Datasets:

Modalities:
Text
Formats:
text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
zdy023's picture
ver Aug22nd
d58c721 unverified
raw
history blame
12.3 kB
# Created by Danyang Zhang @X-Lance.
import lemminflect
from nltk.corpus import stopwords
import nltk
#import random
import re
from typing import Pattern, List, Dict, Tuple
from typing import Optional
import json
import numpy as np
from . import sentence_pattern
import logging
logger = logging.getLogger("rewriting")
def match_target(target: str, phrase: str) -> bool:
"""
Args:
target: str as the target pattern, possible targets:
+ v.
+ v.ing
+ who
+ categ
+ kw
+ article
phrase: str as the candidate
Returns:
bool
"""
if not ( target.startswith("<")\
and target.endswith(">...")\
):
return False
pos = target[1:-4]
if pos=="v." or pos=="v.ing":
return judge_verb(pos, phrase)
return True
def transform_target(target: str, phrase: str, **kargs) -> str:
"""
Args:
target: str as the target pattern, possible targets:
+ v.
+ v.ing
+ who
+ categ
+ kw
+ article
phrase: str as the candidate
kargs: dict like {str: something}
Returns:
str as the transformed phrase
"""
if not ( target.startswith("<")\
and target.endswith(">...")\
):
return phrase
pos = target[1:-4]
if pos=="v.":
return to_infinitive(phrase)
if pos=="v.ing":
return to_vbg(phrase)
if pos=="kw":
return extract_keywords(phrase, **kargs)
if pos=="who":
return drop_titles(phrase, **kargs)
return phrase
def judge_verb(pos: str, phrase: str) -> bool:
# function judge_verb {{{ #
"""
Judges if the first word of `phrase` is a verb infinitive or a present
participle.
Args:
pos: str, "v." or "v.ing"
phrase: str
Returns:
bool
"""
tokens = nltk.word_tokenize(phrase)
pos_tags = nltk.pos_tag(tokens)
return pos=="v." and pos_tags[0][1]=="VB"\
or pos=="v.ing" and pos_tags[0][1]=="VBG"
#head = phrase.split(maxsplit=1)[0]
#lemmas = lemminflect.getLemma(head, upos="VERB", lemmatize_oov=False)
#if len(lemmas)==0:
#return False
#
#if pos=="v.":
#return lemmas[0]==head
#elif pos=="v.ing":
#ing = lemminflect.getInflect(lemmas[0], tag="VBG", inflect_oov=False)
#return ing==head
# }}} function judge_verb #
def to_infinitive(phrase: str) -> str:
head, tail = phrase.split(maxsplit=1)
return lemminflect.getLemma(head, upos="VERB")[0]\
+ " "\
+ tail
def to_vbg(phrase: str) -> str:
head, tail = phrase.split(maxsplit=1)
return lemminflect.getInflection(head, tag="VBG")[0]\
+ " "\
+ tail
def extract_keywords( phrase: str
, rng: np.random.Generator = np.random.default_rng()
) -> str:
# function extract_keywords {{{ #
tokens = nltk.word_tokenize(phrase[1:-1])
pos_tags = nltk.pos_tag(tokens)
keywords = map(lambda kwd: (kwd[0].lower(), kwd[1]), pos_tags)
keywords = list( filter( lambda kwd: ( kwd[1].startswith("NN")\
or kwd[1].startswith("JJ")\
or kwd[1].startswith("VB")
)\
and kwd[0] not in stopwords.words()
, keywords
)
)
noun_keywords = list( filter( lambda kwd: not kwd[1].startswith("VB")
, keywords
)
)
if len(noun_keywords)!=0:
keywords = noun_keywords
keywords = list(map(lambda kwd: "\"{:}\"".format(kwd[0]), keywords))
sampled_keywords = list( filter( lambda _: rng.random()<0.3
, keywords
)
)
if len(sampled_keywords)==0:
sampled_keywords = [keywords[rng.integers(len(keywords))]]
return ", ".join(sampled_keywords)
# }}} function extract_keywords #
def drop_titles( phrase: str
, rng: np.random.Generator = np.random.default_rng()
) -> str:
# function drop_titles {{{ #
titles = phrase.split(", ")
sampled_titles = list( filter( lambda _: rng.random()<0.3
, titles[1:]
)
)
return ", ".join([titles[0]] + sampled_titles)
# }}} function drop_titles #
def parse_file(file_name: str, with_regex: bool = False)\
-> Tuple[ List[sentence_pattern.Item]
, Optional[List[Pattern[str]]]
]:
with open(file_name) as f:
item_list = list( map( sentence_pattern.parse_pattern
, f.read().splitlines()
)
)
regex_list = list( map( lambda itm: re.compile(itm.regex)
, item_list
)
) if with_regex else None
return item_list, regex_list
class TransformerSet:
"""
Sentences requiring transformation:
1. search in command and instruction
2. categ in command and instruction
3. author in command and instruction
4. article in command and instruction (Different)
5. other sentences
"""
def __init__( self
, search_pattern_file: str
, article_pattern_file: str
, article_command_pattern_file: str
, categ_pattern_file: str
, author_pattern_file: str
, doccano_file: str
, rng: np.random.Generator
):
# method __init__ {{{ #
"""
Args:
search_pattern_file: str
article_pattern_file: str
article_command_pattern_file: str
categ_pattern_file: str
author_pattern_file: str
doccano_file: str as the path to the json file exported by doccano
rng: np.random.Generator
"""
self._search_template_lib: List[sentence_pattern.Item]
self._article_template_lib: List[sentence_pattern.Item]
self._article_command_template_lib: List[sentence_pattern.Item]
self._categ_template_lib: List[sentence_pattern.Item]
self._author_template_lib: List[sentence_pattern.Item]
self._search_template_regex: List[Pattern[str]]
#self._article_template_regex: List[Pattern[str]]
#self._article_command_template_regex: List[Pattern[str]]
#self._categ_template_regex: List[Pattern[str]]
#self._author_template_regex: List[Pattern[str]]
self._search_template_lib, self._search_template_regex =\
parse_file(search_pattern_file, with_regex=True)
self._article_template_lib, _ = parse_file(article_pattern_file)
self._article_command_template_lib, _ = parse_file(article_command_pattern_file)
self._categ_template_lib, _ = parse_file(categ_pattern_file)
self._author_template_lib, _ = parse_file(author_pattern_file)
self._annotation_dict: Dict[str, List[str]] = {}
with open(doccano_file) as f:
doccano_dict = json.load(f)
for anntt in doccano_dict:
self._annotation_dict[anntt["text"]] = [anntt["text"]] + anntt["label"]
self._rng: np.random.Generator = rng
# }}} method __init__ #
def transform(self, sentence: str, environment="instruction") -> str:
# method `transform` {{{ #
"""
Args:
sentence: str
environment: str, "instruction" or "command"
Returns:
str
"""
logger.debug("Starting transform: %s", sentence)
has_leading_then = sentence.startswith("Then, ")
if has_leading_then:
sentence = sentence[6].upper() + sentence[7:]
if sentence.startswith("Search an article"):
transformed = self._transform_search(sentence)
elif sentence.startswith("Access the article"):
transformed = self._transform_article(sentence, environment)
elif sentence.startswith("Access the page"):
transformed = self._transform_categ(sentence)
elif sentence.startswith("Check the author"):
transformed = self._transform_author(sentence)
elif sentence in self._annotation_dict:
candidates = self._annotation_dict[sentence]
random_index = self._rng.integers(len(candidates))
transformed = candidates[random_index]
else:
transformed = sentence
if has_leading_then:
transformed = "Then, " + transformed[0].lower() + transformed[1:]
logger.debug("Transformation result: %s", transformed)
return transformed
# }}} method `transform` #
def _transform_search(self, sentence: str) -> str:
# method _transform_search {{{ #
if sentence in self._annotation_dict:
nb_candidates = len(self._annotation_dict[sentence])
weights = np.full((nb_candidates,), 2)
weights[0] = 1
weights = weights/np.sum(weights)
random_index = self._rng.choice( nb_candidates
, p=weights
)
sentence = self._annotation_dict[sentence][random_index]
template = None
target_str = None
for tpl, rgx in zip(self._search_template_lib, self._search_template_regex):
match_ = rgx.match(sentence)
if match_ is not None:
template = tpl
target_str = match_.group(1)
break
if template is None:
return sentence
target_pattern = template.get_targets()
if not match_target(target_pattern[0], target_str):
return sentence
return self._apply_new_template(target_str, self._search_template_lib)
# }}} method _transform_search #
def _transform_article(self, sentence: str, environment: str) -> str:
# method _transform_article {{{ #
"""
Args:
sentence: str
environment: str, "instruction" or "command", indicates different
target template library
Returns:
str
"""
assert sentence.startswith("Access the article \"")\
and sentence.endswith("\"")
target_str = sentence[19:]
target_template_library = self._article_template_lib\
if environment=="instruction"\
else self._article_command_template_lib
return self._apply_new_template(target_str, target_template_library)
# }}} method _transform_article #
def _transform_categ(self, sentence: str) -> str:
assert sentence.startswith("Access the page of category ")
target_str = sentence[28:]
return self._apply_new_template(target_str, self._categ_template_lib)
def _transform_author(self, sentence: str) -> str:
assert sentence.startswith("Check the author page of ")\
and sentence.endswith(".")
target_str = sentence[25:-1]
return self._apply_new_template(target_str, self._author_template_lib)
def _apply_new_template( self
, target_str: str
, template_library: List[sentence_pattern.Item]
) -> str:
# method _apply_new_template {{{ #
new_template_index = self._rng.integers(len(template_library))
new_template = template_library[new_template_index]
#print(new_template)
#print(repr(new_template))
target_pattern = new_template.get_targets()
target_str = transform_target(target_pattern[0], target_str, rng=self._rng)
new_template.implement(iter([target_str]))
return new_template.instantiate()
# }}} method _apply_new_template #