Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- infer_4_30_0/lib/python3.10/site-packages/matplotlib/__pycache__/colors.cpython-310.pyc +3 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/async_timeout.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/llm_engine.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/metrics.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/metrics_types.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/protocol.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/metrics_types.py +102 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__init__.py +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/interfaces.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/multi_step.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/single_step.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/stop_checker.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/util.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/interfaces.py +74 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/multi_step.py +205 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/single_step.py +136 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/stop_checker.py +130 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/util.py +27 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/__init__.py +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/api_server.py +170 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/chat_utils.py +1007 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/launcher.py +108 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/llm.py +1421 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/logger.py +44 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__init__.py +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/api_server.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_engine.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_pooling.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_rerank.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_tokenization.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/api_server.py +991 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/cli_args.py +305 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/logits_processors.py +88 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/protocol.py +1593 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__init__.py +8 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__pycache__/abs_reasoning_parsers.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__pycache__/deepseek_r1_reasoning_parser.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/abs_reasoning_parsers.py +160 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/deepseek_r1_reasoning_parser.py +147 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/run_batch.py +435 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_chat.py +961 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_completion.py +547 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_embedding.py +242 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_engine.py +527 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_models.py +244 -0
- infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_pooling.py +235 -0
.gitattributes
CHANGED
|
@@ -1007,3 +1007,4 @@ infer_4_30_0/lib/python3.10/site-packages/scipy/stats/__pycache__/_distribution_
|
|
| 1007 |
infer_4_30_0/lib/python3.10/site-packages/scipy/signal/_peak_finding_utils.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1008 |
infer_4_30_0/lib/python3.10/site-packages/scipy/signal/_upfirdn_apply.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1009 |
infer_4_30_0/lib/python3.10/site-packages/pkg_resources/__pycache__/__init__.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1007 |
infer_4_30_0/lib/python3.10/site-packages/scipy/signal/_peak_finding_utils.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1008 |
infer_4_30_0/lib/python3.10/site-packages/scipy/signal/_upfirdn_apply.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1009 |
infer_4_30_0/lib/python3.10/site-packages/pkg_resources/__pycache__/__init__.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1010 |
+
infer_4_30_0/lib/python3.10/site-packages/matplotlib/__pycache__/colors.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
infer_4_30_0/lib/python3.10/site-packages/matplotlib/__pycache__/colors.cpython-310.pyc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d7bddc08eb8ee1873f8b72ed965cc6b1aeb31f25dc5a240b2f36013785513b9
|
| 3 |
+
size 118850
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (169 Bytes). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/async_timeout.cpython-310.pyc
ADDED
|
Binary file (5.67 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/llm_engine.cpython-310.pyc
ADDED
|
Binary file (50.1 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/metrics.cpython-310.pyc
ADDED
|
Binary file (20.5 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/metrics_types.cpython-310.pyc
ADDED
|
Binary file (3.9 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/__pycache__/protocol.cpython-310.pyc
ADDED
|
Binary file (8.55 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/metrics_types.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
"""
|
| 3 |
+
These types are defined in this file to avoid importing vllm.engine.metrics
|
| 4 |
+
and therefore importing prometheus_client.
|
| 5 |
+
|
| 6 |
+
This is required due to usage of Prometheus multiprocess mode to enable
|
| 7 |
+
metrics after splitting out the uvicorn process from the engine process.
|
| 8 |
+
|
| 9 |
+
Prometheus multiprocess mode requires setting PROMETHEUS_MULTIPROC_DIR
|
| 10 |
+
before prometheus_client is imported. Typically, this is done by setting
|
| 11 |
+
the env variable before launch, but since we are a library, we need to
|
| 12 |
+
do this in Python code and lazily import prometheus_client.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import time
|
| 16 |
+
from abc import ABC, abstractmethod
|
| 17 |
+
from dataclasses import dataclass
|
| 18 |
+
from typing import Dict, List, Optional, Protocol
|
| 19 |
+
|
| 20 |
+
from vllm.config import VllmConfig
|
| 21 |
+
from vllm.spec_decode.metrics import SpecDecodeWorkerMetrics
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class Stats:
|
| 26 |
+
"""Created by LLMEngine for use by StatLogger."""
|
| 27 |
+
now: float
|
| 28 |
+
|
| 29 |
+
# System stats (should have _sys suffix)
|
| 30 |
+
# Scheduler State
|
| 31 |
+
num_running_sys: int
|
| 32 |
+
num_waiting_sys: int
|
| 33 |
+
num_swapped_sys: int
|
| 34 |
+
# KV Cache Usage in %
|
| 35 |
+
gpu_cache_usage_sys: float
|
| 36 |
+
cpu_cache_usage_sys: float
|
| 37 |
+
# Prefix caching block hit rate
|
| 38 |
+
cpu_prefix_cache_hit_rate: float
|
| 39 |
+
gpu_prefix_cache_hit_rate: float
|
| 40 |
+
|
| 41 |
+
# Iteration stats (should have _iter suffix)
|
| 42 |
+
num_prompt_tokens_iter: int
|
| 43 |
+
num_generation_tokens_iter: int
|
| 44 |
+
num_tokens_iter: int
|
| 45 |
+
time_to_first_tokens_iter: List[float]
|
| 46 |
+
time_per_output_tokens_iter: List[float]
|
| 47 |
+
num_preemption_iter: int
|
| 48 |
+
|
| 49 |
+
# Request stats (should have _requests suffix)
|
| 50 |
+
# Latency
|
| 51 |
+
time_e2e_requests: List[float]
|
| 52 |
+
time_queue_requests: List[float]
|
| 53 |
+
time_inference_requests: List[float]
|
| 54 |
+
time_prefill_requests: List[float]
|
| 55 |
+
time_decode_requests: List[float]
|
| 56 |
+
time_in_queue_requests: List[float]
|
| 57 |
+
model_forward_time_requests: List[float]
|
| 58 |
+
model_execute_time_requests: List[float]
|
| 59 |
+
# Metadata
|
| 60 |
+
num_prompt_tokens_requests: List[int]
|
| 61 |
+
num_generation_tokens_requests: List[int]
|
| 62 |
+
n_requests: List[int]
|
| 63 |
+
max_num_generation_tokens_requests: List[int]
|
| 64 |
+
max_tokens_requests: List[int]
|
| 65 |
+
finished_reason_requests: List[str]
|
| 66 |
+
waiting_lora_adapters: List[str]
|
| 67 |
+
running_lora_adapters: List[str]
|
| 68 |
+
max_lora: str
|
| 69 |
+
|
| 70 |
+
spec_decode_metrics: Optional["SpecDecodeWorkerMetrics"] = None
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class SupportsMetricsInfo(Protocol):
|
| 74 |
+
|
| 75 |
+
def metrics_info(self) -> Dict[str, str]:
|
| 76 |
+
...
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class StatLoggerBase(ABC):
|
| 80 |
+
"""Base class for StatLogger."""
|
| 81 |
+
|
| 82 |
+
def __init__(self, local_interval: float, vllm_config: VllmConfig) -> None:
|
| 83 |
+
# Tracked stats over current local logging interval.
|
| 84 |
+
self.num_prompt_tokens: List[int] = []
|
| 85 |
+
self.num_generation_tokens: List[int] = []
|
| 86 |
+
self.last_local_log = time.time()
|
| 87 |
+
self.local_interval = local_interval
|
| 88 |
+
self.spec_decode_metrics: Optional[SpecDecodeWorkerMetrics] = None
|
| 89 |
+
|
| 90 |
+
@abstractmethod
|
| 91 |
+
def log(self, stats: Stats) -> None:
|
| 92 |
+
raise NotImplementedError
|
| 93 |
+
|
| 94 |
+
@abstractmethod
|
| 95 |
+
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
| 96 |
+
raise NotImplementedError
|
| 97 |
+
|
| 98 |
+
def maybe_update_spec_decode_metrics(self, stats: Stats):
|
| 99 |
+
"""Save spec decode metrics (since they are unlikely
|
| 100 |
+
to be emitted at same time as log interval)."""
|
| 101 |
+
if stats.spec_decode_metrics is not None:
|
| 102 |
+
self.spec_decode_metrics = stats.spec_decode_metrics
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__init__.py
ADDED
|
File without changes
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (186 Bytes). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/interfaces.cpython-310.pyc
ADDED
|
Binary file (3.08 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/multi_step.cpython-310.pyc
ADDED
|
Binary file (6.87 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/single_step.cpython-310.pyc
ADDED
|
Binary file (5.25 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/stop_checker.cpython-310.pyc
ADDED
|
Binary file (3.34 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/__pycache__/util.cpython-310.pyc
ADDED
|
Binary file (1.13 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/interfaces.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from typing import Callable, List
|
| 5 |
+
|
| 6 |
+
from vllm.config import SchedulerConfig
|
| 7 |
+
from vllm.core.scheduler import Scheduler
|
| 8 |
+
from vllm.engine.output_processor.stop_checker import StopChecker
|
| 9 |
+
from vllm.sequence import Sequence, SequenceGroup, SequenceGroupOutput
|
| 10 |
+
from vllm.transformers_utils.detokenizer import Detokenizer
|
| 11 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
| 12 |
+
from vllm.utils import Counter
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class SequenceGroupOutputProcessor(ABC):
|
| 16 |
+
"""Interface for logic that processes new token ids in sequence groups,
|
| 17 |
+
managing detokenization, stop checking, and freeing/forking sequences with
|
| 18 |
+
the scheduler.
|
| 19 |
+
|
| 20 |
+
This is highly coupled with the LLMEngine and should be seen as an extension
|
| 21 |
+
of it. The logic is separated to simplify the LLMEngine class and allow
|
| 22 |
+
separate implementations for single-step decoding (which supports beam
|
| 23 |
+
search sequence forking) and multi-step decoding (which does not support
|
| 24 |
+
beam search, but does support speculative decoding).
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
@staticmethod
|
| 28 |
+
def create_output_processor(
|
| 29 |
+
scheduler_config: SchedulerConfig,
|
| 30 |
+
detokenizer: Detokenizer,
|
| 31 |
+
scheduler: List[Scheduler],
|
| 32 |
+
seq_counter: Counter,
|
| 33 |
+
get_tokenizer_for_seq: Callable[[Sequence], AnyTokenizer],
|
| 34 |
+
stop_checker: "StopChecker",
|
| 35 |
+
):
|
| 36 |
+
"""Create an output processor.
|
| 37 |
+
|
| 38 |
+
This returns a single-step output processor if num_lookahead_slots is
|
| 39 |
+
zero, else returns a multi-step output processor.
|
| 40 |
+
"""
|
| 41 |
+
if scheduler_config.num_lookahead_slots == 0:
|
| 42 |
+
# Importing here to avoid cycle.
|
| 43 |
+
from vllm.engine.output_processor.single_step import (
|
| 44 |
+
SingleStepOutputProcessor)
|
| 45 |
+
return SingleStepOutputProcessor(scheduler_config, detokenizer,
|
| 46 |
+
scheduler, seq_counter,
|
| 47 |
+
stop_checker)
|
| 48 |
+
else:
|
| 49 |
+
# Importing here to avoid cycle.
|
| 50 |
+
from vllm.engine.output_processor.multi_step import (
|
| 51 |
+
MultiStepOutputProcessor)
|
| 52 |
+
return MultiStepOutputProcessor(
|
| 53 |
+
detokenizer,
|
| 54 |
+
scheduler,
|
| 55 |
+
seq_counter,
|
| 56 |
+
get_tokenizer_for_seq,
|
| 57 |
+
stop_checker,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
@abstractmethod
|
| 61 |
+
def process_outputs(self, sequence_group: SequenceGroup,
|
| 62 |
+
outputs: List[SequenceGroupOutput],
|
| 63 |
+
is_async: bool) -> None:
|
| 64 |
+
"""Process new token ids for the sequence group. Handles logic such as
|
| 65 |
+
detokenization, stop checking, and freeing/forking sequences in the
|
| 66 |
+
scheduler.
|
| 67 |
+
"""
|
| 68 |
+
pass
|
| 69 |
+
|
| 70 |
+
@abstractmethod
|
| 71 |
+
def process_prompt_logprob(self, seq_group: SequenceGroup,
|
| 72 |
+
outputs: List[SequenceGroupOutput]) -> None:
|
| 73 |
+
"""Update prompt logprobs received from outputs to seq_group."""
|
| 74 |
+
pass
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/multi_step.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import functools
|
| 4 |
+
from typing import Callable, List, cast
|
| 5 |
+
|
| 6 |
+
from vllm.core.scheduler import Scheduler
|
| 7 |
+
from vllm.engine.output_processor.interfaces import (
|
| 8 |
+
SequenceGroupOutputProcessor)
|
| 9 |
+
from vllm.engine.output_processor.single_step import (
|
| 10 |
+
single_step_process_prompt_logprob)
|
| 11 |
+
from vllm.engine.output_processor.stop_checker import StopChecker
|
| 12 |
+
from vllm.logger import init_logger
|
| 13 |
+
from vllm.sampling_params import SamplingParams
|
| 14 |
+
from vllm.sequence import (VLLM_INVALID_TOKEN_ID,
|
| 15 |
+
CompletionSequenceGroupOutput, Sequence,
|
| 16 |
+
SequenceGroup, SequenceGroupOutput, SequenceOutput,
|
| 17 |
+
SequenceStatus)
|
| 18 |
+
from vllm.transformers_utils.detokenizer import Detokenizer
|
| 19 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
| 20 |
+
from vllm.utils import Counter
|
| 21 |
+
|
| 22 |
+
logger = init_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class MultiStepOutputProcessor(SequenceGroupOutputProcessor):
|
| 26 |
+
"""SequenceGroupOutputProcessor which handles logic related to
|
| 27 |
+
detokenization and stopping conditions. It specializes to "multi-step
|
| 28 |
+
decoding", where vLLM's worker may generate multiple tokens per invocation.
|
| 29 |
+
This is currently mutually exclusive with advanced sampling techniques like
|
| 30 |
+
beam search, which motivates the separation of this logic from the single
|
| 31 |
+
step output processor.
|
| 32 |
+
|
| 33 |
+
This class is responsible for things such as correctly appending all new
|
| 34 |
+
token ids to their sequence, detokenizing new token ids, truncating new
|
| 35 |
+
output tokens after an eos token, and correctly handling the case where the
|
| 36 |
+
number of new output tokens per sequence differs in a single batch.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
detokenizer: Detokenizer,
|
| 42 |
+
scheduler: List[Scheduler],
|
| 43 |
+
seq_counter: Counter,
|
| 44 |
+
get_tokenizer_for_seq: Callable[[Sequence], AnyTokenizer],
|
| 45 |
+
stop_checker: StopChecker,
|
| 46 |
+
):
|
| 47 |
+
self.detokenizer = detokenizer
|
| 48 |
+
self.scheduler = scheduler
|
| 49 |
+
self.seq_counter = seq_counter
|
| 50 |
+
self.get_tokenizer_for_seq = get_tokenizer_for_seq
|
| 51 |
+
self.stop_checker = stop_checker
|
| 52 |
+
|
| 53 |
+
def process_prompt_logprob(self, seq_group: SequenceGroup,
|
| 54 |
+
outputs: List[SequenceGroupOutput]) -> None:
|
| 55 |
+
"""Process prompt logprobs associated with each step of a multi-step-
|
| 56 |
+
scheduled computation.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
seq_group: the outputs are associated with this :class:`SequenceGroup`
|
| 60 |
+
outputs: the :class:`SequenceGroupOutput`s for all scheduler steps
|
| 61 |
+
"""
|
| 62 |
+
for output in outputs:
|
| 63 |
+
# Concatenate single-step prompt logprob processing results.
|
| 64 |
+
assert isinstance(output, CompletionSequenceGroupOutput)
|
| 65 |
+
single_step_process_prompt_logprob(self, seq_group, output)
|
| 66 |
+
|
| 67 |
+
@staticmethod
|
| 68 |
+
@functools.lru_cache
|
| 69 |
+
def _log_prompt_logprob_unsupported_warning_once():
|
| 70 |
+
# Reminder: Please update docs/source/features/compatibility_matrix.md
|
| 71 |
+
# If the feature combo become valid
|
| 72 |
+
logger.warning(
|
| 73 |
+
"Prompt logprob is not supported by multi step workers. "
|
| 74 |
+
"(e.g., speculative decode uses multi step workers).")
|
| 75 |
+
|
| 76 |
+
def process_outputs(self,
|
| 77 |
+
sequence_group: SequenceGroup,
|
| 78 |
+
outputs: List[SequenceGroupOutput],
|
| 79 |
+
is_async: bool = False) -> None:
|
| 80 |
+
"""Append new tokens in the outputs to sequences in the sequence group.
|
| 81 |
+
|
| 82 |
+
This only supports sequence groups of size 1. It supports greater than
|
| 83 |
+
one new token per sequence.
|
| 84 |
+
|
| 85 |
+
This applies logic like stop condition checking and detokenization.
|
| 86 |
+
It also handles cases where there are tokens emitted after
|
| 87 |
+
the EOS token.
|
| 88 |
+
|
| 89 |
+
is_async - Indicates whether this postprocessor runs in
|
| 90 |
+
parallel with the GPU forward pass and is processing
|
| 91 |
+
tokens from the previous step. If this is true, then
|
| 92 |
+
no tokens need to be appended since it is already done
|
| 93 |
+
externally (before the next schedule() call)
|
| 94 |
+
"""
|
| 95 |
+
# Sequences can be in RUNNING or FINISHED_ABORTED state
|
| 96 |
+
# once scheduled, as a sequence is moved to FINSIHED_ABORTED
|
| 97 |
+
# if a client disconnects from the api server.
|
| 98 |
+
seqs = sequence_group.get_seqs(status=SequenceStatus.RUNNING)
|
| 99 |
+
if seqs is None:
|
| 100 |
+
seqs = sequence_group.get_seqs(
|
| 101 |
+
status=SequenceStatus.FINISHED_ABORTED)
|
| 102 |
+
|
| 103 |
+
assert seqs, "Expected RUNNING or FINISHED_ABORTED sequences"
|
| 104 |
+
assert len(seqs) == 1, (
|
| 105 |
+
"Beam search not supported in multi-step decoding.")
|
| 106 |
+
seq = seqs[0]
|
| 107 |
+
seq_id = seq.seq_id
|
| 108 |
+
# This method is defined in the more generic
|
| 109 |
+
# SequenceGroupOutputProcessor, but here we assume that the outputs are
|
| 110 |
+
# of a more specific type.
|
| 111 |
+
assert all([
|
| 112 |
+
isinstance(output, CompletionSequenceGroupOutput)
|
| 113 |
+
for output in outputs
|
| 114 |
+
])
|
| 115 |
+
compl_outputs = cast(List[CompletionSequenceGroupOutput], outputs)
|
| 116 |
+
assert all([
|
| 117 |
+
seq_id == output.samples[0].parent_seq_id
|
| 118 |
+
for output in compl_outputs
|
| 119 |
+
])
|
| 120 |
+
|
| 121 |
+
if is_async:
|
| 122 |
+
# Async case: We process tokens one by one. Here, we know the token
|
| 123 |
+
# was already appended, so we only need to do the rest of the
|
| 124 |
+
# postprocessor: Detokenization + stopping logic
|
| 125 |
+
self._process_decode_and_stop(seq, sequence_group.sampling_params)
|
| 126 |
+
else:
|
| 127 |
+
# Standard multi-step case
|
| 128 |
+
|
| 129 |
+
# Since there's only one sequence per sequence group,
|
| 130 |
+
# we can take the first sample.
|
| 131 |
+
samples = [output.samples[0] for output in compl_outputs]
|
| 132 |
+
|
| 133 |
+
# entries in sample tokens may be invalid (eg. due to spec decode
|
| 134 |
+
# rejecting tokens).
|
| 135 |
+
valid_samples = [
|
| 136 |
+
sample for sample in samples
|
| 137 |
+
if sample.output_token != VLLM_INVALID_TOKEN_ID
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
# When both spec-decode and pre-fill chunking are enabled, we
|
| 141 |
+
# don't have guaranteed samples here (e.g. all -1s).
|
| 142 |
+
if valid_samples:
|
| 143 |
+
self._process_seq_outputs(seq, valid_samples,
|
| 144 |
+
sequence_group.sampling_params)
|
| 145 |
+
|
| 146 |
+
def _process_decode_and_stop(self, seq: Sequence,
|
| 147 |
+
sampling_params: SamplingParams) -> None:
|
| 148 |
+
new_char_count = 0
|
| 149 |
+
if sampling_params.detokenize and self.detokenizer:
|
| 150 |
+
new_char_count = self.detokenizer.decode_sequence_inplace(
|
| 151 |
+
seq, sampling_params)
|
| 152 |
+
|
| 153 |
+
# TODO(sang): Support lora.
|
| 154 |
+
self.stop_checker.maybe_stop_sequence(
|
| 155 |
+
seq,
|
| 156 |
+
new_char_count=new_char_count,
|
| 157 |
+
sampling_params=sampling_params,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
def _process_seq_outputs(self, seq: Sequence,
|
| 161 |
+
valid_samples: List[SequenceOutput],
|
| 162 |
+
sampling_params: SamplingParams) -> None:
|
| 163 |
+
output_token_ids = [sample.output_token for sample in valid_samples]
|
| 164 |
+
output_logprobs = [sample.logprobs for sample in valid_samples]
|
| 165 |
+
|
| 166 |
+
# Truncate to max_tokens if necessary.
|
| 167 |
+
remaining_tokens = sampling_params.max_tokens - (seq.get_output_len() +
|
| 168 |
+
len(output_token_ids))
|
| 169 |
+
if remaining_tokens < 0:
|
| 170 |
+
output_token_ids = output_token_ids[:remaining_tokens]
|
| 171 |
+
|
| 172 |
+
# Truncate any tokens after EOS. This is required as spec decode
|
| 173 |
+
# generates a fixed number of tokens without evaluating stopping
|
| 174 |
+
# conditions within the block. This can cause an eos token to be
|
| 175 |
+
# unintentionally ignored.
|
| 176 |
+
if not sampling_params.ignore_eos:
|
| 177 |
+
eos_token_id = self.get_tokenizer_for_seq(seq).eos_token_id
|
| 178 |
+
# Avoiding .index calls as exception throwing in the happy path
|
| 179 |
+
# is expensive.
|
| 180 |
+
for i in range(len(output_token_ids)):
|
| 181 |
+
if output_token_ids[i] == eos_token_id:
|
| 182 |
+
output_token_ids = output_token_ids[:i + 1]
|
| 183 |
+
break
|
| 184 |
+
|
| 185 |
+
is_prefill_sampled_token = seq.data.get_num_uncomputed_tokens() == 0
|
| 186 |
+
# Incrementally append tokens to the sequence, as if we had only one new
|
| 187 |
+
# token.
|
| 188 |
+
for output_token_id, output_logprob in zip(output_token_ids,
|
| 189 |
+
output_logprobs):
|
| 190 |
+
seq.append_token_id(
|
| 191 |
+
token_id=output_token_id,
|
| 192 |
+
logprobs=output_logprob,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
if is_prefill_sampled_token:
|
| 196 |
+
is_prefill_sampled_token = False
|
| 197 |
+
else:
|
| 198 |
+
# Update num_computed_tokens iff the sampled token is not from
|
| 199 |
+
# a prefill step.
|
| 200 |
+
seq.data.update_num_computed_tokens(1)
|
| 201 |
+
|
| 202 |
+
self._process_decode_and_stop(seq, sampling_params)
|
| 203 |
+
|
| 204 |
+
if seq.is_finished():
|
| 205 |
+
break
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/single_step.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
from vllm.config import SchedulerConfig
|
| 6 |
+
from vllm.core.scheduler import Scheduler
|
| 7 |
+
from vllm.engine.output_processor.interfaces import (
|
| 8 |
+
SequenceGroupOutputProcessor)
|
| 9 |
+
from vllm.engine.output_processor.stop_checker import StopChecker
|
| 10 |
+
from vllm.logger import init_logger
|
| 11 |
+
from vllm.sequence import (CompletionSequenceGroupOutput, SequenceGroup,
|
| 12 |
+
SequenceGroupOutput)
|
| 13 |
+
from vllm.transformers_utils.detokenizer import Detokenizer
|
| 14 |
+
from vllm.utils import Counter
|
| 15 |
+
|
| 16 |
+
logger = init_logger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def single_step_process_prompt_logprob(
|
| 20 |
+
sg_output_proc: SequenceGroupOutputProcessor, seq_group: SequenceGroup,
|
| 21 |
+
output: CompletionSequenceGroupOutput) -> None:
|
| 22 |
+
"""Process prompt logprobs associated with the :class:`SequenceGroupOutput`
|
| 23 |
+
for a given step.
|
| 24 |
+
|
| 25 |
+
Do nothing if the output has no prompt logprobs.
|
| 26 |
+
|
| 27 |
+
Account for the fact that transformers do not compute first-token logprobs.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
sg_output_proc: :class:`SequenceGroupOutputProcessor` instance
|
| 31 |
+
seq_group: the output is associated with this :class:`SequenceGroup`
|
| 32 |
+
output: the :class:`SequenceGroupOutput` for a single scheduler step
|
| 33 |
+
"""
|
| 34 |
+
prompt_logprobs = output.prompt_logprobs
|
| 35 |
+
|
| 36 |
+
# If this is the first (or only) "chunk" of the prefill, we need
|
| 37 |
+
# to prepend None to the list of prompt logprobs. The reason for this
|
| 38 |
+
# is that for N prompt tokens, the Sampler will generate N-1 total
|
| 39 |
+
# prompt logprobs during prefill since the token at idx 0 will not
|
| 40 |
+
# have a logprob associated with it.
|
| 41 |
+
if prompt_logprobs is not None:
|
| 42 |
+
if not seq_group.prompt_logprobs:
|
| 43 |
+
prompt_logprobs = [None] + prompt_logprobs
|
| 44 |
+
seq_group.prompt_logprobs = []
|
| 45 |
+
|
| 46 |
+
assert hasattr(sg_output_proc, 'detokenizer')
|
| 47 |
+
if (seq_group.sampling_params.detokenize
|
| 48 |
+
and sg_output_proc.detokenizer):
|
| 49 |
+
sg_output_proc.detokenizer.decode_prompt_logprobs_inplace(
|
| 50 |
+
seq_group,
|
| 51 |
+
prompt_logprobs,
|
| 52 |
+
position_offset=len(seq_group.prompt_logprobs))
|
| 53 |
+
|
| 54 |
+
seq_group.prompt_logprobs.extend(prompt_logprobs)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class SingleStepOutputProcessor(SequenceGroupOutputProcessor):
|
| 58 |
+
"""SequenceGroupOutputProcessor which handles "output processing" logic,
|
| 59 |
+
which happens after the model returns generated token ids and before
|
| 60 |
+
scheduling of the next batch. Output processing logic includes
|
| 61 |
+
detokenization, and determining if a sequence is finished (e.g. via max len
|
| 62 |
+
or eos token).
|
| 63 |
+
|
| 64 |
+
The SingleStepOutputProcessor is specialized to the case where the model
|
| 65 |
+
emits at most a single token per invocation, which precludes configurations
|
| 66 |
+
such as speculative decoding or multi-step decoding. This enables beam
|
| 67 |
+
search sampling, which requires forking/finishing/freeing sequences in a way
|
| 68 |
+
that is currently difficult to schedule multiple steps ahead of time.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
def __init__(self, scheduler_config: SchedulerConfig,
|
| 72 |
+
detokenizer: Detokenizer, scheduler: List[Scheduler],
|
| 73 |
+
seq_counter: Counter, stop_checker: StopChecker):
|
| 74 |
+
self.scheduler_config = scheduler_config
|
| 75 |
+
self.detokenizer = detokenizer
|
| 76 |
+
self.scheduler = scheduler
|
| 77 |
+
self.seq_counter = seq_counter
|
| 78 |
+
self.stop_checker = stop_checker
|
| 79 |
+
|
| 80 |
+
def process_outputs(self, sequence_group: SequenceGroup,
|
| 81 |
+
outputs: List[SequenceGroupOutput],
|
| 82 |
+
is_async: bool) -> None:
|
| 83 |
+
"""Append all new tokens to sequences in the sequence group. Fork any
|
| 84 |
+
surviving beam candidates; free any unsurviving ones.
|
| 85 |
+
|
| 86 |
+
Invokes detokenizer to detokenize new tokens, and also marks sequences
|
| 87 |
+
as finished if they meet stop conditions.
|
| 88 |
+
|
| 89 |
+
is_async - Indicates whether this postprocessor runs in
|
| 90 |
+
parallel with the GPU forward pass and is processing
|
| 91 |
+
tokens from the previous step. If this is true, then
|
| 92 |
+
no tokens need to be appended since it is already done
|
| 93 |
+
externally (before the next schedule() call)
|
| 94 |
+
"""
|
| 95 |
+
assert (len(outputs) == 1
|
| 96 |
+
), f"{type(self)} does not support multiple outputs per step"
|
| 97 |
+
return self._process_sequence_group_outputs(sequence_group, outputs[0],
|
| 98 |
+
is_async)
|
| 99 |
+
|
| 100 |
+
def process_prompt_logprob(self, seq_group: SequenceGroup,
|
| 101 |
+
outputs: List[SequenceGroupOutput]) -> None:
|
| 102 |
+
"""Process prompt logprobs associated with one step of a single-step-
|
| 103 |
+
scheduled computation.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
seq_group: the output is associated with this :class:`SequenceGroup`
|
| 107 |
+
outputs: the :class:`SequenceGroupOutput` for a single scheduler step
|
| 108 |
+
"""
|
| 109 |
+
assert len(outputs) == 1, "Single step should only have 1 output."
|
| 110 |
+
output = outputs[0]
|
| 111 |
+
assert isinstance(output, CompletionSequenceGroupOutput)
|
| 112 |
+
single_step_process_prompt_logprob(self, seq_group, output)
|
| 113 |
+
|
| 114 |
+
def _process_sequence_group_outputs(self, seq_group: SequenceGroup,
|
| 115 |
+
outputs: SequenceGroupOutput,
|
| 116 |
+
is_async: bool) -> None:
|
| 117 |
+
sampling_params = seq_group.sampling_params
|
| 118 |
+
|
| 119 |
+
sample = outputs.samples[0]
|
| 120 |
+
seq = seq_group.first_seq
|
| 121 |
+
if not is_async:
|
| 122 |
+
seq.append_token_id(sample.output_token, sample.logprobs)
|
| 123 |
+
if sampling_params.detokenize and self.detokenizer:
|
| 124 |
+
new_char_count = self.detokenizer.decode_sequence_inplace(
|
| 125 |
+
seq, sampling_params)
|
| 126 |
+
else:
|
| 127 |
+
new_char_count = 0
|
| 128 |
+
self.stop_checker.maybe_stop_sequence(
|
| 129 |
+
seq,
|
| 130 |
+
new_char_count,
|
| 131 |
+
sampling_params,
|
| 132 |
+
lora_req=seq_group.lora_request,
|
| 133 |
+
)
|
| 134 |
+
if seq.is_finished():
|
| 135 |
+
for scheduler in self.scheduler:
|
| 136 |
+
scheduler.free_seq(seq)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/stop_checker.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
from typing import Callable, List, Optional, Tuple
|
| 4 |
+
|
| 5 |
+
from vllm.lora.request import LoRARequest
|
| 6 |
+
from vllm.sampling_params import SamplingParams
|
| 7 |
+
from vllm.sequence import Sequence, SequenceStatus
|
| 8 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class StopChecker:
|
| 12 |
+
"""LLMEngine helper class which separates out the logic involving stop
|
| 13 |
+
checking. This checks things such as: whether the eos token was emitted,
|
| 14 |
+
whether the max_tokens has been consumed, whether a stop string has been
|
| 15 |
+
emitted, or if we have exceeded the max model len.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, max_model_len: int,
|
| 19 |
+
get_tokenizer_for_seq: Callable[[Sequence], AnyTokenizer]):
|
| 20 |
+
# Do not use it directly, but use `self._get_max_model_len`.
|
| 21 |
+
self._max_model_len = max_model_len
|
| 22 |
+
self.get_tokenizer_for_seq = get_tokenizer_for_seq
|
| 23 |
+
|
| 24 |
+
def _get_max_model_len(self, lora_req: Optional[LoRARequest]):
|
| 25 |
+
if lora_req and lora_req.long_lora_max_len:
|
| 26 |
+
return lora_req.long_lora_max_len
|
| 27 |
+
else:
|
| 28 |
+
return self._max_model_len
|
| 29 |
+
|
| 30 |
+
def maybe_stop_sequence(
|
| 31 |
+
self,
|
| 32 |
+
seq: Sequence,
|
| 33 |
+
new_char_count: int,
|
| 34 |
+
sampling_params: SamplingParams,
|
| 35 |
+
lora_req: Optional[LoRARequest] = None,
|
| 36 |
+
) -> None:
|
| 37 |
+
"""Stop the finished sequences.
|
| 38 |
+
|
| 39 |
+
new_char_count is the number of chars added to the
|
| 40 |
+
sequence's output text for the newly generated token
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
# Check if the minimum number of tokens has been generated yet;
|
| 44 |
+
# skip the stop string/token checks if not
|
| 45 |
+
if seq.get_output_len() < sampling_params.min_tokens:
|
| 46 |
+
return
|
| 47 |
+
|
| 48 |
+
# Check if the sequence has generated the EOS token.
|
| 49 |
+
if ((not sampling_params.ignore_eos)
|
| 50 |
+
and seq.get_last_token_id() == seq.eos_token_id):
|
| 51 |
+
# Remove the last EOS token unless explicitly specified
|
| 52 |
+
# This prevents unintended exposure of the EOS token
|
| 53 |
+
if new_char_count and (
|
| 54 |
+
not sampling_params.include_stop_str_in_output):
|
| 55 |
+
seq.output_text = seq.output_text[:-new_char_count]
|
| 56 |
+
seq.status = SequenceStatus.FINISHED_STOPPED
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
# Check if a stop token was encountered.
|
| 60 |
+
# This assumes a single token produced per step.
|
| 61 |
+
last_token_id = seq.get_last_token_id()
|
| 62 |
+
if last_token_id in (sampling_params.stop_token_ids or ()):
|
| 63 |
+
if new_char_count and (
|
| 64 |
+
not sampling_params.include_stop_str_in_output):
|
| 65 |
+
# Remove last token
|
| 66 |
+
seq.output_text = seq.output_text[:-new_char_count]
|
| 67 |
+
seq.status = SequenceStatus.FINISHED_STOPPED
|
| 68 |
+
seq.stop_reason = last_token_id
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
# Check if any stop strings are matched.
|
| 72 |
+
stop = self.check_stop_strings(
|
| 73 |
+
seq.output_text, new_char_count, sampling_params.stop,
|
| 74 |
+
sampling_params.include_stop_str_in_output)
|
| 75 |
+
if stop is not None:
|
| 76 |
+
stop_str, truncate_to = stop
|
| 77 |
+
if truncate_to != -1:
|
| 78 |
+
seq.output_text = seq.output_text[:truncate_to]
|
| 79 |
+
seq.status = SequenceStatus.FINISHED_STOPPED
|
| 80 |
+
seq.stop_reason = stop_str
|
| 81 |
+
return
|
| 82 |
+
|
| 83 |
+
# Check if the sequence has reached max_model_len.
|
| 84 |
+
if seq.get_len() > self._get_max_model_len(lora_req):
|
| 85 |
+
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
|
| 86 |
+
return
|
| 87 |
+
|
| 88 |
+
# Check if the sequence has reached max_tokens.
|
| 89 |
+
if seq.get_output_len() == sampling_params.max_tokens:
|
| 90 |
+
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
|
| 91 |
+
return
|
| 92 |
+
|
| 93 |
+
@staticmethod
|
| 94 |
+
def check_stop_strings(
|
| 95 |
+
output_text: str,
|
| 96 |
+
new_char_count: int,
|
| 97 |
+
stop: List[str],
|
| 98 |
+
include_in_output: bool,
|
| 99 |
+
) -> Optional[Tuple[str, int]]:
|
| 100 |
+
"""Check if any stop strings are matched and truncate sequence
|
| 101 |
+
output text accordingly.
|
| 102 |
+
|
| 103 |
+
Returns tuple (stop_string, offset) if matched or else None.
|
| 104 |
+
|
| 105 |
+
Where stop_string is the matched stop string and offset is the
|
| 106 |
+
length to which output_text should be truncated, or -1 for no
|
| 107 |
+
truncation.
|
| 108 |
+
"""
|
| 109 |
+
if not new_char_count or not stop:
|
| 110 |
+
return None
|
| 111 |
+
|
| 112 |
+
for stop_str in stop:
|
| 113 |
+
stop_string_len = len(stop_str)
|
| 114 |
+
# Avoid searching already-searched text.
|
| 115 |
+
stop_index = output_text.find(stop_str,
|
| 116 |
+
1 - new_char_count - stop_string_len)
|
| 117 |
+
if stop_index == -1:
|
| 118 |
+
continue
|
| 119 |
+
|
| 120 |
+
if include_in_output:
|
| 121 |
+
# Truncate to end of stop string.
|
| 122 |
+
stop_index += stop_string_len
|
| 123 |
+
if stop_index >= len(output_text):
|
| 124 |
+
# No truncation required.
|
| 125 |
+
return stop_str, -1
|
| 126 |
+
|
| 127 |
+
# Truncate the output text to either the beginning
|
| 128 |
+
# or end of the stop string.
|
| 129 |
+
return stop_str, stop_index
|
| 130 |
+
return None
|
infer_4_30_0/lib/python3.10/site-packages/vllm/engine/output_processor/util.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from typing import Sequence as GenericSequence
|
| 5 |
+
from typing import cast
|
| 6 |
+
|
| 7 |
+
from vllm.model_executor.layers.sampler import SamplerOutput
|
| 8 |
+
from vllm.sequence import CompletionSequenceGroupOutput, SequenceGroupOutput
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def create_output_by_sequence_group(
|
| 12 |
+
outputs: GenericSequence[SamplerOutput],
|
| 13 |
+
num_seq_groups: int) -> List[List[SequenceGroupOutput]]:
|
| 14 |
+
"""Helper method which transforms a 2d list organized by
|
| 15 |
+
[step][sequence group] into [sequence group][step].
|
| 16 |
+
"""
|
| 17 |
+
output_by_sequence_group: List[List[CompletionSequenceGroupOutput]] = [
|
| 18 |
+
[] for _ in range(num_seq_groups)
|
| 19 |
+
]
|
| 20 |
+
for step in outputs:
|
| 21 |
+
sequence_group_output: CompletionSequenceGroupOutput
|
| 22 |
+
for i, sequence_group_output in enumerate(step):
|
| 23 |
+
output_by_sequence_group[i].append(sequence_group_output)
|
| 24 |
+
|
| 25 |
+
# Cast to the more generic type that CompletionSequenceGroupOutput
|
| 26 |
+
# inherits from.
|
| 27 |
+
return cast(List[List[SequenceGroupOutput]], output_by_sequence_group)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/__init__.py
ADDED
|
File without changes
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/api_server.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
"""
|
| 3 |
+
NOTE: This API server is used only for demonstrating usage of AsyncEngine
|
| 4 |
+
and simple performance benchmarks. It is not intended for production use.
|
| 5 |
+
For production use, we recommend using our OpenAI compatible server.
|
| 6 |
+
We are also not going to accept PRs modifying this file, please
|
| 7 |
+
change `vllm/entrypoints/openai/api_server.py` instead.
|
| 8 |
+
"""
|
| 9 |
+
import asyncio
|
| 10 |
+
import json
|
| 11 |
+
import ssl
|
| 12 |
+
from argparse import Namespace
|
| 13 |
+
from typing import Any, AsyncGenerator, Optional
|
| 14 |
+
|
| 15 |
+
from fastapi import FastAPI, Request
|
| 16 |
+
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
| 17 |
+
|
| 18 |
+
from vllm.engine.arg_utils import AsyncEngineArgs
|
| 19 |
+
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
| 20 |
+
from vllm.entrypoints.launcher import serve_http
|
| 21 |
+
from vllm.entrypoints.utils import with_cancellation
|
| 22 |
+
from vllm.logger import init_logger
|
| 23 |
+
from vllm.sampling_params import SamplingParams
|
| 24 |
+
from vllm.usage.usage_lib import UsageContext
|
| 25 |
+
from vllm.utils import FlexibleArgumentParser, random_uuid, set_ulimit
|
| 26 |
+
from vllm.version import __version__ as VLLM_VERSION
|
| 27 |
+
|
| 28 |
+
logger = init_logger("vllm.entrypoints.api_server")
|
| 29 |
+
|
| 30 |
+
TIMEOUT_KEEP_ALIVE = 5 # seconds.
|
| 31 |
+
app = FastAPI()
|
| 32 |
+
engine = None
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@app.get("/health")
|
| 36 |
+
async def health() -> Response:
|
| 37 |
+
"""Health check."""
|
| 38 |
+
return Response(status_code=200)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@app.post("/generate")
|
| 42 |
+
async def generate(request: Request) -> Response:
|
| 43 |
+
"""Generate completion for the request.
|
| 44 |
+
|
| 45 |
+
The request should be a JSON object with the following fields:
|
| 46 |
+
- prompt: the prompt to use for the generation.
|
| 47 |
+
- stream: whether to stream the results or not.
|
| 48 |
+
- other fields: the sampling parameters (See `SamplingParams` for details).
|
| 49 |
+
"""
|
| 50 |
+
request_dict = await request.json()
|
| 51 |
+
return await _generate(request_dict, raw_request=request)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@with_cancellation
|
| 55 |
+
async def _generate(request_dict: dict, raw_request: Request) -> Response:
|
| 56 |
+
prompt = request_dict.pop("prompt")
|
| 57 |
+
stream = request_dict.pop("stream", False)
|
| 58 |
+
sampling_params = SamplingParams(**request_dict)
|
| 59 |
+
request_id = random_uuid()
|
| 60 |
+
|
| 61 |
+
assert engine is not None
|
| 62 |
+
results_generator = engine.generate(prompt, sampling_params, request_id)
|
| 63 |
+
|
| 64 |
+
# Streaming case
|
| 65 |
+
async def stream_results() -> AsyncGenerator[bytes, None]:
|
| 66 |
+
async for request_output in results_generator:
|
| 67 |
+
prompt = request_output.prompt
|
| 68 |
+
assert prompt is not None
|
| 69 |
+
text_outputs = [
|
| 70 |
+
prompt + output.text for output in request_output.outputs
|
| 71 |
+
]
|
| 72 |
+
ret = {"text": text_outputs}
|
| 73 |
+
yield (json.dumps(ret) + "\n").encode("utf-8")
|
| 74 |
+
|
| 75 |
+
if stream:
|
| 76 |
+
return StreamingResponse(stream_results())
|
| 77 |
+
|
| 78 |
+
# Non-streaming case
|
| 79 |
+
final_output = None
|
| 80 |
+
try:
|
| 81 |
+
async for request_output in results_generator:
|
| 82 |
+
final_output = request_output
|
| 83 |
+
except asyncio.CancelledError:
|
| 84 |
+
return Response(status_code=499)
|
| 85 |
+
|
| 86 |
+
assert final_output is not None
|
| 87 |
+
prompt = final_output.prompt
|
| 88 |
+
assert prompt is not None
|
| 89 |
+
text_outputs = [prompt + output.text for output in final_output.outputs]
|
| 90 |
+
ret = {"text": text_outputs}
|
| 91 |
+
return JSONResponse(ret)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def build_app(args: Namespace) -> FastAPI:
|
| 95 |
+
global app
|
| 96 |
+
|
| 97 |
+
app.root_path = args.root_path
|
| 98 |
+
return app
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
async def init_app(
|
| 102 |
+
args: Namespace,
|
| 103 |
+
llm_engine: Optional[AsyncLLMEngine] = None,
|
| 104 |
+
) -> FastAPI:
|
| 105 |
+
app = build_app(args)
|
| 106 |
+
|
| 107 |
+
global engine
|
| 108 |
+
|
| 109 |
+
engine_args = AsyncEngineArgs.from_cli_args(args)
|
| 110 |
+
engine = (llm_engine
|
| 111 |
+
if llm_engine is not None else AsyncLLMEngine.from_engine_args(
|
| 112 |
+
engine_args, usage_context=UsageContext.API_SERVER))
|
| 113 |
+
|
| 114 |
+
return app
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
async def run_server(args: Namespace,
|
| 118 |
+
llm_engine: Optional[AsyncLLMEngine] = None,
|
| 119 |
+
**uvicorn_kwargs: Any) -> None:
|
| 120 |
+
logger.info("vLLM API server version %s", VLLM_VERSION)
|
| 121 |
+
logger.info("args: %s", args)
|
| 122 |
+
|
| 123 |
+
set_ulimit()
|
| 124 |
+
|
| 125 |
+
app = await init_app(args, llm_engine)
|
| 126 |
+
assert engine is not None
|
| 127 |
+
|
| 128 |
+
shutdown_task = await serve_http(
|
| 129 |
+
app,
|
| 130 |
+
sock=None,
|
| 131 |
+
host=args.host,
|
| 132 |
+
port=args.port,
|
| 133 |
+
log_level=args.log_level,
|
| 134 |
+
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
|
| 135 |
+
ssl_keyfile=args.ssl_keyfile,
|
| 136 |
+
ssl_certfile=args.ssl_certfile,
|
| 137 |
+
ssl_ca_certs=args.ssl_ca_certs,
|
| 138 |
+
ssl_cert_reqs=args.ssl_cert_reqs,
|
| 139 |
+
**uvicorn_kwargs,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
await shutdown_task
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
if __name__ == "__main__":
|
| 146 |
+
parser = FlexibleArgumentParser()
|
| 147 |
+
parser.add_argument("--host", type=str, default=None)
|
| 148 |
+
parser.add_argument("--port", type=int, default=8000, ge=1024, le=65535)
|
| 149 |
+
parser.add_argument("--ssl-keyfile", type=str, default=None)
|
| 150 |
+
parser.add_argument("--ssl-certfile", type=str, default=None)
|
| 151 |
+
parser.add_argument("--ssl-ca-certs",
|
| 152 |
+
type=str,
|
| 153 |
+
default=None,
|
| 154 |
+
help="The CA certificates file")
|
| 155 |
+
parser.add_argument(
|
| 156 |
+
"--ssl-cert-reqs",
|
| 157 |
+
type=int,
|
| 158 |
+
default=int(ssl.CERT_NONE),
|
| 159 |
+
help="Whether client certificate is required (see stdlib ssl module's)"
|
| 160 |
+
)
|
| 161 |
+
parser.add_argument(
|
| 162 |
+
"--root-path",
|
| 163 |
+
type=str,
|
| 164 |
+
default=None,
|
| 165 |
+
help="FastAPI root_path when app is behind a path based routing proxy")
|
| 166 |
+
parser.add_argument("--log-level", type=str, default="debug")
|
| 167 |
+
parser = AsyncEngineArgs.add_cli_args(parser)
|
| 168 |
+
args = parser.parse_args()
|
| 169 |
+
|
| 170 |
+
asyncio.run(run_server(args))
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/chat_utils.py
ADDED
|
@@ -0,0 +1,1007 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import codecs
|
| 5 |
+
import json
|
| 6 |
+
from abc import ABC, abstractmethod
|
| 7 |
+
from collections import defaultdict, deque
|
| 8 |
+
from functools import cache, lru_cache, partial
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import (Any, Awaitable, Callable, Dict, Generic, Iterable, List,
|
| 11 |
+
Literal, Optional, Tuple, TypeVar, Union, cast)
|
| 12 |
+
|
| 13 |
+
import jinja2.nodes
|
| 14 |
+
import transformers.utils.chat_template_utils as hf_chat_utils
|
| 15 |
+
# yapf conflicts with isort for this block
|
| 16 |
+
# yapf: disable
|
| 17 |
+
from openai.types.chat import (ChatCompletionAssistantMessageParam,
|
| 18 |
+
ChatCompletionContentPartImageParam,
|
| 19 |
+
ChatCompletionContentPartInputAudioParam)
|
| 20 |
+
from openai.types.chat import (
|
| 21 |
+
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam)
|
| 22 |
+
from openai.types.chat import (ChatCompletionContentPartRefusalParam,
|
| 23 |
+
ChatCompletionContentPartTextParam)
|
| 24 |
+
from openai.types.chat import (
|
| 25 |
+
ChatCompletionMessageParam as OpenAIChatCompletionMessageParam)
|
| 26 |
+
from openai.types.chat import (ChatCompletionMessageToolCallParam,
|
| 27 |
+
ChatCompletionToolMessageParam)
|
| 28 |
+
from openai.types.chat.chat_completion_content_part_input_audio_param import (
|
| 29 |
+
InputAudio)
|
| 30 |
+
# yapf: enable
|
| 31 |
+
# pydantic needs the TypedDict from typing_extensions
|
| 32 |
+
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
| 33 |
+
from typing_extensions import Required, TypeAlias, TypedDict
|
| 34 |
+
|
| 35 |
+
from vllm.config import ModelConfig
|
| 36 |
+
from vllm.logger import init_logger
|
| 37 |
+
from vllm.multimodal import MultiModalDataDict
|
| 38 |
+
from vllm.multimodal.utils import MediaConnector
|
| 39 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
|
| 40 |
+
|
| 41 |
+
logger = init_logger(__name__)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class AudioURL(TypedDict, total=False):
|
| 45 |
+
url: Required[str]
|
| 46 |
+
"""
|
| 47 |
+
Either a URL of the audio or a data URL with base64 encoded audio data.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class ChatCompletionContentPartAudioParam(TypedDict, total=False):
|
| 52 |
+
audio_url: Required[AudioURL]
|
| 53 |
+
|
| 54 |
+
type: Required[Literal["audio_url"]]
|
| 55 |
+
"""The type of the content part."""
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class VideoURL(TypedDict, total=False):
|
| 59 |
+
url: Required[str]
|
| 60 |
+
"""
|
| 61 |
+
Either a URL of the video or a data URL with base64 encoded video data.
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class ChatCompletionContentPartVideoParam(TypedDict, total=False):
|
| 66 |
+
video_url: Required[VideoURL]
|
| 67 |
+
|
| 68 |
+
type: Required[Literal["video_url"]]
|
| 69 |
+
"""The type of the content part."""
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class CustomChatCompletionContentSimpleImageParam(TypedDict, total=False):
|
| 73 |
+
"""A simpler version of the param that only accepts a plain image_url.
|
| 74 |
+
This is supported by OpenAI API, although it is not documented.
|
| 75 |
+
|
| 76 |
+
Example:
|
| 77 |
+
{
|
| 78 |
+
"image_url": "https://example.com/image.jpg"
|
| 79 |
+
}
|
| 80 |
+
"""
|
| 81 |
+
image_url: Required[str]
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class CustomChatCompletionContentSimpleAudioParam(TypedDict, total=False):
|
| 85 |
+
"""A simpler version of the param that only accepts a plain audio_url.
|
| 86 |
+
|
| 87 |
+
Example:
|
| 88 |
+
{
|
| 89 |
+
"audio_url": "https://example.com/audio.mp3"
|
| 90 |
+
}
|
| 91 |
+
"""
|
| 92 |
+
audio_url: Required[str]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class CustomChatCompletionContentSimpleVideoParam(TypedDict, total=False):
|
| 96 |
+
"""A simpler version of the param that only accepts a plain audio_url.
|
| 97 |
+
|
| 98 |
+
Example:
|
| 99 |
+
{
|
| 100 |
+
"video_url": "https://example.com/video.mp4"
|
| 101 |
+
}
|
| 102 |
+
"""
|
| 103 |
+
video_url: Required[str]
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
ChatCompletionContentPartParam: TypeAlias = Union[
|
| 107 |
+
OpenAIChatCompletionContentPartParam, ChatCompletionContentPartAudioParam,
|
| 108 |
+
ChatCompletionContentPartInputAudioParam,
|
| 109 |
+
ChatCompletionContentPartVideoParam, ChatCompletionContentPartRefusalParam,
|
| 110 |
+
CustomChatCompletionContentSimpleImageParam,
|
| 111 |
+
CustomChatCompletionContentSimpleAudioParam,
|
| 112 |
+
CustomChatCompletionContentSimpleVideoParam, str]
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class CustomChatCompletionMessageParam(TypedDict, total=False):
|
| 116 |
+
"""Enables custom roles in the Chat Completion API."""
|
| 117 |
+
role: Required[str]
|
| 118 |
+
"""The role of the message's author."""
|
| 119 |
+
|
| 120 |
+
content: Union[str, List[ChatCompletionContentPartParam]]
|
| 121 |
+
"""The contents of the message."""
|
| 122 |
+
|
| 123 |
+
name: str
|
| 124 |
+
"""An optional name for the participant.
|
| 125 |
+
|
| 126 |
+
Provides the model information to differentiate between participants of the
|
| 127 |
+
same role.
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
tool_call_id: Optional[str]
|
| 131 |
+
"""Tool call that this message is responding to."""
|
| 132 |
+
|
| 133 |
+
tool_calls: Optional[Iterable[ChatCompletionMessageToolCallParam]]
|
| 134 |
+
"""The tool calls generated by the model, such as function calls."""
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
ChatCompletionMessageParam = Union[OpenAIChatCompletionMessageParam,
|
| 138 |
+
CustomChatCompletionMessageParam]
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# TODO: Make fields ReadOnly once mypy supports it
|
| 142 |
+
class ConversationMessage(TypedDict, total=False):
|
| 143 |
+
role: Required[str]
|
| 144 |
+
"""The role of the message's author."""
|
| 145 |
+
|
| 146 |
+
content: Union[Optional[str], List[Dict[str, str]]]
|
| 147 |
+
"""The contents of the message"""
|
| 148 |
+
|
| 149 |
+
tool_call_id: Optional[str]
|
| 150 |
+
"""Tool call that this message is responding to."""
|
| 151 |
+
|
| 152 |
+
name: Optional[str]
|
| 153 |
+
"""The name of the function to call"""
|
| 154 |
+
|
| 155 |
+
tool_calls: Optional[Iterable[ChatCompletionMessageToolCallParam]]
|
| 156 |
+
"""The tool calls generated by the model, such as function calls."""
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# Passed in by user
|
| 160 |
+
ChatTemplateContentFormatOption = Literal["auto", "string", "openai"]
|
| 161 |
+
|
| 162 |
+
# Used internally
|
| 163 |
+
_ChatTemplateContentFormat = Literal["string", "openai"]
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def _is_var_access(node: jinja2.nodes.Node, varname: str) -> bool:
|
| 167 |
+
if isinstance(node, jinja2.nodes.Name):
|
| 168 |
+
return node.ctx == "load" and node.name == varname
|
| 169 |
+
|
| 170 |
+
return False
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def _is_attr_access(node: jinja2.nodes.Node, varname: str, key: str) -> bool:
|
| 174 |
+
if isinstance(node, jinja2.nodes.Getitem):
|
| 175 |
+
return (_is_var_access(node.node, varname)
|
| 176 |
+
and isinstance(node.arg, jinja2.nodes.Const)
|
| 177 |
+
and node.arg.value == key)
|
| 178 |
+
|
| 179 |
+
if isinstance(node, jinja2.nodes.Getattr):
|
| 180 |
+
return _is_var_access(node.node, varname) and node.attr == key
|
| 181 |
+
|
| 182 |
+
return False
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def _is_var_or_elems_access(
|
| 186 |
+
node: jinja2.nodes.Node,
|
| 187 |
+
varname: str,
|
| 188 |
+
key: Optional[str] = None,
|
| 189 |
+
) -> bool:
|
| 190 |
+
if isinstance(node, jinja2.nodes.Filter):
|
| 191 |
+
return (node.node is not None
|
| 192 |
+
and _is_var_or_elems_access(node.node, varname, key))
|
| 193 |
+
if isinstance(node, jinja2.nodes.Test):
|
| 194 |
+
return _is_var_or_elems_access(node.node, varname, key)
|
| 195 |
+
|
| 196 |
+
if (isinstance(node, jinja2.nodes.Getitem)
|
| 197 |
+
and isinstance(node.arg, jinja2.nodes.Slice)):
|
| 198 |
+
return _is_var_or_elems_access(node.node, varname, key)
|
| 199 |
+
|
| 200 |
+
# yapf: disable
|
| 201 |
+
return (
|
| 202 |
+
_is_attr_access(node, varname, key) if key
|
| 203 |
+
else _is_var_access(node, varname)
|
| 204 |
+
) # yapf: enable
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def _iter_nodes_assign_var_or_elems(root: jinja2.nodes.Node, varname: str):
|
| 208 |
+
# Global variable that is implicitly defined at the root
|
| 209 |
+
yield root, varname
|
| 210 |
+
|
| 211 |
+
# Iterative BFS
|
| 212 |
+
related_varnames = deque([varname])
|
| 213 |
+
while related_varnames:
|
| 214 |
+
related_varname = related_varnames.popleft()
|
| 215 |
+
|
| 216 |
+
for assign_ast in root.find_all(jinja2.nodes.Assign):
|
| 217 |
+
lhs = assign_ast.target
|
| 218 |
+
rhs = assign_ast.node
|
| 219 |
+
|
| 220 |
+
if _is_var_or_elems_access(rhs, related_varname):
|
| 221 |
+
assert isinstance(lhs, jinja2.nodes.Name)
|
| 222 |
+
yield assign_ast, lhs.name
|
| 223 |
+
|
| 224 |
+
# Avoid infinite looping for self-assignment
|
| 225 |
+
if lhs.name != related_varname:
|
| 226 |
+
related_varnames.append(lhs.name)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# NOTE: The proper way to handle this is to build a CFG so that we can handle
|
| 230 |
+
# the scope in which each variable is defined, but that is too complicated
|
| 231 |
+
def _iter_nodes_assign_messages_item(root: jinja2.nodes.Node):
|
| 232 |
+
messages_varnames = [
|
| 233 |
+
varname
|
| 234 |
+
for _, varname in _iter_nodes_assign_var_or_elems(root, "messages")
|
| 235 |
+
]
|
| 236 |
+
|
| 237 |
+
# Search for {%- for message in messages -%} loops
|
| 238 |
+
for loop_ast in root.find_all(jinja2.nodes.For):
|
| 239 |
+
loop_iter = loop_ast.iter
|
| 240 |
+
loop_target = loop_ast.target
|
| 241 |
+
|
| 242 |
+
for varname in messages_varnames:
|
| 243 |
+
if _is_var_or_elems_access(loop_iter, varname):
|
| 244 |
+
assert isinstance(loop_target, jinja2.nodes.Name)
|
| 245 |
+
yield loop_ast, loop_target.name
|
| 246 |
+
break
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def _iter_nodes_assign_content_item(root: jinja2.nodes.Node):
|
| 250 |
+
message_varnames = [
|
| 251 |
+
varname for _, varname in _iter_nodes_assign_messages_item(root)
|
| 252 |
+
]
|
| 253 |
+
|
| 254 |
+
# Search for {%- for content in message['content'] -%} loops
|
| 255 |
+
for loop_ast in root.find_all(jinja2.nodes.For):
|
| 256 |
+
loop_iter = loop_ast.iter
|
| 257 |
+
loop_target = loop_ast.target
|
| 258 |
+
|
| 259 |
+
for varname in message_varnames:
|
| 260 |
+
if _is_var_or_elems_access(loop_iter, varname, "content"):
|
| 261 |
+
assert isinstance(loop_target, jinja2.nodes.Name)
|
| 262 |
+
yield loop_ast, loop_target.name
|
| 263 |
+
break
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def _try_extract_ast(chat_template: str) -> Optional[jinja2.nodes.Template]:
|
| 267 |
+
try:
|
| 268 |
+
jinja_compiled = hf_chat_utils._compile_jinja_template(chat_template)
|
| 269 |
+
return jinja_compiled.environment.parse(chat_template)
|
| 270 |
+
except Exception:
|
| 271 |
+
logger.exception("Error when compiling Jinja template")
|
| 272 |
+
return None
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def _detect_content_format(
|
| 276 |
+
chat_template: str,
|
| 277 |
+
*,
|
| 278 |
+
default: _ChatTemplateContentFormat,
|
| 279 |
+
) -> _ChatTemplateContentFormat:
|
| 280 |
+
jinja_ast = _try_extract_ast(chat_template)
|
| 281 |
+
if jinja_ast is None:
|
| 282 |
+
return default
|
| 283 |
+
|
| 284 |
+
try:
|
| 285 |
+
next(_iter_nodes_assign_content_item(jinja_ast))
|
| 286 |
+
except StopIteration:
|
| 287 |
+
return "string"
|
| 288 |
+
except Exception:
|
| 289 |
+
logger.exception("Error when parsing AST of Jinja template")
|
| 290 |
+
return default
|
| 291 |
+
else:
|
| 292 |
+
return "openai"
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def _resolve_chat_template_content_format(
|
| 296 |
+
chat_template: Optional[str],
|
| 297 |
+
given_format: ChatTemplateContentFormatOption,
|
| 298 |
+
tokenizer: AnyTokenizer,
|
| 299 |
+
) -> _ChatTemplateContentFormat:
|
| 300 |
+
if isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)):
|
| 301 |
+
tokenizer_chat_template = tokenizer.chat_template
|
| 302 |
+
else:
|
| 303 |
+
tokenizer_chat_template = None
|
| 304 |
+
|
| 305 |
+
jinja_text: Optional[str]
|
| 306 |
+
if isinstance(tokenizer_chat_template, str) and chat_template is None:
|
| 307 |
+
jinja_text = tokenizer_chat_template
|
| 308 |
+
elif (isinstance(tokenizer_chat_template, dict)
|
| 309 |
+
and chat_template in tokenizer_chat_template):
|
| 310 |
+
jinja_text = tokenizer_chat_template[chat_template]
|
| 311 |
+
else:
|
| 312 |
+
jinja_text = load_chat_template(chat_template, is_literal=True)
|
| 313 |
+
|
| 314 |
+
detected_format = ("string" if jinja_text is None else
|
| 315 |
+
_detect_content_format(jinja_text, default="string"))
|
| 316 |
+
|
| 317 |
+
return detected_format if given_format == "auto" else given_format
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
@lru_cache
|
| 321 |
+
def resolve_chat_template_content_format(
|
| 322 |
+
chat_template: Optional[str],
|
| 323 |
+
given_format: ChatTemplateContentFormatOption,
|
| 324 |
+
tokenizer: AnyTokenizer,
|
| 325 |
+
) -> _ChatTemplateContentFormat:
|
| 326 |
+
detected_format = _resolve_chat_template_content_format(
|
| 327 |
+
chat_template,
|
| 328 |
+
given_format,
|
| 329 |
+
tokenizer,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
logger.info(
|
| 333 |
+
"Detected the chat template content format to be '%s'. "
|
| 334 |
+
"You can set `--chat-template-content-format` to override this.",
|
| 335 |
+
detected_format,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
if given_format != "auto" and given_format != detected_format:
|
| 339 |
+
logger.warning(
|
| 340 |
+
"You specified `--chat-template-content-format %s` "
|
| 341 |
+
"which is different from the detected format '%s'. "
|
| 342 |
+
"If our automatic detection is incorrect, please consider "
|
| 343 |
+
"opening a GitHub issue so that we can improve it: "
|
| 344 |
+
"https://github.com/vllm-project/vllm/issues/new/choose",
|
| 345 |
+
given_format,
|
| 346 |
+
detected_format,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
return detected_format
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
ModalityStr = Literal["image", "audio", "video"]
|
| 353 |
+
_T = TypeVar("_T")
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class BaseMultiModalItemTracker(ABC, Generic[_T]):
|
| 357 |
+
"""
|
| 358 |
+
Tracks multi-modal items in a given request and ensures that the number
|
| 359 |
+
of multi-modal items in a given request does not exceed the configured
|
| 360 |
+
maximum per prompt.
|
| 361 |
+
"""
|
| 362 |
+
|
| 363 |
+
def __init__(self, model_config: ModelConfig, tokenizer: AnyTokenizer):
|
| 364 |
+
super().__init__()
|
| 365 |
+
|
| 366 |
+
self._model_config = model_config
|
| 367 |
+
self._tokenizer = tokenizer
|
| 368 |
+
self._allowed_items = (model_config.multimodal_config.limit_per_prompt
|
| 369 |
+
if model_config.multimodal_config else {})
|
| 370 |
+
|
| 371 |
+
self._items_by_modality = defaultdict[str, list[_T]](list)
|
| 372 |
+
|
| 373 |
+
@property
|
| 374 |
+
def model_config(self) -> ModelConfig:
|
| 375 |
+
return self._model_config
|
| 376 |
+
|
| 377 |
+
@property
|
| 378 |
+
def allowed_local_media_path(self):
|
| 379 |
+
return self._model_config.allowed_local_media_path
|
| 380 |
+
|
| 381 |
+
@staticmethod
|
| 382 |
+
@cache
|
| 383 |
+
def _cached_token_str(tokenizer: AnyTokenizer, token_index: int) -> str:
|
| 384 |
+
return tokenizer.decode(token_index)
|
| 385 |
+
|
| 386 |
+
def _placeholder_str(self, modality: ModalityStr,
|
| 387 |
+
current_count: int) -> Optional[str]:
|
| 388 |
+
# TODO: Let user specify how to insert image tokens into prompt
|
| 389 |
+
# (similar to chat template)
|
| 390 |
+
hf_config = self._model_config.hf_config
|
| 391 |
+
model_type = hf_config.model_type
|
| 392 |
+
|
| 393 |
+
if modality == "image":
|
| 394 |
+
if model_type == "phi3_v":
|
| 395 |
+
# Workaround since this token is not defined in the tokenizer
|
| 396 |
+
return f"<|image_{current_count}|>"
|
| 397 |
+
if model_type in ("minicpmo", "minicpmv"):
|
| 398 |
+
return "(<image>./</image>)"
|
| 399 |
+
if model_type in ("blip-2", "chatglm", "fuyu", "paligemma",
|
| 400 |
+
"pixtral"):
|
| 401 |
+
# These models do not use image tokens in the prompt
|
| 402 |
+
return None
|
| 403 |
+
if model_type == "qwen":
|
| 404 |
+
return f"Picture {current_count}: <img></img>"
|
| 405 |
+
if model_type.startswith("llava"):
|
| 406 |
+
return self._cached_token_str(self._tokenizer,
|
| 407 |
+
hf_config.image_token_index)
|
| 408 |
+
if model_type in ("chameleon", "deepseek_vl_v2", "internvl_chat",
|
| 409 |
+
"NVLM_D", "h2ovl_chat"):
|
| 410 |
+
return "<image>"
|
| 411 |
+
if model_type == "mllama":
|
| 412 |
+
return "<|image|>"
|
| 413 |
+
if model_type in ("qwen2_vl", "qwen2_5_vl"):
|
| 414 |
+
return "<|vision_start|><|image_pad|><|vision_end|>"
|
| 415 |
+
if model_type == "molmo":
|
| 416 |
+
return ""
|
| 417 |
+
if model_type == "idefics3":
|
| 418 |
+
return "<image>"
|
| 419 |
+
if model_type == "aria":
|
| 420 |
+
return "<|fim_prefix|><|img|><|fim_suffix|>"
|
| 421 |
+
|
| 422 |
+
raise TypeError(f"Unknown {modality} model type: {model_type}")
|
| 423 |
+
elif modality == "audio":
|
| 424 |
+
if model_type == "ultravox":
|
| 425 |
+
return "<|audio|>"
|
| 426 |
+
if model_type == "qwen2_audio":
|
| 427 |
+
return (f"Audio {current_count}: "
|
| 428 |
+
f"<|audio_bos|><|AUDIO|><|audio_eos|>")
|
| 429 |
+
if model_type == "minicpmo":
|
| 430 |
+
return "(<audio>./</audio>)"
|
| 431 |
+
raise TypeError(f"Unknown model type: {model_type}")
|
| 432 |
+
elif modality == "video":
|
| 433 |
+
if model_type in ("qwen2_vl", "qwen2_5_vl"):
|
| 434 |
+
return "<|vision_start|><|video_pad|><|vision_end|>"
|
| 435 |
+
if model_type in ("minicpmo", "minicpmv"):
|
| 436 |
+
return "(<video>./</video>)"
|
| 437 |
+
if model_type.startswith("llava"):
|
| 438 |
+
return self._cached_token_str(self._tokenizer,
|
| 439 |
+
hf_config.video_token_index)
|
| 440 |
+
raise TypeError(f"Unknown {modality} model type: {model_type}")
|
| 441 |
+
else:
|
| 442 |
+
raise TypeError(f"Unknown modality: {modality}")
|
| 443 |
+
|
| 444 |
+
def add(self, modality: ModalityStr, item: _T) -> Optional[str]:
|
| 445 |
+
"""
|
| 446 |
+
Add a multi-modal item to the current prompt and returns the
|
| 447 |
+
placeholder string to use, if any.
|
| 448 |
+
"""
|
| 449 |
+
allowed_count = self._allowed_items.get(modality, 1)
|
| 450 |
+
current_count = len(self._items_by_modality[modality]) + 1
|
| 451 |
+
if current_count > allowed_count:
|
| 452 |
+
raise ValueError(
|
| 453 |
+
f"At most {allowed_count} {modality}(s) may be provided in "
|
| 454 |
+
"one request.")
|
| 455 |
+
|
| 456 |
+
self._items_by_modality[modality].append(item)
|
| 457 |
+
|
| 458 |
+
return self._placeholder_str(modality, current_count)
|
| 459 |
+
|
| 460 |
+
@abstractmethod
|
| 461 |
+
def create_parser(self) -> "BaseMultiModalContentParser":
|
| 462 |
+
raise NotImplementedError
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class MultiModalItemTracker(BaseMultiModalItemTracker[object]):
|
| 466 |
+
|
| 467 |
+
def all_mm_data(self) -> Optional[MultiModalDataDict]:
|
| 468 |
+
if self._items_by_modality:
|
| 469 |
+
return dict(self._items_by_modality)
|
| 470 |
+
|
| 471 |
+
return None
|
| 472 |
+
|
| 473 |
+
def create_parser(self) -> "BaseMultiModalContentParser":
|
| 474 |
+
return MultiModalContentParser(self)
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
class AsyncMultiModalItemTracker(BaseMultiModalItemTracker[Awaitable[object]]):
|
| 478 |
+
|
| 479 |
+
async def all_mm_data(self) -> Optional[MultiModalDataDict]:
|
| 480 |
+
if self._items_by_modality:
|
| 481 |
+
return {
|
| 482 |
+
modality: await asyncio.gather(*items)
|
| 483 |
+
for modality, items in self._items_by_modality.items()
|
| 484 |
+
}
|
| 485 |
+
|
| 486 |
+
return None
|
| 487 |
+
|
| 488 |
+
def create_parser(self) -> "BaseMultiModalContentParser":
|
| 489 |
+
return AsyncMultiModalContentParser(self)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
class BaseMultiModalContentParser(ABC):
|
| 493 |
+
|
| 494 |
+
def __init__(self) -> None:
|
| 495 |
+
super().__init__()
|
| 496 |
+
|
| 497 |
+
# multimodal placeholder_string : count
|
| 498 |
+
self._placeholder_counts: Dict[str, int] = defaultdict(lambda: 0)
|
| 499 |
+
|
| 500 |
+
def _add_placeholder(self, placeholder: Optional[str]):
|
| 501 |
+
if placeholder:
|
| 502 |
+
self._placeholder_counts[placeholder] += 1
|
| 503 |
+
|
| 504 |
+
def mm_placeholder_counts(self) -> Dict[str, int]:
|
| 505 |
+
return dict(self._placeholder_counts)
|
| 506 |
+
|
| 507 |
+
@abstractmethod
|
| 508 |
+
def parse_image(self, image_url: str) -> None:
|
| 509 |
+
raise NotImplementedError
|
| 510 |
+
|
| 511 |
+
@abstractmethod
|
| 512 |
+
def parse_audio(self, audio_url: str) -> None:
|
| 513 |
+
raise NotImplementedError
|
| 514 |
+
|
| 515 |
+
@abstractmethod
|
| 516 |
+
def parse_input_audio(self, input_audio: InputAudio) -> None:
|
| 517 |
+
raise NotImplementedError
|
| 518 |
+
|
| 519 |
+
@abstractmethod
|
| 520 |
+
def parse_video(self, video_url: str) -> None:
|
| 521 |
+
raise NotImplementedError
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
class MultiModalContentParser(BaseMultiModalContentParser):
|
| 525 |
+
|
| 526 |
+
def __init__(self, tracker: MultiModalItemTracker) -> None:
|
| 527 |
+
super().__init__()
|
| 528 |
+
|
| 529 |
+
self._tracker = tracker
|
| 530 |
+
|
| 531 |
+
self._connector = MediaConnector(
|
| 532 |
+
allowed_local_media_path=tracker.allowed_local_media_path,
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
def parse_image(self, image_url: str) -> None:
|
| 536 |
+
image = self._connector.fetch_image(image_url)
|
| 537 |
+
|
| 538 |
+
placeholder = self._tracker.add("image", image)
|
| 539 |
+
self._add_placeholder(placeholder)
|
| 540 |
+
|
| 541 |
+
def parse_audio(self, audio_url: str) -> None:
|
| 542 |
+
audio = self._connector.fetch_audio(audio_url)
|
| 543 |
+
|
| 544 |
+
placeholder = self._tracker.add("audio", audio)
|
| 545 |
+
self._add_placeholder(placeholder)
|
| 546 |
+
|
| 547 |
+
def parse_input_audio(self, input_audio: InputAudio) -> None:
|
| 548 |
+
audio_data = input_audio.get("data", "")
|
| 549 |
+
audio_format = input_audio.get("format", "")
|
| 550 |
+
audio_url = f"data:audio/{audio_format};base64,{audio_data}"
|
| 551 |
+
|
| 552 |
+
return self.parse_audio(audio_url)
|
| 553 |
+
|
| 554 |
+
def parse_video(self, video_url: str) -> None:
|
| 555 |
+
video = self._connector.fetch_video(video_url)
|
| 556 |
+
|
| 557 |
+
placeholder = self._tracker.add("video", video)
|
| 558 |
+
self._add_placeholder(placeholder)
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
class AsyncMultiModalContentParser(BaseMultiModalContentParser):
|
| 562 |
+
|
| 563 |
+
def __init__(self, tracker: AsyncMultiModalItemTracker) -> None:
|
| 564 |
+
super().__init__()
|
| 565 |
+
|
| 566 |
+
self._tracker = tracker
|
| 567 |
+
self._connector = MediaConnector(
|
| 568 |
+
allowed_local_media_path=tracker.allowed_local_media_path,
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
def parse_image(self, image_url: str) -> None:
|
| 572 |
+
image_coro = self._connector.fetch_image_async(image_url)
|
| 573 |
+
|
| 574 |
+
placeholder = self._tracker.add("image", image_coro)
|
| 575 |
+
self._add_placeholder(placeholder)
|
| 576 |
+
|
| 577 |
+
def parse_audio(self, audio_url: str) -> None:
|
| 578 |
+
audio_coro = self._connector.fetch_audio_async(audio_url)
|
| 579 |
+
|
| 580 |
+
placeholder = self._tracker.add("audio", audio_coro)
|
| 581 |
+
self._add_placeholder(placeholder)
|
| 582 |
+
|
| 583 |
+
def parse_input_audio(self, input_audio: InputAudio) -> None:
|
| 584 |
+
audio_data = input_audio.get("data", "")
|
| 585 |
+
audio_format = input_audio.get("format", "")
|
| 586 |
+
audio_url = f"data:audio/{audio_format};base64,{audio_data}"
|
| 587 |
+
|
| 588 |
+
return self.parse_audio(audio_url)
|
| 589 |
+
|
| 590 |
+
def parse_video(self, video_url: str) -> None:
|
| 591 |
+
video = self._connector.fetch_video_async(video_url)
|
| 592 |
+
|
| 593 |
+
placeholder = self._tracker.add("video", video)
|
| 594 |
+
self._add_placeholder(placeholder)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def validate_chat_template(chat_template: Optional[Union[Path, str]]):
|
| 598 |
+
"""Raises if the provided chat template appears invalid."""
|
| 599 |
+
if chat_template is None:
|
| 600 |
+
return
|
| 601 |
+
|
| 602 |
+
elif isinstance(chat_template, Path) and not chat_template.exists():
|
| 603 |
+
raise FileNotFoundError(
|
| 604 |
+
"the supplied chat template path doesn't exist")
|
| 605 |
+
|
| 606 |
+
elif isinstance(chat_template, str):
|
| 607 |
+
JINJA_CHARS = "{}\n"
|
| 608 |
+
if not any(c in chat_template
|
| 609 |
+
for c in JINJA_CHARS) and not Path(chat_template).exists():
|
| 610 |
+
raise ValueError(
|
| 611 |
+
f"The supplied chat template string ({chat_template}) "
|
| 612 |
+
f"appears path-like, but doesn't exist!")
|
| 613 |
+
|
| 614 |
+
else:
|
| 615 |
+
raise TypeError(
|
| 616 |
+
f"{type(chat_template)} is not a valid chat template type")
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
def load_chat_template(
|
| 620 |
+
chat_template: Optional[Union[Path, str]],
|
| 621 |
+
*,
|
| 622 |
+
is_literal: bool = False,
|
| 623 |
+
) -> Optional[str]:
|
| 624 |
+
if chat_template is None:
|
| 625 |
+
return None
|
| 626 |
+
|
| 627 |
+
if is_literal:
|
| 628 |
+
if isinstance(chat_template, Path):
|
| 629 |
+
raise TypeError("chat_template is expected to be read directly "
|
| 630 |
+
"from its value")
|
| 631 |
+
|
| 632 |
+
return codecs.decode(chat_template, "unicode_escape")
|
| 633 |
+
|
| 634 |
+
try:
|
| 635 |
+
with open(chat_template) as f:
|
| 636 |
+
return f.read()
|
| 637 |
+
except OSError as e:
|
| 638 |
+
if isinstance(chat_template, Path):
|
| 639 |
+
raise
|
| 640 |
+
|
| 641 |
+
JINJA_CHARS = "{}\n"
|
| 642 |
+
if not any(c in chat_template for c in JINJA_CHARS):
|
| 643 |
+
msg = (f"The supplied chat template ({chat_template}) "
|
| 644 |
+
f"looks like a file path, but it failed to be "
|
| 645 |
+
f"opened. Reason: {e}")
|
| 646 |
+
raise ValueError(msg) from e
|
| 647 |
+
|
| 648 |
+
# If opening a file fails, set chat template to be args to
|
| 649 |
+
# ensure we decode so our escape are interpreted correctly
|
| 650 |
+
return load_chat_template(chat_template, is_literal=True)
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
# TODO: Let user specify how to insert multimodal tokens into prompt
|
| 654 |
+
# (similar to chat template)
|
| 655 |
+
def _get_full_multimodal_text_prompt(placeholder_counts: Dict[str, int],
|
| 656 |
+
text_prompt: str) -> str:
|
| 657 |
+
"""Combine multimodal prompts for a multimodal language model."""
|
| 658 |
+
|
| 659 |
+
# Look through the text prompt to check for missing placeholders
|
| 660 |
+
missing_placeholders: List[str] = []
|
| 661 |
+
for placeholder in placeholder_counts:
|
| 662 |
+
|
| 663 |
+
# For any existing placeholder in the text prompt, we leave it as is
|
| 664 |
+
placeholder_counts[placeholder] -= text_prompt.count(placeholder)
|
| 665 |
+
|
| 666 |
+
if placeholder_counts[placeholder] < 0:
|
| 667 |
+
raise ValueError(
|
| 668 |
+
f"Found more '{placeholder}' placeholders in input prompt than "
|
| 669 |
+
"actual multimodal data items.")
|
| 670 |
+
|
| 671 |
+
missing_placeholders.extend([placeholder] *
|
| 672 |
+
placeholder_counts[placeholder])
|
| 673 |
+
|
| 674 |
+
# NOTE: For now we always add missing placeholders at the front of
|
| 675 |
+
# the prompt. This may change to be customizable in the future.
|
| 676 |
+
return "\n".join(missing_placeholders + [text_prompt])
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
# No need to validate using Pydantic again
|
| 680 |
+
_TextParser = partial(cast, ChatCompletionContentPartTextParam)
|
| 681 |
+
_ImageParser = partial(cast, ChatCompletionContentPartImageParam)
|
| 682 |
+
_AudioParser = partial(cast, ChatCompletionContentPartAudioParam)
|
| 683 |
+
_InputAudioParser = partial(cast, ChatCompletionContentPartInputAudioParam)
|
| 684 |
+
_RefusalParser = partial(cast, ChatCompletionContentPartRefusalParam)
|
| 685 |
+
_VideoParser = partial(cast, ChatCompletionContentPartVideoParam)
|
| 686 |
+
|
| 687 |
+
_ContentPart: TypeAlias = Union[str, Dict[str, str], InputAudio]
|
| 688 |
+
|
| 689 |
+
# Define a mapping from part types to their corresponding parsing functions.
|
| 690 |
+
MM_PARSER_MAP: Dict[
|
| 691 |
+
str,
|
| 692 |
+
Callable[[ChatCompletionContentPartParam], _ContentPart],
|
| 693 |
+
] = {
|
| 694 |
+
"text":
|
| 695 |
+
lambda part: _TextParser(part).get("text", ""),
|
| 696 |
+
"image_url":
|
| 697 |
+
lambda part: _ImageParser(part).get("image_url", {}).get("url", ""),
|
| 698 |
+
"audio_url":
|
| 699 |
+
lambda part: _AudioParser(part).get("audio_url", {}).get("url", ""),
|
| 700 |
+
"input_audio":
|
| 701 |
+
lambda part: _InputAudioParser(part).get("input_audio", {}),
|
| 702 |
+
"refusal":
|
| 703 |
+
lambda part: _RefusalParser(part).get("refusal", ""),
|
| 704 |
+
"video_url":
|
| 705 |
+
lambda part: _VideoParser(part).get("video_url", {}).get("url", ""),
|
| 706 |
+
}
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
def _parse_chat_message_content_mm_part(
|
| 710 |
+
part: ChatCompletionContentPartParam) -> tuple[str, _ContentPart]:
|
| 711 |
+
"""
|
| 712 |
+
Parses a given multi-modal content part based on its type.
|
| 713 |
+
|
| 714 |
+
Args:
|
| 715 |
+
part: A dict containing the content part, with a potential 'type' field.
|
| 716 |
+
|
| 717 |
+
Returns:
|
| 718 |
+
A tuple (part_type, content) where:
|
| 719 |
+
- part_type: Type of the part (e.g., 'text', 'image_url').
|
| 720 |
+
- content: Parsed content (e.g., text, image URL).
|
| 721 |
+
|
| 722 |
+
Raises:
|
| 723 |
+
ValueError: If the 'type' field is missing and no direct URL is found.
|
| 724 |
+
"""
|
| 725 |
+
assert isinstance(
|
| 726 |
+
part, dict) # This is needed to avoid mypy errors: part.get() from str
|
| 727 |
+
part_type = part.get("type", None)
|
| 728 |
+
|
| 729 |
+
if isinstance(part_type, str) and part_type in MM_PARSER_MAP:
|
| 730 |
+
content = MM_PARSER_MAP[part_type](part)
|
| 731 |
+
|
| 732 |
+
# Special case for 'image_url.detail'
|
| 733 |
+
# We only support 'auto', which is the default
|
| 734 |
+
if part_type == "image_url" and part.get("detail", "auto") != "auto":
|
| 735 |
+
logger.warning("'image_url.detail' is currently not supported "
|
| 736 |
+
"and will be ignored.")
|
| 737 |
+
|
| 738 |
+
return part_type, content
|
| 739 |
+
|
| 740 |
+
# Handle missing 'type' but provided direct URL fields.
|
| 741 |
+
# 'type' is required field by pydantic
|
| 742 |
+
if part_type is None:
|
| 743 |
+
if part.get("image_url") is not None:
|
| 744 |
+
image_params = cast(CustomChatCompletionContentSimpleImageParam,
|
| 745 |
+
part)
|
| 746 |
+
return "image_url", image_params.get("image_url", "")
|
| 747 |
+
if part.get("audio_url") is not None:
|
| 748 |
+
audio_params = cast(CustomChatCompletionContentSimpleAudioParam,
|
| 749 |
+
part)
|
| 750 |
+
return "audio_url", audio_params.get("audio_url", "")
|
| 751 |
+
if part.get("input_audio") is not None:
|
| 752 |
+
input_audio_params = cast(Dict[str, str], part)
|
| 753 |
+
return "input_audio", input_audio_params
|
| 754 |
+
if part.get("video_url") is not None:
|
| 755 |
+
video_params = cast(CustomChatCompletionContentSimpleVideoParam,
|
| 756 |
+
part)
|
| 757 |
+
return "video_url", video_params.get("video_url", "")
|
| 758 |
+
# Raise an error if no 'type' or direct URL is found.
|
| 759 |
+
raise ValueError("Missing 'type' field in multimodal part.")
|
| 760 |
+
|
| 761 |
+
if not isinstance(part_type, str):
|
| 762 |
+
raise ValueError("Invalid 'type' field in multimodal part.")
|
| 763 |
+
return part_type, "unknown part_type content"
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
VALID_MESSAGE_CONTENT_MM_PART_TYPES = ("text", "refusal", "image_url",
|
| 767 |
+
"audio_url", "input_audio", "video_url")
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
def _parse_chat_message_content_parts(
|
| 771 |
+
role: str,
|
| 772 |
+
parts: Iterable[ChatCompletionContentPartParam],
|
| 773 |
+
mm_tracker: BaseMultiModalItemTracker,
|
| 774 |
+
*,
|
| 775 |
+
wrap_dicts: bool,
|
| 776 |
+
) -> List[ConversationMessage]:
|
| 777 |
+
content = list[_ContentPart]()
|
| 778 |
+
|
| 779 |
+
mm_parser = mm_tracker.create_parser()
|
| 780 |
+
|
| 781 |
+
for part in parts:
|
| 782 |
+
parse_res = _parse_chat_message_content_part(
|
| 783 |
+
part,
|
| 784 |
+
mm_parser,
|
| 785 |
+
wrap_dicts=wrap_dicts,
|
| 786 |
+
)
|
| 787 |
+
if parse_res:
|
| 788 |
+
content.append(parse_res)
|
| 789 |
+
|
| 790 |
+
if wrap_dicts:
|
| 791 |
+
# Parsing wraps images and texts as interleaved dictionaries
|
| 792 |
+
return [ConversationMessage(role=role,
|
| 793 |
+
content=content)] # type: ignore
|
| 794 |
+
texts = cast(List[str], content)
|
| 795 |
+
text_prompt = "\n".join(texts)
|
| 796 |
+
mm_placeholder_counts = mm_parser.mm_placeholder_counts()
|
| 797 |
+
if mm_placeholder_counts:
|
| 798 |
+
text_prompt = _get_full_multimodal_text_prompt(mm_placeholder_counts,
|
| 799 |
+
text_prompt)
|
| 800 |
+
return [ConversationMessage(role=role, content=text_prompt)]
|
| 801 |
+
|
| 802 |
+
|
| 803 |
+
def _parse_chat_message_content_part(
|
| 804 |
+
part: ChatCompletionContentPartParam,
|
| 805 |
+
mm_parser: BaseMultiModalContentParser,
|
| 806 |
+
*,
|
| 807 |
+
wrap_dicts: bool,
|
| 808 |
+
) -> Optional[_ContentPart]:
|
| 809 |
+
"""Parses a single part of a conversation. If wrap_dicts is True,
|
| 810 |
+
structured dictionary pieces for texts and images will be
|
| 811 |
+
wrapped in dictionaries, i.e., {"type": "text", "text", ...} and
|
| 812 |
+
{"type": "image"}, respectively. Otherwise multimodal data will be
|
| 813 |
+
handled by mm_parser, and texts will be returned as strings to be joined
|
| 814 |
+
with multimodal placeholders.
|
| 815 |
+
"""
|
| 816 |
+
if isinstance(part, str): # Handle plain text parts
|
| 817 |
+
return part
|
| 818 |
+
|
| 819 |
+
# Handle structured dictionary parts
|
| 820 |
+
part_type, content = _parse_chat_message_content_mm_part(part)
|
| 821 |
+
|
| 822 |
+
# if part_type is text/refusal/image_url/audio_url/video_url/input_audio but
|
| 823 |
+
# content is empty, log a warning and skip
|
| 824 |
+
if part_type in VALID_MESSAGE_CONTENT_MM_PART_TYPES and not content:
|
| 825 |
+
logger.warning(
|
| 826 |
+
"Skipping multimodal part (type: '%s')"
|
| 827 |
+
"with empty / unparsable content.", part_type)
|
| 828 |
+
return None
|
| 829 |
+
|
| 830 |
+
if part_type in ("text", "refusal"):
|
| 831 |
+
str_content = cast(str, content)
|
| 832 |
+
if wrap_dicts:
|
| 833 |
+
return {'type': 'text', 'text': str_content}
|
| 834 |
+
else:
|
| 835 |
+
return str_content
|
| 836 |
+
|
| 837 |
+
if part_type == "image_url":
|
| 838 |
+
str_content = cast(str, content)
|
| 839 |
+
mm_parser.parse_image(str_content)
|
| 840 |
+
return {'type': 'image'} if wrap_dicts else None
|
| 841 |
+
|
| 842 |
+
if part_type == "audio_url":
|
| 843 |
+
str_content = cast(str, content)
|
| 844 |
+
mm_parser.parse_audio(str_content)
|
| 845 |
+
return {'type': 'audio'} if wrap_dicts else None
|
| 846 |
+
|
| 847 |
+
if part_type == "input_audio":
|
| 848 |
+
dict_content = cast(InputAudio, content)
|
| 849 |
+
mm_parser.parse_input_audio(dict_content)
|
| 850 |
+
return {'type': 'audio'} if wrap_dicts else None
|
| 851 |
+
|
| 852 |
+
if part_type == "video_url":
|
| 853 |
+
str_content = cast(str, content)
|
| 854 |
+
mm_parser.parse_video(str_content)
|
| 855 |
+
return {'type': 'video'} if wrap_dicts else None
|
| 856 |
+
|
| 857 |
+
raise NotImplementedError(f"Unknown part type: {part_type}")
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
# No need to validate using Pydantic again
|
| 861 |
+
_AssistantParser = partial(cast, ChatCompletionAssistantMessageParam)
|
| 862 |
+
_ToolParser = partial(cast, ChatCompletionToolMessageParam)
|
| 863 |
+
|
| 864 |
+
|
| 865 |
+
def _parse_chat_message_content(
|
| 866 |
+
message: ChatCompletionMessageParam,
|
| 867 |
+
mm_tracker: BaseMultiModalItemTracker,
|
| 868 |
+
content_format: _ChatTemplateContentFormat,
|
| 869 |
+
) -> List[ConversationMessage]:
|
| 870 |
+
role = message["role"]
|
| 871 |
+
content = message.get("content")
|
| 872 |
+
|
| 873 |
+
if content is None:
|
| 874 |
+
content = []
|
| 875 |
+
elif isinstance(content, str):
|
| 876 |
+
content = [
|
| 877 |
+
ChatCompletionContentPartTextParam(type="text", text=content)
|
| 878 |
+
]
|
| 879 |
+
result = _parse_chat_message_content_parts(
|
| 880 |
+
role,
|
| 881 |
+
content, # type: ignore
|
| 882 |
+
mm_tracker,
|
| 883 |
+
wrap_dicts=(content_format == "openai"),
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
for result_msg in result:
|
| 887 |
+
if role == 'assistant':
|
| 888 |
+
parsed_msg = _AssistantParser(message)
|
| 889 |
+
|
| 890 |
+
if "tool_calls" in parsed_msg:
|
| 891 |
+
result_msg["tool_calls"] = list(parsed_msg["tool_calls"])
|
| 892 |
+
elif role == "tool":
|
| 893 |
+
parsed_msg = _ToolParser(message)
|
| 894 |
+
if "tool_call_id" in parsed_msg:
|
| 895 |
+
result_msg["tool_call_id"] = parsed_msg["tool_call_id"]
|
| 896 |
+
|
| 897 |
+
if "name" in message and isinstance(message["name"], str):
|
| 898 |
+
result_msg["name"] = message["name"]
|
| 899 |
+
|
| 900 |
+
return result
|
| 901 |
+
|
| 902 |
+
|
| 903 |
+
def _postprocess_messages(messages: List[ConversationMessage]) -> None:
|
| 904 |
+
# per the Transformers docs & maintainers, tool call arguments in
|
| 905 |
+
# assistant-role messages with tool_calls need to be dicts not JSON str -
|
| 906 |
+
# this is how tool-use chat templates will expect them moving forwards
|
| 907 |
+
# so, for messages that have tool_calls, parse the string (which we get
|
| 908 |
+
# from openAI format) to dict
|
| 909 |
+
for message in messages:
|
| 910 |
+
if (message["role"] == "assistant" and "tool_calls" in message
|
| 911 |
+
and isinstance(message["tool_calls"], list)):
|
| 912 |
+
|
| 913 |
+
for item in message["tool_calls"]:
|
| 914 |
+
item["function"]["arguments"] = json.loads(
|
| 915 |
+
item["function"]["arguments"])
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
def parse_chat_messages(
|
| 919 |
+
messages: List[ChatCompletionMessageParam],
|
| 920 |
+
model_config: ModelConfig,
|
| 921 |
+
tokenizer: AnyTokenizer,
|
| 922 |
+
content_format: _ChatTemplateContentFormat,
|
| 923 |
+
) -> Tuple[List[ConversationMessage], Optional[MultiModalDataDict]]:
|
| 924 |
+
conversation: List[ConversationMessage] = []
|
| 925 |
+
mm_tracker = MultiModalItemTracker(model_config, tokenizer)
|
| 926 |
+
|
| 927 |
+
for msg in messages:
|
| 928 |
+
sub_messages = _parse_chat_message_content(
|
| 929 |
+
msg,
|
| 930 |
+
mm_tracker,
|
| 931 |
+
content_format,
|
| 932 |
+
)
|
| 933 |
+
|
| 934 |
+
conversation.extend(sub_messages)
|
| 935 |
+
|
| 936 |
+
_postprocess_messages(conversation)
|
| 937 |
+
|
| 938 |
+
return conversation, mm_tracker.all_mm_data()
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
def parse_chat_messages_futures(
|
| 942 |
+
messages: List[ChatCompletionMessageParam],
|
| 943 |
+
model_config: ModelConfig,
|
| 944 |
+
tokenizer: AnyTokenizer,
|
| 945 |
+
content_format: _ChatTemplateContentFormat,
|
| 946 |
+
) -> Tuple[List[ConversationMessage], Awaitable[Optional[MultiModalDataDict]]]:
|
| 947 |
+
conversation: List[ConversationMessage] = []
|
| 948 |
+
mm_tracker = AsyncMultiModalItemTracker(model_config, tokenizer)
|
| 949 |
+
|
| 950 |
+
for msg in messages:
|
| 951 |
+
sub_messages = _parse_chat_message_content(
|
| 952 |
+
msg,
|
| 953 |
+
mm_tracker,
|
| 954 |
+
content_format,
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
conversation.extend(sub_messages)
|
| 958 |
+
|
| 959 |
+
_postprocess_messages(conversation)
|
| 960 |
+
|
| 961 |
+
return conversation, mm_tracker.all_mm_data()
|
| 962 |
+
|
| 963 |
+
|
| 964 |
+
def apply_hf_chat_template(
|
| 965 |
+
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
| 966 |
+
conversation: List[ConversationMessage],
|
| 967 |
+
chat_template: Optional[str],
|
| 968 |
+
*,
|
| 969 |
+
tokenize: bool = False, # Different from HF's default
|
| 970 |
+
**kwargs: Any,
|
| 971 |
+
) -> str:
|
| 972 |
+
if chat_template is None and tokenizer.chat_template is None:
|
| 973 |
+
raise ValueError(
|
| 974 |
+
"As of transformers v4.44, default chat template is no longer "
|
| 975 |
+
"allowed, so you must provide a chat template if the tokenizer "
|
| 976 |
+
"does not define one.")
|
| 977 |
+
|
| 978 |
+
return tokenizer.apply_chat_template(
|
| 979 |
+
conversation=conversation, # type: ignore[arg-type]
|
| 980 |
+
chat_template=chat_template,
|
| 981 |
+
tokenize=tokenize,
|
| 982 |
+
**kwargs,
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
|
| 986 |
+
def apply_mistral_chat_template(
|
| 987 |
+
tokenizer: MistralTokenizer,
|
| 988 |
+
messages: List[ChatCompletionMessageParam],
|
| 989 |
+
chat_template: Optional[str] = None,
|
| 990 |
+
**kwargs: Any,
|
| 991 |
+
) -> List[int]:
|
| 992 |
+
if chat_template is not None:
|
| 993 |
+
logger.warning_once(
|
| 994 |
+
"'chat_template' cannot be overridden for mistral tokenizer.")
|
| 995 |
+
if "add_generation_prompt" in kwargs:
|
| 996 |
+
logger.warning_once(
|
| 997 |
+
"'add_generation_prompt' is not supported for mistral tokenizer, "
|
| 998 |
+
"so it will be ignored.")
|
| 999 |
+
if "continue_final_message" in kwargs:
|
| 1000 |
+
logger.warning_once(
|
| 1001 |
+
"'continue_final_message' is not supported for mistral tokenizer, "
|
| 1002 |
+
"so it will be ignored.")
|
| 1003 |
+
|
| 1004 |
+
return tokenizer.apply_chat_template(
|
| 1005 |
+
messages=messages,
|
| 1006 |
+
**kwargs,
|
| 1007 |
+
)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/launcher.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import signal
|
| 5 |
+
import socket
|
| 6 |
+
from http import HTTPStatus
|
| 7 |
+
from typing import Any, Optional
|
| 8 |
+
|
| 9 |
+
import uvicorn
|
| 10 |
+
from fastapi import FastAPI, Request, Response
|
| 11 |
+
|
| 12 |
+
from vllm import envs
|
| 13 |
+
from vllm.engine.async_llm_engine import AsyncEngineDeadError
|
| 14 |
+
from vllm.engine.multiprocessing import MQEngineDeadError
|
| 15 |
+
from vllm.logger import init_logger
|
| 16 |
+
from vllm.utils import find_process_using_port
|
| 17 |
+
|
| 18 |
+
logger = init_logger(__name__)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
async def serve_http(app: FastAPI, sock: Optional[socket.socket],
|
| 22 |
+
**uvicorn_kwargs: Any):
|
| 23 |
+
logger.info("Available routes are:")
|
| 24 |
+
for route in app.routes:
|
| 25 |
+
methods = getattr(route, "methods", None)
|
| 26 |
+
path = getattr(route, "path", None)
|
| 27 |
+
|
| 28 |
+
if methods is None or path is None:
|
| 29 |
+
continue
|
| 30 |
+
|
| 31 |
+
logger.info("Route: %s, Methods: %s", path, ', '.join(methods))
|
| 32 |
+
|
| 33 |
+
config = uvicorn.Config(app, **uvicorn_kwargs)
|
| 34 |
+
server = uvicorn.Server(config)
|
| 35 |
+
_add_shutdown_handlers(app, server)
|
| 36 |
+
|
| 37 |
+
loop = asyncio.get_running_loop()
|
| 38 |
+
|
| 39 |
+
server_task = loop.create_task(
|
| 40 |
+
server.serve(sockets=[sock] if sock else None))
|
| 41 |
+
|
| 42 |
+
def signal_handler() -> None:
|
| 43 |
+
# prevents the uvicorn signal handler to exit early
|
| 44 |
+
server_task.cancel()
|
| 45 |
+
|
| 46 |
+
async def dummy_shutdown() -> None:
|
| 47 |
+
pass
|
| 48 |
+
|
| 49 |
+
loop.add_signal_handler(signal.SIGINT, signal_handler)
|
| 50 |
+
loop.add_signal_handler(signal.SIGTERM, signal_handler)
|
| 51 |
+
|
| 52 |
+
try:
|
| 53 |
+
await server_task
|
| 54 |
+
return dummy_shutdown()
|
| 55 |
+
except asyncio.CancelledError:
|
| 56 |
+
port = uvicorn_kwargs["port"]
|
| 57 |
+
process = find_process_using_port(port)
|
| 58 |
+
if process is not None:
|
| 59 |
+
logger.debug(
|
| 60 |
+
"port %s is used by process %s launched with command:\n%s",
|
| 61 |
+
port, process, " ".join(process.cmdline()))
|
| 62 |
+
logger.info("Shutting down FastAPI HTTP server.")
|
| 63 |
+
return server.shutdown()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def _add_shutdown_handlers(app: FastAPI, server: uvicorn.Server) -> None:
|
| 67 |
+
"""Adds handlers for fatal errors that should crash the server"""
|
| 68 |
+
|
| 69 |
+
@app.exception_handler(RuntimeError)
|
| 70 |
+
async def runtime_error_handler(request: Request, __):
|
| 71 |
+
"""On generic runtime error, check to see if the engine has died.
|
| 72 |
+
It probably has, in which case the server will no longer be able to
|
| 73 |
+
handle requests. Trigger a graceful shutdown with a SIGTERM."""
|
| 74 |
+
engine = request.app.state.engine_client
|
| 75 |
+
if (not envs.VLLM_KEEP_ALIVE_ON_ENGINE_DEATH and engine.errored
|
| 76 |
+
and not engine.is_running):
|
| 77 |
+
logger.fatal("AsyncLLMEngine has failed, terminating server "
|
| 78 |
+
"process")
|
| 79 |
+
# See discussions here on shutting down a uvicorn server
|
| 80 |
+
# https://github.com/encode/uvicorn/discussions/1103
|
| 81 |
+
# In this case we cannot await the server shutdown here because
|
| 82 |
+
# this handler must first return to close the connection for
|
| 83 |
+
# this request.
|
| 84 |
+
server.should_exit = True
|
| 85 |
+
|
| 86 |
+
return Response(status_code=HTTPStatus.INTERNAL_SERVER_ERROR)
|
| 87 |
+
|
| 88 |
+
@app.exception_handler(AsyncEngineDeadError)
|
| 89 |
+
async def async_engine_dead_handler(_, __):
|
| 90 |
+
"""Kill the server if the async engine is already dead. It will
|
| 91 |
+
not handle any further requests."""
|
| 92 |
+
if not envs.VLLM_KEEP_ALIVE_ON_ENGINE_DEATH:
|
| 93 |
+
logger.fatal("AsyncLLMEngine is already dead, terminating server "
|
| 94 |
+
"process")
|
| 95 |
+
server.should_exit = True
|
| 96 |
+
|
| 97 |
+
return Response(status_code=HTTPStatus.INTERNAL_SERVER_ERROR)
|
| 98 |
+
|
| 99 |
+
@app.exception_handler(MQEngineDeadError)
|
| 100 |
+
async def mq_engine_dead_handler(_, __):
|
| 101 |
+
"""Kill the server if the mq engine is already dead. It will
|
| 102 |
+
not handle any further requests."""
|
| 103 |
+
if not envs.VLLM_KEEP_ALIVE_ON_ENGINE_DEATH:
|
| 104 |
+
logger.fatal("MQLLMEngine is already dead, terminating server "
|
| 105 |
+
"process")
|
| 106 |
+
server.should_exit = True
|
| 107 |
+
|
| 108 |
+
return Response(status_code=HTTPStatus.INTERNAL_SERVER_ERROR)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/llm.py
ADDED
|
@@ -0,0 +1,1421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import itertools
|
| 4 |
+
import warnings
|
| 5 |
+
from contextlib import contextmanager
|
| 6 |
+
from typing import (Any, Callable, ClassVar, Dict, List, Optional, Sequence,
|
| 7 |
+
Tuple, Type, Union, cast, overload)
|
| 8 |
+
|
| 9 |
+
import cloudpickle
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from typing_extensions import TypeVar, deprecated
|
| 14 |
+
|
| 15 |
+
from vllm import envs
|
| 16 |
+
from vllm.beam_search import (BeamSearchInstance, BeamSearchOutput,
|
| 17 |
+
BeamSearchSequence, get_beam_search_score)
|
| 18 |
+
from vllm.config import CompilationConfig
|
| 19 |
+
from vllm.engine.arg_utils import (EngineArgs, HfOverrides, PoolerConfig,
|
| 20 |
+
TaskOption)
|
| 21 |
+
from vllm.engine.llm_engine import LLMEngine
|
| 22 |
+
from vllm.entrypoints.chat_utils import (ChatCompletionMessageParam,
|
| 23 |
+
ChatTemplateContentFormatOption,
|
| 24 |
+
apply_hf_chat_template,
|
| 25 |
+
apply_mistral_chat_template,
|
| 26 |
+
parse_chat_messages,
|
| 27 |
+
resolve_chat_template_content_format)
|
| 28 |
+
from vllm.inputs import PromptType, SingletonPrompt, TextPrompt, TokensPrompt
|
| 29 |
+
from vllm.inputs.parse import is_token_prompt, parse_and_batch_prompt
|
| 30 |
+
from vllm.logger import init_logger
|
| 31 |
+
from vllm.lora.request import LoRARequest
|
| 32 |
+
from vllm.model_executor.guided_decoding.guided_fields import (
|
| 33 |
+
GuidedDecodingRequest, LLMGuidedOptions)
|
| 34 |
+
from vllm.outputs import (ClassificationRequestOutput, EmbeddingRequestOutput,
|
| 35 |
+
PoolingRequestOutput, RequestOutput,
|
| 36 |
+
ScoringRequestOutput)
|
| 37 |
+
from vllm.pooling_params import PoolingParams
|
| 38 |
+
from vllm.prompt_adapter.request import PromptAdapterRequest
|
| 39 |
+
from vllm.sampling_params import (BeamSearchParams, GuidedDecodingParams,
|
| 40 |
+
RequestOutputKind, SamplingParams)
|
| 41 |
+
from vllm.transformers_utils.tokenizer import (AnyTokenizer, MistralTokenizer,
|
| 42 |
+
get_cached_tokenizer)
|
| 43 |
+
from vllm.transformers_utils.tokenizer_group import TokenizerGroup
|
| 44 |
+
from vllm.usage.usage_lib import UsageContext
|
| 45 |
+
from vllm.utils import Counter, deprecate_args, deprecate_kwargs, is_list_of
|
| 46 |
+
|
| 47 |
+
logger = init_logger(__name__)
|
| 48 |
+
|
| 49 |
+
_R = TypeVar("_R", default=Any)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class LLM:
|
| 53 |
+
"""An LLM for generating texts from given prompts and sampling parameters.
|
| 54 |
+
|
| 55 |
+
This class includes a tokenizer, a language model (possibly distributed
|
| 56 |
+
across multiple GPUs), and GPU memory space allocated for intermediate
|
| 57 |
+
states (aka KV cache). Given a batch of prompts and sampling parameters,
|
| 58 |
+
this class generates texts from the model, using an intelligent batching
|
| 59 |
+
mechanism and efficient memory management.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
model: The name or path of a HuggingFace Transformers model.
|
| 63 |
+
tokenizer: The name or path of a HuggingFace Transformers tokenizer.
|
| 64 |
+
tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer
|
| 65 |
+
if available, and "slow" will always use the slow tokenizer.
|
| 66 |
+
skip_tokenizer_init: If true, skip initialization of tokenizer and
|
| 67 |
+
detokenizer. Expect valid prompt_token_ids and None for prompt
|
| 68 |
+
from the input.
|
| 69 |
+
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
|
| 70 |
+
downloading the model and tokenizer.
|
| 71 |
+
allowed_local_media_path: Allowing API requests to read local images
|
| 72 |
+
or videos from directories specified by the server file system.
|
| 73 |
+
This is a security risk. Should only be enabled in trusted
|
| 74 |
+
environments.
|
| 75 |
+
tensor_parallel_size: The number of GPUs to use for distributed
|
| 76 |
+
execution with tensor parallelism.
|
| 77 |
+
dtype: The data type for the model weights and activations. Currently,
|
| 78 |
+
we support `float32`, `float16`, and `bfloat16`. If `auto`, we use
|
| 79 |
+
the `torch_dtype` attribute specified in the model config file.
|
| 80 |
+
However, if the `torch_dtype` in the config is `float32`, we will
|
| 81 |
+
use `float16` instead.
|
| 82 |
+
quantization: The method used to quantize the model weights. Currently,
|
| 83 |
+
we support "awq", "gptq", and "fp8" (experimental).
|
| 84 |
+
If None, we first check the `quantization_config` attribute in the
|
| 85 |
+
model config file. If that is None, we assume the model weights are
|
| 86 |
+
not quantized and use `dtype` to determine the data type of
|
| 87 |
+
the weights.
|
| 88 |
+
revision: The specific model version to use. It can be a branch name,
|
| 89 |
+
a tag name, or a commit id.
|
| 90 |
+
tokenizer_revision: The specific tokenizer version to use. It can be a
|
| 91 |
+
branch name, a tag name, or a commit id.
|
| 92 |
+
seed: The seed to initialize the random number generator for sampling.
|
| 93 |
+
gpu_memory_utilization: The ratio (between 0 and 1) of GPU memory to
|
| 94 |
+
reserve for the model weights, activations, and KV cache. Higher
|
| 95 |
+
values will increase the KV cache size and thus improve the model's
|
| 96 |
+
throughput. However, if the value is too high, it may cause out-of-
|
| 97 |
+
memory (OOM) errors.
|
| 98 |
+
swap_space: The size (GiB) of CPU memory per GPU to use as swap space.
|
| 99 |
+
This can be used for temporarily storing the states of the requests
|
| 100 |
+
when their `best_of` sampling parameters are larger than 1. If all
|
| 101 |
+
requests will have `best_of=1`, you can safely set this to 0.
|
| 102 |
+
Otherwise, too small values may cause out-of-memory (OOM) errors.
|
| 103 |
+
cpu_offload_gb: The size (GiB) of CPU memory to use for offloading
|
| 104 |
+
the model weights. This virtually increases the GPU memory space
|
| 105 |
+
you can use to hold the model weights, at the cost of CPU-GPU data
|
| 106 |
+
transfer for every forward pass.
|
| 107 |
+
enforce_eager: Whether to enforce eager execution. If True, we will
|
| 108 |
+
disable CUDA graph and always execute the model in eager mode.
|
| 109 |
+
If False, we will use CUDA graph and eager execution in hybrid.
|
| 110 |
+
max_seq_len_to_capture: Maximum sequence len covered by CUDA graphs.
|
| 111 |
+
When a sequence has context length larger than this, we fall back
|
| 112 |
+
to eager mode. Additionally for encoder-decoder models, if the
|
| 113 |
+
sequence length of the encoder input is larger than this, we fall
|
| 114 |
+
back to the eager mode.
|
| 115 |
+
disable_custom_all_reduce: See :class:`~vllm.config.ParallelConfig`
|
| 116 |
+
disable_async_output_proc: Disable async output processing.
|
| 117 |
+
This may result in lower performance.
|
| 118 |
+
hf_overrides: If a dictionary, contains arguments to be forwarded to the
|
| 119 |
+
HuggingFace config. If a callable, it is called to update the
|
| 120 |
+
HuggingFace config.
|
| 121 |
+
compilation_config: Either an integer or a dictionary. If it is an
|
| 122 |
+
integer, it is used as the level of compilation optimization. If it
|
| 123 |
+
is a dictionary, it can specify the full compilation configuration.
|
| 124 |
+
**kwargs: Arguments for :class:`~vllm.EngineArgs`. (See
|
| 125 |
+
:ref:`engine-args`)
|
| 126 |
+
|
| 127 |
+
Note:
|
| 128 |
+
This class is intended to be used for offline inference. For online
|
| 129 |
+
serving, use the :class:`~vllm.AsyncLLMEngine` class instead.
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
DEPRECATE_LEGACY: ClassVar[bool] = True
|
| 133 |
+
"""A flag to toggle whether to deprecate the legacy generate/encode API."""
|
| 134 |
+
|
| 135 |
+
DEPRECATE_INIT_POSARGS: ClassVar[bool] = True
|
| 136 |
+
"""
|
| 137 |
+
A flag to toggle whether to deprecate positional arguments in
|
| 138 |
+
:meth:`LLM.__init__`.
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
@classmethod
|
| 142 |
+
@contextmanager
|
| 143 |
+
def deprecate_legacy_api(cls):
|
| 144 |
+
cls.DEPRECATE_LEGACY = True
|
| 145 |
+
|
| 146 |
+
yield
|
| 147 |
+
|
| 148 |
+
cls.DEPRECATE_LEGACY = False
|
| 149 |
+
|
| 150 |
+
@deprecate_args(
|
| 151 |
+
start_index=2, # Ignore self and model
|
| 152 |
+
is_deprecated=lambda: LLM.DEPRECATE_INIT_POSARGS,
|
| 153 |
+
additional_message=(
|
| 154 |
+
"All positional arguments other than `model` will be "
|
| 155 |
+
"replaced with keyword arguments in an upcoming version."),
|
| 156 |
+
)
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model: str,
|
| 160 |
+
tokenizer: Optional[str] = None,
|
| 161 |
+
tokenizer_mode: str = "auto",
|
| 162 |
+
skip_tokenizer_init: bool = False,
|
| 163 |
+
trust_remote_code: bool = False,
|
| 164 |
+
allowed_local_media_path: str = "",
|
| 165 |
+
tensor_parallel_size: int = 1,
|
| 166 |
+
dtype: str = "auto",
|
| 167 |
+
quantization: Optional[str] = None,
|
| 168 |
+
revision: Optional[str] = None,
|
| 169 |
+
tokenizer_revision: Optional[str] = None,
|
| 170 |
+
seed: int = 0,
|
| 171 |
+
gpu_memory_utilization: float = 0.9,
|
| 172 |
+
swap_space: float = 4,
|
| 173 |
+
cpu_offload_gb: float = 0,
|
| 174 |
+
enforce_eager: Optional[bool] = None,
|
| 175 |
+
max_seq_len_to_capture: int = 8192,
|
| 176 |
+
disable_custom_all_reduce: bool = False,
|
| 177 |
+
disable_async_output_proc: bool = False,
|
| 178 |
+
hf_overrides: Optional[HfOverrides] = None,
|
| 179 |
+
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
|
| 180 |
+
# After positional args are removed, move this right below `model`
|
| 181 |
+
task: TaskOption = "auto",
|
| 182 |
+
override_pooler_config: Optional[PoolerConfig] = None,
|
| 183 |
+
compilation_config: Optional[Union[int, Dict[str, Any]]] = None,
|
| 184 |
+
**kwargs,
|
| 185 |
+
) -> None:
|
| 186 |
+
'''
|
| 187 |
+
LLM constructor.
|
| 188 |
+
|
| 189 |
+
Note: if enforce_eager is unset (enforce_eager is None)
|
| 190 |
+
it defaults to False.
|
| 191 |
+
'''
|
| 192 |
+
|
| 193 |
+
if "disable_log_stats" not in kwargs:
|
| 194 |
+
kwargs["disable_log_stats"] = True
|
| 195 |
+
|
| 196 |
+
if "worker_cls" in kwargs:
|
| 197 |
+
worker_cls = kwargs["worker_cls"]
|
| 198 |
+
# if the worker_cls is not qualified string name,
|
| 199 |
+
# we serialize it using cloudpickle to avoid pickling issues
|
| 200 |
+
if isinstance(worker_cls, type):
|
| 201 |
+
kwargs["worker_cls"] = cloudpickle.dumps(worker_cls)
|
| 202 |
+
|
| 203 |
+
if compilation_config is not None:
|
| 204 |
+
if isinstance(compilation_config, (int, dict)):
|
| 205 |
+
compilation_config_instance = CompilationConfig.from_cli(
|
| 206 |
+
str(compilation_config))
|
| 207 |
+
else:
|
| 208 |
+
compilation_config_instance = compilation_config
|
| 209 |
+
else:
|
| 210 |
+
compilation_config_instance = None
|
| 211 |
+
|
| 212 |
+
engine_args = EngineArgs(
|
| 213 |
+
model=model,
|
| 214 |
+
task=task,
|
| 215 |
+
tokenizer=tokenizer,
|
| 216 |
+
tokenizer_mode=tokenizer_mode,
|
| 217 |
+
skip_tokenizer_init=skip_tokenizer_init,
|
| 218 |
+
trust_remote_code=trust_remote_code,
|
| 219 |
+
allowed_local_media_path=allowed_local_media_path,
|
| 220 |
+
tensor_parallel_size=tensor_parallel_size,
|
| 221 |
+
dtype=dtype,
|
| 222 |
+
quantization=quantization,
|
| 223 |
+
revision=revision,
|
| 224 |
+
tokenizer_revision=tokenizer_revision,
|
| 225 |
+
seed=seed,
|
| 226 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 227 |
+
swap_space=swap_space,
|
| 228 |
+
cpu_offload_gb=cpu_offload_gb,
|
| 229 |
+
enforce_eager=enforce_eager,
|
| 230 |
+
max_seq_len_to_capture=max_seq_len_to_capture,
|
| 231 |
+
disable_custom_all_reduce=disable_custom_all_reduce,
|
| 232 |
+
disable_async_output_proc=disable_async_output_proc,
|
| 233 |
+
hf_overrides=hf_overrides,
|
| 234 |
+
mm_processor_kwargs=mm_processor_kwargs,
|
| 235 |
+
override_pooler_config=override_pooler_config,
|
| 236 |
+
compilation_config=compilation_config_instance,
|
| 237 |
+
**kwargs,
|
| 238 |
+
)
|
| 239 |
+
# Logic to switch between engines is done at runtime instead of import
|
| 240 |
+
# to avoid import order issues
|
| 241 |
+
self.engine_class = self.get_engine_class()
|
| 242 |
+
self.llm_engine = self.engine_class.from_engine_args(
|
| 243 |
+
engine_args, usage_context=UsageContext.LLM_CLASS)
|
| 244 |
+
|
| 245 |
+
self.request_counter = Counter()
|
| 246 |
+
|
| 247 |
+
@staticmethod
|
| 248 |
+
def get_engine_class() -> Type[LLMEngine]:
|
| 249 |
+
if envs.VLLM_USE_V1:
|
| 250 |
+
# Lazy import: the v1 package isn't distributed
|
| 251 |
+
from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
|
| 252 |
+
return V1LLMEngine # type: ignore
|
| 253 |
+
return LLMEngine
|
| 254 |
+
|
| 255 |
+
def get_tokenizer(self) -> AnyTokenizer:
|
| 256 |
+
return self.llm_engine.get_tokenizer_group(TokenizerGroup).tokenizer
|
| 257 |
+
|
| 258 |
+
def set_tokenizer(self, tokenizer: AnyTokenizer) -> None:
|
| 259 |
+
tokenizer_group = self.llm_engine.get_tokenizer_group(TokenizerGroup)
|
| 260 |
+
|
| 261 |
+
# While CachedTokenizer is dynamic, have no choice but
|
| 262 |
+
# compare class name. Misjudgment will arise from
|
| 263 |
+
# user-defined tokenizer started with 'Cached'
|
| 264 |
+
if tokenizer.__class__.__name__.startswith("Cached"):
|
| 265 |
+
tokenizer_group.tokenizer = tokenizer
|
| 266 |
+
else:
|
| 267 |
+
tokenizer_group.tokenizer = get_cached_tokenizer(tokenizer)
|
| 268 |
+
|
| 269 |
+
def get_default_sampling_params(self) -> SamplingParams:
|
| 270 |
+
diff_sampling_param = (
|
| 271 |
+
self.llm_engine.model_config.get_diff_sampling_param())
|
| 272 |
+
if diff_sampling_param:
|
| 273 |
+
return SamplingParams.from_optional(**diff_sampling_param)
|
| 274 |
+
return SamplingParams()
|
| 275 |
+
|
| 276 |
+
@overload
|
| 277 |
+
def generate(
|
| 278 |
+
self,
|
| 279 |
+
prompts: Union[PromptType, Sequence[PromptType]],
|
| 280 |
+
/,
|
| 281 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 282 |
+
Sequence[SamplingParams]]] = None,
|
| 283 |
+
*,
|
| 284 |
+
use_tqdm: bool = True,
|
| 285 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 286 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 287 |
+
guided_options_request: Optional[Union[LLMGuidedOptions,
|
| 288 |
+
GuidedDecodingRequest]] = None,
|
| 289 |
+
) -> List[RequestOutput]:
|
| 290 |
+
...
|
| 291 |
+
|
| 292 |
+
@overload # LEGACY: single (prompt + optional token ids)
|
| 293 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 294 |
+
def generate(
|
| 295 |
+
self,
|
| 296 |
+
prompts: str,
|
| 297 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 298 |
+
List[SamplingParams]]] = None,
|
| 299 |
+
prompt_token_ids: Optional[List[int]] = None,
|
| 300 |
+
use_tqdm: bool = True,
|
| 301 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 302 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 303 |
+
guided_options_request: Optional[Union[LLMGuidedOptions,
|
| 304 |
+
GuidedDecodingRequest]] = None,
|
| 305 |
+
) -> List[RequestOutput]:
|
| 306 |
+
...
|
| 307 |
+
|
| 308 |
+
@overload # LEGACY: multi (prompt + optional token ids)
|
| 309 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 310 |
+
def generate(
|
| 311 |
+
self,
|
| 312 |
+
prompts: List[str],
|
| 313 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 314 |
+
List[SamplingParams]]] = None,
|
| 315 |
+
prompt_token_ids: Optional[List[List[int]]] = None,
|
| 316 |
+
use_tqdm: bool = True,
|
| 317 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 318 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 319 |
+
guided_options_request: Optional[Union[LLMGuidedOptions,
|
| 320 |
+
GuidedDecodingRequest]] = None,
|
| 321 |
+
) -> List[RequestOutput]:
|
| 322 |
+
...
|
| 323 |
+
|
| 324 |
+
@overload # LEGACY: single (token ids + optional prompt)
|
| 325 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 326 |
+
def generate(
|
| 327 |
+
self,
|
| 328 |
+
prompts: Optional[str] = None,
|
| 329 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 330 |
+
List[SamplingParams]]] = None,
|
| 331 |
+
*,
|
| 332 |
+
prompt_token_ids: List[int],
|
| 333 |
+
use_tqdm: bool = True,
|
| 334 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 335 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 336 |
+
guided_options_request: Optional[Union[LLMGuidedOptions,
|
| 337 |
+
GuidedDecodingRequest]] = None,
|
| 338 |
+
) -> List[RequestOutput]:
|
| 339 |
+
...
|
| 340 |
+
|
| 341 |
+
@overload # LEGACY: multi (token ids + optional prompt)
|
| 342 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 343 |
+
def generate(
|
| 344 |
+
self,
|
| 345 |
+
prompts: Optional[List[str]] = None,
|
| 346 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 347 |
+
List[SamplingParams]]] = None,
|
| 348 |
+
*,
|
| 349 |
+
prompt_token_ids: List[List[int]],
|
| 350 |
+
use_tqdm: bool = True,
|
| 351 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 352 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 353 |
+
guided_options_request: Optional[Union[LLMGuidedOptions,
|
| 354 |
+
GuidedDecodingRequest]] = None,
|
| 355 |
+
) -> List[RequestOutput]:
|
| 356 |
+
...
|
| 357 |
+
|
| 358 |
+
@overload # LEGACY: single or multi token ids [pos-only]
|
| 359 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 360 |
+
def generate(
|
| 361 |
+
self,
|
| 362 |
+
prompts: None,
|
| 363 |
+
sampling_params: None,
|
| 364 |
+
prompt_token_ids: Union[List[int], List[List[int]]],
|
| 365 |
+
use_tqdm: bool = True,
|
| 366 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 367 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 368 |
+
guided_options_request: Optional[Union[LLMGuidedOptions,
|
| 369 |
+
GuidedDecodingRequest]] = None,
|
| 370 |
+
) -> List[RequestOutput]:
|
| 371 |
+
...
|
| 372 |
+
|
| 373 |
+
@deprecate_kwargs(
|
| 374 |
+
"prompt_token_ids",
|
| 375 |
+
is_deprecated=lambda: LLM.DEPRECATE_LEGACY,
|
| 376 |
+
additional_message="Please use the 'prompts' parameter instead.",
|
| 377 |
+
)
|
| 378 |
+
def generate(
|
| 379 |
+
self,
|
| 380 |
+
prompts: Union[Union[PromptType, Sequence[PromptType]],
|
| 381 |
+
Optional[Union[str, List[str]]]] = None,
|
| 382 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 383 |
+
Sequence[SamplingParams]]] = None,
|
| 384 |
+
prompt_token_ids: Optional[Union[List[int], List[List[int]]]] = None,
|
| 385 |
+
use_tqdm: bool = True,
|
| 386 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 387 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 388 |
+
guided_options_request: Optional[Union[LLMGuidedOptions,
|
| 389 |
+
GuidedDecodingRequest]] = None,
|
| 390 |
+
priority: Optional[List[int]] = None,
|
| 391 |
+
) -> List[RequestOutput]:
|
| 392 |
+
"""Generates the completions for the input prompts.
|
| 393 |
+
|
| 394 |
+
This class automatically batches the given prompts, considering
|
| 395 |
+
the memory constraint. For the best performance, put all of your prompts
|
| 396 |
+
into a single list and pass it to this method.
|
| 397 |
+
|
| 398 |
+
Args:
|
| 399 |
+
prompts: The prompts to the LLM. You may pass a sequence of prompts
|
| 400 |
+
for batch inference. See :class:`~vllm.inputs.PromptType`
|
| 401 |
+
for more details about the format of each prompts.
|
| 402 |
+
sampling_params: The sampling parameters for text generation. If
|
| 403 |
+
None, we use the default sampling parameters.
|
| 404 |
+
When it is a single value, it is applied to every prompt.
|
| 405 |
+
When it is a list, the list must have the same length as the
|
| 406 |
+
prompts and it is paired one by one with the prompt.
|
| 407 |
+
use_tqdm: Whether to use tqdm to display the progress bar.
|
| 408 |
+
lora_request: LoRA request to use for generation, if any.
|
| 409 |
+
prompt_adapter_request: Prompt Adapter request to use for
|
| 410 |
+
generation, if any.
|
| 411 |
+
priority: The priority of the requests, if any.
|
| 412 |
+
Only applicable when priority scheduling policy is enabled.
|
| 413 |
+
|
| 414 |
+
Returns:
|
| 415 |
+
A list of ``RequestOutput`` objects containing the
|
| 416 |
+
generated completions in the same order as the input prompts.
|
| 417 |
+
|
| 418 |
+
Note:
|
| 419 |
+
Using ``prompts`` and ``prompt_token_ids`` as keyword parameters is
|
| 420 |
+
considered legacy and may be deprecated in the future. You should
|
| 421 |
+
instead pass them via the ``inputs`` parameter.
|
| 422 |
+
"""
|
| 423 |
+
runner_type = self.llm_engine.model_config.runner_type
|
| 424 |
+
if runner_type not in ["generate", "transcription"]:
|
| 425 |
+
messages = [
|
| 426 |
+
"LLM.generate() is only supported for (conditional) generation "
|
| 427 |
+
"models (XForCausalLM, XForConditionalGeneration).",
|
| 428 |
+
]
|
| 429 |
+
|
| 430 |
+
supported_runner_types = self.llm_engine.model_config \
|
| 431 |
+
.supported_runner_types
|
| 432 |
+
if "generate" in supported_runner_types:
|
| 433 |
+
messages.append(
|
| 434 |
+
"Your model supports the 'generate' runner, but is "
|
| 435 |
+
f"currently initialized for the '{runner_type}' runner. "
|
| 436 |
+
"Please initialize vLLM using `--task generate`.")
|
| 437 |
+
|
| 438 |
+
raise ValueError(" ".join(messages))
|
| 439 |
+
|
| 440 |
+
if prompt_token_ids is not None:
|
| 441 |
+
parsed_prompts = self._convert_v1_inputs(
|
| 442 |
+
prompts=cast(Optional[Union[str, List[str]]], prompts),
|
| 443 |
+
prompt_token_ids=prompt_token_ids,
|
| 444 |
+
)
|
| 445 |
+
else:
|
| 446 |
+
parsed_prompts = cast(Union[PromptType, Sequence[PromptType]],
|
| 447 |
+
prompts)
|
| 448 |
+
|
| 449 |
+
if isinstance(guided_options_request, dict):
|
| 450 |
+
if len(guided_options_request) > 1:
|
| 451 |
+
raise ValueError(
|
| 452 |
+
"You can only use one guided decoding but multiple is "
|
| 453 |
+
f"specified: {guided_options_request}")
|
| 454 |
+
guided_options_request = GuidedDecodingRequest(
|
| 455 |
+
**guided_options_request)
|
| 456 |
+
|
| 457 |
+
if sampling_params is None:
|
| 458 |
+
# Use default sampling params.
|
| 459 |
+
sampling_params = self.get_default_sampling_params()
|
| 460 |
+
|
| 461 |
+
self._validate_and_add_requests(
|
| 462 |
+
prompts=parsed_prompts,
|
| 463 |
+
params=sampling_params,
|
| 464 |
+
lora_request=lora_request,
|
| 465 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 466 |
+
guided_options=guided_options_request,
|
| 467 |
+
priority=priority)
|
| 468 |
+
|
| 469 |
+
outputs = self._run_engine(use_tqdm=use_tqdm)
|
| 470 |
+
return self.engine_class.validate_outputs(outputs, RequestOutput)
|
| 471 |
+
|
| 472 |
+
def collective_rpc(self,
|
| 473 |
+
method: Union[str, Callable[..., _R]],
|
| 474 |
+
timeout: Optional[float] = None,
|
| 475 |
+
args: Tuple = (),
|
| 476 |
+
kwargs: Optional[Dict[str, Any]] = None) -> List[_R]:
|
| 477 |
+
"""
|
| 478 |
+
Execute an RPC call on all workers.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
method: Name of the worker method to execute, or a callable that
|
| 482 |
+
is serialized and sent to all workers to execute.
|
| 483 |
+
|
| 484 |
+
If the method is a callable, it should accept an additional
|
| 485 |
+
`self` argument, in addition to the arguments passed in `args`
|
| 486 |
+
and `kwargs`. The `self` argument will be the worker object.
|
| 487 |
+
timeout: Maximum time in seconds to wait for execution. Raises a
|
| 488 |
+
:exc:`TimeoutError` on timeout. `None` means wait indefinitely.
|
| 489 |
+
args: Positional arguments to pass to the worker method.
|
| 490 |
+
kwargs: Keyword arguments to pass to the worker method.
|
| 491 |
+
|
| 492 |
+
Returns:
|
| 493 |
+
A list containing the results from each worker.
|
| 494 |
+
|
| 495 |
+
Note:
|
| 496 |
+
It is recommended to use this API to only pass control messages,
|
| 497 |
+
and set up data-plane communication to pass data.
|
| 498 |
+
"""
|
| 499 |
+
executor = self.llm_engine.model_executor
|
| 500 |
+
return executor.collective_rpc(method, timeout, args, kwargs)
|
| 501 |
+
|
| 502 |
+
def apply_model(self, func: Callable[[nn.Module], _R]) -> list[_R]:
|
| 503 |
+
"""
|
| 504 |
+
Run a function directly on the model inside each worker,
|
| 505 |
+
returning the result for each of them.
|
| 506 |
+
"""
|
| 507 |
+
executor = self.llm_engine.model_executor
|
| 508 |
+
return executor.apply_model(func)
|
| 509 |
+
|
| 510 |
+
def beam_search(
|
| 511 |
+
self,
|
| 512 |
+
prompts: List[Union[TokensPrompt, TextPrompt]],
|
| 513 |
+
params: BeamSearchParams,
|
| 514 |
+
) -> List[BeamSearchOutput]:
|
| 515 |
+
"""
|
| 516 |
+
Generate sequences using beam search.
|
| 517 |
+
|
| 518 |
+
Args:
|
| 519 |
+
prompts: A list of prompts. Each prompt can be a string or a list
|
| 520 |
+
of token IDs.
|
| 521 |
+
params: The beam search parameters.
|
| 522 |
+
|
| 523 |
+
TODO: how does beam search work together with length penalty, frequency
|
| 524 |
+
penalty, and stopping criteria, etc.?
|
| 525 |
+
"""
|
| 526 |
+
|
| 527 |
+
beam_width = params.beam_width
|
| 528 |
+
max_tokens = params.max_tokens
|
| 529 |
+
temperature = params.temperature
|
| 530 |
+
ignore_eos = params.ignore_eos
|
| 531 |
+
length_penalty = params.length_penalty
|
| 532 |
+
|
| 533 |
+
def sort_beams_key(x: BeamSearchSequence) -> float:
|
| 534 |
+
return get_beam_search_score(x.tokens, x.cum_logprob,
|
| 535 |
+
tokenizer.eos_token_id,
|
| 536 |
+
length_penalty)
|
| 537 |
+
|
| 538 |
+
tokenizer = self.get_tokenizer()
|
| 539 |
+
# generate 2 * beam_width candidates at each step
|
| 540 |
+
# following the huggingface transformers implementation
|
| 541 |
+
# at https://github.com/huggingface/transformers/blob/e15687fffe5c9d20598a19aeab721ae0a7580f8a/src/transformers/generation/beam_search.py#L534 # noqa
|
| 542 |
+
beam_search_params = SamplingParams(logprobs=2 * beam_width,
|
| 543 |
+
max_tokens=1,
|
| 544 |
+
temperature=temperature)
|
| 545 |
+
instances: List[BeamSearchInstance] = []
|
| 546 |
+
|
| 547 |
+
for prompt in prompts:
|
| 548 |
+
if is_token_prompt(prompt):
|
| 549 |
+
prompt_tokens = prompt["prompt_token_ids"]
|
| 550 |
+
else:
|
| 551 |
+
prompt_tokens = tokenizer.encode(prompt["prompt"])
|
| 552 |
+
instances.append(BeamSearchInstance(prompt_tokens))
|
| 553 |
+
|
| 554 |
+
for _ in range(max_tokens):
|
| 555 |
+
all_beams: List[BeamSearchSequence] = list(
|
| 556 |
+
sum((instance.beams for instance in instances), []))
|
| 557 |
+
pos = [0] + list(
|
| 558 |
+
itertools.accumulate(
|
| 559 |
+
len(instance.beams) for instance in instances))
|
| 560 |
+
instance_start_and_end: List[Tuple[int, int]] = list(
|
| 561 |
+
zip(pos[:-1], pos[1:]))
|
| 562 |
+
|
| 563 |
+
if len(all_beams) == 0:
|
| 564 |
+
break
|
| 565 |
+
|
| 566 |
+
prompts_batch = [
|
| 567 |
+
TokensPrompt(prompt_token_ids=beam.tokens)
|
| 568 |
+
for beam in all_beams
|
| 569 |
+
]
|
| 570 |
+
|
| 571 |
+
# only runs for one step
|
| 572 |
+
# we don't need to use tqdm here
|
| 573 |
+
output = self.generate(prompts_batch,
|
| 574 |
+
sampling_params=beam_search_params,
|
| 575 |
+
use_tqdm=False)
|
| 576 |
+
|
| 577 |
+
for (start, end), instance in zip(instance_start_and_end,
|
| 578 |
+
instances):
|
| 579 |
+
instance_new_beams = []
|
| 580 |
+
for i in range(start, end):
|
| 581 |
+
current_beam = all_beams[i]
|
| 582 |
+
result = output[i]
|
| 583 |
+
|
| 584 |
+
if result.outputs[0].logprobs is not None:
|
| 585 |
+
# if `result.outputs[0].logprobs` is None, it means
|
| 586 |
+
# the sequence is completed because of the max-model-len
|
| 587 |
+
# or abortion. we don't need to add it to the new beams.
|
| 588 |
+
logprobs = result.outputs[0].logprobs[0]
|
| 589 |
+
for token_id, logprob_obj in logprobs.items():
|
| 590 |
+
new_beam = BeamSearchSequence(
|
| 591 |
+
tokens=current_beam.tokens + [token_id],
|
| 592 |
+
logprobs=current_beam.logprobs + [logprobs],
|
| 593 |
+
cum_logprob=current_beam.cum_logprob +
|
| 594 |
+
logprob_obj.logprob)
|
| 595 |
+
|
| 596 |
+
if token_id == tokenizer.eos_token_id and \
|
| 597 |
+
not ignore_eos:
|
| 598 |
+
instance.completed.append(new_beam)
|
| 599 |
+
else:
|
| 600 |
+
instance_new_beams.append(new_beam)
|
| 601 |
+
sorted_beams = sorted(instance_new_beams,
|
| 602 |
+
key=sort_beams_key,
|
| 603 |
+
reverse=True)
|
| 604 |
+
instance.beams = sorted_beams[:beam_width]
|
| 605 |
+
|
| 606 |
+
outputs = []
|
| 607 |
+
for instance in instances:
|
| 608 |
+
instance.completed.extend(instance.beams)
|
| 609 |
+
sorted_completed = sorted(instance.completed,
|
| 610 |
+
key=sort_beams_key,
|
| 611 |
+
reverse=True)
|
| 612 |
+
best_beams = sorted_completed[:beam_width]
|
| 613 |
+
|
| 614 |
+
for beam in best_beams:
|
| 615 |
+
beam.text = tokenizer.decode(beam.tokens)
|
| 616 |
+
outputs.append(BeamSearchOutput(sequences=best_beams))
|
| 617 |
+
|
| 618 |
+
return outputs
|
| 619 |
+
|
| 620 |
+
def chat(
|
| 621 |
+
self,
|
| 622 |
+
messages: Union[List[ChatCompletionMessageParam],
|
| 623 |
+
List[List[ChatCompletionMessageParam]]],
|
| 624 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 625 |
+
List[SamplingParams]]] = None,
|
| 626 |
+
use_tqdm: bool = True,
|
| 627 |
+
lora_request: Optional[LoRARequest] = None,
|
| 628 |
+
chat_template: Optional[str] = None,
|
| 629 |
+
chat_template_content_format: ChatTemplateContentFormatOption = "auto",
|
| 630 |
+
add_generation_prompt: bool = True,
|
| 631 |
+
continue_final_message: bool = False,
|
| 632 |
+
tools: Optional[List[Dict[str, Any]]] = None,
|
| 633 |
+
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
|
| 634 |
+
) -> List[RequestOutput]:
|
| 635 |
+
"""
|
| 636 |
+
Generate responses for a chat conversation.
|
| 637 |
+
|
| 638 |
+
The chat conversation is converted into a text prompt using the
|
| 639 |
+
tokenizer and calls the :meth:`generate` method to generate the
|
| 640 |
+
responses.
|
| 641 |
+
|
| 642 |
+
Multi-modal inputs can be passed in the same way you would pass them
|
| 643 |
+
to the OpenAI API.
|
| 644 |
+
|
| 645 |
+
Args:
|
| 646 |
+
messages: A list of conversations or a single conversation.
|
| 647 |
+
|
| 648 |
+
- Each conversation is represented as a list of messages.
|
| 649 |
+
- Each message is a dictionary with 'role' and 'content' keys.
|
| 650 |
+
|
| 651 |
+
sampling_params: The sampling parameters for text generation.
|
| 652 |
+
If None, we use the default sampling parameters. When it
|
| 653 |
+
is a single value, it is applied to every prompt. When it
|
| 654 |
+
is a list, the list must have the same length as the
|
| 655 |
+
prompts and it is paired one by one with the prompt.
|
| 656 |
+
use_tqdm: Whether to use tqdm to display the progress bar.
|
| 657 |
+
lora_request: LoRA request to use for generation, if any.
|
| 658 |
+
chat_template: The template to use for structuring the chat.
|
| 659 |
+
If not provided, the model's default chat template will be used.
|
| 660 |
+
chat_template_content_format: The format to render message content.
|
| 661 |
+
|
| 662 |
+
- "string" will render the content as a string.
|
| 663 |
+
Example: ``"Who are you?"``
|
| 664 |
+
- "openai" will render the content as a list of dictionaries,
|
| 665 |
+
similar to OpenAI schema.
|
| 666 |
+
Example: ``[{"type": "text", "text": "Who are you?"}]``
|
| 667 |
+
|
| 668 |
+
add_generation_prompt: If True, adds a generation template
|
| 669 |
+
to each message.
|
| 670 |
+
continue_final_message: If True, continues the final message in
|
| 671 |
+
the conversation instead of starting a new one. Cannot be
|
| 672 |
+
``True`` if ``add_generation_prompt`` is also ``True``.
|
| 673 |
+
mm_processor_kwargs: Multimodal processor kwarg overrides for this
|
| 674 |
+
chat request. Only used for offline requests.
|
| 675 |
+
|
| 676 |
+
Returns:
|
| 677 |
+
A list of ``RequestOutput`` objects containing the generated
|
| 678 |
+
responses in the same order as the input messages.
|
| 679 |
+
"""
|
| 680 |
+
list_of_messages: List[List[ChatCompletionMessageParam]]
|
| 681 |
+
|
| 682 |
+
# Handle multi and single conversations
|
| 683 |
+
if is_list_of(messages, list):
|
| 684 |
+
# messages is List[List[...]]
|
| 685 |
+
list_of_messages = cast(List[List[ChatCompletionMessageParam]],
|
| 686 |
+
messages)
|
| 687 |
+
else:
|
| 688 |
+
# messages is List[...]
|
| 689 |
+
list_of_messages = [
|
| 690 |
+
cast(List[ChatCompletionMessageParam], messages)
|
| 691 |
+
]
|
| 692 |
+
|
| 693 |
+
tokenizer = self.get_tokenizer()
|
| 694 |
+
model_config = self.llm_engine.get_model_config()
|
| 695 |
+
resolved_content_format = resolve_chat_template_content_format(
|
| 696 |
+
chat_template,
|
| 697 |
+
chat_template_content_format,
|
| 698 |
+
tokenizer,
|
| 699 |
+
)
|
| 700 |
+
|
| 701 |
+
prompts: List[Union[TokensPrompt, TextPrompt]] = []
|
| 702 |
+
|
| 703 |
+
for msgs in list_of_messages:
|
| 704 |
+
# NOTE: _parse_chat_message_content_parts() currently doesn't
|
| 705 |
+
# handle mm_processor_kwargs, since there is no implementation in
|
| 706 |
+
# the chat message parsing for it.
|
| 707 |
+
conversation, mm_data = parse_chat_messages(
|
| 708 |
+
msgs,
|
| 709 |
+
model_config,
|
| 710 |
+
tokenizer,
|
| 711 |
+
content_format=resolved_content_format,
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
prompt_data: Union[str, List[int]]
|
| 715 |
+
if isinstance(tokenizer, MistralTokenizer):
|
| 716 |
+
prompt_data = apply_mistral_chat_template(
|
| 717 |
+
tokenizer,
|
| 718 |
+
messages=msgs,
|
| 719 |
+
chat_template=chat_template,
|
| 720 |
+
add_generation_prompt=add_generation_prompt,
|
| 721 |
+
continue_final_message=continue_final_message,
|
| 722 |
+
tools=tools,
|
| 723 |
+
)
|
| 724 |
+
else:
|
| 725 |
+
prompt_data = apply_hf_chat_template(
|
| 726 |
+
tokenizer,
|
| 727 |
+
conversation=conversation,
|
| 728 |
+
chat_template=chat_template,
|
| 729 |
+
add_generation_prompt=add_generation_prompt,
|
| 730 |
+
continue_final_message=continue_final_message,
|
| 731 |
+
tools=tools,
|
| 732 |
+
)
|
| 733 |
+
|
| 734 |
+
prompt: Union[TokensPrompt, TextPrompt]
|
| 735 |
+
if is_list_of(prompt_data, int):
|
| 736 |
+
prompt = TokensPrompt(prompt_token_ids=prompt_data)
|
| 737 |
+
else:
|
| 738 |
+
prompt = TextPrompt(prompt=prompt_data)
|
| 739 |
+
|
| 740 |
+
if mm_data is not None:
|
| 741 |
+
prompt["multi_modal_data"] = mm_data
|
| 742 |
+
|
| 743 |
+
if mm_processor_kwargs is not None:
|
| 744 |
+
prompt["mm_processor_kwargs"] = mm_processor_kwargs
|
| 745 |
+
|
| 746 |
+
prompts.append(prompt)
|
| 747 |
+
|
| 748 |
+
return self.generate(
|
| 749 |
+
prompts,
|
| 750 |
+
sampling_params=sampling_params,
|
| 751 |
+
use_tqdm=use_tqdm,
|
| 752 |
+
lora_request=lora_request,
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
@overload
|
| 756 |
+
def encode(
|
| 757 |
+
self,
|
| 758 |
+
prompts: Union[PromptType, Sequence[PromptType]],
|
| 759 |
+
/,
|
| 760 |
+
pooling_params: Optional[Union[PoolingParams,
|
| 761 |
+
Sequence[PoolingParams]]] = None,
|
| 762 |
+
*,
|
| 763 |
+
use_tqdm: bool = True,
|
| 764 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 765 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 766 |
+
) -> List[PoolingRequestOutput]:
|
| 767 |
+
...
|
| 768 |
+
|
| 769 |
+
@overload # LEGACY: single (prompt + optional token ids)
|
| 770 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 771 |
+
def encode(
|
| 772 |
+
self,
|
| 773 |
+
prompts: str,
|
| 774 |
+
pooling_params: Optional[Union[PoolingParams,
|
| 775 |
+
Sequence[PoolingParams]]] = None,
|
| 776 |
+
prompt_token_ids: Optional[List[int]] = None,
|
| 777 |
+
use_tqdm: bool = True,
|
| 778 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 779 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 780 |
+
) -> List[PoolingRequestOutput]:
|
| 781 |
+
...
|
| 782 |
+
|
| 783 |
+
@overload # LEGACY: multi (prompt + optional token ids)
|
| 784 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 785 |
+
def encode(
|
| 786 |
+
self,
|
| 787 |
+
prompts: List[str],
|
| 788 |
+
pooling_params: Optional[Union[PoolingParams,
|
| 789 |
+
Sequence[PoolingParams]]] = None,
|
| 790 |
+
prompt_token_ids: Optional[List[List[int]]] = None,
|
| 791 |
+
use_tqdm: bool = True,
|
| 792 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 793 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 794 |
+
) -> List[PoolingRequestOutput]:
|
| 795 |
+
...
|
| 796 |
+
|
| 797 |
+
@overload # LEGACY: single (token ids + optional prompt)
|
| 798 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 799 |
+
def encode(
|
| 800 |
+
self,
|
| 801 |
+
prompts: Optional[str] = None,
|
| 802 |
+
pooling_params: Optional[Union[PoolingParams,
|
| 803 |
+
Sequence[PoolingParams]]] = None,
|
| 804 |
+
*,
|
| 805 |
+
prompt_token_ids: List[int],
|
| 806 |
+
use_tqdm: bool = True,
|
| 807 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 808 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 809 |
+
) -> List[PoolingRequestOutput]:
|
| 810 |
+
...
|
| 811 |
+
|
| 812 |
+
@overload # LEGACY: multi (token ids + optional prompt)
|
| 813 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 814 |
+
def encode(
|
| 815 |
+
self,
|
| 816 |
+
prompts: Optional[List[str]] = None,
|
| 817 |
+
pooling_params: Optional[Union[PoolingParams,
|
| 818 |
+
Sequence[PoolingParams]]] = None,
|
| 819 |
+
*,
|
| 820 |
+
prompt_token_ids: List[List[int]],
|
| 821 |
+
use_tqdm: bool = True,
|
| 822 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 823 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 824 |
+
) -> List[PoolingRequestOutput]:
|
| 825 |
+
...
|
| 826 |
+
|
| 827 |
+
@overload # LEGACY: single or multi token ids [pos-only]
|
| 828 |
+
@deprecated("'prompt_token_ids' will become part of 'prompts'")
|
| 829 |
+
def encode(
|
| 830 |
+
self,
|
| 831 |
+
prompts: None,
|
| 832 |
+
pooling_params: None,
|
| 833 |
+
prompt_token_ids: Union[List[int], List[List[int]]],
|
| 834 |
+
use_tqdm: bool = True,
|
| 835 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 836 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 837 |
+
) -> List[PoolingRequestOutput]:
|
| 838 |
+
...
|
| 839 |
+
|
| 840 |
+
@deprecate_kwargs(
|
| 841 |
+
"prompt_token_ids",
|
| 842 |
+
is_deprecated=lambda: LLM.DEPRECATE_LEGACY,
|
| 843 |
+
additional_message="Please use the 'prompts' parameter instead.",
|
| 844 |
+
)
|
| 845 |
+
def encode(
|
| 846 |
+
self,
|
| 847 |
+
prompts: Union[Union[PromptType, Sequence[PromptType]],
|
| 848 |
+
Optional[Union[str, List[str]]]] = None,
|
| 849 |
+
pooling_params: Optional[Union[PoolingParams,
|
| 850 |
+
Sequence[PoolingParams]]] = None,
|
| 851 |
+
prompt_token_ids: Optional[Union[List[int], List[List[int]]]] = None,
|
| 852 |
+
use_tqdm: bool = True,
|
| 853 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 854 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 855 |
+
) -> List[PoolingRequestOutput]:
|
| 856 |
+
"""Apply pooling to the hidden states corresponding to the input
|
| 857 |
+
prompts.
|
| 858 |
+
|
| 859 |
+
This class automatically batches the given prompts, considering
|
| 860 |
+
the memory constraint. For the best performance, put all of your prompts
|
| 861 |
+
into a single list and pass it to this method.
|
| 862 |
+
|
| 863 |
+
Args:
|
| 864 |
+
prompts: The prompts to the LLM. You may pass a sequence of prompts
|
| 865 |
+
for batch inference. See :class:`~vllm.inputs.PromptType`
|
| 866 |
+
for more details about the format of each prompts.
|
| 867 |
+
pooling_params: The pooling parameters for pooling. If None, we
|
| 868 |
+
use the default pooling parameters.
|
| 869 |
+
use_tqdm: Whether to use tqdm to display the progress bar.
|
| 870 |
+
lora_request: LoRA request to use for generation, if any.
|
| 871 |
+
prompt_adapter_request: Prompt Adapter request to use for
|
| 872 |
+
generation, if any.
|
| 873 |
+
|
| 874 |
+
Returns:
|
| 875 |
+
A list of ``PoolingRequestOutput`` objects containing the
|
| 876 |
+
pooled hidden states in the same order as the input prompts.
|
| 877 |
+
|
| 878 |
+
Note:
|
| 879 |
+
Using ``prompts`` and ``prompt_token_ids`` as keyword parameters is
|
| 880 |
+
considered legacy and may be deprecated in the future. You should
|
| 881 |
+
instead pass them via the ``inputs`` parameter.
|
| 882 |
+
"""
|
| 883 |
+
runner_type = self.llm_engine.model_config.runner_type
|
| 884 |
+
if runner_type != "pooling":
|
| 885 |
+
messages = ["LLM.encode() is only supported for pooling models."]
|
| 886 |
+
|
| 887 |
+
supported_runner_types = self.llm_engine.model_config \
|
| 888 |
+
.supported_runner_types
|
| 889 |
+
if "pooling" in supported_runner_types:
|
| 890 |
+
messages.append(
|
| 891 |
+
"Your model supports the 'pooling' runner, but is "
|
| 892 |
+
f"currently initialized for the '{runner_type}' runner. "
|
| 893 |
+
"Please initialize vLLM using `--task embed`, "
|
| 894 |
+
"`--task classify`, `--task score` etc.")
|
| 895 |
+
|
| 896 |
+
raise ValueError(" ".join(messages))
|
| 897 |
+
|
| 898 |
+
if prompt_token_ids is not None:
|
| 899 |
+
parsed_prompts = self._convert_v1_inputs(
|
| 900 |
+
prompts=cast(Optional[Union[str, List[str]]], prompts),
|
| 901 |
+
prompt_token_ids=prompt_token_ids,
|
| 902 |
+
)
|
| 903 |
+
else:
|
| 904 |
+
parsed_prompts = cast(Union[PromptType, Sequence[PromptType]],
|
| 905 |
+
prompts)
|
| 906 |
+
|
| 907 |
+
if pooling_params is None:
|
| 908 |
+
# Use default pooling params.
|
| 909 |
+
pooling_params = PoolingParams()
|
| 910 |
+
|
| 911 |
+
self._validate_and_add_requests(
|
| 912 |
+
prompts=parsed_prompts,
|
| 913 |
+
params=pooling_params,
|
| 914 |
+
lora_request=lora_request,
|
| 915 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 916 |
+
)
|
| 917 |
+
|
| 918 |
+
outputs = self._run_engine(use_tqdm=use_tqdm)
|
| 919 |
+
return self.engine_class.validate_outputs(outputs,
|
| 920 |
+
PoolingRequestOutput)
|
| 921 |
+
|
| 922 |
+
def embed(
|
| 923 |
+
self,
|
| 924 |
+
prompts: Union[PromptType, Sequence[PromptType]],
|
| 925 |
+
/,
|
| 926 |
+
*,
|
| 927 |
+
use_tqdm: bool = True,
|
| 928 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 929 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 930 |
+
) -> List[EmbeddingRequestOutput]:
|
| 931 |
+
"""
|
| 932 |
+
Generate an embedding vector for each prompt.
|
| 933 |
+
|
| 934 |
+
This class automatically batches the given prompts, considering
|
| 935 |
+
the memory constraint. For the best performance, put all of your prompts
|
| 936 |
+
into a single list and pass it to this method.
|
| 937 |
+
|
| 938 |
+
Args:
|
| 939 |
+
prompts: The prompts to the LLM. You may pass a sequence of prompts
|
| 940 |
+
for batch inference. See :class:`~vllm.inputs.PromptType`
|
| 941 |
+
for more details about the format of each prompts.
|
| 942 |
+
use_tqdm: Whether to use tqdm to display the progress bar.
|
| 943 |
+
lora_request: LoRA request to use for generation, if any.
|
| 944 |
+
prompt_adapter_request: Prompt Adapter request to use for
|
| 945 |
+
generation, if any.
|
| 946 |
+
|
| 947 |
+
Returns:
|
| 948 |
+
A list of ``EmbeddingRequestOutput`` objects containing the
|
| 949 |
+
embedding vectors in the same order as the input prompts.
|
| 950 |
+
"""
|
| 951 |
+
if self.llm_engine.model_config.task != "embed":
|
| 952 |
+
raise ValueError(
|
| 953 |
+
"Embedding API is only enabled for `--task embed`")
|
| 954 |
+
|
| 955 |
+
items = self.encode(prompts,
|
| 956 |
+
use_tqdm=use_tqdm,
|
| 957 |
+
lora_request=lora_request,
|
| 958 |
+
prompt_adapter_request=prompt_adapter_request)
|
| 959 |
+
|
| 960 |
+
return [EmbeddingRequestOutput.from_base(item) for item in items]
|
| 961 |
+
|
| 962 |
+
def classify(
|
| 963 |
+
self,
|
| 964 |
+
prompts: Union[PromptType, Sequence[PromptType]],
|
| 965 |
+
/,
|
| 966 |
+
*,
|
| 967 |
+
use_tqdm: bool = True,
|
| 968 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 969 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 970 |
+
) -> List[ClassificationRequestOutput]:
|
| 971 |
+
"""
|
| 972 |
+
Generate class logits for each prompt.
|
| 973 |
+
|
| 974 |
+
This class automatically batches the given prompts, considering
|
| 975 |
+
the memory constraint. For the best performance, put all of your prompts
|
| 976 |
+
into a single list and pass it to this method.
|
| 977 |
+
|
| 978 |
+
Args:
|
| 979 |
+
prompts: The prompts to the LLM. You may pass a sequence of prompts
|
| 980 |
+
for batch inference. See :class:`~vllm.inputs.PromptType`
|
| 981 |
+
for more details about the format of each prompts.
|
| 982 |
+
use_tqdm: Whether to use tqdm to display the progress bar.
|
| 983 |
+
lora_request: LoRA request to use for generation, if any.
|
| 984 |
+
prompt_adapter_request: Prompt Adapter request to use for
|
| 985 |
+
generation, if any.
|
| 986 |
+
|
| 987 |
+
Returns:
|
| 988 |
+
A list of ``ClassificationRequestOutput`` objects containing the
|
| 989 |
+
embedding vectors in the same order as the input prompts.
|
| 990 |
+
"""
|
| 991 |
+
if self.llm_engine.model_config.task != "classify":
|
| 992 |
+
raise ValueError(
|
| 993 |
+
"Classification API is only enabled for `--task classify`")
|
| 994 |
+
|
| 995 |
+
items = self.encode(prompts,
|
| 996 |
+
use_tqdm=use_tqdm,
|
| 997 |
+
lora_request=lora_request,
|
| 998 |
+
prompt_adapter_request=prompt_adapter_request)
|
| 999 |
+
|
| 1000 |
+
return [ClassificationRequestOutput.from_base(item) for item in items]
|
| 1001 |
+
|
| 1002 |
+
def _embedding_score(
|
| 1003 |
+
self,
|
| 1004 |
+
tokenizer: AnyTokenizer,
|
| 1005 |
+
text_1: List[Union[str, TextPrompt, TokensPrompt]],
|
| 1006 |
+
text_2: List[Union[str, TextPrompt, TokensPrompt]],
|
| 1007 |
+
truncate_prompt_tokens: Optional[int] = None,
|
| 1008 |
+
use_tqdm: bool = True,
|
| 1009 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 1010 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 1011 |
+
) -> List[ScoringRequestOutput]:
|
| 1012 |
+
|
| 1013 |
+
encoded_output = self.encode(
|
| 1014 |
+
text_1 + text_2,
|
| 1015 |
+
use_tqdm=use_tqdm,
|
| 1016 |
+
lora_request=lora_request,
|
| 1017 |
+
prompt_adapter_request=prompt_adapter_request)
|
| 1018 |
+
encoded_output_1 = encoded_output[0:len(text_1)]
|
| 1019 |
+
encoded_output_2 = encoded_output[len(text_1):]
|
| 1020 |
+
|
| 1021 |
+
if len(encoded_output_1) == 1:
|
| 1022 |
+
encoded_output_1 = encoded_output_1 * len(encoded_output_2)
|
| 1023 |
+
|
| 1024 |
+
output_pairs = [(t1, t2)
|
| 1025 |
+
for t1, t2 in zip(encoded_output_1, encoded_output_2)]
|
| 1026 |
+
|
| 1027 |
+
scores = []
|
| 1028 |
+
scorer = torch.nn.CosineSimilarity(0)
|
| 1029 |
+
|
| 1030 |
+
for embed_1, embed_2 in output_pairs:
|
| 1031 |
+
pair_score = scorer(embed_1.outputs.data, embed_2.outputs.data)
|
| 1032 |
+
|
| 1033 |
+
if (pad_token_id := getattr(tokenizer, "pad_token_id",
|
| 1034 |
+
None)) is not None:
|
| 1035 |
+
tokens = embed_1.prompt_token_ids + [
|
| 1036 |
+
pad_token_id
|
| 1037 |
+
] + embed_2.prompt_token_ids
|
| 1038 |
+
else:
|
| 1039 |
+
tokens = embed_1.prompt_token_ids + embed_2.prompt_token_ids
|
| 1040 |
+
|
| 1041 |
+
scores.append(
|
| 1042 |
+
PoolingRequestOutput(
|
| 1043 |
+
request_id=f"{embed_1.request_id}_{embed_2.request_id}",
|
| 1044 |
+
outputs=pair_score,
|
| 1045 |
+
prompt_token_ids=tokens,
|
| 1046 |
+
finished=True))
|
| 1047 |
+
|
| 1048 |
+
items = self.engine_class.validate_outputs(scores,
|
| 1049 |
+
PoolingRequestOutput)
|
| 1050 |
+
return [ScoringRequestOutput.from_base(item) for item in items]
|
| 1051 |
+
|
| 1052 |
+
def _cross_encoding_score(
|
| 1053 |
+
self,
|
| 1054 |
+
tokenizer: AnyTokenizer,
|
| 1055 |
+
text_1: List[str],
|
| 1056 |
+
text_2: List[str],
|
| 1057 |
+
truncate_prompt_tokens: Optional[int] = None,
|
| 1058 |
+
use_tqdm: bool = True,
|
| 1059 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 1060 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 1061 |
+
) -> List[ScoringRequestOutput]:
|
| 1062 |
+
|
| 1063 |
+
if isinstance(tokenizer, MistralTokenizer):
|
| 1064 |
+
raise ValueError(
|
| 1065 |
+
"Score API is only enabled for `--task embed or score`")
|
| 1066 |
+
|
| 1067 |
+
if len(text_1) == 1:
|
| 1068 |
+
text_1 = text_1 * len(text_2)
|
| 1069 |
+
|
| 1070 |
+
input_pairs = [(t1, t2) for t1, t2 in zip(text_1, text_2)]
|
| 1071 |
+
|
| 1072 |
+
pooling_params = PoolingParams()
|
| 1073 |
+
|
| 1074 |
+
tokenization_kwargs: Dict[str, Any] = {}
|
| 1075 |
+
if truncate_prompt_tokens is not None:
|
| 1076 |
+
tokenization_kwargs["truncation"] = True
|
| 1077 |
+
tokenization_kwargs["max_length"] = truncate_prompt_tokens
|
| 1078 |
+
|
| 1079 |
+
parsed_prompts = []
|
| 1080 |
+
|
| 1081 |
+
for q, t in input_pairs:
|
| 1082 |
+
prompt_inputs = tokenizer(text=q,
|
| 1083 |
+
text_pair=t,
|
| 1084 |
+
**tokenization_kwargs)
|
| 1085 |
+
engine_prompt = TokensPrompt(
|
| 1086 |
+
prompt_token_ids=prompt_inputs["input_ids"],
|
| 1087 |
+
token_type_ids=prompt_inputs.get("token_type_ids"))
|
| 1088 |
+
parsed_prompts.append(engine_prompt)
|
| 1089 |
+
|
| 1090 |
+
self._validate_and_add_requests(
|
| 1091 |
+
prompts=parsed_prompts,
|
| 1092 |
+
params=pooling_params,
|
| 1093 |
+
lora_request=lora_request,
|
| 1094 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 1095 |
+
)
|
| 1096 |
+
|
| 1097 |
+
outputs = self._run_engine(use_tqdm=use_tqdm)
|
| 1098 |
+
items = self.engine_class.validate_outputs(outputs,
|
| 1099 |
+
PoolingRequestOutput)
|
| 1100 |
+
|
| 1101 |
+
return [ScoringRequestOutput.from_base(item) for item in items]
|
| 1102 |
+
|
| 1103 |
+
def score(
|
| 1104 |
+
self,
|
| 1105 |
+
text_1: Union[SingletonPrompt, Sequence[SingletonPrompt]],
|
| 1106 |
+
text_2: Union[SingletonPrompt, Sequence[SingletonPrompt]],
|
| 1107 |
+
/,
|
| 1108 |
+
*,
|
| 1109 |
+
truncate_prompt_tokens: Optional[int] = None,
|
| 1110 |
+
use_tqdm: bool = True,
|
| 1111 |
+
lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None,
|
| 1112 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 1113 |
+
) -> List[ScoringRequestOutput]:
|
| 1114 |
+
"""Generate similarity scores for all pairs ``<text,text_pair>``.
|
| 1115 |
+
|
| 1116 |
+
The inputs can be ``1 -> 1``, ``1 -> N`` or ``N -> N``.
|
| 1117 |
+
In the ``1 - N`` case the ``text_1`` sentence will be replicated ``N``
|
| 1118 |
+
times to pair with the ``text_2`` sentences.
|
| 1119 |
+
The input pairs are used to build a list of prompts for the
|
| 1120 |
+
cross encoder model. This class automatically batches the prompts,
|
| 1121 |
+
considering the memory constraint. For the best performance, put all
|
| 1122 |
+
of your texts into a single list and pass it to this method.
|
| 1123 |
+
|
| 1124 |
+
Args:
|
| 1125 |
+
text_1: can be a single prompt or a list of prompts, in which
|
| 1126 |
+
case it has to have the same length as the ``text_2`` list
|
| 1127 |
+
text_2: The texts to pair with the query to form the input
|
| 1128 |
+
to the LLM. See :class:`~vllm.inputs.PromptType` for
|
| 1129 |
+
more details about the format of each prompts.
|
| 1130 |
+
use_tqdm: Whether to use tqdm to display the progress bar.
|
| 1131 |
+
lora_request: LoRA request to use for generation, if any.
|
| 1132 |
+
prompt_adapter_request: Prompt Adapter request to use for
|
| 1133 |
+
generation, if any.
|
| 1134 |
+
|
| 1135 |
+
Returns:
|
| 1136 |
+
A list of ``ScoringRequestOutput`` objects containing the
|
| 1137 |
+
generated scores in the same order as the input prompts.
|
| 1138 |
+
"""
|
| 1139 |
+
runner_type = self.llm_engine.model_config.runner_type
|
| 1140 |
+
if runner_type != "pooling":
|
| 1141 |
+
messages = ["LLM.score() is only supported for pooling models."]
|
| 1142 |
+
|
| 1143 |
+
supported_runner_types = self.llm_engine.model_config \
|
| 1144 |
+
.supported_runner_types
|
| 1145 |
+
if "pooling" in supported_runner_types:
|
| 1146 |
+
messages.append(
|
| 1147 |
+
"Your model supports the 'pooling' runner, but is "
|
| 1148 |
+
f"currently initialized for the '{runner_type}' runner. "
|
| 1149 |
+
"Please initialize vLLM using `--task embed`, "
|
| 1150 |
+
"`--task classify`, `--task score` etc.")
|
| 1151 |
+
|
| 1152 |
+
raise ValueError(" ".join(messages))
|
| 1153 |
+
|
| 1154 |
+
if self.llm_engine.model_config.task not in ("embed", "score"):
|
| 1155 |
+
raise ValueError(
|
| 1156 |
+
"Score API is only enabled for `--task embed or --task score`")
|
| 1157 |
+
|
| 1158 |
+
# the tokenizer for models such as
|
| 1159 |
+
# "cross-encoder/ms-marco-MiniLM-L-6-v2" doesn't support passing
|
| 1160 |
+
# lists of tokens to the `text` and `text_pair` kwargs
|
| 1161 |
+
tokenizer = self.llm_engine.get_tokenizer()
|
| 1162 |
+
|
| 1163 |
+
def ensure_str(prompt: SingletonPrompt):
|
| 1164 |
+
if isinstance(prompt, dict):
|
| 1165 |
+
if "multi_modal_data" in prompt:
|
| 1166 |
+
raise ValueError("Multi-modal prompt is not "
|
| 1167 |
+
"supported for scoring")
|
| 1168 |
+
elif "prompt_token_ids" in prompt:
|
| 1169 |
+
prompt = tokenizer.decode(
|
| 1170 |
+
cast(TokensPrompt, prompt)["prompt_token_ids"])
|
| 1171 |
+
elif "prompt" in prompt:
|
| 1172 |
+
prompt = cast(TextPrompt, prompt)["prompt"]
|
| 1173 |
+
assert type(prompt) is str
|
| 1174 |
+
return prompt
|
| 1175 |
+
|
| 1176 |
+
if isinstance(text_1, (str, dict)):
|
| 1177 |
+
# Convert a single prompt to a list.
|
| 1178 |
+
text_1 = [text_1]
|
| 1179 |
+
input_text_1: List[str] = [ensure_str(t) for t in text_1]
|
| 1180 |
+
|
| 1181 |
+
if isinstance(text_2, (str, dict)):
|
| 1182 |
+
# Convert a single prompt to a list.
|
| 1183 |
+
text_2 = [text_2]
|
| 1184 |
+
input_text_2: List[str] = [ensure_str(t) for t in text_2]
|
| 1185 |
+
|
| 1186 |
+
if len(input_text_1) > 1 and len(input_text_1) != len(input_text_2):
|
| 1187 |
+
raise ValueError("Input lengths must be either 1:1, 1:N or N:N")
|
| 1188 |
+
if len(input_text_1) == 0:
|
| 1189 |
+
raise ValueError("At least one text element must be given")
|
| 1190 |
+
if len(input_text_2) == 0:
|
| 1191 |
+
raise ValueError("At least one text_pair element must be given")
|
| 1192 |
+
|
| 1193 |
+
if self.llm_engine.model_config.is_cross_encoder:
|
| 1194 |
+
return self._cross_encoding_score(tokenizer, input_text_1,
|
| 1195 |
+
input_text_2,
|
| 1196 |
+
truncate_prompt_tokens, use_tqdm,
|
| 1197 |
+
lora_request,
|
| 1198 |
+
prompt_adapter_request)
|
| 1199 |
+
else:
|
| 1200 |
+
|
| 1201 |
+
return self._embedding_score(
|
| 1202 |
+
tokenizer,
|
| 1203 |
+
input_text_1, # type: ignore[arg-type]
|
| 1204 |
+
input_text_2, # type: ignore[arg-type]
|
| 1205 |
+
truncate_prompt_tokens,
|
| 1206 |
+
use_tqdm,
|
| 1207 |
+
lora_request,
|
| 1208 |
+
prompt_adapter_request)
|
| 1209 |
+
|
| 1210 |
+
def start_profile(self) -> None:
|
| 1211 |
+
self.llm_engine.start_profile()
|
| 1212 |
+
|
| 1213 |
+
def stop_profile(self) -> None:
|
| 1214 |
+
self.llm_engine.stop_profile()
|
| 1215 |
+
|
| 1216 |
+
def reset_prefix_cache(self) -> bool:
|
| 1217 |
+
return self.llm_engine.reset_prefix_cache()
|
| 1218 |
+
|
| 1219 |
+
def sleep(self, level: int = 1):
|
| 1220 |
+
"""
|
| 1221 |
+
Put the engine to sleep. The engine should not process any requests.
|
| 1222 |
+
The caller should guarantee that no requests are being processed
|
| 1223 |
+
during the sleep period, before `wake_up` is called.
|
| 1224 |
+
|
| 1225 |
+
:param level: The sleep level. Level 1 sleep will offload the model
|
| 1226 |
+
weights and discard the kv cache. The content of kv cache is
|
| 1227 |
+
forgotten. Level 1 sleep is good for sleeping and waking up the
|
| 1228 |
+
engine to run the same model again. The model weights are backed
|
| 1229 |
+
up in CPU memory. Please make sure there's enough CPU memory to
|
| 1230 |
+
store the model weights. Level 2 sleep will discard both the model
|
| 1231 |
+
weights and the kv cache. The content of both the model weights
|
| 1232 |
+
and kv cache is forgotten. Level 2 sleep is good for sleeping and
|
| 1233 |
+
waking up the engine to run a different model or update the model,
|
| 1234 |
+
where previous model weights are not needed. It reduces CPU memory
|
| 1235 |
+
pressure.
|
| 1236 |
+
"""
|
| 1237 |
+
self.reset_prefix_cache()
|
| 1238 |
+
self.llm_engine.sleep(level=level)
|
| 1239 |
+
|
| 1240 |
+
def wake_up(self):
|
| 1241 |
+
"""
|
| 1242 |
+
Wake up the engine from sleep mode. See the :meth:`sleep` method
|
| 1243 |
+
for more details."""
|
| 1244 |
+
self.llm_engine.wake_up()
|
| 1245 |
+
|
| 1246 |
+
# LEGACY
|
| 1247 |
+
def _convert_v1_inputs(
|
| 1248 |
+
self,
|
| 1249 |
+
prompts: Optional[Union[str, List[str]]],
|
| 1250 |
+
prompt_token_ids: Optional[Union[List[int], List[List[int]]]],
|
| 1251 |
+
):
|
| 1252 |
+
# skip_tokenizer_init is now checked in engine
|
| 1253 |
+
|
| 1254 |
+
if prompts is not None:
|
| 1255 |
+
prompts = [p["content"] for p in parse_and_batch_prompt(prompts)]
|
| 1256 |
+
if prompt_token_ids is not None:
|
| 1257 |
+
prompt_token_ids = [
|
| 1258 |
+
p["content"] for p in parse_and_batch_prompt(prompt_token_ids)
|
| 1259 |
+
]
|
| 1260 |
+
|
| 1261 |
+
num_requests = None
|
| 1262 |
+
if prompts is not None:
|
| 1263 |
+
num_requests = len(prompts)
|
| 1264 |
+
if prompt_token_ids is not None:
|
| 1265 |
+
if (num_requests is not None
|
| 1266 |
+
and num_requests != len(prompt_token_ids)):
|
| 1267 |
+
raise ValueError("The lengths of prompts and prompt_token_ids "
|
| 1268 |
+
"must be the same.")
|
| 1269 |
+
|
| 1270 |
+
num_requests = len(prompt_token_ids)
|
| 1271 |
+
if num_requests is None:
|
| 1272 |
+
raise ValueError("Either prompts or prompt_token_ids must be "
|
| 1273 |
+
"provided.")
|
| 1274 |
+
|
| 1275 |
+
parsed_prompts: List[PromptType] = []
|
| 1276 |
+
for i in range(num_requests):
|
| 1277 |
+
item: PromptType
|
| 1278 |
+
|
| 1279 |
+
if prompts is not None:
|
| 1280 |
+
item = TextPrompt(prompt=prompts[i])
|
| 1281 |
+
elif prompt_token_ids is not None:
|
| 1282 |
+
item = TokensPrompt(prompt_token_ids=prompt_token_ids[i])
|
| 1283 |
+
else:
|
| 1284 |
+
raise AssertionError
|
| 1285 |
+
|
| 1286 |
+
parsed_prompts.append(item)
|
| 1287 |
+
|
| 1288 |
+
return parsed_prompts
|
| 1289 |
+
|
| 1290 |
+
def _validate_and_add_requests(
|
| 1291 |
+
self,
|
| 1292 |
+
prompts: Union[PromptType, Sequence[PromptType]],
|
| 1293 |
+
params: Union[SamplingParams, Sequence[SamplingParams], PoolingParams,
|
| 1294 |
+
Sequence[PoolingParams]],
|
| 1295 |
+
lora_request: Optional[Union[Sequence[LoRARequest], LoRARequest]],
|
| 1296 |
+
prompt_adapter_request: Optional[PromptAdapterRequest],
|
| 1297 |
+
guided_options: Optional[GuidedDecodingRequest] = None,
|
| 1298 |
+
priority: Optional[List[int]] = None,
|
| 1299 |
+
) -> None:
|
| 1300 |
+
if guided_options is not None:
|
| 1301 |
+
warnings.warn(
|
| 1302 |
+
"guided_options_request is deprecated, use "
|
| 1303 |
+
"SamplingParams.guided_decoding instead",
|
| 1304 |
+
DeprecationWarning,
|
| 1305 |
+
stacklevel=2,
|
| 1306 |
+
)
|
| 1307 |
+
|
| 1308 |
+
if isinstance(prompts, (str, dict)):
|
| 1309 |
+
# Convert a single prompt to a list.
|
| 1310 |
+
prompts = [prompts]
|
| 1311 |
+
|
| 1312 |
+
num_requests = len(prompts)
|
| 1313 |
+
if isinstance(params, list) and len(params) != num_requests:
|
| 1314 |
+
raise ValueError("The lengths of prompts and params "
|
| 1315 |
+
"must be the same.")
|
| 1316 |
+
if isinstance(lora_request,
|
| 1317 |
+
list) and len(lora_request) != num_requests:
|
| 1318 |
+
raise ValueError("The lengths of prompts and lora_request "
|
| 1319 |
+
"must be the same.")
|
| 1320 |
+
|
| 1321 |
+
for sp in params if isinstance(params, list) else (params, ):
|
| 1322 |
+
if isinstance(sp, SamplingParams):
|
| 1323 |
+
self._add_guided_params(sp, guided_options)
|
| 1324 |
+
|
| 1325 |
+
# We only care about the final output
|
| 1326 |
+
sp.output_kind = RequestOutputKind.FINAL_ONLY
|
| 1327 |
+
|
| 1328 |
+
# Add requests to the engine.
|
| 1329 |
+
for i, prompt in enumerate(prompts):
|
| 1330 |
+
self._add_request(
|
| 1331 |
+
prompt,
|
| 1332 |
+
params[i] if isinstance(params, Sequence) else params,
|
| 1333 |
+
lora_request=lora_request[i] if isinstance(
|
| 1334 |
+
lora_request, Sequence) else lora_request,
|
| 1335 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 1336 |
+
priority=priority[i] if priority else 0,
|
| 1337 |
+
)
|
| 1338 |
+
|
| 1339 |
+
def _add_request(
|
| 1340 |
+
self,
|
| 1341 |
+
prompt: PromptType,
|
| 1342 |
+
params: Union[SamplingParams, PoolingParams],
|
| 1343 |
+
lora_request: Optional[LoRARequest] = None,
|
| 1344 |
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
| 1345 |
+
priority: int = 0,
|
| 1346 |
+
) -> None:
|
| 1347 |
+
request_id = str(next(self.request_counter))
|
| 1348 |
+
self.llm_engine.add_request(
|
| 1349 |
+
request_id,
|
| 1350 |
+
prompt,
|
| 1351 |
+
params,
|
| 1352 |
+
lora_request=lora_request,
|
| 1353 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 1354 |
+
priority=priority,
|
| 1355 |
+
)
|
| 1356 |
+
|
| 1357 |
+
def _add_guided_params(
|
| 1358 |
+
self,
|
| 1359 |
+
params: SamplingParams,
|
| 1360 |
+
guided_options: Optional[GuidedDecodingRequest] = None):
|
| 1361 |
+
if guided_options is None:
|
| 1362 |
+
return params
|
| 1363 |
+
|
| 1364 |
+
if params.guided_decoding is not None:
|
| 1365 |
+
raise ValueError("Cannot set both guided_options_request and"
|
| 1366 |
+
"params.guided_decoding.")
|
| 1367 |
+
|
| 1368 |
+
params.guided_decoding = GuidedDecodingParams(
|
| 1369 |
+
json=guided_options.guided_json,
|
| 1370 |
+
regex=guided_options.guided_regex,
|
| 1371 |
+
choice=guided_options.guided_choice,
|
| 1372 |
+
grammar=guided_options.guided_grammar,
|
| 1373 |
+
json_object=guided_options.guided_json_object,
|
| 1374 |
+
backend=guided_options.guided_decoding_backend,
|
| 1375 |
+
whitespace_pattern=guided_options.guided_whitespace_pattern)
|
| 1376 |
+
return params
|
| 1377 |
+
|
| 1378 |
+
def _run_engine(
|
| 1379 |
+
self, *, use_tqdm: bool
|
| 1380 |
+
) -> List[Union[RequestOutput, PoolingRequestOutput]]:
|
| 1381 |
+
# Initialize tqdm.
|
| 1382 |
+
if use_tqdm:
|
| 1383 |
+
num_requests = self.llm_engine.get_num_unfinished_requests()
|
| 1384 |
+
pbar = tqdm(
|
| 1385 |
+
total=num_requests,
|
| 1386 |
+
desc="Processed prompts",
|
| 1387 |
+
dynamic_ncols=True,
|
| 1388 |
+
postfix=(f"est. speed input: {0:.2f} toks/s, "
|
| 1389 |
+
f"output: {0:.2f} toks/s"),
|
| 1390 |
+
)
|
| 1391 |
+
|
| 1392 |
+
# Run the engine.
|
| 1393 |
+
outputs: List[Union[RequestOutput, PoolingRequestOutput]] = []
|
| 1394 |
+
total_in_toks = 0
|
| 1395 |
+
total_out_toks = 0
|
| 1396 |
+
while self.llm_engine.has_unfinished_requests():
|
| 1397 |
+
step_outputs = self.llm_engine.step()
|
| 1398 |
+
for output in step_outputs:
|
| 1399 |
+
if output.finished:
|
| 1400 |
+
outputs.append(output)
|
| 1401 |
+
if use_tqdm:
|
| 1402 |
+
if isinstance(output, RequestOutput):
|
| 1403 |
+
# Calculate tokens only for RequestOutput
|
| 1404 |
+
assert output.prompt_token_ids is not None
|
| 1405 |
+
total_in_toks += len(output.prompt_token_ids)
|
| 1406 |
+
in_spd = total_in_toks / pbar.format_dict["elapsed"]
|
| 1407 |
+
total_out_toks += sum(
|
| 1408 |
+
len(stp.token_ids) for stp in output.outputs)
|
| 1409 |
+
out_spd = (total_out_toks /
|
| 1410 |
+
pbar.format_dict["elapsed"])
|
| 1411 |
+
pbar.postfix = (
|
| 1412 |
+
f"est. speed input: {in_spd:.2f} toks/s, "
|
| 1413 |
+
f"output: {out_spd:.2f} toks/s")
|
| 1414 |
+
pbar.update(1)
|
| 1415 |
+
|
| 1416 |
+
if use_tqdm:
|
| 1417 |
+
pbar.close()
|
| 1418 |
+
# Sort the outputs by request ID.
|
| 1419 |
+
# This is necessary because some requests may be finished earlier than
|
| 1420 |
+
# its previous requests.
|
| 1421 |
+
return sorted(outputs, key=lambda x: int(x.request_id))
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/logger.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
from typing import List, Optional, Union
|
| 4 |
+
|
| 5 |
+
from vllm.logger import init_logger
|
| 6 |
+
from vllm.lora.request import LoRARequest
|
| 7 |
+
from vllm.pooling_params import PoolingParams
|
| 8 |
+
from vllm.prompt_adapter.request import PromptAdapterRequest
|
| 9 |
+
from vllm.sampling_params import BeamSearchParams, SamplingParams
|
| 10 |
+
|
| 11 |
+
logger = init_logger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class RequestLogger:
|
| 15 |
+
|
| 16 |
+
def __init__(self, *, max_log_len: Optional[int]) -> None:
|
| 17 |
+
super().__init__()
|
| 18 |
+
|
| 19 |
+
self.max_log_len = max_log_len
|
| 20 |
+
|
| 21 |
+
def log_inputs(
|
| 22 |
+
self,
|
| 23 |
+
request_id: str,
|
| 24 |
+
prompt: Optional[str],
|
| 25 |
+
prompt_token_ids: Optional[List[int]],
|
| 26 |
+
params: Optional[Union[SamplingParams, PoolingParams,
|
| 27 |
+
BeamSearchParams]],
|
| 28 |
+
lora_request: Optional[LoRARequest],
|
| 29 |
+
prompt_adapter_request: Optional[PromptAdapterRequest],
|
| 30 |
+
) -> None:
|
| 31 |
+
max_log_len = self.max_log_len
|
| 32 |
+
if max_log_len is not None:
|
| 33 |
+
if prompt is not None:
|
| 34 |
+
prompt = prompt[:max_log_len]
|
| 35 |
+
|
| 36 |
+
if prompt_token_ids is not None:
|
| 37 |
+
prompt_token_ids = prompt_token_ids[:max_log_len]
|
| 38 |
+
|
| 39 |
+
logger.info(
|
| 40 |
+
"Received request %s: prompt: %r, "
|
| 41 |
+
"params: %s, prompt_token_ids: %s, "
|
| 42 |
+
"lora_request: %s, prompt_adapter_request: %s.", request_id,
|
| 43 |
+
prompt, params, prompt_token_ids, lora_request,
|
| 44 |
+
prompt_adapter_request)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__init__.py
ADDED
|
File without changes
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/api_server.cpython-310.pyc
ADDED
|
Binary file (25.3 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_engine.cpython-310.pyc
ADDED
|
Binary file (13.6 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_pooling.cpython-310.pyc
ADDED
|
Binary file (5.76 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_rerank.cpython-310.pyc
ADDED
|
Binary file (6.04 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/__pycache__/serving_tokenization.cpython-310.pyc
ADDED
|
Binary file (3.52 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/api_server.py
ADDED
|
@@ -0,0 +1,991 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import atexit
|
| 5 |
+
import gc
|
| 6 |
+
import importlib
|
| 7 |
+
import inspect
|
| 8 |
+
import multiprocessing
|
| 9 |
+
import os
|
| 10 |
+
import re
|
| 11 |
+
import signal
|
| 12 |
+
import socket
|
| 13 |
+
import tempfile
|
| 14 |
+
import uuid
|
| 15 |
+
from argparse import Namespace
|
| 16 |
+
from contextlib import asynccontextmanager
|
| 17 |
+
from functools import partial
|
| 18 |
+
from http import HTTPStatus
|
| 19 |
+
from typing import Annotated, AsyncIterator, Dict, Optional, Set, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import uvloop
|
| 22 |
+
from fastapi import APIRouter, Depends, FastAPI, Form, HTTPException, Request
|
| 23 |
+
from fastapi.exceptions import RequestValidationError
|
| 24 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 25 |
+
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
| 26 |
+
from starlette.datastructures import State
|
| 27 |
+
from starlette.routing import Mount
|
| 28 |
+
from typing_extensions import assert_never
|
| 29 |
+
|
| 30 |
+
import vllm.envs as envs
|
| 31 |
+
from vllm.config import ModelConfig
|
| 32 |
+
from vllm.engine.arg_utils import AsyncEngineArgs
|
| 33 |
+
from vllm.engine.async_llm_engine import AsyncLLMEngine # type: ignore
|
| 34 |
+
from vllm.engine.multiprocessing.client import MQLLMEngineClient
|
| 35 |
+
from vllm.engine.multiprocessing.engine import run_mp_engine
|
| 36 |
+
from vllm.engine.protocol import EngineClient
|
| 37 |
+
from vllm.entrypoints.chat_utils import load_chat_template
|
| 38 |
+
from vllm.entrypoints.launcher import serve_http
|
| 39 |
+
from vllm.entrypoints.logger import RequestLogger
|
| 40 |
+
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
|
| 41 |
+
validate_parsed_serve_args)
|
| 42 |
+
# yapf conflicts with isort for this block
|
| 43 |
+
# yapf: disable
|
| 44 |
+
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
| 45 |
+
ChatCompletionResponse,
|
| 46 |
+
CompletionRequest,
|
| 47 |
+
CompletionResponse,
|
| 48 |
+
DetokenizeRequest,
|
| 49 |
+
DetokenizeResponse,
|
| 50 |
+
EmbeddingChatRequest,
|
| 51 |
+
EmbeddingCompletionRequest,
|
| 52 |
+
EmbeddingRequest,
|
| 53 |
+
EmbeddingResponse,
|
| 54 |
+
EmbeddingResponseData,
|
| 55 |
+
ErrorResponse,
|
| 56 |
+
LoadLoraAdapterRequest,
|
| 57 |
+
PoolingChatRequest,
|
| 58 |
+
PoolingCompletionRequest,
|
| 59 |
+
PoolingRequest, PoolingResponse,
|
| 60 |
+
RerankRequest, RerankResponse,
|
| 61 |
+
ScoreRequest, ScoreResponse,
|
| 62 |
+
TokenizeRequest,
|
| 63 |
+
TokenizeResponse,
|
| 64 |
+
TranscriptionRequest,
|
| 65 |
+
TranscriptionResponse,
|
| 66 |
+
UnloadLoraAdapterRequest)
|
| 67 |
+
from vllm.entrypoints.openai.reasoning_parsers import ReasoningParserManager
|
| 68 |
+
# yapf: enable
|
| 69 |
+
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
| 70 |
+
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
| 71 |
+
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
| 72 |
+
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
| 73 |
+
from vllm.entrypoints.openai.serving_models import (BaseModelPath,
|
| 74 |
+
OpenAIServingModels)
|
| 75 |
+
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
|
| 76 |
+
from vllm.entrypoints.openai.serving_rerank import JinaAIServingRerank
|
| 77 |
+
from vllm.entrypoints.openai.serving_score import OpenAIServingScores
|
| 78 |
+
from vllm.entrypoints.openai.serving_tokenization import (
|
| 79 |
+
OpenAIServingTokenization)
|
| 80 |
+
from vllm.entrypoints.openai.serving_transcription import (
|
| 81 |
+
OpenAIServingTranscription)
|
| 82 |
+
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
|
| 83 |
+
from vllm.entrypoints.utils import with_cancellation
|
| 84 |
+
from vllm.logger import init_logger
|
| 85 |
+
from vllm.usage.usage_lib import UsageContext
|
| 86 |
+
from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path,
|
| 87 |
+
is_valid_ipv6_address, set_ulimit)
|
| 88 |
+
from vllm.version import __version__ as VLLM_VERSION
|
| 89 |
+
|
| 90 |
+
TIMEOUT_KEEP_ALIVE = 5 # seconds
|
| 91 |
+
|
| 92 |
+
prometheus_multiproc_dir: tempfile.TemporaryDirectory
|
| 93 |
+
|
| 94 |
+
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
|
| 95 |
+
logger = init_logger('vllm.entrypoints.openai.api_server')
|
| 96 |
+
|
| 97 |
+
_running_tasks: Set[asyncio.Task] = set()
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
@asynccontextmanager
|
| 101 |
+
async def lifespan(app: FastAPI):
|
| 102 |
+
try:
|
| 103 |
+
if app.state.log_stats:
|
| 104 |
+
engine_client: EngineClient = app.state.engine_client
|
| 105 |
+
|
| 106 |
+
async def _force_log():
|
| 107 |
+
while True:
|
| 108 |
+
await asyncio.sleep(10.)
|
| 109 |
+
await engine_client.do_log_stats()
|
| 110 |
+
|
| 111 |
+
task = asyncio.create_task(_force_log())
|
| 112 |
+
_running_tasks.add(task)
|
| 113 |
+
task.add_done_callback(_running_tasks.remove)
|
| 114 |
+
else:
|
| 115 |
+
task = None
|
| 116 |
+
|
| 117 |
+
# Mark the startup heap as static so that it's ignored by GC.
|
| 118 |
+
# Reduces pause times of oldest generation collections.
|
| 119 |
+
gc.collect()
|
| 120 |
+
gc.freeze()
|
| 121 |
+
try:
|
| 122 |
+
yield
|
| 123 |
+
finally:
|
| 124 |
+
if task is not None:
|
| 125 |
+
task.cancel()
|
| 126 |
+
finally:
|
| 127 |
+
# Ensure app state including engine ref is gc'd
|
| 128 |
+
del app.state
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@asynccontextmanager
|
| 132 |
+
async def build_async_engine_client(
|
| 133 |
+
args: Namespace) -> AsyncIterator[EngineClient]:
|
| 134 |
+
|
| 135 |
+
# Context manager to handle engine_client lifecycle
|
| 136 |
+
# Ensures everything is shutdown and cleaned up on error/exit
|
| 137 |
+
engine_args = AsyncEngineArgs.from_cli_args(args)
|
| 138 |
+
|
| 139 |
+
async with build_async_engine_client_from_engine_args(
|
| 140 |
+
engine_args, args.disable_frontend_multiprocessing) as engine:
|
| 141 |
+
yield engine
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@asynccontextmanager
|
| 145 |
+
async def build_async_engine_client_from_engine_args(
|
| 146 |
+
engine_args: AsyncEngineArgs,
|
| 147 |
+
disable_frontend_multiprocessing: bool = False,
|
| 148 |
+
) -> AsyncIterator[EngineClient]:
|
| 149 |
+
"""
|
| 150 |
+
Create EngineClient, either:
|
| 151 |
+
- in-process using the AsyncLLMEngine Directly
|
| 152 |
+
- multiprocess using AsyncLLMEngine RPC
|
| 153 |
+
|
| 154 |
+
Returns the Client or None if the creation failed.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
# AsyncLLMEngine.
|
| 158 |
+
if (MQLLMEngineClient.is_unsupported_config(engine_args)
|
| 159 |
+
or envs.VLLM_USE_V1 or disable_frontend_multiprocessing):
|
| 160 |
+
|
| 161 |
+
engine_client: Optional[EngineClient] = None
|
| 162 |
+
try:
|
| 163 |
+
engine_client = AsyncLLMEngine.from_engine_args(
|
| 164 |
+
engine_args=engine_args,
|
| 165 |
+
usage_context=UsageContext.OPENAI_API_SERVER)
|
| 166 |
+
yield engine_client
|
| 167 |
+
finally:
|
| 168 |
+
if engine_client and hasattr(engine_client, "shutdown"):
|
| 169 |
+
engine_client.shutdown()
|
| 170 |
+
|
| 171 |
+
# MQLLMEngine.
|
| 172 |
+
else:
|
| 173 |
+
if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
|
| 174 |
+
# Make TemporaryDirectory for prometheus multiprocessing
|
| 175 |
+
# Note: global TemporaryDirectory will be automatically
|
| 176 |
+
# cleaned up upon exit.
|
| 177 |
+
global prometheus_multiproc_dir
|
| 178 |
+
prometheus_multiproc_dir = tempfile.TemporaryDirectory()
|
| 179 |
+
os.environ[
|
| 180 |
+
"PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
|
| 181 |
+
else:
|
| 182 |
+
logger.warning(
|
| 183 |
+
"Found PROMETHEUS_MULTIPROC_DIR was set by user. "
|
| 184 |
+
"This directory must be wiped between vLLM runs or "
|
| 185 |
+
"you will find inaccurate metrics. Unset the variable "
|
| 186 |
+
"and vLLM will properly handle cleanup.")
|
| 187 |
+
|
| 188 |
+
# Select random path for IPC.
|
| 189 |
+
ipc_path = get_open_zmq_ipc_path()
|
| 190 |
+
logger.debug("Multiprocessing frontend to use %s for IPC Path.",
|
| 191 |
+
ipc_path)
|
| 192 |
+
|
| 193 |
+
# Start RPCServer in separate process (holds the LLMEngine).
|
| 194 |
+
# the current process might have CUDA context,
|
| 195 |
+
# so we need to spawn a new process
|
| 196 |
+
context = multiprocessing.get_context("spawn")
|
| 197 |
+
|
| 198 |
+
# The Process can raise an exception during startup, which may
|
| 199 |
+
# not actually result in an exitcode being reported. As a result
|
| 200 |
+
# we use a shared variable to communicate the information.
|
| 201 |
+
engine_alive = multiprocessing.Value('b', True, lock=False)
|
| 202 |
+
engine_process = context.Process(target=run_mp_engine,
|
| 203 |
+
args=(engine_args,
|
| 204 |
+
UsageContext.OPENAI_API_SERVER,
|
| 205 |
+
ipc_path, engine_alive))
|
| 206 |
+
engine_process.start()
|
| 207 |
+
engine_pid = engine_process.pid
|
| 208 |
+
assert engine_pid is not None, "Engine process failed to start."
|
| 209 |
+
logger.info("Started engine process with PID %d", engine_pid)
|
| 210 |
+
|
| 211 |
+
def _cleanup_ipc_path():
|
| 212 |
+
socket_path = ipc_path.replace("ipc://", "")
|
| 213 |
+
if os.path.exists(socket_path):
|
| 214 |
+
os.remove(socket_path)
|
| 215 |
+
|
| 216 |
+
# Ensure we clean up the local IPC socket file on exit.
|
| 217 |
+
atexit.register(_cleanup_ipc_path)
|
| 218 |
+
|
| 219 |
+
# Build RPCClient, which conforms to EngineClient Protocol.
|
| 220 |
+
engine_config = engine_args.create_engine_config()
|
| 221 |
+
build_client = partial(MQLLMEngineClient, ipc_path, engine_config,
|
| 222 |
+
engine_pid)
|
| 223 |
+
mq_engine_client = await asyncio.get_running_loop().run_in_executor(
|
| 224 |
+
None, build_client)
|
| 225 |
+
try:
|
| 226 |
+
while True:
|
| 227 |
+
try:
|
| 228 |
+
await mq_engine_client.setup()
|
| 229 |
+
break
|
| 230 |
+
except TimeoutError:
|
| 231 |
+
if (not engine_process.is_alive()
|
| 232 |
+
or not engine_alive.value):
|
| 233 |
+
raise RuntimeError(
|
| 234 |
+
"Engine process failed to start. See stack "
|
| 235 |
+
"trace for the root cause.") from None
|
| 236 |
+
|
| 237 |
+
yield mq_engine_client # type: ignore[misc]
|
| 238 |
+
finally:
|
| 239 |
+
# Ensure rpc server process was terminated
|
| 240 |
+
engine_process.terminate()
|
| 241 |
+
|
| 242 |
+
# Close all open connections to the backend
|
| 243 |
+
mq_engine_client.close()
|
| 244 |
+
|
| 245 |
+
# Wait for engine process to join
|
| 246 |
+
engine_process.join(4)
|
| 247 |
+
if engine_process.exitcode is None:
|
| 248 |
+
# Kill if taking longer than 5 seconds to stop
|
| 249 |
+
engine_process.kill()
|
| 250 |
+
|
| 251 |
+
# Lazy import for prometheus multiprocessing.
|
| 252 |
+
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
| 253 |
+
# before prometheus_client is imported.
|
| 254 |
+
# See https://prometheus.github.io/client_python/multiprocess/
|
| 255 |
+
from prometheus_client import multiprocess
|
| 256 |
+
multiprocess.mark_process_dead(engine_process.pid)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
async def validate_json_request(raw_request: Request):
|
| 260 |
+
content_type = raw_request.headers.get("content-type", "").lower()
|
| 261 |
+
media_type = content_type.split(";", maxsplit=1)[0]
|
| 262 |
+
if media_type != "application/json":
|
| 263 |
+
raise HTTPException(
|
| 264 |
+
status_code=HTTPStatus.UNSUPPORTED_MEDIA_TYPE,
|
| 265 |
+
detail="Unsupported Media Type: Only 'application/json' is allowed"
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
router = APIRouter()
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def mount_metrics(app: FastAPI):
|
| 273 |
+
# Lazy import for prometheus multiprocessing.
|
| 274 |
+
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
| 275 |
+
# before prometheus_client is imported.
|
| 276 |
+
# See https://prometheus.github.io/client_python/multiprocess/
|
| 277 |
+
from prometheus_client import (CollectorRegistry, make_asgi_app,
|
| 278 |
+
multiprocess)
|
| 279 |
+
|
| 280 |
+
prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
|
| 281 |
+
if prometheus_multiproc_dir_path is not None:
|
| 282 |
+
logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
|
| 283 |
+
prometheus_multiproc_dir_path)
|
| 284 |
+
registry = CollectorRegistry()
|
| 285 |
+
multiprocess.MultiProcessCollector(registry)
|
| 286 |
+
|
| 287 |
+
# Add prometheus asgi middleware to route /metrics requests
|
| 288 |
+
metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
|
| 289 |
+
else:
|
| 290 |
+
# Add prometheus asgi middleware to route /metrics requests
|
| 291 |
+
metrics_route = Mount("/metrics", make_asgi_app())
|
| 292 |
+
|
| 293 |
+
# Workaround for 307 Redirect for /metrics
|
| 294 |
+
metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
|
| 295 |
+
app.routes.append(metrics_route)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def base(request: Request) -> OpenAIServing:
|
| 299 |
+
# Reuse the existing instance
|
| 300 |
+
return tokenization(request)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def models(request: Request) -> OpenAIServingModels:
|
| 304 |
+
return request.app.state.openai_serving_models
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def chat(request: Request) -> Optional[OpenAIServingChat]:
|
| 308 |
+
return request.app.state.openai_serving_chat
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def completion(request: Request) -> Optional[OpenAIServingCompletion]:
|
| 312 |
+
return request.app.state.openai_serving_completion
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def pooling(request: Request) -> Optional[OpenAIServingPooling]:
|
| 316 |
+
return request.app.state.openai_serving_pooling
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
|
| 320 |
+
return request.app.state.openai_serving_embedding
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def score(request: Request) -> Optional[OpenAIServingScores]:
|
| 324 |
+
return request.app.state.openai_serving_scores
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def rerank(request: Request) -> Optional[JinaAIServingRerank]:
|
| 328 |
+
return request.app.state.jinaai_serving_reranking
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def tokenization(request: Request) -> OpenAIServingTokenization:
|
| 332 |
+
return request.app.state.openai_serving_tokenization
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def transcription(request: Request) -> OpenAIServingTranscription:
|
| 336 |
+
return request.app.state.openai_serving_transcription
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def engine_client(request: Request) -> EngineClient:
|
| 340 |
+
return request.app.state.engine_client
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
@router.get("/health")
|
| 344 |
+
async def health(raw_request: Request) -> Response:
|
| 345 |
+
"""Health check."""
|
| 346 |
+
await engine_client(raw_request).check_health()
|
| 347 |
+
return Response(status_code=200)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
@router.api_route("/ping", methods=["GET", "POST"])
|
| 351 |
+
async def ping(raw_request: Request) -> Response:
|
| 352 |
+
"""Ping check. Endpoint required for SageMaker"""
|
| 353 |
+
return await health(raw_request)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
@router.post("/tokenize", dependencies=[Depends(validate_json_request)])
|
| 357 |
+
@with_cancellation
|
| 358 |
+
async def tokenize(request: TokenizeRequest, raw_request: Request):
|
| 359 |
+
handler = tokenization(raw_request)
|
| 360 |
+
|
| 361 |
+
generator = await handler.create_tokenize(request, raw_request)
|
| 362 |
+
if isinstance(generator, ErrorResponse):
|
| 363 |
+
return JSONResponse(content=generator.model_dump(),
|
| 364 |
+
status_code=generator.code)
|
| 365 |
+
elif isinstance(generator, TokenizeResponse):
|
| 366 |
+
return JSONResponse(content=generator.model_dump())
|
| 367 |
+
|
| 368 |
+
assert_never(generator)
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
@router.post("/detokenize", dependencies=[Depends(validate_json_request)])
|
| 372 |
+
@with_cancellation
|
| 373 |
+
async def detokenize(request: DetokenizeRequest, raw_request: Request):
|
| 374 |
+
handler = tokenization(raw_request)
|
| 375 |
+
|
| 376 |
+
generator = await handler.create_detokenize(request, raw_request)
|
| 377 |
+
if isinstance(generator, ErrorResponse):
|
| 378 |
+
return JSONResponse(content=generator.model_dump(),
|
| 379 |
+
status_code=generator.code)
|
| 380 |
+
elif isinstance(generator, DetokenizeResponse):
|
| 381 |
+
return JSONResponse(content=generator.model_dump())
|
| 382 |
+
|
| 383 |
+
assert_never(generator)
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
@router.get("/v1/models")
|
| 387 |
+
async def show_available_models(raw_request: Request):
|
| 388 |
+
handler = models(raw_request)
|
| 389 |
+
|
| 390 |
+
models_ = await handler.show_available_models()
|
| 391 |
+
return JSONResponse(content=models_.model_dump())
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
@router.get("/version")
|
| 395 |
+
async def show_version():
|
| 396 |
+
ver = {"version": VLLM_VERSION}
|
| 397 |
+
return JSONResponse(content=ver)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
@router.post("/v1/chat/completions",
|
| 401 |
+
dependencies=[Depends(validate_json_request)])
|
| 402 |
+
@with_cancellation
|
| 403 |
+
async def create_chat_completion(request: ChatCompletionRequest,
|
| 404 |
+
raw_request: Request):
|
| 405 |
+
handler = chat(raw_request)
|
| 406 |
+
if handler is None:
|
| 407 |
+
return base(raw_request).create_error_response(
|
| 408 |
+
message="The model does not support Chat Completions API")
|
| 409 |
+
|
| 410 |
+
generator = await handler.create_chat_completion(request, raw_request)
|
| 411 |
+
|
| 412 |
+
if isinstance(generator, ErrorResponse):
|
| 413 |
+
return JSONResponse(content=generator.model_dump(),
|
| 414 |
+
status_code=generator.code)
|
| 415 |
+
|
| 416 |
+
elif isinstance(generator, ChatCompletionResponse):
|
| 417 |
+
return JSONResponse(content=generator.model_dump())
|
| 418 |
+
|
| 419 |
+
return StreamingResponse(content=generator, media_type="text/event-stream")
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
@router.post("/v1/completions", dependencies=[Depends(validate_json_request)])
|
| 423 |
+
@with_cancellation
|
| 424 |
+
async def create_completion(request: CompletionRequest, raw_request: Request):
|
| 425 |
+
handler = completion(raw_request)
|
| 426 |
+
if handler is None:
|
| 427 |
+
return base(raw_request).create_error_response(
|
| 428 |
+
message="The model does not support Completions API")
|
| 429 |
+
|
| 430 |
+
generator = await handler.create_completion(request, raw_request)
|
| 431 |
+
if isinstance(generator, ErrorResponse):
|
| 432 |
+
return JSONResponse(content=generator.model_dump(),
|
| 433 |
+
status_code=generator.code)
|
| 434 |
+
elif isinstance(generator, CompletionResponse):
|
| 435 |
+
return JSONResponse(content=generator.model_dump())
|
| 436 |
+
|
| 437 |
+
return StreamingResponse(content=generator, media_type="text/event-stream")
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
@router.post("/v1/embeddings", dependencies=[Depends(validate_json_request)])
|
| 441 |
+
@with_cancellation
|
| 442 |
+
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
| 443 |
+
handler = embedding(raw_request)
|
| 444 |
+
if handler is None:
|
| 445 |
+
fallback_handler = pooling(raw_request)
|
| 446 |
+
if fallback_handler is None:
|
| 447 |
+
return base(raw_request).create_error_response(
|
| 448 |
+
message="The model does not support Embeddings API")
|
| 449 |
+
|
| 450 |
+
logger.warning(
|
| 451 |
+
"Embeddings API will become exclusive to embedding models "
|
| 452 |
+
"in a future release. To return the hidden states directly, "
|
| 453 |
+
"use the Pooling API (`/pooling`) instead.")
|
| 454 |
+
|
| 455 |
+
res = await fallback_handler.create_pooling(request, raw_request)
|
| 456 |
+
|
| 457 |
+
generator: Union[ErrorResponse, EmbeddingResponse]
|
| 458 |
+
if isinstance(res, PoolingResponse):
|
| 459 |
+
generator = EmbeddingResponse(
|
| 460 |
+
id=res.id,
|
| 461 |
+
object=res.object,
|
| 462 |
+
created=res.created,
|
| 463 |
+
model=res.model,
|
| 464 |
+
data=[
|
| 465 |
+
EmbeddingResponseData(
|
| 466 |
+
index=d.index,
|
| 467 |
+
embedding=d.data, # type: ignore
|
| 468 |
+
) for d in res.data
|
| 469 |
+
],
|
| 470 |
+
usage=res.usage,
|
| 471 |
+
)
|
| 472 |
+
else:
|
| 473 |
+
generator = res
|
| 474 |
+
else:
|
| 475 |
+
generator = await handler.create_embedding(request, raw_request)
|
| 476 |
+
|
| 477 |
+
if isinstance(generator, ErrorResponse):
|
| 478 |
+
return JSONResponse(content=generator.model_dump(),
|
| 479 |
+
status_code=generator.code)
|
| 480 |
+
elif isinstance(generator, EmbeddingResponse):
|
| 481 |
+
return JSONResponse(content=generator.model_dump())
|
| 482 |
+
|
| 483 |
+
assert_never(generator)
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
@router.post("/pooling", dependencies=[Depends(validate_json_request)])
|
| 487 |
+
@with_cancellation
|
| 488 |
+
async def create_pooling(request: PoolingRequest, raw_request: Request):
|
| 489 |
+
handler = pooling(raw_request)
|
| 490 |
+
if handler is None:
|
| 491 |
+
return base(raw_request).create_error_response(
|
| 492 |
+
message="The model does not support Pooling API")
|
| 493 |
+
|
| 494 |
+
generator = await handler.create_pooling(request, raw_request)
|
| 495 |
+
if isinstance(generator, ErrorResponse):
|
| 496 |
+
return JSONResponse(content=generator.model_dump(),
|
| 497 |
+
status_code=generator.code)
|
| 498 |
+
elif isinstance(generator, PoolingResponse):
|
| 499 |
+
return JSONResponse(content=generator.model_dump())
|
| 500 |
+
|
| 501 |
+
assert_never(generator)
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
@router.post("/score", dependencies=[Depends(validate_json_request)])
|
| 505 |
+
@with_cancellation
|
| 506 |
+
async def create_score(request: ScoreRequest, raw_request: Request):
|
| 507 |
+
handler = score(raw_request)
|
| 508 |
+
if handler is None:
|
| 509 |
+
return base(raw_request).create_error_response(
|
| 510 |
+
message="The model does not support Score API")
|
| 511 |
+
|
| 512 |
+
generator = await handler.create_score(request, raw_request)
|
| 513 |
+
if isinstance(generator, ErrorResponse):
|
| 514 |
+
return JSONResponse(content=generator.model_dump(),
|
| 515 |
+
status_code=generator.code)
|
| 516 |
+
elif isinstance(generator, ScoreResponse):
|
| 517 |
+
return JSONResponse(content=generator.model_dump())
|
| 518 |
+
|
| 519 |
+
assert_never(generator)
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
@router.post("/v1/score", dependencies=[Depends(validate_json_request)])
|
| 523 |
+
@with_cancellation
|
| 524 |
+
async def create_score_v1(request: ScoreRequest, raw_request: Request):
|
| 525 |
+
logger.warning(
|
| 526 |
+
"To indicate that Score API is not part of standard OpenAI API, we "
|
| 527 |
+
"have moved it to `/score`. Please update your client accordingly.")
|
| 528 |
+
|
| 529 |
+
return await create_score(request, raw_request)
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
@router.post("/v1/audio/transcriptions")
|
| 533 |
+
@with_cancellation
|
| 534 |
+
async def create_transcriptions(request: Annotated[TranscriptionRequest,
|
| 535 |
+
Form()],
|
| 536 |
+
raw_request: Request):
|
| 537 |
+
|
| 538 |
+
handler = transcription(raw_request)
|
| 539 |
+
if handler is None:
|
| 540 |
+
return base(raw_request).create_error_response(
|
| 541 |
+
message="The model does not support Transcriptions API")
|
| 542 |
+
|
| 543 |
+
audio_data = await request.file.read()
|
| 544 |
+
generator = await handler.create_transcription(audio_data, request,
|
| 545 |
+
raw_request)
|
| 546 |
+
|
| 547 |
+
if isinstance(generator, ErrorResponse):
|
| 548 |
+
return JSONResponse(content=generator.model_dump(),
|
| 549 |
+
status_code=generator.code)
|
| 550 |
+
|
| 551 |
+
elif isinstance(generator, TranscriptionResponse):
|
| 552 |
+
return JSONResponse(content=generator.model_dump())
|
| 553 |
+
|
| 554 |
+
return StreamingResponse(content=generator, media_type="text/event-stream")
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
@router.post("/rerank", dependencies=[Depends(validate_json_request)])
|
| 558 |
+
@with_cancellation
|
| 559 |
+
async def do_rerank(request: RerankRequest, raw_request: Request):
|
| 560 |
+
handler = rerank(raw_request)
|
| 561 |
+
if handler is None:
|
| 562 |
+
return base(raw_request).create_error_response(
|
| 563 |
+
message="The model does not support Rerank (Score) API")
|
| 564 |
+
generator = await handler.do_rerank(request, raw_request)
|
| 565 |
+
if isinstance(generator, ErrorResponse):
|
| 566 |
+
return JSONResponse(content=generator.model_dump(),
|
| 567 |
+
status_code=generator.code)
|
| 568 |
+
elif isinstance(generator, RerankResponse):
|
| 569 |
+
return JSONResponse(content=generator.model_dump())
|
| 570 |
+
|
| 571 |
+
assert_never(generator)
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
@router.post("/v1/rerank", dependencies=[Depends(validate_json_request)])
|
| 575 |
+
@with_cancellation
|
| 576 |
+
async def do_rerank_v1(request: RerankRequest, raw_request: Request):
|
| 577 |
+
logger.warning_once(
|
| 578 |
+
"To indicate that the rerank API is not part of the standard OpenAI"
|
| 579 |
+
" API, we have located it at `/rerank`. Please update your client"
|
| 580 |
+
"accordingly. (Note: Conforms to JinaAI rerank API)")
|
| 581 |
+
|
| 582 |
+
return await do_rerank(request, raw_request)
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
@router.post("/v2/rerank", dependencies=[Depends(validate_json_request)])
|
| 586 |
+
@with_cancellation
|
| 587 |
+
async def do_rerank_v2(request: RerankRequest, raw_request: Request):
|
| 588 |
+
return await do_rerank(request, raw_request)
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
TASK_HANDLERS: Dict[str, Dict[str, tuple]] = {
|
| 592 |
+
"generate": {
|
| 593 |
+
"messages": (ChatCompletionRequest, create_chat_completion),
|
| 594 |
+
"default": (CompletionRequest, create_completion),
|
| 595 |
+
},
|
| 596 |
+
"embed": {
|
| 597 |
+
"messages": (EmbeddingChatRequest, create_embedding),
|
| 598 |
+
"default": (EmbeddingCompletionRequest, create_embedding),
|
| 599 |
+
},
|
| 600 |
+
"score": {
|
| 601 |
+
"default": (RerankRequest, do_rerank)
|
| 602 |
+
},
|
| 603 |
+
"rerank": {
|
| 604 |
+
"default": (RerankRequest, do_rerank)
|
| 605 |
+
},
|
| 606 |
+
"reward": {
|
| 607 |
+
"messages": (PoolingChatRequest, create_pooling),
|
| 608 |
+
"default": (PoolingCompletionRequest, create_pooling),
|
| 609 |
+
},
|
| 610 |
+
"classify": {
|
| 611 |
+
"messages": (PoolingChatRequest, create_pooling),
|
| 612 |
+
"default": (PoolingCompletionRequest, create_pooling),
|
| 613 |
+
},
|
| 614 |
+
}
|
| 615 |
+
|
| 616 |
+
if envs.VLLM_SERVER_DEV_MODE:
|
| 617 |
+
|
| 618 |
+
@router.post("/reset_prefix_cache")
|
| 619 |
+
async def reset_prefix_cache(raw_request: Request):
|
| 620 |
+
"""
|
| 621 |
+
Reset the prefix cache. Note that we currently do not check if the
|
| 622 |
+
prefix cache is successfully reset in the API server.
|
| 623 |
+
"""
|
| 624 |
+
logger.info("Resetting prefix cache...")
|
| 625 |
+
await engine_client(raw_request).reset_prefix_cache()
|
| 626 |
+
return Response(status_code=200)
|
| 627 |
+
|
| 628 |
+
@router.post("/sleep")
|
| 629 |
+
async def sleep(raw_request: Request):
|
| 630 |
+
# get POST params
|
| 631 |
+
level = raw_request.query_params.get("level", "1")
|
| 632 |
+
logger.info("sleep the engine with level %s", level)
|
| 633 |
+
await engine_client(raw_request).sleep(int(level))
|
| 634 |
+
# FIXME: in v0 with frontend multiprocessing, the sleep command
|
| 635 |
+
# is sent but does not finish yet when we return a response.
|
| 636 |
+
return Response(status_code=200)
|
| 637 |
+
|
| 638 |
+
@router.post("/wake_up")
|
| 639 |
+
async def wake_up(raw_request: Request):
|
| 640 |
+
logger.info("wake up the engine")
|
| 641 |
+
await engine_client(raw_request).wake_up()
|
| 642 |
+
# FIXME: in v0 with frontend multiprocessing, the wake-up command
|
| 643 |
+
# is sent but does not finish yet when we return a response.
|
| 644 |
+
return Response(status_code=200)
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
@router.post("/invocations", dependencies=[Depends(validate_json_request)])
|
| 648 |
+
async def invocations(raw_request: Request):
|
| 649 |
+
"""
|
| 650 |
+
For SageMaker, routes requests to other handlers based on model `task`.
|
| 651 |
+
"""
|
| 652 |
+
body = await raw_request.json()
|
| 653 |
+
task = raw_request.app.state.task
|
| 654 |
+
|
| 655 |
+
if task not in TASK_HANDLERS:
|
| 656 |
+
raise HTTPException(
|
| 657 |
+
status_code=400,
|
| 658 |
+
detail=f"Unsupported task: '{task}' for '/invocations'. "
|
| 659 |
+
f"Expected one of {set(TASK_HANDLERS.keys())}")
|
| 660 |
+
|
| 661 |
+
handler_config = TASK_HANDLERS[task]
|
| 662 |
+
if "messages" in body:
|
| 663 |
+
request_model, handler = handler_config["messages"]
|
| 664 |
+
else:
|
| 665 |
+
request_model, handler = handler_config["default"]
|
| 666 |
+
|
| 667 |
+
# this is required since we lose the FastAPI automatic casting
|
| 668 |
+
request = request_model.model_validate(body)
|
| 669 |
+
return await handler(request, raw_request)
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
if envs.VLLM_TORCH_PROFILER_DIR:
|
| 673 |
+
logger.warning(
|
| 674 |
+
"Torch Profiler is enabled in the API server. This should ONLY be "
|
| 675 |
+
"used for local development!")
|
| 676 |
+
|
| 677 |
+
@router.post("/start_profile")
|
| 678 |
+
async def start_profile(raw_request: Request):
|
| 679 |
+
logger.info("Starting profiler...")
|
| 680 |
+
await engine_client(raw_request).start_profile()
|
| 681 |
+
logger.info("Profiler started.")
|
| 682 |
+
return Response(status_code=200)
|
| 683 |
+
|
| 684 |
+
@router.post("/stop_profile")
|
| 685 |
+
async def stop_profile(raw_request: Request):
|
| 686 |
+
logger.info("Stopping profiler...")
|
| 687 |
+
await engine_client(raw_request).stop_profile()
|
| 688 |
+
logger.info("Profiler stopped.")
|
| 689 |
+
return Response(status_code=200)
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
|
| 693 |
+
logger.warning(
|
| 694 |
+
"Lora dynamic loading & unloading is enabled in the API server. "
|
| 695 |
+
"This should ONLY be used for local development!")
|
| 696 |
+
|
| 697 |
+
@router.post("/v1/load_lora_adapter",
|
| 698 |
+
dependencies=[Depends(validate_json_request)])
|
| 699 |
+
async def load_lora_adapter(request: LoadLoraAdapterRequest,
|
| 700 |
+
raw_request: Request):
|
| 701 |
+
handler = models(raw_request)
|
| 702 |
+
response = await handler.load_lora_adapter(request)
|
| 703 |
+
if isinstance(response, ErrorResponse):
|
| 704 |
+
return JSONResponse(content=response.model_dump(),
|
| 705 |
+
status_code=response.code)
|
| 706 |
+
|
| 707 |
+
return Response(status_code=200, content=response)
|
| 708 |
+
|
| 709 |
+
@router.post("/v1/unload_lora_adapter",
|
| 710 |
+
dependencies=[Depends(validate_json_request)])
|
| 711 |
+
async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
|
| 712 |
+
raw_request: Request):
|
| 713 |
+
handler = models(raw_request)
|
| 714 |
+
response = await handler.unload_lora_adapter(request)
|
| 715 |
+
if isinstance(response, ErrorResponse):
|
| 716 |
+
return JSONResponse(content=response.model_dump(),
|
| 717 |
+
status_code=response.code)
|
| 718 |
+
|
| 719 |
+
return Response(status_code=200, content=response)
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
def build_app(args: Namespace) -> FastAPI:
|
| 723 |
+
if args.disable_fastapi_docs:
|
| 724 |
+
app = FastAPI(openapi_url=None,
|
| 725 |
+
docs_url=None,
|
| 726 |
+
redoc_url=None,
|
| 727 |
+
lifespan=lifespan)
|
| 728 |
+
else:
|
| 729 |
+
app = FastAPI(lifespan=lifespan)
|
| 730 |
+
app.include_router(router)
|
| 731 |
+
app.root_path = args.root_path
|
| 732 |
+
|
| 733 |
+
mount_metrics(app)
|
| 734 |
+
|
| 735 |
+
app.add_middleware(
|
| 736 |
+
CORSMiddleware,
|
| 737 |
+
allow_origins=args.allowed_origins,
|
| 738 |
+
allow_credentials=args.allow_credentials,
|
| 739 |
+
allow_methods=args.allowed_methods,
|
| 740 |
+
allow_headers=args.allowed_headers,
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
@app.exception_handler(RequestValidationError)
|
| 744 |
+
async def validation_exception_handler(_, exc):
|
| 745 |
+
err = ErrorResponse(message=str(exc),
|
| 746 |
+
type="BadRequestError",
|
| 747 |
+
code=HTTPStatus.BAD_REQUEST)
|
| 748 |
+
return JSONResponse(err.model_dump(),
|
| 749 |
+
status_code=HTTPStatus.BAD_REQUEST)
|
| 750 |
+
|
| 751 |
+
if token := envs.VLLM_API_KEY or args.api_key:
|
| 752 |
+
|
| 753 |
+
@app.middleware("http")
|
| 754 |
+
async def authentication(request: Request, call_next):
|
| 755 |
+
if request.method == "OPTIONS":
|
| 756 |
+
return await call_next(request)
|
| 757 |
+
url_path = request.url.path
|
| 758 |
+
if app.root_path and url_path.startswith(app.root_path):
|
| 759 |
+
url_path = url_path[len(app.root_path):]
|
| 760 |
+
if not url_path.startswith("/v1"):
|
| 761 |
+
return await call_next(request)
|
| 762 |
+
if request.headers.get("Authorization") != "Bearer " + token:
|
| 763 |
+
return JSONResponse(content={"error": "Unauthorized"},
|
| 764 |
+
status_code=401)
|
| 765 |
+
return await call_next(request)
|
| 766 |
+
|
| 767 |
+
if args.enable_request_id_headers:
|
| 768 |
+
logger.warning(
|
| 769 |
+
"CAUTION: Enabling X-Request-Id headers in the API Server. "
|
| 770 |
+
"This can harm performance at high QPS.")
|
| 771 |
+
|
| 772 |
+
@app.middleware("http")
|
| 773 |
+
async def add_request_id(request: Request, call_next):
|
| 774 |
+
request_id = request.headers.get(
|
| 775 |
+
"X-Request-Id") or uuid.uuid4().hex
|
| 776 |
+
response = await call_next(request)
|
| 777 |
+
response.headers["X-Request-Id"] = request_id
|
| 778 |
+
return response
|
| 779 |
+
|
| 780 |
+
for middleware in args.middleware:
|
| 781 |
+
module_path, object_name = middleware.rsplit(".", 1)
|
| 782 |
+
imported = getattr(importlib.import_module(module_path), object_name)
|
| 783 |
+
if inspect.isclass(imported):
|
| 784 |
+
app.add_middleware(imported) # type: ignore[arg-type]
|
| 785 |
+
elif inspect.iscoroutinefunction(imported):
|
| 786 |
+
app.middleware("http")(imported)
|
| 787 |
+
else:
|
| 788 |
+
raise ValueError(f"Invalid middleware {middleware}. "
|
| 789 |
+
f"Must be a function or a class.")
|
| 790 |
+
|
| 791 |
+
return app
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
async def init_app_state(
|
| 795 |
+
engine_client: EngineClient,
|
| 796 |
+
model_config: ModelConfig,
|
| 797 |
+
state: State,
|
| 798 |
+
args: Namespace,
|
| 799 |
+
) -> None:
|
| 800 |
+
if args.served_model_name is not None:
|
| 801 |
+
served_model_names = args.served_model_name
|
| 802 |
+
else:
|
| 803 |
+
served_model_names = [args.model]
|
| 804 |
+
|
| 805 |
+
if args.disable_log_requests:
|
| 806 |
+
request_logger = None
|
| 807 |
+
else:
|
| 808 |
+
request_logger = RequestLogger(max_log_len=args.max_log_len)
|
| 809 |
+
|
| 810 |
+
base_model_paths = [
|
| 811 |
+
BaseModelPath(name=name, model_path=args.model)
|
| 812 |
+
for name in served_model_names
|
| 813 |
+
]
|
| 814 |
+
|
| 815 |
+
state.engine_client = engine_client
|
| 816 |
+
state.log_stats = not args.disable_log_stats
|
| 817 |
+
|
| 818 |
+
resolved_chat_template = load_chat_template(args.chat_template)
|
| 819 |
+
if resolved_chat_template is not None:
|
| 820 |
+
logger.info("Using supplied chat template:\n%s",
|
| 821 |
+
resolved_chat_template)
|
| 822 |
+
|
| 823 |
+
state.openai_serving_models = OpenAIServingModels(
|
| 824 |
+
engine_client=engine_client,
|
| 825 |
+
model_config=model_config,
|
| 826 |
+
base_model_paths=base_model_paths,
|
| 827 |
+
lora_modules=args.lora_modules,
|
| 828 |
+
prompt_adapters=args.prompt_adapters,
|
| 829 |
+
)
|
| 830 |
+
await state.openai_serving_models.init_static_loras()
|
| 831 |
+
state.openai_serving_chat = OpenAIServingChat(
|
| 832 |
+
engine_client,
|
| 833 |
+
model_config,
|
| 834 |
+
state.openai_serving_models,
|
| 835 |
+
args.response_role,
|
| 836 |
+
request_logger=request_logger,
|
| 837 |
+
chat_template=resolved_chat_template,
|
| 838 |
+
chat_template_content_format=args.chat_template_content_format,
|
| 839 |
+
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
| 840 |
+
enable_auto_tools=args.enable_auto_tool_choice,
|
| 841 |
+
tool_parser=args.tool_call_parser,
|
| 842 |
+
enable_reasoning=args.enable_reasoning,
|
| 843 |
+
reasoning_parser=args.reasoning_parser,
|
| 844 |
+
enable_prompt_tokens_details=args.enable_prompt_tokens_details,
|
| 845 |
+
) if model_config.runner_type == "generate" else None
|
| 846 |
+
state.openai_serving_completion = OpenAIServingCompletion(
|
| 847 |
+
engine_client,
|
| 848 |
+
model_config,
|
| 849 |
+
state.openai_serving_models,
|
| 850 |
+
request_logger=request_logger,
|
| 851 |
+
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
| 852 |
+
) if model_config.runner_type == "generate" else None
|
| 853 |
+
state.openai_serving_pooling = OpenAIServingPooling(
|
| 854 |
+
engine_client,
|
| 855 |
+
model_config,
|
| 856 |
+
state.openai_serving_models,
|
| 857 |
+
request_logger=request_logger,
|
| 858 |
+
chat_template=resolved_chat_template,
|
| 859 |
+
chat_template_content_format=args.chat_template_content_format,
|
| 860 |
+
) if model_config.runner_type == "pooling" else None
|
| 861 |
+
state.openai_serving_embedding = OpenAIServingEmbedding(
|
| 862 |
+
engine_client,
|
| 863 |
+
model_config,
|
| 864 |
+
state.openai_serving_models,
|
| 865 |
+
request_logger=request_logger,
|
| 866 |
+
chat_template=resolved_chat_template,
|
| 867 |
+
chat_template_content_format=args.chat_template_content_format,
|
| 868 |
+
) if model_config.task == "embed" else None
|
| 869 |
+
state.openai_serving_scores = OpenAIServingScores(
|
| 870 |
+
engine_client,
|
| 871 |
+
model_config,
|
| 872 |
+
state.openai_serving_models,
|
| 873 |
+
request_logger=request_logger
|
| 874 |
+
) if model_config.task == "score" else None
|
| 875 |
+
state.jinaai_serving_reranking = JinaAIServingRerank(
|
| 876 |
+
engine_client,
|
| 877 |
+
model_config,
|
| 878 |
+
state.openai_serving_models,
|
| 879 |
+
request_logger=request_logger
|
| 880 |
+
) if model_config.task == "score" else None
|
| 881 |
+
state.openai_serving_tokenization = OpenAIServingTokenization(
|
| 882 |
+
engine_client,
|
| 883 |
+
model_config,
|
| 884 |
+
state.openai_serving_models,
|
| 885 |
+
request_logger=request_logger,
|
| 886 |
+
chat_template=resolved_chat_template,
|
| 887 |
+
chat_template_content_format=args.chat_template_content_format,
|
| 888 |
+
)
|
| 889 |
+
state.openai_serving_transcription = OpenAIServingTranscription(
|
| 890 |
+
engine_client,
|
| 891 |
+
model_config,
|
| 892 |
+
state.openai_serving_models,
|
| 893 |
+
request_logger=request_logger,
|
| 894 |
+
) if model_config.runner_type == "transcription" else None
|
| 895 |
+
state.task = model_config.task
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
def create_server_socket(addr: Tuple[str, int]) -> socket.socket:
|
| 899 |
+
family = socket.AF_INET
|
| 900 |
+
if is_valid_ipv6_address(addr[0]):
|
| 901 |
+
family = socket.AF_INET6
|
| 902 |
+
|
| 903 |
+
sock = socket.socket(family=family, type=socket.SOCK_STREAM)
|
| 904 |
+
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
| 905 |
+
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
|
| 906 |
+
sock.bind(addr)
|
| 907 |
+
|
| 908 |
+
return sock
|
| 909 |
+
|
| 910 |
+
|
| 911 |
+
async def run_server(args, **uvicorn_kwargs) -> None:
|
| 912 |
+
logger.info("vLLM API server version %s", VLLM_VERSION)
|
| 913 |
+
logger.info("args: %s", args)
|
| 914 |
+
|
| 915 |
+
if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
|
| 916 |
+
ToolParserManager.import_tool_parser(args.tool_parser_plugin)
|
| 917 |
+
|
| 918 |
+
valid_tool_parses = ToolParserManager.tool_parsers.keys()
|
| 919 |
+
if args.enable_auto_tool_choice \
|
| 920 |
+
and args.tool_call_parser not in valid_tool_parses:
|
| 921 |
+
raise KeyError(f"invalid tool call parser: {args.tool_call_parser} "
|
| 922 |
+
f"(chose from {{ {','.join(valid_tool_parses)} }})")
|
| 923 |
+
|
| 924 |
+
valid_reasoning_parses = ReasoningParserManager.reasoning_parsers.keys()
|
| 925 |
+
if args.enable_reasoning \
|
| 926 |
+
and args.reasoning_parser not in valid_reasoning_parses:
|
| 927 |
+
raise KeyError(
|
| 928 |
+
f"invalid reasoning parser: {args.reasoning_parser} "
|
| 929 |
+
f"(chose from {{ {','.join(valid_reasoning_parses)} }})")
|
| 930 |
+
|
| 931 |
+
# workaround to make sure that we bind the port before the engine is set up.
|
| 932 |
+
# This avoids race conditions with ray.
|
| 933 |
+
# see https://github.com/vllm-project/vllm/issues/8204
|
| 934 |
+
sock_addr = (args.host or "", args.port)
|
| 935 |
+
sock = create_server_socket(sock_addr)
|
| 936 |
+
|
| 937 |
+
# workaround to avoid footguns where uvicorn drops requests with too
|
| 938 |
+
# many concurrent requests active
|
| 939 |
+
set_ulimit()
|
| 940 |
+
|
| 941 |
+
def signal_handler(*_) -> None:
|
| 942 |
+
# Interrupt server on sigterm while initializing
|
| 943 |
+
raise KeyboardInterrupt("terminated")
|
| 944 |
+
|
| 945 |
+
signal.signal(signal.SIGTERM, signal_handler)
|
| 946 |
+
|
| 947 |
+
async with build_async_engine_client(args) as engine_client:
|
| 948 |
+
app = build_app(args)
|
| 949 |
+
|
| 950 |
+
model_config = await engine_client.get_model_config()
|
| 951 |
+
await init_app_state(engine_client, model_config, app.state, args)
|
| 952 |
+
|
| 953 |
+
def _listen_addr(a: str) -> str:
|
| 954 |
+
if is_valid_ipv6_address(a):
|
| 955 |
+
return '[' + a + ']'
|
| 956 |
+
return a or "0.0.0.0"
|
| 957 |
+
|
| 958 |
+
logger.info("Starting vLLM API server on http://%s:%d",
|
| 959 |
+
_listen_addr(sock_addr[0]), sock_addr[1])
|
| 960 |
+
|
| 961 |
+
shutdown_task = await serve_http(
|
| 962 |
+
app,
|
| 963 |
+
sock=sock,
|
| 964 |
+
host=args.host,
|
| 965 |
+
port=args.port,
|
| 966 |
+
log_level=args.uvicorn_log_level,
|
| 967 |
+
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
|
| 968 |
+
ssl_keyfile=args.ssl_keyfile,
|
| 969 |
+
ssl_certfile=args.ssl_certfile,
|
| 970 |
+
ssl_ca_certs=args.ssl_ca_certs,
|
| 971 |
+
ssl_cert_reqs=args.ssl_cert_reqs,
|
| 972 |
+
**uvicorn_kwargs,
|
| 973 |
+
)
|
| 974 |
+
|
| 975 |
+
# NB: Await server shutdown only after the backend context is exited
|
| 976 |
+
await shutdown_task
|
| 977 |
+
|
| 978 |
+
sock.close()
|
| 979 |
+
|
| 980 |
+
|
| 981 |
+
if __name__ == "__main__":
|
| 982 |
+
# NOTE(simon):
|
| 983 |
+
# This section should be in sync with vllm/entrypoints/cli/main.py for CLI
|
| 984 |
+
# entrypoints.
|
| 985 |
+
parser = FlexibleArgumentParser(
|
| 986 |
+
description="vLLM OpenAI-Compatible RESTful API server.")
|
| 987 |
+
parser = make_arg_parser(parser)
|
| 988 |
+
args = parser.parse_args()
|
| 989 |
+
validate_parsed_serve_args(args)
|
| 990 |
+
|
| 991 |
+
uvloop.run(run_server(args))
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/cli_args.py
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
"""
|
| 3 |
+
This file contains the command line arguments for the vLLM's
|
| 4 |
+
OpenAI-compatible server. It is kept in a separate file for documentation
|
| 5 |
+
purposes.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import argparse
|
| 9 |
+
import json
|
| 10 |
+
import ssl
|
| 11 |
+
from typing import List, Optional, Sequence, Union, get_args
|
| 12 |
+
|
| 13 |
+
from vllm.engine.arg_utils import AsyncEngineArgs, nullable_str
|
| 14 |
+
from vllm.entrypoints.chat_utils import (ChatTemplateContentFormatOption,
|
| 15 |
+
validate_chat_template)
|
| 16 |
+
from vllm.entrypoints.openai.reasoning_parsers import ReasoningParserManager
|
| 17 |
+
from vllm.entrypoints.openai.serving_models import (LoRAModulePath,
|
| 18 |
+
PromptAdapterPath)
|
| 19 |
+
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
|
| 20 |
+
from vllm.utils import FlexibleArgumentParser
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class LoRAParserAction(argparse.Action):
|
| 24 |
+
|
| 25 |
+
def __call__(
|
| 26 |
+
self,
|
| 27 |
+
parser: argparse.ArgumentParser,
|
| 28 |
+
namespace: argparse.Namespace,
|
| 29 |
+
values: Optional[Union[str, Sequence[str]]],
|
| 30 |
+
option_string: Optional[str] = None,
|
| 31 |
+
):
|
| 32 |
+
if values is None:
|
| 33 |
+
values = []
|
| 34 |
+
if isinstance(values, str):
|
| 35 |
+
raise TypeError("Expected values to be a list")
|
| 36 |
+
|
| 37 |
+
lora_list: List[LoRAModulePath] = []
|
| 38 |
+
for item in values:
|
| 39 |
+
if item in [None, '']: # Skip if item is None or empty string
|
| 40 |
+
continue
|
| 41 |
+
if '=' in item and ',' not in item: # Old format: name=path
|
| 42 |
+
name, path = item.split('=')
|
| 43 |
+
lora_list.append(LoRAModulePath(name, path))
|
| 44 |
+
else: # Assume JSON format
|
| 45 |
+
try:
|
| 46 |
+
lora_dict = json.loads(item)
|
| 47 |
+
lora = LoRAModulePath(**lora_dict)
|
| 48 |
+
lora_list.append(lora)
|
| 49 |
+
except json.JSONDecodeError:
|
| 50 |
+
parser.error(
|
| 51 |
+
f"Invalid JSON format for --lora-modules: {item}")
|
| 52 |
+
except TypeError as e:
|
| 53 |
+
parser.error(
|
| 54 |
+
f"Invalid fields for --lora-modules: {item} - {str(e)}"
|
| 55 |
+
)
|
| 56 |
+
setattr(namespace, self.dest, lora_list)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class PromptAdapterParserAction(argparse.Action):
|
| 60 |
+
|
| 61 |
+
def __call__(
|
| 62 |
+
self,
|
| 63 |
+
parser: argparse.ArgumentParser,
|
| 64 |
+
namespace: argparse.Namespace,
|
| 65 |
+
values: Optional[Union[str, Sequence[str]]],
|
| 66 |
+
option_string: Optional[str] = None,
|
| 67 |
+
):
|
| 68 |
+
if values is None:
|
| 69 |
+
values = []
|
| 70 |
+
if isinstance(values, str):
|
| 71 |
+
raise TypeError("Expected values to be a list")
|
| 72 |
+
|
| 73 |
+
adapter_list: List[PromptAdapterPath] = []
|
| 74 |
+
for item in values:
|
| 75 |
+
name, path = item.split('=')
|
| 76 |
+
adapter_list.append(PromptAdapterPath(name, path))
|
| 77 |
+
setattr(namespace, self.dest, adapter_list)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def make_arg_parser(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
| 81 |
+
parser.add_argument("--host",
|
| 82 |
+
type=nullable_str,
|
| 83 |
+
default=None,
|
| 84 |
+
help="Host name.")
|
| 85 |
+
parser.add_argument("--port", type=int, default=8000, help="Port number.")
|
| 86 |
+
parser.add_argument(
|
| 87 |
+
"--uvicorn-log-level",
|
| 88 |
+
type=str,
|
| 89 |
+
default="info",
|
| 90 |
+
choices=['debug', 'info', 'warning', 'error', 'critical', 'trace'],
|
| 91 |
+
help="Log level for uvicorn.")
|
| 92 |
+
parser.add_argument("--allow-credentials",
|
| 93 |
+
action="store_true",
|
| 94 |
+
help="Allow credentials.")
|
| 95 |
+
parser.add_argument("--allowed-origins",
|
| 96 |
+
type=json.loads,
|
| 97 |
+
default=["*"],
|
| 98 |
+
help="Allowed origins.")
|
| 99 |
+
parser.add_argument("--allowed-methods",
|
| 100 |
+
type=json.loads,
|
| 101 |
+
default=["*"],
|
| 102 |
+
help="Allowed methods.")
|
| 103 |
+
parser.add_argument("--allowed-headers",
|
| 104 |
+
type=json.loads,
|
| 105 |
+
default=["*"],
|
| 106 |
+
help="Allowed headers.")
|
| 107 |
+
parser.add_argument("--api-key",
|
| 108 |
+
type=nullable_str,
|
| 109 |
+
default=None,
|
| 110 |
+
help="If provided, the server will require this key "
|
| 111 |
+
"to be presented in the header.")
|
| 112 |
+
parser.add_argument(
|
| 113 |
+
"--lora-modules",
|
| 114 |
+
type=nullable_str,
|
| 115 |
+
default=None,
|
| 116 |
+
nargs='+',
|
| 117 |
+
action=LoRAParserAction,
|
| 118 |
+
help="LoRA module configurations in either 'name=path' format"
|
| 119 |
+
"or JSON format. "
|
| 120 |
+
"Example (old format): ``'name=path'`` "
|
| 121 |
+
"Example (new format): "
|
| 122 |
+
"``{\"name\": \"name\", \"path\": \"lora_path\", "
|
| 123 |
+
"\"base_model_name\": \"id\"}``")
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--prompt-adapters",
|
| 126 |
+
type=nullable_str,
|
| 127 |
+
default=None,
|
| 128 |
+
nargs='+',
|
| 129 |
+
action=PromptAdapterParserAction,
|
| 130 |
+
help="Prompt adapter configurations in the format name=path. "
|
| 131 |
+
"Multiple adapters can be specified.")
|
| 132 |
+
parser.add_argument("--chat-template",
|
| 133 |
+
type=nullable_str,
|
| 134 |
+
default=None,
|
| 135 |
+
help="The file path to the chat template, "
|
| 136 |
+
"or the template in single-line form "
|
| 137 |
+
"for the specified model.")
|
| 138 |
+
parser.add_argument(
|
| 139 |
+
'--chat-template-content-format',
|
| 140 |
+
type=str,
|
| 141 |
+
default="auto",
|
| 142 |
+
choices=get_args(ChatTemplateContentFormatOption),
|
| 143 |
+
help='The format to render message content within a chat template.'
|
| 144 |
+
'\n\n'
|
| 145 |
+
'* "string" will render the content as a string. '
|
| 146 |
+
'Example: ``"Hello World"``\n'
|
| 147 |
+
'* "openai" will render the content as a list of dictionaries, '
|
| 148 |
+
'similar to OpenAI schema. '
|
| 149 |
+
'Example: ``[{"type": "text", "text": "Hello world!"}]``')
|
| 150 |
+
parser.add_argument("--response-role",
|
| 151 |
+
type=nullable_str,
|
| 152 |
+
default="assistant",
|
| 153 |
+
help="The role name to return if "
|
| 154 |
+
"``request.add_generation_prompt=true``.")
|
| 155 |
+
parser.add_argument("--ssl-keyfile",
|
| 156 |
+
type=nullable_str,
|
| 157 |
+
default=None,
|
| 158 |
+
help="The file path to the SSL key file.")
|
| 159 |
+
parser.add_argument("--ssl-certfile",
|
| 160 |
+
type=nullable_str,
|
| 161 |
+
default=None,
|
| 162 |
+
help="The file path to the SSL cert file.")
|
| 163 |
+
parser.add_argument("--ssl-ca-certs",
|
| 164 |
+
type=nullable_str,
|
| 165 |
+
default=None,
|
| 166 |
+
help="The CA certificates file.")
|
| 167 |
+
parser.add_argument(
|
| 168 |
+
"--ssl-cert-reqs",
|
| 169 |
+
type=int,
|
| 170 |
+
default=int(ssl.CERT_NONE),
|
| 171 |
+
help="Whether client certificate is required (see stdlib ssl module's)."
|
| 172 |
+
)
|
| 173 |
+
parser.add_argument(
|
| 174 |
+
"--root-path",
|
| 175 |
+
type=nullable_str,
|
| 176 |
+
default=None,
|
| 177 |
+
help="FastAPI root_path when app is behind a path based routing proxy."
|
| 178 |
+
)
|
| 179 |
+
parser.add_argument(
|
| 180 |
+
"--middleware",
|
| 181 |
+
type=nullable_str,
|
| 182 |
+
action="append",
|
| 183 |
+
default=[],
|
| 184 |
+
help="Additional ASGI middleware to apply to the app. "
|
| 185 |
+
"We accept multiple --middleware arguments. "
|
| 186 |
+
"The value should be an import path. "
|
| 187 |
+
"If a function is provided, vLLM will add it to the server "
|
| 188 |
+
"using ``@app.middleware('http')``. "
|
| 189 |
+
"If a class is provided, vLLM will add it to the server "
|
| 190 |
+
"using ``app.add_middleware()``. ")
|
| 191 |
+
parser.add_argument(
|
| 192 |
+
"--return-tokens-as-token-ids",
|
| 193 |
+
action="store_true",
|
| 194 |
+
help="When ``--max-logprobs`` is specified, represents single tokens "
|
| 195 |
+
" as strings of the form 'token_id:{token_id}' so that tokens "
|
| 196 |
+
"that are not JSON-encodable can be identified.")
|
| 197 |
+
parser.add_argument(
|
| 198 |
+
"--disable-frontend-multiprocessing",
|
| 199 |
+
action="store_true",
|
| 200 |
+
help="If specified, will run the OpenAI frontend server in the same "
|
| 201 |
+
"process as the model serving engine.")
|
| 202 |
+
parser.add_argument(
|
| 203 |
+
"--enable-request-id-headers",
|
| 204 |
+
action="store_true",
|
| 205 |
+
help="If specified, API server will add X-Request-Id header to "
|
| 206 |
+
"responses. Caution: this hurts performance at high QPS.")
|
| 207 |
+
parser.add_argument(
|
| 208 |
+
"--enable-auto-tool-choice",
|
| 209 |
+
action="store_true",
|
| 210 |
+
default=False,
|
| 211 |
+
help="Enable auto tool choice for supported models. Use "
|
| 212 |
+
"``--tool-call-parser`` to specify which parser to use.")
|
| 213 |
+
parser.add_argument(
|
| 214 |
+
"--enable-reasoning",
|
| 215 |
+
action="store_true",
|
| 216 |
+
default=False,
|
| 217 |
+
help="Whether to enable reasoning_content for the model. "
|
| 218 |
+
"If enabled, the model will be able to generate reasoning content.")
|
| 219 |
+
|
| 220 |
+
valid_reasoning_parsers = ReasoningParserManager.reasoning_parsers.keys()
|
| 221 |
+
parser.add_argument(
|
| 222 |
+
"--reasoning-parser",
|
| 223 |
+
type=str,
|
| 224 |
+
metavar="{" + ",".join(valid_reasoning_parsers) + "}",
|
| 225 |
+
default=None,
|
| 226 |
+
help=
|
| 227 |
+
"Select the reasoning parser depending on the model that you're using."
|
| 228 |
+
" This is used to parse the reasoning content into OpenAI API "
|
| 229 |
+
"format. Required for ``--enable-reasoning``.")
|
| 230 |
+
|
| 231 |
+
valid_tool_parsers = ToolParserManager.tool_parsers.keys()
|
| 232 |
+
parser.add_argument(
|
| 233 |
+
"--tool-call-parser",
|
| 234 |
+
type=str,
|
| 235 |
+
metavar="{" + ",".join(valid_tool_parsers) + "} or name registered in "
|
| 236 |
+
"--tool-parser-plugin",
|
| 237 |
+
default=None,
|
| 238 |
+
help=
|
| 239 |
+
"Select the tool call parser depending on the model that you're using."
|
| 240 |
+
" This is used to parse the model-generated tool call into OpenAI API "
|
| 241 |
+
"format. Required for ``--enable-auto-tool-choice``.")
|
| 242 |
+
|
| 243 |
+
parser.add_argument(
|
| 244 |
+
"--tool-parser-plugin",
|
| 245 |
+
type=str,
|
| 246 |
+
default="",
|
| 247 |
+
help=
|
| 248 |
+
"Special the tool parser plugin write to parse the model-generated tool"
|
| 249 |
+
" into OpenAI API format, the name register in this plugin can be used "
|
| 250 |
+
"in ``--tool-call-parser``.")
|
| 251 |
+
|
| 252 |
+
parser = AsyncEngineArgs.add_cli_args(parser)
|
| 253 |
+
|
| 254 |
+
parser.add_argument('--max-log-len',
|
| 255 |
+
type=int,
|
| 256 |
+
default=None,
|
| 257 |
+
help='Max number of prompt characters or prompt '
|
| 258 |
+
'ID numbers being printed in log.'
|
| 259 |
+
'\n\nDefault: Unlimited')
|
| 260 |
+
|
| 261 |
+
parser.add_argument(
|
| 262 |
+
"--disable-fastapi-docs",
|
| 263 |
+
action='store_true',
|
| 264 |
+
default=False,
|
| 265 |
+
help="Disable FastAPI's OpenAPI schema, Swagger UI, and ReDoc endpoint."
|
| 266 |
+
)
|
| 267 |
+
parser.add_argument(
|
| 268 |
+
"--enable-prompt-tokens-details",
|
| 269 |
+
action='store_true',
|
| 270 |
+
default=False,
|
| 271 |
+
help="If set to True, enable prompt_tokens_details in usage.")
|
| 272 |
+
|
| 273 |
+
return parser
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def validate_parsed_serve_args(args: argparse.Namespace):
|
| 277 |
+
"""Quick checks for model serve args that raise prior to loading."""
|
| 278 |
+
if hasattr(args, "subparser") and args.subparser != "serve":
|
| 279 |
+
return
|
| 280 |
+
|
| 281 |
+
# Ensure that the chat template is valid; raises if it likely isn't
|
| 282 |
+
validate_chat_template(args.chat_template)
|
| 283 |
+
|
| 284 |
+
# Enable auto tool needs a tool call parser to be valid
|
| 285 |
+
if args.enable_auto_tool_choice and not args.tool_call_parser:
|
| 286 |
+
raise TypeError("Error: --enable-auto-tool-choice requires "
|
| 287 |
+
"--tool-call-parser")
|
| 288 |
+
|
| 289 |
+
# Enable reasoning needs a reasoning parser to be valid
|
| 290 |
+
if args.enable_reasoning and not args.reasoning_parser:
|
| 291 |
+
raise TypeError("Error: --enable-reasoning requires "
|
| 292 |
+
"--reasoning-parser")
|
| 293 |
+
|
| 294 |
+
# Ref https://api-docs.deepseek.com/guides/reasoning_model
|
| 295 |
+
# tool call and reasoning cannot be enabled at the same time.
|
| 296 |
+
if args.enable_auto_tool_choice and args.enable_reasoning:
|
| 297 |
+
raise TypeError(
|
| 298 |
+
"Error: --enable-auto-tool-choice and "
|
| 299 |
+
"--enable-reasoning cannot be enabled at the same time")
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def create_parser_for_docs() -> FlexibleArgumentParser:
|
| 303 |
+
parser_for_docs = FlexibleArgumentParser(
|
| 304 |
+
prog="-m vllm.entrypoints.openai.api_server")
|
| 305 |
+
return make_arg_parser(parser_for_docs)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/logits_processors.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
from functools import lru_cache, partial
|
| 4 |
+
from typing import Dict, FrozenSet, Iterable, List, Optional, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from vllm.sampling_params import LogitsProcessor
|
| 9 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class AllowedTokenIdsLogitsProcessor:
|
| 13 |
+
"""Logits processor for constraining generated tokens to a
|
| 14 |
+
specific set of token ids."""
|
| 15 |
+
|
| 16 |
+
def __init__(self, allowed_ids: Iterable[int]):
|
| 17 |
+
self.allowed_ids: Optional[List[int]] = list(allowed_ids)
|
| 18 |
+
self.mask: Optional[torch.Tensor] = None
|
| 19 |
+
|
| 20 |
+
def __call__(self, token_ids: List[int],
|
| 21 |
+
logits: torch.Tensor) -> torch.Tensor:
|
| 22 |
+
if self.mask is None:
|
| 23 |
+
self.mask = torch.ones((logits.shape[-1], ),
|
| 24 |
+
dtype=torch.bool,
|
| 25 |
+
device=logits.device)
|
| 26 |
+
self.mask[self.allowed_ids] = False
|
| 27 |
+
self.allowed_ids = None
|
| 28 |
+
logits.masked_fill_(self.mask, float("-inf"))
|
| 29 |
+
return logits
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@lru_cache(maxsize=32)
|
| 33 |
+
def _get_allowed_token_ids_logits_processor(
|
| 34 |
+
allowed_token_ids: FrozenSet[int],
|
| 35 |
+
vocab_size: int,
|
| 36 |
+
) -> LogitsProcessor:
|
| 37 |
+
if not allowed_token_ids:
|
| 38 |
+
raise ValueError("Empty allowed_token_ids provided")
|
| 39 |
+
if not all(0 <= tid < vocab_size for tid in allowed_token_ids):
|
| 40 |
+
raise ValueError("allowed_token_ids contains "
|
| 41 |
+
"out-of-vocab token id")
|
| 42 |
+
return AllowedTokenIdsLogitsProcessor(allowed_token_ids)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def logit_bias_logits_processor(
|
| 46 |
+
logit_bias: Dict[int, float],
|
| 47 |
+
token_ids: List[int],
|
| 48 |
+
logits: torch.Tensor,
|
| 49 |
+
) -> torch.Tensor:
|
| 50 |
+
for token_id, bias in logit_bias.items():
|
| 51 |
+
logits[token_id] += bias
|
| 52 |
+
return logits
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_logits_processors(
|
| 56 |
+
logit_bias: Optional[Union[Dict[int, float], Dict[str, float]]],
|
| 57 |
+
allowed_token_ids: Optional[List[int]],
|
| 58 |
+
tokenizer: AnyTokenizer,
|
| 59 |
+
) -> List[LogitsProcessor]:
|
| 60 |
+
logits_processors: List[LogitsProcessor] = []
|
| 61 |
+
if logit_bias:
|
| 62 |
+
try:
|
| 63 |
+
# Convert token_id to integer
|
| 64 |
+
# Clamp the bias between -100 and 100 per OpenAI API spec
|
| 65 |
+
clamped_logit_bias: Dict[int, float] = {
|
| 66 |
+
int(token_id): min(100.0, max(-100.0, bias))
|
| 67 |
+
for token_id, bias in logit_bias.items()
|
| 68 |
+
}
|
| 69 |
+
except ValueError as exc:
|
| 70 |
+
raise ValueError(
|
| 71 |
+
"Found token_id in logit_bias that is not "
|
| 72 |
+
"an integer or string representing an integer") from exc
|
| 73 |
+
|
| 74 |
+
# Check if token_id is within the vocab size
|
| 75 |
+
for token_id, bias in clamped_logit_bias.items():
|
| 76 |
+
if token_id < 0 or token_id >= len(tokenizer):
|
| 77 |
+
raise ValueError(f"token_id {token_id} in logit_bias contains "
|
| 78 |
+
"out-of-vocab token id")
|
| 79 |
+
|
| 80 |
+
logits_processors.append(
|
| 81 |
+
partial(logit_bias_logits_processor, clamped_logit_bias))
|
| 82 |
+
|
| 83 |
+
if allowed_token_ids is not None:
|
| 84 |
+
logits_processors.append(
|
| 85 |
+
_get_allowed_token_ids_logits_processor(
|
| 86 |
+
frozenset(allowed_token_ids), len(tokenizer)))
|
| 87 |
+
|
| 88 |
+
return logits_processors
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/protocol.py
ADDED
|
@@ -0,0 +1,1593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
# Adapted from
|
| 4 |
+
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
| 5 |
+
import re
|
| 6 |
+
import time
|
| 7 |
+
from argparse import Namespace
|
| 8 |
+
from typing import Any, ClassVar, Dict, List, Literal, Optional, Set, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from fastapi import UploadFile
|
| 12 |
+
from pydantic import (BaseModel, ConfigDict, Field, TypeAdapter,
|
| 13 |
+
ValidationInfo, field_validator, model_validator)
|
| 14 |
+
from typing_extensions import Annotated, TypeAlias
|
| 15 |
+
|
| 16 |
+
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
|
| 17 |
+
from vllm.logger import init_logger
|
| 18 |
+
from vllm.pooling_params import PoolingParams
|
| 19 |
+
from vllm.sampling_params import (BeamSearchParams, GuidedDecodingParams,
|
| 20 |
+
RequestOutputKind, SamplingParams)
|
| 21 |
+
from vllm.sequence import Logprob
|
| 22 |
+
from vllm.utils import random_uuid, resolve_obj_by_qualname
|
| 23 |
+
|
| 24 |
+
logger = init_logger(__name__)
|
| 25 |
+
|
| 26 |
+
# torch is mocked during docs generation,
|
| 27 |
+
# so we have to provide the values as literals
|
| 28 |
+
_MOCK_LONG_INFO = Namespace(min=-9223372036854775808, max=9223372036854775807)
|
| 29 |
+
_LONG_INFO: Union["torch.iinfo", Namespace]
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
from sphinx.ext.autodoc.mock import _MockModule
|
| 33 |
+
|
| 34 |
+
if isinstance(torch, _MockModule):
|
| 35 |
+
_LONG_INFO = _MOCK_LONG_INFO
|
| 36 |
+
else:
|
| 37 |
+
_LONG_INFO = torch.iinfo(torch.long)
|
| 38 |
+
except ModuleNotFoundError:
|
| 39 |
+
_LONG_INFO = torch.iinfo(torch.long)
|
| 40 |
+
|
| 41 |
+
assert _LONG_INFO.min == _MOCK_LONG_INFO.min
|
| 42 |
+
assert _LONG_INFO.max == _MOCK_LONG_INFO.max
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class OpenAIBaseModel(BaseModel):
|
| 46 |
+
# OpenAI API does allow extra fields
|
| 47 |
+
model_config = ConfigDict(extra="allow")
|
| 48 |
+
|
| 49 |
+
# Cache class field names
|
| 50 |
+
field_names: ClassVar[Optional[Set[str]]] = None
|
| 51 |
+
|
| 52 |
+
@model_validator(mode="wrap")
|
| 53 |
+
@classmethod
|
| 54 |
+
def __log_extra_fields__(cls, data, handler):
|
| 55 |
+
result = handler(data)
|
| 56 |
+
if not isinstance(data, dict):
|
| 57 |
+
return result
|
| 58 |
+
field_names = cls.field_names
|
| 59 |
+
if field_names is None:
|
| 60 |
+
# Get all class field names and their potential aliases
|
| 61 |
+
field_names = set()
|
| 62 |
+
for field_name, field in cls.model_fields.items():
|
| 63 |
+
field_names.add(field_name)
|
| 64 |
+
if alias := getattr(field, 'alias', None):
|
| 65 |
+
field_names.add(alias)
|
| 66 |
+
cls.field_names = field_names
|
| 67 |
+
|
| 68 |
+
# Compare against both field names and aliases
|
| 69 |
+
if any(k not in field_names for k in data):
|
| 70 |
+
logger.warning(
|
| 71 |
+
"The following fields were present in the request "
|
| 72 |
+
"but ignored: %s",
|
| 73 |
+
data.keys() - field_names)
|
| 74 |
+
return result
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class ErrorResponse(OpenAIBaseModel):
|
| 78 |
+
object: str = "error"
|
| 79 |
+
message: str
|
| 80 |
+
type: str
|
| 81 |
+
param: Optional[str] = None
|
| 82 |
+
code: int
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class ModelPermission(OpenAIBaseModel):
|
| 86 |
+
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
|
| 87 |
+
object: str = "model_permission"
|
| 88 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 89 |
+
allow_create_engine: bool = False
|
| 90 |
+
allow_sampling: bool = True
|
| 91 |
+
allow_logprobs: bool = True
|
| 92 |
+
allow_search_indices: bool = False
|
| 93 |
+
allow_view: bool = True
|
| 94 |
+
allow_fine_tuning: bool = False
|
| 95 |
+
organization: str = "*"
|
| 96 |
+
group: Optional[str] = None
|
| 97 |
+
is_blocking: bool = False
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class ModelCard(OpenAIBaseModel):
|
| 101 |
+
id: str
|
| 102 |
+
object: str = "model"
|
| 103 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 104 |
+
owned_by: str = "vllm"
|
| 105 |
+
root: Optional[str] = None
|
| 106 |
+
parent: Optional[str] = None
|
| 107 |
+
max_model_len: Optional[int] = None
|
| 108 |
+
permission: List[ModelPermission] = Field(default_factory=list)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class ModelList(OpenAIBaseModel):
|
| 112 |
+
object: str = "list"
|
| 113 |
+
data: List[ModelCard] = Field(default_factory=list)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class PromptTokenUsageInfo(OpenAIBaseModel):
|
| 117 |
+
cached_tokens: Optional[int] = None
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class UsageInfo(OpenAIBaseModel):
|
| 121 |
+
prompt_tokens: int = 0
|
| 122 |
+
total_tokens: int = 0
|
| 123 |
+
completion_tokens: Optional[int] = 0
|
| 124 |
+
prompt_tokens_details: Optional[PromptTokenUsageInfo] = None
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class RequestResponseMetadata(BaseModel):
|
| 128 |
+
request_id: str
|
| 129 |
+
final_usage_info: Optional[UsageInfo] = None
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class JsonSchemaResponseFormat(OpenAIBaseModel):
|
| 133 |
+
name: str
|
| 134 |
+
description: Optional[str] = None
|
| 135 |
+
# schema is the field in openai but that causes conflicts with pydantic so
|
| 136 |
+
# instead use json_schema with an alias
|
| 137 |
+
json_schema: Optional[Dict[str, Any]] = Field(default=None, alias='schema')
|
| 138 |
+
strict: Optional[bool] = None
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class ResponseFormat(OpenAIBaseModel):
|
| 142 |
+
# type must be "json_schema", "json_object" or "text"
|
| 143 |
+
type: Literal["text", "json_object", "json_schema"]
|
| 144 |
+
json_schema: Optional[JsonSchemaResponseFormat] = None
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class StreamOptions(OpenAIBaseModel):
|
| 148 |
+
include_usage: Optional[bool] = True
|
| 149 |
+
continuous_usage_stats: Optional[bool] = False
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class FunctionDefinition(OpenAIBaseModel):
|
| 153 |
+
name: str
|
| 154 |
+
description: Optional[str] = None
|
| 155 |
+
parameters: Optional[Dict[str, Any]] = None
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class ChatCompletionToolsParam(OpenAIBaseModel):
|
| 159 |
+
type: Literal["function"] = "function"
|
| 160 |
+
function: FunctionDefinition
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class ChatCompletionNamedFunction(OpenAIBaseModel):
|
| 164 |
+
name: str
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class ChatCompletionNamedToolChoiceParam(OpenAIBaseModel):
|
| 168 |
+
function: ChatCompletionNamedFunction
|
| 169 |
+
type: Literal["function"] = "function"
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class LogitsProcessorConstructor(BaseModel):
|
| 173 |
+
qualname: str
|
| 174 |
+
args: Optional[List[Any]] = None
|
| 175 |
+
kwargs: Optional[Dict[str, Any]] = None
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
LogitsProcessors = List[Union[str, LogitsProcessorConstructor]]
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def get_logits_processors(processors: Optional[LogitsProcessors],
|
| 182 |
+
pattern: Optional[str]) -> Optional[List[Any]]:
|
| 183 |
+
if processors and pattern:
|
| 184 |
+
logits_processors = []
|
| 185 |
+
for processor in processors:
|
| 186 |
+
qualname = processor if isinstance(processor,
|
| 187 |
+
str) else processor.qualname
|
| 188 |
+
if not re.match(pattern, qualname):
|
| 189 |
+
raise ValueError(
|
| 190 |
+
f"Logits processor '{qualname}' is not allowed by this "
|
| 191 |
+
"server. See --logits-processor-pattern engine argument "
|
| 192 |
+
"for more information.")
|
| 193 |
+
try:
|
| 194 |
+
logits_processor = resolve_obj_by_qualname(qualname)
|
| 195 |
+
except Exception as e:
|
| 196 |
+
raise ValueError(
|
| 197 |
+
f"Logits processor '{qualname}' could not be resolved: {e}"
|
| 198 |
+
) from e
|
| 199 |
+
if isinstance(processor, LogitsProcessorConstructor):
|
| 200 |
+
logits_processor = logits_processor(*processor.args or [],
|
| 201 |
+
**processor.kwargs or {})
|
| 202 |
+
logits_processors.append(logits_processor)
|
| 203 |
+
return logits_processors
|
| 204 |
+
elif processors:
|
| 205 |
+
raise ValueError(
|
| 206 |
+
"The `logits_processors` argument is not supported by this "
|
| 207 |
+
"server. See --logits-processor-pattern engine argugment "
|
| 208 |
+
"for more information.")
|
| 209 |
+
return None
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class ChatCompletionRequest(OpenAIBaseModel):
|
| 213 |
+
# Ordered by official OpenAI API documentation
|
| 214 |
+
# https://platform.openai.com/docs/api-reference/chat/create
|
| 215 |
+
messages: List[ChatCompletionMessageParam]
|
| 216 |
+
model: str
|
| 217 |
+
frequency_penalty: Optional[float] = 0.0
|
| 218 |
+
logit_bias: Optional[Dict[str, float]] = None
|
| 219 |
+
logprobs: Optional[bool] = False
|
| 220 |
+
top_logprobs: Optional[int] = 0
|
| 221 |
+
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
| 222 |
+
max_tokens: Optional[int] = Field(
|
| 223 |
+
default=None,
|
| 224 |
+
deprecated=
|
| 225 |
+
'max_tokens is deprecated in favor of the max_completion_tokens field')
|
| 226 |
+
max_completion_tokens: Optional[int] = None
|
| 227 |
+
n: Optional[int] = 1
|
| 228 |
+
presence_penalty: Optional[float] = 0.0
|
| 229 |
+
response_format: Optional[ResponseFormat] = None
|
| 230 |
+
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
| 231 |
+
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
| 232 |
+
stream: Optional[bool] = False
|
| 233 |
+
stream_options: Optional[StreamOptions] = None
|
| 234 |
+
temperature: Optional[float] = None
|
| 235 |
+
top_p: Optional[float] = None
|
| 236 |
+
tools: Optional[List[ChatCompletionToolsParam]] = None
|
| 237 |
+
tool_choice: Optional[Union[Literal["none"], Literal["auto"],
|
| 238 |
+
ChatCompletionNamedToolChoiceParam]] = "none"
|
| 239 |
+
|
| 240 |
+
# NOTE this will be ignored by VLLM -- the model determines the behavior
|
| 241 |
+
parallel_tool_calls: Optional[bool] = False
|
| 242 |
+
user: Optional[str] = None
|
| 243 |
+
|
| 244 |
+
# doc: begin-chat-completion-sampling-params
|
| 245 |
+
best_of: Optional[int] = None
|
| 246 |
+
use_beam_search: bool = False
|
| 247 |
+
top_k: Optional[int] = None
|
| 248 |
+
min_p: Optional[float] = None
|
| 249 |
+
repetition_penalty: Optional[float] = None
|
| 250 |
+
length_penalty: float = 1.0
|
| 251 |
+
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
| 252 |
+
include_stop_str_in_output: bool = False
|
| 253 |
+
ignore_eos: bool = False
|
| 254 |
+
min_tokens: int = 0
|
| 255 |
+
skip_special_tokens: bool = True
|
| 256 |
+
spaces_between_special_tokens: bool = True
|
| 257 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
| 258 |
+
prompt_logprobs: Optional[int] = None
|
| 259 |
+
# doc: end-chat-completion-sampling-params
|
| 260 |
+
|
| 261 |
+
# doc: begin-chat-completion-extra-params
|
| 262 |
+
echo: bool = Field(
|
| 263 |
+
default=False,
|
| 264 |
+
description=(
|
| 265 |
+
"If true, the new message will be prepended with the last message "
|
| 266 |
+
"if they belong to the same role."),
|
| 267 |
+
)
|
| 268 |
+
add_generation_prompt: bool = Field(
|
| 269 |
+
default=True,
|
| 270 |
+
description=
|
| 271 |
+
("If true, the generation prompt will be added to the chat template. "
|
| 272 |
+
"This is a parameter used by chat template in tokenizer config of the "
|
| 273 |
+
"model."),
|
| 274 |
+
)
|
| 275 |
+
continue_final_message: bool = Field(
|
| 276 |
+
default=False,
|
| 277 |
+
description=
|
| 278 |
+
("If this is set, the chat will be formatted so that the final "
|
| 279 |
+
"message in the chat is open-ended, without any EOS tokens. The "
|
| 280 |
+
"model will continue this message rather than starting a new one. "
|
| 281 |
+
"This allows you to \"prefill\" part of the model's response for it. "
|
| 282 |
+
"Cannot be used at the same time as `add_generation_prompt`."),
|
| 283 |
+
)
|
| 284 |
+
add_special_tokens: bool = Field(
|
| 285 |
+
default=False,
|
| 286 |
+
description=(
|
| 287 |
+
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
| 288 |
+
"on top of what is added by the chat template. "
|
| 289 |
+
"For most models, the chat template takes care of adding the "
|
| 290 |
+
"special tokens so this should be set to false (as is the "
|
| 291 |
+
"default)."),
|
| 292 |
+
)
|
| 293 |
+
documents: Optional[List[Dict[str, str]]] = Field(
|
| 294 |
+
default=None,
|
| 295 |
+
description=
|
| 296 |
+
("A list of dicts representing documents that will be accessible to "
|
| 297 |
+
"the model if it is performing RAG (retrieval-augmented generation)."
|
| 298 |
+
" If the template does not support RAG, this argument will have no "
|
| 299 |
+
"effect. We recommend that each document should be a dict containing "
|
| 300 |
+
"\"title\" and \"text\" keys."),
|
| 301 |
+
)
|
| 302 |
+
chat_template: Optional[str] = Field(
|
| 303 |
+
default=None,
|
| 304 |
+
description=(
|
| 305 |
+
"A Jinja template to use for this conversion. "
|
| 306 |
+
"As of transformers v4.44, default chat template is no longer "
|
| 307 |
+
"allowed, so you must provide a chat template if the tokenizer "
|
| 308 |
+
"does not define one."),
|
| 309 |
+
)
|
| 310 |
+
chat_template_kwargs: Optional[Dict[str, Any]] = Field(
|
| 311 |
+
default=None,
|
| 312 |
+
description=("Additional kwargs to pass to the template renderer. "
|
| 313 |
+
"Will be accessible by the chat template."),
|
| 314 |
+
)
|
| 315 |
+
mm_processor_kwargs: Optional[Dict[str, Any]] = Field(
|
| 316 |
+
default=None,
|
| 317 |
+
description=("Additional kwargs to pass to the HF processor."),
|
| 318 |
+
)
|
| 319 |
+
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
| 320 |
+
default=None,
|
| 321 |
+
description=("If specified, the output will follow the JSON schema."),
|
| 322 |
+
)
|
| 323 |
+
guided_regex: Optional[str] = Field(
|
| 324 |
+
default=None,
|
| 325 |
+
description=(
|
| 326 |
+
"If specified, the output will follow the regex pattern."),
|
| 327 |
+
)
|
| 328 |
+
guided_choice: Optional[List[str]] = Field(
|
| 329 |
+
default=None,
|
| 330 |
+
description=(
|
| 331 |
+
"If specified, the output will be exactly one of the choices."),
|
| 332 |
+
)
|
| 333 |
+
guided_grammar: Optional[str] = Field(
|
| 334 |
+
default=None,
|
| 335 |
+
description=(
|
| 336 |
+
"If specified, the output will follow the context free grammar."),
|
| 337 |
+
)
|
| 338 |
+
guided_decoding_backend: Optional[str] = Field(
|
| 339 |
+
default=None,
|
| 340 |
+
description=(
|
| 341 |
+
"If specified, will override the default guided decoding backend "
|
| 342 |
+
"of the server for this specific request. If set, must be either "
|
| 343 |
+
"'outlines' / 'lm-format-enforcer'"))
|
| 344 |
+
guided_whitespace_pattern: Optional[str] = Field(
|
| 345 |
+
default=None,
|
| 346 |
+
description=(
|
| 347 |
+
"If specified, will override the default whitespace pattern "
|
| 348 |
+
"for guided json decoding."))
|
| 349 |
+
priority: int = Field(
|
| 350 |
+
default=0,
|
| 351 |
+
description=(
|
| 352 |
+
"The priority of the request (lower means earlier handling; "
|
| 353 |
+
"default: 0). Any priority other than 0 will raise an error "
|
| 354 |
+
"if the served model does not use priority scheduling."))
|
| 355 |
+
request_id: str = Field(
|
| 356 |
+
default_factory=lambda: f"{random_uuid()}",
|
| 357 |
+
description=(
|
| 358 |
+
"The request_id related to this request. If the caller does "
|
| 359 |
+
"not set it, a random_uuid will be generated. This id is used "
|
| 360 |
+
"through out the inference process and return in response."))
|
| 361 |
+
logits_processors: Optional[LogitsProcessors] = Field(
|
| 362 |
+
default=None,
|
| 363 |
+
description=(
|
| 364 |
+
"A list of either qualified names of logits processors, or "
|
| 365 |
+
"constructor objects, to apply when sampling. A constructor is "
|
| 366 |
+
"a JSON object with a required 'qualname' field specifying the "
|
| 367 |
+
"qualified name of the processor class/factory, and optional "
|
| 368 |
+
"'args' and 'kwargs' fields containing positional and keyword "
|
| 369 |
+
"arguments. For example: {'qualname': "
|
| 370 |
+
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
|
| 371 |
+
"{'param': 'value'}}."))
|
| 372 |
+
|
| 373 |
+
# doc: end-chat-completion-extra-params
|
| 374 |
+
|
| 375 |
+
# Default sampling parameters for chat completion requests
|
| 376 |
+
_DEFAULT_SAMPLING_PARAMS: dict = {
|
| 377 |
+
"repetition_penalty": 1.0,
|
| 378 |
+
"temperature": 1.0,
|
| 379 |
+
"top_p": 1.0,
|
| 380 |
+
"top_k": -1,
|
| 381 |
+
"min_p": 0.0,
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
def to_beam_search_params(
|
| 385 |
+
self,
|
| 386 |
+
default_max_tokens: int,
|
| 387 |
+
default_sampling_params: Optional[dict] = None
|
| 388 |
+
) -> BeamSearchParams:
|
| 389 |
+
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
| 390 |
+
max_tokens = self.max_completion_tokens or self.max_tokens
|
| 391 |
+
|
| 392 |
+
if default_sampling_params is None:
|
| 393 |
+
default_sampling_params = {}
|
| 394 |
+
n = self.n if self.n is not None else 1
|
| 395 |
+
|
| 396 |
+
# Use minimum of context window, user request & server limit.
|
| 397 |
+
max_tokens = min(
|
| 398 |
+
val for val in (default_max_tokens, max_tokens,
|
| 399 |
+
default_sampling_params.get("max_tokens", None))
|
| 400 |
+
if val is not None)
|
| 401 |
+
|
| 402 |
+
if (temperature := self.temperature) is None:
|
| 403 |
+
temperature = default_sampling_params.get(
|
| 404 |
+
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
| 405 |
+
|
| 406 |
+
return BeamSearchParams(
|
| 407 |
+
beam_width=n,
|
| 408 |
+
max_tokens=max_tokens,
|
| 409 |
+
ignore_eos=self.ignore_eos,
|
| 410 |
+
temperature=temperature,
|
| 411 |
+
length_penalty=self.length_penalty,
|
| 412 |
+
include_stop_str_in_output=self.include_stop_str_in_output)
|
| 413 |
+
|
| 414 |
+
def to_sampling_params(
|
| 415 |
+
self,
|
| 416 |
+
default_max_tokens: int,
|
| 417 |
+
logits_processor_pattern: Optional[str],
|
| 418 |
+
default_sampling_params: Optional[dict] = None) -> SamplingParams:
|
| 419 |
+
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
| 420 |
+
max_tokens = self.max_completion_tokens or self.max_tokens
|
| 421 |
+
|
| 422 |
+
if default_sampling_params is None:
|
| 423 |
+
default_sampling_params = {}
|
| 424 |
+
|
| 425 |
+
# Use minimum of context window, user request & server limit.
|
| 426 |
+
max_tokens = min(
|
| 427 |
+
val for val in (default_max_tokens, max_tokens,
|
| 428 |
+
default_sampling_params.get("max_tokens", None))
|
| 429 |
+
if val is not None)
|
| 430 |
+
|
| 431 |
+
# Default parameters
|
| 432 |
+
if (repetition_penalty := self.repetition_penalty) is None:
|
| 433 |
+
repetition_penalty = default_sampling_params.get(
|
| 434 |
+
"repetition_penalty",
|
| 435 |
+
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
|
| 436 |
+
)
|
| 437 |
+
if (temperature := self.temperature) is None:
|
| 438 |
+
temperature = default_sampling_params.get(
|
| 439 |
+
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
| 440 |
+
if (top_p := self.top_p) is None:
|
| 441 |
+
top_p = default_sampling_params.get(
|
| 442 |
+
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
|
| 443 |
+
if (top_k := self.top_k) is None:
|
| 444 |
+
top_k = default_sampling_params.get(
|
| 445 |
+
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
|
| 446 |
+
if (min_p := self.min_p) is None:
|
| 447 |
+
min_p = default_sampling_params.get(
|
| 448 |
+
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
|
| 449 |
+
|
| 450 |
+
prompt_logprobs = self.prompt_logprobs
|
| 451 |
+
if prompt_logprobs is None and self.echo:
|
| 452 |
+
prompt_logprobs = self.top_logprobs
|
| 453 |
+
|
| 454 |
+
guided_json_object = None
|
| 455 |
+
if self.response_format is not None:
|
| 456 |
+
if self.response_format.type == "json_object":
|
| 457 |
+
guided_json_object = True
|
| 458 |
+
elif self.response_format.type == "json_schema":
|
| 459 |
+
json_schema = self.response_format.json_schema
|
| 460 |
+
assert json_schema is not None
|
| 461 |
+
self.guided_json = json_schema.json_schema
|
| 462 |
+
if self.guided_decoding_backend is None:
|
| 463 |
+
self.guided_decoding_backend = "xgrammar"
|
| 464 |
+
|
| 465 |
+
guided_decoding = GuidedDecodingParams.from_optional(
|
| 466 |
+
json=self._get_guided_json_from_tool() or self.guided_json,
|
| 467 |
+
regex=self.guided_regex,
|
| 468 |
+
choice=self.guided_choice,
|
| 469 |
+
grammar=self.guided_grammar,
|
| 470 |
+
json_object=guided_json_object,
|
| 471 |
+
backend=self.guided_decoding_backend,
|
| 472 |
+
whitespace_pattern=self.guided_whitespace_pattern)
|
| 473 |
+
|
| 474 |
+
return SamplingParams.from_optional(
|
| 475 |
+
n=self.n,
|
| 476 |
+
best_of=self.best_of,
|
| 477 |
+
presence_penalty=self.presence_penalty,
|
| 478 |
+
frequency_penalty=self.frequency_penalty,
|
| 479 |
+
repetition_penalty=repetition_penalty,
|
| 480 |
+
temperature=temperature,
|
| 481 |
+
top_p=top_p,
|
| 482 |
+
top_k=top_k,
|
| 483 |
+
min_p=min_p,
|
| 484 |
+
seed=self.seed,
|
| 485 |
+
stop=self.stop,
|
| 486 |
+
stop_token_ids=self.stop_token_ids,
|
| 487 |
+
logprobs=self.top_logprobs if self.logprobs else None,
|
| 488 |
+
prompt_logprobs=prompt_logprobs,
|
| 489 |
+
ignore_eos=self.ignore_eos,
|
| 490 |
+
max_tokens=max_tokens,
|
| 491 |
+
min_tokens=self.min_tokens,
|
| 492 |
+
skip_special_tokens=self.skip_special_tokens,
|
| 493 |
+
spaces_between_special_tokens=self.spaces_between_special_tokens,
|
| 494 |
+
logits_processors=get_logits_processors(self.logits_processors,
|
| 495 |
+
logits_processor_pattern),
|
| 496 |
+
include_stop_str_in_output=self.include_stop_str_in_output,
|
| 497 |
+
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
| 498 |
+
output_kind=RequestOutputKind.DELTA if self.stream \
|
| 499 |
+
else RequestOutputKind.FINAL_ONLY,
|
| 500 |
+
guided_decoding=guided_decoding,
|
| 501 |
+
logit_bias=self.logit_bias)
|
| 502 |
+
|
| 503 |
+
def _get_guided_json_from_tool(
|
| 504 |
+
self) -> Optional[Union[str, dict, BaseModel]]:
|
| 505 |
+
# user has chosen to not use any tool
|
| 506 |
+
if self.tool_choice == "none" or self.tools is None:
|
| 507 |
+
return None
|
| 508 |
+
|
| 509 |
+
# user has chosen to use a named tool
|
| 510 |
+
if type(self.tool_choice) is ChatCompletionNamedToolChoiceParam:
|
| 511 |
+
tool_name = self.tool_choice.function.name
|
| 512 |
+
tools = {tool.function.name: tool.function for tool in self.tools}
|
| 513 |
+
if tool_name not in tools:
|
| 514 |
+
raise ValueError(
|
| 515 |
+
f"Tool '{tool_name}' has not been passed in `tools`.")
|
| 516 |
+
tool = tools[tool_name]
|
| 517 |
+
return tool.parameters
|
| 518 |
+
|
| 519 |
+
return None
|
| 520 |
+
|
| 521 |
+
@model_validator(mode="before")
|
| 522 |
+
@classmethod
|
| 523 |
+
def validate_stream_options(cls, data):
|
| 524 |
+
if data.get("stream_options") and not data.get("stream"):
|
| 525 |
+
raise ValueError(
|
| 526 |
+
"Stream options can only be defined when `stream=True`.")
|
| 527 |
+
|
| 528 |
+
return data
|
| 529 |
+
|
| 530 |
+
@model_validator(mode="before")
|
| 531 |
+
@classmethod
|
| 532 |
+
def check_logprobs(cls, data):
|
| 533 |
+
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
|
| 534 |
+
if data.get("stream") and prompt_logprobs > 0:
|
| 535 |
+
raise ValueError(
|
| 536 |
+
"`prompt_logprobs` are not available when `stream=True`.")
|
| 537 |
+
|
| 538 |
+
if prompt_logprobs < 0:
|
| 539 |
+
raise ValueError("`prompt_logprobs` must be a positive value.")
|
| 540 |
+
|
| 541 |
+
if (top_logprobs := data.get("top_logprobs")) is not None:
|
| 542 |
+
if top_logprobs < 0:
|
| 543 |
+
raise ValueError("`top_logprobs` must be a positive value.")
|
| 544 |
+
|
| 545 |
+
if not data.get("logprobs"):
|
| 546 |
+
raise ValueError(
|
| 547 |
+
"when using `top_logprobs`, `logprobs` must be set to true."
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
return data
|
| 551 |
+
|
| 552 |
+
@model_validator(mode="before")
|
| 553 |
+
@classmethod
|
| 554 |
+
def check_guided_decoding_count(cls, data):
|
| 555 |
+
if isinstance(data, ValueError):
|
| 556 |
+
raise data
|
| 557 |
+
|
| 558 |
+
guide_count = sum([
|
| 559 |
+
"guided_json" in data and data["guided_json"] is not None,
|
| 560 |
+
"guided_regex" in data and data["guided_regex"] is not None,
|
| 561 |
+
"guided_choice" in data and data["guided_choice"] is not None
|
| 562 |
+
])
|
| 563 |
+
# you can only use one kind of guided decoding
|
| 564 |
+
if guide_count > 1:
|
| 565 |
+
raise ValueError(
|
| 566 |
+
"You can only use one kind of guided decoding "
|
| 567 |
+
"('guided_json', 'guided_regex' or 'guided_choice').")
|
| 568 |
+
# you can only either use guided decoding or tools, not both
|
| 569 |
+
if guide_count > 1 and data.get("tool_choice",
|
| 570 |
+
"none") not in ("none", "auto"):
|
| 571 |
+
raise ValueError(
|
| 572 |
+
"You can only either use guided decoding or tools, not both.")
|
| 573 |
+
return data
|
| 574 |
+
|
| 575 |
+
@model_validator(mode="before")
|
| 576 |
+
@classmethod
|
| 577 |
+
def check_tool_usage(cls, data):
|
| 578 |
+
|
| 579 |
+
# if "tool_choice" is not specified but tools are provided,
|
| 580 |
+
# default to "auto" tool_choice
|
| 581 |
+
if "tool_choice" not in data and data.get("tools"):
|
| 582 |
+
data["tool_choice"] = "auto"
|
| 583 |
+
|
| 584 |
+
# if "tool_choice" is "none" -- ignore tools if present
|
| 585 |
+
if "tool_choice" in data and data["tool_choice"] == "none":
|
| 586 |
+
# ensure that no tools are present
|
| 587 |
+
data.pop("tools", None)
|
| 588 |
+
return data
|
| 589 |
+
|
| 590 |
+
# if "tool_choice" is specified -- validation
|
| 591 |
+
if "tool_choice" in data:
|
| 592 |
+
|
| 593 |
+
# ensure that if "tool choice" is specified, tools are present
|
| 594 |
+
if "tools" not in data or data["tools"] is None:
|
| 595 |
+
raise ValueError(
|
| 596 |
+
"When using `tool_choice`, `tools` must be set.")
|
| 597 |
+
|
| 598 |
+
# make sure that tool choice is either a named tool
|
| 599 |
+
# OR that it's set to "auto"
|
| 600 |
+
if data["tool_choice"] != "auto" and not isinstance(
|
| 601 |
+
data["tool_choice"], dict):
|
| 602 |
+
raise ValueError(
|
| 603 |
+
"`tool_choice` must either be a named tool, \"auto\", "
|
| 604 |
+
"or \"none\".")
|
| 605 |
+
|
| 606 |
+
# ensure that if "tool_choice" is specified as an object,
|
| 607 |
+
# it matches a valid tool
|
| 608 |
+
if isinstance(data["tool_choice"], dict):
|
| 609 |
+
valid_tool = False
|
| 610 |
+
specified_function = data["tool_choice"].get("function")
|
| 611 |
+
if not specified_function:
|
| 612 |
+
raise ValueError(
|
| 613 |
+
"Expected field `function` in `tool_choice`."
|
| 614 |
+
" Correct usage: `{\"type\": \"function\","
|
| 615 |
+
" \"function\": {\"name\": \"my_function\"}}`")
|
| 616 |
+
specified_function_name = specified_function.get("name")
|
| 617 |
+
if not specified_function_name:
|
| 618 |
+
raise ValueError(
|
| 619 |
+
"Expected field `name` in `function` in `tool_choice`."
|
| 620 |
+
"Correct usage: `{\"type\": \"function\", "
|
| 621 |
+
"\"function\": {\"name\": \"my_function\"}}`")
|
| 622 |
+
for tool in data["tools"]:
|
| 623 |
+
if tool["function"]["name"] == specified_function_name:
|
| 624 |
+
valid_tool = True
|
| 625 |
+
break
|
| 626 |
+
if not valid_tool:
|
| 627 |
+
raise ValueError(
|
| 628 |
+
"The tool specified in `tool_choice` does not match any"
|
| 629 |
+
" of the specified `tools`")
|
| 630 |
+
return data
|
| 631 |
+
|
| 632 |
+
@model_validator(mode="before")
|
| 633 |
+
@classmethod
|
| 634 |
+
def check_generation_prompt(cls, data):
|
| 635 |
+
if data.get("continue_final_message") and data.get(
|
| 636 |
+
"add_generation_prompt"):
|
| 637 |
+
raise ValueError("Cannot set both `continue_final_message` and "
|
| 638 |
+
"`add_generation_prompt` to True.")
|
| 639 |
+
return data
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
class CompletionRequest(OpenAIBaseModel):
|
| 643 |
+
# Ordered by official OpenAI API documentation
|
| 644 |
+
# https://platform.openai.com/docs/api-reference/completions/create
|
| 645 |
+
model: str
|
| 646 |
+
prompt: Union[List[int], List[List[int]], str, List[str]]
|
| 647 |
+
best_of: Optional[int] = None
|
| 648 |
+
echo: Optional[bool] = False
|
| 649 |
+
frequency_penalty: Optional[float] = 0.0
|
| 650 |
+
logit_bias: Optional[Dict[str, float]] = None
|
| 651 |
+
logprobs: Optional[int] = None
|
| 652 |
+
max_tokens: Optional[int] = 16
|
| 653 |
+
n: int = 1
|
| 654 |
+
presence_penalty: Optional[float] = 0.0
|
| 655 |
+
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
| 656 |
+
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
| 657 |
+
stream: Optional[bool] = False
|
| 658 |
+
stream_options: Optional[StreamOptions] = None
|
| 659 |
+
suffix: Optional[str] = None
|
| 660 |
+
temperature: Optional[float] = None
|
| 661 |
+
top_p: Optional[float] = None
|
| 662 |
+
user: Optional[str] = None
|
| 663 |
+
|
| 664 |
+
# doc: begin-completion-sampling-params
|
| 665 |
+
use_beam_search: bool = False
|
| 666 |
+
top_k: Optional[int] = None
|
| 667 |
+
min_p: Optional[float] = None
|
| 668 |
+
repetition_penalty: Optional[float] = None
|
| 669 |
+
length_penalty: float = 1.0
|
| 670 |
+
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
| 671 |
+
include_stop_str_in_output: bool = False
|
| 672 |
+
ignore_eos: bool = False
|
| 673 |
+
min_tokens: int = 0
|
| 674 |
+
skip_special_tokens: bool = True
|
| 675 |
+
spaces_between_special_tokens: bool = True
|
| 676 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
| 677 |
+
allowed_token_ids: Optional[List[int]] = None
|
| 678 |
+
prompt_logprobs: Optional[int] = None
|
| 679 |
+
# doc: end-completion-sampling-params
|
| 680 |
+
|
| 681 |
+
# doc: begin-completion-extra-params
|
| 682 |
+
add_special_tokens: bool = Field(
|
| 683 |
+
default=True,
|
| 684 |
+
description=(
|
| 685 |
+
"If true (the default), special tokens (e.g. BOS) will be added to "
|
| 686 |
+
"the prompt."),
|
| 687 |
+
)
|
| 688 |
+
response_format: Optional[ResponseFormat] = Field(
|
| 689 |
+
default=None,
|
| 690 |
+
description=
|
| 691 |
+
("Similar to chat completion, this parameter specifies the format of "
|
| 692 |
+
"output. Only {'type': 'json_object'}, {'type': 'json_schema'} or "
|
| 693 |
+
"{'type': 'text' } is supported."),
|
| 694 |
+
)
|
| 695 |
+
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
| 696 |
+
default=None,
|
| 697 |
+
description="If specified, the output will follow the JSON schema.",
|
| 698 |
+
)
|
| 699 |
+
guided_regex: Optional[str] = Field(
|
| 700 |
+
default=None,
|
| 701 |
+
description=(
|
| 702 |
+
"If specified, the output will follow the regex pattern."),
|
| 703 |
+
)
|
| 704 |
+
guided_choice: Optional[List[str]] = Field(
|
| 705 |
+
default=None,
|
| 706 |
+
description=(
|
| 707 |
+
"If specified, the output will be exactly one of the choices."),
|
| 708 |
+
)
|
| 709 |
+
guided_grammar: Optional[str] = Field(
|
| 710 |
+
default=None,
|
| 711 |
+
description=(
|
| 712 |
+
"If specified, the output will follow the context free grammar."),
|
| 713 |
+
)
|
| 714 |
+
guided_decoding_backend: Optional[str] = Field(
|
| 715 |
+
default=None,
|
| 716 |
+
description=(
|
| 717 |
+
"If specified, will override the default guided decoding backend "
|
| 718 |
+
"of the server for this specific request. If set, must be one of "
|
| 719 |
+
"'outlines' / 'lm-format-enforcer'"))
|
| 720 |
+
guided_whitespace_pattern: Optional[str] = Field(
|
| 721 |
+
default=None,
|
| 722 |
+
description=(
|
| 723 |
+
"If specified, will override the default whitespace pattern "
|
| 724 |
+
"for guided json decoding."))
|
| 725 |
+
priority: int = Field(
|
| 726 |
+
default=0,
|
| 727 |
+
description=(
|
| 728 |
+
"The priority of the request (lower means earlier handling; "
|
| 729 |
+
"default: 0). Any priority other than 0 will raise an error "
|
| 730 |
+
"if the served model does not use priority scheduling."))
|
| 731 |
+
logits_processors: Optional[LogitsProcessors] = Field(
|
| 732 |
+
default=None,
|
| 733 |
+
description=(
|
| 734 |
+
"A list of either qualified names of logits processors, or "
|
| 735 |
+
"constructor objects, to apply when sampling. A constructor is "
|
| 736 |
+
"a JSON object with a required 'qualname' field specifying the "
|
| 737 |
+
"qualified name of the processor class/factory, and optional "
|
| 738 |
+
"'args' and 'kwargs' fields containing positional and keyword "
|
| 739 |
+
"arguments. For example: {'qualname': "
|
| 740 |
+
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
|
| 741 |
+
"{'param': 'value'}}."))
|
| 742 |
+
|
| 743 |
+
# doc: end-completion-extra-params
|
| 744 |
+
|
| 745 |
+
# Default sampling parameters for completion requests
|
| 746 |
+
_DEFAULT_SAMPLING_PARAMS: dict = {
|
| 747 |
+
"repetition_penalty": 1.0,
|
| 748 |
+
"temperature": 1.0,
|
| 749 |
+
"top_p": 1.0,
|
| 750 |
+
"top_k": -1,
|
| 751 |
+
"min_p": 0.0,
|
| 752 |
+
}
|
| 753 |
+
|
| 754 |
+
def to_beam_search_params(
|
| 755 |
+
self,
|
| 756 |
+
default_max_tokens: int,
|
| 757 |
+
default_sampling_params: Optional[dict] = None
|
| 758 |
+
) -> BeamSearchParams:
|
| 759 |
+
max_tokens = self.max_tokens
|
| 760 |
+
|
| 761 |
+
if default_sampling_params is None:
|
| 762 |
+
default_sampling_params = {}
|
| 763 |
+
n = self.n if self.n is not None else 1
|
| 764 |
+
|
| 765 |
+
# Use minimum of context window, user request & server limit.
|
| 766 |
+
max_tokens = min(
|
| 767 |
+
val for val in (default_max_tokens, max_tokens,
|
| 768 |
+
default_sampling_params.get("max_tokens", None))
|
| 769 |
+
if val is not None)
|
| 770 |
+
|
| 771 |
+
if (temperature := self.temperature) is None:
|
| 772 |
+
temperature = default_sampling_params.get("temperature", 1.0)
|
| 773 |
+
|
| 774 |
+
return BeamSearchParams(
|
| 775 |
+
beam_width=n,
|
| 776 |
+
max_tokens=max_tokens,
|
| 777 |
+
ignore_eos=self.ignore_eos,
|
| 778 |
+
temperature=temperature,
|
| 779 |
+
length_penalty=self.length_penalty,
|
| 780 |
+
include_stop_str_in_output=self.include_stop_str_in_output)
|
| 781 |
+
|
| 782 |
+
def to_sampling_params(
|
| 783 |
+
self,
|
| 784 |
+
default_max_tokens: int,
|
| 785 |
+
logits_processor_pattern: Optional[str],
|
| 786 |
+
default_sampling_params: Optional[dict] = None) -> SamplingParams:
|
| 787 |
+
max_tokens = self.max_tokens
|
| 788 |
+
|
| 789 |
+
if default_sampling_params is None:
|
| 790 |
+
default_sampling_params = {}
|
| 791 |
+
|
| 792 |
+
# Use minimum of context window, user request & server limit.
|
| 793 |
+
max_tokens = min(
|
| 794 |
+
val for val in (default_max_tokens, max_tokens,
|
| 795 |
+
default_sampling_params.get("max_tokens", None))
|
| 796 |
+
if val is not None)
|
| 797 |
+
|
| 798 |
+
# Default parameters
|
| 799 |
+
if (repetition_penalty := self.repetition_penalty) is None:
|
| 800 |
+
repetition_penalty = default_sampling_params.get(
|
| 801 |
+
"repetition_penalty",
|
| 802 |
+
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
|
| 803 |
+
)
|
| 804 |
+
if (temperature := self.temperature) is None:
|
| 805 |
+
temperature = default_sampling_params.get(
|
| 806 |
+
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
| 807 |
+
if (top_p := self.top_p) is None:
|
| 808 |
+
top_p = default_sampling_params.get(
|
| 809 |
+
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
|
| 810 |
+
if (top_k := self.top_k) is None:
|
| 811 |
+
top_k = default_sampling_params.get(
|
| 812 |
+
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
|
| 813 |
+
if (min_p := self.min_p) is None:
|
| 814 |
+
min_p = default_sampling_params.get(
|
| 815 |
+
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
|
| 816 |
+
|
| 817 |
+
prompt_logprobs = self.prompt_logprobs
|
| 818 |
+
if prompt_logprobs is None and self.echo:
|
| 819 |
+
prompt_logprobs = self.logprobs
|
| 820 |
+
|
| 821 |
+
echo_without_generation = self.echo and self.max_tokens == 0
|
| 822 |
+
|
| 823 |
+
guided_json_object = None
|
| 824 |
+
if (self.response_format is not None
|
| 825 |
+
and self.response_format.type == "json_object"):
|
| 826 |
+
guided_json_object = True
|
| 827 |
+
|
| 828 |
+
guided_decoding = GuidedDecodingParams.from_optional(
|
| 829 |
+
json=self.guided_json,
|
| 830 |
+
regex=self.guided_regex,
|
| 831 |
+
choice=self.guided_choice,
|
| 832 |
+
grammar=self.guided_grammar,
|
| 833 |
+
json_object=guided_json_object,
|
| 834 |
+
backend=self.guided_decoding_backend,
|
| 835 |
+
whitespace_pattern=self.guided_whitespace_pattern)
|
| 836 |
+
|
| 837 |
+
return SamplingParams.from_optional(
|
| 838 |
+
n=self.n,
|
| 839 |
+
best_of=self.best_of,
|
| 840 |
+
presence_penalty=self.presence_penalty,
|
| 841 |
+
frequency_penalty=self.frequency_penalty,
|
| 842 |
+
repetition_penalty=repetition_penalty,
|
| 843 |
+
temperature=temperature,
|
| 844 |
+
top_p=top_p,
|
| 845 |
+
top_k=top_k,
|
| 846 |
+
min_p=min_p,
|
| 847 |
+
seed=self.seed,
|
| 848 |
+
stop=self.stop,
|
| 849 |
+
stop_token_ids=self.stop_token_ids,
|
| 850 |
+
logprobs=self.logprobs,
|
| 851 |
+
ignore_eos=self.ignore_eos,
|
| 852 |
+
max_tokens=max_tokens if not echo_without_generation else 1,
|
| 853 |
+
min_tokens=self.min_tokens,
|
| 854 |
+
prompt_logprobs=prompt_logprobs,
|
| 855 |
+
skip_special_tokens=self.skip_special_tokens,
|
| 856 |
+
spaces_between_special_tokens=self.spaces_between_special_tokens,
|
| 857 |
+
include_stop_str_in_output=self.include_stop_str_in_output,
|
| 858 |
+
logits_processors=get_logits_processors(self.logits_processors,
|
| 859 |
+
logits_processor_pattern),
|
| 860 |
+
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
| 861 |
+
output_kind=RequestOutputKind.DELTA if self.stream \
|
| 862 |
+
else RequestOutputKind.FINAL_ONLY,
|
| 863 |
+
guided_decoding=guided_decoding,
|
| 864 |
+
logit_bias=self.logit_bias,
|
| 865 |
+
allowed_token_ids=self.allowed_token_ids)
|
| 866 |
+
|
| 867 |
+
@model_validator(mode="before")
|
| 868 |
+
@classmethod
|
| 869 |
+
def check_guided_decoding_count(cls, data):
|
| 870 |
+
guide_count = sum([
|
| 871 |
+
"guided_json" in data and data["guided_json"] is not None,
|
| 872 |
+
"guided_regex" in data and data["guided_regex"] is not None,
|
| 873 |
+
"guided_choice" in data and data["guided_choice"] is not None
|
| 874 |
+
])
|
| 875 |
+
if guide_count > 1:
|
| 876 |
+
raise ValueError(
|
| 877 |
+
"You can only use one kind of guided decoding "
|
| 878 |
+
"('guided_json', 'guided_regex' or 'guided_choice').")
|
| 879 |
+
return data
|
| 880 |
+
|
| 881 |
+
@model_validator(mode="before")
|
| 882 |
+
@classmethod
|
| 883 |
+
def check_logprobs(cls, data):
|
| 884 |
+
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
|
| 885 |
+
if data.get("stream") and prompt_logprobs > 0:
|
| 886 |
+
raise ValueError(
|
| 887 |
+
"`prompt_logprobs` are not available when `stream=True`.")
|
| 888 |
+
|
| 889 |
+
if prompt_logprobs < 0:
|
| 890 |
+
raise ValueError("`prompt_logprobs` must be a positive value.")
|
| 891 |
+
|
| 892 |
+
if (logprobs := data.get("logprobs")) is not None and logprobs < 0:
|
| 893 |
+
raise ValueError("`logprobs` must be a positive value.")
|
| 894 |
+
|
| 895 |
+
return data
|
| 896 |
+
|
| 897 |
+
@model_validator(mode="before")
|
| 898 |
+
@classmethod
|
| 899 |
+
def validate_stream_options(cls, data):
|
| 900 |
+
if data.get("stream_options") and not data.get("stream"):
|
| 901 |
+
raise ValueError(
|
| 902 |
+
"Stream options can only be defined when `stream=True`.")
|
| 903 |
+
|
| 904 |
+
return data
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
class EmbeddingCompletionRequest(OpenAIBaseModel):
|
| 908 |
+
# Ordered by official OpenAI API documentation
|
| 909 |
+
# https://platform.openai.com/docs/api-reference/embeddings
|
| 910 |
+
model: str
|
| 911 |
+
input: Union[List[int], List[List[int]], str, List[str]]
|
| 912 |
+
encoding_format: Literal["float", "base64"] = "float"
|
| 913 |
+
dimensions: Optional[int] = None
|
| 914 |
+
user: Optional[str] = None
|
| 915 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
| 916 |
+
|
| 917 |
+
# doc: begin-embedding-pooling-params
|
| 918 |
+
additional_data: Optional[Any] = None
|
| 919 |
+
# doc: end-embedding-pooling-params
|
| 920 |
+
|
| 921 |
+
# doc: begin-embedding-extra-params
|
| 922 |
+
add_special_tokens: bool = Field(
|
| 923 |
+
default=True,
|
| 924 |
+
description=(
|
| 925 |
+
"If true (the default), special tokens (e.g. BOS) will be added to "
|
| 926 |
+
"the prompt."),
|
| 927 |
+
)
|
| 928 |
+
priority: int = Field(
|
| 929 |
+
default=0,
|
| 930 |
+
description=(
|
| 931 |
+
"The priority of the request (lower means earlier handling; "
|
| 932 |
+
"default: 0). Any priority other than 0 will raise an error "
|
| 933 |
+
"if the served model does not use priority scheduling."))
|
| 934 |
+
|
| 935 |
+
# doc: end-embedding-extra-params
|
| 936 |
+
|
| 937 |
+
def to_pooling_params(self):
|
| 938 |
+
return PoolingParams(additional_data=self.additional_data)
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
class EmbeddingChatRequest(OpenAIBaseModel):
|
| 942 |
+
model: str
|
| 943 |
+
messages: List[ChatCompletionMessageParam]
|
| 944 |
+
|
| 945 |
+
encoding_format: Literal["float", "base64"] = "float"
|
| 946 |
+
dimensions: Optional[int] = None
|
| 947 |
+
user: Optional[str] = None
|
| 948 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
| 949 |
+
|
| 950 |
+
# doc: begin-chat-embedding-pooling-params
|
| 951 |
+
additional_data: Optional[Any] = None
|
| 952 |
+
# doc: end-chat-embedding-pooling-params
|
| 953 |
+
|
| 954 |
+
# doc: begin-chat-embedding-extra-params
|
| 955 |
+
add_special_tokens: bool = Field(
|
| 956 |
+
default=False,
|
| 957 |
+
description=(
|
| 958 |
+
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
| 959 |
+
"on top of what is added by the chat template. "
|
| 960 |
+
"For most models, the chat template takes care of adding the "
|
| 961 |
+
"special tokens so this should be set to false (as is the "
|
| 962 |
+
"default)."),
|
| 963 |
+
)
|
| 964 |
+
chat_template: Optional[str] = Field(
|
| 965 |
+
default=None,
|
| 966 |
+
description=(
|
| 967 |
+
"A Jinja template to use for this conversion. "
|
| 968 |
+
"As of transformers v4.44, default chat template is no longer "
|
| 969 |
+
"allowed, so you must provide a chat template if the tokenizer "
|
| 970 |
+
"does not define one."),
|
| 971 |
+
)
|
| 972 |
+
chat_template_kwargs: Optional[Dict[str, Any]] = Field(
|
| 973 |
+
default=None,
|
| 974 |
+
description=("Additional kwargs to pass to the template renderer. "
|
| 975 |
+
"Will be accessible by the chat template."),
|
| 976 |
+
)
|
| 977 |
+
priority: int = Field(
|
| 978 |
+
default=0,
|
| 979 |
+
description=(
|
| 980 |
+
"The priority of the request (lower means earlier handling; "
|
| 981 |
+
"default: 0). Any priority other than 0 will raise an error "
|
| 982 |
+
"if the served model does not use priority scheduling."))
|
| 983 |
+
# doc: end-chat-embedding-extra-params
|
| 984 |
+
|
| 985 |
+
@model_validator(mode="before")
|
| 986 |
+
@classmethod
|
| 987 |
+
def check_generation_prompt(cls, data):
|
| 988 |
+
if data.get("continue_final_message") and data.get(
|
| 989 |
+
"add_generation_prompt"):
|
| 990 |
+
raise ValueError("Cannot set both `continue_final_message` and "
|
| 991 |
+
"`add_generation_prompt` to True.")
|
| 992 |
+
return data
|
| 993 |
+
|
| 994 |
+
def to_pooling_params(self):
|
| 995 |
+
return PoolingParams(additional_data=self.additional_data)
|
| 996 |
+
|
| 997 |
+
|
| 998 |
+
EmbeddingRequest = Union[EmbeddingCompletionRequest, EmbeddingChatRequest]
|
| 999 |
+
|
| 1000 |
+
PoolingCompletionRequest = EmbeddingCompletionRequest
|
| 1001 |
+
PoolingChatRequest = EmbeddingChatRequest
|
| 1002 |
+
PoolingRequest = Union[PoolingCompletionRequest, PoolingChatRequest]
|
| 1003 |
+
|
| 1004 |
+
|
| 1005 |
+
class ScoreRequest(OpenAIBaseModel):
|
| 1006 |
+
model: str
|
| 1007 |
+
text_1: Union[List[str], str]
|
| 1008 |
+
text_2: Union[List[str], str]
|
| 1009 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
| 1010 |
+
|
| 1011 |
+
# doc: begin-score-pooling-params
|
| 1012 |
+
additional_data: Optional[Any] = None
|
| 1013 |
+
# doc: end-score-pooling-params
|
| 1014 |
+
|
| 1015 |
+
# doc: begin-score-extra-params
|
| 1016 |
+
priority: int = Field(
|
| 1017 |
+
default=0,
|
| 1018 |
+
description=(
|
| 1019 |
+
"The priority of the request (lower means earlier handling; "
|
| 1020 |
+
"default: 0). Any priority other than 0 will raise an error "
|
| 1021 |
+
"if the served model does not use priority scheduling."))
|
| 1022 |
+
|
| 1023 |
+
# doc: end-score-extra-params
|
| 1024 |
+
|
| 1025 |
+
def to_pooling_params(self):
|
| 1026 |
+
return PoolingParams(additional_data=self.additional_data)
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
+
class RerankRequest(OpenAIBaseModel):
|
| 1030 |
+
model: str
|
| 1031 |
+
query: str
|
| 1032 |
+
documents: List[str]
|
| 1033 |
+
top_n: int = Field(default_factory=lambda: 0)
|
| 1034 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
| 1035 |
+
|
| 1036 |
+
# doc: begin-rerank-pooling-params
|
| 1037 |
+
additional_data: Optional[Any] = None
|
| 1038 |
+
# doc: end-rerank-pooling-params
|
| 1039 |
+
|
| 1040 |
+
# doc: begin-rerank-extra-params
|
| 1041 |
+
priority: int = Field(
|
| 1042 |
+
default=0,
|
| 1043 |
+
description=(
|
| 1044 |
+
"The priority of the request (lower means earlier handling; "
|
| 1045 |
+
"default: 0). Any priority other than 0 will raise an error "
|
| 1046 |
+
"if the served model does not use priority scheduling."))
|
| 1047 |
+
|
| 1048 |
+
# doc: end-rerank-extra-params
|
| 1049 |
+
|
| 1050 |
+
def to_pooling_params(self):
|
| 1051 |
+
return PoolingParams(additional_data=self.additional_data)
|
| 1052 |
+
|
| 1053 |
+
|
| 1054 |
+
class RerankDocument(BaseModel):
|
| 1055 |
+
text: str
|
| 1056 |
+
|
| 1057 |
+
|
| 1058 |
+
class RerankResult(BaseModel):
|
| 1059 |
+
index: int
|
| 1060 |
+
document: RerankDocument
|
| 1061 |
+
relevance_score: float
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
class RerankUsage(BaseModel):
|
| 1065 |
+
total_tokens: int
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
class RerankResponse(OpenAIBaseModel):
|
| 1069 |
+
id: str
|
| 1070 |
+
model: str
|
| 1071 |
+
usage: RerankUsage
|
| 1072 |
+
results: List[RerankResult]
|
| 1073 |
+
|
| 1074 |
+
|
| 1075 |
+
class CompletionLogProbs(OpenAIBaseModel):
|
| 1076 |
+
text_offset: List[int] = Field(default_factory=list)
|
| 1077 |
+
token_logprobs: List[Optional[float]] = Field(default_factory=list)
|
| 1078 |
+
tokens: List[str] = Field(default_factory=list)
|
| 1079 |
+
top_logprobs: List[Optional[Dict[str,
|
| 1080 |
+
float]]] = Field(default_factory=list)
|
| 1081 |
+
|
| 1082 |
+
|
| 1083 |
+
class CompletionResponseChoice(OpenAIBaseModel):
|
| 1084 |
+
index: int
|
| 1085 |
+
text: str
|
| 1086 |
+
logprobs: Optional[CompletionLogProbs] = None
|
| 1087 |
+
finish_reason: Optional[str] = None
|
| 1088 |
+
stop_reason: Optional[Union[int, str]] = Field(
|
| 1089 |
+
default=None,
|
| 1090 |
+
description=(
|
| 1091 |
+
"The stop string or token id that caused the completion "
|
| 1092 |
+
"to stop, None if the completion finished for some other reason "
|
| 1093 |
+
"including encountering the EOS token"),
|
| 1094 |
+
)
|
| 1095 |
+
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
|
| 1096 |
+
|
| 1097 |
+
|
| 1098 |
+
class CompletionResponse(OpenAIBaseModel):
|
| 1099 |
+
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
| 1100 |
+
object: str = "text_completion"
|
| 1101 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 1102 |
+
model: str
|
| 1103 |
+
choices: List[CompletionResponseChoice]
|
| 1104 |
+
usage: UsageInfo
|
| 1105 |
+
|
| 1106 |
+
|
| 1107 |
+
class CompletionResponseStreamChoice(OpenAIBaseModel):
|
| 1108 |
+
index: int
|
| 1109 |
+
text: str
|
| 1110 |
+
logprobs: Optional[CompletionLogProbs] = None
|
| 1111 |
+
finish_reason: Optional[str] = None
|
| 1112 |
+
stop_reason: Optional[Union[int, str]] = Field(
|
| 1113 |
+
default=None,
|
| 1114 |
+
description=(
|
| 1115 |
+
"The stop string or token id that caused the completion "
|
| 1116 |
+
"to stop, None if the completion finished for some other reason "
|
| 1117 |
+
"including encountering the EOS token"),
|
| 1118 |
+
)
|
| 1119 |
+
|
| 1120 |
+
|
| 1121 |
+
class CompletionStreamResponse(OpenAIBaseModel):
|
| 1122 |
+
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
| 1123 |
+
object: str = "text_completion"
|
| 1124 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 1125 |
+
model: str
|
| 1126 |
+
choices: List[CompletionResponseStreamChoice]
|
| 1127 |
+
usage: Optional[UsageInfo] = Field(default=None)
|
| 1128 |
+
|
| 1129 |
+
|
| 1130 |
+
class EmbeddingResponseData(OpenAIBaseModel):
|
| 1131 |
+
index: int
|
| 1132 |
+
object: str = "embedding"
|
| 1133 |
+
embedding: Union[List[float], str]
|
| 1134 |
+
|
| 1135 |
+
|
| 1136 |
+
class EmbeddingResponse(OpenAIBaseModel):
|
| 1137 |
+
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
|
| 1138 |
+
object: str = "list"
|
| 1139 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 1140 |
+
model: str
|
| 1141 |
+
data: List[EmbeddingResponseData]
|
| 1142 |
+
usage: UsageInfo
|
| 1143 |
+
|
| 1144 |
+
|
| 1145 |
+
class PoolingResponseData(OpenAIBaseModel):
|
| 1146 |
+
index: int
|
| 1147 |
+
object: str = "pooling"
|
| 1148 |
+
data: Union[List[List[float]], List[float], str]
|
| 1149 |
+
|
| 1150 |
+
|
| 1151 |
+
class PoolingResponse(OpenAIBaseModel):
|
| 1152 |
+
id: str = Field(default_factory=lambda: f"pool-{random_uuid()}")
|
| 1153 |
+
object: str = "list"
|
| 1154 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 1155 |
+
model: str
|
| 1156 |
+
data: List[PoolingResponseData]
|
| 1157 |
+
usage: UsageInfo
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
class ScoreResponseData(OpenAIBaseModel):
|
| 1161 |
+
index: int
|
| 1162 |
+
object: str = "score"
|
| 1163 |
+
score: float
|
| 1164 |
+
|
| 1165 |
+
|
| 1166 |
+
class ScoreResponse(OpenAIBaseModel):
|
| 1167 |
+
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
|
| 1168 |
+
object: str = "list"
|
| 1169 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 1170 |
+
model: str
|
| 1171 |
+
data: List[ScoreResponseData]
|
| 1172 |
+
usage: UsageInfo
|
| 1173 |
+
|
| 1174 |
+
|
| 1175 |
+
class FunctionCall(OpenAIBaseModel):
|
| 1176 |
+
name: str
|
| 1177 |
+
arguments: str
|
| 1178 |
+
|
| 1179 |
+
|
| 1180 |
+
class ToolCall(OpenAIBaseModel):
|
| 1181 |
+
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
|
| 1182 |
+
type: Literal["function"] = "function"
|
| 1183 |
+
function: FunctionCall
|
| 1184 |
+
|
| 1185 |
+
|
| 1186 |
+
class DeltaFunctionCall(BaseModel):
|
| 1187 |
+
name: Optional[str] = None
|
| 1188 |
+
arguments: Optional[str] = None
|
| 1189 |
+
|
| 1190 |
+
|
| 1191 |
+
# a tool call delta where everything is optional
|
| 1192 |
+
class DeltaToolCall(OpenAIBaseModel):
|
| 1193 |
+
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
|
| 1194 |
+
type: Literal["function"] = "function"
|
| 1195 |
+
index: int
|
| 1196 |
+
function: Optional[DeltaFunctionCall] = None
|
| 1197 |
+
|
| 1198 |
+
|
| 1199 |
+
class ExtractedToolCallInformation(BaseModel):
|
| 1200 |
+
# indicate if tools were called
|
| 1201 |
+
tools_called: bool
|
| 1202 |
+
|
| 1203 |
+
# extracted tool calls
|
| 1204 |
+
tool_calls: List[ToolCall]
|
| 1205 |
+
|
| 1206 |
+
# content - per OpenAI spec, content AND tool calls can be returned rarely
|
| 1207 |
+
# But some models will do this intentionally
|
| 1208 |
+
content: Optional[str] = None
|
| 1209 |
+
|
| 1210 |
+
|
| 1211 |
+
class ChatMessage(OpenAIBaseModel):
|
| 1212 |
+
role: str
|
| 1213 |
+
reasoning_content: Optional[str] = None
|
| 1214 |
+
content: Optional[str] = None
|
| 1215 |
+
tool_calls: List[ToolCall] = Field(default_factory=list)
|
| 1216 |
+
|
| 1217 |
+
|
| 1218 |
+
class ChatCompletionLogProb(OpenAIBaseModel):
|
| 1219 |
+
token: str
|
| 1220 |
+
logprob: float = -9999.0
|
| 1221 |
+
bytes: Optional[List[int]] = None
|
| 1222 |
+
|
| 1223 |
+
|
| 1224 |
+
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
|
| 1225 |
+
top_logprobs: List[ChatCompletionLogProb] = Field(default_factory=list)
|
| 1226 |
+
|
| 1227 |
+
|
| 1228 |
+
class ChatCompletionLogProbs(OpenAIBaseModel):
|
| 1229 |
+
content: Optional[List[ChatCompletionLogProbsContent]] = None
|
| 1230 |
+
|
| 1231 |
+
|
| 1232 |
+
class ChatCompletionResponseChoice(OpenAIBaseModel):
|
| 1233 |
+
index: int
|
| 1234 |
+
message: ChatMessage
|
| 1235 |
+
logprobs: Optional[ChatCompletionLogProbs] = None
|
| 1236 |
+
# per OpenAI spec this is the default
|
| 1237 |
+
finish_reason: Optional[str] = "stop"
|
| 1238 |
+
# not part of the OpenAI spec but included in vLLM for legacy reasons
|
| 1239 |
+
stop_reason: Optional[Union[int, str]] = None
|
| 1240 |
+
|
| 1241 |
+
|
| 1242 |
+
class ChatCompletionResponse(OpenAIBaseModel):
|
| 1243 |
+
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
| 1244 |
+
object: Literal["chat.completion"] = "chat.completion"
|
| 1245 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 1246 |
+
model: str
|
| 1247 |
+
choices: List[ChatCompletionResponseChoice]
|
| 1248 |
+
usage: UsageInfo
|
| 1249 |
+
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
|
| 1250 |
+
|
| 1251 |
+
|
| 1252 |
+
class DeltaMessage(OpenAIBaseModel):
|
| 1253 |
+
role: Optional[str] = None
|
| 1254 |
+
content: Optional[str] = None
|
| 1255 |
+
reasoning_content: Optional[str] = None
|
| 1256 |
+
tool_calls: List[DeltaToolCall] = Field(default_factory=list)
|
| 1257 |
+
|
| 1258 |
+
|
| 1259 |
+
class ChatCompletionResponseStreamChoice(OpenAIBaseModel):
|
| 1260 |
+
index: int
|
| 1261 |
+
delta: DeltaMessage
|
| 1262 |
+
logprobs: Optional[ChatCompletionLogProbs] = None
|
| 1263 |
+
finish_reason: Optional[str] = None
|
| 1264 |
+
stop_reason: Optional[Union[int, str]] = None
|
| 1265 |
+
|
| 1266 |
+
|
| 1267 |
+
class ChatCompletionStreamResponse(OpenAIBaseModel):
|
| 1268 |
+
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
| 1269 |
+
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
| 1270 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 1271 |
+
model: str
|
| 1272 |
+
choices: List[ChatCompletionResponseStreamChoice]
|
| 1273 |
+
usage: Optional[UsageInfo] = Field(default=None)
|
| 1274 |
+
|
| 1275 |
+
|
| 1276 |
+
class BatchRequestInput(OpenAIBaseModel):
|
| 1277 |
+
"""
|
| 1278 |
+
The per-line object of the batch input file.
|
| 1279 |
+
|
| 1280 |
+
NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
|
| 1281 |
+
"""
|
| 1282 |
+
|
| 1283 |
+
# A developer-provided per-request id that will be used to match outputs to
|
| 1284 |
+
# inputs. Must be unique for each request in a batch.
|
| 1285 |
+
custom_id: str
|
| 1286 |
+
|
| 1287 |
+
# The HTTP method to be used for the request. Currently only POST is
|
| 1288 |
+
# supported.
|
| 1289 |
+
method: str
|
| 1290 |
+
|
| 1291 |
+
# The OpenAI API relative URL to be used for the request. Currently
|
| 1292 |
+
# /v1/chat/completions is supported.
|
| 1293 |
+
url: str
|
| 1294 |
+
|
| 1295 |
+
# The parameters of the request.
|
| 1296 |
+
body: Union[ChatCompletionRequest, EmbeddingRequest, ScoreRequest]
|
| 1297 |
+
|
| 1298 |
+
@field_validator('body', mode='plain')
|
| 1299 |
+
@classmethod
|
| 1300 |
+
def check_type_for_url(cls, value: Any, info: ValidationInfo):
|
| 1301 |
+
# Use url to disambiguate models
|
| 1302 |
+
url = info.data['url']
|
| 1303 |
+
if url == "/v1/chat/completions":
|
| 1304 |
+
return ChatCompletionRequest.model_validate(value)
|
| 1305 |
+
if url == "/v1/embeddings":
|
| 1306 |
+
return TypeAdapter(EmbeddingRequest).validate_python(value)
|
| 1307 |
+
if url == "/v1/score":
|
| 1308 |
+
return ScoreRequest.model_validate(value)
|
| 1309 |
+
return TypeAdapter(Union[ChatCompletionRequest, EmbeddingRequest,
|
| 1310 |
+
ScoreRequest]).validate_python(value)
|
| 1311 |
+
|
| 1312 |
+
|
| 1313 |
+
class BatchResponseData(OpenAIBaseModel):
|
| 1314 |
+
# HTTP status code of the response.
|
| 1315 |
+
status_code: int = 200
|
| 1316 |
+
|
| 1317 |
+
# An unique identifier for the API request.
|
| 1318 |
+
request_id: str
|
| 1319 |
+
|
| 1320 |
+
# The body of the response.
|
| 1321 |
+
body: Optional[Union[ChatCompletionResponse, EmbeddingResponse,
|
| 1322 |
+
ScoreResponse]] = None
|
| 1323 |
+
|
| 1324 |
+
|
| 1325 |
+
class BatchRequestOutput(OpenAIBaseModel):
|
| 1326 |
+
"""
|
| 1327 |
+
The per-line object of the batch output and error files
|
| 1328 |
+
"""
|
| 1329 |
+
|
| 1330 |
+
id: str
|
| 1331 |
+
|
| 1332 |
+
# A developer-provided per-request id that will be used to match outputs to
|
| 1333 |
+
# inputs.
|
| 1334 |
+
custom_id: str
|
| 1335 |
+
|
| 1336 |
+
response: Optional[BatchResponseData]
|
| 1337 |
+
|
| 1338 |
+
# For requests that failed with a non-HTTP error, this will contain more
|
| 1339 |
+
# information on the cause of the failure.
|
| 1340 |
+
error: Optional[Any]
|
| 1341 |
+
|
| 1342 |
+
|
| 1343 |
+
class TokenizeCompletionRequest(OpenAIBaseModel):
|
| 1344 |
+
model: str
|
| 1345 |
+
prompt: str
|
| 1346 |
+
|
| 1347 |
+
add_special_tokens: bool = Field(
|
| 1348 |
+
default=True,
|
| 1349 |
+
description=(
|
| 1350 |
+
"If true (the default), special tokens (e.g. BOS) will be added to "
|
| 1351 |
+
"the prompt."),
|
| 1352 |
+
)
|
| 1353 |
+
|
| 1354 |
+
|
| 1355 |
+
class TokenizeChatRequest(OpenAIBaseModel):
|
| 1356 |
+
model: str
|
| 1357 |
+
messages: List[ChatCompletionMessageParam]
|
| 1358 |
+
|
| 1359 |
+
add_generation_prompt: bool = Field(
|
| 1360 |
+
default=True,
|
| 1361 |
+
description=
|
| 1362 |
+
("If true, the generation prompt will be added to the chat template. "
|
| 1363 |
+
"This is a parameter used by chat template in tokenizer config of the "
|
| 1364 |
+
"model."),
|
| 1365 |
+
)
|
| 1366 |
+
continue_final_message: bool = Field(
|
| 1367 |
+
default=False,
|
| 1368 |
+
description=
|
| 1369 |
+
("If this is set, the chat will be formatted so that the final "
|
| 1370 |
+
"message in the chat is open-ended, without any EOS tokens. The "
|
| 1371 |
+
"model will continue this message rather than starting a new one. "
|
| 1372 |
+
"This allows you to \"prefill\" part of the model's response for it. "
|
| 1373 |
+
"Cannot be used at the same time as `add_generation_prompt`."),
|
| 1374 |
+
)
|
| 1375 |
+
add_special_tokens: bool = Field(
|
| 1376 |
+
default=False,
|
| 1377 |
+
description=(
|
| 1378 |
+
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
| 1379 |
+
"on top of what is added by the chat template. "
|
| 1380 |
+
"For most models, the chat template takes care of adding the "
|
| 1381 |
+
"special tokens so this should be set to false (as is the "
|
| 1382 |
+
"default)."),
|
| 1383 |
+
)
|
| 1384 |
+
chat_template: Optional[str] = Field(
|
| 1385 |
+
default=None,
|
| 1386 |
+
description=(
|
| 1387 |
+
"A Jinja template to use for this conversion. "
|
| 1388 |
+
"As of transformers v4.44, default chat template is no longer "
|
| 1389 |
+
"allowed, so you must provide a chat template if the tokenizer "
|
| 1390 |
+
"does not define one."),
|
| 1391 |
+
)
|
| 1392 |
+
chat_template_kwargs: Optional[Dict[str, Any]] = Field(
|
| 1393 |
+
default=None,
|
| 1394 |
+
description=("Additional kwargs to pass to the template renderer. "
|
| 1395 |
+
"Will be accessible by the chat template."),
|
| 1396 |
+
)
|
| 1397 |
+
|
| 1398 |
+
@model_validator(mode="before")
|
| 1399 |
+
@classmethod
|
| 1400 |
+
def check_generation_prompt(cls, data):
|
| 1401 |
+
if data.get("continue_final_message") and data.get(
|
| 1402 |
+
"add_generation_prompt"):
|
| 1403 |
+
raise ValueError("Cannot set both `continue_final_message` and "
|
| 1404 |
+
"`add_generation_prompt` to True.")
|
| 1405 |
+
return data
|
| 1406 |
+
|
| 1407 |
+
|
| 1408 |
+
TokenizeRequest = Union[TokenizeCompletionRequest, TokenizeChatRequest]
|
| 1409 |
+
|
| 1410 |
+
|
| 1411 |
+
class TokenizeResponse(OpenAIBaseModel):
|
| 1412 |
+
count: int
|
| 1413 |
+
max_model_len: int
|
| 1414 |
+
tokens: List[int]
|
| 1415 |
+
|
| 1416 |
+
|
| 1417 |
+
class DetokenizeRequest(OpenAIBaseModel):
|
| 1418 |
+
model: str
|
| 1419 |
+
tokens: List[int]
|
| 1420 |
+
|
| 1421 |
+
|
| 1422 |
+
class DetokenizeResponse(OpenAIBaseModel):
|
| 1423 |
+
prompt: str
|
| 1424 |
+
|
| 1425 |
+
|
| 1426 |
+
class LoadLoraAdapterRequest(BaseModel):
|
| 1427 |
+
lora_name: str
|
| 1428 |
+
lora_path: str
|
| 1429 |
+
|
| 1430 |
+
|
| 1431 |
+
class UnloadLoraAdapterRequest(BaseModel):
|
| 1432 |
+
lora_name: str
|
| 1433 |
+
lora_int_id: Optional[int] = Field(default=None)
|
| 1434 |
+
|
| 1435 |
+
|
| 1436 |
+
## Protocols for Audio
|
| 1437 |
+
AudioResponseFormat: TypeAlias = Literal["json", "text", "srt", "verbose_json",
|
| 1438 |
+
"vtt"]
|
| 1439 |
+
|
| 1440 |
+
|
| 1441 |
+
class TranscriptionRequest(OpenAIBaseModel):
|
| 1442 |
+
# Ordered by official OpenAI API documentation
|
| 1443 |
+
#https://platform.openai.com/docs/api-reference/audio/createTranscription
|
| 1444 |
+
|
| 1445 |
+
file: UploadFile
|
| 1446 |
+
"""
|
| 1447 |
+
The audio file object (not file name) to transcribe, in one of these
|
| 1448 |
+
formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
|
| 1449 |
+
"""
|
| 1450 |
+
|
| 1451 |
+
model: str
|
| 1452 |
+
"""ID of the model to use.
|
| 1453 |
+
"""
|
| 1454 |
+
|
| 1455 |
+
language: Optional[str] = None
|
| 1456 |
+
"""The language of the input audio.
|
| 1457 |
+
|
| 1458 |
+
Supplying the input language in
|
| 1459 |
+
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format
|
| 1460 |
+
will improve accuracy and latency.
|
| 1461 |
+
"""
|
| 1462 |
+
|
| 1463 |
+
prompt: str = Field(default="")
|
| 1464 |
+
"""An optional text to guide the model's style or continue a previous audio
|
| 1465 |
+
segment.
|
| 1466 |
+
|
| 1467 |
+
The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting)
|
| 1468 |
+
should match the audio language.
|
| 1469 |
+
"""
|
| 1470 |
+
|
| 1471 |
+
response_format: AudioResponseFormat = Field(default="json")
|
| 1472 |
+
"""
|
| 1473 |
+
The format of the output, in one of these options: `json`, `text`, `srt`,
|
| 1474 |
+
`verbose_json`, or `vtt`.
|
| 1475 |
+
"""
|
| 1476 |
+
|
| 1477 |
+
## TODO (varun) : Support if set to 0, certain thresholds are met !!
|
| 1478 |
+
temperature: float = Field(default=0.0)
|
| 1479 |
+
"""The sampling temperature, between 0 and 1.
|
| 1480 |
+
|
| 1481 |
+
Higher values like 0.8 will make the output more random, while lower values
|
| 1482 |
+
like 0.2 will make it more focused / deterministic. If set to 0, the model
|
| 1483 |
+
will use [log probability](https://en.wikipedia.org/wiki/Log_probability)
|
| 1484 |
+
to automatically increase the temperature until certain thresholds are hit.
|
| 1485 |
+
"""
|
| 1486 |
+
|
| 1487 |
+
timestamp_granularities: List[Literal["word", "segment"]] = Field(
|
| 1488 |
+
alias="timestamp_granularities[]", default=[])
|
| 1489 |
+
"""The timestamp granularities to populate for this transcription.
|
| 1490 |
+
|
| 1491 |
+
`response_format` must be set `verbose_json` to use timestamp granularities.
|
| 1492 |
+
Either or both of these options are supported: `word`, or `segment`. Note:
|
| 1493 |
+
There is no additional latency for segment timestamps, but generating word
|
| 1494 |
+
timestamps incurs additional latency.
|
| 1495 |
+
"""
|
| 1496 |
+
|
| 1497 |
+
# Default sampling parameters for transcription requests.
|
| 1498 |
+
_DEFAULT_SAMPLING_PARAMS: dict = {
|
| 1499 |
+
"temperature": 0,
|
| 1500 |
+
}
|
| 1501 |
+
|
| 1502 |
+
def to_sampling_params(
|
| 1503 |
+
self,
|
| 1504 |
+
default_max_tokens: int,
|
| 1505 |
+
default_sampling_params: Optional[dict] = None) -> SamplingParams:
|
| 1506 |
+
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
| 1507 |
+
max_tokens = default_max_tokens
|
| 1508 |
+
|
| 1509 |
+
if default_sampling_params is None:
|
| 1510 |
+
default_sampling_params = {}
|
| 1511 |
+
# Default parameters
|
| 1512 |
+
if (temperature := self.temperature) is None:
|
| 1513 |
+
temperature = default_sampling_params.get(
|
| 1514 |
+
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
| 1515 |
+
|
| 1516 |
+
return SamplingParams.from_optional(temperature=temperature,
|
| 1517 |
+
max_tokens=max_tokens)
|
| 1518 |
+
|
| 1519 |
+
|
| 1520 |
+
# Transcription response objects
|
| 1521 |
+
class TranscriptionResponse(OpenAIBaseModel):
|
| 1522 |
+
text: str
|
| 1523 |
+
"""The transcribed text."""
|
| 1524 |
+
|
| 1525 |
+
|
| 1526 |
+
class TranscriptionWord(OpenAIBaseModel):
|
| 1527 |
+
end: float
|
| 1528 |
+
"""End time of the word in seconds."""
|
| 1529 |
+
|
| 1530 |
+
start: float
|
| 1531 |
+
"""Start time of the word in seconds."""
|
| 1532 |
+
|
| 1533 |
+
word: str
|
| 1534 |
+
"""The text content of the word."""
|
| 1535 |
+
|
| 1536 |
+
|
| 1537 |
+
class TranscriptionSegment(OpenAIBaseModel):
|
| 1538 |
+
id: int
|
| 1539 |
+
"""Unique identifier of the segment."""
|
| 1540 |
+
|
| 1541 |
+
avg_logprob: float
|
| 1542 |
+
"""Average logprob of the segment.
|
| 1543 |
+
|
| 1544 |
+
If the value is lower than -1, consider the logprobs failed.
|
| 1545 |
+
"""
|
| 1546 |
+
|
| 1547 |
+
compression_ratio: float
|
| 1548 |
+
"""Compression ratio of the segment.
|
| 1549 |
+
|
| 1550 |
+
If the value is greater than 2.4, consider the compression failed.
|
| 1551 |
+
"""
|
| 1552 |
+
|
| 1553 |
+
end: float
|
| 1554 |
+
"""End time of the segment in seconds."""
|
| 1555 |
+
|
| 1556 |
+
no_speech_prob: float
|
| 1557 |
+
"""Probability of no speech in the segment.
|
| 1558 |
+
|
| 1559 |
+
If the value is higher than 1.0 and the `avg_logprob` is below -1, consider
|
| 1560 |
+
this segment silent.
|
| 1561 |
+
"""
|
| 1562 |
+
|
| 1563 |
+
seek: int
|
| 1564 |
+
"""Seek offset of the segment."""
|
| 1565 |
+
|
| 1566 |
+
start: float
|
| 1567 |
+
"""Start time of the segment in seconds."""
|
| 1568 |
+
|
| 1569 |
+
temperature: float
|
| 1570 |
+
"""Temperature parameter used for generating the segment."""
|
| 1571 |
+
|
| 1572 |
+
text: str
|
| 1573 |
+
"""Text content of the segment."""
|
| 1574 |
+
|
| 1575 |
+
tokens: List[int]
|
| 1576 |
+
"""Array of token IDs for the text content."""
|
| 1577 |
+
|
| 1578 |
+
|
| 1579 |
+
class TranscriptionResponseVerbose(OpenAIBaseModel):
|
| 1580 |
+
duration: str
|
| 1581 |
+
"""The duration of the input audio."""
|
| 1582 |
+
|
| 1583 |
+
language: str
|
| 1584 |
+
"""The language of the input audio."""
|
| 1585 |
+
|
| 1586 |
+
text: str
|
| 1587 |
+
"""The transcribed text."""
|
| 1588 |
+
|
| 1589 |
+
segments: Optional[List[TranscriptionSegment]] = None
|
| 1590 |
+
"""Segments of the transcribed text and their corresponding details."""
|
| 1591 |
+
|
| 1592 |
+
words: Optional[List[TranscriptionWord]] = None
|
| 1593 |
+
"""Extracted words and their corresponding timestamps."""
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
from .abs_reasoning_parsers import ReasoningParser, ReasoningParserManager
|
| 4 |
+
from .deepseek_r1_reasoning_parser import DeepSeekR1ReasoningParser
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"ReasoningParser", "ReasoningParserManager", "DeepSeekR1ReasoningParser"
|
| 8 |
+
]
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (407 Bytes). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__pycache__/abs_reasoning_parsers.cpython-310.pyc
ADDED
|
Binary file (6.02 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/__pycache__/deepseek_r1_reasoning_parser.cpython-310.pyc
ADDED
|
Binary file (3.64 kB). View file
|
|
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/abs_reasoning_parsers.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from functools import cached_property
|
| 5 |
+
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Type, Union
|
| 6 |
+
|
| 7 |
+
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
| 8 |
+
DeltaMessage)
|
| 9 |
+
from vllm.logger import init_logger
|
| 10 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
| 11 |
+
from vllm.utils import import_from_path, is_list_of
|
| 12 |
+
|
| 13 |
+
logger = init_logger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class ReasoningParser:
|
| 17 |
+
"""
|
| 18 |
+
Abstract reasoning parser class that should not be used directly.
|
| 19 |
+
Provided and methods should be used in derived classes.
|
| 20 |
+
|
| 21 |
+
It is used to extract reasoning content from the model output.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
def __init__(self, tokenizer: AnyTokenizer):
|
| 25 |
+
self.model_tokenizer = tokenizer
|
| 26 |
+
|
| 27 |
+
@cached_property
|
| 28 |
+
def vocab(self) -> Dict[str, int]:
|
| 29 |
+
# NOTE: Only PreTrainedTokenizerFast is guaranteed to have .vocab
|
| 30 |
+
# whereas all tokenizers have .get_vocab()
|
| 31 |
+
return self.model_tokenizer.get_vocab()
|
| 32 |
+
|
| 33 |
+
def extract_reasoning_content(
|
| 34 |
+
self, model_output: str, request: ChatCompletionRequest
|
| 35 |
+
) -> Tuple[Optional[str], Optional[str]]:
|
| 36 |
+
"""
|
| 37 |
+
Extract reasoning content from a complete model-generated string.
|
| 38 |
+
|
| 39 |
+
Used for non-streaming responses where we have the entire model response
|
| 40 |
+
available before sending to the client.
|
| 41 |
+
|
| 42 |
+
Parameters:
|
| 43 |
+
model_output: str
|
| 44 |
+
The model-generated string to extract reasoning content from.
|
| 45 |
+
|
| 46 |
+
request: ChatCompletionRequest
|
| 47 |
+
The request object that was used to generate the model_output.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
Tuple[Optional[str], Optional[str]]
|
| 51 |
+
A tuple containing the reasoning content and the content.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
raise NotImplementedError(
|
| 55 |
+
"AbstractReasoningParser.extract_reasoning_calls "
|
| 56 |
+
"has not been implemented!")
|
| 57 |
+
|
| 58 |
+
def extract_reasoning_content_streaming(
|
| 59 |
+
self,
|
| 60 |
+
previous_text: str,
|
| 61 |
+
current_text: str,
|
| 62 |
+
delta_text: str,
|
| 63 |
+
previous_token_ids: Sequence[int],
|
| 64 |
+
current_token_ids: Sequence[int],
|
| 65 |
+
delta_token_ids: Sequence[int],
|
| 66 |
+
) -> Union[DeltaMessage, None]:
|
| 67 |
+
"""
|
| 68 |
+
Instance method that should be implemented for extracting reasoning
|
| 69 |
+
from an incomplete response; for use when handling reasoning calls and
|
| 70 |
+
streaming. Has to be an instance method because it requires state -
|
| 71 |
+
the current tokens/diffs, but also the information about what has
|
| 72 |
+
previously been parsed and extracted (see constructor)
|
| 73 |
+
"""
|
| 74 |
+
raise NotImplementedError(
|
| 75 |
+
"AbstractReasoningParser.extract_reasoning_content_streaming "
|
| 76 |
+
"has not been implemented!")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class ReasoningParserManager:
|
| 80 |
+
reasoning_parsers: Dict[str, Type] = {}
|
| 81 |
+
|
| 82 |
+
@classmethod
|
| 83 |
+
def get_reasoning_parser(cls, name) -> Type:
|
| 84 |
+
"""
|
| 85 |
+
Get reasoning parser by name which is registered by `register_module`.
|
| 86 |
+
|
| 87 |
+
Raise a KeyError exception if the name is not registered.
|
| 88 |
+
"""
|
| 89 |
+
if name in cls.reasoning_parsers:
|
| 90 |
+
return cls.reasoning_parsers[name]
|
| 91 |
+
|
| 92 |
+
raise KeyError(f"reasoning helper: '{name}' not found in "
|
| 93 |
+
"reasoning_parsers")
|
| 94 |
+
|
| 95 |
+
@classmethod
|
| 96 |
+
def _register_module(cls,
|
| 97 |
+
module: Type,
|
| 98 |
+
module_name: Optional[Union[str, List[str]]] = None,
|
| 99 |
+
force: bool = True) -> None:
|
| 100 |
+
if not issubclass(module, ReasoningParser):
|
| 101 |
+
raise TypeError("module must be subclass of ReasoningParser, "
|
| 102 |
+
f"but got {type(module)}")
|
| 103 |
+
if module_name is None:
|
| 104 |
+
module_name = module.__name__
|
| 105 |
+
if isinstance(module_name, str):
|
| 106 |
+
module_name = [module_name]
|
| 107 |
+
for name in module_name:
|
| 108 |
+
if not force and name in cls.reasoning_parsers:
|
| 109 |
+
existed_module = cls.reasoning_parsers[name]
|
| 110 |
+
raise KeyError(f"{name} is already registered "
|
| 111 |
+
f"at {existed_module.__module__}")
|
| 112 |
+
cls.reasoning_parsers[name] = module
|
| 113 |
+
|
| 114 |
+
@classmethod
|
| 115 |
+
def register_module(
|
| 116 |
+
cls,
|
| 117 |
+
name: Optional[Union[str, List[str]]] = None,
|
| 118 |
+
force: bool = True,
|
| 119 |
+
module: Union[Type, None] = None) -> Union[type, Callable]:
|
| 120 |
+
"""
|
| 121 |
+
Register module with the given name or name list. it can be used as a
|
| 122 |
+
decoder(with module as None) or normal function(with module as not
|
| 123 |
+
None).
|
| 124 |
+
"""
|
| 125 |
+
if not isinstance(force, bool):
|
| 126 |
+
raise TypeError(f"force must be a boolean, but got {type(force)}")
|
| 127 |
+
|
| 128 |
+
# raise the error ahead of time
|
| 129 |
+
if not (name is None or isinstance(name, str)
|
| 130 |
+
or is_list_of(name, str)):
|
| 131 |
+
raise TypeError(
|
| 132 |
+
"name must be None, an instance of str, or a sequence of str, "
|
| 133 |
+
f"but got {type(name)}")
|
| 134 |
+
|
| 135 |
+
# use it as a normal method: x.register_module(module=SomeClass)
|
| 136 |
+
if module is not None:
|
| 137 |
+
cls._register_module(module=module, module_name=name, force=force)
|
| 138 |
+
return module
|
| 139 |
+
|
| 140 |
+
# use it as a decorator: @x.register_module()
|
| 141 |
+
def _register(module):
|
| 142 |
+
cls._register_module(module=module, module_name=name, force=force)
|
| 143 |
+
return module
|
| 144 |
+
|
| 145 |
+
return _register
|
| 146 |
+
|
| 147 |
+
@classmethod
|
| 148 |
+
def import_reasoning_parser(cls, plugin_path: str) -> None:
|
| 149 |
+
"""
|
| 150 |
+
Import a user-defined reasoning parser by the path
|
| 151 |
+
of the reasoning parser define file.
|
| 152 |
+
"""
|
| 153 |
+
module_name = os.path.splitext(os.path.basename(plugin_path))[0]
|
| 154 |
+
|
| 155 |
+
try:
|
| 156 |
+
import_from_path(module_name, plugin_path)
|
| 157 |
+
except Exception:
|
| 158 |
+
logger.exception("Failed to load module '%s' from %s.",
|
| 159 |
+
module_name, plugin_path)
|
| 160 |
+
return
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/reasoning_parsers/deepseek_r1_reasoning_parser.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import re
|
| 4 |
+
from typing import Optional, Sequence, Tuple, Union
|
| 5 |
+
|
| 6 |
+
from transformers import PreTrainedTokenizerBase
|
| 7 |
+
|
| 8 |
+
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
| 9 |
+
DeltaMessage)
|
| 10 |
+
from vllm.entrypoints.openai.reasoning_parsers.abs_reasoning_parsers import (
|
| 11 |
+
ReasoningParser, ReasoningParserManager)
|
| 12 |
+
from vllm.logger import init_logger
|
| 13 |
+
|
| 14 |
+
logger = init_logger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@ReasoningParserManager.register_module("deepseek_r1")
|
| 18 |
+
class DeepSeekR1ReasoningParser(ReasoningParser):
|
| 19 |
+
"""
|
| 20 |
+
Reasoning parser for DeepSeek R1 model.
|
| 21 |
+
|
| 22 |
+
The DeepSeek R1 model uses <think>...</think> tokens to denote reasoning
|
| 23 |
+
text. This parser extracts the reasoning content from the model output.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
def __init__(self, tokenizer: PreTrainedTokenizerBase):
|
| 27 |
+
super().__init__(tokenizer)
|
| 28 |
+
self.think_start_token = "<think>"
|
| 29 |
+
self.think_end_token = "</think>"
|
| 30 |
+
|
| 31 |
+
self.reasoning_regex = re.compile(
|
| 32 |
+
rf"{self.think_start_token}(.*?){self.think_end_token}", re.DOTALL)
|
| 33 |
+
|
| 34 |
+
if not self.model_tokenizer:
|
| 35 |
+
raise ValueError(
|
| 36 |
+
"The model tokenizer must be passed to the ReasoningParser "
|
| 37 |
+
"constructor during construction.")
|
| 38 |
+
|
| 39 |
+
self.think_start_token_id = self.vocab.get(self.think_start_token)
|
| 40 |
+
self.think_end_token_id = self.vocab.get(self.think_end_token)
|
| 41 |
+
if (self.think_start_token_id is None
|
| 42 |
+
or self.think_end_token_id is None):
|
| 43 |
+
raise RuntimeError(
|
| 44 |
+
"DeepSeek R1 reasoning parser could not locate think start/end "
|
| 45 |
+
"tokens in the tokenizer!")
|
| 46 |
+
|
| 47 |
+
def extract_reasoning_content_streaming(
|
| 48 |
+
self,
|
| 49 |
+
previous_text: str,
|
| 50 |
+
current_text: str,
|
| 51 |
+
delta_text: str,
|
| 52 |
+
previous_token_ids: Sequence[int],
|
| 53 |
+
current_token_ids: Sequence[int],
|
| 54 |
+
delta_token_ids: Sequence[int],
|
| 55 |
+
) -> Union[DeltaMessage, None]:
|
| 56 |
+
"""
|
| 57 |
+
Extract reasoning content from a delta message.
|
| 58 |
+
Handles streaming output where previous + delta = current.
|
| 59 |
+
Uses token IDs for faster processing.
|
| 60 |
+
For text <think>abc</think>xyz:
|
| 61 |
+
- 'abc' goes to reasoning_content
|
| 62 |
+
- 'xyz' goes to content
|
| 63 |
+
"""
|
| 64 |
+
# Skip single special tokens
|
| 65 |
+
if len(delta_token_ids) == 1 and (delta_token_ids[0] in [
|
| 66 |
+
self.think_start_token_id, self.think_end_token_id
|
| 67 |
+
]):
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
# Check if <think> is present in previous or delta.
|
| 71 |
+
# Keep compatibility with models that don't generate <think> tokens.
|
| 72 |
+
if self.think_start_token_id in previous_token_ids:
|
| 73 |
+
if self.think_end_token_id in delta_token_ids:
|
| 74 |
+
# <think> in previous, </think> in delta,
|
| 75 |
+
# extract reasoning content
|
| 76 |
+
end_index = delta_text.find(self.think_end_token)
|
| 77 |
+
reasoning_content = delta_text[:end_index]
|
| 78 |
+
content = delta_text[end_index + len(self.think_end_token):]
|
| 79 |
+
return DeltaMessage(reasoning_content=reasoning_content,
|
| 80 |
+
content=content if content else None)
|
| 81 |
+
elif self.think_end_token_id in previous_token_ids:
|
| 82 |
+
# <think> in previous, </think> in previous,
|
| 83 |
+
# reasoning content continues
|
| 84 |
+
return DeltaMessage(content=delta_text)
|
| 85 |
+
else:
|
| 86 |
+
# <think> in previous, no </think> in previous or delta,
|
| 87 |
+
# reasoning content continues
|
| 88 |
+
return DeltaMessage(reasoning_content=delta_text)
|
| 89 |
+
elif self.think_start_token_id in delta_token_ids:
|
| 90 |
+
if self.think_end_token_id in delta_token_ids:
|
| 91 |
+
# <think> in delta, </think> in delta, extract reasoning content
|
| 92 |
+
start_index = delta_text.find(self.think_start_token)
|
| 93 |
+
end_index = delta_text.find(self.think_end_token)
|
| 94 |
+
reasoning_content = delta_text[start_index +
|
| 95 |
+
len(self.think_start_token
|
| 96 |
+
):end_index]
|
| 97 |
+
content = delta_text[end_index + len(self.think_end_token):]
|
| 98 |
+
return DeltaMessage(reasoning_content=reasoning_content,
|
| 99 |
+
content=content if content else None)
|
| 100 |
+
else:
|
| 101 |
+
# <think> in delta, no </think> in delta,
|
| 102 |
+
# reasoning content continues
|
| 103 |
+
return DeltaMessage(reasoning_content=delta_text)
|
| 104 |
+
else:
|
| 105 |
+
# No <think> in previous or delta, also need to check for </think>.
|
| 106 |
+
# Because the model may have generated </think> without <think>
|
| 107 |
+
# Ref https://huggingface.co/deepseek-ai/DeepSeek-R1/commit/8a58a132790c9935686eb97f042afa8013451c9f
|
| 108 |
+
if self.think_end_token_id in delta_token_ids:
|
| 109 |
+
# </think> in delta with more tokens,
|
| 110 |
+
# extract reasoning content and content
|
| 111 |
+
end_index = delta_text.find(self.think_end_token)
|
| 112 |
+
reasoning_content = delta_text[:end_index]
|
| 113 |
+
content = delta_text[end_index + len(self.think_end_token):]
|
| 114 |
+
return DeltaMessage(reasoning_content=reasoning_content,
|
| 115 |
+
content=content if content else None)
|
| 116 |
+
elif self.think_end_token_id in previous_token_ids:
|
| 117 |
+
# </think> in previous, thinking content ends
|
| 118 |
+
return DeltaMessage(content=delta_text)
|
| 119 |
+
else:
|
| 120 |
+
# no </think> in previous or delta, reasoning content continues
|
| 121 |
+
return DeltaMessage(reasoning_content=delta_text)
|
| 122 |
+
|
| 123 |
+
def extract_reasoning_content(
|
| 124 |
+
self, model_output: str, request: ChatCompletionRequest
|
| 125 |
+
) -> Tuple[Optional[str], Optional[str]]:
|
| 126 |
+
|
| 127 |
+
# DeepSeek R1 doesn't generate <think> now.
|
| 128 |
+
# Thus we assume the reasoning content is always at the start.
|
| 129 |
+
# Ref https://huggingface.co/deepseek-ai/DeepSeek-R1/commit/8a58a132790c9935686eb97f042afa8013451c9f
|
| 130 |
+
if self.think_end_token not in model_output:
|
| 131 |
+
return model_output, None
|
| 132 |
+
else:
|
| 133 |
+
# Add a start token if it's missing to keep compatibility.
|
| 134 |
+
if self.think_start_token not in model_output:
|
| 135 |
+
model_output = f"{self.think_start_token}{model_output}"
|
| 136 |
+
# Use a regex to find the reasoning content
|
| 137 |
+
reasoning_content = self.reasoning_regex.findall(model_output)[0]
|
| 138 |
+
|
| 139 |
+
end_index = len(
|
| 140 |
+
f"{self.think_start_token}{reasoning_content}{self.think_end_token}"
|
| 141 |
+
)
|
| 142 |
+
final_output = model_output[end_index:]
|
| 143 |
+
|
| 144 |
+
if len(final_output) == 0:
|
| 145 |
+
return reasoning_content, None
|
| 146 |
+
|
| 147 |
+
return reasoning_content, final_output
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/run_batch.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import tempfile
|
| 5 |
+
from http import HTTPStatus
|
| 6 |
+
from io import StringIO
|
| 7 |
+
from typing import Awaitable, Callable, List, Optional
|
| 8 |
+
|
| 9 |
+
import aiohttp
|
| 10 |
+
import torch
|
| 11 |
+
from prometheus_client import start_http_server
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
from vllm.engine.arg_utils import AsyncEngineArgs, nullable_str
|
| 15 |
+
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
| 16 |
+
from vllm.entrypoints.logger import RequestLogger, logger
|
| 17 |
+
# yapf: disable
|
| 18 |
+
from vllm.entrypoints.openai.protocol import (BatchRequestInput,
|
| 19 |
+
BatchRequestOutput,
|
| 20 |
+
BatchResponseData,
|
| 21 |
+
ChatCompletionResponse,
|
| 22 |
+
EmbeddingResponse, ErrorResponse,
|
| 23 |
+
ScoreResponse)
|
| 24 |
+
# yapf: enable
|
| 25 |
+
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
| 26 |
+
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
| 27 |
+
from vllm.entrypoints.openai.serving_models import (BaseModelPath,
|
| 28 |
+
OpenAIServingModels)
|
| 29 |
+
from vllm.entrypoints.openai.serving_score import OpenAIServingScores
|
| 30 |
+
from vllm.usage.usage_lib import UsageContext
|
| 31 |
+
from vllm.utils import FlexibleArgumentParser, random_uuid
|
| 32 |
+
from vllm.version import __version__ as VLLM_VERSION
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def parse_args():
|
| 36 |
+
parser = FlexibleArgumentParser(
|
| 37 |
+
description="vLLM OpenAI-Compatible batch runner.")
|
| 38 |
+
parser.add_argument(
|
| 39 |
+
"-i",
|
| 40 |
+
"--input-file",
|
| 41 |
+
required=True,
|
| 42 |
+
type=str,
|
| 43 |
+
help=
|
| 44 |
+
"The path or url to a single input file. Currently supports local file "
|
| 45 |
+
"paths, or the http protocol (http or https). If a URL is specified, "
|
| 46 |
+
"the file should be available via HTTP GET.")
|
| 47 |
+
parser.add_argument(
|
| 48 |
+
"-o",
|
| 49 |
+
"--output-file",
|
| 50 |
+
required=True,
|
| 51 |
+
type=str,
|
| 52 |
+
help="The path or url to a single output file. Currently supports "
|
| 53 |
+
"local file paths, or web (http or https) urls. If a URL is specified,"
|
| 54 |
+
" the file should be available via HTTP PUT.")
|
| 55 |
+
parser.add_argument(
|
| 56 |
+
"--output-tmp-dir",
|
| 57 |
+
type=str,
|
| 58 |
+
default=None,
|
| 59 |
+
help="The directory to store the output file before uploading it "
|
| 60 |
+
"to the output URL.",
|
| 61 |
+
)
|
| 62 |
+
parser.add_argument("--response-role",
|
| 63 |
+
type=nullable_str,
|
| 64 |
+
default="assistant",
|
| 65 |
+
help="The role name to return if "
|
| 66 |
+
"`request.add_generation_prompt=True`.")
|
| 67 |
+
|
| 68 |
+
parser = AsyncEngineArgs.add_cli_args(parser)
|
| 69 |
+
|
| 70 |
+
parser.add_argument('--max-log-len',
|
| 71 |
+
type=int,
|
| 72 |
+
default=None,
|
| 73 |
+
help='Max number of prompt characters or prompt '
|
| 74 |
+
'ID numbers being printed in log.'
|
| 75 |
+
'\n\nDefault: Unlimited')
|
| 76 |
+
|
| 77 |
+
parser.add_argument("--enable-metrics",
|
| 78 |
+
action="store_true",
|
| 79 |
+
help="Enable Prometheus metrics")
|
| 80 |
+
parser.add_argument(
|
| 81 |
+
"--url",
|
| 82 |
+
type=str,
|
| 83 |
+
default="0.0.0.0",
|
| 84 |
+
help="URL to the Prometheus metrics server "
|
| 85 |
+
"(only needed if enable-metrics is set).",
|
| 86 |
+
)
|
| 87 |
+
parser.add_argument(
|
| 88 |
+
"--port",
|
| 89 |
+
type=int,
|
| 90 |
+
default=8000,
|
| 91 |
+
help="Port number for the Prometheus metrics server "
|
| 92 |
+
"(only needed if enable-metrics is set).",
|
| 93 |
+
)
|
| 94 |
+
parser.add_argument(
|
| 95 |
+
"--enable-prompt-tokens-details",
|
| 96 |
+
action='store_true',
|
| 97 |
+
default=False,
|
| 98 |
+
help="If set to True, enable prompt_tokens_details in usage.")
|
| 99 |
+
|
| 100 |
+
return parser.parse_args()
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# explicitly use pure text format, with a newline at the end
|
| 104 |
+
# this makes it impossible to see the animation in the progress bar
|
| 105 |
+
# but will avoid messing up with ray or multiprocessing, which wraps
|
| 106 |
+
# each line of output with some prefix.
|
| 107 |
+
_BAR_FORMAT = "{desc}: {percentage:3.0f}% Completed | {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]\n" # noqa: E501
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class BatchProgressTracker:
|
| 111 |
+
|
| 112 |
+
def __init__(self):
|
| 113 |
+
self._total = 0
|
| 114 |
+
self._pbar: Optional[tqdm] = None
|
| 115 |
+
|
| 116 |
+
def submitted(self):
|
| 117 |
+
self._total += 1
|
| 118 |
+
|
| 119 |
+
def completed(self):
|
| 120 |
+
if self._pbar:
|
| 121 |
+
self._pbar.update()
|
| 122 |
+
|
| 123 |
+
def pbar(self) -> tqdm:
|
| 124 |
+
enable_tqdm = not torch.distributed.is_initialized(
|
| 125 |
+
) or torch.distributed.get_rank() == 0
|
| 126 |
+
self._pbar = tqdm(total=self._total,
|
| 127 |
+
unit="req",
|
| 128 |
+
desc="Running batch",
|
| 129 |
+
mininterval=5,
|
| 130 |
+
disable=not enable_tqdm,
|
| 131 |
+
bar_format=_BAR_FORMAT)
|
| 132 |
+
return self._pbar
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
async def read_file(path_or_url: str) -> str:
|
| 136 |
+
if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
|
| 137 |
+
async with aiohttp.ClientSession() as session, \
|
| 138 |
+
session.get(path_or_url) as resp:
|
| 139 |
+
return await resp.text()
|
| 140 |
+
else:
|
| 141 |
+
with open(path_or_url, encoding="utf-8") as f:
|
| 142 |
+
return f.read()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
async def write_local_file(output_path: str,
|
| 146 |
+
batch_outputs: List[BatchRequestOutput]) -> None:
|
| 147 |
+
"""
|
| 148 |
+
Write the responses to a local file.
|
| 149 |
+
output_path: The path to write the responses to.
|
| 150 |
+
batch_outputs: The list of batch outputs to write.
|
| 151 |
+
"""
|
| 152 |
+
# We should make this async, but as long as run_batch runs as a
|
| 153 |
+
# standalone program, blocking the event loop won't effect performance.
|
| 154 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
| 155 |
+
for o in batch_outputs:
|
| 156 |
+
print(o.model_dump_json(), file=f)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
async def upload_data(output_url: str, data_or_file: str,
|
| 160 |
+
from_file: bool) -> None:
|
| 161 |
+
"""
|
| 162 |
+
Upload a local file to a URL.
|
| 163 |
+
output_url: The URL to upload the file to.
|
| 164 |
+
data_or_file: Either the data to upload or the path to the file to upload.
|
| 165 |
+
from_file: If True, data_or_file is the path to the file to upload.
|
| 166 |
+
"""
|
| 167 |
+
# Timeout is a common issue when uploading large files.
|
| 168 |
+
# We retry max_retries times before giving up.
|
| 169 |
+
max_retries = 5
|
| 170 |
+
# Number of seconds to wait before retrying.
|
| 171 |
+
delay = 5
|
| 172 |
+
|
| 173 |
+
for attempt in range(1, max_retries + 1):
|
| 174 |
+
try:
|
| 175 |
+
# We increase the timeout to 1000 seconds to allow
|
| 176 |
+
# for large files (default is 300).
|
| 177 |
+
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(
|
| 178 |
+
total=1000)) as session:
|
| 179 |
+
if from_file:
|
| 180 |
+
with open(data_or_file, "rb") as file:
|
| 181 |
+
async with session.put(output_url,
|
| 182 |
+
data=file) as response:
|
| 183 |
+
if response.status != 200:
|
| 184 |
+
raise Exception(f"Failed to upload file.\n"
|
| 185 |
+
f"Status: {response.status}\n"
|
| 186 |
+
f"Response: {response.text()}")
|
| 187 |
+
else:
|
| 188 |
+
async with session.put(output_url,
|
| 189 |
+
data=data_or_file) as response:
|
| 190 |
+
if response.status != 200:
|
| 191 |
+
raise Exception(f"Failed to upload data.\n"
|
| 192 |
+
f"Status: {response.status}\n"
|
| 193 |
+
f"Response: {response.text()}")
|
| 194 |
+
|
| 195 |
+
except Exception as e:
|
| 196 |
+
if attempt < max_retries:
|
| 197 |
+
logger.error(
|
| 198 |
+
f"Failed to upload data (attempt {attempt}). "
|
| 199 |
+
f"Error message: {str(e)}.\nRetrying in {delay} seconds..."
|
| 200 |
+
)
|
| 201 |
+
await asyncio.sleep(delay)
|
| 202 |
+
else:
|
| 203 |
+
raise Exception(f"Failed to upload data (attempt {attempt}). "
|
| 204 |
+
f"Error message: {str(e)}.") from e
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
async def write_file(path_or_url: str, batch_outputs: List[BatchRequestOutput],
|
| 208 |
+
output_tmp_dir: str) -> None:
|
| 209 |
+
"""
|
| 210 |
+
Write batch_outputs to a file or upload to a URL.
|
| 211 |
+
path_or_url: The path or URL to write batch_outputs to.
|
| 212 |
+
batch_outputs: The list of batch outputs to write.
|
| 213 |
+
output_tmp_dir: The directory to store the output file before uploading it
|
| 214 |
+
to the output URL.
|
| 215 |
+
"""
|
| 216 |
+
if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
|
| 217 |
+
if output_tmp_dir is None:
|
| 218 |
+
logger.info("Writing outputs to memory buffer")
|
| 219 |
+
output_buffer = StringIO()
|
| 220 |
+
for o in batch_outputs:
|
| 221 |
+
print(o.model_dump_json(), file=output_buffer)
|
| 222 |
+
output_buffer.seek(0)
|
| 223 |
+
logger.info("Uploading outputs to %s", path_or_url)
|
| 224 |
+
await upload_data(
|
| 225 |
+
path_or_url,
|
| 226 |
+
output_buffer.read().strip().encode("utf-8"),
|
| 227 |
+
from_file=False,
|
| 228 |
+
)
|
| 229 |
+
else:
|
| 230 |
+
# Write responses to a temporary file and then upload it to the URL.
|
| 231 |
+
with tempfile.NamedTemporaryFile(
|
| 232 |
+
mode="w",
|
| 233 |
+
encoding="utf-8",
|
| 234 |
+
dir=output_tmp_dir,
|
| 235 |
+
prefix="tmp_batch_output_",
|
| 236 |
+
suffix=".jsonl",
|
| 237 |
+
) as f:
|
| 238 |
+
logger.info("Writing outputs to temporary local file %s",
|
| 239 |
+
f.name)
|
| 240 |
+
await write_local_file(f.name, batch_outputs)
|
| 241 |
+
logger.info("Uploading outputs to %s", path_or_url)
|
| 242 |
+
await upload_data(path_or_url, f.name, from_file=True)
|
| 243 |
+
else:
|
| 244 |
+
logger.info("Writing outputs to local file %s", path_or_url)
|
| 245 |
+
await write_local_file(path_or_url, batch_outputs)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def make_error_request_output(request: BatchRequestInput,
|
| 249 |
+
error_msg: str) -> BatchRequestOutput:
|
| 250 |
+
batch_output = BatchRequestOutput(
|
| 251 |
+
id=f"vllm-{random_uuid()}",
|
| 252 |
+
custom_id=request.custom_id,
|
| 253 |
+
response=BatchResponseData(
|
| 254 |
+
status_code=HTTPStatus.BAD_REQUEST,
|
| 255 |
+
request_id=f"vllm-batch-{random_uuid()}",
|
| 256 |
+
),
|
| 257 |
+
error=error_msg,
|
| 258 |
+
)
|
| 259 |
+
return batch_output
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
async def make_async_error_request_output(
|
| 263 |
+
request: BatchRequestInput, error_msg: str) -> BatchRequestOutput:
|
| 264 |
+
return make_error_request_output(request, error_msg)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
async def run_request(serving_engine_func: Callable,
|
| 268 |
+
request: BatchRequestInput,
|
| 269 |
+
tracker: BatchProgressTracker) -> BatchRequestOutput:
|
| 270 |
+
response = await serving_engine_func(request.body)
|
| 271 |
+
|
| 272 |
+
if isinstance(response,
|
| 273 |
+
(ChatCompletionResponse, EmbeddingResponse, ScoreResponse)):
|
| 274 |
+
batch_output = BatchRequestOutput(
|
| 275 |
+
id=f"vllm-{random_uuid()}",
|
| 276 |
+
custom_id=request.custom_id,
|
| 277 |
+
response=BatchResponseData(
|
| 278 |
+
body=response, request_id=f"vllm-batch-{random_uuid()}"),
|
| 279 |
+
error=None,
|
| 280 |
+
)
|
| 281 |
+
elif isinstance(response, ErrorResponse):
|
| 282 |
+
batch_output = BatchRequestOutput(
|
| 283 |
+
id=f"vllm-{random_uuid()}",
|
| 284 |
+
custom_id=request.custom_id,
|
| 285 |
+
response=BatchResponseData(
|
| 286 |
+
status_code=response.code,
|
| 287 |
+
request_id=f"vllm-batch-{random_uuid()}"),
|
| 288 |
+
error=response,
|
| 289 |
+
)
|
| 290 |
+
else:
|
| 291 |
+
batch_output = make_error_request_output(
|
| 292 |
+
request, error_msg="Request must not be sent in stream mode")
|
| 293 |
+
|
| 294 |
+
tracker.completed()
|
| 295 |
+
return batch_output
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
async def main(args):
|
| 299 |
+
if args.served_model_name is not None:
|
| 300 |
+
served_model_names = args.served_model_name
|
| 301 |
+
else:
|
| 302 |
+
served_model_names = [args.model]
|
| 303 |
+
|
| 304 |
+
engine_args = AsyncEngineArgs.from_cli_args(args)
|
| 305 |
+
engine = AsyncLLMEngine.from_engine_args(
|
| 306 |
+
engine_args, usage_context=UsageContext.OPENAI_BATCH_RUNNER)
|
| 307 |
+
|
| 308 |
+
model_config = await engine.get_model_config()
|
| 309 |
+
base_model_paths = [
|
| 310 |
+
BaseModelPath(name=name, model_path=args.model)
|
| 311 |
+
for name in served_model_names
|
| 312 |
+
]
|
| 313 |
+
|
| 314 |
+
if args.disable_log_requests:
|
| 315 |
+
request_logger = None
|
| 316 |
+
else:
|
| 317 |
+
request_logger = RequestLogger(max_log_len=args.max_log_len)
|
| 318 |
+
|
| 319 |
+
# Create the openai serving objects.
|
| 320 |
+
openai_serving_models = OpenAIServingModels(
|
| 321 |
+
engine_client=engine,
|
| 322 |
+
model_config=model_config,
|
| 323 |
+
base_model_paths=base_model_paths,
|
| 324 |
+
lora_modules=None,
|
| 325 |
+
prompt_adapters=None,
|
| 326 |
+
)
|
| 327 |
+
openai_serving_chat = OpenAIServingChat(
|
| 328 |
+
engine,
|
| 329 |
+
model_config,
|
| 330 |
+
openai_serving_models,
|
| 331 |
+
args.response_role,
|
| 332 |
+
request_logger=request_logger,
|
| 333 |
+
chat_template=None,
|
| 334 |
+
chat_template_content_format="auto",
|
| 335 |
+
enable_prompt_tokens_details=args.enable_prompt_tokens_details,
|
| 336 |
+
) if model_config.runner_type == "generate" else None
|
| 337 |
+
openai_serving_embedding = OpenAIServingEmbedding(
|
| 338 |
+
engine,
|
| 339 |
+
model_config,
|
| 340 |
+
openai_serving_models,
|
| 341 |
+
request_logger=request_logger,
|
| 342 |
+
chat_template=None,
|
| 343 |
+
chat_template_content_format="auto",
|
| 344 |
+
) if model_config.task == "embed" else None
|
| 345 |
+
openai_serving_scores = (OpenAIServingScores(
|
| 346 |
+
engine,
|
| 347 |
+
model_config,
|
| 348 |
+
openai_serving_models,
|
| 349 |
+
request_logger=request_logger,
|
| 350 |
+
) if model_config.task == "score" else None)
|
| 351 |
+
|
| 352 |
+
tracker = BatchProgressTracker()
|
| 353 |
+
logger.info("Reading batch from %s...", args.input_file)
|
| 354 |
+
|
| 355 |
+
# Submit all requests in the file to the engine "concurrently".
|
| 356 |
+
response_futures: List[Awaitable[BatchRequestOutput]] = []
|
| 357 |
+
for request_json in (await read_file(args.input_file)).strip().split("\n"):
|
| 358 |
+
# Skip empty lines.
|
| 359 |
+
request_json = request_json.strip()
|
| 360 |
+
if not request_json:
|
| 361 |
+
continue
|
| 362 |
+
|
| 363 |
+
request = BatchRequestInput.model_validate_json(request_json)
|
| 364 |
+
|
| 365 |
+
# Determine the type of request and run it.
|
| 366 |
+
if request.url == "/v1/chat/completions":
|
| 367 |
+
handler_fn = (None if openai_serving_chat is None else
|
| 368 |
+
openai_serving_chat.create_chat_completion)
|
| 369 |
+
if handler_fn is None:
|
| 370 |
+
response_futures.append(
|
| 371 |
+
make_async_error_request_output(
|
| 372 |
+
request,
|
| 373 |
+
error_msg=
|
| 374 |
+
"The model does not support Chat Completions API",
|
| 375 |
+
))
|
| 376 |
+
continue
|
| 377 |
+
|
| 378 |
+
response_futures.append(run_request(handler_fn, request, tracker))
|
| 379 |
+
tracker.submitted()
|
| 380 |
+
elif request.url == "/v1/embeddings":
|
| 381 |
+
handler_fn = (None if openai_serving_embedding is None else
|
| 382 |
+
openai_serving_embedding.create_embedding)
|
| 383 |
+
if handler_fn is None:
|
| 384 |
+
response_futures.append(
|
| 385 |
+
make_async_error_request_output(
|
| 386 |
+
request,
|
| 387 |
+
error_msg="The model does not support Embeddings API",
|
| 388 |
+
))
|
| 389 |
+
continue
|
| 390 |
+
|
| 391 |
+
response_futures.append(run_request(handler_fn, request, tracker))
|
| 392 |
+
tracker.submitted()
|
| 393 |
+
elif request.url == "/v1/score":
|
| 394 |
+
handler_fn = (None if openai_serving_scores is None else
|
| 395 |
+
openai_serving_scores.create_score)
|
| 396 |
+
if handler_fn is None:
|
| 397 |
+
response_futures.append(
|
| 398 |
+
make_async_error_request_output(
|
| 399 |
+
request,
|
| 400 |
+
error_msg="The model does not support Scores API",
|
| 401 |
+
))
|
| 402 |
+
continue
|
| 403 |
+
|
| 404 |
+
response_futures.append(run_request(handler_fn, request, tracker))
|
| 405 |
+
tracker.submitted()
|
| 406 |
+
else:
|
| 407 |
+
response_futures.append(
|
| 408 |
+
make_async_error_request_output(
|
| 409 |
+
request,
|
| 410 |
+
error_msg=
|
| 411 |
+
"Only /v1/chat/completions, /v1/embeddings, and /v1/score "
|
| 412 |
+
"are supported in the batch endpoint.",
|
| 413 |
+
))
|
| 414 |
+
|
| 415 |
+
with tracker.pbar():
|
| 416 |
+
responses = await asyncio.gather(*response_futures)
|
| 417 |
+
|
| 418 |
+
await write_file(args.output_file, responses, args.output_tmp_dir)
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
if __name__ == "__main__":
|
| 422 |
+
args = parse_args()
|
| 423 |
+
|
| 424 |
+
logger.info("vLLM batch processing API version %s", VLLM_VERSION)
|
| 425 |
+
logger.info("args: %s", args)
|
| 426 |
+
|
| 427 |
+
# Start the Prometheus metrics server. LLMEngine uses the Prometheus client
|
| 428 |
+
# to publish metrics at the /metrics endpoint.
|
| 429 |
+
if args.enable_metrics:
|
| 430 |
+
logger.info("Prometheus metrics enabled")
|
| 431 |
+
start_http_server(port=args.port, addr=args.url)
|
| 432 |
+
else:
|
| 433 |
+
logger.info("Prometheus metrics disabled")
|
| 434 |
+
|
| 435 |
+
asyncio.run(main(args))
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_chat.py
ADDED
|
@@ -0,0 +1,961 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
from typing import (AsyncGenerator, AsyncIterator, Callable, Dict, Final, List,
|
| 7 |
+
Optional)
|
| 8 |
+
from typing import Sequence as GenericSequence
|
| 9 |
+
from typing import Union
|
| 10 |
+
|
| 11 |
+
from fastapi import Request
|
| 12 |
+
|
| 13 |
+
from vllm.config import ModelConfig
|
| 14 |
+
from vllm.engine.protocol import EngineClient
|
| 15 |
+
from vllm.entrypoints.chat_utils import (ChatTemplateContentFormatOption,
|
| 16 |
+
ConversationMessage)
|
| 17 |
+
from vllm.entrypoints.logger import RequestLogger
|
| 18 |
+
from vllm.entrypoints.openai.protocol import (
|
| 19 |
+
ChatCompletionLogProb, ChatCompletionLogProbs,
|
| 20 |
+
ChatCompletionLogProbsContent, ChatCompletionNamedToolChoiceParam,
|
| 21 |
+
ChatCompletionRequest, ChatCompletionResponse,
|
| 22 |
+
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
|
| 23 |
+
ChatCompletionStreamResponse, ChatMessage, DeltaFunctionCall, DeltaMessage,
|
| 24 |
+
DeltaToolCall, ErrorResponse, FunctionCall, PromptTokenUsageInfo,
|
| 25 |
+
RequestResponseMetadata, ToolCall, UsageInfo)
|
| 26 |
+
from vllm.entrypoints.openai.reasoning_parsers import (ReasoningParser,
|
| 27 |
+
ReasoningParserManager)
|
| 28 |
+
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
| 29 |
+
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
| 30 |
+
from vllm.entrypoints.openai.tool_parsers import ToolParser, ToolParserManager
|
| 31 |
+
from vllm.entrypoints.openai.tool_parsers.mistral_tool_parser import (
|
| 32 |
+
MistralToolCall)
|
| 33 |
+
from vllm.logger import init_logger
|
| 34 |
+
from vllm.outputs import CompletionOutput, RequestOutput
|
| 35 |
+
from vllm.sampling_params import BeamSearchParams, SamplingParams
|
| 36 |
+
from vllm.sequence import Logprob
|
| 37 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
|
| 38 |
+
from vllm.transformers_utils.tokenizers import (maybe_serialize_tool_calls,
|
| 39 |
+
truncate_tool_call_ids)
|
| 40 |
+
|
| 41 |
+
logger = init_logger(__name__)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class OpenAIServingChat(OpenAIServing):
|
| 45 |
+
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
engine_client: EngineClient,
|
| 49 |
+
model_config: ModelConfig,
|
| 50 |
+
models: OpenAIServingModels,
|
| 51 |
+
response_role: str,
|
| 52 |
+
*,
|
| 53 |
+
request_logger: Optional[RequestLogger],
|
| 54 |
+
chat_template: Optional[str],
|
| 55 |
+
chat_template_content_format: ChatTemplateContentFormatOption,
|
| 56 |
+
return_tokens_as_token_ids: bool = False,
|
| 57 |
+
enable_reasoning: bool = False,
|
| 58 |
+
reasoning_parser: Optional[str] = None,
|
| 59 |
+
enable_auto_tools: bool = False,
|
| 60 |
+
tool_parser: Optional[str] = None,
|
| 61 |
+
enable_prompt_tokens_details: bool = False,
|
| 62 |
+
) -> None:
|
| 63 |
+
super().__init__(engine_client=engine_client,
|
| 64 |
+
model_config=model_config,
|
| 65 |
+
models=models,
|
| 66 |
+
request_logger=request_logger,
|
| 67 |
+
return_tokens_as_token_ids=return_tokens_as_token_ids)
|
| 68 |
+
|
| 69 |
+
self.response_role = response_role
|
| 70 |
+
self.chat_template = chat_template
|
| 71 |
+
self.chat_template_content_format: Final = chat_template_content_format
|
| 72 |
+
|
| 73 |
+
# set up tool use
|
| 74 |
+
self.enable_auto_tools: bool = enable_auto_tools
|
| 75 |
+
if self.enable_auto_tools:
|
| 76 |
+
logger.info(
|
| 77 |
+
"\"auto\" tool choice has been enabled please note that while"
|
| 78 |
+
" the parallel_tool_calls client option is preset for "
|
| 79 |
+
"compatibility reasons, it will be ignored.")
|
| 80 |
+
|
| 81 |
+
self.enable_reasoning: bool = enable_reasoning
|
| 82 |
+
self.reasoning_parser: Optional[Callable[[AnyTokenizer],
|
| 83 |
+
ReasoningParser]] = None
|
| 84 |
+
if self.enable_reasoning:
|
| 85 |
+
try:
|
| 86 |
+
self.reasoning_parser = (
|
| 87 |
+
ReasoningParserManager.get_reasoning_parser(
|
| 88 |
+
reasoning_parser))
|
| 89 |
+
except Exception as e:
|
| 90 |
+
raise TypeError("Error: --enable-reasoning requires "
|
| 91 |
+
f"reasoning_parser:'{reasoning_parser}' "
|
| 92 |
+
"which has not been registered") from e
|
| 93 |
+
self.tool_parser: Optional[Callable[[AnyTokenizer], ToolParser]] = None
|
| 94 |
+
if self.enable_auto_tools:
|
| 95 |
+
try:
|
| 96 |
+
if (tool_parser == "pythonic" and
|
| 97 |
+
model_config.model.startswith("meta-llama/Llama-3.2")):
|
| 98 |
+
logger.warning(
|
| 99 |
+
"Llama3.2 models may struggle to emit valid pythonic"
|
| 100 |
+
" tool calls")
|
| 101 |
+
self.tool_parser = ToolParserManager.get_tool_parser(
|
| 102 |
+
tool_parser)
|
| 103 |
+
except Exception as e:
|
| 104 |
+
raise TypeError("Error: --enable-auto-tool-choice requires "
|
| 105 |
+
f"tool_parser:'{tool_parser}' which has not "
|
| 106 |
+
"been registered") from e
|
| 107 |
+
|
| 108 |
+
self.enable_prompt_tokens_details = enable_prompt_tokens_details
|
| 109 |
+
diff_sampling_param = self.model_config.get_diff_sampling_param()
|
| 110 |
+
if diff_sampling_param:
|
| 111 |
+
logger.info("Overwriting default chat sampling param with: %s",
|
| 112 |
+
diff_sampling_param)
|
| 113 |
+
|
| 114 |
+
async def create_chat_completion(
|
| 115 |
+
self,
|
| 116 |
+
request: ChatCompletionRequest,
|
| 117 |
+
raw_request: Optional[Request] = None,
|
| 118 |
+
) -> Union[AsyncGenerator[str, None], ChatCompletionResponse,
|
| 119 |
+
ErrorResponse]:
|
| 120 |
+
"""
|
| 121 |
+
Chat Completion API similar to OpenAI's API.
|
| 122 |
+
|
| 123 |
+
See https://platform.openai.com/docs/api-reference/chat/create
|
| 124 |
+
for the API specification. This API mimics the OpenAI
|
| 125 |
+
Chat Completion API.
|
| 126 |
+
"""
|
| 127 |
+
error_check_ret = await self._check_model(request)
|
| 128 |
+
if error_check_ret is not None:
|
| 129 |
+
logger.error("Error with model %s", error_check_ret)
|
| 130 |
+
return error_check_ret
|
| 131 |
+
|
| 132 |
+
# If the engine is dead, raise the engine's DEAD_ERROR.
|
| 133 |
+
# This is required for the streaming case, where we return a
|
| 134 |
+
# success status before we actually start generating text :).
|
| 135 |
+
if self.engine_client.errored:
|
| 136 |
+
raise self.engine_client.dead_error
|
| 137 |
+
|
| 138 |
+
try:
|
| 139 |
+
(
|
| 140 |
+
lora_request,
|
| 141 |
+
prompt_adapter_request,
|
| 142 |
+
) = self._maybe_get_adapters(request)
|
| 143 |
+
|
| 144 |
+
model_name = self.models.model_name(lora_request)
|
| 145 |
+
|
| 146 |
+
tokenizer = await self.engine_client.get_tokenizer(lora_request)
|
| 147 |
+
|
| 148 |
+
tool_parser = self.tool_parser
|
| 149 |
+
|
| 150 |
+
# validation for OpenAI tools
|
| 151 |
+
# tool_choice = "required" is not supported
|
| 152 |
+
if request.tool_choice == "required":
|
| 153 |
+
return self.create_error_response(
|
| 154 |
+
"tool_choice = \"required\" is not supported!")
|
| 155 |
+
|
| 156 |
+
if isinstance(tokenizer, MistralTokenizer):
|
| 157 |
+
# because of issues with pydantic we need to potentially
|
| 158 |
+
# re-serialize the tool_calls field of the request
|
| 159 |
+
# for more info: see comment in `maybe_serialize_tool_calls`
|
| 160 |
+
maybe_serialize_tool_calls(request)
|
| 161 |
+
truncate_tool_call_ids(request)
|
| 162 |
+
|
| 163 |
+
if (request.tool_choice == "auto" and
|
| 164 |
+
not (self.enable_auto_tools and tool_parser is not None)
|
| 165 |
+
and not isinstance(tokenizer, MistralTokenizer)):
|
| 166 |
+
# for hf tokenizers, "auto" tools requires
|
| 167 |
+
# --enable-auto-tool-choice and --tool-call-parser
|
| 168 |
+
return self.create_error_response(
|
| 169 |
+
"\"auto\" tool choice requires "
|
| 170 |
+
"--enable-auto-tool-choice and --tool-call-parser to be set"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
tool_dicts = None if request.tools is None else [
|
| 174 |
+
tool.model_dump() for tool in request.tools
|
| 175 |
+
]
|
| 176 |
+
|
| 177 |
+
(
|
| 178 |
+
conversation,
|
| 179 |
+
request_prompts,
|
| 180 |
+
engine_prompts,
|
| 181 |
+
) = await self._preprocess_chat(
|
| 182 |
+
request,
|
| 183 |
+
tokenizer,
|
| 184 |
+
request.messages,
|
| 185 |
+
chat_template=request.chat_template or self.chat_template,
|
| 186 |
+
chat_template_content_format=self.chat_template_content_format,
|
| 187 |
+
add_generation_prompt=request.add_generation_prompt,
|
| 188 |
+
continue_final_message=request.continue_final_message,
|
| 189 |
+
tool_dicts=tool_dicts,
|
| 190 |
+
documents=request.documents,
|
| 191 |
+
chat_template_kwargs=request.chat_template_kwargs,
|
| 192 |
+
tool_parser=tool_parser,
|
| 193 |
+
truncate_prompt_tokens=request.truncate_prompt_tokens,
|
| 194 |
+
add_special_tokens=request.add_special_tokens,
|
| 195 |
+
)
|
| 196 |
+
except ValueError as e:
|
| 197 |
+
logger.exception("Error in preprocessing prompt inputs")
|
| 198 |
+
return self.create_error_response(str(e))
|
| 199 |
+
|
| 200 |
+
request_id = "chatcmpl-" \
|
| 201 |
+
f"{self._base_request_id(raw_request, request.request_id)}"
|
| 202 |
+
|
| 203 |
+
request_metadata = RequestResponseMetadata(request_id=request_id)
|
| 204 |
+
if raw_request:
|
| 205 |
+
raw_request.state.request_metadata = request_metadata
|
| 206 |
+
|
| 207 |
+
# Schedule the request and get the result generator.
|
| 208 |
+
generators: List[AsyncGenerator[RequestOutput, None]] = []
|
| 209 |
+
try:
|
| 210 |
+
for i, engine_prompt in enumerate(engine_prompts):
|
| 211 |
+
sampling_params: Union[SamplingParams, BeamSearchParams]
|
| 212 |
+
default_max_tokens = self.max_model_len - len(
|
| 213 |
+
engine_prompt["prompt_token_ids"])
|
| 214 |
+
# Build default sampling params
|
| 215 |
+
default_sampling_params = (
|
| 216 |
+
self.model_config.get_diff_sampling_param())
|
| 217 |
+
if request.use_beam_search:
|
| 218 |
+
sampling_params = request.to_beam_search_params(
|
| 219 |
+
default_max_tokens, default_sampling_params)
|
| 220 |
+
else:
|
| 221 |
+
sampling_params = request.to_sampling_params(
|
| 222 |
+
default_max_tokens,
|
| 223 |
+
self.model_config.logits_processor_pattern,
|
| 224 |
+
default_sampling_params)
|
| 225 |
+
|
| 226 |
+
self._log_inputs(request_id,
|
| 227 |
+
request_prompts[i],
|
| 228 |
+
params=sampling_params,
|
| 229 |
+
lora_request=lora_request,
|
| 230 |
+
prompt_adapter_request=prompt_adapter_request)
|
| 231 |
+
|
| 232 |
+
trace_headers = (None if raw_request is None else await
|
| 233 |
+
self._get_trace_headers(raw_request.headers))
|
| 234 |
+
|
| 235 |
+
if isinstance(sampling_params, BeamSearchParams):
|
| 236 |
+
generator = self.engine_client.beam_search(
|
| 237 |
+
prompt=engine_prompt,
|
| 238 |
+
request_id=request_id,
|
| 239 |
+
params=sampling_params,
|
| 240 |
+
)
|
| 241 |
+
else:
|
| 242 |
+
generator = self.engine_client.generate(
|
| 243 |
+
engine_prompt,
|
| 244 |
+
sampling_params,
|
| 245 |
+
request_id,
|
| 246 |
+
lora_request=lora_request,
|
| 247 |
+
trace_headers=trace_headers,
|
| 248 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 249 |
+
priority=request.priority,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
generators.append(generator)
|
| 253 |
+
except ValueError as e:
|
| 254 |
+
# TODO: Use a vllm-specific Validation Error
|
| 255 |
+
return self.create_error_response(str(e))
|
| 256 |
+
|
| 257 |
+
assert len(generators) == 1
|
| 258 |
+
result_generator, = generators
|
| 259 |
+
|
| 260 |
+
# Streaming response
|
| 261 |
+
if request.stream:
|
| 262 |
+
return self.chat_completion_stream_generator(
|
| 263 |
+
request, result_generator, request_id, model_name,
|
| 264 |
+
conversation, tokenizer, request_metadata)
|
| 265 |
+
|
| 266 |
+
try:
|
| 267 |
+
return await self.chat_completion_full_generator(
|
| 268 |
+
request, result_generator, request_id, model_name,
|
| 269 |
+
conversation, tokenizer, request_metadata)
|
| 270 |
+
except ValueError as e:
|
| 271 |
+
# TODO: Use a vllm-specific Validation Error
|
| 272 |
+
return self.create_error_response(str(e))
|
| 273 |
+
|
| 274 |
+
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
|
| 275 |
+
if request.add_generation_prompt:
|
| 276 |
+
return self.response_role
|
| 277 |
+
return request.messages[-1]["role"]
|
| 278 |
+
|
| 279 |
+
async def chat_completion_stream_generator(
|
| 280 |
+
self,
|
| 281 |
+
request: ChatCompletionRequest,
|
| 282 |
+
result_generator: AsyncIterator[RequestOutput],
|
| 283 |
+
request_id: str,
|
| 284 |
+
model_name: str,
|
| 285 |
+
conversation: List[ConversationMessage],
|
| 286 |
+
tokenizer: AnyTokenizer,
|
| 287 |
+
request_metadata: RequestResponseMetadata,
|
| 288 |
+
) -> AsyncGenerator[str, None]:
|
| 289 |
+
created_time = int(time.time())
|
| 290 |
+
chunk_object_type: Final = "chat.completion.chunk"
|
| 291 |
+
first_iteration = True
|
| 292 |
+
|
| 293 |
+
# Send response for each token for each request.n (index)
|
| 294 |
+
num_choices = 1 if request.n is None else request.n
|
| 295 |
+
previous_num_tokens = [0] * num_choices
|
| 296 |
+
finish_reason_sent = [False] * num_choices
|
| 297 |
+
num_prompt_tokens = 0
|
| 298 |
+
num_cached_tokens = None
|
| 299 |
+
|
| 300 |
+
if isinstance(request.tool_choice, ChatCompletionNamedToolChoiceParam):
|
| 301 |
+
tool_choice_function_name = request.tool_choice.function.name
|
| 302 |
+
else:
|
| 303 |
+
tool_choice_function_name = None
|
| 304 |
+
|
| 305 |
+
# Determine whether tools are in use with "auto" tool choice
|
| 306 |
+
tool_choice_auto = (
|
| 307 |
+
not tool_choice_function_name
|
| 308 |
+
and self._should_stream_with_auto_tool_parsing(request))
|
| 309 |
+
|
| 310 |
+
should_stream_with_reasoning_parsing = (
|
| 311 |
+
self._should_stream_with_reasoning_parsing(request))
|
| 312 |
+
|
| 313 |
+
all_previous_token_ids: Optional[List[List[int]]]
|
| 314 |
+
|
| 315 |
+
# Only one of these will be used, thus previous_texts and
|
| 316 |
+
# all_previous_token_ids will not be used twice in the same iteration.
|
| 317 |
+
if tool_choice_auto or should_stream_with_reasoning_parsing:
|
| 318 |
+
# These are only required in "auto" tool choice case
|
| 319 |
+
previous_texts = [""] * num_choices
|
| 320 |
+
all_previous_token_ids = [[]] * num_choices
|
| 321 |
+
else:
|
| 322 |
+
previous_texts, all_previous_token_ids = None, None
|
| 323 |
+
|
| 324 |
+
try:
|
| 325 |
+
# There is no need to check if the reasoning_parser is None
|
| 326 |
+
# because the should_stream_with_reasoning_parsing check
|
| 327 |
+
# already ensures that the reasoning_parser is not None.
|
| 328 |
+
# but the pre-commit hook requires it.
|
| 329 |
+
if should_stream_with_reasoning_parsing and \
|
| 330 |
+
self.reasoning_parser is not None:
|
| 331 |
+
reasoning_parser = self.reasoning_parser(tokenizer)
|
| 332 |
+
except RuntimeError as e:
|
| 333 |
+
logger.exception("Error in reasoning parser creation.")
|
| 334 |
+
data = self.create_streaming_error_response(str(e))
|
| 335 |
+
yield f"data: {data}\n\n"
|
| 336 |
+
yield "data: [DONE]\n\n"
|
| 337 |
+
return
|
| 338 |
+
|
| 339 |
+
# Prepare the tool parser if it's needed
|
| 340 |
+
try:
|
| 341 |
+
if tool_choice_auto and self.tool_parser:
|
| 342 |
+
tool_parsers: List[Optional[ToolParser]] = [
|
| 343 |
+
self.tool_parser(tokenizer)
|
| 344 |
+
] * num_choices
|
| 345 |
+
else:
|
| 346 |
+
tool_parsers = [None] * num_choices
|
| 347 |
+
except Exception as e:
|
| 348 |
+
logger.exception("Error in tool parser creation.")
|
| 349 |
+
data = self.create_streaming_error_response(str(e))
|
| 350 |
+
yield f"data: {data}\n\n"
|
| 351 |
+
yield "data: [DONE]\n\n"
|
| 352 |
+
return
|
| 353 |
+
|
| 354 |
+
stream_options = request.stream_options
|
| 355 |
+
if stream_options:
|
| 356 |
+
include_usage = stream_options.include_usage
|
| 357 |
+
include_continuous_usage = include_usage and \
|
| 358 |
+
stream_options.continuous_usage_stats
|
| 359 |
+
else:
|
| 360 |
+
include_usage, include_continuous_usage = False, False
|
| 361 |
+
|
| 362 |
+
try:
|
| 363 |
+
async for res in result_generator:
|
| 364 |
+
if res.prompt_token_ids is not None:
|
| 365 |
+
num_prompt_tokens = len(res.prompt_token_ids)
|
| 366 |
+
if res.encoder_prompt_token_ids is not None:
|
| 367 |
+
num_prompt_tokens += len(res.encoder_prompt_token_ids)
|
| 368 |
+
|
| 369 |
+
# We need to do it here, because if there are exceptions in
|
| 370 |
+
# the result_generator, it needs to be sent as the FIRST
|
| 371 |
+
# response (by the try...catch).
|
| 372 |
+
if first_iteration:
|
| 373 |
+
num_cached_tokens = res.num_cached_tokens
|
| 374 |
+
# Send first response for each request.n (index) with
|
| 375 |
+
# the role
|
| 376 |
+
role = self.get_chat_request_role(request)
|
| 377 |
+
|
| 378 |
+
# NOTE num_choices defaults to 1 so this usually executes
|
| 379 |
+
# once per request
|
| 380 |
+
for i in range(num_choices):
|
| 381 |
+
choice_data = ChatCompletionResponseStreamChoice(
|
| 382 |
+
index=i,
|
| 383 |
+
delta=DeltaMessage(
|
| 384 |
+
role=role,
|
| 385 |
+
content="",
|
| 386 |
+
),
|
| 387 |
+
logprobs=None,
|
| 388 |
+
finish_reason=None)
|
| 389 |
+
chunk = ChatCompletionStreamResponse(
|
| 390 |
+
id=request_id,
|
| 391 |
+
object=chunk_object_type,
|
| 392 |
+
created=created_time,
|
| 393 |
+
choices=[choice_data],
|
| 394 |
+
model=model_name)
|
| 395 |
+
|
| 396 |
+
# if continuous usage stats are requested, add it
|
| 397 |
+
if include_continuous_usage:
|
| 398 |
+
chunk.usage = UsageInfo(
|
| 399 |
+
prompt_tokens=num_prompt_tokens,
|
| 400 |
+
completion_tokens=0,
|
| 401 |
+
total_tokens=num_prompt_tokens)
|
| 402 |
+
|
| 403 |
+
data = chunk.model_dump_json(exclude_unset=True)
|
| 404 |
+
yield f"data: {data}\n\n"
|
| 405 |
+
|
| 406 |
+
# Send response to echo the input portion of the
|
| 407 |
+
# last message
|
| 408 |
+
if request.echo:
|
| 409 |
+
last_msg_content: Union[str, List[Dict[str, str]]] = ""
|
| 410 |
+
if conversation and "content" in conversation[
|
| 411 |
+
-1] and conversation[-1].get("role") == role:
|
| 412 |
+
last_msg_content = conversation[-1]["content"] or ""
|
| 413 |
+
|
| 414 |
+
if last_msg_content:
|
| 415 |
+
for i in range(num_choices):
|
| 416 |
+
choice_data = (
|
| 417 |
+
ChatCompletionResponseStreamChoice(
|
| 418 |
+
index=i,
|
| 419 |
+
delta=DeltaMessage(
|
| 420 |
+
content=last_msg_content),
|
| 421 |
+
logprobs=None,
|
| 422 |
+
finish_reason=None))
|
| 423 |
+
chunk = ChatCompletionStreamResponse(
|
| 424 |
+
id=request_id,
|
| 425 |
+
object=chunk_object_type,
|
| 426 |
+
created=created_time,
|
| 427 |
+
choices=[choice_data],
|
| 428 |
+
model=model_name)
|
| 429 |
+
if include_continuous_usage:
|
| 430 |
+
chunk.usage = UsageInfo(
|
| 431 |
+
prompt_tokens=num_prompt_tokens,
|
| 432 |
+
completion_tokens=0,
|
| 433 |
+
total_tokens=num_prompt_tokens)
|
| 434 |
+
|
| 435 |
+
data = chunk.model_dump_json(
|
| 436 |
+
exclude_unset=True)
|
| 437 |
+
yield f"data: {data}\n\n"
|
| 438 |
+
first_iteration = False
|
| 439 |
+
|
| 440 |
+
for output in res.outputs:
|
| 441 |
+
i = output.index
|
| 442 |
+
tool_parser = tool_parsers[i]
|
| 443 |
+
|
| 444 |
+
if finish_reason_sent[i]:
|
| 445 |
+
continue
|
| 446 |
+
|
| 447 |
+
if request.logprobs and request.top_logprobs is not None:
|
| 448 |
+
assert output.logprobs is not None, (
|
| 449 |
+
"Did not output logprobs")
|
| 450 |
+
logprobs = self._create_chat_logprobs(
|
| 451 |
+
token_ids=output.token_ids,
|
| 452 |
+
top_logprobs=output.logprobs,
|
| 453 |
+
tokenizer=tokenizer,
|
| 454 |
+
num_output_top_logprobs=request.top_logprobs,
|
| 455 |
+
)
|
| 456 |
+
else:
|
| 457 |
+
logprobs = None
|
| 458 |
+
|
| 459 |
+
delta_text = output.text
|
| 460 |
+
|
| 461 |
+
if not delta_text and not output.token_ids and \
|
| 462 |
+
not previous_num_tokens[i]:
|
| 463 |
+
# Chunked prefill case, don't return empty chunks
|
| 464 |
+
continue
|
| 465 |
+
|
| 466 |
+
delta_message: Optional[DeltaMessage]
|
| 467 |
+
|
| 468 |
+
# handle streaming deltas for tools with named tool_choice
|
| 469 |
+
if tool_choice_function_name:
|
| 470 |
+
delta_message = DeltaMessage(tool_calls=[
|
| 471 |
+
DeltaToolCall(function=DeltaFunctionCall(
|
| 472 |
+
name=tool_choice_function_name,
|
| 473 |
+
arguments=delta_text),
|
| 474 |
+
index=i)
|
| 475 |
+
])
|
| 476 |
+
|
| 477 |
+
# handle streaming deltas for tools with "auto" tool choice
|
| 478 |
+
elif tool_choice_auto:
|
| 479 |
+
assert previous_texts is not None
|
| 480 |
+
assert all_previous_token_ids is not None
|
| 481 |
+
assert tool_parser is not None
|
| 482 |
+
#TODO optimize manipulation of these lists
|
| 483 |
+
previous_text = previous_texts[i]
|
| 484 |
+
previous_token_ids = all_previous_token_ids[i]
|
| 485 |
+
current_text = previous_text + delta_text
|
| 486 |
+
current_token_ids = previous_token_ids + list(
|
| 487 |
+
output.token_ids)
|
| 488 |
+
|
| 489 |
+
delta_message = (
|
| 490 |
+
tool_parser.extract_tool_calls_streaming(
|
| 491 |
+
previous_text=previous_text,
|
| 492 |
+
current_text=current_text,
|
| 493 |
+
delta_text=delta_text,
|
| 494 |
+
previous_token_ids=previous_token_ids,
|
| 495 |
+
current_token_ids=current_token_ids,
|
| 496 |
+
delta_token_ids=output.token_ids,
|
| 497 |
+
request=request))
|
| 498 |
+
|
| 499 |
+
# update the previous values for the next iteration
|
| 500 |
+
previous_texts[i] = current_text
|
| 501 |
+
all_previous_token_ids[i] = current_token_ids
|
| 502 |
+
# reasoning_content cannot be enabled with tool_choice.
|
| 503 |
+
# If it is, the tool_choice will be used instead.
|
| 504 |
+
elif self.enable_reasoning:
|
| 505 |
+
# handle reasoning_content delta
|
| 506 |
+
assert reasoning_parser is not None
|
| 507 |
+
assert previous_texts is not None
|
| 508 |
+
assert all_previous_token_ids is not None
|
| 509 |
+
previous_text = previous_texts[i]
|
| 510 |
+
previous_token_ids = all_previous_token_ids[i]
|
| 511 |
+
current_text = previous_text + delta_text
|
| 512 |
+
current_token_ids = previous_token_ids + list(
|
| 513 |
+
output.token_ids)
|
| 514 |
+
|
| 515 |
+
delta_message = (reasoning_parser.
|
| 516 |
+
extract_reasoning_content_streaming(
|
| 517 |
+
previous_text,
|
| 518 |
+
current_text,
|
| 519 |
+
delta_text,
|
| 520 |
+
previous_token_ids,
|
| 521 |
+
current_token_ids,
|
| 522 |
+
output.token_ids,
|
| 523 |
+
))
|
| 524 |
+
|
| 525 |
+
# update the previous values for the next iteration
|
| 526 |
+
previous_texts[i] = current_text
|
| 527 |
+
all_previous_token_ids[i] = current_token_ids
|
| 528 |
+
|
| 529 |
+
# handle streaming just a content delta
|
| 530 |
+
else:
|
| 531 |
+
delta_message = DeltaMessage(content=delta_text)
|
| 532 |
+
|
| 533 |
+
# set the previous values for the next iteration
|
| 534 |
+
previous_num_tokens[i] += len(output.token_ids)
|
| 535 |
+
|
| 536 |
+
# if the message delta is None (e.g. because it was a
|
| 537 |
+
# "control token" for tool calls or the parser otherwise
|
| 538 |
+
# wasn't ready to send a token, then
|
| 539 |
+
# get the next token without streaming a chunk
|
| 540 |
+
if delta_message is None:
|
| 541 |
+
continue
|
| 542 |
+
|
| 543 |
+
if output.finish_reason is None:
|
| 544 |
+
# Send token-by-token response for each request.n
|
| 545 |
+
choice_data = ChatCompletionResponseStreamChoice(
|
| 546 |
+
index=i,
|
| 547 |
+
delta=delta_message,
|
| 548 |
+
logprobs=logprobs,
|
| 549 |
+
finish_reason=None)
|
| 550 |
+
|
| 551 |
+
# if the model is finished generating
|
| 552 |
+
else:
|
| 553 |
+
# check to make sure we haven't "forgotten" to stream
|
| 554 |
+
# any tokens that were generated but previously
|
| 555 |
+
# matched by partial json parsing
|
| 556 |
+
# only happens if we are NOT using guided decoding
|
| 557 |
+
auto_tools_called = False
|
| 558 |
+
if tool_parser:
|
| 559 |
+
auto_tools_called = len(
|
| 560 |
+
tool_parser.prev_tool_call_arr) > 0
|
| 561 |
+
index = len(tool_parser.prev_tool_call_arr
|
| 562 |
+
) - 1 if auto_tools_called else 0
|
| 563 |
+
else:
|
| 564 |
+
index = 0
|
| 565 |
+
|
| 566 |
+
if self._should_check_for_unstreamed_tool_arg_tokens(
|
| 567 |
+
delta_message, output) and tool_parser:
|
| 568 |
+
latest_delta_len = 0
|
| 569 |
+
if ((isinstance(
|
| 570 |
+
delta_message.tool_calls[0].function,
|
| 571 |
+
DeltaFunctionCall)) and isinstance(
|
| 572 |
+
delta_message.tool_calls[0].function.
|
| 573 |
+
arguments, str)):
|
| 574 |
+
latest_delta_len = len(
|
| 575 |
+
delta_message.tool_calls[0].function.
|
| 576 |
+
arguments)
|
| 577 |
+
|
| 578 |
+
# get the expected call based on partial JSON
|
| 579 |
+
# parsing which "autocompletes" the JSON
|
| 580 |
+
expected_call = json.dumps(
|
| 581 |
+
tool_parser.prev_tool_call_arr[index].get(
|
| 582 |
+
"arguments", {}),
|
| 583 |
+
ensure_ascii=False)
|
| 584 |
+
|
| 585 |
+
# get what we've streamed so far for arguments
|
| 586 |
+
# for the current tool
|
| 587 |
+
actual_call = tool_parser.streamed_args_for_tool[
|
| 588 |
+
index]
|
| 589 |
+
if (latest_delta_len > 0):
|
| 590 |
+
actual_call = actual_call[:-latest_delta_len]
|
| 591 |
+
|
| 592 |
+
# check to see if there's anything left to stream
|
| 593 |
+
remaining_call = expected_call.replace(
|
| 594 |
+
actual_call, "", 1)
|
| 595 |
+
# set that as a delta message
|
| 596 |
+
delta_message = DeltaMessage(tool_calls=[
|
| 597 |
+
DeltaToolCall(index=index,
|
| 598 |
+
function=DeltaFunctionCall(
|
| 599 |
+
arguments=remaining_call).
|
| 600 |
+
model_dump(exclude_none=True))
|
| 601 |
+
])
|
| 602 |
+
|
| 603 |
+
# Send the finish response for each request.n only once
|
| 604 |
+
choice_data = ChatCompletionResponseStreamChoice(
|
| 605 |
+
index=i,
|
| 606 |
+
delta=delta_message,
|
| 607 |
+
logprobs=logprobs,
|
| 608 |
+
finish_reason=output.finish_reason
|
| 609 |
+
if not auto_tools_called else "tool_calls",
|
| 610 |
+
stop_reason=output.stop_reason)
|
| 611 |
+
|
| 612 |
+
finish_reason_sent[i] = True
|
| 613 |
+
|
| 614 |
+
chunk = ChatCompletionStreamResponse(
|
| 615 |
+
id=request_id,
|
| 616 |
+
object=chunk_object_type,
|
| 617 |
+
created=created_time,
|
| 618 |
+
choices=[choice_data],
|
| 619 |
+
model=model_name)
|
| 620 |
+
|
| 621 |
+
# handle usage stats if requested & if continuous
|
| 622 |
+
if include_continuous_usage:
|
| 623 |
+
completion_tokens = previous_num_tokens[i]
|
| 624 |
+
chunk.usage = UsageInfo(
|
| 625 |
+
prompt_tokens=num_prompt_tokens,
|
| 626 |
+
completion_tokens=completion_tokens,
|
| 627 |
+
total_tokens=num_prompt_tokens + completion_tokens,
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
data = chunk.model_dump_json(exclude_unset=True)
|
| 631 |
+
yield f"data: {data}\n\n"
|
| 632 |
+
|
| 633 |
+
# once the final token is handled, if stream_options.include_usage
|
| 634 |
+
# is sent, send the usage
|
| 635 |
+
if include_usage:
|
| 636 |
+
completion_tokens = sum(previous_num_tokens)
|
| 637 |
+
final_usage = UsageInfo(prompt_tokens=num_prompt_tokens,
|
| 638 |
+
completion_tokens=completion_tokens,
|
| 639 |
+
total_tokens=num_prompt_tokens +
|
| 640 |
+
completion_tokens)
|
| 641 |
+
if self.enable_prompt_tokens_details and num_cached_tokens:
|
| 642 |
+
final_usage.prompt_tokens_details = PromptTokenUsageInfo(
|
| 643 |
+
cached_tokens=num_cached_tokens)
|
| 644 |
+
|
| 645 |
+
final_usage_chunk = ChatCompletionStreamResponse(
|
| 646 |
+
id=request_id,
|
| 647 |
+
object=chunk_object_type,
|
| 648 |
+
created=created_time,
|
| 649 |
+
choices=[],
|
| 650 |
+
model=model_name,
|
| 651 |
+
usage=final_usage)
|
| 652 |
+
final_usage_data = (final_usage_chunk.model_dump_json(
|
| 653 |
+
exclude_unset=True, exclude_none=True))
|
| 654 |
+
yield f"data: {final_usage_data}\n\n"
|
| 655 |
+
|
| 656 |
+
# report to FastAPI middleware aggregate usage across all choices
|
| 657 |
+
num_completion_tokens = sum(previous_num_tokens)
|
| 658 |
+
request_metadata.final_usage_info = UsageInfo(
|
| 659 |
+
prompt_tokens=num_prompt_tokens,
|
| 660 |
+
completion_tokens=num_completion_tokens,
|
| 661 |
+
total_tokens=num_prompt_tokens + num_completion_tokens)
|
| 662 |
+
|
| 663 |
+
except Exception as e:
|
| 664 |
+
# TODO: Use a vllm-specific Validation Error
|
| 665 |
+
logger.exception("Error in chat completion stream generator.")
|
| 666 |
+
data = self.create_streaming_error_response(str(e))
|
| 667 |
+
yield f"data: {data}\n\n"
|
| 668 |
+
# Send the final done message after all response.n are finished
|
| 669 |
+
yield "data: [DONE]\n\n"
|
| 670 |
+
|
| 671 |
+
async def chat_completion_full_generator(
|
| 672 |
+
self,
|
| 673 |
+
request: ChatCompletionRequest,
|
| 674 |
+
result_generator: AsyncIterator[RequestOutput],
|
| 675 |
+
request_id: str,
|
| 676 |
+
model_name: str,
|
| 677 |
+
conversation: List[ConversationMessage],
|
| 678 |
+
tokenizer: AnyTokenizer,
|
| 679 |
+
request_metadata: RequestResponseMetadata,
|
| 680 |
+
) -> Union[ErrorResponse, ChatCompletionResponse]:
|
| 681 |
+
|
| 682 |
+
created_time = int(time.time())
|
| 683 |
+
final_res: Optional[RequestOutput] = None
|
| 684 |
+
|
| 685 |
+
try:
|
| 686 |
+
async for res in result_generator:
|
| 687 |
+
final_res = res
|
| 688 |
+
except asyncio.CancelledError:
|
| 689 |
+
return self.create_error_response("Client disconnected")
|
| 690 |
+
except ValueError as e:
|
| 691 |
+
# TODO: Use a vllm-specific Validation Error
|
| 692 |
+
return self.create_error_response(str(e))
|
| 693 |
+
|
| 694 |
+
assert final_res is not None
|
| 695 |
+
|
| 696 |
+
choices: List[ChatCompletionResponseChoice] = []
|
| 697 |
+
|
| 698 |
+
role = self.get_chat_request_role(request)
|
| 699 |
+
for output in final_res.outputs:
|
| 700 |
+
token_ids = output.token_ids
|
| 701 |
+
out_logprobs = output.logprobs
|
| 702 |
+
|
| 703 |
+
if request.logprobs and request.top_logprobs is not None:
|
| 704 |
+
assert out_logprobs is not None, "Did not output logprobs"
|
| 705 |
+
logprobs = self._create_chat_logprobs(
|
| 706 |
+
token_ids=token_ids,
|
| 707 |
+
top_logprobs=out_logprobs,
|
| 708 |
+
num_output_top_logprobs=request.top_logprobs,
|
| 709 |
+
tokenizer=tokenizer,
|
| 710 |
+
)
|
| 711 |
+
else:
|
| 712 |
+
logprobs = None
|
| 713 |
+
|
| 714 |
+
should_stream_with_reasoning_parsing = (
|
| 715 |
+
self._should_stream_with_reasoning_parsing(request))
|
| 716 |
+
|
| 717 |
+
# In the OpenAI API the finish_reason is "tools_called"
|
| 718 |
+
# if the tool choice is auto and the model produced a tool
|
| 719 |
+
# call. The same is not true for named function calls
|
| 720 |
+
auto_tools_called = False
|
| 721 |
+
|
| 722 |
+
if should_stream_with_reasoning_parsing and \
|
| 723 |
+
self.reasoning_parser is not None:
|
| 724 |
+
try:
|
| 725 |
+
reasoning_parser = self.reasoning_parser(tokenizer)
|
| 726 |
+
except RuntimeError as e:
|
| 727 |
+
logger.exception("Error in reasoning parser creation.")
|
| 728 |
+
return self.create_error_response(str(e))
|
| 729 |
+
|
| 730 |
+
reasoning_content, content = (
|
| 731 |
+
reasoning_parser.extract_reasoning_content(
|
| 732 |
+
output.text, request=request))
|
| 733 |
+
|
| 734 |
+
if reasoning_content:
|
| 735 |
+
message = ChatMessage(role=role,
|
| 736 |
+
content=content,
|
| 737 |
+
reasoning_content=reasoning_content)
|
| 738 |
+
else:
|
| 739 |
+
message = ChatMessage(role=role, content=output.text)
|
| 740 |
+
|
| 741 |
+
# if auto tools are not enabled, and a named tool choice using
|
| 742 |
+
# outlines is not being used
|
| 743 |
+
elif (not self.enable_auto_tools
|
| 744 |
+
or not self.tool_parser) and not isinstance(
|
| 745 |
+
request.tool_choice, ChatCompletionNamedToolChoiceParam):
|
| 746 |
+
message = ChatMessage(role=role, content=output.text)
|
| 747 |
+
|
| 748 |
+
# if the request uses tools and specified a tool choice
|
| 749 |
+
elif request.tool_choice and type(
|
| 750 |
+
request.tool_choice) is ChatCompletionNamedToolChoiceParam:
|
| 751 |
+
|
| 752 |
+
tool_call_class = MistralToolCall if isinstance(
|
| 753 |
+
tokenizer, MistralTokenizer) else ToolCall
|
| 754 |
+
message = ChatMessage(
|
| 755 |
+
role=role,
|
| 756 |
+
content="",
|
| 757 |
+
tool_calls=[
|
| 758 |
+
tool_call_class(function=FunctionCall(
|
| 759 |
+
name=request.tool_choice.function.name,
|
| 760 |
+
arguments=output.text))
|
| 761 |
+
])
|
| 762 |
+
|
| 763 |
+
# if the request doesn't use tool choice
|
| 764 |
+
# OR specifies to not use a tool
|
| 765 |
+
elif not request.tool_choice or request.tool_choice == "none":
|
| 766 |
+
|
| 767 |
+
message = ChatMessage(role=role, content=output.text)
|
| 768 |
+
|
| 769 |
+
# handle when there are tools and tool choice is auto
|
| 770 |
+
elif request.tools and (
|
| 771 |
+
request.tool_choice == "auto"
|
| 772 |
+
or request.tool_choice is None) and self.enable_auto_tools \
|
| 773 |
+
and self.tool_parser:
|
| 774 |
+
|
| 775 |
+
try:
|
| 776 |
+
tool_parser = self.tool_parser(tokenizer)
|
| 777 |
+
except RuntimeError as e:
|
| 778 |
+
logger.exception("Error in tool parser creation.")
|
| 779 |
+
return self.create_error_response(str(e))
|
| 780 |
+
|
| 781 |
+
tool_call_info = tool_parser.extract_tool_calls(
|
| 782 |
+
output.text, request=request)
|
| 783 |
+
# In the OpenAI API the finish_reason is "tools_called"
|
| 784 |
+
# if the tool choice is auto and the model produced a tool
|
| 785 |
+
# call. The same is not true for named function calls
|
| 786 |
+
auto_tools_called = tool_call_info.tools_called
|
| 787 |
+
if tool_call_info.tools_called:
|
| 788 |
+
message = ChatMessage(role=role,
|
| 789 |
+
content=tool_call_info.content,
|
| 790 |
+
tool_calls=tool_call_info.tool_calls)
|
| 791 |
+
|
| 792 |
+
else:
|
| 793 |
+
# FOR NOW make it a chat message; we will have to detect
|
| 794 |
+
# the type to make it later.
|
| 795 |
+
message = ChatMessage(role=role, content=output.text)
|
| 796 |
+
|
| 797 |
+
# undetermined case that is still important to handle
|
| 798 |
+
else:
|
| 799 |
+
logger.error(
|
| 800 |
+
"Error in chat_completion_full_generator - cannot determine"
|
| 801 |
+
" if tools should be extracted. Returning a standard chat "
|
| 802 |
+
"completion.")
|
| 803 |
+
message = ChatMessage(role=role, content=output.text)
|
| 804 |
+
|
| 805 |
+
choice_data = ChatCompletionResponseChoice(
|
| 806 |
+
index=output.index,
|
| 807 |
+
message=message,
|
| 808 |
+
logprobs=logprobs,
|
| 809 |
+
finish_reason="tool_calls" if auto_tools_called else
|
| 810 |
+
output.finish_reason if output.finish_reason else "stop",
|
| 811 |
+
stop_reason=output.stop_reason)
|
| 812 |
+
choices.append(choice_data)
|
| 813 |
+
|
| 814 |
+
if request.echo:
|
| 815 |
+
last_msg_content: Union[str, List[Dict[str, str]]] = ""
|
| 816 |
+
if conversation and "content" in conversation[-1] and conversation[
|
| 817 |
+
-1].get("role") == role:
|
| 818 |
+
last_msg_content = conversation[-1]["content"] or ""
|
| 819 |
+
if isinstance(last_msg_content, list):
|
| 820 |
+
last_msg_content = "\n".join(msg['text']
|
| 821 |
+
for msg in last_msg_content)
|
| 822 |
+
|
| 823 |
+
for choice in choices:
|
| 824 |
+
full_message = last_msg_content + (choice.message.content
|
| 825 |
+
or "")
|
| 826 |
+
choice.message.content = full_message
|
| 827 |
+
|
| 828 |
+
assert final_res.prompt_token_ids is not None
|
| 829 |
+
num_prompt_tokens = len(final_res.prompt_token_ids)
|
| 830 |
+
if final_res.encoder_prompt_token_ids is not None:
|
| 831 |
+
num_prompt_tokens += len(final_res.encoder_prompt_token_ids)
|
| 832 |
+
num_generated_tokens = sum(
|
| 833 |
+
len(output.token_ids) for output in final_res.outputs)
|
| 834 |
+
usage = UsageInfo(prompt_tokens=num_prompt_tokens,
|
| 835 |
+
completion_tokens=num_generated_tokens,
|
| 836 |
+
total_tokens=num_prompt_tokens +
|
| 837 |
+
num_generated_tokens)
|
| 838 |
+
if self.enable_prompt_tokens_details and final_res.num_cached_tokens:
|
| 839 |
+
usage.prompt_tokens_details = PromptTokenUsageInfo(
|
| 840 |
+
cached_tokens=final_res.num_cached_tokens)
|
| 841 |
+
|
| 842 |
+
request_metadata.final_usage_info = usage
|
| 843 |
+
|
| 844 |
+
response = ChatCompletionResponse(
|
| 845 |
+
id=request_id,
|
| 846 |
+
created=created_time,
|
| 847 |
+
model=model_name,
|
| 848 |
+
choices=choices,
|
| 849 |
+
usage=usage,
|
| 850 |
+
prompt_logprobs=final_res.prompt_logprobs,
|
| 851 |
+
)
|
| 852 |
+
|
| 853 |
+
return response
|
| 854 |
+
|
| 855 |
+
def _get_top_logprobs(
|
| 856 |
+
self, logprobs: Dict[int, Logprob], top_logprobs: Optional[int],
|
| 857 |
+
tokenizer: AnyTokenizer) -> List[ChatCompletionLogProb]:
|
| 858 |
+
return [
|
| 859 |
+
ChatCompletionLogProb(token=(token := self._get_decoded_token(
|
| 860 |
+
p[1],
|
| 861 |
+
p[0],
|
| 862 |
+
tokenizer,
|
| 863 |
+
return_as_token_id=self.return_tokens_as_token_ids)),
|
| 864 |
+
logprob=max(p[1].logprob, -9999.0),
|
| 865 |
+
bytes=list(
|
| 866 |
+
token.encode("utf-8", errors="replace")))
|
| 867 |
+
for i, p in enumerate(logprobs.items())
|
| 868 |
+
if top_logprobs and i < top_logprobs
|
| 869 |
+
]
|
| 870 |
+
|
| 871 |
+
def _create_chat_logprobs(
|
| 872 |
+
self,
|
| 873 |
+
token_ids: GenericSequence[int],
|
| 874 |
+
top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]],
|
| 875 |
+
tokenizer: AnyTokenizer,
|
| 876 |
+
num_output_top_logprobs: Optional[int] = None,
|
| 877 |
+
) -> ChatCompletionLogProbs:
|
| 878 |
+
"""Create OpenAI-style logprobs."""
|
| 879 |
+
logprobs_content: List[ChatCompletionLogProbsContent] = []
|
| 880 |
+
|
| 881 |
+
for i, token_id in enumerate(token_ids):
|
| 882 |
+
step_top_logprobs = top_logprobs[i]
|
| 883 |
+
if step_top_logprobs is None:
|
| 884 |
+
token = tokenizer.decode(token_id)
|
| 885 |
+
if self.return_tokens_as_token_ids:
|
| 886 |
+
token = f"token_id:{token_id}"
|
| 887 |
+
|
| 888 |
+
logprobs_content.append(
|
| 889 |
+
ChatCompletionLogProbsContent(
|
| 890 |
+
token=token,
|
| 891 |
+
bytes=list(token.encode("utf-8", errors="replace")),
|
| 892 |
+
))
|
| 893 |
+
else:
|
| 894 |
+
step_token = step_top_logprobs[token_id]
|
| 895 |
+
step_decoded = step_token.decoded_token
|
| 896 |
+
|
| 897 |
+
logprobs_content.append(
|
| 898 |
+
ChatCompletionLogProbsContent(
|
| 899 |
+
token=self._get_decoded_token(
|
| 900 |
+
step_token,
|
| 901 |
+
token_id,
|
| 902 |
+
tokenizer,
|
| 903 |
+
self.return_tokens_as_token_ids,
|
| 904 |
+
),
|
| 905 |
+
logprob=max(step_token.logprob, -9999.0),
|
| 906 |
+
bytes=None if step_decoded is None else list(
|
| 907 |
+
step_decoded.encode("utf-8", errors="replace")),
|
| 908 |
+
top_logprobs=self._get_top_logprobs(
|
| 909 |
+
step_top_logprobs,
|
| 910 |
+
num_output_top_logprobs,
|
| 911 |
+
tokenizer,
|
| 912 |
+
),
|
| 913 |
+
))
|
| 914 |
+
|
| 915 |
+
return ChatCompletionLogProbs(content=logprobs_content)
|
| 916 |
+
|
| 917 |
+
def _should_stream_with_auto_tool_parsing(self,
|
| 918 |
+
request: ChatCompletionRequest):
|
| 919 |
+
"""
|
| 920 |
+
Utility function to check if streamed tokens should go through the tool
|
| 921 |
+
call parser that was configured.
|
| 922 |
+
|
| 923 |
+
We only want to do this IF user-provided tools are set, a tool parser
|
| 924 |
+
is configured, "auto" tool choice is enabled, and the request's tool
|
| 925 |
+
choice field indicates that "auto" tool choice should be used.
|
| 926 |
+
"""
|
| 927 |
+
return (request.tools and self.tool_parser and self.enable_auto_tools
|
| 928 |
+
and request.tool_choice in ['auto', None])
|
| 929 |
+
|
| 930 |
+
def _should_stream_with_reasoning_parsing(self,
|
| 931 |
+
request: ChatCompletionRequest):
|
| 932 |
+
"""
|
| 933 |
+
Utility function to check if streamed tokens should go through the
|
| 934 |
+
reasoning parser that was configured.
|
| 935 |
+
|
| 936 |
+
We only want to do this IF reasoning is enabled and a reasoning
|
| 937 |
+
parser is configured.
|
| 938 |
+
"""
|
| 939 |
+
return self.enable_reasoning and self.reasoning_parser is not None
|
| 940 |
+
|
| 941 |
+
def _should_check_for_unstreamed_tool_arg_tokens(
|
| 942 |
+
self,
|
| 943 |
+
delta_message: Optional[DeltaMessage],
|
| 944 |
+
output: CompletionOutput,
|
| 945 |
+
) -> bool:
|
| 946 |
+
"""
|
| 947 |
+
Check to see if we should check for unstreamed tool arguments tokens.
|
| 948 |
+
This is only applicable when auto tool parsing is enabled, the delta
|
| 949 |
+
is a tool call with arguments.
|
| 950 |
+
"""
|
| 951 |
+
|
| 952 |
+
# yapf: disable
|
| 953 |
+
return bool(
|
| 954 |
+
# if there is a delta message that includes tool calls which
|
| 955 |
+
# include a function that has arguments
|
| 956 |
+
output.finish_reason is not None
|
| 957 |
+
and self.enable_auto_tools and self.tool_parser and delta_message
|
| 958 |
+
and delta_message.tool_calls and delta_message.tool_calls[0]
|
| 959 |
+
and delta_message.tool_calls[0].function
|
| 960 |
+
and delta_message.tool_calls[0].function.arguments is not None
|
| 961 |
+
)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_completion.py
ADDED
|
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import time
|
| 5 |
+
from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional
|
| 6 |
+
from typing import Sequence as GenericSequence
|
| 7 |
+
from typing import Tuple, Union, cast
|
| 8 |
+
|
| 9 |
+
from fastapi import Request
|
| 10 |
+
|
| 11 |
+
from vllm.config import ModelConfig
|
| 12 |
+
from vllm.engine.protocol import EngineClient
|
| 13 |
+
from vllm.entrypoints.logger import RequestLogger
|
| 14 |
+
# yapf conflicts with isort for this block
|
| 15 |
+
# yapf: disable
|
| 16 |
+
from vllm.entrypoints.openai.protocol import (CompletionLogProbs,
|
| 17 |
+
CompletionRequest,
|
| 18 |
+
CompletionResponse,
|
| 19 |
+
CompletionResponseChoice,
|
| 20 |
+
CompletionResponseStreamChoice,
|
| 21 |
+
CompletionStreamResponse,
|
| 22 |
+
ErrorResponse,
|
| 23 |
+
RequestResponseMetadata,
|
| 24 |
+
UsageInfo)
|
| 25 |
+
# yapf: enable
|
| 26 |
+
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
| 27 |
+
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
| 28 |
+
from vllm.logger import init_logger
|
| 29 |
+
from vllm.outputs import RequestOutput
|
| 30 |
+
from vllm.sampling_params import BeamSearchParams, SamplingParams
|
| 31 |
+
from vllm.sequence import Logprob
|
| 32 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
| 33 |
+
from vllm.utils import merge_async_iterators
|
| 34 |
+
|
| 35 |
+
logger = init_logger(__name__)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class OpenAIServingCompletion(OpenAIServing):
|
| 39 |
+
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
engine_client: EngineClient,
|
| 43 |
+
model_config: ModelConfig,
|
| 44 |
+
models: OpenAIServingModels,
|
| 45 |
+
*,
|
| 46 |
+
request_logger: Optional[RequestLogger],
|
| 47 |
+
return_tokens_as_token_ids: bool = False,
|
| 48 |
+
):
|
| 49 |
+
super().__init__(engine_client=engine_client,
|
| 50 |
+
model_config=model_config,
|
| 51 |
+
models=models,
|
| 52 |
+
request_logger=request_logger,
|
| 53 |
+
return_tokens_as_token_ids=return_tokens_as_token_ids)
|
| 54 |
+
diff_sampling_param = self.model_config.get_diff_sampling_param()
|
| 55 |
+
if diff_sampling_param:
|
| 56 |
+
logger.info(
|
| 57 |
+
"Overwriting default completion sampling param with: %s",
|
| 58 |
+
diff_sampling_param)
|
| 59 |
+
|
| 60 |
+
async def create_completion(
|
| 61 |
+
self,
|
| 62 |
+
request: CompletionRequest,
|
| 63 |
+
raw_request: Optional[Request] = None,
|
| 64 |
+
) -> Union[AsyncGenerator[str, None], CompletionResponse, ErrorResponse]:
|
| 65 |
+
"""Completion API similar to OpenAI's API.
|
| 66 |
+
|
| 67 |
+
See https://platform.openai.com/docs/api-reference/completions/create
|
| 68 |
+
for the API specification. This API mimics the OpenAI Completion API.
|
| 69 |
+
|
| 70 |
+
NOTE: Currently we do not support the following feature:
|
| 71 |
+
- suffix (the language models we currently support do not support
|
| 72 |
+
suffix)
|
| 73 |
+
"""
|
| 74 |
+
error_check_ret = await self._check_model(request)
|
| 75 |
+
if error_check_ret is not None:
|
| 76 |
+
return error_check_ret
|
| 77 |
+
|
| 78 |
+
# If the engine is dead, raise the engine's DEAD_ERROR.
|
| 79 |
+
# This is required for the streaming case, where we return a
|
| 80 |
+
# success status before we actually start generating text :).
|
| 81 |
+
if self.engine_client.errored:
|
| 82 |
+
raise self.engine_client.dead_error
|
| 83 |
+
|
| 84 |
+
# Return error for unsupported features.
|
| 85 |
+
if request.suffix is not None:
|
| 86 |
+
return self.create_error_response(
|
| 87 |
+
"suffix is not currently supported")
|
| 88 |
+
|
| 89 |
+
request_id = f"cmpl-{self._base_request_id(raw_request)}"
|
| 90 |
+
created_time = int(time.time())
|
| 91 |
+
|
| 92 |
+
request_metadata = RequestResponseMetadata(request_id=request_id)
|
| 93 |
+
if raw_request:
|
| 94 |
+
raw_request.state.request_metadata = request_metadata
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
(
|
| 98 |
+
lora_request,
|
| 99 |
+
prompt_adapter_request,
|
| 100 |
+
) = self._maybe_get_adapters(request)
|
| 101 |
+
|
| 102 |
+
tokenizer = await self.engine_client.get_tokenizer(lora_request)
|
| 103 |
+
|
| 104 |
+
request_prompts, engine_prompts = await self._preprocess_completion(
|
| 105 |
+
request,
|
| 106 |
+
tokenizer,
|
| 107 |
+
request.prompt,
|
| 108 |
+
truncate_prompt_tokens=request.truncate_prompt_tokens,
|
| 109 |
+
add_special_tokens=request.add_special_tokens,
|
| 110 |
+
)
|
| 111 |
+
except ValueError as e:
|
| 112 |
+
logger.exception("Error in preprocessing prompt inputs")
|
| 113 |
+
return self.create_error_response(str(e))
|
| 114 |
+
|
| 115 |
+
# Schedule the request and get the result generator.
|
| 116 |
+
generators: List[AsyncGenerator[RequestOutput, None]] = []
|
| 117 |
+
try:
|
| 118 |
+
for i, engine_prompt in enumerate(engine_prompts):
|
| 119 |
+
sampling_params: Union[SamplingParams, BeamSearchParams]
|
| 120 |
+
default_max_tokens = self.max_model_len - len(
|
| 121 |
+
engine_prompt["prompt_token_ids"])
|
| 122 |
+
# Build default sampling params
|
| 123 |
+
default_sampling_params = (
|
| 124 |
+
self.model_config.get_diff_sampling_param())
|
| 125 |
+
if request.use_beam_search:
|
| 126 |
+
sampling_params = request.to_beam_search_params(
|
| 127 |
+
default_max_tokens, default_sampling_params)
|
| 128 |
+
else:
|
| 129 |
+
sampling_params = request.to_sampling_params(
|
| 130 |
+
default_max_tokens,
|
| 131 |
+
self.model_config.logits_processor_pattern,
|
| 132 |
+
default_sampling_params)
|
| 133 |
+
|
| 134 |
+
request_id_item = f"{request_id}-{i}"
|
| 135 |
+
|
| 136 |
+
self._log_inputs(request_id_item,
|
| 137 |
+
request_prompts[i],
|
| 138 |
+
params=sampling_params,
|
| 139 |
+
lora_request=lora_request,
|
| 140 |
+
prompt_adapter_request=prompt_adapter_request)
|
| 141 |
+
|
| 142 |
+
trace_headers = (None if raw_request is None else await
|
| 143 |
+
self._get_trace_headers(raw_request.headers))
|
| 144 |
+
|
| 145 |
+
if isinstance(sampling_params, BeamSearchParams):
|
| 146 |
+
generator = self.engine_client.beam_search(
|
| 147 |
+
prompt=engine_prompt,
|
| 148 |
+
request_id=request_id,
|
| 149 |
+
params=sampling_params,
|
| 150 |
+
)
|
| 151 |
+
else:
|
| 152 |
+
generator = self.engine_client.generate(
|
| 153 |
+
engine_prompt,
|
| 154 |
+
sampling_params,
|
| 155 |
+
request_id_item,
|
| 156 |
+
lora_request=lora_request,
|
| 157 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 158 |
+
trace_headers=trace_headers,
|
| 159 |
+
priority=request.priority,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
generators.append(generator)
|
| 163 |
+
except ValueError as e:
|
| 164 |
+
# TODO: Use a vllm-specific Validation Error
|
| 165 |
+
return self.create_error_response(str(e))
|
| 166 |
+
|
| 167 |
+
result_generator = merge_async_iterators(*generators)
|
| 168 |
+
|
| 169 |
+
model_name = self.models.model_name(lora_request)
|
| 170 |
+
num_prompts = len(engine_prompts)
|
| 171 |
+
|
| 172 |
+
# Similar to the OpenAI API, when n != best_of, we do not stream the
|
| 173 |
+
# results. In addition, we do not stream the results when use
|
| 174 |
+
# beam search.
|
| 175 |
+
stream = (request.stream
|
| 176 |
+
and (request.best_of is None or request.n == request.best_of)
|
| 177 |
+
and not request.use_beam_search)
|
| 178 |
+
|
| 179 |
+
# Streaming response
|
| 180 |
+
if stream:
|
| 181 |
+
return self.completion_stream_generator(
|
| 182 |
+
request,
|
| 183 |
+
result_generator,
|
| 184 |
+
request_id,
|
| 185 |
+
created_time,
|
| 186 |
+
model_name,
|
| 187 |
+
num_prompts=num_prompts,
|
| 188 |
+
tokenizer=tokenizer,
|
| 189 |
+
request_metadata=request_metadata)
|
| 190 |
+
|
| 191 |
+
# Non-streaming response
|
| 192 |
+
final_res_batch: List[Optional[RequestOutput]] = [None] * num_prompts
|
| 193 |
+
try:
|
| 194 |
+
async for i, res in result_generator:
|
| 195 |
+
final_res_batch[i] = res
|
| 196 |
+
|
| 197 |
+
for i, final_res in enumerate(final_res_batch):
|
| 198 |
+
assert final_res is not None
|
| 199 |
+
|
| 200 |
+
# The output should contain the input text
|
| 201 |
+
# We did not pass it into vLLM engine to avoid being redundant
|
| 202 |
+
# with the inputs token IDs
|
| 203 |
+
if final_res.prompt is None:
|
| 204 |
+
final_res.prompt = request_prompts[i]["prompt"]
|
| 205 |
+
|
| 206 |
+
final_res_batch_checked = cast(List[RequestOutput],
|
| 207 |
+
final_res_batch)
|
| 208 |
+
|
| 209 |
+
response = self.request_output_to_completion_response(
|
| 210 |
+
final_res_batch_checked,
|
| 211 |
+
request,
|
| 212 |
+
request_id,
|
| 213 |
+
created_time,
|
| 214 |
+
model_name,
|
| 215 |
+
tokenizer,
|
| 216 |
+
request_metadata,
|
| 217 |
+
)
|
| 218 |
+
except asyncio.CancelledError:
|
| 219 |
+
return self.create_error_response("Client disconnected")
|
| 220 |
+
except ValueError as e:
|
| 221 |
+
# TODO: Use a vllm-specific Validation Error
|
| 222 |
+
return self.create_error_response(str(e))
|
| 223 |
+
|
| 224 |
+
# When user requests streaming but we don't stream, we still need to
|
| 225 |
+
# return a streaming response with a single event.
|
| 226 |
+
if request.stream:
|
| 227 |
+
response_json = response.model_dump_json()
|
| 228 |
+
|
| 229 |
+
async def fake_stream_generator() -> AsyncGenerator[str, None]:
|
| 230 |
+
yield f"data: {response_json}\n\n"
|
| 231 |
+
yield "data: [DONE]\n\n"
|
| 232 |
+
|
| 233 |
+
return fake_stream_generator()
|
| 234 |
+
|
| 235 |
+
return response
|
| 236 |
+
|
| 237 |
+
async def completion_stream_generator(
|
| 238 |
+
self,
|
| 239 |
+
request: CompletionRequest,
|
| 240 |
+
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
|
| 241 |
+
request_id: str,
|
| 242 |
+
created_time: int,
|
| 243 |
+
model_name: str,
|
| 244 |
+
num_prompts: int,
|
| 245 |
+
tokenizer: AnyTokenizer,
|
| 246 |
+
request_metadata: RequestResponseMetadata,
|
| 247 |
+
) -> AsyncGenerator[str, None]:
|
| 248 |
+
num_choices = 1 if request.n is None else request.n
|
| 249 |
+
previous_text_lens = [0] * num_choices * num_prompts
|
| 250 |
+
previous_num_tokens = [0] * num_choices * num_prompts
|
| 251 |
+
has_echoed = [False] * num_choices * num_prompts
|
| 252 |
+
num_prompt_tokens = [0] * num_prompts
|
| 253 |
+
|
| 254 |
+
stream_options = request.stream_options
|
| 255 |
+
if stream_options:
|
| 256 |
+
include_usage = stream_options.include_usage
|
| 257 |
+
include_continuous_usage = include_usage and \
|
| 258 |
+
stream_options.continuous_usage_stats
|
| 259 |
+
else:
|
| 260 |
+
include_usage, include_continuous_usage = False, False
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
async for prompt_idx, res in result_generator:
|
| 264 |
+
prompt_token_ids = res.prompt_token_ids
|
| 265 |
+
prompt_logprobs = res.prompt_logprobs
|
| 266 |
+
prompt_text = res.prompt
|
| 267 |
+
|
| 268 |
+
# Prompt details are excluded from later streamed outputs
|
| 269 |
+
if res.prompt_token_ids is not None:
|
| 270 |
+
num_prompt_tokens[prompt_idx] = len(res.prompt_token_ids)
|
| 271 |
+
|
| 272 |
+
delta_token_ids: GenericSequence[int]
|
| 273 |
+
out_logprobs: Optional[GenericSequence[Optional[Dict[
|
| 274 |
+
int, Logprob]]]]
|
| 275 |
+
|
| 276 |
+
for output in res.outputs:
|
| 277 |
+
i = output.index + prompt_idx * num_choices
|
| 278 |
+
|
| 279 |
+
assert request.max_tokens is not None
|
| 280 |
+
if request.echo and not has_echoed[i]:
|
| 281 |
+
assert prompt_token_ids is not None
|
| 282 |
+
assert prompt_text is not None
|
| 283 |
+
if request.max_tokens == 0:
|
| 284 |
+
# only return the prompt
|
| 285 |
+
delta_text = prompt_text
|
| 286 |
+
delta_token_ids = prompt_token_ids
|
| 287 |
+
out_logprobs = prompt_logprobs
|
| 288 |
+
else:
|
| 289 |
+
assert prompt_logprobs is not None
|
| 290 |
+
# echo the prompt and first token
|
| 291 |
+
delta_text = prompt_text + output.text
|
| 292 |
+
delta_token_ids = [
|
| 293 |
+
*prompt_token_ids, *output.token_ids
|
| 294 |
+
]
|
| 295 |
+
out_logprobs = [
|
| 296 |
+
*prompt_logprobs,
|
| 297 |
+
*(output.logprobs or []),
|
| 298 |
+
]
|
| 299 |
+
has_echoed[i] = True
|
| 300 |
+
else:
|
| 301 |
+
# return just the delta
|
| 302 |
+
delta_text = output.text
|
| 303 |
+
delta_token_ids = output.token_ids
|
| 304 |
+
out_logprobs = output.logprobs
|
| 305 |
+
|
| 306 |
+
if not delta_text and not delta_token_ids \
|
| 307 |
+
and not previous_num_tokens[i]:
|
| 308 |
+
# Chunked prefill case, don't return empty chunks
|
| 309 |
+
continue
|
| 310 |
+
|
| 311 |
+
if request.logprobs is not None:
|
| 312 |
+
assert out_logprobs is not None, (
|
| 313 |
+
"Did not output logprobs")
|
| 314 |
+
logprobs = self._create_completion_logprobs(
|
| 315 |
+
token_ids=delta_token_ids,
|
| 316 |
+
top_logprobs=out_logprobs,
|
| 317 |
+
num_output_top_logprobs=request.logprobs,
|
| 318 |
+
tokenizer=tokenizer,
|
| 319 |
+
initial_text_offset=previous_text_lens[i],
|
| 320 |
+
)
|
| 321 |
+
else:
|
| 322 |
+
logprobs = None
|
| 323 |
+
|
| 324 |
+
previous_text_lens[i] += len(output.text)
|
| 325 |
+
previous_num_tokens[i] += len(output.token_ids)
|
| 326 |
+
finish_reason = output.finish_reason
|
| 327 |
+
stop_reason = output.stop_reason
|
| 328 |
+
|
| 329 |
+
chunk = CompletionStreamResponse(
|
| 330 |
+
id=request_id,
|
| 331 |
+
created=created_time,
|
| 332 |
+
model=model_name,
|
| 333 |
+
choices=[
|
| 334 |
+
CompletionResponseStreamChoice(
|
| 335 |
+
index=i,
|
| 336 |
+
text=delta_text,
|
| 337 |
+
logprobs=logprobs,
|
| 338 |
+
finish_reason=finish_reason,
|
| 339 |
+
stop_reason=stop_reason,
|
| 340 |
+
)
|
| 341 |
+
])
|
| 342 |
+
if include_continuous_usage:
|
| 343 |
+
prompt_tokens = num_prompt_tokens[prompt_idx]
|
| 344 |
+
completion_tokens = previous_num_tokens[i]
|
| 345 |
+
chunk.usage = UsageInfo(
|
| 346 |
+
prompt_tokens=prompt_tokens,
|
| 347 |
+
completion_tokens=completion_tokens,
|
| 348 |
+
total_tokens=prompt_tokens + completion_tokens,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
response_json = chunk.model_dump_json(exclude_unset=False)
|
| 352 |
+
yield f"data: {response_json}\n\n"
|
| 353 |
+
|
| 354 |
+
total_prompt_tokens = sum(num_prompt_tokens)
|
| 355 |
+
total_completion_tokens = sum(previous_num_tokens)
|
| 356 |
+
final_usage_info = UsageInfo(
|
| 357 |
+
prompt_tokens=total_prompt_tokens,
|
| 358 |
+
completion_tokens=total_completion_tokens,
|
| 359 |
+
total_tokens=total_prompt_tokens + total_completion_tokens)
|
| 360 |
+
|
| 361 |
+
if include_usage:
|
| 362 |
+
final_usage_chunk = CompletionStreamResponse(
|
| 363 |
+
id=request_id,
|
| 364 |
+
created=created_time,
|
| 365 |
+
model=model_name,
|
| 366 |
+
choices=[],
|
| 367 |
+
usage=final_usage_info,
|
| 368 |
+
)
|
| 369 |
+
final_usage_data = (final_usage_chunk.model_dump_json(
|
| 370 |
+
exclude_unset=False, exclude_none=True))
|
| 371 |
+
yield f"data: {final_usage_data}\n\n"
|
| 372 |
+
|
| 373 |
+
# report to FastAPI middleware aggregate usage across all choices
|
| 374 |
+
request_metadata.final_usage_info = final_usage_info
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
# TODO: Use a vllm-specific Validation Error
|
| 378 |
+
data = self.create_streaming_error_response(str(e))
|
| 379 |
+
yield f"data: {data}\n\n"
|
| 380 |
+
yield "data: [DONE]\n\n"
|
| 381 |
+
|
| 382 |
+
def request_output_to_completion_response(
|
| 383 |
+
self,
|
| 384 |
+
final_res_batch: List[RequestOutput],
|
| 385 |
+
request: CompletionRequest,
|
| 386 |
+
request_id: str,
|
| 387 |
+
created_time: int,
|
| 388 |
+
model_name: str,
|
| 389 |
+
tokenizer: AnyTokenizer,
|
| 390 |
+
request_metadata: RequestResponseMetadata,
|
| 391 |
+
) -> CompletionResponse:
|
| 392 |
+
choices: List[CompletionResponseChoice] = []
|
| 393 |
+
num_prompt_tokens = 0
|
| 394 |
+
num_generated_tokens = 0
|
| 395 |
+
|
| 396 |
+
for final_res in final_res_batch:
|
| 397 |
+
prompt_token_ids = final_res.prompt_token_ids
|
| 398 |
+
assert prompt_token_ids is not None
|
| 399 |
+
prompt_logprobs = final_res.prompt_logprobs
|
| 400 |
+
if prompt_logprobs:
|
| 401 |
+
for logprob_dict in prompt_logprobs:
|
| 402 |
+
if logprob_dict:
|
| 403 |
+
for logprob_values in logprob_dict.values():
|
| 404 |
+
if logprob_values.logprob == float('-inf'):
|
| 405 |
+
logprob_values.logprob = -9999.0
|
| 406 |
+
prompt_text = final_res.prompt
|
| 407 |
+
|
| 408 |
+
token_ids: GenericSequence[int]
|
| 409 |
+
out_logprobs: Optional[GenericSequence[Optional[Dict[int,
|
| 410 |
+
Logprob]]]]
|
| 411 |
+
|
| 412 |
+
for output in final_res.outputs:
|
| 413 |
+
assert request.max_tokens is not None
|
| 414 |
+
if request.echo:
|
| 415 |
+
assert prompt_text is not None
|
| 416 |
+
if request.max_tokens == 0:
|
| 417 |
+
token_ids = prompt_token_ids
|
| 418 |
+
out_logprobs = prompt_logprobs
|
| 419 |
+
output_text = prompt_text
|
| 420 |
+
else:
|
| 421 |
+
token_ids = [*prompt_token_ids, *output.token_ids]
|
| 422 |
+
|
| 423 |
+
if request.logprobs is None:
|
| 424 |
+
out_logprobs = None
|
| 425 |
+
else:
|
| 426 |
+
assert prompt_logprobs is not None
|
| 427 |
+
assert output.logprobs is not None
|
| 428 |
+
out_logprobs = [
|
| 429 |
+
*prompt_logprobs,
|
| 430 |
+
*output.logprobs,
|
| 431 |
+
]
|
| 432 |
+
|
| 433 |
+
output_text = prompt_text + output.text
|
| 434 |
+
else:
|
| 435 |
+
token_ids = output.token_ids
|
| 436 |
+
out_logprobs = output.logprobs
|
| 437 |
+
output_text = output.text
|
| 438 |
+
|
| 439 |
+
if request.logprobs is not None:
|
| 440 |
+
assert out_logprobs is not None, "Did not output logprobs"
|
| 441 |
+
logprobs = self._create_completion_logprobs(
|
| 442 |
+
token_ids=token_ids,
|
| 443 |
+
top_logprobs=out_logprobs,
|
| 444 |
+
tokenizer=tokenizer,
|
| 445 |
+
num_output_top_logprobs=request.logprobs,
|
| 446 |
+
)
|
| 447 |
+
else:
|
| 448 |
+
logprobs = None
|
| 449 |
+
|
| 450 |
+
choice_data = CompletionResponseChoice(
|
| 451 |
+
index=len(choices),
|
| 452 |
+
text=output_text,
|
| 453 |
+
logprobs=logprobs,
|
| 454 |
+
finish_reason=output.finish_reason,
|
| 455 |
+
stop_reason=output.stop_reason,
|
| 456 |
+
prompt_logprobs=final_res.prompt_logprobs,
|
| 457 |
+
)
|
| 458 |
+
choices.append(choice_data)
|
| 459 |
+
|
| 460 |
+
num_generated_tokens += len(output.token_ids)
|
| 461 |
+
|
| 462 |
+
num_prompt_tokens += len(prompt_token_ids)
|
| 463 |
+
|
| 464 |
+
usage = UsageInfo(
|
| 465 |
+
prompt_tokens=num_prompt_tokens,
|
| 466 |
+
completion_tokens=num_generated_tokens,
|
| 467 |
+
total_tokens=num_prompt_tokens + num_generated_tokens,
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
request_metadata.final_usage_info = usage
|
| 471 |
+
|
| 472 |
+
return CompletionResponse(
|
| 473 |
+
id=request_id,
|
| 474 |
+
created=created_time,
|
| 475 |
+
model=model_name,
|
| 476 |
+
choices=choices,
|
| 477 |
+
usage=usage,
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
def _create_completion_logprobs(
|
| 481 |
+
self,
|
| 482 |
+
token_ids: GenericSequence[int],
|
| 483 |
+
top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]],
|
| 484 |
+
num_output_top_logprobs: int,
|
| 485 |
+
tokenizer: AnyTokenizer,
|
| 486 |
+
initial_text_offset: int = 0,
|
| 487 |
+
) -> CompletionLogProbs:
|
| 488 |
+
"""Create logprobs for OpenAI Completion API."""
|
| 489 |
+
out_text_offset: List[int] = []
|
| 490 |
+
out_token_logprobs: List[Optional[float]] = []
|
| 491 |
+
out_tokens: List[str] = []
|
| 492 |
+
out_top_logprobs: List[Optional[Dict[str, float]]] = []
|
| 493 |
+
|
| 494 |
+
last_token_len = 0
|
| 495 |
+
|
| 496 |
+
for i, token_id in enumerate(token_ids):
|
| 497 |
+
step_top_logprobs = top_logprobs[i]
|
| 498 |
+
if step_top_logprobs is None:
|
| 499 |
+
token = tokenizer.decode(token_id)
|
| 500 |
+
if self.return_tokens_as_token_ids:
|
| 501 |
+
token = f"token_id:{token_id}"
|
| 502 |
+
|
| 503 |
+
out_tokens.append(token)
|
| 504 |
+
out_token_logprobs.append(None)
|
| 505 |
+
out_top_logprobs.append(None)
|
| 506 |
+
else:
|
| 507 |
+
step_token = step_top_logprobs[token_id]
|
| 508 |
+
|
| 509 |
+
token = self._get_decoded_token(
|
| 510 |
+
step_token,
|
| 511 |
+
token_id,
|
| 512 |
+
tokenizer,
|
| 513 |
+
return_as_token_id=self.return_tokens_as_token_ids,
|
| 514 |
+
)
|
| 515 |
+
token_logprob = max(step_token.logprob, -9999.0)
|
| 516 |
+
|
| 517 |
+
out_tokens.append(token)
|
| 518 |
+
out_token_logprobs.append(token_logprob)
|
| 519 |
+
|
| 520 |
+
# makes sure to add the top num_output_top_logprobs + 1
|
| 521 |
+
# logprobs, as defined in the openai API
|
| 522 |
+
# (cf. https://github.com/openai/openai-openapi/blob/
|
| 523 |
+
# 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
|
| 524 |
+
out_top_logprobs.append({
|
| 525 |
+
# Convert float("-inf") to the
|
| 526 |
+
# JSON-serializable float that OpenAI uses
|
| 527 |
+
self._get_decoded_token(top_lp[1],
|
| 528 |
+
top_lp[0],
|
| 529 |
+
tokenizer,
|
| 530 |
+
return_as_token_id=self.return_tokens_as_token_ids):
|
| 531 |
+
max(top_lp[1].logprob, -9999.0)
|
| 532 |
+
for i, top_lp in enumerate(step_top_logprobs.items())
|
| 533 |
+
if num_output_top_logprobs >= i
|
| 534 |
+
})
|
| 535 |
+
|
| 536 |
+
if len(out_text_offset) == 0:
|
| 537 |
+
out_text_offset.append(initial_text_offset)
|
| 538 |
+
else:
|
| 539 |
+
out_text_offset.append(out_text_offset[-1] + last_token_len)
|
| 540 |
+
last_token_len = len(token)
|
| 541 |
+
|
| 542 |
+
return CompletionLogProbs(
|
| 543 |
+
text_offset=out_text_offset,
|
| 544 |
+
token_logprobs=out_token_logprobs,
|
| 545 |
+
tokens=out_tokens,
|
| 546 |
+
top_logprobs=out_top_logprobs,
|
| 547 |
+
)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_embedding.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import base64
|
| 5 |
+
import time
|
| 6 |
+
from typing import AsyncGenerator, Final, List, Literal, Optional, Union, cast
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
from fastapi import Request
|
| 10 |
+
from typing_extensions import assert_never
|
| 11 |
+
|
| 12 |
+
from vllm.config import ModelConfig
|
| 13 |
+
from vllm.engine.protocol import EngineClient
|
| 14 |
+
from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption
|
| 15 |
+
from vllm.entrypoints.logger import RequestLogger
|
| 16 |
+
from vllm.entrypoints.openai.protocol import (EmbeddingChatRequest,
|
| 17 |
+
EmbeddingRequest,
|
| 18 |
+
EmbeddingResponse,
|
| 19 |
+
EmbeddingResponseData,
|
| 20 |
+
ErrorResponse, UsageInfo)
|
| 21 |
+
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
| 22 |
+
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
| 23 |
+
from vllm.logger import init_logger
|
| 24 |
+
from vllm.outputs import (EmbeddingOutput, EmbeddingRequestOutput,
|
| 25 |
+
PoolingRequestOutput)
|
| 26 |
+
from vllm.utils import merge_async_iterators
|
| 27 |
+
|
| 28 |
+
logger = init_logger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _get_embedding(
|
| 32 |
+
output: EmbeddingOutput,
|
| 33 |
+
encoding_format: Literal["float", "base64"],
|
| 34 |
+
) -> Union[List[float], str]:
|
| 35 |
+
if encoding_format == "float":
|
| 36 |
+
return output.embedding
|
| 37 |
+
elif encoding_format == "base64":
|
| 38 |
+
# Force to use float32 for base64 encoding
|
| 39 |
+
# to match the OpenAI python client behavior
|
| 40 |
+
embedding_bytes = np.array(output.embedding, dtype="float32").tobytes()
|
| 41 |
+
return base64.b64encode(embedding_bytes).decode("utf-8")
|
| 42 |
+
|
| 43 |
+
assert_never(encoding_format)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class OpenAIServingEmbedding(OpenAIServing):
|
| 47 |
+
|
| 48 |
+
def __init__(
|
| 49 |
+
self,
|
| 50 |
+
engine_client: EngineClient,
|
| 51 |
+
model_config: ModelConfig,
|
| 52 |
+
models: OpenAIServingModels,
|
| 53 |
+
*,
|
| 54 |
+
request_logger: Optional[RequestLogger],
|
| 55 |
+
chat_template: Optional[str],
|
| 56 |
+
chat_template_content_format: ChatTemplateContentFormatOption,
|
| 57 |
+
) -> None:
|
| 58 |
+
super().__init__(engine_client=engine_client,
|
| 59 |
+
model_config=model_config,
|
| 60 |
+
models=models,
|
| 61 |
+
request_logger=request_logger)
|
| 62 |
+
|
| 63 |
+
self.chat_template = chat_template
|
| 64 |
+
self.chat_template_content_format: Final = chat_template_content_format
|
| 65 |
+
|
| 66 |
+
async def create_embedding(
|
| 67 |
+
self,
|
| 68 |
+
request: EmbeddingRequest,
|
| 69 |
+
raw_request: Optional[Request] = None,
|
| 70 |
+
) -> Union[EmbeddingResponse, ErrorResponse]:
|
| 71 |
+
"""
|
| 72 |
+
Embedding API similar to OpenAI's API.
|
| 73 |
+
|
| 74 |
+
See https://platform.openai.com/docs/api-reference/embeddings/create
|
| 75 |
+
for the API specification. This API mimics the OpenAI Embedding API.
|
| 76 |
+
"""
|
| 77 |
+
error_check_ret = await self._check_model(request)
|
| 78 |
+
if error_check_ret is not None:
|
| 79 |
+
return error_check_ret
|
| 80 |
+
|
| 81 |
+
encoding_format = request.encoding_format
|
| 82 |
+
if request.dimensions is not None:
|
| 83 |
+
return self.create_error_response(
|
| 84 |
+
"dimensions is currently not supported")
|
| 85 |
+
|
| 86 |
+
model_name = request.model
|
| 87 |
+
request_id = f"embd-{self._base_request_id(raw_request)}"
|
| 88 |
+
created_time = int(time.time())
|
| 89 |
+
|
| 90 |
+
truncate_prompt_tokens = None
|
| 91 |
+
|
| 92 |
+
if request.truncate_prompt_tokens is not None:
|
| 93 |
+
if request.truncate_prompt_tokens <= self.max_model_len:
|
| 94 |
+
truncate_prompt_tokens = request.truncate_prompt_tokens
|
| 95 |
+
else:
|
| 96 |
+
return self.create_error_response(
|
| 97 |
+
"truncate_prompt_tokens value is "
|
| 98 |
+
"greater than max_model_len."
|
| 99 |
+
" Please, select a smaller truncation size.")
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
(
|
| 103 |
+
lora_request,
|
| 104 |
+
prompt_adapter_request,
|
| 105 |
+
) = self._maybe_get_adapters(request)
|
| 106 |
+
|
| 107 |
+
tokenizer = await self.engine_client.get_tokenizer(lora_request)
|
| 108 |
+
|
| 109 |
+
if prompt_adapter_request is not None:
|
| 110 |
+
raise NotImplementedError("Prompt adapter is not supported "
|
| 111 |
+
"for embedding models")
|
| 112 |
+
|
| 113 |
+
if isinstance(request, EmbeddingChatRequest):
|
| 114 |
+
(
|
| 115 |
+
_,
|
| 116 |
+
request_prompts,
|
| 117 |
+
engine_prompts,
|
| 118 |
+
) = await self._preprocess_chat(
|
| 119 |
+
request,
|
| 120 |
+
tokenizer,
|
| 121 |
+
request.messages,
|
| 122 |
+
chat_template=request.chat_template or self.chat_template,
|
| 123 |
+
chat_template_content_format=self.
|
| 124 |
+
chat_template_content_format,
|
| 125 |
+
# In embedding requests, we are not generating tokens,
|
| 126 |
+
# so there is no need to append extra tokens to the input
|
| 127 |
+
add_generation_prompt=False,
|
| 128 |
+
continue_final_message=False,
|
| 129 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 130 |
+
add_special_tokens=request.add_special_tokens,
|
| 131 |
+
)
|
| 132 |
+
else:
|
| 133 |
+
(request_prompts,
|
| 134 |
+
engine_prompts) = await self._preprocess_completion(
|
| 135 |
+
request,
|
| 136 |
+
tokenizer,
|
| 137 |
+
request.input,
|
| 138 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 139 |
+
add_special_tokens=request.add_special_tokens,
|
| 140 |
+
)
|
| 141 |
+
except ValueError as e:
|
| 142 |
+
logger.exception("Error in preprocessing prompt inputs")
|
| 143 |
+
return self.create_error_response(str(e))
|
| 144 |
+
|
| 145 |
+
# Schedule the request and get the result generator.
|
| 146 |
+
generators: List[AsyncGenerator[PoolingRequestOutput, None]] = []
|
| 147 |
+
try:
|
| 148 |
+
pooling_params = request.to_pooling_params()
|
| 149 |
+
|
| 150 |
+
for i, engine_prompt in enumerate(engine_prompts):
|
| 151 |
+
request_id_item = f"{request_id}-{i}"
|
| 152 |
+
|
| 153 |
+
self._log_inputs(request_id_item,
|
| 154 |
+
request_prompts[i],
|
| 155 |
+
params=pooling_params,
|
| 156 |
+
lora_request=lora_request,
|
| 157 |
+
prompt_adapter_request=prompt_adapter_request)
|
| 158 |
+
|
| 159 |
+
trace_headers = (None if raw_request is None else await
|
| 160 |
+
self._get_trace_headers(raw_request.headers))
|
| 161 |
+
|
| 162 |
+
generator = self.engine_client.encode(
|
| 163 |
+
engine_prompt,
|
| 164 |
+
pooling_params,
|
| 165 |
+
request_id_item,
|
| 166 |
+
lora_request=lora_request,
|
| 167 |
+
trace_headers=trace_headers,
|
| 168 |
+
priority=request.priority,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
generators.append(generator)
|
| 172 |
+
except ValueError as e:
|
| 173 |
+
# TODO: Use a vllm-specific Validation Error
|
| 174 |
+
return self.create_error_response(str(e))
|
| 175 |
+
|
| 176 |
+
result_generator = merge_async_iterators(*generators)
|
| 177 |
+
|
| 178 |
+
num_prompts = len(engine_prompts)
|
| 179 |
+
|
| 180 |
+
# Non-streaming response
|
| 181 |
+
final_res_batch: List[Optional[PoolingRequestOutput]]
|
| 182 |
+
final_res_batch = [None] * num_prompts
|
| 183 |
+
try:
|
| 184 |
+
async for i, res in result_generator:
|
| 185 |
+
final_res_batch[i] = res
|
| 186 |
+
|
| 187 |
+
assert all(final_res is not None for final_res in final_res_batch)
|
| 188 |
+
|
| 189 |
+
final_res_batch_checked = cast(List[PoolingRequestOutput],
|
| 190 |
+
final_res_batch)
|
| 191 |
+
|
| 192 |
+
response = self.request_output_to_embedding_response(
|
| 193 |
+
final_res_batch_checked,
|
| 194 |
+
request_id,
|
| 195 |
+
created_time,
|
| 196 |
+
model_name,
|
| 197 |
+
encoding_format,
|
| 198 |
+
)
|
| 199 |
+
except asyncio.CancelledError:
|
| 200 |
+
return self.create_error_response("Client disconnected")
|
| 201 |
+
except ValueError as e:
|
| 202 |
+
# TODO: Use a vllm-specific Validation Error
|
| 203 |
+
return self.create_error_response(str(e))
|
| 204 |
+
|
| 205 |
+
return response
|
| 206 |
+
|
| 207 |
+
def request_output_to_embedding_response(
|
| 208 |
+
self,
|
| 209 |
+
final_res_batch: List[PoolingRequestOutput],
|
| 210 |
+
request_id: str,
|
| 211 |
+
created_time: int,
|
| 212 |
+
model_name: str,
|
| 213 |
+
encoding_format: Literal["float", "base64"],
|
| 214 |
+
) -> EmbeddingResponse:
|
| 215 |
+
items: List[EmbeddingResponseData] = []
|
| 216 |
+
num_prompt_tokens = 0
|
| 217 |
+
|
| 218 |
+
for idx, final_res in enumerate(final_res_batch):
|
| 219 |
+
embedding_res = EmbeddingRequestOutput.from_base(final_res)
|
| 220 |
+
|
| 221 |
+
item = EmbeddingResponseData(
|
| 222 |
+
index=idx,
|
| 223 |
+
embedding=_get_embedding(embedding_res.outputs,
|
| 224 |
+
encoding_format),
|
| 225 |
+
)
|
| 226 |
+
prompt_token_ids = final_res.prompt_token_ids
|
| 227 |
+
|
| 228 |
+
items.append(item)
|
| 229 |
+
num_prompt_tokens += len(prompt_token_ids)
|
| 230 |
+
|
| 231 |
+
usage = UsageInfo(
|
| 232 |
+
prompt_tokens=num_prompt_tokens,
|
| 233 |
+
total_tokens=num_prompt_tokens,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
return EmbeddingResponse(
|
| 237 |
+
id=request_id,
|
| 238 |
+
created=created_time,
|
| 239 |
+
model=model_name,
|
| 240 |
+
data=items,
|
| 241 |
+
usage=usage,
|
| 242 |
+
)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_engine.py
ADDED
|
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
from concurrent.futures.thread import ThreadPoolExecutor
|
| 5 |
+
from http import HTTPStatus
|
| 6 |
+
from typing import (Any, Callable, Dict, Iterable, Iterator, List, Mapping,
|
| 7 |
+
Optional, Sequence, Tuple, TypedDict, Union)
|
| 8 |
+
|
| 9 |
+
from fastapi import Request
|
| 10 |
+
from pydantic import Field
|
| 11 |
+
from starlette.datastructures import Headers
|
| 12 |
+
from typing_extensions import Annotated
|
| 13 |
+
|
| 14 |
+
from vllm.config import ModelConfig
|
| 15 |
+
from vllm.engine.protocol import EngineClient
|
| 16 |
+
# yapf conflicts with isort for this block
|
| 17 |
+
# yapf: disable
|
| 18 |
+
from vllm.entrypoints.chat_utils import (ChatCompletionMessageParam,
|
| 19 |
+
ChatTemplateContentFormatOption,
|
| 20 |
+
ConversationMessage,
|
| 21 |
+
apply_hf_chat_template,
|
| 22 |
+
apply_mistral_chat_template,
|
| 23 |
+
parse_chat_messages_futures,
|
| 24 |
+
resolve_chat_template_content_format)
|
| 25 |
+
from vllm.entrypoints.logger import RequestLogger
|
| 26 |
+
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
| 27 |
+
CompletionRequest,
|
| 28 |
+
DetokenizeRequest,
|
| 29 |
+
EmbeddingChatRequest,
|
| 30 |
+
EmbeddingCompletionRequest,
|
| 31 |
+
ErrorResponse, RerankRequest,
|
| 32 |
+
ScoreRequest,
|
| 33 |
+
TokenizeChatRequest,
|
| 34 |
+
TokenizeCompletionRequest,
|
| 35 |
+
TranscriptionRequest)
|
| 36 |
+
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
| 37 |
+
from vllm.entrypoints.openai.tool_parsers import ToolParser
|
| 38 |
+
# yapf: enable
|
| 39 |
+
from vllm.inputs import TokensPrompt
|
| 40 |
+
from vllm.inputs.parse import parse_and_batch_prompt
|
| 41 |
+
from vllm.logger import init_logger
|
| 42 |
+
from vllm.lora.request import LoRARequest
|
| 43 |
+
from vllm.pooling_params import PoolingParams
|
| 44 |
+
from vllm.prompt_adapter.request import PromptAdapterRequest
|
| 45 |
+
from vllm.sampling_params import BeamSearchParams, SamplingParams
|
| 46 |
+
from vllm.sequence import Logprob
|
| 47 |
+
from vllm.tracing import (contains_trace_headers, extract_trace_headers,
|
| 48 |
+
log_tracing_disabled_warning)
|
| 49 |
+
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
|
| 50 |
+
from vllm.utils import is_list_of, make_async, random_uuid
|
| 51 |
+
|
| 52 |
+
logger = init_logger(__name__)
|
| 53 |
+
|
| 54 |
+
CompletionLikeRequest = Union[CompletionRequest, DetokenizeRequest,
|
| 55 |
+
EmbeddingCompletionRequest, ScoreRequest,
|
| 56 |
+
TokenizeCompletionRequest]
|
| 57 |
+
|
| 58 |
+
ChatLikeRequest = Union[ChatCompletionRequest, EmbeddingChatRequest,
|
| 59 |
+
TokenizeChatRequest]
|
| 60 |
+
|
| 61 |
+
AnyRequest = Union[CompletionLikeRequest, ChatLikeRequest,
|
| 62 |
+
TranscriptionRequest]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class TextTokensPrompt(TypedDict):
|
| 66 |
+
prompt: str
|
| 67 |
+
prompt_token_ids: List[int]
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
RequestPrompt = Union[List[int], str, TextTokensPrompt]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class OpenAIServing:
|
| 74 |
+
|
| 75 |
+
def __init__(
|
| 76 |
+
self,
|
| 77 |
+
engine_client: EngineClient,
|
| 78 |
+
model_config: ModelConfig,
|
| 79 |
+
models: OpenAIServingModels,
|
| 80 |
+
*,
|
| 81 |
+
request_logger: Optional[RequestLogger],
|
| 82 |
+
return_tokens_as_token_ids: bool = False,
|
| 83 |
+
):
|
| 84 |
+
super().__init__()
|
| 85 |
+
|
| 86 |
+
self.engine_client = engine_client
|
| 87 |
+
self.model_config = model_config
|
| 88 |
+
self.max_model_len = model_config.max_model_len
|
| 89 |
+
|
| 90 |
+
self.models = models
|
| 91 |
+
|
| 92 |
+
self.request_logger = request_logger
|
| 93 |
+
self.return_tokens_as_token_ids = return_tokens_as_token_ids
|
| 94 |
+
|
| 95 |
+
self._tokenizer_executor = ThreadPoolExecutor(max_workers=1)
|
| 96 |
+
|
| 97 |
+
self._tokenize_prompt_input_async = make_async(
|
| 98 |
+
self._tokenize_prompt_input, executor=self._tokenizer_executor)
|
| 99 |
+
self._tokenize_prompt_input_or_inputs_async = make_async(
|
| 100 |
+
self._tokenize_prompt_input_or_inputs,
|
| 101 |
+
executor=self._tokenizer_executor)
|
| 102 |
+
|
| 103 |
+
def create_error_response(
|
| 104 |
+
self,
|
| 105 |
+
message: str,
|
| 106 |
+
err_type: str = "BadRequestError",
|
| 107 |
+
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
|
| 108 |
+
return ErrorResponse(message=message,
|
| 109 |
+
type=err_type,
|
| 110 |
+
code=status_code.value)
|
| 111 |
+
|
| 112 |
+
def create_streaming_error_response(
|
| 113 |
+
self,
|
| 114 |
+
message: str,
|
| 115 |
+
err_type: str = "BadRequestError",
|
| 116 |
+
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
|
| 117 |
+
json_str = json.dumps({
|
| 118 |
+
"error":
|
| 119 |
+
self.create_error_response(message=message,
|
| 120 |
+
err_type=err_type,
|
| 121 |
+
status_code=status_code).model_dump()
|
| 122 |
+
})
|
| 123 |
+
return json_str
|
| 124 |
+
|
| 125 |
+
async def _check_model(
|
| 126 |
+
self,
|
| 127 |
+
request: AnyRequest,
|
| 128 |
+
) -> Optional[ErrorResponse]:
|
| 129 |
+
if self._is_model_supported(request.model):
|
| 130 |
+
return None
|
| 131 |
+
if request.model in [
|
| 132 |
+
lora.lora_name for lora in self.models.lora_requests
|
| 133 |
+
]:
|
| 134 |
+
return None
|
| 135 |
+
if request.model in [
|
| 136 |
+
prompt_adapter.prompt_adapter_name
|
| 137 |
+
for prompt_adapter in self.models.prompt_adapter_requests
|
| 138 |
+
]:
|
| 139 |
+
return None
|
| 140 |
+
return self.create_error_response(
|
| 141 |
+
message=f"The model `{request.model}` does not exist.",
|
| 142 |
+
err_type="NotFoundError",
|
| 143 |
+
status_code=HTTPStatus.NOT_FOUND)
|
| 144 |
+
|
| 145 |
+
def _maybe_get_adapters(
|
| 146 |
+
self, request: AnyRequest
|
| 147 |
+
) -> Union[Tuple[None, None], Tuple[LoRARequest, None], Tuple[
|
| 148 |
+
None, PromptAdapterRequest]]:
|
| 149 |
+
if self._is_model_supported(request.model):
|
| 150 |
+
return None, None
|
| 151 |
+
for lora in self.models.lora_requests:
|
| 152 |
+
if request.model == lora.lora_name:
|
| 153 |
+
return lora, None
|
| 154 |
+
for prompt_adapter in self.models.prompt_adapter_requests:
|
| 155 |
+
if request.model == prompt_adapter.prompt_adapter_name:
|
| 156 |
+
return None, prompt_adapter
|
| 157 |
+
# if _check_model has been called earlier, this will be unreachable
|
| 158 |
+
raise ValueError(f"The model `{request.model}` does not exist.")
|
| 159 |
+
|
| 160 |
+
def _normalize_prompt_text_to_input(
|
| 161 |
+
self,
|
| 162 |
+
request: AnyRequest,
|
| 163 |
+
tokenizer: AnyTokenizer,
|
| 164 |
+
prompt: str,
|
| 165 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]],
|
| 166 |
+
add_special_tokens: bool,
|
| 167 |
+
) -> TextTokensPrompt:
|
| 168 |
+
if (self.model_config.encoder_config is not None
|
| 169 |
+
and self.model_config.encoder_config.get(
|
| 170 |
+
"do_lower_case", False)):
|
| 171 |
+
prompt = prompt.lower()
|
| 172 |
+
|
| 173 |
+
if truncate_prompt_tokens is None:
|
| 174 |
+
encoded = tokenizer(prompt, add_special_tokens=add_special_tokens)
|
| 175 |
+
else:
|
| 176 |
+
encoded = tokenizer(prompt,
|
| 177 |
+
add_special_tokens=add_special_tokens,
|
| 178 |
+
truncation=True,
|
| 179 |
+
max_length=truncate_prompt_tokens)
|
| 180 |
+
|
| 181 |
+
input_ids = encoded.input_ids
|
| 182 |
+
|
| 183 |
+
input_text = prompt
|
| 184 |
+
|
| 185 |
+
return self._validate_input(request, input_ids, input_text)
|
| 186 |
+
|
| 187 |
+
def _normalize_prompt_tokens_to_input(
|
| 188 |
+
self,
|
| 189 |
+
request: AnyRequest,
|
| 190 |
+
tokenizer: AnyTokenizer,
|
| 191 |
+
prompt_ids: List[int],
|
| 192 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]],
|
| 193 |
+
) -> TextTokensPrompt:
|
| 194 |
+
if truncate_prompt_tokens is None:
|
| 195 |
+
input_ids = prompt_ids
|
| 196 |
+
else:
|
| 197 |
+
input_ids = prompt_ids[-truncate_prompt_tokens:]
|
| 198 |
+
|
| 199 |
+
input_text = tokenizer.decode(input_ids)
|
| 200 |
+
|
| 201 |
+
return self._validate_input(request, input_ids, input_text)
|
| 202 |
+
|
| 203 |
+
def _validate_input(
|
| 204 |
+
self,
|
| 205 |
+
request: AnyRequest,
|
| 206 |
+
input_ids: List[int],
|
| 207 |
+
input_text: str,
|
| 208 |
+
) -> TextTokensPrompt:
|
| 209 |
+
token_num = len(input_ids)
|
| 210 |
+
|
| 211 |
+
# Note: EmbeddingRequest and ScoreRequest doesn't have max_tokens
|
| 212 |
+
if isinstance(request,
|
| 213 |
+
(EmbeddingChatRequest, EmbeddingCompletionRequest,
|
| 214 |
+
ScoreRequest, RerankRequest)):
|
| 215 |
+
|
| 216 |
+
operation = "score" if isinstance(request, ScoreRequest) \
|
| 217 |
+
else "embedding generation"
|
| 218 |
+
if token_num > self.max_model_len:
|
| 219 |
+
raise ValueError(
|
| 220 |
+
f"This model's maximum context length is "
|
| 221 |
+
f"{self.max_model_len} tokens. However, you requested "
|
| 222 |
+
f"{token_num} tokens in the input for {operation}. "
|
| 223 |
+
f"Please reduce the length of the input.")
|
| 224 |
+
return TextTokensPrompt(prompt=input_text,
|
| 225 |
+
prompt_token_ids=input_ids)
|
| 226 |
+
|
| 227 |
+
# Note: TokenizeRequest and DetokenizeRequest doesn't have max_tokens
|
| 228 |
+
# and does not require model context length validation
|
| 229 |
+
if isinstance(request, (TokenizeCompletionRequest, TokenizeChatRequest,
|
| 230 |
+
DetokenizeRequest)):
|
| 231 |
+
return TextTokensPrompt(prompt=input_text,
|
| 232 |
+
prompt_token_ids=input_ids)
|
| 233 |
+
|
| 234 |
+
# chat completion endpoint supports max_completion_tokens
|
| 235 |
+
if isinstance(request, ChatCompletionRequest):
|
| 236 |
+
# TODO(#9845): remove max_tokens when field dropped from OpenAI API
|
| 237 |
+
max_tokens = request.max_completion_tokens or request.max_tokens
|
| 238 |
+
else:
|
| 239 |
+
max_tokens = request.max_tokens
|
| 240 |
+
if max_tokens is None:
|
| 241 |
+
if token_num >= self.max_model_len:
|
| 242 |
+
raise ValueError(
|
| 243 |
+
f"This model's maximum context length is "
|
| 244 |
+
f"{self.max_model_len} tokens. However, you requested "
|
| 245 |
+
f"{token_num} tokens in the messages, "
|
| 246 |
+
f"Please reduce the length of the messages.")
|
| 247 |
+
elif token_num + max_tokens > self.max_model_len:
|
| 248 |
+
raise ValueError(
|
| 249 |
+
f"This model's maximum context length is "
|
| 250 |
+
f"{self.max_model_len} tokens. However, you requested "
|
| 251 |
+
f"{max_tokens + token_num} tokens "
|
| 252 |
+
f"({token_num} in the messages, "
|
| 253 |
+
f"{max_tokens} in the completion). "
|
| 254 |
+
f"Please reduce the length of the messages or completion.")
|
| 255 |
+
|
| 256 |
+
return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids)
|
| 257 |
+
|
| 258 |
+
def _tokenize_prompt_input(
|
| 259 |
+
self,
|
| 260 |
+
request: AnyRequest,
|
| 261 |
+
tokenizer: AnyTokenizer,
|
| 262 |
+
prompt_input: Union[str, List[int]],
|
| 263 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
|
| 264 |
+
add_special_tokens: bool = True,
|
| 265 |
+
) -> TextTokensPrompt:
|
| 266 |
+
"""
|
| 267 |
+
A simpler implementation of :meth:`_tokenize_prompt_input_or_inputs`
|
| 268 |
+
that assumes single input.
|
| 269 |
+
"""
|
| 270 |
+
return next(
|
| 271 |
+
self._tokenize_prompt_inputs(
|
| 272 |
+
request,
|
| 273 |
+
tokenizer,
|
| 274 |
+
[prompt_input],
|
| 275 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 276 |
+
add_special_tokens=add_special_tokens,
|
| 277 |
+
))
|
| 278 |
+
|
| 279 |
+
def _tokenize_prompt_inputs(
|
| 280 |
+
self,
|
| 281 |
+
request: AnyRequest,
|
| 282 |
+
tokenizer: AnyTokenizer,
|
| 283 |
+
prompt_inputs: Iterable[Union[str, List[int]]],
|
| 284 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
|
| 285 |
+
add_special_tokens: bool = True,
|
| 286 |
+
) -> Iterator[TextTokensPrompt]:
|
| 287 |
+
"""
|
| 288 |
+
A simpler implementation of :meth:`_tokenize_prompt_input_or_inputs`
|
| 289 |
+
that assumes multiple inputs.
|
| 290 |
+
"""
|
| 291 |
+
for text in prompt_inputs:
|
| 292 |
+
if isinstance(text, str):
|
| 293 |
+
yield self._normalize_prompt_text_to_input(
|
| 294 |
+
request,
|
| 295 |
+
tokenizer,
|
| 296 |
+
prompt=text,
|
| 297 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 298 |
+
add_special_tokens=add_special_tokens,
|
| 299 |
+
)
|
| 300 |
+
else:
|
| 301 |
+
yield self._normalize_prompt_tokens_to_input(
|
| 302 |
+
request,
|
| 303 |
+
tokenizer,
|
| 304 |
+
prompt_ids=text,
|
| 305 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
def _tokenize_prompt_input_or_inputs(
|
| 309 |
+
self,
|
| 310 |
+
request: AnyRequest,
|
| 311 |
+
tokenizer: AnyTokenizer,
|
| 312 |
+
input_or_inputs: Union[str, List[str], List[int], List[List[int]]],
|
| 313 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
|
| 314 |
+
add_special_tokens: bool = True,
|
| 315 |
+
) -> List[TextTokensPrompt]:
|
| 316 |
+
"""
|
| 317 |
+
Tokenize/detokenize depending on the input format.
|
| 318 |
+
|
| 319 |
+
According to `OpenAI API <https://platform.openai.com/docs/api-reference/embeddings/create>`_
|
| 320 |
+
, each input can be a string or array of tokens. Note that each request
|
| 321 |
+
can pass one or more inputs.
|
| 322 |
+
"""
|
| 323 |
+
# Although our type checking is based on mypy,
|
| 324 |
+
# VSCode Pyright extension should still work properly
|
| 325 |
+
# "is True" is required for Pyright to perform type narrowing
|
| 326 |
+
# See: https://github.com/microsoft/pyright/issues/7672
|
| 327 |
+
return [
|
| 328 |
+
self._normalize_prompt_text_to_input(
|
| 329 |
+
request,
|
| 330 |
+
tokenizer,
|
| 331 |
+
prompt=prompt_input["content"],
|
| 332 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 333 |
+
add_special_tokens=add_special_tokens)
|
| 334 |
+
if prompt_input["is_tokens"] is False else
|
| 335 |
+
self._normalize_prompt_tokens_to_input(
|
| 336 |
+
request,
|
| 337 |
+
tokenizer,
|
| 338 |
+
prompt_ids=prompt_input["content"],
|
| 339 |
+
truncate_prompt_tokens=truncate_prompt_tokens)
|
| 340 |
+
for prompt_input in parse_and_batch_prompt(input_or_inputs)
|
| 341 |
+
]
|
| 342 |
+
|
| 343 |
+
async def _preprocess_completion(
|
| 344 |
+
self,
|
| 345 |
+
request: CompletionLikeRequest,
|
| 346 |
+
tokenizer: AnyTokenizer,
|
| 347 |
+
input_or_inputs: Union[str, List[str], List[int], List[List[int]]],
|
| 348 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
|
| 349 |
+
add_special_tokens: bool = True,
|
| 350 |
+
) -> Tuple[List[TextTokensPrompt], List[TokensPrompt]]:
|
| 351 |
+
request_prompts = await self._tokenize_prompt_input_or_inputs_async(
|
| 352 |
+
request,
|
| 353 |
+
tokenizer,
|
| 354 |
+
input_or_inputs,
|
| 355 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 356 |
+
add_special_tokens=add_special_tokens,
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
engine_prompts = [
|
| 360 |
+
TokensPrompt(prompt_token_ids=request_prompt["prompt_token_ids"])
|
| 361 |
+
for request_prompt in request_prompts
|
| 362 |
+
]
|
| 363 |
+
|
| 364 |
+
return request_prompts, engine_prompts
|
| 365 |
+
|
| 366 |
+
async def _preprocess_chat(
|
| 367 |
+
self,
|
| 368 |
+
request: ChatLikeRequest,
|
| 369 |
+
tokenizer: AnyTokenizer,
|
| 370 |
+
messages: List[ChatCompletionMessageParam],
|
| 371 |
+
chat_template: Optional[str],
|
| 372 |
+
chat_template_content_format: ChatTemplateContentFormatOption,
|
| 373 |
+
add_generation_prompt: bool = True,
|
| 374 |
+
continue_final_message: bool = False,
|
| 375 |
+
tool_dicts: Optional[List[Dict[str, Any]]] = None,
|
| 376 |
+
documents: Optional[List[Dict[str, str]]] = None,
|
| 377 |
+
chat_template_kwargs: Optional[Dict[str, Any]] = None,
|
| 378 |
+
tool_parser: Optional[Callable[[AnyTokenizer], ToolParser]] = None,
|
| 379 |
+
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
|
| 380 |
+
add_special_tokens: bool = False,
|
| 381 |
+
) -> Tuple[List[ConversationMessage], Sequence[RequestPrompt],
|
| 382 |
+
List[TokensPrompt]]:
|
| 383 |
+
resolved_content_format = resolve_chat_template_content_format(
|
| 384 |
+
chat_template,
|
| 385 |
+
chat_template_content_format,
|
| 386 |
+
tokenizer,
|
| 387 |
+
)
|
| 388 |
+
conversation, mm_data_future = parse_chat_messages_futures(
|
| 389 |
+
messages,
|
| 390 |
+
self.model_config,
|
| 391 |
+
tokenizer,
|
| 392 |
+
content_format=resolved_content_format,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
_chat_template_kwargs: Dict[str, Any] = dict(
|
| 396 |
+
chat_template=chat_template,
|
| 397 |
+
add_generation_prompt=add_generation_prompt,
|
| 398 |
+
continue_final_message=continue_final_message,
|
| 399 |
+
tools=tool_dicts,
|
| 400 |
+
documents=documents,
|
| 401 |
+
)
|
| 402 |
+
_chat_template_kwargs.update(chat_template_kwargs or {})
|
| 403 |
+
|
| 404 |
+
request_prompt: Union[str, List[int]]
|
| 405 |
+
if isinstance(tokenizer, MistralTokenizer):
|
| 406 |
+
request_prompt = apply_mistral_chat_template(
|
| 407 |
+
tokenizer,
|
| 408 |
+
messages=messages,
|
| 409 |
+
**_chat_template_kwargs,
|
| 410 |
+
)
|
| 411 |
+
else:
|
| 412 |
+
request_prompt = apply_hf_chat_template(
|
| 413 |
+
tokenizer,
|
| 414 |
+
conversation=conversation,
|
| 415 |
+
**_chat_template_kwargs,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
mm_data = await mm_data_future
|
| 419 |
+
|
| 420 |
+
# tool parsing is done only if a tool_parser has been set and if
|
| 421 |
+
# tool_choice is not "none" (if tool_choice is "none" but a tool_parser
|
| 422 |
+
# is set, we want to prevent parsing a tool_call hallucinated by the LLM
|
| 423 |
+
should_parse_tools = tool_parser is not None and (hasattr(
|
| 424 |
+
request, "tool_choice") and request.tool_choice != "none")
|
| 425 |
+
|
| 426 |
+
if should_parse_tools:
|
| 427 |
+
if not isinstance(request, ChatCompletionRequest):
|
| 428 |
+
msg = "Tool usage is only supported for Chat Completions API"
|
| 429 |
+
raise NotImplementedError(msg)
|
| 430 |
+
|
| 431 |
+
request = tool_parser(tokenizer).adjust_request( # type: ignore
|
| 432 |
+
request=request)
|
| 433 |
+
|
| 434 |
+
if isinstance(request_prompt, str):
|
| 435 |
+
prompt_inputs = await self._tokenize_prompt_input_async(
|
| 436 |
+
request,
|
| 437 |
+
tokenizer,
|
| 438 |
+
request_prompt,
|
| 439 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 440 |
+
add_special_tokens=add_special_tokens,
|
| 441 |
+
)
|
| 442 |
+
else:
|
| 443 |
+
# For MistralTokenizer
|
| 444 |
+
assert is_list_of(request_prompt, int), (
|
| 445 |
+
"Prompt has to be either a string or a list of token ids")
|
| 446 |
+
prompt_inputs = TextTokensPrompt(
|
| 447 |
+
prompt=tokenizer.decode(request_prompt),
|
| 448 |
+
prompt_token_ids=request_prompt)
|
| 449 |
+
|
| 450 |
+
engine_prompt = TokensPrompt(
|
| 451 |
+
prompt_token_ids=prompt_inputs["prompt_token_ids"])
|
| 452 |
+
if mm_data is not None:
|
| 453 |
+
engine_prompt["multi_modal_data"] = mm_data
|
| 454 |
+
if request.mm_processor_kwargs is not None:
|
| 455 |
+
engine_prompt["mm_processor_kwargs"] = request.mm_processor_kwargs
|
| 456 |
+
|
| 457 |
+
return conversation, [request_prompt], [engine_prompt]
|
| 458 |
+
|
| 459 |
+
def _log_inputs(
|
| 460 |
+
self,
|
| 461 |
+
request_id: str,
|
| 462 |
+
inputs: RequestPrompt,
|
| 463 |
+
params: Optional[Union[SamplingParams, PoolingParams,
|
| 464 |
+
BeamSearchParams]],
|
| 465 |
+
lora_request: Optional[LoRARequest],
|
| 466 |
+
prompt_adapter_request: Optional[PromptAdapterRequest],
|
| 467 |
+
) -> None:
|
| 468 |
+
if self.request_logger is None:
|
| 469 |
+
return
|
| 470 |
+
|
| 471 |
+
if isinstance(inputs, str):
|
| 472 |
+
prompt = inputs
|
| 473 |
+
prompt_token_ids = None
|
| 474 |
+
elif isinstance(inputs, list):
|
| 475 |
+
prompt = None
|
| 476 |
+
prompt_token_ids = inputs
|
| 477 |
+
else:
|
| 478 |
+
prompt = inputs["prompt"]
|
| 479 |
+
prompt_token_ids = inputs["prompt_token_ids"]
|
| 480 |
+
|
| 481 |
+
self.request_logger.log_inputs(
|
| 482 |
+
request_id,
|
| 483 |
+
prompt,
|
| 484 |
+
prompt_token_ids,
|
| 485 |
+
params=params,
|
| 486 |
+
lora_request=lora_request,
|
| 487 |
+
prompt_adapter_request=prompt_adapter_request,
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
async def _get_trace_headers(
|
| 491 |
+
self,
|
| 492 |
+
headers: Headers,
|
| 493 |
+
) -> Optional[Mapping[str, str]]:
|
| 494 |
+
is_tracing_enabled = await self.engine_client.is_tracing_enabled()
|
| 495 |
+
|
| 496 |
+
if is_tracing_enabled:
|
| 497 |
+
return extract_trace_headers(headers)
|
| 498 |
+
|
| 499 |
+
if contains_trace_headers(headers):
|
| 500 |
+
log_tracing_disabled_warning()
|
| 501 |
+
|
| 502 |
+
return None
|
| 503 |
+
|
| 504 |
+
@staticmethod
|
| 505 |
+
def _base_request_id(raw_request: Optional[Request],
|
| 506 |
+
default: Optional[str] = None) -> Optional[str]:
|
| 507 |
+
"""Pulls the request id to use from a header, if provided"""
|
| 508 |
+
default = default or random_uuid()
|
| 509 |
+
if raw_request is None:
|
| 510 |
+
return default
|
| 511 |
+
|
| 512 |
+
return raw_request.headers.get("X-Request-Id", default)
|
| 513 |
+
|
| 514 |
+
@staticmethod
|
| 515 |
+
def _get_decoded_token(logprob: Logprob,
|
| 516 |
+
token_id: int,
|
| 517 |
+
tokenizer: AnyTokenizer,
|
| 518 |
+
return_as_token_id: bool = False) -> str:
|
| 519 |
+
if return_as_token_id:
|
| 520 |
+
return f"token_id:{token_id}"
|
| 521 |
+
|
| 522 |
+
if logprob.decoded_token is not None:
|
| 523 |
+
return logprob.decoded_token
|
| 524 |
+
return tokenizer.decode(token_id)
|
| 525 |
+
|
| 526 |
+
def _is_model_supported(self, model_name):
|
| 527 |
+
return self.models.is_base_model(model_name)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_models.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
import pathlib
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
from http import HTTPStatus
|
| 7 |
+
from typing import List, Optional, Union
|
| 8 |
+
|
| 9 |
+
from vllm.config import ModelConfig
|
| 10 |
+
from vllm.engine.protocol import EngineClient
|
| 11 |
+
from vllm.entrypoints.openai.protocol import (ErrorResponse,
|
| 12 |
+
LoadLoraAdapterRequest,
|
| 13 |
+
ModelCard, ModelList,
|
| 14 |
+
ModelPermission,
|
| 15 |
+
UnloadLoraAdapterRequest)
|
| 16 |
+
from vllm.logger import init_logger
|
| 17 |
+
from vllm.lora.request import LoRARequest
|
| 18 |
+
from vllm.prompt_adapter.request import PromptAdapterRequest
|
| 19 |
+
from vllm.utils import AtomicCounter
|
| 20 |
+
|
| 21 |
+
logger = init_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class BaseModelPath:
|
| 26 |
+
name: str
|
| 27 |
+
model_path: str
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class PromptAdapterPath:
|
| 32 |
+
name: str
|
| 33 |
+
local_path: str
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class LoRAModulePath:
|
| 38 |
+
name: str
|
| 39 |
+
path: str
|
| 40 |
+
base_model_name: Optional[str] = None
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class OpenAIServingModels:
|
| 44 |
+
"""Shared instance to hold data about the loaded base model(s) and adapters.
|
| 45 |
+
|
| 46 |
+
Handles the routes:
|
| 47 |
+
- /v1/models
|
| 48 |
+
- /v1/load_lora_adapter
|
| 49 |
+
- /v1/unload_lora_adapter
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
engine_client: EngineClient,
|
| 55 |
+
model_config: ModelConfig,
|
| 56 |
+
base_model_paths: List[BaseModelPath],
|
| 57 |
+
*,
|
| 58 |
+
lora_modules: Optional[List[LoRAModulePath]] = None,
|
| 59 |
+
prompt_adapters: Optional[List[PromptAdapterPath]] = None,
|
| 60 |
+
):
|
| 61 |
+
super().__init__()
|
| 62 |
+
|
| 63 |
+
self.base_model_paths = base_model_paths
|
| 64 |
+
self.max_model_len = model_config.max_model_len
|
| 65 |
+
self.engine_client = engine_client
|
| 66 |
+
|
| 67 |
+
self.static_lora_modules = lora_modules
|
| 68 |
+
self.lora_requests: List[LoRARequest] = []
|
| 69 |
+
self.lora_id_counter = AtomicCounter(0)
|
| 70 |
+
|
| 71 |
+
self.prompt_adapter_requests = []
|
| 72 |
+
if prompt_adapters is not None:
|
| 73 |
+
for i, prompt_adapter in enumerate(prompt_adapters, start=1):
|
| 74 |
+
with pathlib.Path(prompt_adapter.local_path,
|
| 75 |
+
"adapter_config.json").open() as f:
|
| 76 |
+
adapter_config = json.load(f)
|
| 77 |
+
num_virtual_tokens = adapter_config["num_virtual_tokens"]
|
| 78 |
+
self.prompt_adapter_requests.append(
|
| 79 |
+
PromptAdapterRequest(
|
| 80 |
+
prompt_adapter_name=prompt_adapter.name,
|
| 81 |
+
prompt_adapter_id=i,
|
| 82 |
+
prompt_adapter_local_path=prompt_adapter.local_path,
|
| 83 |
+
prompt_adapter_num_virtual_tokens=num_virtual_tokens))
|
| 84 |
+
|
| 85 |
+
async def init_static_loras(self):
|
| 86 |
+
"""Loads all static LoRA modules.
|
| 87 |
+
Raises if any fail to load"""
|
| 88 |
+
if self.static_lora_modules is None:
|
| 89 |
+
return
|
| 90 |
+
for lora in self.static_lora_modules:
|
| 91 |
+
load_request = LoadLoraAdapterRequest(lora_path=lora.path,
|
| 92 |
+
lora_name=lora.name)
|
| 93 |
+
load_result = await self.load_lora_adapter(
|
| 94 |
+
request=load_request, base_model_name=lora.base_model_name)
|
| 95 |
+
if isinstance(load_result, ErrorResponse):
|
| 96 |
+
raise ValueError(load_result.message)
|
| 97 |
+
|
| 98 |
+
def is_base_model(self, model_name):
|
| 99 |
+
return any(model.name == model_name for model in self.base_model_paths)
|
| 100 |
+
|
| 101 |
+
def model_name(self, lora_request: Optional[LoRARequest] = None) -> str:
|
| 102 |
+
"""Returns the appropriate model name depending on the availability
|
| 103 |
+
and support of the LoRA or base model.
|
| 104 |
+
Parameters:
|
| 105 |
+
- lora: LoRARequest that contain a base_model_name.
|
| 106 |
+
Returns:
|
| 107 |
+
- str: The name of the base model or the first available model path.
|
| 108 |
+
"""
|
| 109 |
+
if lora_request is not None:
|
| 110 |
+
return lora_request.lora_name
|
| 111 |
+
return self.base_model_paths[0].name
|
| 112 |
+
|
| 113 |
+
async def show_available_models(self) -> ModelList:
|
| 114 |
+
"""Show available models. This includes the base model and all
|
| 115 |
+
adapters"""
|
| 116 |
+
model_cards = [
|
| 117 |
+
ModelCard(id=base_model.name,
|
| 118 |
+
max_model_len=self.max_model_len,
|
| 119 |
+
root=base_model.model_path,
|
| 120 |
+
permission=[ModelPermission()])
|
| 121 |
+
for base_model in self.base_model_paths
|
| 122 |
+
]
|
| 123 |
+
lora_cards = [
|
| 124 |
+
ModelCard(id=lora.lora_name,
|
| 125 |
+
root=lora.local_path,
|
| 126 |
+
parent=lora.base_model_name if lora.base_model_name else
|
| 127 |
+
self.base_model_paths[0].name,
|
| 128 |
+
permission=[ModelPermission()])
|
| 129 |
+
for lora in self.lora_requests
|
| 130 |
+
]
|
| 131 |
+
prompt_adapter_cards = [
|
| 132 |
+
ModelCard(id=prompt_adapter.prompt_adapter_name,
|
| 133 |
+
root=self.base_model_paths[0].name,
|
| 134 |
+
permission=[ModelPermission()])
|
| 135 |
+
for prompt_adapter in self.prompt_adapter_requests
|
| 136 |
+
]
|
| 137 |
+
model_cards.extend(lora_cards)
|
| 138 |
+
model_cards.extend(prompt_adapter_cards)
|
| 139 |
+
return ModelList(data=model_cards)
|
| 140 |
+
|
| 141 |
+
async def load_lora_adapter(
|
| 142 |
+
self,
|
| 143 |
+
request: LoadLoraAdapterRequest,
|
| 144 |
+
base_model_name: Optional[str] = None
|
| 145 |
+
) -> Union[ErrorResponse, str]:
|
| 146 |
+
error_check_ret = await self._check_load_lora_adapter_request(request)
|
| 147 |
+
if error_check_ret is not None:
|
| 148 |
+
return error_check_ret
|
| 149 |
+
|
| 150 |
+
lora_name, lora_path = request.lora_name, request.lora_path
|
| 151 |
+
unique_id = self.lora_id_counter.inc(1)
|
| 152 |
+
lora_request = LoRARequest(lora_name=lora_name,
|
| 153 |
+
lora_int_id=unique_id,
|
| 154 |
+
lora_path=lora_path)
|
| 155 |
+
if base_model_name is not None and self.is_base_model(base_model_name):
|
| 156 |
+
lora_request.base_model_name = base_model_name
|
| 157 |
+
|
| 158 |
+
# Validate that the adapter can be loaded into the engine
|
| 159 |
+
# This will also pre-load it for incoming requests
|
| 160 |
+
try:
|
| 161 |
+
await self.engine_client.add_lora(lora_request)
|
| 162 |
+
except BaseException as e:
|
| 163 |
+
error_type = "BadRequestError"
|
| 164 |
+
status_code = HTTPStatus.BAD_REQUEST
|
| 165 |
+
if isinstance(e, ValueError) and "No adapter found" in str(e):
|
| 166 |
+
error_type = "NotFoundError"
|
| 167 |
+
status_code = HTTPStatus.NOT_FOUND
|
| 168 |
+
|
| 169 |
+
return create_error_response(message=str(e),
|
| 170 |
+
err_type=error_type,
|
| 171 |
+
status_code=status_code)
|
| 172 |
+
|
| 173 |
+
self.lora_requests.append(lora_request)
|
| 174 |
+
logger.info("Loaded new LoRA adapter: name '%s', path '%s'", lora_name,
|
| 175 |
+
lora_path)
|
| 176 |
+
return f"Success: LoRA adapter '{lora_name}' added successfully."
|
| 177 |
+
|
| 178 |
+
async def unload_lora_adapter(
|
| 179 |
+
self,
|
| 180 |
+
request: UnloadLoraAdapterRequest) -> Union[ErrorResponse, str]:
|
| 181 |
+
error_check_ret = await self._check_unload_lora_adapter_request(request
|
| 182 |
+
)
|
| 183 |
+
if error_check_ret is not None:
|
| 184 |
+
return error_check_ret
|
| 185 |
+
|
| 186 |
+
lora_name = request.lora_name
|
| 187 |
+
self.lora_requests = [
|
| 188 |
+
lora_request for lora_request in self.lora_requests
|
| 189 |
+
if lora_request.lora_name != lora_name
|
| 190 |
+
]
|
| 191 |
+
logger.info("Removed LoRA adapter: name '%s'", lora_name)
|
| 192 |
+
return f"Success: LoRA adapter '{lora_name}' removed successfully."
|
| 193 |
+
|
| 194 |
+
async def _check_load_lora_adapter_request(
|
| 195 |
+
self, request: LoadLoraAdapterRequest) -> Optional[ErrorResponse]:
|
| 196 |
+
# Check if both 'lora_name' and 'lora_path' are provided
|
| 197 |
+
if not request.lora_name or not request.lora_path:
|
| 198 |
+
return create_error_response(
|
| 199 |
+
message="Both 'lora_name' and 'lora_path' must be provided.",
|
| 200 |
+
err_type="InvalidUserInput",
|
| 201 |
+
status_code=HTTPStatus.BAD_REQUEST)
|
| 202 |
+
|
| 203 |
+
# Check if the lora adapter with the given name already exists
|
| 204 |
+
if any(lora_request.lora_name == request.lora_name
|
| 205 |
+
for lora_request in self.lora_requests):
|
| 206 |
+
return create_error_response(
|
| 207 |
+
message=
|
| 208 |
+
f"The lora adapter '{request.lora_name}' has already been "
|
| 209 |
+
"loaded.",
|
| 210 |
+
err_type="InvalidUserInput",
|
| 211 |
+
status_code=HTTPStatus.BAD_REQUEST)
|
| 212 |
+
|
| 213 |
+
return None
|
| 214 |
+
|
| 215 |
+
async def _check_unload_lora_adapter_request(
|
| 216 |
+
self,
|
| 217 |
+
request: UnloadLoraAdapterRequest) -> Optional[ErrorResponse]:
|
| 218 |
+
# Check if either 'lora_name' or 'lora_int_id' is provided
|
| 219 |
+
if not request.lora_name and not request.lora_int_id:
|
| 220 |
+
return create_error_response(
|
| 221 |
+
message=
|
| 222 |
+
"either 'lora_name' and 'lora_int_id' needs to be provided.",
|
| 223 |
+
err_type="InvalidUserInput",
|
| 224 |
+
status_code=HTTPStatus.BAD_REQUEST)
|
| 225 |
+
|
| 226 |
+
# Check if the lora adapter with the given name exists
|
| 227 |
+
if not any(lora_request.lora_name == request.lora_name
|
| 228 |
+
for lora_request in self.lora_requests):
|
| 229 |
+
return create_error_response(
|
| 230 |
+
message=
|
| 231 |
+
f"The lora adapter '{request.lora_name}' cannot be found.",
|
| 232 |
+
err_type="NotFoundError",
|
| 233 |
+
status_code=HTTPStatus.NOT_FOUND)
|
| 234 |
+
|
| 235 |
+
return None
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def create_error_response(
|
| 239 |
+
message: str,
|
| 240 |
+
err_type: str = "BadRequestError",
|
| 241 |
+
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
|
| 242 |
+
return ErrorResponse(message=message,
|
| 243 |
+
type=err_type,
|
| 244 |
+
code=status_code.value)
|
infer_4_30_0/lib/python3.10/site-packages/vllm/entrypoints/openai/serving_pooling.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
import asyncio
|
| 4 |
+
import base64
|
| 5 |
+
import time
|
| 6 |
+
from typing import AsyncGenerator, Final, List, Literal, Optional, Union, cast
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
from fastapi import Request
|
| 10 |
+
from typing_extensions import assert_never
|
| 11 |
+
|
| 12 |
+
from vllm.config import ModelConfig
|
| 13 |
+
from vllm.engine.protocol import EngineClient
|
| 14 |
+
from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption
|
| 15 |
+
from vllm.entrypoints.logger import RequestLogger
|
| 16 |
+
from vllm.entrypoints.openai.protocol import (ErrorResponse,
|
| 17 |
+
PoolingChatRequest,
|
| 18 |
+
PoolingRequest, PoolingResponse,
|
| 19 |
+
PoolingResponseData, UsageInfo)
|
| 20 |
+
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
| 21 |
+
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
| 22 |
+
from vllm.logger import init_logger
|
| 23 |
+
from vllm.outputs import PoolingOutput, PoolingRequestOutput
|
| 24 |
+
from vllm.utils import merge_async_iterators
|
| 25 |
+
|
| 26 |
+
logger = init_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def _get_data(
|
| 30 |
+
output: PoolingOutput,
|
| 31 |
+
encoding_format: Literal["float", "base64"],
|
| 32 |
+
) -> Union[List[float], str]:
|
| 33 |
+
if encoding_format == "float":
|
| 34 |
+
return output.data.tolist()
|
| 35 |
+
elif encoding_format == "base64":
|
| 36 |
+
# Force to use float32 for base64 encoding
|
| 37 |
+
# to match the OpenAI python client behavior
|
| 38 |
+
pooling_bytes = np.array(output.data, dtype="float32").tobytes()
|
| 39 |
+
return base64.b64encode(pooling_bytes).decode("utf-8")
|
| 40 |
+
|
| 41 |
+
assert_never(encoding_format)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class OpenAIServingPooling(OpenAIServing):
|
| 45 |
+
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
engine_client: EngineClient,
|
| 49 |
+
model_config: ModelConfig,
|
| 50 |
+
models: OpenAIServingModels,
|
| 51 |
+
*,
|
| 52 |
+
request_logger: Optional[RequestLogger],
|
| 53 |
+
chat_template: Optional[str],
|
| 54 |
+
chat_template_content_format: ChatTemplateContentFormatOption,
|
| 55 |
+
) -> None:
|
| 56 |
+
super().__init__(engine_client=engine_client,
|
| 57 |
+
model_config=model_config,
|
| 58 |
+
models=models,
|
| 59 |
+
request_logger=request_logger)
|
| 60 |
+
|
| 61 |
+
self.chat_template = chat_template
|
| 62 |
+
self.chat_template_content_format: Final = chat_template_content_format
|
| 63 |
+
|
| 64 |
+
async def create_pooling(
|
| 65 |
+
self,
|
| 66 |
+
request: PoolingRequest,
|
| 67 |
+
raw_request: Optional[Request] = None,
|
| 68 |
+
) -> Union[PoolingResponse, ErrorResponse]:
|
| 69 |
+
"""
|
| 70 |
+
See https://platform.openai.com/docs/api-reference/embeddings/create
|
| 71 |
+
for the API specification. This API mimics the OpenAI Embedding API.
|
| 72 |
+
"""
|
| 73 |
+
error_check_ret = await self._check_model(request)
|
| 74 |
+
if error_check_ret is not None:
|
| 75 |
+
return error_check_ret
|
| 76 |
+
|
| 77 |
+
encoding_format = request.encoding_format
|
| 78 |
+
if request.dimensions is not None:
|
| 79 |
+
return self.create_error_response(
|
| 80 |
+
"dimensions is currently not supported")
|
| 81 |
+
|
| 82 |
+
model_name = request.model
|
| 83 |
+
request_id = f"pool-{self._base_request_id(raw_request)}"
|
| 84 |
+
created_time = int(time.time())
|
| 85 |
+
|
| 86 |
+
truncate_prompt_tokens = None
|
| 87 |
+
|
| 88 |
+
if request.truncate_prompt_tokens is not None:
|
| 89 |
+
if request.truncate_prompt_tokens <= self.max_model_len:
|
| 90 |
+
truncate_prompt_tokens = request.truncate_prompt_tokens
|
| 91 |
+
else:
|
| 92 |
+
return self.create_error_response(
|
| 93 |
+
"truncate_prompt_tokens value is "
|
| 94 |
+
"greater than max_model_len."
|
| 95 |
+
" Please, select a smaller truncation size.")
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
(
|
| 99 |
+
lora_request,
|
| 100 |
+
prompt_adapter_request,
|
| 101 |
+
) = self._maybe_get_adapters(request)
|
| 102 |
+
|
| 103 |
+
tokenizer = await self.engine_client.get_tokenizer(lora_request)
|
| 104 |
+
|
| 105 |
+
if prompt_adapter_request is not None:
|
| 106 |
+
raise NotImplementedError("Prompt adapter is not supported "
|
| 107 |
+
"for pooling models")
|
| 108 |
+
|
| 109 |
+
if isinstance(request, PoolingChatRequest):
|
| 110 |
+
(
|
| 111 |
+
_,
|
| 112 |
+
request_prompts,
|
| 113 |
+
engine_prompts,
|
| 114 |
+
) = await self._preprocess_chat(
|
| 115 |
+
request,
|
| 116 |
+
tokenizer,
|
| 117 |
+
request.messages,
|
| 118 |
+
chat_template=request.chat_template or self.chat_template,
|
| 119 |
+
chat_template_content_format=self.
|
| 120 |
+
chat_template_content_format,
|
| 121 |
+
# In pooling requests, we are not generating tokens,
|
| 122 |
+
# so there is no need to append extra tokens to the input
|
| 123 |
+
add_generation_prompt=False,
|
| 124 |
+
continue_final_message=False,
|
| 125 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 126 |
+
add_special_tokens=request.add_special_tokens,
|
| 127 |
+
)
|
| 128 |
+
else:
|
| 129 |
+
(request_prompts,
|
| 130 |
+
engine_prompts) = await self._preprocess_completion(
|
| 131 |
+
request,
|
| 132 |
+
tokenizer,
|
| 133 |
+
request.input,
|
| 134 |
+
truncate_prompt_tokens=truncate_prompt_tokens,
|
| 135 |
+
add_special_tokens=request.add_special_tokens,
|
| 136 |
+
)
|
| 137 |
+
except ValueError as e:
|
| 138 |
+
logger.exception("Error in preprocessing prompt inputs")
|
| 139 |
+
return self.create_error_response(str(e))
|
| 140 |
+
|
| 141 |
+
# Schedule the request and get the result generator.
|
| 142 |
+
generators: List[AsyncGenerator[PoolingRequestOutput, None]] = []
|
| 143 |
+
try:
|
| 144 |
+
pooling_params = request.to_pooling_params()
|
| 145 |
+
|
| 146 |
+
for i, engine_prompt in enumerate(engine_prompts):
|
| 147 |
+
request_id_item = f"{request_id}-{i}"
|
| 148 |
+
|
| 149 |
+
self._log_inputs(request_id_item,
|
| 150 |
+
request_prompts[i],
|
| 151 |
+
params=pooling_params,
|
| 152 |
+
lora_request=lora_request,
|
| 153 |
+
prompt_adapter_request=prompt_adapter_request)
|
| 154 |
+
|
| 155 |
+
trace_headers = (None if raw_request is None else await
|
| 156 |
+
self._get_trace_headers(raw_request.headers))
|
| 157 |
+
|
| 158 |
+
generator = self.engine_client.encode(
|
| 159 |
+
engine_prompt,
|
| 160 |
+
pooling_params,
|
| 161 |
+
request_id_item,
|
| 162 |
+
lora_request=lora_request,
|
| 163 |
+
trace_headers=trace_headers,
|
| 164 |
+
priority=request.priority,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
generators.append(generator)
|
| 168 |
+
except ValueError as e:
|
| 169 |
+
# TODO: Use a vllm-specific Validation Error
|
| 170 |
+
return self.create_error_response(str(e))
|
| 171 |
+
|
| 172 |
+
result_generator = merge_async_iterators(*generators)
|
| 173 |
+
|
| 174 |
+
num_prompts = len(engine_prompts)
|
| 175 |
+
|
| 176 |
+
# Non-streaming response
|
| 177 |
+
final_res_batch: List[Optional[PoolingRequestOutput]]
|
| 178 |
+
final_res_batch = [None] * num_prompts
|
| 179 |
+
try:
|
| 180 |
+
async for i, res in result_generator:
|
| 181 |
+
final_res_batch[i] = res
|
| 182 |
+
|
| 183 |
+
assert all(final_res is not None for final_res in final_res_batch)
|
| 184 |
+
|
| 185 |
+
final_res_batch_checked = cast(List[PoolingRequestOutput],
|
| 186 |
+
final_res_batch)
|
| 187 |
+
|
| 188 |
+
response = self.request_output_to_pooling_response(
|
| 189 |
+
final_res_batch_checked,
|
| 190 |
+
request_id,
|
| 191 |
+
created_time,
|
| 192 |
+
model_name,
|
| 193 |
+
encoding_format,
|
| 194 |
+
)
|
| 195 |
+
except asyncio.CancelledError:
|
| 196 |
+
return self.create_error_response("Client disconnected")
|
| 197 |
+
except ValueError as e:
|
| 198 |
+
# TODO: Use a vllm-specific Validation Error
|
| 199 |
+
return self.create_error_response(str(e))
|
| 200 |
+
|
| 201 |
+
return response
|
| 202 |
+
|
| 203 |
+
def request_output_to_pooling_response(
|
| 204 |
+
self,
|
| 205 |
+
final_res_batch: List[PoolingRequestOutput],
|
| 206 |
+
request_id: str,
|
| 207 |
+
created_time: int,
|
| 208 |
+
model_name: str,
|
| 209 |
+
encoding_format: Literal["float", "base64"],
|
| 210 |
+
) -> PoolingResponse:
|
| 211 |
+
items: List[PoolingResponseData] = []
|
| 212 |
+
num_prompt_tokens = 0
|
| 213 |
+
|
| 214 |
+
for idx, final_res in enumerate(final_res_batch):
|
| 215 |
+
item = PoolingResponseData(
|
| 216 |
+
index=idx,
|
| 217 |
+
data=_get_data(final_res.outputs, encoding_format),
|
| 218 |
+
)
|
| 219 |
+
prompt_token_ids = final_res.prompt_token_ids
|
| 220 |
+
|
| 221 |
+
items.append(item)
|
| 222 |
+
num_prompt_tokens += len(prompt_token_ids)
|
| 223 |
+
|
| 224 |
+
usage = UsageInfo(
|
| 225 |
+
prompt_tokens=num_prompt_tokens,
|
| 226 |
+
total_tokens=num_prompt_tokens,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
return PoolingResponse(
|
| 230 |
+
id=request_id,
|
| 231 |
+
created=created_time,
|
| 232 |
+
model=model_name,
|
| 233 |
+
data=items,
|
| 234 |
+
usage=usage,
|
| 235 |
+
)
|