Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The Yelp Review Full dataset for text classification.""" | |
import csv | |
import datasets | |
from datasets.tasks import TextClassification | |
_CITATION = """\ | |
@inproceedings{zhang2015character, | |
title={Character-level convolutional networks for text classification}, | |
author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann}, | |
booktitle={Advances in neural information processing systems}, | |
pages={649--657}, | |
year={2015} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data. | |
The Yelp reviews full star dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset. | |
It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. | |
Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). | |
""" | |
_HOMEPAGE = "https://www.yelp.com/dataset" | |
_LICENSE = "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf" | |
_URLs = { | |
"yelp_review_full": "https://s3.amazonaws.com/fast-ai-nlp/yelp_review_full_csv.tgz", | |
} | |
class YelpReviewFullConfig(datasets.BuilderConfig): | |
"""BuilderConfig for YelpReviewFull.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for YelpReviewFull. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(YelpReviewFullConfig, self).__init__(**kwargs) | |
class YelpReviewFull(datasets.GeneratorBasedBuilder): | |
"""Yelp Review Full Star Dataset 2015.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
YelpReviewFullConfig( | |
name="yelp_review_full", version=VERSION, description="Yelp Review Full Star Dataset 2015" | |
), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"label": datasets.features.ClassLabel( | |
names=[ | |
"1 star", | |
"2 star", | |
"3 stars", | |
"4 stars", | |
"5 stars", | |
] | |
), | |
"text": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
task_templates=[TextClassification(text_column="text", label_column="label")], | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
my_urls = _URLs[self.config.name] | |
archive = dl_manager.download(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": "yelp_review_full_csv/train.csv", "files": dl_manager.iter_archive(archive)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": "yelp_review_full_csv/test.csv", "files": dl_manager.iter_archive(archive)}, | |
), | |
] | |
def _generate_examples(self, filepath, files): | |
"""Yields examples.""" | |
for path, f in files: | |
if path == filepath: | |
csvfile = (line.decode("utf-8") for line in f) | |
data = csv.reader(csvfile, delimiter=",", quoting=csv.QUOTE_NONNUMERIC) | |
for id_, row in enumerate(data): | |
yield id_, { | |
"text": row[1], | |
"label": int(row[0]) - 1, | |
} | |
break | |