|
|
|
"""UrbanTreeCanopyInDurham2Dataset |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1X59zPtI7ydiX10ZnfjsNGvnKNTXgwrWs |
|
""" |
|
|
|
from datasets import DatasetInfo, Features, Value, load_dataset, BuilderConfig, DatasetBuilder |
|
import csv |
|
import json |
|
import os |
|
from typing import List |
|
import datasets |
|
import logging |
|
from datasets import DownloadManager, SplitGenerator, Split |
|
import zipfile |
|
import pandas as pd |
|
import geopandas as gpd |
|
import tempfile |
|
import shutil |
|
import plotly.express as px |
|
from datasets import GeneratorBasedBuilder |
|
|
|
class UrbanTreeCanopyInDurham2Dataset(GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return DatasetInfo( |
|
description="Urban_Tree_Canopy_in_Durham2", |
|
features=Features( |
|
{ |
|
"objectid": Value("int32"), |
|
"streetaddr": Value("string"), |
|
"city_x": Value("string"), |
|
"zipcode_x": Value("string"), |
|
"species_x": Value("string"), |
|
"commonname_x": Value("string"), |
|
"plantingda": datasets.Value("timestamp[us]"), |
|
"diameterin_x": Value("float"), |
|
"heightft_x": Value("float"), |
|
"condition_x": Value("string"), |
|
"program_x": Value("string"), |
|
"matureheig": Value("float"), |
|
"created_da": datasets.Value("timestamp[us]"), |
|
"last_edi_1": datasets.Value("timestamp[us]"), |
|
"geometry_x": Value("string"), |
|
"x": Value("float"), |
|
"y": Value("float"), |
|
"coremoved_": Value("float"), |
|
"coremove_1": Value("float"), |
|
"o3removed_": Value("float"), |
|
"o3remove_1": Value("float"), |
|
"no2removed": Value("float"), |
|
"no2remov_1": Value("float"), |
|
"so2removed": Value("float"), |
|
"so2remov_1": Value("float"), |
|
"pm10remove": Value("float"), |
|
"pm10remo_1": Value("float"), |
|
"pm25remove": Value("float"), |
|
"o2producti": Value("float"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/AuraMa111/Urban_Tree_Canopy_in_Durham", |
|
citation="A citation or reference to the source of the dataset.", |
|
) |
|
|
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
csv_url = "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy" |
|
geojson_url = "https://drive.google.com/uc?export=download&id=1jpFVanNGy7L5tVO-Z_nltbBXKvrcAoDo" |
|
|
|
|
|
shp_file_id = "1DYcug0xiWYlsKZorbbEcrjZWEAB0y4MY" |
|
shp_url = f"https://drive.google.com/uc?export=download&id={shp_file_id}" |
|
|
|
|
|
csv_path = dl_manager.download_and_extract(csv_url) |
|
shp_path = dl_manager.download_and_extract(shp_url) |
|
geojson_path = dl_manager.download_and_extract(geojson_url) |
|
|
|
|
|
csv_file_path = os.path.join(csv_path, 'Trees_%26_Planting_Sites.csv') |
|
shp_file_path = os.path.join(shp_path, 'GS_TreeInventory.shp') |
|
geojson_file_path = os.path.join(geojson_path, 'Trees_%26_Planting_Sites.geojson') |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"csv_path": csv_file_path, |
|
"shp_path": shp_file_path, |
|
"geojson_path": geojson_file_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, csv_path, shp_path, geojson_path): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
csv_df = pd.read_csv(csv_path) |
|
shp_gdf = gpd.read_file(shp_path) |
|
with open(geojson_path, 'r') as f: |
|
geojson_data = json.load(f) |
|
geojson_gdf = gpd.GeoDataFrame.from_features(geojson_data["features"]) |
|
|
|
|
|
csv_df.columns = csv_df.columns.str.lower().str.replace(' ', '_') |
|
shp_gdf.columns = shp_gdf.columns.str.lower().str.replace(' ', '_') |
|
geojson_gdf.columns = geojson_gdf.columns.str.lower().str.replace(' ', '_') |
|
|
|
|
|
csv_df['objectid'] = csv_df['objectid'].astype(int) |
|
shp_gdf['objectid'] = shp_gdf['objectid'].astype(int) |
|
geojson_gdf['objectid'] = geojson_gdf['objectid'].astype(int) |
|
|
|
|
|
combined_gdf = shp_gdf.merge(csv_df, on='objectid', how='inner') |
|
combined_gdf = combined_gdf.merge(geojson_gdf, on='objectid', how='inner') |
|
combined_gdf=combined_gdf[["objectid", "streetaddr", "city_x", "zipcode_x", |
|
"species_x", "commonname_x", "plantingda", "diameterin_x", |
|
"heightft_x", "condition_x", "program_x", "matureheig", |
|
"created_da", "last_edi_1", "geometry_x", |
|
"x", "y", |
|
"coremoved_", "coremove_1", |
|
"o3removed_", "o3remove_1", |
|
"no2removed", "no2remov_1", |
|
"so2removed", "so2remov_1", |
|
"pm10remove", "pm10remo_1", |
|
"pm25remove", "o2producti", |
|
]] |
|
|
|
|
|
for idx, row in combined_gdf.iterrows(): |
|
|
|
yield idx, row.to_dict() |
|
|
|
@staticmethod |
|
def plot_spatial_distribution(combined_gdf, lat_col='x', lon_col='y', color_col='species_x', hover_col='species_x'): |
|
|
|
center_lat = combined_gdf[lat_col].mean() |
|
center_lon = combined_gdf[lon_col].mean() |
|
|
|
|
|
fig = px.scatter_mapbox(combined_gdf, |
|
lat=lat_col, |
|
lon=lon_col, |
|
color=color_col, |
|
hover_name=hover_col, |
|
center={"lat": center_lat, "lon": center_lon}, |
|
zoom=10, |
|
height=600, |
|
width=800) |
|
|
|
|
|
fig.update_layout(mapbox_style="open-street-map") |
|
|
|
|
|
fig.show() |
|
|
|
|