ZTWHHH commited on
Commit
03e6354
·
verified ·
1 Parent(s): 8da0a29

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. infer_4_47_1/lib/python3.10/site-packages/sympy/calculus/__init__.py +25 -0
  3. infer_4_47_1/lib/python3.10/site-packages/sympy/calculus/euler.py +108 -0
  4. infer_4_47_1/lib/python3.10/site-packages/sympy/calculus/singularities.py +406 -0
  5. infer_4_47_1/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc +3 -0
  6. infer_4_47_1/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args.cpython-310.pyc +3 -0
  7. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/__pycache__/residue_ntheory.cpython-310.pyc +0 -0
  8. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/digits.py +150 -0
  9. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/ecm.py +345 -0
  10. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/generate.py +1147 -0
  11. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/primetest.py +793 -0
  12. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/qs.py +511 -0
  13. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/residue_ntheory.py +1954 -0
  14. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__init__.py +0 -0
  15. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_digits.cpython-310.pyc +0 -0
  16. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_factor_.cpython-310.pyc +0 -0
  17. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_residue.cpython-310.pyc +0 -0
  18. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/test_bbp_pi.py +134 -0
  19. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/test_digits.py +55 -0
  20. infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/test_hypothesis.py +24 -0
  21. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/__init__.cpython-310.pyc +0 -0
  22. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/aesaracode.cpython-310.pyc +0 -0
  23. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/c.cpython-310.pyc +0 -0
  24. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/codeprinter.cpython-310.pyc +0 -0
  25. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/conventions.cpython-310.pyc +0 -0
  26. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/cxx.cpython-310.pyc +0 -0
  27. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/defaults.cpython-310.pyc +0 -0
  28. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/dot.cpython-310.pyc +0 -0
  29. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/fortran.cpython-310.pyc +0 -0
  30. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/glsl.cpython-310.pyc +0 -0
  31. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/gtk.cpython-310.pyc +0 -0
  32. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/jscode.cpython-310.pyc +0 -0
  33. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/julia.cpython-310.pyc +0 -0
  34. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/lambdarepr.cpython-310.pyc +0 -0
  35. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/llvmjitcode.cpython-310.pyc +0 -0
  36. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/maple.cpython-310.pyc +0 -0
  37. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/mathematica.cpython-310.pyc +0 -0
  38. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/mathml.cpython-310.pyc +0 -0
  39. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/numpy.cpython-310.pyc +0 -0
  40. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/octave.cpython-310.pyc +0 -0
  41. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/precedence.cpython-310.pyc +0 -0
  42. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/preview.cpython-310.pyc +0 -0
  43. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/printer.cpython-310.pyc +0 -0
  44. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/pycode.cpython-310.pyc +0 -0
  45. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/python.cpython-310.pyc +0 -0
  46. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/rcode.cpython-310.pyc +0 -0
  47. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/repr.cpython-310.pyc +0 -0
  48. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/rust.cpython-310.pyc +0 -0
  49. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/smtlib.cpython-310.pyc +0 -0
  50. infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/str.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -870,3 +870,5 @@ evalkit_tf437/lib/python3.10/site-packages/triton/_C/libtriton.so filter=lfs dif
870
  infer_4_47_1/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
871
  infer_4_47_1/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrixbase.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
872
  infer_4_47_1/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_matrixbase.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
 
 
 
870
  infer_4_47_1/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
871
  infer_4_47_1/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrixbase.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
872
  infer_4_47_1/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_matrixbase.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
873
+ infer_4_47_1/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
874
+ infer_4_47_1/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
infer_4_47_1/lib/python3.10/site-packages/sympy/calculus/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Calculus-related methods."""
2
+
3
+ from .euler import euler_equations
4
+ from .singularities import (singularities, is_increasing,
5
+ is_strictly_increasing, is_decreasing,
6
+ is_strictly_decreasing, is_monotonic)
7
+ from .finite_diff import finite_diff_weights, apply_finite_diff, differentiate_finite
8
+ from .util import (periodicity, not_empty_in, is_convex,
9
+ stationary_points, minimum, maximum)
10
+ from .accumulationbounds import AccumBounds
11
+
12
+ __all__ = [
13
+ 'euler_equations',
14
+
15
+ 'singularities', 'is_increasing',
16
+ 'is_strictly_increasing', 'is_decreasing',
17
+ 'is_strictly_decreasing', 'is_monotonic',
18
+
19
+ 'finite_diff_weights', 'apply_finite_diff', 'differentiate_finite',
20
+
21
+ 'periodicity', 'not_empty_in', 'is_convex', 'stationary_points',
22
+ 'minimum', 'maximum',
23
+
24
+ 'AccumBounds'
25
+ ]
infer_4_47_1/lib/python3.10/site-packages/sympy/calculus/euler.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module implements a method to find
3
+ Euler-Lagrange Equations for given Lagrangian.
4
+ """
5
+ from itertools import combinations_with_replacement
6
+ from sympy.core.function import (Derivative, Function, diff)
7
+ from sympy.core.relational import Eq
8
+ from sympy.core.singleton import S
9
+ from sympy.core.symbol import Symbol
10
+ from sympy.core.sympify import sympify
11
+ from sympy.utilities.iterables import iterable
12
+
13
+
14
+ def euler_equations(L, funcs=(), vars=()):
15
+ r"""
16
+ Find the Euler-Lagrange equations [1]_ for a given Lagrangian.
17
+
18
+ Parameters
19
+ ==========
20
+
21
+ L : Expr
22
+ The Lagrangian that should be a function of the functions listed
23
+ in the second argument and their derivatives.
24
+
25
+ For example, in the case of two functions $f(x,y)$, $g(x,y)$ and
26
+ two independent variables $x$, $y$ the Lagrangian has the form:
27
+
28
+ .. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x},
29
+ \frac{\partial f(x,y)}{\partial y},
30
+ \frac{\partial g(x,y)}{\partial x},
31
+ \frac{\partial g(x,y)}{\partial y},x,y\right)
32
+
33
+ In many cases it is not necessary to provide anything, except the
34
+ Lagrangian, it will be auto-detected (and an error raised if this
35
+ cannot be done).
36
+
37
+ funcs : Function or an iterable of Functions
38
+ The functions that the Lagrangian depends on. The Euler equations
39
+ are differential equations for each of these functions.
40
+
41
+ vars : Symbol or an iterable of Symbols
42
+ The Symbols that are the independent variables of the functions.
43
+
44
+ Returns
45
+ =======
46
+
47
+ eqns : list of Eq
48
+ The list of differential equations, one for each function.
49
+
50
+ Examples
51
+ ========
52
+
53
+ >>> from sympy import euler_equations, Symbol, Function
54
+ >>> x = Function('x')
55
+ >>> t = Symbol('t')
56
+ >>> L = (x(t).diff(t))**2/2 - x(t)**2/2
57
+ >>> euler_equations(L, x(t), t)
58
+ [Eq(-x(t) - Derivative(x(t), (t, 2)), 0)]
59
+ >>> u = Function('u')
60
+ >>> x = Symbol('x')
61
+ >>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2
62
+ >>> euler_equations(L, u(t, x), [t, x])
63
+ [Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)]
64
+
65
+ References
66
+ ==========
67
+
68
+ .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
69
+
70
+ """
71
+
72
+ funcs = tuple(funcs) if iterable(funcs) else (funcs,)
73
+
74
+ if not funcs:
75
+ funcs = tuple(L.atoms(Function))
76
+ else:
77
+ for f in funcs:
78
+ if not isinstance(f, Function):
79
+ raise TypeError('Function expected, got: %s' % f)
80
+
81
+ vars = tuple(vars) if iterable(vars) else (vars,)
82
+
83
+ if not vars:
84
+ vars = funcs[0].args
85
+ else:
86
+ vars = tuple(sympify(var) for var in vars)
87
+
88
+ if not all(isinstance(v, Symbol) for v in vars):
89
+ raise TypeError('Variables are not symbols, got %s' % vars)
90
+
91
+ for f in funcs:
92
+ if not vars == f.args:
93
+ raise ValueError("Variables %s do not match args: %s" % (vars, f))
94
+
95
+ order = max([len(d.variables) for d in L.atoms(Derivative)
96
+ if d.expr in funcs] + [0])
97
+
98
+ eqns = []
99
+ for f in funcs:
100
+ eq = diff(L, f)
101
+ for i in range(1, order + 1):
102
+ for p in combinations_with_replacement(vars, i):
103
+ eq = eq + S.NegativeOne**i*diff(L, diff(f, *p), *p)
104
+ new_eq = Eq(eq, 0)
105
+ if isinstance(new_eq, Eq):
106
+ eqns.append(new_eq)
107
+
108
+ return eqns
infer_4_47_1/lib/python3.10/site-packages/sympy/calculus/singularities.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Singularities
3
+ =============
4
+
5
+ This module implements algorithms for finding singularities for a function
6
+ and identifying types of functions.
7
+
8
+ The differential calculus methods in this module include methods to identify
9
+ the following function types in the given ``Interval``:
10
+ - Increasing
11
+ - Strictly Increasing
12
+ - Decreasing
13
+ - Strictly Decreasing
14
+ - Monotonic
15
+
16
+ """
17
+
18
+ from sympy.core.power import Pow
19
+ from sympy.core.singleton import S
20
+ from sympy.core.symbol import Symbol
21
+ from sympy.core.sympify import sympify
22
+ from sympy.functions.elementary.exponential import log
23
+ from sympy.functions.elementary.trigonometric import sec, csc, cot, tan, cos
24
+ from sympy.functions.elementary.hyperbolic import (
25
+ sech, csch, coth, tanh, cosh, asech, acsch, atanh, acoth)
26
+ from sympy.utilities.misc import filldedent
27
+
28
+
29
+ def singularities(expression, symbol, domain=None):
30
+ """
31
+ Find singularities of a given function.
32
+
33
+ Parameters
34
+ ==========
35
+
36
+ expression : Expr
37
+ The target function in which singularities need to be found.
38
+ symbol : Symbol
39
+ The symbol over the values of which the singularity in
40
+ expression in being searched for.
41
+
42
+ Returns
43
+ =======
44
+
45
+ Set
46
+ A set of values for ``symbol`` for which ``expression`` has a
47
+ singularity. An ``EmptySet`` is returned if ``expression`` has no
48
+ singularities for any given value of ``Symbol``.
49
+
50
+ Raises
51
+ ======
52
+
53
+ NotImplementedError
54
+ Methods for determining the singularities of this function have
55
+ not been developed.
56
+
57
+ Notes
58
+ =====
59
+
60
+ This function does not find non-isolated singularities
61
+ nor does it find branch points of the expression.
62
+
63
+ Currently supported functions are:
64
+ - univariate continuous (real or complex) functions
65
+
66
+ References
67
+ ==========
68
+
69
+ .. [1] https://en.wikipedia.org/wiki/Mathematical_singularity
70
+
71
+ Examples
72
+ ========
73
+
74
+ >>> from sympy import singularities, Symbol, log
75
+ >>> x = Symbol('x', real=True)
76
+ >>> y = Symbol('y', real=False)
77
+ >>> singularities(x**2 + x + 1, x)
78
+ EmptySet
79
+ >>> singularities(1/(x + 1), x)
80
+ {-1}
81
+ >>> singularities(1/(y**2 + 1), y)
82
+ {-I, I}
83
+ >>> singularities(1/(y**3 + 1), y)
84
+ {-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}
85
+ >>> singularities(log(x), x)
86
+ {0}
87
+
88
+ """
89
+ from sympy.solvers.solveset import solveset
90
+
91
+ if domain is None:
92
+ domain = S.Reals if symbol.is_real else S.Complexes
93
+ try:
94
+ sings = S.EmptySet
95
+ e = expression.rewrite([sec, csc, cot, tan], cos)
96
+ e = e.rewrite([sech, csch, coth, tanh], cosh)
97
+ for i in e.atoms(Pow):
98
+ if i.exp.is_infinite:
99
+ raise NotImplementedError
100
+ if i.exp.is_negative:
101
+ # XXX: exponent of varying sign not handled
102
+ sings += solveset(i.base, symbol, domain)
103
+ for i in expression.atoms(log, asech, acsch):
104
+ sings += solveset(i.args[0], symbol, domain)
105
+ for i in expression.atoms(atanh, acoth):
106
+ sings += solveset(i.args[0] - 1, symbol, domain)
107
+ sings += solveset(i.args[0] + 1, symbol, domain)
108
+ return sings
109
+ except NotImplementedError:
110
+ raise NotImplementedError(filldedent('''
111
+ Methods for determining the singularities
112
+ of this function have not been developed.'''))
113
+
114
+
115
+ ###########################################################################
116
+ # DIFFERENTIAL CALCULUS METHODS #
117
+ ###########################################################################
118
+
119
+
120
+ def monotonicity_helper(expression, predicate, interval=S.Reals, symbol=None):
121
+ """
122
+ Helper function for functions checking function monotonicity.
123
+
124
+ Parameters
125
+ ==========
126
+
127
+ expression : Expr
128
+ The target function which is being checked
129
+ predicate : function
130
+ The property being tested for. The function takes in an integer
131
+ and returns a boolean. The integer input is the derivative and
132
+ the boolean result should be true if the property is being held,
133
+ and false otherwise.
134
+ interval : Set, optional
135
+ The range of values in which we are testing, defaults to all reals.
136
+ symbol : Symbol, optional
137
+ The symbol present in expression which gets varied over the given range.
138
+
139
+ It returns a boolean indicating whether the interval in which
140
+ the function's derivative satisfies given predicate is a superset
141
+ of the given interval.
142
+
143
+ Returns
144
+ =======
145
+
146
+ Boolean
147
+ True if ``predicate`` is true for all the derivatives when ``symbol``
148
+ is varied in ``range``, False otherwise.
149
+
150
+ """
151
+ from sympy.solvers.solveset import solveset
152
+
153
+ expression = sympify(expression)
154
+ free = expression.free_symbols
155
+
156
+ if symbol is None:
157
+ if len(free) > 1:
158
+ raise NotImplementedError(
159
+ 'The function has not yet been implemented'
160
+ ' for all multivariate expressions.'
161
+ )
162
+
163
+ variable = symbol or (free.pop() if free else Symbol('x'))
164
+ derivative = expression.diff(variable)
165
+ predicate_interval = solveset(predicate(derivative), variable, S.Reals)
166
+ return interval.is_subset(predicate_interval)
167
+
168
+
169
+ def is_increasing(expression, interval=S.Reals, symbol=None):
170
+ """
171
+ Return whether the function is increasing in the given interval.
172
+
173
+ Parameters
174
+ ==========
175
+
176
+ expression : Expr
177
+ The target function which is being checked.
178
+ interval : Set, optional
179
+ The range of values in which we are testing (defaults to set of
180
+ all real numbers).
181
+ symbol : Symbol, optional
182
+ The symbol present in expression which gets varied over the given range.
183
+
184
+ Returns
185
+ =======
186
+
187
+ Boolean
188
+ True if ``expression`` is increasing (either strictly increasing or
189
+ constant) in the given ``interval``, False otherwise.
190
+
191
+ Examples
192
+ ========
193
+
194
+ >>> from sympy import is_increasing
195
+ >>> from sympy.abc import x, y
196
+ >>> from sympy import S, Interval, oo
197
+ >>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
198
+ True
199
+ >>> is_increasing(-x**2, Interval(-oo, 0))
200
+ True
201
+ >>> is_increasing(-x**2, Interval(0, oo))
202
+ False
203
+ >>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
204
+ False
205
+ >>> is_increasing(x**2 + y, Interval(1, 2), x)
206
+ True
207
+
208
+ """
209
+ return monotonicity_helper(expression, lambda x: x >= 0, interval, symbol)
210
+
211
+
212
+ def is_strictly_increasing(expression, interval=S.Reals, symbol=None):
213
+ """
214
+ Return whether the function is strictly increasing in the given interval.
215
+
216
+ Parameters
217
+ ==========
218
+
219
+ expression : Expr
220
+ The target function which is being checked.
221
+ interval : Set, optional
222
+ The range of values in which we are testing (defaults to set of
223
+ all real numbers).
224
+ symbol : Symbol, optional
225
+ The symbol present in expression which gets varied over the given range.
226
+
227
+ Returns
228
+ =======
229
+
230
+ Boolean
231
+ True if ``expression`` is strictly increasing in the given ``interval``,
232
+ False otherwise.
233
+
234
+ Examples
235
+ ========
236
+
237
+ >>> from sympy import is_strictly_increasing
238
+ >>> from sympy.abc import x, y
239
+ >>> from sympy import Interval, oo
240
+ >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
241
+ True
242
+ >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
243
+ True
244
+ >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
245
+ False
246
+ >>> is_strictly_increasing(-x**2, Interval(0, oo))
247
+ False
248
+ >>> is_strictly_increasing(-x**2 + y, Interval(-oo, 0), x)
249
+ False
250
+
251
+ """
252
+ return monotonicity_helper(expression, lambda x: x > 0, interval, symbol)
253
+
254
+
255
+ def is_decreasing(expression, interval=S.Reals, symbol=None):
256
+ """
257
+ Return whether the function is decreasing in the given interval.
258
+
259
+ Parameters
260
+ ==========
261
+
262
+ expression : Expr
263
+ The target function which is being checked.
264
+ interval : Set, optional
265
+ The range of values in which we are testing (defaults to set of
266
+ all real numbers).
267
+ symbol : Symbol, optional
268
+ The symbol present in expression which gets varied over the given range.
269
+
270
+ Returns
271
+ =======
272
+
273
+ Boolean
274
+ True if ``expression`` is decreasing (either strictly decreasing or
275
+ constant) in the given ``interval``, False otherwise.
276
+
277
+ Examples
278
+ ========
279
+
280
+ >>> from sympy import is_decreasing
281
+ >>> from sympy.abc import x, y
282
+ >>> from sympy import S, Interval, oo
283
+ >>> is_decreasing(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
284
+ True
285
+ >>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
286
+ True
287
+ >>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
288
+ True
289
+ >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
290
+ False
291
+ >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
292
+ False
293
+ >>> is_decreasing(-x**2, Interval(-oo, 0))
294
+ False
295
+ >>> is_decreasing(-x**2 + y, Interval(-oo, 0), x)
296
+ False
297
+
298
+ """
299
+ return monotonicity_helper(expression, lambda x: x <= 0, interval, symbol)
300
+
301
+
302
+ def is_strictly_decreasing(expression, interval=S.Reals, symbol=None):
303
+ """
304
+ Return whether the function is strictly decreasing in the given interval.
305
+
306
+ Parameters
307
+ ==========
308
+
309
+ expression : Expr
310
+ The target function which is being checked.
311
+ interval : Set, optional
312
+ The range of values in which we are testing (defaults to set of
313
+ all real numbers).
314
+ symbol : Symbol, optional
315
+ The symbol present in expression which gets varied over the given range.
316
+
317
+ Returns
318
+ =======
319
+
320
+ Boolean
321
+ True if ``expression`` is strictly decreasing in the given ``interval``,
322
+ False otherwise.
323
+
324
+ Examples
325
+ ========
326
+
327
+ >>> from sympy import is_strictly_decreasing
328
+ >>> from sympy.abc import x, y
329
+ >>> from sympy import S, Interval, oo
330
+ >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
331
+ True
332
+ >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
333
+ False
334
+ >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
335
+ False
336
+ >>> is_strictly_decreasing(-x**2, Interval(-oo, 0))
337
+ False
338
+ >>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
339
+ False
340
+
341
+ """
342
+ return monotonicity_helper(expression, lambda x: x < 0, interval, symbol)
343
+
344
+
345
+ def is_monotonic(expression, interval=S.Reals, symbol=None):
346
+ """
347
+ Return whether the function is monotonic in the given interval.
348
+
349
+ Parameters
350
+ ==========
351
+
352
+ expression : Expr
353
+ The target function which is being checked.
354
+ interval : Set, optional
355
+ The range of values in which we are testing (defaults to set of
356
+ all real numbers).
357
+ symbol : Symbol, optional
358
+ The symbol present in expression which gets varied over the given range.
359
+
360
+ Returns
361
+ =======
362
+
363
+ Boolean
364
+ True if ``expression`` is monotonic in the given ``interval``,
365
+ False otherwise.
366
+
367
+ Raises
368
+ ======
369
+
370
+ NotImplementedError
371
+ Monotonicity check has not been implemented for the queried function.
372
+
373
+ Examples
374
+ ========
375
+
376
+ >>> from sympy import is_monotonic
377
+ >>> from sympy.abc import x, y
378
+ >>> from sympy import S, Interval, oo
379
+ >>> is_monotonic(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
380
+ True
381
+ >>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
382
+ True
383
+ >>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
384
+ True
385
+ >>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
386
+ True
387
+ >>> is_monotonic(-x**2, S.Reals)
388
+ False
389
+ >>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
390
+ True
391
+
392
+ """
393
+ from sympy.solvers.solveset import solveset
394
+
395
+ expression = sympify(expression)
396
+
397
+ free = expression.free_symbols
398
+ if symbol is None and len(free) > 1:
399
+ raise NotImplementedError(
400
+ 'is_monotonic has not yet been implemented'
401
+ ' for all multivariate expressions.'
402
+ )
403
+
404
+ variable = symbol or (free.pop() if free else Symbol('x'))
405
+ turning_points = solveset(expression.diff(variable), variable, interval)
406
+ return interval.intersection(turning_points) is S.EmptySet
infer_4_47_1/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d0c6b62b8a2eb4e4f9a149dc8a11cdec992f999a9dfed64ae1396f45fa3635f
3
+ size 152911
infer_4_47_1/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2da74a66b5c7d641937b412b1ebd45cda788c95985bca103f6fe094093123a5f
3
+ size 220806
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/__pycache__/residue_ntheory.cpython-310.pyc ADDED
Binary file (46.5 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/digits.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ from sympy.utilities.iterables import multiset, is_palindromic as _palindromic
4
+ from sympy.utilities.misc import as_int
5
+
6
+
7
+ def digits(n, b=10, digits=None):
8
+ """
9
+ Return a list of the digits of ``n`` in base ``b``. The first
10
+ element in the list is ``b`` (or ``-b`` if ``n`` is negative).
11
+
12
+ Examples
13
+ ========
14
+
15
+ >>> from sympy.ntheory.digits import digits
16
+ >>> digits(35)
17
+ [10, 3, 5]
18
+
19
+ If the number is negative, the negative sign will be placed on the
20
+ base (which is the first element in the returned list):
21
+
22
+ >>> digits(-35)
23
+ [-10, 3, 5]
24
+
25
+ Bases other than 10 (and greater than 1) can be selected with ``b``:
26
+
27
+ >>> digits(27, b=2)
28
+ [2, 1, 1, 0, 1, 1]
29
+
30
+ Use the ``digits`` keyword if a certain number of digits is desired:
31
+
32
+ >>> digits(35, digits=4)
33
+ [10, 0, 0, 3, 5]
34
+
35
+ Parameters
36
+ ==========
37
+
38
+ n: integer
39
+ The number whose digits are returned.
40
+
41
+ b: integer
42
+ The base in which digits are computed.
43
+
44
+ digits: integer (or None for all digits)
45
+ The number of digits to be returned (padded with zeros, if
46
+ necessary).
47
+
48
+ See Also
49
+ ========
50
+ sympy.core.intfunc.num_digits, count_digits
51
+ """
52
+
53
+ b = as_int(b)
54
+ n = as_int(n)
55
+ if b < 2:
56
+ raise ValueError("b must be greater than 1")
57
+ else:
58
+ x, y = abs(n), []
59
+ while x >= b:
60
+ x, r = divmod(x, b)
61
+ y.append(r)
62
+ y.append(x)
63
+ y.append(-b if n < 0 else b)
64
+ y.reverse()
65
+ ndig = len(y) - 1
66
+ if digits is not None:
67
+ if ndig > digits:
68
+ raise ValueError(
69
+ "For %s, at least %s digits are needed." % (n, ndig))
70
+ elif ndig < digits:
71
+ y[1:1] = [0]*(digits - ndig)
72
+ return y
73
+
74
+
75
+ def count_digits(n, b=10):
76
+ """
77
+ Return a dictionary whose keys are the digits of ``n`` in the
78
+ given base, ``b``, with keys indicating the digits appearing in the
79
+ number and values indicating how many times that digit appeared.
80
+
81
+ Examples
82
+ ========
83
+
84
+ >>> from sympy.ntheory import count_digits
85
+
86
+ >>> count_digits(1111339)
87
+ {1: 4, 3: 2, 9: 1}
88
+
89
+ The digits returned are always represented in base-10
90
+ but the number itself can be entered in any format that is
91
+ understood by Python; the base of the number can also be
92
+ given if it is different than 10:
93
+
94
+ >>> n = 0xFA; n
95
+ 250
96
+ >>> count_digits(_)
97
+ {0: 1, 2: 1, 5: 1}
98
+ >>> count_digits(n, 16)
99
+ {10: 1, 15: 1}
100
+
101
+ The default dictionary will return a 0 for any digit that did
102
+ not appear in the number. For example, which digits appear 7
103
+ times in ``77!``:
104
+
105
+ >>> from sympy import factorial
106
+ >>> c77 = count_digits(factorial(77))
107
+ >>> [i for i in range(10) if c77[i] == 7]
108
+ [1, 3, 7, 9]
109
+
110
+ See Also
111
+ ========
112
+ sympy.core.intfunc.num_digits, digits
113
+ """
114
+ rv = defaultdict(int, multiset(digits(n, b)).items())
115
+ rv.pop(b) if b in rv else rv.pop(-b) # b or -b is there
116
+ return rv
117
+
118
+
119
+ def is_palindromic(n, b=10):
120
+ """return True if ``n`` is the same when read from left to right
121
+ or right to left in the given base, ``b``.
122
+
123
+ Examples
124
+ ========
125
+
126
+ >>> from sympy.ntheory import is_palindromic
127
+
128
+ >>> all(is_palindromic(i) for i in (-11, 1, 22, 121))
129
+ True
130
+
131
+ The second argument allows you to test numbers in other
132
+ bases. For example, 88 is palindromic in base-10 but not
133
+ in base-8:
134
+
135
+ >>> is_palindromic(88, 8)
136
+ False
137
+
138
+ On the other hand, a number can be palindromic in base-8 but
139
+ not in base-10:
140
+
141
+ >>> 0o121, is_palindromic(0o121)
142
+ (81, False)
143
+
144
+ Or it might be palindromic in both bases:
145
+
146
+ >>> oct(121), is_palindromic(121, 8) and is_palindromic(121)
147
+ ('0o171', True)
148
+
149
+ """
150
+ return _palindromic(digits(n, b), 1)
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/ecm.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import log
2
+
3
+ from sympy.core.random import _randint
4
+ from sympy.external.gmpy import gcd, invert, sqrt
5
+ from sympy.utilities.misc import as_int
6
+ from .generate import sieve, primerange
7
+ from .primetest import isprime
8
+
9
+
10
+ #----------------------------------------------------------------------------#
11
+ # #
12
+ # Lenstra's Elliptic Curve Factorization #
13
+ # #
14
+ #----------------------------------------------------------------------------#
15
+
16
+
17
+ class Point:
18
+ """Montgomery form of Points in an elliptic curve.
19
+ In this form, the addition and doubling of points
20
+ does not need any y-coordinate information thus
21
+ decreasing the number of operations.
22
+ Using Montgomery form we try to perform point addition
23
+ and doubling in least amount of multiplications.
24
+
25
+ The elliptic curve used here is of the form
26
+ (E : b*y**2*z = x**3 + a*x**2*z + x*z**2).
27
+ The a_24 parameter is equal to (a + 2)/4.
28
+
29
+ References
30
+ ==========
31
+
32
+ .. [1] Kris Gaj, Soonhak Kwon, Patrick Baier, Paul Kohlbrenner, Hoang Le, Mohammed Khaleeluddin, Ramakrishna Bachimanchi,
33
+ Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware,
34
+ Cryptographic Hardware and Embedded Systems - CHES 2006 (2006), pp. 119-133,
35
+ https://doi.org/10.1007/11894063_10
36
+ https://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf
37
+
38
+ """
39
+
40
+ def __init__(self, x_cord, z_cord, a_24, mod):
41
+ """
42
+ Initial parameters for the Point class.
43
+
44
+ Parameters
45
+ ==========
46
+
47
+ x_cord : X coordinate of the Point
48
+ z_cord : Z coordinate of the Point
49
+ a_24 : Parameter of the elliptic curve in Montgomery form
50
+ mod : modulus
51
+ """
52
+ self.x_cord = x_cord
53
+ self.z_cord = z_cord
54
+ self.a_24 = a_24
55
+ self.mod = mod
56
+
57
+ def __eq__(self, other):
58
+ """Two points are equal if X/Z of both points are equal
59
+ """
60
+ if self.a_24 != other.a_24 or self.mod != other.mod:
61
+ return False
62
+ return self.x_cord * other.z_cord % self.mod ==\
63
+ other.x_cord * self.z_cord % self.mod
64
+
65
+ def add(self, Q, diff):
66
+ """
67
+ Add two points self and Q where diff = self - Q. Moreover the assumption
68
+ is self.x_cord*Q.x_cord*(self.x_cord - Q.x_cord) != 0. This algorithm
69
+ requires 6 multiplications. Here the difference between the points
70
+ is already known and using this algorithm speeds up the addition
71
+ by reducing the number of multiplication required. Also in the
72
+ mont_ladder algorithm is constructed in a way so that the difference
73
+ between intermediate points is always equal to the initial point.
74
+ So, we always know what the difference between the point is.
75
+
76
+
77
+ Parameters
78
+ ==========
79
+
80
+ Q : point on the curve in Montgomery form
81
+ diff : self - Q
82
+
83
+ Examples
84
+ ========
85
+
86
+ >>> from sympy.ntheory.ecm import Point
87
+ >>> p1 = Point(11, 16, 7, 29)
88
+ >>> p2 = Point(13, 10, 7, 29)
89
+ >>> p3 = p2.add(p1, p1)
90
+ >>> p3.x_cord
91
+ 23
92
+ >>> p3.z_cord
93
+ 17
94
+ """
95
+ u = (self.x_cord - self.z_cord)*(Q.x_cord + Q.z_cord)
96
+ v = (self.x_cord + self.z_cord)*(Q.x_cord - Q.z_cord)
97
+ add, subt = u + v, u - v
98
+ x_cord = diff.z_cord * add * add % self.mod
99
+ z_cord = diff.x_cord * subt * subt % self.mod
100
+ return Point(x_cord, z_cord, self.a_24, self.mod)
101
+
102
+ def double(self):
103
+ """
104
+ Doubles a point in an elliptic curve in Montgomery form.
105
+ This algorithm requires 5 multiplications.
106
+
107
+ Examples
108
+ ========
109
+
110
+ >>> from sympy.ntheory.ecm import Point
111
+ >>> p1 = Point(11, 16, 7, 29)
112
+ >>> p2 = p1.double()
113
+ >>> p2.x_cord
114
+ 13
115
+ >>> p2.z_cord
116
+ 10
117
+ """
118
+ u = pow(self.x_cord + self.z_cord, 2, self.mod)
119
+ v = pow(self.x_cord - self.z_cord, 2, self.mod)
120
+ diff = u - v
121
+ x_cord = u*v % self.mod
122
+ z_cord = diff*(v + self.a_24*diff) % self.mod
123
+ return Point(x_cord, z_cord, self.a_24, self.mod)
124
+
125
+ def mont_ladder(self, k):
126
+ """
127
+ Scalar multiplication of a point in Montgomery form
128
+ using Montgomery Ladder Algorithm.
129
+ A total of 11 multiplications are required in each step of this
130
+ algorithm.
131
+
132
+ Parameters
133
+ ==========
134
+
135
+ k : The positive integer multiplier
136
+
137
+ Examples
138
+ ========
139
+
140
+ >>> from sympy.ntheory.ecm import Point
141
+ >>> p1 = Point(11, 16, 7, 29)
142
+ >>> p3 = p1.mont_ladder(3)
143
+ >>> p3.x_cord
144
+ 23
145
+ >>> p3.z_cord
146
+ 17
147
+ """
148
+ Q = self
149
+ R = self.double()
150
+ for i in bin(k)[3:]:
151
+ if i == '1':
152
+ Q = R.add(Q, self)
153
+ R = R.double()
154
+ else:
155
+ R = Q.add(R, self)
156
+ Q = Q.double()
157
+ return Q
158
+
159
+
160
+ def _ecm_one_factor(n, B1=10000, B2=100000, max_curve=200, seed=None):
161
+ """Returns one factor of n using
162
+ Lenstra's 2 Stage Elliptic curve Factorization
163
+ with Suyama's Parameterization. Here Montgomery
164
+ arithmetic is used for fast computation of addition
165
+ and doubling of points in elliptic curve.
166
+
167
+ Explanation
168
+ ===========
169
+
170
+ This ECM method considers elliptic curves in Montgomery
171
+ form (E : b*y**2*z = x**3 + a*x**2*z + x*z**2) and involves
172
+ elliptic curve operations (mod N), where the elements in
173
+ Z are reduced (mod N). Since N is not a prime, E over FF(N)
174
+ is not really an elliptic curve but we can still do point additions
175
+ and doubling as if FF(N) was a field.
176
+
177
+ Stage 1 : The basic algorithm involves taking a random point (P) on an
178
+ elliptic curve in FF(N). The compute k*P using Montgomery ladder algorithm.
179
+ Let q be an unknown factor of N. Then the order of the curve E, |E(FF(q))|,
180
+ might be a smooth number that divides k. Then we have k = l * |E(FF(q))|
181
+ for some l. For any point belonging to the curve E, |E(FF(q))|*P = O,
182
+ hence k*P = l*|E(FF(q))|*P. Thus kP.z_cord = 0 (mod q), and the unknownn
183
+ factor of N (q) can be recovered by taking gcd(kP.z_cord, N).
184
+
185
+ Stage 2 : This is a continuation of Stage 1 if k*P != O. The idea utilize
186
+ the fact that even if kP != 0, the value of k might miss just one large
187
+ prime divisor of |E(FF(q))|. In this case we only need to compute the
188
+ scalar multiplication by p to get p*k*P = O. Here a second bound B2
189
+ restrict the size of possible values of p.
190
+
191
+ Parameters
192
+ ==========
193
+
194
+ n : Number to be Factored
195
+ B1 : Stage 1 Bound. Must be an even number.
196
+ B2 : Stage 2 Bound. Must be an even number.
197
+ max_curve : Maximum number of curves generated
198
+
199
+ Returns
200
+ =======
201
+
202
+ integer | None : ``n`` (if it is prime) else a non-trivial divisor of ``n``. ``None`` if not found
203
+
204
+ References
205
+ ==========
206
+
207
+ .. [1] Carl Pomerance, Richard Crandall, Prime Numbers: A Computational Perspective,
208
+ 2nd Edition (2005), page 344, ISBN:978-0387252827
209
+ """
210
+ randint = _randint(seed)
211
+ if isprime(n):
212
+ return n
213
+
214
+ # When calculating T, if (B1 - 2*D) is negative, it cannot be calculated.
215
+ D = min(sqrt(B2), B1 // 2 - 1)
216
+ sieve.extend(D)
217
+ beta = [0] * D
218
+ S = [0] * D
219
+ k = 1
220
+ for p in primerange(2, B1 + 1):
221
+ k *= pow(p, int(log(B1, p)))
222
+
223
+ # Pre-calculate the prime numbers to be used in stage 2.
224
+ # Using the fact that the x-coordinates of point P and its
225
+ # inverse -P coincide, the number of primes to be checked
226
+ # in stage 2 can be reduced.
227
+ deltas_list = []
228
+ for r in range(B1 + 2*D, B2 + 2*D, 4*D):
229
+ deltas = set()
230
+ deltas.update((abs(q - r) - 1) // 2 for q in primerange(r - 2*D, r + 2*D))
231
+ # d in deltas iff r+(2d+1) and/or r-(2d+1) is prime
232
+ deltas_list.append(list(deltas))
233
+
234
+ for _ in range(max_curve):
235
+ #Suyama's Parametrization
236
+ sigma = randint(6, n - 1)
237
+ u = (sigma**2 - 5) % n
238
+ v = (4*sigma) % n
239
+ u_3 = pow(u, 3, n)
240
+
241
+ try:
242
+ # We use the elliptic curve y**2 = x**3 + a*x**2 + x
243
+ # where a = pow(v - u, 3, n)*(3*u + v)*invert(4*u_3*v, n) - 2
244
+ # However, we do not declare a because it is more convenient
245
+ # to use a24 = (a + 2)*invert(4, n) in the calculation.
246
+ a24 = pow(v - u, 3, n)*(3*u + v)*invert(16*u_3*v, n) % n
247
+ except ZeroDivisionError:
248
+ #If the invert(16*u_3*v, n) doesn't exist (i.e., g != 1)
249
+ g = gcd(2*u_3*v, n)
250
+ #If g = n, try another curve
251
+ if g == n:
252
+ continue
253
+ return g
254
+
255
+ Q = Point(u_3, pow(v, 3, n), a24, n)
256
+ Q = Q.mont_ladder(k)
257
+ g = gcd(Q.z_cord, n)
258
+
259
+ #Stage 1 factor
260
+ if g != 1 and g != n:
261
+ return g
262
+ #Stage 1 failure. Q.z = 0, Try another curve
263
+ elif g == n:
264
+ continue
265
+
266
+ #Stage 2 - Improved Standard Continuation
267
+ S[0] = Q
268
+ Q2 = Q.double()
269
+ S[1] = Q2.add(Q, Q)
270
+ beta[0] = (S[0].x_cord*S[0].z_cord) % n
271
+ beta[1] = (S[1].x_cord*S[1].z_cord) % n
272
+ for d in range(2, D):
273
+ S[d] = S[d - 1].add(Q2, S[d - 2])
274
+ beta[d] = (S[d].x_cord*S[d].z_cord) % n
275
+ # i.e., S[i] = Q.mont_ladder(2*i + 1)
276
+
277
+ g = 1
278
+ W = Q.mont_ladder(4*D)
279
+ T = Q.mont_ladder(B1 - 2*D)
280
+ R = Q.mont_ladder(B1 + 2*D)
281
+ for deltas in deltas_list:
282
+ # R = Q.mont_ladder(r) where r in range(B1 + 2*D, B2 + 2*D, 4*D)
283
+ alpha = (R.x_cord*R.z_cord) % n
284
+ for delta in deltas:
285
+ # We want to calculate
286
+ # f = R.x_cord * S[delta].z_cord - S[delta].x_cord * R.z_cord
287
+ f = (R.x_cord - S[delta].x_cord)*\
288
+ (R.z_cord + S[delta].z_cord) - alpha + beta[delta]
289
+ g = (g*f) % n
290
+ T, R = R, R.add(W, T)
291
+ g = gcd(n, g)
292
+
293
+ #Stage 2 Factor found
294
+ if g != 1 and g != n:
295
+ return g
296
+
297
+
298
+ def ecm(n, B1=10000, B2=100000, max_curve=200, seed=1234):
299
+ """Performs factorization using Lenstra's Elliptic curve method.
300
+
301
+ This function repeatedly calls ``_ecm_one_factor`` to compute the factors
302
+ of n. First all the small factors are taken out using trial division.
303
+ Then ``_ecm_one_factor`` is used to compute one factor at a time.
304
+
305
+ Parameters
306
+ ==========
307
+
308
+ n : Number to be Factored
309
+ B1 : Stage 1 Bound. Must be an even number.
310
+ B2 : Stage 2 Bound. Must be an even number.
311
+ max_curve : Maximum number of curves generated
312
+ seed : Initialize pseudorandom generator
313
+
314
+ Examples
315
+ ========
316
+
317
+ >>> from sympy.ntheory import ecm
318
+ >>> ecm(25645121643901801)
319
+ {5394769, 4753701529}
320
+ >>> ecm(9804659461513846513)
321
+ {4641991, 2112166839943}
322
+ """
323
+ n = as_int(n)
324
+ if B1 % 2 != 0 or B2 % 2 != 0:
325
+ raise ValueError("both bounds must be even")
326
+ _factors = set()
327
+ for prime in sieve.primerange(1, 100000):
328
+ if n % prime == 0:
329
+ _factors.add(prime)
330
+ while(n % prime == 0):
331
+ n //= prime
332
+ while(n > 1):
333
+ factor = _ecm_one_factor(n, B1, B2, max_curve, seed)
334
+ if factor is None:
335
+ raise ValueError("Increase the bounds")
336
+ _factors.add(factor)
337
+ n //= factor
338
+
339
+ factors = set()
340
+ for factor in _factors:
341
+ if isprime(factor):
342
+ factors.add(factor)
343
+ continue
344
+ factors |= ecm(factor)
345
+ return factors
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/generate.py ADDED
@@ -0,0 +1,1147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Generating and counting primes.
3
+
4
+ """
5
+
6
+ from bisect import bisect, bisect_left
7
+ from itertools import count
8
+ # Using arrays for sieving instead of lists greatly reduces
9
+ # memory consumption
10
+ from array import array as _array
11
+
12
+ from sympy.core.random import randint
13
+ from sympy.external.gmpy import sqrt
14
+ from .primetest import isprime
15
+ from sympy.utilities.decorator import deprecated
16
+ from sympy.utilities.misc import as_int
17
+
18
+
19
+ def _as_int_ceiling(a):
20
+ """ Wrapping ceiling in as_int will raise an error if there was a problem
21
+ determining whether the expression was exactly an integer or not."""
22
+ from sympy.functions.elementary.integers import ceiling
23
+ return as_int(ceiling(a))
24
+
25
+
26
+ class Sieve:
27
+ """A list of prime numbers, implemented as a dynamically
28
+ growing sieve of Eratosthenes. When a lookup is requested involving
29
+ an odd number that has not been sieved, the sieve is automatically
30
+ extended up to that number. Implementation details limit the number of
31
+ primes to ``2^32-1``.
32
+
33
+ Examples
34
+ ========
35
+
36
+ >>> from sympy import sieve
37
+ >>> sieve._reset() # this line for doctest only
38
+ >>> 25 in sieve
39
+ False
40
+ >>> sieve._list
41
+ array('L', [2, 3, 5, 7, 11, 13, 17, 19, 23])
42
+ """
43
+
44
+ # data shared (and updated) by all Sieve instances
45
+ def __init__(self, sieve_interval=1_000_000):
46
+ """ Initial parameters for the Sieve class.
47
+
48
+ Parameters
49
+ ==========
50
+
51
+ sieve_interval (int): Amount of memory to be used
52
+
53
+ Raises
54
+ ======
55
+
56
+ ValueError
57
+ If ``sieve_interval`` is not positive.
58
+
59
+ """
60
+ self._n = 6
61
+ self._list = _array('L', [2, 3, 5, 7, 11, 13]) # primes
62
+ self._tlist = _array('L', [0, 1, 1, 2, 2, 4]) # totient
63
+ self._mlist = _array('i', [0, 1, -1, -1, 0, -1]) # mobius
64
+ if sieve_interval <= 0:
65
+ raise ValueError("sieve_interval should be a positive integer")
66
+ self.sieve_interval = sieve_interval
67
+ assert all(len(i) == self._n for i in (self._list, self._tlist, self._mlist))
68
+
69
+ def __repr__(self):
70
+ return ("<%s sieve (%i): %i, %i, %i, ... %i, %i\n"
71
+ "%s sieve (%i): %i, %i, %i, ... %i, %i\n"
72
+ "%s sieve (%i): %i, %i, %i, ... %i, %i>") % (
73
+ 'prime', len(self._list),
74
+ self._list[0], self._list[1], self._list[2],
75
+ self._list[-2], self._list[-1],
76
+ 'totient', len(self._tlist),
77
+ self._tlist[0], self._tlist[1],
78
+ self._tlist[2], self._tlist[-2], self._tlist[-1],
79
+ 'mobius', len(self._mlist),
80
+ self._mlist[0], self._mlist[1],
81
+ self._mlist[2], self._mlist[-2], self._mlist[-1])
82
+
83
+ def _reset(self, prime=None, totient=None, mobius=None):
84
+ """Reset all caches (default). To reset one or more set the
85
+ desired keyword to True."""
86
+ if all(i is None for i in (prime, totient, mobius)):
87
+ prime = totient = mobius = True
88
+ if prime:
89
+ self._list = self._list[:self._n]
90
+ if totient:
91
+ self._tlist = self._tlist[:self._n]
92
+ if mobius:
93
+ self._mlist = self._mlist[:self._n]
94
+
95
+ def extend(self, n):
96
+ """Grow the sieve to cover all primes <= n.
97
+
98
+ Examples
99
+ ========
100
+
101
+ >>> from sympy import sieve
102
+ >>> sieve._reset() # this line for doctest only
103
+ >>> sieve.extend(30)
104
+ >>> sieve[10] == 29
105
+ True
106
+ """
107
+ n = int(n)
108
+ # `num` is even at any point in the function.
109
+ # This satisfies the condition required by `self._primerange`.
110
+ num = self._list[-1] + 1
111
+ if n < num:
112
+ return
113
+ num2 = num**2
114
+ while num2 <= n:
115
+ self._list += _array('L', self._primerange(num, num2))
116
+ num, num2 = num2, num2**2
117
+ # Merge the sieves
118
+ self._list += _array('L', self._primerange(num, n + 1))
119
+
120
+ def _primerange(self, a, b):
121
+ """ Generate all prime numbers in the range (a, b).
122
+
123
+ Parameters
124
+ ==========
125
+
126
+ a, b : positive integers assuming the following conditions
127
+ * a is an even number
128
+ * 2 < self._list[-1] < a < b < nextprime(self._list[-1])**2
129
+
130
+ Yields
131
+ ======
132
+
133
+ p (int): prime numbers such that ``a < p < b``
134
+
135
+ Examples
136
+ ========
137
+
138
+ >>> from sympy.ntheory.generate import Sieve
139
+ >>> s = Sieve()
140
+ >>> s._list[-1]
141
+ 13
142
+ >>> list(s._primerange(18, 31))
143
+ [19, 23, 29]
144
+
145
+ """
146
+ if b % 2:
147
+ b -= 1
148
+ while a < b:
149
+ block_size = min(self.sieve_interval, (b - a) // 2)
150
+ # Create the list such that block[x] iff (a + 2x + 1) is prime.
151
+ # Note that even numbers are not considered here.
152
+ block = [True] * block_size
153
+ for p in self._list[1:bisect(self._list, sqrt(a + 2 * block_size + 1))]:
154
+ for t in range((-(a + 1 + p) // 2) % p, block_size, p):
155
+ block[t] = False
156
+ for idx, p in enumerate(block):
157
+ if p:
158
+ yield a + 2 * idx + 1
159
+ a += 2 * block_size
160
+
161
+ def extend_to_no(self, i):
162
+ """Extend to include the ith prime number.
163
+
164
+ Parameters
165
+ ==========
166
+
167
+ i : integer
168
+
169
+ Examples
170
+ ========
171
+
172
+ >>> from sympy import sieve
173
+ >>> sieve._reset() # this line for doctest only
174
+ >>> sieve.extend_to_no(9)
175
+ >>> sieve._list
176
+ array('L', [2, 3, 5, 7, 11, 13, 17, 19, 23])
177
+
178
+ Notes
179
+ =====
180
+
181
+ The list is extended by 50% if it is too short, so it is
182
+ likely that it will be longer than requested.
183
+ """
184
+ i = as_int(i)
185
+ while len(self._list) < i:
186
+ self.extend(int(self._list[-1] * 1.5))
187
+
188
+ def primerange(self, a, b=None):
189
+ """Generate all prime numbers in the range [2, a) or [a, b).
190
+
191
+ Examples
192
+ ========
193
+
194
+ >>> from sympy import sieve, prime
195
+
196
+ All primes less than 19:
197
+
198
+ >>> print([i for i in sieve.primerange(19)])
199
+ [2, 3, 5, 7, 11, 13, 17]
200
+
201
+ All primes greater than or equal to 7 and less than 19:
202
+
203
+ >>> print([i for i in sieve.primerange(7, 19)])
204
+ [7, 11, 13, 17]
205
+
206
+ All primes through the 10th prime
207
+
208
+ >>> list(sieve.primerange(prime(10) + 1))
209
+ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
210
+
211
+ """
212
+ if b is None:
213
+ b = _as_int_ceiling(a)
214
+ a = 2
215
+ else:
216
+ a = max(2, _as_int_ceiling(a))
217
+ b = _as_int_ceiling(b)
218
+ if a >= b:
219
+ return
220
+ self.extend(b)
221
+ yield from self._list[bisect_left(self._list, a):
222
+ bisect_left(self._list, b)]
223
+
224
+ def totientrange(self, a, b):
225
+ """Generate all totient numbers for the range [a, b).
226
+
227
+ Examples
228
+ ========
229
+
230
+ >>> from sympy import sieve
231
+ >>> print([i for i in sieve.totientrange(7, 18)])
232
+ [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16]
233
+ """
234
+ a = max(1, _as_int_ceiling(a))
235
+ b = _as_int_ceiling(b)
236
+ n = len(self._tlist)
237
+ if a >= b:
238
+ return
239
+ elif b <= n:
240
+ for i in range(a, b):
241
+ yield self._tlist[i]
242
+ else:
243
+ self._tlist += _array('L', range(n, b))
244
+ for i in range(1, n):
245
+ ti = self._tlist[i]
246
+ if ti == i - 1:
247
+ startindex = (n + i - 1) // i * i
248
+ for j in range(startindex, b, i):
249
+ self._tlist[j] -= self._tlist[j] // i
250
+ if i >= a:
251
+ yield ti
252
+
253
+ for i in range(n, b):
254
+ ti = self._tlist[i]
255
+ if ti == i:
256
+ for j in range(i, b, i):
257
+ self._tlist[j] -= self._tlist[j] // i
258
+ if i >= a:
259
+ yield self._tlist[i]
260
+
261
+ def mobiusrange(self, a, b):
262
+ """Generate all mobius numbers for the range [a, b).
263
+
264
+ Parameters
265
+ ==========
266
+
267
+ a : integer
268
+ First number in range
269
+
270
+ b : integer
271
+ First number outside of range
272
+
273
+ Examples
274
+ ========
275
+
276
+ >>> from sympy import sieve
277
+ >>> print([i for i in sieve.mobiusrange(7, 18)])
278
+ [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1]
279
+ """
280
+ a = max(1, _as_int_ceiling(a))
281
+ b = _as_int_ceiling(b)
282
+ n = len(self._mlist)
283
+ if a >= b:
284
+ return
285
+ elif b <= n:
286
+ for i in range(a, b):
287
+ yield self._mlist[i]
288
+ else:
289
+ self._mlist += _array('i', [0]*(b - n))
290
+ for i in range(1, n):
291
+ mi = self._mlist[i]
292
+ startindex = (n + i - 1) // i * i
293
+ for j in range(startindex, b, i):
294
+ self._mlist[j] -= mi
295
+ if i >= a:
296
+ yield mi
297
+
298
+ for i in range(n, b):
299
+ mi = self._mlist[i]
300
+ for j in range(2 * i, b, i):
301
+ self._mlist[j] -= mi
302
+ if i >= a:
303
+ yield mi
304
+
305
+ def search(self, n):
306
+ """Return the indices i, j of the primes that bound n.
307
+
308
+ If n is prime then i == j.
309
+
310
+ Although n can be an expression, if ceiling cannot convert
311
+ it to an integer then an n error will be raised.
312
+
313
+ Examples
314
+ ========
315
+
316
+ >>> from sympy import sieve
317
+ >>> sieve.search(25)
318
+ (9, 10)
319
+ >>> sieve.search(23)
320
+ (9, 9)
321
+ """
322
+ test = _as_int_ceiling(n)
323
+ n = as_int(n)
324
+ if n < 2:
325
+ raise ValueError("n should be >= 2 but got: %s" % n)
326
+ if n > self._list[-1]:
327
+ self.extend(n)
328
+ b = bisect(self._list, n)
329
+ if self._list[b - 1] == test:
330
+ return b, b
331
+ else:
332
+ return b, b + 1
333
+
334
+ def __contains__(self, n):
335
+ try:
336
+ n = as_int(n)
337
+ assert n >= 2
338
+ except (ValueError, AssertionError):
339
+ return False
340
+ if n % 2 == 0:
341
+ return n == 2
342
+ a, b = self.search(n)
343
+ return a == b
344
+
345
+ def __iter__(self):
346
+ for n in count(1):
347
+ yield self[n]
348
+
349
+ def __getitem__(self, n):
350
+ """Return the nth prime number"""
351
+ if isinstance(n, slice):
352
+ self.extend_to_no(n.stop)
353
+ # Python 2.7 slices have 0 instead of None for start, so
354
+ # we can't default to 1.
355
+ start = n.start if n.start is not None else 0
356
+ if start < 1:
357
+ # sieve[:5] would be empty (starting at -1), let's
358
+ # just be explicit and raise.
359
+ raise IndexError("Sieve indices start at 1.")
360
+ return self._list[start - 1:n.stop - 1:n.step]
361
+ else:
362
+ if n < 1:
363
+ # offset is one, so forbid explicit access to sieve[0]
364
+ # (would surprisingly return the last one).
365
+ raise IndexError("Sieve indices start at 1.")
366
+ n = as_int(n)
367
+ self.extend_to_no(n)
368
+ return self._list[n - 1]
369
+
370
+ # Generate a global object for repeated use in trial division etc
371
+ sieve = Sieve()
372
+
373
+
374
+ def prime(nth):
375
+ r""" Return the nth prime, with the primes indexed as prime(1) = 2,
376
+ prime(2) = 3, etc.... The nth prime is approximately $n\log(n)$.
377
+
378
+ Logarithmic integral of $x$ is a pretty nice approximation for number of
379
+ primes $\le x$, i.e.
380
+ li(x) ~ pi(x)
381
+ In fact, for the numbers we are concerned about( x<1e11 ),
382
+ li(x) - pi(x) < 50000
383
+
384
+ Also,
385
+ li(x) > pi(x) can be safely assumed for the numbers which
386
+ can be evaluated by this function.
387
+
388
+ Here, we find the least integer m such that li(m) > n using binary search.
389
+ Now pi(m-1) < li(m-1) <= n,
390
+
391
+ We find pi(m - 1) using primepi function.
392
+
393
+ Starting from m, we have to find n - pi(m-1) more primes.
394
+
395
+ For the inputs this implementation can handle, we will have to test
396
+ primality for at max about 10**5 numbers, to get our answer.
397
+
398
+ Examples
399
+ ========
400
+
401
+ >>> from sympy import prime
402
+ >>> prime(10)
403
+ 29
404
+ >>> prime(1)
405
+ 2
406
+ >>> prime(100000)
407
+ 1299709
408
+
409
+ See Also
410
+ ========
411
+
412
+ sympy.ntheory.primetest.isprime : Test if n is prime
413
+ primerange : Generate all primes in a given range
414
+ primepi : Return the number of primes less than or equal to n
415
+
416
+ References
417
+ ==========
418
+
419
+ .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
420
+ .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
421
+ .. [3] https://en.wikipedia.org/wiki/Skewes%27_number
422
+ """
423
+ n = as_int(nth)
424
+ if n < 1:
425
+ raise ValueError("nth must be a positive integer; prime(1) == 2")
426
+ if n <= len(sieve._list):
427
+ return sieve[n]
428
+
429
+ from sympy.functions.elementary.exponential import log
430
+ from sympy.functions.special.error_functions import li
431
+ a = 2 # Lower bound for binary search
432
+ # leave n inside int since int(i*r) != i*int(r) is not a valid property
433
+ # e.g. int(2*.5) != 2*int(.5)
434
+ b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.
435
+
436
+ while a < b:
437
+ mid = (a + b) >> 1
438
+ if li(mid) > n:
439
+ b = mid
440
+ else:
441
+ a = mid + 1
442
+ n_primes = _primepi(a - 1)
443
+ while n_primes < n:
444
+ if isprime(a):
445
+ n_primes += 1
446
+ a += 1
447
+ return a - 1
448
+
449
+ @deprecated("""\
450
+ The `sympy.ntheory.generate.primepi` has been moved to `sympy.functions.combinatorial.numbers.primepi`.""",
451
+ deprecated_since_version="1.13",
452
+ active_deprecations_target='deprecated-ntheory-symbolic-functions')
453
+ def primepi(n):
454
+ r""" Represents the prime counting function pi(n) = the number
455
+ of prime numbers less than or equal to n.
456
+
457
+ .. deprecated:: 1.13
458
+
459
+ The ``primepi`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.primepi`
460
+ instead. See its documentation for more information. See
461
+ :ref:`deprecated-ntheory-symbolic-functions` for details.
462
+
463
+ Algorithm Description:
464
+
465
+ In sieve method, we remove all multiples of prime p
466
+ except p itself.
467
+
468
+ Let phi(i,j) be the number of integers 2 <= k <= i
469
+ which remain after sieving from primes less than
470
+ or equal to j.
471
+ Clearly, pi(n) = phi(n, sqrt(n))
472
+
473
+ If j is not a prime,
474
+ phi(i,j) = phi(i, j - 1)
475
+
476
+ if j is a prime,
477
+ We remove all numbers(except j) whose
478
+ smallest prime factor is j.
479
+
480
+ Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
481
+ Now, after sieving from primes $\le j - 1$,
482
+ a must remain
483
+ (because x, and hence a has no prime factor $\le j - 1$)
484
+ Clearly, there are phi(i / j, j - 1) such a
485
+ which remain on sieving from primes $\le j - 1$
486
+
487
+ Now, if a is a prime less than equal to j - 1,
488
+ $x= j \times a$ has smallest prime factor = a, and
489
+ has already been removed(by sieving from a).
490
+ So, we do not need to remove it again.
491
+ (Note: there will be pi(j - 1) such x)
492
+
493
+ Thus, number of x, that will be removed are:
494
+ phi(i / j, j - 1) - phi(j - 1, j - 1)
495
+ (Note that pi(j - 1) = phi(j - 1, j - 1))
496
+
497
+ $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)
498
+
499
+ So,following recursion is used and implemented as dp:
500
+
501
+ phi(a, b) = phi(a, b - 1), if b is not a prime
502
+ phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime
503
+
504
+ Clearly a is always of the form floor(n / k),
505
+ which can take at most $2\sqrt{n}$ values.
506
+ Two arrays arr1,arr2 are maintained
507
+ arr1[i] = phi(i, j),
508
+ arr2[i] = phi(n // i, j)
509
+
510
+ Finally the answer is arr2[1]
511
+
512
+ Examples
513
+ ========
514
+
515
+ >>> from sympy import primepi, prime, prevprime, isprime
516
+ >>> primepi(25)
517
+ 9
518
+
519
+ So there are 9 primes less than or equal to 25. Is 25 prime?
520
+
521
+ >>> isprime(25)
522
+ False
523
+
524
+ It is not. So the first prime less than 25 must be the
525
+ 9th prime:
526
+
527
+ >>> prevprime(25) == prime(9)
528
+ True
529
+
530
+ See Also
531
+ ========
532
+
533
+ sympy.ntheory.primetest.isprime : Test if n is prime
534
+ primerange : Generate all primes in a given range
535
+ prime : Return the nth prime
536
+ """
537
+ from sympy.functions.combinatorial.numbers import primepi as func_primepi
538
+ return func_primepi(n)
539
+
540
+
541
+ def _primepi(n:int) -> int:
542
+ r""" Represents the prime counting function pi(n) = the number
543
+ of prime numbers less than or equal to n.
544
+
545
+ Explanation
546
+ ===========
547
+
548
+ In sieve method, we remove all multiples of prime p
549
+ except p itself.
550
+
551
+ Let phi(i,j) be the number of integers 2 <= k <= i
552
+ which remain after sieving from primes less than
553
+ or equal to j.
554
+ Clearly, pi(n) = phi(n, sqrt(n))
555
+
556
+ If j is not a prime,
557
+ phi(i,j) = phi(i, j - 1)
558
+
559
+ if j is a prime,
560
+ We remove all numbers(except j) whose
561
+ smallest prime factor is j.
562
+
563
+ Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
564
+ Now, after sieving from primes $\le j - 1$,
565
+ a must remain
566
+ (because x, and hence a has no prime factor $\le j - 1$)
567
+ Clearly, there are phi(i / j, j - 1) such a
568
+ which remain on sieving from primes $\le j - 1$
569
+
570
+ Now, if a is a prime less than equal to j - 1,
571
+ $x= j \times a$ has smallest prime factor = a, and
572
+ has already been removed(by sieving from a).
573
+ So, we do not need to remove it again.
574
+ (Note: there will be pi(j - 1) such x)
575
+
576
+ Thus, number of x, that will be removed are:
577
+ phi(i / j, j - 1) - phi(j - 1, j - 1)
578
+ (Note that pi(j - 1) = phi(j - 1, j - 1))
579
+
580
+ $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)
581
+
582
+ So,following recursion is used and implemented as dp:
583
+
584
+ phi(a, b) = phi(a, b - 1), if b is not a prime
585
+ phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime
586
+
587
+ Clearly a is always of the form floor(n / k),
588
+ which can take at most $2\sqrt{n}$ values.
589
+ Two arrays arr1,arr2 are maintained
590
+ arr1[i] = phi(i, j),
591
+ arr2[i] = phi(n // i, j)
592
+
593
+ Finally the answer is arr2[1]
594
+
595
+ Parameters
596
+ ==========
597
+
598
+ n : int
599
+
600
+ """
601
+ if n < 2:
602
+ return 0
603
+ if n <= sieve._list[-1]:
604
+ return sieve.search(n)[0]
605
+ lim = sqrt(n)
606
+ arr1 = [0] * (lim + 1)
607
+ arr2 = [0] * (lim + 1)
608
+ for i in range(1, lim + 1):
609
+ arr1[i] = i - 1
610
+ arr2[i] = n // i - 1
611
+ for i in range(2, lim + 1):
612
+ # Presently, arr1[k]=phi(k,i - 1),
613
+ # arr2[k] = phi(n // k,i - 1)
614
+ if arr1[i] == arr1[i - 1]:
615
+ continue
616
+ p = arr1[i - 1]
617
+ for j in range(1, min(n // (i * i), lim) + 1):
618
+ st = i * j
619
+ if st <= lim:
620
+ arr2[j] -= arr2[st] - p
621
+ else:
622
+ arr2[j] -= arr1[n // st] - p
623
+ lim2 = min(lim, i * i - 1)
624
+ for j in range(lim, lim2, -1):
625
+ arr1[j] -= arr1[j // i] - p
626
+ return arr2[1]
627
+
628
+
629
+ def nextprime(n, ith=1):
630
+ """ Return the ith prime greater than n.
631
+
632
+ Parameters
633
+ ==========
634
+
635
+ n : integer
636
+ ith : positive integer
637
+
638
+ Returns
639
+ =======
640
+
641
+ int : Return the ith prime greater than n
642
+
643
+ Raises
644
+ ======
645
+
646
+ ValueError
647
+ If ``ith <= 0``.
648
+ If ``n`` or ``ith`` is not an integer.
649
+
650
+ Notes
651
+ =====
652
+
653
+ Potential primes are located at 6*j +/- 1. This
654
+ property is used during searching.
655
+
656
+ >>> from sympy import nextprime
657
+ >>> [(i, nextprime(i)) for i in range(10, 15)]
658
+ [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]
659
+ >>> nextprime(2, ith=2) # the 2nd prime after 2
660
+ 5
661
+
662
+ See Also
663
+ ========
664
+
665
+ prevprime : Return the largest prime smaller than n
666
+ primerange : Generate all primes in a given range
667
+
668
+ """
669
+ n = int(n)
670
+ i = as_int(ith)
671
+ if i <= 0:
672
+ raise ValueError("ith should be positive")
673
+ if n < 2:
674
+ n = 2
675
+ i -= 1
676
+ if n <= sieve._list[-2]:
677
+ l, _ = sieve.search(n)
678
+ if l + i - 1 < len(sieve._list):
679
+ return sieve._list[l + i - 1]
680
+ return nextprime(sieve._list[-1], l + i - len(sieve._list))
681
+ if 1 < i:
682
+ for _ in range(i):
683
+ n = nextprime(n)
684
+ return n
685
+ nn = 6*(n//6)
686
+ if nn == n:
687
+ n += 1
688
+ if isprime(n):
689
+ return n
690
+ n += 4
691
+ elif n - nn == 5:
692
+ n += 2
693
+ if isprime(n):
694
+ return n
695
+ n += 4
696
+ else:
697
+ n = nn + 5
698
+ while 1:
699
+ if isprime(n):
700
+ return n
701
+ n += 2
702
+ if isprime(n):
703
+ return n
704
+ n += 4
705
+
706
+
707
+ def prevprime(n):
708
+ """ Return the largest prime smaller than n.
709
+
710
+ Notes
711
+ =====
712
+
713
+ Potential primes are located at 6*j +/- 1. This
714
+ property is used during searching.
715
+
716
+ >>> from sympy import prevprime
717
+ >>> [(i, prevprime(i)) for i in range(10, 15)]
718
+ [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]
719
+
720
+ See Also
721
+ ========
722
+
723
+ nextprime : Return the ith prime greater than n
724
+ primerange : Generates all primes in a given range
725
+ """
726
+ n = _as_int_ceiling(n)
727
+ if n < 3:
728
+ raise ValueError("no preceding primes")
729
+ if n < 8:
730
+ return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n]
731
+ if n <= sieve._list[-1]:
732
+ l, u = sieve.search(n)
733
+ if l == u:
734
+ return sieve[l-1]
735
+ else:
736
+ return sieve[l]
737
+ nn = 6*(n//6)
738
+ if n - nn <= 1:
739
+ n = nn - 1
740
+ if isprime(n):
741
+ return n
742
+ n -= 4
743
+ else:
744
+ n = nn + 1
745
+ while 1:
746
+ if isprime(n):
747
+ return n
748
+ n -= 2
749
+ if isprime(n):
750
+ return n
751
+ n -= 4
752
+
753
+
754
+ def primerange(a, b=None):
755
+ """ Generate a list of all prime numbers in the range [2, a),
756
+ or [a, b).
757
+
758
+ If the range exists in the default sieve, the values will
759
+ be returned from there; otherwise values will be returned
760
+ but will not modify the sieve.
761
+
762
+ Examples
763
+ ========
764
+
765
+ >>> from sympy import primerange, prime
766
+
767
+ All primes less than 19:
768
+
769
+ >>> list(primerange(19))
770
+ [2, 3, 5, 7, 11, 13, 17]
771
+
772
+ All primes greater than or equal to 7 and less than 19:
773
+
774
+ >>> list(primerange(7, 19))
775
+ [7, 11, 13, 17]
776
+
777
+ All primes through the 10th prime
778
+
779
+ >>> list(primerange(prime(10) + 1))
780
+ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
781
+
782
+ The Sieve method, primerange, is generally faster but it will
783
+ occupy more memory as the sieve stores values. The default
784
+ instance of Sieve, named sieve, can be used:
785
+
786
+ >>> from sympy import sieve
787
+ >>> list(sieve.primerange(1, 30))
788
+ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
789
+
790
+ Notes
791
+ =====
792
+
793
+ Some famous conjectures about the occurrence of primes in a given
794
+ range are [1]:
795
+
796
+ - Twin primes: though often not, the following will give 2 primes
797
+ an infinite number of times:
798
+ primerange(6*n - 1, 6*n + 2)
799
+ - Legendre's: the following always yields at least one prime
800
+ primerange(n**2, (n+1)**2+1)
801
+ - Bertrand's (proven): there is always a prime in the range
802
+ primerange(n, 2*n)
803
+ - Brocard's: there are at least four primes in the range
804
+ primerange(prime(n)**2, prime(n+1)**2)
805
+
806
+ The average gap between primes is log(n) [2]; the gap between
807
+ primes can be arbitrarily large since sequences of composite
808
+ numbers are arbitrarily large, e.g. the numbers in the sequence
809
+ n! + 2, n! + 3 ... n! + n are all composite.
810
+
811
+ See Also
812
+ ========
813
+
814
+ prime : Return the nth prime
815
+ nextprime : Return the ith prime greater than n
816
+ prevprime : Return the largest prime smaller than n
817
+ randprime : Returns a random prime in a given range
818
+ primorial : Returns the product of primes based on condition
819
+ Sieve.primerange : return range from already computed primes
820
+ or extend the sieve to contain the requested
821
+ range.
822
+
823
+ References
824
+ ==========
825
+
826
+ .. [1] https://en.wikipedia.org/wiki/Prime_number
827
+ .. [2] https://primes.utm.edu/notes/gaps.html
828
+ """
829
+ if b is None:
830
+ a, b = 2, a
831
+ if a >= b:
832
+ return
833
+ # If we already have the range, return it.
834
+ largest_known_prime = sieve._list[-1]
835
+ if b <= largest_known_prime:
836
+ yield from sieve.primerange(a, b)
837
+ return
838
+ # If we know some of it, return it.
839
+ if a <= largest_known_prime:
840
+ yield from sieve._list[bisect_left(sieve._list, a):]
841
+ a = largest_known_prime + 1
842
+ elif a % 2:
843
+ a -= 1
844
+ tail = min(b, (largest_known_prime)**2)
845
+ if a < tail:
846
+ yield from sieve._primerange(a, tail)
847
+ a = tail
848
+ if b <= a:
849
+ return
850
+ # otherwise compute, without storing, the desired range.
851
+ while 1:
852
+ a = nextprime(a)
853
+ if a < b:
854
+ yield a
855
+ else:
856
+ return
857
+
858
+
859
+ def randprime(a, b):
860
+ """ Return a random prime number in the range [a, b).
861
+
862
+ Bertrand's postulate assures that
863
+ randprime(a, 2*a) will always succeed for a > 1.
864
+
865
+ Note that due to implementation difficulties,
866
+ the prime numbers chosen are not uniformly random.
867
+ For example, there are two primes in the range [112, 128),
868
+ ``113`` and ``127``, but ``randprime(112, 128)`` returns ``127``
869
+ with a probability of 15/17.
870
+
871
+ Examples
872
+ ========
873
+
874
+ >>> from sympy import randprime, isprime
875
+ >>> randprime(1, 30) #doctest: +SKIP
876
+ 13
877
+ >>> isprime(randprime(1, 30))
878
+ True
879
+
880
+ See Also
881
+ ========
882
+
883
+ primerange : Generate all primes in a given range
884
+
885
+ References
886
+ ==========
887
+
888
+ .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate
889
+
890
+ """
891
+ if a >= b:
892
+ return
893
+ a, b = map(int, (a, b))
894
+ n = randint(a - 1, b)
895
+ p = nextprime(n)
896
+ if p >= b:
897
+ p = prevprime(b)
898
+ if p < a:
899
+ raise ValueError("no primes exist in the specified range")
900
+ return p
901
+
902
+
903
+ def primorial(n, nth=True):
904
+ """
905
+ Returns the product of the first n primes (default) or
906
+ the primes less than or equal to n (when ``nth=False``).
907
+
908
+ Examples
909
+ ========
910
+
911
+ >>> from sympy.ntheory.generate import primorial, primerange
912
+ >>> from sympy import factorint, Mul, primefactors, sqrt
913
+ >>> primorial(4) # the first 4 primes are 2, 3, 5, 7
914
+ 210
915
+ >>> primorial(4, nth=False) # primes <= 4 are 2 and 3
916
+ 6
917
+ >>> primorial(1)
918
+ 2
919
+ >>> primorial(1, nth=False)
920
+ 1
921
+ >>> primorial(sqrt(101), nth=False)
922
+ 210
923
+
924
+ One can argue that the primes are infinite since if you take
925
+ a set of primes and multiply them together (e.g. the primorial) and
926
+ then add or subtract 1, the result cannot be divided by any of the
927
+ original factors, hence either 1 or more new primes must divide this
928
+ product of primes.
929
+
930
+ In this case, the number itself is a new prime:
931
+
932
+ >>> factorint(primorial(4) + 1)
933
+ {211: 1}
934
+
935
+ In this case two new primes are the factors:
936
+
937
+ >>> factorint(primorial(4) - 1)
938
+ {11: 1, 19: 1}
939
+
940
+ Here, some primes smaller and larger than the primes multiplied together
941
+ are obtained:
942
+
943
+ >>> p = list(primerange(10, 20))
944
+ >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
945
+ [2, 5, 31, 149]
946
+
947
+ See Also
948
+ ========
949
+
950
+ primerange : Generate all primes in a given range
951
+
952
+ """
953
+ if nth:
954
+ n = as_int(n)
955
+ else:
956
+ n = int(n)
957
+ if n < 1:
958
+ raise ValueError("primorial argument must be >= 1")
959
+ p = 1
960
+ if nth:
961
+ for i in range(1, n + 1):
962
+ p *= prime(i)
963
+ else:
964
+ for i in primerange(2, n + 1):
965
+ p *= i
966
+ return p
967
+
968
+
969
+ def cycle_length(f, x0, nmax=None, values=False):
970
+ """For a given iterated sequence, return a generator that gives
971
+ the length of the iterated cycle (lambda) and the length of terms
972
+ before the cycle begins (mu); if ``values`` is True then the
973
+ terms of the sequence will be returned instead. The sequence is
974
+ started with value ``x0``.
975
+
976
+ Note: more than the first lambda + mu terms may be returned and this
977
+ is the cost of cycle detection with Brent's method; there are, however,
978
+ generally less terms calculated than would have been calculated if the
979
+ proper ending point were determined, e.g. by using Floyd's method.
980
+
981
+ >>> from sympy.ntheory.generate import cycle_length
982
+
983
+ This will yield successive values of i <-- func(i):
984
+
985
+ >>> def gen(func, i):
986
+ ... while 1:
987
+ ... yield i
988
+ ... i = func(i)
989
+ ...
990
+
991
+ A function is defined:
992
+
993
+ >>> func = lambda i: (i**2 + 1) % 51
994
+
995
+ and given a seed of 4 and the mu and lambda terms calculated:
996
+
997
+ >>> next(cycle_length(func, 4))
998
+ (6, 3)
999
+
1000
+ We can see what is meant by looking at the output:
1001
+
1002
+ >>> iter = cycle_length(func, 4, values=True)
1003
+ >>> list(iter)
1004
+ [4, 17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
1005
+
1006
+ There are 6 repeating values after the first 3.
1007
+
1008
+ If a sequence is suspected of being longer than you might wish, ``nmax``
1009
+ can be used to exit early (and mu will be returned as None):
1010
+
1011
+ >>> next(cycle_length(func, 4, nmax = 4))
1012
+ (4, None)
1013
+ >>> list(cycle_length(func, 4, nmax = 4, values=True))
1014
+ [4, 17, 35, 2]
1015
+
1016
+ Code modified from:
1017
+ https://en.wikipedia.org/wiki/Cycle_detection.
1018
+ """
1019
+
1020
+ nmax = int(nmax or 0)
1021
+
1022
+ # main phase: search successive powers of two
1023
+ power = lam = 1
1024
+ tortoise, hare = x0, f(x0) # f(x0) is the element/node next to x0.
1025
+ i = 1
1026
+ if values:
1027
+ yield tortoise
1028
+ while tortoise != hare and (not nmax or i < nmax):
1029
+ i += 1
1030
+ if power == lam: # time to start a new power of two?
1031
+ tortoise = hare
1032
+ power *= 2
1033
+ lam = 0
1034
+ if values:
1035
+ yield hare
1036
+ hare = f(hare)
1037
+ lam += 1
1038
+ if nmax and i == nmax:
1039
+ if values:
1040
+ return
1041
+ else:
1042
+ yield nmax, None
1043
+ return
1044
+ if not values:
1045
+ # Find the position of the first repetition of length lambda
1046
+ mu = 0
1047
+ tortoise = hare = x0
1048
+ for i in range(lam):
1049
+ hare = f(hare)
1050
+ while tortoise != hare:
1051
+ tortoise = f(tortoise)
1052
+ hare = f(hare)
1053
+ mu += 1
1054
+ yield lam, mu
1055
+
1056
+
1057
+ def composite(nth):
1058
+ """ Return the nth composite number, with the composite numbers indexed as
1059
+ composite(1) = 4, composite(2) = 6, etc....
1060
+
1061
+ Examples
1062
+ ========
1063
+
1064
+ >>> from sympy import composite
1065
+ >>> composite(36)
1066
+ 52
1067
+ >>> composite(1)
1068
+ 4
1069
+ >>> composite(17737)
1070
+ 20000
1071
+
1072
+ See Also
1073
+ ========
1074
+
1075
+ sympy.ntheory.primetest.isprime : Test if n is prime
1076
+ primerange : Generate all primes in a given range
1077
+ primepi : Return the number of primes less than or equal to n
1078
+ prime : Return the nth prime
1079
+ compositepi : Return the number of positive composite numbers less than or equal to n
1080
+ """
1081
+ n = as_int(nth)
1082
+ if n < 1:
1083
+ raise ValueError("nth must be a positive integer; composite(1) == 4")
1084
+ composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18]
1085
+ if n <= 10:
1086
+ return composite_arr[n - 1]
1087
+
1088
+ a, b = 4, sieve._list[-1]
1089
+ if n <= b - _primepi(b) - 1:
1090
+ while a < b - 1:
1091
+ mid = (a + b) >> 1
1092
+ if mid - _primepi(mid) - 1 > n:
1093
+ b = mid
1094
+ else:
1095
+ a = mid
1096
+ if isprime(a):
1097
+ a -= 1
1098
+ return a
1099
+
1100
+ from sympy.functions.elementary.exponential import log
1101
+ from sympy.functions.special.error_functions import li
1102
+ a = 4 # Lower bound for binary search
1103
+ b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.
1104
+
1105
+ while a < b:
1106
+ mid = (a + b) >> 1
1107
+ if mid - li(mid) - 1 > n:
1108
+ b = mid
1109
+ else:
1110
+ a = mid + 1
1111
+
1112
+ n_composites = a - _primepi(a) - 1
1113
+ while n_composites > n:
1114
+ if not isprime(a):
1115
+ n_composites -= 1
1116
+ a -= 1
1117
+ if isprime(a):
1118
+ a -= 1
1119
+ return a
1120
+
1121
+
1122
+ def compositepi(n):
1123
+ """ Return the number of positive composite numbers less than or equal to n.
1124
+ The first positive composite is 4, i.e. compositepi(4) = 1.
1125
+
1126
+ Examples
1127
+ ========
1128
+
1129
+ >>> from sympy import compositepi
1130
+ >>> compositepi(25)
1131
+ 15
1132
+ >>> compositepi(1000)
1133
+ 831
1134
+
1135
+ See Also
1136
+ ========
1137
+
1138
+ sympy.ntheory.primetest.isprime : Test if n is prime
1139
+ primerange : Generate all primes in a given range
1140
+ prime : Return the nth prime
1141
+ primepi : Return the number of primes less than or equal to n
1142
+ composite : Return the nth composite number
1143
+ """
1144
+ n = int(n)
1145
+ if n < 4:
1146
+ return 0
1147
+ return n - _primepi(n) - 1
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/primetest.py ADDED
@@ -0,0 +1,793 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Primality testing
3
+
4
+ """
5
+
6
+ from itertools import count
7
+
8
+ from sympy.core.sympify import sympify
9
+ from sympy.external.gmpy import (gmpy as _gmpy, gcd, jacobi,
10
+ is_square as gmpy_is_square,
11
+ bit_scan1, is_fermat_prp, is_euler_prp,
12
+ is_selfridge_prp, is_strong_selfridge_prp,
13
+ is_strong_bpsw_prp)
14
+ from sympy.external.ntheory import _lucas_sequence
15
+ from sympy.utilities.misc import as_int, filldedent
16
+
17
+ # Note: This list should be updated whenever new Mersenne primes are found.
18
+ # Refer: https://www.mersenne.org/
19
+ MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
20
+ 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
21
+ 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583,
22
+ 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933)
23
+
24
+
25
+ def is_fermat_pseudoprime(n, a):
26
+ r"""Returns True if ``n`` is prime or is an odd composite integer that
27
+ is coprime to ``a`` and satisfy the modular arithmetic congruence relation:
28
+
29
+ .. math ::
30
+ a^{n-1} \equiv 1 \pmod{n}
31
+
32
+ (where mod refers to the modulo operation).
33
+
34
+ Parameters
35
+ ==========
36
+
37
+ n : Integer
38
+ ``n`` is a positive integer.
39
+ a : Integer
40
+ ``a`` is a positive integer.
41
+ ``a`` and ``n`` should be relatively prime.
42
+
43
+ Returns
44
+ =======
45
+
46
+ bool : If ``n`` is prime, it always returns ``True``.
47
+ The composite number that returns ``True`` is called an Fermat pseudoprime.
48
+
49
+ Examples
50
+ ========
51
+
52
+ >>> from sympy.ntheory.primetest import is_fermat_pseudoprime
53
+ >>> from sympy.ntheory.factor_ import isprime
54
+ >>> for n in range(1, 1000):
55
+ ... if is_fermat_pseudoprime(n, 2) and not isprime(n):
56
+ ... print(n)
57
+ 341
58
+ 561
59
+ 645
60
+
61
+ References
62
+ ==========
63
+
64
+ .. [1] https://en.wikipedia.org/wiki/Fermat_pseudoprime
65
+ """
66
+ n, a = as_int(n), as_int(a)
67
+ if a == 1:
68
+ return n == 2 or bool(n % 2)
69
+ return is_fermat_prp(n, a)
70
+
71
+
72
+ def is_euler_pseudoprime(n, a):
73
+ r"""Returns True if ``n`` is prime or is an odd composite integer that
74
+ is coprime to ``a`` and satisfy the modular arithmetic congruence relation:
75
+
76
+ .. math ::
77
+ a^{(n-1)/2} \equiv \pm 1 \pmod{n}
78
+
79
+ (where mod refers to the modulo operation).
80
+
81
+ Parameters
82
+ ==========
83
+
84
+ n : Integer
85
+ ``n`` is a positive integer.
86
+ a : Integer
87
+ ``a`` is a positive integer.
88
+ ``a`` and ``n`` should be relatively prime.
89
+
90
+ Returns
91
+ =======
92
+
93
+ bool : If ``n`` is prime, it always returns ``True``.
94
+ The composite number that returns ``True`` is called an Euler pseudoprime.
95
+
96
+ Examples
97
+ ========
98
+
99
+ >>> from sympy.ntheory.primetest import is_euler_pseudoprime
100
+ >>> from sympy.ntheory.factor_ import isprime
101
+ >>> for n in range(1, 1000):
102
+ ... if is_euler_pseudoprime(n, 2) and not isprime(n):
103
+ ... print(n)
104
+ 341
105
+ 561
106
+
107
+ References
108
+ ==========
109
+
110
+ .. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime
111
+ """
112
+ n, a = as_int(n), as_int(a)
113
+ if a < 1:
114
+ raise ValueError("a should be an integer greater than 0")
115
+ if n < 1:
116
+ raise ValueError("n should be an integer greater than 0")
117
+ if n == 1:
118
+ return False
119
+ if a == 1:
120
+ return n == 2 or bool(n % 2) # (prime or odd composite)
121
+ if n % 2 == 0:
122
+ return n == 2
123
+ if gcd(n, a) != 1:
124
+ raise ValueError("The two numbers should be relatively prime")
125
+ return pow(a, (n - 1) // 2, n) in [1, n - 1]
126
+
127
+
128
+ def is_euler_jacobi_pseudoprime(n, a):
129
+ r"""Returns True if ``n`` is prime or is an odd composite integer that
130
+ is coprime to ``a`` and satisfy the modular arithmetic congruence relation:
131
+
132
+ .. math ::
133
+ a^{(n-1)/2} \equiv \left(\frac{a}{n}\right) \pmod{n}
134
+
135
+ (where mod refers to the modulo operation).
136
+
137
+ Parameters
138
+ ==========
139
+
140
+ n : Integer
141
+ ``n`` is a positive integer.
142
+ a : Integer
143
+ ``a`` is a positive integer.
144
+ ``a`` and ``n`` should be relatively prime.
145
+
146
+ Returns
147
+ =======
148
+
149
+ bool : If ``n`` is prime, it always returns ``True``.
150
+ The composite number that returns ``True`` is called an Euler-Jacobi pseudoprime.
151
+
152
+ Examples
153
+ ========
154
+
155
+ >>> from sympy.ntheory.primetest import is_euler_jacobi_pseudoprime
156
+ >>> from sympy.ntheory.factor_ import isprime
157
+ >>> for n in range(1, 1000):
158
+ ... if is_euler_jacobi_pseudoprime(n, 2) and not isprime(n):
159
+ ... print(n)
160
+ 561
161
+
162
+ References
163
+ ==========
164
+
165
+ .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Jacobi_pseudoprime
166
+ """
167
+ n, a = as_int(n), as_int(a)
168
+ if a == 1:
169
+ return n == 2 or bool(n % 2)
170
+ return is_euler_prp(n, a)
171
+
172
+
173
+ def is_square(n, prep=True):
174
+ """Return True if n == a * a for some integer a, else False.
175
+ If n is suspected of *not* being a square then this is a
176
+ quick method of confirming that it is not.
177
+
178
+ Examples
179
+ ========
180
+
181
+ >>> from sympy.ntheory.primetest import is_square
182
+ >>> is_square(25)
183
+ True
184
+ >>> is_square(2)
185
+ False
186
+
187
+ References
188
+ ==========
189
+
190
+ .. [1] https://mersenneforum.org/showpost.php?p=110896
191
+
192
+ See Also
193
+ ========
194
+ sympy.core.intfunc.isqrt
195
+ """
196
+ if prep:
197
+ n = as_int(n)
198
+ if n < 0:
199
+ return False
200
+ if n in (0, 1):
201
+ return True
202
+ return gmpy_is_square(n)
203
+
204
+
205
+ def _test(n, base, s, t):
206
+ """Miller-Rabin strong pseudoprime test for one base.
207
+ Return False if n is definitely composite, True if n is
208
+ probably prime, with a probability greater than 3/4.
209
+
210
+ """
211
+ # do the Fermat test
212
+ b = pow(base, t, n)
213
+ if b == 1 or b == n - 1:
214
+ return True
215
+ for _ in range(s - 1):
216
+ b = pow(b, 2, n)
217
+ if b == n - 1:
218
+ return True
219
+ # see I. Niven et al. "An Introduction to Theory of Numbers", page 78
220
+ if b == 1:
221
+ return False
222
+ return False
223
+
224
+
225
+ def mr(n, bases):
226
+ """Perform a Miller-Rabin strong pseudoprime test on n using a
227
+ given list of bases/witnesses.
228
+
229
+ References
230
+ ==========
231
+
232
+ .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
233
+ A Computational Perspective", Springer, 2nd edition, 135-138
234
+
235
+ A list of thresholds and the bases they require are here:
236
+ https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
237
+
238
+ Examples
239
+ ========
240
+
241
+ >>> from sympy.ntheory.primetest import mr
242
+ >>> mr(1373651, [2, 3])
243
+ False
244
+ >>> mr(479001599, [31, 73])
245
+ True
246
+
247
+ """
248
+ from sympy.polys.domains import ZZ
249
+
250
+ n = as_int(n)
251
+ if n < 2:
252
+ return False
253
+ # remove powers of 2 from n-1 (= t * 2**s)
254
+ s = bit_scan1(n - 1)
255
+ t = n >> s
256
+ for base in bases:
257
+ # Bases >= n are wrapped, bases < 2 are invalid
258
+ if base >= n:
259
+ base %= n
260
+ if base >= 2:
261
+ base = ZZ(base)
262
+ if not _test(n, base, s, t):
263
+ return False
264
+ return True
265
+
266
+
267
+ def _lucas_extrastrong_params(n):
268
+ """Calculates the "extra strong" parameters (D, P, Q) for n.
269
+
270
+ Parameters
271
+ ==========
272
+
273
+ n : int
274
+ positive odd integer
275
+
276
+ Returns
277
+ =======
278
+
279
+ D, P, Q: "extra strong" parameters.
280
+ ``(0, 0, 0)`` if we find a nontrivial divisor of ``n``.
281
+
282
+ Examples
283
+ ========
284
+
285
+ >>> from sympy.ntheory.primetest import _lucas_extrastrong_params
286
+ >>> _lucas_extrastrong_params(101)
287
+ (12, 4, 1)
288
+ >>> _lucas_extrastrong_params(15)
289
+ (0, 0, 0)
290
+
291
+ References
292
+ ==========
293
+ .. [1] OEIS A217719: Extra Strong Lucas Pseudoprimes
294
+ https://oeis.org/A217719
295
+ .. [2] https://en.wikipedia.org/wiki/Lucas_pseudoprime
296
+
297
+ """
298
+ for P in count(3):
299
+ D = P**2 - 4
300
+ j = jacobi(D, n)
301
+ if j == -1:
302
+ return (D, P, 1)
303
+ elif j == 0 and D % n:
304
+ return (0, 0, 0)
305
+
306
+
307
+ def is_lucas_prp(n):
308
+ """Standard Lucas compositeness test with Selfridge parameters. Returns
309
+ False if n is definitely composite, and True if n is a Lucas probable
310
+ prime.
311
+
312
+ This is typically used in combination with the Miller-Rabin test.
313
+
314
+ References
315
+ ==========
316
+ .. [1] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
317
+ Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
318
+ https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
319
+ http://mpqs.free.fr/LucasPseudoprimes.pdf
320
+ .. [2] OEIS A217120: Lucas Pseudoprimes
321
+ https://oeis.org/A217120
322
+ .. [3] https://en.wikipedia.org/wiki/Lucas_pseudoprime
323
+
324
+ Examples
325
+ ========
326
+
327
+ >>> from sympy.ntheory.primetest import isprime, is_lucas_prp
328
+ >>> for i in range(10000):
329
+ ... if is_lucas_prp(i) and not isprime(i):
330
+ ... print(i)
331
+ 323
332
+ 377
333
+ 1159
334
+ 1829
335
+ 3827
336
+ 5459
337
+ 5777
338
+ 9071
339
+ 9179
340
+ """
341
+ n = as_int(n)
342
+ if n < 2:
343
+ return False
344
+ return is_selfridge_prp(n)
345
+
346
+
347
+ def is_strong_lucas_prp(n):
348
+ """Strong Lucas compositeness test with Selfridge parameters. Returns
349
+ False if n is definitely composite, and True if n is a strong Lucas
350
+ probable prime.
351
+
352
+ This is often used in combination with the Miller-Rabin test, and
353
+ in particular, when combined with M-R base 2 creates the strong BPSW test.
354
+
355
+ References
356
+ ==========
357
+ .. [1] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
358
+ Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
359
+ https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
360
+ http://mpqs.free.fr/LucasPseudoprimes.pdf
361
+ .. [2] OEIS A217255: Strong Lucas Pseudoprimes
362
+ https://oeis.org/A217255
363
+ .. [3] https://en.wikipedia.org/wiki/Lucas_pseudoprime
364
+ .. [4] https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
365
+
366
+ Examples
367
+ ========
368
+
369
+ >>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp
370
+ >>> for i in range(20000):
371
+ ... if is_strong_lucas_prp(i) and not isprime(i):
372
+ ... print(i)
373
+ 5459
374
+ 5777
375
+ 10877
376
+ 16109
377
+ 18971
378
+ """
379
+ n = as_int(n)
380
+ if n < 2:
381
+ return False
382
+ return is_strong_selfridge_prp(n)
383
+
384
+
385
+ def is_extra_strong_lucas_prp(n):
386
+ """Extra Strong Lucas compositeness test. Returns False if n is
387
+ definitely composite, and True if n is an "extra strong" Lucas probable
388
+ prime.
389
+
390
+ The parameters are selected using P = 3, Q = 1, then incrementing P until
391
+ (D|n) == -1. The test itself is as defined in [1]_, from the
392
+ Mo and Jones preprint. The parameter selection and test are the same as
393
+ used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime
394
+ page on Wikipedia.
395
+
396
+ It is 20-50% faster than the strong test.
397
+
398
+ Because of the different parameters selected, there is no relationship
399
+ between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes.
400
+ In particular, one is not a subset of the other.
401
+
402
+ References
403
+ ==========
404
+ .. [1] Jon Grantham, Frobenius Pseudoprimes,
405
+ Math. Comp. Vol 70, Number 234 (2001), pp. 873-891,
406
+ https://doi.org/10.1090%2FS0025-5718-00-01197-2
407
+ .. [2] OEIS A217719: Extra Strong Lucas Pseudoprimes
408
+ https://oeis.org/A217719
409
+ .. [3] https://en.wikipedia.org/wiki/Lucas_pseudoprime
410
+
411
+ Examples
412
+ ========
413
+
414
+ >>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp
415
+ >>> for i in range(20000):
416
+ ... if is_extra_strong_lucas_prp(i) and not isprime(i):
417
+ ... print(i)
418
+ 989
419
+ 3239
420
+ 5777
421
+ 10877
422
+ """
423
+ # Implementation notes:
424
+ # 1) the parameters differ from Thomas R. Nicely's. His parameter
425
+ # selection leads to pseudoprimes that overlap M-R tests, and
426
+ # contradict Baillie and Wagstaff's suggestion of (D|n) = -1.
427
+ # 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas
428
+ # sequence must have Q=1. See Grantham theorem 2.3, any of the
429
+ # references on the MathWorld page, or run it and see Q=-1 is wrong.
430
+ n = as_int(n)
431
+ if n == 2:
432
+ return True
433
+ if n < 2 or (n % 2) == 0:
434
+ return False
435
+ if gmpy_is_square(n):
436
+ return False
437
+
438
+ D, P, Q = _lucas_extrastrong_params(n)
439
+ if D == 0:
440
+ return False
441
+
442
+ # remove powers of 2 from n+1 (= k * 2**s)
443
+ s = bit_scan1(n + 1)
444
+ k = (n + 1) >> s
445
+
446
+ U, V, _ = _lucas_sequence(n, P, Q, k)
447
+
448
+ if U == 0 and (V == 2 or V == n - 2):
449
+ return True
450
+ for _ in range(1, s):
451
+ if V == 0:
452
+ return True
453
+ V = (V*V - 2) % n
454
+ return False
455
+
456
+
457
+ def proth_test(n):
458
+ r""" Test if the Proth number `n = k2^m + 1` is prime. where k is a positive odd number and `2^m > k`.
459
+
460
+ Parameters
461
+ ==========
462
+
463
+ n : Integer
464
+ ``n`` is Proth number
465
+
466
+ Returns
467
+ =======
468
+
469
+ bool : If ``True``, then ``n`` is the Proth prime
470
+
471
+ Raises
472
+ ======
473
+
474
+ ValueError
475
+ If ``n`` is not Proth number.
476
+
477
+ Examples
478
+ ========
479
+
480
+ >>> from sympy.ntheory.primetest import proth_test
481
+ >>> proth_test(41)
482
+ True
483
+ >>> proth_test(57)
484
+ False
485
+
486
+ References
487
+ ==========
488
+
489
+ .. [1] https://en.wikipedia.org/wiki/Proth_prime
490
+
491
+ """
492
+ n = as_int(n)
493
+ if n < 3:
494
+ raise ValueError("n is not Proth number")
495
+ m = bit_scan1(n - 1)
496
+ k = n >> m
497
+ if m < k.bit_length():
498
+ raise ValueError("n is not Proth number")
499
+ if n % 3 == 0:
500
+ return n == 3
501
+ if k % 3: # n % 12 == 5
502
+ return pow(3, n >> 1, n) == n - 1
503
+ # If `n` is a square number, then `jacobi(a, n) = 1` for any `a`
504
+ if gmpy_is_square(n):
505
+ return False
506
+ # `a` may be chosen at random.
507
+ # In any case, we want to find `a` such that `jacobi(a, n) = -1`.
508
+ for a in range(5, n):
509
+ j = jacobi(a, n)
510
+ if j == -1:
511
+ return pow(a, n >> 1, n) == n - 1
512
+ if j == 0:
513
+ return False
514
+
515
+
516
+ def _lucas_lehmer_primality_test(p):
517
+ r""" Test if the Mersenne number `M_p = 2^p-1` is prime.
518
+
519
+ Parameters
520
+ ==========
521
+
522
+ p : int
523
+ ``p`` is an odd prime number
524
+
525
+ Returns
526
+ =======
527
+
528
+ bool : If ``True``, then `M_p` is the Mersenne prime
529
+
530
+ Examples
531
+ ========
532
+
533
+ >>> from sympy.ntheory.primetest import _lucas_lehmer_primality_test
534
+ >>> _lucas_lehmer_primality_test(5) # 2**5 - 1 = 31 is prime
535
+ True
536
+ >>> _lucas_lehmer_primality_test(11) # 2**11 - 1 = 2047 is not prime
537
+ False
538
+
539
+ See Also
540
+ ========
541
+
542
+ is_mersenne_prime
543
+
544
+ References
545
+ ==========
546
+
547
+ .. [1] https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
548
+
549
+ """
550
+ v = 4
551
+ m = 2**p - 1
552
+ for _ in range(p - 2):
553
+ v = pow(v, 2, m) - 2
554
+ return v == 0
555
+
556
+
557
+ def is_mersenne_prime(n):
558
+ """Returns True if ``n`` is a Mersenne prime, else False.
559
+
560
+ A Mersenne prime is a prime number having the form `2^i - 1`.
561
+
562
+ Examples
563
+ ========
564
+
565
+ >>> from sympy.ntheory.factor_ import is_mersenne_prime
566
+ >>> is_mersenne_prime(6)
567
+ False
568
+ >>> is_mersenne_prime(127)
569
+ True
570
+
571
+ References
572
+ ==========
573
+
574
+ .. [1] https://mathworld.wolfram.com/MersennePrime.html
575
+
576
+ """
577
+ n = as_int(n)
578
+ if n < 1:
579
+ return False
580
+ if n & (n + 1):
581
+ # n is not Mersenne number
582
+ return False
583
+ p = n.bit_length()
584
+ if p in MERSENNE_PRIME_EXPONENTS:
585
+ return True
586
+ if p < 65_000_000 or not isprime(p):
587
+ # According to GIMPS, verification was completed on September 19, 2023 for p less than 65 million.
588
+ # https://www.mersenne.org/report_milestones/
589
+ # If p is composite number, then n=2**p-1 is composite number.
590
+ return False
591
+ result = _lucas_lehmer_primality_test(p)
592
+ if result:
593
+ raise ValueError(filldedent('''
594
+ This Mersenne Prime, 2^%s - 1, should
595
+ be added to SymPy's known values.''' % p))
596
+ return result
597
+
598
+
599
+ def isprime(n):
600
+ """
601
+ Test if n is a prime number (True) or not (False). For n < 2^64 the
602
+ answer is definitive; larger n values have a small probability of actually
603
+ being pseudoprimes.
604
+
605
+ Negative numbers (e.g. -2) are not considered prime.
606
+
607
+ The first step is looking for trivial factors, which if found enables
608
+ a quick return. Next, if the sieve is large enough, use bisection search
609
+ on the sieve. For small numbers, a set of deterministic Miller-Rabin
610
+ tests are performed with bases that are known to have no counterexamples
611
+ in their range. Finally if the number is larger than 2^64, a strong
612
+ BPSW test is performed. While this is a probable prime test and we
613
+ believe counterexamples exist, there are no known counterexamples.
614
+
615
+ Examples
616
+ ========
617
+
618
+ >>> from sympy.ntheory import isprime
619
+ >>> isprime(13)
620
+ True
621
+ >>> isprime(15)
622
+ False
623
+
624
+ Notes
625
+ =====
626
+
627
+ This routine is intended only for integer input, not numerical
628
+ expressions which may represent numbers. Floats are also
629
+ rejected as input because they represent numbers of limited
630
+ precision. While it is tempting to permit 7.0 to represent an
631
+ integer there are errors that may "pass silently" if this is
632
+ allowed:
633
+
634
+ >>> from sympy import Float, S
635
+ >>> int(1e3) == 1e3 == 10**3
636
+ True
637
+ >>> int(1e23) == 1e23
638
+ True
639
+ >>> int(1e23) == 10**23
640
+ False
641
+
642
+ >>> near_int = 1 + S(1)/10**19
643
+ >>> near_int == int(near_int)
644
+ False
645
+ >>> n = Float(near_int, 10) # truncated by precision
646
+ >>> n % 1 == 0
647
+ True
648
+ >>> n = Float(near_int, 20)
649
+ >>> n % 1 == 0
650
+ False
651
+
652
+ See Also
653
+ ========
654
+
655
+ sympy.ntheory.generate.primerange : Generates all primes in a given range
656
+ sympy.functions.combinatorial.numbers.primepi : Return the number of primes less than or equal to n
657
+ sympy.ntheory.generate.prime : Return the nth prime
658
+
659
+ References
660
+ ==========
661
+ .. [1] https://en.wikipedia.org/wiki/Strong_pseudoprime
662
+ .. [2] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
663
+ Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
664
+ https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
665
+ http://mpqs.free.fr/LucasPseudoprimes.pdf
666
+ .. [3] https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
667
+ """
668
+ n = as_int(n)
669
+
670
+ # Step 1, do quick composite testing via trial division. The individual
671
+ # modulo tests benchmark faster than one or two primorial igcds for me.
672
+ # The point here is just to speedily handle small numbers and many
673
+ # composites. Step 2 only requires that n <= 2 get handled here.
674
+ if n in [2, 3, 5]:
675
+ return True
676
+ if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0:
677
+ return False
678
+ if n < 49:
679
+ return True
680
+ if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \
681
+ (n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \
682
+ (n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0:
683
+ return False
684
+ if n < 2809:
685
+ return True
686
+ if n < 65077:
687
+ # There are only five Euler pseudoprimes with a least prime factor greater than 47
688
+ return pow(2, n >> 1, n) in [1, n - 1] and n not in [8321, 31621, 42799, 49141, 49981]
689
+
690
+ # bisection search on the sieve if the sieve is large enough
691
+ from sympy.ntheory.generate import sieve as s
692
+ if n <= s._list[-1]:
693
+ l, u = s.search(n)
694
+ return l == u
695
+
696
+ # If we have GMPY2, skip straight to step 3 and do a strong BPSW test.
697
+ # This should be a bit faster than our step 2, and for large values will
698
+ # be a lot faster than our step 3 (C+GMP vs. Python).
699
+ if _gmpy is not None:
700
+ return is_strong_bpsw_prp(n)
701
+
702
+
703
+ # Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See:
704
+ # https://miller-rabin.appspot.com/
705
+ # for lists. We have made sure the M-R routine will successfully handle
706
+ # bases larger than n, so we can use the minimal set.
707
+ # In September 2015 deterministic numbers were extended to over 2^81.
708
+ # https://arxiv.org/pdf/1509.00864.pdf
709
+ # https://oeis.org/A014233
710
+ if n < 341531:
711
+ return mr(n, [9345883071009581737])
712
+ if n < 885594169:
713
+ return mr(n, [725270293939359937, 3569819667048198375])
714
+ if n < 350269456337:
715
+ return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375])
716
+ if n < 55245642489451:
717
+ return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650])
718
+ if n < 7999252175582851:
719
+ return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805])
720
+ if n < 585226005592931977:
721
+ return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375])
722
+ if n < 18446744073709551616:
723
+ return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
724
+ if n < 318665857834031151167461:
725
+ return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37])
726
+ if n < 3317044064679887385961981:
727
+ return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41])
728
+
729
+ # We could do this instead at any point:
730
+ #if n < 18446744073709551616:
731
+ # return mr(n, [2]) and is_extra_strong_lucas_prp(n)
732
+
733
+ # Here are tests that are safe for MR routines that don't understand
734
+ # large bases.
735
+ #if n < 9080191:
736
+ # return mr(n, [31, 73])
737
+ #if n < 19471033:
738
+ # return mr(n, [2, 299417])
739
+ #if n < 38010307:
740
+ # return mr(n, [2, 9332593])
741
+ #if n < 316349281:
742
+ # return mr(n, [11000544, 31481107])
743
+ #if n < 4759123141:
744
+ # return mr(n, [2, 7, 61])
745
+ #if n < 105936894253:
746
+ # return mr(n, [2, 1005905886, 1340600841])
747
+ #if n < 31858317218647:
748
+ # return mr(n, [2, 642735, 553174392, 3046413974])
749
+ #if n < 3071837692357849:
750
+ # return mr(n, [2, 75088, 642735, 203659041, 3613982119])
751
+ #if n < 18446744073709551616:
752
+ # return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
753
+
754
+ # Step 3: BPSW.
755
+ #
756
+ # Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed
757
+ # 44.0s old isprime using 46 bases
758
+ # 5.3s strong BPSW + one random base
759
+ # 4.3s extra strong BPSW + one random base
760
+ # 4.1s strong BPSW
761
+ # 3.2s extra strong BPSW
762
+
763
+ # Classic BPSW from page 1401 of the paper. See alternate ideas below.
764
+ return is_strong_bpsw_prp(n)
765
+
766
+ # Using extra strong test, which is somewhat faster
767
+ #return mr(n, [2]) and is_extra_strong_lucas_prp(n)
768
+
769
+ # Add a random M-R base
770
+ #import random
771
+ #return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n)
772
+
773
+
774
+ def is_gaussian_prime(num):
775
+ r"""Test if num is a Gaussian prime number.
776
+
777
+ References
778
+ ==========
779
+
780
+ .. [1] https://oeis.org/wiki/Gaussian_primes
781
+ """
782
+
783
+ num = sympify(num)
784
+ a, b = num.as_real_imag()
785
+ a = as_int(a, strict=False)
786
+ b = as_int(b, strict=False)
787
+ if a == 0:
788
+ b = abs(b)
789
+ return isprime(b) and b % 4 == 3
790
+ elif b == 0:
791
+ a = abs(a)
792
+ return isprime(a) and a % 4 == 3
793
+ return isprime(a**2 + b**2)
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/qs.py ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.random import _randint
2
+ from sympy.external.gmpy import gcd, invert, sqrt as isqrt
3
+ from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
4
+ from sympy.ntheory import isprime
5
+ from math import log, sqrt
6
+
7
+
8
+ class SievePolynomial:
9
+ def __init__(self, modified_coeff=(), a=None, b=None):
10
+ """This class denotes the seive polynomial.
11
+ If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded
12
+ to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient
13
+ is stored in the form `[a**2, 2*a*b, b**2 - N]`. This
14
+ ensures faster `eval` method because we dont have to
15
+ perform `a**2, 2*a*b, b**2` every time we call the
16
+ `eval` method. As multiplication is more expensive
17
+ than addition, by using modified_coefficient we get
18
+ a faster seiving process.
19
+
20
+ Parameters
21
+ ==========
22
+
23
+ modified_coeff : modified_coefficient of sieve polynomial
24
+ a : parameter of the sieve polynomial
25
+ b : parameter of the sieve polynomial
26
+ """
27
+ self.modified_coeff = modified_coeff
28
+ self.a = a
29
+ self.b = b
30
+
31
+ def eval(self, x):
32
+ """
33
+ Compute the value of the sieve polynomial at point x.
34
+
35
+ Parameters
36
+ ==========
37
+
38
+ x : Integer parameter for sieve polynomial
39
+ """
40
+ ans = 0
41
+ for coeff in self.modified_coeff:
42
+ ans *= x
43
+ ans += coeff
44
+ return ans
45
+
46
+
47
+ class FactorBaseElem:
48
+ """This class stores an element of the `factor_base`.
49
+ """
50
+ def __init__(self, prime, tmem_p, log_p):
51
+ """
52
+ Initialization of factor_base_elem.
53
+
54
+ Parameters
55
+ ==========
56
+
57
+ prime : prime number of the factor_base
58
+ tmem_p : Integer square root of x**2 = n mod prime
59
+ log_p : Compute Natural Logarithm of the prime
60
+ """
61
+ self.prime = prime
62
+ self.tmem_p = tmem_p
63
+ self.log_p = log_p
64
+ self.soln1 = None
65
+ self.soln2 = None
66
+ self.a_inv = None
67
+ self.b_ainv = None
68
+
69
+
70
+ def _generate_factor_base(prime_bound, n):
71
+ """Generate `factor_base` for Quadratic Sieve. The `factor_base`
72
+ consists of all the points whose ``legendre_symbol(n, p) == 1``
73
+ and ``p < num_primes``. Along with the prime `factor_base` also stores
74
+ natural logarithm of prime and the residue n modulo p.
75
+ It also returns the of primes numbers in the `factor_base` which are
76
+ close to 1000 and 5000.
77
+
78
+ Parameters
79
+ ==========
80
+
81
+ prime_bound : upper prime bound of the factor_base
82
+ n : integer to be factored
83
+ """
84
+ from sympy.ntheory.generate import sieve
85
+ factor_base = []
86
+ idx_1000, idx_5000 = None, None
87
+ for prime in sieve.primerange(1, prime_bound):
88
+ if pow(n, (prime - 1) // 2, prime) == 1:
89
+ if prime > 1000 and idx_1000 is None:
90
+ idx_1000 = len(factor_base) - 1
91
+ if prime > 5000 and idx_5000 is None:
92
+ idx_5000 = len(factor_base) - 1
93
+ residue = _sqrt_mod_prime_power(n, prime, 1)[0]
94
+ log_p = round(log(prime)*2**10)
95
+ factor_base.append(FactorBaseElem(prime, residue, log_p))
96
+ return idx_1000, idx_5000, factor_base
97
+
98
+
99
+ def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None):
100
+ """This step is the initialization of the 1st sieve polynomial.
101
+ Here `a` is selected as a product of several primes of the factor_base
102
+ such that `a` is about to ``sqrt(2*N) / M``. Other initial values of
103
+ factor_base elem are also initialized which includes a_inv, b_ainv, soln1,
104
+ soln2 which are used when the sieve polynomial is changed. The b_ainv
105
+ is required for fast polynomial change as we do not have to calculate
106
+ `2*b*invert(a, prime)` every time.
107
+ We also ensure that the `factor_base` primes which make `a` are between
108
+ 1000 and 5000.
109
+
110
+ Parameters
111
+ ==========
112
+
113
+ N : Number to be factored
114
+ M : sieve interval
115
+ factor_base : factor_base primes
116
+ idx_1000 : index of prime number in the factor_base near 1000
117
+ idx_5000 : index of prime number in the factor_base near to 5000
118
+ seed : Generate pseudoprime numbers
119
+ """
120
+ randint = _randint(seed)
121
+ approx_val = sqrt(2*N) / M
122
+ # `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a`
123
+ # randomly search for a combination of primes whose multiplication is close to approx_val
124
+ # This multiplication of primes will be `a` and the primes will be `q`
125
+ # `best_a` denotes that `a` is close to approx_val in the random search of combination
126
+ best_a, best_q, best_ratio = None, None, None
127
+ start = 0 if idx_1000 is None else idx_1000
128
+ end = len(factor_base) - 1 if idx_5000 is None else idx_5000
129
+ for _ in range(50):
130
+ a = 1
131
+ q = []
132
+ while(a < approx_val):
133
+ rand_p = 0
134
+ while(rand_p == 0 or rand_p in q):
135
+ rand_p = randint(start, end)
136
+ p = factor_base[rand_p].prime
137
+ a *= p
138
+ q.append(rand_p)
139
+ ratio = a / approx_val
140
+ if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
141
+ best_q = q
142
+ best_a = a
143
+ best_ratio = ratio
144
+
145
+ a = best_a
146
+ q = best_q
147
+
148
+ B = []
149
+ for val in q:
150
+ q_l = factor_base[val].prime
151
+ gamma = factor_base[val].tmem_p * invert(a // q_l, q_l) % q_l
152
+ if gamma > q_l / 2:
153
+ gamma = q_l - gamma
154
+ B.append(a//q_l*gamma)
155
+
156
+ b = sum(B)
157
+ g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
158
+
159
+ for fb in factor_base:
160
+ if a % fb.prime == 0:
161
+ continue
162
+ fb.a_inv = invert(a, fb.prime)
163
+ fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B]
164
+ fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime
165
+ fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime
166
+ return g, B
167
+
168
+
169
+ def _initialize_ith_poly(N, factor_base, i, g, B):
170
+ """Initialization stage of ith poly. After we finish sieving 1`st polynomial
171
+ here we quickly change to the next polynomial from which we will again
172
+ start sieving. Suppose we generated ith sieve polynomial and now we
173
+ want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1``
174
+ where `j` is the number of prime factors of the coefficient `a`
175
+ then this function can be used to go to the next polynomial. If
176
+ ``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage.
177
+
178
+ Parameters
179
+ ==========
180
+
181
+ N : number to be factored
182
+ factor_base : factor_base primes
183
+ i : integer denoting ith polynomial
184
+ g : (i - 1)th polynomial
185
+ B : array that stores a//q_l*gamma
186
+ """
187
+ from sympy.functions.elementary.integers import ceiling
188
+ v = 1
189
+ j = i
190
+ while(j % 2 == 0):
191
+ v += 1
192
+ j //= 2
193
+ if ceiling(i / (2**v)) % 2 == 1:
194
+ neg_pow = -1
195
+ else:
196
+ neg_pow = 1
197
+ b = g.b + 2*neg_pow*B[v - 1]
198
+ a = g.a
199
+ g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
200
+ for fb in factor_base:
201
+ if a % fb.prime == 0:
202
+ continue
203
+ fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
204
+ fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
205
+
206
+ return g
207
+
208
+
209
+ def _gen_sieve_array(M, factor_base):
210
+ """Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
211
+ that does not divide the coefficient `a` we add log_p over the sieve_array
212
+ such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
213
+ is an integer. When p = 2 then log_p is only added using
214
+ ``-M <= soln1 + i*p <= M``.
215
+
216
+ Parameters
217
+ ==========
218
+
219
+ M : sieve interval
220
+ factor_base : factor_base primes
221
+ """
222
+ sieve_array = [0]*(2*M + 1)
223
+ for factor in factor_base:
224
+ if factor.soln1 is None: #The prime does not divides a
225
+ continue
226
+ for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
227
+ sieve_array[idx] += factor.log_p
228
+ if factor.prime == 2:
229
+ continue
230
+ #if prime is 2 then sieve only with soln_1_p
231
+ for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
232
+ sieve_array[idx] += factor.log_p
233
+ return sieve_array
234
+
235
+
236
+ def _check_smoothness(num, factor_base):
237
+ """Here we check that if `num` is a smooth number or not. If `a` is a smooth
238
+ number then it returns a vector of prime exponents modulo 2. For example
239
+ if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then
240
+ `a` is a smooth number and this function returns ([1, 0, 0, 1], True). If
241
+ `a` is a partial relation which means that `a` a has one prime factor
242
+ greater than the `factor_base` then it returns `(a, False)` which denotes `a`
243
+ is a partial relation.
244
+
245
+ Parameters
246
+ ==========
247
+
248
+ a : integer whose smootheness is to be checked
249
+ factor_base : factor_base primes
250
+ """
251
+ vec = []
252
+ if num < 0:
253
+ vec.append(1)
254
+ num *= -1
255
+ else:
256
+ vec.append(0)
257
+ #-1 is not included in factor_base add -1 in vector
258
+ for factor in factor_base:
259
+ if num % factor.prime != 0:
260
+ vec.append(0)
261
+ continue
262
+ factor_exp = 0
263
+ while num % factor.prime == 0:
264
+ factor_exp += 1
265
+ num //= factor.prime
266
+ vec.append(factor_exp % 2)
267
+ if num == 1:
268
+ return vec, True
269
+ if isprime(num):
270
+ return num, False
271
+ return None, None
272
+
273
+
274
+ def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
275
+ """Trial division stage. Here we trial divide the values generetated
276
+ by sieve_poly in the sieve interval and if it is a smooth number then
277
+ it is stored in `smooth_relations`. Moreover, if we find two partial relations
278
+ with same large prime then they are combined to form a smooth relation.
279
+ First we iterate over sieve array and look for values which are greater
280
+ than accumulated_val, as these values have a high chance of being smooth
281
+ number. Then using these values we find smooth relations.
282
+ In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
283
+ with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
284
+ to form a smooth relation.
285
+
286
+ Parameters
287
+ ==========
288
+
289
+ N : Number to be factored
290
+ M : sieve interval
291
+ factor_base : factor_base primes
292
+ sieve_array : stores log_p values
293
+ sieve_poly : polynomial from which we find smooth relations
294
+ partial_relations : stores partial relations with one large prime
295
+ ERROR_TERM : error term for accumulated_val
296
+ """
297
+ sqrt_n = isqrt(N)
298
+ accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM
299
+ smooth_relations = []
300
+ proper_factor = set()
301
+ partial_relation_upper_bound = 128*factor_base[-1].prime
302
+ for idx, val in enumerate(sieve_array):
303
+ if val < accumulated_val:
304
+ continue
305
+ x = idx - M
306
+ v = sieve_poly.eval(x)
307
+ vec, is_smooth = _check_smoothness(v, factor_base)
308
+ if is_smooth is None:#Neither smooth nor partial
309
+ continue
310
+ u = sieve_poly.a*x + sieve_poly.b
311
+ # Update the partial relation
312
+ # If 2 partial relation with same large prime is found then generate smooth relation
313
+ if is_smooth is False:#partial relation found
314
+ large_prime = vec
315
+ #Consider the large_primes under 128*F
316
+ if large_prime > partial_relation_upper_bound:
317
+ continue
318
+ if large_prime not in partial_relations:
319
+ partial_relations[large_prime] = (u, v)
320
+ continue
321
+ else:
322
+ u_prev, v_prev = partial_relations[large_prime]
323
+ partial_relations.pop(large_prime)
324
+ try:
325
+ large_prime_inv = invert(large_prime, N)
326
+ except ZeroDivisionError:#if large_prime divides N
327
+ proper_factor.add(large_prime)
328
+ continue
329
+ u = u*u_prev*large_prime_inv
330
+ v = v*v_prev // (large_prime*large_prime)
331
+ vec, is_smooth = _check_smoothness(v, factor_base)
332
+ #assert u*u % N == v % N
333
+ smooth_relations.append((u, v, vec))
334
+ return smooth_relations, proper_factor
335
+
336
+
337
+ #LINEAR ALGEBRA STAGE
338
+ def _build_matrix(smooth_relations):
339
+ """Build a 2D matrix from smooth relations.
340
+
341
+ Parameters
342
+ ==========
343
+
344
+ smooth_relations : Stores smooth relations
345
+ """
346
+ matrix = []
347
+ for s_relation in smooth_relations:
348
+ matrix.append(s_relation[2])
349
+ return matrix
350
+
351
+
352
+ def _gauss_mod_2(A):
353
+ """Fast gaussian reduction for modulo 2 matrix.
354
+
355
+ Parameters
356
+ ==========
357
+
358
+ A : Matrix
359
+
360
+ Examples
361
+ ========
362
+
363
+ >>> from sympy.ntheory.qs import _gauss_mod_2
364
+ >>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]])
365
+ ([[[1, 0, 1], 3]],
366
+ [True, True, True, False],
367
+ [[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]])
368
+
369
+ Reference
370
+ ==========
371
+
372
+ .. [1] A fast algorithm for gaussian elimination over GF(2) and
373
+ its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige"""
374
+ import copy
375
+ matrix = copy.deepcopy(A)
376
+ row = len(matrix)
377
+ col = len(matrix[0])
378
+ mark = [False]*row
379
+ for c in range(col):
380
+ for r in range(row):
381
+ if matrix[r][c] == 1:
382
+ break
383
+ mark[r] = True
384
+ for c1 in range(col):
385
+ if c1 == c:
386
+ continue
387
+ if matrix[r][c1] == 1:
388
+ for r2 in range(row):
389
+ matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2
390
+ dependent_row = []
391
+ for idx, val in enumerate(mark):
392
+ if val == False:
393
+ dependent_row.append([matrix[idx], idx])
394
+ return dependent_row, mark, matrix
395
+
396
+
397
+ def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N):
398
+ """Finds proper factor of N. Here, transform the dependent rows as a
399
+ combination of independent rows of the gauss_matrix to form the desired
400
+ relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation
401
+ we obtain a proper factor of N by `gcd(X - Y, N)`.
402
+
403
+ Parameters
404
+ ==========
405
+
406
+ dependent_rows : denoted dependent rows in the reduced matrix form
407
+ mark : boolean array to denoted dependent and independent rows
408
+ gauss_matrix : Reduced form of the smooth relations matrix
409
+ index : denoted the index of the dependent_rows
410
+ smooth_relations : Smooth relations vectors matrix
411
+ N : Number to be factored
412
+ """
413
+ idx_in_smooth = dependent_rows[index][1]
414
+ independent_u = [smooth_relations[idx_in_smooth][0]]
415
+ independent_v = [smooth_relations[idx_in_smooth][1]]
416
+ dept_row = dependent_rows[index][0]
417
+
418
+ for idx, val in enumerate(dept_row):
419
+ if val == 1:
420
+ for row in range(len(gauss_matrix)):
421
+ if gauss_matrix[row][idx] == 1 and mark[row] == True:
422
+ independent_u.append(smooth_relations[row][0])
423
+ independent_v.append(smooth_relations[row][1])
424
+ break
425
+
426
+ u = 1
427
+ v = 1
428
+ for i in independent_u:
429
+ u *= i
430
+ for i in independent_v:
431
+ v *= i
432
+ #assert u**2 % N == v % N
433
+ v = isqrt(v)
434
+ return gcd(u - v, N)
435
+
436
+
437
+ def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
438
+ """Performs factorization using Self-Initializing Quadratic Sieve.
439
+ In SIQS, let N be a number to be factored, and this N should not be a
440
+ perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
441
+ ``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
442
+ In order to find these integers X and Y we try to find relations of form
443
+ t**2 = u modN where u is a product of small primes. If we have enough of
444
+ these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
445
+ the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.
446
+
447
+ Here, several optimizations are done like using multiple polynomials for
448
+ sieving, fast changing between polynomials and using partial relations.
449
+ The use of partial relations can speeds up the factoring by 2 times.
450
+
451
+ Parameters
452
+ ==========
453
+
454
+ N : Number to be Factored
455
+ prime_bound : upper bound for primes in the factor base
456
+ M : Sieve Interval
457
+ ERROR_TERM : Error term for checking smoothness
458
+ threshold : Extra smooth relations for factorization
459
+ seed : generate pseudo prime numbers
460
+
461
+ Examples
462
+ ========
463
+
464
+ >>> from sympy.ntheory import qs
465
+ >>> qs(25645121643901801, 2000, 10000)
466
+ {5394769, 4753701529}
467
+ >>> qs(9804659461513846513, 2000, 10000)
468
+ {4641991, 2112166839943}
469
+
470
+ References
471
+ ==========
472
+
473
+ .. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
474
+ .. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
475
+ """
476
+ ERROR_TERM*=2**10
477
+ idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
478
+ smooth_relations = []
479
+ ith_poly = 0
480
+ partial_relations = {}
481
+ proper_factor = set()
482
+ threshold = 5*len(factor_base) // 100
483
+ while True:
484
+ if ith_poly == 0:
485
+ ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000)
486
+ else:
487
+ ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array)
488
+ ith_poly += 1
489
+ if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial
490
+ ith_poly = 0
491
+ sieve_array = _gen_sieve_array(M, factor_base)
492
+ s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM)
493
+ smooth_relations += s_rel
494
+ proper_factor |= p_f
495
+ if len(smooth_relations) >= len(factor_base) + threshold:
496
+ break
497
+ matrix = _build_matrix(smooth_relations)
498
+ dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
499
+ N_copy = N
500
+ for index in range(len(dependent_row)):
501
+ factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N)
502
+ if factor > 1 and factor < N:
503
+ proper_factor.add(factor)
504
+ while(N_copy % factor == 0):
505
+ N_copy //= factor
506
+ if isprime(N_copy):
507
+ proper_factor.add(N_copy)
508
+ break
509
+ if(N_copy == 1):
510
+ break
511
+ return proper_factor
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/residue_ntheory.py ADDED
@@ -0,0 +1,1954 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from sympy.external.gmpy import (gcd, lcm, invert, sqrt, jacobi,
4
+ bit_scan1, remove)
5
+ from sympy.polys import Poly
6
+ from sympy.polys.domains import ZZ
7
+ from sympy.polys.galoistools import gf_crt1, gf_crt2, linear_congruence, gf_csolve
8
+ from .primetest import isprime
9
+ from .generate import primerange
10
+ from .factor_ import factorint, _perfect_power
11
+ from .modular import crt
12
+ from sympy.utilities.decorator import deprecated
13
+ from sympy.utilities.memoization import recurrence_memo
14
+ from sympy.utilities.misc import as_int
15
+ from sympy.utilities.iterables import iproduct
16
+ from sympy.core.random import _randint, randint
17
+
18
+ from itertools import product
19
+
20
+
21
+ def n_order(a, n):
22
+ r""" Returns the order of ``a`` modulo ``n``.
23
+
24
+ Explanation
25
+ ===========
26
+
27
+ The order of ``a`` modulo ``n`` is the smallest integer
28
+ ``k`` such that `a^k` leaves a remainder of 1 with ``n``.
29
+
30
+ Parameters
31
+ ==========
32
+
33
+ a : integer
34
+ n : integer, n > 1. a and n should be relatively prime
35
+
36
+ Returns
37
+ =======
38
+
39
+ int : the order of ``a`` modulo ``n``
40
+
41
+ Raises
42
+ ======
43
+
44
+ ValueError
45
+ If `n \le 1` or `\gcd(a, n) \neq 1`.
46
+ If ``a`` or ``n`` is not an integer.
47
+
48
+ Examples
49
+ ========
50
+
51
+ >>> from sympy.ntheory import n_order
52
+ >>> n_order(3, 7)
53
+ 6
54
+ >>> n_order(4, 7)
55
+ 3
56
+
57
+ See Also
58
+ ========
59
+
60
+ is_primitive_root
61
+ We say that ``a`` is a primitive root of ``n``
62
+ when the order of ``a`` modulo ``n`` equals ``totient(n)``
63
+
64
+ """
65
+ a, n = as_int(a), as_int(n)
66
+ if n <= 1:
67
+ raise ValueError("n should be an integer greater than 1")
68
+ a = a % n
69
+ # Trivial
70
+ if a == 1:
71
+ return 1
72
+ if gcd(a, n) != 1:
73
+ raise ValueError("The two numbers should be relatively prime")
74
+ a_order = 1
75
+ for p, e in factorint(n).items():
76
+ pe = p**e
77
+ pe_order = (p - 1) * p**(e - 1)
78
+ factors = factorint(p - 1)
79
+ if e > 1:
80
+ factors[p] = e - 1
81
+ order = 1
82
+ for px, ex in factors.items():
83
+ x = pow(a, pe_order // px**ex, pe)
84
+ while x != 1:
85
+ x = pow(x, px, pe)
86
+ order *= px
87
+ a_order = lcm(a_order, order)
88
+ return int(a_order)
89
+
90
+
91
+ def _primitive_root_prime_iter(p):
92
+ r""" Generates the primitive roots for a prime ``p``.
93
+
94
+ Explanation
95
+ ===========
96
+
97
+ The primitive roots generated are not necessarily sorted.
98
+ However, the first one is the smallest primitive root.
99
+
100
+ Find the element whose order is ``p-1`` from the smaller one.
101
+ If we can find the first primitive root ``g``, we can use the following theorem.
102
+
103
+ .. math ::
104
+ \operatorname{ord}(g^k) = \frac{\operatorname{ord}(g)}{\gcd(\operatorname{ord}(g), k)}
105
+
106
+ From the assumption that `\operatorname{ord}(g)=p-1`,
107
+ it is a necessary and sufficient condition for
108
+ `\operatorname{ord}(g^k)=p-1` that `\gcd(p-1, k)=1`.
109
+
110
+ Parameters
111
+ ==========
112
+
113
+ p : odd prime
114
+
115
+ Yields
116
+ ======
117
+
118
+ int
119
+ the primitive roots of ``p``
120
+
121
+ Examples
122
+ ========
123
+
124
+ >>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter
125
+ >>> sorted(_primitive_root_prime_iter(19))
126
+ [2, 3, 10, 13, 14, 15]
127
+
128
+ References
129
+ ==========
130
+
131
+ .. [1] W. Stein "Elementary Number Theory" (2011), page 44
132
+
133
+ """
134
+ if p == 3:
135
+ yield 2
136
+ return
137
+ # Let p = +-1 (mod 4a). Legendre symbol (a/p) = 1, so `a` is not the primitive root.
138
+ # Corollary : If p = +-1 (mod 8), then 2 is not the primitive root of p.
139
+ g_min = 3 if p % 8 in [1, 7] else 2
140
+ if p < 41:
141
+ # small case
142
+ g = 5 if p == 23 else g_min
143
+ else:
144
+ v = [(p - 1) // i for i in factorint(p - 1).keys()]
145
+ for g in range(g_min, p):
146
+ if all(pow(g, pw, p) != 1 for pw in v):
147
+ break
148
+ yield g
149
+ # g**k is the primitive root of p iff gcd(p - 1, k) = 1
150
+ for k in range(3, p, 2):
151
+ if gcd(p - 1, k) == 1:
152
+ yield pow(g, k, p)
153
+
154
+
155
+ def _primitive_root_prime_power_iter(p, e):
156
+ r""" Generates the primitive roots of `p^e`.
157
+
158
+ Explanation
159
+ ===========
160
+
161
+ Let ``g`` be the primitive root of ``p``.
162
+ If `g^{p-1} \not\equiv 1 \pmod{p^2}`, then ``g`` is primitive root of `p^e`.
163
+ Thus, if we find a primitive root ``g`` of ``p``,
164
+ then `g, g+p, g+2p, \ldots, g+(p-1)p` are primitive roots of `p^2` except one.
165
+ That one satisfies `\hat{g}^{p-1} \equiv 1 \pmod{p^2}`.
166
+ If ``h`` is the primitive root of `p^2`,
167
+ then `h, h+p^2, h+2p^2, \ldots, h+(p^{e-2}-1)p^e` are primitive roots of `p^e`.
168
+
169
+ Parameters
170
+ ==========
171
+
172
+ p : odd prime
173
+ e : positive integer
174
+
175
+ Yields
176
+ ======
177
+
178
+ int
179
+ the primitive roots of `p^e`
180
+
181
+ Examples
182
+ ========
183
+
184
+ >>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_power_iter
185
+ >>> sorted(_primitive_root_prime_power_iter(5, 2))
186
+ [2, 3, 8, 12, 13, 17, 22, 23]
187
+
188
+ """
189
+ if e == 1:
190
+ yield from _primitive_root_prime_iter(p)
191
+ else:
192
+ p2 = p**2
193
+ for g in _primitive_root_prime_iter(p):
194
+ t = (g - pow(g, 2 - p, p2)) % p2
195
+ for k in range(0, p2, p):
196
+ if k != t:
197
+ yield from (g + k + m for m in range(0, p**e, p2))
198
+
199
+
200
+ def _primitive_root_prime_power2_iter(p, e):
201
+ r""" Generates the primitive roots of `2p^e`.
202
+
203
+ Explanation
204
+ ===========
205
+
206
+ If ``g`` is the primitive root of ``p**e``,
207
+ then the odd one of ``g`` and ``g+p**e`` is the primitive root of ``2*p**e``.
208
+
209
+ Parameters
210
+ ==========
211
+
212
+ p : odd prime
213
+ e : positive integer
214
+
215
+ Yields
216
+ ======
217
+
218
+ int
219
+ the primitive roots of `2p^e`
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_power2_iter
225
+ >>> sorted(_primitive_root_prime_power2_iter(5, 2))
226
+ [3, 13, 17, 23, 27, 33, 37, 47]
227
+
228
+ """
229
+ for g in _primitive_root_prime_power_iter(p, e):
230
+ if g % 2 == 1:
231
+ yield g
232
+ else:
233
+ yield g + p**e
234
+
235
+
236
+ def primitive_root(p, smallest=True):
237
+ r""" Returns a primitive root of ``p`` or None.
238
+
239
+ Explanation
240
+ ===========
241
+
242
+ For the definition of primitive root,
243
+ see the explanation of ``is_primitive_root``.
244
+
245
+ The primitive root of ``p`` exist only for
246
+ `p = 2, 4, q^e, 2q^e` (``q`` is an odd prime).
247
+ Now, if we know the primitive root of ``q``,
248
+ we can calculate the primitive root of `q^e`,
249
+ and if we know the primitive root of `q^e`,
250
+ we can calculate the primitive root of `2q^e`.
251
+ When there is no need to find the smallest primitive root,
252
+ this property can be used to obtain a fast primitive root.
253
+ On the other hand, when we want the smallest primitive root,
254
+ we naively determine whether it is a primitive root or not.
255
+
256
+ Parameters
257
+ ==========
258
+
259
+ p : integer, p > 1
260
+ smallest : if True the smallest primitive root is returned or None
261
+
262
+ Returns
263
+ =======
264
+
265
+ int | None :
266
+ If the primitive root exists, return the primitive root of ``p``.
267
+ If not, return None.
268
+
269
+ Raises
270
+ ======
271
+
272
+ ValueError
273
+ If `p \le 1` or ``p`` is not an integer.
274
+
275
+ Examples
276
+ ========
277
+
278
+ >>> from sympy.ntheory.residue_ntheory import primitive_root
279
+ >>> primitive_root(19)
280
+ 2
281
+ >>> primitive_root(21) is None
282
+ True
283
+ >>> primitive_root(50, smallest=False)
284
+ 27
285
+
286
+ See Also
287
+ ========
288
+
289
+ is_primitive_root
290
+
291
+ References
292
+ ==========
293
+
294
+ .. [1] W. Stein "Elementary Number Theory" (2011), page 44
295
+ .. [2] P. Hackman "Elementary Number Theory" (2009), Chapter C
296
+
297
+ """
298
+ p = as_int(p)
299
+ if p <= 1:
300
+ raise ValueError("p should be an integer greater than 1")
301
+ if p <= 4:
302
+ return p - 1
303
+ p_even = p % 2 == 0
304
+ if not p_even:
305
+ q = p # p is odd
306
+ elif p % 4:
307
+ q = p//2 # p had 1 factor of 2
308
+ else:
309
+ return None # p had more than one factor of 2
310
+ if isprime(q):
311
+ e = 1
312
+ else:
313
+ m = _perfect_power(q, 3)
314
+ if not m:
315
+ return None
316
+ q, e = m
317
+ if not isprime(q):
318
+ return None
319
+ if not smallest:
320
+ if p_even:
321
+ return next(_primitive_root_prime_power2_iter(q, e))
322
+ return next(_primitive_root_prime_power_iter(q, e))
323
+ if p_even:
324
+ for i in range(3, p, 2):
325
+ if i % q and is_primitive_root(i, p):
326
+ return i
327
+ g = next(_primitive_root_prime_iter(q))
328
+ if e == 1 or pow(g, q - 1, q**2) != 1:
329
+ return g
330
+ for i in range(g + 1, p):
331
+ if i % q and is_primitive_root(i, p):
332
+ return i
333
+
334
+
335
+ def is_primitive_root(a, p):
336
+ r""" Returns True if ``a`` is a primitive root of ``p``.
337
+
338
+ Explanation
339
+ ===========
340
+
341
+ ``a`` is said to be the primitive root of ``p`` if `\gcd(a, p) = 1` and
342
+ `\phi(p)` is the smallest positive number s.t.
343
+
344
+ `a^{\phi(p)} \equiv 1 \pmod{p}`.
345
+
346
+ where `\phi(p)` is Euler's totient function.
347
+
348
+ The primitive root of ``p`` exist only for
349
+ `p = 2, 4, q^e, 2q^e` (``q`` is an odd prime).
350
+ Hence, if it is not such a ``p``, it returns False.
351
+ To determine the primitive root, we need to know
352
+ the prime factorization of ``q-1``.
353
+ The hardness of the determination depends on this complexity.
354
+
355
+ Parameters
356
+ ==========
357
+
358
+ a : integer
359
+ p : integer, ``p`` > 1. ``a`` and ``p`` should be relatively prime
360
+
361
+ Returns
362
+ =======
363
+
364
+ bool : If True, ``a`` is the primitive root of ``p``.
365
+
366
+ Raises
367
+ ======
368
+
369
+ ValueError
370
+ If `p \le 1` or `\gcd(a, p) \neq 1`.
371
+ If ``a`` or ``p`` is not an integer.
372
+
373
+ Examples
374
+ ========
375
+
376
+ >>> from sympy.functions.combinatorial.numbers import totient
377
+ >>> from sympy.ntheory import is_primitive_root, n_order
378
+ >>> is_primitive_root(3, 10)
379
+ True
380
+ >>> is_primitive_root(9, 10)
381
+ False
382
+ >>> n_order(3, 10) == totient(10)
383
+ True
384
+ >>> n_order(9, 10) == totient(10)
385
+ False
386
+
387
+ See Also
388
+ ========
389
+
390
+ primitive_root
391
+
392
+ """
393
+ a, p = as_int(a), as_int(p)
394
+ if p <= 1:
395
+ raise ValueError("p should be an integer greater than 1")
396
+ a = a % p
397
+ if gcd(a, p) != 1:
398
+ raise ValueError("The two numbers should be relatively prime")
399
+ # Primitive root of p exist only for
400
+ # p = 2, 4, q**e, 2*q**e (q is odd prime)
401
+ if p <= 4:
402
+ # The primitive root is only p-1.
403
+ return a == p - 1
404
+ if p % 2:
405
+ q = p # p is odd
406
+ elif p % 4:
407
+ q = p//2 # p had 1 factor of 2
408
+ else:
409
+ return False # p had more than one factor of 2
410
+ if isprime(q):
411
+ group_order = q - 1
412
+ factors = factorint(q - 1).keys()
413
+ else:
414
+ m = _perfect_power(q, 3)
415
+ if not m:
416
+ return False
417
+ q, e = m
418
+ if not isprime(q):
419
+ return False
420
+ group_order = q**(e - 1)*(q - 1)
421
+ factors = set(factorint(q - 1).keys())
422
+ factors.add(q)
423
+ return all(pow(a, group_order // prime, p) != 1 for prime in factors)
424
+
425
+
426
+ def _sqrt_mod_tonelli_shanks(a, p):
427
+ """
428
+ Returns the square root in the case of ``p`` prime with ``p == 1 (mod 8)``
429
+
430
+ Assume that the root exists.
431
+
432
+ Parameters
433
+ ==========
434
+
435
+ a : int
436
+ p : int
437
+ prime number. should be ``p % 8 == 1``
438
+
439
+ Returns
440
+ =======
441
+
442
+ int : Generally, there are two roots, but only one is returned.
443
+ Which one is returned is random.
444
+
445
+ Examples
446
+ ========
447
+
448
+ >>> from sympy.ntheory.residue_ntheory import _sqrt_mod_tonelli_shanks
449
+ >>> _sqrt_mod_tonelli_shanks(2, 17) in [6, 11]
450
+ True
451
+
452
+ References
453
+ ==========
454
+
455
+ .. [1] Carl Pomerance, Richard Crandall, Prime Numbers: A Computational Perspective,
456
+ 2nd Edition (2005), page 101, ISBN:978-0387252827
457
+
458
+ """
459
+ s = bit_scan1(p - 1)
460
+ t = p >> s
461
+ # find a non-quadratic residue
462
+ if p % 12 == 5:
463
+ # Legendre symbol (3/p) == -1 if p % 12 in [5, 7]
464
+ d = 3
465
+ elif p % 5 in [2, 3]:
466
+ # Legendre symbol (5/p) == -1 if p % 5 in [2, 3]
467
+ d = 5
468
+ else:
469
+ while 1:
470
+ d = randint(6, p - 1)
471
+ if jacobi(d, p) == -1:
472
+ break
473
+ #assert legendre_symbol(d, p) == -1
474
+ A = pow(a, t, p)
475
+ D = pow(d, t, p)
476
+ m = 0
477
+ for i in range(s):
478
+ adm = A*pow(D, m, p) % p
479
+ adm = pow(adm, 2**(s - 1 - i), p)
480
+ if adm % p == p - 1:
481
+ m += 2**i
482
+ #assert A*pow(D, m, p) % p == 1
483
+ x = pow(a, (t + 1)//2, p)*pow(D, m//2, p) % p
484
+ return x
485
+
486
+
487
+ def sqrt_mod(a, p, all_roots=False):
488
+ """
489
+ Find a root of ``x**2 = a mod p``.
490
+
491
+ Parameters
492
+ ==========
493
+
494
+ a : integer
495
+ p : positive integer
496
+ all_roots : if True the list of roots is returned or None
497
+
498
+ Notes
499
+ =====
500
+
501
+ If there is no root it is returned None; else the returned root
502
+ is less or equal to ``p // 2``; in general is not the smallest one.
503
+ It is returned ``p // 2`` only if it is the only root.
504
+
505
+ Use ``all_roots`` only when it is expected that all the roots fit
506
+ in memory; otherwise use ``sqrt_mod_iter``.
507
+
508
+ Examples
509
+ ========
510
+
511
+ >>> from sympy.ntheory import sqrt_mod
512
+ >>> sqrt_mod(11, 43)
513
+ 21
514
+ >>> sqrt_mod(17, 32, True)
515
+ [7, 9, 23, 25]
516
+ """
517
+ if all_roots:
518
+ return sorted(sqrt_mod_iter(a, p))
519
+ p = abs(as_int(p))
520
+ halfp = p // 2
521
+ x = None
522
+ for r in sqrt_mod_iter(a, p):
523
+ if r < halfp:
524
+ return r
525
+ elif r > halfp:
526
+ return p - r
527
+ else:
528
+ x = r
529
+ return x
530
+
531
+
532
+ def sqrt_mod_iter(a, p, domain=int):
533
+ """
534
+ Iterate over solutions to ``x**2 = a mod p``.
535
+
536
+ Parameters
537
+ ==========
538
+
539
+ a : integer
540
+ p : positive integer
541
+ domain : integer domain, ``int``, ``ZZ`` or ``Integer``
542
+
543
+ Examples
544
+ ========
545
+
546
+ >>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter
547
+ >>> list(sqrt_mod_iter(11, 43))
548
+ [21, 22]
549
+
550
+ See Also
551
+ ========
552
+
553
+ sqrt_mod : Same functionality, but you want a sorted list or only one solution.
554
+
555
+ """
556
+ a, p = as_int(a), abs(as_int(p))
557
+ v = []
558
+ pv = []
559
+ _product = product
560
+ for px, ex in factorint(p).items():
561
+ if a % px:
562
+ # `len(rx)` is at most 4
563
+ rx = _sqrt_mod_prime_power(a, px, ex)
564
+ else:
565
+ # `len(list(rx))` can be assumed to be large.
566
+ # The `itertools.product` is disadvantageous in terms of memory usage.
567
+ # It is also inferior to iproduct in speed if not all Cartesian products are needed.
568
+ rx = _sqrt_mod1(a, px, ex)
569
+ _product = iproduct
570
+ if not rx:
571
+ return
572
+ v.append(rx)
573
+ pv.append(px**ex)
574
+ if len(v) == 1:
575
+ yield from map(domain, v[0])
576
+ else:
577
+ mm, e, s = gf_crt1(pv, ZZ)
578
+ for vx in _product(*v):
579
+ yield domain(gf_crt2(vx, pv, mm, e, s, ZZ))
580
+
581
+
582
+ def _sqrt_mod_prime_power(a, p, k):
583
+ """
584
+ Find the solutions to ``x**2 = a mod p**k`` when ``a % p != 0``.
585
+ If no solution exists, return ``None``.
586
+ Solutions are returned in an ascending list.
587
+
588
+ Parameters
589
+ ==========
590
+
591
+ a : integer
592
+ p : prime number
593
+ k : positive integer
594
+
595
+ Examples
596
+ ========
597
+
598
+ >>> from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
599
+ >>> _sqrt_mod_prime_power(11, 43, 1)
600
+ [21, 22]
601
+
602
+ References
603
+ ==========
604
+
605
+ .. [1] P. Hackman "Elementary Number Theory" (2009), page 160
606
+ .. [2] http://www.numbertheory.org/php/squareroot.html
607
+ .. [3] [Gathen99]_
608
+ """
609
+ pk = p**k
610
+ a = a % pk
611
+
612
+ if p == 2:
613
+ # see Ref.[2]
614
+ if a % 8 != 1:
615
+ return None
616
+ # Trivial
617
+ if k <= 3:
618
+ return list(range(1, pk, 2))
619
+ r = 1
620
+ # r is one of the solutions to x**2 - a = 0 (mod 2**3).
621
+ # Hensel lift them to solutions of x**2 - a = 0 (mod 2**k)
622
+ # if r**2 - a = 0 mod 2**nx but not mod 2**(nx+1)
623
+ # then r + 2**(nx - 1) is a root mod 2**(nx+1)
624
+ for nx in range(3, k):
625
+ if ((r**2 - a) >> nx) % 2:
626
+ r += 1 << (nx - 1)
627
+ # r is a solution of x**2 - a = 0 (mod 2**k), and
628
+ # there exist other solutions -r, r+h, -(r+h), and these are all solutions.
629
+ h = 1 << (k - 1)
630
+ return sorted([r, pk - r, (r + h) % pk, -(r + h) % pk])
631
+
632
+ # If the Legendre symbol (a/p) is not 1, no solution exists.
633
+ if jacobi(a, p) != 1:
634
+ return None
635
+ if p % 4 == 3:
636
+ res = pow(a, (p + 1) // 4, p)
637
+ elif p % 8 == 5:
638
+ res = pow(a, (p + 3) // 8, p)
639
+ if pow(res, 2, p) != a % p:
640
+ res = res * pow(2, (p - 1) // 4, p) % p
641
+ else:
642
+ res = _sqrt_mod_tonelli_shanks(a, p)
643
+ if k > 1:
644
+ # Hensel lifting with Newton iteration, see Ref.[3] chapter 9
645
+ # with f(x) = x**2 - a; one has f'(a) != 0 (mod p) for p != 2
646
+ px = p
647
+ for _ in range(k.bit_length() - 1):
648
+ px = px**2
649
+ frinv = invert(2*res, px)
650
+ res = (res - (res**2 - a)*frinv) % px
651
+ if k & (k - 1): # If k is not a power of 2
652
+ frinv = invert(2*res, pk)
653
+ res = (res - (res**2 - a)*frinv) % pk
654
+ return sorted([res, pk - res])
655
+
656
+
657
+ def _sqrt_mod1(a, p, n):
658
+ """
659
+ Find solution to ``x**2 == a mod p**n`` when ``a % p == 0``.
660
+ If no solution exists, return ``None``.
661
+
662
+ Parameters
663
+ ==========
664
+
665
+ a : integer
666
+ p : prime number, p must divide a
667
+ n : positive integer
668
+
669
+ References
670
+ ==========
671
+
672
+ .. [1] http://www.numbertheory.org/php/squareroot.html
673
+ """
674
+ pn = p**n
675
+ a = a % pn
676
+ if a == 0:
677
+ # case gcd(a, p**k) = p**n
678
+ return range(0, pn, p**((n + 1) // 2))
679
+ # case gcd(a, p**k) = p**r, r < n
680
+ a, r = remove(a, p)
681
+ if r % 2 == 1:
682
+ return None
683
+ res = _sqrt_mod_prime_power(a, p, n - r)
684
+ if res is None:
685
+ return None
686
+ m = r // 2
687
+ return (x for rx in res for x in range(rx*p**m, pn, p**(n - m)))
688
+
689
+
690
+ def is_quad_residue(a, p):
691
+ """
692
+ Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,
693
+ i.e a % p in set([i**2 % p for i in range(p)]).
694
+
695
+ Parameters
696
+ ==========
697
+
698
+ a : integer
699
+ p : positive integer
700
+
701
+ Returns
702
+ =======
703
+
704
+ bool : If True, ``x**2 == a (mod p)`` has solution.
705
+
706
+ Raises
707
+ ======
708
+
709
+ ValueError
710
+ If ``a``, ``p`` is not integer.
711
+ If ``p`` is not positive.
712
+
713
+ Examples
714
+ ========
715
+
716
+ >>> from sympy.ntheory import is_quad_residue
717
+ >>> is_quad_residue(21, 100)
718
+ True
719
+
720
+ Indeed, ``pow(39, 2, 100)`` would be 21.
721
+
722
+ >>> is_quad_residue(21, 120)
723
+ False
724
+
725
+ That is, for any integer ``x``, ``pow(x, 2, 120)`` is not 21.
726
+
727
+ If ``p`` is an odd
728
+ prime, an iterative method is used to make the determination:
729
+
730
+ >>> from sympy.ntheory import is_quad_residue
731
+ >>> sorted(set([i**2 % 7 for i in range(7)]))
732
+ [0, 1, 2, 4]
733
+ >>> [j for j in range(7) if is_quad_residue(j, 7)]
734
+ [0, 1, 2, 4]
735
+
736
+ See Also
737
+ ========
738
+
739
+ legendre_symbol, jacobi_symbol, sqrt_mod
740
+ """
741
+ a, p = as_int(a), as_int(p)
742
+ if p < 1:
743
+ raise ValueError('p must be > 0')
744
+ a %= p
745
+ if a < 2 or p < 3:
746
+ return True
747
+ # Since we want to compute the Jacobi symbol,
748
+ # we separate p into the odd part and the rest.
749
+ t = bit_scan1(p)
750
+ if t:
751
+ # The existence of a solution to a power of 2 is determined
752
+ # using the logic of `p==2` in `_sqrt_mod_prime_power` and `_sqrt_mod1`.
753
+ a_ = a % (1 << t)
754
+ if a_:
755
+ r = bit_scan1(a_)
756
+ if r % 2 or (a_ >> r) & 6:
757
+ return False
758
+ p >>= t
759
+ a %= p
760
+ if a < 2 or p < 3:
761
+ return True
762
+ # If Jacobi symbol is -1 or p is prime, can be determined by Jacobi symbol only
763
+ j = jacobi(a, p)
764
+ if j == -1 or isprime(p):
765
+ return j == 1
766
+ # Checks if `x**2 = a (mod p)` has a solution
767
+ for px, ex in factorint(p).items():
768
+ if a % px:
769
+ if jacobi(a, px) != 1:
770
+ return False
771
+ else:
772
+ a_ = a % px**ex
773
+ if a_ == 0:
774
+ continue
775
+ a_, r = remove(a_, px)
776
+ if r % 2 or jacobi(a_, px) != 1:
777
+ return False
778
+ return True
779
+
780
+
781
+ def is_nthpow_residue(a, n, m):
782
+ """
783
+ Returns True if ``x**n == a (mod m)`` has solutions.
784
+
785
+ References
786
+ ==========
787
+
788
+ .. [1] P. Hackman "Elementary Number Theory" (2009), page 76
789
+
790
+ """
791
+ a = a % m
792
+ a, n, m = as_int(a), as_int(n), as_int(m)
793
+ if m <= 0:
794
+ raise ValueError('m must be > 0')
795
+ if n < 0:
796
+ raise ValueError('n must be >= 0')
797
+ if n == 0:
798
+ if m == 1:
799
+ return False
800
+ return a == 1
801
+ if a == 0:
802
+ return True
803
+ if n == 1:
804
+ return True
805
+ if n == 2:
806
+ return is_quad_residue(a, m)
807
+ return all(_is_nthpow_residue_bign_prime_power(a, n, p, e)
808
+ for p, e in factorint(m).items())
809
+
810
+
811
+ def _is_nthpow_residue_bign_prime_power(a, n, p, k):
812
+ r"""
813
+ Returns True if `x^n = a \pmod{p^k}` has solutions for `n > 2`.
814
+
815
+ Parameters
816
+ ==========
817
+
818
+ a : positive integer
819
+ n : integer, n > 2
820
+ p : prime number
821
+ k : positive integer
822
+
823
+ """
824
+ while a % p == 0:
825
+ a %= pow(p, k)
826
+ if not a:
827
+ return True
828
+ a, mu = remove(a, p)
829
+ if mu % n:
830
+ return False
831
+ k -= mu
832
+ if p != 2:
833
+ f = p**(k - 1)*(p - 1) # f = totient(p**k)
834
+ return pow(a, f // gcd(f, n), pow(p, k)) == 1
835
+ if n & 1:
836
+ return True
837
+ c = min(bit_scan1(n) + 2, k)
838
+ return a % pow(2, c) == 1
839
+
840
+
841
+ def _nthroot_mod1(s, q, p, all_roots):
842
+ """
843
+ Root of ``x**q = s mod p``, ``p`` prime and ``q`` divides ``p - 1``.
844
+ Assume that the root exists.
845
+
846
+ Parameters
847
+ ==========
848
+
849
+ s : integer
850
+ q : integer, n > 2. ``q`` divides ``p - 1``.
851
+ p : prime number
852
+ all_roots : if False returns the smallest root, else the list of roots
853
+
854
+ Returns
855
+ =======
856
+
857
+ list[int] | int :
858
+ Root of ``x**q = s mod p``. If ``all_roots == True``,
859
+ returned ascending list. otherwise, returned an int.
860
+
861
+ Examples
862
+ ========
863
+
864
+ >>> from sympy.ntheory.residue_ntheory import _nthroot_mod1
865
+ >>> _nthroot_mod1(5, 3, 13, False)
866
+ 7
867
+ >>> _nthroot_mod1(13, 4, 17, True)
868
+ [3, 5, 12, 14]
869
+
870
+ References
871
+ ==========
872
+
873
+ .. [1] A. M. Johnston, A Generalized qth Root Algorithm,
874
+ ACM-SIAM Symposium on Discrete Algorithms (1999), pp. 929-930
875
+
876
+ """
877
+ g = next(_primitive_root_prime_iter(p))
878
+ r = s
879
+ for qx, ex in factorint(q).items():
880
+ f = (p - 1) // qx**ex
881
+ while f % qx == 0:
882
+ f //= qx
883
+ z = f*invert(-f, qx)
884
+ x = (1 + z) // qx
885
+ t = discrete_log(p, pow(r, f, p), pow(g, f*qx, p))
886
+ for _ in range(ex):
887
+ # assert t == discrete_log(p, pow(r, f, p), pow(g, f*qx, p))
888
+ r = pow(r, x, p)*pow(g, -z*t % (p - 1), p) % p
889
+ t //= qx
890
+ res = [r]
891
+ h = pow(g, (p - 1) // q, p)
892
+ #assert pow(h, q, p) == 1
893
+ hx = r
894
+ for _ in range(q - 1):
895
+ hx = (hx*h) % p
896
+ res.append(hx)
897
+ if all_roots:
898
+ res.sort()
899
+ return res
900
+ return min(res)
901
+
902
+
903
+ def _nthroot_mod_prime_power(a, n, p, k):
904
+ """ Root of ``x**n = a mod p**k``.
905
+
906
+ Parameters
907
+ ==========
908
+
909
+ a : integer
910
+ n : integer, n > 2
911
+ p : prime number
912
+ k : positive integer
913
+
914
+ Returns
915
+ =======
916
+
917
+ list[int] :
918
+ Ascending list of roots of ``x**n = a mod p**k``.
919
+ If no solution exists, return ``[]``.
920
+
921
+ """
922
+ if not _is_nthpow_residue_bign_prime_power(a, n, p, k):
923
+ return []
924
+ a_mod_p = a % p
925
+ if a_mod_p == 0:
926
+ base_roots = [0]
927
+ elif (p - 1) % n == 0:
928
+ base_roots = _nthroot_mod1(a_mod_p, n, p, all_roots=True)
929
+ else:
930
+ # The roots of ``x**n - a = 0 (mod p)`` are roots of
931
+ # ``gcd(x**n - a, x**(p - 1) - 1) = 0 (mod p)``
932
+ pa = n
933
+ pb = p - 1
934
+ b = 1
935
+ if pa < pb:
936
+ a_mod_p, pa, b, pb = b, pb, a_mod_p, pa
937
+ # gcd(x**pa - a, x**pb - b) = gcd(x**pb - b, x**pc - c)
938
+ # where pc = pa % pb; c = b**-q * a mod p
939
+ while pb:
940
+ q, pc = divmod(pa, pb)
941
+ c = pow(b, -q, p) * a_mod_p % p
942
+ pa, pb = pb, pc
943
+ a_mod_p, b = b, c
944
+ if pa == 1:
945
+ base_roots = [a_mod_p]
946
+ elif pa == 2:
947
+ base_roots = sqrt_mod(a_mod_p, p, all_roots=True)
948
+ else:
949
+ base_roots = _nthroot_mod1(a_mod_p, pa, p, all_roots=True)
950
+ if k == 1:
951
+ return base_roots
952
+ a %= p**k
953
+ tot_roots = set()
954
+ for root in base_roots:
955
+ diff = pow(root, n - 1, p)*n % p
956
+ new_base = p
957
+ if diff != 0:
958
+ m_inv = invert(diff, p)
959
+ for _ in range(k - 1):
960
+ new_base *= p
961
+ tmp = pow(root, n, new_base) - a
962
+ tmp *= m_inv
963
+ root = (root - tmp) % new_base
964
+ tot_roots.add(root)
965
+ else:
966
+ roots_in_base = {root}
967
+ for _ in range(k - 1):
968
+ new_base *= p
969
+ new_roots = set()
970
+ for k_ in roots_in_base:
971
+ if pow(k_, n, new_base) != a % new_base:
972
+ continue
973
+ while k_ not in new_roots:
974
+ new_roots.add(k_)
975
+ k_ = (k_ + (new_base // p)) % new_base
976
+ roots_in_base = new_roots
977
+ tot_roots = tot_roots | roots_in_base
978
+ return sorted(tot_roots)
979
+
980
+
981
+ def nthroot_mod(a, n, p, all_roots=False):
982
+ """
983
+ Find the solutions to ``x**n = a mod p``.
984
+
985
+ Parameters
986
+ ==========
987
+
988
+ a : integer
989
+ n : positive integer
990
+ p : positive integer
991
+ all_roots : if False returns the smallest root, else the list of roots
992
+
993
+ Returns
994
+ =======
995
+
996
+ list[int] | int | None :
997
+ solutions to ``x**n = a mod p``.
998
+ The table of the output type is:
999
+
1000
+ ========== ========== ==========
1001
+ all_roots has roots Returns
1002
+ ========== ========== ==========
1003
+ True Yes list[int]
1004
+ True No []
1005
+ False Yes int
1006
+ False No None
1007
+ ========== ========== ==========
1008
+
1009
+ Raises
1010
+ ======
1011
+
1012
+ ValueError
1013
+ If ``a``, ``n`` or ``p`` is not integer.
1014
+ If ``n`` or ``p`` is not positive.
1015
+
1016
+ Examples
1017
+ ========
1018
+
1019
+ >>> from sympy.ntheory.residue_ntheory import nthroot_mod
1020
+ >>> nthroot_mod(11, 4, 19)
1021
+ 8
1022
+ >>> nthroot_mod(11, 4, 19, True)
1023
+ [8, 11]
1024
+ >>> nthroot_mod(68, 3, 109)
1025
+ 23
1026
+
1027
+ References
1028
+ ==========
1029
+
1030
+ .. [1] P. Hackman "Elementary Number Theory" (2009), page 76
1031
+
1032
+ """
1033
+ a = a % p
1034
+ a, n, p = as_int(a), as_int(n), as_int(p)
1035
+
1036
+ if n < 1:
1037
+ raise ValueError("n should be positive")
1038
+ if p < 1:
1039
+ raise ValueError("p should be positive")
1040
+ if n == 1:
1041
+ return [a] if all_roots else a
1042
+ if n == 2:
1043
+ return sqrt_mod(a, p, all_roots)
1044
+ base = []
1045
+ prime_power = []
1046
+ for q, e in factorint(p).items():
1047
+ tot_roots = _nthroot_mod_prime_power(a, n, q, e)
1048
+ if not tot_roots:
1049
+ return [] if all_roots else None
1050
+ prime_power.append(q**e)
1051
+ base.append(sorted(tot_roots))
1052
+ P, E, S = gf_crt1(prime_power, ZZ)
1053
+ ret = sorted(map(int, {gf_crt2(c, prime_power, P, E, S, ZZ)
1054
+ for c in product(*base)}))
1055
+ if all_roots:
1056
+ return ret
1057
+ if ret:
1058
+ return ret[0]
1059
+
1060
+
1061
+ def quadratic_residues(p) -> list[int]:
1062
+ """
1063
+ Returns the list of quadratic residues.
1064
+
1065
+ Examples
1066
+ ========
1067
+
1068
+ >>> from sympy.ntheory.residue_ntheory import quadratic_residues
1069
+ >>> quadratic_residues(7)
1070
+ [0, 1, 2, 4]
1071
+ """
1072
+ p = as_int(p)
1073
+ r = {pow(i, 2, p) for i in range(p // 2 + 1)}
1074
+ return sorted(r)
1075
+
1076
+
1077
+ @deprecated("""\
1078
+ The `sympy.ntheory.residue_ntheory.legendre_symbol` has been moved to `sympy.functions.combinatorial.numbers.legendre_symbol`.""",
1079
+ deprecated_since_version="1.13",
1080
+ active_deprecations_target='deprecated-ntheory-symbolic-functions')
1081
+ def legendre_symbol(a, p):
1082
+ r"""
1083
+ Returns the Legendre symbol `(a / p)`.
1084
+
1085
+ .. deprecated:: 1.13
1086
+
1087
+ The ``legendre_symbol`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.legendre_symbol`
1088
+ instead. See its documentation for more information. See
1089
+ :ref:`deprecated-ntheory-symbolic-functions` for details.
1090
+
1091
+ For an integer ``a`` and an odd prime ``p``, the Legendre symbol is
1092
+ defined as
1093
+
1094
+ .. math ::
1095
+ \genfrac(){}{}{a}{p} = \begin{cases}
1096
+ 0 & \text{if } p \text{ divides } a\\
1097
+ 1 & \text{if } a \text{ is a quadratic residue modulo } p\\
1098
+ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p
1099
+ \end{cases}
1100
+
1101
+ Parameters
1102
+ ==========
1103
+
1104
+ a : integer
1105
+ p : odd prime
1106
+
1107
+ Examples
1108
+ ========
1109
+
1110
+ >>> from sympy.functions.combinatorial.numbers import legendre_symbol
1111
+ >>> [legendre_symbol(i, 7) for i in range(7)]
1112
+ [0, 1, 1, -1, 1, -1, -1]
1113
+ >>> sorted(set([i**2 % 7 for i in range(7)]))
1114
+ [0, 1, 2, 4]
1115
+
1116
+ See Also
1117
+ ========
1118
+
1119
+ is_quad_residue, jacobi_symbol
1120
+
1121
+ """
1122
+ from sympy.functions.combinatorial.numbers import legendre_symbol as _legendre_symbol
1123
+ return _legendre_symbol(a, p)
1124
+
1125
+
1126
+ @deprecated("""\
1127
+ The `sympy.ntheory.residue_ntheory.jacobi_symbol` has been moved to `sympy.functions.combinatorial.numbers.jacobi_symbol`.""",
1128
+ deprecated_since_version="1.13",
1129
+ active_deprecations_target='deprecated-ntheory-symbolic-functions')
1130
+ def jacobi_symbol(m, n):
1131
+ r"""
1132
+ Returns the Jacobi symbol `(m / n)`.
1133
+
1134
+ .. deprecated:: 1.13
1135
+
1136
+ The ``jacobi_symbol`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.jacobi_symbol`
1137
+ instead. See its documentation for more information. See
1138
+ :ref:`deprecated-ntheory-symbolic-functions` for details.
1139
+
1140
+ For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol
1141
+ is defined as the product of the Legendre symbols corresponding to the
1142
+ prime factors of ``n``:
1143
+
1144
+ .. math ::
1145
+ \genfrac(){}{}{m}{n} =
1146
+ \genfrac(){}{}{m}{p^{1}}^{\alpha_1}
1147
+ \genfrac(){}{}{m}{p^{2}}^{\alpha_2}
1148
+ ...
1149
+ \genfrac(){}{}{m}{p^{k}}^{\alpha_k}
1150
+ \text{ where } n =
1151
+ p_1^{\alpha_1}
1152
+ p_2^{\alpha_2}
1153
+ ...
1154
+ p_k^{\alpha_k}
1155
+
1156
+ Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1`
1157
+ then ``m`` is a quadratic nonresidue modulo ``n``.
1158
+
1159
+ But, unlike the Legendre symbol, if the Jacobi symbol
1160
+ `\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue
1161
+ modulo ``n``.
1162
+
1163
+ Parameters
1164
+ ==========
1165
+
1166
+ m : integer
1167
+ n : odd positive integer
1168
+
1169
+ Examples
1170
+ ========
1171
+
1172
+ >>> from sympy.functions.combinatorial.numbers import jacobi_symbol, legendre_symbol
1173
+ >>> from sympy import S
1174
+ >>> jacobi_symbol(45, 77)
1175
+ -1
1176
+ >>> jacobi_symbol(60, 121)
1177
+ 1
1178
+
1179
+ The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can
1180
+ be demonstrated as follows:
1181
+
1182
+ >>> L = legendre_symbol
1183
+ >>> S(45).factors()
1184
+ {3: 2, 5: 1}
1185
+ >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
1186
+ True
1187
+
1188
+ See Also
1189
+ ========
1190
+
1191
+ is_quad_residue, legendre_symbol
1192
+ """
1193
+ from sympy.functions.combinatorial.numbers import jacobi_symbol as _jacobi_symbol
1194
+ return _jacobi_symbol(m, n)
1195
+
1196
+
1197
+ @deprecated("""\
1198
+ The `sympy.ntheory.residue_ntheory.mobius` has been moved to `sympy.functions.combinatorial.numbers.mobius`.""",
1199
+ deprecated_since_version="1.13",
1200
+ active_deprecations_target='deprecated-ntheory-symbolic-functions')
1201
+ def mobius(n):
1202
+ """
1203
+ Mobius function maps natural number to {-1, 0, 1}
1204
+
1205
+ .. deprecated:: 1.13
1206
+
1207
+ The ``mobius`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.mobius`
1208
+ instead. See its documentation for more information. See
1209
+ :ref:`deprecated-ntheory-symbolic-functions` for details.
1210
+
1211
+ It is defined as follows:
1212
+ 1) `1` if `n = 1`.
1213
+ 2) `0` if `n` has a squared prime factor.
1214
+ 3) `(-1)^k` if `n` is a square-free positive integer with `k`
1215
+ number of prime factors.
1216
+
1217
+ It is an important multiplicative function in number theory
1218
+ and combinatorics. It has applications in mathematical series,
1219
+ algebraic number theory and also physics (Fermion operator has very
1220
+ concrete realization with Mobius Function model).
1221
+
1222
+ Parameters
1223
+ ==========
1224
+
1225
+ n : positive integer
1226
+
1227
+ Examples
1228
+ ========
1229
+
1230
+ >>> from sympy.functions.combinatorial.numbers import mobius
1231
+ >>> mobius(13*7)
1232
+ 1
1233
+ >>> mobius(1)
1234
+ 1
1235
+ >>> mobius(13*7*5)
1236
+ -1
1237
+ >>> mobius(13**2)
1238
+ 0
1239
+
1240
+ References
1241
+ ==========
1242
+
1243
+ .. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function
1244
+ .. [2] Thomas Koshy "Elementary Number Theory with Applications"
1245
+
1246
+ """
1247
+ from sympy.functions.combinatorial.numbers import mobius as _mobius
1248
+ return _mobius(n)
1249
+
1250
+
1251
+ def _discrete_log_trial_mul(n, a, b, order=None):
1252
+ """
1253
+ Trial multiplication algorithm for computing the discrete logarithm of
1254
+ ``a`` to the base ``b`` modulo ``n``.
1255
+
1256
+ The algorithm finds the discrete logarithm using exhaustive search. This
1257
+ naive method is used as fallback algorithm of ``discrete_log`` when the
1258
+ group order is very small.
1259
+
1260
+ Examples
1261
+ ========
1262
+
1263
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_trial_mul
1264
+ >>> _discrete_log_trial_mul(41, 15, 7)
1265
+ 3
1266
+
1267
+ See Also
1268
+ ========
1269
+
1270
+ discrete_log
1271
+
1272
+ References
1273
+ ==========
1274
+
1275
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1276
+ Vanstone, S. A. (1997).
1277
+ """
1278
+ a %= n
1279
+ b %= n
1280
+ if order is None:
1281
+ order = n
1282
+ x = 1
1283
+ for i in range(order):
1284
+ if x == a:
1285
+ return i
1286
+ x = x * b % n
1287
+ raise ValueError("Log does not exist")
1288
+
1289
+
1290
+ def _discrete_log_shanks_steps(n, a, b, order=None):
1291
+ """
1292
+ Baby-step giant-step algorithm for computing the discrete logarithm of
1293
+ ``a`` to the base ``b`` modulo ``n``.
1294
+
1295
+ The algorithm is a time-memory trade-off of the method of exhaustive
1296
+ search. It uses `O(sqrt(m))` memory, where `m` is the group order.
1297
+
1298
+ Examples
1299
+ ========
1300
+
1301
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps
1302
+ >>> _discrete_log_shanks_steps(41, 15, 7)
1303
+ 3
1304
+
1305
+ See Also
1306
+ ========
1307
+
1308
+ discrete_log
1309
+
1310
+ References
1311
+ ==========
1312
+
1313
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1314
+ Vanstone, S. A. (1997).
1315
+ """
1316
+ a %= n
1317
+ b %= n
1318
+ if order is None:
1319
+ order = n_order(b, n)
1320
+ m = sqrt(order) + 1
1321
+ T = {}
1322
+ x = 1
1323
+ for i in range(m):
1324
+ T[x] = i
1325
+ x = x * b % n
1326
+ z = pow(b, -m, n)
1327
+ x = a
1328
+ for i in range(m):
1329
+ if x in T:
1330
+ return i * m + T[x]
1331
+ x = x * z % n
1332
+ raise ValueError("Log does not exist")
1333
+
1334
+
1335
+ def _discrete_log_pollard_rho(n, a, b, order=None, retries=10, rseed=None):
1336
+ """
1337
+ Pollard's Rho algorithm for computing the discrete logarithm of ``a`` to
1338
+ the base ``b`` modulo ``n``.
1339
+
1340
+ It is a randomized algorithm with the same expected running time as
1341
+ ``_discrete_log_shanks_steps``, but requires a negligible amount of memory.
1342
+
1343
+ Examples
1344
+ ========
1345
+
1346
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_pollard_rho
1347
+ >>> _discrete_log_pollard_rho(227, 3**7, 3)
1348
+ 7
1349
+
1350
+ See Also
1351
+ ========
1352
+
1353
+ discrete_log
1354
+
1355
+ References
1356
+ ==========
1357
+
1358
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1359
+ Vanstone, S. A. (1997).
1360
+ """
1361
+ a %= n
1362
+ b %= n
1363
+
1364
+ if order is None:
1365
+ order = n_order(b, n)
1366
+ randint = _randint(rseed)
1367
+
1368
+ for i in range(retries):
1369
+ aa = randint(1, order - 1)
1370
+ ba = randint(1, order - 1)
1371
+ xa = pow(b, aa, n) * pow(a, ba, n) % n
1372
+
1373
+ c = xa % 3
1374
+ if c == 0:
1375
+ xb = a * xa % n
1376
+ ab = aa
1377
+ bb = (ba + 1) % order
1378
+ elif c == 1:
1379
+ xb = xa * xa % n
1380
+ ab = (aa + aa) % order
1381
+ bb = (ba + ba) % order
1382
+ else:
1383
+ xb = b * xa % n
1384
+ ab = (aa + 1) % order
1385
+ bb = ba
1386
+
1387
+ for j in range(order):
1388
+ c = xa % 3
1389
+ if c == 0:
1390
+ xa = a * xa % n
1391
+ ba = (ba + 1) % order
1392
+ elif c == 1:
1393
+ xa = xa * xa % n
1394
+ aa = (aa + aa) % order
1395
+ ba = (ba + ba) % order
1396
+ else:
1397
+ xa = b * xa % n
1398
+ aa = (aa + 1) % order
1399
+
1400
+ c = xb % 3
1401
+ if c == 0:
1402
+ xb = a * xb % n
1403
+ bb = (bb + 1) % order
1404
+ elif c == 1:
1405
+ xb = xb * xb % n
1406
+ ab = (ab + ab) % order
1407
+ bb = (bb + bb) % order
1408
+ else:
1409
+ xb = b * xb % n
1410
+ ab = (ab + 1) % order
1411
+
1412
+ c = xb % 3
1413
+ if c == 0:
1414
+ xb = a * xb % n
1415
+ bb = (bb + 1) % order
1416
+ elif c == 1:
1417
+ xb = xb * xb % n
1418
+ ab = (ab + ab) % order
1419
+ bb = (bb + bb) % order
1420
+ else:
1421
+ xb = b * xb % n
1422
+ ab = (ab + 1) % order
1423
+
1424
+ if xa == xb:
1425
+ r = (ba - bb) % order
1426
+ try:
1427
+ e = invert(r, order) * (ab - aa) % order
1428
+ if (pow(b, e, n) - a) % n == 0:
1429
+ return e
1430
+ except ZeroDivisionError:
1431
+ pass
1432
+ break
1433
+ raise ValueError("Pollard's Rho failed to find logarithm")
1434
+
1435
+
1436
+ def _discrete_log_is_smooth(n: int, factorbase: list):
1437
+ """Try to factor n with respect to a given factorbase.
1438
+ Upon success a list of exponents with repect to the factorbase is returned.
1439
+ Otherwise None."""
1440
+ factors = [0]*len(factorbase)
1441
+ for i, p in enumerate(factorbase):
1442
+ while n % p == 0: # divide by p as many times as possible
1443
+ factors[i] += 1
1444
+ n = n // p
1445
+ if n != 1:
1446
+ return None # the number factors if at the end nothing is left
1447
+ return factors
1448
+
1449
+
1450
+ def _discrete_log_index_calculus(n, a, b, order, rseed=None):
1451
+ """
1452
+ Index Calculus algorithm for computing the discrete logarithm of ``a`` to
1453
+ the base ``b`` modulo ``n``.
1454
+
1455
+ The group order must be given and prime. It is not suitable for small orders
1456
+ and the algorithm might fail to find a solution in such situations.
1457
+
1458
+ Examples
1459
+ ========
1460
+
1461
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_index_calculus
1462
+ >>> _discrete_log_index_calculus(24570203447, 23859756228, 2, 12285101723)
1463
+ 4519867240
1464
+
1465
+ See Also
1466
+ ========
1467
+
1468
+ discrete_log
1469
+
1470
+ References
1471
+ ==========
1472
+
1473
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1474
+ Vanstone, S. A. (1997).
1475
+ """
1476
+ randint = _randint(rseed)
1477
+ from math import sqrt, exp, log
1478
+ a %= n
1479
+ b %= n
1480
+ # assert isprime(order), "The order of the base must be prime."
1481
+ # First choose a heuristic the bound B for the factorbase.
1482
+ # We have added an extra term to the asymptotic value which
1483
+ # is closer to the theoretical optimum for n up to 2^70.
1484
+ B = int(exp(0.5 * sqrt( log(n) * log(log(n)) )*( 1 + 1/log(log(n)) )))
1485
+ max = 5 * B * B # expected number of trys to find a relation
1486
+ factorbase = list(primerange(B)) # compute the factorbase
1487
+ lf = len(factorbase) # length of the factorbase
1488
+ ordermo = order-1
1489
+ abx = a
1490
+ for x in range(order):
1491
+ if abx == 1:
1492
+ return (order - x) % order
1493
+ relationa = _discrete_log_is_smooth(abx, factorbase)
1494
+ if relationa:
1495
+ relationa = [r % order for r in relationa] + [x]
1496
+ break
1497
+ abx = abx * b % n # abx = a*pow(b, x, n) % n
1498
+
1499
+ else:
1500
+ raise ValueError("Index Calculus failed")
1501
+
1502
+ relations = [None] * lf
1503
+ k = 1 # number of relations found
1504
+ kk = 0
1505
+ while k < 3 * lf and kk < max: # find relations for all primes in our factor base
1506
+ x = randint(1,ordermo)
1507
+ relation = _discrete_log_is_smooth(pow(b,x,n), factorbase)
1508
+ if relation is None:
1509
+ kk += 1
1510
+ continue
1511
+ k += 1
1512
+ kk = 0
1513
+ relation += [ x ]
1514
+ index = lf # determine the index of the first nonzero entry
1515
+ for i in range(lf):
1516
+ ri = relation[i] % order
1517
+ if ri> 0 and relations[i] is not None: # make this entry zero if we can
1518
+ for j in range(lf+1):
1519
+ relation[j] = (relation[j] - ri*relations[i][j]) % order
1520
+ else:
1521
+ relation[i] = ri
1522
+ if relation[i] > 0 and index == lf: # is this the index of the first nonzero entry?
1523
+ index = i
1524
+ if index == lf or relations[index] is not None: # the relation contains no new information
1525
+ continue
1526
+ # the relation contains new information
1527
+ rinv = pow(relation[index],-1,order) # normalize the first nonzero entry
1528
+ for j in range(index,lf+1):
1529
+ relation[j] = rinv * relation[j] % order
1530
+ relations[index] = relation
1531
+ for i in range(lf): # subtract the new relation from the one for a
1532
+ if relationa[i] > 0 and relations[i] is not None:
1533
+ rbi = relationa[i]
1534
+ for j in range(lf+1):
1535
+ relationa[j] = (relationa[j] - rbi*relations[i][j]) % order
1536
+ if relationa[i] > 0: # the index of the first nonzero entry
1537
+ break # we do not need to reduce further at this point
1538
+ else: # all unkowns are gone
1539
+ #print(f"Success after {k} relations out of {lf}")
1540
+ x = (order -relationa[lf]) % order
1541
+ if pow(b,x,n) == a:
1542
+ return x
1543
+ raise ValueError("Index Calculus failed")
1544
+ raise ValueError("Index Calculus failed")
1545
+
1546
+
1547
+ def _discrete_log_pohlig_hellman(n, a, b, order=None, order_factors=None):
1548
+ """
1549
+ Pohlig-Hellman algorithm for computing the discrete logarithm of ``a`` to
1550
+ the base ``b`` modulo ``n``.
1551
+
1552
+ In order to compute the discrete logarithm, the algorithm takes advantage
1553
+ of the factorization of the group order. It is more efficient when the
1554
+ group order factors into many small primes.
1555
+
1556
+ Examples
1557
+ ========
1558
+
1559
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_pohlig_hellman
1560
+ >>> _discrete_log_pohlig_hellman(251, 210, 71)
1561
+ 197
1562
+
1563
+ See Also
1564
+ ========
1565
+
1566
+ discrete_log
1567
+
1568
+ References
1569
+ ==========
1570
+
1571
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1572
+ Vanstone, S. A. (1997).
1573
+ """
1574
+ from .modular import crt
1575
+ a %= n
1576
+ b %= n
1577
+
1578
+ if order is None:
1579
+ order = n_order(b, n)
1580
+ if order_factors is None:
1581
+ order_factors = factorint(order)
1582
+ l = [0] * len(order_factors)
1583
+
1584
+ for i, (pi, ri) in enumerate(order_factors.items()):
1585
+ for j in range(ri):
1586
+ aj = pow(a * pow(b, -l[i], n), order // pi**(j + 1), n)
1587
+ bj = pow(b, order // pi, n)
1588
+ cj = discrete_log(n, aj, bj, pi, True)
1589
+ l[i] += cj * pi**j
1590
+
1591
+ d, _ = crt([pi**ri for pi, ri in order_factors.items()], l)
1592
+ return d
1593
+
1594
+
1595
+ def discrete_log(n, a, b, order=None, prime_order=None):
1596
+ """
1597
+ Compute the discrete logarithm of ``a`` to the base ``b`` modulo ``n``.
1598
+
1599
+ This is a recursive function to reduce the discrete logarithm problem in
1600
+ cyclic groups of composite order to the problem in cyclic groups of prime
1601
+ order.
1602
+
1603
+ It employs different algorithms depending on the problem (subgroup order
1604
+ size, prime order or not):
1605
+
1606
+ * Trial multiplication
1607
+ * Baby-step giant-step
1608
+ * Pollard's Rho
1609
+ * Index Calculus
1610
+ * Pohlig-Hellman
1611
+
1612
+ Examples
1613
+ ========
1614
+
1615
+ >>> from sympy.ntheory import discrete_log
1616
+ >>> discrete_log(41, 15, 7)
1617
+ 3
1618
+
1619
+ References
1620
+ ==========
1621
+
1622
+ .. [1] https://mathworld.wolfram.com/DiscreteLogarithm.html
1623
+ .. [2] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1624
+ Vanstone, S. A. (1997).
1625
+
1626
+ """
1627
+ from math import sqrt, log
1628
+ n, a, b = as_int(n), as_int(a), as_int(b)
1629
+ if order is None:
1630
+ # Compute the order and its factoring in one pass
1631
+ # order = totient(n), factors = factorint(order)
1632
+ factors = {}
1633
+ for px, kx in factorint(n).items():
1634
+ if kx > 1:
1635
+ if px in factors:
1636
+ factors[px] += kx - 1
1637
+ else:
1638
+ factors[px] = kx - 1
1639
+ for py, ky in factorint(px - 1).items():
1640
+ if py in factors:
1641
+ factors[py] += ky
1642
+ else:
1643
+ factors[py] = ky
1644
+ order = 1
1645
+ for px, kx in factors.items():
1646
+ order *= px**kx
1647
+ # Now the `order` is the order of the group and factors = factorint(order)
1648
+ # The order of `b` divides the order of the group.
1649
+ order_factors = {}
1650
+ for p, e in factors.items():
1651
+ i = 0
1652
+ for _ in range(e):
1653
+ if pow(b, order // p, n) == 1:
1654
+ order //= p
1655
+ i += 1
1656
+ else:
1657
+ break
1658
+ if i < e:
1659
+ order_factors[p] = e - i
1660
+
1661
+ if prime_order is None:
1662
+ prime_order = isprime(order)
1663
+
1664
+ if order < 1000:
1665
+ return _discrete_log_trial_mul(n, a, b, order)
1666
+ elif prime_order:
1667
+ # Shanks and Pollard rho are O(sqrt(order)) while index calculus is O(exp(2*sqrt(log(n)log(log(n)))))
1668
+ # we compare the expected running times to determine the algorithmus which is expected to be faster
1669
+ if 4*sqrt(log(n)*log(log(n))) < log(order) - 10: # the number 10 was determined experimental
1670
+ return _discrete_log_index_calculus(n, a, b, order)
1671
+ elif order < 1000000000000:
1672
+ # Shanks seems typically faster, but uses O(sqrt(order)) memory
1673
+ return _discrete_log_shanks_steps(n, a, b, order)
1674
+ return _discrete_log_pollard_rho(n, a, b, order)
1675
+
1676
+ return _discrete_log_pohlig_hellman(n, a, b, order, order_factors)
1677
+
1678
+
1679
+
1680
+ def quadratic_congruence(a, b, c, n):
1681
+ r"""
1682
+ Find the solutions to `a x^2 + b x + c \equiv 0 \pmod{n}`.
1683
+
1684
+ Parameters
1685
+ ==========
1686
+
1687
+ a : int
1688
+ b : int
1689
+ c : int
1690
+ n : int
1691
+ A positive integer.
1692
+
1693
+ Returns
1694
+ =======
1695
+
1696
+ list[int] :
1697
+ A sorted list of solutions. If no solution exists, ``[]``.
1698
+
1699
+ Examples
1700
+ ========
1701
+
1702
+ >>> from sympy.ntheory.residue_ntheory import quadratic_congruence
1703
+ >>> quadratic_congruence(2, 5, 3, 7) # 2x^2 + 5x + 3 = 0 (mod 7)
1704
+ [2, 6]
1705
+ >>> quadratic_congruence(8, 6, 4, 15) # No solution
1706
+ []
1707
+
1708
+ See Also
1709
+ ========
1710
+
1711
+ polynomial_congruence : Solve the polynomial congruence
1712
+
1713
+ """
1714
+ a = as_int(a)
1715
+ b = as_int(b)
1716
+ c = as_int(c)
1717
+ n = as_int(n)
1718
+ if n <= 1:
1719
+ raise ValueError("n should be an integer greater than 1")
1720
+ a %= n
1721
+ b %= n
1722
+ c %= n
1723
+
1724
+ if a == 0:
1725
+ return linear_congruence(b, -c, n)
1726
+ if n == 2:
1727
+ # assert a == 1
1728
+ roots = []
1729
+ if c == 0:
1730
+ roots.append(0)
1731
+ if (b + c) % 2:
1732
+ roots.append(1)
1733
+ return roots
1734
+ if gcd(2*a, n) == 1:
1735
+ inv_a = invert(a, n)
1736
+ b *= inv_a
1737
+ c *= inv_a
1738
+ if b % 2:
1739
+ b += n
1740
+ b >>= 1
1741
+ return sorted((i - b) % n for i in sqrt_mod_iter(b**2 - c, n))
1742
+ res = set()
1743
+ for i in sqrt_mod_iter(b**2 - 4*a*c, 4*a*n):
1744
+ res.update(j % n for j in linear_congruence(2*a, i - b, 4*a*n))
1745
+ return sorted(res)
1746
+
1747
+
1748
+ def _valid_expr(expr):
1749
+ """
1750
+ return coefficients of expr if it is a univariate polynomial
1751
+ with integer coefficients else raise a ValueError.
1752
+ """
1753
+
1754
+ if not expr.is_polynomial():
1755
+ raise ValueError("The expression should be a polynomial")
1756
+ polynomial = Poly(expr)
1757
+ if not polynomial.is_univariate:
1758
+ raise ValueError("The expression should be univariate")
1759
+ if not polynomial.domain == ZZ:
1760
+ raise ValueError("The expression should should have integer coefficients")
1761
+ return polynomial.all_coeffs()
1762
+
1763
+
1764
+ def polynomial_congruence(expr, m):
1765
+ """
1766
+ Find the solutions to a polynomial congruence equation modulo m.
1767
+
1768
+ Parameters
1769
+ ==========
1770
+
1771
+ expr : integer coefficient polynomial
1772
+ m : positive integer
1773
+
1774
+ Examples
1775
+ ========
1776
+
1777
+ >>> from sympy.ntheory import polynomial_congruence
1778
+ >>> from sympy.abc import x
1779
+ >>> expr = x**6 - 2*x**5 -35
1780
+ >>> polynomial_congruence(expr, 6125)
1781
+ [3257]
1782
+
1783
+ See Also
1784
+ ========
1785
+
1786
+ sympy.polys.galoistools.gf_csolve : low level solving routine used by this routine
1787
+
1788
+ """
1789
+ coefficients = _valid_expr(expr)
1790
+ coefficients = [num % m for num in coefficients]
1791
+ rank = len(coefficients)
1792
+ if rank == 3:
1793
+ return quadratic_congruence(*coefficients, m)
1794
+ if rank == 2:
1795
+ return quadratic_congruence(0, *coefficients, m)
1796
+ if coefficients[0] == 1 and 1 + coefficients[-1] == sum(coefficients):
1797
+ return nthroot_mod(-coefficients[-1], rank - 1, m, True)
1798
+ return gf_csolve(coefficients, m)
1799
+
1800
+
1801
+ def binomial_mod(n, m, k):
1802
+ """Compute ``binomial(n, m) % k``.
1803
+
1804
+ Explanation
1805
+ ===========
1806
+
1807
+ Returns ``binomial(n, m) % k`` using a generalization of Lucas'
1808
+ Theorem for prime powers given by Granville [1]_, in conjunction with
1809
+ the Chinese Remainder Theorem. The residue for each prime power
1810
+ is calculated in time O(log^2(n) + q^4*log(n)log(p) + q^4*p*log^3(p)).
1811
+
1812
+ Parameters
1813
+ ==========
1814
+
1815
+ n : an integer
1816
+ m : an integer
1817
+ k : a positive integer
1818
+
1819
+ Examples
1820
+ ========
1821
+
1822
+ >>> from sympy.ntheory.residue_ntheory import binomial_mod
1823
+ >>> binomial_mod(10, 2, 6) # binomial(10, 2) = 45
1824
+ 3
1825
+ >>> binomial_mod(17, 9, 10) # binomial(17, 9) = 24310
1826
+ 0
1827
+
1828
+ References
1829
+ ==========
1830
+
1831
+ .. [1] Binomial coefficients modulo prime powers, Andrew Granville,
1832
+ Available: https://web.archive.org/web/20170202003812/http://www.dms.umontreal.ca/~andrew/PDF/BinCoeff.pdf
1833
+ """
1834
+ if k < 1: raise ValueError('k is required to be positive')
1835
+ # We decompose q into a product of prime powers and apply
1836
+ # the generalization of Lucas' Theorem given by Granville
1837
+ # to obtain binomial(n, k) mod p^e, and then use the Chinese
1838
+ # Remainder Theorem to obtain the result mod q
1839
+ if n < 0 or m < 0 or m > n: return 0
1840
+ factorisation = factorint(k)
1841
+ residues = [_binomial_mod_prime_power(n, m, p, e) for p, e in factorisation.items()]
1842
+ return crt([p**pw for p, pw in factorisation.items()], residues, check=False)[0]
1843
+
1844
+
1845
+ def _binomial_mod_prime_power(n, m, p, q):
1846
+ """Compute ``binomial(n, m) % p**q`` for a prime ``p``.
1847
+
1848
+ Parameters
1849
+ ==========
1850
+
1851
+ n : positive integer
1852
+ m : a nonnegative integer
1853
+ p : a prime
1854
+ q : a positive integer (the prime exponent)
1855
+
1856
+ Examples
1857
+ ========
1858
+
1859
+ >>> from sympy.ntheory.residue_ntheory import _binomial_mod_prime_power
1860
+ >>> _binomial_mod_prime_power(10, 2, 3, 2) # binomial(10, 2) = 45
1861
+ 0
1862
+ >>> _binomial_mod_prime_power(17, 9, 2, 4) # binomial(17, 9) = 24310
1863
+ 6
1864
+
1865
+ References
1866
+ ==========
1867
+
1868
+ .. [1] Binomial coefficients modulo prime powers, Andrew Granville,
1869
+ Available: https://web.archive.org/web/20170202003812/http://www.dms.umontreal.ca/~andrew/PDF/BinCoeff.pdf
1870
+ """
1871
+ # Function/variable naming within this function follows Ref.[1]
1872
+ # n!_p will be used to denote the product of integers <= n not divisible by
1873
+ # p, with binomial(n, m)_p the same as binomial(n, m), but defined using
1874
+ # n!_p in place of n!
1875
+ modulo = pow(p, q)
1876
+
1877
+ def up_factorial(u):
1878
+ """Compute (u*p)!_p modulo p^q."""
1879
+ r = q // 2
1880
+ fac = prod = 1
1881
+ if r == 1 and p == 2 or 2*r + 1 in (p, p*p):
1882
+ if q % 2 == 1: r += 1
1883
+ modulo, div = pow(p, 2*r), pow(p, 2*r - q)
1884
+ else:
1885
+ modulo, div = pow(p, 2*r + 1), pow(p, (2*r + 1) - q)
1886
+ for j in range(1, r + 1):
1887
+ for mul in range((j - 1)*p + 1, j*p): # ignore jp itself
1888
+ fac *= mul
1889
+ fac %= modulo
1890
+ bj_ = bj(u, j, r)
1891
+ prod *= pow(fac, bj_, modulo)
1892
+ prod %= modulo
1893
+ if p == 2:
1894
+ sm = u // 2
1895
+ for j in range(1, r + 1): sm += j//2 * bj(u, j, r)
1896
+ if sm % 2 == 1: prod *= -1
1897
+ prod %= modulo//div
1898
+ return prod % modulo
1899
+
1900
+ def bj(u, j, r):
1901
+ """Compute the exponent of (j*p)!_p in the calculation of (u*p)!_p."""
1902
+ prod = u
1903
+ for i in range(1, r + 1):
1904
+ if i != j: prod *= u*u - i*i
1905
+ for i in range(1, r + 1):
1906
+ if i != j: prod //= j*j - i*i
1907
+ return prod // j
1908
+
1909
+ def up_plus_v_binom(u, v):
1910
+ """Compute binomial(u*p + v, v)_p modulo p^q."""
1911
+ prod = 1
1912
+ div = invert(factorial(v), modulo)
1913
+ for j in range(1, q):
1914
+ b = div
1915
+ for v_ in range(j*p + 1, j*p + v + 1):
1916
+ b *= v_
1917
+ b %= modulo
1918
+ aj = u
1919
+ for i in range(1, q):
1920
+ if i != j: aj *= u - i
1921
+ for i in range(1, q):
1922
+ if i != j: aj //= j - i
1923
+ aj //= j
1924
+ prod *= pow(b, aj, modulo)
1925
+ prod %= modulo
1926
+ return prod
1927
+
1928
+ @recurrence_memo([1])
1929
+ def factorial(v, prev):
1930
+ """Compute v! modulo p^q."""
1931
+ return v*prev[-1] % modulo
1932
+
1933
+ def factorial_p(n):
1934
+ """Compute n!_p modulo p^q."""
1935
+ u, v = divmod(n, p)
1936
+ return (factorial(v) * up_factorial(u) * up_plus_v_binom(u, v)) % modulo
1937
+
1938
+ prod = 1
1939
+ Nj, Mj, Rj = n, m, n - m
1940
+ # e0 will be the p-adic valuation of binomial(n, m) at p
1941
+ e0 = carry = eq_1 = j = 0
1942
+ while Nj:
1943
+ numerator = factorial_p(Nj % modulo)
1944
+ denominator = factorial_p(Mj % modulo) * factorial_p(Rj % modulo) % modulo
1945
+ Nj, (Mj, mj), (Rj, rj) = Nj//p, divmod(Mj, p), divmod(Rj, p)
1946
+ carry = (mj + rj + carry) // p
1947
+ e0 += carry
1948
+ if j >= q - 1: eq_1 += carry
1949
+ prod *= numerator * invert(denominator, modulo)
1950
+ prod %= modulo
1951
+ j += 1
1952
+
1953
+ mul = pow(1 if p == 2 and q >= 3 else -1, eq_1, modulo)
1954
+ return (pow(p, e0, modulo) * mul * prod) % modulo
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__init__.py ADDED
File without changes
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_digits.cpython-310.pyc ADDED
Binary file (2.79 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_factor_.cpython-310.pyc ADDED
Binary file (24.2 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_residue.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/test_bbp_pi.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.random import randint
2
+
3
+ from sympy.ntheory.bbp_pi import pi_hex_digits
4
+ from sympy.testing.pytest import raises
5
+
6
+
7
+ # http://www.herongyang.com/Cryptography/Blowfish-First-8366-Hex-Digits-of-PI.html
8
+ # There are actually 8336 listed there; with the prepended 3 there are 8337
9
+ # below
10
+ dig=''.join('''
11
+ 3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c89452821e638d013
12
+ 77be5466cf34e90c6cc0ac29b7c97c50dd3f84d5b5b54709179216d5d98979fb1bd1310ba698dfb5
13
+ ac2ffd72dbd01adfb7b8e1afed6a267e96ba7c9045f12c7f9924a19947b3916cf70801f2e2858efc
14
+ 16636920d871574e69a458fea3f4933d7e0d95748f728eb658718bcd5882154aee7b54a41dc25a59
15
+ b59c30d5392af26013c5d1b023286085f0ca417918b8db38ef8e79dcb0603a180e6c9e0e8bb01e8a
16
+ 3ed71577c1bd314b2778af2fda55605c60e65525f3aa55ab945748986263e8144055ca396a2aab10
17
+ b6b4cc5c341141e8cea15486af7c72e993b3ee1411636fbc2a2ba9c55d741831f6ce5c3e169b8793
18
+ 1eafd6ba336c24cf5c7a325381289586773b8f48986b4bb9afc4bfe81b6628219361d809ccfb21a9
19
+ 91487cac605dec8032ef845d5de98575b1dc262302eb651b8823893e81d396acc50f6d6ff383f442
20
+ 392e0b4482a484200469c8f04a9e1f9b5e21c66842f6e96c9a670c9c61abd388f06a51a0d2d8542f
21
+ 68960fa728ab5133a36eef0b6c137a3be4ba3bf0507efb2a98a1f1651d39af017666ca593e82430e
22
+ 888cee8619456f9fb47d84a5c33b8b5ebee06f75d885c12073401a449f56c16aa64ed3aa62363f77
23
+ 061bfedf72429b023d37d0d724d00a1248db0fead349f1c09b075372c980991b7b25d479d8f6e8de
24
+ f7e3fe501ab6794c3b976ce0bd04c006bac1a94fb6409f60c45e5c9ec2196a246368fb6faf3e6c53
25
+ b51339b2eb3b52ec6f6dfc511f9b30952ccc814544af5ebd09bee3d004de334afd660f2807192e4b
26
+ b3c0cba85745c8740fd20b5f39b9d3fbdb5579c0bd1a60320ad6a100c6402c7279679f25fefb1fa3
27
+ cc8ea5e9f8db3222f83c7516dffd616b152f501ec8ad0552ab323db5fafd23876053317b483e00df
28
+ 829e5c57bbca6f8ca01a87562edf1769dbd542a8f6287effc3ac6732c68c4f5573695b27b0bbca58
29
+ c8e1ffa35db8f011a010fa3d98fd2183b84afcb56c2dd1d35b9a53e479b6f84565d28e49bc4bfb97
30
+ 90e1ddf2daa4cb7e3362fb1341cee4c6e8ef20cada36774c01d07e9efe2bf11fb495dbda4dae9091
31
+ 98eaad8e716b93d5a0d08ed1d0afc725e08e3c5b2f8e7594b78ff6e2fbf2122b648888b812900df0
32
+ 1c4fad5ea0688fc31cd1cff191b3a8c1ad2f2f2218be0e1777ea752dfe8b021fa1e5a0cc0fb56f74
33
+ e818acf3d6ce89e299b4a84fe0fd13e0b77cc43b81d2ada8d9165fa2668095770593cc7314211a14
34
+ 77e6ad206577b5fa86c75442f5fb9d35cfebcdaf0c7b3e89a0d6411bd3ae1e7e4900250e2d2071b3
35
+ 5e226800bb57b8e0af2464369bf009b91e5563911d59dfa6aa78c14389d95a537f207d5ba202e5b9
36
+ c5832603766295cfa911c819684e734a41b3472dca7b14a94a1b5100529a532915d60f573fbc9bc6
37
+ e42b60a47681e6740008ba6fb5571be91ff296ec6b2a0dd915b6636521e7b9f9b6ff34052ec58556
38
+ 6453b02d5da99f8fa108ba47996e85076a4b7a70e9b5b32944db75092ec4192623ad6ea6b049a7df
39
+ 7d9cee60b88fedb266ecaa8c71699a17ff5664526cc2b19ee1193602a575094c29a0591340e4183a
40
+ 3e3f54989a5b429d656b8fe4d699f73fd6a1d29c07efe830f54d2d38e6f0255dc14cdd20868470eb
41
+ 266382e9c6021ecc5e09686b3f3ebaefc93c9718146b6a70a1687f358452a0e286b79c5305aa5007
42
+ 373e07841c7fdeae5c8e7d44ec5716f2b8b03ada37f0500c0df01c1f040200b3ffae0cf51a3cb574
43
+ b225837a58dc0921bdd19113f97ca92ff69432477322f547013ae5e58137c2dadcc8b576349af3dd
44
+ a7a94461460fd0030eecc8c73ea4751e41e238cd993bea0e2f3280bba1183eb3314e548b384f6db9
45
+ 086f420d03f60a04bf2cb8129024977c795679b072bcaf89afde9a771fd9930810b38bae12dccf3f
46
+ 2e5512721f2e6b7124501adde69f84cd877a5847187408da17bc9f9abce94b7d8cec7aec3adb851d
47
+ fa63094366c464c3d2ef1c18473215d908dd433b3724c2ba1612a14d432a65c45150940002133ae4
48
+ dd71dff89e10314e5581ac77d65f11199b043556f1d7a3c76b3c11183b5924a509f28fe6ed97f1fb
49
+ fa9ebabf2c1e153c6e86e34570eae96fb1860e5e0a5a3e2ab3771fe71c4e3d06fa2965dcb999e71d
50
+ 0f803e89d65266c8252e4cc9789c10b36ac6150eba94e2ea78a5fc3c531e0a2df4f2f74ea7361d2b
51
+ 3d1939260f19c279605223a708f71312b6ebadfe6eeac31f66e3bc4595a67bc883b17f37d1018cff
52
+ 28c332ddefbe6c5aa56558218568ab9802eecea50fdb2f953b2aef7dad5b6e2f841521b628290761
53
+ 70ecdd4775619f151013cca830eb61bd960334fe1eaa0363cfb5735c904c70a239d59e9e0bcbaade
54
+ 14eecc86bc60622ca79cab5cabb2f3846e648b1eaf19bdf0caa02369b9655abb5040685a323c2ab4
55
+ b3319ee9d5c021b8f79b540b19875fa09995f7997e623d7da8f837889a97e32d7711ed935f166812
56
+ 810e358829c7e61fd696dedfa17858ba9957f584a51b2272639b83c3ff1ac24696cdb30aeb532e30
57
+ 548fd948e46dbc312858ebf2ef34c6ffeafe28ed61ee7c3c735d4a14d9e864b7e342105d14203e13
58
+ e045eee2b6a3aaabeadb6c4f15facb4fd0c742f442ef6abbb5654f3b1d41cd2105d81e799e86854d
59
+ c7e44b476a3d816250cf62a1f25b8d2646fc8883a0c1c7b6a37f1524c369cb749247848a0b5692b2
60
+ 85095bbf00ad19489d1462b17423820e0058428d2a0c55f5ea1dadf43e233f70613372f0928d937e
61
+ 41d65fecf16c223bdb7cde3759cbee74604085f2a7ce77326ea607808419f8509ee8efd85561d997
62
+ 35a969a7aac50c06c25a04abfc800bcadc9e447a2ec3453484fdd567050e1e9ec9db73dbd3105588
63
+ cd675fda79e3674340c5c43465713e38d83d28f89ef16dff20153e21e78fb03d4ae6e39f2bdb83ad
64
+ f7e93d5a68948140f7f64c261c94692934411520f77602d4f7bcf46b2ed4a20068d40824713320f4
65
+ 6a43b7d4b7500061af1e39f62e9724454614214f74bf8b88404d95fc1d96b591af70f4ddd366a02f
66
+ 45bfbc09ec03bd97857fac6dd031cb850496eb27b355fd3941da2547e6abca0a9a28507825530429
67
+ f40a2c86dae9b66dfb68dc1462d7486900680ec0a427a18dee4f3ffea2e887ad8cb58ce0067af4d6
68
+ b6aace1e7cd3375fecce78a399406b2a4220fe9e35d9f385b9ee39d7ab3b124e8b1dc9faf74b6d18
69
+ 5626a36631eae397b23a6efa74dd5b43326841e7f7ca7820fbfb0af54ed8feb397454056acba4895
70
+ 2755533a3a20838d87fe6ba9b7d096954b55a867bca1159a58cca9296399e1db33a62a4a563f3125
71
+ f95ef47e1c9029317cfdf8e80204272f7080bb155c05282ce395c11548e4c66d2248c1133fc70f86
72
+ dc07f9c9ee41041f0f404779a45d886e17325f51ebd59bc0d1f2bcc18f41113564257b7834602a9c
73
+ 60dff8e8a31f636c1b0e12b4c202e1329eaf664fd1cad181156b2395e0333e92e13b240b62eebeb9
74
+ 2285b2a20ee6ba0d99de720c8c2da2f728d012784595b794fd647d0862e7ccf5f05449a36f877d48
75
+ fac39dfd27f33e8d1e0a476341992eff743a6f6eabf4f8fd37a812dc60a1ebddf8991be14cdb6e6b
76
+ 0dc67b55106d672c372765d43bdcd0e804f1290dc7cc00ffa3b5390f92690fed0b667b9ffbcedb7d
77
+ 9ca091cf0bd9155ea3bb132f88515bad247b9479bf763bd6eb37392eb3cc1159798026e297f42e31
78
+ 2d6842ada7c66a2b3b12754ccc782ef11c6a124237b79251e706a1bbe64bfb63501a6b101811caed
79
+ fa3d25bdd8e2e1c3c9444216590a121386d90cec6ed5abea2a64af674eda86a85fbebfe98864e4c3
80
+ fe9dbc8057f0f7c08660787bf86003604dd1fd8346f6381fb07745ae04d736fccc83426b33f01eab
81
+ 71b08041873c005e5f77a057bebde8ae2455464299bf582e614e58f48ff2ddfda2f474ef388789bd
82
+ c25366f9c3c8b38e74b475f25546fcd9b97aeb26618b1ddf84846a0e79915f95e2466e598e20b457
83
+ 708cd55591c902de4cb90bace1bb8205d011a862487574a99eb77f19b6e0a9dc09662d09a1c43246
84
+ 33e85a1f0209f0be8c4a99a0251d6efe101ab93d1d0ba5a4dfa186f20f2868f169dcb7da83573906
85
+ fea1e2ce9b4fcd7f5250115e01a70683faa002b5c40de6d0279af88c27773f8641c3604c0661a806
86
+ b5f0177a28c0f586e0006058aa30dc7d6211e69ed72338ea6353c2dd94c2c21634bbcbee5690bcb6
87
+ deebfc7da1ce591d766f05e4094b7c018839720a3d7c927c2486e3725f724d9db91ac15bb4d39eb8
88
+ fced54557808fca5b5d83d7cd34dad0fc41e50ef5eb161e6f8a28514d96c51133c6fd5c7e756e14e
89
+ c4362abfceddc6c837d79a323492638212670efa8e406000e03a39ce37d3faf5cfabc277375ac52d
90
+ 1b5cb0679e4fa33742d382274099bc9bbed5118e9dbf0f7315d62d1c7ec700c47bb78c1b6b21a190
91
+ 45b26eb1be6a366eb45748ab2fbc946e79c6a376d26549c2c8530ff8ee468dde7dd5730a1d4cd04d
92
+ c62939bbdba9ba4650ac9526e8be5ee304a1fad5f06a2d519a63ef8ce29a86ee22c089c2b843242e
93
+ f6a51e03aa9cf2d0a483c061ba9be96a4d8fe51550ba645bd62826a2f9a73a3ae14ba99586ef5562
94
+ e9c72fefd3f752f7da3f046f6977fa0a5980e4a91587b086019b09e6ad3b3ee593e990fd5a9e34d7
95
+ 972cf0b7d9022b8b5196d5ac3a017da67dd1cf3ed67c7d2d281f9f25cfadf2b89b5ad6b4725a88f5
96
+ 4ce029ac71e019a5e647b0acfded93fa9be8d3c48d283b57ccf8d5662979132e28785f0191ed7560
97
+ 55f7960e44e3d35e8c15056dd488f46dba03a161250564f0bdc3eb9e153c9057a297271aeca93a07
98
+ 2a1b3f6d9b1e6321f5f59c66fb26dcf3197533d928b155fdf5035634828aba3cbb28517711c20ad9
99
+ f8abcc5167ccad925f4de817513830dc8e379d58629320f991ea7a90c2fb3e7bce5121ce64774fbe
100
+ 32a8b6e37ec3293d4648de53696413e680a2ae0810dd6db22469852dfd09072166b39a460a6445c0
101
+ dd586cdecf1c20c8ae5bbef7dd1b588d40ccd2017f6bb4e3bbdda26a7e3a59ff453e350a44bcb4cd
102
+ d572eacea8fa6484bb8d6612aebf3c6f47d29be463542f5d9eaec2771bf64e6370740e0d8de75b13
103
+ 57f8721671af537d5d4040cb084eb4e2cc34d2466a0115af84e1b0042895983a1d06b89fb4ce6ea0
104
+ 486f3f3b823520ab82011a1d4b277227f8611560b1e7933fdcbb3a792b344525bda08839e151ce79
105
+ 4b2f32c9b7a01fbac9e01cc87ebcc7d1f6cf0111c3a1e8aac71a908749d44fbd9ad0dadecbd50ada
106
+ 380339c32ac69136678df9317ce0b12b4ff79e59b743f5bb3af2d519ff27d9459cbf97222c15e6fc
107
+ 2a0f91fc719b941525fae59361ceb69cebc2a8645912baa8d1b6c1075ee3056a0c10d25065cb03a4
108
+ 42e0ec6e0e1698db3b4c98a0be3278e9649f1f9532e0d392dfd3a0342b8971f21e1b0a74414ba334
109
+ 8cc5be7120c37632d8df359f8d9b992f2ee60b6f470fe3f11de54cda541edad891ce6279cfcd3e7e
110
+ 6f1618b166fd2c1d05848fd2c5f6fb2299f523f357a632762393a8353156cccd02acf081625a75eb
111
+ b56e16369788d273ccde96629281b949d04c50901b71c65614e6c6c7bd327a140a45e1d006c3f27b
112
+ 9ac9aa53fd62a80f00bb25bfe235bdd2f671126905b2040222b6cbcf7ccd769c2b53113ec01640e3
113
+ d338abbd602547adf0ba38209cf746ce7677afa1c52075606085cbfe4e8ae88dd87aaaf9b04cf9aa
114
+ 7e1948c25c02fb8a8c01c36ae4d6ebe1f990d4f869a65cdea03f09252dc208e69fb74e6132ce77e2
115
+ 5b578fdfe33ac372e6'''.split())
116
+
117
+
118
+ def test_hex_pi_nth_digits():
119
+ assert pi_hex_digits(0) == '3243f6a8885a30'
120
+ assert pi_hex_digits(1) == '243f6a8885a308'
121
+ assert pi_hex_digits(10000) == '68ac8fcfb8016c'
122
+ assert pi_hex_digits(13) == '08d313198a2e03'
123
+ assert pi_hex_digits(0, 3) == '324'
124
+ assert pi_hex_digits(0, 0) == ''
125
+ raises(ValueError, lambda: pi_hex_digits(-1))
126
+ raises(ValueError, lambda: pi_hex_digits(0, -1))
127
+ raises(ValueError, lambda: pi_hex_digits(3.14))
128
+
129
+ # this will pick a random segment to compute every time
130
+ # it is run. If it ever fails, there is an error in the
131
+ # computation.
132
+ n = randint(0, len(dig))
133
+ prec = randint(0, len(dig) - n)
134
+ assert pi_hex_digits(n, prec) == dig[n: n + prec]
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/test_digits.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory import count_digits, digits, is_palindromic
2
+ from sympy.core.intfunc import num_digits
3
+
4
+ from sympy.testing.pytest import raises
5
+
6
+
7
+ def test_num_digits():
8
+ # depending on whether one rounds up or down or uses log or log10,
9
+ # one or more of these will fail if you don't check for the off-by
10
+ # one condition
11
+ assert num_digits(2, 2) == 2
12
+ assert num_digits(2**48 - 1, 2) == 48
13
+ assert num_digits(1000, 10) == 4
14
+ assert num_digits(125, 5) == 4
15
+ assert num_digits(100, 16) == 2
16
+ assert num_digits(-1000, 10) == 4
17
+ # if changes are made to the function, this structured test over
18
+ # this range will expose problems
19
+ for base in range(2, 100):
20
+ for e in range(1, 100):
21
+ n = base**e
22
+ assert num_digits(n, base) == e + 1
23
+ assert num_digits(n + 1, base) == e + 1
24
+ assert num_digits(n - 1, base) == e
25
+
26
+
27
+ def test_digits():
28
+ assert all(digits(n, 2)[1:] == [int(d) for d in format(n, 'b')]
29
+ for n in range(20))
30
+ assert all(digits(n, 8)[1:] == [int(d) for d in format(n, 'o')]
31
+ for n in range(20))
32
+ assert all(digits(n, 16)[1:] == [int(d, 16) for d in format(n, 'x')]
33
+ for n in range(20))
34
+ assert digits(2345, 34) == [34, 2, 0, 33]
35
+ assert digits(384753, 71) == [71, 1, 5, 23, 4]
36
+ assert digits(93409, 10) == [10, 9, 3, 4, 0, 9]
37
+ assert digits(-92838, 11) == [-11, 6, 3, 8, 2, 9]
38
+ assert digits(35, 10) == [10, 3, 5]
39
+ assert digits(35, 10, 3) == [10, 0, 3, 5]
40
+ assert digits(-35, 10, 4) == [-10, 0, 0, 3, 5]
41
+ raises(ValueError, lambda: digits(2, 2, 1))
42
+
43
+
44
+ def test_count_digits():
45
+ assert count_digits(55, 2) == {1: 5, 0: 1}
46
+ assert count_digits(55, 10) == {5: 2}
47
+ n = count_digits(123)
48
+ assert n[4] == 0 and type(n[4]) is int
49
+
50
+
51
+ def test_is_palindromic():
52
+ assert is_palindromic(-11)
53
+ assert is_palindromic(11)
54
+ assert is_palindromic(0o121, 8)
55
+ assert not is_palindromic(123)
infer_4_47_1/lib/python3.10/site-packages/sympy/ntheory/tests/test_hypothesis.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from hypothesis import given
2
+ from hypothesis import strategies as st
3
+ from sympy import divisors
4
+ from sympy.functions.combinatorial.numbers import divisor_sigma, totient
5
+ from sympy.ntheory.primetest import is_square
6
+
7
+
8
+ @given(n=st.integers(1, 10**10))
9
+ def test_tau_hypothesis(n):
10
+ div = divisors(n)
11
+ tau_n = len(div)
12
+ assert is_square(n) == (tau_n % 2 == 1)
13
+ sigmas = [divisor_sigma(i) for i in div]
14
+ totients = [totient(n // i) for i in div]
15
+ mul = [a * b for a, b in zip(sigmas, totients)]
16
+ assert n * tau_n == sum(mul)
17
+
18
+
19
+ @given(n=st.integers(1, 10**10))
20
+ def test_totient_hypothesis(n):
21
+ assert totient(n) <= n
22
+ div = divisors(n)
23
+ totients = [totient(i) for i in div]
24
+ assert n == sum(totients)
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.66 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/aesaracode.cpython-310.pyc ADDED
Binary file (19 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/c.cpython-310.pyc ADDED
Binary file (26.9 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/codeprinter.cpython-310.pyc ADDED
Binary file (31.6 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/conventions.cpython-310.pyc ADDED
Binary file (2.53 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/cxx.cpython-310.pyc ADDED
Binary file (5.93 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/defaults.cpython-310.pyc ADDED
Binary file (284 Bytes). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/dot.cpython-310.pyc ADDED
Binary file (8.82 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/fortran.cpython-310.pyc ADDED
Binary file (27.3 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/glsl.cpython-310.pyc ADDED
Binary file (20.1 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/gtk.cpython-310.pyc ADDED
Binary file (757 Bytes). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/jscode.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/julia.cpython-310.pyc ADDED
Binary file (23.3 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/lambdarepr.cpython-310.pyc ADDED
Binary file (8.03 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/llvmjitcode.cpython-310.pyc ADDED
Binary file (15.1 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/maple.cpython-310.pyc ADDED
Binary file (12.2 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/mathematica.cpython-310.pyc ADDED
Binary file (23.9 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/mathml.cpython-310.pyc ADDED
Binary file (57.1 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/numpy.cpython-310.pyc ADDED
Binary file (20.9 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/octave.cpython-310.pyc ADDED
Binary file (26.5 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/precedence.cpython-310.pyc ADDED
Binary file (3.7 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/preview.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/printer.cpython-310.pyc ADDED
Binary file (13.7 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/pycode.cpython-310.pyc ADDED
Binary file (27.7 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/python.cpython-310.pyc ADDED
Binary file (2.62 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/rcode.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/repr.cpython-310.pyc ADDED
Binary file (13.8 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/rust.cpython-310.pyc ADDED
Binary file (17.6 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/smtlib.cpython-310.pyc ADDED
Binary file (20.8 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/sympy/printing/__pycache__/str.cpython-310.pyc ADDED
Binary file (39 kB). View file