Datasets:
Tasks:
Image Segmentation
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
object-centric learning
License:
Create preprocess.py
Browse files- preprocess.py +59 -0
preprocess.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
|
5 |
+
def crop_and_resize(image_path, bbox_path, crop_path, resize_path):
|
6 |
+
img = Image.open(image_path)
|
7 |
+
width, height = img.size
|
8 |
+
|
9 |
+
with open(bbox_path, 'r') as f:
|
10 |
+
_, x_center, y_center, _, _ = map(float, f.readline().split())
|
11 |
+
x_center, y_center = int(x_center * width), int(y_center * height)
|
12 |
+
|
13 |
+
x1, x2 = max(0, x_center - 128), min(width, x_center + 128)
|
14 |
+
y1, y2 = max(0, y_center - 128), min(height, y_center + 128)
|
15 |
+
|
16 |
+
crop = img.crop((x1, y1, x2, y2))
|
17 |
+
assert crop.size == (256, 256)
|
18 |
+
crop.save(crop_path)
|
19 |
+
|
20 |
+
resize = crop.resize(size=(128, 128), resample=Image.BICUBIC)
|
21 |
+
assert resize.size == (128, 128)
|
22 |
+
resize.save(resize_path)
|
23 |
+
|
24 |
+
|
25 |
+
def transform_intrinsic(intrinsic_path, bbox_path, crop_path, resize_path):
|
26 |
+
intrinsic = np.loadtxt(intrinsic_path)
|
27 |
+
fx, fy = intrinsic[0, 0], intrinsic[1, 1]
|
28 |
+
cx, cy = intrinsic[0, 2], intrinsic[1, 2]
|
29 |
+
width, height = cx * 2, cy * 2
|
30 |
+
|
31 |
+
with open(bbox_path, 'r') as f:
|
32 |
+
_, x_center, y_center, _, _ = map(float, f.readline().split())
|
33 |
+
x_center, y_center = int(x_center * width), int(y_center * height)
|
34 |
+
|
35 |
+
x1, y1 = max(0, x_center - 128), max(0, y_center - 128)
|
36 |
+
|
37 |
+
K = np.array([[fx, 0, cx - x1],
|
38 |
+
[0, fy, cy - y1],
|
39 |
+
[0, 0, 1]])
|
40 |
+
np.savetxt(crop_path, K, fmt="%.5f", delimiter=" ")
|
41 |
+
|
42 |
+
K[:2] /= 2
|
43 |
+
np.savetxt(resize_path, K, fmt="%.5f", delimiter=" ")
|
44 |
+
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
# crop and resize image
|
48 |
+
image_path = '640x480/image/0000_00.png'
|
49 |
+
bbox_path = '640x480/bbox/0000_00.txt'
|
50 |
+
crop_path = '256x256/image/0000_00.png'
|
51 |
+
resize_path = '128x128/image/0000_00.png'
|
52 |
+
crop_and_resize(image_path, bbox_path, crop_path, resize_path)
|
53 |
+
|
54 |
+
# transform intrinsic matrix
|
55 |
+
intrinsic_path = '640x480/intrinsic.txt'
|
56 |
+
bbox_path = '640x480/bbox/0000_00.txt'
|
57 |
+
crop_path = '256x256/intrinsic/0000_00.txt'
|
58 |
+
resize_path = '128x128/intrinsic/0000_00.txt'
|
59 |
+
transform_intrinsic(intrinsic_path, bbox_path, crop_path, resize_path)
|