|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""DART: Open-Domain Structured Data Record to Text Generation""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{radev2020dart, |
|
title={DART: Open-Domain Structured Data Record to Text Generation}, |
|
author={Dragomir Radev and Rui Zhang and Amrit Rau and Abhinand Sivaprasad and Chiachun Hsieh and Nazneen Fatema Rajani and Xiangru Tang and Aadit Vyas and Neha Verma and Pranav Krishna and Yangxiaokang Liu and Nadia Irwanto and Jessica Pan and Faiaz Rahman and Ahmad Zaidi and Murori Mutuma and Yasin Tarabar and Ankit Gupta and Tao Yu and Yi Chern Tan and Xi Victoria Lin and Caiming Xiong and Richard Socher}, |
|
journal={arXiv preprint arXiv:2007.02871}, |
|
year={2020} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
DART is a large and open-domain structured DAta Record to Text generation corpus with high-quality |
|
sentence annotations with each input being a set of entity-relation triples following a tree-structured ontology. |
|
It consists of 82191 examples across different domains with each input being a semantic RDF triple set derived |
|
from data records in tables and the tree ontology of table schema, annotated with sentence description that |
|
covers all facts in the triple set. |
|
|
|
DART is released in the following paper where you can find more details and baseline results: |
|
https://arxiv.org/abs/2007.02871 |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/Yale-LILY/dart/master/data/v1.1.1/" |
|
_TRAINING_FILE = "dart-v1.1.1-full-train.json" |
|
_DEV_FILE = "dart-v1.1.1-full-dev.json" |
|
_TEST_FILE = "dart-v1.1.1-full-test.json" |
|
|
|
|
|
class Dart(datasets.GeneratorBasedBuilder): |
|
"""Dart dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"tripleset": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"subtree_was_extended": datasets.Value("bool"), |
|
"annotations": datasets.Sequence( |
|
{ |
|
"source": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/Yale-LILY/dart", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.loads(f.read()) |
|
for example_idx, example in enumerate(data): |
|
yield example_idx, { |
|
"tripleset": example["tripleset"], |
|
"subtree_was_extended": example.get("subtree_was_extended", None), |
|
"annotations": { |
|
"source": [annotation["source"] for annotation in example["annotations"]], |
|
"text": [annotation["text"] for annotation in example["annotations"]], |
|
}, |
|
} |
|
|