SemEval2014Task4Raw / SemEval2014Task4Raw.py
Yaxin's picture
Update SemEval2014Task4Raw.py
4b2611a
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The lingual SemEval2014 Task5 Reviews Corpus"""
import datasets
_CITATION = """\
@article{2014SemEval,
title={SemEval-2014 Task 4: Aspect Based Sentiment Analysis},
author={ Pontiki, M. and D Galanis and Pavlopoulos, J. and Papageorgiou, H. and Manandhar, S. },
journal={Proceedings of International Workshop on Semantic Evaluation at},
year={2014},
}
"""
_LICENSE = """\
Please click on the homepage URL for license details.
"""
_DESCRIPTION = """\
A collection of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis.
"""
_CONFIG = [
# restaurants domain
"restaurants",
# laptops domain
"laptops",
]
_VERSION = "0.0.1"
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2014Task4/{split}/{domain}_{split}.xml"
class SemEval2014Task4RawConfig(datasets.BuilderConfig):
"""BuilderConfig for SemEval2014Config."""
def __init__(self, _CONFIG, **kwargs):
super(SemEval2014Task4RawConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
self.configs = _CONFIG
class SemEval2014Task4Raw(datasets.GeneratorBasedBuilder):
"""The lingual Amazon Reviews Corpus"""
BUILDER_CONFIGS = [
SemEval2014Task4RawConfig(
name="All",
_CONFIG=_CONFIG,
description="A collection of SemEval2014 specifically designed to aid research in lingual Aspect Based Sentiment Analysis.",
)
] + [
SemEval2014Task4RawConfig(
name=config,
_CONFIG=[config],
description=f"{config} of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis",
)
for config in _CONFIG
]
BUILDER_CONFIG_CLASS = SemEval2014Task4RawConfig
DEFAULT_CONFIG_NAME = "All"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{'text': datasets.Value(dtype='string'),
'aspectTerms': [
{'from': datasets.Value(dtype='string'),
'polarity': datasets.Value(dtype='string'),
'term': datasets.Value(dtype='string'),
'to': datasets.Value(dtype='string')}
],
'aspectCategories': [
{'category': datasets.Value(dtype='string'),
'polarity': datasets.Value(dtype='string')}
],
'domain': datasets.Value(dtype='string'),
'sentenceId': datasets.Value(dtype='string')
}
),
supervised_keys=None,
license=_LICENSE,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_urls = [_DOWNLOAD_URL.format(split="train", domain=config) for config in self.config.configs]
dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config) for config in self.config.configs]
test_urls = [_DOWNLOAD_URL.format(split="test", domain=config) for config in self.config.configs]
train_paths = dl_manager.download_and_extract(train_urls)
dev_paths = dl_manager.download_and_extract(dev_urls)
test_paths = dl_manager.download_and_extract(test_urls)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "domain_list": self.config.configs}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "domain_list": self.config.configs}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "domain_list": self.config.configs}),
]
def _generate_examples(self, file_paths, domain_list):
row_count = 0
assert len(file_paths)==len(domain_list)
for i in range(len(file_paths)):
file_path, domain = file_paths[i], domain_list[i]
semEvalDataset = SemEvalXMLDataset(file_path, domain)
for example in semEvalDataset.SentenceWithOpinions:
yield row_count, example
row_count += 1
from xml.dom.minidom import parse
class SemEvalXMLDataset():
def __init__(self, file_name, domain):
# 获得SentenceWithOpinions,一个List包含(reviewId, sentenceId, text, Opinions)
self.SentenceWithOpinions = []
self.xml_path = file_name
self.sentenceXmlList = parse(open(self.xml_path)).getElementsByTagName('sentence')
for sentenceXml in self.sentenceXmlList:
sentenceId = sentenceXml.getAttribute("id")
if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1:
# skip no reviews part
continue
text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue
aspectTermsXLMList = sentenceXml.getElementsByTagName("aspectTerm")
aspectTerms = []
for opinionXml in aspectTermsXLMList:
# some text maybe have no opinion
term = opinionXml.getAttribute("term")
polarity = opinionXml.getAttribute("polarity")
from_ = opinionXml.getAttribute("from")
to = opinionXml.getAttribute("to")
aspectTermDict = {
"term": term,
"polarity": polarity,
"from": from_,
"to": to
}
aspectTerms.append(aspectTermDict)
aspectCategoriesXmlList = sentenceXml.getElementsByTagName("aspectCategory")
aspectCategories = []
for aspectCategoryXml in aspectCategoriesXmlList:
category = aspectCategoryXml.getAttribute("category")
polarity = aspectCategoryXml.getAttribute("polarity")
aspectCategoryDict = {
"category": category,
"polarity": polarity
}
aspectCategories.append(aspectCategoryDict)
self.SentenceWithOpinions.append({
"text": text,
"aspectTerms": aspectTerms,
"aspectCategories": aspectCategories,
"domain": domain,
"sentenceId": sentenceId
}
)