|
|
|
"""Urban_Tree_Canopy_in_Durham |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1X59zPtI7ydiX10ZnfjsNGvnKNTXgwrWs |
|
""" |
|
|
|
! pip install datasets |
|
import csv |
|
import json |
|
import os |
|
from typing import List |
|
import datasets |
|
import logging |
|
from datasets import DatasetBuilder, DownloadManager, SplitGenerator, Split |
|
|
|
import zipfile |
|
import json |
|
import pandas as pd |
|
import geopandas as gpd |
|
|
|
class Urban_Tree_Canopy_in_Durham(DatasetBuilder): |
|
|
|
def _info(self): |
|
return DatasetInfo( |
|
description="A description of the dataset.", |
|
features=Features( |
|
{ |
|
"objectid": Value("int32"), |
|
"streetaddr": Value("string"), |
|
"city_x": Value("string"), |
|
"zipcode_x": Value("string"), |
|
"facilityid_x": Value("string"), |
|
"present_x": Value("string"), |
|
"genus_x": Value("string"), |
|
"species_x": Value("string"), |
|
"commonname_x": Value("string"), |
|
"plantingda": Value("datetime"), |
|
"diameterin_x": Value("float"), |
|
"heightft_x": Value("float"), |
|
"condition_x": Value("string"), |
|
"contractwo": Value("string"), |
|
"neighborho": Value("string"), |
|
"program_x": Value("string"), |
|
"plantingw_x": Value("string"), |
|
"plantingco": Value("string"), |
|
"underpwerl": Value("string"), |
|
"matureheig": Value("float"), |
|
"globalid_x": Value("string"), |
|
"created_us": Value("string"), |
|
"created_da": Value("datetime"), |
|
"last_edite": Value("string"), |
|
"last_edi_1": Value("datetime"), |
|
"isoprene_x": Value("float"), |
|
"monoterpen": Value("float"), |
|
"vocs_x": Value("float"), |
|
"coremoved_": Value("float"), |
|
"coremove_1": Value("float"), |
|
"o3removed_": Value("float"), |
|
"o3remove_1": Value("float"), |
|
"no2removed": Value("float"), |
|
"no2remov_1": Value("float"), |
|
"so2removed": Value("float"), |
|
"so2remov_1": Value("float"), |
|
"pm10remove": Value("float"), |
|
"pm10remo_1": Value("float"), |
|
"pm25remove": Value("float"), |
|
"o2producti": Value("float"), |
|
"replaceval": Value("float"), |
|
"carbonstor": Value("float"), |
|
"carbonst_1": Value("float"), |
|
"grosscarse": Value("float"), |
|
"grosscar_1": Value("float"), |
|
"avoidrunof": Value("float"), |
|
"avoidrun_1": Value("float"), |
|
"polremoved": Value("float"), |
|
"polremov_1": Value("float"), |
|
"totannbene": Value("float"), |
|
"leafarea_s": Value("float"), |
|
"potevapotr": Value("float"), |
|
"evaporatio": Value("float"), |
|
"transpirat": Value("float"), |
|
"h2ointerce": Value("float"), |
|
"avoidrunva": Value("float"), |
|
"avoidrun_2": Value("float"), |
|
"carbonavoi": Value("float"), |
|
"carbonav_1": Value("float"), |
|
"heating_mb": Value("float"), |
|
"heating_do": Value("float"), |
|
"heating_kw": Value("float"), |
|
"heating__1": Value("float"), |
|
"cooling_kw": Value("float"), |
|
"cooling_do": Value("float"), |
|
"totalenerg": Value("float"), |
|
"geometry_x": Value("string"), |
|
"x": Value("float"), |
|
"y": Value("float"), |
|
"streetaddress_x": Value("string"), |
|
"city_y": Value("string"), |
|
"zipcode_y": Value("string"), |
|
"facilityid_y": Value("string"), |
|
"present_y": Value("string"), |
|
"genus_y": Value("string"), |
|
"species_y": Value("string"), |
|
"commonname_y": Value("string"), |
|
"plantingdate_x": Value("datetime"), |
|
"diameterin_y": Value("float"), |
|
"heightft_y": Value("float"), |
|
"condition_y": Value("string"), |
|
"contractwork_x": Value("string"), |
|
"neighborhood_x": Value("string"), |
|
"program_y": Value("string"), |
|
"plantingw_y": Value("string"), |
|
"plantingcond_x": Value("string"), |
|
"underpwerlins_x": Value("string"), |
|
"matureheight_x": Value("float"), |
|
"globalid_y": Value("string"), |
|
"created_user_x": Value("string"), |
|
"created_date_x": Value("datetime"), |
|
"last_edited_user_x": Value("string"), |
|
"last_edited_date_x": Value("datetime"), |
|
"isoprene_y": Value("float"), |
|
"monoterpene_x": Value("float"), |
|
"vocs_y": Value("float"), |
|
"coremoved_ozperyr_x": Value("float"), |
|
"coremoved_dolperyr_x": Value("float"), |
|
"o3removed_ozperyr_x": Value("float"), |
|
"o3removed_dolperyr_x": Value("float"), |
|
"no2removed_ozperyr_x": Value("float"), |
|
"no2removed_dolperyr_x": Value("float"), |
|
"so2removed_ozperyr_x": Value("float"), |
|
"so2removed_dolperyr_x": Value("float"), |
|
"pm10removed_dolperyr_y":Value("float"), |
|
"pm25removed_ozperyr_y":Value("float"), |
|
"o2production_lbperyr_y":Value("float"), |
|
"replacevalue_dol_y":Value("float"), |
|
"carbonstorage_lb_y":Value("float"), |
|
"carbonstorage_dol_y":Value("float"), |
|
"grosscarseq_lbperyr_y":Value("float"), |
|
"grosscarseq_dolperyr_y":Value("float"), |
|
"avoidrunoff_ft2peryr":Value("float"), |
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/AuraMa111/Urban_Tree_Canopy_in_Durham", |
|
citation="A citation or reference to the source of the dataset.", |
|
) |
|
|
|
|
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
def _split_generators(self, dl_manager: tfds.download.DownloadManager): |
|
|
|
downloaded_files = dl_manager.download_and_extract({ |
|
"csv": "https://raw.githubusercontent.com/AuraMa111/Urban_Tree_Canopy_in_Durham/main/Trees_%2526_Planting_Sites.csv", |
|
"geojson_zip": "https://raw.githubusercontent.com/AuraMa111/Urban_Tree_Canopy_in_Durham/main/Trees_%2526_Planting_Sites.geojson.zip", |
|
"zip": "https://raw.githubusercontent.com/AuraMa111/Urban_Tree_Canopy_in_Durham/main/TreesPlanting_Sites.zip" |
|
}) |
|
|
|
|
|
return [ |
|
tfds.core.SplitGenerator( |
|
name=tfds.Split.TRAIN, |
|
gen_kwargs={ |
|
"file_path_csv": downloaded_files["csv"], |
|
"file_path_zip": downloaded_files["zip"], |
|
"file_path_geojson_zip": downloaded_files["geojson_zip"], |
|
}, |
|
), |
|
|
|
] |
|
|
|
def _generate_examples(self, file_path_csv, file_path_zip, file_path_geojson_zip): |
|
|
|
csv_df = self.process_csv_file(file_path_csv) |
|
|
|
|
|
shp_gdf = self.process_zip_shapefiles(file_path_zip) |
|
|
|
|
|
geojson_gdf = self.process_zip_geojson(file_path_geojson_zip) |
|
|
|
|
|
combined_gdf = self.merge_dataframes(csv_df, shp_gdf, geojson_gdf) |
|
|
|
|
|
for idx, example in self.generate_examples_from_merged_data(combined_gdf): |
|
yield idx, example |
|
|
|
def process_csv_file(self, file_path): |
|
with open(file_path, 'r') as f: |
|
csv_df = pd.read_csv(f) |
|
csv_df.drop_duplicates(inplace=True) |
|
csv_df.fillna(method='bfill', inplace=True) |
|
csv_df.columns = csv_df.columns.str.lower().str.replace(' ', '_') |
|
csv_df['objectid'] = csv_df['objectid'].astype(int) |
|
return csv_df |
|
|
|
def process_zip_shapefiles(self, file_path): |
|
with zipfile.ZipFile(file_path, 'r') as z: |
|
for file_name in z.namelist(): |
|
if file_name.endswith(".shp"): |
|
with z.open(file_name) as file: |
|
shp_gdf = gpd.read_file(file) |
|
shp_gdf.columns = shp_gdf.columns.str.lower().str.replace(' ', '_') |
|
shp_gdf['objectid'] = shp_gdf['objectid'].astype(int) |
|
return shp_gdf |
|
|
|
def process_zip_geojson(self, file_path): |
|
with zipfile.ZipFile(file_path, 'r') as z: |
|
for file_name in z.namelist(): |
|
if file_name.endswith(".geojson"): |
|
with z.open(file_name) as file: |
|
geojson_data = json.load(file) |
|
geojson_gdf = gpd.GeoDataFrame.from_features(geojson_data['features']) |
|
geojson_gdf.columns = geojson_gdf.columns.str.lower().str.replace(' ', '_') |
|
geojson_gdf['objectid'] = geojson_gdf['objectid'].astype(int) |
|
return geojson_gdf |
|
|
|
def merge_dataframes(self, csv_df, shp_gdf, geojson_gdf): |
|
combined_gdf = shp_gdf.merge(csv_df, on='objectid', how='inner') |
|
combined_gdf = combined_gdf.merge(geojson_gdf, on='objectid', how='left') |
|
return combined_gdf |
|
|
|
def generate_examples_from_merged_data(self, combined_gdf): |
|
for idx, row in combined_gdf.iterrows(): |
|
example = row.to_dict() |
|
|
|
if 'geometry' in row and row['geometry'] is not None: |
|
example['geometry'] = json.loads(gpd.GeoSeries([row['geometry']]).to_json())['features'][0]['geometry'] |
|
|
|
yield idx, example |
|
def plot_spatial_distribution(self, gdf, lat_col='latitude', lon_col='longitude', color_col='species', hover_col='species'): |
|
""" |
|
Visualize the spatial distribution of the data using Plotly. |
|
|
|
Parameters: |
|
- gdf: GeoDataFrame to be visualized. |
|
- lat_col: String, name of the column with latitude values. |
|
- lon_col: String, name of the column with longitude values. |
|
- color_col: String, name of the column to determine the color of points. |
|
- hover_col: String, name of the column to show when hovering over points. |
|
""" |
|
center_lat = gdf[lat_col].mean() |
|
center_lon = gdf[lon_col].mean() |
|
|
|
fig = px.scatter_mapbox(gdf, |
|
lat=lat_col, |
|
lon=lon_col, |
|
color=color_col, |
|
hover_name=hover_col, |
|
center={"lat": center_lat, "lon": center_lon}, |
|
zoom=10, |
|
height=600, |
|
width=800) |
|
|
|
fig.update_layout(mapbox_style="open-street-map") |
|
fig.show() |
|
def plot_correlation_heatmap(self, gdf, columns, figsize=(10, 8), cmap='coolwarm'): |
|
""" |
|
Plot a heatmap of the correlation matrix for selected columns in the GeoDataFrame. |
|
|
|
Parameters: |
|
- gdf: GeoDataFrame containing the data. |
|
- columns: List of columns to include in the correlation matrix. |
|
- figsize: Tuple of figure size dimensions (width, height). |
|
- cmap: Colormap for the heatmap. |
|
""" |
|
|
|
env_data = gdf[columns] |
|
|
|
|
|
corr = env_data.corr() |
|
|
|
|
|
plt.figure(figsize=figsize) |
|
|
|
|
|
sns.heatmap(corr, annot=True, fmt=".2f", cmap=cmap, square=True, linewidths=.5, cbar_kws={"shrink": .5}) |
|
|
|
|
|
plt.tight_layout() |
|
|
|
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|