zellic-audit
Initial commit
f998fcd
raw
history blame
46.7 kB
{
"language": "Solidity",
"sources": {
"@openzeppelin/contracts/access/Ownable.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor() {\n _transferOwnership(_msgSender());\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n"
},
"@openzeppelin/contracts/interfaces/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../token/ERC20/IERC20.sol\";\n"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Contract module that helps prevent reentrant calls to a function.\n *\n * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier\n * available, which can be applied to functions to make sure there are no nested\n * (reentrant) calls to them.\n *\n * Note that because there is a single `nonReentrant` guard, functions marked as\n * `nonReentrant` may not call one another. This can be worked around by making\n * those functions `private`, and then adding `external` `nonReentrant` entry\n * points to them.\n *\n * TIP: If you would like to learn more about reentrancy and alternative ways\n * to protect against it, check out our blog post\n * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].\n */\nabstract contract ReentrancyGuard {\n // Booleans are more expensive than uint256 or any type that takes up a full\n // word because each write operation emits an extra SLOAD to first read the\n // slot's contents, replace the bits taken up by the boolean, and then write\n // back. This is the compiler's defense against contract upgrades and\n // pointer aliasing, and it cannot be disabled.\n\n // The values being non-zero value makes deployment a bit more expensive,\n // but in exchange the refund on every call to nonReentrant will be lower in\n // amount. Since refunds are capped to a percentage of the total\n // transaction's gas, it is best to keep them low in cases like this one, to\n // increase the likelihood of the full refund coming into effect.\n uint256 private constant _NOT_ENTERED = 1;\n uint256 private constant _ENTERED = 2;\n\n uint256 private _status;\n\n constructor() {\n _status = _NOT_ENTERED;\n }\n\n /**\n * @dev Prevents a contract from calling itself, directly or indirectly.\n * Calling a `nonReentrant` function from another `nonReentrant`\n * function is not supported. It is possible to prevent this from happening\n * by making the `nonReentrant` function external, and making it call a\n * `private` function that does the actual work.\n */\n modifier nonReentrant() {\n _nonReentrantBefore();\n _;\n _nonReentrantAfter();\n }\n\n function _nonReentrantBefore() private {\n // On the first call to nonReentrant, _status will be _NOT_ENTERED\n require(_status != _ENTERED, \"ReentrancyGuard: reentrant call\");\n\n // Any calls to nonReentrant after this point will fail\n _status = _ENTERED;\n }\n\n function _nonReentrantAfter() private {\n // By storing the original value once again, a refund is triggered (see\n // https://eips.ethereum.org/EIPS/eip-2200)\n _status = _NOT_ENTERED;\n }\n}\n"
},
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n"
},
"@openzeppelin/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n}\n"
},
"@openzeppelin/contracts/utils/cryptography/MerkleProof.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev These functions deal with verification of Merkle Tree proofs.\n *\n * The tree and the proofs can be generated using our\n * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].\n * You will find a quickstart guide in the readme.\n *\n * WARNING: You should avoid using leaf values that are 64 bytes long prior to\n * hashing, or use a hash function other than keccak256 for hashing leaves.\n * This is because the concatenation of a sorted pair of internal nodes in\n * the merkle tree could be reinterpreted as a leaf value.\n * OpenZeppelin's JavaScript library generates merkle trees that are safe\n * against this attack out of the box.\n */\nlibrary MerkleProof {\n /**\n * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree\n * defined by `root`. For this, a `proof` must be provided, containing\n * sibling hashes on the branch from the leaf to the root of the tree. Each\n * pair of leaves and each pair of pre-images are assumed to be sorted.\n */\n function verify(\n bytes32[] memory proof,\n bytes32 root,\n bytes32 leaf\n ) internal pure returns (bool) {\n return processProof(proof, leaf) == root;\n }\n\n /**\n * @dev Calldata version of {verify}\n *\n * _Available since v4.7._\n */\n function verifyCalldata(\n bytes32[] calldata proof,\n bytes32 root,\n bytes32 leaf\n ) internal pure returns (bool) {\n return processProofCalldata(proof, leaf) == root;\n }\n\n /**\n * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up\n * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt\n * hash matches the root of the tree. When processing the proof, the pairs\n * of leafs & pre-images are assumed to be sorted.\n *\n * _Available since v4.4._\n */\n function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {\n bytes32 computedHash = leaf;\n for (uint256 i = 0; i < proof.length; i++) {\n computedHash = _hashPair(computedHash, proof[i]);\n }\n return computedHash;\n }\n\n /**\n * @dev Calldata version of {processProof}\n *\n * _Available since v4.7._\n */\n function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {\n bytes32 computedHash = leaf;\n for (uint256 i = 0; i < proof.length; i++) {\n computedHash = _hashPair(computedHash, proof[i]);\n }\n return computedHash;\n }\n\n /**\n * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by\n * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.\n *\n * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n *\n * _Available since v4.7._\n */\n function multiProofVerify(\n bytes32[] memory proof,\n bool[] memory proofFlags,\n bytes32 root,\n bytes32[] memory leaves\n ) internal pure returns (bool) {\n return processMultiProof(proof, proofFlags, leaves) == root;\n }\n\n /**\n * @dev Calldata version of {multiProofVerify}\n *\n * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n *\n * _Available since v4.7._\n */\n function multiProofVerifyCalldata(\n bytes32[] calldata proof,\n bool[] calldata proofFlags,\n bytes32 root,\n bytes32[] memory leaves\n ) internal pure returns (bool) {\n return processMultiProofCalldata(proof, proofFlags, leaves) == root;\n }\n\n /**\n * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction\n * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another\n * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false\n * respectively.\n *\n * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree\n * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the\n * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).\n *\n * _Available since v4.7._\n */\n function processMultiProof(\n bytes32[] memory proof,\n bool[] memory proofFlags,\n bytes32[] memory leaves\n ) internal pure returns (bytes32 merkleRoot) {\n // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by\n // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the\n // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of\n // the merkle tree.\n uint256 leavesLen = leaves.length;\n uint256 totalHashes = proofFlags.length;\n\n // Check proof validity.\n require(leavesLen + proof.length - 1 == totalHashes, \"MerkleProof: invalid multiproof\");\n\n // The xxxPos values are \"pointers\" to the next value to consume in each array. All accesses are done using\n // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's \"pop\".\n bytes32[] memory hashes = new bytes32[](totalHashes);\n uint256 leafPos = 0;\n uint256 hashPos = 0;\n uint256 proofPos = 0;\n // At each step, we compute the next hash using two values:\n // - a value from the \"main queue\". If not all leaves have been consumed, we get the next leaf, otherwise we\n // get the next hash.\n // - depending on the flag, either another value for the \"main queue\" (merging branches) or an element from the\n // `proof` array.\n for (uint256 i = 0; i < totalHashes; i++) {\n bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];\n bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];\n hashes[i] = _hashPair(a, b);\n }\n\n if (totalHashes > 0) {\n return hashes[totalHashes - 1];\n } else if (leavesLen > 0) {\n return leaves[0];\n } else {\n return proof[0];\n }\n }\n\n /**\n * @dev Calldata version of {processMultiProof}.\n *\n * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n *\n * _Available since v4.7._\n */\n function processMultiProofCalldata(\n bytes32[] calldata proof,\n bool[] calldata proofFlags,\n bytes32[] memory leaves\n ) internal pure returns (bytes32 merkleRoot) {\n // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by\n // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the\n // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of\n // the merkle tree.\n uint256 leavesLen = leaves.length;\n uint256 totalHashes = proofFlags.length;\n\n // Check proof validity.\n require(leavesLen + proof.length - 1 == totalHashes, \"MerkleProof: invalid multiproof\");\n\n // The xxxPos values are \"pointers\" to the next value to consume in each array. All accesses are done using\n // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's \"pop\".\n bytes32[] memory hashes = new bytes32[](totalHashes);\n uint256 leafPos = 0;\n uint256 hashPos = 0;\n uint256 proofPos = 0;\n // At each step, we compute the next hash using two values:\n // - a value from the \"main queue\". If not all leaves have been consumed, we get the next leaf, otherwise we\n // get the next hash.\n // - depending on the flag, either another value for the \"main queue\" (merging branches) or an element from the\n // `proof` array.\n for (uint256 i = 0; i < totalHashes; i++) {\n bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];\n bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];\n hashes[i] = _hashPair(a, b);\n }\n\n if (totalHashes > 0) {\n return hashes[totalHashes - 1];\n } else if (leavesLen > 0) {\n return leaves[0];\n } else {\n return proof[0];\n }\n }\n\n function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {\n return a < b ? _efficientHash(a, b) : _efficientHash(b, a);\n }\n\n function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {\n /// @solidity memory-safe-assembly\n assembly {\n mstore(0x00, a)\n mstore(0x20, b)\n value := keccak256(0x00, 0x40)\n }\n }\n}\n"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n enum Rounding {\n Down, // Toward negative infinity\n Up, // Toward infinity\n Zero // Toward zero\n }\n\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return a > b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a < b ? a : b;\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow.\n return (a & b) + (a ^ b) / 2;\n }\n\n /**\n * @dev Returns the ceiling of the division of two numbers.\n *\n * This differs from standard division with `/` in that it rounds up instead\n * of rounding down.\n */\n function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b - 1) / b can overflow on addition, so we distribute.\n return a == 0 ? 0 : (a - 1) / b + 1;\n }\n\n /**\n * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n * with further edits by Uniswap Labs also under MIT license.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator\n ) internal pure returns (uint256 result) {\n unchecked {\n // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n // variables such that product = prod1 * 2^256 + prod0.\n uint256 prod0; // Least significant 256 bits of the product\n uint256 prod1; // Most significant 256 bits of the product\n assembly {\n let mm := mulmod(x, y, not(0))\n prod0 := mul(x, y)\n prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n }\n\n // Handle non-overflow cases, 256 by 256 division.\n if (prod1 == 0) {\n return prod0 / denominator;\n }\n\n // Make sure the result is less than 2^256. Also prevents denominator == 0.\n require(denominator > prod1);\n\n ///////////////////////////////////////////////\n // 512 by 256 division.\n ///////////////////////////////////////////////\n\n // Make division exact by subtracting the remainder from [prod1 prod0].\n uint256 remainder;\n assembly {\n // Compute remainder using mulmod.\n remainder := mulmod(x, y, denominator)\n\n // Subtract 256 bit number from 512 bit number.\n prod1 := sub(prod1, gt(remainder, prod0))\n prod0 := sub(prod0, remainder)\n }\n\n // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n // See https://cs.stackexchange.com/q/138556/92363.\n\n // Does not overflow because the denominator cannot be zero at this stage in the function.\n uint256 twos = denominator & (~denominator + 1);\n assembly {\n // Divide denominator by twos.\n denominator := div(denominator, twos)\n\n // Divide [prod1 prod0] by twos.\n prod0 := div(prod0, twos)\n\n // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n twos := add(div(sub(0, twos), twos), 1)\n }\n\n // Shift in bits from prod1 into prod0.\n prod0 |= prod1 * twos;\n\n // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n // four bits. That is, denominator * inv = 1 mod 2^4.\n uint256 inverse = (3 * denominator) ^ 2;\n\n // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n // in modular arithmetic, doubling the correct bits in each step.\n inverse *= 2 - denominator * inverse; // inverse mod 2^8\n inverse *= 2 - denominator * inverse; // inverse mod 2^16\n inverse *= 2 - denominator * inverse; // inverse mod 2^32\n inverse *= 2 - denominator * inverse; // inverse mod 2^64\n inverse *= 2 - denominator * inverse; // inverse mod 2^128\n inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n // is no longer required.\n result = prod0 * inverse;\n return result;\n }\n }\n\n /**\n * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator,\n Rounding rounding\n ) internal pure returns (uint256) {\n uint256 result = mulDiv(x, y, denominator);\n if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n result += 1;\n }\n return result;\n }\n\n /**\n * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n *\n * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n */\n function sqrt(uint256 a) internal pure returns (uint256) {\n if (a == 0) {\n return 0;\n }\n\n // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n //\n // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n //\n // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n //\n // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n uint256 result = 1 << (log2(a) >> 1);\n\n // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n // into the expected uint128 result.\n unchecked {\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n return min(result, a / result);\n }\n }\n\n /**\n * @notice Calculates sqrt(a), following the selected rounding direction.\n */\n function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = sqrt(a);\n return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 2, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 128;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 64;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 32;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 16;\n }\n if (value >> 8 > 0) {\n value >>= 8;\n result += 8;\n }\n if (value >> 4 > 0) {\n value >>= 4;\n result += 4;\n }\n if (value >> 2 > 0) {\n value >>= 2;\n result += 2;\n }\n if (value >> 1 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log2(value);\n return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 10, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >= 10**64) {\n value /= 10**64;\n result += 64;\n }\n if (value >= 10**32) {\n value /= 10**32;\n result += 32;\n }\n if (value >= 10**16) {\n value /= 10**16;\n result += 16;\n }\n if (value >= 10**8) {\n value /= 10**8;\n result += 8;\n }\n if (value >= 10**4) {\n value /= 10**4;\n result += 4;\n }\n if (value >= 10**2) {\n value /= 10**2;\n result += 2;\n }\n if (value >= 10**1) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log10(value);\n return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 256, rounded down, of a positive value.\n * Returns 0 if given 0.\n *\n * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n */\n function log256(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 16;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 8;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 4;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 2;\n }\n if (value >> 8 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log256(value);\n return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);\n }\n }\n}\n"
},
"@openzeppelin/contracts/utils/Strings.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./math/Math.sol\";\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n bytes16 private constant _SYMBOLS = \"0123456789abcdef\";\n uint8 private constant _ADDRESS_LENGTH = 20;\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n */\n function toString(uint256 value) internal pure returns (string memory) {\n unchecked {\n uint256 length = Math.log10(value) + 1;\n string memory buffer = new string(length);\n uint256 ptr;\n /// @solidity memory-safe-assembly\n assembly {\n ptr := add(buffer, add(32, length))\n }\n while (true) {\n ptr--;\n /// @solidity memory-safe-assembly\n assembly {\n mstore8(ptr, byte(mod(value, 10), _SYMBOLS))\n }\n value /= 10;\n if (value == 0) break;\n }\n return buffer;\n }\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n */\n function toHexString(uint256 value) internal pure returns (string memory) {\n unchecked {\n return toHexString(value, Math.log256(value) + 1);\n }\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n */\n function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n bytes memory buffer = new bytes(2 * length + 2);\n buffer[0] = \"0\";\n buffer[1] = \"x\";\n for (uint256 i = 2 * length + 1; i > 1; --i) {\n buffer[i] = _SYMBOLS[value & 0xf];\n value >>= 4;\n }\n require(value == 0, \"Strings: hex length insufficient\");\n return string(buffer);\n }\n\n /**\n * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n */\n function toHexString(address addr) internal pure returns (string memory) {\n return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n }\n}\n"
},
"contracts/ReviverArtEditionSale.sol": {
"content": "pragma solidity ^0.8.17;\nimport \"@openzeppelin/contracts/interfaces/IERC20.sol\";\nimport \"@openzeppelin/contracts/utils/Strings.sol\";\nimport \"@openzeppelin/contracts/access/Ownable.sol\";\nimport \"@openzeppelin/contracts/security/ReentrancyGuard.sol\";\nimport \"@openzeppelin/contracts/utils/cryptography/MerkleProof.sol\";\n\nabstract contract R {\n function mintBaseExisting(\n address[] calldata to,\n uint256[] calldata tokenIds,\n uint256[] calldata amounts\n ) public virtual;\n}\n\ncontract ReviverArtEditionSale is Ownable, ReentrancyGuard {\n uint256 private constant YinTokenID = 10;\n uint256 private constant YangTokenID = 11;\n\n uint256 public constant YinPrice = 0.069 ether;\n uint256 public constant YangPrice = 0.069 ether;\n\n // used to validate whitelists\n bytes32 public YinALMerkleRoot =\n 0xdfc49e55095c5a85ff9be52bcc9301207d7406e56927c57ebb924082161925db;\n bytes32 public YangALMerkleRoot =\n 0xb13db5d108cb01b227dc70e7bb3664cee78d98d58d273fbf23faf480d297637d;\n bytes32 public YinWLMerkleRoot =\n 0xaf60557d84d32beebb4989e74d02e47e0fe0ff1624ad769322f1780993de0c07;\n bytes32 public YangWLMerkleRoot =\n 0xe48cf250b0f018bd4cf5ed5b4951d8edf74569f79c8211b621ee65d4275d0ca4;\n\n // set times\n uint64 public immutable ALStartTime = 1678464000; // 2023-03-11 00:00:00 GMT+8\n uint64 public immutable ALEndTime = 1678550400; // 2023-03-12 00:00:00 GMT+8\n uint64 public immutable WLStartTime = 1678550400; // 2023-03-12 00:00:00 GMT+8\n uint64 public immutable WLEndTime = 1678593600; // 2023-03-12 12:00:00 GMT+8\n\n mapping(address => uint256) public YinALMinted;\n mapping(address => uint256) public YangALMinted;\n mapping(address => uint256) public YinWLMinted;\n mapping(address => uint256) public YangWLMinted;\n\n uint256 public YinEditionMinted;\n uint256 public YangEditionMinted;\n uint256 public YinMaxMintAmount = 90;\n uint256 public YangMaxMintAmount = 75;\n\n address RTokenAddress = address(0x890dc5Dd5fc40c056c8D4152eDB146a1c76d1C29);\n R tokenAttribution = R(RTokenAddress);\n address withdrawAddress =\n address(0x96ea39997ffCE1dF2f3f157F56Cc7d7763c7E40f);\n address public cSigner =\n address(0x3a5e8a465a7F87531C13A4fcfa963B4A878B2E24);\n\n constructor() {}\n\n modifier isValidMerkleProof(bytes32[] calldata merkleProof, bytes32 root) {\n require(\n MerkleProof.verify(\n merkleProof,\n root,\n keccak256(abi.encodePacked(msg.sender))\n ),\n \"Your address is not on the list\"\n );\n _;\n }\n\n modifier isCorrectPayment(uint256 _price, uint256 _numberOfTokens) {\n require(\n _price * _numberOfTokens == msg.value,\n \"Incorrect ETH value sent\"\n );\n _;\n }\n\n modifier checkALTime() {\n require(\n block.timestamp >= uint256(ALStartTime) &&\n block.timestamp <= uint256(ALEndTime),\n \"It's not a allowlist period now\"\n );\n _;\n }\n\n modifier checkWLTime() {\n require(\n block.timestamp >= uint256(WLStartTime) &&\n block.timestamp <= uint256(WLEndTime),\n \"It's not a waitlist period now\"\n );\n _;\n }\n\n modifier checkSignedMsg(\n bytes32 r,\n bytes32 s,\n uint8 v,\n address _receiver,\n uint256 _maxAmount\n ) {\n bytes32 digest = keccak256(\n abi.encodePacked(\n \"\\x19Ethereum Signed Message:\\n32\",\n keccak256(abi.encode(_receiver)),\n keccak256(abi.encode(_maxAmount))\n )\n );\n require(ecrecover(digest, v, r, s) == cSigner, \"Invalid signer\");\n _;\n }\n\n //\n // AL\n //\n\n function mintYinEditionAL(\n bytes32[] calldata merkleProof,\n bytes32 r,\n bytes32 s,\n uint8 v,\n uint256 amount,\n uint256 maxAmount\n )\n public\n payable\n isValidMerkleProof(merkleProof, YinALMerkleRoot)\n checkSignedMsg(r, s, v, msg.sender, maxAmount)\n isCorrectPayment(YinPrice, amount)\n checkALTime\n nonReentrant\n {\n require(\n YinALMinted[msg.sender] + amount <= maxAmount &&\n YinEditionMinted + amount <= YinMaxMintAmount,\n \"exceed max amount\"\n );\n address[] memory addr = new address[](1);\n uint256[] memory tokenID = new uint256[](1);\n uint256[] memory mintAmount = new uint256[](1);\n addr[0] = msg.sender;\n tokenID[0] = YinTokenID;\n mintAmount[0] = amount;\n\n tokenAttribution.mintBaseExisting(addr, tokenID, mintAmount);\n YinALMinted[msg.sender] += amount;\n YinEditionMinted += amount;\n }\n\n function mintYangEditionAL(\n bytes32[] calldata merkleProof,\n bytes32 r,\n bytes32 s,\n uint8 v,\n uint256 amount,\n uint256 maxAmount\n )\n public\n payable\n isValidMerkleProof(merkleProof, YangALMerkleRoot)\n checkSignedMsg(r, s, v, msg.sender, maxAmount)\n isCorrectPayment(YangPrice, amount)\n checkALTime\n nonReentrant\n {\n require(\n YangALMinted[msg.sender] + amount <= maxAmount &&\n YangEditionMinted + amount <= YangMaxMintAmount,\n \"exceed max amount\"\n );\n address[] memory addr = new address[](1);\n uint256[] memory tokenID = new uint256[](1);\n uint256[] memory mintAmount = new uint256[](1);\n addr[0] = msg.sender;\n tokenID[0] = YangTokenID;\n mintAmount[0] = amount;\n\n tokenAttribution.mintBaseExisting(addr, tokenID, mintAmount);\n YangALMinted[msg.sender] += amount;\n YangEditionMinted += amount;\n }\n\n //\n // WL\n //\n\n function mintYinEditionWL(\n bytes32[] calldata merkleProof,\n bytes32 r,\n bytes32 s,\n uint8 v,\n uint256 amount,\n uint256 maxAmount\n )\n public\n payable\n isValidMerkleProof(merkleProof, YinWLMerkleRoot)\n checkSignedMsg(r, s, v, msg.sender, maxAmount)\n isCorrectPayment(YinPrice, amount)\n checkWLTime\n nonReentrant\n {\n require(\n YinWLMinted[msg.sender] + amount <= maxAmount &&\n YinEditionMinted + amount <= YinMaxMintAmount,\n \"exceed max amount\"\n );\n address[] memory addr = new address[](1);\n uint256[] memory tokenID = new uint256[](1);\n uint256[] memory mintAmount = new uint256[](1);\n addr[0] = msg.sender;\n tokenID[0] = YinTokenID;\n mintAmount[0] = amount;\n\n tokenAttribution.mintBaseExisting(addr, tokenID, mintAmount);\n YinWLMinted[msg.sender] += amount;\n YinEditionMinted += amount;\n }\n\n function mintYangEditionWL(\n bytes32[] calldata merkleProof,\n bytes32 r,\n bytes32 s,\n uint8 v,\n uint256 amount,\n uint256 maxAmount\n )\n public\n payable\n isValidMerkleProof(merkleProof, YangWLMerkleRoot)\n checkSignedMsg(r, s, v, msg.sender, maxAmount)\n isCorrectPayment(YangPrice, amount)\n checkWLTime\n nonReentrant\n {\n require(\n YangWLMinted[msg.sender] + amount <= maxAmount &&\n YangEditionMinted + amount <= YangMaxMintAmount,\n \"exceed max amount\"\n );\n address[] memory addr = new address[](1);\n uint256[] memory tokenID = new uint256[](1);\n uint256[] memory mintAmount = new uint256[](1);\n addr[0] = msg.sender;\n tokenID[0] = YangTokenID;\n mintAmount[0] = amount;\n\n tokenAttribution.mintBaseExisting(addr, tokenID, mintAmount);\n YangWLMinted[msg.sender] += amount;\n YangEditionMinted += amount;\n }\n\n //\n // ADMIN\n //\n\n function adminMintYinEdition(uint256 n) public onlyOwner nonReentrant {\n require(\n block.timestamp > uint256(WLEndTime),\n \"The waitlist round has not ended\"\n );\n require(n + YinEditionMinted <= YinMaxMintAmount, \"exceed max amount\");\n address[] memory addr = new address[](1);\n uint256[] memory tokenID = new uint256[](1);\n uint256[] memory mintAmount = new uint256[](1);\n addr[0] = msg.sender;\n tokenID[0] = YinTokenID;\n mintAmount[0] = n;\n\n tokenAttribution.mintBaseExisting(addr, tokenID, mintAmount);\n YinEditionMinted += n;\n }\n\n function adminMintYangEdition(uint256 n) public onlyOwner nonReentrant {\n require(\n block.timestamp > uint256(WLEndTime),\n \"The waitlist round has not ended\"\n );\n require(\n n + YangEditionMinted <= YangMaxMintAmount,\n \"exceed max amount\"\n );\n address[] memory addr = new address[](1);\n uint256[] memory tokenID = new uint256[](1);\n uint256[] memory mintAmount = new uint256[](1);\n addr[0] = msg.sender;\n tokenID[0] = YangTokenID;\n mintAmount[0] = n;\n\n tokenAttribution.mintBaseExisting(addr, tokenID, mintAmount);\n YangEditionMinted += n;\n }\n\n function withdraw() public {\n require(msg.sender == withdrawAddress, \"not withdrawAddress\");\n uint256 balance = address(this).balance;\n payable(msg.sender).transfer(balance);\n }\n\n function withdrawTokens(IERC20 token) public {\n require(msg.sender == withdrawAddress, \"not withdrawAddress\");\n uint256 balance = token.balanceOf(address(this));\n token.transfer(msg.sender, balance);\n }\n\n function setWhitelistMerkleRoot(uint256 rootType, bytes32 merkleRoot)\n external\n onlyOwner\n {\n if (rootType == 1) {\n YinALMerkleRoot = merkleRoot;\n } else if (rootType == 2) {\n YangALMerkleRoot = merkleRoot;\n } else if (rootType == 3) {\n YinWLMerkleRoot = merkleRoot;\n } else if (rootType == 4) {\n YangWLMerkleRoot = merkleRoot;\n } else {\n revert(\"not allow\");\n }\n }\n\n function setRTokenAddress(address newAddress) public onlyOwner {\n RTokenAddress = newAddress;\n }\n\n function setWithdrawAddress(address newAddress) public onlyOwner {\n withdrawAddress = newAddress;\n }\n\n function setSigner(address newAddress) public onlyOwner {\n cSigner = newAddress;\n }\n\n function getMessageHash(address receiver, uint256 maxAmount)\n public\n pure\n returns (bytes32)\n {\n return\n keccak256(\n abi.encodePacked(\n \"\\x19Ethereum Signed Message:\\n32\",\n keccak256(abi.encode(receiver)),\n keccak256(abi.encode(maxAmount))\n )\n );\n }\n}\n"
}
},
"settings": {
"optimizer": {
"enabled": true,
"runs": 300
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}
}