blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 7
139
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
16
| license_type
stringclasses 2
values | repo_name
stringlengths 7
55
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
int64 1,471B
1,694B
| revision_date
int64 1,378B
1,694B
| committer_date
int64 1,378B
1,694B
| github_id
float64 1.33M
604M
⌀ | star_events_count
int64 0
43.5k
| fork_events_count
int64 0
1.5k
| gha_license_id
stringclasses 6
values | gha_event_created_at
int64 1,402B
1,695B
⌀ | gha_created_at
int64 1,359B
1,637B
⌀ | gha_language
stringclasses 19
values | src_encoding
stringclasses 2
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 3
6.4M
| extension
stringclasses 4
values | content
stringlengths 3
6.12M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3375a7af539d92bb6ec23773e68a23fd7149cf18
|
a45212b1526d532e6e83c44ddca6a05795113ddc
|
/src/order/filter/lift.lean
|
56a3f85869b3114b6632b9737622c4ca21e7a1f4
|
[
"Apache-2.0"
] |
permissive
|
fpvandoorn/mathlib
|
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
|
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
|
refs/heads/master
| 1,624,791,089,608
| 1,556,715,231,000
| 1,556,715,231,000
| 165,722,980
| 5
| 0
|
Apache-2.0
| 1,552,657,455,000
| 1,547,494,646,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 18,035
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
Lift filters along filter and set functions.
-/
import order.filter.basic
open lattice set
local attribute [instance] classical.prop_decidable
namespace filter
variables {α : Type*} {β : Type*} {γ : Type*} {ι : Sort*}
section lift
/-- A variant on `bind` using a function `g` taking a set instead of a member of `α`.
This is essentially a push-forward along a function mapping each set to a filter. -/
protected def lift (f : filter α) (g : set α → filter β) :=
⨅s ∈ f.sets, g s
variables {f f₁ f₂ : filter α} {g g₁ g₂ : set α → filter β}
lemma lift_sets_eq (hg : monotone g) : (f.lift g).sets = (⋃t∈f.sets, (g t).sets) :=
infi_sets_eq'
(assume s hs t ht, ⟨s ∩ t, inter_mem_sets hs ht,
hg $ inter_subset_left s t, hg $ inter_subset_right s t⟩)
⟨univ, univ_mem_sets⟩
lemma mem_lift {s : set β} {t : set α} (ht : t ∈ f.sets) (hs : s ∈ (g t).sets) :
s ∈ (f.lift g).sets :=
le_principal_iff.mp $ show f.lift g ≤ principal s,
from infi_le_of_le t $ infi_le_of_le ht $ le_principal_iff.mpr hs
lemma mem_lift_sets (hg : monotone g) {s : set β} :
s ∈ (f.lift g).sets ↔ (∃t∈f.sets, s ∈ (g t).sets) :=
by rw [lift_sets_eq hg]; simp only [mem_Union]
lemma lift_le {f : filter α} {g : set α → filter β} {h : filter β} {s : set α}
(hs : s ∈ f.sets) (hg : g s ≤ h) : f.lift g ≤ h :=
infi_le_of_le s $ infi_le_of_le hs $ hg
lemma le_lift {f : filter α} {g : set α → filter β} {h : filter β}
(hh : ∀s∈f.sets, h ≤ g s) : h ≤ f.lift g :=
le_infi $ assume s, le_infi $ assume hs, hh s hs
lemma lift_mono (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.lift g₁ ≤ f₂.lift g₂ :=
infi_le_infi $ assume s, infi_le_infi2 $ assume hs, ⟨hf hs, hg s⟩
lemma lift_mono' (hg : ∀s∈f.sets, g₁ s ≤ g₂ s) : f.lift g₁ ≤ f.lift g₂ :=
infi_le_infi $ assume s, infi_le_infi $ assume hs, hg s hs
lemma map_lift_eq {m : β → γ} (hg : monotone g) : map m (f.lift g) = f.lift (map m ∘ g) :=
have monotone (map m ∘ g),
from monotone_comp hg monotone_map,
filter_eq $ set.ext $
by simp only [mem_lift_sets, hg, @mem_lift_sets _ _ f _ this, exists_prop, forall_const, mem_map, iff_self, function.comp_app]
lemma comap_lift_eq {m : γ → β} (hg : monotone g) : comap m (f.lift g) = f.lift (comap m ∘ g) :=
have monotone (comap m ∘ g),
from monotone_comp hg monotone_comap,
filter_eq $ set.ext begin
simp only [hg, @mem_lift_sets _ _ f _ this, comap, mem_lift_sets, mem_set_of_eq, exists_prop,
function.comp_apply],
exact λ s,
⟨λ ⟨b, ⟨a, ha, hb⟩, hs⟩, ⟨a, ha, b, hb, hs⟩,
λ ⟨a, ha, b, hb, hs⟩, ⟨b, ⟨a, ha, hb⟩, hs⟩⟩
end
theorem comap_lift_eq2 {m : β → α} {g : set β → filter γ} (hg : monotone g) :
(comap m f).lift g = f.lift (g ∘ preimage m) :=
le_antisymm
(le_infi $ assume s, le_infi $ assume hs,
infi_le_of_le (preimage m s) $ infi_le _ ⟨s, hs, subset.refl _⟩)
(le_infi $ assume s, le_infi $ assume ⟨s', hs', (h_sub : preimage m s' ⊆ s)⟩,
infi_le_of_le s' $ infi_le_of_le hs' $ hg h_sub)
lemma map_lift_eq2 {g : set β → filter γ} {m : α → β} (hg : monotone g) :
(map m f).lift g = f.lift (g ∘ image m) :=
le_antisymm
(infi_le_infi2 $ assume s, ⟨image m s,
infi_le_infi2 $ assume hs, ⟨
f.sets_of_superset hs $ assume a h, mem_image_of_mem _ h,
le_refl _⟩⟩)
(infi_le_infi2 $ assume t, ⟨preimage m t,
infi_le_infi2 $ assume ht, ⟨ht,
hg $ assume x, assume h : x ∈ m '' preimage m t,
let ⟨y, hy, h_eq⟩ := h in
show x ∈ t, from h_eq ▸ hy⟩⟩)
lemma lift_comm {g : filter β} {h : set α → set β → filter γ} :
f.lift (λs, g.lift (h s)) = g.lift (λt, f.lift (λs, h s t)) :=
le_antisymm
(le_infi $ assume i, le_infi $ assume hi, le_infi $ assume j, le_infi $ assume hj,
infi_le_of_le j $ infi_le_of_le hj $ infi_le_of_le i $ infi_le _ hi)
(le_infi $ assume i, le_infi $ assume hi, le_infi $ assume j, le_infi $ assume hj,
infi_le_of_le j $ infi_le_of_le hj $ infi_le_of_le i $ infi_le _ hi)
lemma lift_assoc {h : set β → filter γ} (hg : monotone g) :
(f.lift g).lift h = f.lift (λs, (g s).lift h) :=
le_antisymm
(le_infi $ assume s, le_infi $ assume hs, le_infi $ assume t, le_infi $ assume ht,
infi_le_of_le t $ infi_le _ $ (mem_lift_sets hg).mpr ⟨_, hs, ht⟩)
(le_infi $ assume t, le_infi $ assume ht,
let ⟨s, hs, h'⟩ := (mem_lift_sets hg).mp ht in
infi_le_of_le s $ infi_le_of_le hs $ infi_le_of_le t $ infi_le _ h')
lemma lift_lift_same_le_lift {g : set α → set α → filter β} :
f.lift (λs, f.lift (g s)) ≤ f.lift (λs, g s s) :=
le_infi $ assume s, le_infi $ assume hs, infi_le_of_le s $ infi_le_of_le hs $ infi_le_of_le s $ infi_le _ hs
lemma lift_lift_same_eq_lift {g : set α → set α → filter β}
(hg₁ : ∀s, monotone (λt, g s t)) (hg₂ : ∀t, monotone (λs, g s t)):
f.lift (λs, f.lift (g s)) = f.lift (λs, g s s) :=
le_antisymm
lift_lift_same_le_lift
(le_infi $ assume s, le_infi $ assume hs, le_infi $ assume t, le_infi $ assume ht,
infi_le_of_le (s ∩ t) $
infi_le_of_le (inter_mem_sets hs ht) $
calc g (s ∩ t) (s ∩ t) ≤ g s (s ∩ t) : hg₂ (s ∩ t) (inter_subset_left _ _)
... ≤ g s t : hg₁ s (inter_subset_right _ _))
lemma lift_principal {s : set α} (hg : monotone g) :
(principal s).lift g = g s :=
le_antisymm
(infi_le_of_le s $ infi_le _ $ subset.refl _)
(le_infi $ assume t, le_infi $ assume hi, hg hi)
theorem monotone_lift [preorder γ] {f : γ → filter α} {g : γ → set α → filter β}
(hf : monotone f) (hg : monotone g) : monotone (λc, (f c).lift (g c)) :=
assume a b h, lift_mono (hf h) (hg h)
lemma lift_neq_bot_iff (hm : monotone g) : (f.lift g ≠ ⊥) ↔ (∀s∈f.sets, g s ≠ ⊥) :=
classical.by_cases
(assume hn : nonempty β,
calc f.lift g ≠ ⊥ ↔ (⨅s : { s // s ∈ f.sets}, g s.val) ≠ ⊥ :
by simp only [filter.lift, infi_subtype, iff_self, ne.def]
... ↔ (∀s:{ s // s ∈ f.sets}, g s.val ≠ ⊥) :
infi_neq_bot_iff_of_directed hn
(assume ⟨a, ha⟩ ⟨b, hb⟩, ⟨⟨a ∩ b, inter_mem_sets ha hb⟩,
hm $ inter_subset_left _ _, hm $ inter_subset_right _ _⟩)
... ↔ (∀s∈f.sets, g s ≠ ⊥) : ⟨assume h s hs, h ⟨s, hs⟩, assume h ⟨s, hs⟩, h s hs⟩)
(assume hn : ¬ nonempty β,
have h₁ : f.lift g = ⊥, from filter_eq_bot_of_not_nonempty hn,
have h₂ : ∀s, g s = ⊥, from assume s, filter_eq_bot_of_not_nonempty hn,
calc (f.lift g ≠ ⊥) ↔ false : by simp only [h₁, iff_self, eq_self_iff_true, not_true, ne.def]
... ↔ (∀s∈f.sets, false) : ⟨false.elim, assume h, h univ univ_mem_sets⟩
... ↔ (∀s∈f.sets, g s ≠ ⊥) : by simp only [h₂, iff_self, eq_self_iff_true, not_true, ne.def])
@[simp] lemma lift_const {f : filter α} {g : filter β} : f.lift (λx, g) = g :=
le_antisymm (lift_le univ_mem_sets $ le_refl g) (le_lift $ assume s hs, le_refl g)
@[simp] lemma lift_inf {f : filter α} {g h : set α → filter β} :
f.lift (λx, g x ⊓ h x) = f.lift g ⊓ f.lift h :=
by simp only [filter.lift, infi_inf_eq, eq_self_iff_true]
@[simp] lemma lift_principal2 {f : filter α} : f.lift principal = f :=
le_antisymm
(assume s hs, mem_lift hs (mem_principal_self s))
(le_infi $ assume s, le_infi $ assume hs, by simp only [hs, le_principal_iff])
lemma lift_infi {f : ι → filter α} {g : set α → filter β}
(hι : nonempty ι) (hg : ∀{s t}, g s ⊓ g t = g (s ∩ t)) : (infi f).lift g = (⨅i, (f i).lift g) :=
le_antisymm
(le_infi $ assume i, lift_mono (infi_le _ _) (le_refl _))
(assume s,
have g_mono : monotone g,
from assume s t h, le_of_inf_eq $ eq.trans hg $ congr_arg g $ inter_eq_self_of_subset_left h,
have ∀t∈(infi f).sets, (⨅ (i : ι), filter.lift (f i) g) ≤ g t,
from assume t ht, infi_sets_induct ht
(let ⟨i⟩ := hι in infi_le_of_le i $ infi_le_of_le univ $ infi_le _ univ_mem_sets)
(assume i s₁ s₂ hs₁ hs₂,
@hg s₁ s₂ ▸ le_inf (infi_le_of_le i $ infi_le_of_le s₁ $ infi_le _ hs₁) hs₂)
(assume s₁ s₂ hs₁ hs₂, le_trans hs₂ $ g_mono hs₁),
begin
rw [lift_sets_eq g_mono],
simp only [mem_Union, exists_imp_distrib],
exact assume t ht hs, this t ht hs
end)
end lift
section lift'
/-- Specialize `lift` to functions `set α → set β`. This can be viewed as a generalization of `map`.
This is essentially a push-forward along a function mapping each set to a set. -/
protected def lift' (f : filter α) (h : set α → set β) :=
f.lift (principal ∘ h)
variables {f f₁ f₂ : filter α} {h h₁ h₂ : set α → set β}
lemma mem_lift' {t : set α} (ht : t ∈ f.sets) : h t ∈ (f.lift' h).sets :=
le_principal_iff.mp $ show f.lift' h ≤ principal (h t),
from infi_le_of_le t $ infi_le_of_le ht $ le_refl _
lemma mem_lift'_sets (hh : monotone h) {s : set β} : s ∈ (f.lift' h).sets ↔ (∃t∈f.sets, h t ⊆ s) :=
have monotone (principal ∘ h),
from assume a b h, principal_mono.mpr $ hh h,
by simp only [filter.lift', @mem_lift_sets α β f _ this, exists_prop, iff_self, mem_principal_sets, function.comp_app]
lemma lift'_le {f : filter α} {g : set α → set β} {h : filter β} {s : set α}
(hs : s ∈ f.sets) (hg : principal (g s) ≤ h) : f.lift' g ≤ h :=
lift_le hs hg
lemma lift'_mono (hf : f₁ ≤ f₂) (hh : h₁ ≤ h₂) : f₁.lift' h₁ ≤ f₂.lift' h₂ :=
lift_mono hf $ assume s, principal_mono.mpr $ hh s
lemma lift'_mono' (hh : ∀s∈f.sets, h₁ s ⊆ h₂ s) : f.lift' h₁ ≤ f.lift' h₂ :=
infi_le_infi $ assume s, infi_le_infi $ assume hs, principal_mono.mpr $ hh s hs
lemma lift'_cong (hh : ∀s∈f.sets, h₁ s = h₂ s) : f.lift' h₁ = f.lift' h₂ :=
le_antisymm (lift'_mono' $ assume s hs, le_of_eq $ hh s hs) (lift'_mono' $ assume s hs, le_of_eq $ (hh s hs).symm)
lemma map_lift'_eq {m : β → γ} (hh : monotone h) : map m (f.lift' h) = f.lift' (image m ∘ h) :=
calc map m (f.lift' h) = f.lift (map m ∘ principal ∘ h) :
map_lift_eq $ monotone_comp hh monotone_principal
... = f.lift' (image m ∘ h) : by simp only [(∘), filter.lift', map_principal, eq_self_iff_true]
lemma map_lift'_eq2 {g : set β → set γ} {m : α → β} (hg : monotone g) :
(map m f).lift' g = f.lift' (g ∘ image m) :=
map_lift_eq2 $ monotone_comp hg monotone_principal
theorem comap_lift'_eq {m : γ → β} (hh : monotone h) :
comap m (f.lift' h) = f.lift' (preimage m ∘ h) :=
calc comap m (f.lift' h) = f.lift (comap m ∘ principal ∘ h) :
comap_lift_eq $ monotone_comp hh monotone_principal
... = f.lift' (preimage m ∘ h) : by simp only [(∘), filter.lift', comap_principal, eq_self_iff_true]
theorem comap_lift'_eq2 {m : β → α} {g : set β → set γ} (hg : monotone g) :
(comap m f).lift' g = f.lift' (g ∘ preimage m) :=
comap_lift_eq2 $ monotone_comp hg monotone_principal
lemma lift'_principal {s : set α} (hh : monotone h) :
(principal s).lift' h = principal (h s) :=
lift_principal $ monotone_comp hh monotone_principal
lemma principal_le_lift' {t : set β} (hh : ∀s∈f.sets, t ⊆ h s) :
principal t ≤ f.lift' h :=
le_infi $ assume s, le_infi $ assume hs, principal_mono.mpr (hh s hs)
theorem monotone_lift' [preorder γ] {f : γ → filter α} {g : γ → set α → set β}
(hf : monotone f) (hg : monotone g) : monotone (λc, (f c).lift' (g c)) :=
assume a b h, lift'_mono (hf h) (hg h)
lemma lift_lift'_assoc {g : set α → set β} {h : set β → filter γ}
(hg : monotone g) (hh : monotone h) :
(f.lift' g).lift h = f.lift (λs, h (g s)) :=
calc (f.lift' g).lift h = f.lift (λs, (principal (g s)).lift h) :
lift_assoc (monotone_comp hg monotone_principal)
... = f.lift (λs, h (g s)) : by simp only [lift_principal, hh, eq_self_iff_true]
lemma lift'_lift'_assoc {g : set α → set β} {h : set β → set γ}
(hg : monotone g) (hh : monotone h) :
(f.lift' g).lift' h = f.lift' (λs, h (g s)) :=
lift_lift'_assoc hg (monotone_comp hh monotone_principal)
lemma lift'_lift_assoc {g : set α → filter β} {h : set β → set γ}
(hg : monotone g) : (f.lift g).lift' h = f.lift (λs, (g s).lift' h) :=
lift_assoc hg
lemma lift_lift'_same_le_lift' {g : set α → set α → set β} :
f.lift (λs, f.lift' (g s)) ≤ f.lift' (λs, g s s) :=
lift_lift_same_le_lift
lemma lift_lift'_same_eq_lift' {g : set α → set α → set β}
(hg₁ : ∀s, monotone (λt, g s t)) (hg₂ : ∀t, monotone (λs, g s t)):
f.lift (λs, f.lift' (g s)) = f.lift' (λs, g s s) :=
lift_lift_same_eq_lift
(assume s, monotone_comp monotone_id $ monotone_comp (hg₁ s) monotone_principal)
(assume t, monotone_comp (hg₂ t) monotone_principal)
lemma lift'_inf_principal_eq {h : set α → set β} {s : set β} :
f.lift' h ⊓ principal s = f.lift' (λt, h t ∩ s) :=
le_antisymm
(le_infi $ assume t, le_infi $ assume ht,
calc filter.lift' f h ⊓ principal s ≤ principal (h t) ⊓ principal s :
inf_le_inf (infi_le_of_le t $ infi_le _ ht) (le_refl _)
... = _ : by simp only [principal_eq_iff_eq, inf_principal, eq_self_iff_true, function.comp_app])
(le_inf
(le_infi $ assume t, le_infi $ assume ht,
infi_le_of_le t $ infi_le_of_le ht $
by simp only [le_principal_iff, inter_subset_left, mem_principal_sets, function.comp_app]; exact inter_subset_right _ _)
(infi_le_of_le univ $ infi_le_of_le univ_mem_sets $
by simp only [le_principal_iff, inter_subset_right, mem_principal_sets, function.comp_app]; exact inter_subset_left _ _))
lemma lift'_neq_bot_iff (hh : monotone h) : (f.lift' h ≠ ⊥) ↔ (∀s∈f.sets, h s ≠ ∅) :=
calc (f.lift' h ≠ ⊥) ↔ (∀s∈f.sets, principal (h s) ≠ ⊥) :
lift_neq_bot_iff (monotone_comp hh monotone_principal)
... ↔ (∀s∈f.sets, h s ≠ ∅) : by simp only [principal_eq_bot_iff, iff_self, ne.def, principal_eq_bot_iff]
@[simp] lemma lift'_id {f : filter α} : f.lift' id = f :=
lift_principal2
lemma le_lift' {f : filter α} {h : set α → set β} {g : filter β}
(h_le : ∀s∈f.sets, h s ∈ g.sets) : g ≤ f.lift' h :=
le_infi $ assume s, le_infi $ assume hs, by simp only [h_le, le_principal_iff, function.comp_app]; exact h_le s hs
lemma lift_infi' {f : ι → filter α} {g : set α → filter β}
(hι : nonempty ι) (hf : directed (≥) f) (hg : monotone g) : (infi f).lift g = (⨅i, (f i).lift g) :=
le_antisymm
(le_infi $ assume i, lift_mono (infi_le _ _) (le_refl _))
(assume s,
begin
rw [lift_sets_eq hg],
simp only [mem_Union, exists_imp_distrib, infi_sets_eq hf hι],
exact assume t i ht hs, mem_infi_sets i $ mem_lift ht hs
end)
lemma lift'_infi {f : ι → filter α} {g : set α → set β}
(hι : nonempty ι) (hg : ∀{s t}, g s ∩ g t = g (s ∩ t)) : (infi f).lift' g = (⨅i, (f i).lift' g) :=
lift_infi hι $ by simp only [principal_eq_iff_eq, inf_principal, function.comp_app]; apply assume s t, hg
theorem comap_eq_lift' {f : filter β} {m : α → β} :
comap m f = f.lift' (preimage m) :=
filter_eq $ set.ext $ by simp only [mem_lift'_sets, monotone_preimage, comap, exists_prop, forall_const, iff_self, mem_set_of_eq]
end lift'
section prod
variables {f : filter α}
lemma prod_def {f : filter α} {g : filter β} : f.prod g = (f.lift $ λs, g.lift' $ set.prod s) :=
have ∀(s:set α) (t : set β),
principal (set.prod s t) = (principal s).comap prod.fst ⊓ (principal t).comap prod.snd,
by simp only [principal_eq_iff_eq, comap_principal, inf_principal]; intros; refl,
begin
simp only [filter.lift', function.comp, this, -comap_principal, lift_inf, lift_const, lift_inf],
rw [← comap_lift_eq monotone_principal, ← comap_lift_eq monotone_principal],
simp only [filter.prod, lift_principal2, eq_self_iff_true]
end
lemma prod_same_eq : filter.prod f f = f.lift' (λt, set.prod t t) :=
by rw [prod_def];
from lift_lift'_same_eq_lift'
(assume s, set.monotone_prod monotone_const monotone_id)
(assume t, set.monotone_prod monotone_id monotone_const)
lemma mem_prod_same_iff {s : set (α×α)} :
s ∈ (filter.prod f f).sets ↔ (∃t∈f.sets, set.prod t t ⊆ s) :=
by rw [prod_same_eq, mem_lift'_sets]; exact set.monotone_prod monotone_id monotone_id
lemma tendsto_prod_self_iff {f : α × α → β} {x : filter α} {y : filter β} :
filter.tendsto f (filter.prod x x) y ↔
∀ W ∈ y.sets, ∃ U ∈ x.sets, ∀ (x x' : α), x ∈ U → x' ∈ U → f (x, x') ∈ W :=
by simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self]
variables {α₁ : Type*} {α₂ : Type*} {β₁ : Type*} {β₂ : Type*}
lemma prod_lift_lift
{f₁ : filter α₁} {f₂ : filter α₂} {g₁ : set α₁ → filter β₁} {g₂ : set α₂ → filter β₂}
(hg₁ : monotone g₁) (hg₂ : monotone g₂) :
filter.prod (f₁.lift g₁) (f₂.lift g₂) = f₁.lift (λs, f₂.lift (λt, filter.prod (g₁ s) (g₂ t))) :=
begin
simp only [prod_def],
rw [lift_assoc],
apply congr_arg, funext x,
rw [lift_comm],
apply congr_arg, funext y,
rw [lift'_lift_assoc],
exact hg₂,
exact hg₁
end
lemma prod_lift'_lift'
{f₁ : filter α₁} {f₂ : filter α₂} {g₁ : set α₁ → set β₁} {g₂ : set α₂ → set β₂}
(hg₁ : monotone g₁) (hg₂ : monotone g₂) :
filter.prod (f₁.lift' g₁) (f₂.lift' g₂) = f₁.lift (λs, f₂.lift' (λt, set.prod (g₁ s) (g₂ t))) :=
begin
rw [prod_def, lift_lift'_assoc],
apply congr_arg, funext x,
rw [lift'_lift'_assoc],
exact hg₂,
exact set.monotone_prod monotone_const monotone_id,
exact hg₁,
exact (monotone_lift' monotone_const $ monotone_lam $
assume x, set.monotone_prod monotone_id monotone_const)
end
end prod
end filter
|
04f01b4d6df013d95ccaf4b3fa4834e33113218d
|
54f4ad05b219d444b709f56c2f619dd87d14ec29
|
/test.lean
|
4a3d07c6678176bfa43a4c34f99482345fb7a4ef
|
[] |
no_license
|
yizhou7/learning-lean
|
8efcf838c7276e235a81bd291f467fa43ce56e0a
|
91fb366c624df6e56e19555b2e482ce767cd8224
|
refs/heads/master
| 1,675,649,087,737
| 1,609,022,281,000
| 1,609,022,281,000
| 272,072,779
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,912
|
lean
|
example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
begin
apply iff.intro,
intro h,
apply or.elim (and.right h),
intro hq,
apply or.inl,
apply and.intro,
apply and.left h,
exact hq,
intro hr,
apply or.inr,
apply and.intro,
apply and.left h,
exact hr,
intro h,
apply or.elim h,
intro a,
apply and.intro,
apply and.elim_left a,
apply or.intro_left,
apply and.elim_right a,
intro a,
apply and.intro,
apply and.elim_left a,
apply or.intro_right,
apply and.elim_right a,
end
example : ∀ a b c : ℕ, a = b → a = c → c = b :=
begin
intros,
transitivity a,
symmetry,
assumption,
assumption,
end
example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
begin
apply iff.intro,
intro h,
cases h with hp hqr,
cases hqr with hq hr,
left, constructor,
assumption, assumption,
right, constructor,
assumption, assumption,
intro h,
cases h with hpq hpr,
cases hpq with hp hq,
constructor, assumption,
left, assumption,
cases hpr with hp hr,
constructor,assumption,
right, assumption,
end
example (p q : ℕ → Prop) : (∃ x, p x) → ∃ x, p x ∨ q x :=
begin
intro h,
cases h with x px,
constructor, left, exact px,
end
example (p q : ℕ → Prop) :
(∃ x, p x ∧ q x) → ∃ x, q x ∧ p x :=
begin
intro,
cases a with x hx,
cases hx,
existsi x, constructor, assumption, assumption,
end
universes u v
def swap_pair {α : Type u} {β : Type v} : α × β → β × α :=
begin
intro p,
cases p,
constructor, assumption, assumption,
end
example (x y : nat) (h : y = x + 7) : 2 * y = 2 * (x + 7) :=
begin
rewrite h,
end
|
f7c4e5abb59c79cb7936cf2ea050913c3be8b7ef
|
3f48345ac9bbaa421714efc9872a0409379bb4ae
|
/src/examples/kripke_structure/Kripke_Structure.lean
|
2e2cb0570297624f4d860c5284a88948c45fa949
|
[] |
no_license
|
QaisHamarneh/Coalgebra-in-Lean
|
b4318ee6d83780e5c734eb78fed98b1fe8016f7e
|
bd0452df98bc64b608e5dfd7babc42c301bb6a46
|
refs/heads/master
| 1,663,371,200,241
| 1,661,004,695,000
| 1,661,004,695,000
| 209,798,828
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,861
|
lean
|
import coalgebra.Coalgebra
namespace Kripke_Structure
universes u v w
variable (Properties : Type u) -- Elementry properties
structure Kripke (Φ : Type u): Type (max u (v+1)) :=
(State : Type v)
(T : State → set State)
(v : State → set Φ)
instance Kripke_to_State : has_coe_to_sort (Kripke Properties):=
⟨Type v, λ K, K.State⟩
variables {K K1 K2 : Kripke.{u v} Properties}
--notation s ` ⟹ ` t := (s , t) ∈ Kripke.T
inductive φ
| prop : Properties → φ
| TRUE {} : φ
| FALSE {} : φ
| box {} : φ → φ
| diamond {} : φ → φ
| and {} : φ → φ → φ
| or {} : φ → φ → φ
| not {} : φ → φ
prefix ` # ` :100 := φ.prop
prefix ` □ ` :10 := φ.box
prefix ` ◇ ` :20 := φ.diamond
prefix ` ¬ ` := φ.not
notation p1 ` ∧ ` p2 := φ.and p1 p2
notation p1 ` ∨ ` p2 := φ.or p1 p2
open φ
def satisfy (s : K.State):
K.State → φ Properties → Prop
| s (#p) := p ∈ K.v s
| s TRUE := true
| s FALSE := false
| s □ phi := ∀ t :K.State, t ∈ K.T s → satisfy t phi
| s ◇ phi := ∃ t :K.State, t ∈ K.T s → satisfy t phi
| s (p1 ∧ p2) := satisfy s p1 ∧ satisfy s p2
| s (p1 ∨ p2) := satisfy s p1 ∨ satisfy s p2
| s ¬ phi := ¬ satisfy s phi
notation s ` ⊨ ` phi := satisfy s phi
def is_homomorphism {A B : Kripke Properties} (σ : A → B) : Prop :=
(∀ a₁ a₂ :A , a₂ ∈ A.T a₁ → (σ a₂) ∈ B.T (σ a₁)) ∧
(∀ (a : A) (b : B) , b ∈ B.T (σ a) →
∃ a': A , a' ∈ A.T a ∧ σ a' = b) ∧
(∀ a : A , A.v a = B.v (σ a))
def is_bisimulation
(R : set (K1 × K2)) : Prop :=
∀ (s1 : K1) (s2 : K2),
(s1 , s2) ∈ R →
(
K1.v s1 = K2.v s2
∧
∀ t1 : K1, K1.T s1 t1 →
∃ t2 :K2, K2.T s2 t2 ∧
(t1 , t2) ∈ R
∧
∀ t2 : K2, K2.T s2 t2 →
∃ t1 :K1, K1.T s1 t1 ∧
(t1 , t2) ∈ R
)
def is_bisimilar {K : Kripke Properties}
(B :set (K × K)) : Prop :=
∀ R : set (K × K),
@is_bisimulation Properties K K
R → R ⊆ B
notation s1 ` ~ ` s2 :=
∃ B : set (Kripke × Kripke),
is_bisimilar B ∧ (s1 , s2) ∈ B
end Kripke_Structure
open Kripke_Structure
open Kripke_Structure.Kripke
open Kripke_Structure.φ
def Kr : Kripke char :=
{
State := nat,
T := λ a b, b = a + 1,
v := (λ c , {'a'})
}
|
0b7f1a685973f1d92838dd0a312a4010a9f564d6
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/tests/lean/run/reserve.lean
|
143a2b57a09dca2136f25a5258220b98fe080d77
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 177
|
lean
|
reserve infix `=?=`:50
reserve infixr `&&&`:25
notation a `=?=` b := eq a b
notation a `&&&` b := and a b
set_option pp.notation false
check λ a b : num, a =?= b &&& b =?= a
|
a05bbc52641fe181b59dee405e8665aaed6282dd
|
9cb9db9d79fad57d80ca53543dc07efb7c4f3838
|
/src/facts/nnreal.lean
|
f34b2997d21177ffea69ff9b4174ea2b3c0d9508
|
[] |
no_license
|
mr-infty/lean-liquid
|
3ff89d1f66244b434654c59bdbd6b77cb7de0109
|
a8db559073d2101173775ccbd85729d3a4f1ed4d
|
refs/heads/master
| 1,678,465,145,334
| 1,614,565,310,000
| 1,614,565,310,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,752
|
lean
|
import data.real.nnreal
open_locale nnreal
namespace nnreal
variables (r' k c c₁ c₂ c₃ : ℝ≥0)
instance fact_le_mul_of_one_le_left [hk : fact (1 ≤ k)] [hc : fact (c₁ ≤ c₂)] :
fact (c₁ ≤ k * c₂) :=
calc c₁ = 1 * c₁ : (one_mul _).symm
... ≤ k * c₂ : mul_le_mul' hk hc
instance fact_mul_le_of_le_one_left [hk : fact (k ≤ 1)] [hc : fact (c₁ ≤ c₂)] :
fact (k * c₁ ≤ c₂) :=
calc k * c₁ ≤ 1 * c₂ : mul_le_mul' hk hc
... = c₂ : one_mul _
instance fact_le_refl : fact (c ≤ c) := le_rfl
instance fact_le_subst_right [fact (c₁ ≤ c₂)] [h : fact (c₂ = c₃)]: fact (c₁ ≤ c₃) :=
by rwa ← show c₂ = c₃, from h
instance fact_le_subst_right' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₂)]: fact (c₁ ≤ c₃) :=
by rwa ← show c₂ = c₃, from h.symm
instance fact_le_subst_left [fact (c₁ ≤ c₂)] [h : fact (c₁ = c₃)]: fact (c₃ ≤ c₂) :=
by rwa ← show c₁ = c₃, from h
instance fact_le_subst_left' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₁)]: fact (c₃ ≤ c₂) :=
by rwa ← show c₁ = c₃, from h.symm
instance fact_inv_mul_le [h : fact (0 < r')] : fact (r'⁻¹ * (r' * c) ≤ c) :=
le_of_eq $ inv_mul_cancel_left' (ne_of_gt h) _
instance fact_mul_le_mul_left [fact (c₁ ≤ c₂)] : fact (r' * c₁ ≤ r' * c₂) := mul_le_mul' le_rfl ‹_›
instance fact_mul_le_mul_right [fact (c₁ ≤ c₂)] : fact (c₁ * r' ≤ c₂ * r') := mul_le_mul' ‹_› le_rfl
instance fact_le_inv_mul_self [h1 : fact (0 < r')] [h2 : fact (r' ≤ 1)] : fact (c ≤ r'⁻¹ * c) :=
begin
rw mul_comm,
apply le_mul_inv_of_mul_le (ne_of_gt h1),
nth_rewrite 1 ← mul_one c,
exact mul_le_mul (le_of_eq rfl) h2 (le_of_lt h1) zero_le',
end
instance fact_le_of_add_one_le (q : ℤ) (m : ℕ) [h : fact (q + 1 ≤ m)] : fact (q ≤ m) :=
(int.le_add_one le_rfl).trans h
instance fact_le_max_left (a b c : ℝ≥0) [h : fact (a ≤ b)] : fact (a ≤ max b c) :=
le_trans h $ le_max_left _ _
instance fact_one_le_mul_self (a : ℝ≥0) [h : fact (1 ≤ a)] : fact (1 ≤ a * a) :=
calc (1 : ℝ≥0) = 1 * 1 : (mul_one 1).symm
... ≤ a * a : mul_le_mul' h h
instance one_le_add {a b : ℝ≥0} [ha : fact (1 ≤ a)] : fact (1 ≤ a + b) := le_trans ha $ by simp
instance one_le_add' {a b : ℝ≥0} [hb : fact (1 ≤ b)] : fact (1 ≤ a + b) := le_trans hb $ by simp
instance one_le_pow {n : ℕ} {a : ℝ≥0} [h : fact (1 ≤ a)] : fact (1 ≤ a^n) :=
begin
cases n,
{ simp [le_refl] },
{ rwa one_le_pow_iff,
apply nat.succ_ne_zero }
end
instance fact_le_mul_add : fact (c * c₁ + c * c₂ ≤ c * (c₁ + c₂)) :=
by { rw mul_add, exact le_rfl }
end nnreal
#lint- only unused_arguments def_lemma doc_blame
|
fc47887dbe543796ff4fee1e854052e68880d649
|
32025d5c2d6e33ad3b6dd8a3c91e1e838066a7f7
|
/stage0/src/Lean/Data/Format.lean
|
d990bf2800f4fb9e8f361faf3e634a7d04aa3f02
|
[
"Apache-2.0"
] |
permissive
|
walterhu1015/lean4
|
b2c71b688975177402758924eaa513475ed6ce72
|
2214d81e84646a905d0b20b032c89caf89c737ad
|
refs/heads/master
| 1,671,342,096,906
| 1,599,695,985,000
| 1,599,695,985,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,832
|
lean
|
/-
Copyright (c) 2018 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import Lean.Data.Options
universes u v
namespace Lean
inductive Format
| nil : Format
| line : Format
| text : String → Format
| nest (indent : Nat) : Format → Format
| compose (flattened : Bool) : Format → Format → Format
| choice : Format → Format → Format
namespace Format
@[export lean_format_append]
protected def append (a b : Format) : Format :=
compose false a b
instance : HasAppend Format := ⟨Format.append⟩
instance : HasCoe String Format := ⟨text⟩
instance : Inhabited Format := ⟨nil⟩
def join (xs : List Format) : Format :=
xs.foldl HasAppend.append ""
def isNil : Format → Bool
| nil => true
| _ => false
def flatten : Format → Format
| nil => nil
| line => text " "
| f@(text _) => f
| nest _ f => flatten f
| choice f _ => flatten f
| f@(compose true _ _) => f
| f@(compose false f₁ f₂) => compose true (flatten f₁) (flatten f₂)
@[export lean_format_group]
def group : Format → Format
| nil => nil
| f@(text _) => f
| f@(compose true _ _) => f
| f => choice (flatten f) f
structure SpaceResult :=
(found := false)
(exceeded := false)
(space := 0)
@[inline] private def merge (w : Nat) (r₁ : SpaceResult) (r₂ : Thunk SpaceResult) : SpaceResult :=
if r₁.exceeded || r₁.found then r₁
else
let y := r₂.get;
if y.exceeded || y.found then y
else
let newSpace := r₁.space + y.space;
{ space := newSpace, exceeded := newSpace > w }
def spaceUptoLine : Format → Nat → SpaceResult
| nil, w => {}
| line, w => { found := true }
| text s, w => { space := s.length, exceeded := s.length > w }
| compose _ f₁ f₂, w => merge w (spaceUptoLine f₁ w) (spaceUptoLine f₂ w)
| nest _ f, w => spaceUptoLine f w
| choice f₁ f₂, w => spaceUptoLine f₂ w
def spaceUptoLine' : List (Nat × Format) → Nat → SpaceResult
| [], w => {}
| p::ps, w => merge w (spaceUptoLine p.2 w) (spaceUptoLine' ps w)
partial def be : Nat → Nat → String → List (Nat × Format) → String
| w, k, out, [] => out
| w, k, out, (i, nil)::z => be w k out z
| w, k, out, (i, (compose _ f₁ f₂))::z => be w k out ((i, f₁)::(i, f₂)::z)
| w, k, out, (i, (nest n f))::z => be w k out ((i+n, f)::z)
| w, k, out, (i, text s)::z => be w (k + s.length) (out ++ s) z
| w, k, out, (i, line)::z => be w i ((out ++ "\n").pushn ' ' i) z
| w, k, out, (i, choice f₁ f₂)::z =>
let r := merge w (spaceUptoLine f₁ w) (spaceUptoLine' z w);
if r.exceeded then be w k out ((i, f₂)::z) else be w k out ((i, f₁)::z)
@[inline] def bracket (l : String) (f : Format) (r : String) : Format :=
group (nest l.length $ l ++ f ++ r)
@[inline] def paren (f : Format) : Format :=
bracket "(" f ")"
@[inline] def sbracket (f : Format) : Format :=
bracket "[" f "]"
def defIndent := 4
def defUnicode := true
def defWidth := 120
def getWidth (o : Options) : Nat := o.get `format.width defWidth
def getIndent (o : Options) : Nat := o.get `format.indent defIndent
def getUnicode (o : Options) : Bool := o.get `format.unicode defUnicode
@[init] def indentOption : IO Unit :=
registerOption `format.indent { defValue := defIndent, group := "format", descr := "indentation" }
@[init] def unicodeOption : IO Unit :=
registerOption `format.unicode { defValue := defUnicode, group := "format", descr := "unicode characters" }
@[init] def widthOption : IO Unit :=
registerOption `format.width { defValue := defWidth, group := "format", descr := "line width" }
@[export lean_format_pretty]
def prettyAux (f : Format) (w : Nat := defWidth) : String :=
be w 0 "" [(0, f)]
def pretty (f : Format) (o : Options := {}) : String :=
prettyAux f (getWidth o)
end Format
open Lean.Format
class HasFormat (α : Type u) :=
(format : α → Format)
export Lean.HasFormat (format)
def fmt {α : Type u} [HasFormat α] : α → Format :=
format
instance toStringToFormat {α : Type u} [HasToString α] : HasFormat α :=
⟨text ∘ toString⟩
-- note: must take precendence over the above instance to avoid premature formatting
instance formatHasFormat : HasFormat Format :=
⟨id⟩
instance stringHasFormat : HasFormat String := ⟨Format.text⟩
def Format.joinSep {α : Type u} [HasFormat α] : List α → Format → Format
| [], sep => nil
| [a], sep => format a
| a::as, sep => format a ++ sep ++ Format.joinSep as sep
def Format.prefixJoin {α : Type u} [HasFormat α] (pre : Format) : List α → Format
| [] => nil
| a::as => pre ++ format a ++ Format.prefixJoin as
def Format.joinSuffix {α : Type u} [HasFormat α] : List α → Format → Format
| [], suffix => nil
| a::as, suffix => format a ++ suffix ++ Format.joinSuffix as suffix
def List.format {α : Type u} [HasFormat α] : List α → Format
| [] => "[]"
| xs => sbracket $ Format.joinSep xs ("," ++ line)
instance listHasFormat {α : Type u} [HasFormat α] : HasFormat (List α) :=
⟨List.format⟩
instance arrayHasFormat {α : Type u} [HasFormat α] : HasFormat (Array α) :=
⟨fun a => "#" ++ fmt a.toList⟩
def Option.format {α : Type u} [HasFormat α] : Option α → Format
| none => "none"
| some a => "some " ++ fmt a
instance optionHasFormat {α : Type u} [HasFormat α] : HasFormat (Option α) :=
⟨Option.format⟩
instance prodHasFormat {α : Type u} {β : Type v} [HasFormat α] [HasFormat β] : HasFormat (Prod α β) :=
⟨fun ⟨a, b⟩ => paren $ format a ++ "," ++ line ++ format b⟩
def Format.joinArraySep {α : Type u} [HasFormat α] (a : Array α) (sep : Format) : Format :=
a.iterate nil (fun i a r => if i.val > 0 then r ++ sep ++ format a else r ++ format a)
instance natHasFormat : HasFormat Nat := ⟨fun n => toString n⟩
instance uint16HasFormat : HasFormat UInt16 := ⟨fun n => toString n⟩
instance uint32HasFormat : HasFormat UInt32 := ⟨fun n => toString n⟩
instance uint64HasFormat : HasFormat UInt64 := ⟨fun n => toString n⟩
instance usizeHasFormat : HasFormat USize := ⟨fun n => toString n⟩
instance nameHasFormat : HasFormat Name := ⟨fun n => n.toString⟩
protected def Format.repr : Format → Format
| nil => "Format.nil"
| line => "Format.line"
| text s => paren $ "Format.text" ++ line ++ repr s
| nest n f => paren $ "Format.nest" ++ line ++ repr n ++ line ++ Format.repr f
| compose b f₁ f₂ => paren $ "Format.compose " ++ repr b ++ line ++ Format.repr f₁ ++ line ++ Format.repr f₂
| choice f₁ f₂ => paren $ "Format.choice" ++ line ++ Format.repr f₁ ++ line ++ Format.repr f₂
instance formatHasToString : HasToString Format := ⟨Format.pretty⟩
instance : HasRepr Format := ⟨Format.pretty ∘ Format.repr⟩
def formatDataValue : DataValue → Format
| DataValue.ofString v => format (repr v)
| DataValue.ofBool v => format v
| DataValue.ofName v => "`" ++ format v
| DataValue.ofNat v => format v
| DataValue.ofInt v => format v
instance dataValueHasFormat : HasFormat DataValue := ⟨formatDataValue⟩
def formatEntry : Name × DataValue → Format
| (n, v) => format n ++ " := " ++ format v
instance entryHasFormat : HasFormat (Name × DataValue) := ⟨formatEntry⟩
def formatKVMap (m : KVMap) : Format :=
sbracket (Format.joinSep m.entries ", ")
instance kvMapHasFormat : HasFormat KVMap := ⟨formatKVMap⟩
end Lean
def String.toFormat (s : String) : Lean.Format :=
Lean.Format.joinSep (s.splitOn "\n") Lean.Format.line
|
27a89f78ceece03e7444cc8c49f0cbff3eb2168e
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/implicit_after_auto_param_bug.lean
|
58462b60a463fe1abdf6ca703e40c94729aef189
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 670
|
lean
|
meta def default_f_lt := `[apply has_lt.lt]
def f (α : Type) (lt : α → α → Prop . default_f_lt) [decidable_rel lt] : Type :=
α
example : id (f nat) = nat :=
rfl
example : f nat = nat :=
rfl
def mk {α : Type} (a : α) (lt : α → α → Prop . default_f_lt) [decidable_rel lt] : f α lt :=
a
def f.to_val {α : Type} {lt : α → α → Prop} {h : decidable_rel lt} (v : @f α lt h) : α :=
v
instance repr_f (α : Type) (lt : α → α → Prop) (d : decidable_rel lt) [has_repr α] : has_repr (@f α lt d) :=
⟨λ a : α, repr a⟩
#check f nat
#check id (f nat)
#check mk 1
#check (mk 1).to_val
#eval f.to_val (mk 1)
#eval mk 1
#eval id (mk 1)
|
e7df166474bd87349408955ba819a892d2620870
|
aa5a655c05e5359a70646b7154e7cac59f0b4132
|
/stage0/src/Init.lean
|
8e850e3eb096668175009fb36ac6c12173c58be5
|
[
"Apache-2.0"
] |
permissive
|
lambdaxymox/lean4
|
ae943c960a42247e06eff25c35338268d07454cb
|
278d47c77270664ef29715faab467feac8a0f446
|
refs/heads/master
| 1,677,891,867,340
| 1,612,500,005,000
| 1,612,500,005,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 423
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import Init.Prelude
import Init.Notation
import Init.Core
import Init.Control
import Init.Data.Basic
import Init.WF
import Init.Data
import Init.System
import Init.Util
import Init.Fix
import Init.Meta
import Init.NotationExtra
import Init.SimpLemmas
|
2005388b0deb1eac1e6882da25fc2a198dd79df2
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/set_theory/surreal/basic.lean
|
fe4a17e045c3c2712f9f12d91ab1463543a7569e
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 14,149
|
lean
|
/-
Copyright (c) 2019 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Scott Morrison
-/
import set_theory.game
/-!
# Surreal numbers
The basic theory of surreal numbers, built on top of the theory of combinatorial (pre-)games.
A pregame is `numeric` if all the Left options are strictly smaller than all the Right options, and
all those options are themselves numeric. In terms of combinatorial games, the numeric games have
"frozen"; you can only make your position worse by playing, and Left is some definite "number" of
moves ahead (or behind) Right.
A surreal number is an equivalence class of numeric pregames.
In fact, the surreals form a complete ordered field, containing a copy of the reals (and much else
besides!) but we do not yet have a complete development.
## Order properties
Surreal numbers inherit the relations `≤` and `<` from games, and these relations satisfy the axioms
of a partial order (recall that `x < y ↔ x ≤ y ∧ ¬ y ≤ x` did not hold for games).
## Algebraic operations
We show that the surreals form a linear ordered commutative group.
One can also map all the ordinals into the surreals!
### Multiplication of surreal numbers
The definition of multiplication for surreal numbers is surprisingly difficult and is currently
missing in the library. A sample proof can be found in Theorem 3.8 in the second reference below.
The difficulty lies in the length of the proof and the number of theorems that need to proven
simultaneously. This will make for a fun and challenging project.
## References
* [Conway, *On numbers and games*][conway2001]
* [Schleicher, Stoll, *An introduction to Conway's games and numbers*][schleicher_stoll]
-/
universes u
local infix ` ≈ ` := pgame.equiv
namespace pgame
/-- A pre-game is numeric if everything in the L set is less than everything in the R set,
and all the elements of L and R are also numeric. -/
def numeric : pgame → Prop
| ⟨l, r, L, R⟩ :=
(∀ i j, L i < R j) ∧ (∀ i, numeric (L i)) ∧ (∀ i, numeric (R i))
lemma numeric.move_left {x : pgame} (o : numeric x) (i : x.left_moves) :
numeric (x.move_left i) :=
begin
cases x with xl xr xL xR,
exact o.2.1 i,
end
lemma numeric.move_right {x : pgame} (o : numeric x) (j : x.right_moves) :
numeric (x.move_right j) :=
begin
cases x with xl xr xL xR,
exact o.2.2 j,
end
@[elab_as_eliminator]
theorem numeric_rec {C : pgame → Prop}
(H : ∀ l r (L : l → pgame) (R : r → pgame),
(∀ i j, L i < R j) → (∀ i, numeric (L i)) → (∀ i, numeric (R i)) →
(∀ i, C (L i)) → (∀ i, C (R i)) → C ⟨l, r, L, R⟩) :
∀ x, numeric x → C x
| ⟨l, r, L, R⟩ ⟨h, hl, hr⟩ :=
H _ _ _ _ h hl hr (λ i, numeric_rec _ (hl i)) (λ i, numeric_rec _ (hr i))
theorem lt_asymm {x y : pgame} (ox : numeric x) (oy : numeric y) : x < y → ¬ y < x :=
begin
refine numeric_rec (λ xl xr xL xR hx oxl oxr IHxl IHxr, _) x ox y oy,
refine numeric_rec (λ yl yr yL yR hy oyl oyr IHyl IHyr, _),
rw [mk_lt_mk, mk_lt_mk], rintro (⟨i, h₁⟩ | ⟨j, h₁⟩) (⟨i, h₂⟩ | ⟨j, h₂⟩),
{ exact IHxl _ _ (oyl _) (lt_of_le_mk h₁) (lt_of_le_mk h₂) },
{ exact not_lt.2 (le_trans h₂ h₁) (hy _ _) },
{ exact not_lt.2 (le_trans h₁ h₂) (hx _ _) },
{ exact IHxr _ _ (oyr _) (lt_of_mk_le h₁) (lt_of_mk_le h₂) },
end
theorem le_of_lt {x y : pgame} (ox : numeric x) (oy : numeric y) (h : x < y) : x ≤ y :=
not_lt.1 (lt_asymm ox oy h)
/-- On numeric pre-games, `<` and `≤` satisfy the axioms of a partial order (even though they
don't on all pre-games). -/
theorem lt_iff_le_not_le {x y : pgame} (ox : numeric x) (oy : numeric y) :
x < y ↔ x ≤ y ∧ ¬ y ≤ x :=
⟨λ h, ⟨le_of_lt ox oy h, not_le.2 h⟩, λ h, not_le.1 h.2⟩
theorem numeric_zero : numeric 0 :=
⟨by rintros ⟨⟩ ⟨⟩, ⟨by rintros ⟨⟩, by rintros ⟨⟩⟩⟩
theorem numeric_one : numeric 1 :=
⟨by rintros ⟨⟩ ⟨⟩, ⟨λ x, numeric_zero, by rintros ⟨⟩⟩⟩
theorem numeric_neg : Π {x : pgame} (o : numeric x), numeric (-x)
| ⟨l, r, L, R⟩ o :=
⟨λ j i, lt_iff_neg_gt.1 (o.1 i j),
⟨λ j, numeric_neg (o.2.2 j), λ i, numeric_neg (o.2.1 i)⟩⟩
theorem numeric.move_left_lt {x : pgame.{u}} (o : numeric x) (i : x.left_moves) :
x.move_left i < x :=
begin
rw lt_def_le,
left,
use i,
end
theorem numeric.move_left_le {x : pgame} (o : numeric x) (i : x.left_moves) :
x.move_left i ≤ x :=
le_of_lt (o.move_left i) o (o.move_left_lt i)
theorem numeric.lt_move_right {x : pgame} (o : numeric x) (j : x.right_moves) :
x < x.move_right j :=
begin
rw lt_def_le,
right,
use j,
end
theorem numeric.le_move_right {x : pgame} (o : numeric x) (j : x.right_moves) :
x ≤ x.move_right j :=
le_of_lt o (o.move_right j) (o.lt_move_right j)
theorem add_lt_add
{w x y z : pgame.{u}} (ow : numeric w) (ox : numeric x) (oy : numeric y) (oz : numeric z)
(hwx : w < x) (hyz : y < z) : w + y < x + z :=
begin
rw lt_def_le at *,
rcases hwx with ⟨ix, hix⟩|⟨jw, hjw⟩;
rcases hyz with ⟨iz, hiz⟩|⟨jy, hjy⟩,
{ left,
use (left_moves_add x z).symm (sum.inl ix),
simp only [add_move_left_inl],
calc w + y ≤ move_left x ix + y : add_le_add_right hix
... ≤ move_left x ix + move_left z iz : add_le_add_left hiz
... ≤ move_left x ix + z : add_le_add_left (oz.move_left_le iz) },
{ left,
use (left_moves_add x z).symm (sum.inl ix),
simp only [add_move_left_inl],
calc w + y ≤ move_left x ix + y : add_le_add_right hix
... ≤ move_left x ix + move_right y jy : add_le_add_left (oy.le_move_right jy)
... ≤ move_left x ix + z : add_le_add_left hjy },
{ right,
use (right_moves_add w y).symm (sum.inl jw),
simp only [add_move_right_inl],
calc move_right w jw + y ≤ x + y : add_le_add_right hjw
... ≤ x + move_left z iz : add_le_add_left hiz
... ≤ x + z : add_le_add_left (oz.move_left_le iz), },
{ right,
use (right_moves_add w y).symm (sum.inl jw),
simp only [add_move_right_inl],
calc move_right w jw + y ≤ x + y : add_le_add_right hjw
... ≤ x + move_right y jy : add_le_add_left (oy.le_move_right jy)
... ≤ x + z : add_le_add_left hjy, },
end
theorem numeric_add : Π {x y : pgame} (ox : numeric x) (oy : numeric y), numeric (x + y)
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ox oy :=
⟨begin
rintros (ix|iy) (jx|jy),
{ show xL ix + ⟨yl, yr, yL, yR⟩ < xR jx + ⟨yl, yr, yL, yR⟩,
exact add_lt_add_right (ox.1 ix jx), },
{ show xL ix + ⟨yl, yr, yL, yR⟩ < ⟨xl, xr, xL, xR⟩ + yR jy,
apply add_lt_add (ox.move_left ix) ox oy (oy.move_right jy),
apply ox.move_left_lt,
apply oy.lt_move_right },
{ -- show ⟨xl, xr, xL, xR⟩ + yL iy < xR jx + ⟨yl, yr, yL, yR⟩, -- fails?
apply add_lt_add ox (ox.move_right jx) (oy.move_left iy) oy,
apply ox.lt_move_right,
apply oy.move_left_lt, },
{ -- show ⟨xl, xr, xL, xR⟩ + yL iy < ⟨xl, xr, xL, xR⟩ + yR jy, -- fails?
exact @add_lt_add_left ⟨xl, xr, xL, xR⟩ _ _ (oy.1 iy jy), }
end,
begin
split,
{ rintros (ix|iy),
{ apply numeric_add (ox.move_left ix) oy, },
{ apply numeric_add ox (oy.move_left iy), }, },
{ rintros (jx|jy),
{ apply numeric_add (ox.move_right jx) oy, },
{ apply numeric_add ox (oy.move_right jy), }, },
end⟩
using_well_founded { dec_tac := pgame_wf_tac }
/-- Pre-games defined by natural numbers are numeric. -/
theorem numeric_nat : Π (n : ℕ), numeric n
| 0 := numeric_zero
| (n + 1) := numeric_add (numeric_nat n) numeric_one
/-- The pre-game omega is numeric. -/
theorem numeric_omega : numeric omega :=
⟨by rintros ⟨⟩ ⟨⟩, λ i, numeric_nat i.down, by rintros ⟨⟩⟩
/-- The pre-game `half` is numeric. -/
theorem numeric_half : numeric half :=
begin
split,
{ rintros ⟨ ⟩ ⟨ ⟩,
exact zero_lt_one },
split; rintro ⟨ ⟩,
{ exact numeric_zero },
{ exact numeric_one }
end
theorem half_add_half_equiv_one : half + half ≈ 1 :=
begin
split; rw le_def; split,
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩),
{ right,
use (sum.inr punit.star),
calc ((half + half).move_left (sum.inl punit.star)).move_right (sum.inr punit.star)
= (half.move_left punit.star + half).move_right (sum.inr punit.star) : by fsplit
... = (0 + half).move_right (sum.inr punit.star) : by fsplit
... ≈ 1 : zero_add_equiv 1
... ≤ 1 : pgame.le_refl 1 },
{ right,
use (sum.inl punit.star),
calc ((half + half).move_left (sum.inr punit.star)).move_right (sum.inl punit.star)
= (half + half.move_left punit.star).move_right (sum.inl punit.star) : by fsplit
... = (half + 0).move_right (sum.inl punit.star) : by fsplit
... ≈ 1 : add_zero_equiv 1
... ≤ 1 : pgame.le_refl 1 } },
{ rintro ⟨ ⟩ },
{ rintro ⟨ ⟩,
left,
use (sum.inl punit.star),
calc 0 ≤ half : le_of_lt numeric_zero numeric_half zero_lt_half
... ≈ 0 + half : (zero_add_equiv half).symm
... = (half + half).move_left (sum.inl punit.star) : by fsplit },
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩); left,
{ exact ⟨sum.inr punit.star, le_of_le_of_equiv (pgame.le_refl _) (add_zero_equiv _).symm⟩ },
{ exact ⟨sum.inl punit.star, le_of_le_of_equiv (pgame.le_refl _) (zero_add_equiv _).symm⟩ } }
end
end pgame
/-- The equivalence on numeric pre-games. -/
def surreal.equiv (x y : {x // pgame.numeric x}) : Prop := x.1.equiv y.1
instance surreal.setoid : setoid {x // pgame.numeric x} :=
⟨λ x y, x.1.equiv y.1,
λ x, pgame.equiv_refl _,
λ x y, pgame.equiv_symm,
λ x y z, pgame.equiv_trans⟩
/-- The type of surreal numbers. These are the numeric pre-games quotiented
by the equivalence relation `x ≈ y ↔ x ≤ y ∧ y ≤ x`. In the quotient,
the order becomes a total order. -/
def surreal := quotient surreal.setoid
namespace surreal
open pgame
/-- Construct a surreal number from a numeric pre-game. -/
def mk (x : pgame) (h : x.numeric) : surreal := quotient.mk ⟨x, h⟩
instance : has_zero surreal :=
{ zero := ⟦⟨0, numeric_zero⟩⟧ }
instance : has_one surreal :=
{ one := ⟦⟨1, numeric_one⟩⟧ }
instance : inhabited surreal := ⟨0⟩
/-- Lift an equivalence-respecting function on pre-games to surreals. -/
def lift {α} (f : ∀ x, numeric x → α)
(H : ∀ {x y} (hx : numeric x) (hy : numeric y), x.equiv y → f x hx = f y hy) : surreal → α :=
quotient.lift (λ x : {x // numeric x}, f x.1 x.2) (λ x y, H x.2 y.2)
/-- Lift a binary equivalence-respecting function on pre-games to surreals. -/
def lift₂ {α} (f : ∀ x y, numeric x → numeric y → α)
(H : ∀ {x₁ y₁ x₂ y₂} (ox₁ : numeric x₁) (oy₁ : numeric y₁) (ox₂ : numeric x₂) (oy₂ : numeric y₂),
x₁.equiv x₂ → y₁.equiv y₂ → f x₁ y₁ ox₁ oy₁ = f x₂ y₂ ox₂ oy₂) : surreal → surreal → α :=
lift (λ x ox, lift (λ y oy, f x y ox oy) (λ y₁ y₂ oy₁ oy₂ h, H _ _ _ _ (equiv_refl _) h))
(λ x₁ x₂ ox₁ ox₂ h, funext $ quotient.ind $ by exact λ ⟨y, oy⟩, H _ _ _ _ h (equiv_refl _))
/-- The relation `x ≤ y` on surreals. -/
def le : surreal → surreal → Prop :=
lift₂ (λ x y _ _, x ≤ y) (λ x₁ y₁ x₂ y₂ _ _ _ _ hx hy, propext (le_congr hx hy))
/-- The relation `x < y` on surreals. -/
def lt : surreal → surreal → Prop :=
lift₂ (λ x y _ _, x < y) (λ x₁ y₁ x₂ y₂ _ _ _ _ hx hy, propext (lt_congr hx hy))
theorem not_le : ∀ {x y : surreal}, ¬ le x y ↔ lt y x :=
by rintro ⟨⟨x, ox⟩⟩ ⟨⟨y, oy⟩⟩; exact not_le
/-- Addition on surreals is inherited from pre-game addition:
the sum of `x = {xL | xR}` and `y = {yL | yR}` is `{xL + y, x + yL | xR + y, x + yR}`. -/
def add : surreal → surreal → surreal :=
surreal.lift₂
(λ (x y : pgame) (ox) (oy), ⟦⟨x + y, numeric_add ox oy⟩⟧)
(λ x₁ y₁ x₂ y₂ _ _ _ _ hx hy, quotient.sound (pgame.add_congr hx hy))
/-- Negation for surreal numbers is inherited from pre-game negation:
the negation of `{L | R}` is `{-R | -L}`. -/
def neg : surreal → surreal :=
surreal.lift
(λ x ox, ⟦⟨-x, pgame.numeric_neg ox⟩⟧)
(λ _ _ _ _ a, quotient.sound (pgame.neg_congr a))
instance : has_le surreal := ⟨le⟩
instance : has_lt surreal := ⟨lt⟩
instance : has_add surreal := ⟨add⟩
instance : has_neg surreal := ⟨neg⟩
instance : ordered_add_comm_group surreal :=
{ add := (+),
add_assoc := by { rintros ⟨_⟩ ⟨_⟩ ⟨_⟩, exact quotient.sound add_assoc_equiv },
zero := 0,
zero_add := by { rintros ⟨_⟩, exact quotient.sound (pgame.zero_add_equiv _) },
add_zero := by { rintros ⟨_⟩, exact quotient.sound (pgame.add_zero_equiv _) },
neg := has_neg.neg,
add_left_neg := by { rintros ⟨_⟩, exact quotient.sound pgame.add_left_neg_equiv },
add_comm := by { rintros ⟨_⟩ ⟨_⟩, exact quotient.sound pgame.add_comm_equiv },
le := (≤),
lt := (<),
le_refl := by { rintros ⟨_⟩, refl },
le_trans := by { rintros ⟨_⟩ ⟨_⟩ ⟨_⟩, exact pgame.le_trans },
lt_iff_le_not_le := by { rintros ⟨_, ox⟩ ⟨_, oy⟩, exact pgame.lt_iff_le_not_le ox oy },
le_antisymm := by { rintros ⟨_⟩ ⟨_⟩ h₁ h₂, exact quotient.sound ⟨h₁, h₂⟩ },
add_le_add_left := by { rintros ⟨_⟩ ⟨_⟩ hx ⟨_⟩, exact pgame.add_le_add_left hx } }
noncomputable instance : linear_ordered_add_comm_group surreal :=
{ le_total := by rintro ⟨⟨x, ox⟩⟩ ⟨⟨y, oy⟩⟩; classical; exact
or_iff_not_imp_left.2 (λ h, le_of_lt oy ox (pgame.not_le.1 h)),
decidable_le := classical.dec_rel _,
..surreal.ordered_add_comm_group }
-- We conclude with some ideas for further work on surreals; these would make fun projects.
-- TODO define the inclusion of groups `surreal → game`
-- TODO define the field structure on the surreals
end surreal
|
bbcb4dc331cdea7e578aab42cad9166578acf984
|
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
|
/src/data/real/ennreal.lean
|
d4a304c5d4c440e68f7c836c86f779ddcf90eba3
|
[
"Apache-2.0"
] |
permissive
|
DanielFabian/mathlib
|
efc3a50b5dde303c59eeb6353ef4c35a345d7112
|
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
|
refs/heads/master
| 1,668,739,922,971
| 1,595,201,756,000
| 1,595,201,756,000
| 279,469,476
| 0
| 0
| null | 1,594,696,604,000
| 1,594,696,604,000
| null |
UTF-8
|
Lean
| false
| false
| 46,614
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl, Yury Kudryashov
Extended non-negative reals
-/
import data.real.nnreal
import data.set.intervals
noncomputable theory
open classical set
open_locale classical big_operators
variables {α : Type*} {β : Type*}
/-- The extended nonnegative real numbers. This is usually denoted [0, ∞],
and is relevant as the codomain of a measure. -/
@[derive canonically_ordered_comm_semiring, derive complete_linear_order, derive densely_ordered]
def ennreal := with_top nnreal
localized "notation `∞` := (⊤ : ennreal)" in ennreal
namespace ennreal
variables {a b c d : ennreal} {r p q : nnreal}
instance : inhabited ennreal := ⟨0⟩
instance : has_coe nnreal ennreal := ⟨ option.some ⟩
instance : can_lift ennreal nnreal :=
{ coe := coe,
cond := λ r, r ≠ ∞,
prf := λ x hx, ⟨option.get $ option.ne_none_iff_is_some.1 hx, option.some_get _⟩ }
@[simp] lemma none_eq_top : (none : ennreal) = (⊤ : ennreal) := rfl
@[simp] lemma some_eq_coe (a : nnreal) : (some a : ennreal) = (↑a : ennreal) := rfl
/-- `to_nnreal x` returns `x` if it is real, otherwise 0. -/
protected def to_nnreal : ennreal → nnreal
| (some r) := r
| none := 0
/-- `to_real x` returns `x` if it is real, `0` otherwise. -/
protected def to_real (a : ennreal) : real := coe (a.to_nnreal)
/-- `of_real x` returns `x` if it is nonnegative, `0` otherwise. -/
protected def of_real (r : real) : ennreal := coe (nnreal.of_real r)
@[simp, norm_cast] lemma to_nnreal_coe : (r : ennreal).to_nnreal = r := rfl
@[simp] lemma coe_to_nnreal : ∀{a:ennreal}, a ≠ ∞ → ↑(a.to_nnreal) = a
| (some r) h := rfl
| none h := (h rfl).elim
@[simp] lemma of_real_to_real {a : ennreal} (h : a ≠ ∞) : ennreal.of_real (a.to_real) = a :=
by simp [ennreal.to_real, ennreal.of_real, h]
@[simp] lemma to_real_of_real {r : real} (h : 0 ≤ r) : ennreal.to_real (ennreal.of_real r) = r :=
by simp [ennreal.to_real, ennreal.of_real, nnreal.coe_of_real _ h]
lemma coe_to_nnreal_le_self : ∀{a:ennreal}, ↑(a.to_nnreal) ≤ a
| (some r) := by rw [some_eq_coe, to_nnreal_coe]; exact le_refl _
| none := le_top
lemma coe_nnreal_eq (r : nnreal) : (r : ennreal) = ennreal.of_real r :=
by { rw [ennreal.of_real, nnreal.of_real], cases r with r h, congr, dsimp, rw max_eq_left h }
lemma of_real_eq_coe_nnreal {x : real} (h : 0 ≤ x) :
ennreal.of_real x = @coe nnreal ennreal _ (⟨x, h⟩ : nnreal) :=
by { rw [coe_nnreal_eq], refl }
@[simp, norm_cast] lemma coe_zero : ↑(0 : nnreal) = (0 : ennreal) := rfl
@[simp, norm_cast] lemma coe_one : ↑(1 : nnreal) = (1 : ennreal) := rfl
@[simp] lemma to_real_nonneg {a : ennreal} : 0 ≤ a.to_real := by simp [ennreal.to_real]
@[simp] lemma top_to_nnreal : ∞.to_nnreal = 0 := rfl
@[simp] lemma top_to_real : ∞.to_real = 0 := rfl
@[simp] lemma one_to_real : (1 : ennreal).to_real = 1 := rfl
@[simp] lemma one_to_nnreal : (1 : ennreal).to_nnreal = 1 := rfl
@[simp] lemma coe_to_real (r : nnreal) : (r : ennreal).to_real = r := rfl
@[simp] lemma zero_to_nnreal : (0 : ennreal).to_nnreal = 0 := rfl
@[simp] lemma zero_to_real : (0 : ennreal).to_real = 0 := rfl
@[simp] lemma of_real_zero : ennreal.of_real (0 : ℝ) = 0 :=
by simp [ennreal.of_real]; refl
@[simp] lemma of_real_one : ennreal.of_real (1 : ℝ) = (1 : ennreal) :=
by simp [ennreal.of_real]
lemma of_real_to_real_le {a : ennreal} : ennreal.of_real (a.to_real) ≤ a :=
if ha : a = ∞ then ha.symm ▸ le_top else le_of_eq (of_real_to_real ha)
lemma forall_ennreal {p : ennreal → Prop} : (∀a, p a) ↔ (∀r:nnreal, p r) ∧ p ∞ :=
⟨assume h, ⟨assume r, h _, h _⟩,
assume ⟨h₁, h₂⟩ a, match a with some r := h₁ _ | none := h₂ end⟩
lemma to_nnreal_eq_zero_iff (x : ennreal) : x.to_nnreal = 0 ↔ x = 0 ∨ x = ⊤ :=
⟨begin
cases x,
{ simp [none_eq_top] },
{ have A : some (0:nnreal) = (0:ennreal) := rfl,
simp [ennreal.to_nnreal, A] {contextual := tt} }
end,
by intro h; cases h; simp [h]⟩
lemma to_real_eq_zero_iff (x : ennreal) : x.to_real = 0 ↔ x = 0 ∨ x = ⊤ :=
by simp [ennreal.to_real, to_nnreal_eq_zero_iff]
@[simp] lemma coe_ne_top : (r : ennreal) ≠ ∞ := with_top.coe_ne_top
@[simp] lemma top_ne_coe : ∞ ≠ (r : ennreal) := with_top.top_ne_coe
@[simp] lemma of_real_ne_top {r : ℝ} : ennreal.of_real r ≠ ∞ := by simp [ennreal.of_real]
@[simp] lemma top_ne_of_real {r : ℝ} : ∞ ≠ ennreal.of_real r := by simp [ennreal.of_real]
@[simp] lemma zero_ne_top : 0 ≠ ∞ := coe_ne_top
@[simp] lemma top_ne_zero : ∞ ≠ 0 := top_ne_coe
@[simp] lemma one_ne_top : 1 ≠ ∞ := coe_ne_top
@[simp] lemma top_ne_one : ∞ ≠ 1 := top_ne_coe
@[simp, norm_cast] lemma coe_eq_coe : (↑r : ennreal) = ↑q ↔ r = q := with_top.coe_eq_coe
@[simp, norm_cast] lemma coe_le_coe : (↑r : ennreal) ≤ ↑q ↔ r ≤ q := with_top.coe_le_coe
@[simp, norm_cast] lemma coe_lt_coe : (↑r : ennreal) < ↑q ↔ r < q := with_top.coe_lt_coe
lemma coe_mono : monotone (coe : nnreal → ennreal) := λ _ _, coe_le_coe.2
@[simp, norm_cast] lemma coe_eq_zero : (↑r : ennreal) = 0 ↔ r = 0 := coe_eq_coe
@[simp, norm_cast] lemma zero_eq_coe : 0 = (↑r : ennreal) ↔ 0 = r := coe_eq_coe
@[simp, norm_cast] lemma coe_eq_one : (↑r : ennreal) = 1 ↔ r = 1 := coe_eq_coe
@[simp, norm_cast] lemma one_eq_coe : 1 = (↑r : ennreal) ↔ 1 = r := coe_eq_coe
@[simp, norm_cast] lemma coe_nonneg : 0 ≤ (↑r : ennreal) ↔ 0 ≤ r := coe_le_coe
@[simp, norm_cast] lemma coe_pos : 0 < (↑r : ennreal) ↔ 0 < r := coe_lt_coe
@[simp, norm_cast] lemma coe_add : ↑(r + p) = (r + p : ennreal) := with_top.coe_add
@[simp, norm_cast] lemma coe_mul : ↑(r * p) = (r * p : ennreal) := with_top.coe_mul
@[simp, norm_cast] lemma coe_bit0 : (↑(bit0 r) : ennreal) = bit0 r := coe_add
@[simp, norm_cast] lemma coe_bit1 : (↑(bit1 r) : ennreal) = bit1 r := by simp [bit1]
lemma coe_two : ((2:nnreal) : ennreal) = 2 := by norm_cast
protected lemma zero_lt_one : 0 < (1 : ennreal) :=
canonically_ordered_semiring.zero_lt_one
@[simp] lemma one_lt_two : (1:ennreal) < 2 := coe_one ▸ coe_two ▸ by exact_mod_cast one_lt_two
@[simp] lemma two_pos : (0:ennreal) < 2 := lt_trans ennreal.zero_lt_one one_lt_two
lemma two_ne_zero : (2:ennreal) ≠ 0 := ne_of_gt two_pos
lemma two_ne_top : (2:ennreal) ≠ ∞ := coe_two ▸ coe_ne_top
@[simp] lemma add_top : a + ∞ = ∞ := with_top.add_top
@[simp] lemma top_add : ∞ + a = ∞ := with_top.top_add
/-- Coercion `ℝ≥0 → ennreal` as a `ring_hom`. -/
def of_nnreal_hom : nnreal →+* ennreal :=
⟨coe, coe_one, λ _ _, coe_mul, coe_zero, λ _ _, coe_add⟩
@[simp] lemma coe_of_nnreal_hom : ⇑of_nnreal_hom = coe := rfl
@[simp, norm_cast] lemma coe_pow (n : ℕ) : (↑(r^n) : ennreal) = r^n :=
of_nnreal_hom.map_pow r n
lemma add_eq_top : a + b = ∞ ↔ a = ∞ ∨ b = ∞ := with_top.add_eq_top _ _
lemma add_lt_top : a + b < ∞ ↔ a < ∞ ∧ b < ∞ := with_top.add_lt_top _ _
lemma to_nnreal_add {r₁ r₂ : ennreal} (h₁ : r₁ < ⊤) (h₂ : r₂ < ⊤) :
(r₁ + r₂).to_nnreal = r₁.to_nnreal + r₂.to_nnreal :=
begin
rw [← coe_eq_coe, coe_add, coe_to_nnreal, coe_to_nnreal, coe_to_nnreal];
apply @ne_top_of_lt ennreal _ _ ⊤,
exact h₂,
exact h₁,
exact add_lt_top.2 ⟨h₁, h₂⟩
end
/- rw has trouble with the generic lt_top_iff_ne_top and bot_lt_iff_ne_bot
(contrary to erw). This is solved with the next lemmas -/
protected lemma lt_top_iff_ne_top : a < ∞ ↔ a ≠ ∞ := lt_top_iff_ne_top
protected lemma bot_lt_iff_ne_bot : 0 < a ↔ a ≠ 0 := bot_lt_iff_ne_bot
lemma add_ne_top : a + b ≠ ∞ ↔ a ≠ ∞ ∧ b ≠ ∞ :=
by simpa only [lt_top_iff_ne_top] using add_lt_top
lemma mul_top : a * ∞ = (if a = 0 then 0 else ∞) :=
begin split_ifs, { simp [h] }, { exact with_top.mul_top h } end
lemma top_mul : ∞ * a = (if a = 0 then 0 else ∞) :=
begin split_ifs, { simp [h] }, { exact with_top.top_mul h } end
@[simp] lemma top_mul_top : ∞ * ∞ = ∞ := with_top.top_mul_top
lemma top_pow {n:ℕ} (h : 0 < n) : ∞^n = ∞ :=
nat.le_induction (pow_one _) (λ m hm hm', by rw [pow_succ, hm', top_mul_top])
_ (nat.succ_le_of_lt h)
lemma mul_eq_top {a b : ennreal} : a * b = ⊤ ↔ (a ≠ 0 ∧ b = ⊤) ∨ (a = ⊤ ∧ b ≠ 0) :=
with_top.mul_eq_top_iff
lemma mul_ne_top {a b : ennreal} : a ≠ ∞ → b ≠ ∞ → a * b ≠ ∞ :=
by simp [(≠), mul_eq_top] {contextual := tt}
lemma mul_lt_top {a b : ennreal} : a < ⊤ → b < ⊤ → a * b < ⊤ :=
by simpa only [ennreal.lt_top_iff_ne_top] using mul_ne_top
@[simp] lemma mul_pos {a b : ennreal} : 0 < a * b ↔ 0 < a ∧ 0 < b :=
by simp only [zero_lt_iff_ne_zero, ne.def, mul_eq_zero, not_or_distrib]
lemma pow_eq_top : ∀ n:ℕ, a^n=∞ → a=∞
| 0 := by simp
| (n+1) := λ o, (mul_eq_top.1 o).elim (λ h, pow_eq_top n h.2) and.left
lemma pow_ne_top (h : a ≠ ∞) {n:ℕ} : a^n ≠ ∞ :=
mt (pow_eq_top n) h
lemma pow_lt_top : a < ∞ → ∀ n:ℕ, a^n < ∞ :=
by simpa only [lt_top_iff_ne_top] using pow_ne_top
@[simp, norm_cast] lemma coe_finset_sum {s : finset α} {f : α → nnreal} :
↑(∑ a in s, f a) = (∑ a in s, f a : ennreal) :=
of_nnreal_hom.map_sum f s
@[simp, norm_cast] lemma coe_finset_prod {s : finset α} {f : α → nnreal} :
↑(∏ a in s, f a) = ((∏ a in s, f a) : ennreal) :=
of_nnreal_hom.map_prod f s
section order
@[simp] lemma bot_eq_zero : (⊥ : ennreal) = 0 := rfl
@[simp] lemma coe_lt_top : coe r < ∞ := with_top.coe_lt_top r
@[simp] lemma not_top_le_coe : ¬ (⊤:ennreal) ≤ ↑r := with_top.not_top_le_coe r
lemma zero_lt_coe_iff : 0 < (↑p : ennreal) ↔ 0 < p := coe_lt_coe
@[simp, norm_cast] lemma one_le_coe_iff : (1:ennreal) ≤ ↑r ↔ 1 ≤ r := coe_le_coe
@[simp, norm_cast] lemma coe_le_one_iff : ↑r ≤ (1:ennreal) ↔ r ≤ 1 := coe_le_coe
@[simp, norm_cast] lemma coe_lt_one_iff : (↑p : ennreal) < 1 ↔ p < 1 := coe_lt_coe
@[simp, norm_cast] lemma one_lt_coe_iff : 1 < (↑p : ennreal) ↔ 1 < p := coe_lt_coe
@[simp, norm_cast] lemma coe_nat (n : nat) : ((n : nnreal) : ennreal) = n := with_top.coe_nat n
@[simp] lemma nat_ne_top (n : nat) : (n : ennreal) ≠ ⊤ := with_top.nat_ne_top n
@[simp] lemma top_ne_nat (n : nat) : (⊤ : ennreal) ≠ n := with_top.top_ne_nat n
lemma le_coe_iff : a ≤ ↑r ↔ (∃p:nnreal, a = p ∧ p ≤ r) := with_top.le_coe_iff r a
lemma coe_le_iff : ↑r ≤ a ↔ (∀p:nnreal, a = p → r ≤ p) := with_top.coe_le_iff r a
lemma lt_iff_exists_coe : a < b ↔ (∃p:nnreal, a = p ∧ ↑p < b) := with_top.lt_iff_exists_coe a b
lemma pow_le_pow {n m : ℕ} (ha : 1 ≤ a) (h : n ≤ m) : a ^ n ≤ a ^ m :=
begin
cases a,
{ cases m,
{ rw eq_bot_iff.mpr h,
exact le_refl _ },
{ rw [none_eq_top, top_pow (nat.succ_pos m)],
exact le_top } },
{ rw [some_eq_coe, ← coe_pow, ← coe_pow, coe_le_coe],
exact pow_le_pow (by simpa using ha) h }
end
@[simp] lemma max_eq_zero_iff : max a b = 0 ↔ a = 0 ∧ b = 0 :=
by simp only [le_zero_iff_eq.symm, max_le_iff]
@[simp] lemma max_zero_left : max 0 a = a := max_eq_right (zero_le a)
@[simp] lemma max_zero_right : max a 0 = a := max_eq_left (zero_le a)
-- TODO: why this is not a `rfl`? There is some hidden diamond here.
@[simp] lemma sup_eq_max : a ⊔ b = max a b :=
eq_of_forall_ge_iff $ λ c, sup_le_iff.trans max_le_iff.symm
protected lemma pow_pos : 0 < a → ∀ n : ℕ, 0 < a^n :=
canonically_ordered_semiring.pow_pos
protected lemma pow_ne_zero : a ≠ 0 → ∀ n : ℕ, a^n ≠ 0 :=
by simpa only [zero_lt_iff_ne_zero] using ennreal.pow_pos
@[simp] lemma not_lt_zero : ¬ a < 0 := by simp
lemma add_lt_add_iff_left : a < ⊤ → (a + c < a + b ↔ c < b) :=
with_top.add_lt_add_iff_left
lemma add_lt_add_iff_right : a < ⊤ → (c + a < b + a ↔ c < b) :=
with_top.add_lt_add_iff_right
lemma lt_add_right (ha : a < ⊤) (hb : 0 < b) : a < a + b :=
by rwa [← add_lt_add_iff_left ha, add_zero] at hb
lemma le_of_forall_epsilon_le : ∀{a b : ennreal}, (∀ε:nnreal, 0 < ε → b < ∞ → a ≤ b + ε) → a ≤ b
| a none h := le_top
| none (some a) h :=
have (⊤:ennreal) ≤ ↑a + ↑(1:nnreal), from h 1 zero_lt_one coe_lt_top,
by rw [← coe_add] at this; exact (not_top_le_coe this).elim
| (some a) (some b) h :=
by simp only [none_eq_top, some_eq_coe, coe_add.symm, coe_le_coe, coe_lt_top, true_implies_iff]
at *; exact nnreal.le_of_forall_epsilon_le h
lemma lt_iff_exists_rat_btwn :
a < b ↔ (∃q:ℚ, 0 ≤ q ∧ a < nnreal.of_real q ∧ (nnreal.of_real q:ennreal) < b) :=
⟨λ h,
begin
rcases lt_iff_exists_coe.1 h with ⟨p, rfl, _⟩,
rcases dense h with ⟨c, pc, cb⟩,
rcases lt_iff_exists_coe.1 cb with ⟨r, rfl, _⟩,
rcases (nnreal.lt_iff_exists_rat_btwn _ _).1 (coe_lt_coe.1 pc) with ⟨q, hq0, pq, qr⟩,
exact ⟨q, hq0, coe_lt_coe.2 pq, lt_trans (coe_lt_coe.2 qr) cb⟩
end,
λ ⟨q, q0, qa, qb⟩, lt_trans qa qb⟩
lemma lt_iff_exists_real_btwn :
a < b ↔ (∃r:ℝ, 0 ≤ r ∧ a < ennreal.of_real r ∧ (ennreal.of_real r:ennreal) < b) :=
⟨λ h, let ⟨q, q0, aq, qb⟩ := ennreal.lt_iff_exists_rat_btwn.1 h in
⟨q, rat.cast_nonneg.2 q0, aq, qb⟩,
λ ⟨q, q0, qa, qb⟩, lt_trans qa qb⟩
lemma lt_iff_exists_nnreal_btwn :
a < b ↔ (∃r:nnreal, a < r ∧ (r : ennreal) < b) :=
with_top.lt_iff_exists_coe_btwn
lemma lt_iff_exists_add_pos_lt : a < b ↔ (∃ r : nnreal, 0 < r ∧ a + r < b) :=
begin
refine ⟨λ hab, _, λ ⟨r, rpos, hr⟩, lt_of_le_of_lt (le_add_right (le_refl _)) hr⟩,
cases a, { simpa using hab },
rcases lt_iff_exists_real_btwn.1 hab with ⟨c, c_nonneg, ac, cb⟩,
let d : nnreal := ⟨c, c_nonneg⟩,
have ad : a < d,
{ rw of_real_eq_coe_nnreal c_nonneg at ac,
exact coe_lt_coe.1 ac },
refine ⟨d-a, nnreal.sub_pos.2 ad, _⟩,
rw [some_eq_coe, ← coe_add],
convert cb,
have : nnreal.of_real c = d,
by { rw [← nnreal.coe_eq, nnreal.coe_of_real _ c_nonneg], refl },
rw [add_comm, this],
exact nnreal.sub_add_cancel_of_le (le_of_lt ad)
end
lemma coe_nat_lt_coe {n : ℕ} : (n : ennreal) < r ↔ ↑n < r := ennreal.coe_nat n ▸ coe_lt_coe
lemma coe_lt_coe_nat {n : ℕ} : (r : ennreal) < n ↔ r < n := ennreal.coe_nat n ▸ coe_lt_coe
@[norm_cast] lemma coe_nat_lt_coe_nat {m n : ℕ} : (m : ennreal) < n ↔ m < n :=
ennreal.coe_nat n ▸ coe_nat_lt_coe.trans nat.cast_lt
lemma coe_nat_ne_top {n : ℕ} : (n : ennreal) ≠ ∞ := ennreal.coe_nat n ▸ coe_ne_top
lemma coe_nat_mono : strict_mono (coe : ℕ → ennreal) := λ _ _, coe_nat_lt_coe_nat.2
@[norm_cast] lemma coe_nat_le_coe_nat {m n : ℕ} : (m : ennreal) ≤ n ↔ m ≤ n :=
coe_nat_mono.le_iff_le
instance : char_zero ennreal := ⟨coe_nat_mono.injective⟩
protected lemma exists_nat_gt {r : ennreal} (h : r ≠ ⊤) : ∃n:ℕ, r < n :=
begin
rcases lt_iff_exists_coe.1 (lt_top_iff_ne_top.2 h) with ⟨r, rfl, hb⟩,
rcases exists_nat_gt r with ⟨n, hn⟩,
exact ⟨n, coe_lt_coe_nat.2 hn⟩,
end
lemma add_lt_add (ac : a < c) (bd : b < d) : a + b < c + d :=
begin
rcases dense ac with ⟨a', aa', a'c⟩,
rcases lt_iff_exists_coe.1 aa' with ⟨aR, rfl, _⟩,
rcases lt_iff_exists_coe.1 a'c with ⟨a'R, rfl, _⟩,
rcases dense bd with ⟨b', bb', b'd⟩,
rcases lt_iff_exists_coe.1 bb' with ⟨bR, rfl, _⟩,
rcases lt_iff_exists_coe.1 b'd with ⟨b'R, rfl, _⟩,
have I : ↑aR + ↑bR < ↑a'R + ↑b'R :=
begin
rw [← coe_add, ← coe_add, coe_lt_coe],
apply add_lt_add (coe_lt_coe.1 aa') (coe_lt_coe.1 bb')
end,
have J : ↑a'R + ↑b'R ≤ c + d := add_le_add (le_of_lt a'c) (le_of_lt b'd),
apply lt_of_lt_of_le I J
end
@[norm_cast] lemma coe_min : ((min r p:nnreal):ennreal) = min r p :=
coe_mono.map_min
@[norm_cast] lemma coe_max : ((max r p:nnreal):ennreal) = max r p :=
coe_mono.map_max
end order
section complete_lattice
lemma coe_Sup {s : set nnreal} : bdd_above s → (↑(Sup s) : ennreal) = (⨆a∈s, ↑a) := with_top.coe_Sup
lemma coe_Inf {s : set nnreal} : s.nonempty → (↑(Inf s) : ennreal) = (⨅a∈s, ↑a) := with_top.coe_Inf
@[simp] lemma top_mem_upper_bounds {s : set ennreal} : ∞ ∈ upper_bounds s :=
assume x hx, le_top
lemma coe_mem_upper_bounds {s : set nnreal} :
↑r ∈ upper_bounds ((coe : nnreal → ennreal) '' s) ↔ r ∈ upper_bounds s :=
by simp [upper_bounds, ball_image_iff, -mem_image, *] {contextual := tt}
lemma infi_ennreal {α : Type*} [complete_lattice α] {f : ennreal → α} :
(⨅n, f n) = (⨅n:nnreal, f n) ⊓ f ⊤ :=
le_antisymm
(le_inf (le_infi $ assume i, infi_le _ _) (infi_le _ _))
(le_infi $ forall_ennreal.2 ⟨assume r, inf_le_left_of_le $ infi_le _ _, inf_le_right⟩)
end complete_lattice
section mul
lemma mul_le_mul : a ≤ b → c ≤ d → a * c ≤ b * d :=
canonically_ordered_semiring.mul_le_mul
lemma mul_left_mono : monotone ((*) a) := λ b c, mul_le_mul (le_refl a)
lemma mul_right_mono : monotone (λ x, x * a) := λ b c h, mul_le_mul h (le_refl a)
lemma max_mul : max a b * c = max (a * c) (b * c) :=
mul_right_mono.map_max
lemma mul_max : a * max b c = max (a * b) (a * c) :=
mul_left_mono.map_max
lemma mul_eq_mul_left : a ≠ 0 → a ≠ ⊤ → (a * b = a * c ↔ b = c) :=
begin
cases a; cases b; cases c;
simp [none_eq_top, some_eq_coe, mul_top, top_mul, -coe_mul, coe_mul.symm,
nnreal.mul_eq_mul_left] {contextual := tt},
end
lemma mul_eq_mul_right : c ≠ 0 → c ≠ ∞ → (a * c = b * c ↔ a = b) :=
mul_comm c a ▸ mul_comm c b ▸ mul_eq_mul_left
lemma mul_le_mul_left : a ≠ 0 → a ≠ ⊤ → (a * b ≤ a * c ↔ b ≤ c) :=
begin
cases a; cases b; cases c;
simp [none_eq_top, some_eq_coe, mul_top, top_mul, -coe_mul, coe_mul.symm] {contextual := tt},
assume h, exact mul_le_mul_left (zero_lt_iff_ne_zero.2 h)
end
lemma mul_le_mul_right : c ≠ 0 → c ≠ ∞ → (a * c ≤ b * c ↔ a ≤ b) :=
mul_comm c a ▸ mul_comm c b ▸ mul_le_mul_left
lemma mul_lt_mul_left : a ≠ 0 → a ≠ ⊤ → (a * b < a * c ↔ b < c) :=
λ h0 ht, by simp only [mul_le_mul_left h0 ht, lt_iff_le_not_le]
lemma mul_lt_mul_right : c ≠ 0 → c ≠ ∞ → (a * c < b * c ↔ a < b) :=
mul_comm c a ▸ mul_comm c b ▸ mul_lt_mul_left
end mul
section sub
instance : has_sub ennreal := ⟨λa b, Inf {d | a ≤ d + b}⟩
@[norm_cast] lemma coe_sub : ↑(p - r) = (↑p:ennreal) - r :=
le_antisymm
(le_Inf $ assume b (hb : ↑p ≤ b + r), coe_le_iff.2 $
by rintros d rfl; rwa [← coe_add, coe_le_coe, ← nnreal.sub_le_iff_le_add] at hb)
(Inf_le $ show (↑p : ennreal) ≤ ↑(p - r) + ↑r,
by rw [← coe_add, coe_le_coe, ← nnreal.sub_le_iff_le_add])
@[simp] lemma top_sub_coe : ∞ - ↑r = ∞ :=
top_unique $ le_Inf $ by simp [add_eq_top]
@[simp] lemma sub_eq_zero_of_le (h : a ≤ b) : a - b = 0 :=
le_antisymm (Inf_le $ le_add_left h) (zero_le _)
@[simp] lemma sub_self : a - a = 0 := sub_eq_zero_of_le $ le_refl _
@[simp] lemma zero_sub : 0 - a = 0 :=
le_antisymm (Inf_le $ zero_le _) (zero_le _)
@[simp] lemma sub_infty : a - ∞ = 0 :=
le_antisymm (Inf_le $ by simp) (zero_le _)
lemma sub_le_sub (h₁ : a ≤ b) (h₂ : d ≤ c) : a - c ≤ b - d :=
Inf_le_Inf $ assume e (h : b ≤ e + d),
calc a ≤ b : h₁
... ≤ e + d : h
... ≤ e + c : add_le_add (le_refl _) h₂
@[simp] lemma add_sub_self : ∀{a b : ennreal}, b < ∞ → (a + b) - b = a
| a none := by simp [none_eq_top]
| none (some b) := by simp [none_eq_top, some_eq_coe]
| (some a) (some b) :=
by simp [some_eq_coe]; rw [← coe_add, ← coe_sub, coe_eq_coe, nnreal.add_sub_cancel]
@[simp] lemma add_sub_self' (h : a < ∞) : (a + b) - a = b :=
by rw [add_comm, add_sub_self h]
lemma add_right_inj (h : a < ∞) : a + b = a + c ↔ b = c :=
⟨λ e, by simpa [h] using congr_arg (λ x, x - a) e, congr_arg _⟩
lemma add_left_inj (h : a < ∞) : b + a = c + a ↔ b = c :=
by rw [add_comm, add_comm c, add_right_inj h]
@[simp] lemma sub_add_cancel_of_le : ∀{a b : ennreal}, b ≤ a → (a - b) + b = a :=
begin
simp [forall_ennreal, le_coe_iff, -add_comm] {contextual := tt},
rintros r p x rfl h,
rw [← coe_sub, ← coe_add, nnreal.sub_add_cancel_of_le h]
end
@[simp] lemma add_sub_cancel_of_le (h : b ≤ a) : b + (a - b) = a :=
by rwa [add_comm, sub_add_cancel_of_le]
lemma sub_add_self_eq_max : (a - b) + b = max a b :=
match le_total a b with
| or.inl h := by simp [h, max_eq_right]
| or.inr h := by simp [h, max_eq_left]
end
lemma le_sub_add_self : a ≤ (a - b) + b :=
by { rw sub_add_self_eq_max, exact le_max_left a b }
@[simp] protected lemma sub_le_iff_le_add : a - b ≤ c ↔ a ≤ c + b :=
iff.intro
(assume h : a - b ≤ c,
calc a ≤ (a - b) + b : le_sub_add_self
... ≤ c + b : add_le_add_right h _)
(assume h : a ≤ c + b,
calc a - b ≤ (c + b) - b : sub_le_sub h (le_refl _)
... ≤ c : Inf_le (le_refl (c + b)))
protected lemma sub_le_iff_le_add' : a - b ≤ c ↔ a ≤ b + c :=
add_comm c b ▸ ennreal.sub_le_iff_le_add
lemma sub_eq_of_add_eq : b ≠ ∞ → a + b = c → c - b = a :=
λ hb hc, hc ▸ add_sub_self (lt_top_iff_ne_top.2 hb)
protected lemma sub_le_of_sub_le (h : a - b ≤ c) : a - c ≤ b :=
ennreal.sub_le_iff_le_add.2 $ by { rw add_comm, exact ennreal.sub_le_iff_le_add.1 h }
protected lemma sub_lt_sub_self : a ≠ ⊤ → a ≠ 0 → 0 < b → a - b < a :=
match a, b with
| none, _ := by { have := none_eq_top, assume h, contradiction }
| (some a), none := by {intros, simp only [none_eq_top, sub_infty, zero_lt_iff_ne_zero], assumption}
| (some a), (some b) :=
begin
simp only [some_eq_coe, coe_sub.symm, coe_pos, coe_eq_zero, coe_lt_coe, ne.def],
assume h₁ h₂, apply nnreal.sub_lt_self, exact zero_lt_iff_ne_zero.2 h₂
end
end
@[simp] lemma sub_eq_zero_iff_le : a - b = 0 ↔ a ≤ b :=
by simpa [-ennreal.sub_le_iff_le_add] using @ennreal.sub_le_iff_le_add a b 0
@[simp] lemma zero_lt_sub_iff_lt : 0 < a - b ↔ b < a :=
by simpa [ennreal.bot_lt_iff_ne_bot, -sub_eq_zero_iff_le]
using not_iff_not.2 (@sub_eq_zero_iff_le a b)
lemma lt_sub_iff_add_lt : a < b - c ↔ a + c < b :=
begin
cases a, { simp },
cases c, { simp },
cases b, { simp only [true_iff, coe_lt_top, some_eq_coe, top_sub_coe, none_eq_top, ← coe_add] },
simp only [some_eq_coe],
rw [← coe_add, ← coe_sub, coe_lt_coe, coe_lt_coe, nnreal.lt_sub_iff_add_lt],
end
lemma sub_le_self (a b : ennreal) : a - b ≤ a :=
ennreal.sub_le_iff_le_add.2 $ le_add_right (le_refl a)
@[simp] lemma sub_zero : a - 0 = a :=
eq.trans (add_zero (a - 0)).symm $ by simp
/-- A version of triangle inequality for difference as a "distance". -/
lemma sub_le_sub_add_sub : a - c ≤ a - b + (b - c) :=
ennreal.sub_le_iff_le_add.2 $
calc a ≤ a - b + b : le_sub_add_self
... ≤ a - b + ((b - c) + c) : add_le_add_left le_sub_add_self _
... = a - b + (b - c) + c : (add_assoc _ _ _).symm
lemma sub_sub_cancel (h : a < ∞) (h2 : b ≤ a) : a - (a - b) = b :=
by rw [← add_left_inj (lt_of_le_of_lt (sub_le_self _ _) h),
sub_add_cancel_of_le (sub_le_self _ _), add_sub_cancel_of_le h2]
lemma sub_right_inj {a b c : ennreal} (ha : a < ⊤) (hb : b ≤ a) (hc : c ≤ a) :
a - b = a - c ↔ b = c :=
iff.intro
begin
assume h, have : a - (a - b) = a - (a - c), rw h,
rw [sub_sub_cancel ha hb, sub_sub_cancel ha hc] at this, exact this
end
(λ h, by rw h)
lemma sub_mul (h : 0 < b → b < a → c ≠ ∞) : (a - b) * c = a * c - b * c :=
begin
cases le_or_lt a b with hab hab,
{ simp [hab, mul_right_mono hab] },
symmetry,
cases eq_or_lt_of_le (zero_le b) with hb hb,
{ subst b, simp },
apply sub_eq_of_add_eq,
{ exact mul_ne_top (ne_top_of_lt hab) (h hb hab) },
rw [← add_mul, sub_add_cancel_of_le (le_of_lt hab)]
end
lemma mul_sub (h : 0 < c → c < b → a ≠ ∞) :
a * (b - c) = a * b - a * c :=
by { simp only [mul_comm a], exact sub_mul h }
lemma sub_mul_ge : a * c - b * c ≤ (a - b) * c :=
begin
-- with `0 < b → b < a → c ≠ ∞` Lean names the first variable `a`
by_cases h : ∀ (hb : 0 < b), b < a → c ≠ ∞,
{ rw [sub_mul h],
exact le_refl _ },
{ push_neg at h,
rcases h with ⟨hb, hba, hc⟩,
subst c,
simp only [mul_top, if_neg (ne_of_gt hb), if_neg (ne_of_gt $ lt_trans hb hba), sub_self,
zero_le] }
end
end sub
section sum
open finset
/-- A sum of finite numbers is still finite -/
lemma sum_lt_top {s : finset α} {f : α → ennreal} :
(∀a∈s, f a < ⊤) → ∑ a in s, f a < ⊤ :=
with_top.sum_lt_top
/-- A sum of finite numbers is still finite -/
lemma sum_lt_top_iff {s : finset α} {f : α → ennreal} :
∑ a in s, f a < ⊤ ↔ (∀a∈s, f a < ⊤) :=
with_top.sum_lt_top_iff
/-- A sum of numbers is infinite iff one of them is infinite -/
lemma sum_eq_top_iff {s : finset α} {f : α → ennreal} :
(∑ x in s, f x) = ⊤ ↔ (∃a∈s, f a = ⊤) :=
with_top.sum_eq_top_iff
/-- seeing `ennreal` as `nnreal` does not change their sum, unless one of the `ennreal` is
infinity -/
lemma to_nnreal_sum {s : finset α} {f : α → ennreal} (hf : ∀a∈s, f a < ⊤) :
ennreal.to_nnreal (∑ a in s, f a) = ∑ a in s, ennreal.to_nnreal (f a) :=
begin
rw [← coe_eq_coe, coe_to_nnreal, coe_finset_sum, sum_congr],
{ refl },
{ intros x hx, rw coe_to_nnreal, rw ← ennreal.lt_top_iff_ne_top, exact hf x hx },
{ rw ← ennreal.lt_top_iff_ne_top, exact sum_lt_top hf }
end
/-- seeing `ennreal` as `real` does not change their sum, unless one of the `ennreal` is infinity -/
lemma to_real_sum {s : finset α} {f : α → ennreal} (hf : ∀a∈s, f a < ⊤) :
ennreal.to_real (∑ a in s, f a) = ∑ a in s, ennreal.to_real (f a) :=
by { rw [ennreal.to_real, to_nnreal_sum hf, nnreal.coe_sum], refl }
end sum
section interval
variables {x y z : ennreal} {ε ε₁ ε₂ : ennreal} {s : set ennreal}
protected lemma Ico_eq_Iio : (Ico 0 y) = (Iio y) :=
ext $ assume a, iff.intro
(assume ⟨_, hx⟩, hx)
(assume hx, ⟨zero_le _, hx⟩)
lemma mem_Iio_self_add : x ≠ ⊤ → 0 < ε → x ∈ Iio (x + ε) :=
assume xt ε0, lt_add_right (by rwa lt_top_iff_ne_top) ε0
lemma not_mem_Ioo_self_sub : x = 0 → x ∉ Ioo (x - ε) y :=
assume x0, by simp [x0]
lemma mem_Ioo_self_sub_add : x ≠ ⊤ → x ≠ 0 → 0 < ε₁ → 0 < ε₂ → x ∈ Ioo (x - ε₁) (x + ε₂) :=
assume xt x0 ε0 ε0',
⟨ennreal.sub_lt_sub_self xt x0 ε0, lt_add_right (by rwa [lt_top_iff_ne_top]) ε0'⟩
end interval
section bit
@[simp] lemma bit0_inj : bit0 a = bit0 b ↔ a = b :=
⟨λh, begin
rcases (lt_trichotomy a b) with h₁| h₂| h₃,
{ exact (absurd h (ne_of_lt (add_lt_add h₁ h₁))) },
{ exact h₂ },
{ exact (absurd h.symm (ne_of_lt (add_lt_add h₃ h₃))) }
end,
λh, congr_arg _ h⟩
@[simp] lemma bit0_eq_zero_iff : bit0 a = 0 ↔ a = 0 :=
by simpa only [bit0_zero] using @bit0_inj a 0
@[simp] lemma bit0_eq_top_iff : bit0 a = ∞ ↔ a = ∞ :=
by rw [bit0, add_eq_top, or_self]
@[simp] lemma bit1_inj : bit1 a = bit1 b ↔ a = b :=
⟨λh, begin
unfold bit1 at h,
rwa [add_left_inj, bit0_inj] at h,
simp [lt_top_iff_ne_top]
end,
λh, congr_arg _ h⟩
@[simp] lemma bit1_ne_zero : bit1 a ≠ 0 :=
by unfold bit1; simp
@[simp] lemma bit1_eq_one_iff : bit1 a = 1 ↔ a = 0 :=
by simpa only [bit1_zero] using @bit1_inj a 0
@[simp] lemma bit1_eq_top_iff : bit1 a = ∞ ↔ a = ∞ :=
by unfold bit1; rw add_eq_top; simp
end bit
section inv
instance : has_inv ennreal := ⟨λa, Inf {b | 1 ≤ a * b}⟩
instance : has_div ennreal := ⟨λa b, a * b⁻¹⟩
lemma div_def : a / b = a * b⁻¹ := rfl
lemma mul_div_assoc : (a * b) / c = a * (b / c) :=
mul_assoc _ _ _
@[simp] lemma inv_zero : (0 : ennreal)⁻¹ = ∞ :=
show Inf {b : ennreal | 1 ≤ 0 * b} = ∞, by simp; refl
@[simp] lemma inv_top : (∞ : ennreal)⁻¹ = 0 :=
bot_unique $ le_of_forall_le_of_dense $ λ a (h : a > 0), Inf_le $ by simp [*, ne_of_gt h, top_mul]
@[simp, norm_cast] lemma coe_inv (hr : r ≠ 0) : (↑r⁻¹ : ennreal) = (↑r)⁻¹ :=
le_antisymm
(le_Inf $ assume b (hb : 1 ≤ ↑r * b), coe_le_iff.2 $
by rintros b rfl; rwa [← coe_mul, ← coe_one, coe_le_coe, ← nnreal.inv_le hr] at hb)
(Inf_le $ by simp; rw [← coe_mul, nnreal.mul_inv_cancel hr]; exact le_refl 1)
lemma coe_inv_le : (↑r⁻¹ : ennreal) ≤ (↑r)⁻¹ :=
if hr : r = 0 then by simp only [hr, nnreal.inv_zero, inv_zero, coe_zero, zero_le]
else by simp only [coe_inv hr, le_refl]
@[norm_cast] lemma coe_inv_two : ((2⁻¹:nnreal):ennreal) = 2⁻¹ :=
by rw [coe_inv (ne_of_gt zero_lt_two), coe_two]
@[simp, norm_cast] lemma coe_div (hr : r ≠ 0) : (↑(p / r) : ennreal) = p / r :=
show ↑(p * r⁻¹) = ↑p * (↑r)⁻¹, by rw [coe_mul, coe_inv hr]
@[simp] lemma inv_one : (1:ennreal)⁻¹ = 1 :=
by simpa only [coe_inv one_ne_zero, coe_one] using coe_eq_coe.2 nnreal.inv_one
@[simp] lemma div_one {a : ennreal} : a / 1 = a :=
by simp [ennreal.div_def]
protected lemma inv_pow {n : ℕ} : (a^n)⁻¹ = (a⁻¹)^n :=
begin
by_cases a = 0; cases a; cases n; simp [*, none_eq_top, some_eq_coe,
zero_pow, top_pow, nat.zero_lt_succ] at *,
rw [← coe_inv h, ← coe_pow, ← coe_inv, nnreal.inv_pow, coe_pow],
rw [← ne.def] at h,
rw [← zero_lt_iff_ne_zero] at *,
apply pow_pos h
end
@[simp] lemma inv_inv : (a⁻¹)⁻¹ = a :=
by by_cases a = 0; cases a; simp [*, none_eq_top, some_eq_coe,
-coe_inv, (coe_inv _).symm] at *
lemma inv_involutive : function.involutive (λ a:ennreal, a⁻¹) :=
λ a, ennreal.inv_inv
lemma inv_bijective : function.bijective (λ a:ennreal, a⁻¹) :=
ennreal.inv_involutive.bijective
@[simp] lemma inv_eq_inv : a⁻¹ = b⁻¹ ↔ a = b := inv_bijective.1.eq_iff
@[simp] lemma inv_eq_top : a⁻¹ = ∞ ↔ a = 0 :=
inv_zero ▸ inv_eq_inv
lemma inv_ne_top : a⁻¹ ≠ ∞ ↔ a ≠ 0 := by simp
@[simp] lemma inv_lt_top {x : ennreal} : x⁻¹ < ⊤ ↔ 0 < x :=
by { simp only [lt_top_iff_ne_top, inv_ne_top, zero_lt_iff_ne_zero] }
lemma div_lt_top {x y : ennreal} (h1 : x < ⊤) (h2 : 0 < y) : x / y < ⊤ :=
mul_lt_top h1 (inv_lt_top.mpr h2)
@[simp] lemma inv_eq_zero : a⁻¹ = 0 ↔ a = ∞ :=
inv_top ▸ inv_eq_inv
lemma inv_ne_zero : a⁻¹ ≠ 0 ↔ a ≠ ∞ := by simp
@[simp] lemma inv_pos : 0 < a⁻¹ ↔ a ≠ ∞ :=
zero_lt_iff_ne_zero.trans inv_ne_zero
@[simp] lemma inv_lt_inv : a⁻¹ < b⁻¹ ↔ b < a :=
begin
cases a; cases b; simp only [some_eq_coe, none_eq_top, inv_top],
{ simp only [lt_irrefl] },
{ exact inv_pos.trans lt_top_iff_ne_top.symm },
{ simp only [not_lt_zero, not_top_lt] },
{ cases eq_or_lt_of_le (zero_le a) with ha ha;
cases eq_or_lt_of_le (zero_le b) with hb hb,
{ subst a, subst b, simp },
{ subst a, simp },
{ subst b, simp [zero_lt_iff_ne_zero, lt_top_iff_ne_top, inv_ne_top] },
{ rw [← coe_inv (ne_of_gt ha), ← coe_inv (ne_of_gt hb), coe_lt_coe, coe_lt_coe],
simp only [nnreal.coe_lt_coe.symm] at *,
exact inv_lt_inv ha hb } }
end
lemma inv_lt_iff_inv_lt : a⁻¹ < b ↔ b⁻¹ < a :=
by simpa only [inv_inv] using @inv_lt_inv a b⁻¹
lemma lt_inv_iff_lt_inv : a < b⁻¹ ↔ b < a⁻¹ :=
by simpa only [inv_inv] using @inv_lt_inv a⁻¹ b
@[simp, priority 1100] -- higher than le_inv_iff_mul_le
lemma inv_le_inv : a⁻¹ ≤ b⁻¹ ↔ b ≤ a :=
by simp only [le_iff_lt_or_eq, inv_lt_inv, inv_eq_inv, eq_comm]
lemma inv_le_iff_inv_le : a⁻¹ ≤ b ↔ b⁻¹ ≤ a :=
by simpa only [inv_inv] using @inv_le_inv a b⁻¹
lemma le_inv_iff_le_inv : a ≤ b⁻¹ ↔ b ≤ a⁻¹ :=
by simpa only [inv_inv] using @inv_le_inv a⁻¹ b
@[simp] lemma inv_lt_one : a⁻¹ < 1 ↔ 1 < a :=
inv_lt_iff_inv_lt.trans $ by rw [inv_one]
lemma top_div : ∞ / a = if a = ∞ then 0 else ∞ :=
by by_cases a = ∞; simp [div_def, top_mul, *]
@[simp] lemma div_top : a / ∞ = 0 := by simp only [div_def, inv_top, mul_zero]
@[simp] lemma zero_div : 0 / a = 0 := zero_mul a⁻¹
lemma div_eq_top : a / b = ⊤ ↔ (a ≠ 0 ∧ b = 0) ∨ (a = ⊤ ∧ b ≠ ⊤) :=
by simp [ennreal.div_def, ennreal.mul_eq_top]
lemma le_div_iff_mul_le (h0 : b ≠ 0 ∨ c ≠ 0) (ht : b ≠ ⊤ ∨ c ≠ ⊤) :
a ≤ c / b ↔ a * b ≤ c :=
begin
cases b,
{ simp at ht,
split,
{ assume ha, simp at ha, simp [ha] },
{ contrapose,
assume ha,
simp at ha,
have : a * ⊤ = ⊤, by simp [ennreal.mul_eq_top, ha],
simp [this, ht] } },
by_cases hb : b ≠ 0,
{ have : (b : ennreal) ≠ 0, by simp [hb],
rw [← ennreal.mul_le_mul_left this coe_ne_top],
suffices : ↑b * a ≤ (↑b * ↑b⁻¹) * c ↔ a * ↑b ≤ c,
{ simpa [some_eq_coe, div_def, hb, mul_left_comm, mul_comm, mul_assoc] },
rw [← coe_mul, nnreal.mul_inv_cancel hb, coe_one, one_mul, mul_comm] },
{ simp at hb,
simp [hb] at h0,
have : c / 0 = ⊤, by simp [div_eq_top, h0],
simp [hb, this] }
end
lemma div_le_iff_le_mul (hb0 : b ≠ 0 ∨ c ≠ ⊤) (hbt : b ≠ ⊤ ∨ c ≠ 0) : a / b ≤ c ↔ a ≤ c * b :=
begin
suffices : a * b⁻¹ ≤ c ↔ a ≤ c / b⁻¹, by simpa [div_def],
apply (le_div_iff_mul_le _ _).symm,
simpa [inv_ne_zero] using hbt,
simpa [inv_ne_zero] using hb0
end
lemma div_le_of_le_mul (h : a ≤ b * c) : a / c ≤ b :=
begin
by_cases h0 : c = 0,
{ have : a = 0, by simpa [h0] using h, simp [*] },
by_cases hinf : c = ⊤, by simp [hinf],
exact (div_le_iff_le_mul (or.inl h0) (or.inl hinf)).2 h
end
protected lemma div_lt_iff (h0 : b ≠ 0 ∨ c ≠ 0) (ht : b ≠ ⊤ ∨ c ≠ ⊤) :
c / b < a ↔ c < a * b :=
lt_iff_lt_of_le_iff_le $ le_div_iff_mul_le h0 ht
lemma mul_lt_of_lt_div (h : a < b / c) : a * c < b :=
by { contrapose! h, exact ennreal.div_le_of_le_mul h }
lemma inv_le_iff_le_mul : (b = ⊤ → a ≠ 0) → (a = ⊤ → b ≠ 0) → (a⁻¹ ≤ b ↔ 1 ≤ a * b) :=
begin
cases a; cases b; simp [none_eq_top, some_eq_coe, mul_top, top_mul] {contextual := tt},
by_cases a = 0; simp [*, -coe_mul, coe_mul.symm, -coe_inv, (coe_inv _).symm, nnreal.inv_le]
end
@[simp] lemma le_inv_iff_mul_le : a ≤ b⁻¹ ↔ a * b ≤ 1 :=
begin
cases b, { by_cases a = 0; simp [*, none_eq_top, mul_top] },
by_cases b = 0; simp [*, some_eq_coe, le_div_iff_mul_le],
suffices : a ≤ 1 / b ↔ a * b ≤ 1, { simpa [div_def, h] },
exact le_div_iff_mul_le (or.inl (mt coe_eq_coe.1 h)) (or.inl coe_ne_top)
end
lemma mul_inv_cancel (h0 : a ≠ 0) (ht : a ≠ ⊤) : a * a⁻¹ = 1 :=
begin
lift a to nnreal using ht,
norm_cast at h0,
norm_cast,
exact nnreal.mul_inv_cancel h0
end
lemma inv_mul_cancel (h0 : a ≠ 0) (ht : a ≠ ∞) : a⁻¹ * a = 1 :=
mul_comm a a⁻¹ ▸ mul_inv_cancel h0 ht
lemma mul_le_iff_le_inv {a b r : ennreal} (hr₀ : r ≠ 0) (hr₁ : r ≠ ⊤) : (r * a ≤ b ↔ a ≤ r⁻¹ * b) :=
by rw [← @ennreal.mul_le_mul_left _ a _ hr₀ hr₁, ← mul_assoc, mul_inv_cancel hr₀ hr₁, one_mul]
lemma le_of_forall_lt_one_mul_lt : ∀{x y : ennreal}, (∀a<1, a * x ≤ y) → x ≤ y :=
forall_ennreal.2 $ and.intro
(assume r, forall_ennreal.2 $ and.intro
(assume q h, coe_le_coe.2 $ nnreal.le_of_forall_lt_one_mul_lt $ assume a ha,
begin rw [← coe_le_coe, coe_mul], exact h _ (coe_lt_coe.2 ha) end)
(assume h, le_top))
(assume r hr,
have ((1 / 2 : nnreal) : ennreal) * ⊤ ≤ r :=
hr _ (coe_lt_coe.2 ((@nnreal.coe_lt_coe (1/2) 1).1 one_half_lt_one)),
have ne : ((1 / 2 : nnreal) : ennreal) ≠ 0,
begin
rw [(≠), coe_eq_zero],
refine zero_lt_iff_ne_zero.1 _,
show 0 < (1 / 2 : ℝ),
exact div_pos zero_lt_one _root_.two_pos
end,
by rwa [mul_top, if_neg ne] at this)
lemma div_add_div_same {a b c : ennreal} : a / c + b / c = (a + b) / c :=
eq.symm $ right_distrib a b (c⁻¹)
lemma div_self (h0 : a ≠ 0) (hI : a ≠ ∞) : a / a = 1 :=
mul_inv_cancel h0 hI
lemma mul_div_cancel (h0 : a ≠ 0) (hI : a ≠ ∞) : (b / a) * a = b :=
by rw [div_def, mul_assoc, inv_mul_cancel h0 hI, mul_one]
lemma mul_div_cancel' (h0 : a ≠ 0) (hI : a ≠ ∞) : a * (b / a) = b :=
by rw [mul_comm, mul_div_cancel h0 hI]
lemma inv_two_add_inv_two : (2:ennreal)⁻¹ + 2⁻¹ = 1 :=
by rw [← two_mul, ← div_def, div_self two_ne_zero two_ne_top]
lemma add_halves (a : ennreal) : a / 2 + a / 2 = a :=
by rw [div_def, ← mul_add, inv_two_add_inv_two, mul_one]
@[simp] lemma div_zero_iff {a b : ennreal} : a / b = 0 ↔ a = 0 ∨ b = ⊤ :=
by simp [div_def, mul_eq_zero]
@[simp] lemma div_pos_iff {a b : ennreal} : 0 < a / b ↔ a ≠ 0 ∧ b ≠ ⊤ :=
by simp [zero_lt_iff_ne_zero, not_or_distrib]
lemma half_pos {a : ennreal} (h : 0 < a) : 0 < a / 2 :=
by simp [ne_of_gt h]
lemma one_half_lt_one : (2⁻¹:ennreal) < 1 := inv_lt_one.2 $ one_lt_two
lemma half_lt_self {a : ennreal} (hz : a ≠ 0) (ht : a ≠ ⊤) : a / 2 < a :=
begin
lift a to nnreal using ht,
have h : (2 : ennreal) = ((2 : nnreal) : ennreal), from rfl,
have h' : (2 : nnreal) ≠ 0, from _root_.two_ne_zero',
rw [h, ← coe_div h', coe_lt_coe], -- `norm_cast` fails to apply `coe_div`
norm_cast at hz,
exact nnreal.half_lt_self hz
end
lemma sub_half (h : a ≠ ∞) : a - a / 2 = a / 2 :=
begin
lift a to nnreal using h,
exact sub_eq_of_add_eq (mul_ne_top coe_ne_top $ by simp) (add_halves a)
end
lemma one_sub_inv_two : (1:ennreal) - 2⁻¹ = 2⁻¹ :=
by simpa only [div_def, one_mul] using sub_half one_ne_top
lemma exists_inv_nat_lt {a : ennreal} (h : a ≠ 0) :
∃n:ℕ, (n:ennreal)⁻¹ < a :=
@inv_inv a ▸ by simp only [inv_lt_inv, ennreal.exists_nat_gt (inv_ne_top.2 h)]
lemma exists_nat_mul_gt (ha : a ≠ 0) (hb : b ≠ ⊤) :
∃ n : ℕ, b < n * a :=
begin
have : b / a ≠ ⊤, from mul_ne_top hb (inv_ne_top.2 ha),
refine (ennreal.exists_nat_gt this).imp (λ n hn, _),
rwa [← ennreal.div_lt_iff (or.inl ha) (or.inr hb)]
end
end inv
section real
lemma to_real_add (ha : a ≠ ⊤) (hb : b ≠ ⊤) : (a+b).to_real = a.to_real + b.to_real :=
begin
lift a to nnreal using ha,
lift b to nnreal using hb,
refl
end
lemma to_real_add_le : (a+b).to_real ≤ a.to_real + b.to_real :=
if ha : a = ⊤ then by simp only [ha, top_add, top_to_real, zero_add, to_real_nonneg]
else if hb : b = ⊤ then by simp only [hb, add_top, top_to_real, add_zero, to_real_nonneg]
else le_of_eq (to_real_add ha hb)
lemma of_real_add {p q : ℝ} (hp : 0 ≤ p) (hq : 0 ≤ q) :
ennreal.of_real (p + q) = ennreal.of_real p + ennreal.of_real q :=
by rw [ennreal.of_real, ennreal.of_real, ennreal.of_real, ← coe_add,
coe_eq_coe, nnreal.of_real_add hp hq]
@[simp] lemma to_real_le_to_real (ha : a ≠ ⊤) (hb : b ≠ ⊤) : a.to_real ≤ b.to_real ↔ a ≤ b :=
begin
lift a to nnreal using ha,
lift b to nnreal using hb,
norm_cast
end
@[simp] lemma to_real_lt_to_real (ha : a ≠ ⊤) (hb : b ≠ ⊤) : a.to_real < b.to_real ↔ a < b :=
begin
lift a to nnreal using ha,
lift b to nnreal using hb,
norm_cast
end
lemma to_real_max (hr : a ≠ ⊤) (hp : b ≠ ⊤) :
ennreal.to_real (max a b) = max (ennreal.to_real a) (ennreal.to_real b) :=
(le_total a b).elim
(λ h, by simp only [h, (ennreal.to_real_le_to_real hr hp).2 h, max_eq_right])
(λ h, by simp only [h, (ennreal.to_real_le_to_real hp hr).2 h, max_eq_left])
lemma to_nnreal_pos_iff : 0 < a.to_nnreal ↔ (0 < a ∧ a ≠ ∞) :=
begin
cases a,
{ simp [none_eq_top] },
{ simp [some_eq_coe] }
end
lemma to_real_pos_iff : 0 < a.to_real ↔ (0 < a ∧ a ≠ ∞):=
(nnreal.coe_pos).trans to_nnreal_pos_iff
lemma of_real_le_of_real {p q : ℝ} (h : p ≤ q) : ennreal.of_real p ≤ ennreal.of_real q :=
by simp [ennreal.of_real, nnreal.of_real_le_of_real h]
@[simp] lemma of_real_le_of_real_iff {p q : ℝ} (h : 0 ≤ q) :
ennreal.of_real p ≤ ennreal.of_real q ↔ p ≤ q :=
by rw [ennreal.of_real, ennreal.of_real, coe_le_coe, nnreal.of_real_le_of_real_iff h]
@[simp] lemma of_real_lt_of_real_iff {p q : ℝ} (h : 0 < q) :
ennreal.of_real p < ennreal.of_real q ↔ p < q :=
by rw [ennreal.of_real, ennreal.of_real, coe_lt_coe, nnreal.of_real_lt_of_real_iff h]
lemma of_real_lt_of_real_iff_of_nonneg {p q : ℝ} (hp : 0 ≤ p) :
ennreal.of_real p < ennreal.of_real q ↔ p < q :=
by rw [ennreal.of_real, ennreal.of_real, coe_lt_coe, nnreal.of_real_lt_of_real_iff_of_nonneg hp]
@[simp] lemma of_real_pos {p : ℝ} : 0 < ennreal.of_real p ↔ 0 < p :=
by simp [ennreal.of_real]
@[simp] lemma of_real_eq_zero {p : ℝ} : ennreal.of_real p = 0 ↔ p ≤ 0 :=
by simp [ennreal.of_real]
lemma of_real_le_iff_le_to_real {a : ℝ} {b : ennreal} (hb : b ≠ ⊤) :
ennreal.of_real a ≤ b ↔ a ≤ ennreal.to_real b :=
begin
lift b to nnreal using hb,
simpa [ennreal.of_real, ennreal.to_real] using nnreal.of_real_le_iff_le_coe
end
lemma of_real_lt_iff_lt_to_real {a : ℝ} {b : ennreal} (ha : 0 ≤ a) (hb : b ≠ ⊤) :
ennreal.of_real a < b ↔ a < ennreal.to_real b :=
begin
lift b to nnreal using hb,
simpa [ennreal.of_real, ennreal.to_real] using nnreal.of_real_lt_iff_lt_coe ha
end
lemma le_of_real_iff_to_real_le {a : ennreal} {b : ℝ} (ha : a ≠ ⊤) (hb : 0 ≤ b) :
a ≤ ennreal.of_real b ↔ ennreal.to_real a ≤ b :=
begin
lift a to nnreal using ha,
simpa [ennreal.of_real, ennreal.to_real] using nnreal.le_of_real_iff_coe_le hb
end
lemma to_real_le_of_le_of_real {a : ennreal} {b : ℝ} (hb : 0 ≤ b) (h : a ≤ ennreal.of_real b) :
ennreal.to_real a ≤ b :=
have ha : a ≠ ⊤, from ne_top_of_le_ne_top of_real_ne_top h,
(le_of_real_iff_to_real_le ha hb).1 h
lemma lt_of_real_iff_to_real_lt {a : ennreal} {b : ℝ} (ha : a ≠ ⊤) :
a < ennreal.of_real b ↔ ennreal.to_real a < b :=
begin
lift a to nnreal using ha,
simpa [ennreal.of_real, ennreal.to_real] using nnreal.lt_of_real_iff_coe_lt
end
lemma of_real_mul {p q : ℝ} (hp : 0 ≤ p) :
ennreal.of_real (p * q) = (ennreal.of_real p) * (ennreal.of_real q) :=
by { simp only [ennreal.of_real, coe_mul.symm, coe_eq_coe], exact nnreal.of_real_mul hp }
lemma to_real_of_real_mul (c : ℝ) (a : ennreal) (h : 0 ≤ c) :
ennreal.to_real ((ennreal.of_real c) * a) = c * ennreal.to_real a :=
begin
cases a,
{ simp only [none_eq_top, ennreal.to_real, top_to_nnreal, nnreal.coe_zero, mul_zero, mul_top],
by_cases h' : c ≤ 0,
{ rw [if_pos], { simp }, { convert of_real_zero, exact le_antisymm h' h } },
{ rw [if_neg], refl, rw [of_real_eq_zero], assumption } },
{ simp only [ennreal.to_real, ennreal.to_nnreal],
simp only [some_eq_coe, ennreal.of_real, coe_mul.symm, to_nnreal_coe, nnreal.coe_mul],
congr, apply nnreal.coe_of_real, exact h }
end
@[simp] lemma to_real_mul_top (a : ennreal) : ennreal.to_real (a * ⊤) = 0 :=
begin
by_cases h : a = 0,
{ rw [h, zero_mul, zero_to_real] },
{ rw [mul_top, if_neg h, top_to_real] }
end
@[simp] lemma to_real_top_mul (a : ennreal) : ennreal.to_real (⊤ * a) = 0 :=
by { rw mul_comm, exact to_real_mul_top _ }
lemma to_real_eq_to_real {a b : ennreal} (ha : a < ⊤) (hb : b < ⊤) :
ennreal.to_real a = ennreal.to_real b ↔ a = b :=
begin
rw ennreal.lt_top_iff_ne_top at *,
split,
{ assume h, apply le_antisymm,
rw ← to_real_le_to_real ha hb, exact le_of_eq h,
rw ← to_real_le_to_real hb ha, exact le_of_eq h.symm },
{ assume h, rw h }
end
lemma to_real_mul_to_real {a b : ennreal} :
(ennreal.to_real a) * (ennreal.to_real b) = ennreal.to_real (a * b) :=
begin
by_cases ha : a = ⊤,
{ rw ha, simp },
by_cases hb : b = ⊤,
{ rw hb, simp },
have ha : ennreal.of_real (ennreal.to_real a) = a := of_real_to_real ha,
have hb : ennreal.of_real (ennreal.to_real b) = b := of_real_to_real hb,
conv_rhs { rw [← ha, ← hb, ← of_real_mul to_real_nonneg] },
rw [to_real_of_real (mul_nonneg to_real_nonneg to_real_nonneg)]
end
end real
section infi
variables {ι : Sort*} {f g : ι → ennreal}
lemma infi_add : infi f + a = ⨅i, f i + a :=
le_antisymm
(le_infi $ assume i, add_le_add (infi_le _ _) $ le_refl _)
(ennreal.sub_le_iff_le_add.1 $ le_infi $ assume i, ennreal.sub_le_iff_le_add.2 $ infi_le _ _)
lemma supr_sub : (⨆i, f i) - a = (⨆i, f i - a) :=
le_antisymm
(ennreal.sub_le_iff_le_add.2 $ supr_le $ assume i, ennreal.sub_le_iff_le_add.1 $ le_supr _ i)
(supr_le $ assume i, ennreal.sub_le_sub (le_supr _ _) (le_refl a))
lemma sub_infi : a - (⨅i, f i) = (⨆i, a - f i) :=
begin
refine (eq_of_forall_ge_iff $ λ c, _),
rw [ennreal.sub_le_iff_le_add, add_comm, infi_add],
simp [ennreal.sub_le_iff_le_add, sub_eq_add_neg, add_comm],
end
lemma Inf_add {s : set ennreal} : Inf s + a = ⨅b∈s, b + a :=
by simp [Inf_eq_infi, infi_add]
lemma add_infi {a : ennreal} : a + infi f = ⨅b, a + f b :=
by rw [add_comm, infi_add]; simp [add_comm]
lemma infi_add_infi (h : ∀i j, ∃k, f k + g k ≤ f i + g j) : infi f + infi g = (⨅a, f a + g a) :=
suffices (⨅a, f a + g a) ≤ infi f + infi g,
from le_antisymm (le_infi $ assume a, add_le_add (infi_le _ _) (infi_le _ _)) this,
calc (⨅a, f a + g a) ≤ (⨅ a a', f a + g a') :
le_infi $ assume a, le_infi $ assume a',
let ⟨k, h⟩ := h a a' in infi_le_of_le k h
... ≤ infi f + infi g :
by simp [add_infi, infi_add, -add_comm, -le_infi_iff]; exact le_refl _
lemma infi_sum {f : ι → α → ennreal} {s : finset α} [nonempty ι]
(h : ∀(t : finset α) (i j : ι), ∃k, ∀a∈t, f k a ≤ f i a ∧ f k a ≤ f j a) :
(⨅i, ∑ a in s, f i a) = ∑ a in s, ⨅i, f i a :=
finset.induction_on s (by simp) $ assume a s ha ih,
have ∀ (i j : ι), ∃ (k : ι), f k a + ∑ b in s, f k b ≤ f i a + ∑ b in s, f j b,
from assume i j,
let ⟨k, hk⟩ := h (insert a s) i j in
⟨k, add_le_add (hk a (finset.mem_insert_self _ _)).left $ finset.sum_le_sum $
assume a ha, (hk _ $ finset.mem_insert_of_mem ha).right⟩,
by simp [ha, ih.symm, infi_add_infi this]
lemma infi_mul {ι} [nonempty ι] {f : ι → ennreal} {x : ennreal} (h : x ≠ ⊤) :
infi f * x = ⨅i, f i * x :=
begin
by_cases h2 : x = 0, simp only [h2, mul_zero, infi_const],
refine le_antisymm
(le_infi $ λ i, mul_right_mono $ infi_le _ _)
((div_le_iff_le_mul (or.inl h2) $ or.inl h).mp $ le_infi $
λ i, (div_le_iff_le_mul (or.inl h2) $ or.inl h).mpr $ infi_le _ _)
end
lemma mul_infi {ι} [nonempty ι] {f : ι → ennreal} {x : ennreal} (h : x ≠ ⊤) :
x * infi f = ⨅i, x * f i :=
by { rw [mul_comm, infi_mul h], simp only [mul_comm], assumption }
/-! `supr_mul`, `mul_supr` and variants are in `topology.instances.ennreal`. -/
end infi
section supr
lemma supr_coe_nat : (⨆n:ℕ, (n : ennreal)) = ⊤ :=
(supr_eq_top _).2 $ assume b hb, ennreal.exists_nat_gt (lt_top_iff_ne_top.1 hb)
end supr
end ennreal
|
01d621ff8a40a4b6369c3340dd1389085d89f7c6
|
bb31430994044506fa42fd667e2d556327e18dfe
|
/src/data/real/cau_seq_completion.lean
|
0769af1d4a5a53721f72c2e4c3b719e9f7251b03
|
[
"Apache-2.0"
] |
permissive
|
sgouezel/mathlib
|
0cb4e5335a2ba189fa7af96d83a377f83270e503
|
00638177efd1b2534fc5269363ebf42a7871df9a
|
refs/heads/master
| 1,674,527,483,042
| 1,673,665,568,000
| 1,673,665,568,000
| 119,598,202
| 0
| 0
| null | 1,517,348,647,000
| 1,517,348,646,000
| null |
UTF-8
|
Lean
| false
| false
| 12,776
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Robert Y. Lewis
-/
import data.real.cau_seq
/-!
# Cauchy completion
This file generalizes the Cauchy completion of `(ℚ, abs)` to the completion of a ring
with absolute value.
-/
namespace cau_seq.completion
open cau_seq
section
variables {α : Type*} [linear_ordered_field α]
variables {β : Type*} [ring β] (abv : β → α) [is_absolute_value abv]
/-- The Cauchy completion of a ring with absolute value. -/
def Cauchy := @quotient (cau_seq _ abv) cau_seq.equiv
variables {abv}
/-- The map from Cauchy sequences into the Cauchy completion. -/
def mk : cau_seq _ abv → Cauchy abv := quotient.mk
@[simp] theorem mk_eq_mk (f) : @eq (Cauchy abv) ⟦f⟧ (mk f) := rfl
theorem mk_eq {f g : cau_seq _ abv} : mk f = mk g ↔ f ≈ g := quotient.eq
/-- The map from the original ring into the Cauchy completion. -/
def of_rat (x : β) : Cauchy abv := mk (const abv x)
instance : has_zero (Cauchy abv) := ⟨of_rat 0⟩
instance : has_one (Cauchy abv) := ⟨of_rat 1⟩
instance : inhabited (Cauchy abv) := ⟨0⟩
theorem of_rat_zero : (of_rat 0 : Cauchy abv) = 0 := rfl
theorem of_rat_one : (of_rat 1 : Cauchy abv) = 1 := rfl
@[simp] theorem mk_eq_zero {f : cau_seq _ abv} : mk f = 0 ↔ lim_zero f :=
by have : mk f = 0 ↔ lim_zero (f - 0) := quotient.eq;
rwa sub_zero at this
instance : has_add (Cauchy abv) :=
⟨quotient.map₂ (+) $ λ f₁ g₁ hf f₂ g₂ hg, add_equiv_add hf hg⟩
@[simp] theorem mk_add (f g : cau_seq β abv) : mk f + mk g = mk (f + g) := rfl
instance : has_neg (Cauchy abv) :=
⟨quotient.map has_neg.neg $ λ f₁ f₂ hf, neg_equiv_neg hf⟩
@[simp] theorem mk_neg (f : cau_seq β abv) : -mk f = mk (-f) := rfl
instance : has_mul (Cauchy abv) :=
⟨quotient.map₂ (*) $ λ f₁ g₁ hf f₂ g₂ hg, mul_equiv_mul hf hg⟩
@[simp] theorem mk_mul (f g : cau_seq β abv) : mk f * mk g = mk (f * g) := rfl
instance : has_sub (Cauchy abv) :=
⟨quotient.map₂ has_sub.sub $ λ f₁ g₁ hf f₂ g₂ hg, sub_equiv_sub hf hg⟩
@[simp] theorem mk_sub (f g : cau_seq β abv) : mk f - mk g = mk (f - g) := rfl
instance {γ : Type*} [has_smul γ β] [is_scalar_tower γ β β] : has_smul γ (Cauchy abv) :=
⟨λ c, quotient.map ((•) c) $ λ f₁ g₁ hf, smul_equiv_smul _ hf⟩
@[simp] theorem mk_smul {γ : Type*} [has_smul γ β] [is_scalar_tower γ β β] (c : γ)
(f : cau_seq β abv) :
c • mk f = mk (c • f) := rfl
instance : has_pow (Cauchy abv) ℕ :=
⟨λ x n, quotient.map (^ n) (λ f₁ g₁ hf, pow_equiv_pow hf _) x⟩
@[simp] theorem mk_pow (n : ℕ) (f : cau_seq β abv) : mk f ^ n = mk (f ^ n) := rfl
instance : has_nat_cast (Cauchy abv) := ⟨λ n, mk n⟩
instance : has_int_cast (Cauchy abv) := ⟨λ n, mk n⟩
@[simp] theorem of_rat_nat_cast (n : ℕ) : (of_rat n : Cauchy abv) = n := rfl
@[simp] theorem of_rat_int_cast (z : ℤ) : (of_rat z : Cauchy abv) = z := rfl
theorem of_rat_add (x y : β) : of_rat (x + y) = (of_rat x + of_rat y : Cauchy abv) :=
congr_arg mk (const_add _ _)
theorem of_rat_neg (x : β) : of_rat (-x) = (-of_rat x : Cauchy abv) :=
congr_arg mk (const_neg _)
theorem of_rat_mul (x y : β) : of_rat (x * y) = (of_rat x * of_rat y : Cauchy abv) :=
congr_arg mk (const_mul _ _)
private lemma zero_def : 0 = (mk 0 : Cauchy abv) := rfl
private lemma one_def : 1 = (mk 1 : Cauchy abv) := rfl
instance : ring (Cauchy abv) :=
function.surjective.ring mk (surjective_quotient_mk _)
zero_def.symm one_def.symm (λ _ _, (mk_add _ _).symm) (λ _ _, (mk_mul _ _).symm)
(λ _, (mk_neg _).symm) (λ _ _, (mk_sub _ _).symm)
(λ _ _, (mk_smul _ _).symm) (λ _ _, (mk_smul _ _).symm)
(λ _ _, (mk_pow _ _).symm) (λ _, rfl) (λ _, rfl)
/-- `cau_seq.completion.of_rat` as a `ring_hom` -/
@[simps]
def of_rat_ring_hom : β →+* Cauchy abv :=
{ to_fun := of_rat,
map_zero' := of_rat_zero,
map_one' := of_rat_one,
map_add' := of_rat_add,
map_mul' := of_rat_mul, }
theorem of_rat_sub (x y : β) : of_rat (x - y) = (of_rat x - of_rat y : Cauchy abv) :=
congr_arg mk (const_sub _ _)
end
section
variables {α : Type*} [linear_ordered_field α]
variables {β : Type*} [comm_ring β] {abv : β → α} [is_absolute_value abv]
instance : comm_ring (Cauchy abv) :=
function.surjective.comm_ring mk (surjective_quotient_mk _)
zero_def.symm one_def.symm (λ _ _, (mk_add _ _).symm) (λ _ _, (mk_mul _ _).symm)
(λ _, (mk_neg _).symm) (λ _ _, (mk_sub _ _).symm)
(λ _ _, (mk_smul _ _).symm) (λ _ _, (mk_smul _ _).symm)
(λ _ _, (mk_pow _ _).symm) (λ _, rfl) (λ _, rfl)
end
open_locale classical
section
variables {α : Type*} [linear_ordered_field α]
variables {β : Type*} [division_ring β] {abv : β → α} [is_absolute_value abv]
instance : has_rat_cast (Cauchy abv) := ⟨λ q, of_rat q⟩
@[simp] theorem of_rat_rat_cast (q : ℚ) : of_rat (↑q : β) = (q : Cauchy abv) := rfl
noncomputable instance : has_inv (Cauchy abv) :=
⟨λ x, quotient.lift_on x
(λ f, mk $ if h : lim_zero f then 0 else inv f h) $
λ f g fg, begin
have := lim_zero_congr fg,
by_cases hf : lim_zero f,
{ simp [hf, this.1 hf, setoid.refl] },
{ have hg := mt this.2 hf, simp [hf, hg],
have If : mk (inv f hf) * mk f = 1 := mk_eq.2 (inv_mul_cancel hf),
have Ig : mk (inv g hg) * mk g = 1 := mk_eq.2 (inv_mul_cancel hg),
have Ig' : mk g * mk (inv g hg) = 1 := mk_eq.2 (mul_inv_cancel hg),
rw [mk_eq.2 fg, ← Ig] at If,
rw [← mul_one (mk (inv f hf)), ← Ig', ← mul_assoc, If,
mul_assoc, Ig', mul_one] }
end⟩
@[simp] theorem inv_zero : (0 : Cauchy abv)⁻¹ = 0 :=
congr_arg mk $ by rw dif_pos; [refl, exact zero_lim_zero]
@[simp] theorem inv_mk {f} (hf) : (@mk α _ β _ abv _ f)⁻¹ = mk (inv f hf) :=
congr_arg mk $ by rw dif_neg
lemma cau_seq_zero_ne_one : ¬ (0 : cau_seq _ abv) ≈ 1 := λ h,
have lim_zero (1 - 0), from setoid.symm h,
have lim_zero 1, by simpa,
one_ne_zero $ const_lim_zero.1 this
lemma zero_ne_one : (0 : Cauchy abv) ≠ 1 :=
λ h, cau_seq_zero_ne_one $ mk_eq.1 h
protected theorem inv_mul_cancel {x : Cauchy abv} : x ≠ 0 → x⁻¹ * x = 1 :=
quotient.induction_on x $ λ f hf, begin
simp at hf, simp [hf],
exact quotient.sound (cau_seq.inv_mul_cancel hf)
end
protected theorem mul_inv_cancel {x : Cauchy abv} : x ≠ 0 → x * x⁻¹ = 1 :=
quotient.induction_on x $ λ f hf, begin
simp at hf, simp [hf],
exact quotient.sound (cau_seq.mul_inv_cancel hf)
end
theorem of_rat_inv (x : β) : of_rat (x⁻¹) = ((of_rat x)⁻¹ : Cauchy abv) :=
congr_arg mk $ by split_ifs with h; [simp [const_lim_zero.1 h], refl]
/-- The Cauchy completion forms a division ring. -/
noncomputable instance : division_ring (Cauchy abv) :=
{ inv := has_inv.inv,
mul_inv_cancel := λ x, cau_seq.completion.mul_inv_cancel,
exists_pair_ne := ⟨0, 1, zero_ne_one⟩,
inv_zero := inv_zero,
rat_cast := λ q, of_rat q,
rat_cast_mk := λ n d hd hnd,
by rw [rat.cast_mk', of_rat_mul, of_rat_int_cast, of_rat_inv, of_rat_nat_cast],
.. Cauchy.ring }
theorem of_rat_div (x y : β) : of_rat (x / y) = (of_rat x / of_rat y : Cauchy abv) :=
by simp only [div_eq_mul_inv, of_rat_inv, of_rat_mul]
/-- Show the first 10 items of a representative of this equivalence class of cauchy sequences.
The representative chosen is the one passed in the VM to `quot.mk`, so two cauchy sequences
converging to the same number may be printed differently.
-/
meta instance [has_repr β] : has_repr (Cauchy abv) :=
{ repr := λ r,
let N := 10, seq := r.unquot in
"(sorry /- " ++ (", ".intercalate $ (list.range N).map $ repr ∘ seq) ++ ", ... -/)" }
end
section
variables {α : Type*} [linear_ordered_field α]
variables {β : Type*} [field β] {abv : β → α} [is_absolute_value abv]
/-- The Cauchy completion forms a field. -/
noncomputable instance : field (Cauchy abv) :=
{ .. Cauchy.division_ring,
.. Cauchy.comm_ring }
end
end cau_seq.completion
variables {α : Type*} [linear_ordered_field α]
namespace cau_seq
section
variables (β : Type*) [ring β] (abv : β → α) [is_absolute_value abv]
/-- A class stating that a ring with an absolute value is complete, i.e. every Cauchy
sequence has a limit. -/
class is_complete : Prop :=
(is_complete : ∀ s : cau_seq β abv, ∃ b : β, s ≈ const abv b)
end
section
variables {β : Type*} [ring β] {abv : β → α} [is_absolute_value abv]
variable [is_complete β abv]
lemma complete : ∀ s : cau_seq β abv, ∃ b : β, s ≈ const abv b :=
is_complete.is_complete
/-- The limit of a Cauchy sequence in a complete ring. Chosen non-computably. -/
noncomputable def lim (s : cau_seq β abv) : β :=
classical.some (complete s)
lemma equiv_lim (s : cau_seq β abv) : s ≈ const abv (lim s) :=
classical.some_spec (complete s)
lemma eq_lim_of_const_equiv {f : cau_seq β abv} {x : β} (h : cau_seq.const abv x ≈ f) : x = lim f :=
const_equiv.mp $ setoid.trans h $ equiv_lim f
lemma lim_eq_of_equiv_const {f : cau_seq β abv} {x : β} (h : f ≈ cau_seq.const abv x) : lim f = x :=
(eq_lim_of_const_equiv $ setoid.symm h).symm
lemma lim_eq_lim_of_equiv {f g : cau_seq β abv} (h : f ≈ g) : lim f = lim g :=
lim_eq_of_equiv_const $ setoid.trans h $ equiv_lim g
@[simp] lemma lim_const (x : β) : lim (const abv x) = x :=
lim_eq_of_equiv_const $ setoid.refl _
lemma lim_add (f g : cau_seq β abv) : lim f + lim g = lim (f + g) :=
eq_lim_of_const_equiv $ show lim_zero (const abv (lim f + lim g) - (f + g)),
by rw [const_add, add_sub_add_comm];
exact add_lim_zero (setoid.symm (equiv_lim f)) (setoid.symm (equiv_lim g))
lemma lim_mul_lim (f g : cau_seq β abv) : lim f * lim g = lim (f * g) :=
eq_lim_of_const_equiv $ show lim_zero (const abv (lim f * lim g) - f * g),
from have h : const abv (lim f * lim g) - f * g = (const abv (lim f) - f) * g
+ const abv (lim f) * (const abv (lim g) - g) :=
by simp [const_mul (lim f), mul_add, add_mul, sub_eq_add_neg, add_comm, add_left_comm],
by rw h; exact add_lim_zero (mul_lim_zero_left _ (setoid.symm (equiv_lim _)))
(mul_lim_zero_right _ (setoid.symm (equiv_lim _)))
lemma lim_mul (f : cau_seq β abv) (x : β) : lim f * x = lim (f * const abv x) :=
by rw [← lim_mul_lim, lim_const]
lemma lim_neg (f : cau_seq β abv) : lim (-f) = -lim f :=
lim_eq_of_equiv_const (show lim_zero (-f - const abv (-lim f)),
by rw [const_neg, sub_neg_eq_add, add_comm, ← sub_eq_add_neg];
exact setoid.symm (equiv_lim f))
lemma lim_eq_zero_iff (f : cau_seq β abv) : lim f = 0 ↔ lim_zero f :=
⟨assume h,
by have hf := equiv_lim f;
rw h at hf;
exact (lim_zero_congr hf).mpr (const_lim_zero.mpr rfl),
assume h,
have h₁ : f = (f - const abv 0) := ext (λ n, by simp [sub_apply, const_apply]),
by rw h₁ at h; exact lim_eq_of_equiv_const h ⟩
end
section
variables {β : Type*} [field β] {abv : β → α} [is_absolute_value abv] [is_complete β abv]
lemma lim_inv {f : cau_seq β abv} (hf : ¬ lim_zero f) : lim (inv f hf) = (lim f)⁻¹ :=
have hl : lim f ≠ 0 := by rwa ← lim_eq_zero_iff at hf,
lim_eq_of_equiv_const $ show lim_zero (inv f hf - const abv (lim f)⁻¹),
from have h₁ : ∀ (g f : cau_seq β abv) (hf : ¬ lim_zero f), lim_zero (g - f * inv f hf * g) :=
λ g f hf, by rw [← one_mul g, ← mul_assoc, ← sub_mul, mul_one, mul_comm, mul_comm f];
exact mul_lim_zero_right _ (setoid.symm (cau_seq.inv_mul_cancel _)),
have h₂ : lim_zero ((inv f hf - const abv (lim f)⁻¹) - (const abv (lim f) - f) *
(inv f hf * const abv (lim f)⁻¹)) :=
by rw [sub_mul, ← sub_add, sub_sub, sub_add_eq_sub_sub, sub_right_comm, sub_add];
exact show lim_zero (inv f hf - const abv (lim f) * (inv f hf * const abv (lim f)⁻¹)
- (const abv (lim f)⁻¹ - f * (inv f hf * const abv (lim f)⁻¹))),
from sub_lim_zero
(by rw [← mul_assoc, mul_right_comm, const_inv hl]; exact h₁ _ _ _)
(by rw [← mul_assoc]; exact h₁ _ _ _),
(lim_zero_congr h₂).mpr $ mul_lim_zero_left _ (setoid.symm (equiv_lim f))
end
section
variables [is_complete α abs]
lemma lim_le {f : cau_seq α abs} {x : α}
(h : f ≤ cau_seq.const abs x) : lim f ≤ x :=
cau_seq.const_le.1 $ cau_seq.le_of_eq_of_le (setoid.symm (equiv_lim f)) h
lemma le_lim {f : cau_seq α abs} {x : α}
(h : cau_seq.const abs x ≤ f) : x ≤ lim f :=
cau_seq.const_le.1 $ cau_seq.le_of_le_of_eq h (equiv_lim f)
lemma lt_lim {f : cau_seq α abs} {x : α}
(h : cau_seq.const abs x < f) : x < lim f :=
cau_seq.const_lt.1 $ cau_seq.lt_of_lt_of_eq h (equiv_lim f)
lemma lim_lt {f : cau_seq α abs} {x : α}
(h : f < cau_seq.const abs x) : lim f < x :=
cau_seq.const_lt.1 $ cau_seq.lt_of_eq_of_lt (setoid.symm (equiv_lim f)) h
end
end cau_seq
|
a009c05764e292f0a5232165e583e23c639f715a
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/group_theory/index.lean
|
ce2d7fe11c1514dd225488ff4fe3c67ab117bfa9
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 18,694
|
lean
|
/-
Copyright (c) 2021 Thomas Browning. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning
-/
import data.finite.card
import group_theory.finiteness
import group_theory.group_action.quotient
/-!
# Index of a Subgroup
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
In this file we define the index of a subgroup, and prove several divisibility properties.
Several theorems proved in this file are known as Lagrange's theorem.
## Main definitions
- `H.index` : the index of `H : subgroup G` as a natural number,
and returns 0 if the index is infinite.
- `H.relindex K` : the relative index of `H : subgroup G` in `K : subgroup G` as a natural number,
and returns 0 if the relative index is infinite.
# Main results
- `card_mul_index` : `nat.card H * H.index = nat.card G`
- `index_mul_card` : `H.index * fintype.card H = fintype.card G`
- `index_dvd_card` : `H.index ∣ fintype.card G`
- `index_eq_mul_of_le` : If `H ≤ K`, then `H.index = K.index * (H.subgroup_of K).index`
- `index_dvd_of_le` : If `H ≤ K`, then `K.index ∣ H.index`
- `relindex_mul_relindex` : `relindex` is multiplicative in towers
-/
namespace subgroup
open_locale big_operators cardinal
variables {G : Type*} [group G] (H K L : subgroup G)
/-- The index of a subgroup as a natural number, and returns 0 if the index is infinite. -/
@[to_additive "The index of a subgroup as a natural number,
and returns 0 if the index is infinite."]
noncomputable def index : ℕ :=
nat.card (G ⧸ H)
/-- The relative index of a subgroup as a natural number,
and returns 0 if the relative index is infinite. -/
@[to_additive "The relative index of a subgroup as a natural number,
and returns 0 if the relative index is infinite."]
noncomputable def relindex : ℕ :=
(H.subgroup_of K).index
@[to_additive] lemma index_comap_of_surjective {G' : Type*} [group G'] {f : G' →* G}
(hf : function.surjective f) : (H.comap f).index = H.index :=
begin
letI := quotient_group.left_rel H,
letI := quotient_group.left_rel (H.comap f),
have key : ∀ x y : G', setoid.r x y ↔ setoid.r (f x) (f y),
{ simp only [quotient_group.left_rel_apply],
exact λ x y, iff_of_eq (congr_arg (∈ H) (by rw [f.map_mul, f.map_inv])) },
refine cardinal.to_nat_congr (equiv.of_bijective (quotient.map' f (λ x y, (key x y).mp)) ⟨_, _⟩),
{ simp_rw [←quotient.eq'] at key,
refine quotient.ind' (λ x, _),
refine quotient.ind' (λ y, _),
exact (key x y).mpr },
{ refine quotient.ind' (λ x, _),
obtain ⟨y, hy⟩ := hf x,
exact ⟨y, (quotient.map'_mk' f _ y).trans (congr_arg quotient.mk' hy)⟩ },
end
@[to_additive] lemma index_comap {G' : Type*} [group G'] (f : G' →* G) :
(H.comap f).index = H.relindex f.range :=
eq.trans (congr_arg index (by refl))
((H.subgroup_of f.range).index_comap_of_surjective f.range_restrict_surjective)
@[to_additive] lemma relindex_comap {G' : Type*} [group G'] (f : G' →* G) (K : subgroup G') :
relindex (comap f H) K = relindex H (map f K) :=
by rw [relindex, subgroup_of, comap_comap, index_comap, ← f.map_range, K.subtype_range]
variables {H K L}
@[to_additive relindex_mul_index] lemma relindex_mul_index (h : H ≤ K) :
H.relindex K * K.index = H.index :=
((mul_comm _ _).trans (cardinal.to_nat_mul _ _).symm).trans
(congr_arg cardinal.to_nat (equiv.cardinal_eq (quotient_equiv_prod_of_le h))).symm
@[to_additive] lemma index_dvd_of_le (h : H ≤ K) : K.index ∣ H.index :=
dvd_of_mul_left_eq (H.relindex K) (relindex_mul_index h)
@[to_additive] lemma relindex_dvd_index_of_le (h : H ≤ K) : H.relindex K ∣ H.index :=
dvd_of_mul_right_eq K.index (relindex_mul_index h)
@[to_additive] lemma relindex_subgroup_of (hKL : K ≤ L) :
(H.subgroup_of L).relindex (K.subgroup_of L) = H.relindex K :=
((index_comap (H.subgroup_of L) (inclusion hKL)).trans (congr_arg _ (inclusion_range hKL))).symm
variables (H K L)
@[to_additive relindex_mul_relindex] lemma relindex_mul_relindex (hHK : H ≤ K) (hKL : K ≤ L) :
H.relindex K * K.relindex L = H.relindex L :=
begin
rw [←relindex_subgroup_of hKL],
exact relindex_mul_index (λ x hx, hHK hx),
end
@[to_additive] lemma inf_relindex_right : (H ⊓ K).relindex K = H.relindex K :=
by rw [relindex, relindex, inf_subgroup_of_right]
@[to_additive] lemma inf_relindex_left : (H ⊓ K).relindex H = K.relindex H :=
by rw [inf_comm, inf_relindex_right]
@[to_additive relindex_inf_mul_relindex]
lemma relindex_inf_mul_relindex : H.relindex (K ⊓ L) * K.relindex L = (H ⊓ K).relindex L :=
by rw [←inf_relindex_right H (K ⊓ L), ←inf_relindex_right K L, ←inf_relindex_right (H ⊓ K) L,
inf_assoc, relindex_mul_relindex (H ⊓ (K ⊓ L)) (K ⊓ L) L inf_le_right inf_le_right]
@[simp, to_additive]
lemma relindex_sup_right [K.normal] : K.relindex (H ⊔ K) = K.relindex H :=
nat.card_congr (quotient_group.quotient_inf_equiv_prod_normal_quotient H K).to_equiv.symm
@[simp, to_additive]
lemma relindex_sup_left [K.normal] : K.relindex (K ⊔ H) = K.relindex H :=
by rw [sup_comm, relindex_sup_right]
@[to_additive] lemma relindex_dvd_index_of_normal [H.normal] : H.relindex K ∣ H.index :=
relindex_sup_right K H ▸ relindex_dvd_index_of_le le_sup_right
variables {H K}
@[to_additive] lemma relindex_dvd_of_le_left (hHK : H ≤ K) : K.relindex L ∣ H.relindex L :=
inf_of_le_left hHK ▸ dvd_of_mul_left_eq _ (relindex_inf_mul_relindex _ _ _)
/-- A subgroup has index two if and only if there exists `a` such that for all `b`, exactly one
of `b * a` and `b` belong to `H`. -/
@[to_additive "/-- An additive subgroup has index two if and only if there exists `a` such that for
all `b`, exactly one of `b + a` and `b` belong to `H`. -/"]
lemma index_eq_two_iff : H.index = 2 ↔ ∃ a, ∀ b, xor (b * a ∈ H) (b ∈ H) :=
begin
simp only [index, nat.card_eq_two_iff' ((1 : G) : G ⧸ H), exists_unique, inv_mem_iff,
quotient_group.exists_coe, quotient_group.forall_coe, ne.def, quotient_group.eq, mul_one,
xor_iff_iff_not],
refine exists_congr (λ a, ⟨λ ha b, ⟨λ hba hb, _, λ hb, _⟩, λ ha, ⟨_, λ b hb, _⟩⟩),
{ exact ha.1 ((mul_mem_cancel_left hb).1 hba) },
{ exact inv_inv b ▸ ha.2 _ (mt inv_mem_iff.1 hb) },
{ rw [← inv_mem_iff, ← ha, inv_mul_self], exact one_mem _ },
{ rwa [ha, inv_mem_iff] }
end
@[to_additive] lemma mul_mem_iff_of_index_two (h : H.index = 2) {a b : G} :
a * b ∈ H ↔ (a ∈ H ↔ b ∈ H) :=
begin
by_cases ha : a ∈ H, { simp only [ha, true_iff, mul_mem_cancel_left ha] },
by_cases hb : b ∈ H, { simp only [hb, iff_true, mul_mem_cancel_right hb] },
simp only [ha, hb, iff_self, iff_true],
rcases index_eq_two_iff.1 h with ⟨c, hc⟩,
refine (hc _).or.resolve_left _,
rwa [mul_assoc, mul_mem_cancel_right ((hc _).or.resolve_right hb)]
end
@[to_additive] lemma mul_self_mem_of_index_two (h : H.index = 2) (a : G) : a * a ∈ H :=
by rw [mul_mem_iff_of_index_two h]
@[to_additive two_smul_mem_of_index_two]
lemma sq_mem_of_index_two (h : H.index = 2) (a : G) : a ^ 2 ∈ H :=
(pow_two a).symm ▸ mul_self_mem_of_index_two h a
variables (H K)
@[simp, to_additive] lemma index_top : (⊤ : subgroup G).index = 1 :=
cardinal.to_nat_eq_one_iff_unique.mpr ⟨quotient_group.subsingleton_quotient_top, ⟨1⟩⟩
@[simp, to_additive] lemma index_bot : (⊥ : subgroup G).index = nat.card G :=
cardinal.to_nat_congr (quotient_group.quotient_bot.to_equiv)
@[to_additive] lemma index_bot_eq_card [fintype G] : (⊥ : subgroup G).index = fintype.card G :=
index_bot.trans nat.card_eq_fintype_card
@[simp, to_additive] lemma relindex_top_left : (⊤ : subgroup G).relindex H = 1 :=
index_top
@[simp, to_additive] lemma relindex_top_right : H.relindex ⊤ = H.index :=
by rw [←relindex_mul_index (show H ≤ ⊤, from le_top), index_top, mul_one]
@[simp, to_additive] lemma relindex_bot_left : (⊥ : subgroup G).relindex H = nat.card H :=
by rw [relindex, bot_subgroup_of, index_bot]
@[to_additive] lemma relindex_bot_left_eq_card [fintype H] :
(⊥ : subgroup G).relindex H = fintype.card H :=
H.relindex_bot_left.trans nat.card_eq_fintype_card
@[simp, to_additive] lemma relindex_bot_right : H.relindex ⊥ = 1 :=
by rw [relindex, subgroup_of_bot_eq_top, index_top]
@[simp, to_additive] lemma relindex_self : H.relindex H = 1 :=
by rw [relindex, subgroup_of_self, index_top]
@[to_additive] lemma index_ker {H} [group H] (f : G →* H) :
f.ker.index = nat.card (set.range f) :=
by { rw [← monoid_hom.comap_bot, index_comap, relindex_bot_left], refl }
@[to_additive] lemma relindex_ker {H} [group H] (f : G →* H) (K : subgroup G) :
f.ker.relindex K = nat.card (f '' K) :=
by { rw [← monoid_hom.comap_bot, relindex_comap, relindex_bot_left], refl }
@[simp, to_additive card_mul_index]
lemma card_mul_index : nat.card H * H.index = nat.card G :=
by { rw [←relindex_bot_left, ←index_bot], exact relindex_mul_index bot_le }
@[to_additive] lemma nat_card_dvd_of_injective {G H : Type*} [group G] [group H] (f : G →* H)
(hf : function.injective f) : nat.card G ∣ nat.card H :=
begin
rw nat.card_congr (monoid_hom.of_injective hf).to_equiv,
exact dvd.intro f.range.index f.range.card_mul_index,
end
@[to_additive] lemma nat_card_dvd_of_le (hHK : H ≤ K) : nat.card H ∣ nat.card K :=
nat_card_dvd_of_injective (inclusion hHK) (inclusion_injective hHK)
@[to_additive] lemma nat_card_dvd_of_surjective {G H : Type*} [group G] [group H] (f : G →* H)
(hf : function.surjective f) : nat.card H ∣ nat.card G :=
begin
rw ← nat.card_congr (quotient_group.quotient_ker_equiv_of_surjective f hf).to_equiv,
exact dvd.intro_left (nat.card f.ker) f.ker.card_mul_index,
end
@[to_additive] lemma card_dvd_of_surjective {G H : Type*} [group G] [group H] [fintype G]
[fintype H] (f : G →* H) (hf : function.surjective f) : fintype.card H ∣ fintype.card G :=
by simp only [←nat.card_eq_fintype_card, nat_card_dvd_of_surjective f hf]
@[to_additive] lemma index_map {G' : Type*} [group G'] (f : G →* G') :
(H.map f).index = (H ⊔ f.ker).index * f.range.index :=
by rw [←comap_map_eq, index_comap, relindex_mul_index (H.map_le_range f)]
@[to_additive] lemma index_map_dvd {G' : Type*} [group G'] {f : G →* G'}
(hf : function.surjective f) : (H.map f).index ∣ H.index :=
begin
rw [index_map, f.range_top_of_surjective hf, index_top, mul_one],
exact index_dvd_of_le le_sup_left,
end
@[to_additive] lemma dvd_index_map {G' : Type*} [group G'] {f : G →* G'}
(hf : f.ker ≤ H) : H.index ∣ (H.map f).index :=
begin
rw [index_map, sup_of_le_left hf],
apply dvd_mul_right,
end
@[to_additive] lemma index_map_eq {G' : Type*} [group G'] {f : G →* G'}
(hf1 : function.surjective f) (hf2 : f.ker ≤ H) : (H.map f).index = H.index :=
nat.dvd_antisymm (H.index_map_dvd hf1) (H.dvd_index_map hf2)
@[to_additive] lemma index_eq_card [fintype (G ⧸ H)] :
H.index = fintype.card (G ⧸ H) :=
nat.card_eq_fintype_card
@[to_additive index_mul_card] lemma index_mul_card [fintype G] [hH : fintype H] :
H.index * fintype.card H = fintype.card G :=
by rw [←relindex_bot_left_eq_card, ←index_bot_eq_card, mul_comm]; exact relindex_mul_index bot_le
@[to_additive] lemma index_dvd_card [fintype G] : H.index ∣ fintype.card G :=
begin
classical,
exact ⟨fintype.card H, H.index_mul_card.symm⟩,
end
variables {H K L}
@[to_additive]
lemma relindex_eq_zero_of_le_left (hHK : H ≤ K) (hKL : K.relindex L = 0) : H.relindex L = 0 :=
eq_zero_of_zero_dvd (hKL ▸ (relindex_dvd_of_le_left L hHK))
@[to_additive]
lemma relindex_eq_zero_of_le_right (hKL : K ≤ L) (hHK : H.relindex K = 0) : H.relindex L = 0 :=
finite.card_eq_zero_of_embedding (quotient_subgroup_of_embedding_of_le H hKL) hHK
@[to_additive] lemma index_eq_zero_of_relindex_eq_zero (h : H.relindex K = 0) : H.index = 0 :=
H.relindex_top_right.symm.trans (relindex_eq_zero_of_le_right le_top h)
@[to_additive] lemma relindex_le_of_le_left (hHK : H ≤ K) (hHL : H.relindex L ≠ 0) :
K.relindex L ≤ H.relindex L :=
nat.le_of_dvd (nat.pos_of_ne_zero hHL) (relindex_dvd_of_le_left L hHK)
@[to_additive] lemma relindex_le_of_le_right (hKL : K ≤ L) (hHL : H.relindex L ≠ 0) :
H.relindex K ≤ H.relindex L :=
finite.card_le_of_embedding' (quotient_subgroup_of_embedding_of_le H hKL) (λ h, (hHL h).elim)
@[to_additive] lemma relindex_ne_zero_trans (hHK : H.relindex K ≠ 0) (hKL : K.relindex L ≠ 0) :
H.relindex L ≠ 0 :=
λ h, mul_ne_zero (mt (relindex_eq_zero_of_le_right (show K ⊓ L ≤ K, from inf_le_left)) hHK) hKL
((relindex_inf_mul_relindex H K L).trans (relindex_eq_zero_of_le_left inf_le_left h))
@[to_additive] lemma relindex_inf_ne_zero (hH : H.relindex L ≠ 0) (hK : K.relindex L ≠ 0) :
(H ⊓ K).relindex L ≠ 0 :=
begin
replace hH : H.relindex (K ⊓ L) ≠ 0 := mt (relindex_eq_zero_of_le_right inf_le_right) hH,
rw ← inf_relindex_right at hH hK ⊢,
rw inf_assoc,
exact relindex_ne_zero_trans hH hK,
end
@[to_additive] lemma index_inf_ne_zero (hH : H.index ≠ 0) (hK : K.index ≠ 0) : (H ⊓ K).index ≠ 0 :=
begin
rw ← relindex_top_right at hH hK ⊢,
exact relindex_inf_ne_zero hH hK,
end
@[to_additive] lemma relindex_inf_le : (H ⊓ K).relindex L ≤ H.relindex L * K.relindex L :=
begin
by_cases h : H.relindex L = 0,
{ exact (le_of_eq (relindex_eq_zero_of_le_left (by exact inf_le_left) h)).trans (zero_le _) },
rw [←inf_relindex_right, inf_assoc, ←relindex_mul_relindex _ _ L inf_le_right inf_le_right,
inf_relindex_right, inf_relindex_right],
exact mul_le_mul_right' (relindex_le_of_le_right inf_le_right h) (K.relindex L),
end
@[to_additive] lemma index_inf_le : (H ⊓ K).index ≤ H.index * K.index :=
by simp_rw [←relindex_top_right, relindex_inf_le]
@[to_additive] lemma relindex_infi_ne_zero {ι : Type*} [hι : finite ι] {f : ι → subgroup G}
(hf : ∀ i, (f i).relindex L ≠ 0) : (⨅ i, f i).relindex L ≠ 0 :=
begin
haveI := fintype.of_finite ι,
exact finset.prod_ne_zero_iff.mpr (λ i hi, hf i) ∘ nat.card_pi.symm.trans ∘
finite.card_eq_zero_of_embedding (quotient_infi_subgroup_of_embedding f L),
end
@[to_additive] lemma relindex_infi_le {ι : Type*} [fintype ι] (f : ι → subgroup G) :
(⨅ i, f i).relindex L ≤ ∏ i, (f i).relindex L :=
le_of_le_of_eq (finite.card_le_of_embedding' (quotient_infi_subgroup_of_embedding f L)
(λ h, let ⟨i, hi, h⟩ := finset.prod_eq_zero_iff.mp (nat.card_pi.symm.trans h) in
relindex_eq_zero_of_le_left (infi_le f i) h)) nat.card_pi
@[to_additive] lemma index_infi_ne_zero {ι : Type*} [finite ι] {f : ι → subgroup G}
(hf : ∀ i, (f i).index ≠ 0) : (⨅ i, f i).index ≠ 0 :=
begin
simp_rw ← relindex_top_right at hf ⊢,
exact relindex_infi_ne_zero hf,
end
@[to_additive] lemma index_infi_le {ι : Type*} [fintype ι] (f : ι → subgroup G) :
(⨅ i, f i).index ≤ ∏ i, (f i).index :=
by simp_rw [←relindex_top_right, relindex_infi_le]
@[simp, to_additive index_eq_one] lemma index_eq_one : H.index = 1 ↔ H = ⊤ :=
⟨λ h, quotient_group.subgroup_eq_top_of_subsingleton H (cardinal.to_nat_eq_one_iff_unique.mp h).1,
λ h, (congr_arg index h).trans index_top⟩
@[simp, to_additive relindex_eq_one] lemma relindex_eq_one : H.relindex K = 1 ↔ K ≤ H :=
index_eq_one.trans subgroup_of_eq_top
@[simp, to_additive card_eq_one] lemma card_eq_one : nat.card H = 1 ↔ H = ⊥ :=
H.relindex_bot_left ▸ (relindex_eq_one.trans le_bot_iff)
@[to_additive] lemma index_ne_zero_of_finite [hH : finite (G ⧸ H)] : H.index ≠ 0 :=
by { casesI nonempty_fintype (G ⧸ H), rw index_eq_card, exact fintype.card_ne_zero }
/-- Finite index implies finite quotient. -/
@[to_additive "Finite index implies finite quotient."]
noncomputable def fintype_of_index_ne_zero (hH : H.index ≠ 0) : fintype (G ⧸ H) :=
(cardinal.lt_aleph_0_iff_fintype.mp (lt_of_not_ge (mt cardinal.to_nat_apply_of_aleph_0_le hH))).some
@[to_additive one_lt_index_of_ne_top]
lemma one_lt_index_of_ne_top [finite (G ⧸ H)] (hH : H ≠ ⊤) : 1 < H.index :=
nat.one_lt_iff_ne_zero_and_ne_one.mpr ⟨index_ne_zero_of_finite, mt index_eq_one.mp hH⟩
section finite_index
variables (H K)
/-- Typeclass for finite index subgroups. -/
class finite_index : Prop :=
(finite_index : H.index ≠ 0)
/-- Typeclass for finite index subgroups. -/
class _root_.add_subgroup.finite_index {G : Type*} [add_group G] (H : add_subgroup G) : Prop :=
(finite_index : H.index ≠ 0)
/-- A finite index subgroup has finite quotient. -/
@[to_additive "A finite index subgroup has finite quotient"]
noncomputable def fintype_quotient_of_finite_index [finite_index H] :
fintype (G ⧸ H) :=
fintype_of_index_ne_zero finite_index.finite_index
@[to_additive] instance finite_quotient_of_finite_index
[finite_index H] : finite (G ⧸ H) :=
H.fintype_quotient_of_finite_index.finite
@[to_additive] lemma finite_index_of_finite_quotient [finite (G ⧸ H)] : finite_index H :=
⟨index_ne_zero_of_finite⟩
@[priority 100, to_additive] instance finite_index_of_finite [finite G] : finite_index H :=
finite_index_of_finite_quotient H
@[to_additive] instance : finite_index (⊤ : subgroup G) :=
⟨ne_of_eq_of_ne index_top one_ne_zero⟩
@[to_additive] instance [finite_index H] [finite_index K] : finite_index (H ⊓ K) :=
⟨index_inf_ne_zero finite_index.finite_index finite_index.finite_index⟩
variables {H K}
@[to_additive] lemma finite_index_of_le [finite_index H] (h : H ≤ K) : finite_index K :=
⟨ne_zero_of_dvd_ne_zero finite_index.finite_index (index_dvd_of_le h)⟩
variables (H K)
@[to_additive] instance finite_index_ker {G' : Type*} [group G'] (f : G →* G') [finite f.range] :
f.ker.finite_index :=
@finite_index_of_finite_quotient G _ f.ker
(finite.of_equiv f.range (quotient_group.quotient_ker_equiv_range f).symm)
instance finite_index_normal_core [H.finite_index] : H.normal_core.finite_index :=
begin
rw normal_core_eq_ker,
apply_instance,
end
variables (G)
instance finite_index_center [finite (commutator_set G)] [group.fg G] : finite_index (center G) :=
begin
obtain ⟨S, -, hS⟩ := group.rank_spec G,
exact ⟨mt (finite.card_eq_zero_of_embedding (quotient_center_embedding hS)) finite.card_pos.ne'⟩,
end
lemma index_center_le_pow [finite (commutator_set G)] [group.fg G] :
(center G).index ≤ (nat.card (commutator_set G)) ^ group.rank G :=
begin
obtain ⟨S, hS1, hS2⟩ := group.rank_spec G,
rw [←hS1, ←fintype.card_coe, ←nat.card_eq_fintype_card, ←finset.coe_sort_coe, ←nat.card_fun],
exact finite.card_le_of_embedding (quotient_center_embedding hS2),
end
end finite_index
end subgroup
|
3c5f84e955bb135563faf274331adba43aa42443
|
07c6143268cfb72beccd1cc35735d424ebcb187b
|
/src/category_theory/differential_object.lean
|
a0bd5f53fa83f2cdec4bf25d1157a0a57beb268d
|
[
"Apache-2.0"
] |
permissive
|
khoek/mathlib
|
bc49a842910af13a3c372748310e86467d1dc766
|
aa55f8b50354b3e11ba64792dcb06cccb2d8ee28
|
refs/heads/master
| 1,588,232,063,837
| 1,587,304,803,000
| 1,587,304,803,000
| 176,688,517
| 0
| 0
|
Apache-2.0
| 1,553,070,585,000
| 1,553,070,585,000
| null |
UTF-8
|
Lean
| false
| false
| 3,773
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.limits.shapes.zero
import category_theory.shift
import category_theory.concrete_category
/-!
# Differential objects in a category.
A differential object in a category with zero morphisms and a shift is
an object `X` equipped with
a morphism `d : X ⟶ X⟦1⟧`, such that `d^2 = 0`.
We build the category of differential objects, and some basic constructions
such as the forgetful functor, and zero morphisms and zero objects.
-/
open category_theory.limits
universes v u
namespace category_theory
variables (C : Type u) [𝒞 : category.{v} C]
include 𝒞
variables [has_zero_morphisms.{v} C] [has_shift.{v} C]
/--
A differential object in a category with zero morphisms and a shift is
an object `X` equipped with
a morphism `d : X ⟶ X⟦1⟧`, such that `d^2 = 0`.
-/
@[nolint has_inhabited_instance]
structure differential_object :=
(X : C)
(d : X ⟶ X⟦1⟧)
(d_squared' : d ≫ d⟦1⟧' = 0 . obviously)
restate_axiom differential_object.d_squared'
attribute [simp] differential_object.d_squared
variables {C}
namespace differential_object
/--
A morphism of differential objects is a morphism commuting with the differentials.
-/
@[ext, nolint has_inhabited_instance]
structure hom (X Y : differential_object.{v} C) :=
(f : X.X ⟶ Y.X)
(comm' : X.d ≫ f⟦1⟧' = f ≫ Y.d . obviously)
restate_axiom hom.comm'
attribute [simp, reassoc] hom.comm
namespace hom
/-- The identity morphism of a differential object. -/
@[simps]
def id (X : differential_object.{v} C) : hom X X :=
{ f := 𝟙 X.X }
/-- The composition of morphisms of differential objects. -/
@[simps]
def comp {X Y Z : differential_object.{v} C} (f : hom X Y) (g : hom Y Z) : hom X Z :=
{ f := f.f ≫ g.f, }
end hom
instance category_of_differential_objects : category.{v} (differential_object.{v} C) :=
{ hom := hom,
id := hom.id,
comp := λ X Y Z f g, hom.comp f g, }
@[simp]
lemma id_f (X : differential_object.{v} C) : ((𝟙 X) : X ⟶ X).f = 𝟙 (X.X) := rfl
@[simp]
lemma comp_f {X Y Z : differential_object.{v} C} (f : X ⟶ Y) (g : Y ⟶ Z) :
(f ≫ g).f = f.f ≫ g.f :=
rfl
variables (C)
/-- The forgetful functor taking a differential object to its underlying object. -/
def forget : (differential_object.{v} C) ⥤ C :=
{ obj := λ X, X.X,
map := λ X Y f, f.f, }
instance forget_faithful : faithful (forget C) :=
{ }
instance has_zero_morphisms : has_zero_morphisms.{v} (differential_object.{v} C) :=
{ has_zero := λ X Y,
⟨{ f := 0, }⟩}
variables {C}
@[simp]
lemma zero_f (P Q : differential_object.{v} C) : (0 : P ⟶ Q).f = 0 := rfl
end differential_object
end category_theory
namespace category_theory
namespace differential_object
variables (C : Type u) [𝒞 : category.{v} C]
include 𝒞
variables [has_zero_object.{v} C] [has_zero_morphisms.{v} C] [has_shift.{v} C]
local attribute [instance] has_zero_object.has_zero
instance has_zero_object : has_zero_object.{v} (differential_object.{v} C) :=
{ zero :=
{ X := (0 : C),
d := 0, },
unique_to := λ X, ⟨⟨{ f := 0 }⟩, λ f, (by ext)⟩,
unique_from := λ X, ⟨⟨{ f := 0 }⟩, λ f, (by ext)⟩, }
end differential_object
namespace differential_object
variables (C : Type (u+1)) [large_category C] [𝒞 : concrete_category C]
[has_zero_morphisms.{u} C] [has_shift.{u} C]
include 𝒞
instance concrete_category_of_differential_objects :
concrete_category (differential_object.{u} C) :=
{ forget := forget C ⋙ category_theory.forget C }
instance : has_forget₂ (differential_object.{u} C) C :=
{ forget₂ := forget C }
end differential_object
end category_theory
|
de2bf278698c1185569030e251838483a2686053
|
3ed5a65c1ab3ce5d1a094edce8fa3287980f197b
|
/src/herstein/ex2_5/Q_13.lean
|
6baf96c84b69a1082d06656dc5664e4cc0e5841e
|
[] |
no_license
|
group-study-group/herstein
|
35d32e77158efa2cc303c84e1ee5e3bc80831137
|
f5a1a72eb56fa19c19ece0cb3ab6cf7ffd161f66
|
refs/heads/master
| 1,586,202,191,519
| 1,548,969,759,000
| 1,548,969,759,000
| 157,746,953
| 0
| 0
| null | 1,542,412,901,000
| 1,542,302,366,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 962
|
lean
|
import algebra.group group_theory.subgroup
variables {G: Type*}
def normaliser (a: G) [group G]: set G :=
{ x: G | a * x = x * a }
theorem Q_13 (a: G) [group G]:
is_subgroup (normaliser a) := {
one_mem := calc
a * 1 = 1 * a: by rw [mul_one, one_mul],
mul_mem := λ g h hg hh, calc
a * (g * h) = (a * g) * h : (mul_assoc _ _ _).symm
... = (g * a) * h : hg ▸ rfl
... = g * (a * h) : mul_assoc _ _ _
... = g * (h * a) : hh ▸ rfl
... = (g * h) * a : (mul_assoc _ _ _).symm,
inv_mem := λ g hg, calc
a * g⁻¹ = (g⁻¹ * g) * (a * g⁻¹) : (mul_left_inv g).symm ▸ (one_mul _).symm
... = g⁻¹ * (g * a) * g⁻¹ : by rw [ ←mul_assoc, mul_assoc g⁻¹ ]
... = g⁻¹ * (a * g) * g⁻¹ : hg ▸ rfl
... = (g⁻¹ * a) * g * g⁻¹ : mul_assoc g⁻¹ a g ▸ rfl
... = g⁻¹ * a : mul_inv_cancel_right (g⁻¹ * a) g
}
|
0e6c3a09bc23ed86efdd123955cfbba46b937475
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/data/bitvec/core.lean
|
3053d766e754ebd176ec9531c8678e6fb24edb71
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,794
|
lean
|
/-
Copyright (c) 2015 Joe Hendrix. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joe Hendrix, Sebastian Ullrich
-/
import data.vector.basic
import data.nat.basic
/-!
# Basic operations on bitvectors
This is a work-in-progress, and contains additions to other theories.
This file was moved to mathlib from core Lean in the switch to Lean 3.20.0c.
It is not fully in compliance with mathlib style standards.
-/
/-- `bitvec n` is a `vector` of `bool` with length `n`. -/
@[reducible] def bitvec (n : ℕ) := vector bool n
namespace bitvec
open nat
open vector
local infix `++ₜ`:65 := vector.append
/-- Create a zero bitvector -/
@[reducible] protected def zero (n : ℕ) : bitvec n := repeat ff n
/-- Create a bitvector of length `n` whose `n-1`st entry is 1 and other entries are 0. -/
@[reducible] protected def one : Π (n : ℕ), bitvec n
| 0 := nil
| (succ n) := repeat ff n ++ₜ tt::ᵥnil
/-- Create a bitvector from another with a provably equal length. -/
protected def cong {a b : ℕ} (h : a = b) : bitvec a → bitvec b
| ⟨x, p⟩ := ⟨x, h ▸ p⟩
/-- `bitvec` specific version of `vector.append` -/
def append {m n} : bitvec m → bitvec n → bitvec (m + n) := vector.append
/-! ### Shift operations -/
section shift
variable {n : ℕ}
/-- `shl x i` is the bitvector obtained by left-shifting `x` `i` times and padding with `ff`.
If `x.length < i` then this will return the all-`ff`s bitvector. -/
def shl (x : bitvec n) (i : ℕ) : bitvec n :=
bitvec.cong (by simp) $
drop i x ++ₜ repeat ff (min n i)
/-- `fill_shr x i fill` is the bitvector obtained by right-shifting `x` `i` times and then
padding with `fill : bool`. If `x.length < i` then this will return the constant `fill`
bitvector. -/
def fill_shr (x : bitvec n) (i : ℕ) (fill : bool) : bitvec n :=
bitvec.cong
begin
by_cases (i ≤ n),
{ have h₁ := nat.sub_le n i,
rw [min_eq_right h],
rw [min_eq_left h₁, ← add_tsub_assoc_of_le h, nat.add_comm, add_tsub_cancel_right] },
{ have h₁ := le_of_not_ge h,
rw [min_eq_left h₁, tsub_eq_zero_iff_le.mpr h₁, zero_min, nat.add_zero] }
end $
repeat fill (min n i) ++ₜ take (n-i) x
/-- unsigned shift right -/
def ushr (x : bitvec n) (i : ℕ) : bitvec n :=
fill_shr x i ff
/-- signed shift right -/
def sshr : Π {m : ℕ}, bitvec m → ℕ → bitvec m
| 0 _ _ := nil
| (succ m) x i := head x ::ᵥ fill_shr (tail x) i (head x)
end shift
/-! ### Bitwise operations -/
section bitwise
variable {n : ℕ}
/-- bitwise not -/
def not : bitvec n → bitvec n := map bnot
/-- bitwise and -/
def and : bitvec n → bitvec n → bitvec n := map₂ band
/-- bitwise or -/
def or : bitvec n → bitvec n → bitvec n := map₂ bor
/-- bitwise xor -/
def xor : bitvec n → bitvec n → bitvec n := map₂ bxor
end bitwise
/-! ### Arithmetic operators -/
section arith
variable {n : ℕ}
/-- `xor3 x y c` is `((x XOR y) XOR c)`. -/
protected def xor3 (x y c : bool) := bxor (bxor x y) c
/-- `carry x y c` is `x && y || x && c || y && c`. -/
protected def carry (x y c : bool) :=
x && y || x && c || y && c
/-- `neg x` is the two's complement of `x`. -/
protected def neg (x : bitvec n) : bitvec n :=
let f := λ y c, (y || c, bxor y c) in
prod.snd (map_accumr f x ff)
/-- Add with carry (no overflow) -/
def adc (x y : bitvec n) (c : bool) : bitvec (n+1) :=
let f := λ x y c, (bitvec.carry x y c, bitvec.xor3 x y c) in
let ⟨c, z⟩ := vector.map_accumr₂ f x y c in
c ::ᵥ z
/-- The sum of two bitvectors -/
protected def add (x y : bitvec n) : bitvec n := tail (adc x y ff)
/-- Subtract with borrow -/
def sbb (x y : bitvec n) (b : bool) : bool × bitvec n :=
let f := λ x y c, (bitvec.carry (bnot x) y c, bitvec.xor3 x y c) in
vector.map_accumr₂ f x y b
/-- The difference of two bitvectors -/
protected def sub (x y : bitvec n) : bitvec n := prod.snd (sbb x y ff)
instance : has_zero (bitvec n) := ⟨bitvec.zero n⟩
instance : has_one (bitvec n) := ⟨bitvec.one n⟩
instance : has_add (bitvec n) := ⟨bitvec.add⟩
instance : has_sub (bitvec n) := ⟨bitvec.sub⟩
instance : has_neg (bitvec n) := ⟨bitvec.neg⟩
/-- The product of two bitvectors -/
protected def mul (x y : bitvec n) : bitvec n :=
let f := λ r b, cond b (r + r + y) (r + r) in
(to_list x).foldl f 0
instance : has_mul (bitvec n) := ⟨bitvec.mul⟩
end arith
/-! ### Comparison operators -/
section comparison
variable {n : ℕ}
/-- `uborrow x y` returns `tt` iff the "subtract with borrow" operation on `x`, `y` and `ff`
required a borrow. -/
def uborrow (x y : bitvec n) : bool := prod.fst (sbb x y ff)
/-- unsigned less-than proposition -/
def ult (x y : bitvec n) : Prop := uborrow x y
/-- unsigned greater-than proposition -/
def ugt (x y : bitvec n) : Prop := ult y x
/-- unsigned less-than-or-equal-to proposition -/
def ule (x y : bitvec n) : Prop := ¬ (ult y x)
/-- unsigned greater-than-or-equal-to proposition -/
def uge (x y : bitvec n) : Prop := ule y x
/-- `sborrow x y` returns `tt` iff `x < y` as two's complement integers -/
def sborrow : Π {n : ℕ}, bitvec n → bitvec n → bool
| 0 _ _ := ff
| (succ n) x y :=
match (head x, head y) with
| (tt, ff) := tt
| (ff, tt) := ff
| _ := uborrow (tail x) (tail y)
end
/-- signed less-than proposition -/
def slt (x y : bitvec n) : Prop := sborrow x y
/-- signed greater-than proposition -/
def sgt (x y : bitvec n) : Prop := slt y x
/-- signed less-than-or-equal-to proposition -/
def sle (x y : bitvec n) : Prop := ¬ (slt y x)
/-- signed greater-than-or-equal-to proposition -/
def sge (x y : bitvec n) : Prop := sle y x
end comparison
/-! ### Conversion to `nat` and `int` -/
section conversion
variable {α : Type}
/-- Create a bitvector from a `nat` -/
protected def of_nat : Π (n : ℕ), nat → bitvec n
| 0 x := nil
| (succ n) x := of_nat n (x / 2) ++ₜ to_bool (x % 2 = 1) ::ᵥ nil
/-- Create a bitvector in the two's complement representation from an `int` -/
protected def of_int : Π (n : ℕ), int → bitvec (succ n)
| n (int.of_nat m) := ff ::ᵥ bitvec.of_nat n m
| n (int.neg_succ_of_nat m) := tt ::ᵥ not (bitvec.of_nat n m)
/-- `add_lsb r b` is `r + r + 1` if `b` is `tt` and `r + r` otherwise. -/
def add_lsb (r : ℕ) (b : bool) := r + r + cond b 1 0
/-- Given a `list` of `bool`s, return the `nat` they represent as a list of binary digits. -/
def bits_to_nat (v : list bool) : nat :=
v.foldl add_lsb 0
/-- Return the natural number encoded by the input bitvector -/
protected def to_nat {n : nat} (v : bitvec n) : nat :=
bits_to_nat (to_list v)
theorem bits_to_nat_to_list {n : ℕ} (x : bitvec n) :
bitvec.to_nat x = bits_to_nat (vector.to_list x) := rfl
local attribute [simp] nat.add_comm nat.add_assoc nat.add_left_comm nat.mul_comm nat.mul_assoc
local attribute [simp] nat.zero_add nat.add_zero nat.one_mul nat.mul_one nat.zero_mul nat.mul_zero
-- mul_left_comm
theorem to_nat_append {m : ℕ} (xs : bitvec m) (b : bool) :
bitvec.to_nat (xs ++ₜ b::ᵥnil) = bitvec.to_nat xs * 2 + bitvec.to_nat (b::ᵥnil) :=
begin
cases xs with xs P,
simp [bits_to_nat_to_list], clear P,
unfold bits_to_nat list.foldl,
-- generalize the accumulator of foldl
generalize h : 0 = x, conv in (add_lsb x b) { rw ←h }, clear h,
simp,
induction xs with x xs generalizing x,
{ simp, unfold list.foldl add_lsb, simp [nat.mul_succ] },
{ simp, apply xs_ih }
end
theorem bits_to_nat_to_bool (n : ℕ)
: bitvec.to_nat (to_bool (n % 2 = 1) ::ᵥ nil) = n % 2 :=
begin
simp [bits_to_nat_to_list],
unfold bits_to_nat add_lsb list.foldl cond,
simp [cond_to_bool_mod_two],
end
theorem of_nat_succ {k n : ℕ}
: bitvec.of_nat (succ k) n = bitvec.of_nat k (n / 2) ++ₜ to_bool (n % 2 = 1) ::ᵥ nil :=
rfl
theorem to_nat_of_nat {k n : ℕ}
: bitvec.to_nat (bitvec.of_nat k n) = n % 2 ^ k :=
begin
induction k with k ih generalizing n,
{ simp [nat.mod_one], refl },
{ have h : 0 < 2, { apply le_succ },
rw [of_nat_succ, to_nat_append, ih, bits_to_nat_to_bool, mod_pow_succ h, nat.mul_comm] }
end
/-- Return the integer encoded by the input bitvector -/
protected def to_int : Π {n : nat}, bitvec n → int
| 0 _ := 0
| (succ n) v :=
cond (head v)
(int.neg_succ_of_nat $ bitvec.to_nat $ not $ tail v)
(int.of_nat $ bitvec.to_nat $ tail v)
end conversion
/-! ### Miscellaneous instances -/
private def repr {n : nat} : bitvec n → string
| ⟨bs, p⟩ :=
"0b" ++ (bs.map (λ b : bool, if b then '1' else '0')).as_string
instance (n : nat) : has_repr (bitvec n) :=
⟨repr⟩
end bitvec
instance {n} {x y : bitvec n} : decidable (bitvec.ult x y) := bool.decidable_eq _ _
instance {n} {x y : bitvec n} : decidable (bitvec.ugt x y) := bool.decidable_eq _ _
|
3ba0b3ea3b87171688fe58ee0586d299d6c13c19
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/model_theory/syntax.lean
|
d93d18ac26b9a2f68cbab8623e21ed28f533052e
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 38,809
|
lean
|
/-
Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn
-/
import data.set.prod
import logic.equiv.fin
import model_theory.language_map
/-!
# Basics on First-Order Syntax
This file defines first-order terms, formulas, sentences, and theories in a style inspired by the
[Flypitch project](https://flypitch.github.io/).
## Main Definitions
* A `first_order.language.term` is defined so that `L.term α` is the type of `L`-terms with free
variables indexed by `α`.
* A `first_order.language.formula` is defined so that `L.formula α` is the type of `L`-formulas with
free variables indexed by `α`.
* A `first_order.language.sentence` is a formula with no free variables.
* A `first_order.language.Theory` is a set of sentences.
* The variables of terms and formulas can be relabelled with `first_order.language.term.relabel`,
`first_order.language.bounded_formula.relabel`, and `first_order.language.formula.relabel`.
* Given an operation on terms and an operation on relations,
`first_order.language.bounded_formula.map_term_rel` gives an operation on formulas.
* `first_order.language.bounded_formula.cast_le` adds more `fin`-indexed variables.
* `first_order.language.bounded_formula.lift_at` raises the indexes of the `fin`-indexed variables
above a particular index.
* `first_order.language.term.subst` and `first_order.language.bounded_formula.subst` substitute
variables with given terms.
* Language maps can act on syntactic objects with functions such as
`first_order.language.Lhom.on_formula`.
* `first_order.language.term.constants_vars_equiv` and
`first_order.language.bounded_formula.constants_vars_equiv` switch terms and formulas between having
constants in the language and having extra variables indexed by the same type.
## Implementation Notes
* Formulas use a modified version of de Bruijn variables. Specifically, a `L.bounded_formula α n`
is a formula with some variables indexed by a type `α`, which cannot be quantified over, and some
indexed by `fin n`, which can. For any `φ : L.bounded_formula α (n + 1)`, we define the formula
`∀' φ : L.bounded_formula α n` by universally quantifying over the variable indexed by
`n : fin (n + 1)`.
## References
For the Flypitch project:
- [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*]
[flypitch_cpp]
- [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of
the continuum hypothesis*][flypitch_itp]
-/
universes u v w u' v'
namespace first_order
namespace language
variables (L : language.{u v}) {L' : language}
variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P]
variables {α : Type u'} {β : Type v'} {γ : Type*}
open_locale first_order
open Structure fin
/-- A term on `α` is either a variable indexed by an element of `α`
or a function symbol applied to simpler terms. -/
inductive term (α : Type u') : Type (max u u')
| var {} : ∀ (a : α), term
| func {} : ∀ {l : ℕ} (f : L.functions l) (ts : fin l → term), term
export term
variable {L}
namespace term
open finset
/-- The `finset` of variables used in a given term. -/
@[simp] def var_finset [decidable_eq α] : L.term α → finset α
| (var i) := {i}
| (func f ts) := univ.bUnion (λ i, (ts i).var_finset)
/-- The `finset` of variables from the left side of a sum used in a given term. -/
@[simp] def var_finset_left [decidable_eq α] : L.term (α ⊕ β) → finset α
| (var (sum.inl i)) := {i}
| (var (sum.inr i)) := ∅
| (func f ts) := univ.bUnion (λ i, (ts i).var_finset_left)
/-- Relabels a term's variables along a particular function. -/
@[simp] def relabel (g : α → β) : L.term α → L.term β
| (var i) := var (g i)
| (func f ts) := func f (λ i, (ts i).relabel)
lemma relabel_id (t : L.term α) :
t.relabel id = t :=
begin
induction t with _ _ _ _ ih,
{ refl, },
{ simp [ih] },
end
@[simp] lemma relabel_id_eq_id :
(term.relabel id : L.term α → L.term α) = id :=
funext relabel_id
@[simp] lemma relabel_relabel (f : α → β) (g : β → γ) (t : L.term α) :
(t.relabel f).relabel g = t.relabel (g ∘ f) :=
begin
induction t with _ _ _ _ ih,
{ refl, },
{ simp [ih] },
end
@[simp] lemma relabel_comp_relabel (f : α → β) (g : β → γ) :
(term.relabel g ∘ term.relabel f : L.term α → L.term γ) = term.relabel (g ∘ f) :=
funext (relabel_relabel f g)
/-- Relabels a term's variables along a bijection. -/
@[simps] def relabel_equiv (g : α ≃ β) : L.term α ≃ L.term β :=
⟨relabel g, relabel g.symm, λ t, by simp, λ t, by simp⟩
/-- Restricts a term to use only a set of the given variables. -/
def restrict_var [decidable_eq α] : Π (t : L.term α) (f : t.var_finset → β), L.term β
| (var a) f := var (f ⟨a, mem_singleton_self a⟩)
| (func F ts) f := func F (λ i, (ts i).restrict_var
(f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i))))
/-- Restricts a term to use only a set of the given variables on the left side of a sum. -/
def restrict_var_left [decidable_eq α] {γ : Type*} :
Π (t : L.term (α ⊕ γ)) (f : t.var_finset_left → β), L.term (β ⊕ γ)
| (var (sum.inl a)) f := var (sum.inl (f ⟨a, mem_singleton_self a⟩))
| (var (sum.inr a)) f := var (sum.inr a)
| (func F ts) f := func F (λ i, (ts i).restrict_var_left
(f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i))))
end term
/-- The representation of a constant symbol as a term. -/
def constants.term (c : L.constants) : (L.term α) :=
func c default
/-- Applies a unary function to a term. -/
def functions.apply₁ (f : L.functions 1) (t : L.term α) : L.term α := func f ![t]
/-- Applies a binary function to two terms. -/
def functions.apply₂ (f : L.functions 2) (t₁ t₂ : L.term α) : L.term α := func f ![t₁, t₂]
namespace term
/-- Sends a term with constants to a term with extra variables. -/
@[simp] def constants_to_vars : L[[γ]].term α → L.term (γ ⊕ α)
| (var a) := var (sum.inr a)
| (@func _ _ 0 f ts) := sum.cases_on f (λ f, func f (λ i, (ts i).constants_to_vars))
(λ c, var (sum.inl c))
| (@func _ _ (n + 1) f ts) := sum.cases_on f (λ f, func f (λ i, (ts i).constants_to_vars))
(λ c, is_empty_elim c)
/-- Sends a term with extra variables to a term with constants. -/
@[simp] def vars_to_constants : L.term (γ ⊕ α) → L[[γ]].term α
| (var (sum.inr a)) := var a
| (var (sum.inl c)) := constants.term (sum.inr c)
| (func f ts) := func (sum.inl f) (λ i, (ts i).vars_to_constants)
/-- A bijection between terms with constants and terms with extra variables. -/
@[simps] def constants_vars_equiv : L[[γ]].term α ≃ L.term (γ ⊕ α) :=
⟨constants_to_vars, vars_to_constants, begin
intro t,
induction t with _ n f _ ih,
{ refl },
{ cases n,
{ cases f,
{ simp [constants_to_vars, vars_to_constants, ih] },
{ simp [constants_to_vars, vars_to_constants, constants.term] } },
{ cases f,
{ simp [constants_to_vars, vars_to_constants, ih] },
{ exact is_empty_elim f } } }
end, begin
intro t,
induction t with x n f _ ih,
{ cases x;
refl },
{ cases n;
{ simp [vars_to_constants, constants_to_vars, ih] } }
end⟩
/-- A bijection between terms with constants and terms with extra variables. -/
def constants_vars_equiv_left : L[[γ]].term (α ⊕ β) ≃ L.term ((γ ⊕ α) ⊕ β) :=
constants_vars_equiv.trans (relabel_equiv (equiv.sum_assoc _ _ _)).symm
@[simp] lemma constants_vars_equiv_left_apply (t : L[[γ]].term (α ⊕ β)) :
constants_vars_equiv_left t = (constants_to_vars t).relabel (equiv.sum_assoc _ _ _).symm :=
rfl
@[simp] lemma constants_vars_equiv_left_symm_apply (t : L.term ((γ ⊕ α) ⊕ β)) :
constants_vars_equiv_left.symm t = vars_to_constants (t.relabel (equiv.sum_assoc _ _ _)) :=
rfl
instance inhabited_of_var [inhabited α] : inhabited (L.term α) :=
⟨var default⟩
instance inhabited_of_constant [inhabited L.constants] : inhabited (L.term α) :=
⟨(default : L.constants).term⟩
/-- Raises all of the `fin`-indexed variables of a term greater than or equal to `m` by `n'`. -/
def lift_at {n : ℕ} (n' m : ℕ) : L.term (α ⊕ fin n) → L.term (α ⊕ fin (n + n')) :=
relabel (sum.map id (λ i, if ↑i < m then fin.cast_add n' i else fin.add_nat n' i))
/-- Substitutes the variables in a given term with terms. -/
@[simp] def subst : L.term α → (α → L.term β) → L.term β
| (var a) tf := tf a
| (func f ts) tf := (func f (λ i, (ts i).subst tf))
end term
localized "prefix (name := language.term.var) `&`:max :=
first_order.language.term.var ∘ sum.inr" in first_order
namespace Lhom
/-- Maps a term's symbols along a language map. -/
@[simp] def on_term (φ : L →ᴸ L') : L.term α → L'.term α
| (var i) := var i
| (func f ts) := func (φ.on_function f) (λ i, on_term (ts i))
@[simp] lemma id_on_term :
((Lhom.id L).on_term : L.term α → L.term α) = id :=
begin
ext t,
induction t with _ _ _ _ ih,
{ refl },
{ simp_rw [on_term, ih],
refl, },
end
@[simp] lemma comp_on_term {L'' : language} (φ : L' →ᴸ L'') (ψ : L →ᴸ L') :
((φ.comp ψ).on_term : L.term α → L''.term α) = φ.on_term ∘ ψ.on_term :=
begin
ext t,
induction t with _ _ _ _ ih,
{ refl },
{ simp_rw [on_term, ih],
refl, },
end
end Lhom
/-- Maps a term's symbols along a language equivalence. -/
@[simps] def Lequiv.on_term (φ : L ≃ᴸ L') : L.term α ≃ L'.term α :=
{ to_fun := φ.to_Lhom.on_term,
inv_fun := φ.inv_Lhom.on_term,
left_inv := by rw [function.left_inverse_iff_comp, ← Lhom.comp_on_term, φ.left_inv,
Lhom.id_on_term],
right_inv := by rw [function.right_inverse_iff_comp, ← Lhom.comp_on_term, φ.right_inv,
Lhom.id_on_term] }
variables (L) (α)
/-- `bounded_formula α n` is the type of formulas with free variables indexed by `α` and up to `n`
additional free variables. -/
inductive bounded_formula : ℕ → Type (max u v u')
| falsum {} {n} : bounded_formula n
| equal {n} (t₁ t₂ : L.term (α ⊕ fin n)) : bounded_formula n
| rel {n l : ℕ} (R : L.relations l) (ts : fin l → L.term (α ⊕ fin n)) : bounded_formula n
| imp {n} (f₁ f₂ : bounded_formula n) : bounded_formula n
| all {n} (f : bounded_formula (n+1)) : bounded_formula n
/-- `formula α` is the type of formulas with all free variables indexed by `α`. -/
@[reducible] def formula := L.bounded_formula α 0
/-- A sentence is a formula with no free variables. -/
@[reducible] def sentence := L.formula empty
/-- A theory is a set of sentences. -/
@[reducible] def Theory := set L.sentence
variables {L} {α} {n : ℕ}
/-- Applies a relation to terms as a bounded formula. -/
def relations.bounded_formula {l : ℕ} (R : L.relations n) (ts : fin n → L.term (α ⊕ fin l)) :
L.bounded_formula α l := bounded_formula.rel R ts
/-- Applies a unary relation to a term as a bounded formula. -/
def relations.bounded_formula₁ (r : L.relations 1) (t : L.term (α ⊕ fin n)) :
L.bounded_formula α n :=
r.bounded_formula ![t]
/-- Applies a binary relation to two terms as a bounded formula. -/
def relations.bounded_formula₂ (r : L.relations 2) (t₁ t₂ : L.term (α ⊕ fin n)) :
L.bounded_formula α n :=
r.bounded_formula ![t₁, t₂]
/-- The equality of two terms as a bounded formula. -/
def term.bd_equal (t₁ t₂ : L.term (α ⊕ fin n)) : (L.bounded_formula α n) :=
bounded_formula.equal t₁ t₂
/-- Applies a relation to terms as a bounded formula. -/
def relations.formula (R : L.relations n) (ts : fin n → L.term α) :
L.formula α := R.bounded_formula (λ i, (ts i).relabel sum.inl)
/-- Applies a unary relation to a term as a formula. -/
def relations.formula₁ (r : L.relations 1) (t : L.term α) :
L.formula α :=
r.formula ![t]
/-- Applies a binary relation to two terms as a formula. -/
def relations.formula₂ (r : L.relations 2) (t₁ t₂ : L.term α) :
L.formula α :=
r.formula ![t₁, t₂]
/-- The equality of two terms as a first-order formula. -/
def term.equal (t₁ t₂ : L.term α) : (L.formula α) :=
(t₁.relabel sum.inl).bd_equal (t₂.relabel sum.inl)
namespace bounded_formula
instance : inhabited (L.bounded_formula α n) :=
⟨falsum⟩
instance : has_bot (L.bounded_formula α n) := ⟨falsum⟩
/-- The negation of a bounded formula is also a bounded formula. -/
@[pattern] protected def not (φ : L.bounded_formula α n) : L.bounded_formula α n := φ.imp ⊥
/-- Puts an `∃` quantifier on a bounded formula. -/
@[pattern] protected def ex (φ : L.bounded_formula α (n + 1)) : L.bounded_formula α n :=
φ.not.all.not
instance : has_top (L.bounded_formula α n) := ⟨bounded_formula.not ⊥⟩
instance : has_inf (L.bounded_formula α n) := ⟨λ f g, (f.imp g.not).not⟩
instance : has_sup (L.bounded_formula α n) := ⟨λ f g, f.not.imp g⟩
/-- The biimplication between two bounded formulas. -/
protected def iff (φ ψ : L.bounded_formula α n) := φ.imp ψ ⊓ ψ.imp φ
open finset
/-- The `finset` of variables used in a given formula. -/
@[simp] def free_var_finset [decidable_eq α] :
∀ {n}, L.bounded_formula α n → finset α
| n falsum := ∅
| n (equal t₁ t₂) := t₁.var_finset_left ∪ t₂.var_finset_left
| n (rel R ts) := univ.bUnion (λ i, (ts i).var_finset_left)
| n (imp f₁ f₂) := f₁.free_var_finset ∪ f₂.free_var_finset
| n (all f) := f.free_var_finset
/-- Casts `L.bounded_formula α m` as `L.bounded_formula α n`, where `m ≤ n`. -/
@[simp] def cast_le : ∀ {m n : ℕ} (h : m ≤ n), L.bounded_formula α m → L.bounded_formula α n
| m n h falsum := falsum
| m n h (equal t₁ t₂) := equal (t₁.relabel (sum.map id (fin.cast_le h)))
(t₂.relabel (sum.map id (fin.cast_le h)))
| m n h (rel R ts) := rel R (term.relabel (sum.map id (fin.cast_le h)) ∘ ts)
| m n h (imp f₁ f₂) := (f₁.cast_le h).imp (f₂.cast_le h)
| m n h (all f) := (f.cast_le (add_le_add_right h 1)).all
@[simp] lemma cast_le_rfl {n} (h : n ≤ n) (φ : L.bounded_formula α n) :
φ.cast_le h = φ :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp [fin.cast_le_of_eq], },
{ simp [fin.cast_le_of_eq], },
{ simp [fin.cast_le_of_eq, ih1, ih2], },
{ simp [fin.cast_le_of_eq, ih3], },
end
@[simp] lemma cast_le_cast_le {k m n} (km : k ≤ m) (mn : m ≤ n) (φ : L.bounded_formula α k) :
(φ.cast_le km).cast_le mn = φ.cast_le (km.trans mn) :=
begin
revert m n,
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3;
intros m n km mn,
{ refl },
{ simp },
{ simp only [cast_le, eq_self_iff_true, heq_iff_eq, true_and],
rw [← function.comp.assoc, relabel_comp_relabel],
simp },
{ simp [ih1, ih2] },
{ simp only [cast_le, ih3] }
end
@[simp] lemma cast_le_comp_cast_le {k m n} (km : k ≤ m) (mn : m ≤ n) :
(bounded_formula.cast_le mn ∘ bounded_formula.cast_le km :
L.bounded_formula α k → L.bounded_formula α n) =
bounded_formula.cast_le (km.trans mn) :=
funext (cast_le_cast_le km mn)
/-- Restricts a bounded formula to only use a particular set of free variables. -/
def restrict_free_var [decidable_eq α] : Π {n : ℕ} (φ : L.bounded_formula α n)
(f : φ.free_var_finset → β), L.bounded_formula β n
| n falsum f := falsum
| n (equal t₁ t₂) f := equal
(t₁.restrict_var_left (f ∘ set.inclusion (subset_union_left _ _)))
(t₂.restrict_var_left (f ∘ set.inclusion (subset_union_right _ _)))
| n (rel R ts) f := rel R (λ i, (ts i).restrict_var_left
(f ∘ set.inclusion (subset_bUnion_of_mem _ (mem_univ i))))
| n (imp φ₁ φ₂) f :=
(φ₁.restrict_free_var (f ∘ set.inclusion (subset_union_left _ _))).imp
(φ₂.restrict_free_var (f ∘ set.inclusion (subset_union_right _ _)))
| n (all φ) f := (φ.restrict_free_var f).all
/-- Places universal quantifiers on all extra variables of a bounded formula. -/
def alls : ∀ {n}, L.bounded_formula α n → L.formula α
| 0 φ := φ
| (n + 1) φ := φ.all.alls
/-- Places existential quantifiers on all extra variables of a bounded formula. -/
def exs : ∀ {n}, L.bounded_formula α n → L.formula α
| 0 φ := φ
| (n + 1) φ := φ.ex.exs
/-- Maps bounded formulas along a map of terms and a map of relations. -/
def map_term_rel {g : ℕ → ℕ}
(ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin (g n)))
(fr : ∀ n, L.relations n → L'.relations n)
(h : ∀ n, L'.bounded_formula β (g (n + 1)) → L'.bounded_formula β (g n + 1)) :
∀ {n}, L.bounded_formula α n → L'.bounded_formula β (g n)
| n falsum := falsum
| n (equal t₁ t₂) := equal (ft _ t₁) (ft _ t₂)
| n (rel R ts) := rel (fr _ R) (λ i, ft _ (ts i))
| n (imp φ₁ φ₂) := φ₁.map_term_rel.imp φ₂.map_term_rel
| n (all φ) := (h n φ.map_term_rel).all
/-- Raises all of the `fin`-indexed variables of a formula greater than or equal to `m` by `n'`. -/
def lift_at : ∀ {n : ℕ} (n' m : ℕ), L.bounded_formula α n → L.bounded_formula α (n + n') :=
λ n n' m φ, φ.map_term_rel (λ k t, t.lift_at n' m) (λ _, id)
(λ _, cast_le (by rw [add_assoc, add_comm 1, add_assoc]))
@[simp] lemma map_term_rel_map_term_rel {L'' : language}
(ft : ∀ n, L.term (α ⊕ fin n) → L'.term (β ⊕ fin n))
(fr : ∀ n, L.relations n → L'.relations n)
(ft' : ∀ n, L'.term (β ⊕ fin n) → L''.term (γ ⊕ fin n))
(fr' : ∀ n, L'.relations n → L''.relations n)
{n} (φ : L.bounded_formula α n) :
(φ.map_term_rel ft fr (λ _, id)).map_term_rel ft' fr' (λ _, id) =
φ.map_term_rel (λ _, (ft' _) ∘ (ft _)) (λ _, (fr' _) ∘ (fr _)) (λ _, id) :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp [map_term_rel] },
{ simp [map_term_rel] },
{ simp [map_term_rel, ih1, ih2] },
{ simp [map_term_rel, ih3], }
end
@[simp] lemma map_term_rel_id_id_id {n} (φ : L.bounded_formula α n) :
φ.map_term_rel (λ _, id) (λ _, id) (λ _, id) = φ :=
begin
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp [map_term_rel] },
{ simp [map_term_rel] },
{ simp [map_term_rel, ih1, ih2] },
{ simp [map_term_rel, ih3], }
end
/-- An equivalence of bounded formulas given by an equivalence of terms and an equivalence of
relations. -/
@[simps] def map_term_rel_equiv (ft : ∀ n, L.term (α ⊕ fin n) ≃ L'.term (β ⊕ fin n))
(fr : ∀ n, L.relations n ≃ L'.relations n) {n} :
L.bounded_formula α n ≃ L'.bounded_formula β n :=
⟨map_term_rel (λ n, ft n) (λ n, fr n) (λ _, id),
map_term_rel (λ n, (ft n).symm) (λ n, (fr n).symm) (λ _, id),
λ φ, by simp, λ φ, by simp⟩
/-- A function to help relabel the variables in bounded formulas. -/
def relabel_aux (g : α → β ⊕ fin n) (k : ℕ) :
α ⊕ fin k → β ⊕ fin (n + k) :=
sum.map id fin_sum_fin_equiv ∘ equiv.sum_assoc _ _ _ ∘ sum.map g id
@[simp] lemma sum_elim_comp_relabel_aux {m : ℕ} {g : α → (β ⊕ fin n)}
{v : β → M} {xs : fin (n + m) → M} :
sum.elim v xs ∘ relabel_aux g m =
sum.elim (sum.elim v (xs ∘ cast_add m) ∘ g) (xs ∘ nat_add n) :=
begin
ext x,
cases x,
{ simp only [bounded_formula.relabel_aux, function.comp_app, sum.map_inl, sum.elim_inl],
cases g x with l r;
simp },
{ simp [bounded_formula.relabel_aux] }
end
@[simp] lemma relabel_aux_sum_inl (k : ℕ) :
relabel_aux (sum.inl : α → α ⊕ fin n) k =
sum.map id (nat_add n) :=
begin
ext x,
cases x;
{ simp [relabel_aux] },
end
/-- Relabels a bounded formula's variables along a particular function. -/
def relabel (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α k) :
L.bounded_formula β (n + k) :=
φ.map_term_rel (λ _ t, t.relabel (relabel_aux g _)) (λ _, id)
(λ _, cast_le (ge_of_eq (add_assoc _ _ _)))
@[simp] lemma relabel_falsum (g : α → (β ⊕ fin n)) {k} :
(falsum : L.bounded_formula α k).relabel g = falsum :=
rfl
@[simp] lemma relabel_bot (g : α → (β ⊕ fin n)) {k} :
(⊥ : L.bounded_formula α k).relabel g = ⊥ :=
rfl
@[simp] lemma relabel_imp (g : α → (β ⊕ fin n)) {k} (φ ψ : L.bounded_formula α k) :
(φ.imp ψ).relabel g = (φ.relabel g).imp (ψ.relabel g) :=
rfl
@[simp] lemma relabel_not (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α k) :
φ.not.relabel g = (φ.relabel g).not :=
by simp [bounded_formula.not]
@[simp] lemma relabel_all (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α (k + 1)) :
φ.all.relabel g = (φ.relabel g).all :=
begin
rw [relabel, map_term_rel, relabel],
simp,
end
@[simp] lemma relabel_ex (g : α → (β ⊕ fin n)) {k} (φ : L.bounded_formula α (k + 1)) :
φ.ex.relabel g = (φ.relabel g).ex :=
by simp [bounded_formula.ex]
@[simp] lemma relabel_sum_inl (φ : L.bounded_formula α n) :
(φ.relabel sum.inl : L.bounded_formula α (0 + n)) =
φ.cast_le (ge_of_eq (zero_add n)) :=
begin
simp only [relabel, relabel_aux_sum_inl],
induction φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp [fin.nat_add_zero, cast_le_of_eq, map_term_rel] },
{ simp [fin.nat_add_zero, cast_le_of_eq, map_term_rel] },
{ simp [map_term_rel, ih1, ih2], },
{ simp [map_term_rel, ih3, cast_le], },
end
/-- Substitutes the variables in a given formula with terms. -/
@[simp] def subst {n : ℕ} (φ : L.bounded_formula α n) (f : α → L.term β) : L.bounded_formula β n :=
φ.map_term_rel (λ _ t, t.subst (sum.elim (term.relabel sum.inl ∘ f) (var ∘ sum.inr)))
(λ _, id) (λ _, id)
/-- A bijection sending formulas with constants to formulas with extra variables. -/
def constants_vars_equiv : L[[γ]].bounded_formula α n ≃ L.bounded_formula (γ ⊕ α) n :=
map_term_rel_equiv (λ _, term.constants_vars_equiv_left) (λ _, equiv.sum_empty _ _)
/-- Turns the extra variables of a bounded formula into free variables. -/
@[simp] def to_formula : ∀ {n : ℕ}, L.bounded_formula α n → L.formula (α ⊕ fin n)
| n falsum := falsum
| n (equal t₁ t₂) := t₁.equal t₂
| n (rel R ts) := R.formula ts
| n (imp φ₁ φ₂) := φ₁.to_formula.imp φ₂.to_formula
| n (all φ) := (φ.to_formula.relabel
(sum.elim (sum.inl ∘ sum.inl) (sum.map sum.inr id ∘ fin_sum_fin_equiv.symm))).all
variables {l : ℕ} {φ ψ : L.bounded_formula α l} {θ : L.bounded_formula α l.succ}
variables {v : α → M} {xs : fin l → M}
/-- An atomic formula is either equality or a relation symbol applied to terms.
Note that `⊥` and `⊤` are not considered atomic in this convention. -/
inductive is_atomic : L.bounded_formula α n → Prop
| equal (t₁ t₂ : L.term (α ⊕ fin n)) : is_atomic (bd_equal t₁ t₂)
| rel {l : ℕ} (R : L.relations l) (ts : fin l → L.term (α ⊕ fin n)) :
is_atomic (R.bounded_formula ts)
lemma not_all_is_atomic (φ : L.bounded_formula α (n + 1)) :
¬ φ.all.is_atomic :=
λ con, by cases con
lemma not_ex_is_atomic (φ : L.bounded_formula α (n + 1)) :
¬ φ.ex.is_atomic :=
λ con, by cases con
lemma is_atomic.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_atomic)
(f : α → β ⊕ (fin n)) :
(φ.relabel f).is_atomic :=
is_atomic.rec_on h (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _)
lemma is_atomic.lift_at {k m : ℕ} (h : is_atomic φ) : (φ.lift_at k m).is_atomic :=
is_atomic.rec_on h (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _)
lemma is_atomic.cast_le {h : l ≤ n} (hφ : is_atomic φ) :
(φ.cast_le h).is_atomic :=
is_atomic.rec_on hφ (λ _ _, is_atomic.equal _ _) (λ _ _ _, is_atomic.rel _ _)
/-- A quantifier-free formula is a formula defined without quantifiers. These are all equivalent
to boolean combinations of atomic formulas. -/
inductive is_qf : L.bounded_formula α n → Prop
| falsum : is_qf falsum
| of_is_atomic {φ} (h : is_atomic φ) : is_qf φ
| imp {φ₁ φ₂} (h₁ : is_qf φ₁) (h₂ : is_qf φ₂) : is_qf (φ₁.imp φ₂)
lemma is_atomic.is_qf {φ : L.bounded_formula α n} : is_atomic φ → is_qf φ :=
is_qf.of_is_atomic
lemma is_qf_bot : is_qf (⊥ : L.bounded_formula α n) :=
is_qf.falsum
lemma is_qf.not {φ : L.bounded_formula α n} (h : is_qf φ) :
is_qf φ.not :=
h.imp is_qf_bot
lemma is_qf.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_qf)
(f : α → β ⊕ (fin n)) :
(φ.relabel f).is_qf :=
is_qf.rec_on h is_qf_bot (λ _ h, (h.relabel f).is_qf) (λ _ _ _ _ h1 h2, h1.imp h2)
lemma is_qf.lift_at {k m : ℕ} (h : is_qf φ) : (φ.lift_at k m).is_qf :=
is_qf.rec_on h is_qf_bot (λ _ ih, ih.lift_at.is_qf) (λ _ _ _ _ ih1 ih2, ih1.imp ih2)
lemma is_qf.cast_le {h : l ≤ n} (hφ : is_qf φ) :
(φ.cast_le h).is_qf :=
is_qf.rec_on hφ is_qf_bot (λ _ ih, ih.cast_le.is_qf) (λ _ _ _ _ ih1 ih2, ih1.imp ih2)
lemma not_all_is_qf (φ : L.bounded_formula α (n + 1)) :
¬ φ.all.is_qf :=
λ con, begin
cases con with _ con,
exact (φ.not_all_is_atomic con),
end
lemma not_ex_is_qf (φ : L.bounded_formula α (n + 1)) :
¬ φ.ex.is_qf :=
λ con, begin
cases con with _ con _ _ con,
{ exact (φ.not_ex_is_atomic con) },
{ exact not_all_is_qf _ con }
end
/-- Indicates that a bounded formula is in prenex normal form - that is, it consists of quantifiers
applied to a quantifier-free formula. -/
inductive is_prenex : ∀ {n}, L.bounded_formula α n → Prop
| of_is_qf {n} {φ : L.bounded_formula α n} (h : is_qf φ) : is_prenex φ
| all {n} {φ : L.bounded_formula α (n + 1)} (h : is_prenex φ) : is_prenex φ.all
| ex {n} {φ : L.bounded_formula α (n + 1)} (h : is_prenex φ) : is_prenex φ.ex
lemma is_qf.is_prenex {φ : L.bounded_formula α n} : is_qf φ → is_prenex φ :=
is_prenex.of_is_qf
lemma is_atomic.is_prenex {φ : L.bounded_formula α n} (h : is_atomic φ) : is_prenex φ :=
h.is_qf.is_prenex
lemma is_prenex.induction_on_all_not {P : ∀ {n}, L.bounded_formula α n → Prop}
{φ : L.bounded_formula α n}
(h : is_prenex φ)
(hq : ∀ {m} {ψ : L.bounded_formula α m}, ψ.is_qf → P ψ)
(ha : ∀ {m} {ψ : L.bounded_formula α (m + 1)}, P ψ → P ψ.all)
(hn : ∀ {m} {ψ : L.bounded_formula α m}, P ψ → P ψ.not) :
P φ :=
is_prenex.rec_on h (λ _ _, hq) (λ _ _ _, ha) (λ _ _ _ ih, hn (ha (hn ih)))
lemma is_prenex.relabel {m : ℕ} {φ : L.bounded_formula α m} (h : φ.is_prenex)
(f : α → β ⊕ (fin n)) :
(φ.relabel f).is_prenex :=
is_prenex.rec_on h
(λ _ _ h, (h.relabel f).is_prenex)
(λ _ _ _ h, by simp [h.all])
(λ _ _ _ h, by simp [h.ex])
lemma is_prenex.cast_le (hφ : is_prenex φ) :
∀ {n} {h : l ≤ n}, (φ.cast_le h).is_prenex :=
is_prenex.rec_on hφ
(λ _ _ ih _ _, ih.cast_le.is_prenex)
(λ _ _ _ ih _ _, ih.all)
(λ _ _ _ ih _ _, ih.ex)
lemma is_prenex.lift_at {k m : ℕ} (h : is_prenex φ) : (φ.lift_at k m).is_prenex :=
is_prenex.rec_on h
(λ _ _ ih, ih.lift_at.is_prenex)
(λ _ _ _ ih, ih.cast_le.all)
(λ _ _ _ ih, ih.cast_le.ex)
/-- An auxiliary operation to `first_order.language.bounded_formula.to_prenex`.
If `φ` is quantifier-free and `ψ` is in prenex normal form, then `φ.to_prenex_imp_right ψ`
is a prenex normal form for `φ.imp ψ`. -/
def to_prenex_imp_right :
∀ {n}, L.bounded_formula α n → L.bounded_formula α n → L.bounded_formula α n
| n φ (bounded_formula.ex ψ) := ((φ.lift_at 1 n).to_prenex_imp_right ψ).ex
| n φ (all ψ) := ((φ.lift_at 1 n).to_prenex_imp_right ψ).all
| n φ ψ := φ.imp ψ
lemma is_qf.to_prenex_imp_right {φ : L.bounded_formula α n} :
Π {ψ : L.bounded_formula α n}, is_qf ψ → (φ.to_prenex_imp_right ψ = φ.imp ψ)
| _ is_qf.falsum := rfl
| _ (is_qf.of_is_atomic (is_atomic.equal _ _)) := rfl
| _ (is_qf.of_is_atomic (is_atomic.rel _ _)) := rfl
| _ (is_qf.imp is_qf.falsum _) := rfl
| _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.equal _ _)) _) := rfl
| _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.rel _ _)) _) := rfl
| _ (is_qf.imp (is_qf.imp _ _) _) := rfl
lemma is_prenex_to_prenex_imp_right {φ ψ : L.bounded_formula α n}
(hφ : is_qf φ) (hψ : is_prenex ψ) :
is_prenex (φ.to_prenex_imp_right ψ) :=
begin
induction hψ with _ _ hψ _ _ _ ih1 _ _ _ ih2,
{ rw hψ.to_prenex_imp_right,
exact (hφ.imp hψ).is_prenex },
{ exact (ih1 hφ.lift_at).all },
{ exact (ih2 hφ.lift_at).ex }
end
/-- An auxiliary operation to `first_order.language.bounded_formula.to_prenex`.
If `φ` and `ψ` are in prenex normal form, then `φ.to_prenex_imp ψ`
is a prenex normal form for `φ.imp ψ`. -/
def to_prenex_imp :
∀ {n}, L.bounded_formula α n → L.bounded_formula α n → L.bounded_formula α n
| n (bounded_formula.ex φ) ψ := (φ.to_prenex_imp (ψ.lift_at 1 n)).all
| n (all φ) ψ := (φ.to_prenex_imp (ψ.lift_at 1 n)).ex
| _ φ ψ := φ.to_prenex_imp_right ψ
lemma is_qf.to_prenex_imp : Π {φ ψ : L.bounded_formula α n}, φ.is_qf →
φ.to_prenex_imp ψ = φ.to_prenex_imp_right ψ
| _ _ is_qf.falsum := rfl
| _ _ (is_qf.of_is_atomic (is_atomic.equal _ _)) := rfl
| _ _ (is_qf.of_is_atomic (is_atomic.rel _ _)) := rfl
| _ _ (is_qf.imp is_qf.falsum _) := rfl
| _ _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.equal _ _)) _) := rfl
| _ _ (is_qf.imp (is_qf.of_is_atomic (is_atomic.rel _ _)) _) := rfl
| _ _ (is_qf.imp (is_qf.imp _ _) _) := rfl
lemma is_prenex_to_prenex_imp {φ ψ : L.bounded_formula α n}
(hφ : is_prenex φ) (hψ : is_prenex ψ) :
is_prenex (φ.to_prenex_imp ψ) :=
begin
induction hφ with _ _ hφ _ _ _ ih1 _ _ _ ih2,
{ rw hφ.to_prenex_imp,
exact is_prenex_to_prenex_imp_right hφ hψ },
{ exact (ih1 hψ.lift_at).ex },
{ exact (ih2 hψ.lift_at).all }
end
/-- For any bounded formula `φ`, `φ.to_prenex` is a semantically-equivalent formula in prenex normal
form. -/
def to_prenex : ∀ {n}, L.bounded_formula α n → L.bounded_formula α n
| _ falsum := ⊥
| _ (equal t₁ t₂) := t₁.bd_equal t₂
| _ (rel R ts) := rel R ts
| _ (imp f₁ f₂) := f₁.to_prenex.to_prenex_imp f₂.to_prenex
| _ (all f) := f.to_prenex.all
lemma to_prenex_is_prenex (φ : L.bounded_formula α n) :
φ.to_prenex.is_prenex :=
bounded_formula.rec_on φ
(λ _, is_qf_bot.is_prenex)
(λ _ _ _, (is_atomic.equal _ _).is_prenex)
(λ _ _ _ _, (is_atomic.rel _ _).is_prenex)
(λ _ _ _ h1 h2, is_prenex_to_prenex_imp h1 h2)
(λ _ _, is_prenex.all)
end bounded_formula
namespace Lhom
open bounded_formula
/-- Maps a bounded formula's symbols along a language map. -/
@[simp] def on_bounded_formula (g : L →ᴸ L') :
∀ {k : ℕ}, L.bounded_formula α k → L'.bounded_formula α k
| k falsum := falsum
| k (equal t₁ t₂) := (g.on_term t₁).bd_equal (g.on_term t₂)
| k (rel R ts) := (g.on_relation R).bounded_formula (g.on_term ∘ ts)
| k (imp f₁ f₂) := (on_bounded_formula f₁).imp (on_bounded_formula f₂)
| k (all f) := (on_bounded_formula f).all
@[simp] lemma id_on_bounded_formula :
((Lhom.id L).on_bounded_formula : L.bounded_formula α n → L.bounded_formula α n) = id :=
begin
ext f,
induction f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ rw [on_bounded_formula, Lhom.id_on_term, id.def, id.def, id.def, bd_equal] },
{ rw [on_bounded_formula, Lhom.id_on_term],
refl, },
{ rw [on_bounded_formula, ih1, ih2, id.def, id.def, id.def] },
{ rw [on_bounded_formula, ih3, id.def, id.def] }
end
@[simp] lemma comp_on_bounded_formula {L'' : language} (φ : L' →ᴸ L'') (ψ : L →ᴸ L') :
((φ.comp ψ).on_bounded_formula : L.bounded_formula α n → L''.bounded_formula α n) =
φ.on_bounded_formula ∘ ψ.on_bounded_formula :=
begin
ext f,
induction f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3,
{ refl },
{ simp only [on_bounded_formula, comp_on_term, function.comp_app],
refl, },
{ simp only [on_bounded_formula, comp_on_relation, comp_on_term, function.comp_app],
refl },
{ simp only [on_bounded_formula, function.comp_app, ih1, ih2, eq_self_iff_true, and_self], },
{ simp only [ih3, on_bounded_formula, function.comp_app] }
end
/-- Maps a formula's symbols along a language map. -/
def on_formula (g : L →ᴸ L') : L.formula α → L'.formula α :=
g.on_bounded_formula
/-- Maps a sentence's symbols along a language map. -/
def on_sentence (g : L →ᴸ L') : L.sentence → L'.sentence :=
g.on_formula
/-- Maps a theory's symbols along a language map. -/
def on_Theory (g : L →ᴸ L') (T : L.Theory) : L'.Theory :=
g.on_sentence '' T
@[simp] lemma mem_on_Theory {g : L →ᴸ L'} {T : L.Theory} {φ : L'.sentence} :
φ ∈ g.on_Theory T ↔ ∃ φ₀, φ₀ ∈ T ∧ g.on_sentence φ₀ = φ :=
set.mem_image _ _ _
end Lhom
namespace Lequiv
/-- Maps a bounded formula's symbols along a language equivalence. -/
@[simps] def on_bounded_formula (φ : L ≃ᴸ L') :
L.bounded_formula α n ≃ L'.bounded_formula α n :=
{ to_fun := φ.to_Lhom.on_bounded_formula,
inv_fun := φ.inv_Lhom.on_bounded_formula,
left_inv := by rw [function.left_inverse_iff_comp, ← Lhom.comp_on_bounded_formula, φ.left_inv,
Lhom.id_on_bounded_formula],
right_inv := by rw [function.right_inverse_iff_comp, ← Lhom.comp_on_bounded_formula, φ.right_inv,
Lhom.id_on_bounded_formula] }
lemma on_bounded_formula_symm (φ : L ≃ᴸ L') :
(φ.on_bounded_formula.symm : L'.bounded_formula α n ≃ L.bounded_formula α n) =
φ.symm.on_bounded_formula :=
rfl
/-- Maps a formula's symbols along a language equivalence. -/
def on_formula (φ : L ≃ᴸ L') :
L.formula α ≃ L'.formula α :=
φ.on_bounded_formula
@[simp] lemma on_formula_apply (φ : L ≃ᴸ L') :
(φ.on_formula : L.formula α → L'.formula α) = φ.to_Lhom.on_formula :=
rfl
@[simp] lemma on_formula_symm (φ : L ≃ᴸ L') :
(φ.on_formula.symm : L'.formula α ≃ L.formula α) = φ.symm.on_formula :=
rfl
/-- Maps a sentence's symbols along a language equivalence. -/
@[simps] def on_sentence (φ : L ≃ᴸ L') :
L.sentence ≃ L'.sentence :=
φ.on_formula
end Lequiv
localized "infix (name := term.bd_equal)
` =' `:88 := first_order.language.term.bd_equal" in first_order
-- input \~- or \simeq
localized "infixr (name := bounded_formula.imp)
` ⟹ `:62 := first_order.language.bounded_formula.imp" in first_order
-- input \==>
localized "prefix (name := bounded_formula.all)
`∀'`:110 := first_order.language.bounded_formula.all" in first_order
localized "prefix (name := bounded_formula.not)
`∼`:max := first_order.language.bounded_formula.not" in first_order
-- input \~, the ASCII character ~ has too low precedence
localized "infix (name := bounded_formula.iff)
` ⇔ `:61 := first_order.language.bounded_formula.iff" in first_order -- input \<=>
localized "prefix (name := bounded_formula.ex)
`∃'`:110 := first_order.language.bounded_formula.ex" in first_order -- input \ex
namespace formula
/-- Relabels a formula's variables along a particular function. -/
def relabel (g : α → β) : L.formula α → L.formula β :=
@bounded_formula.relabel _ _ _ 0 (sum.inl ∘ g) 0
/-- The graph of a function as a first-order formula. -/
def graph (f : L.functions n) : L.formula (fin (n + 1)) :=
equal (var 0) (func f (λ i, var i.succ))
/-- The negation of a formula. -/
protected def not (φ : L.formula α) : L.formula α := φ.not
/-- The implication between formulas, as a formula. -/
protected def imp : L.formula α → L.formula α → L.formula α := bounded_formula.imp
/-- The biimplication between formulas, as a formula. -/
protected def iff (φ ψ : L.formula α) : L.formula α := φ.iff ψ
lemma is_atomic_graph (f : L.functions n) : (graph f).is_atomic :=
bounded_formula.is_atomic.equal _ _
end formula
namespace relations
variable (r : L.relations 2)
/-- The sentence indicating that a basic relation symbol is reflexive. -/
protected def reflexive : L.sentence := ∀' r.bounded_formula₂ &0 &0
/-- The sentence indicating that a basic relation symbol is irreflexive. -/
protected def irreflexive : L.sentence := ∀' ∼ (r.bounded_formula₂ &0 &0)
/-- The sentence indicating that a basic relation symbol is symmetric. -/
protected def symmetric : L.sentence := ∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ r.bounded_formula₂ &1 &0)
/-- The sentence indicating that a basic relation symbol is antisymmetric. -/
protected def antisymmetric : L.sentence :=
∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ (r.bounded_formula₂ &1 &0 ⟹ term.bd_equal &0 &1))
/-- The sentence indicating that a basic relation symbol is transitive. -/
protected def transitive : L.sentence :=
∀' ∀' ∀' (r.bounded_formula₂ &0 &1 ⟹ r.bounded_formula₂ &1 &2 ⟹ r.bounded_formula₂ &0 &2)
/-- The sentence indicating that a basic relation symbol is total. -/
protected def total : L.sentence :=
∀' ∀' (r.bounded_formula₂ &0 &1 ⊔ r.bounded_formula₂ &1 &0)
end relations
section cardinality
variable (L)
/-- A sentence indicating that a structure has `n` distinct elements. -/
protected def sentence.card_ge (n) : L.sentence :=
(((((list.fin_range n).product (list.fin_range n)).filter (λ ij : _ × _, ij.1 ≠ ij.2)).map
(λ (ij : _ × _), ∼ ((& ij.1).bd_equal (& ij.2)))).foldr (⊓) ⊤).exs
/-- A theory indicating that a structure is infinite. -/
def infinite_theory : L.Theory := set.range (sentence.card_ge L)
/-- A theory that indicates a structure is nonempty. -/
def nonempty_theory : L.Theory := {sentence.card_ge L 1}
/-- A theory indicating that each of a set of constants is distinct. -/
def distinct_constants_theory (s : set α) : L[[α]].Theory :=
(λ ab : α × α, (((L.con ab.1).term.equal (L.con ab.2).term).not)) '' (s ×ˢ s ∩ (set.diagonal α)ᶜ)
variables {L} {α}
open set
lemma monotone_distinct_constants_theory :
monotone (L.distinct_constants_theory : set α → L[[α]].Theory) :=
λ s t st, (image_subset _ (inter_subset_inter_left _ (prod_mono st st)))
lemma directed_distinct_constants_theory :
directed (⊆) (L.distinct_constants_theory : set α → L[[α]].Theory) :=
monotone.directed_le monotone_distinct_constants_theory
lemma distinct_constants_theory_eq_Union (s : set α) :
L.distinct_constants_theory s = ⋃ (t : finset s), L.distinct_constants_theory
(t.map (function.embedding.subtype (λ x, x ∈ s))) :=
begin
classical,
simp only [distinct_constants_theory],
rw [← image_Union, ← Union_inter],
refine congr rfl (congr (congr rfl _) rfl),
ext ⟨i, j⟩,
simp only [prod_mk_mem_set_prod_eq, finset.coe_map, function.embedding.coe_subtype, mem_Union,
mem_image, finset.mem_coe, subtype.exists, subtype.coe_mk, exists_and_distrib_right,
exists_eq_right],
refine ⟨λ h, ⟨{⟨i, h.1⟩, ⟨j, h.2⟩}, ⟨h.1, _⟩, ⟨h.2, _⟩⟩, _⟩,
{ simp },
{ simp },
{ rintros ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩,
exact ⟨is, js⟩ }
end
end cardinality
end language
end first_order
|
5214a4cccab376e34fe0d6365d13c3b5f98ff3cc
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/ring_theory/is_tensor_product.lean
|
e2d58cab89499ba6b69c063ec6fe2ad1dcb08911
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 14,674
|
lean
|
/-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import ring_theory.tensor_product
import algebra.module.ulift
import logic.equiv.transfer_instance
/-!
# The characteristice predicate of tensor product
## Main definitions
- `is_tensor_product`: A predicate on `f : M₁ →ₗ[R] M₂ →ₗ[R] M` expressing that `f` realizes `M` as
the tensor product of `M₁ ⊗[R] M₂`. This is defined by requiring the lift `M₁ ⊗[R] M₂ → M` to be
bijective.
- `is_base_change`: A predicate on an `R`-algebra `S` and a map `f : M →ₗ[R] N` with `N` being a
`S`-module, expressing that `f` realizes `N` as the base change of `M` along `R → S`.
## Main results
- `tensor_product.is_base_change`: `S ⊗[R] M` is the base change of `M` along `R → S`.
-/
universes u v₁ v₂ v₃ v₄
open_locale tensor_product
open tensor_product
section is_tensor_product
variables {R : Type*} [comm_ring R]
variables {M₁ M₂ M M' : Type*}
variables [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M] [add_comm_monoid M']
variables [module R M₁] [module R M₂] [module R M] [module R M']
variable (f : M₁ →ₗ[R] M₂ →ₗ[R] M)
variables {N₁ N₂ N : Type*} [add_comm_monoid N₁] [add_comm_monoid N₂] [add_comm_monoid N]
variables [module R N₁] [module R N₂] [module R N]
variable {g : N₁ →ₗ[R] N₂ →ₗ[R] N}
/--
Given a bilinear map `f : M₁ →ₗ[R] M₂ →ₗ[R] M`, `is_tensor_product f` means that
`M` is the tensor product of `M₁` and `M₂` via `f`.
This is defined by requiring the lift `M₁ ⊗[R] M₂ → M` to be bijective.
-/
def is_tensor_product : Prop := function.bijective (tensor_product.lift f)
variables (R M N) {f}
lemma tensor_product.is_tensor_product : is_tensor_product (tensor_product.mk R M N) :=
begin
delta is_tensor_product,
convert_to function.bijective linear_map.id using 2,
{ apply tensor_product.ext', simp },
{ exact function.bijective_id }
end
variables {R M N}
/-- If `M` is the tensor product of `M₁` and `M₂`, it is linearly equivalent to `M₁ ⊗[R] M₂`. -/
@[simps apply] noncomputable
def is_tensor_product.equiv (h : is_tensor_product f) : M₁ ⊗[R] M₂ ≃ₗ[R] M :=
linear_equiv.of_bijective _ h.1 h.2
@[simp] lemma is_tensor_product.equiv_to_linear_map (h : is_tensor_product f) :
h.equiv.to_linear_map = tensor_product.lift f := rfl
@[simp] lemma is_tensor_product.equiv_symm_apply (h : is_tensor_product f) (x₁ : M₁) (x₂ : M₂) :
h.equiv.symm (f x₁ x₂) = x₁ ⊗ₜ x₂ :=
begin
apply h.equiv.injective,
refine (h.equiv.apply_symm_apply _).trans _,
simp
end
/-- If `M` is the tensor product of `M₁` and `M₂`, we may lift a bilinear map `M₁ →ₗ[R] M₂ →ₗ[R] M'`
to a `M →ₗ[R] M'`. -/
noncomputable
def is_tensor_product.lift (h : is_tensor_product f) (f' : M₁ →ₗ[R] M₂ →ₗ[R] M') : M →ₗ[R] M' :=
(tensor_product.lift f').comp h.equiv.symm.to_linear_map
lemma is_tensor_product.lift_eq (h : is_tensor_product f) (f' : M₁ →ₗ[R] M₂ →ₗ[R] M')
(x₁ : M₁) (x₂ : M₂) : h.lift f' (f x₁ x₂) = f' x₁ x₂ :=
begin
delta is_tensor_product.lift,
simp,
end
/-- The tensor product of a pair of linear maps between modules. -/
noncomputable
def is_tensor_product.map (hf : is_tensor_product f) (hg : is_tensor_product g)
(i₁ : M₁ →ₗ[R] N₁) (i₂ : M₂ →ₗ[R] N₂) : M →ₗ[R] N :=
hg.equiv.to_linear_map.comp ((tensor_product.map i₁ i₂).comp hf.equiv.symm.to_linear_map)
lemma is_tensor_product.map_eq (hf : is_tensor_product f) (hg : is_tensor_product g)
(i₁ : M₁ →ₗ[R] N₁) (i₂ : M₂ →ₗ[R] N₂) (x₁ : M₁) (x₂ : M₂) :
hf.map hg i₁ i₂ (f x₁ x₂) = g (i₁ x₁) (i₂ x₂) :=
begin
delta is_tensor_product.map,
simp
end
lemma is_tensor_product.induction_on (h : is_tensor_product f) {C : M → Prop}
(m : M) (h0 : C 0) (htmul : ∀ x y, C (f x y)) (hadd : ∀ x y, C x → C y → C (x + y)) : C m :=
begin
rw ← h.equiv.right_inv m,
generalize : h.equiv.inv_fun m = y,
change C (tensor_product.lift f y),
induction y using tensor_product.induction_on,
{ rwa map_zero },
{ rw tensor_product.lift.tmul, apply htmul },
{ rw map_add, apply hadd; assumption }
end
end is_tensor_product
section is_base_change
variables {R : Type*} {M : Type v₁} {N : Type v₂} (S : Type v₃)
variables [add_comm_monoid M] [add_comm_monoid N] [comm_ring R]
variables [comm_ring S] [algebra R S] [module R M] [module R N] [module S N] [is_scalar_tower R S N]
variables (f : M →ₗ[R] N)
include f
/-- Given an `R`-algebra `S` and an `R`-module `M`, an `S`-module `N` together with a map
`f : M →ₗ[R] N` is the base change of `M` to `S` if the map `S × M → N, (s, m) ↦ s • f m` is the
tensor product. -/
def is_base_change : Prop := is_tensor_product
(((algebra.of_id S $ module.End S (M →ₗ[R] N)).to_linear_map.flip f).restrict_scalars R)
variables {S f} (h : is_base_change S f)
variables {P Q : Type*} [add_comm_monoid P] [module R P]
variables [add_comm_monoid Q] [module S Q]
section
variables [module R Q] [is_scalar_tower R S Q]
/-- Suppose `f : M →ₗ[R] N` is the base change of `M` along `R → S`. Then any `R`-linear map from
`M` to an `S`-module factors thorugh `f`. -/
noncomputable
def is_base_change.lift (g : M →ₗ[R] Q) : N →ₗ[S] Q :=
{ map_smul' := λ r x, begin
let F := ((algebra.of_id S $ module.End S (M →ₗ[R] Q))
.to_linear_map.flip g).restrict_scalars R,
have hF : ∀ (s : S) (m : M), h.lift F (s • f m) = s • g m := h.lift_eq F,
change h.lift F (r • x) = r • h.lift F x,
apply h.induction_on x,
{ rw [smul_zero, map_zero, smul_zero] },
{ intros s m,
change h.lift F (r • s • f m) = r • h.lift F (s • f m),
rw [← mul_smul, hF, hF, mul_smul] },
{ intros x₁ x₂ e₁ e₂, rw [map_add, smul_add, map_add, smul_add, e₁, e₂] }
end,
..(h.lift (((algebra.of_id S $ module.End S (M →ₗ[R] Q))
.to_linear_map.flip g).restrict_scalars R)) }
lemma is_base_change.lift_eq (g : M →ₗ[R] Q) (x : M) : h.lift g (f x) = g x :=
begin
have hF : ∀ (s : S) (m : M), h.lift g (s • f m) = s • g m := h.lift_eq _,
convert hF 1 x; rw one_smul,
end
lemma is_base_change.lift_comp (g : M →ₗ[R] Q) : ((h.lift g).restrict_scalars R).comp f = g :=
linear_map.ext (h.lift_eq g)
end
include h
@[elab_as_eliminator]
lemma is_base_change.induction_on (x : N) (P : N → Prop)
(h₁ : P 0)
(h₂ : ∀ m : M, P (f m))
(h₃ : ∀ (s : S) n, P n → P (s • n))
(h₄ : ∀ n₁ n₂, P n₁ → P n₂ → P (n₁ + n₂)) : P x :=
h.induction_on x h₁ (λ s y, h₃ _ _ (h₂ _)) h₄
lemma is_base_change.alg_hom_ext (g₁ g₂ : N →ₗ[S] Q) (e : ∀ x, g₁ (f x) = g₂ (f x)) :
g₁ = g₂ :=
begin
ext x,
apply h.induction_on x,
{ rw [map_zero, map_zero] },
{ assumption },
{ intros s n e', rw [g₁.map_smul, g₂.map_smul, e'] },
{ intros x y e₁ e₂, rw [map_add, map_add, e₁, e₂] }
end
lemma is_base_change.alg_hom_ext' [module R Q] [is_scalar_tower R S Q] (g₁ g₂ : N →ₗ[S] Q)
(e : (g₁.restrict_scalars R).comp f = (g₂.restrict_scalars R).comp f) :
g₁ = g₂ :=
h.alg_hom_ext g₁ g₂ (linear_map.congr_fun e)
variables (R M N S)
omit h f
lemma tensor_product.is_base_change : is_base_change S (tensor_product.mk R S M 1) :=
begin
delta is_base_change,
convert tensor_product.is_tensor_product R S M using 1,
ext s x,
change s • 1 ⊗ₜ x = s ⊗ₜ x,
rw tensor_product.smul_tmul',
congr' 1,
exact mul_one _,
end
variables {R M N S}
/-- The base change of `M` along `R → S` is linearly equivalent to `S ⊗[R] M`. -/
noncomputable
def is_base_change.equiv : S ⊗[R] M ≃ₗ[R] N := h.equiv
lemma is_base_change.equiv_tmul (s : S) (m : M) : h.equiv (s ⊗ₜ m) = s • (f m) :=
tensor_product.lift.tmul s m
lemma is_base_change.equiv_symm_apply (m : M) : h.equiv.symm (f m) = 1 ⊗ₜ m :=
by rw [h.equiv.symm_apply_eq, h.equiv_tmul, one_smul]
variable (f)
lemma is_base_change.of_lift_unique
(h : ∀ (Q : Type (max v₁ v₂ v₃)) [add_comm_monoid Q], by exactI ∀ [module R Q] [module S Q],
by exactI ∀ [is_scalar_tower R S Q], by exactI ∀ (g : M →ₗ[R] Q),
∃! (g' : N →ₗ[S] Q), (g'.restrict_scalars R).comp f = g) : is_base_change S f :=
begin
delta is_base_change is_tensor_product,
obtain ⟨g, hg, hg'⟩ := h (ulift.{v₂} $ S ⊗[R] M)
(ulift.module_equiv.symm.to_linear_map.comp $ tensor_product.mk R S M 1),
let f' : S ⊗[R] M →ₗ[R] N := _, change function.bijective f',
let f'' : S ⊗[R] M →ₗ[S] N,
{ refine { map_smul' := λ r x, _, ..f' },
apply tensor_product.induction_on x,
{ simp only [map_zero, smul_zero, linear_map.to_fun_eq_coe] },
{ intros x y,
simp only [algebra.of_id_apply, algebra.id.smul_eq_mul,
alg_hom.to_linear_map_apply, linear_map.mul_apply, tensor_product.lift.tmul',
linear_map.smul_apply, ring_hom.id_apply, module.algebra_map_End_apply, f',
_root_.map_mul, tensor_product.smul_tmul', linear_map.coe_restrict_scalars_eq_coe,
linear_map.flip_apply] },
{ intros x y hx hy, dsimp at hx hy ⊢, simp only [hx, hy, smul_add, map_add] } },
change function.bijective f'',
split,
{ apply function.has_left_inverse.injective,
refine ⟨ulift.module_equiv.to_linear_map.comp g, λ x, _⟩,
apply tensor_product.induction_on x,
{ simp only [map_zero] },
{ intros x y,
have := (congr_arg (λ a, x • a) (linear_map.congr_fun hg y)).trans
(ulift.module_equiv.symm.map_smul x _).symm,
apply (ulift.module_equiv : ulift.{v₂} (S ⊗ M) ≃ₗ[S] S ⊗ M)
.to_equiv.apply_eq_iff_eq_symm_apply.mpr,
any_goals { apply_instance },
simpa only [algebra.of_id_apply, smul_tmul', algebra.id.smul_eq_mul, lift.tmul',
linear_map.coe_restrict_scalars_eq_coe, linear_map.flip_apply, alg_hom.to_linear_map_apply,
module.algebra_map_End_apply, linear_map.smul_apply, linear_map.coe_mk,
linear_map.map_smulₛₗ, mk_apply, mul_one] using this },
{ intros x y hx hy, simp only [map_add, hx, hy] } },
{ apply function.has_right_inverse.surjective,
refine ⟨ulift.module_equiv.to_linear_map.comp g, λ x, _⟩,
obtain ⟨g', hg₁, hg₂⟩ := h (ulift.{max v₁ v₃} N) (ulift.module_equiv.symm.to_linear_map.comp f),
have : g' = ulift.module_equiv.symm.to_linear_map := by { refine (hg₂ _ _).symm, refl },
subst this,
apply (ulift.module_equiv : ulift.{max v₁ v₃} N ≃ₗ[S] N).symm.injective,
simp_rw [← linear_equiv.coe_to_linear_map, ← linear_map.comp_apply],
congr' 1,
apply hg₂,
ext y,
have := linear_map.congr_fun hg y,
dsimp [ulift.module_equiv] at this ⊢,
rw this,
simp only [lift.tmul, linear_map.coe_restrict_scalars_eq_coe, linear_map.flip_apply,
alg_hom.to_linear_map_apply, _root_.map_one, linear_map.one_apply] }
end
variable {f}
lemma is_base_change.iff_lift_unique :
is_base_change S f ↔
∀ (Q : Type (max v₁ v₂ v₃)) [add_comm_monoid Q], by exactI ∀ [module R Q] [module S Q],
by exactI ∀ [is_scalar_tower R S Q], by exactI ∀ (g : M →ₗ[R] Q),
∃! (g' : N →ₗ[S] Q), (g'.restrict_scalars R).comp f = g :=
⟨λ h, by { introsI,
exact ⟨h.lift g, h.lift_comp g, λ g' e, h.alg_hom_ext' _ _ (e.trans (h.lift_comp g).symm)⟩ },
is_base_change.of_lift_unique f⟩
lemma is_base_change.of_equiv (e : M ≃ₗ[R] N) : is_base_change R e.to_linear_map :=
begin
apply is_base_change.of_lift_unique,
introsI Q I₁ I₂ I₃ I₄ g,
have : I₂ = I₃,
{ ext r q,
rw [← one_smul R q, smul_smul, ← smul_assoc, smul_eq_mul, mul_one] },
unfreezingI { cases this },
refine ⟨g.comp e.symm.to_linear_map, by { ext, simp }, _⟩,
rintros y (rfl : _ = _),
ext,
simp,
end
variables {T O : Type*} [comm_ring T] [algebra R T] [algebra S T] [is_scalar_tower R S T]
variables [add_comm_monoid O] [module R O] [module S O] [module T O] [is_scalar_tower S T O]
variables [is_scalar_tower R S O] [is_scalar_tower R T O]
lemma is_base_change.comp {f : M →ₗ[R] N} (hf : is_base_change S f) {g : N →ₗ[S] O}
(hg : is_base_change T g) : is_base_change T ((g.restrict_scalars R).comp f) :=
begin
apply is_base_change.of_lift_unique,
introsI Q _ _ _ _ i,
letI := module.comp_hom Q (algebra_map S T),
haveI : is_scalar_tower S T Q := ⟨λ x y z, by { rw [algebra.smul_def, mul_smul], refl }⟩,
haveI : is_scalar_tower R S Q,
{ refine ⟨λ x y z, _⟩,
change (is_scalar_tower.to_alg_hom R S T) (x • y) • z = x • (algebra_map S T y • z),
rw [alg_hom.map_smul, smul_assoc],
refl },
refine ⟨hg.lift (hf.lift i), by { ext, simp [is_base_change.lift_eq] }, _⟩,
rintros g' (e : _ = _),
refine hg.alg_hom_ext' _ _ (hf.alg_hom_ext' _ _ _),
rw [is_base_change.lift_comp, is_base_change.lift_comp, ← e],
ext,
refl
end
variables {R' S' : Type*} [comm_ring R'] [comm_ring S']
variables [algebra R R'] [algebra S S'] [algebra R' S'] [algebra R S']
variables [is_scalar_tower R R' S'] [is_scalar_tower R S S']
lemma is_base_change.symm
(h : is_base_change S (is_scalar_tower.to_alg_hom R R' S').to_linear_map) :
is_base_change R' (is_scalar_tower.to_alg_hom R S S').to_linear_map :=
begin
letI := (algebra.tensor_product.include_right : R' →ₐ[R] S ⊗ R').to_ring_hom.to_algebra,
let e : R' ⊗[R] S ≃ₗ[R'] S',
{ refine { map_smul' := _, ..((tensor_product.comm R R' S).trans $ h.equiv.restrict_scalars R) },
intros r x,
change
h.equiv (tensor_product.comm R R' S (r • x)) = r • h.equiv (tensor_product.comm R R' S x),
apply tensor_product.induction_on x,
{ simp only [smul_zero, map_zero] },
{ intros x y,
simp [smul_tmul', algebra.smul_def, ring_hom.algebra_map_to_algebra, h.equiv_tmul],
ring },
{ intros x y hx hy, simp only [map_add, smul_add, hx, hy] } },
have : (is_scalar_tower.to_alg_hom R S S').to_linear_map
= (e.to_linear_map.restrict_scalars R).comp (tensor_product.mk R R' S 1),
{ ext, simp [e, h.equiv_tmul, algebra.smul_def] },
rw this,
exact (tensor_product.is_base_change R S R').comp (is_base_change.of_equiv e),
end
variables (R S R' S')
lemma is_base_change.comm :
is_base_change S (is_scalar_tower.to_alg_hom R R' S').to_linear_map ↔
is_base_change R' (is_scalar_tower.to_alg_hom R S S').to_linear_map :=
⟨is_base_change.symm, is_base_change.symm⟩
end is_base_change
|
727146b8679ae171b6df108087ca6b1358c0376f
|
5c7fe6c4a9d4079b5457ffa5f061797d42a1cd65
|
/src/exercises/src_25_intersection_and_union.lean
|
0a5145ae9418ddd53c1453b4dbbe463bb032dce6
|
[] |
no_license
|
gihanmarasingha/mth1001_tutorial
|
8e0817feeb96e7c1bb3bac49b63e3c9a3a329061
|
bb277eebd5013766e1418365b91416b406275130
|
refs/heads/master
| 1,675,008,746,310
| 1,607,993,443,000
| 1,607,993,443,000
| 321,511,270
| 3
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,159
|
lean
|
import tactic
import data.set
import logic.basic
open set
namespace mth1001
section intersection_and_union
-- We'll deal with sets on a type `U`.
variable U : Type*
variables A B C : set U
/-
Typing set notation in Lean:
`∪` is `\cup`
`∩` is `\cap`
`∈` is `\in`
`∉` is `\notin`
`∅` is `\empty`
-/
/-
Throughout this file, we use `mem_inter_iff` and `mem_union_eq` to rewrite intersections and
unions as conjunctions and disjunctions.
-/
example (x : U) : x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B := by rw mem_inter_iff
example (x : U) : x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B := by rw mem_union_eq
/-
We prove right distributivity of intersection over union.
-/
example : (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) :=
begin
ext, -- Assume `x : U`. It suffices to show `x ∈ (A ∪ B) ∩ C ↔ x ∈ (A ∩ C) ∪ (B ∩ C)`.
-- Repeatedly apply the basic theorems on membership of intersections and unions.
-- `or_and_distrib_right` is the distributive law, `(P ∨ Q) ∧ R ↔ (P ∧ Q) ∨ (Q ∧ R)`.
calc x ∈ (A ∪ B) ∩ C
↔ x ∈ (A ∪ B) ∧ x ∈ C : by rw mem_inter_iff
... ↔ (x ∈ A ∨ x ∈ B) ∧ x ∈ C : by rw mem_union_eq
... ↔ (x ∈ A ∧ x ∈ C) ∨ (x ∈ B ∧ x ∈ C) : by rw or_and_distrib_right
... ↔ x ∈ A ∩ C ∨ x ∈ B ∩ C : by rw [mem_inter_iff, mem_inter_iff]
... ↔ x ∈ (A ∩ C) ∪ (B ∩ C) : by rw mem_union_eq,
end
-- Alternatively, we can just rewrite the goal many times.
example : (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) :=
begin
ext, -- Assume `x : U`. It suffices to show `x ∈ (A ∪ B) ∩ C ↔ x ∈ (A ∩ C) ∪ (B ∩ C)`.
repeat { rw mem_inter_iff },
repeat { rw mem_union_eq, },
repeat { rw mem_inter_iff },
rw or_and_distrib_right,
end
/- ***************************
Laws of propositional logic
*************************** -/
-- Feel free to use the following laws in the proofs below.
variables p q r : Prop
example : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r) := by rw or_and_distrib_left
example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := by rw and_or_distrib_left
example : (p ∨ q) ∧ r ↔ (p ∧ r) ∨ (q ∧ r) := by rw or_and_distrib_right
example : (p ∧ q) ∨ r ↔ (p ∨ r) ∧ (q ∨ r) := by rw and_or_distrib_right
example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := by rw and_assoc
example : (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) := by rw or_assoc
example : p ∨ false ↔ p := by rw or_false
example : p ∧ false ↔ false := by rw and_false
example : p ∧ p ↔ p := by rw and_self
example : p ∨ p ↔ p := by rw or_self
-- Exercise 131:
-- Adapt either of the proofs above to give the following distributive law.
example : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) :=
begin
sorry
end
-- Exercise 132:
example : A ∩ B = B ∩ A :=
begin
sorry end
-- Exercise 133:
example : A ∪ B = B ∪ A :=
begin
sorry
end
-- Exercise 134:
example : (A ∩ B) ∩ C = A ∩ (B ∩ C) :=
begin
sorry
end
-- Exercise 135:
example : (A ∪ B) ∪ C = A ∪ (B ∪ C) :=
begin
sorry
end
-- Exercise 136:
example : A ∩ A = A :=
begin
sorry
end
/-
For the next result, we use `empty_def` and `mem_set_of_eq`, statements that are equivalent to our
mathematical definitions of empty set and set membership, respectively.
-/
example : ∅ = {x : U | false} := by rw empty_def
example (P : U → Prop) (z : U) : z ∈ {x : U | P x} = P z := by rw mem_set_of_eq
example : A ∩ ∅ = ∅ :=
begin
ext x, -- Assume `x : U`. It remains to prove `x ∈ A ∩ ∅ ↔ x ∈ ∅`.
rw mem_inter_iff, -- Rewrite `x ∈ A ∩ ∅` as `x ∈ A ∧ x ∈ ∅`.
rw empty_def, -- Rewrite `∅` as `{x : U | ⊥}`.
rw mem_set_of_eq, -- Rewrite `x ∈ {x : U | ⊥}` as `⊥`.
rw and_false, -- Complete the goal using the result `P ∧ ⊥ ↔ ⊥` and reflexivity of `↔`.
end
-- Exercise 137:
example : A ∪ ∅ = A :=
begin
sorry
end
end intersection_and_union
end mth1001
|
ae2207a4acb831f7da62d5908c8025d6d910c49d
|
b73bd2854495d87ad5ce4f247cfcd6faa7e71c7e
|
/src/game/world1/level1.lean
|
4a4045c63074fec4f68743d45b5b979fb9706264
|
[] |
no_license
|
agusakov/category-theory-game
|
20db0b26270e0c95a3d5605498570273d72f731d
|
652dd7e90ae706643b2a597e2c938403653e167d
|
refs/heads/master
| 1,669,201,216,310
| 1,595,740,057,000
| 1,595,740,057,000
| 280,895,295
| 12
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,547
|
lean
|
import category_theory.category.default
universes v u -- The order in this declaration matters: v often needs to be explicitly specified while u often can be omitted
namespace category_theory
variables (C : Type u) [category.{v} C]
/-
# Category world
## Level 1: Definition of category
A category `C` consists of
* a collection of objects `X, Y, Z, ...`
* a collection of morphisms `f, g, h, ...`
so that:
* each morphism has specified domain and codomain objects;
`f : X ⟶ Y` signifies that `f` is a morphism with
domain `X` and codomain `Y`
* each object has a designated identity morphism `𝟙 X : X ⟶ X`
* for any pair of morphisms `f, g` with the codomain of `f` equal
to the domain of `g`,the exists a specified composite morphism
`f ≫ g` whose domain is that of `f` and codomain that of `g`,
i.e. `f : X ⟶ Y, g : Y ⟶ Z` then `f ≫ g : X ⟶ Z`
This data is subject to the following axioms:
* For any `f : X ⟶ Y`,
-/
/- Axiom :
f ≫ 𝟙 Y = f-/
/- Axiom:
𝟙 X ≫ f = f-/
/-* For any composable triple of morphisms `f, g, h`, we have associativity
`f ≫ (g ≫ h) = (f ≫ g) ≫ h`-/
/- Axiom:
f ≫ (g ≫ h) = (f ≫ g) ≫ h-/
/-First we start out with some easy lemmas to get us warmed up.-/
/- Lemma
If $$f : X ⟶ Y$$ and $$g : X ⟶ Y$$ are morphisms such that $$f = g$$, then $$f ≫ h = g ≫ h$$.
-/
lemma eq_precomp_eq {X Y Z : C} {f g : X ⟶ Y} (w : f = g) (h : Y ⟶ Z) : f ≫ h = g ≫ h :=
begin
rw w,
end
end category_theory
|
722fb7e52e66e2716d38b727ee062cc754579540
|
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
|
/tests/lean/mvar1.lean
|
85b43409187ede997f0c9254d73e7a30b111ae60
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/lean4
|
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
|
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
|
refs/heads/master
| 1,678,305,356,877
| 1,614,708,995,000
| 1,614,708,995,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,097
|
lean
|
import Lean.MetavarContext
open Lean
def check (b : Bool) : IO Unit :=
«unless» b (throw $ IO.userError "error")
def f := mkConst `f []
def g := mkConst `g []
def a := mkConst `a []
def b := mkConst `b []
def c := mkConst `c []
def b0 := mkBVar 0
def b1 := mkBVar 1
def b2 := mkBVar 2
def u := mkLevelParam `u
def typeE := mkSort levelOne
def natE := mkConst `Nat []
def boolE := mkConst `Bool []
def vecE := mkConst `Vec [levelZero]
def α := mkFVar `α
def x := mkFVar `x
def y := mkFVar `y
def z := mkFVar `z
def w := mkFVar `w
def m1 := mkMVar `m1
def m2 := mkMVar `m2
def m3 := mkMVar `m3
def m4 := mkMVar `m4
def m5 := mkMVar `m5
def m6 := mkMVar `m6
def bi := BinderInfo.default
def arrow (d b : Expr) := mkForall `_ bi d b
def lctx1 : LocalContext := {}
def lctx2 := lctx1.mkLocalDecl `α `α typeE
def lctx3 := lctx2.mkLocalDecl `x `x natE
def lctx4 := lctx3.mkLocalDecl `y `y α
def lctx5 := lctx4.mkLocalDecl `z `z (mkAppN vecE #[x])
def lctx6 := lctx5.mkLocalDecl `w `w (arrow natE (mkAppN m6 #[α, x, y]))
def t1 := lctx5.mkLambda #[α, x, y] $ mkAppN f #[α, mkAppN g #[x, y], lctx5.mkLambda #[z] (mkApp f z)]
#eval check (!t1.hasFVar)
#eval t1
def mctx1 : MetavarContext := {}
def mctx2 := mctx1.addExprMVarDecl `m1 `m1 lctx3 #[] natE
def mctx3 := mctx2.addExprMVarDecl `m2 `m2 lctx4 #[] α
def mctx4 := mctx3.addExprMVarDecl `m3 `m3 lctx4 #[] natE
def mctx5 := mctx4.addExprMVarDecl `m4 `m4 lctx1 #[] (arrow typeE (arrow natE (arrow α natE)))
def mctx6 := mctx5.addExprMVarDecl `m5 `m5 lctx5 #[] typeE
def mctx7 := mctx5.addExprMVarDecl `m6 `m6 lctx5 #[] (arrow typeE (arrow natE (arrow α natE)))
def mctx8 := mctx7.assignDelayed `m4 lctx4 #[α, x, y] m3
def mctx9 := mctx8.assignExpr `m3 (mkAppN g #[x, y])
def mctx10 := mctx9.assignExpr `m1 a
def t2 := lctx5.mkLambda #[α, x, y] $ mkAppN f #[mkAppN m4 #[α, x, y], x]
#eval check (!t2.hasFVar)
#eval t2
#eval (mctx6.instantiateMVars t2).1
#eval check (!(mctx9.instantiateMVars t2).1.hasMVar)
#eval check (!(mctx9.instantiateMVars t2).1.hasFVar)
#eval (mctx9.instantiateMVars t2).1
-- t3 is ill-formed since m3's localcontext contains ‵α`, `x` and `y`
def t3 := lctx5.mkLambda #[α, x, y] $ mkAppN f #[m3, x]
#eval check (mctx10.instantiateMVars t3).1.hasFVar
#eval (mctx7.instantiateMVars t3).1
partial def mkDiamond : Nat → Expr
| 0 => m1
| (n+1) => mkAppN f #[mkDiamond n, mkDiamond n]
#eval (mctx7.instantiateMVars (mkDiamond 3)).1
#eval (mctx10.instantiateMVars (mkDiamond 3)).1
#eval (mctx7.instantiateMVars (mkDiamond 100)).1.getAppFn
#eval (mctx10.instantiateMVars (mkDiamond 100)).1.getAppFn
def mctx11 := mctx10.assignDelayed `m6 lctx5 #[α, x, y] m5
def mctx12 := mctx11.assignExpr `m5 (arrow α α)
def t4 := lctx6.mkLambda #[α, x, y, w] $ mkAppN f #[mkAppN m4 #[α, x, y], x]
#eval t4
#eval (mctx9.instantiateMVars t4).1
#eval (mctx12.instantiateMVars t4).1
#eval check (mctx9.instantiateMVars t4).1.hasMVar
#eval check (!((mctx9.instantiateMVars t4).1.hasFVar))
#eval check (!(mctx12.instantiateMVars t4).1.hasMVar)
#eval check (!((mctx12.instantiateMVars t4).1.hasFVar))
|
8247c2fdc47eccc3e0d8e11dfed1f2d93751a104
|
592ee40978ac7604005a4e0d35bbc4b467389241
|
/Library/generated/mathscheme-lean/RightSpindle_ShelfSig.lean
|
4f32d6b3a2d475dce777d7a4facceb1b4cc435f2
|
[] |
no_license
|
ysharoda/Deriving-Definitions
|
3e149e6641fae440badd35ac110a0bd705a49ad2
|
dfecb27572022de3d4aa702cae8db19957523a59
|
refs/heads/master
| 1,679,127,857,700
| 1,615,939,007,000
| 1,615,939,007,000
| 229,785,731
| 4
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 9,620
|
lean
|
import init.data.nat.basic
import init.data.fin.basic
import data.vector
import .Prelude
open Staged
open nat
open fin
open vector
section RightSpindle_ShelfSig
structure RightSpindle_ShelfSig (A : Type) : Type :=
(rinv : (A → (A → A)))
(rightDistributive : (∀ {x y z : A} , (rinv (rinv y z) x) = (rinv (rinv y x) (rinv z x))))
(idempotent_rinv : (∀ {x : A} , (rinv x x) = x))
(linv : (A → (A → A)))
open RightSpindle_ShelfSig
structure Sig (AS : Type) : Type :=
(rinvS : (AS → (AS → AS)))
(linvS : (AS → (AS → AS)))
structure Product (A : Type) : Type :=
(rinvP : ((Prod A A) → ((Prod A A) → (Prod A A))))
(linvP : ((Prod A A) → ((Prod A A) → (Prod A A))))
(rightDistributiveP : (∀ {xP yP zP : (Prod A A)} , (rinvP (rinvP yP zP) xP) = (rinvP (rinvP yP xP) (rinvP zP xP))))
(idempotent_rinvP : (∀ {xP : (Prod A A)} , (rinvP xP xP) = xP))
structure Hom {A1 : Type} {A2 : Type} (Ri1 : (RightSpindle_ShelfSig A1)) (Ri2 : (RightSpindle_ShelfSig A2)) : Type :=
(hom : (A1 → A2))
(pres_rinv : (∀ {x1 x2 : A1} , (hom ((rinv Ri1) x1 x2)) = ((rinv Ri2) (hom x1) (hom x2))))
(pres_linv : (∀ {x1 x2 : A1} , (hom ((linv Ri1) x1 x2)) = ((linv Ri2) (hom x1) (hom x2))))
structure RelInterp {A1 : Type} {A2 : Type} (Ri1 : (RightSpindle_ShelfSig A1)) (Ri2 : (RightSpindle_ShelfSig A2)) : Type 1 :=
(interp : (A1 → (A2 → Type)))
(interp_rinv : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((rinv Ri1) x1 x2) ((rinv Ri2) y1 y2))))))
(interp_linv : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((linv Ri1) x1 x2) ((linv Ri2) y1 y2))))))
inductive RightSpindle_ShelfSigTerm : Type
| rinvL : (RightSpindle_ShelfSigTerm → (RightSpindle_ShelfSigTerm → RightSpindle_ShelfSigTerm))
| linvL : (RightSpindle_ShelfSigTerm → (RightSpindle_ShelfSigTerm → RightSpindle_ShelfSigTerm))
open RightSpindle_ShelfSigTerm
inductive ClRightSpindle_ShelfSigTerm (A : Type) : Type
| sing : (A → ClRightSpindle_ShelfSigTerm)
| rinvCl : (ClRightSpindle_ShelfSigTerm → (ClRightSpindle_ShelfSigTerm → ClRightSpindle_ShelfSigTerm))
| linvCl : (ClRightSpindle_ShelfSigTerm → (ClRightSpindle_ShelfSigTerm → ClRightSpindle_ShelfSigTerm))
open ClRightSpindle_ShelfSigTerm
inductive OpRightSpindle_ShelfSigTerm (n : ℕ) : Type
| v : ((fin n) → OpRightSpindle_ShelfSigTerm)
| rinvOL : (OpRightSpindle_ShelfSigTerm → (OpRightSpindle_ShelfSigTerm → OpRightSpindle_ShelfSigTerm))
| linvOL : (OpRightSpindle_ShelfSigTerm → (OpRightSpindle_ShelfSigTerm → OpRightSpindle_ShelfSigTerm))
open OpRightSpindle_ShelfSigTerm
inductive OpRightSpindle_ShelfSigTerm2 (n : ℕ) (A : Type) : Type
| v2 : ((fin n) → OpRightSpindle_ShelfSigTerm2)
| sing2 : (A → OpRightSpindle_ShelfSigTerm2)
| rinvOL2 : (OpRightSpindle_ShelfSigTerm2 → (OpRightSpindle_ShelfSigTerm2 → OpRightSpindle_ShelfSigTerm2))
| linvOL2 : (OpRightSpindle_ShelfSigTerm2 → (OpRightSpindle_ShelfSigTerm2 → OpRightSpindle_ShelfSigTerm2))
open OpRightSpindle_ShelfSigTerm2
def simplifyCl {A : Type} : ((ClRightSpindle_ShelfSigTerm A) → (ClRightSpindle_ShelfSigTerm A))
| (rinvCl x1 x2) := (rinvCl (simplifyCl x1) (simplifyCl x2))
| (linvCl x1 x2) := (linvCl (simplifyCl x1) (simplifyCl x2))
| (sing x1) := (sing x1)
def simplifyOpB {n : ℕ} : ((OpRightSpindle_ShelfSigTerm n) → (OpRightSpindle_ShelfSigTerm n))
| (rinvOL x1 x2) := (rinvOL (simplifyOpB x1) (simplifyOpB x2))
| (linvOL x1 x2) := (linvOL (simplifyOpB x1) (simplifyOpB x2))
| (v x1) := (v x1)
def simplifyOp {n : ℕ} {A : Type} : ((OpRightSpindle_ShelfSigTerm2 n A) → (OpRightSpindle_ShelfSigTerm2 n A))
| (rinvOL2 x1 x2) := (rinvOL2 (simplifyOp x1) (simplifyOp x2))
| (linvOL2 x1 x2) := (linvOL2 (simplifyOp x1) (simplifyOp x2))
| (v2 x1) := (v2 x1)
| (sing2 x1) := (sing2 x1)
def evalB {A : Type} : ((RightSpindle_ShelfSig A) → (RightSpindle_ShelfSigTerm → A))
| Ri (rinvL x1 x2) := ((rinv Ri) (evalB Ri x1) (evalB Ri x2))
| Ri (linvL x1 x2) := ((linv Ri) (evalB Ri x1) (evalB Ri x2))
def evalCl {A : Type} : ((RightSpindle_ShelfSig A) → ((ClRightSpindle_ShelfSigTerm A) → A))
| Ri (sing x1) := x1
| Ri (rinvCl x1 x2) := ((rinv Ri) (evalCl Ri x1) (evalCl Ri x2))
| Ri (linvCl x1 x2) := ((linv Ri) (evalCl Ri x1) (evalCl Ri x2))
def evalOpB {A : Type} {n : ℕ} : ((RightSpindle_ShelfSig A) → ((vector A n) → ((OpRightSpindle_ShelfSigTerm n) → A)))
| Ri vars (v x1) := (nth vars x1)
| Ri vars (rinvOL x1 x2) := ((rinv Ri) (evalOpB Ri vars x1) (evalOpB Ri vars x2))
| Ri vars (linvOL x1 x2) := ((linv Ri) (evalOpB Ri vars x1) (evalOpB Ri vars x2))
def evalOp {A : Type} {n : ℕ} : ((RightSpindle_ShelfSig A) → ((vector A n) → ((OpRightSpindle_ShelfSigTerm2 n A) → A)))
| Ri vars (v2 x1) := (nth vars x1)
| Ri vars (sing2 x1) := x1
| Ri vars (rinvOL2 x1 x2) := ((rinv Ri) (evalOp Ri vars x1) (evalOp Ri vars x2))
| Ri vars (linvOL2 x1 x2) := ((linv Ri) (evalOp Ri vars x1) (evalOp Ri vars x2))
def inductionB {P : (RightSpindle_ShelfSigTerm → Type)} : ((∀ (x1 x2 : RightSpindle_ShelfSigTerm) , ((P x1) → ((P x2) → (P (rinvL x1 x2))))) → ((∀ (x1 x2 : RightSpindle_ShelfSigTerm) , ((P x1) → ((P x2) → (P (linvL x1 x2))))) → (∀ (x : RightSpindle_ShelfSigTerm) , (P x))))
| prinvl plinvl (rinvL x1 x2) := (prinvl _ _ (inductionB prinvl plinvl x1) (inductionB prinvl plinvl x2))
| prinvl plinvl (linvL x1 x2) := (plinvl _ _ (inductionB prinvl plinvl x1) (inductionB prinvl plinvl x2))
def inductionCl {A : Type} {P : ((ClRightSpindle_ShelfSigTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 x2 : (ClRightSpindle_ShelfSigTerm A)) , ((P x1) → ((P x2) → (P (rinvCl x1 x2))))) → ((∀ (x1 x2 : (ClRightSpindle_ShelfSigTerm A)) , ((P x1) → ((P x2) → (P (linvCl x1 x2))))) → (∀ (x : (ClRightSpindle_ShelfSigTerm A)) , (P x)))))
| psing prinvcl plinvcl (sing x1) := (psing x1)
| psing prinvcl plinvcl (rinvCl x1 x2) := (prinvcl _ _ (inductionCl psing prinvcl plinvcl x1) (inductionCl psing prinvcl plinvcl x2))
| psing prinvcl plinvcl (linvCl x1 x2) := (plinvcl _ _ (inductionCl psing prinvcl plinvcl x1) (inductionCl psing prinvcl plinvcl x2))
def inductionOpB {n : ℕ} {P : ((OpRightSpindle_ShelfSigTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 x2 : (OpRightSpindle_ShelfSigTerm n)) , ((P x1) → ((P x2) → (P (rinvOL x1 x2))))) → ((∀ (x1 x2 : (OpRightSpindle_ShelfSigTerm n)) , ((P x1) → ((P x2) → (P (linvOL x1 x2))))) → (∀ (x : (OpRightSpindle_ShelfSigTerm n)) , (P x)))))
| pv prinvol plinvol (v x1) := (pv x1)
| pv prinvol plinvol (rinvOL x1 x2) := (prinvol _ _ (inductionOpB pv prinvol plinvol x1) (inductionOpB pv prinvol plinvol x2))
| pv prinvol plinvol (linvOL x1 x2) := (plinvol _ _ (inductionOpB pv prinvol plinvol x1) (inductionOpB pv prinvol plinvol x2))
def inductionOp {n : ℕ} {A : Type} {P : ((OpRightSpindle_ShelfSigTerm2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 x2 : (OpRightSpindle_ShelfSigTerm2 n A)) , ((P x1) → ((P x2) → (P (rinvOL2 x1 x2))))) → ((∀ (x1 x2 : (OpRightSpindle_ShelfSigTerm2 n A)) , ((P x1) → ((P x2) → (P (linvOL2 x1 x2))))) → (∀ (x : (OpRightSpindle_ShelfSigTerm2 n A)) , (P x))))))
| pv2 psing2 prinvol2 plinvol2 (v2 x1) := (pv2 x1)
| pv2 psing2 prinvol2 plinvol2 (sing2 x1) := (psing2 x1)
| pv2 psing2 prinvol2 plinvol2 (rinvOL2 x1 x2) := (prinvol2 _ _ (inductionOp pv2 psing2 prinvol2 plinvol2 x1) (inductionOp pv2 psing2 prinvol2 plinvol2 x2))
| pv2 psing2 prinvol2 plinvol2 (linvOL2 x1 x2) := (plinvol2 _ _ (inductionOp pv2 psing2 prinvol2 plinvol2 x1) (inductionOp pv2 psing2 prinvol2 plinvol2 x2))
def stageB : (RightSpindle_ShelfSigTerm → (Staged RightSpindle_ShelfSigTerm))
| (rinvL x1 x2) := (stage2 rinvL (codeLift2 rinvL) (stageB x1) (stageB x2))
| (linvL x1 x2) := (stage2 linvL (codeLift2 linvL) (stageB x1) (stageB x2))
def stageCl {A : Type} : ((ClRightSpindle_ShelfSigTerm A) → (Staged (ClRightSpindle_ShelfSigTerm A)))
| (sing x1) := (Now (sing x1))
| (rinvCl x1 x2) := (stage2 rinvCl (codeLift2 rinvCl) (stageCl x1) (stageCl x2))
| (linvCl x1 x2) := (stage2 linvCl (codeLift2 linvCl) (stageCl x1) (stageCl x2))
def stageOpB {n : ℕ} : ((OpRightSpindle_ShelfSigTerm n) → (Staged (OpRightSpindle_ShelfSigTerm n)))
| (v x1) := (const (code (v x1)))
| (rinvOL x1 x2) := (stage2 rinvOL (codeLift2 rinvOL) (stageOpB x1) (stageOpB x2))
| (linvOL x1 x2) := (stage2 linvOL (codeLift2 linvOL) (stageOpB x1) (stageOpB x2))
def stageOp {n : ℕ} {A : Type} : ((OpRightSpindle_ShelfSigTerm2 n A) → (Staged (OpRightSpindle_ShelfSigTerm2 n A)))
| (sing2 x1) := (Now (sing2 x1))
| (v2 x1) := (const (code (v2 x1)))
| (rinvOL2 x1 x2) := (stage2 rinvOL2 (codeLift2 rinvOL2) (stageOp x1) (stageOp x2))
| (linvOL2 x1 x2) := (stage2 linvOL2 (codeLift2 linvOL2) (stageOp x1) (stageOp x2))
structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type :=
(rinvT : ((Repr A) → ((Repr A) → (Repr A))))
(linvT : ((Repr A) → ((Repr A) → (Repr A))))
end RightSpindle_ShelfSig
|
823b1d4d2b50e4fcc159cd4985bf475077ea6ae7
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/algebra/char_zero/infinite.lean
|
e204f5bbb4c8445b0d55a9934d10cea37a865027
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 587
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import algebra.char_zero.defs
import data.fintype.card
/-! # A characteristic-zero semiring is infinite
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.-/
open set
variables (M : Type*) [add_monoid_with_one M] [char_zero M]
@[priority 100] -- see Note [lower instance priority]
instance char_zero.infinite : infinite M :=
infinite.of_injective coe nat.cast_injective
|
0ba8255d55e331495c9947aaf767974629c08bd4
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/order/succ_pred/relation.lean
|
5f1e0fc2b37a179ac40d2ebb47f66d3dde590d06
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,740
|
lean
|
/-
Copyright (c) 2022 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import order.succ_pred.basic
/-!
# Relations on types with a `succ_order`
This file contains properties about relations on types with a `succ_order`
and their closure operations (like the transitive closure).
-/
open set relation succ_order pred_order function
section partial_succ
variables {α : Type*} [partial_order α] [succ_order α] [is_succ_archimedean α]
/-- For `n ≤ m`, `(n, m)` is in the reflexive-transitive closure of `~` if `i ~ succ i`
for all `i` between `n` and `m`. -/
lemma refl_trans_gen_of_succ_of_le (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ico n m, r i (succ i)) (hnm : n ≤ m) : refl_trans_gen r n m :=
begin
revert h, refine succ.rec _ _ hnm,
{ intros h, exact refl_trans_gen.refl },
{ intros m hnm ih h,
have : refl_trans_gen r n m := ih (λ i hi, h i ⟨hi.1, hi.2.trans_le $ le_succ m⟩),
cases (le_succ m).eq_or_lt with hm hm, { rwa [← hm] },
exact this.tail (h m ⟨hnm, hm⟩) }
end
/-- For `m ≤ n`, `(n, m)` is in the reflexive-transitive closure of `~` if `succ i ~ i`
for all `i` between `n` and `m`. -/
lemma refl_trans_gen_of_succ_of_ge (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ico m n, r (succ i) i) (hmn : m ≤ n) : refl_trans_gen r n m :=
by { rw [← refl_trans_gen_swap], exact refl_trans_gen_of_succ_of_le (swap r) h hmn }
/-- For `n < m`, `(n, m)` is in the transitive closure of a relation `~` if `i ~ succ i`
for all `i` between `n` and `m`. -/
lemma trans_gen_of_succ_of_lt (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ico n m, r i (succ i)) (hnm : n < m) : trans_gen r n m :=
(refl_trans_gen_iff_eq_or_trans_gen.mp $ refl_trans_gen_of_succ_of_le r h hnm.le).resolve_left
hnm.ne'
/-- For `m < n`, `(n, m)` is in the transitive closure of a relation `~` if `succ i ~ i`
for all `i` between `n` and `m`. -/
lemma trans_gen_of_succ_of_gt (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ico m n, r (succ i) i) (hmn : m < n) : trans_gen r n m :=
(refl_trans_gen_iff_eq_or_trans_gen.mp $ refl_trans_gen_of_succ_of_ge r h hmn.le).resolve_left
hmn.ne
end partial_succ
section linear_succ
variables {α : Type*} [linear_order α] [succ_order α] [is_succ_archimedean α]
/-- `(n, m)` is in the reflexive-transitive closure of `~` if `i ~ succ i` and `succ i ~ i`
for all `i` between `n` and `m`. -/
lemma refl_trans_gen_of_succ (r : α → α → Prop) {n m : α}
(h1 : ∀ i ∈ Ico n m, r i (succ i)) (h2 : ∀ i ∈ Ico m n, r (succ i) i) : refl_trans_gen r n m :=
(le_total n m).elim (refl_trans_gen_of_succ_of_le r h1) $ refl_trans_gen_of_succ_of_ge r h2
/-- For `n ≠ m`,`(n, m)` is in the transitive closure of a relation `~` if `i ~ succ i` and
`succ i ~ i` for all `i` between `n` and `m`. -/
lemma trans_gen_of_succ_of_ne (r : α → α → Prop) {n m : α}
(h1 : ∀ i ∈ Ico n m, r i (succ i)) (h2 : ∀ i ∈ Ico m n, r (succ i) i)
(hnm : n ≠ m) : trans_gen r n m :=
(refl_trans_gen_iff_eq_or_trans_gen.mp (refl_trans_gen_of_succ r h1 h2)).resolve_left hnm.symm
/-- `(n, m)` is in the transitive closure of a reflexive relation `~` if `i ~ succ i` and
`succ i ~ i` for all `i` between `n` and `m`. -/
lemma trans_gen_of_succ_of_reflexive (r : α → α → Prop) {n m : α} (hr : reflexive r)
(h1 : ∀ i ∈ Ico n m, r i (succ i)) (h2 : ∀ i ∈ Ico m n, r (succ i) i) : trans_gen r n m :=
begin
rcases eq_or_ne m n with rfl|hmn, { exact trans_gen.single (hr m) },
exact trans_gen_of_succ_of_ne r h1 h2 hmn.symm
end
end linear_succ
section partial_pred
variables {α : Type*} [partial_order α] [pred_order α] [is_pred_archimedean α]
/-- For `m ≤ n`, `(n, m)` is in the reflexive-transitive closure of `~` if `i ~ pred i`
for all `i` between `n` and `m`. -/
lemma refl_trans_gen_of_pred_of_ge (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ioc m n, r i (pred i)) (hnm : m ≤ n) : refl_trans_gen r n m :=
@refl_trans_gen_of_succ_of_le (order_dual α) _ _ _ r n m (λ x hx, h x ⟨hx.2, hx.1⟩) hnm
/-- For `n ≤ m`, `(n, m)` is in the reflexive-transitive closure of `~` if `pred i ~ i`
for all `i` between `n` and `m`. -/
lemma refl_trans_gen_of_pred_of_le (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ioc n m, r (pred i) i) (hmn : n ≤ m) : refl_trans_gen r n m :=
@refl_trans_gen_of_succ_of_ge (order_dual α) _ _ _ r n m (λ x hx, h x ⟨hx.2, hx.1⟩) hmn
/-- For `m < n`, `(n, m)` is in the transitive closure of a relation `~` for `n ≠ m` if `i ~ pred i`
for all `i` between `n` and `m`. -/
lemma trans_gen_of_pred_of_gt (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ioc m n, r i (pred i)) (hnm : m < n) : trans_gen r n m :=
@trans_gen_of_succ_of_lt (order_dual α) _ _ _ r _ _ (λ x hx, h x ⟨hx.2, hx.1⟩) hnm
/-- For `n < m`, `(n, m)` is in the transitive closure of a relation `~` for `n ≠ m` if `pred i ~ i`
for all `i` between `n` and `m`. -/
lemma trans_gen_of_pred_of_lt (r : α → α → Prop) {n m : α}
(h : ∀ i ∈ Ioc n m, r (pred i) i) (hmn : n < m) : trans_gen r n m :=
@trans_gen_of_succ_of_gt (order_dual α) _ _ _ r _ _ (λ x hx, h x ⟨hx.2, hx.1⟩) hmn
end partial_pred
section linear_pred
variables {α : Type*} [linear_order α] [pred_order α] [is_pred_archimedean α]
/-- `(n, m)` is in the reflexive-transitive closure of `~` if `i ~ pred i` and `pred i ~ i`
for all `i` between `n` and `m`. -/
lemma refl_trans_gen_of_pred (r : α → α → Prop) {n m : α}
(h1 : ∀ i ∈ Ioc m n, r i (pred i)) (h2 : ∀ i ∈ Ioc n m, r (pred i) i) : refl_trans_gen r n m :=
@refl_trans_gen_of_succ (order_dual α) _ _ _ r n m (λ x hx, h1 x ⟨hx.2, hx.1⟩)
(λ x hx, h2 x ⟨hx.2, hx.1⟩)
/-- For `n ≠ m`, `(n, m)` is in the transitive closure of a relation `~` if `i ~ pred i` and
`pred i ~ i` for all `i` between `n` and `m`. -/
lemma trans_gen_of_pred_of_ne (r : α → α → Prop) {n m : α}
(h1 : ∀ i ∈ Ioc m n, r i (pred i)) (h2 : ∀ i ∈ Ioc n m, r (pred i) i)
(hnm : n ≠ m) : trans_gen r n m :=
@trans_gen_of_succ_of_ne (order_dual α) _ _ _ r n m (λ x hx, h1 x ⟨hx.2, hx.1⟩)
(λ x hx, h2 x ⟨hx.2, hx.1⟩) hnm
/-- `(n, m)` is in the transitive closure of a reflexive relation `~` if `i ~ pred i` and
`pred i ~ i` for all `i` between `n` and `m`. -/
lemma trans_gen_of_pred_of_reflexive (r : α → α → Prop) {n m : α} (hr : reflexive r)
(h1 : ∀ i ∈ Ioc m n, r i (pred i)) (h2 : ∀ i ∈ Ioc n m, r (pred i) i) : trans_gen r n m :=
@trans_gen_of_succ_of_reflexive (order_dual α) _ _ _ r n m hr (λ x hx, h1 x ⟨hx.2, hx.1⟩)
(λ x hx, h2 x ⟨hx.2, hx.1⟩)
end linear_pred
|
d53ebb47741dbacd7b44a2c3c247f25c2837e7e3
|
76ce87faa6bc3c2aa9af5962009e01e04f2a074a
|
/HW/06_properties.lean
|
af81e15c7b00203e1a8a879ad134476fcc40b463
|
[] |
no_license
|
Mnormansell/Discrete-Notes
|
db423dd9206bbe7080aecb84b4c2d275b758af97
|
61f13b98be590269fc4822be7b47924a6ddc1261
|
refs/heads/master
| 1,585,412,435,424
| 1,540,919,483,000
| 1,540,919,483,000
| 148,684,638
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,090
|
lean
|
/-
HOMEWORK: Read, complete, submit.
We've seen that equality is reflexive.
That is, everything is equal to itself.
It is also symmetric in the sense that
if any value, a, is equal to some other
value, b, i.e., if a = b, then b is also
equal to a, i.e., b = a.
What this means is we have an inference
rule that both expresses the symmetric
property of equality and allows us to
compute a proof of b = a from any proof
of a = b, no matter what a and b are (no
matter what type, T, a and b have, and
no matter what values they have of this
type).
-/
/-
(T: Type) (a b: T) (ab: a = b)
------------------------------ (eq.symm)
ba: b = a
-/
-- Let's see it in action in five lines
def a := 1
def b := 2 - 1
lemma ab : a = b := rfl
#check ab -- a proof of a = b
#check (eq.symm ab) -- a proof of b = a!
/-
This is a big success. We understand not
only the property of being symmetric but
that we can use symmetry to derive new
proofs from proofs that we already have.
In fact, eq.symm is a program that does
just this derivation, as we see here!
-/
/-
Finally we come to the notion that
equality is also transitive. That means
that for any values, a, b, and c, if
a = b, and if b = c, then it must be
that consequently a = c as well.
{T : Type},
{ a b c: T },
ab: a = b,
bc: b = c
------------ (eq.trans)
ac: a = c
That is, if given proofs of a = b and
b = c, eq.symm constructs and returns
a proof of a = c.
Let's see it in action. We've already
got variables a and b to work with. We
need one more, c.
-/
def c := 1
/-
We've also already got a proof of a = b.
It's easy to generate one of b = c.
-/
lemma bc : b = c := rfl
/-
And now we can apply eq.trans to these
two premise-proofs and it will construct
and return a proof of the conclusion. The
expression that applies eq.trans to these
two proofs is (eq.trans ab bc). Now for
the fun part!
-/
#check eq.trans ab bc
/-
EXERCISE: First write a textual inference
rule, let's call it eq_snart. It says that
if T is any type; if a, b, and c are values of this type, T; and you are given
proofs of a = b and c = b then you can
derive a proof of a = c.
-/
-- {T : Type},
-- { a b c: T },
-- ab: a = b,
-- cb: c = b
------------ (eq.snart)
-- ac: a = c
/-
EXERCISE: Now "prove" that this rule is
valid by implementing it as a program
that, when given any argument values of
the specified types, returns a proof of
the specified type (of the conclusion).
Hint: Use eq.trans to construct the proof
of a = c. It's first argument will be ab,
the proof that a = b. It's second argument
has to be a proof of b = c for it to work
to derive a proof of a = c; but all we've
got is a proof of c = b (in the reverse
order). How can we pass a second argument
of type b = c to eq.trans, so that it can
do its job, when we have at hand is a proof
of c = b. Now a major hint: we already
have a way to construct a proof of b = c
from a proof of c = b. Just use it.
Ignore the error message in the following
incomplete code. The problem is simply
that the definition is incomplete, due
to the underscore placeholder. Replace
the underscore with your answer. Leave
parenthesis around your expression so
that it gets evaluated as its own term.
-/
def eq_snart { T : Type}
{ a b c: T }
(ab: a = b)
(cb: c = b) :=
eq.trans
ab
(eq.symm cb)
/-
EXERCISE: Use lean to implement a new
rule that that, from a proof of c = b
and a proof of b = a, derives a proof
of a = c. Call the proof eq_snart'
(why not, it sounds funny).
-/
def eq_snart2 { T : Type}
{ a b c: T }
(cb: c = b)
(ba: b = a) :=
eq.trans
(eq.symm ba)
(eq.symm cb)
/-
EXERCISE: Use eq_snart rather than eq.trans directly to prove a = c,
given proofs of a = b and c = b.
-/
lemma cb : c = b := rfl
#check cb
-- ab has already been declared
theorem aeqc : a = c := eq_snart ab cb
/-
In general, there are many ways to prove
a given theorem. Each distinct proof is
nevertheless an inhabitant of the type of
the proposition that it proves, and each
suffices as evidence to justify a truth
judgment for the proposition. In cases
where one's aim is simply to prove a
proposition, the particular proof object
that is used doesn't matter. We say that
the particular proof is "irrelevant."
-/
/-
SUMMARY: In this section (1) you first
recalled that the equality relation is
reflexive, symmetric, and transitive.
(2) You saw that in Lean, these are not
just abstract ideas; there are also
inference rules that you can apply to
to arguments of the right types to
build proofs of new propositions. (3)
You also saw that you can prove your own
inference rules by writing programs that
implement them! Such programs can use
already accepted inference rules (such
as eq.refl, eq.symm, eq.trans) in their
implementations. Thereafter, the new
rules are as good as the old, and can
then also be used to construct proofs
that might be needed.
-/
|
73eef7507d0b3daa462e12fdb6f53973546b923a
|
01ae0d022f2e2fefdaaa898938c1ac1fbce3b3ab
|
/categories/universal/types/default.lean
|
7bab95315f85e2ffdec10505ad0f8c51b2b1ab8b
|
[] |
no_license
|
PatrickMassot/lean-category-theory
|
0f56a83464396a253c28a42dece16c93baf8ad74
|
ef239978e91f2e1c3b8e88b6e9c64c155dc56c99
|
refs/heads/master
| 1,629,739,187,316
| 1,512,422,659,000
| 1,512,422,659,000
| 113,098,786
| 0
| 0
| null | 1,512,424,022,000
| 1,512,424,022,000
| null |
UTF-8
|
Lean
| false
| false
| 1,640
|
lean
|
import ...types
import ..instances
open categories.universal
open categories.isomorphism
namespace categories.types
definition {u} Types_has_Products : has_Products CategoryOfTypes.{u} := {
product := λ I φ, {
product := Π i : I, φ i,
projection := λ i x, x i,
map := λ Z f z i, f i z,
factorisation := ♯,
uniqueness := begin
tidy,
have p := witness x_1,
tidy,
end
}
}
definition {u} Types_has_Coproducts : has_Coproducts CategoryOfTypes.{u} := {
coproduct := λ I φ, {
coproduct := Σ i : I, φ i,
inclusion := λ i x, ⟨ i, x ⟩ ,
map := λ Z f p, f p.1 p.2,
factorisation := ♯,
uniqueness := begin
tidy,
have p := witness fst,
tidy
end
}
}
-- PROJECT better automation.
definition {u} Types_has_Equalizers : has_Equalizers CategoryOfTypes.{u} :=
{ equalizer := λ α _ f g,
{
equalizer := { x : α // f x = g x },
inclusion := λ x, x.val,
witness := ♯,
map := begin
tidy,
exact k a,
tidy,
end,
factorisation := ♯,
uniqueness := ♯
}
}
attribute [instance] Types_has_Equalizers
-- Does Types have coequalizers? Quotients are hard.
-- definition {u} relation_from_functions { α β : Type u } ( f g : α → β ) : β → β → Prop :=
-- λ b0 bn : β, ∃ l : list α,
end categories.types
|
7905a58910d100bc443196b5c36a634a7b3a2d7d
|
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
|
/src/measure_theory/constructions/pi.lean
|
0495faa795381def0baf8ce421dad3adf158b0c1
|
[
"Apache-2.0"
] |
permissive
|
waynemunro/mathlib
|
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
|
065a70810b5480d584033f7bbf8e0409480c2118
|
refs/heads/master
| 1,693,417,182,397
| 1,634,644,781,000
| 1,634,644,781,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 32,886
|
lean
|
/-
Copyright (c) 2020 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import measure_theory.constructions.prod
/-!
# Product measures
In this file we define and prove properties about finite products of measures
(and at some point, countable products of measures).
## Main definition
* `measure_theory.measure.pi`: The product of finitely many σ-finite measures.
Given `μ : Π i : ι, measure (α i)` for `[fintype ι]` it has type `measure (Π i : ι, α i)`.
To apply Fubini along some subset of the variables, use
`measure_theory.measure.map_pi_equiv_pi_subtype_prod` to reduce to the situation of a product
of two measures: this lemma states that the bijection `equiv.pi_equiv_pi_subtype_prod p α`
between `(Π i : ι, α i)` and `(Π i : {i // p i}, α i) × (Π i : {i // ¬ p i}, α i)` maps a product
measure to a direct product of product measures, to which one can apply the usual Fubini for
direct product of measures.
## Implementation Notes
We define `measure_theory.outer_measure.pi`, the product of finitely many outer measures, as the
maximal outer measure `n` with the property that `n (pi univ s) ≤ ∏ i, m i (s i)`,
where `pi univ s` is the product of the sets `{s i | i : ι}`.
We then show that this induces a product of measures, called `measure_theory.measure.pi`.
For a collection of σ-finite measures `μ` and a collection of measurable sets `s` we show that
`measure.pi μ (pi univ s) = ∏ i, m i (s i)`. To do this, we follow the following steps:
* We know that there is some ordering on `ι`, given by an element of `[encodable ι]`.
* Using this, we have an equivalence `measurable_equiv.pi_measurable_equiv_tprod` between
`Π ι, α i` and an iterated product of `α i`, called `list.tprod α l` for some list `l`.
* On this iterated product we can easily define a product measure `measure_theory.measure.tprod`
by iterating `measure_theory.measure.prod`
* Using the previous two steps we construct `measure_theory.measure.pi'` on `Π ι, α i` for encodable
`ι`.
* We know that `measure_theory.measure.pi'` sends products of sets to products of measures, and
since `measure_theory.measure.pi` is the maximal such measure (or at least, it comes from an outer
measure which is the maximal such outer measure), we get the same rule for
`measure_theory.measure.pi`.
## Tags
finitary product measure
-/
noncomputable theory
open function set measure_theory.outer_measure filter measurable_space encodable
open_locale classical big_operators topological_space ennreal
variables {ι ι' : Type*} {α : ι → Type*}
/-! We start with some measurability properties -/
/-- Boxes formed by π-systems form a π-system. -/
lemma is_pi_system.pi {C : Π i, set (set (α i))} (hC : ∀ i, is_pi_system (C i)) :
is_pi_system (pi univ '' pi univ C) :=
begin
rintro _ _ ⟨s₁, hs₁, rfl⟩ ⟨s₂, hs₂, rfl⟩ hst,
rw [← pi_inter_distrib] at hst ⊢, rw [univ_pi_nonempty_iff] at hst,
exact mem_image_of_mem _ (λ i _, hC i _ _ (hs₁ i (mem_univ i)) (hs₂ i (mem_univ i)) (hst i))
end
/-- Boxes form a π-system. -/
lemma is_pi_system_pi [Π i, measurable_space (α i)] :
is_pi_system (pi univ '' pi univ (λ i, {s : set (α i) | measurable_set s})) :=
is_pi_system.pi (λ i, is_pi_system_measurable_set)
variables [fintype ι] [fintype ι']
/-- Boxes of countably spanning sets are countably spanning. -/
lemma is_countably_spanning.pi {C : Π i, set (set (α i))}
(hC : ∀ i, is_countably_spanning (C i)) :
is_countably_spanning (pi univ '' pi univ C) :=
begin
choose s h1s h2s using hC,
haveI := fintype.encodable ι,
let e : ℕ → (ι → ℕ) := λ n, (decode (ι → ℕ) n).iget,
refine ⟨λ n, pi univ (λ i, s i (e n i)), λ n, mem_image_of_mem _ (λ i _, h1s i _), _⟩,
simp_rw [(surjective_decode_iget (ι → ℕ)).Union_comp (λ x, pi univ (λ i, s i (x i))),
Union_univ_pi s, h2s, pi_univ]
end
/-- The product of generated σ-algebras is the one generated by boxes, if both generating sets
are countably spanning. -/
lemma generate_from_pi_eq {C : Π i, set (set (α i))}
(hC : ∀ i, is_countably_spanning (C i)) :
@measurable_space.pi _ _ (λ i, generate_from (C i)) = generate_from (pi univ '' pi univ C) :=
begin
haveI := fintype.encodable ι,
apply le_antisymm,
{ refine supr_le _, intro i, rw [comap_generate_from],
apply generate_from_le, rintro _ ⟨s, hs, rfl⟩, dsimp,
choose t h1t h2t using hC,
simp_rw [eval_preimage, ← h2t],
rw [← @Union_const _ ℕ _ s],
have : (pi univ (update (λ (i' : ι), Union (t i')) i (⋃ (i' : ℕ), s))) =
(pi univ (λ k, ⋃ j : ℕ, @update ι (λ i', set (α i')) _ (λ i', t i' j) i s k)),
{ ext, simp_rw [mem_univ_pi], apply forall_congr, intro i',
by_cases (i' = i), { subst h, simp }, { rw [← ne.def] at h, simp [h] }},
rw [this, ← Union_univ_pi],
apply measurable_set.Union,
intro n, apply measurable_set_generate_from,
apply mem_image_of_mem, intros j _, dsimp only,
by_cases h: j = i, subst h, rwa [update_same], rw [update_noteq h], apply h1t },
{ apply generate_from_le, rintro _ ⟨s, hs, rfl⟩,
rw [univ_pi_eq_Inter], apply measurable_set.Inter, intro i, apply measurable_pi_apply,
exact measurable_set_generate_from (hs i (mem_univ i)) }
end
/-- If `C` and `D` generate the σ-algebras on `α` resp. `β`, then rectangles formed by `C` and `D`
generate the σ-algebra on `α × β`. -/
lemma generate_from_eq_pi [h : Π i, measurable_space (α i)]
{C : Π i, set (set (α i))} (hC : ∀ i, generate_from (C i) = h i)
(h2C : ∀ i, is_countably_spanning (C i)) :
generate_from (pi univ '' pi univ C) = measurable_space.pi :=
by rw [← funext hC, generate_from_pi_eq h2C]
/-- The product σ-algebra is generated from boxes, i.e. `s.prod t` for sets `s : set α` and
`t : set β`. -/
lemma generate_from_pi [Π i, measurable_space (α i)] :
generate_from (pi univ '' pi univ (λ i, { s : set (α i) | measurable_set s})) =
measurable_space.pi :=
generate_from_eq_pi (λ i, generate_from_measurable_set) (λ i, is_countably_spanning_measurable_set)
namespace measure_theory
variables {m : Π i, outer_measure (α i)}
/-- An upper bound for the measure in a finite product space.
It is defined to by taking the image of the set under all projections, and taking the product
of the measures of these images.
For measurable boxes it is equal to the correct measure. -/
@[simp] def pi_premeasure (m : Π i, outer_measure (α i)) (s : set (Π i, α i)) : ℝ≥0∞ :=
∏ i, m i (eval i '' s)
lemma pi_premeasure_pi {s : Π i, set (α i)} (hs : (pi univ s).nonempty) :
pi_premeasure m (pi univ s) = ∏ i, m i (s i) :=
by simp [hs]
lemma pi_premeasure_pi' [nonempty ι] {s : Π i, set (α i)} :
pi_premeasure m (pi univ s) = ∏ i, m i (s i) :=
begin
cases (pi univ s).eq_empty_or_nonempty with h h,
{ rcases univ_pi_eq_empty_iff.mp h with ⟨i, hi⟩,
have : ∃ i, m i (s i) = 0 := ⟨i, by simp [hi]⟩,
simpa [h, finset.card_univ, zero_pow (fintype.card_pos_iff.mpr ‹_›),
@eq_comm _ (0 : ℝ≥0∞), finset.prod_eq_zero_iff] },
{ simp [h] }
end
lemma pi_premeasure_pi_mono {s t : set (Π i, α i)} (h : s ⊆ t) :
pi_premeasure m s ≤ pi_premeasure m t :=
finset.prod_le_prod' (λ i _, (m i).mono' (image_subset _ h))
lemma pi_premeasure_pi_eval [nonempty ι] {s : set (Π i, α i)} :
pi_premeasure m (pi univ (λ i, eval i '' s)) = pi_premeasure m s :=
by simp [pi_premeasure_pi']
namespace outer_measure
/-- `outer_measure.pi m` is the finite product of the outer measures `{m i | i : ι}`.
It is defined to be the maximal outer measure `n` with the property that
`n (pi univ s) ≤ ∏ i, m i (s i)`, where `pi univ s` is the product of the sets
`{s i | i : ι}`. -/
protected def pi (m : Π i, outer_measure (α i)) : outer_measure (Π i, α i) :=
bounded_by (pi_premeasure m)
lemma pi_pi_le (m : Π i, outer_measure (α i)) (s : Π i, set (α i)) :
outer_measure.pi m (pi univ s) ≤ ∏ i, m i (s i) :=
by { cases (pi univ s).eq_empty_or_nonempty with h h, simp [h],
exact (bounded_by_le _).trans_eq (pi_premeasure_pi h) }
lemma le_pi {m : Π i, outer_measure (α i)} {n : outer_measure (Π i, α i)} :
n ≤ outer_measure.pi m ↔ ∀ (s : Π i, set (α i)), (pi univ s).nonempty →
n (pi univ s) ≤ ∏ i, m i (s i) :=
begin
rw [outer_measure.pi, le_bounded_by'], split,
{ intros h s hs, refine (h _ hs).trans_eq (pi_premeasure_pi hs) },
{ intros h s hs, refine le_trans (n.mono $ subset_pi_eval_image univ s) (h _ _),
simp [univ_pi_nonempty_iff, hs] }
end
end outer_measure
namespace measure
variables [Π i, measurable_space (α i)] (μ : Π i, measure (α i))
section tprod
open list
variables {δ : Type*} {π : δ → Type*} [∀ x, measurable_space (π x)]
/-- A product of measures in `tprod α l`. -/
-- for some reason the equation compiler doesn't like this definition
protected def tprod (l : list δ) (μ : Π i, measure (π i)) : measure (tprod π l) :=
by { induction l with i l ih, exact dirac punit.star, exact (μ i).prod ih }
@[simp] lemma tprod_nil (μ : Π i, measure (π i)) : measure.tprod [] μ = dirac punit.star := rfl
@[simp] lemma tprod_cons (i : δ) (l : list δ) (μ : Π i, measure (π i)) :
measure.tprod (i :: l) μ = (μ i).prod (measure.tprod l μ) := rfl
instance sigma_finite_tprod (l : list δ) (μ : Π i, measure (π i)) [∀ i, sigma_finite (μ i)] :
sigma_finite (measure.tprod l μ) :=
begin
induction l with i l ih,
{ rw [tprod_nil], apply_instance },
{ rw [tprod_cons], resetI, apply_instance }
end
lemma tprod_tprod (l : list δ) (μ : Π i, measure (π i)) [∀ i, sigma_finite (μ i)]
{s : Π i, set (π i)} (hs : ∀ i, measurable_set (s i)) :
measure.tprod l μ (set.tprod l s) = (l.map (λ i, (μ i) (s i))).prod :=
begin
induction l with i l ih, { simp },
simp_rw [tprod_cons, set.tprod, prod_prod (hs i) (measurable_set.tprod l hs), map_cons,
prod_cons, ih]
end
lemma tprod_tprod_le (l : list δ) (μ : Π i, measure (π i)) [∀ i, sigma_finite (μ i)]
(s : Π i, set (π i)) : measure.tprod l μ (set.tprod l s) ≤ (l.map (λ i, (μ i) (s i))).prod :=
begin
induction l with i l ih, { simp [le_refl] },
simp_rw [tprod_cons, set.tprod, map_cons, prod_cons],
refine (prod_prod_le _ _).trans _, exact ennreal.mul_left_mono ih
end
end tprod
section encodable
open list measurable_equiv
variables [encodable ι]
/-- The product measure on an encodable finite type, defined by mapping `measure.tprod` along the
equivalence `measurable_equiv.pi_measurable_equiv_tprod`.
The definition `measure_theory.measure.pi` should be used instead of this one. -/
def pi' : measure (Π i, α i) :=
measure.map (tprod.elim' mem_sorted_univ) (measure.tprod (sorted_univ ι) μ)
lemma pi'_pi [∀ i, sigma_finite (μ i)] {s : Π i, set (α i)}
(hs : ∀ i, measurable_set (s i)) : pi' μ (pi univ s) = ∏ i, μ i (s i) :=
begin
have hl := λ i : ι, mem_sorted_univ i,
have hnd := @sorted_univ_nodup ι _ _,
rw [pi', map_apply (measurable_tprod_elim' hl) (measurable_set.pi_fintype (λ i _, hs i)),
elim_preimage_pi hnd, tprod_tprod _ μ hs, ← list.prod_to_finset _ hnd],
congr' with i, simp [hl]
end
lemma pi'_pi_le [∀ i, sigma_finite (μ i)] {s : Π i, set (α i)} :
pi' μ (pi univ s) ≤ ∏ i, μ i (s i) :=
begin
have hl := λ i : ι, mem_sorted_univ i,
have hnd := @sorted_univ_nodup ι _ _,
apply ((pi_measurable_equiv_tprod hnd hl).symm.map_apply (pi univ s)).trans_le,
dsimp only [pi_measurable_equiv_tprod_symm_apply],
rw [elim_preimage_pi hnd],
refine (tprod_tprod_le _ _ _).trans_eq _,
rw [← list.prod_to_finset _ hnd],
congr' with i, simp [hl]
end
end encodable
lemma pi_caratheodory :
measurable_space.pi ≤ (outer_measure.pi (λ i, (μ i).to_outer_measure)).caratheodory :=
begin
refine supr_le _,
intros i s hs,
rw [measurable_space.comap] at hs,
rcases hs with ⟨s, hs, rfl⟩,
apply bounded_by_caratheodory,
intro t,
simp_rw [pi_premeasure],
refine finset.prod_add_prod_le' (finset.mem_univ i) _ _ _,
{ simp [image_inter_preimage, image_diff_preimage, (μ i).caratheodory hs, le_refl] },
{ rintro j - hj, apply mono', apply image_subset, apply inter_subset_left },
{ rintro j - hj, apply mono', apply image_subset, apply diff_subset }
end
/-- `measure.pi μ` is the finite product of the measures `{μ i | i : ι}`.
It is defined to be measure corresponding to `measure_theory.outer_measure.pi`. -/
@[irreducible] protected def pi : measure (Π i, α i) :=
to_measure (outer_measure.pi (λ i, (μ i).to_outer_measure)) (pi_caratheodory μ)
lemma pi_pi [∀ i, sigma_finite (μ i)] (s : Π i, set (α i)) (hs : ∀ i, measurable_set (s i)) :
measure.pi μ (pi univ s) = ∏ i, μ i (s i) :=
begin
refine le_antisymm _ _,
{ rw [measure.pi, to_measure_apply _ _ (measurable_set.pi_fintype (λ i _, hs i))],
apply outer_measure.pi_pi_le },
{ haveI : encodable ι := fintype.encodable ι,
rw [← pi'_pi μ hs],
simp_rw [← pi'_pi μ hs, measure.pi,
to_measure_apply _ _ (measurable_set.pi_fintype (λ i _, hs i)), ← to_outer_measure_apply],
suffices : (pi' μ).to_outer_measure ≤ outer_measure.pi (λ i, (μ i).to_outer_measure),
{ exact this _ },
clear hs s,
rw [outer_measure.le_pi],
intros s hs,
simp_rw [to_outer_measure_apply],
exact pi'_pi_le μ }
end
lemma pi_ball [∀ i, sigma_finite (μ i)] [∀ i, metric_space (α i)] [∀ i, borel_space (α i)]
(x : Π i, α i) {r : ℝ} (hr : 0 < r) :
measure.pi μ (metric.ball x r) = ∏ i, μ i (metric.ball (x i) r) :=
begin
rw [ball_pi _ hr, pi_pi],
exact λ i, measurable_set_ball
end
lemma pi_closed_ball [∀ i, sigma_finite (μ i)] [∀ i, metric_space (α i)] [∀ i, borel_space (α i)]
(x : Π i, α i) {r : ℝ} (hr : 0 ≤ r) :
measure.pi μ (metric.closed_ball x r) = ∏ i, μ i (metric.closed_ball (x i) r) :=
begin
rw [closed_ball_pi _ hr, pi_pi],
exact λ i, measurable_set_closed_ball
end
lemma pi_unique_eq_map {β : Type*} {m : measurable_space β} (μ : measure β) (α : Type*) [unique α] :
measure.pi (λ a : α, μ) = map (measurable_equiv.fun_unique α β).symm μ :=
begin
set e := measurable_equiv.fun_unique α β,
have : pi_premeasure (λ _ : α, μ.to_outer_measure) = map e.symm μ,
{ ext1 s,
rw [pi_premeasure, fintype.prod_unique, to_outer_measure_apply, e.symm.map_apply],
congr' 1, exact e.to_equiv.image_eq_preimage s },
simp only [measure.pi, outer_measure.pi, this, bounded_by_measure, to_outer_measure_to_measure],
end
lemma map_fun_unique {α β : Type*} [unique α] {m : measurable_space β} (μ : measure β) :
map (measurable_equiv.fun_unique α β) (measure.pi $ λ _, μ) = μ :=
(measurable_equiv.fun_unique α β).map_apply_eq_iff_map_symm_apply_eq.2 (pi_unique_eq_map μ _).symm
variable {μ}
/-- `measure.pi μ` has finite spanning sets in rectangles of finite spanning sets. -/
def finite_spanning_sets_in.pi {C : Π i, set (set (α i))}
(hμ : ∀ i, (μ i).finite_spanning_sets_in (C i)) (hC : ∀ i (s ∈ C i), measurable_set s) :
(measure.pi μ).finite_spanning_sets_in (pi univ '' pi univ C) :=
begin
haveI := λ i, (hμ i).sigma_finite,
haveI := fintype.encodable ι,
let e : ℕ → (ι → ℕ) := λ n, (decode (ι → ℕ) n).iget,
refine ⟨λ n, pi univ (λ i, (hμ i).set (e n i)), λ n, _, λ n, _, _⟩,
{ refine mem_image_of_mem _ (λ i _, (hμ i).set_mem _) },
{ simp_rw [pi_pi μ (λ i, (hμ i).set (e n i)) (λ i, hC i _ ((hμ i).set_mem _))],
exact ennreal.prod_lt_top (λ i _, ((hμ i).finite _).ne) },
{ simp_rw [(surjective_decode_iget (ι → ℕ)).Union_comp (λ x, pi univ (λ i, (hμ i).set (x i))),
Union_univ_pi (λ i, (hμ i).set), (hμ _).spanning, pi_univ] }
end
/-- A measure on a finite product space equals the product measure if they are equal on rectangles
with as sides sets that generate the corresponding σ-algebras. -/
lemma pi_eq_generate_from {C : Π i, set (set (α i))}
(hC : ∀ i, generate_from (C i) = _inst_3 i)
(h2C : ∀ i, is_pi_system (C i))
(h3C : ∀ i, (μ i).finite_spanning_sets_in (C i))
{μν : measure (Π i, α i)}
(h₁ : ∀ s : Π i, set (α i), (∀ i, s i ∈ C i) → μν (pi univ s) = ∏ i, μ i (s i)) :
measure.pi μ = μν :=
begin
have h4C : ∀ i (s : set (α i)), s ∈ C i → measurable_set s,
{ intros i s hs, rw [← hC], exact measurable_set_generate_from hs },
refine (finite_spanning_sets_in.pi h3C h4C).ext
(generate_from_eq_pi hC (λ i, (h3C i).is_countably_spanning)).symm
(is_pi_system.pi h2C) _,
rintro _ ⟨s, hs, rfl⟩,
rw [mem_univ_pi] at hs,
haveI := λ i, (h3C i).sigma_finite,
simp_rw [h₁ s hs, pi_pi μ s (λ i, h4C i _ (hs i))]
end
variables [∀ i, sigma_finite (μ i)]
/-- A measure on a finite product space equals the product measure if they are equal on
rectangles. -/
lemma pi_eq {μ' : measure (Π i, α i)}
(h : ∀ s : Π i, set (α i), (∀ i, measurable_set (s i)) → μ' (pi univ s) = ∏ i, μ i (s i)) :
measure.pi μ = μ' :=
pi_eq_generate_from (λ i, generate_from_measurable_set)
(λ i, is_pi_system_measurable_set)
(λ i, (μ i).to_finite_spanning_sets_in) h
variable (μ)
instance pi.sigma_finite : sigma_finite (measure.pi μ) :=
(finite_spanning_sets_in.pi (λ i, (μ i).to_finite_spanning_sets_in) (λ _ _, id)).sigma_finite
lemma {u} pi_fin_two_eq_map {α : fin 2 → Type u} {m : Π i, measurable_space (α i)}
(μ : Π i, measure (α i)) [∀ i, sigma_finite (μ i)] :
measure.pi μ = map (measurable_equiv.pi_fin_two α).symm ((μ 0).prod (μ 1)) :=
begin
refine pi_eq (λ s hs, _),
rw [measurable_equiv.map_apply, fin.prod_univ_succ, fin.prod_univ_succ, fin.prod_univ_zero,
mul_one, ← measure.prod_prod (hs _) (hs _)]; [skip, apply_instance],
congr' 1,
ext ⟨a, b⟩,
simp [fin.forall_fin_succ, is_empty.forall_iff]
end
lemma {u} map_pi_fin_two {α : fin 2 → Type u} {m : Π i, measurable_space (α i)}
(μ : Π i, measure (α i)) [∀ i, sigma_finite (μ i)] :
map (measurable_equiv.pi_fin_two α) (measure.pi μ) = ((μ 0).prod (μ 1)) :=
(measurable_equiv.pi_fin_two α).map_apply_eq_iff_map_symm_apply_eq.2 (pi_fin_two_eq_map μ).symm
lemma prod_eq_map_fin_two_arrow {α : Type*} {m : measurable_space α} (μ ν : measure α)
[sigma_finite μ] [sigma_finite ν] :
μ.prod ν = map measurable_equiv.fin_two_arrow (measure.pi ![μ, ν]) :=
begin
haveI : ∀ i, sigma_finite (![μ, ν] i) := fin.forall_fin_two.2 ⟨‹_›, ‹_›⟩,
exact (map_pi_fin_two ![μ, ν]).symm
end
lemma prod_eq_map_fin_two_arrow_same {α : Type*} {m : measurable_space α} (μ : measure α)
[sigma_finite μ] :
μ.prod μ = map measurable_equiv.fin_two_arrow (measure.pi $ λ _, μ) :=
by rw [prod_eq_map_fin_two_arrow, matrix.vec_single_eq_const, matrix.vec_cons_const]
lemma pi_eval_preimage_null {i : ι} {s : set (α i)} (hs : μ i s = 0) :
measure.pi μ (eval i ⁻¹' s) = 0 :=
begin
/- WLOG, `s` is measurable -/
rcases exists_measurable_superset_of_null hs with ⟨t, hst, htm, hμt⟩,
suffices : measure.pi μ (eval i ⁻¹' t) = 0,
from measure_mono_null (preimage_mono hst) this,
clear_dependent s,
/- Now rewrite it as `set.pi`, and apply `pi_pi` -/
rw [← univ_pi_update_univ, pi_pi],
{ apply finset.prod_eq_zero (finset.mem_univ i), simp [hμt] },
{ intro j,
rcases em (j = i) with rfl | hj; simp * }
end
lemma pi_hyperplane (i : ι) [has_no_atoms (μ i)] (x : α i) :
measure.pi μ {f : Π i, α i | f i = x} = 0 :=
show measure.pi μ (eval i ⁻¹' {x}) = 0,
from pi_eval_preimage_null _ (measure_singleton x)
lemma ae_eval_ne (i : ι) [has_no_atoms (μ i)] (x : α i) :
∀ᵐ y : Π i, α i ∂measure.pi μ, y i ≠ x :=
compl_mem_ae_iff.2 (pi_hyperplane μ i x)
variable {μ}
lemma tendsto_eval_ae_ae {i : ι} : tendsto (eval i) (measure.pi μ).ae (μ i).ae :=
λ s hs, pi_eval_preimage_null μ hs
-- TODO: should we introduce `filter.pi` and prove some basic facts about it?
-- The same combinator appears here and in `nhds_pi`
lemma ae_pi_le_infi_comap : (measure.pi μ).ae ≤ ⨅ i, filter.comap (eval i) (μ i).ae :=
le_infi $ λ i, tendsto_eval_ae_ae.le_comap
lemma ae_eq_pi {β : ι → Type*} {f f' : Π i, α i → β i} (h : ∀ i, f i =ᵐ[μ i] f' i) :
(λ (x : Π i, α i) i, f i (x i)) =ᵐ[measure.pi μ] (λ x i, f' i (x i)) :=
(eventually_all.2 (λ i, tendsto_eval_ae_ae.eventually (h i))).mono $ λ x hx, funext hx
lemma ae_le_pi {β : ι → Type*} [Π i, preorder (β i)] {f f' : Π i, α i → β i}
(h : ∀ i, f i ≤ᵐ[μ i] f' i) :
(λ (x : Π i, α i) i, f i (x i)) ≤ᵐ[measure.pi μ] (λ x i, f' i (x i)) :=
(eventually_all.2 (λ i, tendsto_eval_ae_ae.eventually (h i))).mono $ λ x hx, hx
lemma ae_le_set_pi {I : set ι} {s t : Π i, set (α i)} (h : ∀ i ∈ I, s i ≤ᵐ[μ i] t i) :
(set.pi I s) ≤ᵐ[measure.pi μ] (set.pi I t) :=
((eventually_all_finite (finite.of_fintype I)).2
(λ i hi, tendsto_eval_ae_ae.eventually (h i hi))).mono $
λ x hst hx i hi, hst i hi $ hx i hi
lemma ae_eq_set_pi {I : set ι} {s t : Π i, set (α i)} (h : ∀ i ∈ I, s i =ᵐ[μ i] t i) :
(set.pi I s) =ᵐ[measure.pi μ] (set.pi I t) :=
(ae_le_set_pi (λ i hi, (h i hi).le)).antisymm (ae_le_set_pi (λ i hi, (h i hi).symm.le))
section intervals
variables {μ} [Π i, partial_order (α i)] [∀ i, has_no_atoms (μ i)]
lemma pi_Iio_ae_eq_pi_Iic {s : set ι} {f : Π i, α i} :
pi s (λ i, Iio (f i)) =ᵐ[measure.pi μ] pi s (λ i, Iic (f i)) :=
ae_eq_set_pi $ λ i hi, Iio_ae_eq_Iic
lemma pi_Ioi_ae_eq_pi_Ici {s : set ι} {f : Π i, α i} :
pi s (λ i, Ioi (f i)) =ᵐ[measure.pi μ] pi s (λ i, Ici (f i)) :=
ae_eq_set_pi $ λ i hi, Ioi_ae_eq_Ici
lemma univ_pi_Iio_ae_eq_Iic {f : Π i, α i} :
pi univ (λ i, Iio (f i)) =ᵐ[measure.pi μ] Iic f :=
by { rw ← pi_univ_Iic, exact pi_Iio_ae_eq_pi_Iic }
lemma univ_pi_Ioi_ae_eq_Ici {f : Π i, α i} :
pi univ (λ i, Ioi (f i)) =ᵐ[measure.pi μ] Ici f :=
by { rw ← pi_univ_Ici, exact pi_Ioi_ae_eq_pi_Ici }
lemma pi_Ioo_ae_eq_pi_Icc {s : set ι} {f g : Π i, α i} :
pi s (λ i, Ioo (f i) (g i)) =ᵐ[measure.pi μ] pi s (λ i, Icc (f i) (g i)) :=
ae_eq_set_pi $ λ i hi, Ioo_ae_eq_Icc
lemma univ_pi_Ioo_ae_eq_Icc {f g : Π i, α i} :
pi univ (λ i, Ioo (f i) (g i)) =ᵐ[measure.pi μ] Icc f g :=
by { rw ← pi_univ_Icc, exact pi_Ioo_ae_eq_pi_Icc }
lemma pi_Ioc_ae_eq_pi_Icc {s : set ι} {f g : Π i, α i} :
pi s (λ i, Ioc (f i) (g i)) =ᵐ[measure.pi μ] pi s (λ i, Icc (f i) (g i)) :=
ae_eq_set_pi $ λ i hi, Ioc_ae_eq_Icc
lemma univ_pi_Ioc_ae_eq_Icc {f g : Π i, α i} :
pi univ (λ i, Ioc (f i) (g i)) =ᵐ[measure.pi μ] Icc f g :=
by { rw ← pi_univ_Icc, exact pi_Ioc_ae_eq_pi_Icc }
lemma pi_Ico_ae_eq_pi_Icc {s : set ι} {f g : Π i, α i} :
pi s (λ i, Ico (f i) (g i)) =ᵐ[measure.pi μ] pi s (λ i, Icc (f i) (g i)) :=
ae_eq_set_pi $ λ i hi, Ico_ae_eq_Icc
lemma univ_pi_Ico_ae_eq_Icc {f g : Π i, α i} :
pi univ (λ i, Ico (f i) (g i)) =ᵐ[measure.pi μ] Icc f g :=
by { rw ← pi_univ_Icc, exact pi_Ico_ae_eq_pi_Icc }
end intervals
/-- If one of the measures `μ i` has no atoms, them `measure.pi µ`
has no atoms. The instance below assumes that all `μ i` have no atoms. -/
lemma pi_has_no_atoms (i : ι) [has_no_atoms (μ i)] :
has_no_atoms (measure.pi μ) :=
⟨λ x, flip measure_mono_null (pi_hyperplane μ i (x i)) (singleton_subset_iff.2 rfl)⟩
instance [h : nonempty ι] [∀ i, has_no_atoms (μ i)] : has_no_atoms (measure.pi μ) :=
h.elim $ λ i, pi_has_no_atoms i
instance [Π i, topological_space (α i)] [∀ i, opens_measurable_space (α i)]
[∀ i, is_locally_finite_measure (μ i)] :
is_locally_finite_measure (measure.pi μ) :=
begin
refine ⟨λ x, _⟩,
choose s hxs ho hμ using λ i, (μ i).exists_is_open_measure_lt_top (x i),
refine ⟨pi univ s, set_pi_mem_nhds finite_univ (λ i hi, is_open.mem_nhds (ho i) (hxs i)), _⟩,
rw [pi_pi],
exacts [ennreal.prod_lt_top (λ i _, (hμ i).ne), λ i, (ho i).measurable_set]
end
variable (μ)
/-- Separating the indices into those that satisfy a predicate `p` and those that don't maps
a product measure to a product of product measures. This is useful to apply Fubini to some subset
of the variables. The converse is `measure_theory.measure.map_pi_equiv_pi_subtype_prod`. -/
lemma map_pi_equiv_pi_subtype_prod_symm (p : ι → Prop) [decidable_pred p] :
map (equiv.pi_equiv_pi_subtype_prod p α).symm
(measure.prod (measure.pi (λ i, μ i)) (measure.pi (λ i, μ i))) = measure.pi μ :=
begin
refine (measure.pi_eq (λ s hs, _)).symm,
have A : (equiv.pi_equiv_pi_subtype_prod p α).symm ⁻¹' (set.pi set.univ (λ (i : ι), s i)) =
set.prod (set.pi set.univ (λ i, s i)) (set.pi set.univ (λ i, s i)),
{ ext x,
simp only [equiv.pi_equiv_pi_subtype_prod_symm_apply, mem_prod, mem_univ_pi, mem_preimage,
subtype.forall],
split,
{ exact λ h, ⟨λ i hi, by simpa [dif_pos hi] using h i,
λ i hi, by simpa [dif_neg hi] using h i⟩ },
{ assume h i,
by_cases hi : p i,
{ simpa only [dif_pos hi] using h.1 i hi },
{simpa only [dif_neg hi] using h.2 i hi } } },
rw [measure.map_apply (measurable_pi_equiv_pi_subtype_prod_symm _ p)
(measurable_set.univ_pi_fintype hs), A,
measure.prod_prod, pi_pi, pi_pi, ← fintype.prod_subtype_mul_prod_subtype p (λ i, μ i (s i))],
{ exact λ i, hs i.1 },
{ exact λ i, hs i.1 },
{ exact measurable_set.univ_pi_fintype (λ i, hs i.1) },
{ exact measurable_set.univ_pi_fintype (λ i, hs i.1) },
end
lemma map_pi_equiv_pi_subtype_prod (p : ι → Prop) [decidable_pred p] :
map (equiv.pi_equiv_pi_subtype_prod p α) (measure.pi μ) =
measure.prod (measure.pi (λ i, μ i)) (measure.pi (λ i, μ i)) :=
begin
rw [← map_pi_equiv_pi_subtype_prod_symm μ p, measure.map_map
(measurable_pi_equiv_pi_subtype_prod _ p) (measurable_pi_equiv_pi_subtype_prod_symm _ p)],
simp only [equiv.self_comp_symm, map_id]
end
end measure
instance measure_space.pi [Π i, measure_space (α i)] : measure_space (Π i, α i) :=
⟨measure.pi (λ i, volume)⟩
lemma volume_pi [Π i, measure_space (α i)] :
(volume : measure (Π i, α i)) = measure.pi (λ i, volume) :=
rfl
lemma volume_pi_pi [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))]
(s : Π i, set (α i)) (hs : ∀ i, measurable_set (s i)) :
volume (pi univ s) = ∏ i, volume (s i) :=
measure.pi_pi (λ i, volume) s hs
lemma volume_pi_ball [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))]
[∀ i, metric_space (α i)] [∀ i, borel_space (α i)] (x : Π i, α i) {r : ℝ} (hr : 0 < r) :
volume (metric.ball x r) = ∏ i, volume (metric.ball (x i) r) :=
measure.pi_ball _ _ hr
lemma volume_pi_closed_ball [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))]
[∀ i, metric_space (α i)] [∀ i, borel_space (α i)]
(x : Π i, α i) {r : ℝ} (hr : 0 ≤ r) :
volume (metric.closed_ball x r) = ∏ i, volume (metric.closed_ball (x i) r) :=
measure.pi_closed_ball _ _ hr
section fun_unique
/-!
### Integral over `ι → α` with `[unique ι]`
In this section we prove some lemmas that relate integrals over `ι → β`, where `ι` is a type with
unique element (e.g., `unit` or `fin 1`) and integrals over `β`.
-/
variables {β E : Type*} [normed_group E] [normed_space ℝ E] [measurable_space E]
[topological_space.second_countable_topology E] [borel_space E] [complete_space E]
lemma integral_fun_unique_pi (ι) [unique ι] {m : measurable_space β} (μ : measure β)
(f : (ι → β) → E) :
∫ y, f y ∂(measure.pi (λ _, μ)) = ∫ x, f (λ _, x) ∂μ :=
by rw [measure.pi_unique_eq_map μ ι, integral_map_equiv]; refl
lemma integral_fun_unique_pi' (ι : Type*) [unique ι] {m : measurable_space β} (μ : measure β)
(f : β → E) :
∫ y : ι → β, f (y (default ι)) ∂(measure.pi (λ _, μ)) = ∫ x, f x ∂μ :=
integral_fun_unique_pi ι μ _
lemma integral_fun_unique (ι : Type*) [unique ι] [measure_space β] (f : (ι → β) → E) :
∫ y, f y = ∫ x, f (λ _, x) :=
integral_fun_unique_pi ι volume f
lemma integral_fun_unique' (ι : Type*) [unique ι] [measure_space β] (f : β → E) :
∫ y : ι → β, f (y (default ι)) = ∫ x, f x :=
integral_fun_unique_pi' ι volume f
lemma set_integral_fun_unique_pi (ι : Type*) [unique ι] {m : measurable_space β} (μ : measure β)
(f : (ι → β) → E) (s : set (ι → β)) :
∫ y in s, f y ∂(measure.pi (λ _, μ)) = ∫ x in const ι ⁻¹' s, f (λ _, x) ∂μ :=
by rw [measure.pi_unique_eq_map μ ι, set_integral_map_equiv]; refl
lemma set_integral_fun_unique_pi' (ι : Type*) [unique ι] {m : measurable_space β} (μ : measure β)
(f : β → E) (s : set β) :
∫ y : ι → β in function.eval (default ι) ⁻¹' s, f (y (default ι)) ∂(measure.pi (λ _, μ)) =
∫ x in s, f x ∂μ :=
by erw [set_integral_fun_unique_pi, (equiv.fun_unique ι β).symm_preimage_preimage]
lemma set_integral_fun_unique (ι : Type*) [unique ι] [measure_space β] (f : (ι → β) → E)
(s : set (ι → β)) :
∫ y in s, f y = ∫ x in const ι ⁻¹' s, f (λ _, x) :=
by convert set_integral_fun_unique_pi ι volume f s
lemma set_integral_fun_unique' (ι : Type*) [unique ι] [measure_space β] (f : β → E) (s : set β) :
∫ y : ι → β in @function.eval ι (λ _, β) (default ι) ⁻¹' s, f (y (default ι)) = ∫ x in s, f x :=
by convert set_integral_fun_unique_pi' ι volume f s
end fun_unique
section fin_two_arrow
variables {β E : Type*} [normed_group E] [normed_space ℝ E] [measurable_space E]
[topological_space.second_countable_topology E] [borel_space E] [complete_space E]
lemma integral_fin_two_arrow_pi {m : measurable_space β} (μ ν : measure β)
[sigma_finite μ] [sigma_finite ν] (f : (fin 2 → β) → E) :
∫ y, f y ∂(measure.pi ![μ, ν]) = ∫ x, f ![x.1, x.2] ∂(μ.prod ν) :=
begin
haveI : ∀ i, sigma_finite (![μ, ν] i) := fin.forall_fin_two.2 ⟨‹_›, ‹_›⟩,
rw [measure.pi_fin_two_eq_map, integral_map_equiv], refl
end
lemma integral_fin_two_arrow_pi' {m : measurable_space β} (μ ν : measure β) [sigma_finite μ]
[sigma_finite ν] (f : β × β → E) :
∫ y : fin 2 → β, f (y 0, y 1) ∂(measure.pi ![μ, ν]) = ∫ x, f x ∂(μ.prod ν) :=
by { rw [measure.prod_eq_map_fin_two_arrow, integral_map_equiv], refl }
lemma integral_fin_two_arrow [measure_space β] [sigma_finite (volume : measure β)]
(f : (fin 2 → β) → E) :
∫ y, f y = ∫ x : β × β, f ![x.1, x.2] :=
by rw [volume_pi, measure.volume_eq_prod, ← integral_fin_two_arrow_pi, matrix.vec_single_eq_const,
matrix.vec_cons_const]
lemma integral_fin_two_arrow' [measure_space β] [sigma_finite (volume : measure β)]
(f : β × β → E) :
∫ y : fin 2 → β, f (y 0, y 1) = ∫ x, f x :=
by rw [volume_pi, measure.volume_eq_prod, ← integral_fin_two_arrow_pi', matrix.vec_single_eq_const,
matrix.vec_cons_const]
lemma set_integral_fin_two_arrow_pi {m : measurable_space β} (μ ν : measure β)
[sigma_finite μ] [sigma_finite ν] (f : (fin 2 → β) → E) (s : set (fin 2 → β)) :
∫ y in s, f y ∂(measure.pi ![μ, ν]) =
∫ x : β × β in (fin_two_arrow_equiv β).symm ⁻¹' s, f ![x.1, x.2] ∂(μ.prod ν) :=
begin
haveI : ∀ i, sigma_finite (![μ, ν] i) := fin.forall_fin_two.2 ⟨‹_›, ‹_›⟩,
rw [measure.pi_fin_two_eq_map, set_integral_map_equiv], refl
end
lemma set_integral_fin_two_arrow_pi' {m : measurable_space β} (μ ν : measure β)
[sigma_finite μ] [sigma_finite ν] (f : β × β → E) (s : set (β × β)) :
∫ y : fin 2 → β in fin_two_arrow_equiv β ⁻¹' s, f (y 0, y 1) ∂(measure.pi ![μ, ν]) =
∫ x in s, f x ∂(μ.prod ν) :=
by { rw [set_integral_fin_two_arrow_pi, equiv.symm_preimage_preimage], simp }
lemma set_integral_fin_two_arrow [measure_space β] [sigma_finite (volume : measure β)]
(f : (fin 2 → β) → E) (s : set (fin 2 → β)) :
∫ y in s, f y = ∫ x in (fin_two_arrow_equiv β).symm ⁻¹' s, f ![x.1, x.2] :=
by rw [measure.volume_eq_prod, ← set_integral_fin_two_arrow_pi, volume_pi,
matrix.vec_single_eq_const, matrix.vec_cons_const]
lemma set_integral_fin_two_arrow' [measure_space β] [sigma_finite (volume : measure β)]
(f : β × β → E) (s : set (β × β)) :
∫ y : fin 2 → β in fin_two_arrow_equiv β ⁻¹' s, f (y 0, y 1) = ∫ x in s, f x :=
by rw [measure.volume_eq_prod, ← set_integral_fin_two_arrow_pi', volume_pi,
matrix.vec_single_eq_const, matrix.vec_cons_const]
end fin_two_arrow
end measure_theory
|
3ee0cf79bb62bb58b0650d2e46489ed07ae1d2ed
|
d1a52c3f208fa42c41df8278c3d280f075eb020c
|
/tests/lean/run/meta2.lean
|
50dca8fb081be60f2987b39f953362fe91141984
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
cipher1024/lean4
|
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
|
69114d3b50806264ef35b57394391c3e738a9822
|
refs/heads/master
| 1,642,227,983,603
| 1,642,011,696,000
| 1,642,011,696,000
| 228,607,691
| 0
| 0
|
Apache-2.0
| 1,576,584,269,000
| 1,576,584,268,000
| null |
UTF-8
|
Lean
| false
| false
| 18,281
|
lean
|
import Lean.Meta
open Lean
open Lean.Meta
-- set_option trace.Meta true
--set_option trace.Meta.isDefEq.step false
-- set_option trace.Meta.isDefEq.delta false
set_option trace.Meta.debug true
def print (msg : MessageData) : MetaM Unit := do
trace[Meta.debug] msg
def checkM (x : MetaM Bool) : MetaM Unit :=
unless (← x) do throwError "check failed"
def getAssignment (m : Expr) : MetaM Expr :=
do let v? ← getExprMVarAssignment? m.mvarId!;
(match v? with
| some v => pure v
| none => throwError "metavariable is not assigned")
def nat := mkConst `Nat
def boolE := mkConst `Bool
def succ := mkConst `Nat.succ
def zero := mkConst `Nat.zero
def add := mkConst `Nat.add
def io := mkConst `IO
def type := mkSort levelOne
def boolFalse := mkConst `Bool.false
def boolTrue := mkConst `Bool.true
def tst1 : MetaM Unit :=
do print "----- tst1 -----";
let mvar <- mkFreshExprMVar nat;
checkM $ isExprDefEq mvar (mkNatLit 10);
checkM $ isExprDefEq mvar (mkNatLit 10);
pure ()
#eval tst1
def tst2 : MetaM Unit :=
do print "----- tst2 -----";
let mvar <- mkFreshExprMVar nat;
checkM $ isExprDefEq (mkApp succ mvar) (mkApp succ (mkNatLit 10));
checkM $ isExprDefEq mvar (mkNatLit 10);
pure ()
#eval tst2
def tst3 : MetaM Unit :=
do print "----- tst3 -----";
let t := mkLambda `x BinderInfo.default nat $ mkBVar 0;
let mvar ← mkFreshExprMVar (mkForall `x BinderInfo.default nat nat);
lambdaTelescope t fun xs _ => do
let x := xs[0];
checkM $ isExprDefEq (mkApp mvar x) (mkAppN add #[x, mkAppN add #[mkNatLit 10, x]]);
pure ();
let v ← getAssignment mvar;
print v;
pure ()
#eval tst3
def tst4 : MetaM Unit :=
do print "----- tst4 -----";
let t := mkLambda `x BinderInfo.default nat $ mkBVar 0;
lambdaTelescope t fun xs _ => do
let x := xs[0];
let mvar ← mkFreshExprMVar (mkForall `x BinderInfo.default nat nat);
-- the following `isExprDefEq` fails because `x` is also in the context of `mvar`
checkM $ not <$> isExprDefEq (mkApp mvar x) (mkAppN add #[x, mkAppN add #[mkNatLit 10, x]]);
checkM $ approxDefEq $ isExprDefEq (mkApp mvar x) (mkAppN add #[x, mkAppN add #[mkNatLit 10, x]]);
let v ← getAssignment mvar;
print v;
pure ();
pure ()
#eval tst4
def mkAppC (c : Name) (xs : Array Expr) : MetaM Expr :=
do let r ← mkAppM c xs;
check r;
pure r
def mkProd (a b : Expr) : MetaM Expr := mkAppC `Prod #[a, b]
def mkPair (a b : Expr) : MetaM Expr := mkAppC `Prod.mk #[a, b]
def mkFst (s : Expr) : MetaM Expr := mkAppC `Prod.fst #[s]
def mkSnd (s : Expr) : MetaM Expr := mkAppC `Prod.snd #[s]
def tst5 : MetaM Unit :=
do print "----- tst5 -----";
let p₁ ← mkPair (mkNatLit 1) (mkNatLit 2);
let x ← mkFst p₁;
print x;
let v ← whnf x;
print v;
let v ← withTransparency TransparencyMode.reducible $ whnf x;
print v;
let x ← mkId x;
print x;
let prod ← mkProd nat nat;
let m ← mkFreshExprMVar prod;
let y ← mkFst m;
checkM $ isExprDefEq y x;
print y;
let x ← mkProjection p₁ `fst;
print x;
let y ← mkProjection p₁ `snd;
print y
#eval tst5
def tst6 : MetaM Unit :=
do print "----- tst6 -----";
withLocalDeclD `x nat $ fun x => do
let m ← mkFreshExprMVar nat;
let t := mkAppN add #[m, mkNatLit 4];
let s := mkAppN add #[x, mkNatLit 3];
checkM $ not <$> isExprDefEq t s;
let s := mkAppN add #[x, mkNatLit 6];
checkM $ isExprDefEq t s;
let v ← getAssignment m;
checkM $ pure $ v == (← mkAdd x (mkNatLit 2))
print v;
let m ← mkFreshExprMVar nat;
let t := mkAppN add #[m, mkNatLit 4];
let s := mkNatLit 3;
checkM $ not <$> isExprDefEq t s;
let s := mkNatLit 10;
checkM $ isExprDefEq t s;
let v ← getAssignment m;
checkM $ pure $ v == mkNatLit 6;
print v;
pure ()
#eval tst6
def tst7 : MetaM Unit :=
do print "----- tst7 -----";
withLocalDeclD `x type $ fun x => do
let m1 ← mkFreshExprMVar (← mkArrow type type);
let m2 ← mkFreshExprMVar type;
let t := mkApp io x;
-- we need to use foApprox to solve `?m1 ?m2 =?= IO x`
checkM $ not <$> isDefEq (mkApp m1 m2) t;
checkM $ approxDefEq $ isDefEq (mkApp m1 m2) t;
let v ← getAssignment m1;
checkM $ pure $ v == io;
let v ← getAssignment m2;
checkM $ pure $ v == x;
pure ()
#eval tst7
def tst9 : MetaM Unit :=
do print "----- tst9 -----";
let env ← getEnv;
print (toString (← isReducible `Prod.fst))
print (toString (← isReducible `Add.add))
pure ()
#eval tst9
def tst10 : MetaM Unit :=
do print "----- tst10 -----";
let t ← withLocalDeclD `x nat $ fun x => do {
let b := mkAppN add #[x, mkAppN add #[mkNatLit 2, mkNatLit 3]];
mkLambdaFVars #[x] b
};
print t;
let t ← reduce t;
print t;
pure ()
#eval tst10
def tst11 : MetaM Unit :=
do print "----- tst11 -----";
checkM $ isType nat;
checkM $ isType (← mkArrow nat nat);
checkM $ not <$> isType add;
checkM $ not <$> isType (mkNatLit 1);
withLocalDeclD `x nat fun x => do
checkM $ not <$> isType x;
checkM $ not <$> (mkLambdaFVars #[x] x >>= isType);
checkM $ not <$> (mkLambdaFVars #[x] nat >>= isType);
let t ← mkEq x (mkNatLit 0);
let t ← mkForallFVars #[x] t (usedOnly := true);
print t;
checkM $ isType t;
pure ();
pure ()
#eval tst11
def tst12 : MetaM Unit :=
do print "----- tst12 -----";
withLocalDeclD `x nat $ fun x => do
let t ← mkEqRefl x >>= mkLambdaFVars #[x];
print t;
let type ← inferType t;
print type;
isProofQuick t >>= fun b => print (toString b);
isProofQuick nat >>= fun b => print (toString b);
isProofQuick type >>= fun b => print (toString b);
pure ();
pure ()
#eval tst12
def tst13 : MetaM Unit :=
do print "----- tst13 -----";
let m₁ ← mkFreshExprMVar (← mkArrow type type);
let m₂ ← mkFreshExprMVar (mkApp m₁ nat);
let t ← mkId m₂;
print t;
let r ← abstractMVars t;
print r.expr;
let (_, _, e) ← openAbstractMVarsResult r;
print e;
pure ()
def mkDecEq (type : Expr) : MetaM Expr := mkAppC `DecidableEq #[type]
def mkStateM (σ : Expr) : MetaM Expr := mkAppC `StateM #[σ]
def mkMonad (m : Expr) : MetaM Expr := mkAppC `Monad #[m]
def mkMonadState (σ m : Expr) : MetaM Expr := mkAppC `MonadState #[σ, m]
def mkAdd (a : Expr) : MetaM Expr := mkAppC `Add #[a]
def mkToString (a : Expr) : MetaM Expr := mkAppC `ToString #[a]
def tst14 : MetaM Unit :=
do print "----- tst14 -----";
let stateM ← mkStateM nat;
print stateM;
let monad ← mkMonad stateM;
let globalInsts ← getGlobalInstancesIndex;
let insts ← globalInsts.getUnify monad;
print (insts.map (·.val));
pure ()
#eval tst14
def tst15 : MetaM Unit :=
do print "----- tst15 -----";
let inst ← _root_.mkAdd nat;
let r ← synthInstance inst;
print r;
pure ()
#eval tst15
def tst16 : MetaM Unit :=
do print "----- tst16 -----";
let prod ← mkProd nat nat;
let inst ← mkToString prod;
print inst;
let r ← synthInstance inst;
print r;
pure ()
#eval tst16
def tst17 : MetaM Unit :=
do print "----- tst17 -----";
let prod ← mkProd nat nat;
let prod ← mkProd boolE prod;
let inst ← mkToString prod;
print inst;
let r ← synthInstance inst;
print r;
pure ()
#eval tst17
def tst18 : MetaM Unit :=
do print "----- tst18 -----";
let decEqNat ← mkDecEq nat;
let r ← synthInstance decEqNat;
print r;
pure ()
#eval tst18
def tst19 : MetaM Unit :=
do print "----- tst19 -----";
let stateM ← mkStateM nat;
print stateM;
let monad ← mkMonad stateM;
print monad;
let r ← synthInstance monad;
print r;
pure ()
#eval tst19
def tst20 : MetaM Unit :=
do print "----- tst20 -----";
let stateM ← mkStateM nat;
print stateM;
let monadState ← mkMonadState nat stateM;
print monadState;
let r ← synthInstance monadState;
print r;
pure ()
#eval tst20
def tst21 : MetaM Unit :=
do print "----- tst21 -----";
withLocalDeclD `x nat $ fun x => do
withLocalDeclD `y nat $ fun y => do
withLocalDeclD `z nat $ fun z => do
let eq₁ ← mkEq x y;
let eq₂ ← mkEq y z;
withLocalDeclD `h₁ eq₁ $ fun h₁ => do
withLocalDeclD `h₂ eq₂ $ fun h₂ => do
let h ← mkEqTrans h₁ h₂;
let h ← mkEqSymm h;
let h ← mkCongrArg succ h;
let h₂ ← mkEqRefl succ;
let h ← mkCongr h₂ h;
let t ← inferType h;
check h;
print h;
print t;
let h ← mkCongrFun h₂ x;
let t ← inferType h;
check h;
print t;
pure ()
#eval tst21
def tst22 : MetaM Unit :=
do print "----- tst22 -----";
withLocalDeclD `x nat $ fun x => do
withLocalDeclD `y nat $ fun y => do
let t ← mkAppC `Add.add #[x, y];
print t;
let t ← mkAppC `Add.add #[y, x];
print t;
let t ← mkAppC `ToString.toString #[x];
print t;
pure ()
#eval tst22
def test1 : Nat := (fun x y => x + y) 0 1
def tst23 : MetaM Unit :=
do print "----- tst23 -----";
let cinfo ← getConstInfo `test1;
let v := cinfo.value?.get!;
print v;
print v.headBeta
#eval tst23
def tst26 : MetaM Unit := do
print "----- tst26 -----";
let m1 ← mkFreshExprMVar (← mkArrow nat nat);
let m2 ← mkFreshExprMVar nat;
let m3 ← mkFreshExprMVar nat;
checkM $ approxDefEq $ isDefEq (mkApp m1 m2) m3;
checkM $ do { let b ← isExprMVarAssigned $ m1.mvarId!; pure (!b) };
checkM $ isExprMVarAssigned $ m3.mvarId!;
pure ()
#eval tst26
section
set_option trace.Meta.isDefEq.step true
set_option trace.Meta.isDefEq.delta true
set_option trace.Meta.isDefEq.assign true
def tst27 : MetaM Unit := do
print "----- tst27 -----";
let m ← mkFreshExprMVar nat;
checkM $ isDefEq (mkNatLit 1) (mkApp (mkConst `Nat.succ) m);
pure ()
#eval tst27
end
def tst28 : MetaM Unit := do
print "----- tst28 -----";
withLocalDeclD `x nat $ fun x =>
withLocalDeclD `y nat $ fun y =>
withLocalDeclD `z nat $ fun z => do
let t1 ← mkAppM `Add.add #[x, y];
let t1 ← mkAppM `Add.add #[x, t1];
let t1 ← mkAppM `Add.add #[t1, t1];
let t2 ← mkAppM `Add.add #[z, y];
let t3 ← mkAppM `Eq #[t2, t1];
let t3 ← mkForallFVars #[z] t3;
let m ← mkFreshExprMVar nat;
let p ← mkAppM `Add.add #[x, m];
print t3;
let r ← kabstract t3 p;
print r;
let p ← mkAppM `Add.add #[x, y];
let r ← kabstract t3 p;
print r;
pure ()
#eval tst28
def norm : Level → Level := @Lean.Level.normalize
def tst29 : MetaM Unit := do
print "----- tst29 -----";
let u := mkLevelParam `u;
let v := mkLevelParam `v;
let u1 := mkLevelSucc u;
let m := mkLevelMax levelOne u1;
print (norm m);
checkM $ pure $ norm m == u1;
let m := mkLevelMax u1 levelOne;
print (norm m);
checkM $ pure $ norm m == u1;
let m := mkLevelMax (mkLevelMax levelOne (mkLevelSucc u1)) (mkLevelSucc levelOne);
checkM $ pure $ norm m == mkLevelSucc u1;
print m;
print (norm m);
let m := mkLevelMax (mkLevelMax (mkLevelSucc (mkLevelSucc u1)) (mkLevelSucc u1)) (mkLevelSucc levelOne);
print m;
print (norm m);
checkM $ pure $ norm m == mkLevelSucc (mkLevelSucc u1);
let m := mkLevelMax (mkLevelMax (mkLevelSucc v) (mkLevelSucc u1)) (mkLevelSucc levelOne);
print m;
print (norm m);
pure ()
#eval tst29
def tst30 : MetaM Unit := do
print "----- tst30 -----";
let m1 ← mkFreshExprMVar nat;
let m2 ← mkFreshExprMVar (← mkArrow nat nat);
withLocalDeclD `x nat $ fun x => do
let t := mkApp succ $ mkApp m2 x;
print t;
checkM $ approxDefEq $ isDefEq m1 t;
let r ← instantiateMVars m1;
print r;
let r ← instantiateMVars m2;
print r;
pure ()
#eval tst30
def tst31 : MetaM Unit := do
print "----- tst31 -----";
let m ← mkFreshExprMVar nat;
let t := mkLet `x nat zero m;
print t;
checkM $ isDefEq t m;
pure ()
def tst32 : MetaM Unit := do
print "----- tst32 -----";
withLocalDeclD `a nat $ fun a => do
withLocalDeclD `b nat $ fun b => do
let aeqb ← mkEq a b;
withLocalDeclD `h2 aeqb $ fun h2 => do
let t ← mkEq (mkApp2 add a a) a;
print t;
let motive := mkLambda `x BinderInfo.default nat (mkApp3 (mkConst `Eq [levelOne]) nat (mkApp2 add a (mkBVar 0)) a);
withLocalDeclD `h1 t $ fun h1 => do
let r ← mkEqNDRec motive h1 h2;
print r;
let rType ← inferType r >>= whnf;
print rType;
check r;
pure ()
#eval tst32
def tst33 : MetaM Unit := do
print "----- tst33 -----";
withLocalDeclD `a nat $ fun a => do
withLocalDeclD `b nat $ fun b => do
let aeqb ← mkEq a b;
withLocalDeclD `h2 aeqb $ fun h2 => do
let t ← mkEq (mkApp2 add a a) a;
let motive :=
mkLambda `x BinderInfo.default nat $
mkLambda `h BinderInfo.default (mkApp3 (mkConst `Eq [levelOne]) nat a (mkBVar 0)) $
(mkApp3 (mkConst `Eq [levelOne]) nat (mkApp2 add a (mkBVar 1)) a);
withLocalDeclD `h1 t $ fun h1 => do
let r ← mkEqRec motive h1 h2;
print r;
let rType ← inferType r >>= whnf;
print rType;
check r;
pure ()
#eval tst33
def tst34 : MetaM Unit := do
print "----- tst34 -----";
let type := mkSort levelOne;
withLocalDeclD `α type $ fun α => do
let m ← mkFreshExprMVar type;
let t ← mkLambdaFVars #[α] (← mkArrow m m);
print t;
pure ()
#eval tst34
def tst35 : MetaM Unit := do
print "----- tst35 -----";
let type := mkSort levelOne;
withLocalDeclD `α type $ fun α => do
let m1 ← mkFreshExprMVar type;
let m2 ← mkFreshExprMVar (← mkArrow nat type);
let v := mkLambda `x BinderInfo.default nat m1;
assignExprMVar m2.mvarId! v;
let w := mkApp m2 zero;
let t1 ← mkLambdaFVars #[α] (← mkArrow w w);
print t1;
let m3 ← mkFreshExprMVar type;
let t2 ← mkLambdaFVars #[α] (← mkArrow (mkBVar 0) (mkBVar 1));
print t2;
checkM $ isDefEq t1 t2;
pure ()
#eval tst35
#check @Id
def tst36 : MetaM Unit := do
print "----- tst36 -----";
let type := mkSort levelOne;
let m1 ← mkFreshExprMVar (← mkArrow type type);
withLocalDeclD `α type $ fun α => do
let m2 ← mkFreshExprMVar type;
let t ← mkAppM `Id #[m2];
checkM $ approxDefEq $ isDefEq (mkApp m1 α) t;
checkM $ approxDefEq $ isDefEq m1 (mkConst `Id [levelZero]);
pure ()
#eval tst36
def tst37 : MetaM Unit := do
print "----- tst37 -----";
let m1 ← mkFreshExprMVar (←mkArrow nat (←mkArrow type type));
let m2 ← mkFreshExprMVar (←mkArrow nat type);
withLocalDeclD `v nat $ fun v => do
let lhs := mkApp2 m1 v (mkApp m2 v);
let rhs ← mkAppM `StateM #[nat, nat];
print lhs;
print rhs;
checkM $ approxDefEq $ isDefEq lhs rhs;
pure ()
#eval tst37
def tst38 : MetaM Unit := do
print "----- tst38 -----";
let m1 ← mkFreshExprMVar nat;
withLocalDeclD `x nat $ fun x => do
let m2 ← mkFreshExprMVar type;
withLocalDeclD `y m2 $ fun y => do
let m3 ← mkFreshExprMVar (←mkArrow m2 nat);
let rhs := mkApp m3 y;
checkM $ approxDefEq $ isDefEq m2 nat;
print m2;
checkM $ getAssignment m2 >>= fun v => pure $ v == nat;
checkM $ approxDefEq $ isDefEq m1 rhs;
print m2;
checkM $ getAssignment m2 >>= fun v => pure $ v == nat;
pure ()
set_option pp.all true
set_option trace.Meta.isDefEq.step true
set_option trace.Meta.isDefEq.delta true
set_option trace.Meta.isDefEq.assign true
#eval tst38
def tst39 : MetaM Unit := do
print "----- tst39 -----";
withLocalDeclD `α type $ fun α =>
withLocalDeclD `β type $ fun β => do
let p ← mkProd α β;
let t ← mkForallFVars #[α, β] p;
print t;
let e ← instantiateForall t #[nat, boolE];
print e;
pure ()
#eval tst39
def tst40 : MetaM Unit := do
print "----- tst40 -----";
withLocalDeclD `α type $ fun α =>
withLocalDeclD `β type $ fun β =>
withLocalDeclD `a α $ fun a =>
withLocalDeclD `b β $ fun b =>
do
let p ← mkProd α β;
let t1 ← mkForallFVars #[α, β] p;
let t2 ← mkForallFVars #[α, β, a, b] p;
print t1;
print $ toString $ t1.bindingBody!.hasLooseBVarInExplicitDomain 0 false;
print $ toString $ t1.bindingBody!.hasLooseBVarInExplicitDomain 0 true;
print $ toString $ t2.bindingBody!.hasLooseBVarInExplicitDomain 0 false;
print $ t1.inferImplicit 2 false;
checkM $ pure $ ((t1.inferImplicit 2 false).bindingInfo! == BinderInfo.default);
checkM $ pure $ ((t1.inferImplicit 2 false).bindingBody!.bindingInfo! == BinderInfo.default);
print $ t1.inferImplicit 2 true;
checkM $ pure $ ((t1.inferImplicit 2 true).bindingInfo! == BinderInfo.implicit);
checkM $ pure $ ((t1.inferImplicit 2 true).bindingBody!.bindingInfo! == BinderInfo.implicit);
print t2;
print $ t2.inferImplicit 2 false;
checkM $ pure $ ((t2.inferImplicit 2 false).bindingInfo! == BinderInfo.implicit);
checkM $ pure $ ((t2.inferImplicit 2 false).bindingBody!.bindingInfo! == BinderInfo.implicit);
print $ t2.inferImplicit 1 false;
checkM $ pure $ ((t2.inferImplicit 1 false).bindingInfo! == BinderInfo.implicit);
checkM $ pure $ ((t2.inferImplicit 1 false).bindingBody!.bindingInfo! == BinderInfo.default);
pure ()
#eval tst40
universe u
structure A (α : Type u) :=
(x y : α)
structure B (α : Type u) :=
(z : α)
structure C (α : Type u) extends A α, B α :=
(w : Bool)
def mkA (x y : Expr) : MetaM Expr := mkAppC `A.mk #[x, y]
def mkB (z : Expr) : MetaM Expr := mkAppC `B.mk #[z]
def mkC (x y z w : Expr) : MetaM Expr := do
let a ← mkA x y;
let b ← mkB z;
mkAppC `C.mk #[a, b, w]
def tst41 : MetaM Unit := do
print "----- tst41 -----";
let c ← mkC (mkNatLit 1) (mkNatLit 2) (mkNatLit 3) boolTrue;
print c;
let x ← mkProjection c `x;
check x;
print x;
let y ← mkProjection c `y;
check y;
print y;
let z ← mkProjection c `z;
check z;
print z;
let w ← mkProjection c `w;
check w;
print w;
pure ()
set_option trace.Meta.isDefEq.step false
set_option trace.Meta.isDefEq.delta false
set_option trace.Meta.isDefEq.assign false
#eval tst41
set_option pp.all false
def tst42 : MetaM Unit := do
print "----- tst42 -----";
let t ← mkListLit nat [mkRawNatLit 1, mkRawNatLit 2];
print t;
check t;
let t ← mkArrayLit nat [mkRawNatLit 1, mkRawNatLit 2];
print t;
check t;
(match t.arrayLit? with
| some (_, xs) => do
checkM $ pure $ xs.length == 2;
(match (xs.get! 0).natLit?, (xs.get! 1).natLit? with
| some 1, some 2 => pure ()
| _, _ => throwError "nat lits expected")
| none => throwError "array lit expected")
#eval tst42
|
8230e5563170e353ee87b90293c5db9f55a26a0d
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/measure_theory/decomposition/jordan.lean
|
e8d762e73b939b404f54db5b50d1a6dda0a9ceaa
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 25,172
|
lean
|
/-
Copyright (c) 2021 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying
-/
import measure_theory.decomposition.signed_hahn
import measure_theory.measure.mutually_singular
/-!
# Jordan decomposition
This file proves the existence and uniqueness of the Jordan decomposition for signed measures.
The Jordan decomposition theorem states that, given a signed measure `s`, there exists a
unique pair of mutually singular measures `μ` and `ν`, such that `s = μ - ν`.
The Jordan decomposition theorem for measures is a corollary of the Hahn decomposition theorem and
is useful for the Lebesgue decomposition theorem.
## Main definitions
* `measure_theory.jordan_decomposition`: a Jordan decomposition of a measurable space is a
pair of mutually singular finite measures. We say `j` is a Jordan decomposition of a signed
measure `s` if `s = j.pos_part - j.neg_part`.
* `measure_theory.signed_measure.to_jordan_decomposition`: the Jordan decomposition of a
signed measure.
* `measure_theory.signed_measure.to_jordan_decomposition_equiv`: is the `equiv` between
`measure_theory.signed_measure` and `measure_theory.jordan_decomposition` formed by
`measure_theory.signed_measure.to_jordan_decomposition`.
## Main results
* `measure_theory.signed_measure.to_signed_measure_to_jordan_decomposition` : the Jordan
decomposition theorem.
* `measure_theory.jordan_decomposition.to_signed_measure_injective` : the Jordan decomposition of a
signed measure is unique.
## Tags
Jordan decomposition theorem
-/
noncomputable theory
open_locale classical measure_theory ennreal nnreal
variables {α β : Type*} [measurable_space α]
namespace measure_theory
/-- A Jordan decomposition of a measurable space is a pair of mutually singular,
finite measures. -/
@[ext] structure jordan_decomposition (α : Type*) [measurable_space α] :=
(pos_part neg_part : measure α)
[pos_part_finite : is_finite_measure pos_part]
[neg_part_finite : is_finite_measure neg_part]
(mutually_singular : pos_part ⊥ₘ neg_part)
attribute [instance] jordan_decomposition.pos_part_finite
attribute [instance] jordan_decomposition.neg_part_finite
namespace jordan_decomposition
open measure vector_measure
variable (j : jordan_decomposition α)
instance : has_zero (jordan_decomposition α) :=
{ zero := ⟨0, 0, mutually_singular.zero_right⟩ }
instance : inhabited (jordan_decomposition α) :=
{ default := 0 }
instance : has_involutive_neg (jordan_decomposition α) :=
{ neg := λ j, ⟨j.neg_part, j.pos_part, j.mutually_singular.symm⟩,
neg_neg := λ j, jordan_decomposition.ext _ _ rfl rfl }
instance : has_smul ℝ≥0 (jordan_decomposition α) :=
{ smul := λ r j, ⟨r • j.pos_part, r • j.neg_part,
mutually_singular.smul _ (mutually_singular.smul _ j.mutually_singular.symm).symm⟩ }
instance has_smul_real : has_smul ℝ (jordan_decomposition α) :=
{ smul := λ r j, if hr : 0 ≤ r then r.to_nnreal • j else - ((-r).to_nnreal • j) }
@[simp] lemma zero_pos_part : (0 : jordan_decomposition α).pos_part = 0 := rfl
@[simp] lemma zero_neg_part : (0 : jordan_decomposition α).neg_part = 0 := rfl
@[simp] lemma neg_pos_part : (-j).pos_part = j.neg_part := rfl
@[simp] lemma neg_neg_part : (-j).neg_part = j.pos_part := rfl
@[simp] lemma smul_pos_part (r : ℝ≥0) : (r • j).pos_part = r • j.pos_part := rfl
@[simp] lemma smul_neg_part (r : ℝ≥0) : (r • j).neg_part = r • j.neg_part := rfl
lemma real_smul_def (r : ℝ) (j : jordan_decomposition α) :
r • j = if hr : 0 ≤ r then r.to_nnreal • j else - ((-r).to_nnreal • j) :=
rfl
@[simp] lemma coe_smul (r : ℝ≥0) : (r : ℝ) • j = r • j :=
show dite _ _ _ = _, by rw [dif_pos (nnreal.coe_nonneg r), real.to_nnreal_coe]
lemma real_smul_nonneg (r : ℝ) (hr : 0 ≤ r) : r • j = r.to_nnreal • j :=
dif_pos hr
lemma real_smul_neg (r : ℝ) (hr : r < 0) : r • j = - ((-r).to_nnreal • j) :=
dif_neg (not_le.2 hr)
lemma real_smul_pos_part_nonneg (r : ℝ) (hr : 0 ≤ r) :
(r • j).pos_part = r.to_nnreal • j.pos_part :=
by { rw [real_smul_def, ← smul_pos_part, dif_pos hr] }
lemma real_smul_neg_part_nonneg (r : ℝ) (hr : 0 ≤ r) :
(r • j).neg_part = r.to_nnreal • j.neg_part :=
by { rw [real_smul_def, ← smul_neg_part, dif_pos hr] }
lemma real_smul_pos_part_neg (r : ℝ) (hr : r < 0) :
(r • j).pos_part = (-r).to_nnreal • j.neg_part :=
by { rw [real_smul_def, ← smul_neg_part, dif_neg (not_le.2 hr), neg_pos_part] }
lemma real_smul_neg_part_neg (r : ℝ) (hr : r < 0) :
(r • j).neg_part = (-r).to_nnreal • j.pos_part :=
by { rw [real_smul_def, ← smul_pos_part, dif_neg (not_le.2 hr), neg_neg_part] }
/-- The signed measure associated with a Jordan decomposition. -/
def to_signed_measure : signed_measure α :=
j.pos_part.to_signed_measure - j.neg_part.to_signed_measure
lemma to_signed_measure_zero : (0 : jordan_decomposition α).to_signed_measure = 0 :=
begin
ext1 i hi,
erw [to_signed_measure, to_signed_measure_sub_apply hi, sub_self, zero_apply],
end
lemma to_signed_measure_neg : (-j).to_signed_measure = -j.to_signed_measure :=
begin
ext1 i hi,
rw [neg_apply, to_signed_measure, to_signed_measure,
to_signed_measure_sub_apply hi, to_signed_measure_sub_apply hi, neg_sub],
refl,
end
lemma to_signed_measure_smul (r : ℝ≥0) : (r • j).to_signed_measure = r • j.to_signed_measure :=
begin
ext1 i hi,
rw [vector_measure.smul_apply, to_signed_measure, to_signed_measure,
to_signed_measure_sub_apply hi, to_signed_measure_sub_apply hi, smul_sub,
smul_pos_part, smul_neg_part, ← ennreal.to_real_smul, ← ennreal.to_real_smul],
refl
end
/-- A Jordan decomposition provides a Hahn decomposition. -/
lemma exists_compl_positive_negative :
∃ S : set α, measurable_set S ∧
j.to_signed_measure ≤[S] 0 ∧ 0 ≤[Sᶜ] j.to_signed_measure ∧
j.pos_part S = 0 ∧ j.neg_part Sᶜ = 0 :=
begin
obtain ⟨S, hS₁, hS₂, hS₃⟩ := j.mutually_singular,
refine ⟨S, hS₁, _, _, hS₂, hS₃⟩,
{ refine restrict_le_restrict_of_subset_le _ _ (λ A hA hA₁, _),
rw [to_signed_measure, to_signed_measure_sub_apply hA,
show j.pos_part A = 0, by exact nonpos_iff_eq_zero.1 (hS₂ ▸ measure_mono hA₁),
ennreal.zero_to_real, zero_sub, neg_le, zero_apply, neg_zero],
exact ennreal.to_real_nonneg },
{ refine restrict_le_restrict_of_subset_le _ _ (λ A hA hA₁, _),
rw [to_signed_measure, to_signed_measure_sub_apply hA,
show j.neg_part A = 0, by exact nonpos_iff_eq_zero.1 (hS₃ ▸ measure_mono hA₁),
ennreal.zero_to_real, sub_zero],
exact ennreal.to_real_nonneg },
end
end jordan_decomposition
namespace signed_measure
open classical jordan_decomposition measure set vector_measure
variables {s : signed_measure α} {μ ν : measure α} [is_finite_measure μ] [is_finite_measure ν]
/-- Given a signed measure `s`, `s.to_jordan_decomposition` is the Jordan decomposition `j`,
such that `s = j.to_signed_measure`. This property is known as the Jordan decomposition
theorem, and is shown by
`measure_theory.signed_measure.to_signed_measure_to_jordan_decomposition`. -/
def to_jordan_decomposition (s : signed_measure α) : jordan_decomposition α :=
let i := some s.exists_compl_positive_negative in
let hi := some_spec s.exists_compl_positive_negative in
{ pos_part := s.to_measure_of_zero_le i hi.1 hi.2.1,
neg_part := s.to_measure_of_le_zero iᶜ hi.1.compl hi.2.2,
pos_part_finite := infer_instance,
neg_part_finite := infer_instance,
mutually_singular :=
begin
refine ⟨iᶜ, hi.1.compl, _, _⟩,
{ rw [to_measure_of_zero_le_apply _ _ hi.1 hi.1.compl], simp },
{ rw [to_measure_of_le_zero_apply _ _ hi.1.compl hi.1.compl.compl], simp }
end }
lemma to_jordan_decomposition_spec (s : signed_measure α) :
∃ (i : set α) (hi₁ : measurable_set i) (hi₂ : 0 ≤[i] s) (hi₃ : s ≤[iᶜ] 0),
s.to_jordan_decomposition.pos_part = s.to_measure_of_zero_le i hi₁ hi₂ ∧
s.to_jordan_decomposition.neg_part = s.to_measure_of_le_zero iᶜ hi₁.compl hi₃ :=
begin
set i := some s.exists_compl_positive_negative,
obtain ⟨hi₁, hi₂, hi₃⟩ := some_spec s.exists_compl_positive_negative,
exact ⟨i, hi₁, hi₂, hi₃, rfl, rfl⟩,
end
/-- **The Jordan decomposition theorem**: Given a signed measure `s`, there exists a pair of
mutually singular measures `μ` and `ν` such that `s = μ - ν`. In this case, the measures `μ`
and `ν` are given by `s.to_jordan_decomposition.pos_part` and
`s.to_jordan_decomposition.neg_part` respectively.
Note that we use `measure_theory.jordan_decomposition.to_signed_measure` to represent the
signed measure corresponding to
`s.to_jordan_decomposition.pos_part - s.to_jordan_decomposition.neg_part`. -/
@[simp] lemma to_signed_measure_to_jordan_decomposition (s : signed_measure α) :
s.to_jordan_decomposition.to_signed_measure = s :=
begin
obtain ⟨i, hi₁, hi₂, hi₃, hμ, hν⟩ := s.to_jordan_decomposition_spec,
simp only [jordan_decomposition.to_signed_measure, hμ, hν],
ext k hk,
rw [to_signed_measure_sub_apply hk, to_measure_of_zero_le_apply _ hi₂ hi₁ hk,
to_measure_of_le_zero_apply _ hi₃ hi₁.compl hk],
simp only [ennreal.coe_to_real, subtype.coe_mk, ennreal.some_eq_coe, sub_neg_eq_add],
rw [← of_union _ (measurable_set.inter hi₁ hk) (measurable_set.inter hi₁.compl hk),
set.inter_comm i, set.inter_comm iᶜ, set.inter_union_compl _ _],
{ apply_instance },
{ rintro x ⟨⟨hx₁, _⟩, hx₂, _⟩,
exact false.elim (hx₂ hx₁) }
end
section
variables {u v w : set α}
/-- A subset `v` of a null-set `w` has zero measure if `w` is a subset of a positive set `u`. -/
lemma subset_positive_null_set
(hu : measurable_set u) (hv : measurable_set v) (hw : measurable_set w)
(hsu : 0 ≤[u] s) (hw₁ : s w = 0) (hw₂ : w ⊆ u) (hwt : v ⊆ w) : s v = 0 :=
begin
have : s v + s (w \ v) = 0,
{ rw [← hw₁, ← of_union set.disjoint_diff hv (hw.diff hv),
set.union_diff_self, set.union_eq_self_of_subset_left hwt],
apply_instance },
have h₁ := nonneg_of_zero_le_restrict _ (restrict_le_restrict_subset _ _ hu hsu (hwt.trans hw₂)),
have h₂ := nonneg_of_zero_le_restrict _
(restrict_le_restrict_subset _ _ hu hsu ((w.diff_subset v).trans hw₂)),
linarith,
end
/-- A subset `v` of a null-set `w` has zero measure if `w` is a subset of a negative set `u`. -/
lemma subset_negative_null_set
(hu : measurable_set u) (hv : measurable_set v) (hw : measurable_set w)
(hsu : s ≤[u] 0) (hw₁ : s w = 0) (hw₂ : w ⊆ u) (hwt : v ⊆ w) : s v = 0 :=
begin
rw [← s.neg_le_neg_iff _ hu, neg_zero] at hsu,
have := subset_positive_null_set hu hv hw hsu,
simp only [pi.neg_apply, neg_eq_zero, coe_neg] at this,
exact this hw₁ hw₂ hwt,
end
/-- If the symmetric difference of two positive sets is a null-set, then so are the differences
between the two sets. -/
lemma of_diff_eq_zero_of_symm_diff_eq_zero_positive
(hu : measurable_set u) (hv : measurable_set v)
(hsu : 0 ≤[u] s) (hsv : 0 ≤[v] s) (hs : s (u ∆ v) = 0) :
s (u \ v) = 0 ∧ s (v \ u) = 0 :=
begin
rw restrict_le_restrict_iff at hsu hsv,
have a := hsu (hu.diff hv) (u.diff_subset v),
have b := hsv (hv.diff hu) (v.diff_subset u),
erw [of_union (set.disjoint_of_subset_left (u.diff_subset v) set.disjoint_diff)
(hu.diff hv) (hv.diff hu)] at hs,
rw zero_apply at a b,
split,
all_goals { linarith <|> apply_instance <|> assumption },
end
/-- If the symmetric difference of two negative sets is a null-set, then so are the differences
between the two sets. -/
lemma of_diff_eq_zero_of_symm_diff_eq_zero_negative
(hu : measurable_set u) (hv : measurable_set v)
(hsu : s ≤[u] 0) (hsv : s ≤[v] 0) (hs : s (u ∆ v) = 0) :
s (u \ v) = 0 ∧ s (v \ u) = 0 :=
begin
rw [← s.neg_le_neg_iff _ hu, neg_zero] at hsu,
rw [← s.neg_le_neg_iff _ hv, neg_zero] at hsv,
have := of_diff_eq_zero_of_symm_diff_eq_zero_positive hu hv hsu hsv,
simp only [pi.neg_apply, neg_eq_zero, coe_neg] at this,
exact this hs,
end
lemma of_inter_eq_of_symm_diff_eq_zero_positive
(hu : measurable_set u) (hv : measurable_set v) (hw : measurable_set w)
(hsu : 0 ≤[u] s) (hsv : 0 ≤[v] s) (hs : s (u ∆ v) = 0) :
s (w ∩ u) = s (w ∩ v) :=
begin
have hwuv : s ((w ∩ u) ∆ (w ∩ v)) = 0,
{ refine subset_positive_null_set (hu.union hv) ((hw.inter hu).symm_diff (hw.inter hv))
(hu.symm_diff hv) (restrict_le_restrict_union _ _ hu hsu hv hsv) hs symm_diff_subset_union _,
rw ←inter_symm_diff_distrib_left,
exact inter_subset_right _ _ },
obtain ⟨huv, hvu⟩ := of_diff_eq_zero_of_symm_diff_eq_zero_positive
(hw.inter hu) (hw.inter hv)
(restrict_le_restrict_subset _ _ hu hsu (w.inter_subset_right u))
(restrict_le_restrict_subset _ _ hv hsv (w.inter_subset_right v)) hwuv,
rw [← of_diff_of_diff_eq_zero (hw.inter hu) (hw.inter hv) hvu, huv, zero_add]
end
lemma of_inter_eq_of_symm_diff_eq_zero_negative
(hu : measurable_set u) (hv : measurable_set v) (hw : measurable_set w)
(hsu : s ≤[u] 0) (hsv : s ≤[v] 0) (hs : s (u ∆ v) = 0) :
s (w ∩ u) = s (w ∩ v) :=
begin
rw [← s.neg_le_neg_iff _ hu, neg_zero] at hsu,
rw [← s.neg_le_neg_iff _ hv, neg_zero] at hsv,
have := of_inter_eq_of_symm_diff_eq_zero_positive hu hv hw hsu hsv,
simp only [pi.neg_apply, neg_inj, neg_eq_zero, coe_neg] at this,
exact this hs,
end
end
end signed_measure
namespace jordan_decomposition
open measure vector_measure signed_measure function
private lemma eq_of_pos_part_eq_pos_part {j₁ j₂ : jordan_decomposition α}
(hj : j₁.pos_part = j₂.pos_part) (hj' : j₁.to_signed_measure = j₂.to_signed_measure) :
j₁ = j₂ :=
begin
ext1,
{ exact hj },
{ rw ← to_signed_measure_eq_to_signed_measure_iff,
suffices : j₁.pos_part.to_signed_measure - j₁.neg_part.to_signed_measure =
j₁.pos_part.to_signed_measure - j₂.neg_part.to_signed_measure,
{ exact sub_right_inj.mp this },
convert hj' }
end
/-- The Jordan decomposition of a signed measure is unique. -/
theorem to_signed_measure_injective :
injective $ @jordan_decomposition.to_signed_measure α _ :=
begin
/- The main idea is that two Jordan decompositions of a signed measure provide two
Hahn decompositions for that measure. Then, from `of_symm_diff_compl_positive_negative`,
the symmetric difference of the two Hahn decompositions has measure zero, thus, allowing us to
show the equality of the underlying measures of the Jordan decompositions. -/
intros j₁ j₂ hj,
-- obtain the two Hahn decompositions from the Jordan decompositions
obtain ⟨S, hS₁, hS₂, hS₃, hS₄, hS₅⟩ := j₁.exists_compl_positive_negative,
obtain ⟨T, hT₁, hT₂, hT₃, hT₄, hT₅⟩ := j₂.exists_compl_positive_negative,
rw ← hj at hT₂ hT₃,
-- the symmetric differences of the two Hahn decompositions have measure zero
obtain ⟨hST₁, -⟩ := of_symm_diff_compl_positive_negative hS₁.compl hT₁.compl
⟨hS₃, (compl_compl S).symm ▸ hS₂⟩ ⟨hT₃, (compl_compl T).symm ▸ hT₂⟩,
-- it suffices to show the Jordan decompositions have the same positive parts
refine eq_of_pos_part_eq_pos_part _ hj,
ext1 i hi,
-- we see that the positive parts of the two Jordan decompositions are equal to their
-- associated signed measures restricted on their associated Hahn decompositions
have hμ₁ : (j₁.pos_part i).to_real = j₁.to_signed_measure (i ∩ Sᶜ),
{ rw [to_signed_measure, to_signed_measure_sub_apply (hi.inter hS₁.compl),
show j₁.neg_part (i ∩ Sᶜ) = 0, by exact nonpos_iff_eq_zero.1
(hS₅ ▸ measure_mono (set.inter_subset_right _ _)),
ennreal.zero_to_real, sub_zero],
conv_lhs { rw ← set.inter_union_compl i S },
rw [measure_union, show j₁.pos_part (i ∩ S) = 0, by exact nonpos_iff_eq_zero.1
(hS₄ ▸ measure_mono (set.inter_subset_right _ _)), zero_add],
{ refine set.disjoint_of_subset_left (set.inter_subset_right _ _)
(set.disjoint_of_subset_right (set.inter_subset_right _ _) disjoint_compl_right) },
{ exact hi.inter hS₁.compl } },
have hμ₂ : (j₂.pos_part i).to_real = j₂.to_signed_measure (i ∩ Tᶜ),
{ rw [to_signed_measure, to_signed_measure_sub_apply (hi.inter hT₁.compl),
show j₂.neg_part (i ∩ Tᶜ) = 0, by exact nonpos_iff_eq_zero.1
(hT₅ ▸ measure_mono (set.inter_subset_right _ _)),
ennreal.zero_to_real, sub_zero],
conv_lhs { rw ← set.inter_union_compl i T },
rw [measure_union, show j₂.pos_part (i ∩ T) = 0, by exact nonpos_iff_eq_zero.1
(hT₄ ▸ measure_mono (set.inter_subset_right _ _)), zero_add],
{ exact set.disjoint_of_subset_left (set.inter_subset_right _ _)
(set.disjoint_of_subset_right (set.inter_subset_right _ _) disjoint_compl_right) },
{ exact hi.inter hT₁.compl } },
-- since the two signed measures associated with the Jordan decompositions are the same,
-- and the symmetric difference of the Hahn decompositions have measure zero, the result follows
rw [← ennreal.to_real_eq_to_real (measure_ne_top _ _) (measure_ne_top _ _), hμ₁, hμ₂, ← hj],
exact of_inter_eq_of_symm_diff_eq_zero_positive hS₁.compl hT₁.compl hi hS₃ hT₃ hST₁,
all_goals { apply_instance },
end
@[simp]
lemma to_jordan_decomposition_to_signed_measure (j : jordan_decomposition α) :
(j.to_signed_measure).to_jordan_decomposition = j :=
(@to_signed_measure_injective _ _ j (j.to_signed_measure).to_jordan_decomposition (by simp)).symm
end jordan_decomposition
namespace signed_measure
open jordan_decomposition
/-- `measure_theory.signed_measure.to_jordan_decomposition` and
`measure_theory.jordan_decomposition.to_signed_measure` form a `equiv`. -/
@[simps apply symm_apply]
def to_jordan_decomposition_equiv (α : Type*) [measurable_space α] :
signed_measure α ≃ jordan_decomposition α :=
{ to_fun := to_jordan_decomposition,
inv_fun := to_signed_measure,
left_inv := to_signed_measure_to_jordan_decomposition,
right_inv := to_jordan_decomposition_to_signed_measure }
lemma to_jordan_decomposition_zero : (0 : signed_measure α).to_jordan_decomposition = 0 :=
begin
apply to_signed_measure_injective,
simp [to_signed_measure_zero],
end
lemma to_jordan_decomposition_neg (s : signed_measure α) :
(-s).to_jordan_decomposition = -s.to_jordan_decomposition :=
begin
apply to_signed_measure_injective,
simp [to_signed_measure_neg],
end
lemma to_jordan_decomposition_smul (s : signed_measure α) (r : ℝ≥0) :
(r • s).to_jordan_decomposition = r • s.to_jordan_decomposition :=
begin
apply to_signed_measure_injective,
simp [to_signed_measure_smul],
end
private
lemma to_jordan_decomposition_smul_real_nonneg (s : signed_measure α) (r : ℝ) (hr : 0 ≤ r):
(r • s).to_jordan_decomposition = r • s.to_jordan_decomposition :=
begin
lift r to ℝ≥0 using hr,
rw [jordan_decomposition.coe_smul, ← to_jordan_decomposition_smul],
refl
end
lemma to_jordan_decomposition_smul_real (s : signed_measure α) (r : ℝ) :
(r • s).to_jordan_decomposition = r • s.to_jordan_decomposition :=
begin
by_cases hr : 0 ≤ r,
{ exact to_jordan_decomposition_smul_real_nonneg s r hr },
{ ext1,
{ rw [real_smul_pos_part_neg _ _ (not_le.1 hr),
show r • s = -(-r • s), by rw [neg_smul, neg_neg], to_jordan_decomposition_neg,
neg_pos_part, to_jordan_decomposition_smul_real_nonneg, ← smul_neg_part,
real_smul_nonneg],
all_goals { exact left.nonneg_neg_iff.2 (le_of_lt (not_le.1 hr)) } },
{ rw [real_smul_neg_part_neg _ _ (not_le.1 hr),
show r • s = -(-r • s), by rw [neg_smul, neg_neg], to_jordan_decomposition_neg,
neg_neg_part, to_jordan_decomposition_smul_real_nonneg, ← smul_pos_part,
real_smul_nonneg],
all_goals { exact left.nonneg_neg_iff.2 (le_of_lt (not_le.1 hr)) } } }
end
lemma to_jordan_decomposition_eq {s : signed_measure α} {j : jordan_decomposition α}
(h : s = j.to_signed_measure) : s.to_jordan_decomposition = j :=
by rw [h, to_jordan_decomposition_to_signed_measure]
/-- The total variation of a signed measure. -/
def total_variation (s : signed_measure α) : measure α :=
s.to_jordan_decomposition.pos_part + s.to_jordan_decomposition.neg_part
lemma total_variation_zero : (0 : signed_measure α).total_variation = 0 :=
by simp [total_variation, to_jordan_decomposition_zero]
lemma total_variation_neg (s : signed_measure α) : (-s).total_variation = s.total_variation :=
by simp [total_variation, to_jordan_decomposition_neg, add_comm]
lemma null_of_total_variation_zero (s : signed_measure α) {i : set α}
(hs : s.total_variation i = 0) : s i = 0 :=
begin
rw [total_variation, measure.coe_add, pi.add_apply, add_eq_zero_iff] at hs,
rw [← to_signed_measure_to_jordan_decomposition s, to_signed_measure, vector_measure.coe_sub,
pi.sub_apply, measure.to_signed_measure_apply, measure.to_signed_measure_apply],
by_cases hi : measurable_set i,
{ rw [if_pos hi, if_pos hi], simp [hs.1, hs.2] },
{ simp [if_neg hi] }
end
lemma absolutely_continuous_ennreal_iff (s : signed_measure α) (μ : vector_measure α ℝ≥0∞) :
s ≪ᵥ μ ↔ s.total_variation ≪ μ.ennreal_to_measure :=
begin
split; intro h,
{ refine measure.absolutely_continuous.mk (λ S hS₁ hS₂, _),
obtain ⟨i, hi₁, hi₂, hi₃, hpos, hneg⟩ := s.to_jordan_decomposition_spec,
rw [total_variation, measure.add_apply, hpos, hneg,
to_measure_of_zero_le_apply _ _ _ hS₁, to_measure_of_le_zero_apply _ _ _ hS₁],
rw ← vector_measure.absolutely_continuous.ennreal_to_measure at h,
simp [h (measure_mono_null (i.inter_subset_right S) hS₂),
h (measure_mono_null (iᶜ.inter_subset_right S) hS₂)] },
{ refine vector_measure.absolutely_continuous.mk (λ S hS₁ hS₂, _),
rw ← vector_measure.ennreal_to_measure_apply hS₁ at hS₂,
exact null_of_total_variation_zero s (h hS₂) }
end
lemma total_variation_absolutely_continuous_iff (s : signed_measure α) (μ : measure α) :
s.total_variation ≪ μ ↔
s.to_jordan_decomposition.pos_part ≪ μ ∧ s.to_jordan_decomposition.neg_part ≪ μ :=
begin
split; intro h,
{ split, all_goals
{ refine measure.absolutely_continuous.mk (λ S hS₁ hS₂, _),
have := h hS₂,
rw [total_variation, measure.add_apply, add_eq_zero_iff] at this },
exacts [this.1, this.2] },
{ refine measure.absolutely_continuous.mk (λ S hS₁ hS₂, _),
rw [total_variation, measure.add_apply, h.1 hS₂, h.2 hS₂, add_zero] }
end
-- TODO: Generalize to vector measures once total variation on vector measures is defined
lemma mutually_singular_iff (s t : signed_measure α) :
s ⊥ᵥ t ↔ s.total_variation ⊥ₘ t.total_variation :=
begin
split,
{ rintro ⟨u, hmeas, hu₁, hu₂⟩,
obtain ⟨i, hi₁, hi₂, hi₃, hipos, hineg⟩ := s.to_jordan_decomposition_spec,
obtain ⟨j, hj₁, hj₂, hj₃, hjpos, hjneg⟩ := t.to_jordan_decomposition_spec,
refine ⟨u, hmeas, _, _⟩,
{ rw [total_variation, measure.add_apply, hipos, hineg,
to_measure_of_zero_le_apply _ _ _ hmeas, to_measure_of_le_zero_apply _ _ _ hmeas],
simp [hu₁ _ (set.inter_subset_right _ _)] },
{ rw [total_variation, measure.add_apply, hjpos, hjneg,
to_measure_of_zero_le_apply _ _ _ hmeas.compl,
to_measure_of_le_zero_apply _ _ _ hmeas.compl],
simp [hu₂ _ (set.inter_subset_right _ _)] } },
{ rintro ⟨u, hmeas, hu₁, hu₂⟩,
exact ⟨u, hmeas,
(λ t htu, null_of_total_variation_zero _ (measure_mono_null htu hu₁)),
(λ t htv, null_of_total_variation_zero _ (measure_mono_null htv hu₂))⟩ }
end
lemma mutually_singular_ennreal_iff (s : signed_measure α) (μ : vector_measure α ℝ≥0∞) :
s ⊥ᵥ μ ↔ s.total_variation ⊥ₘ μ.ennreal_to_measure :=
begin
split,
{ rintro ⟨u, hmeas, hu₁, hu₂⟩,
obtain ⟨i, hi₁, hi₂, hi₃, hpos, hneg⟩ := s.to_jordan_decomposition_spec,
refine ⟨u, hmeas, _, _⟩,
{ rw [total_variation, measure.add_apply, hpos, hneg,
to_measure_of_zero_le_apply _ _ _ hmeas, to_measure_of_le_zero_apply _ _ _ hmeas],
simp [hu₁ _ (set.inter_subset_right _ _)] },
{ rw vector_measure.ennreal_to_measure_apply hmeas.compl,
exact hu₂ _ (set.subset.refl _) } },
{ rintro ⟨u, hmeas, hu₁, hu₂⟩,
refine vector_measure.mutually_singular.mk u hmeas
(λ t htu _, null_of_total_variation_zero _ (measure_mono_null htu hu₁)) (λ t htv hmt, _),
rw ← vector_measure.ennreal_to_measure_apply hmt,
exact measure_mono_null htv hu₂ }
end
lemma total_variation_mutually_singular_iff (s : signed_measure α) (μ : measure α) :
s.total_variation ⊥ₘ μ ↔
s.to_jordan_decomposition.pos_part ⊥ₘ μ ∧ s.to_jordan_decomposition.neg_part ⊥ₘ μ :=
measure.mutually_singular.add_left_iff
end signed_measure
end measure_theory
|
bc1270fa3dc7db3e9ae51c634762d6eac4a736d1
|
2f8bf12144551bc7d8087a6320990c4621741f3d
|
/tests/playground/binarytrees.lean
|
d5bbabbdeedb968efd7208dee50a966c8e55f25f
|
[
"Apache-2.0"
] |
permissive
|
jesse-michael-han/lean4
|
eb63a12960e69823749edceb4f23fd33fa2253ce
|
fa16920a6a7700cabc567aa629ce4ae2478a2f40
|
refs/heads/master
| 1,589,935,810,594
| 1,557,177,860,000
| 1,557,177,860,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,626
|
lean
|
inductive Tree
| Nil
| Node (l r : Tree) : Tree
open Tree
-- This Function has an extra argument to suppress the
-- Common Sub-expression Elimination optimization
def make' : UInt32 -> UInt32 -> Tree
| n d :=
if d = 0 then Node Nil Nil
else Node (make' n (d - 1)) (make' (n + 1) (d - 1))
-- build a tree
def make (d : UInt32) := make' d d
def check : Tree → UInt32
| Nil := 0
| (Node l r) := 1 + check l + check r
def minN := 4
def out (s) (n : Nat) (t : UInt32) := IO.println (s ++ " of depth " ++ toString n ++ "\t check: " ++ toString t)
-- allocate and check lots of trees
def sumT : UInt32 -> UInt32 -> UInt32 -> UInt32
| d i t :=
if i = 0 then t
else
let a := check (make d) in
sumT d (i-1) (t + a)
-- generate many trees
meta def depth : Nat -> Nat -> List (Nat × Nat × Task UInt32)
| d m := if d ≤ m then
let n := 2 ^ (m - d + minN) in
(n, d, Task.mk (λ _, sumT (UInt32.ofNat d) (UInt32.ofNat n) 0)) :: depth (d+2) m
else []
meta def main : List String → IO UInt32
| [s] := do
let n := s.toNat,
let maxN := Nat.max (minN + 2) n,
let stretchN := maxN + 1,
-- stretch memory tree
let c := check (make $ UInt32.ofNat stretchN),
out "stretch tree" stretchN c,
-- allocate a long lived tree
let long := make $ UInt32.ofNat maxN,
-- allocate, walk, and deallocate many bottom-up binary trees
let vs := (depth minN maxN), -- `using` (parList $ evalTuple3 r0 r0 rseq)
vs.mmap (λ ⟨m,d,i⟩, out (toString m ++ "\t trees") d i.get),
-- confirm the the long-lived binary tree still exists
out "long lived tree" maxN (check long),
pure 0
| _ := pure 1
|
221df3475fa2f8c8f50cf388ea486200aa4255cc
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/algebra/star/module.lean
|
3bc5edfa0e127c1e73a54f5a3de2512d2cf2bd16
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,962
|
lean
|
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser, Frédéric Dupuis
-/
import algebra.star.self_adjoint
import algebra.module.equiv
import linear_algebra.prod
/-!
# The star operation, bundled as a star-linear equiv
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
We define `star_linear_equiv`, which is the star operation bundled as a star-linear map.
It is defined on a star algebra `A` over the base ring `R`.
This file also provides some lemmas that need `algebra.module.basic` imported to prove.
## TODO
- Define `star_linear_equiv` for noncommutative `R`. We only the commutative case for now since,
in the noncommutative case, the ring hom needs to reverse the order of multiplication. This
requires a ring hom of type `R →+* Rᵐᵒᵖ`, which is very undesirable in the commutative case.
One way out would be to define a new typeclass `is_op R S` and have an instance `is_op R R`
for commutative `R`.
- Also note that such a definition involving `Rᵐᵒᵖ` or `is_op R S` would require adding
the appropriate `ring_hom_inv_pair` instances to be able to define the semilinear
equivalence.
-/
section smul_lemmas
variables {R M : Type*}
@[simp] lemma star_nat_cast_smul [semiring R] [add_comm_monoid M] [module R M] [star_add_monoid M]
(n : ℕ) (x : M) : star ((n : R) • x) = (n : R) • star x :=
map_nat_cast_smul (star_add_equiv : M ≃+ M) R R n x
@[simp] lemma star_int_cast_smul [ring R] [add_comm_group M] [module R M] [star_add_monoid M]
(n : ℤ) (x : M) : star ((n : R) • x) = (n : R) • star x :=
map_int_cast_smul (star_add_equiv : M ≃+ M) R R n x
@[simp] lemma star_inv_nat_cast_smul [division_semiring R] [add_comm_monoid M] [module R M]
[star_add_monoid M] (n : ℕ) (x : M) : star ((n⁻¹ : R) • x) = (n⁻¹ : R) • star x :=
map_inv_nat_cast_smul (star_add_equiv : M ≃+ M) R R n x
@[simp] lemma star_inv_int_cast_smul [division_ring R] [add_comm_group M] [module R M]
[star_add_monoid M] (n : ℤ) (x : M) : star ((n⁻¹ : R) • x) = (n⁻¹ : R) • star x :=
map_inv_int_cast_smul (star_add_equiv : M ≃+ M) R R n x
@[simp] lemma star_rat_cast_smul [division_ring R] [add_comm_group M] [module R M]
[star_add_monoid M] (n : ℚ) (x : M) : star ((n : R) • x) = (n : R) • star x :=
map_rat_cast_smul (star_add_equiv : M ≃+ M) _ _ _ x
@[simp] lemma star_rat_smul {R : Type*} [add_comm_group R] [star_add_monoid R] [module ℚ R]
(x : R) (n : ℚ) : star (n • x) = n • star x :=
map_rat_smul (star_add_equiv : R ≃+ R) _ _
end smul_lemmas
/-- If `A` is a module over a commutative `R` with compatible actions,
then `star` is a semilinear equivalence. -/
@[simps]
def star_linear_equiv (R : Type*) {A : Type*}
[comm_semiring R] [star_ring R] [add_comm_monoid A] [star_add_monoid A] [module R A]
[star_module R A] :
A ≃ₗ⋆[R] A :=
{ to_fun := star,
map_smul' := star_smul,
.. star_add_equiv }
variables (R : Type*) (A : Type*)
[semiring R] [star_semigroup R] [has_trivial_star R]
[add_comm_group A] [module R A] [star_add_monoid A] [star_module R A]
/-- The self-adjoint elements of a star module, as a submodule. -/
def self_adjoint.submodule : submodule R A :=
{ smul_mem' := λ r x, (is_self_adjoint.all _).smul,
..self_adjoint A }
/-- The skew-adjoint elements of a star module, as a submodule. -/
def skew_adjoint.submodule : submodule R A :=
{ smul_mem' := skew_adjoint.smul_mem,
..skew_adjoint A }
variables {A} [invertible (2 : R)]
/-- The self-adjoint part of an element of a star module, as a linear map. -/
@[simps] def self_adjoint_part : A →ₗ[R] self_adjoint A :=
{ to_fun := λ x, ⟨(⅟2 : R) • (x + star x),
by simp only [self_adjoint.mem_iff, star_smul, add_comm,
star_add_monoid.star_add, star_inv', star_bit0,
star_one, star_star, star_inv_of (2 : R), star_trivial]⟩,
map_add' := λ x y, by { ext, simp [add_add_add_comm] },
map_smul' := λ r x, by { ext, simp [←mul_smul,
show ⅟ 2 * r = r * ⅟ 2, from commute.inv_of_left (commute.one_left r).bit0_left] } }
/-- The skew-adjoint part of an element of a star module, as a linear map. -/
@[simps] def skew_adjoint_part : A →ₗ[R] skew_adjoint A :=
{ to_fun := λ x, ⟨(⅟2 : R) • (x - star x),
by simp only [skew_adjoint.mem_iff, star_smul, star_sub, star_star, star_trivial, ←smul_neg,
neg_sub]⟩,
map_add' := λ x y, by { ext, simp only [sub_add, ←smul_add, sub_sub_eq_add_sub, star_add,
add_subgroup.coe_mk, add_subgroup.coe_add] },
map_smul' := λ r x, by { ext, simp [←mul_smul, ←smul_sub,
show r * ⅟ 2 = ⅟ 2 * r, from commute.inv_of_right (commute.one_right r).bit0_right] } }
lemma star_module.self_adjoint_part_add_skew_adjoint_part (x : A) :
(self_adjoint_part R x : A) + skew_adjoint_part R x = x :=
by simp only [smul_sub, self_adjoint_part_apply_coe, smul_add, skew_adjoint_part_apply_coe,
add_add_sub_cancel, inv_of_two_smul_add_inv_of_two_smul]
variables (A)
/-- The decomposition of elements of a star module into their self- and skew-adjoint parts,
as a linear equivalence. -/
@[simps] def star_module.decompose_prod_adjoint : A ≃ₗ[R] self_adjoint A × skew_adjoint A :=
linear_equiv.of_linear
((self_adjoint_part R).prod (skew_adjoint_part R))
((self_adjoint.submodule R A).subtype.coprod (skew_adjoint.submodule R A).subtype)
(by ext; simp)
(linear_map.ext $ star_module.self_adjoint_part_add_skew_adjoint_part R)
@[simp]
lemma algebra_map_star_comm {R A : Type*} [comm_semiring R] [star_ring R] [semiring A]
[star_semigroup A] [algebra R A] [star_module R A] (r : R) :
algebra_map R A (star r) = star (algebra_map R A r) :=
by simp only [algebra.algebra_map_eq_smul_one, star_smul, star_one]
|
3a06f4f62b35cdf762e2e2b9ad5b2e7ce0919446
|
7cef822f3b952965621309e88eadf618da0c8ae9
|
/src/tactic/omega/nat/neg_elim.lean
|
8cc42923a421fe0fbca3e7bd2b3d8fbb1219c1ab
|
[
"Apache-2.0"
] |
permissive
|
rmitta/mathlib
|
8d90aee30b4db2b013e01f62c33f297d7e64a43d
|
883d974b608845bad30ae19e27e33c285200bf84
|
refs/heads/master
| 1,585,776,832,544
| 1,576,874,096,000
| 1,576,874,096,000
| 153,663,165
| 0
| 2
|
Apache-2.0
| 1,544,806,490,000
| 1,539,884,365,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,818
|
lean
|
/-
Copyright (c) 2019 Seul Baek. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Seul Baek
Negation elimination.
-/
import tactic.omega.nat.form
namespace omega
namespace nat
open_locale omega.nat
@[simp] def push_neg : form → form
| (p ∨* q) := (push_neg p) ∧* (push_neg q)
| (p ∧* q) := (push_neg p) ∨* (push_neg q)
| (¬*p) := p
| p := ¬* p
lemma push_neg_equiv :
∀ {p : form}, form.equiv (push_neg p) (¬* p) :=
begin
form.induce `[intros v; try {refl}],
{ simp only [classical.not_not, form.holds, push_neg] },
{ simp only [form.holds, push_neg, not_or_distrib, ihp v, ihq v] },
{ simp only [form.holds, push_neg, classical.not_and_distrib, ihp v, ihq v] }
end
def nnf : form → form
| (¬* p) := push_neg (nnf p)
| (p ∨* q) := (nnf p) ∨* (nnf q)
| (p ∧* q) := (nnf p) ∧* (nnf q)
| a := a
def is_nnf : form → Prop
| (t =* s) := true
| (t ≤* s) := true
| ¬*(t =* s) := true
| ¬*(t ≤* s) := true
| (p ∨* q) := is_nnf p ∧ is_nnf q
| (p ∧* q) := is_nnf p ∧ is_nnf q
| _ := false
lemma is_nnf_push_neg : ∀ p : form, is_nnf p → is_nnf (push_neg p) :=
begin
form.induce `[intro h1; try {trivial}],
{ cases p; try {cases h1}; trivial },
{ cases h1, constructor; [{apply ihp}, {apply ihq}]; assumption },
{ cases h1, constructor; [{apply ihp}, {apply ihq}]; assumption }
end
lemma is_nnf_nnf : ∀ p : form, is_nnf (nnf p) :=
begin
form.induce `[try {trivial}],
{ apply is_nnf_push_neg _ ih },
{ constructor; assumption },
{ constructor; assumption }
end
lemma nnf_equiv : ∀ {p : form}, form.equiv (nnf p) p :=
begin
form.induce `[intros v; try {refl}; simp only [nnf]],
{ rw push_neg_equiv,
apply not_iff_not_of_iff, apply ih },
{ apply pred_mono_2' (ihp v) (ihq v) },
{ apply pred_mono_2' (ihp v) (ihq v) }
end
@[simp] def neg_elim_core : form → form
| (¬* (t =* s)) := (t.add_one ≤* s) ∨* (s.add_one ≤* t)
| (¬* (t ≤* s)) := s.add_one ≤* t
| (p ∨* q) := (neg_elim_core p) ∨* (neg_elim_core q)
| (p ∧* q) := (neg_elim_core p) ∧* (neg_elim_core q)
| p := p
lemma neg_free_neg_elim_core : ∀ p, is_nnf p → (neg_elim_core p).neg_free :=
begin
form.induce `[intro h1, try {simp only [neg_free, neg_elim_core]}, try {trivial}],
{ cases p; try {cases h1}; try {trivial},
constructor; trivial },
{ cases h1, constructor; [{apply ihp}, {apply ihq}]; assumption },
{ cases h1, constructor; [{apply ihp}, {apply ihq}]; assumption }
end
lemma le_and_le_iff_eq {α : Type} [partial_order α] {a b : α} :
(a ≤ b ∧ b ≤ a) ↔ a = b :=
begin
constructor; intro h1,
{ cases h1, apply le_antisymm; assumption },
{ constructor; apply le_of_eq; rw h1 }
end
lemma implies_neg_elim_core : ∀ {p : form},
form.implies p (neg_elim_core p) :=
begin
form.induce `[intros v h, try {apply h}],
{ cases p with t s t s; try {apply h},
{ have : preterm.val v (preterm.add_one t) ≤ preterm.val v s ∨
preterm.val v (preterm.add_one s) ≤ preterm.val v t,
{ rw or.comm,
simpa only [form.holds, le_and_le_iff_eq.symm,
classical.not_and_distrib, not_le] using h },
simpa only [form.holds, neg_elim_core, int.add_one_le_iff] },
simpa only [form.holds, not_le, int.add_one_le_iff] using h },
{ simp only [neg_elim_core], cases h;
[{left, apply ihp}, {right, apply ihq}];
assumption },
apply and.imp (ihp _) (ihq _) h
end
def neg_elim : form → form := neg_elim_core ∘ nnf
lemma neg_free_neg_elim {p : form} : (neg_elim p).neg_free :=
neg_free_neg_elim_core _ (is_nnf_nnf _)
lemma implies_neg_elim {p : form} : form.implies p (neg_elim p) :=
begin
intros v h1, apply implies_neg_elim_core,
apply (nnf_equiv v).elim_right h1
end
end nat
end omega
|
7ac67768f01a5bf10c2d62073f40012cf361abbf
|
b147e1312077cdcfea8e6756207b3fa538982e12
|
/tests/tactics.lean
|
9e613b31e4b9f8534e113a367bee09303956318f
|
[
"Apache-2.0"
] |
permissive
|
SzJS/mathlib
|
07836ee708ca27cd18347e1e11ce7dd5afb3e926
|
23a5591fca0d43ee5d49d89f6f0ee07a24a6ca29
|
refs/heads/master
| 1,584,980,332,064
| 1,532,063,841,000
| 1,532,063,841,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 13,753
|
lean
|
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import tactic data.set.lattice data.prod
section solve_by_elim
example {a b : Prop} (h₀ : a → b) (h₁ : a) : b :=
begin
apply_assumption,
apply_assumption,
end
example {a b : Prop} (h₀ : a → b) (h₁ : a) : b :=
by solve_by_elim
example {α : Type} {a b : α → Prop} (h₀ : ∀ x : α, b x = a x) (y : α) : a y = b y :=
by solve_by_elim
example {α : Type} {p : α → Prop} (h₀ : ∀ x, p x) (y : α) : p y :=
begin
apply_assumption,
end
end solve_by_elim
section tauto₀
variables p q r : Prop
variables h : p ∧ q ∨ p ∧ r
include h
example : p ∧ p :=
by tauto
end tauto₀
section tauto₁
variables α : Type
variables p q r : α → Prop
variables h : (∃ x, p x ∧ q x) ∨ (∃ x, p x ∧ r x)
include h
example : ∃ x, p x :=
by tauto
end tauto₁
section tauto₂
variables α : Type
variables x : α
variables p q r : α → Prop
variables h₀ : (∀ x, p x → q x → r x) ∨ r x
variables h₁ : p x
variables h₂ : q x
include h₀ h₁ h₂
example : ∃ x, r x :=
by tauto
end tauto₂
section tauto₃
example (p : Prop) : p ∧ true ↔ p := by tauto
example (p : Prop) : p ∨ false ↔ p := by tauto
example (p q r : Prop) [decidable p] [decidable r] : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (r ∨ p ∨ r) := by tauto
example (p q r : Prop) [decidable q] [decidable r] : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (r ∨ p ∨ r) := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ p) : q := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : p) : ¬ q := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : q) : ¬ p := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ q) : p := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ q) (h'' : ¬ p) : false := by tauto
example (p q r : Prop) [decidable q] [decidable p] (h : p ↔ q) (h' : r ↔ q) (h'' : ¬ r) : ¬ p := by tauto
example (p q r : Prop) [decidable q] [decidable p] (h : p ↔ q) (h' : r ↔ q) : p ↔ r :=
by tauto
example (p q r : Prop) [decidable p] [decidable q] [decidable r] (h : ¬ p = q) (h' : r = q) : p ↔ ¬ r := by tauto
section modulo_symmetry
variables {p q r : Prop} {α : Type} {x y : α} [decidable_eq α]
variables [decidable p] [decidable q] [decidable r]
variables (h : x = y)
variables (h'' : (p ∧ q ↔ q ∨ r) ↔ (r ∧ p ↔ r ∨ q))
include h
include h''
example (h' : ¬ y = x) : p ∧ q := by tauto
example (h' : p ∧ ¬ y = x) : p ∧ q := by tauto
example : y = x := by tauto
example (h' : ¬ x = y) : p ∧ q := by tauto
example : x = y := by tauto
end modulo_symmetry
end tauto₃
section wlog
example {x y : ℕ} (a : x = 1) : true :=
begin
suffices : false, trivial,
wlog h : x = y,
{ guard_target x = y ∨ y = x,
admit },
{ guard_hyp h := x = y,
guard_hyp a := x = 1,
admit }
end
example {x y : ℕ} : true :=
begin
suffices : false, trivial,
wlog h : x ≤ y,
{ guard_hyp h := x ≤ y,
guard_target false,
admit }
end
example {x y z : ℕ} : true :=
begin
suffices : false, trivial,
wlog h : x ≤ y + z,
{ guard_target x ≤ y + z ∨ x ≤ z + y,
admit },
{ guard_hyp h := x ≤ y + z,
guard_target false,
admit }
end
example {x y z : ℕ} : true :=
begin
suffices : false, trivial,
wlog : x ≤ y + z using x y,
{ guard_target x ≤ y + z ∨ y ≤ x + z,
admit },
{ guard_hyp case := x ≤ y + z,
guard_target false,
admit },
end
example {x : ℕ} (S₀ S₁ : set ℕ) (P : ℕ → Prop)
(h : x ∈ S₀ ∪ S₁) : true :=
begin
suffices : false, trivial,
wlog h' : x ∈ S₀ using S₀ S₁,
{ guard_target x ∈ S₀ ∨ x ∈ S₁,
admit },
{ guard_hyp h := x ∈ S₀ ∪ S₁,
guard_hyp h' := x ∈ S₀,
admit }
end
example {n m i : ℕ} {p : ℕ → ℕ → ℕ → Prop} : true :=
begin
suffices : false, trivial,
wlog : p n m i using [n m i, n i m, i n m],
{ guard_target p n m i ∨ p n i m ∨ p i n m,
admit },
{ guard_hyp case := p n m i,
admit }
end
example {n m i : ℕ} {p : ℕ → Prop} : true :=
begin
suffices : false, trivial,
wlog : p n using [n m i, m n i, i n m],
{ guard_target p n ∨ p m ∨ p i,
admit },
{ guard_hyp case := p n,
admit }
end
example {n m i : ℕ} {p : ℕ → ℕ → Prop} {q : ℕ → ℕ → ℕ → Prop} : true :=
begin
suffices : q n m i, trivial,
have h : p n i ∨ p i m ∨ p m i, from sorry,
wlog : p n i := h using n m i,
{ guard_hyp h := p n i,
guard_target q n m i,
admit },
{ guard_hyp h := p i m,
guard_hyp this := q i m n,
guard_target q n m i,
admit },
{ guard_hyp h := p m i,
guard_hyp this := q m i n,
guard_target q n m i,
admit },
end
example (X : Type) (A B C : set X) : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) :=
begin
ext x,
split,
{ intro hyp,
cases hyp,
wlog x_in : x ∈ B using B C,
{ assumption },
{ exact or.inl ⟨hyp_left, x_in⟩ } },
{ intro hyp,
wlog x_in : x ∈ A ∩ B using B C,
{ assumption },
{ exact ⟨x_in.left, or.inl x_in.right⟩ } }
end
example (X : Type) (A B C : set X) : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) :=
begin
ext x,
split,
{ intro hyp,
wlog x_in : x ∈ B := hyp.2 using B C,
{ exact or.inl ⟨hyp.1, x_in⟩ } },
{ intro hyp,
wlog x_in : x ∈ A ∩ B := hyp using B C,
{ exact ⟨x_in.left, or.inl x_in.right⟩ } }
end
example (X : Type) (A B C : set X) : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) :=
begin
ext x,
split,
{ intro hyp,
cases hyp,
wlog x_in : x ∈ B := hyp_right using B C,
{ exact or.inl ⟨hyp_left, x_in⟩ }, },
{ intro hyp,
wlog x_in : x ∈ A ∩ B := hyp using B C,
{ exact ⟨x_in.left, or.inl x_in.right⟩ } }
end
end wlog
example (m n p q : nat) (h : m + n = p) : true :=
begin
have : m + n = q,
{ generalize_hyp h' : m + n = x at h,
guard_hyp h' := m + n = x,
guard_hyp h := x = p,
guard_target m + n = q,
admit },
have : m + n = q,
{ generalize_hyp h' : m + n = x at h ⊢,
guard_hyp h' := m + n = x,
guard_hyp h := x = p,
guard_target x = q,
admit },
trivial
end
example (α : Sort*) (L₁ L₂ L₃ : list α)
(H : L₁ ++ L₂ = L₃) : true :=
begin
have : L₁ ++ L₂ = L₂,
{ generalize_hyp h : L₁ ++ L₂ = L at H,
induction L with hd tl ih,
case list.nil
{ tactic.cleanup,
change list.nil = L₃ at H,
admit },
case list.cons
{ change hd :: tl = L₃ at H,
admit } },
trivial
end
section convert
open set
variables {α β : Type}
local attribute [simp]
private lemma singleton_inter_singleton_eq_empty {x y : α} :
({x} ∩ {y} = (∅ : set α)) ↔ x ≠ y :=
by simp [singleton_inter_eq_empty]
example {f : β → α} {x y : α} (h : x ≠ y) : f ⁻¹' {x} ∩ f ⁻¹' {y} = ∅ :=
begin
have : {x} ∩ {y} = (∅ : set α) := by simpa using h,
convert preimage_empty,
rw [←preimage_inter,this],
end
end convert
section rcases
universe u
variables {α β γ : Type u}
example (x : α × β × γ) : true :=
begin
rcases x with ⟨a, b, c⟩,
{ guard_hyp a := α,
guard_hyp b := β,
guard_hyp c := γ,
trivial }
end
example (x : α × β × γ) : true :=
begin
rcases x with ⟨a, ⟨b, c⟩⟩,
{ guard_hyp a := α,
guard_hyp b := β,
guard_hyp c := γ,
trivial }
end
example (x : (α × β) × γ) : true :=
begin
rcases x with ⟨⟨a, b⟩, c⟩,
{ guard_hyp a := α,
guard_hyp b := β,
guard_hyp c := γ,
trivial }
end
example (x : inhabited α × option β ⊕ γ) : true :=
begin
rcases x with ⟨⟨a⟩, _ | b⟩ | c,
{ guard_hyp a := α, trivial },
{ guard_hyp a := α, guard_hyp b := β, trivial },
{ guard_hyp c := γ, trivial }
end
example (x y : ℕ) (h : x = y) : true :=
begin
rcases x with _|⟨⟩|z,
{ guard_hyp h := nat.zero = y, trivial },
{ guard_hyp h := nat.succ nat.zero = y, trivial },
{ guard_hyp z := ℕ,
guard_hyp h := z.succ.succ = y, trivial },
end
-- from equiv.sum_empty
example (s : α ⊕ empty) : true :=
begin
rcases s with _ | ⟨⟨⟩⟩,
{ guard_hyp s := α, trivial }
end
end rcases
section ext
example (x y : ℕ) : true :=
begin
have : x = y,
{ ext <|> admit },
have : x = y,
{ ext i <|> admit },
have : x = y,
{ ext 1 <|> admit },
trivial
end
example (X Y : ℕ × ℕ) (h : X.1 = Y.1) (h : X.2 = Y.2) : X = Y :=
begin
ext ; assumption
end
example (X Y : (ℕ → ℕ) × ℕ) (h : ∀ i, X.1 i = Y.1 i) (h : X.2 = Y.2) : X = Y :=
begin
ext x ; solve_by_elim,
end
example (X Y : ℕ → ℕ × ℕ) (h : ∀ i, X i = Y i) : true :=
begin
have : X = Y,
{ ext 1 with i,
guard_target X i = Y i,
admit },
have : X = Y,
{ ext i,
guard_target (X i).fst = (Y i).fst, admit,
guard_target (X i).snd = (Y i).snd, admit, },
have : X = Y,
{ ext 1,
guard_target X x = Y x,
admit },
trivial,
end
def my_foo {α} (x : semigroup α) (y : group α) : true := trivial
example {α : Type} : true :=
begin
have : true,
{ refine_struct (@my_foo α { .. } { .. } ),
-- 9 goals
guard_tags _field mul semigroup, admit,
-- case semigroup, mul
-- α : Type
-- ⊢ α → α → α
guard_tags _field mul_assoc semigroup, admit,
-- case semigroup, mul_assoc
-- α : Type
-- ⊢ ∀ (a b c : α), a * b * c = a * (b * c)
guard_tags _field mul group, admit,
-- case group, mul
-- α : Type
-- ⊢ α → α → α
guard_tags _field mul_assoc group, admit,
-- case group, mul_assoc
-- α : Type
-- ⊢ ∀ (a b c : α), a * b * c = a * (b * c)
guard_tags _field one group, admit,
-- case group, one
-- α : Type
-- ⊢ α
guard_tags _field one_mul group, admit,
-- case group, one_mul
-- α : Type
-- ⊢ ∀ (a : α), 1 * a = a
guard_tags _field mul_one group, admit,
-- case group, mul_one
-- α : Type
-- ⊢ ∀ (a : α), a * 1 = a
guard_tags _field inv group, admit,
-- case group, inv
-- α : Type
-- ⊢ α → α
guard_tags _field mul_left_inv group, admit,
-- case group, mul_left_inv
-- α : Type
-- ⊢ ∀ (a : α), a⁻¹ * a = 1
},
trivial
end
def my_bar {α} (x : semigroup α) (y : group α) (i j : α) : α := i
example {α : Type} : true :=
begin
have : monoid α,
{ refine_struct { mul := my_bar { .. } { .. } },
guard_tags _field mul semigroup, admit,
guard_tags _field mul_assoc semigroup, admit,
guard_tags _field mul group, admit,
guard_tags _field mul_assoc group, admit,
guard_tags _field one group, admit,
guard_tags _field one_mul group, admit,
guard_tags _field mul_one group, admit,
guard_tags _field inv group, admit,
guard_tags _field mul_left_inv group, admit,
guard_tags _field mul_assoc monoid, admit,
guard_tags _field one monoid, admit,
guard_tags _field one_mul monoid, admit,
guard_tags _field mul_one monoid, admit, },
trivial
end
end ext
section apply_rules
example {a b c d e : nat} (h1 : a ≤ b) (h2 : c ≤ d) (h3 : 0 ≤ e) :
a + c * e + a + c + 0 ≤ b + d * e + b + d + e :=
add_le_add (add_le_add (add_le_add (add_le_add h1 (mul_le_mul_of_nonneg_right h2 h3)) h1 ) h2) h3
example {a b c d e : nat} (h1 : a ≤ b) (h2 : c ≤ d) (h3 : 0 ≤ e) :
a + c * e + a + c + 0 ≤ b + d * e + b + d + e :=
by apply_rules [add_le_add, mul_le_mul_of_nonneg_right]
@[user_attribute]
meta def mono_rules : user_attribute :=
{ name := `mono_rules,
descr := "lemmas usable to prove monotonicity" }
attribute [mono_rules] add_le_add mul_le_mul_of_nonneg_right
example {a b c d e : nat} (h1 : a ≤ b) (h2 : c ≤ d) (h3 : 0 ≤ e) :
a + c * e + a + c + 0 ≤ b + d * e + b + d + e :=
by apply_rules [mono_rules]
example {a b c d e : nat} (h1 : a ≤ b) (h2 : c ≤ d) (h3 : 0 ≤ e) :
a + c * e + a + c + 0 ≤ b + d * e + b + d + e :=
by apply_rules mono_rules
end apply_rules
section h_generalize
variables {α β γ φ ψ : Type} (f : α → α → α → φ → γ)
(x y : α) (a b : β) (z : φ)
(h₀ : β = α) (h₁ : β = α) (h₂ : φ = β)
(hx : x == a) (hy : y == b) (hz : z == a)
include f x y z a b hx hy hz
example : f x y x z = f (eq.rec_on h₀ a) (cast h₀ b) (eq.mpr h₁.symm a) (eq.mpr h₂ a) :=
begin
guard_hyp_nums 16,
h_generalize hp : a == p with hh,
guard_hyp_nums 19,
guard_hyp' hh := β = α,
guard_target f x y x z = f p (cast h₀ b) p (eq.mpr h₂ a),
h_generalize hq : _ == q,
guard_hyp_nums 21,
guard_target f x y x z = f p q p (eq.mpr h₂ a),
h_generalize _ : _ == r,
guard_hyp_nums 23,
guard_target f x y x z = f p q p r,
casesm* [_ == _, _ = _], refl
end
end h_generalize
section h_generalize
variables {α β γ φ ψ : Type} (f : list α → list α → γ)
(x : list α) (a : list β) (z : φ)
(h₀ : β = α) (h₁ : list β = list α)
(hx : x == a)
include f x z a hx h₀ h₁
example : true :=
begin
have : f x x = f (eq.rec_on h₀ a) (cast h₁ a),
{ guard_hyp_nums 11,
h_generalize : a == p with _,
guard_hyp_nums 13,
guard_hyp' h := β = α,
guard_target f x x = f p (cast h₁ a),
h_generalize! : a == q ,
guard_hyp_nums 13,
guard_target ∀ q, f x x = f p q,
casesm* [_ == _, _ = _],
success_if_fail { refl },
admit },
trivial
end
end h_generalize
|
85fc8bc73fd0146dc041ef951da9d31faf5850bb
|
4fa118f6209450d4e8d058790e2967337811b2b5
|
/src/examples/empty.lean
|
95858f3eca515415761ae5c5dbfd7f7d2336a617
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean-perfectoid-spaces
|
16ab697a220ed3669bf76311daa8c466382207f7
|
95a6520ce578b30a80b4c36e36ab2d559a842690
|
refs/heads/master
| 1,639,557,829,139
| 1,638,797,866,000
| 1,638,797,866,000
| 135,769,296
| 96
| 10
|
Apache-2.0
| 1,638,797,866,000
| 1,527,892,754,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,991
|
lean
|
import data.padics.padic_numbers
import for_mathlib.punit_instances
import perfectoid_space
/-!
# An example of a perfectoid space
In this file we show that the empty space is perfectoid.
Every nonempty example requires a non-trivial amount of mathematical effort.
-/
/-- The structure presheaf on the empty space. -/
def CLVRS.empty_presheaf : presheaf_of_topological_rings empty :=
{ F := λ _, unit,
res := λ _ _ _ _, (),
Hid := λ U, by {funext x, cases x, refl},
Hcomp := λ U V W _ _, rfl,
Fring := λ x, punit.comm_ring,
res_is_ring_hom := λ U V _,
{ map_one := rfl,
map_mul := λ _ _, rfl,
map_add := λ _ _, rfl },
Ftop := λ U, by apply_instance,
Ftop_ring := λ U, by apply_instance,
res_continuous := λ U V _, continuous_of_discrete_topology }
/-- The structure sheaf on the empty space. -/
def CLVRS.empty_sheaf : sheaf_of_topological_rings empty :=
{ F := CLVRS.empty_presheaf,
locality := by {rintro _ _ ⟨s⟩ ⟨t⟩ _, refl},
gluing := by {intros _ _ c _, use (), intro i, cases c i, refl},
homeo :=
begin
rintros ⟨U, HU⟩ ⟨γ, Uis, _⟩ c d,
dsimp at *,
change set unit at c,
rcases subset_subsingleton c with rfl|rfl,
{ convert is_open_empty,
exact set.image_empty _ },
{ convert is_open_univ,
apply set.image_univ_of_surjective,
rintro ⟨s, hs⟩,
use (),
apply subtype.eq,
funext i,
show () = s i,
apply subsingleton.elim, },
end }
/--The empty CLVRS-/
def CLVRS.empty : CLVRS := {
space := empty,
sheaf' := CLVRS.empty_sheaf,
complete := λ U,
{ complete := λ f hf,
begin
use (),
rintro V HV,
convert f.univ_sets,
funext x,
cases x,
show _ = true, rw eq_true,
exact mem_of_nhds HV,
end },
valuation := by rintro ⟨⟩,
local_stalks := by rintro ⟨⟩,
supp_maximal := by rintro ⟨⟩ }
example : PerfectoidSpace ⟨37, by norm_num⟩ := ⟨CLVRS.empty, by rintro ⟨⟩⟩
|
7079a02b6de964b52fa3e1516f8b41bc4b03150a
|
ee8cdbabf07f77e7be63a449b8483ce308d37218
|
/lean/src/test/mathd-algebra-156.lean
|
ebc531cd6cee50db145a9de6c158c53089d31da9
|
[
"MIT",
"Apache-2.0"
] |
permissive
|
zeta1999/miniF2F
|
6d66c75d1c18152e224d07d5eed57624f731d4b7
|
c1ba9629559c5273c92ec226894baa0c1ce27861
|
refs/heads/main
| 1,681,897,460,642
| 1,620,646,361,000
| 1,620,646,361,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 360
|
lean
|
/-
Copyright (c) 2021 OpenAI. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kunhao Zheng
-/
import data.real.basic
example (x y : ℝ) (f g : ℝ → ℝ) (h₀ : ∀t, f t = t^4) (h₁ : ∀t, g t = 5 * t^2 - 6) (h₂ : f x = g x) (h₃ : f y = g y) (h₄ : x^2 < y^2) : y^2 - x^2 = 1 :=
begin
sorry
end
|
9610ef05f3005a38a4b10f39a120fcb65602c043
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/analysis/normed/group/add_torsor.lean
|
0e1f3e2a565d97de69c42bf6dd7323af5897b0b3
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 10,793
|
lean
|
/-
Copyright (c) 2020 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers, Yury Kudryashov
-/
import analysis.normed.group.basic
import linear_algebra.affine_space.affine_subspace
import linear_algebra.affine_space.midpoint
/-!
# Torsors of additive normed group actions.
This file defines torsors of additive normed group actions, with a
metric space structure. The motivating case is Euclidean affine
spaces.
-/
noncomputable theory
open_locale nnreal topological_space
open filter
/-- A `normed_add_torsor V P` is a torsor of an additive seminormed group
action by a `seminormed_add_comm_group V` on points `P`. We bundle the pseudometric space
structure and require the distance to be the same as results from the
norm (which in fact implies the distance yields a pseudometric space, but
bundling just the distance and using an instance for the pseudometric space
results in type class problems). -/
class normed_add_torsor (V : out_param $ Type*) (P : Type*)
[out_param $ seminormed_add_comm_group V] [pseudo_metric_space P]
extends add_torsor V P :=
(dist_eq_norm' : ∀ (x y : P), dist x y = ‖(x -ᵥ y : V)‖)
/-- Shortcut instance to help typeclass inference out. -/
@[priority 100]
instance normed_add_torsor.to_add_torsor' {V P : Type*} [normed_add_comm_group V] [metric_space P]
[normed_add_torsor V P] : add_torsor V P := normed_add_torsor.to_add_torsor
variables {α V P W Q : Type*} [seminormed_add_comm_group V] [pseudo_metric_space P]
[normed_add_torsor V P] [normed_add_comm_group W] [metric_space Q] [normed_add_torsor W Q]
/-- A `seminormed_add_comm_group` is a `normed_add_torsor` over itself. -/
@[priority 100]
instance seminormed_add_comm_group.to_normed_add_torsor : normed_add_torsor V V :=
{ dist_eq_norm' := dist_eq_norm }
/-- A nonempty affine subspace of a `normed_add_torsor` is itself a `normed_add_torsor`. -/
@[nolint fails_quickly] -- Because of the add_torsor.nonempty instance.
instance affine_subspace.to_normed_add_torsor {R : Type*} [ring R] [module R V]
(s : affine_subspace R P) [nonempty s] : normed_add_torsor s.direction s :=
{ dist_eq_norm' := λ x y, normed_add_torsor.dist_eq_norm' ↑x ↑y,
..affine_subspace.to_add_torsor s }
include V
section
variables (V W)
/-- The distance equals the norm of subtracting two points. In this
lemma, it is necessary to have `V` as an explicit argument; otherwise
`rw dist_eq_norm_vsub` sometimes doesn't work. -/
lemma dist_eq_norm_vsub (x y : P) : dist x y = ‖x -ᵥ y‖ := normed_add_torsor.dist_eq_norm' x y
/-- The distance equals the norm of subtracting two points. In this
lemma, it is necessary to have `V` as an explicit argument; otherwise
`rw dist_eq_norm_vsub'` sometimes doesn't work. -/
lemma dist_eq_norm_vsub' (x y : P) : dist x y = ‖y -ᵥ x‖ :=
(dist_comm _ _).trans (dist_eq_norm_vsub _ _ _)
end
@[simp] lemma dist_vadd_cancel_left (v : V) (x y : P) :
dist (v +ᵥ x) (v +ᵥ y) = dist x y :=
by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, vadd_vsub_vadd_cancel_left]
@[simp] lemma dist_vadd_cancel_right (v₁ v₂ : V) (x : P) :
dist (v₁ +ᵥ x) (v₂ +ᵥ x) = dist v₁ v₂ :=
by rw [dist_eq_norm_vsub V, dist_eq_norm, vadd_vsub_vadd_cancel_right]
@[simp] lemma dist_vadd_left (v : V) (x : P) : dist (v +ᵥ x) x = ‖v‖ :=
by simp [dist_eq_norm_vsub V _ x]
@[simp] lemma dist_vadd_right (v : V) (x : P) : dist x (v +ᵥ x) = ‖v‖ :=
by rw [dist_comm, dist_vadd_left]
/-- Isometry between the tangent space `V` of a (semi)normed add torsor `P` and `P` given by
addition/subtraction of `x : P`. -/
@[simps] def isometric.vadd_const (x : P) : V ≃ᵢ P :=
{ to_equiv := equiv.vadd_const x,
isometry_to_fun := isometry.of_dist_eq $ λ _ _, dist_vadd_cancel_right _ _ _ }
section
variable (P)
/-- Self-isometry of a (semi)normed add torsor given by addition of a constant vector `x`. -/
@[simps] def isometric.const_vadd (x : V) : P ≃ᵢ P :=
{ to_equiv := equiv.const_vadd P x,
isometry_to_fun := isometry.of_dist_eq $ λ _ _, dist_vadd_cancel_left _ _ _ }
end
@[simp] lemma dist_vsub_cancel_left (x y z : P) : dist (x -ᵥ y) (x -ᵥ z) = dist y z :=
by rw [dist_eq_norm, vsub_sub_vsub_cancel_left, dist_comm, dist_eq_norm_vsub V]
/-- Isometry between the tangent space `V` of a (semi)normed add torsor `P` and `P` given by
subtraction from `x : P`. -/
@[simps] def isometric.const_vsub (x : P) : P ≃ᵢ V :=
{ to_equiv := equiv.const_vsub x,
isometry_to_fun := isometry.of_dist_eq $ λ y z, dist_vsub_cancel_left _ _ _ }
@[simp] lemma dist_vsub_cancel_right (x y z : P) : dist (x -ᵥ z) (y -ᵥ z) = dist x y :=
(isometric.vadd_const z).symm.dist_eq x y
section pointwise
open_locale pointwise
@[simp] lemma vadd_ball (x : V) (y : P) (r : ℝ) :
x +ᵥ metric.ball y r = metric.ball (x +ᵥ y) r :=
(isometric.const_vadd P x).image_ball y r
@[simp] lemma vadd_closed_ball (x : V) (y : P) (r : ℝ) :
x +ᵥ metric.closed_ball y r = metric.closed_ball (x +ᵥ y) r :=
(isometric.const_vadd P x).image_closed_ball y r
@[simp] lemma vadd_sphere (x : V) (y : P) (r : ℝ) :
x +ᵥ metric.sphere y r = metric.sphere (x +ᵥ y) r :=
(isometric.const_vadd P x).image_sphere y r
end pointwise
lemma dist_vadd_vadd_le (v v' : V) (p p' : P) :
dist (v +ᵥ p) (v' +ᵥ p') ≤ dist v v' + dist p p' :=
by simpa using dist_triangle (v +ᵥ p) (v' +ᵥ p) (v' +ᵥ p')
lemma dist_vsub_vsub_le (p₁ p₂ p₃ p₄ : P) :
dist (p₁ -ᵥ p₂) (p₃ -ᵥ p₄) ≤ dist p₁ p₃ + dist p₂ p₄ :=
by { rw [dist_eq_norm, vsub_sub_vsub_comm, dist_eq_norm_vsub V, dist_eq_norm_vsub V],
exact norm_sub_le _ _ }
lemma nndist_vadd_vadd_le (v v' : V) (p p' : P) :
nndist (v +ᵥ p) (v' +ᵥ p') ≤ nndist v v' + nndist p p' :=
by simp only [← nnreal.coe_le_coe, nnreal.coe_add, ← dist_nndist, dist_vadd_vadd_le]
lemma nndist_vsub_vsub_le (p₁ p₂ p₃ p₄ : P) :
nndist (p₁ -ᵥ p₂) (p₃ -ᵥ p₄) ≤ nndist p₁ p₃ + nndist p₂ p₄ :=
by simp only [← nnreal.coe_le_coe, nnreal.coe_add, ← dist_nndist, dist_vsub_vsub_le]
lemma edist_vadd_vadd_le (v v' : V) (p p' : P) :
edist (v +ᵥ p) (v' +ᵥ p') ≤ edist v v' + edist p p' :=
by { simp only [edist_nndist], apply_mod_cast nndist_vadd_vadd_le }
lemma edist_vsub_vsub_le (p₁ p₂ p₃ p₄ : P) :
edist (p₁ -ᵥ p₂) (p₃ -ᵥ p₄) ≤ edist p₁ p₃ + edist p₂ p₄ :=
by { simp only [edist_nndist], apply_mod_cast nndist_vsub_vsub_le }
omit V
/-- The pseudodistance defines a pseudometric space structure on the torsor. This
is not an instance because it depends on `V` to define a `metric_space
P`. -/
def pseudo_metric_space_of_normed_add_comm_group_of_add_torsor (V P : Type*)
[seminormed_add_comm_group V] [add_torsor V P] : pseudo_metric_space P :=
{ dist := λ x y, ‖(x -ᵥ y : V)‖,
dist_self := λ x, by simp,
dist_comm := λ x y, by simp only [←neg_vsub_eq_vsub_rev y x, norm_neg],
dist_triangle := begin
intros x y z,
change ‖x -ᵥ z‖ ≤ ‖x -ᵥ y‖ + ‖y -ᵥ z‖,
rw ←vsub_add_vsub_cancel,
apply norm_add_le
end }
/-- The distance defines a metric space structure on the torsor. This
is not an instance because it depends on `V` to define a `metric_space
P`. -/
def metric_space_of_normed_add_comm_group_of_add_torsor (V P : Type*)
[normed_add_comm_group V] [add_torsor V P] :
metric_space P :=
{ dist := λ x y, ‖(x -ᵥ y : V)‖,
dist_self := λ x, by simp,
eq_of_dist_eq_zero := λ x y h, by simpa using h,
dist_comm := λ x y, by simp only [←neg_vsub_eq_vsub_rev y x, norm_neg],
dist_triangle := begin
intros x y z,
change ‖x -ᵥ z‖ ≤ ‖x -ᵥ y‖ + ‖y -ᵥ z‖,
rw ←vsub_add_vsub_cancel,
apply norm_add_le
end }
include V
lemma lipschitz_with.vadd [pseudo_emetric_space α] {f : α → V} {g : α → P} {Kf Kg : ℝ≥0}
(hf : lipschitz_with Kf f) (hg : lipschitz_with Kg g) :
lipschitz_with (Kf + Kg) (f +ᵥ g) :=
λ x y,
calc edist (f x +ᵥ g x) (f y +ᵥ g y) ≤ edist (f x) (f y) + edist (g x) (g y) :
edist_vadd_vadd_le _ _ _ _
... ≤ Kf * edist x y + Kg * edist x y :
add_le_add (hf x y) (hg x y)
... = (Kf + Kg) * edist x y :
(add_mul _ _ _).symm
lemma lipschitz_with.vsub [pseudo_emetric_space α] {f g : α → P} {Kf Kg : ℝ≥0}
(hf : lipschitz_with Kf f) (hg : lipschitz_with Kg g) :
lipschitz_with (Kf + Kg) (f -ᵥ g) :=
λ x y,
calc edist (f x -ᵥ g x) (f y -ᵥ g y) ≤ edist (f x) (f y) + edist (g x) (g y) :
edist_vsub_vsub_le _ _ _ _
... ≤ Kf * edist x y + Kg * edist x y :
add_le_add (hf x y) (hg x y)
... = (Kf + Kg) * edist x y :
(add_mul _ _ _).symm
lemma uniform_continuous_vadd : uniform_continuous (λ x : V × P, x.1 +ᵥ x.2) :=
(lipschitz_with.prod_fst.vadd lipschitz_with.prod_snd).uniform_continuous
lemma uniform_continuous_vsub : uniform_continuous (λ x : P × P, x.1 -ᵥ x.2) :=
(lipschitz_with.prod_fst.vsub lipschitz_with.prod_snd).uniform_continuous
@[priority 100] instance normed_add_torsor.to_has_continuous_vadd : has_continuous_vadd V P :=
{ continuous_vadd := uniform_continuous_vadd.continuous }
lemma continuous_vsub : continuous (λ x : P × P, x.1 -ᵥ x.2) :=
uniform_continuous_vsub.continuous
lemma filter.tendsto.vsub {l : filter α} {f g : α → P} {x y : P}
(hf : tendsto f l (𝓝 x)) (hg : tendsto g l (𝓝 y)) :
tendsto (f -ᵥ g) l (𝓝 (x -ᵥ y)) :=
(continuous_vsub.tendsto (x, y)).comp (hf.prod_mk_nhds hg)
section
variables [topological_space α]
lemma continuous.vsub {f g : α → P} (hf : continuous f) (hg : continuous g) :
continuous (f -ᵥ g) :=
continuous_vsub.comp (hf.prod_mk hg : _)
lemma continuous_at.vsub {f g : α → P} {x : α} (hf : continuous_at f x) (hg : continuous_at g x) :
continuous_at (f -ᵥ g) x :=
hf.vsub hg
lemma continuous_within_at.vsub {f g : α → P} {x : α} {s : set α}
(hf : continuous_within_at f s x) (hg : continuous_within_at g s x) :
continuous_within_at (f -ᵥ g) s x :=
hf.vsub hg
end
section
variables {R : Type*} [ring R] [topological_space R] [module R V] [has_continuous_smul R V]
lemma filter.tendsto.line_map {l : filter α} {f₁ f₂ : α → P} {g : α → R} {p₁ p₂ : P} {c : R}
(h₁ : tendsto f₁ l (𝓝 p₁)) (h₂ : tendsto f₂ l (𝓝 p₂)) (hg : tendsto g l (𝓝 c)) :
tendsto (λ x, affine_map.line_map (f₁ x) (f₂ x) (g x)) l (𝓝 $ affine_map.line_map p₁ p₂ c) :=
(hg.smul (h₂.vsub h₁)).vadd h₁
lemma filter.tendsto.midpoint [invertible (2:R)] {l : filter α} {f₁ f₂ : α → P} {p₁ p₂ : P}
(h₁ : tendsto f₁ l (𝓝 p₁)) (h₂ : tendsto f₂ l (𝓝 p₂)) :
tendsto (λ x, midpoint R (f₁ x) (f₂ x)) l (𝓝 $ midpoint R p₁ p₂) :=
h₁.line_map h₂ tendsto_const_nhds
end
|
9cf1139df4bb7af0dd2b71370fa965c17d38e7f4
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/category_theory/category/preorder.lean
|
3055687f8ece27f7b9c7d58d17767fdd9b34359f
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,903
|
lean
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Stephen Morgan, Scott Morrison, Johannes Hölzl, Reid Barton
-/
import category_theory.category.Cat
import category_theory.category.default
import category_theory.opposites
import order.category.Preorder
/-!
# Preorders as categories
We install a category instance on any preorder. This is not to be confused with the category _of_
preorders, defined in `order/category/Preorder`.
We show that monotone functions between preorders correspond to functors of the associated
categories. Furthermore, galois connections correspond to adjoint functors.
## Main definitions
* `hom_of_le` and `le_of_hom` provide translations between inequalities in the preorder, and
morphisms in the associated category.
* `monotone.functor` is the functor associated to a monotone function.
* `galois_connection.adjunction` is the adjunction associated to a galois connection.
* `Preorder_to_Cat` is the functor embedding the category of preorders into `Cat`.
-/
universes u v
namespace preorder
open category_theory
/--
The category structure coming from a preorder. There is a morphism `X ⟶ Y` if and only if `X ≤ Y`.
Because we don't allow morphisms to live in `Prop`,
we have to define `X ⟶ Y` as `ulift (plift (X ≤ Y))`.
See `category_theory.hom_of_le` and `category_theory.le_of_hom`.
See https://stacks.math.columbia.edu/tag/00D3.
-/
@[priority 100] -- see Note [lower instance priority]
instance small_category (α : Type u) [preorder α] : small_category α :=
{ hom := λ U V, ulift (plift (U ≤ V)),
id := λ X, ⟨ ⟨ le_refl X ⟩ ⟩,
comp := λ X Y Z f g, ⟨ ⟨ le_trans _ _ _ f.down.down g.down.down ⟩ ⟩ }
end preorder
namespace category_theory
open opposite
variables {X : Type u} [preorder X]
/--
Express an inequality as a morphism in the corresponding preorder category.
-/
def hom_of_le {x y : X} (h : x ≤ y) : x ⟶ y := ulift.up (plift.up h)
alias hom_of_le ← has_le.le.hom
@[simp] lemma hom_of_le_refl {x : X} : (le_refl x).hom = 𝟙 x := rfl
@[simp] lemma hom_of_le_comp {x y z : X} (h : x ≤ y) (k : y ≤ z) :
h.hom ≫ k.hom = (h.trans k).hom := rfl
/--
Extract the underlying inequality from a morphism in a preorder category.
-/
lemma le_of_hom {x y : X} (h : x ⟶ y) : x ≤ y := h.down.down
alias le_of_hom ← quiver.hom.le
@[simp] lemma le_of_hom_hom_of_le {x y : X} (h : x ≤ y) : h.hom.le = h := rfl
@[simp] lemma hom_of_le_le_of_hom {x y : X} (h : x ⟶ y) : h.le.hom = h :=
by { cases h, cases h, refl, }
/-- Construct a morphism in the opposite of a preorder category from an inequality. -/
def op_hom_of_le {x y : Xᵒᵖ} (h : unop x ≤ unop y) : y ⟶ x := h.hom.op
lemma le_of_op_hom {x y : Xᵒᵖ} (h : x ⟶ y) : unop y ≤ unop x := h.unop.le
end category_theory
section
variables {X : Type u} {Y : Type v} [preorder X] [preorder Y]
/--
A monotone function between preorders induces a functor between the associated categories.
-/
def monotone.functor {f : X → Y} (h : monotone f) : X ⥤ Y :=
{ obj := f,
map := λ x₁ x₂ g, (h g.le).hom }
@[simp] lemma monotone.functor_obj {f : X → Y} (h : monotone f) : h.functor.obj = f := rfl
/--
A galois connection between preorders induces an adjunction between the associated categories.
-/
def galois_connection.adjunction {l : X → Y} {u : Y → X} (gc : galois_connection l u) :
gc.monotone_l.functor ⊣ gc.monotone_u.functor :=
category_theory.adjunction.mk_of_hom_equiv
{ hom_equiv := λ X Y, ⟨λ f, (gc.le_u f.le).hom, λ f, (gc.l_le f.le).hom, by tidy, by tidy⟩ }
end
namespace category_theory
section preorder
variables {X : Type u} {Y : Type v} [preorder X] [preorder Y]
/--
A functor between preorder categories is monotone.
-/
@[mono] lemma functor.monotone (f : X ⥤ Y) : monotone f.obj :=
λ x y hxy, (f.map hxy.hom).le
/--
An adjunction between preorder categories induces a galois connection.
-/
lemma adjunction.gc {L : X ⥤ Y} {R : Y ⥤ X} (adj : L ⊣ R) :
galois_connection L.obj R.obj :=
λ x y, ⟨λ h, ((adj.hom_equiv x y).to_fun h.hom).le, λ h, ((adj.hom_equiv x y).inv_fun h.hom).le⟩
/--
The embedding of `Preorder` into `Cat`.
-/
@[simps]
def Preorder_to_Cat : Preorder.{u} ⥤ Cat :=
{ obj := λ X, Cat.of X.1,
map := λ X Y f, f.monotone.functor,
map_id' := λ X, begin apply category_theory.functor.ext, tidy end,
map_comp' := λ X Y Z f g, begin apply category_theory.functor.ext, tidy end }
instance : faithful Preorder_to_Cat.{u} :=
{ map_injective' := λ X Y f g h, begin ext x, exact functor.congr_obj h x end }
instance : full Preorder_to_Cat.{u} :=
{ preimage := λ X Y f, ⟨f.obj, f.monotone⟩,
witness' := λ X Y f, begin apply category_theory.functor.ext, tidy end }
end preorder
section partial_order
variables {X : Type u} {Y : Type v} [partial_order X] [partial_order Y]
lemma iso.to_eq {x y : X} (f : x ≅ y) : x = y := le_antisymm f.hom.le f.inv.le
/--
A categorical equivalence between partial orders is just an order isomorphism.
-/
def equivalence.to_order_iso (e : X ≌ Y) : X ≃o Y :=
{ to_fun := e.functor.obj,
inv_fun := e.inverse.obj,
left_inv := λ a, (e.unit_iso.app a).to_eq.symm,
right_inv := λ b, (e.counit_iso.app b).to_eq,
map_rel_iff' := λ a a',
⟨λ h, ((equivalence.unit e).app a ≫ e.inverse.map h.hom ≫ (equivalence.unit_inv e).app a').le,
λ (h : a ≤ a'), (e.functor.map h.hom).le⟩, }
-- `@[simps]` on `equivalence.to_order_iso` produces lemmas that fail the `simp_nf` linter,
-- so we provide them by hand:
@[simp]
lemma equivalence.to_order_iso_apply (e : X ≌ Y) (x : X) :
e.to_order_iso x = e.functor.obj x := rfl
@[simp]
lemma equivalence.to_order_iso_symm_apply (e : X ≌ Y) (y : Y) :
e.to_order_iso.symm y = e.inverse.obj y := rfl
end partial_order
end category_theory
|
e2ff6718c254f3b4690aaedad6a56caeeafd583e
|
1a61aba1b67cddccce19532a9596efe44be4285f
|
/hott/core.hlean
|
dfaa9b191823cd23bf08048f0dc4aa4b66c2be63
|
[
"Apache-2.0"
] |
permissive
|
eigengrau/lean
|
07986a0f2548688c13ba36231f6cdbee82abf4c6
|
f8a773be1112015e2d232661ce616d23f12874d0
|
refs/heads/master
| 1,610,939,198,566
| 1,441,352,386,000
| 1,441,352,494,000
| 41,903,576
| 0
| 0
| null | 1,441,352,210,000
| 1,441,352,210,000
| null |
UTF-8
|
Lean
| false
| false
| 255
|
hlean
|
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
The core of the HoTT library
-/
import types
import cubical
import hit.circle
import algebra.hott
|
63b13f086c277ee7b07cafb3dd74dbc625df1532
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/analysis/normed_space/affine_isometry.lean
|
859a7d258b3b726fba8cbe863935e5bc65611b66
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 21,954
|
lean
|
/-
Copyright (c) 2021 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.normed_space.add_torsor
import analysis.normed_space.linear_isometry
/-!
# Affine isometries
In this file we define `affine_isometry 𝕜 P P₂` to be an affine isometric embedding of normed
add-torsors `P` into `P₂` over normed `𝕜`-spaces and `affine_isometry_equiv` to be an affine
isometric equivalence between `P` and `P₂`.
We also prove basic lemmas and provide convenience constructors. The choice of these lemmas and
constructors is closely modelled on those for the `linear_isometry` and `affine_map` theories.
Since many elementary properties don't require `∥x∥ = 0 → x = 0` we initially set up the theory for
`semi_normed_group` and specialize to `normed_group` only when needed.
## Notation
We introduce the notation `P →ᵃⁱ[𝕜] P₂` for `affine_isometry 𝕜 P P₂`, and `P ≃ᵃⁱ[𝕜] P₂` for
`affine_isometry_equiv 𝕜 P P₂`. In contrast with the notation `→ₗᵢ` for linear isometries, `≃ᵢ`
for isometric equivalences, etc., the "i" here is a superscript. This is for aesthetic reasons to
match the superscript "a" (note that in mathlib `→ᵃ` is an affine map, since `→ₐ` has been taken by
algebra-homomorphisms.)
-/
open function set
variables (𝕜 : Type*) {V V₁ V₂ V₃ V₄ : Type*} {P₁ : Type*} (P P₂ : Type*) {P₃ P₄ : Type*}
[normed_field 𝕜]
[semi_normed_group V] [semi_normed_group V₁] [semi_normed_group V₂] [semi_normed_group V₃]
[semi_normed_group V₄]
[normed_space 𝕜 V] [normed_space 𝕜 V₁] [normed_space 𝕜 V₂] [normed_space 𝕜 V₃]
[normed_space 𝕜 V₄]
[pseudo_metric_space P] [metric_space P₁] [pseudo_metric_space P₂] [pseudo_metric_space P₃]
[pseudo_metric_space P₄]
[normed_add_torsor V P] [normed_add_torsor V₁ P₁] [normed_add_torsor V₂ P₂]
[normed_add_torsor V₃ P₃] [normed_add_torsor V₄ P₄]
include V V₂
/-- An `𝕜`-affine isometric embedding of one normed add-torsor over a normed `𝕜`-space into
another. -/
structure affine_isometry extends P →ᵃ[𝕜] P₂ :=
(norm_map : ∀ x : V, ∥linear x∥ = ∥x∥)
omit V V₂
variables {𝕜 P P₂}
-- `→ᵃᵢ` would be more consistent with the linear isometry notation, but it is uglier
notation P ` →ᵃⁱ[`:25 𝕜:25 `] `:0 P₂:0 := affine_isometry 𝕜 P P₂
namespace affine_isometry
variables (f : P →ᵃⁱ[𝕜] P₂)
/-- The underlying linear map of an affine isometry is in fact a linear isometry. -/
protected def linear_isometry : V →ₗᵢ[𝕜] V₂ :=
{ norm_map' := f.norm_map,
.. f.linear }
@[simp] lemma linear_eq_linear_isometry : f.linear = f.linear_isometry.to_linear_map :=
by { ext, refl }
include V V₂
instance : has_coe_to_fun (P →ᵃⁱ[𝕜] P₂) (λ _, P → P₂) := ⟨λ f, f.to_fun⟩
omit V V₂
@[simp] lemma coe_to_affine_map : ⇑f.to_affine_map = f := rfl
include V V₂
lemma to_affine_map_injective : injective (to_affine_map : (P →ᵃⁱ[𝕜] P₂) → (P →ᵃ[𝕜] P₂))
| ⟨f, _⟩ ⟨g, _⟩ rfl := rfl
lemma coe_fn_injective : @injective (P →ᵃⁱ[𝕜] P₂) (P → P₂) coe_fn :=
affine_map.coe_fn_injective.comp to_affine_map_injective
@[ext] lemma ext {f g : P →ᵃⁱ[𝕜] P₂} (h : ∀ x, f x = g x) : f = g :=
coe_fn_injective $ funext h
omit V V₂
end affine_isometry
namespace linear_isometry
variables (f : V →ₗᵢ[𝕜] V₂)
/-- Reinterpret a linear isometry as an affine isometry. -/
def to_affine_isometry : V →ᵃⁱ[𝕜] V₂ :=
{ norm_map := f.norm_map,
.. f.to_linear_map.to_affine_map }
@[simp] lemma coe_to_affine_isometry : ⇑(f.to_affine_isometry : V →ᵃⁱ[𝕜] V₂) = f := rfl
@[simp] lemma to_affine_isometry_linear_isometry : f.to_affine_isometry.linear_isometry = f :=
by { ext, refl }
-- somewhat arbitrary choice of simp direction
@[simp] lemma to_affine_isometry_to_affine_map :
f.to_affine_isometry.to_affine_map = f.to_linear_map.to_affine_map :=
rfl
end linear_isometry
namespace affine_isometry
/-- We use `f₁` when we need the domain to be a `normed_space`. -/
variables (f : P →ᵃⁱ[𝕜] P₂) (f₁ : P₁ →ᵃⁱ[𝕜] P₂)
@[simp] lemma map_vadd (p : P) (v : V) : f (v +ᵥ p) = f.linear_isometry v +ᵥ f p :=
f.to_affine_map.map_vadd p v
@[simp] lemma map_vsub (p1 p2 : P) : f.linear_isometry (p1 -ᵥ p2) = f p1 -ᵥ f p2 :=
f.to_affine_map.linear_map_vsub p1 p2
@[simp] lemma dist_map (x y : P) : dist (f x) (f y) = dist x y :=
by rw [dist_eq_norm_vsub V₂, dist_eq_norm_vsub V, ← map_vsub, f.linear_isometry.norm_map]
@[simp] lemma nndist_map (x y : P) : nndist (f x) (f y) = nndist x y := by simp [nndist_dist]
@[simp] lemma edist_map (x y : P) : edist (f x) (f y) = edist x y := by simp [edist_dist]
protected lemma isometry : isometry f := f.edist_map
protected lemma injective : injective f₁ := f₁.isometry.injective
@[simp] lemma map_eq_iff {x y : P₁} : f₁ x = f₁ y ↔ x = y := f₁.injective.eq_iff
lemma map_ne {x y : P₁} (h : x ≠ y) : f₁ x ≠ f₁ y := f₁.injective.ne h
protected lemma lipschitz : lipschitz_with 1 f := f.isometry.lipschitz
protected lemma antilipschitz : antilipschitz_with 1 f := f.isometry.antilipschitz
@[continuity] protected lemma continuous : continuous f := f.isometry.continuous
lemma ediam_image (s : set P) : emetric.diam (f '' s) = emetric.diam s :=
f.isometry.ediam_image s
lemma ediam_range : emetric.diam (range f) = emetric.diam (univ : set P) :=
f.isometry.ediam_range
lemma diam_image (s : set P) : metric.diam (f '' s) = metric.diam s :=
f.isometry.diam_image s
lemma diam_range : metric.diam (range f) = metric.diam (univ : set P) :=
f.isometry.diam_range
@[simp] lemma comp_continuous_iff {α : Type*} [topological_space α] {g : α → P} :
continuous (f ∘ g) ↔ continuous g :=
f.isometry.comp_continuous_iff
include V
/-- The identity affine isometry. -/
def id : P →ᵃⁱ[𝕜] P := ⟨affine_map.id 𝕜 P, λ x, rfl⟩
@[simp] lemma coe_id : ⇑(id : P →ᵃⁱ[𝕜] P) = _root_.id := rfl
@[simp] lemma id_apply (x : P) : (affine_isometry.id : P →ᵃⁱ[𝕜] P) x = x := rfl
@[simp] lemma id_to_affine_map : (id.to_affine_map : P →ᵃ[𝕜] P) = affine_map.id 𝕜 P := rfl
instance : inhabited (P →ᵃⁱ[𝕜] P) := ⟨id⟩
include V₂ V₃
/-- Composition of affine isometries. -/
def comp (g : P₂ →ᵃⁱ[𝕜] P₃) (f : P →ᵃⁱ[𝕜] P₂) : P →ᵃⁱ[𝕜] P₃ :=
⟨g.to_affine_map.comp f.to_affine_map, λ x, (g.norm_map _).trans (f.norm_map _)⟩
@[simp] lemma coe_comp (g : P₂ →ᵃⁱ[𝕜] P₃) (f : P →ᵃⁱ[𝕜] P₂) :
⇑(g.comp f) = g ∘ f :=
rfl
omit V V₂ V₃
@[simp] lemma id_comp : (id : P₂ →ᵃⁱ[𝕜] P₂).comp f = f := ext $ λ x, rfl
@[simp] lemma comp_id : f.comp id = f := ext $ λ x, rfl
include V V₂ V₃ V₄
lemma comp_assoc (f : P₃ →ᵃⁱ[𝕜] P₄) (g : P₂ →ᵃⁱ[𝕜] P₃) (h : P →ᵃⁱ[𝕜] P₂) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
omit V₂ V₃ V₄
instance : monoid (P →ᵃⁱ[𝕜] P) :=
{ one := id,
mul := comp,
mul_assoc := comp_assoc,
one_mul := id_comp,
mul_one := comp_id }
@[simp] lemma coe_one : ⇑(1 : P →ᵃⁱ[𝕜] P) = _root_.id := rfl
@[simp] lemma coe_mul (f g : P →ᵃⁱ[𝕜] P) : ⇑(f * g) = f ∘ g := rfl
end affine_isometry
-- remark: by analogy with the `linear_isometry` file from which this is adapted, there should
-- follow here a section defining an "inclusion" affine isometry from `p : affine_subspace 𝕜 P`
-- into `P`; we omit this for now
variables (𝕜 P P₂)
include V V₂
/-- A affine isometric equivalence between two normed vector spaces. -/
structure affine_isometry_equiv extends P ≃ᵃ[𝕜] P₂ :=
(norm_map : ∀ x, ∥linear x∥ = ∥x∥)
variables {𝕜 P P₂}
omit V V₂
-- `≃ᵃᵢ` would be more consistent with the linear isometry equiv notation, but it is uglier
notation P ` ≃ᵃⁱ[`:25 𝕜:25 `] `:0 P₂:0 := affine_isometry_equiv 𝕜 P P₂
namespace affine_isometry_equiv
variables (e : P ≃ᵃⁱ[𝕜] P₂)
/-- The underlying linear equiv of an affine isometry equiv is in fact a linear isometry equiv. -/
protected def linear_isometry_equiv : V ≃ₗᵢ[𝕜] V₂ :=
{ norm_map' := e.norm_map,
.. e.linear }
@[simp] lemma linear_eq_linear_isometry : e.linear = e.linear_isometry_equiv.to_linear_equiv :=
by { ext, refl }
include V V₂
instance : has_coe_to_fun (P ≃ᵃⁱ[𝕜] P₂) (λ _, P → P₂) := ⟨λ f, f.to_fun⟩
@[simp] lemma coe_mk (e : P ≃ᵃ[𝕜] P₂) (he : ∀ x, ∥e.linear x∥ = ∥x∥) :
⇑(mk e he) = e :=
rfl
@[simp] lemma coe_to_affine_equiv (e : P ≃ᵃⁱ[𝕜] P₂) : ⇑e.to_affine_equiv = e := rfl
lemma to_affine_equiv_injective : injective (to_affine_equiv : (P ≃ᵃⁱ[𝕜] P₂) → (P ≃ᵃ[𝕜] P₂))
| ⟨e, _⟩ ⟨_, _⟩ rfl := rfl
@[ext] lemma ext {e e' : P ≃ᵃⁱ[𝕜] P₂} (h : ∀ x, e x = e' x) : e = e' :=
to_affine_equiv_injective $ affine_equiv.ext h
omit V V₂
/-- Reinterpret a `affine_isometry_equiv` as a `affine_isometry`. -/
def to_affine_isometry : P →ᵃⁱ[𝕜] P₂ := ⟨e.1.to_affine_map, e.2⟩
@[simp] lemma coe_to_affine_isometry : ⇑e.to_affine_isometry = e := rfl
/-- Construct an affine isometry equivalence by verifying the relation between the map and its
linear part at one base point. Namely, this function takes a map `e : P₁ → P₂`, a linear isometry
equivalence `e' : V₁ ≃ᵢₗ[k] V₂`, and a point `p` such that for any other point `p'` we have
`e p' = e' (p' -ᵥ p) +ᵥ e p`. -/
def mk' (e : P₁ → P₂) (e' : V₁ ≃ₗᵢ[𝕜] V₂) (p : P₁) (h : ∀ p' : P₁, e p' = e' (p' -ᵥ p) +ᵥ e p) :
P₁ ≃ᵃⁱ[𝕜] P₂ :=
{ norm_map := e'.norm_map,
.. affine_equiv.mk' e e'.to_linear_equiv p h }
@[simp] lemma coe_mk' (e : P₁ → P₂) (e' : V₁ ≃ₗᵢ[𝕜] V₂) (p h) : ⇑(mk' e e' p h) = e := rfl
@[simp] lemma linear_isometry_equiv_mk' (e : P₁ → P₂) (e' : V₁ ≃ₗᵢ[𝕜] V₂) (p h) :
(mk' e e' p h).linear_isometry_equiv = e' := by { ext, refl }
end affine_isometry_equiv
namespace linear_isometry_equiv
variables (e : V ≃ₗᵢ[𝕜] V₂)
/-- Reinterpret a linear isometry equiv as an affine isometry equiv. -/
def to_affine_isometry_equiv : V ≃ᵃⁱ[𝕜] V₂ :=
{ norm_map := e.norm_map,
.. e.to_linear_equiv.to_affine_equiv }
@[simp] lemma coe_to_affine_isometry_equiv : ⇑(e.to_affine_isometry_equiv : V ≃ᵃⁱ[𝕜] V₂) = e := rfl
@[simp] lemma to_affine_isometry_equiv_linear_isometry_equiv :
e.to_affine_isometry_equiv.linear_isometry_equiv = e :=
by { ext, refl }
-- somewhat arbitrary choice of simp direction
@[simp] lemma to_affine_isometry_equiv_to_affine_equiv :
e.to_affine_isometry_equiv.to_affine_equiv = e.to_linear_equiv.to_affine_equiv :=
rfl
-- somewhat arbitrary choice of simp direction
@[simp] lemma to_affine_isometry_equiv_to_affine_isometry :
e.to_affine_isometry_equiv.to_affine_isometry = e.to_linear_isometry.to_affine_isometry :=
rfl
end linear_isometry_equiv
namespace affine_isometry_equiv
variables (e : P ≃ᵃⁱ[𝕜] P₂)
protected lemma isometry : isometry e := e.to_affine_isometry.isometry
/-- Reinterpret a `affine_isometry_equiv` as an `isometric`. -/
def to_isometric : P ≃ᵢ P₂ := ⟨e.to_affine_equiv.to_equiv, e.isometry⟩
@[simp] lemma coe_to_isometric : ⇑e.to_isometric = e := rfl
include V V₂
lemma range_eq_univ (e : P ≃ᵃⁱ[𝕜] P₂) : set.range e = set.univ :=
by { rw ← coe_to_isometric, exact isometric.range_eq_univ _, }
omit V V₂
/-- Reinterpret a `affine_isometry_equiv` as an `homeomorph`. -/
def to_homeomorph : P ≃ₜ P₂ := e.to_isometric.to_homeomorph
@[simp] lemma coe_to_homeomorph : ⇑e.to_homeomorph = e := rfl
protected lemma continuous : continuous e := e.isometry.continuous
protected lemma continuous_at {x} : continuous_at e x := e.continuous.continuous_at
protected lemma continuous_on {s} : continuous_on e s := e.continuous.continuous_on
protected lemma continuous_within_at {s x} : continuous_within_at e s x :=
e.continuous.continuous_within_at
variables (𝕜 P)
include V
/-- Identity map as a `affine_isometry_equiv`. -/
def refl : P ≃ᵃⁱ[𝕜] P := ⟨affine_equiv.refl 𝕜 P, λ x, rfl⟩
variables {𝕜 P}
instance : inhabited (P ≃ᵃⁱ[𝕜] P) := ⟨refl 𝕜 P⟩
@[simp] lemma coe_refl : ⇑(refl 𝕜 P) = id := rfl
@[simp] lemma to_affine_equiv_refl : (refl 𝕜 P).to_affine_equiv = affine_equiv.refl 𝕜 P := rfl
@[simp] lemma to_isometric_refl : (refl 𝕜 P).to_isometric = isometric.refl P := rfl
@[simp] lemma to_homeomorph_refl : (refl 𝕜 P).to_homeomorph = homeomorph.refl P := rfl
omit V
/-- The inverse `affine_isometry_equiv`. -/
def symm : P₂ ≃ᵃⁱ[𝕜] P :=
{ norm_map := e.linear_isometry_equiv.symm.norm_map,
.. e.to_affine_equiv.symm }
@[simp] lemma apply_symm_apply (x : P₂) : e (e.symm x) = x := e.to_affine_equiv.apply_symm_apply x
@[simp] lemma symm_apply_apply (x : P) : e.symm (e x) = x := e.to_affine_equiv.symm_apply_apply x
@[simp] lemma symm_symm : e.symm.symm = e := ext $ λ x, rfl
@[simp] lemma to_affine_equiv_symm : e.to_affine_equiv.symm = e.symm.to_affine_equiv := rfl
@[simp] lemma to_isometric_symm : e.to_isometric.symm = e.symm.to_isometric := rfl
@[simp] lemma to_homeomorph_symm : e.to_homeomorph.symm = e.symm.to_homeomorph := rfl
include V₃
/-- Composition of `affine_isometry_equiv`s as a `affine_isometry_equiv`. -/
def trans (e' : P₂ ≃ᵃⁱ[𝕜] P₃) : P ≃ᵃⁱ[𝕜] P₃ :=
⟨e.to_affine_equiv.trans e'.to_affine_equiv, λ x, (e'.norm_map _).trans (e.norm_map _)⟩
include V V₂
@[simp] lemma coe_trans (e₁ : P ≃ᵃⁱ[𝕜] P₂) (e₂ : P₂ ≃ᵃⁱ[𝕜] P₃) : ⇑(e₁.trans e₂) = e₂ ∘ e₁ := rfl
omit V V₂ V₃
@[simp] lemma trans_refl : e.trans (refl 𝕜 P₂) = e := ext $ λ x, rfl
@[simp] lemma refl_trans : (refl 𝕜 P).trans e = e := ext $ λ x, rfl
@[simp] lemma self_trans_symm : e.trans e.symm = refl 𝕜 P := ext e.symm_apply_apply
@[simp] lemma symm_trans_self : e.symm.trans e = refl 𝕜 P₂ := ext e.apply_symm_apply
include V V₂ V₃
@[simp] lemma coe_symm_trans (e₁ : P ≃ᵃⁱ[𝕜] P₂) (e₂ : P₂ ≃ᵃⁱ[𝕜] P₃) :
⇑(e₁.trans e₂).symm = e₁.symm ∘ e₂.symm :=
rfl
include V₄
lemma trans_assoc (ePP₂ : P ≃ᵃⁱ[𝕜] P₂) (eP₂G : P₂ ≃ᵃⁱ[𝕜] P₃) (eGG' : P₃ ≃ᵃⁱ[𝕜] P₄) :
ePP₂.trans (eP₂G.trans eGG') = (ePP₂.trans eP₂G).trans eGG' :=
rfl
omit V₂ V₃ V₄
/-- The group of affine isometries of a `normed_add_torsor`, `P`. -/
instance : group (P ≃ᵃⁱ[𝕜] P) :=
{ mul := λ e₁ e₂, e₂.trans e₁,
one := refl _ _,
inv := symm,
one_mul := trans_refl,
mul_one := refl_trans,
mul_assoc := λ _ _ _, trans_assoc _ _ _,
mul_left_inv := self_trans_symm }
@[simp] lemma coe_one : ⇑(1 : P ≃ᵃⁱ[𝕜] P) = id := rfl
@[simp] lemma coe_mul (e e' : P ≃ᵃⁱ[𝕜] P) : ⇑(e * e') = e ∘ e' := rfl
@[simp] lemma coe_inv (e : P ≃ᵃⁱ[𝕜] P) : ⇑(e⁻¹) = e.symm := rfl
omit V
@[simp] lemma map_vadd (p : P) (v : V) : e (v +ᵥ p) = e.linear_isometry_equiv v +ᵥ e p :=
e.to_affine_isometry.map_vadd p v
@[simp] lemma map_vsub (p1 p2 : P) : e.linear_isometry_equiv (p1 -ᵥ p2) = e p1 -ᵥ e p2 :=
e.to_affine_isometry.map_vsub p1 p2
@[simp] lemma dist_map (x y : P) : dist (e x) (e y) = dist x y :=
e.to_affine_isometry.dist_map x y
@[simp] lemma edist_map (x y : P) : edist (e x) (e y) = edist x y :=
e.to_affine_isometry.edist_map x y
protected lemma bijective : bijective e := e.1.bijective
protected lemma injective : injective e := e.1.injective
protected lemma surjective : surjective e := e.1.surjective
@[simp] lemma map_eq_iff {x y : P} : e x = e y ↔ x = y := e.injective.eq_iff
lemma map_ne {x y : P} (h : x ≠ y) : e x ≠ e y := e.injective.ne h
protected lemma lipschitz : lipschitz_with 1 e := e.isometry.lipschitz
protected lemma antilipschitz : antilipschitz_with 1 e := e.isometry.antilipschitz
@[simp] lemma ediam_image (s : set P) : emetric.diam (e '' s) = emetric.diam s :=
e.isometry.ediam_image s
@[simp] lemma diam_image (s : set P) : metric.diam (e '' s) = metric.diam s :=
e.isometry.diam_image s
variables {α : Type*} [topological_space α]
@[simp] lemma comp_continuous_on_iff {f : α → P} {s : set α} :
continuous_on (e ∘ f) s ↔ continuous_on f s :=
e.isometry.comp_continuous_on_iff
@[simp] lemma comp_continuous_iff {f : α → P} :
continuous (e ∘ f) ↔ continuous f :=
e.isometry.comp_continuous_iff
section constructions
variables (𝕜)
/-- The map `v ↦ v +ᵥ p` as an affine isometric equivalence between `V` and `P`. -/
def vadd_const (p : P) : V ≃ᵃⁱ[𝕜] P :=
{ norm_map := λ x, rfl,
.. affine_equiv.vadd_const 𝕜 p }
variables {𝕜}
include V
@[simp] lemma coe_vadd_const (p : P) : ⇑(vadd_const 𝕜 p) = λ v, v +ᵥ p := rfl
@[simp] lemma coe_vadd_const_symm (p : P) : ⇑(vadd_const 𝕜 p).symm = λ p', p' -ᵥ p :=
rfl
@[simp] lemma vadd_const_to_affine_equiv (p : P) :
(vadd_const 𝕜 p).to_affine_equiv = affine_equiv.vadd_const 𝕜 p :=
rfl
omit V
variables (𝕜)
/-- `p' ↦ p -ᵥ p'` as an affine isometric equivalence. -/
def const_vsub (p : P) : P ≃ᵃⁱ[𝕜] V :=
{ norm_map := norm_neg,
.. affine_equiv.const_vsub 𝕜 p }
variables {𝕜}
include V
@[simp] lemma coe_const_vsub (p : P) : ⇑(const_vsub 𝕜 p) = (-ᵥ) p := rfl
@[simp] lemma symm_const_vsub (p : P) :
(const_vsub 𝕜 p).symm
= (linear_isometry_equiv.neg 𝕜).to_affine_isometry_equiv.trans (vadd_const 𝕜 p) :=
by { ext, refl }
omit V
variables (𝕜 P)
/-- Translation by `v` (that is, the map `p ↦ v +ᵥ p`) as an affine isometric automorphism of `P`.
-/
def const_vadd (v : V) : P ≃ᵃⁱ[𝕜] P :=
{ norm_map := λ x, rfl,
.. affine_equiv.const_vadd 𝕜 P v }
variables {𝕜 P}
@[simp] lemma coe_const_vadd (v : V) : ⇑(const_vadd 𝕜 P v : P ≃ᵃⁱ[𝕜] P) = (+ᵥ) v := rfl
@[simp] lemma const_vadd_zero : const_vadd 𝕜 P (0:V) = refl 𝕜 P := ext $ zero_vadd V
include 𝕜 V
/-- The map `g` from `V` to `V₂` corresponding to a map `f` from `P` to `P₂`, at a base point `p`,
is an isometry if `f` is one. -/
lemma vadd_vsub {f : P → P₂} (hf : isometry f) {p : P} {g : V → V₂}
(hg : ∀ v, g v = f (v +ᵥ p) -ᵥ f p) : isometry g :=
begin
convert (vadd_const 𝕜 (f p)).symm.isometry.comp (hf.comp (vadd_const 𝕜 p).isometry),
exact funext hg
end
omit 𝕜
variables (𝕜)
/-- Point reflection in `x` as an affine isometric automorphism. -/
def point_reflection (x : P) : P ≃ᵃⁱ[𝕜] P := (const_vsub 𝕜 x).trans (vadd_const 𝕜 x)
variables {𝕜}
lemma point_reflection_apply (x y : P) : (point_reflection 𝕜 x) y = x -ᵥ y +ᵥ x := rfl
@[simp] lemma point_reflection_to_affine_equiv (x : P) :
(point_reflection 𝕜 x).to_affine_equiv = affine_equiv.point_reflection 𝕜 x := rfl
@[simp] lemma point_reflection_self (x : P) : point_reflection 𝕜 x x = x :=
affine_equiv.point_reflection_self 𝕜 x
lemma point_reflection_involutive (x : P) : function.involutive (point_reflection 𝕜 x) :=
equiv.point_reflection_involutive x
@[simp] lemma point_reflection_symm (x : P) : (point_reflection 𝕜 x).symm = point_reflection 𝕜 x :=
to_affine_equiv_injective $ affine_equiv.point_reflection_symm 𝕜 x
@[simp] lemma dist_point_reflection_fixed (x y : P) :
dist (point_reflection 𝕜 x y) x = dist y x :=
by rw [← (point_reflection 𝕜 x).dist_map y x, point_reflection_self]
lemma dist_point_reflection_self' (x y : P) :
dist (point_reflection 𝕜 x y) y = ∥bit0 (x -ᵥ y)∥ :=
by rw [point_reflection_apply, dist_eq_norm_vsub V, vadd_vsub_assoc, bit0]
lemma dist_point_reflection_self (x y : P) :
dist (point_reflection 𝕜 x y) y = ∥(2:𝕜)∥ * dist x y :=
by rw [dist_point_reflection_self', ← two_smul' 𝕜 (x -ᵥ y), norm_smul, ← dist_eq_norm_vsub V]
lemma point_reflection_fixed_iff [invertible (2:𝕜)] {x y : P} :
point_reflection 𝕜 x y = y ↔ y = x :=
affine_equiv.point_reflection_fixed_iff_of_module 𝕜
variables [normed_space ℝ V]
lemma dist_point_reflection_self_real (x y : P) :
dist (point_reflection ℝ x y) y = 2 * dist x y :=
by { rw [dist_point_reflection_self, real.norm_two] }
@[simp] lemma point_reflection_midpoint_left (x y : P) :
point_reflection ℝ (midpoint ℝ x y) x = y :=
affine_equiv.point_reflection_midpoint_left x y
@[simp] lemma point_reflection_midpoint_right (x y : P) :
point_reflection ℝ (midpoint ℝ x y) y = x :=
affine_equiv.point_reflection_midpoint_right x y
end constructions
end affine_isometry_equiv
include V V₂
/-- If `f` is an affine map, then its linear part is continuous iff `f` is continuous. -/
lemma affine_map.continuous_linear_iff {f : P →ᵃ[𝕜] P₂} :
continuous f.linear ↔ continuous f :=
begin
inhabit P,
have : (f.linear : V → V₂) =
(affine_isometry_equiv.vadd_const 𝕜 $ f default).to_homeomorph.symm ∘ f ∘
(affine_isometry_equiv.vadd_const 𝕜 default).to_homeomorph,
{ ext v, simp },
rw this,
simp only [homeomorph.comp_continuous_iff, homeomorph.comp_continuous_iff'],
end
/-- If `f` is an affine map, then its linear part is an open map iff `f` is an open map. -/
lemma affine_map.is_open_map_linear_iff {f : P →ᵃ[𝕜] P₂} :
is_open_map f.linear ↔ is_open_map f :=
begin
inhabit P,
have : (f.linear : V → V₂) =
(affine_isometry_equiv.vadd_const 𝕜 $ f default).to_homeomorph.symm ∘ f ∘
(affine_isometry_equiv.vadd_const 𝕜 default).to_homeomorph,
{ ext v, simp },
rw this,
simp only [homeomorph.comp_is_open_map_iff, homeomorph.comp_is_open_map_iff'],
end
|
ec701e94e3e2cd3fcc117c9c27dd4ef9fbbc0483
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/src/Lean/Compiler/ImplementedByAttr.lean
|
cc017e309d35eca9d8da3ed32243019745bc6fb0
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,052
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Attributes
import Lean.Declaration
import Lean.MonadEnv
import Lean.Elab.InfoTree
namespace Lean.Compiler
builtin_initialize implementedByAttr : ParametricAttribute Name ← registerParametricAttribute {
name := `implementedBy
descr := "name of the Lean (probably unsafe) function that implements opaque constant"
getParam := fun declName stx => do
let decl ← getConstInfo declName
let fnNameStx ← Attribute.Builtin.getIdent stx
let fnName ← Elab.resolveGlobalConstNoOverloadWithInfo fnNameStx
let fnDecl ← getConstInfo fnName
unless decl.levelParams.length == fnDecl.levelParams.length do
throwError "invalid 'implementedBy' argument '{fnName}', '{fnName}' has {fnDecl.levelParams.length} universe level parameter(s), but '{declName}' has {decl.levelParams.length}"
let declType := decl.type
let fnType := fnDecl.instantiateTypeLevelParams (decl.levelParams.map mkLevelParam)
unless declType == fnType do
throwError "invalid 'implementedBy' argument '{fnName}', '{fnName}' has type{indentExpr fnType}\nbut '{declName}' has type{indentExpr declType}"
if decl.name == fnDecl.name then
throwError "invalid 'implementedBy' argument '{fnName}', function cannot be implemented by itself"
return fnName
}
@[export lean_get_implemented_by]
def getImplementedBy? (env : Environment) (declName : Name) : Option Name :=
implementedByAttr.getParam? env declName
def setImplementedBy (env : Environment) (declName : Name) (impName : Name) : Except String Environment :=
implementedByAttr.setParam env declName impName
end Compiler
def setImplementedBy {m} [Monad m] [MonadEnv m] [MonadError m] (declName : Name) (impName : Name) : m Unit := do
let env ← getEnv
match Compiler.setImplementedBy env declName impName with
| Except.ok env => setEnv env
| Except.error ex => throwError ex
end Lean
|
23a728ed85725f2e6e14eb842fedf78405b17bd6
|
5ae26df177f810c5006841e9c73dc56e01b978d7
|
/src/topology/Top/opens.lean
|
57e8869b2fc47edf47ca9c57998f2e84ffde6fcc
|
[
"Apache-2.0"
] |
permissive
|
ChrisHughes24/mathlib
|
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
|
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
|
refs/heads/master
| 1,583,848,251,477
| 1,565,164,247,000
| 1,565,164,247,000
| 129,409,993
| 0
| 1
|
Apache-2.0
| 1,565,164,817,000
| 1,523,628,059,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,944
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import topology.Top.basic
import category_theory.natural_isomorphism
import category_theory.opposites
import category_theory.eq_to_hom
import topology.opens
open category_theory
open topological_space
open opposite
universe u
namespace topological_space.opens
variables {X Y Z : Top.{u}}
instance opens_category : category.{u+1} (opens X) :=
{ hom := λ U V, ulift (plift (U ≤ V)),
id := λ X, ⟨ ⟨ le_refl X ⟩ ⟩,
comp := λ X Y Z f g, ⟨ ⟨ le_trans f.down.down g.down.down ⟩ ⟩ }
def to_Top (X : Top.{u}) : opens X ⥤ Top :=
{ obj := λ U, ⟨U.val, infer_instance⟩,
map := λ U V i, ⟨λ x, ⟨x.1, i.down.down x.2⟩,
(embedding.continuous_iff embedding_subtype_val).2 continuous_induced_dom⟩ }
/-- `opens.map f` gives the functor from open sets in Y to open set in X,
given by taking preimages under f. -/
def map (f : X ⟶ Y) : opens Y ⥤ opens X :=
{ obj := λ U, ⟨ f.val ⁻¹' U.val, f.property _ U.property ⟩,
map := λ U V i, ⟨ ⟨ λ a b, i.down.down b ⟩ ⟩ }.
@[simp] lemma map_obj (f : X ⟶ Y) (U) (p) : (map f).obj ⟨U, p⟩ = ⟨ f.val ⁻¹' U, f.property _ p ⟩ :=
rfl
@[simp] lemma map_id_obj' (U) (p) : (map (𝟙 X)).obj ⟨U, p⟩ = ⟨U, p⟩ :=
rfl
@[simp] lemma map_id_obj (U : opens X) : (map (𝟙 X)).obj U = U :=
by { ext, refl } -- not quite `rfl`, since we don't have eta for records
@[simp] lemma map_id_obj_unop (U : (opens X)ᵒᵖ) : (map (𝟙 X)).obj (unop U) = unop U :=
by simp
@[simp] lemma op_map_id_obj (U : (opens X)ᵒᵖ) : (map (𝟙 X)).op.obj U = U :=
by simp
section
variable (X)
def map_id : map (𝟙 X) ≅ functor.id (opens X) :=
{ hom := { app := λ U, eq_to_hom (map_id_obj U) },
inv := { app := λ U, eq_to_hom (map_id_obj U).symm } }
@[simp] lemma map_id_hom_app (U) : (map_id X).hom.app U = eq_to_hom (map_id_obj U) := rfl
@[simp] lemma map_id_inv_app (U) : (map_id X).inv.app U = eq_to_hom (map_id_obj U).symm := rfl
end
@[simp] lemma map_comp_obj' (f : X ⟶ Y) (g : Y ⟶ Z) (U) (p) : (map (f ≫ g)).obj ⟨U, p⟩ = (map f).obj ((map g).obj ⟨U, p⟩) :=
rfl
@[simp] lemma map_comp_obj (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).obj U = (map f).obj ((map g).obj U) :=
by { ext, refl } -- not quite `rfl`, since we don't have eta for records
@[simp] lemma map_comp_obj_unop (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).obj (unop U) = (map f).obj ((map g).obj (unop U)) :=
by simp
@[simp] lemma op_map_comp_obj (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).op.obj U = (map f).op.obj ((map g).op.obj U) :=
by simp
def map_comp (f : X ⟶ Y) (g : Y ⟶ Z) : map (f ≫ g) ≅ map g ⋙ map f :=
{ hom := { app := λ U, eq_to_hom (map_comp_obj f g U) },
inv := { app := λ U, eq_to_hom (map_comp_obj f g U).symm } }
@[simp] lemma map_comp_hom_app (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map_comp f g).hom.app U = eq_to_hom (map_comp_obj f g U) := rfl
@[simp] lemma map_comp_inv_app (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map_comp f g).inv.app U = eq_to_hom (map_comp_obj f g U).symm := rfl
-- We could make f g implicit here, but it's nice to be able to see when
-- they are the identity (often!)
def map_iso (f g : X ⟶ Y) (h : f = g) : map f ≅ map g :=
nat_iso.of_components (λ U, eq_to_iso (congr_fun (congr_arg functor.obj (congr_arg map h)) U) ) (by obviously)
@[simp] lemma map_iso_refl (f : X ⟶ Y) (h) : map_iso f f h = iso.refl (map _) := rfl
@[simp] lemma map_iso_hom_app (f g : X ⟶ Y) (h : f = g) (U : opens Y) :
(map_iso f g h).hom.app U = eq_to_hom (congr_fun (congr_arg functor.obj (congr_arg map h)) U) :=
rfl
@[simp] lemma map_iso_inv_app (f g : X ⟶ Y) (h : f = g) (U : opens Y) :
(map_iso f g h).inv.app U = eq_to_hom (congr_fun (congr_arg functor.obj (congr_arg map h.symm)) U) :=
rfl
end topological_space.opens
|
96726a4d7b7816ef1eabb505c5a27e8c1bc01325
|
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
|
/src/data/quot.lean
|
374ab2920a20e8c384d8f5f277dfe1d171f74e88
|
[
"Apache-2.0"
] |
permissive
|
DanielFabian/mathlib
|
efc3a50b5dde303c59eeb6353ef4c35a345d7112
|
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
|
refs/heads/master
| 1,668,739,922,971
| 1,595,201,756,000
| 1,595,201,756,000
| 279,469,476
| 0
| 0
| null | 1,594,696,604,000
| 1,594,696,604,000
| null |
UTF-8
|
Lean
| false
| false
| 16,160
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import logic.relator
/-!
# Quotients -- extends the core library
-/
variables {α : Sort*} {β : Sort*}
namespace setoid
lemma ext {α : Sort*} :
∀{s t : setoid α}, (∀a b, @setoid.r α s a b ↔ @setoid.r α t a b) → s = t
| ⟨r, _⟩ ⟨p, _⟩ eq :=
have r = p, from funext $ assume a, funext $ assume b, propext $ eq a b,
by subst this
end setoid
namespace quot
variables {ra : α → α → Prop} {rb : β → β → Prop} {φ : quot ra → quot rb → Sort*}
local notation `⟦`:max a `⟧` := quot.mk _ a
instance [inhabited α] : inhabited (quot ra) := ⟨⟦default _⟧⟩
/-- Recursion on two `quotient` arguments `a` and `b`, result type depends on `⟦a⟧` and `⟦b⟧`. -/
protected def hrec_on₂ (qa : quot ra) (qb : quot rb) (f : Π a b, φ ⟦a⟧ ⟦b⟧)
(ca : ∀ {b a₁ a₂}, ra a₁ a₂ → f a₁ b == f a₂ b)
(cb : ∀ {a b₁ b₂}, rb b₁ b₂ → f a b₁ == f a b₂) : φ qa qb :=
quot.hrec_on qa (λ a, quot.hrec_on qb (f a) (λ b₁ b₂ pb, cb pb)) $ λ a₁ a₂ pa,
quot.induction_on qb $ λ b,
calc @quot.hrec_on _ _ (φ _) ⟦b⟧ (f a₁) (@cb _)
== f a₁ b : by simp
... == f a₂ b : ca pa
... == @quot.hrec_on _ _ (φ _) ⟦b⟧ (f a₂) (@cb _) : by simp
/-- Map a function `f : α → β` such that `ra x y` implies `rb (f x) (f y)`
to a map `quot ra → quot rb`. -/
protected def map (f : α → β) (h : (ra ⇒ rb) f f) : quot ra → quot rb :=
quot.lift (λ x, ⟦f x⟧) $ assume x y (h₁ : ra x y), quot.sound $ h h₁
/-- If `ra` is a subrelation of `ra'`, then we have a natural map `quot ra → quot ra'`. -/
protected def map_right {ra' : α → α → Prop} (h : ∀a₁ a₂, ra a₁ a₂ → ra' a₁ a₂) :
quot ra → quot ra' :=
quot.map id h
/-- weaken the relation of a quotient -/
def factor {α : Type*} (r s : α → α → Prop) (h : ∀ x y, r x y → s x y) :
quot r → quot s :=
quot.lift (quot.mk s) (λ x y rxy, quot.sound (h x y rxy))
lemma factor_mk_eq {α : Type*} (r s : α → α → Prop) (h : ∀ x y, r x y → s x y) :
factor r s h ∘ quot.mk _ = quot.mk _ := rfl
end quot
namespace quotient
variables [sa : setoid α] [sb : setoid β]
variables {φ : quotient sa → quotient sb → Sort*}
instance [inhabited α] : inhabited (quotient sa) := ⟨⟦default _⟧⟩
/-- Induction on two `quotient` arguments `a` and `b`, result type depends on `⟦a⟧` and `⟦b⟧`. -/
protected def hrec_on₂ (qa : quotient sa) (qb : quotient sb) (f : Π a b, φ ⟦a⟧ ⟦b⟧)
(c : ∀ a₁ b₁ a₂ b₂, a₁ ≈ a₂ → b₁ ≈ b₂ → f a₁ b₁ == f a₂ b₂) : φ qa qb :=
quot.hrec_on₂ qa qb f
(λ _ _ _ p, c _ _ _ _ p (setoid.refl _))
(λ _ _ _ p, c _ _ _ _ (setoid.refl _) p)
/-- Map a function `f : α → β` that sends equivalent elements to equivalent elements
to a function `quotient sa → quotient sb`. Useful to define unary operations on quotients. -/
protected def map (f : α → β) (h : ((≈) ⇒ (≈)) f f) : quotient sa → quotient sb :=
quot.map f h
@[simp] lemma map_mk (f : α → β) (h : ((≈) ⇒ (≈)) f f) (x : α) :
quotient.map f h (⟦x⟧ : quotient sa) = (⟦f x⟧ : quotient sb) :=
rfl
variables {γ : Sort*} [sc : setoid γ]
/-- Map a function `f : α → β → γ` that sends equivalent elements to equivalent elements
to a function `f : quotient sa → quotient sb → quotient sc`.
Useful to define binary operations on quotients. -/
protected def map₂ (f : α → β → γ) (h : ((≈) ⇒ (≈) ⇒ (≈)) f f) :
quotient sa → quotient sb → quotient sc :=
quotient.lift₂ (λ x y, ⟦f x y⟧) (λ x₁ y₁ x₂ y₂ h₁ h₂, quot.sound $ h h₁ h₂)
end quotient
@[simp] theorem quotient.eq [r : setoid α] {x y : α} : ⟦x⟧ = ⟦y⟧ ↔ x ≈ y :=
⟨quotient.exact, quotient.sound⟩
theorem forall_quotient_iff {α : Type*} [r : setoid α] {p : quotient r → Prop} :
(∀a:quotient r, p a) ↔ (∀a:α, p ⟦a⟧) :=
⟨assume h x, h _, assume h a, a.induction_on h⟩
@[simp] lemma quotient.lift_beta [s : setoid α] (f : α → β) (h : ∀ (a b : α), a ≈ b → f a = f b)
(x : α) :
quotient.lift f h (quotient.mk x) = f x := rfl
@[simp] lemma quotient.lift_on_beta [s : setoid α] (f : α → β) (h : ∀ (a b : α), a ≈ b → f a = f b)
(x : α) :
quotient.lift_on (quotient.mk x) f h = f x := rfl
/-- Choose an element of the equivalence class using the axiom of choice.
Sound but noncomputable. -/
noncomputable def quot.out {r : α → α → Prop} (q : quot r) : α :=
classical.some (quot.exists_rep q)
/-- Unwrap the VM representation of a quotient to obtain an element of the equivalence class.
Computable but unsound. -/
meta def quot.unquot {r : α → α → Prop} : quot r → α := unchecked_cast
@[simp] theorem quot.out_eq {r : α → α → Prop} (q : quot r) : quot.mk r q.out = q :=
classical.some_spec (quot.exists_rep q)
/-- Choose an element of the equivalence class using the axiom of choice.
Sound but noncomputable. -/
noncomputable def quotient.out [s : setoid α] : quotient s → α := quot.out
@[simp] theorem quotient.out_eq [s : setoid α] (q : quotient s) : ⟦q.out⟧ = q := q.out_eq
theorem quotient.mk_out [s : setoid α] (a : α) : ⟦a⟧.out ≈ a :=
quotient.exact (quotient.out_eq _)
instance pi_setoid {ι : Sort*} {α : ι → Sort*} [∀ i, setoid (α i)] : setoid (Π i, α i) :=
{ r := λ a b, ∀ i, a i ≈ b i,
iseqv := ⟨
λ a i, setoid.refl _,
λ a b h i, setoid.symm (h _),
λ a b c h₁ h₂ i, setoid.trans (h₁ _) (h₂ _)⟩ }
/-- Given a function `f : Π i, quotient (S i)`, returns the class of functions `Π i, α i` sending
each `i` to an element of the class `f i`. -/
noncomputable def quotient.choice {ι : Type*} {α : ι → Type*} [S : Π i, setoid (α i)]
(f : Π i, quotient (S i)) : @quotient (Π i, α i) (by apply_instance) :=
⟦λ i, (f i).out⟧
theorem quotient.choice_eq {ι : Type*} {α : ι → Type*} [Π i, setoid (α i)]
(f : Π i, α i) : quotient.choice (λ i, ⟦f i⟧) = ⟦f⟧ :=
quotient.sound $ λ i, quotient.mk_out _
lemma nonempty_quotient_iff (s : setoid α) : nonempty (quotient s) ↔ nonempty α :=
⟨assume ⟨a⟩, quotient.induction_on a nonempty.intro, assume ⟨a⟩, ⟨⟦a⟧⟩⟩
/-- `trunc α` is the quotient of `α` by the always-true relation. This
is related to the propositional truncation in HoTT, and is similar
in effect to `nonempty α`, but unlike `nonempty α`, `trunc α` is data,
so the VM representation is the same as `α`, and so this can be used to
maintain computability. -/
def {u} trunc (α : Sort u) : Sort u := @quot α (λ _ _, true)
theorem true_equivalence : @equivalence α (λ _ _, true) :=
⟨λ _, trivial, λ _ _ _, trivial, λ _ _ _ _ _, trivial⟩
namespace trunc
/-- Constructor for `trunc α` -/
def mk (a : α) : trunc α := quot.mk _ a
instance [inhabited α] : inhabited (trunc α) := ⟨mk (default _)⟩
/-- Any constant function lifts to a function out of the truncation -/
def lift (f : α → β) (c : ∀ a b : α, f a = f b) : trunc α → β :=
quot.lift f (λ a b _, c a b)
theorem ind {β : trunc α → Prop} : (∀ a : α, β (mk a)) → ∀ q : trunc α, β q := quot.ind
protected theorem lift_beta (f : α → β) (c) (a : α) : lift f c (mk a) = f a := rfl
/-- Lift a constant function on `q : trunc α`. -/
@[reducible, elab_as_eliminator]
protected def lift_on (q : trunc α) (f : α → β)
(c : ∀ a b : α, f a = f b) : β := lift f c q
@[elab_as_eliminator]
protected theorem induction_on {β : trunc α → Prop} (q : trunc α)
(h : ∀ a, β (mk a)) : β q := ind h q
theorem exists_rep (q : trunc α) : ∃ a : α, mk a = q := quot.exists_rep q
attribute [elab_as_eliminator]
protected theorem induction_on₂ {C : trunc α → trunc β → Prop} (q₁ : trunc α) (q₂ : trunc β)
(h : ∀ a b, C (mk a) (mk b)) : C q₁ q₂ :=
trunc.induction_on q₁ $ λ a₁, trunc.induction_on q₂ (h a₁)
protected theorem eq (a b : trunc α) : a = b :=
trunc.induction_on₂ a b (λ x y, quot.sound trivial)
instance : subsingleton (trunc α) := ⟨trunc.eq⟩
def bind (q : trunc α) (f : α → trunc β) : trunc β :=
trunc.lift_on q f (λ a b, trunc.eq _ _)
/-- A function `f : α → β` defines a function `map f : trunc α → trunc β`. -/
def map (f : α → β) (q : trunc α) : trunc β := bind q (trunc.mk ∘ f)
instance : monad trunc :=
{ pure := @trunc.mk,
bind := @trunc.bind }
instance : is_lawful_monad trunc :=
{ id_map := λ α q, trunc.eq _ _,
pure_bind := λ α β q f, rfl,
bind_assoc := λ α β γ x f g, trunc.eq _ _ }
variable {C : trunc α → Sort*}
/-- Recursion/induction principle for `trunc`. -/
@[reducible, elab_as_eliminator]
protected def rec
(f : Π a, C (mk a)) (h : ∀ (a b : α), (eq.rec (f a) (trunc.eq (mk a) (mk b)) : C (mk b)) = f b)
(q : trunc α) : C q :=
quot.rec f (λ a b _, h a b) q
/-- A version of `trunc.rec` taking `q : trunc α` as the first argument. -/
@[reducible, elab_as_eliminator]
protected def rec_on (q : trunc α) (f : Π a, C (mk a))
(h : ∀ (a b : α), (eq.rec (f a) (trunc.eq (mk a) (mk b)) : C (mk b)) = f b) : C q :=
trunc.rec f h q
/-- A version of `trunc.rec_on` assuming the codomain is a `subsingleton`. -/
@[reducible, elab_as_eliminator]
protected def rec_on_subsingleton
[∀ a, subsingleton (C (mk a))] (q : trunc α) (f : Π a, C (mk a)) : C q :=
trunc.rec f (λ a b, subsingleton.elim _ (f b)) q
/-- Noncomputably extract a representative of `trunc α` (using the axiom of choice). -/
noncomputable def out : trunc α → α := quot.out
@[simp] theorem out_eq (q : trunc α) : mk q.out = q := trunc.eq _ _
end trunc
theorem nonempty_of_trunc (q : trunc α) : nonempty α :=
let ⟨a, _⟩ := q.exists_rep in ⟨a⟩
namespace quotient
variables {γ : Sort*} {φ : Sort*}
{s₁ : setoid α} {s₂ : setoid β} {s₃ : setoid γ}
/- Versions of quotient definitions and lemmas ending in `'` use unification instead
of typeclass inference for inferring the `setoid` argument. This is useful when there are
several different quotient relations on a type, for example quotient groups, rings and modules -/
/-- A version of `quotient.mk` taking `{s : setoid α}` as an implicit argument instead of an
instance argument. -/
protected def mk' (a : α) : quotient s₁ := quot.mk s₁.1 a
/-- A version of `quotient.lift_on` taking `{s : setoid α}` as an implicit argument instead of an
instance argument. -/
@[elab_as_eliminator, reducible]
protected def lift_on' (q : quotient s₁) (f : α → φ)
(h : ∀ a b, @setoid.r α s₁ a b → f a = f b) : φ := quotient.lift_on q f h
/-- A version of `quotient.lift_on₂` taking `{s₁ : setoid α} {s₂ : setoid β}` as implicit arguments
instead of instance arguments. -/
@[elab_as_eliminator, reducible]
protected def lift_on₂' (q₁ : quotient s₁) (q₂ : quotient s₂) (f : α → β → γ)
(h : ∀ a₁ a₂ b₁ b₂, @setoid.r α s₁ a₁ b₁ → @setoid.r β s₂ a₂ b₂ → f a₁ a₂ = f b₁ b₂) : γ :=
quotient.lift_on₂ q₁ q₂ f h
/-- A version of `quotient.ind` taking `{s : setoid α}` as an implicit argument instead of an
instance argument. -/
@[elab_as_eliminator]
protected lemma ind' {p : quotient s₁ → Prop}
(h : ∀ a, p (quotient.mk' a)) (q : quotient s₁) : p q :=
quotient.ind h q
/-- A version of `quotient.ind₂` taking `{s₁ : setoid α} {s₂ : setoid β}` as implicit arguments
instead of instance arguments. -/
@[elab_as_eliminator]
protected lemma ind₂' {p : quotient s₁ → quotient s₂ → Prop}
(h : ∀ a₁ a₂, p (quotient.mk' a₁) (quotient.mk' a₂))
(q₁ : quotient s₁) (q₂ : quotient s₂) : p q₁ q₂ :=
quotient.ind₂ h q₁ q₂
/-- A version of `quotient.induction_on` taking `{s : setoid α}` as an implicit argument instead
of an instance argument. -/
@[elab_as_eliminator]
protected lemma induction_on' {p : quotient s₁ → Prop} (q : quotient s₁)
(h : ∀ a, p (quotient.mk' a)) : p q := quotient.induction_on q h
/-- A version of `quotient.induction_on₂` taking `{s₁ : setoid α} {s₂ : setoid β}` as implicit
arguments instead of instance arguments. -/
@[elab_as_eliminator]
protected lemma induction_on₂' {p : quotient s₁ → quotient s₂ → Prop} (q₁ : quotient s₁)
(q₂ : quotient s₂) (h : ∀ a₁ a₂, p (quotient.mk' a₁) (quotient.mk' a₂)) : p q₁ q₂ :=
quotient.induction_on₂ q₁ q₂ h
/-- A version of `quotient.induction_on₃` taking `{s₁ : setoid α} {s₂ : setoid β} {s₃ : setoid γ}`
as implicit arguments instead of instance arguments. -/
@[elab_as_eliminator]
protected lemma induction_on₃' {p : quotient s₁ → quotient s₂ → quotient s₃ → Prop}
(q₁ : quotient s₁) (q₂ : quotient s₂) (q₃ : quotient s₃)
(h : ∀ a₁ a₂ a₃, p (quotient.mk' a₁) (quotient.mk' a₂) (quotient.mk' a₃)) : p q₁ q₂ q₃ :=
quotient.induction_on₃ q₁ q₂ q₃ h
/-- Recursion on a `quotient` argument `a`, result type depends on `⟦a⟧`. -/
protected def hrec_on' {φ : quotient s₁ → Sort*} (qa : quotient s₁) (f : Π a, φ (quotient.mk' a))
(c : ∀ a₁ a₂, a₁ ≈ a₂ → f a₁ == f a₂) : φ qa :=
quot.hrec_on qa f c
@[simp] lemma hrec_on'_mk' {φ : quotient s₁ → Sort*} (f : Π a, φ (quotient.mk' a))
(c : ∀ a₁ a₂, a₁ ≈ a₂ → f a₁ == f a₂) (x : α) :
(quotient.mk' x).hrec_on' f c = f x :=
rfl
/-- Recursion on two `quotient` arguments `a` and `b`, result type depends on `⟦a⟧` and `⟦b⟧`. -/
protected def hrec_on₂' {φ : quotient s₁ → quotient s₂ → Sort*} (qa : quotient s₁)
(qb : quotient s₂) (f : ∀ a b, φ (quotient.mk' a) (quotient.mk' b))
(c : ∀ a₁ b₁ a₂ b₂, a₁ ≈ a₂ → b₁ ≈ b₂ → f a₁ b₁ == f a₂ b₂) : φ qa qb :=
quotient.hrec_on₂ qa qb f c
@[simp] lemma hrec_on₂'_mk' {φ : quotient s₁ → quotient s₂ → Sort*}
(f : ∀ a b, φ (quotient.mk' a) (quotient.mk' b))
(c : ∀ a₁ b₁ a₂ b₂, a₁ ≈ a₂ → b₁ ≈ b₂ → f a₁ b₁ == f a₂ b₂) (x : α) (qb : quotient s₂) :
(quotient.mk' x).hrec_on₂' qb f c = qb.hrec_on' (f x) (λ b₁ b₂, c _ _ _ _ (setoid.refl _)) :=
rfl
/-- Map a function `f : α → β` that sends equivalent elements to equivalent elements
to a function `quotient sa → quotient sb`. Useful to define unary operations on quotients. -/
protected def map' (f : α → β) (h : ((≈) ⇒ (≈)) f f) :
quotient s₁ → quotient s₂ :=
quot.map f h
@[simp] lemma map'_mk' (f : α → β) (h) (x : α) :
(quotient.mk' x : quotient s₁).map' f h = (quotient.mk' (f x) : quotient s₂) :=
rfl
/-- A version of `quotient.map₂` using curly braces and unification. -/
protected def map₂' (f : α → β → γ) (h : ((≈) ⇒ (≈) ⇒ (≈)) f f) :
quotient s₁ → quotient s₂ → quotient s₃ :=
quotient.map₂ f h
@[simp] lemma map₂'_mk' (f : α → β → γ) (h) (x : α) :
(quotient.mk' x : quotient s₁).map₂' f h =
(quotient.map' (f x) (h (setoid.refl x)) : quotient s₂ → quotient s₃) :=
rfl
lemma exact' {a b : α} :
(quotient.mk' a : quotient s₁) = quotient.mk' b → @setoid.r _ s₁ a b :=
quotient.exact
lemma sound' {a b : α} : @setoid.r _ s₁ a b → @quotient.mk' α s₁ a = quotient.mk' b :=
quotient.sound
@[simp]
protected lemma eq' {a b : α} : @quotient.mk' α s₁ a = quotient.mk' b ↔ @setoid.r _ s₁ a b :=
quotient.eq
/-- A version of `quotient.out` taking `{s₁ : setoid α}` as an implicit argument instead of an
instance argument. -/
noncomputable def out' (a : quotient s₁) : α := quotient.out a
@[simp] theorem out_eq' (q : quotient s₁) : quotient.mk' q.out' = q := q.out_eq
theorem mk_out' (a : α) : @setoid.r α s₁ (quotient.mk' a : quotient s₁).out' a :=
quotient.exact (quotient.out_eq _)
end quotient
|
9c5c204dd18f7c0e35bcf9acf574296b66571623
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/order/conditionally_complete_lattice.lean
|
254f3e7ce670c856a9ccedc9de3ac66edd3bfa02
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 50,064
|
lean
|
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import data.set.intervals.ord_connected
/-!
# Theory of conditionally complete lattices.
A conditionally complete lattice is a lattice in which every non-empty bounded subset s
has a least upper bound and a greatest lower bound, denoted below by Sup s and Inf s.
Typical examples are real, nat, int with their usual orders.
The theory is very comparable to the theory of complete lattices, except that suitable
boundedness and nonemptiness assumptions have to be added to most statements.
We introduce two predicates bdd_above and bdd_below to express this boundedness, prove
their basic properties, and then go on to prove most useful properties of Sup and Inf
in conditionally complete lattices.
To differentiate the statements between complete lattices and conditionally complete
lattices, we prefix Inf and Sup in the statements by c, giving cInf and cSup. For instance,
Inf_le is a statement in complete lattices ensuring Inf s ≤ x, while cInf_le is the same
statement in conditionally complete lattices with an additional assumption that s is
bounded below.
-/
set_option old_structure_cmd true
open set
variables {α β : Type*} {ι : Sort*}
section
/-!
Extension of Sup and Inf from a preorder `α` to `with_top α` and `with_bot α`
-/
open_locale classical
noncomputable instance {α : Type*} [preorder α] [has_Sup α] : has_Sup (with_top α) :=
⟨λ S, if ⊤ ∈ S then ⊤ else
if bdd_above (coe ⁻¹' S : set α) then ↑(Sup (coe ⁻¹' S : set α)) else ⊤⟩
noncomputable instance {α : Type*} [has_Inf α] : has_Inf (with_top α) :=
⟨λ S, if S ⊆ {⊤} then ⊤ else ↑(Inf (coe ⁻¹' S : set α))⟩
noncomputable instance {α : Type*} [has_Sup α] : has_Sup (with_bot α) :=
⟨(@with_top.has_Inf (order_dual α) _).Inf⟩
noncomputable instance {α : Type*} [preorder α] [has_Inf α] : has_Inf (with_bot α) :=
⟨(@with_top.has_Sup (order_dual α) _ _).Sup⟩
@[simp]
theorem with_top.cInf_empty {α : Type*} [has_Inf α] : Inf (∅ : set (with_top α)) = ⊤ :=
if_pos $ set.empty_subset _
@[simp]
theorem with_bot.cSup_empty {α : Type*} [has_Sup α] : Sup (∅ : set (with_bot α)) = ⊥ :=
if_pos $ set.empty_subset _
end -- section
/-- A conditionally complete lattice is a lattice in which
every nonempty subset which is bounded above has a supremum, and
every nonempty subset which is bounded below has an infimum.
Typical examples are real numbers or natural numbers.
To differentiate the statements from the corresponding statements in (unconditional)
complete lattices, we prefix Inf and Sup by a c everywhere. The same statements should
hold in both worlds, sometimes with additional assumptions of nonemptiness or
boundedness.-/
class conditionally_complete_lattice (α : Type*) extends lattice α, has_Sup α, has_Inf α :=
(le_cSup : ∀s a, bdd_above s → a ∈ s → a ≤ Sup s)
(cSup_le : ∀ s a, set.nonempty s → a ∈ upper_bounds s → Sup s ≤ a)
(cInf_le : ∀s a, bdd_below s → a ∈ s → Inf s ≤ a)
(le_cInf : ∀s a, set.nonempty s → a ∈ lower_bounds s → a ≤ Inf s)
/-- A conditionally complete linear order is a linear order in which
every nonempty subset which is bounded above has a supremum, and
every nonempty subset which is bounded below has an infimum.
Typical examples are real numbers or natural numbers.
To differentiate the statements from the corresponding statements in (unconditional)
complete linear orders, we prefix Inf and Sup by a c everywhere. The same statements should
hold in both worlds, sometimes with additional assumptions of nonemptiness or
boundedness.-/
class conditionally_complete_linear_order (α : Type*)
extends conditionally_complete_lattice α, linear_order α
/-- A conditionally complete linear order with `bot` is a linear order with least element, in which
every nonempty subset which is bounded above has a supremum, and every nonempty subset (necessarily
bounded below) has an infimum. A typical example is the natural numbers.
To differentiate the statements from the corresponding statements in (unconditional)
complete linear orders, we prefix Inf and Sup by a c everywhere. The same statements should
hold in both worlds, sometimes with additional assumptions of nonemptiness or
boundedness.-/
@[ancestor conditionally_complete_linear_order has_bot]
class conditionally_complete_linear_order_bot (α : Type*)
extends conditionally_complete_linear_order α, has_bot α :=
(bot_le : ∀ x : α, ⊥ ≤ x)
(cSup_empty : Sup ∅ = ⊥)
@[priority 100] -- see Note [lower instance priority]
instance conditionally_complete_linear_order_bot.to_order_bot (α : Type*)
[h : conditionally_complete_linear_order_bot α] : order_bot α :=
{ ..h }
/- A complete lattice is a conditionally complete lattice, as there are no restrictions
on the properties of Inf and Sup in a complete lattice.-/
@[priority 100] -- see Note [lower instance priority]
instance conditionally_complete_lattice_of_complete_lattice [complete_lattice α]:
conditionally_complete_lattice α :=
{ le_cSup := by intros; apply le_Sup; assumption,
cSup_le := by intros; apply Sup_le; assumption,
cInf_le := by intros; apply Inf_le; assumption,
le_cInf := by intros; apply le_Inf; assumption,
..‹complete_lattice α› }
@[priority 100] -- see Note [lower instance priority]
instance conditionally_complete_linear_order_of_complete_linear_order [complete_linear_order α]:
conditionally_complete_linear_order α :=
{ ..conditionally_complete_lattice_of_complete_lattice, .. ‹complete_linear_order α› }
section
open_locale classical
/-- A well founded linear order is conditionally complete, with a bottom element. -/
@[reducible] noncomputable def well_founded.conditionally_complete_linear_order_with_bot
{α : Type*} [i : linear_order α] (h : well_founded ((<) : α → α → Prop))
(c : α) (hc : c = h.min set.univ ⟨c, mem_univ c⟩) :
conditionally_complete_linear_order_bot α :=
{ sup := max,
le_sup_left := le_max_left,
le_sup_right := le_max_right,
sup_le := λ a b c, max_le,
inf := min,
inf_le_left := min_le_left,
inf_le_right := min_le_right,
le_inf := λ a b c, le_min,
Inf := λ s, if hs : s.nonempty then h.min s hs else c,
cInf_le := begin
assume s a hs has,
have s_ne : s.nonempty := ⟨a, has⟩,
simpa [s_ne] using not_lt.1 (h.not_lt_min s s_ne has),
end,
le_cInf := begin
assume s a hs has,
simp only [hs, dif_pos],
exact has (h.min_mem s hs),
end,
Sup := λ s, if hs : (upper_bounds s).nonempty then h.min _ hs else c,
le_cSup := begin
assume s a hs has,
have h's : (upper_bounds s).nonempty := hs,
simp only [h's, dif_pos],
exact h.min_mem _ h's has,
end,
cSup_le := begin
assume s a hs has,
have h's : (upper_bounds s).nonempty := ⟨a, has⟩,
simp only [h's, dif_pos],
simpa using h.not_lt_min _ h's has,
end,
bot := c,
bot_le := λ x, by convert not_lt.1 (h.not_lt_min set.univ ⟨c, mem_univ c⟩ (mem_univ x)),
cSup_empty := begin
have : (set.univ : set α).nonempty := ⟨c, mem_univ c⟩,
simp only [this, dif_pos, upper_bounds_empty],
exact hc.symm
end,
.. i }
end
section order_dual
instance (α : Type*) [conditionally_complete_lattice α] :
conditionally_complete_lattice (order_dual α) :=
{ le_cSup := @conditionally_complete_lattice.cInf_le α _,
cSup_le := @conditionally_complete_lattice.le_cInf α _,
le_cInf := @conditionally_complete_lattice.cSup_le α _,
cInf_le := @conditionally_complete_lattice.le_cSup α _,
..order_dual.has_Inf α,
..order_dual.has_Sup α,
..order_dual.lattice α }
instance (α : Type*) [conditionally_complete_linear_order α] :
conditionally_complete_linear_order (order_dual α) :=
{ ..order_dual.conditionally_complete_lattice α,
..order_dual.linear_order α }
end order_dual
section conditionally_complete_lattice
variables [conditionally_complete_lattice α] {s t : set α} {a b : α}
theorem le_cSup (h₁ : bdd_above s) (h₂ : a ∈ s) : a ≤ Sup s :=
conditionally_complete_lattice.le_cSup s a h₁ h₂
theorem cSup_le (h₁ : s.nonempty) (h₂ : ∀b∈s, b ≤ a) : Sup s ≤ a :=
conditionally_complete_lattice.cSup_le s a h₁ h₂
theorem cInf_le (h₁ : bdd_below s) (h₂ : a ∈ s) : Inf s ≤ a :=
conditionally_complete_lattice.cInf_le s a h₁ h₂
theorem le_cInf (h₁ : s.nonempty) (h₂ : ∀b∈s, a ≤ b) : a ≤ Inf s :=
conditionally_complete_lattice.le_cInf s a h₁ h₂
theorem le_cSup_of_le (_ : bdd_above s) (hb : b ∈ s) (h : a ≤ b) : a ≤ Sup s :=
le_trans h (le_cSup ‹bdd_above s› hb)
theorem cInf_le_of_le (_ : bdd_below s) (hb : b ∈ s) (h : b ≤ a) : Inf s ≤ a :=
le_trans (cInf_le ‹bdd_below s› hb) h
theorem cSup_le_cSup (_ : bdd_above t) (_ : s.nonempty) (h : s ⊆ t) : Sup s ≤ Sup t :=
cSup_le ‹_› (assume (a) (ha : a ∈ s), le_cSup ‹bdd_above t› (h ha))
theorem cInf_le_cInf (_ : bdd_below t) (_ : s.nonempty) (h : s ⊆ t) : Inf t ≤ Inf s :=
le_cInf ‹_› (assume (a) (ha : a ∈ s), cInf_le ‹bdd_below t› (h ha))
lemma is_lub_cSup (ne : s.nonempty) (H : bdd_above s) : is_lub s (Sup s) :=
⟨assume x, le_cSup H, assume x, cSup_le ne⟩
lemma is_lub_csupr [nonempty ι] {f : ι → α} (H : bdd_above (range f)) :
is_lub (range f) (⨆ i, f i) :=
is_lub_cSup (range_nonempty f) H
lemma is_lub_csupr_set {f : β → α} {s : set β} (H : bdd_above (f '' s)) (Hne : s.nonempty) :
is_lub (f '' s) (⨆ i : s, f i) :=
by { rw ← Sup_image', exact is_lub_cSup (Hne.image _) H }
lemma is_glb_cInf (ne : s.nonempty) (H : bdd_below s) : is_glb s (Inf s) :=
⟨assume x, cInf_le H, assume x, le_cInf ne⟩
lemma is_glb_cinfi [nonempty ι] {f : ι → α} (H : bdd_below (range f)) :
is_glb (range f) (⨅ i, f i) :=
is_glb_cInf (range_nonempty f) H
lemma is_glb_cinfi_set {f : β → α} {s : set β} (H : bdd_below (f '' s)) (Hne : s.nonempty) :
is_glb (f '' s) (⨅ i : s, f i) :=
@is_lub_csupr_set (order_dual α) _ _ _ _ H Hne
lemma is_lub.cSup_eq (H : is_lub s a) (ne : s.nonempty) : Sup s = a :=
(is_lub_cSup ne ⟨a, H.1⟩).unique H
lemma is_lub.csupr_eq [nonempty ι] {f : ι → α} (H : is_lub (range f) a) : (⨆ i, f i) = a :=
H.cSup_eq (range_nonempty f)
lemma is_lub.csupr_set_eq {s : set β} {f : β → α} (H : is_lub (f '' s) a) (Hne : s.nonempty) :
(⨆ i : s, f i) = a :=
is_lub.cSup_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
/-- A greatest element of a set is the supremum of this set. -/
lemma is_greatest.cSup_eq (H : is_greatest s a) : Sup s = a :=
H.is_lub.cSup_eq H.nonempty
lemma is_greatest.Sup_mem (H : is_greatest s a) : Sup s ∈ s :=
H.cSup_eq.symm ▸ H.1
lemma is_glb.cInf_eq (H : is_glb s a) (ne : s.nonempty) : Inf s = a :=
(is_glb_cInf ne ⟨a, H.1⟩).unique H
lemma is_glb.cinfi_eq [nonempty ι] {f : ι → α} (H : is_glb (range f) a) : (⨅ i, f i) = a :=
H.cInf_eq (range_nonempty f)
lemma is_glb.cinfi_set_eq {s : set β} {f : β → α} (H : is_glb (f '' s) a) (Hne : s.nonempty) :
(⨅ i : s, f i) = a :=
is_glb.cInf_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
/-- A least element of a set is the infimum of this set. -/
lemma is_least.cInf_eq (H : is_least s a) : Inf s = a :=
H.is_glb.cInf_eq H.nonempty
lemma is_least.Inf_mem (H : is_least s a) : Inf s ∈ s :=
H.cInf_eq.symm ▸ H.1
lemma subset_Icc_cInf_cSup (hb : bdd_below s) (ha : bdd_above s) :
s ⊆ Icc (Inf s) (Sup s) :=
λ x hx, ⟨cInf_le hb hx, le_cSup ha hx⟩
theorem cSup_le_iff (hb : bdd_above s) (ne : s.nonempty) : Sup s ≤ a ↔ (∀b ∈ s, b ≤ a) :=
is_lub_le_iff (is_lub_cSup ne hb)
theorem le_cInf_iff (hb : bdd_below s) (ne : s.nonempty) : a ≤ Inf s ↔ (∀b ∈ s, a ≤ b) :=
le_is_glb_iff (is_glb_cInf ne hb)
lemma cSup_lower_bounds_eq_cInf {s : set α} (h : bdd_below s) (hs : s.nonempty) :
Sup (lower_bounds s) = Inf s :=
(is_lub_cSup h $ hs.mono $ λ x hx y hy, hy hx).unique (is_glb_cInf hs h).is_lub
lemma cInf_upper_bounds_eq_cSup {s : set α} (h : bdd_above s) (hs : s.nonempty) :
Inf (upper_bounds s) = Sup s :=
(is_glb_cInf h $ hs.mono $ λ x hx y hy, hy hx).unique (is_lub_cSup hs h).is_glb
lemma not_mem_of_lt_cInf {x : α} {s : set α} (h : x < Inf s) (hs : bdd_below s) : x ∉ s :=
λ hx, lt_irrefl _ (h.trans_le (cInf_le hs hx))
lemma not_mem_of_cSup_lt {x : α} {s : set α} (h : Sup s < x) (hs : bdd_above s) : x ∉ s :=
@not_mem_of_lt_cInf (order_dual α) _ x s h hs
/--Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
is larger than all elements of `s`, and that this is not the case of any `w<b`.
See `Sup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
theorem cSup_eq_of_forall_le_of_forall_lt_exists_gt (_ : s.nonempty)
(_ : ∀a∈s, a ≤ b) (H : ∀w, w < b → (∃a∈s, w < a)) : Sup s = b :=
have bdd_above s := ⟨b, by assumption⟩,
have (Sup s < b) ∨ (Sup s = b) := lt_or_eq_of_le (cSup_le ‹_› ‹∀a∈s, a ≤ b›),
have ¬(Sup s < b) :=
assume: Sup s < b,
let ⟨a, _, _⟩ := (H (Sup s) ‹Sup s < b›) in /- a ∈ s, Sup s < a-/
have Sup s < Sup s := lt_of_lt_of_le ‹Sup s < a› (le_cSup ‹bdd_above s› ‹a ∈ s›),
show false, by finish [lt_irrefl (Sup s)],
show Sup s = b, by finish
/--Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
is smaller than all elements of `s`, and that this is not the case of any `w>b`.
See `Inf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
theorem cInf_eq_of_forall_ge_of_forall_gt_exists_lt (_ : s.nonempty) (_ : ∀a∈s, b ≤ a)
(H : ∀w, b < w → (∃a∈s, a < w)) : Inf s = b :=
@cSup_eq_of_forall_le_of_forall_lt_exists_gt (order_dual α) _ _ _ ‹_› ‹_› ‹_›
/--b < Sup s when there is an element a in s with b < a, when s is bounded above.
This is essentially an iff, except that the assumptions for the two implications are
slightly different (one needs boundedness above for one direction, nonemptiness and linear
order for the other one), so we formulate separately the two implications, contrary to
the complete_lattice case.-/
lemma lt_cSup_of_lt (_ : bdd_above s) (_ : a ∈ s) (_ : b < a) : b < Sup s :=
lt_of_lt_of_le ‹b < a› (le_cSup ‹bdd_above s› ‹a ∈ s›)
/--Inf s < b when there is an element a in s with a < b, when s is bounded below.
This is essentially an iff, except that the assumptions for the two implications are
slightly different (one needs boundedness below for one direction, nonemptiness and linear
order for the other one), so we formulate separately the two implications, contrary to
the complete_lattice case.-/
lemma cInf_lt_of_lt (_ : bdd_below s) (_ : a ∈ s) (_ : a < b) : Inf s < b :=
@lt_cSup_of_lt (order_dual α) _ _ _ _ ‹_› ‹_› ‹_›
/-- If all elements of a nonempty set `s` are less than or equal to all elements
of a nonempty set `t`, then there exists an element between these sets. -/
lemma exists_between_of_forall_le (sne : s.nonempty) (tne : t.nonempty)
(hst : ∀ (x ∈ s) (y ∈ t), x ≤ y) :
(upper_bounds s ∩ lower_bounds t).nonempty :=
⟨Inf t, λ x hx, le_cInf tne $ hst x hx, λ y hy, cInf_le (sne.mono hst) hy⟩
/--The supremum of a singleton is the element of the singleton-/
@[simp] theorem cSup_singleton (a : α) : Sup {a} = a :=
is_greatest_singleton.cSup_eq
/--The infimum of a singleton is the element of the singleton-/
@[simp] theorem cInf_singleton (a : α) : Inf {a} = a :=
is_least_singleton.cInf_eq
/--If a set is bounded below and above, and nonempty, its infimum is less than or equal to
its supremum.-/
theorem cInf_le_cSup (hb : bdd_below s) (ha : bdd_above s) (ne : s.nonempty) : Inf s ≤ Sup s :=
is_glb_le_is_lub (is_glb_cInf ne hb) (is_lub_cSup ne ha) ne
/--The sup of a union of two sets is the max of the suprema of each subset, under the assumptions
that all sets are bounded above and nonempty.-/
theorem cSup_union (hs : bdd_above s) (sne : s.nonempty) (ht : bdd_above t) (tne : t.nonempty) :
Sup (s ∪ t) = Sup s ⊔ Sup t :=
((is_lub_cSup sne hs).union (is_lub_cSup tne ht)).cSup_eq sne.inl
/--The inf of a union of two sets is the min of the infima of each subset, under the assumptions
that all sets are bounded below and nonempty.-/
theorem cInf_union (hs : bdd_below s) (sne : s.nonempty) (ht : bdd_below t) (tne : t.nonempty) :
Inf (s ∪ t) = Inf s ⊓ Inf t :=
@cSup_union (order_dual α) _ _ _ hs sne ht tne
/--The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
set, if all sets are bounded above and nonempty.-/
theorem cSup_inter_le (_ : bdd_above s) (_ : bdd_above t) (hst : (s ∩ t).nonempty) :
Sup (s ∩ t) ≤ Sup s ⊓ Sup t :=
begin
apply cSup_le hst, simp only [le_inf_iff, and_imp, set.mem_inter_eq], intros b _ _, split,
apply le_cSup ‹bdd_above s› ‹b ∈ s›,
apply le_cSup ‹bdd_above t› ‹b ∈ t›
end
/--The infimum of an intersection of two sets is bounded below by the maximum of the
infima of each set, if all sets are bounded below and nonempty.-/
theorem le_cInf_inter (_ : bdd_below s) (_ : bdd_below t) (hst : (s ∩ t).nonempty) :
Inf s ⊔ Inf t ≤ Inf (s ∩ t) :=
@cSup_inter_le (order_dual α) _ _ _ ‹_› ‹_› hst
/-- The supremum of insert a s is the maximum of a and the supremum of s, if s is
nonempty and bounded above.-/
theorem cSup_insert (hs : bdd_above s) (sne : s.nonempty) : Sup (insert a s) = a ⊔ Sup s :=
((is_lub_cSup sne hs).insert a).cSup_eq (insert_nonempty a s)
/-- The infimum of insert a s is the minimum of a and the infimum of s, if s is
nonempty and bounded below.-/
theorem cInf_insert (hs : bdd_below s) (sne : s.nonempty) : Inf (insert a s) = a ⊓ Inf s :=
@cSup_insert (order_dual α) _ _ _ hs sne
@[simp] lemma cInf_Icc (h : a ≤ b) : Inf (Icc a b) = a :=
(is_glb_Icc h).cInf_eq (nonempty_Icc.2 h)
@[simp] lemma cInf_Ici : Inf (Ici a) = a := is_least_Ici.cInf_eq
@[simp] lemma cInf_Ico (h : a < b) : Inf (Ico a b) = a :=
(is_glb_Ico h).cInf_eq (nonempty_Ico.2 h)
@[simp] lemma cInf_Ioc [densely_ordered α] (h : a < b) : Inf (Ioc a b) = a :=
(is_glb_Ioc h).cInf_eq (nonempty_Ioc.2 h)
@[simp] lemma cInf_Ioi [no_top_order α] [densely_ordered α] : Inf (Ioi a) = a :=
cInf_eq_of_forall_ge_of_forall_gt_exists_lt nonempty_Ioi (λ _, le_of_lt)
(λ w hw, by simpa using exists_between hw)
@[simp] lemma cInf_Ioo [densely_ordered α] (h : a < b) : Inf (Ioo a b) = a :=
(is_glb_Ioo h).cInf_eq (nonempty_Ioo.2 h)
@[simp] lemma cSup_Icc (h : a ≤ b) : Sup (Icc a b) = b :=
(is_lub_Icc h).cSup_eq (nonempty_Icc.2 h)
@[simp] lemma cSup_Ico [densely_ordered α] (h : a < b) : Sup (Ico a b) = b :=
(is_lub_Ico h).cSup_eq (nonempty_Ico.2 h)
@[simp] lemma cSup_Iic : Sup (Iic a) = a := is_greatest_Iic.cSup_eq
@[simp] lemma cSup_Iio [no_bot_order α] [densely_ordered α] : Sup (Iio a) = a :=
cSup_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (λ _, le_of_lt)
(λ w hw, by simpa [and_comm] using exists_between hw)
@[simp] lemma cSup_Ioc (h : a < b) : Sup (Ioc a b) = b :=
(is_lub_Ioc h).cSup_eq (nonempty_Ioc.2 h)
@[simp] lemma cSup_Ioo [densely_ordered α] (h : a < b) : Sup (Ioo a b) = b :=
(is_lub_Ioo h).cSup_eq (nonempty_Ioo.2 h)
/--The indexed supremum of a function is bounded above by a uniform bound-/
lemma csupr_le [nonempty ι] {f : ι → α} {c : α} (H : ∀x, f x ≤ c) : supr f ≤ c :=
cSup_le (range_nonempty f) (by rwa forall_range_iff)
/--The indexed supremum of a function is bounded below by the value taken at one point-/
lemma le_csupr {f : ι → α} (H : bdd_above (range f)) (c : ι) : f c ≤ supr f :=
le_cSup H (mem_range_self _)
lemma le_csupr_of_le {f : ι → α} (H : bdd_above (range f)) (c : ι) (h : a ≤ f c) : a ≤ supr f :=
le_trans h (le_csupr H c)
/--The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
lemma csupr_le_csupr {f g : ι → α} (B : bdd_above (range g)) (H : ∀x, f x ≤ g x) :
supr f ≤ supr g :=
begin
casesI is_empty_or_nonempty ι,
{ rw [supr_of_empty', supr_of_empty'] },
{ exact csupr_le (λ x, le_csupr_of_le B x (H x)) },
end
/--The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
lemma cinfi_le_cinfi {f g : ι → α} (B : bdd_below (range f)) (H : ∀x, f x ≤ g x) :
infi f ≤ infi g :=
@csupr_le_csupr (order_dual α) _ _ _ _ B H
/--The indexed minimum of a function is bounded below by a uniform lower bound-/
lemma le_cinfi [nonempty ι] {f : ι → α} {c : α} (H : ∀x, c ≤ f x) : c ≤ infi f :=
@csupr_le (order_dual α) _ _ _ _ _ H
/--The indexed infimum of a function is bounded above by the value taken at one point-/
lemma cinfi_le {f : ι → α} (H : bdd_below (range f)) (c : ι) : infi f ≤ f c :=
@le_csupr (order_dual α) _ _ _ H c
lemma cinfi_le_of_le {f : ι → α} (H : bdd_below (range f)) (c : ι) (h : f c ≤ a) : infi f ≤ a :=
@le_csupr_of_le (order_dual α) _ _ _ _ H c h
@[simp] theorem csupr_const [hι : nonempty ι] {a : α} : (⨆ b:ι, a) = a :=
by rw [supr, range_const, cSup_singleton]
@[simp] theorem cinfi_const [hι : nonempty ι] {a : α} : (⨅ b:ι, a) = a :=
@csupr_const (order_dual α) _ _ _ _
theorem supr_unique [unique ι] {s : ι → α} : (⨆ i, s i) = s (default ι) :=
have ∀ i, s i = s (default ι) := λ i, congr_arg s (unique.eq_default i),
by simp only [this, csupr_const]
theorem infi_unique [unique ι] {s : ι → α} : (⨅ i, s i) = s (default ι) :=
@supr_unique (order_dual α) _ _ _ _
@[simp] theorem supr_unit {f : unit → α} : (⨆ x, f x) = f () :=
by { convert supr_unique, apply_instance }
@[simp] theorem infi_unit {f : unit → α} : (⨅ x, f x) = f () :=
@supr_unit (order_dual α) _ _
@[simp] lemma csupr_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
by haveI := unique_prop hp; exact supr_unique
@[simp] lemma cinfi_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
@csupr_pos (order_dual α) _ _ _ hp
lemma csupr_set {s : set β} {f : β → α} : (⨆ x : s, f x) = Sup (f '' s) :=
begin
rw supr,
congr,
ext,
rw [mem_image, mem_range, set_coe.exists],
simp_rw [subtype.coe_mk, exists_prop],
end
lemma cinfi_set {s : set β} {f : β → α} : (⨅ x : s, f x) = Inf (f '' s) :=
@csupr_set (order_dual α) _ _ _ _
/--Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
See `supr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
theorem csupr_eq_of_forall_le_of_forall_lt_exists_gt [nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
(h₂ : ∀ w, w < b → (∃ i, w < f i)) : (⨆ (i : ι), f i) = b :=
cSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
(λ w hw, exists_range_iff.mpr $ h₂ w hw)
/--Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
See `infi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
theorem cinfi_eq_of_forall_ge_of_forall_gt_exists_lt [nonempty ι] {f : ι → α} (h₁ : ∀ i, b ≤ f i)
(h₂ : ∀ w, b < w → (∃ i, f i < w)) : (⨅ (i : ι), f i) = b :=
@csupr_eq_of_forall_le_of_forall_lt_exists_gt (order_dual α) _ _ _ _ ‹_› ‹_› ‹_›
/-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
`f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
lemma monotone.csupr_mem_Inter_Icc_of_antitone [semilattice_sup β]
{f g : β → α} (hf : monotone f) (hg : antitone g) (h : f ≤ g) :
(⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
begin
refine mem_Inter.2 (λ n, _),
haveI : nonempty β := ⟨n⟩,
have : ∀ m, f m ≤ g n := λ m, hf.forall_le_of_antitone hg h m n,
exact ⟨le_csupr ⟨g $ n, forall_range_iff.2 this⟩ _, csupr_le this⟩
end
/-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
lemma csupr_mem_Inter_Icc_of_antitone_Icc [semilattice_sup β]
{f g : β → α} (h : antitone (λ n, Icc (f n) (g n))) (h' : ∀ n, f n ≤ g n) :
(⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
monotone.csupr_mem_Inter_Icc_of_antitone (λ m n hmn, ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)
(λ m n hmn, ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).2) h'
lemma finset.nonempty.sup'_eq_cSup_image {s : finset β} (hs : s.nonempty) (f : β → α) :
s.sup' hs f = Sup (f '' s) :=
eq_of_forall_ge_iff $ λ a,
by simp [cSup_le_iff (s.finite_to_set.image f).bdd_above (hs.to_set.image f)]
lemma finset.nonempty.sup'_id_eq_cSup {s : finset α} (hs : s.nonempty) :
s.sup' hs id = Sup s :=
by rw [hs.sup'_eq_cSup_image, image_id]
end conditionally_complete_lattice
instance pi.conditionally_complete_lattice {ι : Type*} {α : Π i : ι, Type*}
[Π i, conditionally_complete_lattice (α i)] :
conditionally_complete_lattice (Π i, α i) :=
{ le_cSup := λ s f ⟨g, hg⟩ hf i, le_cSup ⟨g i, set.forall_range_iff.2 $ λ ⟨f', hf'⟩, hg hf' i⟩
⟨⟨f, hf⟩, rfl⟩,
cSup_le := λ s f hs hf i, cSup_le (by haveI := hs.to_subtype; apply range_nonempty) $
λ b ⟨⟨g, hg⟩, hb⟩, hb ▸ hf hg i,
cInf_le := λ s f ⟨g, hg⟩ hf i, cInf_le ⟨g i, set.forall_range_iff.2 $ λ ⟨f', hf'⟩, hg hf' i⟩
⟨⟨f, hf⟩, rfl⟩,
le_cInf := λ s f hs hf i, le_cInf (by haveI := hs.to_subtype; apply range_nonempty) $
λ b ⟨⟨g, hg⟩, hb⟩, hb ▸ hf hg i,
.. pi.lattice, .. pi.has_Sup, .. pi.has_Inf }
section conditionally_complete_linear_order
variables [conditionally_complete_linear_order α] {s t : set α} {a b : α}
lemma finset.nonempty.cSup_eq_max' {s : finset α} (h : s.nonempty) : Sup ↑s = s.max' h :=
eq_of_forall_ge_iff $ λ a, (cSup_le_iff s.bdd_above h.to_set).trans (s.max'_le_iff h).symm
lemma finset.nonempty.cInf_eq_min' {s : finset α} (h : s.nonempty) : Inf ↑s = s.min' h :=
@finset.nonempty.cSup_eq_max' (order_dual α) _ s h
lemma finset.nonempty.cSup_mem {s : finset α} (h : s.nonempty) : Sup (s : set α) ∈ s :=
by { rw h.cSup_eq_max', exact s.max'_mem _ }
lemma finset.nonempty.cInf_mem {s : finset α} (h : s.nonempty) : Inf (s : set α) ∈ s :=
@finset.nonempty.cSup_mem (order_dual α) _ _ h
lemma set.nonempty.cSup_mem (h : s.nonempty) (hs : finite s) : Sup s ∈ s :=
by { lift s to finset α using hs, exact finset.nonempty.cSup_mem h }
lemma set.nonempty.cInf_mem (h : s.nonempty) (hs : finite s) : Inf s ∈ s :=
@set.nonempty.cSup_mem (order_dual α) _ _ h hs
lemma set.finite.cSup_lt_iff (hs : finite s) (h : s.nonempty) : Sup s < a ↔ ∀ x ∈ s, x < a :=
⟨λ h x hx, (le_cSup hs.bdd_above hx).trans_lt h, λ H, H _ $ h.cSup_mem hs⟩
lemma set.finite.lt_cInf_iff (hs : finite s) (h : s.nonempty) : a < Inf s ↔ ∀ x ∈ s, a < x :=
@set.finite.cSup_lt_iff (order_dual α) _ _ _ hs h
/-- When b < Sup s, there is an element a in s with b < a, if s is nonempty and the order is
a linear order. -/
lemma exists_lt_of_lt_cSup (hs : s.nonempty) (hb : b < Sup s) : ∃a∈s, b < a :=
begin
classical, contrapose! hb,
exact cSup_le hs hb
end
/--
Indexed version of the above lemma `exists_lt_of_lt_cSup`.
When `b < supr f`, there is an element `i` such that `b < f i`.
-/
lemma exists_lt_of_lt_csupr [nonempty ι] {f : ι → α} (h : b < supr f) :
∃i, b < f i :=
let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_lt_cSup (range_nonempty f) h in ⟨i, h⟩
/--When Inf s < b, there is an element a in s with a < b, if s is nonempty and the order is
a linear order.-/
lemma exists_lt_of_cInf_lt (hs : s.nonempty) (hb : Inf s < b) : ∃a∈s, a < b :=
@exists_lt_of_lt_cSup (order_dual α) _ _ _ hs hb
/--
Indexed version of the above lemma `exists_lt_of_cInf_lt`
When `infi f < a`, there is an element `i` such that `f i < a`.
-/
lemma exists_lt_of_cinfi_lt [nonempty ι] {f : ι → α} (h : infi f < a) :
(∃i, f i < a) :=
@exists_lt_of_lt_csupr (order_dual α) _ _ _ _ _ h
/--Introduction rule to prove that b is the supremum of s: it suffices to check that
1) b is an upper bound
2) every other upper bound b' satisfies b ≤ b'.-/
theorem cSup_eq_of_is_forall_le_of_forall_le_imp_ge (_ : s.nonempty)
(h_is_ub : ∀ a ∈ s, a ≤ b) (h_b_le_ub : ∀ub, (∀ a ∈ s, a ≤ ub) → (b ≤ ub)) : Sup s = b :=
le_antisymm
(show Sup s ≤ b, from cSup_le ‹s.nonempty› h_is_ub)
(show b ≤ Sup s, from h_b_le_ub _ $ assume a, le_cSup ⟨b, h_is_ub⟩)
open function
variables [is_well_order α (<)]
lemma Inf_eq_argmin_on (hs : s.nonempty) : Inf s = argmin_on id (@is_well_order.wf α (<) _) s hs :=
is_least.cInf_eq ⟨argmin_on_mem _ _ _ _, λ a ha, argmin_on_le id _ _ ha⟩
lemma is_least_Inf (hs : s.nonempty) : is_least s (Inf s) :=
by { rw Inf_eq_argmin_on hs, exact ⟨argmin_on_mem _ _ _ _, λ a ha, argmin_on_le id _ _ ha⟩ }
lemma le_cInf_iff' (hs : s.nonempty) : b ≤ Inf s ↔ b ∈ lower_bounds s :=
le_is_glb_iff (is_least_Inf hs).is_glb
lemma Inf_mem (hs : s.nonempty) : Inf s ∈ s := (is_least_Inf hs).1
end conditionally_complete_linear_order
/-!
### Lemmas about a conditionally complete linear order with bottom element
In this case we have `Sup ∅ = ⊥`, so we can drop some `nonempty`/`set.nonempty` assumptions.
-/
section conditionally_complete_linear_order_bot
variables [conditionally_complete_linear_order_bot α]
lemma cSup_empty : (Sup ∅ : α) = ⊥ :=
conditionally_complete_linear_order_bot.cSup_empty
lemma csupr_of_empty [is_empty ι] (f : ι → α) : (⨆ i, f i) = ⊥ :=
by rw [supr_of_empty', cSup_empty]
@[simp] lemma csupr_false (f : false → α) : (⨆ i, f i) = ⊥ := csupr_of_empty f
lemma is_lub_cSup' {s : set α} (hs : bdd_above s) : is_lub s (Sup s) :=
begin
rcases eq_empty_or_nonempty s with (rfl|hne),
{ simp only [cSup_empty, is_lub_empty] },
{ exact is_lub_cSup hne hs }
end
lemma cSup_le_iff' {s : set α} (hs : bdd_above s) {a : α} : Sup s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
is_lub_le_iff (is_lub_cSup' hs)
lemma cSup_le' {s : set α} {a : α} (h : a ∈ upper_bounds s) : Sup s ≤ a :=
(cSup_le_iff' ⟨a, h⟩).2 h
lemma exists_lt_of_lt_cSup' {s : set α} {a : α} (h : a < Sup s) : ∃ b ∈ s, a < b :=
by { contrapose! h, exact cSup_le' h }
lemma csupr_le_iff' {f : ι → α} (h : bdd_above (range f)) {a : α} :
(⨆ i, f i) ≤ a ↔ ∀ i, f i ≤ a :=
(cSup_le_iff' h).trans forall_range_iff
lemma csupr_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
cSup_le' $ forall_range_iff.2 h
lemma exists_lt_of_lt_csupr' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i :=
by { contrapose! h, exact csupr_le' h }
end conditionally_complete_linear_order_bot
namespace with_top
open_locale classical
variables [conditionally_complete_linear_order_bot α]
/-- The Sup of a non-empty set is its least upper bound for a conditionally
complete lattice with a top. -/
lemma is_lub_Sup' {β : Type*} [conditionally_complete_lattice β]
{s : set (with_top β)} (hs : s.nonempty) : is_lub s (Sup s) :=
begin
split,
{ show ite _ _ _ ∈ _,
split_ifs,
{ intros _ _, exact le_top },
{ rintro (⟨⟩|a) ha,
{ contradiction },
apply some_le_some.2,
exact le_cSup h_1 ha },
{ intros _ _, exact le_top } },
{ show ite _ _ _ ∈ _,
split_ifs,
{ rintro (⟨⟩|a) ha,
{ exact _root_.le_refl _ },
{ exact false.elim (not_top_le_coe a (ha h)) } },
{ rintro (⟨⟩|b) hb,
{ exact le_top },
refine some_le_some.2 (cSup_le _ _),
{ rcases hs with ⟨⟨⟩|b, hb⟩,
{ exact absurd hb h },
{ exact ⟨b, hb⟩ } },
{ intros a ha, exact some_le_some.1 (hb ha) } },
{ rintro (⟨⟩|b) hb,
{ exact _root_.le_refl _ },
{ exfalso, apply h_1, use b, intros a ha, exact some_le_some.1 (hb ha) } } }
end
lemma is_lub_Sup (s : set (with_top α)) : is_lub s (Sup s) :=
begin
cases s.eq_empty_or_nonempty with hs hs,
{ rw hs,
show is_lub ∅ (ite _ _ _),
split_ifs,
{ cases h },
{ rw [preimage_empty, cSup_empty], exact is_lub_empty },
{ exfalso, apply h_1, use ⊥, rintro a ⟨⟩ } },
exact is_lub_Sup' hs,
end
/-- The Inf of a bounded-below set is its greatest lower bound for a conditionally
complete lattice with a top. -/
lemma is_glb_Inf' {β : Type*} [conditionally_complete_lattice β]
{s : set (with_top β)} (hs : bdd_below s) : is_glb s (Inf s) :=
begin
split,
{ show ite _ _ _ ∈ _,
split_ifs,
{ intros a ha, exact top_le_iff.2 (set.mem_singleton_iff.1 (h ha)) },
{ rintro (⟨⟩|a) ha,
{ exact le_top },
refine some_le_some.2 (cInf_le _ ha),
rcases hs with ⟨⟨⟩|b, hb⟩,
{ exfalso,
apply h,
intros c hc,
rw [mem_singleton_iff, ←top_le_iff],
exact hb hc },
use b,
intros c hc,
exact some_le_some.1 (hb hc) } },
{ show ite _ _ _ ∈ _,
split_ifs,
{ intros _ _, exact le_top },
{ rintro (⟨⟩|a) ha,
{ exfalso, apply h, intros b hb, exact set.mem_singleton_iff.2 (top_le_iff.1 (ha hb)) },
{ refine some_le_some.2 (le_cInf _ _),
{ classical, contrapose! h,
rintros (⟨⟩|a) ha,
{ exact mem_singleton ⊤ },
{ exact (h ⟨a, ha⟩).elim }},
{ intros b hb,
rw ←some_le_some,
exact ha hb } } } }
end
lemma is_glb_Inf (s : set (with_top α)) : is_glb s (Inf s) :=
begin
by_cases hs : bdd_below s,
{ exact is_glb_Inf' hs },
{ exfalso, apply hs, use ⊥, intros _ _, exact bot_le },
end
noncomputable instance : complete_linear_order (with_top α) :=
{ Sup := Sup, le_Sup := assume s, (is_lub_Sup s).1, Sup_le := assume s, (is_lub_Sup s).2,
Inf := Inf, le_Inf := assume s, (is_glb_Inf s).2, Inf_le := assume s, (is_glb_Inf s).1,
.. with_top.linear_order, ..with_top.lattice, ..with_top.order_top, ..with_top.order_bot }
lemma coe_Sup {s : set α} (hb : bdd_above s) : (↑(Sup s) : with_top α) = (⨆a∈s, ↑a) :=
begin
cases s.eq_empty_or_nonempty with hs hs,
{ rw [hs, cSup_empty], simp only [set.mem_empty_eq, supr_bot, supr_false], refl },
apply le_antisymm,
{ refine (coe_le_iff.2 $ assume b hb, cSup_le hs $ assume a has, coe_le_coe.1 $ hb ▸ _),
exact (le_supr_of_le a $ le_supr_of_le has $ _root_.le_refl _) },
{ exact (supr_le $ assume a, supr_le $ assume ha, coe_le_coe.2 $ le_cSup hb ha) }
end
lemma coe_Inf {s : set α} (hs : s.nonempty) : (↑(Inf s) : with_top α) = (⨅a∈s, ↑a) :=
let ⟨x, hx⟩ := hs in
have (⨅a∈s, ↑a : with_top α) ≤ x, from infi_le_of_le x $ infi_le_of_le hx $ _root_.le_refl _,
let ⟨r, r_eq, hr⟩ := le_coe_iff.1 this in
le_antisymm
(le_infi $ assume a, le_infi $ assume ha, coe_le_coe.2 $ cInf_le (order_bot.bdd_below s) ha)
begin
refine (r_eq.symm ▸ coe_le_coe.2 $ le_cInf hs $ assume a has, coe_le_coe.1 $ _),
refine (r_eq ▸ infi_le_of_le a _),
exact (infi_le_of_le has $ _root_.le_refl _),
end
end with_top
namespace monotone
variables [preorder α] [conditionally_complete_lattice β] {f : α → β} (h_mono : monotone f)
/-! A monotone function into a conditionally complete lattice preserves the ordering properties of
`Sup` and `Inf`. -/
lemma le_cSup_image {s : set α} {c : α} (hcs : c ∈ s) (h_bdd : bdd_above s) :
f c ≤ Sup (f '' s) :=
le_cSup (map_bdd_above h_mono h_bdd) (mem_image_of_mem f hcs)
lemma cSup_image_le {s : set α} (hs : s.nonempty) {B : α} (hB: B ∈ upper_bounds s) :
Sup (f '' s) ≤ f B :=
cSup_le (nonempty.image f hs) (h_mono.mem_upper_bounds_image hB)
lemma cInf_image_le {s : set α} {c : α} (hcs : c ∈ s) (h_bdd : bdd_below s) :
Inf (f '' s) ≤ f c :=
@le_cSup_image (order_dual α) (order_dual β) _ _ _ (λ x y hxy, h_mono hxy) _ _ hcs h_bdd
lemma le_cInf_image {s : set α} (hs : s.nonempty) {B : α} (hB: B ∈ lower_bounds s) :
f B ≤ Inf (f '' s) :=
@cSup_image_le (order_dual α) (order_dual β) _ _ _ (λ x y hxy, h_mono hxy) _ hs _ hB
end monotone
namespace galois_connection
variables {γ : Type*} [conditionally_complete_lattice α] [conditionally_complete_lattice β]
[nonempty ι] {l : α → β} {u : β → α}
lemma l_cSup (gc : galois_connection l u) {s : set α} (hne : s.nonempty)
(hbdd : bdd_above s) :
l (Sup s) = ⨆ x : s, l x :=
eq.symm $ is_lub.csupr_set_eq (gc.is_lub_l_image $ is_lub_cSup hne hbdd) hne
lemma l_cSup' (gc : galois_connection l u) {s : set α} (hne : s.nonempty) (hbdd : bdd_above s) :
l (Sup s) = Sup (l '' s) :=
by rw [gc.l_cSup hne hbdd, csupr_set]
lemma l_csupr (gc : galois_connection l u) {f : ι → α}
(hf : bdd_above (range f)) :
l (⨆ i, f i) = ⨆ i, l (f i) :=
by rw [supr, gc.l_cSup (range_nonempty _) hf, supr_range']
lemma l_csupr_set (gc : galois_connection l u) {s : set γ} {f : γ → α}
(hf : bdd_above (f '' s)) (hne : s.nonempty) :
l (⨆ i : s, f i) = ⨆ i : s, l (f i) :=
by { haveI := hne.to_subtype, rw image_eq_range at hf, exact gc.l_csupr hf }
lemma u_cInf (gc : galois_connection l u) {s : set β} (hne : s.nonempty)
(hbdd : bdd_below s) :
u (Inf s) = ⨅ x : s, u x :=
gc.dual.l_cSup hne hbdd
lemma u_cInf' (gc : galois_connection l u) {s : set β} (hne : s.nonempty) (hbdd : bdd_below s) :
u (Inf s) = Inf (u '' s) :=
gc.dual.l_cSup' hne hbdd
lemma u_cinfi (gc : galois_connection l u) {f : ι → β}
(hf : bdd_below (range f)) :
u (⨅ i, f i) = ⨅ i, u (f i) :=
gc.dual.l_csupr hf
lemma u_cinfi_set (gc : galois_connection l u) {s : set γ} {f : γ → β}
(hf : bdd_below (f '' s)) (hne : s.nonempty) :
u (⨅ i : s, f i) = ⨅ i : s, u (f i) :=
gc.dual.l_csupr_set hf hne
end galois_connection
namespace order_iso
variables {γ : Type*} [conditionally_complete_lattice α] [conditionally_complete_lattice β]
[nonempty ι]
lemma map_cSup (e : α ≃o β) {s : set α} (hne : s.nonempty) (hbdd : bdd_above s) :
e (Sup s) = ⨆ x : s, e x :=
e.to_galois_connection.l_cSup hne hbdd
lemma map_cSup' (e : α ≃o β) {s : set α} (hne : s.nonempty) (hbdd : bdd_above s) :
e (Sup s) = Sup (e '' s) :=
e.to_galois_connection.l_cSup' hne hbdd
lemma map_csupr (e : α ≃o β) {f : ι → α} (hf : bdd_above (range f)) :
e (⨆ i, f i) = ⨆ i, e (f i) :=
e.to_galois_connection.l_csupr hf
lemma map_csupr_set (e : α ≃o β) {s : set γ} {f : γ → α}
(hf : bdd_above (f '' s)) (hne : s.nonempty) :
e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
e.to_galois_connection.l_csupr_set hf hne
lemma map_cInf (e : α ≃o β) {s : set α} (hne : s.nonempty) (hbdd : bdd_below s) :
e (Inf s) = ⨅ x : s, e x :=
e.dual.map_cSup hne hbdd
lemma map_cInf' (e : α ≃o β) {s : set α} (hne : s.nonempty) (hbdd : bdd_below s) :
e (Inf s) = Inf (e '' s) :=
e.dual.map_cSup' hne hbdd
lemma map_cinfi (e : α ≃o β) {f : ι → α} (hf : bdd_below (range f)) :
e (⨅ i, f i) = ⨅ i, e (f i) :=
e.dual.map_csupr hf
lemma map_cinfi_set (e : α ≃o β) {s : set γ} {f : γ → α}
(hf : bdd_below (f '' s)) (hne : s.nonempty) :
e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
e.dual.map_csupr_set hf hne
end order_iso
/-!
### Relation between `Sup` / `Inf` and `finset.sup'` / `finset.inf'`
Like the `Sup` of a `conditionally_complete_lattice`, `finset.sup'` also requires the set to be
non-empty. As a result, we can translate between the two.
-/
namespace finset
lemma sup'_eq_cSup_image [conditionally_complete_lattice β] (s : finset α) (H) (f : α → β) :
s.sup' H f = Sup (f '' s) :=
begin
apply le_antisymm,
{ refine (finset.sup'_le _ _ $ λ a ha, _),
refine le_cSup ⟨s.sup' H f, _⟩ ⟨a, ha, rfl⟩,
rintros i ⟨j, hj, rfl⟩,
exact finset.le_sup' _ hj },
{ apply cSup_le ((coe_nonempty.mpr H).image _),
rintros _ ⟨a, ha, rfl⟩,
exact finset.le_sup' _ ha, }
end
lemma inf'_eq_cInf_image [conditionally_complete_lattice β] (s : finset α) (H) (f : α → β) :
s.inf' H f = Inf (f '' s) :=
@sup'_eq_cSup_image _ (order_dual β) _ _ _ _
lemma sup'_id_eq_cSup [conditionally_complete_lattice α] (s : finset α) (H) :
s.sup' H id = Sup s :=
by rw [sup'_eq_cSup_image s H, set.image_id]
lemma inf'_id_eq_cInf [conditionally_complete_lattice α] (s : finset α) (H) :
s.inf' H id = Inf s :=
@sup'_id_eq_cSup (order_dual α) _ _ _
end finset
section with_top_bot
/-!
### Complete lattice structure on `with_top (with_bot α)`
If `α` is a `conditionally_complete_lattice`, then we show that `with_top α` and `with_bot α`
also inherit the structure of conditionally complete lattices. Furthermore, we show
that `with_top (with_bot α)` naturally inherits the structure of a complete lattice. Note that
for α a conditionally complete lattice, `Sup` and `Inf` both return junk values
for sets which are empty or unbounded. The extension of `Sup` to `with_top α` fixes
the unboundedness problem and the extension to `with_bot α` fixes the problem with
the empty set.
This result can be used to show that the extended reals [-∞, ∞] are a complete lattice.
-/
open_locale classical
/-- Adding a top element to a conditionally complete lattice
gives a conditionally complete lattice -/
noncomputable instance with_top.conditionally_complete_lattice
{α : Type*} [conditionally_complete_lattice α] :
conditionally_complete_lattice (with_top α) :=
{ le_cSup := λ S a hS haS, (with_top.is_lub_Sup' ⟨a, haS⟩).1 haS,
cSup_le := λ S a hS haS, (with_top.is_lub_Sup' hS).2 haS,
cInf_le := λ S a hS haS, (with_top.is_glb_Inf' hS).1 haS,
le_cInf := λ S a hS haS, (with_top.is_glb_Inf' ⟨a, haS⟩).2 haS,
..with_top.lattice,
..with_top.has_Sup,
..with_top.has_Inf }
/-- Adding a bottom element to a conditionally complete lattice
gives a conditionally complete lattice -/
noncomputable instance with_bot.conditionally_complete_lattice
{α : Type*} [conditionally_complete_lattice α] :
conditionally_complete_lattice (with_bot α) :=
{ le_cSup := (@with_top.conditionally_complete_lattice (order_dual α) _).cInf_le,
cSup_le := (@with_top.conditionally_complete_lattice (order_dual α) _).le_cInf,
cInf_le := (@with_top.conditionally_complete_lattice (order_dual α) _).le_cSup,
le_cInf := (@with_top.conditionally_complete_lattice (order_dual α) _).cSup_le,
..with_bot.lattice,
..with_bot.has_Sup,
..with_bot.has_Inf }
/-- Adding a bottom and a top to a conditionally complete lattice gives a bounded lattice-/
noncomputable instance with_top.with_bot.bounded_lattice {α : Type*}
[conditionally_complete_lattice α] : bounded_lattice (with_top (with_bot α)) :=
{ ..with_top.order_bot,
..with_top.order_top,
..conditionally_complete_lattice.to_lattice _ }
noncomputable instance with_top.with_bot.complete_lattice {α : Type*}
[conditionally_complete_lattice α] : complete_lattice (with_top (with_bot α)) :=
{ le_Sup := λ S a haS, (with_top.is_lub_Sup' ⟨a, haS⟩).1 haS,
Sup_le := λ S a ha,
begin
cases S.eq_empty_or_nonempty with h,
{ show ite _ _ _ ≤ a,
split_ifs,
{ rw h at h_1, cases h_1 },
{ convert bot_le, convert with_bot.cSup_empty, rw h, refl },
{ exfalso, apply h_2, use ⊥, rw h, rintro b ⟨⟩ } },
{ refine (with_top.is_lub_Sup' h).2 ha }
end,
Inf_le := λ S a haS,
show ite _ _ _ ≤ a,
begin
split_ifs,
{ cases a with a, exact _root_.le_refl _,
cases (h haS); tauto },
{ cases a,
{ exact le_top },
{ apply with_top.some_le_some.2, refine cInf_le _ haS, use ⊥, intros b hb, exact bot_le } }
end,
le_Inf := λ S a haS, (with_top.is_glb_Inf' ⟨a, haS⟩).2 haS,
..with_top.has_Inf,
..with_top.has_Sup,
..with_top.with_bot.bounded_lattice }
noncomputable instance with_top.with_bot.complete_linear_order {α : Type*}
[conditionally_complete_linear_order α] : complete_linear_order (with_top (with_bot α)) :=
{ .. with_top.with_bot.complete_lattice,
.. with_top.linear_order }
end with_top_bot
section subtype
variables (s : set α)
/-! ### Subtypes of conditionally complete linear orders
In this section we give conditions on a subset of a conditionally complete linear order, to ensure
that the subtype is itself conditionally complete.
We check that an `ord_connected` set satisfies these conditions.
TODO There are several possible variants; the `conditionally_complete_linear_order` could be changed
to `conditionally_complete_linear_order_bot` or `complete_linear_order`.
-/
open_locale classical
section has_Sup
variables [has_Sup α]
/-- `has_Sup` structure on a nonempty subset `s` of an object with `has_Sup`. This definition is
non-canonical (it uses `default s`); it should be used only as here, as an auxiliary instance in the
construction of the `conditionally_complete_linear_order` structure. -/
noncomputable def subset_has_Sup [inhabited s] : has_Sup s := {Sup := λ t,
if ht : Sup (coe '' t : set α) ∈ s then ⟨Sup (coe '' t : set α), ht⟩ else default s}
local attribute [instance] subset_has_Sup
@[simp] lemma subset_Sup_def [inhabited s] :
@Sup s _ = λ t,
if ht : Sup (coe '' t : set α) ∈ s then ⟨Sup (coe '' t : set α), ht⟩ else default s :=
rfl
lemma subset_Sup_of_within [inhabited s] {t : set s} (h : Sup (coe '' t : set α) ∈ s) :
Sup (coe '' t : set α) = (@Sup s _ t : α) :=
by simp [dif_pos h]
end has_Sup
section has_Inf
variables [has_Inf α]
/-- `has_Inf` structure on a nonempty subset `s` of an object with `has_Inf`. This definition is
non-canonical (it uses `default s`); it should be used only as here, as an auxiliary instance in the
construction of the `conditionally_complete_linear_order` structure. -/
noncomputable def subset_has_Inf [inhabited s] : has_Inf s := {Inf := λ t,
if ht : Inf (coe '' t : set α) ∈ s then ⟨Inf (coe '' t : set α), ht⟩ else default s}
local attribute [instance] subset_has_Inf
@[simp] lemma subset_Inf_def [inhabited s] :
@Inf s _ = λ t,
if ht : Inf (coe '' t : set α) ∈ s then ⟨Inf (coe '' t : set α), ht⟩ else default s :=
rfl
lemma subset_Inf_of_within [inhabited s] {t : set s} (h : Inf (coe '' t : set α) ∈ s) :
Inf (coe '' t : set α) = (@Inf s _ t : α) :=
by simp [dif_pos h]
end has_Inf
variables [conditionally_complete_linear_order α]
local attribute [instance] subset_has_Sup
local attribute [instance] subset_has_Inf
/-- For a nonempty subset of a conditionally complete linear order to be a conditionally complete
linear order, it suffices that it contain the `Sup` of all its nonempty bounded-above subsets, and
the `Inf` of all its nonempty bounded-below subsets.
See note [reducible non-instances]. -/
@[reducible]
noncomputable def subset_conditionally_complete_linear_order [inhabited s]
(h_Sup : ∀ {t : set s} (ht : t.nonempty) (h_bdd : bdd_above t), Sup (coe '' t : set α) ∈ s)
(h_Inf : ∀ {t : set s} (ht : t.nonempty) (h_bdd : bdd_below t), Inf (coe '' t : set α) ∈ s) :
conditionally_complete_linear_order s :=
{ le_cSup := begin
rintros t c h_bdd hct,
-- The following would be a more natural way to finish, but gives a "deep recursion" error:
-- simpa [subset_Sup_of_within (h_Sup t)] using
-- (strict_mono_coe s).monotone.le_cSup_image hct h_bdd,
have := (subtype.mono_coe s).le_cSup_image hct h_bdd,
rwa subset_Sup_of_within s (h_Sup ⟨c, hct⟩ h_bdd) at this,
end,
cSup_le := begin
rintros t B ht hB,
have := (subtype.mono_coe s).cSup_image_le ht hB,
rwa subset_Sup_of_within s (h_Sup ht ⟨B, hB⟩) at this,
end,
le_cInf := begin
intros t B ht hB,
have := (subtype.mono_coe s).le_cInf_image ht hB,
rwa subset_Inf_of_within s (h_Inf ht ⟨B, hB⟩) at this,
end,
cInf_le := begin
rintros t c h_bdd hct,
have := (subtype.mono_coe s).cInf_image_le hct h_bdd,
rwa subset_Inf_of_within s (h_Inf ⟨c, hct⟩ h_bdd) at this,
end,
..subset_has_Sup s,
..subset_has_Inf s,
..distrib_lattice.to_lattice s,
..(infer_instance : linear_order s) }
section ord_connected
/-- The `Sup` function on a nonempty `ord_connected` set `s` in a conditionally complete linear
order takes values within `s`, for all nonempty bounded-above subsets of `s`. -/
lemma Sup_within_of_ord_connected
{s : set α} [hs : ord_connected s] ⦃t : set s⦄ (ht : t.nonempty) (h_bdd : bdd_above t) :
Sup (coe '' t : set α) ∈ s :=
begin
obtain ⟨c, hct⟩ : ∃ c, c ∈ t := ht,
obtain ⟨B, hB⟩ : ∃ B, B ∈ upper_bounds t := h_bdd,
refine hs.out c.2 B.2 ⟨_, _⟩,
{ exact (subtype.mono_coe s).le_cSup_image hct ⟨B, hB⟩ },
{ exact (subtype.mono_coe s).cSup_image_le ⟨c, hct⟩ hB },
end
/-- The `Inf` function on a nonempty `ord_connected` set `s` in a conditionally complete linear
order takes values within `s`, for all nonempty bounded-below subsets of `s`. -/
lemma Inf_within_of_ord_connected
{s : set α} [hs : ord_connected s] ⦃t : set s⦄ (ht : t.nonempty) (h_bdd : bdd_below t) :
Inf (coe '' t : set α) ∈ s :=
begin
obtain ⟨c, hct⟩ : ∃ c, c ∈ t := ht,
obtain ⟨B, hB⟩ : ∃ B, B ∈ lower_bounds t := h_bdd,
refine hs.out B.2 c.2 ⟨_, _⟩,
{ exact (subtype.mono_coe s).le_cInf_image ⟨c, hct⟩ hB },
{ exact (subtype.mono_coe s).cInf_image_le hct ⟨B, hB⟩ },
end
/-- A nonempty `ord_connected` set in a conditionally complete linear order is naturally a
conditionally complete linear order. -/
noncomputable instance ord_connected_subset_conditionally_complete_linear_order
[inhabited s] [ord_connected s] :
conditionally_complete_linear_order s :=
subset_conditionally_complete_linear_order s Sup_within_of_ord_connected Inf_within_of_ord_connected
end ord_connected
end subtype
|
fc44fba508bcfd63eb811eccd4d2793e975eabba
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/tactic/omega/find_ees.lean
|
83968c777d89856f5e8728ef1e4f02ca9ad19dbb
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,568
|
lean
|
/-
Copyright (c) 2019 Seul Baek. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Seul Baek
-/
/-
A tactic for finding a sequence of equality
elimination rules for a given set of constraints.
-/
import tactic.omega.eq_elim
variables {α β : Type}
open tactic
namespace omega
/-- The state of equality elimination proof search. `eqs` is the list of
equality constraints, and each `t ∈ eqs` represents the constraint `0 = t`.
Similarly, `les` is the list of inequality constraints, and each `t ∈ eqs`
represents the constraint `0 < t`. `ees` is the sequence of equality
elimination steps that have been used so far to obtain the current set of
constraints. The list `ees` grows over time until `eqs` becomes empty. -/
@[derive inhabited]
structure ee_state :=
(eqs : list term)
(les : list term)
(ees : list ee)
@[reducible] meta def eqelim := state_t ee_state tactic
meta def abort {α : Type} : eqelim α := ⟨λ x, failed⟩
private meta def mk_eqelim_state
(eqs les : list term) : tactic ee_state :=
return (ee_state.mk eqs les [])
/-- Get the current list of equality constraints. -/
meta def get_eqs : eqelim (list term) := ee_state.eqs <$> get
/-- Get the current list of inequality constraints. -/
meta def get_les : eqelim (list term) := ee_state.les <$> get
/-- Get the current sequence of equality elimiation steps. -/
meta def get_ees : eqelim (list ee) := ee_state.ees <$> get
/-- Update the list of equality constraints. -/
meta def set_eqs (eqs : list term) : eqelim unit := modify $ λ s, {eqs := eqs, ..s}
/-- Update the list of inequality constraints. -/
meta def set_les (les : list term) : eqelim unit := modify $ λ s, {les := les, ..s}
/-- Update the sequence of equality elimiation steps. -/
meta def set_ees (es : list ee) : eqelim unit := modify $ λ s, {ees := es, ..s}
/-- Add a new step to the sequence of equality elimination steps. -/
meta def add_ee (e : ee) : eqelim unit := do
es ← get_ees, set_ees (es ++ [e])
/-- Return the first equality constraint in the current list of
equality constraints. The returned constraint is 'popped' and
no longer available in the state. -/
meta def head_eq : eqelim term :=
do eqs ← get_eqs,
match eqs with
| [] := abort
| (eq::eqs') := set_eqs eqs' >> pure eq
end
meta def run {α : Type} (eqs les : list term) (r : eqelim α) : tactic α :=
prod.fst <$> (mk_eqelim_state eqs les >>= r.run)
/-- If `t1` succeeds and returns a value, 'commit' to that choice and
run `t3` with the returned value as argument. Do not backtrack
to try `t2` even if `t3` fails. If `t1` fails outright, run `t2`. -/
meta def ee_commit (t1 : eqelim α) (t2 : eqelim β)
(t3 : α → eqelim β) : eqelim β :=
do x ← ((t1 >>= return ∘ some) <|> return none),
match x with
| none := t2
| (some a) := t3 a
end
local notation t1 ` !>>= ` t2 `; ` t3 := ee_commit t1 t2 t3
private meta def of_tactic {α : Type} : tactic α → eqelim α := state_t.lift
/-- GCD of all elements of the list. -/
def gcd : list int → nat
| [] := 0
| (i::is) := nat.gcd i.nat_abs (gcd is)
/-- GCD of all coefficients in a term. -/
meta def get_gcd (t : term) : eqelim int :=
pure ↑(gcd t.snd)
/-- Divide a term by an integer if the integer divides
the constant component of the term. It is assumed that
the integer also divides all coefficients of the term. -/
meta def factor (i : int) (t : term) : eqelim term :=
if i ∣ t.fst
then add_ee (ee.factor i) >> pure (t.div i)
else abort
/-- If list has a nonzero element, return the minimum element
(by absolute value) with its index. Otherwise, return none. -/
meta def find_min_coeff_core : list int → eqelim (int × nat)
| [] := abort
| (i::is) := (do
(j,n) ← find_min_coeff_core is,
if i ≠ 0 ∧ i.nat_abs ≤ j.nat_abs
then pure (i,0)
else pure (j,n+1)) <|>
(if i = (0 : int) then abort else pure (i,0))
/-- Find and return the smallest coefficient (by absolute value) in a term,
along with the coefficient's variable index and the term itself.
If the coefficient is negative, negate both the coefficient and the term
before returning them. -/
meta def find_min_coeff (t : term) : eqelim (int × nat × term) :=
do (i,n) ← find_min_coeff_core t.snd,
if 0 < i
then pure (i,n,t)
else add_ee (ee.neg) >> pure (-i,n,t.neg)
/-- Find an appropriate equality elimination step for the
current state and apply it. -/
meta def elim_eq : eqelim unit := do
t ← head_eq,
i ← get_gcd t,
factor i t !>>= (set_eqs [] >> add_ee (ee.nondiv i));
λ s, find_min_coeff s !>>= add_ee ee.drop;
λ ⟨i, n, u⟩,
if i = 1
then do eqs ← get_eqs,
les ← get_les,
set_eqs (eqs.map (cancel n u)),
set_les (les.map (cancel n u)),
add_ee (ee.cancel n)
else let v : term := coeffs_reduce n u.fst u.snd in
let r : term := rhs n u.fst u.snd in
do eqs ← get_eqs,
les ← get_les,
set_eqs (v::eqs.map (subst n r)),
set_les (les.map (subst n r)),
add_ee (ee.reduce n),
elim_eq
/-- Find and return the sequence of steps for eliminating
all equality constraints in the current state. -/
meta def elim_eqs : eqelim (list ee) :=
elim_eq !>>= get_ees; λ _, elim_eqs
/-- Given a linear constrain clause, return a list of steps for eliminating its equality
constraints. -/
meta def find_ees : clause → tactic (list ee)
| (eqs, les) := run eqs les elim_eqs
end omega
|
69b86af4cd3f7403a31833af147b35eba3642d1e
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/algebra/order/with_zero.lean
|
33eba665df98db3271bfa1ba42fd3f71a87c2faf
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 12,922
|
lean
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Johan Commelin, Patrick Massot
-/
import algebra.order.group
import tactic.abel
/-!
# Linearly ordered commutative groups and monoids with a zero element adjoined
This file sets up a special class of linearly ordered commutative monoids
that show up as the target of so-called “valuations” in algebraic number theory.
Usually, in the informal literature, these objects are constructed
by taking a linearly ordered commutative group Γ and formally adjoining a zero element: Γ ∪ {0}.
The disadvantage is that a type such as `nnreal` is not of that form,
whereas it is a very common target for valuations.
The solutions is to use a typeclass, and that is exactly what we do in this file.
Note that to avoid issues with import cycles, `linear_ordered_comm_monoid_with_zero` is defined
in another file. However, the lemmas about it are stated here.
-/
set_option old_structure_cmd true
/-- A linearly ordered commutative group with a zero element. -/
class linear_ordered_comm_group_with_zero (α : Type*)
extends linear_ordered_comm_monoid_with_zero α, comm_group_with_zero α
variables {α : Type*}
variables {a b c d x y z : α}
instance [linear_ordered_add_comm_monoid_with_top α] :
linear_ordered_comm_monoid_with_zero (multiplicative αᵒᵈ) :=
{ zero := multiplicative.of_add (⊤ : α),
zero_mul := top_add,
mul_zero := add_top,
zero_le_one := (le_top : (0 : α) ≤ ⊤),
..multiplicative.ordered_comm_monoid,
..multiplicative.linear_order }
instance [linear_ordered_add_comm_group_with_top α] :
linear_ordered_comm_group_with_zero (multiplicative αᵒᵈ) :=
{ inv_zero := linear_ordered_add_comm_group_with_top.neg_top,
mul_inv_cancel := linear_ordered_add_comm_group_with_top.add_neg_cancel,
..multiplicative.div_inv_monoid,
..multiplicative.linear_ordered_comm_monoid_with_zero,
..multiplicative.nontrivial }
section monoid
variable [monoid α]
section preorder
variable [preorder α]
section left
variable [covariant_class α α (*) (≤)]
lemma left.one_le_pow_of_le : ∀ {n : ℕ} {x : α}, 1 ≤ x → 1 ≤ x^n
| 0 x _ := (pow_zero x).symm.le
| (n + 1) x H := calc 1 ≤ x : H
... = x * 1 : (mul_one x).symm
... ≤ x * x ^ n : mul_le_mul_left' (left.one_le_pow_of_le H) x
... = x ^ n.succ : (pow_succ x n).symm
end left
section right
variable [covariant_class α α (function.swap (*)) (≤)]
lemma right.one_le_pow_of_le {x : α} (H : 1 ≤ x) :
∀ {n : ℕ}, 1 ≤ x^n
| 0 := (pow_zero _).symm.le
| (n + 1) := calc 1 ≤ x : H
... = 1 * x : (one_mul x).symm
... ≤ x ^ n * x : mul_le_mul_right' right.one_le_pow_of_le x
... = x ^ n.succ : (pow_succ' x n).symm
lemma right.pow_le_one_of_le {x : α} (H : x ≤ 1) :
∀ {n : ℕ}, x^n ≤ 1
| 0 := (pow_zero _).le
| (n + 1) := calc x ^ n.succ = x ^ n * x : pow_succ' x n
... ≤ 1 * x : mul_le_mul_right' right.pow_le_one_of_le x
... = x : one_mul x
... ≤ 1 : H
end right
lemma pow_le_pow_of_le [covariant_class α α (*) (≤)] [covariant_class α α (function.swap (*)) (≤)]
{x y : α} (H : x ≤ y) :
∀ {n : ℕ} , x^n ≤ y^n
| 0 := (pow_zero _).le.trans (pow_zero _).symm.le
| (n + 1) := calc x ^ n.succ = x * x ^ n : pow_succ x n
... ≤ y * x ^ n : mul_le_mul_right' H (x ^ n)
... ≤ y * y ^ n : mul_le_mul_left' pow_le_pow_of_le y
... = y ^ n.succ : (pow_succ y n).symm
lemma left.pow_lt_one_of_lt [covariant_class α α (*) (<)] {n : ℕ} {x : α} (n0 : 0 < n) (H : x < 1) :
x^n < 1 :=
begin
refine nat.le_induction ((pow_one _).le.trans_lt H) (λ n n1 hn, _) _ (nat.succ_le_iff.mpr n0),
calc x ^ (n + 1) = x * x ^ n : pow_succ x n
... < x * 1 : mul_lt_mul_left' hn x
... = x : mul_one x
... < 1 : H
end
lemma left.pow_lt_one_iff {α: Type*} [monoid α] [linear_order α]
[covariant_class α α (*) (<)] {n : ℕ} {x : α} (n0 : 0 < n) :
x^n < 1 ↔ x < 1 :=
⟨λ H, not_le.mp (λ k, not_le.mpr H (by
{ haveI := has_mul.to_covariant_class_left α,
exact left.one_le_pow_of_le k})), left.pow_lt_one_of_lt n0⟩
lemma right.pow_lt_one_of_lt [covariant_class α α (function.swap (*)) (<)] {n : ℕ} {x : α}
(n0 : 0 < n) (H : x < 1) :
x^n < 1 :=
begin
refine nat.le_induction ((pow_one _).le.trans_lt H) (λ n n1 hn, _) _ (nat.succ_le_iff.mpr n0),
calc x ^ (n + 1) = x ^ n * x : pow_succ' x n
... < 1 * x : mul_lt_mul_right' hn x
... = x : one_mul x
... < 1 : H
end
lemma right.pow_lt_one_iff {α: Type*} [monoid α] [linear_order α]
[covariant_class α α (function.swap (*)) (<)] {n : ℕ} {x : α} (n0 : 0 < n) :
x^n < 1 ↔ x < 1 :=
⟨λ H, not_le.mp (λ k, not_le.mpr H (by
{ haveI := has_mul.to_covariant_class_right α,
exact right.one_le_pow_of_le k})), right.pow_lt_one_of_lt n0⟩
end preorder
section left_right
variables [linear_order α]
[covariant_class α α (*) (≤)] [covariant_class α α (function.swap (*)) (≤)]
end left_right
end monoid
instance [linear_ordered_comm_monoid α] :
linear_ordered_comm_monoid_with_zero (with_zero α) :=
{ mul_le_mul_left := λ x y, mul_le_mul_left',
zero_le_one := with_zero.zero_le _,
..with_zero.linear_order,
..with_zero.comm_monoid_with_zero }
instance [linear_ordered_comm_group α] :
linear_ordered_comm_group_with_zero (with_zero α) :=
{ ..with_zero.linear_ordered_comm_monoid_with_zero,
..with_zero.comm_group_with_zero }
section linear_ordered_comm_monoid
variables [linear_ordered_comm_monoid_with_zero α]
/-
The following facts are true more generally in a (linearly) ordered commutative monoid.
-/
/-- Pullback a `linear_ordered_comm_monoid_with_zero` under an injective map.
See note [reducible non-instances]. -/
@[reducible]
def function.injective.linear_ordered_comm_monoid_with_zero {β : Type*}
[has_zero β] [has_one β] [has_mul β] [has_pow β ℕ]
(f : β → α) (hf : function.injective f) (zero : f 0 = 0) (one : f 1 = 1)
(mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
linear_ordered_comm_monoid_with_zero β :=
{ zero_le_one := show f 0 ≤ f 1, by simp only [zero, one,
linear_ordered_comm_monoid_with_zero.zero_le_one],
..linear_order.lift f hf,
..hf.ordered_comm_monoid f one mul npow,
..hf.comm_monoid_with_zero f zero one mul npow }
lemma zero_le_one' : (0 : α) ≤ 1 :=
linear_ordered_comm_monoid_with_zero.zero_le_one
@[simp] lemma zero_le' : 0 ≤ a :=
by simpa only [mul_zero, mul_one] using mul_le_mul_left' (@zero_le_one' α _) a
@[simp] lemma not_lt_zero' : ¬a < 0 :=
not_lt_of_le zero_le'
@[simp] lemma le_zero_iff : a ≤ 0 ↔ a = 0 :=
⟨λ h, le_antisymm h zero_le', λ h, h ▸ le_rfl⟩
lemma zero_lt_iff : 0 < a ↔ a ≠ 0 :=
⟨ne_of_gt, λ h, lt_of_le_of_ne zero_le' h.symm⟩
lemma ne_zero_of_lt (h : b < a) : a ≠ 0 :=
λ h1, not_lt_zero' $ show b < 0, from h1 ▸ h
lemma pow_pos_iff [no_zero_divisors α] {n : ℕ} (hn : 0 < n) : 0 < a ^ n ↔ 0 < a :=
by simp_rw [zero_lt_iff, pow_ne_zero_iff hn]
instance : linear_ordered_add_comm_monoid_with_top (additive αᵒᵈ) :=
{ top := (0 : α),
top_add' := λ a, (zero_mul a : (0 : α) * a = 0),
le_top := λ _, zero_le',
..additive.ordered_add_comm_monoid,
..additive.linear_order }
end linear_ordered_comm_monoid
variables [linear_ordered_comm_group_with_zero α]
lemma zero_lt_one₀ : (0 : α) < 1 :=
lt_of_le_of_ne zero_le_one' zero_ne_one
lemma le_of_le_mul_right (h : c ≠ 0) (hab : a * c ≤ b * c) : a ≤ b :=
by simpa only [mul_inv_cancel_right₀ h] using (mul_le_mul_right' hab c⁻¹)
lemma le_mul_inv_of_mul_le (h : c ≠ 0) (hab : a * c ≤ b) : a ≤ b * c⁻¹ :=
le_of_le_mul_right h (by simpa [h] using hab)
lemma mul_inv_le_of_le_mul (hab : a ≤ b * c) : a * c⁻¹ ≤ b :=
begin
by_cases h : c = 0,
{ simp [h], },
{ exact le_of_le_mul_right h (by simpa [h] using hab), },
end
lemma le_mul_inv_iff₀ (hc : c ≠ 0) : a ≤ b * c⁻¹ ↔ a * c ≤ b :=
⟨λ h, inv_inv c ▸ mul_inv_le_of_le_mul h, le_mul_inv_of_mul_le hc⟩
lemma mul_inv_le_iff₀ (hc : c ≠ 0) : a * c⁻¹ ≤ b ↔ a ≤ b * c :=
⟨λ h, inv_inv c ▸ le_mul_inv_of_mul_le (inv_ne_zero hc) h, mul_inv_le_of_le_mul⟩
lemma div_le_div₀ (a b c d : α) (hb : b ≠ 0) (hd : d ≠ 0) :
a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b :=
if ha : a = 0 then by simp [ha] else
if hc : c = 0 then by simp [inv_ne_zero hb, hc, hd] else
show (units.mk0 a ha) * (units.mk0 b hb)⁻¹ ≤ (units.mk0 c hc) * (units.mk0 d hd)⁻¹ ↔
(units.mk0 a ha) * (units.mk0 d hd) ≤ (units.mk0 c hc) * (units.mk0 b hb),
from mul_inv_le_mul_inv_iff'
@[simp] lemma units.zero_lt (u : αˣ) : (0 : α) < u :=
zero_lt_iff.2 $ u.ne_zero
lemma mul_lt_mul_of_lt_of_le₀ (hab : a ≤ b) (hb : b ≠ 0) (hcd : c < d) : a * c < b * d :=
have hd : d ≠ 0 := ne_zero_of_lt hcd,
if ha : a = 0 then by { rw [ha, zero_mul, zero_lt_iff], exact mul_ne_zero hb hd } else
if hc : c = 0 then by { rw [hc, mul_zero, zero_lt_iff], exact mul_ne_zero hb hd } else
show (units.mk0 a ha) * (units.mk0 c hc) < (units.mk0 b hb) * (units.mk0 d hd),
from mul_lt_mul_of_le_of_lt hab hcd
lemma mul_lt_mul₀ (hab : a < b) (hcd : c < d) : a * c < b * d :=
mul_lt_mul_of_lt_of_le₀ hab.le (ne_zero_of_lt hab) hcd
lemma mul_inv_lt_of_lt_mul₀ (h : x < y * z) : x * z⁻¹ < y :=
by { contrapose! h, simpa only [inv_inv] using mul_inv_le_of_le_mul h }
lemma inv_mul_lt_of_lt_mul₀ (h : x < y * z) : y⁻¹ * x < z :=
by { rw mul_comm at *, exact mul_inv_lt_of_lt_mul₀ h }
lemma mul_lt_right₀ (c : α) (h : a < b) (hc : c ≠ 0) : a * c < b * c :=
by { contrapose! h, exact le_of_le_mul_right hc h }
lemma pow_lt_pow_succ {x : α} {n : ℕ} (hx : 1 < x) : x ^ n < x ^ n.succ :=
by { rw [← one_mul (x ^ n), pow_succ],
exact mul_lt_right₀ _ hx (pow_ne_zero _ $ ne_of_gt (lt_trans zero_lt_one₀ hx)) }
lemma pow_lt_pow₀ {x : α} {m n : ℕ} (hx : 1 < x) (hmn : m < n) : x ^ m < x ^ n :=
by { induction hmn with n hmn ih, exacts [pow_lt_pow_succ hx, lt_trans ih (pow_lt_pow_succ hx)] }
lemma inv_lt_inv₀ (ha : a ≠ 0) (hb : b ≠ 0) : a⁻¹ < b⁻¹ ↔ b < a :=
show (units.mk0 a ha)⁻¹ < (units.mk0 b hb)⁻¹ ↔ (units.mk0 b hb) < (units.mk0 a ha),
from inv_lt_inv_iff
lemma inv_le_inv₀ (ha : a ≠ 0) (hb : b ≠ 0) : a⁻¹ ≤ b⁻¹ ↔ b ≤ a :=
show (units.mk0 a ha)⁻¹ ≤ (units.mk0 b hb)⁻¹ ↔ (units.mk0 b hb) ≤ (units.mk0 a ha),
from inv_le_inv_iff
lemma lt_of_mul_lt_mul_of_le₀ (h : a * b < c * d) (hc : 0 < c) (hh : c ≤ a) : b < d :=
begin
have ha : a ≠ 0 := ne_of_gt (lt_of_lt_of_le hc hh),
simp_rw ← inv_le_inv₀ ha (ne_of_gt hc) at hh,
have := mul_lt_mul_of_lt_of_le₀ hh (inv_ne_zero (ne_of_gt hc)) h,
simpa [inv_mul_cancel_left₀ ha, inv_mul_cancel_left₀ (ne_of_gt hc)] using this,
end
lemma mul_le_mul_right₀ (hc : c ≠ 0) : a * c ≤ b * c ↔ a ≤ b :=
⟨le_of_le_mul_right hc, λ hab, mul_le_mul_right' hab _⟩
lemma div_le_div_right₀ (hc : c ≠ 0) : a/c ≤ b/c ↔ a ≤ b :=
by rw [div_eq_mul_inv, div_eq_mul_inv, mul_le_mul_right₀ (inv_ne_zero hc)]
lemma le_div_iff₀ (hc : c ≠ 0) : a ≤ b/c ↔ a*c ≤ b :=
by rw [div_eq_mul_inv, le_mul_inv_iff₀ hc]
lemma div_le_iff₀ (hc : c ≠ 0) : a/c ≤ b ↔ a ≤ b*c :=
by rw [div_eq_mul_inv, mul_inv_le_iff₀ hc]
instance : linear_ordered_add_comm_group_with_top (additive αᵒᵈ) :=
{ neg_top := inv_zero,
add_neg_cancel := λ a ha, mul_inv_cancel ha,
..additive.sub_neg_monoid,
..additive.linear_ordered_add_comm_monoid_with_top,
..additive.nontrivial }
namespace monoid_hom
variables {R : Type*} [ring R] (f : R →* α)
theorem map_neg_one : f (-1) = 1 :=
(pow_eq_one_iff (nat.succ_ne_zero 1)).1 $
calc f (-1) ^ 2 = f (-1) * f(-1) : sq _
... = f ((-1) * - 1) : (f.map_mul _ _).symm
... = f ( - - 1) : congr_arg _ (neg_one_mul _)
... = f 1 : congr_arg _ (neg_neg _)
... = 1 : map_one f
@[simp] lemma map_neg (x : R) : f (-x) = f x :=
calc f (-x) = f (-1 * x) : congr_arg _ (neg_one_mul _).symm
... = f (-1) * f x : map_mul _ _ _
... = 1 * f x : _root_.congr_arg (λ g, g * (f x)) (map_neg_one f)
... = f x : one_mul _
lemma map_sub_swap (x y : R) : f (x - y) = f (y - x) :=
calc f (x - y) = f (-(y - x)) : congr_arg _ (neg_sub _ _).symm
... = _ : map_neg _ _
end monoid_hom
|
34c4f6e7a9fab6cee39bce0e8077eb8357013d55
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/list/func_auto.lean
|
81a67a6e69af13ec8da519fda9ee9bd7c20dbd8c
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,554
|
lean
|
/-
Copyright (c) 2019 Seul Baek. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Seul Baek
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.nat.basic
import Mathlib.PostPort
universes u v w
namespace Mathlib
namespace list
namespace func
/- Definitions for using lists as finite
representations of functions with domain ℕ. -/
def neg {α : Type u} [Neg α] (as : List α) : List α := map (fun (a : α) => -a) as
@[simp] def set {α : Type u} [Inhabited α] (a : α) : List α → ℕ → List α := sorry
@[simp] def get {α : Type u} [Inhabited α] : ℕ → List α → α := sorry
def equiv {α : Type u} [Inhabited α] (as1 : List α) (as2 : List α) :=
∀ (m : ℕ), get m as1 = get m as2
@[simp] def pointwise {α : Type u} {β : Type v} {γ : Type w} [Inhabited α] [Inhabited β]
(f : α → β → γ) : List α → List β → List γ :=
sorry
def add {α : Type u} [HasZero α] [Add α] : List α → List α → List α := pointwise Add.add
def sub {α : Type u} [HasZero α] [Sub α] : List α → List α → List α := pointwise Sub.sub
/- set -/
theorem length_set {α : Type u} {a : α} [Inhabited α] {m : ℕ} {as : List α} :
length (set a as m) = max (length as) (m + 1) :=
sorry
@[simp] theorem get_nil {α : Type u} [Inhabited α] {k : ℕ} : get k [] = Inhabited.default :=
nat.cases_on k (Eq.refl (get 0 [])) fun (k : ℕ) => Eq.refl (get (Nat.succ k) [])
theorem get_eq_default_of_le {α : Type u} [Inhabited α] (k : ℕ) {as : List α} :
length as ≤ k → get k as = Inhabited.default :=
sorry
@[simp] theorem get_set {α : Type u} [Inhabited α] {a : α} {k : ℕ} {as : List α} :
get k (set a as k) = a :=
sorry
theorem eq_get_of_mem {α : Type u} [Inhabited α] {a : α} {as : List α} :
a ∈ as → ∃ (n : ℕ), α → a = get n as :=
sorry
theorem mem_get_of_le {α : Type u} [Inhabited α] {n : ℕ} {as : List α} :
n < length as → get n as ∈ as :=
sorry
theorem mem_get_of_ne_zero {α : Type u} [Inhabited α] {n : ℕ} {as : List α} :
get n as ≠ Inhabited.default → get n as ∈ as :=
sorry
theorem get_set_eq_of_ne {α : Type u} [Inhabited α] {a : α} {as : List α} (k : ℕ) (m : ℕ) :
m ≠ k → get m (set a as k) = get m as :=
sorry
theorem get_map {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] {f : α → β} {n : ℕ}
{as : List α} : n < length as → get n (map f as) = f (get n as) :=
sorry
theorem get_map' {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] {f : α → β} {n : ℕ}
{as : List α} : f Inhabited.default = Inhabited.default → get n (map f as) = f (get n as) :=
sorry
theorem forall_val_of_forall_mem {α : Type u} [Inhabited α] {as : List α} {p : α → Prop} :
p Inhabited.default → (∀ (x : α), x ∈ as → p x) → ∀ (n : ℕ), p (get n as) :=
sorry
/- equiv -/
theorem equiv_refl {α : Type u} {as : List α} [Inhabited α] : equiv as as := fun (k : ℕ) => rfl
theorem equiv_symm {α : Type u} {as1 : List α} {as2 : List α} [Inhabited α] :
equiv as1 as2 → equiv as2 as1 :=
fun (h1 : equiv as1 as2) (k : ℕ) => Eq.symm (h1 k)
theorem equiv_trans {α : Type u} {as1 : List α} {as2 : List α} {as3 : List α} [Inhabited α] :
equiv as1 as2 → equiv as2 as3 → equiv as1 as3 :=
fun (h1 : equiv as1 as2) (h2 : equiv as2 as3) (k : ℕ) => Eq.trans (h1 k) (h2 k)
theorem equiv_of_eq {α : Type u} {as1 : List α} {as2 : List α} [Inhabited α] :
as1 = as2 → equiv as1 as2 :=
fun (h1 : as1 = as2) => eq.mpr (id (Eq._oldrec (Eq.refl (equiv as1 as2)) h1)) equiv_refl
theorem eq_of_equiv {α : Type u} [Inhabited α] {as1 : List α} {as2 : List α} :
length as1 = length as2 → equiv as1 as2 → as1 = as2 :=
sorry
end func
-- We want to drop the `inhabited` instances for a moment,
-- so we close and open the namespace
namespace func
/- neg -/
@[simp] theorem get_neg {α : Type u} [add_group α] {k : ℕ} {as : List α} :
get k (neg as) = -get k as :=
sorry
@[simp] theorem length_neg {α : Type u} [Neg α] (as : List α) : length (neg as) = length as := sorry
/- pointwise -/
theorem nil_pointwise {α : Type u} {β : Type v} {γ : Type w} [Inhabited α] [Inhabited β]
{f : α → β → γ} (bs : List β) : pointwise f [] bs = map (f Inhabited.default) bs :=
sorry
theorem pointwise_nil {α : Type u} {β : Type v} {γ : Type w} [Inhabited α] [Inhabited β]
{f : α → β → γ} (as : List α) :
pointwise f as [] = map (fun (a : α) => f a Inhabited.default) as :=
sorry
theorem get_pointwise {α : Type u} {β : Type v} {γ : Type w} [Inhabited α] [Inhabited β]
[Inhabited γ] {f : α → β → γ} (h1 : f Inhabited.default Inhabited.default = Inhabited.default)
(k : ℕ) (as : List α) (bs : List β) : get k (pointwise f as bs) = f (get k as) (get k bs) :=
sorry
theorem length_pointwise {α : Type u} {β : Type v} {γ : Type w} [Inhabited α] [Inhabited β]
{f : α → β → γ} {as : List α} {bs : List β} :
length (pointwise f as bs) = max (length as) (length bs) :=
sorry
end func
namespace func
/- add -/
@[simp] theorem get_add {α : Type u} [add_monoid α] {k : ℕ} {xs : List α} {ys : List α} :
get k (add xs ys) = get k xs + get k ys :=
get_pointwise (zero_add Inhabited.default) k xs ys
@[simp] theorem length_add {α : Type u} [HasZero α] [Add α] {xs : List α} {ys : List α} :
length (add xs ys) = max (length xs) (length ys) :=
length_pointwise
@[simp] theorem nil_add {α : Type u} [add_monoid α] (as : List α) : add [] as = as := sorry
@[simp] theorem add_nil {α : Type u} [add_monoid α] (as : List α) : add as [] = as := sorry
theorem map_add_map {α : Type u} [add_monoid α] (f : α → α) (g : α → α) {as : List α} :
add (map f as) (map g as) = map (fun (x : α) => f x + g x) as :=
sorry
/- sub -/
@[simp] theorem get_sub {α : Type u} [add_group α] {k : ℕ} {xs : List α} {ys : List α} :
get k (sub xs ys) = get k xs - get k ys :=
get_pointwise (sub_zero Inhabited.default) k xs ys
@[simp] theorem length_sub {α : Type u} [HasZero α] [Sub α] {xs : List α} {ys : List α} :
length (sub xs ys) = max (length xs) (length ys) :=
length_pointwise
@[simp] theorem nil_sub {α : Type} [add_group α] (as : List α) : sub [] as = neg as := sorry
@[simp] theorem sub_nil {α : Type} [add_group α] (as : List α) : sub as [] = as := sorry
end Mathlib
|
0079335e814b77ff6fe5a49eeb6357714d6a65ef
|
b3fced0f3ff82d577384fe81653e47df68bb2fa1
|
/src/measure_theory/measurable_space.lean
|
c2b53de9234062096219ed48c6bf98f191147cdc
|
[
"Apache-2.0"
] |
permissive
|
ratmice/mathlib
|
93b251ef5df08b6fd55074650ff47fdcc41a4c75
|
3a948a6a4cd5968d60e15ed914b1ad2f4423af8d
|
refs/heads/master
| 1,599,240,104,318
| 1,572,981,183,000
| 1,572,981,183,000
| 219,830,178
| 0
| 0
|
Apache-2.0
| 1,572,980,897,000
| 1,572,980,896,000
| null |
UTF-8
|
Lean
| false
| false
| 42,876
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
Measurable spaces -- σ-algberas
-/
import data.set.disjointed order.galois_connection data.set.countable
/-!
# Measurable spaces and measurable functions
This file defines measurable spaces and the functions and isomorphisms
between them.
A measurable space is a set equipped with a σ-algebra, a collection of
subsets closed under complementation and countable union. A function
between measurable spaces is measurable if the preimage of each
measurable subset is measurable.
σ-algebras on a fixed set α form a complete lattice. Here we order
σ-algebras by writing m₁ ≤ m₂ if every set which is m₁-measurable is
also m₂-measurable (that is, m₁ is a subset of m₂). In particular, any
collection of subsets of α generates a smallest σ-algebra which
contains all of them. A function f : α → β induces a Galois connection
between the lattices of σ-algebras on α and β.
A measurable equivalence between measurable spaces is an equivalence
which respects the σ-algebras, that is, for which both directions of
the equivalence are measurable functions.
## Main statements
The main theorem of this file is Dynkin's π-λ theorem, which appears
here as an induction principle `induction_on_inter`. Suppose s is a
collection of subsets of α such that the intersection of two members
of s belongs to s whenever it is nonempty. Let m be the σ-algebra
generated by s. In order to check that a predicate C holds on every
member of m, it suffices to check that C holds on the members of s and
that C is preserved by complementation and *disjoint* countable
unions.
## Implementation notes
Measurability of a function f : α → β between measurable spaces is
defined in terms of the Galois connection induced by f.
## References
* https://en.wikipedia.org/wiki/Measurable_space
* https://en.wikipedia.org/wiki/Sigma-algebra
* https://en.wikipedia.org/wiki/Dynkin_system
## Tags
measurable space, measurable function, dynkin system
-/
local attribute [instance] classical.prop_decidable
open set lattice encodable
open_locale classical
universes u v w x
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} {ι : Sort x}
{s t u : set α}
structure measurable_space (α : Type u) :=
(is_measurable : set α → Prop)
(is_measurable_empty : is_measurable ∅)
(is_measurable_compl : ∀s, is_measurable s → is_measurable (- s))
(is_measurable_Union : ∀f:ℕ → set α, (∀i, is_measurable (f i)) → is_measurable (⋃i, f i))
attribute [class] measurable_space
section
variable [measurable_space α]
/-- `is_measurable s` means that `s` is measurable (in the ambient measure space on `α`) -/
def is_measurable : set α → Prop := ‹measurable_space α›.is_measurable
lemma is_measurable.empty : is_measurable (∅ : set α) :=
‹measurable_space α›.is_measurable_empty
lemma is_measurable.compl : is_measurable s → is_measurable (-s) :=
‹measurable_space α›.is_measurable_compl s
lemma is_measurable.compl_iff : is_measurable (-s) ↔ is_measurable s :=
⟨λ h, by simpa using h.compl, is_measurable.compl⟩
lemma is_measurable.univ : is_measurable (univ : set α) :=
by simpa using (@is_measurable.empty α _).compl
lemma encodable.Union_decode2 {α} [encodable β] (f : β → set α) :
(⋃ b, f b) = ⋃ (i : ℕ) (b ∈ decode2 β i), f b :=
ext $ by simp [mem_decode2, exists_swap]
@[elab_as_eliminator] lemma encodable.Union_decode2_cases
{α} [encodable β] {f : β → set α} {C : set α → Prop}
(H0 : C ∅) (H1 : ∀ b, C (f b)) {n} :
C (⋃ b ∈ decode2 β n, f b) :=
match decode2 β n with
| none := by simp; apply H0
| (some b) := by convert H1 b; simp [ext_iff]
end
lemma is_measurable.Union [encodable β] {f : β → set α} (h : ∀b, is_measurable (f b)) :
is_measurable (⋃b, f b) :=
by rw encodable.Union_decode2; exact
‹measurable_space α›.is_measurable_Union
(λ n, ⋃ b ∈ decode2 β n, f b)
(λ n, encodable.Union_decode2_cases is_measurable.empty h)
lemma is_measurable.bUnion {f : β → set α} {s : set β} (hs : countable s)
(h : ∀b∈s, is_measurable (f b)) : is_measurable (⋃b∈s, f b) :=
begin
rw bUnion_eq_Union,
haveI := hs.to_encodable,
exact is_measurable.Union (by simpa using h)
end
lemma is_measurable.sUnion {s : set (set α)} (hs : countable s) (h : ∀t∈s, is_measurable t) :
is_measurable (⋃₀ s) :=
by rw sUnion_eq_bUnion; exact is_measurable.bUnion hs h
lemma is_measurable.Union_Prop {p : Prop} {f : p → set α} (hf : ∀b, is_measurable (f b)) :
is_measurable (⋃b, f b) :=
by by_cases p; simp [h, hf, is_measurable.empty]
lemma is_measurable.Inter [encodable β] {f : β → set α} (h : ∀b, is_measurable (f b)) :
is_measurable (⋂b, f b) :=
is_measurable.compl_iff.1 $
by rw compl_Inter; exact is_measurable.Union (λ b, (h b).compl)
lemma is_measurable.bInter {f : β → set α} {s : set β} (hs : countable s)
(h : ∀b∈s, is_measurable (f b)) : is_measurable (⋂b∈s, f b) :=
is_measurable.compl_iff.1 $
by rw compl_bInter; exact is_measurable.bUnion hs (λ b hb, (h b hb).compl)
lemma is_measurable.sInter {s : set (set α)} (hs : countable s) (h : ∀t∈s, is_measurable t) :
is_measurable (⋂₀ s) :=
by rw sInter_eq_bInter; exact is_measurable.bInter hs h
lemma is_measurable.Inter_Prop {p : Prop} {f : p → set α} (hf : ∀b, is_measurable (f b)) :
is_measurable (⋂b, f b) :=
by by_cases p; simp [h, hf, is_measurable.univ]
lemma is_measurable.union {s₁ s₂ : set α}
(h₁ : is_measurable s₁) (h₂ : is_measurable s₂) : is_measurable (s₁ ∪ s₂) :=
by rw union_eq_Union; exact
is_measurable.Union (bool.forall_bool.2 ⟨h₂, h₁⟩)
lemma is_measurable.inter {s₁ s₂ : set α}
(h₁ : is_measurable s₁) (h₂ : is_measurable s₂) : is_measurable (s₁ ∩ s₂) :=
by rw inter_eq_compl_compl_union_compl; exact
(h₁.compl.union h₂.compl).compl
lemma is_measurable.diff {s₁ s₂ : set α}
(h₁ : is_measurable s₁) (h₂ : is_measurable s₂) : is_measurable (s₁ \ s₂) :=
h₁.inter h₂.compl
lemma is_measurable.sub {s₁ s₂ : set α} :
is_measurable s₁ → is_measurable s₂ → is_measurable (s₁ - s₂) :=
is_measurable.diff
lemma is_measurable.disjointed {f : ℕ → set α} (h : ∀i, is_measurable (f i)) (n) :
is_measurable (disjointed f n) :=
disjointed_induct (h n) (assume t i ht, is_measurable.diff ht $ h _)
lemma is_measurable.const (p : Prop) : is_measurable {a : α | p} :=
by by_cases p; simp [h, is_measurable.empty]; apply is_measurable.univ
end
@[extensionality] lemma measurable_space.ext :
∀{m₁ m₂ : measurable_space α}, (∀s:set α, m₁.is_measurable s ↔ m₂.is_measurable s) → m₁ = m₂
| ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h :=
have s₁ = s₂, from funext $ assume x, propext $ h x,
by subst this
namespace measurable_space
section complete_lattice
instance : partial_order (measurable_space α) :=
{ le := λm₁ m₂, m₁.is_measurable ≤ m₂.is_measurable,
le_refl := assume a b, le_refl _,
le_trans := assume a b c, le_trans,
le_antisymm := assume a b h₁ h₂, measurable_space.ext $ assume s, ⟨h₁ s, h₂ s⟩ }
/-- The smallest σ-algebra containing a collection `s` of basic sets -/
inductive generate_measurable (s : set (set α)) : set α → Prop
| basic : ∀u∈s, generate_measurable u
| empty : generate_measurable ∅
| compl : ∀s, generate_measurable s → generate_measurable (-s)
| union : ∀f:ℕ → set α, (∀n, generate_measurable (f n)) → generate_measurable (⋃i, f i)
/-- Construct the smallest measure space containing a collection of basic sets -/
def generate_from (s : set (set α)) : measurable_space α :=
{ is_measurable := generate_measurable s,
is_measurable_empty := generate_measurable.empty s,
is_measurable_compl := generate_measurable.compl,
is_measurable_Union := generate_measurable.union }
lemma is_measurable_generate_from {s : set (set α)} {t : set α} (ht : t ∈ s) :
(generate_from s).is_measurable t :=
generate_measurable.basic t ht
lemma generate_from_le {s : set (set α)} {m : measurable_space α} (h : ∀t∈s, m.is_measurable t) :
generate_from s ≤ m :=
assume t (ht : generate_measurable s t), ht.rec_on h
(is_measurable_empty m)
(assume s _ hs, is_measurable_compl m s hs)
(assume f _ hf, is_measurable_Union m f hf)
lemma generate_from_le_iff {s : set (set α)} {m : measurable_space α} :
generate_from s ≤ m ↔ s ⊆ {t | m.is_measurable t} :=
iff.intro
(assume h u hu, h _ $ is_measurable_generate_from hu)
(assume h, generate_from_le h)
protected def mk_of_closure (g : set (set α)) (hg : {t | (generate_from g).is_measurable t} = g) :
measurable_space α :=
{ is_measurable := λs, s ∈ g,
is_measurable_empty := hg ▸ is_measurable_empty _,
is_measurable_compl := hg ▸ is_measurable_compl _,
is_measurable_Union := hg ▸ is_measurable_Union _ }
lemma mk_of_closure_sets {s : set (set α)}
{hs : {t | (generate_from s).is_measurable t} = s} :
measurable_space.mk_of_closure s hs = generate_from s :=
measurable_space.ext $ assume t, show t ∈ s ↔ _, by rw [← hs] {occs := occurrences.pos [1] }; refl
def gi_generate_from : galois_insertion (@generate_from α) (λm, {t | @is_measurable α m t}) :=
{ gc := assume s m, generate_from_le_iff,
le_l_u := assume m s, is_measurable_generate_from,
choice :=
λg hg, measurable_space.mk_of_closure g $ le_antisymm hg $ generate_from_le_iff.1 $ le_refl _,
choice_eq := assume g hg, mk_of_closure_sets }
instance : complete_lattice (measurable_space α) :=
gi_generate_from.lift_complete_lattice
instance : inhabited (measurable_space α) := ⟨⊤⟩
lemma is_measurable_bot_iff {s : set α} : @is_measurable α ⊥ s ↔ (s = ∅ ∨ s = univ) :=
let b : measurable_space α :=
{ is_measurable := λs, s = ∅ ∨ s = univ,
is_measurable_empty := or.inl rfl,
is_measurable_compl := by simp [or_imp_distrib] {contextual := tt},
is_measurable_Union := assume f hf, classical.by_cases
(assume h : ∃i, f i = univ,
let ⟨i, hi⟩ := h in
or.inr $ eq_univ_of_univ_subset $ hi ▸ le_supr f i)
(assume h : ¬ ∃i, f i = univ,
or.inl $ eq_empty_of_subset_empty $ Union_subset $ assume i,
(hf i).elim (by simp {contextual := tt}) (assume hi, false.elim $ h ⟨i, hi⟩)) } in
have b = ⊥, from bot_unique $ assume s hs,
hs.elim (assume s, s.symm ▸ @is_measurable_empty _ ⊥) (assume s, s.symm ▸ @is_measurable.univ _ ⊥),
this ▸ iff.refl _
@[simp] theorem is_measurable_top {s : set α} : @is_measurable _ ⊤ s := trivial
@[simp] theorem is_measurable_inf {m₁ m₂ : measurable_space α} {s : set α} :
@is_measurable _ (m₁ ⊓ m₂) s ↔ @is_measurable _ m₁ s ∧ @is_measurable _ m₂ s :=
iff.rfl
@[simp] theorem is_measurable_Inf {ms : set (measurable_space α)} {s : set α} :
@is_measurable _ (Inf ms) s ↔ ∀ m ∈ ms, @is_measurable _ m s :=
show s ∈ (⋂m∈ms, {t | @is_measurable _ m t }) ↔ _, by simp
@[simp] theorem is_measurable_infi {ι} {m : ι → measurable_space α} {s : set α} :
@is_measurable _ (infi m) s ↔ ∀ i, @is_measurable _ (m i) s :=
show s ∈ (λm, {s | @is_measurable _ m s }) (infi m) ↔ _, by rw (@gi_generate_from α).gc.u_infi; simp; refl
end complete_lattice
section functors
variables {m m₁ m₂ : measurable_space α} {m' : measurable_space β} {f : α → β} {g : β → α}
/-- The forward image of a measure space under a function. `map f m` contains the sets `s : set β`
whose preimage under `f` is measurable. -/
protected def map (f : α → β) (m : measurable_space α) : measurable_space β :=
{ is_measurable := λs, m.is_measurable $ f ⁻¹' s,
is_measurable_empty := m.is_measurable_empty,
is_measurable_compl := assume s hs, m.is_measurable_compl _ hs,
is_measurable_Union := assume f hf, by rw [preimage_Union]; exact m.is_measurable_Union _ hf }
@[simp] lemma map_id : m.map id = m :=
measurable_space.ext $ assume s, iff.rfl
@[simp] lemma map_comp {f : α → β} {g : β → γ} : (m.map f).map g = m.map (g ∘ f) :=
measurable_space.ext $ assume s, iff.rfl
/-- The reverse image of a measure space under a function. `comap f m` contains the sets `s : set α`
such that `s` is the `f`-preimage of a measurable set in `β`. -/
protected def comap (f : α → β) (m : measurable_space β) : measurable_space α :=
{ is_measurable := λs, ∃s', m.is_measurable s' ∧ f ⁻¹' s' = s,
is_measurable_empty := ⟨∅, m.is_measurable_empty, rfl⟩,
is_measurable_compl := assume s ⟨s', h₁, h₂⟩, ⟨-s', m.is_measurable_compl _ h₁, h₂ ▸ rfl⟩,
is_measurable_Union := assume s hs,
let ⟨s', hs'⟩ := classical.axiom_of_choice hs in
⟨⋃i, s' i, m.is_measurable_Union _ (λi, (hs' i).left), by simp [hs'] ⟩ }
@[simp] lemma comap_id : m.comap id = m :=
measurable_space.ext $ assume s, ⟨assume ⟨s', hs', h⟩, h ▸ hs', assume h, ⟨s, h, rfl⟩⟩
@[simp] lemma comap_comp {f : β → α} {g : γ → β} : (m.comap f).comap g = m.comap (f ∘ g) :=
measurable_space.ext $ assume s,
⟨assume ⟨t, ⟨u, h, hu⟩, ht⟩, ⟨u, h, ht ▸ hu ▸ rfl⟩, assume ⟨t, h, ht⟩, ⟨f ⁻¹' t, ⟨_, h, rfl⟩, ht⟩⟩
lemma comap_le_iff_le_map {f : α → β} : m'.comap f ≤ m ↔ m' ≤ m.map f :=
⟨assume h s hs, h _ ⟨_, hs, rfl⟩, assume h s ⟨t, ht, heq⟩, heq ▸ h _ ht⟩
lemma gc_comap_map (f : α → β) :
galois_connection (measurable_space.comap f) (measurable_space.map f) :=
assume f g, comap_le_iff_le_map
lemma map_mono (h : m₁ ≤ m₂) : m₁.map f ≤ m₂.map f := (gc_comap_map f).monotone_u h
lemma monotone_map : monotone (measurable_space.map f) := assume a b h, map_mono h
lemma comap_mono (h : m₁ ≤ m₂) : m₁.comap g ≤ m₂.comap g := (gc_comap_map g).monotone_l h
lemma monotone_comap : monotone (measurable_space.comap g) := assume a b h, comap_mono h
@[simp] lemma comap_bot : (⊥:measurable_space α).comap g = ⊥ := (gc_comap_map g).l_bot
@[simp] lemma comap_sup : (m₁ ⊔ m₂).comap g = m₁.comap g ⊔ m₂.comap g := (gc_comap_map g).l_sup
@[simp] lemma comap_supr {m : ι → measurable_space α} :(⨆i, m i).comap g = (⨆i, (m i).comap g) :=
(gc_comap_map g).l_supr
@[simp] lemma map_top : (⊤:measurable_space α).map f = ⊤ := (gc_comap_map f).u_top
@[simp] lemma map_inf : (m₁ ⊓ m₂).map f = m₁.map f ⊓ m₂.map f := (gc_comap_map f).u_inf
@[simp] lemma map_infi {m : ι → measurable_space α} : (⨅i, m i).map f = (⨅i, (m i).map f) :=
(gc_comap_map f).u_infi
lemma comap_map_le : (m.map f).comap f ≤ m := (gc_comap_map f).l_u_le _
lemma le_map_comap : m ≤ (m.comap g).map g := (gc_comap_map g).le_u_l _
end functors
lemma generate_from_le_generate_from {s t : set (set α)} (h : s ⊆ t) :
generate_from s ≤ generate_from t :=
gi_generate_from.gc.monotone_l h
lemma generate_from_sup_generate_from {s t : set (set α)} :
generate_from s ⊔ generate_from t = generate_from (s ∪ t) :=
(@gi_generate_from α).gc.l_sup.symm
lemma comap_generate_from {f : α → β} {s : set (set β)} :
(generate_from s).comap f = generate_from (preimage f '' s) :=
le_antisymm
(comap_le_iff_le_map.2 $ generate_from_le $ assume t hts,
generate_measurable.basic _ $ mem_image_of_mem _ $ hts)
(generate_from_le $ assume t ⟨u, hu, eq⟩, eq ▸ ⟨u, generate_measurable.basic _ hu, rfl⟩)
end measurable_space
section measurable_functions
open measurable_space
/-- A function `f` between measurable spaces is measurable if the preimage of every
measurable set is measurable. -/
def measurable [m₁ : measurable_space α] [m₂ : measurable_space β] (f : α → β) : Prop :=
m₂ ≤ m₁.map f
lemma measurable_id [measurable_space α] : measurable (@id α) := le_refl _
lemma measurable.preimage [measurable_space α] [measurable_space β]
{f : α → β} (hf : measurable f) {s : set β} : is_measurable s → is_measurable (f ⁻¹' s) := hf _
lemma measurable.comp [measurable_space α] [measurable_space β] [measurable_space γ]
{g : β → γ} {f : α → β} (hg : measurable g) (hf : measurable f) : measurable (g ∘ f) :=
le_trans hg $ map_mono hf
lemma measurable_generate_from [measurable_space α] {s : set (set β)} {f : α → β}
(h : ∀t∈s, is_measurable (f ⁻¹' t)) : @measurable _ _ _ (generate_from s) f :=
generate_from_le h
lemma measurable.if [measurable_space α] [measurable_space β]
{p : α → Prop} {h : decidable_pred p} {f g : α → β}
(hp : is_measurable {a | p a}) (hf : measurable f) (hg : measurable g) :
measurable (λa, if p a then f a else g a) :=
λ s hs, show is_measurable {a | (if p a then f a else g a) ∈ s},
begin
convert (hp.inter $ hf s hs).union (hp.compl.inter $ hg s hs),
exact ext (λ a, by by_cases p a ; { rw mem_def, simp [h] })
end
lemma measurable_const {α β} [measurable_space α] [measurable_space β] {a : α} : measurable (λb:β, a) :=
assume s hs, show is_measurable {b : β | a ∈ s}, from
classical.by_cases
(assume h : a ∈ s, by simp [h]; from is_measurable.univ)
(assume h : a ∉ s, by simp [h]; from is_measurable.empty)
end measurable_functions
section constructions
instance : measurable_space empty := ⊤
instance : measurable_space unit := ⊤
instance : measurable_space bool := ⊤
instance : measurable_space ℕ := ⊤
instance : measurable_space ℤ := ⊤
lemma measurable_unit [measurable_space α] (f : unit → α) : measurable f :=
have f = (λu, f ()) := funext $ assume ⟨⟩, rfl,
by rw this; exact measurable_const
section nat
lemma measurable_from_nat [measurable_space α] {f : ℕ → α} : measurable f :=
assume s hs, show is_measurable {n : ℕ | f n ∈ s}, from trivial
lemma measurable_to_nat [measurable_space α] {f : α → ℕ} :
(∀ k, is_measurable {x | f x = k}) → measurable f :=
begin
assume h s hs, show is_measurable {x | f x ∈ s},
have : {x | f x ∈ s} = ⋃ (n ∈ s), {x | f x = n}, { ext, simp },
rw this, simp [is_measurable.Union, is_measurable.Union_Prop, h]
end
lemma measurable_find_greatest [measurable_space α] {p : ℕ → α → Prop} :
∀ {N}, (∀ k ≤ N, is_measurable {x | nat.find_greatest (λ n, p n x) N = k}) →
measurable (λ x, nat.find_greatest (λ n, p n x) N)
| 0 := assume h s hs, show is_measurable {x : α | (nat.find_greatest (λ n, p n x) 0) ∈ s},
begin
by_cases h : 0 ∈ s,
{ convert is_measurable.univ, simp only [nat.find_greatest_zero, h] },
{ convert is_measurable.empty, simp only [nat.find_greatest_zero, h], refl }
end
| (n + 1) := assume h,
begin
apply measurable_to_nat, assume k, by_cases hk : k ≤ n + 1,
{ exact h k hk },
{ have := is_measurable.empty, rw ← set_of_false at this, convert this, funext, rw eq_false,
assume h, rw ← h at hk, have := nat.find_greatest_le, contradiction }
end
end nat
section subtype
instance {p : α → Prop} [m : measurable_space α] : measurable_space (subtype p) :=
m.comap subtype.val
lemma measurable_subtype_val [measurable_space α] [measurable_space β] {p : β → Prop}
{f : α → subtype p} (hf : measurable f) : measurable (λa:α, (f a).val) :=
measurable.comp (measurable_space.comap_le_iff_le_map.mp (le_refl _)) hf
lemma measurable_subtype_mk [measurable_space α] [measurable_space β] {p : β → Prop}
{f : α → subtype p} (hf : measurable (λa, (f a).val)) : measurable f :=
measurable_space.comap_le_iff_le_map.mpr $ by rw [measurable_space.map_comp]; exact hf
lemma is_measurable_subtype_image [measurable_space α] {s : set α} {t : set s}
(hs : is_measurable s) : is_measurable t → is_measurable ((coe : s → α) '' t)
| ⟨u, (hu : is_measurable u), (eq : coe ⁻¹' u = t)⟩ :=
begin
rw [← eq, image_preimage_eq_inter_range, range_coe_subtype],
exact is_measurable.inter hu hs
end
lemma measurable_of_measurable_union_cover
[measurable_space α] [measurable_space β]
{f : α → β} (s t : set α) (hs : is_measurable s) (ht : is_measurable t) (h : univ ⊆ s ∪ t)
(hc : measurable (λa:s, f a)) (hd : measurable (λa:t, f a)) :
measurable f :=
assume u (hu : is_measurable u), show is_measurable (f ⁻¹' u), from
begin
rw show f ⁻¹' u = coe '' (coe ⁻¹' (f ⁻¹' u) : set s) ∪ coe '' (coe ⁻¹' (f ⁻¹' u) : set t),
by rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, range_coe_subtype, range_coe_subtype, ← inter_distrib_left, univ_subset_iff.1 h, inter_univ],
exact is_measurable.union
(is_measurable_subtype_image hs (hc _ hu))
(is_measurable_subtype_image ht (hd _ hu))
end
end subtype
section prod
instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α × β) :=
m₁.comap prod.fst ⊔ m₂.comap prod.snd
lemma measurable_fst [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β × γ} (hf : measurable f) : measurable (λa:α, (f a).1) :=
measurable.comp (measurable_space.comap_le_iff_le_map.mp le_sup_left) hf
lemma measurable_snd [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β × γ} (hf : measurable f) : measurable (λa:α, (f a).2) :=
measurable.comp (measurable_space.comap_le_iff_le_map.mp le_sup_right) hf
lemma measurable.prod [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β × γ} (hf₁ : measurable (λa, (f a).1)) (hf₂ : measurable (λa, (f a).2)) :
measurable f :=
sup_le
(by rw [measurable_space.comap_le_iff_le_map, measurable_space.map_comp]; exact hf₁)
(by rw [measurable_space.comap_le_iff_le_map, measurable_space.map_comp]; exact hf₂)
lemma measurable_prod_mk [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) : measurable (λa:α, (f a, g a)) :=
measurable.prod hf hg
lemma is_measurable_set_prod [measurable_space α] [measurable_space β] {s : set α} {t : set β}
(hs : is_measurable s) (ht : is_measurable t) : is_measurable (set.prod s t) :=
is_measurable.inter (measurable_fst measurable_id _ hs) (measurable_snd measurable_id _ ht)
end prod
section pi
instance measurable_space.pi {α : Type u} {β : α → Type v} [m : Πa, measurable_space (β a)] :
measurable_space (Πa, β a) :=
⨆a, (m a).comap (λb, b a)
lemma measurable_pi_apply {α : Type u} {β : α → Type v} [Πa, measurable_space (β a)] (a : α) :
measurable (λf:Πa, β a, f a) :=
measurable_space.comap_le_iff_le_map.1 $ lattice.le_supr _ a
lemma measurable_pi_lambda {α : Type u} {β : α → Type v} {γ : Type w}
[Πa, measurable_space (β a)] [measurable_space γ]
(f : γ → Πa, β a) (hf : ∀a, measurable (λc, f c a)) :
measurable f :=
lattice.supr_le $ assume a, measurable_space.comap_le_iff_le_map.2 (hf a)
end pi
instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α ⊕ β) :=
m₁.map sum.inl ⊓ m₂.map sum.inr
section sum
variables [measurable_space α] [measurable_space β] [measurable_space γ]
lemma measurable_inl : measurable (@sum.inl α β) := inf_le_left
lemma measurable_inr : measurable (@sum.inr α β) := inf_le_right
lemma measurable_sum {f : α ⊕ β → γ}
(hl : measurable (f ∘ sum.inl)) (hr : measurable (f ∘ sum.inr)) : measurable f :=
measurable_space.comap_le_iff_le_map.1 $ le_inf
(measurable_space.comap_le_iff_le_map.2 $ hl)
(measurable_space.comap_le_iff_le_map.2 $ hr)
lemma measurable_sum_rec {f : α → γ} {g : β → γ}
(hf : measurable f) (hg : measurable g) : @measurable (α ⊕ β) γ _ _ (@sum.rec α β (λ_, γ) f g) :=
measurable_sum hf hg
lemma is_measurable_inl_image {s : set α} (hs : is_measurable s) :
is_measurable (sum.inl '' s : set (α ⊕ β)) :=
⟨show is_measurable (sum.inl ⁻¹' _), by rwa [preimage_image_eq]; exact (assume a b, sum.inl.inj),
have sum.inr ⁻¹' (sum.inl '' s : set (α ⊕ β)) = ∅ :=
eq_empty_of_subset_empty $ assume x ⟨y, hy, eq⟩, by contradiction,
show is_measurable (sum.inr ⁻¹' _), by rw [this]; exact is_measurable.empty⟩
lemma is_measurable_range_inl : is_measurable (range sum.inl : set (α ⊕ β)) :=
by rw [← image_univ]; exact is_measurable_inl_image is_measurable.univ
lemma is_measurable_inr_image {s : set β} (hs : is_measurable s) :
is_measurable (sum.inr '' s : set (α ⊕ β)) :=
⟨ have sum.inl ⁻¹' (sum.inr '' s : set (α ⊕ β)) = ∅ :=
eq_empty_of_subset_empty $ assume x ⟨y, hy, eq⟩, by contradiction,
show is_measurable (sum.inl ⁻¹' _), by rw [this]; exact is_measurable.empty,
show is_measurable (sum.inr ⁻¹' _), by rwa [preimage_image_eq]; exact (assume a b, sum.inr.inj)⟩
lemma is_measurable_range_inr : is_measurable (range sum.inr : set (α ⊕ β)) :=
by rw [← image_univ]; exact is_measurable_inr_image is_measurable.univ
end sum
instance {β : α → Type v} [m : Πa, measurable_space (β a)] : measurable_space (sigma β) :=
⨅a, (m a).map (sigma.mk a)
end constructions
/-- Equivalences between measurable spaces. Main application is the simplification of measurability
statements along measurable equivalences. -/
structure measurable_equiv (α β : Type*) [measurable_space α] [measurable_space β] extends α ≃ β :=
(measurable_to_fun : measurable to_fun)
(measurable_inv_fun : measurable inv_fun)
namespace measurable_equiv
instance (α β) [measurable_space α] [measurable_space β] : has_coe_to_fun (measurable_equiv α β) :=
⟨λ_, α → β, λe, e.to_equiv⟩
lemma coe_eq {α β} [measurable_space α] [measurable_space β] (e : measurable_equiv α β) :
(e : α → β) = e.to_equiv := rfl
def refl (α : Type*) [measurable_space α] : measurable_equiv α α :=
{ to_equiv := equiv.refl α,
measurable_to_fun := measurable_id, measurable_inv_fun := measurable_id }
def trans [measurable_space α] [measurable_space β] [measurable_space γ]
(ab : measurable_equiv α β) (bc : measurable_equiv β γ) :
measurable_equiv α γ :=
{ to_equiv := ab.to_equiv.trans bc.to_equiv,
measurable_to_fun := bc.measurable_to_fun.comp ab.measurable_to_fun,
measurable_inv_fun := ab.measurable_inv_fun.comp bc.measurable_inv_fun }
lemma trans_to_equiv {α β} [measurable_space α] [measurable_space β] [measurable_space γ]
(e : measurable_equiv α β) (f : measurable_equiv β γ) :
(e.trans f).to_equiv = e.to_equiv.trans f.to_equiv := rfl
def symm [measurable_space α] [measurable_space β] (ab : measurable_equiv α β) :
measurable_equiv β α :=
{ to_equiv := ab.to_equiv.symm,
measurable_to_fun := ab.measurable_inv_fun,
measurable_inv_fun := ab.measurable_to_fun }
lemma symm_to_equiv {α β} [measurable_space α] [measurable_space β] (e : measurable_equiv α β) :
e.symm.to_equiv = e.to_equiv.symm := rfl
protected def cast {α β} [i₁ : measurable_space α] [i₂ : measurable_space β]
(h : α = β) (hi : i₁ == i₂) : measurable_equiv α β :=
{ to_equiv := equiv.cast h,
measurable_to_fun := by unfreezeI; subst h; subst hi; exact measurable_id,
measurable_inv_fun := by unfreezeI; subst h; subst hi; exact measurable_id }
protected lemma measurable {α β} [measurable_space α] [measurable_space β]
(e : measurable_equiv α β) : measurable (e : α → β) :=
e.measurable_to_fun
protected lemma measurable_coe_iff {α β γ} [measurable_space α] [measurable_space β] [measurable_space γ]
{f : β → γ} (e : measurable_equiv α β) : measurable (f ∘ e) ↔ measurable f :=
iff.intro
(assume hfe,
have measurable (f ∘ (e.symm.trans e).to_equiv) := hfe.comp e.symm.measurable,
by rwa [trans_to_equiv, symm_to_equiv, equiv.symm_trans] at this)
(λh, h.comp e.measurable)
def prod_congr [measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ]
(ab : measurable_equiv α β) (cd : measurable_equiv γ δ) :
measurable_equiv (α × γ) (β × δ) :=
{ to_equiv := equiv.prod_congr ab.to_equiv cd.to_equiv,
measurable_to_fun := measurable_prod_mk
(ab.measurable_to_fun.comp (measurable_fst measurable_id))
(cd.measurable_to_fun.comp (measurable_snd measurable_id)),
measurable_inv_fun := measurable_prod_mk
(ab.measurable_inv_fun.comp (measurable_fst measurable_id))
(cd.measurable_inv_fun.comp (measurable_snd measurable_id)) }
def prod_comm [measurable_space α] [measurable_space β] : measurable_equiv (α × β) (β × α) :=
{ to_equiv := equiv.prod_comm α β,
measurable_to_fun := measurable_prod_mk (measurable_snd measurable_id) (measurable_fst measurable_id),
measurable_inv_fun := measurable_prod_mk (measurable_snd measurable_id) (measurable_fst measurable_id) }
def sum_congr [measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ]
(ab : measurable_equiv α β) (cd : measurable_equiv γ δ) :
measurable_equiv (α ⊕ γ) (β ⊕ δ) :=
{ to_equiv := equiv.sum_congr ab.to_equiv cd.to_equiv,
measurable_to_fun :=
begin
cases ab with ab' abm, cases ab', cases cd with cd' cdm, cases cd',
refine measurable_sum (measurable_inl.comp abm) (measurable_inr.comp cdm)
end,
measurable_inv_fun :=
begin
cases ab with ab' _ abm, cases ab', cases cd with cd' _ cdm, cases cd',
refine measurable_sum (measurable_inl.comp abm) (measurable_inr.comp cdm)
end }
def set.prod [measurable_space α] [measurable_space β] (s : set α) (t : set β) :
measurable_equiv (set.prod s t) (s × t) :=
{ to_equiv := equiv.set.prod s t,
measurable_to_fun := measurable_prod_mk
(measurable_subtype_mk $ measurable_fst $ measurable_subtype_val $ measurable_id)
(measurable_subtype_mk $ measurable_snd $ measurable_subtype_val $ measurable_id),
measurable_inv_fun := measurable_subtype_mk $ measurable_prod_mk
(measurable_subtype_val $ measurable_fst $ measurable_id)
(measurable_subtype_val $ measurable_snd $ measurable_id) }
def set.univ (α : Type*) [measurable_space α] : measurable_equiv (univ : set α) α :=
{ to_equiv := equiv.set.univ α,
measurable_to_fun := measurable_subtype_val measurable_id,
measurable_inv_fun := measurable_subtype_mk measurable_id }
def set.singleton [measurable_space α] (a:α) : measurable_equiv ({a} : set α) unit :=
{ to_equiv := equiv.set.singleton a,
measurable_to_fun := measurable_const,
measurable_inv_fun := measurable_subtype_mk $ show measurable (λu:unit, a), from
measurable_const }
noncomputable def set.image [measurable_space α] [measurable_space β]
(f : α → β) (s : set α)
(hf : function.injective f)
(hfm : measurable f) (hfi : ∀s, is_measurable s → is_measurable (f '' s)) :
measurable_equiv s (f '' s) :=
{ to_equiv := equiv.set.image f s hf,
measurable_to_fun :=
begin
have : measurable (λa:s, f a) := hfm.comp (measurable_subtype_val measurable_id),
refine measurable_subtype_mk _,
convert this,
ext ⟨a, h⟩, refl
end,
measurable_inv_fun :=
assume t ⟨u, (hu : is_measurable u), eq⟩,
begin
clear_, subst eq,
show is_measurable {x : f '' s | ((equiv.set.image f s hf).inv_fun x).val ∈ u},
have : ∀(a ∈ s) (h : ∃a', a' ∈ s ∧ a' = a), classical.some h = a :=
λa ha h, (classical.some_spec h).2,
rw show {x:f '' s | ((equiv.set.image f s hf).inv_fun x).val ∈ u} = subtype.val ⁻¹' (f '' u),
by ext ⟨b, a, hbs, rfl⟩; simp [equiv.set.image, equiv.set.image_of_inj_on, hf, this _ hbs],
exact (measurable_subtype_val measurable_id) (f '' u) (hfi u hu)
end }
noncomputable def set.range [measurable_space α] [measurable_space β]
(f : α → β) (hf : function.injective f) (hfm : measurable f)
(hfi : ∀s, is_measurable s → is_measurable (f '' s)) :
measurable_equiv α (range f) :=
(measurable_equiv.set.univ _).symm.trans $
(measurable_equiv.set.image f univ hf hfm hfi).trans $
measurable_equiv.cast (by rw image_univ) (by rw image_univ)
def set.range_inl [measurable_space α] [measurable_space β] :
measurable_equiv (range sum.inl : set (α ⊕ β)) α :=
{ to_fun := λab, match ab with
| ⟨sum.inl a, _⟩ := a
| ⟨sum.inr b, p⟩ := have false, by cases p; contradiction, this.elim
end,
inv_fun := λa, ⟨sum.inl a, a, rfl⟩,
left_inv := assume ⟨ab, a, eq⟩, by subst eq; refl,
right_inv := assume a, rfl,
measurable_to_fun := assume s (hs : is_measurable s),
begin
refine ⟨_, is_measurable_inl_image hs, set.ext _⟩,
rintros ⟨ab, a, rfl⟩,
simp [set.range_inl._match_1]
end,
measurable_inv_fun := measurable_subtype_mk measurable_inl }
def set.range_inr [measurable_space α] [measurable_space β] :
measurable_equiv (range sum.inr : set (α ⊕ β)) β :=
{ to_fun := λab, match ab with
| ⟨sum.inr b, _⟩ := b
| ⟨sum.inl a, p⟩ := have false, by cases p; contradiction, this.elim
end,
inv_fun := λb, ⟨sum.inr b, b, rfl⟩,
left_inv := assume ⟨ab, b, eq⟩, by subst eq; refl,
right_inv := assume b, rfl,
measurable_to_fun := assume s (hs : is_measurable s),
begin
refine ⟨_, is_measurable_inr_image hs, set.ext _⟩,
rintros ⟨ab, b, rfl⟩,
simp [set.range_inr._match_1]
end,
measurable_inv_fun := measurable_subtype_mk measurable_inr }
def sum_prod_distrib (α β γ) [measurable_space α] [measurable_space β] [measurable_space γ] :
measurable_equiv ((α ⊕ β) × γ) ((α × γ) ⊕ (β × γ)) :=
{ to_equiv := equiv.sum_prod_distrib α β γ,
measurable_to_fun :=
begin
refine measurable_of_measurable_union_cover
((range sum.inl).prod univ)
((range sum.inr).prod univ)
(is_measurable_set_prod is_measurable_range_inl is_measurable.univ)
(is_measurable_set_prod is_measurable_range_inr is_measurable.univ)
(assume ⟨ab, c⟩ s, by cases ab; simp [set.prod_eq])
_
_,
{ refine (set.prod (range sum.inl) univ).symm.measurable_coe_iff.1 _,
refine (prod_congr set.range_inl (set.univ _)).symm.measurable_coe_iff.1 _,
dsimp [(∘)],
convert measurable_inl,
ext ⟨a, c⟩, refl },
{ refine (set.prod (range sum.inr) univ).symm.measurable_coe_iff.1 _,
refine (prod_congr set.range_inr (set.univ _)).symm.measurable_coe_iff.1 _,
dsimp [(∘)],
convert measurable_inr,
ext ⟨b, c⟩, refl }
end,
measurable_inv_fun :=
begin
refine measurable_sum _ _,
{ convert measurable_prod_mk
(measurable_inl.comp (measurable_fst measurable_id)) (measurable_snd measurable_id),
ext ⟨a, c⟩; refl },
{ convert measurable_prod_mk
(measurable_inr.comp (measurable_fst measurable_id)) (measurable_snd measurable_id),
ext ⟨b, c⟩; refl }
end }
def prod_sum_distrib (α β γ) [measurable_space α] [measurable_space β] [measurable_space γ] :
measurable_equiv (α × (β ⊕ γ)) ((α × β) ⊕ (α × γ)) :=
prod_comm.trans $ (sum_prod_distrib _ _ _).trans $ sum_congr prod_comm prod_comm
def sum_prod_sum (α β γ δ)
[measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ] :
measurable_equiv ((α ⊕ β) × (γ ⊕ δ)) (((α × γ) ⊕ (α × δ)) ⊕ ((β × γ) ⊕ (β × δ))) :=
(sum_prod_distrib _ _ _).trans $ sum_congr (prod_sum_distrib _ _ _) (prod_sum_distrib _ _ _)
end measurable_equiv
namespace measurable_equiv
end measurable_equiv
namespace measurable_space
/-- Dynkin systems
The main purpose of Dynkin systems is to provide a powerful induction rule for σ-algebras generated
by intersection stable set systems.
-/
structure dynkin_system (α : Type*) :=
(has : set α → Prop)
(has_empty : has ∅)
(has_compl : ∀{a}, has a → has (-a))
(has_Union_nat : ∀{f:ℕ → set α}, pairwise (disjoint on f) → (∀i, has (f i)) → has (⋃i, f i))
theorem Union_decode2_disjoint_on
{β} [encodable β] {f : β → set α} (hd : pairwise (disjoint on f)) :
pairwise (disjoint on λ i, ⋃ b ∈ decode2 β i, f b) :=
begin
rintro i j ij x ⟨h₁, h₂⟩,
revert h₁ h₂,
simp, intros b₁ e₁ h₁ b₂ e₂ h₂,
refine hd _ _ _ ⟨h₁, h₂⟩,
cases encodable.mem_decode2.1 e₁,
cases encodable.mem_decode2.1 e₂,
exact mt (congr_arg _) ij
end
namespace dynkin_system
@[extensionality] lemma ext :
∀{d₁ d₂ : dynkin_system α}, (∀s:set α, d₁.has s ↔ d₂.has s) → d₁ = d₂
| ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h :=
have s₁ = s₂, from funext $ assume x, propext $ h x,
by subst this
variable (d : dynkin_system α)
lemma has_compl_iff {a} : d.has (-a) ↔ d.has a :=
⟨λ h, by simpa using d.has_compl h, λ h, d.has_compl h⟩
lemma has_univ : d.has univ :=
by simpa using d.has_compl d.has_empty
theorem has_Union {β} [encodable β] {f : β → set α}
(hd : pairwise (disjoint on f)) (h : ∀i, d.has (f i)) : d.has (⋃i, f i) :=
by rw encodable.Union_decode2; exact
d.has_Union_nat (Union_decode2_disjoint_on hd)
(λ n, encodable.Union_decode2_cases d.has_empty h)
theorem has_union {s₁ s₂ : set α}
(h₁ : d.has s₁) (h₂ : d.has s₂) (h : s₁ ∩ s₂ ⊆ ∅) : d.has (s₁ ∪ s₂) :=
by rw union_eq_Union; exact
d.has_Union (pairwise_disjoint_on_bool.2 h)
(bool.forall_bool.2 ⟨h₂, h₁⟩)
lemma has_diff {s₁ s₂ : set α} (h₁ : d.has s₁) (h₂ : d.has s₂) (h : s₂ ⊆ s₁) : d.has (s₁ \ s₂) :=
d.has_compl_iff.1 begin
simp [diff_eq, compl_inter],
exact d.has_union (d.has_compl h₁) h₂ (λ x ⟨h₁, h₂⟩, h₁ (h h₂)),
end
instance : partial_order (dynkin_system α) :=
{ le := λm₁ m₂, m₁.has ≤ m₂.has,
le_refl := assume a b, le_refl _,
le_trans := assume a b c, le_trans,
le_antisymm := assume a b h₁ h₂, ext $ assume s, ⟨h₁ s, h₂ s⟩ }
def of_measurable_space (m : measurable_space α) : dynkin_system α :=
{ has := m.is_measurable,
has_empty := m.is_measurable_empty,
has_compl := m.is_measurable_compl,
has_Union_nat := assume f _ hf, m.is_measurable_Union f hf }
lemma of_measurable_space_le_of_measurable_space_iff {m₁ m₂ : measurable_space α} :
of_measurable_space m₁ ≤ of_measurable_space m₂ ↔ m₁ ≤ m₂ :=
iff.rfl
/-- The least Dynkin system containing a collection of basic sets. -/
inductive generate_has (s : set (set α)) : set α → Prop
| basic : ∀t∈s, generate_has t
| empty : generate_has ∅
| compl : ∀{a}, generate_has a → generate_has (-a)
| Union : ∀{f:ℕ → set α}, pairwise (disjoint on f) →
(∀i, generate_has (f i)) → generate_has (⋃i, f i)
def generate (s : set (set α)) : dynkin_system α :=
{ has := generate_has s,
has_empty := generate_has.empty s,
has_compl := assume a, generate_has.compl,
has_Union_nat := assume f, generate_has.Union }
def to_measurable_space (h_inter : ∀s₁ s₂, d.has s₁ → d.has s₂ → d.has (s₁ ∩ s₂)) :=
{ measurable_space .
is_measurable := d.has,
is_measurable_empty := d.has_empty,
is_measurable_compl := assume s h, d.has_compl h,
is_measurable_Union := assume f hf,
have ∀n, d.has (disjointed f n),
from assume n, disjointed_induct (hf n)
(assume t i h, h_inter _ _ h $ d.has_compl $ hf i),
have d.has (⋃n, disjointed f n), from d.has_Union disjoint_disjointed this,
by rwa [Union_disjointed] at this }
lemma of_measurable_space_to_measurable_space
(h_inter : ∀s₁ s₂, d.has s₁ → d.has s₂ → d.has (s₁ ∩ s₂)) :
of_measurable_space (d.to_measurable_space h_inter) = d :=
ext $ assume s, iff.rfl
def restrict_on {s : set α} (h : d.has s) : dynkin_system α :=
{ has := λt, d.has (t ∩ s),
has_empty := by simp [d.has_empty],
has_compl := assume t hts,
have -t ∩ s = (- (t ∩ s)) \ -s,
from set.ext $ assume x, by by_cases x ∈ s; simp [h],
by rw [this]; from d.has_diff (d.has_compl hts) (d.has_compl h)
(compl_subset_compl.mpr $ inter_subset_right _ _),
has_Union_nat := assume f hd hf,
begin
rw [inter_comm, inter_Union],
apply d.has_Union_nat,
{ exact λ i j h x ⟨⟨_, h₁⟩, _, h₂⟩, hd i j h ⟨h₁, h₂⟩ },
{ simpa [inter_comm] using hf },
end }
lemma generate_le {s : set (set α)} (h : ∀t∈s, d.has t) : generate s ≤ d :=
λ t ht, ht.rec_on h d.has_empty
(assume a _ h, d.has_compl h)
(assume f hd _ hf, d.has_Union hd hf)
lemma generate_inter {s : set (set α)}
(hs : ∀t₁ t₂, t₁ ∈ s → t₂ ∈ s → t₁ ∩ t₂ ≠ ∅ → t₁ ∩ t₂ ∈ s) {t₁ t₂ : set α}
(ht₁ : (generate s).has t₁) (ht₂ : (generate s).has t₂) : (generate s).has (t₁ ∩ t₂) :=
have generate s ≤ (generate s).restrict_on ht₂,
from generate_le _ $ assume s₁ hs₁,
have (generate s).has s₁, from generate_has.basic s₁ hs₁,
have generate s ≤ (generate s).restrict_on this,
from generate_le _ $ assume s₂ hs₂,
show (generate s).has (s₂ ∩ s₁), from
if h : s₂ ∩ s₁ = ∅ then by rw [h]; exact generate_has.empty _
else generate_has.basic _ (hs _ _ hs₂ hs₁ h),
have (generate s).has (t₂ ∩ s₁), from this _ ht₂,
show (generate s).has (s₁ ∩ t₂), by rwa [inter_comm],
this _ ht₁
lemma generate_from_eq {s : set (set α)}
(hs : ∀t₁ t₂, t₁ ∈ s → t₂ ∈ s → t₁ ∩ t₂ ≠ ∅ → t₁ ∩ t₂ ∈ s) :
generate_from s = (generate s).to_measurable_space (assume t₁ t₂, generate_inter hs) :=
le_antisymm
(generate_from_le $ assume t ht, generate_has.basic t ht)
(of_measurable_space_le_of_measurable_space_iff.mp $
by rw [of_measurable_space_to_measurable_space];
from (generate_le _ $ assume t ht, is_measurable_generate_from ht))
end dynkin_system
lemma induction_on_inter {C : set α → Prop} {s : set (set α)} {m : measurable_space α}
(h_eq : m = generate_from s)
(h_inter : ∀t₁ t₂, t₁ ∈ s → t₂ ∈ s → t₁ ∩ t₂ ≠ ∅ → t₁ ∩ t₂ ∈ s)
(h_empty : C ∅) (h_basic : ∀t∈s, C t) (h_compl : ∀t, m.is_measurable t → C t → C (- t))
(h_union : ∀f:ℕ → set α, (∀i j, i ≠ j → f i ∩ f j ⊆ ∅) →
(∀i, m.is_measurable (f i)) → (∀i, C (f i)) → C (⋃i, f i)) :
∀{t}, m.is_measurable t → C t :=
have eq : m.is_measurable = dynkin_system.generate_has s,
by rw [h_eq, dynkin_system.generate_from_eq h_inter]; refl,
assume t ht,
have dynkin_system.generate_has s t, by rwa [eq] at ht,
this.rec_on h_basic h_empty
(assume t ht, h_compl t $ by rw [eq]; exact ht)
(assume f hf ht, h_union f hf $ assume i, by rw [eq]; exact ht _)
end measurable_space
|
233b9ce75ef2da9ad5bc14c28ec1556ac73c9896
|
b815abf92ce063fe0d1fabf5b42da483552aa3e8
|
/library/init/algebra/ordered_ring.lean
|
42beca9c0df3a6a944db85b381e0111ebc28d25f
|
[
"Apache-2.0"
] |
permissive
|
yodalee/lean
|
a368d842df12c63e9f79414ed7bbee805b9001ef
|
317989bf9ef6ae1dec7488c2363dbfcdc16e0756
|
refs/heads/master
| 1,610,551,176,860
| 1,481,430,138,000
| 1,481,646,441,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,705
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
prelude
import init.algebra.ordered_group init.algebra.ring
/- Make sure instances defined in this file have lower priority than the ones
defined for concrete structures -/
set_option default_priority 100
universe variable u
structure ordered_semiring (α : Type u)
extends semiring α, ordered_mul_cancel_comm_monoid α renaming
mul→add mul_assoc→add_assoc one→zero one_mul→zero_add mul_one→add_zero mul_comm→add_comm
mul_left_cancel→add_left_cancel mul_right_cancel→add_right_cancel
mul_le_mul_left→add_le_add_left mul_lt_mul_left→add_lt_add_left
le_of_mul_le_mul_left→le_of_add_le_add_left
lt_of_mul_lt_mul_left→lt_of_add_lt_add_left :=
(mul_le_mul_of_nonneg_left: ∀ a b c : α, a ≤ b → 0 ≤ c → c * a ≤ c * b)
(mul_le_mul_of_nonneg_right: ∀ a b c : α, a ≤ b → 0 ≤ c → a * c ≤ b * c)
(mul_lt_mul_of_pos_left: ∀ a b c : α, a < b → 0 < c → c * a < c * b)
(mul_lt_mul_of_pos_right: ∀ a b c : α, a < b → 0 < c → a * c < b * c)
/- we make it a class now (and not as part of the structure) to avoid
ordered_semiring.to_ordered_mul_cancel_comm_monoid to be an instance -/
attribute [class] ordered_semiring
variable {α : Type u}
instance add_comm_group_of_ordered_semiring (α : Type u) [s : ordered_semiring α] : semiring α :=
@ordered_semiring.to_semiring α s
instance monoid_of_ordered_semiring (α : Type u) [s : ordered_semiring α] : ordered_cancel_comm_monoid α :=
@ordered_semiring.to_ordered_mul_cancel_comm_monoid α s
section
variable [ordered_semiring α]
lemma mul_le_mul_of_nonneg_left {a b c : α} (h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b :=
ordered_semiring.mul_le_mul_of_nonneg_left _ a b c h₁ h₂
lemma mul_le_mul_of_nonneg_right {a b c : α} (h₁ : a ≤ b) (h₂ : 0 ≤ c) : a * c ≤ b * c :=
ordered_semiring.mul_le_mul_of_nonneg_right _ a b c h₁ h₂
lemma mul_lt_mul_of_pos_left {a b c : α} (h₁ : a < b) (h₂ : 0 < c) : c * a < c * b :=
ordered_semiring.mul_lt_mul_of_pos_left _ a b c h₁ h₂
lemma mul_lt_mul_of_pos_right {a b c : α} (h₁ : a < b) (h₂ : 0 < c) : a * c < b * c :=
ordered_semiring.mul_lt_mul_of_pos_right _ a b c h₁ h₂
end
class linear_ordered_semiring (α : Type u) extends ordered_semiring α, linear_strong_order_pair α :=
(zero_lt_one : zero < one)
lemma zero_lt_one [linear_ordered_semiring α] : 0 < (1:α) :=
linear_ordered_semiring.zero_lt_one α
class decidable_linear_ordered_semiring (α : Type u) extends linear_ordered_semiring α, decidable_linear_order α
structure ordered_ring (α : Type u) extends ring α, ordered_mul_comm_group α renaming
mul→add mul_assoc→add_assoc one→zero one_mul→zero_add mul_one→add_zero inv→neg
mul_left_inv→add_left_inv mul_comm→add_comm mul_le_mul_left→add_le_add_left
mul_lt_mul_left→add_lt_add_left, zero_ne_one_class α :=
(mul_nonneg : ∀ a b : α, 0 ≤ a → 0 ≤ b → 0 ≤ a * b)
(mul_pos : ∀ a b : α, 0 < a → 0 < b → 0 < a * b)
/- we make it a class now (and not as part of the structure) to avoid
ordered_ring.to_ordered_mul_comm_group to be an instance -/
attribute [class] ordered_ring
instance add_comm_group_of_ordered_ring (α : Type u) [s : ordered_ring α] : ring α :=
@ordered_ring.to_ring α s
instance monoid_of_ordered_ring (α : Type u) [s : ordered_ring α] : ordered_comm_group α :=
@ordered_ring.to_ordered_mul_comm_group α s
instance zero_ne_one_class_of_ordered_ring (α : Type u) [s : ordered_ring α] : zero_ne_one_class α :=
@ordered_ring.to_zero_ne_one_class α s
lemma ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring α] {a b c : α}
(h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b :=
have 0 ≤ b - a, from sub_nonneg_of_le h₁,
have 0 ≤ c * (b - a), from ordered_ring.mul_nonneg s c (b - a) h₂ this,
begin
rw mul_sub_left_distrib at this,
apply le_of_sub_nonneg this
end
lemma ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring α] {a b c : α}
(h₁ : a ≤ b) (h₂ : 0 ≤ c) : a * c ≤ b * c :=
have 0 ≤ b - a, from sub_nonneg_of_le h₁,
have 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg s (b - a) c this h₂,
begin
rw mul_sub_right_distrib at this,
apply le_of_sub_nonneg this
end
lemma ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring α] {a b c : α}
(h₁ : a < b) (h₂ : 0 < c) : c * a < c * b :=
have 0 < b - a, from sub_pos_of_lt h₁,
have 0 < c * (b - a), from ordered_ring.mul_pos s c (b - a) h₂ this,
begin
rw mul_sub_left_distrib at this,
apply lt_of_sub_pos this
end
lemma ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring α] {a b c : α}
(h₁ : a < b) (h₂ : 0 < c) : a * c < b * c :=
have 0 < b - a, from sub_pos_of_lt h₁,
have 0 < (b - a) * c, from ordered_ring.mul_pos s (b - a) c this h₂,
begin
rw mul_sub_right_distrib at this,
apply lt_of_sub_pos this
end
instance ordered_ring.to_ordered_semiring [s : ordered_ring α] : ordered_semiring α :=
{ s with
mul_zero := mul_zero,
zero_mul := zero_mul,
add_left_cancel := @add_left_cancel α _,
add_right_cancel := @add_right_cancel α _,
le_of_add_le_add_left := @le_of_add_le_add_left α _,
mul_le_mul_of_nonneg_left := @ordered_ring.mul_le_mul_of_nonneg_left α _,
mul_le_mul_of_nonneg_right := @ordered_ring.mul_le_mul_of_nonneg_right α _,
mul_lt_mul_of_pos_left := @ordered_ring.mul_lt_mul_of_pos_left α _,
mul_lt_mul_of_pos_right := @ordered_ring.mul_lt_mul_of_pos_right α _,
lt_of_add_lt_add_left := @lt_of_add_lt_add_left α _}
class linear_ordered_ring (α : Type u) extends ordered_ring α, linear_strong_order_pair α :=
(zero_lt_one : lt zero one)
instance linear_ordered_ring.to_linear_ordered_semiring [s : linear_ordered_ring α] : linear_ordered_semiring α :=
{ s with
mul_zero := mul_zero,
zero_mul := zero_mul,
add_left_cancel := @add_left_cancel α _,
add_right_cancel := @add_right_cancel α _,
le_of_add_le_add_left := @le_of_add_le_add_left α _,
mul_le_mul_of_nonneg_left := @mul_le_mul_of_nonneg_left α _,
mul_le_mul_of_nonneg_right := @mul_le_mul_of_nonneg_right α _,
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left α _,
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right α _,
le_total := linear_ordered_ring.le_total,
lt_of_add_lt_add_left := @lt_of_add_lt_add_left α _ }
|
9ada85f1715912d7b454004277a00c60b6461beb
|
d642a6b1261b2cbe691e53561ac777b924751b63
|
/src/category_theory/endomorphism.lean
|
d505bbdad6622a635db87b91d26043912bcb8330
|
[
"Apache-2.0"
] |
permissive
|
cipher1024/mathlib
|
fee56b9954e969721715e45fea8bcb95f9dc03fe
|
d077887141000fefa5a264e30fa57520e9f03522
|
refs/heads/master
| 1,651,806,490,504
| 1,573,508,694,000
| 1,573,508,694,000
| 107,216,176
| 0
| 0
|
Apache-2.0
| 1,647,363,136,000
| 1,508,213,014,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,805
|
lean
|
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Scott Morrison, Simon Hudon
Definition and basic properties of endomorphisms and automorphisms of an object in a category.
-/
import category_theory.category category_theory.isomorphism category_theory.groupoid category_theory.functor
import algebra.group.units data.equiv.algebra
universes v v' u u'
namespace category_theory
/-- Endomorphisms of an object in a category. Arguments order in multiplication agrees with `function.comp`, not with `category.comp`. -/
def End {C : Type u} [𝒞_struct : category_struct.{v} C] (X : C) := X ⟶ X
namespace End
section struct
variables {C : Type u} [𝒞_struct : category_struct.{v} C] (X : C)
include 𝒞_struct
instance has_one : has_one (End X) := ⟨𝟙 X⟩
/-- Multiplication of endomorphisms agrees with `function.comp`, not `category_struct.comp`. -/
instance has_mul : has_mul (End X) := ⟨λ x y, y ≫ x⟩
variable {X}
@[simp] lemma one_def : (1 : End X) = 𝟙 X := rfl
@[simp] lemma mul_def (xs ys : End X) : xs * ys = ys ≫ xs := rfl
end struct
/-- Endomorphisms of an object form a monoid -/
instance monoid {C : Type u} [category.{v} C] {X : C} : monoid (End X) :=
{ mul_one := category.id_comp C,
one_mul := category.comp_id C,
mul_assoc := λ x y z, (category.assoc C z y x).symm,
..End.has_mul X, ..End.has_one X }
/-- In a groupoid, endomorphisms form a group -/
instance group {C : Type u} [groupoid.{v} C] (X : C) : group (End X) :=
{ mul_left_inv := groupoid.comp_inv C, inv := groupoid.inv, ..End.monoid }
end End
variables {C : Type u} [𝒞 : category.{v} C] (X : C)
include 𝒞
def Aut (X : C) := X ≅ X
attribute [ext Aut] iso.ext
namespace Aut
instance: group (Aut X) :=
by refine { one := iso.refl X,
inv := iso.symm,
mul := flip iso.trans, .. } ; dunfold flip; obviously
def units_End_eqv_Aut : units (End X) ≃* Aut X :=
{ to_fun := λ f, ⟨f.1, f.2, f.4, f.3⟩,
inv_fun := λ f, ⟨f.1, f.2, f.4, f.3⟩,
left_inv := λ ⟨f₁, f₂, f₃, f₄⟩, rfl,
right_inv := λ ⟨f₁, f₂, f₃, f₄⟩, rfl,
map_mul' := λ f g, by rcases f; rcases g; refl }
end Aut
namespace functor
variables {D : Type u'} [𝒟 : category.{v'} D] (f : C ⥤ D) (X)
include 𝒟
/-- `f.map` as a monoid hom between endomorphism monoids. -/
def map_End : End X →* End (f.obj X) :=
{ to_fun := functor.map f,
map_mul' := λ x y, f.map_comp y x,
map_one' := f.map_id X }
/-- `f.map_iso` as a group hom between automorphism groups. -/
def map_Aut : Aut X →* Aut (f.obj X) :=
{ to_fun := f.map_iso,
map_mul' := λ x y, f.map_iso_trans y x,
map_one' := f.map_iso_refl X }
end functor
end category_theory
|
fa99661a34d663f3a6892f0e5d022e32fcfd875d
|
a7dd8b83f933e72c40845fd168dde330f050b1c9
|
/src/data/nat/enat.lean
|
32c0c7150826c7eb25bf9485ff121c12cadc8aff
|
[
"Apache-2.0"
] |
permissive
|
NeilStrickland/mathlib
|
10420e92ee5cb7aba1163c9a01dea2f04652ed67
|
3efbd6f6dff0fb9b0946849b43b39948560a1ffe
|
refs/heads/master
| 1,589,043,046,346
| 1,558,938,706,000
| 1,558,938,706,000
| 181,285,984
| 0
| 0
|
Apache-2.0
| 1,568,941,848,000
| 1,555,233,833,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,886
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
Natural numbers with infinity, represented as roption ℕ.
-/
import data.pfun algebra.ordered_group
import tactic.norm_cast
open roption lattice
def enat : Type := roption ℕ
namespace enat
instance : has_zero enat := ⟨some 0⟩
instance : has_one enat := ⟨some 1⟩
instance : has_add enat := ⟨λ x y, ⟨x.dom ∧ y.dom, λ h, get x h.1 + get y h.2⟩⟩
instance : has_coe ℕ enat := ⟨some⟩
instance (n : ℕ) : decidable (n : enat).dom := is_true trivial
@[simp] lemma coe_inj {x y : ℕ} : (x : enat) = y ↔ x = y := roption.some_inj
instance : add_comm_monoid enat :=
{ add := (+),
zero := (0),
add_comm := λ x y, roption.ext' and.comm (λ _ _, add_comm _ _),
zero_add := λ x, roption.ext' (true_and _) (λ _ _, zero_add _),
add_zero := λ x, roption.ext' (and_true _) (λ _ _, add_zero _),
add_assoc := λ x y z, roption.ext' and.assoc (λ _ _, add_assoc _ _ _) }
instance : has_le enat := ⟨λ x y, ∃ h : y.dom → x.dom, ∀ hy : y.dom, x.get (h hy) ≤ y.get hy⟩
instance : has_top enat := ⟨none⟩
instance : has_bot enat := ⟨0⟩
instance : has_sup enat := ⟨λ x y, ⟨x.dom ∧ y.dom, λ h, x.get h.1 ⊔ y.get h.2⟩⟩
@[elab_as_eliminator] protected lemma cases_on {P : enat → Prop} : ∀ a : enat,
P ⊤ → (∀ n : ℕ, P n) → P a :=
roption.induction_on
@[simp] lemma top_add (x : enat) : ⊤ + x = ⊤ :=
roption.ext' (false_and _) (λ h, h.left.elim)
@[simp] lemma add_top (x : enat) : x + ⊤ = ⊤ :=
by rw [add_comm, top_add]
@[simp, squash_cast] lemma coe_zero : ((0 : ℕ) : enat) = 0 := rfl
@[simp, squash_cast] lemma coe_one : ((1 : ℕ) : enat) = 1 := rfl
@[simp, move_cast] lemma coe_add (x y : ℕ) : ((x + y : ℕ) : enat) = x + y :=
roption.ext' (and_true _).symm (λ _ _, rfl)
@[simp] lemma coe_add_get {x : ℕ} {y : enat} (h : ((x : enat) + y).dom) :
get ((x : enat) + y) h = x + get y h.2 := rfl
@[simp] lemma get_add {x y : enat} (h : (x + y).dom) :
get (x + y) h = x.get h.1 + y.get h.2 := rfl
@[simp, squash_cast] lemma coe_get {x : enat} (h : x.dom) : (x.get h : enat) = x :=
roption.ext' (iff_of_true trivial h) (λ _ _, rfl)
@[simp] lemma get_zero (h : (0 : enat).dom) : (0 : enat).get h = 0 := rfl
@[simp] lemma get_one (h : (1 : enat).dom) : (1 : enat).get h = 1 := rfl
lemma dom_of_le_some {x : enat} {y : ℕ} : x ≤ y → x.dom :=
λ ⟨h, _⟩, h trivial
instance : partial_order enat :=
{ le := (≤),
le_refl := λ x, ⟨id, λ _, le_refl _⟩,
le_trans := λ x y z ⟨hxy₁, hxy₂⟩ ⟨hyz₁, hyz₂⟩,
⟨hxy₁ ∘ hyz₁, λ _, le_trans (hxy₂ _) (hyz₂ _)⟩,
le_antisymm := λ x y ⟨hxy₁, hxy₂⟩ ⟨hyx₁, hyx₂⟩, roption.ext' ⟨hyx₁, hxy₁⟩
(λ _ _, le_antisymm (hxy₂ _) (hyx₂ _)) }
@[simp, elim_cast] lemma coe_le_coe {x y : ℕ} : (x : enat) ≤ y ↔ x ≤ y :=
⟨λ ⟨_, h⟩, h trivial, λ h, ⟨λ _, trivial, λ _, h⟩⟩
@[simp, elim_cast] lemma coe_lt_coe {x y : ℕ} : (x : enat) < y ↔ x < y :=
by rw [lt_iff_le_not_le, lt_iff_le_not_le, coe_le_coe, coe_le_coe]
lemma get_le_get {x y : enat} {hx : x.dom} {hy : y.dom} :
x.get hx ≤ y.get hy ↔ x ≤ y :=
by conv { to_lhs, rw [← coe_le_coe, coe_get, coe_get]}
instance semilattice_sup_bot : semilattice_sup_bot enat :=
{ sup := (⊔),
bot := (⊥),
bot_le := λ _, ⟨λ _, trivial, λ _, nat.zero_le _⟩,
le_sup_left := λ _ _, ⟨and.left, λ _, le_sup_left⟩,
le_sup_right := λ _ _, ⟨and.right, λ _, le_sup_right⟩,
sup_le := λ x y z ⟨hx₁, hx₂⟩ ⟨hy₁, hy₂⟩, ⟨λ hz, ⟨hx₁ hz, hy₁ hz⟩,
λ _, sup_le (hx₂ _) (hy₂ _)⟩,
..enat.partial_order }
instance order_top : order_top enat :=
{ top := (⊤),
le_top := λ x, ⟨λ h, false.elim h, λ hy, false.elim hy⟩,
..enat.semilattice_sup_bot }
lemma coe_lt_top (x : ℕ) : (x : enat) < ⊤ :=
lt_of_le_of_ne le_top (λ h, absurd (congr_arg dom h) true_ne_false)
@[simp] lemma coe_ne_top (x : ℕ) : (x : enat) ≠ ⊤ := ne_of_lt (coe_lt_top x)
lemma pos_iff_one_le {x : enat} : 0 < x ↔ 1 ≤ x :=
enat.cases_on x ⟨λ _, le_top, λ _, coe_lt_top _⟩
(λ n, ⟨λ h, enat.coe_le_coe.2 (enat.coe_lt_coe.1 h),
λ h, enat.coe_lt_coe.2 (enat.coe_le_coe.1 h)⟩)
noncomputable instance : decidable_linear_order enat :=
{ le_total := λ x y, enat.cases_on x
(or.inr le_top) (enat.cases_on y (λ _, or.inl le_top)
(λ x y, (le_total x y).elim (or.inr ∘ coe_le_coe.2)
(or.inl ∘ coe_le_coe.2))),
decidable_le := classical.dec_rel _,
..enat.partial_order }
noncomputable instance : bounded_lattice enat :=
{ inf := min,
inf_le_left := min_le_left,
inf_le_right := min_le_right,
le_inf := λ _ _ _, le_min,
..enat.order_top,
..enat.semilattice_sup_bot }
lemma sup_eq_max {a b : enat} : a ⊔ b = max a b :=
le_antisymm (sup_le (le_max_left _ _) (le_max_right _ _))
(max_le le_sup_left le_sup_right)
lemma inf_eq_min {a b : enat} : a ⊓ b = min a b := rfl
instance : ordered_comm_monoid enat :=
{ add_le_add_left := λ a b ⟨h₁, h₂⟩ c,
enat.cases_on c (by simp)
(λ c, ⟨λ h, and.intro trivial (h₁ h.2),
λ _, add_le_add_left (h₂ _) c⟩),
lt_of_add_lt_add_left := λ a b c, enat.cases_on a
(λ h, by simpa [lt_irrefl] using h)
(λ a, enat.cases_on b
(λ h, absurd h (not_lt_of_ge (by rw add_top; exact le_top)))
(λ b, enat.cases_on c
(λ _, coe_lt_top _)
(λ c h, coe_lt_coe.2 (by rw [← coe_add, ← coe_add, coe_lt_coe] at h;
exact lt_of_add_lt_add_left h)))),
..enat.decidable_linear_order,
..enat.add_comm_monoid }
instance : canonically_ordered_monoid enat :=
{ le_iff_exists_add := λ a b, enat.cases_on b
(iff_of_true le_top ⟨⊤, (add_top _).symm⟩)
(λ b, enat.cases_on a
(iff_of_false (not_le_of_gt (coe_lt_top _))
(not_exists.2 (λ x, ne_of_lt (by rw [top_add]; exact coe_lt_top _))))
(λ a, ⟨λ h, ⟨(b - a : ℕ),
by rw [← coe_add, coe_inj, add_comm, nat.sub_add_cancel (coe_le_coe.1 h)]⟩,
(λ ⟨c, hc⟩, enat.cases_on c
(λ hc, hc.symm ▸ show (a : enat) ≤ a + ⊤, by rw [add_top]; exact le_top)
(λ c (hc : (b : enat) = a + c),
coe_le_coe.2 (by rw [← coe_add, coe_inj] at hc;
rw hc; exact nat.le_add_right _ _)) hc)⟩)),
..enat.semilattice_sup_bot,
..enat.ordered_comm_monoid }
section with_top
def to_with_top (x : enat) [decidable x.dom]: with_top ℕ := x.to_option
lemma to_with_top_top : to_with_top ⊤ = ⊤ := rfl
@[simp] lemma to_with_top_top' [decidable (⊤ : enat).dom] : to_with_top ⊤ = ⊤ :=
by convert to_with_top_top
lemma to_with_top_zero : to_with_top 0 = 0 := rfl
@[simp] lemma to_with_top_zero' [decidable (0 : enat).dom]: to_with_top 0 = 0 :=
by convert to_with_top_zero
lemma to_with_top_coe (n : ℕ) : to_with_top n = n := rfl
@[simp] lemma to_with_top_coe' (n : ℕ) [decidable (n : enat).dom] : to_with_top (n : enat) = n :=
by convert to_with_top_coe n
@[simp] lemma to_with_top_le {x y : enat} : Π [decidable x.dom]
[decidable y.dom], by exactI to_with_top x ≤ to_with_top y ↔ x ≤ y :=
enat.cases_on y (by simp) (enat.cases_on x (by simp) (by intros; simp))
@[simp] lemma to_with_top_lt {x y : enat} [decidable x.dom] [decidable y.dom] :
to_with_top x < to_with_top y ↔ x < y :=
by simp only [lt_iff_le_not_le, to_with_top_le]
end with_top
lemma lt_wf : well_founded ((<) : enat → enat → Prop) :=
show well_founded (λ a b : enat, a < b),
by haveI := classical.dec; simp only [to_with_top_lt.symm] {eta := ff};
exact inv_image.wf _ (with_top.well_founded_lt nat.lt_wf)
instance : has_well_founded enat := ⟨(<), lt_wf⟩
end enat
|
e2277ea9d907bf8f96ea9f60b1874eb0b450f456
|
efce24474b28579aba3272fdb77177dc2b11d7aa
|
/src/homotopy_theory/formal/cofibrations/track.lean
|
e2ae9af2e0b6347725cd29dd73f3650529fafe02
|
[
"Apache-2.0"
] |
permissive
|
rwbarton/lean-homotopy-theory
|
cff499f24268d60e1c546e7c86c33f58c62888ed
|
39e1b4ea1ed1b0eca2f68bc64162dde6a6396dee
|
refs/heads/lean-3.4.2
| 1,622,711,883,224
| 1,598,550,958,000
| 1,598,550,958,000
| 136,023,667
| 12
| 6
|
Apache-2.0
| 1,573,187,573,000
| 1,528,116,262,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 26,209
|
lean
|
import category_theory.assoc_pushouts
import category_theory.eq_to_hom
import category_theory.groupoid
import category_theory.transport
import .homotopy
universes v u
open category_theory
open category_theory.category
local notation f ` ∘ `:80 g:80 := g ≫ f
namespace homotopy_theory.cofibrations
open homotopy_theory.weak_equivalences
open homotopy_theory.weak_equivalences.category_with_weak_equivalences
open precofibration_category cofibration_category
variables {C : Type u} [category.{v} C] [cofibration_category.{v} C]
-- Tracks, or "homotopies up to homotopy". This notion is a bit tricky
-- because there is no canonical choice of cylinder object on which to
-- define homotopies. Instead, we define an equivalence relation
-- between homotopies defined on different cylinder objects and define
-- a track to be an equivalence class, and then show that every
-- cylinder object admits a unique homotopy class of homotopies
-- representing each track.
variables {a b : C} {j : a ⟶ b} (hj : is_cof j)
variables {x : C}
variables (f₀ f₁ : b ⟶ x)
structure homotopy :=
(c : relative_cylinder hj)
(h : homotopy_on c f₀ f₁)
variables {hj f₀ f₁}
-- An extension of homotopies. These are like acyclic cofibrations in
-- a category of objects under b ⊔ₐ b and over b and x, where the
-- compositions b ⊔ₐ b → b and b ⊔ₐ b → x are given by the fold map
-- and (f₀, f₁) respectively.
structure homotopy_extension (t t' : homotopy hj f₀ f₁) :=
(m : cylinder_embedding t.c t'.c)
(e : t'.h.H ∘ m.k = t.h.H)
def homotopy_extension.refl (t : homotopy hj f₀ f₁) : homotopy_extension t t :=
⟨cylinder_embedding.refl t.c, show _ ∘ 𝟙 _ = _, by simp⟩
def homotopy_extension.trans {t₀ t₁ t₂ : homotopy hj f₀ f₁}
(m₀ : homotopy_extension t₀ t₁) (m₁ : homotopy_extension t₁ t₂) :
homotopy_extension t₀ t₂ :=
⟨m₀.m.trans m₁.m,
by dsimp [cylinder_embedding.trans]; rw [assoc, m₁.e, m₀.e]⟩
def homotopy_extension.pushout {t t₀ t₁ : homotopy hj f₀ f₁}
(m₀ : homotopy_extension t t₀) (m₁ : homotopy_extension t t₁) :
homotopy hj f₀ f₁ :=
⟨cylinder_embedding.pushout m₀.m m₁.m,
⟨(cylinder_embedding.pushout.is_pushout m₀.m m₁.m).induced t₀.h.H t₁.h.H
(by rw [m₀.e, m₁.e]),
begin
convert t₁.h.Hi₀ using 1, unfold relative_cylinder.i₀,
dsimp [cylinder_embedding.pushout], simp
end,
begin
convert t₁.h.Hi₁ using 1, unfold relative_cylinder.i₁,
dsimp [cylinder_embedding.pushout], simp
end⟩⟩
def homotopy_extension.pushout.map₀ {t t₀ t₁ : homotopy hj f₀ f₁}
(m₀ : homotopy_extension t t₀) (m₁ : homotopy_extension t t₁) :
homotopy_extension t₀ (homotopy_extension.pushout m₀ m₁) :=
⟨cylinder_embedding.pushout.map₀ m₀.m m₁.m,
by dsimp [cylinder_embedding.pushout.map₀, homotopy_extension.pushout]; simp⟩
def homotopy_extension.pushout.map₁ {t t₀ t₁ : homotopy hj f₀ f₁}
(m₀ : homotopy_extension t t₀) (m₁ : homotopy_extension t t₁) :
homotopy_extension t₁ (homotopy_extension.pushout m₀ m₁) :=
⟨cylinder_embedding.pushout.map₁ m₀.m m₁.m,
by dsimp [cylinder_embedding.pushout.map₁, homotopy_extension.pushout]; simp⟩
-- Two homotopies are equivalent if they have a common extension.
def homotopy_equiv (t₀ t₁ : homotopy hj f₀ f₁) : Prop :=
∃ t' (m₀ : homotopy_extension t₀ t') (m₁ : homotopy_extension t₁ t'), true
-- Homotopy equivalence is an equivalence relation.
lemma homotopy_equiv.refl (t : homotopy hj f₀ f₁) : homotopy_equiv t t :=
⟨t, homotopy_extension.refl t, homotopy_extension.refl t, ⟨⟩⟩
lemma homotopy_equiv.symm {t₀ t₁ : homotopy hj f₀ f₁} :
homotopy_equiv t₀ t₁ → homotopy_equiv t₁ t₀ :=
assume ⟨t', m₀, m₁, ⟨⟩⟩, ⟨t', m₁, m₀, ⟨⟩⟩
lemma homotopy_equiv.trans {t₀ t₁ t₂ : homotopy hj f₀ f₁} :
homotopy_equiv t₀ t₁ → homotopy_equiv t₁ t₂ → homotopy_equiv t₀ t₂ :=
assume ⟨t, m₀, m₁, ⟨⟩⟩ ⟨t', m₁', m₂', ⟨⟩⟩,
⟨m₁.pushout m₁',
m₀.trans (homotopy_extension.pushout.map₀ m₁ m₁'),
m₂'.trans (homotopy_extension.pushout.map₁ m₁ m₁'),
⟨⟩⟩
structure homotopy_iso (t t' : homotopy hj f₀ f₁) :=
(k : t.c.ob ≅ t'.c.ob)
(hkii : k.hom ∘ t.c.ii = t'.c.ii)
(hpk : t'.c.p ∘ k.hom = t.c.p)
(e : t'.h.H ∘ k.hom = t.h.H)
lemma homotopy_equiv_of_iso {t t' : homotopy hj f₀ f₁} (i : homotopy_iso t t') :
homotopy_equiv t t' :=
⟨t', ⟨⟨i.k.hom, cof_iso _, i.hkii, i.hpk⟩, i.e⟩, homotopy_extension.refl t', ⟨⟩⟩
instance homotopy_equiv.setoid : setoid (homotopy hj f₀ f₁) :=
{ r := homotopy_equiv,
iseqv :=
⟨λ t, homotopy_equiv.refl t,
λ t₀ t₁, homotopy_equiv.symm,
λ t₀ t₁ t₂, homotopy_equiv.trans⟩ }
variables (hj f₀ f₁)
def track := quotient (homotopy_equiv.setoid : setoid (homotopy hj f₀ f₁))
private noncomputable def chosen_cylinder : relative_cylinder hj :=
classical.choice (exists_relative_cylinder hj)
variables {hj f₀ f₁}
noncomputable def track.refl (f : b ⟶ x) : track hj f f :=
⟦⟨chosen_cylinder hj, homotopy_on.refl f⟩⟧
lemma track.refl_eq {f : b ⟶ x} (c : relative_cylinder hj) :
(track.refl f : track hj f f) = ⟦⟨c, homotopy_on.refl f⟩⟧ :=
quot.sound $
let c₀ := chosen_cylinder hj,
⟨⟨c', m₀, m₁⟩⟩ := exists_common_embedding c₀ c in
⟨⟨c', homotopy_on.refl f⟩,
⟨m₀, show f ∘ c'.p ∘ m₀.k = f ∘ c₀.p, by rw [←assoc, m₀.hpk]⟩,
⟨m₁, show f ∘ c'.p ∘ m₁.k = f ∘ c.p, by rw [←assoc, m₁.hpk]⟩, ⟨⟩⟩
local attribute [elab_with_expected_type] quotient.lift_on quotient.lift_on₂
def track.symm {f₀ f₁ : b ⟶ x} : track hj f₀ f₁ → track hj f₁ f₀ :=
λ t, quotient.lift_on t
(λ t, ⟦⟨t.c.reverse, t.h.symm⟩⟧)
(assume t t' ⟨t'', m₀, m₁, ⟨⟩⟩, quotient.sound $
⟨⟨t''.c.reverse, t''.h.symm⟩, ⟨m₀.m.reverse, m₀.e⟩, ⟨m₁.m.reverse, m₁.e⟩, ⟨⟩⟩)
def track.trans {f₀ f₁ f₂ : b ⟶ x} : track hj f₀ f₁ → track hj f₁ f₂ → track hj f₀ f₂ :=
λ t₀ t₁, quotient.lift_on₂ t₀ t₁
(λ t₀ t₁, ⟦⟨t₀.c.glue t₁.c, t₀.h.trans t₁.h⟩⟧)
(assume t₀ t₁ t₀' t₁' ⟨t₀'', m₀₀, m₀₁, ⟨⟩⟩ ⟨t₁'', m₁₀, m₁₁, ⟨⟩⟩, quotient.sound $
⟨⟨t₀''.c.glue t₁''.c, t₀''.h.trans t₁''.h⟩,
⟨m₀₀.m.glue m₁₀.m,
begin
apply (pushout_by_cof t₀.c.i₁ t₁.c.i₀ t₀.c.acof_i₁.1).is_pushout.uniqueness;
dsimp [homotopy_on.trans, cylinder_embedding.glue]; rw ←assoc;
simp [m₀₀.e, m₁₀.e],
end⟩,
⟨m₀₁.m.glue m₁₁.m,
begin
apply (pushout_by_cof t₀'.c.i₁ t₁'.c.i₀ t₀'.c.acof_i₁.1).is_pushout.uniqueness;
dsimp [homotopy_on.trans, cylinder_embedding.glue]; rw ←assoc;
simp [m₀₁.e, m₁₁.e],
end⟩, ⟨⟩⟩)
-- The groupoid laws.
lemma track.left_identity {f₀ f₁ : b ⟶ x} (t : track hj f₀ f₁) :
track.trans (track.refl _) t = t :=
quotient.induction_on t $ λ ⟨c₁, h⟩, quotient.sound $
-- Set up variable names to match `exists_common_embedding` as
-- closely as possible, so that what we construct is, in particular,
-- a common embedding of c₀ and c₁.
let c := chosen_cylinder hj,
c₀ := c.glue c₁,
p' : c₀.ob ⟶ c₁.ob :=
(pushout_by_cof c.i₁ c₁.i₀ c.acof_i₁.1).is_pushout.induced
(c₁.i₀ ∘ c.p) (𝟙 c₁.ob) (by rw [←assoc, c.pi₁]; simp),
po := pushout_by_cof c₀.ii c₁.ii c₀.hii,
pp := po.is_pushout.induced p' (𝟙 c₁.ob) $ begin
apply (pushout_by_cof j j hj).is_pushout.uniqueness,
{ rw [←assoc, ←assoc], change _ ∘ c₀.i₀ = _ ∘ c₁.i₀, simp,
rw [←assoc, c.pi₀], simp },
{ rw [←assoc, ←assoc], change _ ∘ c₀.i₁ = _ ∘ c₁.i₁, simp }
end,
⟨c'_ob, l, q', hl, hq', q'l⟩ := factorization pp,
cem :=
common_embedding_of_factorization c₀ c₁ po c'_ob l (c₁.p ∘ q')
hl (weq_comp hq' c₁.hp) $ begin
rw [←assoc, q'l],
apply po.is_pushout.uniqueness; rw ←assoc; simp,
apply (pushout_by_cof c.i₁ c₁.i₀ c.acof_i₁.1).is_pushout.uniqueness;
rw ←assoc; simp; change _ = Is_pushout.induced _ _ _ _ ∘ _,
{ simp [c₁.pi₀] }, { simp },
end,
h' : homotopy_on cem.c' f₀ f₁ :=
⟨h.H ∘ q',
calc
h.H ∘ q' ∘ (l ∘ po.map₁ ∘ c₁.ii ∘ _)
= h.H ∘ (q' ∘ l ∘ po.map₁) ∘ c₁.i₀ : by simp [relative_cylinder.i₀]
... = h.H ∘ c₁.i₀ : by rw q'l; simp
... = f₀ : h.Hi₀,
calc
h.H ∘ q' ∘ (l ∘ po.map₁ ∘ c₁.ii ∘ _)
= h.H ∘ (q' ∘ l ∘ po.map₁) ∘ c₁.i₁ : by simp [relative_cylinder.i₁]
... = h.H ∘ c₁.i₁ : by rw q'l; simp
... = f₁ : h.Hi₁⟩ in
⟨⟨cem.c', h'⟩,
⟨cem.m₀, calc
h.H ∘ q' ∘ (l ∘ po.map₀)
= h.H ∘ ((q' ∘ l) ∘ po.map₀) : by simp
... = h.H ∘ (pp ∘ po.map₀) : by rw q'l
... = h.H ∘ p' : by simp
... = (homotopy_on.trans (homotopy_on.refl f₀) h).H : begin
unfold homotopy_on.trans homotopy_on.refl,
apply (pushout_by_cof c.i₁ c₁.i₀ c.acof_i₁.1).is_pushout.uniqueness;
rw ←assoc; simp [h.Hi₀]
end⟩,
⟨cem.m₁, calc
h.H ∘ q' ∘ (l ∘ po.map₁)
= h.H ∘ ((q' ∘ l) ∘ po.map₁) : by simp
... = h.H ∘ (pp ∘ po.map₁) : by rw q'l
... = h.H : by simp⟩,
⟨⟩⟩
lemma track.left_inverse {f₀ f₁ : b ⟶ x} (t : track hj f₀ f₁) :
track.trans t.symm t = track.refl _ :=
quotient.induction_on t $ λ ⟨c, h⟩, quotient.sound $
-- Set up variable names to match `exists_common_embedding` as
-- closely as possible, so that what we construct is, in particular,
-- a common embedding of c₀ and c₁.
let c₁ := chosen_cylinder hj,
c₀ := c.reverse.glue c,
p' : c₀.ob ⟶ c.ob :=
(pushout_by_cof c.reverse.i₁ c.i₀ c.reverse.acof_i₁.1).is_pushout.induced
(𝟙 c.ob) (𝟙 c.ob) (by simp; erw comp_id), -- Yuck
po := pushout_by_cof c₀.ii c₁.ii c₀.hii,
pp := po.is_pushout.induced p' (c.i₁ ∘ c₁.p) $ begin
apply (pushout_by_cof j j hj).is_pushout.uniqueness;
rw [←assoc, ←assoc],
{ change _ ∘ c₀.i₀ = _ ∘ c₁.i₀, simp,
erw [←assoc, c₁.pi₀, comp_id], simp },
{ change _ ∘ c₀.i₁ = _ ∘ c₁.i₁, simp, rw [←assoc, c₁.pi₁], simp }
end,
⟨c'_ob, l, q', hl, hq', q'l⟩ := factorization pp,
cem :=
common_embedding_of_factorization c₀ c₁ po c'_ob l (c.p ∘ q')
hl (weq_comp hq' c.hp) $ begin
rw [←assoc, q'l],
apply po.is_pushout.uniqueness; rw ←assoc; simp,
apply (pushout_by_cof c.reverse.i₁ c.i₀ c.reverse.acof_i₁.1).is_pushout.uniqueness;
rw ←assoc; simp; change _ = Is_pushout.induced _ _ _ _ ∘ _,
{ erw [id_comp, Is_pushout.induced_commutes₀], refl },
{ simp },
{ simp [c.pi₁] } -- What is this even for?
end,
h' : homotopy_on cem.c' f₁ f₁ :=
⟨h.H ∘ q',
calc
h.H ∘ q' ∘ (l ∘ po.map₁ ∘ c₁.ii ∘ _)
= h.H ∘ (q' ∘ l ∘ po.map₁) ∘ c₁.i₀ : by simp [relative_cylinder.i₀]
... = h.H ∘ c.i₁ ∘ (c₁.p ∘ c₁.i₀) : by rw q'l; simp
... = f₁ : by rw [c₁.pi₀, h.Hi₁]; simp,
calc
h.H ∘ q' ∘ (l ∘ po.map₁ ∘ c₁.ii ∘ _)
= h.H ∘ (q' ∘ l ∘ po.map₁) ∘ c₁.i₁ : by simp [relative_cylinder.i₁]
... = h.H ∘ c.i₁ ∘ (c₁.p ∘ c₁.i₁) : by rw q'l; simp
... = f₁ : by rw [c₁.pi₁, h.Hi₁]; simp⟩ in
⟨⟨cem.c', h'⟩,
⟨cem.m₀, calc
h.H ∘ q' ∘ (l ∘ po.map₀)
= h.H ∘ ((q' ∘ l) ∘ po.map₀) : by simp
... = h.H ∘ (pp ∘ po.map₀) : by rw q'l
... = h.H ∘ p' : by simp
... = (homotopy_on.trans h.symm h).H : begin
unfold homotopy_on.trans homotopy_on.symm,
apply (pushout_by_cof c.reverse.i₁ c.i₀ c.reverse.acof_i₁.1).is_pushout.uniqueness;
rw ←assoc; simp; erw id_comp
end⟩,
⟨cem.m₁, calc
h.H ∘ q' ∘ (l ∘ po.map₁)
= h.H ∘ ((q' ∘ l) ∘ po.map₁) : by simp
... = h.H ∘ (pp ∘ po.map₁) : by rw q'l
... = h.H ∘ c.i₁ ∘ c₁.p : by simp
... = (homotopy_on.refl f₁).H : by rw h.Hi₁; refl⟩,
⟨⟩⟩
lemma track.inverse_inverse {f₀ f₁ : b ⟶ x} {t : track hj f₀ f₁} :
t.symm.symm = t :=
-- t.symm.symm and t are homotopies defined on cylinder objects which
-- are equal, but not definitionally equal. Rather than dealing with
-- heterogeneous equality between the homotopies, it's easier to just
-- use `homotopy_equiv_of_iso`.
quotient.induction_on t $ λ t, quotient.sound $ homotopy_equiv_of_iso $
⟨iso.refl _,
by apply (pushout_by_cof j j hj).is_pushout.uniqueness;
dsimp [relative_cylinder.reverse, Is_pushout.swap];
rw [←assoc, ←assoc, ←assoc]; simp,
by dsimp [relative_cylinder.reverse]; simp,
by simp [homotopy_on.symm]⟩
lemma track.right_inverse {f₀ f₁ : b ⟶ x} (t : track hj f₀ f₁) :
track.trans t t.symm = track.refl _ :=
by convert track.left_inverse t.symm; rw track.inverse_inverse
lemma track.assoc {f₀ f₁ f₂ f₃ : b ⟶ x}
(t₀ : track hj f₀ f₁) (t₁ : track hj f₁ f₂) (t₂ : track hj f₂ f₃) :
(t₀.trans t₁).trans t₂ = t₀.trans (t₁.trans t₂) :=
quotient.induction_on₃ t₀ t₁ t₂ $ λ t₀ t₁ t₂, quotient.sound $ homotopy_equiv_of_iso
⟨Is_pushout_assoc
(pushout_by_cof t₀.c.i₁ t₁.c.i₀ t₀.c.acof_i₁.1).is_pushout
(by convert (pushout_by_cof (t₀.c.glue t₁.c).i₁ t₂.c.i₀ _).is_pushout using 1; simp)
(pushout_by_cof t₁.c.i₁ t₂.c.i₀ t₁.c.acof_i₁.1).is_pushout
(by convert (pushout_by_cof t₀.c.i₁ (t₁.c.glue t₂.c).i₀ _).is_pushout using 1; simp),
begin
apply (pushout_by_cof j j hj).is_pushout.uniqueness; rw ←assoc,
{ change _ ∘ relative_cylinder.i₀ _ = relative_cylinder.i₀ _, simp },
{ change _ ∘ relative_cylinder.i₁ _ = relative_cylinder.i₁ _, simp }
end,
begin
symmetry,
apply Is_pushout_assoc_uniqueness;
dsimp [relative_cylinder.glue]; simp
end,
begin
symmetry,
apply Is_pushout_assoc_uniqueness;
dsimp [relative_cylinder.glue, homotopy_on.trans]; simp
end⟩
lemma track.right_identity {f₀ f₁ : b ⟶ x} (t : track hj f₀ f₁) :
track.trans t (track.refl _) = t :=
calc
t.trans (track.refl _)
= t.trans (t.symm.trans t) : by rw track.left_inverse
... = (t.trans t.symm).trans t : by rw track.assoc
... = (track.refl _).trans t : by rw track.right_inverse
... = t : by rw track.left_identity
section
variables (hj x)
include hj
def track_groupoid_rel := b ⟶ x
end
noncomputable instance : groupoid (track_groupoid_rel hj x) :=
{ hom := λ f₀ f₁, track hj f₀ f₁,
id := λ f, track.refl f,
comp := λ f₀ f₁ f₂ t₀ t₁, t₀.trans t₁,
inv := λ f₀ f₁ t, t.symm,
id_comp' := λ f₀ f₁, track.left_identity,
comp_id' := λ f₀ f₁, track.right_identity,
assoc' := λ f₀ f₁ f₂ f₃, track.assoc,
inv_comp' := λ f₀ f₁, track.left_inverse,
comp_inv' := λ f₀ f₁, track.right_inverse }
section functoriality
variables {y : C} (g : x ⟶ y)
def track.congr_left {f₀ f₁ : b ⟶ x} (t : track hj f₀ f₁) :
track hj (g ∘ f₀) (g ∘ f₁) :=
quotient.lift_on t
(λ t, ⟦⟨t.c, t.h.congr_left hj g⟩⟧)
(λ t t' ⟨t'', m₀, m₁, ⟨⟩⟩, quotient.sound
⟨⟨t''.c, t''.h.congr_left hj g⟩,
⟨m₀.m, show (g ∘ _) ∘ _ = _, by rw [←assoc, m₀.e]; refl⟩,
⟨m₁.m, show (g ∘ _) ∘ _ = _, by rw [←assoc, m₁.e]; refl⟩,
⟨⟩⟩)
noncomputable def track_groupoid_rel_functor {y} (g : x ⟶ y) :
track_groupoid_rel hj x ↝ track_groupoid_rel hj y :=
{ obj := λ f, g ∘ f,
map := λ f₀ f₁ t, t.congr_left g,
map_id' := λ f,
show (track.refl f).congr_left g = track.refl (g ∘ f),
begin
apply congr_arg quotient.mk,
unfold homotopy_on.refl homotopy_on.congr_left,
congr' 2,
rw ←assoc, refl
end,
map_comp' := λ f₀ f₁ f₂ t₀ t₁,
show (t₀.trans t₁).congr_left g = (t₀.congr_left g).trans (t₁.congr_left g),
begin
induction t₀ using quot.ind,
induction t₁ using quot.ind,
apply congr_arg quotient.mk,
congr', apply homotopy_on.ext,
apply pushout_induced_comp
end }
-- TODO: Precomposition is also a functor, & they are compatible,
-- interchange, etc.
end functoriality
-- We next relate tracks back to the original notion of "homotopies up
-- to homotopy", showing that for any particular relative cylinder
-- object c on a → b, tracks from f₀ : b → x to f₁ : b → x are in
-- one-to-one correspondence with homotopy classes rel b ⊔ₐ b → c of
-- homotopies from f₀ to f₁ defined on the given relative cylinder c,
-- provided that x is fibrant.
section track_homotopy_class
variables {c : relative_cylinder hj}
-- Use g₀ g₁ instead of f₀ f₁, so that we can put the variables in the
-- correct order (c first).
variables (hx : fibrant x)
variables {g₀ g₁ : b ⟶ x}
section correspondence
def homotopic_homotopies (h₀ h₁ : homotopy_on c g₀ g₁) : Prop :=
homotopic_rel c.hii h₀.H h₁.H
variables (c g₀ g₁)
instance homotopic_homotopies.setoid : setoid (homotopy_on c g₀ g₁) :=
{ r := homotopic_homotopies,
iseqv :=
⟨λ h, homotopic_rel.refl _,
λ h₀ h₁, homotopic_rel.symm,
λ h₀ h₁ h₂, homotopic_rel.trans⟩ }
def homotopy_up_to_homotopy : Type v :=
quotient (homotopic_homotopies.setoid c g₀ g₁)
variables {c g₀ g₁}
-- One direction of the correspondence is easy.
def track_of_homotopy_on (h : homotopy_on c g₀ g₁) : track hj g₀ g₁ := ⟦⟨c, h⟩⟧
variables {x c g₀ g₁}
lemma eq_track_of_homotopic_rel (h₀ h₁ : homotopy_on c g₀ g₁) :
homotopic_homotopies h₀ h₁ → track_of_homotopy_on h₀ = track_of_homotopy_on h₁ :=
assume ⟨c', ⟨⟨H, Hi₀, Hi₁⟩⟩⟩, quotient.sound $
-- c' is a relative cylinder on b ⊔ₐ b → c. We can also view its
-- underlying object as a relative cylinder on the original map a → b,
-- and then H as a homotopy from g₀ to g₁ rel a → b.
let c'' : relative_cylinder hj :=
⟨c'.ob, c'.i₀ ∘ c.ii, c.p ∘ c'.p,
cof_comp c.hii c'.acof_i₀.1, weq_comp c'.hp c.hp, calc
(c.p ∘ c'.p) ∘ (c'.i₀ ∘ c.ii)
= c.p ∘ (c'.p ∘ c'.i₀) ∘ c.ii : by simp
... = c.p ∘ c.ii : by rw c'.pi₀; simp
... = _ : c.pii⟩ in
⟨⟨c'',
⟨H,
show H ∘ (c'.i₀ ∘ c.ii ∘ _) = _, by simp [Hi₀]; rw ←assoc; exact h₀.Hi₀,
show H ∘ (c'.i₀ ∘ c.ii ∘ _) = _, by simp [Hi₀]; rw ←assoc; exact h₀.Hi₁⟩⟩,
⟨⟨c'.i₀, c'.acof_i₀.1, rfl, by rw ←assoc; simp [c'.pi₀]⟩, Hi₀⟩,
⟨⟨c'.i₁, c'.acof_i₁.1, c'.ij.symm, by rw ←assoc; simp [c'.pi₁]⟩, Hi₁⟩, ⟨⟩⟩
local attribute [elab_with_expected_type] quotient.lift
def track_of_homotopy_class : homotopy_up_to_homotopy c g₀ g₁ → track hj g₀ g₁ :=
quotient.lift track_of_homotopy_on (λ h₀ h₁, eq_track_of_homotopic_rel h₀ h₁)
-- Similar to `homotopic_iff`. We choose a common embedding of c and
-- the cylinder on which t is defined, use the hypothesis that x is
-- fibrant to extend the homotopy to this new cylinder, and then
-- restrict it to c.
private def surj (t : track hj g₀ g₁) :
∃ h : homotopy_up_to_homotopy c g₀ g₁, track_of_homotopy_class h = t :=
quotient.induction_on t $ λ ⟨c', ⟨H, Hi₀, Hi₁⟩⟩,
let ⟨⟨c'', m₀, m₁⟩⟩ := exists_common_embedding c c',
⟨H', hH'⟩ := fibrant_iff_rlp.mp hx m₁.acof_k H in
⟨⟦⟨H' ∘ m₀.k,
by rw [←assoc, m₀.hki₀, ←m₁.hki₀, assoc, hH', Hi₀],
by rw [←assoc, m₀.hki₁, ←m₁.hki₁, assoc, hH', Hi₁]⟩⟧,
quotient.sound
⟨⟨c'',
⟨H',
by rw [←m₁.hki₀, assoc, hH', Hi₀],
by rw [←m₁.hki₁, assoc, hH', Hi₁]⟩⟩,
⟨m₀, rfl⟩, ⟨m₁, hH'⟩, ⟨⟩⟩⟩
set_option eqn_compiler.zeta true
private def inj (h₀ h₁ : homotopy_up_to_homotopy c g₀ g₁) :
track_of_homotopy_class h₀ = track_of_homotopy_class h₁ → h₀ = h₁ :=
quotient.induction_on₂ h₀ h₁ $ λ h₀ h₁ e, quotient.sound $
let ⟨t', m₀, m₁, ⟨⟩⟩ := quotient.exact e,
c' := chosen_cylinder c.hii,
po :=
pushout_by_cof c'.ii
((pushout_by_cof c.ii c.ii c.hii).is_pushout.induced
m₀.m.k m₁.m.k (by rw [m₀.m.hkii, m₁.m.hkii])) c'.hii,
p' := po.is_pushout.induced (c.p ∘ c'.p) t'.c.p $ begin
rw [←assoc, c'.pii],
rw [pushout_induced_comp, pushout_induced_comp], congr' 1,
{ simp [m₀.m.hpk] }, { simp [m₁.m.hpk] }
end,
⟨z, l, q, hl, hq, ql⟩ := factorization p' in
have is_acof (l ∘ po.map₁), from
⟨cof_comp (pushout_is_cof po.is_pushout c'.hii) hl,
weq_of_comp_weq_right hq (by convert t'.c.hp; simp [ql])⟩,
let ⟨H', hH'⟩ := fibrant_iff_rlp.mp hx this t'.h.H in
begin
rw assoc at hH',
refine ⟨c', ⟨⟨H' ∘ l ∘ po.map₀, _, _⟩⟩⟩;
{ change _ ∘ _ ∘ _ ∘ (_ ∘ _) = _, rw assoc,
conv { to_lhs, congr, skip, rw ←assoc },
rw po.is_pushout.commutes,
simp [hH'], rw ←assoc, simp [m₀.e, m₁.e] }
end
variables (c)
-- FIXME: Why doesn't ≃ work here??
noncomputable def homotopy_class_equiv_track :
equiv (homotopy_up_to_homotopy c g₀ g₁) (track hj g₀ g₁) :=
equiv.of_bijective _ ⟨inj hx, surj hx⟩
section
variables (hj hx)
include hj c hx
def homotopy_class_groupoid := b ⟶ x
end
noncomputable instance homotopy_class_groupoid.groupoid :
groupoid (homotopy_class_groupoid hj c hx) :=
transported_groupoid
(by apply_instance : groupoid (track_groupoid_rel hj x))
(λ g₀ g₁, (homotopy_class_equiv_track c hx).symm)
-- This is definitionally equal to .to_category of the above,
-- but helps with defining homotopy_class_functor somehow.
private noncomputable def homotopy_class_groupoid.category :
category (homotopy_class_groupoid hj c hx) :=
transported_category
(by apply_instance : category (track_groupoid_rel hj x))
(λ g₀ g₁, (homotopy_class_equiv_track c hx).symm)
section functoriality
variables {c} {y : C} (hy : fibrant y) (k : x ⟶ y)
def homotopy_up_to_homotopy.congr_left {g₀ g₁ : b ⟶ x}
(h : homotopy_up_to_homotopy c g₀ g₁) :
homotopy_up_to_homotopy c (k ∘ g₀) (k ∘ g₁) :=
quotient.lift_on h
(λ h, ⟦h.congr_left hj k⟧)
(λ h h' H, quotient.sound (H.congr_left c.hii k))
noncomputable def homotopy_class_functor :
homotopy_class_groupoid hj c hx ↝ homotopy_class_groupoid hj c hy :=
show @category_theory.functor
_ (homotopy_class_groupoid.category c hx)
_ (homotopy_class_groupoid.category c hy), from
transported_functor
(λ g₀ g₁, (homotopy_class_equiv_track c hx).symm)
(λ g₀ g₁, (homotopy_class_equiv_track c hy).symm)
(track_groupoid_rel_functor k)
lemma homotopy_class_functor.obj {g : homotopy_class_groupoid hj c hx} :
(homotopy_class_functor hx hy k).obj g = k ∘ g :=
rfl
lemma homotopy_class_functor.hom {g₀ g₁ : homotopy_class_groupoid hj c hx}
{h : g₀ ⟶ g₁} : homotopy_class_functor hx hy k &> h = h.congr_left k :=
quotient.induction_on h $ λ h,
begin
dsimp [homotopy_class_functor, transported_functor],
rw ←equiv.eq_symm_apply,
rw [equiv.symm_symm, equiv.symm_symm],
refl
end
private lemma heq_of_homotopies_eq
{g₀ g₀' g₁ g₁' : homotopy_class_groupoid hj c hx} (e₀ : g₀ = g₀') (e₁ : g₁ = g₁')
(H : homotopy_on c g₀ g₁) (H' : homotopy_on c g₀' g₁') (e : H.H = H'.H) :
(⟦H⟧ : g₀ ⟶ g₁) == (⟦H'⟧ : g₀' ⟶ g₁') :=
begin
subst e₀, subst e₁,
congr,
cases H, cases H',
congr,
exact e
end
-- Next we show that homotopy_class_functor is functorial in "k".
lemma homotopy_class_functor.map_id :
homotopy_class_functor hx hx (𝟙 x) = functor.id (homotopy_class_groupoid hj c hx) :=
begin
fapply functor.hext,
{ intro g, rw [homotopy_class_functor.obj], simp },
{ intros g₀ g₁ h, rw homotopy_class_functor.hom,
induction h using quot.ind,
apply heq_of_homotopies_eq; { simp [homotopy_on.congr_left] } }
end
lemma homotopy_class_functor.map_comp {z : C} (hz : fibrant z) (k' : y ⟶ z) :
(homotopy_class_functor hx hz (k' ∘ k) : homotopy_class_groupoid hj c hx ↝ _) =
(homotopy_class_functor hx hy k).comp (homotopy_class_functor hy hz k') :=
begin
fapply functor.hext,
{ intro g, rw [homotopy_class_functor.obj],
rw [←assoc], refl },
{ intros g₀ g₁ h,
rw [functor.comp_map],
repeat { rw homotopy_class_functor.hom },
induction h using quot.ind,
apply heq_of_homotopies_eq hz;
{ simp [homotopy_class_functor.obj, homotopy_on.congr_left] } }
end
end functoriality
end correspondence
end track_homotopy_class
end homotopy_theory.cofibrations
|
dc93b59824d22018112d585d8ba6040aa8d5678c
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/algebra/module/default_auto.lean
|
b7c6c8a35165650f14e6528d674811fb6c5dbf7c
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 341
|
lean
|
/-
Copyright (c) 2020 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.algebra.module.basic
import Mathlib.algebra.module.submodule
import Mathlib.PostPort
namespace Mathlib
end Mathlib
|
7da348de536dd3ddf9a779b8e57bab81a15f7c0a
|
6fca17f8d5025f89be1b2d9d15c9e0c4b4900cbf
|
/src/game/world5/level3.lean
|
e2cf5e9240bbdd024753647f58681da5369fd2b1
|
[
"Apache-2.0"
] |
permissive
|
arolihas/natural_number_game
|
4f0c93feefec93b8824b2b96adff8b702b8b43ce
|
8e4f7b4b42888a3b77429f90cce16292bd288138
|
refs/heads/master
| 1,621,872,426,808
| 1,586,270,467,000
| 1,586,270,467,000
| 253,648,466
| 0
| 0
| null | 1,586,219,694,000
| 1,586,219,694,000
| null |
UTF-8
|
Lean
| false
| false
| 3,713
|
lean
|
/- Tactic : have
## Summary
`have h : P,` will create a new goal of creating a term of type `P`,
and will add `h : P` to the hypotheses for the goal you were working on.
## Details
If you want to name a term of some type (because you want it
in your local context for some reason), and if you have the
formula for the term, you can use `have` to give the term a name.
## Example (`have q := ...` or `have q : Q := ...`)
If the local context contains
```
f : P → Q
p : P
```
then the tactic `have q := f(p),` will add `q` to our local context,
leaving it like this:
```
f : P → Q
p : P
q : Q
```
If you think about it, you don't ever really need `q`, because whenever you
think you need it you coudl just use `f(p)` instead. But it's good that
we can introduce convenient notation like this.
## Example (`have q : Q,`)
A variant of this tactic can be used where you just declare the
type of the term you want to have, finish the tactic statement with
a comma and no `:=`, and then Lean just adds it as a new goal.
The number of goals goes up by one if you use `have` like this.
For example if the local context is
```
P Q R : Prop/Type,
f : P → Q,
g : Q → R,
p : P
⊢ R
```
then after `have q : Q,`, there will be the new goal
```
f : P → Q,
g : Q → R,
p : P,
⊢ Q
```
and your original goal will have `q : Q` added to the list
of hypotheses.
-/
/-
# Function world.
## Level 3: the `have` tactic.
Say you have a whole bunch of sets and functions between them,
and your goal is to build a certain element of a certain set.
If it helps, you can build intermediate elements of other sets
along the way, using the `have` command. `have` is the Lean analogue
of saying "let's define an element $q\in Q$ by..." in the middle of a calculation.
It is often not logically necessary, but on the other hand
it is very convenient, for example it can save on notation, or
it can break proofs or calculations up into smaller steps.
In the level below, we have an element of $P$ and we want an element
of $U$; during the proof we will make several intermediate elements
of some of the other sets involved. The diagram of sets and
functions looks like this pictorially:

and so it's clear how to make the element of $U$ from the element of $P.$
Indeed, we could solve this level in one move by typing
`exact l(j(h(p))),`
But let us instead stroll more lazily through the level.
We can start by using the `have` tactic to make an element of $Q$:
`have q := h(p),`
and then we note that $j(q)$ is an element of $T$
`have t : T := j(q),`
(notice how on this occasion we explicitly told Lean what set we thought $t$ was in, with
that `: T` thing before the `:=`) and we could even define $u$ to be $l(t)$:
`have u : U := l(t),`
and then finish the level with
`exact u,`
.
-/
/- Definition
Given an element of $P$ we can define an element of $U$.
-/
example (P Q R S T U: Type)
(p : P)
(h : P → Q)
(i : Q → R)
(j : Q → T)
(k : S → T)
(l : T → U)
: U :=
begin
end
/-
If you solved the level using `have`, then click on the last line of your proof
(you do know you can move your cursor around with the arrow keys
and explore your proof, right?) and note that the local context at that point
is in something like the following mess:
```
P Q R S T U : Type,
p : P,
h : P → Q,
i : Q → R,
j : Q → T,
k : S → T,
l : T → U,
q : Q,
t : T,
u : U
⊢ U
```
It was already bad enough to start with, and we added three more
terms to it. In level 4 we will learn about the `apply` tactic
which solves the level using another technique, without leaving
so much junk behind.
-/
|
9e006922a0498e0c1f964ab58812fc37f39ac011
|
fecda8e6b848337561d6467a1e30cf23176d6ad0
|
/src/ring_theory/ideal/basic.lean
|
4469f485973aa99d3a8ce2f211ef6600d35f459b
|
[
"Apache-2.0"
] |
permissive
|
spolu/mathlib
|
bacf18c3d2a561d00ecdc9413187729dd1f705ed
|
480c92cdfe1cf3c2d083abded87e82162e8814f4
|
refs/heads/master
| 1,671,684,094,325
| 1,600,736,045,000
| 1,600,736,045,000
| 297,564,749
| 1
| 0
| null | 1,600,758,368,000
| 1,600,758,367,000
| null |
UTF-8
|
Lean
| false
| false
| 31,677
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Chris Hughes, Mario Carneiro
-/
import algebra.associated
import linear_algebra.basic
import order.zorn
/-!
# Ideals over a ring
This file defines `ideal R`, the type of ideals over a commutative ring `R`.
## Implementation notes
`ideal R` is implemented using `submodule R R`, where `•` is interpreted as `*`.
## TODO
Support one-sided ideals, and ideals over non-commutative rings.
See `algebra.ring_quot` for quotients of non-commutative rings.
-/
universes u v w
variables {α : Type u} {β : Type v}
open set function
open_locale classical big_operators
/-- Ideal in a commutative ring is an additive subgroup `s` such that
`a * b ∈ s` whenever `b ∈ s`. -/
@[reducible] def ideal (R : Type u) [comm_ring R] := submodule R R
namespace ideal
variables [comm_ring α] (I : ideal α) {a b : α}
protected lemma zero_mem : (0 : α) ∈ I := I.zero_mem
protected lemma add_mem : a ∈ I → b ∈ I → a + b ∈ I := I.add_mem
lemma neg_mem_iff : -a ∈ I ↔ a ∈ I := I.neg_mem_iff
lemma add_mem_iff_left : b ∈ I → (a + b ∈ I ↔ a ∈ I) := I.add_mem_iff_left
lemma add_mem_iff_right : a ∈ I → (a + b ∈ I ↔ b ∈ I) := I.add_mem_iff_right
protected lemma sub_mem : a ∈ I → b ∈ I → a - b ∈ I := I.sub_mem
lemma mul_mem_left : b ∈ I → a * b ∈ I := I.smul_mem _
lemma mul_mem_right (h : a ∈ I) : a * b ∈ I := mul_comm b a ▸ I.mul_mem_left h
end ideal
variables {a b : α}
-- A separate namespace definition is needed because the variables were historically in a different order
namespace ideal
variables [comm_ring α] (I : ideal α)
@[ext] lemma ext {I J : ideal α} (h : ∀ x, x ∈ I ↔ x ∈ J) : I = J :=
submodule.ext h
theorem eq_top_of_unit_mem
(x y : α) (hx : x ∈ I) (h : y * x = 1) : I = ⊤ :=
eq_top_iff.2 $ λ z _, calc
z = z * (y * x) : by simp [h]
... = (z * y) * x : eq.symm $ mul_assoc z y x
... ∈ I : I.mul_mem_left hx
theorem eq_top_of_is_unit_mem {x} (hx : x ∈ I) (h : is_unit x) : I = ⊤ :=
let ⟨y, hy⟩ := is_unit_iff_exists_inv'.1 h in eq_top_of_unit_mem I x y hx hy
theorem eq_top_iff_one : I = ⊤ ↔ (1:α) ∈ I :=
⟨by rintro rfl; trivial,
λ h, eq_top_of_unit_mem _ _ 1 h (by simp)⟩
theorem ne_top_iff_one : I ≠ ⊤ ↔ (1:α) ∉ I :=
not_congr I.eq_top_iff_one
@[simp]
theorem unit_mul_mem_iff_mem {x y : α} (hy : is_unit y) : y * x ∈ I ↔ x ∈ I :=
begin
refine ⟨λ h, _, λ h, I.smul_mem y h⟩,
obtain ⟨y', hy'⟩ := is_unit_iff_exists_inv.1 hy,
have := I.smul_mem y' h,
rwa [smul_eq_mul, ← mul_assoc, mul_comm y' y, hy', one_mul] at this,
end
@[simp]
theorem mul_unit_mem_iff_mem {x y : α} (hy : is_unit y) : x * y ∈ I ↔ x ∈ I :=
mul_comm y x ▸ unit_mul_mem_iff_mem I hy
/-- The ideal generated by a subset of a ring -/
def span (s : set α) : ideal α := submodule.span α s
lemma subset_span {s : set α} : s ⊆ span s := submodule.subset_span
lemma span_le {s : set α} {I} : span s ≤ I ↔ s ⊆ I := submodule.span_le
lemma span_mono {s t : set α} : s ⊆ t → span s ≤ span t := submodule.span_mono
@[simp] lemma span_eq : span (I : set α) = I := submodule.span_eq _
@[simp] lemma span_singleton_one : span (1 : set α) = ⊤ :=
(eq_top_iff_one _).2 $ subset_span $ mem_singleton _
lemma mem_span_insert {s : set α} {x y} :
x ∈ span (insert y s) ↔ ∃ a (z ∈ span s), x = a * y + z := submodule.mem_span_insert
lemma mem_span_insert' {s : set α} {x y} :
x ∈ span (insert y s) ↔ ∃a, x + a * y ∈ span s := submodule.mem_span_insert'
lemma mem_span_singleton' {x y : α} :
x ∈ span ({y} : set α) ↔ ∃ a, a * y = x := submodule.mem_span_singleton
lemma mem_span_singleton {x y : α} :
x ∈ span ({y} : set α) ↔ y ∣ x :=
mem_span_singleton'.trans $ exists_congr $ λ _, by rw [eq_comm, mul_comm]
lemma span_singleton_le_span_singleton {x y : α} :
span ({x} : set α) ≤ span ({y} : set α) ↔ y ∣ x :=
span_le.trans $ singleton_subset_iff.trans mem_span_singleton
lemma span_singleton_eq_span_singleton {α : Type u} [integral_domain α] {x y : α} :
span ({x} : set α) = span ({y} : set α) ↔ associated x y :=
begin
rw [←dvd_dvd_iff_associated, le_antisymm_iff, and_comm],
apply and_congr;
rw span_singleton_le_span_singleton,
end
lemma span_eq_bot {s : set α} : span s = ⊥ ↔ ∀ x ∈ s, (x:α) = 0 := submodule.span_eq_bot
@[simp] lemma span_singleton_eq_bot {x} : span ({x} : set α) = ⊥ ↔ x = 0 :=
submodule.span_singleton_eq_bot
@[simp] lemma span_zero : span (0 : set α) = ⊥ := by rw [←set.singleton_zero, span_singleton_eq_bot]
lemma span_singleton_eq_top {x} : span ({x} : set α) = ⊤ ↔ is_unit x :=
by rw [is_unit_iff_dvd_one, ← span_singleton_le_span_singleton, singleton_one, span_singleton_one,
eq_top_iff]
lemma span_singleton_mul_right_unit {a : α} (h2 : is_unit a) (x : α) :
span ({x * a} : set α) = span {x} :=
begin
apply le_antisymm,
{ rw span_singleton_le_span_singleton, use a},
{ rw span_singleton_le_span_singleton, rw is_unit.mul_right_dvd h2}
end
lemma span_singleton_mul_left_unit {a : α} (h2 : is_unit a) (x : α) :
span ({a * x} : set α) = span {x} := by rw [mul_comm, span_singleton_mul_right_unit h2]
/--
The ideal generated by an arbitrary binary relation.
-/
def of_rel (r : α → α → Prop) : ideal α :=
submodule.span α { x | ∃ (a b) (h : r a b), x = a - b }
/-- An ideal `P` of a ring `R` is prime if `P ≠ R` and `xy ∈ P → x ∈ P ∨ y ∈ P` -/
@[class] def is_prime (I : ideal α) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : α}, x * y ∈ I → x ∈ I ∨ y ∈ I
theorem is_prime.mem_or_mem {I : ideal α} (hI : I.is_prime) :
∀ {x y : α}, x * y ∈ I → x ∈ I ∨ y ∈ I := hI.2
theorem is_prime.mem_or_mem_of_mul_eq_zero {I : ideal α} (hI : I.is_prime)
{x y : α} (h : x * y = 0) : x ∈ I ∨ y ∈ I :=
hI.2 (h.symm ▸ I.zero_mem)
theorem is_prime.mem_of_pow_mem {I : ideal α} (hI : I.is_prime)
{r : α} (n : ℕ) (H : r^n ∈ I) : r ∈ I :=
begin
induction n with n ih,
{ exact (mt (eq_top_iff_one _).2 hI.1).elim H },
exact or.cases_on (hI.mem_or_mem H) id ih
end
theorem zero_ne_one_of_proper {I : ideal α} (h : I ≠ ⊤) : (0:α) ≠ 1 :=
λ hz, I.ne_top_iff_one.1 h $ hz ▸ I.zero_mem
theorem span_singleton_prime {p : α} (hp : p ≠ 0) :
is_prime (span ({p} : set α)) ↔ prime p :=
by simp [is_prime, prime, span_singleton_eq_top, hp, mem_span_singleton]
lemma bot_prime {R : Type*} [integral_domain R] : (⊥ : ideal R).is_prime :=
⟨λ h, one_ne_zero (by rwa [ideal.eq_top_iff_one, submodule.mem_bot] at h),
λ x y h, mul_eq_zero.mp (by simpa only [submodule.mem_bot] using h)⟩
/-- An ideal is maximal if it is maximal in the collection of proper ideals. -/
@[class] def is_maximal (I : ideal α) : Prop :=
I ≠ ⊤ ∧ ∀ J, I < J → J = ⊤
theorem is_maximal_iff {I : ideal α} : I.is_maximal ↔
(1:α) ∉ I ∧ ∀ (J : ideal α) x, I ≤ J → x ∉ I → x ∈ J → (1:α) ∈ J :=
and_congr I.ne_top_iff_one $ forall_congr $ λ J,
by rw [lt_iff_le_not_le]; exact
⟨λ H x h hx₁ hx₂, J.eq_top_iff_one.1 $
H ⟨h, not_subset.2 ⟨_, hx₂, hx₁⟩⟩,
λ H ⟨h₁, h₂⟩, let ⟨x, xJ, xI⟩ := not_subset.1 h₂ in
J.eq_top_iff_one.2 $ H x h₁ xI xJ⟩
theorem is_maximal.eq_of_le {I J : ideal α}
(hI : I.is_maximal) (hJ : J ≠ ⊤) (IJ : I ≤ J) : I = J :=
eq_iff_le_not_lt.2 ⟨IJ, λ h, hJ (hI.2 _ h)⟩
theorem is_maximal.exists_inv {I : ideal α}
(hI : I.is_maximal) {x} (hx : x ∉ I) : ∃ y, y * x - 1 ∈ I :=
begin
cases is_maximal_iff.1 hI with H₁ H₂,
rcases mem_span_insert'.1 (H₂ (span (insert x I)) x
(set.subset.trans (subset_insert _ _) subset_span)
hx (subset_span (mem_insert _ _))) with ⟨y, hy⟩,
rw [span_eq, ← neg_mem_iff, add_comm, neg_add', neg_mul_eq_neg_mul] at hy,
exact ⟨-y, hy⟩
end
theorem is_maximal.is_prime {I : ideal α} (H : I.is_maximal) : I.is_prime :=
⟨H.1, λ x y hxy, or_iff_not_imp_left.2 $ λ hx, begin
cases H.exists_inv hx with z hz,
have := I.mul_mem_left hz,
rw [mul_sub, mul_one, mul_comm, mul_assoc] at this,
exact I.neg_mem_iff.1 ((I.add_mem_iff_right $ I.mul_mem_left hxy).1 this)
end⟩
@[priority 100] -- see Note [lower instance priority]
instance is_maximal.is_prime' (I : ideal α) : ∀ [H : I.is_maximal], I.is_prime :=
is_maximal.is_prime
/-- Krull's theorem: if `I` is an ideal that is not the whole ring, then it is included in some
maximal ideal. -/
theorem exists_le_maximal (I : ideal α) (hI : I ≠ ⊤) :
∃ M : ideal α, M.is_maximal ∧ I ≤ M :=
begin
rcases zorn.zorn_partial_order₀ { J : ideal α | J ≠ ⊤ } _ I hI with ⟨M, M0, IM, h⟩,
{ refine ⟨M, ⟨M0, λ J hJ, by_contradiction $ λ J0, _⟩, IM⟩,
cases h J J0 (le_of_lt hJ), exact lt_irrefl _ hJ },
{ intros S SC cC I IS,
refine ⟨Sup S, λ H, _, λ _, le_Sup⟩,
obtain ⟨J, JS, J0⟩ : ∃ J ∈ S, (1 : α) ∈ J,
from (submodule.mem_Sup_of_directed ⟨I, IS⟩ cC.directed_on).1 ((eq_top_iff_one _).1 H),
exact SC JS ((eq_top_iff_one _).2 J0) }
end
/-- Krull's theorem: a nontrivial ring has a maximal ideal. -/
theorem exists_maximal [nontrivial α] : ∃ M : ideal α, M.is_maximal :=
let ⟨I, ⟨hI, _⟩⟩ := exists_le_maximal (⊥ : ideal α) submodule.bot_ne_top in ⟨I, hI⟩
/-- If P is not properly contained in any maximal ideal then it is not properly contained
in any proper ideal -/
lemma maximal_of_no_maximal {R : Type u} [comm_ring R] {P : ideal R}
(hmax : ∀ m : ideal R, P < m → ¬is_maximal m) (J : ideal R) (hPJ : P < J) : J = ⊤ :=
begin
by_contradiction hnonmax,
rcases exists_le_maximal J hnonmax with ⟨M, hM1, hM2⟩,
exact hmax M (lt_of_lt_of_le hPJ hM2) hM1,
end
theorem mem_span_pair {x y z : α} :
z ∈ span ({x, y} : set α) ↔ ∃ a b, a * x + b * y = z :=
by simp [mem_span_insert, mem_span_singleton', @eq_comm _ _ z]
lemma span_singleton_lt_span_singleton [integral_domain β] {x y : β} :
span ({x} : set β) < span ({y} : set β) ↔ dvd_not_unit y x :=
by rw [lt_iff_le_not_le, span_singleton_le_span_singleton, span_singleton_le_span_singleton,
dvd_and_not_dvd_iff]
lemma factors_decreasing [integral_domain β] (b₁ b₂ : β) (h₁ : b₁ ≠ 0) (h₂ : ¬ is_unit b₂) :
span ({b₁ * b₂} : set β) < span {b₁} :=
lt_of_le_not_le (ideal.span_le.2 $ singleton_subset_iff.2 $
ideal.mem_span_singleton.2 ⟨b₂, rfl⟩) $ λ h,
h₂ $ is_unit_of_dvd_one _ $ (mul_dvd_mul_iff_left h₁).1 $
by rwa [mul_one, ← ideal.span_singleton_le_span_singleton]
/-- The quotient `R/I` of a ring `R` by an ideal `I`. -/
def quotient (I : ideal α) := I.quotient
namespace quotient
variables {I} {x y : α}
instance (I : ideal α) : has_one I.quotient := ⟨submodule.quotient.mk 1⟩
instance (I : ideal α) : has_mul I.quotient :=
⟨λ a b, quotient.lift_on₂' a b (λ a b, submodule.quotient.mk (a * b)) $
λ a₁ a₂ b₁ b₂ h₁ h₂, quot.sound $ begin
refine calc a₁ * a₂ - b₁ * b₂ = a₂ * (a₁ - b₁) + (a₂ - b₂) * b₁ : _
... ∈ I : I.add_mem (I.mul_mem_left h₁) (I.mul_mem_right h₂),
rw [mul_sub, sub_mul, sub_add_sub_cancel, mul_comm, mul_comm b₁]
end⟩
instance (I : ideal α) : comm_ring I.quotient :=
{ mul := (*),
one := 1,
mul_assoc := λ a b c, quotient.induction_on₃' a b c $
λ a b c, congr_arg submodule.quotient.mk (mul_assoc a b c),
mul_comm := λ a b, quotient.induction_on₂' a b $
λ a b, congr_arg submodule.quotient.mk (mul_comm a b),
one_mul := λ a, quotient.induction_on' a $
λ a, congr_arg submodule.quotient.mk (one_mul a),
mul_one := λ a, quotient.induction_on' a $
λ a, congr_arg submodule.quotient.mk (mul_one a),
left_distrib := λ a b c, quotient.induction_on₃' a b c $
λ a b c, congr_arg submodule.quotient.mk (left_distrib a b c),
right_distrib := λ a b c, quotient.induction_on₃' a b c $
λ a b c, congr_arg submodule.quotient.mk (right_distrib a b c),
..submodule.quotient.add_comm_group I }
/-- The ring homomorphism from a ring `R` to a quotient ring `R/I`. -/
def mk (I : ideal α) : α →+* I.quotient :=
⟨λ a, submodule.quotient.mk a, rfl, λ _ _, rfl, rfl, λ _ _, rfl⟩
instance : inhabited (quotient I) := ⟨mk I 37⟩
protected theorem eq : mk I x = mk I y ↔ x - y ∈ I := submodule.quotient.eq I
@[simp] theorem mk_eq_mk (x : α) : (submodule.quotient.mk x : quotient I) = mk I x := rfl
lemma eq_zero_iff_mem {I : ideal α} : mk I a = 0 ↔ a ∈ I :=
by conv {to_rhs, rw ← sub_zero a }; exact quotient.eq'
theorem zero_eq_one_iff {I : ideal α} : (0 : I.quotient) = 1 ↔ I = ⊤ :=
eq_comm.trans $ eq_zero_iff_mem.trans (eq_top_iff_one _).symm
theorem zero_ne_one_iff {I : ideal α} : (0 : I.quotient) ≠ 1 ↔ I ≠ ⊤ :=
not_congr zero_eq_one_iff
protected theorem nontrivial {I : ideal α} (hI : I ≠ ⊤) : nontrivial I.quotient :=
⟨⟨0, 1, zero_ne_one_iff.2 hI⟩⟩
lemma mk_surjective : function.surjective (mk I) :=
λ y, quotient.induction_on' y (λ x, exists.intro x rfl)
instance (I : ideal α) [hI : I.is_prime] : integral_domain I.quotient :=
{ eq_zero_or_eq_zero_of_mul_eq_zero := λ a b,
quotient.induction_on₂' a b $ λ a b hab,
(hI.mem_or_mem (eq_zero_iff_mem.1 hab)).elim
(or.inl ∘ eq_zero_iff_mem.2)
(or.inr ∘ eq_zero_iff_mem.2),
.. quotient.comm_ring I,
.. quotient.nontrivial hI.1 }
lemma is_integral_domain_iff_prime (I : ideal α) : is_integral_domain I.quotient ↔ I.is_prime :=
⟨ λ ⟨h1, h2, h3⟩, ⟨zero_ne_one_iff.1 $ @zero_ne_one _ _ ⟨h1⟩, λ x y h,
by { simp only [←eq_zero_iff_mem, (mk I).map_mul] at ⊢ h, exact h3 _ _ h}⟩,
λ h, by exactI integral_domain.to_is_integral_domain I.quotient⟩
lemma exists_inv {I : ideal α} [hI : I.is_maximal] :
∀ {a : I.quotient}, a ≠ 0 → ∃ b : I.quotient, a * b = 1 :=
begin
rintro ⟨a⟩ h,
cases hI.exists_inv (mt eq_zero_iff_mem.2 h) with b hb,
rw [mul_comm] at hb,
exact ⟨mk _ b, quot.sound hb⟩
end
/-- quotient by maximal ideal is a field. def rather than instance, since users will have
computable inverses in some applications -/
protected noncomputable def field (I : ideal α) [hI : I.is_maximal] : field I.quotient :=
{ inv := λ a, if ha : a = 0 then 0 else classical.some (exists_inv ha),
mul_inv_cancel := λ a (ha : a ≠ 0), show a * dite _ _ _ = _,
by rw dif_neg ha;
exact classical.some_spec (exists_inv ha),
inv_zero := dif_pos rfl,
..quotient.integral_domain I }
/-- If the quotient by an ideal is a field, then the ideal is maximal. -/
theorem maximal_of_is_field (I : ideal α)
(hqf : is_field I.quotient) : I.is_maximal :=
begin
apply ideal.is_maximal_iff.2,
split,
{ intro h,
rcases hqf.exists_pair_ne with ⟨⟨x⟩, ⟨y⟩, hxy⟩,
exact hxy (ideal.quotient.eq.2 (mul_one (x - y) ▸ I.mul_mem_left h)) },
{ intros J x hIJ hxnI hxJ,
rcases hqf.mul_inv_cancel (mt ideal.quotient.eq_zero_iff_mem.1 hxnI) with ⟨⟨y⟩, hy⟩,
rw [← zero_add (1 : α), ← sub_self (x * y), sub_add],
refine J.sub_mem (J.mul_mem_right hxJ) (hIJ (ideal.quotient.eq.1 hy)) }
end
/-- The quotient of a ring by an ideal is a field iff the ideal is maximal. -/
theorem maximal_ideal_iff_is_field_quotient (I : ideal α) :
I.is_maximal ↔ is_field I.quotient :=
⟨λ h, @field.to_is_field I.quotient (@ideal.quotient.field _ _ I h),
λ h, maximal_of_is_field I h⟩
variable [comm_ring β]
/-- Given a ring homomorphism `f : α →+* β` sending all elements of an ideal to zero,
lift it to the quotient by this ideal. -/
def lift (S : ideal α) (f : α →+* β) (H : ∀ (a : α), a ∈ S → f a = 0) :
quotient S →+* β :=
{ to_fun := λ x, quotient.lift_on' x f $ λ (a b) (h : _ ∈ _),
eq_of_sub_eq_zero $ by rw [← f.map_sub, H _ h],
map_one' := f.map_one,
map_zero' := f.map_zero,
map_add' := λ a₁ a₂, quotient.induction_on₂' a₁ a₂ f.map_add,
map_mul' := λ a₁ a₂, quotient.induction_on₂' a₁ a₂ f.map_mul }
@[simp] lemma lift_mk (S : ideal α) (f : α →+* β) (H : ∀ (a : α), a ∈ S → f a = 0) :
lift S f H (mk S a) = f a := rfl
end quotient
section lattice
variables {R : Type u} [comm_ring R]
lemma mem_sup_left {S T : ideal R} : ∀ {x : R}, x ∈ S → x ∈ S ⊔ T :=
show S ≤ S ⊔ T, from le_sup_left
lemma mem_sup_right {S T : ideal R} : ∀ {x : R}, x ∈ T → x ∈ S ⊔ T :=
show T ≤ S ⊔ T, from le_sup_right
lemma mem_supr_of_mem {ι : Type*} {S : ι → ideal R} (i : ι) :
∀ {x : R}, x ∈ S i → x ∈ supr S :=
show S i ≤ supr S, from le_supr _ _
lemma mem_Sup_of_mem {S : set (ideal R)} {s : ideal R}
(hs : s ∈ S) : ∀ {x : R}, x ∈ s → x ∈ Sup S :=
show s ≤ Sup S, from le_Sup hs
theorem mem_Inf {s : set (ideal R)} {x : R} :
x ∈ Inf s ↔ ∀ ⦃I⦄, I ∈ s → x ∈ I :=
⟨λ hx I his, hx I ⟨I, infi_pos his⟩, λ H I ⟨J, hij⟩, hij ▸ λ S ⟨hj, hS⟩, hS ▸ H hj⟩
@[simp] lemma mem_inf {I J : ideal R} {x : R} : x ∈ I ⊓ J ↔ x ∈ I ∧ x ∈ J := iff.rfl
@[simp] lemma mem_infi {ι : Type*} {I : ι → ideal R} {x : R} : x ∈ infi I ↔ ∀ i, x ∈ I i :=
submodule.mem_infi _
end lattice
/-- All ideals in a field are trivial. -/
lemma eq_bot_or_top {K : Type u} [field K] (I : ideal K) :
I = ⊥ ∨ I = ⊤ :=
begin
rw or_iff_not_imp_right,
change _ ≠ _ → _,
rw ideal.ne_top_iff_one,
intro h1,
rw eq_bot_iff,
intros r hr,
by_cases H : r = 0, {simpa},
simpa [H, h1] using submodule.smul_mem I r⁻¹ hr,
end
lemma eq_bot_of_prime {K : Type u} [field K] (I : ideal K) [h : I.is_prime] :
I = ⊥ :=
or_iff_not_imp_right.mp I.eq_bot_or_top h.1
lemma bot_is_maximal {K : Type u} [field K] : is_maximal (⊥ : ideal K) :=
⟨λ h, absurd ((eq_top_iff_one (⊤ : ideal K)).mp rfl) (by rw ← h; simp),
λ I hI, or_iff_not_imp_left.mp (eq_bot_or_top I) (ne_of_gt hI)⟩
section pi
variables (ι : Type v)
/-- `I^n` as an ideal of `R^n`. -/
def pi : ideal (ι → α) :=
{ carrier := { x | ∀ i, x i ∈ I },
zero_mem' := λ i, submodule.zero_mem _,
add_mem' := λ a b ha hb i, submodule.add_mem _ (ha i) (hb i),
smul_mem' := λ a b hb i, ideal.mul_mem_left _ (hb i) }
lemma mem_pi (x : ι → α) : x ∈ I.pi ι ↔ ∀ i, x i ∈ I := iff.rfl
/-- `R^n/I^n` is a `R/I`-module. -/
instance module_pi : module (I.quotient) (I.pi ι).quotient :=
begin
refine { smul := λ c m, quotient.lift_on₂' c m (λ r m, submodule.quotient.mk $ r • m) _, .. },
{ intros c₁ m₁ c₂ m₂ hc hm,
change c₁ - c₂ ∈ I at hc,
change m₁ - m₂ ∈ (I.pi ι) at hm,
apply ideal.quotient.eq.2,
have : c₁ • (m₂ - m₁) ∈ I.pi ι,
{ rw ideal.mem_pi,
intro i,
simp only [smul_eq_mul, pi.smul_apply, pi.sub_apply],
apply ideal.mul_mem_left,
rw ←ideal.neg_mem_iff,
simpa only [neg_sub] using hm i },
rw [←ideal.add_mem_iff_left (I.pi ι) this, sub_eq_add_neg, add_comm, ←add_assoc, ←smul_add,
sub_add_cancel, ←sub_eq_add_neg, ←sub_smul, ideal.mem_pi],
exact λ i, ideal.mul_mem_right _ hc },
all_goals { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ <|> rintro ⟨a⟩,
simp only [(•), submodule.quotient.quot_mk_eq_mk, ideal.quotient.mk_eq_mk],
change ideal.quotient.mk _ _ = ideal.quotient.mk _ _,
congr' with i, simp [mul_assoc, mul_add, add_mul] }
end
/-- `R^n/I^n` is isomorphic to `(R/I)^n` as an `R/I`-module. -/
noncomputable def pi_quot_equiv : (I.pi ι).quotient ≃ₗ[I.quotient] (ι → I.quotient) :=
{ to_fun := λ x, quotient.lift_on' x (λ f i, ideal.quotient.mk I (f i)) $
λ a b hab, funext (λ i, ideal.quotient.eq.2 (hab i)),
map_add' := by { rintros ⟨_⟩ ⟨_⟩, refl },
map_smul' := by { rintros ⟨_⟩ ⟨_⟩, refl },
inv_fun := λ x, ideal.quotient.mk (I.pi ι) $ λ i, quotient.out' (x i),
left_inv :=
begin
rintro ⟨x⟩,
exact ideal.quotient.eq.2 (λ i, ideal.quotient.eq.1 (quotient.out_eq' _))
end,
right_inv :=
begin
intro x,
ext i,
obtain ⟨r, hr⟩ := @quot.exists_rep _ _ (x i),
simp_rw ←hr,
convert quotient.out_eq' _
end }
/-- If `f : R^n → R^m` is an `R`-linear map and `I ⊆ R` is an ideal, then the image of `I^n` is
contained in `I^m`. -/
lemma map_pi {ι} [fintype ι] {ι' : Type w} (x : ι → α) (hi : ∀ i, x i ∈ I)
(f : (ι → α) →ₗ[α] (ι' → α)) (i : ι') : f x i ∈ I :=
begin
rw pi_eq_sum_univ x,
simp only [finset.sum_apply, smul_eq_mul, linear_map.map_sum, pi.smul_apply, linear_map.map_smul],
exact submodule.sum_mem _ (λ j hj, ideal.mul_mem_right _ (hi j))
end
end pi
end ideal
namespace ring
variables {R : Type*} [comm_ring R]
lemma not_is_field_of_subsingleton {R : Type*} [ring R] [subsingleton R] : ¬ is_field R :=
λ ⟨⟨x, y, hxy⟩, _, _⟩, hxy (subsingleton.elim x y)
lemma exists_not_is_unit_of_not_is_field [nontrivial R] (hf : ¬ is_field R) :
∃ x ≠ (0 : R), ¬ is_unit x :=
begin
have : ¬ _ := λ h, hf ⟨exists_pair_ne R, mul_comm, h⟩,
simp_rw is_unit_iff_exists_inv,
push_neg at ⊢ this,
obtain ⟨x, hx, not_unit⟩ := this,
exact ⟨x, hx, not_unit⟩
end
lemma not_is_field_iff_exists_ideal_bot_lt_and_lt_top [nontrivial R] :
¬ is_field R ↔ ∃ I : ideal R, ⊥ < I ∧ I < ⊤ :=
begin
split,
{ intro h,
obtain ⟨x, nz, nu⟩ := exists_not_is_unit_of_not_is_field h,
use ideal.span {x},
rw [bot_lt_iff_ne_bot, lt_top_iff_ne_top],
exact ⟨mt ideal.span_singleton_eq_bot.mp nz, mt ideal.span_singleton_eq_top.mp nu⟩ },
{ rintros ⟨I, bot_lt, lt_top⟩ hf,
obtain ⟨x, mem, ne_zero⟩ := submodule.exists_of_lt bot_lt,
rw submodule.mem_bot at ne_zero,
obtain ⟨y, hy⟩ := hf.mul_inv_cancel ne_zero,
rw [lt_top_iff_ne_top, ne.def, ideal.eq_top_iff_one, ← hy] at lt_top,
exact lt_top (ideal.mul_mem_right _ mem), }
end
lemma not_is_field_iff_exists_prime [nontrivial R] :
¬ is_field R ↔ ∃ p : ideal R, p ≠ ⊥ ∧ p.is_prime :=
not_is_field_iff_exists_ideal_bot_lt_and_lt_top.trans
⟨λ ⟨I, bot_lt, lt_top⟩, let ⟨p, hp, le_p⟩ := I.exists_le_maximal (lt_top_iff_ne_top.mp lt_top) in
⟨p, bot_lt_iff_ne_bot.mp (lt_of_lt_of_le bot_lt le_p), hp.is_prime⟩,
λ ⟨p, ne_bot, prime⟩, ⟨p, bot_lt_iff_ne_bot.mpr ne_bot, lt_top_iff_ne_top.mpr prime.1⟩⟩
end ring
namespace ideal
/-- Maximal ideals in a non-field are nontrivial. -/
variables {R : Type u} [comm_ring R] [nontrivial R]
lemma bot_lt_of_maximal (M : ideal R) [hm : M.is_maximal] (non_field : ¬ is_field R) : ⊥ < M :=
begin
rcases (ring.not_is_field_iff_exists_ideal_bot_lt_and_lt_top.1 non_field)
with ⟨I, Ibot, Itop⟩,
split, finish,
intro mle,
apply @irrefl _ (<) _ (⊤ : ideal R),
have : M = ⊥ := eq_bot_iff.mpr mle,
rw this at *,
rwa hm.2 I Ibot at Itop,
end
end ideal
/-- The set of non-invertible elements of a monoid. -/
def nonunits (α : Type u) [monoid α] : set α := { a | ¬is_unit a }
@[simp] theorem mem_nonunits_iff [comm_monoid α] : a ∈ nonunits α ↔ ¬ is_unit a := iff.rfl
theorem mul_mem_nonunits_right [comm_monoid α] :
b ∈ nonunits α → a * b ∈ nonunits α :=
mt is_unit_of_mul_is_unit_right
theorem mul_mem_nonunits_left [comm_monoid α] :
a ∈ nonunits α → a * b ∈ nonunits α :=
mt is_unit_of_mul_is_unit_left
theorem zero_mem_nonunits [semiring α] : 0 ∈ nonunits α ↔ (0:α) ≠ 1 :=
not_congr is_unit_zero_iff
@[simp] theorem one_not_mem_nonunits [monoid α] : (1:α) ∉ nonunits α :=
not_not_intro is_unit_one
theorem coe_subset_nonunits [comm_ring α] {I : ideal α} (h : I ≠ ⊤) :
(I : set α) ⊆ nonunits α :=
λ x hx hu, h $ I.eq_top_of_is_unit_mem hx hu
lemma exists_max_ideal_of_mem_nonunits [comm_ring α] (h : a ∈ nonunits α) :
∃ I : ideal α, I.is_maximal ∧ a ∈ I :=
begin
have : ideal.span ({a} : set α) ≠ ⊤,
{ intro H, rw ideal.span_singleton_eq_top at H, contradiction },
rcases ideal.exists_le_maximal _ this with ⟨I, Imax, H⟩,
use [I, Imax], apply H, apply ideal.subset_span, exact set.mem_singleton a
end
/-- A commutative ring is local if it has a unique maximal ideal. Note that
`local_ring` is a predicate. -/
class local_ring (α : Type u) [comm_ring α] extends nontrivial α : Prop :=
(is_local : ∀ (a : α), (is_unit a) ∨ (is_unit (1 - a)))
namespace local_ring
variables [comm_ring α] [local_ring α]
lemma is_unit_or_is_unit_one_sub_self (a : α) :
(is_unit a) ∨ (is_unit (1 - a)) :=
is_local a
lemma is_unit_of_mem_nonunits_one_sub_self (a : α) (h : (1 - a) ∈ nonunits α) :
is_unit a :=
or_iff_not_imp_right.1 (is_local a) h
lemma is_unit_one_sub_self_of_mem_nonunits (a : α) (h : a ∈ nonunits α) :
is_unit (1 - a) :=
or_iff_not_imp_left.1 (is_local a) h
lemma nonunits_add {x y} (hx : x ∈ nonunits α) (hy : y ∈ nonunits α) :
x + y ∈ nonunits α :=
begin
rintros ⟨u, hu⟩,
apply hy,
suffices : is_unit ((↑u⁻¹ : α) * y),
{ rcases this with ⟨s, hs⟩,
use u * s,
convert congr_arg (λ z, (u : α) * z) hs,
rw ← mul_assoc, simp },
rw show (↑u⁻¹ * y) = (1 - ↑u⁻¹ * x),
{ rw eq_sub_iff_add_eq,
replace hu := congr_arg (λ z, (↑u⁻¹ : α) * z) hu.symm,
simpa [mul_add, add_comm] using hu },
apply is_unit_one_sub_self_of_mem_nonunits,
exact mul_mem_nonunits_right hx
end
variable (α)
/-- The ideal of elements that are not units. -/
def maximal_ideal : ideal α :=
{ carrier := nonunits α,
zero_mem' := zero_mem_nonunits.2 $ zero_ne_one,
add_mem' := λ x y hx hy, nonunits_add hx hy,
smul_mem' := λ a x, mul_mem_nonunits_right }
instance maximal_ideal.is_maximal : (maximal_ideal α).is_maximal :=
begin
rw ideal.is_maximal_iff,
split,
{ intro h, apply h, exact is_unit_one },
{ intros I x hI hx H,
erw not_not at hx,
rcases hx with ⟨u,rfl⟩,
simpa using I.smul_mem ↑u⁻¹ H }
end
lemma maximal_ideal_unique :
∃! I : ideal α, I.is_maximal :=
⟨maximal_ideal α, maximal_ideal.is_maximal α,
λ I hI, hI.eq_of_le (maximal_ideal.is_maximal α).1 $
λ x hx, hI.1 ∘ I.eq_top_of_is_unit_mem hx⟩
variable {α}
lemma eq_maximal_ideal {I : ideal α} (hI : I.is_maximal) : I = maximal_ideal α :=
unique_of_exists_unique (maximal_ideal_unique α) hI $ maximal_ideal.is_maximal α
lemma le_maximal_ideal {J : ideal α} (hJ : J ≠ ⊤) : J ≤ maximal_ideal α :=
begin
rcases ideal.exists_le_maximal J hJ with ⟨M, hM1, hM2⟩,
rwa ←eq_maximal_ideal hM1
end
@[simp] lemma mem_maximal_ideal (x) :
x ∈ maximal_ideal α ↔ x ∈ nonunits α := iff.rfl
end local_ring
lemma local_of_nonunits_ideal [comm_ring α] (hnze : (0:α) ≠ 1)
(h : ∀ x y ∈ nonunits α, x + y ∈ nonunits α) : local_ring α :=
{ exists_pair_ne := ⟨0, 1, hnze⟩,
is_local := λ x, or_iff_not_imp_left.mpr $ λ hx,
begin
by_contra H,
apply h _ _ hx H,
simp [-sub_eq_add_neg, add_sub_cancel'_right]
end }
lemma local_of_unique_max_ideal [comm_ring α] (h : ∃! I : ideal α, I.is_maximal) :
local_ring α :=
local_of_nonunits_ideal
(let ⟨I, Imax, _⟩ := h in (λ (H : 0 = 1), Imax.1 $ I.eq_top_iff_one.2 $ H ▸ I.zero_mem))
$ λ x y hx hy H,
let ⟨I, Imax, Iuniq⟩ := h in
let ⟨Ix, Ixmax, Hx⟩ := exists_max_ideal_of_mem_nonunits hx in
let ⟨Iy, Iymax, Hy⟩ := exists_max_ideal_of_mem_nonunits hy in
have xmemI : x ∈ I, from ((Iuniq Ix Ixmax) ▸ Hx),
have ymemI : y ∈ I, from ((Iuniq Iy Iymax) ▸ Hy),
Imax.1 $ I.eq_top_of_is_unit_mem (I.add_mem xmemI ymemI) H
lemma local_of_unique_nonzero_prime (R : Type u) [comm_ring R]
(h : ∃! P : ideal R, P ≠ ⊥ ∧ ideal.is_prime P) : local_ring R :=
local_of_unique_max_ideal begin
rcases h with ⟨P, ⟨hPnonzero, hPnot_top, _⟩, hPunique⟩,
refine ⟨P, ⟨hPnot_top, _⟩, λ M hM, hPunique _ ⟨_, ideal.is_maximal.is_prime hM⟩⟩,
{ refine ideal.maximal_of_no_maximal (λ M hPM hM, ne_of_lt hPM _),
exact (hPunique _ ⟨ne_bot_of_gt hPM, ideal.is_maximal.is_prime hM⟩).symm },
{ rintro rfl,
exact hPnot_top (hM.2 P (bot_lt_iff_ne_bot.2 hPnonzero)) },
end
lemma local_of_surjective {A B : Type*} [comm_ring A] [local_ring A] [comm_ring B] [nontrivial B]
(f : A →+* B) (hf : function.surjective f) :
local_ring B :=
{ is_local :=
begin
intros b,
obtain ⟨a, rfl⟩ := hf b,
apply (local_ring.is_unit_or_is_unit_one_sub_self a).imp f.is_unit_map _,
rw [← f.map_one, ← f.map_sub],
apply f.is_unit_map,
end,
.. ‹nontrivial B› }
/-- A local ring homomorphism is a homomorphism between local rings
such that the image of the maximal ideal of the source is contained within
the maximal ideal of the target. -/
class is_local_ring_hom [semiring α] [semiring β] (f : α →+* β) : Prop :=
(map_nonunit : ∀ a, is_unit (f a) → is_unit a)
instance is_local_ring_hom_id (A : Type*) [semiring A] : is_local_ring_hom (ring_hom.id A) :=
{ map_nonunit := λ a, id }
@[simp] lemma is_unit_map_iff {A B : Type*} [semiring A] [semiring B] (f : A →+* B)
[is_local_ring_hom f] (a) :
is_unit (f a) ↔ is_unit a :=
⟨is_local_ring_hom.map_nonunit a, f.is_unit_map⟩
instance is_local_ring_hom_comp {A B C : Type*} [semiring A] [semiring B] [semiring C]
(g : B →+* C) (f : A →+* B) [is_local_ring_hom g] [is_local_ring_hom f] :
is_local_ring_hom (g.comp f) :=
{ map_nonunit := λ a, is_local_ring_hom.map_nonunit a ∘ is_local_ring_hom.map_nonunit (f a) }
@[simp] lemma is_unit_of_map_unit [semiring α] [semiring β] (f : α →+* β) [is_local_ring_hom f]
(a) (h : is_unit (f a)) : is_unit a :=
is_local_ring_hom.map_nonunit a h
theorem of_irreducible_map [semiring α] [semiring β] (f : α →+* β) [h : is_local_ring_hom f] {x : α}
(hfx : irreducible (f x)) : irreducible x :=
⟨λ h, hfx.1 $ is_unit.map f.to_monoid_hom h, λ p q hx, let ⟨H⟩ := h in
or.imp (H p) (H q) $ hfx.2 _ _ $ f.map_mul p q ▸ congr_arg f hx⟩
section
open local_ring
variables [comm_ring α] [local_ring α] [comm_ring β] [local_ring β]
variables (f : α →+* β) [is_local_ring_hom f]
lemma map_nonunit (a) (h : a ∈ maximal_ideal α) : f a ∈ maximal_ideal β :=
λ H, h $ is_unit_of_map_unit f a H
end
namespace local_ring
variables [comm_ring α] [local_ring α] [comm_ring β] [local_ring β]
variable (α)
/-- The residue field of a local ring is the quotient of the ring by its maximal ideal. -/
def residue_field := (maximal_ideal α).quotient
noncomputable instance residue_field.field : field (residue_field α) :=
ideal.quotient.field (maximal_ideal α)
noncomputable instance : inhabited (residue_field α) := ⟨37⟩
/-- The quotient map from a local ring to its residue field. -/
def residue : α →+* (residue_field α) :=
ideal.quotient.mk _
namespace residue_field
variables {α β}
/-- The map on residue fields induced by a local homomorphism between local rings -/
noncomputable def map (f : α →+* β) [is_local_ring_hom f] :
residue_field α →+* residue_field β :=
ideal.quotient.lift (maximal_ideal α) ((ideal.quotient.mk _).comp f) $
λ a ha,
begin
erw ideal.quotient.eq_zero_iff_mem,
exact map_nonunit f a ha
end
end residue_field
end local_ring
namespace field
variables [field α]
@[priority 100] -- see Note [lower instance priority]
instance : local_ring α :=
{ is_local := λ a,
if h : a = 0
then or.inr (by rw [h, sub_zero]; exact is_unit_one)
else or.inl $ is_unit_of_mul_eq_one a a⁻¹ $ div_self h }
end field
|
3e043c5fce474e5e3735b854d7c1dc8e9d420f78
|
947b78d97130d56365ae2ec264df196ce769371a
|
/src/Lean/Elab/DeclModifiers.lean
|
0bab18eabd1d5fc27db863db78abeadf6569438e
|
[
"Apache-2.0"
] |
permissive
|
shyamalschandra/lean4
|
27044812be8698f0c79147615b1d5090b9f4b037
|
6e7a883b21eaf62831e8111b251dc9b18f40e604
|
refs/heads/master
| 1,671,417,126,371
| 1,601,859,995,000
| 1,601,860,020,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,633
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Sebastian Ullrich
-/
import Lean.Modifiers
import Lean.Elab.Attributes
import Lean.Elab.Exception
import Lean.Elab.DeclUtil
namespace Lean
namespace Elab
def checkNotAlreadyDeclared {m} [Monad m] [MonadEnv m] [MonadExceptOf Exception m] [Ref m] [AddErrorMessageContext m]
(declName : Name) : m Unit := do
env ← getEnv;
when (env.contains declName) $
match privateToUserName? declName with
| none => throwError ("'" ++ declName ++ "' has already been declared")
| some declName => throwError ("private declaration '" ++ declName ++ "' has already been declared");
when (env.contains (mkPrivateName env declName)) $
throwError ("a private declaration '" ++ declName ++ "' has already been declared");
match privateToUserName? declName with
| none => pure ()
| some declName =>
when (env.contains declName) $
throwError ("a non-private declaration '" ++ declName ++ "' has already been declared")
inductive Visibility
| regular | «protected» | «private»
instance Visibility.hasToString : HasToString Visibility :=
⟨fun v => match v with
| Visibility.regular => "regular"
| Visibility.private => "private"
| Visibility.protected => "protected"⟩
structure Modifiers :=
(docString : Option String := none)
(visibility : Visibility := Visibility.regular)
(isNoncomputable : Bool := false)
(isPartial : Bool := false)
(isUnsafe : Bool := false)
(attrs : Array Attribute := #[])
def Modifiers.isPrivate : Modifiers → Bool
| { visibility := Visibility.private, .. } => true
| _ => false
def Modifiers.isProtected : Modifiers → Bool
| { visibility := Visibility.protected, .. } => true
| _ => false
def Modifiers.addAttribute (modifiers : Modifiers) (attr : Attribute) : Modifiers :=
{ modifiers with attrs := modifiers.attrs.push attr }
instance Modifiers.hasFormat : HasFormat Modifiers :=
⟨fun m =>
let components : List Format :=
(match m.docString with
| some str => ["/--" ++ str ++ "-/"]
| none => [])
++ (match m.visibility with
| Visibility.regular => []
| Visibility.protected => ["protected"]
| Visibility.private => ["private"])
++ (if m.isNoncomputable then ["noncomputable"] else [])
++ (if m.isPartial then ["partial"] else [])
++ (if m.isUnsafe then ["unsafe"] else [])
++ m.attrs.toList.map (fun attr => fmt attr);
Format.bracket "{" (Format.joinSep components ("," ++ Format.line)) "}"⟩
instance Modifiers.hasToString : HasToString Modifiers := ⟨toString ∘ format⟩
section Methods
variables {m : Type → Type} [Monad m] [MonadEnv m] [MonadExceptOf Exception m] [Ref m] [AddErrorMessageContext m]
def elabModifiers (stx : Syntax) : m Modifiers := do
let docCommentStx := stx.getArg 0;
let attrsStx := stx.getArg 1;
let visibilityStx := stx.getArg 2;
let noncompStx := stx.getArg 3;
let unsafeStx := stx.getArg 4;
let partialStx := stx.getArg 5;
docString ← match docCommentStx.getOptional? with
| none => pure none
| some s => match s.getArg 1 with
| Syntax.atom _ val => pure (some (val.extract 0 (val.bsize - 2)))
| _ => throwErrorAt s ("unexpected doc string " ++ toString (s.getArg 1));
visibility ← match visibilityStx.getOptional? with
| none => pure Visibility.regular
| some v =>
let kind := v.getKind;
if kind == `Lean.Parser.Command.private then pure Visibility.private
else if kind == `Lean.Parser.Command.protected then pure Visibility.protected
else throwErrorAt v "unexpected visibility modifier";
attrs ← match attrsStx.getOptional? with
| none => pure #[]
| some attrs => elabDeclAttrs attrs;
pure {
docString := docString,
visibility := visibility,
isPartial := !partialStx.isNone,
isUnsafe := !unsafeStx.isNone,
isNoncomputable := !noncompStx.isNone,
attrs := attrs
}
def applyVisibility (visibility : Visibility) (declName : Name) : m Name :=
match visibility with
| Visibility.private => do
env ← getEnv;
let declName := mkPrivateName env declName;
checkNotAlreadyDeclared declName;
pure declName
| Visibility.protected => do
checkNotAlreadyDeclared declName;
env ← getEnv;
let env := addProtected env declName;
setEnv env;
pure declName
| _ => do
checkNotAlreadyDeclared declName;
pure declName
def mkDeclName (currNamespace : Name) (modifiers : Modifiers) (shortName : Name) : m (Name × Name) := do
let name := (extractMacroScopes shortName).name;
unless (name.isAtomic || isFreshInstanceName name) $
throwError ("atomic identifier expected '" ++ shortName ++ "'");
let declName := currNamespace ++ shortName;
declName ← applyVisibility modifiers.visibility declName;
match modifiers.visibility with
| Visibility.protected =>
match currNamespace with
| Name.str _ s _ => pure (declName, mkNameSimple s ++ shortName)
| _ => throwError ("protected declarations must be in a namespace")
| _ => pure (declName, shortName)
/-
`declId` is of the form
```
parser! ident >> optional (".{" >> sepBy1 ident ", " >> "}")
```
but we also accept a single identifier to users to make macro writing more convenient .
-/
def expandDeclIdCore (declId : Syntax) : Name × Syntax :=
if declId.isIdent then
(declId.getId, mkNullNode)
else
let id := declId.getIdAt 0;
let optUnivDeclStx := declId.getArg 1;
(id, optUnivDeclStx)
structure ExpandDeclIdResult :=
(shortName : Name)
(declName : Name)
(levelNames : List Name)
def expandDeclId (currNamespace : Name) (currLevelNames : List Name) (declId : Syntax) (modifiers : Modifiers) : m ExpandDeclIdResult := do
-- ident >> optional (".{" >> sepBy1 ident ", " >> "}")
let (shortName, optUnivDeclStx) := expandDeclIdCore declId;
levelNames ←
if optUnivDeclStx.isNone then
pure currLevelNames
else do {
let extraLevels := (optUnivDeclStx.getArg 1).getArgs.getEvenElems;
extraLevels.foldlM
(fun levelNames idStx =>
let id := idStx.getId;
if levelNames.elem id then
withRef idStx $ throwAlreadyDeclaredUniverseLevel id
else
pure (id :: levelNames))
currLevelNames
};
(declName, shortName) ← withRef declId $ mkDeclName currNamespace modifiers shortName;
pure { shortName := shortName, declName := declName, levelNames := levelNames }
end Methods
end Elab
end Lean
|
3fa076b712d9f71d59e5033f885a44a47d49ab4f
|
a721fe7446524f18ba361625fc01033d9c8b7a78
|
/elaborate/add_comm_2.lean
|
5113d5434a7cbbecf5e7709c737b3911a0637b69
|
[] |
no_license
|
Sterrs/leaning
|
8fd80d1f0a6117a220bb2e57ece639b9a63deadc
|
3901cc953694b33adda86cb88ca30ba99594db31
|
refs/heads/master
| 1,627,023,822,744
| 1,616,515,221,000
| 1,616,515,221,000
| 245,512,190
| 2
| 0
| null | 1,616,429,050,000
| 1,583,527,118,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,343
|
lean
|
λ (m n : mynat),
(mynat.rec
⟨λ (m : mynat),
eq.rec (eq.refl m)
(eq.rec (eq.refl (m = add zero m))
(eq.rec (eq.refl (m = add zero m))
((mynat.rec ⟨eq.refl zero, punit.star⟩
(λ (n : mynat)
(ih :
pprod (add zero n = n)
(mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (add zero n = n) ih) punit) n)),
⟨eq.rec (eq.refl (succ n))
(eq.rec (eq.refl (succ (add zero n) = succ n))
(eq.rec (eq.refl (succ (add zero n) = succ n)) (ih.fst))),
⟨ih, punit.star⟩⟩)
m).fst))),
punit.star⟩
(λ (n : mynat)
(ih :
pprod (∀ (m : mynat), add m n = add n m)
(mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add m n = add n m) ih) punit)
n)),
⟨λ (m : mynat),
eq.rec
(eq.rec (eq.refl (succ (add n m)))
(eq.rec (eq.refl (succ (add m n) = succ (add n m)))
(eq.rec (eq.refl (succ (add m n) = succ (add n m))) (ih.fst m))))
(eq.rec (eq.refl (succ (add m n) = add (succ n) m))
(eq.rec (eq.refl (succ (add m n) = add (succ n) m))
((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩
(λ (n : mynat)
(ih :
pprod (∀ (m : mynat), add (succ m) n = succ (add m n))
(mynat.rec punit
(λ (n : mynat) (ih : Type),
pprod (pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) ih) punit)
n)),
⟨λ (m : mynat),
eq.rec (eq.refl (succ (succ (add m n))))
(eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n))))
(eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (ih.fst m))),
⟨ih, punit.star⟩⟩)
m).fst
n))),
⟨ih, punit.star⟩⟩)
n).fst
m
|
92c9e3d48a0c3068bc226c8a160d0104a7869720
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/category_theory/monad/monadicity.lean
|
be665e374b78a211c241074abd8e994f3d0fb9ee
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 14,985
|
lean
|
/-
Copyright (c) 2020 Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bhavik Mehta
-/
import category_theory.limits.shapes.reflexive
import category_theory.limits.preserves.limits
import category_theory.monad.limits
import category_theory.monad.coequalizer
/-!
# Monadicity theorems
We prove monadicity theorems which can establish a given functor is monadic. In particular, we
show three versions of Beck's monadicity theorem, and the reflexive (crude) monadicity theorem:
`G` is a monadic right adjoint if it has a right adjoint, and:
* `D` has, `G` preserves and reflects `G`-split coequalizers, see
`category_theory.monad.monadic_of_has_preserves_reflects_G_split_coequalizers`
* `G` creates `G`-split coequalizers, see
`category_theory.monad.monadic_of_creates_G_split_coequalizers`
(The converse of this is also shown, see
`category_theory.monad.creates_G_split_coequalizers_of_monadic`)
* `D` has and `G` preserves `G`-split coequalizers, and `G` reflects isomorphisms, see
`category_theory.monad.monadic_of_has_preserves_G_split_coequalizers_of_reflects_isomorphisms`
* `D` has and `G` preserves reflexive coequalizers, and `G` reflects isomorphisms, see
`category_theory.monad.monadic_of_has_preserves_reflexive_coequalizers_of_reflects_isomorphisms`
## Tags
Beck, monadicity, descent
## TODO
Dualise to show comonadicity theorems.
-/
universes v₁ v₂ u₁ u₂
namespace category_theory
namespace monad
open limits
noncomputable theory
-- Hide the implementation details in this namespace.
namespace monadicity_internal
section
-- We use these parameters and notations to simplify the statements of internal constructions
-- here.
parameters {C : Type u₁} {D : Type u₂}
parameters [category.{v₁} C] [category.{v₁} D]
parameters {G : D ⥤ C} [is_right_adjoint G]
-- An unfortunate consequence of the local notation is that it is only recognised if there is an
-- extra space after the reference.
local notation `F` := left_adjoint G
local notation `adj` := adjunction.of_right_adjoint G
/--
The "main pair" for an algebra `(A, α)` is the pair of morphisms `(F α, ε_FA)`. It is always a
reflexive pair, and will be used to construct the left adjoint to the comparison functor and show it
is an equivalence.
-/
instance main_pair_reflexive (A : adj .to_monad.algebra) :
is_reflexive_pair (F .map A.a) (adj .counit.app (F .obj A.A)) :=
begin
apply is_reflexive_pair.mk' (F .map (adj .unit.app _)) _ _,
{ rw [← F .map_comp, ← F .map_id],
exact congr_arg (λ _, F .map _) A.unit },
{ rw adj .left_triangle_components,
refl },
end
/--
The "main pair" for an algebra `(A, α)` is the pair of morphisms `(F α, ε_FA)`. It is always a
`G`-split pair, and will be used to construct the left adjoint to the comparison functor and show it
is an equivalence.
-/
instance main_pair_G_split (A : adj .to_monad.algebra) :
G.is_split_pair (F .map A.a) (adj .counit.app (F .obj A.A)) :=
{ splittable := ⟨_, _, ⟨beck_split_coequalizer A⟩⟩ }
/-- The object function for the left adjoint to the comparison functor. -/
def comparison_left_adjoint_obj
(A : adj .to_monad.algebra) [has_coequalizer (F .map A.a) (adj .counit.app _)] : D :=
coequalizer (F .map A.a) (adj .counit.app _)
/--
We have a bijection of homsets which will be used to construct the left adjoint to the comparison
functor.
-/
@[simps]
def comparison_left_adjoint_hom_equiv (A : adj .to_monad.algebra) (B : D)
[has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))] :
(comparison_left_adjoint_obj A ⟶ B) ≃ (A ⟶ (comparison adj).obj B) :=
calc (comparison_left_adjoint_obj A ⟶ B) ≃ {f : F .obj A.A ⟶ B // _} :
cofork.is_colimit.hom_iso (colimit.is_colimit _) B
... ≃ {g : A.A ⟶ G.obj B // G.map (F .map g) ≫ G.map (adj .counit.app B) = A.a ≫ g} :
begin
refine (adj .hom_equiv _ _).subtype_equiv _,
intro f,
rw [← (adj .hom_equiv _ _).injective.eq_iff, adjunction.hom_equiv_naturality_left,
adj .hom_equiv_unit, adj .hom_equiv_unit, G.map_comp],
dsimp,
rw [adj .right_triangle_components_assoc, ← G.map_comp, F .map_comp, category.assoc,
adj .counit_naturality, adj .left_triangle_components_assoc],
apply eq_comm,
end
... ≃ (A ⟶ (comparison adj).obj B) :
{ to_fun := λ g, { f := _, h' := g.prop },
inv_fun := λ f, ⟨f.f, f.h⟩,
left_inv := λ g, begin ext, refl end,
right_inv := λ f, begin ext, refl end }
/--
Construct the adjunction to the comparison functor.
-/
def left_adjoint_comparison
[∀ (A : adj .to_monad.algebra), has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))] :
adj .to_monad.algebra ⥤ D :=
begin
refine @adjunction.left_adjoint_of_equiv _ _ _ _
(comparison adj) (λ A, comparison_left_adjoint_obj A) (λ A B, _) _,
{ apply comparison_left_adjoint_hom_equiv },
{ intros A B B' g h,
ext1,
dsimp [comparison_left_adjoint_hom_equiv],
rw [← adj .hom_equiv_naturality_right, category.assoc] },
end
/--
Provided we have the appropriate coequalizers, we have an adjunction to the comparison functor.
-/
@[simps counit]
def comparison_adjunction
[∀ (A : adj .to_monad.algebra), has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))] :
left_adjoint_comparison ⊣ comparison adj :=
adjunction.adjunction_of_equiv_left _ _
lemma comparison_adjunction_unit_f_aux
[∀ (A : adj .to_monad.algebra), has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))]
(A : adj .to_monad.algebra) :
(comparison_adjunction.unit.app A).f =
adj .hom_equiv A.A _ (coequalizer.π (F .map A.a) (adj .counit.app (F .obj A.A))) :=
congr_arg (adj .hom_equiv _ _) (category.comp_id _)
/--
This is a cofork which is helpful for establishing monadicity: the morphism from the Beck
coequalizer to this cofork is the unit for the adjunction on the comparison functor.
-/
@[simps]
def unit_cofork (A : adj .to_monad.algebra)
[has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))] :
cofork (G.map (F .map A.a)) (G.map (adj .counit.app (F .obj A.A))) :=
cofork.of_π (G.map (coequalizer.π (F .map A.a) (adj .counit.app (F .obj A.A))))
begin
change _ = G.map _ ≫ _,
rw [← G.map_comp, coequalizer.condition, G.map_comp],
end
lemma comparison_adjunction_unit_f
[∀ (A : adj .to_monad.algebra), has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))]
(A : adj .to_monad.algebra) :
(comparison_adjunction.unit.app A).f =
(beck_coequalizer A).desc (unit_cofork A) :=
begin
apply limits.cofork.is_colimit.hom_ext (beck_coequalizer A),
rw is_colimit.fac,
dsimp only [cofork.π_eq_app_one, beck_cofork_ι_app, unit_cofork_ι_app],
rw [comparison_adjunction_unit_f_aux, ← adj .hom_equiv_naturality_left A.a, coequalizer.condition,
adj .hom_equiv_naturality_right, adj .hom_equiv_unit, category.assoc],
apply adj .right_triangle_components_assoc,
end
/--
The cofork which describes the counit of the adjunction: the morphism from the coequalizer of
this pair to this morphism is the counit.
-/
@[simps]
def counit_cofork (B : D) :
cofork (F .map (G.map (adj .counit.app B))) (adj .counit.app (F .obj (G.obj B))) :=
cofork.of_π (adj .counit.app B) (adj .counit_naturality _)
/-- The unit cofork is a colimit provided `G` preserves it. -/
def unit_colimit_of_preserves_coequalizer
(A : adj .to_monad.algebra) [has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))]
[preserves_colimit (parallel_pair (F .map A.a) (adj .counit.app (F .obj A.A))) G] :
is_colimit (unit_cofork A) :=
is_colimit_of_has_coequalizer_of_preserves_colimit G _ _
/-- The counit cofork is a colimit provided `G` reflects it. -/
def counit_coequalizer_of_reflects_coequalizer (B : D)
[reflects_colimit (parallel_pair
(F .map (G.map (adj .counit.app B)))
(adj .counit.app (F .obj (G.obj B)))) G] :
is_colimit (counit_cofork B) :=
is_colimit_of_is_colimit_cofork_map G _ (beck_coequalizer ((comparison adj).obj B))
lemma comparison_adjunction_counit_app
[∀ (A : adj .to_monad.algebra), has_coequalizer (F .map A.a) (adj .counit.app (F .obj A.A))]
(B : D) :
comparison_adjunction.counit.app B = colimit.desc _ (counit_cofork B) :=
begin
apply coequalizer.hom_ext,
change coequalizer.π _ _ ≫ coequalizer.desc ((adj .hom_equiv _ B).symm (𝟙 _)) _ =
coequalizer.π _ _ ≫ coequalizer.desc _ _,
simp,
end
end
end monadicity_internal
open category_theory.adjunction
open monadicity_internal
variables {C : Type u₁} {D : Type u₂}
variables [category.{v₁} C] [category.{v₁} D]
variables (G : D ⥤ C)
/--
If `G` is monadic, it creates colimits of `G`-split pairs. This is the "boring" direction of Beck's
monadicity theorem, the converse is given in `monadic_of_creates_G_split_coequalizers`.
-/
def creates_G_split_coequalizers_of_monadic [monadic_right_adjoint G] ⦃A B⦄ (f g : A ⟶ B)
[G.is_split_pair f g] :
creates_colimit (parallel_pair f g) G :=
begin
apply monadic_creates_colimit_of_preserves_colimit _ _,
apply_instance,
{ apply preserves_colimit_of_iso_diagram _ (diagram_iso_parallel_pair _).symm,
dsimp,
apply_instance },
{ apply preserves_colimit_of_iso_diagram _ (diagram_iso_parallel_pair _).symm,
dsimp,
apply_instance }
end
variables [is_right_adjoint G]
section beck_monadicity
/--
To show `G` is a monadic right adjoint, we can show it preserves and reflects `G`-split
coequalizers, and `C` has them.
-/
def monadic_of_has_preserves_reflects_G_split_coequalizers
[∀ ⦃A B⦄ (f g : A ⟶ B) [G.is_split_pair f g], has_coequalizer f g]
[∀ ⦃A B⦄ (f g : A ⟶ B) [G.is_split_pair f g], preserves_colimit (parallel_pair f g) G]
[∀ ⦃A B⦄ (f g : A ⟶ B) [G.is_split_pair f g], reflects_colimit (parallel_pair f g) G] :
monadic_right_adjoint G :=
begin
let L : (adjunction.of_right_adjoint G).to_monad.algebra ⥤ D := left_adjoint_comparison,
letI i : is_right_adjoint (comparison (of_right_adjoint G)) :=
⟨_, comparison_adjunction⟩,
constructor,
let : Π (X : (of_right_adjoint G).to_monad.algebra),
is_iso ((of_right_adjoint (comparison (of_right_adjoint G))).unit.app X),
{ intro X,
apply is_iso_of_reflects_iso _ (monad.forget (of_right_adjoint G).to_monad),
{ change is_iso (comparison_adjunction.unit.app X).f,
rw comparison_adjunction_unit_f,
change
is_iso
(is_colimit.cocone_point_unique_up_to_iso
(beck_coequalizer X)
(unit_colimit_of_preserves_coequalizer X)).hom,
refine is_iso.of_iso (is_colimit.cocone_point_unique_up_to_iso _ _) } },
let : Π (Y : D),
is_iso ((of_right_adjoint (comparison (of_right_adjoint G))).counit.app Y),
{ intro Y,
change is_iso (comparison_adjunction.counit.app Y),
rw comparison_adjunction_counit_app,
change is_iso (is_colimit.cocone_point_unique_up_to_iso _ _).hom,
apply_instance,
apply counit_coequalizer_of_reflects_coequalizer _,
letI : G.is_split_pair
((left_adjoint G).map (G.map ((adjunction.of_right_adjoint G).counit.app Y)))
((adjunction.of_right_adjoint G).counit.app ((left_adjoint G).obj (G.obj Y))) :=
monadicity_internal.main_pair_G_split ((comparison (adjunction.of_right_adjoint G)).obj Y),
apply_instance },
exactI adjunction.is_right_adjoint_to_is_equivalence,
end
/--
Beck's monadicity theorem. If `G` has a right adjoint and creates coequalizers of `G`-split pairs,
then it is monadic.
This is the converse of `creates_G_split_of_monadic`.
-/
def monadic_of_creates_G_split_coequalizers
[∀ ⦃A B⦄ (f g : A ⟶ B) [G.is_split_pair f g], creates_colimit (parallel_pair f g) G] :
monadic_right_adjoint G :=
begin
letI : ∀ ⦃A B⦄ (f g : A ⟶ B) [G.is_split_pair f g], has_colimit (parallel_pair f g ⋙ G),
{ introsI A B f g i,
apply has_colimit_of_iso (diagram_iso_parallel_pair _),
change has_coequalizer (G.map f) (G.map g),
apply_instance },
apply monadic_of_has_preserves_reflects_G_split_coequalizers _,
{ apply_instance },
{ introsI A B f g i,
apply has_colimit_of_created (parallel_pair f g) G },
{ introsI A B f g i,
apply_instance },
{ introsI A B f g i,
apply_instance }
end
/--
An alternate version of Beck's monadicity theorem. If `G` reflects isomorphisms, preserves
coequalizers of `G`-split pairs and `C` has coequalizers of `G`-split pairs, then it is monadic.
-/
def monadic_of_has_preserves_G_split_coequalizers_of_reflects_isomorphisms
[reflects_isomorphisms G]
[∀ ⦃A B⦄ (f g : A ⟶ B) [G.is_split_pair f g], has_coequalizer f g]
[∀ ⦃A B⦄ (f g : A ⟶ B) [G.is_split_pair f g], preserves_colimit (parallel_pair f g) G] :
monadic_right_adjoint G :=
begin
apply monadic_of_has_preserves_reflects_G_split_coequalizers _,
{ apply_instance },
{ assumption },
{ assumption },
{ introsI A B f g i,
apply reflects_colimit_of_reflects_isomorphisms },
end
end beck_monadicity
section reflexive_monadicity
variables [has_reflexive_coequalizers D] [reflects_isomorphisms G]
variables [∀ ⦃A B⦄ (f g : A ⟶ B) [is_reflexive_pair f g], preserves_colimit (parallel_pair f g) G]
/--
Reflexive (crude) monadicity theorem. If `G` has a right adjoint, `D` has and `G` preserves
reflexive coequalizers and `G` reflects isomorphisms, then `G` is monadic.
-/
def monadic_of_has_preserves_reflexive_coequalizers_of_reflects_isomorphisms :
monadic_right_adjoint G :=
begin
let L : (adjunction.of_right_adjoint G).to_monad.algebra ⥤ D := left_adjoint_comparison,
letI i : is_right_adjoint (comparison (adjunction.of_right_adjoint G)) :=
⟨_, comparison_adjunction⟩,
constructor,
let : Π (X : (adjunction.of_right_adjoint G).to_monad.algebra),
is_iso ((adjunction.of_right_adjoint (comparison (adjunction.of_right_adjoint G))).unit.app X),
{ intro X,
apply is_iso_of_reflects_iso _ (monad.forget (adjunction.of_right_adjoint G).to_monad),
{ change is_iso (comparison_adjunction.unit.app X).f,
rw comparison_adjunction_unit_f,
change
is_iso
(is_colimit.cocone_point_unique_up_to_iso
(beck_coequalizer X)
(unit_colimit_of_preserves_coequalizer X)).hom,
apply is_iso.of_iso (is_colimit.cocone_point_unique_up_to_iso _ _) } },
let : Π (Y : D),
is_iso ((of_right_adjoint (comparison (adjunction.of_right_adjoint G))).counit.app Y),
{ intro Y,
change is_iso (comparison_adjunction.counit.app Y),
rw comparison_adjunction_counit_app,
change is_iso (is_colimit.cocone_point_unique_up_to_iso _ _).hom,
apply_instance,
apply counit_coequalizer_of_reflects_coequalizer _,
apply reflects_colimit_of_reflects_isomorphisms },
exactI adjunction.is_right_adjoint_to_is_equivalence,
end
end reflexive_monadicity
end monad
end category_theory
|
35119052860df7a7a10943fb92270b01413c2a29
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/errorOnInductionForNested.lean
|
fc7d5dfc429afe22e5a9b7307ccf8edb7a68145d
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 209
|
lean
|
inductive LazyList (α : Type u)
| nil : LazyList α
| cons (hd : α) (tl : LazyList α) : LazyList α
| delayed (t : Thunk (LazyList α)) : LazyList α
example (as : LazyList α) : True := by
induction as
|
5d20052f015d166bcd6a552a82bb138c774dafa5
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/group_theory/abelianization.lean
|
c2915d7a3684051efa4c7164d0b2925dc1aed5b5
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 10,559
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Michael Howes
-/
import data.finite.card
import group_theory.commutator
import group_theory.finiteness
/-!
# The abelianization of a group
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines the commutator and the abelianization of a group. It furthermore prepares for the
result that the abelianization is left adjoint to the forgetful functor from abelian groups to
groups, which can be found in `algebra/category/Group/adjunctions`.
## Main definitions
* `commutator`: defines the commutator of a group `G` as a subgroup of `G`.
* `abelianization`: defines the abelianization of a group `G` as the quotient of a group by its
commutator subgroup.
* `abelianization.map`: lifts a group homomorphism to a homomorphism between the abelianizations
* `mul_equiv.abelianization_congr`: Equivalent groups have equivalent abelianizations
-/
universes u v w
-- Let G be a group.
variables (G : Type u) [group G]
open subgroup (centralizer)
/-- The commutator subgroup of a group G is the normal subgroup
generated by the commutators [p,q]=`p*q*p⁻¹*q⁻¹`. -/
@[derive subgroup.normal]
def commutator : subgroup G :=
⁅(⊤ : subgroup G), ⊤⁆
lemma commutator_def : commutator G = ⁅(⊤ : subgroup G), ⊤⁆ := rfl
lemma commutator_eq_closure : commutator G = subgroup.closure (commutator_set G) :=
by simp [commutator, subgroup.commutator_def, commutator_set]
lemma commutator_eq_normal_closure :
commutator G = subgroup.normal_closure (commutator_set G) :=
by simp [commutator, subgroup.commutator_def', commutator_set]
instance commutator_characteristic : (commutator G).characteristic :=
subgroup.commutator_characteristic ⊤ ⊤
instance [finite (commutator_set G)] : group.fg (commutator G) :=
begin
rw commutator_eq_closure,
apply group.closure_finite_fg,
end
lemma rank_commutator_le_card [finite (commutator_set G)] :
group.rank (commutator G) ≤ nat.card (commutator_set G) :=
begin
rw subgroup.rank_congr (commutator_eq_closure G),
apply subgroup.rank_closure_finite_le_nat_card,
end
lemma commutator_centralizer_commutator_le_center :
⁅centralizer (commutator G : set G), centralizer (commutator G : set G)⁆ ≤ subgroup.center G :=
begin
rw [←subgroup.centralizer_univ, ←subgroup.coe_top,
←subgroup.commutator_eq_bot_iff_le_centralizer],
suffices : ⁅⁅⊤, centralizer (commutator G : set G)⁆, centralizer (commutator G : set G)⁆ = ⊥,
{ refine subgroup.commutator_commutator_eq_bot_of_rotate _ this,
rwa subgroup.commutator_comm (centralizer (commutator G : set G)) },
rw [subgroup.commutator_comm, subgroup.commutator_eq_bot_iff_le_centralizer],
exact set.centralizer_subset (subgroup.commutator_mono le_top le_top),
end
/-- The abelianization of G is the quotient of G by its commutator subgroup. -/
def abelianization : Type u :=
G ⧸ (commutator G)
namespace abelianization
local attribute [instance] quotient_group.left_rel
instance : comm_group (abelianization G) :=
{ mul_comm := λ x y, quotient.induction_on₂' x y $ λ a b, quotient.sound' $
quotient_group.left_rel_apply.mpr $
subgroup.subset_closure ⟨b⁻¹, subgroup.mem_top b⁻¹, a⁻¹, subgroup.mem_top a⁻¹, by group⟩,
.. quotient_group.quotient.group _ }
instance : inhabited (abelianization G) := ⟨1⟩
instance [fintype G] [decidable_pred (∈ commutator G)] :
fintype (abelianization G) :=
quotient_group.fintype (commutator G)
instance [finite G] : finite (abelianization G) :=
quotient.finite _
variable {G}
/-- `of` is the canonical projection from G to its abelianization. -/
def of : G →* abelianization G :=
{ to_fun := quotient_group.mk,
map_one' := rfl,
map_mul' := λ x y, rfl }
@[simp] lemma mk_eq_of (a : G) : quot.mk _ a = of a := rfl
section lift
-- So far we have built Gᵃᵇ and proved it's an abelian group.
-- Furthremore we defined the canonical projection `of : G → Gᵃᵇ`
-- Let `A` be an abelian group and let `f` be a group homomorphism from `G` to `A`.
variables {A : Type v} [comm_group A] (f : G →* A)
lemma commutator_subset_ker : commutator G ≤ f.ker :=
begin
rw [commutator_eq_closure, subgroup.closure_le],
rintros x ⟨p, q, rfl⟩,
simp [monoid_hom.mem_ker, mul_right_comm (f p) (f q), commutator_element_def],
end
/-- If `f : G → A` is a group homomorphism to an abelian group, then `lift f` is the unique map from
the abelianization of a `G` to `A` that factors through `f`. -/
def lift : (G →* A) ≃ (abelianization G →* A) :=
{ to_fun := λ f, quotient_group.lift _ f (λ x h, f.mem_ker.2 $ commutator_subset_ker _ h),
inv_fun := λ F, F.comp of,
left_inv := λ f, monoid_hom.ext $ λ x, rfl,
right_inv := λ F, monoid_hom.ext $ λ x, quotient_group.induction_on x $ λ z, rfl }
@[simp] lemma lift.of (x : G) : lift f (of x) = f x :=
rfl
theorem lift.unique
(φ : abelianization G →* A)
-- hφ : φ agrees with f on the image of G in Gᵃᵇ
(hφ : ∀ (x : G), φ (of x) = f x)
{x : abelianization G} :
φ x = lift f x :=
quotient_group.induction_on x hφ
@[simp] lemma lift_of : lift of = monoid_hom.id (abelianization G) :=
lift.apply_symm_apply $ monoid_hom.id _
end lift
variables {A : Type v} [monoid A]
/-- See note [partially-applied ext lemmas]. -/
@[ext]
theorem hom_ext (φ ψ : abelianization G →* A)
(h : φ.comp of = ψ.comp of) : φ = ψ :=
monoid_hom.ext $ λ x, quotient_group.induction_on x $ monoid_hom.congr_fun h
section map
variables {H : Type v} [group H] (f : G →* H)
/-- The map operation of the `abelianization` functor -/
def map : abelianization G →* abelianization H := lift (of.comp f)
@[simp]
lemma map_of (x : G) : map f (of x) = of (f x) := rfl
@[simp]
lemma map_id : map (monoid_hom.id G) = monoid_hom.id (abelianization G) := hom_ext _ _ rfl
@[simp]
lemma map_comp {I : Type w} [group I] (g : H →* I) :
(map g).comp (map f) = map (g.comp f) := hom_ext _ _ rfl
@[simp]
lemma map_map_apply {I : Type w} [group I] {g : H →* I} {x : abelianization G}:
map g (map f x) = map (g.comp f) x := monoid_hom.congr_fun (map_comp _ _) x
end map
end abelianization
section abelianization_congr
variables {G} {H : Type v} [group H] (e : G ≃* H)
/-- Equivalent groups have equivalent abelianizations -/
def mul_equiv.abelianization_congr : abelianization G ≃* abelianization H :=
{ to_fun := abelianization.map e.to_monoid_hom,
inv_fun := abelianization.map e.symm.to_monoid_hom,
left_inv := by { rintros ⟨a⟩, simp },
right_inv := by { rintros ⟨a⟩, simp },
map_mul' := monoid_hom.map_mul _ }
@[simp]
lemma abelianization_congr_of (x : G) :
(e.abelianization_congr) (abelianization.of x) = abelianization.of (e x) := rfl
@[simp]
lemma abelianization_congr_refl :
(mul_equiv.refl G).abelianization_congr = mul_equiv.refl (abelianization G) :=
mul_equiv.to_monoid_hom_injective abelianization.lift_of
@[simp]
lemma abelianization_congr_symm :
e.abelianization_congr.symm = e.symm.abelianization_congr := rfl
@[simp]
lemma abelianization_congr_trans {I : Type v} [group I] (e₂ : H ≃* I) :
e.abelianization_congr.trans e₂.abelianization_congr = (e.trans e₂).abelianization_congr :=
mul_equiv.to_monoid_hom_injective (abelianization.hom_ext _ _ rfl)
end abelianization_congr
/-- An Abelian group is equivalent to its own abelianization. -/
@[simps] def abelianization.equiv_of_comm {H : Type*} [comm_group H] :
H ≃* abelianization H :=
{ to_fun := abelianization.of,
inv_fun := abelianization.lift (monoid_hom.id H),
left_inv := λ a, rfl,
right_inv := by { rintros ⟨a⟩, refl, },
.. abelianization.of }
section commutator_representatives
open subgroup
/-- Representatives `(g₁, g₂) : G × G` of commutator_set `⁅g₁, g₂⁆ ∈ G`. -/
def commutator_representatives : set (G × G) :=
set.range (λ g : commutator_set G, (g.2.some, g.2.some_spec.some))
instance [finite (commutator_set G)] : finite (commutator_representatives G) :=
set.finite_coe_iff.mpr (set.finite_range _)
/-- Subgroup generated by representatives `g₁ g₂ : G` of commutators `⁅g₁, g₂⁆ ∈ G`. -/
def closure_commutator_representatives : subgroup G :=
closure (prod.fst '' commutator_representatives G ∪ prod.snd '' commutator_representatives G)
instance closure_commutator_representatives_fg [finite (commutator_set G)] :
group.fg (closure_commutator_representatives G) :=
group.closure_finite_fg _
lemma rank_closure_commutator_representations_le [finite (commutator_set G)] :
group.rank (closure_commutator_representatives G) ≤ 2 * nat.card (commutator_set G) :=
begin
rw two_mul,
exact (subgroup.rank_closure_finite_le_nat_card _).trans ((set.card_union_le _ _).trans
(add_le_add ((finite.card_image_le _).trans (finite.card_range_le _))
((finite.card_image_le _).trans (finite.card_range_le _ )))),
end
lemma image_commutator_set_closure_commutator_representatives :
(closure_commutator_representatives G).subtype ''
(commutator_set (closure_commutator_representatives G)) = commutator_set G :=
begin
apply set.subset.antisymm,
{ rintros - ⟨-, ⟨g₁, g₂, rfl⟩, rfl⟩,
exact ⟨g₁, g₂, rfl⟩ },
{ exact λ g hg, ⟨_,
⟨⟨_, subset_closure (or.inl ⟨_, ⟨⟨g, hg⟩, rfl⟩, rfl⟩)⟩,
⟨_, subset_closure (or.inr ⟨_, ⟨⟨g, hg⟩, rfl⟩, rfl⟩)⟩,
rfl⟩,
hg.some_spec.some_spec⟩ },
end
lemma card_commutator_set_closure_commutator_representatives :
nat.card (commutator_set (closure_commutator_representatives G)) = nat.card (commutator_set G) :=
begin
rw ← image_commutator_set_closure_commutator_representatives G,
exact nat.card_congr (equiv.set.image _ _ (subtype_injective _)),
end
lemma card_commutator_closure_commutator_representatives :
nat.card (commutator (closure_commutator_representatives G)) = nat.card (commutator G) :=
begin
rw [commutator_eq_closure G, ←image_commutator_set_closure_commutator_representatives,
←monoid_hom.map_closure, ←commutator_eq_closure],
exact nat.card_congr (equiv.set.image _ _ (subtype_injective _)),
end
instance [finite (commutator_set G)] :
finite (commutator_set (closure_commutator_representatives G)) :=
begin
apply nat.finite_of_card_ne_zero,
rw card_commutator_set_closure_commutator_representatives,
exact finite.card_pos.ne',
end
end commutator_representatives
|
f95ca3e7532af416c51833108b81dcbd899129c8
|
491068d2ad28831e7dade8d6dff871c3e49d9431
|
/library/theories/number_theory/irrational_roots.lean
|
11ad148bd7ec82b10b82fe9045d1590fd8a6da8d
|
[
"Apache-2.0"
] |
permissive
|
davidmueller13/lean
|
65a3ed141b4088cd0a268e4de80eb6778b21a0e9
|
c626e2e3c6f3771e07c32e82ee5b9e030de5b050
|
refs/heads/master
| 1,611,278,313,401
| 1,444,021,177,000
| 1,444,021,177,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,174
|
lean
|
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
A proof that if n > 1 and a > 0, then the nth root of a is irrational, unless a is a perfect nth power.
-/
import data.rat .prime_factorization
open eq.ops
/- First, a textbook proof that sqrt 2 is irrational. -/
section
open nat
theorem sqrt_two_irrational {a b : ℕ} (co : coprime a b) : a^2 ≠ 2 * b^2 :=
assume H : a^2 = 2 * b^2,
have even (a^2), from even_of_exists (exists.intro _ H),
have even a, from even_of_even_pow this,
obtain c (aeq : a = 2 * c), from exists_of_even this,
have 2 * (2 * c^2) = 2 * b^2, by rewrite [-H, aeq, *pow_two, mul.assoc, mul.left_comm c],
have 2 * c^2 = b^2, from eq_of_mul_eq_mul_left dec_trivial this,
have even (b^2), from even_of_exists (exists.intro _ (eq.symm this)),
have even b, from even_of_even_pow this,
have 2 ∣ gcd a b, from dvd_gcd (dvd_of_even `even a`) (dvd_of_even `even b`),
have 2 ∣ 1, from co ▸ this,
show false, from absurd `2 ∣ 1` dec_trivial
end
/-
Replacing 2 by an arbitrary prime and the power 2 by any n ≥ 1 yields the stronger result
that the nth root of an integer is irrational, unless the integer is already a perfect nth
power.
-/
section
open nat decidable
theorem root_irrational {a b c n : ℕ} (npos : n > 0) (apos : a > 0) (co : coprime a b)
(H : a^n = c * b^n) :
b = 1 :=
have bpos : b > 0, from pos_of_ne_zero
(suppose b = 0,
have a^n = 0, by rewrite [H, this, zero_pow npos],
assert a = 0, from eq_zero_of_pow_eq_zero this,
show false, from ne_of_lt `0 < a` this⁻¹),
have H₁ : ∀ p, prime p → ¬ p ∣ b, from
take p, suppose prime p, suppose p ∣ b,
assert p ∣ b^n, from dvd_pow_of_dvd_of_pos `p ∣ b` `n > 0`,
have p ∣ a^n, by rewrite H; apply dvd_mul_of_dvd_right this,
have p ∣ a, from dvd_of_prime_of_dvd_pow `prime p` this,
have ¬ coprime a b, from not_coprime_of_dvd_of_dvd (gt_one_of_prime `prime p`) `p ∣ a` `p ∣ b`,
show false, from this `coprime a b`,
have b < 2, from by_contradiction
(suppose ¬ b < 2,
have b ≥ 2, from le_of_not_gt this,
obtain p [primep pdvdb], from exists_prime_and_dvd this,
show false, from H₁ p primep pdvdb),
show b = 1, from (le.antisymm (le_of_lt_succ `b < 2`) (succ_le_of_lt `b > 0`))
end
/-
Here we state this in terms of the rationals, ℚ. The main difficulty is casting between ℕ, ℤ,
and ℚ.
-/
section
open rat int nat decidable
theorem denom_eq_one_of_pow_eq {q : ℚ} {n : ℕ} {c : ℤ} (npos : n > 0) (H : q^n = c) :
denom q = 1 :=
let a := num q, b := denom q in
have b ≠ 0, from ne_of_gt (denom_pos q),
have bnz : b ≠ (0 : ℚ), from assume H, `b ≠ 0` (of_int.inj H),
have bnnz : (#rat b^n ≠ 0), from assume bneqz, bnz (eq_zero_of_pow_eq_zero bneqz),
have a^n / b^n = c, using bnz, by rewrite [*of_int_pow, -div_pow, -eq_num_div_denom, -H],
have a^n = c * b^n, from eq.symm (!mul_eq_of_eq_div bnnz this⁻¹),
have a^n = c * b^n, -- int version
using this, by rewrite [-of_int_pow at this, -of_int_mul at this]; exact of_int.inj this,
have (abs a)^n = abs c * (abs b)^n,
using this, by rewrite [-int.abs_pow, this, int.abs_mul, int.abs_pow],
have H₁ : (nat_abs a)^n = nat_abs c * (nat_abs b)^n,
using this,
by apply int.of_nat.inj; rewrite [int.of_nat_mul, +int.of_nat_pow, +of_nat_nat_abs]; assumption,
have H₂ : nat.coprime (nat_abs a) (nat_abs b), from of_nat.inj !coprime_num_denom,
have nat_abs b = 1, from
by_cases
(suppose q = 0, by rewrite this)
(suppose q ≠ 0,
have a ≠ 0, from suppose a = 0, `q ≠ 0` (by rewrite [eq_num_div_denom, `a = 0`, zero_div]),
have nat_abs a ≠ 0, from suppose nat_abs a = 0, `a ≠ 0` (eq_zero_of_nat_abs_eq_zero this),
show nat_abs b = 1, from (root_irrational npos (pos_of_ne_zero this) H₂ H₁)),
show b = 1, using this, by rewrite [-of_nat_nat_abs_of_nonneg (le_of_lt !denom_pos), this]
theorem eq_num_pow_of_pow_eq {q : ℚ} {n : ℕ} {c : ℤ} (npos : n > 0) (H : q^n = c) :
c = (num q)^n :=
have denom q = 1, from denom_eq_one_of_pow_eq npos H,
have of_int c = (num q)^n, using this,
by rewrite [-H, eq_num_div_denom q at {1}, this, div_one, of_int_pow],
show c = (num q)^n , from of_int.inj this
end
/- As a corollary, for n > 1, the nth root of a prime is irrational. -/
section
open nat
theorem not_eq_pow_of_prime {p n : ℕ} (a : ℕ) (ngt1 : n > 1) (primep : prime p) : p ≠ a^n :=
assume peq : p = a^n,
have npos : n > 0, from lt.trans dec_trivial ngt1,
have pnez : p ≠ 0, from
(suppose p = 0,
show false,
by let H := (pos_of_prime primep); rewrite this at H; exfalso; exact !lt.irrefl H),
have agtz : a > 0, from pos_of_ne_zero
(suppose a = 0,
show false, using npos pnez, by revert peq; rewrite [this, zero_pow npos]; exact pnez),
have n * mult p a = 1, from calc
n * mult p a = mult p (a^n) : using agtz, by rewrite [mult_pow n agtz primep]
... = mult p p : peq
... = 1 : mult_self (gt_one_of_prime primep),
have n ∣ 1, from dvd_of_mul_right_eq this,
have n = 1, from eq_one_of_dvd_one this,
show false, using this, by rewrite this at ngt1; exact !lt.irrefl ngt1
open int rat
theorem root_prime_irrational {p n : ℕ} {q : ℚ} (qnonneg : q ≥ 0) (ngt1 : n > 1)
(primep : prime p) :
q^n ≠ p :=
have numq : num q ≥ 0, from num_nonneg_of_nonneg qnonneg,
have npos : n > 0, from lt.trans dec_trivial ngt1,
suppose q^n = p,
have p = (num q)^n, from eq_num_pow_of_pow_eq npos this,
have p = (nat_abs (num q))^n, using this numq,
by apply of_nat.inj; rewrite [this, of_nat_pow, of_nat_nat_abs_of_nonneg numq],
show false, from not_eq_pow_of_prime _ ngt1 primep this
end
/-
Thaetetus, who lives in the fourth century BC, is said to have proved the irrationality of square
roots up to seventeen. In Chapter 4 of /Why Prove it Again/, John Dawson notes that Thaetetus may
have used an approach similar to the one below. (See data/nat/gcd.lean for the key theorem,
"div_gcd_eq_div_gcd".)
-/
section
open int
example {a b c : ℤ} (co : coprime a b) (apos : a > 0) (bpos : b > 0)
(H : a * a = c * (b * b)) :
b = 1 :=
assert H₁ : gcd (c * b) a = gcd c a, from gcd_mul_right_cancel_of_coprime _ (coprime_swap co),
have a * a = c * b * b, by rewrite -mul.assoc at H; apply H,
have a div (gcd a b) = c * b div gcd (c * b) a, from div_gcd_eq_div_gcd this bpos apos,
have a = c * b div gcd c a,
using this, by revert this; rewrite [↑coprime at co, co, div_one, H₁]; intros; assumption,
have a = b * (c div gcd c a),
using this,
by revert this; rewrite [mul.comm, !mul_div_assoc !gcd_dvd_left]; intros; assumption,
have b ∣ a, from dvd_of_mul_right_eq this⁻¹,
have b ∣ gcd a b, from dvd_gcd this !dvd.refl,
have b ∣ 1, using this, by rewrite [↑coprime at co, co at this]; apply this,
show b = 1, from eq_one_of_dvd_one (le_of_lt bpos) this
end
|
b44356a18285bc978e984a321923ec8298bc1f91
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/algebra/free_algebra.lean
|
fc2e81ca3a5b327992dafc87418f02a15c4347df
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 14,107
|
lean
|
/-
Copyright (c) 2020 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Scott Morrison, Adam Topaz.
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.algebra.algebra.subalgebra
import Mathlib.algebra.monoid_algebra
import Mathlib.linear_algebra.default
import Mathlib.data.equiv.transfer_instance
import Mathlib.PostPort
universes u_1 u_2 l u_3
namespace Mathlib
/-!
# Free Algebras
Given a commutative semiring `R`, and a type `X`, we construct the free `R`-algebra on `X`.
## Notation
1. `free_algebra R X` is the free algebra itself. It is endowed with an `R`-algebra structure.
2. `free_algebra.ι R` is the function `X → free_algebra R X`.
3. Given a function `f : X → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an
`R`-algebra morphism `free_algebra R X → A`.
## Theorems
1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`.
2. `lift_unique` states that whenever an R-algebra morphism `g : free_algebra R X → A` is
given whose composition with `ι R` is `f`, then one has `g = lift R f`.
3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem.
4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift
of the composition of an algebra morphism with `ι` is the algebra morphism itself.
5. `equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X)`
6. An inductive principle `induction`.
## Implementation details
We construct the free algebra on `X` as a quotient of an inductive type `free_algebra.pre` by an
inductively defined relation `free_algebra.rel`. Explicitly, the construction involves three steps:
1. We construct an inductive type `free_algebra.pre R X`, the terms of which should be thought
of as representatives for the elements of `free_algebra R X`.
It is the free type with maps from `R` and `X`, and with two binary operations `add` and `mul`.
2. We construct an inductive relation `free_algebra.rel R X` on `free_algebra.pre R X`.
This is the smallest relation for which the quotient is an `R`-algebra where addition resp.
multiplication are induced by `add` resp. `mul` from 1., and for which the map from `R` is the
structure map for the algebra.
3. The free algebra `free_algebra R X` is the quotient of `free_algebra.pre R X` by
the relation `free_algebra.rel R X`.
-/
namespace free_algebra
/--
This inductive type is used to express representatives of the free algebra.
-/
inductive pre (R : Type u_1) [comm_semiring R] (X : Type u_2)
where
| of : X → pre R X
| of_scalar : R → pre R X
| add : pre R X → pre R X → pre R X
| mul : pre R X → pre R X → pre R X
namespace pre
protected instance inhabited (R : Type u_1) [comm_semiring R] (X : Type u_2) : Inhabited (pre R X) :=
{ default := of_scalar 0 }
-- Note: These instances are only used to simplify the notation.
/-- Coercion from `X` to `pre R X`. Note: Used for notation only. -/
/-- Coercion from `R` to `pre R X`. Note: Used for notation only. -/
def has_coe_generator (R : Type u_1) [comm_semiring R] (X : Type u_2) : has_coe X (pre R X) :=
has_coe.mk of
/-- Multiplication in `pre R X` defined as `pre.mul`. Note: Used for notation only. -/
def has_coe_semiring (R : Type u_1) [comm_semiring R] (X : Type u_2) : has_coe R (pre R X) :=
has_coe.mk of_scalar
/-- Addition in `pre R X` defined as `pre.add`. Note: Used for notation only. -/
def has_mul (R : Type u_1) [comm_semiring R] (X : Type u_2) : Mul (pre R X) :=
{ mul := mul }
/-- Zero in `pre R X` defined as the image of `0` from `R`. Note: Used for notation only. -/
def has_add (R : Type u_1) [comm_semiring R] (X : Type u_2) : Add (pre R X) :=
{ add := add }
/-- One in `pre R X` defined as the image of `1` from `R`. Note: Used for notation only. -/
def has_zero (R : Type u_1) [comm_semiring R] (X : Type u_2) : HasZero (pre R X) :=
{ zero := of_scalar 0 }
/--
def has_one (R : Type u_1) [comm_semiring R] (X : Type u_2) : HasOne (pre R X) :=
{ one := of_scalar 1 }
Scalar multiplication defined as multiplication by the image of elements from `R`.
Note: Used for notation only.
-/
def has_scalar (R : Type u_1) [comm_semiring R] (X : Type u_2) : has_scalar R (pre R X) :=
has_scalar.mk fun (r : R) (m : pre R X) => mul (of_scalar r) m
end pre
/--
Given a function from `X` to an `R`-algebra `A`, `lift_fun` provides a lift of `f` to a function
from `pre R X` to `A`. This is mainly used in the construction of `free_algebra.lift`.
-/
def lift_fun (R : Type u_1) [comm_semiring R] (X : Type u_2) {A : Type u_3} [semiring A] [algebra R A] (f : X → A) : pre R X → A :=
fun (t : pre R X) =>
pre.rec_on t f (⇑(algebra_map R A)) (fun (_x _x : pre R X) => Add.add) fun (_x _x : pre R X) => Mul.mul
/--
An inductively defined relation on `pre R X` used to force the initial algebra structure on
the associated quotient.
-/
-- force `of_scalar` to be a central semiring morphism
inductive rel (R : Type u_1) [comm_semiring R] (X : Type u_2) : pre R X → pre R X → Prop
where
| add_scalar : ∀ {r s : R}, rel R X (↑(r + s)) (↑r + ↑s)
| mul_scalar : ∀ {r s : R}, rel R X (↑(r * s)) (↑r * ↑s)
| central_scalar : ∀ {r : R} {a : pre R X}, rel R X (↑r * a) (a * ↑r)
| add_assoc : ∀ {a b c : pre R X}, rel R X (a + b + c) (a + (b + c))
| add_comm : ∀ {a b : pre R X}, rel R X (a + b) (b + a)
| zero_add : ∀ {a : pre R X}, rel R X (0 + a) a
| mul_assoc : ∀ {a b c : pre R X}, rel R X (a * b * c) (a * (b * c))
| one_mul : ∀ {a : pre R X}, rel R X (1 * a) a
| mul_one : ∀ {a : pre R X}, rel R X (a * 1) a
| left_distrib : ∀ {a b c : pre R X}, rel R X (a * (b + c)) (a * b + a * c)
| right_distrib : ∀ {a b c : pre R X}, rel R X ((a + b) * c) (a * c + b * c)
| zero_mul : ∀ {a : pre R X}, rel R X (0 * a) 0
| mul_zero : ∀ {a : pre R X}, rel R X (a * 0) 0
| add_compat_left : ∀ {a b c : pre R X}, rel R X a b → rel R X (a + c) (b + c)
| add_compat_right : ∀ {a b c : pre R X}, rel R X a b → rel R X (c + a) (c + b)
| mul_compat_left : ∀ {a b c : pre R X}, rel R X a b → rel R X (a * c) (b * c)
| mul_compat_right : ∀ {a b c : pre R X}, rel R X a b → rel R X (c * a) (c * b)
-- commutative additive semigroup
-- multiplicative monoid
-- distributivity
-- other relations needed for semiring
-- compatibility
end free_algebra
/--
The free algebra for the type `X` over the commutative semiring `R`.
-/
def free_algebra (R : Type u_1) [comm_semiring R] (X : Type u_2) :=
Quot sorry
namespace free_algebra
protected instance semiring (R : Type u_1) [comm_semiring R] (X : Type u_2) : semiring (free_algebra R X) :=
semiring.mk (quot.map₂ Add.add sorry sorry) sorry (Quot.mk (rel R X) 0) sorry sorry sorry
(quot.map₂ Mul.mul sorry sorry) sorry (Quot.mk (rel R X) 1) sorry sorry sorry sorry sorry sorry
protected instance inhabited (R : Type u_1) [comm_semiring R] (X : Type u_2) : Inhabited (free_algebra R X) :=
{ default := 0 }
protected instance has_scalar (R : Type u_1) [comm_semiring R] (X : Type u_2) : has_scalar R (free_algebra R X) :=
has_scalar.mk
fun (r : R) (a : free_algebra R X) => quot.lift_on a (fun (x : pre R X) => Quot.mk (rel R X) (↑r * x)) sorry
protected instance algebra (R : Type u_1) [comm_semiring R] (X : Type u_2) : algebra R (free_algebra R X) :=
algebra.mk (ring_hom.mk (fun (r : R) => Quot.mk (rel R X) ↑r) sorry sorry sorry sorry) sorry sorry
protected instance ring (X : Type u_2) {S : Type u_1} [comm_ring S] : ring (free_algebra S X) :=
algebra.semiring_to_ring S
/--
The canonical function `X → free_algebra R X`.
-/
def ι (R : Type u_1) [comm_semiring R] {X : Type u_2} : X → free_algebra R X :=
fun (m : X) => Quot.mk (rel R X) ↑m
@[simp] theorem quot_mk_eq_ι (R : Type u_1) [comm_semiring R] {X : Type u_2} (m : X) : Quot.mk (rel R X) ↑m = ι R m :=
rfl
/-- Internal definition used to define `lift` -/
/--
Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift
of `f` to a morphism of `R`-algebras `free_algebra R X → A`.
-/
def lift (R : Type u_1) [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] : (X → A) ≃ alg_hom R (free_algebra R X) A :=
equiv.mk (lift_aux R) (fun (F : alg_hom R (free_algebra R X) A) => ⇑F ∘ ι R) sorry sorry
@[simp] theorem lift_aux_eq (R : Type u_1) [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] (f : X → A) : lift_aux R f = coe_fn (lift R) f :=
rfl
@[simp] theorem lift_symm_apply (R : Type u_1) [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] (F : alg_hom R (free_algebra R X) A) : coe_fn (equiv.symm (lift R)) F = ⇑F ∘ ι R :=
rfl
@[simp] theorem ι_comp_lift {R : Type u_1} [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] (f : X → A) : ⇑(coe_fn (lift R) f) ∘ ι R = f :=
funext fun (x : X) => Eq.refl (function.comp (⇑(coe_fn (lift R) f)) (ι R) x)
@[simp] theorem lift_ι_apply {R : Type u_1} [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] (f : X → A) (x : X) : coe_fn (coe_fn (lift R) f) (ι R x) = f x :=
rfl
@[simp] theorem lift_unique {R : Type u_1} [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] (f : X → A) (g : alg_hom R (free_algebra R X) A) : ⇑g ∘ ι R = f ↔ g = coe_fn (lift R) f :=
equiv.symm_apply_eq (lift R)
/-!
At this stage we set the basic definitions as `@[irreducible]`, so from this point onwards one
should only use the universal properties of the free algebra, and consider the actual implementation
as a quotient of an inductive type as completely hidden.
Of course, one still has the option to locally make these definitions `semireducible` if so desired,
and Lean is still willing in some circumstances to do unification based on the underlying
definition.
-/
-- Marking `free_algebra` irreducible makes `ring` instances inaccessible on quotients.
-- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241
-- For now, we avoid this by not marking it irreducible.
@[simp] theorem lift_comp_ι {R : Type u_1} [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] (g : alg_hom R (free_algebra R X) A) : coe_fn (lift R) (⇑g ∘ ι R) = g :=
eq.mpr (id (Eq._oldrec (Eq.refl (coe_fn (lift R) (⇑g ∘ ι R) = g)) (Eq.symm (lift_symm_apply R g))))
(equiv.apply_symm_apply (lift R) g)
/-- See note [partially-applied ext lemmas]. -/
theorem hom_ext {R : Type u_1} [comm_semiring R] {X : Type u_2} {A : Type u_3} [semiring A] [algebra R A] {f : alg_hom R (free_algebra R X) A} {g : alg_hom R (free_algebra R X) A} (w : ⇑f ∘ ι R = ⇑g ∘ ι R) : f = g :=
equiv.injective (equiv.symm (lift R))
(eq.mp (Eq._oldrec (Eq.refl (coe_fn (equiv.symm (lift R)) f = ⇑g ∘ ι R)) (Eq.symm (lift_symm_apply R g)))
(eq.mp (Eq._oldrec (Eq.refl (⇑f ∘ ι R = ⇑g ∘ ι R)) (Eq.symm (lift_symm_apply R f))) w))
/--
The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`.
This would be useful when constructing linear maps out of a free algebra,
for example.
-/
def equiv_monoid_algebra_free_monoid {R : Type u_1} [comm_semiring R] {X : Type u_2} : alg_equiv R (free_algebra R X) (monoid_algebra R (free_monoid X)) :=
alg_equiv.of_alg_hom (coe_fn (lift R) fun (x : X) => coe_fn (monoid_algebra.of R (free_monoid X)) (free_monoid.of x))
(coe_fn (monoid_algebra.lift R (free_monoid X) (free_algebra R X)) (coe_fn free_monoid.lift (ι R))) sorry sorry
protected instance nontrivial {R : Type u_1} [comm_semiring R] {X : Type u_2} [nontrivial R] : nontrivial (free_algebra R X) :=
equiv.nontrivial (alg_equiv.to_equiv equiv_monoid_algebra_free_monoid)
/-- The left-inverse of `algebra_map`. -/
def algebra_map_inv {R : Type u_1} [comm_semiring R] {X : Type u_2} : alg_hom R (free_algebra R X) R :=
coe_fn (lift R) 0
theorem algebra_map_left_inverse {R : Type u_1} [comm_semiring R] {X : Type u_2} : function.left_inverse ⇑algebra_map_inv ⇑(algebra_map R (free_algebra R X)) := sorry
-- this proof is copied from the approach in `free_abelian_group.of_injective`
theorem ι_injective {R : Type u_1} [comm_semiring R] {X : Type u_2} [nontrivial R] : function.injective (ι R) := sorry
end free_algebra
/- There is something weird in the above namespace that breaks the typeclass resolution of
`has_coe_to_sort` below. Closing it and reopening it fixes it... -/
namespace free_algebra
/-- An induction principle for the free algebra.
If `C` holds for the `algebra_map` of `r : R` into `free_algebra R X`, the `ι` of `x : X`, and is
preserved under addition and muliplication, then it holds for all of `free_algebra R X`.
-/
theorem induction (R : Type u_1) [comm_semiring R] (X : Type u_2) {C : free_algebra R X → Prop} (h_grade0 : ∀ (r : R), C (coe_fn (algebra_map R (free_algebra R X)) r)) (h_grade1 : ∀ (x : X), C (ι R x)) (h_mul : ∀ (a b : free_algebra R X), C a → C b → C (a * b)) (h_add : ∀ (a b : free_algebra R X), C a → C b → C (a + b)) (a : free_algebra R X) : C a := sorry
/-- The star ring formed by reversing the elements of products -/
protected instance star_ring (R : Type u_1) [comm_semiring R] (X : Type u_2) : star_ring (free_algebra R X) :=
star_ring.mk sorry
@[simp] theorem star_ι (R : Type u_1) [comm_semiring R] (X : Type u_2) (x : X) : star (ι R x) = ι R x := sorry
@[simp] theorem star_algebra_map (R : Type u_1) [comm_semiring R] (X : Type u_2) (r : R) : star (coe_fn (algebra_map R (free_algebra R X)) r) = coe_fn (algebra_map R (free_algebra R X)) r := sorry
/-- `star` as an `alg_equiv` -/
def star_hom (R : Type u_1) [comm_semiring R] (X : Type u_2) : alg_equiv R (free_algebra R X) (free_algebra R Xᵒᵖ) :=
alg_equiv.mk (ring_equiv.to_fun star_ring_equiv) (ring_equiv.inv_fun star_ring_equiv) sorry sorry sorry sorry sorry
|
46d69e3487ec781e3e5fb00c6badb14bd7cb0618
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/real/ereal.lean
|
0e7f0f8f7d11269f7cec71297db11623119850b9
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 40,906
|
lean
|
/-
Copyright (c) 2019 Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard
-/
import data.real.basic
import data.real.ennreal
import data.sign
/-!
# The extended reals [-∞, ∞].
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines `ereal`, the real numbers together with a top and bottom element,
referred to as ⊤ and ⊥. It is implemented as `with_bot (with_top ℝ)`
Addition and multiplication are problematic in the presence of ±∞, but
negation has a natural definition and satisfies the usual properties.
An ad hoc addition is defined, for which `ereal` is an `add_comm_monoid`, and even an ordered one
(if `a ≤ a'` and `b ≤ b'` then `a + b ≤ a' + b'`).
Note however that addition is badly behaved at `(⊥, ⊤)` and `(⊤, ⊥)` so this can not be upgraded
to a group structure. Our choice is that `⊥ + ⊤ = ⊤ + ⊥ = ⊥`, to make sure that the exponential
and the logarithm between `ereal` and `ℝ≥0∞` respect the operations (notice that the
convention `0 * ∞ = 0` on `ℝ≥0∞` is enforced by measure theory).
An ad hoc subtraction is then defined by `x - y = x + (-y)`. It does not have nice properties,
but it is sometimes convenient to have.
An ad hoc multiplication is defined, for which `ereal` is a `comm_monoid_with_zero`. We make the
choice that `0 * x = x * 0 = 0` for any `x` (while the other cases are defined non-ambiguously).
This does not distribute with addition, as `⊥ = ⊥ + ⊤ = 1*⊥ + (-1)*⊥ ≠ (1 - 1) * ⊥ = 0 * ⊥ = 0`.
`ereal` is a `complete_linear_order`; this is deduced by type class inference from
the fact that `with_bot (with_top L)` is a complete linear order if `L` is
a conditionally complete linear order.
Coercions from `ℝ` and from `ℝ≥0∞` are registered, and their basic properties are proved. The main
one is the real coercion, and is usually referred to just as `coe` (lemmas such as
`ereal.coe_add` deal with this coercion). The one from `ennreal` is usually called `coe_ennreal`
in the `ereal` namespace.
We define an absolute value `ereal.abs` from `ereal` to `ℝ≥0∞`. Two elements of `ereal` coincide
if and only if they have the same absolute value and the same sign.
## Tags
real, ereal, complete lattice
-/
open function
open_locale ennreal nnreal
noncomputable theory
/-- ereal : The type `[-∞, ∞]` -/
@[derive [has_bot, has_zero, has_one, nontrivial, add_monoid,
has_Sup, has_Inf, complete_linear_order, linear_ordered_add_comm_monoid, zero_le_one_class]]
def ereal := with_bot (with_top ℝ)
/-- The canonical inclusion froms reals to ereals. Do not use directly: as this is registered as
a coercion, use the coercion instead. -/
def real.to_ereal : ℝ → ereal := some ∘ some
namespace ereal
-- things unify with `with_bot.decidable_lt` later if we we don't provide this explicitly.
instance decidable_lt : decidable_rel ((<) : ereal → ereal → Prop) :=
with_bot.decidable_lt
-- TODO: Provide explicitly, otherwise it is inferred noncomputably from `complete_linear_order`
instance : has_top ereal := ⟨some ⊤⟩
instance : has_coe ℝ ereal := ⟨real.to_ereal⟩
lemma coe_strict_mono : strict_mono (coe : ℝ → ereal) :=
with_bot.coe_strict_mono.comp with_top.coe_strict_mono
lemma coe_injective : injective (coe : ℝ → ereal) := coe_strict_mono.injective
@[simp, norm_cast] protected lemma coe_le_coe_iff {x y : ℝ} : (x : ereal) ≤ (y : ereal) ↔ x ≤ y :=
coe_strict_mono.le_iff_le
@[simp, norm_cast] protected lemma coe_lt_coe_iff {x y : ℝ} : (x : ereal) < (y : ereal) ↔ x < y :=
coe_strict_mono.lt_iff_lt
@[simp, norm_cast] protected lemma coe_eq_coe_iff {x y : ℝ} : (x : ereal) = (y : ereal) ↔ x = y :=
coe_injective.eq_iff
protected lemma coe_ne_coe_iff {x y : ℝ} : (x : ereal) ≠ (y : ereal) ↔ x ≠ y := coe_injective.ne_iff
/-- The canonical map from nonnegative extended reals to extended reals -/
def _root_.ennreal.to_ereal : ℝ≥0∞ → ereal
| ⊤ := ⊤
| (some x) := x.1
instance has_coe_ennreal : has_coe ℝ≥0∞ ereal := ⟨ennreal.to_ereal⟩
instance : inhabited ereal := ⟨0⟩
@[simp, norm_cast] lemma coe_zero : ((0 : ℝ) : ereal) = 0 := rfl
@[simp, norm_cast] lemma coe_one : ((1 : ℝ) : ereal) = 1 := rfl
/-- A recursor for `ereal` in terms of the coercion.
A typical invocation looks like `induction x using ereal.rec`. Note that using `induction`
directly will unfold `ereal` to `option` which is undesirable.
When working in term mode, note that pattern matching can be used directly. -/
@[elab_as_eliminator]
protected def rec {C : ereal → Sort*} (h_bot : C ⊥) (h_real : Π a : ℝ, C a) (h_top : C ⊤) :
∀ a : ereal, C a
| ⊥ := h_bot
| (a : ℝ) := h_real a
| ⊤ := h_top
/-- The multiplication on `ereal`. Our definition satisfies `0 * x = x * 0 = 0` for any `x`, and
picks the only sensible value elsewhere. -/
protected def mul : ereal → ereal → ereal
| ⊥ ⊥ := ⊤
| ⊥ ⊤ := ⊥
| ⊥ (y : ℝ) := if 0 < y then ⊥ else if y = 0 then 0 else ⊤
| ⊤ ⊥ := ⊥
| ⊤ ⊤ := ⊤
| ⊤ (y : ℝ) := if 0 < y then ⊤ else if y = 0 then 0 else ⊥
| (x : ℝ) ⊤ := if 0 < x then ⊤ else if x = 0 then 0 else ⊥
| (x : ℝ) ⊥ := if 0 < x then ⊥ else if x = 0 then 0 else ⊤
| (x : ℝ) (y : ℝ) := (x * y : ℝ)
instance : has_mul ereal := ⟨ereal.mul⟩
/-- Induct on two ereals by performing case splits on the sign of one whenever the other is
infinite. -/
@[elab_as_eliminator]
lemma induction₂ {P : ereal → ereal → Prop}
(top_top : P ⊤ ⊤)
(top_pos : ∀ x : ℝ, 0 < x → P ⊤ x)
(top_zero : P ⊤ 0)
(top_neg : ∀ x : ℝ, x < 0 → P ⊤ x)
(top_bot : P ⊤ ⊥)
(pos_top : ∀ x : ℝ, 0 < x → P x ⊤)
(pos_bot : ∀ x : ℝ, 0 < x → P x ⊥)
(zero_top : P 0 ⊤)
(coe_coe : ∀ x y : ℝ, P x y)
(zero_bot : P 0 ⊥)
(neg_top : ∀ x : ℝ, x < 0 → P x ⊤)
(neg_bot : ∀ x : ℝ, x < 0 → P x ⊥)
(bot_top : P ⊥ ⊤)
(bot_pos : ∀ x : ℝ, 0 < x → P ⊥ x)
(bot_zero : P ⊥ 0)
(bot_neg : ∀ x : ℝ, x < 0 → P ⊥ x)
(bot_bot : P ⊥ ⊥) :
∀ x y, P x y
| ⊥ ⊥ := bot_bot
| ⊥ (y : ℝ) :=
by { rcases lt_trichotomy 0 y with hy|rfl|hy, exacts [bot_pos y hy, bot_zero, bot_neg y hy] }
| ⊥ ⊤ := bot_top
| (x : ℝ) ⊥ :=
by { rcases lt_trichotomy 0 x with hx|rfl|hx, exacts [pos_bot x hx, zero_bot, neg_bot x hx] }
| (x : ℝ) (y : ℝ) := coe_coe _ _
| (x : ℝ) ⊤ :=
by { rcases lt_trichotomy 0 x with hx|rfl|hx, exacts [pos_top x hx, zero_top, neg_top x hx] }
| ⊤ ⊥ := top_bot
| ⊤ (y : ℝ) :=
by { rcases lt_trichotomy 0 y with hy|rfl|hy, exacts [top_pos y hy, top_zero, top_neg y hy] }
| ⊤ ⊤ := top_top
/-! `ereal` with its multiplication is a `comm_monoid_with_zero`. However, the proof of
associativity by hand is extremely painful (with 125 cases...). Instead, we will deduce it later
on from the facts that the absolute value and the sign are multiplicative functions taking value
in associative objects, and that they characterize an extended real number. For now, we only
record more basic properties of multiplication.
-/
instance : mul_zero_one_class ereal :=
{ one_mul := λ x, begin
induction x using ereal.rec;
{ dsimp only [(*)], simp only [ereal.mul, ← ereal.coe_one, zero_lt_one, if_true, one_mul] },
end,
mul_one := λ x, begin
induction x using ereal.rec;
{ dsimp only [(*)], simp only [ereal.mul, ← ereal.coe_one, zero_lt_one, if_true, mul_one] },
end,
zero_mul := λ x, begin
induction x using ereal.rec;
{ simp only [(*)], simp only [ereal.mul, ← ereal.coe_zero, zero_lt_one, if_true, if_false,
lt_irrefl (0 : ℝ), eq_self_iff_true, zero_mul] },
end,
mul_zero := λ x, begin
induction x using ereal.rec;
{ simp only [(*)], simp only [ereal.mul, ← ereal.coe_zero, zero_lt_one, if_true, if_false,
lt_irrefl (0 : ℝ), eq_self_iff_true, mul_zero] },
end,
..ereal.has_mul, ..ereal.has_one, ..ereal.has_zero }
/-! ### Real coercion -/
instance can_lift : can_lift ereal ℝ coe (λ r, r ≠ ⊤ ∧ r ≠ ⊥) :=
{ prf := λ x hx,
begin
induction x using ereal.rec,
{ simpa using hx },
{ simp },
{ simpa using hx }
end }
/-- The map from extended reals to reals sending infinities to zero. -/
def to_real : ereal → ℝ
| ⊥ := 0
| ⊤ := 0
| (x : ℝ) := x
@[simp] lemma to_real_top : to_real ⊤ = 0 := rfl
@[simp] lemma to_real_bot : to_real ⊥ = 0 := rfl
@[simp] lemma to_real_zero : to_real 0 = 0 := rfl
@[simp] lemma to_real_one : to_real 1 = 1 := rfl
@[simp] lemma to_real_coe (x : ℝ) : to_real (x : ereal) = x := rfl
@[simp] lemma bot_lt_coe (x : ℝ) : (⊥ : ereal) < x := with_bot.bot_lt_coe _
@[simp] lemma coe_ne_bot (x : ℝ) : (x : ereal) ≠ ⊥ := (bot_lt_coe x).ne'
@[simp] lemma bot_ne_coe (x : ℝ) : (⊥ : ereal) ≠ x := (bot_lt_coe x).ne
@[simp] lemma coe_lt_top (x : ℝ) : (x : ereal) < ⊤ :=
by { apply with_bot.coe_lt_coe.2, exact with_top.coe_lt_top _ }
@[simp] lemma coe_ne_top (x : ℝ) : (x : ereal) ≠ ⊤ := (coe_lt_top x).ne
@[simp] lemma top_ne_coe (x : ℝ) : (⊤ : ereal) ≠ x := (coe_lt_top x).ne'
@[simp] lemma bot_lt_zero : (⊥ : ereal) < 0 := bot_lt_coe 0
@[simp] lemma bot_ne_zero : (⊥ : ereal) ≠ 0 := (coe_ne_bot 0).symm
@[simp] lemma zero_ne_bot : (0 : ereal) ≠ ⊥ := coe_ne_bot 0
@[simp] lemma zero_lt_top : (0 : ereal) < ⊤ := coe_lt_top 0
@[simp] lemma zero_ne_top : (0 : ereal) ≠ ⊤ := coe_ne_top 0
@[simp] lemma top_ne_zero : (⊤ : ereal) ≠ 0 := (coe_ne_top 0).symm
@[simp, norm_cast] lemma coe_add (x y : ℝ) : (↑(x + y) : ereal) = x + y := rfl
@[simp, norm_cast] lemma coe_mul (x y : ℝ) : (↑(x * y) : ereal) = x * y := rfl
@[norm_cast] lemma coe_nsmul (n : ℕ) (x : ℝ) : (↑(n • x) : ereal) = n • x :=
map_nsmul (⟨coe, coe_zero, coe_add⟩ : ℝ →+ ereal) _ _
@[simp, norm_cast] lemma coe_bit0 (x : ℝ) : (↑(bit0 x) : ereal) = bit0 x := rfl
@[simp, norm_cast] lemma coe_bit1 (x : ℝ) : (↑(bit1 x) : ereal) = bit1 x := rfl
@[simp, norm_cast] lemma coe_eq_zero {x : ℝ} : (x : ereal) = 0 ↔ x = 0 := ereal.coe_eq_coe_iff
@[simp, norm_cast] lemma coe_eq_one {x : ℝ} : (x : ereal) = 1 ↔ x = 1 := ereal.coe_eq_coe_iff
lemma coe_ne_zero {x : ℝ} : (x : ereal) ≠ 0 ↔ x ≠ 0 := ereal.coe_ne_coe_iff
lemma coe_ne_one {x : ℝ} : (x : ereal) ≠ 1 ↔ x ≠ 1 := ereal.coe_ne_coe_iff
@[simp, norm_cast] protected lemma coe_nonneg {x : ℝ} : (0 : ereal) ≤ x ↔ 0 ≤ x :=
ereal.coe_le_coe_iff
@[simp, norm_cast] protected lemma coe_nonpos {x : ℝ} : (x : ereal) ≤ 0 ↔ x ≤ 0 :=
ereal.coe_le_coe_iff
@[simp, norm_cast] protected lemma coe_pos {x : ℝ} : (0 : ereal) < x ↔ 0 < x :=
ereal.coe_lt_coe_iff
@[simp, norm_cast] protected lemma coe_neg' {x : ℝ} : (x : ereal) < 0 ↔ x < 0 :=
ereal.coe_lt_coe_iff
lemma to_real_le_to_real {x y : ereal} (h : x ≤ y) (hx : x ≠ ⊥) (hy : y ≠ ⊤) :
x.to_real ≤ y.to_real :=
begin
lift x to ℝ,
{ simp [hx, (h.trans_lt (lt_top_iff_ne_top.2 hy)).ne], },
lift y to ℝ,
{ simp [hy, ((bot_lt_iff_ne_bot.2 hx).trans_le h).ne'] },
simpa using h
end
lemma coe_to_real {x : ereal} (hx : x ≠ ⊤) (h'x : x ≠ ⊥) : (x.to_real : ereal) = x :=
begin
induction x using ereal.rec,
{ simpa using h'x },
{ refl },
{ simpa using hx },
end
lemma le_coe_to_real {x : ereal} (h : x ≠ ⊤) : x ≤ x.to_real :=
begin
by_cases h' : x = ⊥,
{ simp only [h', bot_le] },
{ simp only [le_refl, coe_to_real h h'] },
end
lemma coe_to_real_le {x : ereal} (h : x ≠ ⊥) : ↑x.to_real ≤ x :=
begin
by_cases h' : x = ⊤,
{ simp only [h', le_top] },
{ simp only [le_refl, coe_to_real h' h] },
end
lemma eq_top_iff_forall_lt (x : ereal) : x = ⊤ ↔ ∀ (y : ℝ), (y : ereal) < x :=
begin
split,
{ rintro rfl, exact ereal.coe_lt_top },
{ contrapose!,
intro h,
exact ⟨x.to_real, le_coe_to_real h⟩, },
end
lemma eq_bot_iff_forall_lt (x : ereal) : x = ⊥ ↔ ∀ (y : ℝ), x < (y : ereal) :=
begin
split,
{ rintro rfl, exact bot_lt_coe },
{ contrapose!,
intro h,
exact ⟨x.to_real, coe_to_real_le h⟩, },
end
/-! ### ennreal coercion -/
@[simp] lemma to_real_coe_ennreal : ∀ {x : ℝ≥0∞}, to_real (x : ereal) = ennreal.to_real x
| ⊤ := rfl
| (some x) := rfl
@[simp] lemma coe_ennreal_of_real {x : ℝ} :
(ennreal.of_real x : ereal) = max x 0 :=
rfl
lemma coe_nnreal_eq_coe_real (x : ℝ≥0) : ((x : ℝ≥0∞) : ereal) = (x : ℝ) := rfl
@[simp, norm_cast] lemma coe_ennreal_zero : ((0 : ℝ≥0∞) : ereal) = 0 := rfl
@[simp, norm_cast] lemma coe_ennreal_one : ((1 : ℝ≥0∞) : ereal) = 1 := rfl
@[simp, norm_cast] lemma coe_ennreal_top : ((⊤ : ℝ≥0∞) : ereal) = ⊤ := rfl
@[simp] lemma coe_ennreal_eq_top_iff : ∀ {x : ℝ≥0∞}, (x : ereal) = ⊤ ↔ x = ⊤
| ⊤ := by simp
| (some x) := by { simp only [ennreal.coe_ne_top, iff_false, ennreal.some_eq_coe], dec_trivial }
lemma coe_nnreal_ne_top (x : ℝ≥0) : ((x : ℝ≥0∞) : ereal) ≠ ⊤ := dec_trivial
@[simp] lemma coe_nnreal_lt_top (x : ℝ≥0) : ((x : ℝ≥0∞) : ereal) < ⊤ := dec_trivial
lemma coe_ennreal_strict_mono : strict_mono (coe : ℝ≥0∞ → ereal)
| ⊤ ⊤ := by simp
| (some x) ⊤ := by simp
| ⊤ (some y) := by simp
| (some x) (some y) := by simp [coe_nnreal_eq_coe_real]
lemma coe_ennreal_injective : injective (coe : ℝ≥0∞ → ereal) := coe_ennreal_strict_mono.injective
@[simp, norm_cast] lemma coe_ennreal_le_coe_ennreal_iff {x y : ℝ≥0∞} :
(x : ereal) ≤ (y : ereal) ↔ x ≤ y :=
coe_ennreal_strict_mono.le_iff_le
@[simp, norm_cast] lemma coe_ennreal_lt_coe_ennreal_iff {x y : ℝ≥0∞} :
(x : ereal) < (y : ereal) ↔ x < y :=
coe_ennreal_strict_mono.lt_iff_lt
@[simp, norm_cast] lemma coe_ennreal_eq_coe_ennreal_iff {x y : ℝ≥0∞} :
(x : ereal) = (y : ereal) ↔ x = y :=
coe_ennreal_injective.eq_iff
lemma coe_ennreal_ne_coe_ennreal_iff {x y : ℝ≥0∞} : (x : ereal) ≠ (y : ereal) ↔ x ≠ y :=
coe_ennreal_injective.ne_iff
@[simp, norm_cast] lemma coe_ennreal_eq_zero {x : ℝ≥0∞} : (x : ereal) = 0 ↔ x = 0 :=
by rw [←coe_ennreal_eq_coe_ennreal_iff, coe_ennreal_zero]
@[simp, norm_cast] lemma coe_ennreal_eq_one {x : ℝ≥0∞} : (x : ereal) = 1 ↔ x = 1 :=
by rw [←coe_ennreal_eq_coe_ennreal_iff, coe_ennreal_one]
@[norm_cast] lemma coe_ennreal_ne_zero {x : ℝ≥0∞} : (x : ereal) ≠ 0 ↔ x ≠ 0 :=
coe_ennreal_eq_zero.not
@[norm_cast] lemma coe_ennreal_ne_one {x : ℝ≥0∞} : (x : ereal) ≠ 1 ↔ x ≠ 1 := coe_ennreal_eq_one.not
lemma coe_ennreal_nonneg (x : ℝ≥0∞) : (0 : ereal) ≤ x :=
coe_ennreal_le_coe_ennreal_iff.2 (zero_le x)
@[simp, norm_cast] lemma coe_ennreal_pos {x : ℝ≥0∞} : (0 : ereal) < x ↔ 0 < x :=
by rw [←coe_ennreal_zero, coe_ennreal_lt_coe_ennreal_iff]
@[simp] lemma bot_lt_coe_ennreal (x : ℝ≥0∞) : (⊥ : ereal) < x :=
(bot_lt_coe 0).trans_le (coe_ennreal_nonneg _)
@[simp] lemma coe_ennreal_ne_bot (x : ℝ≥0∞) : (x : ereal) ≠ ⊥ := (bot_lt_coe_ennreal x).ne'
@[simp, norm_cast] lemma coe_ennreal_add (x y : ennreal) : ((x + y : ℝ≥0∞) : ereal) = x + y :=
by cases x; cases y; refl
@[simp, norm_cast] lemma coe_ennreal_mul : ∀ (x y : ℝ≥0∞), ((x * y : ℝ≥0∞) : ereal) = x * y
| ⊤ ⊤ := rfl
| ⊤ (y : ℝ≥0) := begin
rw ennreal.top_mul, split_ifs,
{ simp only [h, coe_ennreal_zero, mul_zero] },
{ have A : (0 : ℝ) < y,
{ simp only [ennreal.coe_eq_zero] at h,
exact nnreal.coe_pos.2 (bot_lt_iff_ne_bot.2 h) },
simp only [coe_nnreal_eq_coe_real, coe_ennreal_top, (*), ereal.mul, A, if_true], }
end
| (x : ℝ≥0) ⊤ := begin
rw ennreal.mul_top, split_ifs,
{ simp only [h, coe_ennreal_zero, zero_mul] },
{ have A : (0 : ℝ) < x,
{ simp only [ennreal.coe_eq_zero] at h,
exact nnreal.coe_pos.2 (bot_lt_iff_ne_bot.2 h) },
simp only [coe_nnreal_eq_coe_real, coe_ennreal_top, (*), ereal.mul, A, if_true] }
end
| (x : ℝ≥0) (y : ℝ≥0) := by simp only [← ennreal.coe_mul, coe_nnreal_eq_coe_real,
nnreal.coe_mul, ereal.coe_mul]
@[norm_cast] lemma coe_ennreal_nsmul (n : ℕ) (x : ℝ≥0∞) : (↑(n • x) : ereal) = n • x :=
map_nsmul (⟨coe, coe_ennreal_zero, coe_ennreal_add⟩ : ℝ≥0∞ →+ ereal) _ _
@[simp, norm_cast] lemma coe_ennreal_bit0 (x : ℝ≥0∞) : (↑(bit0 x) : ereal) = bit0 x :=
coe_ennreal_add _ _
@[simp, norm_cast] lemma coe_ennreal_bit1 (x : ℝ≥0∞) : (↑(bit1 x) : ereal) = bit1 x :=
by simp_rw [bit1, coe_ennreal_add, coe_ennreal_bit0, coe_ennreal_one]
/-! ### Order -/
lemma exists_rat_btwn_of_lt : Π {a b : ereal} (hab : a < b),
∃ (x : ℚ), a < (x : ℝ) ∧ ((x : ℝ) : ereal) < b
| ⊤ b h := (not_top_lt h).elim
| (a : ℝ) ⊥ h := (lt_irrefl _ ((bot_lt_coe a).trans h)).elim
| (a : ℝ) (b : ℝ) h := by simp [exists_rat_btwn (ereal.coe_lt_coe_iff.1 h)]
| (a : ℝ) ⊤ h := let ⟨b, hab⟩ := exists_rat_gt a in ⟨b, by simpa using hab, coe_lt_top _⟩
| ⊥ ⊥ h := (lt_irrefl _ h).elim
| ⊥ (a : ℝ) h := let ⟨b, hab⟩ := exists_rat_lt a in ⟨b, bot_lt_coe _, by simpa using hab⟩
| ⊥ ⊤ h := ⟨0, bot_lt_coe _, coe_lt_top _⟩
lemma lt_iff_exists_rat_btwn {a b : ereal} :
a < b ↔ ∃ (x : ℚ), a < (x : ℝ) ∧ ((x : ℝ) : ereal) < b :=
⟨λ hab, exists_rat_btwn_of_lt hab, λ ⟨x, ax, xb⟩, ax.trans xb⟩
lemma lt_iff_exists_real_btwn {a b : ereal} :
a < b ↔ ∃ (x : ℝ), a < x ∧ (x : ereal) < b :=
⟨λ hab, let ⟨x, ax, xb⟩ := exists_rat_btwn_of_lt hab in ⟨(x : ℝ), ax, xb⟩,
λ ⟨x, ax, xb⟩, ax.trans xb⟩
/-- The set of numbers in `ereal` that are not equal to `±∞` is equivalent to `ℝ`. -/
def ne_top_bot_equiv_real : ({⊥, ⊤}ᶜ : set ereal) ≃ ℝ :=
{ to_fun := λ x, ereal.to_real x,
inv_fun := λ x, ⟨x, by simp⟩,
left_inv := λ ⟨x, hx⟩, subtype.eq $ begin
lift x to ℝ,
{ simpa [not_or_distrib, and_comm] using hx },
{ simp },
end,
right_inv := λ x, by simp }
/-! ### Addition -/
@[simp] lemma add_bot (x : ereal) : x + ⊥ = ⊥ := with_bot.add_bot _
@[simp] lemma bot_add (x : ereal) : ⊥ + x = ⊥ := with_bot.bot_add _
@[simp] lemma top_add_top : (⊤ : ereal) + ⊤ = ⊤ := rfl
@[simp] lemma top_add_coe (x : ℝ) : (⊤ : ereal) + x = ⊤ := rfl
@[simp] lemma coe_add_top (x : ℝ) : (x : ereal) + ⊤ = ⊤ := rfl
lemma to_real_add : ∀ {x y : ereal} (hx : x ≠ ⊤) (h'x : x ≠ ⊥) (hy : y ≠ ⊤) (h'y : y ≠ ⊥),
to_real (x + y) = to_real x + to_real y
| ⊥ y hx h'x hy h'y := (h'x rfl).elim
| ⊤ y hx h'x hy h'y := (hx rfl).elim
| x ⊤ hx h'x hy h'y := (hy rfl).elim
| x ⊥ hx h'x hy h'y := (h'y rfl).elim
| (x : ℝ) (y : ℝ) hx h'x hy h'y := by simp [← ereal.coe_add]
lemma add_lt_add_right_coe {x y : ereal} (h : x < y) (z : ℝ) : x + z < y + z :=
begin
induction x using ereal.rec; induction y using ereal.rec,
{ exact (lt_irrefl _ h).elim },
{ simp only [← coe_add, bot_add, bot_lt_coe] },
{ simp },
{ exact (lt_irrefl _ (h.trans (bot_lt_coe x))).elim },
{ norm_cast at h ⊢, exact add_lt_add_right h _ },
{ simp only [← coe_add, top_add_coe, coe_lt_top] },
{ exact (lt_irrefl _ (h.trans_le le_top)).elim },
{ exact (lt_irrefl _ (h.trans_le le_top)).elim },
{ exact (lt_irrefl _ (h.trans_le le_top)).elim },
end
lemma add_lt_add_of_lt_of_le {x y z t : ereal} (h : x < y) (h' : z ≤ t) (hz : z ≠ ⊥) (ht : t ≠ ⊤) :
x + z < y + t :=
begin
induction z using ereal.rec,
{ simpa only using hz },
{ calc x + z < y + z : add_lt_add_right_coe h _
... ≤ y + t : add_le_add le_rfl h' },
{ exact (ht (top_le_iff.1 h')).elim }
end
lemma add_lt_add_left_coe {x y : ereal} (h : x < y) (z : ℝ) : (z : ereal) + x < z + y :=
by simpa [add_comm] using add_lt_add_right_coe h z
lemma add_lt_add {x y z t : ereal} (h1 : x < y) (h2 : z < t) : x + z < y + t :=
begin
induction x using ereal.rec,
{ simp [bot_lt_iff_ne_bot, h1.ne', (bot_le.trans_lt h2).ne'] },
{ calc (x : ereal) + z < x + t : add_lt_add_left_coe h2 _
... ≤ y + t : add_le_add h1.le le_rfl },
{ exact (lt_irrefl _ (h1.trans_le le_top)).elim }
end
@[simp] lemma add_eq_bot_iff {x y : ereal} : x + y = ⊥ ↔ x = ⊥ ∨ y = ⊥ :=
begin
induction x using ereal.rec; induction y using ereal.rec;
simp [← ereal.coe_add],
end
@[simp] lemma bot_lt_add_iff {x y : ereal} : ⊥ < x + y ↔ ⊥ < x ∧ ⊥ < y :=
by simp [bot_lt_iff_ne_bot, not_or_distrib]
lemma add_lt_top {x y : ereal} (hx : x ≠ ⊤) (hy : y ≠ ⊤) : x + y < ⊤ :=
by { rw ← ereal.top_add_top, exact ereal.add_lt_add hx.lt_top hy.lt_top }
/-! ### Negation -/
/-- negation on `ereal` -/
protected def neg : ereal → ereal
| ⊥ := ⊤
| ⊤ := ⊥
| (x : ℝ) := (-x : ℝ)
instance : has_neg ereal := ⟨ereal.neg⟩
instance : sub_neg_zero_monoid ereal :=
{ neg_zero := by { change ((-0 : ℝ) : ereal) = 0, simp },
..ereal.add_monoid, ..ereal.has_neg }
@[norm_cast] protected lemma neg_def (x : ℝ) : ((-x : ℝ) : ereal) = -x := rfl
@[simp] lemma neg_top : - (⊤ : ereal) = ⊥ := rfl
@[simp] lemma neg_bot : - (⊥ : ereal) = ⊤ := rfl
@[simp, norm_cast] lemma coe_neg (x : ℝ) : (↑(-x) : ereal) = -x := rfl
@[simp, norm_cast] lemma coe_sub (x y : ℝ) : (↑(x - y) : ereal) = x - y := rfl
@[norm_cast] lemma coe_zsmul (n : ℤ) (x : ℝ) : (↑(n • x) : ereal) = n • x :=
map_zsmul' (⟨coe, coe_zero, coe_add⟩ : ℝ →+ ereal) coe_neg _ _
instance : has_involutive_neg ereal :=
{ neg := has_neg.neg,
neg_neg := λ a, match a with
| ⊥ := rfl
| ⊤ := rfl
| (a : ℝ) := by { norm_cast, simp [neg_neg a] }
end }
@[simp] lemma to_real_neg : ∀ {a : ereal}, to_real (-a) = - to_real a
| ⊤ := by simp
| ⊥ := by simp
| (x : ℝ) := rfl
@[simp] lemma neg_eq_top_iff {x : ereal} : - x = ⊤ ↔ x = ⊥ :=
neg_eq_iff_eq_neg
@[simp] lemma neg_eq_bot_iff {x : ereal} : - x = ⊥ ↔ x = ⊤ :=
neg_eq_iff_eq_neg
@[simp] lemma neg_eq_zero_iff {x : ereal} : - x = 0 ↔ x = 0 :=
by rw [neg_eq_iff_eq_neg, neg_zero]
/-- if `-a ≤ b` then `-b ≤ a` on `ereal`. -/
protected theorem neg_le_of_neg_le {a b : ereal} (h : -a ≤ b) : -b ≤ a :=
begin
induction a using ereal.rec; induction b using ereal.rec,
{ exact h },
{ simpa only [coe_ne_top, neg_bot, top_le_iff] using h },
{ exact bot_le },
{ simpa only [coe_ne_top, le_bot_iff] using h },
{ norm_cast at h ⊢, exact neg_le.1 h },
{ exact bot_le },
{ exact le_top },
{ exact le_top },
{ exact le_top },
end
/-- `-a ≤ b ↔ -b ≤ a` on `ereal`. -/
protected theorem neg_le {a b : ereal} : -a ≤ b ↔ -b ≤ a :=
⟨ereal.neg_le_of_neg_le, ereal.neg_le_of_neg_le⟩
/-- `a ≤ -b → b ≤ -a` on ereal -/
theorem le_neg_of_le_neg {a b : ereal} (h : a ≤ -b) : b ≤ -a :=
by rwa [←neg_neg b, ereal.neg_le, neg_neg]
@[simp] lemma neg_le_neg_iff {a b : ereal} : - a ≤ - b ↔ b ≤ a :=
by conv_lhs { rw [ereal.neg_le, neg_neg] }
/-- Negation as an order reversing isomorphism on `ereal`. -/
def neg_order_iso : ereal ≃o erealᵒᵈ :=
{ to_fun := λ x, order_dual.to_dual (-x),
inv_fun := λ x, -x.of_dual,
map_rel_iff' := λ x y, neg_le_neg_iff,
..equiv.neg ereal }
lemma neg_lt_of_neg_lt {a b : ereal} (h : -a < b) : -b < a :=
begin
apply lt_of_le_of_ne (ereal.neg_le_of_neg_le h.le),
assume H,
rw [← H, neg_neg] at h,
exact lt_irrefl _ h
end
lemma neg_lt_iff_neg_lt {a b : ereal} : -a < b ↔ -b < a :=
⟨λ h, ereal.neg_lt_of_neg_lt h, λ h, ereal.neg_lt_of_neg_lt h⟩
/-!
### Subtraction
Subtraction on `ereal` is defined by `x - y = x + (-y)`. Since addition is badly behaved at some
points, so is subtraction. There is no standard algebraic typeclass involving subtraction that is
registered on `ereal`, beyond `sub_neg_zero_monoid`, because of this bad behavior.
-/
@[simp] lemma bot_sub (x : ereal) : ⊥ - x = ⊥ := bot_add x
@[simp] lemma sub_top (x : ereal) : x - ⊤ = ⊥ := add_bot x
@[simp] lemma top_sub_bot : (⊤ : ereal) - ⊥ = ⊤ := rfl
@[simp] lemma top_sub_coe (x : ℝ) : (⊤ : ereal) - x = ⊤ := rfl
@[simp] lemma coe_sub_bot (x : ℝ) : (x : ereal) - ⊥ = ⊤ := rfl
lemma sub_le_sub {x y z t : ereal} (h : x ≤ y) (h' : t ≤ z) : x - z ≤ y - t :=
add_le_add h (neg_le_neg_iff.2 h')
lemma sub_lt_sub_of_lt_of_le {x y z t : ereal} (h : x < y) (h' : z ≤ t) (hz : z ≠ ⊥) (ht : t ≠ ⊤) :
x - t < y - z :=
add_lt_add_of_lt_of_le h (neg_le_neg_iff.2 h') (by simp [ht]) (by simp [hz])
lemma coe_real_ereal_eq_coe_to_nnreal_sub_coe_to_nnreal (x : ℝ) :
(x : ereal) = real.to_nnreal x - real.to_nnreal (-x) :=
begin
rcases le_or_lt 0 x with h|h,
{ have : real.to_nnreal x = ⟨x, h⟩, by { ext, simp [h] },
simp only [real.to_nnreal_of_nonpos (neg_nonpos.mpr h), this, sub_zero, ennreal.coe_zero,
coe_ennreal_zero, coe_coe],
refl },
{ have : (x : ereal) = - (- x : ℝ), by simp,
conv_lhs { rw this },
have : real.to_nnreal (-x) = ⟨-x, neg_nonneg.mpr h.le⟩, by { ext, simp [neg_nonneg.mpr h.le], },
simp only [real.to_nnreal_of_nonpos h.le, this, zero_sub, neg_inj, coe_neg,
ennreal.coe_zero, coe_ennreal_zero, coe_coe],
refl }
end
lemma to_real_sub {x y : ereal} (hx : x ≠ ⊤) (h'x : x ≠ ⊥) (hy : y ≠ ⊤) (h'y : y ≠ ⊥) :
to_real (x - y) = to_real x - to_real y :=
begin
rw [sub_eq_add_neg, to_real_add hx h'x, to_real_neg],
{ refl },
{ simpa using hy },
{ simpa using h'y }
end
/-! ### Multiplication -/
protected lemma mul_comm (x y : ereal) : x * y = y * x :=
begin
induction x using ereal.rec; induction y using ereal.rec; try { refl },
dsimp only [(*)],
simp only [ereal.mul, mul_comm],
end
@[simp] lemma top_mul_top : (⊤ : ereal) * ⊤ = ⊤ := rfl
@[simp] lemma top_mul_bot : (⊤ : ereal) * ⊥ = ⊥ := rfl
@[simp] lemma bot_mul_top : (⊥ : ereal) * ⊤ = ⊥ := rfl
@[simp] lemma bot_mul_bot : (⊥ : ereal) * ⊥ = ⊤ := rfl
lemma mul_top_of_pos {x : ereal} (h : 0 < x) : x * ⊤ = ⊤ :=
begin
induction x using ereal.rec,
{ simpa only [not_lt_bot] using h },
{ simp only [has_mul.mul, ereal.mul, ereal.coe_pos.1 h, if_true] },
{ refl }
end
lemma mul_top_of_neg {x : ereal} (h : x < 0) : x * ⊤ = ⊥ :=
begin
induction x using ereal.rec,
{ refl },
{ simp only [ereal.coe_neg'] at h,
simp only [has_mul.mul, ereal.mul, not_lt.2 h.le, h.ne, if_false] },
{ simpa only [not_top_lt] using h }
end
lemma top_mul_of_pos {x : ereal} (h : 0 < x) : ⊤ * x = ⊤ :=
by { rw ereal.mul_comm, exact mul_top_of_pos h }
lemma top_mul_of_neg {x : ereal} (h : x < 0) : ⊤ * x = ⊥ :=
by { rw ereal.mul_comm, exact mul_top_of_neg h }
lemma coe_mul_top_of_pos {x : ℝ} (h : 0 < x) : (x : ereal) * ⊤ = ⊤ :=
mul_top_of_pos (ereal.coe_pos.2 h)
lemma coe_mul_top_of_neg {x : ℝ} (h : x < 0) : (x : ereal) * ⊤ = ⊥ :=
mul_top_of_neg (ereal.coe_neg'.2 h)
lemma top_mul_coe_of_pos {x : ℝ} (h : 0 < x) : (⊤ : ereal) * x = ⊤ :=
top_mul_of_pos (ereal.coe_pos.2 h)
lemma top_mul_coe_of_neg {x : ℝ} (h : x < 0) : (⊤ : ereal) * x = ⊥ :=
top_mul_of_neg (ereal.coe_neg'.2 h)
lemma mul_bot_of_pos {x : ereal} (h : 0 < x) : x * ⊥ = ⊥ :=
begin
induction x using ereal.rec,
{ simpa only [not_lt_bot] using h },
{ simp only [has_mul.mul, ereal.mul, ereal.coe_pos.1 h, if_true] },
{ refl }
end
lemma mul_bot_of_neg {x : ereal} (h : x < 0) : x * ⊥ = ⊤ :=
begin
induction x using ereal.rec,
{ refl },
{ simp only [ereal.coe_neg'] at h,
simp only [has_mul.mul, ereal.mul, not_lt.2 h.le, h.ne, if_false] },
{ simpa only [not_top_lt] using h }
end
lemma bot_mul_of_pos {x : ereal} (h : 0 < x) : ⊥ * x = ⊥ :=
by { rw ereal.mul_comm, exact mul_bot_of_pos h }
lemma bot_mul_of_neg {x : ereal} (h : x < 0) : ⊥ * x = ⊤ :=
by { rw ereal.mul_comm, exact mul_bot_of_neg h }
lemma coe_mul_bot_of_pos {x : ℝ} (h : 0 < x) : (x : ereal) * ⊥ = ⊥ :=
mul_bot_of_pos (ereal.coe_pos.2 h)
lemma coe_mul_bot_of_neg {x : ℝ} (h : x < 0) : (x : ereal) * ⊥ = ⊤ :=
mul_bot_of_neg (ereal.coe_neg'.2 h)
lemma bot_mul_coe_of_pos {x : ℝ} (h : 0 < x) : (⊥ : ereal) * x = ⊥ :=
bot_mul_of_pos (ereal.coe_pos.2 h)
lemma bot_mul_coe_of_neg {x : ℝ} (h : x < 0) : (⊥ : ereal) * x = ⊤ :=
bot_mul_of_neg (ereal.coe_neg'.2 h)
lemma to_real_mul {x y : ereal} : to_real (x * y) = to_real x * to_real y :=
begin
-- TODO: replace with `induction using` in Lean 4, which supports multiple premises
with_cases
{ apply @induction₂ (λ x y, to_real (x * y) = to_real x * to_real y) };
propagate_tags { try { dsimp only} },
case [top_zero, bot_zero, zero_top, zero_bot] { all_goals { simp only [zero_mul, mul_zero,
to_real_zero] } },
case coe_coe : x y { norm_cast },
case top_top { rw [top_mul_top, to_real_top, mul_zero] },
case top_bot { rw [top_mul_bot, to_real_top, to_real_bot, zero_mul] },
case bot_top { rw [bot_mul_top, to_real_bot, zero_mul] },
case bot_bot { rw [bot_mul_bot, to_real_top, to_real_bot, zero_mul] },
case pos_bot : x hx
{ rw [to_real_bot, to_real_coe, coe_mul_bot_of_pos hx, to_real_bot, mul_zero] },
case neg_bot : x hx
{ rw [to_real_bot, to_real_coe, coe_mul_bot_of_neg hx, to_real_top, mul_zero] },
case pos_top : x hx
{ rw [to_real_top, to_real_coe, coe_mul_top_of_pos hx, to_real_top, mul_zero] },
case neg_top : x hx
{ rw [to_real_top, to_real_coe, coe_mul_top_of_neg hx, to_real_bot, mul_zero] },
case top_pos : y hy
{ rw [to_real_top, to_real_coe, top_mul_coe_of_pos hy, to_real_top, zero_mul] },
case top_neg : y hy
{ rw [to_real_top, to_real_coe, top_mul_coe_of_neg hy, to_real_bot, zero_mul] },
case bot_pos : y hy
{ rw [to_real_bot, to_real_coe, bot_mul_coe_of_pos hy, to_real_bot, zero_mul] },
case bot_neg : y hy
{ rw [to_real_bot, to_real_coe, bot_mul_coe_of_neg hy, to_real_top, zero_mul] },
end
protected lemma neg_mul (x y : ereal) : -x * y = -(x * y) :=
begin
-- TODO: replace with `induction using` in Lean 4, which supports multiple premises
with_cases
{ apply @induction₂ (λ x y, -x * y = -(x * y)) };
propagate_tags { try { dsimp only} },
case [top_top, bot_top, top_bot, bot_bot] { all_goals { refl } },
case [top_zero, bot_zero, zero_top, zero_bot]
{ all_goals { simp only [zero_mul, mul_zero, neg_zero] } },
case coe_coe : x y { norm_cast, exact neg_mul _ _, },
case pos_bot : x hx
{ rw [coe_mul_bot_of_pos hx, neg_bot, ← coe_neg, coe_mul_bot_of_neg (neg_neg_of_pos hx)] },
case neg_bot : x hx
{ rw [coe_mul_bot_of_neg hx, neg_top, ← coe_neg, coe_mul_bot_of_pos (neg_pos_of_neg hx)] },
case pos_top : x hx
{ rw [coe_mul_top_of_pos hx, neg_top, ← coe_neg, coe_mul_top_of_neg (neg_neg_of_pos hx)] },
case neg_top : x hx
{ rw [coe_mul_top_of_neg hx, neg_bot, ← coe_neg, coe_mul_top_of_pos (neg_pos_of_neg hx)] },
case top_pos : y hy { rw [top_mul_coe_of_pos hy, neg_top, bot_mul_coe_of_pos hy] },
case top_neg : y hy { rw [top_mul_coe_of_neg hy, neg_top, neg_bot, bot_mul_coe_of_neg hy] },
case bot_pos : y hy { rw [bot_mul_coe_of_pos hy, neg_bot, top_mul_coe_of_pos hy] },
case bot_neg : y hy { rw [bot_mul_coe_of_neg hy, neg_bot, neg_top, top_mul_coe_of_neg hy] },
end
instance : has_distrib_neg ereal :=
{ neg_mul := ereal.neg_mul,
mul_neg := λ x y, by { rw [x.mul_comm, x.mul_comm], exact y.neg_mul x, },
..ereal.has_involutive_neg }
/-! ### Absolute value -/
/-- The absolute value from `ereal` to `ℝ≥0∞`, mapping `⊥` and `⊤` to `⊤` and
a real `x` to `|x|`. -/
protected def abs : ereal → ℝ≥0∞
| ⊥ := ⊤
| ⊤ := ⊤
| (x : ℝ) := ennreal.of_real (|x|)
@[simp] lemma abs_top : (⊤ : ereal).abs = ⊤ := rfl
@[simp] lemma abs_bot : (⊥ : ereal).abs = ⊤ := rfl
lemma abs_def (x : ℝ) : (x : ereal).abs = ennreal.of_real (|x|) := rfl
lemma abs_coe_lt_top (x : ℝ) : (x : ereal).abs < ⊤ :=
ennreal.of_real_lt_top
@[simp] lemma abs_eq_zero_iff {x : ereal} : x.abs = 0 ↔ x = 0 :=
begin
induction x using ereal.rec,
{ simp only [abs_bot, ennreal.top_ne_zero, bot_ne_zero] },
{ simp only [ereal.abs, coe_eq_zero, ennreal.of_real_eq_zero, abs_nonpos_iff] },
{ simp only [abs_top, ennreal.top_ne_zero, top_ne_zero] }
end
@[simp] lemma abs_zero : (0 : ereal).abs = 0 :=
by rw [abs_eq_zero_iff]
@[simp] lemma coe_abs (x : ℝ) : ((x : ereal).abs : ereal) = (|x| : ℝ) :=
by rcases lt_trichotomy 0 x with hx | rfl | hx; simp [abs_def]
@[simp] lemma abs_mul (x y : ereal) : (x * y).abs = x.abs * y.abs :=
begin
-- TODO: replace with `induction using` in Lean 4, which supports multiple premises
with_cases
{ apply @induction₂ (λ x y, (x * y).abs = x.abs * y.abs) };
propagate_tags { try { dsimp only} },
case [top_top, bot_top, top_bot, bot_bot] { all_goals { refl } },
case [top_zero, bot_zero, zero_top, zero_bot] { all_goals { simp only [zero_mul, mul_zero,
abs_zero] } },
case coe_coe : x y { simp only [← coe_mul, ereal.abs, abs_mul,
ennreal.of_real_mul (abs_nonneg _)], },
case pos_bot : x hx { simp only [coe_mul_bot_of_pos hx, hx.ne', abs_bot, with_top.mul_top, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff] },
case neg_bot : x hx { simp only [coe_mul_bot_of_neg hx, hx.ne, abs_bot, with_top.mul_top, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff, abs_top] },
case pos_top : x hx { simp only [coe_mul_top_of_pos hx, hx.ne', with_top.mul_top, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff, abs_top] },
case neg_top : x hx { simp only [coe_mul_top_of_neg hx, hx.ne, abs_bot, with_top.mul_top, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff, abs_top] },
case top_pos : y hy { simp only [top_mul_coe_of_pos hy, hy.ne', with_top.top_mul, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff, abs_top] },
case top_neg : y hy { simp only [top_mul_coe_of_neg hy, hy.ne, abs_bot, with_top.top_mul, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff, abs_top] },
case bot_pos : y hy { simp only [bot_mul_coe_of_pos hy, hy.ne', abs_bot, with_top.top_mul, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff] },
case bot_neg : y hy { simp only [bot_mul_coe_of_neg hy, hy.ne, abs_bot, with_top.top_mul, ne.def,
abs_eq_zero_iff, coe_eq_zero, not_false_iff, abs_top] },
end
/-! ### Sign -/
@[simp] lemma sign_top : sign (⊤ : ereal) = 1 := rfl
@[simp] lemma sign_bot : sign (⊥ : ereal) = -1 := rfl
@[simp] lemma sign_coe (x : ℝ) : sign (x : ereal) = sign x :=
by simp only [sign, order_hom.coe_fun_mk, ereal.coe_pos, ereal.coe_neg']
@[simp] lemma sign_mul (x y : ereal) : sign (x * y) = sign x * sign y :=
begin
-- TODO: replace with `induction using` in Lean 4, which supports multiple premises
with_cases
{ apply @induction₂ (λ x y, sign (x * y) = sign x * sign y) };
propagate_tags { try { dsimp only} },
case [top_top, bot_top, top_bot, bot_bot] { all_goals { refl } },
case [top_zero, bot_zero, zero_top, zero_bot] { all_goals { simp only [zero_mul, mul_zero,
sign_zero] } },
case coe_coe : x y { simp only [← coe_mul, sign_coe, sign_mul], },
case pos_bot : x hx { simp_rw [coe_mul_bot_of_pos hx, sign_coe, sign_pos hx, one_mul] },
case neg_bot : x hx { simp_rw [coe_mul_bot_of_neg hx, sign_coe, sign_neg hx, sign_top, sign_bot,
neg_one_mul, neg_neg] },
case pos_top : x hx { simp_rw [coe_mul_top_of_pos hx, sign_coe, sign_pos hx, one_mul] },
case neg_top : x hx { simp_rw [coe_mul_top_of_neg hx, sign_coe, sign_neg hx, sign_top, sign_bot,
mul_one] },
case top_pos : y hy { simp_rw [top_mul_coe_of_pos hy, sign_coe, sign_pos hy, mul_one] },
case top_neg : y hy { simp_rw [top_mul_coe_of_neg hy, sign_coe, sign_neg hy, sign_top, sign_bot,
one_mul] },
case bot_pos : y hy { simp_rw [bot_mul_coe_of_pos hy, sign_coe, sign_pos hy, mul_one] },
case bot_neg : y hy { simp_rw [bot_mul_coe_of_neg hy, sign_coe, sign_neg hy, sign_top, sign_bot,
neg_one_mul, neg_neg] },
end
lemma sign_mul_abs (x : ereal) :
(sign x * x.abs : ereal) = x :=
begin
induction x using ereal.rec,
{ simp },
{ rcases lt_trichotomy 0 x with hx | rfl | hx,
{ simp [sign_pos hx, abs_of_pos hx] },
{ simp },
{ simp [sign_neg hx, abs_of_neg hx] } },
{ simp }
end
lemma sign_eq_and_abs_eq_iff_eq {x y : ereal} :
(x.abs = y.abs ∧ sign x = sign y) ↔ x = y :=
begin
split,
{ rintros ⟨habs, hsign⟩, rw [← x.sign_mul_abs, ← y.sign_mul_abs, habs, hsign] },
{ rintros rfl, simp only [eq_self_iff_true, and_self] }
end
lemma le_iff_sign {x y : ereal} :
x ≤ y ↔ sign x < sign y ∨
sign x = sign_type.neg ∧ sign y = sign_type.neg ∧ y.abs ≤ x.abs ∨
sign x = sign_type.zero ∧ sign y = sign_type.zero ∨
sign x = sign_type.pos ∧ sign y = sign_type.pos ∧ x.abs ≤ y.abs :=
begin
split,
{ intro h,
rcases (sign.monotone h).lt_or_eq with hs | hs,
{ exact or.inl hs },
{ rw [← x.sign_mul_abs, ← y.sign_mul_abs] at h,
cases sign y; rw [hs] at *,
{ simp },
{ simp at ⊢ h, exact or.inl h },
{ simpa using h, }, }, },
{ rintros (h | h | h | h), { exact (sign.monotone.reflect_lt h).le, },
all_goals { rw [← x.sign_mul_abs, ← y.sign_mul_abs], simp [h] } }
end
instance : comm_monoid_with_zero ereal :=
{ mul_assoc := λ x y z, begin
rw [← sign_eq_and_abs_eq_iff_eq],
simp only [mul_assoc, abs_mul, eq_self_iff_true, sign_mul, and_self],
end,
mul_comm := ereal.mul_comm,
..ereal.has_mul, ..ereal.has_one, ..ereal.has_zero, ..ereal.mul_zero_one_class }
instance : pos_mul_mono ereal :=
pos_mul_mono_iff_covariant_pos.2 ⟨begin
rintros ⟨x, x0⟩ a b h, dsimp,
rcases le_iff_sign.mp h with h | h | h | h,
{ rw [le_iff_sign], left, simp [sign_pos x0, h] },
all_goals { rw [← x.sign_mul_abs, ← a.sign_mul_abs, ← b.sign_mul_abs, sign_pos x0],
simp only [h], dsimp,
simp only [neg_mul, mul_neg, ereal.neg_le_neg_iff, one_mul, le_refl, zero_mul, mul_zero] },
all_goals { norm_cast, exact mul_le_mul_left' h.2.2 _, },
end⟩
instance : mul_pos_mono ereal := pos_mul_mono_iff_mul_pos_mono.1 ereal.pos_mul_mono
instance : pos_mul_reflect_lt ereal := pos_mul_mono.to_pos_mul_reflect_lt
instance : mul_pos_reflect_lt ereal := mul_pos_mono.to_mul_pos_reflect_lt
@[simp, norm_cast] lemma coe_pow (x : ℝ) (n : ℕ) : (↑(x ^ n) : ereal) = x ^ n :=
map_pow (⟨coe, coe_one, coe_mul⟩ : ℝ →* ereal) _ _
@[simp, norm_cast] lemma coe_ennreal_pow (x : ℝ≥0∞) (n : ℕ) : (↑(x ^ n) : ereal) = x ^ n :=
map_pow (⟨coe, coe_ennreal_one, coe_ennreal_mul⟩ : ℝ≥0∞ →* ereal) _ _
end ereal
namespace tactic
open positivity
private lemma ereal_coe_ne_zero {r : ℝ} : r ≠ 0 → (r : ereal) ≠ 0 := ereal.coe_ne_zero.2
private lemma ereal_coe_nonneg {r : ℝ} : 0 ≤ r → 0 ≤ (r : ereal) := ereal.coe_nonneg.2
private lemma ereal_coe_pos {r : ℝ} : 0 < r → 0 < (r : ereal) := ereal.coe_pos.2
private lemma ereal_coe_ennreal_pos {r : ℝ≥0∞} : 0 < r → 0 < (r : ereal) := ereal.coe_ennreal_pos.2
/-- Extension for the `positivity` tactic: cast from `ℝ` to `ereal`. -/
@[positivity]
meta def positivity_coe_real_ereal : expr → tactic strictness
| `(@coe _ _ %%inst %%a) := do
unify inst `(@coe_to_lift _ _ $ @coe_base _ _ ereal.has_coe),
strictness_a ← core a,
match strictness_a with
| positive p := positive <$> mk_app ``ereal_coe_pos [p]
| nonnegative p := nonnegative <$> mk_mapp ``ereal_coe_nonneg [a, p]
| nonzero p := nonzero <$> mk_mapp ``ereal_coe_ne_zero [a, p]
end
| e := pp e >>= fail ∘ format.bracket "The expression "
" is not of the form `(r : ereal)` for `r : ℝ`"
/-- Extension for the `positivity` tactic: cast from `ℝ≥0∞` to `ereal`. -/
@[positivity]
meta def positivity_coe_ennreal_ereal : expr → tactic strictness
| `(@coe _ _ %%inst %%a) := do
unify inst `(@coe_to_lift _ _ $ @coe_base _ _ ereal.has_coe_ennreal),
strictness_a ← core a,
match strictness_a with
| positive p := positive <$> mk_app ``ereal_coe_ennreal_pos [p]
| _ := nonnegative <$> mk_mapp `ereal.coe_ennreal_nonneg [a]
end
| e := pp e >>= fail ∘ format.bracket "The expression "
" is not of the form `(r : ereal)` for `r : ℝ≥0∞`"
end tactic
|
81844f2c27bc0a47604952d32495206c266ee6f2
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/library/init/meta/constructor_tactic.lean
|
28d07ab5944b052220c6ac478c5c0762754c70bd
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 3,281
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.meta.tactic init.function
namespace tactic
/-- Return target after instantiating metavars and whnf -/
private meta def target' : tactic expr :=
target >>= instantiate_mvars >>= whnf
meta def get_constructors_for (e : expr) : tactic (list name) :=
do env ← get_env,
I ← return e.extract_opt_auto_param.get_app_fn.const_name,
when (¬env.is_inductive I) (fail "constructor tactic failed, target is not an inductive datatype"),
return $ env.constructors_of I
private meta def try_constructors (cfg : apply_cfg): list name → tactic (list (name × expr))
| [] := fail "constructor tactic failed, none of the constructors is applicable"
| (c::cs) := (mk_const c >>= λ e, apply e cfg) <|> try_constructors cs
meta def constructor (cfg : apply_cfg := {}): tactic (list (name × expr)) :=
target' >>= get_constructors_for >>= try_constructors cfg
meta def econstructor : tactic (list (name × expr)) :=
constructor {new_goals := new_goals.non_dep_only}
meta def fconstructor : tactic (list (name × expr)) :=
constructor {new_goals := new_goals.all}
meta def left : tactic (list (name × expr)) :=
do tgt ← target',
[c₁, c₂] ← get_constructors_for tgt | fail "left tactic failed, target is not an inductive datatype with two constructors",
mk_const c₁ >>= apply
meta def right : tactic (list (name × expr)) :=
do tgt ← target',
[c₁, c₂] ← get_constructors_for tgt | fail "left tactic failed, target is not an inductive datatype with two constructors",
mk_const c₂ >>= apply
meta def constructor_idx (idx : nat) : tactic (list (name × expr)) :=
do cs ← target' >>= get_constructors_for,
some c ← return $ cs.nth (idx - 1) | fail "constructor_idx tactic failed, target is an inductive datatype, but it does not have sufficient constructors",
mk_const c >>= apply
meta def split : tactic (list (name × expr)) :=
do [c] ← target' >>= get_constructors_for | fail "split tactic failed, target is not an inductive datatype with only one constructor",
mk_const c >>= apply
open expr
private meta def apply_num_metavars : expr → expr → nat → tactic expr
| f ftype 0 := return f
| f ftype (n+1) := do
pi m bi d b ← whnf ftype,
a ← mk_meta_var d,
new_f ← return $ f a,
new_ftype ← return $ b.instantiate_var a,
apply_num_metavars new_f new_ftype n
meta def existsi (e : expr) : tactic unit :=
do [c] ← target' >>= get_constructors_for | fail "existsi tactic failed, target is not an inductive datatype with only one constructor",
fn ← mk_const c,
fn_type ← infer_type fn,
n ← get_arity fn,
when (n < 2) (fail "existsi tactic failed, constructor must have at least two arguments"),
t ← apply_num_metavars fn fn_type (n - 2),
eapply (app t e),
t_type ← infer_type t >>= whnf,
e_type ← infer_type e,
(guard t_type.is_pi <|> fail "existsi tactic failed, failed to infer type"),
(unify t_type.binding_domain e_type <|> fail "existsi tactic failed, type mismatch between given term witness and expected type")
end tactic
|
669b99eb00a266a389ad6f4a680d10880218c9c4
|
86ee6b815fda4c9a5aa42e17b61336a913552e60
|
/src/tactics/equality.lean
|
4a8e54f125312ed7d63c0e87073ea2ff5438a38a
|
[
"Apache-2.0"
] |
permissive
|
fgdorais/lean-groupoids
|
6487f6d84427a757708fd4e795038ab159cc4f2c
|
54d1582f8d6ae642fc818e7672ac1c49fe7733e5
|
refs/heads/master
| 1,587,778,056,386
| 1,551,055,383,000
| 1,551,055,383,000
| 172,408,995
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,249
|
lean
|
/-
Copyright © 2019 François G. Dorais. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
-/
import .groupoids.paths
namespace tactic
meta def match_ne' : expr → tactic (expr × expr)
| `(%%a ≠ %%b) := return (a,b)
| `(¬ %%a = %%b) := return (a,b)
| _ := failed
meta def eq_groupoid : groupoid (λ x y : expr, tactic expr) :=
{ id := mk_eq_refl
, inv := λ _ _ g, g >>= mk_eq_symm
, comp := λ _ _ _ g h, g >>= λ g, h >>= λ h, mk_eq_trans g h
}
meta def eq_state := path_state eq_groupoid
meta def eq_gather : list expr → tactic eq_state
| [] := return []
| (e :: es) :=
do {
`(%%a = %%b) ← infer_type e,
eq_gather es >>= λ ps, return $ path_state.intro (path.mk eq_groupoid a b (return e)) ps
} <|> eq_gather es
meta def eq_find (eqs : eq_state) : expr → expr → tactic expr :=
λ a b, eqs.find a b >>= λ e, e
meta def eq_solve (eqs : eq_state) : tactic unit :=
do {
`(%%a = %%b) ← target,
eq_find eqs a b >>= exact
}
meta def eq_rewrite : eq_state → tactic unit
| [] := skip
| (p :: ps) := repeat (p.map >>= λ e, rewrite_target e {symm:=tt}) >> eq_rewrite ps
meta def eq_contra (eqs : eq_state) : list expr → tactic unit
| [] := failed
| (h :: hs) :=
do {
(a,b) ← infer_type h >>= match_ne',
e ← eq_find eqs a b,
to_expr ``(absurd %%e %%h) >>= exact
} <|> eq_contra hs
meta def eq_path_to_string : path eq_groupoid → tactic string
| ⟨_,a,b,e⟩ := e >>= λ e, return $ to_string a ++ " = " ++ to_string b ++ " := " ++ to_string e
meta def eq_state_to_string : eq_state → tactic string
| [] := return ""
| (p :: ps) := eq_path_to_string p >>= λ s, eq_state_to_string ps >>= λ t, return $ s ++ "; " ++ t
meta def eq_trace (eqs : eq_state) : tactic unit :=
eq_state_to_string eqs >>= trace
meta def interactive.eq_trace : tactic unit :=
local_context >>= eq_gather >>= eq_trace
meta def interactive.eq_solve : tactic unit :=
local_context >>= eq_gather >>= eq_solve
meta def interactive.eq_rewrite : tactic unit :=
local_context >>= eq_gather >>= eq_rewrite
meta def interactive.eq_contradiction : tactic unit :=
do {
by_contradiction,
ctx ← local_context,
eqs ← eq_gather ctx,
eq_contra eqs ctx
}
end tactic
|
a4da74f1a0f1eede3cefb28b790058c1c2a9a97f
|
5bf112cf7101c6c6303dc3fd0b3179c860e61e56
|
/lean/background/util.lean
|
ccbbc63a0aea1424b47b9fd770f2314b381bd40e
|
[
"Apache-2.0"
] |
permissive
|
fredfeng/formal-encoding
|
7ab645f49a553dfad2af03fcb4289e40fc679759
|
024efcf58672ac6b817caa10dfe8cd9708b07f1b
|
refs/heads/master
| 1,597,236,551,123
| 1,568,832,149,000
| 1,568,832,149,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,254
|
lean
|
axiom SKIP {X : Type} : X
axiom SORRY {P : Prop} : P
namespace Nat
def fact : Nat -> Nat
| 0 => 1
| 1 => 1
| n+1 => (n+1) * fact n
def choose (n : Nat) (k : Fin n) : Nat :=
n.fact / (k.val.fact * (n-k.val).fact)
end Nat
namespace Fin
def cadd {n : Nat} {k₁ k₂ : Fin n} : Fin n :=
⟨(k₁.val + k₂.val) % n, SORRY⟩
notation `⊕` := cadd
end Fin
namespace List
def rangeFinAux (n : Nat) : ∀ (k : Nat), k ≤ n → List (Fin n) → List (Fin n)
| 0, H, ns => ns
| k+1, H, ns => let H₁ : k < n := H;
let H₂ : k ≤ n := SORRY;
rangeFinAux k H₂ (⟨k, H₁⟩ :: ns)
def rangeFin (n : Nat) : List (Fin n) :=
rangeFinAux n n (Nat.leRefl n) []
def range1 (n : Nat) : List Nat := List.tail (List.range $ n+1)
def sublists {X : Type} : Nat -> List X -> List (List X)
| 0, xs => [[]]
| k+1, [] => []
| k+1, (x::xs) => (sublists k xs).map (λ ys => x :: ys) ++ sublists (k+1) xs
def sum {X : Type} [HasZero X] [HasAdd X] (xs : List X) : X := xs.foldl HasAdd.add 0
def prod {X : Type} [HasOne X] [HasMul X] (xs : List X) : X := xs.foldl HasMul.mul 1
def max {X : Type} (lt : X -> X -> Bool) (x₀ : X) (xs : List X) := xs.foldl (λ xₘ x => if lt xₘ x then x else xₘ) x₀
end List
|
1a7611f775f8dd4fa2f7d3fed42dd0585a2f6843
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/order/category/omega_complete_partial_order.lean
|
65d74186c9172b46ea0e6090c17f30d87fc2de7d
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,223
|
lean
|
/-
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import order.omega_complete_partial_order
import category_theory.limits.shapes.products
import category_theory.limits.shapes.equalizers
import category_theory.limits.constructions.limits_of_products_and_equalizers
import category_theory.concrete_category.bundled_hom
/-!
# Category of types with a omega complete partial order
In this file, we bundle the class `omega_complete_partial_order` into a
concrete category and prove that continuous functions also form
a `omega_complete_partial_order`.
## Main definitions
* `ωCPO`
* an instance of `category` and `concrete_category`
-/
open category_theory
universes u v
/-- The category of types with a omega complete partial order. -/
def ωCPO : Type (u+1) := bundled omega_complete_partial_order
namespace ωCPO
open omega_complete_partial_order
instance : bundled_hom @continuous_hom :=
{ to_fun := @continuous_hom.simps.apply,
id := @continuous_hom.id,
comp := @continuous_hom.comp,
hom_ext := @continuous_hom.coe_inj }
attribute [derive [large_category, concrete_category]] ωCPO
instance : has_coe_to_sort ωCPO Type* := bundled.has_coe_to_sort
/-- Construct a bundled ωCPO from the underlying type and typeclass. -/
def of (α : Type*) [omega_complete_partial_order α] : ωCPO := bundled.of α
@[simp] lemma coe_of (α : Type*) [omega_complete_partial_order α] : ↥(of α) = α := rfl
instance : inhabited ωCPO := ⟨of punit⟩
instance (α : ωCPO) : omega_complete_partial_order α := α.str
section
open category_theory.limits
namespace has_products
/-- The pi-type gives a cone for a product. -/
def product {J : Type v} (f : J → ωCPO.{v}) : fan f :=
fan.mk (of (Π j, f j)) (λ j, continuous_hom.of_mono (pi.eval_order_hom j) (λ c, rfl))
/-- The pi-type is a limit cone for the product. -/
def is_product (J : Type v) (f : J → ωCPO) : is_limit (product f) :=
{ lift := λ s,
⟨⟨λ t j, s.π.app ⟨j⟩ t, λ x y h j, (s.π.app ⟨j⟩).monotone h⟩,
λ x, funext (λ j, (s.π.app ⟨j⟩).continuous x)⟩,
uniq' := λ s m w,
begin
ext t j,
change m t j = s.π.app ⟨j⟩ t,
rw ← w ⟨j⟩,
refl,
end,
fac' := λ s j, by { cases j, tidy, } }.
instance (J : Type v) (f : J → ωCPO.{v}) : has_product f :=
has_limit.mk ⟨_, is_product _ f⟩
end has_products
instance omega_complete_partial_order_equalizer
{α β : Type*} [omega_complete_partial_order α] [omega_complete_partial_order β]
(f g : α →𝒄 β) : omega_complete_partial_order {a : α // f a = g a} :=
omega_complete_partial_order.subtype _ $ λ c hc,
begin
rw [f.continuous, g.continuous],
congr' 1,
ext,
apply hc _ ⟨_, rfl⟩,
end
namespace has_equalizers
/-- The equalizer inclusion function as a `continuous_hom`. -/
def equalizer_ι {α β : Type*} [omega_complete_partial_order α] [omega_complete_partial_order β]
(f g : α →𝒄 β) :
{a : α // f a = g a} →𝒄 α :=
continuous_hom.of_mono (order_hom.subtype.val _) (λ c, rfl)
/-- A construction of the equalizer fork. -/
def equalizer {X Y : ωCPO.{v}} (f g : X ⟶ Y) :
fork f g :=
@fork.of_ι _ _ _ _ _ _ (ωCPO.of {a // f a = g a}) (equalizer_ι f g)
(continuous_hom.ext _ _ (λ x, x.2))
/-- The equalizer fork is a limit. -/
def is_equalizer {X Y : ωCPO.{v}} (f g : X ⟶ Y) : is_limit (equalizer f g) :=
fork.is_limit.mk' _ $ λ s,
⟨{ to_fun := λ x, ⟨s.ι x, by apply continuous_hom.congr_fun s.condition⟩,
monotone' := λ x y h, s.ι.monotone h,
cont := λ x, subtype.ext (s.ι.continuous x) },
by { ext, refl },
λ m hm,
begin
ext,
apply continuous_hom.congr_fun hm,
end⟩
end has_equalizers
instance : has_products.{v} ωCPO.{v} :=
λ J, { has_limit := λ F, has_limit_of_iso discrete.nat_iso_functor.symm }
instance {X Y : ωCPO.{v}} (f g : X ⟶ Y) : has_limit (parallel_pair f g) :=
has_limit.mk ⟨_, has_equalizers.is_equalizer f g⟩
instance : has_equalizers ωCPO.{v} := has_equalizers_of_has_limit_parallel_pair _
instance : has_limits ωCPO.{v} := has_limits_of_has_equalizers_and_products
end
end ωCPO
|
112dee5d8a80bb860df773eef1a7e98c9949d0d7
|
ee8cdbabf07f77e7be63a449b8483ce308d37218
|
/lean/src/test/amc12-2000-p6.lean
|
1e18df28e574630ac6df7d43b0ff013ca961943e
|
[
"MIT",
"Apache-2.0"
] |
permissive
|
zeta1999/miniF2F
|
6d66c75d1c18152e224d07d5eed57624f731d4b7
|
c1ba9629559c5273c92ec226894baa0c1ce27861
|
refs/heads/main
| 1,681,897,460,642
| 1,620,646,361,000
| 1,620,646,361,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 333
|
lean
|
/-
Copyright (c) 2021 OpenAI. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kunhao Zheng
-/
import data.nat.prime
example (p q : ℕ) (h₀ : nat.prime p ∧ nat.prime q) (h₁ : 4 ≤ p ∧ p ≤ 18) (h₂ : 4 ≤ q ∧ q ≤ 18) : p * q - ( p + q ) ≠ 194 :=
begin
sorry
end
|
cadd55482c0359d8c91dd0a0875d8f35b543d605
|
8d65764a9e5f0923a67fc435eb1a5a1d02fd80e3
|
/src/algebra/module/submodule_lattice.lean
|
5701c0062d2ab7bcff285f02e200bbbe53dc677a
|
[
"Apache-2.0"
] |
permissive
|
troyjlee/mathlib
|
e18d4b8026e32062ab9e89bc3b003a5d1cfec3f5
|
45e7eb8447555247246e3fe91c87066506c14875
|
refs/heads/master
| 1,689,248,035,046
| 1,629,470,528,000
| 1,629,470,528,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,174
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov
-/
import algebra.module.submodule
import algebra.punit_instances
/-!
# The lattice structure on `submodule`s
This file defines the lattice structure on submodules, `submodule.complete_lattice`, with `⊥`
defined as `{0}` and `⊓` defined as intersection of the underlying carrier.
If `p` and `q` are submodules of a module, `p ≤ q` means that `p ⊆ q`.
Many results about operations on this lattice structure are defined in `linear_algebra/basic.lean`,
most notably those which use `span`.
## Implementation notes
This structure should match the `add_submonoid.complete_lattice` structure, and we should try
to unify the APIs where possible.
-/
variables {R S M : Type*}
section add_comm_monoid
variables [semiring R] [semiring S] [add_comm_monoid M] [module R M] [module S M]
variables [has_scalar S R] [is_scalar_tower S R M]
variables {p q : submodule R M}
namespace submodule
/-- The set `{0}` is the bottom element of the lattice of submodules. -/
instance : has_bot (submodule R M) :=
⟨{ carrier := {0}, smul_mem' := by simp { contextual := tt }, .. (⊥ : add_submonoid M)}⟩
instance inhabited' : inhabited (submodule R M) := ⟨⊥⟩
@[simp] lemma bot_coe : ((⊥ : submodule R M) : set M) = {0} := rfl
@[simp] lemma bot_to_add_submonoid : (⊥ : submodule R M).to_add_submonoid = ⊥ := rfl
section
variables (R)
@[simp] lemma restrict_scalars_bot : restrict_scalars S (⊥ : submodule R M) = ⊥ := rfl
@[simp] lemma mem_bot {x : M} : x ∈ (⊥ : submodule R M) ↔ x = 0 := set.mem_singleton_iff
end
instance unique_bot : unique (⊥ : submodule R M) :=
⟨infer_instance, λ x, subtype.ext $ (mem_bot R).1 x.mem⟩
lemma nonzero_mem_of_bot_lt {I : submodule R M} (bot_lt : ⊥ < I) : ∃ a : I, a ≠ 0 :=
begin
have h := (set_like.lt_iff_le_and_exists.1 bot_lt).2,
tidy,
end
instance : order_bot (submodule R M) :=
{ bot := ⊥,
bot_le := λ p x, by simp {contextual := tt},
..set_like.partial_order }
protected lemma eq_bot_iff (p : submodule R M) : p = ⊥ ↔ ∀ x ∈ p, x = (0 : M) :=
⟨ λ h, h.symm ▸ λ x hx, (mem_bot R).mp hx,
λ h, eq_bot_iff.mpr (λ x hx, (mem_bot R).mpr (h x hx)) ⟩
@[ext] protected lemma bot_ext (x y : (⊥ : submodule R M)) : x = y :=
begin
rcases x with ⟨x, xm⟩, rcases y with ⟨y, ym⟩, congr,
rw (submodule.eq_bot_iff _).mp rfl x xm,
rw (submodule.eq_bot_iff _).mp rfl y ym,
end
protected lemma ne_bot_iff (p : submodule R M) : p ≠ ⊥ ↔ ∃ x ∈ p, x ≠ (0 : M) :=
by { haveI := classical.prop_decidable, simp_rw [ne.def, p.eq_bot_iff, not_forall] }
/-- The bottom submodule is linearly equivalent to punit as an `R`-module. -/
@[simps] def bot_equiv_punit : (⊥ : submodule R M) ≃ₗ[R] punit :=
{ to_fun := λ x, punit.star,
inv_fun := λ x, 0,
map_add' := by { intros, ext, },
map_smul' := by { intros, ext, },
left_inv := by { intro x, ext, },
right_inv := by { intro x, ext, }, }
/-- The universal set is the top element of the lattice of submodules. -/
instance : has_top (submodule R M) :=
⟨{ carrier := set.univ, smul_mem' := λ _ _ _, trivial, .. (⊤ : add_submonoid M)}⟩
@[simp] lemma top_coe : ((⊤ : submodule R M) : set M) = set.univ := rfl
@[simp] lemma top_to_add_submonoid : (⊤ : submodule R M).to_add_submonoid = ⊤ := rfl
@[simp] lemma mem_top {x : M} : x ∈ (⊤ : submodule R M) := trivial
section
variables (R)
@[simp] lemma restrict_scalars_top : restrict_scalars S (⊤ : submodule R M) = ⊤ := rfl
end
instance : order_top (submodule R M) :=
{ top := ⊤,
le_top := λ p x _, trivial,
..set_like.partial_order }
lemma eq_top_iff' {p : submodule R M} : p = ⊤ ↔ ∀ x, x ∈ p :=
eq_top_iff.trans ⟨λ h x, h trivial, λ h x _, h x⟩
/-- The top submodule is linearly equivalent to the module. -/
@[simps] def top_equiv_self : (⊤ : submodule R M) ≃ₗ[R] M :=
{ to_fun := λ x, x,
inv_fun := λ x, ⟨x, by simp⟩,
map_add' := by { intros, refl, },
map_smul' := by { intros, refl, },
left_inv := by { intro x, ext, refl, },
right_inv := by { intro x, refl, }, }
instance : has_Inf (submodule R M) :=
⟨λ S, {
carrier := ⋂ s ∈ S, (s : set M),
zero_mem' := by simp,
add_mem' := by simp [add_mem] {contextual := tt},
smul_mem' := by simp [smul_mem] {contextual := tt} }⟩
private lemma Inf_le' {S : set (submodule R M)} {p} : p ∈ S → Inf S ≤ p :=
set.bInter_subset_of_mem
private lemma le_Inf' {S : set (submodule R M)} {p} : (∀q ∈ S, p ≤ q) → p ≤ Inf S :=
set.subset_bInter
instance : has_inf (submodule R M) :=
⟨λ p q, {
carrier := p ∩ q,
zero_mem' := by simp,
add_mem' := by simp [add_mem] {contextual := tt},
smul_mem' := by simp [smul_mem] {contextual := tt} }⟩
instance : complete_lattice (submodule R M) :=
{ sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x},
le_sup_left := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, ha,
le_sup_right := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, hb,
sup_le := λ a b c h₁ h₂, Inf_le' ⟨h₁, h₂⟩,
inf := (⊓),
le_inf := λ a b c, set.subset_inter,
inf_le_left := λ a b, set.inter_subset_left _ _,
inf_le_right := λ a b, set.inter_subset_right _ _,
Sup := λtt, Inf {t | ∀t'∈tt, t' ≤ t},
le_Sup := λ s p hs, le_Inf' $ λ q hq, hq _ hs,
Sup_le := λ s p hs, Inf_le' hs,
Inf := Inf,
le_Inf := λ s a, le_Inf',
Inf_le := λ s a, Inf_le',
..submodule.order_top,
..submodule.order_bot }
@[simp] theorem inf_coe : (p ⊓ q : set M) = p ∩ q := rfl
@[simp] theorem mem_inf {p q : submodule R M} {x : M} :
x ∈ p ⊓ q ↔ x ∈ p ∧ x ∈ q := iff.rfl
@[simp] theorem Inf_coe (P : set (submodule R M)) : (↑(Inf P) : set M) = ⋂ p ∈ P, ↑p := rfl
@[simp] theorem infi_coe {ι} (p : ι → submodule R M) :
(↑⨅ i, p i : set M) = ⋂ i, ↑(p i) :=
by rw [infi, Inf_coe]; ext a; simp; exact
⟨λ h i, h _ i rfl, λ h i x e, e ▸ h _⟩
@[simp] lemma mem_Inf {S : set (submodule R M)} {x : M} : x ∈ Inf S ↔ ∀ p ∈ S, x ∈ p :=
set.mem_bInter_iff
@[simp] theorem mem_infi {ι} (p : ι → submodule R M) {x} :
x ∈ (⨅ i, p i) ↔ ∀ i, x ∈ p i :=
by rw [← set_like.mem_coe, infi_coe, set.mem_Inter]; refl
lemma mem_sup_left {S T : submodule R M} : ∀ {x : M}, x ∈ S → x ∈ S ⊔ T :=
show S ≤ S ⊔ T, from le_sup_left
lemma mem_sup_right {S T : submodule R M} : ∀ {x : M}, x ∈ T → x ∈ S ⊔ T :=
show T ≤ S ⊔ T, from le_sup_right
lemma mem_supr_of_mem {ι : Sort*} {b : M} {p : ι → submodule R M} (i : ι) (h : b ∈ p i) :
b ∈ (⨆i, p i) :=
have p i ≤ (⨆i, p i) := le_supr p i,
@this b h
/-! Note that `submodule.mem_supr` is provided in `linear_algebra/basic.lean`. -/
lemma mem_Sup_of_mem {S : set (submodule R M)} {s : submodule R M}
(hs : s ∈ S) : ∀ {x : M}, x ∈ s → x ∈ Sup S :=
show s ≤ Sup S, from le_Sup hs
end submodule
section nat_submodule
/-- An additive submonoid is equivalent to a ℕ-submodule. -/
def add_submonoid.to_nat_submodule : add_submonoid M ≃o submodule ℕ M :=
{ to_fun := λ S,
{ smul_mem' := λ r s hs, S.nsmul_mem hs _, ..S },
inv_fun := submodule.to_add_submonoid,
left_inv := λ ⟨S, _, _⟩, rfl,
right_inv := λ ⟨S, _, _, _⟩, rfl,
map_rel_iff' := λ a b, iff.rfl }
@[simp]
lemma add_submonoid.to_nat_submodule_symm :
⇑(add_submonoid.to_nat_submodule.symm : _ ≃o add_submonoid M) = submodule.to_add_submonoid := rfl
@[simp]
lemma add_submonoid.coe_to_nat_submodule (S : add_submonoid M) :
(S.to_nat_submodule : set M) = S := rfl
@[simp]
lemma add_submonoid.to_nat_submodule_to_add_submonoid (S : add_submonoid M) :
S.to_nat_submodule.to_add_submonoid = S :=
add_submonoid.to_nat_submodule.symm_apply_apply S
@[simp]
lemma submodule.to_add_submonoid_to_nat_submodule (S : submodule ℕ M) :
S.to_add_submonoid.to_nat_submodule = S :=
add_submonoid.to_nat_submodule.apply_symm_apply S
end nat_submodule
end add_comm_monoid
|
2c6e723934a08e457a0dcf7d027a8bf6661874ff
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/algebraic_geometry/AffineScheme.lean
|
827f2d0f8852ba930573a8779d5263cd60b1ba2a
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 32,256
|
lean
|
/-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import algebraic_geometry.Gamma_Spec_adjunction
import algebraic_geometry.open_immersion.Scheme
import category_theory.limits.opposites
import ring_theory.localization.inv_submonoid
/-!
# Affine schemes
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
We define the category of `AffineScheme`s as the essential image of `Spec`.
We also define predicates about affine schemes and affine open sets.
## Main definitions
* `algebraic_geometry.AffineScheme`: The category of affine schemes.
* `algebraic_geometry.is_affine`: A scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an
isomorphism.
* `algebraic_geometry.Scheme.iso_Spec`: The canonical isomorphism `X ≅ Spec Γ(X)` for an affine
scheme.
* `algebraic_geometry.AffineScheme.equiv_CommRing`: The equivalence of categories
`AffineScheme ≌ CommRingᵒᵖ` given by `AffineScheme.Spec : CommRingᵒᵖ ⥤ AffineScheme` and
`AffineScheme.Γ : AffineSchemeᵒᵖ ⥤ CommRing`.
* `algebraic_geometry.is_affine_open`: An open subset of a scheme is affine if the open subscheme is
affine.
* `algebraic_geometry.is_affine_open.from_Spec`: The immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`.
-/
noncomputable theory
open category_theory category_theory.limits opposite topological_space
universe u
namespace algebraic_geometry
open Spec (structure_sheaf)
/-- The category of affine schemes -/
@[derive category, nolint has_nonempty_instance]
def AffineScheme := Scheme.Spec.ess_image_subcategory
/-- A Scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an isomorphism. -/
class is_affine (X : Scheme) : Prop :=
(affine : is_iso (Γ_Spec.adjunction.unit.app X))
attribute [instance] is_affine.affine
/-- The canonical isomorphism `X ≅ Spec Γ(X)` for an affine scheme. -/
def Scheme.iso_Spec (X : Scheme) [is_affine X] :
X ≅ Scheme.Spec.obj (op $ Scheme.Γ.obj $ op X) :=
as_iso (Γ_Spec.adjunction.unit.app X)
/-- Construct an affine scheme from a scheme and the information that it is affine.
Also see `AffineScheme.of` for a typclass version. -/
@[simps]
def AffineScheme.mk (X : Scheme) (h : is_affine X) : AffineScheme :=
⟨X, @@mem_ess_image_of_unit_is_iso _ _ _ _ h.1⟩
/-- Construct an affine scheme from a scheme. Also see `AffineScheme.mk` for a non-typeclass
version. -/
def AffineScheme.of (X : Scheme) [h : is_affine X] : AffineScheme :=
AffineScheme.mk X h
/-- Type check a morphism of schemes as a morphism in `AffineScheme`. -/
def AffineScheme.of_hom {X Y : Scheme} [is_affine X] [is_affine Y] (f : X ⟶ Y) :
AffineScheme.of X ⟶ AffineScheme.of Y :=
f
lemma mem_Spec_ess_image (X : Scheme) : X ∈ Scheme.Spec.ess_image ↔ is_affine X :=
⟨λ h, ⟨functor.ess_image.unit_is_iso h⟩, λ h, @@mem_ess_image_of_unit_is_iso _ _ _ X h.1⟩
instance is_affine_AffineScheme (X : AffineScheme.{u}) : is_affine X.obj :=
⟨functor.ess_image.unit_is_iso X.property⟩
instance Spec_is_affine (R : CommRingᵒᵖ) : is_affine (Scheme.Spec.obj R) :=
algebraic_geometry.is_affine_AffineScheme ⟨_, Scheme.Spec.obj_mem_ess_image R⟩
lemma is_affine_of_iso {X Y : Scheme} (f : X ⟶ Y) [is_iso f] [h : is_affine Y] :
is_affine X :=
by { rw [← mem_Spec_ess_image] at h ⊢, exact functor.ess_image.of_iso (as_iso f).symm h }
namespace AffineScheme
/-- The `Spec` functor into the category of affine schemes. -/
@[derive [full, faithful, ess_surj]]
def Spec : CommRingᵒᵖ ⥤ AffineScheme := Scheme.Spec.to_ess_image
/-- The forgetful functor `AffineScheme ⥤ Scheme`. -/
@[derive [full, faithful], simps]
def forget_to_Scheme : AffineScheme ⥤ Scheme := Scheme.Spec.ess_image_inclusion
/-- The global section functor of an affine scheme. -/
def Γ : AffineSchemeᵒᵖ ⥤ CommRing := forget_to_Scheme.op ⋙ Scheme.Γ
/-- The category of affine schemes is equivalent to the category of commutative rings. -/
def equiv_CommRing : AffineScheme ≌ CommRingᵒᵖ :=
equiv_ess_image_of_reflective.symm
instance Γ_is_equiv : is_equivalence Γ.{u} :=
begin
haveI : is_equivalence Γ.{u}.right_op.op := is_equivalence.of_equivalence equiv_CommRing.op,
exact (functor.is_equivalence_trans Γ.{u}.right_op.op (op_op_equivalence _).functor : _),
end
instance : has_colimits AffineScheme.{u} :=
begin
haveI := adjunction.has_limits_of_equivalence.{u} Γ.{u},
exactI adjunction.has_colimits_of_equivalence.{u} (op_op_equivalence AffineScheme.{u}).inverse
end
instance : has_limits AffineScheme.{u} :=
begin
haveI := adjunction.has_colimits_of_equivalence Γ.{u},
haveI : has_limits AffineScheme.{u} ᵒᵖᵒᵖ := limits.has_limits_op_of_has_colimits,
exactI adjunction.has_limits_of_equivalence (op_op_equivalence AffineScheme.{u}).inverse
end
noncomputable
instance : preserves_limits Γ.{u}.right_op :=
@@adjunction.is_equivalence_preserves_limits _ _ Γ.right_op
(is_equivalence.of_equivalence equiv_CommRing)
noncomputable
instance : preserves_limits forget_to_Scheme :=
begin
apply_with (@@preserves_limits_of_nat_iso _ _
(iso_whisker_right equiv_CommRing.unit_iso forget_to_Scheme).symm) { instances := ff },
change preserves_limits (equiv_CommRing.functor ⋙ Scheme.Spec),
apply_instance,
end
end AffineScheme
/-- An open subset of a scheme is affine if the open subscheme is affine. -/
def is_affine_open {X : Scheme} (U : opens X.carrier) : Prop :=
is_affine (X.restrict U.open_embedding)
/-- The set of affine opens as a subset of `opens X.carrier`. -/
def Scheme.affine_opens (X : Scheme) : set (opens X.carrier) :=
{ U : opens X.carrier | is_affine_open U }
lemma range_is_affine_open_of_open_immersion {X Y : Scheme} [is_affine X] (f : X ⟶ Y)
[H : is_open_immersion f] : is_affine_open f.opens_range :=
begin
refine is_affine_of_iso (is_open_immersion.iso_of_range_eq f (Y.of_restrict _) _).inv,
exact subtype.range_coe.symm,
apply_instance
end
lemma top_is_affine_open (X : Scheme) [is_affine X] : is_affine_open (⊤ : opens X.carrier) :=
begin
convert range_is_affine_open_of_open_immersion (𝟙 X),
ext1,
exact set.range_id.symm
end
instance Scheme.affine_cover_is_affine (X : Scheme) (i : X.affine_cover.J) :
is_affine (X.affine_cover.obj i) :=
algebraic_geometry.Spec_is_affine _
instance Scheme.affine_basis_cover_is_affine (X : Scheme) (i : X.affine_basis_cover.J) :
is_affine (X.affine_basis_cover.obj i) :=
algebraic_geometry.Spec_is_affine _
lemma is_basis_affine_open (X : Scheme) :
opens.is_basis X.affine_opens :=
begin
rw opens.is_basis_iff_nbhd,
rintros U x (hU : x ∈ (U : set X.carrier)),
obtain ⟨S, hS, hxS, hSU⟩ := X.affine_basis_cover_is_basis.exists_subset_of_mem_open hU U.is_open,
refine ⟨⟨S, X.affine_basis_cover_is_basis.is_open hS⟩, _, hxS, hSU⟩,
rcases hS with ⟨i, rfl⟩,
exact range_is_affine_open_of_open_immersion _,
end
/-- The open immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`. -/
def is_affine_open.from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) :
Scheme.Spec.obj (op $ X.presheaf.obj $ op U) ⟶ X :=
begin
haveI : is_affine (X.restrict U.open_embedding) := hU,
have : U.open_embedding.is_open_map.functor.obj ⊤ = U,
{ ext1, exact set.image_univ.trans subtype.range_coe },
exact Scheme.Spec.map (X.presheaf.map (eq_to_hom this.symm).op).op ≫
(X.restrict U.open_embedding).iso_Spec.inv ≫ X.of_restrict _
end
instance is_affine_open.is_open_immersion_from_Spec {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) :
is_open_immersion hU.from_Spec :=
by { delta is_affine_open.from_Spec, apply_instance }
lemma is_affine_open.from_Spec_range {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) :
set.range hU.from_Spec.1.base = (U : set X.carrier) :=
begin
delta is_affine_open.from_Spec,
erw [← category.assoc, Scheme.comp_val_base],
rw [coe_comp, set.range_comp, set.range_iff_surjective.mpr, set.image_univ],
exact subtype.range_coe,
rw ← Top.epi_iff_surjective,
apply_instance
end
lemma is_affine_open.from_Spec_image_top {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) :
hU.is_open_immersion_from_Spec.base_open.is_open_map.functor.obj ⊤ = U :=
by { ext1, exact set.image_univ.trans hU.from_Spec_range }
lemma is_affine_open.is_compact {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) :
is_compact (U : set X.carrier) :=
begin
convert @is_compact.image _ _ _ _ set.univ hU.from_Spec.1.base
prime_spectrum.compact_space.1 (by continuity),
convert hU.from_Spec_range.symm,
exact set.image_univ
end
lemma is_affine_open.image_is_open_immersion {X Y : Scheme} {U : opens X.carrier}
(hU : is_affine_open U)
(f : X ⟶ Y) [H : is_open_immersion f] : is_affine_open (f.opens_functor.obj U) :=
begin
haveI : is_affine _ := hU,
convert range_is_affine_open_of_open_immersion (X.of_restrict U.open_embedding ≫ f),
ext1,
exact set.image_eq_range _ _
end
lemma is_affine_open_iff_of_is_open_immersion {X Y : Scheme} (f : X ⟶ Y) [H : is_open_immersion f]
(U : opens X.carrier) :
is_affine_open (H.open_functor.obj U) ↔ is_affine_open U :=
begin
refine ⟨λ hU, @@is_affine_of_iso _ _ hU, λ hU, hU.image_is_open_immersion f⟩,
refine (is_open_immersion.iso_of_range_eq (X.of_restrict _ ≫ f) (Y.of_restrict _) _).hom,
{ rw [Scheme.comp_val_base, coe_comp, set.range_comp],
dsimp [opens.inclusion],
rw [subtype.range_coe, subtype.range_coe],
refl },
{ apply_instance }
end
instance Scheme.quasi_compact_of_affine (X : Scheme) [is_affine X] : compact_space X.carrier :=
⟨(top_is_affine_open X).is_compact⟩
lemma is_affine_open.from_Spec_base_preimage
{X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) :
(opens.map hU.from_Spec.val.base).obj U = ⊤ :=
begin
ext1,
change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ,
rw [← hU.from_Spec_range, ← set.image_univ],
exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj
end
lemma Scheme.Spec_map_presheaf_map_eq_to_hom {X : Scheme} {U V : opens X.carrier} (h : U = V) (W) :
(Scheme.Spec.map (X.presheaf.map (eq_to_hom h).op).op).val.c.app W =
eq_to_hom (by { cases h, induction W using opposite.rec, dsimp, simp, }) :=
begin
have : Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 _,
{ rw [X.presheaf.map_id, op_id, Scheme.Spec.map_id] },
cases h,
refine (Scheme.congr_app this _).trans _,
erw category.id_comp,
simpa [eq_to_hom_map],
end
lemma is_affine_open.Spec_Γ_identity_hom_app_from_Spec {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) :
(Spec_Γ_identity.hom.app (X.presheaf.obj $ op U)) ≫ hU.from_Spec.1.c.app (op U) =
(Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op :=
begin
haveI : is_affine _ := hU,
have e₁ :=
Spec_Γ_identity.hom.naturality (X.presheaf.map (eq_to_hom U.open_embedding_obj_top).op),
rw ← is_iso.comp_inv_eq at e₁,
have e₂ := Γ_Spec.adjunction_unit_app_app_top (X.restrict U.open_embedding),
erw ← e₂ at e₁,
simp only [functor.id_map, quiver.hom.unop_op, functor.comp_map, ← functor.map_inv, ← op_inv,
LocallyRingedSpace.Γ_map, category.assoc, functor.right_op_map, inv_eq_to_hom] at e₁,
delta is_affine_open.from_Spec Scheme.iso_Spec,
rw [Scheme.comp_val_c_app, Scheme.comp_val_c_app, ← e₁],
simp_rw category.assoc,
erw ← X.presheaf.map_comp_assoc,
rw ← op_comp,
have e₃ : U.open_embedding.is_open_map.adjunction.counit.app U ≫
eq_to_hom U.open_embedding_obj_top.symm =
U.open_embedding.is_open_map.functor.map (eq_to_hom U.inclusion_map_eq_top) :=
subsingleton.elim _ _,
have e₄ : X.presheaf.map _ ≫ _ = _ :=
(as_iso (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding)))
.inv.1.c.naturality_assoc (eq_to_hom U.inclusion_map_eq_top).op _,
erw [e₃, e₄, ← Scheme.comp_val_c_app_assoc, iso.inv_hom_id],
simp only [eq_to_hom_map, eq_to_hom_op, Scheme.Spec_map_presheaf_map_eq_to_hom],
erw [Scheme.Spec_map_presheaf_map_eq_to_hom, category.id_comp],
simpa only [eq_to_hom_trans]
end
@[elementwise]
lemma is_affine_open.from_Spec_app_eq {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) :
hU.from_Spec.1.c.app (op U) = Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) ≫
(Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op :=
by rw [← hU.Spec_Γ_identity_hom_app_from_Spec, iso.inv_hom_id_app_assoc]
lemma is_affine_open.basic_open_is_affine {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_affine_open (X.basic_open f) :=
begin
convert range_is_affine_open_of_open_immersion (Scheme.Spec.map (CommRing.of_hom
(algebra_map (X.presheaf.obj (op U)) (localization.away f))).op ≫ hU.from_Spec),
ext1,
have : hU.from_Spec.val.base '' (hU.from_Spec.val.base ⁻¹' (X.basic_open f : set X.carrier)) =
(X.basic_open f : set X.carrier),
{ rw [set.image_preimage_eq_inter_range, set.inter_eq_left_iff_subset, hU.from_Spec_range],
exact Scheme.basic_open_le _ _ },
rw [Scheme.hom.opens_range_coe, Scheme.comp_val_base, ← this, coe_comp, set.range_comp],
congr' 1,
refine (congr_arg coe $ Scheme.preimage_basic_open hU.from_Spec f).trans _,
refine eq.trans _ (prime_spectrum.localization_away_comap_range (localization.away f) f).symm,
congr' 1,
have : (opens.map hU.from_Spec.val.base).obj U = ⊤,
{ ext1,
change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ,
rw [← hU.from_Spec_range, ← set.image_univ],
exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj },
refine eq.trans _ (basic_open_eq_of_affine f),
have lm : ∀ s, (opens.map hU.from_Spec.val.base).obj U ⊓ s = s := λ s, this.symm ▸ top_inf_eq,
refine eq.trans _ (lm _),
refine eq.trans _
((Scheme.Spec.obj $ op $ X.presheaf.obj $ op U).basic_open_res _ (eq_to_hom this).op),
rw ← comp_apply,
congr' 2,
rw iso.eq_inv_comp,
erw hU.Spec_Γ_identity_hom_app_from_Spec,
end
lemma is_affine_open.map_restrict_basic_open {X : Scheme} (r : X.presheaf.obj (op ⊤))
{U : opens X.carrier} (hU : is_affine_open U) :
is_affine_open ((opens.map (X.of_restrict (X.basic_open r).open_embedding).1.base).obj U) :=
begin
apply (is_affine_open_iff_of_is_open_immersion
(X.of_restrict (X.basic_open r).open_embedding) _).mp,
delta PresheafedSpace.is_open_immersion.open_functor,
dsimp,
erw [opens.functor_obj_map_obj, opens.open_embedding_obj_top, inf_comm,
← Scheme.basic_open_res _ _ (hom_of_le le_top).op],
exact hU.basic_open_is_affine _,
end
lemma Scheme.map_prime_spectrum_basic_open_of_affine (X : Scheme) [is_affine X]
(f : Scheme.Γ.obj (op X)) :
(opens.map X.iso_Spec.hom.1.base).obj (prime_spectrum.basic_open f) = X.basic_open f :=
begin
rw ← basic_open_eq_of_affine,
transitivity (opens.map X.iso_Spec.hom.1.base).obj ((Scheme.Spec.obj
(op (Scheme.Γ.obj (op X)))).basic_open ((inv (X.iso_Spec.hom.1.c.app
(op ((opens.map (inv X.iso_Spec.hom).val.base).obj ⊤)))) ((X.presheaf.map (eq_to_hom _)) f))),
congr,
{ rw [← is_iso.inv_eq_inv, is_iso.inv_inv, is_iso.iso.inv_inv, nat_iso.app_hom],
erw ← Γ_Spec.adjunction_unit_app_app_top,
refl },
{ rw eq_to_hom_map, refl },
{ dsimp, congr },
{ refine (Scheme.preimage_basic_open _ _).trans _,
rw [is_iso.inv_hom_id_apply, Scheme.basic_open_res_eq] }
end
lemma is_basis_basic_open (X : Scheme) [is_affine X] :
opens.is_basis (set.range (X.basic_open : X.presheaf.obj (op ⊤) → opens X.carrier)) :=
begin
delta opens.is_basis,
convert prime_spectrum.is_basis_basic_opens.inducing
(Top.homeo_of_iso (Scheme.forget_to_Top.map_iso X.iso_Spec)).inducing using 1,
ext,
simp only [set.mem_image, exists_exists_eq_and],
split,
{ rintro ⟨_, ⟨x, rfl⟩, rfl⟩,
refine ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, _⟩,
exact congr_arg opens.carrier (X.map_prime_spectrum_basic_open_of_affine x) },
{ rintro ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, rfl⟩,
refine ⟨_, ⟨x, rfl⟩, _⟩,
exact congr_arg opens.carrier (X.map_prime_spectrum_basic_open_of_affine x).symm }
end
lemma is_affine_open.exists_basic_open_le {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) {V : opens X.carrier} (x : V) (h : ↑x ∈ U) :
∃ f : X.presheaf.obj (op U), X.basic_open f ≤ V ∧ ↑x ∈ X.basic_open f :=
begin
haveI : is_affine _ := hU,
obtain ⟨_, ⟨_, ⟨r, rfl⟩, rfl⟩, h₁, h₂⟩ := (is_basis_basic_open (X.restrict U.open_embedding))
.exists_subset_of_mem_open _ ((opens.map U.inclusion).obj V).is_open,
swap, exact ⟨x, h⟩,
have : U.open_embedding.is_open_map.functor.obj ((X.restrict U.open_embedding).basic_open r)
= X.basic_open (X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r),
{ refine (Scheme.image_basic_open (X.of_restrict U.open_embedding) r).trans _,
erw ← Scheme.basic_open_res_eq _ _ (eq_to_hom U.open_embedding_obj_top).op,
rw [← comp_apply, ← category_theory.functor.map_comp, ← op_comp, eq_to_hom_trans,
eq_to_hom_refl, op_id, category_theory.functor.map_id, Scheme.hom.inv_app],
erw PresheafedSpace.is_open_immersion.of_restrict_inv_app,
congr },
use X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r,
rw ← this,
exact ⟨set.image_subset_iff.mpr h₂, set.mem_image_of_mem _ h₁⟩,
exact x.prop,
end
instance {X : Scheme} {U : opens X.carrier} (f : X.presheaf.obj (op U)) :
algebra (X.presheaf.obj (op U)) (X.presheaf.obj (op $ X.basic_open f)) :=
(X.presheaf.map (hom_of_le $ RingedSpace.basic_open_le _ f : _ ⟶ U).op).to_algebra
lemma is_affine_open.opens_map_from_Spec_basic_open {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) :
(opens.map hU.from_Spec.val.base).obj (X.basic_open f) =
RingedSpace.basic_open _ (Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) f) :=
begin
erw LocallyRingedSpace.preimage_basic_open,
refine eq.trans _ (RingedSpace.basic_open_res_eq (Scheme.Spec.obj $ op $ X.presheaf.obj (op U))
.to_LocallyRingedSpace.to_RingedSpace (eq_to_hom hU.from_Spec_base_preimage).op _),
congr,
rw ← comp_apply,
congr,
erw ← hU.Spec_Γ_identity_hom_app_from_Spec,
rw iso.inv_hom_id_app_assoc,
end
/-- The canonical map `Γ(𝒪ₓ, D(f)) ⟶ Γ(Spec 𝒪ₓ(U), D(Spec_Γ_identity.inv f))`
This is an isomorphism, as witnessed by an `is_iso` instance. -/
def basic_open_sections_to_affine {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U)
(f : X.presheaf.obj (op U)) : X.presheaf.obj (op $ X.basic_open f) ⟶
(Scheme.Spec.obj $ op $ X.presheaf.obj (op U)).presheaf.obj
(op $ Scheme.basic_open _ $ Spec_Γ_identity.inv.app (X.presheaf.obj (op U)) f) :=
hU.from_Spec.1.c.app (op $ X.basic_open f) ≫ (Scheme.Spec.obj $ op $ X.presheaf.obj (op U))
.presheaf.map (eq_to_hom $ (hU.opens_map_from_Spec_basic_open f).symm).op
instance {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U)
(f : X.presheaf.obj (op U)) : is_iso (basic_open_sections_to_affine hU f) :=
begin
delta basic_open_sections_to_affine,
apply_with is_iso.comp_is_iso { instances := ff },
{ apply PresheafedSpace.is_open_immersion.is_iso_of_subset,
rw hU.from_Spec_range,
exact RingedSpace.basic_open_le _ _ },
apply_instance
end
lemma is_localization_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U)
(f : X.presheaf.obj (op U)) :
is_localization.away f (X.presheaf.obj (op $ X.basic_open f)) :=
begin
apply (is_localization.is_localization_iff_of_ring_equiv (submonoid.powers f)
(as_iso $ basic_open_sections_to_affine hU f ≫ (Scheme.Spec.obj _).presheaf.map
(eq_to_hom (basic_open_eq_of_affine _).symm).op).CommRing_iso_to_ring_equiv).mpr,
convert structure_sheaf.is_localization.to_basic_open _ f,
change _ ≫ (basic_open_sections_to_affine hU f ≫ _) = _,
delta basic_open_sections_to_affine,
erw ring_hom.algebra_map_to_algebra,
simp only [Scheme.comp_val_c_app, category.assoc],
erw hU.from_Spec.val.c.naturality_assoc,
rw hU.from_Spec_app_eq,
dsimp,
simp only [category.assoc, ← functor.map_comp, ← op_comp],
apply structure_sheaf.to_open_res,
end
instance {X : Scheme} [is_affine X] (r : X.presheaf.obj (op ⊤)) :
is_localization.away r (X.presheaf.obj (op $ X.basic_open r)) :=
is_localization_basic_open (top_is_affine_open X) r
lemma is_localization_of_eq_basic_open {X : Scheme} {U V : opens X.carrier} (i : V ⟶ U)
(hU : is_affine_open U) (r : X.presheaf.obj (op U)) (e : V = X.basic_open r) :
@@is_localization.away _ r (X.presheaf.obj (op V)) _ (X.presheaf.map i.op).to_algebra :=
by { subst e, convert is_localization_basic_open hU r using 3 }
instance Γ_restrict_algebra
{X : Scheme} {Y : Top} {f : Y ⟶ X.carrier} (hf : open_embedding f) :
algebra (Scheme.Γ.obj (op X)) (Scheme.Γ.obj (op $ X.restrict hf)) :=
(Scheme.Γ.map (X.of_restrict hf).op).to_algebra
instance Γ_restrict_is_localization (X : Scheme.{u}) [is_affine X] (r : Scheme.Γ.obj (op X)) :
is_localization.away r (Scheme.Γ.obj (op $ X.restrict (X.basic_open r).open_embedding)) :=
is_localization_of_eq_basic_open _ (top_is_affine_open X) r (opens.open_embedding_obj_top _)
lemma basic_open_basic_open_is_basic_open {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) (g : X.presheaf.obj (op $ X.basic_open f)) :
∃ f' : X.presheaf.obj (op U), X.basic_open f' = X.basic_open g :=
begin
haveI := is_localization_basic_open hU f,
obtain ⟨x, ⟨_, n, rfl⟩, rfl⟩ := is_localization.surj' (submonoid.powers f) g,
use f * x,
rw [algebra.smul_def, Scheme.basic_open_mul, Scheme.basic_open_mul],
erw Scheme.basic_open_res,
refine (inf_eq_left.mpr _).symm,
convert inf_le_left using 1,
apply Scheme.basic_open_of_is_unit,
apply submonoid.left_inv_le_is_unit _ (is_localization.to_inv_submonoid (submonoid.powers f)
(X.presheaf.obj (op $ X.basic_open f)) _).prop
end
lemma exists_basic_open_le_affine_inter {X : Scheme} {U V : opens X.carrier}
(hU : is_affine_open U) (hV : is_affine_open V) (x : X.carrier) (hx : x ∈ U ⊓ V) :
∃ (f : X.presheaf.obj $ op U) (g : X.presheaf.obj $ op V),
X.basic_open f = X.basic_open g ∧ x ∈ X.basic_open f :=
begin
obtain ⟨f, hf₁, hf₂⟩ := hU.exists_basic_open_le ⟨x, hx.2⟩ hx.1,
obtain ⟨g, hg₁, hg₂⟩ := hV.exists_basic_open_le ⟨x, hf₂⟩ hx.2,
obtain ⟨f', hf'⟩ := basic_open_basic_open_is_basic_open hU f
(X.presheaf.map (hom_of_le hf₁ : _ ⟶ V).op g),
replace hf' := (hf'.trans (RingedSpace.basic_open_res _ _ _)).trans (inf_eq_right.mpr hg₁),
exact ⟨f', g, hf', hf'.symm ▸ hg₂⟩
end
/-- The prime ideal of `𝒪ₓ(U)` corresponding to a point `x : U`. -/
noncomputable
def is_affine_open.prime_ideal_of {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (x : U) :
prime_spectrum (X.presheaf.obj $ op U) :=
((Scheme.Spec.map (X.presheaf.map (eq_to_hom $
show U.open_embedding.is_open_map.functor.obj ⊤ = U, from
opens.ext (set.image_univ.trans subtype.range_coe)).op).op).1.base
((@@Scheme.iso_Spec (X.restrict U.open_embedding) hU).hom.1.base x))
lemma is_affine_open.from_Spec_prime_ideal_of {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (x : U) :
hU.from_Spec.val.base (hU.prime_ideal_of x) = x.1 :=
begin
dsimp only [is_affine_open.from_Spec, subtype.coe_mk],
erw [← Scheme.comp_val_base_apply, ← Scheme.comp_val_base_apply],
simpa only [← functor.map_comp_assoc, ← functor.map_comp, ← op_comp, eq_to_hom_trans, op_id,
eq_to_hom_refl, category_theory.functor.map_id, category.id_comp, iso.hom_inv_id_assoc]
end
lemma is_affine_open.is_localization_stalk_aux {X : Scheme} (U : opens X.carrier)
[is_affine (X.restrict U.open_embedding)] :
(inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.c.app
(op ((opens.map U.inclusion).obj U)) =
X.presheaf.map (eq_to_hom $ by rw opens.inclusion_map_eq_top :
U.open_embedding.is_open_map.functor.obj ⊤ ⟶
(U.open_embedding.is_open_map.functor.obj ((opens.map U.inclusion).obj U))).op ≫
to_Spec_Γ (X.presheaf.obj $ op (U.open_embedding.is_open_map.functor.obj ⊤)) ≫
(Scheme.Spec.obj $ op $ X.presheaf.obj $ _).presheaf.map
(eq_to_hom (by { rw [opens.inclusion_map_eq_top], refl }) : unop _ ⟶ ⊤).op :=
begin
have e : (opens.map (inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.base).obj
((opens.map U.inclusion).obj U) = ⊤,
by { rw [opens.inclusion_map_eq_top], refl },
rw [Scheme.inv_val_c_app, is_iso.comp_inv_eq, Scheme.app_eq _ e,
Γ_Spec.adjunction_unit_app_app_top],
simp only [category.assoc, eq_to_hom_op],
erw ← functor.map_comp_assoc,
rw [eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id,
category.id_comp],
erw Spec_Γ_identity.inv_hom_id_app_assoc,
simp only [eq_to_hom_map, eq_to_hom_trans],
end
lemma is_affine_open.is_localization_stalk {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (x : U) :
is_localization.at_prime (X.presheaf.stalk x) (hU.prime_ideal_of x).as_ideal :=
begin
haveI : is_affine _ := hU,
haveI : nonempty U := ⟨x⟩,
rcases x with ⟨x, hx⟩,
let y := hU.prime_ideal_of ⟨x, hx⟩,
have : hU.from_Spec.val.base y = x := hU.from_Spec_prime_ideal_of ⟨x, hx⟩,
change is_localization y.as_ideal.prime_compl _,
clear_value y,
subst this,
apply (is_localization.is_localization_iff_of_ring_equiv _
(as_iso $ PresheafedSpace.stalk_map hU.from_Spec.1 y).CommRing_iso_to_ring_equiv).mpr,
convert structure_sheaf.is_localization.to_stalk _ _ using 1,
delta structure_sheaf.stalk_algebra,
congr' 1,
rw ring_hom.algebra_map_to_algebra,
refine (PresheafedSpace.stalk_map_germ hU.from_Spec.1 _ ⟨_, _⟩).trans _,
delta is_affine_open.from_Spec Scheme.iso_Spec structure_sheaf.to_stalk,
simp only [Scheme.comp_val_c_app, category.assoc],
dsimp only [functor.op, as_iso_inv, unop_op],
erw is_affine_open.is_localization_stalk_aux,
simp only [category.assoc],
conv_lhs { rw ← category.assoc },
erw [← X.presheaf.map_comp, Spec_Γ_naturality_assoc],
congr' 1,
simp only [← category.assoc],
transitivity _ ≫ (structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ ⟨_, _⟩,
{ refl },
convert ((structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ_res (hom_of_le le_top) ⟨_, _⟩)
using 2,
rw category.assoc,
erw nat_trans.naturality,
rw [← LocallyRingedSpace.Γ_map_op, ← LocallyRingedSpace.Γ.map_comp_assoc, ← op_comp],
erw ← Scheme.Spec.map_comp,
rw [← op_comp, ← X.presheaf.map_comp],
transitivity LocallyRingedSpace.Γ.map (quiver.hom.op $ Scheme.Spec.map
(X.presheaf.map (𝟙 (op U))).op) ≫ _,
{ congr },
simp only [category_theory.functor.map_id, op_id],
erw category_theory.functor.map_id,
rw category.id_comp,
refl
end
/-- The basic open set of a section `f` on an an affine open as an `X.affine_opens`. -/
@[simps]
def Scheme.affine_basic_open (X : Scheme) {U : X.affine_opens}
(f : X.presheaf.obj $ op U) : X.affine_opens :=
⟨X.basic_open f, U.prop.basic_open_is_affine f⟩
@[simp]
lemma is_affine_open.basic_open_from_Spec_app {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) :
@Scheme.basic_open (Scheme.Spec.obj $ op (X.presheaf.obj $ op U))
((opens.map hU.from_Spec.1.base).obj U)
(hU.from_Spec.1.c.app (op U) f) = prime_spectrum.basic_open f :=
begin
rw [← Scheme.basic_open_res_eq _ _ (eq_to_hom hU.from_Spec_base_preimage.symm).op,
basic_open_eq_of_affine', is_affine_open.from_Spec_app_eq],
congr,
rw [← comp_apply, ← comp_apply, category.assoc, ← functor.map_comp_assoc,
eq_to_hom_op, eq_to_hom_op, eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id,
category.id_comp, ← iso.app_inv, iso.inv_hom_id],
refl
end
lemma is_affine_open.from_Spec_map_basic_open {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) :
(opens.map hU.from_Spec.val.base).obj (X.basic_open f) = prime_spectrum.basic_open f :=
by simp
lemma is_affine_open.basic_open_union_eq_self_iff {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) :
(⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) = U ↔ ideal.span s = ⊤ :=
begin
transitivity (⋃ (i : s), (prime_spectrum.basic_open i.1).1) = set.univ,
transitivity hU.from_Spec.1.base ⁻¹' (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)).1 =
hU.from_Spec.1.base ⁻¹' U.1,
{ refine ⟨λ h, by rw h, _⟩,
intro h,
apply_fun set.image hU.from_Spec.1.base at h,
rw [set.image_preimage_eq_inter_range, set.image_preimage_eq_inter_range,
hU.from_Spec_range] at h,
simp only [set.inter_self, opens.carrier_eq_coe, set.inter_eq_right_iff_subset]
at h,
ext1,
refine set.subset.antisymm _ h,
simp only [set.Union_subset_iff, set_coe.forall, opens.coe_supr],
intros x hx,
exact X.basic_open_le x },
{ simp only [opens.supr_def, subtype.coe_mk, set.preimage_Union, subtype.val_eq_coe],
congr' 3,
{ ext1 x,
exact congr_arg opens.carrier (hU.from_Spec_map_basic_open _) },
{ exact congr_arg opens.carrier hU.from_Spec_base_preimage } },
{ simp only [opens.carrier_eq_coe, prime_spectrum.basic_open_eq_zero_locus_compl],
rw [← set.compl_Inter, set.compl_univ_iff, ← prime_spectrum.zero_locus_Union,
← prime_spectrum.zero_locus_empty_iff_eq_top, prime_spectrum.zero_locus_span],
simp only [set.Union_singleton_eq_range, subtype.range_val_subtype, set.set_of_mem_eq] }
end
lemma is_affine_open.self_le_basic_open_union_iff {X : Scheme} {U : opens X.carrier}
(hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) :
U ≤ (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) ↔ ideal.span s = ⊤ :=
begin
rw [← hU.basic_open_union_eq_self_iff, @comm _ eq],
refine ⟨λ h, le_antisymm h _, le_of_eq⟩,
simp only [supr_le_iff, set_coe.forall],
intros x hx,
exact X.basic_open_le x
end
/--
Let `P` be a predicate on the affine open sets of `X` satisfying
1. If `P` holds on `U`, then `P` holds on the basic open set of every section on `U`.
2. If `P` holds for a family of basic open sets covering `U`, then `P` holds for `U`.
3. There exists an affine open cover of `X` each satisfying `P`.
Then `P` holds for every affine open of `X`.
This is also known as the **Affine communication lemma** in [*The rising sea*][RisingSea]. -/
@[elab_as_eliminator]
lemma of_affine_open_cover {X : Scheme} (V : X.affine_opens) (S : set X.affine_opens)
{P : X.affine_opens → Prop}
(hP₁ : ∀ (U : X.affine_opens) (f : X.presheaf.obj $ op U.1), P U →
P (X.affine_basic_open f))
(hP₂ : ∀ (U : X.affine_opens) (s : finset (X.presheaf.obj $ op U))
(hs : ideal.span (s : set (X.presheaf.obj $ op U)) = ⊤),
(∀ (f : s), P (X.affine_basic_open f.1)) → P U)
(hS : (⋃ (i : S), i : set X.carrier) = set.univ)
(hS' : ∀ (U : S), P U) : P V :=
begin
classical,
have : ∀ (x : V), ∃ (f : X.presheaf.obj $ op V.1),
↑x ∈ (X.basic_open f) ∧ P (X.affine_basic_open f),
{ intro x,
have : ↑x ∈ (set.univ : set X.carrier) := trivial,
rw ← hS at this,
obtain ⟨W, hW⟩ := set.mem_Union.mp this,
obtain ⟨f, g, e, hf⟩ := exists_basic_open_le_affine_inter V.prop W.1.prop x ⟨x.prop, hW⟩,
refine ⟨f, hf, _⟩,
convert hP₁ _ g (hS' W) using 1,
ext1,
exact e },
choose f hf₁ hf₂ using this,
suffices : ideal.span (set.range f) = ⊤,
{ obtain ⟨t, ht₁, ht₂⟩ := (ideal.span_eq_top_iff_finite _).mp this,
apply hP₂ V t ht₂,
rintro ⟨i, hi⟩,
obtain ⟨x, rfl⟩ := ht₁ hi,
exact hf₂ x },
rw ← V.prop.self_le_basic_open_union_iff,
intros x hx,
rw [supr_range', opens.mem_supr],
exact ⟨_, hf₁ ⟨x, hx⟩⟩
end
end algebraic_geometry
|
c678d1160145cbc77737be484ae0a3a509b9646c
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/tests/lean/t6.lean
|
2729808e0a2044351354907ad49a733c4424a05e
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 343
|
lean
|
prelude definition Prop : Type.{1} := Type.{0}
section
variable {A : Type*} -- Mark A as implicit parameter
variable R : A → A → Prop
definition id (a : A) : A := a
definition refl : Prop := forall (a : A), R a a
definition symm : Prop := forall (a b : A), R a b -> R b a
end
check id.{2}
check refl.{1}
check symm.{1}
|
883a9945e5802a032425d93eb7bbb336b0936245
|
82e44445c70db0f03e30d7be725775f122d72f3e
|
/src/analysis/mean_inequalities.lean
|
4da258c008edf41b99704c5eed82dcff5a413ea5
|
[
"Apache-2.0"
] |
permissive
|
stjordanis/mathlib
|
51e286d19140e3788ef2c470bc7b953e4991f0c9
|
2568d41bca08f5d6bf39d915434c8447e21f42ee
|
refs/heads/master
| 1,631,748,053,501
| 1,627,938,886,000
| 1,627,938,886,000
| 228,728,358
| 0
| 0
|
Apache-2.0
| 1,576,630,588,000
| 1,576,630,587,000
| null |
UTF-8
|
Lean
| false
| false
| 33,112
|
lean
|
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne
-/
import analysis.convex.specific_functions
import data.real.conjugate_exponents
/-!
# Mean value inequalities
In this file we prove several inequalities for finite sums, including AM-GM inequality,
Young's inequality, Hölder inequality, and Minkowski inequality. Versions for integrals of some of
these inequalities are available in `measure_theory.mean_inequalities`.
## Main theorems
### AM-GM inequality:
The inequality says that the geometric mean of a tuple of non-negative numbers is less than or equal
to their arithmetic mean. We prove the weighted version of this inequality: if $w$ and $z$
are two non-negative vectors and $\sum_{i\in s} w_i=1$, then
$$
\prod_{i\in s} z_i^{w_i} ≤ \sum_{i\in s} w_iz_i.
$$
The classical version is a special case of this inequality for $w_i=\frac{1}{n}$.
We prove a few versions of this inequality. Each of the following lemmas comes in two versions:
a version for real-valued non-negative functions is in the `real` namespace, and a version for
`nnreal`-valued functions is in the `nnreal` namespace.
- `geom_mean_le_arith_mean_weighted` : weighted version for functions on `finset`s;
- `geom_mean_le_arith_mean2_weighted` : weighted version for two numbers;
- `geom_mean_le_arith_mean3_weighted` : weighted version for three numbers;
- `geom_mean_le_arith_mean4_weighted` : weighted version for four numbers.
### Generalized mean inequality
The inequality says that for two non-negative vectors $w$ and $z$ with $\sum_{i\in s} w_i=1$
and $p ≤ q$ we have
$$
\sqrt[p]{\sum_{i\in s} w_i z_i^p} ≤ \sqrt[q]{\sum_{i\in s} w_i z_i^q}.
$$
Currently we only prove this inequality for $p=1$. As in the rest of `mathlib`, we provide
different theorems for natural exponents (`pow_arith_mean_le_arith_mean_pow`), integer exponents
(`fpow_arith_mean_le_arith_mean_fpow`), and real exponents (`rpow_arith_mean_le_arith_mean_rpow` and
`arith_mean_le_rpow_mean`). In the first two cases we prove
$$
\left(\sum_{i\in s} w_i z_i\right)^n ≤ \sum_{i\in s} w_i z_i^n
$$
in order to avoid using real exponents. For real exponents we prove both this and standard versions.
### Young's inequality
Young's inequality says that for non-negative numbers `a`, `b`, `p`, `q` such that
$\frac{1}{p}+\frac{1}{q}=1$ we have
$$
ab ≤ \frac{a^p}{p} + \frac{b^q}{q}.
$$
This inequality is a special case of the AM-GM inequality. It can be used to prove Hölder's
inequality (see below) but we use a different proof.
### Hölder's inequality
The inequality says that for two conjugate exponents `p` and `q` (i.e., for two positive numbers
such that $\frac{1}{p}+\frac{1}{q}=1$) and any two non-negative vectors their inner product is
less than or equal to the product of the $L_p$ norm of the first vector and the $L_q$ norm of the
second vector:
$$
\sum_{i\in s} a_ib_i ≤ \sqrt[p]{\sum_{i\in s} a_i^p}\sqrt[q]{\sum_{i\in s} b_i^q}.
$$
We give versions of this result in `ℝ`, `ℝ≥0` and `ℝ≥0∞`.
There are at least two short proofs of this inequality. In one proof we prenormalize both vectors,
then apply Young's inequality to each $a_ib_i$. We use a different proof deducing this inequality
from the generalized mean inequality for well-chosen vectors and weights.
### Minkowski's inequality
The inequality says that for `p ≥ 1` the function
$$
\|a\|_p=\sqrt[p]{\sum_{i\in s} a_i^p}
$$
satisfies the triangle inequality $\|a+b\|_p\le \|a\|_p+\|b\|_p$.
We give versions of this result in `real`, `ℝ≥0` and `ℝ≥0∞`.
We deduce this inequality from Hölder's inequality. Namely, Hölder inequality implies that $\|a\|_p$
is the maximum of the inner product $\sum_{i\in s}a_ib_i$ over `b` such that $\|b\|_q\le 1$. Now
Minkowski's inequality follows from the fact that the maximum value of the sum of two functions is
less than or equal to the sum of the maximum values of the summands.
## TODO
- each inequality `A ≤ B` should come with a theorem `A = B ↔ _`; one of the ways to prove them
is to define `strict_convex_on` functions.
- generalized mean inequality with any `p ≤ q`, including negative numbers;
- prove that the power mean tends to the geometric mean as the exponent tends to zero.
-/
universes u v
open finset
open_locale classical big_operators nnreal ennreal
noncomputable theory
variables {ι : Type u} (s : finset ι)
namespace real
/-- AM-GM inequality: the **geometric mean is less than or equal to the arithmetic mean**, weighted
version for real-valued nonnegative functions. -/
theorem geom_mean_le_arith_mean_weighted (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) :
(∏ i in s, (z i) ^ (w i)) ≤ ∑ i in s, w i * z i :=
begin
-- If some number `z i` equals zero and has non-zero weight, then LHS is 0 and RHS is nonnegative.
by_cases A : ∃ i ∈ s, z i = 0 ∧ w i ≠ 0,
{ rcases A with ⟨i, his, hzi, hwi⟩,
rw [prod_eq_zero his],
{ exact sum_nonneg (λ j hj, mul_nonneg (hw j hj) (hz j hj)) },
{ rw hzi, exact zero_rpow hwi } },
-- If all numbers `z i` with non-zero weight are positive, then we apply Jensen's inequality
-- for `exp` and numbers `log (z i)` with weights `w i`.
{ simp only [not_exists, not_and, ne.def, not_not] at A,
have := convex_on_exp.map_sum_le hw hw' (λ i _, set.mem_univ $ log (z i)),
simp only [exp_sum, (∘), smul_eq_mul, mul_comm (w _) (log _)] at this,
convert this using 1; [apply prod_congr rfl, apply sum_congr rfl]; intros i hi,
{ cases eq_or_lt_of_le (hz i hi) with hz hz,
{ simp [A i hi hz.symm] },
{ exact rpow_def_of_pos hz _ } },
{ cases eq_or_lt_of_le (hz i hi) with hz hz,
{ simp [A i hi hz.symm] },
{ rw [exp_log hz] } } }
end
theorem pow_arith_mean_le_arith_mean_pow (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) (n : ℕ) :
(∑ i in s, w i * z i) ^ n ≤ ∑ i in s, (w i * z i ^ n) :=
(convex_on_pow n).map_sum_le hw hw' hz
theorem pow_arith_mean_le_arith_mean_pow_of_even (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) {n : ℕ} (hn : even n) :
(∑ i in s, w i * z i) ^ n ≤ ∑ i in s, (w i * z i ^ n) :=
(convex_on_pow_of_even hn).map_sum_le hw hw' (λ _ _, trivial)
theorem fpow_arith_mean_le_arith_mean_fpow (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 < z i) (m : ℤ) :
(∑ i in s, w i * z i) ^ m ≤ ∑ i in s, (w i * z i ^ m) :=
(convex_on_fpow m).map_sum_le hw hw' hz
theorem rpow_arith_mean_le_arith_mean_rpow (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) {p : ℝ} (hp : 1 ≤ p) :
(∑ i in s, w i * z i) ^ p ≤ ∑ i in s, (w i * z i ^ p) :=
(convex_on_rpow hp).map_sum_le hw hw' hz
theorem arith_mean_le_rpow_mean (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) {p : ℝ} (hp : 1 ≤ p) :
∑ i in s, w i * z i ≤ (∑ i in s, (w i * z i ^ p)) ^ (1 / p) :=
begin
have : 0 < p := lt_of_lt_of_le zero_lt_one hp,
rw [← rpow_le_rpow_iff _ _ this, ← rpow_mul, one_div_mul_cancel (ne_of_gt this), rpow_one],
exact rpow_arith_mean_le_arith_mean_rpow s w z hw hw' hz hp,
all_goals { apply_rules [sum_nonneg, rpow_nonneg_of_nonneg],
intros i hi,
apply_rules [mul_nonneg, rpow_nonneg_of_nonneg, hw i hi, hz i hi] },
end
end real
namespace nnreal
/-- The geometric mean is less than or equal to the arithmetic mean, weighted version
for `nnreal`-valued functions. -/
theorem geom_mean_le_arith_mean_weighted (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) :
(∏ i in s, (z i) ^ (w i:ℝ)) ≤ ∑ i in s, w i * z i :=
by exact_mod_cast real.geom_mean_le_arith_mean_weighted _ _ _ (λ i _, (w i).coe_nonneg)
(by assumption_mod_cast) (λ i _, (z i).coe_nonneg)
/-- The geometric mean is less than or equal to the arithmetic mean, weighted version
for two `nnreal` numbers. -/
theorem geom_mean_le_arith_mean2_weighted (w₁ w₂ p₁ p₂ : ℝ≥0) :
w₁ + w₂ = 1 → p₁ ^ (w₁:ℝ) * p₂ ^ (w₂:ℝ) ≤ w₁ * p₁ + w₂ * p₂ :=
by simpa only [fin.prod_univ_succ, fin.sum_univ_succ, finset.prod_empty, finset.sum_empty,
fintype.univ_of_is_empty, fin.cons_succ, fin.cons_zero, add_zero, mul_one]
using geom_mean_le_arith_mean_weighted (univ : finset (fin 2))
(fin.cons w₁ $ fin.cons w₂ fin_zero_elim) (fin.cons p₁ $ fin.cons p₂ $ fin_zero_elim)
theorem geom_mean_le_arith_mean3_weighted (w₁ w₂ w₃ p₁ p₂ p₃ : ℝ≥0) :
w₁ + w₂ + w₃ = 1 → p₁ ^ (w₁:ℝ) * p₂ ^ (w₂:ℝ) * p₃ ^ (w₃:ℝ) ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ :=
by simpa only [fin.prod_univ_succ, fin.sum_univ_succ, finset.prod_empty, finset.sum_empty,
fintype.univ_of_is_empty, fin.cons_succ, fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc]
using geom_mean_le_arith_mean_weighted (univ : finset (fin 3))
(fin.cons w₁ $ fin.cons w₂ $ fin.cons w₃ fin_zero_elim)
(fin.cons p₁ $ fin.cons p₂ $ fin.cons p₃ fin_zero_elim)
theorem geom_mean_le_arith_mean4_weighted (w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ≥0) :
w₁ + w₂ + w₃ + w₄ = 1 → p₁ ^ (w₁:ℝ) * p₂ ^ (w₂:ℝ) * p₃ ^ (w₃:ℝ)* p₄ ^ (w₄:ℝ) ≤
w₁ * p₁ + w₂ * p₂ + w₃ * p₃ + w₄ * p₄ :=
by simpa only [fin.prod_univ_succ, fin.sum_univ_succ, finset.prod_empty, finset.sum_empty,
fintype.univ_of_is_empty, fin.cons_succ, fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc]
using geom_mean_le_arith_mean_weighted (univ : finset (fin 4))
(fin.cons w₁ $ fin.cons w₂ $ fin.cons w₃ $ fin.cons w₄ fin_zero_elim)
(fin.cons p₁ $ fin.cons p₂ $ fin.cons p₃ $ fin.cons p₄ fin_zero_elim)
/-- Weighted generalized mean inequality, version sums over finite sets, with `ℝ≥0`-valued
functions and natural exponent. -/
theorem pow_arith_mean_le_arith_mean_pow (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) (n : ℕ) :
(∑ i in s, w i * z i) ^ n ≤ ∑ i in s, (w i * z i ^ n) :=
by exact_mod_cast real.pow_arith_mean_le_arith_mean_pow s _ _ (λ i _, (w i).coe_nonneg)
(by exact_mod_cast hw') (λ i _, (z i).coe_nonneg) n
/-- Weighted generalized mean inequality, version for sums over finite sets, with `ℝ≥0`-valued
functions and real exponents. -/
theorem rpow_arith_mean_le_arith_mean_rpow (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) {p : ℝ}
(hp : 1 ≤ p) :
(∑ i in s, w i * z i) ^ p ≤ ∑ i in s, (w i * z i ^ p) :=
by exact_mod_cast real.rpow_arith_mean_le_arith_mean_rpow s _ _ (λ i _, (w i).coe_nonneg)
(by exact_mod_cast hw') (λ i _, (z i).coe_nonneg) hp
/-- Weighted generalized mean inequality, version for two elements of `ℝ≥0` and real exponents. -/
theorem rpow_arith_mean_le_arith_mean2_rpow (w₁ w₂ z₁ z₂ : ℝ≥0) (hw' : w₁ + w₂ = 1) {p : ℝ}
(hp : 1 ≤ p) :
(w₁ * z₁ + w₂ * z₂) ^ p ≤ w₁ * z₁ ^ p + w₂ * z₂ ^ p :=
begin
have h := rpow_arith_mean_le_arith_mean_rpow (univ : finset (fin 2))
(fin.cons w₁ $ fin.cons w₂ fin_zero_elim) (fin.cons z₁ $ fin.cons z₂ $ fin_zero_elim) _ hp,
{ simpa [fin.sum_univ_succ, fin.sum_univ_zero, fin.cons_succ, fin.cons_zero] using h, },
{ simp [hw', fin.sum_univ_succ, fin.sum_univ_zero, fin.cons_succ, fin.cons_zero], },
end
/-- Weighted generalized mean inequality, version for sums over finite sets, with `ℝ≥0`-valued
functions and real exponents. -/
theorem arith_mean_le_rpow_mean (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) {p : ℝ}
(hp : 1 ≤ p) :
∑ i in s, w i * z i ≤ (∑ i in s, (w i * z i ^ p)) ^ (1 / p) :=
by exact_mod_cast real.arith_mean_le_rpow_mean s _ _ (λ i _, (w i).coe_nonneg)
(by exact_mod_cast hw') (λ i _, (z i).coe_nonneg) hp
end nnreal
namespace ennreal
/-- Weighted generalized mean inequality, version for sums over finite sets, with `ℝ≥0∞`-valued
functions and real exponents. -/
theorem rpow_arith_mean_le_arith_mean_rpow (w z : ι → ℝ≥0∞) (hw' : ∑ i in s, w i = 1) {p : ℝ}
(hp : 1 ≤ p) :
(∑ i in s, w i * z i) ^ p ≤ ∑ i in s, (w i * z i ^ p) :=
begin
have hp_pos : 0 < p, from lt_of_lt_of_le zero_lt_one hp,
have hp_nonneg : 0 ≤ p, from le_of_lt hp_pos,
have hp_not_nonpos : ¬ p ≤ 0, by simp [hp_pos],
have hp_not_neg : ¬ p < 0, by simp [hp_nonneg],
have h_top_iff_rpow_top : ∀ (i : ι) (hi : i ∈ s), w i * z i = ⊤ ↔ w i * (z i) ^ p = ⊤,
by simp [hp_pos, hp_nonneg, hp_not_nonpos, hp_not_neg],
refine le_of_top_imp_top_of_to_nnreal_le _ _,
{ -- first, prove `(∑ i in s, w i * z i) ^ p = ⊤ → ∑ i in s, (w i * z i ^ p) = ⊤`
rw [rpow_eq_top_iff, sum_eq_top_iff, sum_eq_top_iff],
intro h,
simp only [and_false, hp_not_neg, false_or] at h,
rcases h.left with ⟨a, H, ha⟩,
use [a, H],
rwa ←h_top_iff_rpow_top a H, },
{ -- second, suppose both `(∑ i in s, w i * z i) ^ p ≠ ⊤` and `∑ i in s, (w i * z i ^ p) ≠ ⊤`,
-- and prove `((∑ i in s, w i * z i) ^ p).to_nnreal ≤ (∑ i in s, (w i * z i ^ p)).to_nnreal`,
-- by using `nnreal.rpow_arith_mean_le_arith_mean_rpow`.
intros h_top_rpow_sum _,
-- show hypotheses needed to put the `.to_nnreal` inside the sums.
have h_top : ∀ (a : ι), a ∈ s → w a * z a < ⊤,
{ have h_top_sum : ∑ (i : ι) in s, w i * z i < ⊤,
{ by_contra h,
rw [lt_top_iff_ne_top, not_not] at h,
rw [h, top_rpow_of_pos hp_pos] at h_top_rpow_sum,
exact h_top_rpow_sum rfl, },
rwa sum_lt_top_iff at h_top_sum, },
have h_top_rpow : ∀ (a : ι), a ∈ s → w a * z a ^ p < ⊤,
{ intros i hi,
specialize h_top i hi,
rw lt_top_iff_ne_top at h_top ⊢,
rwa [ne.def, ←h_top_iff_rpow_top i hi], },
-- put the `.to_nnreal` inside the sums.
simp_rw [to_nnreal_sum h_top_rpow, ←to_nnreal_rpow, to_nnreal_sum h_top, to_nnreal_mul,
←to_nnreal_rpow],
-- use corresponding nnreal result
refine nnreal.rpow_arith_mean_le_arith_mean_rpow s (λ i, (w i).to_nnreal) (λ i, (z i).to_nnreal)
_ hp,
-- verify the hypothesis `∑ i in s, (w i).to_nnreal = 1`, using `∑ i in s, w i = 1` .
have h_sum_nnreal : (∑ i in s, w i) = ↑(∑ i in s, (w i).to_nnreal),
{ have hw_top : ∑ i in s, w i < ⊤, by { rw hw', exact one_lt_top, },
rw ←to_nnreal_sum,
{ rw coe_to_nnreal,
rwa ←lt_top_iff_ne_top, },
{ rwa sum_lt_top_iff at hw_top, }, },
rwa [←coe_eq_coe, ←h_sum_nnreal], },
end
/-- Weighted generalized mean inequality, version for two elements of `ℝ≥0∞` and real
exponents. -/
theorem rpow_arith_mean_le_arith_mean2_rpow (w₁ w₂ z₁ z₂ : ℝ≥0∞) (hw' : w₁ + w₂ = 1) {p : ℝ}
(hp : 1 ≤ p) :
(w₁ * z₁ + w₂ * z₂) ^ p ≤ w₁ * z₁ ^ p + w₂ * z₂ ^ p :=
begin
have h := rpow_arith_mean_le_arith_mean_rpow (univ : finset (fin 2))
(fin.cons w₁ $ fin.cons w₂ fin_zero_elim) (fin.cons z₁ $ fin.cons z₂ $ fin_zero_elim) _ hp,
{ simpa [fin.sum_univ_succ, fin.sum_univ_zero, fin.cons_succ, fin.cons_zero] using h, },
{ simp [hw', fin.sum_univ_succ, fin.sum_univ_zero, fin.cons_succ, fin.cons_zero], },
end
end ennreal
namespace real
theorem geom_mean_le_arith_mean2_weighted {w₁ w₂ p₁ p₂ : ℝ} (hw₁ : 0 ≤ w₁) (hw₂ : 0 ≤ w₂)
(hp₁ : 0 ≤ p₁) (hp₂ : 0 ≤ p₂) (hw : w₁ + w₂ = 1) :
p₁ ^ w₁ * p₂ ^ w₂ ≤ w₁ * p₁ + w₂ * p₂ :=
nnreal.geom_mean_le_arith_mean2_weighted ⟨w₁, hw₁⟩ ⟨w₂, hw₂⟩ ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ $
nnreal.coe_eq.1 $ by assumption
theorem geom_mean_le_arith_mean3_weighted {w₁ w₂ w₃ p₁ p₂ p₃ : ℝ} (hw₁ : 0 ≤ w₁) (hw₂ : 0 ≤ w₂)
(hw₃ : 0 ≤ w₃) (hp₁ : 0 ≤ p₁) (hp₂ : 0 ≤ p₂) (hp₃ : 0 ≤ p₃) (hw : w₁ + w₂ + w₃ = 1) :
p₁ ^ w₁ * p₂ ^ w₂ * p₃ ^ w₃ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ :=
nnreal.geom_mean_le_arith_mean3_weighted
⟨w₁, hw₁⟩ ⟨w₂, hw₂⟩ ⟨w₃, hw₃⟩ ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ ⟨p₃, hp₃⟩ $ nnreal.coe_eq.1 hw
theorem geom_mean_le_arith_mean4_weighted {w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ} (hw₁ : 0 ≤ w₁)
(hw₂ : 0 ≤ w₂) (hw₃ : 0 ≤ w₃) (hw₄ : 0 ≤ w₄) (hp₁ : 0 ≤ p₁) (hp₂ : 0 ≤ p₂) (hp₃ : 0 ≤ p₃)
(hp₄ : 0 ≤ p₄) (hw : w₁ + w₂ + w₃ + w₄ = 1) :
p₁ ^ w₁ * p₂ ^ w₂ * p₃ ^ w₃ * p₄ ^ w₄ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ + w₄ * p₄ :=
nnreal.geom_mean_le_arith_mean4_weighted ⟨w₁, hw₁⟩ ⟨w₂, hw₂⟩ ⟨w₃, hw₃⟩ ⟨w₄, hw₄⟩
⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ ⟨p₃, hp₃⟩ ⟨p₄, hp₄⟩ $ nnreal.coe_eq.1 $ by assumption
/-- Young's inequality, a version for nonnegative real numbers. -/
theorem young_inequality_of_nonneg {a b p q : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b)
(hpq : p.is_conjugate_exponent q) :
a * b ≤ a^p / p + b^q / q :=
by simpa [← rpow_mul, ha, hb, hpq.ne_zero, hpq.symm.ne_zero, div_eq_inv_mul]
using geom_mean_le_arith_mean2_weighted hpq.one_div_nonneg hpq.symm.one_div_nonneg
(rpow_nonneg_of_nonneg ha p) (rpow_nonneg_of_nonneg hb q) hpq.inv_add_inv_conj
/-- Young's inequality, a version for arbitrary real numbers. -/
theorem young_inequality (a b : ℝ) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
a * b ≤ (abs a)^p / p + (abs b)^q / q :=
calc a * b ≤ abs (a * b) : le_abs_self (a * b)
... = abs a * abs b : abs_mul a b
... ≤ (abs a)^p / p + (abs b)^q / q :
real.young_inequality_of_nonneg (abs_nonneg a) (abs_nonneg b) hpq
end real
namespace nnreal
/-- Young's inequality, `ℝ≥0` version. We use `{p q : ℝ≥0}` in order to avoid constructing
witnesses of `0 ≤ p` and `0 ≤ q` for the denominators. -/
theorem young_inequality (a b : ℝ≥0) {p q : ℝ≥0} (hp : 1 < p) (hpq : 1 / p + 1 / q = 1) :
a * b ≤ a^(p:ℝ) / p + b^(q:ℝ) / q :=
real.young_inequality_of_nonneg a.coe_nonneg b.coe_nonneg ⟨hp, nnreal.coe_eq.2 hpq⟩
/-- Young's inequality, `ℝ≥0` version with real conjugate exponents. -/
theorem young_inequality_real (a b : ℝ≥0) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
a * b ≤ a ^ p / real.to_nnreal p + b ^ q / real.to_nnreal q :=
begin
nth_rewrite 0 ← real.coe_to_nnreal p hpq.nonneg,
nth_rewrite 0 ← real.coe_to_nnreal q hpq.symm.nonneg,
exact young_inequality a b hpq.one_lt_nnreal hpq.inv_add_inv_conj_nnreal,
end
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with `ℝ≥0`-valued functions. -/
theorem inner_le_Lp_mul_Lq (f g : ι → ℝ≥0) {p q : ℝ}
(hpq : p.is_conjugate_exponent q) :
∑ i in s, f i * g i ≤ (∑ i in s, (f i) ^ p) ^ (1 / p) * (∑ i in s, (g i) ^ q) ^ (1 / q) :=
begin
-- Let `G=∥g∥_q` be the `L_q`-norm of `g`.
set G := (∑ i in s, (g i) ^ q) ^ (1 / q),
have hGq : G ^ q = ∑ i in s, (g i) ^ q,
{ rw [← rpow_mul, one_div_mul_cancel hpq.symm.ne_zero, rpow_one], },
-- First consider the trivial case `∥g∥_q=0`
by_cases hG : G = 0,
{ rw [hG, sum_eq_zero, mul_zero],
intros i hi,
simp only [rpow_eq_zero_iff, sum_eq_zero_iff] at hG,
simp [(hG.1 i hi).1] },
{ -- Move power from right to left
rw [← div_le_iff hG, sum_div],
-- Now the inequality follows from the weighted generalized mean inequality
-- with weights `w_i` and numbers `z_i` given by the following formulas.
set w : ι → ℝ≥0 := λ i, (g i) ^ q / G ^ q,
set z : ι → ℝ≥0 := λ i, f i * (G / g i) ^ (q / p),
-- Show that the sum of weights equals one
have A : ∑ i in s, w i = 1,
{ rw [← sum_div, hGq, div_self],
simpa [rpow_eq_zero_iff, hpq.symm.ne_zero] using hG },
-- LHS of the goal equals LHS of the weighted generalized mean inequality
calc (∑ i in s, f i * g i / G) = (∑ i in s, w i * z i) :
begin
refine sum_congr rfl (λ i hi, _),
have : q - q / p = 1, by field_simp [hpq.ne_zero, hpq.symm.mul_eq_add],
dsimp only [w, z],
rw [← div_rpow, mul_left_comm, mul_div_assoc, ← @inv_div _ _ _ G, inv_rpow,
← div_eq_mul_inv, ← rpow_sub']; simp [this]
end
-- Apply the generalized mean inequality
... ≤ (∑ i in s, w i * (z i) ^ p) ^ (1 / p) :
nnreal.arith_mean_le_rpow_mean s w z A (le_of_lt hpq.one_lt)
-- Simplify the right hand side. Terms with `g i ≠ 0` are equal to `(f i) ^ p`,
-- the others are zeros.
... ≤ (∑ i in s, (f i) ^ p) ^ (1 / p) :
begin
refine rpow_le_rpow (sum_le_sum (λ i hi, _)) hpq.one_div_nonneg,
dsimp only [w, z],
rw [mul_rpow, mul_left_comm, ← rpow_mul _ _ p, div_mul_cancel _ hpq.ne_zero, div_rpow,
div_mul_div, mul_comm (G ^ q), mul_div_mul_right],
{ nth_rewrite 1 [← mul_one ((f i) ^ p)],
exact mul_le_mul_left' (div_self_le _) _ },
{ simpa [hpq.symm.ne_zero] using hG }
end }
end
/-- The `L_p` seminorm of a vector `f` is the greatest value of the inner product
`∑ i in s, f i * g i` over functions `g` of `L_q` seminorm less than or equal to one. -/
theorem is_greatest_Lp (f : ι → ℝ≥0) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
is_greatest ((λ g : ι → ℝ≥0, ∑ i in s, f i * g i) ''
{g | ∑ i in s, (g i)^q ≤ 1}) ((∑ i in s, (f i)^p) ^ (1 / p)) :=
begin
split,
{ use λ i, ((f i) ^ p / f i / (∑ i in s, (f i) ^ p) ^ (1 / q)),
by_cases hf : ∑ i in s, (f i)^p = 0,
{ simp [hf, hpq.ne_zero, hpq.symm.ne_zero] },
{ have A : p + q - q ≠ 0, by simp [hpq.ne_zero],
have B : ∀ y : ℝ≥0, y * y^p / y = y^p,
{ refine λ y, mul_div_cancel_left_of_imp (λ h, _),
simpa [h, hpq.ne_zero] },
simp only [set.mem_set_of_eq, div_rpow, ← sum_div, ← rpow_mul,
div_mul_cancel _ hpq.symm.ne_zero, rpow_one, div_le_iff hf, one_mul, hpq.mul_eq_add,
← rpow_sub' _ A, _root_.add_sub_cancel, le_refl, true_and, ← mul_div_assoc, B],
rw [div_eq_iff, ← rpow_add hf, hpq.inv_add_inv_conj, rpow_one],
simpa [hpq.symm.ne_zero] using hf } },
{ rintros _ ⟨g, hg, rfl⟩,
apply le_trans (inner_le_Lp_mul_Lq s f g hpq),
simpa only [mul_one] using mul_le_mul_left'
(nnreal.rpow_le_one hg (le_of_lt hpq.symm.one_div_pos)) _ }
end
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `nnreal`-valued functions. -/
theorem Lp_add_le (f g : ι → ℝ≥0) {p : ℝ} (hp : 1 ≤ p) :
(∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤
(∑ i in s, (f i) ^ p) ^ (1 / p) + (∑ i in s, (g i) ^ p) ^ (1 / p) :=
begin
-- The result is trivial when `p = 1`, so we can assume `1 < p`.
rcases eq_or_lt_of_le hp with rfl|hp, { simp [finset.sum_add_distrib] },
have hpq := real.is_conjugate_exponent_conjugate_exponent hp,
have := is_greatest_Lp s (f + g) hpq,
simp only [pi.add_apply, add_mul, sum_add_distrib] at this,
rcases this.1 with ⟨φ, hφ, H⟩,
rw ← H,
exact add_le_add ((is_greatest_Lp s f hpq).2 ⟨φ, hφ, rfl⟩)
((is_greatest_Lp s g hpq).2 ⟨φ, hφ, rfl⟩)
end
end nnreal
namespace real
variables (f g : ι → ℝ) {p q : ℝ}
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with real-valued functions. -/
theorem inner_le_Lp_mul_Lq (hpq : is_conjugate_exponent p q) :
∑ i in s, f i * g i ≤ (∑ i in s, (abs $ f i)^p) ^ (1 / p) * (∑ i in s, (abs $ g i)^q) ^ (1 / q) :=
begin
have := nnreal.coe_le_coe.2 (nnreal.inner_le_Lp_mul_Lq s (λ i, ⟨_, abs_nonneg (f i)⟩)
(λ i, ⟨_, abs_nonneg (g i)⟩) hpq),
push_cast at this,
refine le_trans (sum_le_sum $ λ i hi, _) this,
simp only [← abs_mul, le_abs_self]
end
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `real`-valued functions. -/
theorem Lp_add_le (hp : 1 ≤ p) :
(∑ i in s, (abs $ f i + g i) ^ p) ^ (1 / p) ≤
(∑ i in s, (abs $ f i) ^ p) ^ (1 / p) + (∑ i in s, (abs $ g i) ^ p) ^ (1 / p) :=
begin
have := nnreal.coe_le_coe.2 (nnreal.Lp_add_le s (λ i, ⟨_, abs_nonneg (f i)⟩)
(λ i, ⟨_, abs_nonneg (g i)⟩) hp),
push_cast at this,
refine le_trans (rpow_le_rpow _ (sum_le_sum $ λ i hi, _) _) this;
simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add,
rpow_le_rpow]
end
variables {f g}
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with real-valued nonnegative functions. -/
theorem inner_le_Lp_mul_Lq_of_nonneg (hpq : is_conjugate_exponent p q)
(hf : ∀ i ∈ s, 0 ≤ f i) (hg : ∀ i ∈ s, 0 ≤ g i) :
∑ i in s, f i * g i ≤ (∑ i in s, (f i)^p) ^ (1 / p) * (∑ i in s, (g i)^q) ^ (1 / q) :=
by convert inner_le_Lp_mul_Lq s f g hpq using 3; apply sum_congr rfl; intros i hi;
simp only [abs_of_nonneg, hf i hi, hg i hi]
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `real`-valued nonnegative
functions. -/
theorem Lp_add_le_of_nonneg (hp : 1 ≤ p) (hf : ∀ i ∈ s, 0 ≤ f i) (hg : ∀ i ∈ s, 0 ≤ g i) :
(∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤
(∑ i in s, (f i) ^ p) ^ (1 / p) + (∑ i in s, (g i) ^ p) ^ (1 / p) :=
by convert Lp_add_le s f g hp using 2 ; [skip, congr' 1, congr' 1];
apply sum_congr rfl; intros i hi; simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg]
end real
namespace ennreal
/-- Young's inequality, `ℝ≥0∞` version with real conjugate exponents. -/
theorem young_inequality (a b : ℝ≥0∞) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
a * b ≤ a ^ p / ennreal.of_real p + b ^ q / ennreal.of_real q :=
begin
by_cases h : a = ⊤ ∨ b = ⊤,
{ refine le_trans le_top (le_of_eq _),
repeat { rw div_eq_mul_inv },
cases h; rw h; simp [h, hpq.pos, hpq.symm.pos], },
push_neg at h, -- if a ≠ ⊤ and b ≠ ⊤, use the nnreal version: nnreal.young_inequality_real
rw [←coe_to_nnreal h.left, ←coe_to_nnreal h.right, ←coe_mul,
coe_rpow_of_nonneg _ hpq.nonneg, coe_rpow_of_nonneg _ hpq.symm.nonneg, ennreal.of_real,
ennreal.of_real, ←@coe_div (real.to_nnreal p) _ (by simp [hpq.pos]),
←@coe_div (real.to_nnreal q) _ (by simp [hpq.symm.pos]), ←coe_add, coe_le_coe],
exact nnreal.young_inequality_real a.to_nnreal b.to_nnreal hpq,
end
variables (f g : ι → ℝ≥0∞) {p q : ℝ}
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with `ℝ≥0∞`-valued functions. -/
theorem inner_le_Lp_mul_Lq (hpq : p.is_conjugate_exponent q) :
(∑ i in s, f i * g i) ≤ (∑ i in s, (f i)^p) ^ (1/p) * (∑ i in s, (g i)^q) ^ (1/q) :=
begin
by_cases H : (∑ i in s, (f i)^p) ^ (1/p) = 0 ∨ (∑ i in s, (g i)^q) ^ (1/q) = 0,
{ replace H : (∀ i ∈ s, f i = 0) ∨ (∀ i ∈ s, g i = 0),
by simpa [ennreal.rpow_eq_zero_iff, hpq.pos, hpq.symm.pos, asymm hpq.pos, asymm hpq.symm.pos,
sum_eq_zero_iff_of_nonneg] using H,
have : ∀ i ∈ s, f i * g i = 0 := λ i hi, by cases H; simp [H i hi],
have : (∑ i in s, f i * g i) = (∑ i in s, 0) := sum_congr rfl this,
simp [this] },
push_neg at H,
by_cases H' : (∑ i in s, (f i)^p) ^ (1/p) = ⊤ ∨ (∑ i in s, (g i)^q) ^ (1/q) = ⊤,
{ cases H'; simp [H', -one_div, H] },
replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ (∀ i ∈ s, g i ≠ ⊤),
by simpa [ennreal.rpow_eq_top_iff, asymm hpq.pos, asymm hpq.symm.pos, hpq.pos, hpq.symm.pos,
ennreal.sum_eq_top_iff, not_or_distrib] using H',
have := ennreal.coe_le_coe.2 (@nnreal.inner_le_Lp_mul_Lq _ s (λ i, ennreal.to_nnreal (f i))
(λ i, ennreal.to_nnreal (g i)) _ _ hpq),
simp [← ennreal.coe_rpow_of_nonneg, le_of_lt (hpq.pos), le_of_lt (hpq.one_div_pos),
le_of_lt (hpq.symm.pos), le_of_lt (hpq.symm.one_div_pos)] at this,
convert this using 1;
[skip, congr' 2];
[skip, skip, simp, skip, simp];
{ apply finset.sum_congr rfl (λ i hi, _), simp [H'.1 i hi, H'.2 i hi, -with_zero.coe_mul,
with_top.coe_mul.symm] },
end
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `ℝ≥0∞` valued nonnegative
functions. -/
theorem Lp_add_le (hp : 1 ≤ p) :
(∑ i in s, (f i + g i) ^ p)^(1/p) ≤ (∑ i in s, (f i)^p) ^ (1/p) + (∑ i in s, (g i)^p) ^ (1/p) :=
begin
by_cases H' : (∑ i in s, (f i)^p) ^ (1/p) = ⊤ ∨ (∑ i in s, (g i)^p) ^ (1/p) = ⊤,
{ cases H'; simp [H', -one_div] },
have pos : 0 < p := lt_of_lt_of_le zero_lt_one hp,
replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ (∀ i ∈ s, g i ≠ ⊤),
by simpa [ennreal.rpow_eq_top_iff, asymm pos, pos, ennreal.sum_eq_top_iff,
not_or_distrib] using H',
have := ennreal.coe_le_coe.2 (@nnreal.Lp_add_le _ s (λ i, ennreal.to_nnreal (f i))
(λ i, ennreal.to_nnreal (g i)) _ hp),
push_cast [← ennreal.coe_rpow_of_nonneg, le_of_lt (pos), le_of_lt (one_div_pos.2 pos)] at this,
convert this using 2;
[skip, congr' 1, congr' 1];
{ apply finset.sum_congr rfl (λ i hi, _), simp [H'.1 i hi, H'.2 i hi] }
end
private lemma add_rpow_le_one_of_add_le_one {p : ℝ} (a b : ℝ≥0∞) (hab : a + b ≤ 1)
(hp1 : 1 ≤ p) :
a ^ p + b ^ p ≤ 1 :=
begin
have h_le_one : ∀ x : ℝ≥0∞, x ≤ 1 → x ^ p ≤ x, from λ x hx, rpow_le_self_of_le_one hx hp1,
have ha : a ≤ 1, from (self_le_add_right a b).trans hab,
have hb : b ≤ 1, from (self_le_add_left b a).trans hab,
exact (add_le_add (h_le_one a ha) (h_le_one b hb)).trans hab,
end
lemma add_rpow_le_rpow_add {p : ℝ} (a b : ℝ≥0∞) (hp1 : 1 ≤ p) :
a ^ p + b ^ p ≤ (a + b) ^ p :=
begin
have hp_pos : 0 < p := lt_of_lt_of_le zero_lt_one hp1,
by_cases h_top : a + b = ⊤,
{ rw ←@ennreal.rpow_eq_top_iff_of_pos (a + b) p hp_pos at h_top,
rw h_top,
exact le_top, },
obtain ⟨ha_top, hb_top⟩ := add_ne_top.mp h_top,
by_cases h_zero : a + b = 0,
{ simp [add_eq_zero_iff.mp h_zero, ennreal.zero_rpow_of_pos hp_pos], },
have h_nonzero : ¬(a = 0 ∧ b = 0), by rwa add_eq_zero_iff at h_zero,
have h_add : a/(a+b) + b/(a+b) = 1, by rw [div_add_div_same, div_self h_zero h_top],
have h := add_rpow_le_one_of_add_le_one (a/(a+b)) (b/(a+b)) h_add.le hp1,
rw [div_rpow_of_nonneg a (a+b) hp_pos.le, div_rpow_of_nonneg b (a+b) hp_pos.le] at h,
have hab_0 : (a + b)^p ≠ 0, by simp [ha_top, hb_top, hp_pos, h_nonzero],
have hab_top : (a + b)^p ≠ ⊤, by simp [ha_top, hb_top, hp_pos, h_nonzero],
have h_mul : (a + b)^p * (a ^ p / (a + b) ^ p + b ^ p / (a + b) ^ p) ≤ (a + b)^p,
{ nth_rewrite 3 ←mul_one ((a + b)^p),
exact (mul_le_mul_left hab_0 hab_top).mpr h, },
rwa [div_eq_mul_inv, div_eq_mul_inv, mul_add, mul_comm (a^p), mul_comm (b^p), ←mul_assoc,
←mul_assoc, mul_inv_cancel hab_0 hab_top, one_mul, one_mul] at h_mul,
end
lemma rpow_add_rpow_le_add {p : ℝ} (a b : ℝ≥0∞) (hp1 : 1 ≤ p) :
(a ^ p + b ^ p) ^ (1/p) ≤ a + b :=
begin
rw ←@ennreal.le_rpow_one_div_iff _ _ (1/p) (by simp [lt_of_lt_of_le zero_lt_one hp1]),
rw one_div_one_div,
exact add_rpow_le_rpow_add _ _ hp1,
end
theorem rpow_add_rpow_le {p q : ℝ} (a b : ℝ≥0∞) (hp_pos : 0 < p) (hpq : p ≤ q) :
(a ^ q + b ^ q) ^ (1/q) ≤ (a ^ p + b ^ p) ^ (1/p) :=
begin
have h_rpow : ∀ a : ℝ≥0∞, a^q = (a^p)^(q/p),
from λ a, by rw [←ennreal.rpow_mul, div_eq_inv_mul, ←mul_assoc,
_root_.mul_inv_cancel hp_pos.ne.symm, one_mul],
have h_rpow_add_rpow_le_add : ((a^p)^(q/p) + (b^p)^(q/p)) ^ (1/(q/p)) ≤ a^p + b^p,
{ refine rpow_add_rpow_le_add (a^p) (b^p) _,
rwa one_le_div hp_pos, },
rw [h_rpow a, h_rpow b, ennreal.le_rpow_one_div_iff hp_pos, ←ennreal.rpow_mul, mul_comm,
mul_one_div],
rwa one_div_div at h_rpow_add_rpow_le_add,
end
lemma rpow_add_le_add_rpow {p : ℝ} (a b : ℝ≥0∞) (hp_pos : 0 < p) (hp1 : p ≤ 1) :
(a + b) ^ p ≤ a ^ p + b ^ p :=
begin
have h := rpow_add_rpow_le a b hp_pos hp1,
rw one_div_one at h,
repeat { rw ennreal.rpow_one at h },
exact (ennreal.le_rpow_one_div_iff hp_pos).mp h,
end
end ennreal
|
2bf48166e5261af31d4c51b04edb8bc8a390e3c5
|
6f510b1ed724f95a55b7d26a8dcd13e1264123dd
|
/src/help.lean
|
ae75786763b57ae588f24ffce23f4a20482cc569
|
[] |
no_license
|
jcommelin/oberharmersbach2019
|
adaf2e54ba4eff7c178c933978055ff4d6b0593b
|
d2cdf780a10baa8502a9b0cae01c7efa318649a6
|
refs/heads/master
| 1,587,558,516,731
| 1,550,558,213,000
| 1,550,558,213,000
| 170,372,753
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 881
|
lean
|
import tactic.interactive tactic.tidy
namespace nat
lemma dvd_add_iff_right_of_left (k m n : ℕ) (h : k ∣ m) :
k ∣ n ↔ k ∣ m + n :=
nat.dvd_add_iff_right h
lemma dvd_right_of_dvd_add_of_dvd_left (k m n : ℕ) (h : k ∣ m) :
k ∣ m + n → k ∣ n :=
(dvd_add_iff_right_of_left _ _ _ h).mpr
end nat
namespace tactic
namespace interactive
open interactive interactive.types
meta def use_this (l : parse pexpr_list_or_texpr) : tactic unit :=
(tactic.use l >> (triv <|> try `[apply exists_prop.mpr]))
@[tidy] meta def auto_aux : tactic unit :=
`[solve_by_elim [fact_ne_zero
,nat.dvd_right_of_dvd_add_of_dvd_left
,prime.not_dvd_one
,prime.pos
,nat.min_fac_dvd
,nat.dvd_fact
,le_of_not_ge]]
meta def auto : tactic unit := auto_aux <|> tidy
end interactive
end tactic
|
702def3de3793431a919000c0c22a2fe5bf71d66
|
46125763b4dbf50619e8846a1371029346f4c3db
|
/src/set_theory/cardinal.lean
|
b750ab7bd894315ca579337d0dbe49918cbd0b30
|
[
"Apache-2.0"
] |
permissive
|
thjread/mathlib
|
a9d97612cedc2c3101060737233df15abcdb9eb1
|
7cffe2520a5518bba19227a107078d83fa725ddc
|
refs/heads/master
| 1,615,637,696,376
| 1,583,953,063,000
| 1,583,953,063,000
| 246,680,271
| 0
| 0
|
Apache-2.0
| 1,583,960,875,000
| 1,583,960,875,000
| null |
UTF-8
|
Lean
| false
| false
| 45,226
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl, Mario Carneiro
-/
import data.set.countable data.quot logic.function set_theory.schroeder_bernstein
import data.fintype.card
/-!
# Cardinal Numbers
We define cardinal numbers as a quotient of types under the equivalence relation of equinumerity.
We define the order on cardinal numbers, define omega, and do basic cardinal arithmetic:
addition, multiplication, power, cardinal successor, minimum, supremum,
infinitary sums and products
## Implementation notes
* There is a type of cardinal numbers in every universe level: `cardinal.{u} : Type (u + 1)`
is the quotient of types in `Type u`.
There is a lift operation lifting cardinal numbers to a higher level.
* Cardinal arithmetic specifically for infinite cardinals (like `κ * κ = κ`) is in the file
`set_theory/ordinal.lean`, because concepts from that file are used in the proof.
## References
* <https://en.wikipedia.org/wiki/Cardinal_number>
## Tags
cardinal number, cardinal arithmetic, cardinal exponentiation, omega
-/
open function lattice set
open_locale classical
universes u v w x
variables {α β : Type u}
/-- The equivalence relation on types given by equivalence (bijective correspondence) of types.
Quotienting by this equivalence relation gives the cardinal numbers.
-/
instance cardinal.is_equivalent : setoid (Type u) :=
{ r := λα β, nonempty (α ≃ β),
iseqv := ⟨λα,
⟨equiv.refl α⟩,
λα β ⟨e⟩, ⟨e.symm⟩,
λα β γ ⟨e₁⟩ ⟨e₂⟩, ⟨e₁.trans e₂⟩⟩ }
/-- `cardinal.{u}` is the type of cardinal numbers in `Type u`,
defined as the quotient of `Type u` by existence of an equivalence
(a bijection with explicit inverse). -/
def cardinal : Type (u + 1) := quotient cardinal.is_equivalent
namespace cardinal
/-- The cardinal number of a type -/
def mk : Type u → cardinal := quotient.mk
localized "notation `#` := cardinal.mk" in cardinal
protected lemma eq : mk α = mk β ↔ nonempty (α ≃ β) := quotient.eq
@[simp] theorem mk_def (α : Type u) : @eq cardinal ⟦α⟧ (mk α) := rfl
@[simp] theorem mk_out (c : cardinal) : mk (c.out) = c := quotient.out_eq _
/-- We define the order on cardinal numbers by `mk α ≤ mk β` if and only if
there exists an embedding (injective function) from α to β. -/
instance : has_le cardinal.{u} :=
⟨λq₁ q₂, quotient.lift_on₂ q₁ q₂ (λα β, nonempty $ α ↪ β) $
assume α β γ δ ⟨e₁⟩ ⟨e₂⟩,
propext ⟨assume ⟨e⟩, ⟨e.congr e₁ e₂⟩, assume ⟨e⟩, ⟨e.congr e₁.symm e₂.symm⟩⟩⟩
theorem mk_le_of_injective {α β : Type u} {f : α → β} (hf : injective f) : mk α ≤ mk β :=
⟨⟨f, hf⟩⟩
theorem mk_le_of_surjective {α β : Type u} {f : α → β} (hf : surjective f) : mk β ≤ mk α :=
⟨embedding.of_surjective hf⟩
theorem le_mk_iff_exists_set {c : cardinal} {α : Type u} :
c ≤ mk α ↔ ∃ p : set α, mk p = c :=
⟨quotient.induction_on c $ λ β ⟨⟨f, hf⟩⟩,
⟨set.range f, eq.symm $ quot.sound ⟨equiv.set.range f hf⟩⟩,
λ ⟨p, e⟩, e ▸ ⟨⟨subtype.val, λ a b, subtype.eq⟩⟩⟩
theorem out_embedding {c c' : cardinal} : c ≤ c' ↔ nonempty (c.out ↪ c'.out) :=
by { transitivity _, rw [←quotient.out_eq c, ←quotient.out_eq c'], refl }
instance : linear_order cardinal.{u} :=
{ le := (≤),
le_refl := by rintros ⟨α⟩; exact ⟨embedding.refl _⟩,
le_trans := by rintros ⟨α⟩ ⟨β⟩ ⟨γ⟩ ⟨e₁⟩ ⟨e₂⟩; exact ⟨e₁.trans e₂⟩,
le_antisymm := by rintros ⟨α⟩ ⟨β⟩ ⟨e₁⟩ ⟨e₂⟩; exact quotient.sound (e₁.antisymm e₂),
le_total := by rintros ⟨α⟩ ⟨β⟩; exact embedding.total }
noncomputable instance : decidable_linear_order cardinal.{u} := classical.DLO _
noncomputable instance : distrib_lattice cardinal.{u} := by apply_instance -- short-circuit type class inference
instance : has_zero cardinal.{u} := ⟨⟦pempty⟧⟩
instance : inhabited cardinal.{u} := ⟨0⟩
theorem ne_zero_iff_nonempty {α : Type u} : mk α ≠ 0 ↔ nonempty α :=
not_iff_comm.1
⟨λ h, quotient.sound ⟨(equiv.empty_of_not_nonempty h).trans equiv.empty_equiv_pempty⟩,
λ e, let ⟨h⟩ := quotient.exact e in λ ⟨a⟩, (h a).elim⟩
instance : has_one cardinal.{u} := ⟨⟦punit⟧⟩
instance : zero_ne_one_class cardinal.{u} :=
{ zero := 0, one := 1, zero_ne_one :=
ne.symm $ ne_zero_iff_nonempty.2 ⟨punit.star⟩ }
theorem le_one_iff_subsingleton {α : Type u} : mk α ≤ 1 ↔ subsingleton α :=
⟨λ ⟨f⟩, ⟨λ a b, f.inj (subsingleton.elim _ _)⟩,
λ ⟨h⟩, ⟨⟨λ a, punit.star, λ a b _, h _ _⟩⟩⟩
instance : has_add cardinal.{u} :=
⟨λq₁ q₂, quotient.lift_on₂ q₁ q₂ (λα β, mk (α ⊕ β)) $ assume α β γ δ ⟨e₁⟩ ⟨e₂⟩,
quotient.sound ⟨equiv.sum_congr e₁ e₂⟩⟩
@[simp] theorem add_def (α β) : mk α + mk β = mk (α ⊕ β) := rfl
instance : has_mul cardinal.{u} :=
⟨λq₁ q₂, quotient.lift_on₂ q₁ q₂ (λα β, mk (α × β)) $ assume α β γ δ ⟨e₁⟩ ⟨e₂⟩,
quotient.sound ⟨equiv.prod_congr e₁ e₂⟩⟩
@[simp] theorem mul_def (α β : Type u) : mk α * mk β = mk (α × β) := rfl
private theorem add_comm (a b : cardinal.{u}) : a + b = b + a :=
quotient.induction_on₂ a b $ assume α β, quotient.sound ⟨equiv.sum_comm α β⟩
private theorem mul_comm (a b : cardinal.{u}) : a * b = b * a :=
quotient.induction_on₂ a b $ assume α β, quotient.sound ⟨equiv.prod_comm α β⟩
private theorem zero_add (a : cardinal.{u}) : 0 + a = a :=
quotient.induction_on a $ assume α, quotient.sound ⟨equiv.pempty_sum α⟩
private theorem zero_mul (a : cardinal.{u}) : 0 * a = 0 :=
quotient.induction_on a $ assume α, quotient.sound ⟨equiv.pempty_prod α⟩
private theorem one_mul (a : cardinal.{u}) : 1 * a = a :=
quotient.induction_on a $ assume α, quotient.sound ⟨equiv.punit_prod α⟩
private theorem left_distrib (a b c : cardinal.{u}) : a * (b + c) = a * b + a * c :=
quotient.induction_on₃ a b c $ assume α β γ, quotient.sound ⟨equiv.prod_sum_distrib α β γ⟩
instance : comm_semiring cardinal.{u} :=
{ zero := 0,
one := 1,
add := (+),
mul := (*),
zero_add := zero_add,
add_zero := assume a, by rw [add_comm a 0, zero_add a],
add_assoc := λa b c, quotient.induction_on₃ a b c $ assume α β γ,
quotient.sound ⟨equiv.sum_assoc α β γ⟩,
add_comm := add_comm,
zero_mul := zero_mul,
mul_zero := assume a, by rw [mul_comm a 0, zero_mul a],
one_mul := one_mul,
mul_one := assume a, by rw [mul_comm a 1, one_mul a],
mul_assoc := λa b c, quotient.induction_on₃ a b c $ assume α β γ,
quotient.sound ⟨equiv.prod_assoc α β γ⟩,
mul_comm := mul_comm,
left_distrib := left_distrib,
right_distrib := assume a b c,
by rw [mul_comm (a + b) c, left_distrib c a b, mul_comm c a, mul_comm c b] }
/-- The cardinal exponential. `mk α ^ mk β` is the cardinal of `β → α`. -/
protected def power (a b : cardinal.{u}) : cardinal.{u} :=
quotient.lift_on₂ a b (λα β, mk (β → α)) $ assume α₁ α₂ β₁ β₂ ⟨e₁⟩ ⟨e₂⟩,
quotient.sound ⟨equiv.arrow_congr e₂ e₁⟩
instance : has_pow cardinal cardinal := ⟨cardinal.power⟩
local infixr ^ := @has_pow.pow cardinal cardinal cardinal.has_pow
@[simp] theorem power_def (α β) : mk α ^ mk β = mk (β → α) := rfl
@[simp] theorem power_zero {a : cardinal} : a ^ 0 = 1 :=
quotient.induction_on a $ assume α, quotient.sound
⟨equiv.pempty_arrow_equiv_punit α⟩
@[simp] theorem power_one {a : cardinal} : a ^ 1 = a :=
quotient.induction_on a $ assume α, quotient.sound
⟨equiv.punit_arrow_equiv α⟩
@[simp] theorem one_power {a : cardinal} : 1 ^ a = 1 :=
quotient.induction_on a $ assume α, quotient.sound
⟨equiv.arrow_punit_equiv_punit α⟩
@[simp] theorem prop_eq_two : mk (ulift Prop) = 2 :=
quot.sound ⟨equiv.ulift.trans $ equiv.Prop_equiv_bool.trans equiv.bool_equiv_punit_sum_punit⟩
@[simp] theorem zero_power {a : cardinal} : a ≠ 0 → 0 ^ a = 0 :=
quotient.induction_on a $ assume α heq,
nonempty.rec_on (ne_zero_iff_nonempty.1 heq) $ assume a,
quotient.sound ⟨equiv.equiv_pempty $ assume f, pempty.rec (λ _, false) (f a)⟩
theorem power_ne_zero {a : cardinal} (b) : a ≠ 0 → a ^ b ≠ 0 :=
quotient.induction_on₂ a b $ λ α β h,
let ⟨a⟩ := ne_zero_iff_nonempty.1 h in
ne_zero_iff_nonempty.2 ⟨λ _, a⟩
theorem mul_power {a b c : cardinal} : (a * b) ^ c = a ^ c * b ^ c :=
quotient.induction_on₃ a b c $ assume α β γ,
quotient.sound ⟨equiv.arrow_prod_equiv_prod_arrow α β γ⟩
theorem power_add {a b c : cardinal} : a ^ (b + c) = a ^ b * a ^ c :=
quotient.induction_on₃ a b c $ assume α β γ,
quotient.sound ⟨equiv.sum_arrow_equiv_prod_arrow β γ α⟩
theorem power_mul {a b c : cardinal} : (a ^ b) ^ c = a ^ (b * c) :=
by rw [_root_.mul_comm b c];
from (quotient.induction_on₃ a b c $ assume α β γ,
quotient.sound ⟨equiv.arrow_arrow_equiv_prod_arrow γ β α⟩)
@[simp] lemma pow_cast_right (κ : cardinal.{u}) :
∀ n : ℕ, (κ ^ (↑n : cardinal.{u})) = @has_pow.pow _ _ monoid.has_pow κ n
| 0 := by simp
| (_+1) := by rw [nat.cast_succ, power_add, power_one, _root_.mul_comm, pow_succ, pow_cast_right]
section order_properties
open sum
theorem zero_le : ∀(a : cardinal), 0 ≤ a :=
by rintro ⟨α⟩; exact ⟨embedding.of_not_nonempty $ λ ⟨a⟩, a.elim⟩
theorem le_zero (a : cardinal) : a ≤ 0 ↔ a = 0 :=
by simp [le_antisymm_iff, zero_le]
theorem pos_iff_ne_zero {o : cardinal} : 0 < o ↔ o ≠ 0 :=
by simp [lt_iff_le_and_ne, eq_comm, zero_le]
theorem zero_lt_one : (0 : cardinal) < 1 :=
lt_of_le_of_ne (zero_le _) zero_ne_one
lemma zero_power_le (c : cardinal.{u}) : (0 : cardinal.{u}) ^ c ≤ 1 :=
by { by_cases h : c = 0, rw [h, power_zero], rw [zero_power h], apply zero_le }
theorem add_le_add : ∀{a b c d : cardinal}, a ≤ b → c ≤ d → a + c ≤ b + d :=
by rintros ⟨α⟩ ⟨β⟩ ⟨γ⟩ ⟨δ⟩ ⟨e₁⟩ ⟨e₂⟩; exact ⟨embedding.sum_congr e₁ e₂⟩
theorem add_le_add_left (a) {b c : cardinal} : b ≤ c → a + b ≤ a + c :=
add_le_add (le_refl _)
theorem add_le_add_right {a b : cardinal} (c) (h : a ≤ b) : a + c ≤ b + c :=
add_le_add h (le_refl _)
theorem le_add_right (a b : cardinal) : a ≤ a + b :=
by simpa using add_le_add_left a (zero_le b)
theorem le_add_left (a b : cardinal) : a ≤ b + a :=
by simpa using add_le_add_right a (zero_le b)
theorem mul_le_mul : ∀{a b c d : cardinal}, a ≤ b → c ≤ d → a * c ≤ b * d :=
by rintros ⟨α⟩ ⟨β⟩ ⟨γ⟩ ⟨δ⟩ ⟨e₁⟩ ⟨e₂⟩; exact ⟨embedding.prod_congr e₁ e₂⟩
theorem mul_le_mul_left (a) {b c : cardinal} : b ≤ c → a * b ≤ a * c :=
mul_le_mul (le_refl _)
theorem mul_le_mul_right {a b : cardinal} (c) (h : a ≤ b) : a * c ≤ b * c :=
mul_le_mul h (le_refl _)
theorem power_le_power_left : ∀{a b c : cardinal}, a ≠ 0 → b ≤ c → a ^ b ≤ a ^ c :=
by rintros ⟨α⟩ ⟨β⟩ ⟨γ⟩ hα ⟨e⟩; exact
let ⟨a⟩ := ne_zero_iff_nonempty.1 hα in
⟨@embedding.arrow_congr_right _ _ _ ⟨a⟩ e⟩
theorem power_le_max_power_one {a b c : cardinal} (h : b ≤ c) : a ^ b ≤ max (a ^ c) 1 :=
begin
by_cases ha : a = 0,
simp [ha, zero_power_le],
exact le_trans (power_le_power_left ha h) (le_max_left _ _)
end
theorem power_le_power_right {a b c : cardinal} : a ≤ b → a ^ c ≤ b ^ c :=
quotient.induction_on₃ a b c $ assume α β γ ⟨e⟩, ⟨embedding.arrow_congr_left e⟩
theorem le_iff_exists_add {a b : cardinal} : a ≤ b ↔ ∃ c, b = a + c :=
⟨quotient.induction_on₂ a b $ λ α β ⟨⟨f, hf⟩⟩,
have (α ⊕ ↥-range f) ≃ β, from
(equiv.sum_congr (equiv.set.range f hf) (equiv.refl _)).trans $
(equiv.set.sum_compl (range f)),
⟨⟦(-range f : set β)⟧, quotient.sound ⟨this.symm⟩⟩,
λ ⟨c, e⟩, add_zero a ▸ e.symm ▸ add_le_add_left _ (zero_le _)⟩
end order_properties
instance : order_bot cardinal.{u} :=
{ bot := 0, bot_le := zero_le, ..cardinal.linear_order }
instance : canonically_ordered_monoid cardinal.{u} :=
{ add_le_add_left := λ a b h c, add_le_add_left _ h,
lt_of_add_lt_add_left := λ a b c, lt_imp_lt_of_le_imp_le (add_le_add_left _),
le_iff_exists_add := @le_iff_exists_add,
..cardinal.lattice.order_bot,
..cardinal.comm_semiring, ..cardinal.linear_order }
theorem cantor : ∀(a : cardinal.{u}), a < 2 ^ a :=
by rw ← prop_eq_two; rintros ⟨a⟩; exact ⟨
⟨⟨λ a b, ⟨a = b⟩, λ a b h, cast (ulift.up.inj (@congr_fun _ _ _ _ h b)).symm rfl⟩⟩,
λ ⟨⟨f, hf⟩⟩, cantor_injective (λ s, f (λ a, ⟨s a⟩)) $
λ s t h, by funext a; injection congr_fun (hf h) a⟩
instance : no_top_order cardinal.{u} :=
{ no_top := λ a, ⟨_, cantor a⟩, ..cardinal.linear_order }
/-- The minimum cardinal in a family of cardinals (the existence
of which is provided by `injective_min`). -/
noncomputable def min {ι} (I : nonempty ι) (f : ι → cardinal) : cardinal :=
f $ classical.some $
@embedding.injective_min _ (λ i, (f i).out) I
theorem min_eq {ι} (I) (f : ι → cardinal) : ∃ i, min I f = f i :=
⟨_, rfl⟩
theorem min_le {ι I} (f : ι → cardinal) (i) : min I f ≤ f i :=
by rw [← mk_out (min I f), ← mk_out (f i)]; exact
let ⟨g⟩ := classical.some_spec
(@embedding.injective_min _ (λ i, (f i).out) I) in
⟨g i⟩
theorem le_min {ι I} {f : ι → cardinal} {a} : a ≤ min I f ↔ ∀ i, a ≤ f i :=
⟨λ h i, le_trans h (min_le _ _),
λ h, let ⟨i, e⟩ := min_eq I f in e.symm ▸ h i⟩
protected theorem wf : @well_founded cardinal.{u} (<) :=
⟨λ a, classical.by_contradiction $ λ h,
let ι := {c :cardinal // ¬ acc (<) c},
f : ι → cardinal := subtype.val,
⟨⟨c, hc⟩, hi⟩ := @min_eq ι ⟨⟨_, h⟩⟩ f in
hc (acc.intro _ (λ j ⟨_, h'⟩,
classical.by_contradiction $ λ hj, h' $
by have := min_le f ⟨j, hj⟩; rwa hi at this))⟩
instance has_wf : @has_well_founded cardinal.{u} := ⟨(<), cardinal.wf⟩
instance wo : @is_well_order cardinal.{u} (<) := ⟨cardinal.wf⟩
/-- The successor cardinal - the smallest cardinal greater than
`c`. This is not the same as `c + 1` except in the case of finite `c`. -/
noncomputable def succ (c : cardinal) : cardinal :=
@min {c' // c < c'} ⟨⟨_, cantor _⟩⟩ subtype.val
theorem lt_succ_self (c : cardinal) : c < succ c :=
by cases min_eq _ _ with s e; rw [succ, e]; exact s.2
theorem succ_le {a b : cardinal} : succ a ≤ b ↔ a < b :=
⟨lt_of_lt_of_le (lt_succ_self _), λ h,
by exact min_le _ (subtype.mk b h)⟩
theorem lt_succ {a b : cardinal} : a < succ b ↔ a ≤ b :=
by rw [← not_le, succ_le, not_lt]
theorem add_one_le_succ (c : cardinal) : c + 1 ≤ succ c :=
begin
refine quot.induction_on c (λ α, _) (lt_succ_self c),
refine quot.induction_on (succ (quot.mk setoid.r α)) (λ β h, _),
cases h.left with f,
have : ¬ surjective f := λ hn,
ne_of_lt h (quotient.sound ⟨equiv.of_bijective ⟨f.inj, hn⟩⟩),
cases classical.not_forall.1 this with b nex,
refine ⟨⟨sum.rec (by exact f) _, _⟩⟩,
{ exact λ _, b },
{ intros a b h, rcases a with a|⟨⟨⟨⟩⟩⟩; rcases b with b|⟨⟨⟨⟩⟩⟩,
{ rw f.inj h },
{ exact nex.elim ⟨_, h⟩ },
{ exact nex.elim ⟨_, h.symm⟩ },
{ refl } }
end
lemma succ_ne_zero (c : cardinal) : succ c ≠ 0 :=
by { rw [←pos_iff_ne_zero, lt_succ], apply zero_le }
/-- The indexed sum of cardinals is the cardinality of the
indexed disjoint union, i.e. sigma type. -/
def sum {ι} (f : ι → cardinal) : cardinal := mk Σ i, (f i).out
theorem le_sum {ι} (f : ι → cardinal) (i) : f i ≤ sum f :=
by rw ← quotient.out_eq (f i); exact
⟨⟨λ a, ⟨i, a⟩, λ a b h, eq_of_heq $ by injection h⟩⟩
@[simp] theorem sum_mk {ι} (f : ι → Type*) : sum (λ i, mk (f i)) = mk (Σ i, f i) :=
quot.sound ⟨equiv.sigma_congr_right $ λ i,
classical.choice $ quotient.exact $ quot.out_eq $ mk (f i)⟩
theorem sum_const (ι : Type u) (a : cardinal.{u}) : sum (λ _:ι, a) = mk ι * a :=
quotient.induction_on a $ λ α, by simp; exact
quotient.sound ⟨equiv.sigma_equiv_prod _ _⟩
theorem sum_le_sum {ι} (f g : ι → cardinal) (H : ∀ i, f i ≤ g i) : sum f ≤ sum g :=
⟨embedding.sigma_congr_right $ λ i, classical.choice $
by have := H i; rwa [← quot.out_eq (f i), ← quot.out_eq (g i)] at this⟩
/-- The indexed supremum of cardinals is the smallest cardinal above
everything in the family. -/
noncomputable def sup {ι} (f : ι → cardinal) : cardinal :=
@min {c // ∀ i, f i ≤ c} ⟨⟨sum f, le_sum f⟩⟩ (λ a, a.1)
theorem le_sup {ι} (f : ι → cardinal) (i) : f i ≤ sup f :=
by dsimp [sup]; cases min_eq _ _ with c hc; rw hc; exact c.2 i
theorem sup_le {ι} {f : ι → cardinal} {a} : sup f ≤ a ↔ ∀ i, f i ≤ a :=
⟨λ h i, le_trans (le_sup _ _) h,
λ h, by dsimp [sup]; change a with (⟨a, h⟩:subtype _).1; apply min_le⟩
theorem sup_le_sup {ι} (f g : ι → cardinal) (H : ∀ i, f i ≤ g i) : sup f ≤ sup g :=
sup_le.2 $ λ i, le_trans (H i) (le_sup _ _)
theorem sup_le_sum {ι} (f : ι → cardinal) : sup f ≤ sum f :=
sup_le.2 $ le_sum _
theorem sum_le_sup {ι : Type u} (f : ι → cardinal.{u}) : sum f ≤ mk ι * sup.{u u} f :=
by rw ← sum_const; exact sum_le_sum _ _ (le_sup _)
theorem sup_eq_zero {ι} {f : ι → cardinal} (h : ι → false) : sup f = 0 :=
by { rw [←le_zero, sup_le], intro x, exfalso, exact h x }
/-- The indexed product of cardinals is the cardinality of the Pi type
(dependent product). -/
def prod {ι : Type u} (f : ι → cardinal) : cardinal := mk (Π i, (f i).out)
@[simp] theorem prod_mk {ι} (f : ι → Type*) : prod (λ i, mk (f i)) = mk (Π i, f i) :=
quot.sound ⟨equiv.Pi_congr_right $ λ i,
classical.choice $ quotient.exact $ mk_out $ mk (f i)⟩
theorem prod_const (ι : Type u) (a : cardinal.{u}) : prod (λ _:ι, a) = a ^ mk ι :=
quotient.induction_on a $ by simp
theorem prod_le_prod {ι} (f g : ι → cardinal) (H : ∀ i, f i ≤ g i) : prod f ≤ prod g :=
⟨embedding.Pi_congr_right $ λ i, classical.choice $
by have := H i; rwa [← mk_out (f i), ← mk_out (g i)] at this⟩
theorem prod_ne_zero {ι} (f : ι → cardinal) : prod f ≠ 0 ↔ ∀ i, f i ≠ 0 :=
begin
conv in (f _) {rw ← mk_out (f i)},
simp [prod, ne_zero_iff_nonempty, -mk_out, -ne.def],
exact ⟨λ ⟨F⟩ i, ⟨F i⟩, λ h, ⟨λ i, classical.choice (h i)⟩⟩,
end
theorem prod_eq_zero {ι} (f : ι → cardinal) : prod f = 0 ↔ ∃ i, f i = 0 :=
not_iff_not.1 $ by simpa using prod_ne_zero f
/-- The universe lift operation on cardinals. You can specify the universes explicitly with
`lift.{u v} : cardinal.{u} → cardinal.{max u v}` -/
def lift (c : cardinal.{u}) : cardinal.{max u v} :=
quotient.lift_on c (λ α, ⟦ulift α⟧) $ λ α β ⟨e⟩,
quotient.sound ⟨equiv.ulift.trans $ e.trans equiv.ulift.symm⟩
theorem lift_mk (α) : lift.{u v} (mk α) = mk (ulift.{v u} α) := rfl
theorem lift_umax : lift.{u (max u v)} = lift.{u v} :=
funext $ λ a, quot.induction_on a $ λ α,
quotient.sound ⟨equiv.ulift.trans equiv.ulift.symm⟩
theorem lift_id' (a : cardinal) : lift a = a :=
quot.induction_on a $ λ α, quot.sound ⟨equiv.ulift⟩
@[simp] theorem lift_id : ∀ a, lift.{u u} a = a := lift_id'.{u u}
@[simp] theorem lift_lift (a : cardinal) : lift.{(max u v) w} (lift.{u v} a) = lift.{u (max v w)} a :=
quot.induction_on a $ λ α,
quotient.sound ⟨equiv.ulift.trans $ equiv.ulift.trans equiv.ulift.symm⟩
theorem lift_mk_le {α : Type u} {β : Type v} :
lift.{u (max v w)} (mk α) ≤ lift.{v (max u w)} (mk β) ↔ nonempty (α ↪ β) :=
⟨λ ⟨f⟩, ⟨embedding.congr equiv.ulift equiv.ulift f⟩,
λ ⟨f⟩, ⟨embedding.congr equiv.ulift.symm equiv.ulift.symm f⟩⟩
theorem lift_mk_eq {α : Type u} {β : Type v} :
lift.{u (max v w)} (mk α) = lift.{v (max u w)} (mk β) ↔ nonempty (α ≃ β) :=
quotient.eq.trans
⟨λ ⟨f⟩, ⟨equiv.ulift.symm.trans $ f.trans equiv.ulift⟩,
λ ⟨f⟩, ⟨equiv.ulift.trans $ f.trans equiv.ulift.symm⟩⟩
@[simp] theorem lift_le {a b : cardinal} : lift a ≤ lift b ↔ a ≤ b :=
quotient.induction_on₂ a b $ λ α β,
by rw ← lift_umax; exact lift_mk_le
@[simp] theorem lift_inj {a b : cardinal} : lift a = lift b ↔ a = b :=
by simp [le_antisymm_iff]
@[simp] theorem lift_lt {a b : cardinal} : lift a < lift b ↔ a < b :=
by simp [lt_iff_le_not_le, -not_le]
@[simp] theorem lift_zero : lift 0 = 0 :=
quotient.sound ⟨equiv.ulift.trans equiv.pempty_equiv_pempty⟩
@[simp] theorem lift_one : lift 1 = 1 :=
quotient.sound ⟨equiv.ulift.trans equiv.punit_equiv_punit⟩
@[simp] theorem lift_add (a b) : lift (a + b) = lift a + lift b :=
quotient.induction_on₂ a b $ λ α β,
quotient.sound ⟨equiv.ulift.trans (equiv.sum_congr equiv.ulift equiv.ulift).symm⟩
@[simp] theorem lift_mul (a b) : lift (a * b) = lift a * lift b :=
quotient.induction_on₂ a b $ λ α β,
quotient.sound ⟨equiv.ulift.trans (equiv.prod_congr equiv.ulift equiv.ulift).symm⟩
@[simp] theorem lift_power (a b) : lift (a ^ b) = lift a ^ lift b :=
quotient.induction_on₂ a b $ λ α β,
quotient.sound ⟨equiv.ulift.trans (equiv.arrow_congr equiv.ulift equiv.ulift).symm⟩
@[simp] theorem lift_two_power (a) : lift (2 ^ a) = 2 ^ lift a :=
by simp [bit0]
@[simp] theorem lift_min {ι I} (f : ι → cardinal) : lift (min I f) = min I (lift ∘ f) :=
le_antisymm (le_min.2 $ λ a, lift_le.2 $ min_le _ a) $
let ⟨i, e⟩ := min_eq I (lift ∘ f) in
by rw e; exact lift_le.2 (le_min.2 $ λ j, lift_le.1 $
by have := min_le (lift ∘ f) j; rwa e at this)
theorem lift_down {a : cardinal.{u}} {b : cardinal.{max u v}} :
b ≤ lift a → ∃ a', lift a' = b :=
quotient.induction_on₂ a b $ λ α β,
by dsimp; rw [← lift_id (mk β), ← lift_umax, ← lift_umax.{u v}, lift_mk_le]; exact
λ ⟨f⟩, ⟨mk (set.range f), eq.symm $ lift_mk_eq.2
⟨embedding.equiv_of_surjective
(embedding.cod_restrict _ f set.mem_range_self)
$ λ ⟨a, ⟨b, e⟩⟩, ⟨b, subtype.eq e⟩⟩⟩
theorem le_lift_iff {a : cardinal.{u}} {b : cardinal.{max u v}} :
b ≤ lift a ↔ ∃ a', lift a' = b ∧ a' ≤ a :=
⟨λ h, let ⟨a', e⟩ := lift_down h in ⟨a', e, lift_le.1 $ e.symm ▸ h⟩,
λ ⟨a', e, h⟩, e ▸ lift_le.2 h⟩
theorem lt_lift_iff {a : cardinal.{u}} {b : cardinal.{max u v}} :
b < lift a ↔ ∃ a', lift a' = b ∧ a' < a :=
⟨λ h, let ⟨a', e⟩ := lift_down (le_of_lt h) in
⟨a', e, lift_lt.1 $ e.symm ▸ h⟩,
λ ⟨a', e, h⟩, e ▸ lift_lt.2 h⟩
@[simp] theorem lift_succ (a) : lift (succ a) = succ (lift a) :=
le_antisymm
(le_of_not_gt $ λ h, begin
rcases lt_lift_iff.1 h with ⟨b, e, h⟩,
rw [lt_succ, ← lift_le, e] at h,
exact not_lt_of_le h (lt_succ_self _)
end)
(succ_le.2 $ lift_lt.2 $ lt_succ_self _)
@[simp] theorem lift_max {a : cardinal.{u}} {b : cardinal.{v}} :
lift.{u (max v w)} a = lift.{v (max u w)} b ↔ lift.{u v} a = lift.{v u} b :=
calc lift.{u (max v w)} a = lift.{v (max u w)} b
↔ lift.{(max u v) w} (lift.{u v} a)
= lift.{(max u v) w} (lift.{v u} b) : by simp
... ↔ lift.{u v} a = lift.{v u} b : lift_inj
theorem mk_prod {α : Type u} {β : Type v} :
mk (α × β) = lift.{u v} (mk α) * lift.{v u} (mk β) :=
quotient.sound ⟨equiv.prod_congr (equiv.ulift).symm (equiv.ulift).symm⟩
theorem sum_const_eq_lift_mul (ι : Type u) (a : cardinal.{v}) :
sum (λ _:ι, a) = lift.{u v} (mk ι) * lift.{v u} a :=
begin
apply quotient.induction_on a,
intro α,
simp only [cardinal.mk_def, cardinal.sum_mk, cardinal.lift_id],
convert mk_prod using 1,
exact quotient.sound ⟨equiv.sigma_equiv_prod ι α⟩,
end
/-- `ω` is the smallest infinite cardinal, also known as ℵ₀. -/
def omega : cardinal.{u} := lift (mk ℕ)
lemma mk_nat : mk nat = omega := (lift_id _).symm
theorem omega_ne_zero : omega ≠ 0 :=
ne_zero_iff_nonempty.2 ⟨⟨0⟩⟩
theorem omega_pos : 0 < omega :=
pos_iff_ne_zero.2 omega_ne_zero
@[simp] theorem lift_omega : lift omega = omega := lift_lift _
/- properties about the cast from nat -/
@[simp] theorem mk_fin : ∀ (n : ℕ), mk (fin n) = n
| 0 := quotient.sound ⟨(equiv.pempty_of_not_nonempty $ λ ⟨h⟩, h.elim0)⟩
| (n+1) := by rw [nat.cast_succ, ← mk_fin]; exact
quotient.sound (fintype.card_eq.1 $ by simp)
@[simp] theorem lift_nat_cast (n : ℕ) : lift n = n :=
by induction n; simp *
lemma lift_eq_nat_iff {a : cardinal.{u}} {n : ℕ} : lift.{u v} a = n ↔ a = n :=
by rw [← lift_nat_cast.{u v} n, lift_inj]
lemma nat_eq_lift_eq_iff {n : ℕ} {a : cardinal.{u}} :
(n : cardinal) = lift.{u v} a ↔ (n : cardinal) = a :=
by rw [← lift_nat_cast.{u v} n, lift_inj]
theorem lift_mk_fin (n : ℕ) : lift (mk (fin n)) = n := by simp
theorem fintype_card (α : Type u) [fintype α] : mk α = fintype.card α :=
by rw [← lift_mk_fin.{u}, ← lift_id (mk α), lift_mk_eq.{u 0 u}];
exact fintype.card_eq.1 (by simp)
theorem card_le_of_finset {α} (s : finset α) :
(s.card : cardinal) ≤ cardinal.mk α :=
begin
rw (_ : (s.card : cardinal) = cardinal.mk (↑s : set α)),
{ exact ⟨function.embedding.subtype _⟩ },
rw [cardinal.fintype_card, fintype.card_coe]
end
@[simp, move_cast] theorem nat_cast_pow {m n : ℕ} : (↑(pow m n) : cardinal) = m ^ n :=
by induction n; simp [nat.pow_succ, -_root_.add_comm, power_add, *]
@[simp, elim_cast] theorem nat_cast_le {m n : ℕ} : (m : cardinal) ≤ n ↔ m ≤ n :=
by rw [← lift_mk_fin, ← lift_mk_fin, lift_le]; exact
⟨λ ⟨⟨f, hf⟩⟩, begin
have : _ = fintype.card _ := finset.card_image_of_injective finset.univ hf,
simp at this,
rw [← fintype.card_fin n, ← this],
exact finset.card_le_of_subset (finset.subset_univ _)
end,
λ h, ⟨⟨λ i, ⟨i.1, lt_of_lt_of_le i.2 h⟩, λ a b h,
have _, from fin.veq_of_eq h, fin.eq_of_veq this⟩⟩⟩
@[simp, elim_cast] theorem nat_cast_lt {m n : ℕ} : (m : cardinal) < n ↔ m < n :=
by simp [lt_iff_le_not_le, -not_le]
@[simp, elim_cast] theorem nat_cast_inj {m n : ℕ} : (m : cardinal) = n ↔ m = n :=
by simp [le_antisymm_iff]
@[simp, elim_cast] theorem nat_succ (n : ℕ) : succ n = n.succ :=
le_antisymm (succ_le.2 $ nat_cast_lt.2 $ nat.lt_succ_self _) (add_one_le_succ _)
@[simp] theorem succ_zero : succ 0 = 1 :=
by simpa using nat_succ 0
theorem cantor' (a) {b : cardinal} (hb : 1 < b) : a < b ^ a :=
by rw [← succ_le, (by simpa using nat_succ 1 : succ 1 = 2)] at hb;
exact lt_of_lt_of_le (cantor _) (power_le_power_right hb)
theorem one_le_iff_pos {c : cardinal} : 1 ≤ c ↔ 0 < c :=
by rw [← succ_zero, succ_le]
theorem one_le_iff_ne_zero {c : cardinal} : 1 ≤ c ↔ c ≠ 0 :=
by rw [one_le_iff_pos, pos_iff_ne_zero]
theorem nat_lt_omega (n : ℕ) : (n : cardinal.{u}) < omega :=
succ_le.1 $ by rw [nat_succ, ← lift_mk_fin, omega, lift_mk_le.{0 0 u}]; exact
⟨⟨fin.val, λ a b, fin.eq_of_veq⟩⟩
theorem one_lt_omega : 1 < omega :=
by simpa using nat_lt_omega 1
theorem lt_omega {c : cardinal.{u}} : c < omega ↔ ∃ n : ℕ, c = n :=
⟨λ h, begin
rcases lt_lift_iff.1 h with ⟨c, rfl, h'⟩,
rcases le_mk_iff_exists_set.1 h'.1 with ⟨S, rfl⟩,
suffices : finite S,
{ cases this, resetI,
existsi fintype.card S,
rw [← lift_nat_cast.{0 u}, lift_inj, fintype_card S] },
by_contra nf,
have P : ∀ (n : ℕ) (IH : ∀ i<n, S), ∃ a : S, ¬ ∃ y h, IH y h = a :=
λ n IH,
let g : {i | i < n} → S := λ ⟨i, h⟩, IH i h in
classical.not_forall.1 (λ h, nf
⟨fintype.of_surjective g (λ a, subtype.exists.2 (h a))⟩),
let F : ℕ → S := nat.lt_wf.fix (λ n IH, classical.some (P n IH)),
refine not_le_of_lt h' ⟨⟨F, _⟩⟩,
suffices : ∀ (n : ℕ) (m < n), F m ≠ F n,
{ refine λ m n, not_imp_not.1 (λ ne, _),
rcases lt_trichotomy m n with h|h|h,
{ exact this n m h },
{ contradiction },
{ exact (this m n h).symm } },
intros n m h,
have := classical.some_spec (P n (λ y _, F y)),
rw [← show F n = classical.some (P n (λ y _, F y)),
from nat.lt_wf.fix_eq (λ n IH, classical.some (P n IH)) n] at this,
exact λ e, this ⟨m, h, e⟩,
end, λ ⟨n, e⟩, e.symm ▸ nat_lt_omega _⟩
theorem omega_le {c : cardinal.{u}} : omega ≤ c ↔ ∀ n : ℕ, (n:cardinal) ≤ c :=
⟨λ h n, le_trans (le_of_lt (nat_lt_omega _)) h,
λ h, le_of_not_lt $ λ hn, begin
rcases lt_omega.1 hn with ⟨n, rfl⟩,
exact not_le_of_lt (nat.lt_succ_self _) (nat_cast_le.1 (h (n+1)))
end⟩
theorem lt_omega_iff_fintype {α : Type u} : mk α < omega ↔ nonempty (fintype α) :=
lt_omega.trans ⟨λ ⟨n, e⟩, begin
rw [← lift_mk_fin n] at e,
cases quotient.exact e with f,
exact ⟨fintype.of_equiv _ f.symm⟩
end, λ ⟨_⟩, by exactI ⟨_, fintype_card _⟩⟩
theorem lt_omega_iff_finite {α} {S : set α} : mk S < omega ↔ finite S :=
lt_omega_iff_fintype
instance can_lift_cardinal_nat : can_lift cardinal ℕ :=
⟨ coe, λ x, x < omega, λ x hx, let ⟨n, hn⟩ := lt_omega.mp hx in ⟨n, hn.symm⟩⟩
theorem add_lt_omega {a b : cardinal} (ha : a < omega) (hb : b < omega) : a + b < omega :=
match a, b, lt_omega.1 ha, lt_omega.1 hb with
| _, _, ⟨m, rfl⟩, ⟨n, rfl⟩ := by rw [← nat.cast_add]; apply nat_lt_omega
end
lemma add_lt_omega_iff {a b : cardinal} : a + b < omega ↔ a < omega ∧ b < omega :=
⟨λ h, ⟨lt_of_le_of_lt (le_add_right _ _) h, lt_of_le_of_lt (le_add_left _ _) h⟩,
λ⟨h1, h2⟩, add_lt_omega h1 h2⟩
theorem mul_lt_omega {a b : cardinal} (ha : a < omega) (hb : b < omega) : a * b < omega :=
match a, b, lt_omega.1 ha, lt_omega.1 hb with
| _, _, ⟨m, rfl⟩, ⟨n, rfl⟩ := by rw [← nat.cast_mul]; apply nat_lt_omega
end
lemma mul_lt_omega_iff {a b : cardinal} : a * b < omega ↔ a = 0 ∨ b = 0 ∨ a < omega ∧ b < omega :=
begin
split,
{ intro h, by_cases ha : a = 0, { left, exact ha },
right, by_cases hb : b = 0, { left, exact hb },
right, rw [← ne, ← one_le_iff_ne_zero] at ha hb, split,
{ rw [← mul_one a], refine lt_of_le_of_lt (mul_le_mul (le_refl a) hb) h },
{ rw [← _root_.one_mul b], refine lt_of_le_of_lt (mul_le_mul ha (le_refl b)) h }},
rintro (rfl|rfl|⟨ha,hb⟩); simp only [*, mul_lt_omega, omega_pos, _root_.zero_mul, mul_zero]
end
lemma mul_lt_omega_iff_of_ne_zero {a b : cardinal} (ha : a ≠ 0) (hb : b ≠ 0) :
a * b < omega ↔ a < omega ∧ b < omega :=
by simp [mul_lt_omega_iff, ha, hb]
theorem power_lt_omega {a b : cardinal} (ha : a < omega) (hb : b < omega) : a ^ b < omega :=
match a, b, lt_omega.1 ha, lt_omega.1 hb with
| _, _, ⟨m, rfl⟩, ⟨n, rfl⟩ := by rw [← nat_cast_pow]; apply nat_lt_omega
end
lemma eq_one_iff_subsingleton_and_nonempty {α : Type*} :
mk α = 1 ↔ (subsingleton α ∧ nonempty α) :=
calc mk α = 1 ↔ mk α ≤ 1 ∧ ¬mk α < 1 : eq_iff_le_not_lt
... ↔ subsingleton α ∧ nonempty α :
begin
apply and_congr le_one_iff_subsingleton,
push_neg,
rw [one_le_iff_ne_zero, ne_zero_iff_nonempty]
end
theorem infinite_iff {α : Type u} : infinite α ↔ omega ≤ mk α :=
by rw [←not_lt, lt_omega_iff_fintype, not_nonempty_fintype]
lemma countable_iff (s : set α) : countable s ↔ mk s ≤ omega :=
begin
rw [countable_iff_exists_injective], split,
rintro ⟨f, hf⟩, exact ⟨embedding.trans ⟨f, hf⟩ equiv.ulift.symm.to_embedding⟩,
rintro ⟨f'⟩, cases embedding.trans f' equiv.ulift.to_embedding with f hf, exact ⟨f, hf⟩
end
lemma denumerable_iff {α : Type u} : nonempty (denumerable α) ↔ mk α = omega :=
⟨λ⟨h⟩, quotient.sound $ by exactI ⟨ (denumerable.eqv α).trans equiv.ulift.symm ⟩,
λ h, by { cases quotient.exact h with f, exact ⟨denumerable.mk' $ f.trans equiv.ulift⟩ }⟩
lemma mk_int : mk ℤ = omega :=
denumerable_iff.mp ⟨by apply_instance⟩
lemma mk_pnat : mk ℕ+ = omega :=
denumerable_iff.mp ⟨by apply_instance⟩
lemma two_le_iff : (2 : cardinal) ≤ mk α ↔ ∃x y : α, x ≠ y :=
begin
split,
{ rintro ⟨f⟩, refine ⟨f $ sum.inl ⟨⟩, f $ sum.inr ⟨⟩, _⟩, intro h, cases f.2 h },
{ rintro ⟨x, y, h⟩, by_contra h',
rw [not_le, ←nat.cast_two, ←nat_succ, lt_succ, nat.cast_one, le_one_iff_subsingleton] at h',
apply h, exactI subsingleton.elim _ _ }
end
lemma two_le_iff' (x : α) : (2 : cardinal) ≤ mk α ↔ ∃y : α, x ≠ y :=
begin
rw [two_le_iff],
split,
{ rintro ⟨y, z, h⟩, refine classical.by_cases (λ(h' : x = y), _) (λ h', ⟨y, h'⟩),
rw [←h'] at h, exact ⟨z, h⟩ },
{ rintro ⟨y, h⟩, exact ⟨x, y, h⟩ }
end
/-- König's theorem -/
theorem sum_lt_prod {ι} (f g : ι → cardinal) (H : ∀ i, f i < g i) : sum f < prod g :=
lt_of_not_ge $ λ ⟨F⟩, begin
have : inhabited (Π (i : ι), (g i).out),
{ refine ⟨λ i, classical.choice $ ne_zero_iff_nonempty.1 _⟩,
rw mk_out,
exact ne_of_gt (lt_of_le_of_lt (zero_le _) (H i)) }, resetI,
let G := inv_fun F,
have sG : surjective G := inv_fun_surjective F.2,
choose C hc using show ∀ i, ∃ b, ∀ a, G ⟨i, a⟩ i ≠ b,
{ assume i,
simp only [- not_exists, not_exists.symm, classical.not_forall.symm],
refine λ h, not_le_of_lt (H i) _,
rw [← mk_out (f i), ← mk_out (g i)],
exact ⟨embedding.of_surjective h⟩ },
exact (let ⟨⟨i, a⟩, h⟩ := sG C in hc i a (congr_fun h _))
end
@[simp] theorem mk_empty : mk empty = 0 :=
fintype_card empty
@[simp] theorem mk_pempty : mk pempty = 0 :=
fintype_card pempty
@[simp] theorem mk_plift_of_false {p : Prop} (h : ¬ p) : mk (plift p) = 0 :=
quotient.sound ⟨equiv.plift.trans $ equiv.equiv_pempty h⟩
theorem mk_unit : mk unit = 1 :=
(fintype_card unit).trans nat.cast_one
@[simp] theorem mk_punit : mk punit = 1 :=
(fintype_card punit).trans nat.cast_one
@[simp] theorem mk_singleton {α : Type u} (x : α) : mk ({x} : set α) = 1 :=
quotient.sound ⟨equiv.set.singleton x⟩
@[simp] theorem mk_plift_of_true {p : Prop} (h : p) : mk (plift p) = 1 :=
quotient.sound ⟨equiv.plift.trans $ equiv.prop_equiv_punit h⟩
@[simp] theorem mk_bool : mk bool = 2 :=
quotient.sound ⟨equiv.bool_equiv_punit_sum_punit⟩
@[simp] theorem mk_Prop : mk Prop = 2 :=
(quotient.sound ⟨equiv.Prop_equiv_bool⟩ : mk Prop = mk bool).trans mk_bool
@[simp] theorem mk_option {α : Type u} : mk (option α) = mk α + 1 :=
quotient.sound ⟨equiv.option_equiv_sum_punit α⟩
theorem mk_list_eq_sum_pow (α : Type u) : mk (list α) = sum (λ n : ℕ, (mk α)^(n:cardinal.{u})) :=
calc mk (list α)
= mk (Σ n, vector α n) : quotient.sound ⟨(equiv.sigma_preimage_equiv list.length).symm⟩
... = mk (Σ n, fin n → α) : quotient.sound ⟨equiv.sigma_congr_right $ λ n,
⟨vector.nth, vector.of_fn, vector.of_fn_nth, λ f, funext $ vector.nth_of_fn f⟩⟩
... = mk (Σ n : ℕ, ulift.{u} (fin n) → α) : quotient.sound ⟨equiv.sigma_congr_right $ λ n,
equiv.arrow_congr equiv.ulift.symm (equiv.refl α)⟩
... = sum (λ n : ℕ, (mk α)^(n:cardinal.{u})) : by simp only [(lift_mk_fin _).symm, lift_mk, power_def, sum_mk]
theorem mk_quot_le {α : Type u} {r : α → α → Prop} : mk (quot r) ≤ mk α :=
mk_le_of_surjective quot.exists_rep
theorem mk_quotient_le {α : Type u} {s : setoid α} : mk (quotient s) ≤ mk α :=
mk_quot_le
theorem mk_subtype_le {α : Type u} (p : α → Prop) : mk (subtype p) ≤ mk α :=
⟨embedding.subtype p⟩
theorem mk_subtype_le_of_subset {α : Type u} {p q : α → Prop} (h : ∀ ⦃x⦄, p x → q x) :
mk (subtype p) ≤ mk (subtype q) :=
⟨embedding.subtype_map (embedding.refl α) h⟩
@[simp] theorem mk_emptyc (α : Type u) : mk (∅ : set α) = 0 :=
quotient.sound ⟨equiv.set.pempty α⟩
theorem mk_univ {α : Type u} : mk (@univ α) = mk α :=
quotient.sound ⟨equiv.set.univ α⟩
theorem mk_image_le {α β : Type u} {f : α → β} {s : set α} : mk (f '' s) ≤ mk s :=
mk_le_of_surjective surjective_onto_image
theorem mk_image_le_lift {α : Type u} {β : Type v} {f : α → β} {s : set α} :
lift.{v u} (mk (f '' s)) ≤ lift.{u v} (mk s) :=
lift_mk_le.{v u 0}.mpr ⟨embedding.of_surjective surjective_onto_image⟩
theorem mk_range_le {α β : Type u} {f : α → β} : mk (range f) ≤ mk α :=
mk_le_of_surjective surjective_onto_range
lemma mk_range_eq (f : α → β) (h : injective f) : mk (range f) = mk α :=
quotient.sound ⟨(equiv.set.range f h).symm⟩
lemma mk_range_eq_of_inj {α : Type u} {β : Type v} {f : α → β} (hf : injective f) :
lift.{v u} (mk (range f)) = lift.{u v} (mk α) :=
begin
have := (@lift_mk_eq.{v u max u v} (range f) α).2 ⟨(equiv.set.range f hf).symm⟩,
simp only [lift_umax.{u v}, lift_umax.{v u}] at this,
exact this
end
lemma mk_range_eq_lift {α : Type u} {β : Type v} {f : α → β} (hf : injective f) :
lift.{v (max u w)} (# (range f)) = lift.{u (max v w)} (# α) :=
lift_mk_eq.mpr ⟨(equiv.set.range f hf).symm⟩
theorem mk_image_eq {α β : Type u} {f : α → β} {s : set α} (hf : injective f) :
mk (f '' s) = mk s :=
quotient.sound ⟨(equiv.set.image f s hf).symm⟩
theorem mk_Union_le_sum_mk {α ι : Type u} {f : ι → set α} : mk (⋃ i, f i) ≤ sum (λ i, mk (f i)) :=
calc mk (⋃ i, f i) ≤ mk (Σ i, f i) : mk_le_of_surjective (set.surjective_sigma_to_Union f)
... = sum (λ i, mk (f i)) : (sum_mk _).symm
theorem mk_Union_eq_sum_mk {α ι : Type u} {f : ι → set α} (h : ∀i j, i ≠ j → disjoint (f i) (f j)) :
mk (⋃ i, f i) = sum (λ i, mk (f i)) :=
calc mk (⋃ i, f i) = mk (Σi, f i) : quot.sound ⟨set.Union_eq_sigma_of_disjoint h⟩
... = sum (λi, mk (f i)) : (sum_mk _).symm
lemma mk_Union_le {α ι : Type u} (f : ι → set α) :
mk (⋃ i, f i) ≤ mk ι * cardinal.sup.{u u} (λ i, mk (f i)) :=
le_trans mk_Union_le_sum_mk (sum_le_sup _)
lemma mk_sUnion_le {α : Type u} (A : set (set α)) :
mk (⋃₀ A) ≤ mk A * cardinal.sup.{u u} (λ s : A, mk s) :=
by { rw [sUnion_eq_Union], apply mk_Union_le }
lemma mk_bUnion_le {ι α : Type u} (A : ι → set α) (s : set ι) :
mk (⋃(x ∈ s), A x) ≤ mk s * cardinal.sup.{u u} (λ x : s, mk (A x.1)) :=
by { rw [bUnion_eq_Union], apply mk_Union_le }
@[simp] lemma finset_card {α : Type u} {s : finset α} : ↑(finset.card s) = mk (↑s : set α) :=
by rw [fintype_card, nat_cast_inj, fintype.card_coe]
lemma finset_card_lt_omega (s : finset α) : mk (↑s : set α) < omega :=
by { rw [lt_omega_iff_fintype], exact ⟨finset.subtype.fintype s⟩ }
theorem mk_union_add_mk_inter {α : Type u} {S T : set α} : mk (S ∪ T : set α) + mk (S ∩ T : set α) = mk S + mk T :=
quot.sound ⟨equiv.set.union_sum_inter S T⟩
theorem mk_union_of_disjoint {α : Type u} {S T : set α} (H : disjoint S T) : mk (S ∪ T : set α) = mk S + mk T :=
quot.sound ⟨equiv.set.union (disjoint_iff.1 H)⟩
lemma mk_sum_compl {α} (s : set α) : #s + #(-s : set α) = #α :=
quotient.sound ⟨equiv.set.sum_compl s⟩
lemma mk_le_mk_of_subset {α} {s t : set α} (h : s ⊆ t) : mk s ≤ mk t :=
⟨ set.embedding_of_subset h ⟩
lemma mk_subtype_mono {p q : α → Prop} (h : ∀x, p x → q x) : mk {x // p x} ≤ mk {x // q x} :=
⟨embedding_of_subset h⟩
lemma mk_set_le (s : set α) : mk s ≤ mk α :=
mk_subtype_le s
lemma mk_image_eq_lift {α : Type u} {β : Type v} (f : α → β) (s : set α) (h : injective f) :
lift.{v u} (mk (f '' s)) = lift.{u v} (mk s) :=
lift_mk_eq.{v u 0}.mpr ⟨(equiv.set.image f s h).symm⟩
lemma mk_image_eq_of_inj_on_lift {α : Type u} {β : Type v} (f : α → β) (s : set α)
(h : inj_on f s) : lift.{v u} (mk (f '' s)) = lift.{u v} (mk s) :=
lift_mk_eq.{v u 0}.mpr ⟨(equiv.set.image_of_inj_on f s h).symm⟩
lemma mk_image_eq_of_inj_on {α β : Type u} (f : α → β) (s : set α) (h : inj_on f s) :
mk (f '' s) = mk s :=
quotient.sound ⟨(equiv.set.image_of_inj_on f s h).symm⟩
lemma mk_subtype_of_equiv {α β : Type u} (p : α → Prop) (e : α ≃ β) :
mk {a : α // p a} = mk {b : β // p (e.symm b)} :=
quotient.sound ⟨equiv.subtype_equiv_of_subtype' e⟩
lemma mk_sep (s : set α) (t : α → Prop) : mk ({ x ∈ s | t x } : set α) = mk { x : s | t x.1 } :=
quotient.sound ⟨equiv.set.sep s t⟩
lemma mk_preimage_of_injective_lift {α : Type u} {β : Type v} (f : α → β) (s : set β)
(h : injective f) : lift.{u v} (mk (f ⁻¹' s)) ≤ lift.{v u} (mk s) :=
begin
rw lift_mk_le.{u v 0}, use subtype.coind (λ x, f x.1) (λ x, x.2),
apply subtype.coind_injective, exact injective_comp h subtype.val_injective
end
lemma mk_preimage_of_subset_range_lift {α : Type u} {β : Type v} (f : α → β) (s : set β)
(h : s ⊆ range f) : lift.{v u} (mk s) ≤ lift.{u v} (mk (f ⁻¹' s)) :=
begin
rw lift_mk_le.{v u 0},
refine ⟨⟨_, _⟩⟩,
{ rintro ⟨y, hy⟩, rcases classical.subtype_of_exists (h hy) with ⟨x, rfl⟩, exact ⟨x, hy⟩ },
rintro ⟨y, hy⟩ ⟨y', hy'⟩, dsimp,
rcases classical.subtype_of_exists (h hy) with ⟨x, rfl⟩,
rcases classical.subtype_of_exists (h hy') with ⟨x', rfl⟩,
simp, intro hxx', rw hxx'
end
lemma mk_preimage_of_injective_of_subset_range_lift {β : Type v} (f : α → β) (s : set β)
(h : injective f) (h2 : s ⊆ range f) : lift.{u v} (mk (f ⁻¹' s)) = lift.{v u} (mk s) :=
le_antisymm (mk_preimage_of_injective_lift f s h) (mk_preimage_of_subset_range_lift f s h2)
lemma mk_preimage_of_injective (f : α → β) (s : set β) (h : injective f) :
mk (f ⁻¹' s) ≤ mk s :=
by { convert mk_preimage_of_injective_lift.{u u} f s h using 1; rw [lift_id] }
lemma mk_preimage_of_subset_range (f : α → β) (s : set β)
(h : s ⊆ range f) : mk s ≤ mk (f ⁻¹' s) :=
by { convert mk_preimage_of_subset_range_lift.{u u} f s h using 1; rw [lift_id] }
lemma mk_preimage_of_injective_of_subset_range (f : α → β) (s : set β)
(h : injective f) (h2 : s ⊆ range f) : mk (f ⁻¹' s) = mk s :=
by { convert mk_preimage_of_injective_of_subset_range_lift.{u u} f s h h2 using 1; rw [lift_id] }
lemma mk_subset_ge_of_subset_image_lift {α : Type u} {β : Type v} (f : α → β) {s : set α}
{t : set β} (h : t ⊆ f '' s) :
lift.{v u} (mk t) ≤ lift.{u v} (mk ({ x ∈ s | f x ∈ t } : set α)) :=
by { rw [image_eq_range] at h, convert mk_preimage_of_subset_range_lift _ _ h using 1, rw [mk_sep], refl }
lemma mk_subset_ge_of_subset_image (f : α → β) {s : set α} {t : set β} (h : t ⊆ f '' s) :
mk t ≤ mk ({ x ∈ s | f x ∈ t } : set α) :=
by { rw [image_eq_range] at h, convert mk_preimage_of_subset_range _ _ h using 1, rw [mk_sep], refl }
theorem le_mk_iff_exists_subset {c : cardinal} {α : Type u} {s : set α} :
c ≤ mk s ↔ ∃ p : set α, p ⊆ s ∧ mk p = c :=
begin
rw [le_mk_iff_exists_set, ←subtype.exists_set_subtype],
apply exists_congr, intro t, rw [mk_image_eq], apply subtype.val_injective
end
/-- The function α^{<β}, defined to be sup_{γ < β} α^γ.
We index over {s : set β.out // mk s < β } instead of {γ // γ < β}, because the latter lives in a
higher universe -/
noncomputable def powerlt (α β : cardinal.{u}) : cardinal.{u} :=
sup.{u u} (λ(s : {s : set β.out // mk s < β}), α ^ mk.{u} s)
infix ` ^< `:80 := powerlt
theorem powerlt_aux {c c' : cardinal} (h : c < c') :
∃(s : {s : set c'.out // mk s < c'}), mk s = c :=
begin
cases out_embedding.mp (le_of_lt h) with f,
have : mk ↥(range ⇑f) = c, { rwa [mk_range_eq, mk, quotient.out_eq c], exact f.2 },
exact ⟨⟨range f, by convert h⟩, this⟩
end
lemma le_powerlt {c₁ c₂ c₃ : cardinal} (h : c₂ < c₃) : c₁ ^ c₂ ≤ c₁ ^< c₃ :=
by { rcases powerlt_aux h with ⟨s, rfl⟩, apply le_sup _ s }
lemma powerlt_le {c₁ c₂ c₃ : cardinal} : c₁ ^< c₂ ≤ c₃ ↔ ∀(c₄ < c₂), c₁ ^ c₄ ≤ c₃ :=
begin
rw [powerlt, sup_le],
split,
{ intros h c₄ hc₄, rcases powerlt_aux hc₄ with ⟨s, rfl⟩, exact h s },
intros h s, exact h _ s.2
end
lemma powerlt_le_powerlt_left {a b c : cardinal} (h : b ≤ c) : a ^< b ≤ a ^< c :=
by { rw [powerlt, sup_le], rintro ⟨s, hs⟩, apply le_powerlt, exact lt_of_lt_of_le hs h }
lemma powerlt_succ {c₁ c₂ : cardinal} (h : c₁ ≠ 0) : c₁ ^< c₂.succ = c₁ ^ c₂ :=
begin
apply le_antisymm,
{ rw powerlt_le, intros c₃ h2, apply power_le_power_left h, rwa [←lt_succ] },
{ apply le_powerlt, apply lt_succ_self }
end
lemma powerlt_max {c₁ c₂ c₃ : cardinal} : c₁ ^< max c₂ c₃ = max (c₁ ^< c₂) (c₁ ^< c₃) :=
by { cases le_total c₂ c₃; simp only [max_eq_left, max_eq_right, h, powerlt_le_powerlt_left] }
lemma zero_powerlt {a : cardinal} (h : a ≠ 0) : 0 ^< a = 1 :=
begin
apply le_antisymm,
{ rw [powerlt_le], intros c hc, apply zero_power_le },
convert le_powerlt (pos_iff_ne_zero.2 h), rw [power_zero]
end
lemma powerlt_zero {a : cardinal} : a ^< 0 = 0 :=
by { apply sup_eq_zero, rintro ⟨x, hx⟩, rw [←not_le] at hx, apply hx, apply zero_le }
end cardinal
|
eca900c78e2c83ca4d962db454420d7b0c97bc72
|
1abd1ed12aa68b375cdef28959f39531c6e95b84
|
/src/measure_theory/measure/hausdorff.lean
|
c6278be73ab7048ca36a85a886e6101e94f546dd
|
[
"Apache-2.0"
] |
permissive
|
jumpy4/mathlib
|
d3829e75173012833e9f15ac16e481e17596de0f
|
af36f1a35f279f0e5b3c2a77647c6bf2cfd51a13
|
refs/heads/master
| 1,693,508,842,818
| 1,636,203,271,000
| 1,636,203,271,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 43,618
|
lean
|
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.metric_space.metric_separated
import measure_theory.constructions.borel_space
import measure_theory.measure.lebesgue
import analysis.special_functions.pow
import topology.metric_space.holder
import data.equiv.list
/-!
# Hausdorff measure and metric (outer) measures
In this file we define the `d`-dimensional Hausdorff measure on an (extended) metric space `X` and
the Hausdorff dimension of a set in an (extended) metric space. Let `μ d δ` be the maximal outer
measure such that `μ d δ s ≤ (emetric.diam s) ^ d` for every set of diameter less than `δ`. Then
the Hausdorff measure `μH[d] s` of `s` is defined as `⨆ δ > 0, μ d δ s`. By Caratheodory theorem
`measure_theory.outer_measure.is_metric.borel_le_caratheodory`, this is a Borel measure on `X`.
The value of `μH[d]`, `d > 0`, on a set `s` (measurable or not) is given by
```
μH[d] s = ⨆ (r : ℝ≥0∞) (hr : 0 < r), ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n)
(ht : ∀ n, emetric.diam (t n) ≤ r), ∑' n, emetric.diam (t n) ^ d
```
For every set `s` for any `d < d'` we have either `μH[d] s = ∞` or `μH[d'] s = 0`, see
`measure_theory.measure.hausdorff_measure_zero_or_top`. In
`topology.metric_space.hausdorff_dimension` we use this fact to define the Hausdorff dimension
`dimH` of a set in an (extended) metric space.
We also define two generalizations of the Hausdorff measure. In one generalization (see
`measure_theory.measure.mk_metric`) we take any function `m (diam s)` instead of `(diam s) ^ d`. In
an even more general definition (see `measure_theory.measure.mk_metric'`) we use any function
of `m : set X → ℝ≥0∞`. Some authors start with a partial function `m` defined only on some sets
`s : set X` (e.g., only on balls or only on measurable sets). This is equivalent to our definition
applied to `measure_theory.extend m`.
We also define a predicate `measure_theory.outer_measure.is_metric` which says that an outer measure
is additive on metric separated pairs of sets: `μ (s ∪ t) = μ s + μ t` provided that
`⨅ (x ∈ s) (y ∈ t), edist x y ≠ 0`. This is the property required for the Caratheodory theorem
`measure_theory.outer_measure.is_metric.borel_le_caratheodory`, so we prove this theorem for any
metric outer measure, then prove that outer measures constructed using `mk_metric'` are metric outer
measures.
## Main definitions
* `measure_theory.outer_measure.is_metric`: an outer measure `μ` is called *metric* if
`μ (s ∪ t) = μ s + μ t` for any two metric separated sets `s` and `t`. A metric outer measure in a
Borel extended metric space is guaranteed to satisfy the Caratheodory condition, see
`measure_theory.outer_measure.is_metric.borel_le_caratheodory`.
* `measure_theory.outer_measure.mk_metric'` and its particular case
`measure_theory.outer_measure.mk_metric`: a construction of an outer measure that is guaranteed to
be metric. Both constructions are generalizations of the Hausdorff measure. The same measures
interpreted as Borel measures are called `measure_theory.measure.mk_metric'` and
`measure_theory.measure.mk_metric`.
* `measure_theory.measure.hausdorff_measure` a.k.a. `μH[d]`: the `d`-dimensional Hausdorff measure.
There are many definitions of the Hausdorff measure that differ from each other by a
multiplicative constant. We put
`μH[d] s = ⨆ r > 0, ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n) (ht : ∀ n, emetric.diam (t n) ≤ r),
∑' n, ⨆ (ht : ¬set.subsingleton (t n)), (emetric.diam (t n)) ^ d`,
see `measure_theory.measure.hausdorff_measure_apply'`. In the most interesting case `0 < d` one
can omit the `⨆ (ht : ¬set.subsingleton (t n))` part.
## Main statements
### Basic properties
* `measure_theory.outer_measure.is_metric.borel_le_caratheodory`: if `μ` is a metric outer measure
on an extended metric space `X` (that is, it is additive on pairs of metric separated sets), then
every Borel set is Caratheodory measurable (hence, `μ` defines an actual
`measure_theory.measure`). See also `measure_theory.measure.mk_metric`.
* `measure_theory.measure.hausdorff_measure_mono`: `μH[d] s` is an antitone function
of `d`.
* `measure_theory.measure.hausdorff_measure_zero_or_top`: if `d₁ < d₂`, then for any `s`, either
`μH[d₂] s = 0` or `μH[d₁] s = ∞`. Together with the previous lemma, this means that `μH[d] s` is
equal to infinity on some ray `(-∞, D)` and is equal to zero on `(D, +∞)`, where `D` is a possibly
infinite number called the *Hausdorff dimension* of `s`; `μH[D] s` can be zero, infinity, or
anything in between.
* `measure_theory.measure.no_atoms_hausdorff`: Hausdorff measure has no atoms.
### Hausdorff measure in `ℝⁿ`
* `measure_theory.hausdorff_measure_pi_real`: for a nonempty `ι`, `μH[card ι]` on `ι → ℝ` equals
Lebesgue measure.
## Notations
We use the following notation localized in `measure_theory`.
- `μH[d]` : `measure_theory.measure.hausdorff_measure d`
## Implementation notes
There are a few similar constructions called the `d`-dimensional Hausdorff measure. E.g., some
sources only allow coverings by balls and use `r ^ d` instead of `(diam s) ^ d`. While these
construction lead to different Hausdorff measures, they lead to the same notion of the Hausdorff
dimension.
Some sources define the `0`-dimensional Hausdorff measure to be the counting measure. We define it
to be zero on subsingletons because this way we can have a
`measure.has_no_atoms (measure.hausdorff_measure d)` instance.
## TODO
* prove that `1`-dimensional Hausdorff measure on `ℝ` equals `volume`;
* prove a similar statement for `ℝ × ℝ`.
## References
* [Herbert Federer, Geometric Measure Theory, Chapter 2.10][Federer1996]
## Tags
Hausdorff measure, measure, metric measure
-/
open_locale nnreal ennreal topological_space big_operators
open emetric set function filter encodable finite_dimensional topological_space
noncomputable theory
variables {ι X Y : Type*} [emetric_space X] [emetric_space Y]
namespace measure_theory
namespace outer_measure
/-!
### Metric outer measures
In this section we define metric outer measures and prove Caratheodory theorem: a metric outer
measure has the Caratheodory property.
-/
/-- We say that an outer measure `μ` in an (e)metric space is *metric* if `μ (s ∪ t) = μ s + μ t`
for any two metric separated sets `s`, `t`. -/
def is_metric (μ : outer_measure X) : Prop :=
∀ (s t : set X), is_metric_separated s t → μ (s ∪ t) = μ s + μ t
namespace is_metric
variables {μ : outer_measure X}
/-- A metric outer measure is additive on a finite set of pairwise metric separated sets. -/
lemma finset_Union_of_pairwise_separated (hm : is_metric μ) {I : finset ι} {s : ι → set X}
(hI : ∀ (i ∈ I) (j ∈ I), i ≠ j → is_metric_separated (s i) (s j)) :
μ (⋃ i ∈ I, s i) = ∑ i in I, μ (s i) :=
begin
classical,
induction I using finset.induction_on with i I hiI ihI hI, { simp },
simp only [finset.mem_insert] at hI,
rw [finset.set_bUnion_insert, hm, ihI, finset.sum_insert hiI],
exacts [λ i hi j hj hij, (hI i (or.inr hi) j (or.inr hj) hij),
is_metric_separated.finset_Union_right
(λ j hj, hI i (or.inl rfl) j (or.inr hj) (ne_of_mem_of_not_mem hj hiI).symm)]
end
/-- Caratheodory theorem. If `m` is a metric outer measure, then every Borel measurable set `t` is
Caratheodory measurable: for any (not necessarily measurable) set `s` we have
`μ (s ∩ t) + μ (s \ t) = μ s`. -/
lemma borel_le_caratheodory (hm : is_metric μ) :
borel X ≤ μ.caratheodory :=
begin
rw [borel_eq_generate_from_is_closed],
refine measurable_space.generate_from_le (λ t ht, μ.is_caratheodory_iff_le.2 $ λ s, _),
set S : ℕ → set X := λ n, {x ∈ s | (↑n)⁻¹ ≤ inf_edist x t},
have n0 : ∀ {n : ℕ}, (n⁻¹ : ℝ≥0∞) ≠ 0, from λ n, ennreal.inv_ne_zero.2 ennreal.coe_nat_ne_top,
have Ssep : ∀ n, is_metric_separated (S n) t,
from λ n, ⟨n⁻¹, n0, λ x hx y hy, hx.2.trans $ inf_edist_le_edist_of_mem hy⟩,
have Ssep' : ∀ n, is_metric_separated (S n) (s ∩ t),
from λ n, (Ssep n).mono subset.rfl (inter_subset_right _ _),
have S_sub : ∀ n, S n ⊆ s \ t,
from λ n, subset_inter (inter_subset_left _ _) (Ssep n).subset_compl_right,
have hSs : ∀ n, μ (s ∩ t) + μ (S n) ≤ μ s, from λ n,
calc μ (s ∩ t) + μ (S n) = μ (s ∩ t ∪ S n) :
eq.symm $ hm _ _ $ (Ssep' n).symm
... ≤ μ (s ∩ t ∪ s \ t) : by { mono*, exact le_rfl }
... = μ s : by rw [inter_union_diff],
have Union_S : (⋃ n, S n) = s \ t,
{ refine subset.antisymm (Union_subset S_sub) _,
rintro x ⟨hxs, hxt⟩,
rw mem_iff_inf_edist_zero_of_closed ht at hxt,
rcases ennreal.exists_inv_nat_lt hxt with ⟨n, hn⟩,
exact mem_Union.2 ⟨n, hxs, hn.le⟩ },
/- Now we have `∀ n, μ (s ∩ t) + μ (S n) ≤ μ s` and we need to prove
`μ (s ∩ t) + μ (⋃ n, S n) ≤ μ s`. We can't pass to the limit because
`μ` is only an outer measure. -/
by_cases htop : μ (s \ t) = ∞,
{ rw [htop, ennreal.add_top, ← htop],
exact μ.mono (diff_subset _ _) },
suffices : μ (⋃ n, S n) ≤ ⨆ n, μ (S n),
calc μ (s ∩ t) + μ (s \ t) = μ (s ∩ t) + μ (⋃ n, S n) :
by rw Union_S
... ≤ μ (s ∩ t) + ⨆ n, μ (S n) :
add_le_add le_rfl this
... = ⨆ n, μ (s ∩ t) + μ (S n) : ennreal.add_supr
... ≤ μ s : supr_le hSs,
/- It suffices to show that `∑' k, μ (S (k + 1) \ S k) ≠ ∞`. Indeed, if we have this,
then for all `N` we have `μ (⋃ n, S n) ≤ μ (S N) + ∑' k, m (S (N + k + 1) \ S (N + k))`
and the second term tends to zero, see `outer_measure.Union_nat_of_monotone_of_tsum_ne_top`
for details. -/
have : ∀ n, S n ⊆ S (n + 1), from λ n x hx,
⟨hx.1, le_trans (ennreal.inv_le_inv.2 $ ennreal.coe_nat_le_coe_nat.2 n.le_succ) hx.2⟩,
refine (μ.Union_nat_of_monotone_of_tsum_ne_top this _).le, clear this,
/- While the sets `S (k + 1) \ S k` are not pairwise metric separated, the sets in each
subsequence `S (2 * k + 1) \ S (2 * k)` and `S (2 * k + 2) \ S (2 * k)` are metric separated,
so `m` is additive on each of those sequences. -/
rw [← tsum_even_add_odd ennreal.summable ennreal.summable, ennreal.add_ne_top],
suffices : ∀ a, (∑' (k : ℕ), μ (S (2 * k + 1 + a) \ S (2 * k + a))) ≠ ∞,
from ⟨by simpa using this 0, by simpa using this 1⟩,
refine λ r, ne_top_of_le_ne_top htop _,
rw [← Union_S, ennreal.tsum_eq_supr_nat, supr_le_iff],
intro n,
rw [← hm.finset_Union_of_pairwise_separated],
{ exact μ.mono (Union_subset $ λ i, Union_subset $ λ hi x hx, mem_Union.2 ⟨_, hx.1⟩) },
suffices : ∀ i j, i < j → is_metric_separated (S (2 * i + 1 + r)) (s \ S (2 * j + r)),
from λ i _ j _ hij, hij.lt_or_lt.elim
(λ h, (this i j h).mono (inter_subset_left _ _) (λ x hx, ⟨hx.1.1, hx.2⟩))
(λ h, (this j i h).symm.mono (λ x hx, ⟨hx.1.1, hx.2⟩) (inter_subset_left _ _)),
intros i j hj,
have A : ((↑(2 * j + r))⁻¹ : ℝ≥0∞) < (↑(2 * i + 1 + r))⁻¹,
by { rw [ennreal.inv_lt_inv, ennreal.coe_nat_lt_coe_nat], linarith },
refine ⟨(↑(2 * i + 1 + r))⁻¹ - (↑(2 * j + r))⁻¹, by simpa using A, λ x hx y hy, _⟩,
have : inf_edist y t < (↑(2 * j + r))⁻¹, from not_le.1 (λ hle, hy.2 ⟨hy.1, hle⟩),
rcases exists_edist_lt_of_inf_edist_lt this with ⟨z, hzt, hyz⟩,
have hxz : (↑(2 * i + 1 + r))⁻¹ ≤ edist x z, from le_inf_edist.1 hx.2 _ hzt,
apply ennreal.le_of_add_le_add_right hyz.ne_top,
refine le_trans _ (edist_triangle _ _ _),
refine (add_le_add le_rfl hyz.le).trans (eq.trans_le _ hxz),
rw [tsub_add_cancel_of_le A.le]
end
lemma le_caratheodory [measurable_space X] [borel_space X] (hm : is_metric μ) :
‹measurable_space X› ≤ μ.caratheodory :=
by { rw @borel_space.measurable_eq X _ _, exact hm.borel_le_caratheodory }
end is_metric
/-!
### Constructors of metric outer measures
In this section we provide constructors `measure_theory.outer_measure.mk_metric'` and
`measure_theory.outer_measure.mk_metric` and prove that these outer measures are metric outer
measures. We also prove basic lemmas about `map`/`comap` of these measures.
-/
/-- Auxiliary definition for `outer_measure.mk_metric'`: given a function on sets
`m : set X → ℝ≥0∞`, returns the maximal outer measure `μ` such that `μ s ≤ m s`
for any set `s` of diameter at most `r`.-/
def mk_metric'.pre (m : set X → ℝ≥0∞) (r : ℝ≥0∞) :
outer_measure X :=
bounded_by $ extend (λ s (hs : diam s ≤ r), m s)
/-- Given a function `m : set X → ℝ≥0∞`, `mk_metric' m` is the supremum of `mk_metric'.pre m r`
over `r > 0`. Equivalently, it is the limit of `mk_metric'.pre m r` as `r` tends to zero from
the right. -/
def mk_metric' (m : set X → ℝ≥0∞) :
outer_measure X :=
⨆ r > 0, mk_metric'.pre m r
/-- Given a function `m : ℝ≥0∞ → ℝ≥0∞` and `r > 0`, let `μ r` be the maximal outer measure such that
`μ s = 0` on subsingletons and `μ s ≤ m (emetric.diam s)` whenever `emetric.diam s < r`. Then
`mk_metric m = ⨆ r > 0, μ r`. We add `⨆ (hs : ¬s.subsingleton)` to ensure that in the case
`m x = x ^ d` the definition gives the expected result for `d = 0`. -/
def mk_metric (m : ℝ≥0∞ → ℝ≥0∞) : outer_measure X :=
mk_metric' (λ s, ⨆ (hs : ¬s.subsingleton), m (diam s))
namespace mk_metric'
variables {m : set X → ℝ≥0∞} {r : ℝ≥0∞} {μ : outer_measure X} {s : set X}
lemma le_pre : μ ≤ pre m r ↔ ∀ s : set X, diam s ≤ r → μ s ≤ m s :=
by simp only [pre, le_bounded_by, extend, le_infi_iff]
lemma pre_le (hs : diam s ≤ r) : pre m r s ≤ m s :=
(bounded_by_le _).trans $ infi_le _ hs
lemma mono_pre (m : set X → ℝ≥0∞) {r r' : ℝ≥0∞} (h : r ≤ r') :
pre m r' ≤ pre m r :=
le_pre.2 $ λ s hs, pre_le (hs.trans h)
lemma mono_pre_nat (m : set X → ℝ≥0∞) :
monotone (λ k : ℕ, pre m k⁻¹) :=
λ k l h, le_pre.2 $ λ s hs, pre_le (hs.trans $ by simpa)
lemma tendsto_pre (m : set X → ℝ≥0∞) (s : set X) :
tendsto (λ r, pre m r s) (𝓝[Ioi 0] 0) (𝓝 $ mk_metric' m s) :=
begin
rw [← map_coe_Ioi_at_bot, tendsto_map'_iff],
simp only [mk_metric', outer_measure.supr_apply, supr_subtype'],
exact tendsto_at_bot_supr (λ r r' hr, mono_pre _ hr _)
end
lemma tendsto_pre_nat (m : set X → ℝ≥0∞) (s : set X) :
tendsto (λ n : ℕ, pre m n⁻¹ s) at_top (𝓝 $ mk_metric' m s) :=
begin
refine (tendsto_pre m s).comp (tendsto_inf.2 ⟨ennreal.tendsto_inv_nat_nhds_zero, _⟩),
refine tendsto_principal.2 (eventually_of_forall $ λ n, _),
simp
end
lemma eq_supr_nat (m : set X → ℝ≥0∞) :
mk_metric' m = ⨆ n : ℕ, mk_metric'.pre m n⁻¹ :=
begin
ext1 s,
rw supr_apply,
refine tendsto_nhds_unique (mk_metric'.tendsto_pre_nat m s)
(tendsto_at_top_supr $ λ k l hkl, mk_metric'.mono_pre_nat m hkl s)
end
/-- `measure_theory.outer_measure.mk_metric'.pre m r` is a trimmed measure provided that
`m (closure s) = m s` for any set `s`. -/
lemma trim_pre [measurable_space X] [opens_measurable_space X]
(m : set X → ℝ≥0∞) (hcl : ∀ s, m (closure s) = m s) (r : ℝ≥0∞) :
(pre m r).trim = pre m r :=
begin
refine le_antisymm (le_pre.2 $ λ s hs, _) (le_trim _),
rw trim_eq_infi,
refine (infi_le_of_le (closure s) $ infi_le_of_le subset_closure $
infi_le_of_le measurable_set_closure ((pre_le _).trans_eq (hcl _))),
rwa diam_closure
end
end mk_metric'
/-- An outer measure constructed using `outer_measure.mk_metric'` is a metric outer measure. -/
lemma mk_metric'_is_metric (m : set X → ℝ≥0∞) :
(mk_metric' m).is_metric :=
begin
rintros s t ⟨r, r0, hr⟩,
refine tendsto_nhds_unique_of_eventually_eq
(mk_metric'.tendsto_pre _ _)
((mk_metric'.tendsto_pre _ _).add (mk_metric'.tendsto_pre _ _)) _,
rw [← pos_iff_ne_zero] at r0,
filter_upwards [Ioo_mem_nhds_within_Ioi ⟨le_rfl, r0⟩],
rintro ε ⟨ε0, εr⟩,
refine bounded_by_union_of_top_of_nonempty_inter _,
rintro u ⟨x, hxs, hxu⟩ ⟨y, hyt, hyu⟩,
have : ε < diam u, from εr.trans_le ((hr x hxs y hyt).trans $ edist_le_diam_of_mem hxu hyu),
exact infi_eq_top.2 (λ h, (this.not_le h).elim)
end
/-- If `c ∉ {0, ∞}` and `m₁ d ≤ c * m₂ d` for `0 < d < ε` for some `ε > 0`
(we use `≤ᶠ[𝓝[Ioi 0]]` to state this), then `mk_metric m₁ hm₁ ≤ c • mk_metric m₂ hm₂`. -/
lemma mk_metric_mono_smul {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} {c : ℝ≥0∞} (hc : c ≠ ∞) (h0 : c ≠ 0)
(hle : m₁ ≤ᶠ[𝓝[Ioi 0] 0] c • m₂) :
(mk_metric m₁ : outer_measure X) ≤ c • mk_metric m₂ :=
begin
classical,
rcases (mem_nhds_within_Ioi_iff_exists_Ioo_subset' ennreal.zero_lt_one).1 hle with ⟨r, hr0, hr⟩,
refine λ s, le_of_tendsto_of_tendsto (mk_metric'.tendsto_pre _ s)
(ennreal.tendsto.const_mul (mk_metric'.tendsto_pre _ s) (or.inr hc))
(mem_of_superset (Ioo_mem_nhds_within_Ioi ⟨le_rfl, hr0⟩) (λ r' hr', _)),
simp only [mem_set_of_eq, mk_metric'.pre],
rw [← smul_apply, smul_bounded_by hc],
refine le_bounded_by.2 (λ t, (bounded_by_le _).trans _) _,
simp only [smul_eq_mul, pi.smul_apply, extend, infi_eq_if],
split_ifs with ht ht,
{ refine supr_le (λ ht₁, _),
rw [supr_eq_if, if_pos ht₁],
refine hr ⟨_, ht.trans_lt hr'.2⟩,
exact pos_iff_ne_zero.2 (mt diam_eq_zero_iff.1 ht₁) },
{ simp [h0] }
end
/-- If `m₁ d ≤ m₂ d` for `0 < d < ε` for some `ε > 0` (we use `≤ᶠ[𝓝[Ioi 0]]` to state this), then
`mk_metric m₁ hm₁ ≤ mk_metric m₂ hm₂`-/
lemma mk_metric_mono {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} (hle : m₁ ≤ᶠ[𝓝[Ioi 0] 0] m₂) :
(mk_metric m₁ : outer_measure X) ≤ mk_metric m₂ :=
by { convert mk_metric_mono_smul ennreal.one_ne_top ennreal.zero_lt_one.ne' _; simp * }
lemma isometry_comap_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) {f : X → Y} (hf : isometry f)
(H : monotone (λ d : {d : ℝ≥0∞ | d ≠ 0}, m d) ∨ surjective f) :
comap f (mk_metric m) = mk_metric m :=
begin
simp only [mk_metric, mk_metric', mk_metric'.pre, induced_outer_measure, comap_supr],
refine supr_congr id surjective_id (λ ε, supr_congr id surjective_id $ λ hε, _),
rw comap_bounded_by _ (H.imp (λ h_mono, _) id),
{ congr' with s : 1,
apply extend_congr,
{ simp [hf.ediam_image] },
{ intros, simp [hf.injective.subsingleton_image_iff, hf.ediam_image] } },
{ refine λ s t hst, infi_le_infi2 (λ ht, ⟨(diam_mono hst).trans ht, supr_le $ λ hs, _⟩),
have ht : ¬(t : set Y).subsingleton, from λ ht, hs (ht.mono hst),
refine (@h_mono ⟨_, mt diam_eq_zero_iff.1 hs⟩ ⟨_, mt diam_eq_zero_iff.1 ht⟩
(diam_mono hst)).trans _,
exact le_supr (λ h : ¬(t : set Y).subsingleton, m (diam (t : set Y))) ht }
end
lemma isometry_map_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) {f : X → Y} (hf : isometry f)
(H : monotone (λ d : {d : ℝ≥0∞ | d ≠ 0}, m d) ∨ surjective f) :
map f (mk_metric m) = restrict (range f) (mk_metric m) :=
by rw [← isometry_comap_mk_metric _ hf H, map_comap]
lemma isometric_comap_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (f : X ≃ᵢ Y) :
comap f (mk_metric m) = mk_metric m :=
isometry_comap_mk_metric _ f.isometry (or.inr f.surjective)
lemma isometric_map_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (f : X ≃ᵢ Y) :
map f (mk_metric m) = mk_metric m :=
by rw [← isometric_comap_mk_metric _ f, map_comap_of_surjective f.surjective]
lemma trim_mk_metric [measurable_space X] [borel_space X] (m : ℝ≥0∞ → ℝ≥0∞) :
(mk_metric m : outer_measure X).trim = mk_metric m :=
begin
simp only [mk_metric, mk_metric'.eq_supr_nat, trim_supr],
congr' 1 with n : 1,
refine mk_metric'.trim_pre _ (λ s, _) _,
simp
end
lemma le_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (μ : outer_measure X) (hμ : ∀ x, μ {x} = 0)
(r : ℝ≥0∞) (h0 : 0 < r) (hr : ∀ s, diam s ≤ r → ¬s.subsingleton → μ s ≤ m (diam s)) :
μ ≤ mk_metric m :=
le_bsupr_of_le r h0 $ mk_metric'.le_pre.2 $ λ s hs,
begin
by_cases h : s.subsingleton,
exacts [h.induction_on (μ.empty'.trans_le (zero_le _)) (λ x, ((hμ x).trans_le (zero_le _))),
le_supr_of_le h (hr _ hs h)]
end
end outer_measure
/-!
### Metric measures
In this section we use `measure_theory.outer_measure.to_measure` and theorems about
`measure_theory.outer_measure.mk_metric'`/`measure_theory.outer_measure.mk_metric` to define
`measure_theory.measure.mk_metric'`/`measure_theory.measure.mk_metric`. We also restate some lemmas
about metric outer measures for metric measures.
-/
namespace measure
variables [measurable_space X] [borel_space X]
/-- Given a function `m : set X → ℝ≥0∞`, `mk_metric' m` is the supremum of `μ r`
over `r > 0`, where `μ r` is the maximal outer measure `μ` such that `μ s ≤ m s`
for all `s`. While each `μ r` is an *outer* measure, the supremum is a measure. -/
def mk_metric' (m : set X → ℝ≥0∞) : measure X :=
(outer_measure.mk_metric' m).to_measure (outer_measure.mk_metric'_is_metric _).le_caratheodory
/-- Given a function `m : ℝ≥0∞ → ℝ≥0∞`, `mk_metric m` is the supremum of `μ r` over `r > 0`, where
`μ r` is the maximal outer measure `μ` such that `μ s ≤ m s` for all sets `s` that contain at least
two points. While each `mk_metric'.pre` is an *outer* measure, the supremum is a measure. -/
def mk_metric (m : ℝ≥0∞ → ℝ≥0∞) : measure X :=
(outer_measure.mk_metric m).to_measure (outer_measure.mk_metric'_is_metric _).le_caratheodory
@[simp] lemma mk_metric'_to_outer_measure (m : set X → ℝ≥0∞) :
(mk_metric' m).to_outer_measure = (outer_measure.mk_metric' m).trim :=
rfl
@[simp] lemma mk_metric_to_outer_measure (m : ℝ≥0∞ → ℝ≥0∞) :
(mk_metric m : measure X).to_outer_measure = outer_measure.mk_metric m :=
outer_measure.trim_mk_metric m
end measure
lemma outer_measure.coe_mk_metric [measurable_space X] [borel_space X] (m : ℝ≥0∞ → ℝ≥0∞) :
⇑(outer_measure.mk_metric m : outer_measure X) = measure.mk_metric m :=
by rw [← measure.mk_metric_to_outer_measure, coe_to_outer_measure]
namespace measure
variables [measurable_space X] [borel_space X]
/-- If `c ∉ {0, ∞}` and `m₁ d ≤ c * m₂ d` for `0 < d < ε` for some `ε > 0`
(we use `≤ᶠ[𝓝[Ioi 0]]` to state this), then `mk_metric m₁ hm₁ ≤ c • mk_metric m₂ hm₂`. -/
lemma mk_metric_mono_smul {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} {c : ℝ≥0∞} (hc : c ≠ ∞) (h0 : c ≠ 0)
(hle : m₁ ≤ᶠ[𝓝[Ioi 0] 0] c • m₂) :
(mk_metric m₁ : measure X) ≤ c • mk_metric m₂ :=
begin
intros s hs,
rw [← outer_measure.coe_mk_metric, coe_smul, ← outer_measure.coe_mk_metric],
exact outer_measure.mk_metric_mono_smul hc h0 hle s
end
/-- If `m₁ d ≤ m₂ d` for `0 < d < ε` for some `ε > 0` (we use `≤ᶠ[𝓝[Ioi 0]]` to state this), then
`mk_metric m₁ hm₁ ≤ mk_metric m₂ hm₂`-/
lemma mk_metric_mono {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} (hle : m₁ ≤ᶠ[𝓝[Ioi 0] 0] m₂) :
(mk_metric m₁ : measure X) ≤ mk_metric m₂ :=
by { convert mk_metric_mono_smul ennreal.one_ne_top ennreal.zero_lt_one.ne' _; simp * }
/-- A formula for `measure_theory.measure.mk_metric`. -/
lemma mk_metric_apply (m : ℝ≥0∞ → ℝ≥0∞) (s : set X) :
mk_metric m s = ⨆ (r : ℝ≥0∞) (hr : 0 < r), ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n)
(ht : ∀ n, diam (t n) ≤ r), ∑' n, ⨆ (ht : ¬(t n).subsingleton), m (diam (t n)) :=
begin
-- We mostly unfold the definitions but we need to switch the order of `∑'` and `⨅`
-- and merge `(t n).nonempty` with `¬subsingleton (t n)`
classical,
simp only [← outer_measure.coe_mk_metric, outer_measure.mk_metric, outer_measure.mk_metric',
outer_measure.supr_apply, outer_measure.mk_metric'.pre, outer_measure.bounded_by_apply,
extend],
refine supr_congr (λ r, r) surjective_id (λ r, supr_congr_Prop iff.rfl $ λ hr,
infi_congr _ surjective_id $ λ t, infi_congr_Prop iff.rfl $ λ ht, _),
by_cases htr : ∀ n, diam (t n) ≤ r,
{ rw [infi_eq_if, if_pos htr],
congr' 1 with n : 1,
simp only [infi_eq_if, htr n, id, if_true, supr_and'],
refine supr_congr_Prop (and_iff_right_of_imp $ λ h, _) (λ _, rfl),
contrapose! h,
rw [not_nonempty_iff_eq_empty.1 h],
exact subsingleton_empty },
{ rw [infi_eq_if, if_neg htr],
push_neg at htr, rcases htr with ⟨n, hn⟩,
refine ennreal.tsum_eq_top_of_eq_top ⟨n, _⟩,
rw [supr_eq_if, if_pos, infi_eq_if, if_neg],
exact hn.not_le,
rcases diam_pos_iff.1 ((zero_le r).trans_lt hn) with ⟨x, hx, -⟩,
exact ⟨x, hx⟩ }
end
lemma le_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (μ : measure X) [has_no_atoms μ] (ε : ℝ≥0∞) (h₀ : 0 < ε)
(h : ∀ s : set X, diam s ≤ ε → ¬s.subsingleton → μ s ≤ m (diam s)) :
μ ≤ mk_metric m :=
begin
rw [← to_outer_measure_le, mk_metric_to_outer_measure],
exact outer_measure.le_mk_metric m μ.to_outer_measure measure_singleton ε h₀ h
end
/-- To bound the Hausdorff measure (or, more generally, for a measure defined using
`measure_theory.measure.mk_metric`) of a set, one may use coverings with maximum diameter tending to
`0`, indexed by any sequence of encodable types. -/
lemma mk_metric_le_liminf_tsum {β : Type*} {ι : β → Type*} [∀ n, encodable (ι n)] (s : set X)
{l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X)
(ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i)
(m : ℝ≥0∞ → ℝ≥0∞) :
mk_metric m s ≤ liminf l (λ n, ∑' i, m (diam (t n i))) :=
begin
simp only [mk_metric_apply],
refine bsupr_le (λ ε hε, _),
refine le_of_forall_le_of_dense (λ c hc, _),
rcases ((frequently_lt_of_liminf_lt (by apply_auto_param) hc).and_eventually
((hr.eventually (gt_mem_nhds hε)).and (ht.and hst))).exists with ⟨n, hn, hrn, htn, hstn⟩,
set u : ℕ → set X := λ j, ⋃ b ∈ decode₂ (ι n) j, t n b,
refine binfi_le_of_le u (by rwa Union_decode₂) _,
refine infi_le_of_le (λ j, _) _,
{ rw emetric.diam_Union_mem_option,
exact bsupr_le (λ _ _, (htn _).trans hrn.le) },
{ calc (∑' (j : ℕ), ⨆ (ht : ¬(u j).subsingleton), m (diam (u j))) = _ :
tsum_Union_decode₂ (λ t : set X, ⨆ (h : ¬t.subsingleton), m (diam t)) (by simp) _
... ≤ _ : ennreal.tsum_le_tsum (λ b, supr_le $ λ htb, le_rfl)
... ≤ c : hn.le }
end
/-- To bound the Hausdorff measure (or, more generally, for a measure defined using
`measure_theory.measure.mk_metric`) of a set, one may use coverings with maximum diameter tending to
`0`, indexed by any sequence of finite types. -/
lemma mk_metric_le_liminf_sum {β : Type*} {ι : β → Type*} [hι : ∀ n, fintype (ι n)] (s : set X)
{l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X)
(ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i)
(m : ℝ≥0∞ → ℝ≥0∞) :
mk_metric m s ≤ liminf l (λ n, ∑ i, m (diam (t n i))) :=
begin
haveI : ∀ n, encodable (ι n), from λ n, fintype.encodable _,
simpa only [tsum_fintype] using mk_metric_le_liminf_tsum s r hr t ht hst m,
end
/-!
### Hausdorff measure and Hausdorff dimension
-/
/-- Hausdorff measure on an (e)metric space. -/
def hausdorff_measure (d : ℝ) : measure X := mk_metric (λ r, r ^ d)
localized "notation `μH[` d `]` := measure_theory.measure.hausdorff_measure d" in measure_theory
lemma le_hausdorff_measure (d : ℝ) (μ : measure X) [has_no_atoms μ] (ε : ℝ≥0∞) (h₀ : 0 < ε)
(h : ∀ s : set X, diam s ≤ ε → ¬s.subsingleton → μ s ≤ diam s ^ d) :
μ ≤ μH[d] :=
le_mk_metric _ μ ε h₀ h
/-- A formula for `μH[d] s` that works for all `d`. In case of a positive `d` a simpler formula
is available as `measure_theory.measure.hausdorff_measure_apply`. -/
lemma hausdorff_measure_apply' (d : ℝ) (s : set X) :
μH[d] s = ⨆ (r : ℝ≥0∞) (hr : 0 < r), ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n)
(ht : ∀ n, diam (t n) ≤ r), ∑' n, ⨆ (ht : ¬(t n).subsingleton), (diam (t n)) ^ d :=
mk_metric_apply _ _
/-- A formula for `μH[d] s` that works for all positive `d`. -/
lemma hausdorff_measure_apply {d : ℝ} (hd : 0 < d) (s : set X) :
μH[d] s = ⨆ (r : ℝ≥0∞) (hr : 0 < r), ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n)
(ht : ∀ n, diam (t n) ≤ r), ∑' n, diam (t n) ^ d :=
begin
classical,
rw hausdorff_measure_apply',
-- I wish `congr'` was able to generate this
refine supr_congr id surjective_id (λ r, supr_congr_Prop iff.rfl $ λ hr,
infi_congr id surjective_id $ λ t, infi_congr_Prop iff.rfl $ λ hts,
infi_congr_Prop iff.rfl $ λ ht, tsum_congr $ λ n, _),
rw [supr_eq_if], split_ifs with ht',
{ erw [diam_eq_zero_iff.2 ht', ennreal.zero_rpow_of_pos hd, ennreal.bot_eq_zero] },
{ refl }
end
/-- To bound the Hausdorff measure of a set, one may use coverings with maximum diameter tending
to `0`, indexed by any sequence of encodable types. -/
lemma hausdorff_measure_le_liminf_tsum {β : Type*} {ι : β → Type*} [hι : ∀ n, encodable (ι n)]
(d : ℝ) (s : set X)
{l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X)
(ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i) :
μH[d] s ≤ liminf l (λ n, ∑' i, diam (t n i) ^ d) :=
mk_metric_le_liminf_tsum s r hr t ht hst _
/-- To bound the Hausdorff measure of a set, one may use coverings with maximum diameter tending
to `0`, indexed by any sequence of finite types. -/
lemma hausdorff_measure_le_liminf_sum {β : Type*} {ι : β → Type*} [hι : ∀ n, fintype (ι n)]
(d : ℝ) (s : set X)
{l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X)
(ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i) :
μH[d] s ≤ liminf l (λ n, ∑ i, diam (t n i) ^ d) :=
mk_metric_le_liminf_sum s r hr t ht hst _
/-- If `d₁ < d₂`, then for any set `s` we have either `μH[d₂] s = 0`, or `μH[d₁] s = ∞`. -/
lemma hausdorff_measure_zero_or_top {d₁ d₂ : ℝ} (h : d₁ < d₂) (s : set X) :
μH[d₂] s = 0 ∨ μH[d₁] s = ∞ :=
begin
by_contra H, push_neg at H,
suffices : ∀ (c : ℝ≥0), c ≠ 0 → μH[d₂] s ≤ c * μH[d₁] s,
{ rcases ennreal.exists_nnreal_pos_mul_lt H.2 H.1 with ⟨c, hc0, hc⟩,
exact hc.not_le (this c (pos_iff_ne_zero.1 hc0)) },
intros c hc,
refine le_iff'.1 (mk_metric_mono_smul ennreal.coe_ne_top (by exact_mod_cast hc) _) s,
have : 0 < (c ^ (d₂ - d₁)⁻¹ : ℝ≥0∞),
{ rw [ennreal.coe_rpow_of_ne_zero hc, pos_iff_ne_zero, ne.def, ennreal.coe_eq_zero,
nnreal.rpow_eq_zero_iff],
exact mt and.left hc },
filter_upwards [Ioo_mem_nhds_within_Ioi ⟨le_rfl, this⟩],
rintro r ⟨hr₀, hrc⟩,
lift r to ℝ≥0 using ne_top_of_lt hrc,
rw [pi.smul_apply, smul_eq_mul, ← ennreal.div_le_iff_le_mul (or.inr ennreal.coe_ne_top)
(or.inr $ mt ennreal.coe_eq_zero.1 hc), ← ennreal.rpow_sub _ _ hr₀.ne' ennreal.coe_ne_top],
refine (ennreal.rpow_lt_rpow hrc (sub_pos.2 h)).le.trans _,
rw [← ennreal.rpow_mul, inv_mul_cancel (sub_pos.2 h).ne', ennreal.rpow_one],
exact le_rfl
end
/-- Hausdorff measure `μH[d] s` is monotone in `d`. -/
lemma hausdorff_measure_mono {d₁ d₂ : ℝ} (h : d₁ ≤ d₂) (s : set X) : μH[d₂] s ≤ μH[d₁] s :=
begin
rcases h.eq_or_lt with rfl|h, { exact le_rfl },
cases hausdorff_measure_zero_or_top h s with hs hs,
{ rw hs, exact zero_le _ },
{ rw hs, exact le_top }
end
instance no_atoms_hausdorff (d : ℝ) : has_no_atoms (hausdorff_measure d : measure X) :=
begin
refine ⟨λ x, _⟩,
rw [← nonpos_iff_eq_zero, hausdorff_measure_apply'],
refine bsupr_le (λ ε ε0, binfi_le_of_le (λ n, {x}) _ (infi_le_of_le (λ n, _) _)),
{ exact subset_Union (λ n, {x} : ℕ → set X) 0 },
{ simp only [emetric.diam_singleton, zero_le] },
{ simp }
end
end measure
open_locale measure_theory
open measure
/-!
### Hausdorff measure and Lebesgue measure
-/
/-- In the space `ι → ℝ`, Hausdorff measure coincides exactly with Lebesgue measure. -/
@[simp] theorem hausdorff_measure_pi_real {ι : Type*} [fintype ι] [nonempty ι] :
(μH[fintype.card ι] : measure (ι → ℝ)) = volume :=
begin
classical,
-- it suffices to check that the two measures coincide on products of rational intervals
refine (pi_eq_generate_from (λ i, real.borel_eq_generate_from_Ioo_rat.symm)
(λ i, real.is_pi_system_Ioo_rat) (λ i, real.finite_spanning_sets_in_Ioo_rat _)
_).symm,
simp only [mem_Union, mem_singleton_iff],
-- fix such a product `s` of rational intervals, of the form `Π (a i, b i)`.
intros s hs,
choose a b H using hs,
obtain rfl : s = λ i, Ioo (a i) (b i), from funext (λ i, (H i).2), replace H := λ i, (H i).1,
apply le_antisymm _,
-- first check that `volume s ≤ μH s`
{ have Hle : volume ≤ (μH[fintype.card ι] : measure (ι → ℝ)),
{ refine le_hausdorff_measure _ _ ∞ ennreal.coe_lt_top (λ s h₁ h₂, _),
rw [ennreal.rpow_nat_cast],
exact real.volume_pi_le_diam_pow s },
rw [← volume_pi_pi (λ i, Ioo (a i : ℝ) (b i)) (λ i, measurable_set_Ioo)],
exact measure.le_iff'.1 Hle _ },
/- For the other inequality `μH s ≤ volume s`, we use a covering of `s` by sets of small diameter
`1/n`, namely cubes with left-most point of the form `a i + f i / n` with `f i` ranging between
`0` and `⌈(b i - a i) * n⌉`. Their number is asymptotic to `n^d * Π (b i - a i)`. -/
have I : ∀ i, 0 ≤ (b i : ℝ) - a i := λ i, by simpa only [sub_nonneg, rat.cast_le] using (H i).le,
let γ := λ (n : ℕ), (Π (i : ι), fin ⌈((b i : ℝ) - a i) * n⌉₊),
let t : Π (n : ℕ), γ n → set (ι → ℝ) :=
λ n f, set.pi univ (λ i, Icc (a i + f i / n) (a i + (f i + 1) / n)),
have A : tendsto (λ (n : ℕ), 1/(n : ℝ≥0∞)) at_top (𝓝 0),
by simp only [one_div, ennreal.tendsto_inv_nat_nhds_zero],
have B : ∀ᶠ n in at_top, ∀ (i : γ n), diam (t n i) ≤ 1 / n,
{ apply eventually_at_top.2 ⟨1, λ n hn, _⟩,
assume f,
apply diam_pi_le_of_le (λ b, _),
simp only [real.ediam_Icc, add_div, ennreal.of_real_div_of_pos (nat.cast_pos.mpr hn), le_refl,
add_sub_add_left_eq_sub, add_sub_cancel', ennreal.of_real_one, ennreal.of_real_coe_nat] },
have C : ∀ᶠ n in at_top, set.pi univ (λ (i : ι), Ioo (a i : ℝ) (b i)) ⊆ ⋃ (i : γ n), t n i,
{ apply eventually_at_top.2 ⟨1, λ n hn, _⟩,
have npos : (0 : ℝ) < n := nat.cast_pos.2 hn,
assume x hx,
simp only [mem_Ioo, mem_univ_pi] at hx,
simp only [mem_Union, mem_Ioo, mem_univ_pi, coe_coe],
let f : γ n := λ i, ⟨⌊(x i - a i) * n⌋₊,
begin
apply nat.floor_lt_ceil_of_lt_of_pos,
{ refine (mul_lt_mul_right npos).2 _,
simp only [(hx i).right, sub_lt_sub_iff_right] },
{ refine mul_pos _ npos,
simpa only [rat.cast_lt, sub_pos] using H i }
end⟩,
refine ⟨f, λ i, ⟨_, _⟩⟩,
{ calc (a i : ℝ) + ⌊(x i - a i) * n⌋₊ / n
≤ (a i : ℝ) + ((x i - a i) * n) / n :
begin
refine add_le_add le_rfl ((div_le_div_right npos).2 _),
exact nat.floor_le (mul_nonneg (sub_nonneg.2 (hx i).1.le) npos.le),
end
... = x i : by field_simp [npos.ne'] },
{ calc x i
= (a i : ℝ) + ((x i - a i) * n) / n : by field_simp [npos.ne']
... ≤ (a i : ℝ) + (⌊(x i - a i) * n⌋₊ + 1) / n :
add_le_add le_rfl ((div_le_div_right npos).2 (nat.lt_floor_add_one _).le) } },
calc μH[fintype.card ι] (set.pi univ (λ (i : ι), Ioo (a i : ℝ) (b i)))
≤ liminf at_top (λ (n : ℕ), ∑ (i : γ n), diam (t n i) ^ ↑(fintype.card ι)) :
hausdorff_measure_le_liminf_sum _ (set.pi univ (λ i, Ioo (a i : ℝ) (b i)))
(λ (n : ℕ), 1/(n : ℝ≥0∞)) A t B C
... ≤ liminf at_top (λ (n : ℕ), ∑ (i : γ n), (1/n) ^ (fintype.card ι)) :
begin
refine liminf_le_liminf _ (by is_bounded_default),
filter_upwards [B],
assume n hn,
apply finset.sum_le_sum (λ i _, _),
rw ennreal.rpow_nat_cast,
exact pow_le_pow_of_le_left' (hn i) _,
end
... = liminf at_top (λ (n : ℕ), ∏ (i : ι), (⌈((b i : ℝ) - a i) * n⌉₊ : ℝ≥0∞) / n) :
begin
simp only [finset.card_univ, nat.cast_prod, one_mul, fintype.card_fin,
finset.sum_const, nsmul_eq_mul, fintype.card_pi, div_eq_mul_inv, finset.prod_mul_distrib,
finset.prod_const]
end
... = ∏ (i : ι), volume (Ioo (a i : ℝ) (b i)) :
begin
simp only [real.volume_Ioo],
apply tendsto.liminf_eq,
refine ennreal.tendsto_finset_prod_of_ne_top _ (λ i hi, _) (λ i hi, _),
{ apply tendsto.congr' _ ((ennreal.continuous_of_real.tendsto _).comp
((tendsto_nat_ceil_mul_div_at_top (I i)).comp tendsto_coe_nat_at_top_at_top)),
apply eventually_at_top.2 ⟨1, λ n hn, _⟩,
simp only [ennreal.of_real_div_of_pos (nat.cast_pos.mpr hn), comp_app,
ennreal.of_real_coe_nat] },
{ simp only [ennreal.of_real_ne_top, ne.def, not_false_iff] }
end
end
end measure_theory
/-!
### Hausdorff measure, Hausdorff dimension, and Hölder or Lipschitz continuous maps
-/
open_locale measure_theory
open measure_theory measure_theory.measure
variables [measurable_space X] [borel_space X] [measurable_space Y] [borel_space Y]
namespace holder_on_with
variables {C r : ℝ≥0} {f : X → Y} {s t : set X}
/-- If `f : X → Y` is Hölder continuous on `s` with a positive exponent `r`, then
`μH[d] (f '' s) ≤ C ^ d * μH[r * d] s`. -/
lemma hausdorff_measure_image_le (h : holder_on_with C r f s) (hr : 0 < r) {d : ℝ} (hd : 0 ≤ d) :
μH[d] (f '' s) ≤ C ^ d * μH[r * d] s :=
begin
-- We start with the trivial case `C = 0`
rcases (zero_le C).eq_or_lt with rfl|hC0,
{ have : (f '' s).subsingleton, by simpa [diam_eq_zero_iff] using h.ediam_image_le,
rw this.measure_zero,
exact zero_le _ },
{ have hCd0 : (C : ℝ≥0∞) ^ d ≠ 0, by simp [hC0.ne'],
have hCd : (C : ℝ≥0∞) ^ d ≠ ∞, by simp [hd],
simp only [hausdorff_measure_apply', ennreal.mul_supr, ennreal.mul_infi_of_ne hCd0 hCd,
← ennreal.tsum_mul_left],
refine supr_le (λ R, supr_le $ λ hR, _),
have : tendsto (λ d : ℝ≥0∞, (C : ℝ≥0∞) * d ^ (r : ℝ)) (𝓝 0) (𝓝 0),
from ennreal.tendsto_const_mul_rpow_nhds_zero_of_pos ennreal.coe_ne_top hr,
rcases ennreal.nhds_zero_basis_Iic.eventually_iff.1 (this.eventually (gt_mem_nhds hR))
with ⟨δ, δ0, H⟩,
refine le_supr_of_le δ (le_supr_of_le δ0 $ le_binfi $ λ t hst, le_infi $ λ htδ, _),
refine binfi_le_of_le (λ n, f '' (t n ∩ s)) _ (infi_le_of_le (λ n, _) _),
{ rw [← image_Union, ← Union_inter],
exact image_subset _ (subset_inter hst subset.rfl) },
{ exact (h.ediam_image_inter_le (t n)).trans (H (htδ n)).le },
{ refine ennreal.tsum_le_tsum (λ n, supr_le $ λ hft,
le_supr_of_le (λ ht, hft $ (ht.mono (inter_subset_left _ _)).image f) _),
rw [ennreal.rpow_mul, ← ennreal.mul_rpow_of_nonneg _ _ hd],
exact ennreal.rpow_le_rpow (h.ediam_image_inter_le _) hd } }
end
end holder_on_with
namespace lipschitz_on_with
variables {K : ℝ≥0} {f : X → Y} {s t : set X}
/-- If `f : X → Y` is `K`-Lipschitz on `s`, then `μH[d] (f '' s) ≤ K ^ d * μH[d] s`. -/
lemma hausdorff_measure_image_le (h : lipschitz_on_with K f s) {d : ℝ} (hd : 0 ≤ d) :
μH[d] (f '' s) ≤ K ^ d * μH[d] s :=
by simpa only [nnreal.coe_one, one_mul]
using h.holder_on_with.hausdorff_measure_image_le zero_lt_one hd
end lipschitz_on_with
namespace lipschitz_with
variables {K : ℝ≥0} {f : X → Y}
/-- If `f` is a `K`-Lipschitz map, then it increases the Hausdorff `d`-measures of sets at most
by the factor of `K ^ d`.-/
lemma hausdorff_measure_image_le (h : lipschitz_with K f) {d : ℝ} (hd : 0 ≤ d) (s : set X) :
μH[d] (f '' s) ≤ K ^ d * μH[d] s :=
(h.lipschitz_on_with s).hausdorff_measure_image_le hd
end lipschitz_with
/-!
### Antilipschitz maps do not decrease Hausdorff measures and dimension
-/
namespace antilipschitz_with
variables {f : X → Y} {K : ℝ≥0} {d : ℝ}
lemma hausdorff_measure_preimage_le (hf : antilipschitz_with K f) (hd : 0 ≤ d) (s : set Y) :
μH[d] (f ⁻¹' s) ≤ K ^ d * μH[d] s :=
begin
rcases eq_or_ne K 0 with rfl|h0,
{ haveI : subsingleton X := hf.subsingleton,
have : (f ⁻¹' s).subsingleton, from subsingleton_univ.mono (subset_univ _),
rw this.measure_zero,
exact zero_le _ },
have hKd0 : (K : ℝ≥0∞) ^ d ≠ 0, by simp [h0],
have hKd : (K : ℝ≥0∞) ^ d ≠ ∞, by simp [hd],
simp only [hausdorff_measure_apply', ennreal.mul_supr, ennreal.mul_infi_of_ne hKd0 hKd,
← ennreal.tsum_mul_left],
refine bsupr_le (λ ε ε0, _),
refine le_bsupr_of_le (ε / K) (by simp [ε0.ne']) _,
refine le_binfi (λ t hst, le_infi $ λ htε, _),
replace hst : f ⁻¹' s ⊆ _ := preimage_mono hst, rw preimage_Union at hst,
refine binfi_le_of_le _ hst (infi_le_of_le (λ n, _) _),
{ exact (hf.ediam_preimage_le _).trans (ennreal.mul_le_of_le_div' $ htε n) },
{ refine ennreal.tsum_le_tsum (λ n, supr_le $
λ H, le_supr_of_le (λ h, H $ h.preimage hf.injective) _),
rw [← ennreal.mul_rpow_of_nonneg _ _ hd],
exact ennreal.rpow_le_rpow (hf.ediam_preimage_le _) hd }
end
lemma le_hausdorff_measure_image (hf : antilipschitz_with K f) (hd : 0 ≤ d) (s : set X) :
μH[d] s ≤ K ^ d * μH[d] (f '' s) :=
calc μH[d] s ≤ μH[d] (f ⁻¹' (f '' s)) : measure_mono (subset_preimage_image _ _)
... ≤ K ^ d * μH[d] (f '' s) : hf.hausdorff_measure_preimage_le hd (f '' s)
end antilipschitz_with
/-!
### Isometries preserve the Hausdorff measure and Hausdorff dimension
-/
namespace isometry
variables {f : X → Y} {d : ℝ}
lemma hausdorff_measure_image (hf : isometry f) (hd : 0 ≤ d ∨ surjective f) (s : set X) :
μH[d] (f '' s) = μH[d] s :=
begin
simp only [hausdorff_measure, ← outer_measure.coe_mk_metric, ← outer_measure.comap_apply],
rw [outer_measure.isometry_comap_mk_metric _ hf (hd.imp_left _)],
exact λ hd x y hxy, ennreal.rpow_le_rpow hxy hd
end
lemma hausdorff_measure_preimage (hf : isometry f) (hd : 0 ≤ d ∨ surjective f) (s : set Y) :
μH[d] (f ⁻¹' s) = μH[d] (s ∩ range f) :=
by rw [← hf.hausdorff_measure_image hd, image_preimage_eq_inter_range]
lemma map_hausdorff_measure (hf : isometry f) (hd : 0 ≤ d ∨ surjective f) :
measure.map f μH[d] = (μH[d]).restrict (range f) :=
begin
ext1 s hs,
rw [map_apply hf.continuous.measurable hs, restrict_apply hs, hf.hausdorff_measure_preimage hd]
end
end isometry
namespace isometric
@[simp] lemma hausdorff_measure_image (e : X ≃ᵢ Y) (d : ℝ) (s : set X) :
μH[d] (e '' s) = μH[d] s :=
e.isometry.hausdorff_measure_image (or.inr e.surjective) s
@[simp] lemma hausdorff_measure_preimage (e : X ≃ᵢ Y) (d : ℝ) (s : set Y) :
μH[d] (e ⁻¹' s) = μH[d] s :=
by rw [← e.image_symm, e.symm.hausdorff_measure_image]
end isometric
|
a24e5d3b994ab50ecf3a149aa1143685db36ab96
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/algebra/big_operators/intervals.lean
|
baf2ae60a8fafa6eaf6c4fd8f47a5d6753f15612
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 10,559
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import algebra.big_operators.basic
import algebra.module.basic
import data.nat.interval
import tactic.linarith
import tactic.abel
/-!
# Results about big operators over intervals
We prove results about big operators over intervals (mostly the `ℕ`-valued `Ico m n`).
-/
universes u v w
open_locale big_operators nat
namespace finset
section generic
variables {α : Type u} {β : Type v} {γ : Type w} {s₂ s₁ s : finset α} {a : α}
{g f : α → β}
variables [comm_monoid β]
@[to_additive]
lemma prod_Ico_add' [ordered_cancel_add_comm_monoid α] [has_exists_add_of_le α]
[locally_finite_order α] (f : α → β) (a b c : α) :
(∏ x in Ico a b, f (x + c)) = (∏ x in Ico (a + c) (b + c), f x) :=
begin
classical,
rw [←image_add_right_Ico, prod_image (λ x hx y hy h, add_right_cancel h)],
end
@[to_additive]
lemma prod_Ico_add [ordered_cancel_add_comm_monoid α] [has_exists_add_of_le α]
[locally_finite_order α] (f : α → β) (a b c : α) :
(∏ x in Ico a b, f (c + x)) = (∏ x in Ico (a + c) (b + c), f x) :=
begin
convert prod_Ico_add' f a b c,
simp_rw add_comm,
end
lemma sum_Ico_succ_top {δ : Type*} [add_comm_monoid δ] {a b : ℕ}
(hab : a ≤ b) (f : ℕ → δ) : (∑ k in Ico a (b + 1), f k) = (∑ k in Ico a b, f k) + f b :=
by rw [nat.Ico_succ_right_eq_insert_Ico hab, sum_insert right_not_mem_Ico, add_comm]
@[to_additive]
lemma prod_Ico_succ_top {a b : ℕ} (hab : a ≤ b) (f : ℕ → β) :
(∏ k in Ico a (b + 1), f k) = (∏ k in Ico a b, f k) * f b :=
@sum_Ico_succ_top (additive β) _ _ _ hab _
lemma sum_eq_sum_Ico_succ_bot {δ : Type*} [add_comm_monoid δ] {a b : ℕ}
(hab : a < b) (f : ℕ → δ) : (∑ k in Ico a b, f k) = f a + (∑ k in Ico (a + 1) b, f k) :=
have ha : a ∉ Ico (a + 1) b, by simp,
by rw [← sum_insert ha, nat.Ico_insert_succ_left hab]
@[to_additive]
lemma prod_eq_prod_Ico_succ_bot {a b : ℕ} (hab : a < b) (f : ℕ → β) :
(∏ k in Ico a b, f k) = f a * (∏ k in Ico (a + 1) b, f k) :=
@sum_eq_sum_Ico_succ_bot (additive β) _ _ _ hab _
@[to_additive]
lemma prod_Ico_consecutive (f : ℕ → β) {m n k : ℕ} (hmn : m ≤ n) (hnk : n ≤ k) :
(∏ i in Ico m n, f i) * (∏ i in Ico n k, f i) = (∏ i in Ico m k, f i) :=
Ico_union_Ico_eq_Ico hmn hnk ▸ eq.symm $ prod_union $ Ico_disjoint_Ico_consecutive m n k
@[to_additive]
lemma prod_Ioc_consecutive (f : ℕ → β) {m n k : ℕ} (hmn : m ≤ n) (hnk : n ≤ k) :
(∏ i in Ioc m n, f i) * (∏ i in Ioc n k, f i) = (∏ i in Ioc m k, f i) :=
begin
rw [← Ioc_union_Ioc_eq_Ioc hmn hnk, prod_union],
apply disjoint_left.2 (λ x hx h'x, _),
exact lt_irrefl _ ((mem_Ioc.1 h'x).1.trans_le (mem_Ioc.1 hx).2),
end
@[to_additive]
lemma prod_Ioc_succ_top {a b : ℕ} (hab : a ≤ b) (f : ℕ → β) :
(∏ k in Ioc a (b + 1), f k) = (∏ k in Ioc a b, f k) * f (b + 1) :=
by rw [← prod_Ioc_consecutive _ hab (nat.le_succ b), nat.Ioc_succ_singleton, prod_singleton]
@[to_additive]
lemma prod_range_mul_prod_Ico (f : ℕ → β) {m n : ℕ} (h : m ≤ n) :
(∏ k in range m, f k) * (∏ k in Ico m n, f k) = (∏ k in range n, f k) :=
nat.Ico_zero_eq_range ▸ nat.Ico_zero_eq_range ▸ prod_Ico_consecutive f m.zero_le h
@[to_additive]
lemma prod_Ico_eq_mul_inv {δ : Type*} [comm_group δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) :
(∏ k in Ico m n, f k) = (∏ k in range n, f k) * (∏ k in range m, f k)⁻¹ :=
eq_mul_inv_iff_mul_eq.2 $ by rw [mul_comm]; exact prod_range_mul_prod_Ico f h
@[to_additive]
lemma prod_Ico_eq_div {δ : Type*} [comm_group δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) :
(∏ k in Ico m n, f k) = (∏ k in range n, f k) / (∏ k in range m, f k) :=
by simpa only [div_eq_mul_inv] using prod_Ico_eq_mul_inv f h
@[to_additive]
lemma prod_range_sub_prod_range {α : Type*} [comm_group α] {f : ℕ → α}
{n m : ℕ} (hnm : n ≤ m) : (∏ k in range m, f k) / (∏ k in range n, f k) =
∏ k in (range m).filter (λ k, n ≤ k), f k :=
begin
rw [← prod_Ico_eq_div f hnm],
congr,
apply finset.ext,
simp only [mem_Ico, mem_filter, mem_range, *],
tauto,
end
/-- The two ways of summing over `(i,j)` in the range `a<=i<=j<b` are equal. -/
lemma sum_Ico_Ico_comm {M : Type*} [add_comm_monoid M]
(a b : ℕ) (f : ℕ → ℕ → M) :
∑ i in finset.Ico a b, ∑ j in finset.Ico i b, f i j =
∑ j in finset.Ico a b, ∑ i in finset.Ico a (j+1), f i j :=
begin
rw [finset.sum_sigma', finset.sum_sigma'],
refine finset.sum_bij'
(λ (x : Σ (i : ℕ), ℕ) _, (⟨x.2, x.1⟩ : Σ (i : ℕ), ℕ)) _ (λ _ _, rfl)
(λ (x : Σ (i : ℕ), ℕ) _, (⟨x.2, x.1⟩ : Σ (i : ℕ), ℕ)) _
(by rintro ⟨⟩ _; refl) (by rintro ⟨⟩ _; refl);
simp only [finset.mem_Ico, sigma.forall, finset.mem_sigma];
rintros a b ⟨⟨h₁,h₂⟩, ⟨h₃, h₄⟩⟩; refine ⟨⟨_, _⟩, ⟨_, _⟩⟩; linarith
end
@[to_additive]
lemma prod_Ico_eq_prod_range (f : ℕ → β) (m n : ℕ) :
(∏ k in Ico m n, f k) = (∏ k in range (n - m), f (m + k)) :=
begin
by_cases h : m ≤ n,
{ rw [←nat.Ico_zero_eq_range, prod_Ico_add, zero_add, tsub_add_cancel_of_le h] },
{ replace h : n ≤ m := le_of_not_ge h,
rw [Ico_eq_empty_of_le h, tsub_eq_zero_iff_le.mpr h, range_zero, prod_empty, prod_empty] }
end
lemma prod_Ico_reflect (f : ℕ → β) (k : ℕ) {m n : ℕ} (h : m ≤ n + 1) :
∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j :=
begin
have : ∀ i < m, i ≤ n,
{ intros i hi,
exact (add_le_add_iff_right 1).1 (le_trans (nat.lt_iff_add_one_le.1 hi) h) },
cases lt_or_le k m with hkm hkm,
{ rw [← nat.Ico_image_const_sub_eq_Ico (this _ hkm)],
refine (prod_image _).symm,
simp only [mem_Ico],
rintros i ⟨ki, im⟩ j ⟨kj, jm⟩ Hij,
rw [← tsub_tsub_cancel_of_le (this _ im), Hij, tsub_tsub_cancel_of_le (this _ jm)] },
{ simp [Ico_eq_empty_of_le, tsub_le_tsub_left, hkm] }
end
lemma sum_Ico_reflect {δ : Type*} [add_comm_monoid δ] (f : ℕ → δ) (k : ℕ) {m n : ℕ}
(h : m ≤ n + 1) :
∑ j in Ico k m, f (n - j) = ∑ j in Ico (n + 1 - m) (n + 1 - k), f j :=
@prod_Ico_reflect (multiplicative δ) _ f k m n h
lemma prod_range_reflect (f : ℕ → β) (n : ℕ) :
∏ j in range n, f (n - 1 - j) = ∏ j in range n, f j :=
begin
cases n,
{ simp },
{ simp only [←nat.Ico_zero_eq_range, nat.succ_sub_succ_eq_sub, tsub_zero],
rw prod_Ico_reflect _ _ le_rfl,
simp }
end
lemma sum_range_reflect {δ : Type*} [add_comm_monoid δ] (f : ℕ → δ) (n : ℕ) :
∑ j in range n, f (n - 1 - j) = ∑ j in range n, f j :=
@prod_range_reflect (multiplicative δ) _ f n
@[simp] lemma prod_Ico_id_eq_factorial : ∀ n : ℕ, ∏ x in Ico 1 (n + 1), x = n!
| 0 := rfl
| (n+1) := by rw [prod_Ico_succ_top $ nat.succ_le_succ $ zero_le n,
nat.factorial_succ, prod_Ico_id_eq_factorial n, nat.succ_eq_add_one, mul_comm]
@[simp] lemma prod_range_add_one_eq_factorial : ∀ n : ℕ, ∏ x in range n, (x+1) = n!
| 0 := rfl
| (n+1) := by simp [finset.range_succ, prod_range_add_one_eq_factorial n]
section gauss_sum
/-- Gauss' summation formula -/
lemma sum_range_id_mul_two (n : ℕ) :
(∑ i in range n, i) * 2 = n * (n - 1) :=
calc (∑ i in range n, i) * 2 = (∑ i in range n, i) + (∑ i in range n, (n - 1 - i)) :
by rw [sum_range_reflect (λ i, i) n, mul_two]
... = ∑ i in range n, (i + (n - 1 - i)) : sum_add_distrib.symm
... = ∑ i in range n, (n - 1) : sum_congr rfl $ λ i hi, add_tsub_cancel_of_le $
nat.le_pred_of_lt $ mem_range.1 hi
... = n * (n - 1) : by rw [sum_const, card_range, nat.nsmul_eq_mul]
/-- Gauss' summation formula -/
lemma sum_range_id (n : ℕ) : (∑ i in range n, i) = (n * (n - 1)) / 2 :=
by rw [← sum_range_id_mul_two n, nat.mul_div_cancel]; exact dec_trivial
end gauss_sum
end generic
section nat
variable {β : Type*}
variables (f g : ℕ → β) {m n : ℕ}
section group
variable [comm_group β]
@[to_additive]
lemma prod_range_succ_div_prod : (∏ i in range (n+1), f i) / ∏ i in range n, f i = f n :=
div_eq_iff_eq_mul'.mpr $ prod_range_succ f n
@[to_additive]
lemma prod_range_succ_div_top : (∏ i in range (n+1), f i) / f n = ∏ i in range n, f i :=
div_eq_iff_eq_mul.mpr $ prod_range_succ f n
@[to_additive]
lemma prod_Ico_div_bot (hmn : m < n) : (∏ i in Ico m n, f i) / f m = ∏ i in Ico (m+1) n, f i :=
div_eq_iff_eq_mul'.mpr $ prod_eq_prod_Ico_succ_bot hmn _
@[to_additive]
lemma prod_Ico_succ_div_top (hmn : m ≤ n) : (∏ i in Ico m (n+1), f i) / f n = ∏ i in Ico m n, f i :=
div_eq_iff_eq_mul.mpr $ prod_Ico_succ_top hmn _
end group
end nat
section module
variables {R M : Type*} [ring R] [add_comm_group M] [module R M] (f : ℕ → R) (g : ℕ → M) {m n : ℕ}
open finset
-- The partial sum of `g`, starting from zero
local notation `G ` n:80 := ∑ i in range n, g i
/-- **Summation by parts**, also known as **Abel's lemma** or an **Abel transformation** -/
theorem sum_Ico_by_parts (hmn : m < n) :
∑ i in Ico m n, f i • g i =
f (n-1) • G n - f m • G m - ∑ i in Ico m (n-1), (f (i+1) - f i) • G (i+1) :=
begin
have h₁ : ∑ i in Ico (m+1) n, (f i • G i) = ∑ i in Ico m (n-1), (f (i+1) • G (i+1)),
{ conv in n { rw ←nat.sub_add_cancel (nat.one_le_of_lt hmn) },
rw ←sum_Ico_add' },
have h₂ : ∑ i in Ico (m+1) n, (f i • G (i+1))
= ∑ i in Ico m (n-1), (f i • G (i+1)) + f (n-1) • G n - f m • G (m+1) :=
by rw [←sum_Ico_sub_bot _ hmn, ←sum_Ico_succ_sub_top _ (nat.le_pred_of_lt hmn),
nat.sub_add_cancel (pos_of_gt hmn), sub_add_cancel],
rw sum_eq_sum_Ico_succ_bot hmn,
conv { for (f _ • g _) [2] { rw ← sum_range_succ_sub_sum g } },
simp_rw [smul_sub, sum_sub_distrib, h₂, h₁],
conv_lhs { congr, skip, rw [←add_sub, add_comm, ←add_sub, ←sum_sub_distrib] },
have : ∀ i, f i • G (i+1) - f (i+1) • G (i+1) = -((f (i+1) - f i) • G (i+1)),
{ intro i,
rw sub_smul,
abel },
simp_rw [this, sum_neg_distrib, sum_range_succ, smul_add],
abel,
end
variable (n)
/-- **Summation by parts** for ranges -/
lemma sum_range_by_parts :
∑ i in range n, (f i • g i) = f (n-1) • G n - ∑ i in range (n-1), (f (i+1) - f i) • G (i+1) :=
begin
by_cases hn : n = 0,
{ simp [hn], },
{ rw [range_eq_Ico, sum_Ico_by_parts f g (nat.pos_of_ne_zero hn), sum_range_zero,
smul_zero, sub_zero, range_eq_Ico] },
end
end module
end finset
|
700baf024d7911dad55e599b2554784af069fb96
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/src/lake/Lake/Config/Workspace.lean
|
8bbba8fc14a351ed37c0987493d985cb5908d99f
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,038
|
lean
|
/-
Copyright (c) 2021 Mac Malone. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mac Malone
-/
import Lean.Util.Paths
import Lake.Config.FacetConfig
import Lake.Config.TargetConfig
import Lake.Config.Env
import Lake.Util.Log
open System
namespace Lake
/-- A Lake workspace -- the top-level package directory. -/
structure Workspace : Type where
/-- The root package of the workspace. -/
root : Package
/-- The detect `Lake.Env` of the workspace. -/
lakeEnv : Lake.Env
/-- Name-package map of packages within the workspace. -/
packageMap : DNameMap NPackage := {}
/-- Name-configuration map of module facets defined in the workspace. -/
moduleFacetConfigs : DNameMap ModuleFacetConfig
/-- Name-configuration map of package facets defined in the workspace. -/
packageFacetConfigs : DNameMap PackageFacetConfig
/-- Name-configuration map of library facets defined in the workspace. -/
libraryFacetConfigs : DNameMap LibraryFacetConfig
instance : Nonempty Workspace :=
have : Inhabited Package := Classical.inhabited_of_nonempty inferInstance
by refine' ⟨{..}⟩ <;> exact default
hydrate_opaque_type OpaqueWorkspace Workspace
namespace Workspace
/-- The path to the workspace's directory (i.e., the directory of the root package). -/
@[inline] def dir (self : Workspace) : FilePath :=
self.root.dir
/-- The workspace's configuration. -/
@[inline] def config (self : Workspace) : WorkspaceConfig :=
self.root.config.toWorkspaceConfig
/-- The path to the workspace's remote packages directory relative to `dir`. -/
@[inline] def relPkgsDir (self : Workspace) : FilePath :=
self.root.relPkgsDir
/-- The workspace's `dir` joined with its `relPkgsDir`. -/
@[inline] def pkgsDir (self : Workspace) : FilePath :=
self.root.pkgsDir
/-- The workspace's Lake manifest. -/
@[inline] def manifestFile (self : Workspace) : FilePath :=
self.root.manifestFile
/-- The `List` of packages to the workspace. -/
def packageList (self : Workspace) : List Package :=
self.packageMap.revFold (fun pkgs _ pkg => pkg.toPackage :: pkgs) []
/-- The `Array` of packages to the workspace. -/
def packageArray (self : Workspace) : Array Package :=
self.packageMap.fold (fun pkgs _ pkg => pkgs.push pkg.toPackage) #[]
/-- Add a package to the workspace. -/
def addPackage (pkg : Package) (self : Workspace) : Workspace :=
{self with packageMap := self.packageMap.insert pkg.name pkg}
/-- Try to find a package within the workspace with the given name. -/
@[inline] def findPackage? (name : Name) (self : Workspace) : Option (NPackage name) :=
self.packageMap.find? name
/-- Check if the module is local to any package in the workspace. -/
def isLocalModule (mod : Name) (self : Workspace) : Bool :=
self.packageMap.any fun _ pkg => pkg.isLocalModule mod
/-- Check if the module is buildable by any package in the workspace. -/
def isBuildableModule (mod : Name) (self : Workspace) : Bool :=
self.packageMap.any fun _ pkg => pkg.isBuildableModule mod
/-- Locate the named module in the workspace (if it is local to it). -/
def findModule? (mod : Name) (self : Workspace) : Option Module :=
self.packageArray.findSome? (·.findModule? mod)
/-- Try to find a Lean library in the workspace with the given name. -/
def findLeanLib? (name : Name) (self : Workspace) : Option LeanLib :=
self.packageArray.findSome? fun pkg => pkg.findLeanLib? name
/-- Try to find a Lean executable in the workspace with the given name. -/
def findLeanExe? (name : Name) (self : Workspace) : Option LeanExe :=
self.packageArray.findSome? fun pkg => pkg.findLeanExe? name
/-- Try to find an external library in the workspace with the given name. -/
def findExternLib? (name : Name) (self : Workspace) : Option ExternLib :=
self.packageArray.findSome? fun pkg => pkg.findExternLib? name
/-- Try to find a target configuration in the workspace with the given name. -/
def findTargetConfig? (name : Name) (self : Workspace) : Option ((pkg : Package) × TargetConfig pkg.name name) :=
self.packageArray.findSome? fun pkg => pkg.findTargetConfig? name <&> (⟨pkg, ·⟩)
/-- Add a module facet to the workspace. -/
def addModuleFacetConfig (cfg : ModuleFacetConfig name) (self : Workspace) : Workspace :=
{self with moduleFacetConfigs := self.moduleFacetConfigs.insert name cfg}
/-- Try to find a module facet configuration in the workspace with the given name. -/
@[inline] def findModuleFacetConfig? (name : Name) (self : Workspace) : Option (ModuleFacetConfig name) :=
self.moduleFacetConfigs.find? name
/-- Add a package facet to the workspace. -/
def addPackageFacetConfig (cfg : PackageFacetConfig name) (self : Workspace) : Workspace :=
{self with packageFacetConfigs := self.packageFacetConfigs.insert name cfg}
/-- Try to find a package facet configuration in the workspace with the given name. -/
@[inline] def findPackageFacetConfig? (name : Name) (self : Workspace) : Option (PackageFacetConfig name) :=
self.packageFacetConfigs.find? name
/-- Add a library facet to the workspace. -/
def addLibraryFacetConfig (cfg : LibraryFacetConfig name) (self : Workspace) : Workspace :=
{self with libraryFacetConfigs := self.libraryFacetConfigs.insert cfg.name cfg}
/-- Try to find a library facet configuration in the workspace with the given name. -/
@[inline] def findLibraryFacetConfig? (name : Name) (self : Workspace) : Option (LibraryFacetConfig name) :=
self.libraryFacetConfigs.find? name
/-- The workspace's binary directories (which are added to `Path`). -/
def binPath (self : Workspace) : SearchPath :=
self.packageList.map (·.binDir)
/-- The workspace's Lean library directories (which are added to `LEAN_PATH`). -/
def leanPath (self : Workspace) : SearchPath :=
self.packageList.map (·.leanLibDir)
/-- The workspace's source directories (which are added to `LEAN_SRC_PATH`). -/
def leanSrcPath (self : Workspace) : SearchPath := Id.run do
let mut path : SearchPath := {}
for pkg in self.packageArray do
for (_, config) in pkg.leanLibConfigs do
path := pkg.srcDir / config.srcDir :: path
return path
/--
The workspace's shared library path (e.g., for `--load-dynlib`).
This is added to the `sharedLibPathEnvVar` by `lake env`.
-/
def sharedLibPath (self : Workspace) : SearchPath :=
self.packageList.map (·.nativeLibDir)
/--
The detected `PATH` of the environment augmented with
the workspace's `binDir` and Lean and Lake installations' `binDir`.
-/
def augmentedPath (self : Workspace) : SearchPath :=
self.binPath ++ self.lakeEnv.path
/--
The detected `LEAN_PATH` of the environment augmented with
the workspace's `leanPath` and Lake's `libDir`.
-/
def augmentedLeanPath (self : Workspace) : SearchPath :=
self.leanPath ++ self.lakeEnv.leanPath
/--
The detected `LEAN_SRC_PATH` of the environment augmented with
the workspace's `leanSrcPath` and Lake's `srcDir`.
-/
def augmentedLeanSrcPath (self : Workspace) : SearchPath :=
self.leanSrcPath ++ self.lakeEnv.leanSrcPath
/-
The detected `sharedLibPathEnv` value of the environment augmented with
the workspace's `libPath` and Lean installation's shared library directories.
-/
def augmentedSharedLibPath (self : Workspace) : SearchPath :=
self.sharedLibPath ++ self.lakeEnv.sharedLibPath
/--
The detected environment augmented with Lake's and the workspace's paths.
These are the settings use by `lake env` / `Lake.env` to run executables.
-/
def augmentedEnvVars (self : Workspace) : Array (String × Option String) :=
let vars := self.lakeEnv.installVars ++ #[
("LEAN_PATH", some self.augmentedLeanPath.toString),
("LEAN_SRC_PATH", some self.augmentedLeanSrcPath.toString),
("PATH", some self.augmentedPath.toString)
]
if Platform.isWindows then
vars
else
vars.push (sharedLibPathEnvVar, some self.augmentedSharedLibPath.toString)
/-- Remove all packages' build outputs (i.e., delete their build directories). -/
def clean (self : Workspace) : IO Unit := do
self.packageMap.forM fun _ pkg => pkg.clean
|
96948a656b233dc5c39a701c061409a9d1f5a74c
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/stage0/src/Lean/Elab/PatternVar.lean
|
3dabeae54c5b26e692b47ea4ed81482a25b650bd
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,894
|
lean
|
/-
Copyright (c) 2021 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.Match.MatchPatternAttr
import Lean.Elab.Arg
import Lean.Elab.MatchAltView
namespace Lean.Elab.Term
open Meta
abbrev PatternVar := Syntax -- TODO: should be `Ident`
/-!
Patterns define new local variables.
This module collect them and preprocess `_` occurring in patterns.
Recall that an `_` may represent anonymous variables or inaccessible terms
that are implied by typing constraints. Thus, we represent them with fresh named holes `?x`.
After we elaborate the pattern, if the metavariable remains unassigned, we transform it into
a regular pattern variable. Otherwise, it becomes an inaccessible term.
Macros occurring in patterns are expanded before the `collectPatternVars` method is executed.
The following kinds of Syntax are handled by this module
- Constructor applications
- Applications of functions tagged with the `[matchPattern]` attribute
- Identifiers
- Anonymous constructors
- Structure instances
- Inaccessible terms
- Named patterns
- Tuple literals
- Type ascriptions
- Literals: num, string and char
-/
namespace CollectPatternVars
/-- State for the pattern variable collector monad. -/
structure State where
/-- Pattern variables found so far. -/
found : NameSet := {}
/-- Pattern variables found so far as an array. It contains the order they were found. -/
vars : Array PatternVar := #[]
deriving Inhabited
abbrev M := StateRefT State TermElabM
private def throwCtorExpected {α} : M α :=
throwError "invalid pattern, constructor or constant marked with '[matchPattern]' expected"
private def throwInvalidPattern {α} : M α :=
throwError "invalid pattern"
/-!
An application in a pattern can be
1- A constructor application
The elaborator assumes fields are accessible and inductive parameters are not accessible.
2- A regular application `(f ...)` where `f` is tagged with `[matchPattern]`.
The elaborator assumes implicit arguments are not accessible and explicit ones are accessible.
-/
structure Context where
funId : Ident
ctorVal? : Option ConstructorVal -- It is `some`, if constructor application
explicit : Bool
ellipsis : Bool
paramDecls : Array (Name × BinderInfo) -- parameters names and binder information
paramDeclIdx : Nat := 0
namedArgs : Array NamedArg
args : List Arg
newArgs : Array Term := #[]
deriving Inhabited
private def isDone (ctx : Context) : Bool :=
ctx.paramDeclIdx ≥ ctx.paramDecls.size
private def finalize (ctx : Context) : M Syntax := do
if ctx.namedArgs.isEmpty && ctx.args.isEmpty then
let fStx ← `(@$(ctx.funId):ident)
return Syntax.mkApp fStx ctx.newArgs
else
throwError "too many arguments"
private def isNextArgAccessible (ctx : Context) : Bool :=
let i := ctx.paramDeclIdx
match ctx.ctorVal? with
| some ctorVal => i ≥ ctorVal.numParams -- For constructor applications only fields are accessible
| none =>
if h : i < ctx.paramDecls.size then
-- For `[matchPattern]` applications, only explicit parameters are accessible.
let d := ctx.paramDecls.get ⟨i, h⟩
d.2.isExplicit
else
false
private def getNextParam (ctx : Context) : (Name × BinderInfo) × Context :=
let i := ctx.paramDeclIdx
let d := ctx.paramDecls[i]!
(d, { ctx with paramDeclIdx := ctx.paramDeclIdx + 1 })
private def processVar (idStx : Syntax) : M Syntax := do
unless idStx.isIdent do
throwErrorAt idStx "identifier expected"
let id := idStx.getId
unless id.eraseMacroScopes.isAtomic do
throwError "invalid pattern variable, must be atomic"
if (← get).found.contains id then
throwError "invalid pattern, variable '{id}' occurred more than once"
modify fun s => { s with vars := s.vars.push idStx, found := s.found.insert id }
return idStx
private def samePatternsVariables (startingAt : Nat) (s₁ s₂ : State) : Bool :=
if h : s₁.vars.size = s₂.vars.size then
Array.isEqvAux s₁.vars s₂.vars h (.==.) startingAt
else
false
open TSyntax.Compat in
partial def collect (stx : Syntax) : M Syntax := withRef stx <| withFreshMacroScope do
let k := stx.getKind
if k == identKind then
processId stx
else if k == ``Lean.Parser.Term.app then
processCtorApp stx
else if k == ``Lean.Parser.Term.anonymousCtor then
let elems ← stx[1].getArgs.mapSepElemsM collect
return stx.setArg 1 <| mkNullNode elems
else if k == ``Lean.Parser.Term.dotIdent then
return stx
else if k == ``Lean.Parser.Term.hole then
`(.( $stx ))
else if k == ``Lean.Parser.Term.syntheticHole then
`(.( $stx ))
else if k == ``Lean.Parser.Term.paren then
let arg := stx[1]
if arg.isNone then
return stx -- `()`
else
let t := arg[0]
let s := arg[1]
if s.isNone || s[0].getKind == ``Lean.Parser.Term.typeAscription then
-- Ignore `s`, since it empty or it is a type ascription
let t ← collect t
let arg := arg.setArg 0 t
return stx.setArg 1 arg
else
return stx
else if k == ``Lean.Parser.Term.explicitUniv then
processCtor stx[0]
else if k == ``Lean.Parser.Term.namedPattern then
/- Recall that
```
def namedPattern := check... >> trailing_parser "@" >> optional (atomic (ident >> ":")) >> termParser
```
TODO: pattern variable for equality proof
-/
let id := stx[0]
discard <| processVar id
let h ← if stx[2].isNone then
`(h)
else
pure stx[2][0]
let pat := stx[3]
let pat ← collect pat
discard <| processVar h
``(_root_.namedPattern $id $pat $h)
else if k == ``Lean.Parser.Term.binop then
let lhs ← collect stx[2]
let rhs ← collect stx[3]
return stx.setArg 2 lhs |>.setArg 3 rhs
else if k == ``Lean.Parser.Term.inaccessible then
return stx
else if k == strLitKind then
return stx
else if k == numLitKind then
return stx
else if k == scientificLitKind then
return stx
else if k == charLitKind then
return stx
else if k == ``Lean.Parser.Term.quotedName || k == ``Lean.Parser.Term.doubleQuotedName then
return stx
else if k == choiceKind then
/- Remark: If there are `Term.structInst` alternatives, we keep only them. This is a hack to get rid of
Set-like notation in patterns. Recall that in Mathlib `{a, b}` can be a set with two elements or the
structure instance `{ a := a, b := b }`. Possible alternative solution: add a `pattern` category, or at least register
the `Syntax` node kinds that are allowed in patterns. -/
let args :=
let args := stx.getArgs
if args.any (·.isOfKind ``Parser.Term.structInst) then
args.filter (·.isOfKind ``Parser.Term.structInst)
else
args
let stateSaved ← get
let arg0 ← collect args[0]!
let stateNew ← get
let mut argsNew := #[arg0]
for arg in args[1:] do
set stateSaved
argsNew := argsNew.push (← collect arg)
unless samePatternsVariables stateSaved.vars.size stateNew (← get) do
throwError "invalid pattern, overloaded notation is only allowed when all alternative have the same set of pattern variables"
set stateNew
return mkNode choiceKind argsNew
else match stx with
| `({ $[$srcs?,* with]? $fields,* $[..%$ell?]? $[: $ty?]? }) =>
if let some srcs := srcs? then
throwErrorAt (mkNullNode srcs) "invalid struct instance pattern, 'with' is not allowed in patterns"
let fields ← fields.getElems.mapM fun
| `(Parser.Term.structInstField| $lval:structInstLVal := $val) => do
let newVal ← collect val
`(Parser.Term.structInstField| $lval:structInstLVal := $newVal)
| _ => throwInvalidPattern -- `structInstFieldAbbrev` should be expanded at this point
`({ $[$srcs?,* with]? $fields,* $[..%$ell?]? $[: $ty?]? })
| _ => throwInvalidPattern
where
processCtorApp (stx : Syntax) : M Syntax := do
let (f, namedArgs, args, ellipsis) ← expandApp stx
if f.getKind == ``Parser.Term.dotIdent then
let namedArgsNew ← namedArgs.mapM fun
| { ref, name, val := Arg.stx arg } => withRef ref do `(Lean.Parser.Term.namedArgument| ($(mkIdentFrom ref name) := $(← collect arg)))
| _ => unreachable!
let mut argsNew ← args.mapM fun | Arg.stx arg => collect arg | _ => unreachable!
if ellipsis then
argsNew := argsNew.push (mkNode ``Parser.Term.ellipsis #[mkAtomFrom stx ".."])
return Syntax.mkApp f (namedArgsNew ++ argsNew)
else
processCtorAppCore f namedArgs args ellipsis
processCtor (stx : Syntax) : M Syntax := do
processCtorAppCore stx #[] #[] false
/-- Check whether `stx` is a pattern variable or constructor-like (i.e., constructor or constant tagged with `[matchPattern]` attribute) -/
processId (stx : Syntax) : M Syntax := do
match (← resolveId? stx "pattern") with
| none => processVar stx
| some f => match f with
| Expr.const fName _ =>
match (← getEnv).find? fName with
| some (ConstantInfo.ctorInfo _) => processCtor stx
| some _ =>
if hasMatchPatternAttribute (← getEnv) fName then
processCtor stx
else
processVar stx
| none => throwCtorExpected
| _ => processVar stx
pushNewArg (accessible : Bool) (ctx : Context) (arg : Arg) : M Context := do
match arg with
| Arg.stx stx =>
let stx ← if accessible then collect stx else pure stx
return { ctx with newArgs := ctx.newArgs.push stx }
| _ => unreachable!
processExplicitArg (accessible : Bool) (ctx : Context) : M Context := do
match ctx.args with
| [] =>
if ctx.ellipsis then
pushNewArg accessible ctx (Arg.stx (← `(_)))
else
throwError "explicit parameter is missing, unused named arguments {ctx.namedArgs.map fun narg => narg.name}"
| arg::args =>
pushNewArg accessible { ctx with args := args } arg
processImplicitArg (accessible : Bool) (ctx : Context) : M Context := do
if ctx.explicit then
processExplicitArg accessible ctx
else
pushNewArg accessible ctx (Arg.stx (← `(_)))
processCtorAppContext (ctx : Context) : M Syntax := do
if isDone ctx then
finalize ctx
else
let accessible := isNextArgAccessible ctx
let (d, ctx) := getNextParam ctx
match ctx.namedArgs.findIdx? fun namedArg => namedArg.name == d.1 with
| some idx =>
let arg := ctx.namedArgs[idx]!
let ctx := { ctx with namedArgs := ctx.namedArgs.eraseIdx idx }
let ctx ← pushNewArg accessible ctx arg.val
processCtorAppContext ctx
| none =>
let ctx ← match d.2 with
| BinderInfo.implicit => processImplicitArg accessible ctx
| BinderInfo.strictImplicit => processImplicitArg accessible ctx
| BinderInfo.instImplicit => processImplicitArg accessible ctx
| _ => processExplicitArg accessible ctx
processCtorAppContext ctx
processCtorAppCore (f : Syntax) (namedArgs : Array NamedArg) (args : Array Arg) (ellipsis : Bool) : M Syntax := do
let args := args.toList
let (fId, explicit) ← match f with
| `($fId:ident) => pure (fId, false)
| `(@$fId:ident) => pure (fId, true)
| _ => throwError "identifier expected"
let some (Expr.const fName _) ← resolveId? fId "pattern" (withInfo := true) | throwCtorExpected
let fInfo ← getConstInfo fName
let paramDecls ← forallTelescopeReducing fInfo.type fun xs _ => xs.mapM fun x => do
let d ← getFVarLocalDecl x
return (d.userName, d.binderInfo)
match fInfo with
| ConstantInfo.ctorInfo val =>
processCtorAppContext
{ funId := fId, explicit := explicit, ctorVal? := val, paramDecls := paramDecls, namedArgs := namedArgs, args := args, ellipsis := ellipsis }
| _ =>
if hasMatchPatternAttribute (← getEnv) fName then
processCtorAppContext
{ funId := fId, explicit := explicit, ctorVal? := none, paramDecls := paramDecls, namedArgs := namedArgs, args := args, ellipsis := ellipsis }
else
throwCtorExpected
def main (alt : MatchAltView) : M MatchAltView := do
let patterns ← alt.patterns.mapM fun p => do
trace[Elab.match] "collecting variables at pattern: {p}"
collect p
return { alt with patterns := patterns }
end CollectPatternVars
/--
Collect pattern variables occurring in the `match`-alternative object views.
It also returns the updated views.
-/
def collectPatternVars (alt : MatchAltView) : TermElabM (Array PatternVar × MatchAltView) := do
let (alt, s) ← (CollectPatternVars.main alt).run {}
return (s.vars, alt)
/--
Return the pattern variables in the given pattern.
Remark: this method is not used by the main `match` elaborator, but in the precheck hook and other macros (e.g., at `Do.lean`).
-/
def getPatternVars (patternStx : Syntax) : TermElabM (Array PatternVar) := do
let patternStx ← liftMacroM <| expandMacros patternStx
let (_, s) ← (CollectPatternVars.collect patternStx).run {}
return s.vars
/--
Return the pattern variables occurring in the given patterns.
This method is used in the `match` and `do` notation elaborators
-/
def getPatternsVars (patterns : Array Syntax) : TermElabM (Array PatternVar) := do
let collect : CollectPatternVars.M Unit := do
for pattern in patterns do
discard <| CollectPatternVars.collect (← liftMacroM <| expandMacros pattern)
let (_, s) ← collect.run {}
return s.vars
def getPatternVarNames (pvars : Array PatternVar) : Array Name :=
pvars.map fun x => x.getId
end Lean.Elab.Term
|
360fc1a3326025af1ebfb4e02666fd9fa6687d1a
|
618003631150032a5676f229d13a079ac875ff77
|
/src/category_theory/limits/shapes/finite_products.lean
|
7b29e557f98c385b3fb01a3b42f99dcd6bfcd85b
|
[
"Apache-2.0"
] |
permissive
|
awainverse/mathlib
|
939b68c8486df66cfda64d327ad3d9165248c777
|
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
|
refs/heads/master
| 1,659,592,962,036
| 1,590,987,592,000
| 1,590,987,592,000
| 268,436,019
| 1
| 0
|
Apache-2.0
| 1,590,990,500,000
| 1,590,990,500,000
| null |
UTF-8
|
Lean
| false
| false
| 1,619
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.limits.shapes.finite_limits
universes v u
open category_theory
namespace category_theory.limits
variables (C : Type u) [category.{v} C]
class has_finite_products :=
(has_limits_of_shape : Π (J : Type v) [fintype J] [decidable_eq J], has_limits_of_shape.{v} (discrete J) C)
class has_finite_coproducts :=
(has_colimits_of_shape : Π (J : Type v) [fintype J] [decidable_eq J], has_colimits_of_shape.{v} (discrete J) C)
attribute [instance] has_finite_products.has_limits_of_shape has_finite_coproducts.has_colimits_of_shape
@[priority 100] -- see Note [lower instance priority]
instance has_finite_products_of_has_products [has_products.{v} C] : has_finite_products.{v} C :=
{ has_limits_of_shape := λ J _, by apply_instance }
@[priority 100] -- see Note [lower instance priority]
instance has_finite_coproducts_of_has_coproducts [has_coproducts.{v} C] : has_finite_coproducts.{v} C :=
{ has_colimits_of_shape := λ J _, by apply_instance }
@[priority 100] -- see Note [lower instance priority]
instance has_finite_products_of_has_finite_limits [has_finite_limits.{v} C] : has_finite_products.{v} C :=
{ has_limits_of_shape := λ J _ _, by { resetI, apply_instance } }
@[priority 100] -- see Note [lower instance priority]
instance has_finite_coproducts_of_has_finite_colimits [has_finite_colimits.{v} C] : has_finite_coproducts.{v} C :=
{ has_colimits_of_shape := λ J _ _, by { resetI, apply_instance } }
end category_theory.limits
|
14894c1b17c4c90d0854bde7ea54a33bd526bb86
|
947fa6c38e48771ae886239b4edce6db6e18d0fb
|
/src/group_theory/free_product.lean
|
a20b6ee73241f4d2a915bf5cd2eee86b95afe91a
|
[
"Apache-2.0"
] |
permissive
|
ramonfmir/mathlib
|
c5dc8b33155473fab97c38bd3aa6723dc289beaa
|
14c52e990c17f5a00c0cc9e09847af16fabbed25
|
refs/heads/master
| 1,661,979,343,526
| 1,660,830,384,000
| 1,660,830,384,000
| 182,072,989
| 0
| 0
| null | 1,555,585,876,000
| 1,555,585,876,000
| null |
UTF-8
|
Lean
| false
| false
| 33,850
|
lean
|
/-
Copyright (c) 2021 David Wärn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: David Wärn, Joachim Breitner
-/
import algebra.free_monoid
import group_theory.congruence
import group_theory.is_free_group
import group_theory.subgroup.pointwise
import data.list.chain
import set_theory.cardinal.ordinal
/-!
# The free product of groups or monoids
Given an `ι`-indexed family `M` of monoids, we define their free product (categorical coproduct)
`free_product M`. When `ι` and all `M i` have decidable equality, the free product bijects with the
type `word M` of reduced words. This bijection is constructed by defining an action of
`free_product M` on `word M`.
When `M i` are all groups, `free_product M` is also a group (and the coproduct in the category of
groups).
## Main definitions
- `free_product M`: the free product, defined as a quotient of a free monoid.
- `free_product.of {i} : M i →* free_product M`.
- `free_product.lift : (Π {i}, M i →* N) ≃ (free_product M →* N)`: the universal property.
- `free_product.word M`: the type of reduced words.
- `free_product.word.equiv M : free_product M ≃ word M`.
- `free_product.neword M i j`: an inductive description of non-empty words with first letter from
`M i` and last letter from `M j`, together with an API (`singleton`, `append`, `head`, `tail`,
`to_word`, `prod`, `inv`). Used in the proof of the Ping-Pong-lemma.
- `free_product.lift_injective_of_ping_pong`: The Ping-Pong-lemma, proving injectivity of the
`lift`. See the documentation of that theorem for more information.
## Remarks
There are many answers to the question "what is the free product of a family `M` of monoids?", and
they are all equivalent but not obviously equivalent. We provide two answers. The first, almost
tautological answer is given by `free_product M`, which is a quotient of the type of words in the
alphabet `Σ i, M i`. It's straightforward to define and easy to prove its universal property. But
this answer is not completely satisfactory, because it's difficult to tell when two elements
`x y : free_product M` are distinct since `free_product M` is defined as a quotient.
The second, maximally efficient answer is given by `word M`. An element of `word M` is a word in the
alphabet `Σ i, M i`, where the letter `⟨i, 1⟩` doesn't occur and no adjacent letters share an index
`i`. Since we only work with reduced words, there is no need for quotienting, and it is easy to tell
when two elements are distinct. However it's not obvious that this is even a monoid!
We prove that every element of `free_product M` can be represented by a unique reduced word, i.e.
`free_product M` and `word M` are equivalent types. This means that `word M` can be given a monoid
structure, and it lets us tell when two elements of `free_product M` are distinct.
There is also a completely tautological, maximally inefficient answer given by
`algebra.category.Mon.colimits`. Whereas `free_product M` at least ensures that (any instance of)
associativity holds by reflexivity, in this answer associativity holds because of quotienting. Yet
another answer, which is constructively more satisfying, could be obtained by showing that
`free_product.rel` is confluent.
## References
[van der Waerden, *Free products of groups*][MR25465]
-/
open set
variables {ι : Type*} (M : Π i : ι, Type*) [Π i, monoid (M i)]
/-- A relation on the free monoid on alphabet `Σ i, M i`, relating `⟨i, 1⟩` with `1` and
`⟨i, x⟩ * ⟨i, y⟩` with `⟨i, x * y⟩`. -/
inductive free_product.rel : free_monoid (Σ i, M i) → free_monoid (Σ i, M i) → Prop
| of_one (i : ι) : free_product.rel (free_monoid.of ⟨i, 1⟩) 1
| of_mul {i : ι} (x y : M i) : free_product.rel (free_monoid.of ⟨i, x⟩ * free_monoid.of ⟨i, y⟩)
(free_monoid.of ⟨i, x * y⟩)
/-- The free product (categorical coproduct) of an indexed family of monoids. -/
@[derive [monoid, inhabited]]
def free_product : Type* := (con_gen (free_product.rel M)).quotient
namespace free_product
/-- The type of reduced words. A reduced word cannot contain a letter `1`, and no two adjacent
letters can come from the same summand. -/
@[ext] structure word :=
(to_list : list (Σ i, M i))
(ne_one : ∀ l ∈ to_list, sigma.snd l ≠ 1)
(chain_ne : to_list.chain' (λ l l', sigma.fst l ≠ sigma.fst l'))
variable {M}
/-- The inclusion of a summand into the free product. -/
def of {i : ι} : M i →* free_product M :=
{ to_fun := λ x, con.mk' _ (free_monoid.of $ sigma.mk i x),
map_one' := (con.eq _).mpr (con_gen.rel.of _ _ (free_product.rel.of_one i)),
map_mul' := λ x y, eq.symm $ (con.eq _).mpr (con_gen.rel.of _ _ (free_product.rel.of_mul x y)) }
lemma of_apply {i} (m : M i) : of m = con.mk' _ (free_monoid.of $ sigma.mk i m) := rfl
variables {N : Type*} [monoid N]
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma ext_hom (f g : free_product M →* N) (h : ∀ i, f.comp (of : M i →* _) = g.comp of) :
f = g :=
(monoid_hom.cancel_right con.mk'_surjective).mp $ free_monoid.hom_eq $ λ ⟨i, x⟩,
by rw [monoid_hom.comp_apply, monoid_hom.comp_apply, ←of_apply,
←monoid_hom.comp_apply, ←monoid_hom.comp_apply, h]
/-- A map out of the free product corresponds to a family of maps out of the summands. This is the
universal property of the free product, charaterizing it as a categorical coproduct. -/
@[simps symm_apply]
def lift : (Π i, M i →* N) ≃ (free_product M →* N) :=
{ to_fun := λ fi, con.lift _ (free_monoid.lift $ λ p : Σ i, M i, fi p.fst p.snd) $ con.con_gen_le
begin
simp_rw [con.rel_eq_coe, con.ker_rel],
rintros _ _ (i | ⟨i, x, y⟩),
{ change free_monoid.lift _ (free_monoid.of _) = free_monoid.lift _ 1,
simp only [monoid_hom.map_one, free_monoid.lift_eval_of], },
{ change free_monoid.lift _ (free_monoid.of _ * free_monoid.of _) =
free_monoid.lift _ (free_monoid.of _),
simp only [monoid_hom.map_mul, free_monoid.lift_eval_of], }
end,
inv_fun := λ f i, f.comp of,
left_inv := by { intro fi, ext i x,
rw [monoid_hom.comp_apply, of_apply, con.lift_mk', free_monoid.lift_eval_of], },
right_inv := by { intro f, ext i x,
simp only [monoid_hom.comp_apply, of_apply, con.lift_mk', free_monoid.lift_eval_of], } }
@[simp] lemma lift_of {N} [monoid N] (fi : Π i, M i →* N) {i} (m : M i) :
lift fi (of m) = fi i m :=
by conv_rhs { rw [←lift.symm_apply_apply fi, lift_symm_apply, monoid_hom.comp_apply] }
@[elab_as_eliminator]
lemma induction_on {C : free_product M → Prop}
(m : free_product M)
(h_one : C 1)
(h_of : ∀ (i) (m : M i), C (of m))
(h_mul : ∀ (x y), C x → C y → C (x * y)) :
C m :=
begin
let S : submonoid (free_product M) := submonoid.mk (set_of C) h_mul h_one,
convert subtype.prop (lift (λ i, of.cod_restrict S (h_of i)) m),
change monoid_hom.id _ m = S.subtype.comp _ m,
congr,
ext,
simp [monoid_hom.cod_restrict],
end
lemma of_left_inverse [decidable_eq ι] (i : ι) :
function.left_inverse (lift $ pi.mul_single i (monoid_hom.id (M i))) of :=
λ x, by simp only [lift_of, pi.mul_single_eq_same, monoid_hom.id_apply]
lemma of_injective (i : ι) : function.injective ⇑(of : M i →* _) :=
by { classical, exact (of_left_inverse i).injective }
lemma lift_mrange_le {N} [monoid N] (f : Π i, M i →* N) {s : submonoid N}
(h : ∀ i, (f i).mrange ≤ s) : (lift f).mrange ≤ s :=
begin
rintros _ ⟨x, rfl⟩,
induction x using free_product.induction_on with i x x y hx hy,
{ exact s.one_mem, },
{ simp only [lift_of, set_like.mem_coe], exact h i (set.mem_range_self x), },
{ simp only [map_mul, set_like.mem_coe], exact s.mul_mem hx hy, },
end
lemma mrange_eq_supr {N} [monoid N] (f : Π i, M i →* N) :
(lift f).mrange = ⨆ i, (f i).mrange :=
begin
apply le_antisymm (lift_mrange_le f (λ i, le_supr _ i)),
apply supr_le _,
rintros i _ ⟨x, rfl⟩,
exact ⟨of x, by simp only [lift_of]⟩
end
section group
variables (G : ι → Type*) [Π i, group (G i)]
instance : has_inv (free_product G) :=
{ inv := mul_opposite.unop ∘
lift (λ i, (of : G i →* _).op.comp (mul_equiv.inv' (G i)).to_monoid_hom) }
lemma inv_def (x : free_product G) : x⁻¹ = mul_opposite.unop
(lift (λ i, (of : G i →* _).op.comp (mul_equiv.inv' (G i)).to_monoid_hom) x) := rfl
instance : group (free_product G) :=
{ mul_left_inv := begin
intro m,
rw inv_def,
apply m.induction_on,
{ rw [monoid_hom.map_one, mul_opposite.unop_one, one_mul], },
{ intros i m, change of m⁻¹ * of m = 1, rw [←of.map_mul, mul_left_inv, of.map_one], },
{ intros x y hx hy,
rw [monoid_hom.map_mul, mul_opposite.unop_mul, mul_assoc, ← mul_assoc _ x y, hx,
one_mul, hy], },
end,
..free_product.has_inv G,
..free_product.monoid G }
lemma lift_range_le {N} [group N] (f : Π i, G i →* N) {s : subgroup N}
(h : ∀ i, (f i).range ≤ s) : (lift f).range ≤ s :=
begin
rintros _ ⟨x, rfl⟩,
induction x using free_product.induction_on with i x x y hx hy,
{ exact s.one_mem, },
{ simp only [lift_of, set_like.mem_coe], exact h i (set.mem_range_self x), },
{ simp only [map_mul, set_like.mem_coe], exact s.mul_mem hx hy, },
end
lemma range_eq_supr {N} [group N] (f : Π i, G i →* N) :
(lift f).range = ⨆ i, (f i).range :=
begin
apply le_antisymm (lift_range_le _ f (λ i, le_supr _ i)),
apply supr_le _,
rintros i _ ⟨x, rfl⟩,
exact ⟨of x, by simp only [lift_of]⟩
end
end group
namespace word
/-- The empty reduced word. -/
def empty : word M := { to_list := [], ne_one := λ _, false.elim, chain_ne := list.chain'_nil }
instance : inhabited (word M) := ⟨empty⟩
/-- A reduced word determines an element of the free product, given by multiplication. -/
def prod (w : word M) : free_product M :=
list.prod (w.to_list.map $ λ l, of l.snd)
@[simp] lemma prod_empty : prod (empty : word M) = 1 := rfl
/-- `fst_idx w` is `some i` if the first letter of `w` is `⟨i, m⟩` with `m : M i`. If `w` is empty
then it's `none`. -/
def fst_idx (w : word M) : option ι := w.to_list.head'.map sigma.fst
lemma fst_idx_ne_iff {w : word M} {i} :
fst_idx w ≠ some i ↔ ∀ l ∈ w.to_list.head', i ≠ sigma.fst l :=
not_iff_not.mp $ by simp [fst_idx]
variable (M)
/-- Given an index `i : ι`, `pair M i` is the type of pairs `(head, tail)` where `head : M i` and
`tail : word M`, subject to the constraint that first letter of `tail` can't be `⟨i, m⟩`.
By prepending `head` to `tail`, one obtains a new word. We'll show that any word can be uniquely
obtained in this way. -/
@[ext] structure pair (i : ι) :=
(head : M i)
(tail : word M)
(fst_idx_ne : fst_idx tail ≠ some i)
instance (i : ι) : inhabited (pair M i) := ⟨⟨1, empty, by tauto⟩⟩
variable {M}
variables [∀ i, decidable_eq (M i)]
/-- Given a pair `(head, tail)`, we can form a word by prepending `head` to `tail`, except if `head`
is `1 : M i` then we have to just return `word` since we need the result to be reduced. -/
def rcons {i} (p : pair M i) : word M :=
if h : p.head = 1 then p.tail
else { to_list := ⟨i, p.head⟩ :: p.tail.to_list,
ne_one := by { rintros l (rfl | hl), exact h, exact p.tail.ne_one l hl },
chain_ne := p.tail.chain_ne.cons' (fst_idx_ne_iff.mp p.fst_idx_ne) }
/-- Given a word of the form `⟨l :: ls, h1, h2⟩`, we can form a word of the form `⟨ls, _, _⟩`,
dropping the first letter. -/
private def mk_aux {l} (ls : list (Σ i, M i)) (h1 : ∀ l' ∈ l :: ls, sigma.snd l' ≠ 1)
(h2 : (l :: ls).chain' _) : word M :=
⟨ls, λ l' hl, h1 _ (list.mem_cons_of_mem _ hl), h2.tail⟩
lemma cons_eq_rcons {i} {m : M i} {ls h1 h2} :
word.mk (⟨i, m⟩ :: ls) h1 h2 = rcons ⟨m, mk_aux ls h1 h2, fst_idx_ne_iff.mpr h2.rel_head'⟩ :=
by { rw [rcons, dif_neg], refl, exact h1 ⟨i, m⟩ (ls.mem_cons_self _) }
@[simp] lemma prod_rcons {i} (p : pair M i) :
prod (rcons p) = of p.head * prod p.tail :=
if hm : p.head = 1 then by rw [rcons, dif_pos hm, hm, monoid_hom.map_one, one_mul]
else by rw [rcons, dif_neg hm, prod, list.map_cons, list.prod_cons, prod]
lemma rcons_inj {i} : function.injective (rcons : pair M i → word M) :=
begin
rintros ⟨m, w, h⟩ ⟨m', w', h'⟩ he,
by_cases hm : m = 1;
by_cases hm' : m' = 1,
{ simp only [rcons, dif_pos hm, dif_pos hm'] at he, cc, },
{ exfalso, simp only [rcons, dif_pos hm, dif_neg hm'] at he, rw he at h, exact h rfl },
{ exfalso, simp only [rcons, dif_pos hm', dif_neg hm] at he, rw ←he at h', exact h' rfl, },
{ have : m = m' ∧ w.to_list = w'.to_list,
{ simpa only [rcons, dif_neg hm, dif_neg hm', true_and, eq_self_iff_true, subtype.mk_eq_mk,
heq_iff_eq, ←subtype.ext_iff_val] using he },
rcases this with ⟨rfl, h⟩,
congr, exact word.ext _ _ h, }
end
variable [decidable_eq ι]
/-- Given `i : ι`, any reduced word can be decomposed into a pair `p` such that `w = rcons p`. -/
-- This definition is computable but not very nice to look at. Thankfully we don't have to inspect
-- it, since `rcons` is known to be injective.
private def equiv_pair_aux (i) : Π w : word M, { p : pair M i // rcons p = w }
| w@⟨[], _, _⟩ := ⟨⟨1, w, by rintro ⟨⟩⟩, dif_pos rfl⟩
| w@⟨⟨j, m⟩ :: ls, h1, h2⟩ := if ij : i = j then
{ val := { head := ij.symm.rec m,
tail := mk_aux ls h1 h2,
fst_idx_ne := by cases ij; exact fst_idx_ne_iff.mpr h2.rel_head' },
property := by cases ij; exact cons_eq_rcons.symm }
else ⟨⟨1, w, (option.some_injective _).ne (ne.symm ij)⟩, dif_pos rfl⟩
/-- The equivalence between words and pairs. Given a word, it decomposes it as a pair by removing
the first letter if it comes from `M i`. Given a pair, it prepends the head to the tail. -/
def equiv_pair (i) : word M ≃ pair M i :=
{ to_fun := λ w, (equiv_pair_aux i w).val,
inv_fun := rcons,
left_inv := λ w, (equiv_pair_aux i w).property,
right_inv := λ p, rcons_inj (equiv_pair_aux i _).property }
lemma equiv_pair_symm (i) (p : pair M i) : (equiv_pair i).symm p = rcons p := rfl
lemma equiv_pair_eq_of_fst_idx_ne {i} {w : word M} (h : fst_idx w ≠ some i) :
equiv_pair i w = ⟨1, w, h⟩ :=
(equiv_pair i).apply_eq_iff_eq_symm_apply.mpr $ eq.symm (dif_pos rfl)
instance summand_action (i) : mul_action (M i) (word M) :=
{ smul := λ m w, rcons { head := m * (equiv_pair i w).head, ..equiv_pair i w },
one_smul := λ w, by { simp_rw [one_mul], apply (equiv_pair i).symm_apply_eq.mpr, ext; refl },
mul_smul := λ m m' w, by simp only [mul_assoc, ←equiv_pair_symm, equiv.apply_symm_apply], }
instance : mul_action (free_product M) (word M) :=
mul_action.of_End_hom (lift (λ i, mul_action.to_End_hom))
lemma of_smul_def (i) (w : word M) (m : M i) :
of m • w = rcons { head := m * (equiv_pair i w).head, ..equiv_pair i w } := rfl
lemma cons_eq_smul {i} {m : M i} {ls h1 h2} :
word.mk (⟨i, m⟩ :: ls) h1 h2 = of m • mk_aux ls h1 h2 :=
by rw [cons_eq_rcons, of_smul_def, equiv_pair_eq_of_fst_idx_ne _]; simp only [mul_one]
lemma smul_induction {C : word M → Prop}
(h_empty : C empty)
(h_smul : ∀ i (m : M i) w, C w → C (of m • w))
(w : word M) : C w :=
begin
cases w with ls h1 h2,
induction ls with l ls ih,
{ exact h_empty },
cases l with i m,
rw cons_eq_smul,
exact h_smul _ _ _ (ih _ _),
end
@[simp] lemma prod_smul (m) : ∀ w : word M, prod (m • w) = m * prod w :=
begin
apply m.induction_on,
{ intro, rw [one_smul, one_mul] },
{ intros, rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ←prod_rcons,
←equiv_pair_symm, equiv.symm_apply_apply] },
{ intros x y hx hy w, rw [mul_smul, hx, hy, mul_assoc] },
end
/-- Each element of the free product corresponds to a unique reduced word. -/
def equiv : free_product M ≃ word M :=
{ to_fun := λ m, m • empty,
inv_fun := λ w, prod w,
left_inv := λ m, by dsimp only; rw [prod_smul, prod_empty, mul_one],
right_inv := begin
apply smul_induction,
{ dsimp only, rw [prod_empty, one_smul], },
{ dsimp only, intros i m w ih, rw [prod_smul, mul_smul, ih], },
end }
instance : decidable_eq (word M) := function.injective.decidable_eq word.ext
instance : decidable_eq (free_product M) := word.equiv.decidable_eq
end word
variable (M)
/-- A `neword M i j` is a representation of a non-empty reduced words where the first letter comes
from `M i` and the last letter comes from `M j`. It can be constructed from singletons and via
concatentation, and thus provides a useful induction principle. -/
@[nolint has_nonempty_instance]
inductive neword : ι → ι → Type (max u_1 u_2)
| singleton : ∀ {i} (x : M i) (hne1 : x ≠ 1), neword i i
| append : ∀ {i j k l} (w₁ : neword i j) (hne : j ≠ k) (w₂ : neword k l), neword i l
variable {M}
namespace neword
open word
/-- The list represented by a given `neword` -/
@[simp]
def to_list : Π {i j} (w : neword M i j), list (Σ i, M i)
| i _ (singleton x hne1) := [⟨i, x⟩]
| _ _ (append w₁ hne w₂) := w₁.to_list ++ w₂.to_list
lemma to_list_ne_nil {i j} (w : neword M i j) : w.to_list ≠ list.nil :=
by { induction w, { rintros ⟨rfl⟩ }, { apply list.append_ne_nil_of_ne_nil_left, assumption } }
/-- The first letter of a `neword` -/
@[simp]
def head : Π {i j} (w : neword M i j), M i
| i _ (singleton x hne1) := x
| _ _ (append w₁ hne w₂) := w₁.head
/-- The last letter of a `neword` -/
@[simp]
def last : Π {i j} (w : neword M i j), M j
| i _ (singleton x hne1) := x
| _ _ (append w₁ hne w₂) := w₂.last
@[simp]
lemma to_list_head' {i j} (w : neword M i j) :
w.to_list.head' = option.some ⟨i, w.head⟩ :=
begin
rw ← option.mem_def,
induction w,
{ rw option.mem_def, reflexivity, },
{ exact list.head'_append w_ih_w₁, },
end
@[simp]
lemma to_list_last' {i j} (w : neword M i j) :
w.to_list.last' = option.some ⟨j, w.last⟩ :=
begin
rw ← option.mem_def,
induction w,
{ rw option.mem_def, reflexivity, },
{ exact list.last'_append w_ih_w₂, },
end
/-- The `word M` represented by a `neword M i j` -/
def to_word {i j} (w : neword M i j) : word M :=
{ to_list := w.to_list,
ne_one :=
begin
induction w,
{ rintros ⟨k,x⟩ ⟨rfl, rfl⟩,
exact w_hne1,
exfalso, apply H, },
{ intros l h,
simp only [to_list, list.mem_append] at h,
cases h,
{ exact w_ih_w₁ _ h, },
{ exact w_ih_w₂ _ h, }, },
end,
chain_ne := begin
induction w,
{ exact list.chain'_singleton _, },
{ apply list.chain'.append w_ih_w₁ w_ih_w₂,
intros x hx y hy,
rw [w_w₁.to_list_last', option.mem_some_iff] at hx,
rw [w_w₂.to_list_head', option.mem_some_iff] at hy,
subst hx, subst hy,
exact w_hne, },
end, }
/-- Every nonempty `word M` can be constructed as a `neword M i j` -/
lemma of_word (w : word M) (h : w ≠ empty) :
∃ i j (w' : neword M i j), w'.to_word = w :=
begin
suffices : ∃ i j (w' : neword M i j), w'.to_word.to_list = w.to_list,
{ obtain ⟨i, j, w, h⟩ := this, refine ⟨i, j, w, _⟩, ext, rw h, },
cases w with l hnot1 hchain,
induction l with x l hi,
{ contradiction, },
{ rw list.forall_mem_cons at hnot1,
cases l with y l,
{ refine ⟨x.1, x.1, singleton x.2 hnot1.1, _ ⟩,
simp [to_word], },
{ rw list.chain'_cons at hchain,
specialize hi hnot1.2 hchain.2 (by rintros ⟨rfl⟩),
obtain ⟨i, j, w', hw' : w'.to_list = y :: l⟩ := hi,
obtain rfl : y = ⟨i, w'.head⟩, by simpa [hw'] using w'.to_list_head',
refine ⟨x.1, j, append (singleton x.2 hnot1.1) hchain.1 w', _⟩,
{ simpa [to_word] using hw', } } }
end
/-- A non-empty reduced word determines an element of the free product, given by multiplication. -/
def prod {i j} (w : neword M i j) := w.to_word.prod
@[simp]
lemma singleton_head {i} (x : M i) (hne_one : x ≠ 1) :
(singleton x hne_one).head = x := rfl
@[simp]
lemma singleton_last {i} (x : M i) (hne_one : x ≠ 1) :
(singleton x hne_one).last = x := rfl
@[simp] lemma prod_singleton {i} (x : M i) (hne_one : x ≠ 1) :
(singleton x hne_one).prod = of x :=
by simp [to_word, prod, word.prod]
@[simp]
lemma append_head {i j k l} {w₁ : neword M i j} {hne : j ≠ k} {w₂ : neword M k l} :
(append w₁ hne w₂).head = w₁.head := rfl
@[simp]
lemma append_last {i j k l} {w₁ : neword M i j} {hne : j ≠ k} {w₂ : neword M k l} :
(append w₁ hne w₂).last = w₂.last := rfl
@[simp]
lemma append_prod {i j k l} {w₁ : neword M i j} {hne : j ≠ k} {w₂ : neword M k l} :
(append w₁ hne w₂).prod = w₁.prod * w₂.prod :=
by simp [to_word, prod, word.prod]
/-- One can replace the first letter in a non-empty reduced word by an element of the same
group -/
def replace_head : Π {i j : ι} (x : M i) (hnotone : x ≠ 1) (w : neword M i j), neword M i j
| _ _ x h (singleton _ _) := singleton x h
| _ _ x h (append w₁ hne w₂) := append (replace_head x h w₁) hne w₂
@[simp]
lemma replace_head_head {i j : ι} (x : M i) (hnotone : x ≠ 1) (w : neword M i j) :
(replace_head x hnotone w).head = x :=
by { induction w, refl, exact w_ih_w₁ _ _, }
/-- One can multiply an element from the left to a non-empty reduced word if it does not cancel
with the first element in the word. -/
def mul_head {i j : ι} (w : neword M i j) (x : M i) (hnotone : x * w.head ≠ 1) :
neword M i j := replace_head (x * w.head) hnotone w
@[simp]
lemma mul_head_head {i j : ι} (w : neword M i j) (x : M i) (hnotone : x * w.head ≠ 1) :
(mul_head w x hnotone).head = x * w.head :=
by { induction w, refl, exact w_ih_w₁ _ _, }
@[simp]
lemma mul_head_prod {i j : ι} (w : neword M i j) (x : M i) (hnotone : x * w.head ≠ 1) :
(mul_head w x hnotone).prod = of x * w.prod :=
begin
unfold mul_head,
induction w,
{ simp [mul_head, replace_head], },
{ specialize w_ih_w₁ _ hnotone, clear w_ih_w₂,
simp [replace_head, ← mul_assoc] at *,
congr' 1, }
end
section group
variables {G : ι → Type*} [Π i, group (G i)]
/-- The inverse of a non-empty reduced word -/
def inv : Π {i j} (w : neword G i j), neword G j i
| _ _ (singleton x h) := singleton x⁻¹ (mt inv_eq_one.mp h)
| _ _ (append w₁ h w₂) := append w₂.inv h.symm w₁.inv
@[simp]
lemma inv_prod {i j} (w : neword G i j) : w.inv.prod = w.prod⁻¹ :=
by induction w; simp [inv, *]
@[simp]
lemma inv_head {i j} (w : neword G i j) : w.inv.head = w.last⁻¹ :=
by induction w; simp [inv, *]
@[simp]
lemma inv_last {i j} (w : neword G i j) : w.inv.last = w.head⁻¹ :=
by induction w; simp [inv, *]
end group
end neword
section ping_pong_lemma
open_locale pointwise
open_locale cardinal
variables [hnontriv : nontrivial ι]
variables {G : Type*} [group G]
variables {H : ι → Type*} [∀ i, group (H i)]
variables (f : Π i, H i →* G)
-- We need many groups or one group with many elements
variables (hcard : 3 ≤ # ι ∨ ∃ i, 3 ≤ # (H i))
-- A group action on α, and the ping-pong sets
variables {α : Type*} [mul_action G α]
variables (X : ι → set α)
variables (hXnonempty : ∀ i, (X i).nonempty)
variables (hXdisj : pairwise (λ i j, disjoint (X i) (X j)))
variables (hpp : pairwise (λ i j, ∀ h : H i, h ≠ 1 → f i h • X j ⊆ X i))
include hpp
lemma lift_word_ping_pong {i j k} (w : neword H i j) (hk : j ≠ k) :
lift f w.prod • X k ⊆ X i :=
begin
rename [i → i', j → j', k → m, hk → hm],
induction w with i x hne_one i j k l w₁ hne w₂ hIw₁ hIw₂ generalizing m; clear i' j',
{ simpa using hpp _ _ hm _ hne_one, },
{ calc lift f (neword.append w₁ hne w₂).prod • X m
= lift f w₁.prod • lift f w₂.prod • X m : by simp [mul_action.mul_smul]
... ⊆ lift f w₁.prod • X k : set_smul_subset_set_smul_iff.mpr (hIw₂ hm)
... ⊆ X i : hIw₁ hne },
end
include X hXnonempty hXdisj
lemma lift_word_prod_nontrivial_of_other_i {i j k} (w : neword H i j)
(hhead : k ≠ i) (hlast : k ≠ j) : lift f w.prod ≠ 1 :=
begin
intro heq1,
have : X k ⊆ X i,
by simpa [heq1] using lift_word_ping_pong f X hpp w hlast.symm,
obtain ⟨x, hx⟩ := hXnonempty k,
exact hXdisj k i hhead ⟨hx, this hx⟩,
end
include hnontriv
lemma lift_word_prod_nontrivial_of_head_eq_last {i} (w : neword H i i) :
lift f w.prod ≠ 1 :=
begin
obtain ⟨k, hk⟩ := exists_ne i,
exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w hk hk,
end
lemma lift_word_prod_nontrivial_of_head_card {i j} (w : neword H i j)
(hcard : 3 ≤ # (H i)) (hheadtail : i ≠ j) : lift f w.prod ≠ 1 :=
begin
obtain ⟨h, hn1, hnh⟩ := cardinal.three_le hcard 1 (w.head⁻¹),
have hnot1 : h * w.head ≠ 1, by { rw ← div_inv_eq_mul, exact div_ne_one_of_ne hnh },
let w' : neword H i i := neword.append
(neword.mul_head w h hnot1) hheadtail.symm
(neword.singleton h⁻¹ (inv_ne_one.mpr hn1)),
have hw' : lift f w'.prod ≠ 1 :=
lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w',
intros heq1, apply hw', simp [w', heq1]
end
include hcard
lemma lift_word_prod_nontrivial_of_not_empty {i j} (w : neword H i j) :
lift f w.prod ≠ 1 :=
begin
classical,
cases hcard,
{ obtain ⟨i, h1, h2⟩ := cardinal.three_le hcard i j,
exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w h1 h2, },
{ cases hcard with k hcard,
by_cases hh : i = k; by_cases hl : j = k,
{ subst hh, subst hl,
exact lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w, },
{ subst hh,
change j ≠ i at hl,
exact lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w hcard hl.symm, },
{ subst hl,
change i ≠ j at hh,
have : lift f w.inv.prod ≠ 1 :=
lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w.inv hcard hh.symm,
intros heq, apply this, simpa using heq, },
{ change i ≠ k at hh,
change j ≠ k at hl,
obtain ⟨h, hn1, -⟩ := cardinal.three_le hcard 1 1,
let w' : neword H k k := neword.append
(neword.append (neword.singleton h hn1) hh.symm w)
hl (neword.singleton h⁻¹ (inv_ne_one.mpr hn1)) ,
have hw' : lift f w'.prod ≠ 1 :=
lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w',
intros heq1, apply hw', simp [w', heq1], }, }
end
lemma empty_of_word_prod_eq_one {w : word H} (h : lift f w.prod = 1) :
w = word.empty :=
begin
by_contradiction hnotempty,
obtain ⟨i, j, w, rfl⟩ := neword.of_word w hnotempty,
exact lift_word_prod_nontrivial_of_not_empty f hcard X hXnonempty hXdisj hpp w h,
end
/--
The Ping-Pong-Lemma.
Given a group action of `G` on `X` so that the `H i` acts in a specific way on disjoint subsets
`X i` we can prove that `lift f` is injective, and thus the image of `lift f` is isomorphic to the
direct product of the `H i`.
Often the Ping-Pong-Lemma is stated with regard to subgroups `H i` that generate the whole group;
we generalize to arbitrary group homomorphisms `f i : H i →* G` and do not require the group to be
generated by the images.
Usually the Ping-Pong-Lemma requires that one group `H i` has at least three elements. This
condition is only needed if `# ι = 2`, and we accept `3 ≤ # ι` as an alternative.
-/
theorem lift_injective_of_ping_pong:
function.injective (lift f) :=
begin
classical,
apply (injective_iff_map_eq_one (lift f)).mpr,
rw (free_product.word.equiv : _ ≃ word H).forall_congr_left',
{ intros w Heq,
dsimp [word.equiv] at *,
{ rw empty_of_word_prod_eq_one f hcard X hXnonempty hXdisj hpp Heq,
reflexivity, }, },
end
end ping_pong_lemma
/-- The free product of free groups is itself a free group -/
@[simps]
instance {ι : Type*} (G : ι → Type*) [∀ i, group (G i)] [hG : ∀ i, is_free_group (G i)] :
is_free_group (free_product G) :=
{ generators := Σ i, is_free_group.generators (G i),
mul_equiv :=
monoid_hom.to_mul_equiv
(free_group.lift (λ (x : Σ i, is_free_group.generators (G i)),
free_product.of (is_free_group.of x.2 : G x.1)))
(free_product.lift (λ (i : ι),
(is_free_group.lift (λ (x : is_free_group.generators (G i)),
free_group.of (⟨i, x⟩ : Σ i, is_free_group.generators (G i)))
: G i →* (free_group (Σ i, is_free_group.generators (G i))))))
(by {ext, simp, })
(by {ext, simp, }) }
/-- A free group is a free product of copies of the free_group over one generator. -/
-- NB: One might expect this theorem to be phrased with ℤ, but ℤ is an additive group,
-- and using `multiplicative ℤ` runs into diamond issues.
@[simps]
def _root_.free_group_equiv_free_product {ι : Type u_1} :
free_group ι ≃* free_product (λ (_ : ι), free_group unit) :=
begin
refine monoid_hom.to_mul_equiv _ _ _ _,
exact free_group.lift (λ i, @free_product.of ι _ _ i (free_group.of unit.star)),
exact free_product.lift (λ i, free_group.lift (λ pstar, free_group.of i)),
{ ext i, refl, },
{ ext i a, cases a, refl, },
end
section ping_pong_lemma
open_locale pointwise cardinal
variables [nontrivial ι]
variables {G : Type u_1} [group G] (a : ι → G)
-- A group action on α, and the ping-pong sets
variables {α : Type*} [mul_action G α]
variables (X Y : ι → set α)
variables (hXnonempty : ∀ i, (X i).nonempty)
variables (hXdisj : pairwise (λ i j, disjoint (X i) (X j)))
variables (hYdisj : pairwise (λ i j, disjoint (Y i) (Y j)))
variables (hXYdisj : ∀ i j, disjoint (X i) (Y j))
variables (hX : ∀ i, a i • (Y i)ᶜ ⊆ X i)
variables (hY : ∀ i, a⁻¹ i • (X i)ᶜ ⊆ Y i)
include hXnonempty hXdisj hYdisj hXYdisj hX hY
/--
The Ping-Pong-Lemma.
Given a group action of `G` on `X` so that the generators of the free groups act in specific
ways on disjoint subsets `X i` and `Y i` we can prove that `lift f` is injective, and thus the image
of `lift f` is isomorphic to the free group.
Often the Ping-Pong-Lemma is stated with regard to group elements that generate the whole group;
we generalize to arbitrary group homomorphisms from the free group to `G` and do not require the
group to be generated by the elements.
-/
theorem _root_.free_group.injective_lift_of_ping_pong :
function.injective (free_group.lift a) :=
begin
-- Step one: express the free group lift via the free product lift
have : free_group.lift a =
(free_product.lift (λ i, free_group.lift (λ _, a i))).comp
(((@free_group_equiv_free_product ι)).to_monoid_hom),
{ ext i, simp, },
rw this, clear this,
refine function.injective.comp _ (mul_equiv.injective _),
-- Step two: Invoke the ping-pong lemma for free products
show function.injective (lift (λ (i : ι), free_group.lift (λ _, a i))),
-- Prepare to instantiate lift_injective_of_ping_pong
let H : ι → Type _ := λ i, free_group unit,
let f : Π i, H i →* G := λ i, free_group.lift (λ _, a i),
let X' : ι → set α := λ i, X i ∪ Y i,
apply lift_injective_of_ping_pong f _ X',
show _ ∨ ∃ i, 3 ≤ # (H i),
{ inhabit ι,
right, use arbitrary ι,
simp only [H],
rw [free_group.free_group_unit_equiv_int.cardinal_eq, cardinal.mk_denumerable],
apply le_of_lt,
simp },
show ∀ i, (X' i).nonempty,
{ exact (λ i, set.nonempty.inl (hXnonempty i)), },
show pairwise (λ i j, disjoint (X' i) (X' j)),
{ intros i j hij,
simp only [X'],
apply disjoint.union_left; apply disjoint.union_right,
{ exact hXdisj i j hij, },
{ exact hXYdisj i j, },
{ exact (hXYdisj j i).symm, },
{ exact hYdisj i j hij, }, },
show pairwise (λ i j, ∀ h : H i, h ≠ 1 → f i h • X' j ⊆ X' i),
{ rintros i j hij,
-- use free_group unit ≃ ℤ
refine free_group.free_group_unit_equiv_int.forall_congr_left'.mpr _,
intros n hne1,
change free_group.lift (λ _, a i) (free_group.of () ^ n) • X' j ⊆ X' i,
simp only [map_zpow, free_group.lift.of],
change a i ^ n • X' j ⊆ X' i,
have hnne0 : n ≠ 0, { rintro rfl, apply hne1, simpa, }, clear hne1,
simp only [X'],
-- Positive and negative powers separately
cases (lt_or_gt_of_ne hnne0).swap with hlt hgt,
{ have h1n : 1 ≤ n := hlt,
calc a i ^ n • X' j ⊆ a i ^ n • (Y i)ᶜ : smul_set_mono
((hXYdisj j i).union_left $ hYdisj j i hij.symm).subset_compl_right
... ⊆ X i :
begin
refine int.le_induction _ _ _ h1n,
{ rw zpow_one, exact hX i, },
{ intros n hle hi,
calc (a i ^ (n + 1)) • (Y i)ᶜ
= (a i ^ n * a i) • (Y i)ᶜ : by rw [zpow_add, zpow_one]
... = a i ^ n • (a i • (Y i)ᶜ) : mul_action.mul_smul _ _ _
... ⊆ a i ^ n • X i : smul_set_mono $ hX i
... ⊆ a i ^ n • (Y i)ᶜ : smul_set_mono (hXYdisj i i).subset_compl_right
... ⊆ X i : hi, },
end
... ⊆ X' i : set.subset_union_left _ _, },
{ have h1n : n ≤ -1, { apply int.le_of_lt_add_one, simpa using hgt, },
calc a i ^ n • X' j ⊆ a i ^ n • (X i)ᶜ : smul_set_mono
((hXdisj j i hij.symm).union_left (hXYdisj i j).symm).subset_compl_right
... ⊆ Y i :
begin
refine int.le_induction_down _ _ _ h1n,
{ rw [zpow_neg, zpow_one], exact hY i, },
{ intros n hle hi,
calc (a i ^ (n - 1)) • (X i)ᶜ
= (a i ^ n * (a i)⁻¹) • (X i)ᶜ : by rw [zpow_sub, zpow_one]
... = a i ^ n • ((a i)⁻¹ • (X i)ᶜ) : mul_action.mul_smul _ _ _
... ⊆ a i ^ n • Y i : smul_set_mono $ hY i
... ⊆ a i ^ n • (X i)ᶜ : smul_set_mono (hXYdisj i i).symm.subset_compl_right
... ⊆ Y i : hi, },
end
... ⊆ X' i : set.subset_union_right _ _, }, },
end
end ping_pong_lemma
end free_product
|
8f6500f4a204bb2bce9fb057c6ff392e416dc042
|
947b78d97130d56365ae2ec264df196ce769371a
|
/src/Lean/Elab/Import.lean
|
f30c0fc9728753859edbcc7d966a3d2c34706be8
|
[
"Apache-2.0"
] |
permissive
|
shyamalschandra/lean4
|
27044812be8698f0c79147615b1d5090b9f4b037
|
6e7a883b21eaf62831e8111b251dc9b18f40e604
|
refs/heads/master
| 1,671,417,126,371
| 1,601,859,995,000
| 1,601,860,020,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,970
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Sebastian Ullrich
-/
import Lean.Parser.Module
namespace Lean
namespace Elab
def headerToImports (header : Syntax) : List Import :=
let header := header.asNode;
let imports := if (header.getArg 0).isNone then [{ module := `Init : Import }] else [];
imports ++ (header.getArg 1).getArgs.toList.map (fun stx =>
-- `stx` is of the form `(Module.import "import" "runtime"? id)
let runtime := !(stx.getArg 1).isNone;
let id := stx.getIdAt 2;
{ module := id, runtimeOnly := runtime })
def processHeader (header : Syntax) (messages : MessageLog) (inputCtx : Parser.InputContext) (trustLevel : UInt32 := 0) : IO (Environment × MessageLog) :=
catch
(do env ← importModules (headerToImports header) trustLevel;
pure (env, messages))
(fun e => do
env ← mkEmptyEnvironment;
let spos := header.getPos.getD 0;
let pos := inputCtx.fileMap.toPosition spos;
pure (env, messages.add { fileName := inputCtx.fileName, data := toString e, pos := pos }))
def parseImports (input : String) (fileName : Option String := none) : IO (List Import × Position × MessageLog) := do
env ← mkEmptyEnvironment;
let fileName := fileName.getD "<input>";
let inputCtx := Parser.mkInputContext input fileName;
match Parser.parseHeader env inputCtx with
| (header, parserState, messages) => do
pure (headerToImports header, inputCtx.fileMap.toPosition parserState.pos, messages)
@[export lean_parse_imports]
def parseImportsExport (input : String) (fileName : Option String) : IO (List Import × Position × List Message) := do
(imports, pos, log) ← parseImports input fileName;
pure (imports, pos, log.toList)
@[export lean_print_deps]
def printDeps (deps : List Import) : IO Unit :=
deps.forM $ fun dep => do
fname ← findOLean dep.module;
IO.println fname
end Elab
end Lean
|
bea81113fc6447e168825dc23be3722f810c1a46
|
9028d228ac200bbefe3a711342514dd4e4458bff
|
/src/linear_algebra/exterior_algebra.lean
|
351d9230a7e6f97400e2cdbfa3ef3b2e86817824
|
[
"Apache-2.0"
] |
permissive
|
mcncm/mathlib
|
8d25099344d9d2bee62822cb9ed43aa3e09fa05e
|
fde3d78cadeec5ef827b16ae55664ef115e66f57
|
refs/heads/master
| 1,672,743,316,277
| 1,602,618,514,000
| 1,602,618,514,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,547
|
lean
|
/-
Copyright (c) 2020 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhangir Azerbayev, Adam Topaz, Eric Wieser.
-/
import algebra.ring_quot
import linear_algebra.tensor_algebra
import group_theory.perm.sign
/-!
# Exterior Algebras
We construct the exterior algebra of a semimodule `M` over a commutative semiring `R`.
## Notation
The exterior algebra of the `R`-semimodule `M` is denoted as `exterior_algebra R M`.
It is endowed with the structure of an `R`-algebra.
Given a linear morphism `f : M → A` from a semimodule `M` to another `R`-algebra `A`, such that
`cond : ∀ m : M, f m * f m = 0`, there is a (unique) lift of `f` to an `R`-algebra morphism,
which is denoted `exterior_algebra.lift R f cond`.
The canonical linear map `M → exterior_algebra R M` is denoted `exterior_algebra.ι R`.
## Theorems
The main theorems proved ensure that `exterior_algebra R M` satisfies the universal property
of the exterior algebra.
1. `ι_comp_lift` is fact that the composition of `ι R` with `lift R f cond` agrees with `f`.
2. `lift_unique` ensures the uniqueness of `lift R f cond` with respect to 1.
## Implementation details
The exterior algebra of `M` is constructed as a quotient of the tensor algebra, as follows.
1. We define a relation `exterior_algebra.rel R M` on `tensor_algebra R M`.
This is the smallest relation which identifies squares of elements of `M` with `0`.
2. The exterior algebra is the quotient of the tensor algebra by this relation.
-/
variables (R : Type*) [comm_semiring R]
variables (M : Type*) [add_comm_monoid M] [semimodule R M]
namespace exterior_algebra
open tensor_algebra
/-- `rel` relates each `ι m * ι m`, for `m : M`, with `0`.
The exterior algebra of `M` is defined as the quotient modulo this relation.
-/
inductive rel : tensor_algebra R M → tensor_algebra R M → Prop
| of (m : M) : rel ((ι R m) * (ι R m)) 0
end exterior_algebra
/--
The exterior algebra of an `R`-semimodule `M`.
-/
@[derive [inhabited, semiring, algebra R]]
def exterior_algebra := ring_quot (exterior_algebra.rel R M)
namespace exterior_algebra
variables {M}
/--
The canonical linear map `M →ₗ[R] exterior_algebra R M`.
-/
def ι : M →ₗ[R] exterior_algebra R M :=
(ring_quot.mk_alg_hom R _).to_linear_map.comp (tensor_algebra.ι R)
variables {R}
/-- As well as being linear, `ι m` squares to zero -/
@[simp]
theorem ι_square_zero (m : M) : (ι R m) * (ι R m) = 0 :=
begin
dsimp [ι],
rw [←alg_hom.map_mul, ←alg_hom.map_zero _],
exact ring_quot.mk_alg_hom_rel R (rel.of m),
end
variables (R) {A : Type*} [semiring A] [algebra R A]
/--
Given a linear map `f : M →ₗ[R] A` into an `R`-algebra `A`, which satisfies the condition:
`cond : ∀ m : M, f m * f m = 0`, this is the canonical lift of `f` to a morphism of `R`-algebras
from `exterior_algebra R M` to `A`.
-/
def lift (f : M →ₗ[R] A) (cond : ∀ m, f m * f m = 0) : exterior_algebra R M →ₐ[R] A :=
ring_quot.lift_alg_hom R (tensor_algebra.lift R f)
(λ x y h, by {
induction h,
rw [alg_hom.map_zero, alg_hom.map_mul, tensor_algebra.lift_ι_apply, cond] })
@[simp]
theorem ι_comp_lift (f : M →ₗ[R] A) (cond : ∀ m, f m * f m = 0) :
(lift R f cond).to_linear_map.comp (ι R) = f :=
by { ext, simp [lift, ι] }
@[simp]
theorem lift_ι_apply (f : M →ₗ[R] A) (cond : ∀ m, f m * f m = 0) (x) :
lift R f cond (ι R x) = f x :=
by { dsimp [lift, ι], rw tensor_algebra.lift_ι_apply }
@[simp]
theorem lift_unique (f : M →ₗ[R] A) (cond : ∀ m, f m * f m = 0)
(g : exterior_algebra R M →ₐ[R] A) : g.to_linear_map.comp (ι R) = f ↔ g = lift R f cond :=
begin
refine ⟨_, λ hyp, by rw [hyp, ι_comp_lift]⟩,
rintro rfl,
ext,
simp [lift],
refl,
end
attribute [irreducible] exterior_algebra ι lift
variables {R M}
@[simp]
theorem comp_ι_square_zero (g : exterior_algebra R M →ₐ[R] A)
(m : M) : g (ι R m) * g (ι R m) = 0 :=
by rw [←alg_hom.map_mul, ι_square_zero, alg_hom.map_zero]
@[simp]
theorem lift_comp_ι (g : exterior_algebra R M →ₐ[R] A) :
lift R (g.to_linear_map.comp (ι R)) (comp_ι_square_zero _) = g :=
by { symmetry, rw ←lift_unique, }
@[ext]
theorem hom_ext {f g : exterior_algebra R M →ₐ[R] A} :
f.to_linear_map.comp (ι R) = g.to_linear_map.comp (ι R) → f = g :=
begin
intro hyp,
let h := g.to_linear_map.comp (ι R),
have : g = lift R h (comp_ι_square_zero _), by rw ←lift_unique,
rw [this, ←lift_unique, hyp],
end
end exterior_algebra
|
3fa4b5a442a770b53a3cdcc4dad9f94cd2e147b2
|
d1a52c3f208fa42c41df8278c3d280f075eb020c
|
/stage0/src/Lean/Elab/Deriving/Repr.lean
|
3e15d5e996cf3702116d48324e2dad12c13df923
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
cipher1024/lean4
|
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
|
69114d3b50806264ef35b57394391c3e738a9822
|
refs/heads/master
| 1,642,227,983,603
| 1,642,011,696,000
| 1,642,011,696,000
| 228,607,691
| 0
| 0
|
Apache-2.0
| 1,576,584,269,000
| 1,576,584,268,000
| null |
UTF-8
|
Lean
| false
| false
| 5,130
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.Transform
import Lean.Meta.Inductive
import Lean.Elab.Deriving.Basic
import Lean.Elab.Deriving.Util
namespace Lean.Elab.Deriving.Repr
open Lean.Parser.Term
open Meta
open Std
def mkReprHeader (ctx : Context) (indVal : InductiveVal) : TermElabM Header := do
let prec ← `(prec)
let header ← mkHeader ctx `Repr 1 indVal
return { header with
binders := header.binders.push (← `(explicitBinderF| (prec : Nat)))
}
def mkBodyForStruct (ctx : Context) (header : Header) (indVal : InductiveVal) : TermElabM Syntax := do
let ctorVal ← getConstInfoCtor indVal.ctors.head!
let fieldNames ← getStructureFields (← getEnv) indVal.name
let numParams := indVal.numParams
let target := mkIdent header.targetNames[0]
forallTelescopeReducing ctorVal.type fun xs _ => do
let mut fields : Syntax ← `(Format.nil)
let mut first := true
if xs.size != numParams + fieldNames.size then
throwError "'deriving Repr' failed, unexpected number of fields in structure"
for i in [:fieldNames.size] do
let fieldName := fieldNames[i]
let fieldNameLit := Syntax.mkStrLit (toString fieldName)
let x := xs[numParams + i]
if first then
first := false
else
fields ← `($fields ++ "," ++ Format.line)
if (← isType x <||> isProof x) then
fields ← `($fields ++ $fieldNameLit ++ " := " ++ "_")
else
fields ← `($fields ++ $fieldNameLit ++ " := " ++ repr ($target.$(mkIdent fieldName):ident))
`(Format.bracket "{ " $fields:term " }")
def mkBodyForInduct (ctx : Context) (header : Header) (indVal : InductiveVal) (auxFunName : Name) : TermElabM Syntax := do
let discrs ← mkDiscrs header indVal
let alts ← mkAlts
`(match $[$discrs],* with $alts:matchAlt*)
where
mkAlts : TermElabM (Array Syntax) := do
let mut alts := #[]
for ctorName in indVal.ctors do
let ctorInfo ← getConstInfoCtor ctorName
let alt ← forallTelescopeReducing ctorInfo.type fun xs type => do
let mut patterns := #[]
-- add `_` pattern for indices
for i in [:indVal.numIndices] do
patterns := patterns.push (← `(_))
let mut ctorArgs := #[]
let mut rhs := Syntax.mkStrLit (toString ctorInfo.name)
rhs ← `(Format.text $rhs)
-- add `_` for inductive parameters, they are inaccessible
for i in [:indVal.numParams] do
ctorArgs := ctorArgs.push (← `(_))
for i in [:ctorInfo.numFields] do
let x := xs[indVal.numParams + i]
let a := mkIdent (← mkFreshUserName `a)
ctorArgs := ctorArgs.push a
if (← inferType x).isAppOf indVal.name then
rhs ← `($rhs ++ Format.line ++ $(mkIdent auxFunName):ident $a:ident max_prec)
else
rhs ← `($rhs ++ Format.line ++ reprArg $a)
patterns := patterns.push (← `(@$(mkIdent ctorName):ident $ctorArgs:term*))
`(matchAltExpr| | $[$patterns:term],* => Repr.addAppParen (Format.group (Format.nest (if prec >= max_prec then 1 else 2) ($rhs:term))) prec)
alts := alts.push alt
return alts
def mkBody (ctx : Context) (header : Header) (indVal : InductiveVal) (auxFunName : Name) : TermElabM Syntax := do
if isStructure (← getEnv) indVal.name then
mkBodyForStruct ctx header indVal
else
mkBodyForInduct ctx header indVal auxFunName
def mkAuxFunction (ctx : Context) (i : Nat) : TermElabM Syntax := do
let auxFunName ← ctx.auxFunNames[i]
let indVal ← ctx.typeInfos[i]
let header ← mkReprHeader ctx indVal
let mut body ← mkBody ctx header indVal auxFunName
if ctx.usePartial then
let letDecls ← mkLocalInstanceLetDecls ctx `Repr header.argNames
body ← mkLet letDecls body
let binders := header.binders
if ctx.usePartial then
`(private partial def $(mkIdent auxFunName):ident $binders:explicitBinder* : Format := $body:term)
else
`(private def $(mkIdent auxFunName):ident $binders:explicitBinder* : Format := $body:term)
def mkMutualBlock (ctx : Context) : TermElabM Syntax := do
let mut auxDefs := #[]
for i in [:ctx.typeInfos.size] do
auxDefs := auxDefs.push (← mkAuxFunction ctx i)
`(mutual
$auxDefs:command*
end)
private def mkReprInstanceCmds (declNames : Array Name) : TermElabM (Array Syntax) := do
let ctx ← mkContext "repr" declNames[0]
let cmds := #[← mkMutualBlock ctx] ++ (← mkInstanceCmds ctx `Repr declNames)
trace[Elab.Deriving.repr] "\n{cmds}"
return cmds
open Command
def mkReprInstanceHandler (declNames : Array Name) : CommandElabM Bool := do
if (← declNames.allM isInductive) && declNames.size > 0 then
let cmds ← liftTermElabM none <| mkReprInstanceCmds declNames
cmds.forM elabCommand
return true
else
return false
builtin_initialize
registerBuiltinDerivingHandler `Repr mkReprInstanceHandler
registerTraceClass `Elab.Deriving.repr
end Lean.Elab.Deriving.Repr
|
55e8fbcd4f2fd1b8895f89aebf3cd5a5649fdc2b
|
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
|
/src/field_theory/mv_polynomial.lean
|
7a34d1b8629116cc4726162cfa9b34fc89d7a835
|
[
"Apache-2.0"
] |
permissive
|
dupuisf/mathlib
|
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
|
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
|
refs/heads/master
| 1,669,494,854,016
| 1,595,692,409,000
| 1,595,692,409,000
| 272,046,630
| 0
| 0
|
Apache-2.0
| 1,592,066,143,000
| 1,592,066,142,000
| null |
UTF-8
|
Lean
| false
| false
| 9,571
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl
Multivariate functions of the form `α^n → α` are isomorphic to multivariate polynomials in
`n` variables.
-/
import linear_algebra.finsupp_vector_space
import field_theory.finite
noncomputable theory
open_locale classical
open set linear_map submodule
open_locale big_operators
namespace mv_polynomial
universes u v
variables {σ : Type u} {α : Type v}
section
variables (σ α) [field α] (m : ℕ)
def restrict_total_degree : submodule α (mv_polynomial σ α) :=
finsupp.supported _ _ {n | n.sum (λn e, e) ≤ m }
lemma mem_restrict_total_degree (p : mv_polynomial σ α) :
p ∈ restrict_total_degree σ α m ↔ p.total_degree ≤ m :=
begin
rw [total_degree, finset.sup_le_iff],
refl
end
end
section
variables (σ α)
def restrict_degree (m : ℕ) [field α] : submodule α (mv_polynomial σ α) :=
finsupp.supported _ _ {n | ∀i, n i ≤ m }
end
lemma mem_restrict_degree [field α] (p : mv_polynomial σ α) (n : ℕ) :
p ∈ restrict_degree σ α n ↔ (∀s ∈ p.support, ∀i, (s : σ →₀ ℕ) i ≤ n) :=
begin
rw [restrict_degree, finsupp.mem_supported],
refl
end
lemma mem_restrict_degree_iff_sup [field α] (p : mv_polynomial σ α) (n : ℕ) :
p ∈ restrict_degree σ α n ↔ ∀i, p.degrees.count i ≤ n :=
begin
simp only [mem_restrict_degree, degrees, multiset.count_sup, finsupp.count_to_multiset,
finset.sup_le_iff],
exact ⟨assume h n s hs, h s hs n, assume h s hs n, h n s hs⟩
end
lemma map_range_eq_map {β : Type*}
[comm_ring α] [comm_ring β] (p : mv_polynomial σ α)
(f : α → β) [is_semiring_hom f]:
finsupp.map_range f (is_semiring_hom.map_zero f) p = p.map f :=
begin
rw [← finsupp.sum_single p, finsupp.sum],
-- It's not great that we need to use an `erw` here,
-- but hopefully it will become smoother when we move entirely away from `is_semiring_hom`.
erw [finsupp.map_range_finset_sum (add_monoid_hom.of f)],
rw [← p.support.sum_hom (map f)],
{ refine finset.sum_congr rfl (assume n _, _),
rw [finsupp.map_range_single, ← monomial, ← monomial, map_monomial, add_monoid_hom.coe_of], },
apply_instance
end
section
variables (σ α)
lemma is_basis_monomials [field α] :
is_basis α ((λs, (monomial s 1 : mv_polynomial σ α))) :=
suffices is_basis α (λ (sa : Σ _, unit), (monomial sa.1 1 : mv_polynomial σ α)),
begin
apply is_basis.comp this (λ (s : σ →₀ ℕ), ⟨s, punit.star⟩),
split,
{ intros x y hxy,
simpa using hxy },
{ intros x,
rcases x with ⟨x₁, x₂⟩,
use x₁,
rw punit_eq punit.star x₂ }
end,
begin
apply finsupp.is_basis_single (λ _ _, (1 : α)),
intro _,
apply is_basis_singleton_one,
end
end
end mv_polynomial
namespace mv_polynomial
universe u
variables (σ : Type u) (α : Type u) [field α]
open_locale classical
lemma dim_mv_polynomial : vector_space.dim α (mv_polynomial σ α) = cardinal.mk (σ →₀ ℕ) :=
by rw [← cardinal.lift_inj, ← (is_basis_monomials σ α).mk_eq_dim]
end mv_polynomial
namespace mv_polynomial
variables {α : Type*} {σ : Type*}
variables [field α] [fintype α] [fintype σ]
def indicator (a : σ → α) : mv_polynomial σ α :=
∏ n, (1 - (X n - C (a n))^(fintype.card α - 1))
lemma eval_indicator_apply_eq_one (a : σ → α) :
eval a (indicator a) = 1 :=
have 0 < fintype.card α - 1,
begin
rw [← finite_field.card_units, fintype.card_pos_iff],
exact ⟨1⟩
end,
by simp only [indicator, (finset.univ.prod_hom (eval a)).symm, eval_sub,
is_ring_hom.map_one (eval a), is_semiring_hom.map_pow (eval a), eval_X, eval_C,
sub_self, zero_pow this, sub_zero, finset.prod_const_one]
lemma eval_indicator_apply_eq_zero (a b : σ → α) (h : a ≠ b) :
eval a (indicator b) = 0 :=
have ∃i, a i ≠ b i, by rwa [(≠), function.funext_iff, not_forall] at h,
begin
rcases this with ⟨i, hi⟩,
simp only [indicator, (finset.univ.prod_hom (eval a)).symm, eval_sub,
is_ring_hom.map_one (eval a), is_semiring_hom.map_pow (eval a), eval_X, eval_C,
sub_self, finset.prod_eq_zero_iff],
refine ⟨i, finset.mem_univ _, _⟩,
rw [finite_field.pow_card_sub_one_eq_one, sub_self],
rwa [(≠), sub_eq_zero],
end
lemma degrees_indicator (c : σ → α) :
degrees (indicator c) ≤ ∑ s : σ, (fintype.card α - 1) •ℕ {s} :=
begin
rw [indicator],
refine le_trans (degrees_prod _ _) (finset.sum_le_sum $ assume s hs, _),
refine le_trans (degrees_sub _ _) _,
rw [degrees_one, ← bot_eq_zero, bot_sup_eq],
refine le_trans (degrees_pow _ _) (nsmul_le_nsmul_of_le_right _ _),
refine le_trans (degrees_sub _ _) _,
rw [degrees_C, ← bot_eq_zero, sup_bot_eq],
exact degrees_X _
end
lemma indicator_mem_restrict_degree (c : σ → α) :
indicator c ∈ restrict_degree σ α (fintype.card α - 1) :=
begin
rw [mem_restrict_degree_iff_sup, indicator],
assume n,
refine le_trans (multiset.count_le_of_le _ $ degrees_indicator _) (le_of_eq _),
rw [← finset.univ.sum_hom (multiset.count n)],
simp only [is_add_monoid_hom.map_nsmul (multiset.count n), multiset.singleton_eq_singleton,
nsmul_eq_mul, nat.cast_id],
transitivity,
refine finset.sum_eq_single n _ _,
{ assume b hb ne, rw [multiset.count_cons_of_ne ne.symm, multiset.count_zero, mul_zero] },
{ assume h, exact (h $ finset.mem_univ _).elim },
{ rw [multiset.count_cons_self, multiset.count_zero, mul_one] }
end
section
variables (α σ)
def evalₗ : mv_polynomial σ α →ₗ[α] (σ → α) → α :=
⟨ λp e, p.eval e,
assume p q, funext $ assume e, eval_add,
assume a p, funext $ assume e, by rw [smul_eq_C_mul, eval_mul, eval_C]; refl ⟩
end
section
lemma evalₗ_apply (p : mv_polynomial σ α) (e : σ → α) : evalₗ α σ p e = p.eval e :=
rfl
end
lemma map_restrict_dom_evalₗ : (restrict_degree σ α (fintype.card α - 1)).map (evalₗ α σ) = ⊤ :=
begin
refine top_unique (submodule.le_def'.2 $ assume e _, mem_map.2 _),
refine ⟨∑ n : σ → α, e n • indicator n, _, _⟩,
{ exact sum_mem _ (assume c _, smul_mem _ _ (indicator_mem_restrict_degree _)) },
{ ext n,
simp only [linear_map.map_sum, @finset.sum_apply (σ → α) (λ_, α) _ _ _ _ _,
pi.smul_apply, linear_map.map_smul],
simp only [evalₗ_apply],
transitivity,
refine finset.sum_eq_single n _ _,
{ assume b _ h,
rw [eval_indicator_apply_eq_zero _ _ h.symm, smul_zero] },
{ assume h, exact (h $ finset.mem_univ n).elim },
{ rw [eval_indicator_apply_eq_one, smul_eq_mul, mul_one] } }
end
end mv_polynomial
namespace mv_polynomial
universe u
variables (σ : Type u) (α : Type u) [fintype σ] [field α] [fintype α]
@[derive [add_comm_group, vector_space α, inhabited]]
def R : Type u := restrict_degree σ α (fintype.card α - 1)
noncomputable instance decidable_restrict_degree (m : ℕ) :
decidable_pred (λn, n ∈ {n : σ →₀ ℕ | ∀i, n i ≤ m }) :=
by simp only [set.mem_set_of_eq]; apply_instance
lemma dim_R : vector_space.dim α (R σ α) = fintype.card (σ → α) :=
calc vector_space.dim α (R σ α) =
vector_space.dim α (↥{s : σ →₀ ℕ | ∀ (n : σ), s n ≤ fintype.card α - 1} →₀ α) :
linear_equiv.dim_eq
(finsupp.supported_equiv_finsupp {s : σ →₀ ℕ | ∀n:σ, s n ≤ fintype.card α - 1 })
... = cardinal.mk {s : σ →₀ ℕ | ∀ (n : σ), s n ≤ fintype.card α - 1} :
by rw [finsupp.dim_eq, dim_of_field, mul_one]
... = cardinal.mk {s : σ → ℕ | ∀ (n : σ), s n < fintype.card α } :
begin
refine quotient.sound ⟨equiv.subtype_congr finsupp.equiv_fun_on_fintype $ assume f, _⟩,
refine forall_congr (assume n, nat.le_sub_right_iff_add_le _),
exact fintype.card_pos_iff.2 ⟨0⟩
end
... = cardinal.mk (σ → {n // n < fintype.card α}) :
quotient.sound ⟨@equiv.subtype_pi_equiv_pi σ (λ_, ℕ) (λs n, n < fintype.card α)⟩
... = cardinal.mk (σ → fin (fintype.card α)) :
quotient.sound ⟨equiv.arrow_congr (equiv.refl σ) (equiv.fin_equiv_subtype _).symm⟩
... = cardinal.mk (σ → α) :
begin
refine (trunc.induction_on (fintype.equiv_fin α) $ assume (e : α ≃ fin (fintype.card α)), _),
refine quotient.sound ⟨equiv.arrow_congr (equiv.refl σ) e.symm⟩
end
... = fintype.card (σ → α) : cardinal.fintype_card _
def evalᵢ : R σ α →ₗ[α] (σ → α) → α :=
((evalₗ α σ).comp (restrict_degree σ α (fintype.card α - 1)).subtype)
lemma range_evalᵢ : (evalᵢ σ α).range = ⊤ :=
begin
rw [evalᵢ, linear_map.range_comp, range_subtype],
exact map_restrict_dom_evalₗ
end
lemma ker_evalₗ : (evalᵢ σ α).ker = ⊥ :=
begin
refine injective_of_surjective _ _ _ (range_evalᵢ _ _),
{ rw [dim_R], exact cardinal.nat_lt_omega _ },
{ rw [dim_R, dim_fun, dim_of_field, mul_one] }
end
lemma eq_zero_of_eval_eq_zero (p : mv_polynomial σ α)
(h : ∀v:σ → α, p.eval v = 0) (hp : p ∈ restrict_degree σ α (fintype.card α - 1)) :
p = 0 :=
let p' : R σ α := ⟨p, hp⟩ in
have p' ∈ (evalᵢ σ α).ker := by rw [mem_ker]; ext v; exact h v,
show p'.1 = (0 : R σ α).1,
begin
rw [ker_evalₗ, mem_bot] at this,
rw [this]
end
end mv_polynomial
namespace mv_polynomial
variables (σ : Type*) (R : Type*) [comm_ring R] (p : ℕ)
instance [char_p R p] : char_p (mv_polynomial σ R) p :=
{ cast_eq_zero_iff := λ n, by rw [← C_eq_coe_nat, ← C_0, C_inj, char_p.cast_eq_zero_iff R p] }
end mv_polynomial
|
f22f2353e9de7a7556057ba678fff1fb64ac098b
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/measure_theory/integral/divergence_theorem.lean
|
17ecec3e87575b25f8daa8883fcce3e1465da404
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 30,101
|
lean
|
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.box_integral.divergence_theorem
import analysis.box_integral.integrability
import measure_theory.integral.interval_integral
/-!
# Divergence theorem for Bochner integral
In this file we prove the Divergence theorem for Bochner integral on a box in
`ℝⁿ⁺¹ = fin (n + 1) → ℝ`. More precisely, we prove the following theorem.
Let `E` be a complete normed space. If `f : ℝⁿ⁺¹ → Eⁿ⁺¹` is
continuous on a rectangular box `[a, b] : set ℝⁿ⁺¹`, `a ≤ b`, differentiable on its interior with
derivative `f' : ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] Eⁿ⁺¹`, and the divergence `λ x, ∑ i, f' x eᵢ i` is integrable on
`[a, b]`, where `eᵢ = pi.single i 1` is the `i`-th basis vector, then its integral is equal to the
sum of integrals of `f` over the faces of `[a, b]`, taken with appropriate signs. Moreover, the same
is true if the function is not differentiable at countably many points of the interior of `[a, b]`.
Once we prove the general theorem, we deduce corollaries for functions `ℝ → E` and pairs of
functions `(ℝ × ℝ) → E`.
## Notations
We use the following local notation to make the statement more readable. Note that the documentation
website shows the actual terms, not those abbreviated using local notations.
* `ℝⁿ`, `ℝⁿ⁺¹`, `Eⁿ⁺¹`: `fin n → ℝ`, `fin (n + 1) → ℝ`, `fin (n + 1) → E`;
* `face i`: the `i`-th face of the box `[a, b]` as a closed segment in `ℝⁿ`, namely `[a ∘
fin.succ_above i, b ∘ fin.succ_above i]`;
* `e i` : `i`-th basis vector `pi.single i 1`;
* `front_face i`, `back_face i`: embeddings `ℝⁿ → ℝⁿ⁺¹` corresponding to the front face
`{x | x i = b i}` and back face `{x | x i = a i}` of the box `[a, b]`, respectively.
They are given by `fin.insert_nth i (b i)` and `fin.insert_nth i (a i)`.
## TODO
* Add a version that assumes existence and integrability of partial derivatives.
## Tags
divergence theorem, Bochner integral
-/
open set finset topological_space function box_integral measure_theory filter
open_locale big_operators classical topology interval
universes u
namespace measure_theory
variables {E : Type u} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E]
section
variables {n : ℕ}
local notation `ℝⁿ` := fin n → ℝ
local notation `ℝⁿ⁺¹` := fin (n + 1) → ℝ
local notation `Eⁿ⁺¹` := fin (n + 1) → E
local notation `e ` i := pi.single i 1
section
/-!
### Divergence theorem for functions on `ℝⁿ⁺¹ = fin (n + 1) → ℝ`.
In this section we use the divergence theorem for a Henstock-Kurzweil-like integral
`box_integral.has_integral_GP_divergence_of_forall_has_deriv_within_at` to prove the divergence
theorem for Bochner integral. The divergence theorem for Bochner integral
`measure_theory.integral_divergence_of_has_fderiv_within_at_off_countable` assumes that the function
itself is continuous on a closed box, differentiable at all but countably many points of its
interior, and the divergence is integrable on the box.
This statement differs from `box_integral.has_integral_GP_divergence_of_forall_has_deriv_within_at`
in several aspects.
* We use Bochner integral instead of a Henstock-Kurzweil integral. This modification is done in
`measure_theory.integral_divergence_of_has_fderiv_within_at_off_countable_aux₁`. As a side effect
of this change, we need to assume that the divergence is integrable.
* We don't assume differentiability on the boundary of the box. This modification is done in
`measure_theory.integral_divergence_of_has_fderiv_within_at_off_countable_aux₂`. To prove it, we
choose an increasing sequence of smaller boxes that cover the interior of the original box, then
apply the previous lemma to these smaller boxes and take the limit of both sides of the equation.
* We assume `a ≤ b` instead of `∀ i, a i < b i`. This is the last step of the proof, and it is done
in the main theorem `measure_theory.integral_divergence_of_has_fderiv_within_at_off_countable`.
-/
/-- An auxiliary lemma for
`measure_theory.integral_divergence_of_has_fderiv_within_at_off_countable`. This is exactly
`box_integral.has_integral_GP_divergence_of_forall_has_deriv_within_at` reformulated for the
Bochner integral. -/
lemma integral_divergence_of_has_fderiv_within_at_off_countable_aux₁ (I : box (fin (n + 1)))
(f : ℝⁿ⁺¹ → Eⁿ⁺¹) (f' : ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] Eⁿ⁺¹) (s : set ℝⁿ⁺¹) (hs : s.countable)
(Hc : continuous_on f I.Icc) (Hd : ∀ x ∈ I.Icc \ s, has_fderiv_within_at f (f' x) I.Icc x)
(Hi : integrable_on (λ x, ∑ i, f' x (e i) i) I.Icc) :
∫ x in I.Icc, ∑ i, f' x (e i) i =
∑ i : fin (n + 1),
((∫ x in (I.face i).Icc, f (i.insert_nth (I.upper i) x) i) -
∫ x in (I.face i).Icc, f (i.insert_nth (I.lower i) x) i) :=
begin
simp only [← set_integral_congr_set_ae (box.coe_ae_eq_Icc _)],
have A := ((Hi.mono_set box.coe_subset_Icc).has_box_integral ⊥ rfl),
have B := has_integral_GP_divergence_of_forall_has_deriv_within_at I f f' (s ∩ I.Icc)
(hs.mono (inter_subset_left _ _)) (λ x hx, Hc _ hx.2)
(λ x hx, Hd _ ⟨hx.1, λ h, hx.2 ⟨h, hx.1⟩⟩),
rw continuous_on_pi at Hc,
refine (A.unique B).trans (sum_congr rfl $ λ i hi, _),
refine congr_arg2 has_sub.sub _ _,
{ have := box.continuous_on_face_Icc (Hc i) (set.right_mem_Icc.2 (I.lower_le_upper i)),
have := (this.integrable_on_compact (box.is_compact_Icc _)).mono_set box.coe_subset_Icc,
exact (this.has_box_integral ⊥ rfl).integral_eq, apply_instance },
{ have := box.continuous_on_face_Icc (Hc i) (set.left_mem_Icc.2 (I.lower_le_upper i)),
have := (this.integrable_on_compact (box.is_compact_Icc _)).mono_set box.coe_subset_Icc,
exact (this.has_box_integral ⊥ rfl).integral_eq, apply_instance }
end
/-- An auxiliary lemma for
`measure_theory.integral_divergence_of_has_fderiv_within_at_off_countable`. Compared to the previous
lemma, here we drop the assumption of differentiability on the boundary of the box. -/
lemma integral_divergence_of_has_fderiv_within_at_off_countable_aux₂ (I : box (fin (n + 1)))
(f : ℝⁿ⁺¹ → Eⁿ⁺¹) (f' : ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] Eⁿ⁺¹) (s : set ℝⁿ⁺¹) (hs : s.countable)
(Hc : continuous_on f I.Icc) (Hd : ∀ x ∈ I.Ioo \ s, has_fderiv_at f (f' x) x)
(Hi : integrable_on (λ x, ∑ i, f' x (e i) i) I.Icc) :
∫ x in I.Icc, ∑ i, f' x (e i) i =
∑ i : fin (n + 1),
((∫ x in (I.face i).Icc, f (i.insert_nth (I.upper i) x) i) -
∫ x in (I.face i).Icc, f (i.insert_nth (I.lower i) x) i) :=
begin
/- Choose a monotone sequence `J k` of subboxes that cover the interior of `I` and prove that
these boxes satisfy the assumptions of the previous lemma. -/
rcases I.exists_seq_mono_tendsto with ⟨J, hJ_sub, hJl, hJu⟩,
have hJ_sub' : ∀ k, (J k).Icc ⊆ I.Icc, from λ k, (hJ_sub k).trans I.Ioo_subset_Icc,
have hJ_le : ∀ k, J k ≤ I, from λ k, box.le_iff_Icc.2 (hJ_sub' k),
have HcJ : ∀ k, continuous_on f (J k).Icc, from λ k, Hc.mono (hJ_sub' k),
have HdJ : ∀ k (x ∈ (J k).Icc \ s), has_fderiv_within_at f (f' x) (J k).Icc x,
from λ k x hx, (Hd x ⟨hJ_sub k hx.1, hx.2⟩).has_fderiv_within_at,
have HiJ : ∀ k, integrable_on (λ x, ∑ i, f' x (e i) i) (J k).Icc,
from λ k, Hi.mono_set (hJ_sub' k),
-- Apply the previous lemma to `J k`.
have HJ_eq := λ k, integral_divergence_of_has_fderiv_within_at_off_countable_aux₁ (J k) f f' s hs
(HcJ k) (HdJ k) (HiJ k),
/- Note that the LHS of `HJ_eq k` tends to the LHS of the goal as `k → ∞`. -/
have hI_tendsto : tendsto (λ k, ∫ x in (J k).Icc, ∑ i, f' x (e i) i) at_top
(𝓝 (∫ x in I.Icc, ∑ i, f' x (e i) i)),
{ simp only [integrable_on, ← measure.restrict_congr_set (box.Ioo_ae_eq_Icc _)] at Hi ⊢,
rw ← box.Union_Ioo_of_tendsto J.monotone hJl hJu at Hi ⊢,
exact tendsto_set_integral_of_monotone (λ k, (J k).measurable_set_Ioo)
(box.Ioo.comp J).monotone Hi },
/- Thus it suffices to prove the same about the RHS. -/
refine tendsto_nhds_unique_of_eventually_eq hI_tendsto _ (eventually_of_forall HJ_eq),
clear hI_tendsto,
rw tendsto_pi_nhds at hJl hJu,
/- We'll need to prove a similar statement about the integrals over the front sides and the
integrals over the back sides. In order to avoid repeating ourselves, we formulate a lemma. -/
suffices : ∀ (i : fin (n + 1)) (c : ℕ → ℝ) d,
(∀ k, c k ∈ Icc (I.lower i) (I.upper i)) → tendsto c at_top (𝓝 d) →
tendsto (λ k, ∫ x in ((J k).face i).Icc, f (i.insert_nth (c k) x) i) at_top
(𝓝 $ ∫ x in (I.face i).Icc, f (i.insert_nth d x) i),
{ rw box.Icc_eq_pi at hJ_sub',
refine tendsto_finset_sum _ (λ i hi, (this _ _ _ _ (hJu _)).sub (this _ _ _ _ (hJl _))),
exacts [λ k, hJ_sub' k (J k).upper_mem_Icc _ trivial,
λ k, hJ_sub' k (J k).lower_mem_Icc _ trivial] },
intros i c d hc hcd,
/- First we prove that the integrals of the restriction of `f` to `{x | x i = d}` over increasing
boxes `((J k).face i).Icc` tend to the desired limit. The proof mostly repeats the one above. -/
have hd : d ∈ Icc (I.lower i) (I.upper i),
from is_closed_Icc.mem_of_tendsto hcd (eventually_of_forall hc),
have Hic : ∀ k, integrable_on (λ x, f (i.insert_nth (c k) x) i) (I.face i).Icc,
from λ k, (box.continuous_on_face_Icc ((continuous_apply i).comp_continuous_on Hc)
(hc k)).integrable_on_Icc,
have Hid : integrable_on (λ x, f (i.insert_nth d x) i) (I.face i).Icc,
from (box.continuous_on_face_Icc ((continuous_apply i).comp_continuous_on Hc)
hd).integrable_on_Icc,
have H : tendsto (λ k, ∫ x in ((J k).face i).Icc, f (i.insert_nth d x) i) at_top
(𝓝 $ ∫ x in (I.face i).Icc, f (i.insert_nth d x) i),
{ have hIoo : (⋃ k, ((J k).face i).Ioo) = (I.face i).Ioo,
from box.Union_Ioo_of_tendsto ((box.monotone_face i).comp J.monotone)
(tendsto_pi_nhds.2 (λ _, hJl _)) (tendsto_pi_nhds.2 (λ _, hJu _)),
simp only [integrable_on, ← measure.restrict_congr_set (box.Ioo_ae_eq_Icc _), ← hIoo] at Hid ⊢,
exact tendsto_set_integral_of_monotone (λ k, ((J k).face i).measurable_set_Ioo)
(box.Ioo.monotone.comp ((box.monotone_face i).comp J.monotone)) Hid },
/- Thus it suffices to show that the distance between the integrals of the restrictions of `f` to
`{x | x i = c k}` and `{x | x i = d}` over `((J k).face i).Icc` tends to zero as `k → ∞`. Choose
`ε > 0`. -/
refine H.congr_dist (metric.nhds_basis_closed_ball.tendsto_right_iff.2 (λ ε εpos, _)),
have hvol_pos : ∀ J : box (fin n), 0 < ∏ j, (J.upper j - J.lower j),
from λ J, (prod_pos $ λ j hj, sub_pos.2 $ J.lower_lt_upper _),
/- Choose `δ > 0` such that for any `x y ∈ I.Icc` at distance at most `δ`, the distance between
`f x` and `f y` is at most `ε / volume (I.face i).Icc`, then the distance between the integrals
is at most `(ε / volume (I.face i).Icc) * volume ((J k).face i).Icc ≤ ε`. -/
rcases metric.uniform_continuous_on_iff_le.1
(I.is_compact_Icc.uniform_continuous_on_of_continuous Hc)
(ε / ∏ j, ((I.face i).upper j - (I.face i).lower j)) (div_pos εpos (hvol_pos (I.face i)))
with ⟨δ, δpos, hδ⟩,
refine (hcd.eventually (metric.ball_mem_nhds _ δpos)).mono (λ k hk, _),
have Hsub : ((J k).face i).Icc ⊆ (I.face i).Icc,
from box.le_iff_Icc.1 (box.face_mono (hJ_le _) i),
rw [mem_closed_ball_zero_iff, real.norm_eq_abs, abs_of_nonneg dist_nonneg,
dist_eq_norm, ← integral_sub (Hid.mono_set Hsub) ((Hic _).mono_set Hsub)],
calc ‖(∫ x in ((J k).face i).Icc, f (i.insert_nth d x) i - f (i.insert_nth (c k) x) i)‖
≤ (ε / ∏ j, ((I.face i).upper j - (I.face i).lower j)) * (volume ((J k).face i).Icc).to_real :
begin
refine norm_set_integral_le_of_norm_le_const' (((J k).face i).measure_Icc_lt_top _)
((J k).face i).measurable_set_Icc (λ x hx, _),
rw ← dist_eq_norm,
calc dist (f (i.insert_nth d x) i) (f (i.insert_nth (c k) x) i)
≤ dist (f (i.insert_nth d x)) (f (i.insert_nth (c k) x)) :
dist_le_pi_dist (f (i.insert_nth d x)) (f (i.insert_nth (c k) x)) i
... ≤ (ε / ∏ j, ((I.face i).upper j - (I.face i).lower j)) :
hδ _ (I.maps_to_insert_nth_face_Icc hd $ Hsub hx)
_ (I.maps_to_insert_nth_face_Icc (hc _) $ Hsub hx) _,
rw [fin.dist_insert_nth_insert_nth, dist_self, dist_comm],
exact max_le hk.le δpos.lt.le
end
... ≤ ε :
begin
rw [box.Icc_def, real.volume_Icc_pi_to_real ((J k).face i).lower_le_upper,
← le_div_iff (hvol_pos _)],
refine div_le_div_of_le_left εpos.le (hvol_pos _) (prod_le_prod (λ j hj, _) (λ j hj, _)),
exacts [sub_nonneg.2 (box.lower_le_upper _ _),
sub_le_sub ((hJ_sub' _ (J _).upper_mem_Icc).2 _) ((hJ_sub' _ (J _).lower_mem_Icc).1 _)]
end
end
variables (a b : ℝⁿ⁺¹)
local notation `face ` i := set.Icc (a ∘ fin.succ_above i) (b ∘ fin.succ_above i)
local notation `front_face ` i:2000 := fin.insert_nth i (b i)
local notation `back_face ` i:2000 := fin.insert_nth i (a i)
/-- **Divergence theorem** for Bochner integral. If `f : ℝⁿ⁺¹ → Eⁿ⁺¹` is continuous on a rectangular
box `[a, b] : set ℝⁿ⁺¹`, `a ≤ b`, is differentiable on its interior with derivative
`f' : ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] Eⁿ⁺¹` and the divergence `λ x, ∑ i, f' x eᵢ i` is integrable on `[a, b]`,
where `eᵢ = pi.single i 1` is the `i`-th basis vector, then its integral is equal to the sum of
integrals of `f` over the faces of `[a, b]`, taken with appropriat signs.
Moreover, the same is true if the function is not differentiable at countably many
points of the interior of `[a, b]`.
We represent both faces `x i = a i` and `x i = b i` as the box
`face i = [a ∘ fin.succ_above i, b ∘ fin.succ_above i]` in `ℝⁿ`, where
`fin.succ_above : fin n ↪o fin (n + 1)` is the order embedding with range `{i}ᶜ`. The restrictions
of `f : ℝⁿ⁺¹ → Eⁿ⁺¹` to these faces are given by `f ∘ back_face i` and `f ∘ front_face i`, where
`back_face i = fin.insert_nth i (a i)` and `front_face i = fin.insert_nth i (b i)` are embeddings
`ℝⁿ → ℝⁿ⁺¹` that take `y : ℝⁿ` and insert `a i` (resp., `b i`) as `i`-th coordinate. -/
lemma integral_divergence_of_has_fderiv_within_at_off_countable (hle : a ≤ b) (f : ℝⁿ⁺¹ → Eⁿ⁺¹)
(f' : ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] Eⁿ⁺¹) (s : set ℝⁿ⁺¹) (hs : s.countable) (Hc : continuous_on f (Icc a b))
(Hd : ∀ x ∈ set.pi univ (λ i, Ioo (a i) (b i)) \ s, has_fderiv_at f (f' x) x)
(Hi : integrable_on (λ x, ∑ i, f' x (e i) i) (Icc a b)) :
∫ x in Icc a b, ∑ i, f' x (e i) i =
∑ i : fin (n + 1),
((∫ x in face i, f (front_face i x) i) - ∫ x in face i, f (back_face i x) i) :=
begin
rcases em (∃ i, a i = b i) with ⟨i, hi⟩|hne,
{ /- First we sort out the trivial case `∃ i, a i = b i`. -/
simp only [volume_pi, ← set_integral_congr_set_ae measure.univ_pi_Ioc_ae_eq_Icc],
have hi' : Ioc (a i) (b i) = ∅ := Ioc_eq_empty hi.not_lt,
have : pi set.univ (λ j, Ioc (a j) (b j)) = ∅, from univ_pi_eq_empty hi',
rw [this, integral_empty, sum_eq_zero],
rintro j -,
rcases eq_or_ne i j with rfl|hne,
{ simp [hi] },
{ rcases fin.exists_succ_above_eq hne with ⟨i, rfl⟩,
have : pi set.univ (λ k : fin n, Ioc (a $ j.succ_above k) (b $ j.succ_above k)) = ∅,
from univ_pi_eq_empty hi',
rw [this, integral_empty, integral_empty, sub_self] } },
{ /- In the non-trivial case `∀ i, a i < b i`, we apply a lemma we proved above. -/
have hlt : ∀ i, a i < b i, from λ i, (hle i).lt_of_ne (λ hi, hne ⟨i, hi⟩),
convert integral_divergence_of_has_fderiv_within_at_off_countable_aux₂ ⟨a, b, hlt⟩
f f' s hs Hc Hd Hi }
end
/-- **Divergence theorem** for a family of functions `f : fin (n + 1) → ℝⁿ⁺¹ → E`. See also
`measure_theory.integral_divergence_of_has_fderiv_within_at_off_countable'` for a version formulated
in terms of a vector-valued function `f : ℝⁿ⁺¹ → Eⁿ⁺¹`. -/
lemma integral_divergence_of_has_fderiv_within_at_off_countable' (hle : a ≤ b)
(f : fin (n + 1) → ℝⁿ⁺¹ → E) (f' : fin (n + 1) → ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] E)
(s : set ℝⁿ⁺¹) (hs : s.countable) (Hc : ∀ i, continuous_on (f i) (Icc a b))
(Hd : ∀ (x ∈ pi set.univ (λ i, Ioo (a i) (b i)) \ s) i, has_fderiv_at (f i) (f' i x) x)
(Hi : integrable_on (λ x, ∑ i, f' i x (e i)) (Icc a b)) :
∫ x in Icc a b, ∑ i, f' i x (e i) =
∑ i : fin (n + 1),
((∫ x in face i, f i (front_face i x)) - ∫ x in face i, f i (back_face i x)) :=
integral_divergence_of_has_fderiv_within_at_off_countable a b hle (λ x i, f i x)
(λ x, continuous_linear_map.pi (λ i, f' i x)) s hs
(continuous_on_pi.2 Hc) (λ x hx, has_fderiv_at_pi.2 (Hd x hx)) Hi
end
/-- An auxiliary lemma that is used to specialize the general divergence theorem to spaces that do
not have the form `fin n → ℝ`. -/
lemma integral_divergence_of_has_fderiv_within_at_off_countable_of_equiv
{F : Type*} [normed_add_comm_group F] [normed_space ℝ F] [partial_order F] [measure_space F]
[borel_space F] (eL : F ≃L[ℝ] ℝⁿ⁺¹) (he_ord : ∀ x y, eL x ≤ eL y ↔ x ≤ y)
(he_vol : measure_preserving eL volume volume) (f : fin (n + 1) → F → E)
(f' : fin (n + 1) → F → F →L[ℝ] E) (s : set F) (hs : s.countable)
(a b : F) (hle : a ≤ b) (Hc : ∀ i, continuous_on (f i) (Icc a b))
(Hd : ∀ (x ∈ interior (Icc a b) \ s) i, has_fderiv_at (f i) (f' i x) x)
(DF : F → E) (hDF : ∀ x, DF x = ∑ i, f' i x (eL.symm $ e i)) (Hi : integrable_on DF (Icc a b)) :
∫ x in Icc a b, DF x =
∑ i : fin (n + 1), ((∫ x in Icc (eL a ∘ i.succ_above) (eL b ∘ i.succ_above),
f i (eL.symm $ i.insert_nth (eL b i) x)) -
(∫ x in Icc (eL a ∘ i.succ_above) (eL b ∘ i.succ_above),
f i (eL.symm $ i.insert_nth (eL a i) x))) :=
have he_emb : measurable_embedding eL := eL.to_homeomorph.to_measurable_equiv.measurable_embedding,
have hIcc : eL ⁻¹' (Icc (eL a) (eL b)) = Icc a b,
by { ext1 x, simp only [set.mem_preimage, set.mem_Icc, he_ord] },
have hIcc' : Icc (eL a) (eL b) = eL.symm ⁻¹' (Icc a b),
by rw [← hIcc, eL.symm_preimage_preimage],
calc ∫ x in Icc a b, DF x = ∫ x in Icc a b, ∑ i, f' i x (eL.symm $ e i) : by simp only [hDF]
... = ∫ x in Icc (eL a) (eL b), ∑ i, f' i (eL.symm x) (eL.symm $ e i) :
begin
rw [← he_vol.set_integral_preimage_emb he_emb],
simp only [hIcc, eL.symm_apply_apply]
end
... = ∑ i : fin (n + 1), ((∫ x in Icc (eL a ∘ i.succ_above) (eL b ∘ i.succ_above),
f i (eL.symm $ i.insert_nth (eL b i) x)) -
(∫ x in Icc (eL a ∘ i.succ_above) (eL b ∘ i.succ_above),
f i (eL.symm $ i.insert_nth (eL a i) x))) :
begin
convert integral_divergence_of_has_fderiv_within_at_off_countable' (eL a) (eL b)
((he_ord _ _).2 hle) (λ i x, f i (eL.symm x))
(λ i x, f' i (eL.symm x) ∘L (eL.symm : ℝⁿ⁺¹ →L[ℝ] F))
(eL.symm ⁻¹' s) (hs.preimage eL.symm.injective) _ _ _,
{ exact λ i, (Hc i).comp eL.symm.continuous_on hIcc'.subset },
{ refine λ x hx i, (Hd (eL.symm x) ⟨_, hx.2⟩ i).comp x eL.symm.has_fderiv_at,
rw ← hIcc,
refine preimage_interior_subset_interior_preimage eL.continuous _,
simpa only [set.mem_preimage, eL.apply_symm_apply, ← pi_univ_Icc, interior_pi_set finite_univ,
interior_Icc] using hx.1 },
{ rw [← he_vol.integrable_on_comp_preimage he_emb, hIcc],
simp [← hDF, (∘), Hi] }
end
end
open_locale interval
open continuous_linear_map (smul_right)
local notation `ℝ¹` := fin 1 → ℝ
local notation `ℝ²` := fin 2 → ℝ
local notation `E¹` := fin 1 → E
local notation `E²` := fin 2 → E
/-- **Fundamental theorem of calculus, part 2**. This version assumes that `f` is continuous on the
interval and is differentiable off a countable set `s`.
See also
* `interval_integral.integral_eq_sub_of_has_deriv_right_of_le` for a version that only assumes right
differentiability of `f`;
* `measure_theory.integral_eq_of_has_deriv_within_at_off_countable` for a version that works both
for `a ≤ b` and `b ≤ a` at the expense of using unordered intervals instead of `set.Icc`. -/
theorem integral_eq_of_has_deriv_within_at_off_countable_of_le (f f' : ℝ → E)
{a b : ℝ} (hle : a ≤ b) {s : set ℝ} (hs : s.countable)
(Hc : continuous_on f (Icc a b)) (Hd : ∀ x ∈ Ioo a b \ s, has_deriv_at f (f' x) x)
(Hi : interval_integrable f' volume a b) :
∫ x in a..b, f' x = f b - f a :=
begin
set e : ℝ ≃L[ℝ] ℝ¹ := (continuous_linear_equiv.fun_unique (fin 1) ℝ ℝ).symm,
have e_symm : ∀ x, e.symm x = x 0 := λ x, rfl,
set F' : ℝ → ℝ →L[ℝ] E := λ x, smul_right (1 : ℝ →L[ℝ] ℝ) (f' x),
have hF' : ∀ x y, F' x y = y • f' x := λ x y, rfl,
calc ∫ x in a..b, f' x = ∫ x in Icc a b, f' x :
by simp only [interval_integral.integral_of_le hle, set_integral_congr_set_ae Ioc_ae_eq_Icc]
... = ∑ i : fin 1, ((∫ x in Icc (e a ∘ i.succ_above) (e b ∘ i.succ_above),
f (e.symm $ i.insert_nth (e b i) x)) -
(∫ x in Icc (e a ∘ i.succ_above) (e b ∘ i.succ_above),
f (e.symm $ i.insert_nth (e a i) x))) :
begin
simp only [← interior_Icc] at Hd,
refine integral_divergence_of_has_fderiv_within_at_off_countable_of_equiv e _ _
(λ _, f) (λ _, F') s hs a b hle (λ i, Hc) (λ x hx i, Hd x hx) _ _ _,
{ exact λ x y, (order_iso.fun_unique (fin 1) ℝ).symm.le_iff_le },
{ exact (volume_preserving_fun_unique (fin 1) ℝ).symm _ },
{ intro x, rw [fin.sum_univ_one, hF', e_symm, pi.single_eq_same, one_smul] },
{ rw [interval_integrable_iff_integrable_Ioc_of_le hle] at Hi,
exact Hi.congr_set_ae Ioc_ae_eq_Icc.symm }
end
... = f b - f a :
begin
simp only [fin.sum_univ_one, e_symm],
have : ∀ (c : ℝ), const (fin 0) c = is_empty_elim := λ c, subsingleton.elim _ _,
simp [this, volume_pi, measure.pi_of_empty (λ _ : fin 0, volume)]
end
end
/-- **Fundamental theorem of calculus, part 2**. This version assumes that `f` is continuous on the
interval and is differentiable off a countable set `s`.
See also `measure_theory.interval_integral.integral_eq_sub_of_has_deriv_right` for a version that
only assumes right differentiability of `f`.
-/
theorem integral_eq_of_has_deriv_within_at_off_countable (f f' : ℝ → E) {a b : ℝ} {s : set ℝ}
(hs : s.countable) (Hc : continuous_on f [a, b])
(Hd : ∀ x ∈ Ioo (min a b) (max a b) \ s, has_deriv_at f (f' x) x)
(Hi : interval_integrable f' volume a b) :
∫ x in a..b, f' x = f b - f a :=
begin
cases le_total a b with hab hab,
{ simp only [uIcc_of_le hab, min_eq_left hab, max_eq_right hab] at *,
exact integral_eq_of_has_deriv_within_at_off_countable_of_le f f' hab hs Hc Hd Hi },
{ simp only [uIcc_of_ge hab, min_eq_right hab, max_eq_left hab] at *,
rw [interval_integral.integral_symm, neg_eq_iff_eq_neg, neg_sub],
exact integral_eq_of_has_deriv_within_at_off_countable_of_le f f' hab hs Hc Hd Hi.symm }
end
/-- **Divergence theorem** for functions on the plane along rectangles. It is formulated in terms of
two functions `f g : ℝ × ℝ → E` and an integral over `Icc a b = [a.1, b.1] × [a.2, b.2]`, where
`a b : ℝ × ℝ`, `a ≤ b`. When thinking of `f` and `g` as the two coordinates of a single function
`F : ℝ × ℝ → E × E` and when `E = ℝ`, this is the usual statement that the integral of the
divergence of `F` inside the rectangle equals the integral of the normal derivative of `F` along the
boundary.
See also `measure_theory.integral2_divergence_prod_of_has_fderiv_within_at_off_countable` for a
version that does not assume `a ≤ b` and uses iterated interval integral instead of the integral
over `Icc a b`. -/
lemma integral_divergence_prod_Icc_of_has_fderiv_within_at_off_countable_of_le (f g : ℝ × ℝ → E)
(f' g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (a b : ℝ × ℝ) (hle : a ≤ b) (s : set (ℝ × ℝ)) (hs : s.countable)
(Hcf : continuous_on f (Icc a b)) (Hcg : continuous_on g (Icc a b))
(Hdf : ∀ x ∈ Ioo a.1 b.1 ×ˢ Ioo a.2 b.2 \ s, has_fderiv_at f (f' x) x)
(Hdg : ∀ x ∈ Ioo a.1 b.1 ×ˢ Ioo a.2 b.2 \ s, has_fderiv_at g (g' x) x)
(Hi : integrable_on (λ x, f' x (1, 0) + g' x (0, 1)) (Icc a b)) :
∫ x in Icc a b, f' x (1, 0) + g' x (0, 1) =
(∫ x in a.1..b.1, g (x, b.2)) - (∫ x in a.1..b.1, g (x, a.2)) +
(∫ y in a.2..b.2, f (b.1, y)) - ∫ y in a.2..b.2, f (a.1, y) :=
let e : (ℝ × ℝ) ≃L[ℝ] ℝ² := (continuous_linear_equiv.fin_two_arrow ℝ ℝ).symm in
calc ∫ x in Icc a b, f' x (1, 0) + g' x (0, 1)
= ∑ i : fin 2, ((∫ x in Icc (e a ∘ i.succ_above) (e b ∘ i.succ_above),
![f, g] i (e.symm $ i.insert_nth (e b i) x)) -
(∫ x in Icc (e a ∘ i.succ_above) (e b ∘ i.succ_above),
![f, g] i (e.symm $ i.insert_nth (e a i) x))) :
begin
refine integral_divergence_of_has_fderiv_within_at_off_countable_of_equiv e _ _
![f, g] ![f', g'] s hs a b hle _ (λ x hx, _) _ _ Hi,
{ exact λ x y, (order_iso.fin_two_arrow_iso ℝ).symm.le_iff_le },
{ exact (volume_preserving_fin_two_arrow ℝ).symm _ },
{ exact fin.forall_fin_two.2 ⟨Hcf, Hcg⟩ },
{ rw [Icc_prod_eq, interior_prod_eq, interior_Icc, interior_Icc] at hx,
exact fin.forall_fin_two.2 ⟨Hdf x hx, Hdg x hx⟩ },
{ intro x, rw fin.sum_univ_two, simp }
end
... = (∫ y in Icc a.2 b.2, f (b.1, y)) - (∫ y in Icc a.2 b.2, f (a.1, y)) +
((∫ x in Icc a.1 b.1, g (x, b.2)) - ∫ x in Icc a.1 b.1, g (x, a.2)) :
begin
have : ∀ (a b : ℝ¹) (f : ℝ¹ → E), ∫ x in Icc a b, f x = ∫ x in Icc (a 0) (b 0), f (λ _, x),
{ intros a b f,
convert (((volume_preserving_fun_unique (fin 1) ℝ).symm _).set_integral_preimage_emb
(measurable_equiv.measurable_embedding _) _ _).symm,
exact ((order_iso.fun_unique (fin 1) ℝ).symm.preimage_Icc a b).symm },
simp only [fin.sum_univ_two, this],
refl
end
... = (∫ x in a.1..b.1, g (x, b.2)) - (∫ x in a.1..b.1, g (x, a.2)) +
(∫ y in a.2..b.2, f (b.1, y)) - ∫ y in a.2..b.2, f (a.1, y) :
begin
simp only [interval_integral.integral_of_le hle.1, interval_integral.integral_of_le hle.2,
set_integral_congr_set_ae Ioc_ae_eq_Icc],
abel
end
/-- **Divergence theorem** for functions on the plane. It is formulated in terms of two functions
`f g : ℝ × ℝ → E` and iterated integral `∫ x in a₁..b₁, ∫ y in a₂..b₂, _`, where
`a₁ a₂ b₁ b₂ : ℝ`. When thinking of `f` and `g` as the two coordinates of a single function
`F : ℝ × ℝ → E × E` and when `E = ℝ`, this is the usual statement that the integral of the
divergence of `F` inside the rectangle with vertices `(aᵢ, bⱼ)`, `i, j =1,2`, equals the integral of
the normal derivative of `F` along the boundary.
See also `measure_theory.integral_divergence_prod_Icc_of_has_fderiv_within_at_off_countable_of_le`
for a version that uses an integral over `Icc a b`, where `a b : ℝ × ℝ`, `a ≤ b`. -/
lemma integral2_divergence_prod_of_has_fderiv_within_at_off_countable (f g : ℝ × ℝ → E)
(f' g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (a₁ a₂ b₁ b₂ : ℝ) (s : set (ℝ × ℝ)) (hs : s.countable)
(Hcf : continuous_on f ([a₁, b₁] ×ˢ [a₂, b₂])) (Hcg : continuous_on g ([a₁, b₁] ×ˢ [a₂, b₂]))
(Hdf : ∀ x ∈ Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Ioo (min a₂ b₂) (max a₂ b₂) \ s,
has_fderiv_at f (f' x) x)
(Hdg : ∀ x ∈ Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Ioo (min a₂ b₂) (max a₂ b₂) \ s,
has_fderiv_at g (g' x) x)
(Hi : integrable_on (λ x, f' x (1, 0) + g' x (0, 1)) ([a₁, b₁] ×ˢ [a₂, b₂])) :
∫ x in a₁..b₁, ∫ y in a₂..b₂, f' (x, y) (1, 0) + g' (x, y) (0, 1) =
(∫ x in a₁..b₁, g (x, b₂)) - (∫ x in a₁..b₁, g (x, a₂)) +
(∫ y in a₂..b₂, f (b₁, y)) - ∫ y in a₂..b₂, f (a₁, y) :=
begin
wlog h₁ : a₁ ≤ b₁ generalizing a₁ b₁,
{ specialize this b₁ a₁,
rw [uIcc_comm b₁ a₁, min_comm b₁ a₁, max_comm b₁ a₁] at this,
simp only [interval_integral.integral_symm b₁ a₁],
refine (congr_arg has_neg.neg (this Hcf Hcg Hdf Hdg Hi (le_of_not_le h₁))).trans _, abel },
wlog h₂ : a₂ ≤ b₂ generalizing a₂ b₂,
{ specialize this b₂ a₂,
rw [uIcc_comm b₂ a₂, min_comm b₂ a₂, max_comm b₂ a₂] at this,
simp only [interval_integral.integral_symm b₂ a₂, interval_integral.integral_neg],
refine (congr_arg has_neg.neg (this Hcf Hcg Hdf Hdg Hi (le_of_not_le h₂))).trans _, abel },
simp only [uIcc_of_le h₁, uIcc_of_le h₂, min_eq_left, max_eq_right, h₁, h₂]
at Hcf Hcg Hdf Hdg Hi,
calc ∫ x in a₁..b₁, ∫ y in a₂..b₂, f' (x, y) (1, 0) + g' (x, y) (0, 1)
= ∫ x in Icc a₁ b₁, ∫ y in Icc a₂ b₂, f' (x, y) (1, 0) + g' (x, y) (0, 1) :
by simp only [interval_integral.integral_of_le, h₁, h₂,
set_integral_congr_set_ae Ioc_ae_eq_Icc]
... = ∫ x in Icc a₁ b₁ ×ˢ Icc a₂ b₂, f' x (1, 0) + g' x (0, 1) :
(set_integral_prod _ Hi).symm
... = (∫ x in a₁..b₁, g (x, b₂)) - (∫ x in a₁..b₁, g (x, a₂)) +
(∫ y in a₂..b₂, f (b₁, y)) - ∫ y in a₂..b₂, f (a₁, y) :
begin
rw Icc_prod_Icc at *,
apply integral_divergence_prod_Icc_of_has_fderiv_within_at_off_countable_of_le f g f' g'
(a₁, a₂) (b₁, b₂) ⟨h₁, h₂⟩ s; assumption
end
end
end measure_theory
|
c5a0740eacbd6d6109c138e646f8249941264a4f
|
137c667471a40116a7afd7261f030b30180468c2
|
/src/analysis/special_functions/exp_log.lean
|
8b5426b0b91fe7037f9d8109fa03bef5876e77c6
|
[
"Apache-2.0"
] |
permissive
|
bragadeesh153/mathlib
|
46bf814cfb1eecb34b5d1549b9117dc60f657792
|
b577bb2cd1f96eb47031878256856020b76f73cd
|
refs/heads/master
| 1,687,435,188,334
| 1,626,384,207,000
| 1,626,384,207,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 34,879
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne
-/
import data.complex.exponential
import analysis.calculus.inverse
import analysis.complex.real_deriv
/-!
# Complex and real exponential, real logarithm
## Main statements
This file establishes the basic analytical properties of the complex and real exponential functions
(continuity, differentiability, computation of the derivative).
It also contains the definition of the real logarithm function (as the inverse of the
exponential on `(0, +∞)`, extended to `ℝ` by setting `log (-x) = log x`) and its basic
properties (continuity, differentiability, formula for the derivative).
The complex logarithm is *not* defined in this file as it relies on trigonometric functions. See
instead `trigonometric.lean`.
## Tags
exp, log
-/
noncomputable theory
open finset filter metric asymptotics set function
open_locale classical topological_space
namespace complex
/-- The complex exponential is everywhere differentiable, with the derivative `exp x`. -/
lemma has_deriv_at_exp (x : ℂ) : has_deriv_at exp (exp x) x :=
begin
rw has_deriv_at_iff_is_o_nhds_zero,
have : (1 : ℕ) < 2 := by norm_num,
refine (is_O.of_bound (∥exp x∥) _).trans_is_o (is_o_pow_id this),
filter_upwards [metric.ball_mem_nhds (0 : ℂ) zero_lt_one],
simp only [metric.mem_ball, dist_zero_right, normed_field.norm_pow],
intros z hz,
calc ∥exp (x + z) - exp x - z * exp x∥
= ∥exp x * (exp z - 1 - z)∥ : by { congr, rw [exp_add], ring }
... = ∥exp x∥ * ∥exp z - 1 - z∥ : normed_field.norm_mul _ _
... ≤ ∥exp x∥ * ∥z∥^2 :
mul_le_mul_of_nonneg_left (abs_exp_sub_one_sub_id_le (le_of_lt hz)) (norm_nonneg _)
end
lemma differentiable_exp : differentiable ℂ exp :=
λx, (has_deriv_at_exp x).differentiable_at
lemma differentiable_at_exp {x : ℂ} : differentiable_at ℂ exp x :=
differentiable_exp x
@[simp] lemma deriv_exp : deriv exp = exp :=
funext $ λ x, (has_deriv_at_exp x).deriv
@[simp] lemma iter_deriv_exp : ∀ n : ℕ, (deriv^[n] exp) = exp
| 0 := rfl
| (n+1) := by rw [iterate_succ_apply, deriv_exp, iter_deriv_exp n]
@[continuity] lemma continuous_exp : continuous exp :=
differentiable_exp.continuous
lemma continuous_on_exp {s : set ℂ} : continuous_on exp s :=
continuous_exp.continuous_on
lemma times_cont_diff_exp : ∀ {n}, times_cont_diff ℂ n exp :=
begin
refine times_cont_diff_all_iff_nat.2 (λ n, _),
induction n with n ihn,
{ exact times_cont_diff_zero.2 continuous_exp },
{ rw times_cont_diff_succ_iff_deriv,
use differentiable_exp,
rwa deriv_exp }
end
lemma has_strict_deriv_at_exp (x : ℂ) : has_strict_deriv_at exp (exp x) x :=
times_cont_diff_exp.times_cont_diff_at.has_strict_deriv_at' (has_deriv_at_exp x) le_rfl
lemma is_open_map_exp : is_open_map exp :=
open_map_of_strict_deriv has_strict_deriv_at_exp exp_ne_zero
end complex
section
variables {f : ℂ → ℂ} {f' x : ℂ} {s : set ℂ}
lemma has_strict_deriv_at.cexp (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, complex.exp (f x)) (complex.exp (f x) * f') x :=
(complex.has_strict_deriv_at_exp (f x)).comp x hf
lemma has_deriv_at.cexp (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, complex.exp (f x)) (complex.exp (f x) * f') x :=
(complex.has_deriv_at_exp (f x)).comp x hf
lemma has_deriv_within_at.cexp (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, complex.exp (f x)) (complex.exp (f x) * f') s x :=
(complex.has_deriv_at_exp (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_cexp (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
deriv_within (λx, complex.exp (f x)) s x = complex.exp (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.cexp.deriv_within hxs
@[simp] lemma deriv_cexp (hc : differentiable_at ℂ f x) :
deriv (λx, complex.exp (f x)) x = complex.exp (f x) * (deriv f x) :=
hc.has_deriv_at.cexp.deriv
end
section
variables {E : Type*} [normed_group E] [normed_space ℂ E] {f : E → ℂ} {f' : E →L[ℂ] ℂ}
{x : E} {s : set E}
lemma has_strict_fderiv_at.cexp (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, complex.exp (f x)) (complex.exp (f x) • f') x :=
(complex.has_strict_deriv_at_exp (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_within_at.cexp (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, complex.exp (f x)) (complex.exp (f x) • f') s x :=
(complex.has_deriv_at_exp (f x)).comp_has_fderiv_within_at x hf
lemma has_fderiv_at.cexp (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, complex.exp (f x)) (complex.exp (f x) • f') x :=
has_fderiv_within_at_univ.1 $ hf.has_fderiv_within_at.cexp
lemma differentiable_within_at.cexp (hf : differentiable_within_at ℂ f s x) :
differentiable_within_at ℂ (λ x, complex.exp (f x)) s x :=
hf.has_fderiv_within_at.cexp.differentiable_within_at
@[simp] lemma differentiable_at.cexp (hc : differentiable_at ℂ f x) :
differentiable_at ℂ (λx, complex.exp (f x)) x :=
hc.has_fderiv_at.cexp.differentiable_at
lemma differentiable_on.cexp (hc : differentiable_on ℂ f s) :
differentiable_on ℂ (λx, complex.exp (f x)) s :=
λx h, (hc x h).cexp
@[simp] lemma differentiable.cexp (hc : differentiable ℂ f) :
differentiable ℂ (λx, complex.exp (f x)) :=
λx, (hc x).cexp
lemma times_cont_diff.cexp {n} (h : times_cont_diff ℂ n f) :
times_cont_diff ℂ n (λ x, complex.exp (f x)) :=
complex.times_cont_diff_exp.comp h
lemma times_cont_diff_at.cexp {n} (hf : times_cont_diff_at ℂ n f x) :
times_cont_diff_at ℂ n (λ x, complex.exp (f x)) x :=
complex.times_cont_diff_exp.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.cexp {n} (hf : times_cont_diff_on ℂ n f s) :
times_cont_diff_on ℂ n (λ x, complex.exp (f x)) s :=
complex.times_cont_diff_exp.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.cexp {n} (hf : times_cont_diff_within_at ℂ n f s x) :
times_cont_diff_within_at ℂ n (λ x, complex.exp (f x)) s x :=
complex.times_cont_diff_exp.times_cont_diff_at.comp_times_cont_diff_within_at x hf
end
namespace real
variables {x y z : ℝ}
lemma has_strict_deriv_at_exp (x : ℝ) : has_strict_deriv_at exp (exp x) x :=
(complex.has_strict_deriv_at_exp x).real_of_complex
lemma has_deriv_at_exp (x : ℝ) : has_deriv_at exp (exp x) x :=
(complex.has_deriv_at_exp x).real_of_complex
lemma times_cont_diff_exp {n} : times_cont_diff ℝ n exp :=
complex.times_cont_diff_exp.real_of_complex
lemma differentiable_exp : differentiable ℝ exp :=
λx, (has_deriv_at_exp x).differentiable_at
lemma differentiable_at_exp : differentiable_at ℝ exp x :=
differentiable_exp x
@[simp] lemma deriv_exp : deriv exp = exp :=
funext $ λ x, (has_deriv_at_exp x).deriv
@[simp] lemma iter_deriv_exp : ∀ n : ℕ, (deriv^[n] exp) = exp
| 0 := rfl
| (n+1) := by rw [iterate_succ_apply, deriv_exp, iter_deriv_exp n]
@[continuity] lemma continuous_exp : continuous exp :=
differentiable_exp.continuous
lemma continuous_on_exp {s : set ℝ} : continuous_on exp s :=
continuous_exp.continuous_on
end real
section
/-! Register lemmas for the derivatives of the composition of `real.exp` with a differentiable
function, for standalone use and use with `simp`. -/
variables {f : ℝ → ℝ} {f' x : ℝ} {s : set ℝ}
lemma has_strict_deriv_at.exp (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, real.exp (f x)) (real.exp (f x) * f') x :=
(real.has_strict_deriv_at_exp (f x)).comp x hf
lemma has_deriv_at.exp (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, real.exp (f x)) (real.exp (f x) * f') x :=
(real.has_deriv_at_exp (f x)).comp x hf
lemma has_deriv_within_at.exp (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, real.exp (f x)) (real.exp (f x) * f') s x :=
(real.has_deriv_at_exp (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_exp (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λx, real.exp (f x)) s x = real.exp (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.exp.deriv_within hxs
@[simp] lemma deriv_exp (hc : differentiable_at ℝ f x) :
deriv (λx, real.exp (f x)) x = real.exp (f x) * (deriv f x) :=
hc.has_deriv_at.exp.deriv
end
section
/-! Register lemmas for the derivatives of the composition of `real.exp` with a differentiable
function, for standalone use and use with `simp`. -/
variables {E : Type*} [normed_group E] [normed_space ℝ E] {f : E → ℝ} {f' : E →L[ℝ] ℝ}
{x : E} {s : set E}
lemma times_cont_diff.exp {n} (hf : times_cont_diff ℝ n f) :
times_cont_diff ℝ n (λ x, real.exp (f x)) :=
real.times_cont_diff_exp.comp hf
lemma times_cont_diff_at.exp {n} (hf : times_cont_diff_at ℝ n f x) :
times_cont_diff_at ℝ n (λ x, real.exp (f x)) x :=
real.times_cont_diff_exp.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.exp {n} (hf : times_cont_diff_on ℝ n f s) :
times_cont_diff_on ℝ n (λ x, real.exp (f x)) s :=
real.times_cont_diff_exp.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.exp {n} (hf : times_cont_diff_within_at ℝ n f s x) :
times_cont_diff_within_at ℝ n (λ x, real.exp (f x)) s x :=
real.times_cont_diff_exp.times_cont_diff_at.comp_times_cont_diff_within_at x hf
lemma has_fderiv_within_at.exp (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, real.exp (f x)) (real.exp (f x) • f') s x :=
(real.has_deriv_at_exp (f x)).comp_has_fderiv_within_at x hf
lemma has_fderiv_at.exp (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, real.exp (f x)) (real.exp (f x) • f') x :=
(real.has_deriv_at_exp (f x)).comp_has_fderiv_at x hf
lemma has_strict_fderiv_at.exp (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, real.exp (f x)) (real.exp (f x) • f') x :=
(real.has_strict_deriv_at_exp (f x)).comp_has_strict_fderiv_at x hf
lemma differentiable_within_at.exp (hf : differentiable_within_at ℝ f s x) :
differentiable_within_at ℝ (λ x, real.exp (f x)) s x :=
hf.has_fderiv_within_at.exp.differentiable_within_at
@[simp] lemma differentiable_at.exp (hc : differentiable_at ℝ f x) :
differentiable_at ℝ (λx, real.exp (f x)) x :=
hc.has_fderiv_at.exp.differentiable_at
lemma differentiable_on.exp (hc : differentiable_on ℝ f s) :
differentiable_on ℝ (λx, real.exp (f x)) s :=
λ x h, (hc x h).exp
@[simp] lemma differentiable.exp (hc : differentiable ℝ f) :
differentiable ℝ (λx, real.exp (f x)) :=
λ x, (hc x).exp
lemma fderiv_within_exp (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λx, real.exp (f x)) s x = real.exp (f x) • (fderiv_within ℝ f s x) :=
hf.has_fderiv_within_at.exp.fderiv_within hxs
@[simp] lemma fderiv_exp (hc : differentiable_at ℝ f x) :
fderiv ℝ (λx, real.exp (f x)) x = real.exp (f x) • (fderiv ℝ f x) :=
hc.has_fderiv_at.exp.fderiv
end
namespace real
variables {x y z : ℝ}
/-- The real exponential function tends to `+∞` at `+∞`. -/
lemma tendsto_exp_at_top : tendsto exp at_top at_top :=
begin
have A : tendsto (λx:ℝ, x + 1) at_top at_top :=
tendsto_at_top_add_const_right at_top 1 tendsto_id,
have B : ∀ᶠ x in at_top, x + 1 ≤ exp x :=
eventually_at_top.2 ⟨0, λx hx, add_one_le_exp_of_nonneg hx⟩,
exact tendsto_at_top_mono' at_top B A
end
/-- The real exponential function tends to `0` at `-∞` or, equivalently, `exp(-x)` tends to `0`
at `+∞` -/
lemma tendsto_exp_neg_at_top_nhds_0 : tendsto (λx, exp (-x)) at_top (𝓝 0) :=
(tendsto_inv_at_top_zero.comp tendsto_exp_at_top).congr (λx, (exp_neg x).symm)
/-- The real exponential function tends to `1` at `0`. -/
lemma tendsto_exp_nhds_0_nhds_1 : tendsto exp (𝓝 0) (𝓝 1) :=
by { convert continuous_exp.tendsto 0, simp }
lemma tendsto_exp_at_bot : tendsto exp at_bot (𝓝 0) :=
(tendsto_exp_neg_at_top_nhds_0.comp tendsto_neg_at_bot_at_top).congr $
λ x, congr_arg exp $ neg_neg x
lemma tendsto_exp_at_bot_nhds_within : tendsto exp at_bot (𝓝[Ioi 0] 0) :=
tendsto_inf.2 ⟨tendsto_exp_at_bot, tendsto_principal.2 $ eventually_of_forall exp_pos⟩
/-- `real.exp` as an order isomorphism between `ℝ` and `(0, +∞)`. -/
def exp_order_iso : ℝ ≃o Ioi (0 : ℝ) :=
strict_mono.order_iso_of_surjective _ (exp_strict_mono.cod_restrict exp_pos) $
(continuous_subtype_mk _ continuous_exp).surjective
(by simp only [tendsto_Ioi_at_top, subtype.coe_mk, tendsto_exp_at_top])
(by simp [tendsto_exp_at_bot_nhds_within])
@[simp] lemma coe_exp_order_iso_apply (x : ℝ) : (exp_order_iso x : ℝ) = exp x := rfl
@[simp] lemma coe_comp_exp_order_iso : coe ∘ exp_order_iso = exp := rfl
@[simp] lemma range_exp : range exp = Ioi 0 :=
by rw [← coe_comp_exp_order_iso, range_comp, exp_order_iso.range_eq, image_univ, subtype.range_coe]
@[simp] lemma map_exp_at_top : map exp at_top = at_top :=
by rw [← coe_comp_exp_order_iso, ← filter.map_map, order_iso.map_at_top, map_coe_Ioi_at_top]
@[simp] lemma comap_exp_at_top : comap exp at_top = at_top :=
by rw [← map_exp_at_top, comap_map exp_injective, map_exp_at_top]
@[simp] lemma tendsto_exp_comp_at_top {α : Type*} {l : filter α} {f : α → ℝ} :
tendsto (λ x, exp (f x)) l at_top ↔ tendsto f l at_top :=
by rw [← tendsto_comap_iff, comap_exp_at_top]
lemma tendsto_comp_exp_at_top {α : Type*} {l : filter α} {f : ℝ → α} :
tendsto (λ x, f (exp x)) at_top l ↔ tendsto f at_top l :=
by rw [← tendsto_map'_iff, map_exp_at_top]
@[simp] lemma map_exp_at_bot : map exp at_bot = 𝓝[Ioi 0] 0 :=
by rw [← coe_comp_exp_order_iso, ← filter.map_map, exp_order_iso.map_at_bot, ← map_coe_Ioi_at_bot]
lemma comap_exp_nhds_within_Ioi_zero : comap exp (𝓝[Ioi 0] 0) = at_bot :=
by rw [← map_exp_at_bot, comap_map exp_injective]
lemma tendsto_comp_exp_at_bot {α : Type*} {l : filter α} {f : ℝ → α} :
tendsto (λ x, f (exp x)) at_bot l ↔ tendsto f (𝓝[Ioi 0] 0) l :=
by rw [← map_exp_at_bot, tendsto_map'_iff]
/-- The real logarithm function, equal to the inverse of the exponential for `x > 0`,
to `log |x|` for `x < 0`, and to `0` for `0`. We use this unconventional extension to
`(-∞, 0]` as it gives the formula `log (x * y) = log x + log y` for all nonzero `x` and `y`, and
the derivative of `log` is `1/x` away from `0`. -/
@[pp_nodot] noncomputable def log (x : ℝ) : ℝ :=
if hx : x = 0 then 0 else exp_order_iso.symm ⟨abs x, abs_pos.2 hx⟩
lemma log_of_ne_zero (hx : x ≠ 0) : log x = exp_order_iso.symm ⟨abs x, abs_pos.2 hx⟩ := dif_neg hx
lemma log_of_pos (hx : 0 < x) : log x = exp_order_iso.symm ⟨x, hx⟩ :=
by { rw [log_of_ne_zero hx.ne'], congr, exact abs_of_pos hx }
lemma exp_log_eq_abs (hx : x ≠ 0) : exp (log x) = abs x :=
by rw [log_of_ne_zero hx, ← coe_exp_order_iso_apply, order_iso.apply_symm_apply, subtype.coe_mk]
lemma exp_log (hx : 0 < x) : exp (log x) = x :=
by { rw exp_log_eq_abs hx.ne', exact abs_of_pos hx }
lemma exp_log_of_neg (hx : x < 0) : exp (log x) = -x :=
by { rw exp_log_eq_abs (ne_of_lt hx), exact abs_of_neg hx }
@[simp] lemma log_exp (x : ℝ) : log (exp x) = x :=
exp_injective $ exp_log (exp_pos x)
lemma surj_on_log : surj_on log (Ioi 0) univ :=
λ x _, ⟨exp x, exp_pos x, log_exp x⟩
lemma log_surjective : surjective log :=
λ x, ⟨exp x, log_exp x⟩
@[simp] lemma range_log : range log = univ :=
log_surjective.range_eq
@[simp] lemma log_zero : log 0 = 0 := dif_pos rfl
@[simp] lemma log_one : log 1 = 0 :=
exp_injective $ by rw [exp_log zero_lt_one, exp_zero]
@[simp] lemma log_abs (x : ℝ) : log (abs x) = log x :=
begin
by_cases h : x = 0,
{ simp [h] },
{ rw [← exp_eq_exp, exp_log_eq_abs h, exp_log_eq_abs (abs_pos.2 h).ne', abs_abs] }
end
@[simp] lemma log_neg_eq_log (x : ℝ) : log (-x) = log x :=
by rw [← log_abs x, ← log_abs (-x), abs_neg]
lemma surj_on_log' : surj_on log (Iio 0) univ :=
λ x _, ⟨-exp x, neg_lt_zero.2 $ exp_pos x, by rw [log_neg_eq_log, log_exp]⟩
lemma log_mul (hx : x ≠ 0) (hy : y ≠ 0) : log (x * y) = log x + log y :=
exp_injective $
by rw [exp_log_eq_abs (mul_ne_zero hx hy), exp_add, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_mul]
lemma log_div (hx : x ≠ 0) (hy : y ≠ 0) : log (x / y) = log x - log y :=
exp_injective $
by rw [exp_log_eq_abs (div_ne_zero hx hy), exp_sub, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_div]
@[simp] lemma log_inv (x : ℝ) : log (x⁻¹) = -log x :=
begin
by_cases hx : x = 0, { simp [hx] },
rw [← exp_eq_exp, exp_log_eq_abs (inv_ne_zero hx), exp_neg, exp_log_eq_abs hx, abs_inv]
end
lemma log_le_log (h : 0 < x) (h₁ : 0 < y) : real.log x ≤ real.log y ↔ x ≤ y :=
by rw [← exp_le_exp, exp_log h, exp_log h₁]
lemma log_lt_log (hx : 0 < x) : x < y → log x < log y :=
by { intro h, rwa [← exp_lt_exp, exp_log hx, exp_log (lt_trans hx h)] }
lemma log_lt_log_iff (hx : 0 < x) (hy : 0 < y) : log x < log y ↔ x < y :=
by { rw [← exp_lt_exp, exp_log hx, exp_log hy] }
lemma log_pos_iff (hx : 0 < x) : 0 < log x ↔ 1 < x :=
by { rw ← log_one, exact log_lt_log_iff zero_lt_one hx }
lemma log_pos (hx : 1 < x) : 0 < log x :=
(log_pos_iff (lt_trans zero_lt_one hx)).2 hx
lemma log_neg_iff (h : 0 < x) : log x < 0 ↔ x < 1 :=
by { rw ← log_one, exact log_lt_log_iff h zero_lt_one }
lemma log_neg (h0 : 0 < x) (h1 : x < 1) : log x < 0 := (log_neg_iff h0).2 h1
lemma log_nonneg_iff (hx : 0 < x) : 0 ≤ log x ↔ 1 ≤ x :=
by rw [← not_lt, log_neg_iff hx, not_lt]
lemma log_nonneg (hx : 1 ≤ x) : 0 ≤ log x :=
(log_nonneg_iff (zero_lt_one.trans_le hx)).2 hx
lemma log_nonpos_iff (hx : 0 < x) : log x ≤ 0 ↔ x ≤ 1 :=
by rw [← not_lt, log_pos_iff hx, not_lt]
lemma log_nonpos_iff' (hx : 0 ≤ x) : log x ≤ 0 ↔ x ≤ 1 :=
begin
rcases hx.eq_or_lt with (rfl|hx),
{ simp [le_refl, zero_le_one] },
exact log_nonpos_iff hx
end
lemma log_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : log x ≤ 0 :=
(log_nonpos_iff' hx).2 h'x
lemma strict_mono_incr_on_log : strict_mono_incr_on log (set.Ioi 0) :=
λ x hx y hy hxy, log_lt_log hx hxy
lemma strict_mono_decr_on_log : strict_mono_decr_on log (set.Iio 0) :=
begin
rintros x (hx : x < 0) y (hy : y < 0) hxy,
rw [← log_abs y, ← log_abs x],
refine log_lt_log (abs_pos.2 hy.ne) _,
rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff]
end
lemma log_inj_on_pos : set.inj_on log (set.Ioi 0) :=
strict_mono_incr_on_log.inj_on
lemma eq_one_of_pos_of_log_eq_zero {x : ℝ} (h₁ : 0 < x) (h₂ : log x = 0) : x = 1 :=
log_inj_on_pos (set.mem_Ioi.2 h₁) (set.mem_Ioi.2 zero_lt_one) (h₂.trans real.log_one.symm)
lemma log_ne_zero_of_pos_of_ne_one {x : ℝ} (hx_pos : 0 < x) (hx : x ≠ 1) : log x ≠ 0 :=
mt (eq_one_of_pos_of_log_eq_zero hx_pos) hx
/-- The real logarithm function tends to `+∞` at `+∞`. -/
lemma tendsto_log_at_top : tendsto log at_top at_top :=
tendsto_comp_exp_at_top.1 $ by simpa only [log_exp] using tendsto_id
lemma tendsto_log_nhds_within_zero : tendsto log (𝓝[{0}ᶜ] 0) at_bot :=
begin
rw [← (show _ = log, from funext log_abs)],
refine tendsto.comp _ tendsto_abs_nhds_within_zero,
simpa [← tendsto_comp_exp_at_bot] using tendsto_id
end
lemma continuous_on_log : continuous_on log {0}ᶜ :=
begin
rw [continuous_on_iff_continuous_restrict, restrict],
conv in (log _) { rw [log_of_ne_zero (show (x : ℝ) ≠ 0, from x.2)] },
exact exp_order_iso.symm.continuous.comp (continuous_subtype_mk _ continuous_subtype_coe.norm)
end
@[continuity] lemma continuous_log : continuous (λ x : {x : ℝ // x ≠ 0}, log x) :=
continuous_on_iff_continuous_restrict.1 $ continuous_on_log.mono $ λ x hx, hx
@[continuity] lemma continuous_log' : continuous (λ x : {x : ℝ // 0 < x}, log x) :=
continuous_on_iff_continuous_restrict.1 $ continuous_on_log.mono $ λ x hx, ne_of_gt hx
lemma continuous_at_log (hx : x ≠ 0) : continuous_at log x :=
(continuous_on_log x hx).continuous_at $ is_open.mem_nhds is_open_compl_singleton hx
@[simp] lemma continuous_at_log_iff : continuous_at log x ↔ x ≠ 0 :=
begin
refine ⟨_, continuous_at_log⟩,
rintros h rfl,
exact not_tendsto_nhds_of_tendsto_at_bot tendsto_log_nhds_within_zero _
(h.tendsto.mono_left inf_le_left)
end
lemma has_strict_deriv_at_log_of_pos (hx : 0 < x) : has_strict_deriv_at log x⁻¹ x :=
have has_strict_deriv_at log (exp $ log x)⁻¹ x,
from (has_strict_deriv_at_exp $ log x).of_local_left_inverse (continuous_at_log hx.ne')
(ne_of_gt $ exp_pos _) $ eventually.mono (lt_mem_nhds hx) @exp_log,
by rwa [exp_log hx] at this
lemma has_strict_deriv_at_log (hx : x ≠ 0) : has_strict_deriv_at log x⁻¹ x :=
begin
cases hx.lt_or_lt with hx hx,
{ convert (has_strict_deriv_at_log_of_pos (neg_pos.mpr hx)).comp x (has_strict_deriv_at_neg x),
{ ext y, exact (log_neg_eq_log y).symm },
{ field_simp [hx.ne] } },
{ exact has_strict_deriv_at_log_of_pos hx }
end
lemma has_deriv_at_log (hx : x ≠ 0) : has_deriv_at log x⁻¹ x :=
(has_strict_deriv_at_log hx).has_deriv_at
lemma differentiable_at_log (hx : x ≠ 0) : differentiable_at ℝ log x :=
(has_deriv_at_log hx).differentiable_at
lemma differentiable_on_log : differentiable_on ℝ log {0}ᶜ :=
λ x hx, (differentiable_at_log hx).differentiable_within_at
@[simp] lemma differentiable_at_log_iff : differentiable_at ℝ log x ↔ x ≠ 0 :=
⟨λ h, continuous_at_log_iff.1 h.continuous_at, differentiable_at_log⟩
lemma deriv_log (x : ℝ) : deriv log x = x⁻¹ :=
if hx : x = 0 then
by rw [deriv_zero_of_not_differentiable_at (mt differentiable_at_log_iff.1 (not_not.2 hx)), hx,
inv_zero]
else (has_deriv_at_log hx).deriv
@[simp] lemma deriv_log' : deriv log = has_inv.inv := funext deriv_log
lemma times_cont_diff_on_log {n : with_top ℕ} : times_cont_diff_on ℝ n log {0}ᶜ :=
begin
suffices : times_cont_diff_on ℝ ⊤ log {0}ᶜ, from this.of_le le_top,
refine (times_cont_diff_on_top_iff_deriv_of_open is_open_compl_singleton).2 _,
simp [differentiable_on_log, times_cont_diff_on_inv]
end
lemma times_cont_diff_at_log {n : with_top ℕ} : times_cont_diff_at ℝ n log x ↔ x ≠ 0 :=
⟨λ h, continuous_at_log_iff.1 h.continuous_at,
λ hx, (times_cont_diff_on_log x hx).times_cont_diff_at $
is_open.mem_nhds is_open_compl_singleton hx⟩
end real
section log_differentiable
open real
section continuity
variables {α : Type*}
lemma filter.tendsto.log {f : α → ℝ} {l : filter α} {x : ℝ} (h : tendsto f l (𝓝 x)) (hx : x ≠ 0) :
tendsto (λ x, log (f x)) l (𝓝 (log x)) :=
(continuous_at_log hx).tendsto.comp h
variables [topological_space α] {f : α → ℝ} {s : set α} {a : α}
lemma continuous.log (hf : continuous f) (h₀ : ∀ x, f x ≠ 0) : continuous (λ x, log (f x)) :=
continuous_on_log.comp_continuous hf h₀
lemma continuous_at.log (hf : continuous_at f a) (h₀ : f a ≠ 0) :
continuous_at (λ x, log (f x)) a :=
hf.log h₀
lemma continuous_within_at.log (hf : continuous_within_at f s a) (h₀ : f a ≠ 0) :
continuous_within_at (λ x, log (f x)) s a :=
hf.log h₀
lemma continuous_on.log (hf : continuous_on f s) (h₀ : ∀ x ∈ s, f x ≠ 0) :
continuous_on (λ x, log (f x)) s :=
λ x hx, (hf x hx).log (h₀ x hx)
end continuity
section deriv
variables {f : ℝ → ℝ} {x f' : ℝ} {s : set ℝ}
lemma has_deriv_within_at.log (hf : has_deriv_within_at f f' s x) (hx : f x ≠ 0) :
has_deriv_within_at (λ y, log (f y)) (f' / (f x)) s x :=
begin
rw div_eq_inv_mul,
exact (has_deriv_at_log hx).comp_has_deriv_within_at x hf
end
lemma has_deriv_at.log (hf : has_deriv_at f f' x) (hx : f x ≠ 0) :
has_deriv_at (λ y, log (f y)) (f' / f x) x :=
begin
rw ← has_deriv_within_at_univ at *,
exact hf.log hx
end
lemma has_strict_deriv_at.log (hf : has_strict_deriv_at f f' x) (hx : f x ≠ 0) :
has_strict_deriv_at (λ y, log (f y)) (f' / f x) x :=
begin
rw div_eq_inv_mul,
exact (has_strict_deriv_at_log hx).comp x hf
end
lemma deriv_within.log (hf : differentiable_within_at ℝ f s x) (hx : f x ≠ 0)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λx, log (f x)) s x = (deriv_within f s x) / (f x) :=
(hf.has_deriv_within_at.log hx).deriv_within hxs
@[simp] lemma deriv.log (hf : differentiable_at ℝ f x) (hx : f x ≠ 0) :
deriv (λx, log (f x)) x = (deriv f x) / (f x) :=
(hf.has_deriv_at.log hx).deriv
end deriv
section fderiv
variables {E : Type*} [normed_group E] [normed_space ℝ E] {f : E → ℝ} {x : E} {f' : E →L[ℝ] ℝ}
{s : set E}
lemma has_fderiv_within_at.log (hf : has_fderiv_within_at f f' s x) (hx : f x ≠ 0) :
has_fderiv_within_at (λ x, log (f x)) ((f x)⁻¹ • f') s x :=
(has_deriv_at_log hx).comp_has_fderiv_within_at x hf
lemma has_fderiv_at.log (hf : has_fderiv_at f f' x) (hx : f x ≠ 0) :
has_fderiv_at (λ x, log (f x)) ((f x)⁻¹ • f') x :=
(has_deriv_at_log hx).comp_has_fderiv_at x hf
lemma has_strict_fderiv_at.log (hf : has_strict_fderiv_at f f' x) (hx : f x ≠ 0) :
has_strict_fderiv_at (λ x, log (f x)) ((f x)⁻¹ • f') x :=
(has_strict_deriv_at_log hx).comp_has_strict_fderiv_at x hf
lemma differentiable_within_at.log (hf : differentiable_within_at ℝ f s x) (hx : f x ≠ 0) :
differentiable_within_at ℝ (λx, log (f x)) s x :=
(hf.has_fderiv_within_at.log hx).differentiable_within_at
@[simp] lemma differentiable_at.log (hf : differentiable_at ℝ f x) (hx : f x ≠ 0) :
differentiable_at ℝ (λx, log (f x)) x :=
(hf.has_fderiv_at.log hx).differentiable_at
lemma times_cont_diff_at.log {n} (hf : times_cont_diff_at ℝ n f x) (hx : f x ≠ 0) :
times_cont_diff_at ℝ n (λ x, log (f x)) x :=
(times_cont_diff_at_log.2 hx).comp x hf
lemma times_cont_diff_within_at.log {n} (hf : times_cont_diff_within_at ℝ n f s x) (hx : f x ≠ 0) :
times_cont_diff_within_at ℝ n (λ x, log (f x)) s x :=
(times_cont_diff_at_log.2 hx).comp_times_cont_diff_within_at x hf
lemma times_cont_diff_on.log {n} (hf : times_cont_diff_on ℝ n f s) (hs : ∀ x ∈ s, f x ≠ 0) :
times_cont_diff_on ℝ n (λ x, log (f x)) s :=
λ x hx, (hf x hx).log (hs x hx)
lemma times_cont_diff.log {n} (hf : times_cont_diff ℝ n f) (h : ∀ x, f x ≠ 0) :
times_cont_diff ℝ n (λ x, log (f x)) :=
times_cont_diff_iff_times_cont_diff_at.2 $ λ x, hf.times_cont_diff_at.log (h x)
lemma differentiable_on.log (hf : differentiable_on ℝ f s) (hx : ∀ x ∈ s, f x ≠ 0) :
differentiable_on ℝ (λx, log (f x)) s :=
λx h, (hf x h).log (hx x h)
@[simp] lemma differentiable.log (hf : differentiable ℝ f) (hx : ∀ x, f x ≠ 0) :
differentiable ℝ (λx, log (f x)) :=
λx, (hf x).log (hx x)
lemma fderiv_within.log (hf : differentiable_within_at ℝ f s x) (hx : f x ≠ 0)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λx, log (f x)) s x = (f x)⁻¹ • fderiv_within ℝ f s x :=
(hf.has_fderiv_within_at.log hx).fderiv_within hxs
@[simp] lemma fderiv.log (hf : differentiable_at ℝ f x) (hx : f x ≠ 0) :
fderiv ℝ (λx, log (f x)) x = (f x)⁻¹ • fderiv ℝ f x :=
(hf.has_fderiv_at.log hx).fderiv
end fderiv
end log_differentiable
namespace real
/-- The function `exp(x)/x^n` tends to `+∞` at `+∞`, for any natural number `n` -/
lemma tendsto_exp_div_pow_at_top (n : ℕ) : tendsto (λx, exp x / x^n) at_top at_top :=
begin
refine (at_top_basis_Ioi.tendsto_iff (at_top_basis' 1)).2 (λ C hC₁, _),
have hC₀ : 0 < C, from zero_lt_one.trans_le hC₁,
have : 0 < (exp 1 * C)⁻¹ := inv_pos.2 (mul_pos (exp_pos _) hC₀),
obtain ⟨N, hN⟩ : ∃ N, ∀ k ≥ N, (↑k ^ n : ℝ) / exp 1 ^ k < (exp 1 * C)⁻¹ :=
eventually_at_top.1 ((tendsto_pow_const_div_const_pow_of_one_lt n
(one_lt_exp_iff.2 zero_lt_one)).eventually (gt_mem_nhds this)),
simp only [← exp_nat_mul, mul_one, div_lt_iff, exp_pos, ← div_eq_inv_mul] at hN,
refine ⟨N, trivial, λ x hx, _⟩, rw mem_Ioi at hx,
have hx₀ : 0 < x, from N.cast_nonneg.trans_lt hx,
rw [mem_Ici, le_div_iff (pow_pos hx₀ _), ← le_div_iff' hC₀],
calc x ^ n ≤ (nat_ceil x) ^ n : pow_le_pow_of_le_left hx₀.le (le_nat_ceil _) _
... ≤ exp (nat_ceil x) / (exp 1 * C) : (hN _ (lt_nat_ceil.2 hx).le).le
... ≤ exp (x + 1) / (exp 1 * C) : div_le_div_of_le (mul_pos (exp_pos _) hC₀).le
(exp_le_exp.2 $ (nat_ceil_lt_add_one hx₀.le).le)
... = exp x / C : by rw [add_comm, exp_add, mul_div_mul_left _ _ (exp_pos _).ne']
end
/-- The function `x^n * exp(-x)` tends to `0` at `+∞`, for any natural number `n`. -/
lemma tendsto_pow_mul_exp_neg_at_top_nhds_0 (n : ℕ) : tendsto (λx, x^n * exp (-x)) at_top (𝓝 0) :=
(tendsto_inv_at_top_zero.comp (tendsto_exp_div_pow_at_top n)).congr $ λx,
by rw [comp_app, inv_eq_one_div, div_div_eq_mul_div, one_mul, div_eq_mul_inv, exp_neg]
/-- The function `(b * exp x + c) / (x ^ n)` tends to `+∞` at `+∞`, for any positive natural number
`n` and any real numbers `b` and `c` such that `b` is positive. -/
lemma tendsto_mul_exp_add_div_pow_at_top (b c : ℝ) (n : ℕ) (hb : 0 < b) (hn : 1 ≤ n) :
tendsto (λ x, (b * (exp x) + c) / (x^n)) at_top at_top :=
begin
refine tendsto.congr' (eventually_eq_of_mem (Ioi_mem_at_top 0) _)
(((tendsto_exp_div_pow_at_top n).const_mul_at_top hb).at_top_add
((tendsto_pow_neg_at_top hn).mul (@tendsto_const_nhds _ _ _ c _))),
intros x hx,
simp only [fpow_neg x n],
ring,
end
/-- The function `(x ^ n) / (b * exp x + c)` tends to `0` at `+∞`, for any positive natural number
`n` and any real numbers `b` and `c` such that `b` is nonzero. -/
lemma tendsto_div_pow_mul_exp_add_at_top (b c : ℝ) (n : ℕ) (hb : 0 ≠ b) (hn : 1 ≤ n) :
tendsto (λ x, x^n / (b * (exp x) + c)) at_top (𝓝 0) :=
begin
have H : ∀ d e, 0 < d → tendsto (λ (x:ℝ), x^n / (d * (exp x) + e)) at_top (𝓝 0),
{ intros b' c' h,
convert (tendsto_mul_exp_add_div_pow_at_top b' c' n h hn).inv_tendsto_at_top ,
ext x,
simpa only [pi.inv_apply] using inv_div.symm },
cases lt_or_gt_of_ne hb,
{ exact H b c h },
{ convert (H (-b) (-c) (neg_pos.mpr h)).neg,
{ ext x,
field_simp,
rw [← neg_add (b * exp x) c, neg_div_neg_eq] },
{ exact neg_zero.symm } },
end
/-- The function `x * log (1 + t / x)` tends to `t` at `+∞`. -/
lemma tendsto_mul_log_one_plus_div_at_top (t : ℝ) :
tendsto (λ x, x * log (1 + t / x)) at_top (𝓝 t) :=
begin
have h₁ : tendsto (λ h, h⁻¹ * log (1 + t * h)) (𝓝[{0}ᶜ] 0) (𝓝 t),
{ simpa [has_deriv_at_iff_tendsto_slope] using
((has_deriv_at_const _ 1).add ((has_deriv_at_id 0).const_mul t)).log (by simp) },
have h₂ : tendsto (λ x : ℝ, x⁻¹) at_top (𝓝[{0}ᶜ] 0) :=
tendsto_inv_at_top_zero'.mono_right (nhds_within_mono _ (λ x hx, (set.mem_Ioi.mp hx).ne')),
convert h₁.comp h₂,
ext,
field_simp [mul_comm],
end
open_locale big_operators
/-- A crude lemma estimating the difference between `log (1-x)` and its Taylor series at `0`,
where the main point of the bound is that it tends to `0`. The goal is to deduce the series
expansion of the logarithm, in `has_sum_pow_div_log_of_abs_lt_1`.
-/
lemma abs_log_sub_add_sum_range_le {x : ℝ} (h : abs x < 1) (n : ℕ) :
abs ((∑ i in range n, x^(i+1)/(i+1)) + log (1-x)) ≤ (abs x)^(n+1) / (1 - abs x) :=
begin
/- For the proof, we show that the derivative of the function to be estimated is small,
and then apply the mean value inequality. -/
let F : ℝ → ℝ := λ x, ∑ i in range n, x^(i+1)/(i+1) + log (1-x),
-- First step: compute the derivative of `F`
have A : ∀ y ∈ Ioo (-1 : ℝ) 1, deriv F y = - (y^n) / (1 - y),
{ assume y hy,
have : (∑ i in range n, (↑i + 1) * y ^ i / (↑i + 1)) = (∑ i in range n, y ^ i),
{ congr' with i,
have : (i : ℝ) + 1 ≠ 0 := ne_of_gt (nat.cast_add_one_pos i),
field_simp [this, mul_comm] },
field_simp [F, this, ← geom_sum_def, geom_sum_eq (ne_of_lt hy.2),
sub_ne_zero_of_ne (ne_of_gt hy.2), sub_ne_zero_of_ne (ne_of_lt hy.2)],
ring },
-- second step: show that the derivative of `F` is small
have B : ∀ y ∈ Icc (-abs x) (abs x), abs (deriv F y) ≤ (abs x)^n / (1 - abs x),
{ assume y hy,
have : y ∈ Ioo (-(1 : ℝ)) 1 := ⟨lt_of_lt_of_le (neg_lt_neg h) hy.1, lt_of_le_of_lt hy.2 h⟩,
calc abs (deriv F y) = abs (-(y^n) / (1 - y)) : by rw [A y this]
... ≤ (abs x)^n / (1 - abs x) :
begin
have : abs y ≤ abs x := abs_le.2 hy,
have : 0 < 1 - abs x, by linarith,
have : 1 - abs x ≤ abs (1 - y) := le_trans (by linarith [hy.2]) (le_abs_self _),
simp only [← pow_abs, abs_div, abs_neg],
apply_rules [div_le_div, pow_nonneg, abs_nonneg, pow_le_pow_of_le_left]
end },
-- third step: apply the mean value inequality
have C : ∥F x - F 0∥ ≤ ((abs x)^n / (1 - abs x)) * ∥x - 0∥,
{ have : ∀ y ∈ Icc (- abs x) (abs x), differentiable_at ℝ F y,
{ assume y hy,
have : 1 - y ≠ 0 := sub_ne_zero_of_ne (ne_of_gt (lt_of_le_of_lt hy.2 h)),
simp [F, this] },
apply convex.norm_image_sub_le_of_norm_deriv_le this B (convex_Icc _ _) _ _,
{ simpa using abs_nonneg x },
{ simp [le_abs_self x, neg_le.mp (neg_le_abs_self x)] } },
-- fourth step: conclude by massaging the inequality of the third step
simpa [F, norm_eq_abs, div_mul_eq_mul_div, pow_succ'] using C
end
/-- Power series expansion of the logarithm around `1`. -/
theorem has_sum_pow_div_log_of_abs_lt_1 {x : ℝ} (h : abs x < 1) :
has_sum (λ (n : ℕ), x ^ (n + 1) / (n + 1)) (-log (1 - x)) :=
begin
rw summable.has_sum_iff_tendsto_nat,
show tendsto (λ (n : ℕ), ∑ (i : ℕ) in range n, x ^ (i + 1) / (i + 1)) at_top (𝓝 (-log (1 - x))),
{ rw [tendsto_iff_norm_tendsto_zero],
simp only [norm_eq_abs, sub_neg_eq_add],
refine squeeze_zero (λ n, abs_nonneg _) (abs_log_sub_add_sum_range_le h) _,
suffices : tendsto (λ (t : ℕ), abs x ^ (t + 1) / (1 - abs x)) at_top
(𝓝 (abs x * 0 / (1 - abs x))), by simpa,
simp only [pow_succ],
refine (tendsto_const_nhds.mul _).div_const,
exact tendsto_pow_at_top_nhds_0_of_lt_1 (abs_nonneg _) h },
show summable (λ (n : ℕ), x ^ (n + 1) / (n + 1)),
{ refine summable_of_norm_bounded _ (summable_geometric_of_lt_1 (abs_nonneg _) h) (λ i, _),
calc ∥x ^ (i + 1) / (i + 1)∥
= abs x ^ (i+1) / (i+1) :
begin
have : (0 : ℝ) ≤ i + 1 := le_of_lt (nat.cast_add_one_pos i),
rw [norm_eq_abs, abs_div, ← pow_abs, abs_of_nonneg this],
end
... ≤ abs x ^ (i+1) / (0 + 1) :
begin
apply_rules [div_le_div_of_le_left, pow_nonneg, abs_nonneg, add_le_add_right,
i.cast_nonneg],
norm_num,
end
... ≤ abs x ^ i :
by simpa [pow_succ'] using mul_le_of_le_one_right (pow_nonneg (abs_nonneg x) i) (le_of_lt h) }
end
end real
|
006c34e11881a69742658afedcaa0f01f00c79bb
|
5719a16e23dfc08cdea7a5bf035b81690f307965
|
/src/Init/Control/Lift.lean
|
1b7549edbb724b10f7e7a6b7172c8337be0a819c
|
[
"Apache-2.0"
] |
permissive
|
postmasters/lean4
|
488b03969a371e1507e1e8a4df9ebf63c7cbe7ac
|
f3976fc53a883ac7606fc59357d43f4b51016ca7
|
refs/heads/master
| 1,655,582,707,480
| 1,588,682,595,000
| 1,588,682,595,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,416
|
lean
|
/-
Copyright (c) 2016 Gabriel Ebner. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Gabriel Ebner, Sebastian Ullrich
Classy functions for lifting monadic actions of different shapes.
This theory is roughly modeled after the Haskell 'layers' package https://hackage.haskell.org/package/layers-0.1.
Please see https://hackage.haskell.org/package/layers-0.1/docs/Documentation-Layers-Overview.html for an exhaustive discussion of the different approaches to lift functions.
-/
prelude
import Init.Control.Monad
import Init.Coe
universes u v w
/-- A Function for lifting a computation from an inner Monad to an outer Monad.
Like [MonadTrans](https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-Class.html),
but `n` does not have to be a monad transformer.
Alternatively, an implementation of [MonadLayer](https://hackage.haskell.org/package/layers-0.1/docs/Control-Monad-Layer.html#t:MonadLayer) without `layerInvmap` (so far). -/
class HasMonadLift (m : Type u → Type v) (n : Type u → Type w) :=
(monadLift {} : ∀ {α}, m α → n α)
/-- The reflexive-transitive closure of `HasMonadLift`.
`monadLift` is used to transitively lift monadic computations such as `StateT.get` or `StateT.put s`.
Corresponds to [MonadLift](https://hackage.haskell.org/package/layers-0.1/docs/Control-Monad-Layer.html#t:MonadLift). -/
class HasMonadLiftT (m : Type u → Type v) (n : Type u → Type w) :=
(monadLift {} : ∀ {α}, m α → n α)
export HasMonadLiftT (monadLift)
abbrev liftM := @monadLift
@[inline] def liftCoeM {m : Type u → Type v} {n : Type u → Type w} {α β : Type u} [HasMonadLiftT m n] [∀ a, CoeT α a β] [Monad n] (x : m α) : n β := do
a ← liftM $ x;
pure $ coe a
instance hasMonadLiftTTrans (m n o) [HasMonadLiftT m n] [HasMonadLift n o] : HasMonadLiftT m o :=
⟨fun α ma => HasMonadLift.monadLift (monadLift ma : n α)⟩
instance hasMonadLiftTRefl (m) : HasMonadLiftT m m :=
⟨fun α => id⟩
theorem monadLiftRefl {m : Type u → Type v} {α} : (monadLift : m α → m α) = id := rfl
/-- A functor in the category of monads. Can be used to lift monad-transforming functions.
Based on pipes' [MFunctor](https://hackage.haskell.org/package/pipes-2.4.0/docs/Control-MFunctor.html),
but not restricted to monad transformers.
Alternatively, an implementation of [MonadTransFunctor](http://duairc.netsoc.ie/layers-docs/Control-Monad-Layer.html#t:MonadTransFunctor).
Remark: other libraries equate `m` and `m'`, and `n` and `n'`. We need to distinguish them to be able to implement
gadgets such as `MonadStateAdapter` and `MonadReaderAdapter`. -/
class MonadFunctor (m m' : Type u → Type v) (n n' : Type u → Type w) :=
(monadMap {} {α : Type u} : (∀ {β}, m β → m' β) → n α → n' α)
/-- The reflexive-transitive closure of `MonadFunctor`.
`monadMap` is used to transitively lift Monad morphisms such as `StateT.zoom`.
A generalization of [MonadLiftFunctor](http://duairc.netsoc.ie/layers-docs/Control-Monad-Layer.html#t:MonadLiftFunctor), which can only lift endomorphisms (i.e. m = m', n = n'). -/
class MonadFunctorT (m m' : Type u → Type v) (n n' : Type u → Type w) :=
(monadMap {} {α : Type u} : (∀ {β}, m β → m' β) → n α → n' α)
export MonadFunctorT (monadMap)
instance monadFunctorTTrans (m m' n n' o o') [MonadFunctorT m m' n n'] [MonadFunctor n n' o o'] :
MonadFunctorT m m' o o' :=
⟨fun α f => MonadFunctor.monadMap (fun β => (monadMap @f : n β → n' β))⟩
instance monadFunctorTRefl (m m') : MonadFunctorT m m' m m' :=
⟨fun α f => f⟩
theorem monadMapRefl {m m' : Type u → Type v} (f : ∀ {β}, m β → m' β) {α} : (monadMap @f : m α → m' α) = f := rfl
/-- Run a Monad stack to completion.
`run` should be the composition of the transformers' individual `run` functions.
This class mostly saves some typing when using highly nested Monad stacks:
```
@[reducible] def MyMonad := ReaderT myCfg $ StateT myState $ ExceptT myErr id
-- def MyMonad.run {α : Type} (x : MyMonad α) (cfg : myCfg) (st : myState) := ((x.run cfg).run st).run
def MyMonad.run {α : Type} (x : MyMonad α) := MonadRun.run x
```
-/
class MonadRun (out : outParam $ Type u → Type v) (m : Type u → Type v) :=
(run {} {α : Type u} : m α → out α)
export MonadRun (run)
|
b89f566845f6d515d2bf19b37c75fc04933a6509
|
ebf7140a9ea507409ff4c994124fa36e79b4ae35
|
/src/hints/category_theory/exercise3/hint8.lean
|
f64f783e3f0a4afdbc53849b90bd2072600f5127
|
[] |
no_license
|
fundou/lftcm2020
|
3e88d58a92755ea5dd49f19c36239c35286ecf5e
|
99d11bf3bcd71ffeaef0250caa08ecc46e69b55b
|
refs/heads/master
| 1,685,610,799,304
| 1,624,070,416,000
| 1,624,070,416,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 444
|
lean
|
import category_theory.equivalence
open category_theory
variables {C : Type*} [category C]
variables {D : Type*} [category D]
lemma equiv_preserves_mono {X Y : C} (f : X ⟶ Y) [mono f] (e : C ≌ D) :
mono (e.functor.map f) :=
begin
tidy,
replace w := congr_arg (λ k, e.inverse.map k) w,
simp at w,
rw [←category.assoc, ←category.assoc, cancel_mono f] at w,
-- Should be easy from here? See if `simp` can help.
sorry
end
|
399ad3ceb59af55aa3927012b4863c80cffa1d21
|
957a80ea22c5abb4f4670b250d55534d9db99108
|
/library/init/meta/hole_command.lean
|
dfbbe190b45938693a26f320c3f41e72b5ae4066
|
[
"Apache-2.0"
] |
permissive
|
GaloisInc/lean
|
aa1e64d604051e602fcf4610061314b9a37ab8cd
|
f1ec117a24459b59c6ff9e56a1d09d9e9e60a6c0
|
refs/heads/master
| 1,592,202,909,807
| 1,504,624,387,000
| 1,504,624,387,000
| 75,319,626
| 2
| 1
|
Apache-2.0
| 1,539,290,164,000
| 1,480,616,104,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 1,970
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.meta.tactic
/--
The front-end (e.g., Emacs, VS Code) can invoke commands for holes {! ... !} in
a declaration. A command is a tactic that takes zero or more pre-terms in the
hole, and returns a list of pair (s, descr) where 's' is a substitution and 'descr' is
a short explanation for the substitution.
Each string 's' represents a different way to fill the hole.
The front-end is responsible for replacing the hole with the string/alternative selected by the user.
This infra-structure can be use to implement auto-fill and/or refine commands.
An action may return an empty list. This is useful for actions that just return
information such as: the type of an expression, its normal form, etc.
-/
meta structure hole_command :=
(name : string)
(descr : string)
(action : list pexpr → tactic (list (string × string)))
open tactic
@[hole_command]
meta def infer_type_cmd : hole_command :=
{ name := "Infer",
descr := "Infer type of the expression in the hole",
action := λ ps, do
[p] ← return ps | fail "Infer command failed, the hole must contain a single term",
e ← to_expr p,
t ← infer_type e,
trace t,
return []
}
@[hole_command]
meta def show_goal_cmd : hole_command :=
{ name := "Show",
descr := "Show the current goal",
action := λ _, do
trace_state,
return []
}
@[hole_command]
meta def use_cmd : hole_command :=
{ name := "Use",
descr := "Try to fill the hole using the given argument",
action := λ ps, do
[p] ← return ps | fail "Use command failed, the hole must contain a single term",
t ← target,
e ← to_expr ``(%%p : %%t),
ty ← infer_type e,
is_def_eq t ty,
fmt ← tactic_format_expr e,
o ← get_options,
let s := fmt.to_string o,
return [(s, "")]
}
|
811a73ebb334d951529491dd7cdb6fb82e7f8a6d
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/algebra/group_with_zero/basic.lean
|
bc47e022764d61d6acd458db55d289ef3933622d
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,169
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import algebra.group.basic
import algebra.group_with_zero.defs
import algebra.group.order_synonym
/-!
# Groups with an adjoined zero element
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> https://github.com/leanprover-community/mathlib4/pull/669
> Any changes to this file require a corresponding PR to mathlib4.
This file describes structures that are not usually studied on their own right in mathematics,
namely a special sort of monoid: apart from a distinguished “zero element” they form a group,
or in other words, they are groups with an adjoined zero element.
Examples are:
* division rings;
* the value monoid of a multiplicative valuation;
* in particular, the non-negative real numbers.
## Main definitions
Various lemmas about `group_with_zero` and `comm_group_with_zero`.
To reduce import dependencies, the type-classes themselves are in
`algebra.group_with_zero.defs`.
## Implementation details
As is usual in mathlib, we extend the inverse function to the zero element,
and require `0⁻¹ = 0`.
-/
open_locale classical
open function
variables {α M₀ G₀ M₀' G₀' F F' : Type*}
section
section mul_zero_class
variables [mul_zero_class M₀] {a b : M₀}
lemma left_ne_zero_of_mul : a * b ≠ 0 → a ≠ 0 := mt (λ h, mul_eq_zero_of_left h b)
lemma right_ne_zero_of_mul : a * b ≠ 0 → b ≠ 0 := mt (mul_eq_zero_of_right a)
lemma ne_zero_and_ne_zero_of_mul (h : a * b ≠ 0) : a ≠ 0 ∧ b ≠ 0 :=
⟨left_ne_zero_of_mul h, right_ne_zero_of_mul h⟩
lemma mul_eq_zero_of_ne_zero_imp_eq_zero {a b : M₀} (h : a ≠ 0 → b = 0) :
a * b = 0 :=
if ha : a = 0 then by rw [ha, zero_mul] else by rw [h ha, mul_zero]
/-- To match `one_mul_eq_id`. -/
lemma zero_mul_eq_const : ((*) (0 : M₀)) = function.const _ 0 := funext zero_mul
/-- To match `mul_one_eq_id`. -/
lemma mul_zero_eq_const : (* (0 : M₀)) = function.const _ 0 := funext mul_zero
end mul_zero_class
section has_mul
variables [has_mul M₀] [has_zero M₀] [no_zero_divisors M₀] {a b : M₀}
lemma eq_zero_of_mul_self_eq_zero (h : a * a = 0) : a = 0 :=
(eq_zero_or_eq_zero_of_mul_eq_zero h).elim id id
@[field_simps] theorem mul_ne_zero (ha : a ≠ 0) (hb : b ≠ 0) : a * b ≠ 0 :=
mt eq_zero_or_eq_zero_of_mul_eq_zero $ not_or_distrib.mpr ⟨ha, hb⟩
end has_mul
namespace ne_zero
instance mul [has_zero M₀] [has_mul M₀] [no_zero_divisors M₀] {x y : M₀}
[ne_zero x] [ne_zero y] : ne_zero (x * y) :=
⟨mul_ne_zero out out⟩
end ne_zero
end
section
variables [mul_zero_one_class M₀]
/-- In a monoid with zero, if zero equals one, then zero is the only element. -/
lemma eq_zero_of_zero_eq_one (h : (0 : M₀) = 1) (a : M₀) : a = 0 :=
by rw [← mul_one a, ← h, mul_zero]
/-- In a monoid with zero, if zero equals one, then zero is the unique element.
Somewhat arbitrarily, we define the default element to be `0`.
All other elements will be provably equal to it, but not necessarily definitionally equal. -/
def unique_of_zero_eq_one (h : (0 : M₀) = 1) : unique M₀ :=
{ default := 0, uniq := eq_zero_of_zero_eq_one h }
/-- In a monoid with zero, zero equals one if and only if all elements of that semiring
are equal. -/
theorem subsingleton_iff_zero_eq_one : (0 : M₀) = 1 ↔ subsingleton M₀ :=
⟨λ h, @unique.subsingleton _ (unique_of_zero_eq_one h), λ h, @subsingleton.elim _ h _ _⟩
alias subsingleton_iff_zero_eq_one ↔ subsingleton_of_zero_eq_one _
lemma eq_of_zero_eq_one (h : (0 : M₀) = 1) (a b : M₀) : a = b :=
@subsingleton.elim _ (subsingleton_of_zero_eq_one h) a b
/-- In a monoid with zero, either zero and one are nonequal, or zero is the only element. -/
lemma zero_ne_one_or_forall_eq_0 : (0 : M₀) ≠ 1 ∨ (∀a:M₀, a = 0) :=
not_or_of_imp eq_zero_of_zero_eq_one
end
section
variables [mul_zero_one_class M₀] [nontrivial M₀] {a b : M₀}
lemma left_ne_zero_of_mul_eq_one (h : a * b = 1) : a ≠ 0 :=
left_ne_zero_of_mul $ ne_zero_of_eq_one h
lemma right_ne_zero_of_mul_eq_one (h : a * b = 1) : b ≠ 0 :=
right_ne_zero_of_mul $ ne_zero_of_eq_one h
end
section cancel_monoid_with_zero
variables [cancel_monoid_with_zero M₀] {a b c : M₀}
@[priority 10] -- see Note [lower instance priority]
instance cancel_monoid_with_zero.to_no_zero_divisors : no_zero_divisors M₀ :=
⟨λ a b ab0, by { by_cases a = 0, { left, exact h }, right,
apply cancel_monoid_with_zero.mul_left_cancel_of_ne_zero h, rw [ab0, mul_zero], }⟩
lemma mul_left_inj' (hc : c ≠ 0) : a * c = b * c ↔ a = b := (mul_left_injective₀ hc).eq_iff
lemma mul_right_inj' (ha : a ≠ 0) : a * b = a * c ↔ b = c := (mul_right_injective₀ ha).eq_iff
@[simp] lemma mul_eq_mul_right_iff : a * c = b * c ↔ a = b ∨ c = 0 :=
by by_cases hc : c = 0; [simp [hc], simp [mul_left_inj', hc]]
@[simp] lemma mul_eq_mul_left_iff : a * b = a * c ↔ b = c ∨ a = 0 :=
by by_cases ha : a = 0; [simp [ha], simp [mul_right_inj', ha]]
lemma mul_right_eq_self₀ : a * b = a ↔ b = 1 ∨ a = 0 :=
calc a * b = a ↔ a * b = a * 1 : by rw mul_one
... ↔ b = 1 ∨ a = 0 : mul_eq_mul_left_iff
lemma mul_left_eq_self₀ : a * b = b ↔ a = 1 ∨ b = 0 :=
calc a * b = b ↔ a * b = 1 * b : by rw one_mul
... ↔ a = 1 ∨ b = 0 : mul_eq_mul_right_iff
/-- An element of a `cancel_monoid_with_zero` fixed by right multiplication by an element other
than one must be zero. -/
theorem eq_zero_of_mul_eq_self_right (h₁ : b ≠ 1) (h₂ : a * b = a) : a = 0 :=
classical.by_contradiction $ λ ha, h₁ $ mul_left_cancel₀ ha $ h₂.symm ▸ (mul_one a).symm
/-- An element of a `cancel_monoid_with_zero` fixed by left multiplication by an element other
than one must be zero. -/
theorem eq_zero_of_mul_eq_self_left (h₁ : b ≠ 1) (h₂ : b * a = a) : a = 0 :=
classical.by_contradiction $ λ ha, h₁ $ mul_right_cancel₀ ha $ h₂.symm ▸ (one_mul a).symm
end cancel_monoid_with_zero
section group_with_zero
variables [group_with_zero G₀] {a b c g h x : G₀}
@[simp] lemma mul_inv_cancel_right₀ (h : b ≠ 0) (a : G₀) :
(a * b) * b⁻¹ = a :=
calc (a * b) * b⁻¹ = a * (b * b⁻¹) : mul_assoc _ _ _
... = a : by simp [h]
@[simp] lemma mul_inv_cancel_left₀ (h : a ≠ 0) (b : G₀) :
a * (a⁻¹ * b) = b :=
calc a * (a⁻¹ * b) = (a * a⁻¹) * b : (mul_assoc _ _ _).symm
... = b : by simp [h]
lemma inv_ne_zero (h : a ≠ 0) : a⁻¹ ≠ 0 :=
assume a_eq_0, by simpa [a_eq_0] using mul_inv_cancel h
@[simp] lemma inv_mul_cancel (h : a ≠ 0) : a⁻¹ * a = 1 :=
calc a⁻¹ * a = (a⁻¹ * a) * a⁻¹ * a⁻¹⁻¹ : by simp [inv_ne_zero h]
... = a⁻¹ * a⁻¹⁻¹ : by simp [h]
... = 1 : by simp [inv_ne_zero h]
lemma group_with_zero.mul_left_injective (h : x ≠ 0) :
function.injective (λ y, x * y) :=
λ y y' w, by simpa only [←mul_assoc, inv_mul_cancel h, one_mul] using congr_arg (λ y, x⁻¹ * y) w
lemma group_with_zero.mul_right_injective (h : x ≠ 0) :
function.injective (λ y, y * x) :=
λ y y' w, by simpa only [mul_assoc, mul_inv_cancel h, mul_one] using congr_arg (λ y, y * x⁻¹) w
@[simp] lemma inv_mul_cancel_right₀ (h : b ≠ 0) (a : G₀) :
(a * b⁻¹) * b = a :=
calc (a * b⁻¹) * b = a * (b⁻¹ * b) : mul_assoc _ _ _
... = a : by simp [h]
@[simp] lemma inv_mul_cancel_left₀ (h : a ≠ 0) (b : G₀) :
a⁻¹ * (a * b) = b :=
calc a⁻¹ * (a * b) = (a⁻¹ * a) * b : (mul_assoc _ _ _).symm
... = b : by simp [h]
private lemma inv_eq_of_mul (h : a * b = 1) : a⁻¹ = b :=
by rw [← inv_mul_cancel_left₀ (left_ne_zero_of_mul_eq_one h) b, h, mul_one]
@[priority 100] -- See note [lower instance priority]
instance group_with_zero.to_division_monoid : division_monoid G₀ :=
{ inv := has_inv.inv,
inv_inv := λ a, begin
by_cases h : a = 0,
{ simp [h] },
{ exact left_inv_eq_right_inv (inv_mul_cancel $ inv_ne_zero h) (inv_mul_cancel h) }
end,
mul_inv_rev := λ a b, begin
by_cases ha : a = 0, { simp [ha] },
by_cases hb : b = 0, { simp [hb] },
refine inv_eq_of_mul _,
simp [mul_assoc, ha, hb]
end,
inv_eq_of_mul := λ a b, inv_eq_of_mul,
..‹group_with_zero G₀› }
end group_with_zero
section group_with_zero
variables [group_with_zero G₀] {a b c : G₀}
@[simp] lemma zero_div (a : G₀) : 0 / a = 0 :=
by rw [div_eq_mul_inv, zero_mul]
@[simp] lemma div_zero (a : G₀) : a / 0 = 0 :=
by rw [div_eq_mul_inv, inv_zero, mul_zero]
/-- Multiplying `a` by itself and then by its inverse results in `a`
(whether or not `a` is zero). -/
@[simp] lemma mul_self_mul_inv (a : G₀) : a * a * a⁻¹ = a :=
begin
by_cases h : a = 0,
{ rw [h, inv_zero, mul_zero] },
{ rw [mul_assoc, mul_inv_cancel h, mul_one] }
end
/-- Multiplying `a` by its inverse and then by itself results in `a`
(whether or not `a` is zero). -/
@[simp] lemma mul_inv_mul_self (a : G₀) : a * a⁻¹ * a = a :=
begin
by_cases h : a = 0,
{ rw [h, inv_zero, mul_zero] },
{ rw [mul_inv_cancel h, one_mul] }
end
/-- Multiplying `a⁻¹` by `a` twice results in `a` (whether or not `a`
is zero). -/
@[simp] lemma inv_mul_mul_self (a : G₀) : a⁻¹ * a * a = a :=
begin
by_cases h : a = 0,
{ rw [h, inv_zero, mul_zero] },
{ rw [inv_mul_cancel h, one_mul] }
end
/-- Multiplying `a` by itself and then dividing by itself results in `a`, whether or not `a` is
zero. -/
@[simp] lemma mul_self_div_self (a : G₀) : a * a / a = a :=
by rw [div_eq_mul_inv, mul_self_mul_inv a]
/-- Dividing `a` by itself and then multiplying by itself results in `a`, whether or not `a` is
zero. -/
@[simp] lemma div_self_mul_self (a : G₀) : a / a * a = a :=
by rw [div_eq_mul_inv, mul_inv_mul_self a]
local attribute [simp] div_eq_mul_inv mul_comm mul_assoc mul_left_comm
@[simp] lemma div_self_mul_self' (a : G₀) : a / (a * a) = a⁻¹ :=
calc a / (a * a) = a⁻¹⁻¹ * a⁻¹ * a⁻¹ : by simp [mul_inv_rev]
... = a⁻¹ : inv_mul_mul_self _
lemma one_div_ne_zero {a : G₀} (h : a ≠ 0) : 1 / a ≠ 0 :=
by simpa only [one_div] using inv_ne_zero h
@[simp] lemma inv_eq_zero {a : G₀} : a⁻¹ = 0 ↔ a = 0 :=
by rw [inv_eq_iff_inv_eq, inv_zero, eq_comm]
@[simp] lemma zero_eq_inv {a : G₀} : 0 = a⁻¹ ↔ 0 = a :=
eq_comm.trans $ inv_eq_zero.trans eq_comm
/-- Dividing `a` by the result of dividing `a` by itself results in
`a` (whether or not `a` is zero). -/
@[simp] lemma div_div_self (a : G₀) : a / (a / a) = a :=
begin
rw div_div_eq_mul_div,
exact mul_self_div_self a
end
lemma ne_zero_of_one_div_ne_zero {a : G₀} (h : 1 / a ≠ 0) : a ≠ 0 :=
assume ha : a = 0, begin rw [ha, div_zero] at h, contradiction end
lemma eq_zero_of_one_div_eq_zero {a : G₀} (h : 1 / a = 0) : a = 0 :=
classical.by_cases
(assume ha, ha)
(assume ha, ((one_div_ne_zero ha) h).elim)
lemma mul_left_surjective₀ {a : G₀} (h : a ≠ 0) : surjective (λ g, a * g) :=
λ g, ⟨a⁻¹ * g, by simp [← mul_assoc, mul_inv_cancel h]⟩
lemma mul_right_surjective₀ {a : G₀} (h : a ≠ 0) : surjective (λ g, g * a) :=
λ g, ⟨g * a⁻¹, by simp [mul_assoc, inv_mul_cancel h]⟩
end group_with_zero
section comm_group_with_zero
variables [comm_group_with_zero G₀] {a b c d : G₀}
lemma div_mul_eq_mul_div₀ (a b c : G₀) : (a / c) * b = a * b / c :=
by simp_rw [div_eq_mul_inv, mul_assoc, mul_comm c⁻¹]
end comm_group_with_zero
/-! ### Order dual -/
open order_dual
instance [h : mul_zero_class α] : mul_zero_class αᵒᵈ := h
instance [h : mul_zero_one_class α] : mul_zero_one_class αᵒᵈ := h
instance [has_mul α] [has_zero α] [h : no_zero_divisors α] : no_zero_divisors αᵒᵈ := h
instance [h : semigroup_with_zero α] : semigroup_with_zero αᵒᵈ := h
instance [h : monoid_with_zero α] : monoid_with_zero αᵒᵈ := h
instance [h : cancel_monoid_with_zero α] : cancel_monoid_with_zero αᵒᵈ := h
instance [h : comm_monoid_with_zero α] : comm_monoid_with_zero αᵒᵈ := h
instance [h : cancel_comm_monoid_with_zero α] : cancel_comm_monoid_with_zero αᵒᵈ := h
instance [h : group_with_zero α] : group_with_zero αᵒᵈ := h
instance [h : comm_group_with_zero α] : comm_group_with_zero αᵒᵈ := h
/-! ### Lexicographic order -/
instance [h : mul_zero_class α] : mul_zero_class (lex α) := h
instance [h : mul_zero_one_class α] : mul_zero_one_class (lex α) := h
instance [has_mul α] [has_zero α] [h : no_zero_divisors α] : no_zero_divisors (lex α) := h
instance [h : semigroup_with_zero α] : semigroup_with_zero (lex α) := h
instance [h : monoid_with_zero α] : monoid_with_zero (lex α) := h
instance [h : cancel_monoid_with_zero α] : cancel_monoid_with_zero (lex α) := h
instance [h : comm_monoid_with_zero α] : comm_monoid_with_zero (lex α) := h
instance [h : cancel_comm_monoid_with_zero α] : cancel_comm_monoid_with_zero (lex α) := h
instance [h : group_with_zero α] : group_with_zero (lex α) := h
instance [h : comm_group_with_zero α] : comm_group_with_zero (lex α) := h
|
856971284935466c98b941e3d68d6c19cce50f58
|
eb798737e855f3521e075272ed9781f5a67ff135
|
/src/hello_world.lean
|
87acf4381891827286a6bdae3dfa3fe0538cc4c0
|
[] |
no_license
|
BarinderBanwait/integrally_closedness
|
cd611ef1ff47eea950a6ebcc1220ddc920d3e7e1
|
f3b45be4f8b1ac64a2f0a48f0b9f3b281947bcd1
|
refs/heads/master
| 1,669,515,621,453
| 1,596,147,374,000
| 1,596,147,374,000
| 267,625,375
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,739
|
lean
|
/-
Copyright (c) 2020 Barinder Singh Banwait. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Barinder Singh Banwait, with lots of help from the good folk on the Leanprover Zulip chat :)
-/
import ring_theory.noetherian
import ring_theory.integral_closure
import ring_theory.adjoin
import ring_theory.algebra
import ring_theory.localization
import linear_algebra.basic
/-!
# Integrally closedness
Let R ⊆ A be an extension of integral domains.
## Main definitions
* `is_integrally_closed_in R A : Prop` is the assertion that `R` is integrally closed in `A`. It is
a structure, implemented as the predicate that all elements of `A` that are integral over `R`
already belong to `R`.
* `is_integrally_closed R` is the definition that `R` is integrally closed in an absolute sense.
This is implemented as the following implication: if for all `r` and `s` in `R` with `s ≠ 0`,
`r^n ∈ ⟨ r^{n-1}s, ⋯ , s^n ⟩
## Main statements
* `fundamental_theorem_integrally_closedness` is the statement that an integral domain is integrally
closed if and only if it is integrall closed in a field of fractions.
## References
* [J. Neukirch, *Algebraic Number Theory*][neukirch-ant]
## Tags
Integrally closed
-/
universes u v
variables (R : Type u) {A : Type v}
variables [comm_ring R] [comm_ring A]
variables [algebra R A]
variables i : ℕ
variables (K : Type*)
open submodule
open function
open finset
open_locale big_operators
structure is_integrally_closed_in (R : Type u) (A : Type v) [comm_ring R] [comm_ring A]
[algebra R A] : Prop :=
(inj : injective (algebra_map R A))
(closed : ∀ (a : A), is_integral R a → ∃ r : R, algebra_map R A r = a)
-- def my_set (R) [integral_domain R] (r : R) (s : R) (n : ℕ) :=
-- { x | ∃ (i:ℕ ) (h : 0≤ i) (h2 :i≤ n-1), x = r^(n-1-i) *s^(i+1) }
def my_set (R) [integral_domain R] (r : R) (s : R) (n : ℕ) :=
{ x | ∃ (c : ℕ × ℕ) (hy: c ∈ (finset.nat.antidiagonal n).erase ⟨0, n⟩), x = r ^ c.2 * s ^ c.1 }
def is_integrally_closed (R) [integral_domain R] : Prop :=
∀ (r : R) (s : R), (s ≠ 0) ∧ (∃ n : ℕ ,
r^n ∈ span R (my_set R r s n)) → s ∣ r
open submodule
lemma mwe (R) [integral_domain R] (n : ℕ) (f : ℕ → R) (hf : f 0 = 1) : ∀ ⦃r s : R⦄, s ≠ 0 →
∑ ij in finset.nat.antidiagonal n, f ij.1 * r ^ ij.2 * s ^ ij.1 = 0 →
r^n ∈ span R (my_set R r s n) :=
begin
intros r s,
intro s_non_zero,
intro H,
let p' : ℕ × ℕ := ⟨0, n⟩,
have LM : p' ∈ finset.nat.antidiagonal n,
{
rw finset.nat.mem_antidiagonal,
linarith,
},
rw ← finset.insert_erase LM at H,
simp at H,
rw hf at H,
simp at H,
have KL : r^n = -∑ (x : ℕ × ℕ) in (nat.antidiagonal n).erase p', f x.fst * r ^ x.snd * s ^ x.fst,
{
exact eq_neg_of_add_eq_zero H,
},
rw KL,
rw my_set,
rw mem_span,
intro p,
intro p_H,
rw ideal.neg_mem_iff p,
apply sum_mem,
intro c,
intro c_H,
have x_in_my_set : r ^ c.snd * s ^ c.fst ∈ {x : R | ∃ (c : ℕ × ℕ) (hy : c ∈ (nat.antidiagonal n).erase (0, n)), x = r ^ c.snd * s ^ c.fst},
{
simp,
use c.fst,
use c.snd,
split,
split,
intro something,
by_contradiction HAPPY,
have obv : c = p',
{
exact prod.ext something HAPPY,
},
rw obv at c_H,
rw mem_erase at c_H,
cases c_H,
contradiction,
rw ← finset.nat.mem_antidiagonal,
rw mem_erase at c_H,
cases c_H with c_H_1 c_H_2,
exact c_H_2,
refl,
},
have x_in_p : r ^ c.snd * s ^ c.fst ∈ ↑p,
{
exact set.mem_of_mem_of_subset x_in_my_set p_H,
},
rw mul_assoc,
exact p.smul_mem (f c.fst) x_in_p,
end
lemma lin_comb_mem (R) [integral_domain R] (n : ℕ) (r s : R) (s_non_zero : s ≠ 0) :
r^n ∈ span R (my_set R r s n) → ∃ (f : ℕ → R) (h_f: f 0 = 1),
∑ ij in finset.nat.antidiagonal n, f ij.1 * r ^ ij.2 * s ^ ij.1 = 0 :=
begin
intro H,
-- trying finsupp.mem_span_iff_total but it just isn't working :(
sorry,
end
lemma mwe_deluxe (R) [integral_domain R] (n : ℕ) {r s : R} (h_s : s ≠ 0) :
r^n ∈ span R (my_set R r s n) ↔ ∃ (f : ℕ → R) (hf : f 0 = 1), ∑ ij in finset.nat.antidiagonal n, f ij.1 * r ^ ij.2 * s ^ ij.1 = 0 :=
begin
split,
intro H,
apply lin_comb_mem,
exact h_s,
exact H,
intro k,
cases k with f B,
cases B with C HC,
apply mwe,
exact C,
exact h_s,
exact HC,
end
lemma equiv_johan_absolute_deluxe (R) [integral_domain R] :
is_integrally_closed R ↔ ∀ (r s : R), s ≠ 0 → (∃ (n : ℕ) (f : ℕ → R) (hf : f 0 = 1),
∑ ij in finset.nat.antidiagonal n, f ij.1 * r ^ ij.2 * s ^ ij.1 = 0) → s ∣ r :=
begin
split,
intros h r s,
intro k,
unfold is_integrally_closed at h,
specialize h r s,
intro m,
apply h,
split,
exact k,
cases m with n m1,
cases m1 with f m2,
cases m2 with hf m3,
use n,
rw mwe_deluxe,
use f,
split,
exact hf,
exact m3,
exact k,
unfold is_integrally_closed,
intro H,
intros r s,
intro H2,
cases H2 with A B,
apply H,
exact A,
cases B with n B_n,
use n,
specialize H r s A,
rw mwe_deluxe at B_n,
exact B_n,
exact A,
end
lemma fundamental_theorem_integrally_closedness (R : Type u) (A : Type v) [integral_domain R]
[comm_ring A] [algebra R A] (H : fraction_map R A):
is_integrally_closed R ↔ is_integrally_closed_in R A :=
begin
split,
rw equiv_johan_absolute_deluxe,
intro H,
sorry,
sorry,
end
-- class dedekind_domain (α : Type*) extends integral_domain α :=
-- (noetherian : is_noetherian_ring α)
-- (factors_prod : ∀{a : α}, a ≠ 0 → (factors a).prod ~ᵤ a)
-- (prime_factors : ∀{a : α}, a ≠ 0 → ∀x∈factors a, prime x)
|
e770f3777821ffe3d73480b57b517240290cc2dd
|
98000ddc36f1ec26addea0df1853c69fa0e71d67
|
/reckless.lean
|
9ba46aa32df421d48478cf525ff076a2991e9e5e
|
[] |
no_license
|
SCRK16/Intuitionism
|
50b7b5ed780a75c4ff1339c3d36f1133b8acdfe3
|
a3d9920ae056b39a66e37d1d0e03d246bca1e961
|
refs/heads/master
| 1,670,199,869,808
| 1,598,045,061,000
| 1,598,045,061,000
| 254,657,585
| 1
| 0
| null | 1,590,754,909,000
| 1,586,529,604,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 28,631
|
lean
|
/-
This file captures the notion of a statement being reckless
Meaning: A statement that cannot be proven, and whose negation also cannot be proven
The most important example of recklessness is the law of exluded middle: ∀ P : Prop, P ∨ ¬ P,
also called "the principle of omniscience"
-/
import ..Intuitionism.nat_seq
import ..Intuitionism.real
import data.nat.basic
import data.nat.parity
variables P Q : Prop
namespace reckless
/--
The principle of omniscience, also called the law of the excluded middle
-/
def PO : Prop := ∀ Q : Prop, Q ∨ ¬Q
/--
The limited principle of omniscience
This is the example Brouwer initially used to justify the idea of statements being reckless,
though it is slightly weaker than PO
Using the relations = and #, we could also have defined LPO as:
∀ a : 𝒩, a = nat_seq.zero ∨ a # nat_seq.zero
Note: for such a : 𝒩 it could still be the case that we can prove a ≠ nat_seq.zero
This is because (∃ n : ℕ, a n ≠ 0) is stronger than (¬ ∀ n : ℕ, a = 0)
-/
def LPO : Prop := ∀ a : 𝒩, (∀ n : ℕ, a n = 0) ∨ (∃ n : ℕ, a n ≠ 0)
def reckless_LPO : Prop → Prop := λ P : Prop, (PO → P) ∧ (P → LPO)
/--
The lesser limited principle of omniscience
In words, it says that:
Before knowing when a sequence of natural numbers will stop being 0,
the person who claims LLPO is true, can already say it will happen at an even index or an odd index
It's important that the binding of ∨ is outside the binding of ∀ k : ℕ,
because the statement ∀ k : ℕ, k % 2 = 0 ∨ k % 2 = 1, is always true
-/
def LLPO : Prop := ∀ a : 𝒩,
(∀ k : ℕ, (∀ i : ℕ, i < k → a i = 0) ∧ a k ≠ 0 → k % 2 = 0) ∨
(∀ k : ℕ, (∀ i : ℕ, i < k → a i = 0) ∧ a k ≠ 0 → k % 2 = 1)
def reckless_LLPO : Prop → Prop :=
λ P : Prop, (PO → P) ∧ (P → LLPO)
theorem PO_implies_LPO : PO → LPO :=
begin
intro po,
intro a,
cases po (∃ n : ℕ, a n ≠ 0) with h₁ h₂,
{-- case: ∃ n : ℕ, a n ≠ 0
right,
exact h₁,
},
{-- case: ¬∃ n : ℕ, a n ≠ 0
left,
have h₃ := forall_not_of_not_exists h₂,
simp at h₃,
exact h₃,
}
end
-- A simple lemma to show a reckless statement exists: PO itself is reckless
lemma exists_reckless : ∃ P : Prop, reckless_LPO P :=
begin
use PO,
split,
{-- need to prove: PO → PO
tauto,
},
{-- need to prove: PO → LPO
exact PO_implies_LPO,
}
end
theorem LPO_implies_LLPO : LPO → LLPO :=
begin
intro lpo,
intro a,
cases lpo a with faeq eneq,
{-- case: ∀ n : ℕ, a n = 0, the conclusion is vacuously true
left,
intros k hk,
exfalso,
apply and.elim_right hk,
exact faeq k,
},
{-- case: ∃ n : ℕ, a n ≠ 0
cases eneq with n hn,
cases nat_seq.all_eq_or_exists_neq a nat_seq.zero n with alleq exneq,
{-- case: ∀ i < n: a i = 0
cases nat.mod_two_eq_zero_or_one n with neven nodd,
{-- case: n is even
left,
intros k hk,
have keqn : k = n, by {
have hkn := nat_seq.lt_eq_ne_le a nat_seq.zero k n hk.elim_left hn,
have hnk := nat_seq.lt_eq_ne_le a nat_seq.zero n k alleq hk.elim_right,
exact le_antisymm hkn hnk,
},
rw keqn,
exact neven,
},
{-- case: n is odd
right,
intros k hk,
have keqn : k = n, by {
have hkn := nat_seq.lt_eq_ne_le a nat_seq.zero k n hk.elim_left hn,
have hnk := nat_seq.lt_eq_ne_le a nat_seq.zero n k alleq hk.elim_right,
exact le_antisymm hkn hnk,
},
rw keqn,
exact nodd,
}
},
{-- case: ∃ i < n, (∀ j < i, a j = 0) ∧ a i ≠ 0
cases exneq with i hi,
cases nat.mod_two_eq_zero_or_one i with ieven iodd,
{-- case: i is even
left,
intros k hk,
have keqi : k = i, by {
have hki := nat_seq.lt_eq_ne_le a nat_seq.zero k i hk.elim_left hi.elim_right.elim_right,
have hik := nat_seq.lt_eq_ne_le a nat_seq.zero i k hi.elim_right.elim_left hk.elim_right,
exact le_antisymm hki hik,
},
rw keqi,
exact ieven,
},
{-- case: i is odd
right,
intros k hk,
have keqi : k = i, by {
have hki := nat_seq.lt_eq_ne_le a nat_seq.zero k i hk.elim_left hi.elim_right.elim_right,
have hik := nat_seq.lt_eq_ne_le a nat_seq.zero i k hi.elim_right.elim_left hk.elim_right,
exact le_antisymm hki hik,
},
rw keqi,
exact iodd,
}
}
}
end
/--
Double negation cannot simply be eliminated for all propositions P
Also shows that proof by contradiction cannot always be applied
-/
theorem reckless_not_not_implies : reckless_LPO (∀ P : Prop, ¬¬P → P) :=
begin
split,
{-- need to prove: PO → ∀ P : Prop, ¬¬P → P
intros po P nnp,
cases po P with hp np,
{-- case: P
exact hp,
},
{-- case: ¬P
exfalso,
exact nnp np,
}
},
{-- need to prove: (∀ P : Prop, ¬¬P → P) → LPO, we prove that it even implies PO
intro h,
apply PO_implies_LPO,
intro P,
apply h,
exact not_not_em P,
}
end
theorem reckless_implies_not_or : reckless_LPO (∀ P Q : Prop, (P → Q) → (Q ∨ ¬P)) :=
begin
split,
{
intros po P Q h,
cases po P with hp np,
{-- case: P
left,
exact h hp,
},
{-- case: ¬P
right,
exact np,
}
},
{-- need to prove: (∀ (P Q : Prop), (P → Q) → Q ∨ ¬P) → LPO, we prove that it even implies PO
intros h,
apply PO_implies_LPO,
intro Q,
apply h Q Q,
tauto,
}
end
/--
Given a b : 𝒩, we already know that a < b → a ≤ b, and that a = b → a ≤ b
However, this theorem shows that the opposite is not true
One might expect a ≤ b → (a < b ∨ a = b),
but this statement actually implies LPO, and is therefore reckless
-/
theorem reckless_LPO_le_implies_lt_or_eq :
reckless_LPO (∀ a b : 𝒩, a ≤ b → a < b ∨ a =' b) :=
begin
split,
{-- need to prove: PO → (∀ a b : 𝒩, a ≤ b → a < b ∨ a =' b)
intros po a b hab,
cases po (a < b) with hl hnl,
{-- case: a < b
left,
exact hl,
},
{-- case: ¬(a < b), we prove: a =' b
right,
rw ← nat_seq.le_iff_not_lt at hnl,
exact nat_seq.eq_of_le_le hab hnl,
}
},
{-- need to prove: (∀ a b : 𝒩, a ≤ b → a < b ∨ a =' b) → LPO
intros h₁ a,
cases h₁ nat_seq.zero a (nat_seq.zero_le a) with zlt zeq,
{-- case: 0 < a
right,
have h₂ := or.intro_left (a < nat_seq.zero) zlt,
rw ← nat_seq.apart_iff_lt_or_lt at h₂,
rw nat_seq.apart_symm at h₂,
exact h₂,
},
{-- case: 0 = a
left,
exact nat_seq.eq_symm.mp zeq,
}
},
end
-- The two following theorems look funny together
theorem implies_not_implies_not : ∀ P Q : Prop, (P ∨ ¬P → ¬Q) → ¬Q :=
begin
intros P Q h hq,
have h₁ := mt h,
have h₂ := h₁ (not_not_intro hq),
exact (not_not_em P) h₂,
end
theorem reckless_LPO_implies_implies : reckless_LPO (∀ P Q : Prop, (P ∨ ¬P → Q) → Q) :=
begin
split,
{
intros po P Q hpq,
exact hpq (po P),
},
{
intro h,
apply PO_implies_LPO,
intro P,
have hp := h P (P ∨ ¬P),
apply hp,
intro pop,
exact pop,
}
end
instance start_le_not_zero_decidable (a : 𝒩) (n : ℕ) : decidable (∃ i : ℕ, i ≤ n ∧ a i ≠ 0) :=
begin
induction n with d hd,
{
simp only [nat.nat_zero_eq_zero, le_zero_iff_eq, exists_eq_left, ne.def],
exact ne.decidable _ _,
},
{
have hds : decidable (a (nat.succ d) ≠ 0) := ne.decidable _ _,
have hdt : decidable ((∃ (i : ℕ), i ≤ d ∧ a i ≠ 0) ∨ a (nat.succ d) ≠ 0), by
{
exact @or.decidable (∃ (i : ℕ), i ≤ d ∧ a i ≠ 0) (a (nat.succ d) ≠ 0) hd hds,
},
have hiff : ((∃ (i : ℕ), i ≤ d ∧ a i ≠ 0) ∨ a (nat.succ d) ≠ 0) ↔ (∃ (i : ℕ), i ≤ nat.succ d ∧ a i ≠ 0), by
{
split,
{-- need to prove: →
intro h,
cases h with ilt ieq,
{-- case: ∃ (i : ℕ), i ≤ d ∧ a i ≠ 0
cases ilt with i hi,
use i,
split,
{-- need to prove: i ≤ nat.succ d
exact le_trans hi.elim_left (nat.le_succ d),
},
{-- need to prove: a i ≠ 0
exact hi.elim_right,
}
},
{-- case: a (nat.succ d) ≠ 0
use nat.succ d,
split,
{-- need to prove: nat.succ d ≤ nat.succ d
refl,
},
{-- need to prove: a (nat.succ d) ≠ 0
exact ieq,
}
}
},
{-- need to prove: ←
intro h,
cases h with i hi,
cases lt_or_eq_of_le hi.elim_left with ilt ieq,
{-- case: i < nat.succ d
left,
use i,
split,
{-- need to prove: i ≤ d
exact nat.le_of_lt_succ ilt,
},
{-- need to prove: a i ≠ 0
exact hi.elim_right,
}
},
{-- case: i = nat.succ d
right,
rw ← ieq,
exact hi.elim_right,
}
},
},
apply decidable_of_decidable_of_iff hdt hiff,
}
end
instance start_lt_not_zero_decidable (a : 𝒩) (n : ℕ) : decidable (∃ i : ℕ, i < n ∧ a i ≠ 0) :=
begin
induction n with d hd,
{
apply is_false,
intro h,
cases h with i hi,
exact (nat.not_lt_zero i) hi.elim_left,
},
{
cases hd with hdfalse hdtrue,
{-- case: ¬∃ (i : ℕ), i < d ∧ a i ≠ 0
have hds : decidable (a d ≠ 0) := ne.decidable _ _,
cases hds with hdsfalse hdstrue,
{-- case: ¬a d ≠ 0
apply is_false,
intro h,
cases h with i hi,
cases lt_or_eq_of_le (nat.le_of_lt_succ hi.elim_left) with iltd ieqd,
{-- case: i < d
apply hdfalse,
use i,
exact and.intro iltd hi.elim_right,
},
{-- case: i = d
rw ieqd at hi,
exact hdsfalse hi.elim_right,
}
},
{-- case: a d ≠ 0
apply is_true,
use d,
exact and.intro (lt_add_one d) hdstrue,
}
},
{-- case: ∃ (i : ℕ), i < d ∧ a i ≠ 0
apply is_true,
cases hdtrue with i hi,
use i,
split,
{-- need to prove: i < nat.succ d
exact lt_trans hi.elim_left (lt_add_one d),
},
{-- need to prove: a i ≠ 0
exact hi.elim_right,
}
}
}
end
def snap (a : 𝒩) : ℛ := subtype.mk (λ n : ℕ, if h : (∃ i : ℕ, i ≤ n ∧ a i ≠ 0)
then segment.inclusion (1 / nat.succ (nat.find h))
else segment.two_sided_inclusion (1 / nat.succ n)
begin
-- need to prove: 1/n > 0
simp [nat.zero_lt_succ, nat.cast_add_one_pos],
end)
begin
-- need to prove: The function defined above is a real number: It shrinks and it dwindles
split,
{-- need to prove: shrinking
rw shrinking,
intro n,
split_ifs with h₁ h₂,
{-- case: (∃ i ≤ n+1, a i ≠ 0) ∧ (∃ i ≤ n, a i ≠ 0)
suffices hh : nat.find h₁ = nat.find h₂,
{-- need to prove: nat.find h₁ = nat.find h₂ → shrinking
rw hh,
},
{-- need to prove: nat.find h₁ = nat.find h₂
have hh₁ := nat.find_spec h₁,
have hh₂ := nat.find_spec h₂,
cases lt_trichotomy (nat.find h₁) (nat.find h₂) with hlt hge,
{-- case: nat.find h₁ < nat.find h₂
exfalso,
apply nat.find_min h₂ hlt,
split,
{-- need to prove: nat.find h₁ ≤ n
transitivity (nat.find h₂),
exact (le_of_lt hlt),
exact hh₂.elim_left,
},
{-- need to prove: a (nat.find h₁) ≠ 0
exact hh₁.elim_right,
}
},
{
cases hge with heq hgt,
{-- case: nat.find h₁ = nat.find h₂
exact heq,
},
{-- case: nat.find h₂ > nat.find h₁
exfalso,
apply nat.find_min h₁ hgt,
split,
{-- need to prove: nat.find h₂ ≤ n + 1
transitivity n,
exact hh₂.elim_left,
exact nat.le_succ n,
},
{-- need to prove: a (nat.find h₂) ≠ 0
exact hh₂.elim_right,
}
}
}
}
},
{-- case: (∃ i ≤ n+1, a i ≠ 0) ∧ ¬(∃ i ≤ n, a i ≠ 0)
dsimp [segment.inclusion, segment.two_sided_inclusion, segment.contained, segment.fst, segment.snd],
split,
{-- need to prove: -(1/(↑n+1)) ≤ 1/(↑(nat.find h₁) + 1)
transitivity (rat.mk 0 1),
repeat {
rw rat.zero_mk 1,
simp [le_of_lt, nat.cast_add_one_pos],
},
},
{-- need to prove: 1/(↑(nat.find h₁) + 1) ≤ (1/(↑n+1))
cases lt_or_eq_of_le (nat.find_spec h₁).elim_left with hlt heq,
{-- case: nat.find h₁ < n + 1
exfalso,
apply h₂,
use nat.find h₁,
split,
{-- need to prove: nat.find h₁ ≤ n
exact nat.lt_succ_iff.mp hlt,
},
{-- need to prove: a (nat.find h₁) ≠ 0
exact (nat.find_spec h₁).elim_right,
}
},
{-- case: nat.find h₁ = n + 1
rw heq,
rw one_div_le_one_div,
{-- need to prove: n + 1 ≤ n + 1 + 1
simp,
},
{-- need to prove: 0 ≤ n + 1
exact nat.cast_add_one_pos _,
},
{-- need to prove: 0 ≤ n + 1 + 1
exact nat.cast_add_one_pos _,
}
}
}
},
{-- case: ¬(∃ i ≤ n+1, a i ≠ 0) ∧ (∃ i ≤ n, a i ≠ 0)
exfalso,
cases h with i hi,
apply h₁,
use i,
split,
{-- need to prove: i < n + 1
transitivity n,
exact hi.elim_left,
exact nat.le_succ n,
},
{-- need to prove: a i ≠ 0
exact hi.elim_right,
}
},
{-- case: ¬(∃ i ≤ n+1, a i ≠ 0) ∧ ¬(∃ i ≤ n, a i ≠ 0)
apply segment.two_sided_inclusion_contained,
rw one_div_le_one_div,
{-- need to prove: ↑(nat.succ n) ≤ ↑(nat.succ (n + 1))
simp,
},
{-- need to prove: 0 < ↑(nat.succ (n+1))
transitivity (↑n + 1 : ℚ),
exact nat.cast_add_one_pos n,
simp [zero_lt_one],
},
{-- need to prove: 0 < ↑(nat.succ n)
exact nat.cast_add_one_pos n,
}
}
},
{-- need to prove: Dwindling
rw dwindling,
intros q hq,
dsimp [segment.inclusion, segment.two_sided_inclusion, segment.snd, segment.fst],
sorry,
}
end
theorem reckless_LPO_real_lt_eq_gt : reckless_LPO (∀ x y : ℛ, x < y ∨ x =' y ∨ y < x) :=
begin
split,
{
intros po x y,
cases po (x < y) with xlt nxlt,
{-- case: x < y
left,
exact xlt,
},
{-- case: ¬x < y
right,
cases po (y < x) with xgt nxgt,
{-- case: y < x
right,
exact xgt,
},
{-- case: ¬y < x
left,
rw ← real_seq.le_iff_not_lt at *,
exact real_seq.eq_of_le_of_le _ _ nxgt nxlt,
}
}
},
{-- need to prove: (∀ x : ℛ, x < y ∨ x =' y ∨ y < x) → LPO
intros h a,
have hsnap := h (snap a) (real_seq.inclusion_const 0),
cases hsnap with hlt hge,
{-- case: snap a < 0
exfalso,
cases hlt with n hn,
simp [real_seq.seq, real_seq.inclusion_const, segment.inclusion, snap,
segment.two_sided_inclusion, segment.lt, segment.fst, segment.snd] at hn,
split_ifs at hn,
{-- case: ∃ i : ℕ, i ≤ n ∧ a i ≠ 0
apply not_le_of_lt hn,
simp [le_of_lt, nat.cast_add_one_pos],
},
{-- case: ¬∃ i : ℕ, i ≤ n ∧ a i ≠ 0
apply not_le_of_lt hn,
simp [le_of_lt, nat.cast_add_one_pos],
}
},
{
cases hge with heq hgt,
{-- case: snap a = 0
left,
intro n,
have hn := heq n,
simp [real_seq.seq, segment.touches, segment.le, segment.fst, segment.snd,
real_seq.seq, real_seq.inclusion_const, segment.inclusion, snap, segment.two_sided_inclusion] at hn,
cases hn with hn₁ hn₂,
split_ifs at hn₁,
{-- case: ∃ i : ℕ, i ≤ n ∧ a i ≠ 0
exfalso,
apply not_lt_of_le hn₁,
simp [nat.cast_add_one_pos],
},
{-- case: ¬∃ i : ℕ, i ≤ n ∧ a i ≠ 0
have han := (forall_not_of_not_exists h_1) n,
simp at han,
exact han,
}
},
{-- case: snap a > 0
right,
cases hgt with n hn,
simp [real_seq.seq, real_seq.inclusion_const, segment.inclusion, snap,
segment.two_sided_inclusion, segment.lt, segment.fst, segment.snd] at hn,
split_ifs at hn,
{-- case: ∃ i : ℕ, i ≤ n ∧ a i ≠ 0
cases h_1 with i hi,
use i,
exact hi.elim_right,
},
{-- case: ¬∃ i : ℕ, i ≤ n ∧ a i ≠ 0
exfalso,
rwa [lt_neg, neg_zero] at hn,
apply not_le_of_lt hn,
simp [le_of_lt, nat.cast_add_one_pos],
}
}
}
}
end
def WLEM : Prop := ∀ P : Prop, ¬P ∨ ¬¬P
def WLPO : Prop := ∀ a : 𝒩, (∀ n : ℕ, a n = 0) ∨ (¬∀ n : ℕ, a n = 0)
theorem PO_implies_WLEM : PO → WLEM :=
begin
intros po P,
cases po P with hp np,
{-- case: P
right, -- need to prove: ¬¬P
intro np,
exact np hp,
},
{-- case: ¬P
left, -- need to prove: ¬P
exact np,
}
end
theorem LPO_implies_WLPO : LPO → WLPO :=
begin
intros lpo a,
cases lpo a with aeq ane,
{-- case: ∀ n : ℕ, a n = 0
left, -- need to prove: ∀ n : ℕ, a n = 0
exact aeq,
},
{-- case: ∃ n : ℕ, a n ≠ 0
right, -- need to prove: ¬∀ n : ℕ, a n = 0
intro aeq,
cases ane with n hn,
exact hn (aeq n),
}
end
theorem weak_LEM_implies_weak_LPO : WLEM → WLPO :=
begin
intros wlem a,
cases wlem (∃ n : ℕ, a n ≠ 0) with nh nnh,
{-- case: ¬∃ (n : ℕ), a n ≠ 0
left,
have h : ∀ n : ℕ, ¬ a n ≠ 0 := forall_not_of_not_exists nh,
intro n,
have hn := h n,
rwa [ne.def, not_not] at hn,
},
{-- case: ¬¬∃ (n : ℕ), a n = 0
right,
intro h,
apply nnh,
intro nex,
cases nex with n nhn,
exact nhn (h n),
}
end
theorem weak_LPO_implies_LLPO : WLPO → LLPO :=
begin
intros wlpo a,
set d : 𝒩 := λ n, if n % 2 = 0 then if (∃ i : ℕ, i < n ∧ a i ≠ 0) then 0 else a n else 0 with ddef,
cases wlpo d with deq nd,
{-- case: ∀ n : ℕ, d n = 0
right,
intros k hk, -- need to prove: k % 2 = 1
have hdk := deq k,
rw ddef at hdk,
simp at hdk,
rw ← nat.mod_two_ne_zero,
intro hkm,
split_ifs at hdk,
{-- case: ∃ i : ℕ, i < k ∧ a i ≠ 0
cases h with i hi,
apply hi.elim_right,
exact hk.elim_left i hi.elim_left,
},
{-- case: ¬∃ i : ℕ, i < k ∧ a i ≠ 0 and a k = 0
exact hk.elim_right hdk,
}
},
{-- case: ¬∀ n : ℕ, d n = 0
left,
intros k hk, -- need to prove: k % 2 = 0
rw ← nat.mod_two_ne_one,
intro hkm,
apply nd,
intro n,
rw ddef,
simp,
split_ifs,
{-- need to prove: 0 = 0
refl,
},
{-- need to prove: a n = 0, using n % 2 = 0 and ∀ x : ℕ, x < n → a x = 0
simp at h_1,
cases nat.lt_trichotomy n k with nlt nge,
{-- case: n < k
exact hk.elim_left n nlt,
},
{-- case: n ≥ k
cases nge with neq ngt,
{-- case: n = k
exfalso,
rwa [← nat.mod_two_ne_one, neq] at h,
exact h hkm,
},
{-- case: n > k
exfalso,
apply hk.elim_right,
exact h_1 k ngt,
}
}
},
{-- need to prove: 0 = 0
refl,
}
}
end
theorem weak_LEM_implies_LLPO : WLEM → LLPO :=
begin
intro wlem,
apply weak_LPO_implies_LLPO,
exact weak_LEM_implies_weak_LPO wlem,
end
-- We can also prove the above statement directly
theorem weak_LEM_implies_LLPO' : WLEM → LLPO :=
begin
intros wlem b,
cases wlem (∀ (k : ℕ), (∀ (i : ℕ), i < k → b i = 0) ∧ b k ≠ 0 → k % 2 = 0) with nh nnh,
{-- case: ¬∀ (k : ℕ), (∀ (i : ℕ), i < k → b i = 0) ∧ b k ≠ 0 → k % 2 = 0
right, -- need to prove: ∀ (k : ℕ), (∀ (i : ℕ), i < k → b i = 0) ∧ b k ≠ 0 → k % 2 = 1
intros k hk,
rw ← nat.mod_two_ne_zero,
intro h,
apply nh,
intros j hj,
have hjk : j = k := nat_seq.first_zero_eq b j k hj.elim_left hj.elim_right hk.elim_left hk.elim_right,
rw hjk,
exact h,
},
{-- case: ¬¬∀ (k : ℕ), (∀ (i : ℕ), i < k → b i = 0) ∧ b k ≠ 0 → k % 2 = 0
left, -- need to prove: ∀ (k : ℕ), (∀ (i : ℕ), i < k → b i = 0) ∧ b k ≠ 0 → k % 2 = 0
intros k hk,
rw ← nat.mod_two_ne_one,
rw ← nat.mod_two_ne_zero,
intro h0,
apply nnh,
intro h,
exact h0 (h k hk),
}
end
theorem reckless_LLPO_not_not_or : reckless_LLPO (∀ P Q : Prop, ¬¬(P ∨ Q) → (¬¬P ∨ ¬¬Q)) :=
begin
split,
{-- need to prove: PO → ∀ (P Q : Prop), ¬¬(P ∨ Q) → ¬¬P ∨ ¬¬Q
intros po P Q h,
cases po P with hp np,
{-- case: P
left,
intro np,
exact np hp,
},
{-- case: ¬P
cases po Q with hq nq,
{-- case: Q
right,
intro nq,
exact nq hq,
},
{-- case: ¬Q
exfalso,
apply h,
intro pq,
cases pq with hp hq,
{-- case: P
exact np hp,
},
{-- case: Q
exact nq hq,
}
}
}
},
{-- need to prove: (∀ (P Q : Prop), ¬¬(P ∨ Q) → ¬¬P ∨ ¬¬Q) → LPO
intro h₁,
apply weak_LEM_implies_LLPO,
intro P,
have h₂ := h₁ P (¬P) (not_not_em P),
cases h₂ with nn nnn,
{-- case: ¬¬P
right,
exact nn
},
{-- case: ¬¬¬P
left,
exact (not_not_not_iff P).mp nnn,
}
}
end
theorem reckless_LLPO_not_and_implies_not_or_not : reckless_LLPO (∀ P Q : Prop, ¬(P ∧ Q) → (¬P ∨ ¬Q)) :=
begin
split,
{-- need to prove: PO → ∀ (P Q : Prop), ¬(P ∧ Q) → ¬P ∨ ¬Q
intros po P Q h,
cases po P with hp np,
{-- case: P
cases po Q with hq nq,
{-- case: Q
exfalso,
exact h (and.intro hp hq),
},
{-- case: ¬Q
right,
exact nq,
}
},
{-- case: ¬P
left,
exact np,
}
},
{-- need to prove: (∀ (P Q : Prop), ¬(P ∧ Q) → ¬P ∨ ¬Q) → LLPO
intro h,
apply weak_LEM_implies_LLPO,
intro P,
exact h P (¬P) (and_not_self P).mp,
}
end
/--
If P ∨ ¬P holds for some proposition P, then eliminating double negation is allowed for P
-/
lemma or_not_implies_not_not_implies (h : P ∨ ¬P) : ¬¬P → P :=
begin
intro hp,
cases h with p np,
exact p,
exfalso,
exact hp np,
end
theorem reckless_LLPO_not_not_implies_or : reckless_LLPO (∀ P : Prop, (¬¬P → P) → P ∨ ¬P) :=
begin
split,
{-- need to prove: PO → ∀ (P : Prop), (¬¬P → P) → P ∨ ¬P
intros po P h,
exact po P,
},
{-- need to prove: (∀ (P : Prop), (¬¬P → P) → P ∨ ¬P) → LLPO
intro h,
apply weak_LEM_implies_LLPO,
intro P,
have hp := h (¬P),
exact hp (not_not_not_iff P).mp,
}
end
-- A reminder that brackets are important
example : (∀ P : Prop, ¬¬P → P) → (∀ P : Prop, P ∨ ¬P) :=
begin
intros h P,
exact h (P ∨ ¬P) (not_not_em P),
end
end reckless
|
ee31201e22ecc0c7dba36cb51cb9696bfd81de23
|
5ae26df177f810c5006841e9c73dc56e01b978d7
|
/src/data/rat/order.lean
|
dc44806d1c01289a7ff43c02e8043a6798da72c6
|
[
"Apache-2.0"
] |
permissive
|
ChrisHughes24/mathlib
|
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
|
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
|
refs/heads/master
| 1,583,848,251,477
| 1,565,164,247,000
| 1,565,164,247,000
| 129,409,993
| 0
| 1
|
Apache-2.0
| 1,565,164,817,000
| 1,523,628,059,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 9,024
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import data.rat.basic
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Notations
- `/.` is infix notation for `rat.mk`.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace rat
variables (a b c : ℚ)
local infix ` /. `:70 := rat.mk
protected def nonneg : ℚ → Prop
| ⟨n, d, h, c⟩ := n ≥ 0
@[simp] theorem mk_nonneg (a : ℤ) {b : ℤ} (h : b > 0) : (a /. b).nonneg ↔ a ≥ 0 :=
begin
generalize ha : a /. b = x, cases x with n₁ d₁ h₁ c₁, rw num_denom' at ha,
simp [rat.nonneg],
have d0 := int.coe_nat_lt.2 h₁,
have := (mk_eq (ne_of_gt h) (ne_of_gt d0)).1 ha,
constructor; intro h₂,
{ apply nonneg_of_mul_nonneg_right _ d0,
rw this, exact mul_nonneg h₂ (le_of_lt h) },
{ apply nonneg_of_mul_nonneg_right _ h,
rw ← this, exact mul_nonneg h₂ (int.coe_zero_le _) },
end
protected def nonneg_add {a b} : rat.nonneg a → rat.nonneg b → rat.nonneg (a + b) :=
num_denom_cases_on' a $ λ n₁ d₁ h₁,
num_denom_cases_on' b $ λ n₂ d₂ h₂,
begin
have d₁0 : (d₁:ℤ) > 0 := int.coe_nat_pos.2 (nat.pos_of_ne_zero h₁),
have d₂0 : (d₂:ℤ) > 0 := int.coe_nat_pos.2 (nat.pos_of_ne_zero h₂),
simp [d₁0, d₂0, h₁, h₂, mul_pos d₁0 d₂0],
intros n₁0 n₂0,
apply add_nonneg; apply mul_nonneg; {assumption <|> apply int.coe_zero_le}
end
protected def nonneg_mul {a b} : rat.nonneg a → rat.nonneg b → rat.nonneg (a * b) :=
num_denom_cases_on' a $ λ n₁ d₁ h₁,
num_denom_cases_on' b $ λ n₂ d₂ h₂,
begin
have d₁0 : (d₁:ℤ) > 0 := int.coe_nat_pos.2 (nat.pos_of_ne_zero h₁),
have d₂0 : (d₂:ℤ) > 0 := int.coe_nat_pos.2 (nat.pos_of_ne_zero h₂),
simp [d₁0, d₂0, h₁, h₂, mul_pos d₁0 d₂0],
exact mul_nonneg
end
protected def nonneg_antisymm {a} : rat.nonneg a → rat.nonneg (-a) → a = 0 :=
num_denom_cases_on' a $ λ n d h,
begin
have d0 : (d:ℤ) > 0 := int.coe_nat_pos.2 (nat.pos_of_ne_zero h),
simp [d0, h],
exact λ h₁ h₂, le_antisymm (nonpos_of_neg_nonneg h₂) h₁
end
protected def nonneg_total : rat.nonneg a ∨ rat.nonneg (-a) :=
by cases a with n; exact
or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
instance decidable_nonneg : decidable (rat.nonneg a) :=
by cases a; unfold rat.nonneg; apply_instance
protected def le (a b : ℚ) := rat.nonneg (b - a)
instance : has_le ℚ := ⟨rat.le⟩
instance decidable_le : decidable_rel ((≤) : ℚ → ℚ → Prop)
| a b := show decidable (rat.nonneg (b - a)), by apply_instance
protected theorem le_def {a b c d : ℤ} (b0 : b > 0) (d0 : d > 0) :
a /. b ≤ c /. d ↔ a * d ≤ c * b :=
show rat.nonneg _ ↔ _,
by simpa [ne_of_gt b0, ne_of_gt d0, mul_pos b0 d0, mul_comm]
using @sub_nonneg _ _ (b * c) (a * d)
protected theorem le_refl : a ≤ a :=
show rat.nonneg (a - a), by rw sub_self; exact le_refl (0 : ℤ)
protected theorem le_total : a ≤ b ∨ b ≤ a :=
by have := rat.nonneg_total (b - a); rwa neg_sub at this
protected theorem le_antisymm {a b : ℚ} (hab : a ≤ b) (hba : b ≤ a) : a = b :=
by have := eq_neg_of_add_eq_zero (rat.nonneg_antisymm hba $ by simpa);
rwa neg_neg at this
protected theorem le_trans {a b c : ℚ} (hab : a ≤ b) (hbc : b ≤ c) : a ≤ c :=
have rat.nonneg (b - a + (c - b)), from rat.nonneg_add hab hbc,
by simpa
instance : decidable_linear_order ℚ :=
{ le := rat.le,
le_refl := rat.le_refl,
le_trans := @rat.le_trans,
le_antisymm := @rat.le_antisymm,
le_total := rat.le_total,
decidable_eq := by apply_instance,
decidable_le := assume a b, rat.decidable_nonneg (b - a) }
/- Extra instances to short-circuit type class resolution -/
instance : has_lt ℚ := by apply_instance
instance : lattice.distrib_lattice ℚ := by apply_instance
instance : lattice.lattice ℚ := by apply_instance
instance : lattice.semilattice_inf ℚ := by apply_instance
instance : lattice.semilattice_sup ℚ := by apply_instance
instance : lattice.has_inf ℚ := by apply_instance
instance : lattice.has_sup ℚ := by apply_instance
instance : linear_order ℚ := by apply_instance
instance : partial_order ℚ := by apply_instance
instance : preorder ℚ := by apply_instance
theorem nonneg_iff_zero_le {a} : rat.nonneg a ↔ 0 ≤ a :=
show rat.nonneg a ↔ rat.nonneg (a - 0), by simp
theorem num_nonneg_iff_zero_le : ∀ {a : ℚ}, 0 ≤ a.num ↔ 0 ≤ a
| ⟨n, d, h, c⟩ := @nonneg_iff_zero_le ⟨n, d, h, c⟩
theorem mk_le {a b c d : ℤ} (h₁ : b > 0) (h₂ : d > 0) :
a /. b ≤ c /. d ↔ a * d ≤ c * b :=
by conv in (_ ≤ _) {
simp only [(≤), rat.le],
rw [sub_def (ne_of_gt h₂) (ne_of_gt h₁),
mk_nonneg _ (mul_pos h₂ h₁), ge, sub_nonneg] }
protected theorem add_le_add_left {a b c : ℚ} : c + a ≤ c + b ↔ a ≤ b :=
by unfold has_le.le rat.le; rw add_sub_add_left_eq_sub
protected theorem mul_nonneg {a b : ℚ} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a * b :=
by rw ← nonneg_iff_zero_le at ha hb ⊢; exact rat.nonneg_mul ha hb
instance : discrete_linear_ordered_field ℚ :=
{ zero_lt_one := dec_trivial,
add_le_add_left := assume a b ab c, rat.add_le_add_left.2 ab,
add_lt_add_left := assume a b ab c, lt_of_not_ge $ λ ba,
not_le_of_lt ab $ rat.add_le_add_left.1 ba,
mul_nonneg := @rat.mul_nonneg,
mul_pos := assume a b ha hb, lt_of_le_of_ne
(rat.mul_nonneg (le_of_lt ha) (le_of_lt hb))
(mul_ne_zero (ne_of_lt ha).symm (ne_of_lt hb).symm).symm,
..rat.discrete_field, ..rat.decidable_linear_order }
/- Extra instances to short-circuit type class resolution -/
instance : linear_ordered_field ℚ := by apply_instance
instance : decidable_linear_ordered_comm_ring ℚ := by apply_instance
instance : linear_ordered_comm_ring ℚ := by apply_instance
instance : linear_ordered_ring ℚ := by apply_instance
instance : ordered_ring ℚ := by apply_instance
instance : decidable_linear_ordered_semiring ℚ := by apply_instance
instance : linear_ordered_semiring ℚ := by apply_instance
instance : ordered_semiring ℚ := by apply_instance
instance : decidable_linear_ordered_comm_group ℚ := by apply_instance
instance : ordered_comm_group ℚ := by apply_instance
instance : ordered_cancel_comm_monoid ℚ := by apply_instance
instance : ordered_comm_monoid ℚ := by apply_instance
attribute [irreducible] rat.le
theorem num_pos_iff_pos {a : ℚ} : 0 < a.num ↔ 0 < a :=
lt_iff_lt_of_le_iff_le $
by simpa [(by cases a; refl : (-a).num = -a.num)]
using @num_nonneg_iff_zero_le (-a)
theorem of_int_eq_mk (z : ℤ) : of_int z = z /. 1 := num_denom' _ _ _ _
theorem coe_int_eq_mk : ∀ z : ℤ, ↑z = z /. 1
| (n : ℕ) := show (n:ℚ) = n /. 1,
by induction n with n IH n; simp [*, show (1:ℚ) = 1 /. 1, from rfl]
| -[1+ n] := show (-(n + 1) : ℚ) = -[1+ n] /. 1, begin
induction n with n IH, {refl},
show -(n + 1 + 1 : ℚ) = -[1+ n.succ] /. 1,
rw [neg_add, IH],
simpa [show -1 = (-1) /. 1, from rfl]
end
theorem coe_int_eq_of_int (z : ℤ) : ↑z = of_int z :=
(coe_int_eq_mk z).trans (of_int_eq_mk z).symm
theorem mk_eq_div (n d : ℤ) : n /. d = (n / d : ℚ) :=
begin
by_cases d0 : d = 0, {simp [d0, div_zero]},
rw [division_def, coe_int_eq_mk, coe_int_eq_mk, inv_def,
mul_def one_ne_zero d0, one_mul, mul_one]
end
theorem abs_def (q : ℚ) : abs q = q.num.nat_abs /. q.denom :=
begin
have hz : (0:ℚ) = 0 /. 1 := rfl,
cases le_total q 0 with hq hq,
{ rw [abs_of_nonpos hq],
rw [num_denom q, hz, rat.le_def (int.coe_nat_pos.2 q.pos) zero_lt_one,
mul_one, zero_mul] at hq,
rw [int.of_nat_nat_abs_of_nonpos hq, ← neg_def, ← num_denom q] },
{ rw [abs_of_nonneg hq],
rw [num_denom q, hz, rat.le_def zero_lt_one (int.coe_nat_pos.2 q.pos),
mul_one, zero_mul] at hq,
rw [int.nat_abs_of_nonneg hq, ← num_denom q] }
end
section sqrt
def sqrt (q : ℚ) : ℚ := rat.mk (int.sqrt q.num) (nat.sqrt q.denom)
theorem sqrt_eq (q : ℚ) : rat.sqrt (q*q) = abs q :=
by rw [sqrt, mul_self_num, mul_self_denom, int.sqrt_eq, nat.sqrt_eq, abs_def]
theorem exists_mul_self (x : ℚ) : (∃ q, q * q = x) ↔ rat.sqrt x * rat.sqrt x = x :=
⟨λ ⟨n, hn⟩, by rw [← hn, sqrt_eq, abs_mul_abs_self],
λ h, ⟨rat.sqrt x, h⟩⟩
theorem sqrt_nonneg (q : ℚ) : 0 ≤ rat.sqrt q :=
nonneg_iff_zero_le.1 $ (mk_nonneg _ $ int.coe_nat_pos.2 $
nat.pos_of_ne_zero $ λ H, nat.pos_iff_ne_zero.1 q.pos $ nat.sqrt_eq_zero.1 H).2 trivial
end sqrt
end rat
|
3d8831fcfb76dbabffbc52dedd404b19838f254a
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/data/list/big_operators.lean
|
e9ed34eb77b50629809d4589c7728c95f956c351
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 16,764
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Floris van Doorn, Sébastien Gouëzel
-/
import data.list.basic
/-!
# Sums and products from lists
This file provides basic results about `list.prod` and `list.sum`, which calculate the product and
sum of elements of a list. These are defined in [`data.list.defs`](./data/list/defs).
-/
variables {ι M N P M₀ G R : Type*}
namespace list
section monoid
variables [monoid M] [monoid N] [monoid P] {l l₁ l₂ : list M} {a : M}
@[simp, to_additive]
lemma prod_nil : ([] : list M).prod = 1 := rfl
@[to_additive]
lemma prod_singleton : [a].prod = a := one_mul a
@[simp, to_additive]
lemma prod_cons : (a :: l).prod = a * l.prod :=
calc (a :: l).prod = foldl (*) (a * 1) l : by simp only [list.prod, foldl_cons, one_mul, mul_one]
... = _ : foldl_assoc
@[simp, to_additive]
lemma prod_append : (l₁ ++ l₂).prod = l₁.prod * l₂.prod :=
calc (l₁ ++ l₂).prod = foldl (*) (foldl (*) 1 l₁ * 1) l₂ : by simp [list.prod]
... = l₁.prod * l₂.prod : foldl_assoc
@[to_additive]
lemma prod_concat : (l.concat a).prod = l.prod * a :=
by rw [concat_eq_append, prod_append, prod_singleton]
@[simp, to_additive]
lemma prod_join {l : list (list M)} : l.join.prod = (l.map list.prod).prod :=
by induction l; [refl, simp only [*, list.join, map, prod_append, prod_cons]]
@[to_additive]
lemma prod_eq_foldr : l.prod = foldr (*) 1 l :=
list.rec_on l rfl $ λ a l ihl, by rw [prod_cons, foldr_cons, ihl]
@[to_additive]
lemma prod_hom_rel (l : list ι) {r : M → N → Prop} {f : ι → M} {g : ι → N} (h₁ : r 1 1)
(h₂ : ∀ ⦃i a b⦄, r a b → r (f i * a) (g i * b)) :
r (l.map f).prod (l.map g).prod :=
list.rec_on l h₁ (λ a l hl, by simp only [map_cons, prod_cons, h₂ hl])
@[to_additive]
lemma prod_hom (l : list M) (f : M →* N) :
(l.map f).prod = f l.prod :=
by { simp only [prod, foldl_map, f.map_one.symm],
exact l.foldl_hom _ _ _ 1 f.map_mul }
@[to_additive]
lemma prod_hom₂ (l : list ι) (f : M → N → P)
(hf : ∀ a b c d, f (a * b) (c * d) = f a c * f b d) (hf' : f 1 1 = 1) (f₁ : ι → M) (f₂ : ι → N) :
(l.map $ λ i, f (f₁ i) (f₂ i)).prod = f (l.map f₁).prod (l.map f₂).prod :=
begin
simp only [prod, foldl_map],
convert l.foldl_hom₂ (λ a b, f a b) _ _ _ _ _ (λ a b i, _),
{ exact hf'.symm },
{ exact hf _ _ _ _ }
end
@[to_additive]
lemma prod_map_hom (L : list ι) (f : ι → M) (g : M →* N) :
(L.map (g ∘ f)).prod = g ((L.map f).prod) :=
by rw [← prod_hom, map_map]
@[to_additive]
lemma prod_is_unit : Π {L : list M} (u : ∀ m ∈ L, is_unit m), is_unit L.prod
| [] _ := by simp
| (h :: t) u :=
begin
simp only [list.prod_cons],
exact is_unit.mul (u h (mem_cons_self h t)) (prod_is_unit (λ m mt, u m (mem_cons_of_mem h mt)))
end
@[simp, to_additive]
lemma prod_take_mul_prod_drop :
∀ (L : list M) (i : ℕ), (L.take i).prod * (L.drop i).prod = L.prod
| [] i := by simp
| L 0 := by simp
| (h :: t) (n+1) := by { dsimp, rw [prod_cons, prod_cons, mul_assoc, prod_take_mul_prod_drop] }
@[simp, to_additive]
lemma prod_take_succ :
∀ (L : list M) (i : ℕ) (p), (L.take (i + 1)).prod = (L.take i).prod * L.nth_le i p
| [] i p := by cases p
| (h :: t) 0 _ := by simp
| (h :: t) (n+1) _ := by { dsimp, rw [prod_cons, prod_cons, prod_take_succ, mul_assoc] }
/-- A list with product not one must have positive length. -/
@[to_additive]
lemma length_pos_of_prod_ne_one (L : list M) (h : L.prod ≠ 1) : 0 < L.length :=
by { cases L, { simp at h, cases h }, { simp } }
@[to_additive]
lemma prod_update_nth : ∀ (L : list M) (n : ℕ) (a : M),
(L.update_nth n a).prod =
(L.take n).prod * (if n < L.length then a else 1) * (L.drop (n + 1)).prod
| (x :: xs) 0 a := by simp [update_nth]
| (x :: xs) (i+1) a := by simp [update_nth, prod_update_nth xs i a, mul_assoc]
| [] _ _ := by simp [update_nth, (nat.zero_le _).not_lt]
open mul_opposite
/-- We'd like to state this as `L.head * L.tail.prod = L.prod`, but because `L.head` relies on an
inhabited instance to return a garbage value on the empty list, this is not possible.
Instead, we write the statement in terms of `(L.nth 0).get_or_else 1`.
-/
@[to_additive]
lemma nth_zero_mul_tail_prod (l : list M) : (l.nth 0).get_or_else 1 * l.tail.prod = l.prod :=
by cases l; simp
/-- Same as `nth_zero_mul_tail_prod`, but avoiding the `list.head` garbage complication by requiring
the list to be nonempty. -/
@[to_additive]
lemma head_mul_tail_prod_of_ne_nil [inhabited M] (l : list M) (h : l ≠ []) :
l.head * l.tail.prod = l.prod :=
by cases l; [contradiction, simp]
end monoid
section monoid_with_zero
variables [monoid_with_zero M₀]
/-- If zero is an element of a list `L`, then `list.prod L = 0`. If the domain is a nontrivial
monoid with zero with no divisors, then this implication becomes an `iff`, see
`list.prod_eq_zero_iff`. -/
lemma prod_eq_zero {L : list M₀} (h : (0 : M₀) ∈ L) : L.prod = 0 :=
begin
induction L with a L ihL,
{ exact absurd h (not_mem_nil _) },
{ rw prod_cons,
cases (mem_cons_iff _ _ _).1 h with ha hL,
exacts [mul_eq_zero_of_left ha.symm _, mul_eq_zero_of_right _ (ihL hL)] }
end
/-- Product of elements of a list `L` equals zero if and only if `0 ∈ L`. See also
`list.prod_eq_zero` for an implication that needs weaker typeclass assumptions. -/
@[simp] lemma prod_eq_zero_iff [nontrivial M₀] [no_zero_divisors M₀] {L : list M₀} :
L.prod = 0 ↔ (0 : M₀) ∈ L :=
begin
induction L with a L ihL,
{ simp },
{ rw [prod_cons, mul_eq_zero, ihL, mem_cons_iff, eq_comm] }
end
lemma prod_ne_zero [nontrivial M₀] [no_zero_divisors M₀] {L : list M₀} (hL : (0 : M₀) ∉ L) :
L.prod ≠ 0 :=
mt prod_eq_zero_iff.1 hL
end monoid_with_zero
section group
variables [group G]
/-- This is the `list.prod` version of `mul_inv_rev` -/
@[to_additive "This is the `list.sum` version of `add_neg_rev`"]
lemma prod_inv_reverse : ∀ (L : list G), L.prod⁻¹ = (L.map (λ x, x⁻¹)).reverse.prod
| [] := by simp
| (x :: xs) := by simp [prod_inv_reverse xs]
/-- A non-commutative variant of `list.prod_reverse` -/
@[to_additive "A non-commutative variant of `list.sum_reverse`"]
lemma prod_reverse_noncomm : ∀ (L : list G), L.reverse.prod = (L.map (λ x, x⁻¹)).prod⁻¹ :=
by simp [prod_inv_reverse]
/-- Counterpart to `list.prod_take_succ` when we have an inverse operation -/
@[simp, to_additive /-"Counterpart to `list.sum_take_succ` when we have an negation operation"-/]
lemma prod_drop_succ :
∀ (L : list G) (i : ℕ) (p), (L.drop (i + 1)).prod = (L.nth_le i p)⁻¹ * (L.drop i).prod
| [] i p := false.elim (nat.not_lt_zero _ p)
| (x :: xs) 0 p := by simp
| (x :: xs) (i + 1) p := prod_drop_succ xs i _
end group
section comm_group
variables [comm_group G]
/-- This is the `list.prod` version of `mul_inv` -/
@[to_additive "This is the `list.sum` version of `add_neg`"]
lemma prod_inv : ∀ (L : list G), L.prod⁻¹ = (L.map (λ x, x⁻¹)).prod
| [] := by simp
| (x :: xs) := by simp [mul_comm, prod_inv xs]
/-- Alternative version of `list.prod_update_nth` when the list is over a group -/
@[to_additive /-"Alternative version of `list.sum_update_nth` when the list is over a group"-/]
lemma prod_update_nth' (L : list G) (n : ℕ) (a : G) :
(L.update_nth n a).prod =
L.prod * (if hn : n < L.length then (L.nth_le n hn)⁻¹ * a else 1) :=
begin
refine (prod_update_nth L n a).trans _,
split_ifs with hn hn,
{ rw [mul_comm _ a, mul_assoc a, prod_drop_succ L n hn, mul_comm _ (drop n L).prod,
← mul_assoc (take n L).prod, prod_take_mul_prod_drop, mul_comm a, mul_assoc] },
{ simp only [take_all_of_le (le_of_not_lt hn), prod_nil, mul_one,
drop_eq_nil_of_le ((le_of_not_lt hn).trans n.le_succ)] }
end
end comm_group
lemma eq_of_sum_take_eq [add_left_cancel_monoid M] {L L' : list M} (h : L.length = L'.length)
(h' : ∀ i ≤ L.length, (L.take i).sum = (L'.take i).sum) : L = L' :=
begin
apply ext_le h (λ i h₁ h₂, _),
have : (L.take (i + 1)).sum = (L'.take (i + 1)).sum := h' _ (nat.succ_le_of_lt h₁),
rw [sum_take_succ L i h₁, sum_take_succ L' i h₂, h' i (le_of_lt h₁)] at this,
exact add_left_cancel this
end
lemma monotone_sum_take [canonically_ordered_add_monoid M] (L : list M) :
monotone (λ i, (L.take i).sum) :=
begin
apply monotone_nat_of_le_succ (λ n, _),
by_cases h : n < L.length,
{ rw sum_take_succ _ _ h,
exact le_self_add },
{ push_neg at h,
simp [take_all_of_le h, take_all_of_le (le_trans h (nat.le_succ _))] }
end
@[to_additive sum_nonneg]
lemma one_le_prod_of_one_le [ordered_comm_monoid M] {l : list M} (hl₁ : ∀ x ∈ l, (1 : M) ≤ x) :
1 ≤ l.prod :=
begin
induction l with hd tl ih,
{ simp },
rw prod_cons,
exact one_le_mul (hl₁ hd (mem_cons_self hd tl)) (ih (λ x h, hl₁ x (mem_cons_of_mem hd h))),
end
@[to_additive sum_pos]
lemma one_lt_prod_of_one_lt [ordered_comm_monoid M] :
∀ (l : list M) (hl : ∀ x ∈ l, (1 : M) < x) (hl₂ : l ≠ []), 1 < l.prod
| [] _ h := (h rfl).elim
| [b] h _ := by simpa using h
| (a :: b :: l) hl₁ hl₂ :=
begin
simp only [forall_eq_or_imp, list.mem_cons_iff _ a] at hl₁,
rw list.prod_cons,
apply one_lt_mul_of_lt_of_le' hl₁.1,
apply le_of_lt ((b :: l).one_lt_prod_of_one_lt hl₁.2 (l.cons_ne_nil b)),
end
@[to_additive]
lemma single_le_prod [ordered_comm_monoid M] {l : list M} (hl₁ : ∀ x ∈ l, (1 : M) ≤ x) :
∀ x ∈ l, x ≤ l.prod :=
begin
induction l,
{ simp },
simp_rw [prod_cons, forall_mem_cons] at ⊢ hl₁,
split,
{ exact le_mul_of_one_le_right' (one_le_prod_of_one_le hl₁.2) },
{ exact λ x H, le_mul_of_one_le_of_le hl₁.1 (l_ih hl₁.right x H) },
end
@[to_additive all_zero_of_le_zero_le_of_sum_eq_zero]
lemma all_one_of_le_one_le_of_prod_eq_one [ordered_comm_monoid M]
{l : list M} (hl₁ : ∀ x ∈ l, (1 : M) ≤ x) (hl₂ : l.prod = 1) {x : M} (hx : x ∈ l) :
x = 1 :=
le_antisymm (hl₂ ▸ single_le_prod hl₁ _ hx) (hl₁ x hx)
@[to_additive]
lemma prod_eq_one_iff [canonically_ordered_monoid M] (l : list M) :
l.prod = 1 ↔ ∀ x ∈ l, x = (1 : M) :=
⟨all_one_of_le_one_le_of_prod_eq_one (λ _ _, one_le _),
begin
induction l,
{ simp },
{ intro h,
rw [prod_cons, mul_eq_one_iff],
rw forall_mem_cons at h,
exact ⟨h.1, l_ih h.2⟩ },
end⟩
/-- If all elements in a list are bounded below by `1`, then the length of the list is bounded
by the sum of the elements. -/
lemma length_le_sum_of_one_le (L : list ℕ) (h : ∀ i ∈ L, 1 ≤ i) : L.length ≤ L.sum :=
begin
induction L with j L IH h, { simp },
rw [sum_cons, length, add_comm],
exact add_le_add (h _ (set.mem_insert _ _)) (IH (λ i hi, h i (set.mem_union_right _ hi)))
end
/-- A list with positive sum must have positive length. -/
-- This is an easy consequence of `length_pos_of_sum_ne_zero`, but often useful in applications.
lemma length_pos_of_sum_pos [ordered_cancel_add_comm_monoid M] (L : list M) (h : 0 < L.sum) :
0 < L.length :=
length_pos_of_sum_ne_zero L h.ne'
-- TODO: develop theory of tropical rings
lemma sum_le_foldr_max [add_monoid M] [add_monoid N] [linear_order N] (f : M → N)
(h0 : f 0 ≤ 0) (hadd : ∀ x y, f (x + y) ≤ max (f x) (f y)) (l : list M) :
f l.sum ≤ (l.map f).foldr max 0 :=
begin
induction l with hd tl IH,
{ simpa using h0 },
simp only [list.sum_cons, list.foldr_map, le_max_iff, list.foldr] at IH ⊢,
cases le_or_lt (f tl.sum) (f hd),
{ left,
refine (hadd _ _).trans _,
simpa using h },
{ right,
refine (hadd _ _).trans _,
simp only [IH, max_le_iff, and_true, h.le.trans IH] }
end
@[simp, to_additive]
lemma prod_erase [decidable_eq M] [comm_monoid M] {a} :
∀ {l : list M}, a ∈ l → a * (l.erase a).prod = l.prod
| (b :: l) h :=
begin
obtain rfl | ⟨ne, h⟩ := decidable.list.eq_or_ne_mem_of_mem h,
{ simp only [list.erase, if_pos, prod_cons] },
{ simp only [list.erase, if_neg (mt eq.symm ne), prod_cons, prod_erase h, mul_left_comm a b] }
end
lemma dvd_prod [comm_monoid M] {a} {l : list M} (ha : a ∈ l) : a ∣ l.prod :=
let ⟨s, t, h⟩ := mem_split ha in
by { rw [h, prod_append, prod_cons, mul_left_comm], exact dvd_mul_right _ _ }
@[simp] lemma sum_const_nat (m n : ℕ) : sum (list.repeat m n) = m * n :=
by induction n; [refl, simp only [*, repeat_succ, sum_cons, nat.mul_succ, add_comm]]
lemma dvd_sum [semiring R] {a} {l : list R} (h : ∀ x ∈ l, a ∣ x) : a ∣ l.sum :=
begin
induction l with x l ih,
{ exact dvd_zero _ },
{ rw [list.sum_cons],
exact dvd_add (h _ (mem_cons_self _ _)) (ih (λ x hx, h x (mem_cons_of_mem _ hx))) }
end
lemma exists_lt_of_sum_lt [linear_ordered_cancel_add_comm_monoid M] {l : list ι} (f g : ι → M)
(h : (l.map f).sum < (l.map g).sum) :
∃ x ∈ l, f x < g x :=
begin
induction l with x l,
{ exact (lt_irrefl _ h).elim },
obtain h' | h' := lt_or_le (f x) (g x),
{ exact ⟨x, mem_cons_self _ _, h'⟩ },
simp at h,
obtain ⟨y, h1y, h2y⟩ := l_ih (lt_of_add_lt_add_left (h.trans_le $ add_le_add_right h' _)),
exact ⟨y, mem_cons_of_mem x h1y, h2y⟩,
end
lemma exists_le_of_sum_le [linear_ordered_cancel_add_comm_monoid M] {l : list ι} (hl : l ≠ [])
(f g : ι → M) (h : (l.map f).sum ≤ (l.map g).sum) :
∃ x ∈ l, f x ≤ g x :=
begin
cases l with x l,
{ contradiction },
obtain h' | h' := le_or_lt (f x) (g x),
{ exact ⟨x, mem_cons_self _ _, h'⟩ },
obtain ⟨y, h1y, h2y⟩ := exists_lt_of_sum_lt f g _,
exact ⟨y, mem_cons_of_mem x h1y, le_of_lt h2y⟩, simp at h,
exact lt_of_add_lt_add_left (h.trans_lt $ add_lt_add_right h' _),
end
/-- The product of a list of positive natural numbers is positive,
and likewise for any nontrivial ordered semiring. -/
lemma prod_pos [ordered_semiring R] [nontrivial R] (l : list R) (h : ∀ a ∈ l, (0 : R) < a) :
0 < l.prod :=
begin
induction l with a l ih,
{ simp },
{ rw prod_cons,
exact mul_pos (h _ $ mem_cons_self _ _) (ih $ λ a ha, h a $ mem_cons_of_mem _ ha) }
end
/-!
Several lemmas about sum/head/tail for `list ℕ`.
These are hard to generalize well, as they rely on the fact that `default ℕ = 0`.
If desired, we could add a class stating that `default = 0`.
-/
/-- This relies on `default ℕ = 0`. -/
lemma head_add_tail_sum (L : list ℕ) : L.head + L.tail.sum = L.sum :=
by { cases L, { simp, refl }, { simp } }
/-- This relies on `default ℕ = 0`. -/
lemma head_le_sum (L : list ℕ) : L.head ≤ L.sum := nat.le.intro (head_add_tail_sum L)
/-- This relies on `default ℕ = 0`. -/
lemma tail_sum (L : list ℕ) : L.tail.sum = L.sum - L.head :=
by rw [← head_add_tail_sum L, add_comm, add_tsub_cancel_right]
section alternating
variables [comm_group G]
@[simp, to_additive] lemma alternating_prod_nil : alternating_prod ([] : list G) = 1 := rfl
@[simp, to_additive] lemma alternating_prod_singleton (g : G) : alternating_prod [g] = g := rfl
@[simp, to_additive alternating_sum_cons_cons']
lemma alternating_prod_cons_cons (g h : G) (l : list G) :
alternating_prod (g :: h :: l) = g * h⁻¹ * alternating_prod l := rfl
lemma alternating_sum_cons_cons {G : Type*} [add_comm_group G] (g h : G) (l : list G) :
alternating_sum (g :: h :: l) = g - h + alternating_sum l :=
by rw [sub_eq_add_neg, alternating_sum]
end alternating
lemma sum_map_mul_left [semiring R] (L : list ι) (f : ι → R) (r : R) :
(L.map (λ b, r * f b)).sum = r * (L.map f).sum :=
sum_map_hom L f $ add_monoid_hom.mul_left r
lemma sum_map_mul_right [semiring R] (L : list ι) (f : ι → R) (r : R) :
(L.map (λ b, f b * r)).sum = (L.map f).sum * r :=
sum_map_hom L f $ add_monoid_hom.mul_right r
end list
namespace mul_opposite
open list
variables [monoid M]
lemma op_list_prod : ∀ (l : list M), op (l.prod) = (l.map op).reverse.prod
| [] := rfl
| (x :: xs) := by rw [list.prod_cons, list.map_cons, list.reverse_cons', list.prod_concat, op_mul,
op_list_prod]
lemma _root_.mul_opposite.unop_list_prod (l : list Mᵐᵒᵖ) :
(l.prod).unop = (l.map unop).reverse.prod :=
by rw [← op_inj, op_unop, mul_opposite.op_list_prod, map_reverse, map_map, reverse_reverse,
op_comp_unop, map_id]
end mul_opposite
namespace monoid_hom
variables [monoid M] [monoid N]
@[to_additive]
lemma map_list_prod (f : M →* N) (l : list M) :
f l.prod = (l.map f).prod :=
(l.prod_hom f).symm
/-- A morphism into the opposite monoid acts on the product by acting on the reversed elements -/
lemma unop_map_list_prod (f : M →* Nᵐᵒᵖ) (l : list M) :
(f l.prod).unop = (l.map (mul_opposite.unop ∘ f)).reverse.prod :=
by rw [f.map_list_prod l, mul_opposite.unop_list_prod, list.map_map]
end monoid_hom
|
f21ebd04fe39c4601dbc8a43f596dfc00b8a6982
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/archive/imo/imo1972_q5.lean
|
21178464e58dd0691fe95e82073bbcae524148d7
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,244
|
lean
|
/-
Copyright (c) 2020 Ruben Van de Velde, Stanislas Polu. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ruben Van de Velde, Stanislas Polu
-/
import data.real.basic
import analysis.normed_space.basic
/-!
# IMO 1972 Q5
Problem: `f` and `g` are real-valued functions defined on the real line. For all `x` and `y`,
`f(x + y) + f(x - y) = 2f(x)g(y)`. `f` is not identically zero and `|f(x)| ≤ 1` for all `x`.
Prove that `|g(x)| ≤ 1` for all `x`.
-/
/--
This proof begins by introducing the supremum of `f`, `k ≤ 1` as well as `k' = k / ‖g y‖`. We then
suppose that the conclusion does not hold (`hneg`) and show that `k ≤ k'` (by
`2 * (‖f x‖ * ‖g y‖) ≤ 2 * k` obtained from the main hypothesis `hf1`) and that `k' < k` (obtained
from `hneg` directly), finally raising a contradiction with `k' < k'`.
(Authored by Stanislas Polu inspired by Ruben Van de Velde).
-/
example (f g : ℝ → ℝ)
(hf1 : ∀ x, ∀ y, (f(x+y) + f(x-y)) = 2 * f(x) * g(y))
(hf2 : ∀ y, ‖f(y)‖ ≤ 1)
(hf3 : ∃ x, f(x) ≠ 0)
(y : ℝ) :
‖g(y)‖ ≤ 1 :=
begin
set S := set.range (λ x, ‖f x‖),
-- Introduce `k`, the supremum of `f`.
let k : ℝ := Sup (S),
-- Show that `‖f x‖ ≤ k`.
have hk₁ : ∀ x, ‖f x‖ ≤ k,
{ have h : bdd_above S, from ⟨1, set.forall_range_iff.mpr hf2⟩,
intro x,
exact le_cSup h (set.mem_range_self x), },
-- Show that `2 * (‖f x‖ * ‖g y‖) ≤ 2 * k`.
have hk₂ : ∀ x, 2 * (‖f x‖ * ‖g y‖) ≤ 2 * k,
{ intro x,
calc 2 * (‖f x‖ * ‖g y‖)
= ‖2 * f x * g y‖ : by simp [abs_mul, mul_assoc]
... = ‖f (x + y) + f (x - y)‖ : by rw hf1
... ≤ ‖f (x + y)‖ + ‖f (x - y)‖ : norm_add_le _ _
... ≤ k + k : add_le_add (hk₁ _) (hk₁ _)
... = 2 * k : (two_mul _).symm, },
-- Suppose the conclusion does not hold.
by_contra' hneg,
set k' := k / ‖g y‖,
-- Demonstrate that `k' < k` using `hneg`.
have H₁ : k' < k,
{ have h₁ : 0 < k,
{ obtain ⟨x, hx⟩ := hf3,
calc 0
< ‖f x‖ : norm_pos_iff.mpr hx
... ≤ k : hk₁ x },
rw div_lt_iff,
apply lt_mul_of_one_lt_right h₁ hneg,
exact trans zero_lt_one hneg },
-- Demonstrate that `k ≤ k'` using `hk₂`.
have H₂ : k ≤ k',
{ have h₁ : ∃ x : ℝ, x ∈ S,
{ use ‖f 0‖, exact set.mem_range_self 0, },
have h₂ : ∀ x, ‖f x‖ ≤ k',
{ intros x,
rw le_div_iff,
{ apply (mul_le_mul_left zero_lt_two).mp (hk₂ x) },
{ exact trans zero_lt_one hneg } },
apply cSup_le h₁,
rintros y' ⟨yy, rfl⟩,
exact h₂ yy },
-- Conclude by obtaining a contradiction, `k' < k'`.
apply lt_irrefl k',
calc k'
< k : H₁
... ≤ k' : H₂,
end
/-- IMO 1972 Q5
Problem: `f` and `g` are real-valued functions defined on the real line. For all `x` and `y`,
`f(x + y) + f(x - y) = 2f(x)g(y)`. `f` is not identically zero and `|f(x)| ≤ 1` for all `x`.
Prove that `|g(x)| ≤ 1` for all `x`.
This is a more concise version of the proof proposed by Ruben Van de Velde.
-/
example (f g : ℝ → ℝ)
(hf1 : ∀ x, ∀ y, (f (x+y) + f(x-y)) = 2 * f(x) * g(y))
(hf2 : bdd_above (set.range (λ x, ‖f x‖)))
(hf3 : ∃ x, f(x) ≠ 0)
(y : ℝ) :
‖g(y)‖ ≤ 1 :=
begin
obtain ⟨x, hx⟩ := hf3,
set k := ⨆ x, ‖f x‖,
have h : ∀ x, ‖f x‖ ≤ k := le_csupr hf2,
by_contra' H,
have hgy : 0 < ‖g y‖,
by linarith,
have k_pos : 0 < k := lt_of_lt_of_le (norm_pos_iff.mpr hx) (h x),
have : k / ‖g y‖ < k := (div_lt_iff hgy).mpr (lt_mul_of_one_lt_right k_pos H),
have : k ≤ k / ‖g y‖,
{ suffices : ∀ x, ‖f x‖ ≤ k / ‖g y‖, from csupr_le this,
intro x,
suffices : 2 * (‖f x‖ * ‖g y‖) ≤ 2 * k,
by { rwa [le_div_iff hgy, ←mul_le_mul_left (zero_lt_two : (0 : ℝ) < 2)] },
calc 2 * (‖f x‖ * ‖g y‖)
= ‖2 * f x * g y‖ : by simp [abs_mul, mul_assoc]
... = ‖f (x + y) + f (x - y)‖ : by rw hf1
... ≤ ‖f (x + y)‖ + ‖f (x - y)‖ : abs_add _ _
... ≤ 2 * k : by linarith [h (x+y), h (x -y)] },
linarith,
end
|
30de73645e53b614b17aba69acb076ee921d5b71
|
ae9f8bf05de0928a4374adc7d6b36af3411d3400
|
/src/formal_ml/measurable_space.lean
|
3a8e59e49a5155f17992e5c5a44f16000cdcea8f
|
[
"Apache-2.0"
] |
permissive
|
NeoTim/formal-ml
|
bc42cf6beba9cd2ed56c1cd054ab4eb5402ed445
|
c9cbad2837104160a9832a29245471468748bb8d
|
refs/heads/master
| 1,671,549,160,900
| 1,601,362,989,000
| 1,601,362,989,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 18,235
|
lean
|
/-
Copyright 2020 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-/
import measure_theory.measurable_space
import measure_theory.measure_space
import formal_ml.set
import formal_ml.finset
import formal_ml.classical
lemma set_Prop_le_def {α:Type*}
(M M2:set α → Prop):
M ≤ M2 ↔
(∀ X:set α, M X → M2 X)
:=
begin
refl,
end
lemma finset_union_measurable {α:Type*} {T:finset α} {β:Type*} [measurable_space β] {U:α → set β}:
(∀ t∈ T, is_measurable (U t)) →
is_measurable (⋃ x ∈ T, U x) :=
begin
intros,
have A1:(set.sUnion (set.image U ({a|a∈ T}:set α))) = (⋃ x ∈ T, U x),
{
simp,
},
rw ← A1,
apply is_measurable.sUnion,
{
apply set.countable.image,
apply set.finite.countable,
apply finite_finset,
},
{
intros,
simp at H,
cases H with x H,
cases H with A2 A3,
subst t,
apply a,
exact A2,
}
end
lemma finset_inter_measurable {α:Type*} {T:finset α} {β:Type*} [measurable_space β] {U:α → set β}:
(∀ t∈ T, is_measurable (U t)) →
is_measurable (⋂ x ∈ T, U x) :=
begin
intros,
have A1:(set.sInter (set.image U ({a|a∈ T}:set α))) = (⋂ x ∈ T, U x),
{
simp,
},
rw ← A1,
apply is_measurable.sInter,
{
apply set.countable.image,
apply set.finite.countable,
apply finite_finset,
},
{
intros,
simp at H,
cases H with x H,
cases H with A2 A3,
subst t,
apply a,
exact A2,
}
end
lemma measurable_space_le_def {α:Type*}
(M:measurable_space α) (M2:measurable_space α):
M.is_measurable' ≤ M2.is_measurable'
↔ M ≤ M2 :=
begin
refl,
end
lemma measurable_space_le_def2 {α:Type*}
(M:measurable_space α) (M2:measurable_space α):
(∀ X:set α, M.is_measurable' X → M2.is_measurable' X) ↔
M ≤ M2 :=
begin
intros,
apply iff.trans,
{
apply set_Prop_le_def,
},
{
apply measurable_space_le_def,
}
end
-- Delete?
lemma measurable_space_le_intro {α:Type*}
(M:measurable_space α) (M2:measurable_space α):
(∀ X:set α, M.is_measurable' X → M2.is_measurable' X) →
M ≤ M2 :=
begin
intros,
have A1:M.is_measurable' ≤ M2.is_measurable'
↔ M ≤ M2,
{
apply measurable_space_le_def,
},
apply A1.mp,
have A2:M.is_measurable' ≤ M2.is_measurable' ↔
(∀ X:set α, M.is_measurable' X → M2.is_measurable' X),
{
apply set_Prop_le_def,
},
apply A2.mpr,
apply a,
end
lemma measurable_def {α β:Type*}
[M1:measurable_space α] [M2:measurable_space β] (f:α → β):
(∀ B:(set β), (is_measurable B) → is_measurable (f ⁻¹' B))
↔ (measurable f) :=
begin
unfold measurable,
end
lemma measurable_intro {α β:Type*}
[measurable_space α] [measurable_space β] (f:α → β):
(∀ B:(set β), is_measurable B → is_measurable (f ⁻¹' B))
→ (measurable f) :=
begin
apply (measurable_def _).mp,
end
lemma measurable_elim {α β:Type*}
[measurable_space α] [measurable_space β] (f:α → β) (B:set β):
(measurable f)→ (is_measurable B) → (is_measurable (f ⁻¹' B)) :=
begin
intros,
apply (measurable_def _).mpr,
apply a,
apply a_1,
end
lemma measurable_fun_product_measurableh {α β:Type*}
[M1:measurable_space α] [M2:measurable_space β]:
(@prod.measurable_space α β M1 M2) = M1.comap prod.fst ⊔ M2.comap prod.snd :=
begin
refl
end
lemma comap_elim {α β:Type*} [M2:measurable_space β] (f:α → β) (B:set β):
(is_measurable B) →
(M2.comap f).is_measurable' (set.preimage f B) :=
begin
intros,
unfold measurable_space.comap,
simp,
apply exists.intro B,
split,
apply a,
refl
end
lemma measurable_comap {α β:Type*} [M1:measurable_space α] [M2:measurable_space β] (f:α → β):
(M2.comap f) ≤ M1 → measurable f :=
begin
intros,
apply measurable_intro,
intros,
have A1:(M2.comap f).is_measurable' (set.preimage f B),
{
apply comap_elim,
apply a_1,
},
rw ← measurable_space_le_def2 at a,
apply a,
apply A1,
end
lemma fst_measurable {α β:Type*}
[M1:measurable_space α] [M2:measurable_space β]:measurable (λ x:(α × β), x.fst) :=
begin
apply measurable_comap,
have A1:M1.comap prod.fst ≤ (@prod.measurable_space α β M1 M2),
{
rw measurable_fun_product_measurableh,
apply complete_lattice.le_sup_left (M1.comap prod.fst) (M2.comap prod.snd),
},
apply A1,
end
lemma snd_measurable {α β:Type*}
[M1:measurable_space α] [M2:measurable_space β]:measurable (λ x:(α × β), x.snd) :=
begin
apply measurable_comap,
have A1:M2.comap prod.snd ≤ (@prod.measurable_space α β M1 M2),
{
rw measurable_fun_product_measurableh,
apply complete_lattice.le_sup_right (M1.comap prod.fst) (M2.comap prod.snd),
},
apply A1,
end
lemma comap_def {α β:Type*} {B:set (set β)}
(f:α → β):
@measurable_space.comap α β f (measurable_space.generate_from B)
= (measurable_space.generate_from (set.image (set.preimage f) B)) :=
begin
apply measurable_space.comap_generate_from,
end
lemma comap_fst_def {α β:Type*} {Bα:set (set α)}:
(measurable_space.generate_from Bα).comap (@prod.fst α β) =
measurable_space.generate_from {U:set (α × β)|∃ A∈ Bα, U = set.prod A set.univ} :=
begin
rw measurable_space.comap_generate_from,
rw set.preimage_fst_def,
end
lemma comap_snd_def {α β:Type*} {Bβ:set (set β)}:
(measurable_space.generate_from Bβ).comap (@prod.snd α β) =
measurable_space.generate_from {U:set (α × β)|∃ B∈ Bβ, U = set.prod set.univ B} :=
begin
rw measurable_space.comap_generate_from,
rw set.preimage_snd_def,
end
lemma measurable_space_sup_def {α:Type*} {B C:set (set α)}:
(measurable_space.generate_from B) ⊔ (measurable_space.generate_from C) =
(measurable_space.generate_from (B ∪ C)) :=
begin
apply measurable_space.generate_from_sup_generate_from,
end
lemma prod_measurable_space_def {α β:Type*} {Bα:set (set α)}
{Bβ:set (set β)}:
(@prod.measurable_space α β (measurable_space.generate_from Bα)
(measurable_space.generate_from Bβ)) =
@measurable_space.generate_from (α × β) (
{U:set (α × β)|∃ A∈ Bα, U = set.prod A set.univ} ∪
{U:set (α × β)|∃ B∈ Bβ, U = set.prod set.univ B})
:=
begin
rw measurable_fun_product_measurableh,
rw comap_fst_def,
rw comap_snd_def,
rw measurable_space_sup_def,
end
lemma set.sUnion_eq_univ_elim {α:Type*} {S:set (set α)} (a:α):
(set.sUnion S = set.univ) → (∃ T∈S, a∈ T) :=
begin
intro A1,
have A2:a∈ set.univ := set.mem_univ a,
rw ← A1 at A2,
simp at A2,
cases A2 with T A2,
apply exists.intro T,
apply exists.intro A2.left,
apply A2.right,
end
lemma prod_measurable_space_le {α β:Type*} {Bα:set (set α)}
{Bβ:set (set β)}:
@measurable_space.generate_from (α × β)
{U:set (α × β)|∃ A∈ Bα, ∃ B∈Bβ, U = set.prod A B} ≤
(@prod.measurable_space α β (measurable_space.generate_from Bα)
(measurable_space.generate_from Bβ))
:=
begin
rw prod_measurable_space_def,
apply measurable_space.generate_from_le, intros X A5,
simp at A5,
cases A5 with A A5,
cases A5 with A5 A6,
cases A6 with B A6,
cases A6 with A6 A7,
have A8:(set.prod A (@set.univ β)) ∩
(set.prod (@set.univ α) B) = set.prod A B,
{
ext p,split;intros A3A;{
simp at A3A,
simp,
--cases p,
apply A3A,
},
},
rw ← A8 at A7,
rw A7,
apply is_measurable.inter,
{
apply measurable_space.is_measurable_generate_from,
apply set.mem_union_left,
simp,
apply exists.intro A,
split,
apply A5,
refl,
},
{
apply measurable_space.is_measurable_generate_from,
apply set.mem_union_right,
simp,
apply exists.intro B,
split,
apply A6,
refl,
},
end
lemma prod_measurable_space_def2 {α β:Type*} {Bα:set (set α)}
{Bβ:set (set β)} {Cα:set (set α)} {Cβ:set (set β)}:
(set.countable Cα) →
(set.countable Cβ) →
(Cα ⊆ Bα) →
(Cβ ⊆ Bβ) →
(set.sUnion Cα = set.univ) →
(set.sUnion Cβ = set.univ) →
(@prod.measurable_space α β (measurable_space.generate_from Bα)
(measurable_space.generate_from Bβ)) =
@measurable_space.generate_from (α × β)
{U:set (α × β)|∃ A∈ Bα, ∃ B∈Bβ, U = set.prod A B}
:=
begin
intros A1 A2 A3 A4 AX1 AX2,
--rw prod_measurable_space_def,
apply le_antisymm,
{
rw prod_measurable_space_def,
apply measurable_space.generate_from_le,
intros X A5,
simp at A5,
cases A5,
{
cases A5 with A A5,
cases A5 with A5 A6,
have A7:X = set.sUnion (set.image (set.prod A) Cβ),
{
rw A6,
ext a,split;intro A7A;simp;simp at A7A,
{
have A7B := set.sUnion_eq_univ_elim a.snd AX2,
cases A7B with i A7B,
cases A7B with A7B A7C,
apply exists.intro i,
apply and.intro A7B (and.intro A7A A7C),
},
{
cases A7A with i A7A,
apply A7A.right.left,
},
},
rw A7,
--apply measurable_space.is_measurable_generate_from,
apply is_measurable.sUnion,
apply set.countable.image,
apply A2,
intro U,
intro A8,
simp at A8,
cases A8 with B A8,
cases A8 with A8 A9,
subst U,
apply measurable_space.is_measurable_generate_from,
simp,
apply exists.intro A,
split,
apply A5,
apply exists.intro B,
split,
rw set.subset_def at A4,
apply A4,
apply A8,
refl,
},
{
cases A5 with B A5,
cases A5 with A5 A6,
have A7:X = set.sUnion (set.image (λ x, set.prod x B) Cα),
{
rw A6,
ext a,split;intro A7A;simp;simp at A7A,
{
have A7B := set.sUnion_eq_univ_elim a.fst AX1,
cases A7B with i A7B,
cases A7B with A7B A7C,
apply exists.intro i,
apply and.intro A7B (and.intro A7C A7A),
},
{
cases A7A with i A7A,
apply A7A.right.right,
},
},
rw A7,
--apply measurable_space.is_measurable_generate_from,
apply is_measurable.sUnion,
apply set.countable.image,
apply A1,
intro U,
intro A8,
simp at A8,
cases A8 with A A8,
cases A8 with A8 A9,
subst U,
apply measurable_space.is_measurable_generate_from,
simp,
apply exists.intro A,
split,
rw set.subset_def at A3,
apply A3,
apply A8,
apply exists.intro B,
split,
apply A5,
refl,
},
},
{
apply prod_measurable_space_le,
}
end
lemma preimage_compl {α β:Type*} (f:α → β) (S:set β):
(f ⁻¹' Sᶜ) = ((f ⁻¹' S)ᶜ) :=
begin
ext,
split;intros,
{
intro,
unfold set.preimage at a,
simp at a,
apply a,
apply a_1,
},
{
unfold set.preimage,
simp,
intro,
apply a,
apply a_1,
}
end
lemma preimage_Union {α β:Type*} (f:α → β) (g:ℕ → set β):
(f ⁻¹' ⋃ (i : ℕ), g i)=(⋃ (i : ℕ), f ⁻¹' (g i)) :=
begin
ext,
split;intros,
{
cases a with B a,
cases a with H a,
cases H with y H,
split,
simp,
split,
apply exists.intro y,
{
simp at H,
},
{
simp at H,
subst B,
apply a,
}
},
{
cases a with A a,
cases a with A1 A2,
cases A1 with i A3,
simp at A3,
subst A,
split,
simp,
split,
{
apply exists.intro i,
refl,
},
{
apply A2,
},
}
end
lemma generate_from_measurable {α β:Type*} [M:measurable_space α] [M2:measurable_space β]
(X:set (set β)) (f:α → β):
(measurable_space.generate_from X = M2)→
(∀ B∈ X, is_measurable (set.preimage f B))→
(measurable f) :=
begin
intros,
apply measurable_intro,
intros,
have A1:@is_measurable β (measurable_space.generate_from X) B,
{
rw a,
apply a_2,
},
clear a_2, -- Important for induction later.
have A2:measurable_space.generate_measurable X B,
{
apply A1,
},
induction A2,
{
apply a_1,
apply A2_H,
},
{
simp,
},
{ -- ⊢ is_measurable (f ⁻¹' -A2_s)
rw preimage_compl,
apply measurable_space.is_measurable_compl,
apply A2_ih,
{
apply (is_measurable.compl_iff).mp,
apply A1,
},
},
{
rw preimage_Union,
apply measurable_space.is_measurable_Union,
intros,
apply A2_ih,
{
apply A2_a,
}
}
end
lemma generate_from_self {α:Type*}
(M:measurable_space α):
M = measurable_space.generate_from {s : set α|measurable_space.is_measurable' M s} :=
begin
ext,
split;intros,
{
apply measurable_space.generate_measurable.basic,
apply a,
},
{
induction a,
{
apply a_H,
},
{
apply measurable_space.is_measurable_empty,
},
{
apply measurable_space.is_measurable_compl,
apply a_ih,
},
{
apply measurable_space.is_measurable_Union,
apply a_ih,
},
}
end
lemma measurable_fun_comap_def {α β:Type*}
[M2:measurable_space β] (f:α → β):
measurable_space.comap f M2 = measurable_space.generate_from
{s : set α|∃ (s' : set β), measurable_space.is_measurable' M2 s' ∧ f ⁻¹' s' = s} :=
begin
unfold measurable_space.comap,
apply generate_from_self,
end
lemma measurable_fun_product_measurable {α β γ:Type*}
[M1:measurable_space α] [M2:measurable_space β] [M3:measurable_space γ]
(X: α → β) (Y: α → γ):
measurable X →
measurable Y →
measurable (λ a:α, prod.mk (X a) (Y a)) :=
begin
intros B1 B2,
have A1:@measurable _ _ _ (@prod.measurable_space β γ M2 M3) (λ a:α, prod.mk (X a) (Y a)),
{
have A1A:(@prod.measurable_space β γ M2 M3)=measurable_space.generate_from (
{s : set (β × γ) | ∃ (s' : set β), measurable_space.is_measurable' M2 s' ∧ prod.fst ⁻¹' s' = s} ∪
{s : set (β × γ) | ∃ (s' : set γ), measurable_space.is_measurable' M3 s' ∧ prod.snd ⁻¹' s' = s}),
{
rw measurable_fun_product_measurableh,
rw measurable_fun_comap_def,
rw measurable_fun_comap_def,
rw measurable_space.generate_from_sup_generate_from,
},
rw A1A,
apply generate_from_measurable,
{
refl,
},
{
intro BC,
intros,
cases H,
{
cases H with B H,
cases H,
subst BC,
have A1B:(λ (a : α), (X a, Y a)) ⁻¹' (prod.fst ⁻¹' B) = (X ⁻¹' B),
{
ext,split;intros,
{
simp at a,
apply a,
},
{
simp,
apply a,
}
},
rw A1B,
apply B1,
apply H_left,
},
{
cases H with C H,
cases H,
subst BC,
have A1C:(λ (a : α), (X a, Y a)) ⁻¹' (prod.snd ⁻¹' C) = (Y ⁻¹' C),
{
ext,split;intros,
{
simp at a,
apply a,
},
{
simp,
apply a,
}
},
rw A1C,
apply B2,
apply H_left,
}
}
},
apply A1,
end
lemma compose_measurable_fun_measurable {α β γ:Type*}
[measurable_space α] [measurable_space β] [measurable_space γ]
(X:β → γ) (Y: α→ β):
measurable X →
measurable Y →
measurable (X ∘ Y) :=
begin
intros B1 B2,
apply measurable_intro,
intros,
have A1:(X ∘ Y ⁻¹' B)=(Y ⁻¹' (X ⁻¹' B)),
{
refl,
},
rw A1,
apply measurable_elim Y _ B2,
apply measurable_elim X _ B1,
apply a
end
-- Constant functions are measurable.
-- Different than is_measurable.const
lemma const_measurable {Ω:Type*} [measurable_space Ω] {β:Type*} [measurable_space β] (c:β):
(measurable (λ ω:Ω, c)) :=
begin
apply measurable_const,
end
lemma is_measurable_of_le_of_is_measurable
{α : Type*} {M1 : measurable_space α} {M2 : measurable_space α}
{X:set α}:
M1 ≤ M2 →
measurable_space.is_measurable' M1 X →
measurable_space.is_measurable' M2 X :=
begin
intros A2 A1,
rw ← measurable_space_le_def2 at A2,
apply A2,
apply A1,
end
-- cf. is_measurable_prod
lemma is_measurable_prod' {β : Type*} {γ : Type*}
{Mβ : measurable_space β} {Mγ : measurable_space γ}
{X:set β} {Y:set γ}:is_measurable X →
is_measurable Y →
is_measurable (set.prod X Y) :=
begin
--apply is_measurable_of_le_of_is_measurable,
intros A1 A2,
rw generate_from_self Mβ,
rw generate_from_self Mγ,
apply is_measurable_of_le_of_is_measurable,
apply prod_measurable_space_le,
apply measurable_space.is_measurable_generate_from,
simp,
apply exists.intro X,
split,
apply A1,
apply exists.intro Y,
split,
apply A2,
refl,
end
lemma measurable.preimage {α β:Type*} [measurable_space α] [measurable_space β] {f:α → β}
{S:set β}:measurable f → is_measurable S → is_measurable (set.preimage f S) :=
begin
intros A1 A2,
apply A1,
apply A2,
end
lemma measurable.if {α β:Type*}
{Mα:measurable_space α} {Mβ:measurable_space β}
{E:set α} {D:decidable_pred E}
{X Y:α → β}:is_measurable E →
measurable X →
measurable Y →
measurable (λ a:α, if (E a) then (X a) else (Y a)) :=
begin
intros A1 A2 A3,
intros S B1,
rw preimage_if,
apply is_measurable.union,
{
apply is_measurable.inter,
apply A1,
apply A2,
apply B1,
},
{
apply is_measurable.inter,
apply is_measurable.compl,
apply A1,
apply A3,
apply B1,
},
end
|
b2c8583c31e18da29b7cf302242c31c09ccb3850
|
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
|
/src/data/equiv/basic.lean
|
a7f5894f52c73d3fb4c4a0cd6fab274d5a3d0c3b
|
[
"Apache-2.0"
] |
permissive
|
DanielFabian/mathlib
|
efc3a50b5dde303c59eeb6353ef4c35a345d7112
|
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
|
refs/heads/master
| 1,668,739,922,971
| 1,595,201,756,000
| 1,595,201,756,000
| 279,469,476
| 0
| 0
| null | 1,594,696,604,000
| 1,594,696,604,000
| null |
UTF-8
|
Lean
| false
| false
| 68,904
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
In the standard library we cannot assume the univalence axiom.
We say two types are equivalent if they are isomorphic.
Two equivalent types have the same cardinality.
-/
import data.set.function
import data.option.basic
import algebra.group.basic
open function
universes u v w z
variables {α : Sort u} {β : Sort v} {γ : Sort w}
/-- `α ≃ β` is the type of functions from `α → β` with a two-sided inverse. -/
structure equiv (α : Sort*) (β : Sort*) :=
(to_fun : α → β)
(inv_fun : β → α)
(left_inv : left_inverse inv_fun to_fun)
(right_inv : right_inverse inv_fun to_fun)
infix ` ≃ `:25 := equiv
/-- Convert an involutive function `f` to an equivalence with `to_fun = inv_fun = f`. -/
def function.involutive.to_equiv (f : α → α) (h : involutive f) : α ≃ α :=
⟨f, f, h.left_inverse, h.right_inverse⟩
namespace equiv
/-- `perm α` is the type of bijections from `α` to itself. -/
@[reducible] def perm (α : Sort*) := equiv α α
instance : has_coe_to_fun (α ≃ β) :=
⟨_, to_fun⟩
@[simp] theorem coe_fn_mk (f : α → β) (g l r) : (equiv.mk f g l r : α → β) = f :=
rfl
/-- The map `coe_fn : (r ≃ s) → (r → s)` is injective. We can't use `function.injective`
here but mimic its signature by using `⦃e₁ e₂⦄`. -/
theorem coe_fn_injective : ∀ ⦃e₁ e₂ : equiv α β⦄, (e₁ : α → β) = e₂ → e₁ = e₂
| ⟨f₁, g₁, l₁, r₁⟩ ⟨f₂, g₂, l₂, r₂⟩ h :=
have f₁ = f₂, from h,
have g₁ = g₂, from l₁.eq_right_inverse (this.symm ▸ r₂),
by simp *
@[ext] lemma ext {f g : equiv α β} (H : ∀ x, f x = g x) : f = g :=
coe_fn_injective (funext H)
@[ext] lemma perm.ext {σ τ : equiv.perm α} (H : ∀ x, σ x = τ x) : σ = τ :=
equiv.ext H
/-- Any type is equivalent to itself. -/
@[refl] protected def refl (α : Sort*) : α ≃ α := ⟨id, id, λ x, rfl, λ x, rfl⟩
/-- Inverse of an equivalence `e : α ≃ β`. -/
@[symm] protected def symm (e : α ≃ β) : β ≃ α := ⟨e.inv_fun, e.to_fun, e.right_inv, e.left_inv⟩
/-- Composition of equivalences `e₁ : α ≃ β` and `e₂ : β ≃ γ`. -/
@[trans] protected def trans (e₁ : α ≃ β) (e₂ : β ≃ γ) : α ≃ γ :=
⟨e₂.to_fun ∘ e₁.to_fun, e₁.inv_fun ∘ e₂.inv_fun,
e₂.left_inv.comp e₁.left_inv, e₂.right_inv.comp e₁.right_inv⟩
@[simp]
lemma to_fun_as_coe (e : α ≃ β) (a : α) : e.to_fun a = e a := rfl
@[simp]
lemma inv_fun_as_coe (e : α ≃ β) (b : β) : e.inv_fun b = e.symm b := rfl
protected theorem injective (e : α ≃ β) : injective e :=
e.left_inv.injective
protected theorem surjective (e : α ≃ β) : surjective e :=
e.right_inv.surjective
protected theorem bijective (f : α ≃ β) : bijective f :=
⟨f.injective, f.surjective⟩
@[simp] lemma range_eq_univ {α : Type*} {β : Type*} (e : α ≃ β) : set.range e = set.univ :=
set.eq_univ_of_forall e.surjective
protected theorem subsingleton (e : α ≃ β) [subsingleton β] : subsingleton α :=
e.injective.comap_subsingleton
/-- Transfer `decidable_eq` across an equivalence. -/
protected def decidable_eq (e : α ≃ β) [decidable_eq β] : decidable_eq α :=
e.injective.decidable_eq
lemma nonempty_iff_nonempty (e : α ≃ β) : nonempty α ↔ nonempty β :=
nonempty.congr e e.symm
/-- If `α ≃ β` and `β` is inhabited, then so is `α`. -/
protected def inhabited [inhabited β] (e : α ≃ β) : inhabited α :=
⟨e.symm (default _)⟩
/-- If `α ≃ β` and `β` is a singleton type, then so is `α`. -/
protected def unique [unique β] (e : α ≃ β) : unique α :=
e.symm.surjective.unique
/-- Equivalence between equal types. -/
protected def cast {α β : Sort*} (h : α = β) : α ≃ β :=
⟨cast h, cast h.symm, λ x, by { cases h, refl }, λ x, by { cases h, refl }⟩
@[simp] theorem coe_fn_symm_mk (f : α → β) (g l r) : ((equiv.mk f g l r).symm : β → α) = g :=
rfl
@[simp] theorem coe_refl : ⇑(equiv.refl α) = id := rfl
theorem refl_apply (x : α) : equiv.refl α x = x := rfl
@[simp] theorem coe_trans (f : α ≃ β) (g : β ≃ γ) : ⇑(f.trans g) = g ∘ f := rfl
theorem trans_apply (f : α ≃ β) (g : β ≃ γ) (a : α) : (f.trans g) a = g (f a) := rfl
@[simp] theorem apply_symm_apply (e : α ≃ β) (x : β) : e (e.symm x) = x :=
e.right_inv x
@[simp] theorem symm_apply_apply (e : α ≃ β) (x : α) : e.symm (e x) = x :=
e.left_inv x
@[simp] theorem symm_comp_self (e : α ≃ β) : e.symm ∘ e = id := funext e.symm_apply_apply
@[simp] theorem self_comp_symm (e : α ≃ β) : e ∘ e.symm = id := funext e.apply_symm_apply
@[simp] lemma symm_trans_apply (f : α ≃ β) (g : β ≃ γ) (a : γ) :
(f.trans g).symm a = f.symm (g.symm a) := rfl
@[simp] theorem apply_eq_iff_eq (f : α ≃ β) (x y : α) : f x = f y ↔ x = y :=
f.injective.eq_iff
theorem apply_eq_iff_eq_symm_apply {α β : Sort*} (f : α ≃ β) (x : α) (y : β) :
f x = y ↔ x = f.symm y :=
begin
conv_lhs { rw ←apply_symm_apply f y, },
rw apply_eq_iff_eq,
end
@[simp] theorem cast_apply {α β} (h : α = β) (x : α) : equiv.cast h x = cast h x := rfl
lemma symm_apply_eq {α β} (e : α ≃ β) {x y} : e.symm x = y ↔ x = e y :=
⟨λ H, by simp [H.symm], λ H, by simp [H]⟩
lemma eq_symm_apply {α β} (e : α ≃ β) {x y} : y = e.symm x ↔ e y = x :=
(eq_comm.trans e.symm_apply_eq).trans eq_comm
@[simp] theorem symm_symm (e : α ≃ β) : e.symm.symm = e := by { cases e, refl }
@[simp] theorem trans_refl (e : α ≃ β) : e.trans (equiv.refl β) = e := by { cases e, refl }
@[simp] theorem refl_symm : (equiv.refl α).symm = equiv.refl α := rfl
@[simp] theorem refl_trans (e : α ≃ β) : (equiv.refl α).trans e = e := by { cases e, refl }
@[simp] theorem symm_trans (e : α ≃ β) : e.symm.trans e = equiv.refl β := ext (by simp)
@[simp] theorem trans_symm (e : α ≃ β) : e.trans e.symm = equiv.refl α := ext (by simp)
lemma trans_assoc {δ} (ab : α ≃ β) (bc : β ≃ γ) (cd : γ ≃ δ) :
(ab.trans bc).trans cd = ab.trans (bc.trans cd) :=
equiv.ext $ assume a, rfl
theorem left_inverse_symm (f : equiv α β) : left_inverse f.symm f := f.left_inv
theorem right_inverse_symm (f : equiv α β) : function.right_inverse f.symm f := f.right_inv
/-- If `α` is equivalent to `β` and `γ` is equivalent to `δ`, then the type of equivalences `α ≃ γ`
is equivalent to the type of equivalences `β ≃ δ`. -/
def equiv_congr {δ} (ab : α ≃ β) (cd : γ ≃ δ) : (α ≃ γ) ≃ (β ≃ δ) :=
⟨ λac, (ab.symm.trans ac).trans cd, λbd, ab.trans $ bd.trans $ cd.symm,
assume ac, by { ext x, simp }, assume ac, by { ext x, simp } ⟩
/-- If `α` is equivalent to `β`, then `perm α` is equivalent to `perm β`. -/
def perm_congr {α : Type*} {β : Type*} (e : α ≃ β) : perm α ≃ perm β :=
equiv_congr e e
protected lemma image_eq_preimage {α β} (e : α ≃ β) (s : set α) : e '' s = e.symm ⁻¹' s :=
set.ext $ assume x, set.mem_image_iff_of_inverse e.left_inv e.right_inv
protected lemma subset_image {α β} (e : α ≃ β) (s : set α) (t : set β) :
t ⊆ e '' s ↔ e.symm '' t ⊆ s :=
by rw [set.image_subset_iff, e.image_eq_preimage]
lemma symm_image_image {α β} (f : equiv α β) (s : set α) : f.symm '' (f '' s) = s :=
by { rw [← set.image_comp], simp }
protected lemma image_compl {α β} (f : equiv α β) (s : set α) :
f '' sᶜ = (f '' s)ᶜ :=
set.image_compl_eq f.bijective
/- The group of permutations (self-equivalences) of a type `α` -/
namespace perm
instance perm_group {α : Type u} : group (perm α) :=
begin
refine { mul := λ f g, equiv.trans g f, one := equiv.refl α, inv:= equiv.symm, ..};
intros; apply equiv.ext; try { apply trans_apply },
apply symm_apply_apply
end
@[simp] theorem mul_apply {α : Type u} (f g : perm α) (x) : (f * g) x = f (g x) :=
equiv.trans_apply _ _ _
@[simp] theorem one_apply {α : Type u} (x) : (1 : perm α) x = x := rfl
@[simp] lemma inv_apply_self {α : Type u} (f : perm α) (x) :
f⁻¹ (f x) = x := equiv.symm_apply_apply _ _
@[simp] lemma apply_inv_self {α : Type u} (f : perm α) (x) :
f (f⁻¹ x) = x := equiv.apply_symm_apply _ _
lemma one_def {α : Type u} : (1 : perm α) = equiv.refl α := rfl
lemma mul_def {α : Type u} (f g : perm α) : f * g = g.trans f := rfl
lemma inv_def {α : Type u} (f : perm α) : f⁻¹ = f.symm := rfl
end perm
/-- If `α` is an empty type, then it is equivalent to the `empty` type. -/
def equiv_empty (h : α → false) : α ≃ empty :=
⟨λ x, (h x).elim, λ e, e.rec _, λ x, (h x).elim, λ e, e.rec _⟩
/-- `false` is equivalent to `empty`. -/
def false_equiv_empty : false ≃ empty :=
equiv_empty _root_.id
/-- If `α` is an empty type, then it is equivalent to the `pempty` type in any universe. -/
def {u' v'} equiv_pempty {α : Sort v'} (h : α → false) : α ≃ pempty.{u'} :=
⟨λ x, (h x).elim, λ e, e.rec _, λ x, (h x).elim, λ e, e.rec _⟩
/-- `false` is equivalent to `pempty`. -/
def false_equiv_pempty : false ≃ pempty :=
equiv_pempty _root_.id
/-- `empty` is equivalent to `pempty`. -/
def empty_equiv_pempty : empty ≃ pempty :=
equiv_pempty $ empty.rec _
/-- `pempty` types from any two universes are equivalent. -/
def pempty_equiv_pempty : pempty.{v} ≃ pempty.{w} :=
equiv_pempty pempty.elim
/-- If `α` is not `nonempty`, then it is equivalent to `empty`. -/
def empty_of_not_nonempty {α : Sort*} (h : ¬ nonempty α) : α ≃ empty :=
equiv_empty $ assume a, h ⟨a⟩
/-- If `α` is not `nonempty`, then it is equivalent to `pempty`. -/
def pempty_of_not_nonempty {α : Sort*} (h : ¬ nonempty α) : α ≃ pempty :=
equiv_pempty $ assume a, h ⟨a⟩
/-- The `Sort` of proofs of a true proposition is equivalent to `punit`. -/
def prop_equiv_punit {p : Prop} (h : p) : p ≃ punit :=
⟨λ x, (), λ x, h, λ _, rfl, λ ⟨⟩, rfl⟩
/-- `true` is equivalent to `punit`. -/
def true_equiv_punit : true ≃ punit := prop_equiv_punit trivial
/-- `ulift α` is equivalent to `α`. -/
protected def ulift {α : Type u} : ulift α ≃ α :=
⟨ulift.down, ulift.up, ulift.up_down, λ a, rfl⟩
/-- `plift α` is equivalent to `α`. -/
protected def plift : plift α ≃ α :=
⟨plift.down, plift.up, plift.up_down, plift.down_up⟩
/-- equivalence of propositions is the same as iff -/
def of_iff {P Q : Prop} (h : P ↔ Q) : P ≃ Q :=
{ to_fun := h.mp,
inv_fun := h.mpr,
left_inv := λ x, rfl,
right_inv := λ y, rfl }
/-- If `α₁` is equivalent to `α₂` and `β₁` is equivalent to `β₂`, then the type of maps `α₁ → β₁`
is equivalent to the type of maps `α₂ → β₂`. -/
@[congr] def arrow_congr {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) :
(α₁ → β₁) ≃ (α₂ → β₂) :=
{ to_fun := λ f, e₂.to_fun ∘ f ∘ e₁.inv_fun,
inv_fun := λ f, e₂.inv_fun ∘ f ∘ e₁.to_fun,
left_inv := λ f, funext $ λ x, by simp,
right_inv := λ f, funext $ λ x, by simp }
@[simp] lemma arrow_congr_apply {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂)
(f : α₁ → β₁) (x : α₂) :
arrow_congr e₁ e₂ f x = (e₂ $ f $ e₁.symm x) :=
rfl
lemma arrow_congr_comp {α₁ β₁ γ₁ α₂ β₂ γ₂ : Sort*}
(ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) (ec : γ₁ ≃ γ₂) (f : α₁ → β₁) (g : β₁ → γ₁) :
arrow_congr ea ec (g ∘ f) = (arrow_congr eb ec g) ∘ (arrow_congr ea eb f) :=
by { ext, simp only [comp, arrow_congr_apply, eb.symm_apply_apply] }
@[simp] lemma arrow_congr_refl {α β : Sort*} :
arrow_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α → β) := rfl
@[simp] lemma arrow_congr_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Sort*}
(e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) :
arrow_congr (e₁.trans e₂) (e₁'.trans e₂') = (arrow_congr e₁ e₁').trans (arrow_congr e₂ e₂') :=
rfl
@[simp] lemma arrow_congr_symm {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) :
(arrow_congr e₁ e₂).symm = arrow_congr e₁.symm e₂.symm :=
rfl
/--
A version of `equiv.arrow_congr` in `Type`, rather than `Sort`.
The `equiv_rw` tactic is not able to use the default `Sort` level `equiv.arrow_congr`,
because Lean's universe rules will not unify `?l_1` with `imax (1 ?m_1)`.
-/
@[congr]
def arrow_congr' {α₁ β₁ α₂ β₂ : Type*} (hα : α₁ ≃ α₂) (hβ : β₁ ≃ β₂) : (α₁ → β₁) ≃ (α₂ → β₂) :=
equiv.arrow_congr hα hβ
@[simp] lemma arrow_congr'_apply {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂)
(f : α₁ → β₁) (x : α₂) :
arrow_congr' e₁ e₂ f x = (e₂ $ f $ e₁.symm x) :=
rfl
@[simp] lemma arrow_congr'_refl {α β : Type*} :
arrow_congr' (equiv.refl α) (equiv.refl β) = equiv.refl (α → β) := rfl
@[simp] lemma arrow_congr'_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Type*}
(e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) :
arrow_congr' (e₁.trans e₂) (e₁'.trans e₂') = (arrow_congr' e₁ e₁').trans (arrow_congr' e₂ e₂') :=
rfl
@[simp] lemma arrow_congr'_symm {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) :
(arrow_congr' e₁ e₂).symm = arrow_congr' e₁.symm e₂.symm :=
rfl
/-- Conjugate a map `f : α → α` by an equivalence `α ≃ β`. -/
def conj (e : α ≃ β) : (α → α) ≃ (β → β) := arrow_congr e e
@[simp] lemma conj_apply (e : α ≃ β) (f : α → α) (x : β) :
e.conj f x = (e $ f $ e.symm x) :=
rfl
@[simp] lemma conj_refl : conj (equiv.refl α) = equiv.refl (α → α) := rfl
@[simp] lemma conj_symm (e : α ≃ β) : e.conj.symm = e.symm.conj := rfl
@[simp] lemma conj_trans (e₁ : α ≃ β) (e₂ : β ≃ γ) :
(e₁.trans e₂).conj = e₁.conj.trans e₂.conj :=
rfl
-- This should not be a simp lemma as long as `(∘)` is reducible:
-- when `(∘)` is reducible, Lean can unify `f₁ ∘ f₂` with any `g` using
-- `f₁ := g` and `f₂ := λ x, x`. This causes nontermination.
lemma conj_comp (e : α ≃ β) (f₁ f₂ : α → α) :
e.conj (f₁ ∘ f₂) = (e.conj f₁) ∘ (e.conj f₂) :=
by apply arrow_congr_comp
/-- `punit` sorts in any two universes are equivalent. -/
def punit_equiv_punit : punit.{v} ≃ punit.{w} :=
⟨λ _, punit.star, λ _, punit.star, λ u, by { cases u, refl }, λ u, by { cases u, reflexivity }⟩
section
/-- The sort of maps to `punit.{v}` is equivalent to `punit.{w}`. -/
def arrow_punit_equiv_punit (α : Sort*) : (α → punit.{v}) ≃ punit.{w} :=
⟨λ f, punit.star, λ u f, punit.star,
λ f, by { funext x, cases f x, refl }, λ u, by { cases u, reflexivity }⟩
/-- The sort of maps from `punit` is equivalent to the codomain. -/
def punit_arrow_equiv (α : Sort*) : (punit.{u} → α) ≃ α :=
⟨λ f, f punit.star, λ a u, a, λ f, by { ext ⟨⟩, refl }, λ u, rfl⟩
/-- The sort of maps from `empty` is equivalent to `punit`. -/
def empty_arrow_equiv_punit (α : Sort*) : (empty → α) ≃ punit.{u} :=
⟨λ f, punit.star, λ u e, e.rec _, λ f, funext $ λ x, x.rec _, λ u, by { cases u, refl }⟩
/-- The sort of maps from `pempty` is equivalent to `punit`. -/
def pempty_arrow_equiv_punit (α : Sort*) : (pempty → α) ≃ punit.{u} :=
⟨λ f, punit.star, λ u e, e.rec _, λ f, funext $ λ x, x.rec _, λ u, by { cases u, refl }⟩
/-- The sort of maps from `false` is equivalent to `punit`. -/
def false_arrow_equiv_punit (α : Sort*) : (false → α) ≃ punit.{u} :=
calc (false → α) ≃ (empty → α) : arrow_congr false_equiv_empty (equiv.refl _)
... ≃ punit : empty_arrow_equiv_punit _
end
/-- Product of two equivalences. If `α₁ ≃ α₂` and `β₁ ≃ β₂`, then `α₁ × β₁ ≃ α₂ × β₂`. -/
@[congr] def prod_congr {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : α₁ × β₁ ≃ α₂ × β₂ :=
⟨prod.map e₁ e₂, prod.map e₁.symm e₂.symm, λ ⟨a, b⟩, by simp, λ ⟨a, b⟩, by simp⟩
@[simp] theorem coe_prod_congr {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) :
⇑(prod_congr e₁ e₂) = prod.map e₁ e₂ :=
rfl
@[simp] theorem prod_congr_symm {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) :
(prod_congr e₁ e₂).symm = prod_congr e₁.symm e₂.symm :=
rfl
/-- Type product is commutative up to an equivalence: `α × β ≃ β × α`. -/
def prod_comm (α β : Type*) : α × β ≃ β × α :=
⟨prod.swap, prod.swap, λ⟨a, b⟩, rfl, λ⟨a, b⟩, rfl⟩
@[simp] lemma coe_prod_comm (α β) : ⇑(prod_comm α β)= prod.swap := rfl
@[simp] lemma prod_comm_symm (α β) : (prod_comm α β).symm = prod_comm β α := rfl
/-- Type product is associative up to an equivalence. -/
def prod_assoc (α β γ : Sort*) : (α × β) × γ ≃ α × (β × γ) :=
⟨λ p, ⟨p.1.1, ⟨p.1.2, p.2⟩⟩, λp, ⟨⟨p.1, p.2.1⟩, p.2.2⟩, λ ⟨⟨a, b⟩, c⟩, rfl, λ ⟨a, ⟨b, c⟩⟩, rfl⟩
@[simp] theorem prod_assoc_apply {α β γ : Sort*} (p : (α × β) × γ) :
prod_assoc α β γ p = ⟨p.1.1, ⟨p.1.2, p.2⟩⟩ := rfl
@[simp] theorem prod_assoc_sym_apply {α β γ : Sort*} (p : α × (β × γ)) :
(prod_assoc α β γ).symm p = ⟨⟨p.1, p.2.1⟩, p.2.2⟩ := rfl
section
/-- `punit` is a right identity for type product up to an equivalence. -/
def prod_punit (α : Type*) : α × punit.{u+1} ≃ α :=
⟨λ p, p.1, λ a, (a, punit.star), λ ⟨_, punit.star⟩, rfl, λ a, rfl⟩
@[simp] theorem prod_punit_apply {α : Sort*} (a : α × punit.{u+1}) : prod_punit α a = a.1 := rfl
/-- `punit` is a left identity for type product up to an equivalence. -/
def punit_prod (α : Type*) : punit.{u+1} × α ≃ α :=
calc punit × α ≃ α × punit : prod_comm _ _
... ≃ α : prod_punit _
@[simp] theorem punit_prod_apply {α : Type*} (a : punit.{u+1} × α) : punit_prod α a = a.2 := rfl
/-- `empty` type is a right absorbing element for type product up to an equivalence. -/
def prod_empty (α : Type*) : α × empty ≃ empty :=
equiv_empty (λ ⟨_, e⟩, e.rec _)
/-- `empty` type is a left absorbing element for type product up to an equivalence. -/
def empty_prod (α : Type*) : empty × α ≃ empty :=
equiv_empty (λ ⟨e, _⟩, e.rec _)
/-- `pempty` type is a right absorbing element for type product up to an equivalence. -/
def prod_pempty (α : Type*) : α × pempty ≃ pempty :=
equiv_pempty (λ ⟨_, e⟩, e.rec _)
/-- `pempty` type is a left absorbing element for type product up to an equivalence. -/
def pempty_prod (α : Type*) : pempty × α ≃ pempty :=
equiv_pempty (λ ⟨e, _⟩, e.rec _)
end
section
open sum
/-- `psum` is equivalent to `sum`. -/
def psum_equiv_sum (α β : Type*) : psum α β ≃ α ⊕ β :=
⟨λ s, psum.cases_on s inl inr,
λ s, sum.cases_on s psum.inl psum.inr,
λ s, by cases s; refl,
λ s, by cases s; refl⟩
/-- If `α ≃ α'` and `β ≃ β'`, then `α ⊕ β ≃ α' ⊕ β'`. -/
def sum_congr {α₁ β₁ α₂ β₂ : Type*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) : α₁ ⊕ β₁ ≃ α₂ ⊕ β₂ :=
⟨sum.map ea eb, sum.map ea.symm eb.symm, λ x, by simp, λ x, by simp⟩
@[simp] theorem sum_congr_apply {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) (a : α₁ ⊕ β₁) :
sum_congr e₁ e₂ a = a.map e₁ e₂ :=
rfl
@[simp] lemma sum_congr_symm {α β γ δ : Type u} (e : α ≃ β) (f : γ ≃ δ) :
(equiv.sum_congr e f).symm = (equiv.sum_congr (e.symm) (f.symm)) :=
rfl
/-- `bool` is equivalent the sum of two `punit`s. -/
def bool_equiv_punit_sum_punit : bool ≃ punit.{u+1} ⊕ punit.{v+1} :=
⟨λ b, cond b (inr punit.star) (inl punit.star),
λ s, sum.rec_on s (λ_, ff) (λ_, tt),
λ b, by cases b; refl,
λ s, by rcases s with ⟨⟨⟩⟩ | ⟨⟨⟩⟩; refl⟩
/-- `Prop` is noncomputably equivalent to `bool`. -/
noncomputable def Prop_equiv_bool : Prop ≃ bool :=
⟨λ p, @to_bool p (classical.prop_decidable _),
λ b, b, λ p, by simp, λ b, by simp⟩
/-- Sum of types is commutative up to an equivalence. -/
def sum_comm (α β : Sort*) : α ⊕ β ≃ β ⊕ α :=
⟨sum.swap, sum.swap, sum.swap_swap, sum.swap_swap⟩
@[simp] lemma sum_comm_apply (α β) (a) : sum_comm α β a = a.swap := rfl
@[simp] lemma sum_comm_symm (α β) : (sum_comm α β).symm = sum_comm β α := rfl
/-- Sum of types is associative up to an equivalence. -/
def sum_assoc (α β γ : Sort*) : (α ⊕ β) ⊕ γ ≃ α ⊕ (β ⊕ γ) :=
⟨sum.elim (sum.elim sum.inl (sum.inr ∘ sum.inl)) (sum.inr ∘ sum.inr),
sum.elim (sum.inl ∘ sum.inl) $ sum.elim (sum.inl ∘ sum.inr) sum.inr,
by rintros (⟨_ | _⟩ | _); refl,
by rintros (_ | ⟨_ | _⟩); refl⟩
@[simp] theorem sum_assoc_apply_in1 {α β γ} (a) : sum_assoc α β γ (inl (inl a)) = inl a := rfl
@[simp] theorem sum_assoc_apply_in2 {α β γ} (b) : sum_assoc α β γ (inl (inr b)) = inr (inl b) := rfl
@[simp] theorem sum_assoc_apply_in3 {α β γ} (c) : sum_assoc α β γ (inr c) = inr (inr c) := rfl
/-- Sum with `empty` is equivalent to the original type. -/
def sum_empty (α : Type*) : α ⊕ empty ≃ α :=
⟨sum.elim id (empty.rec _),
inl,
λ s, by { rcases s with _ | ⟨⟨⟩⟩, refl },
λ a, rfl⟩
@[simp] lemma sum_empty_apply_inl {α} (a) : sum_empty α (sum.inl a) = a := rfl
/-- The sum of `empty` with any `Sort*` is equivalent to the right summand. -/
def empty_sum (α : Sort*) : empty ⊕ α ≃ α :=
(sum_comm _ _).trans $ sum_empty _
@[simp] lemma empty_sum_apply_inr {α} (a) : empty_sum α (sum.inr a) = a := rfl
/-- Sum with `pempty` is equivalent to the original type. -/
def sum_pempty (α : Type*) : α ⊕ pempty ≃ α :=
⟨sum.elim id (pempty.rec _),
inl,
λ s, by { rcases s with _ | ⟨⟨⟩⟩, refl },
λ a, rfl⟩
@[simp] lemma sum_pempty_apply_inl {α} (a) : sum_pempty α (sum.inl a) = a := rfl
/-- The sum of `pempty` with any `Sort*` is equivalent to the right summand. -/
def pempty_sum (α : Sort*) : pempty ⊕ α ≃ α :=
(sum_comm _ _).trans $ sum_pempty _
@[simp] lemma pempty_sum_apply_inr {α} (a) : pempty_sum α (sum.inr a) = a := rfl
/-- `option α` is equivalent to `α ⊕ punit` -/
def option_equiv_sum_punit (α : Sort*) : option α ≃ α ⊕ punit.{u+1} :=
⟨λ o, match o with none := inr punit.star | some a := inl a end,
λ s, match s with inr _ := none | inl a := some a end,
λ o, by cases o; refl,
λ s, by rcases s with _ | ⟨⟨⟩⟩; refl⟩
@[simp] lemma option_equiv_sum_punit_none {α} : option_equiv_sum_punit α none = sum.inr () := rfl
@[simp] lemma option_equiv_sum_punit_some {α} (a) :
option_equiv_sum_punit α (some a) = sum.inl a := rfl
/-- The set of `x : option α` such that `is_some x` is equivalent to `α`. -/
def option_is_some_equiv (α : Type*) : {x : option α // x.is_some} ≃ α :=
{ to_fun := λ o, option.get o.2,
inv_fun := λ x, ⟨some x, dec_trivial⟩,
left_inv := λ o, subtype.eq $ option.some_get _,
right_inv := λ x, option.get_some _ _ }
/-- `α ⊕ β` is equivalent to a `sigma`-type over `bool`. -/
def sum_equiv_sigma_bool (α β : Sort*) : α ⊕ β ≃ (Σ b: bool, cond b α β) :=
⟨λ s, match s with inl a := ⟨tt, a⟩ | inr b := ⟨ff, b⟩ end,
λ s, match s with ⟨tt, a⟩ := inl a | ⟨ff, b⟩ := inr b end,
λ s, by cases s; refl,
λ s, by rcases s with ⟨_|_, _⟩; refl⟩
/-- `sigma_preimage_equiv f` for `f : α → β` is the natural equivalence between
the type of all fibres of `f` and the total space `α`. -/
def sigma_preimage_equiv {α β : Type*} (f : α → β) :
(Σ y : β, {x // f x = y}) ≃ α :=
⟨λ x, x.2.1, λ x, ⟨f x, x, rfl⟩, λ ⟨y, x, rfl⟩, rfl, λ x, rfl⟩
@[simp] lemma sigma_preimage_equiv_apply {α β : Type*} (f : α → β)
(x : Σ y : β, {x // f x = y}) :
(sigma_preimage_equiv f) x = x.2.1 := rfl
@[simp] lemma sigma_preimage_equiv_symm_apply_fst {α β : Type*} (f : α → β) (a : α) :
((sigma_preimage_equiv f).symm a).1 = f a := rfl
@[simp] lemma sigma_preimage_equiv_symm_apply_snd_fst {α β : Type*} (f : α → β) (a : α) :
((sigma_preimage_equiv f).symm a).2.1 = a := rfl
end
section sum_compl
/-- For any predicate `p` on `α`,
the sum of the two subtypes `{a // p a}` and its complement `{a // ¬ p a}`
is naturally equivalent to `α`. -/
def sum_compl {α : Type*} (p : α → Prop) [decidable_pred p] :
{a // p a} ⊕ {a // ¬ p a} ≃ α :=
{ to_fun := sum.elim coe coe,
inv_fun := λ a, if h : p a then sum.inl ⟨a, h⟩ else sum.inr ⟨a, h⟩,
left_inv := by { rintros (⟨x,hx⟩|⟨x,hx⟩); dsimp; [rw dif_pos, rw dif_neg], },
right_inv := λ a, by { dsimp, split_ifs; refl } }
@[simp] lemma sum_compl_apply_inl {α : Type*} (p : α → Prop) [decidable_pred p]
(x : {a // p a}) :
sum_compl p (sum.inl x) = x := rfl
@[simp] lemma sum_compl_apply_inr {α : Type*} (p : α → Prop) [decidable_pred p]
(x : {a // ¬ p a}) :
sum_compl p (sum.inr x) = x := rfl
@[simp] lemma sum_compl_apply_symm_of_pos {α : Type*} (p : α → Prop) [decidable_pred p]
(a : α) (h : p a) :
(sum_compl p).symm a = sum.inl ⟨a, h⟩ := dif_pos h
@[simp] lemma sum_compl_apply_symm_of_neg {α : Type*} (p : α → Prop) [decidable_pred p]
(a : α) (h : ¬ p a) :
(sum_compl p).symm a = sum.inr ⟨a, h⟩ := dif_neg h
end sum_compl
section subtype_preimage
variables (p : α → Prop) [decidable_pred p] (x₀ : {a // p a} → β)
/-- For a fixed function `x₀ : {a // p a} → β` defined on a subtype of `α`,
the subtype of functions `x : α → β` that agree with `x₀` on the subtype `{a // p a}`
is naturally equivalent to the type of functions `{a // ¬ p a} → β`. -/
def subtype_preimage :
{x : α → β // x ∘ coe = x₀} ≃ ({a // ¬ p a} → β) :=
{ to_fun := λ (x : {x : α → β // x ∘ coe = x₀}) a, (x : α → β) a,
inv_fun := λ x, ⟨λ a, if h : p a then x₀ ⟨a, h⟩ else x ⟨a, h⟩,
funext $ λ ⟨a, h⟩, dif_pos h⟩,
left_inv := λ ⟨x, hx⟩, subtype.val_injective $ funext $ λ a,
(by { dsimp, split_ifs; [ rw ← hx, skip ]; refl }),
right_inv := λ x, funext $ λ ⟨a, h⟩,
show dite (p a) _ _ = _, by { dsimp, rw [dif_neg h] } }
@[simp] lemma subtype_preimage_apply (x : {x : α → β // x ∘ coe = x₀}) :
subtype_preimage p x₀ x = λ a, (x : α → β) a := rfl
@[simp] lemma subtype_preimage_symm_apply_coe (x : {a // ¬ p a} → β) :
((subtype_preimage p x₀).symm x : α → β) =
λ a, if h : p a then x₀ ⟨a, h⟩ else x ⟨a, h⟩ := rfl
lemma subtype_preimage_symm_apply_coe_pos (x : {a // ¬ p a} → β) (a : α) (h : p a) :
((subtype_preimage p x₀).symm x : α → β) a = x₀ ⟨a, h⟩ :=
dif_pos h
lemma subtype_preimage_symm_apply_coe_neg (x : {a // ¬ p a} → β) (a : α) (h : ¬ p a) :
((subtype_preimage p x₀).symm x : α → β) a = x ⟨a, h⟩ :=
dif_neg h
end subtype_preimage
section fun_unique
variables (α β) [unique α]
/-- If `α` has a unique term, then the type of function `α → β` is equivalent to `β`. -/
def fun_unique : (α → β) ≃ β :=
{ to_fun := λ f, f (default α),
inv_fun := λ b a, b,
left_inv := λ f, funext $ λ a, congr_arg f $ subsingleton.elim _ _,
right_inv := λ b, rfl }
variables {α β}
@[simp] lemma fun_unique_apply (f : α → β) :
fun_unique α β f = f (default α) := rfl
@[simp] lemma fun_unique_symm_apply (b : β) (a : α) :
(fun_unique α β).symm b a = b := rfl
end fun_unique
section
/-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Π a, β₁ a` and
`Π a, β₂ a`. -/
def Pi_congr_right {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : (Π a, β₁ a) ≃ (Π a, β₂ a) :=
⟨λ H a, F a (H a), λ H a, (F a).symm (H a),
λ H, funext $ by simp, λ H, funext $ by simp⟩
/-- Dependent `curry` equivalence: the type of dependent functions on `Σ i, β i` is equivalent
to the type of dependent functions of two arguments (i.e., functions to the space of functions). -/
def Pi_curry {α} {β : α → Sort*} (γ : Π a, β a → Sort*) :
(Π x : Σ i, β i, γ x.1 x.2) ≃ (Π a b, γ a b) :=
{ to_fun := λ f x y, f ⟨x,y⟩,
inv_fun := λ f x, f x.1 x.2,
left_inv := λ f, funext $ λ ⟨x,y⟩, rfl,
right_inv := λ f, funext $ λ x, funext $ λ y, rfl }
end
section
/-- A `psigma`-type is equivalent to the corresponding `sigma`-type. -/
def psigma_equiv_sigma {α} (β : α → Sort*) : (Σ' i, β i) ≃ Σ i, β i :=
⟨λ ⟨a, b⟩, ⟨a, b⟩, λ ⟨a, b⟩, ⟨a, b⟩, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩
/-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Σ a, β₁ a` and
`Σ a, β₂ a`. -/
def sigma_congr_right {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : (Σ a, β₁ a) ≃ Σ a, β₂ a :=
⟨λ ⟨a, b⟩, ⟨a, F a b⟩, λ ⟨a, b⟩, ⟨a, (F a).symm b⟩,
λ ⟨a, b⟩, congr_arg (sigma.mk a) $ symm_apply_apply (F a) b,
λ ⟨a, b⟩, congr_arg (sigma.mk a) $ apply_symm_apply (F a) b⟩
/-- An equivalence `f : α₁ ≃ α₂` generates an equivalence between `Σ a, β (f a)` and `Σ a, β a`. -/
def sigma_congr_left {α₁ α₂} {β : α₂ → Sort*} : ∀ f : α₁ ≃ α₂, (Σ a:α₁, β (f a)) ≃ (Σ a:α₂, β a)
| ⟨f, g, l, r⟩ :=
⟨λ ⟨a, b⟩, ⟨f a, b⟩, λ ⟨a, b⟩, ⟨g a, @@eq.rec β b (r a).symm⟩,
λ ⟨a, b⟩, match g (f a), l a : ∀ a' (h : a' = a),
@sigma.mk _ (β ∘ f) _ (@@eq.rec β b (congr_arg f h.symm)) = ⟨a, b⟩ with
| _, rfl := rfl end,
λ ⟨a, b⟩, match f (g a), _ : ∀ a' (h : a' = a), sigma.mk a' (@@eq.rec β b h.symm) = ⟨a, b⟩ with
| _, rfl := rfl end⟩
/-- Transporting a sigma type through an equivalence of the base -/
def sigma_congr_left' {α₁ α₂} {β : α₁ → Sort*} (f : α₁ ≃ α₂) :
(Σ a:α₁, β a) ≃ (Σ a:α₂, β (f.symm a)) :=
(sigma_congr_left f.symm).symm
/-- Transporting a sigma type through an equivalence of the base and a family of equivalences
of matching fibers -/
def sigma_congr {α₁ α₂} {β₁ : α₁ → Sort*} {β₂ : α₂ → Sort*} (f : α₁ ≃ α₂)
(F : ∀ a, β₁ a ≃ β₂ (f a)) :
sigma β₁ ≃ sigma β₂ :=
(sigma_congr_right F).trans (sigma_congr_left f)
/-- `sigma` type with a constant fiber is equivalent to the product. -/
def sigma_equiv_prod (α β : Sort*) : (Σ_:α, β) ≃ α × β :=
⟨λ ⟨a, b⟩, ⟨a, b⟩, λ ⟨a, b⟩, ⟨a, b⟩, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩
/-- If each fiber of a `sigma` type is equivalent to a fixed type, then the sigma type
is equivalent to the product. -/
def sigma_equiv_prod_of_equiv {α β} {β₁ : α → Sort*} (F : ∀ a, β₁ a ≃ β) : sigma β₁ ≃ α × β :=
(sigma_congr_right F).trans (sigma_equiv_prod α β)
end
section
/-- The type of functions to a product `α × β` is equivalent to the type of pairs of functions
`γ → α` and `γ → β`. -/
def arrow_prod_equiv_prod_arrow (α β γ : Type*) : (γ → α × β) ≃ (γ → α) × (γ → β) :=
⟨λ f, (λ c, (f c).1, λ c, (f c).2),
λ p c, (p.1 c, p.2 c),
λ f, funext $ λ c, prod.mk.eta,
λ p, by { cases p, refl }⟩
/-- Functions `α → β → γ` are equivalent to functions on `α × β`. -/
def arrow_arrow_equiv_prod_arrow (α β γ : Sort*) : (α → β → γ) ≃ (α × β → γ) :=
⟨uncurry, curry, curry_uncurry, uncurry_curry⟩
open sum
/-- The type of functions on a sum type `α ⊕ β` is equivalent to the type of pairs of functions
on `α` and on `β`. -/
def sum_arrow_equiv_prod_arrow (α β γ : Type*) : ((α ⊕ β) → γ) ≃ (α → γ) × (β → γ) :=
⟨λ f, (f ∘ inl, f ∘ inr),
λ p, sum.elim p.1 p.2,
λ f, by { ext ⟨⟩; refl },
λ p, by { cases p, refl }⟩
/-- Type product is right distributive with respect to type sum up to an equivalence. -/
def sum_prod_distrib (α β γ : Sort*) : (α ⊕ β) × γ ≃ (α × γ) ⊕ (β × γ) :=
⟨λ p, match p with (inl a, c) := inl (a, c) | (inr b, c) := inr (b, c) end,
λ s, match s with inl q := (inl q.1, q.2) | inr q := (inr q.1, q.2) end,
λ p, by rcases p with ⟨_ | _, _⟩; refl,
λ s, by rcases s with ⟨_, _⟩ | ⟨_, _⟩; refl⟩
@[simp] theorem sum_prod_distrib_apply_left {α β γ} (a : α) (c : γ) :
sum_prod_distrib α β γ (sum.inl a, c) = sum.inl (a, c) := rfl
@[simp] theorem sum_prod_distrib_apply_right {α β γ} (b : β) (c : γ) :
sum_prod_distrib α β γ (sum.inr b, c) = sum.inr (b, c) := rfl
/-- Type product is left distributive with respect to type sum up to an equivalence. -/
def prod_sum_distrib (α β γ : Sort*) : α × (β ⊕ γ) ≃ (α × β) ⊕ (α × γ) :=
calc α × (β ⊕ γ) ≃ (β ⊕ γ) × α : prod_comm _ _
... ≃ (β × α) ⊕ (γ × α) : sum_prod_distrib _ _ _
... ≃ (α × β) ⊕ (α × γ) : sum_congr (prod_comm _ _) (prod_comm _ _)
@[simp] theorem prod_sum_distrib_apply_left {α β γ} (a : α) (b : β) :
prod_sum_distrib α β γ (a, sum.inl b) = sum.inl (a, b) := rfl
@[simp] theorem prod_sum_distrib_apply_right {α β γ} (a : α) (c : γ) :
prod_sum_distrib α β γ (a, sum.inr c) = sum.inr (a, c) := rfl
/-- The product of an indexed sum of types (formally, a `sigma`-type `Σ i, α i`) by a type `β` is
equivalent to the sum of products `Σ i, (α i × β)`. -/
def sigma_prod_distrib {ι : Type*} (α : ι → Type*) (β : Type*) :
((Σ i, α i) × β) ≃ (Σ i, (α i × β)) :=
⟨λ p, ⟨p.1.1, (p.1.2, p.2)⟩,
λ p, (⟨p.1, p.2.1⟩, p.2.2),
λ p, by { rcases p with ⟨⟨_, _⟩, _⟩, refl },
λ p, by { rcases p with ⟨_, ⟨_, _⟩⟩, refl }⟩
/-- The product `bool × α` is equivalent to `α ⊕ α`. -/
def bool_prod_equiv_sum (α : Type u) : bool × α ≃ α ⊕ α :=
calc bool × α ≃ (unit ⊕ unit) × α : prod_congr bool_equiv_punit_sum_punit (equiv.refl _)
... ≃ (unit × α) ⊕ (unit × α) : sum_prod_distrib _ _ _
... ≃ α ⊕ α : sum_congr (punit_prod _) (punit_prod _)
end
section
open sum nat
/-- The set of natural numbers is equivalent to `ℕ ⊕ punit`. -/
def nat_equiv_nat_sum_punit : ℕ ≃ ℕ ⊕ punit.{u+1} :=
⟨λ n, match n with zero := inr punit.star | succ a := inl a end,
λ s, match s with inl n := succ n | inr punit.star := zero end,
λ n, begin cases n, repeat { refl } end,
λ s, begin cases s with a u, { refl }, {cases u, { refl }} end⟩
/-- `ℕ ⊕ punit` is equivalent to `ℕ`. -/
def nat_sum_punit_equiv_nat : ℕ ⊕ punit.{u+1} ≃ ℕ :=
nat_equiv_nat_sum_punit.symm
/-- The type of integer numbers is equivalent to `ℕ ⊕ ℕ`. -/
def int_equiv_nat_sum_nat : ℤ ≃ ℕ ⊕ ℕ :=
by refine ⟨_, _, _, _⟩; intro z; {cases z; [left, right]; assumption} <|> {cases z; refl}
end
/-- An equivalence between `α` and `β` generates an equivalence between `list α` and `list β`. -/
def list_equiv_of_equiv {α β : Type*} (e : α ≃ β) : list α ≃ list β :=
{ to_fun := list.map e,
inv_fun := list.map e.symm,
left_inv := λ l, by rw [list.map_map, e.symm_comp_self, list.map_id],
right_inv := λ l, by rw [list.map_map, e.self_comp_symm, list.map_id] }
/-- `fin n` is equivalent to `{m // m < n}`. -/
def fin_equiv_subtype (n : ℕ) : fin n ≃ {m // m < n} :=
⟨λ x, ⟨x.1, x.2⟩, λ x, ⟨x.1, x.2⟩, λ ⟨a, b⟩, rfl,λ ⟨a, b⟩, rfl⟩
/-- If `α` is equivalent to `β`, then `unique α` is equivalent to `β`. -/
def unique_congr (e : α ≃ β) : unique α ≃ unique β :=
{ to_fun := λ h, @equiv.unique _ _ h e.symm,
inv_fun := λ h, @equiv.unique _ _ h e,
left_inv := λ _, subsingleton.elim _ _,
right_inv := λ _, subsingleton.elim _ _ }
section
open subtype
/-- If `α` is equivalent to `β` and the predicates `p : α → Prop` and `q : β → Prop` are equivalent
at corresponding points, then `{a // p a}` is equivalent to `{b // q b}`. -/
def subtype_congr {p : α → Prop} {q : β → Prop}
(e : α ≃ β) (h : ∀ a, p a ↔ q (e a)) : {a : α // p a} ≃ {b : β // q b} :=
⟨λ x, ⟨e x.1, (h _).1 x.2⟩,
λ y, ⟨e.symm y.1, (h _).2 (by { simp, exact y.2 })⟩,
λ ⟨x, h⟩, subtype.ext_val $ by simp,
λ ⟨y, h⟩, subtype.ext_val $ by simp⟩
/-- If two predicates `p` and `q` are pointwise equivalent, then `{x // p x}` is equivalent to
`{x // q x}`. -/
def subtype_congr_right {p q : α → Prop} (e : ∀x, p x ↔ q x) : {x // p x} ≃ {x // q x} :=
subtype_congr (equiv.refl _) e
@[simp] lemma subtype_congr_right_mk {p q : α → Prop} (e : ∀x, p x ↔ q x)
{x : α} (h : p x) : subtype_congr_right e ⟨x, h⟩ = ⟨x, (e x).1 h⟩ := rfl
/-- If `α ≃ β`, then for any predicate `p : β → Prop` the subtype `{a // p (e a)}` is equivalent
to the subtype `{b // p b}`. -/
def subtype_equiv_of_subtype {p : β → Prop} (e : α ≃ β) :
{a : α // p (e a)} ≃ {b : β // p b} :=
subtype_congr e $ by simp
/-- If `α ≃ β`, then for any predicate `p : α → Prop` the subtype `{a // p a}` is equivalent
to the subtype `{b // p (e.symm b)}`. This version is used by `equiv_rw`. -/
def subtype_equiv_of_subtype' {p : α → Prop} (e : α ≃ β) :
{a : α // p a} ≃ {b : β // p (e.symm b)} :=
e.symm.subtype_equiv_of_subtype.symm
/-- If two predicates are equal, then the corresponding subtypes are equivalent. -/
def subtype_congr_prop {α : Type*} {p q : α → Prop} (h : p = q) : subtype p ≃ subtype q :=
subtype_congr (equiv.refl α) (assume a, h ▸ iff.rfl)
/-- The subtypes corresponding to equal sets are equivalent. -/
def set_congr {α : Type*} {s t : set α} (h : s = t) : s ≃ t :=
subtype_congr_prop h
/-- A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates. This
version allows the “inner” predicate to depend on `h : p a`. -/
def subtype_subtype_equiv_subtype_exists {α : Type u} (p : α → Prop) (q : subtype p → Prop) :
subtype q ≃ {a : α // ∃h:p a, q ⟨a, h⟩ } :=
⟨λ⟨⟨a, ha⟩, ha'⟩, ⟨a, ha, ha'⟩,
λ⟨a, ha⟩, ⟨⟨a, ha.cases_on $ assume h _, h⟩, by { cases ha, exact ha_h }⟩,
assume ⟨⟨a, ha⟩, h⟩, rfl, assume ⟨a, h₁, h₂⟩, rfl⟩
/-- A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates. -/
def subtype_subtype_equiv_subtype_inter {α : Type u} (p q : α → Prop) :
{x : subtype p // q x.1} ≃ subtype (λ x, p x ∧ q x) :=
(subtype_subtype_equiv_subtype_exists p _).trans $
subtype_congr_right $ λ x, exists_prop
/-- If the outer subtype has more restrictive predicate than the inner one,
then we can drop the latter. -/
def subtype_subtype_equiv_subtype {α : Type u} {p q : α → Prop} (h : ∀ {x}, q x → p x) :
{x : subtype p // q x.1} ≃ subtype q :=
(subtype_subtype_equiv_subtype_inter p _).trans $
subtype_congr_right $
assume x,
⟨and.right, λ h₁, ⟨h h₁, h₁⟩⟩
/-- If a proposition holds for all elements, then the subtype is
equivalent to the original type. -/
def subtype_univ_equiv {α : Type u} {p : α → Prop} (h : ∀ x, p x) :
subtype p ≃ α :=
⟨λ x, x, λ x, ⟨x, h x⟩, λ x, subtype.eq rfl, λ x, rfl⟩
/-- A subtype of a sigma-type is a sigma-type over a subtype. -/
def subtype_sigma_equiv {α : Type u} (p : α → Type v) (q : α → Prop) :
{ y : sigma p // q y.1 } ≃ Σ(x : subtype q), p x.1 :=
⟨λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩,
λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩,
λ ⟨⟨x, h⟩, y⟩, rfl,
λ ⟨⟨x, y⟩, h⟩, rfl⟩
/-- A sigma type over a subtype is equivalent to the sigma set over the original type,
if the fiber is empty outside of the subset -/
def sigma_subtype_equiv_of_subset {α : Type u} (p : α → Type v) (q : α → Prop)
(h : ∀ x, p x → q x) :
(Σ x : subtype q, p x) ≃ Σ x : α, p x :=
(subtype_sigma_equiv p q).symm.trans $ subtype_univ_equiv $ λ x, h x.1 x.2
/-- If a predicate `p : β → Prop` is true on the range of a map `f : α → β`, then
`Σ y : {y // p y}, {x // f x = y}` is equivalent to `α`. -/
def sigma_subtype_preimage_equiv {α : Type u} {β : Type v} (f : α → β) (p : β → Prop)
(h : ∀ x, p (f x)) :
(Σ y : subtype p, {x : α // f x = y}) ≃ α :=
calc _ ≃ Σ y : β, {x : α // f x = y} : sigma_subtype_equiv_of_subset _ p (λ y ⟨x, h'⟩, h' ▸ h x)
... ≃ α : sigma_preimage_equiv f
/-- If for each `x` we have `p x ↔ q (f x)`, then `Σ y : {y // q y}, f ⁻¹' {y}` is equivalent
to `{x // p x}`. -/
def sigma_subtype_preimage_equiv_subtype {α : Type u} {β : Type v} (f : α → β)
{p : α → Prop} {q : β → Prop} (h : ∀ x, p x ↔ q (f x)) :
(Σ y : subtype q, {x : α // f x = y}) ≃ subtype p :=
calc (Σ y : subtype q, {x : α // f x = y}) ≃
Σ y : subtype q, {x : subtype p // subtype.mk (f x) ((h x).1 x.2) = y} :
begin
apply sigma_congr_right,
assume y,
symmetry,
refine (subtype_subtype_equiv_subtype_exists _ _).trans (subtype_congr_right _),
assume x,
exact ⟨λ ⟨hp, h'⟩, congr_arg subtype.val h', λ h', ⟨(h x).2 (h'.symm ▸ y.2), subtype.eq h'⟩⟩
end
... ≃ subtype p : sigma_preimage_equiv (λ x : subtype p, (⟨f x, (h x).1 x.property⟩ : subtype q))
/-- The `pi`-type `Π i, π i` is equivalent to the type of sections `f : ι → Σ i, π i` of the
`sigma` type such that for all `i` we have `(f i).fst = i`. -/
def pi_equiv_subtype_sigma (ι : Type*) (π : ι → Type*) :
(Πi, π i) ≃ {f : ι → Σi, π i | ∀i, (f i).1 = i } :=
⟨ λf, ⟨λi, ⟨i, f i⟩, assume i, rfl⟩, λf i, begin rw ← f.2 i, exact (f.1 i).2 end,
assume f, funext $ assume i, rfl,
assume ⟨f, hf⟩, subtype.eq $ funext $ assume i, sigma.eq (hf i).symm $
eq_of_heq $ rec_heq_of_heq _ $ rec_heq_of_heq _ $ heq.refl _⟩
/-- The set of functions `f : Π a, β a` such that for all `a` we have `p a (f a)` is equivalent
to the set of functions `Π a, {b : β a // p a b}`. -/
def subtype_pi_equiv_pi {α : Sort u} {β : α → Sort v} {p : Πa, β a → Prop} :
{f : Πa, β a // ∀a, p a (f a) } ≃ Πa, { b : β a // p a b } :=
⟨λf a, ⟨f.1 a, f.2 a⟩, λf, ⟨λa, (f a).1, λa, (f a).2⟩,
by { rintro ⟨f, h⟩, refl },
by { rintro f, funext a, exact subtype.ext_val rfl }⟩
/-- A subtype of a product defined by componentwise conditions
is equivalent to a product of subtypes. -/
def subtype_prod_equiv_prod {α : Type u} {β : Type v} {p : α → Prop} {q : β → Prop} :
{c : α × β // p c.1 ∧ q c.2} ≃ ({a // p a} × {b // q b}) :=
⟨λ x, ⟨⟨x.1.1, x.2.1⟩, ⟨x.1.2, x.2.2⟩⟩,
λ x, ⟨⟨x.1.1, x.2.1⟩, ⟨x.1.2, x.2.2⟩⟩,
λ ⟨⟨_, _⟩, ⟨_, _⟩⟩, rfl,
λ ⟨⟨_, _⟩, ⟨_, _⟩⟩, rfl⟩
end
section subtype_equiv_codomain
variables {X : Type*} {Y : Type*} [decidable_eq X] {x : X}
/-- The type of all functions `X → Y` with prescribed values for all `x' ≠ x`
is equivalent to the codomain `Y`. -/
def subtype_equiv_codomain (f : {x' // x' ≠ x} → Y) : {g : X → Y // g ∘ coe = f} ≃ Y :=
(subtype_preimage _ f).trans $
@fun_unique {x' // ¬ x' ≠ x} _ $
show unique {x' // ¬ x' ≠ x}, from @equiv.unique _ _
(show unique {x' // x' = x}, from
{ default := ⟨x, rfl⟩, uniq := λ ⟨x', h⟩, subtype.val_injective h })
(subtype_congr_right $ λ a, not_not)
@[simp] lemma coe_subtype_equiv_codomain (f : {x' // x' ≠ x} → Y) :
(subtype_equiv_codomain f : {g : X → Y // g ∘ coe = f} → Y) = λ g, (g : X → Y) x := rfl
@[simp] lemma subtype_equiv_codomain_apply (f : {x' // x' ≠ x} → Y)
(g : {g : X → Y // g ∘ coe = f}) :
subtype_equiv_codomain f g = (g : X → Y) x := rfl
lemma coe_subtype_equiv_codomain_symm (f : {x' // x' ≠ x} → Y) :
((subtype_equiv_codomain f).symm : Y → {g : X → Y // g ∘ coe = f}) =
λ y, ⟨λ x', if h : x' ≠ x then f ⟨x', h⟩ else y,
by { funext x', dsimp, erw [dif_pos x'.2, subtype.coe_eta] }⟩ := rfl
@[simp] lemma subtype_equiv_codomain_symm_apply (f : {x' // x' ≠ x} → Y) (y : Y) (x' : X) :
((subtype_equiv_codomain f).symm y : X → Y) x' = if h : x' ≠ x then f ⟨x', h⟩ else y :=
rfl
@[simp] lemma subtype_equiv_codomain_symm_apply_eq (f : {x' // x' ≠ x} → Y) (y : Y) :
((subtype_equiv_codomain f).symm y : X → Y) x = y :=
dif_neg (not_not.mpr rfl)
lemma subtype_equiv_codomain_symm_apply_ne (f : {x' // x' ≠ x} → Y) (y : Y) (x' : X) (h : x' ≠ x) :
((subtype_equiv_codomain f).symm y : X → Y) x' = f ⟨x', h⟩ :=
dif_pos h
end subtype_equiv_codomain
namespace set
open set
/-- `univ α` is equivalent to `α`. -/
protected def univ (α) : @univ α ≃ α :=
⟨subtype.val, λ a, ⟨a, trivial⟩, λ ⟨a, _⟩, rfl, λ a, rfl⟩
@[simp] lemma univ_apply {α : Type u} (x : @univ α) :
equiv.set.univ α x = x := rfl
@[simp] lemma univ_symm_apply {α : Type u} (x : α) :
(equiv.set.univ α).symm x = ⟨x, trivial⟩ := rfl
/-- An empty set is equivalent to the `empty` type. -/
protected def empty (α) : (∅ : set α) ≃ empty :=
equiv_empty $ λ ⟨x, h⟩, not_mem_empty x h
/-- An empty set is equivalent to a `pempty` type. -/
protected def pempty (α) : (∅ : set α) ≃ pempty :=
equiv_pempty $ λ ⟨x, h⟩, not_mem_empty x h
/-- If sets `s` and `t` are separated by a decidable predicate, then `s ∪ t` is equivalent to
`s ⊕ t`. -/
protected def union' {α} {s t : set α}
(p : α → Prop) [decidable_pred p]
(hs : ∀ x ∈ s, p x)
(ht : ∀ x ∈ t, ¬ p x) : (s ∪ t : set α) ≃ s ⊕ t :=
{ to_fun := λ x, if hp : p x
then sum.inl ⟨_, x.2.resolve_right (λ xt, ht _ xt hp)⟩
else sum.inr ⟨_, x.2.resolve_left (λ xs, hp (hs _ xs))⟩,
inv_fun := λ o, match o with
| (sum.inl x) := ⟨x, or.inl x.2⟩
| (sum.inr x) := ⟨x, or.inr x.2⟩
end,
left_inv := λ ⟨x, h'⟩, by by_cases p x; simp [union'._match_1, h]; congr,
right_inv := λ o, begin
rcases o with ⟨x, h⟩ | ⟨x, h⟩;
dsimp [union'._match_1];
[simp [hs _ h], simp [ht _ h]]
end }
/-- If sets `s` and `t` are disjoint, then `s ∪ t` is equivalent to `s ⊕ t`. -/
protected def union {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) :
(s ∪ t : set α) ≃ s ⊕ t :=
set.union' (λ x, x ∈ s) (λ _, id) (λ x xt xs, H ⟨xs, xt⟩)
lemma union_apply_left {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅)
{a : (s ∪ t : set α)} (ha : ↑a ∈ s) : equiv.set.union H a = sum.inl ⟨a, ha⟩ :=
dif_pos ha
lemma union_apply_right {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅)
{a : (s ∪ t : set α)} (ha : ↑a ∈ t) : equiv.set.union H a = sum.inr ⟨a, ha⟩ :=
dif_neg $ λ h, H ⟨h, ha⟩
-- TODO: Any reason to use the same universe?
/-- A singleton set is equivalent to a `punit` type. -/
protected def singleton {α} (a : α) : ({a} : set α) ≃ punit.{u} :=
⟨λ _, punit.star, λ _, ⟨a, mem_singleton _⟩,
λ ⟨x, h⟩, by { simp at h, subst x },
λ ⟨⟩, rfl⟩
/-- Equal sets are equivalent. -/
protected def of_eq {α : Type u} {s t : set α} (h : s = t) : s ≃ t :=
{ to_fun := λ x, ⟨x.1, h ▸ x.2⟩,
inv_fun := λ x, ⟨x.1, h.symm ▸ x.2⟩,
left_inv := λ _, subtype.eq rfl,
right_inv := λ _, subtype.eq rfl }
@[simp] lemma of_eq_apply {α : Type u} {s t : set α} (h : s = t) (a : s) :
equiv.set.of_eq h a = ⟨a, h ▸ a.2⟩ := rfl
@[simp] lemma of_eq_symm_apply {α : Type u} {s t : set α} (h : s = t) (a : t) :
(equiv.set.of_eq h).symm a = ⟨a, h.symm ▸ a.2⟩ := rfl
/-- If `a ∉ s`, then `insert a s` is equivalent to `s ⊕ punit`. -/
protected def insert {α} {s : set.{u} α} [decidable_pred s] {a : α} (H : a ∉ s) :
(insert a s : set α) ≃ s ⊕ punit.{u+1} :=
calc (insert a s : set α) ≃ ↥(s ∪ {a}) : equiv.set.of_eq (by simp)
... ≃ s ⊕ ({a} : set α) : equiv.set.union (by finish [set.subset_def])
... ≃ s ⊕ punit.{u+1} : sum_congr (equiv.refl _) (equiv.set.singleton _)
/-- If `s : set α` is a set with decidable membership, then `s ⊕ sᶜ` is equivalent to `α`. -/
protected def sum_compl {α} (s : set α) [decidable_pred s] : s ⊕ (sᶜ : set α) ≃ α :=
calc s ⊕ (sᶜ : set α) ≃ ↥(s ∪ sᶜ) : (equiv.set.union (by simp [set.ext_iff])).symm
... ≃ @univ α : equiv.set.of_eq (by simp)
... ≃ α : equiv.set.univ _
@[simp] lemma sum_compl_apply_inl {α : Type u} (s : set α) [decidable_pred s] (x : s) :
equiv.set.sum_compl s (sum.inl x) = x := rfl
@[simp] lemma sum_compl_apply_inr {α : Type u} (s : set α) [decidable_pred s] (x : sᶜ) :
equiv.set.sum_compl s (sum.inr x) = x := rfl
lemma sum_compl_symm_apply_of_mem {α : Type u} {s : set α} [decidable_pred s] {x : α}
(hx : x ∈ s) : (equiv.set.sum_compl s).symm x = sum.inl ⟨x, hx⟩ :=
have ↑(⟨x, or.inl hx⟩ : (s ∪ sᶜ : set α)) ∈ s, from hx,
by { rw [equiv.set.sum_compl], simpa using set.union_apply_left _ this }
lemma sum_compl_symm_apply_of_not_mem {α : Type u} {s : set α} [decidable_pred s] {x : α}
(hx : x ∉ s) : (equiv.set.sum_compl s).symm x = sum.inr ⟨x, hx⟩ :=
have ↑(⟨x, or.inr hx⟩ : (s ∪ sᶜ : set α)) ∈ sᶜ, from hx,
by { rw [equiv.set.sum_compl], simpa using set.union_apply_right _ this }
/-- `sum_diff_subset s t` is the natural equivalence between
`s ⊕ (t \ s)` and `t`, where `s` and `t` are two sets. -/
protected def sum_diff_subset {α} {s t : set α} (h : s ⊆ t) [decidable_pred s] :
s ⊕ (t \ s : set α) ≃ t :=
calc s ⊕ (t \ s : set α) ≃ (s ∪ (t \ s) : set α) : (equiv.set.union (by simp [inter_diff_self])).symm
... ≃ t : equiv.set.of_eq (by { simp [union_diff_self, union_eq_self_of_subset_left h] })
@[simp] lemma sum_diff_subset_apply_inl
{α} {s t : set α} (h : s ⊆ t) [decidable_pred s] (x : s) :
equiv.set.sum_diff_subset h (sum.inl x) = inclusion h x := rfl
@[simp] lemma sum_diff_subset_apply_inr
{α} {s t : set α} (h : s ⊆ t) [decidable_pred s] (x : t \ s) :
equiv.set.sum_diff_subset h (sum.inr x) = inclusion (diff_subset t s) x := rfl
lemma sum_diff_subset_symm_apply_of_mem
{α} {s t : set α} (h : s ⊆ t) [decidable_pred s] {x : t} (hx : x.1 ∈ s) :
(equiv.set.sum_diff_subset h).symm x = sum.inl ⟨x, hx⟩ :=
begin
apply (equiv.set.sum_diff_subset h).injective,
simp only [apply_symm_apply, sum_diff_subset_apply_inl],
exact subtype.eq rfl,
end
lemma sum_diff_subset_symm_apply_of_not_mem
{α} {s t : set α} (h : s ⊆ t) [decidable_pred s] {x : t} (hx : x.1 ∉ s) :
(equiv.set.sum_diff_subset h).symm x = sum.inr ⟨x, ⟨x.2, hx⟩⟩ :=
begin
apply (equiv.set.sum_diff_subset h).injective,
simp only [apply_symm_apply, sum_diff_subset_apply_inr],
exact subtype.eq rfl,
end
/-- If `s` is a set with decidable membership, then the sum of `s ∪ t` and `s ∩ t` is equivalent
to `s ⊕ t`. -/
protected def union_sum_inter {α : Type u} (s t : set α) [decidable_pred s] :
(s ∪ t : set α) ⊕ (s ∩ t : set α) ≃ s ⊕ t :=
calc (s ∪ t : set α) ⊕ (s ∩ t : set α)
≃ (s ∪ t \ s : set α) ⊕ (s ∩ t : set α) : by rw [union_diff_self]
... ≃ (s ⊕ (t \ s : set α)) ⊕ (s ∩ t : set α) :
sum_congr (set.union $ subset_empty_iff.2 (inter_diff_self _ _)) (equiv.refl _)
... ≃ s ⊕ (t \ s : set α) ⊕ (s ∩ t : set α) : sum_assoc _ _ _
... ≃ s ⊕ (t \ s ∪ s ∩ t : set α) : sum_congr (equiv.refl _) begin
refine (set.union' (∉ s) _ _).symm,
exacts [λ x hx, hx.2, λ x hx, not_not_intro hx.1]
end
... ≃ s ⊕ t : by { rw (_ : t \ s ∪ s ∩ t = t), rw [union_comm, inter_comm, inter_union_diff] }
/-- The set product of two sets is equivalent to the type product of their coercions to types. -/
protected def prod {α β} (s : set α) (t : set β) :
s.prod t ≃ s × t :=
@subtype_prod_equiv_prod α β s t
/-- If a function `f` is injective on a set `s`, then `s` is equivalent to `f '' s`. -/
protected noncomputable def image_of_inj_on {α β} (f : α → β) (s : set α) (H : inj_on f s) :
s ≃ (f '' s) :=
⟨λ p, ⟨f p, mem_image_of_mem f p.2⟩,
λ p, ⟨classical.some p.2, (classical.some_spec p.2).1⟩,
λ ⟨x, h⟩, subtype.eq (H (classical.some_spec (mem_image_of_mem f h)).1 h
(classical.some_spec (mem_image_of_mem f h)).2),
λ ⟨y, h⟩, subtype.eq (classical.some_spec h).2⟩
/-- If `f` is an injective function, then `s` is equivalent to `f '' s`. -/
protected noncomputable def image {α β} (f : α → β) (s : set α) (H : injective f) : s ≃ (f '' s) :=
equiv.set.image_of_inj_on f s (λ x y hx hy hxy, H hxy)
@[simp] theorem image_apply {α β} (f : α → β) (s : set α) (H : injective f) (a h) :
set.image f s H ⟨a, h⟩ = ⟨f a, mem_image_of_mem _ h⟩ := rfl
/-- If `f : α → β` is an injective function, then `α` is equivalent to the range of `f`. -/
protected noncomputable def range {α β} (f : α → β) (H : injective f) :
α ≃ range f :=
{ to_fun := λ x, ⟨f x, mem_range_self _⟩,
inv_fun := λ x, classical.some x.2,
left_inv := λ x, H (classical.some_spec (show f x ∈ range f, from mem_range_self _)),
right_inv := λ x, subtype.eq $ classical.some_spec x.2 }
@[simp] theorem range_apply {α β} (f : α → β) (H : injective f) (a) :
set.range f H a = ⟨f a, set.mem_range_self _⟩ := rfl
theorem apply_range_symm {α β} (f : α → β) (H : injective f) (b : range f) :
f ((set.range f H).symm b) = b :=
begin
conv_rhs { rw ←((set.range f H).right_inv b), },
simp,
end
/-- If `α` is equivalent to `β`, then `set α` is equivalent to `set β`. -/
protected def congr {α β : Type*} (e : α ≃ β) : set α ≃ set β :=
⟨λ s, e '' s, λ t, e.symm '' t, symm_image_image e, symm_image_image e.symm⟩
/-- The set `{x ∈ s | t x}` is equivalent to the set of `x : s` such that `t x`. -/
protected def sep {α : Type u} (s : set α) (t : α → Prop) :
({ x ∈ s | t x } : set α) ≃ { x : s | t x } :=
(equiv.subtype_subtype_equiv_subtype_inter s t).symm
end set
/-- If `f` is a bijective function, then its domain is equivalent to its codomain. -/
noncomputable def of_bijective {α β} (f : α → β) (hf : bijective f) : α ≃ β :=
(equiv.set.range f hf.1).trans $ (set_congr hf.2.range_eq).trans $ equiv.set.univ β
@[simp] theorem coe_of_bijective {α β} {f : α → β} (hf : bijective f) :
(of_bijective f hf : α → β) = f := rfl
/-- If `f` is an injective function, then its domain is equivalent to its range. -/
noncomputable def of_injective {α β} (f : α → β) (hf : injective f) : α ≃ _root_.set.range f :=
of_bijective (λ x, ⟨f x, set.mem_range_self x⟩) ⟨λ x y hxy, hf $ by injections, λ ⟨_, x, rfl⟩, ⟨x, rfl⟩⟩
@[simp] lemma of_injective_apply {α β} (f : α → β) (hf : injective f) (x : α) :
of_injective f hf x = ⟨f x, set.mem_range_self x⟩ :=
rfl
def subtype_quotient_equiv_quotient_subtype (p₁ : α → Prop) [s₁ : setoid α]
[s₂ : setoid (subtype p₁)] (p₂ : quotient s₁ → Prop) (hp₂ : ∀ a, p₁ a ↔ p₂ ⟦a⟧)
(h : ∀ x y : subtype p₁, @setoid.r _ s₂ x y ↔ (x : α) ≈ y) :
{x // p₂ x} ≃ quotient s₂ :=
{ to_fun := λ a, quotient.hrec_on a.1 (λ a h, ⟦⟨a, (hp₂ _).2 h⟩⟧)
(λ a b hab, hfunext (by rw quotient.sound hab)
(λ h₁ h₂ _, heq_of_eq (quotient.sound ((h _ _).2 hab)))) a.2,
inv_fun := λ a, quotient.lift_on a (λ a, (⟨⟦a.1⟧, (hp₂ _).1 a.2⟩ : {x // p₂ x}))
(λ a b hab, subtype.ext_val (quotient.sound ((h _ _).1 hab))),
left_inv := λ ⟨a, ha⟩, quotient.induction_on a (λ a ha, rfl) ha,
right_inv := λ a, quotient.induction_on a (λ ⟨a, ha⟩, rfl) }
section swap
variable [decidable_eq α]
open decidable
/-- A helper function for `equiv.swap`. -/
def swap_core (a b r : α) : α :=
if r = a then b
else if r = b then a
else r
theorem swap_core_self (r a : α) : swap_core a a r = r :=
by { unfold swap_core, split_ifs; cc }
theorem swap_core_swap_core (r a b : α) : swap_core a b (swap_core a b r) = r :=
by { unfold swap_core, split_ifs; cc }
theorem swap_core_comm (r a b : α) : swap_core a b r = swap_core b a r :=
by { unfold swap_core, split_ifs; cc }
/-- `swap a b` is the permutation that swaps `a` and `b` and
leaves other values as is. -/
def swap (a b : α) : perm α :=
⟨swap_core a b, swap_core a b, λr, swap_core_swap_core r a b, λr, swap_core_swap_core r a b⟩
theorem swap_self (a : α) : swap a a = equiv.refl _ :=
ext $ λ r, swap_core_self r a
theorem swap_comm (a b : α) : swap a b = swap b a :=
ext $ λ r, swap_core_comm r _ _
theorem swap_apply_def (a b x : α) : swap a b x = if x = a then b else if x = b then a else x :=
rfl
@[simp] theorem swap_apply_left (a b : α) : swap a b a = b :=
if_pos rfl
@[simp] theorem swap_apply_right (a b : α) : swap a b b = a :=
by { by_cases h : b = a; simp [swap_apply_def, h], }
theorem swap_apply_of_ne_of_ne {a b x : α} : x ≠ a → x ≠ b → swap a b x = x :=
by simp [swap_apply_def] {contextual := tt}
@[simp] theorem swap_swap (a b : α) : (swap a b).trans (swap a b) = equiv.refl _ :=
ext $ λ x, swap_core_swap_core _ _ _
theorem swap_comp_apply {a b x : α} (π : perm α) :
π.trans (swap a b) x = if π x = a then b else if π x = b then a else π x :=
by { cases π, refl }
@[simp] lemma swap_inv {α : Type*} [decidable_eq α] (x y : α) :
(swap x y)⁻¹ = swap x y := rfl
@[simp] lemma symm_trans_swap_trans [decidable_eq β] (a b : α)
(e : α ≃ β) : (e.symm.trans (swap a b)).trans e = swap (e a) (e b) :=
equiv.ext (λ x, begin
have : ∀ a, e.symm x = a ↔ x = e a :=
λ a, by { rw @eq_comm _ (e.symm x), split; intros; simp * at * },
simp [swap_apply_def, this],
split_ifs; simp
end)
@[simp] lemma swap_mul_self {α : Type*} [decidable_eq α] (i j : α) : swap i j * swap i j = 1 :=
equiv.swap_swap i j
@[simp] lemma swap_apply_self {α : Type*} [decidable_eq α] (i j a : α) :
swap i j (swap i j a) = a :=
by rw [← perm.mul_apply, swap_mul_self, perm.one_apply]
/-- Augment an equivalence with a prescribed mapping `f a = b` -/
def set_value (f : α ≃ β) (a : α) (b : β) : α ≃ β :=
(swap a (f.symm b)).trans f
@[simp] theorem set_value_eq (f : α ≃ β) (a : α) (b : β) : set_value f a b a = b :=
by { dsimp [set_value], simp [swap_apply_left] }
end swap
protected lemma forall_congr {p : α → Prop} {q : β → Prop} (f : α ≃ β)
(h : ∀{x}, p x ↔ q (f x)) : (∀x, p x) ↔ (∀y, q y) :=
begin
split; intros h₂ x,
{ rw [←f.right_inv x], apply h.mp, apply h₂ },
apply h.mpr, apply h₂
end
protected lemma forall_congr' {p : α → Prop} {q : β → Prop} (f : α ≃ β)
(h : ∀{x}, p (f.symm x) ↔ q x) : (∀x, p x) ↔ (∀y, q y) :=
(equiv.forall_congr f.symm (λ x, h.symm)).symm
-- We next build some higher arity versions of `equiv.forall_congr`.
-- Although they appear to just be repeated applications of `equiv.forall_congr`,
-- unification of metavariables works better with these versions.
-- In particular, they are necessary in `equiv_rw`.
-- (Stopping at ternary functions seems reasonable: at least in 1-categorical mathematics,
-- it's rare to have axioms involving more than 3 elements at once.)
universes ua1 ua2 ub1 ub2 ug1 ug2
variables {α₁ : Sort ua1} {α₂ : Sort ua2}
{β₁ : Sort ub1} {β₂ : Sort ub2}
{γ₁ : Sort ug1} {γ₂ : Sort ug2}
protected lemma forall₂_congr {p : α₁ → β₁ → Prop} {q : α₂ → β₂ → Prop} (eα : α₁ ≃ α₂)
(eβ : β₁ ≃ β₂) (h : ∀{x y}, p x y ↔ q (eα x) (eβ y)) :
(∀x y, p x y) ↔ (∀x y, q x y) :=
begin
apply equiv.forall_congr,
intros,
apply equiv.forall_congr,
intros,
apply h,
end
protected lemma forall₂_congr' {p : α₁ → β₁ → Prop} {q : α₂ → β₂ → Prop} (eα : α₁ ≃ α₂)
(eβ : β₁ ≃ β₂) (h : ∀{x y}, p (eα.symm x) (eβ.symm y) ↔ q x y) :
(∀x y, p x y) ↔ (∀x y, q x y) :=
(equiv.forall₂_congr eα.symm eβ.symm (λ x y, h.symm)).symm
protected lemma forall₃_congr {p : α₁ → β₁ → γ₁ → Prop} {q : α₂ → β₂ → γ₂ → Prop}
(eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (eγ : γ₁ ≃ γ₂)
(h : ∀{x y z}, p x y z ↔ q (eα x) (eβ y) (eγ z)) : (∀x y z, p x y z) ↔ (∀x y z, q x y z) :=
begin
apply equiv.forall₂_congr,
intros,
apply equiv.forall_congr,
intros,
apply h,
end
protected lemma forall₃_congr' {p : α₁ → β₁ → γ₁ → Prop} {q : α₂ → β₂ → γ₂ → Prop}
(eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (eγ : γ₁ ≃ γ₂)
(h : ∀{x y z}, p (eα.symm x) (eβ.symm y) (eγ.symm z) ↔ q x y z) :
(∀x y z, p x y z) ↔ (∀x y z, q x y z) :=
(equiv.forall₃_congr eα.symm eβ.symm eγ.symm (λ x y z, h.symm)).symm
protected lemma forall_congr_left' {p : α → Prop} (f : α ≃ β) :
(∀x, p x) ↔ (∀y, p (f.symm y)) :=
equiv.forall_congr f (λx, by simp)
protected lemma forall_congr_left {p : β → Prop} (f : α ≃ β) :
(∀x, p (f x)) ↔ (∀y, p y) :=
(equiv.forall_congr_left' f.symm).symm
section
variables (P : α → Sort w) (e : α ≃ β)
/--
Transport dependent functions through an equivalence of the base space.
-/
def Pi_congr_left' : (Π a, P a) ≃ (Π b, P (e.symm b)) :=
{ to_fun := λ f x, f (e.symm x),
inv_fun := λ f x, begin rw [← e.symm_apply_apply x], exact f (e x) end,
left_inv := λ f, funext $ λ x, eq_of_heq ((eq_rec_heq _ _).trans
(by { dsimp, rw e.symm_apply_apply })),
right_inv := λ f, funext $ λ x, eq_of_heq ((eq_rec_heq _ _).trans
(by { rw e.apply_symm_apply })) }
@[simp]
lemma Pi_congr_left'_apply (f : Π a, P a) (b : β) : ((Pi_congr_left' P e) f) b = f (e.symm b) :=
rfl
@[simp]
lemma Pi_congr_left'_symm_apply (g : Π b, P (e.symm b)) (a : α) :
((Pi_congr_left' P e).symm g) a = (by { convert g (e a), simp }) :=
rfl
end
section
variables (P : β → Sort w) (e : α ≃ β)
/--
Transporting dependent functions through an equivalence of the base,
expressed as a "simplification".
-/
def Pi_congr_left : (Π a, P (e a)) ≃ (Π b, P b) :=
(Pi_congr_left' P e.symm).symm
end
section
variables
{W : α → Sort w} {Z : β → Sort z} (h₁ : α ≃ β) (h₂ : Π a : α, (W a ≃ Z (h₁ a)))
/--
Transport dependent functions through
an equivalence of the base spaces and a family
of equivalences of the matching fibers.
-/
def Pi_congr : (Π a, W a) ≃ (Π b, Z b) :=
(equiv.Pi_congr_right h₂).trans (equiv.Pi_congr_left _ h₁)
end
section
variables
{W : α → Sort w} {Z : β → Sort z} (h₁ : α ≃ β) (h₂ : Π b : β, (W (h₁.symm b) ≃ Z b))
/--
Transport dependent functions through
an equivalence of the base spaces and a family
of equivalences of the matching fibres.
-/
def Pi_congr' : (Π a, W a) ≃ (Π b, Z b) :=
(Pi_congr h₁.symm (λ b, (h₂ b).symm)).symm
end
end equiv
instance {α} [subsingleton α] : subsingleton (ulift α) := equiv.ulift.subsingleton
instance {α} [subsingleton α] : subsingleton (plift α) := equiv.plift.subsingleton
instance {α} [decidable_eq α] : decidable_eq (ulift α) := equiv.ulift.decidable_eq
instance {α} [decidable_eq α] : decidable_eq (plift α) := equiv.plift.decidable_eq
/-- If both `α` and `β` are singletons, then `α ≃ β`. -/
def equiv_of_unique_of_unique [unique α] [unique β] : α ≃ β :=
{ to_fun := λ _, default β,
inv_fun := λ _, default α,
left_inv := λ _, subsingleton.elim _ _,
right_inv := λ _, subsingleton.elim _ _ }
/-- If `α` is a singleton, then it is equivalent to any `punit`. -/
def equiv_punit_of_unique [unique α] : α ≃ punit.{v} :=
equiv_of_unique_of_unique
/-- If `α` is a subsingleton, then it is equivalent to `α × α`. -/
def subsingleton_prod_self_equiv {α : Type*} [subsingleton α] : α × α ≃ α :=
{ to_fun := λ p, p.1,
inv_fun := λ a, (a, a),
left_inv := λ p, subsingleton.elim _ _,
right_inv := λ p, subsingleton.elim _ _, }
/-- To give an equivalence between two subsingleton types, it is sufficient to give any two
functions between them. -/
def equiv_of_subsingleton_of_subsingleton [subsingleton α] [subsingleton β]
(f : α → β) (g : β → α) : α ≃ β :=
{ to_fun := f,
inv_fun := g,
left_inv := λ _, subsingleton.elim _ _,
right_inv := λ _, subsingleton.elim _ _ }
/-- `unique (unique α)` is equivalent to `unique α`. -/
def unique_unique_equiv : unique (unique α) ≃ unique α :=
equiv_of_subsingleton_of_subsingleton (λ h, h.default)
(λ h, { default := h, uniq := λ _, subsingleton.elim _ _ })
namespace quot
/-- An equivalence `e : α ≃ β` generates an equivalence between quotient spaces,
if `ra a₁ a₂ ↔ rb (e a₁) (e a₂). -/
protected def congr {ra : α → α → Prop} {rb : β → β → Prop} (e : α ≃ β)
(eq : ∀a₁ a₂, ra a₁ a₂ ↔ rb (e a₁) (e a₂)) :
quot ra ≃ quot rb :=
{ to_fun := quot.map e (assume a₁ a₂, (eq a₁ a₂).1),
inv_fun := quot.map e.symm
(assume b₁ b₂ h,
(eq (e.symm b₁) (e.symm b₂)).2
((e.apply_symm_apply b₁).symm ▸ (e.apply_symm_apply b₂).symm ▸ h)),
left_inv := by { rintros ⟨a⟩, dunfold quot.map, simp only [equiv.symm_apply_apply] },
right_inv := by { rintros ⟨a⟩, dunfold quot.map, simp only [equiv.apply_symm_apply] } }
/-- Quotients are congruent on equivalences under equality of their relation.
An alternative is just to use rewriting with `eq`, but then computational proofs get stuck. -/
protected def congr_right {r r' : α → α → Prop} (eq : ∀a₁ a₂, r a₁ a₂ ↔ r' a₁ a₂) :
quot r ≃ quot r' :=
quot.congr (equiv.refl α) eq
/-- An equivalence `e : α ≃ β` generates an equivalence between the quotient space of `α`
by a relation `ra` and the quotient space of `β` by the image of this relation under `e`. -/
protected def congr_left {r : α → α → Prop} (e : α ≃ β) :
quot r ≃ quot (λ b b', r (e.symm b) (e.symm b')) :=
@quot.congr α β r (λ b b', r (e.symm b) (e.symm b')) e (λ a₁ a₂, by simp only [e.symm_apply_apply])
end quot
namespace quotient
/-- An equivalence `e : α ≃ β` generates an equivalence between quotient spaces,
if `ra a₁ a₂ ↔ rb (e a₁) (e a₂). -/
protected def congr {ra : setoid α} {rb : setoid β} (e : α ≃ β)
(eq : ∀a₁ a₂, @setoid.r α ra a₁ a₂ ↔ @setoid.r β rb (e a₁) (e a₂)) :
quotient ra ≃ quotient rb :=
quot.congr e eq
/-- Quotients are congruent on equivalences under equality of their relation.
An alternative is just to use rewriting with `eq`, but then computational proofs get stuck. -/
protected def congr_right {r r' : setoid α}
(eq : ∀a₁ a₂, @setoid.r α r a₁ a₂ ↔ @setoid.r α r' a₁ a₂) : quotient r ≃ quotient r' :=
quot.congr_right eq
end quotient
/-- If a function is a bijection between `univ` and a set `s` in the target type, it induces an
equivalence between the original type and the type `↑s`. -/
noncomputable def set.bij_on.equiv {α : Type*} {β : Type*} {s : set β} (f : α → β)
(h : set.bij_on f set.univ s) : α ≃ s :=
begin
have : function.bijective (λ (x : α), (⟨f x, begin exact h.maps_to (set.mem_univ x) end⟩ : s)),
{ split,
{ assume x y hxy,
apply h.inj_on (set.mem_univ x) (set.mem_univ y) (subtype.mk.inj hxy) },
{ assume x,
rcases h.surj_on x.2 with ⟨y, hy⟩,
exact ⟨y, subtype.eq hy.2⟩ } },
exact equiv.of_bijective _ this
end
/-- The composition of an updated function with an equiv on a subset can be expressed as an
updated function. -/
lemma dite_comp_equiv_update {α : Type*} {β : Type*} {γ : Type*} {s : set α} (e : β ≃ s)
(v : β → γ) (w : α → γ) (j : β) (x : γ) [decidable_eq β] [decidable_eq α]
[∀ j, decidable (j ∈ s)] :
(λ (i : α), if h : i ∈ s then (function.update v j x) (e.symm ⟨i, h⟩) else w i) =
function.update (λ (i : α), if h : i ∈ s then v (e.symm ⟨i, h⟩) else w i) (e j) x :=
begin
ext i,
by_cases h : i ∈ s,
{ simp only [h, dif_pos],
have A : e.symm ⟨i, h⟩ = j ↔ i = e j,
by { rw equiv.symm_apply_eq, exact subtype.ext_iff_val },
by_cases h' : i = e j,
{ rw [A.2 h', h'], simp },
{ have : ¬ e.symm ⟨i, h⟩ = j, by simpa [← A] using h',
simp [h, h', this] } },
{ have : i ≠ e j,
by { contrapose! h, have : (e j : α) ∈ s := (e j).2, rwa ← h at this },
simp [h, this] }
end
|
cc2a60b08dc467f58c6e0ed7672a964b0ca4c059
|
5ca7b1b12d14c4742e29366312ba2c2ef8201b21
|
/levels/idea_subtraction.lean
|
bbcaebe8c69bf4aa53f669b890c86bd9347d624e
|
[
"Apache-2.0"
] |
permissive
|
MatthiasHu/natural_number_game
|
2e464482ef3001863430b0336133b6697b275ba3
|
2d764f72669ae30861f6a1057fce0257f3e466c4
|
refs/heads/master
| 1,609,719,110,419
| 1,576,345,737,000
| 1,576,345,737,000
| 240,296,314
| 0
| 0
|
Apache-2.0
| 1,581,608,357,000
| 1,581,608,356,000
| null |
UTF-8
|
Lean
| false
| false
| 645
|
lean
|
/- to be written
(feel free to write it, anyone!)
The natural numbers has this hideous "computer science natural number `subtraction`" which is far less well behaved than integer subtraction -- they define it so that `2 - 7 = 0` and more generally all negative numbers are mapped to zero. There are inqualities eveyywhere.
Type
`#print prefix nat`
into Lean, click on the display that appears, and then do ctrl-F and search for sub. There are loads of lemmas. I think it's all a bit boring though. Is this worth doing? I don't think you get any new instances this way, which is some sort of an indication that mathematicians don't care.
-/
|
27bd28f5a4a8f9e005f3ecd0f6b0af2deca1710d
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/category_theory/limits/shapes/zero.lean
|
00e02e2b6ffd7ded3f924b25f55001e420f6b4fd
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 16,377
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.category_theory.limits.shapes.terminal
import Mathlib.category_theory.limits.shapes.binary_products
import Mathlib.category_theory.limits.shapes.products
import Mathlib.category_theory.limits.shapes.images
import Mathlib.PostPort
universes v u l u_1 v' u'
namespace Mathlib
/-!
# Zero morphisms and zero objects
A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space,
and compositions of zero morphisms with anything give the zero morphism. (Notice this is extra
structure, not merely a property.)
A category "has a zero object" if it has an object which is both initial and terminal. Having a
zero object provides zero morphisms, as the unique morphisms factoring through the zero object.
## References
* https://en.wikipedia.org/wiki/Zero_morphism
* [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2]
-/
namespace category_theory.limits
/-- A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space,
and compositions of zero morphisms with anything give the zero morphism. -/
class has_zero_morphisms (C : Type u) [category C]
where
has_zero : (X Y : C) → HasZero (X ⟶ Y)
comp_zero' : autoParam (∀ {X Y : C} (f : X ⟶ Y), C → f ≫ 0 = 0)
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
zero_comp' : autoParam (C → ∀ {Y Z : C} (f : Y ⟶ Z), 0 ≫ f = 0)
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
theorem has_zero_morphisms.comp_zero {C : Type u} [category C] [c : has_zero_morphisms C] {X : C} {Y : C} (f : X ⟶ Y) (Z : C) : f ≫ 0 = 0 := sorry
theorem has_zero_morphisms.zero_comp {C : Type u} [category C] [c : has_zero_morphisms C] (X : C) {Y : C} {Z : C} (f : Y ⟶ Z) : 0 ≫ f = 0 := sorry
@[simp] theorem comp_zero {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {f : X ⟶ Y} {Z : C} : f ≫ 0 = 0 :=
has_zero_morphisms.comp_zero f Z
@[simp] theorem zero_comp {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {Z : C} {f : Y ⟶ Z} : 0 ≫ f = 0 :=
has_zero_morphisms.zero_comp X f
protected instance has_zero_morphisms_pempty : has_zero_morphisms (discrete pempty) :=
has_zero_morphisms.mk
protected instance has_zero_morphisms_punit : has_zero_morphisms (discrete PUnit) :=
has_zero_morphisms.mk
namespace has_zero_morphisms
/-- This lemma will be immediately superseded by `ext`, below. -/
/--
If you're tempted to use this lemma "in the wild", you should probably
carefully consider whether you've made a mistake in allowing two
instances of `has_zero_morphisms` to exist at all.
See, particularly, the note on `zero_morphisms_of_zero_object` below.
-/
theorem ext {C : Type u} [category C] (I : has_zero_morphisms C) (J : has_zero_morphisms C) : I = J := sorry
protected instance subsingleton {C : Type u} [category C] : subsingleton (has_zero_morphisms C) :=
subsingleton.intro ext
end has_zero_morphisms
theorem zero_of_comp_mono {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {Z : C} {f : X ⟶ Y} (g : Y ⟶ Z) [mono g] (h : f ≫ g = 0) : f = 0 :=
eq.mp (Eq._oldrec (Eq.refl (f ≫ g = 0 ≫ g)) (propext (cancel_mono g)))
(eq.mp (Eq._oldrec (Eq.refl (f ≫ g = 0)) (Eq.symm zero_comp)) h)
theorem zero_of_epi_comp {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {Z : C} (f : X ⟶ Y) {g : Y ⟶ Z} [epi f] (h : f ≫ g = 0) : g = 0 :=
eq.mp (Eq._oldrec (Eq.refl (f ≫ g = f ≫ 0)) (propext (cancel_epi f)))
(eq.mp (Eq._oldrec (Eq.refl (f ≫ g = 0)) (Eq.symm comp_zero)) h)
theorem eq_zero_of_image_eq_zero {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {f : X ⟶ Y} [has_image f] (w : image.ι f = 0) : f = 0 := sorry
theorem nonzero_image_of_nonzero {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {f : X ⟶ Y} [has_image f] (w : f ≠ 0) : image.ι f ≠ 0 :=
fun (h : image.ι f = 0) => w (eq_zero_of_image_eq_zero h)
theorem equivalence_preserves_zero_morphisms {C : Type u} [category C] (D : Type u') [category D] [has_zero_morphisms C] [has_zero_morphisms D] (F : C ≌ D) (X : C) (Y : C) : functor.map (equivalence.functor F) 0 = 0 := sorry
@[simp] theorem is_equivalence_preserves_zero_morphisms {C : Type u} [category C] (D : Type u') [category D] [has_zero_morphisms C] [has_zero_morphisms D] (F : C ⥤ D) [is_equivalence F] (X : C) (Y : C) : functor.map F 0 = 0 := sorry
/-- A category "has a zero object" if it has an object which is both initial and terminal. -/
class has_zero_object (C : Type u) [category C]
where
zero : C
unique_to : (X : C) → unique (zero ⟶ X)
unique_from : (X : C) → unique (X ⟶ zero)
protected instance has_zero_object_punit : has_zero_object (discrete PUnit) :=
has_zero_object.mk PUnit.unit (fun (X : discrete PUnit) => punit.cases_on X (unique.mk sorry sorry))
fun (X : discrete PUnit) => punit.cases_on X (unique.mk sorry sorry)
namespace has_zero_object
/--
Construct a `has_zero C` for a category with a zero object.
This can not be a global instance as it will trigger for every `has_zero C` typeclass search.
-/
protected def has_zero {C : Type u} [category C] [has_zero_object C] : HasZero C :=
{ zero := zero }
theorem to_zero_ext {C : Type u} [category C] [has_zero_object C] {X : C} (f : X ⟶ 0) (g : X ⟶ 0) : f = g :=
eq.mpr (id (Eq._oldrec (Eq.refl (f = g)) (unique.uniq (unique_from X) f)))
(eq.mpr (id (Eq._oldrec (Eq.refl (Inhabited.default = g)) (unique.uniq (unique_from X) g)))
(Eq.refl Inhabited.default))
theorem from_zero_ext {C : Type u} [category C] [has_zero_object C] {X : C} (f : 0 ⟶ X) (g : 0 ⟶ X) : f = g :=
eq.mpr (id (Eq._oldrec (Eq.refl (f = g)) (unique.uniq (unique_to X) f)))
(eq.mpr (id (Eq._oldrec (Eq.refl (Inhabited.default = g)) (unique.uniq (unique_to X) g))) (Eq.refl Inhabited.default))
protected instance category_theory.iso.subsingleton {C : Type u} [category C] [has_zero_object C] (X : C) : subsingleton (X ≅ 0) :=
subsingleton.intro fun (a b : X ≅ 0) => iso.ext (of_as_true trivial)
protected instance category_theory.mono {C : Type u} [category C] [has_zero_object C] {X : C} (f : 0 ⟶ X) : mono f :=
mono.mk fun (Z : C) (g h : Z ⟶ 0) (w : g ≫ f = h ≫ f) => to_zero_ext g h
protected instance category_theory.epi {C : Type u} [category C] [has_zero_object C] {X : C} (f : X ⟶ 0) : epi f :=
epi.mk fun (Z : C) (g h : 0 ⟶ Z) (w : f ≫ g = f ≫ h) => from_zero_ext g h
/-- A category with a zero object has zero morphisms.
It is rarely a good idea to use this. Many categories that have a zero object have zero
morphisms for some other reason, for example from additivity. Library code that uses
`zero_morphisms_of_zero_object` will then be incompatible with these categories because
the `has_zero_morphisms` instances will not be definitionally equal. For this reason library
code should generally ask for an instance of `has_zero_morphisms` separately, even if it already
asks for an instance of `has_zero_objects`. -/
def zero_morphisms_of_zero_object {C : Type u} [category C] [has_zero_object C] : has_zero_morphisms C :=
has_zero_morphisms.mk
/-- A zero object is in particular initial. -/
theorem has_initial {C : Type u} [category C] [has_zero_object C] : has_initial C :=
has_initial_of_unique 0
/-- A zero object is in particular terminal. -/
theorem has_terminal {C : Type u} [category C] [has_zero_object C] : has_terminal C :=
has_terminal_of_unique 0
end has_zero_object
@[simp] theorem id_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] : 𝟙 = 0 :=
has_zero_object.from_zero_ext 𝟙 0
/-- An arrow ending in the zero object is zero -/
-- This can't be a `simp` lemma because the left hand side would be a metavariable.
theorem zero_of_to_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] {X : C} (f : X ⟶ 0) : f = 0 :=
has_zero_object.to_zero_ext f 0
theorem zero_of_target_iso_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] {X : C} {Y : C} (f : X ⟶ Y) (i : Y ≅ 0) : f = 0 := sorry
/-- An arrow starting at the zero object is zero -/
theorem zero_of_from_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] {X : C} (f : 0 ⟶ X) : f = 0 :=
has_zero_object.from_zero_ext f 0
theorem zero_of_source_iso_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] {X : C} {Y : C} (f : X ⟶ Y) (i : X ≅ 0) : f = 0 := sorry
theorem mono_of_source_iso_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] {X : C} {Y : C} (f : X ⟶ Y) (i : X ≅ 0) : mono f := sorry
theorem epi_of_target_iso_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] {X : C} {Y : C} (f : X ⟶ Y) (i : Y ≅ 0) : epi f := sorry
/--
An object `X` has `𝟙 X = 0` if and only if it is isomorphic to the zero object.
Because `X ≅ 0` contains data (even if a subsingleton), we express this `↔` as an `≃`.
-/
def id_zero_equiv_iso_zero {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] (X : C) : 𝟙 = 0 ≃ (X ≅ 0) :=
equiv.mk (fun (h : 𝟙 = 0) => iso.mk 0 0) sorry sorry sorry
@[simp] theorem id_zero_equiv_iso_zero_apply_hom {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] (X : C) (h : 𝟙 = 0) : iso.hom (coe_fn (id_zero_equiv_iso_zero X) h) = 0 :=
rfl
@[simp] theorem id_zero_equiv_iso_zero_apply_inv {C : Type u} [category C] [has_zero_object C] [has_zero_morphisms C] (X : C) (h : 𝟙 = 0) : iso.inv (coe_fn (id_zero_equiv_iso_zero X) h) = 0 :=
rfl
/--
A zero morphism `0 : X ⟶ Y` is an isomorphism if and only if
the identities on both `X` and `Y` are zero.
-/
def is_iso_zero_equiv {C : Type u} [category C] [has_zero_morphisms C] (X : C) (Y : C) : is_iso 0 ≃ 𝟙 = 0 ∧ 𝟙 = 0 :=
equiv.mk sorry (fun (h : 𝟙 = 0 ∧ 𝟙 = 0) => is_iso.mk 0) sorry sorry
/--
A zero morphism `0 : X ⟶ X` is an isomorphism if and only if
the identity on `X` is zero.
-/
def is_iso_zero_self_equiv {C : Type u} [category C] [has_zero_morphisms C] (X : C) : is_iso 0 ≃ 𝟙 = 0 :=
eq.mpr sorry (eq.mp sorry (is_iso_zero_equiv X X))
/--
A zero morphism `0 : X ⟶ Y` is an isomorphism if and only if
`X` and `Y` are isomorphic to the zero object.
-/
def is_iso_zero_equiv_iso_zero {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] (X : C) (Y : C) : is_iso 0 ≃ (X ≅ 0) × (Y ≅ 0) :=
equiv.trans (is_iso_zero_equiv X Y)
(equiv.symm
(equiv.mk sorry
(fun (ᾰ : 𝟙 = 0 ∧ 𝟙 = 0) =>
and.dcases_on ᾰ
fun (hX : 𝟙 = 0) (hY : 𝟙 = 0) => (coe_fn (id_zero_equiv_iso_zero X) hX, coe_fn (id_zero_equiv_iso_zero Y) hY))
sorry sorry))
/--
A zero morphism `0 : X ⟶ X` is an isomorphism if and only if
`X` is isomorphic to the zero object.
-/
def is_iso_zero_self_equiv_iso_zero {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] (X : C) : is_iso 0 ≃ (X ≅ 0) :=
equiv.trans (is_iso_zero_equiv_iso_zero X X) subsingleton_prod_self_equiv
/-- If there are zero morphisms, any initial object is a zero object. -/
protected instance has_zero_object_of_has_initial_object {C : Type u} [category C] [has_zero_morphisms C] [has_initial C] : has_zero_object C :=
has_zero_object.mk (⊥_C) (fun (X : C) => unique.mk { default := 0 } sorry)
fun (X : C) => unique.mk { default := 0 } sorry
/-- If there are zero morphisms, any terminal object is a zero object. -/
protected instance has_zero_object_of_has_terminal_object {C : Type u} [category C] [has_zero_morphisms C] [has_terminal C] : has_zero_object C :=
has_zero_object.mk (⊤_C) (fun (X : C) => unique.mk { default := 0 } sorry)
fun (X : C) => unique.mk { default := 0 } sorry
theorem image_ι_comp_eq_zero {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} [has_image f] [epi (factor_thru_image f)] (h : f ≫ g = 0) : image.ι f ≫ g = 0 := sorry
/--
The zero morphism has a `mono_factorisation` through the zero object.
-/
@[simp] theorem mono_factorisation_zero_e {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] (X : C) (Y : C) : mono_factorisation.e (mono_factorisation_zero X Y) = 0 :=
Eq.refl (mono_factorisation.e (mono_factorisation_zero X Y))
/--
The factorisation through the zero object is an image factorisation.
-/
def image_factorisation_zero {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] (X : C) (Y : C) : image_factorisation 0 :=
image_factorisation.mk (mono_factorisation_zero X Y) (is_image.mk fun (F' : mono_factorisation 0) => 0)
protected instance has_image_zero {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] {X : C} {Y : C} : has_image 0 :=
has_image.mk (image_factorisation_zero X Y)
/-- The image of a zero morphism is the zero object. -/
def image_zero {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] {X : C} {Y : C} : image 0 ≅ 0 :=
is_image.iso_ext (image.is_image 0) (image_factorisation.is_image (image_factorisation_zero X Y))
/-- The image of a morphism which is equal to zero is the zero object. -/
def image_zero' {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] {X : C} {Y : C} {f : X ⟶ Y} (h : f = 0) [has_image f] : image f ≅ 0 :=
image.eq_to_iso h ≪≫ image_zero
@[simp] theorem image.ι_zero {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] {X : C} {Y : C} [has_image 0] : image.ι 0 = 0 := sorry
/--
If we know `f = 0`,
it requires a little work to conclude `image.ι f = 0`,
because `f = g` only implies `image f ≅ image g`.
-/
@[simp] theorem image.ι_zero' {C : Type u} [category C] [has_zero_morphisms C] [has_zero_object C] [has_equalizers C] {X : C} {Y : C} {f : X ⟶ Y} (h : f = 0) [has_image f] : image.ι f = 0 := sorry
/-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/
protected instance split_mono_sigma_ι {C : Type u} [category C] {β : Type v} [DecidableEq β] [has_zero_morphisms C] (f : β → C) [has_colimit (discrete.functor f)] (b : β) : split_mono (sigma.ι f b) :=
split_mono.mk
(sigma.desc fun (b' : β) => dite (b' = b) (fun (h : b' = b) => eq_to_hom (congr_arg f h)) fun (h : ¬b' = b) => 0)
/-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/
protected instance split_epi_pi_π {C : Type u} [category C] {β : Type v} [DecidableEq β] [has_zero_morphisms C] (f : β → C) [has_limit (discrete.functor f)] (b : β) : split_epi (pi.π f b) :=
split_epi.mk
(pi.lift fun (b' : β) => dite (b = b') (fun (h : b = b') => eq_to_hom (congr_arg f h)) fun (h : ¬b = b') => 0)
/-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/
protected instance split_mono_coprod_inl {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_colimit (pair X Y)] : split_mono coprod.inl :=
split_mono.mk (coprod.desc 𝟙 0)
/-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/
protected instance split_mono_coprod_inr {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_colimit (pair X Y)] : split_mono coprod.inr :=
split_mono.mk (coprod.desc 0 𝟙)
/-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/
protected instance split_epi_prod_fst {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_limit (pair X Y)] : split_epi prod.fst :=
split_epi.mk (prod.lift 𝟙 0)
/-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/
protected instance split_epi_prod_snd {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_limit (pair X Y)] : split_epi prod.snd :=
split_epi.mk (prod.lift 0 𝟙)
|
969d21d48ac0c2b6eea96a96319e3e7b90f74839
|
35c41e824c38dc6aa7f0b1467f4d5bc33d61f260
|
/Build_Maths/build_maths.lean
|
b8c534099ebc16818b5030a3687cbb5826eadaec
|
[] |
no_license
|
kckennylau/xena
|
697eb8f55a8f1ce456a241e8b8e4e8a27b91438e
|
7dc03dc9588d30d7d36b6904b59ca63a72096229
|
refs/heads/master
| 1,627,104,810,584
| 1,509,486,416,000
| 1,509,486,416,000
| 107,829,951
| 0
| 0
| null | 1,509,486,381,000
| 1,508,637,567,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,705
|
lean
|
namespace xena
inductive xnat
| zero : xnat
| succ : xnat → xnat
open xnat
definition plus : xnat → xnat → xnat
| n zero := n
| n (succ p) := succ (plus n p)
notation a + b := plus a b
definition one := succ zero
definition two := succ one
example : one + one = two :=
begin
refl
end
theorem plus_assoc (a b c : xnat) : (a + b) + c = a + (b + c) :=
begin
induction c with n Hn,
unfold plus,
unfold plus,
rw [Hn],
end
theorem add_zero (n : xnat) : n + zero = n := by unfold plus
theorem zero_add (n : xnat) : zero + n = n :=
begin
induction n with t Ht,
refl,
unfold plus,
rw [Ht],
end
theorem zero_add_eq_add_zero (n : xnat) : zero + n = n + zero :=
begin
rewrite [zero_add,add_zero]
end
theorem one_plus_eq_succ (n : xnat) : (succ zero) + n = succ n :=
begin
induction n with a Ha,
refl,
unfold plus,
rw [Ha],
end
theorem plus_one_eq_succ (n : xnat) : n + (succ zero) = succ n :=
begin
unfold plus
end
theorem plus_comm (a b : xnat) : plus a b = plus b a :=
begin
induction a with m Hm,
-- base case
exact zero_add_eq_add_zero b,
-- inductive step
unfold plus,
rewrite ←one_plus_eq_succ,
rewrite ←one_plus_eq_succ (b+m),
rewrite plus_assoc,
rewrite Hm
end
-- Now your turn!
definition times : xnat → xnat → xnat
| n zero := zero
| n (succ p) := (times n p) + n
notation a * b := times a b
theorem times_zero (a : xnat) : a * zero = zero := rfl
theorem zero_times (a : xnat) : zero * a = zero := sorry
theorem times_one (a : xnat) : a * (succ zero) = a := sorry
theorem one_times (a : xnat) : (succ zero) * a = a := sorry
theorem right_distrib (a b c : xnat) : a * (b + c) = a* b + a * c := sorry
-- I'll do the next one for you because I found it the hardest. Feel
-- free to delete it and find your own proof -- or even a better proof!
theorem left_distrib (a b c : xnat) : (a + b) * c = a * c + b * c :=
begin
induction c with n Hn,
unfold times,
refl,
rw [←plus_one_eq_succ,right_distrib,Hn,right_distrib,right_distrib],
rw [times_one,times_one,times_one],
rw [plus_assoc,←plus_assoc (b*n),plus_comm (b*n),←plus_assoc,←plus_assoc,←plus_assoc],
end
theorem times_assoc (a b c : xnat) : (a * b) * c = a * (b * c) := sorry
theorem times_comm (a b : xnat) : a * b = b * a := sorry
definition lessthan : xnat → xnat → Prop
| zero zero := false
| (succ m) zero := false
| zero (succ p) := true
| (succ m) (succ p) := lessthan m p
notation a < b := lessthan a b
theorem plus_succ_equals_succ (a b : xnat) : a + (succ b) = succ (a + b) := sorry
theorem inequality_A1 (a b t : xnat) : a < b → a + t < b + t := sorry
-- A1 : a<b -> a+t<b+t
-- A2 : a<b, b<c -> a<c
-- A3 : x<y or x=y or x>y
-- A4 : x>0,y>0 -> xy>0
end xena
|
6faafbc576f9627b446a1518a384801da81f1a23
|
33340b3a23ca62ef3c8a7f6a2d4e14c07c6d3354
|
/lia/eval_sqe.lean
|
d716daebbb9fe1b2958ad5eee7b23696f8322f1f
|
[] |
no_license
|
lclem/cooper
|
79554e72ced343c64fed24b2d892d24bf9447dfe
|
812afc6b158821f2e7dac9c91d3b6123c7a19faf
|
refs/heads/master
| 1,607,554,257,488
| 1,578,694,133,000
| 1,578,694,133,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 12,744
|
lean
|
import .eval_sqe_core .qfree_sqe .wf_sqe
open list
lemma hco_le_eq_of_ne_zero {m i k ks} :
k ≠ 0 → atom.unify m (atom.le i (k::ks)) =
let m' := (m / (abs k)) in
atom.le (m' * i) (znum.sign k :: map_mul m' ks) :=
begin intro h, simp [atom.unify], rw if_neg, apply h end
lemma hco_dvd_eq_of_ne_zero {m d i k ks} :
k ≠ 0 → atom.unify m (atom.dvd d i (k::ks)) =
let m' := (m / k) in
atom.dvd (m' * d) (m' * i) (1 :: map_mul m' ks) :=
begin intro h, simp [atom.unify], rw if_neg, apply h end
lemma hco_ndvd_eq_of_ne_zero {m d i k ks} :
k ≠ 0 → atom.unify m (atom.ndvd d i (k::ks)) =
let m' := (m / k) in
atom.ndvd (m' * d) (m' * i) (1 :: map_mul m' ks) :=
begin intro h, simp [atom.unify], rw if_neg, apply h end
lemma clcm_le_eq_of_ne_zero {i k : znum} {ks : list znum} :
k ≠ 0 → coeffs_lcm (A' (atom.le i (k::ks))) = abs k :=
begin
intro h, simp [coeffs_lcm, formula.atoms_dep_0,
dep_0, formula.atoms, filter, head_coeff ],
rw if_pos, simp [head_coeff, znum.lcms, znum.lcm, num.lcm,
znum.abs_eq_abs_to_znum, znum.abs_one,
num.gcd_one_right, num.div_one], apply h
end
lemma clcm_dvd_eq_of_ne_zero {d i k : znum} {ks : list znum} :
k ≠ 0 → coeffs_lcm (A' (atom.dvd d i (k::ks))) = abs k :=
begin
intro h, simp [coeffs_lcm, formula.atoms_dep_0,
dep_0, formula.atoms, filter, head_coeff ],
rw if_pos, simp [head_coeff, znum.lcms, znum.lcm, num.lcm,
znum.abs_eq_abs_to_znum, znum.abs_one,
num.gcd_one_right, num.div_one], apply h
end
lemma clcm_ndvd_eq {d i : znum} {ks : list znum} :
coeffs_lcm (A' (atom.ndvd d i ks))
= coeffs_lcm (A' (atom.dvd d i ks)) :=
begin
cases ks with k ks; simp [coeffs_lcm, formula.atoms_dep_0,
dep_0, formula.atoms, filter, head_coeff ],
by_cases hkz : k = 0,
{ subst hkz, repeat {rw if_neg}, simp, simp, },
{ repeat {rw if_pos}, simp [head_coeff], assumption, assumption }
end
lemma eval_hco_le_iff {lcm z i : znum} {zs ks : list znum}
(hpos : 0 < lcm) (hdvd : coeffs_lcm (A' atom.le i ks) ∣ lcm) :
(A' (atom.unify lcm (atom.le i ks))).eval (lcm * z :: zs)
↔ (A' (atom.le i ks)).eval (z :: zs) :=
begin
cases ks with k ks,
{ simp [atom.unify, eval_le] },
{
by_cases hkz : k = 0,
{ subst hkz, simp [atom.unify, eval_le, znum.dot_prod] },
{
rw clcm_le_eq_of_ne_zero hkz at hdvd,
rw (hco_le_eq_of_ne_zero hkz), simp [eval_le, znum.dot_prod],
apply calc
lcm / abs k * i ≤ znum.sign k * (lcm * z) + znum.dot_prod (map_mul (lcm / abs k) ks) zs
↔ (lcm / abs k) * i ≤ (lcm / abs k) * (znum.dot_prod ks zs + k * z) :
begin
rw [mul_add, add_comm, znum.map_mul_dot_prod],
have heq : znum.sign k * (lcm * z) = lcm / abs k * (k * z),
{ rw [(mul_assoc _ k _).symm, (znum.div_mul_comm _ _ _ hdvd),
(mul_comm lcm k), (znum.div_mul_comm _ _ _ _).symm,
znum.sign_eq_div_abs, mul_assoc], rw znum.abs_dvd },
rw heq,
end
... ↔ i ≤ znum.dot_prod ks zs + k * z :
begin
apply znum.mul_le_mul_iff_le_of_pos_left,
apply znum.div_pos_of_pos_of_dvd hpos (abs_nonneg _) hdvd
end
}
}
end
lemma eval_hco_dvd_iff {lcm z d i : znum} {zs ks}
(hpos : lcm > 0) (hdvd : coeffs_lcm (A' atom.dvd d i ks) ∣ lcm) :
(A' (atom.unify lcm (atom.dvd d i ks))).eval (lcm * z :: zs)
↔ (A' (atom.dvd d i ks)).eval (z :: zs) :=
begin
cases ks with k ks,
{ simp [atom.unify, eval_dvd] },
{
by_cases hkz : k = 0,
{ subst hkz, simp [atom.unify, eval_dvd, znum.dot_prod] },
{
rw clcm_dvd_eq_of_ne_zero hkz at hdvd,
rw (hco_dvd_eq_of_ne_zero hkz), simp [eval_dvd, znum.dot_prod],
apply calc
lcm / k * d ∣ lcm * z + (lcm / k * i + znum.dot_prod (map_mul (lcm / k) ks) zs)
↔ (lcm / k) * d ∣ (lcm / k) * (i + (znum.dot_prod ks zs + k * z)) :
begin
rw [mul_add, znum.map_mul_dot_prod,
add_comm, mul_add, add_assoc],
have heq : lcm / k * (k * z) = lcm * z,
{ rw [(mul_assoc _ _ _).symm, znum.div_mul_cancel],
rw znum.abs_dvd at hdvd, apply hdvd },
rw heq
end
... ↔ d ∣ i + (znum.dot_prod ks zs + k * z) :
begin
apply mul_dvd_mul_iff_left, apply znum.div_nonzero,
apply znum.nonzero_of_pos hpos,
rw znum.abs_dvd at hdvd, apply hdvd,
end
}
}
end
lemma eval_hco_ndvd_iff {m d i ks} {zs : list znum} :
(A' (atom.unify m (atom.ndvd d i ks))).eval zs
↔ ¬ (A' (atom.unify m (atom.dvd d i ks))).eval zs :=
begin
cases ks with k ks;
simp [atom.unify, eval_dvd, eval_ndvd],
by_cases hkz : k = 0,
{ subst hkz, repeat {rw if_pos},
simp [eval_dvd, eval_ndvd], refl },
{ repeat {rw if_neg},
simp [eval_dvd, eval_ndvd],
assumption, assumption }
end
lemma coeffs_lcm_and (p q) :
coeffs_lcm (p ∧' q) = znum.lcm (coeffs_lcm p) (coeffs_lcm q) :=
begin
apply znum.lcms_distrib, apply list.equiv.trans,
apply list.map_equiv_map_of_equiv,
simp [formula.atoms_dep_0, formula.atoms], apply equiv.refl,
simp [map_append, formula.atoms_dep_0],
apply equiv.symm union_equiv_append,
end
lemma coeffs_lcm_or (p q) :
coeffs_lcm (p ∨' q) = znum.lcm (coeffs_lcm p) (coeffs_lcm q) :=
begin
apply znum.lcms_distrib, apply list.equiv.trans,
apply list.map_equiv_map_of_equiv,
simp [formula.atoms_dep_0, formula.atoms], apply equiv.refl,
simp [map_append, formula.atoms_dep_0],
apply equiv.symm union_equiv_append,
end
lemma hcso_prsv_1 (lcm z : znum) (zs) (hlcm1 : lcm > 0) (hdvd : lcm ∣ z) :
∀ (p : formula), nqfree p → formula.wf p → (has_dvd.dvd (coeffs_lcm p) lcm)
→ (formula.map (atom.unify lcm) p).eval (z::zs) → p.eval ((has_div.div z lcm)::zs)
| ⊤' hf hn _ h := begin simp [eval_true] end
| ⊥' hf hn _ h := begin exfalso, apply h end
| (A' (atom.le i ks)) hf hn hlcm2 h :=
begin
simp [formula.map] at h, have heq : z = lcm * (z / lcm),
{ rw [mul_comm, znum.div_mul_cancel hdvd] },
rw heq at h, rw eval_hco_le_iff at h; try {assumption},
end
| (A' (atom.dvd d i ks)) hf hn hlcm2 h :=
begin
simp [formula.map] at h, have heq : z = lcm * (z / lcm),
{ rw [mul_comm, znum.div_mul_cancel hdvd] }, rw heq at h,
rewrite eval_hco_dvd_iff at h; try {assumption},
end
| (A' (atom.ndvd d i ks)) hf hn hlcm2 h :=
begin
simp [formula.map] at h, have heq : z = lcm * (z / lcm),
{ rw [mul_comm, znum.div_mul_cancel hdvd] }, rw heq at h,
rewrite eval_hco_ndvd_iff at h, rewrite eval_hco_dvd_iff at h,
rw eval_ndvd', assumption, assumption,
rw clcm_ndvd_eq at hlcm2, assumption,
end
| (p ∧' q) hf hn hlcm2 h :=
begin
rewrite eval_and, cases hf with hfp hfq, cases hn with hnp hnq,
unfold formula.map at h, cases h with hp hq, rewrite coeffs_lcm_and at hlcm2,
apply and.intro; apply hcso_prsv_1; try {assumption},
apply dvd.trans _ hlcm2, apply znum.dvd_lcm_left,
apply dvd.trans _ hlcm2, apply znum.dvd_lcm_right,
end
| (p ∨' q) hf hn hlcm2 h :=
begin
rewrite coeffs_lcm_or at hlcm2, rewrite eval_or,
cases hf with hfp hfq, cases hn with hnp hnq,
unfold formula.map at h, rewrite eval_or at h, cases h with hp hq,
apply or.inl, apply hcso_prsv_1; try {assumption},
apply dvd.trans _ hlcm2, apply znum.dvd_lcm_left,
apply or.inr, apply hcso_prsv_1; try {assumption},
apply dvd.trans _ hlcm2, apply znum.dvd_lcm_right
end
| (¬' p) hf hn _ h := by cases hf
| (∃' p) hf hn _ h := by cases hf
lemma hcso_prsv_2 (lcm z : znum) (zs) (hpos : lcm > 0) :
∀ (p : formula), nqfree p → formula.wf p → has_dvd.dvd (coeffs_lcm p) lcm
→ p.eval (z::zs) → (formula.map (atom.unify lcm) p).eval ((lcm * z)::zs)
| ⊤' hf hn hdvd h := trivial
| ⊥' hf hn hdvd h := by cases h
| (A' (atom.le i ks)) hf hn hdvd h :=
begin
unfold formula.map, rewrite eval_hco_le_iff,
apply h, apply hpos, apply hdvd
end
| (A' (atom.dvd d i ks)) hf hn hdvd h :=
begin
unfold formula.map, rewrite eval_hco_dvd_iff,
apply h, apply hpos, apply hdvd
end
| (A' (atom.ndvd d i ks)) hf hn hdvd h :=
begin
unfold formula.map, rw [eval_hco_ndvd_iff, eval_hco_dvd_iff],
apply h, apply hpos, rw clcm_ndvd_eq at hdvd, apply hdvd
end
| (p ∧' q) hf hn hdvd h :=
begin
unfold formula.map, rewrite eval_and,
rewrite eval_and at h, cases h with hp hq,
cases hn with hnp hnq, cases hf with hfp hfq,
rewrite coeffs_lcm_and at hdvd, apply and.intro;
apply hcso_prsv_2; try {assumption},
apply dvd.trans _ hdvd, apply znum.dvd_lcm_left,
apply dvd.trans _ hdvd, apply znum.dvd_lcm_right
end
| (p ∨' q) hf hn hdvd h :=
begin
unfold formula.map, rewrite eval_or, rewrite eval_or at h,
cases hn with hnp hnq, cases hf with hfp hfq,
rewrite coeffs_lcm_or at hdvd,
cases h with hp hq, apply or.inl,
apply hcso_prsv_2; try {assumption},
apply dvd.trans _ hdvd, apply znum.dvd_lcm_left,
apply or.inr, apply hcso_prsv_2; try {assumption},
apply dvd.trans _ hdvd, apply znum.dvd_lcm_right
end
| (¬' p) hf hn hdvd h := by cases hf
| (∃' p) hf hn hdvd h := by cases hf
lemma coeffs_lcm_pos (p) :
coeffs_lcm p > 0 :=
begin
apply znum.lcms_pos,
intros z hz, rewrite list.mem_map at hz,
cases hz with a ha, cases ha with ha1 ha2,
subst ha2, unfold formula.atoms_dep_0 at ha1,
rw (@mem_filter _ dep_0 _ a (formula.atoms p)) at ha1,
apply ha1^.elim_right
end
lemma hcso_prsv :
∀ (p : formula) (hf : nqfree p) (hn : formula.wf p) (bs : list znum),
(∃ (b : znum), (p.unify).eval (b :: bs)) ↔ ∃ (b : znum), p.eval (b :: bs) :=
begin
intros p hf hn bs, apply iff.intro;
intro h; cases h with z hz,
{ unfold formula.unify at hz, rewrite eval_and at hz,
existsi (has_div.div z (coeffs_lcm p)),
cases hz with hz1 hz2, apply hcso_prsv_1;
try {assumption}, rewrite eval_dvd at hz1,
rewrite zero_add at hz1, apply coeffs_lcm_pos,
simp [eval_dvd, znum.dot_prod] at hz1,
apply hz1, apply dvd_refl },
{ existsi (coeffs_lcm p * z), unfold formula.unify,
rewrite eval_and, apply and.intro,
rewrite eval_dvd, rewrite zero_add,
simp [znum.dot_prod], apply hcso_prsv_2;
try {assumption}, apply coeffs_lcm_pos,
apply dvd_refl }
end
lemma unified_sign {k} :
znum.sign k = -1 ∨ znum.sign k = 0 ∨ znum.sign k = 1 :=
begin
cases lt_trichotomy k 0 with h h,
{ rw znum.sign_eq_neg_one_of_neg h, apply or.inl rfl },
cases h with h h,
{ rw znum.sign_eq_zero_iff_zero, apply or.inr (or.inl h) },
{ rw znum.sign_eq_one_of_pos h, apply or.inr (or.inr rfl) },
end
lemma unified_atom_hco {k} :
∀ {a}, (atom.unify k a).unified
| (atom.le i []) := or.inr (or.inl rfl)
| (atom.ndvd d i []) := or.inr (or.inl rfl)
| (atom.le i (k::ks)) :=
begin
by_cases hkz : k = 0,
{ subst hkz, apply or.inr (or.inl rfl) },
{ rw hco_le_eq_of_ne_zero hkz, apply unified_sign }
end
| (atom.dvd d i []) := or.inr (or.inl rfl)
| (atom.dvd d i (k::ks)) :=
begin
by_cases hkz : k = 0,
{ subst hkz, apply or.inr (or.inl rfl) },
{ rw hco_dvd_eq_of_ne_zero hkz, apply or.inr (or.inr rfl) }
end
| (atom.ndvd d i (k::ks)) :=
begin
by_cases hkz : k = 0,
{ subst hkz, apply or.inr (or.inl rfl) },
{ rw hco_ndvd_eq_of_ne_zero hkz, apply or.inr (or.inr rfl) }
end
lemma unified_formula.map_hco {k} :
∀ p, nqfree p → unified (formula.map (atom.unify k) p)
| ⊤' hf a hm := by cases hm
| ⊥' hf a hm := by cases hm
| (A' a') hf a hm :=
begin
simp [formula.atoms, formula.map] at hm, subst hm,
apply unified_atom_hco,
end
| (p ∧' q) hf a hm :=
begin
cases hf with hfp hfq, simp [formula.atoms, formula.map] at hm,
cases hm, apply unified_formula.map_hco p hfp _ hm,
apply unified_formula.map_hco q hfq _ hm,
end
| (p ∨' q) hf a hm :=
begin
cases hf with hfp hfq, simp [formula.atoms, formula.map] at hm,
cases hm, apply unified_formula.map_hco p hfp _ hm,
apply unified_formula.map_hco q hfq _ hm,
end
| (¬' p) hf a hm := by cases hf
| (∃' p) hf a hm := by cases hf
lemma unified_hcso :
∀ p, nqfree p → unified p.unify :=
begin
intros p hf, simp [unified, formula.atoms, formula.unify],
constructor, apply (or.inr (or.inr rfl)),
apply unified_formula.map_hco _ hf
end
lemma eval_sqe :
∀ {p : formula}, nqfree p → formula.wf p
→ ∀ {bs : list znum}, (sqe p).eval bs ↔ ∃ (b : znum), p.eval (b :: bs) :=
begin
intros p hf hn bs, unfold sqe,
rewrite eval_sqe_core_iff,
apply hcso_prsv p hf hn bs,
apply nqfree_unify hf,
apply formula.wf_hcso hn,
apply unified_hcso, apply hf
end
|
3e5395837f8fb91014c78ace25c87ccb2aa2055c
|
32025d5c2d6e33ad3b6dd8a3c91e1e838066a7f7
|
/src/Init/LeanInit.lean
|
790759176bc3a8099f22024e14b255b3e8d072e7
|
[
"Apache-2.0"
] |
permissive
|
walterhu1015/lean4
|
b2c71b688975177402758924eaa513475ed6ce72
|
2214d81e84646a905d0b20b032c89caf89c737ad
|
refs/heads/master
| 1,671,342,096,906
| 1,599,695,985,000
| 1,599,695,985,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 28,767
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura and Sebastian Ullrich
-/
prelude
import Init.Data.Option.BasicAux
import Init.Data.String.Basic
import Init.Data.Array.Basic
import Init.Data.UInt
import Init.Data.Hashable
import Init.Control.Reader
import Init.Control.EState
import Init.Control.StateRef
import Init.Control.Option
namespace Lean
/-
Basic Lean types used to implement builtin commands and extensions.
Note that this file is part of the Lean `Init` library instead of
`Lean` actual implementation.
The idea is to allow users to implement simple parsers, macros and tactics
without importing the whole `Lean` module.
It also allow us to use extensions to develop the `Init` library.
-/
/- Valid identifier names -/
def isGreek (c : Char) : Bool :=
0x391 ≤ c.val && c.val ≤ 0x3dd
def isLetterLike (c : Char) : Bool :=
(0x3b1 ≤ c.val && c.val ≤ 0x3c9 && c.val ≠ 0x3bb) || -- Lower greek, but lambda
(0x391 ≤ c.val && c.val ≤ 0x3A9 && c.val ≠ 0x3A0 && c.val ≠ 0x3A3) || -- Upper greek, but Pi and Sigma
(0x3ca ≤ c.val && c.val ≤ 0x3fb) || -- Coptic letters
(0x1f00 ≤ c.val && c.val ≤ 0x1ffe) || -- Polytonic Greek Extended Character Set
(0x2100 ≤ c.val && c.val ≤ 0x214f) || -- Letter like block
(0x1d49c ≤ c.val && c.val ≤ 0x1d59f) -- Latin letters, Script, Double-struck, Fractur
def isSubScriptAlnum (c : Char) : Bool :=
(0x2080 ≤ c.val && c.val ≤ 0x2089) || -- numeric subscripts
(0x2090 ≤ c.val && c.val ≤ 0x209c) ||
(0x1d62 ≤ c.val && c.val ≤ 0x1d6a)
def isIdFirst (c : Char) : Bool :=
c.isAlpha || c = '_' || isLetterLike c
def isIdRest (c : Char) : Bool :=
c.isAlphanum || c = '_' || c = '\'' || c == '!' || c == '?' || isLetterLike c || isSubScriptAlnum c
def idBeginEscape := '«'
def idEndEscape := '»'
def isIdBeginEscape (c : Char) : Bool :=
c = idBeginEscape
def isIdEndEscape (c : Char) : Bool :=
c = idEndEscape
/- Hierarchical names -/
inductive Name
| anonymous : Name
| str : Name → String → USize → Name
| num : Name → Nat → USize → Name
instance Name.inhabited : Inhabited Name :=
⟨Name.anonymous⟩
protected def Name.hash : Name → USize
| Name.anonymous => 1723
| Name.str p s h => h
| Name.num p v h => h
instance Name.hashable : Hashable Name := ⟨Name.hash⟩
@[export lean_name_mk_string]
def mkNameStr (p : Name) (s : String) : Name :=
Name.str p s $ mixHash (hash p) (hash s)
@[export lean_name_mk_numeral]
def mkNameNum (p : Name) (v : Nat) : Name :=
Name.num p v $ mixHash (hash p) (hash v)
def mkNameSimple (s : String) : Name :=
mkNameStr Name.anonymous s
namespace Name
@[extern "lean_name_eq"]
protected def Name.beq : (@& Name) → (@& Name) → Bool
| anonymous, anonymous => true
| str p₁ s₁ _, str p₂ s₂ _ => s₁ == s₂ && Name.beq p₁ p₂
| num p₁ n₁ _, num p₂ n₂ _ => n₁ == n₂ && Name.beq p₁ p₂
| _, _ => false
instance : HasBeq Name := ⟨Name.beq⟩
def toStringWithSep (sep : String) : Name → String
| anonymous => "[anonymous]"
| str anonymous s _ => s
| num anonymous v _ => toString v
| str n s _ => toStringWithSep n ++ sep ++ s
| num n v _ => toStringWithSep n ++ sep ++ repr v
protected def toString : Name → String :=
toStringWithSep "."
instance : HasToString Name :=
⟨Name.toString⟩
protected def append : Name → Name → Name
| n, anonymous => n
| n, str p s _ => mkNameStr (append n p) s
| n, num p d _ => mkNameNum (append n p) d
instance : HasAppend Name :=
⟨Name.append⟩
end Name
structure NameGenerator :=
(namePrefix : Name := `_uniq)
(idx : Nat := 1)
namespace NameGenerator
instance : Inhabited NameGenerator := ⟨{}⟩
@[inline] def curr (g : NameGenerator) : Name :=
mkNameNum g.namePrefix g.idx
@[inline] def next (g : NameGenerator) : NameGenerator :=
{ g with idx := g.idx + 1 }
@[inline] def mkChild (g : NameGenerator) : NameGenerator × NameGenerator :=
({ namePrefix := mkNameNum g.namePrefix g.idx, idx := 1 },
{ g with idx := g.idx + 1 })
end NameGenerator
class MonadNameGenerator (m : Type → Type) :=
(getNGen : m NameGenerator)
(setNGen : NameGenerator → m Unit)
export MonadNameGenerator (getNGen setNGen)
def mkFreshId {m : Type → Type} [Monad m] [MonadNameGenerator m] : m Name := do
ngen ← getNGen;
let r := ngen.curr;
setNGen ngen.next;
pure r
instance monadNameGeneratorLift (m n : Type → Type) [MonadNameGenerator m] [MonadLift m n] : MonadNameGenerator n :=
{ getNGen := liftM (getNGen : m _),
setNGen := fun ngen => liftM (setNGen ngen : m _) }
/-
Small DSL for describing parsers. We implement an interpreter for it
at `Parser.lean` -/
inductive ParserDescr
| andthen : ParserDescr → ParserDescr → ParserDescr
| orelse : ParserDescr → ParserDescr → ParserDescr
| optional : ParserDescr → ParserDescr
| lookahead : ParserDescr → ParserDescr
| try : ParserDescr → ParserDescr
| many : ParserDescr → ParserDescr
| many1 : ParserDescr → ParserDescr
| sepBy : ParserDescr → ParserDescr → ParserDescr
| sepBy1 : ParserDescr → ParserDescr → ParserDescr
| node : Name → Nat → ParserDescr → ParserDescr
| trailingNode : Name → Nat → ParserDescr → ParserDescr
| symbol : String → ParserDescr
| nonReservedSymbol : String → Bool → ParserDescr
| numLit : ParserDescr
| strLit : ParserDescr
| charLit : ParserDescr
| nameLit : ParserDescr
| ident : ParserDescr
| cat : Name → Nat → ParserDescr
| parser : Name → ParserDescr
instance ParserDescr.inhabited : Inhabited ParserDescr := ⟨ParserDescr.symbol ""⟩
abbrev TrailingParserDescr := ParserDescr
/- Syntax -/
/--
Source information of syntax atoms. All information is generally set for unquoted syntax and unset for syntax in
syntax quotations, but syntax transformations might want to invalidate only one side to make the pretty printer
reformat it. In the special case of the delaborator, we also use purely synthetic position information without
whitespace information. -/
structure SourceInfo :=
/- Will be inferred after parsing by `Syntax.updateLeading`. During parsing,
it is not at all clear what the preceding token was, especially with backtracking. -/
(leading : Option Substring := none)
(pos : Option String.Pos := none)
(trailing : Option Substring := none)
instance SourceInfo.inhabited : Inhabited SourceInfo := ⟨{}⟩
abbrev SyntaxNodeKind := Name
/- Syntax AST -/
inductive Syntax
| missing : Syntax
| node (kind : SyntaxNodeKind) (args : Array Syntax) : Syntax
| atom (info : SourceInfo) (val : String) : Syntax
| ident (info : SourceInfo) (rawVal : Substring) (val : Name) (preresolved : List (Name × List String)) : Syntax
instance Syntax.inhabited : Inhabited Syntax :=
⟨Syntax.missing⟩
/- Builtin kinds -/
def choiceKind : SyntaxNodeKind := `choice
def nullKind : SyntaxNodeKind := `null
def identKind : SyntaxNodeKind := `ident
def strLitKind : SyntaxNodeKind := `strLit
def charLitKind : SyntaxNodeKind := `charLit
def numLitKind : SyntaxNodeKind := `numLit
def nameLitKind : SyntaxNodeKind := `nameLit
def fieldIdxKind : SyntaxNodeKind := `fieldIdx
namespace Syntax
def getKind (stx : Syntax) : SyntaxNodeKind :=
match stx with
| Syntax.node k args => k
-- We use these "pseudo kinds" for antiquotation kinds.
-- For example, an antiquotation `$id:ident` (using Lean.Parser.Term.ident)
-- is compiled to ``if stx.isOfKind `ident ...``
| Syntax.missing => `missing
| Syntax.atom _ v => mkNameSimple v
| Syntax.ident _ _ _ _ => identKind
def updateKind (stx : Syntax) (k : SyntaxNodeKind) : Syntax :=
match stx with
| Syntax.node _ args => Syntax.node k args
| _ => stx
def isOfKind : Syntax → SyntaxNodeKind → Bool
| stx, k => stx.getKind == k
def getArg (stx : Syntax) (i : Nat) : Syntax :=
match stx with
| Syntax.node _ args => args.get! i
| _ => Syntax.missing -- panic! "Syntax.getArg: not a node"
def getArgs (stx : Syntax) : Array Syntax :=
match stx with
| Syntax.node _ args => args
| _ => #[] -- panic! "Syntax.getArgs: not a node"
/-- Retrieve the left-most leaf's info in the Syntax tree. -/
partial def getHeadInfo : Syntax → Option SourceInfo
| atom info _ => info
| ident info _ _ _ => info
| node _ args => args.findSome? getHeadInfo
| _ => none
end Syntax
/-
Runtime support for making quotation terms auto-hygienic, by mangling identifiers
introduced by them with a "macro scope" supplied by the context. Details to appear in a
paper soon.
-/
abbrev MacroScope := Nat
/-- Macro scope used internally. It is not available for our frontend. -/
def reservedMacroScope := 0
/-- First macro scope available for our frontend -/
def firstFrontendMacroScope := reservedMacroScope + 1
/-- A monad that supports syntax quotations. Syntax quotations (in term
position) are monadic values that when executed retrieve the current "macro
scope" from the monad and apply it to every identifier they introduce
(independent of whether this identifier turns out to be a reference to an
existing declaration, or an actually fresh binding during further
elaboration). -/
class MonadQuotation (m : Type → Type) :=
-- Get the fresh scope of the current macro invocation
(getCurrMacroScope : m MacroScope)
(getMainModule : m Name)
/- Execute action in a new macro invocation context. This transformer should be
used at all places that morally qualify as the beginning of a "macro call",
e.g. `elabCommand` and `elabTerm` in the case of the elaborator. However, it
can also be used internally inside a "macro" if identifiers introduced by
e.g. different recursive calls should be independent and not collide. While
returning an intermediate syntax tree that will recursively be expanded by
the elaborator can be used for the same effect, doing direct recursion inside
the macro guarded by this transformer is often easier because one is not
restricted to passing a single syntax tree. Modelling this helper as a
transformer and not just a monadic action ensures that the current macro
scope before the recursive call is restored after it, as expected. -/
(withFreshMacroScope {α : Type} : m α → m α)
export MonadQuotation
/-
We represent a name with macro scopes as
```
<actual name>._@.(<module_name>.<scopes>)*.<module_name>._hyg.<scopes>
```
Example: suppose the module name is `Init.Data.List.Basic`, and name is `foo.bla`, and macroscopes [2, 5]
```
foo.bla._@.Init.Data.List.Basic._hyg.2.5
```
We may have to combine scopes from different files/modules.
The main modules being processed is always the right most one.
This situation may happen when we execute a macro generated in
an imported file in the current file.
```
foo.bla._@.Init.Data.List.Basic.2.1.Init.Lean.Expr_hyg.4
```
The delimiter `_hyg` is used just to improve the `hasMacroScopes` performance.
-/
def Name.hasMacroScopes : Name → Bool
| Name.str _ str _ => str == "_hyg"
| Name.num p _ _ => Name.hasMacroScopes p
| _ => false
private def eraseMacroScopesAux : Name → Name
| Name.str p str _ => if str == "_@" then p else eraseMacroScopesAux p
| Name.num p _ _ => eraseMacroScopesAux p
| Name.anonymous => unreachable!
def Name.eraseMacroScopes (n : Name) : Name :=
if n.hasMacroScopes then eraseMacroScopesAux n else n
private def simpMacroScopesAux : Name → Name
| Name.num p i _ => mkNameNum (simpMacroScopesAux p) i
| n => eraseMacroScopesAux n
/- Helper function we use to create binder names that do not need to be unique. -/
@[export lean_simp_macro_scopes]
def Name.simpMacroScopes (n : Name) : Name :=
if n.hasMacroScopes then simpMacroScopesAux n else n
structure MacroScopesView :=
(name : Name)
(imported : Name)
(mainModule : Name)
(scopes : List MacroScope)
instance MacroScopesView.inhabited : Inhabited MacroScopesView :=
⟨⟨arbitrary _, arbitrary _, arbitrary _, arbitrary _⟩⟩
def MacroScopesView.review (view : MacroScopesView) : Name :=
if view.scopes.isEmpty then view.name
else
let base := (mkNameStr ((mkNameStr view.name "_@") ++ view.imported ++ view.mainModule) "_hyg");
view.scopes.foldl mkNameNum base
private def assembleParts : List Name → Name → Name
| [], acc => acc
| (Name.str _ s _) :: ps, acc => assembleParts ps (mkNameStr acc s)
| (Name.num _ n _) :: ps, acc => assembleParts ps (mkNameNum acc n)
| _, _ => unreachable!
private def extractImported (scps : List MacroScope) (mainModule : Name) : Name → List Name → MacroScopesView
| n@(Name.str p str _), parts =>
if str == "_@" then
{ name := p, mainModule := mainModule, imported := assembleParts parts Name.anonymous, scopes := scps }
else
extractImported p (n :: parts)
| n@(Name.num p str _), parts => extractImported p (n :: parts)
| _, _ => unreachable!
private def extractMainModule (scps : List MacroScope) : Name → List Name → MacroScopesView
| n@(Name.str p str _), parts =>
if str == "_@" then
{ name := p, mainModule := assembleParts parts Name.anonymous, imported := Name.anonymous, scopes := scps }
else
extractMainModule p (n :: parts)
| n@(Name.num p num _), acc => extractImported scps (assembleParts acc Name.anonymous) n []
| _, _ => unreachable!
private def extractMacroScopesAux : Name → List MacroScope → MacroScopesView
| Name.num p scp _, acc => extractMacroScopesAux p (scp::acc)
| Name.str p str _, acc => extractMainModule acc p [] -- str must be "_hyg"
| _, _ => unreachable!
/--
Revert all `addMacroScope` calls. `v = extractMacroScopes n → n = v.review`.
This operation is useful for analyzing/transforming the original identifiers, then adding back
the scopes (via `MacroScopesView.review`). -/
def extractMacroScopes (n : Name) : MacroScopesView :=
if n.hasMacroScopes then
extractMacroScopesAux n []
else
{ name := n, scopes := [], imported := Name.anonymous, mainModule := Name.anonymous }
def addMacroScope (mainModule : Name) (n : Name) (scp : MacroScope) : Name :=
if n.hasMacroScopes then
let view := extractMacroScopes n;
if view.mainModule == mainModule then
mkNameNum n scp
else
{ view with imported := view.scopes.foldl mkNameNum (view.imported ++ view.mainModule), mainModule := mainModule, scopes := [scp] }.review
else
mkNameNum (mkNameStr (mkNameStr n "_@" ++ mainModule) "_hyg") scp
@[inline] def MonadQuotation.addMacroScope {m : Type → Type} [MonadQuotation m] [Monad m] (n : Name) : m Name := do
mainModule ← getMainModule;
scp ← getCurrMacroScope;
pure $ addMacroScope mainModule n scp
def defaultMaxRecDepth := 512
def maxRecDepthErrorMessage : String :=
"maximum recursion depth has been reached (use `set_option maxRecDepth <num>` to increase limit)"
namespace Macro
structure Context :=
(mainModule : Name)
(currMacroScope : MacroScope)
(currRecDepth : Nat := 0)
(maxRecDepth : Nat := defaultMaxRecDepth)
inductive Exception
| error : Syntax → String → Exception
| unsupportedSyntax : Exception
end Macro
abbrev MacroM := ReaderT Macro.Context (EStateM Macro.Exception MacroScope)
def Macro.addMacroScope (n : Name) : MacroM Name := do
ctx ← read;
pure $ Lean.addMacroScope ctx.mainModule n ctx.currMacroScope
def Macro.throwUnsupported {α} : MacroM α :=
throw Macro.Exception.unsupportedSyntax
def Macro.throwError {α} (ref : Syntax) (msg : String) : MacroM α :=
throw $ Macro.Exception.error ref msg
@[inline] protected def Macro.withFreshMacroScope {α} (x : MacroM α) : MacroM α := do
fresh ← modifyGet (fun s => (s, s+1));
adaptReader (fun (ctx : Macro.Context) => { ctx with currMacroScope := fresh }) x
@[inline] def Macro.withIncRecDepth {α} (ref : Syntax) (x : MacroM α) : MacroM α := do
ctx ← read;
when (ctx.currRecDepth == ctx.maxRecDepth) $ throw $ Macro.Exception.error ref maxRecDepthErrorMessage;
adaptReader (fun (ctx : Macro.Context) => { ctx with currRecDepth := ctx.currRecDepth + 1 }) x
instance MacroM.monadQuotation : MonadQuotation MacroM :=
{ getCurrMacroScope := fun ctx => pure ctx.currMacroScope,
getMainModule := fun ctx => pure ctx.mainModule,
withFreshMacroScope := @Macro.withFreshMacroScope }
instance monadQuotationTrans {m n : Type → Type} [MonadQuotation m] [MonadLift m n] [MonadFunctorT m m n n] : MonadQuotation n :=
{ getCurrMacroScope := liftM (getCurrMacroScope : m MacroScope),
getMainModule := liftM (getMainModule : m Name),
withFreshMacroScope := fun α => monadMap (fun α => (withFreshMacroScope : m α → m α)) }
abbrev Macro := Syntax → MacroM Syntax
/- Helper functions for processing Syntax programmatically -/
/--
Create an identifier using `SourceInfo` from `src`.
To refer to a specific constant, use `mkCIdentFrom` instead. -/
def mkIdentFrom (src : Syntax) (val : Name) : Syntax :=
let info := src.getHeadInfo.getD {};
Syntax.ident info (toString val).toSubstring val []
/--
Create an identifier referring to a constant `c` using `SourceInfo` from `src`.
This variant of `mkIdentFrom` makes sure that the identifier cannot accidentally
be captured. -/
def mkCIdentFrom (src : Syntax) (c : Name) : Syntax :=
let info := src.getHeadInfo.getD {};
-- Remark: We use the reserved macro scope to make sure there are no accidental collision with our frontend
let id := addMacroScope `_internal c reservedMacroScope;
Syntax.ident info (toString id).toSubstring id [(c, [])]
def mkCIdent (c : Name) : Syntax :=
mkCIdentFrom Syntax.missing c
def mkAtomFrom (src : Syntax) (val : String) : Syntax :=
let info := src.getHeadInfo.getD {};
Syntax.atom info val
def Syntax.identToAtom (stx : Syntax) : Syntax :=
match stx with
| Syntax.ident info _ val _ => Syntax.atom info val.eraseMacroScopes.toString
| _ => stx
@[export lean_mk_syntax_ident]
def mkIdent (val : Name) : Syntax :=
Syntax.ident {} (toString val).toSubstring val []
@[inline] def mkNullNode (args : Array Syntax := #[]) : Syntax :=
Syntax.node nullKind args
def mkSepStx (a : Array Syntax) (sep : Syntax) : Syntax :=
mkNullNode $ a.iterate #[] $ fun i a r =>
if i.val > 0 then
(r.push sep).push a
else
r.push a
def mkOptionalNode (arg : Option Syntax) : Syntax :=
match arg with
| some arg => Syntax.node nullKind #[arg]
| none => Syntax.node nullKind #[]
/-- Create syntax representing a Lean term application -/
def mkAppStx (fn : Syntax) (args : Array Syntax) : Syntax :=
Syntax.node `Lean.Parser.Term.app #[fn, mkNullNode args]
def mkHole (ref : Syntax) : Syntax :=
Syntax.node `Lean.Parser.Term.hole #[mkAtomFrom ref "_"]
def mkCAppStx (fn : Name) (args : Array Syntax) : Syntax :=
mkAppStx (mkCIdent fn) args
def mkStxLit (kind : SyntaxNodeKind) (val : String) (info : SourceInfo := {}) : Syntax :=
let atom : Syntax := Syntax.atom info val;
Syntax.node kind #[atom]
def mkStxStrLit (val : String) (info : SourceInfo := {}) : Syntax :=
mkStxLit strLitKind (repr val) info
def mkStxNumLit (val : String) (info : SourceInfo := {}) : Syntax :=
mkStxLit numLitKind val info
namespace Syntax
/- Recall that we don't have special Syntax constructors for storing numeric and string atoms.
The idea is to have an extensible approach where embedded DSLs may have new kind of atoms and/or
different ways of representing them. So, our atoms contain just the parsed string.
The main Lean parser uses the kind `numLitKind` for storing natural numbers that can be encoded
in binary, octal, decimal and hexadecimal format. `isNatLit` implements a "decoder"
for Syntax objects representing these numerals. -/
private partial def decodeBinLitAux (s : String) : String.Pos → Nat → Option Nat
| i, val =>
if s.atEnd i then some val
else
let c := s.get i;
if c == '0' then decodeBinLitAux (s.next i) (2*val)
else if c == '1' then decodeBinLitAux (s.next i) (2*val + 1)
else none
private partial def decodeOctalLitAux (s : String) : String.Pos → Nat → Option Nat
| i, val =>
if s.atEnd i then some val
else
let c := s.get i;
if '0' ≤ c && c ≤ '7' then decodeOctalLitAux (s.next i) (8*val + c.toNat - '0'.toNat)
else none
private def decodeHexDigit (s : String) (i : String.Pos) : Option (Nat × String.Pos) :=
let c := s.get i;
let i := s.next i;
if '0' ≤ c && c ≤ '9' then some (c.toNat - '0'.toNat, i)
else if 'a' ≤ c && c ≤ 'f' then some (10 + c.toNat - 'a'.toNat, i)
else if 'A' ≤ c && c ≤ 'F' then some (10 + c.toNat - 'A'.toNat, i)
else none
private partial def decodeHexLitAux (s : String) : String.Pos → Nat → Option Nat
| i, val =>
if s.atEnd i then some val
else match decodeHexDigit s i with
| some (d, i) => decodeHexLitAux i (16*val + d)
| none => none
private partial def decodeDecimalLitAux (s : String) : String.Pos → Nat → Option Nat
| i, val =>
if s.atEnd i then some val
else
let c := s.get i;
if '0' ≤ c && c ≤ '9' then decodeDecimalLitAux (s.next i) (10*val + c.toNat - '0'.toNat)
else none
def decodeNatLitVal (s : String) : Option Nat :=
let len := s.length;
if len == 0 then none
else
let c := s.get 0;
if c == '0' then
if len == 1 then some 0
else
let c := s.get 1;
if c == 'x' || c == 'X' then decodeHexLitAux s 2 0
else if c == 'b' || c == 'B' then decodeBinLitAux s 2 0
else if c == 'o' || c == 'O' then decodeOctalLitAux s 2 0
else if c.isDigit then decodeDecimalLitAux s 0 0
else none
else if c.isDigit then decodeDecimalLitAux s 0 0
else none
def isLit? (litKind : SyntaxNodeKind) (stx : Syntax) : Option String :=
match stx with
| Syntax.node k args =>
if k == litKind && args.size == 1 then
match args.get! 0 with
| (Syntax.atom _ val) => some val
| _ => none
else
none
| _ => none
def isNatLitAux (litKind : SyntaxNodeKind) (stx : Syntax) : Option Nat :=
match isLit? litKind stx with
| some val => decodeNatLitVal val
| _ => none
def isNatLit? (s : Syntax) : Option Nat :=
isNatLitAux numLitKind s
def isFieldIdx? (s : Syntax) : Option Nat :=
isNatLitAux fieldIdxKind s
def isIdOrAtom? : Syntax → Option String
| Syntax.atom _ val => some val
| Syntax.ident _ rawVal _ _ => some rawVal.toString
| _ => none
def toNat (stx : Syntax) : Nat :=
match stx.isNatLit? with
| some val => val
| none => 0
private def decodeQuotedChar (s : String) (i : String.Pos) : Option (Char × String.Pos) :=
let c := s.get i;
let i := s.next i;
if c == '\\' then pure ('\\', i)
else if c = '\"' then pure ('\"', i)
else if c = '\'' then pure ('\'', i)
else if c = 'r' then pure ('\r', i)
else if c = 'n' then pure ('\n', i)
else if c = 't' then pure ('\t', i)
else if c = 'x' then do
(d₁, i) ← decodeHexDigit s i;
(d₂, i) ← decodeHexDigit s i;
pure (Char.ofNat (16*d₁ + d₂), i)
else if c = 'u' then do
(d₁, i) ← decodeHexDigit s i;
(d₂, i) ← decodeHexDigit s i;
(d₃, i) ← decodeHexDigit s i;
(d₄, i) ← decodeHexDigit s i;
pure $ (Char.ofNat (16*(16*(16*d₁ + d₂) + d₃) + d₄), i)
else
none
partial def decodeStrLitAux (s : String) : String.Pos → String → Option String
| i, acc => do
let c := s.get i;
let i := s.next i;
if c == '\"' then
pure acc
else if c == '\\' then do
(c, i) ← decodeQuotedChar s i;
decodeStrLitAux i (acc.push c)
else
decodeStrLitAux i (acc.push c)
def decodeStrLit (s : String) : Option String :=
decodeStrLitAux s 1 ""
def isStrLit? (stx : Syntax) : Option String :=
match isLit? strLitKind stx with
| some val => decodeStrLit val
| _ => none
def decodeCharLit (s : String) : Option Char :=
let c := s.get 1;
if c == '\\' then do
(c, _) ← decodeQuotedChar s 2;
pure c
else
pure c
def isCharLit? (stx : Syntax) : Option Char :=
match isLit? charLitKind stx with
| some val => decodeCharLit val
| _ => none
private partial def decodeNameLitAux (s : String) : Nat → Name → Option Name
| i, r =>
let continue? (i : Nat) (r : Name) : Option Name :=
if s.get i == '.' then
decodeNameLitAux (s.next i) r
else if s.atEnd i then
pure r
else
none;
let curr := s.get i;
if isIdBeginEscape curr then
let startPart := s.next i;
let stopPart := s.nextUntil isIdEndEscape startPart;
if !isIdEndEscape (s.get stopPart) then none
else continue? (s.next stopPart) (mkNameStr r (s.extract startPart stopPart))
else if isIdFirst curr then
let startPart := i;
let stopPart := s.nextWhile isIdRest startPart;
continue? stopPart (mkNameStr r (s.extract startPart stopPart))
else
none
def decodeNameLit (s : String) : Option Name :=
if s.get 0 == '`' then
decodeNameLitAux s 1 Name.anonymous
else
none
def isNameLit? (stx : Syntax) : Option Name :=
match isLit? nameLitKind stx with
| some val => decodeNameLit val
| _ => none
def hasArgs : Syntax → Bool
| Syntax.node _ args => args.size > 0
| _ => false
def identToStrLit (stx : Syntax) : Syntax :=
match stx with
| Syntax.ident info _ val _ => mkStxStrLit val.toString info
| _ => stx
def strLitToAtom (stx : Syntax) : Syntax :=
match stx.isStrLit? with
| none => stx
| some val => Syntax.atom stx.getHeadInfo.get! val
def isAtom : Syntax → Bool
| atom _ _ => true
| _ => false
def isIdent : Syntax → Bool
| ident _ _ _ _ => true
| _ => false
def getId : Syntax → Name
| ident _ _ val _ => val
| _ => Name.anonymous
def isNone (stx : Syntax) : Bool :=
match stx with
| Syntax.node k args => k == nullKind && args.size == 0
| _ => false
def getOptional? (stx : Syntax) : Option Syntax :=
match stx with
| Syntax.node k args => if k == nullKind && args.size == 1 then some (args.get! 0) else none
| _ => none
def getOptionalIdent? (stx : Syntax) : Option Name :=
match stx.getOptional? with
| some stx => some stx.getId
| none => none
partial def findAux (p : Syntax → Bool) : Syntax → Option Syntax
| stx@(Syntax.node _ args) => if p stx then some stx else args.findSome? findAux
| stx => if p stx then some stx else none
def find? (stx : Syntax) (p : Syntax → Bool) : Option Syntax :=
findAux p stx
end Syntax
end Lean
namespace Array
abbrev getSepElems := @getEvenElems
open Lean
private partial def filterSepElemsMAux {m : Type → Type} [Monad m] (a : Array Syntax) (p : Syntax → m Bool) : Nat → Array Syntax → m (Array Syntax)
| i, acc =>
if h : i < a.size then
let stx := a.get ⟨i, h⟩;
condM (p stx)
(if acc.isEmpty then
filterSepElemsMAux (i+2) (acc.push stx)
else if hz : i ≠ 0 then
have i.pred < i from Nat.predLt hz;
let sepStx := a.get ⟨i.pred, Nat.ltTrans this h⟩;
filterSepElemsMAux (i+2) ((acc.push sepStx).push stx)
else
filterSepElemsMAux (i+2) (acc.push stx))
(filterSepElemsMAux (i+2) acc)
else
pure acc
def filterSepElemsM {m : Type → Type} [Monad m] (a : Array Syntax) (p : Syntax → m Bool) : m (Array Syntax) :=
filterSepElemsMAux a p 0 #[]
def filterSepElems (a : Array Syntax) (p : Syntax → Bool) : Array Syntax :=
Id.run $ a.filterSepElemsM p
private partial def mapSepElemsMAux {m : Type → Type} [Monad m] (a : Array Syntax) (f : Syntax → m Syntax) : Nat → Array Syntax → m (Array Syntax)
| i, acc =>
if h : i < a.size then do
let stx := a.get ⟨i, h⟩;
if i % 2 == 0 then do
stx ← f stx;
mapSepElemsMAux (i+1) (acc.push stx)
else
mapSepElemsMAux (i+1) (acc.push stx)
else
pure acc
def mapSepElemsM {m : Type → Type} [Monad m] (a : Array Syntax) (f : Syntax → m Syntax) : m (Array Syntax) :=
mapSepElemsMAux a f 0 #[]
def mapSepElems (a : Array Syntax) (f : Syntax → Syntax) : Array Syntax :=
Id.run $ a.mapSepElemsM f
end Array
/--
Gadget for automatic parameter support. This is similar to the `optParam` gadget, but it uses
the given tactic.
Like `optParam`, this gadget only affects elaboration.
For example, the tactic will *not* be invoked during type class resolution. -/
abbrev autoParam.{u} (α : Sort u) (tactic : Lean.Syntax) : Sort u := α
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.