Upload ProDiff/verify_data.py with huggingface_hub
Browse files- ProDiff/verify_data.py +75 -0
ProDiff/verify_data.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
|
| 4 |
+
def verify_trajectory_frequency(file_path):
|
| 5 |
+
"""
|
| 6 |
+
验证轨迹数据是否为每分钟一个点。
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
file_path (str): 轨迹数据文件路径。
|
| 10 |
+
"""
|
| 11 |
+
print(f"正在验证文件: {file_path}")
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
df = pd.read_csv(file_path)
|
| 15 |
+
except FileNotFoundError:
|
| 16 |
+
print(f"❌ 错误:文件未找到 -> {file_path}")
|
| 17 |
+
print("请先确保 'prepare_data.py' 脚本已成功运行并生成了 'matched_trajectory_data.csv' 文件。")
|
| 18 |
+
return
|
| 19 |
+
|
| 20 |
+
if 'datetime' not in df.columns or 'date' not in df.columns or 'userid' not in df.columns:
|
| 21 |
+
print(f"❌ 错误:文件中缺少 'datetime', 'date', 或 'userid' 列。实际列: {df.columns.tolist()}")
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
# 转换数据类型
|
| 25 |
+
df['datetime'] = pd.to_datetime(df['datetime'])
|
| 26 |
+
|
| 27 |
+
# 按用户和日期分组
|
| 28 |
+
grouped = df.groupby(['userid', 'date'])
|
| 29 |
+
|
| 30 |
+
total_groups = len(grouped)
|
| 31 |
+
inconsistent_groups = []
|
| 32 |
+
|
| 33 |
+
print(f"总共找到 {total_groups} 个用户-日期组合,正在逐一检查...")
|
| 34 |
+
|
| 35 |
+
for (userid, date), group in tqdm(grouped, total=total_groups, desc="检查时间频率"):
|
| 36 |
+
# 按时间排序
|
| 37 |
+
group_sorted = group.sort_values('datetime')
|
| 38 |
+
|
| 39 |
+
# 计算时间差
|
| 40 |
+
time_diffs = group_sorted['datetime'].diff().dropna()
|
| 41 |
+
|
| 42 |
+
# 检查是否所有时间差都是1分钟
|
| 43 |
+
# 使用 isclose 允许微小的浮点数误差
|
| 44 |
+
is_consistent = all(pd.Timedelta(minutes=1) - pd.Timedelta(seconds=1) < diff < pd.Timedelta(minutes=1) + pd.Timedelta(seconds=1) for diff in time_diffs)
|
| 45 |
+
|
| 46 |
+
if not is_consistent:
|
| 47 |
+
# 记录不一致的组和详细信息
|
| 48 |
+
non_one_minute_diffs = time_diffs[~time_diffs.apply(lambda x: pd.Timedelta(minutes=1) - pd.Timedelta(seconds=1) < x < pd.Timedelta(minutes=1) + pd.Timedelta(seconds=1))]
|
| 49 |
+
inconsistent_groups.append({
|
| 50 |
+
'userid': userid,
|
| 51 |
+
'date': date,
|
| 52 |
+
'details': non_one_minute_diffs.to_dict()
|
| 53 |
+
})
|
| 54 |
+
|
| 55 |
+
print("\\n" + "="*50)
|
| 56 |
+
print(" 验证结果")
|
| 57 |
+
print("="*50)
|
| 58 |
+
|
| 59 |
+
if not inconsistent_groups:
|
| 60 |
+
print(f"✅ 验证通过!")
|
| 61 |
+
print(f"所有 {total_groups} 个用户-日期组合的轨迹数据都严格遵循 '一分钟一个点' 的格式。")
|
| 62 |
+
else:
|
| 63 |
+
print(f"⚠️ 验证失败!发现 {len(inconsistent_groups)} 个用户-日期组合的时间频率不一致。")
|
| 64 |
+
print("以下是前5个不一致组的详细信息:")
|
| 65 |
+
for i, group_info in enumerate(inconsistent_groups[:5]):
|
| 66 |
+
print(f"\\n --- 示例 {i+1} ---")
|
| 67 |
+
print(f" - 用户ID: {group_info['userid']}, 日期: {group_info['date']}")
|
| 68 |
+
for time_index, diff in list(group_info['details'].items())[:3]: # 只显示前3个异常
|
| 69 |
+
timestamp = df.loc[time_index, 'datetime']
|
| 70 |
+
print(f" - 在时间点 {timestamp}, 检测到异常时间差: {diff}")
|
| 71 |
+
|
| 72 |
+
print("="*50)
|
| 73 |
+
|
| 74 |
+
if __name__ == "__main__":
|
| 75 |
+
verify_trajectory_frequency('data/matched_trajectory_data.csv')
|