Upload ProDiff/test.py with huggingface_hub
Browse files- ProDiff/test.py +272 -0
ProDiff/test.py
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from utils.metric import *
|
| 8 |
+
from dataset.data_util import MinMaxScaler
|
| 9 |
+
from utils.utils import mask_data_general, ddp_setup, continuous_mask_data, continuous_time_based_mask, mask_multiple_segments
|
| 10 |
+
# Diffusion model will be imported directly in the main script that calls this test function.
|
| 11 |
+
# from diffProModel.Diffusion import Diffusion # No, pass model as argument
|
| 12 |
+
|
| 13 |
+
def test_model(test_dataloader, diffusion_model, short_samples_model, config, epoch,
|
| 14 |
+
prototypes, device, logger, exp_dir):
|
| 15 |
+
"""
|
| 16 |
+
Test the unified Diffusion model (DDPM or DDIM) on the test dataset.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
test_dataloader: DataLoader for test data.
|
| 20 |
+
diffusion_model: The unified diffusion model (instance of diffProModel.Diffusion.Diffusion).
|
| 21 |
+
short_samples_model: Trajectory transformer model for feature extraction.
|
| 22 |
+
config: Configuration object.
|
| 23 |
+
epoch: Current epoch number (or identifier for the test run).
|
| 24 |
+
prototypes: Prototype vectors (e.g., from TrajectoryTransformer or K-Means).
|
| 25 |
+
device: Device to run the model on (already determined by the caller).
|
| 26 |
+
logger: Logger object.
|
| 27 |
+
exp_dir: Experiment directory path.
|
| 28 |
+
"""
|
| 29 |
+
# Determine distributed status and local_rank first
|
| 30 |
+
distributed = config.training.dis_gpu
|
| 31 |
+
local_rank = 0
|
| 32 |
+
if distributed:
|
| 33 |
+
# If DDP is active, LOCAL_RANK should be set by the environment.
|
| 34 |
+
# ddp_setup should have been called by the parent process (e.g., train_main or main for DDP launch)
|
| 35 |
+
# test_model itself typically does not re-initialize DDP.
|
| 36 |
+
try:
|
| 37 |
+
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
| 38 |
+
except ValueError:
|
| 39 |
+
if logger: logger.warning("LOCAL_RANK environment variable not a valid integer. Defaulting to 0.")
|
| 40 |
+
local_rank = 0
|
| 41 |
+
# The 'device' argument passed to this function should be the correct one to use.
|
| 42 |
+
|
| 43 |
+
thresholds = [i for i in range(1000, 11000, 1000)] # Thresholds for TC metric
|
| 44 |
+
# Initialize lists to store metrics for each batch
|
| 45 |
+
mtd_list, mppe_list, maepp_list, maeps_list, aptc_list, avg_aptc_list, max_td_list = [], [], [], [], [], [], []
|
| 46 |
+
|
| 47 |
+
# Get sampling parameters from config (assuming they are in config.sampling)
|
| 48 |
+
sampling_type = getattr(config.sampling, 'type', 'ddpm') # Default to ddpm if not specified
|
| 49 |
+
ddim_steps = getattr(config.sampling, 'ddim_steps', 50)
|
| 50 |
+
ddim_eta = getattr(config.sampling, 'ddim_eta', 0.0)
|
| 51 |
+
debug_mode = getattr(config, 'debug', False) # General debug flag
|
| 52 |
+
|
| 53 |
+
if logger and local_rank == 0: # Ensure logger operations happen on rank 0 if distributed
|
| 54 |
+
logger.info(f"Testing with sampling_type: {sampling_type} for epoch {epoch}")
|
| 55 |
+
if sampling_type == 'ddim':
|
| 56 |
+
logger.info(f"DDIM steps: {ddim_steps}, DDIM eta: {ddim_eta}")
|
| 57 |
+
|
| 58 |
+
diffusion_model.eval() # Ensure diffusion model is in eval mode
|
| 59 |
+
short_samples_model.eval() # Ensure feature extractor is in eval mode
|
| 60 |
+
|
| 61 |
+
pbar_desc = f"Epoch {epoch} Test Progress ({sampling_type.upper()})"
|
| 62 |
+
for batch_idx, (abs_time, lat, lng) in enumerate(tqdm(test_dataloader, desc=pbar_desc, disable=(local_rank != 0))):
|
| 63 |
+
|
| 64 |
+
if debug_mode and logger and local_rank == 0:
|
| 65 |
+
logger.info(f"Batch {batch_idx} - Input shapes: abs_time {abs_time.shape}, lat {lat.shape}, lng {lng.shape}")
|
| 66 |
+
logger.info(f"Input data stats - abs_time: min={abs_time.min().item():.4f}, max={abs_time.max().item():.4f}, " +
|
| 67 |
+
f"lat: min={lat.min().item():.4f}, max={lat.max().item():.4f}, " +
|
| 68 |
+
f"lng: min={lng.min().item():.4f}, max={lng.max().item():.4f}")
|
| 69 |
+
|
| 70 |
+
if torch.isnan(abs_time).any() or torch.isnan(lat).any() or torch.isnan(lng).any():
|
| 71 |
+
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in input data!")
|
| 72 |
+
continue
|
| 73 |
+
|
| 74 |
+
# Prepare input tensor (ground truth for start/end points and for scaling)
|
| 75 |
+
# This testx_raw is used for scaler fitting and as test_x0 for diffusion model
|
| 76 |
+
testx_raw = torch.stack([abs_time, lat, lng], dim=-1).to(device)
|
| 77 |
+
|
| 78 |
+
# Use global normalization parameters for consistency
|
| 79 |
+
scaler = MinMaxScaler(global_params_file='./data/robust_normalization_params.json')
|
| 80 |
+
scaler.fit(testx_raw) # This does nothing for global scaler, but maintains interface
|
| 81 |
+
testx_scaled = scaler.transform(testx_raw) # Scale data
|
| 82 |
+
|
| 83 |
+
if debug_mode and logger and local_rank == 0:
|
| 84 |
+
logger.info(f"Scaler min: {scaler.min_val.flatten().cpu().numpy()}, max: {scaler.max_val.flatten().cpu().numpy()}")
|
| 85 |
+
|
| 86 |
+
if torch.isnan(testx_scaled).any():
|
| 87 |
+
if logger and local_rank == 0:
|
| 88 |
+
logger.error(f"Batch {batch_idx} - NaN detected after scaling!")
|
| 89 |
+
if torch.any(scaler.max_val == scaler.min_val):
|
| 90 |
+
logger.error("Division by zero in scaler possible: max_val equals min_val for some features.")
|
| 91 |
+
continue
|
| 92 |
+
|
| 93 |
+
# Permute for diffusion model input: (batch_size, num_features, traj_length)
|
| 94 |
+
testx_scaled_permuted = testx_scaled.permute(0, 2, 1)
|
| 95 |
+
|
| 96 |
+
# Apply masking
|
| 97 |
+
if config.masking_strategy == 'general':
|
| 98 |
+
masked_condition_permuted = mask_data_general(testx_scaled_permuted)
|
| 99 |
+
elif config.masking_strategy == 'continuous':
|
| 100 |
+
masked_condition_permuted = continuous_mask_data(testx_scaled_permuted, config.mask_ratio)
|
| 101 |
+
elif config.masking_strategy == 'time_based':
|
| 102 |
+
masked_condition_permuted = continuous_time_based_mask(testx_scaled_permuted, points_to_mask=config.mask_points_per_hour)
|
| 103 |
+
elif config.masking_strategy == 'multi_segment':
|
| 104 |
+
masked_condition_permuted = mask_multiple_segments(testx_scaled_permuted, points_per_segment=config.mask_segments)
|
| 105 |
+
else:
|
| 106 |
+
raise ValueError(f"Unknown masking strategy: {config.masking_strategy}")
|
| 107 |
+
|
| 108 |
+
masked_condition = masked_condition_permuted.permute(0, 2, 1)
|
| 109 |
+
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
_, query_features = short_samples_model(masked_condition)
|
| 112 |
+
|
| 113 |
+
if torch.isnan(query_features).any():
|
| 114 |
+
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in query_features!")
|
| 115 |
+
continue
|
| 116 |
+
if torch.isnan(prototypes).any():
|
| 117 |
+
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in provided prototypes!")
|
| 118 |
+
continue
|
| 119 |
+
|
| 120 |
+
# Match query features with prototypes (e.g., via cosine similarity and softmax attention)
|
| 121 |
+
# This logic should align with how matched_prototypes are generated during training
|
| 122 |
+
cos_sim = F.cosine_similarity(query_features.unsqueeze(1), prototypes.unsqueeze(0), dim=-1)
|
| 123 |
+
if torch.isnan(cos_sim).any():
|
| 124 |
+
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in cos_sim!")
|
| 125 |
+
continue
|
| 126 |
+
|
| 127 |
+
# Using the same attention-weighted sum as in the unified training script
|
| 128 |
+
d_k = query_features.size(-1)
|
| 129 |
+
scaled_cos_sim = F.softmax(cos_sim / np.sqrt(d_k), dim=-1)
|
| 130 |
+
matched_prototypes_for_diffusion = torch.matmul(scaled_cos_sim, prototypes).to(device)
|
| 131 |
+
|
| 132 |
+
if torch.isnan(matched_prototypes_for_diffusion).any():
|
| 133 |
+
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in matched_prototypes!")
|
| 134 |
+
continue
|
| 135 |
+
|
| 136 |
+
if debug_mode and logger and local_rank == 0:
|
| 137 |
+
logger.info(f"Sampling with type: {sampling_type}, DDIM steps: {ddim_steps}, eta: {ddim_eta}")
|
| 138 |
+
logger.info(f"Input to diffusion model (testx_scaled_permuted) shape: {testx_scaled_permuted.shape}, "
|
| 139 |
+
f"masked condition (masked_condition_permuted) shape: {masked_condition_permuted.shape}, "
|
| 140 |
+
f"matched prototypes shape: {matched_prototypes_for_diffusion.shape}")
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
|
| 144 |
+
pred_x0_scaled = diffusion_model.sample(
|
| 145 |
+
test_x0=testx_scaled_permuted, # Ground truth (scaled) for start/end points and reference
|
| 146 |
+
attr=masked_condition_permuted, # Masked data for conditional U-Net input (GuideNet attr)
|
| 147 |
+
prototype=matched_prototypes_for_diffusion, # Matched prototypes for GuideNet
|
| 148 |
+
sampling_type=sampling_type,
|
| 149 |
+
ddim_num_steps=ddim_steps,
|
| 150 |
+
ddim_eta=ddim_eta
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
if torch.isnan(pred_x0_scaled).any():
|
| 154 |
+
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in Diffusion model output!")
|
| 155 |
+
continue
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
if logger and local_rank == 0: logger.error(f"Exception during Diffusion model sampling: {str(e)}")
|
| 159 |
+
import traceback
|
| 160 |
+
if logger and local_rank == 0: logger.error(traceback.format_exc())
|
| 161 |
+
continue
|
| 162 |
+
|
| 163 |
+
# pred_x0_scaled is (batch_size, num_features, traj_length)
|
| 164 |
+
pred_x0_scaled_unpermuted = pred_x0_scaled.permute(0, 2, 1)
|
| 165 |
+
|
| 166 |
+
if debug_mode and logger and local_rank == 0:
|
| 167 |
+
logger.info(f"pred_x0_scaled_unpermuted stats before inverse_transform: min={pred_x0_scaled_unpermuted.min().item():.4f}, max={pred_x0_scaled_unpermuted.max().item():.4f}")
|
| 168 |
+
|
| 169 |
+
if (pred_x0_scaled_unpermuted < 0).any() or (pred_x0_scaled_unpermuted > 1).any():
|
| 170 |
+
if logger and local_rank == 0:
|
| 171 |
+
logger.warning(f"Batch {batch_idx} - Values outside [0,1] in pred_x0_scaled: min={pred_x0_scaled_unpermuted.min().item():.4f}, max={pred_x0_scaled_unpermuted.max().item():.4f}. Clamping.")
|
| 172 |
+
pred_x0_scaled_unpermuted = torch.clamp(pred_x0_scaled_unpermuted, 0, 1)
|
| 173 |
+
|
| 174 |
+
# Inverse transform to original data scale - ensure this happens on the correct device
|
| 175 |
+
pred_x0_final = scaler.inverse_transform(pred_x0_scaled_unpermuted)
|
| 176 |
+
|
| 177 |
+
ground_truth_final = testx_raw.cpu()
|
| 178 |
+
|
| 179 |
+
if torch.isnan(pred_x0_final).any() or torch.isnan(ground_truth_final).any():
|
| 180 |
+
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected after inverse transform!")
|
| 181 |
+
continue
|
| 182 |
+
|
| 183 |
+
# Move to CPU before converting to NumPy for metric calculation
|
| 184 |
+
pred_x0_np = pred_x0_final.cpu().numpy()
|
| 185 |
+
ground_truth_np = ground_truth_final.numpy()
|
| 186 |
+
|
| 187 |
+
if debug_mode and logger and local_rank == 0:
|
| 188 |
+
logger.info(f"Shapes for metrics: pred_x0_np {pred_x0_np.shape}, ground_truth_np {ground_truth_np.shape}")
|
| 189 |
+
logger.info(f"pred_x0_np stats: min={np.min(pred_x0_np):.4f}, max={np.max(pred_x0_np):.4f}")
|
| 190 |
+
logger.info(f"ground_truth_np stats: min={np.min(ground_truth_np):.4f}, max={np.max(ground_truth_np):.4f}")
|
| 191 |
+
|
| 192 |
+
try:
|
| 193 |
+
mtd_list.append(mean_trajectory_deviation(pred_x0_np, ground_truth_np))
|
| 194 |
+
mppe_list.append(mean_point_to_point_error(pred_x0_np, ground_truth_np))
|
| 195 |
+
maepp_list.append(mean_absolute_error_per_point(pred_x0_np[:, :, 0], ground_truth_np[:, :, 0]))
|
| 196 |
+
maeps_list.append(mean_absolute_error_per_sample(pred_x0_np[:, :, 0], ground_truth_np[:, :, 0]))
|
| 197 |
+
aptc_result, avg_aptc_result = trajectory_coverage(pred_x0_np, ground_truth_np, thresholds)
|
| 198 |
+
aptc_list.append(aptc_result)
|
| 199 |
+
avg_aptc_list.append(avg_aptc_result)
|
| 200 |
+
max_td_list.append(max_trajectory_deviation(pred_x0_np, ground_truth_np))
|
| 201 |
+
except Exception as e:
|
| 202 |
+
if logger and local_rank == 0: logger.error(f"Exception during metric calculation in batch {batch_idx}: {str(e)}")
|
| 203 |
+
if debug_mode and logger and local_rank == 0: import traceback; logger.error(traceback.format_exc())
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
+
if debug_mode and batch_idx == 0 and os.environ.get('PROJECT_DEBUG_MODE', '0') == '1': # Use a distinct env var for this specific break
|
| 207 |
+
if logger and local_rank == 0: logger.info("Project debug mode: Breaking after first test batch")
|
| 208 |
+
break
|
| 209 |
+
|
| 210 |
+
# Aggregate and log metrics (only on rank 0 if distributed)
|
| 211 |
+
if local_rank == 0:
|
| 212 |
+
mean_mtd = np.mean(mtd_list) if mtd_list else float('nan')
|
| 213 |
+
mean_mppe = np.mean(mppe_list) if mppe_list else float('nan')
|
| 214 |
+
mean_maepp = np.mean(maepp_list) if maepp_list else float('nan')
|
| 215 |
+
mean_maeps = np.mean(maeps_list) if maeps_list else float('nan')
|
| 216 |
+
mean_avg_aptc = np.mean(avg_aptc_list) if avg_aptc_list else float('nan')
|
| 217 |
+
mean_max_td = np.max(max_td_list) if max_td_list else float('nan') # MaxTD is max over all samples
|
| 218 |
+
mean_aptc_thresholds = {k: np.mean([d[k] for d in aptc_list if k in d]) for k in aptc_list[0]} if aptc_list else {f'TC@{thr}': float('nan') for thr in thresholds}
|
| 219 |
+
|
| 220 |
+
if logger:
|
| 221 |
+
logger.info(f"--- Test Results for Epoch {epoch} ({sampling_type.upper()}) ---")
|
| 222 |
+
logger.info(f"Mean MTD: {mean_mtd:.4f}")
|
| 223 |
+
logger.info(f"Mean MPPE: {mean_mppe:.4f}")
|
| 224 |
+
logger.info(f"Mean MAEPP (time): {mean_maepp:.4f}")
|
| 225 |
+
logger.info(f"Mean MAEPS (time): {mean_maeps:.4f}")
|
| 226 |
+
logger.info(f"Mean AVG_TC: {mean_avg_aptc:.4f}")
|
| 227 |
+
logger.info(f"Overall MaxTD: {mean_max_td:.4f}")
|
| 228 |
+
for threshold_val, tc_val in mean_aptc_thresholds.items():
|
| 229 |
+
logger.info(f"Mean {threshold_val}: {tc_val:.4f}")
|
| 230 |
+
if sampling_type == 'ddim':
|
| 231 |
+
logger.info(f"DDIM sampling with {ddim_steps} steps, eta: {ddim_eta:.2f}")
|
| 232 |
+
else:
|
| 233 |
+
logger.info(f"DDPM sampling with {config.diffusion.num_diffusion_timesteps} steps")
|
| 234 |
+
|
| 235 |
+
# Save results to .npy files
|
| 236 |
+
results_dir = exp_dir / 'results'
|
| 237 |
+
os.makedirs(results_dir, exist_ok=True)
|
| 238 |
+
sampling_prefix = f"{sampling_type.upper()}_"
|
| 239 |
+
|
| 240 |
+
def save_metric_npy(metric_name, value, current_epoch):
|
| 241 |
+
file_path = results_dir / f"{sampling_prefix}Test_mean_{metric_name}.npy"
|
| 242 |
+
if np.isnan(value): return # Don't save if NaN
|
| 243 |
+
if os.path.exists(file_path):
|
| 244 |
+
try:
|
| 245 |
+
existing_data = np.load(file_path, allow_pickle=True).item()
|
| 246 |
+
except: # Handle empty or corrupted file
|
| 247 |
+
existing_data = {}
|
| 248 |
+
existing_data[current_epoch] = value
|
| 249 |
+
else:
|
| 250 |
+
existing_data = {current_epoch: value}
|
| 251 |
+
np.save(file_path, existing_data)
|
| 252 |
+
|
| 253 |
+
save_metric_npy('mtd', mean_mtd, epoch)
|
| 254 |
+
save_metric_npy('mppe', mean_mppe, epoch)
|
| 255 |
+
save_metric_npy('maepp', mean_maepp, epoch)
|
| 256 |
+
save_metric_npy('maeps', mean_maeps, epoch)
|
| 257 |
+
save_metric_npy('avg_aptc', mean_avg_aptc, epoch)
|
| 258 |
+
save_metric_npy('max_td', mean_max_td, epoch)
|
| 259 |
+
for threshold_key, tc_value in mean_aptc_thresholds.items():
|
| 260 |
+
metric_key_name = threshold_key.replace('@', '_at_') # Sanitize for filename
|
| 261 |
+
save_metric_npy(f"tc_{metric_key_name}", tc_value, epoch)
|
| 262 |
+
|
| 263 |
+
if logger: logger.info(f"Saved test metrics to {results_dir}")
|
| 264 |
+
|
| 265 |
+
# Ensure all processes finish if in DDP, though testing is usually single-process or rank 0 handles results
|
| 266 |
+
if torch.distributed.is_initialized():
|
| 267 |
+
torch.distributed.barrier() # Wait for all processes if any were involved
|
| 268 |
+
|
| 269 |
+
return { # Return main metrics, could be useful for main script
|
| 270 |
+
"mean_mtd": mean_mtd,
|
| 271 |
+
"mean_mppe": mean_mppe
|
| 272 |
+
} if local_rank == 0 else {}
|