|
|
""" |
|
|
A collection of utility functions and classes. Originally, many |
|
|
(but not all) were from the Python Cookbook -- hence the name cbook. |
|
|
""" |
|
|
|
|
|
import collections |
|
|
import collections.abc |
|
|
import contextlib |
|
|
import functools |
|
|
import gzip |
|
|
import itertools |
|
|
import math |
|
|
import operator |
|
|
import os |
|
|
from pathlib import Path |
|
|
import shlex |
|
|
import subprocess |
|
|
import sys |
|
|
import time |
|
|
import traceback |
|
|
import types |
|
|
import weakref |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
try: |
|
|
from numpy.exceptions import VisibleDeprecationWarning |
|
|
except ImportError: |
|
|
from numpy import VisibleDeprecationWarning |
|
|
|
|
|
import matplotlib |
|
|
from matplotlib import _api, _c_internal_utils |
|
|
|
|
|
|
|
|
class _ExceptionInfo: |
|
|
""" |
|
|
A class to carry exception information around. |
|
|
|
|
|
This is used to store and later raise exceptions. It's an alternative to |
|
|
directly storing Exception instances that circumvents traceback-related |
|
|
issues: caching tracebacks can keep user's objects in local namespaces |
|
|
alive indefinitely, which can lead to very surprising memory issues for |
|
|
users and result in incorrect tracebacks. |
|
|
""" |
|
|
|
|
|
def __init__(self, cls, *args): |
|
|
self._cls = cls |
|
|
self._args = args |
|
|
|
|
|
@classmethod |
|
|
def from_exception(cls, exc): |
|
|
return cls(type(exc), *exc.args) |
|
|
|
|
|
def to_exception(self): |
|
|
return self._cls(*self._args) |
|
|
|
|
|
|
|
|
def _get_running_interactive_framework(): |
|
|
""" |
|
|
Return the interactive framework whose event loop is currently running, if |
|
|
any, or "headless" if no event loop can be started, or None. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Optional[str] |
|
|
One of the following values: "qt", "gtk3", "gtk4", "wx", "tk", |
|
|
"macosx", "headless", ``None``. |
|
|
""" |
|
|
|
|
|
|
|
|
QtWidgets = ( |
|
|
sys.modules.get("PyQt6.QtWidgets") |
|
|
or sys.modules.get("PySide6.QtWidgets") |
|
|
or sys.modules.get("PyQt5.QtWidgets") |
|
|
or sys.modules.get("PySide2.QtWidgets") |
|
|
) |
|
|
if QtWidgets and QtWidgets.QApplication.instance(): |
|
|
return "qt" |
|
|
Gtk = sys.modules.get("gi.repository.Gtk") |
|
|
if Gtk: |
|
|
if Gtk.MAJOR_VERSION == 4: |
|
|
from gi.repository import GLib |
|
|
if GLib.main_depth(): |
|
|
return "gtk4" |
|
|
if Gtk.MAJOR_VERSION == 3 and Gtk.main_level(): |
|
|
return "gtk3" |
|
|
wx = sys.modules.get("wx") |
|
|
if wx and wx.GetApp(): |
|
|
return "wx" |
|
|
tkinter = sys.modules.get("tkinter") |
|
|
if tkinter: |
|
|
codes = {tkinter.mainloop.__code__, tkinter.Misc.mainloop.__code__} |
|
|
for frame in sys._current_frames().values(): |
|
|
while frame: |
|
|
if frame.f_code in codes: |
|
|
return "tk" |
|
|
frame = frame.f_back |
|
|
|
|
|
del frame |
|
|
macosx = sys.modules.get("matplotlib.backends._macosx") |
|
|
if macosx and macosx.event_loop_is_running(): |
|
|
return "macosx" |
|
|
if not _c_internal_utils.display_is_valid(): |
|
|
return "headless" |
|
|
return None |
|
|
|
|
|
|
|
|
def _exception_printer(exc): |
|
|
if _get_running_interactive_framework() in ["headless", None]: |
|
|
raise exc |
|
|
else: |
|
|
traceback.print_exc() |
|
|
|
|
|
|
|
|
class _StrongRef: |
|
|
""" |
|
|
Wrapper similar to a weakref, but keeping a strong reference to the object. |
|
|
""" |
|
|
|
|
|
def __init__(self, obj): |
|
|
self._obj = obj |
|
|
|
|
|
def __call__(self): |
|
|
return self._obj |
|
|
|
|
|
def __eq__(self, other): |
|
|
return isinstance(other, _StrongRef) and self._obj == other._obj |
|
|
|
|
|
def __hash__(self): |
|
|
return hash(self._obj) |
|
|
|
|
|
|
|
|
def _weak_or_strong_ref(func, callback): |
|
|
""" |
|
|
Return a `WeakMethod` wrapping *func* if possible, else a `_StrongRef`. |
|
|
""" |
|
|
try: |
|
|
return weakref.WeakMethod(func, callback) |
|
|
except TypeError: |
|
|
return _StrongRef(func) |
|
|
|
|
|
|
|
|
class _UnhashDict: |
|
|
""" |
|
|
A minimal dict-like class that also supports unhashable keys, storing them |
|
|
in a list of key-value pairs. |
|
|
|
|
|
This class only implements the interface needed for `CallbackRegistry`, and |
|
|
tries to minimize the overhead for the hashable case. |
|
|
""" |
|
|
|
|
|
def __init__(self, pairs): |
|
|
self._dict = {} |
|
|
self._pairs = [] |
|
|
for k, v in pairs: |
|
|
self[k] = v |
|
|
|
|
|
def __setitem__(self, key, value): |
|
|
try: |
|
|
self._dict[key] = value |
|
|
except TypeError: |
|
|
for i, (k, v) in enumerate(self._pairs): |
|
|
if k == key: |
|
|
self._pairs[i] = (key, value) |
|
|
break |
|
|
else: |
|
|
self._pairs.append((key, value)) |
|
|
|
|
|
def __getitem__(self, key): |
|
|
try: |
|
|
return self._dict[key] |
|
|
except TypeError: |
|
|
pass |
|
|
for k, v in self._pairs: |
|
|
if k == key: |
|
|
return v |
|
|
raise KeyError(key) |
|
|
|
|
|
def pop(self, key, *args): |
|
|
try: |
|
|
if key in self._dict: |
|
|
return self._dict.pop(key) |
|
|
except TypeError: |
|
|
for i, (k, v) in enumerate(self._pairs): |
|
|
if k == key: |
|
|
del self._pairs[i] |
|
|
return v |
|
|
if args: |
|
|
return args[0] |
|
|
raise KeyError(key) |
|
|
|
|
|
def __iter__(self): |
|
|
yield from self._dict |
|
|
for k, v in self._pairs: |
|
|
yield k |
|
|
|
|
|
|
|
|
class CallbackRegistry: |
|
|
""" |
|
|
Handle registering, processing, blocking, and disconnecting |
|
|
for a set of signals and callbacks: |
|
|
|
|
|
>>> def oneat(x): |
|
|
... print('eat', x) |
|
|
>>> def ondrink(x): |
|
|
... print('drink', x) |
|
|
|
|
|
>>> from matplotlib.cbook import CallbackRegistry |
|
|
>>> callbacks = CallbackRegistry() |
|
|
|
|
|
>>> id_eat = callbacks.connect('eat', oneat) |
|
|
>>> id_drink = callbacks.connect('drink', ondrink) |
|
|
|
|
|
>>> callbacks.process('drink', 123) |
|
|
drink 123 |
|
|
>>> callbacks.process('eat', 456) |
|
|
eat 456 |
|
|
>>> callbacks.process('be merry', 456) # nothing will be called |
|
|
|
|
|
>>> callbacks.disconnect(id_eat) |
|
|
>>> callbacks.process('eat', 456) # nothing will be called |
|
|
|
|
|
>>> with callbacks.blocked(signal='drink'): |
|
|
... callbacks.process('drink', 123) # nothing will be called |
|
|
>>> callbacks.process('drink', 123) |
|
|
drink 123 |
|
|
|
|
|
In practice, one should always disconnect all callbacks when they are |
|
|
no longer needed to avoid dangling references (and thus memory leaks). |
|
|
However, real code in Matplotlib rarely does so, and due to its design, |
|
|
it is rather difficult to place this kind of code. To get around this, |
|
|
and prevent this class of memory leaks, we instead store weak references |
|
|
to bound methods only, so when the destination object needs to die, the |
|
|
CallbackRegistry won't keep it alive. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
exception_handler : callable, optional |
|
|
If not None, *exception_handler* must be a function that takes an |
|
|
`Exception` as single parameter. It gets called with any `Exception` |
|
|
raised by the callbacks during `CallbackRegistry.process`, and may |
|
|
either re-raise the exception or handle it in another manner. |
|
|
|
|
|
The default handler prints the exception (with `traceback.print_exc`) if |
|
|
an interactive event loop is running; it re-raises the exception if no |
|
|
interactive event loop is running. |
|
|
|
|
|
signals : list, optional |
|
|
If not None, *signals* is a list of signals that this registry handles: |
|
|
attempting to `process` or to `connect` to a signal not in the list |
|
|
throws a `ValueError`. The default, None, does not restrict the |
|
|
handled signals. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, exception_handler=_exception_printer, *, signals=None): |
|
|
self._signals = None if signals is None else list(signals) |
|
|
self.exception_handler = exception_handler |
|
|
self.callbacks = {} |
|
|
self._cid_gen = itertools.count() |
|
|
self._func_cid_map = _UnhashDict([]) |
|
|
|
|
|
self._pickled_cids = set() |
|
|
|
|
|
def __getstate__(self): |
|
|
return { |
|
|
**vars(self), |
|
|
|
|
|
|
|
|
"callbacks": {s: {cid: proxy() for cid, proxy in d.items() |
|
|
if cid in self._pickled_cids} |
|
|
for s, d in self.callbacks.items()}, |
|
|
|
|
|
"_func_cid_map": None, |
|
|
"_cid_gen": next(self._cid_gen) |
|
|
} |
|
|
|
|
|
def __setstate__(self, state): |
|
|
cid_count = state.pop('_cid_gen') |
|
|
vars(self).update(state) |
|
|
self.callbacks = { |
|
|
s: {cid: _weak_or_strong_ref(func, functools.partial(self._remove_proxy, s)) |
|
|
for cid, func in d.items()} |
|
|
for s, d in self.callbacks.items()} |
|
|
self._func_cid_map = _UnhashDict( |
|
|
((s, proxy), cid) |
|
|
for s, d in self.callbacks.items() for cid, proxy in d.items()) |
|
|
self._cid_gen = itertools.count(cid_count) |
|
|
|
|
|
def connect(self, signal, func): |
|
|
"""Register *func* to be called when signal *signal* is generated.""" |
|
|
if self._signals is not None: |
|
|
_api.check_in_list(self._signals, signal=signal) |
|
|
proxy = _weak_or_strong_ref(func, functools.partial(self._remove_proxy, signal)) |
|
|
try: |
|
|
return self._func_cid_map[signal, proxy] |
|
|
except KeyError: |
|
|
cid = self._func_cid_map[signal, proxy] = next(self._cid_gen) |
|
|
self.callbacks.setdefault(signal, {})[cid] = proxy |
|
|
return cid |
|
|
|
|
|
def _connect_picklable(self, signal, func): |
|
|
""" |
|
|
Like `.connect`, but the callback is kept when pickling/unpickling. |
|
|
|
|
|
Currently internal-use only. |
|
|
""" |
|
|
cid = self.connect(signal, func) |
|
|
self._pickled_cids.add(cid) |
|
|
return cid |
|
|
|
|
|
|
|
|
|
|
|
def _remove_proxy(self, signal, proxy, *, _is_finalizing=sys.is_finalizing): |
|
|
if _is_finalizing(): |
|
|
|
|
|
return |
|
|
cid = self._func_cid_map.pop((signal, proxy), None) |
|
|
if cid is not None: |
|
|
del self.callbacks[signal][cid] |
|
|
self._pickled_cids.discard(cid) |
|
|
else: |
|
|
return |
|
|
if len(self.callbacks[signal]) == 0: |
|
|
del self.callbacks[signal] |
|
|
|
|
|
def disconnect(self, cid): |
|
|
""" |
|
|
Disconnect the callback registered with callback id *cid*. |
|
|
|
|
|
No error is raised if such a callback does not exist. |
|
|
""" |
|
|
self._pickled_cids.discard(cid) |
|
|
for signal, proxy in self._func_cid_map: |
|
|
if self._func_cid_map[signal, proxy] == cid: |
|
|
break |
|
|
else: |
|
|
return |
|
|
assert self.callbacks[signal][cid] == proxy |
|
|
del self.callbacks[signal][cid] |
|
|
self._func_cid_map.pop((signal, proxy)) |
|
|
if len(self.callbacks[signal]) == 0: |
|
|
del self.callbacks[signal] |
|
|
|
|
|
def process(self, s, *args, **kwargs): |
|
|
""" |
|
|
Process signal *s*. |
|
|
|
|
|
All of the functions registered to receive callbacks on *s* will be |
|
|
called with ``*args`` and ``**kwargs``. |
|
|
""" |
|
|
if self._signals is not None: |
|
|
_api.check_in_list(self._signals, signal=s) |
|
|
for ref in list(self.callbacks.get(s, {}).values()): |
|
|
func = ref() |
|
|
if func is not None: |
|
|
try: |
|
|
func(*args, **kwargs) |
|
|
|
|
|
|
|
|
except Exception as exc: |
|
|
if self.exception_handler is not None: |
|
|
self.exception_handler(exc) |
|
|
else: |
|
|
raise |
|
|
|
|
|
@contextlib.contextmanager |
|
|
def blocked(self, *, signal=None): |
|
|
""" |
|
|
Block callback signals from being processed. |
|
|
|
|
|
A context manager to temporarily block/disable callback signals |
|
|
from being processed by the registered listeners. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
signal : str, optional |
|
|
The callback signal to block. The default is to block all signals. |
|
|
""" |
|
|
orig = self.callbacks |
|
|
try: |
|
|
if signal is None: |
|
|
|
|
|
self.callbacks = {} |
|
|
else: |
|
|
|
|
|
self.callbacks = {k: orig[k] for k in orig if k != signal} |
|
|
yield |
|
|
finally: |
|
|
self.callbacks = orig |
|
|
|
|
|
|
|
|
class silent_list(list): |
|
|
""" |
|
|
A list with a short ``repr()``. |
|
|
|
|
|
This is meant to be used for a homogeneous list of artists, so that they |
|
|
don't cause long, meaningless output. |
|
|
|
|
|
Instead of :: |
|
|
|
|
|
[<matplotlib.lines.Line2D object at 0x7f5749fed3c8>, |
|
|
<matplotlib.lines.Line2D object at 0x7f5749fed4e0>, |
|
|
<matplotlib.lines.Line2D object at 0x7f5758016550>] |
|
|
|
|
|
one will get :: |
|
|
|
|
|
<a list of 3 Line2D objects> |
|
|
|
|
|
If ``self.type`` is None, the type name is obtained from the first item in |
|
|
the list (if any). |
|
|
""" |
|
|
|
|
|
def __init__(self, type, seq=None): |
|
|
self.type = type |
|
|
if seq is not None: |
|
|
self.extend(seq) |
|
|
|
|
|
def __repr__(self): |
|
|
if self.type is not None or len(self) != 0: |
|
|
tp = self.type if self.type is not None else type(self[0]).__name__ |
|
|
return f"<a list of {len(self)} {tp} objects>" |
|
|
else: |
|
|
return "<an empty list>" |
|
|
|
|
|
|
|
|
def _local_over_kwdict( |
|
|
local_var, kwargs, *keys, |
|
|
warning_cls=_api.MatplotlibDeprecationWarning): |
|
|
out = local_var |
|
|
for key in keys: |
|
|
kwarg_val = kwargs.pop(key, None) |
|
|
if kwarg_val is not None: |
|
|
if out is None: |
|
|
out = kwarg_val |
|
|
else: |
|
|
_api.warn_external(f'"{key}" keyword argument will be ignored', |
|
|
warning_cls) |
|
|
return out |
|
|
|
|
|
|
|
|
def strip_math(s): |
|
|
""" |
|
|
Remove latex formatting from mathtext. |
|
|
|
|
|
Only handles fully math and fully non-math strings. |
|
|
""" |
|
|
if len(s) >= 2 and s[0] == s[-1] == "$": |
|
|
s = s[1:-1] |
|
|
for tex, plain in [ |
|
|
(r"\times", "x"), |
|
|
(r"\mathdefault", ""), |
|
|
(r"\rm", ""), |
|
|
(r"\cal", ""), |
|
|
(r"\tt", ""), |
|
|
(r"\it", ""), |
|
|
("\\", ""), |
|
|
("{", ""), |
|
|
("}", ""), |
|
|
]: |
|
|
s = s.replace(tex, plain) |
|
|
return s |
|
|
|
|
|
|
|
|
def _strip_comment(s): |
|
|
"""Strip everything from the first unquoted #.""" |
|
|
pos = 0 |
|
|
while True: |
|
|
quote_pos = s.find('"', pos) |
|
|
hash_pos = s.find('#', pos) |
|
|
if quote_pos < 0: |
|
|
without_comment = s if hash_pos < 0 else s[:hash_pos] |
|
|
return without_comment.strip() |
|
|
elif 0 <= hash_pos < quote_pos: |
|
|
return s[:hash_pos].strip() |
|
|
else: |
|
|
closing_quote_pos = s.find('"', quote_pos + 1) |
|
|
if closing_quote_pos < 0: |
|
|
raise ValueError( |
|
|
f"Missing closing quote in: {s!r}. If you need a double-" |
|
|
'quote inside a string, use escaping: e.g. "the \" char"') |
|
|
pos = closing_quote_pos + 1 |
|
|
|
|
|
|
|
|
def is_writable_file_like(obj): |
|
|
"""Return whether *obj* looks like a file object with a *write* method.""" |
|
|
return callable(getattr(obj, 'write', None)) |
|
|
|
|
|
|
|
|
def file_requires_unicode(x): |
|
|
""" |
|
|
Return whether the given writable file-like object requires Unicode to be |
|
|
written to it. |
|
|
""" |
|
|
try: |
|
|
x.write(b'') |
|
|
except TypeError: |
|
|
return True |
|
|
else: |
|
|
return False |
|
|
|
|
|
|
|
|
def to_filehandle(fname, flag='r', return_opened=False, encoding=None): |
|
|
""" |
|
|
Convert a path to an open file handle or pass-through a file-like object. |
|
|
|
|
|
Consider using `open_file_cm` instead, as it allows one to properly close |
|
|
newly created file objects more easily. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
fname : str or path-like or file-like |
|
|
If `str` or `os.PathLike`, the file is opened using the flags specified |
|
|
by *flag* and *encoding*. If a file-like object, it is passed through. |
|
|
flag : str, default: 'r' |
|
|
Passed as the *mode* argument to `open` when *fname* is `str` or |
|
|
`os.PathLike`; ignored if *fname* is file-like. |
|
|
return_opened : bool, default: False |
|
|
If True, return both the file object and a boolean indicating whether |
|
|
this was a new file (that the caller needs to close). If False, return |
|
|
only the new file. |
|
|
encoding : str or None, default: None |
|
|
Passed as the *mode* argument to `open` when *fname* is `str` or |
|
|
`os.PathLike`; ignored if *fname* is file-like. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
fh : file-like |
|
|
opened : bool |
|
|
*opened* is only returned if *return_opened* is True. |
|
|
""" |
|
|
if isinstance(fname, os.PathLike): |
|
|
fname = os.fspath(fname) |
|
|
if isinstance(fname, str): |
|
|
if fname.endswith('.gz'): |
|
|
fh = gzip.open(fname, flag) |
|
|
elif fname.endswith('.bz2'): |
|
|
|
|
|
|
|
|
import bz2 |
|
|
fh = bz2.BZ2File(fname, flag) |
|
|
else: |
|
|
fh = open(fname, flag, encoding=encoding) |
|
|
opened = True |
|
|
elif hasattr(fname, 'seek'): |
|
|
fh = fname |
|
|
opened = False |
|
|
else: |
|
|
raise ValueError('fname must be a PathLike or file handle') |
|
|
if return_opened: |
|
|
return fh, opened |
|
|
return fh |
|
|
|
|
|
|
|
|
def open_file_cm(path_or_file, mode="r", encoding=None): |
|
|
r"""Pass through file objects and context-manage path-likes.""" |
|
|
fh, opened = to_filehandle(path_or_file, mode, True, encoding) |
|
|
return fh if opened else contextlib.nullcontext(fh) |
|
|
|
|
|
|
|
|
def is_scalar_or_string(val): |
|
|
"""Return whether the given object is a scalar or string like.""" |
|
|
return isinstance(val, str) or not np.iterable(val) |
|
|
|
|
|
|
|
|
def get_sample_data(fname, asfileobj=True): |
|
|
""" |
|
|
Return a sample data file. *fname* is a path relative to the |
|
|
:file:`mpl-data/sample_data` directory. If *asfileobj* is `True` |
|
|
return a file object, otherwise just a file path. |
|
|
|
|
|
Sample data files are stored in the 'mpl-data/sample_data' directory within |
|
|
the Matplotlib package. |
|
|
|
|
|
If the filename ends in .gz, the file is implicitly ungzipped. If the |
|
|
filename ends with .npy or .npz, and *asfileobj* is `True`, the file is |
|
|
loaded with `numpy.load`. |
|
|
""" |
|
|
path = _get_data_path('sample_data', fname) |
|
|
if asfileobj: |
|
|
suffix = path.suffix.lower() |
|
|
if suffix == '.gz': |
|
|
return gzip.open(path) |
|
|
elif suffix in ['.npy', '.npz']: |
|
|
return np.load(path) |
|
|
elif suffix in ['.csv', '.xrc', '.txt']: |
|
|
return path.open('r') |
|
|
else: |
|
|
return path.open('rb') |
|
|
else: |
|
|
return str(path) |
|
|
|
|
|
|
|
|
def _get_data_path(*args): |
|
|
""" |
|
|
Return the `pathlib.Path` to a resource file provided by Matplotlib. |
|
|
|
|
|
``*args`` specify a path relative to the base data path. |
|
|
""" |
|
|
return Path(matplotlib.get_data_path(), *args) |
|
|
|
|
|
|
|
|
def flatten(seq, scalarp=is_scalar_or_string): |
|
|
""" |
|
|
Return a generator of flattened nested containers. |
|
|
|
|
|
For example: |
|
|
|
|
|
>>> from matplotlib.cbook import flatten |
|
|
>>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]]) |
|
|
>>> print(list(flatten(l))) |
|
|
['John', 'Hunter', 1, 23, 42, 5, 23] |
|
|
|
|
|
By: Composite of Holger Krekel and Luther Blissett |
|
|
From: https://code.activestate.com/recipes/121294-simple-generator-for-flattening-nested-containers/ |
|
|
and Recipe 1.12 in cookbook |
|
|
""" |
|
|
for item in seq: |
|
|
if scalarp(item) or item is None: |
|
|
yield item |
|
|
else: |
|
|
yield from flatten(item, scalarp) |
|
|
|
|
|
|
|
|
class _Stack: |
|
|
""" |
|
|
Stack of elements with a movable cursor. |
|
|
|
|
|
Mimics home/back/forward in a web browser. |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
self._pos = -1 |
|
|
self._elements = [] |
|
|
|
|
|
def clear(self): |
|
|
"""Empty the stack.""" |
|
|
self._pos = -1 |
|
|
self._elements = [] |
|
|
|
|
|
def __call__(self): |
|
|
"""Return the current element, or None.""" |
|
|
return self._elements[self._pos] if self._elements else None |
|
|
|
|
|
def __len__(self): |
|
|
return len(self._elements) |
|
|
|
|
|
def __getitem__(self, ind): |
|
|
return self._elements[ind] |
|
|
|
|
|
def forward(self): |
|
|
"""Move the position forward and return the current element.""" |
|
|
self._pos = min(self._pos + 1, len(self._elements) - 1) |
|
|
return self() |
|
|
|
|
|
def back(self): |
|
|
"""Move the position back and return the current element.""" |
|
|
self._pos = max(self._pos - 1, 0) |
|
|
return self() |
|
|
|
|
|
def push(self, o): |
|
|
""" |
|
|
Push *o* to the stack after the current position, and return *o*. |
|
|
|
|
|
Discard all later elements. |
|
|
""" |
|
|
self._elements[self._pos + 1:] = [o] |
|
|
self._pos = len(self._elements) - 1 |
|
|
return o |
|
|
|
|
|
def home(self): |
|
|
""" |
|
|
Push the first element onto the top of the stack. |
|
|
|
|
|
The first element is returned. |
|
|
""" |
|
|
return self.push(self._elements[0]) if self._elements else None |
|
|
|
|
|
|
|
|
def safe_masked_invalid(x, copy=False): |
|
|
x = np.array(x, subok=True, copy=copy) |
|
|
if not x.dtype.isnative: |
|
|
|
|
|
|
|
|
|
|
|
x = x.byteswap(inplace=copy).view(x.dtype.newbyteorder('N')) |
|
|
try: |
|
|
xm = np.ma.masked_where(~(np.isfinite(x)), x, copy=False) |
|
|
except TypeError: |
|
|
return x |
|
|
return xm |
|
|
|
|
|
|
|
|
def print_cycles(objects, outstream=sys.stdout, show_progress=False): |
|
|
""" |
|
|
Print loops of cyclic references in the given *objects*. |
|
|
|
|
|
It is often useful to pass in ``gc.garbage`` to find the cycles that are |
|
|
preventing some objects from being garbage collected. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
objects |
|
|
A list of objects to find cycles in. |
|
|
outstream |
|
|
The stream for output. |
|
|
show_progress : bool |
|
|
If True, print the number of objects reached as they are found. |
|
|
""" |
|
|
import gc |
|
|
|
|
|
def print_path(path): |
|
|
for i, step in enumerate(path): |
|
|
|
|
|
next = path[(i + 1) % len(path)] |
|
|
|
|
|
outstream.write(" %s -- " % type(step)) |
|
|
if isinstance(step, dict): |
|
|
for key, val in step.items(): |
|
|
if val is next: |
|
|
outstream.write(f"[{key!r}]") |
|
|
break |
|
|
if key is next: |
|
|
outstream.write(f"[key] = {val!r}") |
|
|
break |
|
|
elif isinstance(step, list): |
|
|
outstream.write("[%d]" % step.index(next)) |
|
|
elif isinstance(step, tuple): |
|
|
outstream.write("( tuple )") |
|
|
else: |
|
|
outstream.write(repr(step)) |
|
|
outstream.write(" ->\n") |
|
|
outstream.write("\n") |
|
|
|
|
|
def recurse(obj, start, all, current_path): |
|
|
if show_progress: |
|
|
outstream.write("%d\r" % len(all)) |
|
|
|
|
|
all[id(obj)] = None |
|
|
|
|
|
referents = gc.get_referents(obj) |
|
|
for referent in referents: |
|
|
|
|
|
|
|
|
if referent is start: |
|
|
print_path(current_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif referent is objects or isinstance(referent, types.FrameType): |
|
|
continue |
|
|
|
|
|
|
|
|
elif id(referent) not in all: |
|
|
recurse(referent, start, all, current_path + [obj]) |
|
|
|
|
|
for obj in objects: |
|
|
outstream.write(f"Examining: {obj!r}\n") |
|
|
recurse(obj, obj, {}, []) |
|
|
|
|
|
|
|
|
class Grouper: |
|
|
""" |
|
|
A disjoint-set data structure. |
|
|
|
|
|
Objects can be joined using :meth:`join`, tested for connectedness |
|
|
using :meth:`joined`, and all disjoint sets can be retrieved by |
|
|
using the object as an iterator. |
|
|
|
|
|
The objects being joined must be hashable and weak-referenceable. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> from matplotlib.cbook import Grouper |
|
|
>>> class Foo: |
|
|
... def __init__(self, s): |
|
|
... self.s = s |
|
|
... def __repr__(self): |
|
|
... return self.s |
|
|
... |
|
|
>>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef'] |
|
|
>>> grp = Grouper() |
|
|
>>> grp.join(a, b) |
|
|
>>> grp.join(b, c) |
|
|
>>> grp.join(d, e) |
|
|
>>> list(grp) |
|
|
[[a, b, c], [d, e]] |
|
|
>>> grp.joined(a, b) |
|
|
True |
|
|
>>> grp.joined(a, c) |
|
|
True |
|
|
>>> grp.joined(a, d) |
|
|
False |
|
|
""" |
|
|
|
|
|
def __init__(self, init=()): |
|
|
self._mapping = weakref.WeakKeyDictionary( |
|
|
{x: weakref.WeakSet([x]) for x in init}) |
|
|
self._ordering = weakref.WeakKeyDictionary() |
|
|
for x in init: |
|
|
if x not in self._ordering: |
|
|
self._ordering[x] = len(self._ordering) |
|
|
self._next_order = len(self._ordering) |
|
|
|
|
|
def __getstate__(self): |
|
|
return { |
|
|
**vars(self), |
|
|
|
|
|
"_mapping": {k: set(v) for k, v in self._mapping.items()}, |
|
|
"_ordering": {**self._ordering}, |
|
|
} |
|
|
|
|
|
def __setstate__(self, state): |
|
|
vars(self).update(state) |
|
|
|
|
|
self._mapping = weakref.WeakKeyDictionary( |
|
|
{k: weakref.WeakSet(v) for k, v in self._mapping.items()}) |
|
|
self._ordering = weakref.WeakKeyDictionary(self._ordering) |
|
|
|
|
|
def __contains__(self, item): |
|
|
return item in self._mapping |
|
|
|
|
|
def join(self, a, *args): |
|
|
""" |
|
|
Join given arguments into the same set. Accepts one or more arguments. |
|
|
""" |
|
|
mapping = self._mapping |
|
|
try: |
|
|
set_a = mapping[a] |
|
|
except KeyError: |
|
|
set_a = mapping[a] = weakref.WeakSet([a]) |
|
|
self._ordering[a] = self._next_order |
|
|
self._next_order += 1 |
|
|
for arg in args: |
|
|
try: |
|
|
set_b = mapping[arg] |
|
|
except KeyError: |
|
|
set_b = mapping[arg] = weakref.WeakSet([arg]) |
|
|
self._ordering[arg] = self._next_order |
|
|
self._next_order += 1 |
|
|
if set_b is not set_a: |
|
|
if len(set_b) > len(set_a): |
|
|
set_a, set_b = set_b, set_a |
|
|
set_a.update(set_b) |
|
|
for elem in set_b: |
|
|
mapping[elem] = set_a |
|
|
|
|
|
def joined(self, a, b): |
|
|
"""Return whether *a* and *b* are members of the same set.""" |
|
|
return (self._mapping.get(a, object()) is self._mapping.get(b)) |
|
|
|
|
|
def remove(self, a): |
|
|
"""Remove *a* from the grouper, doing nothing if it is not there.""" |
|
|
self._mapping.pop(a, {a}).remove(a) |
|
|
self._ordering.pop(a, None) |
|
|
|
|
|
def __iter__(self): |
|
|
""" |
|
|
Iterate over each of the disjoint sets as a list. |
|
|
|
|
|
The iterator is invalid if interleaved with calls to join(). |
|
|
""" |
|
|
unique_groups = {id(group): group for group in self._mapping.values()} |
|
|
for group in unique_groups.values(): |
|
|
yield sorted(group, key=self._ordering.__getitem__) |
|
|
|
|
|
def get_siblings(self, a): |
|
|
"""Return all of the items joined with *a*, including itself.""" |
|
|
siblings = self._mapping.get(a, [a]) |
|
|
return sorted(siblings, key=self._ordering.get) |
|
|
|
|
|
|
|
|
class GrouperView: |
|
|
"""Immutable view over a `.Grouper`.""" |
|
|
|
|
|
def __init__(self, grouper): self._grouper = grouper |
|
|
def __contains__(self, item): return item in self._grouper |
|
|
def __iter__(self): return iter(self._grouper) |
|
|
def joined(self, a, b): return self._grouper.joined(a, b) |
|
|
def get_siblings(self, a): return self._grouper.get_siblings(a) |
|
|
|
|
|
|
|
|
def simple_linear_interpolation(a, steps): |
|
|
""" |
|
|
Resample an array with ``steps - 1`` points between original point pairs. |
|
|
|
|
|
Along each column of *a*, ``(steps - 1)`` points are introduced between |
|
|
each original values; the values are linearly interpolated. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
a : array, shape (n, ...) |
|
|
steps : int |
|
|
|
|
|
Returns |
|
|
------- |
|
|
array |
|
|
shape ``((n - 1) * steps + 1, ...)`` |
|
|
""" |
|
|
fps = a.reshape((len(a), -1)) |
|
|
xp = np.arange(len(a)) * steps |
|
|
x = np.arange((len(a) - 1) * steps + 1) |
|
|
return (np.column_stack([np.interp(x, xp, fp) for fp in fps.T]) |
|
|
.reshape((len(x),) + a.shape[1:])) |
|
|
|
|
|
|
|
|
def delete_masked_points(*args): |
|
|
""" |
|
|
Find all masked and/or non-finite points in a set of arguments, |
|
|
and return the arguments with only the unmasked points remaining. |
|
|
|
|
|
Arguments can be in any of 5 categories: |
|
|
|
|
|
1) 1-D masked arrays |
|
|
2) 1-D ndarrays |
|
|
3) ndarrays with more than one dimension |
|
|
4) other non-string iterables |
|
|
5) anything else |
|
|
|
|
|
The first argument must be in one of the first four categories; |
|
|
any argument with a length differing from that of the first |
|
|
argument (and hence anything in category 5) then will be |
|
|
passed through unchanged. |
|
|
|
|
|
Masks are obtained from all arguments of the correct length |
|
|
in categories 1, 2, and 4; a point is bad if masked in a masked |
|
|
array or if it is a nan or inf. No attempt is made to |
|
|
extract a mask from categories 2, 3, and 4 if `numpy.isfinite` |
|
|
does not yield a Boolean array. |
|
|
|
|
|
All input arguments that are not passed unchanged are returned |
|
|
as ndarrays after removing the points or rows corresponding to |
|
|
masks in any of the arguments. |
|
|
|
|
|
A vastly simpler version of this function was originally |
|
|
written as a helper for Axes.scatter(). |
|
|
|
|
|
""" |
|
|
if not len(args): |
|
|
return () |
|
|
if is_scalar_or_string(args[0]): |
|
|
raise ValueError("First argument must be a sequence") |
|
|
nrecs = len(args[0]) |
|
|
margs = [] |
|
|
seqlist = [False] * len(args) |
|
|
for i, x in enumerate(args): |
|
|
if not isinstance(x, str) and np.iterable(x) and len(x) == nrecs: |
|
|
seqlist[i] = True |
|
|
if isinstance(x, np.ma.MaskedArray): |
|
|
if x.ndim > 1: |
|
|
raise ValueError("Masked arrays must be 1-D") |
|
|
else: |
|
|
x = np.asarray(x) |
|
|
margs.append(x) |
|
|
masks = [] |
|
|
for i, x in enumerate(margs): |
|
|
if seqlist[i]: |
|
|
if x.ndim > 1: |
|
|
continue |
|
|
if isinstance(x, np.ma.MaskedArray): |
|
|
masks.append(~np.ma.getmaskarray(x)) |
|
|
xd = x.data |
|
|
else: |
|
|
xd = x |
|
|
try: |
|
|
mask = np.isfinite(xd) |
|
|
if isinstance(mask, np.ndarray): |
|
|
masks.append(mask) |
|
|
except Exception: |
|
|
pass |
|
|
if len(masks): |
|
|
mask = np.logical_and.reduce(masks) |
|
|
igood = mask.nonzero()[0] |
|
|
if len(igood) < nrecs: |
|
|
for i, x in enumerate(margs): |
|
|
if seqlist[i]: |
|
|
margs[i] = x[igood] |
|
|
for i, x in enumerate(margs): |
|
|
if seqlist[i] and isinstance(x, np.ma.MaskedArray): |
|
|
margs[i] = x.filled() |
|
|
return margs |
|
|
|
|
|
|
|
|
def _combine_masks(*args): |
|
|
""" |
|
|
Find all masked and/or non-finite points in a set of arguments, |
|
|
and return the arguments as masked arrays with a common mask. |
|
|
|
|
|
Arguments can be in any of 5 categories: |
|
|
|
|
|
1) 1-D masked arrays |
|
|
2) 1-D ndarrays |
|
|
3) ndarrays with more than one dimension |
|
|
4) other non-string iterables |
|
|
5) anything else |
|
|
|
|
|
The first argument must be in one of the first four categories; |
|
|
any argument with a length differing from that of the first |
|
|
argument (and hence anything in category 5) then will be |
|
|
passed through unchanged. |
|
|
|
|
|
Masks are obtained from all arguments of the correct length |
|
|
in categories 1, 2, and 4; a point is bad if masked in a masked |
|
|
array or if it is a nan or inf. No attempt is made to |
|
|
extract a mask from categories 2 and 4 if `numpy.isfinite` |
|
|
does not yield a Boolean array. Category 3 is included to |
|
|
support RGB or RGBA ndarrays, which are assumed to have only |
|
|
valid values and which are passed through unchanged. |
|
|
|
|
|
All input arguments that are not passed unchanged are returned |
|
|
as masked arrays if any masked points are found, otherwise as |
|
|
ndarrays. |
|
|
|
|
|
""" |
|
|
if not len(args): |
|
|
return () |
|
|
if is_scalar_or_string(args[0]): |
|
|
raise ValueError("First argument must be a sequence") |
|
|
nrecs = len(args[0]) |
|
|
margs = [] |
|
|
seqlist = [False] * len(args) |
|
|
masks = [] |
|
|
for i, x in enumerate(args): |
|
|
if is_scalar_or_string(x) or len(x) != nrecs: |
|
|
margs.append(x) |
|
|
else: |
|
|
if isinstance(x, np.ma.MaskedArray) and x.ndim > 1: |
|
|
raise ValueError("Masked arrays must be 1-D") |
|
|
try: |
|
|
x = np.asanyarray(x) |
|
|
except (VisibleDeprecationWarning, ValueError): |
|
|
|
|
|
|
|
|
x = np.asanyarray(x, dtype=object) |
|
|
if x.ndim == 1: |
|
|
x = safe_masked_invalid(x) |
|
|
seqlist[i] = True |
|
|
if np.ma.is_masked(x): |
|
|
masks.append(np.ma.getmaskarray(x)) |
|
|
margs.append(x) |
|
|
if len(masks): |
|
|
mask = np.logical_or.reduce(masks) |
|
|
for i, x in enumerate(margs): |
|
|
if seqlist[i]: |
|
|
margs[i] = np.ma.array(x, mask=mask) |
|
|
return margs |
|
|
|
|
|
|
|
|
def _broadcast_with_masks(*args, compress=False): |
|
|
""" |
|
|
Broadcast inputs, combining all masked arrays. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
*args : array-like |
|
|
The inputs to broadcast. |
|
|
compress : bool, default: False |
|
|
Whether to compress the masked arrays. If False, the masked values |
|
|
are replaced by NaNs. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
list of array-like |
|
|
The broadcasted and masked inputs. |
|
|
""" |
|
|
|
|
|
masks = [k.mask for k in args if isinstance(k, np.ma.MaskedArray)] |
|
|
|
|
|
bcast = np.broadcast_arrays(*args, *masks) |
|
|
inputs = bcast[:len(args)] |
|
|
masks = bcast[len(args):] |
|
|
if masks: |
|
|
|
|
|
mask = np.logical_or.reduce(masks) |
|
|
|
|
|
if compress: |
|
|
inputs = [np.ma.array(k, mask=mask).compressed() |
|
|
for k in inputs] |
|
|
else: |
|
|
inputs = [np.ma.array(k, mask=mask, dtype=float).filled(np.nan).ravel() |
|
|
for k in inputs] |
|
|
else: |
|
|
inputs = [np.ravel(k) for k in inputs] |
|
|
return inputs |
|
|
|
|
|
|
|
|
def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None, autorange=False): |
|
|
r""" |
|
|
Return a list of dictionaries of statistics used to draw a series of box |
|
|
and whisker plots using `~.Axes.bxp`. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
X : array-like |
|
|
Data that will be represented in the boxplots. Should have 2 or |
|
|
fewer dimensions. |
|
|
|
|
|
whis : float or (float, float), default: 1.5 |
|
|
The position of the whiskers. |
|
|
|
|
|
If a float, the lower whisker is at the lowest datum above |
|
|
``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum below |
|
|
``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and third |
|
|
quartiles. The default value of ``whis = 1.5`` corresponds to Tukey's |
|
|
original definition of boxplots. |
|
|
|
|
|
If a pair of floats, they indicate the percentiles at which to draw the |
|
|
whiskers (e.g., (5, 95)). In particular, setting this to (0, 100) |
|
|
results in whiskers covering the whole range of the data. |
|
|
|
|
|
In the edge case where ``Q1 == Q3``, *whis* is automatically set to |
|
|
(0, 100) (cover the whole range of the data) if *autorange* is True. |
|
|
|
|
|
Beyond the whiskers, data are considered outliers and are plotted as |
|
|
individual points. |
|
|
|
|
|
bootstrap : int, optional |
|
|
Number of times the confidence intervals around the median |
|
|
should be bootstrapped (percentile method). |
|
|
|
|
|
labels : list of str, optional |
|
|
Labels for each dataset. Length must be compatible with |
|
|
dimensions of *X*. |
|
|
|
|
|
autorange : bool, optional (False) |
|
|
When `True` and the data are distributed such that the 25th and 75th |
|
|
percentiles are equal, ``whis`` is set to (0, 100) such that the |
|
|
whisker ends are at the minimum and maximum of the data. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
list of dict |
|
|
A list of dictionaries containing the results for each column |
|
|
of data. Keys of each dictionary are the following: |
|
|
|
|
|
======== =================================== |
|
|
Key Value Description |
|
|
======== =================================== |
|
|
label tick label for the boxplot |
|
|
mean arithmetic mean value |
|
|
med 50th percentile |
|
|
q1 first quartile (25th percentile) |
|
|
q3 third quartile (75th percentile) |
|
|
iqr interquartile range |
|
|
cilo lower notch around the median |
|
|
cihi upper notch around the median |
|
|
whislo end of the lower whisker |
|
|
whishi end of the upper whisker |
|
|
fliers outliers |
|
|
======== =================================== |
|
|
|
|
|
Notes |
|
|
----- |
|
|
Non-bootstrapping approach to confidence interval uses Gaussian-based |
|
|
asymptotic approximation: |
|
|
|
|
|
.. math:: |
|
|
|
|
|
\mathrm{med} \pm 1.57 \times \frac{\mathrm{iqr}}{\sqrt{N}} |
|
|
|
|
|
General approach from: |
|
|
McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of |
|
|
Boxplots", The American Statistician, 32:12-16. |
|
|
""" |
|
|
|
|
|
def _bootstrap_median(data, N=5000): |
|
|
|
|
|
M = len(data) |
|
|
percentiles = [2.5, 97.5] |
|
|
|
|
|
bs_index = np.random.randint(M, size=(N, M)) |
|
|
bsData = data[bs_index] |
|
|
estimate = np.median(bsData, axis=1, overwrite_input=True) |
|
|
|
|
|
CI = np.percentile(estimate, percentiles) |
|
|
return CI |
|
|
|
|
|
def _compute_conf_interval(data, med, iqr, bootstrap): |
|
|
if bootstrap is not None: |
|
|
|
|
|
|
|
|
CI = _bootstrap_median(data, N=bootstrap) |
|
|
notch_min = CI[0] |
|
|
notch_max = CI[1] |
|
|
else: |
|
|
|
|
|
N = len(data) |
|
|
notch_min = med - 1.57 * iqr / np.sqrt(N) |
|
|
notch_max = med + 1.57 * iqr / np.sqrt(N) |
|
|
|
|
|
return notch_min, notch_max |
|
|
|
|
|
|
|
|
bxpstats = [] |
|
|
|
|
|
|
|
|
X = _reshape_2D(X, "X") |
|
|
|
|
|
ncols = len(X) |
|
|
if labels is None: |
|
|
labels = itertools.repeat(None) |
|
|
elif len(labels) != ncols: |
|
|
raise ValueError("Dimensions of labels and X must be compatible") |
|
|
|
|
|
input_whis = whis |
|
|
for ii, (x, label) in enumerate(zip(X, labels)): |
|
|
|
|
|
|
|
|
stats = {} |
|
|
if label is not None: |
|
|
stats['label'] = label |
|
|
|
|
|
|
|
|
whis = input_whis |
|
|
|
|
|
|
|
|
bxpstats.append(stats) |
|
|
|
|
|
|
|
|
if len(x) == 0: |
|
|
stats['fliers'] = np.array([]) |
|
|
stats['mean'] = np.nan |
|
|
stats['med'] = np.nan |
|
|
stats['q1'] = np.nan |
|
|
stats['q3'] = np.nan |
|
|
stats['iqr'] = np.nan |
|
|
stats['cilo'] = np.nan |
|
|
stats['cihi'] = np.nan |
|
|
stats['whislo'] = np.nan |
|
|
stats['whishi'] = np.nan |
|
|
continue |
|
|
|
|
|
|
|
|
x = np.ma.asarray(x) |
|
|
x = x.data[~x.mask].ravel() |
|
|
|
|
|
|
|
|
stats['mean'] = np.mean(x) |
|
|
|
|
|
|
|
|
q1, med, q3 = np.percentile(x, [25, 50, 75]) |
|
|
|
|
|
|
|
|
stats['iqr'] = q3 - q1 |
|
|
if stats['iqr'] == 0 and autorange: |
|
|
whis = (0, 100) |
|
|
|
|
|
|
|
|
stats['cilo'], stats['cihi'] = _compute_conf_interval( |
|
|
x, med, stats['iqr'], bootstrap |
|
|
) |
|
|
|
|
|
|
|
|
if np.iterable(whis) and not isinstance(whis, str): |
|
|
loval, hival = np.percentile(x, whis) |
|
|
elif np.isreal(whis): |
|
|
loval = q1 - whis * stats['iqr'] |
|
|
hival = q3 + whis * stats['iqr'] |
|
|
else: |
|
|
raise ValueError('whis must be a float or list of percentiles') |
|
|
|
|
|
|
|
|
wiskhi = x[x <= hival] |
|
|
if len(wiskhi) == 0 or np.max(wiskhi) < q3: |
|
|
stats['whishi'] = q3 |
|
|
else: |
|
|
stats['whishi'] = np.max(wiskhi) |
|
|
|
|
|
|
|
|
wisklo = x[x >= loval] |
|
|
if len(wisklo) == 0 or np.min(wisklo) > q1: |
|
|
stats['whislo'] = q1 |
|
|
else: |
|
|
stats['whislo'] = np.min(wisklo) |
|
|
|
|
|
|
|
|
stats['fliers'] = np.concatenate([ |
|
|
x[x < stats['whislo']], |
|
|
x[x > stats['whishi']], |
|
|
]) |
|
|
|
|
|
|
|
|
stats['q1'], stats['med'], stats['q3'] = q1, med, q3 |
|
|
|
|
|
return bxpstats |
|
|
|
|
|
|
|
|
|
|
|
ls_mapper = {'-': 'solid', '--': 'dashed', '-.': 'dashdot', ':': 'dotted'} |
|
|
|
|
|
ls_mapper_r = {v: k for k, v in ls_mapper.items()} |
|
|
|
|
|
|
|
|
def contiguous_regions(mask): |
|
|
""" |
|
|
Return a list of (ind0, ind1) such that ``mask[ind0:ind1].all()`` is |
|
|
True and we cover all such regions. |
|
|
""" |
|
|
mask = np.asarray(mask, dtype=bool) |
|
|
|
|
|
if not mask.size: |
|
|
return [] |
|
|
|
|
|
|
|
|
idx, = np.nonzero(mask[:-1] != mask[1:]) |
|
|
idx += 1 |
|
|
|
|
|
|
|
|
idx = idx.tolist() |
|
|
|
|
|
|
|
|
if mask[0]: |
|
|
idx = [0] + idx |
|
|
if mask[-1]: |
|
|
idx.append(len(mask)) |
|
|
|
|
|
return list(zip(idx[::2], idx[1::2])) |
|
|
|
|
|
|
|
|
def is_math_text(s): |
|
|
""" |
|
|
Return whether the string *s* contains math expressions. |
|
|
|
|
|
This is done by checking whether *s* contains an even number of |
|
|
non-escaped dollar signs. |
|
|
""" |
|
|
s = str(s) |
|
|
dollar_count = s.count(r'$') - s.count(r'\$') |
|
|
even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) |
|
|
return even_dollars |
|
|
|
|
|
|
|
|
def _to_unmasked_float_array(x): |
|
|
""" |
|
|
Convert a sequence to a float array; if input was a masked array, masked |
|
|
values are converted to nans. |
|
|
""" |
|
|
if hasattr(x, 'mask'): |
|
|
return np.ma.asarray(x, float).filled(np.nan) |
|
|
else: |
|
|
return np.asarray(x, float) |
|
|
|
|
|
|
|
|
def _check_1d(x): |
|
|
"""Convert scalars to 1D arrays; pass-through arrays as is.""" |
|
|
|
|
|
x = _unpack_to_numpy(x) |
|
|
|
|
|
|
|
|
|
|
|
if (not hasattr(x, 'shape') or |
|
|
not hasattr(x, 'ndim') or |
|
|
len(x.shape) < 1): |
|
|
return np.atleast_1d(x) |
|
|
else: |
|
|
return x |
|
|
|
|
|
|
|
|
def _reshape_2D(X, name): |
|
|
""" |
|
|
Use Fortran ordering to convert ndarrays and lists of iterables to lists of |
|
|
1D arrays. |
|
|
|
|
|
Lists of iterables are converted by applying `numpy.asanyarray` to each of |
|
|
their elements. 1D ndarrays are returned in a singleton list containing |
|
|
them. 2D ndarrays are converted to the list of their *columns*. |
|
|
|
|
|
*name* is used to generate the error message for invalid inputs. |
|
|
""" |
|
|
|
|
|
|
|
|
X = _unpack_to_numpy(X) |
|
|
|
|
|
|
|
|
if isinstance(X, np.ndarray): |
|
|
X = X.T |
|
|
|
|
|
if len(X) == 0: |
|
|
return [[]] |
|
|
elif X.ndim == 1 and np.ndim(X[0]) == 0: |
|
|
|
|
|
return [X] |
|
|
elif X.ndim in [1, 2]: |
|
|
|
|
|
return [np.reshape(x, -1) for x in X] |
|
|
else: |
|
|
raise ValueError(f'{name} must have 2 or fewer dimensions') |
|
|
|
|
|
|
|
|
if len(X) == 0: |
|
|
return [[]] |
|
|
|
|
|
result = [] |
|
|
is_1d = True |
|
|
for xi in X: |
|
|
|
|
|
|
|
|
if not isinstance(xi, str): |
|
|
try: |
|
|
iter(xi) |
|
|
except TypeError: |
|
|
pass |
|
|
else: |
|
|
is_1d = False |
|
|
xi = np.asanyarray(xi) |
|
|
nd = np.ndim(xi) |
|
|
if nd > 1: |
|
|
raise ValueError(f'{name} must have 2 or fewer dimensions') |
|
|
result.append(xi.reshape(-1)) |
|
|
|
|
|
if is_1d: |
|
|
|
|
|
return [np.reshape(result, -1)] |
|
|
else: |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
def violin_stats(X, method, points=100, quantiles=None): |
|
|
""" |
|
|
Return a list of dictionaries of data which can be used to draw a series |
|
|
of violin plots. |
|
|
|
|
|
See the ``Returns`` section below to view the required keys of the |
|
|
dictionary. |
|
|
|
|
|
Users can skip this function and pass a user-defined set of dictionaries |
|
|
with the same keys to `~.axes.Axes.violinplot` instead of using Matplotlib |
|
|
to do the calculations. See the *Returns* section below for the keys |
|
|
that must be present in the dictionaries. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
X : array-like |
|
|
Sample data that will be used to produce the gaussian kernel density |
|
|
estimates. Must have 2 or fewer dimensions. |
|
|
|
|
|
method : callable |
|
|
The method used to calculate the kernel density estimate for each |
|
|
column of data. When called via ``method(v, coords)``, it should |
|
|
return a vector of the values of the KDE evaluated at the values |
|
|
specified in coords. |
|
|
|
|
|
points : int, default: 100 |
|
|
Defines the number of points to evaluate each of the gaussian kernel |
|
|
density estimates at. |
|
|
|
|
|
quantiles : array-like, default: None |
|
|
Defines (if not None) a list of floats in interval [0, 1] for each |
|
|
column of data, which represents the quantiles that will be rendered |
|
|
for that column of data. Must have 2 or fewer dimensions. 1D array will |
|
|
be treated as a singleton list containing them. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
list of dict |
|
|
A list of dictionaries containing the results for each column of data. |
|
|
The dictionaries contain at least the following: |
|
|
|
|
|
- coords: A list of scalars containing the coordinates this particular |
|
|
kernel density estimate was evaluated at. |
|
|
- vals: A list of scalars containing the values of the kernel density |
|
|
estimate at each of the coordinates given in *coords*. |
|
|
- mean: The mean value for this column of data. |
|
|
- median: The median value for this column of data. |
|
|
- min: The minimum value for this column of data. |
|
|
- max: The maximum value for this column of data. |
|
|
- quantiles: The quantile values for this column of data. |
|
|
""" |
|
|
|
|
|
|
|
|
vpstats = [] |
|
|
|
|
|
|
|
|
X = _reshape_2D(X, "X") |
|
|
|
|
|
|
|
|
if quantiles is not None and len(quantiles) != 0: |
|
|
quantiles = _reshape_2D(quantiles, "quantiles") |
|
|
|
|
|
else: |
|
|
quantiles = [[]] * len(X) |
|
|
|
|
|
|
|
|
if len(X) != len(quantiles): |
|
|
raise ValueError("List of violinplot statistics and quantiles values" |
|
|
" must have the same length") |
|
|
|
|
|
|
|
|
for (x, q) in zip(X, quantiles): |
|
|
|
|
|
stats = {} |
|
|
|
|
|
|
|
|
min_val = np.min(x) |
|
|
max_val = np.max(x) |
|
|
quantile_val = np.percentile(x, 100 * q) |
|
|
|
|
|
|
|
|
coords = np.linspace(min_val, max_val, points) |
|
|
stats['vals'] = method(x, coords) |
|
|
stats['coords'] = coords |
|
|
|
|
|
|
|
|
stats['mean'] = np.mean(x) |
|
|
stats['median'] = np.median(x) |
|
|
stats['min'] = min_val |
|
|
stats['max'] = max_val |
|
|
stats['quantiles'] = np.atleast_1d(quantile_val) |
|
|
|
|
|
|
|
|
vpstats.append(stats) |
|
|
|
|
|
return vpstats |
|
|
|
|
|
|
|
|
def pts_to_prestep(x, *args): |
|
|
""" |
|
|
Convert continuous line to pre-steps. |
|
|
|
|
|
Given a set of ``N`` points, convert to ``2N - 1`` points, which when |
|
|
connected linearly give a step function which changes values at the |
|
|
beginning of the intervals. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
x : array |
|
|
The x location of the steps. May be empty. |
|
|
|
|
|
y1, ..., yp : array |
|
|
y arrays to be turned into steps; all must be the same length as ``x``. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
array |
|
|
The x and y values converted to steps in the same order as the input; |
|
|
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is |
|
|
length ``N``, each of these arrays will be length ``2N + 1``. For |
|
|
``N=0``, the length will be 0. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2) |
|
|
""" |
|
|
steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0))) |
|
|
|
|
|
|
|
|
steps[0, 0::2] = x |
|
|
steps[0, 1::2] = steps[0, 0:-2:2] |
|
|
steps[1:, 0::2] = args |
|
|
steps[1:, 1::2] = steps[1:, 2::2] |
|
|
return steps |
|
|
|
|
|
|
|
|
def pts_to_poststep(x, *args): |
|
|
""" |
|
|
Convert continuous line to post-steps. |
|
|
|
|
|
Given a set of ``N`` points convert to ``2N + 1`` points, which when |
|
|
connected linearly give a step function which changes values at the end of |
|
|
the intervals. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
x : array |
|
|
The x location of the steps. May be empty. |
|
|
|
|
|
y1, ..., yp : array |
|
|
y arrays to be turned into steps; all must be the same length as ``x``. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
array |
|
|
The x and y values converted to steps in the same order as the input; |
|
|
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is |
|
|
length ``N``, each of these arrays will be length ``2N + 1``. For |
|
|
``N=0``, the length will be 0. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> x_s, y1_s, y2_s = pts_to_poststep(x, y1, y2) |
|
|
""" |
|
|
steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0))) |
|
|
steps[0, 0::2] = x |
|
|
steps[0, 1::2] = steps[0, 2::2] |
|
|
steps[1:, 0::2] = args |
|
|
steps[1:, 1::2] = steps[1:, 0:-2:2] |
|
|
return steps |
|
|
|
|
|
|
|
|
def pts_to_midstep(x, *args): |
|
|
""" |
|
|
Convert continuous line to mid-steps. |
|
|
|
|
|
Given a set of ``N`` points convert to ``2N`` points which when connected |
|
|
linearly give a step function which changes values at the middle of the |
|
|
intervals. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
x : array |
|
|
The x location of the steps. May be empty. |
|
|
|
|
|
y1, ..., yp : array |
|
|
y arrays to be turned into steps; all must be the same length as |
|
|
``x``. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
array |
|
|
The x and y values converted to steps in the same order as the input; |
|
|
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is |
|
|
length ``N``, each of these arrays will be length ``2N``. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> x_s, y1_s, y2_s = pts_to_midstep(x, y1, y2) |
|
|
""" |
|
|
steps = np.zeros((1 + len(args), 2 * len(x))) |
|
|
x = np.asanyarray(x) |
|
|
steps[0, 1:-1:2] = steps[0, 2::2] = (x[:-1] + x[1:]) / 2 |
|
|
steps[0, :1] = x[:1] |
|
|
steps[0, -1:] = x[-1:] |
|
|
steps[1:, 0::2] = args |
|
|
steps[1:, 1::2] = steps[1:, 0::2] |
|
|
return steps |
|
|
|
|
|
|
|
|
STEP_LOOKUP_MAP = {'default': lambda x, y: (x, y), |
|
|
'steps': pts_to_prestep, |
|
|
'steps-pre': pts_to_prestep, |
|
|
'steps-post': pts_to_poststep, |
|
|
'steps-mid': pts_to_midstep} |
|
|
|
|
|
|
|
|
def index_of(y): |
|
|
""" |
|
|
A helper function to create reasonable x values for the given *y*. |
|
|
|
|
|
This is used for plotting (x, y) if x values are not explicitly given. |
|
|
|
|
|
First try ``y.index`` (assuming *y* is a `pandas.Series`), if that |
|
|
fails, use ``range(len(y))``. |
|
|
|
|
|
This will be extended in the future to deal with more types of |
|
|
labeled data. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : float or array-like |
|
|
|
|
|
Returns |
|
|
------- |
|
|
x, y : ndarray |
|
|
The x and y values to plot. |
|
|
""" |
|
|
try: |
|
|
return y.index.to_numpy(), y.to_numpy() |
|
|
except AttributeError: |
|
|
pass |
|
|
try: |
|
|
y = _check_1d(y) |
|
|
except (VisibleDeprecationWarning, ValueError): |
|
|
|
|
|
pass |
|
|
else: |
|
|
return np.arange(y.shape[0], dtype=float), y |
|
|
raise ValueError('Input could not be cast to an at-least-1D NumPy array') |
|
|
|
|
|
|
|
|
def safe_first_element(obj): |
|
|
""" |
|
|
Return the first element in *obj*. |
|
|
|
|
|
This is a type-independent way of obtaining the first element, |
|
|
supporting both index access and the iterator protocol. |
|
|
""" |
|
|
if isinstance(obj, collections.abc.Iterator): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
return obj[0] |
|
|
except TypeError: |
|
|
pass |
|
|
raise RuntimeError("matplotlib does not support generators as input") |
|
|
return next(iter(obj)) |
|
|
|
|
|
|
|
|
def _safe_first_finite(obj): |
|
|
""" |
|
|
Return the first finite element in *obj* if one is available and skip_nonfinite is |
|
|
True. Otherwise, return the first element. |
|
|
|
|
|
This is a method for internal use. |
|
|
|
|
|
This is a type-independent way of obtaining the first finite element, supporting |
|
|
both index access and the iterator protocol. |
|
|
""" |
|
|
def safe_isfinite(val): |
|
|
if val is None: |
|
|
return False |
|
|
try: |
|
|
return math.isfinite(val) |
|
|
except (TypeError, ValueError): |
|
|
|
|
|
|
|
|
|
|
|
pass |
|
|
try: |
|
|
return np.isfinite(val) if np.isscalar(val) else True |
|
|
except TypeError: |
|
|
|
|
|
|
|
|
return True |
|
|
|
|
|
if isinstance(obj, np.flatiter): |
|
|
|
|
|
return obj[0] |
|
|
elif isinstance(obj, collections.abc.Iterator): |
|
|
raise RuntimeError("matplotlib does not support generators as input") |
|
|
else: |
|
|
for val in obj: |
|
|
if safe_isfinite(val): |
|
|
return val |
|
|
return safe_first_element(obj) |
|
|
|
|
|
|
|
|
def sanitize_sequence(data): |
|
|
""" |
|
|
Convert dictview objects to list. Other inputs are returned unchanged. |
|
|
""" |
|
|
return (list(data) if isinstance(data, collections.abc.MappingView) |
|
|
else data) |
|
|
|
|
|
|
|
|
def normalize_kwargs(kw, alias_mapping=None): |
|
|
""" |
|
|
Helper function to normalize kwarg inputs. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
kw : dict or None |
|
|
A dict of keyword arguments. None is explicitly supported and treated |
|
|
as an empty dict, to support functions with an optional parameter of |
|
|
the form ``props=None``. |
|
|
|
|
|
alias_mapping : dict or Artist subclass or Artist instance, optional |
|
|
A mapping between a canonical name to a list of aliases, in order of |
|
|
precedence from lowest to highest. |
|
|
|
|
|
If the canonical value is not in the list it is assumed to have the |
|
|
highest priority. |
|
|
|
|
|
If an Artist subclass or instance is passed, use its properties alias |
|
|
mapping. |
|
|
|
|
|
Raises |
|
|
------ |
|
|
TypeError |
|
|
To match what Python raises if invalid arguments/keyword arguments are |
|
|
passed to a callable. |
|
|
""" |
|
|
from matplotlib.artist import Artist |
|
|
|
|
|
if kw is None: |
|
|
return {} |
|
|
|
|
|
|
|
|
if alias_mapping is None: |
|
|
alias_mapping = {} |
|
|
elif (isinstance(alias_mapping, type) and issubclass(alias_mapping, Artist) |
|
|
or isinstance(alias_mapping, Artist)): |
|
|
alias_mapping = getattr(alias_mapping, "_alias_map", {}) |
|
|
|
|
|
to_canonical = {alias: canonical |
|
|
for canonical, alias_list in alias_mapping.items() |
|
|
for alias in alias_list} |
|
|
canonical_to_seen = {} |
|
|
ret = {} |
|
|
|
|
|
for k, v in kw.items(): |
|
|
canonical = to_canonical.get(k, k) |
|
|
if canonical in canonical_to_seen: |
|
|
raise TypeError(f"Got both {canonical_to_seen[canonical]!r} and " |
|
|
f"{k!r}, which are aliases of one another") |
|
|
canonical_to_seen[canonical] = k |
|
|
ret[canonical] = v |
|
|
|
|
|
return ret |
|
|
|
|
|
|
|
|
@contextlib.contextmanager |
|
|
def _lock_path(path): |
|
|
""" |
|
|
Context manager for locking a path. |
|
|
|
|
|
Usage:: |
|
|
|
|
|
with _lock_path(path): |
|
|
... |
|
|
|
|
|
Another thread or process that attempts to lock the same path will wait |
|
|
until this context manager is exited. |
|
|
|
|
|
The lock is implemented by creating a temporary file in the parent |
|
|
directory, so that directory must exist and be writable. |
|
|
""" |
|
|
path = Path(path) |
|
|
lock_path = path.with_name(path.name + ".matplotlib-lock") |
|
|
retries = 50 |
|
|
sleeptime = 0.1 |
|
|
for _ in range(retries): |
|
|
try: |
|
|
with lock_path.open("xb"): |
|
|
break |
|
|
except FileExistsError: |
|
|
time.sleep(sleeptime) |
|
|
else: |
|
|
raise TimeoutError("""\ |
|
|
Lock error: Matplotlib failed to acquire the following lock file: |
|
|
{} |
|
|
This maybe due to another process holding this lock file. If you are sure no |
|
|
other Matplotlib process is running, remove this file and try again.""".format( |
|
|
lock_path)) |
|
|
try: |
|
|
yield |
|
|
finally: |
|
|
lock_path.unlink() |
|
|
|
|
|
|
|
|
def _topmost_artist( |
|
|
artists, |
|
|
_cached_max=functools.partial(max, key=operator.attrgetter("zorder"))): |
|
|
""" |
|
|
Get the topmost artist of a list. |
|
|
|
|
|
In case of a tie, return the *last* of the tied artists, as it will be |
|
|
drawn on top of the others. `max` returns the first maximum in case of |
|
|
ties, so we need to iterate over the list in reverse order. |
|
|
""" |
|
|
return _cached_max(reversed(artists)) |
|
|
|
|
|
|
|
|
def _str_equal(obj, s): |
|
|
""" |
|
|
Return whether *obj* is a string equal to string *s*. |
|
|
|
|
|
This helper solely exists to handle the case where *obj* is a numpy array, |
|
|
because in such cases, a naive ``obj == s`` would yield an array, which |
|
|
cannot be used in a boolean context. |
|
|
""" |
|
|
return isinstance(obj, str) and obj == s |
|
|
|
|
|
|
|
|
def _str_lower_equal(obj, s): |
|
|
""" |
|
|
Return whether *obj* is a string equal, when lowercased, to string *s*. |
|
|
|
|
|
This helper solely exists to handle the case where *obj* is a numpy array, |
|
|
because in such cases, a naive ``obj == s`` would yield an array, which |
|
|
cannot be used in a boolean context. |
|
|
""" |
|
|
return isinstance(obj, str) and obj.lower() == s |
|
|
|
|
|
|
|
|
def _array_perimeter(arr): |
|
|
""" |
|
|
Get the elements on the perimeter of *arr*. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
arr : ndarray, shape (M, N) |
|
|
The input array. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
ndarray, shape (2*(M - 1) + 2*(N - 1),) |
|
|
The elements on the perimeter of the array:: |
|
|
|
|
|
[arr[0, 0], ..., arr[0, -1], ..., arr[-1, -1], ..., arr[-1, 0], ...] |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> i, j = np.ogrid[:3, :4] |
|
|
>>> a = i*10 + j |
|
|
>>> a |
|
|
array([[ 0, 1, 2, 3], |
|
|
[10, 11, 12, 13], |
|
|
[20, 21, 22, 23]]) |
|
|
>>> _array_perimeter(a) |
|
|
array([ 0, 1, 2, 3, 13, 23, 22, 21, 20, 10]) |
|
|
""" |
|
|
|
|
|
|
|
|
forward = np.s_[0:-1] |
|
|
backward = np.s_[-1:0:-1] |
|
|
return np.concatenate(( |
|
|
arr[0, forward], |
|
|
arr[forward, -1], |
|
|
arr[-1, backward], |
|
|
arr[backward, 0], |
|
|
)) |
|
|
|
|
|
|
|
|
def _unfold(arr, axis, size, step): |
|
|
""" |
|
|
Append an extra dimension containing sliding windows along *axis*. |
|
|
|
|
|
All windows are of size *size* and begin with every *step* elements. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
arr : ndarray, shape (N_1, ..., N_k) |
|
|
The input array |
|
|
axis : int |
|
|
Axis along which the windows are extracted |
|
|
size : int |
|
|
Size of the windows |
|
|
step : int |
|
|
Stride between first elements of subsequent windows. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
ndarray, shape (N_1, ..., 1 + (N_axis-size)/step, ..., N_k, size) |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> i, j = np.ogrid[:3, :7] |
|
|
>>> a = i*10 + j |
|
|
>>> a |
|
|
array([[ 0, 1, 2, 3, 4, 5, 6], |
|
|
[10, 11, 12, 13, 14, 15, 16], |
|
|
[20, 21, 22, 23, 24, 25, 26]]) |
|
|
>>> _unfold(a, axis=1, size=3, step=2) |
|
|
array([[[ 0, 1, 2], |
|
|
[ 2, 3, 4], |
|
|
[ 4, 5, 6]], |
|
|
[[10, 11, 12], |
|
|
[12, 13, 14], |
|
|
[14, 15, 16]], |
|
|
[[20, 21, 22], |
|
|
[22, 23, 24], |
|
|
[24, 25, 26]]]) |
|
|
""" |
|
|
new_shape = [*arr.shape, size] |
|
|
new_strides = [*arr.strides, arr.strides[axis]] |
|
|
new_shape[axis] = (new_shape[axis] - size) // step + 1 |
|
|
new_strides[axis] = new_strides[axis] * step |
|
|
return np.lib.stride_tricks.as_strided(arr, |
|
|
shape=new_shape, |
|
|
strides=new_strides, |
|
|
writeable=False) |
|
|
|
|
|
|
|
|
def _array_patch_perimeters(x, rstride, cstride): |
|
|
""" |
|
|
Extract perimeters of patches from *arr*. |
|
|
|
|
|
Extracted patches are of size (*rstride* + 1) x (*cstride* + 1) and |
|
|
share perimeters with their neighbors. The ordering of the vertices matches |
|
|
that returned by ``_array_perimeter``. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
x : ndarray, shape (N, M) |
|
|
Input array |
|
|
rstride : int |
|
|
Vertical (row) stride between corresponding elements of each patch |
|
|
cstride : int |
|
|
Horizontal (column) stride between corresponding elements of each patch |
|
|
|
|
|
Returns |
|
|
------- |
|
|
ndarray, shape (N/rstride * M/cstride, 2 * (rstride + cstride)) |
|
|
""" |
|
|
assert rstride > 0 and cstride > 0 |
|
|
assert (x.shape[0] - 1) % rstride == 0 |
|
|
assert (x.shape[1] - 1) % cstride == 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
top = _unfold(x[:-1:rstride, :-1], 1, cstride, cstride) |
|
|
bottom = _unfold(x[rstride::rstride, 1:], 1, cstride, cstride)[..., ::-1] |
|
|
right = _unfold(x[:-1, cstride::cstride], 0, rstride, rstride) |
|
|
left = _unfold(x[1:, :-1:cstride], 0, rstride, rstride)[..., ::-1] |
|
|
return (np.concatenate((top, right, bottom, left), axis=2) |
|
|
.reshape(-1, 2 * (rstride + cstride))) |
|
|
|
|
|
|
|
|
@contextlib.contextmanager |
|
|
def _setattr_cm(obj, **kwargs): |
|
|
""" |
|
|
Temporarily set some attributes; restore original state at context exit. |
|
|
""" |
|
|
sentinel = object() |
|
|
origs = {} |
|
|
for attr in kwargs: |
|
|
orig = getattr(obj, attr, sentinel) |
|
|
if attr in obj.__dict__ or orig is sentinel: |
|
|
|
|
|
|
|
|
origs[attr] = orig |
|
|
else: |
|
|
|
|
|
|
|
|
cls_orig = getattr(type(obj), attr) |
|
|
|
|
|
|
|
|
if isinstance(cls_orig, property): |
|
|
origs[attr] = orig |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
origs[attr] = sentinel |
|
|
|
|
|
try: |
|
|
for attr, val in kwargs.items(): |
|
|
setattr(obj, attr, val) |
|
|
yield |
|
|
finally: |
|
|
for attr, orig in origs.items(): |
|
|
if orig is sentinel: |
|
|
delattr(obj, attr) |
|
|
else: |
|
|
setattr(obj, attr, orig) |
|
|
|
|
|
|
|
|
class _OrderedSet(collections.abc.MutableSet): |
|
|
def __init__(self): |
|
|
self._od = collections.OrderedDict() |
|
|
|
|
|
def __contains__(self, key): |
|
|
return key in self._od |
|
|
|
|
|
def __iter__(self): |
|
|
return iter(self._od) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self._od) |
|
|
|
|
|
def add(self, key): |
|
|
self._od.pop(key, None) |
|
|
self._od[key] = None |
|
|
|
|
|
def discard(self, key): |
|
|
self._od.pop(key, None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _premultiplied_argb32_to_unmultiplied_rgba8888(buf): |
|
|
""" |
|
|
Convert a premultiplied ARGB32 buffer to an unmultiplied RGBA8888 buffer. |
|
|
""" |
|
|
rgba = np.take( |
|
|
buf, |
|
|
[2, 1, 0, 3] if sys.byteorder == "little" else [1, 2, 3, 0], axis=2) |
|
|
rgb = rgba[..., :-1] |
|
|
alpha = rgba[..., -1] |
|
|
|
|
|
mask = alpha != 0 |
|
|
for channel in np.rollaxis(rgb, -1): |
|
|
channel[mask] = ( |
|
|
(channel[mask].astype(int) * 255 + alpha[mask] // 2) |
|
|
// alpha[mask]) |
|
|
return rgba |
|
|
|
|
|
|
|
|
def _unmultiplied_rgba8888_to_premultiplied_argb32(rgba8888): |
|
|
""" |
|
|
Convert an unmultiplied RGBA8888 buffer to a premultiplied ARGB32 buffer. |
|
|
""" |
|
|
if sys.byteorder == "little": |
|
|
argb32 = np.take(rgba8888, [2, 1, 0, 3], axis=2) |
|
|
rgb24 = argb32[..., :-1] |
|
|
alpha8 = argb32[..., -1:] |
|
|
else: |
|
|
argb32 = np.take(rgba8888, [3, 0, 1, 2], axis=2) |
|
|
alpha8 = argb32[..., :1] |
|
|
rgb24 = argb32[..., 1:] |
|
|
|
|
|
|
|
|
|
|
|
if alpha8.min() != 0xff: |
|
|
np.multiply(rgb24, alpha8 / 0xff, out=rgb24, casting="unsafe") |
|
|
return argb32 |
|
|
|
|
|
|
|
|
def _get_nonzero_slices(buf): |
|
|
""" |
|
|
Return the bounds of the nonzero region of a 2D array as a pair of slices. |
|
|
|
|
|
``buf[_get_nonzero_slices(buf)]`` is the smallest sub-rectangle in *buf* |
|
|
that encloses all non-zero entries in *buf*. If *buf* is fully zero, then |
|
|
``(slice(0, 0), slice(0, 0))`` is returned. |
|
|
""" |
|
|
x_nz, = buf.any(axis=0).nonzero() |
|
|
y_nz, = buf.any(axis=1).nonzero() |
|
|
if len(x_nz) and len(y_nz): |
|
|
l, r = x_nz[[0, -1]] |
|
|
b, t = y_nz[[0, -1]] |
|
|
return slice(b, t + 1), slice(l, r + 1) |
|
|
else: |
|
|
return slice(0, 0), slice(0, 0) |
|
|
|
|
|
|
|
|
def _pformat_subprocess(command): |
|
|
"""Pretty-format a subprocess command for printing/logging purposes.""" |
|
|
return (command if isinstance(command, str) |
|
|
else " ".join(shlex.quote(os.fspath(arg)) for arg in command)) |
|
|
|
|
|
|
|
|
def _check_and_log_subprocess(command, logger, **kwargs): |
|
|
""" |
|
|
Run *command*, returning its stdout output if it succeeds. |
|
|
|
|
|
If it fails (exits with nonzero return code), raise an exception whose text |
|
|
includes the failed command and captured stdout and stderr output. |
|
|
|
|
|
Regardless of the return code, the command is logged at DEBUG level on |
|
|
*logger*. In case of success, the output is likewise logged. |
|
|
""" |
|
|
logger.debug('%s', _pformat_subprocess(command)) |
|
|
proc = subprocess.run(command, capture_output=True, **kwargs) |
|
|
if proc.returncode: |
|
|
stdout = proc.stdout |
|
|
if isinstance(stdout, bytes): |
|
|
stdout = stdout.decode() |
|
|
stderr = proc.stderr |
|
|
if isinstance(stderr, bytes): |
|
|
stderr = stderr.decode() |
|
|
raise RuntimeError( |
|
|
f"The command\n" |
|
|
f" {_pformat_subprocess(command)}\n" |
|
|
f"failed and generated the following output:\n" |
|
|
f"{stdout}\n" |
|
|
f"and the following error:\n" |
|
|
f"{stderr}") |
|
|
if proc.stdout: |
|
|
logger.debug("stdout:\n%s", proc.stdout) |
|
|
if proc.stderr: |
|
|
logger.debug("stderr:\n%s", proc.stderr) |
|
|
return proc.stdout |
|
|
|
|
|
|
|
|
def _setup_new_guiapp(): |
|
|
""" |
|
|
Perform OS-dependent setup when Matplotlib creates a new GUI application. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
_c_internal_utils.Win32_GetCurrentProcessExplicitAppUserModelID() |
|
|
except OSError: |
|
|
_c_internal_utils.Win32_SetCurrentProcessExplicitAppUserModelID( |
|
|
"matplotlib") |
|
|
|
|
|
|
|
|
def _format_approx(number, precision): |
|
|
""" |
|
|
Format the number with at most the number of decimals given as precision. |
|
|
Remove trailing zeros and possibly the decimal point. |
|
|
""" |
|
|
return f'{number:.{precision}f}'.rstrip('0').rstrip('.') or '0' |
|
|
|
|
|
|
|
|
def _g_sig_digits(value, delta): |
|
|
""" |
|
|
Return the number of significant digits to %g-format *value*, assuming that |
|
|
it is known with an error of *delta*. |
|
|
""" |
|
|
if delta == 0: |
|
|
if value == 0: |
|
|
|
|
|
|
|
|
return 3 |
|
|
|
|
|
|
|
|
delta = abs(np.spacing(value)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return max( |
|
|
0, |
|
|
(math.floor(math.log10(abs(value))) + 1 if value else 1) |
|
|
- math.floor(math.log10(delta))) if math.isfinite(value) else 0 |
|
|
|
|
|
|
|
|
def _unikey_or_keysym_to_mplkey(unikey, keysym): |
|
|
""" |
|
|
Convert a Unicode key or X keysym to a Matplotlib key name. |
|
|
|
|
|
The Unicode key is checked first; this avoids having to list most printable |
|
|
keysyms such as ``EuroSign``. |
|
|
""" |
|
|
|
|
|
if unikey and unikey.isprintable(): |
|
|
return unikey |
|
|
key = keysym.lower() |
|
|
if key.startswith("kp_"): |
|
|
key = key[3:] |
|
|
if key.startswith("page_"): |
|
|
key = key.replace("page_", "page") |
|
|
if key.endswith(("_l", "_r")): |
|
|
key = key[:-2] |
|
|
if sys.platform == "darwin" and key == "meta": |
|
|
|
|
|
key = "cmd" |
|
|
key = { |
|
|
"return": "enter", |
|
|
"prior": "pageup", |
|
|
"next": "pagedown", |
|
|
}.get(key, key) |
|
|
return key |
|
|
|
|
|
|
|
|
@functools.cache |
|
|
def _make_class_factory(mixin_class, fmt, attr_name=None): |
|
|
""" |
|
|
Return a function that creates picklable classes inheriting from a mixin. |
|
|
|
|
|
After :: |
|
|
|
|
|
factory = _make_class_factory(FooMixin, fmt, attr_name) |
|
|
FooAxes = factory(Axes) |
|
|
|
|
|
``Foo`` is a class that inherits from ``FooMixin`` and ``Axes`` and **is |
|
|
picklable** (picklability is what differentiates this from a plain call to |
|
|
`type`). Its ``__name__`` is set to ``fmt.format(Axes.__name__)`` and the |
|
|
base class is stored in the ``attr_name`` attribute, if not None. |
|
|
|
|
|
Moreover, the return value of ``factory`` is memoized: calls with the same |
|
|
``Axes`` class always return the same subclass. |
|
|
""" |
|
|
|
|
|
@functools.cache |
|
|
def class_factory(axes_class): |
|
|
|
|
|
if issubclass(axes_class, mixin_class): |
|
|
return axes_class |
|
|
|
|
|
|
|
|
|
|
|
base_class = axes_class |
|
|
|
|
|
class subcls(mixin_class, base_class): |
|
|
|
|
|
__module__ = mixin_class.__module__ |
|
|
|
|
|
def __reduce__(self): |
|
|
return (_picklable_class_constructor, |
|
|
(mixin_class, fmt, attr_name, base_class), |
|
|
self.__getstate__()) |
|
|
|
|
|
subcls.__name__ = subcls.__qualname__ = fmt.format(base_class.__name__) |
|
|
if attr_name is not None: |
|
|
setattr(subcls, attr_name, base_class) |
|
|
return subcls |
|
|
|
|
|
class_factory.__module__ = mixin_class.__module__ |
|
|
return class_factory |
|
|
|
|
|
|
|
|
def _picklable_class_constructor(mixin_class, fmt, attr_name, base_class): |
|
|
"""Internal helper for _make_class_factory.""" |
|
|
factory = _make_class_factory(mixin_class, fmt, attr_name) |
|
|
cls = factory(base_class) |
|
|
return cls.__new__(cls) |
|
|
|
|
|
|
|
|
def _is_torch_array(x): |
|
|
"""Check if 'x' is a PyTorch Tensor.""" |
|
|
try: |
|
|
|
|
|
|
|
|
return isinstance(x, sys.modules['torch'].Tensor) |
|
|
except Exception: |
|
|
|
|
|
|
|
|
return False |
|
|
|
|
|
|
|
|
def _is_jax_array(x): |
|
|
"""Check if 'x' is a JAX Array.""" |
|
|
try: |
|
|
|
|
|
|
|
|
return isinstance(x, sys.modules['jax'].Array) |
|
|
except Exception: |
|
|
|
|
|
|
|
|
return False |
|
|
|
|
|
|
|
|
def _is_tensorflow_array(x): |
|
|
"""Check if 'x' is a TensorFlow Tensor or Variable.""" |
|
|
try: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return isinstance(x, sys.modules['tensorflow'].is_tensor(x)) |
|
|
except Exception: |
|
|
|
|
|
|
|
|
return False |
|
|
|
|
|
|
|
|
def _unpack_to_numpy(x): |
|
|
"""Internal helper to extract data from e.g. pandas and xarray objects.""" |
|
|
if isinstance(x, np.ndarray): |
|
|
|
|
|
return x |
|
|
if hasattr(x, 'to_numpy'): |
|
|
|
|
|
return x.to_numpy() |
|
|
if hasattr(x, 'values'): |
|
|
xtmp = x.values |
|
|
|
|
|
|
|
|
if isinstance(xtmp, np.ndarray): |
|
|
return xtmp |
|
|
if _is_torch_array(x) or _is_jax_array(x) or _is_tensorflow_array(x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xtmp = np.asarray(x) |
|
|
|
|
|
|
|
|
if isinstance(xtmp, np.ndarray): |
|
|
return xtmp |
|
|
return x |
|
|
|
|
|
|
|
|
def _auto_format_str(fmt, value): |
|
|
""" |
|
|
Apply *value* to the format string *fmt*. |
|
|
|
|
|
This works both with unnamed %-style formatting and |
|
|
unnamed {}-style formatting. %-style formatting has priority. |
|
|
If *fmt* is %-style formattable that will be used. Otherwise, |
|
|
{}-formatting is applied. Strings without formatting placeholders |
|
|
are passed through as is. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> _auto_format_str('%.2f m', 0.2) |
|
|
'0.20 m' |
|
|
>>> _auto_format_str('{} m', 0.2) |
|
|
'0.2 m' |
|
|
>>> _auto_format_str('const', 0.2) |
|
|
'const' |
|
|
>>> _auto_format_str('%d or {}', 0.2) |
|
|
'0 or {}' |
|
|
""" |
|
|
try: |
|
|
return fmt % (value,) |
|
|
except (TypeError, ValueError): |
|
|
return fmt.format(value) |
|
|
|
|
|
|
|
|
def _is_pandas_dataframe(x): |
|
|
"""Check if 'x' is a Pandas DataFrame.""" |
|
|
try: |
|
|
|
|
|
|
|
|
return isinstance(x, sys.modules['pandas'].DataFrame) |
|
|
except Exception: |
|
|
|
|
|
|
|
|
return False |
|
|
|