Yinxing commited on
Commit
47d9934
·
verified ·
1 Parent(s): fbd55f5

Delete Bass (1).ipynb

Browse files
Files changed (1) hide show
  1. Bass (1).ipynb +0 -459
Bass (1).ipynb DELETED
@@ -1,459 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {
7
- "id": "UK8TSMbvp3zZ"
8
- },
9
- "outputs": [],
10
- "source": [
11
- "path = r'D:\\Github\\階層化多変量BASSモデル\\bog_cats_data_all.xlsx'"
12
- ]
13
- },
14
- {
15
- "cell_type": "code",
16
- "execution_count": null,
17
- "metadata": {
18
- "id": "l678Xe5Np3zb",
19
- "outputId": "4663089e-c45e-45b0-df44-72d22dedcc35"
20
- },
21
- "outputs": [
22
- {
23
- "data": {
24
- "text/plain": [
25
- "tensor([[0., 1., 0., 0., 0.],\n",
26
- " [0., 1., 0., 0., 0.],\n",
27
- " [0., 1., 0., 0., 0.],\n",
28
- " [0., 1., 0., 0., 0.],\n",
29
- " [0., 1., 0., 0., 0.],\n",
30
- " [0., 1., 0., 0., 0.],\n",
31
- " [0., 0., 0., 0., 0.],\n",
32
- " [0., 0., 0., 0., 0.],\n",
33
- " [0., 0., 0., 0., 0.],\n",
34
- " [0., 0., 0., 0., 0.],\n",
35
- " [0., 0., 0., 0., 0.],\n",
36
- " [0., 0., 0., 0., 0.],\n",
37
- " [1., 0., 0., 0., 0.],\n",
38
- " [1., 0., 0., 0., 0.],\n",
39
- " [1., 0., 0., 0., 0.],\n",
40
- " [1., 0., 0., 0., 0.],\n",
41
- " [1., 0., 0., 0., 0.],\n",
42
- " [1., 0., 0., 0., 0.],\n",
43
- " [0., 0., 0., 0., 0.],\n",
44
- " [0., 0., 0., 0., 0.],\n",
45
- " [0., 0., 0., 0., 0.],\n",
46
- " [0., 0., 0., 0., 0.],\n",
47
- " [0., 0., 0., 0., 0.],\n",
48
- " [0., 0., 0., 0., 0.],\n",
49
- " [0., 0., 0., 1., 0.],\n",
50
- " [0., 0., 0., 1., 0.],\n",
51
- " [0., 0., 0., 1., 0.],\n",
52
- " [0., 0., 0., 1., 0.],\n",
53
- " [0., 0., 0., 1., 0.],\n",
54
- " [0., 0., 0., 1., 0.]])"
55
- ]
56
- },
57
- "execution_count": 684,
58
- "metadata": {},
59
- "output_type": "execute_result"
60
- }
61
- ],
62
- "source": [
63
- "import pandas as pd\n",
64
- "df = pd.read_excel(path, sheet_name='std')\n",
65
- "\n",
66
- "detect_columns = ['Ninchi', 'Kyoumi','TVshow', 'Gekijoyokoku']\n",
67
- "cols = []\n",
68
- "\n",
69
- "for col in df.columns:\n",
70
- " for detect_col in detect_columns:\n",
71
- " if detect_col in col:\n",
72
- " cols.append(col)\n",
73
- "\n",
74
- "col_d = torch.zeros(len(cols), 5)\n",
75
- "\n",
76
- "# dummies\n",
77
- "for i, col in enumerate(cols):\n",
78
- " if 'IyokuOverNinchi'in col:\n",
79
- " col_d[i, 0] = 1\n",
80
- " elif 'Ninchi' in col:\n",
81
- " col_d[i, 1] = 1\n",
82
- " elif 'Kyomi' in col:\n",
83
- " col_d[i, 2] = 1\n",
84
- " elif 'TVshow' in col:\n",
85
- " col_d[i, 3] = 1\n",
86
- "col_d\n",
87
- ""
88
- ]
89
- },
90
- {
91
- "cell_type": "code",
92
- "execution_count": null,
93
- "metadata": {
94
- "id": "nu9l0fPtp3zb"
95
- },
96
- "outputs": [],
97
- "source": [
98
- "import torch"
99
- ]
100
- },
101
- {
102
- "cell_type": "code",
103
- "execution_count": null,
104
- "metadata": {
105
- "id": "mNNXxXN1p3zb",
106
- "outputId": "56bf5a96-16f8-4184-ea8c-7dedb21bbe69"
107
- },
108
- "outputs": [
109
- {
110
- "data": {
111
- "text/plain": [
112
- "torch.Size([268, 6, 7])"
113
- ]
114
- },
115
- "execution_count": 685,
116
- "metadata": {},
117
- "output_type": "execute_result"
118
- }
119
- ],
120
- "source": [
121
- "import torch\n",
122
- "time_lag = 6\n",
123
- "\n",
124
- "# create a time-lagged dataset (batch, time_lag, features)\n",
125
- "def create_time_lagged_data(x, time_lag, val=2, col_d=None):\n",
126
- " # fill nan with 0 for start part\n",
127
- " x = pd.Series(x).fillna(0).values\n",
128
- " start = 0\n",
129
- " for start in range(len(x)):\n",
130
- " if x[start] != 0:\n",
131
- " break\n",
132
- " for stops in range(len(x), 0, -1):\n",
133
- " if x[stops-1] != 0:\n",
134
- " break\n",
135
- " x = x[start:stops]\n",
136
- "\n",
137
- " data = torch.zeros(len(x)-time_lag, time_lag, 2+len(col_d))\n",
138
- " # [0, 0, 1]をデータ毎にrepeat\n",
139
- " col_d = torch.cat([col_d.repeat(i+1, 1) for i in range(len(x))])\n",
140
- " for i in range(len(x)-time_lag):\n",
141
- " data[i,:,0] = torch.tensor(x[i:i+time_lag]) * 10\n",
142
- " # 公開時期\n",
143
- " data[i,:,1] = torch.tensor(range(i, i+time_lag))\n",
144
- " data[i,:,2:] = col_d[i:i+time_lag]\n",
145
- " train_d = data[:-val]\n",
146
- " val_d = data[-val:]\n",
147
- " return train_d, val_d\n",
148
- "\n",
149
- "dfs = []\n",
150
- "val_dfs = []\n",
151
- "for col,col_type in zip(cols,col_d):\n",
152
- " d = create_time_lagged_data(df[col].values, time_lag, col_d=col_type)\n",
153
- " dfs.append(d[0])\n",
154
- " val_dfs.append(d[1])\n",
155
- "\n",
156
- "dfs_t = torch.cat(dfs, dim=0)\n",
157
- "val_dfs_t = torch.cat(val_dfs, dim=0)\n",
158
- "dfs_t.shape"
159
- ]
160
- },
161
- {
162
- "cell_type": "code",
163
- "execution_count": null,
164
- "metadata": {
165
- "id": "2eJUTqJWp3zc"
166
- },
167
- "outputs": [],
168
- "source": [
169
- "# LSTM\n",
170
- "import torch.nn as nn\n",
171
- "from torch.functional import F\n",
172
- "# relu\n",
173
- "\n",
174
- "\n",
175
- "class LSTM(nn.Module):\n",
176
- " def __init__(self, input_size, hidden_size, num_layers, output_size):\n",
177
- " super(LSTM, self).__init__()\n",
178
- " self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)\n",
179
- " self.fc = nn.Linear(hidden_size, hidden_size)\n",
180
- " self.output = nn.Linear(hidden_size, output_size)\n",
181
- " #self.norm = nn.BatchNorm1d(hidden_size)\n",
182
- " self.layer_norm = nn.LayerNorm(hidden_size)\n",
183
- "\n",
184
- "\n",
185
- " def forward(self, x):\n",
186
- " out, _ = self.lstm(x, None)\n",
187
- " out = self.layer_norm(F.relu(self.fc(out[:, -1, :])))\n",
188
- " out = self.output(out)\n",
189
- " return out"
190
- ]
191
- },
192
- {
193
- "cell_type": "code",
194
- "execution_count": null,
195
- "metadata": {
196
- "id": "oItavj7kp3zc"
197
- },
198
- "outputs": [],
199
- "source": [
200
- "# dataloader\n",
201
- "from torch.utils.data import DataLoader, TensorDataset\n",
202
- "\n",
203
- "train_loader = DataLoader(TensorDataset(dfs_t), batch_size=8, shuffle=True)"
204
- ]
205
- },
206
- {
207
- "cell_type": "code",
208
- "execution_count": null,
209
- "metadata": {
210
- "id": "McVizErzp3zc",
211
- "outputId": "50cf1b19-ccdf-4459-cb20-ca77f36f3d74"
212
- },
213
- "outputs": [
214
- {
215
- "name": "stdout",
216
- "output_type": "stream",
217
- "text": [
218
- "epoch 0, loss 11.606//test loss 6.443\n",
219
- "epoch 5, loss 2.083//test loss 1.252\n",
220
- "epoch 10, loss 1.142//test loss 0.802\n",
221
- "epoch 15, loss 0.985//test loss 0.738\n",
222
- "epoch 20, loss 0.891//test loss 0.706\n",
223
- "epoch 25, loss 0.857//test loss 0.627\n",
224
- "epoch 30, loss 0.875//test loss 0.813\n",
225
- "epoch 35, loss 0.758//test loss 0.595\n",
226
- "epoch 40, loss 0.729//test loss 0.686\n",
227
- "epoch 45, loss 0.705//test loss 0.618\n",
228
- "epoch 50, loss 0.835//test loss 0.595\n",
229
- "epoch 55, loss 0.524//test loss 0.600\n",
230
- "epoch 60, loss 0.494//test loss 0.848\n",
231
- "epoch 65, loss 0.665//test loss 0.630\n",
232
- "epoch 70, loss 0.532//test loss 0.801\n",
233
- "epoch 75, loss 0.421//test loss 0.697\n",
234
- "epoch 80, loss 0.433//test loss 0.747\n",
235
- "epoch 85, loss 0.401//test loss 0.723\n",
236
- "epoch 90, loss 0.437//test loss 0.902\n",
237
- "epoch 95, loss 0.433//test loss 0.869\n",
238
- "epoch 100, loss 0.324//test loss 0.799\n",
239
- "epoch 105, loss 0.326//test loss 0.624\n",
240
- "epoch 110, loss 0.343//test loss 0.735\n",
241
- "epoch 115, loss 0.499//test loss 0.845\n",
242
- "epoch 120, loss 0.317//test loss 0.823\n",
243
- "epoch 125, loss 0.591//test loss 0.787\n",
244
- "epoch 130, loss 0.281//test loss 0.693\n",
245
- "epoch 135, loss 0.395//test loss 0.824\n",
246
- "epoch 140, loss 0.289//test loss 0.809\n",
247
- "epoch 145, loss 0.250//test loss 0.653\n",
248
- "epoch 150, loss 0.261//test loss 0.863\n",
249
- "epoch 155, loss 0.265//test loss 0.782\n",
250
- "epoch 160, loss 0.253//test loss 0.799\n",
251
- "epoch 165, loss 0.251//test loss 0.564\n",
252
- "epoch 170, loss 0.248//test loss 0.793\n",
253
- "epoch 175, loss 0.519//test loss 0.867\n",
254
- "epoch 180, loss 0.242//test loss 0.719\n",
255
- "epoch 185, loss 0.248//test loss 0.789\n",
256
- "epoch 190, loss 0.229//test loss 0.773\n",
257
- "epoch 195, loss 0.245//test loss 0.688\n",
258
- "epoch 200, loss 0.257//test loss 0.709\n",
259
- "epoch 205, loss 0.384//test loss 0.828\n",
260
- "epoch 210, loss 0.212//test loss 0.593\n",
261
- "epoch 215, loss 0.223//test loss 0.660\n",
262
- "epoch 220, loss 0.194//test loss 0.558\n",
263
- "epoch 225, loss 0.200//test loss 0.860\n",
264
- "epoch 230, loss 0.180//test loss 0.837\n",
265
- "epoch 235, loss 0.220//test loss 0.599\n",
266
- "epoch 240, loss 0.219//test loss 0.977\n",
267
- "epoch 245, loss 0.174//test loss 0.603\n",
268
- "epoch 250, loss 0.154//test loss 0.729\n",
269
- "epoch 255, loss 0.162//test loss 0.642\n",
270
- "epoch 260, loss 0.167//test loss 0.569\n",
271
- "epoch 265, loss 0.162//test loss 0.569\n",
272
- "epoch 270, loss 0.130//test loss 0.674\n",
273
- "epoch 275, loss 0.150//test loss 0.581\n",
274
- "epoch 280, loss 0.352//test loss 0.722\n",
275
- "epoch 285, loss 0.224//test loss 0.801\n",
276
- "epoch 290, loss 0.211//test loss 0.707\n",
277
- "epoch 295, loss 0.150//test loss 0.692\n",
278
- "epoch 300, loss 0.125//test loss 0.603\n",
279
- "epoch 305, loss 0.121//test loss 0.614\n",
280
- "epoch 310, loss 0.117//test loss 0.594\n",
281
- "epoch 315, loss 0.116//test loss 0.680\n",
282
- "epoch 320, loss 0.121//test loss 0.643\n",
283
- "epoch 325, loss 0.134//test loss 0.644\n",
284
- "epoch 330, loss 0.183//test loss 0.763\n",
285
- "Best Epoch: 44\n"
286
- ]
287
- },
288
- {
289
- "data": {
290
- "text/plain": [
291
- "<All keys matched successfully>"
292
- ]
293
- },
294
- "execution_count": 688,
295
- "metadata": {},
296
- "output_type": "execute_result"
297
- }
298
- ],
299
- "source": [
300
- "# Training\n",
301
- "import torch.optim as optim\n",
302
- "\n",
303
- "input_size = dfs_t.shape[2]\n",
304
- "hidden_size = 64\n",
305
- "num_layers = 1\n",
306
- "output_size = 1\n",
307
- "num_epochs = 331\n",
308
- "learning_rate = 5e-4\n",
309
- "\n",
310
- "# seed\n",
311
- "torch.manual_seed(0)\n",
312
- "torch.cuda.manual_seed(0)\n",
313
- "\n",
314
- "model = LSTM(input_size, hidden_size, num_layers, output_size)\n",
315
- "criterion = nn.MSELoss()\n",
316
- "optimizer = optim.Adam(model.parameters(), lr=learning_rate)\n",
317
- "\n",
318
- "rmses = []\n",
319
- "for epoch in range(num_epochs):\n",
320
- " total_loss = 0\n",
321
- " model.train()\n",
322
- " for t in train_loader:\n",
323
- " x = t[0][:,:-1,:]\n",
324
- " y = t[0][:,-1,:1]\n",
325
- " #print(f'x: {x}, y: {y}')\n",
326
- " outputs = model(x)\n",
327
- " optimizer.zero_grad()\n",
328
- " loss = criterion(outputs, y)\n",
329
- " loss.backward()\n",
330
- " optimizer.step()\n",
331
- " total_loss += loss.item()\n",
332
- "\n",
333
- " if epoch % 5 == 0:\n",
334
- " print('epoch {}, loss {:.3f}'.format(epoch, total_loss / len(train_loader)), end='//')\n",
335
- "\n",
336
- " # test\n",
337
- " model.eval()\n",
338
- " x = val_dfs_t[:, :-1, :]\n",
339
- " y = val_dfs_t[:, -1, :1]\n",
340
- " outputs = model(x)\n",
341
- " loss = criterion(outputs, y)\n",
342
- " rmses.append(loss.item())\n",
343
- " if loss.item() == min(rmses):\n",
344
- " torch.save(model.state_dict(), 'best.pth')\n",
345
- "\n",
346
- "\n",
347
- "\n",
348
- "\n",
349
- " print('test loss {:.3f}'.format(loss.item()))\n",
350
- "\n",
351
- "\n",
352
- "# load best\n",
353
- "print(f'Best Epoch: {rmses.index(min(rmses))}')\n",
354
- "model.load_state_dict(torch.load('best.pth'))"
355
- ]
356
- },
357
- {
358
- "cell_type": "code",
359
- "execution_count": null,
360
- "metadata": {
361
- "id": "ccbxnVyQp3zc"
362
- },
363
- "outputs": [],
364
- "source": [
365
- "# 予測\n",
366
- "# one-step forecast\n",
367
- "\n",
368
- "\n",
369
- "\n",
370
- "\n",
371
- "pred_length = 10\n",
372
- "\n",
373
- "def one_step_predict(model, x, pred_length, col_d=None):\n",
374
- " preds = []\n",
375
- " model.eval()\n",
376
- " for i in range(pred_length):\n",
377
- " pred = model(x)\n",
378
- " preds.append(pred)\n",
379
- " new_line = torch.tensor([pred[0, 0], x[0, -1, 1]+1, *col_d])\n",
380
- "\n",
381
- " x = torch.cat([x[:, 1:, :], new_line.unsqueeze(0).unsqueeze(0)], dim=1)\n",
382
- "\n",
383
- " preds = torch.cat(preds, dim=1)\n",
384
- " preds = preds.detach().numpy()\n",
385
- " preds = preds.reshape(-1)\n",
386
- " return preds\n",
387
- "\n",
388
- "import numpy as np\n",
389
- "import japanize_matplotlib\n",
390
- "def plot_one_step_predict(model, x, pred_length, show=True, title='', val=None, col_d=None):\n",
391
- " preds = one_step_predict(model, x[-1,1:].unsqueeze(0), pred_length, col_d)\n",
392
- " plt.plot(np.arange(len(x)), x[:, -1, 0].numpy())\n",
393
- " # preds = last value of x + preds\n",
394
- " # plt scatter for validation datasets (3 dates after the last date)\n",
395
- " if val is not None:\n",
396
- " plt.scatter(np.arange(len(x), len(x)+val.shape[0]), val[:, -1, 0].numpy().reshape(-1), color='red')\n",
397
- "\n",
398
- " preds = np.concatenate([x[-1, -1, 0].numpy().reshape(-1), preds])\n",
399
- " plt.plot(np.arange(len(x)-1, len(x)+pred_length), preds)\n",
400
- " plt.xticks(np.arange(len(x)+pred_length), np.arange(len(x)+pred_length))\n",
401
- " plt.title(title)\n",
402
- " plt.ylabel('Value')\n",
403
- " plt.xlabel('Release time')\n",
404
- " if show:\n",
405
- " plt.tight_layout()\n",
406
- " plt.show()\n",
407
- "\n"
408
- ]
409
- },
410
- {
411
- "cell_type": "code",
412
- "execution_count": null,
413
- "metadata": {
414
- "id": "d1KwJXXxp3zd"
415
- },
416
- "outputs": [],
417
- "source": [
418
- "plt.figure(figsize=(8, 8))\n",
419
- "\n",
420
- "counter = 0\n",
421
- "for i0, col in enumerate(cols):\n",
422
- " if i0 == 18:\n",
423
- " plt.tight_layout()\n",
424
- " plt.show()\n",
425
- " counter = 0\n",
426
- " plt.figure(figsize=(8, 8))\n",
427
- " plt.subplot(6, 3, counter+1)\n",
428
- " plot_one_step_predict(model, dfs[i0], 10, show=False, title=col, val=val_dfs[i0], col_d=col_d[i0])\n",
429
- " counter += 1\n",
430
- "plt.tight_layout()\n",
431
- "plt.show()"
432
- ]
433
- }
434
- ],
435
- "metadata": {
436
- "kernelspec": {
437
- "display_name": "base",
438
- "language": "python",
439
- "name": "python3"
440
- },
441
- "language_info": {
442
- "codemirror_mode": {
443
- "name": "ipython",
444
- "version": 3
445
- },
446
- "file_extension": ".py",
447
- "mimetype": "text/x-python",
448
- "name": "python",
449
- "nbconvert_exporter": "python",
450
- "pygments_lexer": "ipython3",
451
- "version": "3.11.4"
452
- },
453
- "colab": {
454
- "provenance": []
455
- }
456
- },
457
- "nbformat": 4,
458
- "nbformat_minor": 0
459
- }