YuxuanZhang888 commited on
Commit
f434f07
1 Parent(s): 0233002

Delete ColonCancerCTDatasetScript.py

Browse files
Files changed (1) hide show
  1. ColonCancerCTDatasetScript.py +0 -158
ColonCancerCTDatasetScript.py DELETED
@@ -1,158 +0,0 @@
1
- import pydicom
2
- from PIL import Image
3
- import numpy as np
4
- import io
5
- import datasets
6
- import gdown
7
- import re
8
- import s3fs
9
- import random
10
-
11
- example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6"
12
- example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False)
13
- full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j"
14
- full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False)
15
- fs = s3fs.S3FileSystem(anon=True)
16
-
17
- _DESCRIPTION = "This is the description"
18
- _HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
19
- _LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
20
- _CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons"
21
-
22
-
23
- class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
24
- """TODO: Short description of my dataset."""
25
- VERSION = datasets.Version("1.1.0")
26
-
27
- BUILDER_CONFIGS = [
28
- datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"),
29
- datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"),
30
- ]
31
- DEFAULT_CONFIG_NAME = "example"
32
-
33
- def _info(self):
34
- return datasets.DatasetInfo(
35
- description=_DESCRIPTION,
36
- features=datasets.Features(
37
- {
38
- "image": datasets.Image(),
39
- "ImageType": datasets.Sequence(datasets.Value('string')),
40
- "StudyDate": datasets.Value('string'),
41
- "SeriesDate": datasets.Value('string'),
42
- "Manufacturer": datasets.Value('string'),
43
- "StudyDescription": datasets.Value('string'),
44
- "SeriesDescription": datasets.Value('string'),
45
- "PatientSex": datasets.Value('string'),
46
- "PatientAge": datasets.Value('string'),
47
- "PregnancyStatus": datasets.Value('string'),
48
- "BodyPartExamined": datasets.Value('string'),
49
- }),
50
- homepage = _HOMEPAGE,
51
- license = _LICENSE,
52
- citation = _CITATION
53
-
54
- )
55
-
56
- def _split_generators(self, dl_manager):
57
- """Returns SplitGenerators."""
58
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the
59
- s3_series_paths = []
60
- s3_individual_paths = []
61
- if self.config.name == 'example':
62
- manifest_file = example_manifest_file
63
- else:
64
- manifest_file = full_manifest_file
65
-
66
- with open(manifest_file, 'r') as file:
67
- for line in file:
68
- match = re.search(r'cp (s3://[\S]+) .', line)
69
- if match:
70
- s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories
71
- for series in s3_series_paths:
72
- for content in fs.ls(series):
73
- s3_individual_paths.append(fs.info(content)['Key'])
74
-
75
- random.shuffle(s3_individual_paths)
76
-
77
- # Define the split sizes
78
- train_size = int(0.7 * len(s3_individual_paths))
79
- val_size = int(0.15 * len(s3_individual_paths))
80
- # Split the paths into train, validation, and test sets
81
- train_paths = s3_individual_paths[:train_size]
82
- val_paths = s3_individual_paths[train_size:train_size + val_size]
83
- test_paths = s3_individual_paths[train_size + val_size:]
84
-
85
- return [
86
- datasets.SplitGenerator(
87
- name=datasets.Split.TRAIN,
88
- gen_kwargs={
89
- "paths": train_paths,
90
- "split": "train"
91
- },
92
- ),
93
- datasets.SplitGenerator(
94
- name=datasets.Split.VALIDATION,
95
- gen_kwargs={
96
- "paths": val_paths,
97
- "split": "dev"
98
- },
99
- ),
100
- datasets.SplitGenerator(
101
- name=datasets.Split.TEST,
102
- gen_kwargs={
103
- "paths": test_paths,
104
- "split": "test"
105
- },
106
- ),
107
- ]
108
-
109
- def _generate_examples(self, paths, split):
110
- """Yields examples."""
111
- # TODO: This method will yield examples, i.e. rows in the dataset.
112
- for path in paths:
113
- key = path
114
- with fs.open(path, 'rb') as f:
115
- dicom_data = pydicom.dcmread(f)
116
- pixel_array = dicom_data.pixel_array
117
- # Adjust for MONOCHROME1 to invert the grayscale values
118
- if dicom_data.PhotometricInterpretation == "MONOCHROME1":
119
- pixel_array = np.max(pixel_array) - pixel_array
120
- # Normalize or scale 16-bit or other depth images to 8-bit
121
- if pixel_array.dtype != np.uint8:
122
- pixel_array = (np.divide(pixel_array, np.max(pixel_array)) * 255).astype(np.uint8)
123
- # Convert to RGB if it is not already (e.g., for color images)
124
- if len(pixel_array.shape) == 2:
125
- im = Image.fromarray(pixel_array, mode="L") # L mode is for grayscale
126
- elif len(pixel_array.shape) == 3 and pixel_array.shape[2] in [3, 4]:
127
- im = Image.fromarray(pixel_array, mode="RGB")
128
- else:
129
- raise ValueError("Unsupported DICOM image format")
130
- with io.BytesIO() as output:
131
- im.save(output, format="PNG")
132
- png_image = output.getvalue()
133
- # Extracting metadata
134
- ImageType = dicom_data.get("ImageType", "")
135
- StudyDate = dicom_data.get("StudyDate", "")
136
- SeriesDate = dicom_data.get("SeriesDate", "")
137
- Manufacturer = dicom_data.get("Manufacturer", "")
138
- StudyDescription = dicom_data.get("StudyDescription", "")
139
- SeriesDescription = dicom_data.get("SeriesDescription", "")
140
- PatientSex = dicom_data.get("PatientSex", "")
141
- PatientAge = dicom_data.get("PatientAge", "")
142
- PregnancyStatus = dicom_data.get("PregnancyStatus", "")
143
- if PregnancyStatus == None:
144
- PregnancyStatus = "None"
145
- else:
146
- PregnancyStatus = "Yes"
147
- BodyPartExamined = dicom_data.get("BodyPartExamined", "")
148
- yield key, {"image": png_image,
149
- "ImageType": ImageType,
150
- "StudyDate": StudyDate,
151
- "SeriesDate": SeriesDate,
152
- "Manufacturer": Manufacturer,
153
- "StudyDescription": StudyDescription,
154
- "SeriesDescription": SeriesDescription,
155
- "PatientSex": PatientSex,
156
- "PatientAge": PatientAge,
157
- "PregnancyStatus": PregnancyStatus,
158
- "BodyPartExamined": BodyPartExamined}