Ziyuan111 commited on
Commit
94b0e22
·
verified ·
1 Parent(s): 26560fb

Upload plantsdataset.py

Browse files
Files changed (1) hide show
  1. plantsdataset.py +110 -0
plantsdataset.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """PlantsDataset
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1nkvgrtbJQaIBdnxYHl8WTpKVL_AzAzux
8
+ """
9
+
10
+ import datasets
11
+ from datasets import load_dataset, DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder, BuilderConfig, Array3D, Version
12
+ import os
13
+ from PIL import Image
14
+ import matplotlib.pyplot as plt
15
+ import numpy as np
16
+ import pandas as pd
17
+ import geopandas as gpd
18
+ from datasets import (
19
+ GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split,
20
+ Features, Value, BuilderConfig, DatasetInfo
21
+ )
22
+ import matplotlib.pyplot as plt
23
+ import seaborn as sns
24
+ import csv
25
+ import json
26
+ from shapely.geometry import Point
27
+ import base64
28
+ import matplotlib.pyplot as plt
29
+ import matplotlib.image as mpimg
30
+ import io
31
+ import os
32
+ from PIL import Image
33
+ import numpy as np
34
+ from datasets import DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder, BuilderConfig
35
+ from datasets import NamedSplit, Split, SplitGenerator
36
+ import gdown
37
+ _DRIVE_ID = "1fXgVwhdU5YGj0SPIcHxSpxkhvRh54oEH"
38
+ _URL = f"https://drive.google.com/uc?export=download&id={_DRIVE_ID}"
39
+
40
+ class PlantsDataset(GeneratorBasedBuilder):
41
+ VERSION = datasets.Version("1.0.0")
42
+ BUILDER_CONFIGS = [
43
+ BuilderConfig(name="default", version=VERSION, description="Default configuration for PlantsDataset"),
44
+ ]
45
+
46
+ def _info(self):
47
+ features = Features({
48
+ "image": Value("string"), # Change to Array3D to store image arrays
49
+ "label": ClassLabel(names=["aleo vera", "calotropis gigantea"]),
50
+ })
51
+ return DatasetInfo(
52
+ description="Your dataset description",
53
+ features=features,
54
+ supervised_keys=("image", "label"),
55
+ homepage="Your dataset homepage",
56
+ citation="Citation for your dataset",
57
+ )
58
+
59
+ def _split_generators(self, dl_manager):
60
+ downloaded_file = dl_manager.download_and_extract(_URL)
61
+
62
+ return [
63
+ SplitGenerator(
64
+ name=Split.TRAIN,
65
+ gen_kwargs={
66
+ "data_folder": os.path.join(downloaded_file, "train"),
67
+ },
68
+ ),
69
+ SplitGenerator(
70
+ name=Split.TEST,
71
+ gen_kwargs={
72
+ "data_folder": os.path.join(downloaded_file, "test"),
73
+ },
74
+ ),
75
+ ]
76
+
77
+ def _generate_examples(self, data_folder):
78
+ label_names = self.info.features['label'].names
79
+ for label_name in label_names:
80
+ subfolder_path = os.path.join(data_folder, label_name)
81
+ label = label_names.index(label_name)
82
+ for root, _, files in os.walk(subfolder_path):
83
+ for file_name in files:
84
+ file_path = os.path.join(root, file_name)
85
+ if os.path.isfile(file_path) and file_name.lower().endswith(('.png', '.jpg', '.jpeg')):
86
+ # Image ID should be unique, use filename for simplicity
87
+ image_id = os.path.splitext(file_name)[0]
88
+ yield image_id, {
89
+ "image": file_path, # Store file path as a string
90
+ "label": label,
91
+ }
92
+ else:
93
+ print(f"Skipped file {file_path}, since it is not an image.")
94
+ # Instantiate the dataset builder for PlantsDataset
95
+ plants_dataset = PlantsDataset()
96
+
97
+ # Download the data and prepare the dataset
98
+ plants_dataset.download_and_prepare()
99
+
100
+ # Access the dataset as a `DatasetDict`
101
+ dataset_dict = plants_dataset.as_dataset()
102
+
103
+ # Access the train and test splits
104
+ train_dataset = dataset_dict['train']
105
+ test_dataset = dataset_dict['test']
106
+
107
+ # Now you can use `train_dataset` and `test_dataset` as needed
108
+ # For example, you can iterate over the dataset and access the file paths and labels
109
+ for example in train_dataset:
110
+ print(example['image'], example['label'])