:35:24,610 --> 00:35:27,850
ุทูˆู„ ุณูุฑ ู„ูƒู† ู„ุง limit ุงู„ุฃูˆู„ู‰ ุนุฏุฏ ูˆู„ุง limit ุงู„ุซุงู†ูŠ
416
00:35:27,850 --> 00:35:33,270
ุนุฏุฏ ุงุชู†ูŠู† ุงุชูŠู† ุจุฑูˆุญูŠู† ุฅู„ู‰ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ูุงู„ุงู† ู„ูƒู† ููŠ
417
00:35:33,270 --> 00:35:37,390
ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู†ุธุฑุง ู„ู„ู…ุนุทูŠุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ูˆ ุงู„ู„ูŠ ู‡ูŠ
418
00:35:37,390 --> 00:35:40,930
ุทุจูŠุนูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจู†ุญูƒูŠ ููŠู‡ NuF is bounded ูˆ ุจุจูˆ
419
00:35:40,930 --> 00:35:45,550
ูˆ ุงู„ุงุฎุฑู‡ ู‡ูˆ ุงุณุชุฎุฏุงู… ุงู„ุณุงุจู‚ ู‡ูŠุทู„ุน ุนู†ุฏูŠ ูุนู„ุง ุงู„
420
00:35:45,550 --> 00:35:50,840
limitู„ู„ุฃู„ ุจูŠุณุงูˆูŠ limit ู„ู„ุฃุจุฑ ุจูŠุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„
421
00:35:50,840 --> 00:36:08,200
integration ู…ุงุดูŠ ุงุทู„ุนูˆุง ูŠุง ุฌู…ุงุนุฉ ุนู†ุฏูŠ ุงู„ุขู† ุฎู„ูŠู†ูŠ
422
00:36:08,200 --> 00:36:15,240
ุฃุทู„ุน .. ู†ุญุท ุงู„ุจุฑู‡ุงู† ุฃู…ุงู…ู†ุงุจุฏูŠ ุงู„ุขู† ุฎู„ุตุช ุงู„ู„ูŠ ู‡ูˆ F
423
00:36:15,240 --> 00:36:21,500
is integrable ุจุฏูŠ ุฃุณุชุฎุฏู… ุฒูŠ ุฌุงุจู„ ุจุดูˆูŠุฉ ุจุงู„ุธุจุท ุงู„ู„ูŠ
424
00:36:21,500 --> 00:36:28,570
ู‡ูˆ ุชุนุฑูŠู ุงู„ L of F ูˆ U of F ูˆ ุฅูŠุด ุชุนุฑูŠูู‡ุงุฐุง ู…ุง
425
00:36:28,570 --> 00:36:32,250
ุจุฏูŠุด ุงุนูŠุฏ ุงู„ู„ูŠ ุญูƒูŠุชู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ุงู† ุจู…ุง ุงู† ุงู„ L of
426
00:36:32,250 --> 00:36:42,370
F ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ supremum ู„ู„ L B of F ุงุฐุง ู„ูƒู„
427
00:36:42,370 --> 00:36:46,610
ูŠ ุณุงูˆูŠ ูˆุงุญุฏุฉ ู„ุงู† there exists B N partition of I
428
00:36:46,610 --> 00:36:50,390
such that L of F ู†ู‚ุต ูˆุงุญุฏุฉ ู„ุงู† ุงุตุบุฑ ู…ู† ู…ูŠู† ู…ู† L B
429
00:36:50,390 --> 00:36:54,070
N of FุฒูŠ ู…ุง ู‚ู„ุช ู‚ุจู„ ุดูˆูŠุฉุŒ ู„ูˆ ุงู„ู€ Supremum ุทุฑุญู†ุง
430
00:36:54,070 --> 00:36:57,270
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Least Upper BoundุŒ ุทุฑุญู†ุง ู…ู†ู‡ ุฃูŠ ุนุฏุฏุŒ 1
431
00:36:57,270 --> 00:37:01,330
ุนู„ู‰ NุŒ ุฅุฐุง ู‡ู„ุงุฌูŠุŒ ู‡ูŠุจุทู„ ุฅูŠุด ู…ุงู„ู‡ Upper BoundุŒ ุฅูŠุด
432
00:37:01,330 --> 00:37:04,190
ู…ุนู†ุงู‡ ูŠุจุทู„ Upper BoundุŸ ู‡ูŠู„ุงุฌูŠ ูˆุงุญุฏ ู…ู† ุงู„ู…ุฌู…ูˆุนุฉ
433
00:37:04,190 --> 00:37:08,230
ุฃูƒุจุฑ ู…ู†ู‡ุŒ ูˆู‡ุฐุง ูุนู„ุง ุงู„ู„ูŠ ู„ุงุฌูŠู†ุง BNุŒ ุจุญูŠุซ ุฃู† ุงู„ู€ BN
434
00:37:08,230 --> 00:37:13,910
ูˆ F ุฃูƒุจุฑ ู…ู† ุงู„ู€ F ู†ุงู‚ุต ูˆุงุญุฏุฉ ู„ุฃู†ุงู„ุงู† ู…ู† ู‡ุฐุง .. ู…ู†
435
00:37:13,910 --> 00:37:16,670
.. ู…ู† .. ู…ู† ุงู„ .. ุงู„ .. ุงู„ .. ู†ุงุฎุฏ ู‡ุฐุง ุนู„ู‰ ุงู„ุทุฑู
436
00:37:16,670 --> 00:37:19,970
ุงู„ุซุงู†ูŠ ุนู„ู‰ ุงู„ุทุฑู ู‡ู†ุง ูˆ ู†ุงุฎุฏ ู‡ุฐุง ุนู„ู‰ ุงู„ุทุฑู ู‡ุฐุง ุจุตูŠุฑ
437
00:37:19,970 --> 00:37:23,890
ุนู†ุฏูŠ L of F ู†ู‚ุต Lb of F ุฃุตุบุฑ ู…ู† ูˆุงุญุฏุฉ ุงู„ุขู† ูˆ ุฃู†ุง
438
00:37:23,890 --> 00:37:28,670
ุจุนุฑู ุฃู† ู‡ุฐุง ุฏุงูŠู…ุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ ู‡ุฐุง ู„ุฃู† ู‡ุฐุง ุงู„
439
00:37:28,670 --> 00:37:32,410
supremum ู…ู†ู‡ู… ุฅุฐุง ุงู†ุง ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ูŠุณุงูˆูŠ ุณูุฑ ุงู„ุงู†
440
00:37:32,410 --> 00:37:38,440
ุฎุฏูˆุง ุงู„ limit ู„ู„ุฌู‡ุชูŠู†as n goes to infinity ุจูŠุตูŠุฑ
441
00:37:38,440 --> 00:37:43,160
ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ limit
442
00:37:43,160 --> 00:37:48,060
ู„L ุจูŠู‚ู„ ู†ูˆู ุฃู ุญูŠุซุงู„ูˆูŠ ู„L ุฃูˆู ุฃู ู„ุฅู†ู‡ ุญูŠุซูŠุฑ ุงู„
443
00:37:48,060 --> 00:37:53,720
limit ู‡ุฐุง ุฃูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ ุณูุฑ ูˆุงุถุญุงู„ุงู† ูŠุง ุฌู…ุงุนุฉ
444
00:37:53,720 --> 00:37:58,400
ุนู†ุฏูŠ ุงู„ L of F ู†ุงู‚ุต ุงู„ P L of F ุฃุตุบุฑ ู…ู† ูˆุงุญุฏุฉ ู„ุฃู†ู‡
445
00:37:58,400 --> 00:38:03,660
ุฃูƒุจุฑ ุณูˆู‰ ุณูุฑ ู„ุงู† ู…ุนู„ู‡ ุงู„ุงู† ู‡ุฐุง ู„ูƒู„ ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ูˆ
446
00:38:03,660 --> 00:38:07,300
ูˆุงุญุฏุฉ ู„ุงู† ู„ุฌูŠู†ุง partition ูŠุนู†ูŠ ู„ู„ุฅุจุณู„ูˆู† ุจูŠุณุงูˆูŠ
447
00:38:07,300 --> 00:38:09,360
ูˆุงุญุฏ ู„ุฌูŠู†ุง ุจูŠู‡ ูˆุงุญุฏ ู„ู„ุฅุจุณู„ูˆู† ุจูŠุณุงูˆูŠ ุงุชู†ูŠู† ุจูŠู‡
448
00:38:09,360 --> 00:38:12,160
ุงุชู†ูŠู† ู„ู„ุฅุจุณู„ูˆู† ุชู„ุงุชุฉ ุจูŠู‡ ุชู„ุงุชุฉ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ
449
00:38:12,160 --> 00:38:16,580
sequence of ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุงุด partitionsุงู„ุฃู† ุทู„ุน ุนู†ุฏูŠ
450
00:38:16,580 --> 00:38:20,460
ุฏุงุฆู…ุง ุฏุงุฆู…ุง ุฏุงุฆู…ุง L of F ู†ู‚ุต ุงู„ PN of F ุฃุตุบุฑ ู…ู†
451
00:38:20,460 --> 00:38:25,440
ูˆุงุญุฏ ุนู„ู‰ N ู„ูƒู„ N ุงู„ุฃู† as N goes to infinity ู‡ุฐุง ุงู„
452
00:38:25,440 --> 00:38:30,620
limit ู‡ูŠุตูŠุฑ ุณูุฑ ูˆู‡ุฐุง ุณูุฑ ุฅุฐุง ู‡ูŠุตูŠุฑ limit ู‡ุฐุง as N
453
00:38:30,620 --> 00:38:33,200
goes to infinity ุจุณุงูˆูŠ ุณูุฑ ู„ูƒู† ุงู„ L of F ุฃุตู„ุง
454
00:38:33,200 --> 00:38:37,860
independent of N ุฅุฐุง ู‡ูŠุตูŠุฑ limit PN of F as N goes
455
00:38:37,860 --> 00:38:43,720
to infinity ุจุณุงูˆูŠ L of F ู„ุฃู† ุงู„ู…ูˆุงุถุญุงุช ู„ูˆุด ูŠุง ุดุจุงุจ
456
00:38:43,720 --> 00:38:52,360
limitL of F ู†ุงู‚ุต L B N ูˆ F ู‡ูŠุณุงูˆูŠ 0 as N goes to
457
00:38:52,360 --> 00:38:56,920
infinity ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนุจุงุฑุฉ ุนู† ู…ู‚ุฏุงุฑ ุซุงุจุช
458
00:38:56,920 --> 00:39:04,740
independent of N ุฅุฐุง ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ limit L B N ูˆ F
459
00:39:04,740 --> 00:39:10,540
ุจุชุณุงูˆูŠ limit L of F ู†ุงู‚ุต
460
00:39:17,660 --> 00:39:27,170
L of P L ูˆ F ุฒุงุฆุฏ L of Fู…ุธุจูˆุทุŸ ุทูŠุจ ู‡ุฐุง ุงู„ุฃู†
461
00:39:27,170 --> 00:39:33,590
ุงู„ู…ู‚ุฏุงุฑ ู…ุนุฑูˆู ุฃู†ู‡ ุจุณุงูˆูŠ 0 ูˆ ู‡ุฐุง ุซุงุจุช ุฅุฐุง ุจู‚ุฏุฑ ุฃูˆุฒุน
462
00:39:33,590 --> 00:39:37,210
ุงู„ limit ุนู„ู‰ ุงู„ุฌู‡ุชูŠูŠู† ูˆ ุฃู†ุง ู…ุฑุชุงุญ ุฅุฐุง ุจุณุงูˆูŠ limit
463
00:39:37,210 --> 00:39:42,950
ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ 0 ุฒุงุฆุฏ limit ุงู„ุซุงู†ูŠ ู†ูุณู‡ ู„ุฃู†ู‡ ุซุงุจุช
464
00:39:42,950 --> 00:39:46,450
ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ limit L P N of F as N goes to
465
00:39:46,450 --> 00:39:54,710
infinity ุจุณุงูˆูŠ L of F ูƒู…ุง ู‡ูˆ ุญูƒูŠู†ุง ุนู†ู‡ ุญู‚ุงู…ู† ุฌู‡ุฉ
466
00:39:54,710 --> 00:39:58,650
ุฃุฎุฑู‰ limit ุงู„ู€U ู†ุงู‚ุต limit ุงู„ู€L ุงู„ู…ุนุทูŠู„ุฉ ู‡ูŠ ุจูŠุณุงูˆูŠ
467
00:39:58,650 --> 00:40:03,490
0 ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุณู‡ู„ ุฃู† ุฃูˆุฌุฏ mean ุจุฑุถู‡ limit ุงู„ู€U
468
00:40:03,490 --> 00:40:08,990
ุงู„ู„ูŠ ู‡ูˆ limit ุงู„ู€U ุฅูŠุด ู‡ูŠุณุงูˆูŠ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ .. ุงู„
469
00:40:08,990 --> 00:40:12,670
.. ุงู„ .. ู‡ูŠุณุงูˆูŠ limit ุงู„ู€L of F ูŠุณุงูˆูŠ ุงู„ู€U of F
470
00:40:12,670 --> 00:40:17,270
ูŠุณุงูˆูŠ ุงู„ integration ุฃูƒุซุฑ ุชูˆุถูŠุญุงู‹ and ุจูŠู‡ุงุฌุฏู‰
471
00:40:17,270 --> 00:40:22,420
ุฃุนุชู‚ุฏ ุฃู†ู‡ ูˆุงุถุญ ู„ูƒู† ุฎู„ู‘ูŠู†ุง ู†ูˆุถุญู‡ ุจุดูƒู„ ุฃูƒุจุฑุนุดุงู†
472
00:40:22,420 --> 00:40:34,100
ู…ุงูŠุถู„ุด ู…ุดูŠ ุนู†ุฏู‰ limit U P N of F ุงูŠุด ู‡ูŠุณุงูˆูŠ ู‡ูŠุณุงูˆูŠ
473
00:40:34,100 --> 00:40:44,560
ุงู„ู„ูŠ ู‡ูˆ limit U
474
00:40:44,560 --> 00:40:49,740
P N of F
475
00:40:52,490 --> 00:40:58,090
limit U P N ูˆ F ู†ุงู‚ุต
476
00:40:58,090 --> 00:41:07,810
L of P N of F ุฒุงุฆุฏ L P N of F ูˆุงุถุญุฉ ูŠุง ุดุจุงุจ ุฃู‡ุŸ
477
00:41:07,810 --> 00:41:12,690
ุงู„ุขู† ู‡ุฐุง ู…ุถู…ูˆู† ุฃู†ู‡ ู…ูˆุฌูˆุฏ ูˆ ุณูุฑ ูˆู‡ุฐุง ู…ุถู…ูˆู† ูˆ
478
00:41:12,690 --> 00:41:18,350
ุฃุซุจุชู†ุงู‡ ุฅูŠุด ุจูŠุณุงูˆูŠ L of Fุฅุฐุง ุฅูŠุด ุตุงุฑ ุจูŠุณุงูˆูŠุŸ
479
00:41:18,350 --> 00:41:21,810
ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุตูุฑ ุฅุฐุง ุตุงุฑ ุจูŠุณุงูˆูŠ ุฃู‚ู„ ูˆ ูุฃู
480
00:41:21,810 --> 00:41:25,510
ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุจุฑุถู‡ ุจูŠุณุงูˆูŠ ุฃู‚ู„ ูˆ ูุฃู ู„ูƒู† ุฃู†ุง ู…ุซุจุช ู‚ุจู„
481
00:41:25,510 --> 00:41:29,610
ุจุดูˆูŠุฉ ุฃู† ุงู„ F is integrable ูŠุนู†ูŠ ุงู„ U ููŠ F ุฅูŠุด
482
00:41:29,610 --> 00:41:34,550
ู‡ุชุณุงูˆูŠุŸ ุงู„ู„ูŠ ุฃู‚ู„ ูˆ ูุฃู ูˆู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ุฅูŠุด ุจุชุณุงูˆูŠุŸ
483
00:41:34,550 --> 00:41:39,350
limit U P N ูˆ F ูˆู‡ุฐู‡ ู†ูุณู‡ุง ุฃุซุจุชู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฅูŠุด
484
00:41:39,350 --> 00:41:46,070
ุจุชุณุงูˆูŠุŸ limit L P N ูˆ Fูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทุจุนุงู‹ ู…ุฏุงู…
485
00:41:46,070 --> 00:41:49,370
integration ู‡ุฐู‡ ูˆู‡ุฐู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ integration
486
00:41:49,370 --> 00:41:55,410
ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ุงู„ุฅู†ู‚ู„ุง ุจูŠู‡ ู„ู‚ูŠู…ุฉ ุงู„ F
487
00:41:55,410 --> 00:42:01,710
ู„ุฃู† ุตุงุฑ ุนู†ุฏูŠ ูƒู„ ุงู„ู‚ูŠุงู… ู‡ุฐู‡ ู…ุชุณุงูˆูŠุฉ ูˆุตุงุฑ ุนู†ุฏูŠ ุฅูŠุฌุงุฏ
488
00:42:01,710 --> 00:42:07,610
ุงู„ limit ู„ู„ U P N ูˆ F ุฃูˆ limit ู„ู„ L P N ูˆ F ูŠูƒููŠ
489
00:42:07,610 --> 00:42:11,330
ุฃู†ู‡ ู†ูˆุฌุฏ ููŠู‡ ู‚ูŠู…ุฉ ุงู„ integration ุจุนุฏ ู…ุง ุฃุซุจุชู†ุงู‡ ุฃูˆ
490
00:42:11,330 --> 00:42:16,260
ุชุญุช ุงู„ุธุฑูˆู ุงู„ู„ูŠ ู‡ูŠ ููŠ ุงู„ูƒูˆุฑูˆ ุงู„ุฃุฎุฑู‰ู„ุฃ ู†ูŠุฌูŠ ุจุฏู†ุง
491
00:42:16,260 --> 00:42:22,660
ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุจุฑู‡ู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ
492
00:42:22,660 --> 00:42:27,660
ุจุงู„ุชุนุฑูŠู ุจุฏู†ุง ู†ุจุฑู‡ู†ู‡ ุจูˆุงุณุทุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ corollary
493
00:42:27,660 --> 00:42:33,060
ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏู†ุง ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ู†ุซุจุช ุฃู†ู‡
494
00:42:36,170 --> 00:42:42,070
ู†ุซุจุช ุฃู† F of X ุจุณุงูˆุฉ X ูŠุง ุดุจุงุจ ุนุจุงุฑุฉ ุนู† Integrable
495
00:42:42,070 --> 00:42:45,770
ุฃูˆ ุงู„ู„ูŠ ุณู…ู†ุงู‡ุง G of X ุจุณุงูˆุฉ X is Integrable ุนู„ู‰
496
00:42:45,770 --> 00:42:48,830
ุงู„ูุชุฑุฉ Zero ูˆุงุญุฏ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃุซุจุชู†ุงู‡ุง ูƒูŠู
497
00:42:48,830 --> 00:42:54,230
ุฃุซุจุชู†ุงู‡ุง ุฒูŠ ู…ุง ุฃู†ุชู… ู…ุชุฐูƒุฑูŠู† ุจูˆุงุณุท ุงู„ุชุนุฑูŠูู…ุธุจูˆุทุŸ
498
00:42:54,230 --> 00:42:58,610
ุทูŠุจ ุฌูŠุจู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ upper sum ูˆ ุงู„ lower sum ูˆ
499
00:42:58,610 --> 00:43:02,930
ุจุนุฏูŠู† ุฌูŠุจู†ุง ุงู„ upper integral ูˆ ุงู„ lower integral
500
00:43:02,930 --> 00:43:04,750
ูˆ ุฃุซุจุชู†ุง ุงู† ุงู„ upper integral ุจุณุงูˆูŠ ุงู„ lower
501
00:43:04,750 --> 00:43:08,760
integral ูˆ ุฎู„ุตู†ุงู‡ุงู„ุขู† ุจุฏู†ุง ู†ุซุจุชู‡ุง ุจุทุฑูŠู‚ุชู†ุง ุงู„ู„ูŠ ู‡ูŠ
502
00:43:08,760 --> 00:43:12,540
ุนู„ู‰ ุงู„ูƒูˆุฑูˆู„ุฑ ุงู„ู„ูŠ ุฌุงุจู„ ุจุดูˆูŠุฉ ุนู†ุฏ g of x ุณุงูˆุฉ x ุนู„ู‰
503
00:43:12,540 --> 00:43:16,600
ุงู„ูุชุฑุฉ 0 ุจูˆุงุญุฏ ู‡ูŠ ุงู„ู…ุทู„ูˆุจ ุงุซุจุงุชู‡ุง show that g is
504
00:43:16,600 --> 00:43:20,940
integrable ุนู„ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุงู„ุขู† ุจุฏูŠุด ุงุนูŠุฏ ุงู„ู„ูŠ
505
00:43:20,940 --> 00:43:23,850
ุญูƒูŠุชู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉู…ู†
506
00:43:23,850 --> 00:43:26,910
ุงู„ู€ Example ุงู„ู„ูŠ ุฃุซุจุชู†ุง ููŠู‡ ุงู†ู‡ุง Integra ุจุงู„ุจูˆุงุณุทุฉ
507
00:43:26,910 --> 00:43:31,470
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุนุฑูŠู ุฃุฎุฏู†ุง P N ุงู„ู„ูŠ ู‡ูˆ Zero ูˆุงุญุฏ ุนู„ู‰ N
508
00:43:31,470 --> 00:43:34,910
ูˆุงุซู†ูŠู† ุนู„ู‰ N ูˆุงู† ู†ู‚ุต ูˆุงุญุฏ ุนู„ู‰ N ู„ุนู†ุฏ ุงู„ูˆุงุญุฏ ุฃุฎุฏู†ุง
509
00:43:34,910 --> 00:43:39,290
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† Any Partition ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ุทุฑูŠู‚ุฉ
510
00:43:39,290 --> 00:43:43,710
ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ูŠุนู†ูŠ ุญุณุจ N ุจูŠุตูŠุฑ ุจุฎุชู„ู ุงู„ Partition ุฃู…ุง
511
00:43:43,710 --> 00:43:46,730
ุฅูŠุด ููƒุฑุฉ ุงู„ Partition ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ูุงุฆุชุฉ ู…ู†
512
00:43:46,730 --> 00:43:51,350
0 ู„ุนู†ุฏ 1 ุฌุฒุฃู†ุงู‡ุง ุฅู„ู‰ ุฃุฌุฒุงุก ู…ุชุณุงูˆูŠุฉ ุฅู„ู‰ N ู…ู†
513
00:43:51,350 --> 00:43:55,350
ุงู„ุฃุฌุฒุงุก ุงู„ู…ุชุณุงูˆูŠุฉุตุงุฑ ุทูˆู„ ูƒู„ sub integral ุนุจุงุฑุฉ ุนู†
514
00:43:55,350 --> 00:44:00,850
ุฅูŠู‡ุงุด ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ N ูˆุฃูˆุฌุฏู†ุง ููŠ ุญูŠู†ู‡ ุงู„ู„ูŠ ู‡ูˆ
515
00:44:00,850 --> 00:44:08,470
ุงู„ U P N O G ูˆู„ุงุฌู†ุงู‡ุง ุจุชุณุงูˆูŠ ุฅูŠู‡ ุฏู‡ ุจุชุชุฐูƒุฑูˆุง ู†ุต ููŠ
516
00:44:08,470 --> 00:44:13,710
ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ N ูˆุฃูˆุฌุฏู†ุง ุจุฑุถู‡ ุงู„ P N O G
517
00:44:13,710 --> 00:44:18,910
ูˆู„ุงุฌู†ุงู‡ุง ุนุจุงุฑุฉ ุนู† ู†ุต ููŠ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ N ูƒู…ุง
518
00:44:18,910 --> 00:44:26,960
ุฃุฐูƒุฑ ู…ุงุดูŠ ุงู„ุญุงู„ ูุนู„ุง ุทูŠุจุงู„ุงู† ุตุงุฑ ุนู†ุฏู‰ ุงู„ู€ PN ููŠ
519
00:44:26,960 --> 00:44:29,780
ุงู„ูˆุงู‚ุน ุนุจุงุฑุฉ ุนู† sequence of partitions
520
00:44:35,190 --> 00:44:39,110
ู‡ุฐู‡ ุตุงุฑุช sequence of partitions ุจูˆุงุญุฏ ุจุชุนูˆุฏ ุนู† ุงู†ุง
521
00:44:39,110 --> 00:44:42,750
ุจูˆุงุญุฏ ุจุงุชู†ูŠู† ูƒุฏู‡ ุจุชู„ุงุชุฉ ูƒุฏู‡ ุจุงุฑุจุนุฉ ูƒุฏู‡ ูˆููŠ ูƒู„
522
00:44:42,750 --> 00:44:47,270
ุงู„ุฃุญูˆุงู„ ุงู„ู€ U, B, N ูˆ G ุงู†ุฌุฑูˆุง ู„ู‡ูŠู‡ุง ูˆ ุงู„ู€ L, B, N
523
00:44:47,270 --> 00:44:51,490
ูˆ G ุจุณุงูˆูŠ ุฅูŠุด ุงู„ู…ู‚ุฏุงุฑ ุงู„ุฃู…ุงู…ูŠ ุงู„ุขู† ุนุดุงู† ุฃุซุจุช ุฅู†ู‡ุง
524
00:44:51,490 --> 00:44:56,590
integrable ูŠูƒููŠ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ูƒูˆุฑูˆู„ุงุฑูŠ ุฅู† ู‚ุงุนุฏ ุฃู‚ูˆู„
525
00:44:56,590 --> 00:45:03,290
ุทุจ ุฎู„ูŠู†ุง ู†ุดูˆู limit ุงู„ู€ U, B, N ูˆ G ู†ุงู‚ุต ุงู„ู€ L, B,
526
00:45:03,450 --> 00:45:09,840
N ูˆ Gas n goes to infinity ุจุณุงูˆุฉ ุฅูŠู‡ ูŠุง ุนุดุงู† ุจุณุงูˆุฉ
527
00:45:09,840 --> 00:45:16,360
ุณูุฑ ู†ุดูˆูู‡ุง ุตุญ ูˆู„ุง ู„ุฃ ุทุจุนุง ุฃูƒูŠุฏ ู…ุน ุญุณุจุฉ ุจุณูŠุทุฉ
528
00:45:16,360 --> 00:45:24,580
ุงุญุณุจู„ูŠู‡ุง ุจุณุงูˆุฉ limit ู†ุตููŠ ูˆุงุญุฏ ุฒูŠุงุฏ ูˆุงุญุฏุฉ ู„ุงู† ุฒูŠุงุฏ
529
00:45:24,580 --> 00:45:28,600
ู†ุต ููŠ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏุฉ ู„ุงู† as n goes to infinity
530
00:45:28,600 --> 00:45:32,260
ู‡ุฐู‡ ุณูุฑ ูˆู‡ุฐู‡ ุณูุฑ ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต
531
00:45:32,260 --> 00:45:32,340
ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต
532
00:45:32,340 --> 00:45:32,920
ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต
533
00:45:32,920 --> 00:45:38,340
ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต ูˆู‡ุฐู‡ ู†ุต
534
00:45:38,340 --> 00:45:45,580
ูˆู‡ุฐู‡ุงู„ู„ูŠ ู‡ูˆ y ุณุงูˆูŠ ู†ุต ู†ู‚ุต ุงู„ู†ุต y ุณุงูˆูŠ ุณูุฑ ูˆุงุถุญ ุฃู‡ูŠ
535
00:45:45,580 --> 00:45:50,120
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุงุฏ ุณูุฑ ูˆ ู‡ุงุฏ ุณูุฑ ูˆ ู†ุต ู†ู‚ุต ุงู„ู†ุต y
536
00:45:50,120 --> 00:45:54,920
ุณุงูˆูŠ ุณูุฑ ู…ุงุฏุงู… ุณูุฑ ุฅุฐุง ุฅูŠู‡ ุดู…ุงู„ู‡ุง ุฅุฐุง the function
537
00:45:54,920 --> 00:46:02,720
d of x ุณุงูˆูŠ x is integrable on zero ูˆุงุญุฏ ู‡ุฐุง by
538
00:46:02,720 --> 00:46:06,560
mean by ุงู„ corollary ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ
539
00:46:15,600 --> 00:46:19,420
ุงู„ุงู† ุจู‚ูŠู…ุฉ ุงู„ integration ุงูŠุด ู‡ูŠูƒูˆู† ู‚ูŠู…ุฉ ุงู„ limit
540
00:46:19,420 --> 00:46:24,280
limit u, b, n, g ู‡ูŠู‚ุฏุฑ ุงู„ุบุฑุถ ูˆ limit l of n of g
541
00:46:24,280 --> 00:46:29,320
ู‡ูŠู‚ุฏุฑ ุงู„ุบุฑุถ ู„ูŠุด ู„ุฃู† limit ู‡ุฐุง ุงุตู„ุง ู‡ูŠุทู„ุน ู„ูƒ limit
542
00:46:29,320 --> 00:46:35,710
ุงู„ u, b, n ูˆ gู‡ูˆ ุนุจุงุฑุฉ ุนู† ู‚ูŠู…ุฉ integration ู…ู† A ู„
543
00:46:35,710 --> 00:46:42,370
B ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุงู„ู€ Corollary ูˆ ูŠุณุงูˆูŠ limit 2.5 ููŠ 1
544
00:46:42,370 --> 00:46:48,600
ุฒุงุฆุฏ 1 ู„ N ูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุชุฑูˆุญ ู„ 0ูˆ ูŠุณุงูˆู‰ ู†ุต ูˆ ุฃูŠุถุง
545
00:46:48,600 --> 00:46:54,080
ู„ูˆ ุฌุฑุจุช ุญุณุจ ุชุงุจ limit ุงู„ b, n ูˆ g ุทุจุนุง ู‡ูŠุทู„ุน ู†ูุณ
546
00:46:54,080 --> 00:46:58,200
ุงู„ุฌูˆุงุจ ูˆ ุฅู„ุง ุฅู† ูƒุงู† ู‡ู†ุงูƒ ู…ุดูƒู„ุฉ ู„ุฏูŠู†ุง limit ู†ุต ููŠ
547
00:46:58,200 --> 00:47:02,340
ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ n ูˆ ูŠุณุงูˆู‰ ุจุฑุถู‡ ุฌุฏูŠุงุด ู†ุต ุฅุฐู†
548
00:47:02,340 --> 00:47:06,700
ู‚ูŠู…ุฉ ุงู„ integration ุจุณุงูˆุฉ ู†ุต ุฅุฐู† ู‡ุฐู‡ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰
549
00:47:06,700 --> 00:47:11,780
ู„ุญุณุงุจ ุงู„ู„ูŠ ู‡ูˆ ุฃูˆ ู„ุฅุซุจุงุช ุฃู† g of x ุจุณุงูˆุฉ x is
550
00:47:11,780 --> 00:47:17,560
integrableุงู„ุขู† ุจุฏู†ุง ู†ุฏุฎู„ ุนู„ู‰ ุฃู…ุฑ ุขุฎุฑ ุงู„ุฃู…ุฑ ู‡ูˆ ููŠ
551
00:47:17,560 --> 00:47:24,500
ุงู„ูˆุงู‚ุน ูŠุง ุดุจุงุจ ุฃู†ู‡ ุจุฏู†ุง ู†ุดูˆู ุฅูŠุด ููŠ ู…ู† ุนุงุฆู„ุงุช
552
00:47:24,500 --> 00:47:28,400
ุงู„ุฏูˆุงู„ ุนุงุฆู„ุงุช ุงู„ุฏูˆุงู„ ุฅู†ู‡ุง ุชูƒูˆู† Integrable ุงู„ุขู†
553
00:47:28,400 --> 00:47:31,720
ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุญูˆุด ุงู„ุฏูˆุงู„ ุงู„ู€ Integrable ุฅุญู†ุง ุนุฑูู†ุง ุจุณ
554
00:47:31,720 --> 00:47:36,500
ุฏู‡ ู„ุฃ D of X ุณูˆ X is Integrable ูˆ ู‡ู†ู„ุงู‚ูŠ ุฒูŠู‡ุง ู„ูƒู†
555
00:47:36,500 --> 00:47:40,960
ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุญูƒูŠ ุนู† ุฏูˆุงู„ ุงู„ู„ูŠ ู‡ูˆ ุนุงุฆู„ุงุช ู…ู†
556
00:47:40,960 --> 00:47:45,480
ุงู„ุฏูˆุงู„ุฃูˆู„ ุนุงุฆู„ุฉ ู…ู† ุงู„ุนุงุฆู„ุงุช ุงู„ู…ู‡ู…ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
557
00:47:45,480 --> 00:47:48,960
monotone functions ูŠุนู†ูŠ ุงู„ุฏูˆุงู„ ุงู„ู„ูŠ ุจุชูƒูˆู† ูŠุง
558
00:47:48,960 --> 00:47:52,360
increasing ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ูŠุง decreasing ุนู„ู‰ ูƒู„
559
00:47:52,360 --> 00:47:59,320
ุงู„ูุชุฑุฉ ุจู‚ูˆู„ูƒู… ู‡ุฐุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ F ู…ู† F ุงู„ function
560
00:47:59,320 --> 00:48:04,000
ู„ูˆ ูƒุงู†ุช bounded ู„ูˆ ูƒุงู†ุช monotone ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ
561
00:48:04,000 --> 00:48:09,660
closed bounded interval I ุนู„ู‰ ุทูˆู„ integrable ุฅุฐู†
562
00:48:09,660 --> 00:48:16,700
ุนูŠู„ุฉ ูƒุจูŠุฑุฉุนูŠู„ุฉ ุงู„ุฏูˆุงู„ ุงู„ู„ูŠ ุจุชูƒูˆู† ูŠุง increasing ูŠุง
563
00:48:16,700 --> 00:48:22,380
decreasing ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ a ูˆ b ู‡ุฐู‡ ู…ุถู…ูˆู† ุงู†ู‡ุง ุชูƒูˆู†
564
00:48:22,380 --> 00:48:26,980
ุงู„ุฏูˆุงู„ ุงูŠู‡ ุดู…ุงู„ู‡ุง ุนุจุงุฑุฉ ุนู† integrable functions
565
00:48:26,980 --> 00:48:35,090
ุงุฐุง ุงูˆู„ ุงุนู„ุงู† ุงู„ุงู† ุงู„ู„ูŠ ู‡ูˆ any monotone functionon
566
00:48:35,090 --> 00:48:40,850
a closed bounded interval is integrable ูˆู‡ุฐุง ุงู„ู„ูŠ
567
00:48:40,850 --> 00:48:47,090
ู‡ูˆ ุนู†ูˆุงู†ู†ุง integrability of monotone functionsู„ุช I
568
00:48:47,090 --> 00:48:51,650
ุจุชุณุงูˆูŠ A ูˆ B ูˆ ู„ุช F ู…ู† I ู„R ุจูŠูƒูˆู† ู…ูˆู†ูˆุชูˆู† ูุงู†ูƒุดู†
569
00:48:51,650 --> 00:48:57,370
on I ุซู… F ุฃุดู…ุงู„ู‡ุง is integrable on I ู†ูุชุฑุถ ุฃู† F
570
00:48:57,370 --> 00:49:03,110
ุงู†ุชู‚ู„ ู‡ูˆ ู…ูˆู†ูˆุชูˆุฑ ู†ุตู„ ุฅู„ูŠู‡ุง integrable ู†ูุชุฑุถ ุฃู† F
571
00:49:03,110 --> 00:49:09,440
ู…ุซู„ุง increasingูˆู†ุตู„ ุฅู†ู‡ุง integrable ูˆsimilarly
572
00:49:09,440 --> 00:49:14,560
ูˆูุนู„ุง similarly ู„ูˆ ูƒุงู†ุช f is decreasing ู‡ุชูƒูˆู† ุจุฑุถู‡
573
00:49:14,560 --> 00:49:21,500
is integrable ุฎู„ู‘ูŠู†ุง ู…ุน ุจุนุถ ุดุจุงุจ ู†ูุชุฑุถ suppose
574
00:49:21,500 --> 00:49:31,240
that f is increasing ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ูŠ a
575
00:49:31,240 --> 00:49:37,760
ูˆb ู…ุซู„ุงูˆุงู„ุฏุงู„ุฉ ู‡ุชูƒูˆู† ุฃุดู…ุงู„ู‡ุง ุชุฒุงูŠุฏูŠุฉ ูŠุง ู‡ูŠูƒ ูŠุง ู‡ูŠูƒ
576
00:49:37,760 --> 00:49:41,620
ุทุจุนุง ุญุณุจ ู…ุด ู…ุดูƒู„ุฉ ุจุชูุฑุฌ ุฃุดู…ุงู„ู‡ุง ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ู„ูŠ ู‡ูŠ
577
00:49:41,620 --> 00:49:47,060
ุงู„ุฏุงู„ุฉ ุฃุดู…ุงู„ู‡ุง is increasing is increasing ุจุชุฏุฎู„
578
00:49:47,060 --> 00:49:53,500
ุงู„ุขู† ุจูŠ ุฃู† ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† any partition ุงู„ู„ูŠ ู‡ูˆ
579
00:49:55,970 --> 00:50:00,970
ุจุณ ุจุฏูŠ ุฃุฌุฒู‡ ุฒูŠ ู…ู†ู‡ุฌ ุงู„ู„ูŠ ุนู…ู„ุชู‡ ู…ุนู‡ ุงู„ู„ูŠ ู‡ูˆ f of x
580
00:50:00,970 --> 00:50:05,370
ุจุณุงูˆุฉ x ุงู„ู„ูŠ ู‚ุจู„ู‡ ุดูˆูŠุฉ ุจุฏูŠ ุฃุฌุฒู‡ ุฅู„ู‰ ุฃุฌุฒุงุก ู…ุชุณุงูˆูŠุฉ
581
00:50:05,370 --> 00:50:11,130
ูŠุนู†ูŠ ุจุฏูŠ ุฃุฌุฒ ุงู„ูู‚ุฑุฉ a ูˆ b ุฅู„ู‰ ุฃุฌุฒุงุก ู…ุชุณุงูˆูŠุฉ ุงู„ุฃูˆู„ู‰
582
00:50:11,130 --> 00:50:15,730
ุจุฏูŠ ุฃุณู…ูŠู‡ุง x note ุงู„ู„ูŠ ุจุนุฏู‡ุง x1 ุงู„ู„ูŠ ุจุนุฏู‡ุง x2 ู„ู…ุง
583
00:50:15,730 --> 00:50:21,780
ุฃุตู„ ู„ุขุฎุฑ 11 ุฃุณู…ูŠู‡ุง xnูˆู†ูƒูˆู† ุทูˆู„ ูƒู„ ูˆุงุญุฏุฉ ู…ุชุณุงูˆูŠุฉ
584
00:50:21,780 --> 00:50:26,340
ู„ู„ุซุงู†ูŠุฉ ุฅุฐุง ุงู„ุงู† ุฅุฐุง ุจุฏูŠ ุฃุฌุฒุฆู‡ุง ุฅู„ู‰ N ุฅู„ู‰ N ู…ู† ุงู„
585
00:50:26,340 --> 00:50:30,240
sub intervals ุจูŠุตูŠุฑ ุทูˆู„ ูƒู„ ูุชุฑุฉ ุนุจุงุฑุฉ ุนู† B minus A
586
00:50:30,240 --> 00:50:35,080
ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ N ุทูˆู„ ุงู„ูุชุฑุฉ ุนู„ู‰ ุนุฏุฏ ุงู„ูุชุฑุงุช ุงู„ู„ูŠ
587
00:50:35,080 --> 00:50:39,400
ุจุชุฏูŠู‡ุงุฃู†ุง ุจุฏู‘ูŠ ุงู„ูุชุฑุงุช ุฅูŠุด ุนุฏุฏู‡ุงุŸ N ูุจูŠุตูŠุฑ ุนู†ุฏ ุจูŠ
588
00:50:39,400 --> 00:50:43,320
ู…ุงูŠู†ุณ ุฅูŠู‡ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ N ู‡ุฐุง ุทูˆู„ ุงู„ูุชุฑุฉ ูŠุนู†ูŠ ุงู„ูุชุฑุฉ
589
00:50:43,320 --> 00:50:47,740
ุงู„ู†ู…ูˆุฐุฌูŠุฉ ู„ุฃูŠ K X K minus X K minus ูˆุงุญุฏ ู‡ูŠุชู…ูƒู†
590
00:50:47,740 --> 00:50:52,560
ุทูˆู„ู‡ุง ุนุจุงุฑุฉ ุนู† ุจูŠ ู…ุงูŠู†ุณ ุฅูŠู‡ ุนู„ู‰ N for every K ูƒูŠู‡
591
00:50:52,560 --> 00:50:56,000
ุทุจุนุง ุฅูŠู‡ ุงุดู…ุงู„ู‡ุงุŸ ูŠุง ู…ุง ุจูŠุณุงูˆูŠ Zero ูŠุง ูˆุงุญุฏุŒ ู„ุนู†ุฏ
592
00:50:56,000 --> 00:51:01,100
ู…ุงุตู„ุŒ ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ N ุฃูˆ K ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู„ุนู†ุฏ N
593
00:51:04,810 --> 00:51:10,230
xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n
594
00:51:10,230 --> 00:51:14,230
-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n
595
00:51:14,230 --> 00:51:14,590
-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n
596
00:51:14,590 --> 00:51:17,070
-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n
597
00:51:17,070 --> 00:51:25,770
-xn-n-xn-n-xn-n-xn-n-xn-nู„ุฃ ู„ูˆ ุฌูŠู†ุง ู‡ุฐุง increasing
598
00:51:25,770 --> 00:51:30,170
ู…ุฏุงู… increasing ุฅุฐู† ุงู„ู€ Mk ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„
599
00:51:30,170 --> 00:51:35,510
supremum ุงู„ู„ูŠ ู‡ู†ุง supremum ู„ู‡ุฐู‡ Mk ุงู„ supremum
600
00:51:35,510 --> 00:51:39,910
ุงู„ู„ูŠ ู‡ู†ุง ู‡ูŠูƒูˆู† ุนู„ู‰ ุฃุฎุฑ ูˆุงุญุฏุฉ ู„ุฃู† ุฃุฌู…ู„ู‡ุง ุฏู‡ ู„ุง is
601
00:51:39,910 --> 00:51:45,510
increasing ุฅุฐู† ู‡ูŠูƒูˆู† ุงู„ Mk ู‡ูˆ F of XK ุฑุณู… ุนู†ู‡ุง
602
00:51:45,990 --> 00:51:51,210
ุจุณุงูˆุฉ F of X K ุทูŠุจ ุงู„ M K Small ุฃูƒูŠุฏ ู‡ูŠู‚ูˆู„ู†ุง ูƒู„ูƒู…
603
00:51:51,210 --> 00:51:54,010
ู‡ุชู‚ูˆู„ู‡ ุจุชุณุงูˆุฉ ุงู„ M ููŠ ู…ุนู…ุน ุงู„ูุชุฑุฉ ู…ุฏุงู… ุงู„ M ููŠ
604
00:51:54,010 --> 00:51:57,370
ู…ุนู…ุน ุงู„ูุชุฑุฉ ุฅุฐุง ุฃูˆู„ ูˆุงุญุฏุฉ ููŠู‡ู… ุฅุฐุง ู‡ูˆ F of X K
605
00:51:57,370 --> 00:52:04,530
minus ูˆุงุญุฏุŒ ู…ุธุจูˆุท ุดุจุงุจุŸ ุทูŠุจุŒ ู…ุธุจูˆุท ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
606
00:52:04,530 --> 00:52:10,750
ู…ุงู„ู‡ุง ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุชูƒูˆู† monotone ุนู†ุฏูŠุŒ
607
00:52:10,750 --> 00:52:21,840
ุงุญุณุจู„ูŠ ุงู„ุขู† ุงู„ U P N ูˆ Fู†ู‚ุต ุงู„ู€ BNOF ุฅูŠุด ู‡ูŠุณุงูˆูŠุŸ
608
00:52:21,840 --> 00:52:26,840
ุฌู‡ุฒุฉ ุงู„ุฃู…ูˆุฑ ุจุณุงูˆูŠ ุงู„ู€ summation ู„ู…ูŠู†ุŸ ู„ู„ู€ MK
609
00:52:26,840 --> 00:52:36,190
Capital ููŠ XK ู†ู‚ุต XK minus ูˆุงุญุฏูƒ ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ n
610
00:52:36,190 --> 00:52:44,370
ู†ู‚ุต summation mk ููŠ xk minus xk minus 1 k ู…ู† ุนู†ุฏ 1
611
00:52:44,370 --> 00:52:49,440
ู„ุนู†ุฏ n ูˆูŠุณุงูˆูŠุงู„ู€ Mk ูˆุฌุฏู†ุงู‡ุงุŒ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ
612
00:52:49,440 --> 00:52:55,420
F of Xk ูˆูŠุณุงูˆูŠ ุงู„ู€ summation ู„ู„ู€ F of Xk ููŠ ู…ูŠู†
613
00:52:55,420 --> 00:53:00,200
ู…ุถุฑูˆุจุฉุŸ ููŠ ู‡ุฐู‡ุŒ ู‡ุฐู‡ ูƒุฏู‡ ุทูˆู„ู‡ุง ุซุงุจุชุŒ ู…ุง ุงุญู†ุง ู‡ูŠูƒ
614
00:53:00,200 --> 00:53:02,540
ุนู„ู‰ ู‡ุฐุง ุงู„ุฃุณุงุณ ุงุฐุง ุงุฎุชุฑู†ุง ุงู„ู€ sequence of
615
00:53:02,540 --> 00:53:05,320
partitions ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุงู„ู„ูŠ ู‡ูˆ ุทูˆุงู„ุซ ููŠ
616
00:53:05,320 --> 00:53:09,580
subintervals ุซุงุจุชุฉุŒ ูƒู„ ูˆุงุญุฏ ุงุณู…ู‡ ูŠุดู…ู„ู‡ B minus A
617
00:53:09,580 --> 00:53:14,250
ุนู„ู‰ NุŒ ู‡ุฐุง K ู…ู† ูˆุงุญุฏุฅู† ุนู†ุฏู†ุง ู†ุงู‚ุต ุฎู„ู‘ูŠู†ูŠ ุฃุถุนู‡ ููŠ
618
00:53:14,250 --> 00:53:18,550
summation 1 ู†ุงู‚ุต ู†ูุณ ุงู„ู‚ุตุฉ ุงู„ู„ูŠ ู‡ูŠ m k small ุฅูŠุด
619
00:53:18,550 --> 00:53:23,710
ู‡ูŠ ูŠุง ุฌู…ุงุนุฉ ุงุชูุงู‚ู†ุง ุนุจุงุฑุฉ ุนู† f of x k minus 1 ููŠ
620
00:53:23,710 --> 00:53:27,610
ู‡ุฐู‡ ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏู‡ุง ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุนุฏ ุฅุฐู†ูƒู… ู„ุฅู† ู‡ูˆ
621
00:53:27,610 --> 00:53:31,070
ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุฎู„ู‘ูŠู†ูŠ ุฃุทู„ู‘ุญู‡ุง ุจุฑุง ูˆุงุถุญุฉ
622
00:53:31,070 --> 00:53:36,070
ุฃุดูŠู„ ู‡ุฐู‡ ุจุฑุง ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ู…ุถุฑูˆุจุฉ ููŠ b minus a ุนู„ู‰
623
00:53:36,910 --> 00:53:42,350
ูˆุฃุตู„ุง ู‡ุฐู‡ ุซุงุจุชุฉ ุจุงู„ู†ุณุจุฉ ู„ู„ summation ู„ูŠุดุŸ ู„ุฃู† ุงู„
624
00:53:42,350 --> 00:53:46,110
summation ุงู„ุนุฏุงุฏ K ู…ู† ูˆุงุญุฏ ุนู†ุฏู†ุง ุฃู† ู‡ุฐู‡ N ุซุงุจุชุฉ
625
00:53:46,110 --> 00:53:52,870
ุจุงู„ู†ุณุจุฉ ู„ู„ K ู„ุฐู„ูƒ ุจุชุณุงูˆูŠ B minus A ุนู„ู‰ N ู…ุถุฑูˆุจุฉ ููŠ
626
00:53:52,870 --> 00:53:59,280
ู…ูŠู† ููŠ ุงู„ summationู„ู„ู€ f of x k minus f of x k
627
00:53:59,280 --> 00:54:03,840
minus ูˆุงุญุฏ k ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ู„ุนู†ุฏ ุงู†
628
00:54:03,840 --> 00:54:07,920
ุจุนุฏูŠู† the is and could ุจุฏูŠ ุงูุฑุทู‡ุง ู‡ุฐู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ y
629
00:54:07,920 --> 00:54:14,880
ุณุงูˆูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ูƒู„ู‡ ุงู„ู„ูŠ ุฌุงุนุช ุจุญุณุจู‡ ุงู„ u,b,n
630
00:54:14,880 --> 00:54:19,320
ูˆf ู†ุงู‚ุต ุงู„ b,n ูˆf ู‡ูŠุณูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ b
631
00:54:19,320 --> 00:54:25,970
minus a ุนู„ู‰ ุงู„ู…ุถุฑูˆุจ ููŠู‡ุงู„ุงู† ุงู„ summation ุนุจุงุฑุฉ ุนู†
632
00:54:25,970 --> 00:54:32,630
k ุจ 1 ุจุตูŠุฑ f of x 1 ู†ุงู‚ุต f of x naught ุงู„ู„ูŠ ุจุนุฏู‡ุง
633
00:54:32,630 --> 00:54:40,170
k ุจ 2 ุฒุงุฆุฏ f of x 2 ู†ุงู‚ุต f of x 1 ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฒุงุฆุฏ
634
00:54:40,170 --> 00:54:46,130
f of x 3 ู†ุงู‚ุต f of x 2 ู„ู…ุง ู†ู‚ุถู‰ ุงู„ู„ูŠ ู…ุงุดูŠ ู„ุฃุฎุฑ
635
00:54:46,130 --> 00:54:53,140
ูˆุงุญุฏ ุจูƒูˆู† ุนู†ุฏู‰ f of x nู†ุงู‚ุต f of x n ู†ุงู‚ุต ูˆุงุญุฏ
636
00:54:57,360 --> 00:55:04,840
F of X1 ุจูŠุทูŠุฑ ู…ุน ุณุงู„ุจ F of X1 ูˆ F of X2 ุจูŠุทูŠุฑ ู…ุน
637
00:55:04,840 --> 00:55:09,840
ุณุงู„ุจ F of X2 ูˆ ู‡ูƒุฐุง ุจุธู„ ู…ุงุดูŠ ู„ู…ุง ูƒู„ู‡ ูŠุฑูˆุญ ู…ุน ูƒู„ู‡
638
00:55:09,840 --> 00:55:16,640
ู…ุง ุนุฏุง ุจุธู„ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุฃูˆู„ ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูŠ F of X
639
00:55:16,640 --> 00:55:22,660
note ุจุงู„ุณุงู„ุจ ู…ุน F of Xn ุงู„ุฃุฎูŠุฑุฉ ุจุงู„ู…ูˆุฌุจ ุจูŠุตูŠุฑ ุนู†ุฏูŠ
640
00:55:22,660 --> 00:55:34,740
Y ุณุงูˆูŠ B minus A ุนู„ู‰ NููŠ F of Xn ู†ุงู‚ุต F of X0 ุทุจุนุง
641
00:55:34,740 --> 00:55:39,420
Xn ุขุฎุฑ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ู‡ูŠ B ูˆ X0 ุฃูˆู„ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ู‡ูŠ A
642
00:55:39,420 --> 00:55:46,580
ุฅุฐู† ู‡ูŠุณุงูˆูŠ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† B minus A ููŠ F of B minus
643
00:55:46,580 --> 00:55:53,150
F of A ุงู„ูƒู„ ู‡ุฐุง ู…ุฌุณูˆู… ุนู„ู‰ ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ ุนู„ู‰ Nู‡ุฐุง
644
00:55:53,150 --> 00:55:58,090
ุนุจุงุฑุฉ ุนู† ุซุงุจุช ูˆู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุซุงุจุช ูˆู‡ุฐุง ุงู„ุงู† ู‡ูŠ ุงู„ู„ูŠ
645
00:55:58,090 --> 00:56:03,670
ุจุฏู„ุงู„ุชู‡ุง ูƒูุชูุจ ุงู„ partitions ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ุจุนุฏ
646
00:56:03,670 --> 00:56:07,230
ูƒู„ ุงู„ู„ูŠ ุญูƒูŠุชู‡ ู‡ุงู† ุฃุฎุฏุช ุงู„ ุจูŠ ุฃู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ
647
00:56:07,230 --> 00:56:12,190
ุนุจุงุฑุฉ ุนู† sequence of partitions ูˆูˆุตู„ู†ุง ุฅู„ู‰ ู…ุง
648
00:56:12,190 --> 00:56:17,890
ู„ุงู‚ูŠุง ู„ูŠู‡ ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูˆ ูˆุตู„ู†ุง ุงู† ุงู„ you ุจูŠ ุฃู† ูˆ
649
00:56:17,890 --> 00:56:26,260
ุฃู ู†ุงู‚ุต ุงู„ ุจูŠ ุฃู† ูˆ ุฃูุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุทุจุนุง ุฃูƒูŠุฏ ุฃูƒุจุฑ
650
00:56:26,260 --> 00:56:29,600
ูŠุณุงูˆูŠ ุตูุฑ ู„ุฃู† ู‡ุฐุง ุฏุงูŠู…ุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ ู‡ุฐุง ุฃุตุบุฑ ูŠุณุงูˆูŠ
651
00:56:29,600 --> 00:56:36,140
B minus A ู F of B ุฃูƒูŠุฏ ุนุฑูุช ุฃุดู‡ุฏ ุฃุณุงูˆูŠ ู†ู‚ุต F of A
652
00:56:36,140 --> 00:56:41,720
ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ N ุงู„ู€ N ุฎุฏ ุงู„ limit ู„ู„ุฌู‡ุชูŠู† as N goes
653
00:56:41,720 --> 00:56:45,160
to infinity as N goes to infinity ู‡ุฐุง goes to zero
654
00:56:45,160 --> 00:56:51,730
ูˆู‡ุฐุง ุฃุตู„ุง ุตูุฑ ูุจุตูŠุฑ ุนู†ุฏูŠ limit ุฅุฐุง .. ุฅุฐุง limitุงู„ู€
655
00:56:51,730 --> 00:56:59,290
U P N ูˆ F ู†ุงู‚ุต ุงู„ู€ L P N ูˆ F as N goes to infinity
656
00:56:59,290 --> 00:57:04,210
ุจุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ sequence of partitions ุชุญู‚ู‚
657
00:57:04,210 --> 00:57:07,730
ู„ู‡ุฐุง ุฅุฐุง ุญุณุจ ุงู„ู€ Corollary ุงู„ู„ูŠ ุญูƒูŠุชู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ
658
00:57:07,730 --> 00:57:17,130
ุฅุฐุง F is integrable ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุฃูŠ
659
00:57:17,130 --> 00:57:21,850
increasing function is integrablesimilarly for
660
00:57:21,850 --> 00:57:26,170
decreasing ู„ู…ุงุฐุง similarly ู„ุฃู†ู‡ ุชุตุจุญ ุงู„ุฏุงู„ุฉ ุจุฏู„ ู…ุง
661
00:57:26,170 --> 00:57:30,950
ู‡ูŠ ุทุงู„ุน ู‡ูŠูƒ ุชุตุจุญ ุฃุดู…ุงู„ู‡ุง ู†ุงุฒู„ุฉ ู†ุฒูˆู„ ุงู„ุฏุงู„ุฉ ูุจุตูŠุฑ
662
00:57:30,950 --> 00:57:35,430
ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ maximum ู‡ูŠ ุงู„ุฃูˆู„ู‰ ุฃูˆ ุงู„ supremum
663
00:57:35,430 --> 00:57:41,920
ู‡ูŠ ุฃูุจุตูŠุฑ ุงู„ู€ MK ุจุณูˆุก F of XK minus ูˆุงุญุฏ ูˆุงู„ู€ MK
664
00:57:41,920 --> 00:57:46,760
ุจุณูˆุก F of XK ูˆุจูŠุชูƒู…ู„ูˆุง ุงู„ุจุฑู‡ุงู† ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉุŒ ู‡ูŠุทู„ุน
665
00:57:46,760 --> 00:57:52,040
ุนู†ุฏูƒู… ุงู„ุจุฑู‡ุงู† automatic ูˆุจุดูƒู„ ุณู‡ู„ ูˆุจุดูƒู„ ุณู„ุณุŒ
666
00:57:52,040 --> 00:57:58,500
similar ุฃูŠ ุณุคุงู„ุŸ ุฅุฐู† ุงู„ุฅุนู„ุงู† ุงู„ู„ูŠ ุฃุนู„ู†ู†ุงู‡ ู‚ุจู„
667
00:57:58,500 --> 00:58:04,800
ุจุดูˆูŠุฉ ุฃู†ู‡ any monotone functionูŠุนู†ูŠ any increasing
668
00:58:04,800 --> 00:58:08,780
function on a closed bounded interval must be
669
00:58:08,780 --> 00:58:15,740
integrable and any decreasing function on a closed
670
00:58:15,740 --> 00:58:20,420
bounded interval ุจุฑุถู‡ must be integrable ุฅุฐุง ุตุงุฑ
671
00:58:20,420 --> 00:58:26,060
ููŠ ุนู†ุง ุนุงุฆู„ุฉ ูƒุงู…ู„ุฉ ู…ู† ุงู„ุฏูˆุงู„ ุงู„ู‚ุงุจู„ุฉ ู„ู„ุชูƒุงู…ู„ ุจูˆุงุณุท
672
00:58:26,060 --> 00:58:32,160
ุงู„ุชูƒุงู…ู„ remandุงู„ุขู† ุจุฏู†ุง ู†ู†ุชู‚ู„ ุฅู„ู‰ ุนุงุฆู„ุฉ ุฃุฎุฑู‰
673
00:58:32,160 --> 00:58:38,300
ูˆุนุงุฆู„ุฉ ู„ุง ุชู‚ู„ ุฃู‡ู…ูŠุฉ ุนู† ู‡ุฐู‡ ุงู„ุนุงุฆู„ุฉ ูˆุนุงุฆู„ุฉ ูŠุนู†ูŠ
674
00:58:38,300 --> 00:58:45,560
ู…ุญุจูˆุจุฉ ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ
675
00:58:45,560 --> 00:58:53,960
ู‡ูŠ ุนุงุฆู„ุฉ ุงู„ุฏูˆุงู„ ุงู„ู…ุชุตู„ุฉ ุงู„ู„ูŠ ู‡ูŠ integrable of
676
00:58:53,960 --> 00:58:56,140
continuous functions
677
00:59:00,850 --> 00:59:06,130
ุงู„ู„ูŠ ู‡ูŠ integrability of continuous functions
678
00:59:06,130 --> 00:59:12,210
ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠ ู„ุช ุฃ .. ุทุจุนุง ุนู†ุฏูŠ ุงู„ function
679
00:59:12,210 --> 00:59:16,410
ุนู„ู‰ closed bounded interval ู„ุช F ู…ู† I ู„R be
680
00:59:16,410 --> 00:59:20,750
continuous on I then F is integrable on I ุฅุฐุง ุงู„ุขู†
681
00:59:20,750 --> 00:59:24,230
any continuous function on a closed bounded
682
00:59:24,230 --> 00:59:29,600
interval must be integrableูƒู…ุงู† ู…ุฑุฉ any continuous
683
00:59:29,600 --> 00:59:33,840
function on a closed bounded interval must be
684
00:59:33,840 --> 00:59:38,920
integrable ุทุจุนุง ุญูŠุฒู†ุง ููŠ ุงู„ุจุฑู‡ุงู† ุดุบู„ุฉ ุงู„ู„ูŠ ู‡ูŠ
685
00:59:38,920 --> 00:59:45,080
ุฃุฎุฏู†ุงู‡ุง ุณุงุจู‚ุง ุงู†ู‡Any continuous function on a
686
00:59:45,080 --> 00:59:49,840
closed bounded interval must attain its maximum
687
00:59:49,840 --> 00:59:57,800
and minimum on this interval ุจู…ุนู†ู‰
688
00:59:57,800 --> 01:00:01,970
ุขุฎุฑ ู‡ู†ู„ุงู‚ูŠู„ูˆ ูƒุงู†ุช F is continuous ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
689
01:00:01,970 --> 01:00:05,990
A ูˆ ุงู„ู€ B ู‡ู†ู„ุงู‚ูŠ ู†ู‚ุทุฉ ููŠ ุฏุงุฎู„ ุงู„ูุชุฑุฉ A ูˆ B ุจุญูŠุซ
690
01:00:05,990 --> 01:00:09,570
ุงู†ู‡ุง ุชูƒูˆู† ุงู„ู€ F ุนู†ุฏู‡ุง ู†ู‚ุทุฉ maximum ูˆ ู‡ู†ู„ุงู‚ูŠ ู†ู‚ุทุฉ
691
01:00:09,570 --> 01:00:12,750
ุฃุฎุฑู‰ ููŠ ุฏุงุฎู„ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ู‡ู†ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
692
01:00:12,750 --> 01:00:15,930
function ุนู†ุฏู‡ุง ุฅุดู…ุงู„ู‡ุง is minimum ุทุจุนุง absolute ูˆ
693
01:00:15,930 --> 01:00:24,180
absolute ู†ูŠุฌูŠ ู†ุดูˆู .. ู†ูŠุฌูŠ ู„ู„ุจุฑู‡ุงู†ุงู„ุงู† .. ู†ุธุฑูŠุฉ
694
01:00:24,180 --> 01:00:28,540
ุฃุฎุฑู‰ ุฃูŠุถุง .. ุจุฑุถู‡ ุฎู„ูŠู†ุง ู†ู‚ูˆู„ู‡ุง ุฃู† ู„ูˆ ูƒุงู†ุช F is
695
01:00:28,540 --> 01:00:32,580
continuous ุนู„ู‰ closed bounded interval then F is
696
01:00:32,580 --> 01:00:43,820
uniformly continuous ุงู„ุงู† F .. ุนู†ุฏ F ู…ู† A ูˆ B ู„ุนู†ุฏ
697
01:00:43,820 --> 01:00:51,090
R is continuous on A ูˆ Bcontinuous ุนุงู„ู…ูŠู† ุนู„ู‰
698
01:00:51,090 --> 01:00:54,450
closed bounded interval ููŠ ุนู†ุฏู†ุง ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุชู‚ูˆู„
699
01:00:54,450 --> 01:00:58,270
any continuous function ููŠ ุงู„ูˆุงุญุฏ on a closed
700
01:00:58,270 --> 01:01:02,230
bounded interval must be uniformly continuous ุฅุฐุง
701
01:01:02,230 --> 01:01:10,030
then f is uniformly continuous
702
01:01:10,730 --> 01:01:15,290
on a ูˆ b ุงูŠุด ูŠุนู†ูŠ uniformly continuous ูŠุนู†ูŠ ู„ูƒู„
703
01:01:15,290 --> 01:01:18,810
ุงุจุณู„ูˆู† ุงูƒุจุฑ ู…ู† ุณูุฑ there exist ุฏู„ุชุง ุงูƒุจุฑ ู…ู† ุณูุฑ
704
01:01:18,810 --> 01:01:22,990
ุฏู„ุชุง ุจุณ ุจุชุนุชู…ุฏ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงุจุณู„ูˆู† ุจุชู†ูุน ู„ูƒู„ ุงู„ X ูˆ
705
01:01:22,990 --> 01:01:30,810
ุงู„ Y such that if X minus Y ุงูˆ U ู†ุงู‚ุต V ุฒูŠ ู…ุง ู‡ูˆ
706
01:01:30,810 --> 01:01:40,200
ู…ุณู…ูŠู‡ุง U minus Vุฃุตุบุฑ ู…ู† ุฏู„ุชุง then F of U ู†ุงู‚ุต F of
707
01:01:40,200 --> 01:01:49,800
V ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู„ูƒู„ UV element in A ุฃูˆ Bุฅุฐู† ู„ูƒู„ y
708
01:01:49,800 --> 01:01:52,900
ุฃูƒุจุฑ ู…ู† 0 there exists Delta ุฏู„ุชุง ุฃุดู…ุฉ ู„ุง ุจุชุนุชู…ุฏ
709
01:01:52,900 --> 01:01:56,280
ุนู„ู‰ ู…ูŠู† ุจุณ ุนู„ู‰ ุฅุจุณู„ูˆู† ููŠ ุญุงู„ุฉ ุงู„ continuity
710
01:01:56,280 --> 01:02:01,560
ุงู„ุนุงุฏูŠุฉ ุจู†ู‚ูˆู„ ุฅุญู†ุง limit f of x as x ุจุชุฑูˆุญ ู„ู„ a
711
01:02:01,560 --> 01:02:07,260
ุจุณุงูˆูŠ ุงูŠุด f of a ุจู†ู‚ูˆู„ ุงู„ุขู† ุฅู†ู‡ limit f of x ุจุณุงูˆูŠ
712
01:02:07,260 --> 01:02:13,450
f of a as x ุจุชุฑูˆุญ ู„ู„ a ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† 0ู‡ุตุจ ู…ูŠู†
713
01:02:13,450 --> 01:02:18,070
ุจุงู„ู€ a ู‡ุฐู‡ there exist ุฏูŠ ูˆ ู„ูƒู„ a element in a
714
01:02:18,070 --> 01:02:23,270
there exist delta such that ุงู„ู„ูŠ ู„ู…ุง ูŠูƒูˆู† x minus
715
01:02:23,270 --> 01:02:27,190
a ุฃุตุบุฑ ู…ู† delta ุจูŠุนุทูŠู†ุง f of x ู†ู‚ุต f of a ุฃุตุบุฑ ู…ู†
716
01:02:27,190 --> 01:02:32,550
ุฅุจุณู„ูˆู† ูŠุนู†ูŠ ุจูŠูƒูˆู† ุงู„ู€ delta ู‡ู†ุง ุชุนุชู…ุฏ ุนู„ู‰ ุงู„ุฅุจุณู„ูˆู†
717
01:02:32,550 --> 01:02:37,550
ูˆุชุนุชู…ุฏ ุนู„ู‰ ุงู„ a ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุงู„ continuityู„ูƒู† ููŠ ุงู„ู€
718
01:02:37,550 --> 01:02:41,890
Uniform Continuous ุงู„ู€ Delta ุงู„ู„ูŠ ุงู„ู„ูŠ ุฌูŠุช ู‡ู†ุง
719
01:02:41,890 --> 01:02:47,510
ุจุชู†ูุน ู„ูƒู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
720
01:02:47,510 --> 01:02:47,890
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
721
01:02:47,890 --> 01:02:47,910
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
722
01:02:47,910 --> 01:02:48,290
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
723
01:02:48,290 --> 01:02:48,530
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
724
01:02:48,530 --> 01:02:50,270
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
725
01:02:50,270 --> 01:02:50,330
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
726
01:02:50,330 --> 01:02:50,410
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
727
01:02:50,410 --> 01:02:54,250
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
728
01:02:54,250 --> 01:02:59,970
ุงู„ .. ุงู„ ..F is continuousุŒ ุฅุฐู† ูŠูู†ูุฑู… ุงู„ู€
729
01:02:59,970 --> 01:03:02,650
continuousุŒ ุฅูŠุด ู…ุนู†ุงุชู‡ุŸ ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุตูุฑุŒ
730
01:03:02,650 --> 01:03:05,490
there exists ุฏู„ุชุงุŒ ุจุญูŠุซ ุฅู† U minus V ุฃุตุบุฑ ู…ู† ุฏู„ุชุง
731
01:03:05,490 --> 01:03:08,690
ูŠุนุทูŠู†ูŠ F of U ู†ุงู‚ุต F of V ุฃุตุบุฑ ู…ู† ุฅูŠุงุดุŒ ู…ู† ุฅุจุณู„ูˆู†ุŒ
732
01:03:08,690 --> 01:03:11,870
ูˆุฎู„ู‘ูŠ ู‡ุฐู‡ ุฅูŠุด ู…ุงู„ู‡ุง ููŠ ุงู„ุฐุงูƒุฑุฉุŒ ุฃู†ุง ุนุดุงู† ุงู„ุญุณุงุจุงุช
733
01:03:11,870 --> 01:03:15,890
ุจุฏูŠ ุฃุฎู„ูŠู‡ุง ุฅุจุณู„ูˆู† ุนู„ู‰ ู…ูŠู†ุŒ ุนู„ู‰ B minus AุŒ ุทูˆู„
734
01:03:15,890 --> 01:03:19,070
ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุฃู†ุง ุจุดุชุบู„ ุนู„ูŠู‡ุงุŒ ู‡ุชุดูˆููˆุง ู„ูŠุด ูƒุชุจุช ู‡ูŠูƒุŒ
735
01:03:19,070 --> 01:03:22,720
ุจุณ ู„ุง ุงู„ุญุณุงุจุงุชุจู‚ุฏุฑ ุฃู‡ ุจู‚ุฏุฑ ู„ุฅู† ู‡ูˆ ุฃุตุบุฑ .. ุฃู‡ ุจู‚ุฏุฑ
736
01:03:22,720 --> 01:03:25,140
ุฎู„ูŠู‡ ุฃุตุบุฑ ู…ู† ุงู„ู€ Epsilon ููŠ ุงู„ุฏู†ูŠุง ู…ู† ุถู…ู† ุฅู† ูƒู„
737
01:03:25,140 --> 01:03:27,520
ุงู„ู€ Epsilon ุนู† ุงู„ู€ B minus A ู„ูƒู„ ุงู„ู€ Epsilonุงุช
738
01:03:27,520 --> 01:03:34,040
ุงู„ู„ูŠ ููŠ ุงู„ุฏู†ูŠุง ุทูŠุจ ู„ุฃู† ุดูˆู ูˆูŠู† ุจุฏู‡ ุฃุฑูˆุญุŒ ุจุฏู‡ ุฃุฑูˆุญ
739
01:03:34,040 --> 01:03:39,250
ู„ู€ Integrability ู„ู€ ุงู„ู€ function Fุงู„ุฃู† ุฎูุฏ n ุงู„ุงู†
740
01:03:39,250 --> 01:03:42,190
ุจุฏู†ุง ู†ุนู…ู„ partitions ุจุฏู†ุง ู†ุฌูŠุจ sequence of
741
01:03:42,190 --> 01:03:45,890
partitions Bn ุงู„ sequence of partitions ู‡ุฐู‡ ู‡ูŠ
742
01:03:45,890 --> 01:03:50,010
ุงู„ู„ูŠ ู‡ุชุฎุฏู…ู†ูŠ ู‡ุชุฎุฏู…ู†ูŠ ู…ุชู‰ุŸ ุจุนุฏ ุดูˆูŠุฉ ุจุชุดูˆููˆุง ู„ูŠุด
743
01:03:50,010 --> 01:03:54,110
ู‡ุชุฎุฏู…ู†ูŠ ู„ูƒู„ ุงู„ุฃู†ุงุช ุงู„ู„ูŠ ูˆูŠู† ู…ุง ู„ุฅู† ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† ุงู„
744
01:03:54,110 --> 01:03:59,370
B minus A ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ delta ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ุฅุฐุง
745
01:03:59,370 --> 01:04:04,130
ุงู„ู„ูŠ ุตุงุฑุช ุงู„ delta ุจูŠู† ุฅูŠุฏูŠุง ุฅุฐุง ุจู‚ูˆู„ูƒ ุงู„ุขู† choose
746
01:04:05,140 --> 01:04:12,320
N element in N such that ู…ุง ู„ู‡ุง N ุฃูƒุจุฑ ู…ู† B minus
747
01:04:12,320 --> 01:04:17,620
A ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุฏู„ุชุง ุจุฑุถู‡ B minus A ุนุดุงู† ุงู„ุญุณุจุงู† N
748
01:04:17,620 --> 01:04:21,240
ุฃูƒุจุฑ ู…ู† B minus A ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุฏู„ุชุง ูŠุนู†ูŠ ุงู„ุขู† ุฃู†ุง
749
01:04:21,240 --> 01:04:26,920
ุจุญูƒูŠ ุจุญูƒูŠ ุนู† ุงู„ุฃู†ุงุช ุงู„ู„ูŠ ุจูƒูˆู† ุฃูƒุจุฑ ู…ู† B minus A
750
01:04:26,920 --> 01:04:31,460
ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุฏู„ุชุง ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ููˆู‚ ุนู†ุฏูŠ ููŠ ุงู„ู„ูŠ ู‡ูˆ
751
01:04:31,460 --> 01:04:37,080
ู‡ุฐุง ูˆุงุญุฏู…ุงุดูŠ ุงู„ุญุงู„ุฉ ุงู„ุงู† ุจุชุจุฏุฃ ุงูƒูˆู‘ู† partitions ู…ู†
752
01:04:37,080 --> 01:04:42,480
ู…ูŠู†ุŸ ู…ู† ุงู„ุฃู…ู†ุงุช ู‡ุฐู‡ ุงู„ุงู† ุจุชุงุฎุฏ ุจูŠุฆุง ุงู†ูŠ partitions
753
01:04:42,480 --> 01:04:47,220
ุงู†ูŠ partitions ุจุฑุถู‡ ุฃุดู…ุงู„ู‡ with equal ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด
754
01:04:47,220 --> 01:04:54,240
sub intervals ูŠุนู†ูŠ X ู†ูˆุช ูˆ X ูˆุงุญุฏ ู„ุนู†ุฏ X ุงู† ูŠุนู†ูŠ
755
01:04:54,240 --> 01:04:58,540
ุทูˆู„ ูƒู„ ูุชุฑุฉ ู…ู†ู‡ู… ุจุฑุถู‡ ุทูˆู„ .. ุจุชุงุฎุฏ ุงู„ู„ูŠ ู‡ูŠ ูƒู„ู‡ู…
756
01:04:58,540 --> 01:05:03,590
ุฃุดู…ุงู„ูŠู†ู…ู† ุนู†ุฏ A ู„ุนู†ุฏ B ูŠูƒูˆู† ุงู† ูƒู„ ุงู„ sub intervals
757
01:05:03,590 --> 01:05:08,530
ุฌุช ุจุนุถ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ู‡ูŠูƒูˆู† ุงู„ XK minus XK minus
758
01:05:08,530 --> 01:05:12,970
ูˆุงุญุฏ ุจูŠุณุงูˆูŠ B minus A ุนู„ู‰ N ุทูˆู„ ูƒู„ ูุชุฑุฉ ุงูŠุด ุจูŠุณุงูˆูŠ
759
01:05:12,970 --> 01:05:16,950
B minus A ุนู„ู‰ ุนุฏุฏ ุงู„ูุชุฑุงุช ุงู„ู„ูŠ ู‡ูŠ N ูุจูƒูˆู† B minus
760
01:05:16,950 --> 01:05:21,250
A ุนุงู„ู…ูŠุง ุนู„ู‰ Nุฃู†ุง ุญุฑู‘ู† ุงู†ู‡ู… ุฃู„ุงู‚ูŠ ููŠ ุงู„ู†ู‡ุงูŠุฉ
761
01:05:21,250 --> 01:05:25,630
sequence of partitions BN limit ุงู„ู€ U B N ูˆ F ู†ู‚ุต
762
01:05:25,630 --> 01:05:29,290
ุงู„ู€ L B N ูˆ F ุจุณุงูˆูŠ 0 ุจูŠูƒูˆู† F is integrable ุฎู„ุตู†ุง
763
01:05:29,290 --> 01:05:32,950
ุฃู†ุง ู‚ุงุนุฏ ุงุฎุชุฑุช ุงู„ู„ูŠ ู‡ูŠ sequence of partitions ุจู†ุงุก
764
01:05:32,950 --> 01:05:36,390
ุนู„ู‰ ุงู„ู€ Delta ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ููŠ ุงู„ uniformity ูˆ
765
01:05:36,390 --> 01:05:39,830
ุงู„ุฃู†ุงุช ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†ู‡ุง ูˆ ุญุทูŠุช ุงู„ partition ุงู„ู„ูŠ ู‡ูˆ
766
01:05:39,830 --> 01:05:44,710
ุจุดูƒู„ ุงู„ู„ูŠ ู‡ูˆ ุชูƒูˆู† ุงู„ subintervals ูƒู„ู‡ุง ู„ู‡ุง ู†ูุณ
767
01:05:44,710 --> 01:05:46,230
ุงู„ุทูˆู„ ุทูŠุจ
768
01:05:48,470 --> 01:05:56,170
ุงู„ุขู† ุฒูŠ ู…ุง ู‚ู„ุช ู‚ุจู„ ุจุดูˆูŠุฉ negation ุนู„ู‰ ุงู„ูุชุฑุฉ xk ูˆ
769
01:05:56,170 --> 01:06:01,710
minus 1 ูˆ xk ู‡ุฐุง ุงู„ sub interval ุงู„ function is
770
01:06:01,710 --> 01:06:03,550
continuous ุนู„ูŠู‡ุง ู„ุฃู†ู‡ุง continuous ุนู„ู‰ ูƒู„ ุงู„
771
01:06:03,550 --> 01:06:06,970
interval a ูˆ b ู…ุฏุงู… continuous ุนู„ูŠู‡ุง ุฅุฐุง it
772
01:06:06,970 --> 01:06:10,310
attains its maximum and its minimum on this
773
01:06:10,310 --> 01:06:16,100
intervalุฃูƒูŠุฏุŸ ู„ู‚ุฏ ุญุฏ ูƒุฏู‡ ู‚ุจู„ ู…ุดูˆูŠุฉ ุฅุฐู† ุจู…ุง ุฃู† ุงู„ู€
774
01:06:16,100 --> 01:06:18,480
F is continuously not closed bound in ุงู„ู€ interval
775
01:06:18,480 --> 01:06:26,800
ู‡ุฐู‡ ุฅุฐู† there exist ุณู…ูŠู‡ุง U K ูˆ V K element in X K
776
01:06:26,800 --> 01:06:33,720
minus ูˆุงุญุฏ ูˆ X K such that F of U K ู‡ูŠ ุงู„ maximum
777
01:06:33,720 --> 01:06:41,190
ุนู„ู‰ ูƒู„ ู‡ุฐู‡ ุงู„ maximum ู…ุนู†ุงุชู‡ ู‡ูŠ ุงู„ supremum of Kุฃูˆ
778
01:06:41,190 --> 01:06:47,110
ุฃูŠุถู‹ุง ุนู†ุฏ ุงู„ู€ VK F of VK ู‡ูŠ ุงู„ู€ Minimum ุนู„ู‰ ู‡ุฐู‡
779
01:06:47,110 --> 01:06:52,310
ู…ุถู…ูˆู† ู…ูˆุฌูˆุฏ ู‚ู„ู†ุงู‡ุง ู‡ูŠ ุทุจุนู‹ุง ู…ุฏุงู…ุฉ Minimum ุนู„ู‰ ูƒู„
780
01:06:52,310 --> 01:06:56,150
ุงู„ูุชุฑุฉ ุฅุฐู‹ุง ู‡ูŠ ุงู„ู€ Infimum ุงู„ู„ูŠ ุจุจุญุซ ุนู†ู‡ุง ุงู„ูŠู…ูŠู†
781
01:06:56,150 --> 01:07:00,850
MK ุนู„ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ูˆู‡ุง ุงู„ู…ูุชุงุญ ุฃุตู„ุง ููŠ ุงุณุชุฎุฏุงู… ุงู„ู€
782
01:07:00,850 --> 01:07:06,120
Continuity ุฅู† ุถู…ู† ู„ูˆุฌูˆุฏ ู†ู‚ุทุฉุนู†ุฏู‡ุง ุงู„ maximum ููŠ
783
01:07:06,120 --> 01:07:10,540
ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ูˆุถู…ู† ุงู„ู„ูŠ ูˆุฌูˆุฏ ู†ู‚ุทุฉ ู‡ู†ุง ุถู…ู† ุงู„ู„ูŠ ูˆุฌูˆุฏ
784
01:07:10,540 --> 01:07:13,680
ุงู„ minimum ุนู†ุฏู‡ุง ูˆ ุงู„ minimum ูˆ ุงู„ maximum ู…ุฏุงู…
785
01:07:13,680 --> 01:07:18,100
ุนู†ุฏ ู†ู‚ุงุท ู…ุญุฏุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู‡ูŠ ู‡ุชุชู„ุงู‚ู‰ ูˆ ุชู†ู‚ู„ ู‡ูŠ
786
01:07:18,100 --> 01:07:21,780
ุนุจุงุฑุฉ ุนู† ุงู„ supremum ูˆ ุงู„ infimum ุนู„ู‰ ุงู„ sub
787
01:07:21,780 --> 01:07:29,160
interval ุฃูŠ ุณุคุงู„ ุทูŠุจ ุงู„ุขู† ุถุงู„ ุนู„ูŠู†ุง ุฅูŠุด ู†ุณูˆูŠ ุฅู†
788
01:07:29,160 --> 01:07:35,610
ู†ุญุณุจ ุงู„ุญุณุงุจุงุช ุงู„ู„ูŠ ู‡ูˆ ู†ุจุฏุฃ ููŠ ุญุณุงุจุงุชู†ุงุงู„ู„ูŠ ู‡ูˆ ู†ุญุณุจ
789
01:07:35,610 --> 01:07:44,230
ุงู„ู€ U ูˆ ู†ุญุณุจ ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ุฃูˆ ู†ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ ุงู„ ุงู„
790
01:07:44,230 --> 01:07:44,930
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
791
01:07:44,930 --> 01:07:44,950
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
792
01:07:44,950 --> 01:07:45,050
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
793
01:07:45,050 --> 01:07:45,070
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
794
01:07:45,070 --> 01:07:45,130
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
795
01:07:45,130 --> 01:07:53,950
ุงู„ ุงู„ ุงู„ุช ุญุณุจูˆู„ูŠ
796
01:07:54,430 --> 01:07:59,790
ู†ู‚ุต L, P, N ูˆ F ุทุจุนุง ุฃูƒูŠุฏ ู‡ุฐุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ ุณูุฑ ุญูุธู†ุง
797
01:07:59,790 --> 01:08:04,050
ุนู† ุบูŠุฑู‡ ู‡ุฐุง ุฃู†ู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุณูุฑ ู…ุนุฑูˆู ุถู„ ุจุฏูŠ
798
01:08:04,050 --> 01:08:08,850
ุฃุญุณุจู‡ู… ู…ุน ุจุนุถ ุงู„ summation ุนุจุงุฑุฉ ุนู† ุจุณุงูˆูŠ
799
01:08:08,850 --> 01:08:13,610
summation ุงู„ู„ูŠ ู‡ูˆ ุงู„ M K ุตุงุฑุช ู…ู† ุงู„ M K capital
800
01:08:13,610 --> 01:08:19,950
ุงู„ู„ูŠ ู‡ูŠ F of U K ุตุญ ูˆู„ุง ู„ุฃ ูŠุง ุฌู…ุงุนุฉ ุฃู‡ ุตุญ ูˆ ุงู„ U K
801
01:08:19,950 --> 01:08:26,220
ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ู‡ุฐู‡ุงู„ุงู† ููŠ ู…ูŠู†ุŸ ููŠ xk minus xk minus
802
01:08:26,220 --> 01:08:31,520
ูˆุงุญุฏ xk minus xk minus ูˆุงุญุฏ ูƒุงู…ู„ ุนู†ุฏ ูˆุงุญุฏ ุงู„ู„ูŠ
803
01:08:31,520 --> 01:08:37,020
ุนู†ุฏู‡ุง ุงู†ู‡ุฏู…ูŠู† ู‡ูŠ ุงู„ู€ U ุงู„ุงู† ุฒูŠู‡ุง ู…ูŠู† ุงู„ L ู†ุงู‚ุต
804
01:08:37,020 --> 01:08:42,600
summation ุงู„ุงู† ู…ูŠู† ุนู†ุฏ ุงู„ MK small ุงู„ F of VK ุงู„
805
01:08:42,600 --> 01:08:48,920
VK ุงู„ู„ูŠ ู„ุงุฌูŠู†ุงู‡ุง ุจุฑุถู‡ ู‡ุงู† ุงู„ู„ูŠ ู‡ูŠ F of VKู…ุถุฑูˆุจุฉ ููŠ
806
01:08:48,920 --> 01:08:54,380
ุทูˆู„ ุงู„ูุชุฑุฉ xk-xk-1 ูƒุงู…ู„ ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ
807
01:08:54,380 --> 01:09:00,000
ู„ุนู†ุฏู†ุง ุฎุฏูˆู„ูŠ ุงู„ุขู† xk-xk-1 ุนุงู…ู„ ู…ุดุชุฑูƒ ูˆุทุจุนุง ุฃู†ุง
808
01:09:00,000 --> 01:09:03,220
ู…ูุชุฑุถู‡ุง ุงู„ู„ูŠ ู‡ูˆ ูˆู…ุงุฎุฏู‡ุง ุฅู„ุง ุทูˆู„ ุงู„ intervals ุฃูˆ
809
01:09:03,220 --> 01:09:07,080
sub intervals ู…ุชุณุงูˆูŠ ูŠุนู†ูŠ ุทูˆู„ ู‡ุฐู‡ ูˆุทูˆู„ ู‡ุฐู‡ ู‡ูˆ
810
01:09:07,080 --> 01:09:10,600
ุนุจุงุฑุฉ ุนู† b-a ุนู„ู‰ n ุฒูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ูˆูŠุณุงูˆูŠ ุงู„
811
01:09:10,600 --> 01:09:17,850
summation ู„ู„ F of uk ู†ุงู‚ุต F of vkุงู„ูƒู„ ู…ุถุฑูˆุจ ููŠ ู…ูŠู†
812
01:09:17,850 --> 01:09:26,030
ูŠุง ุฌู…ุงุนุฉ ููŠ B-A ุนู„ู‰ N N ุฃูˆ K ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุฅูŠุด
813
01:09:26,030 --> 01:09:36,830
ู„ุนู†ุฏ N ุฃูŠ ุณุคุงู„ ุทูŠุจ ุดูˆููˆุง ุงู„ุขู† ุงุณู…ุญูˆู„ูŠ ุจุณ ู‡ู†ุง ุฃุดุชุบู„
814
01:09:36,830 --> 01:09:39,730
ุดูˆูŠุฉ ุทูŠุจ
815
01:09:42,370 --> 01:09:47,490
ุทูˆู„ูˆุง ุฑูˆุญูƒู… ุนู†ุฏู†ุง ุฎู„ุตู†ุง ูŠุนู†ูŠ ุฌุฑุจู†ุง ุงุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„
816
01:09:47,490 --> 01:09:51,870
U, P, N ูˆ F ุนุดุงู† ุชุนุฑููˆุง ุฃูŠู† ุฑุงูŠุญ ุฃู†ุง ู‡ูŠ ุงู„ U, P, N
817
01:09:51,870 --> 01:09:55,550
ูˆ F ู†ุงู‚ุต ุงู„ P, N ูˆ F ุฃูƒุจุฑ ูŠุณุงูˆูŠ ุงู„ุตูุฑ ุงู„ู„ูŠ ุฌูŠุชู‡
818
01:09:55,550 --> 01:10:00,610
ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ุงู„ุงู† ุฎู„ูˆู†ูŠ ุฃุทู„ุน ุญุฏ
819
01:10:00,610 --> 01:10:06,400
ุจุฑุง ุจุนุฏ ุงุณู…ูƒู… ู‡ูŠ B- a ุนู„ู‰ n ู„ุฃู†ู‡ุง ุนุจุงุฑุฉ ุนู† ุซุงุจุช ููŠ
820
01:10:06,400 --> 01:10:13,020
ุงู„ summation f of u,k ู†ุงู‚ุต f of v,k ูƒุงู…ู†ุฉ ุนู†ุฏ ูˆุงุญุฏ
821
01:10:13,020 --> 01:10:20,340
ู„ุฃู†ูƒ ู„ุงุญุธูˆุง ู…ุง ูŠู„ูŠ ูŠุง ุฌู…ุงุนุฉ ุนู†ุฏ ุงู„ u,k ูˆ ุงู„ v,k
822
01:10:20,340 --> 01:10:27,480
ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ x,k minus ูˆุงุญุฏ ูˆ ุงู„ x,k ุงู‡ ู…ุธุจูˆุท
823
01:10:27,480 --> 01:10:32,540
ูŠุนู†ูŠ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ ุทูˆู„
824
01:10:34,610 --> 01:10:41,150
ุทูˆู„ ุงู„ูุชุฑุฉ ุทูˆู„ ุงู„ูุชุฑุฉ xk ุนู„ู‰ ุฌู‡ุฉ ุฏูŠ ุจุณ ูŠุง ุดุจุงุจ
825
01:10:41,150 --> 01:10:46,850
ู†ุงู‚ุต xk minus ูˆุงุญุฏ ุทูˆู„ ุงู„ูุชุฑุฉ ู„ุฅู† ู‡ุงุฏ ุตุงุฑุช ู‡ูŠ xk
826
01:10:46,850 --> 01:10:53,480
minus ูˆุงุญุฏ ูˆู‡ูŠ xk ู…ุงุดูŠ ุฌูˆุงุช ู‡ู†ุง ุงู„ mean ุงู„ UKูˆ ุงู„ู€
827
01:10:53,480 --> 01:10:56,860
VK ููŠ ู…ูƒุงู† ุงู„ู…ุงุฏุŒ ุงู„ุชู†ุชูŠู† ุงู„ู…ู‡ู… ุฌูˆุง ุงู„ุชู†ุชูŠู† ูŠุนู†ูŠ
828
01:10:56,860 --> 01:10:59,840
ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ู„ูŠ ุจุฑุง ู‡ุฏูˆู„ุŒ ุญุชู‰ ู„ูˆ ูƒุงู† ุงู„ุชู†ุชูŠู†
829
01:10:59,840 --> 01:11:04,120
ุฒูŠู‡ู†ุŒ ุจูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ุชู†ุชูŠู† ู‡ุฏูˆู„
830
01:11:04,120 --> 01:11:11,560
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู…ุณุงูุฉ ู‡ุฐู‡ุŒ ุงู„ู„ูŠ ู‡ูˆ UK ู†ุงู‚ุต VKุŒ
831
01:11:11,560 --> 01:11:17,010
ู…ุธุจูˆุทุŸ ุขุณูุŒ ุงู„ุนูƒุณุŒ ุฃูƒุจุฑ ุดูƒุฑุงุณุงู…ุญูˆู†ุง ุฃูƒุจุฑ ุงูŠุงุด ุฃูˆ
832
01:11:17,010 --> 01:11:21,310
ูŠุณุงูˆูŠ ุตุงุฑุช ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ุฌู‡ุชูŠู† ู‡ุฏูˆู„ุฉ ุฃูƒูŠุฏ ุฃุตุบุฑ
833
01:11:21,310 --> 01:11:24,970
ุฃุดู‡ุฑ ู…ู† ุงู„ู…ุณุงูุฉ ุงู„ูƒู„ูŠุฉ ุงู„ู„ูŠ ู‡ู†ุง ุจูŠู†ู‡ู… ุทูŠุจ ุงู„ู…ุณุงูุฉ
834
01:11:24,970 --> 01:11:28,890
ุจูŠู† ู‡ุฐู‡ ูˆู‡ุฐู‡ ุงุญู†ุง ู…ุงุฎุฏูŠู†ู‡ุง ุฃุตู„ุง ุทูˆู„ ุงู„ interval
835
01:11:28,890 --> 01:11:29,670
ุงูŠุด ุจุชุณุงูˆูŠ
836
01:11:33,030 --> 01:11:39,710
ุนู„ู‰ N ุฅุฐุง ุงู„ู…ุณุงูุฉ ู‡ุฐู‡ ุฃุตู„ุง ุนุจุงุฑุฉ ุนู† B-A ุนุงู„ู…ูŠู† ุนู„ู‰
837
01:11:39,710 --> 01:11:43,890
N ุณุงู…ุญูˆู†ูŠ ุฃู†ูŠ ุจู†ูƒุชุจู‡ุง ู‡ู†ุง ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„
838
01:11:43,890 --> 01:11:50,230
U K ู†ุงู‚ุต ุงู„ V K ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ B-A ุนุงู„ู…ูŠู† ุนู„ู‰ N ุฅุฐุง
839
01:11:50,230 --> 01:11:58,530
ูŠุง ุดุจุงุจ ุฑุงุญุธูˆู„ูŠ ู‡ู†ุง U K ู†ุงู‚ุต V K ุตุงุฑุช ุฃุตุบุฑ ุฃูˆ
840
01:11:58,530 --> 01:12:06,440
ูŠุณุงูˆูŠ B-A ุนุงู„ู…ูŠู†ุนู„ู‰ n ูˆุงุถุญุฉ ุทูŠุจ ู†ุดูˆู ุงูŠุด ู…ุนู†ุงู‡ ู‡ุฐุง
841
01:12:06,440 --> 01:12:08,700
ุงู„ูƒู„ุงู… ูˆุงุด ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ ู„ูŠุด ุจุชู‚ูˆู„ู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู…
842
01:12:08,700 --> 01:12:13,620
ุจู‚ูˆู„ู‡ ุนุดุงู† ูƒู„ุงู… ู…ู‡ู… ู‡ุฐุง ู‡ูˆ ุดูˆููˆุง ูู‡ู…ูŠุชู‡ ุงู†ุง ู…ุฎุชุงุฑ
843
01:12:13,620 --> 01:12:19,260
ุงู„ n ุงูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† b minus a ุนู„ู‰ delta ูŠุนู†ูŠ ุจู…ุนู†ู‰
844
01:12:19,260 --> 01:12:24,280
ุงุฎุฑ ุงูŠุด ู…ุนู†ุงุช ู‡ุฐุง ูŠุนู†ูŠ b minus a ุนู„ู‰ n ุงุตุบุฑ ู…ู† ู…ูŠู†
845
01:12:24,280 --> 01:12:29,640
ู…ู† ุฏู„ุชุง ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑุฃุตุบุฑ ู…ู† ุฅูŠุด ูŠุง ุฌู…ุงุนุฉุŸ ู…ู†
846
01:12:29,640 --> 01:12:35,160
ุฏู„ุชุง ุตุงุฑุช ุงู„ U K ู†ุงู‚ุต ุงู„ V K ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฏู„ุชุง
847
01:12:35,160 --> 01:12:40,800
ูˆุงุญู†ุง ุจู†ู‚ูˆู„ ุฃู† ุงู„ู…ู‚ุงุทุน ุงู„ู„ูŠ ุจุชุญู‚ู‚ ููŠู‡ุง ุงู„ U ู†ุงู‚ุต V
848
01:12:40,800 --> 01:12:44,560
ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ุจูƒูˆู† ุนู†ุฏูŠ F of U ู†ุงู‚ุต F of V ุฃุตุบุฑ ู…ู†
849
01:12:44,560 --> 01:12:50,240
ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ ู…ู† Epsilon ุนู„ู‰ B minus A ุฅุฐุง ุตุงุฑุช
850
01:12:50,240 --> 01:12:55,100
ุนู†ุฏูŠ ุงู„ู…ู‚ุงุทูŠู† ู‡ุฐูˆู„ุฉ ุงู„ U K ู†ุงู‚ุต V K ุงู„ู„ูŠ ุฃุตุบุฑ ู…ู†
851
01:12:55,100 --> 01:13:04,770
ุฏู„ุชุงุฅุฐุง ุฃูƒูŠุฏ ู…ู† ูˆุงุญุฏ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ F of U K ู†ุงู‚ุต F of
852
01:13:04,770 --> 01:13:12,670
V K ุฅูŠุด ู‡ูŠูƒูˆู†ุŸ ู‡ูŠูƒูˆู† ุนุจุงุฑุฉ ุนู† ุฃุตุบุฑ ู…ู† Y ุนู„ู‰ B
853
01:13:12,670 --> 01:13:20,410
minus A ุฅุฐุง ุงู„ุขู† ุจุญุฌู„ู†ูŠ ุฃู†ูŠ ุฃู‚ูˆู„ ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
854
01:13:20,410 --> 01:13:24,400
ุงู„ู„ูŠ ุนู†ุฏูŠุงู„ู„ูŠ ู‡ูˆ ุทุจุนุง ู‡ุฐุง ุงู„ูƒุจูŠุฑ ูˆู‡ุฐุง ุงู„ุตุบูŠุฑ ุทุจุนุง
855
01:13:24,400 --> 01:13:27,800
ุนู„ู‰ absolute value ู†ูุณู‡ ุจุญุฌู„ ุฅู† ุฃู‚ูˆู„ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ
856
01:13:27,800 --> 01:13:34,680
ุณุงูˆูŠ B minus A ุนู„ู‰ N ู…ุถุฑูˆุจ ููŠ ู…ูŠู† ููŠ ุงู„ summation
857
01:13:34,680 --> 01:13:42,480
ู„ู„ Epsilon ุนู„ู‰ B minus A ูƒุงู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู†
858
01:13:42,480 --> 01:13:50,100
ู„ุนู†ุฏ N ูˆุงุถุญ
859
01:13:52,720 --> 01:13:58,440
ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ุงู„ู„ู‰ ู‡ูˆ ุงู„ู„ู‰ ุฃุซุจุชู‡ ุฃู†ู‡ U P N ูˆ F
860
01:13:58,440 --> 01:14:04,220
ู†ุงุทู‚ ุณุคุงู„ P N ูˆ F ุฃุตุบุฑ ุฃูˆ ุณุงูˆู‰ P minus A ุนู„ู‰ N ููŠ
861
01:14:04,220 --> 01:14:10,300
.. ุฎู„ู‘ูŠู†ูŠ ุฃุฌู ูˆ ุฃู‚ูˆู„ู‡ุง .. ุฃู‡ .. ุงู†ุชุธุฑ .. ุฃุนู…ู„ู†ู‰ ..
862
01:14:13,410 --> 01:14:18,250
ุฅุฐุง ุงู„ู„ูŠ ูˆุตู„ู†ุง ู„ู‡ ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูˆ ุฃู† ุงู„ U P N ูˆ F
863
01:14:18,250 --> 01:14:21,650
ู†ู‚ุต ุงู„ P N ูˆ F ุฃูƒุจุฑ ูŠุณุงูˆูŠ ุณูุฑ ูˆ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ุฃุตุบุฑ
864
01:14:21,650 --> 01:14:24,430
ูŠุณุงูˆูŠ P Minus A ุนู„ู‰ N ููŠ ุงู„ summation ู„ู„ Epsilon ุน
865
01:14:24,430 --> 01:14:28,630
P Minus A ุงู„ู„ูŠ ู‡ูˆ ูƒุงู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ N ูŠุนู†ูŠ ู‡ุฐู‡ ู‚ุงุนุฏุฉ
866
01:14:28,630 --> 01:14:34,050
ุนู…ุงู„ู‡ุง ูƒู„ ู…ุฑุฉ ุจุชุนุฏ Epsilon ุน P Minus A ุฃูƒู… ู…ุฑุฉ
867
01:14:34,050 --> 01:14:37,670
ุจุชุนุฏ N ู…ู† ุงู„ู…ุฑุงุช ุฅุฐุง ุญูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† P
868
01:14:37,670 --> 01:14:43,170
Minus A ุนู„ู‰ N ูˆ ุงู„ู„ูŠ ู†ุนุฏ ู‡ู†ุงN ู…ู† ุงู„ู‚ู…ูŠุฉ ุงู„ู„ูŠ ู‡ุฐู‡
869
01:14:43,170 --> 01:14:47,630
ูŠุนู†ูŠ N ููŠ epsilon ุนู„ู‰ B minus A ุงู„ุงู† B minus A ู…ุน
870
01:14:47,630 --> 01:14:51,970
ุงู„ B minus A ูˆ ุงู„ N ู…ุน ุงู„ N ูุจุตูŠุฑ ุฃูˆุตู„ู†ุง ุงุญู†ุง ุฅู„ู‰
871
01:14:51,970 --> 01:14:55,950
ู…ุง ูŠู„ูŠ ุงู†ุชุจู‡ูˆุง ู„ู„ู†ุชูŠุฌุฉ ุงู„ู†ู‡ุงุฆูŠุฉ ุงู„ู„ูŠ ุจุชูˆุตู„ูŠ ู„ูŠ
872
01:14:55,950 --> 01:15:04,310
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ูˆุตู„ุช ู„ู‡ุง ุงู†ู‡ ุงุฐุงU P N
873
01:15:04,310 --> 01:15:12,430
ูˆ F ู†ู‚ุต L P N ูˆ F ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุณูุฑ ูˆุฃุตุบุฑ ู…ู† ู…ูŠู†
874
01:15:12,430 --> 01:15:19,190
ู…ู† ุฅุจุณู„ูˆู† ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ุฅุฐุง ุงู„ู„ูŠ ุฌูˆุง ุบุตุจ
875
01:15:19,190 --> 01:15:24,310
ุนู†ู‡ ุฅุฐุง ู„ุงุฒู… ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ุฃุฎุฏุช ุงู„ limit ู‡ูŠุธู„
876
01:15:24,310 --> 01:15:30,220
limit ุงู„ Uุจู† ู„ุฃู† ู‡ุฐุง ุฃุตู„ุง ุตุญูŠุญ ุนู„ู…ูŠุง ู„ู„ุฃู†ุงุช
877
01:15:30,220 --> 01:15:34,200
ุงู„ูƒุจูŠุฑุฉ ูู„ู…ุง ุฃุฎุฏ ุงู„ limit ุฃุฒู†ู‡ ุฌูˆุฒู‡ infinity ุจุถู„
878
01:15:34,200 --> 01:15:38,280
ููŠ ุงู„ safe side ูŠุนู†ูŠ ุจุถู„ ููŠ ุงู„ู„ูŠ ุจุชุญู‚ู‚ ููŠู‡ ู‡ุฐุง ุฅุฐุง
879
01:15:38,280 --> 01:15:45,630
ุงู„ limit U, B, N ูˆ F ู…ุงู‚ุต L, B, N ูˆ Fู‡ูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ
880
01:15:45,630 --> 01:15:50,490
ูŠุณุงูˆูŠ ุณูุฑ ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅุจุณู„ูˆู† ูˆ ู‡ุฐุง ุงู„ูƒู„ุงู… as
881
01:15:50,490 --> 01:15:53,530
and goes to infinity ูˆ ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ุจุฑุถู‡ ู„ู…ูŠู†
882
01:15:53,530 --> 01:15:58,790
ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ุฅุฐุง ุบุตุจ ุนู†ู‡ุง ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ุฌูˆุง
883
01:15:58,790 --> 01:16:08,780
limit UPN ูˆ F-Lุจุงู† ูˆ ุงู ู„ุงุฒู… ูŠุณุงูˆูŠ ุงูŠุด ุณูุฑ ุงุฒ ุงู†ู‚ุต
884
01:16:08,780 --> 01:16:14,780
ุงู†ููŠู†ูŠุชูŠ ูˆู‡ุฐุง by corollary ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ู‡ูŠุนู†ูŠ ุงู†
885
01:16:14,780 --> 01:16:23,310
ุงู is integrableHence, F is integrable ูˆู‡ูƒุฐุง
886
01:16:23,310 --> 01:16:27,610
ุฃุซุจุชู†ุง ุงู„ุนุงุฆู„ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุงู„ุฏูˆุงู„ ุงู„ู€ continuous
887
01:16:27,610 --> 01:16:31,170
function ุนู„ู‰ closed bounded interval is a
888
01:16:31,170 --> 01:16:34,210
continuous function is an integrable function
889
01:16:34,210 --> 01:16:40,790
ูˆู‡ูƒุฐุง ุฎู„ุตู†ุง ุงู„ู€ section ุงู„ุฃูˆู„ ูˆ ุงู„ู€ homework ู‡ูŠุง
890
01:16:40,790 --> 01:16:46,750
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุชู„ุฎูŠุต ูˆ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡
891
01:16:47,630 --> 01:16:57,970
ุฅู† ุดุงุก ุงู„ู„ู‡ ุจูƒูˆู† ุงุญู†ุง ุจู†ุจุฏุฃ ููŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ section
892
01:16:57,970 --> 01:17:03,510
ุงู„ู„ูŠ ุจุนุฏู‡ ุงู„ู„ูŠ ู‡ูˆ properties of the Riemann
893
01:17:03,510 --> 01:17:04,470
Integral