Zixing-GOU commited on
Commit
22e2552
·
verified ·
1 Parent(s): 5f257df

Upload 2 files

Browse files
Twitter/processed/Twitter-processing.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import pickle as pkl
4
+ import networkx as nx
5
+
6
+ from torch_geometric.data import Data
7
+ import torch
8
+
9
+ # Define file paths
10
+ p_part1 = 'processed/original/68841_tweets_multiclasses_filtered_0722_part1.npy'
11
+ p_part2 = 'processed/original/68841_tweets_multiclasses_filtered_0722_part2.npy'
12
+
13
+ # Load the numpy data
14
+ df_np_part1 = np.load(p_part1, allow_pickle=True)
15
+ df_np_part2 = np.load(p_part2, allow_pickle=True)
16
+ df_np = np.concatenate((df_np_part1, df_np_part2), axis=0)
17
+
18
+ # Convert numpy data to pandas DataFrame
19
+ df = pd.DataFrame(data=df_np, columns=["event_id", "tweet_id", "text", "user_id", "created_at", "user_loc",
20
+ "place_type", "place_full_name", "place_country_code", "hashtags", "user_mentions", "image_urls", "entities",
21
+ "words", "filtered_words", "sampled_words"])
22
+ print("Data converted to dataframe.")
23
+
24
+ # Select relevant columns
25
+ df_graph_4 = df[['tweet_id', 'text', 'user_id', 'user_mentions', 'event_id']]
26
+
27
+ def create_graph_4(df_graph):
28
+ # Create an empty graph
29
+ G = nx.Graph()
30
+ text_nodes = []
31
+ edge_index = [[], []]
32
+ text_edges = []
33
+ node_labels = []
34
+ edge_labels = []
35
+
36
+ # Create all user nodes and user_id2idx
37
+ user_id2idx = {}
38
+ user_nodes = []
39
+ for _, row in df_graph.iterrows():
40
+ mentions_list = row['user_mentions']
41
+ user_id = row["user_id"]
42
+ # Only include user nodes where users mention each other
43
+ if len(mentions_list) > 0:
44
+ if user_id not in user_id2idx:
45
+ user_id2idx[user_id] = len(user_nodes)
46
+ user_nodes.append({user_id: user_id2idx[user_id]})
47
+ G.add_node(user_id2idx[user_id])
48
+ for mention in mentions_list:
49
+ if mention not in user_id2idx:
50
+ user_id2idx[mention] = len(user_nodes)
51
+ user_nodes.append({mention: user_id2idx[mention]})
52
+ G.add_node(user_id2idx[mention])
53
+
54
+ text_nodes = ["user"] * len(user_nodes) # All user nodes have text "user" and label -1
55
+ node_labels = [-1] * len(user_nodes)
56
+ print("Length of user nodes:", len(user_nodes))
57
+ print("Sample user nodes:", user_nodes[:5])
58
+ print("Sample user node labels:", node_labels[:5])
59
+ print("Sample user node texts:", text_nodes[:5])
60
+
61
+ # Initialize tweet_id2idx
62
+ tweet_id2idx = {}
63
+ tweet_id2node_idx = {}
64
+ tweet_nodes = []
65
+
66
+ # Add information related to mentions (user-user edge, tweet node, user-tweet edge)
67
+ for _, row in df_graph.iterrows():
68
+ mentions_list = row['user_mentions']
69
+ if len(mentions_list) > 0:
70
+ user_idx = user_id2idx[row['user_id']]
71
+
72
+ for mention in mentions_list:
73
+ mention_idx = user_id2idx[mention]
74
+ if not G.has_edge(user_idx, mention_idx): # Only include one edge between two users
75
+ # Add edge u1-u2
76
+ G.add_edge(user_idx, mention_idx)
77
+ edge_index[0].append(user_idx)
78
+ edge_index[1].append(mention_idx)
79
+ text_edges.append(row['text'])
80
+ edge_labels.append(row["event_id"])
81
+
82
+ # Add node t1, create tweet_id2idx
83
+ tweet_id = row['tweet_id']
84
+ tweet_id2idx[tweet_id] = len(tweet_nodes)
85
+ tweet_id2node_idx[tweet_id] = len(user_nodes) + tweet_id2idx[tweet_id]
86
+ tweet_nodes.append({tweet_id: len(user_nodes) + tweet_id2idx[tweet_id]})
87
+ G.add_node(tweet_id2node_idx[tweet_id])
88
+ text_nodes.append(row["text"])
89
+ node_labels.append(row['event_id'])
90
+
91
+ # Add edge u1-t1
92
+ tweet_node_idx = tweet_id2node_idx[tweet_id]
93
+ edge_index[0].append(user_idx)
94
+ edge_index[1].append(tweet_node_idx)
95
+ text_edges.append("")
96
+ edge_labels.append(-1)
97
+ G.add_edge(user_idx, tweet_node_idx)
98
+
99
+ # Add edge t1-u2
100
+ edge_index[0].append(mention_idx)
101
+ edge_index[1].append(tweet_node_idx)
102
+ text_edges.append("")
103
+ edge_labels.append(-1)
104
+ G.add_edge(mention_idx, tweet_node_idx)
105
+
106
+ # Add information not related to mentions (user-tweet edge, tweet node)
107
+ for _, row in df_graph.iterrows():
108
+ tweet_id = row['tweet_id']
109
+ user_id = row["user_id"]
110
+ if user_id in user_id2idx.keys() and tweet_id not in tweet_id2idx.keys():
111
+ # Create tweet_id2node_idx and add node t1
112
+ tweet_id2idx[tweet_id] = len(tweet_nodes)
113
+ tweet_id2node_idx[tweet_id] = len(user_nodes) + tweet_id2idx[tweet_id]
114
+ tweet_nodes.append({tweet_id: len(user_nodes) + tweet_id2idx[tweet_id]})
115
+ G.add_node(tweet_id2node_idx[tweet_id])
116
+ text_nodes.append(row["text"])
117
+ node_labels.append(row['event_id'])
118
+
119
+ # Add edge u1-t1
120
+ user_idx = user_id2idx[user_id]
121
+ tweet_node_idx = tweet_id2node_idx[tweet_id]
122
+ edge_index[0].append(user_idx)
123
+ edge_index[1].append(tweet_node_idx)
124
+ text_edges.append("")
125
+ edge_labels.append(-1)
126
+ G.add_edge(user_idx, tweet_node_idx)
127
+
128
+ print("Length of tweet nodes:", len(tweet_nodes))
129
+ print("Sample tweet nodes:", tweet_nodes[:5])
130
+ print("Sample tweet node labels:", node_labels[-5:])
131
+ print("Sample tweet node texts:", text_nodes[-5:])
132
+
133
+ return text_nodes, text_edges, node_labels, edge_labels, edge_index
134
+
135
+ # Create the graph
136
+ text_nodes, text_edges, node_labels, edge_labels, edge_index = create_graph_4(df_graph_4)
137
+
138
+ # Create Data object
139
+ graph = Data(
140
+ text_nodes=text_nodes,
141
+ text_edges=text_edges,
142
+ node_labels=torch.tensor(node_labels, dtype=torch.long),
143
+ edge_labels=torch.tensor(edge_labels, dtype=torch.long),
144
+ edge_index=torch.tensor(edge_index, dtype=torch.long)
145
+ )
146
+
147
+ # Save the processed graph data
148
+ output_file = os.path.join(base_dir, 'output/twitter_graph.pkl')
149
+ with open(output_file, 'wb') as file:
150
+ pkl.dump(graph, file)
151
+
152
+ print(f"Data processing complete. Processed data saved to: {output_file}")
Twitter/processed/download_data.sh ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Get the directory of the current script
4
+ SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
5
+ BASE_DIR="$(dirname "$SCRIPT_DIR")"
6
+ RAW_DIR="$BASE_DIR/processed/original"
7
+
8
+ # Create the raw directory
9
+ mkdir -p "$RAW_DIR"
10
+
11
+ # Define URLs of the files to be downloaded
12
+ urls=(
13
+ "https://github.com/YuweiCao-UIC/KPGNN/raw/main/datasets/Twitter/68841_tweets_multiclasses_filtered_0722_part1.npy"
14
+ "https://github.com/YuweiCao-UIC/KPGNN/raw/main/datasets/Twitter/68841_tweets_multiclasses_filtered_0722_part2.npy"
15
+ )
16
+
17
+ # Download each file to the raw directory
18
+ for url in "${urls[@]}"; do
19
+ wget -P "$RAW_DIR" "$url"
20
+ done
21
+
22
+ echo "Download complete."
23
+
24
+
25
+