|
|
import shlex |
|
|
import subprocess |
|
|
import torch |
|
|
from typing import Tuple |
|
|
|
|
|
def outlier_hook(module, input): |
|
|
assert isinstance(module, torch.nn.Linear) |
|
|
tracer = OutlierTracer.get_instance() |
|
|
hvalue = tracer.get_hvalue(module.weight) |
|
|
if hvalue not in tracer.hvalue2outlier_idx: |
|
|
outlier_idx = find_outlier_dims(module.weight) |
|
|
tracer.outliers.append(outlier_idx) |
|
|
tracer.hvalues.append(hvalue) |
|
|
if len(tracer.outliers) > 1: |
|
|
|
|
|
|
|
|
if tracer.outliers[-1].numel() > 0: |
|
|
assert tracer.outliers[-1].max() < module.weight.shape[1] |
|
|
tracer.hvalue2outlier_idx[hvalue] = tracer.outliers[-1] |
|
|
|
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
merged = input[0].view(-1, input[0].shape[-1]) |
|
|
|
|
|
outlier_idx = find_outlier_dims(merged, reduction_dim=1, zscore=3) |
|
|
|
|
|
dims = (torch.abs(input[0])> 6).sum(dim=list(range(len(input[0].shape)-1))) |
|
|
outlier_idx2 = torch.where(dims > 0)[0] |
|
|
outlier_idx = torch.cat([outlier_idx, outlier_idx2]).unique() |
|
|
tracer.hvalue2outlier_idx[hvalue] = outlier_idx |
|
|
else: |
|
|
for hook in tracer.hooks: |
|
|
hook.remove() |
|
|
|
|
|
|
|
|
class OutlierTracer(object): |
|
|
_instance = None |
|
|
|
|
|
def __init__(self): |
|
|
raise RuntimeError("Call get_instance() instead") |
|
|
|
|
|
def initialize(self, model): |
|
|
self.last_w = None |
|
|
self.current_outlier_dims = None |
|
|
self.hvalues = [] |
|
|
self.outliers = [] |
|
|
self.hvalue2outlier_idx = {} |
|
|
self.initialized = True |
|
|
self.hooks = [] |
|
|
|
|
|
for n, m in model.named_modules(): |
|
|
if isinstance(m, torch.nn.Linear): |
|
|
self.hooks.append(m.register_forward_pre_hook(outlier_hook)) |
|
|
|
|
|
def is_initialized(self): |
|
|
return getattr(self, 'initialized', False) |
|
|
|
|
|
def get_hvalue(self, weight): |
|
|
return weight.data.storage().data_ptr() |
|
|
|
|
|
def get_outliers(self, weight): |
|
|
if not self.is_initialized(): |
|
|
print('Outlier tracer is not initialized...') |
|
|
return None |
|
|
hvalue = self.get_hvalue(weight) |
|
|
if hvalue in self.hvalue2outlier_idx: |
|
|
return self.hvalue2outlier_idx[hvalue] |
|
|
else: |
|
|
return None |
|
|
|
|
|
@classmethod |
|
|
def get_instance(cls): |
|
|
if cls._instance is None: |
|
|
cls._instance = cls.__new__(cls) |
|
|
return cls._instance |
|
|
|
|
|
def find_outlier_dims(weight, reduction_dim=0, zscore=4.0, topk=None, rdm=False): |
|
|
if rdm: |
|
|
return torch.randint(0, weight.shape[1], size=(topk,), device=weight.device).long() |
|
|
|
|
|
m = weight.mean(reduction_dim) |
|
|
mm = m.mean() |
|
|
mstd = m.std() |
|
|
zm = (m-mm)/mstd |
|
|
|
|
|
std = weight.std(reduction_dim) |
|
|
stdm = std.mean() |
|
|
stdstd = std.std() |
|
|
|
|
|
zstd = (std-stdm)/stdstd |
|
|
|
|
|
if topk is not None: |
|
|
val, idx = torch.topk(std.abs(), k=topk, dim=0) |
|
|
else: |
|
|
idx = torch.where(zstd > zscore)[0] |
|
|
|
|
|
return idx |
|
|
|
|
|
def replace_linear(model, linear_replacement, skip_modules=["lm_head"], copy_weights=False, post_processing_function=None): |
|
|
""" |
|
|
Replace linear modules with a new Linear module. |
|
|
|
|
|
Parameters: |
|
|
model (`torch.nn.Module`): |
|
|
Input model or `torch.nn.Module` as the function is run recursively. |
|
|
linear_replacement (`torch.nn.Module`): |
|
|
The linear module that replaces the old one. Only expects standard arguments. |
|
|
If other arguments need to be passed, use a lambda. |
|
|
skip_modules (`List[str]`, *optional*, defaults to `lm_head`): |
|
|
List of modules names not to convert. Defaults to `lm_head`. |
|
|
copy_weights (`bool`): |
|
|
Copy the weights from the old linear module to the new one |
|
|
post_processing_fun_name (`str`): |
|
|
A function name of the replacement linear class that is called |
|
|
after processing. |
|
|
""" |
|
|
for name, module in model.named_children(): |
|
|
if len(list(module.children())) > 0: |
|
|
replace_linear(module, linear_replacement, skip_modules, copy_weights, post_processing_function) |
|
|
|
|
|
if isinstance(module, torch.nn.Linear) and name not in skip_modules: |
|
|
old_module = model._modules[name] |
|
|
model._modules[name] = linear_replacement( |
|
|
module.in_features, |
|
|
module.out_features, |
|
|
module.bias is not None, |
|
|
) |
|
|
if copy_weights: |
|
|
model._modules[name].weight = old_module.weight |
|
|
model._modules[name].bias = old_module.bias |
|
|
|
|
|
if post_processing_function is not None: |
|
|
func = getattr(module, post_processing_function, None) |
|
|
if func is not None: func(module) |
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def execute_and_return(command_string: str) -> Tuple[str, str]: |
|
|
def _decode(subprocess_err_out_tuple): |
|
|
return tuple( |
|
|
to_decode.decode("UTF-8").strip() |
|
|
for to_decode in subprocess_err_out_tuple |
|
|
) |
|
|
|
|
|
def execute_and_return_decoded_std_streams(command_string): |
|
|
return _decode( |
|
|
subprocess.Popen( |
|
|
shlex.split(command_string), |
|
|
stdout=subprocess.PIPE, |
|
|
stderr=subprocess.PIPE, |
|
|
).communicate() |
|
|
) |
|
|
|
|
|
std_out, std_err = execute_and_return_decoded_std_streams(command_string) |
|
|
return std_out, std_err |
|
|
|
|
|
|
|
|
|
|
|
def replace_linear(model, linear_replacement, skip_modules=["lm_head"], copy_weights=False, post_processing_function=None): |
|
|
""" |
|
|
Replace linear modules with a new Linear module. |
|
|
Parameters: |
|
|
model (`torch.nn.Module`): |
|
|
Input model or `torch.nn.Module` as the function is run recursively. |
|
|
linear_replacement (`torch.nn.Module`): |
|
|
The linear module that replaces the old one. Only expects standard arguments. |
|
|
If other arguments need to be passed, use a lambda. |
|
|
skip_modules (`List[str]`, *optional*, defaults to `lm_head`): |
|
|
List of modules names not to convert. Defaults to `lm_head`. |
|
|
copy_weights (`bool`): |
|
|
Copy the weights from the old linear module to the new one |
|
|
post_processing_fun_name (`str`): |
|
|
A function name of the replacement linear class that is called |
|
|
after processing. |
|
|
""" |
|
|
for name, module in model.named_children(): |
|
|
if len(list(module.children())) > 0: |
|
|
replace_linear(module, linear_replacement, skip_modules, copy_weights, post_processing_function) |
|
|
|
|
|
if isinstance(module, torch.nn.Linear) and name not in skip_modules: |
|
|
old_module = model._modules[name] |
|
|
model._modules[name] = linear_replacement( |
|
|
module.in_features, |
|
|
module.out_features, |
|
|
module.bias is not None, |
|
|
) |
|
|
if copy_weights: |
|
|
model._modules[name].weight = old_module.weight |
|
|
model._modules[name].bias = old_module.bias |
|
|
|
|
|
if post_processing_function is not None: |
|
|
func = getattr(module, post_processing_function, None) |
|
|
if func is not None: func(module) |
|
|
return model |
|
|
|
|
|
|