XGGNet's picture
Add dataset files
c617fd9
raw
history blame
30.8 kB
import functools
import time
from dataclasses import asdict
from typing import cast
import numpy as np
import torch
import torch.nn.functional as F
from loguru import logger as guru
from nerfview import CameraState
from pytorch_msssim import SSIM
from torch.utils.tensorboard import SummaryWriter # type: ignore
from flow3d.configs import LossesConfig, OptimizerConfig, SceneLRConfig
from flow3d.loss_utils import (
compute_gradient_loss,
compute_se3_smoothness_loss,
compute_z_acc_loss,
masked_l1_loss,
)
from flow3d.metrics import PCK, mLPIPS, mPSNR, mSSIM
from flow3d.scene_model import SceneModel
from flow3d.vis.utils import get_server
from flow3d.vis.viewer import DynamicViewer
class Trainer:
def __init__(
self,
model: SceneModel,
device: torch.device,
lr_cfg: SceneLRConfig,
losses_cfg: LossesConfig,
optim_cfg: OptimizerConfig,
# Logging.
work_dir: str,
port: int | None = None,
log_every: int = 10,
checkpoint_every: int = 200,
validate_every: int = 500,
validate_video_every: int = 1000,
validate_viewer_assets_every: int = 100,
):
self.device = device
self.log_every = log_every
self.checkpoint_every = checkpoint_every
self.validate_every = validate_every
self.validate_video_every = validate_video_every
self.validate_viewer_assets_every = validate_viewer_assets_every
self.model = model
self.num_frames = model.num_frames
self.lr_cfg = lr_cfg
self.losses_cfg = losses_cfg
self.optim_cfg = optim_cfg
self.reset_opacity_every = (
self.optim_cfg.reset_opacity_every_n_controls * self.optim_cfg.control_every
)
self.optimizers, self.scheduler = self.configure_optimizers()
# running stats for adaptive density control
self.running_stats = {
"xys_grad_norm_acc": torch.zeros(self.model.num_gaussians, device=device),
"vis_count": torch.zeros(
self.model.num_gaussians, device=device, dtype=torch.int64
),
"max_radii": torch.zeros(self.model.num_gaussians, device=device),
}
self.work_dir = work_dir
self.writer = SummaryWriter(log_dir=work_dir)
self.global_step = 0
self.epoch = 0
self.viewer = None
if port is not None:
server = get_server(port=port)
self.viewer = DynamicViewer(
server, self.render_fn, model.num_frames, work_dir, mode="training"
)
# metrics
self.ssim = SSIM(data_range=1.0, size_average=True, channel=3)
self.psnr_metric = mPSNR()
self.ssim_metric = mSSIM()
self.lpips_metric = mLPIPS()
self.pck_metric = PCK()
self.bg_psnr_metric = mPSNR()
self.fg_psnr_metric = mPSNR()
self.bg_ssim_metric = mSSIM()
self.fg_ssim_metric = mSSIM()
self.bg_lpips_metric = mLPIPS()
self.fg_lpips_metric = mLPIPS()
def set_epoch(self, epoch: int):
self.epoch = epoch
def save_checkpoint(self, path: str):
model_dict = self.model.state_dict()
optimizer_dict = {k: v.state_dict() for k, v in self.optimizers.items()}
scheduler_dict = {k: v.state_dict() for k, v in self.scheduler.items()}
ckpt = {
"model": model_dict,
"optimizers": optimizer_dict,
"schedulers": scheduler_dict,
"global_step": self.global_step,
"epoch": self.epoch,
}
torch.save(ckpt, path)
guru.info(f"Saved checkpoint at {self.global_step=} to {path}")
@staticmethod
def init_from_checkpoint(
path: str, device: torch.device, *args, **kwargs
) -> tuple["Trainer", int]:
guru.info(f"Loading checkpoint from {path}")
ckpt = torch.load(path)
state_dict = ckpt["model"]
model = SceneModel.init_from_state_dict(state_dict)
model = model.to(device)
trainer = Trainer(model, device, *args, **kwargs)
if "optimizers" in ckpt:
trainer.load_checkpoint_optimizers(ckpt["optimizers"])
if "schedulers" in ckpt:
trainer.load_checkpoint_schedulers(ckpt["schedulers"])
trainer.global_step = ckpt.get("global_step", 0)
start_epoch = ckpt.get("epoch", 0)
trainer.set_epoch(start_epoch)
return trainer, start_epoch
def load_checkpoint_optimizers(self, opt_ckpt):
for k, v in self.optimizers.items():
v.load_state_dict(opt_ckpt[k])
def load_checkpoint_schedulers(self, sched_ckpt):
for k, v in self.scheduler.items():
v.load_state_dict(sched_ckpt[k])
@torch.inference_mode()
def render_fn(self, camera_state: CameraState, img_wh: tuple[int, int]):
W, H = img_wh
focal = 0.5 * H / np.tan(0.5 * camera_state.fov).item()
K = torch.tensor(
[[focal, 0.0, W / 2.0], [0.0, focal, H / 2.0], [0.0, 0.0, 1.0]],
device=self.device,
)
w2c = torch.linalg.inv(
torch.from_numpy(camera_state.c2w.astype(np.float32)).to(self.device)
)
t = 0
if self.viewer is not None:
t = (
int(self.viewer._playback_guis[0].value)
if not self.viewer._canonical_checkbox.value
else None
)
self.model.training = False
img = self.model.render(t, w2c[None], K[None], img_wh)["img"][0]
return (img.cpu().numpy() * 255.0).astype(np.uint8)
def train_step(self, batch):
if self.viewer is not None:
while self.viewer.state.status == "paused":
time.sleep(0.1)
self.viewer.lock.acquire()
loss, stats, num_rays_per_step, num_rays_per_sec = self.compute_losses(batch)
if loss.isnan():
guru.info(f"Loss is NaN at step {self.global_step}!!")
import ipdb
ipdb.set_trace()
loss.backward()
for opt in self.optimizers.values():
opt.step()
opt.zero_grad(set_to_none=True)
for sched in self.scheduler.values():
sched.step()
self.log_dict(stats)
self.global_step += 1
self.run_control_steps()
if self.viewer is not None:
self.viewer.lock.release()
self.viewer.state.num_train_rays_per_sec = num_rays_per_sec
if self.viewer.mode == "training":
self.viewer.update(self.global_step, num_rays_per_step)
if self.global_step % self.checkpoint_every == 0:
self.save_checkpoint(f"{self.work_dir}/checkpoints/last.ckpt")
return loss.item()
def compute_losses(self, batch):
self.model.training = True
B = batch["imgs"].shape[0]
W, H = img_wh = batch["imgs"].shape[2:0:-1]
N = batch["target_ts"][0].shape[0]
# (B,).
ts = batch["ts"]
# (B, 4, 4).
w2cs = batch["w2cs"]
# (B, 3, 3).
Ks = batch["Ks"]
# (B, H, W, 3).
imgs = batch["imgs"]
# (B, H, W).
valid_masks = batch.get("valid_masks", torch.ones_like(batch["imgs"][..., 0]))
# (B, H, W).
masks = batch["masks"]
masks *= valid_masks
# (B, H, W).
depths = batch["depths"]
# [(P, 2), ...].
query_tracks_2d = batch["query_tracks_2d"]
# [(N,), ...].
target_ts = batch["target_ts"]
# [(N, 4, 4), ...].
target_w2cs = batch["target_w2cs"]
# [(N, 3, 3), ...].
target_Ks = batch["target_Ks"]
# [(N, P, 2), ...].
target_tracks_2d = batch["target_tracks_2d"]
# [(N, P), ...].
target_visibles = batch["target_visibles"]
# [(N, P), ...].
target_invisibles = batch["target_invisibles"]
# [(N, P), ...].
target_confidences = batch["target_confidences"]
# [(N, P), ...].
target_track_depths = batch["target_track_depths"]
_tic = time.time()
# (B, G, 3).
means, quats = self.model.compute_poses_all(ts) # (G, B, 3), (G, B, 4)
device = means.device
means = means.transpose(0, 1)
quats = quats.transpose(0, 1)
# [(N, G, 3), ...].
target_ts_vec = torch.cat(target_ts)
# (B * N, G, 3).
target_means, _ = self.model.compute_poses_all(target_ts_vec)
target_means = target_means.transpose(0, 1)
target_mean_list = target_means.split(N)
num_frames = self.model.num_frames
loss = 0.0
bg_colors = []
rendered_all = []
self._batched_xys = []
self._batched_radii = []
self._batched_img_wh = []
for i in range(B):
bg_color = torch.ones(1, 3, device=device)
rendered = self.model.render(
ts[i].item(),
w2cs[None, i],
Ks[None, i],
img_wh,
target_ts=target_ts[i],
target_w2cs=target_w2cs[i],
bg_color=bg_color,
means=means[i],
quats=quats[i],
target_means=target_mean_list[i].transpose(0, 1),
return_depth=True,
return_mask=self.model.has_bg,
)
rendered_all.append(rendered)
bg_colors.append(bg_color)
if (
self.model._current_xys is not None
and self.model._current_radii is not None
and self.model._current_img_wh is not None
):
self._batched_xys.append(self.model._current_xys)
self._batched_radii.append(self.model._current_radii)
self._batched_img_wh.append(self.model._current_img_wh)
# Necessary to make viewer work.
num_rays_per_step = H * W * B
num_rays_per_sec = num_rays_per_step / (time.time() - _tic)
# (B, H, W, N, *).
rendered_all = {
key: (
torch.cat([out_dict[key] for out_dict in rendered_all], dim=0)
if rendered_all[0][key] is not None
else None
)
for key in rendered_all[0]
}
bg_colors = torch.cat(bg_colors, dim=0)
# Compute losses.
# (B * N).
frame_intervals = (ts.repeat_interleave(N) - target_ts_vec).abs()
if not self.model.has_bg:
imgs = (
imgs * masks[..., None]
+ (1.0 - masks[..., None]) * bg_colors[:, None, None]
)
else:
imgs = (
imgs * valid_masks[..., None]
+ (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
)
# (P_all, 2).
tracks_2d = torch.cat([x.reshape(-1, 2) for x in target_tracks_2d], dim=0)
# (P_all,)
visibles = torch.cat([x.reshape(-1) for x in target_visibles], dim=0)
# (P_all,)
confidences = torch.cat([x.reshape(-1) for x in target_confidences], dim=0)
# RGB loss.
rendered_imgs = cast(torch.Tensor, rendered_all["img"])
if self.model.has_bg:
rendered_imgs = (
rendered_imgs * valid_masks[..., None]
+ (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
)
rgb_loss = 0.8 * F.l1_loss(rendered_imgs, imgs) + 0.2 * (
1 - self.ssim(rendered_imgs.permute(0, 3, 1, 2), imgs.permute(0, 3, 1, 2))
)
loss += rgb_loss * self.losses_cfg.w_rgb
# Mask loss.
if not self.model.has_bg:
mask_loss = F.mse_loss(rendered_all["acc"], masks[..., None]) # type: ignore
else:
mask_loss = F.mse_loss(
rendered_all["acc"], torch.ones_like(rendered_all["acc"]) # type: ignore
) + masked_l1_loss(
rendered_all["mask"],
masks[..., None],
quantile=0.98, # type: ignore
)
loss += mask_loss * self.losses_cfg.w_mask
# (B * N, H * W, 3).
pred_tracks_3d = (
rendered_all["tracks_3d"].permute(0, 3, 1, 2, 4).reshape(-1, H * W, 3) # type: ignore
)
pred_tracks_2d = torch.einsum(
"bij,bpj->bpi", torch.cat(target_Ks), pred_tracks_3d
)
# (B * N, H * W, 1).
mapped_depth = torch.clamp(pred_tracks_2d[..., 2:], min=1e-6)
# (B * N, H * W, 2).
pred_tracks_2d = pred_tracks_2d[..., :2] / mapped_depth
# (B * N).
w_interval = torch.exp(-2 * frame_intervals / num_frames)
# w_track_loss = min(1, (self.max_steps - self.global_step) / 6000)
track_weights = confidences[..., None] * w_interval
# (B, H, W).
masks_flatten = torch.zeros_like(masks)
for i in range(B):
# This takes advantage of the fact that the query 2D tracks are
# always on the grid.
query_pixels = query_tracks_2d[i].to(torch.int64)
masks_flatten[i, query_pixels[:, 1], query_pixels[:, 0]] = 1.0
# (B * N, H * W).
masks_flatten = (
masks_flatten.reshape(-1, H * W).tile(1, N).reshape(-1, H * W) > 0.5
)
track_2d_loss = masked_l1_loss(
pred_tracks_2d[masks_flatten][visibles],
tracks_2d[visibles],
mask=track_weights[visibles],
quantile=0.98,
) / max(H, W)
loss += track_2d_loss * self.losses_cfg.w_track
depth_masks = (
masks[..., None] if not self.model.has_bg else valid_masks[..., None]
)
pred_depth = cast(torch.Tensor, rendered_all["depth"])
pred_disp = 1.0 / (pred_depth + 1e-5)
tgt_disp = 1.0 / (depths[..., None] + 1e-5)
depth_loss = masked_l1_loss(
pred_disp,
tgt_disp,
mask=depth_masks,
quantile=0.98,
)
# depth_loss = cauchy_loss_with_uncertainty(
# pred_disp.squeeze(-1),
# tgt_disp.squeeze(-1),
# depth_masks.squeeze(-1),
# self.depth_uncertainty_activation(self.depth_uncertainties)[ts],
# bias=1e-3,
# )
loss += depth_loss * self.losses_cfg.w_depth_reg
# mapped depth loss (using cached depth with EMA)
# mapped_depth_loss = 0.0
mapped_depth_gt = torch.cat([x.reshape(-1) for x in target_track_depths], dim=0)
mapped_depth_loss = masked_l1_loss(
1 / (mapped_depth[masks_flatten][visibles] + 1e-5),
1 / (mapped_depth_gt[visibles, None] + 1e-5),
track_weights[visibles],
)
loss += mapped_depth_loss * self.losses_cfg.w_depth_const
# depth_gradient_loss = 0.0
depth_gradient_loss = compute_gradient_loss(
pred_disp,
tgt_disp,
mask=depth_masks > 0.5,
quantile=0.95,
)
# depth_gradient_loss = compute_gradient_loss(
# pred_disps,
# ref_disps,
# mask=depth_masks.squeeze(-1) > 0.5,
# c=depth_uncertainty.detach(),
# mode="l1",
# bias=1e-3,
# )
loss += depth_gradient_loss * self.losses_cfg.w_depth_grad
# bases should be smooth.
small_accel_loss = compute_se3_smoothness_loss(
self.model.motion_bases.params["rots"],
self.model.motion_bases.params["transls"],
)
loss += small_accel_loss * self.losses_cfg.w_smooth_bases
# tracks should be smooth
ts = torch.clamp(ts, min=1, max=num_frames - 2)
ts_neighbors = torch.cat((ts - 1, ts, ts + 1))
transfms_nbs = self.model.compute_transforms(ts_neighbors) # (G, 3n, 3, 4)
means_fg_nbs = torch.einsum(
"pnij,pj->pni",
transfms_nbs,
F.pad(self.model.fg.params["means"], (0, 1), value=1.0),
)
means_fg_nbs = means_fg_nbs.reshape(
means_fg_nbs.shape[0], 3, -1, 3
) # [G, 3, n, 3]
if self.losses_cfg.w_smooth_tracks > 0:
small_accel_loss_tracks = 0.5 * (
(2 * means_fg_nbs[:, 1:-1] - means_fg_nbs[:, :-2] - means_fg_nbs[:, 2:])
.norm(dim=-1)
.mean()
)
loss += small_accel_loss_tracks * self.losses_cfg.w_smooth_tracks
# Constrain the std of scales.
# TODO: do we want to penalize before or after exp?
loss += (
self.losses_cfg.w_scale_var
* torch.var(self.model.fg.params["scales"], dim=-1).mean()
)
if self.model.bg is not None:
loss += (
self.losses_cfg.w_scale_var
* torch.var(self.model.bg.params["scales"], dim=-1).mean()
)
# # sparsity loss
# loss += 0.01 * self.opacity_activation(self.opacities).abs().mean()
# Acceleration along ray direction should be small.
z_accel_loss = compute_z_acc_loss(means_fg_nbs, w2cs)
loss += self.losses_cfg.w_z_accel * z_accel_loss
# Prepare stats for logging.
stats = {
"train/loss": loss.item(),
"train/rgb_loss": rgb_loss.item(),
"train/mask_loss": mask_loss.item(),
"train/depth_loss": depth_loss.item(),
"train/depth_gradient_loss": depth_gradient_loss.item(),
"train/mapped_depth_loss": mapped_depth_loss.item(),
"train/track_2d_loss": track_2d_loss.item(),
"train/small_accel_loss": small_accel_loss.item(),
"train/z_acc_loss": z_accel_loss.item(),
"train/num_gaussians": self.model.num_gaussians,
"train/num_fg_gaussians": self.model.num_fg_gaussians,
"train/num_bg_gaussians": self.model.num_bg_gaussians,
}
# Compute metrics.
with torch.no_grad():
psnr = self.psnr_metric(
rendered_imgs, imgs, masks if not self.model.has_bg else valid_masks
)
self.psnr_metric.reset()
stats["train/psnr"] = psnr
if self.model.has_bg:
bg_psnr = self.bg_psnr_metric(rendered_imgs, imgs, 1.0 - masks)
fg_psnr = self.fg_psnr_metric(rendered_imgs, imgs, masks)
self.bg_psnr_metric.reset()
self.fg_psnr_metric.reset()
stats["train/bg_psnr"] = bg_psnr
stats["train/fg_psnr"] = fg_psnr
stats.update(
**{
"train/num_rays_per_sec": num_rays_per_sec,
"train/num_rays_per_step": float(num_rays_per_step),
}
)
return loss, stats, num_rays_per_step, num_rays_per_sec
def log_dict(self, stats: dict):
for k, v in stats.items():
self.writer.add_scalar(k, v, self.global_step)
def run_control_steps(self):
global_step = self.global_step
# Adaptive gaussian control.
cfg = self.optim_cfg
num_frames = self.model.num_frames
ready = self._prepare_control_step()
if (
ready
and global_step > cfg.warmup_steps
and global_step % cfg.control_every == 0
and global_step < cfg.stop_control_steps
):
if (
global_step < cfg.stop_densify_steps
and global_step % self.reset_opacity_every > num_frames
):
self._densify_control_step(global_step)
if global_step % self.reset_opacity_every > min(3 * num_frames, 1000):
self._cull_control_step(global_step)
if global_step % self.reset_opacity_every == 0:
self._reset_opacity_control_step()
# Reset stats after every control.
for k in self.running_stats:
self.running_stats[k].zero_()
@torch.no_grad()
def _prepare_control_step(self) -> bool:
# Prepare for adaptive gaussian control based on the current stats.
if not (
self.model._current_radii is not None
and self.model._current_xys is not None
):
guru.warning("Model not training, skipping control step preparation")
return False
batch_size = len(self._batched_xys)
# these quantities are for each rendered view and have shapes (C, G, *)
# must be aggregated over all views
for _current_xys, _current_radii, _current_img_wh in zip(
self._batched_xys, self._batched_radii, self._batched_img_wh
):
sel = _current_radii > 0
gidcs = torch.where(sel)[1]
# normalize grads to [-1, 1] screen space
xys_grad = _current_xys.grad.clone()
xys_grad[..., 0] *= _current_img_wh[0] / 2.0 * batch_size
xys_grad[..., 1] *= _current_img_wh[1] / 2.0 * batch_size
self.running_stats["xys_grad_norm_acc"].index_add_(
0, gidcs, xys_grad[sel].norm(dim=-1)
)
self.running_stats["vis_count"].index_add_(
0, gidcs, torch.ones_like(gidcs, dtype=torch.int64)
)
max_radii = torch.maximum(
self.running_stats["max_radii"].index_select(0, gidcs),
_current_radii[sel] / max(_current_img_wh),
)
self.running_stats["max_radii"].index_put((gidcs,), max_radii)
return True
@torch.no_grad()
def _densify_control_step(self, global_step):
assert (self.running_stats["vis_count"] > 0).any()
cfg = self.optim_cfg
xys_grad_avg = self.running_stats["xys_grad_norm_acc"] / self.running_stats[
"vis_count"
].clamp_min(1)
is_grad_too_high = xys_grad_avg > cfg.densify_xys_grad_threshold
# Split gaussians.
scales = self.model.get_scales_all()
is_scale_too_big = scales.amax(dim=-1) > cfg.densify_scale_threshold
if global_step < cfg.stop_control_by_screen_steps:
is_radius_too_big = (
self.running_stats["max_radii"] > cfg.densify_screen_threshold
)
else:
is_radius_too_big = torch.zeros_like(is_grad_too_high, dtype=torch.bool)
should_split = is_grad_too_high & (is_scale_too_big | is_radius_too_big)
should_dup = is_grad_too_high & ~is_scale_too_big
num_fg = self.model.num_fg_gaussians
should_fg_split = should_split[:num_fg]
num_fg_splits = int(should_fg_split.sum().item())
should_fg_dup = should_dup[:num_fg]
num_fg_dups = int(should_fg_dup.sum().item())
should_bg_split = should_split[num_fg:]
num_bg_splits = int(should_bg_split.sum().item())
should_bg_dup = should_dup[num_fg:]
num_bg_dups = int(should_bg_dup.sum().item())
fg_param_map = self.model.fg.densify_params(should_fg_split, should_fg_dup)
for param_name, new_params in fg_param_map.items():
full_param_name = f"fg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
dup_in_optim(
optimizer,
[new_params],
should_fg_split,
num_fg_splits * 2 + num_fg_dups,
)
if self.model.bg is not None:
bg_param_map = self.model.bg.densify_params(should_bg_split, should_bg_dup)
for param_name, new_params in bg_param_map.items():
full_param_name = f"bg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
dup_in_optim(
optimizer,
[new_params],
should_bg_split,
num_bg_splits * 2 + num_bg_dups,
)
# update running stats
for k, v in self.running_stats.items():
v_fg, v_bg = v[:num_fg], v[num_fg:]
new_v = torch.cat(
[
v_fg[~should_fg_split],
v_fg[should_fg_dup],
v_fg[should_fg_split].repeat(2),
v_bg[~should_bg_split],
v_bg[should_bg_dup],
v_bg[should_bg_split].repeat(2),
],
dim=0,
)
self.running_stats[k] = new_v
guru.info(
f"Split {should_split.sum().item()} gaussians, "
f"Duplicated {should_dup.sum().item()} gaussians, "
f"{self.model.num_gaussians} gaussians left"
)
@torch.no_grad()
def _cull_control_step(self, global_step):
# Cull gaussians.
cfg = self.optim_cfg
opacities = self.model.get_opacities_all()
device = opacities.device
is_opacity_too_small = opacities < cfg.cull_opacity_threshold
is_radius_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
is_scale_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
cull_scale_threshold = (
torch.ones(len(is_scale_too_big), device=device) * cfg.cull_scale_threshold
)
num_fg = self.model.num_fg_gaussians
cull_scale_threshold[num_fg:] *= self.model.bg_scene_scale
if global_step > self.reset_opacity_every:
scales = self.model.get_scales_all()
is_scale_too_big = scales.amax(dim=-1) > cull_scale_threshold
if global_step < cfg.stop_control_by_screen_steps:
is_radius_too_big = (
self.running_stats["max_radii"] > cfg.cull_screen_threshold
)
should_cull = is_opacity_too_small | is_radius_too_big | is_scale_too_big
should_fg_cull = should_cull[:num_fg]
should_bg_cull = should_cull[num_fg:]
fg_param_map = self.model.fg.cull_params(should_fg_cull)
for param_name, new_params in fg_param_map.items():
full_param_name = f"fg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
remove_from_optim(optimizer, [new_params], should_fg_cull)
if self.model.bg is not None:
bg_param_map = self.model.bg.cull_params(should_bg_cull)
for param_name, new_params in bg_param_map.items():
full_param_name = f"bg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
remove_from_optim(optimizer, [new_params], should_bg_cull)
# update running stats
for k, v in self.running_stats.items():
self.running_stats[k] = v[~should_cull]
guru.info(
f"Culled {should_cull.sum().item()} gaussians, "
f"{self.model.num_gaussians} gaussians left"
)
@torch.no_grad()
def _reset_opacity_control_step(self):
# Reset gaussian opacities.
new_val = torch.logit(torch.tensor(0.8 * self.optim_cfg.cull_opacity_threshold))
for part in ["fg", "bg"]:
part_params = getattr(self.model, part).reset_opacities(new_val)
# Modify optimizer states by new assignment.
for param_name, new_params in part_params.items():
full_param_name = f"{part}.params.{param_name}"
optimizer = self.optimizers[full_param_name]
reset_in_optim(optimizer, [new_params])
guru.info("Reset opacities")
def configure_optimizers(self):
def _exponential_decay(step, *, lr_init, lr_final):
t = np.clip(step / self.optim_cfg.max_steps, 0.0, 1.0)
lr = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return lr / lr_init
lr_dict = asdict(self.lr_cfg)
optimizers = {}
schedulers = {}
# named parameters will be [part].params.[field]
# e.g. fg.params.means
# lr config is a nested dict for each fg/bg part
for name, params in self.model.named_parameters():
part, _, field = name.split(".")
lr = lr_dict[part][field]
optim = torch.optim.Adam([{"params": params, "lr": lr, "name": name}])
if "scales" in name:
fnc = functools.partial(_exponential_decay, lr_final=0.1 * lr)
else:
fnc = lambda _, **__: 1.0
optimizers[name] = optim
schedulers[name] = torch.optim.lr_scheduler.LambdaLR(
optim, functools.partial(fnc, lr_init=lr)
)
return optimizers, schedulers
def dup_in_optim(optimizer, new_params: list, should_dup: torch.Tensor, num_dups: int):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
if key == "step":
continue
p = param_state[key]
param_state[key] = torch.cat(
[p[~should_dup], p.new_zeros(num_dups, *p.shape[1:])],
dim=0,
)
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()
def remove_from_optim(optimizer, new_params: list, _should_cull: torch.Tensor):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
if key == "step":
continue
param_state[key] = param_state[key][~_should_cull]
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()
def reset_in_optim(optimizer, new_params: list):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
param_state[key] = torch.zeros_like(param_state[key])
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()