Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- janus/lib/libtinfow.so.6 +3 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/intersection.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/trees.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/__pycache__/triads.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/atlas.dat.gz +3 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_intersection.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_lattice.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_small.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_trees.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py +640 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/test_community.py +362 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/test_directed.py +163 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/test_lattice.py +246 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/test_spectral_graph_forge.py +49 -0
- janus/lib/python3.10/site-packages/networkx/generators/tests/test_time_series.py +64 -0
- janus/lib/python3.10/site-packages/networkx/linalg/__init__.py +13 -0
- janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/algebraicconnectivity.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/attrmatrix.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/laplacianmatrix.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/spectrum.cpython-310.pyc +0 -0
- janus/lib/python3.10/site-packages/networkx/linalg/algebraicconnectivity.py +657 -0
- janus/lib/python3.10/site-packages/networkx/linalg/attrmatrix.py +465 -0
- janus/lib/python3.10/site-packages/networkx/linalg/bethehessianmatrix.py +79 -0
- janus/lib/python3.10/site-packages/networkx/linalg/graphmatrix.py +168 -0
- janus/lib/python3.10/site-packages/networkx/linalg/laplacianmatrix.py +617 -0
- janus/lib/python3.10/site-packages/networkx/linalg/modularitymatrix.py +166 -0
.gitattributes
CHANGED
|
@@ -438,3 +438,4 @@ deepseek/lib/python3.10/site-packages/timm/models/__pycache__/vision_transformer
|
|
| 438 |
deepseek/lib/python3.10/site-packages/pyarrow/_csv.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 439 |
deepseek/lib/python3.10/site-packages/pyarrow/_s3fs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 440 |
janus/lib/libtinfow.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 438 |
deepseek/lib/python3.10/site-packages/pyarrow/_csv.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 439 |
deepseek/lib/python3.10/site-packages/pyarrow/_s3fs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 440 |
janus/lib/libtinfow.so filter=lfs diff=lfs merge=lfs -text
|
| 441 |
+
janus/lib/libtinfow.so.6 filter=lfs diff=lfs merge=lfs -text
|
janus/lib/libtinfow.so.6
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ce4e329189b38682e806046f803063f032d007c68737923b8362ce10570c653
|
| 3 |
+
size 287080
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.46 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc
ADDED
|
Binary file (4.32 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc
ADDED
|
Binary file (29.8 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc
ADDED
|
Binary file (2.22 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc
ADDED
|
Binary file (31.2 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc
ADDED
|
Binary file (25.6 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc
ADDED
|
Binary file (15 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc
ADDED
|
Binary file (5.06 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc
ADDED
|
Binary file (12.4 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc
ADDED
|
Binary file (4.79 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/intersection.cpython-310.pyc
ADDED
|
Binary file (4.25 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc
ADDED
|
Binary file (17.1 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc
ADDED
|
Binary file (15 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc
ADDED
|
Binary file (15.3 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc
ADDED
|
Binary file (3.84 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc
ADDED
|
Binary file (5.64 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc
ADDED
|
Binary file (40.2 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc
ADDED
|
Binary file (13.4 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc
ADDED
|
Binary file (4.22 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc
ADDED
|
Binary file (1.99 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc
ADDED
|
Binary file (4.03 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc
ADDED
|
Binary file (2.59 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/trees.cpython-310.pyc
ADDED
|
Binary file (34.3 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/__pycache__/triads.cpython-310.pyc
ADDED
|
Binary file (2.28 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/atlas.dat.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73fc416df0164923607751cb759f4ae81deb5f6550bf25be59c86de3b747e41d
|
| 3 |
+
size 8887
|
janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc
ADDED
|
Binary file (3.57 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc
ADDED
|
Binary file (8.63 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_intersection.cpython-310.pyc
ADDED
|
Binary file (1.55 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_lattice.cpython-310.pyc
ADDED
|
Binary file (10.5 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_small.cpython-310.pyc
ADDED
|
Binary file (7.41 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_trees.cpython-310.pyc
ADDED
|
Binary file (5.69 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py
ADDED
|
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
====================
|
| 3 |
+
Generators - Classic
|
| 4 |
+
====================
|
| 5 |
+
|
| 6 |
+
Unit tests for various classic graph generators in generators/classic.py
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import itertools
|
| 10 |
+
import typing
|
| 11 |
+
|
| 12 |
+
import pytest
|
| 13 |
+
|
| 14 |
+
import networkx as nx
|
| 15 |
+
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
|
| 16 |
+
from networkx.utils import edges_equal, nodes_equal
|
| 17 |
+
|
| 18 |
+
is_isomorphic = graph_could_be_isomorphic
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class TestGeneratorClassic:
|
| 22 |
+
def test_balanced_tree(self):
|
| 23 |
+
# balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
|
| 24 |
+
for r, h in [(2, 2), (3, 3), (6, 2)]:
|
| 25 |
+
t = nx.balanced_tree(r, h)
|
| 26 |
+
order = t.order()
|
| 27 |
+
assert order == (r ** (h + 1) - 1) / (r - 1)
|
| 28 |
+
assert nx.is_connected(t)
|
| 29 |
+
assert t.size() == order - 1
|
| 30 |
+
dh = nx.degree_histogram(t)
|
| 31 |
+
assert dh[0] == 0 # no nodes of 0
|
| 32 |
+
assert dh[1] == r**h # nodes of degree 1 are leaves
|
| 33 |
+
assert dh[r] == 1 # root is degree r
|
| 34 |
+
assert dh[r + 1] == order - r**h - 1 # everyone else is degree r+1
|
| 35 |
+
assert len(dh) == r + 2
|
| 36 |
+
|
| 37 |
+
def test_balanced_tree_star(self):
|
| 38 |
+
# balanced_tree(r,1) is the r-star
|
| 39 |
+
t = nx.balanced_tree(r=2, h=1)
|
| 40 |
+
assert is_isomorphic(t, nx.star_graph(2))
|
| 41 |
+
t = nx.balanced_tree(r=5, h=1)
|
| 42 |
+
assert is_isomorphic(t, nx.star_graph(5))
|
| 43 |
+
t = nx.balanced_tree(r=10, h=1)
|
| 44 |
+
assert is_isomorphic(t, nx.star_graph(10))
|
| 45 |
+
|
| 46 |
+
def test_balanced_tree_path(self):
|
| 47 |
+
"""Tests that the balanced tree with branching factor one is the
|
| 48 |
+
path graph.
|
| 49 |
+
|
| 50 |
+
"""
|
| 51 |
+
# A tree of height four has five levels.
|
| 52 |
+
T = nx.balanced_tree(1, 4)
|
| 53 |
+
P = nx.path_graph(5)
|
| 54 |
+
assert is_isomorphic(T, P)
|
| 55 |
+
|
| 56 |
+
def test_full_rary_tree(self):
|
| 57 |
+
r = 2
|
| 58 |
+
n = 9
|
| 59 |
+
t = nx.full_rary_tree(r, n)
|
| 60 |
+
assert t.order() == n
|
| 61 |
+
assert nx.is_connected(t)
|
| 62 |
+
dh = nx.degree_histogram(t)
|
| 63 |
+
assert dh[0] == 0 # no nodes of 0
|
| 64 |
+
assert dh[1] == 5 # nodes of degree 1 are leaves
|
| 65 |
+
assert dh[r] == 1 # root is degree r
|
| 66 |
+
assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1
|
| 67 |
+
assert len(dh) == r + 2
|
| 68 |
+
|
| 69 |
+
def test_full_rary_tree_balanced(self):
|
| 70 |
+
t = nx.full_rary_tree(2, 15)
|
| 71 |
+
th = nx.balanced_tree(2, 3)
|
| 72 |
+
assert is_isomorphic(t, th)
|
| 73 |
+
|
| 74 |
+
def test_full_rary_tree_path(self):
|
| 75 |
+
t = nx.full_rary_tree(1, 10)
|
| 76 |
+
assert is_isomorphic(t, nx.path_graph(10))
|
| 77 |
+
|
| 78 |
+
def test_full_rary_tree_empty(self):
|
| 79 |
+
t = nx.full_rary_tree(0, 10)
|
| 80 |
+
assert is_isomorphic(t, nx.empty_graph(10))
|
| 81 |
+
t = nx.full_rary_tree(3, 0)
|
| 82 |
+
assert is_isomorphic(t, nx.empty_graph(0))
|
| 83 |
+
|
| 84 |
+
def test_full_rary_tree_3_20(self):
|
| 85 |
+
t = nx.full_rary_tree(3, 20)
|
| 86 |
+
assert t.order() == 20
|
| 87 |
+
|
| 88 |
+
def test_barbell_graph(self):
|
| 89 |
+
# number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
|
| 90 |
+
# number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1
|
| 91 |
+
m1 = 3
|
| 92 |
+
m2 = 5
|
| 93 |
+
b = nx.barbell_graph(m1, m2)
|
| 94 |
+
assert nx.number_of_nodes(b) == 2 * m1 + m2
|
| 95 |
+
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
|
| 96 |
+
|
| 97 |
+
m1 = 4
|
| 98 |
+
m2 = 10
|
| 99 |
+
b = nx.barbell_graph(m1, m2)
|
| 100 |
+
assert nx.number_of_nodes(b) == 2 * m1 + m2
|
| 101 |
+
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
|
| 102 |
+
|
| 103 |
+
m1 = 3
|
| 104 |
+
m2 = 20
|
| 105 |
+
b = nx.barbell_graph(m1, m2)
|
| 106 |
+
assert nx.number_of_nodes(b) == 2 * m1 + m2
|
| 107 |
+
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
|
| 108 |
+
|
| 109 |
+
# Raise NetworkXError if m1<2
|
| 110 |
+
m1 = 1
|
| 111 |
+
m2 = 20
|
| 112 |
+
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
|
| 113 |
+
|
| 114 |
+
# Raise NetworkXError if m2<0
|
| 115 |
+
m1 = 5
|
| 116 |
+
m2 = -2
|
| 117 |
+
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
|
| 118 |
+
|
| 119 |
+
# nx.barbell_graph(2,m) = nx.path_graph(m+4)
|
| 120 |
+
m1 = 2
|
| 121 |
+
m2 = 5
|
| 122 |
+
b = nx.barbell_graph(m1, m2)
|
| 123 |
+
assert is_isomorphic(b, nx.path_graph(m2 + 4))
|
| 124 |
+
|
| 125 |
+
m1 = 2
|
| 126 |
+
m2 = 10
|
| 127 |
+
b = nx.barbell_graph(m1, m2)
|
| 128 |
+
assert is_isomorphic(b, nx.path_graph(m2 + 4))
|
| 129 |
+
|
| 130 |
+
m1 = 2
|
| 131 |
+
m2 = 20
|
| 132 |
+
b = nx.barbell_graph(m1, m2)
|
| 133 |
+
assert is_isomorphic(b, nx.path_graph(m2 + 4))
|
| 134 |
+
|
| 135 |
+
pytest.raises(
|
| 136 |
+
nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph()
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph())
|
| 140 |
+
assert edges_equal(mb.edges(), b.edges())
|
| 141 |
+
|
| 142 |
+
def test_binomial_tree(self):
|
| 143 |
+
graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
|
| 144 |
+
for create_using in graphs:
|
| 145 |
+
for n in range(4):
|
| 146 |
+
b = nx.binomial_tree(n, create_using)
|
| 147 |
+
assert nx.number_of_nodes(b) == 2**n
|
| 148 |
+
assert nx.number_of_edges(b) == (2**n - 1)
|
| 149 |
+
|
| 150 |
+
def test_complete_graph(self):
|
| 151 |
+
# complete_graph(m) is a connected graph with
|
| 152 |
+
# m nodes and m*(m+1)/2 edges
|
| 153 |
+
for m in [0, 1, 3, 5]:
|
| 154 |
+
g = nx.complete_graph(m)
|
| 155 |
+
assert nx.number_of_nodes(g) == m
|
| 156 |
+
assert nx.number_of_edges(g) == m * (m - 1) // 2
|
| 157 |
+
|
| 158 |
+
mg = nx.complete_graph(m, create_using=nx.MultiGraph)
|
| 159 |
+
assert edges_equal(mg.edges(), g.edges())
|
| 160 |
+
|
| 161 |
+
g = nx.complete_graph("abc")
|
| 162 |
+
assert nodes_equal(g.nodes(), ["a", "b", "c"])
|
| 163 |
+
assert g.size() == 3
|
| 164 |
+
|
| 165 |
+
# creates a self-loop... should it? <backward compatible says yes>
|
| 166 |
+
g = nx.complete_graph("abcb")
|
| 167 |
+
assert nodes_equal(g.nodes(), ["a", "b", "c"])
|
| 168 |
+
assert g.size() == 4
|
| 169 |
+
|
| 170 |
+
g = nx.complete_graph("abcb", create_using=nx.MultiGraph)
|
| 171 |
+
assert nodes_equal(g.nodes(), ["a", "b", "c"])
|
| 172 |
+
assert g.size() == 6
|
| 173 |
+
|
| 174 |
+
def test_complete_digraph(self):
|
| 175 |
+
# complete_graph(m) is a connected graph with
|
| 176 |
+
# m nodes and m*(m+1)/2 edges
|
| 177 |
+
for m in [0, 1, 3, 5]:
|
| 178 |
+
g = nx.complete_graph(m, create_using=nx.DiGraph)
|
| 179 |
+
assert nx.number_of_nodes(g) == m
|
| 180 |
+
assert nx.number_of_edges(g) == m * (m - 1)
|
| 181 |
+
|
| 182 |
+
g = nx.complete_graph("abc", create_using=nx.DiGraph)
|
| 183 |
+
assert len(g) == 3
|
| 184 |
+
assert g.size() == 6
|
| 185 |
+
assert g.is_directed()
|
| 186 |
+
|
| 187 |
+
def test_circular_ladder_graph(self):
|
| 188 |
+
G = nx.circular_ladder_graph(5)
|
| 189 |
+
pytest.raises(
|
| 190 |
+
nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph
|
| 191 |
+
)
|
| 192 |
+
mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph)
|
| 193 |
+
assert edges_equal(mG.edges(), G.edges())
|
| 194 |
+
|
| 195 |
+
def test_circulant_graph(self):
|
| 196 |
+
# Ci_n(1) is the cycle graph for all n
|
| 197 |
+
Ci6_1 = nx.circulant_graph(6, [1])
|
| 198 |
+
C6 = nx.cycle_graph(6)
|
| 199 |
+
assert edges_equal(Ci6_1.edges(), C6.edges())
|
| 200 |
+
|
| 201 |
+
# Ci_n(1, 2, ..., n div 2) is the complete graph for all n
|
| 202 |
+
Ci7 = nx.circulant_graph(7, [1, 2, 3])
|
| 203 |
+
K7 = nx.complete_graph(7)
|
| 204 |
+
assert edges_equal(Ci7.edges(), K7.edges())
|
| 205 |
+
|
| 206 |
+
# Ci_6(1, 3) is K_3,3 i.e. the utility graph
|
| 207 |
+
Ci6_1_3 = nx.circulant_graph(6, [1, 3])
|
| 208 |
+
K3_3 = nx.complete_bipartite_graph(3, 3)
|
| 209 |
+
assert is_isomorphic(Ci6_1_3, K3_3)
|
| 210 |
+
|
| 211 |
+
def test_cycle_graph(self):
|
| 212 |
+
G = nx.cycle_graph(4)
|
| 213 |
+
assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
|
| 214 |
+
mG = nx.cycle_graph(4, create_using=nx.MultiGraph)
|
| 215 |
+
assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
|
| 216 |
+
G = nx.cycle_graph(4, create_using=nx.DiGraph)
|
| 217 |
+
assert not G.has_edge(2, 1)
|
| 218 |
+
assert G.has_edge(1, 2)
|
| 219 |
+
assert G.is_directed()
|
| 220 |
+
|
| 221 |
+
G = nx.cycle_graph("abc")
|
| 222 |
+
assert len(G) == 3
|
| 223 |
+
assert G.size() == 3
|
| 224 |
+
G = nx.cycle_graph("abcb")
|
| 225 |
+
assert len(G) == 3
|
| 226 |
+
assert G.size() == 2
|
| 227 |
+
g = nx.cycle_graph("abc", nx.DiGraph)
|
| 228 |
+
assert len(g) == 3
|
| 229 |
+
assert g.size() == 3
|
| 230 |
+
assert g.is_directed()
|
| 231 |
+
g = nx.cycle_graph("abcb", nx.DiGraph)
|
| 232 |
+
assert len(g) == 3
|
| 233 |
+
assert g.size() == 4
|
| 234 |
+
|
| 235 |
+
def test_dorogovtsev_goltsev_mendes_graph(self):
|
| 236 |
+
G = nx.dorogovtsev_goltsev_mendes_graph(0)
|
| 237 |
+
assert edges_equal(G.edges(), [(0, 1)])
|
| 238 |
+
assert nodes_equal(list(G), [0, 1])
|
| 239 |
+
G = nx.dorogovtsev_goltsev_mendes_graph(1)
|
| 240 |
+
assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
|
| 241 |
+
assert nx.average_clustering(G) == 1.0
|
| 242 |
+
assert nx.average_shortest_path_length(G) == 1.0
|
| 243 |
+
assert sorted(nx.triangles(G).values()) == [1, 1, 1]
|
| 244 |
+
assert nx.is_planar(G)
|
| 245 |
+
G = nx.dorogovtsev_goltsev_mendes_graph(2)
|
| 246 |
+
assert nx.number_of_nodes(G) == 6
|
| 247 |
+
assert nx.number_of_edges(G) == 9
|
| 248 |
+
assert nx.average_clustering(G) == 0.75
|
| 249 |
+
assert nx.average_shortest_path_length(G) == 1.4
|
| 250 |
+
assert nx.is_planar(G)
|
| 251 |
+
G = nx.dorogovtsev_goltsev_mendes_graph(10)
|
| 252 |
+
assert nx.number_of_nodes(G) == 29526
|
| 253 |
+
assert nx.number_of_edges(G) == 59049
|
| 254 |
+
assert G.degree(0) == 1024
|
| 255 |
+
assert G.degree(1) == 1024
|
| 256 |
+
assert G.degree(2) == 1024
|
| 257 |
+
|
| 258 |
+
with pytest.raises(nx.NetworkXError, match=r"n must be greater than"):
|
| 259 |
+
nx.dorogovtsev_goltsev_mendes_graph(-1)
|
| 260 |
+
with pytest.raises(nx.NetworkXError, match=r"directed graph not supported"):
|
| 261 |
+
nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.DiGraph)
|
| 262 |
+
with pytest.raises(nx.NetworkXError, match=r"multigraph not supported"):
|
| 263 |
+
nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiGraph)
|
| 264 |
+
with pytest.raises(nx.NetworkXError):
|
| 265 |
+
nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiDiGraph)
|
| 266 |
+
|
| 267 |
+
def test_create_using(self):
|
| 268 |
+
G = nx.empty_graph()
|
| 269 |
+
assert isinstance(G, nx.Graph)
|
| 270 |
+
pytest.raises(TypeError, nx.empty_graph, create_using=0.0)
|
| 271 |
+
pytest.raises(TypeError, nx.empty_graph, create_using="Graph")
|
| 272 |
+
|
| 273 |
+
G = nx.empty_graph(create_using=nx.MultiGraph)
|
| 274 |
+
assert isinstance(G, nx.MultiGraph)
|
| 275 |
+
G = nx.empty_graph(create_using=nx.DiGraph)
|
| 276 |
+
assert isinstance(G, nx.DiGraph)
|
| 277 |
+
|
| 278 |
+
G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph)
|
| 279 |
+
assert isinstance(G, nx.DiGraph)
|
| 280 |
+
G = nx.empty_graph(create_using=None, default=nx.MultiGraph)
|
| 281 |
+
assert isinstance(G, nx.MultiGraph)
|
| 282 |
+
G = nx.empty_graph(default=nx.MultiGraph)
|
| 283 |
+
assert isinstance(G, nx.MultiGraph)
|
| 284 |
+
|
| 285 |
+
G = nx.path_graph(5)
|
| 286 |
+
H = nx.empty_graph(create_using=G)
|
| 287 |
+
assert not H.is_multigraph()
|
| 288 |
+
assert not H.is_directed()
|
| 289 |
+
assert len(H) == 0
|
| 290 |
+
assert G is H
|
| 291 |
+
|
| 292 |
+
H = nx.empty_graph(create_using=nx.MultiGraph())
|
| 293 |
+
assert H.is_multigraph()
|
| 294 |
+
assert not H.is_directed()
|
| 295 |
+
assert G is not H
|
| 296 |
+
|
| 297 |
+
# test for subclasses that also use typing.Protocol. See gh-6243
|
| 298 |
+
class Mixin(typing.Protocol):
|
| 299 |
+
pass
|
| 300 |
+
|
| 301 |
+
class MyGraph(Mixin, nx.DiGraph):
|
| 302 |
+
pass
|
| 303 |
+
|
| 304 |
+
G = nx.empty_graph(create_using=MyGraph)
|
| 305 |
+
|
| 306 |
+
def test_empty_graph(self):
|
| 307 |
+
G = nx.empty_graph()
|
| 308 |
+
assert nx.number_of_nodes(G) == 0
|
| 309 |
+
G = nx.empty_graph(42)
|
| 310 |
+
assert nx.number_of_nodes(G) == 42
|
| 311 |
+
assert nx.number_of_edges(G) == 0
|
| 312 |
+
|
| 313 |
+
G = nx.empty_graph("abc")
|
| 314 |
+
assert len(G) == 3
|
| 315 |
+
assert G.size() == 0
|
| 316 |
+
|
| 317 |
+
# create empty digraph
|
| 318 |
+
G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh"))
|
| 319 |
+
assert nx.number_of_nodes(G) == 42
|
| 320 |
+
assert nx.number_of_edges(G) == 0
|
| 321 |
+
assert isinstance(G, nx.DiGraph)
|
| 322 |
+
|
| 323 |
+
# create empty multigraph
|
| 324 |
+
G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh"))
|
| 325 |
+
assert nx.number_of_nodes(G) == 42
|
| 326 |
+
assert nx.number_of_edges(G) == 0
|
| 327 |
+
assert isinstance(G, nx.MultiGraph)
|
| 328 |
+
|
| 329 |
+
# create empty graph from another
|
| 330 |
+
pete = nx.petersen_graph()
|
| 331 |
+
G = nx.empty_graph(42, create_using=pete)
|
| 332 |
+
assert nx.number_of_nodes(G) == 42
|
| 333 |
+
assert nx.number_of_edges(G) == 0
|
| 334 |
+
assert isinstance(G, nx.Graph)
|
| 335 |
+
|
| 336 |
+
def test_ladder_graph(self):
|
| 337 |
+
for i, G in [
|
| 338 |
+
(0, nx.empty_graph(0)),
|
| 339 |
+
(1, nx.path_graph(2)),
|
| 340 |
+
(2, nx.hypercube_graph(2)),
|
| 341 |
+
(10, nx.grid_graph([2, 10])),
|
| 342 |
+
]:
|
| 343 |
+
assert is_isomorphic(nx.ladder_graph(i), G)
|
| 344 |
+
|
| 345 |
+
pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph)
|
| 346 |
+
|
| 347 |
+
g = nx.ladder_graph(2)
|
| 348 |
+
mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
|
| 349 |
+
assert edges_equal(mg.edges(), g.edges())
|
| 350 |
+
|
| 351 |
+
@pytest.mark.parametrize(("m", "n"), [(3, 5), (4, 10), (3, 20)])
|
| 352 |
+
def test_lollipop_graph_right_sizes(self, m, n):
|
| 353 |
+
G = nx.lollipop_graph(m, n)
|
| 354 |
+
assert nx.number_of_nodes(G) == m + n
|
| 355 |
+
assert nx.number_of_edges(G) == m * (m - 1) / 2 + n
|
| 356 |
+
|
| 357 |
+
@pytest.mark.parametrize(("m", "n"), [("ab", ""), ("abc", "defg")])
|
| 358 |
+
def test_lollipop_graph_size_node_sequence(self, m, n):
|
| 359 |
+
G = nx.lollipop_graph(m, n)
|
| 360 |
+
assert nx.number_of_nodes(G) == len(m) + len(n)
|
| 361 |
+
assert nx.number_of_edges(G) == len(m) * (len(m) - 1) / 2 + len(n)
|
| 362 |
+
|
| 363 |
+
def test_lollipop_graph_exceptions(self):
|
| 364 |
+
# Raise NetworkXError if m<2
|
| 365 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2)
|
| 366 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20)
|
| 367 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20)
|
| 368 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20)
|
| 369 |
+
|
| 370 |
+
# Raise NetworkXError if n<0
|
| 371 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2)
|
| 372 |
+
|
| 373 |
+
# raise NetworkXError if create_using is directed
|
| 374 |
+
with pytest.raises(nx.NetworkXError):
|
| 375 |
+
nx.lollipop_graph(2, 20, create_using=nx.DiGraph)
|
| 376 |
+
with pytest.raises(nx.NetworkXError):
|
| 377 |
+
nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph)
|
| 378 |
+
|
| 379 |
+
@pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
|
| 380 |
+
def test_lollipop_graph_same_as_path_when_m1_is_2(self, m, n):
|
| 381 |
+
G = nx.lollipop_graph(m, n)
|
| 382 |
+
assert is_isomorphic(G, nx.path_graph(n + 2))
|
| 383 |
+
|
| 384 |
+
def test_lollipop_graph_for_multigraph(self):
|
| 385 |
+
G = nx.lollipop_graph(5, 20)
|
| 386 |
+
MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph)
|
| 387 |
+
assert edges_equal(MG.edges(), G.edges())
|
| 388 |
+
|
| 389 |
+
@pytest.mark.parametrize(
|
| 390 |
+
("m", "n"),
|
| 391 |
+
[(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
|
| 392 |
+
)
|
| 393 |
+
def test_lollipop_graph_mixing_input_types(self, m, n):
|
| 394 |
+
expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
|
| 395 |
+
expected.add_edge(0, 100) # Connect complete graph and path graph
|
| 396 |
+
assert is_isomorphic(nx.lollipop_graph(m, n), expected)
|
| 397 |
+
|
| 398 |
+
def test_lollipop_graph_non_builtin_ints(self):
|
| 399 |
+
np = pytest.importorskip("numpy")
|
| 400 |
+
G = nx.lollipop_graph(np.int32(4), np.int64(3))
|
| 401 |
+
expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
|
| 402 |
+
expected.add_edge(0, 100) # Connect complete graph and path graph
|
| 403 |
+
assert is_isomorphic(G, expected)
|
| 404 |
+
|
| 405 |
+
def test_null_graph(self):
|
| 406 |
+
assert nx.number_of_nodes(nx.null_graph()) == 0
|
| 407 |
+
|
| 408 |
+
def test_path_graph(self):
|
| 409 |
+
p = nx.path_graph(0)
|
| 410 |
+
assert is_isomorphic(p, nx.null_graph())
|
| 411 |
+
|
| 412 |
+
p = nx.path_graph(1)
|
| 413 |
+
assert is_isomorphic(p, nx.empty_graph(1))
|
| 414 |
+
|
| 415 |
+
p = nx.path_graph(10)
|
| 416 |
+
assert nx.is_connected(p)
|
| 417 |
+
assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
|
| 418 |
+
assert p.order() - 1 == p.size()
|
| 419 |
+
|
| 420 |
+
dp = nx.path_graph(3, create_using=nx.DiGraph)
|
| 421 |
+
assert dp.has_edge(0, 1)
|
| 422 |
+
assert not dp.has_edge(1, 0)
|
| 423 |
+
|
| 424 |
+
mp = nx.path_graph(10, create_using=nx.MultiGraph)
|
| 425 |
+
assert edges_equal(mp.edges(), p.edges())
|
| 426 |
+
|
| 427 |
+
G = nx.path_graph("abc")
|
| 428 |
+
assert len(G) == 3
|
| 429 |
+
assert G.size() == 2
|
| 430 |
+
G = nx.path_graph("abcb")
|
| 431 |
+
assert len(G) == 3
|
| 432 |
+
assert G.size() == 2
|
| 433 |
+
g = nx.path_graph("abc", nx.DiGraph)
|
| 434 |
+
assert len(g) == 3
|
| 435 |
+
assert g.size() == 2
|
| 436 |
+
assert g.is_directed()
|
| 437 |
+
g = nx.path_graph("abcb", nx.DiGraph)
|
| 438 |
+
assert len(g) == 3
|
| 439 |
+
assert g.size() == 3
|
| 440 |
+
|
| 441 |
+
G = nx.path_graph((1, 2, 3, 2, 4))
|
| 442 |
+
assert G.has_edge(2, 4)
|
| 443 |
+
|
| 444 |
+
def test_star_graph(self):
|
| 445 |
+
assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0))
|
| 446 |
+
assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0))
|
| 447 |
+
assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1))
|
| 448 |
+
assert is_isomorphic(nx.star_graph(1), nx.path_graph(2))
|
| 449 |
+
assert is_isomorphic(nx.star_graph(2), nx.path_graph(3))
|
| 450 |
+
assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5))
|
| 451 |
+
|
| 452 |
+
s = nx.star_graph(10)
|
| 453 |
+
assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
|
| 454 |
+
|
| 455 |
+
pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph)
|
| 456 |
+
|
| 457 |
+
ms = nx.star_graph(10, create_using=nx.MultiGraph)
|
| 458 |
+
assert edges_equal(ms.edges(), s.edges())
|
| 459 |
+
|
| 460 |
+
G = nx.star_graph("abc")
|
| 461 |
+
assert len(G) == 3
|
| 462 |
+
assert G.size() == 2
|
| 463 |
+
|
| 464 |
+
G = nx.star_graph("abcb")
|
| 465 |
+
assert len(G) == 3
|
| 466 |
+
assert G.size() == 2
|
| 467 |
+
G = nx.star_graph("abcb", create_using=nx.MultiGraph)
|
| 468 |
+
assert len(G) == 3
|
| 469 |
+
assert G.size() == 3
|
| 470 |
+
|
| 471 |
+
G = nx.star_graph("abcdefg")
|
| 472 |
+
assert len(G) == 7
|
| 473 |
+
assert G.size() == 6
|
| 474 |
+
|
| 475 |
+
def test_non_int_integers_for_star_graph(self):
|
| 476 |
+
np = pytest.importorskip("numpy")
|
| 477 |
+
G = nx.star_graph(np.int32(3))
|
| 478 |
+
assert len(G) == 4
|
| 479 |
+
assert G.size() == 3
|
| 480 |
+
|
| 481 |
+
@pytest.mark.parametrize(("m", "n"), [(3, 0), (3, 5), (4, 10), (3, 20)])
|
| 482 |
+
def test_tadpole_graph_right_sizes(self, m, n):
|
| 483 |
+
G = nx.tadpole_graph(m, n)
|
| 484 |
+
assert nx.number_of_nodes(G) == m + n
|
| 485 |
+
assert nx.number_of_edges(G) == m + n - (m == 2)
|
| 486 |
+
|
| 487 |
+
@pytest.mark.parametrize(("m", "n"), [("ab", ""), ("ab", "c"), ("abc", "defg")])
|
| 488 |
+
def test_tadpole_graph_size_node_sequences(self, m, n):
|
| 489 |
+
G = nx.tadpole_graph(m, n)
|
| 490 |
+
assert nx.number_of_nodes(G) == len(m) + len(n)
|
| 491 |
+
assert nx.number_of_edges(G) == len(m) + len(n) - (len(m) == 2)
|
| 492 |
+
|
| 493 |
+
def test_tadpole_graph_exceptions(self):
|
| 494 |
+
# Raise NetworkXError if m<2
|
| 495 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, -1, 3)
|
| 496 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 0, 3)
|
| 497 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 1, 3)
|
| 498 |
+
|
| 499 |
+
# Raise NetworkXError if n<0
|
| 500 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 5, -2)
|
| 501 |
+
|
| 502 |
+
# Raise NetworkXError for digraphs
|
| 503 |
+
with pytest.raises(nx.NetworkXError):
|
| 504 |
+
nx.tadpole_graph(2, 20, create_using=nx.DiGraph)
|
| 505 |
+
with pytest.raises(nx.NetworkXError):
|
| 506 |
+
nx.tadpole_graph(2, 20, create_using=nx.MultiDiGraph)
|
| 507 |
+
|
| 508 |
+
@pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
|
| 509 |
+
def test_tadpole_graph_same_as_path_when_m_is_2(self, m, n):
|
| 510 |
+
G = nx.tadpole_graph(m, n)
|
| 511 |
+
assert is_isomorphic(G, nx.path_graph(n + 2))
|
| 512 |
+
|
| 513 |
+
@pytest.mark.parametrize("m", [4, 7])
|
| 514 |
+
def test_tadpole_graph_same_as_cycle_when_m2_is_0(self, m):
|
| 515 |
+
G = nx.tadpole_graph(m, 0)
|
| 516 |
+
assert is_isomorphic(G, nx.cycle_graph(m))
|
| 517 |
+
|
| 518 |
+
def test_tadpole_graph_for_multigraph(self):
|
| 519 |
+
G = nx.tadpole_graph(5, 20)
|
| 520 |
+
MG = nx.tadpole_graph(5, 20, create_using=nx.MultiGraph)
|
| 521 |
+
assert edges_equal(MG.edges(), G.edges())
|
| 522 |
+
|
| 523 |
+
@pytest.mark.parametrize(
|
| 524 |
+
("m", "n"),
|
| 525 |
+
[(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
|
| 526 |
+
)
|
| 527 |
+
def test_tadpole_graph_mixing_input_types(self, m, n):
|
| 528 |
+
expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
|
| 529 |
+
expected.add_edge(0, 100) # Connect cycle and path
|
| 530 |
+
assert is_isomorphic(nx.tadpole_graph(m, n), expected)
|
| 531 |
+
|
| 532 |
+
def test_tadpole_graph_non_builtin_integers(self):
|
| 533 |
+
np = pytest.importorskip("numpy")
|
| 534 |
+
G = nx.tadpole_graph(np.int32(4), np.int64(3))
|
| 535 |
+
expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
|
| 536 |
+
expected.add_edge(0, 100) # Connect cycle and path
|
| 537 |
+
assert is_isomorphic(G, expected)
|
| 538 |
+
|
| 539 |
+
def test_trivial_graph(self):
|
| 540 |
+
assert nx.number_of_nodes(nx.trivial_graph()) == 1
|
| 541 |
+
|
| 542 |
+
def test_turan_graph(self):
|
| 543 |
+
assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
|
| 544 |
+
assert is_isomorphic(
|
| 545 |
+
nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3)
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
def test_wheel_graph(self):
|
| 549 |
+
for n, G in [
|
| 550 |
+
("", nx.null_graph()),
|
| 551 |
+
(0, nx.null_graph()),
|
| 552 |
+
(1, nx.empty_graph(1)),
|
| 553 |
+
(2, nx.path_graph(2)),
|
| 554 |
+
(3, nx.complete_graph(3)),
|
| 555 |
+
(4, nx.complete_graph(4)),
|
| 556 |
+
]:
|
| 557 |
+
g = nx.wheel_graph(n)
|
| 558 |
+
assert is_isomorphic(g, G)
|
| 559 |
+
|
| 560 |
+
g = nx.wheel_graph(10)
|
| 561 |
+
assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9]
|
| 562 |
+
|
| 563 |
+
pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph)
|
| 564 |
+
|
| 565 |
+
mg = nx.wheel_graph(10, create_using=nx.MultiGraph())
|
| 566 |
+
assert edges_equal(mg.edges(), g.edges())
|
| 567 |
+
|
| 568 |
+
G = nx.wheel_graph("abc")
|
| 569 |
+
assert len(G) == 3
|
| 570 |
+
assert G.size() == 3
|
| 571 |
+
|
| 572 |
+
G = nx.wheel_graph("abcb")
|
| 573 |
+
assert len(G) == 3
|
| 574 |
+
assert G.size() == 4
|
| 575 |
+
G = nx.wheel_graph("abcb", nx.MultiGraph)
|
| 576 |
+
assert len(G) == 3
|
| 577 |
+
assert G.size() == 6
|
| 578 |
+
|
| 579 |
+
def test_non_int_integers_for_wheel_graph(self):
|
| 580 |
+
np = pytest.importorskip("numpy")
|
| 581 |
+
G = nx.wheel_graph(np.int32(3))
|
| 582 |
+
assert len(G) == 3
|
| 583 |
+
assert G.size() == 3
|
| 584 |
+
|
| 585 |
+
def test_complete_0_partite_graph(self):
|
| 586 |
+
"""Tests that the complete 0-partite graph is the null graph."""
|
| 587 |
+
G = nx.complete_multipartite_graph()
|
| 588 |
+
H = nx.null_graph()
|
| 589 |
+
assert nodes_equal(G, H)
|
| 590 |
+
assert edges_equal(G.edges(), H.edges())
|
| 591 |
+
|
| 592 |
+
def test_complete_1_partite_graph(self):
|
| 593 |
+
"""Tests that the complete 1-partite graph is the empty graph."""
|
| 594 |
+
G = nx.complete_multipartite_graph(3)
|
| 595 |
+
H = nx.empty_graph(3)
|
| 596 |
+
assert nodes_equal(G, H)
|
| 597 |
+
assert edges_equal(G.edges(), H.edges())
|
| 598 |
+
|
| 599 |
+
def test_complete_2_partite_graph(self):
|
| 600 |
+
"""Tests that the complete 2-partite graph is the complete bipartite
|
| 601 |
+
graph.
|
| 602 |
+
|
| 603 |
+
"""
|
| 604 |
+
G = nx.complete_multipartite_graph(2, 3)
|
| 605 |
+
H = nx.complete_bipartite_graph(2, 3)
|
| 606 |
+
assert nodes_equal(G, H)
|
| 607 |
+
assert edges_equal(G.edges(), H.edges())
|
| 608 |
+
|
| 609 |
+
def test_complete_multipartite_graph(self):
|
| 610 |
+
"""Tests for generating the complete multipartite graph."""
|
| 611 |
+
G = nx.complete_multipartite_graph(2, 3, 4)
|
| 612 |
+
blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)]
|
| 613 |
+
# Within each block, no two vertices should be adjacent.
|
| 614 |
+
for block in blocks:
|
| 615 |
+
for u, v in itertools.combinations_with_replacement(block, 2):
|
| 616 |
+
assert v not in G[u]
|
| 617 |
+
assert G.nodes[u] == G.nodes[v]
|
| 618 |
+
# Across blocks, all vertices should be adjacent.
|
| 619 |
+
for block1, block2 in itertools.combinations(blocks, 2):
|
| 620 |
+
for u, v in itertools.product(block1, block2):
|
| 621 |
+
assert v in G[u]
|
| 622 |
+
assert G.nodes[u] != G.nodes[v]
|
| 623 |
+
with pytest.raises(nx.NetworkXError, match="Negative number of nodes"):
|
| 624 |
+
nx.complete_multipartite_graph(2, -3, 4)
|
| 625 |
+
|
| 626 |
+
def test_kneser_graph(self):
|
| 627 |
+
# the petersen graph is a special case of the kneser graph when n=5 and k=2
|
| 628 |
+
assert is_isomorphic(nx.kneser_graph(5, 2), nx.petersen_graph())
|
| 629 |
+
|
| 630 |
+
# when k is 1, the kneser graph returns a complete graph with n vertices
|
| 631 |
+
for i in range(1, 7):
|
| 632 |
+
assert is_isomorphic(nx.kneser_graph(i, 1), nx.complete_graph(i))
|
| 633 |
+
|
| 634 |
+
# the kneser graph of n and n-1 is the empty graph with n vertices
|
| 635 |
+
for j in range(3, 7):
|
| 636 |
+
assert is_isomorphic(nx.kneser_graph(j, j - 1), nx.empty_graph(j))
|
| 637 |
+
|
| 638 |
+
# in general the number of edges of the kneser graph is equal to
|
| 639 |
+
# (n choose k) times (n-k choose k) divided by 2
|
| 640 |
+
assert nx.number_of_edges(nx.kneser_graph(8, 3)) == 280
|
janus/lib/python3.10/site-packages/networkx/generators/tests/test_community.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def test_random_partition_graph():
|
| 7 |
+
G = nx.random_partition_graph([3, 3, 3], 1, 0, seed=42)
|
| 8 |
+
C = G.graph["partition"]
|
| 9 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
| 10 |
+
assert len(G) == 9
|
| 11 |
+
assert len(list(G.edges())) == 9
|
| 12 |
+
|
| 13 |
+
G = nx.random_partition_graph([3, 3, 3], 0, 1)
|
| 14 |
+
C = G.graph["partition"]
|
| 15 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
| 16 |
+
assert len(G) == 9
|
| 17 |
+
assert len(list(G.edges())) == 27
|
| 18 |
+
|
| 19 |
+
G = nx.random_partition_graph([3, 3, 3], 1, 0, directed=True)
|
| 20 |
+
C = G.graph["partition"]
|
| 21 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
| 22 |
+
assert len(G) == 9
|
| 23 |
+
assert len(list(G.edges())) == 18
|
| 24 |
+
|
| 25 |
+
G = nx.random_partition_graph([3, 3, 3], 0, 1, directed=True)
|
| 26 |
+
C = G.graph["partition"]
|
| 27 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
| 28 |
+
assert len(G) == 9
|
| 29 |
+
assert len(list(G.edges())) == 54
|
| 30 |
+
|
| 31 |
+
G = nx.random_partition_graph([1, 2, 3, 4, 5], 0.5, 0.1)
|
| 32 |
+
C = G.graph["partition"]
|
| 33 |
+
assert C == [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13, 14}]
|
| 34 |
+
assert len(G) == 15
|
| 35 |
+
|
| 36 |
+
rpg = nx.random_partition_graph
|
| 37 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 1.1, 0.1)
|
| 38 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], -0.1, 0.1)
|
| 39 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, 1.1)
|
| 40 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, -0.1)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def test_planted_partition_graph():
|
| 44 |
+
G = nx.planted_partition_graph(4, 3, 1, 0, seed=42)
|
| 45 |
+
C = G.graph["partition"]
|
| 46 |
+
assert len(C) == 4
|
| 47 |
+
assert len(G) == 12
|
| 48 |
+
assert len(list(G.edges())) == 12
|
| 49 |
+
|
| 50 |
+
G = nx.planted_partition_graph(4, 3, 0, 1)
|
| 51 |
+
C = G.graph["partition"]
|
| 52 |
+
assert len(C) == 4
|
| 53 |
+
assert len(G) == 12
|
| 54 |
+
assert len(list(G.edges())) == 54
|
| 55 |
+
|
| 56 |
+
G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42)
|
| 57 |
+
C = G.graph["partition"]
|
| 58 |
+
assert len(C) == 10
|
| 59 |
+
assert len(G) == 40
|
| 60 |
+
|
| 61 |
+
G = nx.planted_partition_graph(4, 3, 1, 0, directed=True)
|
| 62 |
+
C = G.graph["partition"]
|
| 63 |
+
assert len(C) == 4
|
| 64 |
+
assert len(G) == 12
|
| 65 |
+
assert len(list(G.edges())) == 24
|
| 66 |
+
|
| 67 |
+
G = nx.planted_partition_graph(4, 3, 0, 1, directed=True)
|
| 68 |
+
C = G.graph["partition"]
|
| 69 |
+
assert len(C) == 4
|
| 70 |
+
assert len(G) == 12
|
| 71 |
+
assert len(list(G.edges())) == 108
|
| 72 |
+
|
| 73 |
+
G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42, directed=True)
|
| 74 |
+
C = G.graph["partition"]
|
| 75 |
+
assert len(C) == 10
|
| 76 |
+
assert len(G) == 40
|
| 77 |
+
|
| 78 |
+
ppg = nx.planted_partition_graph
|
| 79 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, 1.1, 0.1)
|
| 80 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, -0.1, 0.1)
|
| 81 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, 1.1)
|
| 82 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, -0.1)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def test_relaxed_caveman_graph():
|
| 86 |
+
G = nx.relaxed_caveman_graph(4, 3, 0)
|
| 87 |
+
assert len(G) == 12
|
| 88 |
+
G = nx.relaxed_caveman_graph(4, 3, 1)
|
| 89 |
+
assert len(G) == 12
|
| 90 |
+
G = nx.relaxed_caveman_graph(4, 3, 0.5)
|
| 91 |
+
assert len(G) == 12
|
| 92 |
+
G = nx.relaxed_caveman_graph(4, 3, 0.5, seed=42)
|
| 93 |
+
assert len(G) == 12
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def test_connected_caveman_graph():
|
| 97 |
+
G = nx.connected_caveman_graph(4, 3)
|
| 98 |
+
assert len(G) == 12
|
| 99 |
+
|
| 100 |
+
G = nx.connected_caveman_graph(1, 5)
|
| 101 |
+
K5 = nx.complete_graph(5)
|
| 102 |
+
K5.remove_edge(3, 4)
|
| 103 |
+
assert nx.is_isomorphic(G, K5)
|
| 104 |
+
|
| 105 |
+
# need at least 2 nodes in each clique
|
| 106 |
+
pytest.raises(nx.NetworkXError, nx.connected_caveman_graph, 4, 1)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def test_caveman_graph():
|
| 110 |
+
G = nx.caveman_graph(4, 3)
|
| 111 |
+
assert len(G) == 12
|
| 112 |
+
|
| 113 |
+
G = nx.caveman_graph(5, 1)
|
| 114 |
+
E5 = nx.empty_graph(5)
|
| 115 |
+
assert nx.is_isomorphic(G, E5)
|
| 116 |
+
|
| 117 |
+
G = nx.caveman_graph(1, 5)
|
| 118 |
+
K5 = nx.complete_graph(5)
|
| 119 |
+
assert nx.is_isomorphic(G, K5)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def test_gaussian_random_partition_graph():
|
| 123 |
+
G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01)
|
| 124 |
+
assert len(G) == 100
|
| 125 |
+
G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01, directed=True)
|
| 126 |
+
assert len(G) == 100
|
| 127 |
+
G = nx.gaussian_random_partition_graph(
|
| 128 |
+
100, 10, 10, 0.3, 0.01, directed=False, seed=42
|
| 129 |
+
)
|
| 130 |
+
assert len(G) == 100
|
| 131 |
+
assert not isinstance(G, nx.DiGraph)
|
| 132 |
+
G = nx.gaussian_random_partition_graph(
|
| 133 |
+
100, 10, 10, 0.3, 0.01, directed=True, seed=42
|
| 134 |
+
)
|
| 135 |
+
assert len(G) == 100
|
| 136 |
+
assert isinstance(G, nx.DiGraph)
|
| 137 |
+
pytest.raises(
|
| 138 |
+
nx.NetworkXError, nx.gaussian_random_partition_graph, 100, 101, 10, 1, 0
|
| 139 |
+
)
|
| 140 |
+
# Test when clusters are likely less than 1
|
| 141 |
+
G = nx.gaussian_random_partition_graph(10, 0.5, 0.5, 0.5, 0.5, seed=1)
|
| 142 |
+
assert len(G) == 10
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def test_ring_of_cliques():
|
| 146 |
+
for i in range(2, 20, 3):
|
| 147 |
+
for j in range(2, 20, 3):
|
| 148 |
+
G = nx.ring_of_cliques(i, j)
|
| 149 |
+
assert G.number_of_nodes() == i * j
|
| 150 |
+
if i != 2 or j != 1:
|
| 151 |
+
expected_num_edges = i * (((j * (j - 1)) // 2) + 1)
|
| 152 |
+
else:
|
| 153 |
+
# the edge that already exists cannot be duplicated
|
| 154 |
+
expected_num_edges = i * (((j * (j - 1)) // 2) + 1) - 1
|
| 155 |
+
assert G.number_of_edges() == expected_num_edges
|
| 156 |
+
with pytest.raises(
|
| 157 |
+
nx.NetworkXError, match="A ring of cliques must have at least two cliques"
|
| 158 |
+
):
|
| 159 |
+
nx.ring_of_cliques(1, 5)
|
| 160 |
+
with pytest.raises(
|
| 161 |
+
nx.NetworkXError, match="The cliques must have at least two nodes"
|
| 162 |
+
):
|
| 163 |
+
nx.ring_of_cliques(3, 0)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def test_windmill_graph():
|
| 167 |
+
for n in range(2, 20, 3):
|
| 168 |
+
for k in range(2, 20, 3):
|
| 169 |
+
G = nx.windmill_graph(n, k)
|
| 170 |
+
assert G.number_of_nodes() == (k - 1) * n + 1
|
| 171 |
+
assert G.number_of_edges() == n * k * (k - 1) / 2
|
| 172 |
+
assert G.degree(0) == G.number_of_nodes() - 1
|
| 173 |
+
for i in range(1, G.number_of_nodes()):
|
| 174 |
+
assert G.degree(i) == k - 1
|
| 175 |
+
with pytest.raises(
|
| 176 |
+
nx.NetworkXError, match="A windmill graph must have at least two cliques"
|
| 177 |
+
):
|
| 178 |
+
nx.windmill_graph(1, 3)
|
| 179 |
+
with pytest.raises(
|
| 180 |
+
nx.NetworkXError, match="The cliques must have at least two nodes"
|
| 181 |
+
):
|
| 182 |
+
nx.windmill_graph(3, 0)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def test_stochastic_block_model():
|
| 186 |
+
sizes = [75, 75, 300]
|
| 187 |
+
probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
|
| 188 |
+
G = nx.stochastic_block_model(sizes, probs, seed=0)
|
| 189 |
+
C = G.graph["partition"]
|
| 190 |
+
assert len(C) == 3
|
| 191 |
+
assert len(G) == 450
|
| 192 |
+
assert G.size() == 22160
|
| 193 |
+
|
| 194 |
+
GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0)
|
| 195 |
+
assert G.nodes == GG.nodes
|
| 196 |
+
|
| 197 |
+
# Test Exceptions
|
| 198 |
+
sbm = nx.stochastic_block_model
|
| 199 |
+
badnodelist = list(range(400)) # not enough nodes to match sizes
|
| 200 |
+
badprobs1 = [[0.25, 0.05, 1.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
|
| 201 |
+
badprobs2 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
|
| 202 |
+
probs_rect1 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07]]
|
| 203 |
+
probs_rect2 = [[0.25, 0.05], [0.05, -0.35], [0.02, 0.07]]
|
| 204 |
+
asymprobs = [[0.25, 0.05, 0.01], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
|
| 205 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, badprobs1)
|
| 206 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, badprobs2)
|
| 207 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True)
|
| 208 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True)
|
| 209 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False)
|
| 210 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs, badnodelist)
|
| 211 |
+
nodelist = [0] + list(range(449)) # repeated node name in nodelist
|
| 212 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs, nodelist)
|
| 213 |
+
|
| 214 |
+
# Extra keyword arguments test
|
| 215 |
+
GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True)
|
| 216 |
+
assert G.nodes == GG.nodes
|
| 217 |
+
GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True)
|
| 218 |
+
assert G.nodes == GG.nodes
|
| 219 |
+
GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False)
|
| 220 |
+
assert G.nodes == GG.nodes
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def test_generator():
|
| 224 |
+
n = 250
|
| 225 |
+
tau1 = 3
|
| 226 |
+
tau2 = 1.5
|
| 227 |
+
mu = 0.1
|
| 228 |
+
G = nx.LFR_benchmark_graph(
|
| 229 |
+
n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10
|
| 230 |
+
)
|
| 231 |
+
assert len(G) == 250
|
| 232 |
+
C = {frozenset(G.nodes[v]["community"]) for v in G}
|
| 233 |
+
assert nx.community.is_partition(G.nodes(), C)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def test_invalid_tau1():
|
| 237 |
+
with pytest.raises(nx.NetworkXError, match="tau2 must be greater than one"):
|
| 238 |
+
n = 100
|
| 239 |
+
tau1 = 2
|
| 240 |
+
tau2 = 1
|
| 241 |
+
mu = 0.1
|
| 242 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def test_invalid_tau2():
|
| 246 |
+
with pytest.raises(nx.NetworkXError, match="tau1 must be greater than one"):
|
| 247 |
+
n = 100
|
| 248 |
+
tau1 = 1
|
| 249 |
+
tau2 = 2
|
| 250 |
+
mu = 0.1
|
| 251 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def test_mu_too_large():
|
| 255 |
+
with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
|
| 256 |
+
n = 100
|
| 257 |
+
tau1 = 2
|
| 258 |
+
tau2 = 2
|
| 259 |
+
mu = 1.1
|
| 260 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def test_mu_too_small():
|
| 264 |
+
with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
|
| 265 |
+
n = 100
|
| 266 |
+
tau1 = 2
|
| 267 |
+
tau2 = 2
|
| 268 |
+
mu = -1
|
| 269 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def test_both_degrees_none():
|
| 273 |
+
with pytest.raises(
|
| 274 |
+
nx.NetworkXError,
|
| 275 |
+
match="Must assign exactly one of min_degree and average_degree",
|
| 276 |
+
):
|
| 277 |
+
n = 100
|
| 278 |
+
tau1 = 2
|
| 279 |
+
tau2 = 2
|
| 280 |
+
mu = 1
|
| 281 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def test_neither_degrees_none():
|
| 285 |
+
with pytest.raises(
|
| 286 |
+
nx.NetworkXError,
|
| 287 |
+
match="Must assign exactly one of min_degree and average_degree",
|
| 288 |
+
):
|
| 289 |
+
n = 100
|
| 290 |
+
tau1 = 2
|
| 291 |
+
tau2 = 2
|
| 292 |
+
mu = 1
|
| 293 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, average_degree=5)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def test_max_iters_exceeded():
|
| 297 |
+
with pytest.raises(
|
| 298 |
+
nx.ExceededMaxIterations,
|
| 299 |
+
match="Could not assign communities; try increasing min_community",
|
| 300 |
+
):
|
| 301 |
+
n = 10
|
| 302 |
+
tau1 = 2
|
| 303 |
+
tau2 = 2
|
| 304 |
+
mu = 0.1
|
| 305 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=10, seed=1)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def test_max_deg_out_of_range():
|
| 309 |
+
with pytest.raises(
|
| 310 |
+
nx.NetworkXError, match="max_degree must be in the interval \\(0, n\\]"
|
| 311 |
+
):
|
| 312 |
+
n = 10
|
| 313 |
+
tau1 = 2
|
| 314 |
+
tau2 = 2
|
| 315 |
+
mu = 0.1
|
| 316 |
+
nx.LFR_benchmark_graph(
|
| 317 |
+
n, tau1, tau2, mu, max_degree=n + 1, max_iters=10, seed=1
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def test_max_community():
|
| 322 |
+
n = 250
|
| 323 |
+
tau1 = 3
|
| 324 |
+
tau2 = 1.5
|
| 325 |
+
mu = 0.1
|
| 326 |
+
G = nx.LFR_benchmark_graph(
|
| 327 |
+
n,
|
| 328 |
+
tau1,
|
| 329 |
+
tau2,
|
| 330 |
+
mu,
|
| 331 |
+
average_degree=5,
|
| 332 |
+
max_degree=100,
|
| 333 |
+
min_community=50,
|
| 334 |
+
max_community=200,
|
| 335 |
+
seed=10,
|
| 336 |
+
)
|
| 337 |
+
assert len(G) == 250
|
| 338 |
+
C = {frozenset(G.nodes[v]["community"]) for v in G}
|
| 339 |
+
assert nx.community.is_partition(G.nodes(), C)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def test_powerlaw_iterations_exceeded():
|
| 343 |
+
with pytest.raises(
|
| 344 |
+
nx.ExceededMaxIterations, match="Could not create power law sequence"
|
| 345 |
+
):
|
| 346 |
+
n = 100
|
| 347 |
+
tau1 = 2
|
| 348 |
+
tau2 = 2
|
| 349 |
+
mu = 1
|
| 350 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=0)
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def test_no_scipy_zeta():
|
| 354 |
+
zeta2 = 1.6449340668482264
|
| 355 |
+
assert abs(zeta2 - nx.generators.community._hurwitz_zeta(2, 1, 0.0001)) < 0.01
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def test_generate_min_degree_itr():
|
| 359 |
+
with pytest.raises(
|
| 360 |
+
nx.ExceededMaxIterations, match="Could not match average_degree"
|
| 361 |
+
):
|
| 362 |
+
nx.generators.community._generate_min_degree(2, 2, 1, 0.01, 0)
|
janus/lib/python3.10/site-packages/networkx/generators/tests/test_directed.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Generators - Directed Graphs
|
| 2 |
+
----------------------------
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
from networkx.classes import Graph, MultiDiGraph
|
| 9 |
+
from networkx.generators.directed import (
|
| 10 |
+
gn_graph,
|
| 11 |
+
gnc_graph,
|
| 12 |
+
gnr_graph,
|
| 13 |
+
random_k_out_graph,
|
| 14 |
+
random_uniform_k_out_graph,
|
| 15 |
+
scale_free_graph,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class TestGeneratorsDirected:
|
| 20 |
+
def test_smoke_test_random_graphs(self):
|
| 21 |
+
gn_graph(100)
|
| 22 |
+
gnr_graph(100, 0.5)
|
| 23 |
+
gnc_graph(100)
|
| 24 |
+
scale_free_graph(100)
|
| 25 |
+
|
| 26 |
+
gn_graph(100, seed=42)
|
| 27 |
+
gnr_graph(100, 0.5, seed=42)
|
| 28 |
+
gnc_graph(100, seed=42)
|
| 29 |
+
scale_free_graph(100, seed=42)
|
| 30 |
+
|
| 31 |
+
def test_create_using_keyword_arguments(self):
|
| 32 |
+
pytest.raises(nx.NetworkXError, gn_graph, 100, create_using=Graph())
|
| 33 |
+
pytest.raises(nx.NetworkXError, gnr_graph, 100, 0.5, create_using=Graph())
|
| 34 |
+
pytest.raises(nx.NetworkXError, gnc_graph, 100, create_using=Graph())
|
| 35 |
+
G = gn_graph(100, seed=1)
|
| 36 |
+
MG = gn_graph(100, create_using=MultiDiGraph(), seed=1)
|
| 37 |
+
assert sorted(G.edges()) == sorted(MG.edges())
|
| 38 |
+
G = gnr_graph(100, 0.5, seed=1)
|
| 39 |
+
MG = gnr_graph(100, 0.5, create_using=MultiDiGraph(), seed=1)
|
| 40 |
+
assert sorted(G.edges()) == sorted(MG.edges())
|
| 41 |
+
G = gnc_graph(100, seed=1)
|
| 42 |
+
MG = gnc_graph(100, create_using=MultiDiGraph(), seed=1)
|
| 43 |
+
assert sorted(G.edges()) == sorted(MG.edges())
|
| 44 |
+
|
| 45 |
+
G = scale_free_graph(
|
| 46 |
+
100,
|
| 47 |
+
alpha=0.3,
|
| 48 |
+
beta=0.4,
|
| 49 |
+
gamma=0.3,
|
| 50 |
+
delta_in=0.3,
|
| 51 |
+
delta_out=0.1,
|
| 52 |
+
initial_graph=nx.cycle_graph(4, create_using=MultiDiGraph),
|
| 53 |
+
seed=1,
|
| 54 |
+
)
|
| 55 |
+
pytest.raises(ValueError, scale_free_graph, 100, 0.5, 0.4, 0.3)
|
| 56 |
+
pytest.raises(ValueError, scale_free_graph, 100, alpha=-0.3)
|
| 57 |
+
pytest.raises(ValueError, scale_free_graph, 100, beta=-0.3)
|
| 58 |
+
pytest.raises(ValueError, scale_free_graph, 100, gamma=-0.3)
|
| 59 |
+
|
| 60 |
+
def test_parameters(self):
|
| 61 |
+
G = nx.DiGraph()
|
| 62 |
+
G.add_node(0)
|
| 63 |
+
|
| 64 |
+
def kernel(x):
|
| 65 |
+
return x
|
| 66 |
+
|
| 67 |
+
assert nx.is_isomorphic(gn_graph(1), G)
|
| 68 |
+
assert nx.is_isomorphic(gn_graph(1, kernel=kernel), G)
|
| 69 |
+
assert nx.is_isomorphic(gnc_graph(1), G)
|
| 70 |
+
assert nx.is_isomorphic(gnr_graph(1, 0.5), G)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def test_scale_free_graph_negative_delta():
|
| 74 |
+
with pytest.raises(ValueError, match="delta_in must be >= 0."):
|
| 75 |
+
scale_free_graph(10, delta_in=-1)
|
| 76 |
+
with pytest.raises(ValueError, match="delta_out must be >= 0."):
|
| 77 |
+
scale_free_graph(10, delta_out=-1)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def test_non_numeric_ordering():
|
| 81 |
+
G = MultiDiGraph([("a", "b"), ("b", "c"), ("c", "a")])
|
| 82 |
+
s = scale_free_graph(3, initial_graph=G)
|
| 83 |
+
assert len(s) == 3
|
| 84 |
+
assert len(s.edges) == 3
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@pytest.mark.parametrize("ig", (nx.Graph(), nx.DiGraph([(0, 1)])))
|
| 88 |
+
def test_scale_free_graph_initial_graph_kwarg(ig):
|
| 89 |
+
with pytest.raises(nx.NetworkXError):
|
| 90 |
+
scale_free_graph(100, initial_graph=ig)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class TestRandomKOutGraph:
|
| 94 |
+
"""Unit tests for the
|
| 95 |
+
:func:`~networkx.generators.directed.random_k_out_graph` function.
|
| 96 |
+
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
def test_regularity(self):
|
| 100 |
+
"""Tests that the generated graph is `k`-out-regular."""
|
| 101 |
+
n = 10
|
| 102 |
+
k = 3
|
| 103 |
+
alpha = 1
|
| 104 |
+
G = random_k_out_graph(n, k, alpha)
|
| 105 |
+
assert all(d == k for v, d in G.out_degree())
|
| 106 |
+
G = random_k_out_graph(n, k, alpha, seed=42)
|
| 107 |
+
assert all(d == k for v, d in G.out_degree())
|
| 108 |
+
|
| 109 |
+
def test_no_self_loops(self):
|
| 110 |
+
"""Tests for forbidding self-loops."""
|
| 111 |
+
n = 10
|
| 112 |
+
k = 3
|
| 113 |
+
alpha = 1
|
| 114 |
+
G = random_k_out_graph(n, k, alpha, self_loops=False)
|
| 115 |
+
assert nx.number_of_selfloops(G) == 0
|
| 116 |
+
|
| 117 |
+
def test_negative_alpha(self):
|
| 118 |
+
with pytest.raises(ValueError, match="alpha must be positive"):
|
| 119 |
+
random_k_out_graph(10, 3, -1)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class TestUniformRandomKOutGraph:
|
| 123 |
+
"""Unit tests for the
|
| 124 |
+
:func:`~networkx.generators.directed.random_uniform_k_out_graph`
|
| 125 |
+
function.
|
| 126 |
+
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
def test_regularity(self):
|
| 130 |
+
"""Tests that the generated graph is `k`-out-regular."""
|
| 131 |
+
n = 10
|
| 132 |
+
k = 3
|
| 133 |
+
G = random_uniform_k_out_graph(n, k)
|
| 134 |
+
assert all(d == k for v, d in G.out_degree())
|
| 135 |
+
G = random_uniform_k_out_graph(n, k, seed=42)
|
| 136 |
+
assert all(d == k for v, d in G.out_degree())
|
| 137 |
+
|
| 138 |
+
def test_no_self_loops(self):
|
| 139 |
+
"""Tests for forbidding self-loops."""
|
| 140 |
+
n = 10
|
| 141 |
+
k = 3
|
| 142 |
+
G = random_uniform_k_out_graph(n, k, self_loops=False)
|
| 143 |
+
assert nx.number_of_selfloops(G) == 0
|
| 144 |
+
assert all(d == k for v, d in G.out_degree())
|
| 145 |
+
|
| 146 |
+
def test_with_replacement(self):
|
| 147 |
+
n = 10
|
| 148 |
+
k = 3
|
| 149 |
+
G = random_uniform_k_out_graph(n, k, with_replacement=True)
|
| 150 |
+
assert G.is_multigraph()
|
| 151 |
+
assert all(d == k for v, d in G.out_degree())
|
| 152 |
+
n = 10
|
| 153 |
+
k = 9
|
| 154 |
+
G = random_uniform_k_out_graph(n, k, with_replacement=False, self_loops=False)
|
| 155 |
+
assert nx.number_of_selfloops(G) == 0
|
| 156 |
+
assert all(d == k for v, d in G.out_degree())
|
| 157 |
+
|
| 158 |
+
def test_without_replacement(self):
|
| 159 |
+
n = 10
|
| 160 |
+
k = 3
|
| 161 |
+
G = random_uniform_k_out_graph(n, k, with_replacement=False)
|
| 162 |
+
assert not G.is_multigraph()
|
| 163 |
+
assert all(d == k for v, d in G.out_degree())
|
janus/lib/python3.10/site-packages/networkx/generators/tests/test_lattice.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for the :mod:`networkx.generators.lattice` module."""
|
| 2 |
+
|
| 3 |
+
from itertools import product
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
from networkx.utils import edges_equal
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TestGrid2DGraph:
|
| 12 |
+
"""Unit tests for :func:`networkx.generators.lattice.grid_2d_graph`"""
|
| 13 |
+
|
| 14 |
+
def test_number_of_vertices(self):
|
| 15 |
+
m, n = 5, 6
|
| 16 |
+
G = nx.grid_2d_graph(m, n)
|
| 17 |
+
assert len(G) == m * n
|
| 18 |
+
|
| 19 |
+
def test_degree_distribution(self):
|
| 20 |
+
m, n = 5, 6
|
| 21 |
+
G = nx.grid_2d_graph(m, n)
|
| 22 |
+
expected_histogram = [0, 0, 4, 2 * (m + n) - 8, (m - 2) * (n - 2)]
|
| 23 |
+
assert nx.degree_histogram(G) == expected_histogram
|
| 24 |
+
|
| 25 |
+
def test_directed(self):
|
| 26 |
+
m, n = 5, 6
|
| 27 |
+
G = nx.grid_2d_graph(m, n)
|
| 28 |
+
H = nx.grid_2d_graph(m, n, create_using=nx.DiGraph())
|
| 29 |
+
assert H.succ == G.adj
|
| 30 |
+
assert H.pred == G.adj
|
| 31 |
+
|
| 32 |
+
def test_multigraph(self):
|
| 33 |
+
m, n = 5, 6
|
| 34 |
+
G = nx.grid_2d_graph(m, n)
|
| 35 |
+
H = nx.grid_2d_graph(m, n, create_using=nx.MultiGraph())
|
| 36 |
+
assert list(H.edges()) == list(G.edges())
|
| 37 |
+
|
| 38 |
+
def test_periodic(self):
|
| 39 |
+
G = nx.grid_2d_graph(0, 0, periodic=True)
|
| 40 |
+
assert dict(G.degree()) == {}
|
| 41 |
+
|
| 42 |
+
for m, n, H in [
|
| 43 |
+
(2, 2, nx.cycle_graph(4)),
|
| 44 |
+
(1, 7, nx.cycle_graph(7)),
|
| 45 |
+
(7, 1, nx.cycle_graph(7)),
|
| 46 |
+
(2, 5, nx.circular_ladder_graph(5)),
|
| 47 |
+
(5, 2, nx.circular_ladder_graph(5)),
|
| 48 |
+
(2, 4, nx.cubical_graph()),
|
| 49 |
+
(4, 2, nx.cubical_graph()),
|
| 50 |
+
]:
|
| 51 |
+
G = nx.grid_2d_graph(m, n, periodic=True)
|
| 52 |
+
assert nx.could_be_isomorphic(G, H)
|
| 53 |
+
|
| 54 |
+
def test_periodic_iterable(self):
|
| 55 |
+
m, n = 3, 7
|
| 56 |
+
for a, b in product([0, 1], [0, 1]):
|
| 57 |
+
G = nx.grid_2d_graph(m, n, periodic=(a, b))
|
| 58 |
+
assert G.number_of_nodes() == m * n
|
| 59 |
+
assert G.number_of_edges() == (m + a - 1) * n + (n + b - 1) * m
|
| 60 |
+
|
| 61 |
+
def test_periodic_directed(self):
|
| 62 |
+
G = nx.grid_2d_graph(4, 2, periodic=True)
|
| 63 |
+
H = nx.grid_2d_graph(4, 2, periodic=True, create_using=nx.DiGraph())
|
| 64 |
+
assert H.succ == G.adj
|
| 65 |
+
assert H.pred == G.adj
|
| 66 |
+
|
| 67 |
+
def test_periodic_multigraph(self):
|
| 68 |
+
G = nx.grid_2d_graph(4, 2, periodic=True)
|
| 69 |
+
H = nx.grid_2d_graph(4, 2, periodic=True, create_using=nx.MultiGraph())
|
| 70 |
+
assert list(G.edges()) == list(H.edges())
|
| 71 |
+
|
| 72 |
+
def test_exceptions(self):
|
| 73 |
+
pytest.raises(nx.NetworkXError, nx.grid_2d_graph, -3, 2)
|
| 74 |
+
pytest.raises(nx.NetworkXError, nx.grid_2d_graph, 3, -2)
|
| 75 |
+
pytest.raises(TypeError, nx.grid_2d_graph, 3.3, 2)
|
| 76 |
+
pytest.raises(TypeError, nx.grid_2d_graph, 3, 2.2)
|
| 77 |
+
|
| 78 |
+
def test_node_input(self):
|
| 79 |
+
G = nx.grid_2d_graph(4, 2, periodic=True)
|
| 80 |
+
H = nx.grid_2d_graph(range(4), range(2), periodic=True)
|
| 81 |
+
assert nx.is_isomorphic(H, G)
|
| 82 |
+
H = nx.grid_2d_graph("abcd", "ef", periodic=True)
|
| 83 |
+
assert nx.is_isomorphic(H, G)
|
| 84 |
+
G = nx.grid_2d_graph(5, 6)
|
| 85 |
+
H = nx.grid_2d_graph(range(5), range(6))
|
| 86 |
+
assert edges_equal(H, G)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class TestGridGraph:
|
| 90 |
+
"""Unit tests for :func:`networkx.generators.lattice.grid_graph`"""
|
| 91 |
+
|
| 92 |
+
def test_grid_graph(self):
|
| 93 |
+
"""grid_graph([n,m]) is a connected simple graph with the
|
| 94 |
+
following properties:
|
| 95 |
+
number_of_nodes = n*m
|
| 96 |
+
degree_histogram = [0,0,4,2*(n+m)-8,(n-2)*(m-2)]
|
| 97 |
+
"""
|
| 98 |
+
for n, m in [(3, 5), (5, 3), (4, 5), (5, 4)]:
|
| 99 |
+
dim = [n, m]
|
| 100 |
+
g = nx.grid_graph(dim)
|
| 101 |
+
assert len(g) == n * m
|
| 102 |
+
assert nx.degree_histogram(g) == [
|
| 103 |
+
0,
|
| 104 |
+
0,
|
| 105 |
+
4,
|
| 106 |
+
2 * (n + m) - 8,
|
| 107 |
+
(n - 2) * (m - 2),
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
for n, m in [(1, 5), (5, 1)]:
|
| 111 |
+
dim = [n, m]
|
| 112 |
+
g = nx.grid_graph(dim)
|
| 113 |
+
assert len(g) == n * m
|
| 114 |
+
assert nx.is_isomorphic(g, nx.path_graph(5))
|
| 115 |
+
|
| 116 |
+
# mg = nx.grid_graph([n,m], create_using=MultiGraph())
|
| 117 |
+
# assert_equal(mg.edges(), g.edges())
|
| 118 |
+
|
| 119 |
+
def test_node_input(self):
|
| 120 |
+
G = nx.grid_graph([range(7, 9), range(3, 6)])
|
| 121 |
+
assert len(G) == 2 * 3
|
| 122 |
+
assert nx.is_isomorphic(G, nx.grid_graph([2, 3]))
|
| 123 |
+
|
| 124 |
+
def test_periodic_iterable(self):
|
| 125 |
+
m, n, k = 3, 7, 5
|
| 126 |
+
for a, b, c in product([0, 1], [0, 1], [0, 1]):
|
| 127 |
+
G = nx.grid_graph([m, n, k], periodic=(a, b, c))
|
| 128 |
+
num_e = (m + a - 1) * n * k + (n + b - 1) * m * k + (k + c - 1) * m * n
|
| 129 |
+
assert G.number_of_nodes() == m * n * k
|
| 130 |
+
assert G.number_of_edges() == num_e
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class TestHypercubeGraph:
|
| 134 |
+
"""Unit tests for :func:`networkx.generators.lattice.hypercube_graph`"""
|
| 135 |
+
|
| 136 |
+
def test_special_cases(self):
|
| 137 |
+
for n, H in [
|
| 138 |
+
(0, nx.null_graph()),
|
| 139 |
+
(1, nx.path_graph(2)),
|
| 140 |
+
(2, nx.cycle_graph(4)),
|
| 141 |
+
(3, nx.cubical_graph()),
|
| 142 |
+
]:
|
| 143 |
+
G = nx.hypercube_graph(n)
|
| 144 |
+
assert nx.could_be_isomorphic(G, H)
|
| 145 |
+
|
| 146 |
+
def test_degree_distribution(self):
|
| 147 |
+
for n in range(1, 10):
|
| 148 |
+
G = nx.hypercube_graph(n)
|
| 149 |
+
expected_histogram = [0] * n + [2**n]
|
| 150 |
+
assert nx.degree_histogram(G) == expected_histogram
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class TestTriangularLatticeGraph:
|
| 154 |
+
"Tests for :func:`networkx.generators.lattice.triangular_lattice_graph`"
|
| 155 |
+
|
| 156 |
+
def test_lattice_points(self):
|
| 157 |
+
"""Tests that the graph is really a triangular lattice."""
|
| 158 |
+
for m, n in [(2, 3), (2, 2), (2, 1), (3, 3), (3, 2), (3, 4)]:
|
| 159 |
+
G = nx.triangular_lattice_graph(m, n)
|
| 160 |
+
N = (n + 1) // 2
|
| 161 |
+
assert len(G) == (m + 1) * (1 + N) - (n % 2) * ((m + 1) // 2)
|
| 162 |
+
for i, j in G.nodes():
|
| 163 |
+
nbrs = G[(i, j)]
|
| 164 |
+
if i < N:
|
| 165 |
+
assert (i + 1, j) in nbrs
|
| 166 |
+
if j < m:
|
| 167 |
+
assert (i, j + 1) in nbrs
|
| 168 |
+
if j < m and (i > 0 or j % 2) and (i < N or (j + 1) % 2):
|
| 169 |
+
assert (i + 1, j + 1) in nbrs or (i - 1, j + 1) in nbrs
|
| 170 |
+
|
| 171 |
+
def test_directed(self):
|
| 172 |
+
"""Tests for creating a directed triangular lattice."""
|
| 173 |
+
G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph())
|
| 174 |
+
H = nx.triangular_lattice_graph(3, 4, create_using=nx.DiGraph())
|
| 175 |
+
assert H.is_directed()
|
| 176 |
+
for u, v in H.edges():
|
| 177 |
+
assert v[1] >= u[1]
|
| 178 |
+
if v[1] == u[1]:
|
| 179 |
+
assert v[0] > u[0]
|
| 180 |
+
|
| 181 |
+
def test_multigraph(self):
|
| 182 |
+
"""Tests for creating a triangular lattice multigraph."""
|
| 183 |
+
G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph())
|
| 184 |
+
H = nx.triangular_lattice_graph(3, 4, create_using=nx.MultiGraph())
|
| 185 |
+
assert list(H.edges()) == list(G.edges())
|
| 186 |
+
|
| 187 |
+
def test_periodic(self):
|
| 188 |
+
G = nx.triangular_lattice_graph(4, 6, periodic=True)
|
| 189 |
+
assert len(G) == 12
|
| 190 |
+
assert G.size() == 36
|
| 191 |
+
# all degrees are 6
|
| 192 |
+
assert len([n for n, d in G.degree() if d != 6]) == 0
|
| 193 |
+
G = nx.triangular_lattice_graph(5, 7, periodic=True)
|
| 194 |
+
TLG = nx.triangular_lattice_graph
|
| 195 |
+
pytest.raises(nx.NetworkXError, TLG, 2, 4, periodic=True)
|
| 196 |
+
pytest.raises(nx.NetworkXError, TLG, 4, 4, periodic=True)
|
| 197 |
+
pytest.raises(nx.NetworkXError, TLG, 2, 6, periodic=True)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class TestHexagonalLatticeGraph:
|
| 201 |
+
"Tests for :func:`networkx.generators.lattice.hexagonal_lattice_graph`"
|
| 202 |
+
|
| 203 |
+
def test_lattice_points(self):
|
| 204 |
+
"""Tests that the graph is really a hexagonal lattice."""
|
| 205 |
+
for m, n in [(4, 5), (4, 4), (4, 3), (3, 2), (3, 3), (3, 5)]:
|
| 206 |
+
G = nx.hexagonal_lattice_graph(m, n)
|
| 207 |
+
assert len(G) == 2 * (m + 1) * (n + 1) - 2
|
| 208 |
+
C_6 = nx.cycle_graph(6)
|
| 209 |
+
hexagons = [
|
| 210 |
+
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)],
|
| 211 |
+
[(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)],
|
| 212 |
+
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)],
|
| 213 |
+
[(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)],
|
| 214 |
+
[(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)],
|
| 215 |
+
]
|
| 216 |
+
for hexagon in hexagons:
|
| 217 |
+
assert nx.is_isomorphic(G.subgraph(hexagon), C_6)
|
| 218 |
+
|
| 219 |
+
def test_directed(self):
|
| 220 |
+
"""Tests for creating a directed hexagonal lattice."""
|
| 221 |
+
G = nx.hexagonal_lattice_graph(3, 5, create_using=nx.Graph())
|
| 222 |
+
H = nx.hexagonal_lattice_graph(3, 5, create_using=nx.DiGraph())
|
| 223 |
+
assert H.is_directed()
|
| 224 |
+
pos = nx.get_node_attributes(H, "pos")
|
| 225 |
+
for u, v in H.edges():
|
| 226 |
+
assert pos[v][1] >= pos[u][1]
|
| 227 |
+
if pos[v][1] == pos[u][1]:
|
| 228 |
+
assert pos[v][0] > pos[u][0]
|
| 229 |
+
|
| 230 |
+
def test_multigraph(self):
|
| 231 |
+
"""Tests for creating a hexagonal lattice multigraph."""
|
| 232 |
+
G = nx.hexagonal_lattice_graph(3, 5, create_using=nx.Graph())
|
| 233 |
+
H = nx.hexagonal_lattice_graph(3, 5, create_using=nx.MultiGraph())
|
| 234 |
+
assert list(H.edges()) == list(G.edges())
|
| 235 |
+
|
| 236 |
+
def test_periodic(self):
|
| 237 |
+
G = nx.hexagonal_lattice_graph(4, 6, periodic=True)
|
| 238 |
+
assert len(G) == 48
|
| 239 |
+
assert G.size() == 72
|
| 240 |
+
# all degrees are 3
|
| 241 |
+
assert len([n for n, d in G.degree() if d != 3]) == 0
|
| 242 |
+
G = nx.hexagonal_lattice_graph(5, 8, periodic=True)
|
| 243 |
+
HLG = nx.hexagonal_lattice_graph
|
| 244 |
+
pytest.raises(nx.NetworkXError, HLG, 2, 7, periodic=True)
|
| 245 |
+
pytest.raises(nx.NetworkXError, HLG, 1, 4, periodic=True)
|
| 246 |
+
pytest.raises(nx.NetworkXError, HLG, 2, 1, periodic=True)
|
janus/lib/python3.10/site-packages/networkx/generators/tests/test_spectral_graph_forge.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
pytest.importorskip("numpy")
|
| 4 |
+
pytest.importorskip("scipy")
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from networkx import is_isomorphic
|
| 8 |
+
from networkx.exception import NetworkXError
|
| 9 |
+
from networkx.generators import karate_club_graph
|
| 10 |
+
from networkx.generators.spectral_graph_forge import spectral_graph_forge
|
| 11 |
+
from networkx.utils import nodes_equal
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def test_spectral_graph_forge():
|
| 15 |
+
G = karate_club_graph()
|
| 16 |
+
|
| 17 |
+
seed = 54321
|
| 18 |
+
|
| 19 |
+
# common cases, just checking node number preserving and difference
|
| 20 |
+
# between identity and modularity cases
|
| 21 |
+
H = spectral_graph_forge(G, 0.1, transformation="identity", seed=seed)
|
| 22 |
+
assert nodes_equal(G, H)
|
| 23 |
+
|
| 24 |
+
I = spectral_graph_forge(G, 0.1, transformation="identity", seed=seed)
|
| 25 |
+
assert nodes_equal(G, H)
|
| 26 |
+
assert is_isomorphic(I, H)
|
| 27 |
+
|
| 28 |
+
I = spectral_graph_forge(G, 0.1, transformation="modularity", seed=seed)
|
| 29 |
+
assert nodes_equal(G, I)
|
| 30 |
+
|
| 31 |
+
assert not is_isomorphic(I, H)
|
| 32 |
+
|
| 33 |
+
# with all the eigenvectors, output graph is identical to the input one
|
| 34 |
+
H = spectral_graph_forge(G, 1, transformation="modularity", seed=seed)
|
| 35 |
+
assert nodes_equal(G, H)
|
| 36 |
+
assert is_isomorphic(G, H)
|
| 37 |
+
|
| 38 |
+
# invalid alpha input value, it is silently truncated in [0,1]
|
| 39 |
+
H = spectral_graph_forge(G, -1, transformation="identity", seed=seed)
|
| 40 |
+
assert nodes_equal(G, H)
|
| 41 |
+
|
| 42 |
+
H = spectral_graph_forge(G, 10, transformation="identity", seed=seed)
|
| 43 |
+
assert nodes_equal(G, H)
|
| 44 |
+
assert is_isomorphic(G, H)
|
| 45 |
+
|
| 46 |
+
# invalid transformation mode, checking the error raising
|
| 47 |
+
pytest.raises(
|
| 48 |
+
NetworkXError, spectral_graph_forge, G, 0.1, transformation="unknown", seed=seed
|
| 49 |
+
)
|
janus/lib/python3.10/site-packages/networkx/generators/tests/test_time_series.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for the :mod:`networkx.generators.time_series` module."""
|
| 2 |
+
|
| 3 |
+
import itertools
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def test_visibility_graph__empty_series__empty_graph():
|
| 9 |
+
null_graph = nx.visibility_graph([]) # move along nothing to see here
|
| 10 |
+
assert nx.is_empty(null_graph)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def test_visibility_graph__single_value_ts__single_node_graph():
|
| 14 |
+
node_graph = nx.visibility_graph([10]) # So Lonely
|
| 15 |
+
assert node_graph.number_of_nodes() == 1
|
| 16 |
+
assert node_graph.number_of_edges() == 0
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def test_visibility_graph__two_values_ts__single_edge_graph():
|
| 20 |
+
edge_graph = nx.visibility_graph([10, 20]) # Two of Us
|
| 21 |
+
assert list(edge_graph.edges) == [(0, 1)]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def test_visibility_graph__convex_series__complete_graph():
|
| 25 |
+
series = [i**2 for i in range(10)] # no obstructions
|
| 26 |
+
expected_series_length = len(series)
|
| 27 |
+
|
| 28 |
+
actual_graph = nx.visibility_graph(series)
|
| 29 |
+
|
| 30 |
+
assert actual_graph.number_of_nodes() == expected_series_length
|
| 31 |
+
assert actual_graph.number_of_edges() == 45
|
| 32 |
+
assert nx.is_isomorphic(actual_graph, nx.complete_graph(expected_series_length))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def test_visibility_graph__concave_series__path_graph():
|
| 36 |
+
series = [-(i**2) for i in range(10)] # Slip Slidin' Away
|
| 37 |
+
expected_node_count = len(series)
|
| 38 |
+
|
| 39 |
+
actual_graph = nx.visibility_graph(series)
|
| 40 |
+
|
| 41 |
+
assert actual_graph.number_of_nodes() == expected_node_count
|
| 42 |
+
assert actual_graph.number_of_edges() == expected_node_count - 1
|
| 43 |
+
assert nx.is_isomorphic(actual_graph, nx.path_graph(expected_node_count))
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def test_visibility_graph__flat_series__path_graph():
|
| 47 |
+
series = [0] * 10 # living in 1D flatland
|
| 48 |
+
expected_node_count = len(series)
|
| 49 |
+
|
| 50 |
+
actual_graph = nx.visibility_graph(series)
|
| 51 |
+
|
| 52 |
+
assert actual_graph.number_of_nodes() == expected_node_count
|
| 53 |
+
assert actual_graph.number_of_edges() == expected_node_count - 1
|
| 54 |
+
assert nx.is_isomorphic(actual_graph, nx.path_graph(expected_node_count))
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def test_visibility_graph_cyclic_series():
|
| 58 |
+
series = list(itertools.islice(itertools.cycle((2, 1, 3)), 17)) # It's so bumpy!
|
| 59 |
+
expected_node_count = len(series)
|
| 60 |
+
|
| 61 |
+
actual_graph = nx.visibility_graph(series)
|
| 62 |
+
|
| 63 |
+
assert actual_graph.number_of_nodes() == expected_node_count
|
| 64 |
+
assert actual_graph.number_of_edges() == 25
|
janus/lib/python3.10/site-packages/networkx/linalg/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from networkx.linalg.attrmatrix import *
|
| 2 |
+
from networkx.linalg import attrmatrix
|
| 3 |
+
from networkx.linalg.spectrum import *
|
| 4 |
+
from networkx.linalg import spectrum
|
| 5 |
+
from networkx.linalg.graphmatrix import *
|
| 6 |
+
from networkx.linalg import graphmatrix
|
| 7 |
+
from networkx.linalg.laplacianmatrix import *
|
| 8 |
+
from networkx.linalg import laplacianmatrix
|
| 9 |
+
from networkx.linalg.algebraicconnectivity import *
|
| 10 |
+
from networkx.linalg.modularitymatrix import *
|
| 11 |
+
from networkx.linalg import modularitymatrix
|
| 12 |
+
from networkx.linalg.bethehessianmatrix import *
|
| 13 |
+
from networkx.linalg import bethehessianmatrix
|
janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/algebraicconnectivity.cpython-310.pyc
ADDED
|
Binary file (20 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/attrmatrix.cpython-310.pyc
ADDED
|
Binary file (14.7 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/laplacianmatrix.cpython-310.pyc
ADDED
|
Binary file (18.9 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/linalg/__pycache__/spectrum.cpython-310.pyc
ADDED
|
Binary file (4.41 kB). View file
|
|
|
janus/lib/python3.10/site-packages/networkx/linalg/algebraicconnectivity.py
ADDED
|
@@ -0,0 +1,657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Algebraic connectivity and Fiedler vectors of undirected graphs.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from functools import partial
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
from networkx.utils import (
|
| 9 |
+
not_implemented_for,
|
| 10 |
+
np_random_state,
|
| 11 |
+
reverse_cuthill_mckee_ordering,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
__all__ = [
|
| 15 |
+
"algebraic_connectivity",
|
| 16 |
+
"fiedler_vector",
|
| 17 |
+
"spectral_ordering",
|
| 18 |
+
"spectral_bisection",
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class _PCGSolver:
|
| 23 |
+
"""Preconditioned conjugate gradient method.
|
| 24 |
+
|
| 25 |
+
To solve Ax = b:
|
| 26 |
+
M = A.diagonal() # or some other preconditioner
|
| 27 |
+
solver = _PCGSolver(lambda x: A * x, lambda x: M * x)
|
| 28 |
+
x = solver.solve(b)
|
| 29 |
+
|
| 30 |
+
The inputs A and M are functions which compute
|
| 31 |
+
matrix multiplication on the argument.
|
| 32 |
+
A - multiply by the matrix A in Ax=b
|
| 33 |
+
M - multiply by M, the preconditioner surrogate for A
|
| 34 |
+
|
| 35 |
+
Warning: There is no limit on number of iterations.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, A, M):
|
| 39 |
+
self._A = A
|
| 40 |
+
self._M = M
|
| 41 |
+
|
| 42 |
+
def solve(self, B, tol):
|
| 43 |
+
import numpy as np
|
| 44 |
+
|
| 45 |
+
# Densifying step - can this be kept sparse?
|
| 46 |
+
B = np.asarray(B)
|
| 47 |
+
X = np.ndarray(B.shape, order="F")
|
| 48 |
+
for j in range(B.shape[1]):
|
| 49 |
+
X[:, j] = self._solve(B[:, j], tol)
|
| 50 |
+
return X
|
| 51 |
+
|
| 52 |
+
def _solve(self, b, tol):
|
| 53 |
+
import numpy as np
|
| 54 |
+
import scipy as sp
|
| 55 |
+
|
| 56 |
+
A = self._A
|
| 57 |
+
M = self._M
|
| 58 |
+
tol *= sp.linalg.blas.dasum(b)
|
| 59 |
+
# Initialize.
|
| 60 |
+
x = np.zeros(b.shape)
|
| 61 |
+
r = b.copy()
|
| 62 |
+
z = M(r)
|
| 63 |
+
rz = sp.linalg.blas.ddot(r, z)
|
| 64 |
+
p = z.copy()
|
| 65 |
+
# Iterate.
|
| 66 |
+
while True:
|
| 67 |
+
Ap = A(p)
|
| 68 |
+
alpha = rz / sp.linalg.blas.ddot(p, Ap)
|
| 69 |
+
x = sp.linalg.blas.daxpy(p, x, a=alpha)
|
| 70 |
+
r = sp.linalg.blas.daxpy(Ap, r, a=-alpha)
|
| 71 |
+
if sp.linalg.blas.dasum(r) < tol:
|
| 72 |
+
return x
|
| 73 |
+
z = M(r)
|
| 74 |
+
beta = sp.linalg.blas.ddot(r, z)
|
| 75 |
+
beta, rz = beta / rz, beta
|
| 76 |
+
p = sp.linalg.blas.daxpy(p, z, a=beta)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class _LUSolver:
|
| 80 |
+
"""LU factorization.
|
| 81 |
+
|
| 82 |
+
To solve Ax = b:
|
| 83 |
+
solver = _LUSolver(A)
|
| 84 |
+
x = solver.solve(b)
|
| 85 |
+
|
| 86 |
+
optional argument `tol` on solve method is ignored but included
|
| 87 |
+
to match _PCGsolver API.
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
def __init__(self, A):
|
| 91 |
+
import scipy as sp
|
| 92 |
+
|
| 93 |
+
self._LU = sp.sparse.linalg.splu(
|
| 94 |
+
A,
|
| 95 |
+
permc_spec="MMD_AT_PLUS_A",
|
| 96 |
+
diag_pivot_thresh=0.0,
|
| 97 |
+
options={"Equil": True, "SymmetricMode": True},
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def solve(self, B, tol=None):
|
| 101 |
+
import numpy as np
|
| 102 |
+
|
| 103 |
+
B = np.asarray(B)
|
| 104 |
+
X = np.ndarray(B.shape, order="F")
|
| 105 |
+
for j in range(B.shape[1]):
|
| 106 |
+
X[:, j] = self._LU.solve(B[:, j])
|
| 107 |
+
return X
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def _preprocess_graph(G, weight):
|
| 111 |
+
"""Compute edge weights and eliminate zero-weight edges."""
|
| 112 |
+
if G.is_directed():
|
| 113 |
+
H = nx.MultiGraph()
|
| 114 |
+
H.add_nodes_from(G)
|
| 115 |
+
H.add_weighted_edges_from(
|
| 116 |
+
((u, v, e.get(weight, 1.0)) for u, v, e in G.edges(data=True) if u != v),
|
| 117 |
+
weight=weight,
|
| 118 |
+
)
|
| 119 |
+
G = H
|
| 120 |
+
if not G.is_multigraph():
|
| 121 |
+
edges = (
|
| 122 |
+
(u, v, abs(e.get(weight, 1.0))) for u, v, e in G.edges(data=True) if u != v
|
| 123 |
+
)
|
| 124 |
+
else:
|
| 125 |
+
edges = (
|
| 126 |
+
(u, v, sum(abs(e.get(weight, 1.0)) for e in G[u][v].values()))
|
| 127 |
+
for u, v in G.edges()
|
| 128 |
+
if u != v
|
| 129 |
+
)
|
| 130 |
+
H = nx.Graph()
|
| 131 |
+
H.add_nodes_from(G)
|
| 132 |
+
H.add_weighted_edges_from((u, v, e) for u, v, e in edges if e != 0)
|
| 133 |
+
return H
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def _rcm_estimate(G, nodelist):
|
| 137 |
+
"""Estimate the Fiedler vector using the reverse Cuthill-McKee ordering."""
|
| 138 |
+
import numpy as np
|
| 139 |
+
|
| 140 |
+
G = G.subgraph(nodelist)
|
| 141 |
+
order = reverse_cuthill_mckee_ordering(G)
|
| 142 |
+
n = len(nodelist)
|
| 143 |
+
index = dict(zip(nodelist, range(n)))
|
| 144 |
+
x = np.ndarray(n, dtype=float)
|
| 145 |
+
for i, u in enumerate(order):
|
| 146 |
+
x[index[u]] = i
|
| 147 |
+
x -= (n - 1) / 2.0
|
| 148 |
+
return x
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def _tracemin_fiedler(L, X, normalized, tol, method):
|
| 152 |
+
"""Compute the Fiedler vector of L using the TraceMIN-Fiedler algorithm.
|
| 153 |
+
|
| 154 |
+
The Fiedler vector of a connected undirected graph is the eigenvector
|
| 155 |
+
corresponding to the second smallest eigenvalue of the Laplacian matrix
|
| 156 |
+
of the graph. This function starts with the Laplacian L, not the Graph.
|
| 157 |
+
|
| 158 |
+
Parameters
|
| 159 |
+
----------
|
| 160 |
+
L : Laplacian of a possibly weighted or normalized, but undirected graph
|
| 161 |
+
|
| 162 |
+
X : Initial guess for a solution. Usually a matrix of random numbers.
|
| 163 |
+
This function allows more than one column in X to identify more than
|
| 164 |
+
one eigenvector if desired.
|
| 165 |
+
|
| 166 |
+
normalized : bool
|
| 167 |
+
Whether the normalized Laplacian matrix is used.
|
| 168 |
+
|
| 169 |
+
tol : float
|
| 170 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 171 |
+
Warning: There is no limit on number of iterations.
|
| 172 |
+
|
| 173 |
+
method : string
|
| 174 |
+
Should be 'tracemin_pcg' or 'tracemin_lu'.
|
| 175 |
+
Otherwise exception is raised.
|
| 176 |
+
|
| 177 |
+
Returns
|
| 178 |
+
-------
|
| 179 |
+
sigma, X : Two NumPy arrays of floats.
|
| 180 |
+
The lowest eigenvalues and corresponding eigenvectors of L.
|
| 181 |
+
The size of input X determines the size of these outputs.
|
| 182 |
+
As this is for Fiedler vectors, the zero eigenvalue (and
|
| 183 |
+
constant eigenvector) are avoided.
|
| 184 |
+
"""
|
| 185 |
+
import numpy as np
|
| 186 |
+
import scipy as sp
|
| 187 |
+
|
| 188 |
+
n = X.shape[0]
|
| 189 |
+
|
| 190 |
+
if normalized:
|
| 191 |
+
# Form the normalized Laplacian matrix and determine the eigenvector of
|
| 192 |
+
# its nullspace.
|
| 193 |
+
e = np.sqrt(L.diagonal())
|
| 194 |
+
# TODO: rm csr_array wrapper when spdiags array creation becomes available
|
| 195 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(1 / e, 0, n, n, format="csr"))
|
| 196 |
+
L = D @ L @ D
|
| 197 |
+
e *= 1.0 / np.linalg.norm(e, 2)
|
| 198 |
+
|
| 199 |
+
if normalized:
|
| 200 |
+
|
| 201 |
+
def project(X):
|
| 202 |
+
"""Make X orthogonal to the nullspace of L."""
|
| 203 |
+
X = np.asarray(X)
|
| 204 |
+
for j in range(X.shape[1]):
|
| 205 |
+
X[:, j] -= (X[:, j] @ e) * e
|
| 206 |
+
|
| 207 |
+
else:
|
| 208 |
+
|
| 209 |
+
def project(X):
|
| 210 |
+
"""Make X orthogonal to the nullspace of L."""
|
| 211 |
+
X = np.asarray(X)
|
| 212 |
+
for j in range(X.shape[1]):
|
| 213 |
+
X[:, j] -= X[:, j].sum() / n
|
| 214 |
+
|
| 215 |
+
if method == "tracemin_pcg":
|
| 216 |
+
D = L.diagonal().astype(float)
|
| 217 |
+
solver = _PCGSolver(lambda x: L @ x, lambda x: D * x)
|
| 218 |
+
elif method == "tracemin_lu":
|
| 219 |
+
# Convert A to CSC to suppress SparseEfficiencyWarning.
|
| 220 |
+
A = sp.sparse.csc_array(L, dtype=float, copy=True)
|
| 221 |
+
# Force A to be nonsingular. Since A is the Laplacian matrix of a
|
| 222 |
+
# connected graph, its rank deficiency is one, and thus one diagonal
|
| 223 |
+
# element needs to modified. Changing to infinity forces a zero in the
|
| 224 |
+
# corresponding element in the solution.
|
| 225 |
+
i = (A.indptr[1:] - A.indptr[:-1]).argmax()
|
| 226 |
+
A[i, i] = np.inf
|
| 227 |
+
solver = _LUSolver(A)
|
| 228 |
+
else:
|
| 229 |
+
raise nx.NetworkXError(f"Unknown linear system solver: {method}")
|
| 230 |
+
|
| 231 |
+
# Initialize.
|
| 232 |
+
Lnorm = abs(L).sum(axis=1).flatten().max()
|
| 233 |
+
project(X)
|
| 234 |
+
W = np.ndarray(X.shape, order="F")
|
| 235 |
+
|
| 236 |
+
while True:
|
| 237 |
+
# Orthonormalize X.
|
| 238 |
+
X = np.linalg.qr(X)[0]
|
| 239 |
+
# Compute iteration matrix H.
|
| 240 |
+
W[:, :] = L @ X
|
| 241 |
+
H = X.T @ W
|
| 242 |
+
sigma, Y = sp.linalg.eigh(H, overwrite_a=True)
|
| 243 |
+
# Compute the Ritz vectors.
|
| 244 |
+
X = X @ Y
|
| 245 |
+
# Test for convergence exploiting the fact that L * X == W * Y.
|
| 246 |
+
res = sp.linalg.blas.dasum(W @ Y[:, 0] - sigma[0] * X[:, 0]) / Lnorm
|
| 247 |
+
if res < tol:
|
| 248 |
+
break
|
| 249 |
+
# Compute X = L \ X / (X' * (L \ X)).
|
| 250 |
+
# L \ X can have an arbitrary projection on the nullspace of L,
|
| 251 |
+
# which will be eliminated.
|
| 252 |
+
W[:, :] = solver.solve(X, tol)
|
| 253 |
+
X = (sp.linalg.inv(W.T @ X) @ W.T).T # Preserves Fortran storage order.
|
| 254 |
+
project(X)
|
| 255 |
+
|
| 256 |
+
return sigma, np.asarray(X)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _get_fiedler_func(method):
|
| 260 |
+
"""Returns a function that solves the Fiedler eigenvalue problem."""
|
| 261 |
+
import numpy as np
|
| 262 |
+
|
| 263 |
+
if method == "tracemin": # old style keyword <v2.1
|
| 264 |
+
method = "tracemin_pcg"
|
| 265 |
+
if method in ("tracemin_pcg", "tracemin_lu"):
|
| 266 |
+
|
| 267 |
+
def find_fiedler(L, x, normalized, tol, seed):
|
| 268 |
+
q = 1 if method == "tracemin_pcg" else min(4, L.shape[0] - 1)
|
| 269 |
+
X = np.asarray(seed.normal(size=(q, L.shape[0]))).T
|
| 270 |
+
sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
|
| 271 |
+
return sigma[0], X[:, 0]
|
| 272 |
+
|
| 273 |
+
elif method == "lanczos" or method == "lobpcg":
|
| 274 |
+
|
| 275 |
+
def find_fiedler(L, x, normalized, tol, seed):
|
| 276 |
+
import scipy as sp
|
| 277 |
+
|
| 278 |
+
L = sp.sparse.csc_array(L, dtype=float)
|
| 279 |
+
n = L.shape[0]
|
| 280 |
+
if normalized:
|
| 281 |
+
# TODO: rm csc_array wrapping when spdiags array becomes available
|
| 282 |
+
D = sp.sparse.csc_array(
|
| 283 |
+
sp.sparse.spdiags(
|
| 284 |
+
1.0 / np.sqrt(L.diagonal()), [0], n, n, format="csc"
|
| 285 |
+
)
|
| 286 |
+
)
|
| 287 |
+
L = D @ L @ D
|
| 288 |
+
if method == "lanczos" or n < 10:
|
| 289 |
+
# Avoid LOBPCG when n < 10 due to
|
| 290 |
+
# https://github.com/scipy/scipy/issues/3592
|
| 291 |
+
# https://github.com/scipy/scipy/pull/3594
|
| 292 |
+
sigma, X = sp.sparse.linalg.eigsh(
|
| 293 |
+
L, 2, which="SM", tol=tol, return_eigenvectors=True
|
| 294 |
+
)
|
| 295 |
+
return sigma[1], X[:, 1]
|
| 296 |
+
else:
|
| 297 |
+
X = np.asarray(np.atleast_2d(x).T)
|
| 298 |
+
# TODO: rm csr_array wrapping when spdiags array becomes available
|
| 299 |
+
M = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / L.diagonal(), 0, n, n))
|
| 300 |
+
Y = np.ones(n)
|
| 301 |
+
if normalized:
|
| 302 |
+
Y /= D.diagonal()
|
| 303 |
+
sigma, X = sp.sparse.linalg.lobpcg(
|
| 304 |
+
L, X, M=M, Y=np.atleast_2d(Y).T, tol=tol, maxiter=n, largest=False
|
| 305 |
+
)
|
| 306 |
+
return sigma[0], X[:, 0]
|
| 307 |
+
|
| 308 |
+
else:
|
| 309 |
+
raise nx.NetworkXError(f"unknown method {method!r}.")
|
| 310 |
+
|
| 311 |
+
return find_fiedler
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
@not_implemented_for("directed")
|
| 315 |
+
@np_random_state(5)
|
| 316 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 317 |
+
def algebraic_connectivity(
|
| 318 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 319 |
+
):
|
| 320 |
+
r"""Returns the algebraic connectivity of an undirected graph.
|
| 321 |
+
|
| 322 |
+
The algebraic connectivity of a connected undirected graph is the second
|
| 323 |
+
smallest eigenvalue of its Laplacian matrix.
|
| 324 |
+
|
| 325 |
+
Parameters
|
| 326 |
+
----------
|
| 327 |
+
G : NetworkX graph
|
| 328 |
+
An undirected graph.
|
| 329 |
+
|
| 330 |
+
weight : object, optional (default: None)
|
| 331 |
+
The data key used to determine the weight of each edge. If None, then
|
| 332 |
+
each edge has unit weight.
|
| 333 |
+
|
| 334 |
+
normalized : bool, optional (default: False)
|
| 335 |
+
Whether the normalized Laplacian matrix is used.
|
| 336 |
+
|
| 337 |
+
tol : float, optional (default: 1e-8)
|
| 338 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 339 |
+
|
| 340 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 341 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 342 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 343 |
+
or 'lobpcg' (LOBPCG).
|
| 344 |
+
|
| 345 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 346 |
+
values allow specifying the solver to be used.
|
| 347 |
+
|
| 348 |
+
=============== ========================================
|
| 349 |
+
Value Solver
|
| 350 |
+
=============== ========================================
|
| 351 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 352 |
+
'tracemin_lu' LU factorization
|
| 353 |
+
=============== ========================================
|
| 354 |
+
|
| 355 |
+
seed : integer, random_state, or None (default)
|
| 356 |
+
Indicator of random number generation state.
|
| 357 |
+
See :ref:`Randomness<randomness>`.
|
| 358 |
+
|
| 359 |
+
Returns
|
| 360 |
+
-------
|
| 361 |
+
algebraic_connectivity : float
|
| 362 |
+
Algebraic connectivity.
|
| 363 |
+
|
| 364 |
+
Raises
|
| 365 |
+
------
|
| 366 |
+
NetworkXNotImplemented
|
| 367 |
+
If G is directed.
|
| 368 |
+
|
| 369 |
+
NetworkXError
|
| 370 |
+
If G has less than two nodes.
|
| 371 |
+
|
| 372 |
+
Notes
|
| 373 |
+
-----
|
| 374 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
| 375 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
| 376 |
+
|
| 377 |
+
See Also
|
| 378 |
+
--------
|
| 379 |
+
laplacian_matrix
|
| 380 |
+
|
| 381 |
+
Examples
|
| 382 |
+
--------
|
| 383 |
+
For undirected graphs algebraic connectivity can tell us if a graph is connected or not
|
| 384 |
+
`G` is connected iff ``algebraic_connectivity(G) > 0``:
|
| 385 |
+
|
| 386 |
+
>>> G = nx.complete_graph(5)
|
| 387 |
+
>>> nx.algebraic_connectivity(G) > 0
|
| 388 |
+
True
|
| 389 |
+
>>> G.add_node(10) # G is no longer connected
|
| 390 |
+
>>> nx.algebraic_connectivity(G) > 0
|
| 391 |
+
False
|
| 392 |
+
|
| 393 |
+
"""
|
| 394 |
+
if len(G) < 2:
|
| 395 |
+
raise nx.NetworkXError("graph has less than two nodes.")
|
| 396 |
+
G = _preprocess_graph(G, weight)
|
| 397 |
+
if not nx.is_connected(G):
|
| 398 |
+
return 0.0
|
| 399 |
+
|
| 400 |
+
L = nx.laplacian_matrix(G)
|
| 401 |
+
if L.shape[0] == 2:
|
| 402 |
+
return 2.0 * float(L[0, 0]) if not normalized else 2.0
|
| 403 |
+
|
| 404 |
+
find_fiedler = _get_fiedler_func(method)
|
| 405 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, G)
|
| 406 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
| 407 |
+
return float(sigma)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
@not_implemented_for("directed")
|
| 411 |
+
@np_random_state(5)
|
| 412 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 413 |
+
def fiedler_vector(
|
| 414 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 415 |
+
):
|
| 416 |
+
"""Returns the Fiedler vector of a connected undirected graph.
|
| 417 |
+
|
| 418 |
+
The Fiedler vector of a connected undirected graph is the eigenvector
|
| 419 |
+
corresponding to the second smallest eigenvalue of the Laplacian matrix
|
| 420 |
+
of the graph.
|
| 421 |
+
|
| 422 |
+
Parameters
|
| 423 |
+
----------
|
| 424 |
+
G : NetworkX graph
|
| 425 |
+
An undirected graph.
|
| 426 |
+
|
| 427 |
+
weight : object, optional (default: None)
|
| 428 |
+
The data key used to determine the weight of each edge. If None, then
|
| 429 |
+
each edge has unit weight.
|
| 430 |
+
|
| 431 |
+
normalized : bool, optional (default: False)
|
| 432 |
+
Whether the normalized Laplacian matrix is used.
|
| 433 |
+
|
| 434 |
+
tol : float, optional (default: 1e-8)
|
| 435 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 436 |
+
|
| 437 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 438 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 439 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 440 |
+
or 'lobpcg' (LOBPCG).
|
| 441 |
+
|
| 442 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 443 |
+
values allow specifying the solver to be used.
|
| 444 |
+
|
| 445 |
+
=============== ========================================
|
| 446 |
+
Value Solver
|
| 447 |
+
=============== ========================================
|
| 448 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 449 |
+
'tracemin_lu' LU factorization
|
| 450 |
+
=============== ========================================
|
| 451 |
+
|
| 452 |
+
seed : integer, random_state, or None (default)
|
| 453 |
+
Indicator of random number generation state.
|
| 454 |
+
See :ref:`Randomness<randomness>`.
|
| 455 |
+
|
| 456 |
+
Returns
|
| 457 |
+
-------
|
| 458 |
+
fiedler_vector : NumPy array of floats.
|
| 459 |
+
Fiedler vector.
|
| 460 |
+
|
| 461 |
+
Raises
|
| 462 |
+
------
|
| 463 |
+
NetworkXNotImplemented
|
| 464 |
+
If G is directed.
|
| 465 |
+
|
| 466 |
+
NetworkXError
|
| 467 |
+
If G has less than two nodes or is not connected.
|
| 468 |
+
|
| 469 |
+
Notes
|
| 470 |
+
-----
|
| 471 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
| 472 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
| 473 |
+
|
| 474 |
+
See Also
|
| 475 |
+
--------
|
| 476 |
+
laplacian_matrix
|
| 477 |
+
|
| 478 |
+
Examples
|
| 479 |
+
--------
|
| 480 |
+
Given a connected graph the signs of the values in the Fiedler vector can be
|
| 481 |
+
used to partition the graph into two components.
|
| 482 |
+
|
| 483 |
+
>>> G = nx.barbell_graph(5, 0)
|
| 484 |
+
>>> nx.fiedler_vector(G, normalized=True, seed=1)
|
| 485 |
+
array([-0.32864129, -0.32864129, -0.32864129, -0.32864129, -0.26072899,
|
| 486 |
+
0.26072899, 0.32864129, 0.32864129, 0.32864129, 0.32864129])
|
| 487 |
+
|
| 488 |
+
The connected components are the two 5-node cliques of the barbell graph.
|
| 489 |
+
"""
|
| 490 |
+
import numpy as np
|
| 491 |
+
|
| 492 |
+
if len(G) < 2:
|
| 493 |
+
raise nx.NetworkXError("graph has less than two nodes.")
|
| 494 |
+
G = _preprocess_graph(G, weight)
|
| 495 |
+
if not nx.is_connected(G):
|
| 496 |
+
raise nx.NetworkXError("graph is not connected.")
|
| 497 |
+
|
| 498 |
+
if len(G) == 2:
|
| 499 |
+
return np.array([1.0, -1.0])
|
| 500 |
+
|
| 501 |
+
find_fiedler = _get_fiedler_func(method)
|
| 502 |
+
L = nx.laplacian_matrix(G)
|
| 503 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, G)
|
| 504 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
| 505 |
+
return fiedler
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
@np_random_state(5)
|
| 509 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 510 |
+
def spectral_ordering(
|
| 511 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 512 |
+
):
|
| 513 |
+
"""Compute the spectral_ordering of a graph.
|
| 514 |
+
|
| 515 |
+
The spectral ordering of a graph is an ordering of its nodes where nodes
|
| 516 |
+
in the same weakly connected components appear contiguous and ordered by
|
| 517 |
+
their corresponding elements in the Fiedler vector of the component.
|
| 518 |
+
|
| 519 |
+
Parameters
|
| 520 |
+
----------
|
| 521 |
+
G : NetworkX graph
|
| 522 |
+
A graph.
|
| 523 |
+
|
| 524 |
+
weight : object, optional (default: None)
|
| 525 |
+
The data key used to determine the weight of each edge. If None, then
|
| 526 |
+
each edge has unit weight.
|
| 527 |
+
|
| 528 |
+
normalized : bool, optional (default: False)
|
| 529 |
+
Whether the normalized Laplacian matrix is used.
|
| 530 |
+
|
| 531 |
+
tol : float, optional (default: 1e-8)
|
| 532 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 533 |
+
|
| 534 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 535 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 536 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 537 |
+
or 'lobpcg' (LOBPCG).
|
| 538 |
+
|
| 539 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 540 |
+
values allow specifying the solver to be used.
|
| 541 |
+
|
| 542 |
+
=============== ========================================
|
| 543 |
+
Value Solver
|
| 544 |
+
=============== ========================================
|
| 545 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 546 |
+
'tracemin_lu' LU factorization
|
| 547 |
+
=============== ========================================
|
| 548 |
+
|
| 549 |
+
seed : integer, random_state, or None (default)
|
| 550 |
+
Indicator of random number generation state.
|
| 551 |
+
See :ref:`Randomness<randomness>`.
|
| 552 |
+
|
| 553 |
+
Returns
|
| 554 |
+
-------
|
| 555 |
+
spectral_ordering : NumPy array of floats.
|
| 556 |
+
Spectral ordering of nodes.
|
| 557 |
+
|
| 558 |
+
Raises
|
| 559 |
+
------
|
| 560 |
+
NetworkXError
|
| 561 |
+
If G is empty.
|
| 562 |
+
|
| 563 |
+
Notes
|
| 564 |
+
-----
|
| 565 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
| 566 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
| 567 |
+
|
| 568 |
+
See Also
|
| 569 |
+
--------
|
| 570 |
+
laplacian_matrix
|
| 571 |
+
"""
|
| 572 |
+
if len(G) == 0:
|
| 573 |
+
raise nx.NetworkXError("graph is empty.")
|
| 574 |
+
G = _preprocess_graph(G, weight)
|
| 575 |
+
|
| 576 |
+
find_fiedler = _get_fiedler_func(method)
|
| 577 |
+
order = []
|
| 578 |
+
for component in nx.connected_components(G):
|
| 579 |
+
size = len(component)
|
| 580 |
+
if size > 2:
|
| 581 |
+
L = nx.laplacian_matrix(G, component)
|
| 582 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, component)
|
| 583 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
| 584 |
+
sort_info = zip(fiedler, range(size), component)
|
| 585 |
+
order.extend(u for x, c, u in sorted(sort_info))
|
| 586 |
+
else:
|
| 587 |
+
order.extend(component)
|
| 588 |
+
|
| 589 |
+
return order
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 593 |
+
def spectral_bisection(
|
| 594 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 595 |
+
):
|
| 596 |
+
"""Bisect the graph using the Fiedler vector.
|
| 597 |
+
|
| 598 |
+
This method uses the Fiedler vector to bisect a graph.
|
| 599 |
+
The partition is defined by the nodes which are associated with
|
| 600 |
+
either positive or negative values in the vector.
|
| 601 |
+
|
| 602 |
+
Parameters
|
| 603 |
+
----------
|
| 604 |
+
G : NetworkX Graph
|
| 605 |
+
|
| 606 |
+
weight : str, optional (default: weight)
|
| 607 |
+
The data key used to determine the weight of each edge. If None, then
|
| 608 |
+
each edge has unit weight.
|
| 609 |
+
|
| 610 |
+
normalized : bool, optional (default: False)
|
| 611 |
+
Whether the normalized Laplacian matrix is used.
|
| 612 |
+
|
| 613 |
+
tol : float, optional (default: 1e-8)
|
| 614 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 615 |
+
|
| 616 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 617 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 618 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 619 |
+
or 'lobpcg' (LOBPCG).
|
| 620 |
+
|
| 621 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 622 |
+
values allow specifying the solver to be used.
|
| 623 |
+
|
| 624 |
+
=============== ========================================
|
| 625 |
+
Value Solver
|
| 626 |
+
=============== ========================================
|
| 627 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 628 |
+
'tracemin_lu' LU factorization
|
| 629 |
+
=============== ========================================
|
| 630 |
+
|
| 631 |
+
seed : integer, random_state, or None (default)
|
| 632 |
+
Indicator of random number generation state.
|
| 633 |
+
See :ref:`Randomness<randomness>`.
|
| 634 |
+
|
| 635 |
+
Returns
|
| 636 |
+
-------
|
| 637 |
+
bisection : tuple of sets
|
| 638 |
+
Sets with the bisection of nodes
|
| 639 |
+
|
| 640 |
+
Examples
|
| 641 |
+
--------
|
| 642 |
+
>>> G = nx.barbell_graph(3, 0)
|
| 643 |
+
>>> nx.spectral_bisection(G)
|
| 644 |
+
({0, 1, 2}, {3, 4, 5})
|
| 645 |
+
|
| 646 |
+
References
|
| 647 |
+
----------
|
| 648 |
+
.. [1] M. E. J Newman 'Networks: An Introduction', pages 364-370
|
| 649 |
+
Oxford University Press 2011.
|
| 650 |
+
"""
|
| 651 |
+
import numpy as np
|
| 652 |
+
|
| 653 |
+
v = nx.fiedler_vector(G, weight, normalized, tol, method, seed)
|
| 654 |
+
nodes = np.array(list(G))
|
| 655 |
+
pos_vals = v >= 0
|
| 656 |
+
|
| 657 |
+
return set(nodes[~pos_vals].tolist()), set(nodes[pos_vals].tolist())
|
janus/lib/python3.10/site-packages/networkx/linalg/attrmatrix.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Functions for constructing matrix-like objects from graph attributes.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = ["attr_matrix", "attr_sparse_matrix"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def _node_value(G, node_attr):
|
| 11 |
+
"""Returns a function that returns a value from G.nodes[u].
|
| 12 |
+
|
| 13 |
+
We return a function expecting a node as its sole argument. Then, in the
|
| 14 |
+
simplest scenario, the returned function will return G.nodes[u][node_attr].
|
| 15 |
+
However, we also handle the case when `node_attr` is None or when it is a
|
| 16 |
+
function itself.
|
| 17 |
+
|
| 18 |
+
Parameters
|
| 19 |
+
----------
|
| 20 |
+
G : graph
|
| 21 |
+
A NetworkX graph
|
| 22 |
+
|
| 23 |
+
node_attr : {None, str, callable}
|
| 24 |
+
Specification of how the value of the node attribute should be obtained
|
| 25 |
+
from the node attribute dictionary.
|
| 26 |
+
|
| 27 |
+
Returns
|
| 28 |
+
-------
|
| 29 |
+
value : function
|
| 30 |
+
A function expecting a node as its sole argument. The function will
|
| 31 |
+
returns a value from G.nodes[u] that depends on `edge_attr`.
|
| 32 |
+
|
| 33 |
+
"""
|
| 34 |
+
if node_attr is None:
|
| 35 |
+
|
| 36 |
+
def value(u):
|
| 37 |
+
return u
|
| 38 |
+
|
| 39 |
+
elif not callable(node_attr):
|
| 40 |
+
# assume it is a key for the node attribute dictionary
|
| 41 |
+
def value(u):
|
| 42 |
+
return G.nodes[u][node_attr]
|
| 43 |
+
|
| 44 |
+
else:
|
| 45 |
+
# Advanced: Allow users to specify something else.
|
| 46 |
+
#
|
| 47 |
+
# For example,
|
| 48 |
+
# node_attr = lambda u: G.nodes[u].get('size', .5) * 3
|
| 49 |
+
#
|
| 50 |
+
value = node_attr
|
| 51 |
+
|
| 52 |
+
return value
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def _edge_value(G, edge_attr):
|
| 56 |
+
"""Returns a function that returns a value from G[u][v].
|
| 57 |
+
|
| 58 |
+
Suppose there exists an edge between u and v. Then we return a function
|
| 59 |
+
expecting u and v as arguments. For Graph and DiGraph, G[u][v] is
|
| 60 |
+
the edge attribute dictionary, and the function (essentially) returns
|
| 61 |
+
G[u][v][edge_attr]. However, we also handle cases when `edge_attr` is None
|
| 62 |
+
and when it is a function itself. For MultiGraph and MultiDiGraph, G[u][v]
|
| 63 |
+
is a dictionary of all edges between u and v. In this case, the returned
|
| 64 |
+
function sums the value of `edge_attr` for every edge between u and v.
|
| 65 |
+
|
| 66 |
+
Parameters
|
| 67 |
+
----------
|
| 68 |
+
G : graph
|
| 69 |
+
A NetworkX graph
|
| 70 |
+
|
| 71 |
+
edge_attr : {None, str, callable}
|
| 72 |
+
Specification of how the value of the edge attribute should be obtained
|
| 73 |
+
from the edge attribute dictionary, G[u][v]. For multigraphs, G[u][v]
|
| 74 |
+
is a dictionary of all the edges between u and v. This allows for
|
| 75 |
+
special treatment of multiedges.
|
| 76 |
+
|
| 77 |
+
Returns
|
| 78 |
+
-------
|
| 79 |
+
value : function
|
| 80 |
+
A function expecting two nodes as parameters. The nodes should
|
| 81 |
+
represent the from- and to- node of an edge. The function will
|
| 82 |
+
return a value from G[u][v] that depends on `edge_attr`.
|
| 83 |
+
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
if edge_attr is None:
|
| 87 |
+
# topological count of edges
|
| 88 |
+
|
| 89 |
+
if G.is_multigraph():
|
| 90 |
+
|
| 91 |
+
def value(u, v):
|
| 92 |
+
return len(G[u][v])
|
| 93 |
+
|
| 94 |
+
else:
|
| 95 |
+
|
| 96 |
+
def value(u, v):
|
| 97 |
+
return 1
|
| 98 |
+
|
| 99 |
+
elif not callable(edge_attr):
|
| 100 |
+
# assume it is a key for the edge attribute dictionary
|
| 101 |
+
|
| 102 |
+
if edge_attr == "weight":
|
| 103 |
+
# provide a default value
|
| 104 |
+
if G.is_multigraph():
|
| 105 |
+
|
| 106 |
+
def value(u, v):
|
| 107 |
+
return sum(d.get(edge_attr, 1) for d in G[u][v].values())
|
| 108 |
+
|
| 109 |
+
else:
|
| 110 |
+
|
| 111 |
+
def value(u, v):
|
| 112 |
+
return G[u][v].get(edge_attr, 1)
|
| 113 |
+
|
| 114 |
+
else:
|
| 115 |
+
# otherwise, the edge attribute MUST exist for each edge
|
| 116 |
+
if G.is_multigraph():
|
| 117 |
+
|
| 118 |
+
def value(u, v):
|
| 119 |
+
return sum(d[edge_attr] for d in G[u][v].values())
|
| 120 |
+
|
| 121 |
+
else:
|
| 122 |
+
|
| 123 |
+
def value(u, v):
|
| 124 |
+
return G[u][v][edge_attr]
|
| 125 |
+
|
| 126 |
+
else:
|
| 127 |
+
# Advanced: Allow users to specify something else.
|
| 128 |
+
#
|
| 129 |
+
# Alternative default value:
|
| 130 |
+
# edge_attr = lambda u,v: G[u][v].get('thickness', .5)
|
| 131 |
+
#
|
| 132 |
+
# Function on an attribute:
|
| 133 |
+
# edge_attr = lambda u,v: abs(G[u][v]['weight'])
|
| 134 |
+
#
|
| 135 |
+
# Handle Multi(Di)Graphs differently:
|
| 136 |
+
# edge_attr = lambda u,v: numpy.prod([d['size'] for d in G[u][v].values()])
|
| 137 |
+
#
|
| 138 |
+
# Ignore multiple edges
|
| 139 |
+
# edge_attr = lambda u,v: 1 if len(G[u][v]) else 0
|
| 140 |
+
#
|
| 141 |
+
value = edge_attr
|
| 142 |
+
|
| 143 |
+
return value
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
|
| 147 |
+
def attr_matrix(
|
| 148 |
+
G,
|
| 149 |
+
edge_attr=None,
|
| 150 |
+
node_attr=None,
|
| 151 |
+
normalized=False,
|
| 152 |
+
rc_order=None,
|
| 153 |
+
dtype=None,
|
| 154 |
+
order=None,
|
| 155 |
+
):
|
| 156 |
+
"""Returns the attribute matrix using attributes from `G` as a numpy array.
|
| 157 |
+
|
| 158 |
+
If only `G` is passed in, then the adjacency matrix is constructed.
|
| 159 |
+
|
| 160 |
+
Let A be a discrete set of values for the node attribute `node_attr`. Then
|
| 161 |
+
the elements of A represent the rows and columns of the constructed matrix.
|
| 162 |
+
Now, iterate through every edge e=(u,v) in `G` and consider the value
|
| 163 |
+
of the edge attribute `edge_attr`. If ua and va are the values of the
|
| 164 |
+
node attribute `node_attr` for u and v, respectively, then the value of
|
| 165 |
+
the edge attribute is added to the matrix element at (ua, va).
|
| 166 |
+
|
| 167 |
+
Parameters
|
| 168 |
+
----------
|
| 169 |
+
G : graph
|
| 170 |
+
The NetworkX graph used to construct the attribute matrix.
|
| 171 |
+
|
| 172 |
+
edge_attr : str, optional
|
| 173 |
+
Each element of the matrix represents a running total of the
|
| 174 |
+
specified edge attribute for edges whose node attributes correspond
|
| 175 |
+
to the rows/cols of the matrix. The attribute must be present for
|
| 176 |
+
all edges in the graph. If no attribute is specified, then we
|
| 177 |
+
just count the number of edges whose node attributes correspond
|
| 178 |
+
to the matrix element.
|
| 179 |
+
|
| 180 |
+
node_attr : str, optional
|
| 181 |
+
Each row and column in the matrix represents a particular value
|
| 182 |
+
of the node attribute. The attribute must be present for all nodes
|
| 183 |
+
in the graph. Note, the values of this attribute should be reliably
|
| 184 |
+
hashable. So, float values are not recommended. If no attribute is
|
| 185 |
+
specified, then the rows and columns will be the nodes of the graph.
|
| 186 |
+
|
| 187 |
+
normalized : bool, optional
|
| 188 |
+
If True, then each row is normalized by the summation of its values.
|
| 189 |
+
|
| 190 |
+
rc_order : list, optional
|
| 191 |
+
A list of the node attribute values. This list specifies the ordering
|
| 192 |
+
of rows and columns of the array. If no ordering is provided, then
|
| 193 |
+
the ordering will be random (and also, a return value).
|
| 194 |
+
|
| 195 |
+
Other Parameters
|
| 196 |
+
----------------
|
| 197 |
+
dtype : NumPy data-type, optional
|
| 198 |
+
A valid NumPy dtype used to initialize the array. Keep in mind certain
|
| 199 |
+
dtypes can yield unexpected results if the array is to be normalized.
|
| 200 |
+
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
|
| 201 |
+
default is used.
|
| 202 |
+
|
| 203 |
+
order : {'C', 'F'}, optional
|
| 204 |
+
Whether to store multidimensional data in C- or Fortran-contiguous
|
| 205 |
+
(row- or column-wise) order in memory. This parameter is passed to
|
| 206 |
+
numpy.zeros(). If unspecified, the NumPy default is used.
|
| 207 |
+
|
| 208 |
+
Returns
|
| 209 |
+
-------
|
| 210 |
+
M : 2D NumPy ndarray
|
| 211 |
+
The attribute matrix.
|
| 212 |
+
|
| 213 |
+
ordering : list
|
| 214 |
+
If `rc_order` was specified, then only the attribute matrix is returned.
|
| 215 |
+
However, if `rc_order` was None, then the ordering used to construct
|
| 216 |
+
the matrix is returned as well.
|
| 217 |
+
|
| 218 |
+
Examples
|
| 219 |
+
--------
|
| 220 |
+
Construct an adjacency matrix:
|
| 221 |
+
|
| 222 |
+
>>> G = nx.Graph()
|
| 223 |
+
>>> G.add_edge(0, 1, thickness=1, weight=3)
|
| 224 |
+
>>> G.add_edge(0, 2, thickness=2)
|
| 225 |
+
>>> G.add_edge(1, 2, thickness=3)
|
| 226 |
+
>>> nx.attr_matrix(G, rc_order=[0, 1, 2])
|
| 227 |
+
array([[0., 1., 1.],
|
| 228 |
+
[1., 0., 1.],
|
| 229 |
+
[1., 1., 0.]])
|
| 230 |
+
|
| 231 |
+
Alternatively, we can obtain the matrix describing edge thickness.
|
| 232 |
+
|
| 233 |
+
>>> nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
|
| 234 |
+
array([[0., 1., 2.],
|
| 235 |
+
[1., 0., 3.],
|
| 236 |
+
[2., 3., 0.]])
|
| 237 |
+
|
| 238 |
+
We can also color the nodes and ask for the probability distribution over
|
| 239 |
+
all edges (u,v) describing:
|
| 240 |
+
|
| 241 |
+
Pr(v has color Y | u has color X)
|
| 242 |
+
|
| 243 |
+
>>> G.nodes[0]["color"] = "red"
|
| 244 |
+
>>> G.nodes[1]["color"] = "red"
|
| 245 |
+
>>> G.nodes[2]["color"] = "blue"
|
| 246 |
+
>>> rc = ["red", "blue"]
|
| 247 |
+
>>> nx.attr_matrix(G, node_attr="color", normalized=True, rc_order=rc)
|
| 248 |
+
array([[0.33333333, 0.66666667],
|
| 249 |
+
[1. , 0. ]])
|
| 250 |
+
|
| 251 |
+
For example, the above tells us that for all edges (u,v):
|
| 252 |
+
|
| 253 |
+
Pr( v is red | u is red) = 1/3
|
| 254 |
+
Pr( v is blue | u is red) = 2/3
|
| 255 |
+
|
| 256 |
+
Pr( v is red | u is blue) = 1
|
| 257 |
+
Pr( v is blue | u is blue) = 0
|
| 258 |
+
|
| 259 |
+
Finally, we can obtain the total weights listed by the node colors.
|
| 260 |
+
|
| 261 |
+
>>> nx.attr_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
|
| 262 |
+
array([[3., 2.],
|
| 263 |
+
[2., 0.]])
|
| 264 |
+
|
| 265 |
+
Thus, the total weight over all edges (u,v) with u and v having colors:
|
| 266 |
+
|
| 267 |
+
(red, red) is 3 # the sole contribution is from edge (0,1)
|
| 268 |
+
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
|
| 269 |
+
(blue, red) is 2 # same as (red, blue) since graph is undirected
|
| 270 |
+
(blue, blue) is 0 # there are no edges with blue endpoints
|
| 271 |
+
|
| 272 |
+
"""
|
| 273 |
+
import numpy as np
|
| 274 |
+
|
| 275 |
+
edge_value = _edge_value(G, edge_attr)
|
| 276 |
+
node_value = _node_value(G, node_attr)
|
| 277 |
+
|
| 278 |
+
if rc_order is None:
|
| 279 |
+
ordering = list({node_value(n) for n in G})
|
| 280 |
+
else:
|
| 281 |
+
ordering = rc_order
|
| 282 |
+
|
| 283 |
+
N = len(ordering)
|
| 284 |
+
undirected = not G.is_directed()
|
| 285 |
+
index = dict(zip(ordering, range(N)))
|
| 286 |
+
M = np.zeros((N, N), dtype=dtype, order=order)
|
| 287 |
+
|
| 288 |
+
seen = set()
|
| 289 |
+
for u, nbrdict in G.adjacency():
|
| 290 |
+
for v in nbrdict:
|
| 291 |
+
# Obtain the node attribute values.
|
| 292 |
+
i, j = index[node_value(u)], index[node_value(v)]
|
| 293 |
+
if v not in seen:
|
| 294 |
+
M[i, j] += edge_value(u, v)
|
| 295 |
+
if undirected:
|
| 296 |
+
M[j, i] = M[i, j]
|
| 297 |
+
|
| 298 |
+
if undirected:
|
| 299 |
+
seen.add(u)
|
| 300 |
+
|
| 301 |
+
if normalized:
|
| 302 |
+
M /= M.sum(axis=1).reshape((N, 1))
|
| 303 |
+
|
| 304 |
+
if rc_order is None:
|
| 305 |
+
return M, ordering
|
| 306 |
+
else:
|
| 307 |
+
return M
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
@nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
|
| 311 |
+
def attr_sparse_matrix(
|
| 312 |
+
G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None
|
| 313 |
+
):
|
| 314 |
+
"""Returns a SciPy sparse array using attributes from G.
|
| 315 |
+
|
| 316 |
+
If only `G` is passed in, then the adjacency matrix is constructed.
|
| 317 |
+
|
| 318 |
+
Let A be a discrete set of values for the node attribute `node_attr`. Then
|
| 319 |
+
the elements of A represent the rows and columns of the constructed matrix.
|
| 320 |
+
Now, iterate through every edge e=(u,v) in `G` and consider the value
|
| 321 |
+
of the edge attribute `edge_attr`. If ua and va are the values of the
|
| 322 |
+
node attribute `node_attr` for u and v, respectively, then the value of
|
| 323 |
+
the edge attribute is added to the matrix element at (ua, va).
|
| 324 |
+
|
| 325 |
+
Parameters
|
| 326 |
+
----------
|
| 327 |
+
G : graph
|
| 328 |
+
The NetworkX graph used to construct the NumPy matrix.
|
| 329 |
+
|
| 330 |
+
edge_attr : str, optional
|
| 331 |
+
Each element of the matrix represents a running total of the
|
| 332 |
+
specified edge attribute for edges whose node attributes correspond
|
| 333 |
+
to the rows/cols of the matrix. The attribute must be present for
|
| 334 |
+
all edges in the graph. If no attribute is specified, then we
|
| 335 |
+
just count the number of edges whose node attributes correspond
|
| 336 |
+
to the matrix element.
|
| 337 |
+
|
| 338 |
+
node_attr : str, optional
|
| 339 |
+
Each row and column in the matrix represents a particular value
|
| 340 |
+
of the node attribute. The attribute must be present for all nodes
|
| 341 |
+
in the graph. Note, the values of this attribute should be reliably
|
| 342 |
+
hashable. So, float values are not recommended. If no attribute is
|
| 343 |
+
specified, then the rows and columns will be the nodes of the graph.
|
| 344 |
+
|
| 345 |
+
normalized : bool, optional
|
| 346 |
+
If True, then each row is normalized by the summation of its values.
|
| 347 |
+
|
| 348 |
+
rc_order : list, optional
|
| 349 |
+
A list of the node attribute values. This list specifies the ordering
|
| 350 |
+
of rows and columns of the array. If no ordering is provided, then
|
| 351 |
+
the ordering will be random (and also, a return value).
|
| 352 |
+
|
| 353 |
+
Other Parameters
|
| 354 |
+
----------------
|
| 355 |
+
dtype : NumPy data-type, optional
|
| 356 |
+
A valid NumPy dtype used to initialize the array. Keep in mind certain
|
| 357 |
+
dtypes can yield unexpected results if the array is to be normalized.
|
| 358 |
+
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
|
| 359 |
+
default is used.
|
| 360 |
+
|
| 361 |
+
Returns
|
| 362 |
+
-------
|
| 363 |
+
M : SciPy sparse array
|
| 364 |
+
The attribute matrix.
|
| 365 |
+
|
| 366 |
+
ordering : list
|
| 367 |
+
If `rc_order` was specified, then only the matrix is returned.
|
| 368 |
+
However, if `rc_order` was None, then the ordering used to construct
|
| 369 |
+
the matrix is returned as well.
|
| 370 |
+
|
| 371 |
+
Examples
|
| 372 |
+
--------
|
| 373 |
+
Construct an adjacency matrix:
|
| 374 |
+
|
| 375 |
+
>>> G = nx.Graph()
|
| 376 |
+
>>> G.add_edge(0, 1, thickness=1, weight=3)
|
| 377 |
+
>>> G.add_edge(0, 2, thickness=2)
|
| 378 |
+
>>> G.add_edge(1, 2, thickness=3)
|
| 379 |
+
>>> M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
|
| 380 |
+
>>> M.toarray()
|
| 381 |
+
array([[0., 1., 1.],
|
| 382 |
+
[1., 0., 1.],
|
| 383 |
+
[1., 1., 0.]])
|
| 384 |
+
|
| 385 |
+
Alternatively, we can obtain the matrix describing edge thickness.
|
| 386 |
+
|
| 387 |
+
>>> M = nx.attr_sparse_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
|
| 388 |
+
>>> M.toarray()
|
| 389 |
+
array([[0., 1., 2.],
|
| 390 |
+
[1., 0., 3.],
|
| 391 |
+
[2., 3., 0.]])
|
| 392 |
+
|
| 393 |
+
We can also color the nodes and ask for the probability distribution over
|
| 394 |
+
all edges (u,v) describing:
|
| 395 |
+
|
| 396 |
+
Pr(v has color Y | u has color X)
|
| 397 |
+
|
| 398 |
+
>>> G.nodes[0]["color"] = "red"
|
| 399 |
+
>>> G.nodes[1]["color"] = "red"
|
| 400 |
+
>>> G.nodes[2]["color"] = "blue"
|
| 401 |
+
>>> rc = ["red", "blue"]
|
| 402 |
+
>>> M = nx.attr_sparse_matrix(G, node_attr="color", normalized=True, rc_order=rc)
|
| 403 |
+
>>> M.toarray()
|
| 404 |
+
array([[0.33333333, 0.66666667],
|
| 405 |
+
[1. , 0. ]])
|
| 406 |
+
|
| 407 |
+
For example, the above tells us that for all edges (u,v):
|
| 408 |
+
|
| 409 |
+
Pr( v is red | u is red) = 1/3
|
| 410 |
+
Pr( v is blue | u is red) = 2/3
|
| 411 |
+
|
| 412 |
+
Pr( v is red | u is blue) = 1
|
| 413 |
+
Pr( v is blue | u is blue) = 0
|
| 414 |
+
|
| 415 |
+
Finally, we can obtain the total weights listed by the node colors.
|
| 416 |
+
|
| 417 |
+
>>> M = nx.attr_sparse_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
|
| 418 |
+
>>> M.toarray()
|
| 419 |
+
array([[3., 2.],
|
| 420 |
+
[2., 0.]])
|
| 421 |
+
|
| 422 |
+
Thus, the total weight over all edges (u,v) with u and v having colors:
|
| 423 |
+
|
| 424 |
+
(red, red) is 3 # the sole contribution is from edge (0,1)
|
| 425 |
+
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
|
| 426 |
+
(blue, red) is 2 # same as (red, blue) since graph is undirected
|
| 427 |
+
(blue, blue) is 0 # there are no edges with blue endpoints
|
| 428 |
+
|
| 429 |
+
"""
|
| 430 |
+
import numpy as np
|
| 431 |
+
import scipy as sp
|
| 432 |
+
|
| 433 |
+
edge_value = _edge_value(G, edge_attr)
|
| 434 |
+
node_value = _node_value(G, node_attr)
|
| 435 |
+
|
| 436 |
+
if rc_order is None:
|
| 437 |
+
ordering = list({node_value(n) for n in G})
|
| 438 |
+
else:
|
| 439 |
+
ordering = rc_order
|
| 440 |
+
|
| 441 |
+
N = len(ordering)
|
| 442 |
+
undirected = not G.is_directed()
|
| 443 |
+
index = dict(zip(ordering, range(N)))
|
| 444 |
+
M = sp.sparse.lil_array((N, N), dtype=dtype)
|
| 445 |
+
|
| 446 |
+
seen = set()
|
| 447 |
+
for u, nbrdict in G.adjacency():
|
| 448 |
+
for v in nbrdict:
|
| 449 |
+
# Obtain the node attribute values.
|
| 450 |
+
i, j = index[node_value(u)], index[node_value(v)]
|
| 451 |
+
if v not in seen:
|
| 452 |
+
M[i, j] += edge_value(u, v)
|
| 453 |
+
if undirected:
|
| 454 |
+
M[j, i] = M[i, j]
|
| 455 |
+
|
| 456 |
+
if undirected:
|
| 457 |
+
seen.add(u)
|
| 458 |
+
|
| 459 |
+
if normalized:
|
| 460 |
+
M *= 1 / M.sum(axis=1)[:, np.newaxis] # in-place mult preserves sparse
|
| 461 |
+
|
| 462 |
+
if rc_order is None:
|
| 463 |
+
return M, ordering
|
| 464 |
+
else:
|
| 465 |
+
return M
|
janus/lib/python3.10/site-packages/networkx/linalg/bethehessianmatrix.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Bethe Hessian or deformed Laplacian matrix of graphs."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import not_implemented_for
|
| 5 |
+
|
| 6 |
+
__all__ = ["bethe_hessian_matrix"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@not_implemented_for("directed")
|
| 10 |
+
@not_implemented_for("multigraph")
|
| 11 |
+
@nx._dispatchable
|
| 12 |
+
def bethe_hessian_matrix(G, r=None, nodelist=None):
|
| 13 |
+
r"""Returns the Bethe Hessian matrix of G.
|
| 14 |
+
|
| 15 |
+
The Bethe Hessian is a family of matrices parametrized by r, defined as
|
| 16 |
+
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the
|
| 17 |
+
diagonal matrix of node degrees, and I is the identify matrix. It is equal
|
| 18 |
+
to the graph laplacian when the regularizer r = 1.
|
| 19 |
+
|
| 20 |
+
The default choice of regularizer should be the ratio [2]_
|
| 21 |
+
|
| 22 |
+
.. math::
|
| 23 |
+
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1
|
| 24 |
+
|
| 25 |
+
Parameters
|
| 26 |
+
----------
|
| 27 |
+
G : Graph
|
| 28 |
+
A NetworkX graph
|
| 29 |
+
r : float
|
| 30 |
+
Regularizer parameter
|
| 31 |
+
nodelist : list, optional
|
| 32 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 33 |
+
If nodelist is None, then the ordering is produced by ``G.nodes()``.
|
| 34 |
+
|
| 35 |
+
Returns
|
| 36 |
+
-------
|
| 37 |
+
H : scipy.sparse.csr_array
|
| 38 |
+
The Bethe Hessian matrix of `G`, with parameter `r`.
|
| 39 |
+
|
| 40 |
+
Examples
|
| 41 |
+
--------
|
| 42 |
+
>>> k = [3, 2, 2, 1, 0]
|
| 43 |
+
>>> G = nx.havel_hakimi_graph(k)
|
| 44 |
+
>>> H = nx.bethe_hessian_matrix(G)
|
| 45 |
+
>>> H.toarray()
|
| 46 |
+
array([[ 3.5625, -1.25 , -1.25 , -1.25 , 0. ],
|
| 47 |
+
[-1.25 , 2.5625, -1.25 , 0. , 0. ],
|
| 48 |
+
[-1.25 , -1.25 , 2.5625, 0. , 0. ],
|
| 49 |
+
[-1.25 , 0. , 0. , 1.5625, 0. ],
|
| 50 |
+
[ 0. , 0. , 0. , 0. , 0.5625]])
|
| 51 |
+
|
| 52 |
+
See Also
|
| 53 |
+
--------
|
| 54 |
+
bethe_hessian_spectrum
|
| 55 |
+
adjacency_matrix
|
| 56 |
+
laplacian_matrix
|
| 57 |
+
|
| 58 |
+
References
|
| 59 |
+
----------
|
| 60 |
+
.. [1] A. Saade, F. Krzakala and L. Zdeborová
|
| 61 |
+
"Spectral Clustering of Graphs with the Bethe Hessian",
|
| 62 |
+
Advances in Neural Information Processing Systems, 2014.
|
| 63 |
+
.. [2] C. M. Le, E. Levina
|
| 64 |
+
"Estimating the number of communities in networks by spectral methods"
|
| 65 |
+
arXiv:1507.00827, 2015.
|
| 66 |
+
"""
|
| 67 |
+
import scipy as sp
|
| 68 |
+
|
| 69 |
+
if nodelist is None:
|
| 70 |
+
nodelist = list(G)
|
| 71 |
+
if r is None:
|
| 72 |
+
r = sum(d**2 for v, d in nx.degree(G)) / sum(d for v, d in nx.degree(G)) - 1
|
| 73 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, format="csr")
|
| 74 |
+
n, m = A.shape
|
| 75 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
| 76 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
|
| 77 |
+
# TODO: Rm csr_array wrapper when eye array creation becomes available
|
| 78 |
+
I = sp.sparse.csr_array(sp.sparse.eye(m, n, format="csr"))
|
| 79 |
+
return (r**2 - 1) * I - r * A + D
|
janus/lib/python3.10/site-packages/networkx/linalg/graphmatrix.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Adjacency matrix and incidence matrix of graphs.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = ["incidence_matrix", "adjacency_matrix"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 11 |
+
def incidence_matrix(
|
| 12 |
+
G, nodelist=None, edgelist=None, oriented=False, weight=None, *, dtype=None
|
| 13 |
+
):
|
| 14 |
+
"""Returns incidence matrix of G.
|
| 15 |
+
|
| 16 |
+
The incidence matrix assigns each row to a node and each column to an edge.
|
| 17 |
+
For a standard incidence matrix a 1 appears wherever a row's node is
|
| 18 |
+
incident on the column's edge. For an oriented incidence matrix each
|
| 19 |
+
edge is assigned an orientation (arbitrarily for undirected and aligning to
|
| 20 |
+
direction for directed). A -1 appears for the source (tail) of an edge and
|
| 21 |
+
1 for the destination (head) of the edge. The elements are zero otherwise.
|
| 22 |
+
|
| 23 |
+
Parameters
|
| 24 |
+
----------
|
| 25 |
+
G : graph
|
| 26 |
+
A NetworkX graph
|
| 27 |
+
|
| 28 |
+
nodelist : list, optional (default= all nodes in G)
|
| 29 |
+
The rows are ordered according to the nodes in nodelist.
|
| 30 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 31 |
+
|
| 32 |
+
edgelist : list, optional (default= all edges in G)
|
| 33 |
+
The columns are ordered according to the edges in edgelist.
|
| 34 |
+
If edgelist is None, then the ordering is produced by G.edges().
|
| 35 |
+
|
| 36 |
+
oriented: bool, optional (default=False)
|
| 37 |
+
If True, matrix elements are +1 or -1 for the head or tail node
|
| 38 |
+
respectively of each edge. If False, +1 occurs at both nodes.
|
| 39 |
+
|
| 40 |
+
weight : string or None, optional (default=None)
|
| 41 |
+
The edge data key used to provide each value in the matrix.
|
| 42 |
+
If None, then each edge has weight 1. Edge weights, if used,
|
| 43 |
+
should be positive so that the orientation can provide the sign.
|
| 44 |
+
|
| 45 |
+
dtype : a NumPy dtype or None (default=None)
|
| 46 |
+
The dtype of the output sparse array. This type should be a compatible
|
| 47 |
+
type of the weight argument, eg. if weight would return a float this
|
| 48 |
+
argument should also be a float.
|
| 49 |
+
If None, then the default for SciPy is used.
|
| 50 |
+
|
| 51 |
+
Returns
|
| 52 |
+
-------
|
| 53 |
+
A : SciPy sparse array
|
| 54 |
+
The incidence matrix of G.
|
| 55 |
+
|
| 56 |
+
Notes
|
| 57 |
+
-----
|
| 58 |
+
For MultiGraph/MultiDiGraph, the edges in edgelist should be
|
| 59 |
+
(u,v,key) 3-tuples.
|
| 60 |
+
|
| 61 |
+
"Networks are the best discrete model for so many problems in
|
| 62 |
+
applied mathematics" [1]_.
|
| 63 |
+
|
| 64 |
+
References
|
| 65 |
+
----------
|
| 66 |
+
.. [1] Gil Strang, Network applications: A = incidence matrix,
|
| 67 |
+
http://videolectures.net/mit18085f07_strang_lec03/
|
| 68 |
+
"""
|
| 69 |
+
import scipy as sp
|
| 70 |
+
|
| 71 |
+
if nodelist is None:
|
| 72 |
+
nodelist = list(G)
|
| 73 |
+
if edgelist is None:
|
| 74 |
+
if G.is_multigraph():
|
| 75 |
+
edgelist = list(G.edges(keys=True))
|
| 76 |
+
else:
|
| 77 |
+
edgelist = list(G.edges())
|
| 78 |
+
A = sp.sparse.lil_array((len(nodelist), len(edgelist)), dtype=dtype)
|
| 79 |
+
node_index = {node: i for i, node in enumerate(nodelist)}
|
| 80 |
+
for ei, e in enumerate(edgelist):
|
| 81 |
+
(u, v) = e[:2]
|
| 82 |
+
if u == v:
|
| 83 |
+
continue # self loops give zero column
|
| 84 |
+
try:
|
| 85 |
+
ui = node_index[u]
|
| 86 |
+
vi = node_index[v]
|
| 87 |
+
except KeyError as err:
|
| 88 |
+
raise nx.NetworkXError(
|
| 89 |
+
f"node {u} or {v} in edgelist but not in nodelist"
|
| 90 |
+
) from err
|
| 91 |
+
if weight is None:
|
| 92 |
+
wt = 1
|
| 93 |
+
else:
|
| 94 |
+
if G.is_multigraph():
|
| 95 |
+
ekey = e[2]
|
| 96 |
+
wt = G[u][v][ekey].get(weight, 1)
|
| 97 |
+
else:
|
| 98 |
+
wt = G[u][v].get(weight, 1)
|
| 99 |
+
if oriented:
|
| 100 |
+
A[ui, ei] = -wt
|
| 101 |
+
A[vi, ei] = wt
|
| 102 |
+
else:
|
| 103 |
+
A[ui, ei] = wt
|
| 104 |
+
A[vi, ei] = wt
|
| 105 |
+
return A.asformat("csc")
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 109 |
+
def adjacency_matrix(G, nodelist=None, dtype=None, weight="weight"):
|
| 110 |
+
"""Returns adjacency matrix of `G`.
|
| 111 |
+
|
| 112 |
+
Parameters
|
| 113 |
+
----------
|
| 114 |
+
G : graph
|
| 115 |
+
A NetworkX graph
|
| 116 |
+
|
| 117 |
+
nodelist : list, optional
|
| 118 |
+
The rows and columns are ordered according to the nodes in `nodelist`.
|
| 119 |
+
If ``nodelist=None`` (the default), then the ordering is produced by
|
| 120 |
+
``G.nodes()``.
|
| 121 |
+
|
| 122 |
+
dtype : NumPy data-type, optional
|
| 123 |
+
The desired data-type for the array.
|
| 124 |
+
If `None`, then the NumPy default is used.
|
| 125 |
+
|
| 126 |
+
weight : string or None, optional (default='weight')
|
| 127 |
+
The edge data key used to provide each value in the matrix.
|
| 128 |
+
If None, then each edge has weight 1.
|
| 129 |
+
|
| 130 |
+
Returns
|
| 131 |
+
-------
|
| 132 |
+
A : SciPy sparse array
|
| 133 |
+
Adjacency matrix representation of G.
|
| 134 |
+
|
| 135 |
+
Notes
|
| 136 |
+
-----
|
| 137 |
+
For directed graphs, entry ``i, j`` corresponds to an edge from ``i`` to ``j``.
|
| 138 |
+
|
| 139 |
+
If you want a pure Python adjacency matrix representation try
|
| 140 |
+
:func:`~networkx.convert.to_dict_of_dicts` which will return a
|
| 141 |
+
dictionary-of-dictionaries format that can be addressed as a
|
| 142 |
+
sparse matrix.
|
| 143 |
+
|
| 144 |
+
For multigraphs with parallel edges the weights are summed.
|
| 145 |
+
See :func:`networkx.convert_matrix.to_numpy_array` for other options.
|
| 146 |
+
|
| 147 |
+
The convention used for self-loop edges in graphs is to assign the
|
| 148 |
+
diagonal matrix entry value to the edge weight attribute
|
| 149 |
+
(or the number 1 if the edge has no weight attribute). If the
|
| 150 |
+
alternate convention of doubling the edge weight is desired the
|
| 151 |
+
resulting SciPy sparse array can be modified as follows::
|
| 152 |
+
|
| 153 |
+
>>> G = nx.Graph([(1, 1)])
|
| 154 |
+
>>> A = nx.adjacency_matrix(G)
|
| 155 |
+
>>> A.toarray()
|
| 156 |
+
array([[1]])
|
| 157 |
+
>>> A.setdiag(A.diagonal() * 2)
|
| 158 |
+
>>> A.toarray()
|
| 159 |
+
array([[2]])
|
| 160 |
+
|
| 161 |
+
See Also
|
| 162 |
+
--------
|
| 163 |
+
to_numpy_array
|
| 164 |
+
to_scipy_sparse_array
|
| 165 |
+
to_dict_of_dicts
|
| 166 |
+
adjacency_spectrum
|
| 167 |
+
"""
|
| 168 |
+
return nx.to_scipy_sparse_array(G, nodelist=nodelist, dtype=dtype, weight=weight)
|
janus/lib/python3.10/site-packages/networkx/linalg/laplacianmatrix.py
ADDED
|
@@ -0,0 +1,617 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Laplacian matrix of graphs.
|
| 2 |
+
|
| 3 |
+
All calculations here are done using the out-degree. For Laplacians using
|
| 4 |
+
in-degree, use `G.reverse(copy=False)` instead of `G` and take the transpose.
|
| 5 |
+
|
| 6 |
+
The `laplacian_matrix` function provides an unnormalized matrix,
|
| 7 |
+
while `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
|
| 8 |
+
and `directed_combinatorial_laplacian_matrix` are all normalized.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import networkx as nx
|
| 12 |
+
from networkx.utils import not_implemented_for
|
| 13 |
+
|
| 14 |
+
__all__ = [
|
| 15 |
+
"laplacian_matrix",
|
| 16 |
+
"normalized_laplacian_matrix",
|
| 17 |
+
"total_spanning_tree_weight",
|
| 18 |
+
"directed_laplacian_matrix",
|
| 19 |
+
"directed_combinatorial_laplacian_matrix",
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 24 |
+
def laplacian_matrix(G, nodelist=None, weight="weight"):
|
| 25 |
+
"""Returns the Laplacian matrix of G.
|
| 26 |
+
|
| 27 |
+
The graph Laplacian is the matrix L = D - A, where
|
| 28 |
+
A is the adjacency matrix and D is the diagonal matrix of node degrees.
|
| 29 |
+
|
| 30 |
+
Parameters
|
| 31 |
+
----------
|
| 32 |
+
G : graph
|
| 33 |
+
A NetworkX graph
|
| 34 |
+
|
| 35 |
+
nodelist : list, optional
|
| 36 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 37 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 38 |
+
|
| 39 |
+
weight : string or None, optional (default='weight')
|
| 40 |
+
The edge data key used to compute each value in the matrix.
|
| 41 |
+
If None, then each edge has weight 1.
|
| 42 |
+
|
| 43 |
+
Returns
|
| 44 |
+
-------
|
| 45 |
+
L : SciPy sparse array
|
| 46 |
+
The Laplacian matrix of G.
|
| 47 |
+
|
| 48 |
+
Notes
|
| 49 |
+
-----
|
| 50 |
+
For MultiGraph, the edges weights are summed.
|
| 51 |
+
|
| 52 |
+
This returns an unnormalized matrix. For a normalized output,
|
| 53 |
+
use `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
|
| 54 |
+
or `directed_combinatorial_laplacian_matrix`.
|
| 55 |
+
|
| 56 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 57 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 58 |
+
take the transpose.
|
| 59 |
+
|
| 60 |
+
See Also
|
| 61 |
+
--------
|
| 62 |
+
:func:`~networkx.convert_matrix.to_numpy_array`
|
| 63 |
+
normalized_laplacian_matrix
|
| 64 |
+
directed_laplacian_matrix
|
| 65 |
+
directed_combinatorial_laplacian_matrix
|
| 66 |
+
:func:`~networkx.linalg.spectrum.laplacian_spectrum`
|
| 67 |
+
|
| 68 |
+
Examples
|
| 69 |
+
--------
|
| 70 |
+
For graphs with multiple connected components, L is permutation-similar
|
| 71 |
+
to a block diagonal matrix where each block is the respective Laplacian
|
| 72 |
+
matrix for each component.
|
| 73 |
+
|
| 74 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
|
| 75 |
+
>>> print(nx.laplacian_matrix(G).toarray())
|
| 76 |
+
[[ 1 -1 0 0 0]
|
| 77 |
+
[-1 2 -1 0 0]
|
| 78 |
+
[ 0 -1 1 0 0]
|
| 79 |
+
[ 0 0 0 1 -1]
|
| 80 |
+
[ 0 0 0 -1 1]]
|
| 81 |
+
|
| 82 |
+
>>> edges = [
|
| 83 |
+
... (1, 2),
|
| 84 |
+
... (2, 1),
|
| 85 |
+
... (2, 4),
|
| 86 |
+
... (4, 3),
|
| 87 |
+
... (3, 4),
|
| 88 |
+
... ]
|
| 89 |
+
>>> DiG = nx.DiGraph(edges)
|
| 90 |
+
>>> print(nx.laplacian_matrix(DiG).toarray())
|
| 91 |
+
[[ 1 -1 0 0]
|
| 92 |
+
[-1 2 -1 0]
|
| 93 |
+
[ 0 0 1 -1]
|
| 94 |
+
[ 0 0 -1 1]]
|
| 95 |
+
|
| 96 |
+
Notice that node 4 is represented by the third column and row. This is because
|
| 97 |
+
by default the row/column order is the order of `G.nodes` (i.e. the node added
|
| 98 |
+
order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
|
| 99 |
+
To control the node order of the matrix, use the `nodelist` argument.
|
| 100 |
+
|
| 101 |
+
>>> print(nx.laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
|
| 102 |
+
[[ 1 -1 0 0]
|
| 103 |
+
[-1 2 0 -1]
|
| 104 |
+
[ 0 0 1 -1]
|
| 105 |
+
[ 0 0 -1 1]]
|
| 106 |
+
|
| 107 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 108 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 109 |
+
take the transpose.
|
| 110 |
+
|
| 111 |
+
>>> print(nx.laplacian_matrix(DiG.reverse(copy=False)).toarray().T)
|
| 112 |
+
[[ 1 -1 0 0]
|
| 113 |
+
[-1 1 -1 0]
|
| 114 |
+
[ 0 0 2 -1]
|
| 115 |
+
[ 0 0 -1 1]]
|
| 116 |
+
|
| 117 |
+
References
|
| 118 |
+
----------
|
| 119 |
+
.. [1] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
|
| 120 |
+
The Science of Search Engine Rankings. Princeton University Press, 2006.
|
| 121 |
+
|
| 122 |
+
"""
|
| 123 |
+
import scipy as sp
|
| 124 |
+
|
| 125 |
+
if nodelist is None:
|
| 126 |
+
nodelist = list(G)
|
| 127 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 128 |
+
n, m = A.shape
|
| 129 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
| 130 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
|
| 131 |
+
return D - A
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 135 |
+
def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
|
| 136 |
+
r"""Returns the normalized Laplacian matrix of G.
|
| 137 |
+
|
| 138 |
+
The normalized graph Laplacian is the matrix
|
| 139 |
+
|
| 140 |
+
.. math::
|
| 141 |
+
|
| 142 |
+
N = D^{-1/2} L D^{-1/2}
|
| 143 |
+
|
| 144 |
+
where `L` is the graph Laplacian and `D` is the diagonal matrix of
|
| 145 |
+
node degrees [1]_.
|
| 146 |
+
|
| 147 |
+
Parameters
|
| 148 |
+
----------
|
| 149 |
+
G : graph
|
| 150 |
+
A NetworkX graph
|
| 151 |
+
|
| 152 |
+
nodelist : list, optional
|
| 153 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 154 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 155 |
+
|
| 156 |
+
weight : string or None, optional (default='weight')
|
| 157 |
+
The edge data key used to compute each value in the matrix.
|
| 158 |
+
If None, then each edge has weight 1.
|
| 159 |
+
|
| 160 |
+
Returns
|
| 161 |
+
-------
|
| 162 |
+
N : SciPy sparse array
|
| 163 |
+
The normalized Laplacian matrix of G.
|
| 164 |
+
|
| 165 |
+
Notes
|
| 166 |
+
-----
|
| 167 |
+
For MultiGraph, the edges weights are summed.
|
| 168 |
+
See :func:`to_numpy_array` for other options.
|
| 169 |
+
|
| 170 |
+
If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is
|
| 171 |
+
the adjacency matrix [2]_.
|
| 172 |
+
|
| 173 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 174 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 175 |
+
take the transpose.
|
| 176 |
+
|
| 177 |
+
For an unnormalized output, use `laplacian_matrix`.
|
| 178 |
+
|
| 179 |
+
Examples
|
| 180 |
+
--------
|
| 181 |
+
|
| 182 |
+
>>> import numpy as np
|
| 183 |
+
>>> edges = [
|
| 184 |
+
... (1, 2),
|
| 185 |
+
... (2, 1),
|
| 186 |
+
... (2, 4),
|
| 187 |
+
... (4, 3),
|
| 188 |
+
... (3, 4),
|
| 189 |
+
... ]
|
| 190 |
+
>>> DiG = nx.DiGraph(edges)
|
| 191 |
+
>>> print(nx.normalized_laplacian_matrix(DiG).toarray())
|
| 192 |
+
[[ 1. -0.70710678 0. 0. ]
|
| 193 |
+
[-0.70710678 1. -0.70710678 0. ]
|
| 194 |
+
[ 0. 0. 1. -1. ]
|
| 195 |
+
[ 0. 0. -1. 1. ]]
|
| 196 |
+
|
| 197 |
+
Notice that node 4 is represented by the third column and row. This is because
|
| 198 |
+
by default the row/column order is the order of `G.nodes` (i.e. the node added
|
| 199 |
+
order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
|
| 200 |
+
To control the node order of the matrix, use the `nodelist` argument.
|
| 201 |
+
|
| 202 |
+
>>> print(nx.normalized_laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
|
| 203 |
+
[[ 1. -0.70710678 0. 0. ]
|
| 204 |
+
[-0.70710678 1. 0. -0.70710678]
|
| 205 |
+
[ 0. 0. 1. -1. ]
|
| 206 |
+
[ 0. 0. -1. 1. ]]
|
| 207 |
+
>>> G = nx.Graph(edges)
|
| 208 |
+
>>> print(nx.normalized_laplacian_matrix(G).toarray())
|
| 209 |
+
[[ 1. -0.70710678 0. 0. ]
|
| 210 |
+
[-0.70710678 1. -0.5 0. ]
|
| 211 |
+
[ 0. -0.5 1. -0.70710678]
|
| 212 |
+
[ 0. 0. -0.70710678 1. ]]
|
| 213 |
+
|
| 214 |
+
See Also
|
| 215 |
+
--------
|
| 216 |
+
laplacian_matrix
|
| 217 |
+
normalized_laplacian_spectrum
|
| 218 |
+
directed_laplacian_matrix
|
| 219 |
+
directed_combinatorial_laplacian_matrix
|
| 220 |
+
|
| 221 |
+
References
|
| 222 |
+
----------
|
| 223 |
+
.. [1] Fan Chung-Graham, Spectral Graph Theory,
|
| 224 |
+
CBMS Regional Conference Series in Mathematics, Number 92, 1997.
|
| 225 |
+
.. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized
|
| 226 |
+
Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
|
| 227 |
+
March 2007.
|
| 228 |
+
.. [3] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
|
| 229 |
+
The Science of Search Engine Rankings. Princeton University Press, 2006.
|
| 230 |
+
"""
|
| 231 |
+
import numpy as np
|
| 232 |
+
import scipy as sp
|
| 233 |
+
|
| 234 |
+
if nodelist is None:
|
| 235 |
+
nodelist = list(G)
|
| 236 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 237 |
+
n, _ = A.shape
|
| 238 |
+
diags = A.sum(axis=1)
|
| 239 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
| 240 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, n, n, format="csr"))
|
| 241 |
+
L = D - A
|
| 242 |
+
with np.errstate(divide="ignore"):
|
| 243 |
+
diags_sqrt = 1.0 / np.sqrt(diags)
|
| 244 |
+
diags_sqrt[np.isinf(diags_sqrt)] = 0
|
| 245 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
| 246 |
+
DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, n, n, format="csr"))
|
| 247 |
+
return DH @ (L @ DH)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 251 |
+
def total_spanning_tree_weight(G, weight=None, root=None):
|
| 252 |
+
"""
|
| 253 |
+
Returns the total weight of all spanning trees of `G`.
|
| 254 |
+
|
| 255 |
+
Kirchoff's Tree Matrix Theorem [1]_, [2]_ states that the determinant of any
|
| 256 |
+
cofactor of the Laplacian matrix of a graph is the number of spanning trees
|
| 257 |
+
in the graph. For a weighted Laplacian matrix, it is the sum across all
|
| 258 |
+
spanning trees of the multiplicative weight of each tree. That is, the
|
| 259 |
+
weight of each tree is the product of its edge weights.
|
| 260 |
+
|
| 261 |
+
For unweighted graphs, the total weight equals the number of spanning trees in `G`.
|
| 262 |
+
|
| 263 |
+
For directed graphs, the total weight follows by summing over all directed
|
| 264 |
+
spanning trees in `G` that start in the `root` node [3]_.
|
| 265 |
+
|
| 266 |
+
.. deprecated:: 3.3
|
| 267 |
+
|
| 268 |
+
``total_spanning_tree_weight`` is deprecated and will be removed in v3.5.
|
| 269 |
+
Use ``nx.number_of_spanning_trees(G)`` instead.
|
| 270 |
+
|
| 271 |
+
Parameters
|
| 272 |
+
----------
|
| 273 |
+
G : NetworkX Graph
|
| 274 |
+
|
| 275 |
+
weight : string or None, optional (default=None)
|
| 276 |
+
The key for the edge attribute holding the edge weight.
|
| 277 |
+
If None, then each edge has weight 1.
|
| 278 |
+
|
| 279 |
+
root : node (only required for directed graphs)
|
| 280 |
+
A node in the directed graph `G`.
|
| 281 |
+
|
| 282 |
+
Returns
|
| 283 |
+
-------
|
| 284 |
+
total_weight : float
|
| 285 |
+
Undirected graphs:
|
| 286 |
+
The sum of the total multiplicative weights for all spanning trees in `G`.
|
| 287 |
+
Directed graphs:
|
| 288 |
+
The sum of the total multiplicative weights for all spanning trees of `G`,
|
| 289 |
+
rooted at node `root`.
|
| 290 |
+
|
| 291 |
+
Raises
|
| 292 |
+
------
|
| 293 |
+
NetworkXPointlessConcept
|
| 294 |
+
If `G` does not contain any nodes.
|
| 295 |
+
|
| 296 |
+
NetworkXError
|
| 297 |
+
If the graph `G` is not (weakly) connected,
|
| 298 |
+
or if `G` is directed and the root node is not specified or not in G.
|
| 299 |
+
|
| 300 |
+
Examples
|
| 301 |
+
--------
|
| 302 |
+
>>> G = nx.complete_graph(5)
|
| 303 |
+
>>> round(nx.total_spanning_tree_weight(G))
|
| 304 |
+
125
|
| 305 |
+
|
| 306 |
+
>>> G = nx.Graph()
|
| 307 |
+
>>> G.add_edge(1, 2, weight=2)
|
| 308 |
+
>>> G.add_edge(1, 3, weight=1)
|
| 309 |
+
>>> G.add_edge(2, 3, weight=1)
|
| 310 |
+
>>> round(nx.total_spanning_tree_weight(G, "weight"))
|
| 311 |
+
5
|
| 312 |
+
|
| 313 |
+
Notes
|
| 314 |
+
-----
|
| 315 |
+
Self-loops are excluded. Multi-edges are contracted in one edge
|
| 316 |
+
equal to the sum of the weights.
|
| 317 |
+
|
| 318 |
+
References
|
| 319 |
+
----------
|
| 320 |
+
.. [1] Wikipedia
|
| 321 |
+
"Kirchhoff's theorem."
|
| 322 |
+
https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
|
| 323 |
+
.. [2] Kirchhoff, G. R.
|
| 324 |
+
Über die Auflösung der Gleichungen, auf welche man
|
| 325 |
+
bei der Untersuchung der linearen Vertheilung
|
| 326 |
+
Galvanischer Ströme geführt wird
|
| 327 |
+
Annalen der Physik und Chemie, vol. 72, pp. 497-508, 1847.
|
| 328 |
+
.. [3] Margoliash, J.
|
| 329 |
+
"Matrix-Tree Theorem for Directed Graphs"
|
| 330 |
+
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Margoliash.pdf
|
| 331 |
+
"""
|
| 332 |
+
import warnings
|
| 333 |
+
|
| 334 |
+
warnings.warn(
|
| 335 |
+
(
|
| 336 |
+
"\n\ntotal_spanning_tree_weight is deprecated and will be removed in v3.5.\n"
|
| 337 |
+
"Use `nx.number_of_spanning_trees(G)` instead."
|
| 338 |
+
),
|
| 339 |
+
category=DeprecationWarning,
|
| 340 |
+
stacklevel=3,
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
return nx.number_of_spanning_trees(G, weight=weight, root=root)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
###############################################################################
|
| 347 |
+
# Code based on work from https://github.com/bjedwards
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
@not_implemented_for("undirected")
|
| 351 |
+
@not_implemented_for("multigraph")
|
| 352 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 353 |
+
def directed_laplacian_matrix(
|
| 354 |
+
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
| 355 |
+
):
|
| 356 |
+
r"""Returns the directed Laplacian matrix of G.
|
| 357 |
+
|
| 358 |
+
The graph directed Laplacian is the matrix
|
| 359 |
+
|
| 360 |
+
.. math::
|
| 361 |
+
|
| 362 |
+
L = I - \frac{1}{2} \left (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} \right )
|
| 363 |
+
|
| 364 |
+
where `I` is the identity matrix, `P` is the transition matrix of the
|
| 365 |
+
graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
|
| 366 |
+
zeros elsewhere [1]_.
|
| 367 |
+
|
| 368 |
+
Depending on the value of walk_type, `P` can be the transition matrix
|
| 369 |
+
induced by a random walk, a lazy random walk, or a random walk with
|
| 370 |
+
teleportation (PageRank).
|
| 371 |
+
|
| 372 |
+
Parameters
|
| 373 |
+
----------
|
| 374 |
+
G : DiGraph
|
| 375 |
+
A NetworkX graph
|
| 376 |
+
|
| 377 |
+
nodelist : list, optional
|
| 378 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 379 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 380 |
+
|
| 381 |
+
weight : string or None, optional (default='weight')
|
| 382 |
+
The edge data key used to compute each value in the matrix.
|
| 383 |
+
If None, then each edge has weight 1.
|
| 384 |
+
|
| 385 |
+
walk_type : string or None, optional (default=None)
|
| 386 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
| 387 |
+
(the default), then a value is selected according to the properties of `G`:
|
| 388 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
| 389 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
| 390 |
+
- ``walk_type="pagerank"`` for all other cases.
|
| 391 |
+
|
| 392 |
+
alpha : real
|
| 393 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
| 394 |
+
|
| 395 |
+
Returns
|
| 396 |
+
-------
|
| 397 |
+
L : NumPy matrix
|
| 398 |
+
Normalized Laplacian of G.
|
| 399 |
+
|
| 400 |
+
Notes
|
| 401 |
+
-----
|
| 402 |
+
Only implemented for DiGraphs
|
| 403 |
+
|
| 404 |
+
The result is always a symmetric matrix.
|
| 405 |
+
|
| 406 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 407 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 408 |
+
take the transpose.
|
| 409 |
+
|
| 410 |
+
See Also
|
| 411 |
+
--------
|
| 412 |
+
laplacian_matrix
|
| 413 |
+
normalized_laplacian_matrix
|
| 414 |
+
directed_combinatorial_laplacian_matrix
|
| 415 |
+
|
| 416 |
+
References
|
| 417 |
+
----------
|
| 418 |
+
.. [1] Fan Chung (2005).
|
| 419 |
+
Laplacians and the Cheeger inequality for directed graphs.
|
| 420 |
+
Annals of Combinatorics, 9(1), 2005
|
| 421 |
+
"""
|
| 422 |
+
import numpy as np
|
| 423 |
+
import scipy as sp
|
| 424 |
+
|
| 425 |
+
# NOTE: P has type ndarray if walk_type=="pagerank", else csr_array
|
| 426 |
+
P = _transition_matrix(
|
| 427 |
+
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
n, m = P.shape
|
| 431 |
+
|
| 432 |
+
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
| 433 |
+
v = evecs.flatten().real
|
| 434 |
+
p = v / v.sum()
|
| 435 |
+
# p>=0 by Perron-Frobenius Thm. Use abs() to fix roundoff across zero gh-6865
|
| 436 |
+
sqrtp = np.sqrt(np.abs(p))
|
| 437 |
+
Q = (
|
| 438 |
+
# TODO: rm csr_array wrapper when spdiags creates arrays
|
| 439 |
+
sp.sparse.csr_array(sp.sparse.spdiags(sqrtp, 0, n, n))
|
| 440 |
+
@ P
|
| 441 |
+
# TODO: rm csr_array wrapper when spdiags creates arrays
|
| 442 |
+
@ sp.sparse.csr_array(sp.sparse.spdiags(1.0 / sqrtp, 0, n, n))
|
| 443 |
+
)
|
| 444 |
+
# NOTE: This could be sparsified for the non-pagerank cases
|
| 445 |
+
I = np.identity(len(G))
|
| 446 |
+
|
| 447 |
+
return I - (Q + Q.T) / 2.0
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
@not_implemented_for("undirected")
|
| 451 |
+
@not_implemented_for("multigraph")
|
| 452 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 453 |
+
def directed_combinatorial_laplacian_matrix(
|
| 454 |
+
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
| 455 |
+
):
|
| 456 |
+
r"""Return the directed combinatorial Laplacian matrix of G.
|
| 457 |
+
|
| 458 |
+
The graph directed combinatorial Laplacian is the matrix
|
| 459 |
+
|
| 460 |
+
.. math::
|
| 461 |
+
|
| 462 |
+
L = \Phi - \frac{1}{2} \left (\Phi P + P^T \Phi \right)
|
| 463 |
+
|
| 464 |
+
where `P` is the transition matrix of the graph and `\Phi` a matrix
|
| 465 |
+
with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_.
|
| 466 |
+
|
| 467 |
+
Depending on the value of walk_type, `P` can be the transition matrix
|
| 468 |
+
induced by a random walk, a lazy random walk, or a random walk with
|
| 469 |
+
teleportation (PageRank).
|
| 470 |
+
|
| 471 |
+
Parameters
|
| 472 |
+
----------
|
| 473 |
+
G : DiGraph
|
| 474 |
+
A NetworkX graph
|
| 475 |
+
|
| 476 |
+
nodelist : list, optional
|
| 477 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 478 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 479 |
+
|
| 480 |
+
weight : string or None, optional (default='weight')
|
| 481 |
+
The edge data key used to compute each value in the matrix.
|
| 482 |
+
If None, then each edge has weight 1.
|
| 483 |
+
|
| 484 |
+
walk_type : string or None, optional (default=None)
|
| 485 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
| 486 |
+
(the default), then a value is selected according to the properties of `G`:
|
| 487 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
| 488 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
| 489 |
+
- ``walk_type="pagerank"`` for all other cases.
|
| 490 |
+
|
| 491 |
+
alpha : real
|
| 492 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
| 493 |
+
|
| 494 |
+
Returns
|
| 495 |
+
-------
|
| 496 |
+
L : NumPy matrix
|
| 497 |
+
Combinatorial Laplacian of G.
|
| 498 |
+
|
| 499 |
+
Notes
|
| 500 |
+
-----
|
| 501 |
+
Only implemented for DiGraphs
|
| 502 |
+
|
| 503 |
+
The result is always a symmetric matrix.
|
| 504 |
+
|
| 505 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 506 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 507 |
+
take the transpose.
|
| 508 |
+
|
| 509 |
+
See Also
|
| 510 |
+
--------
|
| 511 |
+
laplacian_matrix
|
| 512 |
+
normalized_laplacian_matrix
|
| 513 |
+
directed_laplacian_matrix
|
| 514 |
+
|
| 515 |
+
References
|
| 516 |
+
----------
|
| 517 |
+
.. [1] Fan Chung (2005).
|
| 518 |
+
Laplacians and the Cheeger inequality for directed graphs.
|
| 519 |
+
Annals of Combinatorics, 9(1), 2005
|
| 520 |
+
"""
|
| 521 |
+
import scipy as sp
|
| 522 |
+
|
| 523 |
+
P = _transition_matrix(
|
| 524 |
+
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
n, m = P.shape
|
| 528 |
+
|
| 529 |
+
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
| 530 |
+
v = evecs.flatten().real
|
| 531 |
+
p = v / v.sum()
|
| 532 |
+
# NOTE: could be improved by not densifying
|
| 533 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
| 534 |
+
Phi = sp.sparse.csr_array(sp.sparse.spdiags(p, 0, n, n)).toarray()
|
| 535 |
+
|
| 536 |
+
return Phi - (Phi @ P + P.T @ Phi) / 2.0
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def _transition_matrix(G, nodelist=None, weight="weight", walk_type=None, alpha=0.95):
|
| 540 |
+
"""Returns the transition matrix of G.
|
| 541 |
+
|
| 542 |
+
This is a row stochastic giving the transition probabilities while
|
| 543 |
+
performing a random walk on the graph. Depending on the value of walk_type,
|
| 544 |
+
P can be the transition matrix induced by a random walk, a lazy random walk,
|
| 545 |
+
or a random walk with teleportation (PageRank).
|
| 546 |
+
|
| 547 |
+
Parameters
|
| 548 |
+
----------
|
| 549 |
+
G : DiGraph
|
| 550 |
+
A NetworkX graph
|
| 551 |
+
|
| 552 |
+
nodelist : list, optional
|
| 553 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 554 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 555 |
+
|
| 556 |
+
weight : string or None, optional (default='weight')
|
| 557 |
+
The edge data key used to compute each value in the matrix.
|
| 558 |
+
If None, then each edge has weight 1.
|
| 559 |
+
|
| 560 |
+
walk_type : string or None, optional (default=None)
|
| 561 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
| 562 |
+
(the default), then a value is selected according to the properties of `G`:
|
| 563 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
| 564 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
| 565 |
+
- ``walk_type="pagerank"`` for all other cases.
|
| 566 |
+
|
| 567 |
+
alpha : real
|
| 568 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
| 569 |
+
|
| 570 |
+
Returns
|
| 571 |
+
-------
|
| 572 |
+
P : numpy.ndarray
|
| 573 |
+
transition matrix of G.
|
| 574 |
+
|
| 575 |
+
Raises
|
| 576 |
+
------
|
| 577 |
+
NetworkXError
|
| 578 |
+
If walk_type not specified or alpha not in valid range
|
| 579 |
+
"""
|
| 580 |
+
import numpy as np
|
| 581 |
+
import scipy as sp
|
| 582 |
+
|
| 583 |
+
if walk_type is None:
|
| 584 |
+
if nx.is_strongly_connected(G):
|
| 585 |
+
if nx.is_aperiodic(G):
|
| 586 |
+
walk_type = "random"
|
| 587 |
+
else:
|
| 588 |
+
walk_type = "lazy"
|
| 589 |
+
else:
|
| 590 |
+
walk_type = "pagerank"
|
| 591 |
+
|
| 592 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, dtype=float)
|
| 593 |
+
n, m = A.shape
|
| 594 |
+
if walk_type in ["random", "lazy"]:
|
| 595 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
| 596 |
+
DI = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / A.sum(axis=1), 0, n, n))
|
| 597 |
+
if walk_type == "random":
|
| 598 |
+
P = DI @ A
|
| 599 |
+
else:
|
| 600 |
+
# TODO: Rm csr_array wrapper when identity array creation becomes available
|
| 601 |
+
I = sp.sparse.csr_array(sp.sparse.identity(n))
|
| 602 |
+
P = (I + DI @ A) / 2.0
|
| 603 |
+
|
| 604 |
+
elif walk_type == "pagerank":
|
| 605 |
+
if not (0 < alpha < 1):
|
| 606 |
+
raise nx.NetworkXError("alpha must be between 0 and 1")
|
| 607 |
+
# this is using a dense representation. NOTE: This should be sparsified!
|
| 608 |
+
A = A.toarray()
|
| 609 |
+
# add constant to dangling nodes' row
|
| 610 |
+
A[A.sum(axis=1) == 0, :] = 1 / n
|
| 611 |
+
# normalize
|
| 612 |
+
A = A / A.sum(axis=1)[np.newaxis, :].T
|
| 613 |
+
P = alpha * A + (1 - alpha) / n
|
| 614 |
+
else:
|
| 615 |
+
raise nx.NetworkXError("walk_type must be random, lazy, or pagerank")
|
| 616 |
+
|
| 617 |
+
return P
|
janus/lib/python3.10/site-packages/networkx/linalg/modularitymatrix.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Modularity matrix of graphs."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import not_implemented_for
|
| 5 |
+
|
| 6 |
+
__all__ = ["modularity_matrix", "directed_modularity_matrix"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@not_implemented_for("directed")
|
| 10 |
+
@not_implemented_for("multigraph")
|
| 11 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 12 |
+
def modularity_matrix(G, nodelist=None, weight=None):
|
| 13 |
+
r"""Returns the modularity matrix of G.
|
| 14 |
+
|
| 15 |
+
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
| 16 |
+
matrix and <A> is the average adjacency matrix, assuming that the graph
|
| 17 |
+
is described by the configuration model.
|
| 18 |
+
|
| 19 |
+
More specifically, the element B_ij of B is defined as
|
| 20 |
+
|
| 21 |
+
.. math::
|
| 22 |
+
A_{ij} - {k_i k_j \over 2 m}
|
| 23 |
+
|
| 24 |
+
where k_i is the degree of node i, and where m is the number of edges
|
| 25 |
+
in the graph. When weight is set to a name of an attribute edge, Aij, k_i,
|
| 26 |
+
k_j and m are computed using its value.
|
| 27 |
+
|
| 28 |
+
Parameters
|
| 29 |
+
----------
|
| 30 |
+
G : Graph
|
| 31 |
+
A NetworkX graph
|
| 32 |
+
|
| 33 |
+
nodelist : list, optional
|
| 34 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 35 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 36 |
+
|
| 37 |
+
weight : string or None, optional (default=None)
|
| 38 |
+
The edge attribute that holds the numerical value used for
|
| 39 |
+
the edge weight. If None then all edge weights are 1.
|
| 40 |
+
|
| 41 |
+
Returns
|
| 42 |
+
-------
|
| 43 |
+
B : Numpy array
|
| 44 |
+
The modularity matrix of G.
|
| 45 |
+
|
| 46 |
+
Examples
|
| 47 |
+
--------
|
| 48 |
+
>>> k = [3, 2, 2, 1, 0]
|
| 49 |
+
>>> G = nx.havel_hakimi_graph(k)
|
| 50 |
+
>>> B = nx.modularity_matrix(G)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
See Also
|
| 54 |
+
--------
|
| 55 |
+
to_numpy_array
|
| 56 |
+
modularity_spectrum
|
| 57 |
+
adjacency_matrix
|
| 58 |
+
directed_modularity_matrix
|
| 59 |
+
|
| 60 |
+
References
|
| 61 |
+
----------
|
| 62 |
+
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
|
| 63 |
+
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
|
| 64 |
+
"""
|
| 65 |
+
import numpy as np
|
| 66 |
+
|
| 67 |
+
if nodelist is None:
|
| 68 |
+
nodelist = list(G)
|
| 69 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 70 |
+
k = A.sum(axis=1)
|
| 71 |
+
m = k.sum() * 0.5
|
| 72 |
+
# Expected adjacency matrix
|
| 73 |
+
X = np.outer(k, k) / (2 * m)
|
| 74 |
+
|
| 75 |
+
return A - X
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@not_implemented_for("undirected")
|
| 79 |
+
@not_implemented_for("multigraph")
|
| 80 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 81 |
+
def directed_modularity_matrix(G, nodelist=None, weight=None):
|
| 82 |
+
"""Returns the directed modularity matrix of G.
|
| 83 |
+
|
| 84 |
+
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
| 85 |
+
matrix and <A> is the expected adjacency matrix, assuming that the graph
|
| 86 |
+
is described by the configuration model.
|
| 87 |
+
|
| 88 |
+
More specifically, the element B_ij of B is defined as
|
| 89 |
+
|
| 90 |
+
.. math::
|
| 91 |
+
B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m
|
| 92 |
+
|
| 93 |
+
where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree
|
| 94 |
+
of node j, with m the number of edges in the graph. When weight is set
|
| 95 |
+
to a name of an attribute edge, Aij, k_i, k_j and m are computed using
|
| 96 |
+
its value.
|
| 97 |
+
|
| 98 |
+
Parameters
|
| 99 |
+
----------
|
| 100 |
+
G : DiGraph
|
| 101 |
+
A NetworkX DiGraph
|
| 102 |
+
|
| 103 |
+
nodelist : list, optional
|
| 104 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 105 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 106 |
+
|
| 107 |
+
weight : string or None, optional (default=None)
|
| 108 |
+
The edge attribute that holds the numerical value used for
|
| 109 |
+
the edge weight. If None then all edge weights are 1.
|
| 110 |
+
|
| 111 |
+
Returns
|
| 112 |
+
-------
|
| 113 |
+
B : Numpy array
|
| 114 |
+
The modularity matrix of G.
|
| 115 |
+
|
| 116 |
+
Examples
|
| 117 |
+
--------
|
| 118 |
+
>>> G = nx.DiGraph()
|
| 119 |
+
>>> G.add_edges_from(
|
| 120 |
+
... (
|
| 121 |
+
... (1, 2),
|
| 122 |
+
... (1, 3),
|
| 123 |
+
... (3, 1),
|
| 124 |
+
... (3, 2),
|
| 125 |
+
... (3, 5),
|
| 126 |
+
... (4, 5),
|
| 127 |
+
... (4, 6),
|
| 128 |
+
... (5, 4),
|
| 129 |
+
... (5, 6),
|
| 130 |
+
... (6, 4),
|
| 131 |
+
... )
|
| 132 |
+
... )
|
| 133 |
+
>>> B = nx.directed_modularity_matrix(G)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
Notes
|
| 137 |
+
-----
|
| 138 |
+
NetworkX defines the element A_ij of the adjacency matrix as 1 if there
|
| 139 |
+
is a link going from node i to node j. Leicht and Newman use the opposite
|
| 140 |
+
definition. This explains the different expression for B_ij.
|
| 141 |
+
|
| 142 |
+
See Also
|
| 143 |
+
--------
|
| 144 |
+
to_numpy_array
|
| 145 |
+
modularity_spectrum
|
| 146 |
+
adjacency_matrix
|
| 147 |
+
modularity_matrix
|
| 148 |
+
|
| 149 |
+
References
|
| 150 |
+
----------
|
| 151 |
+
.. [1] E. A. Leicht, M. E. J. Newman,
|
| 152 |
+
"Community structure in directed networks",
|
| 153 |
+
Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
|
| 154 |
+
"""
|
| 155 |
+
import numpy as np
|
| 156 |
+
|
| 157 |
+
if nodelist is None:
|
| 158 |
+
nodelist = list(G)
|
| 159 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 160 |
+
k_in = A.sum(axis=0)
|
| 161 |
+
k_out = A.sum(axis=1)
|
| 162 |
+
m = k_in.sum()
|
| 163 |
+
# Expected adjacency matrix
|
| 164 |
+
X = np.outer(k_out, k_in) / m
|
| 165 |
+
|
| 166 |
+
return A - X
|