Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so +3 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__init__.py +4 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/checkpoint_activation.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/contract.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/fully_shard.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/replicate.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/checkpoint_activation.py +126 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/contract.py +224 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__init__.py +2 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_api.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_collectives.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_common.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_init.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param_group.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_state.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/fully_shard.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_api.py +80 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_collectives.py +477 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_common.py +152 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_init.py +168 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param.py +754 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param_group.py +614 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_state.py +383 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/fully_shard.py +446 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fully_shard.py +131 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/replicate.py +256 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_tools/__pycache__/fsdp2_mem_tracker.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_tools/mem_tracker.py +943 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_unshard_param_utils.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_optim_utils.py +2091 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_runtime_utils.py +1638 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_shard_utils.py +137 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_state_dict_utils.py +924 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_trace_utils.py +238 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_traversal_utils.py +113 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_unshard_param_utils.py +336 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/api.py +410 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/sharded_grad_scaler.py +396 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/wrap.py +608 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/api.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/options.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/rref_proxy.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/_testing/__init__.py +20 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/_testing/__pycache__/__init__.cpython-310.pyc +0 -0
.gitattributes
CHANGED
|
@@ -875,3 +875,5 @@ infer_4_47_1/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args
|
|
| 875 |
infer_4_47_1/lib/python3.10/site-packages/sympy/stats/__pycache__/crv_types.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 876 |
infer_4_47_1/lib/python3.10/site-packages/sympy/core/__pycache__/function.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 877 |
infer_4_47_1/lib/python3.10/site-packages/sympy/core/__pycache__/expr.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 875 |
infer_4_47_1/lib/python3.10/site-packages/sympy/stats/__pycache__/crv_types.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 876 |
infer_4_47_1/lib/python3.10/site-packages/sympy/core/__pycache__/function.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 877 |
infer_4_47_1/lib/python3.10/site-packages/sympy/core/__pycache__/expr.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 878 |
+
infer_4_47_1/lib/python3.10/site-packages/torch/testing/_internal/__pycache__/common_utils.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 879 |
+
infer_4_30_0/lib/python3.10/site-packages/vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so filter=lfs diff=lfs merge=lfs -text
|
infer_4_30_0/lib/python3.10/site-packages/vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c666388d3fc323a1e8ec1a89543d391a531cc405dc112ea1c66c372b620664ea
|
| 3 |
+
size 220831720
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .checkpoint_activation import checkpoint
|
| 2 |
+
from .contract import _get_registry, contract
|
| 3 |
+
from .fully_shard import fully_shard
|
| 4 |
+
from .replicate import replicate
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (364 Bytes). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/checkpoint_activation.cpython-310.pyc
ADDED
|
Binary file (4.25 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/contract.cpython-310.pyc
ADDED
|
Binary file (6.13 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/fully_shard.cpython-310.pyc
ADDED
|
Binary file (3.88 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/replicate.cpython-310.pyc
ADDED
|
Binary file (7.2 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/checkpoint_activation.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-decorators
|
| 2 |
+
# mypy: allow-untyped-defs
|
| 3 |
+
from contextlib import contextmanager, nullcontext
|
| 4 |
+
from typing import Any, ContextManager, Dict, Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.utils.checkpoint import (
|
| 9 |
+
_checkpoint_without_reentrant_generator,
|
| 10 |
+
_DEFAULT_DETERMINISM_MODE,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from .contract import contract
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@contextmanager
|
| 17 |
+
def _no_hook(module: nn.Module, user_ctx: Optional[ContextManager] = None):
|
| 18 |
+
r"""
|
| 19 |
+
Disable hooks installed by checkpoint to avoid unintentional recursion
|
| 20 |
+
during backward recomputation.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
with user_ctx if user_ctx else nullcontext():
|
| 24 |
+
orig_enable_hook = checkpoint.state(module).enable_hook
|
| 25 |
+
checkpoint.state(module).enable_hook = False
|
| 26 |
+
try:
|
| 27 |
+
yield
|
| 28 |
+
finally:
|
| 29 |
+
checkpoint.state(module).enable_hook = orig_enable_hook
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@contract()
|
| 33 |
+
def checkpoint(module: nn.Module, **kwargs) -> nn.Module:
|
| 34 |
+
r"""
|
| 35 |
+
This is a composable activation checkpointing API. Unlike functional
|
| 36 |
+
activation checkpointing APIs, this one does not require changing model
|
| 37 |
+
source code. Unlike ``nn.Module`` wrapper activation checkpointing APIs,
|
| 38 |
+
this one does not modify model structure or fully-qualified names either.
|
| 39 |
+
Under the hood, it registers activation checkpointing logic as pre- and
|
| 40 |
+
post-forward hooks. Hence, this API can be easily applied to any model or
|
| 41 |
+
sub-modules in the model.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
module (nn.Module): the target model or sub-module to apply activation
|
| 45 |
+
checkpointing.
|
| 46 |
+
|
| 47 |
+
Example::
|
| 48 |
+
>>> # xdoctest: +SKIP
|
| 49 |
+
>>> import torch.nn as nn
|
| 50 |
+
>>>
|
| 51 |
+
>>> class MyModel(nn.Module):
|
| 52 |
+
>>> def __init__(self) -> None:
|
| 53 |
+
>>> super().__init__()
|
| 54 |
+
>>> self.l1 = nn.Linear(10, 10)
|
| 55 |
+
>>> self.l2 = nn.Linear(10, 10)
|
| 56 |
+
>>>
|
| 57 |
+
>>> def forward(self, x):
|
| 58 |
+
>>> return self.l2(self.l1(x))
|
| 59 |
+
>>>
|
| 60 |
+
>>> model = MyModel()
|
| 61 |
+
>>> checkpoint(model.l1) # apply activation checkpointing only to l1
|
| 62 |
+
>>> model(torch.zeros(2, 10)).sum().backward()
|
| 63 |
+
|
| 64 |
+
"""
|
| 65 |
+
torch._C._log_api_usage_once("torch.distributed.checkpoint")
|
| 66 |
+
|
| 67 |
+
use_reentrant = kwargs.pop("use_reentrant", False)
|
| 68 |
+
if use_reentrant:
|
| 69 |
+
raise NotImplementedError(
|
| 70 |
+
"use_reentrant=True is not supported in composable checkpoint. "
|
| 71 |
+
"Please use torch.utils.checkpoint.checkpoint instead."
|
| 72 |
+
)
|
| 73 |
+
preserve_rng_state = kwargs.pop("preserve_rng_state", True)
|
| 74 |
+
user_context_fns = kwargs.pop("context_fn", None)
|
| 75 |
+
determinism_check = kwargs.pop("determinism_check", _DEFAULT_DETERMINISM_MODE)
|
| 76 |
+
debug = kwargs.pop("debug", False)
|
| 77 |
+
|
| 78 |
+
if kwargs:
|
| 79 |
+
raise ValueError(
|
| 80 |
+
"Unexpected keyword arguments: " + ",".join(arg for arg in kwargs)
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
def forward_pre_hook(
|
| 84 |
+
module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
| 85 |
+
) -> None:
|
| 86 |
+
if checkpoint.state(module).enable_hook:
|
| 87 |
+
|
| 88 |
+
def context_fns():
|
| 89 |
+
if user_context_fns is not None:
|
| 90 |
+
ctx1, ctx2 = user_context_fns()
|
| 91 |
+
return ctx1, _no_hook(module, ctx2)
|
| 92 |
+
else:
|
| 93 |
+
return nullcontext(), _no_hook(module)
|
| 94 |
+
|
| 95 |
+
checkpoint.state(
|
| 96 |
+
module
|
| 97 |
+
)._ac_generator = _checkpoint_without_reentrant_generator(
|
| 98 |
+
module,
|
| 99 |
+
preserve_rng_state,
|
| 100 |
+
context_fns,
|
| 101 |
+
determinism_check,
|
| 102 |
+
debug,
|
| 103 |
+
*args,
|
| 104 |
+
**kwargs,
|
| 105 |
+
)
|
| 106 |
+
next(checkpoint.state(module)._ac_generator)
|
| 107 |
+
|
| 108 |
+
def forward_hook(module: nn.Module, inputs: Tuple[Any, ...], output: Any) -> Any:
|
| 109 |
+
if checkpoint.state(module).enable_hook:
|
| 110 |
+
try:
|
| 111 |
+
next(checkpoint.state(module)._ac_generator)
|
| 112 |
+
except StopIteration:
|
| 113 |
+
pass
|
| 114 |
+
else:
|
| 115 |
+
raise RuntimeError(
|
| 116 |
+
"Expected non-reentrant activation checkpoint generator to be exhausted, but it was not!"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Ensure that we no longer hold on to the generator. always_call=True helps ensure we
|
| 120 |
+
# clear this even in the case of exception in fwd pass.
|
| 121 |
+
checkpoint.state(module)._ac_generator = None
|
| 122 |
+
|
| 123 |
+
checkpoint.state(module).enable_hook = True
|
| 124 |
+
module.register_forward_pre_hook(forward_pre_hook, with_kwargs=True)
|
| 125 |
+
module.register_forward_hook(forward_hook, prepend=True, always_call=True)
|
| 126 |
+
return module
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/contract.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import uuid
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from functools import wraps
|
| 5 |
+
from typing import Callable, Dict, List, Optional, Sequence, Type, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch.distributed._composable_state import _State
|
| 10 |
+
from torch.distributed.utils import _get_root_modules
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def generate_state_key(string="__composable_api_state_key"):
|
| 14 |
+
return f"{string}_{str(uuid.uuid4())}"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
STATE_KEY = generate_state_key()
|
| 18 |
+
REGISTRY_KEY = generate_state_key()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# TODO: we can add additional info to RegistryItem to share across APIs. E.g.,
|
| 22 |
+
# we can add args and kwargs here, and then we can detect whether fully_shard
|
| 23 |
+
# is combined with reentrant activation checkpointing and error out with a clear
|
| 24 |
+
# message.
|
| 25 |
+
class RegistryItem:
|
| 26 |
+
pass
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def contract(state_cls: Type[_State] = _State):
|
| 30 |
+
r"""
|
| 31 |
+
Decorate a function as a composable distributed API, where the first
|
| 32 |
+
argument of the function must be an :class:`nn.Module` instance or sequence
|
| 33 |
+
of :class:`nn.Module` instances.
|
| 34 |
+
|
| 35 |
+
The decorator verifies that the decorated function does not modify
|
| 36 |
+
fully-qualified names (FQNs) for parameters, buffers, or modules. The
|
| 37 |
+
decorated function can return different module instances than the input
|
| 38 |
+
modules; the FQN invariant will be enforced following the input order.
|
| 39 |
+
|
| 40 |
+
When a function ``func`` is decorated by ``@contract()``, a
|
| 41 |
+
``.state(module: nn.Module)`` method will be installed to the decorated
|
| 42 |
+
function. Then you can retrieve and modify the state on a module by calling
|
| 43 |
+
``func.state(module)``.
|
| 44 |
+
|
| 45 |
+
Example::
|
| 46 |
+
>>> # xdoctest: +SKIP
|
| 47 |
+
>>> import torch.nn as nn
|
| 48 |
+
>>>
|
| 49 |
+
>>> class MyModel(nn.Module):
|
| 50 |
+
>>> def __init__(self) -> None:
|
| 51 |
+
>>> super().__init__()
|
| 52 |
+
>>> self.l1 = nn.Linear(10, 10)
|
| 53 |
+
>>> self.l2 = nn.Linear(10, 10)
|
| 54 |
+
>>>
|
| 55 |
+
>>> def forward(self, x):
|
| 56 |
+
>>> return self.l2(self.l1(x))
|
| 57 |
+
>>>
|
| 58 |
+
>>> @contract()
|
| 59 |
+
>>> def my_feature(module: nn.Module) -> nn.Module:
|
| 60 |
+
>>> my_feature.state(module).some_state = "any value"
|
| 61 |
+
>>> return module
|
| 62 |
+
>>>
|
| 63 |
+
>>> model = MyModel()
|
| 64 |
+
>>> my_feature(model.l1)
|
| 65 |
+
>>> assert my_feature.state(model.l1).some_state == "any value"
|
| 66 |
+
>>> my_feature(model.l2)
|
| 67 |
+
>>> model(torch.randn(2, 10)).sum().backward()
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
# wraps will make functions decorated with contract() pickleable - needed for integration with torch.package
|
| 71 |
+
@wraps(state_cls)
|
| 72 |
+
def inner(func):
|
| 73 |
+
@wraps(func)
|
| 74 |
+
def wrapper(
|
| 75 |
+
module: Union[nn.Module, Sequence[nn.Module]], *args, **kwargs
|
| 76 |
+
) -> Optional[nn.Module]:
|
| 77 |
+
inp_module = module
|
| 78 |
+
if isinstance(module, nn.Module):
|
| 79 |
+
modules = [module]
|
| 80 |
+
else:
|
| 81 |
+
# If the user passes a sequence of modules, then we assume that
|
| 82 |
+
# we only need to insert the state object on the root modules
|
| 83 |
+
# (i.e. those without a parent) among the passed-in modules.
|
| 84 |
+
modules = _get_root_modules(list(module))
|
| 85 |
+
state = state_cls() # shared across all modules
|
| 86 |
+
registry_item = RegistryItem() # shared across all modules
|
| 87 |
+
|
| 88 |
+
# `func` is allowed to return different module instances than the
|
| 89 |
+
# input modules as long as FQNs are preserved following the input
|
| 90 |
+
# module order
|
| 91 |
+
all_orig_named_params: List[Dict[str, nn.Parameter]] = []
|
| 92 |
+
all_orig_named_buffers: List[Dict[str, torch.Tensor]] = []
|
| 93 |
+
all_orig_named_modules: List[Dict[str, nn.Module]] = []
|
| 94 |
+
|
| 95 |
+
for module in modules:
|
| 96 |
+
default_all_state: Dict[Callable, _State] = OrderedDict()
|
| 97 |
+
default_registry: Dict[str, RegistryItem] = OrderedDict()
|
| 98 |
+
all_state: Dict[Callable, _State] = module.__dict__.setdefault( # type: ignore[call-overload]
|
| 99 |
+
STATE_KEY, default_all_state
|
| 100 |
+
)
|
| 101 |
+
if not isinstance(all_state, dict):
|
| 102 |
+
raise AssertionError(
|
| 103 |
+
f"Distributed composable API states corrupted: {all_state}"
|
| 104 |
+
)
|
| 105 |
+
registry: Dict[str, RegistryItem] = module.__dict__.setdefault( # type: ignore[call-overload]
|
| 106 |
+
REGISTRY_KEY, default_registry
|
| 107 |
+
)
|
| 108 |
+
if not isinstance(registry, dict):
|
| 109 |
+
raise AssertionError(
|
| 110 |
+
f"Distributed composable API registry corrupted: {registry}"
|
| 111 |
+
)
|
| 112 |
+
if func in all_state or func.__name__ in registry:
|
| 113 |
+
raise AssertionError(
|
| 114 |
+
"Each distinct composable distributed API can only be applied to a "
|
| 115 |
+
f"module once. {func.__name__} has already been applied to the "
|
| 116 |
+
f"following module:\n{module}"
|
| 117 |
+
)
|
| 118 |
+
all_state.setdefault(func, state)
|
| 119 |
+
registry.setdefault(func.__name__, registry_item)
|
| 120 |
+
|
| 121 |
+
all_orig_named_params.append(OrderedDict(module.named_parameters()))
|
| 122 |
+
all_orig_named_buffers.append(OrderedDict(module.named_buffers()))
|
| 123 |
+
all_orig_named_modules.append(OrderedDict(module.named_modules()))
|
| 124 |
+
|
| 125 |
+
updated = func(inp_module, *args, **kwargs)
|
| 126 |
+
if updated is None:
|
| 127 |
+
updated = inp_module
|
| 128 |
+
if isinstance(updated, nn.Module):
|
| 129 |
+
updated_modules = [updated]
|
| 130 |
+
else:
|
| 131 |
+
updated_modules = _get_root_modules(list(inp_module))
|
| 132 |
+
|
| 133 |
+
all_new_named_params: List[Dict[str, nn.Parameter]] = []
|
| 134 |
+
all_new_named_buffers: List[Dict[str, torch.Tensor]] = []
|
| 135 |
+
all_new_named_modules: List[Dict[str, nn.Module]] = []
|
| 136 |
+
for module in updated_modules:
|
| 137 |
+
all_new_named_params.append(OrderedDict(module.named_parameters()))
|
| 138 |
+
all_new_named_buffers.append(OrderedDict(module.named_buffers()))
|
| 139 |
+
all_new_named_modules.append(OrderedDict(module.named_modules()))
|
| 140 |
+
|
| 141 |
+
num_orig_modules = len(all_orig_named_modules)
|
| 142 |
+
num_new_modules = len(all_new_named_modules)
|
| 143 |
+
if num_orig_modules != num_new_modules:
|
| 144 |
+
raise AssertionError(
|
| 145 |
+
f"{func.__name__} should return the same number of modules as input modules"
|
| 146 |
+
f"Inputs: {num_orig_modules} modules\n"
|
| 147 |
+
f"Outputs: {num_new_modules} modules"
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def check_fqn(orig_fqns: List[str], new_fqns: List[str], check_key: str):
|
| 151 |
+
if orig_fqns == new_fqns:
|
| 152 |
+
return
|
| 153 |
+
|
| 154 |
+
orig_fqn_set, new_fqn_set = set(orig_fqns), set(new_fqns)
|
| 155 |
+
orig_only = orig_fqn_set - new_fqn_set
|
| 156 |
+
new_only = new_fqn_set - orig_fqn_set
|
| 157 |
+
if len(orig_only) or len(new_only):
|
| 158 |
+
raise RuntimeError(
|
| 159 |
+
f"{check_key}"
|
| 160 |
+
"Composable distributed API implementations cannot modify FQNs.\n"
|
| 161 |
+
f"FQNs only in original: {orig_only}\n"
|
| 162 |
+
f"FQNs only in new: {new_only}"
|
| 163 |
+
)
|
| 164 |
+
else:
|
| 165 |
+
raise RuntimeError(
|
| 166 |
+
f"{check_key}"
|
| 167 |
+
"Composable distributed API implementations cannot modify "
|
| 168 |
+
"the order of FQNs.\n"
|
| 169 |
+
f"Original FQNs: {orig_only}\n"
|
| 170 |
+
f"New FQNs: {new_only}"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
for orig_named_params, new_named_params in zip(
|
| 174 |
+
all_orig_named_params, all_new_named_params
|
| 175 |
+
):
|
| 176 |
+
check_fqn(
|
| 177 |
+
list(orig_named_params.keys()),
|
| 178 |
+
list(new_named_params.keys()),
|
| 179 |
+
"Checking parameters: ",
|
| 180 |
+
)
|
| 181 |
+
for orig_named_buffers, new_named_buffers in zip(
|
| 182 |
+
all_orig_named_buffers, all_new_named_buffers
|
| 183 |
+
):
|
| 184 |
+
check_fqn(
|
| 185 |
+
list(orig_named_buffers.keys()),
|
| 186 |
+
list(new_named_buffers.keys()),
|
| 187 |
+
"Checking buffers: ",
|
| 188 |
+
)
|
| 189 |
+
for orig_named_modules, new_named_modules in zip(
|
| 190 |
+
all_orig_named_modules, all_new_named_modules
|
| 191 |
+
):
|
| 192 |
+
check_fqn(
|
| 193 |
+
list(orig_named_modules.keys()),
|
| 194 |
+
list(new_named_modules.keys()),
|
| 195 |
+
"Checking modules: ",
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# TODO: verify that installed distributed paradigms are compatible with
|
| 199 |
+
# each other.
|
| 200 |
+
|
| 201 |
+
return updated
|
| 202 |
+
|
| 203 |
+
def get_state(module: nn.Module) -> Optional[_State]:
|
| 204 |
+
return module.__dict__.setdefault( # type: ignore[call-overload]
|
| 205 |
+
STATE_KEY,
|
| 206 |
+
{}, # TODO(@yhcharles): this is a temporary fix, need a better way
|
| 207 |
+
).get(
|
| 208 |
+
func
|
| 209 |
+
) # type: ignore[call-overload]
|
| 210 |
+
|
| 211 |
+
wrapper.state = get_state # type: ignore[attr-defined]
|
| 212 |
+
|
| 213 |
+
return wrapper
|
| 214 |
+
|
| 215 |
+
return inner
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def _get_registry(module: nn.Module) -> Optional[Dict[str, RegistryItem]]:
|
| 219 |
+
r"""
|
| 220 |
+
Get an ``OrderedDict`` of composable APIs that have been applied to the
|
| 221 |
+
``module``, indexed by the API name. If no API has been applied, then this
|
| 222 |
+
returns ``None``.
|
| 223 |
+
"""
|
| 224 |
+
return getattr(module, REGISTRY_KEY, None)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._fsdp_api import CPUOffloadPolicy, MixedPrecisionPolicy, OffloadPolicy
|
| 2 |
+
from .fully_shard import FSDPModule, fully_shard, register_fsdp_forward_method
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (391 Bytes). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_api.cpython-310.pyc
ADDED
|
Binary file (4.05 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_collectives.cpython-310.pyc
ADDED
|
Binary file (11.9 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_common.cpython-310.pyc
ADDED
|
Binary file (5.16 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_init.cpython-310.pyc
ADDED
|
Binary file (5.18 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param.cpython-310.pyc
ADDED
|
Binary file (20.9 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param_group.cpython-310.pyc
ADDED
|
Binary file (18.5 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_state.cpython-310.pyc
ADDED
|
Binary file (11.9 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/fully_shard.cpython-310.pyc
ADDED
|
Binary file (18.4 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_api.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@dataclass(frozen=True)
|
| 9 |
+
class MixedPrecisionPolicy:
|
| 10 |
+
"""
|
| 11 |
+
This configures FSDP's mixed precision. Unlike autocast, this applies mixed
|
| 12 |
+
precision at the module level, not op level, which means low-precision
|
| 13 |
+
activations are saved for backward and high-to-low-precision casts are
|
| 14 |
+
incurred only at module boundaries.
|
| 15 |
+
|
| 16 |
+
FSDP works well with module-level mixed precision since it keeps the
|
| 17 |
+
high-precision sharded parameters in memory anyway. In other words, FSDP
|
| 18 |
+
does not require any extra memory to keep a high-precision copy of the
|
| 19 |
+
parameters for the optimizer step.
|
| 20 |
+
|
| 21 |
+
Attributes:
|
| 22 |
+
param_dtype (Optional[torch.dtype]): This specifies the dtype for
|
| 23 |
+
the unsharded parameter and hence the dtype for forward/backward
|
| 24 |
+
computation and the parameter all-gather. If this is ``None``, then
|
| 25 |
+
the unsharded parameter uses the original dtype. The optimizer step
|
| 26 |
+
uses the sharded parameter in the original dtype. (Default:
|
| 27 |
+
``None``)
|
| 28 |
+
reduce_dtype (Optional[torch.dtype]): This specifies the dtype for
|
| 29 |
+
gradient reduction (i.e. reduce-scatter or all-reduce). If this is
|
| 30 |
+
``None`` but ``param_dtype`` is not ``None``, then the reduction
|
| 31 |
+
uses the compute dtype. This can be used to run gradient reduction
|
| 32 |
+
in full precision while using low precision for compute. If also
|
| 33 |
+
gradient reduction is disabled via :meth:`set_requires_gradient_sync`,
|
| 34 |
+
then FSDP will accumulate gradients using ``reduce_dtype``.
|
| 35 |
+
(Default: ``None``)
|
| 36 |
+
output_dtype (Optional[torch.dtype]): This specifies the dtype for
|
| 37 |
+
casting floating-point forward outputs. This can be used to
|
| 38 |
+
help implement cases where different modules have different mixed
|
| 39 |
+
precision policies. (Default: ``None``)
|
| 40 |
+
cast_forward_inputs (bool): This specifies whether FSDP should cast the
|
| 41 |
+
forward's floating-point input tensors to ``param_dtype`` or not.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
param_dtype: Optional[torch.dtype] = None
|
| 45 |
+
reduce_dtype: Optional[torch.dtype] = None
|
| 46 |
+
output_dtype: Optional[torch.dtype] = None
|
| 47 |
+
cast_forward_inputs: bool = True
|
| 48 |
+
|
| 49 |
+
def __post_init__(self):
|
| 50 |
+
# Clamp `reduce_dtype` to `None` if no casting is required: since
|
| 51 |
+
# gradients are computed in `param_dtype`, if `reduce_dtype` matches,
|
| 52 |
+
# then we do not need extra casting
|
| 53 |
+
if self.param_dtype == self.reduce_dtype:
|
| 54 |
+
# Bypass the frozen dataclass checks
|
| 55 |
+
object.__setattr__(self, "reduce_dtype", None)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@dataclass
|
| 59 |
+
class OffloadPolicy:
|
| 60 |
+
"""This base class represents the policy of no offloading."""
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@dataclass
|
| 64 |
+
class CPUOffloadPolicy(OffloadPolicy):
|
| 65 |
+
"""
|
| 66 |
+
This offload policy offloads parameters, gradients, and optimizer states to
|
| 67 |
+
CPU. Sharded parameters are copied host-to-device before all-gather. The
|
| 68 |
+
all-gathered parameters are freed according to ``reshard_after_forward``.
|
| 69 |
+
Sharded gradients are copied device-to-host in backward, and the optimizer
|
| 70 |
+
step runs on CPU with CPU optimizer states.
|
| 71 |
+
|
| 72 |
+
Attributes:
|
| 73 |
+
pin_memory (bool): Whether to pin sharded parameter and gradient
|
| 74 |
+
memory. Pinning memory allows H2D/D2H copying without blocking the
|
| 75 |
+
CPU and in turn, overlap with compute, but pinned memory cannot be
|
| 76 |
+
used by other processes. Set this to ``False`` if you have
|
| 77 |
+
insufficient CPU memory. (Default: ``True``)
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
pin_memory: bool = True
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_collectives.py
ADDED
|
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-decorators
|
| 2 |
+
from typing import cast, List, NamedTuple, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch._dynamo.compiled_autograd as ca
|
| 6 |
+
import torch.distributed as dist
|
| 7 |
+
from torch.distributed.distributed_c10d import ReduceOp
|
| 8 |
+
from torch.distributed.tensor import DTensor
|
| 9 |
+
|
| 10 |
+
from ._fsdp_common import (
|
| 11 |
+
_get_dim0_padded_size,
|
| 12 |
+
_raise_assert_with_print,
|
| 13 |
+
_to_dtype_if_needed,
|
| 14 |
+
)
|
| 15 |
+
from ._fsdp_param import FSDPParam, ShardedState
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class AllGatherResult(NamedTuple):
|
| 19 |
+
all_gather_output: torch.Tensor
|
| 20 |
+
all_gather_event: Optional[torch.cuda.Event]
|
| 21 |
+
all_gather_work: Optional[dist.distributed_c10d.Work]
|
| 22 |
+
# For each parameter, the all-gather input dtype for each input
|
| 23 |
+
param_all_gather_input_dtypes: List[List[torch.dtype]]
|
| 24 |
+
# For each parameter, the all-gather input numel for each input
|
| 25 |
+
param_all_gather_input_numels: List[List[int]]
|
| 26 |
+
# 1D flattened version of `param_all_gather_input_numels` saved to avoid
|
| 27 |
+
# CPU overhead from recomputing
|
| 28 |
+
all_gather_input_split_sizes: List[int]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
lib = torch.library.Library("fsdp", "FRAGMENT") # noqa: TOR901
|
| 32 |
+
|
| 33 |
+
lib.define(
|
| 34 |
+
"""
|
| 35 |
+
all_gather_copy_in(
|
| 36 |
+
Tensor[] all_gather_inputs,
|
| 37 |
+
SymInt[] inp_split_sizes,
|
| 38 |
+
SymInt all_gather_input_numel,
|
| 39 |
+
SymInt world_size,
|
| 40 |
+
SymInt rank,
|
| 41 |
+
ScalarType dtype,
|
| 42 |
+
Device device
|
| 43 |
+
) -> (Tensor, Tensor)
|
| 44 |
+
"""
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@torch.library.impl(lib, "all_gather_copy_in", "Meta")
|
| 49 |
+
def all_gather_copy_in_meta(
|
| 50 |
+
all_gather_inputs: List[torch.Tensor],
|
| 51 |
+
inp_split_sizes: List[int],
|
| 52 |
+
all_gather_input_numel: int,
|
| 53 |
+
world_size: int,
|
| 54 |
+
rank: int,
|
| 55 |
+
dtype: torch.dtype,
|
| 56 |
+
device: torch.device,
|
| 57 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 58 |
+
all_gather_output = torch.empty(
|
| 59 |
+
(all_gather_input_numel * world_size,), dtype=dtype, device="meta"
|
| 60 |
+
)
|
| 61 |
+
all_gather_input = all_gather_output.narrow(
|
| 62 |
+
0, all_gather_input_numel * rank, all_gather_input_numel
|
| 63 |
+
)
|
| 64 |
+
return all_gather_input, all_gather_output
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@torch.library.impl(lib, "all_gather_copy_in", "CUDA")
|
| 68 |
+
@torch.library.impl(lib, "all_gather_copy_in", "CPU")
|
| 69 |
+
def all_gather_copy_in_cuda(
|
| 70 |
+
all_gather_inputs: List[torch.Tensor],
|
| 71 |
+
inp_split_sizes: List[int],
|
| 72 |
+
all_gather_input_numel: int,
|
| 73 |
+
world_size: int,
|
| 74 |
+
rank: int,
|
| 75 |
+
dtype: torch.dtype,
|
| 76 |
+
device: torch.device,
|
| 77 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 78 |
+
all_gather_output = torch.empty(
|
| 79 |
+
(all_gather_input_numel * world_size,), dtype=dtype, device=device
|
| 80 |
+
)
|
| 81 |
+
all_gather_input = all_gather_output.narrow(
|
| 82 |
+
0, all_gather_input_numel * rank, all_gather_input_numel
|
| 83 |
+
)
|
| 84 |
+
foreach_copy_dsts = torch.split(all_gather_input, inp_split_sizes)
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
torch._foreach_copy_(foreach_copy_dsts, all_gather_inputs)
|
| 87 |
+
return all_gather_input, all_gather_output
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
lib.define(
|
| 91 |
+
"split_with_sizes_copy(Tensor all_gather_output, SymInt[] all_gather_input_split_sizes, int dim=0, *, Tensor(a!)[] out) -> ()"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
@torch.library.impl(lib, "split_with_sizes_copy", "Meta")
|
| 96 |
+
@torch.library.impl(lib, "split_with_sizes_copy", "CUDA")
|
| 97 |
+
@torch.library.impl(lib, "split_with_sizes_copy", "CPU")
|
| 98 |
+
def split_with_sizes_copy(
|
| 99 |
+
all_gather_output: torch.Tensor,
|
| 100 |
+
all_gather_input_split_sizes: List[int],
|
| 101 |
+
dim: int,
|
| 102 |
+
out: List[torch.Tensor],
|
| 103 |
+
) -> None:
|
| 104 |
+
torch.split_with_sizes_copy(
|
| 105 |
+
all_gather_output, all_gather_input_split_sizes, dim=dim, out=out
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
lib.define(
|
| 110 |
+
"chunk_cat(Tensor[] tensors, int dim, int num_chunks, *, Tensor(a!) out) -> ()"
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@torch.library.impl(lib, "chunk_cat", "Meta")
|
| 115 |
+
@torch.library.impl(lib, "chunk_cat", "CUDA")
|
| 116 |
+
@torch.library.impl(lib, "chunk_cat", "CPU")
|
| 117 |
+
def chunk_cat(
|
| 118 |
+
tensors: List[torch.Tensor],
|
| 119 |
+
dim: int,
|
| 120 |
+
num_chunks: int,
|
| 121 |
+
out: torch.Tensor,
|
| 122 |
+
) -> None:
|
| 123 |
+
torch._chunk_cat(tensors, dim, num_chunks, out=out)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
@torch.no_grad()
|
| 127 |
+
def foreach_all_gather(
|
| 128 |
+
fsdp_params: List[FSDPParam],
|
| 129 |
+
group: dist.ProcessGroup,
|
| 130 |
+
async_op: bool,
|
| 131 |
+
all_gather_copy_in_stream: torch.cuda.Stream,
|
| 132 |
+
all_gather_stream: torch.cuda.Stream,
|
| 133 |
+
device: torch.device,
|
| 134 |
+
) -> Optional[AllGatherResult]:
|
| 135 |
+
world_size, rank = group.size(), group.rank()
|
| 136 |
+
with torch.cuda.stream(all_gather_copy_in_stream):
|
| 137 |
+
param_all_gather_inputs = _get_param_all_gather_inputs(fsdp_params)
|
| 138 |
+
(
|
| 139 |
+
param_all_gather_input_dtypes,
|
| 140 |
+
param_all_gather_input_numels,
|
| 141 |
+
dtype,
|
| 142 |
+
) = _get_all_gather_input_metadatas(param_all_gather_inputs)
|
| 143 |
+
if dtype == torch.uint8:
|
| 144 |
+
all_gather_inputs = [
|
| 145 |
+
t.view(torch.uint8) for ts in param_all_gather_inputs for t in ts
|
| 146 |
+
]
|
| 147 |
+
else:
|
| 148 |
+
all_gather_inputs = [t for ts in param_all_gather_inputs for t in ts]
|
| 149 |
+
inp_split_sizes = [t.numel() for t in all_gather_inputs]
|
| 150 |
+
all_gather_input_numel = sum(inp_split_sizes)
|
| 151 |
+
all_gather_input, all_gather_output = torch.ops.fsdp.all_gather_copy_in(
|
| 152 |
+
all_gather_inputs,
|
| 153 |
+
inp_split_sizes,
|
| 154 |
+
all_gather_input_numel,
|
| 155 |
+
world_size,
|
| 156 |
+
rank,
|
| 157 |
+
dtype,
|
| 158 |
+
device,
|
| 159 |
+
)
|
| 160 |
+
del param_all_gather_inputs
|
| 161 |
+
all_gather_stream.wait_stream(all_gather_copy_in_stream)
|
| 162 |
+
with torch.cuda.stream(all_gather_stream):
|
| 163 |
+
all_gather_work = dist.all_gather_into_tensor(
|
| 164 |
+
output_tensor=all_gather_output,
|
| 165 |
+
input_tensor=all_gather_input,
|
| 166 |
+
group=group,
|
| 167 |
+
async_op=async_op,
|
| 168 |
+
)
|
| 169 |
+
all_gather_event = all_gather_stream.record_event()
|
| 170 |
+
return AllGatherResult(
|
| 171 |
+
all_gather_output,
|
| 172 |
+
all_gather_event,
|
| 173 |
+
all_gather_work,
|
| 174 |
+
param_all_gather_input_dtypes,
|
| 175 |
+
param_all_gather_input_numels,
|
| 176 |
+
inp_split_sizes,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
@torch.no_grad()
|
| 181 |
+
def _get_param_all_gather_inputs(
|
| 182 |
+
fsdp_params: List[FSDPParam],
|
| 183 |
+
) -> List[List[torch.Tensor]]:
|
| 184 |
+
if ca.compiled_autograd_enabled:
|
| 185 |
+
return [fsdp_param.all_gather_inputs for fsdp_param in fsdp_params]
|
| 186 |
+
|
| 187 |
+
# Intentionally try to run a fast-path that bypasses abstractions for the
|
| 188 |
+
# common FSDP case of bf16/fp32 mixed precision in order to use foreach
|
| 189 |
+
# copy for lower CPU overhead and more efficient copying in eager
|
| 190 |
+
def use_foreach_copy(fsdp_param: FSDPParam) -> bool:
|
| 191 |
+
return (
|
| 192 |
+
fsdp_param.param_dtype is not None
|
| 193 |
+
and not fsdp_param.offload_to_cpu
|
| 194 |
+
and not hasattr(fsdp_param._sharded_local_tensor, "fsdp_pre_all_gather")
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
param_all_gather_inputs: List[List[torch.Tensor]] = [[] for _ in fsdp_params]
|
| 198 |
+
foreach_copy_indices: List[int] = []
|
| 199 |
+
foreach_copy_inputs: List[torch.Tensor] = []
|
| 200 |
+
foreach_copy_input_numels: List[int] = []
|
| 201 |
+
|
| 202 |
+
# 1st pass: for foreach-copy parameters, get inputs and metadata for the
|
| 203 |
+
# foreach copy, and for the others, actually get their all-gather inputs
|
| 204 |
+
for i, fsdp_param in enumerate(fsdp_params):
|
| 205 |
+
if use_foreach_copy(fsdp_param):
|
| 206 |
+
foreach_copy_indices.append(i)
|
| 207 |
+
all_gather_input = (
|
| 208 |
+
fsdp_param._sharded_param_data
|
| 209 |
+
if fsdp_param.sharded_state == ShardedState.SHARDED
|
| 210 |
+
else cast(torch.Tensor, fsdp_param._sharded_post_forward_param_data)
|
| 211 |
+
)
|
| 212 |
+
foreach_copy_inputs.append(all_gather_input)
|
| 213 |
+
foreach_copy_input_numels.append(all_gather_input.numel())
|
| 214 |
+
else:
|
| 215 |
+
param_all_gather_inputs[i] = fsdp_param.all_gather_inputs
|
| 216 |
+
|
| 217 |
+
# 2nd pass: use foreach copy to compute the remaining all-gather inputs
|
| 218 |
+
if foreach_copy_inputs:
|
| 219 |
+
fsdp_param_0 = fsdp_params[foreach_copy_indices[0]]
|
| 220 |
+
param_dtype, device = fsdp_param_0.param_dtype, fsdp_param_0.device
|
| 221 |
+
flat_foreach_copy_input = torch.empty(
|
| 222 |
+
(sum(foreach_copy_input_numels),), device=device, dtype=param_dtype
|
| 223 |
+
)
|
| 224 |
+
splits = torch.split(flat_foreach_copy_input, foreach_copy_input_numels)
|
| 225 |
+
torch._foreach_copy_(splits, foreach_copy_inputs)
|
| 226 |
+
for i, split in zip(foreach_copy_indices, splits):
|
| 227 |
+
param_all_gather_inputs[i] = [split]
|
| 228 |
+
|
| 229 |
+
return param_all_gather_inputs
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
@torch.no_grad()
|
| 233 |
+
def foreach_all_gather_copy_out(
|
| 234 |
+
all_gather_result: AllGatherResult,
|
| 235 |
+
fsdp_params: List[FSDPParam],
|
| 236 |
+
group: dist.ProcessGroup,
|
| 237 |
+
) -> None:
|
| 238 |
+
(
|
| 239 |
+
all_gather_output,
|
| 240 |
+
all_gather_event,
|
| 241 |
+
all_gather_work,
|
| 242 |
+
param_all_gather_input_dtypes,
|
| 243 |
+
param_all_gather_input_numels,
|
| 244 |
+
all_gather_input_split_sizes,
|
| 245 |
+
) = all_gather_result
|
| 246 |
+
if all_gather_event is not None: # sync op
|
| 247 |
+
torch.cuda.current_stream().wait_event(all_gather_event)
|
| 248 |
+
if isinstance(all_gather_work, dist.distributed_c10d.Work): # async op
|
| 249 |
+
all_gather_work.wait()
|
| 250 |
+
world_size, device = group.size(), all_gather_output.device
|
| 251 |
+
for all_gather_input_numels, all_gather_input_dtypes, fsdp_param in zip(
|
| 252 |
+
param_all_gather_input_numels, param_all_gather_input_dtypes, fsdp_params
|
| 253 |
+
):
|
| 254 |
+
if ca.compiled_autograd_enabled:
|
| 255 |
+
fsdp_param.init_all_gather_outputs(
|
| 256 |
+
all_gather_input_numels,
|
| 257 |
+
all_gather_input_dtypes,
|
| 258 |
+
world_size,
|
| 259 |
+
device,
|
| 260 |
+
# NOTE: Under compile, make sure we always recreate all_gather_outputs
|
| 261 |
+
# per AllGather. See [Note: Invariants for torch.compile Traceable FSDP2].
|
| 262 |
+
force_recreate=True,
|
| 263 |
+
)
|
| 264 |
+
else:
|
| 265 |
+
fsdp_param.init_all_gather_outputs(
|
| 266 |
+
all_gather_input_numels, all_gather_input_dtypes, world_size, device
|
| 267 |
+
) # no-op after 1st call
|
| 268 |
+
fsdp_param.alloc_all_gather_outputs()
|
| 269 |
+
all_gather_output = all_gather_output.view(world_size, -1)
|
| 270 |
+
gen = (t for fsdp_param in fsdp_params for t in fsdp_param.all_gather_outputs)
|
| 271 |
+
if all_gather_output.dtype == torch.uint8:
|
| 272 |
+
out = [t.view(world_size, -1).view(torch.uint8) for t in gen]
|
| 273 |
+
else:
|
| 274 |
+
out = [t.view(world_size, -1) for t in gen]
|
| 275 |
+
torch.ops.fsdp.split_with_sizes_copy(
|
| 276 |
+
all_gather_output, all_gather_input_split_sizes, dim=1, out=out
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
@torch.no_grad()
|
| 281 |
+
def foreach_reduce(
|
| 282 |
+
fsdp_params: List[FSDPParam],
|
| 283 |
+
unsharded_grads: List[torch.Tensor],
|
| 284 |
+
reduce_scatter_group: dist.ProcessGroup,
|
| 285 |
+
reduce_scatter_stream: torch.cuda.Stream,
|
| 286 |
+
orig_dtype: torch.dtype,
|
| 287 |
+
reduce_dtype: Optional[torch.dtype],
|
| 288 |
+
device: torch.device,
|
| 289 |
+
reduce_scatter_reduce_op: Optional[Union[dist.ReduceOp, dist.ReduceOp.RedOpType]],
|
| 290 |
+
all_reduce_group: Optional[dist.ProcessGroup], # not `None` iff HSDP
|
| 291 |
+
all_reduce_stream: torch.cuda.Stream,
|
| 292 |
+
all_reduce_grads: bool,
|
| 293 |
+
partial_reduce_output: Optional[torch.Tensor], # only used for HSDP
|
| 294 |
+
) -> Tuple[torch.Tensor, torch.cuda.Event, torch.cuda.Event, Optional[torch.Tensor]]:
|
| 295 |
+
"""
|
| 296 |
+
``unsharded_grads`` owns the references to the gradients computed by
|
| 297 |
+
autograd, so clearing the list frees the gradients.
|
| 298 |
+
"""
|
| 299 |
+
grad_dtypes = {grad.dtype for grad in unsharded_grads}
|
| 300 |
+
if len(grad_dtypes) != 1:
|
| 301 |
+
# Check this at runtime since it could be a real runtime error if e.g.
|
| 302 |
+
# fp8 weights do not produce the correct higher precision gradients
|
| 303 |
+
_raise_assert_with_print(
|
| 304 |
+
f"FSDP reduce-scatter expects uniform gradient dtype but got {grad_dtypes}"
|
| 305 |
+
)
|
| 306 |
+
grad_dtype = unsharded_grads[0].dtype
|
| 307 |
+
reduce_dtype = reduce_dtype or grad_dtype
|
| 308 |
+
predivide_factor, postdivide_factor = _get_gradient_divide_factors(
|
| 309 |
+
reduce_scatter_group, all_reduce_group, reduce_dtype
|
| 310 |
+
)
|
| 311 |
+
world_size = reduce_scatter_group.size()
|
| 312 |
+
padded_unsharded_sizes = tuple(
|
| 313 |
+
_get_dim0_padded_size(grad.size(), world_size) for grad in unsharded_grads
|
| 314 |
+
)
|
| 315 |
+
reduce_scatter_input_numel = sum(s.numel() for s in padded_unsharded_sizes)
|
| 316 |
+
reduce_scatter_output_numel = reduce_scatter_input_numel // world_size
|
| 317 |
+
reduce_scatter_input = torch.empty(
|
| 318 |
+
(reduce_scatter_input_numel,), dtype=reduce_dtype, device=device
|
| 319 |
+
)
|
| 320 |
+
foreach_reduce_scatter_copy_in(unsharded_grads, reduce_scatter_input, world_size)
|
| 321 |
+
current_stream = torch.cuda.current_stream()
|
| 322 |
+
# Only after the copy-in finishes can we free the gradients
|
| 323 |
+
unsharded_grads.clear()
|
| 324 |
+
reduce_scatter_stream.wait_stream(current_stream)
|
| 325 |
+
with torch.cuda.stream(reduce_scatter_stream):
|
| 326 |
+
reduce_output = reduce_scatter_input.new_empty((reduce_scatter_output_numel,))
|
| 327 |
+
_div_if_needed(reduce_scatter_input, predivide_factor)
|
| 328 |
+
if reduce_scatter_reduce_op is None:
|
| 329 |
+
if predivide_factor is None:
|
| 330 |
+
reduce_scatter_reduce_op = ReduceOp.AVG
|
| 331 |
+
else:
|
| 332 |
+
reduce_scatter_reduce_op = ReduceOp.SUM
|
| 333 |
+
dist.reduce_scatter_tensor(
|
| 334 |
+
output=reduce_output,
|
| 335 |
+
input=reduce_scatter_input,
|
| 336 |
+
group=reduce_scatter_group,
|
| 337 |
+
op=reduce_scatter_reduce_op,
|
| 338 |
+
)
|
| 339 |
+
reduce_scatter_event = reduce_scatter_stream.record_event()
|
| 340 |
+
post_reduce_stream = reduce_scatter_stream
|
| 341 |
+
if all_reduce_group is not None: # HSDP
|
| 342 |
+
# Accumulations must run in the reduce-scatter stream
|
| 343 |
+
if not all_reduce_grads:
|
| 344 |
+
if partial_reduce_output is not None:
|
| 345 |
+
partial_reduce_output += reduce_output
|
| 346 |
+
else:
|
| 347 |
+
partial_reduce_output = reduce_output
|
| 348 |
+
return (
|
| 349 |
+
reduce_scatter_input,
|
| 350 |
+
reduce_scatter_event,
|
| 351 |
+
post_reduce_stream.record_event(),
|
| 352 |
+
partial_reduce_output,
|
| 353 |
+
)
|
| 354 |
+
if partial_reduce_output is not None:
|
| 355 |
+
reduce_output += partial_reduce_output
|
| 356 |
+
post_reduce_stream = all_reduce_stream
|
| 357 |
+
all_reduce_stream.wait_stream(reduce_scatter_stream)
|
| 358 |
+
with torch.cuda.stream(all_reduce_stream):
|
| 359 |
+
dist.all_reduce(
|
| 360 |
+
reduce_output,
|
| 361 |
+
group=all_reduce_group,
|
| 362 |
+
op=ReduceOp.AVG if predivide_factor is None else ReduceOp.SUM,
|
| 363 |
+
)
|
| 364 |
+
with torch.cuda.stream(post_reduce_stream):
|
| 365 |
+
_div_if_needed(reduce_output, postdivide_factor)
|
| 366 |
+
reduce_output = _to_dtype_if_needed(reduce_output, orig_dtype)
|
| 367 |
+
# View out and accumulate sharded gradients
|
| 368 |
+
flat_grad_offset = 0 # [0, reduce_scatter_output_numel - 1]
|
| 369 |
+
for padded_unsharded_size, fsdp_param in zip(
|
| 370 |
+
padded_unsharded_sizes, fsdp_params
|
| 371 |
+
):
|
| 372 |
+
new_sharded_grad = torch.as_strided(
|
| 373 |
+
reduce_output,
|
| 374 |
+
size=fsdp_param.sharded_size,
|
| 375 |
+
stride=fsdp_param.contiguous_sharded_stride,
|
| 376 |
+
storage_offset=flat_grad_offset,
|
| 377 |
+
)
|
| 378 |
+
to_accumulate_grad = fsdp_param.sharded_param.grad is not None
|
| 379 |
+
if fsdp_param.offload_to_cpu:
|
| 380 |
+
# Only overlap the D2H copy (copying to pinned memory) if not
|
| 381 |
+
# accumulating gradients since the CPU add kernel depends on
|
| 382 |
+
# the copy result and we cannot run the add as a callback
|
| 383 |
+
non_blocking = fsdp_param.pin_memory and not to_accumulate_grad
|
| 384 |
+
# Since the GPU sharded gradient is allocated in the RS stream,
|
| 385 |
+
# we can free it here by not keeping a ref without waiting for
|
| 386 |
+
# the D2H copy since future RS-stream ops run after the copy
|
| 387 |
+
new_sharded_grad = new_sharded_grad.to(
|
| 388 |
+
torch.device("cpu"), non_blocking=non_blocking
|
| 389 |
+
)
|
| 390 |
+
if non_blocking:
|
| 391 |
+
# Record an event on which to block the CPU thread to
|
| 392 |
+
# ensure that the D2H copy finishes before the optimizer
|
| 393 |
+
fsdp_param.grad_offload_event = reduce_scatter_stream.record_event()
|
| 394 |
+
if to_accumulate_grad:
|
| 395 |
+
assert isinstance(fsdp_param.sharded_param.grad, DTensor)
|
| 396 |
+
fsdp_param.sharded_param.grad._local_tensor += new_sharded_grad
|
| 397 |
+
else:
|
| 398 |
+
new_sharded_dtensor_grad = fsdp_param.to_sharded_dtensor(
|
| 399 |
+
new_sharded_grad
|
| 400 |
+
)
|
| 401 |
+
fsdp_param.sharded_param.grad = new_sharded_dtensor_grad
|
| 402 |
+
if not ca.compiled_autograd_enabled:
|
| 403 |
+
for hook in (
|
| 404 |
+
getattr(fsdp_param.sharded_param, "_post_accumulate_grad_hooks", {})
|
| 405 |
+
or {}
|
| 406 |
+
).values():
|
| 407 |
+
hook(fsdp_param.sharded_param)
|
| 408 |
+
padded_sharded_numel = padded_unsharded_size.numel() // world_size
|
| 409 |
+
flat_grad_offset += padded_sharded_numel
|
| 410 |
+
post_reduce_event = post_reduce_stream.record_event()
|
| 411 |
+
# The RS output is allocated in the RS stream and used in the default
|
| 412 |
+
# stream (for optimizer). To ensure its memory is not reused for later
|
| 413 |
+
# RSs, we do not need extra synchronization since the sharded parameters
|
| 414 |
+
# hold refs through the end of backward.
|
| 415 |
+
return reduce_scatter_input, reduce_scatter_event, post_reduce_event, None
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def foreach_reduce_scatter_copy_in(
|
| 419 |
+
unsharded_grads: List[torch.Tensor],
|
| 420 |
+
reduce_scatter_input: torch.Tensor,
|
| 421 |
+
world_size: int,
|
| 422 |
+
) -> None:
|
| 423 |
+
reduce_scatter_input = reduce_scatter_input.view(world_size, -1)
|
| 424 |
+
torch.ops.fsdp.chunk_cat(
|
| 425 |
+
unsharded_grads, dim=0, num_chunks=world_size, out=reduce_scatter_input
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def _get_all_gather_input_metadatas(
|
| 430 |
+
param_all_gather_inputs: List[List[torch.Tensor]],
|
| 431 |
+
) -> Tuple[List[List[torch.dtype]], List[List[int]], torch.dtype]:
|
| 432 |
+
param_all_gather_input_dtypes: List[List[torch.dtype]] = []
|
| 433 |
+
param_all_gather_input_numels: List[List[int]] = []
|
| 434 |
+
all_gather_dtype = param_all_gather_inputs[0][0].dtype
|
| 435 |
+
for all_gather_inputs in param_all_gather_inputs:
|
| 436 |
+
input_dtypes: List[torch.dtype] = []
|
| 437 |
+
input_numels: List[int] = []
|
| 438 |
+
for all_gather_input in all_gather_inputs:
|
| 439 |
+
if all_gather_input.dtype != all_gather_dtype:
|
| 440 |
+
all_gather_dtype = torch.uint8
|
| 441 |
+
input_dtypes.append(all_gather_input.dtype)
|
| 442 |
+
input_numels.append(all_gather_input.numel())
|
| 443 |
+
param_all_gather_input_dtypes.append(input_dtypes)
|
| 444 |
+
param_all_gather_input_numels.append(input_numels)
|
| 445 |
+
return (
|
| 446 |
+
param_all_gather_input_dtypes,
|
| 447 |
+
param_all_gather_input_numels,
|
| 448 |
+
all_gather_dtype,
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
def _get_gradient_divide_factors(
|
| 453 |
+
reduce_scatter_group: dist.ProcessGroup,
|
| 454 |
+
all_reduce_group: Optional[dist.ProcessGroup],
|
| 455 |
+
reduce_dtype: torch.dtype,
|
| 456 |
+
) -> Union[Tuple[None, None], Tuple[float, float]]:
|
| 457 |
+
# For fp32/bf16, we do not need to worry about overflow/underflow, so we
|
| 458 |
+
# use NCCL's built-in division to avoid separate div kernels
|
| 459 |
+
if reduce_dtype in (torch.float32, torch.bfloat16):
|
| 460 |
+
return None, None
|
| 461 |
+
data_parallel_size = reduce_scatter_group.size()
|
| 462 |
+
if all_reduce_group is not None:
|
| 463 |
+
data_parallel_size *= all_reduce_group.size()
|
| 464 |
+
# Since fp16 has smaller dynamic range than fp32/bf16, we want to avoid
|
| 465 |
+
# overflow/underflow. For N data parallel workers, each worker computes
|
| 466 |
+
# g_i, and they collectively reduce (g_1 + ... + g_N) / N. To avoid
|
| 467 |
+
# overflow/underflow, we divide by ~sqrt(N) before/after the reduction.
|
| 468 |
+
factor: int = 1
|
| 469 |
+
while data_parallel_size % factor == 0 and data_parallel_size / factor > factor:
|
| 470 |
+
factor *= 2
|
| 471 |
+
factor = float(factor)
|
| 472 |
+
return (factor, data_parallel_size / factor)
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def _div_if_needed(tensor: torch.Tensor, div_factor: Optional[float]) -> None:
|
| 476 |
+
if div_factor is not None and div_factor > 1:
|
| 477 |
+
tensor.div_(div_factor)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_common.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import math
|
| 3 |
+
import traceback
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from enum import auto, Enum
|
| 6 |
+
from typing import Any, cast, List, Optional
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch._dynamo.compiled_autograd as ca
|
| 10 |
+
import torch.distributed as dist
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
from torch.distributed._composable.contract import _get_registry
|
| 13 |
+
from torch.distributed.tensor import DeviceMesh, DTensor
|
| 14 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class DataParallelMeshInfo:
|
| 19 |
+
mesh: DeviceMesh
|
| 20 |
+
shard_mesh_dim: Optional[int] = None
|
| 21 |
+
replicate_mesh_dim: Optional[int] = None
|
| 22 |
+
|
| 23 |
+
def __post_init__(self):
|
| 24 |
+
if self.shard_mesh_dim is None and self.replicate_mesh_dim is None:
|
| 25 |
+
raise AssertionError(
|
| 26 |
+
"At least one of shard_mesh_dim and replicate_mesh_dim must not be None"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class FSDPMeshInfo(DataParallelMeshInfo):
|
| 32 |
+
def __post_init__(self):
|
| 33 |
+
super().__post_init__()
|
| 34 |
+
if self.shard_mesh_dim is None:
|
| 35 |
+
raise AssertionError("Expects non-None shard_mesh_dim")
|
| 36 |
+
self.shard_mesh_size: int = self.mesh.size(self.shard_mesh_dim)
|
| 37 |
+
self.shard_process_group = self.mesh.get_group(self.shard_mesh_dim)
|
| 38 |
+
self.shard_mesh_rank: int = self.shard_process_group.rank()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@dataclass
|
| 42 |
+
class DDPMeshInfo(DataParallelMeshInfo):
|
| 43 |
+
def __post_init__(self):
|
| 44 |
+
super().__post_init__()
|
| 45 |
+
if self.replicate_mesh_dim is None:
|
| 46 |
+
raise AssertionError("Expects non-None replicate_mesh_dim")
|
| 47 |
+
self.replicate_mesh_size: int = self.mesh.size(self.replicate_mesh_dim)
|
| 48 |
+
self.replicate_process_group = self.mesh.get_group(self.replicate_mesh_dim)
|
| 49 |
+
self.replicate_mesh_rank: int = self.replicate_process_group.rank()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@dataclass
|
| 53 |
+
class HSDPMeshInfo(FSDPMeshInfo, DDPMeshInfo):
|
| 54 |
+
def __post_init__(self):
|
| 55 |
+
# Calls `FSDPMeshInfo` -> `DDPMeshInfo` -> `DataParallelMeshInfo`
|
| 56 |
+
super().__post_init__()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class TrainingState(Enum):
|
| 60 |
+
"""Describes the training state of one FSDP state / parameter group."""
|
| 61 |
+
|
| 62 |
+
# Transition to forward starting pre-forward until post-forward
|
| 63 |
+
FORWARD = auto()
|
| 64 |
+
# Transition to pre-backward when unsharding in backward
|
| 65 |
+
PRE_BACKWARD = auto()
|
| 66 |
+
# Transition to post-backward when resharding and reducing gradients
|
| 67 |
+
POST_BACKWARD = auto()
|
| 68 |
+
# Idle before/after forward or before pre-backward/after post-backward
|
| 69 |
+
IDLE = auto()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def _raise_assert_with_print(*args: Any, **kwargs: Any):
|
| 73 |
+
print(f"[Rank {dist.get_rank()}] ", end="")
|
| 74 |
+
print(*args, **kwargs)
|
| 75 |
+
traceback.print_stack()
|
| 76 |
+
raise AssertionError(*args, **kwargs)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def _is_composable_with_fsdp(module: nn.Module) -> bool:
|
| 80 |
+
registry = _get_registry(module)
|
| 81 |
+
if registry is None:
|
| 82 |
+
return True
|
| 83 |
+
# Registry keys by function name
|
| 84 |
+
return "replicate" not in registry
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _get_dim0_padded_size(tensor_size: torch.Size, dim0_factor: int) -> torch.Size:
|
| 88 |
+
padded_dim0 = math.ceil(tensor_size[0] / dim0_factor) * dim0_factor
|
| 89 |
+
return cast(torch.Size, torch.Size([padded_dim0]) + tensor_size[1:])
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _chunk_with_empty(
|
| 93 |
+
tensor: torch.Tensor, num_chunks: int, dim: int
|
| 94 |
+
) -> List[torch.Tensor]:
|
| 95 |
+
chunks = list(torch.chunk(tensor, num_chunks, dim=dim))
|
| 96 |
+
while len(chunks) < num_chunks:
|
| 97 |
+
chunks.append(chunks[0].new_empty(0))
|
| 98 |
+
return chunks
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _get_dim0_chunked_size(
|
| 102 |
+
chunk: torch.Tensor, unchunked_size: torch.Size
|
| 103 |
+
) -> torch.Size:
|
| 104 |
+
if chunk.numel() > 0:
|
| 105 |
+
return chunk.size()
|
| 106 |
+
# For 0 numel, we need to preserve trailing dims for DTensor APIs
|
| 107 |
+
return cast(torch.Size, torch.Size([0]) + unchunked_size[1:])
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def _from_local_no_grad(
|
| 111 |
+
local_tensor: torch.Tensor,
|
| 112 |
+
sharding_spec: DTensorSpec,
|
| 113 |
+
) -> DTensor:
|
| 114 |
+
"""
|
| 115 |
+
This method is similar to ``DTensor.from_local()`` except that in eager mode
|
| 116 |
+
it avoids some CPU overhead by avoiding default args and not being differentiable.
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
if not ca.compiled_autograd_enabled:
|
| 120 |
+
return DTensor(
|
| 121 |
+
# Use the local tensor directly instead of constructing a new tensor
|
| 122 |
+
# variable, e.g. with `view_as()`, since this is not differentiable
|
| 123 |
+
local_tensor,
|
| 124 |
+
sharding_spec,
|
| 125 |
+
requires_grad=local_tensor.requires_grad,
|
| 126 |
+
)
|
| 127 |
+
else:
|
| 128 |
+
return DTensor.from_local(
|
| 129 |
+
local_tensor,
|
| 130 |
+
sharding_spec.mesh,
|
| 131 |
+
sharding_spec.placements,
|
| 132 |
+
shape=sharding_spec.shape,
|
| 133 |
+
stride=sharding_spec.stride,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def _to_dtype_if_needed(
|
| 138 |
+
tensor: torch.Tensor, dtype: Optional[torch.dtype]
|
| 139 |
+
) -> torch.Tensor:
|
| 140 |
+
if dtype is not None and tensor.dtype != dtype:
|
| 141 |
+
return tensor.to(dtype)
|
| 142 |
+
return tensor
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def _cast_fp_tensor(dtype: torch.dtype, x: torch.Tensor) -> torch.Tensor:
|
| 146 |
+
if (
|
| 147 |
+
not isinstance(x, torch.Tensor)
|
| 148 |
+
or not torch.is_floating_point(x)
|
| 149 |
+
or x.dtype == dtype
|
| 150 |
+
):
|
| 151 |
+
return x
|
| 152 |
+
return x.to(dtype)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_init.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
from typing import List, Optional, Set, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.distributed.device_mesh import _get_device_handle
|
| 8 |
+
from torch.distributed.tensor import DeviceMesh, DTensor, init_device_mesh
|
| 9 |
+
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
| 10 |
+
|
| 11 |
+
from ._fsdp_common import _is_composable_with_fsdp, FSDPMeshInfo, HSDPMeshInfo
|
| 12 |
+
from ._fsdp_state import _get_module_fsdp_state
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def _get_post_forward_mesh_info(
|
| 16 |
+
reshard_after_forward: Union[bool, int], mesh_info: FSDPMeshInfo
|
| 17 |
+
) -> Optional[FSDPMeshInfo]:
|
| 18 |
+
shard_mesh_size = mesh_info.shard_mesh_size
|
| 19 |
+
if not isinstance(reshard_after_forward, (bool, int)):
|
| 20 |
+
raise ValueError(
|
| 21 |
+
"reshard_after_forward should be a bool or an int representing the "
|
| 22 |
+
f"group size to reshard to, not {reshard_after_forward}"
|
| 23 |
+
)
|
| 24 |
+
# NOTE: `isinstance(False, int)` returns `True`.
|
| 25 |
+
if not isinstance(reshard_after_forward, bool) and isinstance(
|
| 26 |
+
reshard_after_forward, int
|
| 27 |
+
):
|
| 28 |
+
if (
|
| 29 |
+
reshard_after_forward < 1
|
| 30 |
+
or reshard_after_forward > shard_mesh_size
|
| 31 |
+
or shard_mesh_size % reshard_after_forward != 0
|
| 32 |
+
):
|
| 33 |
+
raise ValueError(
|
| 34 |
+
"If passing reshard_after_forward as an int, it should be a "
|
| 35 |
+
f"factor of {shard_mesh_size}, not {reshard_after_forward}"
|
| 36 |
+
)
|
| 37 |
+
elif reshard_after_forward == 1:
|
| 38 |
+
reshard_after_forward = False
|
| 39 |
+
elif reshard_after_forward == shard_mesh_size:
|
| 40 |
+
reshard_after_forward = True
|
| 41 |
+
post_forward_mesh_info = None
|
| 42 |
+
if reshard_after_forward is True:
|
| 43 |
+
post_forward_mesh_info = mesh_info
|
| 44 |
+
elif reshard_after_forward is not False: # int case
|
| 45 |
+
# For HSDP, we can flatten the two replicate dims into the 0th dim
|
| 46 |
+
post_forward_mesh_tensor = mesh_info.mesh.mesh.view(-1, reshard_after_forward)
|
| 47 |
+
post_forward_mesh = DeviceMesh(
|
| 48 |
+
mesh_info.mesh.device_type, post_forward_mesh_tensor
|
| 49 |
+
)
|
| 50 |
+
post_forward_mesh_info = HSDPMeshInfo(
|
| 51 |
+
post_forward_mesh, shard_mesh_dim=1, replicate_mesh_dim=0
|
| 52 |
+
)
|
| 53 |
+
return post_forward_mesh_info
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _init_default_fully_shard_mesh() -> DeviceMesh:
|
| 57 |
+
"""Default to global CUDA mesh if possible else global CPU mesh."""
|
| 58 |
+
if not dist.distributed_c10d.is_initialized():
|
| 59 |
+
dist.distributed_c10d.init_process_group()
|
| 60 |
+
default_pg = dist.distributed_c10d._get_default_group()
|
| 61 |
+
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
| 62 |
+
mesh = init_device_mesh(device_type, mesh_shape=(default_pg.size(),))
|
| 63 |
+
return mesh
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def _get_device_from_mesh(mesh: DeviceMesh) -> torch.device:
|
| 67 |
+
if mesh.device_type == "cpu":
|
| 68 |
+
return torch.device("cpu")
|
| 69 |
+
device_handle = _get_device_handle(mesh.device_type)
|
| 70 |
+
return torch.device(mesh.device_type, device_handle.current_device())
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def _get_managed_modules(root_modules: Tuple[nn.Module, ...]) -> List[nn.Module]:
|
| 74 |
+
modules: List[nn.Module] = []
|
| 75 |
+
root_modules_set = set(root_modules)
|
| 76 |
+
# Track visisted modules to avoid visiting shared modules multiple times
|
| 77 |
+
visited_modules: Set[nn.Module] = set()
|
| 78 |
+
|
| 79 |
+
def dfs(module: nn.Module) -> None:
|
| 80 |
+
"""
|
| 81 |
+
Runs a DFS to collect managed modules, not recursing into modules with
|
| 82 |
+
a non-composable API or ``fully_shard`` already applied.
|
| 83 |
+
"""
|
| 84 |
+
if not _is_composable_with_fsdp(module):
|
| 85 |
+
return
|
| 86 |
+
elif (
|
| 87 |
+
module not in root_modules_set
|
| 88 |
+
and _get_module_fsdp_state(module) is not None
|
| 89 |
+
):
|
| 90 |
+
return # nested `fully_shard` module
|
| 91 |
+
visited_modules.add(module)
|
| 92 |
+
for submodule in module.children():
|
| 93 |
+
if submodule not in visited_modules:
|
| 94 |
+
dfs(submodule)
|
| 95 |
+
modules.append(module)
|
| 96 |
+
|
| 97 |
+
for root_module in root_modules:
|
| 98 |
+
dfs(root_module)
|
| 99 |
+
return modules
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def _verify_managed_param(name: str, param: nn.Parameter) -> None:
|
| 103 |
+
"""
|
| 104 |
+
Verify if the parameter is accepted by fully_shard. The only restriction now
|
| 105 |
+
is that the parameter cannot be a scalar tensor (param.numel == 0) since we
|
| 106 |
+
need at least one dim to shard.
|
| 107 |
+
"""
|
| 108 |
+
if len(param.shape) == 0:
|
| 109 |
+
raise ValueError(
|
| 110 |
+
"fully_shard doesn't support salar parameters. "
|
| 111 |
+
f"Change {name} to a 1D tensor with numel equal to 1."
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def _get_managed_states(
|
| 116 |
+
modules: List[nn.Module],
|
| 117 |
+
) -> Tuple[List[nn.Parameter], List[torch.Tensor]]:
|
| 118 |
+
params: List[nn.Parameter] = []
|
| 119 |
+
buffers: List[torch.Tensor] = []
|
| 120 |
+
# Track visited parameters/buffers to avoid visiting shared parameters and
|
| 121 |
+
# buffers multiple times
|
| 122 |
+
visited_params: Set[nn.Parameter] = set()
|
| 123 |
+
visited_buffers: Set[torch.Tensor] = set()
|
| 124 |
+
for module in modules:
|
| 125 |
+
for name, param in module.named_parameters(recurse=False):
|
| 126 |
+
if param not in visited_params:
|
| 127 |
+
_verify_managed_param(name, param)
|
| 128 |
+
params.append(param)
|
| 129 |
+
visited_params.add(param)
|
| 130 |
+
for buffer in module.buffers(recurse=False):
|
| 131 |
+
if buffer not in visited_buffers:
|
| 132 |
+
buffers.append(buffer)
|
| 133 |
+
visited_buffers.add(buffer)
|
| 134 |
+
return params, buffers
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def _move_states_to_device(
|
| 138 |
+
params: List[nn.Parameter],
|
| 139 |
+
buffers: List[torch.Tensor],
|
| 140 |
+
device: torch.device,
|
| 141 |
+
) -> None:
|
| 142 |
+
"""
|
| 143 |
+
We have FSDP move states to device for simpler and faster initialization
|
| 144 |
+
since FSDP almost always uses CUDA for training. We move parameters/buffers
|
| 145 |
+
rather than modules since modules to support ignoring parameters/buffers in
|
| 146 |
+
the future.
|
| 147 |
+
"""
|
| 148 |
+
# Follow the logic in `nn.Module._apply`
|
| 149 |
+
for tensor in itertools.chain(params, buffers):
|
| 150 |
+
if tensor.device == device or tensor.device.type == "meta":
|
| 151 |
+
# Keep meta-device tensors on meta device for deferred init
|
| 152 |
+
continue
|
| 153 |
+
if isinstance(tensor, DTensor):
|
| 154 |
+
if (dtensor_mesh_type := tensor.device_mesh.device_type) != device.type:
|
| 155 |
+
raise ValueError(
|
| 156 |
+
"Requires DTensor to have mesh of the same type as the FSDP mesh "
|
| 157 |
+
f"but got {dtensor_mesh_type} for DTensor and {device.type} for FSDP"
|
| 158 |
+
)
|
| 159 |
+
raise AssertionError(
|
| 160 |
+
f"Expects DTensor to be moved to {dtensor_mesh_type} but got {tensor.device}"
|
| 161 |
+
)
|
| 162 |
+
tensor_ = tensor
|
| 163 |
+
if is_traceable_wrapper_subclass(tensor_):
|
| 164 |
+
with torch.no_grad(): # avoid autograd increasing C++ refcount by 1
|
| 165 |
+
tensor_on_device = nn.Parameter(tensor.to(device))
|
| 166 |
+
torch.utils.swap_tensors(tensor, tensor_on_device)
|
| 167 |
+
else:
|
| 168 |
+
tensor.data = tensor.to(device)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param.py
ADDED
|
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import itertools
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from enum import auto, Enum
|
| 5 |
+
from typing import Any, cast, List, Optional, Sequence, Tuple
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch._dynamo.compiled_autograd as ca
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from torch._prims_common import make_contiguous_strides_for
|
| 11 |
+
from torch.distributed._functional_collectives import AsyncCollectiveTensor
|
| 12 |
+
from torch.distributed.tensor import DTensor, Replicate, Shard
|
| 13 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
|
| 14 |
+
from torch.distributed.tensor.device_mesh import _mesh_resources
|
| 15 |
+
from torch.distributed.tensor.placement_types import _StridedShard, Placement
|
| 16 |
+
|
| 17 |
+
from ._fsdp_api import CPUOffloadPolicy, MixedPrecisionPolicy, OffloadPolicy
|
| 18 |
+
from ._fsdp_common import (
|
| 19 |
+
_chunk_with_empty,
|
| 20 |
+
_from_local_no_grad,
|
| 21 |
+
_get_dim0_chunked_size,
|
| 22 |
+
_raise_assert_with_print,
|
| 23 |
+
_to_dtype_if_needed,
|
| 24 |
+
FSDPMeshInfo,
|
| 25 |
+
HSDPMeshInfo,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
"""
|
| 30 |
+
[Note: FSDP tensors]
|
| 31 |
+
FSDP considers the following tensors:
|
| 32 |
+
- Original parameter: parameter passed to :class:`FSDPParam`, i.e. the one
|
| 33 |
+
on the module when applying FSDP
|
| 34 |
+
- Sharded parameter: sharding the original parameter on dim-0 as a DTensor
|
| 35 |
+
over the main mesh
|
| 36 |
+
- All-gather inputs: the ``torch.Tensor`` or ``Tensor`` s passed to all-gather,
|
| 37 |
+
derived from the sharded parameter
|
| 38 |
+
- All-gather output: the ``torch.Tensor`` or ``Tensor`` s resulting from
|
| 39 |
+
all-gathering the all-gather inputs
|
| 40 |
+
- Unsharded parameter: parameter used for forward/backward computation, derived
|
| 41 |
+
from the all-gather output; autograd leaf
|
| 42 |
+
|
| 43 |
+
We define these tensors to describe the general framework that can accomodate
|
| 44 |
+
extensions, where:
|
| 45 |
+
- all-gather-inputs = pre-all-gather-transform(sharded-parameter)
|
| 46 |
+
- unsharded-parameter = post-all-gather-transform(all-gather-outputs)
|
| 47 |
+
|
| 48 |
+
For the default ``torch.Tensor`` case, there is only one all-gather input, and
|
| 49 |
+
it shares the same underlying tensor data as the sharded parameter, meaning
|
| 50 |
+
that they can be thought of as the same tensors. The same applies for the
|
| 51 |
+
all-gather output and unsharded parameter. For non-``torch.Tensor`` extensions,
|
| 52 |
+
these equivalences may no longer hold due to the pre/post-all-gather
|
| 53 |
+
transforms, and some may have multiple all-gather inputs/outputs (e.g.
|
| 54 |
+
quantized data and scales).
|
| 55 |
+
|
| 56 |
+
[Note: FSDP and autograd]
|
| 57 |
+
FSDP dynamically frees and allocates the unsharded parameter. Since autograd
|
| 58 |
+
can pack a reference to it or a view to save for backward, we use storage
|
| 59 |
+
resizing to implement the freeing/allocation since that preserves the aliasing.
|
| 60 |
+
This implies that we construct the unsharded parameter object once and write to
|
| 61 |
+
it in-place thereafter. For the default ``torch.Tensor` original parameter
|
| 62 |
+
case, the all-gather output and unsharded parameter share the same
|
| 63 |
+
data, so we use storage resizing on the all-gather output.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
lib = torch.library.Library("fsdp", "FRAGMENT") # noqa: TOR901
|
| 67 |
+
|
| 68 |
+
lib.define("set_(Tensor(a!) tensor, Tensor data) -> ()")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@torch.library.impl(lib, "set_", "Meta")
|
| 72 |
+
@torch.library.impl(lib, "set_", "CUDA")
|
| 73 |
+
@torch.library.impl(lib, "set_", "CPU")
|
| 74 |
+
def set_(tensor, data):
|
| 75 |
+
tensor.set_(data)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
"""
|
| 79 |
+
[Note: Avoiding functionalization for fsdp.set_ and inductor.resize_storage_bytes_(0)]
|
| 80 |
+
|
| 81 |
+
Currently we don't functionalize `fsdp.set_` op or `inductor.resize_storage_bytes_(0)` op
|
| 82 |
+
(i.e. they show up as a mutation op in the middle of the AOT joint graph).
|
| 83 |
+
|
| 84 |
+
Reason:
|
| 85 |
+
Traceable FSDP2 compiled autograd BWD graph have the following traits:
|
| 86 |
+
(1) Two inputs of the graph were aliased to each other (one from hook closed-over tensors, one from FWD saved tensors).
|
| 87 |
+
(2) One of them is mutated (set_ and resize_(0) to handle the all-gathered param).
|
| 88 |
+
(3) They are both subclasses.
|
| 89 |
+
The combination of these traits is not supported by AOTAutograd (it's difficult to reason about subclass aliasing).
|
| 90 |
+
So this doesn't work at all for Traceable FSDP2.
|
| 91 |
+
|
| 92 |
+
The compromise we use is to avoid functionalization for the FSDP2 set_ and resize_(0) ops.
|
| 93 |
+
This avoids the problem above, because from AOTAutograd point-of-view there are no mutations
|
| 94 |
+
that functionalization needs to handle. (Although we need to be careful not to DCE those mutable ops.)
|
| 95 |
+
|
| 96 |
+
We can avoid this functionalization because:
|
| 97 |
+
(1) The nn.Parameter is never used before its .set_() is called in eager code (i.e. no alias of it is created),
|
| 98 |
+
so it's safe to call .set_() in the middle of the graph to swap out its storage and start using the nn.Parameter downstream.
|
| 99 |
+
(2) We always re-allocate the buffer for nn.Parameter to store the AllGather output and to be used in downstream user ops.
|
| 100 |
+
So calling resize-to-0 in the middle of the graph to free nn.Parameter memory after use should always be okay
|
| 101 |
+
(since we always allocate anew next time we need it, we strictly don't need to keep the old tensor storage around anymore).
|
| 102 |
+
|
| 103 |
+
Q: But doesn't the torch.compile stack have the "functional graph" assumption in many places?
|
| 104 |
+
A: Yes - this is WIP but we will try to get back to functional graph as early as possible in the lowering process.
|
| 105 |
+
Specifically, we believe we can move both .set_ and .resize_(0) ops to end of graph in AOT joint graph before partitioner
|
| 106 |
+
(i.e. effectively "re-functionalizing" those ops). Put it in another way, we avoid functionalization for those two ops just to
|
| 107 |
+
make AOTAutograd alias analysis happy, and as soon as we are past that point, we "re-functionalize" the graph.
|
| 108 |
+
This requires a custom FX pass but we believe it's not hard to write and maintain.
|
| 109 |
+
|
| 110 |
+
Q: What's the importance of partitioner not saving views of nn.Parameter as FWD saved tensors?
|
| 111 |
+
A: This is critical: we do want to save FWD nn.Parameter graph input (instead of its view) for BWD use,
|
| 112 |
+
so that downstream ops in BWD graph uses the post-`.set_` nn.Parameter instead of any of its saved views as input.
|
| 113 |
+
This is because .set_ will not update any of the nn.Parameter's views, so BWD downstream ops must use the original
|
| 114 |
+
nn.Parameter in order to see the result of .set_.
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
@torch.library.impl(lib, "set_", "Functionalize")
|
| 119 |
+
def set__functionalize(tensor, data):
|
| 120 |
+
torch._sync(tensor)
|
| 121 |
+
torch._sync(data)
|
| 122 |
+
# AOTDispatcher needs to know if any inputs had their storages mutated.
|
| 123 |
+
# (Why? It sometimes detaches inputs before sending them into the graph,
|
| 124 |
+
# when it sees that they do not need to have any gradients computed)
|
| 125 |
+
torch._functionalize_set_storage_changed(tensor)
|
| 126 |
+
tensor_inner = torch._from_functional_tensor(tensor)
|
| 127 |
+
data_inner = torch._from_functional_tensor(data)
|
| 128 |
+
with torch._C._ExcludeDispatchKeyGuard(
|
| 129 |
+
torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
| 130 |
+
):
|
| 131 |
+
torch.ops.fsdp.set_.default(tensor_inner, data_inner)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
torch.fx.node.has_side_effect(torch.ops.fsdp.set_.default)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class ShardedState(Enum):
|
| 138 |
+
"""
|
| 139 |
+
- ``SHARDED``: The sharded parameter is registered to the module. It is the
|
| 140 |
+
only contributor to parameter memory.
|
| 141 |
+
- ``SHARDED_POST_FORWARD``: The unsharded parameter is resharded to a
|
| 142 |
+
smaller world size. Since this data should not be used for computation,
|
| 143 |
+
we do not register it to the module. Users should reshard the module
|
| 144 |
+
before any in-place modifications. Both it and the sharded parameter
|
| 145 |
+
contribute to parameter memory.
|
| 146 |
+
- ``UNSHARDED``: The unsharded parameter is registered to the module. Both
|
| 147 |
+
it and the sharded parameter contribute to parameter memory.
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
SHARDED = auto()
|
| 151 |
+
SHARDED_POST_FORWARD = auto()
|
| 152 |
+
UNSHARDED = auto()
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
@dataclass
|
| 156 |
+
class ParamModuleInfo:
|
| 157 |
+
"""
|
| 158 |
+
For a parameter, this stores the module and the parameter name to be able
|
| 159 |
+
to do a parameter swap via ``setattr(module, param_name, ...)`` or to get
|
| 160 |
+
the parameter via ``getattr(module, param_name)``. We additionally save
|
| 161 |
+
shared modules and shared parameter names to update them accordingly.
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
# Parameter names are unprefixed, e.g. "weight", not "lin.weight"
|
| 165 |
+
module: nn.Module
|
| 166 |
+
param_name: str
|
| 167 |
+
shared_modules: List[nn.Module] = field(default_factory=list)
|
| 168 |
+
shared_param_names: List[str] = field(default_factory=list)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@dataclass
|
| 172 |
+
class ExtensionsData:
|
| 173 |
+
# User-defined metadata passed from pre to post-all-gather
|
| 174 |
+
all_gather_metadata: Optional[Any] = None
|
| 175 |
+
# Save the all-gather input sizes to unflatten the all-gather outputs to ND
|
| 176 |
+
all_gather_input_sizes: Sequence[torch.Size] = () # ND
|
| 177 |
+
|
| 178 |
+
def clear(self):
|
| 179 |
+
self.all_gather_metadata = None
|
| 180 |
+
self.all_gather_input_sizes = ()
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class FSDPParam:
|
| 184 |
+
"""
|
| 185 |
+
This class manages a parameter with FSDP or FSDP variants applied,
|
| 186 |
+
implementing dim-0 per-parameter sharding.
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
orig_dtype: torch.dtype
|
| 190 |
+
param_dtype: Optional[torch.dtype]
|
| 191 |
+
reduce_dtype: Optional[torch.dtype]
|
| 192 |
+
_orig_size: torch.Size # ND
|
| 193 |
+
sharded_size: torch.Size # ND
|
| 194 |
+
contiguous_sharded_stride: Tuple[int, ...]
|
| 195 |
+
padded_sharded_param_size: torch.Size # ND
|
| 196 |
+
sharded_post_forward_size: torch.Size # ND
|
| 197 |
+
contiguous_sharded_post_forward_stride: Tuple[int, ...]
|
| 198 |
+
_sharded_param_data: torch.Tensor # 1D
|
| 199 |
+
sharded_param: nn.Parameter # ND
|
| 200 |
+
_sharded_post_forward_param_data: Optional[torch.Tensor] # 1D
|
| 201 |
+
_sharded_post_forward_param: Optional[nn.Parameter] # ND
|
| 202 |
+
_unsharded_param: nn.Parameter # ND
|
| 203 |
+
unsharded_accumulated_grad: Optional[torch.Tensor] # ND
|
| 204 |
+
_sharding_spec: DTensorSpec
|
| 205 |
+
# DTensor attributes (only defined for DTensor `param`):
|
| 206 |
+
_tp_spec: DTensorSpec
|
| 207 |
+
all_gather_outputs: List[torch.Tensor] # 1D
|
| 208 |
+
# All-gather extension attributes
|
| 209 |
+
_extensions_data: ExtensionsData
|
| 210 |
+
_unsharded_inner_tensors: List[torch.Tensor]
|
| 211 |
+
|
| 212 |
+
def __init__(
|
| 213 |
+
self,
|
| 214 |
+
param: nn.Parameter,
|
| 215 |
+
module_info: ParamModuleInfo,
|
| 216 |
+
mesh_info: FSDPMeshInfo,
|
| 217 |
+
post_forward_mesh_info: Optional[FSDPMeshInfo],
|
| 218 |
+
device: torch.device,
|
| 219 |
+
mp_policy: MixedPrecisionPolicy,
|
| 220 |
+
offload_policy: OffloadPolicy,
|
| 221 |
+
):
|
| 222 |
+
self._module_info: ParamModuleInfo = module_info
|
| 223 |
+
self.mesh_info = mesh_info
|
| 224 |
+
self.post_forward_mesh_info = post_forward_mesh_info
|
| 225 |
+
self.device = device
|
| 226 |
+
self.offload_to_cpu: bool = isinstance(offload_policy, CPUOffloadPolicy)
|
| 227 |
+
self.pin_memory = (
|
| 228 |
+
self.offload_to_cpu and cast(CPUOffloadPolicy, offload_policy).pin_memory
|
| 229 |
+
)
|
| 230 |
+
self.grad_offload_event: Optional[torch.cuda.Event] = None
|
| 231 |
+
self._init_sharded_param(param, device)
|
| 232 |
+
if self.post_forward_mesh_info:
|
| 233 |
+
self._init_sharded_post_forward_param_metadata(param)
|
| 234 |
+
self._init_extensions()
|
| 235 |
+
self.all_gather_outputs: List[torch.Tensor] = []
|
| 236 |
+
self.unsharded_accumulated_grad = None
|
| 237 |
+
self._param_fqn: Optional[str] = None # prefixed from root module
|
| 238 |
+
# TODO: Remove this padding logic once DTensor pads the local tensor:
|
| 239 |
+
# https://github.com/pytorch/pytorch/issues/113045
|
| 240 |
+
self._post_load_hook_handle = (
|
| 241 |
+
module_info.module.register_load_state_dict_post_hook(
|
| 242 |
+
lambda *args, **kwargs: self.reset_sharded_param()
|
| 243 |
+
)
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
@torch.no_grad()
|
| 247 |
+
def _init_sharded_param(self, param: nn.Parameter, device: torch.device):
|
| 248 |
+
if param.device != device and param.device.type != "meta":
|
| 249 |
+
raise AssertionError(
|
| 250 |
+
f"Expects the parameter to already be moved to device {device} but got {param.device}"
|
| 251 |
+
)
|
| 252 |
+
# TODO: Replace the sharded DTensor parameter construction logic with
|
| 253 |
+
# `distribute_tensor` after https://github.com/pytorch/pytorch/issues/116101
|
| 254 |
+
# TODO: Simplify the following sharded parameter padding logic after
|
| 255 |
+
# https://github.com/pytorch/pytorch/issues/113045
|
| 256 |
+
self.is_dtensor = isinstance(param, DTensor)
|
| 257 |
+
if self.is_dtensor:
|
| 258 |
+
self._tp_spec = cast(DTensor, param)._spec
|
| 259 |
+
dp_mesh, tp_mesh = (self.mesh_info.mesh, self._tp_spec.mesh)
|
| 260 |
+
dp_global_mesh = _mesh_resources.get_root_mesh(dp_mesh)
|
| 261 |
+
tp_global_mesh = _mesh_resources.get_root_mesh(tp_mesh)
|
| 262 |
+
if dp_global_mesh != tp_global_mesh or (
|
| 263 |
+
dp_global_mesh is None or tp_global_mesh is None
|
| 264 |
+
):
|
| 265 |
+
raise AssertionError(
|
| 266 |
+
"FSDP requires the DP and TP mesh to have the same parent mesh but got: \n"
|
| 267 |
+
f"DP's global mesh: {dp_global_mesh}\nTP's global mesh: {tp_global_mesh}"
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
name_dims_error = "FSDP requires named DeviceMesh dims for ND parallelism"
|
| 271 |
+
assert dp_mesh.mesh_dim_names is not None, name_dims_error
|
| 272 |
+
assert tp_mesh.mesh_dim_names is not None, name_dims_error
|
| 273 |
+
submesh_names = dp_mesh.mesh_dim_names + tp_mesh.mesh_dim_names
|
| 274 |
+
self._spmd_mesh = dp_global_mesh[submesh_names]
|
| 275 |
+
if len(self._tp_spec.placements) != 1:
|
| 276 |
+
raise NotImplementedError(
|
| 277 |
+
f"FSDP only supports 1D TP, not {self._tp_spec.placements}"
|
| 278 |
+
)
|
| 279 |
+
split_factor = self._tp_spec.num_shards_map[0]
|
| 280 |
+
assert (
|
| 281 |
+
2 <= self._spmd_mesh.ndim <= 3
|
| 282 |
+
), f"_spmd_mesh.ndim can only be 2 or 3 but got {self._spmd_mesh.ndim}."
|
| 283 |
+
self._spmd_placements: Tuple[Placement, ...]
|
| 284 |
+
dp_shard_tp_placement = (
|
| 285 |
+
(
|
| 286 |
+
_StridedShard(0, split_factor=split_factor)
|
| 287 |
+
if split_factor > 1
|
| 288 |
+
else Shard(0)
|
| 289 |
+
),
|
| 290 |
+
self._tp_spec.placements[0],
|
| 291 |
+
)
|
| 292 |
+
if self._spmd_mesh.ndim == 2:
|
| 293 |
+
self._spmd_placements = dp_shard_tp_placement
|
| 294 |
+
else:
|
| 295 |
+
assert self.mesh_info.replicate_mesh_dim == 0
|
| 296 |
+
self._spmd_placements = (Replicate(),) + dp_shard_tp_placement
|
| 297 |
+
self._sharding_spec = DTensorSpec(
|
| 298 |
+
self._spmd_mesh,
|
| 299 |
+
self._spmd_placements,
|
| 300 |
+
tensor_meta=self._tp_spec.tensor_meta,
|
| 301 |
+
)
|
| 302 |
+
# NOTE: FSDP+TP does not support uneven sharding for now
|
| 303 |
+
# TODO: enable uneven sharding for FSDP+TP
|
| 304 |
+
if split_factor > 1: # FSDP has strided sharding on tensor dim 0
|
| 305 |
+
num_shards = self._sharding_spec.num_shards_map[0]
|
| 306 |
+
tensor_size_dim_0 = self._sharding_spec.shape[0]
|
| 307 |
+
if tensor_size_dim_0 % num_shards != 0:
|
| 308 |
+
raise NotImplementedError(
|
| 309 |
+
"FSDP+TP sharding does not support uneven sharding for now: "
|
| 310 |
+
f"tensor dim 0 has size {tensor_size_dim_0} which cannot be "
|
| 311 |
+
f"evenly sharded into {num_shards} shards."
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
param_data = cast(DTensor, param)._local_tensor
|
| 315 |
+
else:
|
| 316 |
+
self._spmd_mesh = self.mesh_info.mesh
|
| 317 |
+
if isinstance(self.mesh_info, HSDPMeshInfo):
|
| 318 |
+
self._spmd_placements = (Replicate(), Shard(0))
|
| 319 |
+
else:
|
| 320 |
+
self._spmd_placements = (Shard(0),)
|
| 321 |
+
self._sharding_spec = DTensorSpec(
|
| 322 |
+
self._spmd_mesh,
|
| 323 |
+
self._spmd_placements,
|
| 324 |
+
tensor_meta=TensorMeta(
|
| 325 |
+
param.size(),
|
| 326 |
+
param.stride(),
|
| 327 |
+
param.dtype,
|
| 328 |
+
),
|
| 329 |
+
)
|
| 330 |
+
param_data = param
|
| 331 |
+
self._orig_size = param_data.size()
|
| 332 |
+
self._contiguous_orig_stride = make_contiguous_strides_for(self._orig_size)
|
| 333 |
+
shard_rank = self.mesh_info.shard_mesh_rank
|
| 334 |
+
shard_world_size = self.mesh_info.shard_mesh_size
|
| 335 |
+
chunks = _chunk_with_empty(param_data, shard_world_size, dim=0)
|
| 336 |
+
sharded_param = chunks[shard_rank]
|
| 337 |
+
self.sharded_size = _get_dim0_chunked_size(sharded_param, param_data.size())
|
| 338 |
+
self.contiguous_sharded_stride = make_contiguous_strides_for(self.sharded_size)
|
| 339 |
+
padded_sharded_size = chunks[0].size() # 0th always padded
|
| 340 |
+
padded_sharded_param = param_data.new_zeros(padded_sharded_size)
|
| 341 |
+
self.padded_sharded_param_size = padded_sharded_param.size()
|
| 342 |
+
if sharded_param.numel() > 0:
|
| 343 |
+
padded_sharded_param[: sharded_param.size(0)].copy_(sharded_param)
|
| 344 |
+
if self.offload_to_cpu and not padded_sharded_param.is_meta:
|
| 345 |
+
padded_sharded_param = padded_sharded_param.cpu()
|
| 346 |
+
if self.pin_memory:
|
| 347 |
+
padded_sharded_param = padded_sharded_param.pin_memory()
|
| 348 |
+
self._sharded_param_data = padded_sharded_param.view(-1)
|
| 349 |
+
self.sharded_param = nn.Parameter(
|
| 350 |
+
self.to_sharded_dtensor(padded_sharded_param[: sharded_param.size(0)])
|
| 351 |
+
)
|
| 352 |
+
self.sharded_param.requires_grad_(param.requires_grad)
|
| 353 |
+
# Let `param_data` be freed normally when its ref count reaches 0 when
|
| 354 |
+
# the `fully_shard` call returns to allow provided parameters to alias
|
| 355 |
+
self._setattr_on_modules(self.sharded_param)
|
| 356 |
+
self.sharded_state = ShardedState.SHARDED
|
| 357 |
+
|
| 358 |
+
def _init_sharded_post_forward_param_metadata(self, param: torch.Tensor) -> None:
|
| 359 |
+
mesh_info = self.post_forward_mesh_info
|
| 360 |
+
assert mesh_info is not None # mypy
|
| 361 |
+
param_data = param._local_tensor if isinstance(param, DTensor) else param
|
| 362 |
+
chunks = _chunk_with_empty(param_data, mesh_info.shard_mesh_size, dim=0)
|
| 363 |
+
self.sharded_post_forward_size = _get_dim0_chunked_size(
|
| 364 |
+
chunks[mesh_info.shard_mesh_rank], param_data.size()
|
| 365 |
+
)
|
| 366 |
+
self.contiguous_sharded_post_forward_stride = make_contiguous_strides_for(
|
| 367 |
+
self.sharded_post_forward_size
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
def init_dtype_attrs(self, mp_policy: MixedPrecisionPolicy):
|
| 371 |
+
param_dtype, reduce_dtype = (mp_policy.param_dtype, mp_policy.reduce_dtype)
|
| 372 |
+
self.orig_dtype = self.sharded_param.dtype
|
| 373 |
+
# Clamp `param_dtype` to `None` if no casting is required
|
| 374 |
+
if param_dtype == self.orig_dtype:
|
| 375 |
+
param_dtype = None
|
| 376 |
+
self.param_dtype = param_dtype
|
| 377 |
+
self.reduce_dtype = reduce_dtype
|
| 378 |
+
# None indicates that the mixed precision is not enabled
|
| 379 |
+
|
| 380 |
+
def _init_extensions(self) -> None:
|
| 381 |
+
inner_tensor = self._sharded_local_tensor
|
| 382 |
+
has_fsdp_pre_all_gather = hasattr(inner_tensor, "fsdp_pre_all_gather")
|
| 383 |
+
has_fsdp_post_all_gather = hasattr(inner_tensor, "fsdp_post_all_gather")
|
| 384 |
+
if has_fsdp_pre_all_gather != has_fsdp_post_all_gather:
|
| 385 |
+
raise AssertionError(
|
| 386 |
+
"Both fsdp_pre_all_gather and fsdp_post_all_gather should be defined "
|
| 387 |
+
f"if using all-gather extensions: {inner_tensor}"
|
| 388 |
+
)
|
| 389 |
+
if has_fsdp_pre_all_gather:
|
| 390 |
+
if self.padded_sharded_param_size != self._sharded_local_tensor.size():
|
| 391 |
+
raise NotImplementedError(
|
| 392 |
+
"FSDP all-gather extensions require even sharding on dim-0.\n"
|
| 393 |
+
f"{self._orig_size} is not divisible by FSDP world size {self.mesh_info.mesh.size()}."
|
| 394 |
+
)
|
| 395 |
+
self._extensions_data = ExtensionsData()
|
| 396 |
+
self._unsharded_inner_tensors: List[torch.Tensor] = []
|
| 397 |
+
|
| 398 |
+
def init_all_gather_outputs(
|
| 399 |
+
self,
|
| 400 |
+
all_gather_input_numels: List[int],
|
| 401 |
+
all_gather_input_dtypes: List[torch.dtype],
|
| 402 |
+
world_size: int,
|
| 403 |
+
device: torch.device,
|
| 404 |
+
force_recreate: bool = False,
|
| 405 |
+
):
|
| 406 |
+
if not force_recreate and len(self.all_gather_outputs) > 0:
|
| 407 |
+
return # already initialized
|
| 408 |
+
self.all_gather_outputs = [
|
| 409 |
+
torch.empty(torch.Size([numel * world_size]), dtype=dtype, device=device)
|
| 410 |
+
for numel, dtype in zip(all_gather_input_numels, all_gather_input_dtypes)
|
| 411 |
+
]
|
| 412 |
+
|
| 413 |
+
def init_unsharded_param(self):
|
| 414 |
+
"""
|
| 415 |
+
[Note: Invariants for torch.compile Traceable FSDP2]
|
| 416 |
+
1. Under compile, we always re-populate the content of `self._unsharded_param`
|
| 417 |
+
per AllGather using the slow path.
|
| 418 |
+
2. Under compile, we always recreate `self.all_gather_outputs` per AllGather.
|
| 419 |
+
This is to ensure the buffer creation is internal to the graph and
|
| 420 |
+
avoid `self.all_gather_outputs` being captured as a graph input.
|
| 421 |
+
3. Under compile, at the end of `free_unsharded_param()`, we always clean up
|
| 422 |
+
`self.all_gather_outputs` and `self._unsharded_inner_tensors`,
|
| 423 |
+
to avoid them being captured as graph output.
|
| 424 |
+
|
| 425 |
+
With these invariants, only these tensors will be inputs to the graph:
|
| 426 |
+
- Sharded parameters
|
| 427 |
+
- Placeholders for the `self._unsharded_param` nn.Parameter
|
| 428 |
+
"""
|
| 429 |
+
if not ca.compiled_autograd_enabled and hasattr(
|
| 430 |
+
self, "_unsharded_param"
|
| 431 |
+
): # after the 1st all-gather
|
| 432 |
+
inner_tensor = self._sharded_local_tensor
|
| 433 |
+
if not hasattr(inner_tensor, "fsdp_post_all_gather"):
|
| 434 |
+
return # already initialized
|
| 435 |
+
for tensor in self._unsharded_inner_tensors:
|
| 436 |
+
alloc_storage(tensor)
|
| 437 |
+
all_gather_outputs = self._unflatten_all_gather_outputs()
|
| 438 |
+
inner_tensor.fsdp_post_all_gather(
|
| 439 |
+
all_gather_outputs,
|
| 440 |
+
self._extensions_data.all_gather_metadata,
|
| 441 |
+
self.param_dtype or self.orig_dtype,
|
| 442 |
+
out=self._unsharded_param,
|
| 443 |
+
)
|
| 444 |
+
self._extensions_data.clear()
|
| 445 |
+
return
|
| 446 |
+
inner_tensor = self._sharded_local_tensor
|
| 447 |
+
if not ca.compiled_autograd_enabled and hasattr(
|
| 448 |
+
inner_tensor, "fsdp_post_all_gather"
|
| 449 |
+
):
|
| 450 |
+
all_gather_outputs = self._unflatten_all_gather_outputs()
|
| 451 |
+
(
|
| 452 |
+
unsharded_tensor,
|
| 453 |
+
self._unsharded_inner_tensors,
|
| 454 |
+
) = inner_tensor.fsdp_post_all_gather(
|
| 455 |
+
all_gather_outputs,
|
| 456 |
+
self._extensions_data.all_gather_metadata,
|
| 457 |
+
self.param_dtype or self.orig_dtype,
|
| 458 |
+
)
|
| 459 |
+
self._extensions_data.clear()
|
| 460 |
+
else:
|
| 461 |
+
# For the default path (no post-all-gather), the all-gather output
|
| 462 |
+
# gives the unsharded parameter data directly
|
| 463 |
+
assert len(self.all_gather_outputs) == 1, f"{len(self.all_gather_outputs)}"
|
| 464 |
+
unsharded_tensor = self.all_gather_outputs[0]
|
| 465 |
+
unsharded_param = torch.as_strided(
|
| 466 |
+
unsharded_tensor,
|
| 467 |
+
self._orig_size,
|
| 468 |
+
self._contiguous_orig_stride,
|
| 469 |
+
storage_offset=0,
|
| 470 |
+
)
|
| 471 |
+
if self.is_dtensor:
|
| 472 |
+
unsharded_param = _from_local_no_grad(unsharded_param, self._tp_spec)
|
| 473 |
+
if hasattr(self, "_unsharded_param"):
|
| 474 |
+
assert ca.compiled_autograd_enabled
|
| 475 |
+
with torch.no_grad(), torch.autograd._unsafe_preserve_version_counter(
|
| 476 |
+
self._unsharded_param
|
| 477 |
+
):
|
| 478 |
+
torch.ops.fsdp.set_.default(self._unsharded_param, unsharded_param)
|
| 479 |
+
else:
|
| 480 |
+
self._unsharded_param = nn.Parameter(
|
| 481 |
+
unsharded_param, requires_grad=self.sharded_param.requires_grad
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
def _unflatten_all_gather_outputs(self) -> Tuple[torch.Tensor, ...]:
|
| 485 |
+
return tuple(
|
| 486 |
+
t.view(-1, *s[1:])
|
| 487 |
+
for t, s in zip(
|
| 488 |
+
self.all_gather_outputs, self._extensions_data.all_gather_input_sizes
|
| 489 |
+
)
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
def to_sharded(self) -> None:
|
| 493 |
+
self._setattr_on_modules(self.sharded_param)
|
| 494 |
+
self.free_unsharded_param()
|
| 495 |
+
self.sharded_state = ShardedState.SHARDED
|
| 496 |
+
|
| 497 |
+
def to_sharded_post_forward(self) -> None:
|
| 498 |
+
if self.is_dtensor:
|
| 499 |
+
raise NotImplementedError(
|
| 500 |
+
"Resharding to smaller mesh with TP is not supported yet"
|
| 501 |
+
)
|
| 502 |
+
self._assert_in_states(ShardedState.UNSHARDED)
|
| 503 |
+
assert self.post_forward_mesh_info is not None # mypy
|
| 504 |
+
assert len(self.all_gather_outputs) == 1
|
| 505 |
+
shard_world_size = self.post_forward_mesh_info.shard_mesh_size
|
| 506 |
+
if (numel := self.all_gather_outputs[0].numel()) % shard_world_size != 0:
|
| 507 |
+
_raise_assert_with_print(
|
| 508 |
+
f"All-gather output size ({numel}) must be divisible by the shard "
|
| 509 |
+
f"world size ({shard_world_size})"
|
| 510 |
+
)
|
| 511 |
+
shard_rank = self.post_forward_mesh_info.shard_mesh_rank
|
| 512 |
+
sharded_numel = numel // shard_world_size
|
| 513 |
+
self._sharded_post_forward_param_data = (
|
| 514 |
+
self.all_gather_outputs[0].narrow(
|
| 515 |
+
0, sharded_numel * shard_rank, sharded_numel
|
| 516 |
+
)
|
| 517 |
+
).clone() # clone to be able to free all-gather output
|
| 518 |
+
sharded_post_forward_tensor = torch.as_strided(
|
| 519 |
+
self._sharded_post_forward_param_data,
|
| 520 |
+
size=self.sharded_post_forward_size,
|
| 521 |
+
stride=self.contiguous_sharded_post_forward_stride,
|
| 522 |
+
storage_offset=0,
|
| 523 |
+
)
|
| 524 |
+
self._sharded_post_forward_param = nn.Parameter(
|
| 525 |
+
self.to_sharded_post_forward_dtensor(sharded_post_forward_tensor)
|
| 526 |
+
)
|
| 527 |
+
self._setattr_on_modules(self._sharded_post_forward_param)
|
| 528 |
+
self.free_unsharded_param()
|
| 529 |
+
self.sharded_state = ShardedState.SHARDED_POST_FORWARD
|
| 530 |
+
|
| 531 |
+
def to_unsharded(self) -> None:
|
| 532 |
+
# Assume that the data has been allocated and all-gathered
|
| 533 |
+
set_requires_grad_if_needed(self.sharded_param, self._unsharded_param)
|
| 534 |
+
self._setattr_on_modules(self._unsharded_param)
|
| 535 |
+
if self.sharded_state == ShardedState.SHARDED_POST_FORWARD:
|
| 536 |
+
# The data is allocated in the default stream via the post-forward
|
| 537 |
+
# reshard and must be kept alive for the next all-gather copy-in.
|
| 538 |
+
# Since we call this method after the copy-out, the data's lifetime
|
| 539 |
+
# is ensured without further synchronization.
|
| 540 |
+
self._sharded_post_forward_param = None
|
| 541 |
+
self._sharded_post_forward_param_data = None # free
|
| 542 |
+
self.sharded_state = ShardedState.UNSHARDED
|
| 543 |
+
|
| 544 |
+
def _setattr_on_modules(self, param: nn.Parameter) -> None:
|
| 545 |
+
unsafe_setattr_param(
|
| 546 |
+
self._module_info.module, self._module_info.param_name, param
|
| 547 |
+
)
|
| 548 |
+
for shared_module, shared_param_name in zip(
|
| 549 |
+
self._module_info.shared_modules, self._module_info.shared_param_names
|
| 550 |
+
):
|
| 551 |
+
unsafe_setattr_param(shared_module, shared_param_name, param)
|
| 552 |
+
|
| 553 |
+
def to_sharded_dtensor(self, tensor: torch.Tensor) -> DTensor:
|
| 554 |
+
"""
|
| 555 |
+
Converts a local tensor representing either the sharded parameter or
|
| 556 |
+
sharded gradient to DTensor.
|
| 557 |
+
"""
|
| 558 |
+
if tensor.shape != self.sharded_size:
|
| 559 |
+
_raise_assert_with_print(
|
| 560 |
+
f"Expects size {self.sharded_size} but got {tensor.shape}"
|
| 561 |
+
)
|
| 562 |
+
return _from_local_no_grad(
|
| 563 |
+
tensor,
|
| 564 |
+
self._sharding_spec,
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
def to_sharded_post_forward_dtensor(self, tensor: torch.Tensor) -> DTensor:
|
| 568 |
+
if tensor.shape != self.sharded_post_forward_size:
|
| 569 |
+
_raise_assert_with_print(
|
| 570 |
+
f"Expects size {self.sharded_post_forward_size} but got {tensor.shape}"
|
| 571 |
+
)
|
| 572 |
+
assert isinstance(self.post_forward_mesh_info, HSDPMeshInfo)
|
| 573 |
+
# TODO: Prefer this DTensor to be read-only and generalize the
|
| 574 |
+
# placement once we support TP.
|
| 575 |
+
post_forward_sharding_spec = DTensorSpec(
|
| 576 |
+
self.post_forward_mesh_info.mesh,
|
| 577 |
+
(Replicate(), Shard(0)),
|
| 578 |
+
tensor_meta=self._sharding_spec.tensor_meta,
|
| 579 |
+
)
|
| 580 |
+
return _from_local_no_grad(tensor, post_forward_sharding_spec)
|
| 581 |
+
|
| 582 |
+
def to_accumulated_grad_if_needed(self) -> None:
|
| 583 |
+
# Access `_unsharded_param` to bypass the sharded state check since we
|
| 584 |
+
# prefer to reshard before upcasting the gradient to save memory
|
| 585 |
+
if (
|
| 586 |
+
self.reduce_dtype is None
|
| 587 |
+
or self._unsharded_param.grad is None
|
| 588 |
+
or self._unsharded_param.grad.dtype == self.reduce_dtype
|
| 589 |
+
):
|
| 590 |
+
return
|
| 591 |
+
unsharded_grad = self._unsharded_param.grad
|
| 592 |
+
self._unsharded_param.grad = None
|
| 593 |
+
self.unsharded_accumulated_grad = unsharded_grad.to(self.reduce_dtype)
|
| 594 |
+
|
| 595 |
+
def accumulate_unsharded_grad_if_needed(self) -> None:
|
| 596 |
+
if (
|
| 597 |
+
self.unsharded_accumulated_grad is not None
|
| 598 |
+
and self.unsharded_param.grad is not None
|
| 599 |
+
):
|
| 600 |
+
self.unsharded_accumulated_grad += self.unsharded_param.grad
|
| 601 |
+
self.unsharded_param.grad = None
|
| 602 |
+
|
| 603 |
+
def alloc_all_gather_outputs(self) -> None:
|
| 604 |
+
for tensor in self.all_gather_outputs:
|
| 605 |
+
alloc_storage(tensor)
|
| 606 |
+
|
| 607 |
+
def free_unsharded_param(self) -> None:
|
| 608 |
+
for tensor in itertools.chain(
|
| 609 |
+
self.all_gather_outputs, self._unsharded_inner_tensors
|
| 610 |
+
):
|
| 611 |
+
free_storage(tensor)
|
| 612 |
+
if ca.compiled_autograd_enabled:
|
| 613 |
+
self.all_gather_outputs = []
|
| 614 |
+
self._unsharded_inner_tensors = []
|
| 615 |
+
|
| 616 |
+
@property
|
| 617 |
+
def all_gather_inputs(self) -> List[torch.Tensor]: # 1D
|
| 618 |
+
self._assert_in_states(ShardedState.SHARDED, ShardedState.SHARDED_POST_FORWARD)
|
| 619 |
+
if self.sharded_state == ShardedState.SHARDED:
|
| 620 |
+
if not ca.compiled_autograd_enabled and hasattr(
|
| 621 |
+
self._sharded_local_tensor, "fsdp_pre_all_gather"
|
| 622 |
+
):
|
| 623 |
+
sharded_local_tensor = self._sharded_local_tensor
|
| 624 |
+
if self.offload_to_cpu:
|
| 625 |
+
sharded_local_tensor = sharded_local_tensor.to(
|
| 626 |
+
self.device, non_blocking=True
|
| 627 |
+
)
|
| 628 |
+
(
|
| 629 |
+
all_gather_inputs,
|
| 630 |
+
self._extensions_data.all_gather_metadata,
|
| 631 |
+
) = sharded_local_tensor.fsdp_pre_all_gather(self.mesh_info.mesh)
|
| 632 |
+
self._extensions_data.all_gather_input_sizes = [
|
| 633 |
+
t.size() for t in all_gather_inputs
|
| 634 |
+
]
|
| 635 |
+
return [t.view(-1) for t in all_gather_inputs]
|
| 636 |
+
sharded_param_data = self._sharded_param_data
|
| 637 |
+
if self.offload_to_cpu:
|
| 638 |
+
sharded_param_data = sharded_param_data.to(
|
| 639 |
+
self.device, non_blocking=True
|
| 640 |
+
)
|
| 641 |
+
return [_to_dtype_if_needed(sharded_param_data, self.param_dtype)]
|
| 642 |
+
elif self.sharded_state == ShardedState.SHARDED_POST_FORWARD:
|
| 643 |
+
if not ca.compiled_autograd_enabled and hasattr(
|
| 644 |
+
self._sharded_local_tensor, "fsdp_pre_all_gather"
|
| 645 |
+
):
|
| 646 |
+
raise NotImplementedError
|
| 647 |
+
all_gather_input = _to_dtype_if_needed(
|
| 648 |
+
cast(torch.Tensor, self._sharded_post_forward_param_data),
|
| 649 |
+
self.param_dtype,
|
| 650 |
+
)
|
| 651 |
+
return [all_gather_input]
|
| 652 |
+
return [torch.empty(0)] # mypy
|
| 653 |
+
|
| 654 |
+
@property
|
| 655 |
+
def unsharded_param(self) -> nn.Parameter: # ND
|
| 656 |
+
self._assert_in_states(ShardedState.UNSHARDED)
|
| 657 |
+
return self._unsharded_param
|
| 658 |
+
|
| 659 |
+
@property
|
| 660 |
+
def unsharded_grad_data(self) -> torch.Tensor:
|
| 661 |
+
grad = self.unsharded_param.grad
|
| 662 |
+
assert grad is not None, "Expects unsharded_param.grad to not be None"
|
| 663 |
+
return self._get_grad_inner_tensor(grad)
|
| 664 |
+
|
| 665 |
+
@property
|
| 666 |
+
def unsharded_accumulated_grad_data(self) -> torch.Tensor:
|
| 667 |
+
grad = self.unsharded_accumulated_grad
|
| 668 |
+
assert grad is not None, "Expects unsharded_accumulated_grad to not be None"
|
| 669 |
+
return self._get_grad_inner_tensor(grad)
|
| 670 |
+
|
| 671 |
+
def _get_grad_inner_tensor(self, grad: torch.Tensor) -> torch.Tensor:
|
| 672 |
+
if self.is_dtensor:
|
| 673 |
+
if isinstance(grad, AsyncCollectiveTensor):
|
| 674 |
+
grad = grad.wait()
|
| 675 |
+
assert isinstance(grad, DTensor), f"{type(grad)}"
|
| 676 |
+
if any(pl.is_partial() for pl in grad.placements):
|
| 677 |
+
placements = [
|
| 678 |
+
Replicate() if pl.is_partial() else pl for pl in grad.placements
|
| 679 |
+
]
|
| 680 |
+
grad = grad.redistribute(placements=placements)
|
| 681 |
+
grad = grad._local_tensor
|
| 682 |
+
return grad
|
| 683 |
+
|
| 684 |
+
@property
|
| 685 |
+
def _sharded_local_tensor(self) -> torch.Tensor:
|
| 686 |
+
return cast(DTensor, self.sharded_param)._local_tensor
|
| 687 |
+
|
| 688 |
+
def _assert_in_states(self, *states: ShardedState) -> None:
|
| 689 |
+
if self.sharded_state not in states:
|
| 690 |
+
_raise_assert_with_print(
|
| 691 |
+
f"Expects to be in one of {states}, not {self.sharded_state}"
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
def reset_sharded_param(self):
|
| 695 |
+
# For ops like `nn.Module._apply` or `load_state_dict(assign=True)`
|
| 696 |
+
# that change the sharded parameter tensor, we may need to re-pad the
|
| 697 |
+
# sharded local tensor and re-save the reference.
|
| 698 |
+
module_info = self._module_info
|
| 699 |
+
new_param = getattr(module_info.module, module_info.param_name)
|
| 700 |
+
if new_param is not self.sharded_param:
|
| 701 |
+
if torch.__future__.get_swap_module_params_on_conversion():
|
| 702 |
+
raise AssertionError(
|
| 703 |
+
f"Expects swap_tensors to preserve object but got {new_param} "
|
| 704 |
+
f"instead of {self.sharded_param}"
|
| 705 |
+
)
|
| 706 |
+
self.sharded_param = new_param
|
| 707 |
+
local_tensor = new_param._local_tensor
|
| 708 |
+
if local_tensor.is_meta:
|
| 709 |
+
return
|
| 710 |
+
padded_sharded_size = self.padded_sharded_param_size
|
| 711 |
+
if local_tensor.size() != padded_sharded_size:
|
| 712 |
+
padded_local_tensor = local_tensor.new_zeros(padded_sharded_size)
|
| 713 |
+
padded_local_tensor[: local_tensor.size(0)].copy_(local_tensor)
|
| 714 |
+
local_tensor = padded_local_tensor
|
| 715 |
+
if self.pin_memory and not local_tensor.is_pinned():
|
| 716 |
+
local_tensor = local_tensor.cpu().pin_memory()
|
| 717 |
+
self._sharded_param_data = local_tensor.view(-1)
|
| 718 |
+
assert isinstance(self.sharded_param, DTensor) # mypy
|
| 719 |
+
self.sharded_param._local_tensor = local_tensor[: self.sharded_size[0]]
|
| 720 |
+
|
| 721 |
+
def __repr__(self):
|
| 722 |
+
return f"FSDPParam(fqn={self._param_fqn}, orig_size={self._orig_size})"
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
def alloc_storage(tensor: torch.Tensor) -> None:
|
| 726 |
+
size = tensor.numel() * tensor.itemsize
|
| 727 |
+
if (storage := tensor.untyped_storage()).size() != size:
|
| 728 |
+
storage.resize_(size)
|
| 729 |
+
|
| 730 |
+
|
| 731 |
+
def free_storage(tensor: torch.Tensor) -> None:
|
| 732 |
+
if (storage := tensor.untyped_storage()).size() != 0:
|
| 733 |
+
storage.resize_(0)
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
# NOTE: These bypass `nn.Module.__setattr__` checks, which incur non-trivial
|
| 737 |
+
# CPU overhead, if the module did not override it. For FSDP, we know we do not
|
| 738 |
+
# need those checks when transitioning between sharded/unsharded parameters.
|
| 739 |
+
def unsafe_setattr_param(
|
| 740 |
+
module: nn.Module, param_name: str, param: nn.Parameter
|
| 741 |
+
) -> None:
|
| 742 |
+
if getattr(module.__setattr__, "__func__", None) is nn.Module.__setattr__:
|
| 743 |
+
module._parameters[param_name] = param
|
| 744 |
+
else: # slow path
|
| 745 |
+
setattr(module, param_name, param)
|
| 746 |
+
|
| 747 |
+
|
| 748 |
+
def set_requires_grad_if_needed(
|
| 749 |
+
src_tensor: torch.Tensor, dst_tensor: torch.Tensor
|
| 750 |
+
) -> None:
|
| 751 |
+
# Only call `requires_grad_` if needed to avoid the Python <> C++ context
|
| 752 |
+
# switch overhead
|
| 753 |
+
if src_tensor.requires_grad != dst_tensor.requires_grad:
|
| 754 |
+
dst_tensor.requires_grad_(src_tensor.requires_grad)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param_group.py
ADDED
|
@@ -0,0 +1,614 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import contextlib
|
| 3 |
+
import logging
|
| 4 |
+
from typing import Any, cast, Dict, List, NamedTuple, Optional, Set, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch._dynamo.compiled_autograd as ca
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from torch.distributed.fsdp._common_utils import _named_parameters_with_duplicates
|
| 11 |
+
from torch.profiler import record_function
|
| 12 |
+
from torch.utils._pytree import tree_flatten, tree_unflatten
|
| 13 |
+
from torch.utils.hooks import RemovableHandle
|
| 14 |
+
|
| 15 |
+
from ._fsdp_api import MixedPrecisionPolicy, OffloadPolicy
|
| 16 |
+
from ._fsdp_collectives import (
|
| 17 |
+
AllGatherResult,
|
| 18 |
+
foreach_all_gather,
|
| 19 |
+
foreach_all_gather_copy_out,
|
| 20 |
+
foreach_reduce,
|
| 21 |
+
)
|
| 22 |
+
from ._fsdp_common import FSDPMeshInfo, HSDPMeshInfo, TrainingState
|
| 23 |
+
from ._fsdp_param import FSDPParam, ParamModuleInfo, ShardedState
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
logger = logging.getLogger("torch.distributed._composable.fsdp")
|
| 27 |
+
|
| 28 |
+
_ModuleToHandleDict = Dict[nn.Module, RemovableHandle] # for state dict
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
"""
|
| 32 |
+
[Note: Overlapping all-gather copy-in and all-gather]
|
| 33 |
+
For implicit forward prefetching, we want to overlap the next copy-in with the
|
| 34 |
+
current all-gather. We do so using a separate copy-in stream. However, since
|
| 35 |
+
we have the all-gather input as a view into the output, we must make sure to
|
| 36 |
+
copy into different memory from the current all-gather's output. Thus, we keep
|
| 37 |
+
a reference to the current all-gather's output and have the next FSDP parameter
|
| 38 |
+
group free it after its copy-in. Finally, we have the last FSDP state flush the
|
| 39 |
+
reference to avoid holding onto memory after forward.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class FSDPCommContext:
|
| 44 |
+
"""This has the communication state shared across FSDP states/parameter groups."""
|
| 45 |
+
|
| 46 |
+
def lazy_init(self):
|
| 47 |
+
if not torch.cuda.is_available():
|
| 48 |
+
raise RuntimeError("FSDP requires CUDA for streams")
|
| 49 |
+
# Setting the all-gather/reduce-scatter streams to be higher priority
|
| 50 |
+
# can help avoid some issues where their copies in/out are delayed and
|
| 51 |
+
# block computation (this is different from high-pri NCCL streams)
|
| 52 |
+
high_priority = -1
|
| 53 |
+
# All-gather state and copy-in stream allow overlapping the next
|
| 54 |
+
# copy-in with the current all-gather in forward; copy-in overlaps with
|
| 55 |
+
# reduce-scatter in backward without the separate copy-in stream
|
| 56 |
+
self.all_gather_copy_in_stream = torch.cuda.Stream(priority=high_priority)
|
| 57 |
+
# All-gather stream allows overlapping next all-gather with current
|
| 58 |
+
# forward compute
|
| 59 |
+
self.all_gather_stream = torch.cuda.Stream(priority=high_priority)
|
| 60 |
+
# Reduce-scatter stream gives separate execution "thread" for post-
|
| 61 |
+
# backward logic like pre/post-gradient division and reduce-scatter
|
| 62 |
+
self.reduce_scatter_stream = torch.cuda.Stream(priority=high_priority)
|
| 63 |
+
# Run the HSDP all-reduces concurrently with all-gather/reduce-scatter
|
| 64 |
+
# since collectives use different network resources and can overlap
|
| 65 |
+
# in the typical intra-node sharding / inter-node replication case
|
| 66 |
+
self.all_reduce_stream = torch.cuda.Stream()
|
| 67 |
+
# All-gather/reduce-scatter states keep references to collective
|
| 68 |
+
# tensors produced in one stream and used in another and accompanying
|
| 69 |
+
# CUDA events for synchronization
|
| 70 |
+
self.all_gather_state: Optional[AllGatherState] = None
|
| 71 |
+
self.reduce_scatter_state: Optional[ReduceScatterState] = None
|
| 72 |
+
# Post-forward order for explicit backward prefetching
|
| 73 |
+
self.post_forward_order: List[FSDPParamGroup] = [] # will cause ref cycles
|
| 74 |
+
|
| 75 |
+
def get_all_gather_streams(
|
| 76 |
+
self, training_state: TrainingState
|
| 77 |
+
) -> Tuple[torch.cuda.Stream, torch.cuda.Stream]:
|
| 78 |
+
if training_state in (TrainingState.FORWARD, TrainingState.PRE_BACKWARD):
|
| 79 |
+
# Use separate streams for implicit prefetching
|
| 80 |
+
return self.all_gather_copy_in_stream, self.all_gather_stream
|
| 81 |
+
current_stream = torch.cuda.current_stream()
|
| 82 |
+
return current_stream, current_stream
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# See [Note: Overlapping all-gather copy-in and all-gather]
|
| 86 |
+
class AllGatherState(NamedTuple):
|
| 87 |
+
all_gather_result: AllGatherResult
|
| 88 |
+
event: torch.cuda.Event # all-gather copy-out
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class ReduceScatterState(NamedTuple):
|
| 92 |
+
reduce_scatter_input: torch.Tensor
|
| 93 |
+
event: torch.cuda.Event # reduce-scatter event
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class FSDPParamGroup:
|
| 97 |
+
"""This class represents a parameter group to communicate together."""
|
| 98 |
+
|
| 99 |
+
_orig_dtype: torch.dtype
|
| 100 |
+
_reduce_dtype: Optional[torch.dtype]
|
| 101 |
+
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
params: List[nn.Parameter],
|
| 105 |
+
modules: Tuple[nn.Module, ...],
|
| 106 |
+
mesh_info: FSDPMeshInfo,
|
| 107 |
+
post_forward_mesh_info: Optional[FSDPMeshInfo],
|
| 108 |
+
device: torch.device,
|
| 109 |
+
mp_policy: MixedPrecisionPolicy,
|
| 110 |
+
offload_policy: OffloadPolicy,
|
| 111 |
+
):
|
| 112 |
+
self.modules = modules # permit ref cycle because 1:1 lifetime
|
| 113 |
+
param_module_infos = _get_param_module_infos(params, modules)
|
| 114 |
+
self.fsdp_params = [
|
| 115 |
+
FSDPParam(
|
| 116 |
+
param,
|
| 117 |
+
module_info,
|
| 118 |
+
mesh_info,
|
| 119 |
+
post_forward_mesh_info,
|
| 120 |
+
device,
|
| 121 |
+
mp_policy,
|
| 122 |
+
offload_policy,
|
| 123 |
+
)
|
| 124 |
+
for param, module_info in zip(params, param_module_infos)
|
| 125 |
+
]
|
| 126 |
+
self.mesh_info = mesh_info
|
| 127 |
+
self.post_forward_mesh_info = post_forward_mesh_info
|
| 128 |
+
self.device = device
|
| 129 |
+
self.mp_policy = mp_policy
|
| 130 |
+
self._training_state = TrainingState.IDLE
|
| 131 |
+
# Group's sharded state always matches its parameters' sharded states
|
| 132 |
+
self._sharded_state = ShardedState.SHARDED
|
| 133 |
+
self._module_fqn: Optional[str] = None # prefixed from root module
|
| 134 |
+
# Only consider resetting sharded parameters once in lazy init since it
|
| 135 |
+
# can incur nontrivial overhead to reset them
|
| 136 |
+
self._reset_sharded_params: bool = False
|
| 137 |
+
|
| 138 |
+
# - Hook state
|
| 139 |
+
self._module_to_pre_save_state_dict_hook_handle: _ModuleToHandleDict = {}
|
| 140 |
+
self._module_to_pre_load_state_dict_hook_handle: _ModuleToHandleDict = {}
|
| 141 |
+
|
| 142 |
+
# - Communication and communication/computation overlap
|
| 143 |
+
self.comm_ctx = FSDPCommContext()
|
| 144 |
+
# Group's indices in the shared post-forward order
|
| 145 |
+
self._post_forward_indices: List[int] = []
|
| 146 |
+
# Whether to reduce gradients at all (whether for FSDP or HSDP)
|
| 147 |
+
self.reduce_grads: bool = True
|
| 148 |
+
# Whether to all-reduce gradients for HSDP; only used if
|
| 149 |
+
# `self.reduce_grads` is true, in which case setting this to false
|
| 150 |
+
# means reduce-scatter but no all-reduce
|
| 151 |
+
self.all_reduce_grads: bool = True
|
| 152 |
+
# Whether to reshard parameters after backward (only useful for
|
| 153 |
+
# gradient accumulation)
|
| 154 |
+
self.reshard_after_backward: bool = True
|
| 155 |
+
# Optional custom reduce-scatter reduce op (e.g. to divide by a
|
| 156 |
+
# factor other than the shard world size)
|
| 157 |
+
self.reduce_scatter_reduce_op: Optional[dist.ReduceOp] = None
|
| 158 |
+
|
| 159 |
+
# - CUDA events for stream synchronization
|
| 160 |
+
# Holds the all-gather output buffer, sync objects, and metadata
|
| 161 |
+
self._all_gather_result: Optional[AllGatherResult] = None
|
| 162 |
+
# Holds the reduce-scatter/all-reduce view-out CUDA event that marks the end of
|
| 163 |
+
# the group's post-backward (e.g. reduce-scatter, all-reduce and div), which
|
| 164 |
+
# should be waited on at the end of backward
|
| 165 |
+
self._post_reduce_event: Optional[torch.cuda.Event] = None
|
| 166 |
+
# Holds the reshard-after-forward CUDA event when resharding to a
|
| 167 |
+
# different world size, which should be waited on in the next unshard
|
| 168 |
+
self._reshard_after_forward_event: Optional[torch.cuda.Event] = None
|
| 169 |
+
|
| 170 |
+
# Only for HSDP, if accumulating gradients without all-reduce, save the
|
| 171 |
+
# partial reduce output (only reduce-scattered but not all-reduced)
|
| 172 |
+
self._partial_reduce_output: Optional[torch.Tensor] = None
|
| 173 |
+
|
| 174 |
+
# Initialization #
|
| 175 |
+
def _init_mp_dtypes(self) -> None:
|
| 176 |
+
for fsdp_param in self.fsdp_params:
|
| 177 |
+
fsdp_param.init_dtype_attrs(self.mp_policy)
|
| 178 |
+
orig_dtypes = {fsdp_param.orig_dtype for fsdp_param in self.fsdp_params}
|
| 179 |
+
if len(orig_dtypes) != 1:
|
| 180 |
+
# This can be relaxed if we copy-out for the reduce-scatter
|
| 181 |
+
raise AssertionError(
|
| 182 |
+
f"FSDP expects uniform original parameter dtype but got {orig_dtypes}"
|
| 183 |
+
)
|
| 184 |
+
self._orig_dtype = next(iter(orig_dtypes))
|
| 185 |
+
reduce_dtypes = {fsdp_param.reduce_dtype for fsdp_param in self.fsdp_params}
|
| 186 |
+
if len(reduce_dtypes) != 1:
|
| 187 |
+
# This can be relaxed if we issue one reduce-scatter per reduce
|
| 188 |
+
# dtype (but we would need a way for users to specify multiple
|
| 189 |
+
# reduce dtypes)
|
| 190 |
+
raise AssertionError(
|
| 191 |
+
f"FSDP expects uniform reduce dtype but got {reduce_dtypes}"
|
| 192 |
+
)
|
| 193 |
+
self._reduce_dtype = next(iter(reduce_dtypes))
|
| 194 |
+
|
| 195 |
+
def lazy_init(self):
|
| 196 |
+
# Lazy init should be idempotent
|
| 197 |
+
# Users may change or register parameters after construction time.
|
| 198 |
+
# For example, DoRA (https://arxiv.org/abs/2402.09353) initializes linear magnitudes based on
|
| 199 |
+
# other parameters (e.g. loaded from the state dict).
|
| 200 |
+
if self.is_sharded and not self._reset_sharded_params:
|
| 201 |
+
for fsdp_param in self.fsdp_params:
|
| 202 |
+
fsdp_param.reset_sharded_param()
|
| 203 |
+
self._reset_sharded_params = True
|
| 204 |
+
param_names_on_meta = [
|
| 205 |
+
fsdp_param._param_fqn
|
| 206 |
+
for fsdp_param in self.fsdp_params
|
| 207 |
+
if fsdp_param.sharded_param.device.type == "meta"
|
| 208 |
+
]
|
| 209 |
+
if param_names_on_meta:
|
| 210 |
+
raise RuntimeError(
|
| 211 |
+
"FSDP parameters should be materialized from meta device before training, "
|
| 212 |
+
f"but the following were still on meta device: {param_names_on_meta}\n"
|
| 213 |
+
"For example, call module.to_empty(device) to materialize to device and "
|
| 214 |
+
"call module.reset_parameters() on each module to initialize values."
|
| 215 |
+
)
|
| 216 |
+
# Initialize mixed precision attributes lazily in case the user changes
|
| 217 |
+
# the parameter dtypes after construction time but before forward
|
| 218 |
+
self._init_mp_dtypes()
|
| 219 |
+
self._register_state_dict_hooks()
|
| 220 |
+
|
| 221 |
+
# Runtime #
|
| 222 |
+
def unshard(self, async_op: bool = False):
|
| 223 |
+
if self._all_gather_result is not None: # already called, pending wait
|
| 224 |
+
return
|
| 225 |
+
if self.is_unsharded:
|
| 226 |
+
return # no-op
|
| 227 |
+
if self._reshard_after_forward_event is not None:
|
| 228 |
+
# Resharded parameter data is allocated in the default stream and
|
| 229 |
+
# used in the all-gather streams
|
| 230 |
+
self._wait_all_gather_streams_on_event(self._reshard_after_forward_event)
|
| 231 |
+
self._reshard_after_forward_event = None
|
| 232 |
+
with record_function(self._with_fqn("FSDP::all_gather")):
|
| 233 |
+
self._all_gather_result = foreach_all_gather(
|
| 234 |
+
self.fsdp_params,
|
| 235 |
+
self._all_gather_process_group,
|
| 236 |
+
async_op,
|
| 237 |
+
*self.comm_ctx.get_all_gather_streams(self._training_state),
|
| 238 |
+
self.device,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
def wait_for_unshard(self):
|
| 242 |
+
"""
|
| 243 |
+
1. In forward with implict prefetching, to overlap the current copy-out
|
| 244 |
+
with the next all-gather, we save a reference to the current all-gather
|
| 245 |
+
result to free after the next copy-out.
|
| 246 |
+
2. Otherwise (explicit prefetching or in backward), we free the
|
| 247 |
+
all-gather result immediately after the current copy-out since we can
|
| 248 |
+
already overlap the current copy-out with the previous reduce-scatter.
|
| 249 |
+
"""
|
| 250 |
+
if not self._all_gather_result:
|
| 251 |
+
return # no preceding unshard
|
| 252 |
+
if self._training_state == TrainingState.FORWARD: # implicit prefetch
|
| 253 |
+
if prev_all_gather_state := self.comm_ctx.all_gather_state:
|
| 254 |
+
self._wait_all_gather_streams_on_event(prev_all_gather_state.event)
|
| 255 |
+
self.comm_ctx.all_gather_state = None # free the all-gather result
|
| 256 |
+
with record_function(self._with_fqn("FSDP::all_gather_copy_out")):
|
| 257 |
+
foreach_all_gather_copy_out(
|
| 258 |
+
self._all_gather_result,
|
| 259 |
+
self.fsdp_params,
|
| 260 |
+
self._all_gather_process_group,
|
| 261 |
+
)
|
| 262 |
+
for fsdp_param in self.fsdp_params:
|
| 263 |
+
fsdp_param.init_unsharded_param()
|
| 264 |
+
self._to_unsharded()
|
| 265 |
+
all_gather_copy_out_event = torch.cuda.Event()
|
| 266 |
+
all_gather_copy_out_event.record()
|
| 267 |
+
if self._training_state == TrainingState.FORWARD:
|
| 268 |
+
self.comm_ctx.all_gather_state = AllGatherState(
|
| 269 |
+
self._all_gather_result, all_gather_copy_out_event
|
| 270 |
+
)
|
| 271 |
+
else:
|
| 272 |
+
self._wait_all_gather_streams_on_event(all_gather_copy_out_event)
|
| 273 |
+
self._all_gather_result = None # free unless saved in `all_gather_state`
|
| 274 |
+
|
| 275 |
+
def _wait_all_gather_streams_on_event(self, event: torch.cuda.Event):
|
| 276 |
+
# Calling `unshard` before lazy init means streams are not initialized
|
| 277 |
+
if hasattr(self.comm_ctx, "all_gather_copy_in_stream"):
|
| 278 |
+
self.comm_ctx.all_gather_copy_in_stream.wait_event(event)
|
| 279 |
+
if hasattr(self.comm_ctx, "all_gather_stream"):
|
| 280 |
+
self.comm_ctx.all_gather_stream.wait_event(event)
|
| 281 |
+
|
| 282 |
+
def reshard(self):
|
| 283 |
+
if self._training_state == TrainingState.FORWARD:
|
| 284 |
+
if not self._reshard_after_forward:
|
| 285 |
+
return
|
| 286 |
+
if self._use_post_forward_mesh:
|
| 287 |
+
self._to_sharded_post_forward()
|
| 288 |
+
self._reshard_after_forward_event = torch.cuda.Event()
|
| 289 |
+
self._reshard_after_forward_event.record()
|
| 290 |
+
return
|
| 291 |
+
self._to_sharded()
|
| 292 |
+
|
| 293 |
+
def pre_forward(
|
| 294 |
+
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
| 295 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
| 296 |
+
if not ca.compiled_autograd_enabled:
|
| 297 |
+
logger.debug("%s", self._with_fqn("FSDP::pre_forward"))
|
| 298 |
+
with record_function(self._with_fqn("FSDP::pre_forward")):
|
| 299 |
+
self._training_state = TrainingState.FORWARD
|
| 300 |
+
self.unshard()
|
| 301 |
+
self.wait_for_unshard()
|
| 302 |
+
args, kwargs = self._register_post_backward_hook(args, kwargs)
|
| 303 |
+
return args, kwargs
|
| 304 |
+
|
| 305 |
+
def post_forward(self, module: nn.Module, input: Any, output: Any):
|
| 306 |
+
if not ca.compiled_autograd_enabled:
|
| 307 |
+
logger.debug("%s", self._with_fqn("FSDP::post_forward"))
|
| 308 |
+
with record_function(self._with_fqn("FSDP::post_forward")):
|
| 309 |
+
self.reshard()
|
| 310 |
+
self._record_post_forward()
|
| 311 |
+
self._training_state = TrainingState.IDLE
|
| 312 |
+
return output
|
| 313 |
+
|
| 314 |
+
def _record_post_forward(self) -> None:
|
| 315 |
+
# Since a group has one pre-backward unshard for each forward call
|
| 316 |
+
# before the backward, we record each usage (with multiplicity)
|
| 317 |
+
post_forward_index = len(self.comm_ctx.post_forward_order)
|
| 318 |
+
self.comm_ctx.post_forward_order.append(self)
|
| 319 |
+
self._post_forward_indices.append(post_forward_index)
|
| 320 |
+
|
| 321 |
+
def pre_backward(self, default_prefetch: bool, *unused: Any):
|
| 322 |
+
if self._training_state == TrainingState.PRE_BACKWARD:
|
| 323 |
+
return
|
| 324 |
+
if not ca.compiled_autograd_enabled:
|
| 325 |
+
logger.debug("%s", self._with_fqn("FSDP::pre_backward"))
|
| 326 |
+
with record_function(self._with_fqn("FSDP::pre_backward")):
|
| 327 |
+
self._training_state = TrainingState.PRE_BACKWARD
|
| 328 |
+
self.unshard() # no-op if prefetched
|
| 329 |
+
self.wait_for_unshard()
|
| 330 |
+
if default_prefetch and not ca.compiled_autograd_enabled:
|
| 331 |
+
self._backward_prefetch()
|
| 332 |
+
|
| 333 |
+
def post_backward(self, *unused: Any):
|
| 334 |
+
if not ca.compiled_autograd_enabled:
|
| 335 |
+
logger.debug("%s", self._with_fqn("FSDP::post_backward"))
|
| 336 |
+
self._training_state = TrainingState.POST_BACKWARD
|
| 337 |
+
with record_function(self._with_fqn("FSDP::post_backward_accumulate")):
|
| 338 |
+
for fsdp_param in self.fsdp_params:
|
| 339 |
+
fsdp_param.accumulate_unsharded_grad_if_needed()
|
| 340 |
+
with record_function(self._with_fqn("FSDP::post_backward_reshard")):
|
| 341 |
+
if not self.reduce_grads:
|
| 342 |
+
if self.reshard_after_backward:
|
| 343 |
+
self.reshard()
|
| 344 |
+
for fsdp_param in self.fsdp_params:
|
| 345 |
+
fsdp_param.to_accumulated_grad_if_needed()
|
| 346 |
+
return
|
| 347 |
+
# Save the autograd-computed gradients before resharding to only
|
| 348 |
+
# access the unsharded parameters when their data is present
|
| 349 |
+
fsdp_params_with_grad: List[FSDPParam] = []
|
| 350 |
+
unsharded_grads: List[torch.Tensor] = []
|
| 351 |
+
for fsdp_param in self.fsdp_params:
|
| 352 |
+
# May have an accumulated gradient of the reduce dtype if the
|
| 353 |
+
# previous backward did not reduce-scatter
|
| 354 |
+
if fsdp_param.unsharded_accumulated_grad is not None:
|
| 355 |
+
fsdp_params_with_grad.append(fsdp_param)
|
| 356 |
+
unsharded_grads.append(fsdp_param.unsharded_accumulated_grad_data)
|
| 357 |
+
fsdp_param.unsharded_accumulated_grad = None
|
| 358 |
+
elif fsdp_param.unsharded_param.grad is not None:
|
| 359 |
+
fsdp_params_with_grad.append(fsdp_param)
|
| 360 |
+
unsharded_grads.append(fsdp_param.unsharded_grad_data)
|
| 361 |
+
fsdp_param.unsharded_param.grad = None
|
| 362 |
+
if self.reshard_after_backward:
|
| 363 |
+
self.reshard()
|
| 364 |
+
if len(fsdp_params_with_grad) == 0:
|
| 365 |
+
return
|
| 366 |
+
with record_function(self._with_fqn("FSDP::post_backward_reduce")):
|
| 367 |
+
if self.comm_ctx.reduce_scatter_state is not None:
|
| 368 |
+
torch.cuda.current_stream().wait_event(
|
| 369 |
+
self.comm_ctx.reduce_scatter_state.event
|
| 370 |
+
)
|
| 371 |
+
self.comm_ctx.reduce_scatter_state = None
|
| 372 |
+
(
|
| 373 |
+
reduce_scatter_input,
|
| 374 |
+
reduce_scatter_event,
|
| 375 |
+
self._post_reduce_event,
|
| 376 |
+
self._partial_reduce_output,
|
| 377 |
+
) = foreach_reduce(
|
| 378 |
+
fsdp_params_with_grad,
|
| 379 |
+
unsharded_grads,
|
| 380 |
+
self._reduce_scatter_process_group,
|
| 381 |
+
self.comm_ctx.reduce_scatter_stream,
|
| 382 |
+
self._orig_dtype,
|
| 383 |
+
self._reduce_dtype,
|
| 384 |
+
self.device,
|
| 385 |
+
self.reduce_scatter_reduce_op,
|
| 386 |
+
self._all_reduce_process_group if self._is_hsdp else None,
|
| 387 |
+
self.comm_ctx.all_reduce_stream,
|
| 388 |
+
self.all_reduce_grads,
|
| 389 |
+
self._partial_reduce_output,
|
| 390 |
+
)
|
| 391 |
+
self.comm_ctx.reduce_scatter_state = ReduceScatterState(
|
| 392 |
+
reduce_scatter_input, reduce_scatter_event
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
def finalize_backward(self):
|
| 396 |
+
if self._post_reduce_event is not None:
|
| 397 |
+
torch.cuda.current_stream().wait_event(self._post_reduce_event)
|
| 398 |
+
self._post_reduce_event = None
|
| 399 |
+
for fsdp_param in self.fsdp_params:
|
| 400 |
+
if fsdp_param.grad_offload_event is not None:
|
| 401 |
+
fsdp_param.grad_offload_event.synchronize()
|
| 402 |
+
fsdp_param.grad_offload_event = None
|
| 403 |
+
self._post_forward_indices.clear()
|
| 404 |
+
|
| 405 |
+
def _backward_prefetch(self) -> None:
|
| 406 |
+
if self._training_state == TrainingState.PRE_BACKWARD:
|
| 407 |
+
if not self._post_forward_indices:
|
| 408 |
+
# Can be cleared if running multiple `backward`s
|
| 409 |
+
return
|
| 410 |
+
curr_index = self._post_forward_indices.pop()
|
| 411 |
+
if (target_index := curr_index - 1) < 0:
|
| 412 |
+
return
|
| 413 |
+
# Prefetch naively using the reverse post-forward order, which may
|
| 414 |
+
# have mistargeted prefetches if not all modules used in forward
|
| 415 |
+
# are used in this backward
|
| 416 |
+
target_fsdp_param_group = self.comm_ctx.post_forward_order[target_index]
|
| 417 |
+
self._prefetch_unshard(target_fsdp_param_group, "backward")
|
| 418 |
+
|
| 419 |
+
@staticmethod
|
| 420 |
+
def _prefetch_unshard(
|
| 421 |
+
target_fsdp_param_group: "FSDPParamGroup", pass_type: str
|
| 422 |
+
) -> None:
|
| 423 |
+
if pass_type == "backward":
|
| 424 |
+
training_state = TrainingState.PRE_BACKWARD
|
| 425 |
+
elif pass_type == "forward":
|
| 426 |
+
training_state = TrainingState.FORWARD
|
| 427 |
+
else:
|
| 428 |
+
raise ValueError(f"Unknown pass type: {pass_type}")
|
| 429 |
+
target_fqn = target_fsdp_param_group._module_fqn
|
| 430 |
+
with record_function(
|
| 431 |
+
f"FSDP::{pass_type}_prefetch for {target_fqn}"
|
| 432 |
+
), target_fsdp_param_group.use_training_state(training_state):
|
| 433 |
+
target_fsdp_param_group.unshard()
|
| 434 |
+
|
| 435 |
+
# Utilities #
|
| 436 |
+
def _to_sharded(self):
|
| 437 |
+
if not self.is_sharded:
|
| 438 |
+
for fsdp_param in self.fsdp_params:
|
| 439 |
+
fsdp_param.to_sharded()
|
| 440 |
+
self._sharded_state = ShardedState.SHARDED
|
| 441 |
+
|
| 442 |
+
def _to_sharded_post_forward(self):
|
| 443 |
+
if not self.is_sharded_post_forward:
|
| 444 |
+
for fsdp_param in self.fsdp_params:
|
| 445 |
+
fsdp_param.to_sharded_post_forward()
|
| 446 |
+
self._sharded_state = ShardedState.SHARDED_POST_FORWARD
|
| 447 |
+
|
| 448 |
+
def _to_unsharded(self):
|
| 449 |
+
if not self.is_unsharded:
|
| 450 |
+
for fsdp_param in self.fsdp_params:
|
| 451 |
+
fsdp_param.to_unsharded()
|
| 452 |
+
self._sharded_state = ShardedState.UNSHARDED
|
| 453 |
+
|
| 454 |
+
@property
|
| 455 |
+
def is_sharded(self) -> bool:
|
| 456 |
+
return self._sharded_state == ShardedState.SHARDED
|
| 457 |
+
|
| 458 |
+
@property
|
| 459 |
+
def is_sharded_post_forward(self) -> bool:
|
| 460 |
+
return self._sharded_state == ShardedState.SHARDED_POST_FORWARD
|
| 461 |
+
|
| 462 |
+
@property
|
| 463 |
+
def is_unsharded(self) -> bool:
|
| 464 |
+
return self._sharded_state == ShardedState.UNSHARDED
|
| 465 |
+
|
| 466 |
+
@contextlib.contextmanager
|
| 467 |
+
def use_training_state(self, training_state: TrainingState):
|
| 468 |
+
old_training_state = self._training_state
|
| 469 |
+
self._training_state = training_state
|
| 470 |
+
try:
|
| 471 |
+
yield
|
| 472 |
+
finally:
|
| 473 |
+
self._training_state = old_training_state
|
| 474 |
+
|
| 475 |
+
# Hook Registration #
|
| 476 |
+
def _register_post_backward_hook(
|
| 477 |
+
self, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
| 478 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
| 479 |
+
# Compile relies on `root_post_backward_callback` to call each
|
| 480 |
+
# `FSDPParamGroup.post_backward`
|
| 481 |
+
if ca.compiled_autograd_enabled:
|
| 482 |
+
return args, kwargs
|
| 483 |
+
if not torch.is_grad_enabled():
|
| 484 |
+
return args, kwargs
|
| 485 |
+
args_list, args_spec = tree_flatten(args)
|
| 486 |
+
kwargs_list, kwargs_spec = tree_flatten(kwargs)
|
| 487 |
+
args_kwargs_list = list(args_list) + list(kwargs_list)
|
| 488 |
+
inp_tensor_indices: List[int] = []
|
| 489 |
+
inp_tensors: List[torch.Tensor] = []
|
| 490 |
+
for i, obj in enumerate(args_kwargs_list):
|
| 491 |
+
if torch.is_tensor(obj) and obj.requires_grad:
|
| 492 |
+
inp_tensor_indices.append(i)
|
| 493 |
+
inp_tensors.append(obj)
|
| 494 |
+
if len(inp_tensors) == 0:
|
| 495 |
+
return args, kwargs # no tensors that require gradients
|
| 496 |
+
inp_tensors = RegisterPostBackwardFunction.apply(self, *inp_tensors)
|
| 497 |
+
for inp_tensor_idx, inp_tensor in zip(inp_tensor_indices, inp_tensors):
|
| 498 |
+
args_kwargs_list[inp_tensor_idx] = inp_tensor
|
| 499 |
+
args_list = args_kwargs_list[: len(args_list)]
|
| 500 |
+
kwargs_list = args_kwargs_list[len(args_list) :]
|
| 501 |
+
args = tree_unflatten(args_list, args_spec)
|
| 502 |
+
kwargs = tree_unflatten(kwargs_list, kwargs_spec)
|
| 503 |
+
return args, kwargs
|
| 504 |
+
|
| 505 |
+
def _register_state_dict_hooks(self) -> None:
|
| 506 |
+
num_pre_save_hooks = len(self._module_to_pre_save_state_dict_hook_handle)
|
| 507 |
+
num_pre_load_hooks = len(self._module_to_pre_load_state_dict_hook_handle)
|
| 508 |
+
assert (
|
| 509 |
+
num_pre_save_hooks == num_pre_load_hooks
|
| 510 |
+
), f"Pre-save: {num_pre_save_hooks} pre-load: {num_pre_load_hooks}"
|
| 511 |
+
if num_pre_save_hooks > 0:
|
| 512 |
+
return # already registered
|
| 513 |
+
modules_with_fsdp_params: Set[nn.Module] = {
|
| 514 |
+
fsdp_param._module_info.module for fsdp_param in self.fsdp_params
|
| 515 |
+
}
|
| 516 |
+
|
| 517 |
+
def to_sharded_hook(*args: Any, **kwargs: Any) -> None:
|
| 518 |
+
self._to_sharded()
|
| 519 |
+
|
| 520 |
+
for module in modules_with_fsdp_params:
|
| 521 |
+
self._module_to_pre_save_state_dict_hook_handle[
|
| 522 |
+
module
|
| 523 |
+
] = module.register_state_dict_pre_hook(to_sharded_hook)
|
| 524 |
+
self._module_to_pre_load_state_dict_hook_handle[
|
| 525 |
+
module
|
| 526 |
+
] = module._register_load_state_dict_pre_hook(to_sharded_hook)
|
| 527 |
+
|
| 528 |
+
# Properties #
|
| 529 |
+
@property
|
| 530 |
+
def _reshard_after_forward(self) -> bool:
|
| 531 |
+
return self.post_forward_mesh_info is not None
|
| 532 |
+
|
| 533 |
+
@property
|
| 534 |
+
def _use_post_forward_mesh(self) -> bool:
|
| 535 |
+
return (
|
| 536 |
+
self._reshard_after_forward
|
| 537 |
+
and self.mesh_info != self.post_forward_mesh_info
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
@property
|
| 541 |
+
def _is_hsdp(self) -> bool:
|
| 542 |
+
return isinstance(self.mesh_info, HSDPMeshInfo)
|
| 543 |
+
|
| 544 |
+
@property
|
| 545 |
+
def _all_gather_process_group(self) -> dist.ProcessGroup:
|
| 546 |
+
mesh_info = (
|
| 547 |
+
cast(FSDPMeshInfo, self.post_forward_mesh_info)
|
| 548 |
+
if self.is_sharded_post_forward
|
| 549 |
+
else self.mesh_info
|
| 550 |
+
)
|
| 551 |
+
assert isinstance(mesh_info, FSDPMeshInfo)
|
| 552 |
+
return mesh_info.shard_process_group
|
| 553 |
+
|
| 554 |
+
@property
|
| 555 |
+
def _reduce_scatter_process_group(self) -> dist.ProcessGroup:
|
| 556 |
+
assert isinstance(self.mesh_info, FSDPMeshInfo)
|
| 557 |
+
return self.mesh_info.shard_process_group
|
| 558 |
+
|
| 559 |
+
@property
|
| 560 |
+
def _all_reduce_process_group(self) -> dist.ProcessGroup:
|
| 561 |
+
assert isinstance(self.mesh_info, HSDPMeshInfo)
|
| 562 |
+
return self.mesh_info.replicate_process_group
|
| 563 |
+
|
| 564 |
+
def _with_fqn(self, label: str) -> str:
|
| 565 |
+
if self._module_fqn:
|
| 566 |
+
return f"{label} ({self._module_fqn})"
|
| 567 |
+
return label
|
| 568 |
+
|
| 569 |
+
def __repr__(self):
|
| 570 |
+
return f"FSDPParamGroup(fqn={self._module_fqn})"
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
def _get_param_module_infos(
|
| 574 |
+
params: List[nn.Parameter], modules: Tuple[nn.Module, ...]
|
| 575 |
+
) -> List[ParamModuleInfo]:
|
| 576 |
+
"""
|
| 577 |
+
Shared parameter: lin1.weight = lin2.weight
|
| 578 |
+
Shared module: mlp.lin1 = mlp.lin2
|
| 579 |
+
We do not remove duplicates when traversing both modules and parameters to
|
| 580 |
+
find shared modules' parameters and shared parameters within a module.
|
| 581 |
+
"""
|
| 582 |
+
params_set = set(params)
|
| 583 |
+
param_to_module_info: Dict[nn.Parameter, ParamModuleInfo] = {}
|
| 584 |
+
for module in modules:
|
| 585 |
+
for _, submodule in module.named_modules(remove_duplicate=False):
|
| 586 |
+
for param_name, param in _named_parameters_with_duplicates(
|
| 587 |
+
submodule, recurse=False
|
| 588 |
+
):
|
| 589 |
+
if param in params_set:
|
| 590 |
+
if param not in param_to_module_info:
|
| 591 |
+
param_to_module_info[param] = ParamModuleInfo(
|
| 592 |
+
submodule, param_name
|
| 593 |
+
)
|
| 594 |
+
else:
|
| 595 |
+
param_to_module_info[param].shared_modules.append(submodule)
|
| 596 |
+
param_to_module_info[param].shared_param_names.append(
|
| 597 |
+
param_name
|
| 598 |
+
)
|
| 599 |
+
if len(param_to_module_info) != len(params):
|
| 600 |
+
raise AssertionError(f"Some parameters are not in the module tree of {module}")
|
| 601 |
+
return [param_to_module_info[param] for param in params]
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
class RegisterPostBackwardFunction(torch.autograd.Function):
|
| 605 |
+
@staticmethod
|
| 606 |
+
def forward(ctx, param_group: FSDPParamGroup, *inputs: torch.Tensor):
|
| 607 |
+
# All tensors in `inputs` should require gradient
|
| 608 |
+
ctx.param_group = param_group
|
| 609 |
+
return inputs
|
| 610 |
+
|
| 611 |
+
@staticmethod
|
| 612 |
+
def backward(ctx, *grads: torch.Tensor):
|
| 613 |
+
ctx.param_group.post_backward()
|
| 614 |
+
return (None,) + grads
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_state.py
ADDED
|
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-decorators
|
| 2 |
+
# mypy: allow-untyped-defs
|
| 3 |
+
import functools
|
| 4 |
+
import logging
|
| 5 |
+
from typing import (
|
| 6 |
+
Any,
|
| 7 |
+
Callable,
|
| 8 |
+
Dict,
|
| 9 |
+
List,
|
| 10 |
+
Optional,
|
| 11 |
+
Sequence,
|
| 12 |
+
Set,
|
| 13 |
+
Tuple,
|
| 14 |
+
TYPE_CHECKING,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch._dynamo.compiled_autograd as ca
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
from torch._logging import warning_once
|
| 21 |
+
from torch.autograd import Variable
|
| 22 |
+
from torch.autograd.graph import _MultiHandle
|
| 23 |
+
from torch.distributed._composable_state import (
|
| 24 |
+
_get_module_state,
|
| 25 |
+
_insert_module_state,
|
| 26 |
+
_State,
|
| 27 |
+
)
|
| 28 |
+
from torch.distributed.utils import _to_kwargs
|
| 29 |
+
from torch.utils._pytree import tree_flatten, tree_map
|
| 30 |
+
|
| 31 |
+
from ._fsdp_api import MixedPrecisionPolicy
|
| 32 |
+
from ._fsdp_common import _cast_fp_tensor, TrainingState
|
| 33 |
+
from ._fsdp_param_group import FSDPCommContext, FSDPParamGroup
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
if TYPE_CHECKING:
|
| 37 |
+
from ._fsdp_param import FSDPParam
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
logger = logging.getLogger("torch.distributed._composable.fsdp")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class FSDPStateContext:
|
| 44 |
+
"""This has state shared across FSDP states."""
|
| 45 |
+
|
| 46 |
+
def __init__(self) -> None:
|
| 47 |
+
# All FSDP states in the root state's module tree
|
| 48 |
+
self.all_states: List[FSDPState] = []
|
| 49 |
+
# Iteration's forward root runs the once-per-forward logic; this root
|
| 50 |
+
# may not be the overall root set by lazy initialization in cases where
|
| 51 |
+
# only a submodule runs forward (e.g. encoder-only for eval)
|
| 52 |
+
self.iter_forward_root: Optional[FSDPState] = None
|
| 53 |
+
# Final callback should only be queued once per backward
|
| 54 |
+
self.post_backward_final_callback_queued: bool = False
|
| 55 |
+
# Whether to finalize backward in this backward's final callback
|
| 56 |
+
self.is_last_backward: bool = True
|
| 57 |
+
# Optional user-provided event recorded after optimizer for the
|
| 58 |
+
# all-gather streams to wait on in the root pre-forward
|
| 59 |
+
self.post_optim_event: Optional[torch.cuda.Event] = None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def disable_if_config_true(func):
|
| 63 |
+
@functools.wraps(func)
|
| 64 |
+
def fsdp_hook_wrapper(*args, **kwargs):
|
| 65 |
+
if torch._dynamo.config.skip_fsdp_hooks:
|
| 66 |
+
return torch._dynamo.disable(func, recursive=True)(*args, **kwargs)
|
| 67 |
+
else:
|
| 68 |
+
return func(*args, **kwargs)
|
| 69 |
+
|
| 70 |
+
return fsdp_hook_wrapper
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class FSDPState(_State):
|
| 74 |
+
def __init__(self) -> None:
|
| 75 |
+
super().__init__()
|
| 76 |
+
self._fsdp_param_group: Optional[FSDPParamGroup] = None
|
| 77 |
+
self._is_root: Optional[bool] = None # root set during lazy init
|
| 78 |
+
self._state_ctx = FSDPStateContext()
|
| 79 |
+
self._comm_ctx = FSDPCommContext()
|
| 80 |
+
self._training_state: TrainingState = TrainingState.IDLE
|
| 81 |
+
self._states_to_forward_prefetch: List[FSDPState] = []
|
| 82 |
+
self._states_to_backward_prefetch: List[FSDPState] = []
|
| 83 |
+
self._modules_to_run_forward: Set[nn.Module] = set()
|
| 84 |
+
|
| 85 |
+
# Define a separate init since `__init__` is called in the contract
|
| 86 |
+
def init(
|
| 87 |
+
self,
|
| 88 |
+
modules: Tuple[nn.Module, ...],
|
| 89 |
+
device: torch.device,
|
| 90 |
+
mp_policy: MixedPrecisionPolicy,
|
| 91 |
+
) -> None:
|
| 92 |
+
for module in modules:
|
| 93 |
+
_insert_module_state(module, self)
|
| 94 |
+
self._modules = modules
|
| 95 |
+
self._device = device
|
| 96 |
+
self._mp_policy = mp_policy
|
| 97 |
+
if len(modules) == 1:
|
| 98 |
+
self._pre_forward_hook_handle = modules[0].register_forward_pre_hook(
|
| 99 |
+
self._pre_forward, prepend=True, with_kwargs=True
|
| 100 |
+
)
|
| 101 |
+
self._post_forward_hook_handle = modules[0].register_forward_hook(
|
| 102 |
+
self._post_forward, prepend=False
|
| 103 |
+
)
|
| 104 |
+
else:
|
| 105 |
+
hook_handle = _register_group_forward_hooks(
|
| 106 |
+
modules,
|
| 107 |
+
self._pre_forward,
|
| 108 |
+
self._post_forward,
|
| 109 |
+
self._modules_to_run_forward,
|
| 110 |
+
)
|
| 111 |
+
self._pre_forward_hook_handle = hook_handle
|
| 112 |
+
self._post_forward_hook_handle = hook_handle
|
| 113 |
+
|
| 114 |
+
def _root_pre_forward(
|
| 115 |
+
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
| 116 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
| 117 |
+
self._lazy_init()
|
| 118 |
+
if self._state_ctx.iter_forward_root is not None:
|
| 119 |
+
return args, kwargs
|
| 120 |
+
if not ca.compiled_autograd_enabled:
|
| 121 |
+
logger.debug("FSDP::root_pre_forward")
|
| 122 |
+
self._state_ctx.iter_forward_root = self
|
| 123 |
+
with torch.profiler.record_function("FSDP::root_pre_forward"):
|
| 124 |
+
# Wait for optimizer before implicitly prefetched all-gathers
|
| 125 |
+
if (event := self._state_ctx.post_optim_event) is not None:
|
| 126 |
+
self._comm_ctx.all_gather_copy_in_stream.wait_event(event)
|
| 127 |
+
self._comm_ctx.all_gather_stream.wait_event(event)
|
| 128 |
+
self._state_ctx.post_optim_event = None
|
| 129 |
+
else:
|
| 130 |
+
current_stream = torch.cuda.current_stream()
|
| 131 |
+
self._comm_ctx.all_gather_copy_in_stream.wait_stream(current_stream)
|
| 132 |
+
self._comm_ctx.all_gather_stream.wait_stream(current_stream)
|
| 133 |
+
if self._device.type == "cuda":
|
| 134 |
+
with torch.profiler.record_function("FSDP::inputs_to_device"):
|
| 135 |
+
args_tuple, kwargs_tuple = _to_kwargs(
|
| 136 |
+
args, kwargs, self._device, False
|
| 137 |
+
) # same as DDP
|
| 138 |
+
args, kwargs = args_tuple[0], kwargs_tuple[0]
|
| 139 |
+
return args, kwargs
|
| 140 |
+
|
| 141 |
+
def _lazy_init(self) -> None:
|
| 142 |
+
"""
|
| 143 |
+
Lazy initialization represents when all modules' parallelisms have
|
| 144 |
+
finalized (e.g. FSDP has been applied to all desired modules). This
|
| 145 |
+
means that we can determine which state is the root, and we do so by
|
| 146 |
+
the 1st state to run forward.
|
| 147 |
+
"""
|
| 148 |
+
if self._is_root is not None:
|
| 149 |
+
return # no-op: already initialized
|
| 150 |
+
self._is_root = True
|
| 151 |
+
if len(self._modules) > 1:
|
| 152 |
+
raise RuntimeError(
|
| 153 |
+
f"FSDP requires a single root module but got {self._modules}"
|
| 154 |
+
)
|
| 155 |
+
root_module = self._modules[0]
|
| 156 |
+
visited_states: Set[FSDPState] = set()
|
| 157 |
+
for module_name, module in root_module.named_modules():
|
| 158 |
+
if (state := _get_module_fsdp_state(module)) is None:
|
| 159 |
+
continue
|
| 160 |
+
if module is not root_module:
|
| 161 |
+
if state not in visited_states and state._is_root is not None:
|
| 162 |
+
raise RuntimeError(
|
| 163 |
+
"FSDP state has already been lazily initialized for "
|
| 164 |
+
f"{module_name}\nFSDP requires running forward through "
|
| 165 |
+
"the root module first"
|
| 166 |
+
)
|
| 167 |
+
state._is_root = False
|
| 168 |
+
self._state_ctx.all_states.append(state)
|
| 169 |
+
visited_states.add(state)
|
| 170 |
+
if self._fsdp_param_group:
|
| 171 |
+
# For the root, do not reshard after forward since for training,
|
| 172 |
+
# the parameters would be freed and all-gathered immediately
|
| 173 |
+
self._fsdp_param_group.post_forward_mesh_info = None
|
| 174 |
+
self._init_fqns()
|
| 175 |
+
self._init_shared_state()
|
| 176 |
+
# Run parameter group lazy inits after initializing FQNs for improved
|
| 177 |
+
# error messages
|
| 178 |
+
for state in self._state_ctx.all_states:
|
| 179 |
+
if state._fsdp_param_group:
|
| 180 |
+
state._fsdp_param_group.lazy_init()
|
| 181 |
+
|
| 182 |
+
def _init_shared_state(self) -> None:
|
| 183 |
+
self._comm_ctx.lazy_init()
|
| 184 |
+
for state in self._state_ctx.all_states:
|
| 185 |
+
state._state_ctx = self._state_ctx
|
| 186 |
+
state._comm_ctx = self._comm_ctx
|
| 187 |
+
if fsdp_param_group := state._fsdp_param_group:
|
| 188 |
+
fsdp_param_group.comm_ctx = self._comm_ctx
|
| 189 |
+
|
| 190 |
+
def _init_fqns(self) -> None:
|
| 191 |
+
"""Sets module and parameter FQN attributes for debugging."""
|
| 192 |
+
assert self._is_root
|
| 193 |
+
root_module = self._modules[0]
|
| 194 |
+
param_to_fsdp_param: Dict[nn.Parameter, FSDPParam] = {}
|
| 195 |
+
module_to_fsdp_param_group: Dict[nn.Module, FSDPParamGroup] = {}
|
| 196 |
+
for state in self._state_ctx.all_states:
|
| 197 |
+
if fsdp_param_group := state._fsdp_param_group:
|
| 198 |
+
for fsdp_param in fsdp_param_group.fsdp_params:
|
| 199 |
+
param_to_fsdp_param[fsdp_param.sharded_param] = fsdp_param
|
| 200 |
+
for module in fsdp_param_group.modules:
|
| 201 |
+
module_to_fsdp_param_group[module] = fsdp_param_group
|
| 202 |
+
for param_name, param in root_module.named_parameters():
|
| 203 |
+
if param in param_to_fsdp_param:
|
| 204 |
+
param_to_fsdp_param[param]._param_fqn = param_name
|
| 205 |
+
for module_name, module in root_module.named_modules():
|
| 206 |
+
if module in module_to_fsdp_param_group:
|
| 207 |
+
module_fqn = module_to_fsdp_param_group[module]._module_fqn
|
| 208 |
+
if module_fqn is None:
|
| 209 |
+
module_to_fsdp_param_group[module]._module_fqn = module_name
|
| 210 |
+
else:
|
| 211 |
+
assert isinstance(module_fqn, str), f"{module_fqn}"
|
| 212 |
+
module_fqn += f", {module_name}"
|
| 213 |
+
module_to_fsdp_param_group[module]._module_fqn = module_fqn
|
| 214 |
+
|
| 215 |
+
@disable_if_config_true
|
| 216 |
+
def _pre_forward(
|
| 217 |
+
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
| 218 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
| 219 |
+
# When composing with module-hook-based activation checkpointing, the
|
| 220 |
+
# the pre-backward hook is responsible for the unshard
|
| 221 |
+
if self._training_state == TrainingState.PRE_BACKWARD:
|
| 222 |
+
return args, kwargs
|
| 223 |
+
self._training_state = TrainingState.FORWARD
|
| 224 |
+
args, kwargs = self._root_pre_forward(module, args, kwargs)
|
| 225 |
+
if self._mp_policy.cast_forward_inputs and self._mp_policy.param_dtype:
|
| 226 |
+
with torch.profiler.record_function("FSDP::cast_forward_inputs"):
|
| 227 |
+
cast_fn = functools.partial(
|
| 228 |
+
_cast_fp_tensor, self._mp_policy.param_dtype
|
| 229 |
+
)
|
| 230 |
+
args, kwargs = tree_map(cast_fn, args), tree_map(cast_fn, kwargs)
|
| 231 |
+
if self._fsdp_param_group:
|
| 232 |
+
args, kwargs = self._fsdp_param_group.pre_forward(module, args, kwargs)
|
| 233 |
+
for fsdp_state in self._states_to_forward_prefetch:
|
| 234 |
+
if (target_param_group := fsdp_state._fsdp_param_group) is not None:
|
| 235 |
+
FSDPParamGroup._prefetch_unshard(target_param_group, "forward")
|
| 236 |
+
return args, kwargs
|
| 237 |
+
|
| 238 |
+
@disable_if_config_true
|
| 239 |
+
def _post_forward(self, module: nn.Module, input: Any, output: Any) -> Any:
|
| 240 |
+
# When composing with module-hook-based activation checkpointing, the
|
| 241 |
+
# post-backward hook is responsible for the reshard
|
| 242 |
+
if self._training_state == TrainingState.PRE_BACKWARD:
|
| 243 |
+
return output
|
| 244 |
+
if self._fsdp_param_group:
|
| 245 |
+
output = self._fsdp_param_group.post_forward(module, input, output)
|
| 246 |
+
output = self._register_pre_backward_hook(output)
|
| 247 |
+
self._training_state = TrainingState.IDLE
|
| 248 |
+
if self._state_ctx.iter_forward_root is self:
|
| 249 |
+
if all_gather_state := self._comm_ctx.all_gather_state:
|
| 250 |
+
# Free the last all-gather result if needed; refer to
|
| 251 |
+
# [Note: Overlapping all-gather copy-in and all-gather]
|
| 252 |
+
self._comm_ctx.all_gather_copy_in_stream.wait_event(
|
| 253 |
+
all_gather_state.event
|
| 254 |
+
)
|
| 255 |
+
self._comm_ctx.all_gather_stream.wait_event(all_gather_state.event)
|
| 256 |
+
self._comm_ctx.all_gather_state = None # free the all-gather result
|
| 257 |
+
self._state_ctx.iter_forward_root = None
|
| 258 |
+
if self._mp_policy.output_dtype is not None:
|
| 259 |
+
with torch.profiler.record_function("FSDP::cast_forward_outputs"):
|
| 260 |
+
output = tree_map(
|
| 261 |
+
functools.partial(_cast_fp_tensor, self._mp_policy.output_dtype),
|
| 262 |
+
output,
|
| 263 |
+
)
|
| 264 |
+
return output
|
| 265 |
+
|
| 266 |
+
def _pre_backward(self, grad: torch.Tensor) -> torch.Tensor:
|
| 267 |
+
self._training_state = TrainingState.PRE_BACKWARD
|
| 268 |
+
self._register_root_post_backward_final_callback()
|
| 269 |
+
if self._fsdp_param_group:
|
| 270 |
+
default_prefetch = len(self._states_to_backward_prefetch) == 0
|
| 271 |
+
self._fsdp_param_group.pre_backward(default_prefetch)
|
| 272 |
+
for fsdp_state in self._states_to_backward_prefetch:
|
| 273 |
+
if (target_param_group := fsdp_state._fsdp_param_group) is not None:
|
| 274 |
+
FSDPParamGroup._prefetch_unshard(target_param_group, "backward")
|
| 275 |
+
return grad
|
| 276 |
+
|
| 277 |
+
def _root_post_backward_final_callback(self) -> None:
|
| 278 |
+
if not ca.compiled_autograd_enabled:
|
| 279 |
+
logger.debug("FSDP::root_post_backward")
|
| 280 |
+
with torch.profiler.record_function("FSDP::root_post_backward_callback"):
|
| 281 |
+
for state in self._state_ctx.all_states:
|
| 282 |
+
if state._fsdp_param_group and state._fsdp_param_group.is_unsharded:
|
| 283 |
+
# Run post-backward in case forward inputs did not require
|
| 284 |
+
# gradient so the autograd backward did not run
|
| 285 |
+
state._fsdp_param_group.post_backward()
|
| 286 |
+
state._training_state = TrainingState.IDLE
|
| 287 |
+
if state._fsdp_param_group:
|
| 288 |
+
state._fsdp_param_group._training_state = TrainingState.IDLE
|
| 289 |
+
if self._state_ctx.is_last_backward:
|
| 290 |
+
state._finalize_backward()
|
| 291 |
+
if self._state_ctx.is_last_backward:
|
| 292 |
+
self._comm_ctx.post_forward_order.clear()
|
| 293 |
+
if self._comm_ctx.reduce_scatter_state is not None:
|
| 294 |
+
torch.cuda.current_stream().wait_event(
|
| 295 |
+
self._comm_ctx.reduce_scatter_state.event
|
| 296 |
+
)
|
| 297 |
+
self._comm_ctx.reduce_scatter_state = None
|
| 298 |
+
self._state_ctx.post_backward_final_callback_queued = False
|
| 299 |
+
|
| 300 |
+
def _finalize_backward(self) -> None:
|
| 301 |
+
if self._modules_to_run_forward:
|
| 302 |
+
msg = (
|
| 303 |
+
f"{len(self._modules_to_run_forward)} of the {len(self._modules)} "
|
| 304 |
+
f"modules passed to fully_shard did not run forward before backward, "
|
| 305 |
+
"which is error-prone since FSDP post-forward/pre-backward logic "
|
| 306 |
+
"will not run for these modules. We recommend passing only modules "
|
| 307 |
+
"that run forward together. Modules that did not run forward: "
|
| 308 |
+
f"{list(self._modules_to_run_forward)}"
|
| 309 |
+
)
|
| 310 |
+
warning_once(logger, msg, stacklevel=2)
|
| 311 |
+
# Clear since we want the next forward to run
|
| 312 |
+
self._modules_to_run_forward.clear()
|
| 313 |
+
if self._fsdp_param_group:
|
| 314 |
+
self._fsdp_param_group.finalize_backward()
|
| 315 |
+
|
| 316 |
+
def _register_pre_backward_hook(self, output: Any) -> Any:
|
| 317 |
+
if not torch.is_grad_enabled():
|
| 318 |
+
return output
|
| 319 |
+
flat_outputs, _ = tree_flatten(output)
|
| 320 |
+
for t in flat_outputs:
|
| 321 |
+
if torch.is_tensor(t) and t.requires_grad:
|
| 322 |
+
t.register_hook(self._pre_backward)
|
| 323 |
+
return output
|
| 324 |
+
|
| 325 |
+
def _register_root_post_backward_final_callback(self):
|
| 326 |
+
if self._state_ctx.post_backward_final_callback_queued:
|
| 327 |
+
return
|
| 328 |
+
self._state_ctx.post_backward_final_callback_queued = True
|
| 329 |
+
Variable._execution_engine.queue_callback(
|
| 330 |
+
self._root_post_backward_final_callback
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def _get_module_fsdp_state(module: nn.Module) -> Optional[FSDPState]:
|
| 335 |
+
state = _get_module_state(module)
|
| 336 |
+
if isinstance(state, FSDPState):
|
| 337 |
+
return state
|
| 338 |
+
return None
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def _register_group_forward_hooks(
|
| 342 |
+
modules: Sequence[nn.Module],
|
| 343 |
+
pre_hook: Callable,
|
| 344 |
+
post_hook: Callable,
|
| 345 |
+
modules_to_run: Set[nn.Module],
|
| 346 |
+
):
|
| 347 |
+
"""
|
| 348 |
+
Registers group forward pre and post-hooks. The pre-hook runs upon the
|
| 349 |
+
first module pre-forward, and the post-hook runs upon the last. If at least
|
| 350 |
+
one module does not run forward, then the post-hook does not run.
|
| 351 |
+
"""
|
| 352 |
+
modules_set = set(modules)
|
| 353 |
+
|
| 354 |
+
@disable_if_config_true
|
| 355 |
+
@functools.wraps(pre_hook)
|
| 356 |
+
def wrapped_pre_hook(*args: Any, **kwargs: Any):
|
| 357 |
+
if len(modules_to_run) == 0: # first to run
|
| 358 |
+
modules_to_run.update(modules_set)
|
| 359 |
+
return pre_hook(*args, **kwargs)
|
| 360 |
+
|
| 361 |
+
@disable_if_config_true
|
| 362 |
+
def get_wrapped_post_hook(module: nn.Module):
|
| 363 |
+
@functools.wraps(post_hook)
|
| 364 |
+
def wrapped_post_hook(*args: Any, **kwargs: Any):
|
| 365 |
+
modules_to_run.discard(module)
|
| 366 |
+
if len(modules_to_run) == 0:
|
| 367 |
+
return post_hook(*args, **kwargs)
|
| 368 |
+
|
| 369 |
+
return wrapped_post_hook
|
| 370 |
+
|
| 371 |
+
pre_handles = [
|
| 372 |
+
module.register_forward_pre_hook(
|
| 373 |
+
wrapped_pre_hook, prepend=True, with_kwargs=True
|
| 374 |
+
)
|
| 375 |
+
for module in modules
|
| 376 |
+
]
|
| 377 |
+
post_handles = [
|
| 378 |
+
module.register_forward_hook(
|
| 379 |
+
get_wrapped_post_hook(module), prepend=False, always_call=True
|
| 380 |
+
)
|
| 381 |
+
for module in modules
|
| 382 |
+
]
|
| 383 |
+
return _MultiHandle(tuple(pre_handles + post_handles))
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/fully_shard.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-decorators
|
| 2 |
+
# mypy: allow-untyped-defs
|
| 3 |
+
import functools
|
| 4 |
+
from typing import Any, cast, Dict, Iterable, List, NoReturn, Optional, Type, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.distributed._composable import contract
|
| 9 |
+
from torch.distributed.tensor import DeviceMesh
|
| 10 |
+
from torch.distributed.utils import _get_root_modules
|
| 11 |
+
|
| 12 |
+
from ._fsdp_api import MixedPrecisionPolicy, OffloadPolicy
|
| 13 |
+
from ._fsdp_common import FSDPMeshInfo, HSDPMeshInfo
|
| 14 |
+
from ._fsdp_init import (
|
| 15 |
+
_get_device_from_mesh,
|
| 16 |
+
_get_managed_modules,
|
| 17 |
+
_get_managed_states,
|
| 18 |
+
_get_post_forward_mesh_info,
|
| 19 |
+
_init_default_fully_shard_mesh,
|
| 20 |
+
_move_states_to_device,
|
| 21 |
+
)
|
| 22 |
+
from ._fsdp_param_group import FSDPParamGroup
|
| 23 |
+
from ._fsdp_state import _get_module_fsdp_state, FSDPState
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
cls_to_fsdp_cls: Dict[Type, Type] = {}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# The decorator adds a state object to `module` that can be accessed via
|
| 30 |
+
# `fully_shard.state(module)`. The state object and module are 1:1.
|
| 31 |
+
@contract(state_cls=FSDPState) # type: ignore[operator]
|
| 32 |
+
def fully_shard(
|
| 33 |
+
module: Union[nn.Module, List[nn.Module]],
|
| 34 |
+
*,
|
| 35 |
+
mesh: Optional[DeviceMesh] = None,
|
| 36 |
+
reshard_after_forward: Union[bool, int] = True,
|
| 37 |
+
mp_policy: MixedPrecisionPolicy = MixedPrecisionPolicy(),
|
| 38 |
+
offload_policy: OffloadPolicy = OffloadPolicy(),
|
| 39 |
+
):
|
| 40 |
+
"""
|
| 41 |
+
Shard module parameters across data parallel workers.
|
| 42 |
+
|
| 43 |
+
This function applies fully sharded data parallelism (FSDP) or a variant to
|
| 44 |
+
``module``, a technique for memory savings at the cost of communication.
|
| 45 |
+
Parameters are sharded across ``mesh``, and in turn, so are their gradients
|
| 46 |
+
and optimizer states.
|
| 47 |
+
|
| 48 |
+
The sharded parameters are all-gathered to construct the unsharded
|
| 49 |
+
parameters for forward or backward computation. The unsharded parameters
|
| 50 |
+
are freed after computation to save memory. The gradients are reduced
|
| 51 |
+
across the mesh and divided by the mesh size for data parallelism. The
|
| 52 |
+
optimizer step runs on the sharded parameters.
|
| 53 |
+
|
| 54 |
+
Each call to ``fully_shard`` constructs one communication group that
|
| 55 |
+
includes the parameters in ``module.parameters()`` except those already
|
| 56 |
+
assigned to a group from a nested call. Each group's parameters and its
|
| 57 |
+
gradients are communicated together in one collective, respectively.
|
| 58 |
+
Constructing multiple groups across the model (e.g. "layer by layer")
|
| 59 |
+
allows for peak memory savings and communication/computation overlap.
|
| 60 |
+
|
| 61 |
+
Implementation-wise, the sharded parameters are represented as
|
| 62 |
+
:class:`DTensor` s, sharded on dim-0, and the unsharded parameters are
|
| 63 |
+
represented as :class:`Tensor` s. A module forward pre-hook all-gathers the
|
| 64 |
+
parameters, and a module forward hook frees them. Similar backward hooks
|
| 65 |
+
gather parameters and later free parameters/reduce gradients.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
module (Union[nn.Module, List[nn.Module]): The module or modules to
|
| 69 |
+
shard with FSDP and group together for communication.
|
| 70 |
+
mesh (Optional[DeviceMesh]): This data parallel mesh defines the
|
| 71 |
+
sharding and device. If 1D, then parameters are fully sharded
|
| 72 |
+
across the 1D mesh (FSDP). If 2D, then parameters are sharded
|
| 73 |
+
across the 0th dim and replicated across the 1st dim (HSDP). The
|
| 74 |
+
mesh's device type gives the device type used for communication;
|
| 75 |
+
if a CUDA or CUDA-like device type, then we use the current device.
|
| 76 |
+
reshard_after_forward (Union[bool, int]): This controls the parameter
|
| 77 |
+
behavior after forward and can trade off memory and communication:
|
| 78 |
+
- If ``True``, then this reshards parameters after forward and
|
| 79 |
+
all-gathers in backward.
|
| 80 |
+
- If ``False``, then this keeps the unsharded parameters in memory
|
| 81 |
+
after forward and avoids the all-gather in backward.
|
| 82 |
+
- If an ``int``, then this represents the world size to reshard to
|
| 83 |
+
after forward. It should be a non-trivial divisor of the ``mesh``
|
| 84 |
+
shard dim size (i.e. excluding 1 and the dim size itself). A choice
|
| 85 |
+
may be the intra-node size (e.g. ``torch.cuda.device_count()``).
|
| 86 |
+
This allows the all-gather in backward to be over a smaller world
|
| 87 |
+
size at the cost of higher memory usage than setting to ``True``.
|
| 88 |
+
- The root FSDP state has its value specially set to ``False`` as a
|
| 89 |
+
heuristic since its parameters would typically be immediately
|
| 90 |
+
all-gathered for backward.
|
| 91 |
+
- After forward, the parameters registered to the module depend on
|
| 92 |
+
to this: The registered parameters are the sharded parameters if
|
| 93 |
+
``True``; unsharded parameters if ``False``; and the paramters
|
| 94 |
+
resharded to the smaller mesh otherwise. To modify the parameters
|
| 95 |
+
between forward and backward, the registered parameters must be the
|
| 96 |
+
sharded parameters. For ``False`` or an ``int``, this can be done
|
| 97 |
+
by manually resharding via :meth:`reshard`.
|
| 98 |
+
mp_policy (MixedPrecisionPolicy): This controls the mixed precision
|
| 99 |
+
policy, which offers parameter/reduction mixed precision for this
|
| 100 |
+
module. See :class:`MixedPrecisionPolicy` for details.
|
| 101 |
+
offload_policy (OffloadPolicy): This controls the offloading policy,
|
| 102 |
+
which offers parameter/gradient/optimizer state offloading. See
|
| 103 |
+
:class:`OffloadPolicy` and its subclasses for details.
|
| 104 |
+
"""
|
| 105 |
+
if isinstance(module, (nn.ModuleList, nn.ModuleDict)):
|
| 106 |
+
raise ValueError(
|
| 107 |
+
f"fully_shard does not support containers that do not implement forward: {module}"
|
| 108 |
+
)
|
| 109 |
+
mesh = mesh or _init_default_fully_shard_mesh()
|
| 110 |
+
if mesh.ndim not in (1, 2):
|
| 111 |
+
raise ValueError(f"fully_shard expects a 1D or 2D DeviceMesh but got {mesh}")
|
| 112 |
+
elif mesh.ndim == 1:
|
| 113 |
+
mesh_info = FSDPMeshInfo(mesh, shard_mesh_dim=0)
|
| 114 |
+
else:
|
| 115 |
+
mesh_info = HSDPMeshInfo(mesh, shard_mesh_dim=1, replicate_mesh_dim=0)
|
| 116 |
+
device = _get_device_from_mesh(mesh)
|
| 117 |
+
post_forward_mesh_info = _get_post_forward_mesh_info(
|
| 118 |
+
reshard_after_forward, mesh_info
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
arg_module = module
|
| 122 |
+
modules = (
|
| 123 |
+
(module,) if isinstance(module, nn.Module) else tuple(_get_root_modules(module))
|
| 124 |
+
)
|
| 125 |
+
state = fully_shard.state(modules[0])
|
| 126 |
+
state.init(modules, device, mp_policy)
|
| 127 |
+
|
| 128 |
+
managed_modules = _get_managed_modules(modules)
|
| 129 |
+
params, buffers = _get_managed_states(managed_modules)
|
| 130 |
+
_move_states_to_device(params, buffers, device)
|
| 131 |
+
if params:
|
| 132 |
+
state._fsdp_param_group = FSDPParamGroup(
|
| 133 |
+
params,
|
| 134 |
+
modules,
|
| 135 |
+
mesh_info,
|
| 136 |
+
post_forward_mesh_info,
|
| 137 |
+
device,
|
| 138 |
+
mp_policy,
|
| 139 |
+
offload_policy,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# For Dynamo
|
| 143 |
+
for managed_module in managed_modules:
|
| 144 |
+
managed_module._is_fsdp_managed_module = True # type: ignore[assignment]
|
| 145 |
+
managed_module._fsdp_use_orig_params = True # type: ignore[assignment]
|
| 146 |
+
|
| 147 |
+
# Place FSDP leftmost for highest priority in the method resolution order
|
| 148 |
+
for module in modules:
|
| 149 |
+
cls = module.__class__
|
| 150 |
+
new_cls = cls_to_fsdp_cls.get(cls, None)
|
| 151 |
+
if not new_cls:
|
| 152 |
+
dct = {"__deepcopy__": unimplemented_deepcopy}
|
| 153 |
+
new_cls = type(f"FSDP{cls.__name__}", (FSDPModule, cls), dct)
|
| 154 |
+
cls_to_fsdp_cls[cls] = new_cls
|
| 155 |
+
module.__class__ = new_cls
|
| 156 |
+
return arg_module
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def unimplemented_deepcopy(*args: Any, **kwargs: Any) -> NoReturn:
|
| 160 |
+
raise AssertionError(
|
| 161 |
+
"FSDP does not support deepcopy. Please use state dict for serialization."
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class FSDPModule:
|
| 166 |
+
def __new__(cls, *args, **kwargs):
|
| 167 |
+
"""
|
| 168 |
+
Override ``__new__`` to remove the FSDP class and directly construct
|
| 169 |
+
the original class for cases like indexing into a container module.
|
| 170 |
+
"""
|
| 171 |
+
# Use index 2 since 0 is the dynamically constructed `FSDP<...>` class
|
| 172 |
+
# and index 1 is the `FSDPModule` class itself
|
| 173 |
+
orig_cls = cls.__mro__[2]
|
| 174 |
+
self = orig_cls.__new__(orig_cls, *args, **kwargs)
|
| 175 |
+
self.__init__(*args, **kwargs)
|
| 176 |
+
return self
|
| 177 |
+
|
| 178 |
+
def reshard(self) -> None:
|
| 179 |
+
"""
|
| 180 |
+
Reshards the module's parameters, registering the sharded parameters
|
| 181 |
+
to the module and freeing the unsharded parameters if needed. This
|
| 182 |
+
method is *not* recursive.
|
| 183 |
+
"""
|
| 184 |
+
state = self._get_fsdp_state()
|
| 185 |
+
if fsdp_param_group := state._fsdp_param_group:
|
| 186 |
+
fsdp_param_group.reshard()
|
| 187 |
+
|
| 188 |
+
def unshard(self, async_op: bool = False) -> Optional["UnshardHandle"]:
|
| 189 |
+
"""
|
| 190 |
+
Unshards the module's parameters by allocating memory and all-gathering
|
| 191 |
+
the parameters. This method is *not* recursive.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
async_op (bool): If ``True``, then returns a :class:`UnshardHandle`
|
| 195 |
+
that has a :meth:`wait` method to wait on the unshard op. If
|
| 196 |
+
``False``, then returns ``None`` and waits on the handle inside
|
| 197 |
+
this function.
|
| 198 |
+
|
| 199 |
+
.. warning:: This method is experimental and subject to change.
|
| 200 |
+
|
| 201 |
+
.. note:: If ``async_op=True``, then the user does not have to call
|
| 202 |
+
:meth:`wait` on the returned handle if waiting on the unshard op
|
| 203 |
+
in the module's pre-forward is tolerable. FSDP will wait on the
|
| 204 |
+
pending unshard op in the pre-forward automatically.
|
| 205 |
+
"""
|
| 206 |
+
state = self._get_fsdp_state()
|
| 207 |
+
fsdp_param_group = state._fsdp_param_group
|
| 208 |
+
if fsdp_param_group is not None:
|
| 209 |
+
fsdp_param_group.lazy_init()
|
| 210 |
+
fsdp_param_group.unshard(async_op=async_op)
|
| 211 |
+
handle = UnshardHandle(fsdp_param_group)
|
| 212 |
+
if async_op:
|
| 213 |
+
return handle
|
| 214 |
+
handle.wait()
|
| 215 |
+
return None
|
| 216 |
+
|
| 217 |
+
def set_is_last_backward(self, is_last_backward: bool) -> None:
|
| 218 |
+
"""
|
| 219 |
+
Sets whether the next backward is the last one, meaning that FSDP
|
| 220 |
+
should wait for gradient reduction to finish and clear internal data
|
| 221 |
+
structures used for explicit prefetching.
|
| 222 |
+
"""
|
| 223 |
+
state = self._get_fsdp_state()
|
| 224 |
+
state._state_ctx.is_last_backward = is_last_backward
|
| 225 |
+
|
| 226 |
+
def set_requires_gradient_sync(
|
| 227 |
+
self, requires_gradient_sync: bool, *, recurse: bool = True
|
| 228 |
+
) -> None:
|
| 229 |
+
"""
|
| 230 |
+
Sets if the module should sync gradients. This can be used to implement
|
| 231 |
+
gradient accumulation without communication. For HSDP, this controls
|
| 232 |
+
both reduce-scatter and all-reduce together.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
requires_gradient_sync (bool): Whether to reduce gradients for the
|
| 236 |
+
module's parameters.
|
| 237 |
+
recurse (bool): Whether to set for all submodules or just the
|
| 238 |
+
passed-in module.
|
| 239 |
+
"""
|
| 240 |
+
self_module = cast(nn.Module, self)
|
| 241 |
+
modules = list(self_module.modules()) if recurse else [self_module]
|
| 242 |
+
for module in modules:
|
| 243 |
+
if isinstance(module, FSDPModule):
|
| 244 |
+
state = module._get_fsdp_state()
|
| 245 |
+
if fsdp_param_group := state._fsdp_param_group:
|
| 246 |
+
fsdp_param_group.reduce_grads = requires_gradient_sync
|
| 247 |
+
fsdp_param_group.all_reduce_grads = requires_gradient_sync
|
| 248 |
+
|
| 249 |
+
def set_requires_all_reduce(
|
| 250 |
+
self, requires_all_reduce: bool, *, recurse: bool = True
|
| 251 |
+
) -> None:
|
| 252 |
+
"""
|
| 253 |
+
Sets if the module should all-reduce gradients. This can be used to
|
| 254 |
+
implement gradient accumulation with only reduce-scatter but not
|
| 255 |
+
all-reduce for HSDP.
|
| 256 |
+
"""
|
| 257 |
+
self_module = cast(nn.Module, self)
|
| 258 |
+
modules = list(self_module.modules()) if recurse else [self_module]
|
| 259 |
+
for module in modules:
|
| 260 |
+
if isinstance(module, FSDPModule):
|
| 261 |
+
state = module._get_fsdp_state()
|
| 262 |
+
if fsdp_param_group := state._fsdp_param_group:
|
| 263 |
+
fsdp_param_group.all_reduce_grads = requires_all_reduce
|
| 264 |
+
|
| 265 |
+
def set_reshard_after_backward(
|
| 266 |
+
self, reshard_after_backward: bool, *, recurse: bool = True
|
| 267 |
+
) -> None:
|
| 268 |
+
"""
|
| 269 |
+
Sets if the module should reshard parameters after backward. This can
|
| 270 |
+
be used during gradient accumulation to trade off higher memory for
|
| 271 |
+
reduced communication.
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
reshard_after_backward (bool): Whether to reshard parameters after
|
| 275 |
+
backward.
|
| 276 |
+
recurse (bool): Whether to set for all submodules or just the
|
| 277 |
+
passed-in module.
|
| 278 |
+
"""
|
| 279 |
+
self_module = cast(nn.Module, self)
|
| 280 |
+
modules = list(self_module.modules()) if recurse else [self_module]
|
| 281 |
+
for module in modules:
|
| 282 |
+
if isinstance(module, FSDPModule):
|
| 283 |
+
state = module._get_fsdp_state()
|
| 284 |
+
if fsdp_param_group := state._fsdp_param_group:
|
| 285 |
+
fsdp_param_group.reshard_after_backward = reshard_after_backward
|
| 286 |
+
|
| 287 |
+
def set_modules_to_forward_prefetch(self, modules: List["FSDPModule"]) -> None:
|
| 288 |
+
"""
|
| 289 |
+
Sets the FSDP modules for which this FSDP module should explicitly
|
| 290 |
+
prefetch all-gathers in forward. The prefetching runs after this
|
| 291 |
+
module's all-gather copy-out.
|
| 292 |
+
|
| 293 |
+
Passing a singleton list containing the next FSDP module gives the same
|
| 294 |
+
all-gather overlap behavior as the default overlap behavior, except the
|
| 295 |
+
prefetched all-gather is issued earlier from the CPU. Passing a list
|
| 296 |
+
with at least length two is required for more aggressive overlap and
|
| 297 |
+
will use more reserved memory.
|
| 298 |
+
|
| 299 |
+
Args:
|
| 300 |
+
modules (List[FSDPModule]): FSDP modules to prefetch.
|
| 301 |
+
"""
|
| 302 |
+
_assert_all_fsdp_modules(modules)
|
| 303 |
+
self._get_fsdp_state()._states_to_forward_prefetch = [
|
| 304 |
+
module._get_fsdp_state() for module in modules
|
| 305 |
+
]
|
| 306 |
+
|
| 307 |
+
def set_modules_to_backward_prefetch(self, modules: List["FSDPModule"]) -> None:
|
| 308 |
+
"""
|
| 309 |
+
Sets the FSDP modules for which this FSDP module should explicitly
|
| 310 |
+
prefetch all-gathers in backward. This overrides the default backward
|
| 311 |
+
pretching implementation that prefetches the next FSDP module based on
|
| 312 |
+
the reverse post-forward order.
|
| 313 |
+
|
| 314 |
+
Passing a singleton list containing the previous FSDP module gives the
|
| 315 |
+
same all-gather overlap behavior as the default overlap behavior.
|
| 316 |
+
Passing a list with at least length two is required for more aggressive
|
| 317 |
+
overlap and will use more reserved memory.
|
| 318 |
+
|
| 319 |
+
Args:
|
| 320 |
+
modules (List[FSDPModule]): FSDP modules to prefetch.
|
| 321 |
+
"""
|
| 322 |
+
_assert_all_fsdp_modules(modules)
|
| 323 |
+
self._get_fsdp_state()._states_to_backward_prefetch = [
|
| 324 |
+
module._get_fsdp_state() for module in modules
|
| 325 |
+
]
|
| 326 |
+
|
| 327 |
+
def set_post_optim_event(self, event: torch.cuda.Event) -> None:
|
| 328 |
+
"""
|
| 329 |
+
Sets a post-optimizer-step event for the root FSDP module to wait the
|
| 330 |
+
all-gather streams on.
|
| 331 |
+
|
| 332 |
+
By default, the root FSDP module waits the all-gather streams on the
|
| 333 |
+
current stream to ensure that the optimizer step has finished before
|
| 334 |
+
all-gathering. However, this may introduce false dependencies if
|
| 335 |
+
there is unrelated computation after the optimizer step. This API
|
| 336 |
+
allows the user to provide their own event to wait on. After the root
|
| 337 |
+
waits on the event, the event is discarded, so this API should be
|
| 338 |
+
called with a new event each iteration.
|
| 339 |
+
|
| 340 |
+
Args:
|
| 341 |
+
event (torch.cuda.Event): Event recorded after the optimizer step
|
| 342 |
+
to wait all-gather streams on.
|
| 343 |
+
"""
|
| 344 |
+
self._get_fsdp_state()._state_ctx.post_optim_event = event
|
| 345 |
+
|
| 346 |
+
def set_reduce_scatter_divide_factor(self, factor: float) -> None:
|
| 347 |
+
"""
|
| 348 |
+
Sets a custom divide factor for the reduce-scatter. This becomes a
|
| 349 |
+
custom reduce op using NCCL's PreMulSum, which allows multiplying by
|
| 350 |
+
the factor before reduction.
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
factor (float): Custom divide factor.
|
| 354 |
+
"""
|
| 355 |
+
state = self._get_fsdp_state()
|
| 356 |
+
if (fsdp_param_group := state._fsdp_param_group) is not None:
|
| 357 |
+
mul_factor = 1.0 / float(factor)
|
| 358 |
+
reduce_op = torch.distributed._make_nccl_premul_sum(mul_factor)
|
| 359 |
+
fsdp_param_group.reduce_scatter_reduce_op = reduce_op
|
| 360 |
+
|
| 361 |
+
def _get_fsdp_state(self) -> FSDPState:
|
| 362 |
+
if (state := _get_module_fsdp_state(cast(nn.Module, self))) is None:
|
| 363 |
+
raise AssertionError(f"No FSDP state found on {self}")
|
| 364 |
+
return state
|
| 365 |
+
|
| 366 |
+
def _apply(self, *args: Any, **kwargs: Any) -> Any:
|
| 367 |
+
# Reshard to ensure that sharded parameters are registered
|
| 368 |
+
self.reshard()
|
| 369 |
+
ret = super()._apply(*args, **kwargs) # type: ignore[misc]
|
| 370 |
+
state = self._get_fsdp_state()
|
| 371 |
+
if not (fsdp_param_group := state._fsdp_param_group):
|
| 372 |
+
return ret
|
| 373 |
+
# TODO: Remove this padding logic once DTensor pads the local tensor:
|
| 374 |
+
# https://github.com/pytorch/pytorch/issues/113045
|
| 375 |
+
with torch.no_grad():
|
| 376 |
+
for fsdp_param in fsdp_param_group.fsdp_params:
|
| 377 |
+
fsdp_param.reset_sharded_param()
|
| 378 |
+
return ret
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
class UnshardHandle:
|
| 382 |
+
"""
|
| 383 |
+
A handle to wait on the unshard op.
|
| 384 |
+
|
| 385 |
+
Args:
|
| 386 |
+
fsdp_param_group (FSDPParamGroup, optional): FSDP parameter group to
|
| 387 |
+
unshard. This should be ``None`` iff the FSDP module does not
|
| 388 |
+
manage any parameters, meaning the unshard is a no-op.
|
| 389 |
+
"""
|
| 390 |
+
|
| 391 |
+
def __init__(self, fsdp_param_group: Optional[FSDPParamGroup]):
|
| 392 |
+
self._fsdp_param_group = fsdp_param_group
|
| 393 |
+
|
| 394 |
+
def wait(self):
|
| 395 |
+
"""
|
| 396 |
+
Waits on the unshard op.
|
| 397 |
+
|
| 398 |
+
This ensures that the current stream can use the unsharded parameters,
|
| 399 |
+
which are now registered to the module.
|
| 400 |
+
"""
|
| 401 |
+
if self._fsdp_param_group is not None:
|
| 402 |
+
self._fsdp_param_group.wait_for_unshard()
|
| 403 |
+
# Avoid keeping a reference
|
| 404 |
+
self._fsdp_param_group = None
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
def register_fsdp_forward_method(module: nn.Module, method_name: str) -> None:
|
| 408 |
+
"""
|
| 409 |
+
Registers a method on ``module`` to be a forward method for FSDP.
|
| 410 |
+
|
| 411 |
+
FSDP only knows to run its pre-forward and post-forward hooks on the
|
| 412 |
+
default :meth:`nn.Module.forward` method. This function patches a user
|
| 413 |
+
specified method to run the pre/post-forward hooks before/after the method,
|
| 414 |
+
respectively. If ``module`` is not an :class:`FSDPModule`, then this is a
|
| 415 |
+
no-op.
|
| 416 |
+
|
| 417 |
+
Args:
|
| 418 |
+
module (nn.Module): Module to register the forward method on.
|
| 419 |
+
method_name (str): Name of the forward method.
|
| 420 |
+
"""
|
| 421 |
+
if not isinstance(module, FSDPModule):
|
| 422 |
+
# Make no-op to allow including both when using/not using FSDP
|
| 423 |
+
return
|
| 424 |
+
if not hasattr(module, method_name):
|
| 425 |
+
raise ValueError(f"{type(module)} does not have a method {method_name}")
|
| 426 |
+
orig_method = getattr(module, method_name)
|
| 427 |
+
|
| 428 |
+
@functools.wraps(orig_method)
|
| 429 |
+
def wrapped_method(self, *args, **kwargs):
|
| 430 |
+
fsdp_state = self._get_fsdp_state()
|
| 431 |
+
args, kwargs = fsdp_state._pre_forward(self, args, kwargs)
|
| 432 |
+
out = orig_method(*args, **kwargs)
|
| 433 |
+
return fsdp_state._post_forward(self, args, out)
|
| 434 |
+
|
| 435 |
+
# Use `__get__` to make `wrapped_method` an instance method
|
| 436 |
+
setattr(
|
| 437 |
+
module,
|
| 438 |
+
method_name,
|
| 439 |
+
wrapped_method.__get__(module, type(module)), # type:ignore[attr-defined]
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def _assert_all_fsdp_modules(modules: Iterable[Any]) -> None:
|
| 444 |
+
for module in modules:
|
| 445 |
+
if not isinstance(module, FSDPModule):
|
| 446 |
+
raise ValueError(f"Expects FSDPModule but got {type(module)}: {module}")
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/fully_shard.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-decorators
|
| 2 |
+
from typing import Callable, Iterable, Optional, Union
|
| 3 |
+
from typing_extensions import deprecated
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.distributed as dist
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.distributed._composable.contract import contract
|
| 9 |
+
from torch.distributed._composable_state import _get_module_state, _insert_module_state
|
| 10 |
+
from torch.distributed.fsdp._common_utils import _FSDPState
|
| 11 |
+
from torch.distributed.fsdp._dynamo_utils import _annotate_modules_for_dynamo
|
| 12 |
+
from torch.distributed.fsdp._init_utils import (
|
| 13 |
+
_init_buffer_state,
|
| 14 |
+
_init_core_state,
|
| 15 |
+
_init_device_handle,
|
| 16 |
+
_init_ignored_module_states,
|
| 17 |
+
_init_param_handle_from_module,
|
| 18 |
+
_init_prefetching_state,
|
| 19 |
+
_init_process_group_state,
|
| 20 |
+
_init_runtime_state,
|
| 21 |
+
_init_state_dict_state,
|
| 22 |
+
HYBRID_SHARDING_STRATEGIES,
|
| 23 |
+
)
|
| 24 |
+
from torch.distributed.fsdp._runtime_utils import (
|
| 25 |
+
_register_post_forward_hook,
|
| 26 |
+
_register_pre_forward_hook,
|
| 27 |
+
_register_root_pre_forward_hook,
|
| 28 |
+
)
|
| 29 |
+
from torch.distributed.fsdp._state_dict_utils import _register_all_state_dict_hooks
|
| 30 |
+
from torch.distributed.fsdp._wrap_utils import _auto_wrap
|
| 31 |
+
from torch.distributed.fsdp.api import (
|
| 32 |
+
BackwardPrefetch,
|
| 33 |
+
CPUOffload,
|
| 34 |
+
MixedPrecision,
|
| 35 |
+
ShardingStrategy,
|
| 36 |
+
)
|
| 37 |
+
from torch.distributed.fsdp.wrap import _Policy
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@contract(state_cls=_FSDPState)
|
| 41 |
+
@deprecated(
|
| 42 |
+
"`torch.distributed._composable.fully_shard` is being deprecated. "
|
| 43 |
+
"You can continue to use the wrapper based FSDP. "
|
| 44 |
+
"See usage in: https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/fully_sharded_data_parallel.py. "
|
| 45 |
+
"`torch.distributed._composable.fully_shard` will be removed after PyTorch 2.5.",
|
| 46 |
+
category=FutureWarning,
|
| 47 |
+
)
|
| 48 |
+
def fully_shard(
|
| 49 |
+
module: nn.Module,
|
| 50 |
+
*,
|
| 51 |
+
process_group: Optional[dist.ProcessGroup] = None,
|
| 52 |
+
policy: Optional[_Policy] = None,
|
| 53 |
+
strategy: Optional[ShardingStrategy] = None,
|
| 54 |
+
mixed_precision: Optional[MixedPrecision] = None,
|
| 55 |
+
cpu_offload: Optional[CPUOffload] = None,
|
| 56 |
+
ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
|
| 57 |
+
device_id: Optional[Union[int, torch.device]] = None,
|
| 58 |
+
param_init_fn: Optional[Callable[[nn.Module], None]] = None,
|
| 59 |
+
sync_module_states: bool = False,
|
| 60 |
+
forward_prefetch: bool = False,
|
| 61 |
+
ignored_states: Union[
|
| 62 |
+
Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]
|
| 63 |
+
] = None,
|
| 64 |
+
) -> nn.Module:
|
| 65 |
+
"""Applies ``FullyShardedDataParallel`` (FSDP) semantics to ``module``."""
|
| 66 |
+
torch._C._log_api_usage_once("torch.distributed.fully_shard")
|
| 67 |
+
# Enforce the new auto wrap policy
|
| 68 |
+
if policy is not None and not isinstance(policy, _Policy):
|
| 69 |
+
raise ValueError(f"Expects a `_Policy` but got {policy}")
|
| 70 |
+
state = fully_shard.state(module)
|
| 71 |
+
state = _init_ignored_module_states(state, module, ignored_modules, ignored_states)
|
| 72 |
+
state = _init_device_handle(state, module, state._ignored_params, device_id)
|
| 73 |
+
_annotate_modules_for_dynamo(module, state._ignored_modules, True)
|
| 74 |
+
state = _init_process_group_state(state, process_group, strategy, policy)
|
| 75 |
+
if policy is not None:
|
| 76 |
+
root_kwargs = {
|
| 77 |
+
"process_group": process_group,
|
| 78 |
+
"strategy": strategy,
|
| 79 |
+
"mixed_precision": mixed_precision,
|
| 80 |
+
"cpu_offload": cpu_offload,
|
| 81 |
+
"ignored_modules": ignored_modules,
|
| 82 |
+
"device_id": device_id,
|
| 83 |
+
"param_init_fn": param_init_fn,
|
| 84 |
+
"sync_module_states": sync_module_states,
|
| 85 |
+
"forward_prefetch": forward_prefetch,
|
| 86 |
+
"ignored_states": ignored_states,
|
| 87 |
+
}
|
| 88 |
+
if strategy in HYBRID_SHARDING_STRATEGIES:
|
| 89 |
+
root_kwargs["process_group"] = (state.process_group, state._inter_node_pg)
|
| 90 |
+
_auto_wrap(
|
| 91 |
+
module,
|
| 92 |
+
policy,
|
| 93 |
+
state._ignored_modules,
|
| 94 |
+
state._ignored_params,
|
| 95 |
+
root_kwargs,
|
| 96 |
+
fully_shard,
|
| 97 |
+
)
|
| 98 |
+
state = _init_core_state(
|
| 99 |
+
state,
|
| 100 |
+
strategy or ShardingStrategy.FULL_SHARD,
|
| 101 |
+
mixed_precision,
|
| 102 |
+
cpu_offload,
|
| 103 |
+
limit_all_gathers=True,
|
| 104 |
+
use_orig_params=True,
|
| 105 |
+
backward_prefetch_limit=1,
|
| 106 |
+
forward_prefetch_limit=1,
|
| 107 |
+
)
|
| 108 |
+
state = _init_runtime_state(state)
|
| 109 |
+
state = _init_prefetching_state(
|
| 110 |
+
state, BackwardPrefetch.BACKWARD_PRE, forward_prefetch=forward_prefetch
|
| 111 |
+
)
|
| 112 |
+
state = _init_buffer_state(state, module)
|
| 113 |
+
state = _init_param_handle_from_module(
|
| 114 |
+
state, module, device_id, param_init_fn, sync_module_states
|
| 115 |
+
)
|
| 116 |
+
state = _init_state_dict_state(state)
|
| 117 |
+
_register_all_state_dict_hooks(state)
|
| 118 |
+
_register_pre_forward_hook(state, module)
|
| 119 |
+
_register_post_forward_hook(state, module)
|
| 120 |
+
_register_root_pre_forward_hook(state, module) # prepend last
|
| 121 |
+
# Always insert the state for the passed-in module even if it has no
|
| 122 |
+
# managed parameters, in which case it has no handles and does not appear
|
| 123 |
+
# in `_fully_sharded_module_to_handles`
|
| 124 |
+
_insert_module_state(module, state)
|
| 125 |
+
for submodule in module.modules():
|
| 126 |
+
if (
|
| 127 |
+
submodule in state._fully_sharded_module_to_handle
|
| 128 |
+
and _get_module_state(submodule) is None
|
| 129 |
+
):
|
| 130 |
+
_insert_module_state(submodule, state)
|
| 131 |
+
return module
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_composable/replicate.py
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-decorators
|
| 2 |
+
# mypy: allow-untyped-defs
|
| 3 |
+
import weakref
|
| 4 |
+
from typing import Any, cast, Dict, Iterable, List, NoReturn, Optional, Set, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.distributed._composable_state import _State
|
| 9 |
+
from torch.nn.parallel import DistributedDataParallel
|
| 10 |
+
|
| 11 |
+
from .contract import _get_registry, contract
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
_ROOT_MODULE_PREFIX = ""
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class _ReplicateState(_State):
|
| 18 |
+
def __init__(self) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.module: nn.Module = nn.ParameterList()
|
| 21 |
+
self.has_initialized: bool = False
|
| 22 |
+
self._param_list: nn.ParameterList = nn.ParameterList()
|
| 23 |
+
# TODO(@fegin): this variable is originally create for testing, we
|
| 24 |
+
# should remove this if possible.
|
| 25 |
+
self._orig_module = self.module
|
| 26 |
+
self._param_names: List[str] = []
|
| 27 |
+
self._no_sync: bool = False
|
| 28 |
+
self._init_args: Optional[Tuple[Any, ...]] = None
|
| 29 |
+
self._init_kwargs: Dict[str, Any] = {}
|
| 30 |
+
self._comm_hook_args: List[Any] = []
|
| 31 |
+
|
| 32 |
+
def _collect_params(
|
| 33 |
+
self,
|
| 34 |
+
module: nn.Module,
|
| 35 |
+
ignored_modules: Set[nn.Module],
|
| 36 |
+
ignored_params: Set[nn.Parameter],
|
| 37 |
+
prefix: str = _ROOT_MODULE_PREFIX,
|
| 38 |
+
) -> None:
|
| 39 |
+
# skip if managed by fully_sharded API
|
| 40 |
+
if _is_fully_sharded(module):
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
# if a module is ignored, all descendants of the module are ignored.
|
| 44 |
+
if module in ignored_modules:
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
recurse_prefix = (
|
| 48 |
+
f"{prefix}." if prefix != _ROOT_MODULE_PREFIX else _ROOT_MODULE_PREFIX
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
for n, p in module.named_parameters(recurse=False):
|
| 52 |
+
if p not in ignored_params:
|
| 53 |
+
self._param_list.append(p)
|
| 54 |
+
self._param_names.append(f"{recurse_prefix}{n}")
|
| 55 |
+
|
| 56 |
+
for name, child_module in module.named_children():
|
| 57 |
+
self._collect_params(
|
| 58 |
+
child_module,
|
| 59 |
+
ignored_modules,
|
| 60 |
+
ignored_params,
|
| 61 |
+
prefix=f"{recurse_prefix}{name}",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def lazy_init(self) -> None:
|
| 65 |
+
@torch._disable_dynamo(recursive=True)
|
| 66 |
+
def _lazy_init():
|
| 67 |
+
assert self._init_args is not None
|
| 68 |
+
self.init(*self._init_args, **self._init_kwargs)
|
| 69 |
+
self.register_comm_hook()
|
| 70 |
+
self._init_args = ()
|
| 71 |
+
self._init_kwargs = {}
|
| 72 |
+
|
| 73 |
+
_lazy_init()
|
| 74 |
+
|
| 75 |
+
def init(
|
| 76 |
+
self,
|
| 77 |
+
module: nn.Module,
|
| 78 |
+
ignored_modules: Set[nn.Module],
|
| 79 |
+
**kwargs,
|
| 80 |
+
) -> None:
|
| 81 |
+
if self.has_initialized:
|
| 82 |
+
return
|
| 83 |
+
|
| 84 |
+
self.has_initialized = True
|
| 85 |
+
|
| 86 |
+
device_mesh = kwargs.get("device_mesh", None)
|
| 87 |
+
self.module = module
|
| 88 |
+
ignored_params = {p for m in ignored_modules for p in m.parameters()}
|
| 89 |
+
for submodule in module.modules():
|
| 90 |
+
if _is_fully_sharded(submodule):
|
| 91 |
+
ignored_params.update(submodule.parameters())
|
| 92 |
+
from torch.distributed.tensor.parallel.ddp import _localize_dtensor
|
| 93 |
+
|
| 94 |
+
_localize_dtensor(module, ignored_params=ignored_params)
|
| 95 |
+
self._collect_params(module, ignored_modules, ignored_params)
|
| 96 |
+
|
| 97 |
+
if "device_id" in kwargs:
|
| 98 |
+
# replicate() supports a small usability enhancement where
|
| 99 |
+
# user can pass in device_id as a Union[int, torch.device] even for
|
| 100 |
+
# CPU devices so users don't have to change code for CPU/GPU runs.
|
| 101 |
+
# We derive the right device_ids to feed into DDP to support this.
|
| 102 |
+
if kwargs["device_id"] is not None:
|
| 103 |
+
device_id = kwargs["device_id"]
|
| 104 |
+
# Convert to device_ids that DDP expects.
|
| 105 |
+
if isinstance(device_id, torch.device) and device_id.type == "cpu":
|
| 106 |
+
# CPU modules receive device_ids None
|
| 107 |
+
kwargs["device_ids"] = None
|
| 108 |
+
else:
|
| 109 |
+
# GPU modules expect device_ids=[cuda_device]
|
| 110 |
+
kwargs["device_ids"] = [device_id]
|
| 111 |
+
else:
|
| 112 |
+
kwargs["device_ids"] = None
|
| 113 |
+
kwargs.pop("device_id")
|
| 114 |
+
|
| 115 |
+
self._ddp = DistributedDataParallel(self._param_list, **kwargs)
|
| 116 |
+
# Weakref to the DDP instance is currently only used for testing.
|
| 117 |
+
replicate.state(self.module)._ddp_weakref = weakref.ref(self._ddp)
|
| 118 |
+
|
| 119 |
+
def register_comm_hook(self) -> None:
|
| 120 |
+
for comm_args, comm_kwargs in self._comm_hook_args:
|
| 121 |
+
self._ddp.register_comm_hook(*comm_args, **comm_kwargs)
|
| 122 |
+
self._comm_hook_args.clear()
|
| 123 |
+
|
| 124 |
+
def record_init_args(self, *args, **kwargs) -> None:
|
| 125 |
+
self._init_args = args
|
| 126 |
+
self._init_kwargs = kwargs
|
| 127 |
+
|
| 128 |
+
def forward_pre_hook(
|
| 129 |
+
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
| 130 |
+
) -> Any:
|
| 131 |
+
if self._init_args or self._init_kwargs:
|
| 132 |
+
self.lazy_init()
|
| 133 |
+
self._ddp.require_backward_grad_sync = not self._no_sync
|
| 134 |
+
return self._ddp._pre_forward(*args, **kwargs)
|
| 135 |
+
|
| 136 |
+
def forward_post_hook(
|
| 137 |
+
self,
|
| 138 |
+
module: nn.Module,
|
| 139 |
+
input: Tuple[torch.Tensor],
|
| 140 |
+
output: torch.Tensor,
|
| 141 |
+
) -> torch.Tensor:
|
| 142 |
+
return self._ddp._post_forward(output)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def unimplemented_deepcopy(*args: Any, **kwargs: Any) -> NoReturn:
|
| 146 |
+
raise AssertionError(
|
| 147 |
+
"DDP does not support deepcopy. Please use state dict for serialization."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Follow the same pattern as FSDP/fully_shard
|
| 152 |
+
class DDP:
|
| 153 |
+
def __new__(cls, *args, **kwargs):
|
| 154 |
+
"""
|
| 155 |
+
Override ``__new__`` to remove the DDP class and directly construct
|
| 156 |
+
the original class for cases like indexing into a container module.
|
| 157 |
+
"""
|
| 158 |
+
# Use index 2 since 0 is the dynamically constructed `DDP<...>` class
|
| 159 |
+
# and index 1 is the `DDP` class itself
|
| 160 |
+
orig_cls = cls.__mro__[2]
|
| 161 |
+
return orig_cls.__new__(orig_cls, *args, **kwargs)
|
| 162 |
+
|
| 163 |
+
def set_requires_gradient_sync(self, requires_gradient_sync: bool) -> None:
|
| 164 |
+
"""
|
| 165 |
+
Sets if the module should sync gradients. This can be used to implement
|
| 166 |
+
gradient accumulation without communication.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
requires_gradient_sync (bool): Whether to reduce gradients for the
|
| 170 |
+
module's parameters.
|
| 171 |
+
"""
|
| 172 |
+
replicate.state(self)._no_sync = not requires_gradient_sync
|
| 173 |
+
|
| 174 |
+
def register_comm_hook(self, *args, **kwargs) -> None:
|
| 175 |
+
replicate.state(self)._comm_hook_args.append((args, kwargs))
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
@contract(state_cls=_ReplicateState)
|
| 179 |
+
def replicate(
|
| 180 |
+
module: nn.Module,
|
| 181 |
+
ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
|
| 182 |
+
**kwargs,
|
| 183 |
+
) -> nn.Module:
|
| 184 |
+
r"""Replicates a module
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
module (torch.nn.Module): module to replicate
|
| 188 |
+
|
| 189 |
+
Example::
|
| 190 |
+
>>> # xdoctest: +REQUIRES(module:torch._C._distributed_c10d)
|
| 191 |
+
>>> module = nn.Linear(3, 3)
|
| 192 |
+
>>> replicate(module)
|
| 193 |
+
"""
|
| 194 |
+
torch._C._log_api_usage_once("torch.distributed.replicate")
|
| 195 |
+
|
| 196 |
+
# TODO(fegin): using kwargs is not a good idea if we would like to make
|
| 197 |
+
# replicate a formal API to replace DDP.
|
| 198 |
+
if "device_id" in kwargs:
|
| 199 |
+
if not isinstance(kwargs["device_id"], (int, torch.device)):
|
| 200 |
+
raise RuntimeError(
|
| 201 |
+
"Expected device_id to be int or torch.device, "
|
| 202 |
+
f"but got {type(kwargs['device_id'])}"
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
if _is_fully_sharded(module):
|
| 206 |
+
raise RuntimeError(
|
| 207 |
+
"Cannot apply `replicate()` on a Module already managed by `fully_shard`"
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
if ignored_modules is None:
|
| 211 |
+
ignored_modules = {}
|
| 212 |
+
else:
|
| 213 |
+
ignored_modules = set(ignored_modules)
|
| 214 |
+
|
| 215 |
+
state = cast(_ReplicateState, replicate.state(module))
|
| 216 |
+
module.register_forward_pre_hook(state.forward_pre_hook, with_kwargs=True)
|
| 217 |
+
device_mesh = kwargs.get("device_mesh", None)
|
| 218 |
+
if device_mesh is not None:
|
| 219 |
+
from torch.distributed.device_mesh import _mesh_resources
|
| 220 |
+
|
| 221 |
+
root_mesh = _mesh_resources.get_root_mesh(device_mesh)
|
| 222 |
+
# if a root mesh is not the same as device_mesh,
|
| 223 |
+
# meaning the device_mesh is sliced out from the root mesh.
|
| 224 |
+
if root_mesh != device_mesh:
|
| 225 |
+
# TODO: This is a temporary work around to enable DDP + TP.
|
| 226 |
+
# We should do the logic in DDP so that the 2D implementation is
|
| 227 |
+
# sound and the state_dict works out of the box.
|
| 228 |
+
#
|
| 229 |
+
# This won't conflict with what is done in DDP class as the module
|
| 230 |
+
# replicate is going to pass is NOT the original module.
|
| 231 |
+
from torch.distributed.tensor.parallel.ddp import (
|
| 232 |
+
_localize_dtensor,
|
| 233 |
+
_reconstruct_dtensor,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
module.register_forward_pre_hook(_reconstruct_dtensor)
|
| 237 |
+
module.register_forward_hook(_localize_dtensor)
|
| 238 |
+
|
| 239 |
+
module.register_forward_hook(state.forward_post_hook) # type: ignore[arg-type]
|
| 240 |
+
|
| 241 |
+
state.record_init_args(module, ignored_modules, **kwargs)
|
| 242 |
+
|
| 243 |
+
# Place DDP leftmost for highest priority in the method resolution order
|
| 244 |
+
cls = module.__class__
|
| 245 |
+
dct = {"__deepcopy__": unimplemented_deepcopy}
|
| 246 |
+
new_cls = type(f"DDP{cls.__name__}", (DDP, cls), dct)
|
| 247 |
+
module.__class__ = new_cls
|
| 248 |
+
return module
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _is_fully_sharded(module: nn.Module) -> bool:
|
| 252 |
+
r"""Check if module is marked with fully_shard."""
|
| 253 |
+
registry = _get_registry(module)
|
| 254 |
+
if registry is None:
|
| 255 |
+
return False
|
| 256 |
+
return "fully_shard" in registry
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_tools/__pycache__/fsdp2_mem_tracker.cpython-310.pyc
ADDED
|
Binary file (19 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/_tools/mem_tracker.py
ADDED
|
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
import warnings
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from enum import auto, Enum
|
| 7 |
+
from functools import partial, wraps
|
| 8 |
+
from typing import (
|
| 9 |
+
Any,
|
| 10 |
+
Callable,
|
| 11 |
+
Dict,
|
| 12 |
+
List,
|
| 13 |
+
Optional,
|
| 14 |
+
Set,
|
| 15 |
+
Tuple,
|
| 16 |
+
Type,
|
| 17 |
+
TYPE_CHECKING,
|
| 18 |
+
Union,
|
| 19 |
+
)
|
| 20 |
+
from typing_extensions import Self
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
from torch import nn, optim
|
| 24 |
+
from torch.distributed._tools.mod_tracker import ModTracker
|
| 25 |
+
from torch.optim.optimizer import (
|
| 26 |
+
register_optimizer_step_post_hook,
|
| 27 |
+
register_optimizer_step_pre_hook,
|
| 28 |
+
)
|
| 29 |
+
from torch.utils._python_dispatch import (
|
| 30 |
+
is_traceable_wrapper_subclass,
|
| 31 |
+
TorchDispatchMode,
|
| 32 |
+
)
|
| 33 |
+
from torch.utils._pytree import tree_flatten, tree_map_only
|
| 34 |
+
from torch.utils.weak import WeakIdKeyDictionary, weakref
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
if TYPE_CHECKING:
|
| 38 |
+
from torch.utils.hooks import RemovableHandle
|
| 39 |
+
|
| 40 |
+
# This value is hard-coded here:
|
| 41 |
+
# https://github.com/pytorch/pytorch/blob/5fba5d83f0703ff8077ab65448a998e9ad6598fd/c10/cuda/CUDACachingAllocator.cpp#L117
|
| 42 |
+
_PYTORCH_MIN_ALLOCATE = (
|
| 43 |
+
2**9 if int(os.environ.get("PYTORCH_NO_CUDA_MEMORY_CACHING", 0)) == 0 else 1
|
| 44 |
+
)
|
| 45 |
+
_TOTAL_KEY = "Total"
|
| 46 |
+
|
| 47 |
+
__all__ = ["MemTracker"]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class _RefType(str, Enum):
|
| 51 |
+
"""Base Class for defining memory reference types, categorizing tensors based on their usage within a model."""
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class _State(str, Enum):
|
| 55 |
+
"""Base Class for defining module state to capture snapshots ."""
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class _MemRefType(_RefType):
|
| 59 |
+
"""
|
| 60 |
+
An enum to define memory reference types, categorizing tensors based on their usage within a model.
|
| 61 |
+
|
| 62 |
+
- PARAM: Tensors registered as nn.Parameter within modules.
|
| 63 |
+
- BUFFER: Tensors registered as nn.Buffer within modules.
|
| 64 |
+
- GRAD: Gradients associated with parameters.
|
| 65 |
+
- ACT: Tensors produced during the forward pass and recomputation in activation checkpointing.
|
| 66 |
+
- TMP: Temporary memory used during the backward pass, including gradients of activations.
|
| 67 |
+
- OPT: Tensors holding optimizer states.
|
| 68 |
+
- OTH: Tensors registered via `track_external` that do not fit the above categories.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
PARAM = "Parameter"
|
| 72 |
+
BUFFER = "Buffer"
|
| 73 |
+
GRAD = "Gradient"
|
| 74 |
+
ACT = "Activation"
|
| 75 |
+
TEMP = "Temp"
|
| 76 |
+
OPT = "Optstate"
|
| 77 |
+
OTH = "Other"
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class _ModState(_State):
|
| 81 |
+
"""
|
| 82 |
+
An enum to define the state of a module.
|
| 83 |
+
|
| 84 |
+
- PRE_FW: The module is about to run the forward pass.
|
| 85 |
+
- POST_FW: The module has finished running the forward pass.
|
| 86 |
+
- PEAK_FW: The module has reached the peak memory usage during the forward pass.
|
| 87 |
+
- PRE_BW: The module is about to run the backward pass.
|
| 88 |
+
- PRE_FW_AC: The module is about to run the forward pass with activation checkpointing.
|
| 89 |
+
- POST_FW_AC: The module has finished running the forward pass with activation checkpointing.
|
| 90 |
+
- POST_BW: The module has finished running the backward pass.
|
| 91 |
+
- PEAK_BW: The module has reached the peak memory usage during the backward pass.
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
PRE_FW = "Pre-Forward"
|
| 95 |
+
POST_FW = "Post-Forward"
|
| 96 |
+
PEAK_FW = "Peak-Forward"
|
| 97 |
+
PRE_BW = "Pre-Backward"
|
| 98 |
+
PRE_FW_AC = "Pre-Forward-AC"
|
| 99 |
+
POST_FW_AC = "Post-Forward-AC"
|
| 100 |
+
POST_BW = "Post-Backward"
|
| 101 |
+
PEAK_BW = "Peak-Backward"
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class _ModMemStats:
|
| 105 |
+
"""
|
| 106 |
+
A class to store the memory statistics of a module.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
mod_fqn (str): The fully qualified name of the module.
|
| 110 |
+
Attributes:
|
| 111 |
+
mod_fqn (str): The fully qualified name of the module.
|
| 112 |
+
parameter_mem (int): The memory usage of the parameters of the module.
|
| 113 |
+
buffer_mem (int): The memory usage of the buffers of the module.
|
| 114 |
+
input_mem (int): The memory usage of the inputs to the module.
|
| 115 |
+
output_mem (int): The memory usage of the outputs from the module.
|
| 116 |
+
snapshots (Dict[_ModState, Dict[torch.device, Dict[str, int]]]): A dictionary of memory snapshots
|
| 117 |
+
of the module at different states defined by ``_ModState``.
|
| 118 |
+
Note:
|
| 119 |
+
The memory snapshot is stored as a dictionary - Dict[torch.device, Dict[str, int]], where each key is a device,
|
| 120 |
+
and each value is another dictionary with keys as memory reference types defined by `_MemRefType` and
|
| 121 |
+
values as the memory consumed in bytes.
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
+
def __init__(self, mod_fqn: str):
|
| 125 |
+
self.mod_fqn = mod_fqn
|
| 126 |
+
self.parameter_mem: int
|
| 127 |
+
self.buffer_mem: int
|
| 128 |
+
self.input_mem: int
|
| 129 |
+
self.output_mem: int
|
| 130 |
+
self.local_peak: Dict[torch.device, int] = {}
|
| 131 |
+
self.snapshots: Dict[_ModState, List[Dict[torch.device, Dict[str, int]]]] = {}
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class _WeakRefInfo:
|
| 135 |
+
"""
|
| 136 |
+
Manages memory statistics and device attributes for tensor storages.
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
def __init__(
|
| 140 |
+
self, size: int, element_size: int, device: torch.device, reftype: _RefType
|
| 141 |
+
) -> None:
|
| 142 |
+
"""
|
| 143 |
+
Initializes the ``_WeakRefInfo`` object with tensor storage properties.
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
size (int): The number of elements in the tensor storage.
|
| 147 |
+
element_size (int): The size of each element in the tensor storage.
|
| 148 |
+
device (torch.device): The device on which the tensor is allocated.
|
| 149 |
+
reftype (_RefType): The reference type of the tensor.
|
| 150 |
+
"""
|
| 151 |
+
self.size = size
|
| 152 |
+
self.element_size = element_size
|
| 153 |
+
self.reftype = reftype
|
| 154 |
+
self.device = device
|
| 155 |
+
self.mem_consumed = self._calculate_mem_consumed()
|
| 156 |
+
|
| 157 |
+
def _calculate_mem_consumed(self) -> int:
|
| 158 |
+
"""
|
| 159 |
+
Calculates the memory consumed by the tensor storage, considering device-specific allocation rules.
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
int: The memory consumed in bytes.
|
| 163 |
+
"""
|
| 164 |
+
mem = self.size * self.element_size
|
| 165 |
+
if self.device.type == "cuda":
|
| 166 |
+
return math.ceil((mem) / _PYTORCH_MIN_ALLOCATE) * _PYTORCH_MIN_ALLOCATE
|
| 167 |
+
return mem
|
| 168 |
+
|
| 169 |
+
def update_mem_consumed(self, st: torch.UntypedStorage) -> int:
|
| 170 |
+
"""
|
| 171 |
+
Updates and returns the memory consumed if the storage size has changed.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
st (torch.UntypedStorage): The tensor storage to check for size updates.
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
int: The updated memory consumed in bytes.
|
| 178 |
+
"""
|
| 179 |
+
if st.size() != self.size:
|
| 180 |
+
self.size = st.size()
|
| 181 |
+
self.mem_consumed = self._calculate_mem_consumed()
|
| 182 |
+
return self.mem_consumed
|
| 183 |
+
|
| 184 |
+
@staticmethod
|
| 185 |
+
def get_untyped_storages(t: torch.Tensor) -> Set[torch.UntypedStorage]:
|
| 186 |
+
"""
|
| 187 |
+
Recursively extracts untyped storages from a tensor or its subclasses.
|
| 188 |
+
|
| 189 |
+
Args:
|
| 190 |
+
t (torch.Tensor): The tensor to extract storages from.
|
| 191 |
+
|
| 192 |
+
Returns:
|
| 193 |
+
Set[torch.UntypedStorage]: A set of untyped storages.
|
| 194 |
+
"""
|
| 195 |
+
unflattened_tensors = [t]
|
| 196 |
+
flattened_tensor_storages = set()
|
| 197 |
+
while len(unflattened_tensors) > 0:
|
| 198 |
+
obj = unflattened_tensors.pop()
|
| 199 |
+
if is_traceable_wrapper_subclass(obj):
|
| 200 |
+
attrs, _ = obj.__tensor_flatten__() # type: ignore[attr-defined]
|
| 201 |
+
unflattened_tensors.extend([getattr(obj, attr) for attr in attrs])
|
| 202 |
+
else:
|
| 203 |
+
if not hasattr(obj, "untyped_storage"):
|
| 204 |
+
warnings.warn(
|
| 205 |
+
f"Expected a tensor or a traceable wrapper-subclass of tensor, but got {type(obj)}",
|
| 206 |
+
category=UserWarning,
|
| 207 |
+
stacklevel=2,
|
| 208 |
+
)
|
| 209 |
+
else:
|
| 210 |
+
flattened_tensor_storages.add(obj.untyped_storage())
|
| 211 |
+
return flattened_tensor_storages
|
| 212 |
+
|
| 213 |
+
@classmethod
|
| 214 |
+
def create_winfo(
|
| 215 |
+
cls,
|
| 216 |
+
st: torch.UntypedStorage,
|
| 217 |
+
device: torch.device,
|
| 218 |
+
reftype: _RefType,
|
| 219 |
+
callback: Optional[Callable[[Self, weakref.ref], Any]] = None,
|
| 220 |
+
) -> Tuple[Self, weakref.ref]:
|
| 221 |
+
"""
|
| 222 |
+
Creates a new ``_WeakRefInfo`` instance and a weak reference to a ``torch.UntypedStorage`` object,
|
| 223 |
+
optionally attaching a callback to the weak reference.
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
st (torch.UntypedStorage): The storage object for which to create the weak reference info.
|
| 227 |
+
device (torch.device): The device associated with the storage object.
|
| 228 |
+
reftype (_RefType): The type of reference, used to categorize the storage.
|
| 229 |
+
callback (Optional[Callable[[Self, weakref.ref]]]): A callback function that is called when
|
| 230 |
+
the storage object is about to be finalized (garbage collected). The callback function
|
| 231 |
+
should accept two arguments: the ``_WeakRefInfo`` instance and the weak reference to the storage.
|
| 232 |
+
Returns:
|
| 233 |
+
Tuple[Self, weakref.ref]: A tuple containing the newly created ``_WeakRefInfo`` instance and the
|
| 234 |
+
weak reference to the storage object. The weak reference may have an attached callback if provided.
|
| 235 |
+
"""
|
| 236 |
+
|
| 237 |
+
winfo = cls(st.size(), st.element_size(), device, reftype)
|
| 238 |
+
w_st = weakref.ref(st, partial(callback, winfo) if callback else None)
|
| 239 |
+
return winfo, w_st
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def _get_mem_divisor(units: str) -> int:
|
| 243 |
+
unit_dict = {"B": 1, "KiB": 2**10, "MiB": 2**20, "GiB": 2**30}
|
| 244 |
+
if units in unit_dict:
|
| 245 |
+
return unit_dict[units]
|
| 246 |
+
else:
|
| 247 |
+
raise ValueError(
|
| 248 |
+
f"Unsupported unit: {units}. Supported units are: {', '.join(unit_dict.keys())}"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _rounding_fn(value: int, divisor: int, precision: int) -> Union[float, int]:
|
| 253 |
+
return value if divisor == 1 else round(value / divisor, precision)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def _print_snapshot(snapshot: Dict[torch.device, Dict[str, int]], units: str) -> None:
|
| 257 |
+
if len(snapshot) == 0:
|
| 258 |
+
print("No memory tracked.")
|
| 259 |
+
return
|
| 260 |
+
divisor = _get_mem_divisor(units)
|
| 261 |
+
for dev, dev_snap in snapshot.items():
|
| 262 |
+
if _rounding_fn(dev_snap[_TOTAL_KEY], divisor, 2) <= 0:
|
| 263 |
+
continue
|
| 264 |
+
print(
|
| 265 |
+
f"Device: {dev}",
|
| 266 |
+
*(
|
| 267 |
+
f"\t{k}: {_rounding_fn(v, divisor, 2)} {units}"
|
| 268 |
+
for k, v in dev_snap.items()
|
| 269 |
+
),
|
| 270 |
+
sep="\n",
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def _print_snapshot_tabular(
|
| 275 |
+
snapshot: Dict[torch.device, Dict[str, int]], units: str
|
| 276 |
+
) -> None:
|
| 277 |
+
if len(snapshot) == 0:
|
| 278 |
+
print("No memory tracked.")
|
| 279 |
+
return
|
| 280 |
+
try:
|
| 281 |
+
from tabulate import tabulate
|
| 282 |
+
except ImportError as err:
|
| 283 |
+
raise ImportError(
|
| 284 |
+
"Please install tabulate to use the tabulate option."
|
| 285 |
+
) from err
|
| 286 |
+
divisor = _get_mem_divisor(units)
|
| 287 |
+
table_data = []
|
| 288 |
+
key_list = list(next(iter(snapshot.values())).keys())
|
| 289 |
+
headers = ["Device"] + [f"{key}" for key in key_list]
|
| 290 |
+
|
| 291 |
+
for dev, dev_snap in snapshot.items():
|
| 292 |
+
if _rounding_fn(dev_snap[_TOTAL_KEY], divisor, 2) <= 0:
|
| 293 |
+
continue
|
| 294 |
+
row = [str(dev)]
|
| 295 |
+
row.extend(f"{_rounding_fn(v, divisor, 2)} {units}" for v in dev_snap.values())
|
| 296 |
+
table_data.append(row)
|
| 297 |
+
print(tabulate(table_data, headers=headers, tablefmt="rst"))
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def _print_state_snapshots(
|
| 301 |
+
snapshots: Dict[_State, List[Dict[torch.device, Dict[str, int]]]], units: str
|
| 302 |
+
) -> None:
|
| 303 |
+
for state, snapshot_list in snapshots.items():
|
| 304 |
+
print(f"{state}")
|
| 305 |
+
for i, snapshot in enumerate(snapshot_list):
|
| 306 |
+
print(f"# {i + 1}:")
|
| 307 |
+
_print_snapshot(snapshot, units)
|
| 308 |
+
print()
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def _print_state_snapshots_tabular(
|
| 312 |
+
snapshots: Dict[_State, List[Dict[torch.device, Dict[str, int]]]], units: str
|
| 313 |
+
) -> None:
|
| 314 |
+
try:
|
| 315 |
+
from tabulate import tabulate
|
| 316 |
+
except ImportError as err:
|
| 317 |
+
raise ImportError(
|
| 318 |
+
"Please install tabulate to use the tabulate option."
|
| 319 |
+
) from err
|
| 320 |
+
|
| 321 |
+
table_data = []
|
| 322 |
+
last_state_call = None
|
| 323 |
+
divisor = _get_mem_divisor(units)
|
| 324 |
+
for state, snapshot_list in snapshots.items():
|
| 325 |
+
for i, snapshot in enumerate(snapshot_list):
|
| 326 |
+
state_call = f"{state} # {i + 1}"
|
| 327 |
+
for dev, dev_snap in snapshot.items():
|
| 328 |
+
if _rounding_fn(dev_snap[_TOTAL_KEY], divisor, 2) <= 0:
|
| 329 |
+
continue
|
| 330 |
+
row = {
|
| 331 |
+
"State & Call": (
|
| 332 |
+
state_call if state_call != last_state_call else ""
|
| 333 |
+
),
|
| 334 |
+
"Device": str(dev),
|
| 335 |
+
}
|
| 336 |
+
last_state_call = state_call
|
| 337 |
+
for k, v in dev_snap.items():
|
| 338 |
+
row[f"{k}"] = f"{_rounding_fn(v, divisor, 2)} {units}"
|
| 339 |
+
table_data.append(row)
|
| 340 |
+
print(tabulate(table_data, headers="keys", tablefmt="rst"))
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class _UpdateType(Enum):
|
| 344 |
+
# These are used for tracking updates to the continuouly maintained memory snapshot.
|
| 345 |
+
# ADD - When a new tensor storage is tracked
|
| 346 |
+
# DEL - When a tensor storage is about to be finalized (garbage collected).
|
| 347 |
+
# REF - When a tensor reference is updated, for instance, the gradients are marked as
|
| 348 |
+
# generic backward reference types until the grad_hook categorizes them as gradients.
|
| 349 |
+
# SIZE - When a tensor's storage is resized.
|
| 350 |
+
ADD = auto()
|
| 351 |
+
DEL = auto()
|
| 352 |
+
REF = auto()
|
| 353 |
+
SIZE = auto()
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class MemTracker(TorchDispatchMode):
|
| 357 |
+
"""
|
| 358 |
+
A TorchDispatchMode to track, categorize and attribute the tensor memory created or accessed within its context.
|
| 359 |
+
|
| 360 |
+
It categorizes the tracked tensors as parameters, buffers, activations, gradients, temporary memory and optimizer states
|
| 361 |
+
as defined by ``_MemRefType`` within its context. It captures memory `snapshots` for the modules, called within its context,
|
| 362 |
+
at various states defined by ``_ModState``.
|
| 363 |
+
|
| 364 |
+
Attributes:
|
| 365 |
+
memory_tracking: A weakref key dictionary to store the memory statistics of each module. Each key
|
| 366 |
+
is a reference to a module, and each value is a ``_ModMemStats`` object that stores the memory
|
| 367 |
+
statistics of the module.
|
| 368 |
+
|
| 369 |
+
Note:
|
| 370 |
+
The MemTracker should be used as a context manager. The modules, optimizers, and any other tensors created within
|
| 371 |
+
the context of MemTracker will be tracked by default. Any tensors or stateful objects such as modules, optimizers etc.
|
| 372 |
+
that need to be tracked but are created outside the MemTracker should be registered using the `track_external` method.
|
| 373 |
+
The `track_external` method should be called before the MemTracker is used. Any tensors created outside the ``MemTracker``
|
| 374 |
+
and not supplied to the `track_external` method will not be tracked by the ``MemTracker``.
|
| 375 |
+
|
| 376 |
+
Example usage:
|
| 377 |
+
|
| 378 |
+
.. code-block:: python
|
| 379 |
+
|
| 380 |
+
module = ...
|
| 381 |
+
optimizer = ...
|
| 382 |
+
inp = ...
|
| 383 |
+
mem_tracker = MemTracker()
|
| 384 |
+
mem_tracker.track_external(module, optimizer, inp)
|
| 385 |
+
with mem_tracker as mt:
|
| 386 |
+
loss = module(inp)
|
| 387 |
+
print("After Forward:")
|
| 388 |
+
mt.display_snapshot("current")
|
| 389 |
+
loss.backward()
|
| 390 |
+
optimizer.step()
|
| 391 |
+
optimizer.zero_grad()
|
| 392 |
+
mt.display_snapshot("peak")
|
| 393 |
+
mt.display_modulewise_snapshots(depth = 3, units = "MiB")
|
| 394 |
+
|
| 395 |
+
Known Limitations:
|
| 396 |
+
- The ``MemTracker`` does not track memory for tensors that bypass the ``TorchDispatchMode`` ex. under ``no_dispatch``.
|
| 397 |
+
- Resizing tensor storages directly by using non-Tensor methods other than using ``torch.Untyped_Storage.resize_``
|
| 398 |
+
is not tracked. File a Github issue if you have use-cases for this.
|
| 399 |
+
- If the tensors are not traceable or wrappable subclasses of ``torch.Tensor``, then the tracker does not know how to
|
| 400 |
+
track their storages. File a Github issue if you have use-cases for this.
|
| 401 |
+
- During AC in the backward pass there might be misattribution between activation and temp memory, but the peak memory
|
| 402 |
+
will be tracked accurately. This will be fixed in the next update by hooking intricately with ``torch.uitls.checkpoint``.
|
| 403 |
+
"""
|
| 404 |
+
|
| 405 |
+
def __init__(self) -> None:
|
| 406 |
+
self.memory_tracking = WeakIdKeyDictionary()
|
| 407 |
+
self._curr_mem_snap: Dict[torch.device, Dict[str, int]] = {}
|
| 408 |
+
self._peak_mem: Dict[torch.device, int] = {}
|
| 409 |
+
self._peak_mem_snap: Dict[torch.device, Dict[str, int]] = {}
|
| 410 |
+
self._param_to_grad_hook_handles = WeakIdKeyDictionary()
|
| 411 |
+
self._optimizer_hook_handles: Optional[
|
| 412 |
+
Tuple[RemovableHandle, RemovableHandle]
|
| 413 |
+
] = None
|
| 414 |
+
# Dictionary to store the ``_WeakRefInfo`` instances corresponding to each tensor's storage.
|
| 415 |
+
self._WINFO = WeakIdKeyDictionary()
|
| 416 |
+
self._mod_tracker = ModTracker()
|
| 417 |
+
# This is a general memory tracker which can be used with any ``_RefType`` subclass
|
| 418 |
+
self._ref_class: Type[_RefType] = _MemRefType
|
| 419 |
+
# Flags to track if we are in the AC region or optimizer step region
|
| 420 |
+
self._in_opt: bool = False
|
| 421 |
+
self._in_ac: bool = False
|
| 422 |
+
# Weak references to the topmost AC module currently active
|
| 423 |
+
self._ac_mod: Optional[weakref.ref] = None
|
| 424 |
+
self._orig_resize = torch.UntypedStorage.resize_
|
| 425 |
+
|
| 426 |
+
def _update_snap(
|
| 427 |
+
self,
|
| 428 |
+
u_type: _UpdateType,
|
| 429 |
+
winfo: _WeakRefInfo,
|
| 430 |
+
old_mem_consumed: Optional[int] = None,
|
| 431 |
+
old_reftype: Optional[_RefType] = None,
|
| 432 |
+
) -> None:
|
| 433 |
+
# Initialize a flag to track if the total memory might drop to zero after updates.
|
| 434 |
+
maybe_zero = False
|
| 435 |
+
# Ensure the device entry exists in the current memory snapshot, initializing if necessary.
|
| 436 |
+
dev_snap = self._curr_mem_snap.setdefault(
|
| 437 |
+
winfo.device, dict.fromkeys(self._ref_class, 0)
|
| 438 |
+
)
|
| 439 |
+
dev_snap.setdefault(_TOTAL_KEY, 0)
|
| 440 |
+
# Handle different types of updates based on the update type (`u_type`).
|
| 441 |
+
if u_type == _UpdateType.ADD:
|
| 442 |
+
# Increase the memory consumed for the specific reference type and update the total.
|
| 443 |
+
dev_snap[winfo.reftype] += winfo.mem_consumed
|
| 444 |
+
dev_snap[_TOTAL_KEY] += winfo.mem_consumed
|
| 445 |
+
elif u_type == _UpdateType.DEL:
|
| 446 |
+
# Decrease the memory consumed for the specific reference type and reduce the total.
|
| 447 |
+
dev_snap[winfo.reftype] -= winfo.mem_consumed
|
| 448 |
+
dev_snap[_TOTAL_KEY] -= winfo.mem_consumed
|
| 449 |
+
maybe_zero = True
|
| 450 |
+
elif u_type == _UpdateType.REF:
|
| 451 |
+
assert old_reftype is not None
|
| 452 |
+
# Adjust memory consumption between two reference types within the same device.
|
| 453 |
+
dev_snap[old_reftype] -= winfo.mem_consumed
|
| 454 |
+
dev_snap[winfo.reftype] += winfo.mem_consumed
|
| 455 |
+
elif u_type == _UpdateType.SIZE:
|
| 456 |
+
assert old_mem_consumed is not None
|
| 457 |
+
# Adjust the memory consumed for a reference type due to a change in size.
|
| 458 |
+
change = winfo.mem_consumed - old_mem_consumed
|
| 459 |
+
dev_snap[winfo.reftype] += change
|
| 460 |
+
dev_snap[_TOTAL_KEY] += change
|
| 461 |
+
maybe_zero = True
|
| 462 |
+
else:
|
| 463 |
+
raise ValueError(f"Invalid update type: {u_type}")
|
| 464 |
+
# Check if the total memory for the device has dropped to zero.
|
| 465 |
+
if maybe_zero:
|
| 466 |
+
if self._curr_mem_snap[winfo.device][_TOTAL_KEY] == 0:
|
| 467 |
+
# Remove the device entry from the memory snapshot if the total memory is zero.
|
| 468 |
+
del self._curr_mem_snap[winfo.device]
|
| 469 |
+
|
| 470 |
+
def _update_and_maybe_create_winfos(
|
| 471 |
+
self,
|
| 472 |
+
t: torch.Tensor,
|
| 473 |
+
reftype: _RefType,
|
| 474 |
+
update_existing: bool = False,
|
| 475 |
+
) -> Set[_WeakRefInfo]:
|
| 476 |
+
sts = _WeakRefInfo.get_untyped_storages(t)
|
| 477 |
+
winfos = set()
|
| 478 |
+
for st in sts:
|
| 479 |
+
# Attempt to retrieve existing ``_WeakRefInfo`` and its weak reference from the tracking dictionary.
|
| 480 |
+
winfo, _ = self._WINFO.get(st, (None, None))
|
| 481 |
+
if winfo is not None:
|
| 482 |
+
# If ``_WeakRefInfo`` exists, check if the reference type needs to be updated.
|
| 483 |
+
old_reftype = winfo.reftype
|
| 484 |
+
if old_reftype != reftype:
|
| 485 |
+
# Update the reference type and apply changes via ``_update_snap``.
|
| 486 |
+
winfo.reftype = reftype
|
| 487 |
+
self._update_snap(_UpdateType.REF, winfo, old_reftype=old_reftype)
|
| 488 |
+
winfos.add(winfo)
|
| 489 |
+
elif update_existing:
|
| 490 |
+
# If no existing ``_WeakRefInfo`` is found and update_existing is True, raise an error.
|
| 491 |
+
raise KeyError("No existing winfo found")
|
| 492 |
+
else:
|
| 493 |
+
# If no existing _WeakRefInfo is found and update_existing is False, create a new ``_WeakRefInfo``.
|
| 494 |
+
winfo, w_st = _WeakRefInfo.create_winfo(
|
| 495 |
+
st, t.device, reftype, self._delete_callback
|
| 496 |
+
)
|
| 497 |
+
# Store the new ``_WeakRefInfo`` and its weak reference in the tracking dictionary.
|
| 498 |
+
self._WINFO[st] = (winfo, w_st)
|
| 499 |
+
# Update the snapshot for the newly added ``_WeakRefInfo``.
|
| 500 |
+
if winfo.mem_consumed > 0:
|
| 501 |
+
self._update_snap(_UpdateType.ADD, winfo)
|
| 502 |
+
winfos.add(winfo)
|
| 503 |
+
return winfos
|
| 504 |
+
|
| 505 |
+
def _delete_callback(self, winfo: _WeakRefInfo, w_st: weakref.ref) -> None:
|
| 506 |
+
# Callback to be called when the storage object corresponding to the ``_WeakRefInfo``
|
| 507 |
+
# instance is about to be finalized.
|
| 508 |
+
if winfo.mem_consumed > 0:
|
| 509 |
+
self._update_snap(_UpdateType.DEL, winfo)
|
| 510 |
+
|
| 511 |
+
def _track_resize(self) -> None:
|
| 512 |
+
# Need to monkey-patch this because ``torch.UntypedStorage.resize_`` is not captured
|
| 513 |
+
# by ``TorchDispatchMode``.
|
| 514 |
+
@wraps(self._orig_resize)
|
| 515 |
+
def resize_(st: torch.UntypedStorage, size: int) -> None:
|
| 516 |
+
self._orig_resize(st, size)
|
| 517 |
+
winfo, _ = self._WINFO.get(st, (None, None))
|
| 518 |
+
if winfo is not None and winfo.size != st.size():
|
| 519 |
+
old_mem_consumed = winfo.mem_consumed
|
| 520 |
+
winfo.update_mem_consumed(st)
|
| 521 |
+
self._update_snap(
|
| 522 |
+
_UpdateType.SIZE, winfo, old_mem_consumed=old_mem_consumed
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
torch.UntypedStorage.resize_ = resize_ # type: ignore[method-assign, assignment]
|
| 526 |
+
|
| 527 |
+
def _restore_resize(self) -> None:
|
| 528 |
+
torch.UntypedStorage.resize_ = self._orig_resize # type: ignore[method-assign]
|
| 529 |
+
|
| 530 |
+
def _update_peak_stats(self, peak_state: _State) -> None:
|
| 531 |
+
# We first capture the current memory snapshot of the current tracker state then,
|
| 532 |
+
# We step through each of the modules we have tracked so far in ``memory_tracking``
|
| 533 |
+
# and check if it is currently active by querying ``_mod_tracker.parents``
|
| 534 |
+
# If it is active, we update the per device peak memory usage for the module
|
| 535 |
+
# corresponding to the ``_State`` which can be ``PEAK_FW`` or ``PEAK_BW``.
|
| 536 |
+
curr_snap = self._curr_mem_snap
|
| 537 |
+
|
| 538 |
+
for mod_stats in self.memory_tracking.values():
|
| 539 |
+
if mod_stats.mod_fqn in self._mod_tracker.parents:
|
| 540 |
+
if peak_state in mod_stats.snapshots:
|
| 541 |
+
for dev, dev_snap in curr_snap.items():
|
| 542 |
+
if mod_stats.local_peak.get(dev, 0) < dev_snap[_TOTAL_KEY]:
|
| 543 |
+
mod_stats.local_peak[dev] = dev_snap[_TOTAL_KEY]
|
| 544 |
+
mod_stats.snapshots[peak_state][-1][dev] = deepcopy(
|
| 545 |
+
dev_snap
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
for dev, dev_snap in curr_snap.items():
|
| 549 |
+
if self._peak_mem.get(dev, 0) < dev_snap[_TOTAL_KEY]:
|
| 550 |
+
self._peak_mem[dev] = dev_snap[_TOTAL_KEY]
|
| 551 |
+
self._peak_mem_snap[dev] = deepcopy(dev_snap)
|
| 552 |
+
|
| 553 |
+
def _track(self, reftype: _RefType, t: torch.Tensor) -> None:
|
| 554 |
+
# Get the storages of the tensor and check if we have already tracked them.
|
| 555 |
+
# If yes, then check if the storage size has changed and update the current snapshot.
|
| 556 |
+
# Else create a new ``_WeakRefInfo`` instance and add it to the dictionary.
|
| 557 |
+
sts = _WeakRefInfo.get_untyped_storages(t)
|
| 558 |
+
for st in sts:
|
| 559 |
+
winfo, _ = self._WINFO.get(st, (None, None))
|
| 560 |
+
if winfo is not None:
|
| 561 |
+
if winfo.size != st.size():
|
| 562 |
+
old_mem_consumed = winfo.mem_consumed
|
| 563 |
+
winfo.update_mem_consumed(st)
|
| 564 |
+
self._update_snap(
|
| 565 |
+
_UpdateType.SIZE, winfo, old_mem_consumed=old_mem_consumed
|
| 566 |
+
)
|
| 567 |
+
return
|
| 568 |
+
else:
|
| 569 |
+
winfo, w_st = _WeakRefInfo.create_winfo(
|
| 570 |
+
st, t.device, reftype, self._delete_callback
|
| 571 |
+
)
|
| 572 |
+
self._WINFO[st] = (winfo, w_st)
|
| 573 |
+
# Update the current snapshot for the newly added ``_WeakRefInfo``.
|
| 574 |
+
if winfo.mem_consumed > 0:
|
| 575 |
+
self._update_snap(_UpdateType.ADD, winfo)
|
| 576 |
+
|
| 577 |
+
def get_tracker_snapshot(
|
| 578 |
+
self, type: str = "current"
|
| 579 |
+
) -> Dict[torch.device, Dict[str, int]]:
|
| 580 |
+
"""
|
| 581 |
+
Capture a snapshot of the memory usage breakdown per device, based on the specified type.
|
| 582 |
+
|
| 583 |
+
Args:
|
| 584 |
+
type (str): The type of snapshot to capture. Can be "current" for the current memory usage or "peak" for the
|
| 585 |
+
peak memory usage. Defaults to "current".
|
| 586 |
+
Returns:
|
| 587 |
+
Dict[torch.device, Dict[str, int]]: A dictionary where each key is a torch.device, and each value is another
|
| 588 |
+
dictionary. This inner dictionary has keys representing memory reference
|
| 589 |
+
types as defined in ``_MemRefType`` and values representing the amount of
|
| 590 |
+
memory consumed in bytes.
|
| 591 |
+
Raises:
|
| 592 |
+
ValueError: If an invalid type is specified.
|
| 593 |
+
"""
|
| 594 |
+
if type == "current":
|
| 595 |
+
return deepcopy(self._curr_mem_snap)
|
| 596 |
+
elif type == "peak":
|
| 597 |
+
return deepcopy(self._peak_mem_snap)
|
| 598 |
+
else:
|
| 599 |
+
raise ValueError(f"Invalid type {type}")
|
| 600 |
+
|
| 601 |
+
def _track_module_params_and_buffers(
|
| 602 |
+
self, module: nn.Module, install_grad_hooks: bool = True
|
| 603 |
+
) -> Tuple[int, int]:
|
| 604 |
+
# Track the parameters and buffers of the module if not already tracked.
|
| 605 |
+
# If the parameters have gradients, track the gradients as well.
|
| 606 |
+
# If install_grad_hooks is True, install a gradient hook on the parameters
|
| 607 |
+
# to track the gradients, if it has not already been installed.
|
| 608 |
+
# Return the total memory consumed by the parameters and buffers.
|
| 609 |
+
def _grad_hook(grad: torch.Tensor) -> None:
|
| 610 |
+
self._update_and_maybe_create_winfos(
|
| 611 |
+
grad,
|
| 612 |
+
_MemRefType.GRAD,
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
param_memory = 0
|
| 616 |
+
for param in module.parameters():
|
| 617 |
+
winfos = self._update_and_maybe_create_winfos(
|
| 618 |
+
param,
|
| 619 |
+
_MemRefType.PARAM,
|
| 620 |
+
)
|
| 621 |
+
param_memory += sum(winfo.mem_consumed for winfo in winfos)
|
| 622 |
+
if param.grad is not None:
|
| 623 |
+
self._update_and_maybe_create_winfos(
|
| 624 |
+
param.grad,
|
| 625 |
+
_MemRefType.GRAD,
|
| 626 |
+
)
|
| 627 |
+
if (
|
| 628 |
+
self._param_to_grad_hook_handles.get(param, None) is None
|
| 629 |
+
and install_grad_hooks
|
| 630 |
+
):
|
| 631 |
+
grad_hook_handle = param.register_hook(_grad_hook)
|
| 632 |
+
post_acc_grad_hook_handle = param.register_post_accumulate_grad_hook(
|
| 633 |
+
lambda p: (_grad_hook(p.grad))
|
| 634 |
+
)
|
| 635 |
+
self._param_to_grad_hook_handles[param] = (
|
| 636 |
+
grad_hook_handle,
|
| 637 |
+
post_acc_grad_hook_handle,
|
| 638 |
+
)
|
| 639 |
+
buffer_memory = 0
|
| 640 |
+
for buffer in module.buffers():
|
| 641 |
+
winfos = self._update_and_maybe_create_winfos(
|
| 642 |
+
buffer,
|
| 643 |
+
_MemRefType.BUFFER,
|
| 644 |
+
)
|
| 645 |
+
buffer_memory += sum(winfo.mem_consumed for winfo in winfos)
|
| 646 |
+
return (param_memory, buffer_memory)
|
| 647 |
+
|
| 648 |
+
def _track_inputs_or_outputs(self, args: Any) -> int:
|
| 649 |
+
# Calculate the memory consumed by the inputs or outputs of the module.
|
| 650 |
+
input_or_output_memory = 0
|
| 651 |
+
|
| 652 |
+
def add_inps_or_outs(t: torch.Tensor) -> None:
|
| 653 |
+
nonlocal input_or_output_memory
|
| 654 |
+
sts = _WeakRefInfo.get_untyped_storages(t)
|
| 655 |
+
for st in sts:
|
| 656 |
+
winfo, _ = self._WINFO.get(st, (None, None))
|
| 657 |
+
if winfo is not None:
|
| 658 |
+
input_or_output_memory += winfo.mem_consumed
|
| 659 |
+
|
| 660 |
+
tree_map_only(torch.Tensor, add_inps_or_outs, args)
|
| 661 |
+
return input_or_output_memory
|
| 662 |
+
|
| 663 |
+
def _pre_fw_hook(self, module: nn.Module, inputs: Any) -> None:
|
| 664 |
+
# This is installed as a pre-fwd user hook with ``ModTracker.`` Based on the following cases we
|
| 665 |
+
# set the state and capture the memory snapshot for the module.
|
| 666 |
+
# Case 1: If the module is not in the ``memory_tracking`` dictionary, we track the parameters, buffers,
|
| 667 |
+
# input and output memory of the module. Create a new ``_ModMemStats`` instance for the module
|
| 668 |
+
# and add it to the ``memory_tracking`` dictionary.
|
| 669 |
+
# Case 2: If the module is already in the ``memory_tracking`` dictionary and we are in backward, this means
|
| 670 |
+
# we are in the AC region. We check if this is the top most module in the AC region. If it is,
|
| 671 |
+
# we store a weak reference and set the flag ``_in_ac`` to True.
|
| 672 |
+
# Case 3: If the module is already in the ``memory_tracking`` dictionary and we are in forward, this means
|
| 673 |
+
# this module is called for the second time. If it is a root module, that means we are in the next
|
| 674 |
+
# iteration and we error out. If it is not a root module, that means it's a submodule that is being
|
| 675 |
+
# used multiple times in the same iteration, which we allow and track.
|
| 676 |
+
# For Case 1 and 3, we also initialiaze the ``local_peak`` and ``PEAK_FW`` snapshot for the module.
|
| 677 |
+
mod_name = self._mod_tracker.get_known_fqn(module)
|
| 678 |
+
assert mod_name is not None
|
| 679 |
+
if module not in self.memory_tracking:
|
| 680 |
+
mod_stats = _ModMemStats(mod_name)
|
| 681 |
+
param_mem, buffer_mem = self._track_module_params_and_buffers(
|
| 682 |
+
module, install_grad_hooks=True
|
| 683 |
+
)
|
| 684 |
+
input_mem = self._track_inputs_or_outputs(inputs)
|
| 685 |
+
mod_stats.parameter_mem = param_mem
|
| 686 |
+
mod_stats.buffer_mem = buffer_mem
|
| 687 |
+
mod_stats.input_mem = input_mem
|
| 688 |
+
self.memory_tracking[module] = mod_stats
|
| 689 |
+
state = _ModState.PRE_FW
|
| 690 |
+
|
| 691 |
+
elif self._mod_tracker.is_bw:
|
| 692 |
+
mod_stats = self.memory_tracking[module]
|
| 693 |
+
state = _ModState.PRE_FW_AC
|
| 694 |
+
if self._ac_mod is None:
|
| 695 |
+
self._ac_mod = weakref.ref(module)
|
| 696 |
+
self._in_ac = True
|
| 697 |
+
else:
|
| 698 |
+
parents = set(self._mod_tracker.parents) - {mod_name}
|
| 699 |
+
if len(parents) == 1 and "Global" in parents:
|
| 700 |
+
raise NotImplementedError(
|
| 701 |
+
"MemTracker does not support memory tracking for multiple iterative calls."
|
| 702 |
+
" Either use ``reset_mod_stats`` to clear module memory stats for the previous iteration"
|
| 703 |
+
" or file a github issue if you need this feature."
|
| 704 |
+
)
|
| 705 |
+
mod_stats = self.memory_tracking[module]
|
| 706 |
+
state = _ModState.PRE_FW
|
| 707 |
+
input_mem = self._track_inputs_or_outputs(inputs)
|
| 708 |
+
mod_stats.input_mem = input_mem
|
| 709 |
+
|
| 710 |
+
mem_snapshot = self.get_tracker_snapshot()
|
| 711 |
+
if state == _ModState.PRE_FW:
|
| 712 |
+
mod_stats.local_peak = {
|
| 713 |
+
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in mem_snapshot.items()
|
| 714 |
+
}
|
| 715 |
+
mod_stats.snapshots.setdefault(_ModState.PEAK_FW, []).append(mem_snapshot)
|
| 716 |
+
mod_stats.snapshots.setdefault(state, []).append(deepcopy(mem_snapshot))
|
| 717 |
+
|
| 718 |
+
def _post_fw_hook(self, module: nn.Module, inputs: Any, outputs: Any) -> None:
|
| 719 |
+
# This is installed as a post-fwd user hook with ``ModTracker``. Based on the following cases we
|
| 720 |
+
# set the state and capture the memory snapshot for the module.
|
| 721 |
+
# Case 1: This is called in backward, which means we are in the AC region. If this is the top most module
|
| 722 |
+
# in the AC region, we set the flag ``_in_ac`` to False.
|
| 723 |
+
# Case 2: This is called in forward so we calculate the output memory
|
| 724 |
+
# of the module and update its mod_stats.
|
| 725 |
+
mod_stats = self.memory_tracking[module]
|
| 726 |
+
if self._mod_tracker.is_bw:
|
| 727 |
+
state = _ModState.POST_FW_AC
|
| 728 |
+
if self._ac_mod is not None and self._ac_mod() is module:
|
| 729 |
+
self._ac_mod = None
|
| 730 |
+
self._in_ac = False
|
| 731 |
+
else:
|
| 732 |
+
state = _ModState.POST_FW
|
| 733 |
+
output_mem = self._track_inputs_or_outputs(outputs)
|
| 734 |
+
mod_stats.output_mem = output_mem
|
| 735 |
+
mod_stats.snapshots.setdefault(state, []).append(self.get_tracker_snapshot())
|
| 736 |
+
|
| 737 |
+
def _pre_bw_hook(self, module: nn.Module, args: Any) -> None:
|
| 738 |
+
# This is installed as a pre-bwd user hook with ``ModTracker``. We set the state and capture the
|
| 739 |
+
# snapshot for the module. We also initialize the ``local_peak`` and ``PEAK_BW`` snapshot for it.
|
| 740 |
+
# If the module is None, we skip the hook.
|
| 741 |
+
# This can happen since this installed inside a multi-grad hook on the module's output tensors
|
| 742 |
+
# and the module itself may not be alive during backward.
|
| 743 |
+
if module is None:
|
| 744 |
+
warnings.warn("Module is None. Skipping PRE_BW hook.", stacklevel=2)
|
| 745 |
+
return
|
| 746 |
+
mod_stats = self.memory_tracking[module]
|
| 747 |
+
mem_snapshot = self.get_tracker_snapshot()
|
| 748 |
+
mod_stats.local_peak = {
|
| 749 |
+
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in mem_snapshot.items()
|
| 750 |
+
}
|
| 751 |
+
mod_stats.snapshots.setdefault(_ModState.PEAK_BW, []).append(mem_snapshot)
|
| 752 |
+
mod_stats.snapshots.setdefault(_ModState.PRE_BW, []).append(
|
| 753 |
+
deepcopy(mem_snapshot)
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
def _post_bw_hook(self, module: nn.Module, args: Any) -> None:
|
| 757 |
+
# This is installed as a post-bwd user hook with ``ModTracker``. We set the state and capture the
|
| 758 |
+
# snapshot for the module if it is not None.
|
| 759 |
+
# This can happen since this installed inside a multi-grad hook on the module's input tensors
|
| 760 |
+
# and the module itself may not be alive during backward.
|
| 761 |
+
if module is None:
|
| 762 |
+
warnings.warn("Module is None. Skipping POST_BW hook.", stacklevel=2)
|
| 763 |
+
return
|
| 764 |
+
mod_stats = self.memory_tracking[module]
|
| 765 |
+
mod_stats.snapshots.setdefault(_ModState.POST_BW, []).append(
|
| 766 |
+
self.get_tracker_snapshot()
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
def _track_optimizer_states(
|
| 770 |
+
self, reftype: _RefType, optimizer: optim.Optimizer
|
| 771 |
+
) -> None:
|
| 772 |
+
for states in optimizer.state.values():
|
| 773 |
+
for val in states.values():
|
| 774 |
+
if isinstance(val, torch.Tensor):
|
| 775 |
+
self._update_and_maybe_create_winfos(
|
| 776 |
+
val,
|
| 777 |
+
reftype,
|
| 778 |
+
)
|
| 779 |
+
|
| 780 |
+
def _register_global_optimizer_hook(self) -> None:
|
| 781 |
+
# Register a hook on the optimizer step to track the optimizer states.
|
| 782 |
+
# The pre-hook is to set the flag ``_in_opt`` to True. The post-hook unsets the flag,
|
| 783 |
+
# and also tracks any optimizer states that are created during the optimizer step.
|
| 784 |
+
def _opt_step_pre_hook(
|
| 785 |
+
optimizer: optim.Optimizer, args: Any, kwargs: Any
|
| 786 |
+
) -> None:
|
| 787 |
+
self._in_opt = True
|
| 788 |
+
|
| 789 |
+
def _opt_step_post_hook(
|
| 790 |
+
optimizer: optim.Optimizer, args: Any, kwargs: Any
|
| 791 |
+
) -> None:
|
| 792 |
+
self._track_optimizer_states(_MemRefType.OPT, optimizer)
|
| 793 |
+
self._in_opt = False
|
| 794 |
+
|
| 795 |
+
self._optimizer_hook_handles = (
|
| 796 |
+
register_optimizer_step_pre_hook(_opt_step_pre_hook),
|
| 797 |
+
register_optimizer_step_post_hook(_opt_step_post_hook),
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
def _deregister_param_and_optimizer_hooks(self) -> None:
|
| 801 |
+
for (
|
| 802 |
+
grad_hook_handle,
|
| 803 |
+
post_acc_grad_hook_handle,
|
| 804 |
+
) in self._param_to_grad_hook_handles.values():
|
| 805 |
+
grad_hook_handle.remove()
|
| 806 |
+
post_acc_grad_hook_handle.remove()
|
| 807 |
+
self._param_to_grad_hook_handles.clear()
|
| 808 |
+
|
| 809 |
+
if self._optimizer_hook_handles is not None:
|
| 810 |
+
for handle in self._optimizer_hook_handles:
|
| 811 |
+
handle.remove()
|
| 812 |
+
self._optimizer_hook_handles = None
|
| 813 |
+
|
| 814 |
+
def track_external(
|
| 815 |
+
self, *external: Union[nn.Module, optim.Optimizer, torch.Tensor]
|
| 816 |
+
) -> None:
|
| 817 |
+
"""
|
| 818 |
+
Track tensors and stateful objects like modules, optimizers etc. that are created outside the MemTracker.
|
| 819 |
+
|
| 820 |
+
This method should be called before the ``MemTracker`` is used. Any tensors that are not module parameters, buffers,
|
| 821 |
+
gradients activations, or optimizer states will be categorized as ``Other``. If you want them categorized with a
|
| 822 |
+
custom name, please file a GitHub issue. Any tensors created outside the MemTracker and not supplied to this
|
| 823 |
+
method will not be be tracked by ``MemTracker``.
|
| 824 |
+
|
| 825 |
+
Args:
|
| 826 |
+
*external (Union[nn.Module, optim.Optimizer, torch.Tensor]): The external modules, optimizers, and
|
| 827 |
+
tensors to be tracked.
|
| 828 |
+
"""
|
| 829 |
+
flat_external, _ = tree_flatten(external)
|
| 830 |
+
for obj in flat_external:
|
| 831 |
+
if isinstance(obj, torch.Tensor):
|
| 832 |
+
self._update_and_maybe_create_winfos(
|
| 833 |
+
obj,
|
| 834 |
+
_MemRefType.OTH,
|
| 835 |
+
)
|
| 836 |
+
elif isinstance(obj, torch.nn.Module):
|
| 837 |
+
self._track_module_params_and_buffers(obj, install_grad_hooks=False)
|
| 838 |
+
elif isinstance(obj, optim.Optimizer):
|
| 839 |
+
self._track_optimizer_states(_MemRefType.OPT, obj)
|
| 840 |
+
else:
|
| 841 |
+
raise TypeError(
|
| 842 |
+
f"Object of type {type(obj)} is not supported for tracking. "
|
| 843 |
+
f"Only stateful objects like modules, optimizers, and tensors are supported."
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
def display_snapshot(
|
| 847 |
+
self, type: str = "current", units: str = "B", tabulate: bool = False
|
| 848 |
+
) -> None:
|
| 849 |
+
"""
|
| 850 |
+
Display the memory usage breakdown snapshot of the tracker based on the specified type and units.
|
| 851 |
+
|
| 852 |
+
Keyword args:
|
| 853 |
+
type (str): The type of snapshot to display. Can be "current" for the current memory usage or "peak" for the
|
| 854 |
+
peak memory usage. Defaults to "current".
|
| 855 |
+
units (str): The units to use for displaying memory usage. Defaults to "B". Supports ["B", "KiB", "MiB", "GiB"].
|
| 856 |
+
tabulate (bool): Whether to display the snapshot in a tabular format. Defaults to False.
|
| 857 |
+
"""
|
| 858 |
+
snapshot = self.get_tracker_snapshot(type)
|
| 859 |
+
if tabulate:
|
| 860 |
+
_print_snapshot_tabular(snapshot, units)
|
| 861 |
+
else:
|
| 862 |
+
_print_snapshot(snapshot, units)
|
| 863 |
+
|
| 864 |
+
def display_modulewise_snapshots(
|
| 865 |
+
self, depth: int = 2, units: str = "B", tabulate: bool = False
|
| 866 |
+
) -> None:
|
| 867 |
+
"""
|
| 868 |
+
Print per device memory breakdown snapshot for each module called within MemTracker.
|
| 869 |
+
|
| 870 |
+
Snapshots are displayed for the states defined by ``_ModState``.
|
| 871 |
+
The module hierarchy is displayed up to the specified depth.
|
| 872 |
+
|
| 873 |
+
Keyword Args:
|
| 874 |
+
depth (int, optional): The depth of the module hierarchy to display. Defaults to 2.
|
| 875 |
+
units (str, optional): The units to use for memory tracking. Defaults to "B". Supports ["B", "KiB", "MiB", "GiB"].
|
| 876 |
+
tabulate (bool, optional): Whether to display the snapshot in a tabular format. Defaults to False.
|
| 877 |
+
"""
|
| 878 |
+
|
| 879 |
+
def natural_sort_key(s: str) -> List[Union[int, str]]:
|
| 880 |
+
return [
|
| 881 |
+
int(text) if text.isdigit() else text.lower()
|
| 882 |
+
for text in re.split("([0-9]+)", s)
|
| 883 |
+
]
|
| 884 |
+
|
| 885 |
+
for mod_stats in sorted(
|
| 886 |
+
self.memory_tracking.values(),
|
| 887 |
+
key=lambda m_stats: natural_sort_key(m_stats.mod_fqn),
|
| 888 |
+
):
|
| 889 |
+
mod_fqn = mod_stats.mod_fqn
|
| 890 |
+
mod_depth = mod_fqn.count(".") + 1
|
| 891 |
+
if mod_depth > depth:
|
| 892 |
+
continue
|
| 893 |
+
print(f"Module: {mod_fqn}")
|
| 894 |
+
if tabulate:
|
| 895 |
+
_print_state_snapshots_tabular(mod_stats.snapshots, units)
|
| 896 |
+
else:
|
| 897 |
+
_print_state_snapshots(mod_stats.snapshots, units)
|
| 898 |
+
|
| 899 |
+
def reset_mod_stats(self) -> None:
|
| 900 |
+
"""
|
| 901 |
+
Reset all the module memory stats. Clears ``memory_tracking`` dictionary.
|
| 902 |
+
"""
|
| 903 |
+
self.memory_tracking.clear()
|
| 904 |
+
|
| 905 |
+
def __enter__(self) -> "MemTracker":
|
| 906 |
+
self._register_global_optimizer_hook()
|
| 907 |
+
self._mod_tracker.register_user_hooks(
|
| 908 |
+
self._pre_fw_hook,
|
| 909 |
+
self._post_fw_hook,
|
| 910 |
+
self._pre_bw_hook,
|
| 911 |
+
self._post_bw_hook,
|
| 912 |
+
)
|
| 913 |
+
self._track_resize()
|
| 914 |
+
self._peak_mem_snap = self.get_tracker_snapshot()
|
| 915 |
+
self._peak_mem = {
|
| 916 |
+
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in self._peak_mem_snap.items()
|
| 917 |
+
}
|
| 918 |
+
self._mod_tracker.__enter__()
|
| 919 |
+
super().__enter__()
|
| 920 |
+
return self
|
| 921 |
+
|
| 922 |
+
def __exit__(self, *args: Any) -> None:
|
| 923 |
+
self._deregister_param_and_optimizer_hooks()
|
| 924 |
+
self._mod_tracker.clear_user_hooks()
|
| 925 |
+
self._restore_resize()
|
| 926 |
+
super().__exit__(*args)
|
| 927 |
+
self._mod_tracker.__exit__(*args)
|
| 928 |
+
|
| 929 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None): # type: ignore[no-untyped-def]
|
| 930 |
+
res = func(*args, **kwargs or {})
|
| 931 |
+
# If we are tracking an optimizer state, we use the optimizer reference type.
|
| 932 |
+
# If we are in backward region and not in AC region, we use the backward reference type.
|
| 933 |
+
# Else we use the forward reference type.
|
| 934 |
+
if self._in_opt:
|
| 935 |
+
reftype = _MemRefType.OPT
|
| 936 |
+
elif self._mod_tracker.is_bw and not self._in_ac:
|
| 937 |
+
reftype = _MemRefType.TEMP
|
| 938 |
+
else:
|
| 939 |
+
reftype = _MemRefType.ACT
|
| 940 |
+
tree_map_only(torch.Tensor, partial(self._track, reftype), res)
|
| 941 |
+
peak_state = _ModState.PEAK_BW if self._mod_tracker.is_bw else _ModState.PEAK_FW
|
| 942 |
+
self._update_peak_stats(peak_state)
|
| 943 |
+
return res
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_unshard_param_utils.cpython-310.pyc
ADDED
|
Binary file (8.11 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_optim_utils.py
ADDED
|
@@ -0,0 +1,2091 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import copy
|
| 3 |
+
import functools
|
| 4 |
+
import logging
|
| 5 |
+
import warnings
|
| 6 |
+
from contextlib import ExitStack
|
| 7 |
+
from dataclasses import dataclass, field
|
| 8 |
+
from typing import (
|
| 9 |
+
Any,
|
| 10 |
+
cast,
|
| 11 |
+
Dict,
|
| 12 |
+
Iterable,
|
| 13 |
+
Iterator,
|
| 14 |
+
List,
|
| 15 |
+
NamedTuple,
|
| 16 |
+
no_type_check,
|
| 17 |
+
Optional,
|
| 18 |
+
Sequence,
|
| 19 |
+
Set,
|
| 20 |
+
Tuple,
|
| 21 |
+
TYPE_CHECKING,
|
| 22 |
+
Union,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
import torch
|
| 26 |
+
import torch.distributed as dist
|
| 27 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
| 28 |
+
import torch.nn as nn
|
| 29 |
+
from torch.distributed._state_dict_utils import _gather_state_dict
|
| 30 |
+
from torch.distributed.distributed_c10d import _get_pg_default_device
|
| 31 |
+
from torch.distributed.fsdp._common_utils import (
|
| 32 |
+
_apply_to_modules,
|
| 33 |
+
_FSDPState,
|
| 34 |
+
_get_module_fsdp_state_if_fully_sharded_module,
|
| 35 |
+
_get_param_to_fqns,
|
| 36 |
+
_module_handle,
|
| 37 |
+
_named_parameters_with_duplicates,
|
| 38 |
+
clean_tensor_name,
|
| 39 |
+
)
|
| 40 |
+
from torch.distributed.fsdp._debug_utils import SimpleProfiler
|
| 41 |
+
from torch.distributed.fsdp._flat_param import FlatParameter, FlatParamHandle
|
| 42 |
+
from torch.distributed.fsdp._fsdp_extensions import (
|
| 43 |
+
_ext_chunk_dtensor,
|
| 44 |
+
_ext_chunk_tensor,
|
| 45 |
+
)
|
| 46 |
+
from torch.distributed.fsdp._runtime_utils import (
|
| 47 |
+
_lazy_init,
|
| 48 |
+
_reset_flat_param_grad_info_if_needed,
|
| 49 |
+
)
|
| 50 |
+
from torch.distributed.fsdp.api import (
|
| 51 |
+
ShardingStrategy,
|
| 52 |
+
StateDictSettings,
|
| 53 |
+
StateDictType,
|
| 54 |
+
)
|
| 55 |
+
from torch.distributed.tensor import DTensor, Replicate
|
| 56 |
+
from torch.utils._pytree import tree_map_only
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
if TYPE_CHECKING:
|
| 60 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
logger = logging.getLogger(__name__)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@dataclass
|
| 67 |
+
class FSDPParamInfo:
|
| 68 |
+
state: _FSDPState
|
| 69 |
+
handle: FlatParamHandle
|
| 70 |
+
param_indices: Dict[str, int]
|
| 71 |
+
param_requires_grad: List[bool]
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def sorted_items(dictionary: Dict[str, Any]) -> Iterator[Tuple[str, Any]]:
|
| 75 |
+
keys = sorted(dictionary.keys())
|
| 76 |
+
for k in keys:
|
| 77 |
+
yield k, dictionary[k]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@dataclass
|
| 81 |
+
class _ConsolidatedOptimState:
|
| 82 |
+
"""
|
| 83 |
+
This holds the consolidated optimizer state on the target rank. Positive-
|
| 84 |
+
dimension tensor state is communicated across ranks, while zero-dimension
|
| 85 |
+
tensor state and non-tensor state is taken directly from the target rank.
|
| 86 |
+
|
| 87 |
+
PyTorch version 1.12 moved to using zero-dimension tensors for scalar
|
| 88 |
+
values, but user implemented optimizers may still use float (i.e. a
|
| 89 |
+
non-tensor). Thus, we support both and handle them identically.
|
| 90 |
+
|
| 91 |
+
Attributes:
|
| 92 |
+
tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension
|
| 93 |
+
tensor state name to the unsharded flat tensor representing the
|
| 94 |
+
state.
|
| 95 |
+
zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero-
|
| 96 |
+
dimension tensor state name to its value.
|
| 97 |
+
non_tensor_state (Dict[str, Any]): Mapping from non-tensor state
|
| 98 |
+
name to its value.
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
tensor_state: Dict[str, torch.Tensor] = field(default_factory=dict)
|
| 102 |
+
zero_dim_tensor_state: Dict[str, torch.Tensor] = field(default_factory=dict)
|
| 103 |
+
non_tensor_state: Dict[str, Any] = field(default_factory=dict)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class _PosDimTensorInfo(NamedTuple):
|
| 107 |
+
"""
|
| 108 |
+
Meatadata for positive-dimension tensors used internally for
|
| 109 |
+
:meth:`scatter_full_optim_state_dict`.
|
| 110 |
+
|
| 111 |
+
Attributes:
|
| 112 |
+
shape (torch.Size): Sharded tensor shape (which is equal to the
|
| 113 |
+
unsharded tensor shape if the tensor is optimizer state for a
|
| 114 |
+
non-FSDP parameter and is hence not sharded).
|
| 115 |
+
dtype (torch.dtype): Data type of the tensor.
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
shape: torch.Size
|
| 119 |
+
dtype: torch.dtype
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class _OptimStateKey(NamedTuple):
|
| 123 |
+
"""
|
| 124 |
+
This represents an optimizer state key that may be used commonly across
|
| 125 |
+
ranks. It is based on the unflattened parameter names rather than parameter
|
| 126 |
+
IDs to make it independent of each rank's own optimizer construction.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
unflat_param_names: Tuple[str, ...]
|
| 130 |
+
is_fsdp_managed: bool
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def _unflatten_optim_state(
|
| 134 |
+
fsdp_param_info: FSDPParamInfo,
|
| 135 |
+
flat_param_state: Dict[str, Any],
|
| 136 |
+
to_save: bool,
|
| 137 |
+
shard_state: bool,
|
| 138 |
+
cpu_offload: bool,
|
| 139 |
+
) -> List[Dict[str, Any]]:
|
| 140 |
+
"""
|
| 141 |
+
Unflattens the optimizer state, consisting of the "state" part and the
|
| 142 |
+
"param_groups" part. Unflattening the "state" part involves consolidating
|
| 143 |
+
the state on the target rank and remapping from flattened to unflattened
|
| 144 |
+
parameter IDs, and the "param_groups" part only involves remapping from
|
| 145 |
+
flattened to unflattened parameter IDs.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
| 149 |
+
mapping from FQN to original parameter index.
|
| 150 |
+
flat_param_state (Dict[str, Any]): Entry for the flat parameter in the
|
| 151 |
+
"state" part of the optimizer state dict.
|
| 152 |
+
to_save (bool): Whether to save the state on this rank.
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
List[Dict[str, Any]]: A :class:`list` holding the entries in the
|
| 156 |
+
"state" part of the optimizer state dict corresponding to the
|
| 157 |
+
unflattened parameters comprising the flat parameter if on the target
|
| 158 |
+
rank or an empty :class:`list` otherwise. The final optimizer state
|
| 159 |
+
dict will need to map these entries using the proper unflattened
|
| 160 |
+
parameter IDs.
|
| 161 |
+
"""
|
| 162 |
+
assert (
|
| 163 |
+
not shard_state or to_save
|
| 164 |
+
), "If ``shard_state`` is True, ``to_save`` has to be True."
|
| 165 |
+
consolidated_state = _communicate_optim_state(
|
| 166 |
+
fsdp_param_info,
|
| 167 |
+
flat_param_state,
|
| 168 |
+
)
|
| 169 |
+
if to_save:
|
| 170 |
+
unflat_param_state = _unflatten_communicated_optim_state(
|
| 171 |
+
fsdp_param_info,
|
| 172 |
+
consolidated_state,
|
| 173 |
+
shard_state,
|
| 174 |
+
)
|
| 175 |
+
for optim_state in unflat_param_state:
|
| 176 |
+
# We can't use .items() below cuz we'd run into a concurrent modification error
|
| 177 |
+
if cpu_offload:
|
| 178 |
+
for key in list(optim_state.keys()):
|
| 179 |
+
state = optim_state[key]
|
| 180 |
+
if not isinstance(state, torch.Tensor):
|
| 181 |
+
continue
|
| 182 |
+
optim_state[key] = state.cpu()
|
| 183 |
+
return unflat_param_state
|
| 184 |
+
else:
|
| 185 |
+
return []
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _is_zero_dim_tensor(x: Any) -> bool:
|
| 189 |
+
return torch.is_tensor(x) and x.dim() == 0
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def _communicate_optim_state(
|
| 193 |
+
fsdp_param_info: FSDPParamInfo,
|
| 194 |
+
flat_param_state: Dict[str, Any],
|
| 195 |
+
) -> _ConsolidatedOptimState:
|
| 196 |
+
"""
|
| 197 |
+
Communicates the optimizer state for a flat parameter across ranks. All
|
| 198 |
+
ranks will hold the entire non-sharded optimizer state on GPU.
|
| 199 |
+
|
| 200 |
+
If ``N`` is the number of tensor optimizer states in the optimizer state
|
| 201 |
+
dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1``
|
| 202 |
+
otherwise (where the plus 1 comes from all-gathering the padding per rank).
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
| 206 |
+
mapping from FQN to original parameter index.
|
| 207 |
+
flat_param_state (Dict[str, Any]): The entry in the "state" part of the
|
| 208 |
+
optimizer state dict corresponding to the flat parameter.
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
ConsolidatedOptimState: Consolidated optimizer state for the target
|
| 212 |
+
flat parameter.
|
| 213 |
+
"""
|
| 214 |
+
fsdp_state = fsdp_param_info.state
|
| 215 |
+
flat_param = fsdp_param_info.handle.flat_param
|
| 216 |
+
state = _ConsolidatedOptimState()
|
| 217 |
+
tensor_state, zero_dim_tensor_state, non_tensor_state = (
|
| 218 |
+
state.tensor_state,
|
| 219 |
+
state.zero_dim_tensor_state,
|
| 220 |
+
state.non_tensor_state,
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
for state_name, value in sorted_items(flat_param_state):
|
| 224 |
+
# Positive-dimension tensor state: communicate across ranks
|
| 225 |
+
if torch.is_tensor(value) and value.dim() > 0:
|
| 226 |
+
# If the parameter is not sharded, then neither is the
|
| 227 |
+
# positive-dimension tensor state, so no need to communicate it --
|
| 228 |
+
# we take the target rank's value
|
| 229 |
+
if (
|
| 230 |
+
fsdp_state.world_size == 1
|
| 231 |
+
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
|
| 232 |
+
):
|
| 233 |
+
tensor_state[state_name] = value
|
| 234 |
+
continue
|
| 235 |
+
assert (
|
| 236 |
+
fsdp_state.compute_device is not None
|
| 237 |
+
), "compute_device has not been initialized"
|
| 238 |
+
if value.device.type != fsdp_state.compute_device.type:
|
| 239 |
+
value = value.to(fsdp_state.compute_device)
|
| 240 |
+
# Assume that positive-dimension tensor optimizer state
|
| 241 |
+
# has the same shape as the sharded flat parameter
|
| 242 |
+
buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined]
|
| 243 |
+
tensor_buffer = value.new_zeros(*buffer_size)
|
| 244 |
+
dist.all_gather_into_tensor(
|
| 245 |
+
tensor_buffer, value, group=fsdp_state.process_group
|
| 246 |
+
)
|
| 247 |
+
fsdp_state._device_handle.synchronize()
|
| 248 |
+
unpadded_numel = cast(
|
| 249 |
+
nn.Parameter, flat_param._unpadded_unsharded_size
|
| 250 |
+
).numel()
|
| 251 |
+
tensor_state[state_name] = tensor_buffer[:unpadded_numel]
|
| 252 |
+
# Zero-dimension tensor state and non-tensor state: take this rank's
|
| 253 |
+
# value directly
|
| 254 |
+
else:
|
| 255 |
+
if _is_zero_dim_tensor(value):
|
| 256 |
+
zero_dim_tensor_state[state_name] = value.detach().clone()
|
| 257 |
+
else:
|
| 258 |
+
non_tensor_state[state_name] = value
|
| 259 |
+
return state
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _unflatten_communicated_optim_state(
|
| 263 |
+
fsdp_param_info: FSDPParamInfo,
|
| 264 |
+
state: _ConsolidatedOptimState,
|
| 265 |
+
shard_state: bool,
|
| 266 |
+
) -> List[Dict[str, Any]]:
|
| 267 |
+
"""
|
| 268 |
+
Unflattens the communicated optimizer state (given by ``tensor_state``,
|
| 269 |
+
``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flat
|
| 270 |
+
parameter. This should only be called on the target rank.
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
| 274 |
+
mapping from FQN to original parameter index.
|
| 275 |
+
state (_ConsolidatedOptimState): Consolidated optimizer state.
|
| 276 |
+
|
| 277 |
+
Returns:
|
| 278 |
+
List[Dict[str, Any]]: A :class:`list` holding the entries in the
|
| 279 |
+
"state" part of the optimizer state dict corresponding to the
|
| 280 |
+
unflattened parameters comprising the flat parameter. The final
|
| 281 |
+
optimizer state dict will need to map these entries using the proper
|
| 282 |
+
unflattened parameter IDs.
|
| 283 |
+
"""
|
| 284 |
+
fsdp_state = fsdp_param_info.state
|
| 285 |
+
handle = fsdp_param_info.handle
|
| 286 |
+
flat_param = handle.flat_param
|
| 287 |
+
unflat_param_state: List[Dict[str, Any]] = []
|
| 288 |
+
flat_param_views: Dict[str, Iterator] = {}
|
| 289 |
+
num_unflat_params = flat_param._num_params
|
| 290 |
+
tensor_state, zero_dim_tensor_state, non_tensor_state = (
|
| 291 |
+
state.tensor_state,
|
| 292 |
+
state.zero_dim_tensor_state,
|
| 293 |
+
state.non_tensor_state,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
for _ in range(num_unflat_params):
|
| 297 |
+
unflat_state_param = {}
|
| 298 |
+
# Add positive-dimension tensor state: unflatten with views
|
| 299 |
+
for state_name, flat_tensor in sorted_items(tensor_state):
|
| 300 |
+
views_generated = state_name in flat_param_views
|
| 301 |
+
if not views_generated:
|
| 302 |
+
views = handle._get_unflat_views(flat_tensor)
|
| 303 |
+
flat_param_views[state_name] = views
|
| 304 |
+
else:
|
| 305 |
+
views = flat_param_views[state_name]
|
| 306 |
+
optim_state: Union[torch.Tensor, ShardedTensor, DTensor] = next(views)
|
| 307 |
+
if shard_state:
|
| 308 |
+
osd_config = fsdp_state._optim_state_dict_config
|
| 309 |
+
if getattr(osd_config, "_use_dtensor", False):
|
| 310 |
+
assert fsdp_state._device_mesh is not None
|
| 311 |
+
optim_state = _ext_chunk_dtensor(
|
| 312 |
+
optim_state,
|
| 313 |
+
fsdp_state.rank,
|
| 314 |
+
fsdp_state._device_mesh,
|
| 315 |
+
fsdp_state._fsdp_extension,
|
| 316 |
+
)
|
| 317 |
+
else:
|
| 318 |
+
assert fsdp_state.process_group is not None
|
| 319 |
+
optim_state = _ext_chunk_tensor(
|
| 320 |
+
optim_state,
|
| 321 |
+
fsdp_state.rank,
|
| 322 |
+
fsdp_state.world_size,
|
| 323 |
+
fsdp_state._device_handle.device_count(),
|
| 324 |
+
fsdp_state.process_group,
|
| 325 |
+
fsdp_state._fsdp_extension,
|
| 326 |
+
)
|
| 327 |
+
unflat_state_param[state_name] = optim_state
|
| 328 |
+
|
| 329 |
+
# Add zero-dimension tensor state: take the target rank's value
|
| 330 |
+
for state_name, zero_dim_tensor in sorted_items(zero_dim_tensor_state):
|
| 331 |
+
unflat_state_param[state_name] = zero_dim_tensor
|
| 332 |
+
# Add non-tensor state: take the target rank's value
|
| 333 |
+
for state_name, non_tensor in sorted_items(non_tensor_state):
|
| 334 |
+
unflat_state_param[state_name] = non_tensor
|
| 335 |
+
unflat_param_state.append(unflat_state_param)
|
| 336 |
+
return unflat_param_state
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def _broadcast_processed_state(
|
| 340 |
+
fsdp_state: _FSDPState,
|
| 341 |
+
optim_state: Dict[str, Any],
|
| 342 |
+
group: Optional[dist.ProcessGroup],
|
| 343 |
+
) -> Dict[str, Any]:
|
| 344 |
+
objects: List[Any] = [None]
|
| 345 |
+
if dist.get_rank(group) == 0:
|
| 346 |
+
objects[0] = tree_map_only(
|
| 347 |
+
torch.Tensor,
|
| 348 |
+
lambda v: v.cpu() if v.dim() == 0 else _PosDimTensorInfo(v.shape, v.dtype), # type: ignore[union-attr]
|
| 349 |
+
optim_state,
|
| 350 |
+
)
|
| 351 |
+
dist.broadcast_object_list(objects, src=0, group=group)
|
| 352 |
+
if dist.get_rank(group) == 0:
|
| 353 |
+
return optim_state
|
| 354 |
+
else:
|
| 355 |
+
return objects[0]
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def _broadcast_state(
|
| 359 |
+
fsdp_state: _FSDPState, state: Any, group: Optional[dist.ProcessGroup]
|
| 360 |
+
) -> Any:
|
| 361 |
+
if dist.get_rank(group) == 0:
|
| 362 |
+
if not isinstance(state, torch.Tensor) or state.dim() == 0:
|
| 363 |
+
return state
|
| 364 |
+
tensor = state.to(fsdp_state.compute_device)
|
| 365 |
+
else:
|
| 366 |
+
if isinstance(state, torch.Tensor):
|
| 367 |
+
assert state.dim() == 0, (
|
| 368 |
+
"For non-zero ranks, a tensor state should have zero dimension, "
|
| 369 |
+
"but got the state with shape {state.shape()}."
|
| 370 |
+
)
|
| 371 |
+
return state
|
| 372 |
+
elif not isinstance(state, _PosDimTensorInfo):
|
| 373 |
+
return state
|
| 374 |
+
tensor = torch.zeros(
|
| 375 |
+
state.shape, dtype=state.dtype, device=fsdp_state.compute_device
|
| 376 |
+
)
|
| 377 |
+
dist.broadcast(tensor, src=0, group=group)
|
| 378 |
+
return tensor
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def _shard_orig_param_state(
|
| 382 |
+
fsdp_param_info: FSDPParamInfo,
|
| 383 |
+
fqn: str,
|
| 384 |
+
optim_state: Dict[str, Any],
|
| 385 |
+
) -> Dict[str, Any]:
|
| 386 |
+
"""
|
| 387 |
+
Shard the optimizer state for the original parameter with the name ``fqn``.
|
| 388 |
+
This API should only be used when ``use_orig_params`` is True.
|
| 389 |
+
"""
|
| 390 |
+
if not optim_state:
|
| 391 |
+
return {}
|
| 392 |
+
fsdp_state = fsdp_param_info.state
|
| 393 |
+
flat_param = fsdp_param_info.handle.flat_param
|
| 394 |
+
param_idx = fsdp_param_info.param_indices[fqn]
|
| 395 |
+
shard_param_info = flat_param._shard_param_infos[param_idx] # type: ignore[attr-defined]
|
| 396 |
+
optim_state = _gather_state_dict(
|
| 397 |
+
optim_state, pg=fsdp_state.process_group, device=fsdp_state.compute_device
|
| 398 |
+
)
|
| 399 |
+
if not shard_param_info.in_shard:
|
| 400 |
+
return {}
|
| 401 |
+
# Flatten and shard the state.
|
| 402 |
+
new_optim_state: Dict[str, Any] = {}
|
| 403 |
+
intra_param_start_idx = shard_param_info.intra_param_start_idx
|
| 404 |
+
intra_param_end_idx = shard_param_info.intra_param_end_idx
|
| 405 |
+
for state_name, value in optim_state.items():
|
| 406 |
+
if (
|
| 407 |
+
torch.is_tensor(value)
|
| 408 |
+
and value.dim() > 0
|
| 409 |
+
and fsdp_state.sharding_strategy != ShardingStrategy.NO_SHARD
|
| 410 |
+
):
|
| 411 |
+
value = value.flatten()[intra_param_start_idx : intra_param_end_idx + 1].clone() # type: ignore[operator]
|
| 412 |
+
new_optim_state[state_name] = value
|
| 413 |
+
return new_optim_state
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
def _flatten_optim_state_dict(
|
| 417 |
+
optim_state_dict: Dict[str, Any],
|
| 418 |
+
model: nn.Module,
|
| 419 |
+
use_orig_params: bool = False,
|
| 420 |
+
optim: Optional[torch.optim.Optimizer] = None,
|
| 421 |
+
rank0_only: bool = False,
|
| 422 |
+
group: Optional[dist.ProcessGroup] = None,
|
| 423 |
+
) -> Dict[str, Any]:
|
| 424 |
+
"""
|
| 425 |
+
Flattens the full optimizer state dict, still keying by unflattened parameter
|
| 426 |
+
names.
|
| 427 |
+
|
| 428 |
+
If ``use_orig_params`` is True, each rank will have all FSDP-managed
|
| 429 |
+
parameters but some of these parameters may be empty due to the sharding.
|
| 430 |
+
For a regular optim.Optimizer, states for those empty parameters will
|
| 431 |
+
not be initialized. So, when aggregating the FQNs across ranks, no assert
|
| 432 |
+
will be raised on a rank even if it does not have all the states -- it is
|
| 433 |
+
valid and FSDP know how to aggregate them. However, FSDP has to ignore
|
| 434 |
+
handling those parameters that are not managed by FSDP and do not exist on
|
| 435 |
+
the local rank -- it is managed by other parallelism and FSDP does not
|
| 436 |
+
know ho to handle/aggregate them.
|
| 437 |
+
|
| 438 |
+
Note that ``_flatten_tensor_optim_state`` does not need ``optim`` to
|
| 439 |
+
flatten/shard the state. However, NamedOptimizer and KeyedOptimizer require
|
| 440 |
+
all the states even if the corresponding parameters are empty. To this end,
|
| 441 |
+
``optim`` will be used to to get the initial state of the empty parameters.
|
| 442 |
+
``optim`` should only be non-None if the ``optim` is KeyedOptimizer or
|
| 443 |
+
NamedOptimizer.
|
| 444 |
+
|
| 445 |
+
Returns:
|
| 446 |
+
Dict[str, Any]: The flattened optimizer state dict.
|
| 447 |
+
"""
|
| 448 |
+
SimpleProfiler.reset()
|
| 449 |
+
|
| 450 |
+
unflat_osd = optim_state_dict
|
| 451 |
+
if "state" not in unflat_osd and not rank0_only:
|
| 452 |
+
raise ValueError(
|
| 453 |
+
'`optim_state_dict` must have the keys "state"'
|
| 454 |
+
"to be a valid optimizer state dict"
|
| 455 |
+
)
|
| 456 |
+
param_to_fqns = _get_param_to_fqns(model)
|
| 457 |
+
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
|
| 458 |
+
fsdp_state = next(iter(fqn_to_fsdp_param_info.values())).state
|
| 459 |
+
|
| 460 |
+
# Broadcast unflat_osd without non-scalar tensor if rank0_only is True.
|
| 461 |
+
if rank0_only:
|
| 462 |
+
unflat_osd = _broadcast_processed_state(fsdp_state, unflat_osd, group=group)
|
| 463 |
+
|
| 464 |
+
# Construct the "state" part
|
| 465 |
+
flat_osd_state: Dict[Union[_OptimStateKey, str], Any] = {}
|
| 466 |
+
unflat_osd_state = unflat_osd["state"]
|
| 467 |
+
all_state_keys = set(unflat_osd_state.keys())
|
| 468 |
+
|
| 469 |
+
for param, fqns in param_to_fqns.items():
|
| 470 |
+
fqn = fqns[0]
|
| 471 |
+
if fqn not in unflat_osd_state:
|
| 472 |
+
continue
|
| 473 |
+
all_state_keys.difference_update(fqns)
|
| 474 |
+
|
| 475 |
+
if rank0_only:
|
| 476 |
+
for fqn in fqns:
|
| 477 |
+
if not unflat_osd_state[fqn]:
|
| 478 |
+
continue
|
| 479 |
+
for state_name in unflat_osd_state[fqn].keys():
|
| 480 |
+
unflat_osd_state[fqn][state_name] = _broadcast_state(
|
| 481 |
+
fsdp_state, unflat_osd_state[fqn][state_name], group=group
|
| 482 |
+
)
|
| 483 |
+
fqn = fqns[0]
|
| 484 |
+
if fqn in fqn_to_fsdp_param_info:
|
| 485 |
+
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
| 486 |
+
if use_orig_params:
|
| 487 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.RESHARDING):
|
| 488 |
+
flat_state = _shard_orig_param_state(
|
| 489 |
+
fsdp_param_info,
|
| 490 |
+
fqn,
|
| 491 |
+
unflat_osd_state[fqn],
|
| 492 |
+
)
|
| 493 |
+
else:
|
| 494 |
+
flat_state = _flatten_optim_state(
|
| 495 |
+
fsdp_param_info,
|
| 496 |
+
unflat_osd_state,
|
| 497 |
+
fqns,
|
| 498 |
+
)
|
| 499 |
+
key = _OptimStateKey(tuple(fqns), True)
|
| 500 |
+
# Only include non-empty states since as expected by
|
| 501 |
+
# `torch.optim.Optimizer` s unless the optimizer is KeyedOptimizer
|
| 502 |
+
# or NamedOptimizer.
|
| 503 |
+
if flat_state:
|
| 504 |
+
flat_osd_state[key] = flat_state
|
| 505 |
+
elif use_orig_params:
|
| 506 |
+
assert (
|
| 507 |
+
len(fqns) == 1
|
| 508 |
+
), f"use_orig_params is True but there are multiple FQNs, {fqns}."
|
| 509 |
+
if optim is not None: # NamedOptimizer or KeyedOptimizer case.
|
| 510 |
+
state = optim.state.get(param, None) # type: ignore[call-overload]
|
| 511 |
+
if state is not None:
|
| 512 |
+
flat_osd_state[key] = copy.deepcopy(state)
|
| 513 |
+
else:
|
| 514 |
+
warnings.warn(
|
| 515 |
+
f"optim_state[{key}] is not on rank{fsdp_state.rank}."
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
else:
|
| 519 |
+
raise RuntimeError(
|
| 520 |
+
f"The state of {key} is empty. This should happen when "
|
| 521 |
+
"use_orig_params=True."
|
| 522 |
+
)
|
| 523 |
+
else: # do not flatten non-FSDP parameters' states
|
| 524 |
+
assert len(fqns) == 1
|
| 525 |
+
key = _OptimStateKey(tuple(fqns), False)
|
| 526 |
+
flat_osd_state[key] = copy.copy(unflat_osd_state[fqn])
|
| 527 |
+
|
| 528 |
+
if rank0_only:
|
| 529 |
+
for fqn in fqns:
|
| 530 |
+
if not unflat_osd_state[fqn]:
|
| 531 |
+
continue
|
| 532 |
+
for state_name, param_state in list(unflat_osd_state[fqn].items()):
|
| 533 |
+
if fsdp_state.rank > 0:
|
| 534 |
+
# Deference the tensor so that PyTorch can collect the memory.
|
| 535 |
+
del unflat_osd_state[fqn][state_name]
|
| 536 |
+
else:
|
| 537 |
+
# Move the tensor in the original osd back to CPU to make the
|
| 538 |
+
# original osd unaffected.
|
| 539 |
+
unflat_osd_state[fqn][state_name] = unflat_osd_state[fqn][
|
| 540 |
+
state_name
|
| 541 |
+
].cpu()
|
| 542 |
+
|
| 543 |
+
# Handle user-defined state, states that are not associated with parameters.
|
| 544 |
+
for key in all_state_keys:
|
| 545 |
+
user_state = unflat_osd_state[key]
|
| 546 |
+
if isinstance(user_state, torch.Tensor) and rank0_only and use_orig_params:
|
| 547 |
+
user_state = _broadcast_state(fsdp_state, user_state, group=group)
|
| 548 |
+
flat_osd_state[key] = copy.copy(user_state)
|
| 549 |
+
|
| 550 |
+
SimpleProfiler.dump_and_reset("FSDP _flatten_optim_state_dict() profiling: ")
|
| 551 |
+
# Construct the "param_groups" part -- copy as is since it will be
|
| 552 |
+
# rekeyed later according to the target rank's optimizer
|
| 553 |
+
# Only copy param_groups if it exists in unflat_osd
|
| 554 |
+
if "param_groups" in unflat_osd:
|
| 555 |
+
flat_osd_param_groups = copy.deepcopy(unflat_osd["param_groups"])
|
| 556 |
+
return {"state": flat_osd_state, "param_groups": flat_osd_param_groups}
|
| 557 |
+
else:
|
| 558 |
+
return {"state": flat_osd_state}
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def _flatten_optim_state(
|
| 562 |
+
fsdp_param_info: FSDPParamInfo,
|
| 563 |
+
unflat_osd_state: Dict[str, Dict[str, Any]],
|
| 564 |
+
unflat_param_names: List[str],
|
| 565 |
+
) -> Dict[str, Any]:
|
| 566 |
+
"""
|
| 567 |
+
Flattens the optimizer state in ``full_optim_state_dict`` for a single
|
| 568 |
+
flat parameter in ``fsdp_param_info`` corresponding to the unflattened
|
| 569 |
+
parameter names in ``unflat_param_names``.
|
| 570 |
+
|
| 571 |
+
Args:
|
| 572 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
| 573 |
+
mapping from FQN to original parameter index.
|
| 574 |
+
unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the
|
| 575 |
+
optimizer state dict corresponding to the unflattened parameters.
|
| 576 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
| 577 |
+
parameter names corresponding to the flat parameter ``flat_param``.
|
| 578 |
+
|
| 579 |
+
Returns:
|
| 580 |
+
Dict[str, Any]: A :class:`dict` mapping state names to their values for
|
| 581 |
+
a particular flat parameter. The sharded optimizer state dict's "state"
|
| 582 |
+
part will map a key to this returned value.
|
| 583 |
+
"""
|
| 584 |
+
fsdp_state = fsdp_param_info.state
|
| 585 |
+
handle = fsdp_param_info.handle
|
| 586 |
+
flat_param = handle.flat_param
|
| 587 |
+
num_unflat_params = len(unflat_param_names)
|
| 588 |
+
assert num_unflat_params > 0, (
|
| 589 |
+
"Expects at least one unflattened parameter corresponding to the "
|
| 590 |
+
"flat parameter"
|
| 591 |
+
)
|
| 592 |
+
unflat_param_shapes = flat_param._shapes
|
| 593 |
+
num_unflat_param_shapes = len(unflat_param_shapes)
|
| 594 |
+
assert (
|
| 595 |
+
num_unflat_params == num_unflat_param_shapes
|
| 596 |
+
), f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}"
|
| 597 |
+
|
| 598 |
+
# Check if these unflattened parameters have any optimizer state
|
| 599 |
+
has_state = [
|
| 600 |
+
bool(unflat_param_name in unflat_osd_state)
|
| 601 |
+
for unflat_param_name in unflat_param_names
|
| 602 |
+
]
|
| 603 |
+
# If none of the unflattened parameters comprising this flat parameter have
|
| 604 |
+
# any state, then we do not want an entry in the optimizer state dict
|
| 605 |
+
if not any(has_state):
|
| 606 |
+
return {} # no need to flatten any state
|
| 607 |
+
# There may still be some unflattened parameters with state and some
|
| 608 |
+
# without
|
| 609 |
+
unflat_param_states = [
|
| 610 |
+
_gather_state_dict(
|
| 611 |
+
unflat_osd_state[unflat_param_name],
|
| 612 |
+
pg=fsdp_state.process_group,
|
| 613 |
+
device=fsdp_state.compute_device,
|
| 614 |
+
)
|
| 615 |
+
if unflat_param_name in unflat_osd_state
|
| 616 |
+
else None
|
| 617 |
+
for unflat_param_name in unflat_param_names
|
| 618 |
+
]
|
| 619 |
+
# Check that the unflattened parameters have the same state names
|
| 620 |
+
state_names = None
|
| 621 |
+
for unflat_param_state in unflat_param_states:
|
| 622 |
+
if unflat_param_state is None:
|
| 623 |
+
continue
|
| 624 |
+
if state_names is None:
|
| 625 |
+
state_names = set(unflat_param_state.keys())
|
| 626 |
+
else:
|
| 627 |
+
if state_names != set(unflat_param_state.keys()):
|
| 628 |
+
raise ValueError(
|
| 629 |
+
"Differing optimizer state names for the unflattened "
|
| 630 |
+
f"parameters: {unflat_param_names}"
|
| 631 |
+
)
|
| 632 |
+
assert state_names is not None
|
| 633 |
+
|
| 634 |
+
# Flatten the state
|
| 635 |
+
flat_state: Dict[str, Any] = {}
|
| 636 |
+
for state_name in state_names:
|
| 637 |
+
state_values = [
|
| 638 |
+
unflat_param_state[state_name] if unflat_param_state is not None else None
|
| 639 |
+
for unflat_param_state in unflat_param_states
|
| 640 |
+
]
|
| 641 |
+
non_none_state_values = [v for v in state_values if v is not None]
|
| 642 |
+
# If all ranks have None, this is a None value
|
| 643 |
+
if not non_none_state_values:
|
| 644 |
+
flat_state[state_name] = None
|
| 645 |
+
continue
|
| 646 |
+
are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True
|
| 647 |
+
for v in non_none_state_values:
|
| 648 |
+
are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0
|
| 649 |
+
are_zero_dim_tensors &= _is_zero_dim_tensor(v)
|
| 650 |
+
are_non_tensors &= not torch.is_tensor(v)
|
| 651 |
+
types = {type(v) for v in non_none_state_values}
|
| 652 |
+
if len(types) != 1 or not (
|
| 653 |
+
are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors
|
| 654 |
+
):
|
| 655 |
+
raise ValueError(
|
| 656 |
+
f"Differing optimizer state types for state {state_name}, "
|
| 657 |
+
f"values {non_none_state_values}, and unflattened parameter "
|
| 658 |
+
f"names {unflat_param_names}"
|
| 659 |
+
)
|
| 660 |
+
if are_pos_dim_tensors:
|
| 661 |
+
flat_tensor = _flatten_tensor_optim_state(
|
| 662 |
+
state_name,
|
| 663 |
+
state_values,
|
| 664 |
+
unflat_param_names,
|
| 665 |
+
unflat_param_shapes,
|
| 666 |
+
handle,
|
| 667 |
+
)
|
| 668 |
+
# Shard the flattened tensor immediately to minimize max memory
|
| 669 |
+
# usage
|
| 670 |
+
if (
|
| 671 |
+
fsdp_state.world_size != 1
|
| 672 |
+
and fsdp_state.sharding_strategy != ShardingStrategy.NO_SHARD
|
| 673 |
+
):
|
| 674 |
+
sharded_flat_tensor, _ = FlatParamHandle._get_shard(
|
| 675 |
+
flat_tensor,
|
| 676 |
+
fsdp_state.rank,
|
| 677 |
+
fsdp_state.world_size,
|
| 678 |
+
)
|
| 679 |
+
else:
|
| 680 |
+
sharded_flat_tensor = flat_tensor
|
| 681 |
+
flat_state[state_name] = sharded_flat_tensor
|
| 682 |
+
elif are_zero_dim_tensors:
|
| 683 |
+
flat_state[state_name] = _flatten_zero_dim_tensor_optim_state(
|
| 684 |
+
state_name,
|
| 685 |
+
state_values,
|
| 686 |
+
unflat_param_names,
|
| 687 |
+
)
|
| 688 |
+
else:
|
| 689 |
+
assert are_non_tensors
|
| 690 |
+
flat_state[state_name] = _flatten_non_tensor_optim_state(
|
| 691 |
+
state_name,
|
| 692 |
+
state_values,
|
| 693 |
+
unflat_param_names,
|
| 694 |
+
)
|
| 695 |
+
|
| 696 |
+
return flat_state
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
def _flatten_tensor_optim_state(
|
| 700 |
+
state_name: str,
|
| 701 |
+
pos_dim_tensors: List[torch.Tensor],
|
| 702 |
+
unflat_param_names: List[str],
|
| 703 |
+
unflat_param_shapes: Sequence[torch.Size],
|
| 704 |
+
handle: FlatParamHandle,
|
| 705 |
+
) -> torch.Tensor:
|
| 706 |
+
"""
|
| 707 |
+
Flattens the positive-dimension tensor optimizer state given by the values
|
| 708 |
+
``tensors`` for the state ``state_name`` for a single flat parameter
|
| 709 |
+
from ``handle`` corresponding to the unflattened parameter names
|
| 710 |
+
``unflat_param_names`` and unflatted parameter shapes
|
| 711 |
+
``unflat_param_shapes``. This flattens each unflattened parameter's tensor
|
| 712 |
+
state into one tensor.
|
| 713 |
+
|
| 714 |
+
NOTE: We use zero tensors for any unflattened parameters without state
|
| 715 |
+
since some value is required to fill those entries. This assumes that the
|
| 716 |
+
zero tensor is mathematically equivalent to having no state, which is true
|
| 717 |
+
for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all
|
| 718 |
+
optimizers.
|
| 719 |
+
|
| 720 |
+
Args:
|
| 721 |
+
state_name (str): Optimizer state name.
|
| 722 |
+
pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor
|
| 723 |
+
optimizer state values for the unflattened parameters corresponding
|
| 724 |
+
to the single flat parameter.
|
| 725 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
| 726 |
+
parameter names corresponding to the single flat parameter.
|
| 727 |
+
unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes
|
| 728 |
+
corresponding to the single flat parameter.
|
| 729 |
+
handle (FlatParamHandle): The flat parameter's handle.
|
| 730 |
+
|
| 731 |
+
Returns:
|
| 732 |
+
torch.Tensor: A flat tensor containing the optimizer state
|
| 733 |
+
corresponding to ``state_name`` constructed by concatenating the
|
| 734 |
+
unflattened parameter tensor states in ``pos_dim_tensors`` (using zero
|
| 735 |
+
tensors for any unflattened parameters without the state).
|
| 736 |
+
"""
|
| 737 |
+
flat_param = handle.flat_param
|
| 738 |
+
non_none_tensors = [t for t in pos_dim_tensors if t is not None]
|
| 739 |
+
# Check that all are tensors with the same dtype
|
| 740 |
+
dtypes = {t.dtype for t in non_none_tensors}
|
| 741 |
+
if len(dtypes) != 1:
|
| 742 |
+
raise ValueError(
|
| 743 |
+
"All unflattened parameters comprising a single flat "
|
| 744 |
+
"parameter must have positive-dimension tensor state with the "
|
| 745 |
+
f"same dtype but got dtypes {dtypes} for state {state_name} and "
|
| 746 |
+
f"unflattened parameter names {unflat_param_names}"
|
| 747 |
+
)
|
| 748 |
+
dtype = next(iter(dtypes))
|
| 749 |
+
# Check that each tensor state matches its parameter's shape
|
| 750 |
+
for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes):
|
| 751 |
+
if tensor is None and len(shape) == 0:
|
| 752 |
+
raise ValueError("Flattening a zero-dimension parameter is not supported")
|
| 753 |
+
elif tensor is not None and tensor.shape != shape:
|
| 754 |
+
raise ValueError(
|
| 755 |
+
"Tensor optimizer state does not have same shape as its "
|
| 756 |
+
f"parameter: {tensor.shape} {shape}"
|
| 757 |
+
)
|
| 758 |
+
# Flatten the tensor states: we do not need to add any right-hand-side
|
| 759 |
+
# padding since the flat optimizer state tensor is sharded via
|
| 760 |
+
# `_get_shard()`, which pads the shard as needed (just like for the flat
|
| 761 |
+
# parameter)
|
| 762 |
+
cpu_device = torch.device("cpu")
|
| 763 |
+
tensors_to_flatten = [
|
| 764 |
+
torch.flatten(state_value.to(cpu_device))
|
| 765 |
+
if state_value is not None
|
| 766 |
+
else torch.flatten(
|
| 767 |
+
torch.zeros(
|
| 768 |
+
size=shape,
|
| 769 |
+
dtype=dtype,
|
| 770 |
+
device=cpu_device,
|
| 771 |
+
)
|
| 772 |
+
)
|
| 773 |
+
for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes)
|
| 774 |
+
]
|
| 775 |
+
flat_tensor = handle.flatten_tensors(tensors_to_flatten, handle._aligned_numel)
|
| 776 |
+
flat_param_shape = flat_param._unpadded_unsharded_size # type: ignore[attr-defined]
|
| 777 |
+
assert flat_tensor.shape == flat_param_shape, (
|
| 778 |
+
f"tensor optim state: {flat_tensor.shape} "
|
| 779 |
+
f"flat parameter: {flat_param_shape}"
|
| 780 |
+
)
|
| 781 |
+
return flat_tensor
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
def _flatten_zero_dim_tensor_optim_state(
|
| 785 |
+
state_name: str,
|
| 786 |
+
zero_dim_tensors: List[torch.Tensor],
|
| 787 |
+
unflat_param_names: List[str],
|
| 788 |
+
) -> torch.Tensor:
|
| 789 |
+
"""
|
| 790 |
+
Flattens the zero-dimension tensor optimizer state given by the values
|
| 791 |
+
``zero_dim_tensors`` for the state ``state_name`` for a single flat
|
| 792 |
+
parameter corresponding to the unflattened parameter names
|
| 793 |
+
``unflat_param_names`` by enforcing that all tensors are the same and using
|
| 794 |
+
that common value.
|
| 795 |
+
|
| 796 |
+
NOTE: The requirement that the tensors are the same across all unflattened
|
| 797 |
+
parameters comprising the flat parameter is needed to maintain the
|
| 798 |
+
invariant that FSDP performs the same computation as its non-sharded
|
| 799 |
+
equivalent. This means that none of the unflattened parameters can be
|
| 800 |
+
missing this state since imposing a value may differ from having no value.
|
| 801 |
+
For example, for Adam's "step", no value means maximum bias correction,
|
| 802 |
+
while having some positive value means less bias correction.
|
| 803 |
+
|
| 804 |
+
Args:
|
| 805 |
+
state_name (str): Optimizer state name.
|
| 806 |
+
zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state
|
| 807 |
+
for the unflattened parameters corresponding to the single
|
| 808 |
+
flat parameter.
|
| 809 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
| 810 |
+
parameter names corresponding to the single flat parameter.
|
| 811 |
+
|
| 812 |
+
Returns:
|
| 813 |
+
torch.Tensor: A zero-dimensional tensor giving the value of the state
|
| 814 |
+
``state_name`` for all unflattened parameters corresponding to the
|
| 815 |
+
names ``unflat_param_names``.
|
| 816 |
+
"""
|
| 817 |
+
non_none_tensors = [t for t in zero_dim_tensors if t is not None]
|
| 818 |
+
# Enforce that all have the same value and dtype
|
| 819 |
+
values_set = {t.item() if t is not None else None for t in zero_dim_tensors}
|
| 820 |
+
dtypes = {t.dtype if t is not None else None for t in zero_dim_tensors}
|
| 821 |
+
if (
|
| 822 |
+
len(non_none_tensors) != len(zero_dim_tensors)
|
| 823 |
+
or len(values_set) != 1
|
| 824 |
+
or len(dtypes) != 1
|
| 825 |
+
):
|
| 826 |
+
raise ValueError(
|
| 827 |
+
"All unflattened parameters comprising a single flat "
|
| 828 |
+
"parameter must have scalar state with the same value and dtype "
|
| 829 |
+
f"but got values {values_set} and dtypes {dtypes} for state "
|
| 830 |
+
f"{state_name} and unflattened parameter names "
|
| 831 |
+
f"{unflat_param_names}"
|
| 832 |
+
)
|
| 833 |
+
value = next(iter(values_set))
|
| 834 |
+
dtype = next(iter(dtypes))
|
| 835 |
+
return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))
|
| 836 |
+
|
| 837 |
+
|
| 838 |
+
def _flatten_non_tensor_optim_state(
|
| 839 |
+
state_name: str,
|
| 840 |
+
non_tensors: List[Any],
|
| 841 |
+
unflat_param_names: List[str],
|
| 842 |
+
) -> Any:
|
| 843 |
+
"""
|
| 844 |
+
Flattens the non-tensor optimizer state given by the values ``non_tensors``
|
| 845 |
+
for the state ``state_name`` for a single flat parameter corresponding
|
| 846 |
+
to the unflattened parameter names ``unflat_param_names`` by enforcing that
|
| 847 |
+
all values are the same and using that common value.
|
| 848 |
+
|
| 849 |
+
See the note in :func:`_flatten_zero_dim_tensor_optim_state`.
|
| 850 |
+
|
| 851 |
+
Args:
|
| 852 |
+
state_name (str): Optimizer state name.
|
| 853 |
+
non_tensors (List[Any]): Non-tensor optimizer state for the unflattened
|
| 854 |
+
parameters corresponding to the single flat parameter.
|
| 855 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
| 856 |
+
parameter names corresponding to the single flat parameter.
|
| 857 |
+
|
| 858 |
+
Returns:
|
| 859 |
+
Any: A non-tensor giving the value of the state ``state_name`` for all
|
| 860 |
+
unflattened parameters corresponding to the names
|
| 861 |
+
``unflat_param_names``.
|
| 862 |
+
"""
|
| 863 |
+
non_none_non_tensors = [nt for nt in non_tensors if nt is not None]
|
| 864 |
+
# Enforce that all have the same value (same type already checked)
|
| 865 |
+
non_tensor_set = set(non_tensors)
|
| 866 |
+
if len(non_none_non_tensors) != len(non_tensors) or len(non_tensor_set) != 1:
|
| 867 |
+
raise ValueError(
|
| 868 |
+
"All unflattened parameters comprising a single flat "
|
| 869 |
+
"parameter must have scalar state with the same value and dtype "
|
| 870 |
+
f"but got values {non_tensor_set} for state {state_name} and "
|
| 871 |
+
f"unflattened parameter names {unflat_param_names}"
|
| 872 |
+
)
|
| 873 |
+
non_tensor = next(iter(non_tensor_set))
|
| 874 |
+
return non_tensor
|
| 875 |
+
|
| 876 |
+
|
| 877 |
+
def _rekey_sharded_optim_state_dict(
|
| 878 |
+
sharded_osd: Dict[str, Any],
|
| 879 |
+
model: nn.Module,
|
| 880 |
+
optim: torch.optim.Optimizer,
|
| 881 |
+
optim_input: Optional[
|
| 882 |
+
Union[
|
| 883 |
+
List[Dict[str, Any]],
|
| 884 |
+
Iterable[nn.Parameter],
|
| 885 |
+
]
|
| 886 |
+
],
|
| 887 |
+
using_optim_input: bool,
|
| 888 |
+
is_named_optimizer: bool = False,
|
| 889 |
+
) -> Dict[str, Any]:
|
| 890 |
+
"""
|
| 891 |
+
Rekeys the optimizer state dict from unflattened parameter names to flat
|
| 892 |
+
parameter IDs according to the calling rank's ``optim``, which may be
|
| 893 |
+
different across ranks. In particular, the unflattened parameter names are
|
| 894 |
+
represented as :class:`_OptimStateKey` s.
|
| 895 |
+
"""
|
| 896 |
+
param_to_fqns = _get_param_to_fqns(model)
|
| 897 |
+
flat_param_to_fqn = _get_flat_param_to_fqn(model)
|
| 898 |
+
param_to_param_key: Dict[nn.Parameter, Union[int, str]] = cast(
|
| 899 |
+
Dict[nn.Parameter, Union[int, str]],
|
| 900 |
+
(
|
| 901 |
+
_get_param_to_param_id_from_optim_input(model, optim_input)
|
| 902 |
+
if using_optim_input
|
| 903 |
+
else _get_param_to_param_key(
|
| 904 |
+
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
| 905 |
+
)
|
| 906 |
+
),
|
| 907 |
+
)
|
| 908 |
+
# All parameter keys in `param_to_param_key` should be in
|
| 909 |
+
# `param_to_fqns` -- strict inequality follows when not all parameters are
|
| 910 |
+
# passed to the optimizer
|
| 911 |
+
assert len(param_to_param_key) <= len(param_to_fqns)
|
| 912 |
+
|
| 913 |
+
unflat_param_names_to_flat_param_key: Dict[
|
| 914 |
+
Tuple[str, ...], Union[int, str]
|
| 915 |
+
] = {} # for "state"
|
| 916 |
+
unflat_param_name_to_flat_param_key: Dict[
|
| 917 |
+
str, Union[int, str]
|
| 918 |
+
] = {} # for "param_groups"
|
| 919 |
+
for param, unflat_param_names in param_to_fqns.items():
|
| 920 |
+
if param not in param_to_param_key:
|
| 921 |
+
# This parameter was not passed to the optimizer
|
| 922 |
+
continue
|
| 923 |
+
flat_param_key = param_to_param_key[param]
|
| 924 |
+
unflat_param_names_to_flat_param_key[tuple(unflat_param_names)] = flat_param_key
|
| 925 |
+
for unflat_param_name in unflat_param_names:
|
| 926 |
+
unflat_param_name_to_flat_param_key[unflat_param_name] = flat_param_key
|
| 927 |
+
|
| 928 |
+
sharded_osd_state = sharded_osd["state"]
|
| 929 |
+
rekeyed_osd_state: Dict[Union[str, int], Any] = {}
|
| 930 |
+
for key, param_state in sharded_osd_state.items():
|
| 931 |
+
if isinstance(key, str):
|
| 932 |
+
rekeyed_osd_state[key] = param_state
|
| 933 |
+
continue
|
| 934 |
+
flat_param_key = unflat_param_names_to_flat_param_key.get(
|
| 935 |
+
key.unflat_param_names, key.unflat_param_names
|
| 936 |
+
)
|
| 937 |
+
rekeyed_osd_state[flat_param_key] = param_state
|
| 938 |
+
|
| 939 |
+
# Only process param_groups if it exists in sharded_osd
|
| 940 |
+
if "param_groups" in sharded_osd:
|
| 941 |
+
rekeyed_osd_param_groups: List[Dict[str, Any]] = []
|
| 942 |
+
for unflat_param_group in sharded_osd["param_groups"]:
|
| 943 |
+
flat_param_group = copy.deepcopy(unflat_param_group)
|
| 944 |
+
flat_param_keys = sorted(
|
| 945 |
+
{
|
| 946 |
+
unflat_param_name_to_flat_param_key[unflat_param_name]
|
| 947 |
+
for unflat_param_name in unflat_param_group["params"]
|
| 948 |
+
}
|
| 949 |
+
)
|
| 950 |
+
flat_param_group["params"] = flat_param_keys
|
| 951 |
+
rekeyed_osd_param_groups.append(flat_param_group)
|
| 952 |
+
return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups}
|
| 953 |
+
else:
|
| 954 |
+
return {"state": rekeyed_osd_state}
|
| 955 |
+
|
| 956 |
+
|
| 957 |
+
def _get_param_id_to_param_from_optim_input(
|
| 958 |
+
model: nn.Module,
|
| 959 |
+
optim_input: Optional[
|
| 960 |
+
Union[
|
| 961 |
+
List[Dict[str, Any]],
|
| 962 |
+
Iterable[nn.Parameter],
|
| 963 |
+
]
|
| 964 |
+
] = None,
|
| 965 |
+
) -> Dict[int, nn.Parameter]:
|
| 966 |
+
"""
|
| 967 |
+
Constructs a mapping from parameter IDs to parameters. This may be used
|
| 968 |
+
both for models with ``FlatParameter`` s and without.
|
| 969 |
+
|
| 970 |
+
NOTE: This method is only preserved for backward compatibility. The method
|
| 971 |
+
:meth:`_get_param_key_to_param` is the preferred code path that does not
|
| 972 |
+
rely on ``optim_input``.
|
| 973 |
+
|
| 974 |
+
NOTE: We critically assume that, whether the optimizer input is a list of
|
| 975 |
+
parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
|
| 976 |
+
enumerates the parameter IDs in order. In other words, for a parameter list
|
| 977 |
+
input, the parameter IDs should be in that list order, and for a parameter
|
| 978 |
+
groups input, the parameter IDs should be in order within each parameter
|
| 979 |
+
group and in order across parameter groups.
|
| 980 |
+
|
| 981 |
+
Args:
|
| 982 |
+
model (nn.Module): Model whose parameters are passed into the
|
| 983 |
+
optimizer.
|
| 984 |
+
optim_input (Optional[Union[List[Dict[str, Any]],
|
| 985 |
+
Iterable[nn.Parameter]]]): Input passed into the optimizer
|
| 986 |
+
representing either a :class:`list` of parameter groups or an
|
| 987 |
+
iterable of parameters; if ``None``, then this method assumes the
|
| 988 |
+
input was ``model.parameters()``. (Default: ``None``)
|
| 989 |
+
|
| 990 |
+
Returns:
|
| 991 |
+
List[nn.Parameter]: Mapping from parameter IDs to parameters,
|
| 992 |
+
where the parameter ID is implicitly the index in the :class:`list`.
|
| 993 |
+
"""
|
| 994 |
+
# Assume the standard case of passing `model.parameters()` to the optimizer
|
| 995 |
+
# if `optim_input` is not specified
|
| 996 |
+
if optim_input is None:
|
| 997 |
+
return dict(enumerate(model.parameters()))
|
| 998 |
+
try:
|
| 999 |
+
params = cast(List[nn.Parameter], list(optim_input))
|
| 1000 |
+
except TypeError as e:
|
| 1001 |
+
raise TypeError(
|
| 1002 |
+
"Optimizer input should be an iterable of Tensors or dicts, "
|
| 1003 |
+
f"but got {optim_input}"
|
| 1004 |
+
) from e
|
| 1005 |
+
if len(params) == 0:
|
| 1006 |
+
raise ValueError("Optimizer input should not be empty")
|
| 1007 |
+
|
| 1008 |
+
# Check if the optimizer input represents tensors or parameter groups
|
| 1009 |
+
all_tensors = True
|
| 1010 |
+
all_dicts = True
|
| 1011 |
+
for param in params:
|
| 1012 |
+
all_tensors &= isinstance(param, torch.Tensor)
|
| 1013 |
+
all_dicts &= isinstance(param, dict)
|
| 1014 |
+
if not all_tensors and not all_dicts:
|
| 1015 |
+
raise TypeError("Optimizer input should be an iterable of Tensors or dicts")
|
| 1016 |
+
if all_tensors:
|
| 1017 |
+
return dict(enumerate(params))
|
| 1018 |
+
assert all_dicts
|
| 1019 |
+
param_id_to_param: List[nn.Parameter] = []
|
| 1020 |
+
for param_group in params:
|
| 1021 |
+
has_params_key = "params" in param_group # type: ignore[operator]
|
| 1022 |
+
assert has_params_key, (
|
| 1023 |
+
'A parameter group should map "params" to a list of the '
|
| 1024 |
+
"parameters in the group"
|
| 1025 |
+
)
|
| 1026 |
+
# Implicitly map `flat_param_id` (current length of the list) to
|
| 1027 |
+
# `param`
|
| 1028 |
+
param_id_to_param.extend(param_group["params"]) # type: ignore[index]
|
| 1029 |
+
return dict(enumerate(param_id_to_param))
|
| 1030 |
+
|
| 1031 |
+
|
| 1032 |
+
def _get_flat_param_to_fqn(model: torch.nn.Module) -> Dict[FlatParameter, str]:
|
| 1033 |
+
"""
|
| 1034 |
+
Constructs a mapping from ``FlatParameter`` to a cleaned (devoid of prefixes
|
| 1035 |
+
from wrappers) fully qualified name (FQN). Note that this FQN is "non-canonical"
|
| 1036 |
+
because ``FlatParameter`` s do not come from the original module but are
|
| 1037 |
+
registered only after FSDP has been applied. This function returns the FSDP-given
|
| 1038 |
+
name for the ``FlatParameter`` (usually module._flat_param) as opposed to the
|
| 1039 |
+
canonical FQNs returned for ``FlatParameter`` s in ``_common_utils._get_param_to_fqns(...)``).
|
| 1040 |
+
|
| 1041 |
+
Consequently, this function will only return a non-empty mapping if FSDP was
|
| 1042 |
+
applied with ``use_orig_params=False`` as, otherwise, the original parameters
|
| 1043 |
+
are used within the module and there would be no ``FlatParameter`` s in the module.
|
| 1044 |
+
|
| 1045 |
+
"""
|
| 1046 |
+
|
| 1047 |
+
def module_fn(module, prefix, tree_level, flat_param_to_fqn):
|
| 1048 |
+
for param_name, param in _named_parameters_with_duplicates(
|
| 1049 |
+
module, recurse=False
|
| 1050 |
+
):
|
| 1051 |
+
if not isinstance(param, FlatParameter):
|
| 1052 |
+
continue
|
| 1053 |
+
fqn = clean_tensor_name(prefix + param_name)
|
| 1054 |
+
flat_param_to_fqn[param] = fqn
|
| 1055 |
+
|
| 1056 |
+
def return_fn(flat_param_to_fqn):
|
| 1057 |
+
return flat_param_to_fqn
|
| 1058 |
+
|
| 1059 |
+
flat_param_to_fqn_ret: Dict[FlatParameter, str] = {}
|
| 1060 |
+
return _apply_to_modules(
|
| 1061 |
+
model,
|
| 1062 |
+
module_fn,
|
| 1063 |
+
return_fn,
|
| 1064 |
+
[fqn for fqn, _ in _named_parameters_with_duplicates(model)],
|
| 1065 |
+
flat_param_to_fqn_ret,
|
| 1066 |
+
)
|
| 1067 |
+
|
| 1068 |
+
|
| 1069 |
+
def _get_param_key_to_param(
|
| 1070 |
+
optim: torch.optim.Optimizer,
|
| 1071 |
+
model: Optional[nn.Module] = None,
|
| 1072 |
+
is_named_optimizer: bool = False,
|
| 1073 |
+
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
|
| 1074 |
+
flat_param_to_fqn: Optional[Dict[FlatParameter, str]] = None,
|
| 1075 |
+
) -> Dict[Union[int, str], nn.Parameter]:
|
| 1076 |
+
"""
|
| 1077 |
+
Constructs a mapping from parameter keys to parameters. For the regular
|
| 1078 |
+
optimizers, the keys are parameter IDs. For NamedOptimizer, the keys
|
| 1079 |
+
are FQNs. This API may be used both for models with ``FlatParameter`` s and
|
| 1080 |
+
without.
|
| 1081 |
+
"""
|
| 1082 |
+
clean_fqn_to_curr_fqn: Dict[str, str] = {}
|
| 1083 |
+
if is_named_optimizer:
|
| 1084 |
+
assert (
|
| 1085 |
+
param_to_fqns is not None and flat_param_to_fqn is not None
|
| 1086 |
+
), "The optimizer is a NamedOptimizer, `param_to_fqns` must not be None."
|
| 1087 |
+
assert model is not None
|
| 1088 |
+
for key, _ in _named_parameters_with_duplicates(model):
|
| 1089 |
+
clean_fqn_to_curr_fqn[clean_tensor_name(key)] = key
|
| 1090 |
+
|
| 1091 |
+
param_key_to_param: Dict[Union[str, int], nn.Parameter] = {}
|
| 1092 |
+
pid = 0
|
| 1093 |
+
for param_group in optim.param_groups:
|
| 1094 |
+
if is_named_optimizer:
|
| 1095 |
+
for param in param_group["params"]:
|
| 1096 |
+
assert flat_param_to_fqn is not None
|
| 1097 |
+
if param in flat_param_to_fqn:
|
| 1098 |
+
# FlatParameter case
|
| 1099 |
+
key = flat_param_to_fqn[param]
|
| 1100 |
+
else:
|
| 1101 |
+
assert param_to_fqns is not None
|
| 1102 |
+
# use_orig_params case
|
| 1103 |
+
assert len(param_to_fqns[param]) == 1
|
| 1104 |
+
key = param_to_fqns[param][0]
|
| 1105 |
+
try:
|
| 1106 |
+
key = clean_fqn_to_curr_fqn[key]
|
| 1107 |
+
except KeyError as e:
|
| 1108 |
+
raise KeyError(
|
| 1109 |
+
f"Can't find {key} from {list(clean_fqn_to_curr_fqn.keys())}."
|
| 1110 |
+
) from e
|
| 1111 |
+
param_key_to_param[key] = param
|
| 1112 |
+
else:
|
| 1113 |
+
for param in param_group["params"]:
|
| 1114 |
+
param_key_to_param[pid] = param
|
| 1115 |
+
pid += 1
|
| 1116 |
+
|
| 1117 |
+
return param_key_to_param
|
| 1118 |
+
|
| 1119 |
+
|
| 1120 |
+
def _get_param_to_param_key(
|
| 1121 |
+
optim: torch.optim.Optimizer,
|
| 1122 |
+
model: Optional[nn.Module] = None,
|
| 1123 |
+
is_named_optimizer: bool = False,
|
| 1124 |
+
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
|
| 1125 |
+
flat_param_to_fqn: Optional[Dict[FlatParameter, str]] = None,
|
| 1126 |
+
) -> Dict[nn.Parameter, Union[int, str]]:
|
| 1127 |
+
"""
|
| 1128 |
+
Constructs the inverse mapping of :func:`_get_param_key_to_param`. This API
|
| 1129 |
+
only supports the case where `optim` is a regular optimizer, not NamedOptimizer.
|
| 1130 |
+
So the parameter keys will be parameter ids.
|
| 1131 |
+
"""
|
| 1132 |
+
param_id_to_param = _get_param_key_to_param(
|
| 1133 |
+
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
| 1134 |
+
)
|
| 1135 |
+
return {param: param_id for param_id, param in param_id_to_param.items()}
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
def _get_param_to_param_id_from_optim_input(
|
| 1139 |
+
model: nn.Module,
|
| 1140 |
+
optim_input: Optional[
|
| 1141 |
+
Union[
|
| 1142 |
+
List[Dict[str, Any]],
|
| 1143 |
+
Iterable[nn.Parameter],
|
| 1144 |
+
]
|
| 1145 |
+
] = None,
|
| 1146 |
+
) -> Dict[nn.Parameter, int]:
|
| 1147 |
+
"""Constructs the inverse mapping of :func:`_get_param_id_to_param_from_optim_input`."""
|
| 1148 |
+
param_id_to_param = _get_param_id_to_param_from_optim_input(model, optim_input)
|
| 1149 |
+
return {param: param_id for param_id, param in param_id_to_param.items()}
|
| 1150 |
+
|
| 1151 |
+
|
| 1152 |
+
def _check_missing_keys_on_rank(
|
| 1153 |
+
r0_optim_state_keys: List[_OptimStateKey],
|
| 1154 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[str, int]],
|
| 1155 |
+
param_key_to_param: Dict[Union[str, int], nn.Parameter],
|
| 1156 |
+
group: Optional[dist.ProcessGroup],
|
| 1157 |
+
) -> None:
|
| 1158 |
+
# Ensure that all ranks have at least the optimizer states needed by
|
| 1159 |
+
# rank 0's optimizer
|
| 1160 |
+
missing_keys: List[_OptimStateKey] = []
|
| 1161 |
+
for r0_optim_state_key in r0_optim_state_keys:
|
| 1162 |
+
if r0_optim_state_key not in optim_state_key_to_param_key:
|
| 1163 |
+
# A parameter from rank 0's optimizer does not exist for this
|
| 1164 |
+
# rank's optimizer
|
| 1165 |
+
missing_keys.append(r0_optim_state_key)
|
| 1166 |
+
continue
|
| 1167 |
+
param_key = optim_state_key_to_param_key[r0_optim_state_key]
|
| 1168 |
+
if isinstance(param_key, int):
|
| 1169 |
+
assert param_key >= 0 and param_key < len(
|
| 1170 |
+
param_key_to_param
|
| 1171 |
+
), "Check the `param_key_to_param` construction"
|
| 1172 |
+
# We cannot use FSDPState.compute_device as this API is a global view.
|
| 1173 |
+
device = _get_pg_default_device(group)
|
| 1174 |
+
num_missing = torch.tensor([len(missing_keys)], dtype=torch.int32, device=device)
|
| 1175 |
+
dist.all_reduce(num_missing, group=group)
|
| 1176 |
+
if num_missing.item() > 0:
|
| 1177 |
+
obj_list = [None for _ in range(dist.get_world_size(group))]
|
| 1178 |
+
dist.all_gather_object(obj_list, missing_keys, group=group)
|
| 1179 |
+
error_msg = (
|
| 1180 |
+
"FSDP currently requires each rank to have at least the "
|
| 1181 |
+
"optimizer states needed by rank 0's optimizer but some ranks "
|
| 1182 |
+
"are missing some of those states"
|
| 1183 |
+
)
|
| 1184 |
+
for rank, keys in enumerate(obj_list):
|
| 1185 |
+
keys = cast(List[_OptimStateKey], keys)
|
| 1186 |
+
if len(keys) > 0:
|
| 1187 |
+
error_msg += (
|
| 1188 |
+
f"\nRank {rank} is missing states for the parameters: "
|
| 1189 |
+
f"{[key.unflat_param_names for key in keys]}"
|
| 1190 |
+
)
|
| 1191 |
+
raise RuntimeError(error_msg)
|
| 1192 |
+
|
| 1193 |
+
|
| 1194 |
+
def _map_param_key_to_optim_keys(
|
| 1195 |
+
optim_state_dict: Dict[str, Any],
|
| 1196 |
+
group: Optional[dist.ProcessGroup],
|
| 1197 |
+
param_key_to_param: Dict[Union[int, str], nn.Parameter],
|
| 1198 |
+
param_to_fqns: Dict[nn.Parameter, List[str]],
|
| 1199 |
+
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
| 1200 |
+
merge_keys: bool = False,
|
| 1201 |
+
) -> Tuple[List[_OptimStateKey], Dict[_OptimStateKey, Union[int, str]]]:
|
| 1202 |
+
"""
|
| 1203 |
+
Construct the local mapping between the ``_OptimStateKey`` and parameter keys
|
| 1204 |
+
and all the ``_OptimStateKey`` across ranks. If ``merge_keys`` is False, rank0
|
| 1205 |
+
must contain all the ``_OptimStateKey``, an exception will be raised otherwise.
|
| 1206 |
+
Note that ``merge_keys`` should equal to ``use_orig_params``.
|
| 1207 |
+
"""
|
| 1208 |
+
rank = dist.get_rank(group)
|
| 1209 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]] = {} # local
|
| 1210 |
+
all_optim_state_keys: List[_OptimStateKey] = []
|
| 1211 |
+
|
| 1212 |
+
for param_key, param in param_key_to_param.items():
|
| 1213 |
+
# Do not include parameters without state to avoid empty mappings
|
| 1214 |
+
# just like in normal `torch.optim.Optimizer.state_dict()`
|
| 1215 |
+
if param_key not in optim_state_dict["state"]:
|
| 1216 |
+
continue
|
| 1217 |
+
fqns = param_to_fqns[param]
|
| 1218 |
+
is_fsdp_managed = isinstance(param, FlatParameter)
|
| 1219 |
+
if is_fsdp_managed:
|
| 1220 |
+
assert fqns[0] in fqn_to_fsdp_param_info, (
|
| 1221 |
+
fqns[0],
|
| 1222 |
+
list(fqn_to_fsdp_param_info.keys()),
|
| 1223 |
+
)
|
| 1224 |
+
is_fsdp_managed = fqns[0] in fqn_to_fsdp_param_info
|
| 1225 |
+
optim_state_key = _OptimStateKey(
|
| 1226 |
+
unflat_param_names=tuple(fqns),
|
| 1227 |
+
is_fsdp_managed=is_fsdp_managed,
|
| 1228 |
+
)
|
| 1229 |
+
if rank == 0 or merge_keys:
|
| 1230 |
+
all_optim_state_keys.append(optim_state_key)
|
| 1231 |
+
optim_state_key_to_param_key[optim_state_key] = param_key
|
| 1232 |
+
|
| 1233 |
+
if merge_keys:
|
| 1234 |
+
all_keys: List[List[_OptimStateKey]] = [
|
| 1235 |
+
[] for _ in range(dist.get_world_size(group))
|
| 1236 |
+
]
|
| 1237 |
+
dist.all_gather_object(all_keys, all_optim_state_keys, group=group)
|
| 1238 |
+
merge_all_optim_state_keys = [
|
| 1239 |
+
key for local_keys in all_keys for key in local_keys
|
| 1240 |
+
]
|
| 1241 |
+
all_optim_state_keys = sorted(set(merge_all_optim_state_keys))
|
| 1242 |
+
else:
|
| 1243 |
+
key_obj_list: List[Optional[List[_OptimStateKey]]] = (
|
| 1244 |
+
[all_optim_state_keys] if rank == 0 else [None]
|
| 1245 |
+
)
|
| 1246 |
+
dist.broadcast_object_list(key_obj_list, src=0, group=group)
|
| 1247 |
+
assert key_obj_list[0] is not None
|
| 1248 |
+
all_optim_state_keys = key_obj_list[0]
|
| 1249 |
+
_check_missing_keys_on_rank(
|
| 1250 |
+
all_optim_state_keys,
|
| 1251 |
+
optim_state_key_to_param_key,
|
| 1252 |
+
param_key_to_param,
|
| 1253 |
+
group,
|
| 1254 |
+
)
|
| 1255 |
+
|
| 1256 |
+
return all_optim_state_keys, optim_state_key_to_param_key
|
| 1257 |
+
|
| 1258 |
+
|
| 1259 |
+
def _unflatten_param_groups(
|
| 1260 |
+
state_dict: Dict[str, Any],
|
| 1261 |
+
param_key_to_param: Dict[Union[int, str], nn.Parameter],
|
| 1262 |
+
param_to_fqns: Dict[nn.Parameter, List[str]],
|
| 1263 |
+
) -> List[Dict[str, Any]]:
|
| 1264 |
+
param_groups: List[Dict[str, Any]] = []
|
| 1265 |
+
for flat_param_group in state_dict["param_groups"]:
|
| 1266 |
+
unflat_param_group = copy.deepcopy(flat_param_group)
|
| 1267 |
+
param_group_params = [
|
| 1268 |
+
param_key_to_param[flat_param_key]
|
| 1269 |
+
for flat_param_key in flat_param_group["params"]
|
| 1270 |
+
]
|
| 1271 |
+
nested_unflat_param_names = [
|
| 1272 |
+
param_to_fqns[param] for param in param_group_params
|
| 1273 |
+
]
|
| 1274 |
+
unflat_param_group["params"] = [
|
| 1275 |
+
unflat_param_name
|
| 1276 |
+
for unflat_param_names in nested_unflat_param_names
|
| 1277 |
+
for unflat_param_name in unflat_param_names
|
| 1278 |
+
] # flatten the list of lists
|
| 1279 |
+
param_groups.append(unflat_param_group)
|
| 1280 |
+
return param_groups
|
| 1281 |
+
|
| 1282 |
+
|
| 1283 |
+
def _is_named_optimizer(optim_state_dict: Dict[str, Any]) -> bool:
|
| 1284 |
+
"""
|
| 1285 |
+
Returns whether the state_dict is from a NamedOptimizer.
|
| 1286 |
+
This function checks that the keys in the state_dict['state'] are strings
|
| 1287 |
+
(which usually are FQNs) versus integers (which usually refer to param_ids
|
| 1288 |
+
from a vanilla torch.optim.Optimizer).
|
| 1289 |
+
"""
|
| 1290 |
+
state = optim_state_dict.get("state", None)
|
| 1291 |
+
if not state:
|
| 1292 |
+
# If we cannot find a state, assume it is not NamedOptimizer as
|
| 1293 |
+
# NamedOptimizer has eager initialization.
|
| 1294 |
+
return False
|
| 1295 |
+
try:
|
| 1296 |
+
key = next(iter(state.keys()))
|
| 1297 |
+
except Exception as e:
|
| 1298 |
+
raise Exception(optim_state_dict) from e # noqa: TRY002
|
| 1299 |
+
return isinstance(key, str)
|
| 1300 |
+
|
| 1301 |
+
|
| 1302 |
+
@dataclass
|
| 1303 |
+
class StateInfo:
|
| 1304 |
+
# The key of these dictionaries are the state name, e.g., `exp_avg`.
|
| 1305 |
+
tensors: Dict[str, _PosDimTensorInfo]
|
| 1306 |
+
scalar_tensors: Dict[str, torch.Tensor]
|
| 1307 |
+
non_tensors: Dict[str, Any]
|
| 1308 |
+
|
| 1309 |
+
|
| 1310 |
+
def _allgather_state_info(
|
| 1311 |
+
fsdp_state: _FSDPState,
|
| 1312 |
+
input_states: Dict[str, Any],
|
| 1313 |
+
) -> List[Dict[str, StateInfo]]:
|
| 1314 |
+
"""
|
| 1315 |
+
Given the ``input_states``, allgather StateInfo for each state. The function
|
| 1316 |
+
uses all_gather_object to gather StateInfo so no GPU tensors are sent.
|
| 1317 |
+
"""
|
| 1318 |
+
|
| 1319 |
+
processed_state_dict: Dict[str, StateInfo] = {}
|
| 1320 |
+
gathered_state_info: List[Dict[str, StateInfo]] = [
|
| 1321 |
+
{} for _ in range(fsdp_state.world_size)
|
| 1322 |
+
]
|
| 1323 |
+
|
| 1324 |
+
for fqn, optim_state in input_states.items():
|
| 1325 |
+
# Allgather the scalar tensor state, non-tensor states and tensors metadata.
|
| 1326 |
+
processed_state = StateInfo({}, {}, {})
|
| 1327 |
+
for state_name, value in sorted_items(optim_state):
|
| 1328 |
+
if torch.is_tensor(value):
|
| 1329 |
+
if value.dim() == 0:
|
| 1330 |
+
# Ensure that `step` is on CPU.
|
| 1331 |
+
processed_state.scalar_tensors[state_name] = value.cpu()
|
| 1332 |
+
else:
|
| 1333 |
+
processed_state.tensors[state_name] = _PosDimTensorInfo(
|
| 1334 |
+
value.shape, value.dtype
|
| 1335 |
+
)
|
| 1336 |
+
else:
|
| 1337 |
+
processed_state.non_tensors[state_name] = value
|
| 1338 |
+
processed_state_dict[fqn] = processed_state
|
| 1339 |
+
dist.all_gather_object(
|
| 1340 |
+
gathered_state_info,
|
| 1341 |
+
processed_state_dict,
|
| 1342 |
+
group=fsdp_state.process_group,
|
| 1343 |
+
)
|
| 1344 |
+
return gathered_state_info
|
| 1345 |
+
|
| 1346 |
+
|
| 1347 |
+
def _convert_all_state_info(
|
| 1348 |
+
fsdp_param_info: FSDPParamInfo,
|
| 1349 |
+
gathered_state_info: List[Dict[str, StateInfo]],
|
| 1350 |
+
input_states: Dict[str, Any],
|
| 1351 |
+
output_states: Dict[str, Dict[str, Any]],
|
| 1352 |
+
) -> Tuple[Optional[torch.dtype], Dict[str, List[Optional[torch.Tensor]]]]:
|
| 1353 |
+
"""
|
| 1354 |
+
Given the ``gathered_state_info`` and ``input_states``, the API converted
|
| 1355 |
+
the StateInfo into the original state if the state is not a non-scalar
|
| 1356 |
+
tensor. For a multi-dimensional tensor, the local state will be stored in
|
| 1357 |
+
``state_buffer`` in a correct order for later allgather purpose.
|
| 1358 |
+
"""
|
| 1359 |
+
|
| 1360 |
+
state_buffers: Dict[str, List[Optional[torch.Tensor]]] = {}
|
| 1361 |
+
|
| 1362 |
+
for fqn, gathered_state in output_states.items():
|
| 1363 |
+
state_info = [s[fqn] for s in gathered_state_info]
|
| 1364 |
+
all_tensor_states = sorted(
|
| 1365 |
+
{n for state in state_info for n in state.tensors.keys()}
|
| 1366 |
+
)
|
| 1367 |
+
empty_ranks: Set[int] = set()
|
| 1368 |
+
dtype: Optional[torch.dtype] = None
|
| 1369 |
+
# First check all the non-scalar states and get the information of
|
| 1370 |
+
# states on each rank.
|
| 1371 |
+
for state_name in all_tensor_states:
|
| 1372 |
+
numels = []
|
| 1373 |
+
_empty_ranks: Set[int] = set()
|
| 1374 |
+
for rank, object_state in enumerate(state_info):
|
| 1375 |
+
numels.append(0)
|
| 1376 |
+
info = object_state.tensors.get(state_name, None)
|
| 1377 |
+
if info is not None:
|
| 1378 |
+
numels[-1] = info.shape.numel()
|
| 1379 |
+
if not dtype:
|
| 1380 |
+
dtype = info.dtype
|
| 1381 |
+
else:
|
| 1382 |
+
assert dtype == info.dtype
|
| 1383 |
+
if numels[-1] == 0:
|
| 1384 |
+
_empty_ranks.add(rank)
|
| 1385 |
+
|
| 1386 |
+
assert not empty_ranks or empty_ranks == _empty_ranks
|
| 1387 |
+
empty_ranks = _empty_ranks
|
| 1388 |
+
if state_name not in state_buffers:
|
| 1389 |
+
state_buffers[state_name] = [
|
| 1390 |
+
None for _ in fsdp_param_info.param_indices
|
| 1391 |
+
]
|
| 1392 |
+
local_state = input_states[fqn].get(state_name, None)
|
| 1393 |
+
# N.B. We need to move the state to compute_device. The reason is
|
| 1394 |
+
# not yet clear and we need to figure out why the state may be on a
|
| 1395 |
+
# different device.
|
| 1396 |
+
if local_state is not None:
|
| 1397 |
+
local_state = local_state.to(fsdp_param_info.state.compute_device)
|
| 1398 |
+
state_buffers[state_name][fsdp_param_info.param_indices[fqn]] = local_state
|
| 1399 |
+
|
| 1400 |
+
# Restoring the scalar and non-tensor states. If the corresponding
|
| 1401 |
+
# non-scalar states do not exist on the rank, we also skip the scalar
|
| 1402 |
+
# non-tensor states on that rank.
|
| 1403 |
+
for rank, object_state in enumerate(state_info):
|
| 1404 |
+
if rank in empty_ranks:
|
| 1405 |
+
continue
|
| 1406 |
+
for name, non_tensor_value in object_state.non_tensors.items():
|
| 1407 |
+
curr_non_tensor_value = gathered_state.get(name, None)
|
| 1408 |
+
assert (
|
| 1409 |
+
curr_non_tensor_value is None
|
| 1410 |
+
or curr_non_tensor_value == non_tensor_value
|
| 1411 |
+
), (
|
| 1412 |
+
f"Rank {rank} has different values for {name}: {non_tensor_value}."
|
| 1413 |
+
+ f" Other ranks: {curr_non_tensor_value}"
|
| 1414 |
+
)
|
| 1415 |
+
gathered_state[name] = non_tensor_value
|
| 1416 |
+
|
| 1417 |
+
for name, scalar_tensor_value in object_state.scalar_tensors.items():
|
| 1418 |
+
curr_scalar_tensor_value = gathered_state.get(name, None)
|
| 1419 |
+
assert curr_scalar_tensor_value is None or torch.equal(
|
| 1420 |
+
scalar_tensor_value, curr_scalar_tensor_value
|
| 1421 |
+
), (
|
| 1422 |
+
f"Rank {rank} has different values for {name}: {scalar_tensor_value}."
|
| 1423 |
+
+ f" Other ranks: {curr_scalar_tensor_value}"
|
| 1424 |
+
)
|
| 1425 |
+
gathered_state[name] = scalar_tensor_value
|
| 1426 |
+
|
| 1427 |
+
return dtype, state_buffers # type: ignore[possibly-undefined]
|
| 1428 |
+
|
| 1429 |
+
|
| 1430 |
+
def _unflatten_orig_param_states(
|
| 1431 |
+
fsdp_param_info: FSDPParamInfo,
|
| 1432 |
+
output_states: Dict[str, Dict[str, Any]],
|
| 1433 |
+
state_name: str,
|
| 1434 |
+
shard_state: bool,
|
| 1435 |
+
to_save: bool,
|
| 1436 |
+
cpu_offload: bool,
|
| 1437 |
+
) -> None:
|
| 1438 |
+
"""
|
| 1439 |
+
Given a output state dict, ``output_states``, which the keys are FQNs to the
|
| 1440 |
+
original parameters (not FlatParameters nor parmeter ID), and the values
|
| 1441 |
+
are gathered states, unflatten the states to the original dimensions.
|
| 1442 |
+
|
| 1443 |
+
This function performs the unflattening process in-place.
|
| 1444 |
+
"""
|
| 1445 |
+
if not to_save:
|
| 1446 |
+
return
|
| 1447 |
+
flat_param = fsdp_param_info.handle.flat_param
|
| 1448 |
+
fsdp_state = fsdp_param_info.state
|
| 1449 |
+
for fqn, gathered_state in output_states.items():
|
| 1450 |
+
value = gathered_state[state_name]
|
| 1451 |
+
param_idx = fsdp_param_info.param_indices[fqn]
|
| 1452 |
+
|
| 1453 |
+
# TODO: This solution is not general and only apply to PTD TP solution.
|
| 1454 |
+
if isinstance(value, DTensor):
|
| 1455 |
+
placement = value.placements[0]
|
| 1456 |
+
# If gathered state is a DTensor and its TP placement is not Replicate(), we need to
|
| 1457 |
+
# gather the tensor on its TP dimension before chunking them into DTensor again.
|
| 1458 |
+
if placement != Replicate():
|
| 1459 |
+
placement_dim = placement.dim # type: ignore[attr-defined]
|
| 1460 |
+
value_local = value.redistribute(placements=(Replicate(),))
|
| 1461 |
+
reshape_size = list(flat_param._shapes[param_idx])
|
| 1462 |
+
reshape_size[placement_dim] *= value.device_mesh.size(0)
|
| 1463 |
+
reshape_size = torch.Size(reshape_size)
|
| 1464 |
+
value = value.reshape(reshape_size)
|
| 1465 |
+
# If gathered state is a replicate DTensor, we directly reshape it.
|
| 1466 |
+
else:
|
| 1467 |
+
value = value.reshape(flat_param._shapes[param_idx])
|
| 1468 |
+
else:
|
| 1469 |
+
# If gathered state is a tensor, we directly reshape it into unflatten state.
|
| 1470 |
+
value = value.reshape(flat_param._shapes[param_idx])
|
| 1471 |
+
|
| 1472 |
+
if shard_state:
|
| 1473 |
+
osd_config = fsdp_state._optim_state_dict_config
|
| 1474 |
+
if getattr(osd_config, "_use_dtensor", False):
|
| 1475 |
+
assert fsdp_state._device_mesh is not None
|
| 1476 |
+
value = _ext_chunk_dtensor(
|
| 1477 |
+
value,
|
| 1478 |
+
fsdp_state.rank,
|
| 1479 |
+
fsdp_state._device_mesh,
|
| 1480 |
+
fsdp_state._fsdp_extension,
|
| 1481 |
+
)
|
| 1482 |
+
else:
|
| 1483 |
+
assert fsdp_state.process_group is not None
|
| 1484 |
+
value = _ext_chunk_tensor(
|
| 1485 |
+
value,
|
| 1486 |
+
fsdp_state.rank,
|
| 1487 |
+
fsdp_state.world_size,
|
| 1488 |
+
fsdp_state._device_handle.device_count(),
|
| 1489 |
+
fsdp_state.process_group,
|
| 1490 |
+
fsdp_state._fsdp_extension,
|
| 1491 |
+
)
|
| 1492 |
+
elif not cpu_offload:
|
| 1493 |
+
with SimpleProfiler.profile("clone"):
|
| 1494 |
+
value = value.detach().clone()
|
| 1495 |
+
|
| 1496 |
+
if cpu_offload:
|
| 1497 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.D2H):
|
| 1498 |
+
value = value.cpu()
|
| 1499 |
+
gathered_state[state_name] = value
|
| 1500 |
+
|
| 1501 |
+
|
| 1502 |
+
def _allgather_orig_param_states(
|
| 1503 |
+
fsdp_param_info: FSDPParamInfo,
|
| 1504 |
+
gathered_state_info: List[Dict[str, StateInfo]],
|
| 1505 |
+
input_states: Dict[str, Any],
|
| 1506 |
+
shard_state: bool,
|
| 1507 |
+
to_save: bool,
|
| 1508 |
+
cpu_offload: bool,
|
| 1509 |
+
) -> Dict[str, Dict[str, Any]]:
|
| 1510 |
+
"""
|
| 1511 |
+
Given the ``gathered_state_info`` and ``input_states``, the API allgathers
|
| 1512 |
+
all tensor states and restore non-tensor states from ``gathered_state_info``.
|
| 1513 |
+
"""
|
| 1514 |
+
fsdp_state = fsdp_param_info.state
|
| 1515 |
+
if fsdp_state.rank == 0 and dist.get_debug_level() == dist.DebugLevel.DETAIL:
|
| 1516 |
+
logger.info(
|
| 1517 |
+
"Memory Summary before calling to _allgather_orig_param_states %s",
|
| 1518 |
+
fsdp_state._device_handle.memory_summary(),
|
| 1519 |
+
)
|
| 1520 |
+
|
| 1521 |
+
output_states: Dict[str, Dict[str, Any]] = {fqn: {} for fqn in input_states.keys()}
|
| 1522 |
+
|
| 1523 |
+
dtype, state_buffers = _convert_all_state_info(
|
| 1524 |
+
fsdp_param_info, gathered_state_info, input_states, output_states
|
| 1525 |
+
)
|
| 1526 |
+
|
| 1527 |
+
if len(state_buffers) == 0:
|
| 1528 |
+
return output_states
|
| 1529 |
+
|
| 1530 |
+
has_state_params: List[bool] = [
|
| 1531 |
+
True if fqn in output_states else False
|
| 1532 |
+
for fqn, idx in fsdp_param_info.param_indices.items()
|
| 1533 |
+
]
|
| 1534 |
+
|
| 1535 |
+
# Loop through the ``state_buffers`` and construct the flattened, concatenated,
|
| 1536 |
+
# sharded states. The size of the constructed state will be the same size as
|
| 1537 |
+
# flat_param (also sharded).
|
| 1538 |
+
# Then we perform an allgather_into_tensor to get the full flat_param state.
|
| 1539 |
+
# The full flat_param state is the result of concatenation of multiple states
|
| 1540 |
+
# the order of of flat_param._fqns.
|
| 1541 |
+
# The final step is to split the flat_param state into original param states
|
| 1542 |
+
# and return the result.
|
| 1543 |
+
flat_param = fsdp_param_info.handle.flat_param
|
| 1544 |
+
empty_func = functools.partial(
|
| 1545 |
+
torch.empty, dtype=dtype, device=fsdp_state.compute_device
|
| 1546 |
+
)
|
| 1547 |
+
gathered_tensor = empty_func(flat_param._padded_unsharded_size)
|
| 1548 |
+
# Synchronize can be slow but this will be easier for us to debug.
|
| 1549 |
+
fsdp_state._device_handle.synchronize()
|
| 1550 |
+
for state_name, buffers in state_buffers.items():
|
| 1551 |
+
local_buffers: List[torch.Tensor] = []
|
| 1552 |
+
begin = fsdp_state.rank * flat_param._sharded_size.numel()
|
| 1553 |
+
# End is inclusive.
|
| 1554 |
+
end = begin + flat_param._sharded_size.numel() - 1
|
| 1555 |
+
# param_idx corresponds to the parameter index in the FlatParameter.
|
| 1556 |
+
mem_offset, param_idx = 0, 0
|
| 1557 |
+
for numel, is_padding in zip(
|
| 1558 |
+
flat_param._numels_with_padding, flat_param._is_padding_mask
|
| 1559 |
+
):
|
| 1560 |
+
frozen_and_no_state = not is_padding and (
|
| 1561 |
+
not fsdp_param_info.param_requires_grad[param_idx]
|
| 1562 |
+
and not has_state_params[param_idx]
|
| 1563 |
+
)
|
| 1564 |
+
|
| 1565 |
+
if is_padding or frozen_and_no_state:
|
| 1566 |
+
# This memory range is a padding or the param is frozen and does
|
| 1567 |
+
# not require gradient. For the later case, we treat it as a
|
| 1568 |
+
# padding and add empty values to the local_buffers.
|
| 1569 |
+
|
| 1570 |
+
padding_begin, padding_end = mem_offset, mem_offset + numel - 1
|
| 1571 |
+
if padding_begin <= begin <= padding_end:
|
| 1572 |
+
# The range is an align padding before the first parameter in
|
| 1573 |
+
# the shard. The shard includes parts of this align padding.
|
| 1574 |
+
padding_len = (
|
| 1575 |
+
padding_end - begin + 1
|
| 1576 |
+
if end >= padding_end
|
| 1577 |
+
else end - begin + 1
|
| 1578 |
+
)
|
| 1579 |
+
elif padding_begin <= end <= padding_end:
|
| 1580 |
+
# The range is an align padding after the last parameter in
|
| 1581 |
+
# the shard. The shard includes parts of this align padding.
|
| 1582 |
+
padding_len = (
|
| 1583 |
+
end - padding_begin + 1
|
| 1584 |
+
if begin <= padding_begin
|
| 1585 |
+
else end - begin + 1
|
| 1586 |
+
)
|
| 1587 |
+
elif begin < padding_begin <= padding_end < end:
|
| 1588 |
+
# The range is an align padding that is completely in the
|
| 1589 |
+
# shard.
|
| 1590 |
+
padding_len = numel
|
| 1591 |
+
else:
|
| 1592 |
+
padding_len = 0
|
| 1593 |
+
if padding_len:
|
| 1594 |
+
local_buffers.append(empty_func(padding_len))
|
| 1595 |
+
|
| 1596 |
+
if not is_padding:
|
| 1597 |
+
# This memory range is a parameter in FlatParameter. So there
|
| 1598 |
+
# should be an corresponding state in the optimizer unless the
|
| 1599 |
+
# parameter is frozen, which we treat it as a padding above.
|
| 1600 |
+
|
| 1601 |
+
# We need to check if this rank owns the buffer. If this is None:
|
| 1602 |
+
# 1.) the rank does not own any part of the original parameter.
|
| 1603 |
+
# As a result, there is no corresponding optimizer state on
|
| 1604 |
+
# the rank as well.
|
| 1605 |
+
# 2.) the parameter is frozen AND no optimizer state for the
|
| 1606 |
+
# parameter. If a parameter is frozen, there can still be
|
| 1607 |
+
# optimizer state if the parameter is not frozen in the
|
| 1608 |
+
# previous steps.
|
| 1609 |
+
if buffers[param_idx] is not None:
|
| 1610 |
+
local_buffers.append(cast(torch.Tensor, buffers[param_idx]))
|
| 1611 |
+
param_idx += 1
|
| 1612 |
+
|
| 1613 |
+
mem_offset += numel
|
| 1614 |
+
|
| 1615 |
+
shard_numel_padded = flat_param._sharded_size.numel() - (
|
| 1616 |
+
sum(t.numel() for t in local_buffers)
|
| 1617 |
+
)
|
| 1618 |
+
|
| 1619 |
+
assert flat_param._shard_numel_padded == shard_numel_padded, (
|
| 1620 |
+
"Manually calculated _sharded_numel_padded is incorrect. "
|
| 1621 |
+
f"_shard_numel_padded={flat_param._shard_numel_padded}, "
|
| 1622 |
+
f"shard_numel_padded={shard_numel_padded}, "
|
| 1623 |
+
f"_sharded_size.numel={flat_param._sharded_size.numel()}, "
|
| 1624 |
+
f"_numels_with_padding={flat_param._numels_with_padding}, "
|
| 1625 |
+
f"begin={begin}, end={end},"
|
| 1626 |
+
)
|
| 1627 |
+
if shard_numel_padded > 0:
|
| 1628 |
+
# Add right-handed padding.
|
| 1629 |
+
local_buffers.append(empty_func(shard_numel_padded))
|
| 1630 |
+
local_shard = torch.cat(local_buffers)
|
| 1631 |
+
assert local_shard.numel() * fsdp_state.world_size == gathered_tensor.numel(), (
|
| 1632 |
+
"The size of local shard times the world size should equal to the "
|
| 1633 |
+
"gathered tensor size. The inconsistency may be from a bug of "
|
| 1634 |
+
"FlatParameter's metadata or the reconstruction logic in optimizer "
|
| 1635 |
+
"state dict."
|
| 1636 |
+
)
|
| 1637 |
+
fsdp_state._device_handle.synchronize()
|
| 1638 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER):
|
| 1639 |
+
dist.all_gather_into_tensor(
|
| 1640 |
+
gathered_tensor, local_shard, group=fsdp_state.process_group
|
| 1641 |
+
)
|
| 1642 |
+
# Synchronize can be slow but this will be easier for us to debug.
|
| 1643 |
+
fsdp_state._device_handle.synchronize()
|
| 1644 |
+
|
| 1645 |
+
unpadded_tensor = gathered_tensor[: flat_param._unpadded_unsharded_size.numel()]
|
| 1646 |
+
flat_param_handle = fsdp_param_info.handle
|
| 1647 |
+
orig_states = flat_param_handle._get_unflat_views_aligned(unpadded_tensor)
|
| 1648 |
+
assert len(orig_states) == len(fsdp_param_info.param_indices), (
|
| 1649 |
+
"The number of parameters from FlatParameter is not consistent to "
|
| 1650 |
+
"the number of states used by optimizer state dict reconstruction "
|
| 1651 |
+
"logic."
|
| 1652 |
+
)
|
| 1653 |
+
for fqn, idx in fsdp_param_info.param_indices.items():
|
| 1654 |
+
if fsdp_param_info.param_requires_grad[idx] or fqn in output_states:
|
| 1655 |
+
output_states[fqn][state_name] = orig_states[idx]
|
| 1656 |
+
|
| 1657 |
+
_unflatten_orig_param_states(
|
| 1658 |
+
fsdp_param_info,
|
| 1659 |
+
output_states,
|
| 1660 |
+
state_name,
|
| 1661 |
+
shard_state,
|
| 1662 |
+
to_save,
|
| 1663 |
+
cpu_offload,
|
| 1664 |
+
)
|
| 1665 |
+
|
| 1666 |
+
del gathered_tensor
|
| 1667 |
+
return output_states
|
| 1668 |
+
|
| 1669 |
+
|
| 1670 |
+
def _gather_all_orig_param_state(
|
| 1671 |
+
fsdp_param_info: FSDPParamInfo,
|
| 1672 |
+
input_states: Dict[str, Any],
|
| 1673 |
+
shard_state: bool,
|
| 1674 |
+
to_save: bool,
|
| 1675 |
+
cpu_offload: bool,
|
| 1676 |
+
) -> Dict[str, Any]:
|
| 1677 |
+
"""
|
| 1678 |
+
Given a optimizer state dict, ``input_states``, which the keys are FQNs to the
|
| 1679 |
+
original parameters (not FlatParameters nor parmeter ID), gather all the
|
| 1680 |
+
states and unflatten them to the original dimensions. Note that all the
|
| 1681 |
+
params referred by the ``input_states`` must be managed by FSDP.
|
| 1682 |
+
"""
|
| 1683 |
+
fsdp_state = fsdp_param_info.state
|
| 1684 |
+
if (
|
| 1685 |
+
fsdp_state.world_size == 1
|
| 1686 |
+
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
|
| 1687 |
+
):
|
| 1688 |
+
return input_states if to_save else {}
|
| 1689 |
+
|
| 1690 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.RESHARDING):
|
| 1691 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER_OBJ):
|
| 1692 |
+
gathered_state_info = _allgather_state_info(fsdp_state, input_states)
|
| 1693 |
+
output_states = _allgather_orig_param_states(
|
| 1694 |
+
fsdp_param_info,
|
| 1695 |
+
gathered_state_info,
|
| 1696 |
+
input_states,
|
| 1697 |
+
shard_state,
|
| 1698 |
+
to_save,
|
| 1699 |
+
cpu_offload,
|
| 1700 |
+
)
|
| 1701 |
+
if to_save:
|
| 1702 |
+
for key, idx in fsdp_param_info.param_indices.items():
|
| 1703 |
+
if key in output_states:
|
| 1704 |
+
continue
|
| 1705 |
+
if not fsdp_param_info.param_requires_grad[idx]:
|
| 1706 |
+
continue
|
| 1707 |
+
|
| 1708 |
+
raise RuntimeError(
|
| 1709 |
+
f"{key} is not in the output state. "
|
| 1710 |
+
"The FSDPParamInfo has the param keys "
|
| 1711 |
+
f"{sorted(fsdp_param_info.param_indices.keys())} while "
|
| 1712 |
+
"the output_states has the param keys "
|
| 1713 |
+
f"{sorted(output_states.keys())}."
|
| 1714 |
+
)
|
| 1715 |
+
return output_states
|
| 1716 |
+
else:
|
| 1717 |
+
return {}
|
| 1718 |
+
|
| 1719 |
+
|
| 1720 |
+
def _convert_state_with_orig_params(
|
| 1721 |
+
all_optim_state_keys: List[_OptimStateKey],
|
| 1722 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]],
|
| 1723 |
+
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
| 1724 |
+
optim_state_dict: Dict[Union[str, int], Any],
|
| 1725 |
+
to_save: bool,
|
| 1726 |
+
shard_state: bool,
|
| 1727 |
+
cpu_offload: bool = True,
|
| 1728 |
+
) -> Dict[str, Any]:
|
| 1729 |
+
fsdp_osd_state: Dict[str, Any] = {}
|
| 1730 |
+
# This variable is used to deduplicate the FSDPParamInfo as one FSDPParamInfo
|
| 1731 |
+
# usually corresponds to multiple parameters. We could not use FSDPParamInfo
|
| 1732 |
+
# as the key because FSDPParamInfo is not hashable. As a result, we fall back
|
| 1733 |
+
# to `id(FSDPParamInfo)`, which the type is an integer.
|
| 1734 |
+
all_states: Dict[int, Dict[str, Any]] = {}
|
| 1735 |
+
# Iterate in rank 0's flat parameter ID order to ensure aligned all-gathers
|
| 1736 |
+
# across ranks
|
| 1737 |
+
for optim_state_key in all_optim_state_keys:
|
| 1738 |
+
param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
|
| 1739 |
+
optim_state_key, None
|
| 1740 |
+
)
|
| 1741 |
+
|
| 1742 |
+
if param_key is None and not optim_state_key.is_fsdp_managed:
|
| 1743 |
+
continue
|
| 1744 |
+
|
| 1745 |
+
if optim_state_key.is_fsdp_managed:
|
| 1746 |
+
fqn = optim_state_key.unflat_param_names[0]
|
| 1747 |
+
fsdp_param_info = fqn_to_fsdp_param_info.get(fqn, None)
|
| 1748 |
+
if fsdp_param_info is None:
|
| 1749 |
+
# This can happen if the not all FSDP instances have all the
|
| 1750 |
+
# parameters. This can happen with FSDP + some MPMD style
|
| 1751 |
+
# parallelism.
|
| 1752 |
+
|
| 1753 |
+
# TODO: it is unclear if we need to do the same check with
|
| 1754 |
+
# non-FSDP managed keys.
|
| 1755 |
+
continue
|
| 1756 |
+
state = {} if param_key is None else optim_state_dict[param_key]
|
| 1757 |
+
if id(fsdp_param_info) not in all_states:
|
| 1758 |
+
all_states[id(fsdp_param_info)] = {}
|
| 1759 |
+
all_states[id(fsdp_param_info)][fqn] = state
|
| 1760 |
+
|
| 1761 |
+
elif to_save:
|
| 1762 |
+
assert len(optim_state_key.unflat_param_names) == 1
|
| 1763 |
+
unflat_param_name = optim_state_key.unflat_param_names[0]
|
| 1764 |
+
with SimpleProfiler.profile("none_fsdp_managed_copy"):
|
| 1765 |
+
param_key = cast(Union[str, int], param_key)
|
| 1766 |
+
fsdp_osd_state[unflat_param_name] = copy.copy(
|
| 1767 |
+
optim_state_dict[param_key]
|
| 1768 |
+
)
|
| 1769 |
+
if cpu_offload:
|
| 1770 |
+
for state_name, value in sorted_items(
|
| 1771 |
+
fsdp_osd_state[unflat_param_name]
|
| 1772 |
+
):
|
| 1773 |
+
if not torch.is_tensor(value):
|
| 1774 |
+
continue
|
| 1775 |
+
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
|
| 1776 |
+
|
| 1777 |
+
# Instead of gathering the state of each parameter individually, we perform
|
| 1778 |
+
# the gathering all at once to speed up the process.
|
| 1779 |
+
for _all_states in all_states.values():
|
| 1780 |
+
fqn = next(iter(_all_states.keys()))
|
| 1781 |
+
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
| 1782 |
+
assert len(fsdp_param_info.param_requires_grad) > 0, (
|
| 1783 |
+
"With use_orig_params, FSDPParamInfo should have requires_grad "
|
| 1784 |
+
"information. However, the length is zero."
|
| 1785 |
+
)
|
| 1786 |
+
for key, idx in fsdp_param_info.param_indices.items():
|
| 1787 |
+
if key in _all_states:
|
| 1788 |
+
continue
|
| 1789 |
+
if not fsdp_param_info.param_requires_grad[idx]:
|
| 1790 |
+
continue
|
| 1791 |
+
raise RuntimeError(
|
| 1792 |
+
f"{key} is not in the optimizer state. "
|
| 1793 |
+
"The FSDPParamInfo has the param keys "
|
| 1794 |
+
f"{sorted(fsdp_param_info.param_indices.keys())} while "
|
| 1795 |
+
"the optimizer has the param keys "
|
| 1796 |
+
f"{sorted(_all_states.keys())}."
|
| 1797 |
+
)
|
| 1798 |
+
fsdp_osd_state.update(
|
| 1799 |
+
_gather_all_orig_param_state(
|
| 1800 |
+
fsdp_param_info,
|
| 1801 |
+
_all_states,
|
| 1802 |
+
shard_state,
|
| 1803 |
+
to_save,
|
| 1804 |
+
cpu_offload,
|
| 1805 |
+
)
|
| 1806 |
+
)
|
| 1807 |
+
|
| 1808 |
+
return fsdp_osd_state
|
| 1809 |
+
|
| 1810 |
+
|
| 1811 |
+
def _convert_state_with_flat_params(
|
| 1812 |
+
all_optim_state_keys: List[_OptimStateKey],
|
| 1813 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]],
|
| 1814 |
+
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
| 1815 |
+
optim_state_dict: Dict[Union[str, int], Any],
|
| 1816 |
+
to_save: bool,
|
| 1817 |
+
shard_state: bool,
|
| 1818 |
+
cpu_offload: bool = True,
|
| 1819 |
+
) -> Dict[str, Any]:
|
| 1820 |
+
fsdp_osd_state: Dict[str, Any] = {}
|
| 1821 |
+
# Iterate in rank 0's flat parameter ID order to ensure aligned all-gathers
|
| 1822 |
+
# across ranks
|
| 1823 |
+
for optim_state_key in all_optim_state_keys:
|
| 1824 |
+
param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
|
| 1825 |
+
optim_state_key, None
|
| 1826 |
+
)
|
| 1827 |
+
|
| 1828 |
+
assert param_key is not None, (
|
| 1829 |
+
"If use_orig_params is False, we must be able to find the "
|
| 1830 |
+
f"corresponding param id. {optim_state_key} {param_key}"
|
| 1831 |
+
)
|
| 1832 |
+
|
| 1833 |
+
if optim_state_key.is_fsdp_managed:
|
| 1834 |
+
# If there are multiple unflat_param_names (not use_orig_params),
|
| 1835 |
+
# they share the same FSDPParamInfo. So the first unflat_param_name
|
| 1836 |
+
# is sufficient to fetch the FSDPParamInfo.
|
| 1837 |
+
fqn = optim_state_key.unflat_param_names[0]
|
| 1838 |
+
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
| 1839 |
+
unflat_state = _unflatten_optim_state(
|
| 1840 |
+
fsdp_param_info,
|
| 1841 |
+
optim_state_dict[param_key],
|
| 1842 |
+
to_save,
|
| 1843 |
+
shard_state,
|
| 1844 |
+
cpu_offload,
|
| 1845 |
+
)
|
| 1846 |
+
if to_save:
|
| 1847 |
+
assert len(unflat_state) == len(optim_state_key.unflat_param_names)
|
| 1848 |
+
for unflat_param_name, unflat_param_state in zip(
|
| 1849 |
+
optim_state_key.unflat_param_names,
|
| 1850 |
+
unflat_state,
|
| 1851 |
+
):
|
| 1852 |
+
fsdp_osd_state[unflat_param_name] = unflat_param_state
|
| 1853 |
+
elif to_save:
|
| 1854 |
+
assert len(optim_state_key.unflat_param_names) == 1
|
| 1855 |
+
unflat_param_name = optim_state_key.unflat_param_names[0]
|
| 1856 |
+
fsdp_osd_state[unflat_param_name] = copy.copy(optim_state_dict[param_key])
|
| 1857 |
+
if cpu_offload:
|
| 1858 |
+
for state_name, value in sorted_items(
|
| 1859 |
+
fsdp_osd_state[unflat_param_name]
|
| 1860 |
+
):
|
| 1861 |
+
if not torch.is_tensor(value):
|
| 1862 |
+
continue
|
| 1863 |
+
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
|
| 1864 |
+
|
| 1865 |
+
return fsdp_osd_state
|
| 1866 |
+
|
| 1867 |
+
|
| 1868 |
+
@torch.no_grad()
|
| 1869 |
+
def _optim_state_dict(
|
| 1870 |
+
model: nn.Module,
|
| 1871 |
+
optim: torch.optim.Optimizer,
|
| 1872 |
+
optim_state_dict: Dict[str, Any],
|
| 1873 |
+
optim_input: Optional[
|
| 1874 |
+
Union[
|
| 1875 |
+
List[Dict[str, Any]],
|
| 1876 |
+
Iterable[nn.Parameter],
|
| 1877 |
+
]
|
| 1878 |
+
],
|
| 1879 |
+
rank0_only: bool,
|
| 1880 |
+
shard_state: bool,
|
| 1881 |
+
group: Optional[dist.ProcessGroup],
|
| 1882 |
+
using_optim_input: bool,
|
| 1883 |
+
use_orig_params: bool = False,
|
| 1884 |
+
cpu_offload: bool = True,
|
| 1885 |
+
) -> Dict[str, Any]:
|
| 1886 |
+
"""
|
| 1887 |
+
Consolidates the optimizer state and returns it as a :class:`dict`
|
| 1888 |
+
following the convention of :meth:`torch.optim.Optimizer.state_dict`,
|
| 1889 |
+
i.e. with keys ``"state"`` and ``"param_groups"``.
|
| 1890 |
+
The flat parameters in ``FSDP`` modules contained in ``model`` are mapped
|
| 1891 |
+
back to their unflattened parameters.
|
| 1892 |
+
|
| 1893 |
+
Parameter keys are not well-defined. For a regular optimizer, the optimizer
|
| 1894 |
+
state_dict contains a mapping from parameter IDs to parameter states.
|
| 1895 |
+
Parameter IDs are the order of parameters in ``optim.param_groups()`` across
|
| 1896 |
+
all the groups. This API also allows user to pass ``optim_input`` for the
|
| 1897 |
+
mapping between parameters and parameter IDs. Using ``optim_input`` is being
|
| 1898 |
+
deprecated.
|
| 1899 |
+
|
| 1900 |
+
If the optimizer is a ``NamedOptimizer``, the optimizer state_dict does not
|
| 1901 |
+
contain parameter IDs mapping but a mapping from parameter FQNs to parameter
|
| 1902 |
+
states. This API finds the mapping from FQNs to parameters if the optimizer
|
| 1903 |
+
is a ``NamedOptimizer``.
|
| 1904 |
+
|
| 1905 |
+
If ``use_orig_params`` is True, each rank will have all FSDP-managed
|
| 1906 |
+
parameters but some of these parameters may be empty due to the sharding.
|
| 1907 |
+
For a regular optim.Optimizer, states for those empty parameters will
|
| 1908 |
+
not be initialized. So, when aggregating the FQNs across ranks, no assert
|
| 1909 |
+
will be raised on a rank even if it does not have all the states -- it is
|
| 1910 |
+
valid and FSDP knows how to aggregate them. However, FSDP has to ignore
|
| 1911 |
+
handling those parameters that are not managed by FSDP and do not exist on
|
| 1912 |
+
the local rank -- those are managed by other parallelisms and FSDP does not
|
| 1913 |
+
know how to handle/aggregate them.
|
| 1914 |
+
|
| 1915 |
+
Args:
|
| 1916 |
+
model (nn.Module): Root module (which may or may not be a
|
| 1917 |
+
:class:`FullyShardedDataParallel` instance) whose parameters
|
| 1918 |
+
were passed into the optimizer ``optim``.
|
| 1919 |
+
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
|
| 1920 |
+
parameters.
|
| 1921 |
+
rank0_only (bool): If ``True``, saves the populated :class:`dict`
|
| 1922 |
+
only on rank 0; if ``False``, saves it on all ranks. (Default:
|
| 1923 |
+
``True``)
|
| 1924 |
+
shard_state (bool): If ``True``, shard and distribute all
|
| 1925 |
+
non-zero-dimension states.
|
| 1926 |
+
|
| 1927 |
+
Returns:
|
| 1928 |
+
Dict[str, Any]: A :class:`dict` containing the optimizer state for
|
| 1929 |
+
``model`` 's original unflattened parameters and including keys
|
| 1930 |
+
"state" and "param_groups" following the convention of
|
| 1931 |
+
:meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=False``,
|
| 1932 |
+
then nonzero ranks return an empty :class:`dict`.
|
| 1933 |
+
"""
|
| 1934 |
+
SimpleProfiler.reset()
|
| 1935 |
+
cm = ExitStack()
|
| 1936 |
+
cm.enter_context(SimpleProfiler.profile(SimpleProfiler.Type.ALL))
|
| 1937 |
+
_reset_flat_param_grad_info_if_needed(traversal_utils._get_fsdp_handles(model))
|
| 1938 |
+
to_save = not rank0_only or dist.get_rank(group) == 0 or shard_state
|
| 1939 |
+
|
| 1940 |
+
with SimpleProfiler.profile("preprocessing"):
|
| 1941 |
+
param_to_fqns = _get_param_to_fqns(model)
|
| 1942 |
+
flat_param_to_fqn = _get_flat_param_to_fqn(model)
|
| 1943 |
+
is_named_optimizer = _is_named_optimizer(optim_state_dict)
|
| 1944 |
+
|
| 1945 |
+
param_key_to_param = cast(
|
| 1946 |
+
Dict[Union[int, str], nn.Parameter],
|
| 1947 |
+
(
|
| 1948 |
+
_get_param_id_to_param_from_optim_input(model, optim_input)
|
| 1949 |
+
if using_optim_input
|
| 1950 |
+
else _get_param_key_to_param(
|
| 1951 |
+
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
| 1952 |
+
)
|
| 1953 |
+
),
|
| 1954 |
+
)
|
| 1955 |
+
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
|
| 1956 |
+
|
| 1957 |
+
with SimpleProfiler.profile("preprocessing_with_comm"):
|
| 1958 |
+
(
|
| 1959 |
+
all_optim_state_keys,
|
| 1960 |
+
optim_state_key_to_param_key,
|
| 1961 |
+
) = _map_param_key_to_optim_keys(
|
| 1962 |
+
optim_state_dict,
|
| 1963 |
+
group,
|
| 1964 |
+
param_key_to_param,
|
| 1965 |
+
param_to_fqns,
|
| 1966 |
+
fqn_to_fsdp_param_info,
|
| 1967 |
+
merge_keys=use_orig_params,
|
| 1968 |
+
)
|
| 1969 |
+
|
| 1970 |
+
with SimpleProfiler.profile("state_converting"):
|
| 1971 |
+
convert_fn = (
|
| 1972 |
+
_convert_state_with_orig_params
|
| 1973 |
+
if use_orig_params
|
| 1974 |
+
else _convert_state_with_flat_params
|
| 1975 |
+
)
|
| 1976 |
+
fsdp_osd_state = convert_fn(
|
| 1977 |
+
all_optim_state_keys,
|
| 1978 |
+
optim_state_key_to_param_key,
|
| 1979 |
+
fqn_to_fsdp_param_info,
|
| 1980 |
+
optim_state_dict["state"],
|
| 1981 |
+
to_save,
|
| 1982 |
+
shard_state,
|
| 1983 |
+
cpu_offload,
|
| 1984 |
+
)
|
| 1985 |
+
|
| 1986 |
+
# At this point, communication is complete and ranks can return early if nothing
|
| 1987 |
+
# will be saved on that rank.
|
| 1988 |
+
if not to_save:
|
| 1989 |
+
return {}
|
| 1990 |
+
|
| 1991 |
+
fsdp_osd: Dict[str, Any] = {"state": fsdp_osd_state}
|
| 1992 |
+
|
| 1993 |
+
flat_param_fqns = set(flat_param_to_fqn.values())
|
| 1994 |
+
for key, value in optim_state_dict["state"].items():
|
| 1995 |
+
if key in fsdp_osd_state:
|
| 1996 |
+
continue
|
| 1997 |
+
if key in flat_param_fqns:
|
| 1998 |
+
continue
|
| 1999 |
+
if key in param_key_to_param:
|
| 2000 |
+
continue
|
| 2001 |
+
# This key is not recognized by FSDP. It may be a user-defined state
|
| 2002 |
+
# or some parameters state that FSDP is unable to map from
|
| 2003 |
+
# ``optim.param_groups``.
|
| 2004 |
+
warnings.warn(
|
| 2005 |
+
f"Found a optim state, {key}, that FSDP cannot process. FSDP "
|
| 2006 |
+
"will directly copy everything to the returned state_dict. In "
|
| 2007 |
+
"most cases, this is a user-defined state that is not "
|
| 2008 |
+
"associated with any particular parameter. Another possible "
|
| 2009 |
+
"case is this state is managed by TorchRec. Otherwise, there may "
|
| 2010 |
+
" be a mismatched assumption of optim_state_dict of this mode."
|
| 2011 |
+
)
|
| 2012 |
+
fsdp_osd_state[key] = value
|
| 2013 |
+
|
| 2014 |
+
if "param_groups" in optim_state_dict:
|
| 2015 |
+
fsdp_osd["param_groups"] = _unflatten_param_groups(
|
| 2016 |
+
optim_state_dict, param_key_to_param, param_to_fqns
|
| 2017 |
+
)
|
| 2018 |
+
|
| 2019 |
+
cm.close()
|
| 2020 |
+
SimpleProfiler.dump_and_reset("FSDP _optim_state_dict() profiling: ")
|
| 2021 |
+
|
| 2022 |
+
return fsdp_osd
|
| 2023 |
+
|
| 2024 |
+
|
| 2025 |
+
def _get_fqn_to_fsdp_param_info(model: nn.Module) -> Dict[str, FSDPParamInfo]:
|
| 2026 |
+
"""
|
| 2027 |
+
Construct the mapping from a param's fqn to its corresponding ``FSDPParamInfo``
|
| 2028 |
+
if the param is managed by FSDP. Shared parameters, or original parameters that
|
| 2029 |
+
are shared across multiple nn.Modules, are required to belong to one and only
|
| 2030 |
+
one FSDP instance and thus correspond to one ``FlatParameter``. Within the one
|
| 2031 |
+
``FlatParameter``, ``FlatParameter._fqns`` only stores the first FQN of a shared
|
| 2032 |
+
parameter. Thus, the keys in the mapping are guaranteed to map to unique parameters.
|
| 2033 |
+
"""
|
| 2034 |
+
|
| 2035 |
+
def module_fn(module, prefix, tree_level, fqn_to_param_info):
|
| 2036 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
| 2037 |
+
if fsdp_state is None:
|
| 2038 |
+
return
|
| 2039 |
+
_lazy_init(fsdp_state, module)
|
| 2040 |
+
handle = _module_handle(fsdp_state, module)
|
| 2041 |
+
if not handle:
|
| 2042 |
+
return
|
| 2043 |
+
flat_param = handle.flat_param
|
| 2044 |
+
fsdp_param_info = FSDPParamInfo(fsdp_state, handle, {}, [])
|
| 2045 |
+
# NOTE: `idx` indexes into the data structures *without* padding
|
| 2046 |
+
# elements
|
| 2047 |
+
for idx, local_fqn in enumerate(flat_param._fqns):
|
| 2048 |
+
fqn = clean_tensor_name(prefix + local_fqn)
|
| 2049 |
+
if fqn in fqn_to_param_info:
|
| 2050 |
+
assert fqn_to_param_info[fqn].handle.flat_param is flat_param, fqn
|
| 2051 |
+
fqn_to_param_info[fqn] = fsdp_param_info
|
| 2052 |
+
fsdp_param_info.param_indices[fqn] = idx
|
| 2053 |
+
if flat_param._params is not None:
|
| 2054 |
+
fsdp_param_info.param_requires_grad.append(
|
| 2055 |
+
flat_param._params[idx].requires_grad
|
| 2056 |
+
)
|
| 2057 |
+
|
| 2058 |
+
def return_fn(fqn_to_param_info):
|
| 2059 |
+
return fqn_to_param_info
|
| 2060 |
+
|
| 2061 |
+
fqn_to_param_info: Dict[str, FSDPParamInfo] = {}
|
| 2062 |
+
# FlatParameter._fqns stores the local fqn, starting from the root of the
|
| 2063 |
+
# FSDP. Using _apply_to_modules() with model (may not be the FSDP root
|
| 2064 |
+
# module) allows us to construct the global fqn.
|
| 2065 |
+
return _apply_to_modules(
|
| 2066 |
+
model,
|
| 2067 |
+
module_fn,
|
| 2068 |
+
return_fn,
|
| 2069 |
+
[fqn for fqn, _ in _named_parameters_with_duplicates(model)],
|
| 2070 |
+
fqn_to_param_info,
|
| 2071 |
+
)
|
| 2072 |
+
|
| 2073 |
+
|
| 2074 |
+
@no_type_check
|
| 2075 |
+
def _set_optim_use_dtensor(
|
| 2076 |
+
fsdp_state: _FSDPState,
|
| 2077 |
+
state_dict_settings: StateDictSettings,
|
| 2078 |
+
) -> None:
|
| 2079 |
+
# If device_mesh is passed in when initalizing FSDP, we automatically turn the
|
| 2080 |
+
# _use_dtensor flag to be true for ShardedOptimStateDictConfig() if state_dict_type
|
| 2081 |
+
# has to be set to SHARDED_STATE_DICT.
|
| 2082 |
+
if getattr(fsdp_state, "_device_mesh", None):
|
| 2083 |
+
state_dict_type = state_dict_settings.state_dict_type
|
| 2084 |
+
if state_dict_type == StateDictType.LOCAL_STATE_DICT:
|
| 2085 |
+
raise RuntimeError(
|
| 2086 |
+
"Found state_dict_type LOCAL_STATE_DICT.",
|
| 2087 |
+
"DeviceMesh is not compatible with LOCAL_STATE_DICT.",
|
| 2088 |
+
"Please set state_dict_type to SHARDED_STATE_DICT to get DTensor state_dict.",
|
| 2089 |
+
)
|
| 2090 |
+
else:
|
| 2091 |
+
state_dict_settings.optim_state_dict_config._use_dtensor = True
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_runtime_utils.py
ADDED
|
@@ -0,0 +1,1638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import functools
|
| 3 |
+
import logging
|
| 4 |
+
from enum import auto, Enum
|
| 5 |
+
from typing import Any, Callable, Dict, List, no_type_check, Optional, Set, Tuple
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from torch.autograd import Variable
|
| 13 |
+
from torch.autograd.graph import register_multi_grad_hook
|
| 14 |
+
from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS
|
| 15 |
+
from torch.distributed.fsdp._common_utils import (
|
| 16 |
+
_assert_in_training_states,
|
| 17 |
+
_FSDPState,
|
| 18 |
+
_get_module_fsdp_state,
|
| 19 |
+
_is_composable,
|
| 20 |
+
_log_post_backward_hook,
|
| 21 |
+
_no_dispatch_record_stream,
|
| 22 |
+
clean_tensor_name,
|
| 23 |
+
TrainingState,
|
| 24 |
+
)
|
| 25 |
+
from torch.distributed.fsdp._flat_param import (
|
| 26 |
+
FlatParameter,
|
| 27 |
+
FlatParamHandle,
|
| 28 |
+
HandleShardingStrategy,
|
| 29 |
+
HandleTrainingState,
|
| 30 |
+
RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES,
|
| 31 |
+
)
|
| 32 |
+
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
|
| 33 |
+
from torch.distributed.fsdp.api import BackwardPrefetch
|
| 34 |
+
from torch.distributed.utils import (
|
| 35 |
+
_apply_to_tensors,
|
| 36 |
+
_cast_forward_inputs,
|
| 37 |
+
_p_assert,
|
| 38 |
+
_to_kwargs,
|
| 39 |
+
)
|
| 40 |
+
from torch.utils import _pytree as pytree
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
logger = logging.getLogger(__name__)
|
| 44 |
+
|
| 45 |
+
# Do not include "process_group" to enable hybrid shard and MoE cases
|
| 46 |
+
HOMOGENEOUS_ATTR_NAMES = (
|
| 47 |
+
"_use_orig_params",
|
| 48 |
+
"limit_all_gathers",
|
| 49 |
+
"_use_full_prec_in_eval",
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class _PrefetchMode(Enum):
|
| 54 |
+
BACKWARD = auto()
|
| 55 |
+
FORWARD = auto()
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _get_fsdp_root_states_with_modules(
|
| 59 |
+
module: nn.Module,
|
| 60 |
+
) -> Tuple[List[_FSDPState], List[nn.Module]]:
|
| 61 |
+
"""
|
| 62 |
+
Returns a tuple containing:
|
| 63 |
+
1. A list of the root ``_FSDPState`` instances in the module tree rooted at
|
| 64 |
+
``module`` without any duplicates and following the ``module.modules()``
|
| 65 |
+
traversal order (which is assumed to be depth-first).
|
| 66 |
+
2. A corresponding list of the root modules owning the states in the first
|
| 67 |
+
list.
|
| 68 |
+
|
| 69 |
+
This is similar to :func:`_get_fsdp_states_with_modules` except that we
|
| 70 |
+
must call :func:`_is_fsdp_root` to force a lazy initialization to determine
|
| 71 |
+
the FSDP root in case lazy initialization has not yet happened.
|
| 72 |
+
"""
|
| 73 |
+
fsdp_root_states: List[_FSDPState] = []
|
| 74 |
+
fsdp_root_modules: List[nn.Module] = []
|
| 75 |
+
visited_fsdp_states: Set[_FSDPState] = set()
|
| 76 |
+
# NOTE: This function assumes that `module.modules()` proceeds top-down.
|
| 77 |
+
for submodule in module.modules():
|
| 78 |
+
optional_state = _get_module_fsdp_state(submodule)
|
| 79 |
+
if (
|
| 80 |
+
optional_state is not None
|
| 81 |
+
and optional_state not in visited_fsdp_states
|
| 82 |
+
and _is_fsdp_root(optional_state, submodule)
|
| 83 |
+
):
|
| 84 |
+
visited_fsdp_states.add(optional_state)
|
| 85 |
+
fsdp_root_states.append(optional_state)
|
| 86 |
+
fsdp_root_modules.append(submodule)
|
| 87 |
+
return fsdp_root_states, fsdp_root_modules
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def _get_fsdp_root_states(module: nn.Module) -> List[_FSDPState]:
|
| 91 |
+
"""See :func:`_get_fsdp_root_states_with_modules`."""
|
| 92 |
+
fsdp_root_states, _ = _get_fsdp_root_states_with_modules(module)
|
| 93 |
+
return fsdp_root_states
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _is_fsdp_root(state: _FSDPState, module: nn.Module) -> bool:
|
| 97 |
+
"""
|
| 98 |
+
Returns if ``state`` corresponds to that of an FSDP root.
|
| 99 |
+
|
| 100 |
+
For the wrapper code path, ``state`` and ``module`` should be the same. For
|
| 101 |
+
the non-wrapper code path, ``state`` should be ``module`` 's state.
|
| 102 |
+
"""
|
| 103 |
+
# Force a lazy initialization to determine the FSDP root
|
| 104 |
+
_lazy_init(state, module)
|
| 105 |
+
assert state._is_root is not None # mypy
|
| 106 |
+
return state._is_root
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@no_type_check
|
| 110 |
+
def _lazy_init(
|
| 111 |
+
state: _FSDPState,
|
| 112 |
+
root_module: nn.Module,
|
| 113 |
+
) -> _FSDPState:
|
| 114 |
+
"""
|
| 115 |
+
Performs initialization lazily, typically right before the first forward
|
| 116 |
+
pass. The laziness is needed to ensure that the parameter device/dtype and
|
| 117 |
+
the FSDP hierarchy have finalized. This method's actual logic only runs on
|
| 118 |
+
the root FSDP instance, which performs initialization for all non-root FSDP
|
| 119 |
+
instances to avoid partial initialization.
|
| 120 |
+
|
| 121 |
+
For the non-composable code path, ``state`` and ``root_module`` should be
|
| 122 |
+
the same, namely the FSDP instance itself.
|
| 123 |
+
"""
|
| 124 |
+
if state._is_root is not None:
|
| 125 |
+
return # no-op: already lazily initialized
|
| 126 |
+
if not state._device_handle.is_available():
|
| 127 |
+
# Allow the FSDP constructor to run even without CUDA but check this
|
| 128 |
+
# once we start real execution
|
| 129 |
+
raise RuntimeError("FSDP does not support CPU only execution")
|
| 130 |
+
# The following logic is only run on the root FSDP instance since it will
|
| 131 |
+
# set `_is_root=False` for the non-root instances
|
| 132 |
+
state._is_root = True
|
| 133 |
+
_assert_in_training_states(state, [TrainingState.IDLE])
|
| 134 |
+
_check_flat_params_on_expected_device(state, root_module)
|
| 135 |
+
state._all_fsdp_states = traversal_utils._get_fsdp_states(root_module)
|
| 136 |
+
_init_streams(state)
|
| 137 |
+
buffers, buffer_dtypes = _get_buffers_and_dtypes_for_computation(state, root_module)
|
| 138 |
+
_cast_buffers_to_dtype_and_device(buffers, buffer_dtypes, state.compute_device)
|
| 139 |
+
state._exec_order_data.init(state, root_module, state.process_group)
|
| 140 |
+
_share_state_and_init_handle_attrs(state, root_module)
|
| 141 |
+
return state
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def _check_flat_params_on_expected_device(state: _FSDPState, module: nn.Module):
|
| 145 |
+
"""
|
| 146 |
+
Checks that all ``FlatParameter``s in ``module`` 's tree managed by
|
| 147 |
+
``state`` are on the expected device for *lazy initialization*.
|
| 148 |
+
"""
|
| 149 |
+
cpu_device = torch.device("cpu")
|
| 150 |
+
for handle in traversal_utils._get_fsdp_handles(module):
|
| 151 |
+
if (
|
| 152 |
+
not handle._offload_params
|
| 153 |
+
and handle.flat_param.device != state.compute_device
|
| 154 |
+
):
|
| 155 |
+
raise RuntimeError(
|
| 156 |
+
"An FSDP-managed module unexpectedly has parameters on "
|
| 157 |
+
f"{handle.flat_param.device}. Make sure to move the module to "
|
| 158 |
+
f"{state.compute_device} before training."
|
| 159 |
+
)
|
| 160 |
+
elif handle._offload_params and handle.flat_param.device != cpu_device:
|
| 161 |
+
raise RuntimeError(
|
| 162 |
+
"An FSDP-managed module with parameter CPU offloading enabled "
|
| 163 |
+
f"has parameters on {handle.flat_param.device}. Make sure to "
|
| 164 |
+
f"not move the module from CPU when offloading parameters."
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
@no_type_check
|
| 169 |
+
def _share_state_and_init_handle_attrs(
|
| 170 |
+
root_state: _FSDPState,
|
| 171 |
+
root_module: nn.Module,
|
| 172 |
+
) -> None:
|
| 173 |
+
"""
|
| 174 |
+
Shares data structure state from the ``root_state`` to all FSDP states in
|
| 175 |
+
``root_module`` 's module tree, and initializes handle attributes. These
|
| 176 |
+
are done together to require a single loop over the states.
|
| 177 |
+
"""
|
| 178 |
+
handle = root_state._handle
|
| 179 |
+
if handle:
|
| 180 |
+
handle.init_flat_param_attributes()
|
| 181 |
+
attr_name_to_values: Dict[str, Set[Any]] = {}
|
| 182 |
+
for attr_name in HOMOGENEOUS_ATTR_NAMES:
|
| 183 |
+
attr_name_to_values[attr_name] = set()
|
| 184 |
+
root_state._all_handles = root_state._exec_order_data.all_handles # share reference
|
| 185 |
+
# Update _has_optim_in_backward for each handle.
|
| 186 |
+
for handle in root_state._all_handles:
|
| 187 |
+
flat_param = handle.flat_param
|
| 188 |
+
if hasattr(flat_param, "_in_backward_optimizers"):
|
| 189 |
+
raise RuntimeError(
|
| 190 |
+
"FSDP optimizer in backward only supported with use_orig_params=True!"
|
| 191 |
+
)
|
| 192 |
+
handle._has_optim_in_backward = flat_param._params is not None and any(
|
| 193 |
+
hasattr(param, "_in_backward_optimizers") for param in flat_param._params
|
| 194 |
+
)
|
| 195 |
+
if handle._has_optim_in_backward:
|
| 196 |
+
torch._C._log_api_usage_once("fsdp.optimizer_in_backward")
|
| 197 |
+
for fsdp_state in root_state._all_fsdp_states:
|
| 198 |
+
for attr_name in HOMOGENEOUS_ATTR_NAMES:
|
| 199 |
+
_p_assert(
|
| 200 |
+
hasattr(fsdp_state, attr_name),
|
| 201 |
+
f"FSDP state missing attribute {attr_name}",
|
| 202 |
+
)
|
| 203 |
+
attr_name_to_values[attr_name].add(getattr(fsdp_state, attr_name))
|
| 204 |
+
if fsdp_state is root_state:
|
| 205 |
+
continue
|
| 206 |
+
# Relax the assert for non-root FSDP instances in case the nested
|
| 207 |
+
# initialized module is wrapped again in FSDP later (e.g. after
|
| 208 |
+
# training to run inference)
|
| 209 |
+
_p_assert(
|
| 210 |
+
fsdp_state._is_root is None or not fsdp_state._is_root,
|
| 211 |
+
"Non-root FSDP instance's `_is_root` should not have been "
|
| 212 |
+
"set yet or should have been set to `False`",
|
| 213 |
+
)
|
| 214 |
+
fsdp_state._is_root = False
|
| 215 |
+
fsdp_state._unshard_stream = root_state._unshard_stream
|
| 216 |
+
fsdp_state._post_backward_stream = root_state._post_backward_stream
|
| 217 |
+
fsdp_state._pre_unshard_stream = root_state._pre_unshard_stream
|
| 218 |
+
fsdp_state._all_reduce_stream = root_state._all_reduce_stream
|
| 219 |
+
fsdp_state._default_stream = root_state._default_stream
|
| 220 |
+
fsdp_state._exec_order_data = root_state._exec_order_data
|
| 221 |
+
fsdp_state._free_event_queue = root_state._free_event_queue
|
| 222 |
+
if fsdp_state._fsdp_extension is not None:
|
| 223 |
+
fsdp_state._fsdp_extension.compute_stream = root_state._default_stream
|
| 224 |
+
handle = fsdp_state._handle
|
| 225 |
+
if handle:
|
| 226 |
+
handle.init_flat_param_attributes()
|
| 227 |
+
for attr_name, attr_values in attr_name_to_values.items():
|
| 228 |
+
if len(attr_values) != 1:
|
| 229 |
+
raise ValueError(
|
| 230 |
+
f"Expects one homogeneous value for {attr_name} but got {attr_values}"
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
@no_type_check
|
| 235 |
+
def _init_streams(
|
| 236 |
+
state: _FSDPState,
|
| 237 |
+
) -> None:
|
| 238 |
+
"""
|
| 239 |
+
Initializes CUDA streams for overlapping communication, computation, and
|
| 240 |
+
data transfers. The streams should be shared across FSDP instances.
|
| 241 |
+
"""
|
| 242 |
+
assert state._is_root
|
| 243 |
+
assert state._device_handle.is_available()
|
| 244 |
+
uses_hybrid_sharding = any(
|
| 245 |
+
fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES
|
| 246 |
+
for fsdp_state in state._all_fsdp_states
|
| 247 |
+
)
|
| 248 |
+
# Prioritize all-gathers/reduce-scatters over async all-reduce for HSDP and
|
| 249 |
+
# preserve the default priority of 0 otherwise
|
| 250 |
+
high_priority = -1 if state.limit_all_gathers and uses_hybrid_sharding else 0
|
| 251 |
+
# Default stream for computation
|
| 252 |
+
state._default_stream = state._device_handle.current_stream()
|
| 253 |
+
if state._fsdp_extension is not None:
|
| 254 |
+
# set the compute stream to the FSDP extension
|
| 255 |
+
state._fsdp_extension.compute_stream = state._default_stream
|
| 256 |
+
|
| 257 |
+
# Stream for unshard logic, including allocating the all-gather destination
|
| 258 |
+
# tensors and the all-gathers themselves
|
| 259 |
+
state._unshard_stream = state._device_handle.Stream(priority=high_priority)
|
| 260 |
+
# Stream for overlapping gradient reduction with the backward pass gradient
|
| 261 |
+
# computation
|
| 262 |
+
state._post_backward_stream = state._device_handle.Stream(priority=high_priority)
|
| 263 |
+
# Stream for pre-unshard logic, namely allocations and writes for CPU
|
| 264 |
+
# offloading (H2D copy) and mixed precision (low precision cast)
|
| 265 |
+
state._pre_unshard_stream = state._device_handle.Stream(priority=high_priority)
|
| 266 |
+
# Stream to run HSDP's all-reduce as async (if using HSDP)
|
| 267 |
+
state._all_reduce_stream = (
|
| 268 |
+
state._device_handle.Stream() if uses_hybrid_sharding else state._default_stream
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
@no_type_check
|
| 273 |
+
def _unshard(
|
| 274 |
+
state: _FSDPState,
|
| 275 |
+
handle: FlatParamHandle,
|
| 276 |
+
unshard_stream: torch.Stream,
|
| 277 |
+
pre_unshard_stream: torch.Stream,
|
| 278 |
+
) -> None:
|
| 279 |
+
"""
|
| 280 |
+
Unshards the handles in ``handles``. If the handles are in
|
| 281 |
+
:meth:`summon_full_params` and are using mixed precision, then they are
|
| 282 |
+
forced to full precision.
|
| 283 |
+
|
| 284 |
+
Postcondition: handle's ``FlatParameter`` 's data is the padded
|
| 285 |
+
unsharded flat parameter on the compute device.
|
| 286 |
+
"""
|
| 287 |
+
if not handle:
|
| 288 |
+
return
|
| 289 |
+
with state._device_handle.stream(pre_unshard_stream):
|
| 290 |
+
ran_pre_unshard = handle.pre_unshard()
|
| 291 |
+
if ran_pre_unshard:
|
| 292 |
+
unshard_stream.wait_stream(pre_unshard_stream)
|
| 293 |
+
if state.limit_all_gathers:
|
| 294 |
+
event = state._free_event_queue.dequeue_if_needed()
|
| 295 |
+
if event:
|
| 296 |
+
with torch.profiler.record_function(
|
| 297 |
+
"FullyShardedDataParallel.rate_limiter"
|
| 298 |
+
):
|
| 299 |
+
event.synchronize()
|
| 300 |
+
with state._device_handle.stream(unshard_stream):
|
| 301 |
+
handle.unshard()
|
| 302 |
+
handle.post_unshard()
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
@no_type_check
|
| 306 |
+
def _reshard(
|
| 307 |
+
state: _FSDPState,
|
| 308 |
+
handle: FlatParamHandle,
|
| 309 |
+
free_unsharded_flat_param: bool,
|
| 310 |
+
):
|
| 311 |
+
"""
|
| 312 |
+
Reshards the handle. ``free_unsharded_flat_param`` indicates whether to
|
| 313 |
+
free the handle's padded unsharded flat parameter.
|
| 314 |
+
"""
|
| 315 |
+
handle.reshard(free_unsharded_flat_param)
|
| 316 |
+
if state.limit_all_gathers and free_unsharded_flat_param:
|
| 317 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 318 |
+
# We don't run a even queue for freeing under torch compile atm
|
| 319 |
+
# But maybe we need to? TODO(voz): Look into this
|
| 320 |
+
free_event = state._device_handle.Event()
|
| 321 |
+
free_event.record()
|
| 322 |
+
state._free_event_queue.enqueue(free_event)
|
| 323 |
+
handle.post_reshard()
|
| 324 |
+
# Flat parameter freed or not, we always have to "unshard" the parameter
|
| 325 |
+
# upon next access to get its shape correct.
|
| 326 |
+
handle._prefetched = False
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _unshard_grads(
|
| 330 |
+
handle: Optional[FlatParamHandle],
|
| 331 |
+
) -> None:
|
| 332 |
+
if handle:
|
| 333 |
+
handle.unshard_grad()
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
def _reshard_grads(
|
| 337 |
+
handle: Optional[FlatParamHandle],
|
| 338 |
+
) -> None:
|
| 339 |
+
if handle:
|
| 340 |
+
handle.reshard_grad()
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
@no_type_check
|
| 344 |
+
def _pre_forward(
|
| 345 |
+
state: _FSDPState,
|
| 346 |
+
handle: Optional[FlatParamHandle],
|
| 347 |
+
unshard_fn: Callable,
|
| 348 |
+
module: nn.Module,
|
| 349 |
+
args: Tuple[Any, ...],
|
| 350 |
+
kwargs: Dict[str, Any],
|
| 351 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
| 352 |
+
"""
|
| 353 |
+
Runs the pre-forward logic. This includes an opportunity to unshard
|
| 354 |
+
currently sharded parameters such as those for the current forward and
|
| 355 |
+
registering post-backward hooks for these current parameters. This function
|
| 356 |
+
also converts forward ``args`` and ``kwargs`` to the given precision.
|
| 357 |
+
|
| 358 |
+
Args:
|
| 359 |
+
handles (List[FlatParamHandle]): Handles giving the parameters used in
|
| 360 |
+
the current forward.
|
| 361 |
+
unshard_fn (Optional[Callable]): A callable to unshard any currently
|
| 362 |
+
sharded parameters or ``None`` to not do any unsharding.
|
| 363 |
+
module (nn.Module): Module whose forward this method runs right before;
|
| 364 |
+
expected by the hook signature.
|
| 365 |
+
args (Tuple[Any, ...]): Module forward ``args``.
|
| 366 |
+
kwargs (Dict[str, Any]): Module forward ``kwargs``.
|
| 367 |
+
"""
|
| 368 |
+
with torch.profiler.record_function("FullyShardedDataParallel._pre_forward"):
|
| 369 |
+
# For `fully_shard` + `checkpoint`, skip pre-forward logic in the
|
| 370 |
+
# recomputed forward
|
| 371 |
+
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
|
| 372 |
+
# For both checkpoint implementations, we do not need to re-cast
|
| 373 |
+
# inputs here since they will be checkpointed in the low precision
|
| 374 |
+
# either by AC or normally by autograd as long as the AC region is
|
| 375 |
+
# nested within FSDP
|
| 376 |
+
return args, kwargs
|
| 377 |
+
state.training_state = TrainingState.FORWARD_BACKWARD
|
| 378 |
+
state._exec_order_data.record_pre_forward(handle, module.training)
|
| 379 |
+
if handle:
|
| 380 |
+
handle._training_state = HandleTrainingState.FORWARD
|
| 381 |
+
if unshard_fn is not None:
|
| 382 |
+
unshard_fn(state, handle)
|
| 383 |
+
# Register post-backward hooks to reshard the parameters and reduce-scatter
|
| 384 |
+
# their gradients. They must be re-registered every forward pass in case
|
| 385 |
+
# the `grad_fn` is mutated.
|
| 386 |
+
_register_post_backward_hook(state, handle)
|
| 387 |
+
# We have to reallocate the _cpu_grad if optimizer overlap
|
| 388 |
+
# set the grad to None in the backward pass.
|
| 389 |
+
if handle and handle._offload_params and handle.flat_param._cpu_grad is None:
|
| 390 |
+
handle.flat_param._cpu_grad = torch.zeros_like(
|
| 391 |
+
handle.flat_param._local_shard, device=torch.device("cpu")
|
| 392 |
+
).pin_memory(device=state.compute_device)
|
| 393 |
+
|
| 394 |
+
should_cast_forward_inputs = (
|
| 395 |
+
state._handle and not state._handle._force_full_precision
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
if should_cast_forward_inputs and state.mixed_precision.cast_forward_inputs:
|
| 399 |
+
# Recursively convert args and kwargs to specified precision.
|
| 400 |
+
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
|
| 401 |
+
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
|
| 402 |
+
_register_post_backward_reshard_only_hook(state, handle, args, kwargs)
|
| 403 |
+
return args, kwargs
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
@no_type_check
|
| 407 |
+
def _pre_forward_unshard(
|
| 408 |
+
state: _FSDPState,
|
| 409 |
+
handle: Optional[FlatParamHandle],
|
| 410 |
+
) -> None:
|
| 411 |
+
"""Unshards parameters in the pre-forward."""
|
| 412 |
+
if not handle:
|
| 413 |
+
return
|
| 414 |
+
# If the handles have been prefetched, then there is no need to call
|
| 415 |
+
# `_unshard()` again
|
| 416 |
+
if not handle._prefetched:
|
| 417 |
+
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
|
| 418 |
+
handle._needs_pre_forward_unshard = False
|
| 419 |
+
# Don't wait during trace
|
| 420 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 421 |
+
current_stream = state._device_handle.current_stream()
|
| 422 |
+
if state._unshard_event is not None:
|
| 423 |
+
current_stream.wait_event(state._unshard_event)
|
| 424 |
+
state._unshard_event = None
|
| 425 |
+
else:
|
| 426 |
+
current_stream.wait_stream(state._unshard_stream)
|
| 427 |
+
with torch.profiler.record_function(
|
| 428 |
+
"FullyShardedDataParallel._pre_forward_prefetch"
|
| 429 |
+
):
|
| 430 |
+
_prefetch_handle(state, handle, _PrefetchMode.FORWARD)
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
@no_type_check
|
| 434 |
+
def _post_forward(
|
| 435 |
+
state: _FSDPState,
|
| 436 |
+
handle: Optional[FlatParamHandle],
|
| 437 |
+
reshard_fn: Callable,
|
| 438 |
+
module: nn.Module,
|
| 439 |
+
input: Any,
|
| 440 |
+
output: Any,
|
| 441 |
+
) -> Any:
|
| 442 |
+
"""
|
| 443 |
+
Runs the post-forward logic. This includes an opportunity to reshard
|
| 444 |
+
currently unsharded parameters such as those used in the current forward
|
| 445 |
+
and registering pre-backward hooks on the forward outputs.
|
| 446 |
+
|
| 447 |
+
Args:
|
| 448 |
+
handles (List[FlatParamHandle]): Handles giving the parameters used in
|
| 449 |
+
the current forward.
|
| 450 |
+
reshard_fn (Optional[Callable]): A callable to reshard any currently
|
| 451 |
+
unsharded parameters (e.g. from the current forward) or ``None`` to
|
| 452 |
+
not do any resharding.
|
| 453 |
+
module (nn.Module): Module whose forward just ran, which should be a
|
| 454 |
+
fully sharded module (see [Note: Fully Sharded Module]); expected
|
| 455 |
+
by the hook signature.
|
| 456 |
+
input (Any): Unused; expected by the hook signature.
|
| 457 |
+
output (Any): Forward pass output; pre-backward hooks are registered on
|
| 458 |
+
the tensors that require gradients in this output.
|
| 459 |
+
|
| 460 |
+
Postcondition: Each ``FlatParameter`` 's data points to the sharded flat
|
| 461 |
+
parameter.
|
| 462 |
+
"""
|
| 463 |
+
with torch.profiler.record_function("FullyShardedDataParallel._post_forward"):
|
| 464 |
+
# For `fully_shard` + `checkpoint`, skip post-forward logic in the
|
| 465 |
+
# recomputed forward
|
| 466 |
+
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
|
| 467 |
+
return output
|
| 468 |
+
|
| 469 |
+
state._exec_order_data.record_post_forward(handle)
|
| 470 |
+
if reshard_fn is not None:
|
| 471 |
+
reshard_fn(state, handle)
|
| 472 |
+
# Register pre-backward hooks to unshard the flat parameters for the
|
| 473 |
+
# gradient computation (if needed)
|
| 474 |
+
output = _register_pre_backward_hooks(state, module, output, handle)
|
| 475 |
+
state.training_state = TrainingState.IDLE
|
| 476 |
+
if handle:
|
| 477 |
+
handle._training_state = HandleTrainingState.IDLE
|
| 478 |
+
return output
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
@no_type_check
|
| 482 |
+
def _post_forward_reshard(
|
| 483 |
+
state: _FSDPState,
|
| 484 |
+
handle: FlatParamHandle,
|
| 485 |
+
) -> None:
|
| 486 |
+
"""Reshards parameters in the post-forward."""
|
| 487 |
+
if not handle:
|
| 488 |
+
return
|
| 489 |
+
# Do not free the root's parameters in the post-forward for `FULL_SHARD`
|
| 490 |
+
# with the intention that they are immediately used for backward
|
| 491 |
+
# computation (though this may not be true)
|
| 492 |
+
free_unsharded_flat_param = (
|
| 493 |
+
not state._is_root
|
| 494 |
+
and handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
|
| 495 |
+
)
|
| 496 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
@no_type_check
|
| 500 |
+
def _root_pre_forward(
|
| 501 |
+
state: _FSDPState,
|
| 502 |
+
module: nn.Module,
|
| 503 |
+
args,
|
| 504 |
+
kwargs,
|
| 505 |
+
) -> None:
|
| 506 |
+
"""
|
| 507 |
+
Runs pre-forward logic specific to the root FSDP instance, which should run
|
| 508 |
+
before any individual module's pre-forward. This starts with an attempt at
|
| 509 |
+
lazy initialization (which only runs non-vacuously once). Otherwise, if
|
| 510 |
+
this is called on a non-root FSDP instance, then it returns directly.
|
| 511 |
+
|
| 512 |
+
Args:
|
| 513 |
+
module (nn.Module): Module for which this logic tries to run. It may or
|
| 514 |
+
may not be the root. If not, then this method does not do anything.
|
| 515 |
+
"""
|
| 516 |
+
with torch.profiler.record_function("FullyShardedDataParallel._root_pre_forward"):
|
| 517 |
+
_lazy_init(state, module)
|
| 518 |
+
_p_assert(state._is_root is not None, "Expects a root FSDP to have been set")
|
| 519 |
+
if not state._is_root:
|
| 520 |
+
# Always cast forward inputs in the root of this local FSDP unit for mixed
|
| 521 |
+
# precision, as this is where mixed precision could be configed.
|
| 522 |
+
# This is more useful for auto wrapping that is recommended in composable path.
|
| 523 |
+
# For manual wrapping, cast forward inputs on each local FSDP unit root will
|
| 524 |
+
# increase some overhead, so not turned on for model wrapper path right now where
|
| 525 |
+
# manual wrapping is more broadly used.
|
| 526 |
+
if _is_composable(state):
|
| 527 |
+
return _root_cast_forward_input(state, module, args, kwargs)
|
| 528 |
+
return args, kwargs
|
| 529 |
+
|
| 530 |
+
# We cast buffers back to full precision if we're forcing full precision. Disjointly, we check if buffers
|
| 531 |
+
# are in full precision and if we should cast them back to lower precision, which happens when
|
| 532 |
+
# exiting eval() mode.
|
| 533 |
+
handle = state._handle
|
| 534 |
+
if handle:
|
| 535 |
+
should_cast_buffers_to_full_prec = handle._force_full_precision
|
| 536 |
+
else:
|
| 537 |
+
should_cast_buffers_to_full_prec = True
|
| 538 |
+
|
| 539 |
+
if should_cast_buffers_to_full_prec:
|
| 540 |
+
_cast_buffers_to_dtype_and_device(
|
| 541 |
+
buffers=dict(module.named_buffers()).values(),
|
| 542 |
+
buffer_dtypes=list(state._buffer_name_to_orig_dtype.values()),
|
| 543 |
+
device=state.compute_device,
|
| 544 |
+
)
|
| 545 |
+
# This flag is only set when we cast buffers to full precision, to avoid the
|
| 546 |
+
# CPU overhead that can stem from retrieving all buffers and their types in the
|
| 547 |
+
# following else branch.
|
| 548 |
+
state._needs_buffer_dtype_restore_check = True
|
| 549 |
+
elif getattr(state, "_needs_buffer_dtype_restore_check", False):
|
| 550 |
+
# Check if buffers are in full precision and we need to cast them
|
| 551 |
+
# back down.
|
| 552 |
+
(
|
| 553 |
+
buffers,
|
| 554 |
+
buffer_dtypes_for_computation,
|
| 555 |
+
) = _get_buffers_and_dtypes_for_computation(state, module)
|
| 556 |
+
if len(buffers) > 0 and len(buffer_dtypes_for_computation) > 0:
|
| 557 |
+
if any(
|
| 558 |
+
buffer.dtype != buffer_dtype_for_computation
|
| 559 |
+
for buffer, buffer_dtype_for_computation in zip(
|
| 560 |
+
buffers, buffer_dtypes_for_computation
|
| 561 |
+
)
|
| 562 |
+
):
|
| 563 |
+
# Assume we have to cast everything if there is one mismatch
|
| 564 |
+
_cast_buffers_to_dtype_and_device(
|
| 565 |
+
buffers, buffer_dtypes_for_computation, state.compute_device
|
| 566 |
+
)
|
| 567 |
+
# We don't have to check this again until we cast buffers to full precision again.
|
| 568 |
+
state._needs_buffer_dtype_restore_check = False
|
| 569 |
+
|
| 570 |
+
if state.forward_prefetch:
|
| 571 |
+
handles = []
|
| 572 |
+
for fsdp_state in state._all_fsdp_states:
|
| 573 |
+
if fsdp_state._handle:
|
| 574 |
+
handles.append(fsdp_state._handle)
|
| 575 |
+
for handle in handles:
|
| 576 |
+
handle._needs_pre_forward_unshard = True
|
| 577 |
+
handle._prefetched = False
|
| 578 |
+
_wait_for_computation_stream(
|
| 579 |
+
state._device_handle.current_stream(),
|
| 580 |
+
state._unshard_stream,
|
| 581 |
+
state._pre_unshard_stream,
|
| 582 |
+
)
|
| 583 |
+
_reset_flat_param_grad_info_if_needed(state._all_handles)
|
| 584 |
+
|
| 585 |
+
# Prepares the forward inputs by moving them to ``compute_device``
|
| 586 |
+
# TODO: Do not use the side stream for tensor copies for now; investigate
|
| 587 |
+
# the perf with/without it.
|
| 588 |
+
with torch.profiler.record_function("FullyShardedDataParallel._to_kwargs"):
|
| 589 |
+
args_tuple, kwargs_tuple = _to_kwargs(
|
| 590 |
+
args, kwargs, state.compute_device, False
|
| 591 |
+
)
|
| 592 |
+
args = args_tuple[0]
|
| 593 |
+
kwargs = kwargs_tuple[0]
|
| 594 |
+
|
| 595 |
+
return _root_cast_forward_input(state, module, args, kwargs)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
@no_type_check
|
| 599 |
+
def _root_cast_forward_input(
|
| 600 |
+
state: _FSDPState, module: torch.nn.Module, args, kwargs
|
| 601 |
+
) -> Tuple[Any, Any]:
|
| 602 |
+
if state._handle:
|
| 603 |
+
force_full_precision = not state._handle._force_full_precision
|
| 604 |
+
else:
|
| 605 |
+
force_full_precision = True
|
| 606 |
+
|
| 607 |
+
should_cast_forward_inputs = (
|
| 608 |
+
(module.training or not state._use_full_prec_in_eval) and force_full_precision
|
| 609 |
+
) and state.mixed_precision.cast_root_forward_inputs
|
| 610 |
+
|
| 611 |
+
if should_cast_forward_inputs:
|
| 612 |
+
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
|
| 613 |
+
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
|
| 614 |
+
|
| 615 |
+
return args, kwargs
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
@no_type_check
|
| 619 |
+
def _pre_backward_hook(
|
| 620 |
+
state: _FSDPState,
|
| 621 |
+
module: nn.Module,
|
| 622 |
+
handle: FlatParamHandle,
|
| 623 |
+
grad,
|
| 624 |
+
*unused: Any,
|
| 625 |
+
) -> Any:
|
| 626 |
+
"""
|
| 627 |
+
Prepares ``_handle`` 's ``FlatParameter`` s for gradient computation.
|
| 628 |
+
|
| 629 |
+
Args:
|
| 630 |
+
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
|
| 631 |
+
Module]).
|
| 632 |
+
"""
|
| 633 |
+
# Only run the pre-backward hook once per group of handles involved in the
|
| 634 |
+
# same module forward computation
|
| 635 |
+
if (
|
| 636 |
+
handle
|
| 637 |
+
and hasattr(handle, "_ran_pre_backward_hook")
|
| 638 |
+
and handle._ran_pre_backward_hook
|
| 639 |
+
):
|
| 640 |
+
return grad
|
| 641 |
+
|
| 642 |
+
with torch.profiler.record_function("FullyShardedDataParallel._pre_backward_hook"):
|
| 643 |
+
# Queue the post-backward callback once for the root FSDP instance to
|
| 644 |
+
# attach it to the outermost backward graph task so that it is called
|
| 645 |
+
# after all backward calls complete
|
| 646 |
+
if state._is_root and not state._post_backward_callback_queued:
|
| 647 |
+
_register_post_backward_final_callback(state, module)
|
| 648 |
+
_reset_flat_param_grad_info_if_needed(state._all_handles)
|
| 649 |
+
elif handle:
|
| 650 |
+
allowed_states = [TrainingState.IDLE]
|
| 651 |
+
if _is_composable(state):
|
| 652 |
+
allowed_states.append(TrainingState.FORWARD_BACKWARD)
|
| 653 |
+
_assert_in_training_states(state, allowed_states)
|
| 654 |
+
state.training_state = TrainingState.FORWARD_BACKWARD
|
| 655 |
+
# Queueing the post-backward callback is the only logic that is not
|
| 656 |
+
# per-handle in the pre-backward hook, so we can return early here if
|
| 657 |
+
# there are no handles.
|
| 658 |
+
if not handle:
|
| 659 |
+
return grad
|
| 660 |
+
handle._training_state = HandleTrainingState.BACKWARD_PRE
|
| 661 |
+
|
| 662 |
+
if handle._needs_pre_backward_unshard:
|
| 663 |
+
# If the handles have been prefetched, then there is no need to
|
| 664 |
+
# call `_unshard()` again
|
| 665 |
+
if not handle._prefetched:
|
| 666 |
+
_unshard(
|
| 667 |
+
state,
|
| 668 |
+
handle,
|
| 669 |
+
state._unshard_stream,
|
| 670 |
+
state._pre_unshard_stream,
|
| 671 |
+
)
|
| 672 |
+
# Don't wait during trace
|
| 673 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 674 |
+
state._device_handle.current_stream().wait_stream(state._unshard_stream)
|
| 675 |
+
|
| 676 |
+
# Set this to `False` to ensure that a mistargeted prefetch does not
|
| 677 |
+
# actually unshard these handles
|
| 678 |
+
handle._needs_pre_backward_unshard = False
|
| 679 |
+
with torch.profiler.record_function(
|
| 680 |
+
"FullyShardedDataParallel._pre_backward_prefetch"
|
| 681 |
+
):
|
| 682 |
+
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
|
| 683 |
+
handle.prepare_gradient_for_backward()
|
| 684 |
+
handle._ran_pre_backward_hook = True
|
| 685 |
+
return grad
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
@no_type_check
|
| 689 |
+
@torch.no_grad()
|
| 690 |
+
def _post_backward_hook(
|
| 691 |
+
state: _FSDPState,
|
| 692 |
+
handle: FlatParamHandle,
|
| 693 |
+
flat_param,
|
| 694 |
+
*unused: Any,
|
| 695 |
+
):
|
| 696 |
+
"""
|
| 697 |
+
Reduce-scatters the gradient of ``handle`` 's ``FlatParameter``.
|
| 698 |
+
|
| 699 |
+
Precondition: The ``FlatParameter`` 's ``.grad`` attribute contains the
|
| 700 |
+
unsharded gradient for the local batch.
|
| 701 |
+
|
| 702 |
+
Postcondition:
|
| 703 |
+
- If using ``NO_SHARD``, then the ``.grad`` attribute is the reduced
|
| 704 |
+
unsharded gradient.
|
| 705 |
+
- Otherwise, the ``_saved_grad_shard`` attribute is the reduced sharded
|
| 706 |
+
gradient (accumulating with any existing gradient).
|
| 707 |
+
"""
|
| 708 |
+
_log_post_backward_hook(state, handle, logger)
|
| 709 |
+
flat_param = handle.flat_param
|
| 710 |
+
flat_param._post_backward_called = True
|
| 711 |
+
with torch.autograd.profiler.record_function(
|
| 712 |
+
"FullyShardedDataParallel._post_backward_hook"
|
| 713 |
+
):
|
| 714 |
+
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
|
| 715 |
+
# For multiple applications of reentrant AC across submodules sharing
|
| 716 |
+
# the same `FlatParameter`, the post-backward hook may run multiple
|
| 717 |
+
# times in one backward, in which case we permit the state to already
|
| 718 |
+
# be in `BACKWARD_POST`.
|
| 719 |
+
_p_assert(
|
| 720 |
+
handle._training_state
|
| 721 |
+
in (HandleTrainingState.BACKWARD_PRE, HandleTrainingState.BACKWARD_POST),
|
| 722 |
+
f"Expects `BACKWARD_PRE` or `BACKWARD_POST` state but got {handle._training_state}",
|
| 723 |
+
)
|
| 724 |
+
handle._training_state = HandleTrainingState.BACKWARD_POST
|
| 725 |
+
|
| 726 |
+
if flat_param.grad is None:
|
| 727 |
+
return
|
| 728 |
+
if flat_param.grad.requires_grad:
|
| 729 |
+
raise RuntimeError("FSDP does not support gradients of gradients")
|
| 730 |
+
|
| 731 |
+
_post_backward_reshard(state, handle)
|
| 732 |
+
if not state._sync_gradients:
|
| 733 |
+
if handle._use_orig_params:
|
| 734 |
+
handle._use_unsharded_grad_views()
|
| 735 |
+
return
|
| 736 |
+
|
| 737 |
+
# Wait for all ops in the current stream (e.g. gradient computation) to
|
| 738 |
+
# finish before reduce-scattering the gradient
|
| 739 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 740 |
+
state._post_backward_stream.wait_stream(
|
| 741 |
+
state._device_handle.current_stream()
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
with state._device_handle.stream(state._post_backward_stream):
|
| 745 |
+
autograd_computed_grad = flat_param.grad.data
|
| 746 |
+
if (
|
| 747 |
+
not _low_precision_hook_enabled(state)
|
| 748 |
+
and flat_param.grad.dtype != handle._reduce_dtype
|
| 749 |
+
# If we are forcing full precision but communicating grads
|
| 750 |
+
# (i.e. model.eval() + full precision in eval was configured), don't downcast gradient.
|
| 751 |
+
and not handle._force_full_precision
|
| 752 |
+
):
|
| 753 |
+
flat_param.grad.data = flat_param.grad.to(handle._reduce_dtype)
|
| 754 |
+
if handle.uses_sharded_strategy:
|
| 755 |
+
_reduce_grad(state, handle)
|
| 756 |
+
else:
|
| 757 |
+
_reduce_grad_no_shard(state, handle)
|
| 758 |
+
# Since the unsharded gradient is produced in the computation
|
| 759 |
+
# stream and consumed in the post-backward stream, inform the
|
| 760 |
+
# caching allocator (before it goes out of scope)
|
| 761 |
+
_no_dispatch_record_stream(
|
| 762 |
+
autograd_computed_grad, state._post_backward_stream
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
def _post_backward_reshard_only_hook(
|
| 767 |
+
state: _FSDPState,
|
| 768 |
+
handle: FlatParamHandle,
|
| 769 |
+
*unused: Any,
|
| 770 |
+
) -> None:
|
| 771 |
+
with torch.profiler.record_function(
|
| 772 |
+
"FullyShardedDataParallel._post_backward_hook_reshard_only"
|
| 773 |
+
):
|
| 774 |
+
# `_pre_backward_hook` may not get executed
|
| 775 |
+
# if forward output does not require grad
|
| 776 |
+
# overwrite IDLE state for post-backward prefetching
|
| 777 |
+
state.training_state = TrainingState.FORWARD_BACKWARD
|
| 778 |
+
handle._training_state = HandleTrainingState.BACKWARD_POST
|
| 779 |
+
_post_backward_reshard(state, handle)
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
def _post_backward_reshard(
|
| 783 |
+
state: _FSDPState,
|
| 784 |
+
handle: FlatParamHandle,
|
| 785 |
+
*unused: Any,
|
| 786 |
+
) -> None:
|
| 787 |
+
free_unsharded_flat_param = _should_free_in_backward(state, handle)
|
| 788 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
| 789 |
+
|
| 790 |
+
# TODO: Post-backward prefetching does not support the multiple handles
|
| 791 |
+
# per module case since the post-backward hook runs per handle, not per
|
| 792 |
+
# group of handles.
|
| 793 |
+
with torch.profiler.record_function(
|
| 794 |
+
"FullyShardedDataParallel._post_backward_prefetch"
|
| 795 |
+
):
|
| 796 |
+
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
@no_type_check
|
| 800 |
+
def _should_free_in_backward(
|
| 801 |
+
state: _FSDPState,
|
| 802 |
+
handle: FlatParamHandle,
|
| 803 |
+
) -> bool:
|
| 804 |
+
"""
|
| 805 |
+
Returns whether FSDP should free the unsharded flat parameter in the
|
| 806 |
+
post-backward or not.
|
| 807 |
+
"""
|
| 808 |
+
if not handle.uses_sharded_strategy:
|
| 809 |
+
return False
|
| 810 |
+
# If not syncing gradients, then we do not free for strategies that do not
|
| 811 |
+
# reshard after forward as a *heuristic* to tradeoff higher memory for
|
| 812 |
+
# higher throughput.
|
| 813 |
+
return (
|
| 814 |
+
state._sync_gradients
|
| 815 |
+
or handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
|
| 816 |
+
)
|
| 817 |
+
|
| 818 |
+
|
| 819 |
+
@no_type_check
|
| 820 |
+
def _reduce_grad(state: _FSDPState, handle: FlatParamHandle) -> None:
|
| 821 |
+
"""
|
| 822 |
+
For sharded strategies, this runs gradient reduction, sharded gradient
|
| 823 |
+
accumulation if needed, and the post-reduction callback.
|
| 824 |
+
"""
|
| 825 |
+
flat_param = handle.flat_param
|
| 826 |
+
uses_hybrid_sharded_strategy = handle._sharding_strategy in (
|
| 827 |
+
HandleShardingStrategy.HYBRID_SHARD,
|
| 828 |
+
HandleShardingStrategy._HYBRID_SHARD_ZERO2,
|
| 829 |
+
)
|
| 830 |
+
# We clear `.grad` to permit multiple backwards. This avoids a race where
|
| 831 |
+
# the second backward pass computation precedes ahead of the first backward
|
| 832 |
+
# pass reduction, which is possible since the reduction is issued in a
|
| 833 |
+
# separate stream and is async and would result in reducing the wrong
|
| 834 |
+
# gradient.
|
| 835 |
+
unsharded_grad = flat_param.grad.data
|
| 836 |
+
flat_param.grad = None
|
| 837 |
+
padded_unsharded_grad, new_sharded_grad = _get_reduce_scatter_tensors(
|
| 838 |
+
state, unsharded_grad
|
| 839 |
+
)
|
| 840 |
+
if state._comm_hook is None: # default path
|
| 841 |
+
_div_if_needed(padded_unsharded_grad, state._gradient_predivide_factor)
|
| 842 |
+
pg = (
|
| 843 |
+
handle._fake_process_group
|
| 844 |
+
if handle._use_fake_reduce
|
| 845 |
+
else state.process_group
|
| 846 |
+
)
|
| 847 |
+
dist.reduce_scatter_tensor(
|
| 848 |
+
new_sharded_grad,
|
| 849 |
+
padded_unsharded_grad,
|
| 850 |
+
group=pg,
|
| 851 |
+
)
|
| 852 |
+
if uses_hybrid_sharded_strategy:
|
| 853 |
+
# Don't wait during trace
|
| 854 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 855 |
+
state._all_reduce_stream.wait_stream(state._post_backward_stream)
|
| 856 |
+
with state._device_handle.stream(state._all_reduce_stream):
|
| 857 |
+
# Since the new sharded gradient is produced in the post-
|
| 858 |
+
# backward stream and consumed in the all-reduce stream,
|
| 859 |
+
# inform the caching allocator
|
| 860 |
+
_no_dispatch_record_stream(new_sharded_grad, state._all_reduce_stream)
|
| 861 |
+
dist.all_reduce(new_sharded_grad, group=state._inter_node_pg)
|
| 862 |
+
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
|
| 863 |
+
grad_to_offload = _accumulate_sharded_grad(
|
| 864 |
+
state, handle, new_sharded_grad
|
| 865 |
+
)
|
| 866 |
+
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
| 867 |
+
return
|
| 868 |
+
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
|
| 869 |
+
else:
|
| 870 |
+
state._comm_hook(
|
| 871 |
+
state._comm_hook_state, padded_unsharded_grad, new_sharded_grad
|
| 872 |
+
)
|
| 873 |
+
# NOTE: HSDP variants do not support communication hook.
|
| 874 |
+
grad_to_offload = _accumulate_sharded_grad(state, handle, new_sharded_grad)
|
| 875 |
+
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
@no_type_check
|
| 879 |
+
def _get_reduce_scatter_tensors(
|
| 880 |
+
state: _FSDPState, unsharded_grad: torch.Tensor
|
| 881 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 882 |
+
"""
|
| 883 |
+
Returns the input and output tensors to reduce-scatter, respectively.
|
| 884 |
+
"""
|
| 885 |
+
chunks = list(unsharded_grad.chunk(state.world_size))
|
| 886 |
+
numel_to_pad = state.world_size * chunks[0].numel() - unsharded_grad.numel()
|
| 887 |
+
padded_unsharded_grad = (
|
| 888 |
+
F.pad(unsharded_grad, [0, numel_to_pad]) if numel_to_pad > 0 else unsharded_grad
|
| 889 |
+
)
|
| 890 |
+
new_sharded_grad = torch.empty_like(chunks[0]) # padded
|
| 891 |
+
return padded_unsharded_grad, new_sharded_grad
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
@no_type_check
|
| 895 |
+
def _accumulate_sharded_grad(
|
| 896 |
+
state: _FSDPState,
|
| 897 |
+
handle: FlatParamHandle,
|
| 898 |
+
sharded_grad: torch.Tensor,
|
| 899 |
+
) -> torch.Tensor:
|
| 900 |
+
"""
|
| 901 |
+
Accumulates the reduce-scattered sharded gradient with any existing sharded
|
| 902 |
+
gradient if needed, returning the gradient to offload (if CPU offloading is
|
| 903 |
+
enabled).
|
| 904 |
+
"""
|
| 905 |
+
flat_param = handle.flat_param
|
| 906 |
+
_cast_grad_to_param_dtype(state, sharded_grad, flat_param)
|
| 907 |
+
# Save the sharded gradient in `_saved_grad_shard` to support gradient
|
| 908 |
+
# accumulation -- for multiple backwards, the gradient reductions may
|
| 909 |
+
# happen in arbitrary order
|
| 910 |
+
accumulate_grad = hasattr(flat_param, "_saved_grad_shard")
|
| 911 |
+
if accumulate_grad:
|
| 912 |
+
_check_grad_to_accumulate(sharded_grad, flat_param._saved_grad_shard)
|
| 913 |
+
flat_param._saved_grad_shard += sharded_grad
|
| 914 |
+
else:
|
| 915 |
+
flat_param._saved_grad_shard = sharded_grad
|
| 916 |
+
grad_to_offload = flat_param._saved_grad_shard
|
| 917 |
+
return grad_to_offload
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
@no_type_check
|
| 921 |
+
def _reduce_grad_no_shard(state: _FSDPState, handle: FlatParamHandle) -> None:
|
| 922 |
+
"""
|
| 923 |
+
For no-shard, this runs gradient reduction (which directly covers any
|
| 924 |
+
gradient accumulation implicitly) and the post-reduction callback.
|
| 925 |
+
"""
|
| 926 |
+
flat_param = handle.flat_param
|
| 927 |
+
if state._comm_hook is None: # default path
|
| 928 |
+
_div_if_needed(flat_param.grad, state._gradient_predivide_factor)
|
| 929 |
+
dist.all_reduce(flat_param.grad, group=state.process_group)
|
| 930 |
+
_div_if_needed(flat_param.grad, state._gradient_postdivide_factor)
|
| 931 |
+
else:
|
| 932 |
+
state._comm_hook(state._comm_hook_state, flat_param.grad)
|
| 933 |
+
# For `NO_SHARD`, we can keep the low precision gradients by simply
|
| 934 |
+
# omitting the cast altogether
|
| 935 |
+
if not handle._keep_low_precision_grads:
|
| 936 |
+
_cast_grad_to_param_dtype(state, flat_param.grad, flat_param)
|
| 937 |
+
grad_to_offload = flat_param.grad.data
|
| 938 |
+
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
@no_type_check
|
| 942 |
+
def _post_reduce_grad_callback(
|
| 943 |
+
state: _FSDPState,
|
| 944 |
+
handle: FlatParamHandle,
|
| 945 |
+
# Additional arguments needed for the callback logic
|
| 946 |
+
grad_to_offload: torch.Tensor,
|
| 947 |
+
):
|
| 948 |
+
"""
|
| 949 |
+
This callback captures any logic to run after the gradient reduction
|
| 950 |
+
finishes. Currently, this offloads the gradient to CPU if CPU offloading is
|
| 951 |
+
enabled and uses sharded gradient views if ``use_orig_params=True``.
|
| 952 |
+
"""
|
| 953 |
+
_offload_grad(state, handle, grad_to_offload)
|
| 954 |
+
_post_backward_use_sharded_grad_views(handle)
|
| 955 |
+
|
| 956 |
+
|
| 957 |
+
@no_type_check
|
| 958 |
+
def _offload_grad(
|
| 959 |
+
state: _FSDPState,
|
| 960 |
+
handle: FlatParamHandle,
|
| 961 |
+
grad_to_offload: torch.Tensor,
|
| 962 |
+
):
|
| 963 |
+
if not handle._offload_params:
|
| 964 |
+
return
|
| 965 |
+
# Offload the gradient to CPU to ensure parameters and gradients are on the
|
| 966 |
+
# same device as required by the optimizer
|
| 967 |
+
# TODO: Investigate why `NO_SHARD` breaks correctness when using
|
| 968 |
+
# `non_blocking=True` here.
|
| 969 |
+
# TODO (rohan-varma): When CPU offload and optimizer overlap,
|
| 970 |
+
# non_blocking=True won't work since the copy may have not finished before
|
| 971 |
+
# the optimizer step executes on CPU. If we want to use non-blocking=True
|
| 972 |
+
# here, we'll have to synchronize before using result on CPU.
|
| 973 |
+
non_blocking = handle.uses_sharded_strategy and not handle._has_optim_in_backward
|
| 974 |
+
handle.flat_param._cpu_grad.copy_(
|
| 975 |
+
grad_to_offload.detach(), non_blocking=non_blocking
|
| 976 |
+
) # synchronized in the post-backward callback
|
| 977 |
+
# Since the gradient being offloaded may have been produced in the
|
| 978 |
+
# computation stream and is being consumed here in the post-backward
|
| 979 |
+
# stream, inform the caching allocator
|
| 980 |
+
_no_dispatch_record_stream(grad_to_offload.data, state._post_backward_stream)
|
| 981 |
+
|
| 982 |
+
|
| 983 |
+
@no_type_check
|
| 984 |
+
def _post_backward_use_sharded_grad_views(handle: FlatParamHandle):
|
| 985 |
+
if not handle._use_orig_params:
|
| 986 |
+
return
|
| 987 |
+
# Since the handle's `FlatParameter` completed its gradient computation, we
|
| 988 |
+
# should reset the gradient noneness mask
|
| 989 |
+
handle._reset_is_grad_none()
|
| 990 |
+
# Delay using sharded gradient views until after the reduce-scatter instead
|
| 991 |
+
# of immediately after resharding
|
| 992 |
+
handle._use_sharded_grad_views()
|
| 993 |
+
if handle._has_optim_in_backward:
|
| 994 |
+
handle.prepare_gradient_for_optim()
|
| 995 |
+
for orig_param in handle.flat_param._params:
|
| 996 |
+
# Check for `None` gradient to filter parameters not in the rank
|
| 997 |
+
if orig_param.grad is not None and hasattr(
|
| 998 |
+
orig_param, "_in_backward_optimizers"
|
| 999 |
+
):
|
| 1000 |
+
# TODO (rohan-varma): For CPU offload, this unfortunately
|
| 1001 |
+
# operates on CPU because the parameters and gradients have
|
| 1002 |
+
# already been offloaded. We should run this on GPU after
|
| 1003 |
+
# refactoring.
|
| 1004 |
+
for optim in orig_param._in_backward_optimizers:
|
| 1005 |
+
optim.step()
|
| 1006 |
+
|
| 1007 |
+
optim.zero_grad(set_to_none=True)
|
| 1008 |
+
handle._reset_flat_param_grad_info_if_needed()
|
| 1009 |
+
if handle._offload_params:
|
| 1010 |
+
handle.flat_param._cpu_grad = None
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
def _div_if_needed(tensor: torch.Tensor, div_factor: float) -> None:
|
| 1014 |
+
if div_factor > 1:
|
| 1015 |
+
tensor.div_(div_factor)
|
| 1016 |
+
|
| 1017 |
+
|
| 1018 |
+
@no_type_check
|
| 1019 |
+
def _cast_grad_to_param_dtype(
|
| 1020 |
+
state: _FSDPState,
|
| 1021 |
+
sharded_grad: torch.Tensor,
|
| 1022 |
+
param: FlatParameter,
|
| 1023 |
+
):
|
| 1024 |
+
"""
|
| 1025 |
+
Casts ``sharded_grad`` back to the full parameter dtype so that the
|
| 1026 |
+
optimizer step runs with that dtype. This performs an actual cast if
|
| 1027 |
+
1. parameters were in reduced precision during the forward since then
|
| 1028 |
+
gradients would be in that reduced precision, or
|
| 1029 |
+
2. parameters were not in reduced precision but gradients were in
|
| 1030 |
+
reduced precision for communication.
|
| 1031 |
+
However, if a low precision communication hook is registered, then this
|
| 1032 |
+
dtype cast happens in the hook instead.
|
| 1033 |
+
"""
|
| 1034 |
+
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
|
| 1035 |
+
if not _low_precision_hook_enabled(state) and sharded_grad.dtype != param.dtype:
|
| 1036 |
+
low_prec_grad_data = sharded_grad.data
|
| 1037 |
+
sharded_grad.data = sharded_grad.data.to(dtype=param.dtype)
|
| 1038 |
+
# Since for `NO_SHARD`, the gradient is produced in the computation
|
| 1039 |
+
# stream and consumed here in the post-backward stream, inform the
|
| 1040 |
+
# caching allocator; for the sharded strategies, the gradient is
|
| 1041 |
+
# produced in the post-backward stream, so this `record_stream()`
|
| 1042 |
+
# should be a no-op
|
| 1043 |
+
_no_dispatch_record_stream(
|
| 1044 |
+
low_prec_grad_data, state._device_handle.current_stream()
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
|
| 1048 |
+
def _check_grad_to_accumulate(
|
| 1049 |
+
new_sharded_grad: torch.Tensor,
|
| 1050 |
+
accumulated_grad: torch.Tensor,
|
| 1051 |
+
) -> None:
|
| 1052 |
+
_p_assert(
|
| 1053 |
+
accumulated_grad.shape == new_sharded_grad.shape,
|
| 1054 |
+
"Shape mismatch when accumulating gradients: "
|
| 1055 |
+
f"existing gradient shape={accumulated_grad.shape} "
|
| 1056 |
+
f"new gradient shape={new_sharded_grad.shape}",
|
| 1057 |
+
)
|
| 1058 |
+
_p_assert(
|
| 1059 |
+
accumulated_grad.device == new_sharded_grad.device,
|
| 1060 |
+
"Device mismatch when accumulating gradients: "
|
| 1061 |
+
f"existing gradient device={accumulated_grad.device} "
|
| 1062 |
+
f"new gradient device={new_sharded_grad.device}",
|
| 1063 |
+
)
|
| 1064 |
+
|
| 1065 |
+
|
| 1066 |
+
@no_type_check
|
| 1067 |
+
def _low_precision_hook_enabled(state: _FSDPState) -> bool:
|
| 1068 |
+
return state._comm_hook in LOW_PRECISION_HOOKS
|
| 1069 |
+
|
| 1070 |
+
|
| 1071 |
+
@no_type_check
|
| 1072 |
+
@torch.no_grad()
|
| 1073 |
+
def _post_backward_final_callback(
|
| 1074 |
+
state: _FSDPState,
|
| 1075 |
+
module: nn.Module,
|
| 1076 |
+
):
|
| 1077 |
+
"""
|
| 1078 |
+
This waits for the post-backward to finish and performs some final cleanup.
|
| 1079 |
+
This runs at the end of the entire backward pass and should only be called
|
| 1080 |
+
on the root FSDP instance.
|
| 1081 |
+
"""
|
| 1082 |
+
_p_assert(
|
| 1083 |
+
state._is_root,
|
| 1084 |
+
"The post-backward callback should only be called on the root FSDP instance",
|
| 1085 |
+
)
|
| 1086 |
+
root_state = state
|
| 1087 |
+
|
| 1088 |
+
if root_state._sync_gradients:
|
| 1089 |
+
current_stream = state._device_handle.current_stream()
|
| 1090 |
+
# TODO (rohan-varma): this also waits for the overlapped optimizer step to finish
|
| 1091 |
+
# since it currently runs in the post-backward stream. That can be
|
| 1092 |
+
# pushed to the next forward if run in a different stream
|
| 1093 |
+
current_stream.wait_stream(root_state._post_backward_stream)
|
| 1094 |
+
if root_state._all_reduce_stream is not current_stream: # uses HSDP
|
| 1095 |
+
current_stream.wait_stream(root_state._all_reduce_stream)
|
| 1096 |
+
if root_state.cpu_offload.offload_params:
|
| 1097 |
+
# Wait for non-blocking GPU -> CPU sharded gradient copies from the
|
| 1098 |
+
# post-backward hooks to finish explicitly since CPU gradients do
|
| 1099 |
+
# not automatically synchronize with the GPU
|
| 1100 |
+
state._device_handle.current_stream().synchronize()
|
| 1101 |
+
root_state._exec_order_data.next_iter()
|
| 1102 |
+
|
| 1103 |
+
for fsdp_state in state._all_fsdp_states:
|
| 1104 |
+
_catch_all_reshard(fsdp_state)
|
| 1105 |
+
_finalize_params(fsdp_state)
|
| 1106 |
+
fsdp_state.training_state = TrainingState.IDLE
|
| 1107 |
+
handle = fsdp_state._handle
|
| 1108 |
+
if handle:
|
| 1109 |
+
handle._ran_pre_backward_hook = False
|
| 1110 |
+
handle._needs_pre_backward_unshard = False
|
| 1111 |
+
handle._post_forward_index = None
|
| 1112 |
+
handle._training_state = HandleTrainingState.IDLE
|
| 1113 |
+
handle._prefetched = False
|
| 1114 |
+
# Reset for cases like one forward and multiple backwards
|
| 1115 |
+
root_state._post_backward_callback_queued = False
|
| 1116 |
+
|
| 1117 |
+
|
| 1118 |
+
@no_type_check
|
| 1119 |
+
def _catch_all_reshard(
|
| 1120 |
+
state: _FSDPState,
|
| 1121 |
+
) -> None:
|
| 1122 |
+
"""
|
| 1123 |
+
Reshards the parameters that may not have been resharded in the
|
| 1124 |
+
post-backward hook. This can happen when a module's output is used in the
|
| 1125 |
+
forward pass, meaning that its pre-backward hook runs (unsharding the
|
| 1126 |
+
parameter), but the post-backward hook does not run because the output was
|
| 1127 |
+
not jused in the loss computation corresponding to this backward pass.
|
| 1128 |
+
"""
|
| 1129 |
+
# Wrap with a try-except to provide a more informative traceback if an
|
| 1130 |
+
# error is raised
|
| 1131 |
+
try:
|
| 1132 |
+
if state._handle:
|
| 1133 |
+
# TODO: This already-resharded check is brittle:
|
| 1134 |
+
# https://github.com/pytorch/pytorch/issues/83956
|
| 1135 |
+
already_resharded = (
|
| 1136 |
+
state._handle.flat_param.data_ptr()
|
| 1137 |
+
== state._handle.flat_param._local_shard.data_ptr()
|
| 1138 |
+
# If FSDP skipped using sharded views, then the flat parameter
|
| 1139 |
+
# still points to the sharded data, so we need to reshard to
|
| 1140 |
+
# use sharded views
|
| 1141 |
+
and not state._handle._skipped_use_sharded_views
|
| 1142 |
+
)
|
| 1143 |
+
if already_resharded:
|
| 1144 |
+
return
|
| 1145 |
+
free_unsharded_flat_param = _should_free_in_backward(state, state._handle)
|
| 1146 |
+
_reshard(state, state._handle, free_unsharded_flat_param)
|
| 1147 |
+
except Exception as e:
|
| 1148 |
+
_p_assert(
|
| 1149 |
+
False,
|
| 1150 |
+
f"Got exception in the catch-all reshard for {state}: {str(e)}",
|
| 1151 |
+
raise_assertion_error=False,
|
| 1152 |
+
)
|
| 1153 |
+
raise e
|
| 1154 |
+
|
| 1155 |
+
|
| 1156 |
+
@no_type_check
|
| 1157 |
+
def _finalize_params(
|
| 1158 |
+
state: _FSDPState,
|
| 1159 |
+
) -> None:
|
| 1160 |
+
"""Finalizes the parameters before the next iteration."""
|
| 1161 |
+
handle = state._handle
|
| 1162 |
+
if not handle:
|
| 1163 |
+
return
|
| 1164 |
+
flat_param = handle.flat_param
|
| 1165 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 1166 |
+
if hasattr(flat_param, "_post_backward_hook_handle"):
|
| 1167 |
+
pbhs_handle = flat_param._post_backward_hook_handle
|
| 1168 |
+
pbhs_handle.remove()
|
| 1169 |
+
del flat_param._post_backward_hook_handle
|
| 1170 |
+
else:
|
| 1171 |
+
if hasattr(flat_param, "_post_backward_hook_state"):
|
| 1172 |
+
post_backward_hook_state_len = len(flat_param._post_backward_hook_state)
|
| 1173 |
+
expected_post_backward_hook_state_len = int(flat_param.requires_grad) + 1
|
| 1174 |
+
_p_assert(
|
| 1175 |
+
post_backward_hook_state_len == expected_post_backward_hook_state_len,
|
| 1176 |
+
f"Invalid: ``_post_backward_hook_state``: {flat_param._post_backward_hook_state}",
|
| 1177 |
+
)
|
| 1178 |
+
flat_param._post_backward_hook_state[-1].remove()
|
| 1179 |
+
delattr(flat_param, "_post_backward_hook_state")
|
| 1180 |
+
if flat_param.requires_grad:
|
| 1181 |
+
if not state._sync_gradients:
|
| 1182 |
+
# Preserve the gradient accumulation state if not synchronizing
|
| 1183 |
+
# gradients: `.grad` remains the unsharded gradient from prior
|
| 1184 |
+
# `no_sync()` iterations, and `_saved_grad_shard` remains the
|
| 1185 |
+
# sharded gradient from the last synchronized iteration
|
| 1186 |
+
return
|
| 1187 |
+
if not handle._has_optim_in_backward:
|
| 1188 |
+
handle.prepare_gradient_for_optim()
|
| 1189 |
+
_p_assert(
|
| 1190 |
+
hasattr(flat_param, "_post_backward_called"),
|
| 1191 |
+
"Expects `_post_backward_called` to be set on the `FlatParameter`",
|
| 1192 |
+
)
|
| 1193 |
+
flat_param._post_backward_called = False
|
| 1194 |
+
|
| 1195 |
+
|
| 1196 |
+
@no_type_check
|
| 1197 |
+
def _prefetch_handle(
|
| 1198 |
+
state: _FSDPState,
|
| 1199 |
+
current_handle: Optional[FlatParamHandle],
|
| 1200 |
+
prefetch_mode: _PrefetchMode,
|
| 1201 |
+
) -> None:
|
| 1202 |
+
"""
|
| 1203 |
+
Prefetches the next handles if needed (without synchronization). An empty
|
| 1204 |
+
handles key cannot prefetch.
|
| 1205 |
+
"""
|
| 1206 |
+
if not current_handle:
|
| 1207 |
+
return
|
| 1208 |
+
handle = _get_handle_to_prefetch(state, current_handle)
|
| 1209 |
+
if not handle:
|
| 1210 |
+
return
|
| 1211 |
+
# Temporarily emulate the training state while calling `_unshard` to
|
| 1212 |
+
# ensure the correct `as_params` for `_use_unsharded_views()`
|
| 1213 |
+
prev_training_state = handle._training_state
|
| 1214 |
+
if prefetch_mode == _PrefetchMode.BACKWARD:
|
| 1215 |
+
handle._training_state = HandleTrainingState.BACKWARD_PRE
|
| 1216 |
+
elif prefetch_mode == _PrefetchMode.FORWARD:
|
| 1217 |
+
handle._training_state = HandleTrainingState.FORWARD
|
| 1218 |
+
else:
|
| 1219 |
+
raise ValueError(f"Invalid prefetch mode on rank {state.rank}: {prefetch_mode}")
|
| 1220 |
+
# Prefetch the next set of handles without synchronizing to allow
|
| 1221 |
+
# the sync to happen as late as possible to maximize overlap
|
| 1222 |
+
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
|
| 1223 |
+
handle._training_state = prev_training_state
|
| 1224 |
+
handle._prefetched = True
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
@no_type_check
|
| 1228 |
+
def _get_handle_to_prefetch(
|
| 1229 |
+
state: _FSDPState,
|
| 1230 |
+
current_handle: FlatParamHandle,
|
| 1231 |
+
) -> FlatParamHandle:
|
| 1232 |
+
"""
|
| 1233 |
+
Returns a :class:`list` of the handles keys to prefetch for the next
|
| 1234 |
+
module(s), where ``current_handle`` represents the current module.
|
| 1235 |
+
|
| 1236 |
+
"Prefetching" refers to running the unshard logic early (without
|
| 1237 |
+
synchronization), and the "next" modules depend on the recorded execution
|
| 1238 |
+
order and the current training state.
|
| 1239 |
+
"""
|
| 1240 |
+
training_state = _get_training_state(current_handle)
|
| 1241 |
+
valid_training_states = (
|
| 1242 |
+
HandleTrainingState.BACKWARD_PRE,
|
| 1243 |
+
HandleTrainingState.BACKWARD_POST,
|
| 1244 |
+
HandleTrainingState.FORWARD,
|
| 1245 |
+
)
|
| 1246 |
+
_p_assert(
|
| 1247 |
+
training_state in valid_training_states,
|
| 1248 |
+
f"Prefetching is only supported in {valid_training_states} but "
|
| 1249 |
+
f"currently in {training_state}",
|
| 1250 |
+
)
|
| 1251 |
+
eod = state._exec_order_data
|
| 1252 |
+
target_handle: Optional[FlatParamHandle] = None
|
| 1253 |
+
if (
|
| 1254 |
+
training_state == HandleTrainingState.BACKWARD_PRE
|
| 1255 |
+
and state.backward_prefetch == BackwardPrefetch.BACKWARD_PRE
|
| 1256 |
+
) or (
|
| 1257 |
+
training_state == HandleTrainingState.BACKWARD_POST
|
| 1258 |
+
and state.backward_prefetch == BackwardPrefetch.BACKWARD_POST
|
| 1259 |
+
):
|
| 1260 |
+
target_handle_candidate = eod.get_handle_to_backward_prefetch(current_handle)
|
| 1261 |
+
if (
|
| 1262 |
+
target_handle_candidate
|
| 1263 |
+
and target_handle_candidate._needs_pre_backward_unshard
|
| 1264 |
+
and not target_handle_candidate._prefetched
|
| 1265 |
+
):
|
| 1266 |
+
target_handle = target_handle_candidate
|
| 1267 |
+
else:
|
| 1268 |
+
target_handle = None
|
| 1269 |
+
elif training_state == HandleTrainingState.FORWARD and state.forward_prefetch:
|
| 1270 |
+
target_handle_candidate = eod.get_handle_to_forward_prefetch(current_handle)
|
| 1271 |
+
if (
|
| 1272 |
+
target_handle_candidate
|
| 1273 |
+
and target_handle_candidate._needs_pre_forward_unshard
|
| 1274 |
+
and not target_handle_candidate._prefetched
|
| 1275 |
+
):
|
| 1276 |
+
target_handle = target_handle_candidate
|
| 1277 |
+
else:
|
| 1278 |
+
target_handle = None
|
| 1279 |
+
|
| 1280 |
+
return target_handle
|
| 1281 |
+
|
| 1282 |
+
|
| 1283 |
+
def _get_training_state(
|
| 1284 |
+
handle: FlatParamHandle,
|
| 1285 |
+
) -> HandleTrainingState:
|
| 1286 |
+
"""Returns the training state of the handles in ``handle``."""
|
| 1287 |
+
_p_assert(handle, "Expects a non-empty handle")
|
| 1288 |
+
return handle._training_state
|
| 1289 |
+
|
| 1290 |
+
|
| 1291 |
+
@no_type_check
|
| 1292 |
+
def _register_pre_forward_hook(
|
| 1293 |
+
state: _FSDPState,
|
| 1294 |
+
module: nn.Module,
|
| 1295 |
+
) -> None:
|
| 1296 |
+
"""
|
| 1297 |
+
Registers a pre-forward hook on ``module``.
|
| 1298 |
+
"""
|
| 1299 |
+
for forward_handle in state._pre_forward_handles:
|
| 1300 |
+
forward_handle.remove()
|
| 1301 |
+
state._pre_forward_handles.clear()
|
| 1302 |
+
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
|
| 1303 |
+
hook = functools.partial(
|
| 1304 |
+
_pre_forward, state, module_param_handle, _pre_forward_unshard
|
| 1305 |
+
)
|
| 1306 |
+
state._pre_forward_handles.append(
|
| 1307 |
+
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
|
| 1308 |
+
)
|
| 1309 |
+
|
| 1310 |
+
|
| 1311 |
+
@no_type_check
|
| 1312 |
+
def _register_post_forward_hook(
|
| 1313 |
+
state: _FSDPState,
|
| 1314 |
+
module: nn.Module,
|
| 1315 |
+
) -> None:
|
| 1316 |
+
"""
|
| 1317 |
+
Registers a post-forward hook on ``module``. Even if the module has no
|
| 1318 |
+
handles, we should register the hook since it will register the module's
|
| 1319 |
+
pre-backward hook.
|
| 1320 |
+
"""
|
| 1321 |
+
for forward_handle in state._post_forward_handles:
|
| 1322 |
+
forward_handle.remove()
|
| 1323 |
+
state._post_forward_handles.clear()
|
| 1324 |
+
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
|
| 1325 |
+
hook = functools.partial(
|
| 1326 |
+
_post_forward,
|
| 1327 |
+
state,
|
| 1328 |
+
module_param_handle,
|
| 1329 |
+
_post_forward_reshard,
|
| 1330 |
+
)
|
| 1331 |
+
state._post_forward_handles.append(module.register_forward_hook(hook))
|
| 1332 |
+
|
| 1333 |
+
|
| 1334 |
+
@no_type_check
|
| 1335 |
+
def _register_root_pre_forward_hook(
|
| 1336 |
+
state: _FSDPState,
|
| 1337 |
+
module: nn.Module,
|
| 1338 |
+
):
|
| 1339 |
+
"""
|
| 1340 |
+
Registers root pre-forward hook on ``module``, which should be the local
|
| 1341 |
+
FSDP root.
|
| 1342 |
+
|
| 1343 |
+
NOTE: For the current composable FSDP design, we have each application of
|
| 1344 |
+
``fully_shard()`` to a module to indicate that that module is the local
|
| 1345 |
+
FSDP root. We may remove this assumption in the future, in which case we
|
| 1346 |
+
will need to register this root pre-forward hook on any candidate module
|
| 1347 |
+
that may be the local FSDP root.
|
| 1348 |
+
"""
|
| 1349 |
+
for forward_handle in state._root_pre_forward_handles:
|
| 1350 |
+
forward_handle.remove()
|
| 1351 |
+
state._root_pre_forward_handles.clear()
|
| 1352 |
+
hook = functools.partial(_root_pre_forward, state)
|
| 1353 |
+
state._root_pre_forward_handles.append(
|
| 1354 |
+
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
|
| 1355 |
+
)
|
| 1356 |
+
|
| 1357 |
+
|
| 1358 |
+
@no_type_check
|
| 1359 |
+
def _register_pre_backward_hooks(
|
| 1360 |
+
state: _FSDPState,
|
| 1361 |
+
module: nn.Module,
|
| 1362 |
+
outputs: Any,
|
| 1363 |
+
handle: FlatParamHandle,
|
| 1364 |
+
) -> None:
|
| 1365 |
+
"""
|
| 1366 |
+
Registers pre-backward hooks on the tensors that require gradients in the
|
| 1367 |
+
forward pass outputs ``outputs``, which were computed using the
|
| 1368 |
+
``FlatParameter`` s of ``handles``.
|
| 1369 |
+
|
| 1370 |
+
Args:
|
| 1371 |
+
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
|
| 1372 |
+
Module]).
|
| 1373 |
+
|
| 1374 |
+
Returns:
|
| 1375 |
+
Forward pass outputs with pre-backward hooks registered to tensors that
|
| 1376 |
+
require gradients.
|
| 1377 |
+
"""
|
| 1378 |
+
# If there is no gradient computation, then there is no need for
|
| 1379 |
+
# pre-backward logic
|
| 1380 |
+
if not torch.is_grad_enabled():
|
| 1381 |
+
return outputs
|
| 1382 |
+
if state._is_root:
|
| 1383 |
+
state._post_backward_callback_queued = False # only defined on the root
|
| 1384 |
+
|
| 1385 |
+
if handle:
|
| 1386 |
+
handle._needs_pre_backward_unshard = False
|
| 1387 |
+
# Since these handles' `FlatParameter`s participated in a forward, we
|
| 1388 |
+
# conservatively assume that they will be used in the backward
|
| 1389 |
+
handle._ran_pre_backward_hook = False
|
| 1390 |
+
|
| 1391 |
+
def _register_hook(t: torch.Tensor) -> torch.Tensor:
|
| 1392 |
+
if t.requires_grad:
|
| 1393 |
+
t.register_hook(
|
| 1394 |
+
torch.utils.hooks.unserializable_hook(
|
| 1395 |
+
functools.partial(_pre_backward_hook, state, module, handle)
|
| 1396 |
+
)
|
| 1397 |
+
)
|
| 1398 |
+
if handle:
|
| 1399 |
+
handle._needs_pre_backward_unshard = True
|
| 1400 |
+
return t
|
| 1401 |
+
|
| 1402 |
+
return _apply_to_tensors(_register_hook, outputs)
|
| 1403 |
+
|
| 1404 |
+
|
| 1405 |
+
def _register_post_backward_hook(
|
| 1406 |
+
state: _FSDPState,
|
| 1407 |
+
handle: Optional[FlatParamHandle],
|
| 1408 |
+
) -> None:
|
| 1409 |
+
"""
|
| 1410 |
+
Registers post-backward hooks on the ``FlatParameter`` s'
|
| 1411 |
+
``AccumulateGrad`` objects to reshard and to reduce-scatter gradients.
|
| 1412 |
+
|
| 1413 |
+
The ``AccumulateGrad`` object represents the last function that finalizes
|
| 1414 |
+
the ``FlatParameter`` 's gradient, so it only runs after its entire
|
| 1415 |
+
gradient computation has finished.
|
| 1416 |
+
|
| 1417 |
+
We register the post-backward hook only once in the *first* forward that a
|
| 1418 |
+
``FlatParameter`` participates in. This relies on the ``AccumulateGrad``
|
| 1419 |
+
object being preserved through multiple forwards.
|
| 1420 |
+
|
| 1421 |
+
NOTE: We follow this heuristic to prefer the *first* forward to target the
|
| 1422 |
+
parameter mixed precision case, where there are *separate*
|
| 1423 |
+
``AccumulateGrad`` objects across the different forwards. (Without
|
| 1424 |
+
parameter mixed precision, the ``AccumulateGrad`` objects are the same.) If
|
| 1425 |
+
we instead prefer the *last* forward, then the hook runs early.
|
| 1426 |
+
"""
|
| 1427 |
+
# If there is no gradient computation, then there is no need for
|
| 1428 |
+
# post-backward logic
|
| 1429 |
+
if not torch.is_grad_enabled():
|
| 1430 |
+
return
|
| 1431 |
+
if not handle:
|
| 1432 |
+
return
|
| 1433 |
+
flat_param = handle.flat_param
|
| 1434 |
+
|
| 1435 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 1436 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
|
| 1437 |
+
if already_registered or not flat_param.requires_grad:
|
| 1438 |
+
return
|
| 1439 |
+
hook = functools.partial(_post_backward_hook, state, handle)
|
| 1440 |
+
hook_handle = flat_param.register_post_accumulate_grad_hook(hook)
|
| 1441 |
+
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined]
|
| 1442 |
+
else:
|
| 1443 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_state")
|
| 1444 |
+
if already_registered or not flat_param.requires_grad:
|
| 1445 |
+
return
|
| 1446 |
+
# Get the `AccumulateGrad` object
|
| 1447 |
+
temp_flat_param = flat_param.expand_as(flat_param)
|
| 1448 |
+
_p_assert(
|
| 1449 |
+
temp_flat_param.grad_fn is not None,
|
| 1450 |
+
"The `grad_fn` is needed to access the `AccumulateGrad` and "
|
| 1451 |
+
"register the post-backward hook",
|
| 1452 |
+
)
|
| 1453 |
+
acc_grad = temp_flat_param.grad_fn.next_functions[0][0] # type: ignore[union-attr]
|
| 1454 |
+
assert acc_grad is not None
|
| 1455 |
+
hook_handle = acc_grad.register_hook(
|
| 1456 |
+
functools.partial(_post_backward_hook, state, handle)
|
| 1457 |
+
)
|
| 1458 |
+
flat_param._post_backward_hook_state = (acc_grad, hook_handle) # type: ignore[attr-defined]
|
| 1459 |
+
|
| 1460 |
+
|
| 1461 |
+
def _register_post_backward_reshard_only_hook(
|
| 1462 |
+
state: _FSDPState,
|
| 1463 |
+
handle: Optional[FlatParamHandle],
|
| 1464 |
+
args: Tuple[Any, ...],
|
| 1465 |
+
kwargs: Dict[str, Any],
|
| 1466 |
+
) -> None:
|
| 1467 |
+
"""
|
| 1468 |
+
Registers post-backward hooks to reshard flat parameters that do not
|
| 1469 |
+
require gradient. We register these using multi-post-grad hooks on the
|
| 1470 |
+
input activations to ensure that all gradients that may depend on the
|
| 1471 |
+
parameters have been computed before resharding.
|
| 1472 |
+
"""
|
| 1473 |
+
# If there is no gradient computation, then there is no need for
|
| 1474 |
+
# post-backward logic
|
| 1475 |
+
if not torch.is_grad_enabled():
|
| 1476 |
+
return
|
| 1477 |
+
# Construct `inp_tensors` lazily to avoid CPU overhead in typical case
|
| 1478 |
+
# where each flat parameter requires gradient
|
| 1479 |
+
inp_tensors: Optional[List[torch.Tensor]] = None
|
| 1480 |
+
if not handle:
|
| 1481 |
+
return
|
| 1482 |
+
flat_param = handle.flat_param
|
| 1483 |
+
|
| 1484 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 1485 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
|
| 1486 |
+
else:
|
| 1487 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_state")
|
| 1488 |
+
|
| 1489 |
+
if already_registered or flat_param.requires_grad:
|
| 1490 |
+
return
|
| 1491 |
+
if inp_tensors is None:
|
| 1492 |
+
args_flat = pytree.arg_tree_leaves(*args, **kwargs)
|
| 1493 |
+
inp_tensors = [
|
| 1494 |
+
obj for obj in args_flat if torch.is_tensor(obj) and obj.requires_grad
|
| 1495 |
+
]
|
| 1496 |
+
assert inp_tensors is not None # mypy
|
| 1497 |
+
hook_handle = register_multi_grad_hook(
|
| 1498 |
+
inp_tensors, functools.partial(_post_backward_reshard_only_hook, state, handle)
|
| 1499 |
+
)
|
| 1500 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 1501 |
+
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined, assignment]
|
| 1502 |
+
else:
|
| 1503 |
+
flat_param._post_backward_hook_state = (hook_handle,) # type: ignore[attr-defined, assignment]
|
| 1504 |
+
|
| 1505 |
+
|
| 1506 |
+
@no_type_check
|
| 1507 |
+
def _register_post_backward_final_callback(
|
| 1508 |
+
state: _FSDPState, module: nn.Module
|
| 1509 |
+
) -> None:
|
| 1510 |
+
"""
|
| 1511 |
+
Registers the post-backward final callback that runs at the end of the
|
| 1512 |
+
backward pass. This should be called from the root FSDP instance at the
|
| 1513 |
+
beginning of the pre-backward.
|
| 1514 |
+
"""
|
| 1515 |
+
_p_assert(
|
| 1516 |
+
state._is_root,
|
| 1517 |
+
"Only the root FSDP instance should register the post-backward callback",
|
| 1518 |
+
)
|
| 1519 |
+
if state._post_backward_callback_queued:
|
| 1520 |
+
return
|
| 1521 |
+
_assert_in_training_states(state, [TrainingState.IDLE])
|
| 1522 |
+
# Trace does not need this callback
|
| 1523 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 1524 |
+
state._post_backward_callback_queued = True
|
| 1525 |
+
Variable._execution_engine.queue_callback(
|
| 1526 |
+
functools.partial(_post_backward_final_callback, state, module)
|
| 1527 |
+
)
|
| 1528 |
+
|
| 1529 |
+
|
| 1530 |
+
def _wait_for_computation_stream(
|
| 1531 |
+
computation_stream: torch.Stream,
|
| 1532 |
+
unshard_stream: torch.Stream,
|
| 1533 |
+
pre_unshard_stream: torch.Stream,
|
| 1534 |
+
):
|
| 1535 |
+
"""
|
| 1536 |
+
Has the unshard and pre-unshard streams wait for the computation stream.
|
| 1537 |
+
For example, this should be called in the FSDP root's pre-forward to
|
| 1538 |
+
respect optimizer step computation.
|
| 1539 |
+
"""
|
| 1540 |
+
# Tracing does not need to wait
|
| 1541 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
| 1542 |
+
return
|
| 1543 |
+
unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
|
| 1544 |
+
# Having the pre-all-gather stream wait for the current stream even if we
|
| 1545 |
+
# do not leverage the pre-all-gather stream is tolerable since this only
|
| 1546 |
+
# runs once per iteration
|
| 1547 |
+
pre_unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
|
| 1548 |
+
|
| 1549 |
+
|
| 1550 |
+
def _reset_flat_param_grad_info_if_needed(
|
| 1551 |
+
handles: List[FlatParamHandle],
|
| 1552 |
+
):
|
| 1553 |
+
"""
|
| 1554 |
+
Clears the original parameters' gradients if needed. This method's CPU
|
| 1555 |
+
overhead is minimal, so we may call it throughout FSDP methods, which serve
|
| 1556 |
+
as callsites to free the gradient memory earlier.
|
| 1557 |
+
"""
|
| 1558 |
+
if not isinstance(handles, list):
|
| 1559 |
+
handles = [handles]
|
| 1560 |
+
for handle in handles:
|
| 1561 |
+
if handle._use_orig_params:
|
| 1562 |
+
handle._reset_flat_param_grad_info_if_needed()
|
| 1563 |
+
|
| 1564 |
+
|
| 1565 |
+
@no_type_check
|
| 1566 |
+
def _get_buffers_and_dtypes_for_computation(
|
| 1567 |
+
state: _FSDPState,
|
| 1568 |
+
root_module: nn.Module,
|
| 1569 |
+
) -> Tuple[List[torch.Tensor], List[Optional[torch.dtype]]]:
|
| 1570 |
+
"""
|
| 1571 |
+
Returns all buffers in the module tree rooted at ``root_module`` and a
|
| 1572 |
+
corresponding list of the buffer dtypes for computation. Each buffer dtype
|
| 1573 |
+
is either ``None`` if buffer mixed precision is not enabled or the buffer
|
| 1574 |
+
low precision dtype otherwise.
|
| 1575 |
+
"""
|
| 1576 |
+
_p_assert(state._is_root, "Expects the root to cast buffers")
|
| 1577 |
+
buffers: List[torch.Tensor] = []
|
| 1578 |
+
buffer_dtypes: List[Optional[torch.dtype]] = []
|
| 1579 |
+
visited_buffers: Set[torch.Tensor] = set()
|
| 1580 |
+
# Traverse the FSDP states bottom-up so that we prefer the owning FSDP
|
| 1581 |
+
# instance's mixed precision setting for each buffer
|
| 1582 |
+
fsdp_states, fsdp_modules = traversal_utils._get_fsdp_states_with_modules(
|
| 1583 |
+
root_module
|
| 1584 |
+
)
|
| 1585 |
+
for fsdp_state, fsdp_module in zip(reversed(fsdp_states), reversed(fsdp_modules)):
|
| 1586 |
+
for buffer_name, buffer in fsdp_module.named_buffers():
|
| 1587 |
+
if buffer in visited_buffers:
|
| 1588 |
+
continue
|
| 1589 |
+
visited_buffers.add(buffer)
|
| 1590 |
+
if clean_tensor_name(buffer_name) in fsdp_state._ignored_buffer_names:
|
| 1591 |
+
continue
|
| 1592 |
+
buffers.append(buffer)
|
| 1593 |
+
buffer_dtypes.append(fsdp_state.mixed_precision.buffer_dtype)
|
| 1594 |
+
assert len(buffers) == len(buffer_dtypes), f"{len(buffers)} {len(buffer_dtypes)}"
|
| 1595 |
+
return buffers, buffer_dtypes
|
| 1596 |
+
|
| 1597 |
+
|
| 1598 |
+
@no_type_check
|
| 1599 |
+
def _get_orig_buffer_dtypes(
|
| 1600 |
+
state: _FSDPState,
|
| 1601 |
+
buffer_names: List[str],
|
| 1602 |
+
) -> List[torch.dtype]:
|
| 1603 |
+
"""
|
| 1604 |
+
Returns the original buffer types of the given buffer names.
|
| 1605 |
+
"""
|
| 1606 |
+
buffer_dtypes: List[torch.dtype] = []
|
| 1607 |
+
for buffer_name in buffer_names:
|
| 1608 |
+
_p_assert(
|
| 1609 |
+
buffer_name in state._buffer_name_to_orig_dtype,
|
| 1610 |
+
f"{buffer_name} is missing from pre-computed dict on rank "
|
| 1611 |
+
f"{state.rank}, which only has keys "
|
| 1612 |
+
f"{state._buffer_name_to_orig_dtype.keys()}",
|
| 1613 |
+
)
|
| 1614 |
+
buffer_dtypes.append(state._buffer_name_to_orig_dtype[buffer_name])
|
| 1615 |
+
return buffer_dtypes
|
| 1616 |
+
|
| 1617 |
+
|
| 1618 |
+
def _cast_buffers_to_dtype_and_device(
|
| 1619 |
+
buffers: List[torch.Tensor],
|
| 1620 |
+
buffer_dtypes: List[Optional[torch.dtype]],
|
| 1621 |
+
device: torch.device,
|
| 1622 |
+
) -> None:
|
| 1623 |
+
"""
|
| 1624 |
+
Casts ``buffers`` to the dtypes given by ``buffer_dtypes`` and moves them
|
| 1625 |
+
to ``device``. If an element in ``buffer_dtypes`` is ``None``, then the
|
| 1626 |
+
corresponding buffer is only moved to ``device``.
|
| 1627 |
+
"""
|
| 1628 |
+
_p_assert(
|
| 1629 |
+
buffer_dtypes is None or len(buffers) == len(buffer_dtypes),
|
| 1630 |
+
f"Expects `buffers` and `buffer_dtypes` to have the same length if "
|
| 1631 |
+
f"`buffer_dtypes` is specified but got {len(buffers)} and "
|
| 1632 |
+
f"{len(buffer_dtypes)}",
|
| 1633 |
+
)
|
| 1634 |
+
for buffer, buffer_dtype in zip(buffers, buffer_dtypes):
|
| 1635 |
+
if not torch.is_floating_point(buffer) or buffer_dtype is None:
|
| 1636 |
+
buffer.data = buffer.to(device=device)
|
| 1637 |
+
else:
|
| 1638 |
+
buffer.data = buffer.to(device=device, dtype=buffer_dtype)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_shard_utils.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import copy
|
| 3 |
+
import itertools
|
| 4 |
+
import math
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch._utils import _get_device_module
|
| 10 |
+
from torch.distributed import distributed_c10d
|
| 11 |
+
from torch.distributed._shard.sharded_tensor import (
|
| 12 |
+
Shard,
|
| 13 |
+
ShardedTensor,
|
| 14 |
+
ShardedTensorMetadata,
|
| 15 |
+
TensorProperties,
|
| 16 |
+
)
|
| 17 |
+
from torch.distributed._shard.sharding_spec import ShardMetadata
|
| 18 |
+
from torch.distributed.tensor import DeviceMesh, DTensor, Replicate, Shard as DShard
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def _get_remote_device_str(rank, device_type, num_devices_per_node):
|
| 22 |
+
if device_type.lower() == "cpu":
|
| 23 |
+
return f"rank:{rank}/{device_type}"
|
| 24 |
+
elif device_type.lower() == "hpu":
|
| 25 |
+
return f"rank:{rank}/{device_type}:{_get_device_module(device_type).current_device()}"
|
| 26 |
+
else:
|
| 27 |
+
return f"rank:{rank}/{device_type}:{rank % num_devices_per_node}"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def _create_chunk_sharded_tensor(
|
| 31 |
+
tensor: torch.Tensor,
|
| 32 |
+
rank: int,
|
| 33 |
+
world_size: int,
|
| 34 |
+
num_devices_per_node: int,
|
| 35 |
+
pg: dist.ProcessGroup,
|
| 36 |
+
device: Optional[torch.device] = None,
|
| 37 |
+
) -> ShardedTensor:
|
| 38 |
+
"""
|
| 39 |
+
Shard a tensor to chunks along the first dimension. The local rank will gets its
|
| 40 |
+
corresponding chunk as the local shard to create a ShardedTensor.
|
| 41 |
+
"""
|
| 42 |
+
chunks = tensor.chunk(world_size, dim=0)
|
| 43 |
+
if len(chunks) > rank:
|
| 44 |
+
local_shard = chunks[rank].clone()
|
| 45 |
+
offsets = [0 for _ in tensor.size()]
|
| 46 |
+
offsets[0] = math.ceil(tensor.size()[0] / world_size) * rank
|
| 47 |
+
local_shards = [Shard.from_tensor_and_offsets(local_shard, offsets, rank)]
|
| 48 |
+
else:
|
| 49 |
+
local_shards = []
|
| 50 |
+
|
| 51 |
+
# Create a ShardedTensor without invoking communication.
|
| 52 |
+
chunk_sizes = [list(chunk.size()) for chunk in chunks]
|
| 53 |
+
dim0_offsets = [0] + list(
|
| 54 |
+
itertools.accumulate([chunk_size[0] for chunk_size in chunk_sizes])
|
| 55 |
+
)[:-1]
|
| 56 |
+
offsets = [0] * (len(chunk_sizes[0]) - 1)
|
| 57 |
+
chunk_offsets = [[d0] + offsets for d0 in dim0_offsets]
|
| 58 |
+
device_type = (
|
| 59 |
+
distributed_c10d._get_pg_default_device(pg).type
|
| 60 |
+
if device is None
|
| 61 |
+
else device.type
|
| 62 |
+
)
|
| 63 |
+
placements = [
|
| 64 |
+
_get_remote_device_str(
|
| 65 |
+
dist.get_global_rank(pg, r),
|
| 66 |
+
device_type,
|
| 67 |
+
num_devices_per_node,
|
| 68 |
+
)
|
| 69 |
+
for r in range(len(chunk_sizes))
|
| 70 |
+
]
|
| 71 |
+
assert len(chunk_sizes) == len(chunk_offsets) == len(placements)
|
| 72 |
+
shard_metadata = [
|
| 73 |
+
ShardMetadata(offset, size, placement)
|
| 74 |
+
for offset, size, placement in zip(chunk_offsets, chunk_sizes, placements)
|
| 75 |
+
]
|
| 76 |
+
sharded_tensor_metadata = ShardedTensorMetadata(
|
| 77 |
+
shards_metadata=shard_metadata,
|
| 78 |
+
size=tensor.size(),
|
| 79 |
+
tensor_properties=TensorProperties(
|
| 80 |
+
dtype=tensor.dtype,
|
| 81 |
+
layout=tensor.layout,
|
| 82 |
+
requires_grad=False,
|
| 83 |
+
memory_format=torch.contiguous_format,
|
| 84 |
+
pin_memory=tensor.is_pinned(),
|
| 85 |
+
),
|
| 86 |
+
)
|
| 87 |
+
return ShardedTensor._init_from_local_shards_and_global_metadata(
|
| 88 |
+
local_shards, sharded_tensor_metadata=sharded_tensor_metadata, process_group=pg
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _create_chunk_dtensor(
|
| 93 |
+
tensor: torch.Tensor,
|
| 94 |
+
rank: int,
|
| 95 |
+
device_mesh: DeviceMesh,
|
| 96 |
+
) -> DTensor:
|
| 97 |
+
"""
|
| 98 |
+
Shard a tensor to chunks along the first dimension. The local rank will gets its
|
| 99 |
+
corresponding chunk as the local tensor to create a DTensor.
|
| 100 |
+
"""
|
| 101 |
+
# We need to explicitly call .detach() to return a new tensor detached from the current graph.
|
| 102 |
+
tensor = tensor.clone().detach()
|
| 103 |
+
|
| 104 |
+
# FSDP placements: [Shard(0)]
|
| 105 |
+
# HSDP placements: [Replicate(), Shard(0)]
|
| 106 |
+
replicate_placements = [Replicate() for _ in range(device_mesh.ndim)]
|
| 107 |
+
shard_placements = [Replicate() for _ in range(device_mesh.ndim)]
|
| 108 |
+
shard_placements[-1] = DShard(0) # type: ignore[call-overload]
|
| 109 |
+
|
| 110 |
+
return DTensor.from_local(
|
| 111 |
+
tensor, device_mesh, replicate_placements, run_check=False
|
| 112 |
+
).redistribute(
|
| 113 |
+
placements=shard_placements,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def _all_gather_dtensor(
|
| 118 |
+
tensor: DTensor,
|
| 119 |
+
root_mesh: Optional[DeviceMesh],
|
| 120 |
+
) -> torch.Tensor:
|
| 121 |
+
"""
|
| 122 |
+
All gather a DTensor in its sharded dimension and return the local tensor.
|
| 123 |
+
"""
|
| 124 |
+
assert (
|
| 125 |
+
root_mesh == tensor.device_mesh
|
| 126 |
+
), "The device mesh of a tensor should be a root mesh."
|
| 127 |
+
|
| 128 |
+
placements = list(copy.deepcopy(tensor.placements))
|
| 129 |
+
# FSDP placements: [Shard(0)] -> [Replicate()]
|
| 130 |
+
# HSDP placements: [Replicate(), Shard(0)] -> [Replicate(), Replicate()]
|
| 131 |
+
placements[-1] = Replicate()
|
| 132 |
+
tensor = tensor.redistribute(
|
| 133 |
+
device_mesh=tensor.device_mesh,
|
| 134 |
+
placements=placements,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
return tensor.to_local()
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_state_dict_utils.py
ADDED
|
@@ -0,0 +1,924 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import contextlib
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import warnings
|
| 6 |
+
from typing import (
|
| 7 |
+
Any,
|
| 8 |
+
Callable,
|
| 9 |
+
cast,
|
| 10 |
+
Dict,
|
| 11 |
+
Generator,
|
| 12 |
+
Iterator,
|
| 13 |
+
List,
|
| 14 |
+
no_type_check,
|
| 15 |
+
Tuple,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.distributed as dist
|
| 20 |
+
import torch.distributed.algorithms._checkpoint.checkpoint_wrapper as checkpoint_wrapper
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
from torch.distributed._shard.sharded_tensor import (
|
| 24 |
+
init_from_local_shards,
|
| 25 |
+
Shard,
|
| 26 |
+
ShardedTensor,
|
| 27 |
+
)
|
| 28 |
+
from torch.distributed.device_mesh import _mesh_resources
|
| 29 |
+
from torch.distributed.fsdp._common_utils import (
|
| 30 |
+
_FSDPState,
|
| 31 |
+
_get_module_fsdp_state_if_fully_sharded_module,
|
| 32 |
+
_has_fsdp_params,
|
| 33 |
+
_is_composable,
|
| 34 |
+
_module_handle,
|
| 35 |
+
clean_tensor_name,
|
| 36 |
+
FSDP_PREFIX,
|
| 37 |
+
FSDP_WRAPPED_MODULE,
|
| 38 |
+
)
|
| 39 |
+
from torch.distributed.fsdp._debug_utils import SimpleProfiler
|
| 40 |
+
from torch.distributed.fsdp._runtime_utils import (
|
| 41 |
+
_cast_buffers_to_dtype_and_device,
|
| 42 |
+
_get_orig_buffer_dtypes,
|
| 43 |
+
_lazy_init,
|
| 44 |
+
_reset_flat_param_grad_info_if_needed,
|
| 45 |
+
)
|
| 46 |
+
from torch.distributed.fsdp.api import (
|
| 47 |
+
FullStateDictConfig,
|
| 48 |
+
ShardingStrategy,
|
| 49 |
+
StateDictType,
|
| 50 |
+
)
|
| 51 |
+
from torch.distributed.tensor import DTensor
|
| 52 |
+
from torch.distributed.utils import _replace_by_prefix
|
| 53 |
+
|
| 54 |
+
from ._fsdp_extensions import (
|
| 55 |
+
_ext_all_gather_dtensor,
|
| 56 |
+
_ext_chunk_dtensor,
|
| 57 |
+
_ext_chunk_tensor,
|
| 58 |
+
_ext_post_unflatten_transform,
|
| 59 |
+
_ext_pre_load_state_dict_transform,
|
| 60 |
+
)
|
| 61 |
+
from ._unshard_param_utils import _unshard_fsdp_state_params, FLAT_PARAM
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
logger = logging.getLogger(__name__)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def _should_unshard_params(fsdp_state: _FSDPState) -> bool:
|
| 68 |
+
return not (
|
| 69 |
+
fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
|
| 70 |
+
and (_is_composable(fsdp_state) or fsdp_state._use_orig_params)
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def _convert_to_wrapped_module_name(module_name: str) -> str:
|
| 75 |
+
module_name = module_name.replace(f"{FSDP_PREFIX}", "")
|
| 76 |
+
module_name = module_name.replace(f"{FSDP_WRAPPED_MODULE}", "")
|
| 77 |
+
if module_name:
|
| 78 |
+
module_name = f"{module_name}."
|
| 79 |
+
# `CheckpointWrapper` adds a prefix that has to be removed as well.
|
| 80 |
+
module_name = module_name.replace(checkpoint_wrapper._CHECKPOINT_PREFIX, "")
|
| 81 |
+
return module_name
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def _param_name_infos(
|
| 85 |
+
module: nn.Module, fsdp_state: _FSDPState
|
| 86 |
+
) -> Iterator[Tuple[str, str, str]]:
|
| 87 |
+
if not _has_fsdp_params(fsdp_state, module):
|
| 88 |
+
return
|
| 89 |
+
for param_name, module_name in _module_handle(
|
| 90 |
+
fsdp_state, module
|
| 91 |
+
).param_module_names():
|
| 92 |
+
module_name = _convert_to_wrapped_module_name(module_name)
|
| 93 |
+
fqn = f"{module_name}{param_name}"
|
| 94 |
+
yield fqn, param_name, module_name
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def _shared_param_name_infos(
|
| 98 |
+
module: nn.Module, fsdp_state
|
| 99 |
+
) -> Iterator[Tuple[str, str, str]]:
|
| 100 |
+
for param_name, module_name in _module_handle(
|
| 101 |
+
fsdp_state, module
|
| 102 |
+
).shared_param_module_names():
|
| 103 |
+
module_name = _convert_to_wrapped_module_name(module_name)
|
| 104 |
+
fqn = f"{module_name}{param_name}"
|
| 105 |
+
yield fqn, param_name, module_name
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@no_type_check
|
| 109 |
+
def _enter_unshard_params_ctx(
|
| 110 |
+
module: nn.Module,
|
| 111 |
+
fsdp_state: _FSDPState,
|
| 112 |
+
writeback: bool = False,
|
| 113 |
+
rank0_only: bool = False,
|
| 114 |
+
offload_to_cpu: bool = False,
|
| 115 |
+
with_grads: bool = False,
|
| 116 |
+
) -> None:
|
| 117 |
+
"""
|
| 118 |
+
state_dict hooks cannot use the pure context call as the checkpoint flow
|
| 119 |
+
requires to enter the context in the pre-hook but leave the context in the
|
| 120 |
+
post-hook. This API enters the context of ``_unshard_fsdp_state_params``.
|
| 121 |
+
"""
|
| 122 |
+
assert module not in fsdp_state._unshard_params_ctx, (
|
| 123 |
+
"Entering the ``_unshard_fsdp_state_params`` context but _unshard_params_ctx[module] "
|
| 124 |
+
"is not None."
|
| 125 |
+
)
|
| 126 |
+
fsdp_state._unshard_params_ctx[module] = _unshard_fsdp_state_params(
|
| 127 |
+
module,
|
| 128 |
+
fsdp_state,
|
| 129 |
+
writeback=writeback,
|
| 130 |
+
rank0_only=rank0_only,
|
| 131 |
+
offload_to_cpu=offload_to_cpu,
|
| 132 |
+
with_grads=with_grads,
|
| 133 |
+
)
|
| 134 |
+
fsdp_state._unshard_params_ctx[module].__enter__()
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
@no_type_check
|
| 138 |
+
def _exit_unshard_params_ctx(module: nn.Module, fsdp_state: _FSDPState) -> None:
|
| 139 |
+
"""A helper function to exit ``_unshard_fsdp_state_params`` context."""
|
| 140 |
+
fsdp_state._unshard_params_ctx[module].__exit__(None, None, None)
|
| 141 |
+
fsdp_state._unshard_params_ctx.pop(module)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def _common_pre_state_dict_hook(
|
| 145 |
+
module: nn.Module,
|
| 146 |
+
fsdp_state: _FSDPState,
|
| 147 |
+
) -> None:
|
| 148 |
+
"""Performs the pre-state_dict tasks shared by all state_dict types."""
|
| 149 |
+
if fsdp_state._device_handle.is_available():
|
| 150 |
+
fsdp_state._device_handle.synchronize()
|
| 151 |
+
# TODO: need to check if this is always correct for composable FSDP.
|
| 152 |
+
_lazy_init(fsdp_state, module)
|
| 153 |
+
if fsdp_state._is_root:
|
| 154 |
+
_reset_flat_param_grad_info_if_needed(fsdp_state._all_handles)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def _common_unshard_pre_state_dict_hook(
|
| 158 |
+
module: nn.Module,
|
| 159 |
+
fsdp_state: _FSDPState,
|
| 160 |
+
offload_to_cpu: bool,
|
| 161 |
+
rank0_only: bool,
|
| 162 |
+
) -> None:
|
| 163 |
+
"""
|
| 164 |
+
Performs the pre-state_dict tasks shared by all state_dict types that require
|
| 165 |
+
``_unshard_fsdp_state_params()``. FULL_STATE_DICT and SHARDED_STATE_DICT use this hook.
|
| 166 |
+
"""
|
| 167 |
+
# For composable `fully_shard`, it does not need to unshard parameters for `NO_SHARD` cases.
|
| 168 |
+
if not _should_unshard_params(fsdp_state):
|
| 169 |
+
return
|
| 170 |
+
_enter_unshard_params_ctx(
|
| 171 |
+
module,
|
| 172 |
+
fsdp_state,
|
| 173 |
+
writeback=False,
|
| 174 |
+
offload_to_cpu=offload_to_cpu,
|
| 175 |
+
rank0_only=rank0_only,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
@no_type_check
|
| 180 |
+
def _common_unshard_post_state_dict_hook(
|
| 181 |
+
module: nn.Module,
|
| 182 |
+
fsdp_state: _FSDPState,
|
| 183 |
+
state_dict: Dict[str, Any],
|
| 184 |
+
prefix: str,
|
| 185 |
+
param_hook: Callable,
|
| 186 |
+
) -> Dict[str, Any]:
|
| 187 |
+
"""
|
| 188 |
+
The post-state_dict flow that shared by all state_dict types that require
|
| 189 |
+
``_unshard_fsdp_state_params()``. FULL_STATE_DICT and SHARDED_STATE_DICT use this
|
| 190 |
+
hook.
|
| 191 |
+
"""
|
| 192 |
+
_replace_by_prefix(state_dict, prefix + f"{FSDP_PREFIX}", prefix)
|
| 193 |
+
# Return early for trivial cases
|
| 194 |
+
if not state_dict or not _has_fsdp_params(fsdp_state, module):
|
| 195 |
+
if _should_unshard_params(fsdp_state):
|
| 196 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
| 197 |
+
return state_dict
|
| 198 |
+
|
| 199 |
+
# If a rank does not have unsharded parameters(when `rank0_only=True`
|
| 200 |
+
# and `rank != 0`), then the rank only needed to participate in the
|
| 201 |
+
# all-gather and does not need to save the # state dict. We simply check
|
| 202 |
+
# rank0_only to ensure this issue.
|
| 203 |
+
rank0_only = (
|
| 204 |
+
fsdp_state._state_dict_type == StateDictType.FULL_STATE_DICT
|
| 205 |
+
and cast(FullStateDictConfig, fsdp_state._state_dict_config).rank0_only
|
| 206 |
+
)
|
| 207 |
+
# no_fsdp_return means the state_dict returned by this rank should contain
|
| 208 |
+
# only non-FSDP controlled parameters and buffers.
|
| 209 |
+
no_fsdp_return = rank0_only and fsdp_state.rank != 0
|
| 210 |
+
if no_fsdp_return and not fsdp_state._use_orig_params:
|
| 211 |
+
for clean_key in fsdp_state._buffer_names:
|
| 212 |
+
# This is a hack to support activation checkpoint.
|
| 213 |
+
clean_key = clean_key.replace(
|
| 214 |
+
f"{checkpoint_wrapper._CHECKPOINT_PREFIX}.", ""
|
| 215 |
+
)
|
| 216 |
+
state_dict.pop(f"{prefix}{clean_key}", None)
|
| 217 |
+
# Non-zero ranks have flat_param key when rank0_only=True, because rank0_only=True is
|
| 218 |
+
# passed in to unshard context, but nonzero ranks reshard early, causing this flat_param
|
| 219 |
+
# to appear in state_dict.
|
| 220 |
+
state_dict.pop(f"{prefix}{FLAT_PARAM}")
|
| 221 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
| 222 |
+
return state_dict
|
| 223 |
+
|
| 224 |
+
# Loop only the parameters saved in this instance's wrapped module to
|
| 225 |
+
# avoid processing buffers.
|
| 226 |
+
for fqn, param_name, module_name in _param_name_infos(module, fsdp_state):
|
| 227 |
+
fqn = f"{prefix}{fqn}"
|
| 228 |
+
if no_fsdp_return:
|
| 229 |
+
state_dict.pop(fqn)
|
| 230 |
+
continue
|
| 231 |
+
assert fqn in state_dict, (
|
| 232 |
+
f"FSDP assumes {fqn} is in the state_dict but the state_dict only "
|
| 233 |
+
f"has {state_dict.keys()}. "
|
| 234 |
+
f"prefix={prefix}, module_name={module_name}, "
|
| 235 |
+
f"param_name={param_name} rank={fsdp_state.rank}."
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
param_hook(state_dict, prefix, fqn)
|
| 239 |
+
|
| 240 |
+
if _should_unshard_params(fsdp_state):
|
| 241 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
| 242 |
+
|
| 243 |
+
cpu_device = torch.device("cpu")
|
| 244 |
+
buffer_clean_fqns = []
|
| 245 |
+
buffers = []
|
| 246 |
+
for clean_key in fsdp_state._buffer_names:
|
| 247 |
+
# This is a hack to support activation checkpoint.
|
| 248 |
+
clean_key = clean_tensor_name(clean_key)
|
| 249 |
+
fqn = f"{prefix}{clean_key}"
|
| 250 |
+
if fqn not in state_dict:
|
| 251 |
+
# A buffer can be registered as non-persistent.
|
| 252 |
+
continue
|
| 253 |
+
if no_fsdp_return:
|
| 254 |
+
state_dict.pop(fqn)
|
| 255 |
+
else:
|
| 256 |
+
buffer = state_dict[fqn]
|
| 257 |
+
if (
|
| 258 |
+
fsdp_state._state_dict_config.offload_to_cpu
|
| 259 |
+
and buffer.device != cpu_device
|
| 260 |
+
):
|
| 261 |
+
state_dict[fqn] = buffer.to(cpu_device)
|
| 262 |
+
# skip upcasting for ignored buffers
|
| 263 |
+
if clean_key not in fsdp_state._ignored_buffer_names:
|
| 264 |
+
buffer_clean_fqns.append(clean_key)
|
| 265 |
+
buffers.append(state_dict[fqn])
|
| 266 |
+
|
| 267 |
+
if buffers:
|
| 268 |
+
mixed_precision_enabled_for_buffers = (
|
| 269 |
+
fsdp_state._mixed_precision_enabled_for_buffers()
|
| 270 |
+
if not _is_composable(fsdp_state)
|
| 271 |
+
else (fsdp_state.mixed_precision.buffer_dtype is not None)
|
| 272 |
+
)
|
| 273 |
+
if mixed_precision_enabled_for_buffers:
|
| 274 |
+
buffer_dtypes = _get_orig_buffer_dtypes(fsdp_state, buffer_clean_fqns)
|
| 275 |
+
_cast_buffers_to_dtype_and_device(
|
| 276 |
+
buffers, buffer_dtypes, fsdp_state.compute_device
|
| 277 |
+
)
|
| 278 |
+
for buffer, clean_fqn in zip(buffers, buffer_clean_fqns):
|
| 279 |
+
fqn = f"{prefix}{clean_fqn}"
|
| 280 |
+
logger.info("FSDP is casting the dtype of %s to %s", fqn, buffer.dtype)
|
| 281 |
+
state_dict[fqn] = buffer.clone()
|
| 282 |
+
return state_dict
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
@no_type_check
|
| 286 |
+
def _full_pre_state_dict_hook(
|
| 287 |
+
fsdp_state: _FSDPState,
|
| 288 |
+
module: nn.Module,
|
| 289 |
+
*args,
|
| 290 |
+
**kwargs,
|
| 291 |
+
) -> None:
|
| 292 |
+
"""
|
| 293 |
+
Hook that runs before model.state_dict() is called. pre-state_dict hook is
|
| 294 |
+
not actually supported by ``nn.Module``. As a result, this API is called
|
| 295 |
+
from ``_full_post_state_dict_hook()`` to simulate the case. Once pre-state_dict
|
| 296 |
+
is supported in ``nn.Module``, this hook will be registered as a hook in
|
| 297 |
+
``nn.Module``.
|
| 298 |
+
"""
|
| 299 |
+
if getattr(fsdp_state, "_device_mesh", False):
|
| 300 |
+
root_mesh = _mesh_resources.get_root_mesh(fsdp_state._device_mesh)
|
| 301 |
+
|
| 302 |
+
_common_pre_state_dict_hook(module, fsdp_state)
|
| 303 |
+
_common_unshard_pre_state_dict_hook(
|
| 304 |
+
module,
|
| 305 |
+
fsdp_state,
|
| 306 |
+
offload_to_cpu=fsdp_state._state_dict_config.offload_to_cpu,
|
| 307 |
+
rank0_only=cast(FullStateDictConfig, fsdp_state._state_dict_config).rank0_only,
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
@no_type_check
|
| 312 |
+
def _full_post_state_dict_hook(
|
| 313 |
+
module: nn.Module,
|
| 314 |
+
fsdp_state: _FSDPState,
|
| 315 |
+
state_dict: Dict[str, Any],
|
| 316 |
+
prefix: str,
|
| 317 |
+
) -> Dict[str, Any]:
|
| 318 |
+
"""
|
| 319 |
+
Hook that runs after model.state_dict() is called before returning result to
|
| 320 |
+
user. For FSDP, we may have to clone the tensors in state_dict as params go
|
| 321 |
+
back to sharded version after _unshard_fsdp_state_params ends, and also remove
|
| 322 |
+
the ``FSDP_WRAPPED_MODULE`` prefix.
|
| 323 |
+
"""
|
| 324 |
+
|
| 325 |
+
def param_hook(
|
| 326 |
+
state_dict: Dict[str, Any],
|
| 327 |
+
prefix: str,
|
| 328 |
+
fqn: str,
|
| 329 |
+
) -> None:
|
| 330 |
+
clean_key = fqn
|
| 331 |
+
clean_prefix = clean_tensor_name(prefix)
|
| 332 |
+
# Strip prefix out of key if needed as buffer names and param names
|
| 333 |
+
# do not have prefix considered as they are not computed in `state_dict`
|
| 334 |
+
# call.
|
| 335 |
+
if clean_key.startswith(clean_prefix):
|
| 336 |
+
clean_key = clean_key[len(clean_prefix) :]
|
| 337 |
+
|
| 338 |
+
# Clone parameters before exiting the `_unshard_fsdp_state_params()` context.
|
| 339 |
+
if not getattr(state_dict[fqn], "_has_been_cloned", False):
|
| 340 |
+
try:
|
| 341 |
+
state_dict[fqn] = state_dict[fqn].clone().detach()
|
| 342 |
+
state_dict[fqn]._has_been_cloned = True # type: ignore[attr-defined]
|
| 343 |
+
except BaseException as e:
|
| 344 |
+
warnings.warn(
|
| 345 |
+
f"Failed to clone() tensor with name {fqn} on rank {fsdp_state.rank}. "
|
| 346 |
+
"This may mean that this state_dict entry could point to invalid "
|
| 347 |
+
"memory regions after returning from state_dict() call if this "
|
| 348 |
+
"parameter is managed by FSDP. Please check clone "
|
| 349 |
+
f"implementation of {fqn}. Error: {str(e)}"
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
return _common_unshard_post_state_dict_hook(
|
| 353 |
+
module, fsdp_state, state_dict, prefix, param_hook
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def _full_pre_load_state_dict_hook(
|
| 358 |
+
module: nn.Module,
|
| 359 |
+
fsdp_state: _FSDPState,
|
| 360 |
+
state_dict: Dict[str, Any],
|
| 361 |
+
prefix: str,
|
| 362 |
+
) -> None:
|
| 363 |
+
_lazy_init(fsdp_state, module)
|
| 364 |
+
if _should_unshard_params(fsdp_state):
|
| 365 |
+
with SimpleProfiler.profile("_enter_unshard_params_ctx"):
|
| 366 |
+
_enter_unshard_params_ctx(module, fsdp_state, writeback=True)
|
| 367 |
+
# Add FSDP_PREFIX only for wrapper-based FSDP.
|
| 368 |
+
if not _is_composable(fsdp_state):
|
| 369 |
+
_replace_by_prefix(state_dict, prefix, prefix + f"{FSDP_PREFIX}")
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def _full_post_load_state_dict_hook(
|
| 373 |
+
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
|
| 374 |
+
) -> None:
|
| 375 |
+
if _should_unshard_params(fsdp_state):
|
| 376 |
+
with SimpleProfiler.profile("_exit_unshard_params_ctx"):
|
| 377 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def _local_pre_state_dict_hook(
|
| 381 |
+
fsdp_state: _FSDPState,
|
| 382 |
+
module: nn.Module,
|
| 383 |
+
*args,
|
| 384 |
+
**kwargs,
|
| 385 |
+
) -> None:
|
| 386 |
+
"""
|
| 387 |
+
Hook that runs before model.state_dict() is called. Right now, pre-state_dict
|
| 388 |
+
hook is not supported by the PyTorch core. So this API is called from
|
| 389 |
+
`_local_post_state_dict_hook()` to simulate the case.
|
| 390 |
+
"""
|
| 391 |
+
if (
|
| 392 |
+
_has_fsdp_params(fsdp_state, module)
|
| 393 |
+
and not _module_handle(fsdp_state, module).uses_sharded_strategy
|
| 394 |
+
):
|
| 395 |
+
raise RuntimeError(
|
| 396 |
+
"``local_state_dict`` can only be used when parameters are flatten "
|
| 397 |
+
"and sharded."
|
| 398 |
+
)
|
| 399 |
+
_common_pre_state_dict_hook(module, fsdp_state)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
@no_type_check
|
| 403 |
+
def _local_post_state_dict_hook(
|
| 404 |
+
module: nn.Module,
|
| 405 |
+
fsdp_state: _FSDPState,
|
| 406 |
+
state_dict: Dict[str, Any],
|
| 407 |
+
prefix: str,
|
| 408 |
+
) -> Dict[str, Any]:
|
| 409 |
+
"""
|
| 410 |
+
This hook create a ShardedTensor from the local flat_param and replace
|
| 411 |
+
the state_dict[f"{prefix}{FLAT_PARAM}] with the ShardedTensor. No copy
|
| 412 |
+
will happen. The underlying storage is the same.
|
| 413 |
+
"""
|
| 414 |
+
|
| 415 |
+
_replace_by_prefix(state_dict, f"{prefix}{FSDP_PREFIX}", prefix)
|
| 416 |
+
if not _has_fsdp_params(fsdp_state, module):
|
| 417 |
+
return state_dict
|
| 418 |
+
|
| 419 |
+
# state_dict[f"{prefix}{FLAT_PARAM}"] exists and has the same tensor
|
| 420 |
+
# value as the flat_param but it is a pure Tensor because
|
| 421 |
+
# nn.Module.state_dict() will detach the parameter. Therefore, we need
|
| 422 |
+
# to get flat_param to get the metadata.
|
| 423 |
+
assert _module_handle(fsdp_state, module), "Should have returned early"
|
| 424 |
+
flat_param = _module_handle(fsdp_state, module).flat_param
|
| 425 |
+
# Constructs a ShardedTensor from the flat_param "without" padding.
|
| 426 |
+
# Removing the padding allows users to change the number of ranks
|
| 427 |
+
# when loading the local_state_dict.
|
| 428 |
+
full_numel = flat_param._unpadded_unsharded_size.numel() # type: ignore[attr-defined]
|
| 429 |
+
shard_offset = flat_param.numel() * fsdp_state.rank
|
| 430 |
+
valid_data_size = flat_param.numel() - flat_param._shard_numel_padded
|
| 431 |
+
if valid_data_size > 0:
|
| 432 |
+
# If FlatParameter is returned, FlatParameter._local_shard cause a
|
| 433 |
+
# pickling issue (can be torch.save but not torch.load). Since there
|
| 434 |
+
# is no benefit for state_dict to return the actual FlatParameter class,
|
| 435 |
+
# a view (which is a tensor) of the FlatParameter will be returned.
|
| 436 |
+
flat_param = flat_param[:valid_data_size].view(valid_data_size)
|
| 437 |
+
local_shards = [
|
| 438 |
+
Shard.from_tensor_and_offsets(flat_param, [shard_offset], fsdp_state.rank)
|
| 439 |
+
]
|
| 440 |
+
else:
|
| 441 |
+
local_shards = []
|
| 442 |
+
sharded_tensor = init_from_local_shards(
|
| 443 |
+
local_shards, full_numel, process_group=fsdp_state.process_group
|
| 444 |
+
) # type: ignore[assignment]
|
| 445 |
+
# TODO: Add DTensor state_dict support for LOCAL_STATE_DICT.
|
| 446 |
+
if fsdp_state._state_dict_config.offload_to_cpu:
|
| 447 |
+
sharded_tensor = sharded_tensor.cpu()
|
| 448 |
+
state_dict[f"{prefix}{FLAT_PARAM}"] = sharded_tensor
|
| 449 |
+
return state_dict
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
def _local_post_load_state_dict_hook(
|
| 453 |
+
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
|
| 454 |
+
) -> None:
|
| 455 |
+
pass
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def _local_pre_load_state_dict_hook(
|
| 459 |
+
module: nn.Module,
|
| 460 |
+
fsdp_state: _FSDPState,
|
| 461 |
+
state_dict: Dict[str, Any],
|
| 462 |
+
prefix: str,
|
| 463 |
+
) -> None:
|
| 464 |
+
"""
|
| 465 |
+
This hook finds the local flat_param for this FSDP module from the
|
| 466 |
+
state_dict. The flat_param should be a ShardedTensor. This hook converts
|
| 467 |
+
the ShardedTensor to a tensor. No copy happen unless padding is required.
|
| 468 |
+
"""
|
| 469 |
+
_lazy_init(fsdp_state, module)
|
| 470 |
+
_replace_by_prefix(state_dict, prefix, f"{prefix}{FSDP_PREFIX}")
|
| 471 |
+
fqn = f"{prefix}{FSDP_PREFIX}{FLAT_PARAM}"
|
| 472 |
+
if fqn not in state_dict:
|
| 473 |
+
assert not _has_fsdp_params(fsdp_state, module), (
|
| 474 |
+
"No `FlatParameter` in `state_dict` for this FSDP instance "
|
| 475 |
+
"but it has parameters"
|
| 476 |
+
)
|
| 477 |
+
return
|
| 478 |
+
load_tensor = state_dict[fqn]
|
| 479 |
+
assert isinstance(
|
| 480 |
+
load_tensor, ShardedTensor
|
| 481 |
+
), "Tensors in local_state_dict should be ShardedTensor."
|
| 482 |
+
|
| 483 |
+
# Convert the ShardedTensor to a Tensor.
|
| 484 |
+
flat_param = _module_handle(fsdp_state, module).flat_param
|
| 485 |
+
assert flat_param is not None
|
| 486 |
+
valid_data_size = flat_param.numel() - flat_param._shard_numel_padded
|
| 487 |
+
shards = load_tensor.local_shards()
|
| 488 |
+
if valid_data_size > 0:
|
| 489 |
+
assert len(shards), "load_local_state_dict assume one shard per ShardedTensor."
|
| 490 |
+
load_tensor = shards[0].tensor
|
| 491 |
+
|
| 492 |
+
# Get the metadata of the flat_param to decide whether to pad the loaded
|
| 493 |
+
# tensor.
|
| 494 |
+
if flat_param._shard_numel_padded > 0:
|
| 495 |
+
assert load_tensor.numel() < flat_param.numel(), (
|
| 496 |
+
f"Local shard size = {flat_param.numel()} and the tensor in "
|
| 497 |
+
f"the state_dict is {load_tensor.numel()}."
|
| 498 |
+
)
|
| 499 |
+
load_tensor = F.pad(load_tensor, [0, flat_param._shard_numel_padded])
|
| 500 |
+
else:
|
| 501 |
+
load_tensor = flat_param
|
| 502 |
+
# TODO: Add DTensor state_dict support for LOCAL_STATE_DICT.
|
| 503 |
+
state_dict[fqn] = load_tensor
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
def _sharded_pre_state_dict_hook(
|
| 507 |
+
fsdp_state: _FSDPState,
|
| 508 |
+
module: nn.Module,
|
| 509 |
+
*args,
|
| 510 |
+
**kwargs,
|
| 511 |
+
) -> None:
|
| 512 |
+
"""
|
| 513 |
+
Hook that runs before model.state_dict() is called. Check
|
| 514 |
+
``_full_pre_load_state_dict_hook`` for the detail.
|
| 515 |
+
"""
|
| 516 |
+
if (
|
| 517 |
+
_has_fsdp_params(fsdp_state, module)
|
| 518 |
+
and not _module_handle(fsdp_state, module).uses_sharded_strategy
|
| 519 |
+
):
|
| 520 |
+
raise RuntimeError(
|
| 521 |
+
"``sharded_state_dict`` can only be used when parameters are flatten "
|
| 522 |
+
"and sharded."
|
| 523 |
+
)
|
| 524 |
+
_common_pre_state_dict_hook(module, fsdp_state)
|
| 525 |
+
# Setting offload_to_cpu here does not work even if offload_to_cpu is True.
|
| 526 |
+
# We have to create ShardedTensor first then move it to CPU.
|
| 527 |
+
_common_unshard_pre_state_dict_hook(
|
| 528 |
+
module,
|
| 529 |
+
fsdp_state,
|
| 530 |
+
offload_to_cpu=False,
|
| 531 |
+
rank0_only=False,
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
@no_type_check
|
| 536 |
+
def _sharded_post_state_dict_hook(
|
| 537 |
+
module: nn.Module,
|
| 538 |
+
fsdp_state: _FSDPState,
|
| 539 |
+
state_dict: Dict[str, Any],
|
| 540 |
+
prefix: str,
|
| 541 |
+
) -> Dict[str, Any]:
|
| 542 |
+
"""
|
| 543 |
+
The hook replaces the unflattened, unsharded parameter in the state_dict
|
| 544 |
+
with a unflattened, sharded parameter (a ShardedTensor).
|
| 545 |
+
"""
|
| 546 |
+
|
| 547 |
+
def param_hook(state_dict: Dict[str, Any], prefix: str, fqn: str):
|
| 548 |
+
param = state_dict[fqn]
|
| 549 |
+
if not fsdp_state._state_dict_config._use_dtensor:
|
| 550 |
+
sharded_tensor = _ext_chunk_tensor(
|
| 551 |
+
tensor=param,
|
| 552 |
+
rank=fsdp_state.rank,
|
| 553 |
+
world_size=fsdp_state.world_size,
|
| 554 |
+
num_devices_per_node=fsdp_state._device_handle.device_count(),
|
| 555 |
+
pg=fsdp_state.process_group,
|
| 556 |
+
fsdp_extension=fsdp_state._fsdp_extension,
|
| 557 |
+
)
|
| 558 |
+
else:
|
| 559 |
+
sharded_tensor = _ext_chunk_dtensor(
|
| 560 |
+
tensor=param,
|
| 561 |
+
rank=fsdp_state.rank,
|
| 562 |
+
device_mesh=fsdp_state._device_mesh,
|
| 563 |
+
fsdp_extension=fsdp_state._fsdp_extension,
|
| 564 |
+
)
|
| 565 |
+
if fsdp_state._state_dict_config.offload_to_cpu:
|
| 566 |
+
sharded_tensor = sharded_tensor.cpu()
|
| 567 |
+
state_dict[fqn] = sharded_tensor
|
| 568 |
+
|
| 569 |
+
return _common_unshard_post_state_dict_hook(
|
| 570 |
+
module, fsdp_state, state_dict, prefix, param_hook
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
@no_type_check
|
| 575 |
+
def _sharded_post_load_state_dict_hook(
|
| 576 |
+
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
|
| 577 |
+
) -> None:
|
| 578 |
+
if _has_fsdp_params(fsdp_state, module):
|
| 579 |
+
with SimpleProfiler.profile("_exit_unshard_params_ctx"):
|
| 580 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
@no_type_check
|
| 584 |
+
def _sharded_pre_load_state_dict_hook(
|
| 585 |
+
module: nn.Module,
|
| 586 |
+
fsdp_state: _FSDPState,
|
| 587 |
+
state_dict: Dict[str, Any],
|
| 588 |
+
prefix: str,
|
| 589 |
+
) -> None:
|
| 590 |
+
"""
|
| 591 |
+
The hook combines the unflattened, sharded parameters (ShardedTensor) to
|
| 592 |
+
a new FlatParameter and shards the new FlatParameter to the local chunk.
|
| 593 |
+
"""
|
| 594 |
+
_lazy_init(fsdp_state, module)
|
| 595 |
+
if not _is_composable(fsdp_state):
|
| 596 |
+
_replace_by_prefix(state_dict, prefix, prefix + f"{FSDP_PREFIX}")
|
| 597 |
+
if not _has_fsdp_params(fsdp_state, module):
|
| 598 |
+
return
|
| 599 |
+
|
| 600 |
+
handle = _module_handle(fsdp_state, module)
|
| 601 |
+
if not handle.uses_sharded_strategy:
|
| 602 |
+
raise RuntimeError(
|
| 603 |
+
"load_sharded_state_dict can only be called when parameters "
|
| 604 |
+
"are flattened and sharded."
|
| 605 |
+
)
|
| 606 |
+
fqn_to_param_ext = dict(
|
| 607 |
+
zip(handle.flat_param._fqns, handle.flat_param._param_extensions)
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
for fqn, _, _ in _param_name_infos(module, fsdp_state):
|
| 611 |
+
if not _is_composable(fsdp_state):
|
| 612 |
+
fqn_from_global_root = f"{prefix}{FSDP_PREFIX}{fqn}"
|
| 613 |
+
else:
|
| 614 |
+
fqn_from_global_root = f"{prefix}{fqn}"
|
| 615 |
+
try:
|
| 616 |
+
param = state_dict.pop(fqn_from_global_root)
|
| 617 |
+
except KeyError:
|
| 618 |
+
logger.warning(
|
| 619 |
+
f"Did not find param with FQN {fqn_from_global_root}, skipping it. " # noqa: G004
|
| 620 |
+
"The weight will not be filled if you expect it to be."
|
| 621 |
+
)
|
| 622 |
+
continue # TODO: Improve unittesting for state_dict finetuning
|
| 623 |
+
# cases: https://github.com/pytorch/pytorch/issues/109134
|
| 624 |
+
|
| 625 |
+
if not fsdp_state._state_dict_config._use_dtensor:
|
| 626 |
+
# All-gather the param (ShardedTensor)
|
| 627 |
+
param, shards = _ext_pre_load_state_dict_transform(
|
| 628 |
+
param, fsdp_state._fsdp_extension
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
assert len(shards) < 2, (
|
| 632 |
+
"Expects 0 or 1 shard per rank "
|
| 633 |
+
f"but got {len(shards)} shards on rank {fsdp_state.rank}."
|
| 634 |
+
)
|
| 635 |
+
param_numel = param.size().numel()
|
| 636 |
+
dim_0_size = param.size()[0]
|
| 637 |
+
chunk_size = (
|
| 638 |
+
math.ceil(dim_0_size / fsdp_state.world_size)
|
| 639 |
+
* param_numel
|
| 640 |
+
// dim_0_size
|
| 641 |
+
)
|
| 642 |
+
if len(shards) == 1:
|
| 643 |
+
local_tensor = shards[0].tensor.flatten()
|
| 644 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.H2D):
|
| 645 |
+
local_tensor = local_tensor.to(fsdp_state.compute_device)
|
| 646 |
+
num_padding = chunk_size - local_tensor.numel()
|
| 647 |
+
if num_padding > 0:
|
| 648 |
+
local_tensor = F.pad(local_tensor, [0, num_padding])
|
| 649 |
+
else:
|
| 650 |
+
local_tensor = torch.zeros(
|
| 651 |
+
chunk_size, dtype=param.dtype, device=fsdp_state.compute_device
|
| 652 |
+
)
|
| 653 |
+
tensor = torch.empty(
|
| 654 |
+
chunk_size * fsdp_state.world_size,
|
| 655 |
+
dtype=local_tensor.dtype,
|
| 656 |
+
device=fsdp_state.compute_device,
|
| 657 |
+
)
|
| 658 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER):
|
| 659 |
+
dist.all_gather_into_tensor(
|
| 660 |
+
tensor, local_tensor, group=fsdp_state.process_group
|
| 661 |
+
)
|
| 662 |
+
tensor = tensor.narrow(0, 0, param_numel).reshape(param.size())
|
| 663 |
+
state_dict[fqn_from_global_root] = tensor
|
| 664 |
+
else:
|
| 665 |
+
if param.device != fsdp_state._device_mesh.device_type:
|
| 666 |
+
param = param.to(fsdp_state._device_mesh.device_type)
|
| 667 |
+
|
| 668 |
+
root_mesh = _mesh_resources.get_root_mesh(fsdp_state._device_mesh)
|
| 669 |
+
local_tensor = _ext_all_gather_dtensor(
|
| 670 |
+
param, root_mesh, fsdp_state._fsdp_extension
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
if fqn_to_param_ext.get(fqn) is not None:
|
| 674 |
+
ext = fqn_to_param_ext[fqn]
|
| 675 |
+
local_tensor = _ext_post_unflatten_transform(
|
| 676 |
+
local_tensor, ext, fsdp_state._fsdp_extension
|
| 677 |
+
)
|
| 678 |
+
state_dict[fqn_from_global_root] = local_tensor
|
| 679 |
+
|
| 680 |
+
with SimpleProfiler.profile("_enter_unshard_params_ctx"):
|
| 681 |
+
_enter_unshard_params_ctx(module, fsdp_state, writeback=True)
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
@contextlib.contextmanager
|
| 685 |
+
def _replace_with_full_state_dict_type(fsdp_state: _FSDPState) -> Generator:
|
| 686 |
+
old_state_dict_config = fsdp_state._state_dict_config
|
| 687 |
+
old_state_dict_type = fsdp_state._state_dict_type
|
| 688 |
+
fsdp_state._state_dict_config = FullStateDictConfig()
|
| 689 |
+
fsdp_state._state_dict_type = StateDictType.FULL_STATE_DICT
|
| 690 |
+
yield
|
| 691 |
+
fsdp_state._state_dict_config = old_state_dict_config
|
| 692 |
+
fsdp_state._state_dict_type = old_state_dict_type
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
@no_type_check
|
| 696 |
+
@torch.no_grad()
|
| 697 |
+
def _post_state_dict_hook(
|
| 698 |
+
module: nn.Module,
|
| 699 |
+
state_dict: Dict[str, Any],
|
| 700 |
+
prefix: str,
|
| 701 |
+
*args: Any,
|
| 702 |
+
) -> Dict[str, Any]:
|
| 703 |
+
"""
|
| 704 |
+
_post_state_dict_hook() is called after the state_dict() of this
|
| 705 |
+
FSDP module is executed. ``fsdp_state._state_dict_type`` is used to decide
|
| 706 |
+
what postprocessing will be done.
|
| 707 |
+
"""
|
| 708 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
| 709 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
| 710 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
| 711 |
+
warnings.warn(
|
| 712 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
| 713 |
+
"be returned."
|
| 714 |
+
)
|
| 715 |
+
else:
|
| 716 |
+
context = contextlib.nullcontext()
|
| 717 |
+
|
| 718 |
+
with context:
|
| 719 |
+
_post_state_dict_hook_fn = {
|
| 720 |
+
StateDictType.FULL_STATE_DICT: _full_post_state_dict_hook,
|
| 721 |
+
StateDictType.LOCAL_STATE_DICT: _local_post_state_dict_hook,
|
| 722 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_post_state_dict_hook,
|
| 723 |
+
}
|
| 724 |
+
processed_state_dict = _post_state_dict_hook_fn[fsdp_state._state_dict_type](
|
| 725 |
+
module, fsdp_state, state_dict, prefix
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
if fsdp_state._is_root:
|
| 729 |
+
logger.info("FSDP finished processing state_dict(), prefix=%s", prefix)
|
| 730 |
+
for key, tensor in sorted(processed_state_dict.items()):
|
| 731 |
+
if key.startswith(prefix) and isinstance(tensor, torch.Tensor):
|
| 732 |
+
local_shape = tensor.shape
|
| 733 |
+
if isinstance(tensor, ShardedTensor):
|
| 734 |
+
local_shape = None
|
| 735 |
+
shards = tensor.local_shards()
|
| 736 |
+
if shards:
|
| 737 |
+
local_shape = shards[0].tensor.shape
|
| 738 |
+
elif isinstance(tensor, DTensor):
|
| 739 |
+
local_shape = tensor.to_local().shape
|
| 740 |
+
logger.info(
|
| 741 |
+
"FQN=%s: type=%s, shape=%s, local_shape=%s, dtype=%s, device=%s",
|
| 742 |
+
key,
|
| 743 |
+
type(tensor),
|
| 744 |
+
tensor.shape,
|
| 745 |
+
local_shape,
|
| 746 |
+
tensor.dtype,
|
| 747 |
+
tensor.device,
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
return processed_state_dict
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
@no_type_check
|
| 754 |
+
@torch.no_grad()
|
| 755 |
+
def _pre_state_dict_hook(
|
| 756 |
+
module: nn.Module,
|
| 757 |
+
*args,
|
| 758 |
+
**kwargs,
|
| 759 |
+
) -> None:
|
| 760 |
+
"""
|
| 761 |
+
This is called before the core state dict saving logic of ``module``.
|
| 762 |
+
``fsdp_state._state_dict_type`` is used to decide what postprocessing will
|
| 763 |
+
be done.
|
| 764 |
+
"""
|
| 765 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
| 766 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
| 767 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
| 768 |
+
warnings.warn(
|
| 769 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
| 770 |
+
"be returned."
|
| 771 |
+
)
|
| 772 |
+
else:
|
| 773 |
+
_set_use_dtensor(fsdp_state)
|
| 774 |
+
context = contextlib.nullcontext()
|
| 775 |
+
|
| 776 |
+
with context:
|
| 777 |
+
_pre_state_dict_hook_fn = {
|
| 778 |
+
StateDictType.FULL_STATE_DICT: _full_pre_state_dict_hook,
|
| 779 |
+
StateDictType.LOCAL_STATE_DICT: _local_pre_state_dict_hook,
|
| 780 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_pre_state_dict_hook,
|
| 781 |
+
}
|
| 782 |
+
_pre_state_dict_hook_fn[fsdp_state._state_dict_type](
|
| 783 |
+
fsdp_state,
|
| 784 |
+
module,
|
| 785 |
+
*args,
|
| 786 |
+
**kwargs,
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
@no_type_check
|
| 791 |
+
def _set_use_dtensor(fsdp_state: _FSDPState) -> None:
|
| 792 |
+
# If device_mesh is passed in when initalizing FSDP, we automatically turn the
|
| 793 |
+
# _use_dtensor flag to be true for ShardedStateDictConfig().
|
| 794 |
+
if getattr(fsdp_state, "_device_mesh", None):
|
| 795 |
+
state_dict_type = fsdp_state._state_dict_type
|
| 796 |
+
if state_dict_type == StateDictType.LOCAL_STATE_DICT:
|
| 797 |
+
raise RuntimeError(
|
| 798 |
+
"Found state_dict_type LOCAL_STATE_DICT",
|
| 799 |
+
"DeviceMesh is not compatible with LOCAL_STATE_DICT.",
|
| 800 |
+
"Please set state_dict_type to SHARDED_STATE_DICT to get DTensor state_dict.",
|
| 801 |
+
)
|
| 802 |
+
else:
|
| 803 |
+
fsdp_state._state_dict_config._use_dtensor = True
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
@no_type_check
|
| 807 |
+
@torch.no_grad()
|
| 808 |
+
def _pre_load_state_dict_hook(
|
| 809 |
+
module: nn.Module,
|
| 810 |
+
state_dict: Dict[str, Any],
|
| 811 |
+
prefix: str,
|
| 812 |
+
*args: Any,
|
| 813 |
+
) -> None:
|
| 814 |
+
"""
|
| 815 |
+
This is called before ``module._load_from_state_dict()``.
|
| 816 |
+
``fsdp_state._state_dict_type`` is used to decide what preprocessing will
|
| 817 |
+
be done.
|
| 818 |
+
"""
|
| 819 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
| 820 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
| 821 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
| 822 |
+
warnings.warn(
|
| 823 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
| 824 |
+
"be returned."
|
| 825 |
+
)
|
| 826 |
+
else:
|
| 827 |
+
_set_use_dtensor(fsdp_state)
|
| 828 |
+
context = contextlib.nullcontext()
|
| 829 |
+
|
| 830 |
+
_lazy_init(fsdp_state, module)
|
| 831 |
+
if fsdp_state._is_root:
|
| 832 |
+
SimpleProfiler.reset()
|
| 833 |
+
|
| 834 |
+
with context:
|
| 835 |
+
_pre_load_state_dict_hook_fn = {
|
| 836 |
+
StateDictType.FULL_STATE_DICT: _full_pre_load_state_dict_hook,
|
| 837 |
+
StateDictType.LOCAL_STATE_DICT: _local_pre_load_state_dict_hook,
|
| 838 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_pre_load_state_dict_hook,
|
| 839 |
+
}
|
| 840 |
+
# Code that is common for all state_dict impls
|
| 841 |
+
if fsdp_state._device_handle.is_available():
|
| 842 |
+
fsdp_state._device_handle.synchronize()
|
| 843 |
+
# Dispatch into state_dict specific implementation of pre-hook.
|
| 844 |
+
_pre_load_state_dict_hook_fn[fsdp_state._state_dict_type](
|
| 845 |
+
module, fsdp_state, state_dict, prefix
|
| 846 |
+
)
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
@no_type_check
|
| 850 |
+
@torch.no_grad()
|
| 851 |
+
def _post_load_state_dict_hook(
|
| 852 |
+
module: nn.Module,
|
| 853 |
+
incompatible_keys: Tuple[List[str], List[str]],
|
| 854 |
+
*args: Any,
|
| 855 |
+
) -> None:
|
| 856 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
| 857 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
| 858 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
| 859 |
+
warnings.warn(
|
| 860 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
| 861 |
+
"be returned."
|
| 862 |
+
)
|
| 863 |
+
else:
|
| 864 |
+
context = contextlib.nullcontext()
|
| 865 |
+
|
| 866 |
+
with context:
|
| 867 |
+
_post_load_state_dict_hook_fn = {
|
| 868 |
+
StateDictType.FULL_STATE_DICT: _full_post_load_state_dict_hook,
|
| 869 |
+
StateDictType.LOCAL_STATE_DICT: _local_post_load_state_dict_hook,
|
| 870 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_post_load_state_dict_hook,
|
| 871 |
+
}
|
| 872 |
+
# Code that is common for all state_dict impls
|
| 873 |
+
# Dispatch into state_dict type specific implementation of post-hook for
|
| 874 |
+
# loading state_dict.
|
| 875 |
+
_post_load_state_dict_hook_fn[fsdp_state._state_dict_type](module, fsdp_state)
|
| 876 |
+
|
| 877 |
+
# When reporting incompatible keys, trim FSDP prefixes.
|
| 878 |
+
missing_keys = incompatible_keys[0]
|
| 879 |
+
unexpected_keys = incompatible_keys[1]
|
| 880 |
+
for i in range(len(missing_keys)):
|
| 881 |
+
missing_keys[i] = clean_tensor_name(missing_keys[i])
|
| 882 |
+
|
| 883 |
+
for i in range(len(unexpected_keys)):
|
| 884 |
+
unexpected_keys[i] = clean_tensor_name(unexpected_keys[i])
|
| 885 |
+
|
| 886 |
+
if fsdp_state._is_root:
|
| 887 |
+
SimpleProfiler.dump_and_reset("FSDP model load_state_dict profiling: ")
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
def _register_all_state_dict_hooks(state: _FSDPState):
|
| 891 |
+
"""
|
| 892 |
+
Registers pre-save, post-save, pre-load, and post-load state dict hooks.
|
| 893 |
+
"""
|
| 894 |
+
for hook_registration_fn_str, hook, hook_registration_fn_kwargs in (
|
| 895 |
+
("register_state_dict_pre_hook", _pre_state_dict_hook, {}),
|
| 896 |
+
("_register_state_dict_hook", _post_state_dict_hook, {}),
|
| 897 |
+
(
|
| 898 |
+
"_register_load_state_dict_pre_hook",
|
| 899 |
+
_pre_load_state_dict_hook,
|
| 900 |
+
{"with_module": True},
|
| 901 |
+
),
|
| 902 |
+
("register_load_state_dict_post_hook", _post_load_state_dict_hook, {}),
|
| 903 |
+
):
|
| 904 |
+
_register_state_dict_hooks_base(
|
| 905 |
+
state, hook_registration_fn_str, hook, hook_registration_fn_kwargs
|
| 906 |
+
)
|
| 907 |
+
|
| 908 |
+
|
| 909 |
+
@no_type_check
|
| 910 |
+
def _register_state_dict_hooks_base(
|
| 911 |
+
state: _FSDPState,
|
| 912 |
+
hook_registration_fn_name: str,
|
| 913 |
+
hook: Callable,
|
| 914 |
+
hook_registration_fn_kwargs: Dict[str, Any],
|
| 915 |
+
) -> None:
|
| 916 |
+
"""Registers ``hook`` using ``hook_registration_fn``."""
|
| 917 |
+
if not _is_composable(state):
|
| 918 |
+
getattr(state, hook_registration_fn_name)(hook, **hook_registration_fn_kwargs)
|
| 919 |
+
else:
|
| 920 |
+
handle = state._handle
|
| 921 |
+
if handle:
|
| 922 |
+
getattr(handle._fully_sharded_module, hook_registration_fn_name)(
|
| 923 |
+
hook, **hook_registration_fn_kwargs
|
| 924 |
+
)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_trace_utils.py
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import functools
|
| 3 |
+
from contextlib import contextmanager
|
| 4 |
+
from dataclasses import dataclass, field
|
| 5 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Tuple
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@dataclass
|
| 12 |
+
class TracingConfig:
|
| 13 |
+
"""
|
| 14 |
+
This represents a symbolic tracing configuration.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
tracer (torch.fx.Tracer): An instance of :class:`torch.fx.Tracer` to
|
| 18 |
+
use for symbolic tracing. The default value is the native
|
| 19 |
+
:class:`torch.fx.Tracer` constructed with default arguments.
|
| 20 |
+
However, the user may want to pass a different value such as the
|
| 21 |
+
``HFTracer`` for models in the HuggingFace Transformers_ library.
|
| 22 |
+
.. _Transformers: https://huggingface.co/docs/transformers/index
|
| 23 |
+
concrete_args (Optional[Dict[str, Any]]): Concrete arguments that
|
| 24 |
+
should not be treated as ``torch.fx.Proxy`` when tracing the
|
| 25 |
+
module ``forward()``. Passing ``concrete_args`` allows partially
|
| 26 |
+
specializing the forward, e.g. to remove control flow or data
|
| 27 |
+
structures. This ``concrete_args`` here is the same argument used
|
| 28 |
+
in :meth:`~torch.fx.Tracer.trace`.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
tracer: torch.fx.Tracer = field(default_factory=torch.fx.Tracer)
|
| 32 |
+
concrete_args: Optional[Dict[str, Any]] = None
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class _ParamUsageInfo(NamedTuple):
|
| 36 |
+
"""
|
| 37 |
+
This is used for ``_ExecutionInfo.module_to_param_usage_infos`` to record
|
| 38 |
+
execution information. The ``dict`` maps modules to a list of these
|
| 39 |
+
``_ParamUsageInfo`` instances, where each instance represents a group of
|
| 40 |
+
parameters used together.
|
| 41 |
+
|
| 42 |
+
Specifically, for each module key in the ``dict``, each instance of this
|
| 43 |
+
class represents either:
|
| 44 |
+
(1) the module and some sublist of its ``named_parameters()`` used
|
| 45 |
+
together in execution (see ``_patched_create_proxy()``), or
|
| 46 |
+
(2) a submodule and all of ``submodule.named_parameters()`` (see
|
| 47 |
+
``_patched_call_module()``).
|
| 48 |
+
|
| 49 |
+
Type (1) corresponds to directly using parameters in ops without calling
|
| 50 |
+
``forward()``, and type (2) corresponds to calling ``forward()``. The
|
| 51 |
+
mapped-to lists in the ``dict`` follow the execution order.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
module: nn.Module
|
| 55 |
+
named_params: List[Tuple[str, nn.Parameter]]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class _ExecutionInfo:
|
| 59 |
+
"""
|
| 60 |
+
This represents the execution order information from the forward pass.
|
| 61 |
+
|
| 62 |
+
Attributes:
|
| 63 |
+
curr_module (nn.Module): Current module being traced.
|
| 64 |
+
module_forward_order (List[nn.Module]): The modules in (pre-)forward
|
| 65 |
+
order, i.e. the order in which their ``forward()`` methods are
|
| 66 |
+
called. Each call to a module's ``forward()`` corresponds to one
|
| 67 |
+
element in the list.
|
| 68 |
+
module_to_param_usage_infos (Dict[nn.Module, List[_ParamUsageInfo]]):
|
| 69 |
+
Maps a module to a list of module execution infos. See
|
| 70 |
+
:class:`_ParamUsageInfo` for details.
|
| 71 |
+
param_forward_order (List[nn.Parameter]): The parameters in forward
|
| 72 |
+
execution order, where only a parameter's first participation is
|
| 73 |
+
included.
|
| 74 |
+
visited_params (Set[nn.Parameter]): The parameters visited so far
|
| 75 |
+
during the trace. This is only used during tracing for fast
|
| 76 |
+
membership check. Invariant: The parameters in
|
| 77 |
+
``param_forward_order`` are exactly those in ``visited_params``.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
def __init__(self, root_module: nn.Module) -> None:
|
| 81 |
+
self.curr_module: nn.Module = root_module
|
| 82 |
+
self.module_forward_order: List[nn.Module] = [root_module]
|
| 83 |
+
self.module_to_param_usage_infos: Dict[nn.Module, List[_ParamUsageInfo]] = {
|
| 84 |
+
root_module: []
|
| 85 |
+
}
|
| 86 |
+
self.param_forward_order: List[nn.Parameter] = []
|
| 87 |
+
self.visited_params: Set[nn.Parameter] = set()
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class _ExecOrderTracer:
|
| 91 |
+
def __init__(self) -> None:
|
| 92 |
+
self.exec_info: Optional[_ExecutionInfo] = None
|
| 93 |
+
|
| 94 |
+
@contextmanager
|
| 95 |
+
def patch_tracer(self, tracer: torch.fx.Tracer, root_module: nn.Module):
|
| 96 |
+
self.exec_info = _ExecutionInfo(root_module)
|
| 97 |
+
orig_call_module = tracer.call_module
|
| 98 |
+
orig_create_proxy = tracer.create_proxy
|
| 99 |
+
tracer.call_module = functools.partial( # type: ignore[method-assign]
|
| 100 |
+
self._patched_call_module, orig_call_module, self.exec_info
|
| 101 |
+
)
|
| 102 |
+
fqn_to_param = dict(root_module.named_parameters())
|
| 103 |
+
tracer.create_proxy = functools.partial( # type: ignore[method-assign]
|
| 104 |
+
self._patched_create_proxy,
|
| 105 |
+
orig_create_proxy,
|
| 106 |
+
self.exec_info,
|
| 107 |
+
fqn_to_param,
|
| 108 |
+
)
|
| 109 |
+
try:
|
| 110 |
+
yield
|
| 111 |
+
finally:
|
| 112 |
+
tracer.call_module = orig_call_module # type: ignore[method-assign]
|
| 113 |
+
tracer.create_proxy = orig_create_proxy # type: ignore[method-assign]
|
| 114 |
+
|
| 115 |
+
def _patched_call_module(
|
| 116 |
+
self,
|
| 117 |
+
call_module: Callable,
|
| 118 |
+
exec_info: _ExecutionInfo,
|
| 119 |
+
# Below are the expected arguments to `call_module()`
|
| 120 |
+
module: nn.Module,
|
| 121 |
+
forward: Callable,
|
| 122 |
+
args: Tuple[Any, ...],
|
| 123 |
+
kwargs: Dict[str, Any],
|
| 124 |
+
) -> Any:
|
| 125 |
+
"""
|
| 126 |
+
Overrides ``call_module`` to save execution information to
|
| 127 |
+
``exec_info``. Note that ``call_module`` is called during symbolic
|
| 128 |
+
tracing for each non-root module.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
call_module (Callable): Original ``call_module`` to override.
|
| 132 |
+
exec_info (_ExecutionInfo): Used to record execution information.
|
| 133 |
+
module (nn.Module): Module corresponding to this ``call_module``.
|
| 134 |
+
forward (Callable): ``forward()`` method of ``module`` to be called
|
| 135 |
+
for this ``call_module``.
|
| 136 |
+
args (Tuple[Any, ...]): Positional arguments for ``forward``.
|
| 137 |
+
kwargs (Dict[str, Any]): Keyword arguments for ``forward``.
|
| 138 |
+
|
| 139 |
+
Returns:
|
| 140 |
+
Same return value as ``call_module``.
|
| 141 |
+
"""
|
| 142 |
+
exec_info.module_forward_order.append(module)
|
| 143 |
+
named_params = list(module.named_parameters())
|
| 144 |
+
curr_module = exec_info.curr_module
|
| 145 |
+
if named_params:
|
| 146 |
+
assert (
|
| 147 |
+
curr_module in exec_info.module_to_param_usage_infos
|
| 148 |
+
), "The current module should have already been processed by a patched `call_module`"
|
| 149 |
+
exec_info.module_to_param_usage_infos[exec_info.curr_module].append(
|
| 150 |
+
_ParamUsageInfo(module, named_params)
|
| 151 |
+
)
|
| 152 |
+
prev_curr_module = curr_module
|
| 153 |
+
exec_info.curr_module = module
|
| 154 |
+
exec_info.module_to_param_usage_infos[module] = []
|
| 155 |
+
output = call_module(module, forward, args, kwargs)
|
| 156 |
+
exec_info.curr_module = prev_curr_module
|
| 157 |
+
return output
|
| 158 |
+
|
| 159 |
+
def _patched_create_proxy(
|
| 160 |
+
self,
|
| 161 |
+
create_proxy: Callable,
|
| 162 |
+
exec_info: _ExecutionInfo,
|
| 163 |
+
fqn_to_param: Dict[str, nn.Parameter],
|
| 164 |
+
# Below are the expected arguments to `create_proxy()`
|
| 165 |
+
kind: str,
|
| 166 |
+
target: torch.fx.node.Target,
|
| 167 |
+
args: Tuple[Any, ...],
|
| 168 |
+
kwargs: Dict[str, Any],
|
| 169 |
+
name: Optional[str] = None,
|
| 170 |
+
type_expr: Optional[Any] = None,
|
| 171 |
+
proxy_factory_fn: Optional[Callable[[torch.fx.Node], torch.fx.Proxy]] = None,
|
| 172 |
+
) -> torch.fx.Proxy:
|
| 173 |
+
"""
|
| 174 |
+
Overrides ``create_proxy`` to save execution information to
|
| 175 |
+
``exec_info``. Note that ``create_proxy`` is called during symbolic
|
| 176 |
+
tracing for each leaf function/method/module.
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
create_proxy (Callable): Original ``create_proxy`` to override.
|
| 180 |
+
exec_info (_ExecutionInfo): Used to record execution information.
|
| 181 |
+
fqn_to_param (Dict[str, nn.Parameter]): ``dict`` version of the
|
| 182 |
+
root module's ``named_parameters()`` with FQN as key and
|
| 183 |
+
parameter as value.
|
| 184 |
+
kind (str): Kind of the target method ('call_function',
|
| 185 |
+
'call_method', 'get_attr', 'call_module', 'placeholder', or
|
| 186 |
+
'output'). See :class:`torch.fx.Graph` for details. This is
|
| 187 |
+
passed to ``create_proxy``.
|
| 188 |
+
target (torch.fx.node.Target): Contains the string name of the
|
| 189 |
+
function/method/module. This is passed to ``create_proxy``.
|
| 190 |
+
args (Tuple[Any, ...]): Positional arguments for the function/
|
| 191 |
+
method/module. This is passed to ``create_proxy``.
|
| 192 |
+
kwargs (Dict[str, Any]): Keyword arguments for the function/method/
|
| 193 |
+
module. This is passed to ``create_proxy``
|
| 194 |
+
name (Optional[str]): An optional string name for the ``Node``
|
| 195 |
+
created in ``create_proxy``. This is passed to
|
| 196 |
+
``create_proxy``.
|
| 197 |
+
type_expr (Optional[Any]): An optional type annotation representing
|
| 198 |
+
the Python type that the output of the node has. This is passed
|
| 199 |
+
to ``create_proxy``.
|
| 200 |
+
proxy_factory_fn (Callable[[torch.fx.Node], torch.fx.Proxy]):
|
| 201 |
+
An alternative proxy constructor used in ``create_proxy``. This
|
| 202 |
+
is passed to ``create_proxy``.
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
torch.fx.Proxy: Created ``Node`` wrapped in a ``Proxy`` object.
|
| 206 |
+
"""
|
| 207 |
+
proxy = create_proxy(
|
| 208 |
+
kind, target, args, kwargs, name, type_expr, proxy_factory_fn
|
| 209 |
+
)
|
| 210 |
+
curr_module = exec_info.curr_module
|
| 211 |
+
if kind in ("call_function", "call_method"):
|
| 212 |
+
if args is not None:
|
| 213 |
+
named_params: List[Tuple[str, nn.Parameter]] = []
|
| 214 |
+
for arg in args:
|
| 215 |
+
if (
|
| 216 |
+
isinstance(arg, torch.fx.Proxy)
|
| 217 |
+
and arg.node.target in fqn_to_param
|
| 218 |
+
):
|
| 219 |
+
param = fqn_to_param[arg.node.target] # type: ignore[index]
|
| 220 |
+
named_params.append((arg.node.target, param)) # type: ignore[arg-type]
|
| 221 |
+
if param not in exec_info.visited_params:
|
| 222 |
+
exec_info.visited_params.add(param)
|
| 223 |
+
exec_info.param_forward_order.append(param)
|
| 224 |
+
if named_params:
|
| 225 |
+
exec_info.module_to_param_usage_infos[curr_module].append(
|
| 226 |
+
_ParamUsageInfo(curr_module, named_params)
|
| 227 |
+
)
|
| 228 |
+
elif kind == "call_module":
|
| 229 |
+
named_params = list(curr_module.named_parameters())
|
| 230 |
+
if named_params:
|
| 231 |
+
exec_info.module_to_param_usage_infos[curr_module].append(
|
| 232 |
+
_ParamUsageInfo(curr_module, named_params)
|
| 233 |
+
)
|
| 234 |
+
for _, param in named_params:
|
| 235 |
+
if param not in exec_info.visited_params:
|
| 236 |
+
exec_info.visited_params.add(param)
|
| 237 |
+
exec_info.param_forward_order.append(param)
|
| 238 |
+
return proxy
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_traversal_utils.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
NOTE: This file must be imported like
|
| 3 |
+
``import torch.distributed.fsdp._traversal_utils`` and not like
|
| 4 |
+
``from torch.distirbuted.fsdp._traversal_utils import ...`` to avoid circular
|
| 5 |
+
imports. For brevity, we may import the file as ``traversal_utils``.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import collections
|
| 9 |
+
from typing import Deque, List, Set, Tuple
|
| 10 |
+
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
from torch.distributed._composable.contract import _get_registry
|
| 13 |
+
from torch.distributed.fsdp._common_utils import _FSDPState, _get_module_fsdp_state
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
[Note: FSDP State Traversal]
|
| 18 |
+
For the wrapper code path, ``_FSDPState`` is the ``FullyShardedDataParallel``
|
| 19 |
+
module wrapping a fully sharded module, and for the non-wrapper code path,
|
| 20 |
+
``_FSDPState`` is an object that gets embedded on a fully sharded module.
|
| 21 |
+
See [Note: Fully Sharded Module] for the definition.
|
| 22 |
+
|
| 23 |
+
There are three common traversal idioms: Given a root module,
|
| 24 |
+
- ``_get_fsdp_states()`` returns all ``_FSDPState`` s in the tree.
|
| 25 |
+
- ``get_fsdp_root_states()`` returns all local root ``_FSDPState`` s in the
|
| 26 |
+
tree (i.e. those with ``_is_root == True``).
|
| 27 |
+
- ``_get_fsdp_handles()``returns all ``FlatParamHandle`` s in the tree.
|
| 28 |
+
|
| 29 |
+
All of these methods must take in the root module (i.e. an ``nn.Module``) and
|
| 30 |
+
not a general ``_FSDPState`` because ``_FSDPState`` does not support a graph
|
| 31 |
+
traversal, whereas ``nn.Module`` has ``nn.Module.modules()`` for traversal.
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def _composable(module: nn.Module) -> bool:
|
| 36 |
+
"""
|
| 37 |
+
Returns if ``module`` can compose with ``fully_shard``.
|
| 38 |
+
"""
|
| 39 |
+
# TODO: Add any other composable APIs that are mutually exclusive.
|
| 40 |
+
registry = _get_registry(module)
|
| 41 |
+
if registry is None:
|
| 42 |
+
return True
|
| 43 |
+
return "replicate" not in registry
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# TODO (awgu): We may be able to remove this function if we retired the
|
| 47 |
+
# `use_orig_params=False` code path since so far we only need the module for
|
| 48 |
+
# `FlatParameter` registration, which is not needed for `use_orig_params=True`.
|
| 49 |
+
def _get_fsdp_states_with_modules(
|
| 50 |
+
module: nn.Module,
|
| 51 |
+
) -> Tuple[List[_FSDPState], List[nn.Module]]:
|
| 52 |
+
"""
|
| 53 |
+
Returns a tuple containing:
|
| 54 |
+
1. A list of the ``_FSDPState`` instances in the module tree rooted at
|
| 55 |
+
``module`` without any duplicates and following the ``module.modules()``
|
| 56 |
+
traversal order (which is assumed to be depth-first).
|
| 57 |
+
2. A corresponding list of the modules owning the states in the first list.
|
| 58 |
+
|
| 59 |
+
For the wrapper code path, both returned lists are the same, each
|
| 60 |
+
containing all ``FullyShardedDataParallel`` instances. For the composable
|
| 61 |
+
code path, this returns a list of all composable state instances and a list
|
| 62 |
+
of the corresponding fully sharded modules. See [Note: Fully Sharded
|
| 63 |
+
Module].
|
| 64 |
+
|
| 65 |
+
NOTE: The traversal does not proceed into any module annotated by an
|
| 66 |
+
incompatible API (e.g. ``replicate``).
|
| 67 |
+
"""
|
| 68 |
+
fsdp_states: List[_FSDPState] = []
|
| 69 |
+
fsdp_modules: List[nn.Module] = []
|
| 70 |
+
# Track the visited FSDP states since multiple modules may share the same
|
| 71 |
+
# one and we want to return a de-duplicated list
|
| 72 |
+
visited_fsdp_states: Set[_FSDPState] = set()
|
| 73 |
+
# Track the visited modules in case of shared modules, which implies the
|
| 74 |
+
# module graph is no longer a tree
|
| 75 |
+
visited_modules: Set[nn.Module] = set()
|
| 76 |
+
|
| 77 |
+
# Perform depth-first search from `module` to ensure that we do not
|
| 78 |
+
# traverse into an incompatible API's subtree (use DFS instead of BFS to
|
| 79 |
+
# match `.modules()` order)
|
| 80 |
+
deque: Deque[nn.Module] = collections.deque([module])
|
| 81 |
+
while deque:
|
| 82 |
+
submodule = deque.popleft()
|
| 83 |
+
visited_modules.add(submodule)
|
| 84 |
+
if not _composable(submodule):
|
| 85 |
+
continue
|
| 86 |
+
for child_module in reversed(list(submodule.children())):
|
| 87 |
+
if child_module not in visited_modules:
|
| 88 |
+
deque.appendleft(child_module)
|
| 89 |
+
optional_state = _get_module_fsdp_state(submodule)
|
| 90 |
+
if optional_state is not None and optional_state not in visited_fsdp_states:
|
| 91 |
+
visited_fsdp_states.add(optional_state)
|
| 92 |
+
fsdp_states.append(optional_state)
|
| 93 |
+
fsdp_modules.append(submodule)
|
| 94 |
+
return fsdp_states, fsdp_modules
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def _get_fsdp_states(module: nn.Module) -> List[_FSDPState]:
|
| 98 |
+
"""See :func:`_get_fsdp_states_with_modules`."""
|
| 99 |
+
fsdp_states, _ = _get_fsdp_states_with_modules(module)
|
| 100 |
+
return fsdp_states
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def _get_fsdp_handles(module: nn.Module) -> List:
|
| 104 |
+
"""
|
| 105 |
+
Returns all ``FlatParamHandle`` s in the module tree rooted at ``module``
|
| 106 |
+
following the rules in :func:`_get_fsdp_state`.
|
| 107 |
+
"""
|
| 108 |
+
handles = [
|
| 109 |
+
fsdp_state._handle
|
| 110 |
+
for fsdp_state in _get_fsdp_states(module)
|
| 111 |
+
if fsdp_state._handle is not None
|
| 112 |
+
]
|
| 113 |
+
return handles
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/_unshard_param_utils.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import contextlib
|
| 3 |
+
import warnings
|
| 4 |
+
from typing import cast, Generator
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch.distributed.fsdp._common_utils import (
|
| 10 |
+
_FSDPState,
|
| 11 |
+
_get_module_fsdp_state,
|
| 12 |
+
_has_fsdp_params,
|
| 13 |
+
_module_handle,
|
| 14 |
+
HandleTrainingState,
|
| 15 |
+
TrainingState,
|
| 16 |
+
)
|
| 17 |
+
from torch.distributed.fsdp._runtime_utils import (
|
| 18 |
+
_lazy_init,
|
| 19 |
+
_reset_flat_param_grad_info_if_needed,
|
| 20 |
+
_reshard,
|
| 21 |
+
_reshard_grads,
|
| 22 |
+
_unshard,
|
| 23 |
+
_unshard_grads,
|
| 24 |
+
)
|
| 25 |
+
from torch.distributed.utils import _p_assert
|
| 26 |
+
|
| 27 |
+
from ._flat_param import FlatParamHandle
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
FLAT_PARAM = "_flat_param"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@torch.no_grad()
|
| 34 |
+
def _writeback_to_local_shard(
|
| 35 |
+
handle: FlatParamHandle,
|
| 36 |
+
writeback_grad: bool,
|
| 37 |
+
):
|
| 38 |
+
"""
|
| 39 |
+
For the handle, writes back the this rank's shard of the unsharded
|
| 40 |
+
flattened parameter to the sharded flattened parameter. If
|
| 41 |
+
``writeback_grad=True``, then writes back to the sharded gradient as
|
| 42 |
+
well.
|
| 43 |
+
|
| 44 |
+
Precondition: The handle's ``FlatParameter`` 's data points to the
|
| 45 |
+
padded unsharded flattened parameter.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
def _get_shard(flat_param_or_grad: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
if handle.uses_sharded_strategy:
|
| 50 |
+
# For sharded strategies, get the *unpadded* shard instead of
|
| 51 |
+
# the *padded* shard to persist user changes to the padding
|
| 52 |
+
# (though FSDP does not explicitly support this)
|
| 53 |
+
shard, _ = FlatParamHandle._get_unpadded_shard(
|
| 54 |
+
flat_param_or_grad,
|
| 55 |
+
handle.rank,
|
| 56 |
+
handle.world_size,
|
| 57 |
+
)
|
| 58 |
+
return shard
|
| 59 |
+
# For `NO_SHARD`, the `flat_param` or its gradient may be modified,
|
| 60 |
+
# so we write it back directly
|
| 61 |
+
return flat_param_or_grad
|
| 62 |
+
|
| 63 |
+
param_shard = _get_shard(handle.flat_param)
|
| 64 |
+
handle.flat_param._local_shard[: param_shard.numel()].copy_(param_shard) # type: ignore[attr-defined]
|
| 65 |
+
if writeback_grad:
|
| 66 |
+
existing_grad = handle.sharded_grad
|
| 67 |
+
if existing_grad is not None:
|
| 68 |
+
assert handle.flat_param.grad is not None
|
| 69 |
+
grad_shard = _get_shard(handle.flat_param.grad)
|
| 70 |
+
existing_grad[: grad_shard.numel()].copy_(grad_shard)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def _deregister_flat_param(state: _FSDPState, module: nn.Module) -> None:
|
| 74 |
+
"""
|
| 75 |
+
De-registers the flattened parameter from the wrapped module, hiding it
|
| 76 |
+
from ``nn.Module`` methods.
|
| 77 |
+
|
| 78 |
+
We do not use ``del`` because we want ``FLAT_PARAM`` to always be an
|
| 79 |
+
attribute but dynamically change whether it is visible to ``nn.Module``
|
| 80 |
+
methods.
|
| 81 |
+
"""
|
| 82 |
+
if _has_fsdp_params(state, module):
|
| 83 |
+
# TODO: figure out the case for the composable APIs.
|
| 84 |
+
cast(nn.Module, module.module)._parameters.pop(FLAT_PARAM, None)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _register_flat_param(state: _FSDPState, module: nn.Module) -> None:
|
| 88 |
+
"""
|
| 89 |
+
Registers the flattened parameter to the wrapped module, making it
|
| 90 |
+
visible to ``nn.Module`` methods.
|
| 91 |
+
|
| 92 |
+
We do not use :meth:`nn.Module.register_parameter` because we want
|
| 93 |
+
``FLAT_PARAM`` to always be an attribute but dynamically change whether
|
| 94 |
+
it is visible to ``nn.Module`` methods.
|
| 95 |
+
"""
|
| 96 |
+
handle = _module_handle(state, module)
|
| 97 |
+
if _has_fsdp_params(state, module):
|
| 98 |
+
# TODO: figure out the case for the composable APIs.
|
| 99 |
+
cast(nn.Module, module.module)._parameters[FLAT_PARAM] = handle.flat_param
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@contextlib.contextmanager
|
| 103 |
+
def _unflatten_as_params(state: _FSDPState, module: nn.Module) -> Generator:
|
| 104 |
+
"""
|
| 105 |
+
Assumes that the flattened parameter is unsharded. When in the context,
|
| 106 |
+
de-registers the flattened parameter and unflattens the original
|
| 107 |
+
parameters as ``nn.Parameter`` views into the flattened parameter.
|
| 108 |
+
After the context, re-registers the flattened parameter and restores
|
| 109 |
+
the original parameters as ``Tensor`` views into the flattened
|
| 110 |
+
parameter.
|
| 111 |
+
"""
|
| 112 |
+
handle = _module_handle(state, module)
|
| 113 |
+
if not handle:
|
| 114 |
+
yield
|
| 115 |
+
else:
|
| 116 |
+
_deregister_flat_param(state, module)
|
| 117 |
+
try:
|
| 118 |
+
with handle.unflatten_as_params():
|
| 119 |
+
yield
|
| 120 |
+
finally:
|
| 121 |
+
if not handle._use_orig_params:
|
| 122 |
+
_register_flat_param(state, module)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def _validate_unshard_params_args(
|
| 126 |
+
state: _FSDPState,
|
| 127 |
+
writeback: bool,
|
| 128 |
+
rank0_only: bool,
|
| 129 |
+
offload_to_cpu: bool,
|
| 130 |
+
with_grads: bool,
|
| 131 |
+
) -> None:
|
| 132 |
+
if with_grads and (offload_to_cpu or not state._use_orig_params):
|
| 133 |
+
raise NotImplementedError(
|
| 134 |
+
f"with_grads={with_grads}, "
|
| 135 |
+
f"use_orig_params={state._use_orig_params}, "
|
| 136 |
+
f"offload_to_cpu={offload_to_cpu} "
|
| 137 |
+
f"is not supported yet"
|
| 138 |
+
)
|
| 139 |
+
if offload_to_cpu and state._handle and (not state._handle.uses_sharded_strategy):
|
| 140 |
+
raise NotImplementedError(
|
| 141 |
+
"offload_to_cpu=True and NO_SHARD is not supported yet"
|
| 142 |
+
)
|
| 143 |
+
if writeback and rank0_only:
|
| 144 |
+
# TODO: Rank 0 can broadcast the `FlatParameter` to allow all ranks to
|
| 145 |
+
# persist the changes.
|
| 146 |
+
raise NotImplementedError(
|
| 147 |
+
"writeback=True and rank0_only=True is not supported yet"
|
| 148 |
+
)
|
| 149 |
+
if offload_to_cpu and not rank0_only:
|
| 150 |
+
warnings.warn(
|
| 151 |
+
"offload_to_cpu=True and rank0_only=False may result in the"
|
| 152 |
+
"unsharded parameters being redundantly copied to CPU memory for "
|
| 153 |
+
"GPUs sharing the same CPU memory, which risks CPU OOM. We "
|
| 154 |
+
"recommend using offload_to_cpu=True with rank0_only=True."
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
@contextlib.contextmanager
|
| 159 |
+
def _unshard_fsdp_state_params(
|
| 160 |
+
module: nn.Module,
|
| 161 |
+
state: _FSDPState,
|
| 162 |
+
writeback: bool,
|
| 163 |
+
rank0_only: bool,
|
| 164 |
+
offload_to_cpu: bool,
|
| 165 |
+
with_grads: bool,
|
| 166 |
+
):
|
| 167 |
+
"""
|
| 168 |
+
This unshards the parameters for a single FSDP state ``state`` that
|
| 169 |
+
corresponds to ``module``.
|
| 170 |
+
"""
|
| 171 |
+
_validate_unshard_params_args(
|
| 172 |
+
state, writeback, rank0_only, offload_to_cpu, with_grads
|
| 173 |
+
)
|
| 174 |
+
state._device_handle.synchronize()
|
| 175 |
+
# If handles are shared by other module(s), the handle may be already unsharded.
|
| 176 |
+
maybe_handle = _module_handle(state, module)
|
| 177 |
+
handle = None
|
| 178 |
+
if (
|
| 179 |
+
maybe_handle
|
| 180 |
+
and maybe_handle._training_state != HandleTrainingState.SUMMON_FULL_PARAMS
|
| 181 |
+
):
|
| 182 |
+
handle = maybe_handle
|
| 183 |
+
if not handle:
|
| 184 |
+
yield
|
| 185 |
+
return
|
| 186 |
+
|
| 187 |
+
assert (
|
| 188 |
+
handle._training_state == HandleTrainingState.IDLE
|
| 189 |
+
), f"Expects the handle training to be IDLE but got {handle._training_state}"
|
| 190 |
+
|
| 191 |
+
handle._training_state = HandleTrainingState.SUMMON_FULL_PARAMS
|
| 192 |
+
|
| 193 |
+
_reset_flat_param_grad_info_if_needed(handle)
|
| 194 |
+
free_unsharded_flat_param = handle.needs_unshard()
|
| 195 |
+
# No need to call `wait_stream()` since we unshard in the computation
|
| 196 |
+
# stream directly
|
| 197 |
+
computation_stream = state._device_handle.current_stream()
|
| 198 |
+
_unshard(state, handle, computation_stream, computation_stream)
|
| 199 |
+
if with_grads:
|
| 200 |
+
_unshard_grads(handle)
|
| 201 |
+
|
| 202 |
+
if rank0_only and state.rank != 0:
|
| 203 |
+
# Free the unsharded flattened parameter early
|
| 204 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
| 205 |
+
if with_grads:
|
| 206 |
+
_reshard_grads(handle)
|
| 207 |
+
try:
|
| 208 |
+
yield
|
| 209 |
+
finally:
|
| 210 |
+
handle._training_state = HandleTrainingState.IDLE
|
| 211 |
+
else:
|
| 212 |
+
# Unflatten the unsharded flattened parameters
|
| 213 |
+
with contextlib.ExitStack() as stack:
|
| 214 |
+
# Invariant: rank == 0 or !rank0_only
|
| 215 |
+
if offload_to_cpu and handle.uses_sharded_strategy:
|
| 216 |
+
stack.enter_context(handle.to_cpu())
|
| 217 |
+
# NOTE: Since PyTorch enforces that a parameter and its
|
| 218 |
+
# gradients need to match metadata (e.g. device), we must
|
| 219 |
+
# move gradients to CPU *after* we move parameters.
|
| 220 |
+
# NOTE: This assumes 1 `FlatParameter`
|
| 221 |
+
if not state._use_orig_params:
|
| 222 |
+
stack.enter_context(_unflatten_as_params(state, module))
|
| 223 |
+
try:
|
| 224 |
+
yield
|
| 225 |
+
finally:
|
| 226 |
+
stack.close()
|
| 227 |
+
if writeback:
|
| 228 |
+
_writeback_to_local_shard(handle, with_grads)
|
| 229 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
| 230 |
+
if with_grads:
|
| 231 |
+
_reshard_grads(handle)
|
| 232 |
+
handle._training_state = HandleTrainingState.IDLE
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
@contextlib.contextmanager
|
| 236 |
+
def _unshard_params_for_summon(
|
| 237 |
+
module: nn.Module,
|
| 238 |
+
state: _FSDPState,
|
| 239 |
+
writeback: bool,
|
| 240 |
+
rank0_only: bool,
|
| 241 |
+
offload_to_cpu: bool,
|
| 242 |
+
with_grads: bool,
|
| 243 |
+
):
|
| 244 |
+
_validate_unshard_params_args(
|
| 245 |
+
state, writeback, rank0_only, offload_to_cpu, with_grads
|
| 246 |
+
)
|
| 247 |
+
_lazy_init(state, module)
|
| 248 |
+
if state.training_state == TrainingState.FORWARD_BACKWARD:
|
| 249 |
+
raise AssertionError(
|
| 250 |
+
"Cannot manually unshard parameters during forward/backward"
|
| 251 |
+
)
|
| 252 |
+
elif state.training_state == TrainingState.SUMMON_FULL_PARAMS:
|
| 253 |
+
raise AssertionError(
|
| 254 |
+
"Cannot manually unshard parameters when already unsharding parameters"
|
| 255 |
+
)
|
| 256 |
+
with _unshard_fsdp_state_params(
|
| 257 |
+
module=module,
|
| 258 |
+
state=state,
|
| 259 |
+
writeback=writeback,
|
| 260 |
+
rank0_only=rank0_only,
|
| 261 |
+
offload_to_cpu=offload_to_cpu,
|
| 262 |
+
with_grads=with_grads,
|
| 263 |
+
):
|
| 264 |
+
try:
|
| 265 |
+
state.training_state = TrainingState.SUMMON_FULL_PARAMS
|
| 266 |
+
yield
|
| 267 |
+
finally:
|
| 268 |
+
state.training_state = TrainingState.IDLE
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
@contextlib.contextmanager
|
| 272 |
+
def _unshard_params(
|
| 273 |
+
module: nn.Module,
|
| 274 |
+
recurse: bool,
|
| 275 |
+
writeback: bool,
|
| 276 |
+
rank0_only: bool,
|
| 277 |
+
offload_to_cpu: bool,
|
| 278 |
+
with_grads: bool,
|
| 279 |
+
):
|
| 280 |
+
"""
|
| 281 |
+
This unshards FSDP-managed parameters for all modules with FSDP applied in
|
| 282 |
+
the module tree rooted at ``module``.
|
| 283 |
+
"""
|
| 284 |
+
if not recurse:
|
| 285 |
+
optional_state = _get_module_fsdp_state(module)
|
| 286 |
+
if optional_state is None:
|
| 287 |
+
with contextlib.nullcontext():
|
| 288 |
+
yield
|
| 289 |
+
return
|
| 290 |
+
states_and_modules = ([optional_state], [module])
|
| 291 |
+
else:
|
| 292 |
+
states_and_modules = traversal_utils._get_fsdp_states_with_modules(module)
|
| 293 |
+
with contextlib.ExitStack() as stack:
|
| 294 |
+
for state, module in zip(*states_and_modules):
|
| 295 |
+
stack.enter_context(
|
| 296 |
+
_unshard_params_for_summon(
|
| 297 |
+
module=module,
|
| 298 |
+
state=state,
|
| 299 |
+
writeback=writeback,
|
| 300 |
+
rank0_only=rank0_only,
|
| 301 |
+
offload_to_cpu=offload_to_cpu,
|
| 302 |
+
with_grads=with_grads,
|
| 303 |
+
)
|
| 304 |
+
)
|
| 305 |
+
yield
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def _deregister_orig_params(state: _FSDPState, module: nn.Module) -> None:
|
| 309 |
+
"""
|
| 310 |
+
Deregisters the original parameters; registers the ``FlatParameter``.
|
| 311 |
+
"""
|
| 312 |
+
handle = _module_handle(state, module)
|
| 313 |
+
if not handle:
|
| 314 |
+
return
|
| 315 |
+
_p_assert(
|
| 316 |
+
handle._use_orig_params,
|
| 317 |
+
f"Inconsistent `_use_orig_params` -- FSDP: {state._use_orig_params} "
|
| 318 |
+
f"handle: {handle._use_orig_params}",
|
| 319 |
+
)
|
| 320 |
+
handle._deregister_orig_params()
|
| 321 |
+
_register_flat_param(state, module)
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def _register_orig_params(state: _FSDPState, module: nn.Module) -> None:
|
| 325 |
+
"""
|
| 326 |
+
Deregisters the ``FlatParameter``; registers the original parameters.
|
| 327 |
+
"""
|
| 328 |
+
handle = _module_handle(state, module)
|
| 329 |
+
if not handle:
|
| 330 |
+
return
|
| 331 |
+
_deregister_flat_param(state, module)
|
| 332 |
+
if handle.is_sharded(handle.flat_param):
|
| 333 |
+
handle._use_sharded_views()
|
| 334 |
+
handle._use_sharded_grad_views()
|
| 335 |
+
else:
|
| 336 |
+
handle._use_unsharded_views(as_params=True)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/api.py
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file includes public APIs for FSDP such as the classes used for the
|
| 3 |
+
constructor arguments.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from enum import auto, Enum
|
| 8 |
+
from typing import Optional, Sequence, Type
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
__all__ = [
|
| 15 |
+
"ShardingStrategy",
|
| 16 |
+
"BackwardPrefetch",
|
| 17 |
+
"MixedPrecision",
|
| 18 |
+
"CPUOffload",
|
| 19 |
+
"StateDictType",
|
| 20 |
+
"StateDictConfig",
|
| 21 |
+
"FullStateDictConfig",
|
| 22 |
+
"LocalStateDictConfig",
|
| 23 |
+
"ShardedStateDictConfig",
|
| 24 |
+
"OptimStateDictConfig",
|
| 25 |
+
"FullOptimStateDictConfig",
|
| 26 |
+
"LocalOptimStateDictConfig",
|
| 27 |
+
"ShardedOptimStateDictConfig",
|
| 28 |
+
"StateDictSettings",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class ShardingStrategy(Enum):
|
| 33 |
+
"""
|
| 34 |
+
This specifies the sharding strategy to be used for distributed training by
|
| 35 |
+
:class:`FullyShardedDataParallel`.
|
| 36 |
+
|
| 37 |
+
- ``FULL_SHARD``: Parameters, gradients, and optimizer states are sharded.
|
| 38 |
+
For the parameters, this strategy unshards (via all-gather) before the
|
| 39 |
+
forward, reshards after the forward, unshards before the backward
|
| 40 |
+
computation, and reshards after the backward computation. For gradients,
|
| 41 |
+
it synchronizes and shards them (via reduce-scatter) after the backward
|
| 42 |
+
computation. The sharded optimizer states are updated locally per rank.
|
| 43 |
+
- ``SHARD_GRAD_OP``: Gradients and optimizer states are sharded during
|
| 44 |
+
computation, and additionally, parameters are sharded outside
|
| 45 |
+
computation. For the parameters, this strategy unshards before the
|
| 46 |
+
forward, does not reshard them after the forward, and only reshards them
|
| 47 |
+
after the backward computation. The sharded optimizer states are updated
|
| 48 |
+
locally per rank. Inside ``no_sync()``, the parameters are not resharded
|
| 49 |
+
after the backward computation.
|
| 50 |
+
- ``NO_SHARD``: Parameters, gradients, and optimizer states are not sharded
|
| 51 |
+
but instead replicated across ranks similar to PyTorch's
|
| 52 |
+
:class:`DistributedDataParallel` API. For gradients, this strategy
|
| 53 |
+
synchronizes them (via all-reduce) after the backward computation. The
|
| 54 |
+
unsharded optimizer states are updated locally per rank.
|
| 55 |
+
- ``HYBRID_SHARD``: Apply ``FULL_SHARD`` within a node, and replicate parameters across
|
| 56 |
+
nodes. This results in reduced communication volume as expensive all-gathers and
|
| 57 |
+
reduce-scatters are only done within a node, which can be more performant for medium
|
| 58 |
+
-sized models.
|
| 59 |
+
- ``_HYBRID_SHARD_ZERO2``: Apply ``SHARD_GRAD_OP`` within a node, and replicate parameters across
|
| 60 |
+
nodes. This is like ``HYBRID_SHARD``, except this may provide even higher throughput
|
| 61 |
+
since the unsharded parameters are not freed after the forward pass, saving the
|
| 62 |
+
all-gathers in the pre-backward.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
FULL_SHARD = auto()
|
| 66 |
+
SHARD_GRAD_OP = auto()
|
| 67 |
+
NO_SHARD = auto()
|
| 68 |
+
HYBRID_SHARD = auto()
|
| 69 |
+
_HYBRID_SHARD_ZERO2 = auto()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class BackwardPrefetch(Enum):
|
| 73 |
+
"""
|
| 74 |
+
This configures explicit backward prefetching, which improves throughput by
|
| 75 |
+
enabling communication and computation overlap in the backward pass at the
|
| 76 |
+
cost of slightly increased memory usage.
|
| 77 |
+
|
| 78 |
+
- ``BACKWARD_PRE``: This enables the most overlap but increases memory
|
| 79 |
+
usage the most. This prefetches the next set of parameters *before* the
|
| 80 |
+
current set of parameters' gradient computation. This overlaps the *next
|
| 81 |
+
all-gather* and the *current gradient computation*, and at the peak, it
|
| 82 |
+
holds the current set of parameters, next set of parameters, and current
|
| 83 |
+
set of gradients in memory.
|
| 84 |
+
- ``BACKWARD_POST``: This enables less overlap but requires less memory
|
| 85 |
+
usage. This prefetches the next set of parameters *after* the current
|
| 86 |
+
set of parameters' gradient computation. This overlaps the *current
|
| 87 |
+
reduce-scatter* and the *next gradient computation*, and it frees the
|
| 88 |
+
current set of parameters before allocating memory for the next set of
|
| 89 |
+
parameters, only holding the next set of parameters and current set of
|
| 90 |
+
gradients in memory at the peak.
|
| 91 |
+
- FSDP's ``backward_prefetch`` argument accepts ``None``, which disables
|
| 92 |
+
the backward prefetching altogether. This has no overlap and does not
|
| 93 |
+
increase memory usage. In general, we do not recommend this setting since
|
| 94 |
+
it may degrade throughput significantly.
|
| 95 |
+
|
| 96 |
+
For more technical context: For a single process group using NCCL backend,
|
| 97 |
+
any collectives, even if issued from different streams, contend for the
|
| 98 |
+
same per-device NCCL stream, which implies that the relative order in which
|
| 99 |
+
the collectives are issued matters for overlapping. The two backward
|
| 100 |
+
prefetching values correspond to different issue orders.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
# NOTE: For both modes, the ordering that defines "current" and "next" is
|
| 104 |
+
# not always exact in the current implementation. A mistargeted prefetch
|
| 105 |
+
# simply means that the parameter memory is allocated earlier than needed,
|
| 106 |
+
# possibly increasing peak memory usage, but does not affect correctness.
|
| 107 |
+
BACKWARD_PRE = auto()
|
| 108 |
+
BACKWARD_POST = auto()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@dataclass
|
| 112 |
+
class MixedPrecision:
|
| 113 |
+
"""
|
| 114 |
+
This configures FSDP-native mixed precision training.
|
| 115 |
+
|
| 116 |
+
Attributes:
|
| 117 |
+
param_dtype (Optional[torch.dtype]): This specifies the dtype for model
|
| 118 |
+
parameters during forward and backward and thus the dtype for
|
| 119 |
+
forward and backward computation. Outside forward and backward, the
|
| 120 |
+
*sharded* parameters are kept in full precision (e.g. for the
|
| 121 |
+
optimizer step), and for model checkpointing, the parameters are
|
| 122 |
+
always saved in full precision. (Default: ``None``)
|
| 123 |
+
reduce_dtype (Optional[torch.dtype]): This specifies the dtype for
|
| 124 |
+
gradient reduction (i.e. reduce-scatter or all-reduce). If this is
|
| 125 |
+
``None`` but ``param_dtype`` is not ``None``, then this takes on
|
| 126 |
+
the ``param_dtype`` value, still running gradient reduction in low
|
| 127 |
+
precision. This is permitted to differ from ``param_dtype``, e.g.
|
| 128 |
+
to force gradient reduction to run in full precision. (Default:
|
| 129 |
+
``None``)
|
| 130 |
+
buffer_dtype (Optional[torch.dtype]): This specifies the dtype for
|
| 131 |
+
buffers. FSDP does not shard buffers. Rather, FSDP casts them to
|
| 132 |
+
``buffer_dtype`` in the first forward pass and keeps them in that
|
| 133 |
+
dtype thereafter. For model checkpointing, the buffers are saved
|
| 134 |
+
in full precision except for ``LOCAL_STATE_DICT``. (Default:
|
| 135 |
+
``None``)
|
| 136 |
+
keep_low_precision_grads (bool): If ``False``, then FSDP upcasts
|
| 137 |
+
gradients to full precision after the backward pass in preparation
|
| 138 |
+
for the optimizer step. If ``True``, then FSDP keeps the gradients
|
| 139 |
+
in the dtype used for gradient reduction, which can save memory if
|
| 140 |
+
using a custom optimizer that supports running in low precision.
|
| 141 |
+
(Default: ``False``)
|
| 142 |
+
cast_forward_inputs (bool): If ``True``, then this FSDP module casts
|
| 143 |
+
its forward args and kwargs to ``param_dtype``. This is to ensure
|
| 144 |
+
that parameter and input dtypes match for forward computation, as
|
| 145 |
+
required by many ops. This may need to be set to ``True`` when only
|
| 146 |
+
applying mixed precision to some but not all FSDP modules, in which
|
| 147 |
+
case a mixed-precision FSDP submodule needs to recast its inputs.
|
| 148 |
+
(Default: ``False``)
|
| 149 |
+
cast_root_forward_inputs (bool): If ``True``, then the root FSDP module
|
| 150 |
+
casts its forward args and kwargs to ``param_dtype``, overriding
|
| 151 |
+
the value of ``cast_forward_inputs``. For non-root FSDP modules,
|
| 152 |
+
this does not do anything. (Default: ``True``)
|
| 153 |
+
_module_classes_to_ignore: (Sequence[Type[nn.Module]]): This specifies
|
| 154 |
+
module classes to ignore for mixed precision when using an
|
| 155 |
+
``auto_wrap_policy``: Modules of these classes will have FSDP
|
| 156 |
+
applied to them separately with mixed precision disabled (meaning
|
| 157 |
+
that the final FSDP construction would deviate from the specified
|
| 158 |
+
policy). If ``auto_wrap_policy`` is not specified, then this does
|
| 159 |
+
not do anything. This API is experimental and subject to change.
|
| 160 |
+
(Default: ``(_BatchNorm,)``)
|
| 161 |
+
|
| 162 |
+
.. note:: This API is experimental and subject to change.
|
| 163 |
+
|
| 164 |
+
.. note:: Only floating point tensors are cast to their specified dtypes.
|
| 165 |
+
|
| 166 |
+
.. note:: In ``summon_full_params``, parameters are forced to full
|
| 167 |
+
precision, but buffers are not.
|
| 168 |
+
|
| 169 |
+
.. note:: Layer norm and batch norm accumulate in ``float32`` even when
|
| 170 |
+
their inputs are in a low precision like ``float16`` or ``bfloat16``.
|
| 171 |
+
Disabling FSDP's mixed precision for those norm modules only means that
|
| 172 |
+
the affine parameters are kept in ``float32``. However, this incurs
|
| 173 |
+
separate all-gathers and reduce-scatters for those norm modules, which
|
| 174 |
+
may be inefficient, so if the workload permits, the user should prefer
|
| 175 |
+
to still apply mixed precision to those modules.
|
| 176 |
+
|
| 177 |
+
.. note:: By default, if the user passes a model with any ``_BatchNorm``
|
| 178 |
+
modules and specifies an ``auto_wrap_policy``, then the batch norm
|
| 179 |
+
modules will have FSDP applied to them separately with mixed precision
|
| 180 |
+
disabled. See the ``_module_classes_to_ignore`` argument.
|
| 181 |
+
|
| 182 |
+
.. note:: ``MixedPrecision`` has ``cast_root_forward_inputs=True`` and
|
| 183 |
+
``cast_forward_inputs=False`` by default. For the root FSDP instance,
|
| 184 |
+
its ``cast_root_forward_inputs`` takes precedence over its
|
| 185 |
+
``cast_forward_inputs``. For non-root FSDP instances, their
|
| 186 |
+
``cast_root_forward_inputs`` values are ignored. The default setting is
|
| 187 |
+
sufficient for the typical case where each FSDP instance has the same
|
| 188 |
+
``MixedPrecision`` configuration and only needs to cast inputs to the
|
| 189 |
+
``param_dtype`` at the beginning of the model's forward pass.
|
| 190 |
+
|
| 191 |
+
.. note:: For nested FSDP instances with different ``MixedPrecision``
|
| 192 |
+
configurations, we recommend setting individual ``cast_forward_inputs``
|
| 193 |
+
values to configure casting inputs or not before each instance's
|
| 194 |
+
forward. In such a case, since the casts happen before each FSDP
|
| 195 |
+
instance's forward, a parent FSDP instance should have its non-FSDP
|
| 196 |
+
submodules run before its FSDP submodules to avoid the activation dtype
|
| 197 |
+
being changed due to a different ``MixedPrecision`` configuration.
|
| 198 |
+
|
| 199 |
+
Example::
|
| 200 |
+
|
| 201 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
| 202 |
+
>>> model = nn.Sequential(nn.Linear(3, 3), nn.Linear(3, 3))
|
| 203 |
+
>>> model[1] = FSDP(
|
| 204 |
+
>>> model[1],
|
| 205 |
+
>>> mixed_precision=MixedPrecision(param_dtype=torch.float16, cast_forward_inputs=True),
|
| 206 |
+
>>> )
|
| 207 |
+
>>> model = FSDP(
|
| 208 |
+
>>> model,
|
| 209 |
+
>>> mixed_precision=MixedPrecision(param_dtype=torch.bfloat16, cast_forward_inputs=True),
|
| 210 |
+
>>> )
|
| 211 |
+
|
| 212 |
+
The above shows a working example. On the other hand, if ``model[1]``
|
| 213 |
+
were replaced with ``model[0]``, meaning that the submodule using
|
| 214 |
+
different ``MixedPrecision`` ran its forward first, then ``model[1]``
|
| 215 |
+
would incorrectly see ``float16`` activations instead of ``bfloat16``
|
| 216 |
+
ones.
|
| 217 |
+
|
| 218 |
+
"""
|
| 219 |
+
|
| 220 |
+
param_dtype: Optional[torch.dtype] = None
|
| 221 |
+
reduce_dtype: Optional[torch.dtype] = None
|
| 222 |
+
buffer_dtype: Optional[torch.dtype] = None
|
| 223 |
+
keep_low_precision_grads: bool = False
|
| 224 |
+
cast_forward_inputs: bool = False
|
| 225 |
+
cast_root_forward_inputs: bool = True
|
| 226 |
+
_module_classes_to_ignore: Sequence[Type[torch.nn.Module]] = (_BatchNorm,)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
@dataclass
|
| 230 |
+
class CPUOffload:
|
| 231 |
+
"""
|
| 232 |
+
This configures CPU offloading.
|
| 233 |
+
|
| 234 |
+
Attributes:
|
| 235 |
+
offload_params (bool): This specifies whether to offload parameters to
|
| 236 |
+
CPU when not involved in computation. If ``True``, then this
|
| 237 |
+
offloads gradients to CPU as well, meaning that the optimizer step
|
| 238 |
+
runs on CPU.
|
| 239 |
+
"""
|
| 240 |
+
|
| 241 |
+
offload_params: bool = False
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class StateDictType(Enum):
|
| 245 |
+
"""
|
| 246 |
+
This enum indicates that which type of ``state_dict`` the FSDP module is
|
| 247 |
+
currently processing (returning or loading).
|
| 248 |
+
The default value is FULL_STATE_DICT to comply the PyTorch convention.
|
| 249 |
+
..note::
|
| 250 |
+
FSDP currently supports three types of ``state_dict``:
|
| 251 |
+
1. ``state_dict/load_state_dict`: this pair of APIs return and load
|
| 252 |
+
the non-sharded, unflattened parameters. The semantics is the
|
| 253 |
+
same as using DDP.
|
| 254 |
+
2. ``_local_state_dict/_load_local_state_dict``: this pair of APIs return
|
| 255 |
+
and load local sharded, flattened parameters. The values returned
|
| 256 |
+
by ``_local_state_dict`` can be directly used by FSDP and is only
|
| 257 |
+
meaningful to FSDP (because parameters are flattened). Note that
|
| 258 |
+
these APIs are meant for use via the :func:`state_dict_type`
|
| 259 |
+
context manager as follows:
|
| 260 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
| 261 |
+
>>> with fsdp.state_dict_type(StateDictType.LOCAL_STATE_DICT):
|
| 262 |
+
... state = fsdp.state_dict() # loads local state dict
|
| 263 |
+
3. ``_sharded_state_dict/_load_sharded_state_dict``: this pair of APIs
|
| 264 |
+
return and load sharded, unflattened parameters. The ``state_dict``
|
| 265 |
+
return by ``sharded_state_dict`` can be used by all other parallel
|
| 266 |
+
schemes (resharding may be required).
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
FULL_STATE_DICT = auto()
|
| 270 |
+
LOCAL_STATE_DICT = auto()
|
| 271 |
+
SHARDED_STATE_DICT = auto()
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class StateDictConfig:
|
| 276 |
+
"""
|
| 277 |
+
``StateDictConfig`` is the base class for all ``state_dict`` configuration
|
| 278 |
+
classes. Users should instantiate a child class (e.g.
|
| 279 |
+
``FullStateDictConfig``) in order to configure settings for the
|
| 280 |
+
corresponding ``state_dict`` type supported by FSDP.
|
| 281 |
+
|
| 282 |
+
Attributes:
|
| 283 |
+
offload_to_cpu (bool): If ``True``, then FSDP offloads the state dict
|
| 284 |
+
values to CPU, and if ``False``, then FSDP keeps them on GPU.
|
| 285 |
+
(Default: ``False``)
|
| 286 |
+
"""
|
| 287 |
+
|
| 288 |
+
offload_to_cpu: bool = False
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
@dataclass
|
| 292 |
+
class FullStateDictConfig(StateDictConfig):
|
| 293 |
+
"""
|
| 294 |
+
``FullStateDictConfig`` is a config class meant to be used with
|
| 295 |
+
``StateDictType.FULL_STATE_DICT``. We recommend enabling both
|
| 296 |
+
``offload_to_cpu=True`` and ``rank0_only=True`` when saving full state
|
| 297 |
+
dicts to save GPU memory and CPU memory, respectively. This config class
|
| 298 |
+
is meant to be used via the :func:`state_dict_type` context manager as
|
| 299 |
+
follows:
|
| 300 |
+
|
| 301 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
| 302 |
+
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
| 303 |
+
>>> fsdp = FSDP(model, auto_wrap_policy=...)
|
| 304 |
+
>>> cfg = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
| 305 |
+
>>> with FSDP.state_dict_type(fsdp, StateDictType.FULL_STATE_DICT, cfg):
|
| 306 |
+
>>> state = fsdp.state_dict()
|
| 307 |
+
>>> # `state` will be empty on non rank 0 and contain CPU tensors on rank 0.
|
| 308 |
+
>>> # To reload checkpoint for inference, finetuning, transfer learning, etc:
|
| 309 |
+
>>> model = model_fn() # Initialize model in preparation for wrapping with FSDP
|
| 310 |
+
>>> if dist.get_rank() == 0:
|
| 311 |
+
>>> # Load checkpoint only on rank 0 to avoid memory redundancy
|
| 312 |
+
>>> state_dict = torch.load("my_checkpoint.pt")
|
| 313 |
+
>>> model.load_state_dict(state_dict)
|
| 314 |
+
>>> # All ranks initialize FSDP module as usual. `sync_module_states` argument
|
| 315 |
+
>>> # communicates loaded checkpoint states from rank 0 to rest of the world.
|
| 316 |
+
>>> fsdp = FSDP(model, device_id=torch.cuda.current_device(), auto_wrap_policy=..., sync_module_states=True)
|
| 317 |
+
>>> # After this point, all ranks have FSDP model with loaded checkpoint.
|
| 318 |
+
|
| 319 |
+
Attributes:
|
| 320 |
+
rank0_only (bool): If ``True``, then only rank 0 saves the full state
|
| 321 |
+
dict, and nonzero ranks save an empty dict. If ``False``, then all
|
| 322 |
+
ranks save the full state dict. (Default: ``False``)
|
| 323 |
+
"""
|
| 324 |
+
|
| 325 |
+
rank0_only: bool = False
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
@dataclass
|
| 329 |
+
class LocalStateDictConfig(StateDictConfig):
|
| 330 |
+
pass
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
@dataclass
|
| 334 |
+
class ShardedStateDictConfig(StateDictConfig):
|
| 335 |
+
"""
|
| 336 |
+
``ShardedStateDictConfig`` is a config class meant to be used with
|
| 337 |
+
``StateDictType.SHARDED_STATE_DICT``.
|
| 338 |
+
|
| 339 |
+
Attributes:
|
| 340 |
+
_use_dtensor (bool): If ``True``, then FSDP saves the state dict values
|
| 341 |
+
as ``DTensor``, and if ``False``, then FSDP saves them as
|
| 342 |
+
``ShardedTensor``. (Default: ``False``)
|
| 343 |
+
|
| 344 |
+
.. warning:: ``_use_dtensor`` is a private field of :class:`ShardedStateDictConfig`
|
| 345 |
+
and it is used by FSDP to determine the type of state dict values. Users should not
|
| 346 |
+
manually modify ``_use_dtensor``.
|
| 347 |
+
"""
|
| 348 |
+
|
| 349 |
+
_use_dtensor: bool = False
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
@dataclass
|
| 353 |
+
class OptimStateDictConfig:
|
| 354 |
+
"""
|
| 355 |
+
``OptimStateDictConfig`` is the base class for all ``optim_state_dict``
|
| 356 |
+
configuration classes. Users should instantiate a child class (e.g.
|
| 357 |
+
``FullOptimStateDictConfig``) in order to configure settings for the
|
| 358 |
+
corresponding ``optim_state_dict`` type supported by FSDP.
|
| 359 |
+
|
| 360 |
+
Attributes:
|
| 361 |
+
offload_to_cpu (bool): If ``True``, then FSDP offloads the state dict's
|
| 362 |
+
tensor values to CPU, and if ``False``, then FSDP keeps them on the
|
| 363 |
+
original device (which is GPU unless parameter CPU offloading is
|
| 364 |
+
enabled). (Default: ``True``)
|
| 365 |
+
"""
|
| 366 |
+
|
| 367 |
+
offload_to_cpu: bool = True
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@dataclass
|
| 371 |
+
class FullOptimStateDictConfig(OptimStateDictConfig):
|
| 372 |
+
"""
|
| 373 |
+
Attributes:
|
| 374 |
+
rank0_only (bool): If ``True``, then only rank 0 saves the full state
|
| 375 |
+
dict, and nonzero ranks save an empty dict. If ``False``, then all
|
| 376 |
+
ranks save the full state dict. (Default: ``False``)
|
| 377 |
+
"""
|
| 378 |
+
|
| 379 |
+
rank0_only: bool = False
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
@dataclass
|
| 383 |
+
class LocalOptimStateDictConfig(OptimStateDictConfig):
|
| 384 |
+
offload_to_cpu: bool = False
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
@dataclass
|
| 388 |
+
class ShardedOptimStateDictConfig(OptimStateDictConfig):
|
| 389 |
+
"""
|
| 390 |
+
``ShardedOptimStateDictConfig`` is a config class meant to be used with
|
| 391 |
+
``StateDictType.SHARDED_STATE_DICT``.
|
| 392 |
+
|
| 393 |
+
Attributes:
|
| 394 |
+
_use_dtensor (bool): If ``True``, then FSDP saves the state dict values
|
| 395 |
+
as ``DTensor``, and if ``False``, then FSDP saves them as
|
| 396 |
+
``ShardedTensor``. (Default: ``False``)
|
| 397 |
+
|
| 398 |
+
.. warning:: ``_use_dtensor`` is a private field of :class:`ShardedOptimStateDictConfig`
|
| 399 |
+
and it is used by FSDP to determine the type of state dict values. Users should not
|
| 400 |
+
manually modify ``_use_dtensor``.
|
| 401 |
+
"""
|
| 402 |
+
|
| 403 |
+
_use_dtensor: bool = False
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
@dataclass
|
| 407 |
+
class StateDictSettings:
|
| 408 |
+
state_dict_type: StateDictType
|
| 409 |
+
state_dict_config: StateDictConfig
|
| 410 |
+
optim_state_dict_config: OptimStateDictConfig
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/sharded_grad_scaler.py
ADDED
|
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import logging
|
| 3 |
+
from collections import abc, defaultdict
|
| 4 |
+
from typing import Any, Dict, Iterable, List, Optional, overload, Sequence, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
from torch.amp.grad_scaler import _MultiDeviceReplicator, GradScaler, OptState
|
| 9 |
+
from torch.distributed.distributed_c10d import ProcessGroup
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def _refresh_per_optimizer_state() -> Dict[str, Any]:
|
| 16 |
+
return {"stage": OptState.READY, "found_inf_per_device": {}}
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def _is_supported_device(tensor: torch.Tensor) -> bool:
|
| 20 |
+
return tensor.is_cuda or tensor.device.type in (
|
| 21 |
+
"xla",
|
| 22 |
+
"cpu",
|
| 23 |
+
"hpu",
|
| 24 |
+
"mtia",
|
| 25 |
+
torch._C._get_privateuse1_backend_name(),
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class _GeneralMultiDeviceReplicator(_MultiDeviceReplicator):
|
| 30 |
+
"""
|
| 31 |
+
Lazily serves tensor to request device. This class extends
|
| 32 |
+
_MultiDeviceReplicator to allow support for "cpu" as a device.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self, master_tensor: torch.Tensor) -> None:
|
| 36 |
+
assert _is_supported_device(master_tensor)
|
| 37 |
+
self.master = master_tensor
|
| 38 |
+
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {}
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class ShardedGradScaler(GradScaler):
|
| 42 |
+
"""
|
| 43 |
+
ShardedGradScaler helps perform gradient scaling in a shard aware manner. It extends
|
| 44 |
+
functionality from GradScaler:
|
| 45 |
+
* Supports Pytorch DDP and FSDP implementations
|
| 46 |
+
* Support CPU offloaded tensors (as used in fully sharded data parallel[FSDP])
|
| 47 |
+
* Supports the custom Mixed Precision loss dtype (fp16, bf16) that FSDP returns
|
| 48 |
+
* Sync inf/nan for scaled gradient tensors on any torch.device (where tensors are placed) across
|
| 49 |
+
nodes
|
| 50 |
+
|
| 51 |
+
Example::
|
| 52 |
+
|
| 53 |
+
# Creates a ShardedGradScaler once at the beginning of training.
|
| 54 |
+
scaler = ShardedGradScaler()
|
| 55 |
+
|
| 56 |
+
for epoch in epochs:
|
| 57 |
+
for input, target in data:
|
| 58 |
+
optimizer.zero_grad()
|
| 59 |
+
output = model(input)
|
| 60 |
+
loss = loss_fn(output, target)
|
| 61 |
+
|
| 62 |
+
# Scales loss. Calls backward() on scaled loss to create scaled gradients.
|
| 63 |
+
scaler.scale(loss).backward()
|
| 64 |
+
|
| 65 |
+
# scaler.step() first unscales gradients of the optimizer's params.
|
| 66 |
+
# If gradients don't contain infs/NaNs, optimizer.step() is then called,
|
| 67 |
+
# otherwise, optimizer.step() is skipped.
|
| 68 |
+
scaler.step(optimizer)
|
| 69 |
+
|
| 70 |
+
# Updates the scale for next iteration.
|
| 71 |
+
scaler.update()
|
| 72 |
+
|
| 73 |
+
See :class:`GradScaler` for explanation of scaling/unscaling and more use cases.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
init_scale (float, optional, default=2.**16): Initial scale factor.
|
| 77 |
+
growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during
|
| 78 |
+
:meth:`update` if no inf/NaN gradients occur for ``growth_interval`` consecutive iterations.
|
| 79 |
+
backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during
|
| 80 |
+
:meth:`update` if inf/NaN gradients occur in an iteration.
|
| 81 |
+
growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients
|
| 82 |
+
that must occur for the scale to be multiplied by ``growth_factor``.
|
| 83 |
+
enabled (bool, optional): If ``False``, disables gradient scaling. :meth:`step` simply
|
| 84 |
+
invokes the underlying ``optimizer.step()``, and other methods become no-ops.
|
| 85 |
+
Default: ``True``
|
| 86 |
+
process_group (ProcessGroup, optional, default=torch.distributed.group.WORLD):
|
| 87 |
+
process group for sharding
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
device: str = "cuda",
|
| 93 |
+
init_scale: float = 2.0**16,
|
| 94 |
+
backoff_factor: float = 0.5,
|
| 95 |
+
growth_factor: float = 2.0,
|
| 96 |
+
growth_interval: int = 2000,
|
| 97 |
+
enabled: bool = True,
|
| 98 |
+
process_group: Optional[ProcessGroup] = dist.group.WORLD,
|
| 99 |
+
) -> None:
|
| 100 |
+
super().__init__(
|
| 101 |
+
device,
|
| 102 |
+
init_scale=init_scale,
|
| 103 |
+
backoff_factor=backoff_factor,
|
| 104 |
+
growth_factor=growth_factor,
|
| 105 |
+
growth_interval=growth_interval,
|
| 106 |
+
enabled=enabled,
|
| 107 |
+
)
|
| 108 |
+
if self._enabled:
|
| 109 |
+
self.process_group = process_group
|
| 110 |
+
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
| 111 |
+
|
| 112 |
+
@overload
|
| 113 |
+
def scale(self, outputs: torch.Tensor) -> torch.Tensor:
|
| 114 |
+
...
|
| 115 |
+
|
| 116 |
+
@overload
|
| 117 |
+
def scale(self, outputs: List[torch.Tensor]) -> List[torch.Tensor]:
|
| 118 |
+
...
|
| 119 |
+
|
| 120 |
+
@overload
|
| 121 |
+
def scale(self, outputs: Tuple[torch.Tensor, ...]) -> Tuple[torch.Tensor, ...]:
|
| 122 |
+
...
|
| 123 |
+
|
| 124 |
+
@overload
|
| 125 |
+
def scale(self, outputs: Iterable[torch.Tensor]) -> Iterable[torch.Tensor]:
|
| 126 |
+
...
|
| 127 |
+
|
| 128 |
+
def scale(
|
| 129 |
+
self, outputs: Union[torch.Tensor, Iterable[torch.Tensor]]
|
| 130 |
+
) -> Union[torch.Tensor, Iterable[torch.Tensor]]:
|
| 131 |
+
if not self._enabled:
|
| 132 |
+
return outputs
|
| 133 |
+
|
| 134 |
+
if isinstance(outputs, torch.Tensor):
|
| 135 |
+
assert _is_supported_device(outputs)
|
| 136 |
+
if self._scale is None:
|
| 137 |
+
self._lazy_init_scale_growth_tracker(outputs.device)
|
| 138 |
+
assert self._scale is not None
|
| 139 |
+
scaled_output = outputs * self._scale.to(
|
| 140 |
+
device=outputs.device, non_blocking=True
|
| 141 |
+
)
|
| 142 |
+
# Here we ensure the return dtype is the same as the outputs dtype.
|
| 143 |
+
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
|
| 144 |
+
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
|
| 145 |
+
return scaled_output.type(outputs.dtype)
|
| 146 |
+
|
| 147 |
+
stash: List[_GeneralMultiDeviceReplicator] = []
|
| 148 |
+
|
| 149 |
+
def apply_scale(val: Union[torch.Tensor, Iterable[torch.Tensor]]):
|
| 150 |
+
if isinstance(val, torch.Tensor):
|
| 151 |
+
assert _is_supported_device(val)
|
| 152 |
+
if len(stash) == 0:
|
| 153 |
+
if self._scale is None:
|
| 154 |
+
self._lazy_init_scale_growth_tracker(val.device)
|
| 155 |
+
assert self._scale is not None
|
| 156 |
+
stash.append(_GeneralMultiDeviceReplicator(self._scale))
|
| 157 |
+
scaled_val = val * stash[0].get(val.device)
|
| 158 |
+
# Here we ensure the return dtype is the same as the outputs dtype.
|
| 159 |
+
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
|
| 160 |
+
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
|
| 161 |
+
return scaled_val.type(val.dtype)
|
| 162 |
+
if isinstance(val, abc.Iterable):
|
| 163 |
+
iterator = map(apply_scale, val)
|
| 164 |
+
if isinstance(val, (list, tuple)):
|
| 165 |
+
return type(val)(iterator)
|
| 166 |
+
return iterator
|
| 167 |
+
raise ValueError("outputs must be a Tensor or an iterable of Tensors")
|
| 168 |
+
|
| 169 |
+
return apply_scale(outputs)
|
| 170 |
+
|
| 171 |
+
def _foreach_non_finite_check_and_unscale_cpu_(
|
| 172 |
+
self,
|
| 173 |
+
grads: Sequence[torch.Tensor],
|
| 174 |
+
found_inf: torch.Tensor,
|
| 175 |
+
inv_scale: torch.Tensor,
|
| 176 |
+
) -> None:
|
| 177 |
+
if len(grads) == 0:
|
| 178 |
+
return
|
| 179 |
+
assert inv_scale.numel() == 1, "inv_scale must be a 1-element tensor."
|
| 180 |
+
assert found_inf.numel() == 1, "found_inf must be a 1-element tensor."
|
| 181 |
+
|
| 182 |
+
for grad in grads:
|
| 183 |
+
if grad.device.type != "cpu":
|
| 184 |
+
logger.error(
|
| 185 |
+
"tensor device is %s but was expected to be ``cpu``",
|
| 186 |
+
grad.device,
|
| 187 |
+
)
|
| 188 |
+
raise ValueError(
|
| 189 |
+
"Gradients were found on a non-CPU device when"
|
| 190 |
+
" expected to be on CPU."
|
| 191 |
+
)
|
| 192 |
+
if (
|
| 193 |
+
torch.isinf(grad).any().item() is True
|
| 194 |
+
or torch.isnan(grad).any().item() is True
|
| 195 |
+
):
|
| 196 |
+
found_inf.data = torch.tensor([1.0])
|
| 197 |
+
break
|
| 198 |
+
else:
|
| 199 |
+
grad.data *= inv_scale.item()
|
| 200 |
+
|
| 201 |
+
def _unscale_grads_(
|
| 202 |
+
self,
|
| 203 |
+
optimizer: torch.optim.Optimizer,
|
| 204 |
+
inv_scale: torch.Tensor,
|
| 205 |
+
found_inf: torch.Tensor,
|
| 206 |
+
allow_fp16: bool = True,
|
| 207 |
+
) -> Dict[torch.device, torch.Tensor]:
|
| 208 |
+
per_device_inv_scale = _GeneralMultiDeviceReplicator(inv_scale)
|
| 209 |
+
per_device_found_inf = _GeneralMultiDeviceReplicator(found_inf)
|
| 210 |
+
|
| 211 |
+
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
|
| 212 |
+
# There could be thousands of grads, so we'd like to iterate through them just once.
|
| 213 |
+
# However, we don't know their devices or dtypes in advance.
|
| 214 |
+
|
| 215 |
+
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
|
| 216 |
+
# Google says mypy struggles with defaultdicts type annotations.
|
| 217 |
+
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
|
| 218 |
+
with torch.no_grad():
|
| 219 |
+
for group in optimizer.param_groups:
|
| 220 |
+
for param in group["params"]:
|
| 221 |
+
if param.grad is None:
|
| 222 |
+
continue
|
| 223 |
+
if (not allow_fp16) and param.grad.dtype == torch.float16:
|
| 224 |
+
raise ValueError("Attempting to unscale FP16 gradients.")
|
| 225 |
+
if param.grad.is_sparse:
|
| 226 |
+
# is_coalesced() == False means the sparse grad has values with duplicate indices.
|
| 227 |
+
# coalesce() deduplicates indices and adds all values that have the same index.
|
| 228 |
+
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
|
| 229 |
+
# so we should check the coalesced _values().
|
| 230 |
+
if param.grad.dtype is torch.float16:
|
| 231 |
+
# coalesce is not supported in torch.float16
|
| 232 |
+
param_grad_fp32 = param.grad.type(torch.float32).coalesce()
|
| 233 |
+
param.grad = param_grad_fp32.type(torch.float16)
|
| 234 |
+
to_unscale = param.grad._values()
|
| 235 |
+
else:
|
| 236 |
+
to_unscale = param.grad
|
| 237 |
+
|
| 238 |
+
per_device_and_dtype_grads[to_unscale.device][
|
| 239 |
+
to_unscale.dtype
|
| 240 |
+
].append(to_unscale)
|
| 241 |
+
|
| 242 |
+
for device, per_dtype_grads in per_device_and_dtype_grads.items():
|
| 243 |
+
for grads in per_dtype_grads.values():
|
| 244 |
+
if grads[0].device.type == "cpu":
|
| 245 |
+
self._foreach_non_finite_check_and_unscale_cpu_(
|
| 246 |
+
grads,
|
| 247 |
+
per_device_found_inf.get(device),
|
| 248 |
+
per_device_inv_scale.get(device),
|
| 249 |
+
)
|
| 250 |
+
else:
|
| 251 |
+
torch._amp_foreach_non_finite_check_and_unscale_(
|
| 252 |
+
grads,
|
| 253 |
+
per_device_found_inf.get(device),
|
| 254 |
+
per_device_inv_scale.get(device),
|
| 255 |
+
)
|
| 256 |
+
# There exist contexts (e.g. w/ `use_orig_params=True`) wherein some
|
| 257 |
+
# ranks may have no (non-zero sized) parameter shards, necessitating the
|
| 258 |
+
# initialization of `per_device_found_inf._per_device_tensors` here
|
| 259 |
+
if not per_device_found_inf._per_device_tensors:
|
| 260 |
+
assert self._scale is not None
|
| 261 |
+
per_device_found_inf.get(self._scale.device)
|
| 262 |
+
return per_device_found_inf._per_device_tensors
|
| 263 |
+
|
| 264 |
+
def unscale_(self, optimizer: torch.optim.Optimizer) -> None:
|
| 265 |
+
if not self._enabled:
|
| 266 |
+
return
|
| 267 |
+
|
| 268 |
+
self._check_scale_growth_tracker("unscale_")
|
| 269 |
+
|
| 270 |
+
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
| 271 |
+
|
| 272 |
+
if optimizer_state["stage"] is OptState.UNSCALED:
|
| 273 |
+
raise RuntimeError(
|
| 274 |
+
"unscale_() has already been called on this optimizer since the last update()."
|
| 275 |
+
)
|
| 276 |
+
elif optimizer_state["stage"] is OptState.STEPPED:
|
| 277 |
+
raise RuntimeError("unscale_() is being called after step().")
|
| 278 |
+
|
| 279 |
+
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
|
| 280 |
+
assert self._scale is not None
|
| 281 |
+
inv_scale = self._scale.double().reciprocal().float()
|
| 282 |
+
found_inf = torch.full(
|
| 283 |
+
(1,), 0.0, dtype=torch.float32, device=self._scale.device
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
|
| 287 |
+
optimizer, inv_scale, found_inf, True
|
| 288 |
+
)
|
| 289 |
+
optimizer_state["stage"] = OptState.UNSCALED
|
| 290 |
+
|
| 291 |
+
# Synchronize the detected inf across the ranks
|
| 292 |
+
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
| 293 |
+
works = []
|
| 294 |
+
found_inf_on_cpus = []
|
| 295 |
+
found_inf_on_devices = []
|
| 296 |
+
|
| 297 |
+
for found_inf in optimizer_state["found_inf_per_device"].values():
|
| 298 |
+
if self._device != "cpu" and found_inf.device.type == "cpu":
|
| 299 |
+
found_inf_on_cpus.append(found_inf)
|
| 300 |
+
found_inf_on_device = found_inf.to(self._device)
|
| 301 |
+
found_inf_on_devices.append(found_inf_on_device)
|
| 302 |
+
works.append(
|
| 303 |
+
dist.all_reduce(
|
| 304 |
+
found_inf_on_device, async_op=True, group=self.process_group
|
| 305 |
+
)
|
| 306 |
+
)
|
| 307 |
+
else:
|
| 308 |
+
works.append(
|
| 309 |
+
dist.all_reduce(found_inf, async_op=True, group=self.process_group)
|
| 310 |
+
)
|
| 311 |
+
for work in works:
|
| 312 |
+
work.wait()
|
| 313 |
+
if found_inf_on_cpus:
|
| 314 |
+
torch._foreach_copy_(found_inf_on_cpus, found_inf_on_devices)
|
| 315 |
+
|
| 316 |
+
def _amp_update_scale_cpu_(self, found_inf: torch.Tensor) -> None:
|
| 317 |
+
"""
|
| 318 |
+
If found_inf is 1.0 (True), then scale is multiplied by backoff_factor and growth_tracker is set to zero.
|
| 319 |
+
Otherwise, scale is multiplied by the growth factor when the growth interval is reached.
|
| 320 |
+
"""
|
| 321 |
+
assert self._scale is not None and self._growth_tracker is not None
|
| 322 |
+
|
| 323 |
+
if found_inf.item() >= 1.0:
|
| 324 |
+
self._scale *= self._backoff_factor
|
| 325 |
+
self._growth_tracker.fill_(0)
|
| 326 |
+
else:
|
| 327 |
+
successful = self._growth_tracker + 1
|
| 328 |
+
if successful == self._growth_interval:
|
| 329 |
+
self._scale *= self._growth_factor
|
| 330 |
+
self._growth_tracker.fill_(0)
|
| 331 |
+
else:
|
| 332 |
+
self._growth_tracker = successful
|
| 333 |
+
|
| 334 |
+
def update(self, new_scale: Optional[Union[float, torch.Tensor]] = None) -> None:
|
| 335 |
+
"""
|
| 336 |
+
Updates the scale factor.
|
| 337 |
+
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
|
| 338 |
+
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
|
| 339 |
+
the scale is multiplied by ``growth_factor`` to increase it.
|
| 340 |
+
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
|
| 341 |
+
used directly, it's used to fill GradScaler's internal scale tensor. So if
|
| 342 |
+
``new_scale`` was a tensor, later in-place changes to that tensor will not further
|
| 343 |
+
affect the scale GradScaler uses internally.)
|
| 344 |
+
Args:
|
| 345 |
+
new_scale (float or :class:`torch.Tensor`, optional, default=None): New scale factor.
|
| 346 |
+
.. warning::
|
| 347 |
+
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
|
| 348 |
+
been invoked for all optimizers used this iteration.
|
| 349 |
+
"""
|
| 350 |
+
|
| 351 |
+
if not self._enabled:
|
| 352 |
+
return
|
| 353 |
+
|
| 354 |
+
_scale, _growth_tracker = self._check_scale_growth_tracker("update") # type: ignore[var-annotated]
|
| 355 |
+
|
| 356 |
+
if new_scale is not None:
|
| 357 |
+
# Accept a new user-defined scale.
|
| 358 |
+
if isinstance(new_scale, float):
|
| 359 |
+
self._scale.fill_(new_scale) # type: ignore[union-attr]
|
| 360 |
+
else:
|
| 361 |
+
reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor or \
|
| 362 |
+
torch.FloatTensor with requires_grad=False."
|
| 363 |
+
assert new_scale.device.type == self._device, reason
|
| 364 |
+
assert new_scale.numel() == 1, reason
|
| 365 |
+
assert new_scale.requires_grad is False, reason
|
| 366 |
+
self._scale.copy_(new_scale) # type: ignore[union-attr]
|
| 367 |
+
else:
|
| 368 |
+
# Consume shared inf/nan data collected from optimizers to update the scale.
|
| 369 |
+
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
|
| 370 |
+
found_infs = [
|
| 371 |
+
found_inf.to(device=_scale.device, non_blocking=True)
|
| 372 |
+
for state in self._per_optimizer_states.values()
|
| 373 |
+
for found_inf in state["found_inf_per_device"].values()
|
| 374 |
+
]
|
| 375 |
+
|
| 376 |
+
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
|
| 377 |
+
|
| 378 |
+
found_inf_combined = found_infs[0]
|
| 379 |
+
if len(found_infs) > 1:
|
| 380 |
+
for i in range(1, len(found_infs)):
|
| 381 |
+
found_inf_combined += found_infs[i]
|
| 382 |
+
|
| 383 |
+
if _scale.device.type == "cpu":
|
| 384 |
+
self._amp_update_scale_cpu_(found_inf_combined)
|
| 385 |
+
else:
|
| 386 |
+
torch._amp_update_scale_(
|
| 387 |
+
self._scale, # type: ignore[arg-type]
|
| 388 |
+
self._growth_tracker, # type: ignore[arg-type]
|
| 389 |
+
found_inf_combined,
|
| 390 |
+
self._growth_factor, # type: ignore[arg-type]
|
| 391 |
+
self._backoff_factor, # type: ignore[arg-type]
|
| 392 |
+
self._growth_interval, # type: ignore[arg-type]
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
# To prepare for next iteration, clear the data collected from optimizers this iteration.
|
| 396 |
+
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/fsdp/wrap.py
ADDED
|
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the BSD license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
import contextlib
|
| 8 |
+
import copy
|
| 9 |
+
from abc import ABC, abstractmethod
|
| 10 |
+
from typing import (
|
| 11 |
+
Any,
|
| 12 |
+
Callable,
|
| 13 |
+
cast,
|
| 14 |
+
Dict,
|
| 15 |
+
Generator,
|
| 16 |
+
Iterable,
|
| 17 |
+
Optional,
|
| 18 |
+
Sequence,
|
| 19 |
+
Set,
|
| 20 |
+
Tuple,
|
| 21 |
+
Type,
|
| 22 |
+
Union,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
import torch.nn as nn
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
__all__ = [
|
| 29 |
+
"always_wrap_policy",
|
| 30 |
+
"lambda_auto_wrap_policy",
|
| 31 |
+
"transformer_auto_wrap_policy",
|
| 32 |
+
"size_based_auto_wrap_policy",
|
| 33 |
+
"enable_wrap",
|
| 34 |
+
"wrap",
|
| 35 |
+
"CustomPolicy",
|
| 36 |
+
"ModuleWrapPolicy",
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# NOTE: We intentionally keep this function simple and isolate the complexity
|
| 41 |
+
# to `fn` to enable using this function generically. We may move this to a
|
| 42 |
+
# non-FSDP-specific folder and/or make it public in the future.
|
| 43 |
+
def _post_order_apply(
|
| 44 |
+
root_module: nn.Module,
|
| 45 |
+
fn: Callable[[nn.Module], Optional[nn.Module]],
|
| 46 |
+
):
|
| 47 |
+
"""
|
| 48 |
+
This applies ``fn`` to every module in the module tree of ``root_module``
|
| 49 |
+
following a post-order traversal. If ``fn`` returns an :class:`nn.Module`,
|
| 50 |
+
then this replaces the original module with the newly returned one in the
|
| 51 |
+
tree. Otherwise, ``fn`` should return ``None``, in which case the module is
|
| 52 |
+
not changed.
|
| 53 |
+
"""
|
| 54 |
+
# Track visited modules to avoid visiting shared modules multiple times
|
| 55 |
+
visited_modules: Set[nn.Module] = {root_module}
|
| 56 |
+
|
| 57 |
+
def _post_order_apply_inner(
|
| 58 |
+
module: nn.Module,
|
| 59 |
+
module_name: str,
|
| 60 |
+
parent_module: Optional[nn.Module],
|
| 61 |
+
):
|
| 62 |
+
for child_module_name, child_module in module.named_children():
|
| 63 |
+
if child_module not in visited_modules:
|
| 64 |
+
visited_modules.add(child_module)
|
| 65 |
+
_post_order_apply_inner(child_module, child_module_name, module)
|
| 66 |
+
optional_module = fn(module)
|
| 67 |
+
if optional_module is not None:
|
| 68 |
+
assert isinstance(parent_module, nn.Module), (
|
| 69 |
+
"Non-root modules should have their parent module set but got "
|
| 70 |
+
f"{parent_module} for {module}"
|
| 71 |
+
)
|
| 72 |
+
assert module_name, (
|
| 73 |
+
"Non-root modules should have their module name set but got "
|
| 74 |
+
f"an empty module name for {module}"
|
| 75 |
+
)
|
| 76 |
+
assert isinstance(
|
| 77 |
+
optional_module, nn.Module
|
| 78 |
+
), f"fn should return None or an nn.Module but got {optional_module}"
|
| 79 |
+
setattr(parent_module, module_name, optional_module)
|
| 80 |
+
|
| 81 |
+
_post_order_apply_inner(root_module, "", None)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def _construct_wrap_fn(
|
| 85 |
+
root_module: nn.Module,
|
| 86 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]],
|
| 87 |
+
fsdp_fn: Callable,
|
| 88 |
+
) -> Callable[[nn.Module], Optional[nn.Module]]:
|
| 89 |
+
"""
|
| 90 |
+
This constructs the "wrap" function to pass to :func:`_post_order_apply`
|
| 91 |
+
based on ``target_module_to_kwargs``, which should be constructed from the
|
| 92 |
+
wrapping policy.
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
def fn(module: nn.Module) -> Optional[nn.Module]:
|
| 96 |
+
# Explicitly avoid wrapping the root module since for FSDP, it is
|
| 97 |
+
# handled by the caller
|
| 98 |
+
if module in target_module_to_kwargs and module is not root_module:
|
| 99 |
+
kwargs = target_module_to_kwargs[module]
|
| 100 |
+
return fsdp_fn(module, **kwargs)
|
| 101 |
+
return None
|
| 102 |
+
|
| 103 |
+
return fn
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def _run_mixed_precision_override_policy(
|
| 107 |
+
root_module: nn.Module,
|
| 108 |
+
module_classes: Iterable[Type[nn.Module]],
|
| 109 |
+
ignored_modules: Set[nn.Module],
|
| 110 |
+
root_kwargs: Dict[str, Any],
|
| 111 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]],
|
| 112 |
+
):
|
| 113 |
+
module_classes_tuple = tuple(set(module_classes))
|
| 114 |
+
for module in root_module.modules():
|
| 115 |
+
if module in ignored_modules:
|
| 116 |
+
continue
|
| 117 |
+
elif isinstance(module, module_classes_tuple):
|
| 118 |
+
# This policy overrides any existing policy
|
| 119 |
+
if module not in target_module_to_kwargs:
|
| 120 |
+
# Only inherit from the root kwargs if not already specified
|
| 121 |
+
target_module_to_kwargs[module] = root_kwargs
|
| 122 |
+
target_module_to_kwargs[module]["mixed_precision"] = None
|
| 123 |
+
return target_module_to_kwargs
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def always_wrap_policy(*args, **kwargs) -> bool:
|
| 127 |
+
"""
|
| 128 |
+
A simple recursive wrap policy that always returns ``True``. This means
|
| 129 |
+
that every submodule is wrapped by the wrapper class in
|
| 130 |
+
:func:`_recursive_wrap`.
|
| 131 |
+
"""
|
| 132 |
+
return True
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class _Policy(ABC):
|
| 136 |
+
"""
|
| 137 |
+
This defines an abstract base class that represents a policy for applying
|
| 138 |
+
a module-level API.
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
@abstractmethod
|
| 142 |
+
def _run_policy(
|
| 143 |
+
self,
|
| 144 |
+
root_module: nn.Module,
|
| 145 |
+
ignored_modules: Set[nn.Module],
|
| 146 |
+
root_kwargs: Dict[str, Any],
|
| 147 |
+
) -> Dict[nn.Module, Dict[str, Any]]:
|
| 148 |
+
"""
|
| 149 |
+
This should return a dict ``target_module_to_kwargs`` that maps from
|
| 150 |
+
each target module to wrap to its kwargs.
|
| 151 |
+
"""
|
| 152 |
+
...
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def _module_wrap_policy(
|
| 156 |
+
module: nn.Module,
|
| 157 |
+
recurse: bool,
|
| 158 |
+
nonwrapped_numel: int,
|
| 159 |
+
module_classes: Set[Type[nn.Module]],
|
| 160 |
+
) -> bool:
|
| 161 |
+
"""
|
| 162 |
+
This auto wrap policy wraps every module that is an instance of any type in
|
| 163 |
+
``module_classes`` as its own FSDP instance. The root module given by
|
| 164 |
+
``module`` is always wrapped as an FSDP instance regardless. Since the
|
| 165 |
+
wrapping proceeds bottom up, each FSDP instance manages the parameters in
|
| 166 |
+
its subtree excluding any already managed by a child FSDP instance.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
module (nn.Module): Current module being considered.
|
| 170 |
+
recurse (bool): If ``False``, then this function must decide whether
|
| 171 |
+
``module`` should be wrapped as an FSDP instance or not. If
|
| 172 |
+
``True``, then the function is still recursing down the module
|
| 173 |
+
tree as a part of the DFS.
|
| 174 |
+
nonwrapped_numel (int): Parameter numel not yet wrapped.
|
| 175 |
+
module_classes (Set[Type[nn.Module]]): Set of module classes that are
|
| 176 |
+
wrapped as FSDP instances.
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
``True`` if ``recurse=True``, and whether ``module`` should be wrapped
|
| 180 |
+
if ``recurse=False``.
|
| 181 |
+
"""
|
| 182 |
+
if recurse:
|
| 183 |
+
return True # always recurse
|
| 184 |
+
return isinstance(module, tuple(module_classes))
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class ModuleWrapPolicy(_Policy):
|
| 188 |
+
"""
|
| 189 |
+
This policy applies to every module of the specified module classes,
|
| 190 |
+
passing in the kwargs given to the root.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
def __init__(self, module_classes: Iterable[Type[nn.Module]]):
|
| 194 |
+
module_classes_set = set(module_classes)
|
| 195 |
+
self._module_classes = module_classes_set
|
| 196 |
+
self._module_classes_str = str(module_classes_set)
|
| 197 |
+
|
| 198 |
+
def _run_policy(
|
| 199 |
+
self,
|
| 200 |
+
root_module: nn.Module,
|
| 201 |
+
ignored_modules: Set[nn.Module],
|
| 202 |
+
root_kwargs: Dict[str, Any],
|
| 203 |
+
) -> Dict[nn.Module, Dict[str, Any]]:
|
| 204 |
+
module_classes = tuple(self._module_classes)
|
| 205 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]] = {}
|
| 206 |
+
for module in root_module.modules():
|
| 207 |
+
if module in ignored_modules:
|
| 208 |
+
continue
|
| 209 |
+
elif isinstance(module, module_classes):
|
| 210 |
+
# Shallow copy to avoid coupling changes across modules
|
| 211 |
+
target_module_to_kwargs[module] = copy.copy(root_kwargs)
|
| 212 |
+
return target_module_to_kwargs
|
| 213 |
+
|
| 214 |
+
def __call__(self, module, recurse, *args, **kwargs):
|
| 215 |
+
# nonwrapped_numel is not used.
|
| 216 |
+
return _module_wrap_policy(
|
| 217 |
+
module, recurse, nonwrapped_numel=-1, module_classes=self._module_classes
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
def __repr__(self) -> str:
|
| 221 |
+
return super().__repr__() + f"({self._module_classes_str})"
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class CustomPolicy(_Policy):
|
| 225 |
+
"""
|
| 226 |
+
This policy takes in a lambda function that maps a given ``nn.Module`` to
|
| 227 |
+
either ``False``, ``True``, or a kwarg dictionary.
|
| 228 |
+
- If the function returns ``False`` or an empty dictionary, then the module
|
| 229 |
+
does not have the API applied.
|
| 230 |
+
- If the function returns ``True``, then the module has the API applied
|
| 231 |
+
with the root's kwargs.
|
| 232 |
+
- If the function returns a non-empty dictionary, then the module has the
|
| 233 |
+
API applied, and the dictionary overrides the root's kwargs.
|
| 234 |
+
|
| 235 |
+
Example::
|
| 236 |
+
|
| 237 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
| 238 |
+
>>> model = init_transformer_model(...)
|
| 239 |
+
>>> def lambda_fn(module: nn.Module):
|
| 240 |
+
>>> if module is model.lm_head:
|
| 241 |
+
>>> return {"sharding_strategy": ShardingStrategy.SHARD_GRAD_OP}
|
| 242 |
+
>>> elif isinstance(module, TransformerBlock):
|
| 243 |
+
>>> return True
|
| 244 |
+
>>> return False
|
| 245 |
+
>>> policy = CustomPolicy(lambda_fn)
|
| 246 |
+
>>> fsdp_model = FSDP(model, auto_wrap_policy=policy)
|
| 247 |
+
"""
|
| 248 |
+
|
| 249 |
+
def __init__(self, lambda_fn: Callable[[nn.Module], Union[bool, Dict[str, Any]]]):
|
| 250 |
+
self._lambda_fn = lambda_fn
|
| 251 |
+
|
| 252 |
+
def _run_policy(
|
| 253 |
+
self,
|
| 254 |
+
root_module: nn.Module,
|
| 255 |
+
ignored_modules: Set[nn.Module],
|
| 256 |
+
root_kwargs: Dict[str, Any],
|
| 257 |
+
) -> Dict[nn.Module, Dict[str, Any]]:
|
| 258 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]] = {}
|
| 259 |
+
for module in root_module.modules():
|
| 260 |
+
if module in ignored_modules:
|
| 261 |
+
continue
|
| 262 |
+
res = self._lambda_fn(module)
|
| 263 |
+
if not isinstance(res, (dict, bool)):
|
| 264 |
+
raise ValueError(
|
| 265 |
+
"The lambda_fn passed to CustomPolicy should return "
|
| 266 |
+
f"False/True or a kwarg dict, but it returned {res}"
|
| 267 |
+
)
|
| 268 |
+
if not res:
|
| 269 |
+
continue
|
| 270 |
+
kwargs = copy.copy(root_kwargs)
|
| 271 |
+
if isinstance(res, dict):
|
| 272 |
+
# Override the root kwargs with the ones specified by the
|
| 273 |
+
# lambda function
|
| 274 |
+
kwargs.update(res)
|
| 275 |
+
target_module_to_kwargs[module] = kwargs
|
| 276 |
+
return target_module_to_kwargs
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def lambda_auto_wrap_policy(
|
| 280 |
+
module: nn.Module, recurse: bool, nonwrapped_numel: int, lambda_fn: Callable
|
| 281 |
+
) -> bool:
|
| 282 |
+
"""
|
| 283 |
+
A convenient auto wrap policy to wrap submodules based on an arbitrary user
|
| 284 |
+
function. If `lambda_fn(submodule) == True``, the submodule will be wrapped as
|
| 285 |
+
a `wrapper_cls` unit.
|
| 286 |
+
|
| 287 |
+
Return if a module should be wrapped during auto wrapping.
|
| 288 |
+
|
| 289 |
+
The first three parameters are required by :func:`_recursive_wrap`.
|
| 290 |
+
|
| 291 |
+
Args:
|
| 292 |
+
module (nn.Module): Current module being considered.
|
| 293 |
+
recurse (bool): If ``False``, then this function must decide whether
|
| 294 |
+
``module`` should be wrapped as an FSDP instance or not. If
|
| 295 |
+
``True``, then the function is still recursing down the module
|
| 296 |
+
tree as a part of the DFS.
|
| 297 |
+
nonwrapped_numel (int): Parameter numel not yet wrapped.
|
| 298 |
+
|
| 299 |
+
lambda_fn (Callable[[nn.Module], bool]): If this returns ``True``, then
|
| 300 |
+
this module will be wrapped.
|
| 301 |
+
"""
|
| 302 |
+
if recurse:
|
| 303 |
+
return True # always recurse
|
| 304 |
+
return lambda_fn(module)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def transformer_auto_wrap_policy(
|
| 308 |
+
module: nn.Module,
|
| 309 |
+
recurse: bool,
|
| 310 |
+
nonwrapped_numel: int,
|
| 311 |
+
transformer_layer_cls: Set[Type[nn.Module]],
|
| 312 |
+
) -> bool:
|
| 313 |
+
"""
|
| 314 |
+
See :func:`_module_wrap_policy`, where ``transformer_layer_cls`` is the
|
| 315 |
+
same as ``module_classes``. Note that shared parameters must be wrapped in
|
| 316 |
+
the same FSDP instance, so this auto wrap policy can help wrap shared
|
| 317 |
+
embeddings into the same FSDP instance for transformer models.
|
| 318 |
+
"""
|
| 319 |
+
return _module_wrap_policy(module, recurse, nonwrapped_numel, transformer_layer_cls)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def _wrap_module_cls_individually(
|
| 323 |
+
module: nn.Module, module_classes: Sequence[type], recurse: bool, *args, **kwargs
|
| 324 |
+
):
|
| 325 |
+
if recurse:
|
| 326 |
+
# always recurse
|
| 327 |
+
return True
|
| 328 |
+
else:
|
| 329 |
+
# if not recursing, decide whether we should wrap based on whether the type of module
|
| 330 |
+
# is in `module_classes`.
|
| 331 |
+
return isinstance(module, tuple(module_classes))
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def _or_policy(
|
| 335 |
+
module: nn.Module,
|
| 336 |
+
recurse: bool,
|
| 337 |
+
nonwrapped_numel: int,
|
| 338 |
+
policies,
|
| 339 |
+
) -> bool:
|
| 340 |
+
"""
|
| 341 |
+
A policy that wraps ``module`` if any policy in the passed in iterable of
|
| 342 |
+
``policies`` returns ``True``.
|
| 343 |
+
"""
|
| 344 |
+
return any(
|
| 345 |
+
policy(module=module, recurse=recurse, nonwrapped_numel=nonwrapped_numel)
|
| 346 |
+
for policy in policies
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def size_based_auto_wrap_policy(
|
| 351 |
+
module: nn.Module,
|
| 352 |
+
recurse: bool,
|
| 353 |
+
nonwrapped_numel: int,
|
| 354 |
+
# Additional custom arguments
|
| 355 |
+
min_num_params: int = int(1e8),
|
| 356 |
+
force_leaf_modules: Optional[Set[Type[nn.Module]]] = None,
|
| 357 |
+
exclude_wrap_modules: Optional[Set[Type[nn.Module]]] = None,
|
| 358 |
+
) -> bool:
|
| 359 |
+
"""
|
| 360 |
+
A size-based auto wrap policy.
|
| 361 |
+
|
| 362 |
+
Args:
|
| 363 |
+
module (nn.Module): Current module being considered.
|
| 364 |
+
recurse (bool): If ``False``, then this function must decide whether
|
| 365 |
+
``module`` should be wrapped as an FSDP instance or not. If
|
| 366 |
+
``True``, then the function is still recursing down the module
|
| 367 |
+
tree as a part of the DFS.
|
| 368 |
+
nonwrapped_numel (int): Parameter numel not yet wrapped.
|
| 369 |
+
|
| 370 |
+
min_num_params (int): Customizable policy input that controls the size
|
| 371 |
+
threshold over which a module is ready to be wrapped. This is in
|
| 372 |
+
units of numel.
|
| 373 |
+
force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep
|
| 374 |
+
as leaves, i.e. their children will never be wrapped.
|
| 375 |
+
exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be
|
| 376 |
+
excluded in wrapping.
|
| 377 |
+
|
| 378 |
+
Returns:
|
| 379 |
+
Whether ``module`` should be wrapped.
|
| 380 |
+
"""
|
| 381 |
+
force_leaf_modules = (
|
| 382 |
+
size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
|
| 383 |
+
if force_leaf_modules is None
|
| 384 |
+
else force_leaf_modules
|
| 385 |
+
)
|
| 386 |
+
exclude_wrap_modules = (
|
| 387 |
+
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
|
| 388 |
+
if exclude_wrap_modules is None
|
| 389 |
+
else exclude_wrap_modules
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# Keep the argument `min_num_params` for BC for now, but it represents the
|
| 393 |
+
# minimum non-wrapped *numel* before triggering a wrapping
|
| 394 |
+
min_nonwrapped_numel = min_num_params
|
| 395 |
+
is_large = nonwrapped_numel >= min_nonwrapped_numel
|
| 396 |
+
if recurse:
|
| 397 |
+
# We should recurse if the module is big enough but not in force_leaf_modules list.
|
| 398 |
+
return is_large and not isinstance(module, tuple(force_leaf_modules))
|
| 399 |
+
else:
|
| 400 |
+
# If we are not recursing, determine if we should wrap.
|
| 401 |
+
return is_large and not isinstance(module, tuple(exclude_wrap_modules))
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
# Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
|
| 405 |
+
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {nn.ModuleList, nn.ModuleDict} # type: ignore[attr-defined]
|
| 406 |
+
size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {nn.MultiheadAttention} # type: ignore[attr-defined]
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
@contextlib.contextmanager
|
| 410 |
+
def enable_wrap(
|
| 411 |
+
*, wrapper_cls: Any, **wrapper_kwargs: Any
|
| 412 |
+
) -> Generator[None, None, None]:
|
| 413 |
+
"""
|
| 414 |
+
Context manager to wrap modules using a wrapper.
|
| 415 |
+
|
| 416 |
+
Useful for when you'd like to apply the same configuration arguments to all
|
| 417 |
+
child modules that you wrap. A particularly important use case is wrapping
|
| 418 |
+
large layers so that they get sharded (in-place) during initialization, to
|
| 419 |
+
avoid running out of system memory. Large layers can indicate that they
|
| 420 |
+
should be sharded via the ``wrap`` annotation and this context manager can
|
| 421 |
+
provide the exact configuration for these nested instances.
|
| 422 |
+
|
| 423 |
+
Usage::
|
| 424 |
+
|
| 425 |
+
with enable_wrap(wrapper_cls, **params):
|
| 426 |
+
# Wraps layer in FSDP by default if within context
|
| 427 |
+
self.l1 = wrap(torch.nn.Linear(5, 5))
|
| 428 |
+
|
| 429 |
+
Args:
|
| 430 |
+
wrapper_cls:
|
| 431 |
+
Class that `wrap` annotation will `wrap` modules with, such as
|
| 432 |
+
`FullyShardedDataParallel`.
|
| 433 |
+
**wrapper_kwargs:
|
| 434 |
+
Configuration settings that will be passed to all ``wrap``
|
| 435 |
+
instances inside the context
|
| 436 |
+
"""
|
| 437 |
+
kwargs = {
|
| 438 |
+
"wrapper_cls": wrapper_cls,
|
| 439 |
+
**wrapper_kwargs,
|
| 440 |
+
}
|
| 441 |
+
with _ConfigAutoWrap(**kwargs):
|
| 442 |
+
yield
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def wrap(module: nn.Module, **wrap_overrides: Any) -> nn.Module:
|
| 446 |
+
"""
|
| 447 |
+
Annotate that a module should be wrapped. Annotated modules will only be
|
| 448 |
+
wrapped if inside of an :func:`enable_wrap` context manager. This allows
|
| 449 |
+
a module to be initialized both with and without a wrapper without code
|
| 450 |
+
change.
|
| 451 |
+
|
| 452 |
+
The class that this function wraps the passed in ``nn.Module`` with is the
|
| 453 |
+
passed in ``wrapper_cls`` argument into ``enable_wrap``. Both
|
| 454 |
+
``enable_wrap`` and ``wrap`` can take in kwargs specifying how to construct
|
| 455 |
+
the ``wrapper_cls`` instance. In the case of duplicate kwargs in
|
| 456 |
+
``enable_wrap`` and ``wrap``, the argument passed into ``wrap`` will be
|
| 457 |
+
respected.
|
| 458 |
+
|
| 459 |
+
Usage::
|
| 460 |
+
|
| 461 |
+
with enable_wrap(wrapper_cls=FSDP, **fsdp_config):
|
| 462 |
+
# Wraps layer in FSDP by default if within context
|
| 463 |
+
self.l1 = wrap(torch.nn.Linear(5, 5))
|
| 464 |
+
|
| 465 |
+
Args:
|
| 466 |
+
module (nn.Module): module to wrap (if in :func:`enable_wrap` context)
|
| 467 |
+
**wrap_overrides: configuration overrides that will take priority over
|
| 468 |
+
the values provided by the :func:`enable_wrap` context
|
| 469 |
+
"""
|
| 470 |
+
if _ConfigAutoWrap.in_autowrap_context:
|
| 471 |
+
assert _ConfigAutoWrap.wrapper_cls is not None
|
| 472 |
+
|
| 473 |
+
wrap_overrides = {**_ConfigAutoWrap.kwargs, **wrap_overrides}
|
| 474 |
+
return _wrap(
|
| 475 |
+
module,
|
| 476 |
+
_ConfigAutoWrap.wrapper_cls,
|
| 477 |
+
**wrap_overrides,
|
| 478 |
+
)
|
| 479 |
+
return module
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
def _wrap(module: nn.Module, wrapper_cls: Callable, **kwargs) -> nn.Module:
|
| 483 |
+
assert wrapper_cls is not None
|
| 484 |
+
if hasattr(module, "_wrap_overrides"):
|
| 485 |
+
# If module has a _wrap_overrides attribute, we force overriding the
|
| 486 |
+
# FSDP config with these attributes for this module. Currently this
|
| 487 |
+
# is only used to disable mixed precision for BatchNorm when
|
| 488 |
+
# auto_wrapping.
|
| 489 |
+
overrides = {**kwargs, **module._wrap_overrides} # type: ignore[arg-type]
|
| 490 |
+
return wrapper_cls(module, **overrides)
|
| 491 |
+
|
| 492 |
+
return wrapper_cls(module, **kwargs)
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def _recursive_wrap(
|
| 496 |
+
module: nn.Module,
|
| 497 |
+
auto_wrap_policy: Callable,
|
| 498 |
+
wrapper_cls: Callable,
|
| 499 |
+
ignored_modules: Set[nn.Module],
|
| 500 |
+
ignored_params: Set[nn.Parameter],
|
| 501 |
+
only_wrap_children: bool = False,
|
| 502 |
+
**kwargs: Any,
|
| 503 |
+
) -> Tuple[nn.Module, int]:
|
| 504 |
+
"""
|
| 505 |
+
Wraps submodules of ``module`` for which ``auto_wrap_policy`` returns
|
| 506 |
+
``True`` with ``wrapper_cls``.
|
| 507 |
+
|
| 508 |
+
Args:
|
| 509 |
+
module (nn.Module): Module to recursively wrap.
|
| 510 |
+
auto_wrap_policy (Callable): A callable representing a policy that
|
| 511 |
+
determines which modules to recursively wrap with ``wrapper_cls``.
|
| 512 |
+
ignored_modules (Set[torch.nn.Module]): Modules to ignore when
|
| 513 |
+
wrapping.
|
| 514 |
+
ignored_params (Set[torch.nn.Parameter]): Parameters to ignore when
|
| 515 |
+
wrapping; these should be the parameters contained in the modules
|
| 516 |
+
in ``ignored_modules``.
|
| 517 |
+
Returns:
|
| 518 |
+
(nn.Module, int):
|
| 519 |
+
``module`` after wrapping and the numel recursively wrapped.
|
| 520 |
+
"""
|
| 521 |
+
assert auto_wrap_policy is not None, "Must specify auto_wrap_policy."
|
| 522 |
+
assert wrapper_cls is not None, "Must specify wrapper_cls"
|
| 523 |
+
# Make sure no child is already wrapped.
|
| 524 |
+
for _, child in module.named_modules():
|
| 525 |
+
if child in ignored_modules:
|
| 526 |
+
continue
|
| 527 |
+
try:
|
| 528 |
+
assert not isinstance(child, cast(type, wrapper_cls))
|
| 529 |
+
except TypeError:
|
| 530 |
+
# wrapper_cls is a function as opposed to a class type, just bypass above check.
|
| 531 |
+
pass
|
| 532 |
+
|
| 533 |
+
# We count all params, assuming none of them are already wrapped.
|
| 534 |
+
nonwrapped_numel = sum(
|
| 535 |
+
p.numel() for p in module.parameters() if p not in ignored_params
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
assert auto_wrap_policy is not None
|
| 539 |
+
if auto_wrap_policy(module=module, recurse=True, nonwrapped_numel=nonwrapped_numel):
|
| 540 |
+
total_wrapped_numel = 0
|
| 541 |
+
# Iterate through the children, recursively wrap if necessary
|
| 542 |
+
for name, child in module.named_children():
|
| 543 |
+
if child in ignored_modules:
|
| 544 |
+
continue
|
| 545 |
+
wrapped_child, num_wrapped_params = _recursive_wrap(
|
| 546 |
+
module=child,
|
| 547 |
+
auto_wrap_policy=auto_wrap_policy,
|
| 548 |
+
wrapper_cls=wrapper_cls,
|
| 549 |
+
ignored_modules=ignored_modules,
|
| 550 |
+
ignored_params=ignored_params,
|
| 551 |
+
**kwargs,
|
| 552 |
+
)
|
| 553 |
+
setattr(module, name, wrapped_child)
|
| 554 |
+
# Keep track of how many parameters have been wrapped
|
| 555 |
+
total_wrapped_numel += num_wrapped_params
|
| 556 |
+
# decide if we need to wrap the current module,
|
| 557 |
+
# since the left over parameters exceed the number of params to wrap
|
| 558 |
+
remainder = nonwrapped_numel - total_wrapped_numel
|
| 559 |
+
if not only_wrap_children and auto_wrap_policy(
|
| 560 |
+
module=module, recurse=False, nonwrapped_numel=remainder
|
| 561 |
+
):
|
| 562 |
+
# Leaf node or final wrapping of the remainder both happen here.
|
| 563 |
+
return _wrap(module, wrapper_cls, **kwargs), nonwrapped_numel
|
| 564 |
+
else:
|
| 565 |
+
return module, total_wrapped_numel
|
| 566 |
+
return module, 0
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
class _ConfigAutoWrap:
|
| 570 |
+
"""
|
| 571 |
+
Helper class to wrap modules based on default config args via a context manager.
|
| 572 |
+
See :func:`enable_wrap` for more information.
|
| 573 |
+
"""
|
| 574 |
+
|
| 575 |
+
in_autowrap_context: bool = False # Context flag
|
| 576 |
+
wrapper_cls: Optional[Callable] = None # The wrapper class
|
| 577 |
+
kwargs: Dict[str, Any] = {} # Wrapper's args
|
| 578 |
+
|
| 579 |
+
def __init__(self, **kwargs: Dict[str, Any]):
|
| 580 |
+
self.kwargs = kwargs
|
| 581 |
+
|
| 582 |
+
@staticmethod
|
| 583 |
+
def enable_autowrap_context(kwargs: Any) -> None:
|
| 584 |
+
if _ConfigAutoWrap.in_autowrap_context:
|
| 585 |
+
raise NotImplementedError(
|
| 586 |
+
"You are already within an autowrap context and we currently do not supported nested autowrap."
|
| 587 |
+
)
|
| 588 |
+
_ConfigAutoWrap.in_autowrap_context = True
|
| 589 |
+
# Get and save the wrapper cls for the context.
|
| 590 |
+
assert (
|
| 591 |
+
"wrapper_cls" in kwargs.keys()
|
| 592 |
+
), "Expected to pass in wrapper_cls arg into _ConfigAutoWrap."
|
| 593 |
+
_ConfigAutoWrap.wrapper_cls = cast(Callable, kwargs["wrapper_cls"])
|
| 594 |
+
del kwargs["wrapper_cls"]
|
| 595 |
+
# Save the rest.
|
| 596 |
+
_ConfigAutoWrap.kwargs = kwargs
|
| 597 |
+
|
| 598 |
+
@staticmethod
|
| 599 |
+
def disable_autowrap_context() -> None:
|
| 600 |
+
_ConfigAutoWrap.in_autowrap_context = False
|
| 601 |
+
_ConfigAutoWrap.wrapper_cls = None
|
| 602 |
+
_ConfigAutoWrap.kwargs = {}
|
| 603 |
+
|
| 604 |
+
def __enter__(self) -> None:
|
| 605 |
+
self.enable_autowrap_context(self.kwargs)
|
| 606 |
+
|
| 607 |
+
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
|
| 608 |
+
self.disable_autowrap_context()
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/api.cpython-310.pyc
ADDED
|
Binary file (28.4 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/options.cpython-310.pyc
ADDED
|
Binary file (7.16 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/rref_proxy.cpython-310.pyc
ADDED
|
Binary file (2.53 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/_testing/__init__.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def is_available():
|
| 7 |
+
return hasattr(torch._C, "_faulty_agent_init")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
if is_available() and not torch._C._faulty_agent_init():
|
| 11 |
+
raise RuntimeError("Failed to initialize torch.distributed.rpc._testing")
|
| 12 |
+
|
| 13 |
+
if is_available():
|
| 14 |
+
# Registers FAULTY_TENSORPIPE RPC backend.
|
| 15 |
+
from torch._C._distributed_rpc_testing import (
|
| 16 |
+
FaultyTensorPipeAgent,
|
| 17 |
+
FaultyTensorPipeRpcBackendOptions,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
from . import faulty_agent_backend_registry
|
infer_4_47_1/lib/python3.10/site-packages/torch/distributed/rpc/_testing/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (656 Bytes). View file
|
|
|