ZJUFanLab commited on
Commit
5b114d7
1 Parent(s): 6dd7aa2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +112 -96
README.md CHANGED
@@ -1,7 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  [**中文**](./README_ZH.md) | [**English**](./README.md)
2
 
3
  <p align="center" width="100%">
4
- <a href="https://github.com/daiyizheng/TCMChat" target="_blank"><img src="assets/logo.png" alt="TCMChat" style="width: 25%; min-width: 300px; display: block; margin: auto;"></a>
5
  </p>
6
 
7
  # TCMChat: A Generative Large Language Model for Traditional Chinese Medicine
@@ -9,29 +22,30 @@
9
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/blob/main/LICENSE) [![Python 3.10.12](https://img.shields.io/badge/python-3.10.12-blue.svg)](https://www.python.org/downloads/release/python-390/)
10
 
11
  ## News
12
-
13
  [2024-5-17] Open source model weight on HuggingFace.
14
 
15
  ## Application
16
 
17
  ### Install
18
-
19
- ```
20
  git clone https://github.com/daiyizheng/TCMChat
21
  cd TCMChat
22
  ```
 
 
 
 
23
  First install the dependency package. python environment 3.10+ is recommended.
24
 
25
- ```
26
  pip install -r requirements.txt
27
  ```
28
 
29
  ### Weights download
30
-
31
  - [TCMChat](https://huggingface.co/daiyizheng/TCMChat): QA and recommendation of TCM knowledge based on baichuan2-7B-Chat.
32
 
33
  ### Inference
34
-
35
  #### Command line
36
 
37
  ```
@@ -50,111 +64,113 @@ We provide an online tool:[https://xomics.com.cn/tcmchat](https://xomics.com.c
50
 
51
 
52
  ### Retrain
53
-
54
  #### Dataset Download
55
 
56
- - [Pretrain dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/pretrain)
57
- - [SFT dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/sft)
58
- - [Benchmark dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/evaluate)
59
-
60
- > Note: Currently only sample data is provided. In the near future, we will fully open source the original data.
61
 
62
 
 
63
  #### Pre-training
64
 
65
  ```shell
66
- train_type="pretrain"
67
- train_file="data/pretrain/train"
68
- validation_file="data/pretrain/test"
69
- block_size="1024"
70
- deepspeed_dir="data/resources/deepspeed_zero_stage2_config.yml"
71
- num_train_epochs="2"
72
- export WANDB_PROJECT="TCM-${train_type}"
73
- date_time=$(date +"%Y%m%d%H%M%S")
74
- run_name="${date_time}_${block_size}"
75
- model_name_or_path="your/path/Baichuan2-7B-Chat"
76
- output_dir="output/${train_type}/${date_time}_${block_size}"
77
-
78
-
79
- accelerate launch --config_file ${deepspeed_dir} src/pretraining.py \
80
- --model_name_or_path ${model_name_or_path} \
81
- --train_file ${train_file} \
82
- --validation_file ${validation_file} \
83
- --preprocessing_num_workers 20 \
84
- --cache_dir ./cache \
85
- --block_size ${block_size} \
86
- --seed 42 \
87
- --do_train \
88
- --do_eval \
89
- --per_device_train_batch_size 32 \
90
- --per_device_eval_batch_size 32 \
91
- --num_train_epochs ${num_train_epochs} \
92
- --low_cpu_mem_usage True \
93
- --torch_dtype bfloat16 \
94
- --bf16 \
95
- --ddp_find_unused_parameters False \
96
- --gradient_checkpointing True \
97
- --learning_rate 2e-4 \
98
- --warmup_ratio 0.05 \
99
- --weight_decay 0.01 \
100
- --report_to wandb \
101
- --run_name ${run_name} \
102
- --logging_dir logs \
103
- --logging_strategy steps \
104
- --logging_steps 10 \
105
- --eval_steps 50 \
106
- --evaluation_strategy steps \
107
- --save_steps 100 \
108
- --save_strategy steps \
109
- --save_total_limit 13 \
110
- --output_dir ${output_dir} \
111
- --overwrite_output_dir
112
  ```
113
 
114
  #### Fine-tuning
115
-
116
  ```shell
117
- train_type="SFT"
118
- model_max_length="1024"
119
- date_time=$(date +"%Y%m%d%H%M%S")
120
- data_path="data/sft/sample_train_baichuan_data.json"
121
- model_name_or_path="your/path/pretrain"
122
- deepspeed_dir="data/resources/deepspeed_zero_stage2_confi_baichuan2.json"
123
- export WANDB_PROJECT="TCM-${train_type}"
124
- run_name="${train_type}_${date_time}"
125
- output_dir="output/${train_type}/${date_time}_${model_max_length}"
126
-
127
-
128
- deepspeed --hostfile="" src/fine-tune.py \
129
- --report_to "wandb" \
130
- --run_name ${run_name} \
131
- --data_path ${data_path} \
132
- --model_name_or_path ${model_name_or_path} \
133
- --output_dir ${output_dir} \
134
- --model_max_length ${model_max_length} \
135
- --num_train_epochs 4 \
136
- --per_device_train_batch_size 16 \
137
- --gradient_accumulation_steps 1 \
138
- --save_strategy epoch \
139
- --learning_rate 2e-5 \
140
- --lr_scheduler_type constant \
141
- --adam_beta1 0.9 \
142
- --adam_beta2 0.98 \
143
- --adam_epsilon 1e-8 \
144
- --max_grad_norm 1.0 \
145
- --weight_decay 1e-4 \
146
- --warmup_ratio 0.0 \
147
- --logging_steps 1 \
148
- --gradient_checkpointing True \
149
- --deepspeed ${deepspeed_dir} \
150
- --bf16 True \
151
- --tf32 True
152
  ```
153
-
154
  ### Training details
155
 
156
  Please refer to the experimental section of the paper for instructions.
157
 
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
 
160
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - TCM
5
+ - chinese-medicine
6
+ - conversational
7
+ license: apache-2.0
8
+ datasets:
9
+ - ZJUFanLab/TCMChat-dataset-600k
10
+ model-index:
11
+ - name: TCMChat-dataset-600k
12
+ results: []
13
+ ---
14
  [**中文**](./README_ZH.md) | [**English**](./README.md)
15
 
16
  <p align="center" width="100%">
17
+ <a href="https://github.com/daiyizheng/TCMChat" target="_blank"><img src="logo.png" alt="TCMChat" style="width: 25%; min-width: 300px; display: block; margin: auto;"></a>
18
  </p>
19
 
20
  # TCMChat: A Generative Large Language Model for Traditional Chinese Medicine
 
22
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/blob/main/LICENSE) [![Python 3.10.12](https://img.shields.io/badge/python-3.10.12-blue.svg)](https://www.python.org/downloads/release/python-390/)
23
 
24
  ## News
25
+ [2024-11-1] We have fully open-sourced the model weights and training dataset on Huggingface.
26
  [2024-5-17] Open source model weight on HuggingFace.
27
 
28
  ## Application
29
 
30
  ### Install
31
+ ```shell
 
32
  git clone https://github.com/daiyizheng/TCMChat
33
  cd TCMChat
34
  ```
35
+ Create a conda environment
36
+ ```shell
37
+ conda create -n baichuan2 python=3.10 -y
38
+ ```
39
  First install the dependency package. python environment 3.10+ is recommended.
40
 
41
+ ```shell
42
  pip install -r requirements.txt
43
  ```
44
 
45
  ### Weights download
 
46
  - [TCMChat](https://huggingface.co/daiyizheng/TCMChat): QA and recommendation of TCM knowledge based on baichuan2-7B-Chat.
47
 
48
  ### Inference
 
49
  #### Command line
50
 
51
  ```
 
64
 
65
 
66
  ### Retrain
 
67
  #### Dataset Download
68
 
69
+ - [Pretrain dataset](https://huggingface.co/datasets/ZJUFanLab/TCMChat-dataset-600k)
70
+ - [SFT dataset](https://huggingface.co/datasets/ZJUFanLab/TCMChat-dataset-600k)
71
+ - [Benchmark dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/evaluation/resources)
 
 
72
 
73
 
74
+ > Note: Before performing pre-training, fine-tuning, and inference, please modify the relevant paths for your model, data, and other related files.
75
  #### Pre-training
76
 
77
  ```shell
78
+ ## Slurm cluster
79
+ sbatch scripts/pretrain/baichuan2_7b_chat.slurm
80
+ ## or
81
+ bash scripts/pretrain/baichuan2_7b_chat.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  ```
83
 
84
  #### Fine-tuning
 
85
  ```shell
86
+ ## Slurm cluster
87
+ sbatch scripts/sft/baichuan2_7b_chat.slurm
88
+ ## or
89
+ bash scripts/sft/baichuan2_7b_chat.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  ```
 
91
  ### Training details
92
 
93
  Please refer to the experimental section of the paper for instructions.
94
 
95
 
96
+ ### Benchmark evaluation
97
+
98
+ #### Choice Question
99
+ ```shell
100
+ python evaluation/choices_evaluate/eval.py --model_path_or_name /your/model/path --model_name baichuan2-7b-chat --few_shot -sz herb --dev_file_path evaluation/resources/choice/single/tcm-herb_dev.csv --val_file_path evaluation/resources/choice/single/choice_herb_500.csv --log_dir logs/choices
101
+ ```
102
+
103
+ #### Reading Comprehension
104
+ ```shell
105
+ python infers/baichuan_infer.py \
106
+ --model_name_or_path /your/model/path / \
107
+ --model_type chat \
108
+ --save_path /your/save/data/path \
109
+ --data_path /your/data/path
110
+ ##BertScore
111
+ python evaluation/question_rouge_bleu.py/question_bert_score.py
112
+ ## BLEU METEOR
113
+ python evaluation/question_rouge_bleu.py/open_question_bleu.py
114
+ ## ROUGE-x
115
+ python evaluation/question_rouge_bleu.py/open_question_rouge.py
116
+
117
+ ```
118
+
119
+ #### Entity Extraction
120
+ ```shell
121
+ python infers/baichuan_infer.py \
122
+ --model_name_or_path /your/model/path / \
123
+ --model_type chat \
124
+ --save_path /your/save/data/path \
125
+ --data_path /your/data/path
126
+
127
+ python evaluation/ner_evaluate/tcm_entity_recognition.py
128
+
129
+ ```
130
+
131
+ #### Medical Case Diagnosis
132
+ ```shell
133
+ python infers/baichuan_infer.py \
134
+ --model_name_or_path /your/model/path / \
135
+ --model_type chat \
136
+ --save_path /your/save/data/path \
137
+ --data_path /your/data/path
138
+
139
+ python evaluation/acc_evaluate/extract_syndrome.py
140
+
141
+ ```
142
+
143
+ #### Herb or Formula Recommendation
144
+ ```shell
145
+ python infers/baichuan_infer.py \
146
+ --model_name_or_path /your/model/path / \
147
+ --model_type chat \
148
+ --save_path /your/save/data/path \
149
+ --data_path /your/data/path
150
+
151
+ python evaluation/recommend_evaluate/mrr_ndcg_p_r.py
152
+
153
+ ```
154
+ ### ADMET Prediction
155
+ #### Regression
156
+ ```shell
157
+ python infers/baichuan_infer.py \
158
+ --model_name_or_path /your/model/path / \
159
+ --model_type chat \
160
+ --save_path /your/save/data/path \
161
+ --data_path /your/data/path
162
+
163
+ python evaluation/admet_evaluate/rmse_mae_mse.py
164
+
165
+ ```
166
+ #### Classification
167
+ ```shell
168
+ python infers/baichuan_infer.py \
169
+ --model_name_or_path /your/model/path / \
170
+ --model_type chat \
171
+ --save_path /your/save/data/path \
172
+ --data_path /your/data/path
173
 
174
+ python evaluation/admet_evaluate/acc_recall_f1.py
175
 
176
+ ```