blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
224ad6c975d563cccc19a61f1909e60f5a769fd4
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/number_theory/cyclotomic/gal.lean
42b0de42698bf1c2c7668f7f16f59d2a447f83ad
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
7,269
lean
/- Copyright (c) 2022 Eric Rodriguez. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Rodriguez -/ import number_theory.cyclotomic.primitive_roots import field_theory.polynomial_galois_group /-! # Galois group of cyclotomic extensions In this file, we show the relationship between the Galois group of `K(ζₙ)` and `(zmod n)ˣ`; it is always a subgroup, and if the `n`th cyclotomic polynomial is irreducible, they are isomorphic. ## Main results * `is_primitive_root.aut_to_pow_injective`: `is_primitive_root.aut_to_pow` is injective in the case that it's considered over a cyclotomic field extension. * `is_cyclotomic_extension.aut_equiv_pow`: If the `n`th cyclotomic polynomial is irreducible in `K`, then `aut_to_pow` is a `mul_equiv` (for example, in `ℚ` and certain `𝔽ₚ`). * `gal_X_pow_equiv_units_zmod`, `gal_cyclotomic_equiv_units_zmod`: Repackage `aut_equiv_pow` in terms of `polynomial.gal`. * `is_cyclotomic_extension.aut.comm_group`: Cyclotomic extensions are abelian. ## References * https://kconrad.math.uconn.edu/blurbs/galoistheory/cyclotomic.pdf ## TODO * We currently can get away with the fact that the power of a primitive root is a primitive root, but the correct long-term solution for computing other explicit Galois groups is creating `power_basis.map_conjugate`; but figuring out the exact correct assumptions + proof for this is mathematically nontrivial. (Current thoughts: the correct condition is that the annihilating ideal of both elements is equal. This may not hold in an ID, and definitely holds in an ICD.) -/ local attribute [instance] pnat.fact_pos variables {n : ℕ+} (K : Type*) [field K] {L : Type*} {μ : L} open polynomial is_cyclotomic_extension open_locale cyclotomic namespace is_primitive_root variables [comm_ring L] [is_domain L] (hμ : is_primitive_root μ n) [algebra K L] [is_cyclotomic_extension {n} K L] /-- `is_primitive_root.aut_to_pow` is injective in the case that it's considered over a cyclotomic field extension. -/ lemma aut_to_pow_injective : function.injective $ hμ.aut_to_pow K := begin intros f g hfg, apply_fun units.val at hfg, simp only [is_primitive_root.coe_aut_to_pow_apply, units.val_eq_coe] at hfg, generalize_proofs hf' hg' at hfg, have hf := hf'.some_spec, have hg := hg'.some_spec, generalize_proofs hζ at hf hg, suffices : f hμ.to_roots_of_unity = g hμ.to_roots_of_unity, { apply alg_equiv.coe_alg_hom_injective, apply (hμ.power_basis K).alg_hom_ext, exact this }, rw zmod.eq_iff_modeq_nat at hfg, refine (hf.trans _).trans hg.symm, rw [←roots_of_unity.coe_pow _ hf'.some, ←roots_of_unity.coe_pow _ hg'.some], congr' 1, rw [pow_eq_pow_iff_modeq], convert hfg, rw [hμ.eq_order_of], rw [←hμ.coe_to_roots_of_unity_coe] {occs := occurrences.pos [2]}, rw [order_of_units, order_of_subgroup] end end is_primitive_root namespace is_cyclotomic_extension variables [comm_ring L] [is_domain L] (hμ : is_primitive_root μ n) [algebra K L] [is_cyclotomic_extension {n} K L] /-- Cyclotomic extensions are abelian. -/ noncomputable def aut.comm_group : comm_group (L ≃ₐ[K] L) := ((zeta_spec n K L).aut_to_pow_injective K).comm_group _ (map_one _) (map_mul _) (map_inv _) (map_div _) (map_pow _) (map_zpow _) variables (h : irreducible (cyclotomic n K)) {K} (L) include h /-- The `mul_equiv` that takes an automorphism `f` to the element `k : (zmod n)ˣ` such that `f μ = μ ^ k`. A stronger version of `is_primitive_root.aut_to_pow`. -/ @[simps] noncomputable def aut_equiv_pow : (L ≃ₐ[K] L) ≃* (zmod n)ˣ := let hζ := zeta_spec n K L, hμ := λ t, hζ.pow_of_coprime _ (zmod.val_coe_unit_coprime t) in { inv_fun := λ t, (hζ.power_basis K).equiv_of_minpoly ((hμ t).power_basis K) begin haveI := is_cyclotomic_extension.ne_zero' n K L, simp only [is_primitive_root.power_basis_gen], have hr := is_primitive_root.minpoly_eq_cyclotomic_of_irreducible ((zeta_spec n K L).pow_of_coprime _ (zmod.val_coe_unit_coprime t)) h, exact ((zeta_spec n K L).minpoly_eq_cyclotomic_of_irreducible h).symm.trans hr end, left_inv := λ f, begin simp only [monoid_hom.to_fun_eq_coe], apply alg_equiv.coe_alg_hom_injective, apply (hζ.power_basis K).alg_hom_ext, simp only [alg_equiv.coe_alg_hom, alg_equiv.map_pow], rw power_basis.equiv_of_minpoly_gen, simp only [is_primitive_root.power_basis_gen, is_primitive_root.aut_to_pow_spec], end, right_inv := λ x, begin simp only [monoid_hom.to_fun_eq_coe], generalize_proofs _ _ h, have key := hζ.aut_to_pow_spec K ((hζ.power_basis K).equiv_of_minpoly ((hμ x).power_basis K) h), have := (hζ.power_basis K).equiv_of_minpoly_gen ((hμ x).power_basis K) h, rw hζ.power_basis_gen K at this, rw [this, is_primitive_root.power_basis_gen] at key, rw ← hζ.coe_to_roots_of_unity_coe at key {occs := occurrences.pos [1, 5]}, simp only [←coe_coe, ←roots_of_unity.coe_pow] at key, replace key := roots_of_unity.coe_injective key, rw [pow_eq_pow_iff_modeq, ←order_of_subgroup, ←order_of_units, hζ.coe_to_roots_of_unity_coe, ←(zeta_spec n K L).eq_order_of, ←zmod.eq_iff_modeq_nat] at key, simp only [zmod.nat_cast_val, zmod.cast_id', id.def] at key, exact units.ext key end, .. (zeta_spec n K L).aut_to_pow K } include hμ variables {L} /-- Maps `μ` to the `alg_equiv` that sends `is_cyclotomic_extension.zeta` to `μ`. -/ noncomputable def from_zeta_aut : L ≃ₐ[K] L := let hζ := (zeta_spec n K L).eq_pow_of_pow_eq_one hμ.pow_eq_one n.pos in (aut_equiv_pow L h).symm $ zmod.unit_of_coprime hζ.some $ ((zeta_spec n K L).pow_iff_coprime n.pos hζ.some).mp $ hζ.some_spec.some_spec.symm ▸ hμ lemma from_zeta_aut_spec : from_zeta_aut hμ h (zeta n K L) = μ := begin simp_rw [from_zeta_aut, aut_equiv_pow_symm_apply], generalize_proofs _ hζ h _ hμ _, rw [←hζ.power_basis_gen K] {occs := occurrences.pos [4]}, rw [power_basis.equiv_of_minpoly_gen, hμ.power_basis_gen K], convert h.some_spec.some_spec, exact zmod.val_cast_of_lt h.some_spec.some end end is_cyclotomic_extension section gal variables [field L] (hμ : is_primitive_root μ n) [algebra K L] [is_cyclotomic_extension {n} K L] (h : irreducible (cyclotomic n K)) {K} /-- `is_cyclotomic_extension.aut_equiv_pow` repackaged in terms of `gal`. Asserts that the Galois group of `cyclotomic n K` is equivalent to `(zmod n)ˣ` if `cyclotomic n K` is irreducible in the base field. -/ noncomputable def gal_cyclotomic_equiv_units_zmod : (cyclotomic n K).gal ≃* (zmod n)ˣ := (alg_equiv.aut_congr (is_splitting_field.alg_equiv _ _)).symm.trans (is_cyclotomic_extension.aut_equiv_pow L h) /-- `is_cyclotomic_extension.aut_equiv_pow` repackaged in terms of `gal`. Asserts that the Galois group of `X ^ n - 1` is equivalent to `(zmod n)ˣ` if `cyclotomic n K` is irreducible in the base field. -/ noncomputable def gal_X_pow_equiv_units_zmod : (X ^ (n : ℕ) - 1).gal ≃* (zmod n)ˣ := (alg_equiv.aut_congr (is_splitting_field.alg_equiv _ _)).symm.trans (is_cyclotomic_extension.aut_equiv_pow L h) end gal
9e5b98368d5727284f09e661d11ff875bcf4a3be
36c7a18fd72e5b57229bd8ba36493daf536a19ce
/hott/types/bool.hlean
1532cf2d9ec6da50d040b1f6d7aa3872e151bf84
[ "Apache-2.0" ]
permissive
YHVHvx/lean
732bf0fb7a298cd7fe0f15d82f8e248c11db49e9
038369533e0136dd395dc252084d3c1853accbf2
refs/heads/master
1,610,701,080,210
1,449,128,595,000
1,449,128,595,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,592
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Theorems about the booleans -/ open is_equiv eq equiv function is_trunc option unit decidable namespace bool definition ff_ne_tt : ff = tt → empty | [none] definition is_equiv_bnot [constructor] [instance] [priority 500] : is_equiv bnot := begin fapply is_equiv.mk, exact bnot, all_goals (intro b;cases b), do 6 reflexivity -- all_goals (focus (intro b;cases b;all_goals reflexivity)), end definition bnot_ne : Π(b : bool), bnot b ≠ b | bnot_ne tt := ff_ne_tt | bnot_ne ff := ne.symm ff_ne_tt definition equiv_bnot [constructor] : bool ≃ bool := equiv.mk bnot _ definition eq_bnot : bool = bool := ua equiv_bnot definition eq_bnot_ne_idp : eq_bnot ≠ idp := assume H : eq_bnot = idp, assert H2 : bnot = id, from !cast_ua_fn⁻¹ ⬝ ap cast H, absurd (ap10 H2 tt) ff_ne_tt definition bool_equiv_option_unit : bool ≃ option unit := begin fapply equiv.MK, { intro b, cases b, exact none, exact some star}, { intro u, cases u, exact ff, exact tt}, { intro u, cases u with u, reflexivity, cases u, reflexivity}, { intro b, cases b, reflexivity, reflexivity}, end protected definition has_decidable_eq [instance] : ∀ x y : bool, decidable (x = y) | has_decidable_eq ff ff := inl rfl | has_decidable_eq ff tt := inr (by contradiction) | has_decidable_eq tt ff := inr (by contradiction) | has_decidable_eq tt tt := inl rfl end bool
58cad90c17dbe82818d0c08631656aeb80dd3a6c
d642a6b1261b2cbe691e53561ac777b924751b63
/src/algebra/module.lean
c26e055f480e7f09c55ad3ce1ad3101246eee74c
[ "Apache-2.0" ]
permissive
cipher1024/mathlib
fee56b9954e969721715e45fea8bcb95f9dc03fe
d077887141000fefa5a264e30fa57520e9f03522
refs/heads/master
1,651,806,490,504
1,573,508,694,000
1,573,508,694,000
107,216,176
0
0
Apache-2.0
1,647,363,136,000
1,508,213,014,000
Lean
UTF-8
Lean
false
false
16,048
lean
/- Copyright (c) 2015 Nathaniel Thomas. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro Modules over a ring. ## Implemetation notes Throughout the `linear_map` section implicit `{}` brackets are often used instead of type class `[]` brackets. This is done when the instances can be inferred because they are implicit arguments to the type `linear_map`. When they can be inferred from the type it is faster to use this method than to use type class inference -/ import algebra.ring algebra.big_operators group_theory.subgroup group_theory.group_action open function universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} -- /-- Typeclass for types with a scalar multiplication operation, denoted `•` (`\bu`) -/ -- class has_scalar (α : Type u) (γ : Type v) := (smul : α → γ → γ) -- infixr ` • `:73 := has_scalar.smul /-- A semimodule is a generalization of vector spaces to a scalar semiring. It consists of a scalar semiring `α` and an additive monoid of "vectors" `β`, connected by a "scalar multiplication" operation `r • x : β` (where `r : α` and `x : β`) with some natural associativity and distributivity axioms similar to those on a ring. -/ class semimodule (α : Type u) (β : Type v) [semiring α] [add_comm_monoid β] extends distrib_mul_action α β := (add_smul : ∀(r s : α) (x : β), (r + s) • x = r • x + s • x) (zero_smul : ∀x : β, (0 : α) • x = 0) section semimodule variables [R:semiring α] [add_comm_monoid β] [semimodule α β] (r s : α) (x y : β) include R theorem add_smul : (r + s) • x = r • x + s • x := semimodule.add_smul r s x variables (α) @[simp] theorem zero_smul : (0 : α) • x = 0 := semimodule.zero_smul α x lemma smul_smul : r • s • x = (r * s) • x := (mul_smul _ _ _).symm instance smul.is_add_monoid_hom {r : α} : is_add_monoid_hom (λ x : β, r • x) := { map_add := smul_add _, map_zero := smul_zero _ } lemma semimodule.eq_zero_of_zero_eq_one (zero_eq_one : (0 : α) = 1) : x = 0 := by rw [←one_smul α x, ←zero_eq_one, zero_smul] end semimodule /-- A module is a generalization of vector spaces to a scalar ring. It consists of a scalar ring `α` and an additive group of "vectors" `β`, connected by a "scalar multiplication" operation `r • x : β` (where `r : α` and `x : β`) with some natural associativity and distributivity axioms similar to those on a ring. -/ class module (α : Type u) (β : Type v) [ring α] [add_comm_group β] extends semimodule α β structure module.core (α β) [ring α] [add_comm_group β] extends has_scalar α β := (smul_add : ∀(r : α) (x y : β), r • (x + y) = r • x + r • y) (add_smul : ∀(r s : α) (x : β), (r + s) • x = r • x + s • x) (mul_smul : ∀(r s : α) (x : β), (r * s) • x = r • s • x) (one_smul : ∀x : β, (1 : α) • x = x) def module.of_core {α β} [ring α] [add_comm_group β] (M : module.core α β) : module α β := by letI := M.to_has_scalar; exact { zero_smul := λ x, have (0 : α) • x + (0 : α) • x = (0 : α) • x + 0, by rw ← M.add_smul; simp, add_left_cancel this, smul_zero := λ r, have r • (0:β) + r • 0 = r • 0 + 0, by rw ← M.smul_add; simp, add_left_cancel this, ..M } section module variables [ring α] [add_comm_group β] [module α β] (r s : α) (x y : β) @[simp] theorem neg_smul : -r • x = - (r • x) := eq_neg_of_add_eq_zero (by rw [← add_smul, add_left_neg, zero_smul]) variables (α) theorem neg_one_smul (x : β) : (-1 : α) • x = -x := by simp variables {α} @[simp] theorem smul_neg : r • (-x) = -(r • x) := by rw [← neg_one_smul α, ← mul_smul, mul_neg_one, neg_smul] theorem smul_sub (r : α) (x y : β) : r • (x - y) = r • x - r • y := by simp [smul_add]; rw smul_neg theorem sub_smul (r s : α) (y : β) : (r - s) • y = r • y - s • y := by simp [add_smul] end module instance semiring.to_semimodule [r : semiring α] : semimodule α α := { smul := (*), smul_add := mul_add, add_smul := add_mul, mul_smul := mul_assoc, one_smul := one_mul, zero_smul := zero_mul, smul_zero := mul_zero, ..r } @[simp] lemma smul_eq_mul [semiring α] {a a' : α} : a • a' = a * a' := rfl instance ring.to_module [r : ring α] : module α α := { ..semiring.to_semimodule } def is_ring_hom.to_module [ring α] [ring β] (f : α → β) [h : is_ring_hom f] : module α β := module.of_core { smul := λ r x, f r * x, smul_add := λ r x y, by unfold has_scalar.smul; rw [mul_add], add_smul := λ r s x, by unfold has_scalar.smul; rw [h.map_add, add_mul], mul_smul := λ r s x, by unfold has_scalar.smul; rw [h.map_mul, mul_assoc], one_smul := λ x, show f 1 * x = _, by rw [h.map_one, one_mul] } class is_linear_map (α : Type u) {β : Type v} {γ : Type w} [ring α] [add_comm_group β] [add_comm_group γ] [module α β] [module α γ] (f : β → γ) : Prop := (add : ∀x y, f (x + y) = f x + f y) (smul : ∀(c : α) x, f (c • x) = c • f x) structure linear_map (α : Type u) (β : Type v) (γ : Type w) [ring α] [add_comm_group β] [add_comm_group γ] [module α β] [module α γ] := (to_fun : β → γ) (add : ∀x y, to_fun (x + y) = to_fun x + to_fun y) (smul : ∀(c : α) x, to_fun (c • x) = c • to_fun x) infixr ` →ₗ `:25 := linear_map _ notation β ` →ₗ[`:25 α:25 `] `:0 γ:0 := linear_map α β γ namespace linear_map variables {rα : ring α} {gβ : add_comm_group β} {gγ : add_comm_group γ} {gδ : add_comm_group δ} variables {mβ : module α β} {mγ : module α γ} {mδ : module α δ} variables (f g : β →ₗ[α] γ) include α mβ mγ instance : has_coe_to_fun (β →ₗ[α] γ) := ⟨_, to_fun⟩ @[simp] lemma coe_mk (f : β → γ) (h₁ h₂) : ((linear_map.mk f h₁ h₂ : β →ₗ[α] γ) : β → γ) = f := rfl theorem is_linear : is_linear_map α f := {..f} @[ext] theorem ext {f g : β →ₗ[α] γ} (H : ∀ x, f x = g x) : f = g := by cases f; cases g; congr'; exact funext H theorem ext_iff {f g : β →ₗ[α] γ} : f = g ↔ ∀ x, f x = g x := ⟨by rintro rfl; simp, ext⟩ @[simp] lemma map_add (x y : β) : f (x + y) = f x + f y := f.add x y @[simp] lemma map_smul (c : α) (x : β) : f (c • x) = c • f x := f.smul c x @[simp] lemma map_zero : f 0 = 0 := by rw [← zero_smul α, map_smul f 0 0, zero_smul] instance : is_add_group_hom f := { map_add := map_add f } @[simp] lemma map_neg (x : β) : f (- x) = - f x := by rw [← neg_one_smul α, map_smul, neg_one_smul] @[simp] lemma map_sub (x y : β) : f (x - y) = f x - f y := by simp [map_neg, map_add] @[simp] lemma map_sum {ι} {t : finset ι} {g : ι → β} : f (t.sum g) = t.sum (λi, f (g i)) := (finset.sum_hom f).symm include mδ def comp (f : γ →ₗ[α] δ) (g : β →ₗ[α] γ) : β →ₗ[α] δ := ⟨f ∘ g, by simp, by simp⟩ @[simp] lemma comp_apply (f : γ →ₗ[α] δ) (g : β →ₗ[α] γ) (x : β) : f.comp g x = f (g x) := rfl omit mγ mδ variables [rα] [gβ] [mβ] def id : β →ₗ[α] β := ⟨id, by simp, by simp⟩ @[simp] lemma id_apply (x : β) : @id α β _ _ _ x = x := rfl end linear_map namespace is_linear_map variables [ring α] [add_comm_group β] [add_comm_group γ] variables [module α β] [module α γ] include α def mk' (f : β → γ) (H : is_linear_map α f) : β →ₗ γ := {to_fun := f, ..H} @[simp] theorem mk'_apply {f : β → γ} (H : is_linear_map α f) (x : β) : mk' f H x = f x := rfl lemma is_linear_map_neg : is_linear_map α (λ (z : β), -z) := is_linear_map.mk neg_add (λ x y, (smul_neg x y).symm) lemma is_linear_map_smul {α R : Type*} [add_comm_group α] [comm_ring R] [module R α] (c : R) : is_linear_map R (λ (z : α), c • z) := begin refine is_linear_map.mk (smul_add c) _, intros _ _, simp [smul_smul], ac_refl end --TODO: move lemma is_linear_map_smul' {α R : Type*} [add_comm_group α] [comm_ring R] [module R α] (a : α) : is_linear_map R (λ (c : R), c • a) := begin refine is_linear_map.mk (λ x y, add_smul x y a) _, intros _ _, simp [smul_smul] end variables {f : β → γ} (lin : is_linear_map α f) include β γ lin @[simp] lemma map_zero : f (0 : β) = (0 : γ) := by rw [← zero_smul α (0 : β), lin.smul, zero_smul] @[simp] lemma map_add (x y : β) : f (x + y) = f x + f y := by rw [lin.add] @[simp] lemma map_neg (x : β) : f (- x) = - f x := by rw [← neg_one_smul α, lin.smul, neg_one_smul] @[simp] lemma map_sub (x y : β) : f (x - y) = f x - f y := by simp [lin.map_neg, lin.map_add] end is_linear_map /-- A submodule of a module is one which is closed under vector operations. This is a sufficient condition for the subset of vectors in the submodule to themselves form a module. -/ structure submodule (α : Type u) (β : Type v) [ring α] [add_comm_group β] [module α β] : Type v := (carrier : set β) (zero : (0:β) ∈ carrier) (add : ∀ {x y}, x ∈ carrier → y ∈ carrier → x + y ∈ carrier) (smul : ∀ (c:α) {x}, x ∈ carrier → c • x ∈ carrier) namespace submodule variables [ring α] [add_comm_group β] [add_comm_group γ] variables [module α β] [module α γ] variables (p p' : submodule α β) variables {r : α} {x y : β} instance : has_coe (submodule α β) (set β) := ⟨submodule.carrier⟩ instance : has_mem β (submodule α β) := ⟨λ x p, x ∈ (p : set β)⟩ @[simp] theorem mem_coe : x ∈ (p : set β) ↔ x ∈ p := iff.rfl theorem ext' {s t : submodule α β} (h : (s : set β) = t) : s = t := by cases s; cases t; congr' protected theorem ext'_iff {s t : submodule α β} : (s : set β) = t ↔ s = t := ⟨ext', λ h, h ▸ rfl⟩ @[ext] theorem ext {s t : submodule α β} (h : ∀ x, x ∈ s ↔ x ∈ t) : s = t := ext' $ set.ext h @[simp] lemma zero_mem : (0 : β) ∈ p := p.zero lemma add_mem (h₁ : x ∈ p) (h₂ : y ∈ p) : x + y ∈ p := p.add h₁ h₂ lemma smul_mem (r : α) (h : x ∈ p) : r • x ∈ p := p.smul r h lemma neg_mem (hx : x ∈ p) : -x ∈ p := by rw ← neg_one_smul α; exact p.smul_mem _ hx lemma sub_mem (hx : x ∈ p) (hy : y ∈ p) : x - y ∈ p := p.add_mem hx (p.neg_mem hy) lemma neg_mem_iff : -x ∈ p ↔ x ∈ p := ⟨λ h, by simpa using neg_mem p h, neg_mem p⟩ lemma add_mem_iff_left (h₁ : y ∈ p) : x + y ∈ p ↔ x ∈ p := ⟨λ h₂, by simpa using sub_mem _ h₂ h₁, λ h₂, add_mem _ h₂ h₁⟩ lemma add_mem_iff_right (h₁ : x ∈ p) : x + y ∈ p ↔ y ∈ p := ⟨λ h₂, by simpa using sub_mem _ h₂ h₁, add_mem _ h₁⟩ lemma sum_mem {ι : Type w} [decidable_eq ι] {t : finset ι} {f : ι → β} : (∀c∈t, f c ∈ p) → t.sum f ∈ p := finset.induction_on t (by simp [p.zero_mem]) (by simp [p.add_mem] {contextual := tt}) instance : has_add p := ⟨λx y, ⟨x.1 + y.1, add_mem _ x.2 y.2⟩⟩ instance : has_zero p := ⟨⟨0, zero_mem _⟩⟩ instance : has_neg p := ⟨λx, ⟨-x.1, neg_mem _ x.2⟩⟩ instance : has_scalar α p := ⟨λ c x, ⟨c • x.1, smul_mem _ c x.2⟩⟩ @[simp] lemma coe_add (x y : p) : (↑(x + y) : β) = ↑x + ↑y := rfl @[simp] lemma coe_zero : ((0 : p) : β) = 0 := rfl @[simp] lemma coe_neg (x : p) : ((-x : p) : β) = -x := rfl @[simp] lemma coe_smul (r : α) (x : p) : ((r • x : p) : β) = r • ↑x := rfl instance : add_comm_group p := by refine {add := (+), zero := 0, neg := has_neg.neg, ..}; { intros, apply set_coe.ext, simp } instance submodule_is_add_subgroup : is_add_subgroup (p : set β) := { zero_mem := p.zero, add_mem := p.add, neg_mem := λ _, p.neg_mem } lemma coe_sub (x y : p) : (↑(x - y) : β) = ↑x - ↑y := by simp instance : module α p := by refine {smul := (•), ..}; { intros, apply set_coe.ext, simp [smul_add, add_smul, mul_smul] } protected def subtype : p →ₗ[α] β := by refine {to_fun := coe, ..}; simp [coe_smul] @[simp] theorem subtype_apply (x : p) : p.subtype x = x := rfl lemma subtype_eq_val (p : submodule α β) : ((submodule.subtype p) : p → β) = subtype.val := rfl end submodule @[reducible] def ideal (α : Type u) [comm_ring α] := submodule α α namespace ideal variables [comm_ring α] (I : ideal α) {a b : α} protected lemma zero_mem : (0 : α) ∈ I := I.zero_mem protected lemma add_mem : a ∈ I → b ∈ I → a + b ∈ I := I.add_mem lemma neg_mem_iff : -a ∈ I ↔ a ∈ I := I.neg_mem_iff lemma add_mem_iff_left : b ∈ I → (a + b ∈ I ↔ a ∈ I) := I.add_mem_iff_left lemma add_mem_iff_right : a ∈ I → (a + b ∈ I ↔ b ∈ I) := I.add_mem_iff_right protected lemma sub_mem : a ∈ I → b ∈ I → a - b ∈ I := I.sub_mem lemma mul_mem_left : b ∈ I → a * b ∈ I := I.smul_mem _ lemma mul_mem_right (h : a ∈ I) : a * b ∈ I := mul_comm b a ▸ I.mul_mem_left h end ideal /-- A vector space is the same as a module, except the scalar ring is actually a field. (This adds commutativity of the multiplication and existence of inverses.) This is the traditional generalization of spaces like `ℝ^n`, which have a natural addition operation and a way to multiply them by real numbers, but no multiplication operation between vectors. -/ class vector_space (α : Type u) (β : Type v) [discrete_field α] [add_comm_group β] extends module α β instance discrete_field.to_vector_space {α : Type*} [discrete_field α] : vector_space α α := { .. ring.to_module } /-- Subspace of a vector space. Defined to equal `submodule`. -/ @[reducible] def subspace (α : Type u) (β : Type v) [discrete_field α] [add_comm_group β] [vector_space α β] : Type v := submodule α β instance subspace.vector_space {α β} {f : discrete_field α} [add_comm_group β] [vector_space α β] (p : subspace α β) : vector_space α p := {..submodule.module p} namespace submodule variables {R:discrete_field α} [add_comm_group β] [add_comm_group γ] variables [vector_space α β] [vector_space α γ] variables (p p' : submodule α β) variables {r : α} {x y : β} include R set_option class.instance_max_depth 36 theorem smul_mem_iff (r0 : r ≠ 0) : r • x ∈ p ↔ x ∈ p := ⟨λ h, by simpa [smul_smul, inv_mul_cancel r0] using p.smul_mem (r⁻¹) h, p.smul_mem r⟩ end submodule namespace add_comm_monoid open add_monoid variables {M : Type*} [add_comm_monoid M] instance : semimodule ℕ M := { smul := smul, smul_add := λ _ _ _, smul_add _ _ _, add_smul := λ _ _ _, add_smul _ _ _, mul_smul := λ _ _ _, mul_smul _ _ _, one_smul := one_smul, zero_smul := zero_smul, smul_zero := smul_zero } end add_comm_monoid namespace add_comm_group variables {M : Type*} [add_comm_group M] instance : module ℤ M := { smul := gsmul, smul_add := λ _ _ _, gsmul_add _ _ _, add_smul := λ _ _ _, add_gsmul _ _ _, mul_smul := λ _ _ _, gsmul_mul _ _ _, one_smul := one_gsmul, zero_smul := zero_gsmul, smul_zero := gsmul_zero } end add_comm_group def is_add_group_hom.to_linear_map [add_comm_group α] [add_comm_group β] (f : α → β) [is_add_group_hom f] : α →ₗ[ℤ] β := { to_fun := f, add := is_add_hom.map_add f, smul := λ i x, int.induction_on i (by rw [zero_smul, zero_smul, is_add_group_hom.map_zero f]) (λ i ih, by rw [add_smul, add_smul, is_add_hom.map_add f, ih, one_smul, one_smul]) (λ i ih, by rw [sub_smul, sub_smul, is_add_group_hom.map_sub f, ih, one_smul, one_smul]) } lemma module.smul_eq_smul {R : Type*} [ring R] {β : Type*} [add_comm_group β] [module R β] (n : ℕ) (b : β) : n • b = (n : R) • b := begin induction n with n ih, { rw [nat.cast_zero, zero_smul, zero_smul] }, { change (n + 1) • b = (n + 1 : R) • b, rw [add_smul, add_smul, one_smul, ih, one_smul] } end lemma finset.sum_const' {α : Type*} (R : Type*) [ring R] {β : Type*} [add_comm_group β] [module R β] {s : finset α} (b : β) : finset.sum s (λ (a : α), b) = (finset.card s : R) • b := by rw [finset.sum_const, ← module.smul_eq_smul]; refl
d3914c98ff3effce774a6d172594bf36058ef6d6
d642a6b1261b2cbe691e53561ac777b924751b63
/src/analysis/asymptotics.lean
0ddb78585090695311b5a7323fdc4f56d1ca90a2
[ "Apache-2.0" ]
permissive
cipher1024/mathlib
fee56b9954e969721715e45fea8bcb95f9dc03fe
d077887141000fefa5a264e30fa57520e9f03522
refs/heads/master
1,651,806,490,504
1,573,508,694,000
1,573,508,694,000
107,216,176
0
0
Apache-2.0
1,647,363,136,000
1,508,213,014,000
Lean
UTF-8
Lean
false
false
29,358
lean
/- Copyright (c) 2019 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad We introduce these relations: `is_O f g l` : "f is big O of g along l" `is_o f g l` : "f is little o of g along l" Here `l` is any filter on the domain of `f` and `g`, which are assumed to be the same. The codomains of `f` and `g` do not need to be the same; all that is needed that there is a norm associated with these types, and it is the norm that is compared asymptotically. Often the ranges of `f` and `g` will be the real numbers, in which case the norm is the absolute value. In general, we have `is_O f g l ↔ is_O (λ x, ∥f x∥) (λ x, ∥g x∥) l`, and similarly for `is_o`. But our setup allows us to use the notions e.g. with functions to the integers, rationals, complex numbers, or any normed vector space without mentioning the norm explicitly. If `f` and `g` are functions to a normed field like the reals or complex numbers and `g` is always nonzero, we have `is_o f g l ↔ tendsto (λ x, f x / (g x)) (nhds 0) l`. In fact, the right-to-left direction holds without the hypothesis on `g`, and in the other direction it suffices to assume that `f` is zero wherever `g` is. (This generalization is useful in defining the Fréchet derivative.) -/ import analysis.normed_space.basic open filter namespace asymptotics variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} section variables [has_norm β] [has_norm γ] [has_norm δ] def is_O (f : α → β) (g : α → γ) (l : filter α) : Prop := ∃ c > 0, { x | ∥ f x ∥ ≤ c * ∥ g x ∥ } ∈ l def is_o (f : α → β) (g : α → γ) (l : filter α) : Prop := ∀ c > 0, { x | ∥ f x ∥ ≤ c * ∥ g x ∥ } ∈ l theorem is_O_refl (f : α → β) (l : filter α) : is_O f f l := ⟨1, zero_lt_one, by { filter_upwards [univ_mem_sets], intros x _, simp }⟩ theorem is_O.comp {f : α → β} {g : α → γ} {l : filter α} (hfg : is_O f g l) {δ : Type*} (k : δ → α) : is_O (f ∘ k) (g ∘ k) (l.comap k) := let ⟨c, cpos, hfgc⟩ := hfg in ⟨c, cpos, mem_comap_sets.mpr ⟨_, hfgc, set.subset.refl _⟩⟩ theorem is_o.comp {f : α → β} {g : α → γ} {l : filter α} (hfg : is_o f g l) {δ : Type*} (k : δ → α) : is_o (f ∘ k) (g ∘ k) (l.comap k) := λ c cpos, mem_comap_sets.mpr ⟨_, hfg c cpos, set.subset.refl _⟩ theorem is_O.mono {f : α → β} {g : α → γ} {l₁ l₂ : filter α} (h : l₁ ≤ l₂) (h' : is_O f g l₂) : is_O f g l₁ := let ⟨c, cpos, h'c⟩ := h' in ⟨c, cpos, h (h'c)⟩ theorem is_o.mono {f : α → β} {g : α → γ} {l₁ l₂ : filter α} (h : l₁ ≤ l₂) (h' : is_o f g l₂) : is_o f g l₁ := λ c cpos, h (h' c cpos) theorem is_o.to_is_O {f : α → β} {g : α → γ} {l : filter α} (hgf : is_o f g l) : is_O f g l := ⟨1, zero_lt_one, hgf 1 zero_lt_one⟩ theorem is_O.trans {f : α → β} {g : α → γ} {k : α → δ} {l : filter α} (h₁ : is_O f g l) (h₂ : is_O g k l) : is_O f k l := let ⟨c, cpos, hc⟩ := h₁, ⟨c', c'pos, hc'⟩ := h₂ in begin use [c * c', mul_pos cpos c'pos], filter_upwards [hc, hc'], dsimp, intros x h₁x h₂x, rw mul_assoc, exact le_trans h₁x (mul_le_mul_of_nonneg_left h₂x (le_of_lt cpos)) end theorem is_o.trans_is_O {f : α → β} {g : α → γ} {k : α → δ} {l : filter α} (h₁ : is_o f g l) (h₂ : is_O g k l) : is_o f k l := begin intros c cpos, rcases h₂ with ⟨c', c'pos, hc'⟩, have cc'pos := div_pos cpos c'pos, filter_upwards [h₁ (c / c') cc'pos, hc'], dsimp, intros x h₁x h₂x, refine le_trans h₁x (le_trans (mul_le_mul_of_nonneg_left h₂x (le_of_lt cc'pos)) _), rw [←mul_assoc, div_mul_cancel _ (ne_of_gt c'pos)] end theorem is_O.trans_is_o {f : α → β} {g : α → γ} {k : α → δ} {l : filter α} (h₁ : is_O f g l) (h₂ : is_o g k l) : is_o f k l := begin intros c cpos, rcases h₁ with ⟨c', c'pos, hc'⟩, have cc'pos := div_pos cpos c'pos, filter_upwards [hc', h₂ (c / c') cc'pos], dsimp, intros x h₁x h₂x, refine le_trans h₁x (le_trans (mul_le_mul_of_nonneg_left h₂x (le_of_lt c'pos)) _), rw [←mul_assoc, mul_div_cancel' _ (ne_of_gt c'pos)] end theorem is_o.trans {f : α → β} {g : α → γ} {k : α → δ} {l : filter α} (h₁ : is_o f g l) (h₂ : is_o g k l) : is_o f k l := h₁.to_is_O.trans_is_o h₂ theorem is_o_join {f : α → β} {g : α → γ} {l₁ l₂ : filter α} (h₁ : is_o f g l₁) (h₂ : is_o f g l₂) : is_o f g (l₁ ⊔ l₂) := begin intros c cpos, rw mem_sup_sets, exact ⟨h₁ c cpos, h₂ c cpos⟩ end theorem is_O_congr {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (hf : {x | f₁ x = f₂ x} ∈ l) (hg : {x | g₁ x = g₂ x} ∈ l) : is_O f₁ g₁ l ↔ is_O f₂ g₂ l := bex_congr $ λ c _, filter.congr_sets $ by filter_upwards [hf, hg] λ x e₁ e₂, by dsimp at e₁ e₂ ⊢; rw [e₁, e₂] theorem is_o_congr {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (hf : {x | f₁ x = f₂ x} ∈ l) (hg : {x | g₁ x = g₂ x} ∈ l) : is_o f₁ g₁ l ↔ is_o f₂ g₂ l := ball_congr $ λ c _, filter.congr_sets $ by filter_upwards [hf, hg] λ x e₁ e₂, by dsimp at e₁ e₂ ⊢; rw [e₁, e₂] theorem is_O.congr {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) (hg : ∀ x, g₁ x = g₂ x) : is_O f₁ g₁ l → is_O f₂ g₂ l := (is_O_congr (univ_mem_sets' hf) (univ_mem_sets' hg)).1 theorem is_o.congr {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) (hg : ∀ x, g₁ x = g₂ x) : is_o f₁ g₁ l → is_o f₂ g₂ l := (is_o_congr (univ_mem_sets' hf) (univ_mem_sets' hg)).1 theorem is_O_congr_left {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h : {x | f₁ x = f₂ x} ∈ l) : is_O f₁ g l ↔ is_O f₂ g l := is_O_congr h (univ_mem_sets' $ λ _, rfl) theorem is_o_congr_left {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h : {x | f₁ x = f₂ x} ∈ l) : is_o f₁ g l ↔ is_o f₂ g l := is_o_congr h (univ_mem_sets' $ λ _, rfl) theorem is_O.congr_left {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) : is_O f₁ g l → is_O f₂ g l := is_O.congr hf (λ _, rfl) theorem is_o.congr_left {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) : is_o f₁ g l → is_o f₂ g l := is_o.congr hf (λ _, rfl) theorem is_O_congr_right {f : α → β} {g₁ g₂ : α → γ} {l : filter α} (h : {x | g₁ x = g₂ x} ∈ l) : is_O f g₁ l ↔ is_O f g₂ l := is_O_congr (univ_mem_sets' $ λ _, rfl) h theorem is_o_congr_right {f : α → β} {g₁ g₂ : α → γ} {l : filter α} (h : {x | g₁ x = g₂ x} ∈ l) : is_o f g₁ l ↔ is_o f g₂ l := is_o_congr (univ_mem_sets' $ λ _, rfl) h theorem is_O.congr_right {f : α → β} {g₁ g₂ : α → γ} {l : filter α} (hg : ∀ x, g₁ x = g₂ x) : is_O f g₁ l → is_O f g₂ l := is_O.congr (λ _, rfl) hg theorem is_o.congr_right {f : α → β} {g₁ g₂ : α → γ} {l : filter α} (hg : ∀ x, g₁ x = g₂ x) : is_o f g₁ l → is_o f g₂ l := is_o.congr (λ _, rfl) hg end section variables [has_norm β] [normed_group γ] [normed_group δ] @[simp] theorem is_O_norm_right {f : α → β} {g : α → γ} {l : filter α} : is_O f (λ x, ∥g x∥) l ↔ is_O f g l := by simp only [is_O, norm_norm] @[simp] theorem is_o_norm_right {f : α → β} {g : α → γ} {l : filter α} : is_o f (λ x, ∥g x∥) l ↔ is_o f g l := by simp only [is_o, norm_norm] @[simp] theorem is_O_neg_right {f : α → β} {g : α → γ} {l : filter α} : is_O f (λ x, -(g x)) l ↔ is_O f g l := by { rw ←is_O_norm_right, simp only [norm_neg], rw is_O_norm_right } @[simp] theorem is_o_neg_right {f : α → β} {g : α → γ} {l : filter α} : is_o f (λ x, -(g x)) l ↔ is_o f g l := by { rw ←is_o_norm_right, simp only [norm_neg], rw is_o_norm_right } theorem is_O_iff {f : α → β} {g : α → γ} {l : filter α} : is_O f g l ↔ ∃ c, { x | ∥f x∥ ≤ c * ∥g x∥ } ∈ l := suffices (∃ c, { x | ∥f x∥ ≤ c * ∥g x∥ } ∈ l) → is_O f g l, from ⟨λ ⟨c, cpos, hc⟩, ⟨c, hc⟩, this⟩, assume ⟨c, hc⟩, or.elim (lt_or_ge 0 c) (assume : c > 0, ⟨c, this, hc⟩) (assume h'c : c ≤ 0, have {x : α | ∥f x∥ ≤ 1 * ∥g x∥} ∈ l, begin filter_upwards [hc], intros x, show ∥f x∥ ≤ c * ∥g x∥ → ∥f x∥ ≤ 1 * ∥g x∥, { intro hx, apply le_trans hx, apply mul_le_mul_of_nonneg_right _ (norm_nonneg _), show c ≤ 1, from le_trans h'c zero_le_one } end, ⟨1, zero_lt_one, this⟩) theorem is_O_join {f : α → β} {g : α → γ} {l₁ l₂ : filter α} (h₁ : is_O f g l₁) (h₂ : is_O f g l₂) : is_O f g (l₁ ⊔ l₂) := begin rcases h₁ with ⟨c₁, c₁pos, hc₁⟩, rcases h₂ with ⟨c₂, c₂pos, hc₂⟩, have : 0 < max c₁ c₂, by { rw lt_max_iff, left, exact c₁pos }, use [max c₁ c₂, this], rw mem_sup_sets, split, { filter_upwards [hc₁], dsimp, intros x hx, exact le_trans hx (mul_le_mul_of_nonneg_right (le_max_left _ _) (norm_nonneg _)) }, filter_upwards [hc₂], dsimp, intros x hx, exact le_trans hx (mul_le_mul_of_nonneg_right (le_max_right _ _) (norm_nonneg _)) end lemma is_O.prod_rightl {f : α → β} {g₁ : α → γ} {g₂ : α → δ} {l : filter α} (h : is_O f g₁ l) : is_O f (λx, (g₁ x, g₂ x)) l := begin have : is_O g₁ (λx, (g₁ x, g₂ x)) l := ⟨1, zero_lt_one, filter.univ_mem_sets' (λx, by simp [norm, le_refl])⟩, exact is_O.trans h this end lemma is_O.prod_rightr {f : α → β} {g₁ : α → γ} {g₂ : α → δ} {l : filter α} (h : is_O f g₂ l) : is_O f (λx, (g₁ x, g₂ x)) l := begin have : is_O g₂ (λx, (g₁ x, g₂ x)) l := ⟨1, zero_lt_one, filter.univ_mem_sets' (λx, by simp [norm, le_refl])⟩, exact is_O.trans h this end lemma is_o.prod_rightl {f : α → β} {g₁ : α → γ} {g₂ : α → δ} {l : filter α} (h : is_o f g₁ l) : is_o f (λx, (g₁ x, g₂ x)) l := is_o.trans_is_O h (is_O.prod_rightl (is_O_refl g₁ l)) lemma is_o.prod_rightr {f : α → β} {g₁ : α → γ} {g₂ : α → δ} {l : filter α} (h : is_o f g₂ l) : is_o f (λx, (g₁ x, g₂ x)) l := is_o.trans_is_O h (is_O.prod_rightr (is_O_refl g₂ l)) end section variables [normed_group β] [normed_group δ] [has_norm γ] @[simp] theorem is_O_norm_left {f : α → β} {g : α → γ} {l : filter α} : is_O (λ x, ∥f x∥) g l ↔ is_O f g l := by simp only [is_O, norm_norm] @[simp] theorem is_o_norm_left {f : α → β} {g : α → γ} {l : filter α} : is_o (λ x, ∥f x∥) g l ↔ is_o f g l := by simp only [is_o, norm_norm] @[simp] theorem is_O_neg_left {f : α → β} {g : α → γ} {l : filter α} : is_O (λ x, -f x) g l ↔ is_O f g l := by { rw ←is_O_norm_left, simp only [norm_neg], rw is_O_norm_left } @[simp] theorem is_o_neg_left {f : α → β} {g : α → γ} {l : filter α} : is_o (λ x, -f x) g l ↔ is_o f g l := by { rw ←is_o_norm_left, simp only [norm_neg], rw is_o_norm_left } theorem is_O.add {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h₁ : is_O f₁ g l) (h₂ : is_O f₂ g l) : is_O (λ x, f₁ x + f₂ x) g l := let ⟨c₁, c₁pos, hc₁⟩ := h₁, ⟨c₂, c₂pos, hc₂⟩ := h₂ in begin use [c₁ + c₂, add_pos c₁pos c₂pos], filter_upwards [hc₁, hc₂], intros x hx₁ hx₂, show ∥f₁ x + f₂ x∥ ≤ (c₁ + c₂) * ∥g x∥, apply le_trans (norm_triangle _ _), rw add_mul, exact add_le_add hx₁ hx₂ end theorem is_o.add {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h₁ : is_o f₁ g l) (h₂ : is_o f₂ g l) : is_o (λ x, f₁ x + f₂ x) g l := begin intros c cpos, filter_upwards [h₁ (c / 2) (half_pos cpos), h₂ (c / 2) (half_pos cpos)], intros x hx₁ hx₂, dsimp at hx₁ hx₂, apply le_trans (norm_triangle _ _), apply le_trans (add_le_add hx₁ hx₂), rw [←mul_add, ←two_mul, ←mul_assoc, div_mul_cancel _ two_ne_zero] end theorem is_O.sub {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h₁ : is_O f₁ g l) (h₂ : is_O f₂ g l) : is_O (λ x, f₁ x - f₂ x) g l := h₁.add (is_O_neg_left.mpr h₂) theorem is_o.sub {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h₁ : is_o f₁ g l) (h₂ : is_o f₂ g l) : is_o (λ x, f₁ x - f₂ x) g l := h₁.add (is_o_neg_left.mpr h₂) theorem is_O_comm {f₁ f₂ : α → β} {g : α → γ} {l : filter α} : is_O (λ x, f₁ x - f₂ x) g l ↔ is_O (λ x, f₂ x - f₁ x) g l := by simpa using @is_O_neg_left _ _ _ _ _ (λ x, f₂ x - f₁ x) g l theorem is_O.symm {f₁ f₂ : α → β} {g : α → γ} {l : filter α} : is_O (λ x, f₁ x - f₂ x) g l → is_O (λ x, f₂ x - f₁ x) g l := is_O_comm.1 theorem is_O.tri {f₁ f₂ f₃ : α → β} {g : α → γ} {l : filter α} (h₁ : is_O (λ x, f₁ x - f₂ x) g l) (h₂ : is_O (λ x, f₂ x - f₃ x) g l) : is_O (λ x, f₁ x - f₃ x) g l := (h₁.add h₂).congr_left (by simp) theorem is_O.congr_of_sub {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h : is_O (λ x, f₁ x - f₂ x) g l) : is_O f₁ g l ↔ is_O f₂ g l := ⟨λ h', (h'.sub h).congr_left (λ x, sub_sub_cancel _ _), λ h', (h.add h').congr_left (λ x, sub_add_cancel _ _)⟩ theorem is_o_comm {f₁ f₂ : α → β} {g : α → γ} {l : filter α} : is_o (λ x, f₁ x - f₂ x) g l ↔ is_o (λ x, f₂ x - f₁ x) g l := by simpa using @is_o_neg_left _ _ _ _ _ (λ x, f₂ x - f₁ x) g l theorem is_o.symm {f₁ f₂ : α → β} {g : α → γ} {l : filter α} : is_o (λ x, f₁ x - f₂ x) g l → is_o (λ x, f₂ x - f₁ x) g l := is_o_comm.1 theorem is_o.tri {f₁ f₂ f₃ : α → β} {g : α → γ} {l : filter α} (h₁ : is_o (λ x, f₁ x - f₂ x) g l) (h₂ : is_o (λ x, f₂ x - f₃ x) g l) : is_o (λ x, f₁ x - f₃ x) g l := (h₁.add h₂).congr_left (by simp) theorem is_o.congr_of_sub {f₁ f₂ : α → β} {g : α → γ} {l : filter α} (h : is_o (λ x, f₁ x - f₂ x) g l) : is_o f₁ g l ↔ is_o f₂ g l := ⟨λ h', (h'.sub h).congr_left (λ x, sub_sub_cancel _ _), λ h', (h.add h').congr_left (λ x, sub_add_cancel _ _)⟩ @[simp] theorem is_O_prod_left {f₁ : α → β} {f₂ : α → δ} {g : α → γ} {l : filter α} : is_O (λx, (f₁ x, f₂ x)) g l ↔ is_O f₁ g l ∧ is_O f₂ g l := begin split, { assume h, split, { exact is_O.trans (is_O.prod_rightl (is_O_refl f₁ l)) h }, { exact is_O.trans (is_O.prod_rightr (is_O_refl f₂ l)) h } }, { rintros ⟨h₁, h₂⟩, have : is_O (λx, ∥f₁ x∥ + ∥f₂ x∥) g l := is_O.add (is_O_norm_left.2 h₁) (is_O_norm_left.2 h₂), apply is_O.trans _ this, refine ⟨1, zero_lt_one, filter.univ_mem_sets' (λx, _)⟩, simp only [norm, max_le_iff, one_mul, set.mem_set_of_eq], split; exact le_trans (by simp) (le_abs_self _) } end @[simp] theorem is_o_prod_left {f₁ : α → β} {f₂ : α → δ} {g : α → γ} {l : filter α} : is_o (λx, (f₁ x, f₂ x)) g l ↔ is_o f₁ g l ∧ is_o f₂ g l := begin split, { assume h, split, { exact is_O.trans_is_o (is_O.prod_rightl (is_O_refl f₁ l)) h }, { exact is_O.trans_is_o (is_O.prod_rightr (is_O_refl f₂ l)) h } }, { rintros ⟨h₁, h₂⟩, have : is_o (λx, ∥f₁ x∥ + ∥f₂ x∥) g l := is_o.add (is_o_norm_left.2 h₁) (is_o_norm_left.2 h₂), apply is_O.trans_is_o _ this, refine ⟨1, zero_lt_one, filter.univ_mem_sets' (λx, _)⟩, simp only [norm, max_le_iff, one_mul, set.mem_set_of_eq], split; exact le_trans (by simp) (le_abs_self _) } end end section variables [normed_group β] [normed_group γ] theorem is_O_zero (g : α → γ) (l : filter α) : is_O (λ x, (0 : β)) g l := ⟨1, zero_lt_one, by { filter_upwards [univ_mem_sets], intros x _, simp }⟩ theorem is_O_refl_left {f : α → β} {g : α → γ} {l : filter α} : is_O (λ x, f x - f x) g l := by simpa using is_O_zero g l theorem is_O_zero_right_iff {f : α → β} {l : filter α} : is_O f (λ x, (0 : γ)) l ↔ {x | f x = 0} ∈ l := begin rw [is_O_iff], split, { rintros ⟨c, hc⟩, filter_upwards [hc], dsimp, intro x, rw [norm_zero, mul_zero], intro hx, rw ←norm_eq_zero, exact le_antisymm hx (norm_nonneg _) }, intro h, use 0, filter_upwards [h], dsimp, intros x hx, rw [hx, norm_zero, zero_mul] end theorem is_o_zero (g : α → γ) (l : filter α) : is_o (λ x, (0 : β)) g l := λ c cpos, by { filter_upwards [univ_mem_sets], intros x _, simp, exact mul_nonneg (le_of_lt cpos) (norm_nonneg _)} theorem is_o_refl_left {f : α → β} {g : α → γ} {l : filter α} : is_o (λ x, f x - f x) g l := by simpa using is_o_zero g l theorem is_o_zero_right_iff {f : α → β} (l : filter α) : is_o f (λ x, (0 : γ)) l ↔ {x | f x = 0} ∈ l := begin split, { intro h, exact is_O_zero_right_iff.mp h.to_is_O }, intros h c cpos, filter_upwards [h], dsimp, intros x hx, rw [hx, norm_zero, norm_zero, mul_zero] end end section variables [has_norm β] [normed_field γ] open normed_field theorem is_O_const_one (c : β) (l : filter α) : is_O (λ x : α, c) (λ x, (1 : γ)) l := begin rw is_O_iff, refine ⟨∥c∥, _⟩, simp only [norm_one, mul_one], apply univ_mem_sets', simp [le_refl], end end section variables [normed_field β] [normed_group γ] theorem is_O_const_mul_left {f : α → β} {g : α → γ} {l : filter α} (h : is_O f g l) (c : β) : is_O (λ x, c * f x) g l := begin cases classical.em (c = 0) with h'' h'', { simp [h''], apply is_O_zero }, rcases h with ⟨c', c'pos, h'⟩, have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp h'', have cpos : ∥c∥ > 0, from lt_of_le_of_ne (norm_nonneg _) (ne.symm cne0), refine ⟨∥c∥ * c', mul_pos cpos c'pos, _⟩, filter_upwards [h'], dsimp, intros x h₀, rw [normed_field.norm_mul, mul_assoc], exact mul_le_mul_of_nonneg_left h₀ (norm_nonneg _) end theorem is_O_const_mul_left_iff {f : α → β} {g : α → γ} {l : filter α} {c : β} (hc : c ≠ 0) : is_O (λ x, c * f x) g l ↔ is_O f g l := begin split, { intro h, convert is_O_const_mul_left h c⁻¹, ext, rw [←mul_assoc, inv_mul_cancel hc, one_mul] }, intro h, apply is_O_const_mul_left h end theorem is_o_const_mul_left {f : α → β} {g : α → γ} {l : filter α} (h : is_o f g l) (c : β) : is_o (λ x, c * f x) g l := begin cases classical.em (c = 0) with h'' h'', { simp [h''], apply is_o_zero }, have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp h'', have cpos : ∥c∥ > 0, from lt_of_le_of_ne (norm_nonneg _) (ne.symm cne0), intros c' c'pos, dsimp, filter_upwards [h (c' / ∥c∥) (div_pos c'pos cpos)], dsimp, intros x hx, rw [normed_field.norm_mul], apply le_trans (mul_le_mul_of_nonneg_left hx (le_of_lt cpos)), rw [←mul_assoc, mul_div_cancel' _ cne0] end theorem is_o_const_mul_left_iff {f : α → β} {g : α → γ} {l : filter α} {c : β} (hc : c ≠ 0) : is_o (λ x, c * f x) g l ↔ is_o f g l := begin split, { intro h, convert is_o_const_mul_left h c⁻¹, ext, rw [←mul_assoc, inv_mul_cancel hc, one_mul] }, intro h', apply is_o_const_mul_left h' end end section variables [normed_group β] [normed_field γ] theorem is_O_of_is_O_const_mul_right {f : α → β} {g : α → γ} {l : filter α} {c : γ} (h : is_O f (λ x, c * g x) l) : is_O f g l := begin cases classical.em (c = 0) with h' h', { simp [h', is_O_zero_right_iff] at h, rw is_O_congr_left h, apply is_O_zero }, have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp h', have cpos : ∥c∥ > 0, from lt_of_le_of_ne (norm_nonneg _) (ne.symm cne0), rcases h with ⟨c', c'pos, h''⟩, refine ⟨c' * ∥c∥, mul_pos c'pos cpos, _⟩, convert h'', ext x, dsimp, rw [normed_field.norm_mul, mul_assoc] end theorem is_O_const_mul_right_iff {f : α → β} {g : α → γ} {l : filter α} {c : γ} (hc : c ≠ 0) : is_O f (λ x, c * g x) l ↔ is_O f g l := begin split, { intro h, exact is_O_of_is_O_const_mul_right h }, intro h, apply is_O_of_is_O_const_mul_right, show is_O f (λ (x : α), c⁻¹ * (c * g x)) l, convert h, ext, rw [←mul_assoc, inv_mul_cancel hc, one_mul] end theorem is_o_of_is_o_const_mul_right {f : α → β} {g : α → γ} {l : filter α} {c : γ} (h : is_o f (λ x, c * g x) l) : is_o f g l := begin cases classical.em (c = 0) with h' h', { simp [h', is_o_zero_right_iff] at h, rw is_o_congr_left h, apply is_o_zero }, have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp h', have cpos : ∥c∥ > 0, from lt_of_le_of_ne (norm_nonneg _) (ne.symm cne0), intros c' c'pos, convert h (c' / ∥c∥) (div_pos c'pos cpos), dsimp, ext x, rw [normed_field.norm_mul, ←mul_assoc, div_mul_cancel _ cne0] end theorem is_o_const_mul_right {f : α → β} {g : α → γ} {l : filter α} {c : γ} (hc : c ≠ 0) : is_o f (λ x, c * g x) l ↔ is_o f g l := begin split, { intro h, exact is_o_of_is_o_const_mul_right h }, intro h, apply is_o_of_is_o_const_mul_right, show is_o f (λ (x : α), c⁻¹ * (c * g x)) l, convert h, ext, rw [←mul_assoc, inv_mul_cancel hc, one_mul] end theorem is_o_one_iff {f : α → β} {l : filter α} : is_o f (λ x, (1 : γ)) l ↔ tendsto f l (nhds 0) := begin rw [normed_group.tendsto_nhds_zero, is_o], split, { intros h e epos, filter_upwards [h (e / 2) (half_pos epos)], simp, intros x hx, exact lt_of_le_of_lt hx (half_lt_self epos) }, intros h e epos, filter_upwards [h e epos], simp, intros x hx, exact le_of_lt hx end theorem is_O_one_of_tendsto {f : α → β} {l : filter α} {y : β} (h : tendsto f l (nhds y)) : is_O f (λ x, (1 : γ)) l := begin have Iy : ∥y∥ < ∥y∥ + 1 := lt_add_one _, refine ⟨∥y∥ + 1, lt_of_le_of_lt (norm_nonneg _) Iy, _⟩, simp only [mul_one, normed_field.norm_one], have : tendsto (λx, ∥f x∥) l (nhds ∥y∥) := (continuous_norm.tendsto _).comp h, exact this (ge_mem_nhds Iy) end end section variables [normed_group β] [normed_group γ] theorem is_O.trans_tendsto {f : α → β} {g : α → γ} {l : filter α} (h₁ : is_O f g l) (h₂ : tendsto g l (nhds 0)) : tendsto f l (nhds 0) := (@is_o_one_iff _ _ ℝ _ _ _ _).1 $ h₁.trans_is_o $ is_o_one_iff.2 h₂ theorem is_o.trans_tendsto {f : α → β} {g : α → γ} {l : filter α} (h₁ : is_o f g l) : tendsto g l (nhds 0) → tendsto f l (nhds 0) := h₁.to_is_O.trans_tendsto end section variables [normed_field β] [normed_field γ] theorem is_O_mul {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (h₁ : is_O f₁ g₁ l) (h₂ : is_O f₂ g₂ l) : is_O (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := begin rcases h₁ with ⟨c₁, c₁pos, hc₁⟩, rcases h₂ with ⟨c₂, c₂pos, hc₂⟩, refine ⟨c₁ * c₂, mul_pos c₁pos c₂pos, _⟩, filter_upwards [hc₁, hc₂], dsimp, intros x hx₁ hx₂, rw [normed_field.norm_mul, normed_field.norm_mul, mul_assoc, mul_left_comm c₂, ←mul_assoc], exact mul_le_mul hx₁ hx₂ (norm_nonneg _) (mul_nonneg (le_of_lt c₁pos) (norm_nonneg _)) end theorem is_o_mul_left {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (h₁ : is_O f₁ g₁ l) (h₂ : is_o f₂ g₂ l) : is_o (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := begin intros c cpos, rcases h₁ with ⟨c₁, c₁pos, hc₁⟩, filter_upwards [hc₁, h₂ (c / c₁) (div_pos cpos c₁pos)], dsimp, intros x hx₁ hx₂, rw [normed_field.norm_mul, normed_field.norm_mul], apply le_trans (mul_le_mul hx₁ hx₂ (norm_nonneg _) (mul_nonneg (le_of_lt c₁pos) (norm_nonneg _))), rw [mul_comm c₁, mul_assoc, mul_left_comm c₁, ←mul_assoc _ c₁, div_mul_cancel _ (ne_of_gt c₁pos)], rw [mul_left_comm] end theorem is_o_mul_right {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (h₁ : is_o f₁ g₁ l) (h₂ : is_O f₂ g₂ l) : is_o (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := by convert is_o_mul_left h₂ h₁; simp only [mul_comm] theorem is_o_mul {f₁ f₂ : α → β} {g₁ g₂ : α → γ} {l : filter α} (h₁ : is_o f₁ g₁ l) (h₂ : is_o f₂ g₂ l) : is_o (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := is_o_mul_left h₁.to_is_O h₂ end /- Note: the theorems in the next two sections can also be used for the integers, since scalar multiplication is multiplication. -/ section variables {K : Type*} [normed_field K] [normed_group β] [normed_space K β] [normed_group γ] set_option class.instance_max_depth 43 theorem is_O_const_smul_left {f : α → β} {g : α → γ} {l : filter α} (h : is_O f g l) (c : K) : is_O (λ x, c • f x) g l := begin rw [←is_O_norm_left], simp only [norm_smul], apply is_O_const_mul_left, rw [is_O_norm_left], apply h end theorem is_O_const_smul_left_iff {f : α → β} {g : α → γ} {l : filter α} {c : K} (hc : c ≠ 0) : is_O (λ x, c • f x) g l ↔ is_O f g l := begin have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp hc, rw [←is_O_norm_left], simp only [norm_smul], rw [is_O_const_mul_left_iff cne0, is_O_norm_left] end theorem is_o_const_smul_left {f : α → β} {g : α → γ} {l : filter α} (h : is_o f g l) (c : K) : is_o (λ x, c • f x) g l := begin rw [←is_o_norm_left], simp only [norm_smul], apply is_o_const_mul_left, rw [is_o_norm_left], apply h end theorem is_o_const_smul_left_iff {f : α → β} {g : α → γ} {l : filter α} {c : K} (hc : c ≠ 0) : is_o (λ x, c • f x) g l ↔ is_o f g l := begin have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp hc, rw [←is_o_norm_left], simp only [norm_smul], rw [is_o_const_mul_left_iff cne0, is_o_norm_left] end end section variables {K : Type*} [normed_group β] [normed_field K] [normed_group γ] [normed_space K γ] set_option class.instance_max_depth 43 theorem is_O_const_smul_right {f : α → β} {g : α → γ} {l : filter α} {c : K} (hc : c ≠ 0) : is_O f (λ x, c • g x) l ↔ is_O f g l := begin have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp hc, rw [←is_O_norm_right], simp only [norm_smul], rw [is_O_const_mul_right_iff cne0, is_O_norm_right] end theorem is_o_const_smul_right {f : α → β} {g : α → γ} {l : filter α} {c : K} (hc : c ≠ 0) : is_o f (λ x, c • g x) l ↔ is_o f g l := begin have cne0 : ∥c∥ ≠ 0, from mt (norm_eq_zero _).mp hc, rw [←is_o_norm_right], simp only [norm_smul], rw [is_o_const_mul_right cne0, is_o_norm_right] end end section variables {K : Type*} [normed_field K] [normed_group β] [normed_space K β] [normed_group γ] [normed_space K γ] set_option class.instance_max_depth 43 theorem is_O_smul {k : α → K} {f : α → β} {g : α → γ} {l : filter α} (h : is_O f g l) : is_O (λ x, k x • f x) (λ x, k x • g x) l := begin rw [←is_O_norm_left, ←is_O_norm_right], simp only [norm_smul], apply is_O_mul (is_O_refl _ _), rw [is_O_norm_left, is_O_norm_right], exact h end theorem is_o_smul {k : α → K} {f : α → β} {g : α → γ} {l : filter α} (h : is_o f g l) : is_o (λ x, k x • f x) (λ x, k x • g x) l := begin rw [←is_o_norm_left, ←is_o_norm_right], simp only [norm_smul], apply is_o_mul_left (is_O_refl _ _), rw [is_o_norm_left, is_o_norm_right], exact h end end section variables [normed_field β] theorem tendsto_nhds_zero_of_is_o {f g : α → β} {l : filter α} (h : is_o f g l) : tendsto (λ x, f x / (g x)) l (nhds 0) := have eq₁ : is_o (λ x, f x / g x) (λ x, g x / g x) l, from is_o_mul_right h (is_O_refl _ _), have eq₂ : is_O (λ x, g x / g x) (λ x, (1 : β)) l, begin use [1, zero_lt_one], filter_upwards [univ_mem_sets], simp, intro x, cases classical.em (∥g x∥ = 0) with h' h'; simp [h'], exact zero_le_one end, is_o_one_iff.mp (eq₁.trans_is_O eq₂) private theorem is_o_of_tendsto {f g : α → β} {l : filter α} (hgf : ∀ x, g x = 0 → f x = 0) (h : tendsto (λ x, f x / (g x)) l (nhds 0)) : is_o f g l := have eq₁ : is_o (λ x, f x / (g x)) (λ x, (1 : β)) l, from is_o_one_iff.mpr h, have eq₂ : is_o (λ x, f x / g x * g x) g l, by convert is_o_mul_right eq₁ (is_O_refl _ _); simp, have eq₃ : is_O f (λ x, f x / g x * g x) l, begin use [1, zero_lt_one], refine filter.univ_mem_sets' (assume x, _), suffices : ∥f x∥ ≤ ∥f x∥ / ∥g x∥ * ∥g x∥, { simpa }, by_cases g x = 0, { simp only [h, hgf x h, norm_zero, mul_zero] }, { rw [div_mul_cancel], exact mt (norm_eq_zero _).1 h } end, eq₃.trans_is_o eq₂ theorem is_o_iff_tendsto {f g : α → β} {l : filter α} (hgf : ∀ x, g x = 0 → f x = 0) : is_o f g l ↔ tendsto (λ x, f x / (g x)) l (nhds 0) := iff.intro tendsto_nhds_zero_of_is_o (is_o_of_tendsto hgf) end end asymptotics
b386f6a3ca46aff3f2fbd4a073ce02c98b1205f7
206422fb9edabf63def0ed2aa3f489150fb09ccb
/src/data/buffer/parser/numeral.lean
ab7b0a4ea1ecc3b7ca3e05a95578f6f63967f092
[ "Apache-2.0" ]
permissive
hamdysalah1/mathlib
b915f86b2503feeae268de369f1b16932321f097
95454452f6b3569bf967d35aab8d852b1ddf8017
refs/heads/master
1,677,154,116,545
1,611,797,994,000
1,611,797,994,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,238
lean
/- Copyright (c) 2020 Yakov Pechersky. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yakov Pechersky -/ import data.fintype.card /-! # Numeral parsers This file expands on the existing `nat : parser ℕ` to provide parsers into any type `α` that can be represented by a numeral, which relies on `α` having a 0, 1, and addition operation. There are also convenience parsers that ensure that the numeral parsed in is not larger than the cardinality of the type `α` , if it is known that `fintype α`. Additionally, there are convenience parsers that parse in starting from "1", which can be useful for positive ordinals; or parser from a given character or character range. ## Main definitions * 'numeral` : The parser which uses `nat.cast` to map the result of `parser.nat` to the desired `α` * `numeral.of_fintype` : The parser which `guard`s to make sure the parsed numeral is within the cardinality of the target `fintype` type `α`. ## Implementation details When the `numeral` or related parsers are invoked, the desired type is provided explicitly. In many cases, it can be inferred, so one can write, for example ```lean def get_fin : string → fin 5 := sum.elim (λ _, 0) id ∘ parser.run_string (parser.numeral.of_fintype _) ``` In the definitions of the parsers (except for `numeral`), there is an explicit `nat.bin_cast` instead an explicit or implicit `nat.cast` -/ open parser parse_result namespace parser variables (α : Type) [has_zero α] [has_one α] [has_add α] /-- Parse a string of digits as a numeral while casting it to target type `α`. -/ def numeral : parser α := nat.bin_cast <$> nat /-- Parse a string of digits as a numeral while casting it to target type `α`, which has a `[fintype α]` constraint. The parser ensures that the numeral parsed in is within the cardinality of the type `α`. -/ def numeral.of_fintype [fintype α] : parser α := do c ← nat, decorate_error (sformat!"<numeral less than {to_string (fintype.card α)}>") (guard (c < fintype.card α)), pure $ nat.bin_cast c /-- Parse a string of digits as a numeral while casting it to target type `α`. The parsing starts at "1", so `"1"` is parsed in as `nat.cast 0`. Providing `"0"` to the parser causes a failure. -/ def numeral.from_one : parser α := do c ← nat, decorate_error ("<positive numeral>") (guard (0 < c)), pure $ nat.bin_cast (c - 1) /-- Parse a string of digits as a numeral while casting it to target type `α`, which has a `[fintype α]` constraint. The parser ensures that the numeral parsed in is within the cardinality of the type `α`. The parsing starts at "1", so `"1"` is parsed in as `nat.cast 0`. Providing `"0"` to the parser causes a failure. -/ def numeral.from_one.of_fintype [fintype α] : parser α := do c ← nat, decorate_error (sformat!"<positive numeral less than or equal to {to_string (fintype.card α)}>") (guard (0 < c ∧ c ≤ fintype.card α)), pure $ nat.bin_cast (c - 1) /-- Parse a character as a numeral while casting it to target type `α`, The parser ensures that the character parsed in is within the bounds set by `fromc` and `toc`, and subtracts the value of `fromc` from the parsed in character. -/ def numeral.char (fromc toc : char) : parser α := do c ← decorate_error (sformat!"<char between '{fromc.to_string}' to '{toc.to_string}' inclusively>") (sat (λ c, fromc ≤ c ∧ c ≤ toc)), pure $ nat.bin_cast (c.to_nat - fromc.to_nat) /-- Parse a character as a numeral while casting it to target type `α`, which has a `[fintype α]` constraint. The parser ensures that the character parsed in is greater or equal to `fromc` and and subtracts the value of `fromc` from the parsed in character. There is also a check that the resulting value is within the cardinality of the type `α`. -/ def numeral.char.of_fintype [fintype α] (fromc : char) : parser α := do c ← decorate_error (sformat!"<char from '{fromc.to_string}' to '{ (char.of_nat (fromc.to_nat + fintype.card α - 1)).to_string}' inclusively>") (sat (λ c, fromc ≤ c ∧ c.to_nat - fintype.card α < fromc.to_nat)), pure $ nat.bin_cast (c.to_nat - fromc.to_nat) end parser
b8b7a6f0addd99152015215386d2675659daa387
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/topology/sheaves/local_predicate.lean
2b8747ce3a40ac0eeb9206adefafe917aaca901b
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
15,248
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison, Adam Topaz -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.topology.sheaves.sheaf_of_functions import Mathlib.topology.sheaves.stalks import Mathlib.PostPort universes v l namespace Mathlib /-! # Functions satisfying a local predicate form a sheaf. At this stage, in `topology/sheaves/sheaf_of_functions.lean` we've proved that not-necessarily-continuous functions from a topological space into some type (or type family) form a sheaf. Why do the continuous functions form a sheaf? The point is just that continuity is a local condition, so one can use the lifting condition for functions to provide a candidate lift, then verify that the lift is actually continuous by using the factorisation condition for the lift (which guarantees that on each open set it agrees with the functions being lifted, which were assumed to be continuous). This file abstracts this argument to work for any collection of dependent functions on a topological space satisfying a "local predicate". As an application, we check that continuity is a local predicate in this sense, and provide * `Top.sheaf_condition.to_Top`: continuous functions into a topological space form a sheaf A sheaf constructed in this way has a natural map `stalk_to_fiber` from the stalks to the types in the ambient type family. We give conditions sufficient to show that this map is injective and/or surjective. -/ namespace Top /-- Given a topological space `X : Top` and a type family `T : X → Type`, a `P : prelocal_predicate T` consists of: * a family of predicates `P.pred`, one for each `U : opens X`, of the form `(Π x : U, T x) → Prop` * a proof that if `f : Π x : V, T x` satisfies the predicate on `V : opens X`, then the restriction of `f` to any open subset `U` also satisfies the predicate. -/ structure prelocal_predicate {X : Top} (T : ↥X → Type v) where pred : {U : topological_space.opens ↥X} → ((x : ↥U) → T ↑x) → Prop res : ∀ {U V : topological_space.opens ↥X} (i : U ⟶ V) (f : (x : ↥V) → T ↑x), pred f → pred fun (x : ↥U) => f (coe_fn i x) /-- Continuity is a "prelocal" predicate on functions to a fixed topological space `T`. -/ @[simp] theorem continuous_prelocal_pred (X : Top) (T : Top) (U : topological_space.opens ↥X) (f : ↥U → ↥T) : prelocal_predicate.pred (continuous_prelocal X T) f = continuous f := Eq.refl (prelocal_predicate.pred (continuous_prelocal X T) f) /-- Satisfying the inhabited linter. -/ protected instance inhabited_prelocal_predicate (X : Top) (T : Top) : Inhabited (prelocal_predicate fun (x : ↥X) => ↥T) := { default := continuous_prelocal X T } /-- Given a topological space `X : Top` and a type family `T : X → Type`, a `P : local_predicate T` consists of: * a family of predicates `P.pred`, one for each `U : opens X`, of the form `(Π x : U, T x) → Prop` * a proof that if `f : Π x : V, T x` satisfies the predicate on `V : opens X`, then the restriction of `f` to any open subset `U` also satisfies the predicate, and * a proof that given some `f : Π x : U, T x`, if for every `x : U` we can find an open set `x ∈ V ≤ U` so that the restriction of `f` to `V` satisfies the predicate, then `f` itself satisfies the predicate. -/ structure local_predicate {X : Top} (T : ↥X → Type v) extends prelocal_predicate T where locality : ∀ {U : topological_space.opens ↥X} (f : (x : ↥U) → T ↑x), (∀ (x : ↥U), ∃ (V : topological_space.opens ↥X), ∃ (m : subtype.val x ∈ V), ∃ (i : V ⟶ U), prelocal_predicate.pred _to_prelocal_predicate fun (x : ↥V) => f (coe_fn i x)) → prelocal_predicate.pred _to_prelocal_predicate f /-- Continuity is a "local" predicate on functions to a fixed topological space `T`. -/ def continuous_local (X : Top) (T : Top) : local_predicate fun (x : ↥X) => ↥T := local_predicate.mk (prelocal_predicate.mk (prelocal_predicate.pred (continuous_prelocal X T)) sorry) sorry /-- Satisfying the inhabited linter. -/ protected instance inhabited_local_predicate (X : Top) (T : Top) : Inhabited (local_predicate fun (x : ↥X) => ↥T) := { default := continuous_local X T } /-- Given a `P : prelocal_predicate`, we can always construct a `local_predicate` by asking that the condition from `P` holds locally near every point. -/ def prelocal_predicate.sheafify {X : Top} {T : ↥X → Type v} (P : prelocal_predicate T) : local_predicate T := local_predicate.mk (prelocal_predicate.mk (fun (U : topological_space.opens ↥X) (f : (x : ↥U) → T ↑x) => ∀ (x : ↥U), ∃ (V : topological_space.opens ↥X), ∃ (m : subtype.val x ∈ V), ∃ (i : V ⟶ U), prelocal_predicate.pred P fun (x : ↥V) => f (coe_fn i x)) sorry) sorry theorem prelocal_predicate.sheafify_of {X : Top} {T : ↥X → Type v} {P : prelocal_predicate T} {U : topological_space.opens ↥X} {f : (x : ↥U) → T ↑x} (h : prelocal_predicate.pred P f) : prelocal_predicate.pred (local_predicate.to_prelocal_predicate (prelocal_predicate.sheafify P)) f := sorry /-- The subpresheaf of dependent functions on `X` satisfying the "pre-local" predicate `P`. -/ def subpresheaf_to_Types {X : Top} {T : ↥X → Type v} (P : prelocal_predicate T) : presheaf (Type v) X := category_theory.functor.mk (fun (U : topological_space.opens ↥Xᵒᵖ) => Subtype fun (f : (x : ↥(opposite.unop U)) → T ↑x) => prelocal_predicate.pred P f) fun (U V : topological_space.opens ↥Xᵒᵖ) (i : U ⟶ V) (f : Subtype fun (f : (x : ↥(opposite.unop U)) → T ↑x) => prelocal_predicate.pred P f) => { val := fun (x : ↥(opposite.unop V)) => subtype.val f (coe_fn (category_theory.has_hom.hom.unop i) x), property := sorry } namespace subpresheaf_to_Types /-- The natural transformation including the subpresheaf of functions satisfying a local predicate into the presheaf of all functions. -/ def subtype {X : Top} {T : ↥X → Type v} (P : prelocal_predicate T) : subpresheaf_to_Types P ⟶ presheaf_to_Types X T := category_theory.nat_trans.mk fun (U : topological_space.opens ↥Xᵒᵖ) (f : category_theory.functor.obj (subpresheaf_to_Types P) U) => subtype.val f /-- The natural transformation from the sheaf condition diagram for functions satisfying a local predicate to the sheaf condition diagram for arbitrary functions, given by forgetting that the local predicate holds. -/ def diagram_subtype {X : Top} {T : ↥X → Type v} (P : prelocal_predicate T) {ι : Type v} (U : ι → topological_space.opens ↥X) : presheaf.sheaf_condition_equalizer_products.diagram (subpresheaf_to_Types P) U ⟶ presheaf.sheaf_condition_equalizer_products.diagram (presheaf_to_Types X T) U := category_theory.nat_trans.mk fun (j : category_theory.limits.walking_parallel_pair) => category_theory.limits.walking_parallel_pair.rec_on j (category_theory.limits.pi.map fun (i : ι) (f : category_theory.functor.obj (subpresheaf_to_Types P) (opposite.op (U i))) => subtype.val f) (category_theory.limits.pi.map fun (p : ι × ι) (f : category_theory.functor.obj (subpresheaf_to_Types P) (opposite.op (U (prod.fst p) ⊓ U (prod.snd p)))) => subtype.val f) -- auxilliary lemma for `sheaf_condition` below theorem sheaf_condition_fac {X : Top} {T : ↥X → Type v} {P : local_predicate T} {ι : Type v} {U : ι → topological_space.opens ↥X} {s : category_theory.limits.fork (presheaf.sheaf_condition_equalizer_products.left_res (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) U) (presheaf.sheaf_condition_equalizer_products.right_res (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) U)} (i : ι) (f : category_theory.limits.cone.X s) (h : prelocal_predicate.pred (local_predicate.to_prelocal_predicate P) (category_theory.limits.is_limit.lift (presheaf.to_Types X T U) (category_theory.functor.obj (category_theory.limits.cones.postcompose (diagram_subtype (local_predicate.to_prelocal_predicate P) U)) s) f)) : category_theory.limits.limit.π (category_theory.discrete.functor fun (i : ι) => Subtype fun (f : (x : ↥(opposite.unop (opposite.op (U i)))) → T ↑x) => prelocal_predicate.pred (local_predicate.to_prelocal_predicate P) f) i (presheaf.sheaf_condition_equalizer_products.res (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) U { val := category_theory.limits.is_limit.lift (presheaf.to_Types X T U) (category_theory.functor.obj (category_theory.limits.cones.postcompose (diagram_subtype (local_predicate.to_prelocal_predicate P) U)) s) f, property := h }) = category_theory.limits.limit.π (category_theory.discrete.functor fun (i : ι) => Subtype fun (f : (x : ↥(opposite.unop (opposite.op (U i)))) → T ↑x) => prelocal_predicate.pred (local_predicate.to_prelocal_predicate P) f) i (category_theory.limits.fork.ι s f) := sorry -- auxilliary lemma for `sheaf_condition` below theorem sheaf_condition_uniq {X : Top} {T : ↥X → Type v} {P : local_predicate T} {ι : Type v} {U : ι → topological_space.opens ↥X} {s : category_theory.limits.fork (presheaf.sheaf_condition_equalizer_products.left_res (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) U) (presheaf.sheaf_condition_equalizer_products.right_res (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) U)} (m : category_theory.limits.cone.X s ⟶ category_theory.limits.cone.X (presheaf.sheaf_condition_equalizer_products.fork (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) U)) (w : ∀ (j : category_theory.limits.walking_parallel_pair), m ≫ category_theory.nat_trans.app (category_theory.limits.cone.π (presheaf.sheaf_condition_equalizer_products.fork (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) U)) j = category_theory.nat_trans.app (category_theory.limits.cone.π s) j) (f : category_theory.limits.cone.X s) (h : prelocal_predicate.pred (local_predicate.to_prelocal_predicate P) (category_theory.limits.is_limit.lift (presheaf.to_Types X T U) (category_theory.functor.obj (category_theory.limits.cones.postcompose (diagram_subtype (local_predicate.to_prelocal_predicate P) U)) s) f)) : m f = { val := category_theory.limits.is_limit.lift (presheaf.to_Types X T U) (category_theory.functor.obj (category_theory.limits.cones.postcompose (diagram_subtype (local_predicate.to_prelocal_predicate P) U)) s) f, property := h } := sorry /-- The functions satisfying a local predicate satisfy the sheaf condition. -/ def sheaf_condition {X : Top} {T : ↥X → Type v} (P : local_predicate T) : presheaf.sheaf_condition (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) := sorry end subpresheaf_to_Types /-- The subsheaf of the sheaf of all dependently typed functions satisfying the local predicate `P`. -/ def subsheaf_to_Types {X : Top} {T : ↥X → Type v} (P : local_predicate T) : sheaf (Type v) X := sheaf.mk (subpresheaf_to_Types (local_predicate.to_prelocal_predicate P)) (subpresheaf_to_Types.sheaf_condition P) /-- There is a canonical map from the stalk to the original fiber, given by evaluating sections. -/ def stalk_to_fiber {X : Top} {T : ↥X → Type v} (P : local_predicate T) (x : ↥X) : presheaf.stalk (sheaf.presheaf (subsheaf_to_Types P)) x ⟶ T x := category_theory.limits.colimit.desc (category_theory.functor.obj (category_theory.functor.obj (category_theory.whiskering_left (topological_space.open_nhds xᵒᵖ) (topological_space.opens ↥Xᵒᵖ) (Type v)) (category_theory.functor.op (topological_space.open_nhds.inclusion x))) (sheaf.presheaf (subsheaf_to_Types P))) (category_theory.limits.cocone.mk (T x) (category_theory.nat_trans.mk fun (U : topological_space.open_nhds xᵒᵖ) (f : category_theory.functor.obj (category_theory.functor.obj (category_theory.functor.obj (category_theory.whiskering_left (topological_space.open_nhds xᵒᵖ) (topological_space.opens ↥Xᵒᵖ) (Type v)) (category_theory.functor.op (topological_space.open_nhds.inclusion x))) (sheaf.presheaf (subsheaf_to_Types P))) U) => subtype.val f { val := x, property := sorry })) @[simp] theorem stalk_to_fiber_germ {X : Top} {T : ↥X → Type v} (P : local_predicate T) (U : topological_space.opens ↥X) (x : ↥U) (f : category_theory.functor.obj (sheaf.presheaf (subsheaf_to_Types P)) (opposite.op U)) : stalk_to_fiber P (↑x) (presheaf.germ (sheaf.presheaf (subsheaf_to_Types P)) x f) = subtype.val f x := sorry /-- The `stalk_to_fiber` map is surjective at `x` if every point in the fiber `T x` has an allowed section passing through it. -/ theorem stalk_to_fiber_surjective {X : Top} {T : ↥X → Type v} (P : local_predicate T) (x : ↥X) (w : ∀ (t : T x), ∃ (U : topological_space.open_nhds x), ∃ (f : (y : ↥(subtype.val U)) → T ↑y), ∃ (h : prelocal_predicate.pred (local_predicate.to_prelocal_predicate P) f), f { val := x, property := subtype.property U } = t) : function.surjective (stalk_to_fiber P x) := sorry /-- The `stalk_to_fiber` map is injective at `x` if any two allowed sections which agree at `x` agree on some neighborhood of `x`. -/ theorem stalk_to_fiber_injective {X : Top} {T : ↥X → Type v} (P : local_predicate T) (x : ↥X) (w : ∀ (U V : topological_space.open_nhds x) (fU : (y : ↥(subtype.val U)) → T ↑y), prelocal_predicate.pred (local_predicate.to_prelocal_predicate P) fU → ∀ (fV : (y : ↥(subtype.val V)) → T ↑y), prelocal_predicate.pred (local_predicate.to_prelocal_predicate P) fV → fU { val := x, property := subtype.property U } = fV { val := x, property := subtype.property V } → ∃ (W : topological_space.open_nhds x), ∃ (iU : W ⟶ U), ∃ (iV : W ⟶ V), ∀ (w : ↥(subtype.val W)), fU (coe_fn iU w) = fV (coe_fn iV w)) : function.injective (stalk_to_fiber P x) := sorry /-- Some repackaging: the presheaf of functions satisfying `continuous_prelocal` is just the same thing as the presheaf of continuous functions. -/ def subpresheaf_continuous_prelocal_iso_presheaf_to_Top {X : Top} (T : Top) : subpresheaf_to_Types (continuous_prelocal X T) ≅ presheaf_to_Top X T := sorry /-- The sheaf of continuous functions on `X` with values in a space `T`. -/ def sheaf_to_Top {X : Top} (T : Top) : sheaf (Type v) X := sheaf.mk (presheaf_to_Top X T) (coe_fn (presheaf.sheaf_condition_equiv_of_iso (subpresheaf_continuous_prelocal_iso_presheaf_to_Top T)) (subpresheaf_to_Types.sheaf_condition (continuous_local X T)))
6df3c52e688882daf159fc6615c2f44a8e36e74f
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/data/real/cau_seq.lean
f988d639e7caade8fd36a1d5cbb27fb0f9a0e19b
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
33,426
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import algebra.group_power.lemmas import algebra.order.absolute_value import algebra.order.group.min_max import algebra.order.field.basic /-! # Cauchy sequences A basic theory of Cauchy sequences, used in the construction of the reals and p-adic numbers. Where applicable, lemmas that will be reused in other contexts have been stated in extra generality. There are other "versions" of Cauchyness in the library, in particular Cauchy filters in topology. This is a concrete implementation that is useful for simplicity and computability reasons. ## Important definitions * `is_cau_seq`: a predicate that says `f : ℕ → β` is Cauchy. * `cau_seq`: the type of Cauchy sequences valued in type `β` with respect to an absolute value function `abv`. ## Tags sequence, cauchy, abs val, absolute value -/ open is_absolute_value variables {G α β : Type*} theorem exists_forall_ge_and {α} [linear_order α] {P Q : α → Prop} : (∃ i, ∀ j ≥ i, P j) → (∃ i, ∀ j ≥ i, Q j) → ∃ i, ∀ j ≥ i, P j ∧ Q j | ⟨a, h₁⟩ ⟨b, h₂⟩ := let ⟨c, ac, bc⟩ := exists_ge_of_linear a b in ⟨c, λ j hj, ⟨h₁ _ (le_trans ac hj), h₂ _ (le_trans bc hj)⟩⟩ section variables [linear_ordered_field α] [ring β] (abv : β → α) [is_absolute_value abv] theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) : ∃ δ > 0, ∀ {a₁ a₂ b₁ b₂ : β}, abv (a₁ - b₁) < δ → abv (a₂ - b₂) < δ → abv (a₁ + a₂ - (b₁ + b₂)) < ε := ⟨ε / 2, half_pos ε0, λ a₁ a₂ b₁ b₂ h₁ h₂, by simpa [add_halves, sub_eq_add_neg, add_comm, add_left_comm, add_assoc] using lt_of_le_of_lt (abv_add abv _ _) (add_lt_add h₁ h₂)⟩ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) : ∃ δ > 0, ∀ {a₁ a₂ b₁ b₂ : β}, abv a₁ < K₁ → abv b₂ < K₂ → abv (a₁ - b₁) < δ → abv (a₂ - b₂) < δ → abv (a₁ * a₂ - b₁ * b₂) < ε := begin have K0 : (0 : α) < max 1 (max K₁ K₂) := lt_of_lt_of_le zero_lt_one (le_max_left _ _), have εK := div_pos (half_pos ε0) K0, refine ⟨_, εK, λ a₁ a₂ b₁ b₂ ha₁ hb₂ h₁ h₂, _⟩, replace ha₁ := lt_of_lt_of_le ha₁ (le_trans (le_max_left _ K₂) (le_max_right 1 _)), replace hb₂ := lt_of_lt_of_le hb₂ (le_trans (le_max_right K₁ _) (le_max_right 1 _)), have := add_lt_add (mul_lt_mul' (le_of_lt h₁) hb₂ (abv_nonneg abv _) εK) (mul_lt_mul' (le_of_lt h₂) ha₁ (abv_nonneg abv _) εK), rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this, simpa [mul_add, add_mul, sub_eq_add_neg, add_comm, add_left_comm] using lt_of_le_of_lt (abv_add abv _ _) this end theorem rat_inv_continuous_lemma {β : Type*} [division_ring β] (abv : β → α) [is_absolute_value abv] {ε K : α} (ε0 : 0 < ε) (K0 : 0 < K) : ∃ δ > 0, ∀ {a b : β}, K ≤ abv a → K ≤ abv b → abv (a - b) < δ → abv (a⁻¹ - b⁻¹) < ε := begin refine ⟨K * ε * K, mul_pos (mul_pos K0 ε0) K0, λ a b ha hb h, _⟩, have a0 := K0.trans_le ha, have b0 := K0.trans_le hb, rw [inv_sub_inv' ((abv_pos abv).1 a0) ((abv_pos abv).1 b0), abv_mul abv, abv_mul abv, abv_inv abv, abv_inv abv, abv_sub abv], refine lt_of_mul_lt_mul_left (lt_of_mul_lt_mul_right _ b0.le) a0.le, rw [mul_assoc, inv_mul_cancel_right₀ b0.ne', ←mul_assoc, mul_inv_cancel a0.ne', one_mul], refine h.trans_le _, exact mul_le_mul (mul_le_mul ha le_rfl ε0.le a0.le) hb K0.le (mul_nonneg a0.le ε0.le), end end /-- A sequence is Cauchy if the distance between its entries tends to zero. -/ def is_cau_seq {α : Type*} [linear_ordered_field α] {β : Type*} [ring β] (abv : β → α) (f : ℕ → β) : Prop := ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - f i) < ε namespace is_cau_seq variables [linear_ordered_field α] [ring β] {abv : β → α} [is_absolute_value abv] {f g : ℕ → β} @[nolint ge_or_gt] -- see Note [nolint_ge] theorem cauchy₂ (hf : is_cau_seq abv f) {ε : α} (ε0 : 0 < ε) : ∃ i, ∀ j k ≥ i, abv (f j - f k) < ε := begin refine (hf _ (half_pos ε0)).imp (λ i hi j ij k ik, _), rw ← add_halves ε, refine lt_of_le_of_lt (abv_sub_le abv _ _ _) (add_lt_add (hi _ ij) _), rw abv_sub abv, exact hi _ ik end theorem cauchy₃ (hf : is_cau_seq abv f) {ε : α} (ε0 : 0 < ε) : ∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - f j) < ε := let ⟨i, H⟩ := hf.cauchy₂ ε0 in ⟨i, λ j ij k jk, H _ (le_trans ij jk) _ ij⟩ lemma add (hf : is_cau_seq abv f) (hg : is_cau_seq abv g) : is_cau_seq abv (f + g) := λ ε ε0, let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abv ε0, ⟨i, H⟩ := exists_forall_ge_and (hf.cauchy₃ δ0) (hg.cauchy₃ δ0) in ⟨i, λ j ij, let ⟨H₁, H₂⟩ := H _ le_rfl in Hδ (H₁ _ ij) (H₂ _ ij)⟩ end is_cau_seq /-- `cau_seq β abv` is the type of `β`-valued Cauchy sequences, with respect to the absolute value function `abv`. -/ def cau_seq {α : Type*} [linear_ordered_field α] (β : Type*) [ring β] (abv : β → α) : Type* := {f : ℕ → β // is_cau_seq abv f} namespace cau_seq variables [linear_ordered_field α] section ring variables [ring β] {abv : β → α} instance : has_coe_to_fun (cau_seq β abv) (λ _, ℕ → β) := ⟨subtype.val⟩ @[simp] theorem mk_to_fun (f) (hf : is_cau_seq abv f) : @coe_fn (cau_seq β abv) _ _ ⟨f, hf⟩ = f := rfl theorem ext {f g : cau_seq β abv} (h : ∀ i, f i = g i) : f = g := subtype.eq (funext h) theorem is_cau (f : cau_seq β abv) : is_cau_seq abv f := f.2 theorem cauchy (f : cau_seq β abv) : ∀ {ε}, 0 < ε → ∃ i, ∀ j ≥ i, abv (f j - f i) < ε := f.2 /-- Given a Cauchy sequence `f`, create a Cauchy sequence from a sequence `g` with the same values as `f`. -/ def of_eq (f : cau_seq β abv) (g : ℕ → β) (e : ∀ i, f i = g i) : cau_seq β abv := ⟨g, λ ε, by rw [show g = f, from (funext e).symm]; exact f.cauchy⟩ variable [is_absolute_value abv] @[nolint ge_or_gt] -- see Note [nolint_ge] theorem cauchy₂ (f : cau_seq β abv) {ε} : 0 < ε → ∃ i, ∀ j k ≥ i, abv (f j - f k) < ε := f.2.cauchy₂ theorem cauchy₃ (f : cau_seq β abv) {ε} : 0 < ε → ∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - f j) < ε := f.2.cauchy₃ theorem bounded (f : cau_seq β abv) : ∃ r, ∀ i, abv (f i) < r := begin cases f.cauchy zero_lt_one with i h, set R : ℕ → α := @nat.rec (λ n, α) (abv (f 0)) (λ i c, max c (abv (f i.succ))) with hR, have : ∀ i, ∀ j ≤ i, abv (f j) ≤ R i, { refine nat.rec (by simp [hR]) _, rintros i hi j (rfl | hj), { simp }, exact (hi j hj).trans (le_max_left _ _) }, refine ⟨R i + 1, λ j, _⟩, cases lt_or_le j i with ij ij, { exact lt_of_le_of_lt (this i _ (le_of_lt ij)) (lt_add_one _) }, { have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add_of_le_of_lt (this i _ le_rfl) (h _ ij)), rw [add_sub, add_comm] at this, simpa } end theorem bounded' (f : cau_seq β abv) (x : α) : ∃ r > x, ∀ i, abv (f i) < r := let ⟨r, h⟩ := f.bounded in ⟨max r (x+1), lt_of_lt_of_le (lt_add_one _) (le_max_right _ _), λ i, lt_of_lt_of_le (h i) (le_max_left _ _)⟩ instance : has_add (cau_seq β abv) := ⟨λ f g, ⟨f + g, f.2.add g.2⟩⟩ @[simp, norm_cast] lemma coe_add (f g : cau_seq β abv) : ⇑(f + g) = f + g := rfl @[simp, norm_cast] theorem add_apply (f g : cau_seq β abv) (i : ℕ) : (f + g) i = f i + g i := rfl variable (abv) /-- The constant Cauchy sequence. -/ def const (x : β) : cau_seq β abv := ⟨λ i, x, λ ε ε0, ⟨0, λ j ij, by simpa [abv_zero abv] using ε0⟩⟩ variable {abv} local notation `const` := const abv @[simp, norm_cast] lemma coe_const (x : β) : ⇑(const x) = function.const _ x := rfl @[simp, norm_cast] theorem const_apply (x : β) (i : ℕ) : (const x : ℕ → β) i = x := rfl theorem const_inj {x y : β} : (const x : cau_seq β abv) = const y ↔ x = y := ⟨λ h, congr_arg (λ f:cau_seq β abv, (f:ℕ→β) 0) h, congr_arg _⟩ instance : has_zero (cau_seq β abv) := ⟨const 0⟩ instance : has_one (cau_seq β abv) := ⟨const 1⟩ instance : inhabited (cau_seq β abv) := ⟨0⟩ @[simp, norm_cast] lemma coe_zero : ⇑(0 : cau_seq β abv) = 0 := rfl @[simp, norm_cast] lemma coe_one : ⇑(1 : cau_seq β abv) = 1 := rfl @[simp, norm_cast] lemma zero_apply (i) : (0 : cau_seq β abv) i = 0 := rfl @[simp, norm_cast] lemma one_apply (i) : (1 : cau_seq β abv) i = 1 := rfl @[simp] lemma const_zero : const 0 = 0 := rfl @[simp] lemma const_one : const 1 = 1 := rfl theorem const_add (x y : β) : const (x + y) = const x + const y := rfl instance : has_mul (cau_seq β abv) := ⟨λ f g, ⟨f * g, λ ε ε0, let ⟨F, F0, hF⟩ := f.bounded' 0, ⟨G, G0, hG⟩ := g.bounded' 0, ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abv ε0, ⟨i, H⟩ := exists_forall_ge_and (f.cauchy₃ δ0) (g.cauchy₃ δ0) in ⟨i, λ j ij, let ⟨H₁, H₂⟩ := H _ le_rfl in Hδ (hF j) (hG i) (H₁ _ ij) (H₂ _ ij)⟩⟩⟩ @[simp, norm_cast] lemma coe_mul (f g : cau_seq β abv) : ⇑(f * g) = f * g := rfl @[simp, norm_cast] theorem mul_apply (f g : cau_seq β abv) (i : ℕ) : (f * g) i = f i * g i := rfl theorem const_mul (x y : β) : const (x * y) = const x * const y := rfl instance : has_neg (cau_seq β abv) := ⟨λ f, of_eq (const (-1) * f) (λ x, -f x) (λ i, by simp)⟩ @[simp, norm_cast] lemma coe_neg (f : cau_seq β abv) : ⇑(-f) = -f := rfl @[simp, norm_cast] theorem neg_apply (f : cau_seq β abv) (i) : (-f) i = -f i := rfl theorem const_neg (x : β) : const (-x) = -const x := rfl instance : has_sub (cau_seq β abv) := ⟨λ f g, of_eq (f + -g) (λ x, f x - g x) (λ i, by simp [sub_eq_add_neg])⟩ @[simp, norm_cast] lemma coe_sub (f g : cau_seq β abv) : ⇑(f - g) = f - g := rfl @[simp, norm_cast] theorem sub_apply (f g : cau_seq β abv) (i : ℕ) : (f - g) i = f i - g i := rfl theorem const_sub (x y : β) : const (x - y) = const x - const y := rfl section has_smul variables [has_smul G β] [is_scalar_tower G β β] instance : has_smul G (cau_seq β abv) := ⟨λ a f, of_eq (const (a • 1) * f) (a • f) $ λ i, smul_one_mul _ _⟩ @[simp, norm_cast] lemma coe_smul (a : G) (f : cau_seq β abv) : ⇑(a • f) = a • f := rfl @[simp, norm_cast] lemma smul_apply (a : G) (f : cau_seq β abv) (i : ℕ) : (a • f) i = a • f i := rfl lemma const_smul (a : G) (x : β) : const (a • x) = a • const x := rfl end has_smul instance : add_group (cau_seq β abv) := by refine_struct { add := (+), neg := has_neg.neg, zero := (0 : cau_seq β abv), sub := has_sub.sub, zsmul := (•), nsmul := (•) }; intros; try { refl }; apply ext; simp [add_comm, add_left_comm, sub_eq_add_neg, add_mul] instance : add_group_with_one (cau_seq β abv) := { one := 1, nat_cast := λ n, const n, nat_cast_zero := congr_arg const nat.cast_zero, nat_cast_succ := λ n, congr_arg const (nat.cast_succ n), int_cast := λ n, const n, int_cast_of_nat := λ n, congr_arg const (int.cast_of_nat n), int_cast_neg_succ_of_nat := λ n, congr_arg const (int.cast_neg_succ_of_nat n), .. cau_seq.add_group } instance : has_pow (cau_seq β abv) ℕ := ⟨λ f n, of_eq (npow_rec n f) (λ i, f i ^ n) $ by induction n; simp [*, npow_rec, pow_succ]⟩ @[simp, norm_cast] lemma coe_pow (f : cau_seq β abv) (n : ℕ) : ⇑(f ^ n) = f ^ n := rfl @[simp, norm_cast] lemma pow_apply (f : cau_seq β abv) (n i : ℕ) : (f ^ n) i = f i ^ n := rfl lemma const_pow (x : β) (n : ℕ) : const (x ^ n) = const x ^ n := rfl instance : ring (cau_seq β abv) := by refine_struct { add := (+), zero := (0 : cau_seq β abv), mul := (*), one := 1, npow := λ n f, f ^ n, .. cau_seq.add_group_with_one }; intros; try { refl }; apply ext; simp [mul_add, mul_assoc, add_mul, add_comm, add_left_comm, sub_eq_add_neg, pow_succ] instance {β : Type*} [comm_ring β] {abv : β → α} [is_absolute_value abv] : comm_ring (cau_seq β abv) := { mul_comm := by intros; apply ext; simp [mul_left_comm, mul_comm], ..cau_seq.ring } /-- `lim_zero f` holds when `f` approaches 0. -/ def lim_zero {abv : β → α} (f : cau_seq β abv) : Prop := ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j) < ε theorem add_lim_zero {f g : cau_seq β abv} (hf : lim_zero f) (hg : lim_zero g) : lim_zero (f + g) | ε ε0 := (exists_forall_ge_and (hf _ $ half_pos ε0) (hg _ $ half_pos ε0)).imp $ λ i H j ij, let ⟨H₁, H₂⟩ := H _ ij in by simpa [add_halves ε] using lt_of_le_of_lt (abv_add abv _ _) (add_lt_add H₁ H₂) theorem mul_lim_zero_right (f : cau_seq β abv) {g} (hg : lim_zero g) : lim_zero (f * g) | ε ε0 := let ⟨F, F0, hF⟩ := f.bounded' 0 in (hg _ $ div_pos ε0 F0).imp $ λ i H j ij, by have := mul_lt_mul' (le_of_lt $ hF j) (H _ ij) (abv_nonneg abv _) F0; rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this theorem mul_lim_zero_left {f} (g : cau_seq β abv) (hg : lim_zero f) : lim_zero (f * g) | ε ε0 := let ⟨G, G0, hG⟩ := g.bounded' 0 in (hg _ $ div_pos ε0 G0).imp $ λ i H j ij, by have := mul_lt_mul'' (H _ ij) (hG j) (abv_nonneg abv _) (abv_nonneg abv _); rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this theorem neg_lim_zero {f : cau_seq β abv} (hf : lim_zero f) : lim_zero (-f) := by rw ← neg_one_mul; exact mul_lim_zero_right _ hf theorem sub_lim_zero {f g : cau_seq β abv} (hf : lim_zero f) (hg : lim_zero g) : lim_zero (f - g) := by simpa only [sub_eq_add_neg] using add_lim_zero hf (neg_lim_zero hg) theorem lim_zero_sub_rev {f g : cau_seq β abv} (hfg : lim_zero (f - g)) : lim_zero (g - f) := by simpa using neg_lim_zero hfg theorem zero_lim_zero : lim_zero (0 : cau_seq β abv) | ε ε0 := ⟨0, λ j ij, by simpa [abv_zero abv] using ε0⟩ theorem const_lim_zero {x : β} : lim_zero (const x) ↔ x = 0 := ⟨λ H, (abv_eq_zero abv).1 $ eq_of_le_of_forall_le_of_dense (abv_nonneg abv _) $ λ ε ε0, let ⟨i, hi⟩ := H _ ε0 in le_of_lt $ hi _ le_rfl, λ e, e.symm ▸ zero_lim_zero⟩ instance equiv : setoid (cau_seq β abv) := ⟨λ f g, lim_zero (f - g), ⟨λ f, by simp [zero_lim_zero], λ f g h, by simpa using neg_lim_zero h, λ f g h fg gh, by simpa [sub_eq_add_neg, add_assoc] using add_lim_zero fg gh⟩⟩ lemma add_equiv_add {f1 f2 g1 g2 : cau_seq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) : f1 + g1 ≈ f2 + g2 := by simpa only [←add_sub_add_comm] using add_lim_zero hf hg lemma neg_equiv_neg {f g : cau_seq β abv} (hf : f ≈ g) : -f ≈ -g := by simpa only [neg_sub'] using neg_lim_zero hf lemma sub_equiv_sub {f1 f2 g1 g2 : cau_seq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) : f1 - g1 ≈ f2 - g2 := by simpa only [sub_eq_add_neg] using add_equiv_add hf (neg_equiv_neg hg) theorem equiv_def₃ {f g : cau_seq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε) : ∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - g j) < ε := (exists_forall_ge_and (h _ $ half_pos ε0) (f.cauchy₃ $ half_pos ε0)).imp $ λ i H j ij k jk, let ⟨h₁, h₂⟩ := H _ ij in by have := lt_of_le_of_lt (abv_add abv (f j - g j) _) (add_lt_add h₁ (h₂ _ jk)); rwa [sub_add_sub_cancel', add_halves] at this theorem lim_zero_congr {f g : cau_seq β abv} (h : f ≈ g) : lim_zero f ↔ lim_zero g := ⟨λ l, by simpa using add_lim_zero (setoid.symm h) l, λ l, by simpa using add_lim_zero h l⟩ theorem abv_pos_of_not_lim_zero {f : cau_seq β abv} (hf : ¬ lim_zero f) : ∃ K > 0, ∃ i, ∀ j ≥ i, K ≤ abv (f j) := begin haveI := classical.prop_decidable, by_contra nk, refine hf (λ ε ε0, _), simp [not_forall] at nk, cases f.cauchy₃ (half_pos ε0) with i hi, rcases nk _ (half_pos ε0) i with ⟨j, ij, hj⟩, refine ⟨j, λ k jk, _⟩, have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add (hi j ij k jk) hj), rwa [sub_add_cancel, add_halves] at this end theorem of_near (f : ℕ → β) (g : cau_seq β abv) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - g j) < ε) : is_cau_seq abv f | ε ε0 := let ⟨i, hi⟩ := exists_forall_ge_and (h _ (half_pos $ half_pos ε0)) (g.cauchy₃ $ half_pos ε0) in ⟨i, λ j ij, begin cases hi _ le_rfl with h₁ h₂, rw abv_sub abv at h₁, have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add (hi _ ij).1 h₁), have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add this (h₂ _ ij)), rwa [add_halves, add_halves, add_right_comm, sub_add_sub_cancel, sub_add_sub_cancel] at this end⟩ lemma not_lim_zero_of_not_congr_zero {f : cau_seq _ abv} (hf : ¬ f ≈ 0) : ¬ lim_zero f := assume : lim_zero f, have lim_zero (f - 0), by simpa, hf this lemma mul_equiv_zero (g : cau_seq _ abv) {f : cau_seq _ abv} (hf : f ≈ 0) : g * f ≈ 0 := have lim_zero (f - 0), from hf, have lim_zero (g*f), from mul_lim_zero_right _ $ by simpa, show lim_zero (g*f - 0), by simpa lemma mul_equiv_zero' (g : cau_seq _ abv) {f : cau_seq _ abv} (hf : f ≈ 0) : f * g ≈ 0 := have lim_zero (f - 0), from hf, have lim_zero (f*g), from mul_lim_zero_left _ $ by simpa, show lim_zero (f*g - 0), by simpa lemma mul_not_equiv_zero {f g : cau_seq _ abv} (hf : ¬ f ≈ 0) (hg : ¬ g ≈ 0) : ¬ (f * g) ≈ 0 := assume : lim_zero (f*g - 0), have hlz : lim_zero (f*g), by simpa, have hf' : ¬ lim_zero f, by simpa using (show ¬ lim_zero (f - 0), from hf), have hg' : ¬ lim_zero g, by simpa using (show ¬ lim_zero (g - 0), from hg), begin rcases abv_pos_of_not_lim_zero hf' with ⟨a1, ha1, N1, hN1⟩, rcases abv_pos_of_not_lim_zero hg' with ⟨a2, ha2, N2, hN2⟩, have : 0 < a1 * a2, from mul_pos ha1 ha2, cases hlz _ this with N hN, let i := max N (max N1 N2), have hN' := hN i (le_max_left _ _), have hN1' := hN1 i (le_trans (le_max_left _ _) (le_max_right _ _)), have hN1' := hN2 i (le_trans (le_max_right _ _) (le_max_right _ _)), apply not_le_of_lt hN', change _ ≤ abv (_ * _), rw is_absolute_value.abv_mul abv, apply mul_le_mul; try { assumption }, { apply le_of_lt ha2 }, { apply is_absolute_value.abv_nonneg abv } end theorem const_equiv {x y : β} : const x ≈ const y ↔ x = y := show lim_zero _ ↔ _, by rw [← const_sub, const_lim_zero, sub_eq_zero] lemma mul_equiv_mul {f1 f2 g1 g2 : cau_seq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) : f1 * g1 ≈ f2 * g2 := by simpa only [mul_sub, sub_mul, sub_add_sub_cancel] using add_lim_zero (mul_lim_zero_left g1 hf) (mul_lim_zero_right f2 hg) end ring section is_domain variables [ring β] [is_domain β] (abv : β → α) [is_absolute_value abv] lemma one_not_equiv_zero : ¬ (const abv 1) ≈ (const abv 0) := assume h, have ∀ ε > 0, ∃ i, ∀ k, i ≤ k → abv (1 - 0) < ε, from h, have h1 : abv 1 ≤ 0, from le_of_not_gt $ assume h2 : 0 < abv 1, exists.elim (this _ h2) $ λ i hi, lt_irrefl (abv 1) $ by simpa using hi _ le_rfl, have h2 : 0 ≤ abv 1, from is_absolute_value.abv_nonneg _ _, have abv 1 = 0, from le_antisymm h1 h2, have (1 : β) = 0, from (is_absolute_value.abv_eq_zero abv).1 this, absurd this one_ne_zero end is_domain section division_ring variables [division_ring β] {abv : β → α} [is_absolute_value abv] theorem inv_aux {f : cau_seq β abv} (hf : ¬ lim_zero f) : ∀ ε > 0, ∃ i, ∀ j ≥ i, abv ((f j)⁻¹ - (f i)⁻¹) < ε | ε ε0 := let ⟨K, K0, HK⟩ := abv_pos_of_not_lim_zero hf, ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abv ε0 K0, ⟨i, H⟩ := exists_forall_ge_and HK (f.cauchy₃ δ0) in ⟨i, λ j ij, let ⟨iK, H'⟩ := H _ le_rfl in Hδ (H _ ij).1 iK (H' _ ij)⟩ /-- Given a Cauchy sequence `f` with nonzero limit, create a Cauchy sequence with values equal to the inverses of the values of `f`. -/ def inv (f : cau_seq β abv) (hf : ¬ lim_zero f) : cau_seq β abv := ⟨_, inv_aux hf⟩ @[simp, norm_cast] lemma coe_inv {f : cau_seq β abv} (hf) : ⇑(inv f hf) = f⁻¹ := rfl @[simp, norm_cast] theorem inv_apply {f : cau_seq β abv} (hf i) : inv f hf i = (f i)⁻¹ := rfl theorem inv_mul_cancel {f : cau_seq β abv} (hf) : inv f hf * f ≈ 1 := λ ε ε0, let ⟨K, K0, i, H⟩ := abv_pos_of_not_lim_zero hf in ⟨i, λ j ij, by simpa [(abv_pos abv).1 (lt_of_lt_of_le K0 (H _ ij)), abv_zero abv] using ε0⟩ theorem mul_inv_cancel {f : cau_seq β abv} (hf) : f * inv f hf ≈ 1 := λ ε ε0, let ⟨K, K0, i, H⟩ := abv_pos_of_not_lim_zero hf in ⟨i, λ j ij, by simpa [(abv_pos abv).1 (lt_of_lt_of_le K0 (H _ ij)), abv_zero abv] using ε0⟩ theorem const_inv {x : β} (hx : x ≠ 0) : const abv (x⁻¹) = inv (const abv x) (by rwa const_lim_zero) := rfl end division_ring section abs local notation `const` := const abs /-- The entries of a positive Cauchy sequence eventually have a positive lower bound. -/ def pos (f : cau_seq α abs) : Prop := ∃ K > 0, ∃ i, ∀ j ≥ i, K ≤ f j theorem not_lim_zero_of_pos {f : cau_seq α abs} : pos f → ¬ lim_zero f | ⟨F, F0, hF⟩ H := let ⟨i, h⟩ := exists_forall_ge_and hF (H _ F0), ⟨h₁, h₂⟩ := h _ le_rfl in not_lt_of_le h₁ (abs_lt.1 h₂).2 theorem const_pos {x : α} : pos (const x) ↔ 0 < x := ⟨λ ⟨K, K0, i, h⟩, lt_of_lt_of_le K0 (h _ le_rfl), λ h, ⟨x, h, 0, λ j _, le_rfl⟩⟩ theorem add_pos {f g : cau_seq α abs} : pos f → pos g → pos (f + g) | ⟨F, F0, hF⟩ ⟨G, G0, hG⟩ := let ⟨i, h⟩ := exists_forall_ge_and hF hG in ⟨_, _root_.add_pos F0 G0, i, λ j ij, let ⟨h₁, h₂⟩ := h _ ij in add_le_add h₁ h₂⟩ theorem pos_add_lim_zero {f g : cau_seq α abs} : pos f → lim_zero g → pos (f + g) | ⟨F, F0, hF⟩ H := let ⟨i, h⟩ := exists_forall_ge_and hF (H _ (half_pos F0)) in ⟨_, half_pos F0, i, λ j ij, begin cases h j ij with h₁ h₂, have := add_le_add h₁ (le_of_lt (abs_lt.1 h₂).1), rwa [← sub_eq_add_neg, sub_self_div_two] at this end⟩ protected theorem mul_pos {f g : cau_seq α abs} : pos f → pos g → pos (f * g) | ⟨F, F0, hF⟩ ⟨G, G0, hG⟩ := let ⟨i, h⟩ := exists_forall_ge_and hF hG in ⟨_, _root_.mul_pos F0 G0, i, λ j ij, let ⟨h₁, h₂⟩ := h _ ij in mul_le_mul h₁ h₂ (le_of_lt G0) (le_trans (le_of_lt F0) h₁)⟩ theorem trichotomy (f : cau_seq α abs) : pos f ∨ lim_zero f ∨ pos (-f) := begin cases classical.em (lim_zero f); simp *, rcases abv_pos_of_not_lim_zero h with ⟨K, K0, hK⟩, rcases exists_forall_ge_and hK (f.cauchy₃ K0) with ⟨i, hi⟩, refine (le_total 0 (f i)).imp _ _; refine (λ h, ⟨K, K0, i, λ j ij, _⟩); have := (hi _ ij).1; cases hi _ le_rfl with h₁ h₂, { rwa abs_of_nonneg at this, rw abs_of_nonneg h at h₁, exact (le_add_iff_nonneg_right _).1 (le_trans h₁ $ neg_le_sub_iff_le_add'.1 $ le_of_lt (abs_lt.1 $ h₂ _ ij).1) }, { rwa abs_of_nonpos at this, rw abs_of_nonpos h at h₁, rw [← sub_le_sub_iff_right, zero_sub], exact le_trans (le_of_lt (abs_lt.1 $ h₂ _ ij).2) h₁ } end instance : has_lt (cau_seq α abs) := ⟨λ f g, pos (g - f)⟩ instance : has_le (cau_seq α abs) := ⟨λ f g, f < g ∨ f ≈ g⟩ theorem lt_of_lt_of_eq {f g h : cau_seq α abs} (fg : f < g) (gh : g ≈ h) : f < h := show pos (h - f), by simpa [sub_eq_add_neg, add_comm, add_left_comm] using pos_add_lim_zero fg (neg_lim_zero gh) theorem lt_of_eq_of_lt {f g h : cau_seq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by have := pos_add_lim_zero gh (neg_lim_zero fg); rwa [← sub_eq_add_neg, sub_sub_sub_cancel_right] at this theorem lt_trans {f g h : cau_seq α abs} (fg : f < g) (gh : g < h) : f < h := show pos (h - f), by simpa [sub_eq_add_neg, add_comm, add_left_comm] using add_pos fg gh theorem lt_irrefl {f : cau_seq α abs} : ¬ f < f | h := not_lim_zero_of_pos h (by simp [zero_lim_zero]) lemma le_of_eq_of_le {f g h : cau_seq α abs} (hfg : f ≈ g) (hgh : g ≤ h) : f ≤ h := hgh.elim (or.inl ∘ cau_seq.lt_of_eq_of_lt hfg) (or.inr ∘ setoid.trans hfg) lemma le_of_le_of_eq {f g h : cau_seq α abs} (hfg : f ≤ g) (hgh : g ≈ h) : f ≤ h := hfg.elim (λ h, or.inl (cau_seq.lt_of_lt_of_eq h hgh)) (λ h, or.inr (setoid.trans h hgh)) instance : preorder (cau_seq α abs) := { lt := (<), le := λ f g, f < g ∨ f ≈ g, le_refl := λ f, or.inr (setoid.refl _), le_trans := λ f g h fg, match fg with | or.inl fg, or.inl gh := or.inl $ lt_trans fg gh | or.inl fg, or.inr gh := or.inl $ lt_of_lt_of_eq fg gh | or.inr fg, or.inl gh := or.inl $ lt_of_eq_of_lt fg gh | or.inr fg, or.inr gh := or.inr $ setoid.trans fg gh end, lt_iff_le_not_le := λ f g, ⟨λ h, ⟨or.inl h, not_or (mt (lt_trans h) lt_irrefl) (not_lim_zero_of_pos h)⟩, λ ⟨h₁, h₂⟩, h₁.resolve_right (mt (λ h, or.inr (setoid.symm h)) h₂)⟩ } theorem le_antisymm {f g : cau_seq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈ g := fg.resolve_left (not_lt_of_le gf) theorem lt_total (f g : cau_seq α abs) : f < g ∨ f ≈ g ∨ g < f := (trichotomy (g - f)).imp_right (λ h, h.imp (λ h, setoid.symm h) (λ h, by rwa neg_sub at h)) theorem le_total (f g : cau_seq α abs) : f ≤ g ∨ g ≤ f := (or.assoc.2 (lt_total f g)).imp_right or.inl theorem const_lt {x y : α} : const x < const y ↔ x < y := show pos _ ↔ _, by rw [← const_sub, const_pos, sub_pos] theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by rw le_iff_lt_or_eq; exact or_congr const_lt const_equiv lemma le_of_exists {f g : cau_seq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j) : f ≤ g := let ⟨i, hi⟩ := h in (or.assoc.2 (cau_seq.lt_total f g)).elim id (λ hgf, false.elim (let ⟨K, hK0, j, hKj⟩ := hgf in not_lt_of_ge (hi (max i j) (le_max_left _ _)) (sub_pos.1 (lt_of_lt_of_le hK0 (hKj _ (le_max_right _ _)))))) theorem exists_gt (f : cau_seq α abs) : ∃ a : α, f < const a := let ⟨K, H⟩ := f.bounded in ⟨K + 1, 1, zero_lt_one, 0, λ i _, begin rw [sub_apply, const_apply, le_sub_iff_add_le', add_le_add_iff_right], exact le_of_lt (abs_lt.1 (H _)).2 end⟩ theorem exists_lt (f : cau_seq α abs) : ∃ a : α, const a < f := let ⟨a, h⟩ := (-f).exists_gt in ⟨-a, show pos _, by rwa [const_neg, sub_neg_eq_add, add_comm, ← sub_neg_eq_add]⟩ -- so named to match `rat_add_continuous_lemma` theorem _root_.rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} : abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊔ a₂ - (b₁ ⊔ b₂)) < ε := λ h₁ h₂, (abs_max_sub_max_le_max _ _ _ _).trans_lt (max_lt h₁ h₂) -- so named to match `rat_add_continuous_lemma` theorem _root_.rat_inf_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} : abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊓ a₂ - (b₁ ⊓ b₂)) < ε := λ h₁ h₂, (abs_min_sub_min_le_max _ _ _ _).trans_lt (max_lt h₁ h₂) instance : has_sup (cau_seq α abs) := ⟨λ f g, ⟨f ⊔ g, λ ε ε0, (exists_forall_ge_and (f.cauchy₃ ε0) (g.cauchy₃ ε0)).imp $ λ i H j ij, let ⟨H₁, H₂⟩ := H _ le_rfl in rat_sup_continuous_lemma (H₁ _ ij) (H₂ _ ij)⟩⟩ instance : has_inf (cau_seq α abs) := ⟨λ f g, ⟨f ⊓ g, λ ε ε0, (exists_forall_ge_and (f.cauchy₃ ε0) (g.cauchy₃ ε0)).imp $ λ i H j ij, let ⟨H₁, H₂⟩ := H _ le_rfl in rat_inf_continuous_lemma (H₁ _ ij) (H₂ _ ij)⟩⟩ @[simp, norm_cast] lemma coe_sup (f g : cau_seq α abs) : ⇑(f ⊔ g) = f ⊔ g := rfl @[simp, norm_cast] lemma coe_inf (f g : cau_seq α abs) : ⇑(f ⊓ g) = f ⊓ g := rfl theorem sup_lim_zero {f g : cau_seq α abs} (hf : lim_zero f) (hg : lim_zero g) : lim_zero (f ⊔ g) | ε ε0 := (exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp $ λ i H j ij, let ⟨H₁, H₂⟩ := H _ ij in begin rw abs_lt at H₁ H₂ ⊢, exact ⟨lt_sup_iff.mpr (or.inl H₁.1), sup_lt_iff.mpr ⟨H₁.2, H₂.2⟩⟩ end theorem inf_lim_zero {f g : cau_seq α abs} (hf : lim_zero f) (hg : lim_zero g) : lim_zero (f ⊓ g) | ε ε0 := (exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp $ λ i H j ij, let ⟨H₁, H₂⟩ := H _ ij in begin rw abs_lt at H₁ H₂ ⊢, exact ⟨lt_inf_iff.mpr ⟨H₁.1, H₂.1⟩, inf_lt_iff.mpr (or.inl H₁.2), ⟩ end lemma sup_equiv_sup {a₁ b₁ a₂ b₂ : cau_seq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) : a₁ ⊔ b₁ ≈ a₂ ⊔ b₂ := begin intros ε ε0, obtain ⟨ai, hai⟩ := ha ε ε0, obtain ⟨bi, hbi⟩ := hb ε ε0, exact ⟨ai ⊔ bi, λ i hi, (abs_max_sub_max_le_max (a₁ i) (b₁ i) (a₂ i) (b₂ i)).trans_lt (max_lt (hai i (sup_le_iff.mp hi).1) (hbi i (sup_le_iff.mp hi).2))⟩, end lemma inf_equiv_inf {a₁ b₁ a₂ b₂ : cau_seq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) : a₁ ⊓ b₁ ≈ a₂ ⊓ b₂ := begin intros ε ε0, obtain ⟨ai, hai⟩ := ha ε ε0, obtain ⟨bi, hbi⟩ := hb ε ε0, exact ⟨ai ⊔ bi, λ i hi, (abs_min_sub_min_le_max (a₁ i) (b₁ i) (a₂ i) (b₂ i)).trans_lt (max_lt (hai i (sup_le_iff.mp hi).1) (hbi i (sup_le_iff.mp hi).2))⟩, end protected lemma sup_lt {a b c : cau_seq α abs} (ha : a < c) (hb : b < c) : a ⊔ b < c := begin obtain ⟨⟨εa, εa0, ia, ha⟩, ⟨εb, εb0, ib, hb⟩⟩ := ⟨ha, hb⟩, refine ⟨εa ⊓ εb, lt_inf_iff.mpr ⟨εa0, εb0⟩, ia ⊔ ib, λ i hi, _⟩, have := min_le_min (ha _ (sup_le_iff.mp hi).1) (hb _ (sup_le_iff.mp hi).2), exact this.trans_eq (min_sub_sub_left _ _ _) end protected lemma lt_inf {a b c : cau_seq α abs} (hb : a < b) (hc : a < c) : a < b ⊓ c := begin obtain ⟨⟨εb, εb0, ib, hb⟩, ⟨εc, εc0, ic, hc⟩⟩ := ⟨hb, hc⟩, refine ⟨εb ⊓ εc, lt_inf_iff.mpr ⟨εb0, εc0⟩, ib ⊔ ic, λ i hi, _⟩, have := min_le_min (hb _ (sup_le_iff.mp hi).1) (hc _ (sup_le_iff.mp hi).2), exact this.trans_eq (min_sub_sub_right _ _ _), end @[simp] protected lemma sup_idem (a : cau_seq α abs) : a ⊔ a = a := subtype.ext sup_idem @[simp] protected lemma inf_idem (a : cau_seq α abs) : a ⊓ a = a := subtype.ext inf_idem protected lemma sup_comm (a b : cau_seq α abs) : a ⊔ b = b ⊔ a := subtype.ext sup_comm protected lemma inf_comm (a b : cau_seq α abs) : a ⊓ b = b ⊓ a := subtype.ext inf_comm protected lemma sup_eq_right {a b : cau_seq α abs} (h : a ≤ b) : a ⊔ b ≈ b := begin obtain ⟨ε, ε0 : _ < _, i, h⟩ | h := h, { intros _ _, refine ⟨i, λ j hj, _⟩, dsimp, erw ←max_sub_sub_right, rwa [sub_self, max_eq_right, abs_zero], rw [sub_nonpos, ←sub_nonneg], exact ε0.le.trans (h _ hj) }, { refine setoid.trans (sup_equiv_sup h (setoid.refl _)) _, rw cau_seq.sup_idem, exact setoid.refl _ }, end protected lemma inf_eq_right {a b : cau_seq α abs} (h : b ≤ a) : a ⊓ b ≈ b := begin obtain ⟨ε, ε0 : _ < _, i, h⟩ | h := h, { intros _ _, refine ⟨i, λ j hj, _⟩, dsimp, erw ←min_sub_sub_right, rwa [sub_self, min_eq_right, abs_zero], exact ε0.le.trans (h _ hj) }, { refine setoid.trans (inf_equiv_inf (setoid.symm h) (setoid.refl _)) _, rw cau_seq.inf_idem, exact setoid.refl _ }, end protected lemma sup_eq_left {a b : cau_seq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by simpa only [cau_seq.sup_comm] using cau_seq.sup_eq_right h protected lemma inf_eq_left {a b : cau_seq α abs} (h : a ≤ b) : a ⊓ b ≈ a := by simpa only [cau_seq.inf_comm] using cau_seq.inf_eq_right h protected lemma le_sup_left {a b : cau_seq α abs} : a ≤ a ⊔ b := le_of_exists ⟨0, λ j hj, le_sup_left⟩ protected lemma inf_le_left {a b : cau_seq α abs} : a ⊓ b ≤ a := le_of_exists ⟨0, λ j hj, inf_le_left⟩ protected lemma le_sup_right {a b : cau_seq α abs} : b ≤ a ⊔ b := le_of_exists ⟨0, λ j hj, le_sup_right⟩ protected lemma inf_le_right {a b : cau_seq α abs} : a ⊓ b ≤ b := le_of_exists ⟨0, λ j hj, inf_le_right⟩ protected lemma sup_le {a b c : cau_seq α abs} (ha : a ≤ c) (hb : b ≤ c) : a ⊔ b ≤ c := begin cases ha with ha ha, { cases hb with hb hb, { exact or.inl (cau_seq.sup_lt ha hb) }, { replace ha := le_of_le_of_eq ha.le (setoid.symm hb), refine le_of_le_of_eq (or.inr _) hb, exact cau_seq.sup_eq_right ha }, }, { replace hb := le_of_le_of_eq hb (setoid.symm ha), refine le_of_le_of_eq (or.inr _) ha, exact cau_seq.sup_eq_left hb } end protected lemma le_inf {a b c : cau_seq α abs} (hb : a ≤ b) (hc : a ≤ c) : a ≤ b ⊓ c := begin cases hb with hb hb, { cases hc with hc hc, { exact or.inl (cau_seq.lt_inf hb hc) }, { replace hb := le_of_eq_of_le (setoid.symm hc) hb.le, refine le_of_eq_of_le hc (or.inr _), exact setoid.symm (cau_seq.inf_eq_right hb) }, }, { replace hc := le_of_eq_of_le (setoid.symm hb) hc, refine le_of_eq_of_le hb (or.inr _), exact setoid.symm (cau_seq.inf_eq_left hc) } end /-! Note that `distrib_lattice (cau_seq α abs)` is not true because there is no `partial_order`. -/ protected lemma sup_inf_distrib_left (a b c : cau_seq α abs) : a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c) := subtype.ext $ funext $ λ i, max_min_distrib_left protected lemma sup_inf_distrib_right (a b c : cau_seq α abs) : (a ⊓ b) ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) := subtype.ext $ funext $ λ i, max_min_distrib_right end abs end cau_seq
a7a7c69b06e95ac16ff7c7a07b948ab977423794
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/Lean3Lib/init/data/nat/div.lean
63d1f1f7061ab2548a8bef4db85e9ee671e51683
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
1,005
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.wf import Mathlib.Lean3Lib.init.data.nat.basic namespace Mathlib namespace nat protected def div (x : ℕ) : ℕ → ℕ := well_founded.fix lt_wf div.F protected instance has_div : Div ℕ := { div := nat.div } theorem div_def_aux (x : ℕ) (y : ℕ) : x / y = dite (0 < y ∧ y ≤ x) (fun (h : 0 < y ∧ y ≤ x) => (x - y) / y + 1) fun (h : ¬(0 < y ∧ y ≤ x)) => 0 := congr_fun (well_founded.fix_eq lt_wf div.F x) y protected def mod (x : ℕ) : ℕ → ℕ := well_founded.fix lt_wf mod.F protected instance has_mod : Mod ℕ := { mod := nat.mod } theorem mod_def_aux (x : ℕ) (y : ℕ) : x % y = dite (0 < y ∧ y ≤ x) (fun (h : 0 < y ∧ y ≤ x) => (x - y) % y) fun (h : ¬(0 < y ∧ y ≤ x)) => x := congr_fun (well_founded.fix_eq lt_wf mod.F x) y
105d49eefdeca86483ea87eb6c3480d175c35a17
8cb37a089cdb4af3af9d8bf1002b417e407a8e9e
/tests/lean/run/tc_cache2.lean
9f6e266da43f6469dd043970a590a5ecd7d6f03c
[ "Apache-2.0" ]
permissive
kbuzzard/lean
ae3c3db4bb462d750dbf7419b28bafb3ec983ef7
ed1788fd674bb8991acffc8fca585ec746711928
refs/heads/master
1,620,983,366,617
1,618,937,600,000
1,618,937,600,000
359,886,396
1
0
Apache-2.0
1,618,936,987,000
1,618,936,987,000
null
UTF-8
Lean
false
false
841
lean
class succeeds_w_cache (α : Type) := (a : α) class fails_quickly_w_cache (α : Type) extends succeeds_w_cache α class loops_wo_cache (α : Type) := (a : α) class has_no_inst (α : Type) instance loops_wo_cache.loop {α} [loops_wo_cache α] [inhabited α] : loops_wo_cache α := ‹loops_wo_cache α› instance inhabited.to_loops_wo_cache {α} [inhabited α] : loops_wo_cache α := {a := default _} instance loops_wo_cache.to_fails_quickly_w_cache {α} [has_no_inst α] [loops_wo_cache α] : fails_quickly_w_cache α := {a := loops_wo_cache.a} @[priority 1] instance inhabited.to_succeeds_w_cache {α} [inhabited α] : succeeds_w_cache α := {a := default _} #check (by apply_instance : succeeds_w_cache ℕ) open tactic #eval do x ← to_expr ``(succeeds_w_cache.a), infer_type x >>= unify `(nat), unify `(nat.zero) x
8b5277c2b4389321806b3eb3761c8710ceb536c7
5ae26df177f810c5006841e9c73dc56e01b978d7
/src/topology/metric_space/lipschitz.lean
5b62a0720bfda1ef7ec5d6679d99ba98e927a59d
[ "Apache-2.0" ]
permissive
ChrisHughes24/mathlib
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
refs/heads/master
1,583,848,251,477
1,565,164,247,000
1,565,164,247,000
129,409,993
0
1
Apache-2.0
1,565,164,817,000
1,523,628,059,000
Lean
UTF-8
Lean
false
false
5,507
lean
/- Copyright (c) 2018 Rohan Mitta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl Lipschitz functions and the Banach fixed-point theorem -/ import topology.metric_space.basic analysis.specific_limits open filter variables {α : Type*} {β : Type*} {γ : Type*} lemma fixed_point_of_tendsto_iterate [topological_space α] [t2_space α] {f : α → α} {x : α} (hf : tendsto f (nhds x) (nhds (f x))) (hx : ∃ x₀ : α, tendsto (λ n, f^[n] x₀) at_top (nhds x)) : f x = x := begin rcases hx with ⟨x₀, hx⟩, refine tendsto_nhds_unique at_top_ne_bot _ hx, rw [← tendsto_add_at_top_iff_nat 1, funext (assume n, nat.iterate_succ' f n x₀)], exact hf.comp hx end /-- A Lipschitz function is uniformly continuous -/ lemma uniform_continuous_of_lipschitz [metric_space α] [metric_space β] {K : ℝ} {f : α → β} (H : ∀x y, dist (f x) (f y) ≤ K * dist x y) : uniform_continuous f := begin have : 0 < max K 1 := lt_of_lt_of_le zero_lt_one (le_max_right K 1), refine metric.uniform_continuous_iff.2 (λε εpos, _), exact ⟨ε/max K 1, div_pos εpos this, assume y x Dyx, calc dist (f y) (f x) ≤ K * dist y x : H y x ... ≤ max K 1 * dist y x : mul_le_mul_of_nonneg_right (le_max_left K 1) (dist_nonneg) ... < max K 1 * (ε/max K 1) : mul_lt_mul_of_pos_left Dyx this ... = ε : mul_div_cancel' _ (ne_of_gt this)⟩ end /-- A Lipschitz function is continuous -/ lemma continuous_of_lipschitz [metric_space α] [metric_space β] {K : ℝ} {f : α → β} (H : ∀x y, dist (f x) (f y) ≤ K * dist x y) : continuous f := uniform_continuous.continuous (uniform_continuous_of_lipschitz H) lemma uniform_continuous_of_le_add [metric_space α] {f : α → ℝ} (K : ℝ) (h : ∀x y, f x ≤ f y + K * dist x y) : uniform_continuous f := begin have I : ∀ (x y : α), f x - f y ≤ K * dist x y := λx y, calc f x - f y ≤ (f y + K * dist x y) - f y : add_le_add (h x y) (le_refl _) ... = K * dist x y : by ring, refine @uniform_continuous_of_lipschitz _ _ _ _ K _ (λx y, _), rw real.dist_eq, refine abs_sub_le_iff.2 ⟨_, _⟩, { exact I x y }, { rw dist_comm, exact I y x } end /-- `lipschitz_with K f`: the function `f` is Lipschitz continuous w.r.t. the Lipschitz constant `K`. -/ def lipschitz_with [metric_space α] [metric_space β] (K : ℝ) (f : α → β) := 0 ≤ K ∧ ∀x y, dist (f x) (f y) ≤ K * dist x y namespace lipschitz_with variables [metric_space α] [metric_space β] [metric_space γ] {K : ℝ} protected lemma weaken (K' : ℝ) {f : α → β} (hf : lipschitz_with K f) (h : K ≤ K') : lipschitz_with K' f := ⟨le_trans hf.1 h, assume x y, le_trans (hf.2 x y) $ mul_le_mul_of_nonneg_right h dist_nonneg⟩ protected lemma to_uniform_continuous {f : α → β} (hf : lipschitz_with K f) : uniform_continuous f := uniform_continuous_of_lipschitz hf.2 protected lemma to_continuous {f : α → β} (hf : lipschitz_with K f) : continuous f := continuous_of_lipschitz hf.2 protected lemma const (b : β) : lipschitz_with 0 (λa:α, b) := ⟨le_refl 0, assume x y, by simp⟩ protected lemma id : lipschitz_with 1 (@id α) := ⟨zero_le_one, by simp [le_refl]⟩ protected lemma comp {Kf Kg : ℝ} {f : β → γ} {g : α → β} (hf : lipschitz_with Kf f) (hg : lipschitz_with Kg g) : lipschitz_with (Kf * Kg) (f ∘ g) := ⟨mul_nonneg hf.1 hg.1, assume x y, calc dist (f (g x)) (f (g y)) ≤ Kf * dist (g x) (g y) : hf.2 _ _ ... ≤ Kf * (Kg * dist x y) : mul_le_mul_of_nonneg_left (hg.2 _ _) hf.1 ... = (Kf * Kg) * dist x y : by rw mul_assoc⟩ protected lemma iterate {f : α → α} (hf : lipschitz_with K f) : ∀n, lipschitz_with (K ^ n) (f^[n]) | 0 := lipschitz_with.id | (n + 1) := by rw [← nat.succ_eq_add_one, pow_succ, mul_comm]; exact (iterate n).comp hf section contraction variables {f : α → α} {x y : α} lemma dist_inequality_of_contraction (hK₁ : K < 1) (hf : lipschitz_with K f) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1 - K) := suffices dist x y ≤ dist x (f x) + (dist y (f y) + K * dist x y), by rwa [le_div_iff (sub_pos_of_lt hK₁), mul_comm, sub_mul, one_mul, sub_le_iff_le_add, add_assoc], calc dist x y ≤ dist x (f x) + dist y (f x) : dist_triangle_right x y (f x) ... ≤ dist x (f x) + (dist y (f y) + dist (f x) (f y)) : add_le_add_left (dist_triangle_right y (f x) (f y)) _ ... ≤ dist x (f x) + (dist y (f y) + K * dist x y) : add_le_add_left (add_le_add_left (hf.2 _ _) _) _ theorem fixed_point_unique_of_contraction (hK : K < 1) (hf : lipschitz_with K f) (hx : f x = x) (hy : f y = y) : x = y := dist_le_zero.1 $ le_trans (dist_inequality_of_contraction hK hf) $ by rewrite [iff.mpr dist_eq_zero hx.symm, iff.mpr dist_eq_zero hy.symm]; simp /-- Banach fixed-point theorem, contraction mapping theorem -/ theorem exists_fixed_point_of_contraction [hα : nonempty α] [complete_space α] (hK : K < 1) (hf : lipschitz_with K f) : ∃x, f x = x := let ⟨x₀⟩ := hα in have cauchy_seq (λ n, f^[n] x₀) := begin refine cauchy_seq_of_le_geometric K (dist x₀ (f x₀)) hK (λn, _), rw [nat.iterate_succ f n x₀, mul_comm], exact and.right (hf.iterate n) x₀ (f x₀) end, let ⟨x, hx⟩ := cauchy_seq_tendsto_of_complete this in ⟨x, fixed_point_of_tendsto_iterate (hf.to_uniform_continuous.continuous.tendsto x) ⟨x₀, hx⟩⟩ end contraction end lipschitz_with
c8f1a319ad89ba6975f59fe50e72eb606d905a06
cc060cf567f81c404a13ee79bf21f2e720fa6db0
/lean/mwe2.lean
f08cb486b381c2be45283983fdedc8b6953ff0d2
[ "Apache-2.0" ]
permissive
semorrison/proof
cf0a8c6957153bdb206fd5d5a762a75958a82bca
5ee398aa239a379a431190edbb6022b1a0aa2c70
refs/heads/master
1,610,414,502,842
1,518,696,851,000
1,518,696,851,000
78,375,937
2
1
null
null
null
null
UTF-8
Lean
false
false
1,563
lean
import standard meta def blast : tactic unit := using_smt $ return () structure Category (Obj : Type) (Hom : Obj -> Obj -> Type) := (identity : Π A : Obj, Hom A A) (compose : Π ⦃A B C : Obj⦄, Hom A B → Hom B C → Hom A C) attribute [class] Category open Category structure MonoidalCategory (Obj : Type) (Hom : Obj → Obj → Type) extends carrier : Category Obj Hom := (unit : Obj) variables { Obj₁ Obj₂ : Type } variables { Hom₁ : Obj₁ → Obj₁ → Type } { Hom₂ : Obj₂ → Obj₂ → Type } structure Functor (C₁ : Category Obj₁ Hom₁) (C₂ : Category Obj₂ Hom₂) := (onObjects : Obj₁ → Obj₂) (onMorphisms : Π ⦃A B : Obj₁⦄, Hom₁ A B → Hom₂ (onObjects A) (onObjects B)) (identities : Π (A : Obj₁), onMorphisms (identity C₁ A) = identity C₂ (onObjects A)) definition ℕCategory : Category unit (λ a b, ℕ) := { identity := λ a, 0, compose := λ a b c, add } definition DoublingAsFunctor : Functor ℕCategory ℕCategory := { onObjects := id, onMorphisms := (λ A B n, n + n), identities := by blast } attribute [instance] MonoidalCategory.to_Category definition ℕMonoidalCategory : MonoidalCategory unit (λ A B, ℕ) := { ℕCategory with unit := () } -- casting is not working: we really want to be able to write the following: definition DoublingAsFunctor' : Functor ℕMonoidalCategory ℕMonoidalCategory := { onObjects := id, onMorphisms := (λ A B n, n + n), identities := by blast }
38b56defa0e10e777f54ddd65f95e1c50c9a61c8
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/hott/id_tac5.hlean
e23ad67e14dc2fa926a16a186011fabac80c2026
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
293
hlean
open equiv constant rec_on_ua {A B : Type} {P : A ≃ B → Type} (f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q)) : P f set_option pp.universes true set_option pp.implicit true set_option pp.notation false check @rec_on_ua attribute rec_on_ua [recursor] print [recursor] rec_on_ua
88af60115ec6a060bf46d74d51905daf56ea84ee
64874bd1010548c7f5a6e3e8902efa63baaff785
/tests/lean/notation2.lean
25372a35627ffe851d6b5a9609bc567dcb924b05
[ "Apache-2.0" ]
permissive
tjiaqi/lean
4634d729795c164664d10d093f3545287c76628f
d0ce4cf62f4246b0600c07e074d86e51f2195e30
refs/heads/master
1,622,323,796,480
1,422,643,069,000
1,422,643,069,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
272
lean
import data.num inductive list (T : Type) : Type := nil {} : list T, cons : T → list T → list T open list notation h :: t := cons h t notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l infixr `::` := cons check 1 :: 2 :: nil check 1 :: 2 :: 3 :: 4 :: 5 :: nil
7938936fcb1b0022978e99a37ebeb5916741e797
abd85493667895c57a7507870867b28124b3998f
/src/number_theory/quadratic_reciprocity.lean
cb1f337851154fd9d9f8873f1a44b1aa5bbfcda1
[ "Apache-2.0" ]
permissive
pechersky/mathlib
d56eef16bddb0bfc8bc552b05b7270aff5944393
f1df14c2214ee114c9738e733efd5de174deb95d
refs/heads/master
1,666,714,392,571
1,591,747,567,000
1,591,747,567,000
270,557,274
0
0
Apache-2.0
1,591,597,975,000
1,591,597,974,000
null
UTF-8
Lean
false
false
25,076
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import field_theory.finite import data.zmod.basic import data.nat.parity /-! # Quadratic reciprocity. This file contains results about quadratic residues modulo a prime number. The main results are the law of quadratic reciprocity, `quadratic_reciprocity`, as well as the interpretations in terms of existence of square roots depending on the congruence mod 4, `exists_pow_two_eq_prime_iff_of_mod_four_eq_one`, and `exists_pow_two_eq_prime_iff_of_mod_four_eq_three`. Also proven are conditions for `-1` and `2` to be a square modulo a prime, `exists_pow_two_eq_neg_one_iff_mod_four_ne_three` and `exists_pow_two_eq_two_iff` ## Implementation notes The proof of quadratic reciprocity implemented uses Gauss' lemma and Eisenstein's lemma -/ open function finset nat finite_field zmod open_locale big_operators namespace zmod variables (p q : ℕ) [fact p.prime] [fact q.prime] @[simp] lemma card_units : fintype.card (units (zmod p)) = p - 1 := by rw [card_units, card] /-- Fermat's Little Theorem: for every unit `a` of `zmod p`, we have `a ^ (p - 1) = 1`. -/ theorem fermat_little_units {p : ℕ} [fact p.prime] (a : units (zmod p)) : a ^ (p - 1) = 1 := by rw [← card_units p, pow_card_eq_one] /-- Fermat's Little Theorem: for all nonzero `a : zmod p`, we have `a ^ (p - 1) = 1`. -/ theorem fermat_little {a : zmod p} (ha : a ≠ 0) : a ^ (p - 1) = 1 := begin have := fermat_little_units (units.mk0 a ha), apply_fun (coe : units (zmod p) → zmod p) at this, simpa, end /-- Euler's Criterion: A unit `x` of `zmod p` is a square if and only if `x ^ (p / 2) = 1`. -/ lemma euler_criterion_units (x : units (zmod p)) : (∃ y : units (zmod p), y ^ 2 = x) ↔ x ^ (p / 2) = 1 := begin cases nat.prime.eq_two_or_odd ‹p.prime› with hp2 hp_odd, { resetI, subst p, refine iff_of_true ⟨1, _⟩ _; apply subsingleton.elim }, obtain ⟨g, hg⟩ := is_cyclic.exists_generator (units (zmod p)), obtain ⟨n, hn⟩ : x ∈ powers g, { rw powers_eq_gpowers, apply hg }, split, { rintro ⟨y, rfl⟩, rw [← pow_mul, two_mul_odd_div_two hp_odd, fermat_little_units], }, { subst x, assume h, have key : 2 * (p / 2) ∣ n * (p / 2), { rw [← pow_mul] at h, rw [two_mul_odd_div_two hp_odd, ← card_units, ← order_of_eq_card_of_forall_mem_gpowers hg], apply order_of_dvd_of_pow_eq_one h }, have : 0 < p / 2 := nat.div_pos (show fact (1 < p), by apply_instance) dec_trivial, obtain ⟨m, rfl⟩ := dvd_of_mul_dvd_mul_right this key, refine ⟨g ^ m, _⟩, rw [mul_comm, pow_mul], }, end /-- Euler's Criterion: a nonzero `a : zmod p` is a square if and only if `x ^ (p / 2) = 1`. -/ lemma euler_criterion {a : zmod p} (ha : a ≠ 0) : (∃ y : zmod p, y ^ 2 = a) ↔ a ^ (p / 2) = 1 := begin apply (iff_congr _ (by simp [units.ext_iff])).mp (euler_criterion_units p (units.mk0 a ha)), simp only [units.ext_iff, _root_.pow_two, units.coe_mk0, units.coe_mul], split, { rintro ⟨y, hy⟩, exact ⟨y, hy⟩ }, { rintro ⟨y, rfl⟩, have hy : y ≠ 0, { rintro rfl, simpa [_root_.zero_pow] using ha, }, refine ⟨units.mk0 y hy, _⟩, simp, } end lemma exists_pow_two_eq_neg_one_iff_mod_four_ne_three : (∃ y : zmod p, y ^ 2 = -1) ↔ p % 4 ≠ 3 := begin cases nat.prime.eq_two_or_odd ‹p.prime› with hp2 hp_odd, { resetI, subst p, exact dec_trivial }, change fact (p % 2 = 1) at hp_odd, resetI, have neg_one_ne_zero : (-1 : zmod p) ≠ 0, from mt neg_eq_zero.1 one_ne_zero, rw [euler_criterion p neg_one_ne_zero, neg_one_pow_eq_pow_mod_two], cases mod_two_eq_zero_or_one (p / 2) with p_half_even p_half_odd, { rw [p_half_even, _root_.pow_zero, eq_self_iff_true, true_iff], contrapose! p_half_even with hp, rw [← nat.mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hp], exact dec_trivial }, { rw [p_half_odd, _root_.pow_one, iff_false_intro (ne_neg_self p one_ne_zero).symm, false_iff, not_not], rw [← nat.mod_mul_right_div_self, show 2 * 2 = 4, from rfl] at p_half_odd, rw [_root_.fact, ← nat.mod_mul_left_mod _ 2, show 2 * 2 = 4, from rfl] at hp_odd, have hp : p % 4 < 4, from nat.mod_lt _ dec_trivial, revert hp hp_odd p_half_odd, generalize : p % 4 = k, revert k, exact dec_trivial } end lemma pow_div_two_eq_neg_one_or_one {a : zmod p} (ha : a ≠ 0) : a ^ (p / 2) = 1 ∨ a ^ (p / 2) = -1 := begin cases nat.prime.eq_two_or_odd ‹p.prime› with hp2 hp_odd, { resetI, subst p, revert a ha, exact dec_trivial }, rw [← mul_self_eq_one_iff, ← _root_.pow_add, ← two_mul, two_mul_odd_div_two hp_odd], exact fermat_little p ha end /-- Wilson's Lemma: the product of `1`, ..., `p-1` is `-1` modulo `p`. -/ @[simp] lemma wilsons_lemma : (nat.fact (p - 1) : zmod p) = -1 := begin refine calc (nat.fact (p - 1) : zmod p) = (∏ x in Ico 1 (succ (p - 1)), x) : by rw [← finset.prod_Ico_id_eq_fact, prod_nat_cast] ... = (∏ x : units (zmod p), x) : _ ... = -1 : by rw [prod_hom _ (coe : units (zmod p) → zmod p), prod_univ_units_id_eq_neg_one, units.coe_neg, units.coe_one], have hp : 0 < p := nat.prime.pos ‹p.prime›, symmetry, refine prod_bij (λ a _, (a : zmod p).val) _ _ _ _, { intros a ha, rw [Ico.mem, ← nat.succ_sub hp, nat.succ_sub_one], split, { apply nat.pos_of_ne_zero, rw ← @val_zero p, assume h, apply units.coe_ne_zero a (val_injective p h) }, { exact val_lt _ } }, { intros a ha, simp only [cast_id, nat_cast_val], }, { intros _ _ _ _ h, rw units.ext_iff, exact val_injective p h }, { intros b hb, rw [Ico.mem, nat.succ_le_iff, ← succ_sub hp, succ_sub_one, nat.pos_iff_ne_zero] at hb, refine ⟨units.mk0 b _, finset.mem_univ _, _⟩, { assume h, apply hb.1, apply_fun val at h, simpa only [val_cast_of_lt hb.right, val_zero] using h }, { simp only [val_cast_of_lt hb.right, units.coe_mk0], } } end @[simp] lemma prod_Ico_one_prime : (∏ x in Ico 1 p, (x : zmod p)) = -1 := begin conv in (Ico 1 p) { rw [← succ_sub_one p, succ_sub (nat.prime.pos ‹p.prime›)] }, rw [← prod_nat_cast, finset.prod_Ico_id_eq_fact, wilsons_lemma] end end zmod /-- The image of the map sending a non zero natural number `x ≤ p / 2` to the absolute value of the element of interger in the interval `(-p/2, p/2]` congruent to `a * x` mod p is the set of non zero natural numbers `x` such that `x ≤ p / 2` -/ lemma Ico_map_val_min_abs_nat_abs_eq_Ico_map_id (p : ℕ) [hp : fact p.prime] (a : zmod p) (hap : a ≠ 0) : (Ico 1 (p / 2).succ).1.map (λ x, (a * x).val_min_abs.nat_abs) = (Ico 1 (p / 2).succ).1.map (λ a, a) := begin have he : ∀ {x}, x ∈ Ico 1 (p / 2).succ → x ≠ 0 ∧ x ≤ p / 2, by simp [nat.lt_succ_iff, nat.succ_le_iff, nat.pos_iff_ne_zero] {contextual := tt}, have hep : ∀ {x}, x ∈ Ico 1 (p / 2).succ → x < p, from λ x hx, lt_of_le_of_lt (he hx).2 (nat.div_lt_self hp.pos dec_trivial), have hpe : ∀ {x}, x ∈ Ico 1 (p / 2).succ → ¬ p ∣ x, from λ x hx hpx, not_lt_of_ge (le_of_dvd (nat.pos_of_ne_zero (he hx).1) hpx) (hep hx), have hmem : ∀ (x : ℕ) (hx : x ∈ Ico 1 (p / 2).succ), (a * x : zmod p).val_min_abs.nat_abs ∈ Ico 1 (p / 2).succ, { assume x hx, simp [hap, char_p.cast_eq_zero_iff (zmod p) p, hpe hx, lt_succ_iff, succ_le_iff, nat.pos_iff_ne_zero, nat_abs_val_min_abs_le _], }, have hsurj : ∀ (b : ℕ) (hb : b ∈ Ico 1 (p / 2).succ), ∃ x ∈ Ico 1 (p / 2).succ, b = (a * x : zmod p).val_min_abs.nat_abs, { assume b hb, refine ⟨(b / a : zmod p).val_min_abs.nat_abs, Ico.mem.mpr ⟨_, _⟩, _⟩, { apply nat.pos_of_ne_zero, simp only [div_eq_mul_inv, hap, char_p.cast_eq_zero_iff (zmod p) p, hpe hb, not_false_iff, val_min_abs_eq_zero, inv_eq_zero, int.nat_abs_eq_zero, ne.def, mul_eq_zero_iff', or_self] }, { apply lt_succ_of_le, apply nat_abs_val_min_abs_le }, { rw cast_nat_abs_val_min_abs, split_ifs, { erw [mul_div_cancel' _ hap, val_min_abs_def_pos, val_cast_of_lt (hep hb), if_pos (le_of_lt_succ (Ico.mem.1 hb).2), int.nat_abs_of_nat], }, { erw [mul_neg_eq_neg_mul_symm, mul_div_cancel' _ hap, nat_abs_val_min_abs_neg, val_min_abs_def_pos, val_cast_of_lt (hep hb), if_pos (le_of_lt_succ (Ico.mem.1 hb).2), int.nat_abs_of_nat] } } }, exact multiset.map_eq_map_of_bij_of_nodup _ _ (finset.nodup _) (finset.nodup _) (λ x _, (a * x : zmod p).val_min_abs.nat_abs) hmem (λ _ _, rfl) (inj_on_of_surj_on_of_card_le _ hmem hsurj (le_refl _)) hsurj end private lemma gauss_lemma_aux₁ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)] {a : ℕ} (hap : (a : zmod p) ≠ 0) : (a^(p / 2) * (p / 2).fact : zmod p) = (-1)^((Ico 1 (p / 2).succ).filter (λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2)).card * (p / 2).fact := calc (a ^ (p / 2) * (p / 2).fact : zmod p) = (∏ x in Ico 1 (p / 2).succ, a * x) : by rw [prod_mul_distrib, ← prod_nat_cast, ← prod_nat_cast, prod_Ico_id_eq_fact, prod_const, Ico.card, succ_sub_one]; simp ... = (∏ x in Ico 1 (p / 2).succ, (a * x : zmod p).val) : by simp ... = (∏ x in Ico 1 (p / 2).succ, (if (a * x : zmod p).val ≤ p / 2 then 1 else -1) * (a * x : zmod p).val_min_abs.nat_abs) : prod_congr rfl $ λ _ _, begin simp only [cast_nat_abs_val_min_abs], split_ifs; simp end ... = (-1)^((Ico 1 (p / 2).succ).filter (λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2)).card * (∏ x in Ico 1 (p / 2).succ, (a * x : zmod p).val_min_abs.nat_abs) : have (∏ x in Ico 1 (p / 2).succ, if (a * x : zmod p).val ≤ p / 2 then (1 : zmod p) else -1) = (∏ x in (Ico 1 (p / 2).succ).filter (λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2), -1), from prod_bij_ne_one (λ x _ _, x) (λ x, by split_ifs; simp * at * {contextual := tt}) (λ _ _ _ _ _ _, id) (λ b h _, ⟨b, by simp [-not_le, *] at *⟩) (by intros; split_ifs at *; simp * at *), by rw [prod_mul_distrib, this]; simp ... = (-1)^((Ico 1 (p / 2).succ).filter (λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2)).card * (p / 2).fact : by rw [← prod_nat_cast, finset.prod_eq_multiset_prod, Ico_map_val_min_abs_nat_abs_eq_Ico_map_id p a hap, ← finset.prod_eq_multiset_prod, prod_Ico_id_eq_fact] private lemma gauss_lemma_aux₂ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)] {a : ℕ} (hap : (a : zmod p) ≠ 0) : (a^(p / 2) : zmod p) = (-1)^((Ico 1 (p / 2).succ).filter (λ x : ℕ, p / 2 < (a * x : zmod p).val)).card := (domain.mul_left_inj (show ((p / 2).fact : zmod p) ≠ 0, by rw [ne.def, char_p.cast_eq_zero_iff (zmod p) p, hp.dvd_fact, not_le]; exact nat.div_lt_self hp.pos dec_trivial)).1 $ by simpa using gauss_lemma_aux₁ p hap private lemma eisenstein_lemma_aux₁ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)] {a : ℕ} (hap : (a : zmod p) ≠ 0) : (((Ico 1 (p / 2).succ).sum (λ x, a * x) : ℕ) : zmod 2) = ((Ico 1 (p / 2).succ).filter ((λ x : ℕ, p / 2 < (a * x : zmod p).val))).card + (Ico 1 (p / 2).succ).sum (λ x, x) + ((Ico 1 (p / 2).succ).sum (λ x, (a * x) / p) : ℕ) := have hp2 : (p : zmod 2) = (1 : ℕ), from (eq_iff_modeq_nat _).2 hp2, calc (((Ico 1 (p / 2).succ).sum (λ x, a * x) : ℕ) : zmod 2) = (((Ico 1 (p / 2).succ).sum (λ x, (a * x) % p + p * ((a * x) / p)) : ℕ) : zmod 2) : by simp only [mod_add_div] ... = ((Ico 1 (p / 2).succ).sum (λ x, ((a * x : ℕ) : zmod p).val) : ℕ) + ((Ico 1 (p / 2).succ).sum (λ x, (a * x) / p) : ℕ) : by simp only [val_cast_nat]; simp [sum_add_distrib, mul_sum.symm, nat.cast_add, nat.cast_mul, sum_nat_cast, hp2] ... = _ : congr_arg2 (+) (calc (((Ico 1 (p / 2).succ).sum (λ x, ((a * x : ℕ) : zmod p).val) : ℕ) : zmod 2) = (Ico 1 (p / 2).succ).sum (λ x, ((((a * x : zmod p).val_min_abs + (if (a * x : zmod p).val ≤ p / 2 then 0 else p)) : ℤ) : zmod 2)) : by simp only [(val_eq_ite_val_min_abs _).symm]; simp [sum_nat_cast] ... = ((Ico 1 (p / 2).succ).filter (λ x : ℕ, p / 2 < (a * x : zmod p).val)).card + (((Ico 1 (p / 2).succ).sum (λ x, (a * x : zmod p).val_min_abs.nat_abs)) : ℕ) : by { simp [ite_cast, add_comm, sum_add_distrib, finset.sum_ite, hp2, sum_nat_cast], } ... = _ : by rw [finset.sum_eq_multiset_sum, Ico_map_val_min_abs_nat_abs_eq_Ico_map_id p a hap, ← finset.sum_eq_multiset_sum]; simp [sum_nat_cast]) rfl private lemma eisenstein_lemma_aux₂ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)] {a : ℕ} (ha2 : a % 2 = 1) (hap : (a : zmod p) ≠ 0) : ((Ico 1 (p / 2).succ).filter ((λ x : ℕ, p / 2 < (a * x : zmod p).val))).card ≡ (Ico 1 (p / 2).succ).sum (λ x, (x * a) / p) [MOD 2] := have ha2 : (a : zmod 2) = (1 : ℕ), from (eq_iff_modeq_nat _).2 ha2, (eq_iff_modeq_nat 2).1 $ sub_eq_zero.1 $ by simpa [add_left_comm, sub_eq_add_neg, finset.mul_sum.symm, mul_comm, ha2, sum_nat_cast, add_neg_eq_iff_eq_add.symm, neg_eq_self_mod_two, add_assoc] using eq.symm (eisenstein_lemma_aux₁ p hap) lemma div_eq_filter_card {a b c : ℕ} (hb0 : 0 < b) (hc : a / b ≤ c) : a / b = ((Ico 1 c.succ).filter (λ x, x * b ≤ a)).card := calc a / b = (Ico 1 (a / b).succ).card : by simp ... = ((Ico 1 c.succ).filter (λ x, x * b ≤ a)).card : congr_arg _$ finset.ext.2 $ λ x, have x * b ≤ a → x ≤ c, from λ h, le_trans (by rwa [le_div_iff_mul_le _ _ hb0]) hc, by simp [lt_succ_iff, le_div_iff_mul_le _ _ hb0]; tauto /-- The given sum is the number of integer points in the triangle formed by the diagonal of the rectangle `(0, p/2) × (0, q/2)` -/ private lemma sum_Ico_eq_card_lt {p q : ℕ} : (Ico 1 (p / 2).succ).sum (λ a, (a * q) / p) = (((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter (λ x : ℕ × ℕ, x.2 * p ≤ x.1 * q)).card := if hp0 : p = 0 then by simp [hp0, finset.ext] else calc (Ico 1 (p / 2).succ).sum (λ a, (a * q) / p) = (Ico 1 (p / 2).succ).sum (λ a, ((Ico 1 (q / 2).succ).filter (λ x, x * p ≤ a * q)).card) : finset.sum_congr rfl $ λ x hx, div_eq_filter_card (nat.pos_of_ne_zero hp0) (calc x * q / p ≤ (p / 2) * q / p : nat.div_le_div_right (mul_le_mul_of_nonneg_right (le_of_lt_succ $ by finish) (nat.zero_le _)) ... ≤ _ : nat.div_mul_div_le_div _ _ _) ... = _ : by rw [← card_sigma]; exact card_congr (λ a _, ⟨a.1, a.2⟩) (by simp {contextual := tt}) (λ ⟨_, _⟩ ⟨_, _⟩, by simp {contextual := tt}) (λ ⟨b₁, b₂⟩ h, ⟨⟨b₁, b₂⟩, by revert h; simp {contextual := tt}⟩) /-- Each of the sums in this lemma is the cardinality of the set integer points in each of the two triangles formed by the diagonal of the rectangle `(0, p/2) × (0, q/2)`. Adding them gives the number of points in the rectangle. -/ private lemma sum_mul_div_add_sum_mul_div_eq_mul (p q : ℕ) [hp : fact p.prime] (hq0 : (q : zmod p) ≠ 0) : (Ico 1 (p / 2).succ).sum (λ a, (a * q) / p) + (Ico 1 (q / 2).succ).sum (λ a, (a * p) / q) = (p / 2) * (q / 2) := have hswap : (((Ico 1 (q / 2).succ).product (Ico 1 (p / 2).succ)).filter (λ x : ℕ × ℕ, x.2 * q ≤ x.1 * p)).card = (((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter (λ x : ℕ × ℕ, x.1 * q ≤ x.2 * p)).card := card_congr (λ x _, prod.swap x) (λ ⟨_, _⟩, by simp {contextual := tt}) (λ ⟨_, _⟩ ⟨_, _⟩, by simp {contextual := tt}) (λ ⟨x₁, x₂⟩ h, ⟨⟨x₂, x₁⟩, by revert h; simp {contextual := tt}⟩), have hdisj : disjoint (((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter (λ x : ℕ × ℕ, x.2 * p ≤ x.1 * q)) (((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter (λ x : ℕ × ℕ, x.1 * q ≤ x.2 * p)), from disjoint_filter.2 $ λ x hx hpq hqp, have hxp : x.1 < p, from lt_of_le_of_lt (show x.1 ≤ p / 2, by simp [*, nat.lt_succ_iff] at *; tauto) (nat.div_lt_self hp.pos dec_trivial), begin have : (x.1 : zmod p) = 0, { simpa [hq0] using congr_arg (coe : ℕ → zmod p) (le_antisymm hpq hqp) }, apply_fun zmod.val at this, rw [val_cast_of_lt hxp, val_zero] at this, simp * at * end, have hunion : ((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter (λ x : ℕ × ℕ, x.2 * p ≤ x.1 * q) ∪ ((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter (λ x : ℕ × ℕ, x.1 * q ≤ x.2 * p) = ((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)), from finset.ext.2 $ λ x, by have := le_total (x.2 * p) (x.1 * q); simp; tauto, by rw [sum_Ico_eq_card_lt, sum_Ico_eq_card_lt, hswap, ← card_disjoint_union hdisj, hunion, card_product]; simp variables (p q : ℕ) [fact p.prime] [fact q.prime] namespace zmod /-- The Legendre symbol of `a` and `p` is an integer defined as * `0` if `a` is `0` modulo `p`; * `1` if `a ^ (p / 2)` is `1` modulo `p` (by `euler_criterion` this is equivalent to “`a` is a square modulo `p`”); * `-1` otherwise. -/ def legendre_sym (a p : ℕ) : ℤ := if (a : zmod p) = 0 then 0 else if (a : zmod p) ^ (p / 2) = 1 then 1 else -1 lemma legendre_sym_eq_pow (a p : ℕ) [hp : fact p.prime] : (legendre_sym a p : zmod p) = (a ^ (p / 2)) := begin rw legendre_sym, by_cases ha : (a : zmod p) = 0, { simp only [if_pos, ha, _root_.zero_pow (nat.div_pos (hp.two_le) (succ_pos 1)), int.cast_zero] }, cases hp.eq_two_or_odd with hp2 hp_odd, { resetI, subst p, have : ∀ (a : zmod 2), ((if a = 0 then 0 else if a ^ (2 / 2) = 1 then 1 else -1 : ℤ) : zmod 2) = a ^ (2 / 2), by exact dec_trivial, exact this a }, { change fact (p % 2 = 1) at hp_odd, resetI, rw if_neg ha, have : (-1 : zmod p) ≠ 1, from (ne_neg_self p one_ne_zero).symm, cases pow_div_two_eq_neg_one_or_one p ha with h h, { rw [if_pos h, h, int.cast_one], }, { rw [h, if_neg this, int.cast_neg, int.cast_one], } } end lemma legendre_sym_eq_one_or_neg_one (a p : ℕ) (ha : (a : zmod p) ≠ 0) : legendre_sym a p = -1 ∨ legendre_sym a p = 1 := by unfold legendre_sym; split_ifs; simp only [*, eq_self_iff_true, or_true, true_or] at * lemma legendre_sym_eq_zero_iff (a p : ℕ) : legendre_sym a p = 0 ↔ (a : zmod p) = 0 := begin split, { classical, contrapose, assume ha, cases legendre_sym_eq_one_or_neg_one a p ha with h h, all_goals { rw h, norm_num } }, { assume ha, rw [legendre_sym, if_pos ha] } end /-- Gauss' lemma. The legendre symbol can be computed by considering the number of naturals less than `p/2` such that `(a * x) % p > p / 2` -/ lemma gauss_lemma {a : ℕ} [hp1 : fact (p % 2 = 1)] (ha0 : (a : zmod p) ≠ 0) : legendre_sym a p = (-1) ^ ((Ico 1 (p / 2).succ).filter (λ x : ℕ, p / 2 < (a * x : zmod p).val)).card := have (legendre_sym a p : zmod p) = (((-1)^((Ico 1 (p / 2).succ).filter (λ x : ℕ, p / 2 < (a * x : zmod p).val)).card : ℤ) : zmod p), by rw [legendre_sym_eq_pow, gauss_lemma_aux₂ p ha0]; simp, begin cases legendre_sym_eq_one_or_neg_one a p ha0; cases @neg_one_pow_eq_or ℤ _ ((Ico 1 (p / 2).succ).filter (λ x : ℕ, p / 2 < (a * x : zmod p).val)).card; simp [*, ne_neg_self p one_ne_zero, (ne_neg_self p one_ne_zero).symm] at * end lemma legendre_sym_eq_one_iff {a : ℕ} (ha0 : (a : zmod p) ≠ 0) : legendre_sym a p = 1 ↔ (∃ b : zmod p, b ^ 2 = a) := begin rw [euler_criterion p ha0, legendre_sym, if_neg ha0], split_ifs, { simp only [h, eq_self_iff_true] }, finish -- this is quite slow. I'm actually surprised that it can close the goal at all! end lemma eisenstein_lemma [hp1 : fact (p % 2 = 1)] {a : ℕ} (ha1 : a % 2 = 1) (ha0 : (a : zmod p) ≠ 0) : legendre_sym a p = (-1)^(Ico 1 (p / 2).succ).sum (λ x, (x * a) / p) := by rw [neg_one_pow_eq_pow_mod_two, gauss_lemma p ha0, neg_one_pow_eq_pow_mod_two, show _ = _, from eisenstein_lemma_aux₂ p ha1 ha0] theorem quadratic_reciprocity [hp1 : fact (p % 2 = 1)] [hq1 : fact (q % 2 = 1)] (hpq : p ≠ q) : legendre_sym p q * legendre_sym q p = (-1) ^ ((p / 2) * (q / 2)) := have hpq0 : (p : zmod q) ≠ 0, from prime_ne_zero q p hpq.symm, have hqp0 : (q : zmod p) ≠ 0, from prime_ne_zero p q hpq, by rw [eisenstein_lemma q hp1 hpq0, eisenstein_lemma p hq1 hqp0, ← _root_.pow_add, sum_mul_div_add_sum_mul_div_eq_mul q p hpq0, mul_comm] -- move this instance fact_prime_two : fact (nat.prime 2) := nat.prime_two lemma legendre_sym_two [hp1 : fact (p % 2 = 1)] : legendre_sym 2 p = (-1) ^ (p / 4 + p / 2) := have hp2 : p ≠ 2, from mt (congr_arg (% 2)) (by simpa using hp1), have hp22 : p / 2 / 2 = _ := div_eq_filter_card (show 0 < 2, from dec_trivial) (nat.div_le_self (p / 2) 2), have hcard : (Ico 1 (p / 2).succ).card = p / 2, by simp, have hx2 : ∀ x ∈ Ico 1 (p / 2).succ, (2 * x : zmod p).val = 2 * x, from λ x hx, have h2xp : 2 * x < p, from calc 2 * x ≤ 2 * (p / 2) : mul_le_mul_of_nonneg_left (le_of_lt_succ $ by finish) dec_trivial ... < _ : by conv_rhs {rw [← mod_add_div p 2, add_comm, show p % 2 = 1, from hp1]}; exact lt_succ_self _, by rw [← nat.cast_two, ← nat.cast_mul, val_cast_of_lt h2xp], have hdisj : disjoint ((Ico 1 (p / 2).succ).filter (λ x, p / 2 < ((2 : ℕ) * x : zmod p).val)) ((Ico 1 (p / 2).succ).filter (λ x, x * 2 ≤ p / 2)), from disjoint_filter.2 (λ x hx, by simp [hx2 _ hx, mul_comm]), have hunion : ((Ico 1 (p / 2).succ).filter (λ x, p / 2 < ((2 : ℕ) * x : zmod p).val)) ∪ ((Ico 1 (p / 2).succ).filter (λ x, x * 2 ≤ p / 2)) = Ico 1 (p / 2).succ, begin rw [filter_union_right], conv_rhs {rw [← @filter_true _ (Ico 1 (p / 2).succ)]}, exact filter_congr (λ x hx, by simp [hx2 _ hx, lt_or_le, mul_comm]) end, begin rw [gauss_lemma p (prime_ne_zero p 2 hp2), neg_one_pow_eq_pow_mod_two, @neg_one_pow_eq_pow_mod_two _ _ (p / 4 + p / 2)], refine congr_arg2 _ rfl ((eq_iff_modeq_nat 2).1 _), rw [show 4 = 2 * 2, from rfl, ← nat.div_div_eq_div_mul, hp22, nat.cast_add, ← sub_eq_iff_eq_add', sub_eq_add_neg, neg_eq_self_mod_two, ← nat.cast_add, ← card_disjoint_union hdisj, hunion, hcard] end lemma exists_pow_two_eq_two_iff [hp1 : fact (p % 2 = 1)] : (∃ a : zmod p, a ^ 2 = 2) ↔ p % 8 = 1 ∨ p % 8 = 7 := have hp2 : ((2 : ℕ) : zmod p) ≠ 0, from prime_ne_zero p 2 (λ h, by simpa [h] using hp1), have hpm4 : p % 4 = p % 8 % 4, from (nat.mod_mul_left_mod p 2 4).symm, have hpm2 : p % 2 = p % 8 % 2, from (nat.mod_mul_left_mod p 4 2).symm, begin rw [show (2 : zmod p) = (2 : ℕ), by simp, ← legendre_sym_eq_one_iff p hp2, legendre_sym_two p, neg_one_pow_eq_one_iff_even (show (-1 : ℤ) ≠ 1, from dec_trivial), even_add, even_div, even_div], have := nat.mod_lt p (show 0 < 8, from dec_trivial), resetI, rw _root_.fact at hp1, revert this hp1, erw [hpm4, hpm2], generalize hm : p % 8 = m, clear hm, revert m, exact dec_trivial end lemma exists_pow_two_eq_prime_iff_of_mod_four_eq_one (hp1 : p % 4 = 1) [hq1 : fact (q % 2 = 1)] : (∃ a : zmod p, a ^ 2 = q) ↔ ∃ b : zmod q, b ^ 2 = p := if hpq : p = q then by resetI; subst hpq else have h1 : ((p / 2) * (q / 2)) % 2 = 0, from (dvd_iff_mod_eq_zero _ _).1 (dvd_mul_of_dvd_left ((dvd_iff_mod_eq_zero _ _).2 $ by rw [← mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hp1]; refl) _), begin haveI hp_odd : fact (p % 2 = 1) := odd_of_mod_four_eq_one hp1, have hpq0 : (p : zmod q) ≠ 0 := prime_ne_zero q p (ne.symm hpq), have hqp0 : (q : zmod p) ≠ 0 := prime_ne_zero p q hpq, have := quadratic_reciprocity p q hpq, rw [neg_one_pow_eq_pow_mod_two, h1, legendre_sym, legendre_sym, if_neg hqp0, if_neg hpq0] at this, rw [euler_criterion q hpq0, euler_criterion p hqp0], split_ifs at this; simp *; contradiction, end lemma exists_pow_two_eq_prime_iff_of_mod_four_eq_three (hp3 : p % 4 = 3) (hq3 : q % 4 = 3) (hpq : p ≠ q) : (∃ a : zmod p, a ^ 2 = q) ↔ ¬∃ b : zmod q, b ^ 2 = p := have h1 : ((p / 2) * (q / 2)) % 2 = 1, from nat.odd_mul_odd (by rw [← mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hp3]; refl) (by rw [← mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hq3]; refl), begin haveI hp_odd : fact (p % 2 = 1) := odd_of_mod_four_eq_three hp3, haveI hq_odd : fact (q % 2 = 1) := odd_of_mod_four_eq_three hq3, have hpq0 : (p : zmod q) ≠ 0 := prime_ne_zero q p (ne.symm hpq), have hqp0 : (q : zmod p) ≠ 0 := prime_ne_zero p q hpq, have := quadratic_reciprocity p q hpq, rw [neg_one_pow_eq_pow_mod_two, h1, legendre_sym, legendre_sym, if_neg hpq0, if_neg hqp0] at this, rw [euler_criterion q hpq0, euler_criterion p hqp0], split_ifs at this; simp *; contradiction end end zmod
13246e793b763b64a7768cbe0c277951edaec53e
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/cases_tac.lean
cb7456f2c5fce026990ebd6177c8830bfb4e3726
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
412
lean
inductive foo {A : Type} : A → Type := mk : Π a : A, foo a example (A : Type) (B : A → Type) (a : A) (H : foo a) (Hb : B a) : A := begin cases H, state, assumption end inductive foo₂ {A : Type} : A → A → Type := mk : Π a b : A, foo₂ a b example (A : Type) (B : A → Type) (f : A → A) (a : A) (H : foo₂ (f a) a) (Hb : H = H) (Hc : a = a) : A := begin cases H, state, exact a end
79d8dd99e325ef0d20b4c7315cc293b822d5174e
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/analysis/special_functions/complex/log_deriv.lean
6c9fa17a0181ed3d11a6c415e00f475a3de86630
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
6,381
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import analysis.special_functions.complex.log import analysis.special_functions.exp_deriv /-! # Differentiability of the complex `log` function -/ noncomputable theory namespace complex open set filter open_locale real topological_space /-- `complex.exp` as a `local_homeomorph` with `source = {z | -π < im z < π}` and `target = {z | 0 < re z} ∪ {z | im z ≠ 0}`. This definition is used to prove that `complex.log` is complex differentiable at all points but the negative real semi-axis. -/ def exp_local_homeomorph : local_homeomorph ℂ ℂ := local_homeomorph.of_continuous_open { to_fun := exp, inv_fun := log, source := {z : ℂ | z.im ∈ Ioo (- π) π}, target := {z : ℂ | 0 < z.re} ∪ {z : ℂ | z.im ≠ 0}, map_source' := begin rintro ⟨x, y⟩ ⟨h₁ : -π < y, h₂ : y < π⟩, refine (not_or_of_imp $ λ hz, _).symm, obtain rfl : y = 0, { rw exp_im at hz, simpa [(real.exp_pos _).ne', real.sin_eq_zero_iff_of_lt_of_lt h₁ h₂] using hz }, rw [mem_set_of_eq, ← of_real_def, exp_of_real_re], exact real.exp_pos x end, map_target' := λ z h, suffices 0 ≤ z.re ∨ z.im ≠ 0, by simpa [log_im, neg_pi_lt_arg, (arg_le_pi _).lt_iff_ne, arg_eq_pi_iff, not_and_distrib], h.imp (λ h, le_of_lt h) id, left_inv' := λ x hx, log_exp hx.1 (le_of_lt hx.2), right_inv' := λ x hx, exp_log $ by { rintro rfl, simpa [lt_irrefl] using hx } } continuous_exp.continuous_on is_open_map_exp (is_open_Ioo.preimage continuous_im) lemma has_strict_deriv_at_log {x : ℂ} (h : 0 < x.re ∨ x.im ≠ 0) : has_strict_deriv_at log x⁻¹ x := have h0 : x ≠ 0, by { rintro rfl, simpa [lt_irrefl] using h }, exp_local_homeomorph.has_strict_deriv_at_symm h h0 $ by simpa [exp_log h0] using has_strict_deriv_at_exp (log x) lemma has_strict_fderiv_at_log_real {x : ℂ} (h : 0 < x.re ∨ x.im ≠ 0) : has_strict_fderiv_at log (x⁻¹ • (1 : ℂ →L[ℝ] ℂ)) x := (has_strict_deriv_at_log h).complex_to_real_fderiv lemma times_cont_diff_at_log {x : ℂ} (h : 0 < x.re ∨ x.im ≠ 0) {n : with_top ℕ} : times_cont_diff_at ℂ n log x := exp_local_homeomorph.times_cont_diff_at_symm_deriv (exp_ne_zero $ log x) h (has_deriv_at_exp _) times_cont_diff_exp.times_cont_diff_at end complex section log_deriv open complex filter open_locale topological_space variables {α : Type*} [topological_space α] {E : Type*} [normed_group E] [normed_space ℂ E] lemma has_strict_fderiv_at.clog {f : E → ℂ} {f' : E →L[ℂ] ℂ} {x : E} (h₁ : has_strict_fderiv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_strict_fderiv_at (λ t, log (f t)) ((f x)⁻¹ • f') x := (has_strict_deriv_at_log h₂).comp_has_strict_fderiv_at x h₁ lemma has_strict_deriv_at.clog {f : ℂ → ℂ} {f' x : ℂ} (h₁ : has_strict_deriv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_strict_deriv_at (λ t, log (f t)) (f' / f x) x := by { rw div_eq_inv_mul, exact (has_strict_deriv_at_log h₂).comp x h₁ } lemma has_strict_deriv_at.clog_real {f : ℝ → ℂ} {x : ℝ} {f' : ℂ} (h₁ : has_strict_deriv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_strict_deriv_at (λ t, log (f t)) (f' / f x) x := by simpa only [div_eq_inv_mul] using (has_strict_fderiv_at_log_real h₂).comp_has_strict_deriv_at x h₁ lemma has_fderiv_at.clog {f : E → ℂ} {f' : E →L[ℂ] ℂ} {x : E} (h₁ : has_fderiv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_fderiv_at (λ t, log (f t)) ((f x)⁻¹ • f') x := (has_strict_deriv_at_log h₂).has_deriv_at.comp_has_fderiv_at x h₁ lemma has_deriv_at.clog {f : ℂ → ℂ} {f' x : ℂ} (h₁ : has_deriv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_deriv_at (λ t, log (f t)) (f' / f x) x := by { rw div_eq_inv_mul, exact (has_strict_deriv_at_log h₂).has_deriv_at.comp x h₁ } lemma has_deriv_at.clog_real {f : ℝ → ℂ} {x : ℝ} {f' : ℂ} (h₁ : has_deriv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_deriv_at (λ t, log (f t)) (f' / f x) x := by simpa only [div_eq_inv_mul] using (has_strict_fderiv_at_log_real h₂).has_fderiv_at.comp_has_deriv_at x h₁ lemma differentiable_at.clog {f : E → ℂ} {x : E} (h₁ : differentiable_at ℂ f x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : differentiable_at ℂ (λ t, log (f t)) x := (h₁.has_fderiv_at.clog h₂).differentiable_at lemma has_fderiv_within_at.clog {f : E → ℂ} {f' : E →L[ℂ] ℂ} {s : set E} {x : E} (h₁ : has_fderiv_within_at f f' s x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_fderiv_within_at (λ t, log (f t)) ((f x)⁻¹ • f') s x := (has_strict_deriv_at_log h₂).has_deriv_at.comp_has_fderiv_within_at x h₁ lemma has_deriv_within_at.clog {f : ℂ → ℂ} {f' x : ℂ} {s : set ℂ} (h₁ : has_deriv_within_at f f' s x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_deriv_within_at (λ t, log (f t)) (f' / f x) s x := by { rw div_eq_inv_mul, exact (has_strict_deriv_at_log h₂).has_deriv_at.comp_has_deriv_within_at x h₁ } lemma has_deriv_within_at.clog_real {f : ℝ → ℂ} {s : set ℝ} {x : ℝ} {f' : ℂ} (h₁ : has_deriv_within_at f f' s x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : has_deriv_within_at (λ t, log (f t)) (f' / f x) s x := by simpa only [div_eq_inv_mul] using (has_strict_fderiv_at_log_real h₂).has_fderiv_at.comp_has_deriv_within_at x h₁ lemma differentiable_within_at.clog {f : E → ℂ} {s : set E} {x : E} (h₁ : differentiable_within_at ℂ f s x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) : differentiable_within_at ℂ (λ t, log (f t)) s x := (h₁.has_fderiv_within_at.clog h₂).differentiable_within_at lemma differentiable_on.clog {f : E → ℂ} {s : set E} (h₁ : differentiable_on ℂ f s) (h₂ : ∀ x ∈ s, 0 < (f x).re ∨ (f x).im ≠ 0) : differentiable_on ℂ (λ t, log (f t)) s := λ x hx, (h₁ x hx).clog (h₂ x hx) lemma differentiable.clog {f : E → ℂ} (h₁ : differentiable ℂ f) (h₂ : ∀ x, 0 < (f x).re ∨ (f x).im ≠ 0) : differentiable ℂ (λ t, log (f t)) := λ x, (h₁ x).clog (h₂ x) end log_deriv
a78101e1d5c05579daa8b56192877e87eebad445
82b86ba2ae0d5aed0f01f49c46db5afec0eb2bd7
/tests/lean/run/termParserAttr.lean
0a6ea1d13b6eb816a345b90777145d3b37176e7a
[ "Apache-2.0" ]
permissive
banksonian/lean4
3a2e6b0f1eb63aa56ff95b8d07b2f851072d54dc
78da6b3aa2840693eea354a41e89fc5b212a5011
refs/heads/master
1,673,703,624,165
1,605,123,551,000
1,605,123,551,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,133
lean
import Lean open Lean open Lean.Elab def runCore (input : String) (failIff : Bool := true) : CoreM Unit := do let env ← getEnv; let opts ← getOptions; let (env, messages) ← liftIO $ process input env opts; messages.toList.forM $ fun msg => liftIO (msg.toString >>= IO.println); when (failIff && messages.hasErrors) $ throwError "errors have been found"; when (!failIff && !messages.hasErrors) $ throwError "there are no errors"; pure () open Lean.Parser @[termParser] def tst := parser! "(|" >> termParser >> Parser.optional (symbol ", " >> termParser) >> "|)" def tst2 : Parser := symbol "(||" >> termParser >> symbol "||)" @[termParser] def boo : ParserDescr := ParserDescr.node `boo 10 (ParserDescr.andthen (ParserDescr.symbol "[|") (ParserDescr.andthen (ParserDescr.cat `term 0) (ParserDescr.symbol "|]"))) @[termParser] def boo2 : ParserDescr := ParserDescr.node `boo2 10 (ParserDescr.parser `tst2) open Lean.Elab.Term @[termElab tst] def elabTst : TermElab := adaptExpander $ fun stx => match_syntax stx with | `((| $e |)) => pure e | _ => throwUnsupportedSyntax @[termElab boo] def elabBoo : TermElab := fun stx expected? => elabTerm (stx.getArg 1) expected? @[termElab boo2] def elabBool2 : TermElab := adaptExpander $ fun stx => match_syntax stx with | `((|| $e ||)) => `($e + 1) | _ => throwUnsupportedSyntax #eval runCore "#check [| @id.{1} Nat |]" #eval runCore "#check (| id 1 |)" #eval runCore "#check (|| id 1 ||)" -- #eval run "#check (| id 1, id 1 |)" -- it will fail @[termElab tst] def elabTst2 : TermElab := adaptExpander $ fun stx => match_syntax stx with | `((| $e1, $e2 |)) => `(($e1, $e2)) | _ => throwUnsupportedSyntax -- Now both work #eval runCore "#check (| id 1 |)" #eval runCore "#check (| id 1, id 2 |)" declare_syntax_cat foo syntax "⟨|" term "|⟩" : foo syntax term : foo syntax term ">>>" term : foo syntax [tst3] "FOO " foo : term macro_rules | `(FOO ⟨| $t |⟩) => `($t+1) | `(FOO $t:term) => `($t) | `(FOO $t:term >>> $r) => `($t * $r) #check FOO ⟨| id 1 |⟩ #check FOO 1 #check FOO 1 >>> 2
888a6aeb46a08211ba036d154bb756b9ead41646
097294e9b80f0d9893ac160b9c7219aa135b51b9
/assignments/hw4/hw4.lean
ccbc686ec788984aaec3dc53705cb5d357314021
[]
no_license
AbigailCastro17/CS2102-Discrete-Math
cf296251be9418ce90206f5e66bde9163e21abf9
d741e4d2d6a9b2e0c8380e51706218b8f608cee4
refs/heads/main
1,682,891,087,358
1,621,401,341,000
1,621,401,341,000
368,749,959
0
0
null
null
null
null
UTF-8
Lean
false
false
6,371
lean
/- Here we import the dm_option type defined in class from the instructor directory. This line shows how to include a file from the parent of the parent of the current directory (one dot = current, two dots = parent, three = parent of parent), descending into several subdirectories before finding the file that we want to import. Leave off the ".lean" extension. -/ import ...instructor.types.option.dm_option /- #1 Representing Partial Functions as Total Functions [20 points] Consider the strictly partial function, pid, from natural numbers to natural numbers, defined by cases as follows. If n is zero, the function is undefined, otherwise pid n = n. We can't represent this function directly in Lean, because Lean requires all functions to be total. The usual approach is to represent such a partial function as a total function that returns not a nat (for then it would have to return a nat, even when the argument is zero) but a value of type option nat. Use this approach to implement pid in Lean. Use "by cases" syntax. (Fill in the blanks.) -/ def pid : _ → _ | _ := _ | _ := _ /- #2 Defining functions by cases (by pattern matching) [15 points] Given a value of type option ℕ, the value might be none or it might be some n, where n is a value of type ℕ. Write a funtion option_to_nat that takes any value of type option ℕ as an argument and that returns a natural number: namely 0 if the option value is none, and n if the option value is some n. Write your definition using C-style syntax, with an explicit return type specified. You will want to use a "match ... with ... end" expression to do the required pattern matching. (Note that it will be impossible to tell from the return value alone whether a given option was none or some 0.) -/ -- ANSWER HERE /- #3 Inductive definitions. [15 points] You have probably yelled into a canyon (or maybe between two buildings) and heard a reverberating echo. An echo is a sound followed by another echo, or, eventually an echo is no sound at all (at which point the reverberation ends). Define a data type, echo, values of which represent echoes. For our purposes, an echo comes in one of two forms: it is either "silence" (at which point there is no more reverberation) OR it is a "sound" followed another echo. You can think of "silence" as a "base case" and "sound" as an inductive case, in the sense that an echo of this form is a sound followed by a smaller echo. Give each of these cases its own constructor. Once you've defined your data type, define e0, e1, and e3 to be identifiers bound to three values of this type, where e0 is bound to "silence", e1 is bound to an echo with one sound followed by silence, and e3 is bound to an echo with three sounds followed by silence. -/ -- ANSWERS HERE /- #4 Lists. A word list type. [10 points] Define a data type, list_words_ values of which represent lists of words, where words are represented as values of type string. For our purposes, such a list comes in one of two forms: it is either "nil" (the word we tend to use for empty lists), or it is *constructed* from a word followed by a smaller list of words. Give each form of list its own constructor. Call the constructors nil and cons. Once you've defined your data type, define l0, l1, and l3 to be identifiers bound to three values of this type, where l0 is bound to an empty list of words, l1 is bound to a list with one word (followed by the empty list), and l3 is bound to a list with three words. We don't care what words you put in your lists (but be nice :-). -/ -- ANSWERS HERE /- #5 Recursive definitions. Length of word list. [10 points] Define a function, num_words, that takes a word list (as just defined) as an argument and that returns the length of the list as a value of type ℕ. -/ /- #6 Recursion. Number of permutations of a set. [10 points] Suppose you have a set containing n objects, where n is a natural number. How many ways are there to make an ordered list of n objects from this (unordered) set? Such an ordered list is called a permutation. As an example, consider the set, { x, y, z}. Here are the lists: - x, y, z - x, z, y - y, x, z - y, z, x - z, x, y - z, y, x It's not too hard to see the answer to the question. First, if the set is empty, there is only *one* way to make a list: it is the empty list. If the list is not empty, there are n ways to pick the first element of the list (so in our example, there are three ways to pick the first element: it has to be x or y or z); and then what's left is to make the rest of each list from remaining n-1 (in our example, 2) elements. So the number of lists has to be n *times* the number of lists that can be produced from a set of size n-1. We can express this idea as a function. Let's call it the permutations function, or perms, for short. As we've seen, perms 0 must be one. This is the base case. Implement the function, perms: ℕ → ℕ, to compute the number of perms for a set of any given size, n. Note that in Lean you'll need to use "by cases" syntax to define a recursive function. -/ /- #7 Recursion. Number of subsets of a given set. [20 points] How many subsets are there of a set of size n? A subset of a set, s, is a set all of whose elements are in s. So every set is a subset of itself, and the empty set is a subset of every set, s (since all of its elements, of which there are none(!), are in s). So how many subsets are there of a set of size n? We can answer this question nicely using recursion. First, how many subsets are there of the empty set? It's one, right? If you don't see this immediately, reread the preceding explanation. Now, consider a set, s, of size n, where n is one more than some number, n'. How many subsets does s have? To see the answer, ask the question, how many subsets does a subset of s of size n' = (n-1) have? If you have the answer to that question, then you can easily compute the number of subsets of s. A set, s', of size n' must have left out one element of s, let's call it e. For each subset of s', you can form *two* subsets of s: one with, and one without e. Write a function, power_set_cardinality, that takes a natural number representing the size of a set, s, and that then returns a natural number expressing the number of subsets there are of a set of that size. -/
d1a5b20df4bf9354477d309337c1cfd331e41f24
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/tactic/omega/term.lean
8b48371ce4446c2660f90fb99b6c07da4cc3699e
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
2,734
lean
/- Copyright (c) 2019 Seul Baek. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Seul Baek -/ /- Normalized linear integer arithmetic terms. -/ import tactic.omega.coeffs namespace omega /-- Shadow syntax of normalized terms. The first element represents the constant term and the list represents the coefficients. -/ @[derive inhabited] def term : Type := int × list int meta instance : has_reflect term := prod.has_reflect _ _ namespace term /-- Evaluate a term using the valuation v. -/ @[simp] def val (v : nat → int) : term → int | (b,as) := b + coeffs.val v as @[simp] def neg : term → term | (b,as) := (-b, list.func.neg as) @[simp] def add : term → term → term | (c1,cfs1) (c2,cfs2) := (c1+c2, list.func.add cfs1 cfs2) @[simp] def sub : term → term → term | (c1,cfs1) (c2,cfs2) := (c1 - c2, list.func.sub cfs1 cfs2) @[simp] def mul (i : int) : term → term | (b,as) := (i * b, as.map ((*) i)) @[simp] def div (i : int) : term → term | (b,as) := (b/i, as.map (λ x, x / i)) lemma val_neg {v : nat → int} {t : term} : (neg t).val v = -(t.val v) := begin cases t with b as, simp only [val, neg_add, neg, val, coeffs.val_neg] end @[simp] lemma val_sub {v : nat → int} {t1 t2 : term} : (sub t1 t2).val v = t1.val v - t2.val v := begin cases t1, cases t2, simp only [add_assoc, coeffs.val_sub, neg_add_rev, val, sub, add_comm, add_left_comm, sub_eq_add_neg] end @[simp] lemma val_add {v : nat → int} {t1 t2 : term} : (add t1 t2).val v = t1.val v + t2.val v := begin cases t1, cases t2, simp only [coeffs.val_add, add, val, add_comm, add_left_comm] end @[simp] lemma val_mul {v : nat → int} {i : int} {t : term} : val v (mul i t) = i * (val v t) := begin cases t, simp only [mul, mul_add, add_mul, list.length_map, coeffs.val, coeffs.val_between_map_mul, val, list.map] end lemma val_div {v : nat → int} {i b : int} {as : list int} : i ∣ b → (∀ x ∈ as, i ∣ x) → (div i (b,as)).val v = (val v (b,as)) / i := begin intros h1 h2, simp only [val, div, list.map], rw [int.add_div_of_dvd_left h1], apply fun_mono_2 rfl, rw ← coeffs.val_map_div h2 end /-- Fresh de Brujin index not used by any variable ocurring in the term -/ def fresh_index (t : term) : nat := t.snd.length def to_string (t : term) : string := t.2.enum.foldr (λ ⟨i, n⟩ r, to_string n ++ " * x" ++ to_string i ++ " + " ++ r) (to_string t.1) instance : has_to_string term := ⟨to_string⟩ end term /-- Fresh de Brujin index not used by any variable ocurring in the list of terms -/ def terms.fresh_index : list term → nat | [] := 0 | (t::ts) := max t.fresh_index (terms.fresh_index ts) end omega
3e38b44f6ff24a555c751a15e35d742cb54dce50
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/755.lean
e39bcf6ffe2a14b6b6a8e170aebcc8b76d0ab51c
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
1,204
lean
def Additive (α : Type) := α instance [OfNat α 1] : OfNat (Additive α) (nat_lit 0) := ⟨(1 : α)⟩ example : (0 : Nat) = (0 : Additive Nat) := rfl -- Error def toA (a : Nat) : Additive Nat := a def Foo (α : Type) := α instance [OfNat α n] : OfNat (Foo α) n := inferInstanceAs (OfNat α n) instance [HAdd α α α] : HMul (Foo α) (Foo α) (Foo α) where hMul a b := let a : α := a; let b : α := b; let x : α := a + b; x instance [HAdd α α α] : HSub (Foo α) (Foo α) (Foo α) where hSub a b := let a : α := a; let b : α := b; let x : α := a + b; x instance [HAdd α α α] : HAdd (Foo α) (Foo α) (Foo α) where hAdd a b := let a : α := a; let b : α := b; let x : α := a + b + a; x example : (2 : Nat) * (3 : Nat) = (2 : Foo Nat) * (3 : Foo Nat) := rfl -- Error example : (2 : Nat) + (3 : Nat) = (2 : Foo Nat) + (3 : Foo Nat) := rfl -- Error example : (2 : Nat) - (3 : Nat) = (2 : Foo Nat) - (3 : Foo Nat) := rfl -- Error example : (2 : Nat) + (3 : Nat) = (2 : Foo Nat) * (3 : Foo Nat) := rfl example : (2 : Nat) + (3 : Nat) + (2 : Nat) = (2 : Foo Nat) + (3 : Foo Nat) := rfl example : (2 : Nat) + (3 : Nat) = (2 : Foo Nat) - (3 : Foo Nat) := rfl
fa05502ce317fe4de3a16e23b5f644f1dfdf4445
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/set_theory/ordinal/principal.lean
a79c5847169721f3f8ec192de431eed89b00a347
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
16,464
lean
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import set_theory.ordinal.fixed_point /-! ### Principal ordinals We define principal or indecomposable ordinals, and we prove the standard properties about them. ### Main definitions and results * `principal`: A principal or indecomposable ordinal under some binary operation. We include 0 and any other typically excluded edge cases for simplicity. * `unbounded_principal`: Principal ordinals are unbounded. * `principal_add_iff_zero_or_omega_opow`: The main characterization theorem for additive principal ordinals. * `principal_mul_iff_le_two_or_omega_opow_opow`: The main characterization theorem for multiplicative principal ordinals. ### Todo * Prove that exponential principal ordinals are 0, 1, 2, ω, or epsilon numbers, i.e. fixed points of `λ x, ω ^ x`. -/ universe u noncomputable theory open order namespace ordinal local infixr (name := ordinal.pow) ^ := @pow ordinal ordinal ordinal.has_pow /-! ### Principal ordinals -/ /-- An ordinal `o` is said to be principal or indecomposable under an operation when the set of ordinals less than it is closed under that operation. In standard mathematical usage, this term is almost exclusively used for additive and multiplicative principal ordinals. For simplicity, we break usual convention and regard 0 as principal. -/ def principal (op : ordinal → ordinal → ordinal) (o : ordinal) : Prop := ∀ ⦃a b⦄, a < o → b < o → op a b < o theorem principal_iff_principal_swap {op : ordinal → ordinal → ordinal} {o : ordinal} : principal op o ↔ principal (function.swap op) o := by split; exact λ h a b ha hb, h hb ha theorem principal_zero {op : ordinal → ordinal → ordinal} : principal op 0 := λ a _ h, (ordinal.not_lt_zero a h).elim @[simp] theorem principal_one_iff {op : ordinal → ordinal → ordinal} : principal op 1 ↔ op 0 0 = 0 := begin refine ⟨λ h, _, λ h a b ha hb, _⟩, { rwa ←lt_one_iff_zero, exact h zero_lt_one zero_lt_one }, { rwa [lt_one_iff_zero, ha, hb] at * } end theorem principal.iterate_lt {op : ordinal → ordinal → ordinal} {a o : ordinal} (hao : a < o) (ho : principal op o) (n : ℕ) : (op a)^[n] a < o := begin induction n with n hn, { rwa function.iterate_zero }, { rw function.iterate_succ', exact ho hao hn } end theorem op_eq_self_of_principal {op : ordinal → ordinal → ordinal} {a o : ordinal.{u}} (hao : a < o) (H : is_normal (op a)) (ho : principal op o) (ho' : is_limit o) : op a o = o := begin refine le_antisymm _ (H.self_le _), rw [←is_normal.bsup_eq.{u u} H ho', bsup_le_iff], exact λ b hbo, (ho hao hbo).le end theorem nfp_le_of_principal {op : ordinal → ordinal → ordinal} {a o : ordinal} (hao : a < o) (ho : principal op o) : nfp (op a) a ≤ o := nfp_le $ λ n, (ho.iterate_lt hao n).le /-! ### Principal ordinals are unbounded -/ /-- The least strict upper bound of `op` applied to all pairs of ordinals less than `o`. This is essentially a two-argument version of `ordinal.blsub`. -/ def blsub₂ (op : ordinal → ordinal → ordinal) (o : ordinal) : ordinal := lsub (λ x : o.out.α × o.out.α, op (typein (<) x.1) (typein (<) x.2)) theorem lt_blsub₂ (op : ordinal → ordinal → ordinal) {o : ordinal} {a b : ordinal} (ha : a < o) (hb : b < o) : op a b < blsub₂ op o := begin convert lt_lsub _ (prod.mk (enum (<) a (by rwa type_lt)) (enum (<) b (by rwa type_lt))), simp only [typein_enum] end theorem principal_nfp_blsub₂ (op : ordinal → ordinal → ordinal) (o : ordinal) : principal op (nfp (blsub₂.{u u} op) o) := λ a b ha hb, begin rw lt_nfp at *, cases ha with m hm, cases hb with n hn, cases le_total ((blsub₂.{u u} op)^[m] o) ((blsub₂.{u u} op)^[n] o) with h h, { use n + 1, rw function.iterate_succ', exact lt_blsub₂ op (hm.trans_le h) hn }, { use m + 1, rw function.iterate_succ', exact lt_blsub₂ op hm (hn.trans_le h) }, end theorem unbounded_principal (op : ordinal → ordinal → ordinal) : set.unbounded (<) {o | principal op o} := λ o, ⟨_, principal_nfp_blsub₂ op o, (le_nfp _ o).not_lt⟩ /-! #### Additive principal ordinals -/ theorem principal_add_one : principal (+) 1 := principal_one_iff.2 $ zero_add 0 theorem principal_add_of_le_one {o : ordinal} (ho : o ≤ 1) : principal (+) o := begin rcases le_one_iff.1 ho with rfl | rfl, { exact principal_zero }, { exact principal_add_one } end theorem principal_add_is_limit {o : ordinal} (ho₁ : 1 < o) (ho : principal (+) o) : o.is_limit := begin refine ⟨λ ho₀, _, λ a hao, _⟩, { rw ho₀ at ho₁, exact not_lt_of_gt zero_lt_one ho₁ }, { cases eq_or_ne a 0 with ha ha, { rw [ha, succ_zero], exact ho₁ }, { refine lt_of_le_of_lt _ (ho hao hao), rwa [←add_one_eq_succ, add_le_add_iff_left, one_le_iff_ne_zero] } } end theorem principal_add_iff_add_left_eq_self {o : ordinal} : principal (+) o ↔ ∀ a < o, a + o = o := begin refine ⟨λ ho a hao, _, λ h a b hao hbo, _⟩, { cases lt_or_le 1 o with ho₁ ho₁, { exact op_eq_self_of_principal hao (add_is_normal a) ho (principal_add_is_limit ho₁ ho) }, { rcases le_one_iff.1 ho₁ with rfl | rfl, { exact (ordinal.not_lt_zero a hao).elim }, { rw lt_one_iff_zero at hao, rw [hao, zero_add] }}}, { rw ←h a hao, exact (add_is_normal a).strict_mono hbo } end theorem exists_lt_add_of_not_principal_add {a} (ha : ¬ principal (+) a) : ∃ (b c) (hb : b < a) (hc : c < a), b + c = a := begin unfold principal at ha, push_neg at ha, rcases ha with ⟨b, c, hb, hc, H⟩, refine ⟨b, _, hb, lt_of_le_of_ne (sub_le_self a b) (λ hab, _), ordinal.add_sub_cancel_of_le hb.le⟩, rw [←sub_le, hab] at H, exact H.not_lt hc end theorem principal_add_iff_add_lt_ne_self {a} : principal (+) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a := ⟨λ ha b c hb hc, (ha hb hc).ne, λ H, begin by_contra' ha, rcases exists_lt_add_of_not_principal_add ha with ⟨b, c, hb, hc, rfl⟩, exact (H hb hc).irrefl end⟩ theorem add_omega {a : ordinal} (h : a < omega) : a + omega = omega := begin rcases lt_omega.1 h with ⟨n, rfl⟩, clear h, induction n with n IH, { rw [nat.cast_zero, zero_add] }, { rwa [nat.cast_succ, add_assoc, one_add_of_omega_le (le_refl _)] } end theorem principal_add_omega : principal (+) omega := principal_add_iff_add_left_eq_self.2 (λ a, add_omega) theorem add_omega_opow {a b : ordinal} (h : a < omega ^ b) : a + omega ^ b = omega ^ b := begin refine le_antisymm _ (le_add_left _ _), revert h, refine limit_rec_on b (λ h, _) (λ b _ h, _) (λ b l IH h, _), { rw [opow_zero, ← succ_zero, lt_succ_iff, ordinal.le_zero] at h, rw [h, zero_add] }, { rw opow_succ at h, rcases (lt_mul_of_limit omega_is_limit).1 h with ⟨x, xo, ax⟩, refine le_trans (add_le_add_right (le_of_lt ax) _) _, rw [opow_succ, ← mul_add, add_omega xo] }, { rcases (lt_opow_of_limit omega_ne_zero l).1 h with ⟨x, xb, ax⟩, exact (((add_is_normal a).trans (opow_is_normal one_lt_omega)).limit_le l).2 (λ y yb, (add_le_add_left (opow_le_opow_right omega_pos (le_max_right _ _)) _).trans (le_trans (IH _ (max_lt xb yb) (ax.trans_le $ opow_le_opow_right omega_pos (le_max_left _ _))) (opow_le_opow_right omega_pos $ le_of_lt $ max_lt xb yb))) } end theorem principal_add_omega_opow (o : ordinal) : principal (+) (omega ^ o) := principal_add_iff_add_left_eq_self.2 (λ a, add_omega_opow) /-- The main characterization theorem for additive principal ordinals. -/ theorem principal_add_iff_zero_or_omega_opow {o : ordinal} : principal (+) o ↔ o = 0 ∨ ∃ a, o = omega ^ a := begin rcases eq_or_ne o 0 with rfl | ho, { simp only [principal_zero, or.inl] }, { rw [principal_add_iff_add_left_eq_self], simp only [ho, false_or], refine ⟨λ H, ⟨_, ((lt_or_eq_of_le (opow_log_le_self _ ho)) .resolve_left $ λ h, _).symm⟩, λ ⟨b, e⟩, e.symm ▸ λ a, add_omega_opow⟩, have := H _ h, have := lt_opow_succ_log_self one_lt_omega o, rw [opow_succ, lt_mul_of_limit omega_is_limit] at this, rcases this with ⟨a, ao, h'⟩, rcases lt_omega.1 ao with ⟨n, rfl⟩, clear ao, revert h', apply not_lt_of_le, suffices e : omega ^ log omega o * ↑n + o = o, { simpa only [e] using le_add_right (omega ^ log omega o * ↑n) o }, induction n with n IH, {simp only [nat.cast_zero, mul_zero, zero_add]}, simp only [nat.cast_succ, mul_add_one, add_assoc, this, IH] } end theorem opow_principal_add_of_principal_add {a} (ha : principal (+) a) (b : ordinal) : principal (+) (a ^ b) := begin rcases principal_add_iff_zero_or_omega_opow.1 ha with rfl | ⟨c, rfl⟩, { rcases eq_or_ne b 0 with rfl | hb, { rw opow_zero, exact principal_add_one }, { rwa zero_opow hb } }, { rw ←opow_mul, exact principal_add_omega_opow _ } end theorem add_absorp {a b c : ordinal} (h₁ : a < omega ^ b) (h₂ : omega ^ b ≤ c) : a + c = c := by rw [← ordinal.add_sub_cancel_of_le h₂, ← add_assoc, add_omega_opow h₁] theorem mul_principal_add_is_principal_add (a : ordinal.{u}) {b : ordinal.{u}} (hb₁ : b ≠ 1) (hb : principal (+) b) : principal (+) (a * b) := begin rcases eq_zero_or_pos a with rfl | ha, { rw zero_mul, exact principal_zero }, { rcases eq_zero_or_pos b with rfl | hb₁', { rw mul_zero, exact principal_zero }, { rw [← succ_le_iff, succ_zero] at hb₁', intros c d hc hd, rw lt_mul_of_limit (principal_add_is_limit (lt_of_le_of_ne hb₁' hb₁.symm) hb) at *, { rcases hc with ⟨x, hx, hx'⟩, rcases hd with ⟨y, hy, hy'⟩, use [x + y, hb hx hy], rw mul_add, exact left.add_lt_add hx' hy' }, assumption' } } end /-! #### Multiplicative principal ordinals -/ theorem principal_mul_one : principal (*) 1 := by { rw principal_one_iff, exact zero_mul _ } theorem principal_mul_two : principal (*) 2 := λ a b ha hb, begin have h₂ : succ (1 : ordinal) = 2 := rfl, rw [←h₂, lt_succ_iff] at *, convert mul_le_mul' ha hb, exact (mul_one 1).symm end theorem principal_mul_of_le_two {o : ordinal} (ho : o ≤ 2) : principal (*) o := begin rcases lt_or_eq_of_le ho with ho | rfl, { have h₂ : succ (1 : ordinal) = 2 := rfl, rw [←h₂, lt_succ_iff] at ho, rcases lt_or_eq_of_le ho with ho | rfl, { rw lt_one_iff_zero.1 ho, exact principal_zero }, { exact principal_mul_one } }, { exact principal_mul_two } end theorem principal_add_of_principal_mul {o : ordinal} (ho : principal (*) o) (ho₂ : o ≠ 2) : principal (+) o := begin cases lt_or_gt_of_ne ho₂ with ho₁ ho₂, { change o < succ 1 at ho₁, rw lt_succ_iff at ho₁, exact principal_add_of_le_one ho₁ }, { refine λ a b hao hbo, lt_of_le_of_lt _ (ho (max_lt hao hbo) ho₂), rw mul_two, exact add_le_add (le_max_left a b) (le_max_right a b) } end theorem principal_mul_is_limit {o : ordinal.{u}} (ho₂ : 2 < o) (ho : principal (*) o) : o.is_limit := principal_add_is_limit ((lt_succ 1).trans ho₂) (principal_add_of_principal_mul ho (ne_of_gt ho₂)) theorem principal_mul_iff_mul_left_eq {o : ordinal} : principal (*) o ↔ ∀ a, 0 < a → a < o → a * o = o := begin refine ⟨λ h a ha₀ hao, _, λ h a b hao hbo, _⟩, { cases le_or_gt o 2 with ho ho, { convert one_mul o, apply le_antisymm, { have : a < succ 1 := hao.trans_le ho, rwa lt_succ_iff at this }, { rwa [←succ_le_iff, succ_zero] at ha₀ } }, { exact op_eq_self_of_principal hao (mul_is_normal ha₀) h (principal_mul_is_limit ho h) } }, { rcases eq_or_ne a 0 with rfl | ha, { rwa zero_mul }, rw ←ordinal.pos_iff_ne_zero at ha, rw ←h a ha hao, exact (mul_is_normal ha).strict_mono hbo } end theorem principal_mul_omega : principal (*) omega := λ a b ha hb, match a, b, lt_omega.1 ha, lt_omega.1 hb with | _, _, ⟨m, rfl⟩, ⟨n, rfl⟩ := by { rw [← nat_cast_mul], apply nat_lt_omega } end theorem mul_omega {a : ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega := principal_mul_iff_mul_left_eq.1 (principal_mul_omega) a a0 ha theorem mul_lt_omega_opow {a b c : ordinal} (c0 : 0 < c) (ha : a < omega ^ c) (hb : b < omega) : a * b < omega ^ c := begin rcases zero_or_succ_or_limit c with rfl|⟨c,rfl⟩|l, { exact (lt_irrefl _).elim c0 }, { rw opow_succ at ha, rcases ((mul_is_normal $ opow_pos _ omega_pos).limit_lt omega_is_limit).1 ha with ⟨n, hn, an⟩, apply (mul_le_mul_right' (le_of_lt an) _).trans_lt, rw [opow_succ, mul_assoc, mul_lt_mul_iff_left (opow_pos _ omega_pos)], exact principal_mul_omega hn hb }, { rcases ((opow_is_normal one_lt_omega).limit_lt l).1 ha with ⟨x, hx, ax⟩, refine (mul_le_mul' (le_of_lt ax) (le_of_lt hb)).trans_lt _, rw [← opow_succ, opow_lt_opow_iff_right one_lt_omega], exact l.2 _ hx } end theorem mul_omega_opow_opow {a b : ordinal} (a0 : 0 < a) (h : a < omega ^ omega ^ b) : a * omega ^ omega ^ b = omega ^ omega ^ b := begin by_cases b0 : b = 0, {rw [b0, opow_zero, opow_one] at h ⊢, exact mul_omega a0 h}, refine le_antisymm _ (by simpa only [one_mul] using mul_le_mul_right' (one_le_iff_pos.2 a0) (omega ^ omega ^ b)), rcases (lt_opow_of_limit omega_ne_zero (opow_is_limit_left omega_is_limit b0)).1 h with ⟨x, xb, ax⟩, apply (mul_le_mul_right' (le_of_lt ax) _).trans, rw [← opow_add, add_omega_opow xb] end theorem principal_mul_omega_opow_opow (o : ordinal) : principal (*) (omega ^ omega ^ o) := principal_mul_iff_mul_left_eq.2 (λ a, mul_omega_opow_opow) theorem principal_add_of_principal_mul_opow {o b : ordinal} (hb : 1 < b) (ho : principal (*) (b ^ o)) : principal (+) o := λ x y hx hy, begin have := ho ((opow_lt_opow_iff_right hb).2 hx) ((opow_lt_opow_iff_right hb).2 hy), rwa [←opow_add, opow_lt_opow_iff_right hb] at this end /-- The main characterization theorem for multiplicative principal ordinals. -/ theorem principal_mul_iff_le_two_or_omega_opow_opow {o : ordinal} : principal (*) o ↔ o ≤ 2 ∨ ∃ a, o = omega ^ omega ^ a := begin refine ⟨λ ho, _, _⟩, { cases le_or_lt o 2 with ho₂ ho₂, { exact or.inl ho₂ }, rcases principal_add_iff_zero_or_omega_opow.1 (principal_add_of_principal_mul ho ho₂.ne') with rfl | ⟨a, rfl⟩, { exact (ordinal.not_lt_zero 2 ho₂).elim }, rcases principal_add_iff_zero_or_omega_opow.1 (principal_add_of_principal_mul_opow one_lt_omega ho) with rfl | ⟨b, rfl⟩, { rw opow_zero at ho₂, exact ((lt_succ 1).not_le ho₂.le).elim }, exact or.inr ⟨b, rfl⟩ }, { rintro (ho₂ | ⟨a, rfl⟩), { exact principal_mul_of_le_two ho₂ }, { exact principal_mul_omega_opow_opow a } } end theorem mul_omega_dvd {a : ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b | _ ⟨b, rfl⟩ := by rw [← mul_assoc, mul_omega a0 ha] theorem mul_eq_opow_log_succ {a b : ordinal.{u}} (ha : a ≠ 0) (hb : principal (*) b) (hb₂ : 2 < b) : a * b = b ^ succ (log b a) := begin apply le_antisymm, { have hbl := principal_mul_is_limit hb₂ hb, rw [←is_normal.bsup_eq.{u u} (mul_is_normal (ordinal.pos_iff_ne_zero.2 ha)) hbl, bsup_le_iff], intros c hcb, have hb₁ : 1 < b := (lt_succ 1).trans hb₂, have hbo₀ : b ^ b.log a ≠ 0 := ordinal.pos_iff_ne_zero.1 (opow_pos _ (zero_lt_one.trans hb₁)), apply le_trans (mul_le_mul_right' (le_of_lt (lt_mul_succ_div a hbo₀)) c), rw [mul_assoc, opow_succ], refine mul_le_mul_left' (le_of_lt (hb (hbl.2 _ _) hcb)) _, rw [div_lt hbo₀, ←opow_succ], exact lt_opow_succ_log_self hb₁ _ }, { rw opow_succ, exact mul_le_mul_right' (opow_log_le_self b ha) b } end /-! #### Exponential principal ordinals -/ theorem principal_opow_omega : principal (^) omega := λ a b ha hb, match a, b, lt_omega.1 ha, lt_omega.1 hb with | _, _, ⟨m, rfl⟩, ⟨n, rfl⟩ := by { simp_rw ←nat_cast_opow, apply nat_lt_omega } end theorem opow_omega {a : ordinal} (a1 : 1 < a) (h : a < omega) : a ^ omega = omega := le_antisymm ((opow_le_of_limit (one_le_iff_ne_zero.1 $ le_of_lt a1) omega_is_limit).2 (λ b hb, (principal_opow_omega h hb).le)) (right_le_opow _ a1) end ordinal
f765a0e7179236a279fb5d3a0f265708d4fb8455
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/group_theory/finiteness.lean
f6f9f4f4390687ec2cc1f3f1df591d2e77f3c904
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
9,980
lean
/- Copyright (c) 2021 Riccardo Brasca. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Riccardo Brasca -/ import data.set.finite import data.finset import group_theory.submonoid.operations import group_theory.subgroup.basic /-! # Finitely generated monoids and groups We define finitely generated monoids and groups. See also `submodule.fg` and `module.finite` for finitely-generated modules. ## Main definition * `submonoid.fg S`, `add_submonoid.fg S` : A submonoid `S` is finitely generated. * `monoid.fg M`, `add_monoid.fg M` : A typeclass indicating a type `M` is finitely generated as a monoid. * `subgroup.fg S`, `add_subgroup.fg S` : A subgroup `S` is finitely generated. * `group.fg M`, `add_group.fg M` : A typeclass indicating a type `M` is finitely generated as a group. -/ /-! ### Monoids and submonoids -/ open_locale pointwise variables {M N : Type*} [monoid M] [add_monoid N] section submonoid /-- A submonoid of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ @[to_additive] def submonoid.fg (P : submonoid M) : Prop := ∃ S : finset M, submonoid.closure ↑S = P /-- An additive submonoid of `N` is finitely generated if it is the closure of a finite subset of `M`. -/ add_decl_doc add_submonoid.fg /-- An equivalent expression of `submonoid.fg` in terms of `set.finite` instead of `finset`. -/ @[to_additive "An equivalent expression of `add_submonoid.fg` in terms of `set.finite` instead of `finset`."] lemma submonoid.fg_iff (P : submonoid M) : submonoid.fg P ↔ ∃ S : set M, submonoid.closure S = P ∧ S.finite := ⟨λ ⟨S, hS⟩, ⟨S, hS, finset.finite_to_set S⟩, λ ⟨S, hS, hf⟩, ⟨set.finite.to_finset hf, by simp [hS]⟩⟩ lemma submonoid.fg_iff_add_fg (P : submonoid M) : P.fg ↔ P.to_add_submonoid.fg := ⟨λ h, let ⟨S, hS, hf⟩ := (submonoid.fg_iff _).1 h in (add_submonoid.fg_iff _).mpr ⟨additive.to_mul ⁻¹' S, by simp [← submonoid.to_add_submonoid_closure, hS], hf⟩, λ h, let ⟨T, hT, hf⟩ := (add_submonoid.fg_iff _).1 h in (submonoid.fg_iff _).mpr ⟨multiplicative.of_add ⁻¹' T, by simp [← add_submonoid.to_submonoid'_closure, hT], hf⟩⟩ lemma add_submonoid.fg_iff_mul_fg (P : add_submonoid N) : P.fg ↔ P.to_submonoid.fg := begin convert (submonoid.fg_iff_add_fg P.to_submonoid).symm, exact set_like.ext' rfl end end submonoid section monoid variables (M N) /-- A monoid is finitely generated if it is finitely generated as a submonoid of itself. -/ class monoid.fg : Prop := (out : (⊤ : submonoid M).fg) /-- An additive monoid is finitely generated if it is finitely generated as an additive submonoid of itself. -/ class add_monoid.fg : Prop := (out : (⊤ : add_submonoid N).fg) attribute [to_additive] monoid.fg variables {M N} lemma monoid.fg_def : monoid.fg M ↔ (⊤ : submonoid M).fg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ lemma add_monoid.fg_def : add_monoid.fg N ↔ (⊤ : add_submonoid N).fg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ /-- An equivalent expression of `monoid.fg` in terms of `set.finite` instead of `finset`. -/ @[to_additive "An equivalent expression of `add_monoid.fg` in terms of `set.finite` instead of `finset`."] lemma monoid.fg_iff : monoid.fg M ↔ ∃ S : set M, submonoid.closure S = (⊤ : submonoid M) ∧ S.finite := ⟨λ h, (submonoid.fg_iff ⊤).1 h.out, λ h, ⟨(submonoid.fg_iff ⊤).2 h⟩⟩ lemma monoid.fg_iff_add_fg : monoid.fg M ↔ add_monoid.fg (additive M) := ⟨λ h, ⟨(submonoid.fg_iff_add_fg ⊤).1 h.out⟩, λ h, ⟨(submonoid.fg_iff_add_fg ⊤).2 h.out⟩⟩ lemma add_monoid.fg_iff_mul_fg : add_monoid.fg N ↔ monoid.fg (multiplicative N) := ⟨λ h, ⟨(add_submonoid.fg_iff_mul_fg ⊤).1 h.out⟩, λ h, ⟨(add_submonoid.fg_iff_mul_fg ⊤).2 h.out⟩⟩ instance add_monoid.fg_of_monoid_fg [monoid.fg M] : add_monoid.fg (additive M) := monoid.fg_iff_add_fg.1 ‹_› instance monoid.fg_of_add_monoid_fg [add_monoid.fg N] : monoid.fg (multiplicative N) := add_monoid.fg_iff_mul_fg.1 ‹_› end monoid @[to_additive] lemma submonoid.fg.map {M' : Type*} [monoid M'] {P : submonoid M} (h : P.fg) (e : M →* M') : (P.map e).fg := begin classical, obtain ⟨s, rfl⟩ := h, exact ⟨s.image e, by rw [finset.coe_image, monoid_hom.map_mclosure]⟩ end @[to_additive] lemma submonoid.fg.map_injective {M' : Type*} [monoid M'] {P : submonoid M} (e : M →* M') (he : function.injective e) (h : (P.map e).fg) : P.fg := begin obtain ⟨s, hs⟩ := h, use s.preimage e (he.inj_on _), apply submonoid.map_injective_of_injective he, rw [← hs, e.map_mclosure, finset.coe_preimage], congr, rw [set.image_preimage_eq_iff, ← e.coe_mrange, ← submonoid.closure_le, hs, e.mrange_eq_map], exact submonoid.monotone_map le_top end @[simp, to_additive] lemma monoid.fg_iff_submonoid_fg (N : submonoid M) : monoid.fg N ↔ N.fg := begin conv_rhs { rw [← N.range_subtype, monoid_hom.mrange_eq_map] }, exact ⟨λ h, h.out.map N.subtype, λ h, ⟨h.map_injective N.subtype subtype.coe_injective⟩⟩ end @[to_additive] lemma monoid.fg_of_surjective {M' : Type*} [monoid M'] [monoid.fg M] (f : M →* M') (hf : function.surjective f) : monoid.fg M' := begin classical, obtain ⟨s, hs⟩ := monoid.fg_def.mp ‹_›, use s.image f, rwa [finset.coe_image, ← monoid_hom.map_mclosure, hs, ← monoid_hom.mrange_eq_map, monoid_hom.mrange_top_iff_surjective], end @[to_additive] lemma submonoid.powers_fg (r : M) : (submonoid.powers r).fg := ⟨{r}, (finset.coe_singleton r).symm ▸ (submonoid.powers_eq_closure r).symm⟩ @[to_additive] instance (r : M) : monoid.fg (submonoid.powers r) := (monoid.fg_iff_submonoid_fg _).mpr (submonoid.powers_fg r) /-! ### Groups and subgroups -/ variables {G H : Type*} [group G] [add_group H] section subgroup /-- A subgroup of `G` is finitely generated if it is the closure of a finite subset of `G`. -/ @[to_additive] def subgroup.fg (P : subgroup G) : Prop := ∃ S : finset G, subgroup.closure ↑S = P /-- An additive subgroup of `H` is finitely generated if it is the closure of a finite subset of `H`. -/ add_decl_doc add_subgroup.fg /-- An equivalent expression of `subgroup.fg` in terms of `set.finite` instead of `finset`. -/ @[to_additive "An equivalent expression of `add_subgroup.fg` in terms of `set.finite` instead of `finset`."] lemma subgroup.fg_iff (P : subgroup G) : subgroup.fg P ↔ ∃ S : set G, subgroup.closure S = P ∧ S.finite := ⟨λ⟨S, hS⟩, ⟨S, hS, finset.finite_to_set S⟩, λ⟨S, hS, hf⟩, ⟨set.finite.to_finset hf, by simp [hS]⟩⟩ /-- A subgroup is finitely generated if and only if it is finitely generated as a submonoid. -/ @[to_additive add_subgroup.fg_iff_add_submonoid.fg "An additive subgroup is finitely generated if and only if it is finitely generated as an additive submonoid."] lemma subgroup.fg_iff_submonoid_fg (P : subgroup G) : P.fg ↔ P.to_submonoid.fg := begin split, { rintro ⟨S, rfl⟩, rw submonoid.fg_iff, refine ⟨S ∪ S⁻¹, _, S.finite_to_set.union S.finite_to_set.inv⟩, exact (subgroup.closure_to_submonoid _).symm }, { rintro ⟨S, hS⟩, refine ⟨S, le_antisymm _ _⟩, { rw [subgroup.closure_le, ←subgroup.coe_to_submonoid, ←hS], exact submonoid.subset_closure }, { rw [← subgroup.to_submonoid_le, ← hS, submonoid.closure_le], exact subgroup.subset_closure } } end lemma subgroup.fg_iff_add_fg (P : subgroup G) : P.fg ↔ P.to_add_subgroup.fg := begin rw [subgroup.fg_iff_submonoid_fg, add_subgroup.fg_iff_add_submonoid.fg], exact (subgroup.to_submonoid P).fg_iff_add_fg end lemma add_subgroup.fg_iff_mul_fg (P : add_subgroup H) : P.fg ↔ P.to_subgroup.fg := begin rw [add_subgroup.fg_iff_add_submonoid.fg, subgroup.fg_iff_submonoid_fg], exact add_submonoid.fg_iff_mul_fg (add_subgroup.to_add_submonoid P) end end subgroup section group variables (G H) /-- A group is finitely generated if it is finitely generated as a submonoid of itself. -/ class group.fg : Prop := (out : (⊤ : subgroup G).fg) /-- An additive group is finitely generated if it is finitely generated as an additive submonoid of itself. -/ class add_group.fg : Prop := (out : (⊤ : add_subgroup H).fg) attribute [to_additive] group.fg variables {G H} lemma group.fg_def : group.fg G ↔ (⊤ : subgroup G).fg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ lemma add_group.fg_def : add_group.fg H ↔ (⊤ : add_subgroup H).fg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ /-- An equivalent expression of `group.fg` in terms of `set.finite` instead of `finset`. -/ @[to_additive "An equivalent expression of `add_group.fg` in terms of `set.finite` instead of `finset`."] lemma group.fg_iff : group.fg G ↔ ∃ S : set G, subgroup.closure S = (⊤ : subgroup G) ∧ S.finite := ⟨λ h, (subgroup.fg_iff ⊤).1 h.out, λ h, ⟨(subgroup.fg_iff ⊤).2 h⟩⟩ /-- A group is finitely generated if and only if it is finitely generated as a monoid. -/ @[to_additive add_group.fg_iff_add_monoid.fg "An additive group is finitely generated if and only if it is finitely generated as an additive monoid."] lemma group.fg_iff_monoid.fg : group.fg G ↔ monoid.fg G := ⟨λ h, monoid.fg_def.2 $ (subgroup.fg_iff_submonoid_fg ⊤).1 (group.fg_def.1 h), λ h, group.fg_def.2 $ (subgroup.fg_iff_submonoid_fg ⊤).2 (monoid.fg_def.1 h)⟩ lemma group_fg.iff_add_fg : group.fg G ↔ add_group.fg (additive G) := ⟨λ h, ⟨(subgroup.fg_iff_add_fg ⊤).1 h.out⟩, λ h, ⟨(subgroup.fg_iff_add_fg ⊤).2 h.out⟩⟩ lemma add_group.fg_iff_mul_fg : add_group.fg H ↔ group.fg (multiplicative H) := ⟨λ h, ⟨(add_subgroup.fg_iff_mul_fg ⊤).1 h.out⟩, λ h, ⟨(add_subgroup.fg_iff_mul_fg ⊤).2 h.out⟩⟩ instance add_group.fg_of_group_fg [group.fg G] : add_group.fg (additive G) := group_fg.iff_add_fg.1 ‹_› instance group.fg_of_mul_group_fg [add_group.fg H] : group.fg (multiplicative H) := add_group.fg_iff_mul_fg.1 ‹_› end group
56b021b12f0378fa8553e96f45c8c9d3b7c4f6b1
8b9f17008684d796c8022dab552e42f0cb6fb347
/hott/init/logic.hlean
348fdc4f5d66cc8c130e27d889d7b9c04a69ed42
[ "Apache-2.0" ]
permissive
chubbymaggie/lean
0d06ae25f9dd396306fb02190e89422ea94afd7b
d2c7b5c31928c98f545b16420d37842c43b4ae9a
refs/heads/master
1,611,313,622,901
1,430,266,839,000
1,430,267,083,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
11,773
hlean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.logic Authors: Leonardo de Moura -/ prelude import init.datatypes init.reserved_notation definition not.{l} (a : Type.{l}) := a → empty.{l} prefix `¬` := not definition absurd {a : Type} {b : Type} (H₁ : a) (H₂ : ¬a) : b := empty.rec (λ e, b) (H₂ H₁) definition mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a := assume Ha : a, absurd (H₁ Ha) H₂ /- not -/ protected definition not_empty : ¬ empty := assume H : empty, H definition not_not_intro {a : Type} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna definition not.intro {a : Type} (H : a → empty) : ¬a := H definition not.elim {a : Type} (H₁ : ¬a) (H₂ : a) : empty := H₁ H₂ definition not_not_of_not_implies {a b : Type} (H : ¬(a → b)) : ¬¬a := assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H definition not_of_not_implies {a b : Type} (H : ¬(a → b)) : ¬b := assume Hb : b, absurd (assume Ha : a, Hb) H /- eq -/ notation a = b := eq a b definition rfl {A : Type} {a : A} := eq.refl a namespace eq variables {A : Type} variables {a b c a' : A} definition subst {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b := eq.rec H₂ H₁ definition trans (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ definition symm (H : a = b) : b = a := subst H (refl a) namespace ops notation H `⁻¹` := symm H --input with \sy or \-1 or \inv notation H1 ⬝ H2 := trans H1 H2 notation H1 ▸ H2 := subst H1 H2 end ops end eq section variables {A : Type} {a b c: A} open eq.ops definition trans_rel_left (R : A → A → Type) (H₁ : R a b) (H₂ : b = c) : R a c := H₂ ▸ H₁ definition trans_rel_right (R : A → A → Type) (H₁ : a = b) (H₂ : R b c) : R a c := H₁⁻¹ ▸ H₂ end calc_subst eq.subst calc_refl eq.refl calc_trans eq.trans calc_symm eq.symm namespace lift definition down_up.{l₁ l₂} {A : Type.{l₁}} (a : A) : down (up.{l₁ l₂} a) = a := rfl definition up_down.{l₁ l₂} {A : Type.{l₁}} (a : lift.{l₁ l₂} A) : up (down a) = a := lift.rec_on a (λ d, rfl) end lift /- ne -/ definition ne {A : Type} (a b : A) := ¬(a = b) notation a ≠ b := ne a b namespace ne open eq.ops variable {A : Type} variables {a b : A} definition intro : (a = b → empty) → a ≠ b := assume H, H definition elim : a ≠ b → a = b → empty := assume H₁ H₂, H₁ H₂ definition irrefl : a ≠ a → empty := assume H, H rfl definition symm : a ≠ b → b ≠ a := assume (H : a ≠ b) (H₁ : b = a), H H₁⁻¹ end ne section open eq.ops variables {A : Type} {a b c : A} definition false.of_ne : a ≠ a → empty := assume H, H rfl definition ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c := assume H₁ H₂, H₁⁻¹ ▸ H₂ definition ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c := assume H₁ H₂, H₂ ▸ H₁ end calc_trans ne.of_eq_of_ne calc_trans ne.of_ne_of_eq /- iff -/ definition iff (a b : Type) := prod (a → b) (b → a) notation a <-> b := iff a b notation a ↔ b := iff a b namespace iff variables {a b c : Type} definition def : (a ↔ b) = (prod (a → b) (b → a)) := rfl definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b := prod.mk H₁ H₂ definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c := prod.rec H₁ H₂ definition elim_left (H : a ↔ b) : a → b := elim (assume H₁ H₂, H₁) H definition mp := @elim_left definition elim_right (H : a ↔ b) : b → a := elim (assume H₁ H₂, H₂) H definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b := intro (assume Hna, mt (elim_right H₁) Hna) (assume Hnb, mt (elim_left H₁) Hnb) definition refl (a : Type) : a ↔ a := intro (assume H, H) (assume H, H) definition rfl {a : Type} : a ↔ a := refl a definition trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := intro (assume Ha, elim_left H₂ (elim_left H₁ Ha)) (assume Hc, elim_right H₁ (elim_right H₂ Hc)) definition symm (H : a ↔ b) : b ↔ a := intro (assume Hb, elim_right H Hb) (assume Ha, elim_left H Ha) definition true_elim (H : a ↔ unit) : a := mp (symm H) unit.star definition false_elim (H : a ↔ empty) : ¬a := assume Ha : a, mp H Ha open eq.ops definition of_eq {a b : Type} (H : a = b) : a ↔ b := iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) end iff calc_refl iff.refl calc_trans iff.trans /- inhabited -/ inductive inhabited [class] (A : Type) : Type := mk : A → inhabited A namespace inhabited protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := inhabited.rec H2 H1 definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) := destruct H (λb, mk (λa, b)) definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] : inhabited (Πx, B x) := mk (λa, destruct (H a) (λb, b)) definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a) end inhabited /- decidable -/ inductive decidable.{l} [class] (p : Type.{l}) : Type.{l} := | inl : p → decidable p | inr : ¬p → decidable p namespace decidable variables {p q : Type} definition pos_witness [C : decidable p] (H : p) : p := decidable.rec_on C (λ Hp, Hp) (λ Hnp, absurd H Hnp) definition neg_witness [C : decidable p] (H : ¬ p) : ¬ p := decidable.rec_on C (λ Hp, absurd Hp H) (λ Hnp, Hnp) definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q := decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp) definition em (p : Type) [H : decidable p] : sum p ¬p := by_cases (λ Hp, sum.inl Hp) (λ Hnp, sum.inr Hnp) definition by_contradiction [Hp : decidable p] (H : ¬p → empty) : p := by_cases (assume H₁ : p, H₁) (assume H₁ : ¬p, empty.rec (λ e, p) (H H₁)) definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q := decidable.rec_on Hp (assume Hp : p, inl (iff.elim_left H Hp)) (assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp)) definition decidable_eq_equiv.{l} {p q : Type.{l}} (Hp : decidable p) (H : p = q) : decidable q := decidable_iff_equiv Hp (iff.of_eq H) end decidable section variables {p q : Type} open decidable (rec_on inl inr) definition decidable_unit [instance] : decidable unit := inl unit.star definition decidable_empty [instance] : decidable empty := inr not_empty definition decidable_prod [instance] [Hp : decidable p] [Hq : decidable q] : decidable (prod p q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (prod.mk Hp Hq)) (assume Hnq : ¬q, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hq Hnq)))) (assume Hnp : ¬p, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hp Hnp))) definition decidable_sum [instance] [Hp : decidable p] [Hq : decidable q] : decidable (sum p q) := rec_on Hp (assume Hp : p, inl (sum.inl Hp)) (assume Hnp : ¬p, rec_on Hq (assume Hq : q, inl (sum.inr Hq)) (assume Hnq : ¬q, inr (λ H : sum p q, sum.rec_on H (λ Hp, absurd Hp Hnp) (λ Hq, absurd Hq Hnq)))) definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) := rec_on Hp (assume Hp, inr (not_not_intro Hp)) (assume Hnp, inl Hnp) definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (assume H, Hq)) (assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq))) (assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp)) definition decidable_if [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) := show decidable (prod (p → q) (q → p)), from _ end definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a) definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b) definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A) definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : decidable_rel (@ne A) := show ∀ x y : A, decidable (x = y → empty), from _ definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A := decidable.rec_on H (λ Hc, t) (λ Hnc, e) definition if_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition if_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) H definition if_t_t (c : Type) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) H definition if_unit {A : Type} (t e : A) : (if unit then t else e) = t := if_pos unit.star definition if_empty {A : Type} (t e : A) : (if empty then t else e) = e := if_neg not_empty section open eq.ops definition if_cond_congr {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A) : (if c₁ then t else e) = (if c₂ then t else e) := decidable.rec_on H₁ (λ Hc₁ : c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹) (λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂)) (λ Hnc₁ : ¬c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁) (λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹)) definition if_congr_aux {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) := Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁) definition if_congr {c₁ c₂ : Type} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) := have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc), if_congr_aux Hc Ht He -- We use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Type) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A := decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc) definition dif_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t (decidable.pos_witness Hc) := decidable.rec (λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition dif_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e (decidable.neg_witness Hnc) := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e)) H -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. definition dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e := rfl end
b7b92b759d8732ca7523878704828e3c2c5a1897
5d166a16ae129621cb54ca9dde86c275d7d2b483
/library/init/data/bool/lemmas.lean
da0bbd7df2c9bbb98d972c12f989363fe12f1836
[ "Apache-2.0" ]
permissive
jcarlson23/lean
b00098763291397e0ac76b37a2dd96bc013bd247
8de88701247f54d325edd46c0eed57aeacb64baf
refs/heads/master
1,611,571,813,719
1,497,020,963,000
1,497,021,515,000
93,882,536
1
0
null
1,497,029,896,000
1,497,029,896,000
null
UTF-8
Lean
false
false
2,624
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.data.bool.basic init.meta attribute [simp] cond bor band bnot bxor @[simp] lemma {u} cond_a_a {α : Type u} (b : bool) (a : α) : cond b a a = a := by cases b; simp @[simp] lemma band_self (b : bool) : b && b = b := by cases b; simp @[simp] lemma band_tt (b : bool) : b && tt = b := by cases b; simp @[simp] lemma band_ff (b : bool) : b && ff = ff := by cases b; simp @[simp] lemma tt_band (b : bool) : tt && b = b := by cases b; simp @[simp] lemma ff_band (b : bool) : ff && b = ff := by cases b; simp @[simp] lemma bor_self (b : bool) : b || b = b := by cases b; simp @[simp] lemma bor_tt (b : bool) : b || tt = tt := by cases b; simp @[simp] lemma bor_ff (b : bool) : b || ff = b := by cases b; simp @[simp] lemma tt_bor (b : bool) : tt || b = tt := by cases b; simp @[simp] lemma ff_bor (b : bool) : ff || b = b := by cases b; simp @[simp] lemma bxor_self (b : bool) : bxor b b = ff := by cases b; simp @[simp] lemma bxor_tt (b : bool) : bxor b tt = bnot b := by cases b; simp @[simp] lemma bxor_ff (b : bool) : bxor b ff = b := by cases b; simp @[simp] lemma tt_bxor (b : bool) : bxor tt b = bnot b := by cases b; simp @[simp] lemma ff_bxor (b : bool) : bxor ff b = b := by cases b; simp @[simp] lemma bnot_bnot (b : bool) : bnot (bnot b) = b := by cases b; simp @[simp] lemma tt_eq_ff_eq_false : ¬(tt = ff) := by contradiction @[simp] lemma ff_eq_tt_eq_false : ¬(ff = tt) := by contradiction @[simp] lemma eq_ff_eq_not_eq_tt (b : bool) : (¬(b = tt)) = (b = ff) := by cases b; simp @[simp] lemma eq_tt_eq_not_eq_ff (b : bool) : (¬(b = ff)) = (b = tt) := by cases b; simp @[simp] lemma band_eq_true_eq_eq_tt_and_eq_tt (a b : bool) : (a && b = tt) = (a = tt ∧ b = tt) := by cases a; cases b; simp @[simp] lemma bor_eq_true_eq_eq_tt_or_eq_tt (a b : bool) : (a || b = tt) = (a = tt ∨ b = tt) := by cases a; cases b; simp @[simp] lemma bnot_eq_true_eq_eq_ff (a : bool) : (bnot a = tt) = (a = ff) := by cases a; simp @[simp] lemma band_eq_false_eq_eq_ff_or_eq_ff (a b : bool) : (a && b = ff) = (a = ff ∨ b = ff) := by cases a; cases b; simp @[simp] lemma bor_eq_false_eq_eq_ff_and_eq_ff (a b : bool) : (a || b = ff) = (a = ff ∧ b = ff) := by cases a; cases b; simp @[simp] lemma bnot_eq_ff_eq_eq_tt (a : bool) : (bnot a = ff) = (a = tt) := by cases a; simp @[simp] lemma coe_ff : ↑ff = false := show (ff = tt) = false, by simp @[simp] lemma coe_tt : ↑tt = true := show (tt = tt) = true, by simp
807385ed063b87c4abe030405eaabcfdcfb9bab9
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/tactic/converter/binders_auto.lean
ee64529aef3d9eae063bd4170c3bb61705ef1d4e
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
1,836
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Binder elimination -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.order.default import Mathlib.PostPort universes u v namespace Mathlib namespace old_conv /- congr should forward data! -/ end old_conv /- Binder elimination: We assume a binder `B : p → Π (α : Sort u), (α → t) → t`, where `t` is a type depending on `p`. Examples: ∃: there is no `p` and `t` is `Prop`. ⨅, ⨆: here p is `β` and `[complete_lattice β]`, `p` is `β` Problem: ∀x, _ should be a binder, but is not a constant! Provide a mechanism to rewrite: B (x : α) ..x.. (h : x = t), p x = B ..x/t.., p t Here ..x.. are binders, maybe also some constants which provide commutativity rules with `B`. -/ theorem exists_elim_eq_left {α : Sort u} (a : α) (p : (a' : α) → a' = a → Prop) : (∃ (a' : α), ∃ (h : a' = a), p a' h) ↔ p a rfl := sorry theorem exists_elim_eq_right {α : Sort u} (a : α) (p : (a' : α) → a = a' → Prop) : (∃ (a' : α), ∃ (h : a = a'), p a' h) ↔ p a rfl := sorry theorem forall_comm {α : Sort u} {β : Sort v} (p : α → β → Prop) : (∀ (a : α) (b : β), p a b) ↔ ∀ (b : β) (a : α), p a b := { mp := fun (h : ∀ (a : α) (b : β), p a b) (b : β) (a : α) => h a b, mpr := fun (h : ∀ (b : β) (a : α), p a b) (b : α) (a : β) => h a b } theorem forall_elim_eq_left {α : Sort u} (a : α) (p : (a' : α) → a' = a → Prop) : (∀ (a' : α) (h : a' = a), p a' h) ↔ p a rfl := sorry theorem forall_elim_eq_right {α : Sort u} (a : α) (p : (a' : α) → a = a' → Prop) : (∀ (a' : α) (h : a = a'), p a' h) ↔ p a rfl := sorry end Mathlib
3000b3b4db8499a23b49e0fdb1a6fdf1ed70c93b
556aeb81a103e9e0ac4e1fe0ce1bc6e6161c3c5e
/src/starkware/cairo/lean/semantics/air_encoding/range_check_builtin.lean
cb732346453eaee55b506e445a579f0fe02664a4
[ "Apache-2.0" ]
permissive
starkware-libs/formal-proofs
d6b731604461bf99e6ba820e68acca62a21709e8
f5fa4ba6a471357fd171175183203d0b437f6527
refs/heads/master
1,691,085,444,753
1,690,507,386,000
1,690,507,386,000
410,476,629
32
9
Apache-2.0
1,690,506,773,000
1,632,639,790,000
Lean
UTF-8
Lean
false
false
3,442
lean
import starkware.cairo.lean.semantics.cpu variables {F : Type*} [field F] -- number of 16-bit range-checked values variable {rc16_len : ℕ} -- number of 128-bit range-checked values variables {rc_len : ℕ} -- this is public data variable {initial_rc_addr : F} -- this comes from range check constraints variable {rc16_val : fin rc16_len → F} -- these come from memory constraints variable {rc_addr : fin rc_len → F} -- rc_builtin__mem__addr variable {rc_val : fin rc_len → F} -- rc_builtin__mem__value -- map eight rc16 values to one rc value variable {rc_to_rc16 : fin rc_len → fin 8 → fin rc16_len} -- this comes from range check constraints variable h_rc16_val : ∀ i : fin rc16_len, ∃ k : ℕ, k < 2^16 ∧ rc16_val i = ↑k -- these are the range check builtin constraints variable h_rc_init_addr : ∀ h : 0 < rc_len, rc_addr ⟨0, h⟩ = initial_rc_addr variable h_rc_addr_step : ∀ i : ℕ, ∀ h : i.succ < rc_len, rc_addr ⟨i.succ, h⟩ = rc_addr ⟨i, (nat.lt_succ_self _).trans h⟩ + 1 variable h_rc_value : ∀ i : fin rc_len, rc_val i = (((((((rc16_val (rc_to_rc16 i 0)) * 2^16 + rc16_val (rc_to_rc16 i 1)) * 2^16 + rc16_val (rc_to_rc16 i 2)) * 2^16 + rc16_val (rc_to_rc16 i 3)) * 2^16 + rc16_val (rc_to_rc16 i 4)) * 2^16 + rc16_val (rc_to_rc16 i 5)) * 2^16 + rc16_val (rc_to_rc16 i 6)) * 2^16 + rc16_val (rc_to_rc16 i 7) section include h_rc_init_addr h_rc_addr_step theorem rc_addr_eq (i : fin rc_len) : rc_addr i = initial_rc_addr + i := begin cases i with i h, induction i with i ih, { simp [h_rc_init_addr] }, rw [h_rc_addr_step i h, ih ((nat.lt_succ_self _).trans h), add_assoc], simp end end section include h_rc16_val h_rc_value theorem rc_val_checked (i : fin rc_len) : ∃ k : ℕ, k < 2^128 ∧ rc_val i = ↑k := have rc_val_aux : ∀ {n : ℕ} (h : n < 2^16), n ≤ 2^16-1 := begin intros n h, apply nat.le_of_succ_le_succ, apply le_trans (nat.succ_le_of_lt h), norm_num end, begin rw [h_rc_value], rcases h_rc16_val (rc_to_rc16 i 0) with ⟨k0, k0_lt, k0eq⟩, rw k0eq, rcases h_rc16_val (rc_to_rc16 i 1) with ⟨k1, k1_lt, k1eq⟩, rw k1eq, rcases h_rc16_val (rc_to_rc16 i 2) with ⟨k2, k2_lt, k2eq⟩, rw k2eq, rcases h_rc16_val (rc_to_rc16 i 3) with ⟨k3, k3_lt, k3eq⟩, rw k3eq, rcases h_rc16_val (rc_to_rc16 i 4) with ⟨k4, k4_lt, k4eq⟩, rw k4eq, rcases h_rc16_val (rc_to_rc16 i 5) with ⟨k5, k5_lt, k5eq⟩, rw k5eq, rcases h_rc16_val (rc_to_rc16 i 6) with ⟨k6, k6_lt, k6eq⟩, rw k6eq, rcases h_rc16_val (rc_to_rc16 i 7) with ⟨k7, k7_lt, k7eq⟩, rw k7eq, norm_cast, refine ⟨_, _, rfl⟩, have : ((((((((2^16 - 1) * 2^16 + (2^16 - 1)) * 2^16 + (2^16 - 1)) * 2^16 + (2^16 - 1)) * 2^16 + (2^16 - 1)) * 2^16 + (2^16 - 1)) * 2^16 + (2^16 - 1)) * 2^16 + (2^16 - 1)) < 2^128, by norm_num, apply lt_of_le_of_lt _ this, apply add_le_add _ (rc_val_aux k7_lt), apply nat.mul_le_mul_right, apply add_le_add _ (rc_val_aux k6_lt), apply nat.mul_le_mul_right, apply add_le_add _ (rc_val_aux k5_lt), apply nat.mul_le_mul_right, apply add_le_add _ (rc_val_aux k4_lt), apply nat.mul_le_mul_right, apply add_le_add _ (rc_val_aux k3_lt), apply nat.mul_le_mul_right, apply add_le_add _ (rc_val_aux k2_lt), apply nat.mul_le_mul_right, apply add_le_add _ (rc_val_aux k1_lt), apply nat.mul_le_mul_right, apply rc_val_aux k0_lt end end
fb505a475a72112fc901c1856f8dad9d17210618
8b9f17008684d796c8022dab552e42f0cb6fb347
/hott/algebra/groupoid.hlean
3cea3268a31d190194e0c6850e31dd346fb37e2d
[ "Apache-2.0" ]
permissive
chubbymaggie/lean
0d06ae25f9dd396306fb02190e89422ea94afd7b
d2c7b5c31928c98f545b16420d37842c43b4ae9a
refs/heads/master
1,611,313,622,901
1,430,266,839,000
1,430,267,083,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,054
hlean
/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.groupoid Author: Jakob von Raumer Ported from Coq HoTT -/ import .precategory.iso .group open eq is_trunc iso category path_algebra nat unit namespace category structure groupoid [class] (ob : Type) extends parent : precategory ob := (all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob parent a b f) abbreviation all_iso := @groupoid.all_iso attribute groupoid.all_iso [instance] [priority 100000] definition groupoid.mk' [reducible] (ob : Type) (C : precategory ob) (H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob := precategory.rec_on C groupoid.mk H definition groupoid_of_1_type.{l} (A : Type.{l}) [H : is_trunc 1 A] : groupoid.{l l} A := groupoid.mk (λ (a b : A), a = b) (λ (a b : A), have ish : is_hset (a = b), from is_trunc_eq nat.zero a b, ish) (λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p) (λ (a : A), refl a) (λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p) (λ (a b : A) (p : a = b), con_idp p) (λ (a b : A) (p : a = b), idp_con p) (λ (a b : A) (p : a = b), @is_iso.mk A _ a b p p⁻¹ !con.right_inv !con.left_inv) -- A groupoid with a contractible carrier is a group definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob] [G : groupoid ob] : group (hom (center ob) (center ob)) := begin fapply group.mk, intros [f, g], apply (comp f g), apply homH, intros [f, g, h], apply (assoc f g h)⁻¹, apply (ID (center ob)), intro f, apply id_left, intro f, apply id_right, intro f, exact (iso.inverse f), intro f, exact (iso.left_inverse f), end definition group_of_groupoid_unit [G : groupoid unit] : group (hom ⋆ ⋆) := begin fapply group.mk, intros [f, g], apply (comp f g), apply homH, intros [f, g, h], apply (assoc f g h)⁻¹, apply (ID ⋆), intro f, apply id_left, intro f, apply id_right, intro f, exact (iso.inverse f), intro f, exact (iso.left_inverse f), end -- Conversely we can turn each group into a groupoid on the unit type definition groupoid_of_group.{l} (A : Type.{l}) [G : group A] : groupoid.{l l} unit := begin fapply groupoid.mk, intros, exact A, intros, apply (@group.carrier_hset A G), intros [a, b, c, g, h], exact (@group.mul A G g h), intro a, exact (@group.one A G), intros, exact (@group.mul_assoc A G h g f)⁻¹, intros, exact (@group.one_mul A G f), intros, exact (@group.mul_one A G f), intros, apply is_iso.mk, apply mul_left_inv, apply mul_right_inv, end protected definition hom_group {A : Type} [G : groupoid A] (a : A) : group (hom a a) := begin fapply group.mk, intros [f, g], apply (comp f g), apply homH, intros [f, g, h], apply (assoc f g h)⁻¹, apply (ID a), intro f, apply id_left, intro f, apply id_right, intro f, exact (iso.inverse f), intro f, exact (iso.left_inverse f), end -- Bundled version of categories -- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C) structure Groupoid : Type := (carrier : Type) (struct : groupoid carrier) attribute Groupoid.struct [instance] [coercion] -- definition objects [reducible] := Category.objects -- definition category_instance [instance] [coercion] [reducible] := Category.category_instance definition Groupoid.to_Precategory [coercion] [reducible] (C : Groupoid) : Precategory := Precategory.mk (Groupoid.carrier C) C definition groupoid.Mk [reducible] := Groupoid.mk definition groupoid.MK [reducible] (C : Precategory) (H : Π (a b : C) (f : a ⟶ b), is_iso f) : Groupoid := Groupoid.mk C (groupoid.mk' C C H) definition Groupoid.eta (C : Groupoid) : Groupoid.mk C C = C := Groupoid.rec (λob c, idp) C end category
ce5ccbd54bbf85b0f88a05dd927888e4881bd602
4aca55eba10c989f0d58647d3c2f371e7da44355
/src/monoid_hom.lean
af3acfe5d145ad455241a7d0909ddda32b9f4fa0
[]
no_license
eric-wieser/l534zhan-my_project
f9fc75fb5454405e1a2fa9b56cf96c355f6f2336
febc91e76b7b00fe2517f258ca04d27b7f35fcf3
refs/heads/master
1,689,218,910,420
1,630,439,440,000
1,630,439,440,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
881
lean
import group_theory.subgroup /-! This file supplements two instances relavant to monoid homomorphisms -/ namespace monoid_hom variables {G N: Type*} [group G] [group N] /-- If the equality in `N` is decidable and `f : G →* N` is a `monoid_hom`, then the membership of `f.ker.carrier` is decidable. -/ instance [decidable_eq N] (f : G →* N) (x : G) : decidable (x ∈ f.ker.carrier) := f.decidable_mem_ker x /-- If `G` is a finite type, and the equality in `N` is decidable, and `f : G →* N` is a `monoid_hom`, then `f.ker.carrier` is a finite type. -/ instance [fintype G] [decidable_eq N] (f : G →* N) : fintype (f.ker.carrier) := set_fintype (f.ker.carrier) /- lemma fintype_card_ker_eq_card_ker_carrier [fintype G] [decidable_eq N] (f : G →* N) : fintype.card f.ker = fintype.card f.ker.carrier := by refl -/ end monoid_hom
521bc0c0b8351ff25859b335172463d858d8dbdb
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/interactive/stdOutput.lean
856a63b5898e8b51ca3a2920e0bba2a5715b3375
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
68
lean
import Lean elab "foo" : command => IO.println "hi" #eval "ho" foo
99271a2f65996e908398d9667e208f009fff75c7
4e3bf8e2b29061457a887ac8889e88fa5aa0e34c
/lean/love08_operational_semantics_exercise_sheet.lean
ba379880c7cd07f53b38143f20742dd3ecb36441
[]
no_license
mukeshtiwari/logical_verification_2019
9f964c067a71f65eb8884743273fbeef99e6503d
16f62717f55ed5b7b87e03ae0134791a9bef9b9a
refs/heads/master
1,619,158,844,208
1,585,139,500,000
1,585,139,500,000
249,906,380
0
0
null
1,585,118,728,000
1,585,118,727,000
null
UTF-8
Lean
false
false
5,000
lean
/- LoVe Exercise 8: Operational Semantics -/ import .love08_operational_semantics_demo namespace LoVe /- Question 1: Program Equivalence -/ /- For this question, we introduce the notation of program equivalence `p₁ ≈ p₂`. -/ def program_equiv (S₁ S₂ : program) : Prop := ∀s t, (S₁, s) ⟹ t ↔ (S₂, s) ⟹ t local infix ` ≈ ` := program_equiv /- Program equivalence is a equivalence relation, i.e., it is reflexive, symmetric, and transitive. -/ @[refl] lemma program_equiv.refl {S} : S ≈ S := assume s t, show (S, s) ⟹ t ↔ (S, s) ⟹ t, by refl @[symm] lemma program_equiv.symm {S₁ S₂}: S₁ ≈ S₂ → S₂ ≈ S₁ := assume h s t, show (S₂, s) ⟹ t ↔ (S₁, s) ⟹ t, from iff.symm (h s t) @[trans] lemma program_equiv.trans {S₁ S₂ S₃} (h₁₂ : S₁ ≈ S₂) (h₂₃ : S₂ ≈ S₃) : S₁ ≈ S₃ := assume s t, show (S₁, s) ⟹ t ↔ (S₃, s) ⟹ t, from iff.trans (h₁₂ s t) (h₂₃ s t) /- 1.1. Prove the following program equivalences. -/ lemma program_equiv.seq_skip_left {S} : skip ;; S ≈ S := sorry lemma program_equiv.seq_skip_right {S} : S ;; skip ≈ S := sorry lemma program_equiv.seq_congr {S₁ S₂ T₁ T₂} (hS : S₁ ≈ S₂) (hT : T₁ ≈ T₂) : S₁ ;; T₁ ≈ S₂ ;; T₂ := sorry lemma program_equiv.ite_seq_while {b S} : ite b (S ;; while b S) skip ≈ while b S := sorry /- 1.2. Prove one more equivalence. -/ lemma program_equiv.skip_assign_id {x} : assign x (λs, s x) ≈ skip := sorry /- Question 2: Guarded Command Language (GCL) -/ /- In 1976, E. W. Dijkstra introduced the guarded command language, a minimalistic imperative language with built-in nondeterminism. A grammar for one of its variants is given below: S ::= x := e -- assignment | assert b -- assertion | S ; S -- sequential composition | S | ⋯ | S -- nondeterministic choice | loop S -- nondeterministic iteration Assignment and sequential composition are as in the WHILE language. The other statements have the following semantics: * `assert b` aborts if `b` evaluates to false; otherwise, the command is a no-op. * `S | ⋯ | S` chooses **any** of the branches and executes it, ignoring the other branches. * `loop S` executes `S` **any** number of times. In Lean, GCL is captured by the following inductive type: -/ inductive gcl (σ : Type) : Type | assign : string → (σ → ℕ) → gcl | assert : (σ → Prop) → gcl | seq : gcl → gcl → gcl | choice : list gcl → gcl | loop : gcl → gcl infixr ` ;; `:90 := gcl.seq namespace gcl /- The parameter `σ` abstracts over the state type. It is necessary to work around a bug in Lean. The big-step semantics is defined as follows: -/ inductive big_step : (gcl state × state) → state → Prop | assign {x a s} : big_step (assign x a, s) (s{x ↦ a s}) | assert {b : state → Prop} {s} (hcond : b s) : big_step (assert b, s) s | seq {S T s t u} (h₁ : big_step (S, s) t) (h₂ : big_step (T, t) u) : big_step (S ;; T, s) u | choice {Ss : list (gcl state)} {s t} (i : ℕ) (hless : i < list.length Ss) (hbody : big_step (list.nth_le Ss i hless, s) t) : big_step (choice Ss, s) t | loop_base {S s} : big_step (loop S, s) s | loop_step {S s u} (t) (hbody : big_step (S, s) t) (hrest : big_step (loop S, t) u) : big_step (loop S, s) u /- Convenience syntax: -/ infix ` ~~> `:110 := big_step /- 2.1. Prove the following inversion rules, as we did in the lecture for the WHILE language. -/ @[simp] lemma big_step_assign_iff {x a s t} : (assign x a, s) ~~> t ↔ t = s{x ↦ a s} := sorry @[simp] lemma big_step_assert {b s t} : (assert b, s) ~~> t ↔ t = s ∧ b s := sorry @[simp] lemma big_step_seq_iff {S₁ S₂ s t} : (S₁ ;; S₂, s) ~~> t ↔ (∃u, (S₁, s) ~~> u ∧ (S₂, u) ~~> t) := sorry lemma big_step_loop {S s u} : (loop S, s) ~~> u ↔ (s = u ∨ (∃t, (S, s) ~~> t ∧ (loop S, t) ~~> u)) := sorry @[simp] lemma big_step_choice {Ss s t} : (choice Ss, s) ~~> t ↔ (∃(i : ℕ) (hless : i < list.length Ss), (list.nth_le Ss i hless, s) ~~> t) := sorry /- 2.2. Complete the translation below of a deterministic program to a GCL program, by filling in the `sorry` placeholders below. -/ def of_program : program → gcl state | program.skip := assert (λ_, true) | (program.assign x f) := sorry | (program.seq S₁ S₂) := sorry | (program.ite b S₁ S₂) := choice [seq (assert b) (of_program S₁), seq (assert (λs, ¬ b s)) (of_program S₂)] | (program.while b S) := seq (loop (seq (assert b) (of_program S))) (assert (λs, ¬ b s)) /- 2.3. In the definition of `of_program` above, `skip` is translated to `assert (λ_, true)`. Looking at the big-step semantics of both constructs, we can convince ourselves that it makes sense. Can you think of other correct ways to define the `skip` case? -/ -- enter your answer here end gcl end LoVe
f489b62338220faa067a2849da7c57877d1ee58b
da3a76c514d38801bae19e8a9e496dc31f8e5866
/library/init/meta/quote.lean
73ddb72439dfa1342e782a4f5c8d3795c88415d8
[ "Apache-2.0" ]
permissive
cipher1024/lean
270c1ac5781e6aee12f5c8d720d267563a164beb
f5cbdff8932dd30c6dd8eec68f3059393b4f8b3a
refs/heads/master
1,611,223,459,029
1,487,566,573,000
1,487,566,573,000
83,356,543
0
0
null
1,488,229,336,000
1,488,229,336,000
null
UTF-8
Lean
false
false
2,020
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich -/ prelude import init.meta.tactic open tactic meta class has_quote (α : Type) := (quote : α → pexpr) @[inline] meta def quote {α : Type} [has_quote α] : α → pexpr := has_quote.quote meta instance : has_quote nat := ⟨pexpr.mk_prenum_macro⟩ @[priority std.priority.default + 1] meta instance : has_quote string := ⟨pexpr.mk_string_macro⟩ meta instance : has_quote pexpr := ⟨pexpr.mk_quote_macro⟩ meta instance : has_quote char := ⟨λ ⟨n, pr⟩, ``(char.of_nat %%(quote n))⟩ meta instance : has_quote unsigned := ⟨λ ⟨n, pr⟩, ``(unsigned.of_nat %%(quote n))⟩ meta def name.quote : name → pexpr | name.anonymous := ``(name.anonymous) | (name.mk_string s n) := ``(name.mk_string %%(quote s) %%(name.quote n)) | (name.mk_numeral i n) := ``(name.mk_numeral %%(quote i) %%(name.quote n)) meta instance : has_quote name := ⟨name.quote⟩ private meta def list.quote {α : Type} [has_quote α] : list α → pexpr | [] := ``([]) | (h::t) := ``(%%(quote h) :: %%(list.quote t)) meta instance {α : Type} [has_quote α] : has_quote (list α) := ⟨list.quote⟩ meta instance {α : Type} [has_quote α] : has_quote (option α) := ⟨λ opt, match opt with | some x := ``(option.some %%(quote x)) | none := ``(option.none) end⟩ meta instance : has_quote unit := ⟨λ _, ``(unit.star)⟩ meta instance {α β : Type} [has_quote α] [has_quote β] : has_quote (α × β) := ⟨λ ⟨x, y⟩, ``((%%(quote x), %%(quote y)))⟩ meta def nat.to_expr : nat → tactic expr := λ n, to_expr $ quote n meta def char.to_expr : char → tactic expr := λ n, to_expr $ quote n meta def unsigned.to_expr : unsigned → tactic expr := λ n, to_expr $ quote n meta def name.to_expr : name → tactic expr := λ n, to_expr $ quote n meta def list_name.to_expr : list name → tactic expr := λ n, to_expr $ quote n
c35dc4935e81877962cc19666ed8be83636bc140
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/tactic/omega/nat/preterm.lean
0a052e624ddecb11738543484257c36897baccee
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
2,624
lean
/- Copyright (c) 2019 Seul Baek. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Seul Baek -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.tactic.omega.term import Mathlib.PostPort universes l namespace Mathlib /- Linear natural number arithmetic terms in pre-normalized form. -/ namespace omega namespace nat /-- The shadow syntax for arithmetic terms. All constants are reified to `cst` (e.g., `5` is reified to `cst 5`) and all other atomic terms are reified to `exp` (e.g., `5 * (list.length l)` is reified to `exp 5 \`(list.length l)`). `exp` accepts a coefficient of type `nat` as its first argument because multiplication by constant is allowed by the omega test. -/ /-- Similar to `exprterm`, except that all exprs are now replaced with de Brujin indices of type `nat`. This is akin to generalizing over the terms represented by the said exprs. -/ inductive preterm where | cst : ℕ → preterm | var : ℕ → ℕ → preterm | add : preterm → preterm → preterm | sub : preterm → preterm → preterm namespace preterm /-- Helper tactic for proof by induction over preterms -/ /-- Preterm evaluation -/ def val (v : ℕ → ℕ) : preterm → ℕ := sorry @[simp] theorem val_const {v : ℕ → ℕ} {m : ℕ} : val v (cst m) = m := rfl @[simp] theorem val_var {v : ℕ → ℕ} {m : ℕ} {n : ℕ} : val v (var m n) = m * v n := sorry @[simp] theorem val_add {v : ℕ → ℕ} {t : preterm} {s : preterm} : val v (add t s) = val v t + val v s := rfl @[simp] theorem val_sub {v : ℕ → ℕ} {t : preterm} {s : preterm} : val v (sub t s) = val v t - val v s := rfl /-- Fresh de Brujin index not used by any variable in argument -/ def fresh_index : preterm → ℕ := sorry /-- If variable assignments `v` and `w` agree on all variables that occur in term `t`, the value of `t` under `v` and `w` are identical. -/ theorem val_constant (v : ℕ → ℕ) (w : ℕ → ℕ) (t : preterm) : (∀ (x : ℕ), x < fresh_index t → v x = w x) → val v t = val w t := sorry def repr : preterm → string := sorry @[simp] def add_one (t : preterm) : preterm := add t (cst 1) /-- Preterm is free of subtractions -/ def sub_free : preterm → Prop := sorry end preterm /-- Return a term (which is in canonical form by definition) that is equivalent to the input preterm -/ @[simp] def canonize : preterm → term := sorry @[simp] theorem val_canonize {v : ℕ → ℕ} {t : preterm} : preterm.sub_free t → term.val (fun (x : ℕ) => ↑(v x)) (canonize t) = ↑(preterm.val v t) := sorry
9899e301c882a512cafbf7c281aa7c3895be17f3
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
/03_Propositions_and_Proofs.org.38.lean
7e141cfca7f290dc2ccb30ed26e9616a2f5f1c3a
[]
no_license
cjmazey/lean-tutorial
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
refs/heads/master
1,610,286,098,832
1,447,124,923,000
1,447,124,923,000
43,082,433
0
0
null
null
null
null
UTF-8
Lean
false
false
949
lean
/- page 45 -/ import standard open classical variables p q r : Prop -- distributivity example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := iff.intro (assume H : p ∧ (q ∨ r), have Hp : p, from and.left H, or.elim (and.right H) (assume Hq : q, show (p ∧ q) ∨ (p ∧ r), from or.inl (and.intro Hp Hq)) (assume Hr : r, show (p ∧ q) ∨ (p ∧ r), from or.inr (and.intro Hp Hr))) (assume H : (p ∧ q) ∨ (p ∧ r), or.elim H (assume Hpq : p ∧ q, have Hp : p, from and.left Hpq, have Hq : q, from and.right Hpq, show p ∧ (q ∨ r), from and.intro Hp (or.inl Hq)) (assume Hpr : p ∧ r, have Hp : p, from and.left Hpr, have Hr : r, from and.right Hpr, show p ∧ (q ∨ r), from and.intro Hp (or.inr Hr))) -- an example that requires classical reasoning example : ¬(p ∧ ¬q) → (p → q) := assume H : ¬(p ∧ ¬q), assume Hp : p, show q, from or.elim (em q) (assume Hq : q, Hq) (assume Hnq : ¬q, absurd (and.intro Hp Hnq) H)
22259269307d8bd8e4932aa1689097aafe6c7151
5c7fe6c4a9d4079b5457ffa5f061797d42a1cd65
/src/library/src_real_field_lemmas.lean
c5c9b7fb74eb10f36072b69b4c39ad9b53688c0a
[]
no_license
gihanmarasingha/mth1001_tutorial
8e0817feeb96e7c1bb3bac49b63e3c9a3a329061
bb277eebd5013766e1418365b91416b406275130
refs/heads/master
1,675,008,746,310
1,607,993,443,000
1,607,993,443,000
321,511,270
3
0
null
null
null
null
UTF-8
Lean
false
false
4,593
lean
import .src_real_field import .src_ordered_field_lemmas import data.set.basic import tactic namespace mth1001 namespace myreal open myreal_field myordered_field classical open_locale classical variables {R : Type} [myreal_field R] def has_upper_bound (S : set R) := ∃ u : R, upper_bound u S def has_lower_bound (S : set R) := ∃ v : R, lower_bound v S lemma sup_is_sup {S : set R} (h₁ : has_upper_bound S) (h₂ : S ≠ ∅) : is_sup (sup S) S := begin have h₃ : ∃ x : R, is_sup x S, from completeness h₂ h₁, have h₄ : sup S = some h₃, from dif_pos h₃, rw h₄, exact some_spec h₃, end theorem sup_monotone (S T : set R) (h₁ : has_upper_bound S) (h₂ : has_upper_bound T) (h₃ : S ≠ ∅) (h₄ : T ≠ ∅) : S ⊆ T → sup S ≤ sup T := begin have h₅ : ∀ (v : R), upper_bound v S → sup S ≤ v, from (sup_is_sup h₁ h₃).right, have h₆ : upper_bound (sup T) T, from (sup_is_sup h₂ h₄).left, intro k, apply h₅ (sup T), intros s hs, have ht : s ∈ T, from k hs, exact h₆ s ht, end theorem archimedean : ∀ x : R, ∃ n : ℕ, x < n := begin by_contra h, push_neg at h, cases h with x hx, let S := {m : R | ∃ n : ℕ, (m = n) ∧ (x ≥ n)}, have h₁ : ↑1 ∈ S, from ⟨1, ⟨rfl, hx 1⟩⟩, have h₂ : S ≠ ∅, { intro h, rw h at h₁, exact h₁, }, have h₃ : has_upper_bound S, from ⟨x, λ s ⟨n,hs,hn⟩, hs.symm ▸ hn⟩, have h₄ : is_sup (sup S) S, from sup_is_sup h₃ h₂, suffices k : upper_bound (sup S +- 1) S, { have k₂, from add_le_add (h₄.right (sup S + - 1) k) (le_refl (1 +- sup S)), have k₃ : sup S + (1 + -sup S) = 1, rw [add_comm 1 (-sup S), ←add_assoc, add_neg', zero_add], have k₄ : sup S +-1 + (1 + -sup S) = 0, { rw [add_assoc, ←add_assoc (-1) 1 (-sup S), neg_add, zero_add, add_neg'], }, rw [k₃, k₄, ←not_lt_iff_le] at k₂, apply k₂, rw [lt_iff_pos_neg, neg_zero, add_zero], exact pos_one, }, rintros _ ⟨m, rfl, xgem⟩, have h₆ : ↑(m + 1) ∈ S, from ⟨m+1, rfl, hx (m+1)⟩, convert (add_le_add (h₄.left (↑m + 1) h₆) (le_refl (-1))), rw [add_assoc,add_neg',add_zero], end theorem inv_lt_of_pos (ε : R) (h : 0 < ε) : ∃ n : ℕ, n ≠ 0 ∧ (↑n)⁻¹ < ε := begin cases archimedean ε⁻¹ with n hn, use n, have h₁ : ε ≠ 0, from ne_of_gt h, have h₂ : 0 < ε⁻¹, from (inv_pos h₁).mpr h, rw ←inv_inv' ε h₁ , have h₃ : (0 : R) < ↑n, from lt_trans h₂ hn, rw (inv_lt_inv h₃ h₂), split, { intro heq0, rw heq0 at h₃, exact lt_irrefl h₃, }, { exact hn, }, end lemma zero_of_non_neg_of_lt_pos (a : R) (h : 0 ≤ a) (h₂ : ∀ ε > 0, a < ε) : a = 0 := begin rw le_iff_lt_or_eq at h, cases h with hpos heq0, { rcases inv_lt_of_pos a hpos with ⟨n, hn0, hn⟩, have hnpos : pos (n : R), from pos_nat n hn0, have h₃ : (n : R) ≠ 0, { intro k, rw [k, ←add_neg' (0 : R), ←lt_iff_pos_neg] at hnpos, exact lt_irrefl hnpos, }, have hninvpos : (0 : R) < (n : R)⁻¹, { rwa [(inv_pos h₃), lt_iff_pos_sub, sub_zero], }, have h₄ : a < n⁻¹, from h₂ _ hninvpos, exfalso, exact lt_irrefl (lt_trans h₄ hn), }, { exact heq0.symm, } end theorem bounded_iff_abs_lt (S : set R) : bounded S ↔ ∃ m : ℕ, ∀ s ∈ S, abs s < ↑m := begin split, { rintro ⟨⟨ub, hub⟩, lb, hlb⟩, rcases archimedean (max (abs ub) (abs lb)) with ⟨n, hn⟩, use n, intros s hs, unfold abs, cases max_choice s (-s) with hms hmns, { rw hms, have h₂ : s ≤ ub, from hub s hs, have h₃ : ub ≤ abs ub, from le_abs_self ub, have h₄ : abs ub ≤ max (abs ub) (abs lb), from le_max_left _ _, apply lt_of_le_of_lt, { exact le_trans _ _ _ h₂ (le_trans _ _ _ h₃ h₄)}, { exact hn, }, }, { rw hmns, have h₂ : -s ≤ -lb, from neg_le_neg_iff.mpr (hlb s hs), have h₃ : -lb ≤ abs lb, from neg_le_abs lb, have h₄ : abs lb ≤ max (abs ub) (abs lb), from le_max_right _ _, apply lt_of_le_of_lt, { exact le_trans _ _ _ h₂ (le_trans _ _ _ h₃ h₄) }, { exact hn, }, }, }, { rintro ⟨m, hm⟩, split, { use m, intros s hs, apply le_trans, { exact le_abs_self s, }, { exact le_iff_lt_or_eq.mpr (or.inl (hm s hs)) }, }, { use (-m), intros s hs, rw [←neg_le_neg_iff, neg_neg], apply le_trans, { exact neg_le_abs s, }, { exact le_iff_lt_or_eq.mpr (or.inl (hm s hs)), }, }, }, end end myreal end mth1001
3c25c4459d4699842b9967a0420c5e6c3c6d16c5
3dd1b66af77106badae6edb1c4dea91a146ead30
/library/standard/decidable.lean
3546956ab24f8f6fb238e7ba3fd99239a179045a
[ "Apache-2.0" ]
permissive
silky/lean
79c20c15c93feef47bb659a2cc139b26f3614642
df8b88dca2f8da1a422cb618cd476ef5be730546
refs/heads/master
1,610,737,587,697
1,406,574,534,000
1,406,574,534,000
22,362,176
1
0
null
null
null
null
UTF-8
Lean
false
false
2,891
lean
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic namespace decidable inductive decidable (p : Prop) : Type := | inl : p → decidable p | inr : ¬p → decidable p theorem induction_on {p : Prop} {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C := decidable_rec H1 H2 H theorem em (p : Prop) (H : decidable p) : p ∨ ¬p := induction_on H (λ Hp, or_inl Hp) (λ Hnp, or_inr Hnp) definition rec_on [inline] {p : Prop} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C := decidable_rec H1 H2 H theorem irrelevant {p : Prop} (d1 d2 : decidable p) : d1 = d2 := decidable_rec (assume Hp1 : p, decidable_rec (assume Hp2 : p, congr2 inl (refl Hp1)) -- using proof irrelevance for Prop (assume Hnp2 : ¬p, absurd_elim (inl Hp1 = inr Hnp2) Hp1 Hnp2) d2) (assume Hnp1 : ¬p, decidable_rec (assume Hp2 : p, absurd_elim (inr Hnp1 = inl Hp2) Hp2 Hnp1) (assume Hnp2 : ¬p, congr2 inr (refl Hnp1)) -- using proof irrelevance for Prop d2) d1 theorem decidable_true [instance] : decidable true := inl trivial theorem decidable_false [instance] : decidable false := inr not_false_trivial theorem decidable_and [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∧ b) := rec_on Ha (assume Ha : a, rec_on Hb (assume Hb : b, inl (and_intro Ha Hb)) (assume Hnb : ¬b, inr (and_not_right a Hnb))) (assume Hna : ¬a, inr (and_not_left b Hna)) theorem decidable_or [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∨ b) := rec_on Ha (assume Ha : a, inl (or_inl Ha)) (assume Hna : ¬a, rec_on Hb (assume Hb : b, inl (or_inr Hb)) (assume Hnb : ¬b, inr (or_not_intro Hna Hnb))) theorem decidable_not [instance] {a : Prop} (Ha : decidable a) : decidable (¬a) := rec_on Ha (assume Ha, inr (not_not_intro Ha)) (assume Hna, inl Hna) theorem decidable_iff [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ↔ b) := rec_on Ha (assume Ha, rec_on Hb (assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha))) (assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff_mp_left H Ha) Hnb))) (assume Hna, rec_on Hb (assume Hb : b, inr (assume H : a ↔ b, absurd (iff_mp_right H Hb) Hna)) (assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb)))) theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b) := rec_on Ha (assume Ha : a, rec_on Hb (assume Hb : b, inl (assume H, Hb)) (assume Hnb : ¬b, inr (assume H : a → b, absurd (H Ha) Hnb))) (assume Hna : ¬a, inl (assume Ha, absurd_elim b Ha Hna))
5251c45e3af9bd812337c08fd6455fc3c3fd0691
618003631150032a5676f229d13a079ac875ff77
/src/tactic/tauto.lean
9b0274f472d6b595768985e4e441bcc214ee390d
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
9,702
lean
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import tactic.hint namespace tactic open expr open tactic.interactive ( casesm constructor_matching ) /-- find all assumptions of the shape `¬ (p ∧ q)` or `¬ (p ∨ q)` and replace them using de Morgan's law. -/ meta def distrib_not : tactic unit := do hs ← local_context, hs.for_each $ λ h, all_goals' $ iterate_at_most' 3 $ do h ← get_local h.local_pp_name, e ← infer_type h, match e with | `(¬ _ = _) := replace h.local_pp_name ``(mt iff.to_eq %%h) | `(_ ≠ _) := replace h.local_pp_name ``(mt iff.to_eq %%h) | `(_ = _) := replace h.local_pp_name ``(eq.to_iff %%h) | `(¬ (_ ∧ _)) := replace h.local_pp_name ``(not_and_distrib'.mp %%h) <|> replace h.local_pp_name ``(not_and_distrib.mp %%h) | `(¬ (_ ∨ _)) := replace h.local_pp_name ``(not_or_distrib.mp %%h) | `(¬ ¬ _) := replace h.local_pp_name ``(of_not_not %%h) | `(¬ (_ → (_ : Prop))) := replace h.local_pp_name ``(not_imp.mp %%h) | `(¬ (_ ↔ _)) := replace h.local_pp_name ``(not_iff.mp %%h) | `(_ ↔ _) := replace h.local_pp_name ``(iff_iff_and_or_not_and_not.mp %%h) <|> replace h.local_pp_name ``(iff_iff_and_or_not_and_not.mp (%%h).symm) <|> () <$ tactic.cases h | `(_ → _) := replace h.local_pp_name ``(not_or_of_imp %%h) | _ := failed end meta def tauto_state := ref $ expr_map (option (expr × expr)) meta def modify_ref {α : Type} (r : ref α) (f : α → α) := read_ref r >>= write_ref r ∘ f meta def add_refl (r : tauto_state) (e : expr) : tactic (expr × expr) := do m ← read_ref r, p ← mk_mapp `rfl [none,e], write_ref r $ m.insert e none, return (e,p) meta def add_symm_proof (r : tauto_state) (e : expr) : tactic (expr × expr) := do env ← get_env, let rel := e.get_app_fn.const_name, some symm ← pure $ environment.symm_for env rel | add_refl r e, (do e' ← mk_meta_var `(Prop), iff_t ← to_expr ``(%%e = %%e'), (_,p) ← solve_aux iff_t (applyc `iff.to_eq ; () <$ split ; applyc symm), e' ← instantiate_mvars e', m ← read_ref r, write_ref r $ (m.insert e (e',p)).insert e' none, return (e',p) ) <|> add_refl r e meta def add_edge (r : tauto_state) (x y p : expr) : tactic unit := modify_ref r $ λ m, m.insert x (y,p) meta def root (r : tauto_state) : expr → tactic (expr × expr) | e := do m ← read_ref r, let record_e : tactic (expr × expr) := match e with | v@(expr.mvar _ _ _) := (do (e,p) ← get_assignment v >>= root, add_edge r v e p, return (e,p)) <|> add_refl r e | _ := add_refl r e end, some e' ← pure $ m.find e | record_e, match e' with | (some (e',p')) := do (e'',p'') ← root e', p'' ← mk_app `eq.trans [p',p''], add_edge r e e'' p'', pure (e'',p'') | none := prod.mk e <$> mk_mapp `rfl [none,some e] end meta def symm_eq (r : tauto_state) : expr → expr → tactic expr | a b := do m ← read_ref r, (a',pa) ← root r a, (b',pb) ← root r b, (unify a' b' >> add_refl r a' *> mk_mapp `rfl [none,a]) <|> do p ← match (a', b') with | (`(¬ %%a₀), `(¬ %%b₀)) := do p ← symm_eq a₀ b₀, p' ← mk_app `congr_arg [`(not),p], add_edge r a' b' p', return p' | (`(%%a₀ ∧ %%a₁), `(%%b₀ ∧ %%b₁)) := do p₀ ← symm_eq a₀ b₀, p₁ ← symm_eq a₁ b₁, p' ← to_expr ``(congr (congr_arg and %%p₀) %%p₁), add_edge r a' b' p', return p' | (`(%%a₀ ∨ %%a₁), `(%%b₀ ∨ %%b₁)) := do p₀ ← symm_eq a₀ b₀, p₁ ← symm_eq a₁ b₁, p' ← to_expr ``(congr (congr_arg or %%p₀) %%p₁), add_edge r a' b' p', return p' | (`(%%a₀ ↔ %%a₁), `(%%b₀ ↔ %%b₁)) := (do p₀ ← symm_eq a₀ b₀, p₁ ← symm_eq a₁ b₁, p' ← to_expr ``(congr (congr_arg iff %%p₀) %%p₁), add_edge r a' b' p', return p') <|> do p₀ ← symm_eq a₀ b₁, p₁ ← symm_eq a₁ b₀, p' ← to_expr ``(eq.trans (congr (congr_arg iff %%p₀) %%p₁) (iff.to_eq iff.comm ) ), add_edge r a' b' p', return p' | (`(%%a₀ → %%a₁), `(%%b₀ → %%b₁)) := if ¬ a₁.has_var ∧ ¬ b₁.has_var then do p₀ ← symm_eq a₀ b₀, p₁ ← symm_eq a₁ b₁, p' ← mk_app `congr_arg [`(implies),p₀,p₁], add_edge r a' b' p', return p' else unify a' b' >> add_refl r a' *> mk_mapp `rfl [none,a] | (_, _) := (do guard $ a'.get_app_fn.is_constant ∧ a'.get_app_fn.const_name = b'.get_app_fn.const_name, (a'',pa') ← add_symm_proof r a', guard $ a'' =ₐ b', pure pa' ) end, p' ← mk_eq_trans pa p, add_edge r a' b' p', mk_eq_symm pb >>= mk_eq_trans p' meta def find_eq_type (r : tauto_state) : expr → list expr → tactic (expr × expr) | e [] := failed | e (H :: Hs) := do t ← infer_type H, t' ← infer_type e, (prod.mk H <$> symm_eq r e t) <|> find_eq_type e Hs private meta def contra_p_not_p (r : tauto_state) : list expr → list expr → tactic unit | [] Hs := failed | (H1 :: Rs) Hs := do t ← (extract_opt_auto_param <$> infer_type H1) >>= whnf, (do a ← match_not t, (H2,p) ← find_eq_type r a Hs, H2 ← to_expr ``( (%%p).mpr %%H2 ), tgt ← target, pr ← mk_app `absurd [tgt, H2, H1], tactic.exact pr) <|> contra_p_not_p Rs Hs meta def contradiction_with (r : tauto_state) : tactic unit := contradiction <|> do tactic.try intro1, ctx ← local_context, contra_p_not_p r ctx ctx meta def contradiction_symm := using_new_ref (native.rb_map.mk _ _) contradiction_with meta def assumption_with (r : tauto_state) : tactic unit := do { ctx ← local_context, t ← target, (H,p) ← find_eq_type r t ctx, mk_eq_mpr p H >>= tactic.exact } <|> fail "assumption tactic failed" meta def assumption_symm := using_new_ref (native.rb_map.mk _ _) assumption_with meta def tautology (c : bool := ff) : tactic unit := do when c classical, using_new_ref (expr_map.mk _) $ λ r, do try (contradiction_with r); try (assumption_with r); repeat (do gs ← get_goals, repeat (() <$ tactic.intro1); distrib_not; casesm (some ()) [``(_ ∧ _),``(_ ∨ _),``(Exists _),``(false)]; try (contradiction_with r); try (target >>= match_or >> refine ``( or_iff_not_imp_left.mpr _)); try (target >>= match_or >> refine ``( or_iff_not_imp_right.mpr _)); repeat (() <$ tactic.intro1); constructor_matching (some ()) [``(_ ∧ _),``(_ ↔ _),``(true)]; try (assumption_with r), gs' ← get_goals, guard (gs ≠ gs') ) ; repeat (reflexivity <|> solve_by_elim <|> constructor_matching none [``(_ ∧ _),``(_ ↔ _),``(Exists _),``(true)] ) ; done open interactive lean.parser namespace interactive local postfix `?`:9001 := optional /-- `tautology` breaks down assumptions of the form `_ ∧ _`, `_ ∨ _`, `_ ↔ _` and `∃ _, _` and splits a goal of the form `_ ∧ _`, `_ ↔ _` or `∃ _, _` until it can be discharged using `reflexivity` or `solve_by_elim`. This is a finishing tactic: it either closes the goal or raises an error. The variant `tautology!` uses the law of excluded middle. -/ meta def tautology (c : parse $ (tk "!")?) := tactic.tautology c.is_some -- Now define a shorter name for the tactic `tautology`. /-- `tauto` breaks down assumptions of the form `_ ∧ _`, `_ ∨ _`, `_ ↔ _` and `∃ _, _` and splits a goal of the form `_ ∧ _`, `_ ↔ _` or `∃ _, _` until it can be discharged using `reflexivity` or `solve_by_elim`. This is a finishing tactic: it either closes the goal or raises an error. The variant `tauto!` uses the law of excluded middle. -/ meta def tauto (c : parse $ (tk "!")?) := tautology c add_hint_tactic "tauto" /-- This tactic (with shorthand `tauto`) breaks down assumptions of the form `_ ∧ _`, `_ ∨ _`, `_ ↔ _` and `∃ _, _` and splits a goal of the form `_ ∧ _`, `_ ↔ _` or `∃ _, _` until it can be discharged using `reflexivity` or `solve_by_elim`. This is a finishing tactic: it either closes the goal or raises an error. The variants `tautology!` and `tauto!` use the law of excluded middle. For instance, one can write: ```lean example (p q r : Prop) [decidable p] [decidable r] : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (r ∨ p ∨ r) := by tauto ``` and the decidability assumptions can be dropped if `tauto!` is used instead of `tauto`. -/ add_tactic_doc { name := "tautology", category := doc_category.tactic, decl_names := [`tactic.interactive.tautology, `tactic.interactive.tauto], tags := ["logic", "decision procedure"] } end interactive end tactic
63bad01ae7364d2309af48f97c56c86385888bd3
2c41ae31b2b771ad5646ad880201393f5269a7f0
/Lean/Qualities/Speed.lean
49390551268609295b3809f3a4597d3bd0b738c6
[]
no_license
kevinsullivan/Boehm
926f25bc6f1a8b6bd47d333d936fdfc278228312
55208395bff20d48a598b7fa33a4d55a2447a9cf
refs/heads/master
1,586,127,134,302
1,488,252,326,000
1,488,252,326,000
32,836,930
0
0
null
null
null
null
UTF-8
Lean
false
false
538
lean
-- Speed /- [Speed] is parameterized by an instance of type [SystemType], and it's a sub-attribute to [MissionEffective]. -/ import SystemModel.System inductive Speed (sys_type: SystemType): Prop | intro : (exists speed: sys_type ^.Contexts -> sys_type ^.Phases -> sys_type ^.Stakeholders -> @SystemInstance sys_type -> Prop, forall c: sys_type ^.Contexts, forall p: sys_type ^.Phases, forall s: sys_type ^.Stakeholders, forall st: @SystemInstance sys_type, speed c p s st) -> Speed
c1e2255e86fe0fc977dfb3a895168ba43517e5ca
7cef822f3b952965621309e88eadf618da0c8ae9
/src/data/set/intervals/basic.lean
50b06d79a57e5f3d96daa97dde640391c0af7bc2
[ "Apache-2.0" ]
permissive
rmitta/mathlib
8d90aee30b4db2b013e01f62c33f297d7e64a43d
883d974b608845bad30ae19e27e33c285200bf84
refs/heads/master
1,585,776,832,544
1,576,874,096,000
1,576,874,096,000
153,663,165
0
2
Apache-2.0
1,544,806,490,000
1,539,884,365,000
Lean
UTF-8
Lean
false
false
20,743
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import order.lattice algebra.order_functions algebra.ordered_field tactic.tauto /-! # Intervals In any preorder `α`, we define intervals (which on each side can be either infinite, open, or closed) using the following naming conventions: - `i`: infinite - `o`: open - `c`: closed Each interval has the name `I` + letter for left side + letter for right side. For instance, `Ioc a b` denotes the inverval `(a, b]`. This file contains these definitions, and basic facts on inclusion, intersection, difference of intervals (where the precise statements may depend on the properties of the order, in particular for some statements it should be `linear_order` or `densely_ordered`). This file also contains statements on lower and upper bounds of intervals. TODO: This is just the beginning; a lot of rules are missing -/ universe u namespace set open set section intervals variables {α : Type u} [preorder α] {a a₁ a₂ b b₁ b₂ x : α} /-- Left-open right-open interval -/ def Ioo (a b : α) := {x | a < x ∧ x < b} /-- Left-closed right-open interval -/ def Ico (a b : α) := {x | a ≤ x ∧ x < b} /-- Left-infinite right-open interval -/ def Iio (a : α) := {x | x < a} /-- Left-closed right-closed interval -/ def Icc (a b : α) := {x | a ≤ x ∧ x ≤ b} /-- Left-infinite right-closed interval -/ def Iic (b : α) := {x | x ≤ b} /-- Left-open right-closed interval -/ def Ioc (a b : α) := {x | a < x ∧ x ≤ b} /-- Left-closed right-infinite interval -/ def Ici (a : α) := {x | a ≤ x} /-- Left-open right-infinite interval -/ def Ioi (a : α) := {x | a < x} @[simp] lemma mem_Ioo : x ∈ Ioo a b ↔ a < x ∧ x < b := iff.rfl @[simp] lemma mem_Ico : x ∈ Ico a b ↔ a ≤ x ∧ x < b := iff.rfl @[simp] lemma mem_Iio : x ∈ Iio b ↔ x < b := iff.rfl @[simp] lemma mem_Icc : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b := iff.rfl @[simp] lemma mem_Iic : x ∈ Iic b ↔ x ≤ b := iff.rfl @[simp] lemma mem_Ioc : x ∈ Ioc a b ↔ a < x ∧ x ≤ b := iff.rfl @[simp] lemma mem_Ici : x ∈ Ici a ↔ a ≤ x := iff.rfl @[simp] lemma mem_Ioi : x ∈ Ioi a ↔ a < x := iff.rfl @[simp] lemma left_mem_Ioo : a ∈ Ioo a b ↔ false := by simp [lt_irrefl] @[simp] lemma left_mem_Ico : a ∈ Ico a b ↔ a < b := by simp [le_refl] @[simp] lemma left_mem_Icc : a ∈ Icc a b ↔ a ≤ b := by simp [le_refl] @[simp] lemma left_mem_Ioc : a ∈ Ioc a b ↔ false := by simp [lt_irrefl] lemma left_mem_Ici : a ∈ Ici a := by simp @[simp] lemma right_mem_Ioo : b ∈ Ioo a b ↔ false := by simp [lt_irrefl] @[simp] lemma right_mem_Ico : b ∈ Ico a b ↔ false := by simp [lt_irrefl] @[simp] lemma right_mem_Icc : b ∈ Icc a b ↔ a ≤ b := by simp [le_refl] @[simp] lemma right_mem_Ioc : b ∈ Ioc a b ↔ a < b := by simp [le_refl] lemma right_mem_Iic : a ∈ Iic a := by simp @[simp] lemma dual_Ici : @Ici (order_dual α) _ a = @Iic α _ a := rfl @[simp] lemma dual_Iic : @Iic (order_dual α) _ a = @Ici α _ a := rfl @[simp] lemma dual_Ioi : @Ioi (order_dual α) _ a = @Iio α _ a := rfl @[simp] lemma dual_Iio : @Iio (order_dual α) _ a = @Ioi α _ a := rfl @[simp] lemma dual_Icc : @Icc (order_dual α) _ a b = @Icc α _ b a := set.ext $ λ x, and_comm _ _ @[simp] lemma dual_Ioc : @Ioc (order_dual α) _ a b = @Ico α _ b a := set.ext $ λ x, and_comm _ _ @[simp] lemma dual_Ico : @Ico (order_dual α) _ a b = @Ioc α _ b a := set.ext $ λ x, and_comm _ _ @[simp] lemma dual_Ioo : @Ioo (order_dual α) _ a b = @Ioo α _ b a := set.ext $ λ x, and_comm _ _ @[simp] lemma nonempty_Icc : (Icc a b).nonempty ↔ a ≤ b := ⟨λ ⟨x, hx⟩, le_trans hx.1 hx.2, λ h, ⟨a, left_mem_Icc.2 h⟩⟩ @[simp] lemma nonempty_Ico : (Ico a b).nonempty ↔ a < b := ⟨λ ⟨x, hx⟩, lt_of_le_of_lt hx.1 hx.2, λ h, ⟨a, left_mem_Ico.2 h⟩⟩ @[simp] lemma nonempty_Ioc : (Ioc a b).nonempty ↔ a < b := ⟨λ ⟨x, hx⟩, lt_of_lt_of_le hx.1 hx.2, λ h, ⟨b, right_mem_Ioc.2 h⟩⟩ lemma nonempty_Ici : (Ici a).nonempty := ⟨a, left_mem_Ici⟩ lemma nonempty_Iic : (Iic a).nonempty := ⟨a, right_mem_Iic⟩ @[simp] lemma Ioo_eq_empty (h : b ≤ a) : Ioo a b = ∅ := eq_empty_iff_forall_not_mem.2 $ λ x ⟨h₁, h₂⟩, not_le_of_lt (lt_trans h₁ h₂) h @[simp] lemma Ico_eq_empty (h : b ≤ a) : Ico a b = ∅ := eq_empty_iff_forall_not_mem.2 $ λ x ⟨h₁, h₂⟩, not_le_of_lt (lt_of_le_of_lt h₁ h₂) h @[simp] lemma Icc_eq_empty (h : b < a) : Icc a b = ∅ := eq_empty_iff_forall_not_mem.2 $ λ x ⟨h₁, h₂⟩, not_lt_of_le (le_trans h₁ h₂) h @[simp] lemma Ioc_eq_empty (h : b ≤ a) : Ioc a b = ∅ := eq_empty_iff_forall_not_mem.2 $ λ x ⟨h₁, h₂⟩, not_lt_of_le (le_trans h₂ h) h₁ @[simp] lemma Ioo_self (a : α) : Ioo a a = ∅ := Ioo_eq_empty $ le_refl _ @[simp] lemma Ico_self (a : α) : Ico a a = ∅ := Ico_eq_empty $ le_refl _ @[simp] lemma Ioc_self (a : α) : Ioc a a = ∅ := Ioc_eq_empty $ le_refl _ lemma Iio_ne_empty [no_bot_order α] (a : α) : Iio a ≠ ∅ := ne_empty_iff_exists_mem.2 (no_bot a) lemma Ioi_ne_empty [no_top_order α] (a : α) : Ioi a ≠ ∅ := ne_empty_iff_exists_mem.2 (no_top a) lemma Iic_ne_empty (b : α) : Iic b ≠ ∅ := ne_empty_iff_exists_mem.2 ⟨b, le_refl b⟩ lemma Ici_ne_empty (a : α) : Ici a ≠ ∅ := ne_empty_iff_exists_mem.2 ⟨a, le_refl a⟩ lemma Ici_subset_Ioi : Ici a ⊆ Ioi b ↔ b < a := ⟨λ h, h left_mem_Ici, λ h x hx, lt_of_lt_of_le h hx⟩ lemma Iic_subset_Iio : Iic a ⊆ Iio b ↔ a < b := ⟨λ h, h right_mem_Iic, λ h x hx, lt_of_le_of_lt hx h⟩ lemma Ioo_subset_Ioo (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) : Ioo a₁ b₁ ⊆ Ioo a₂ b₂ := λ x ⟨hx₁, hx₂⟩, ⟨lt_of_le_of_lt h₁ hx₁, lt_of_lt_of_le hx₂ h₂⟩ lemma Ioo_subset_Ioo_left (h : a₁ ≤ a₂) : Ioo a₂ b ⊆ Ioo a₁ b := Ioo_subset_Ioo h (le_refl _) lemma Ioo_subset_Ioo_right (h : b₁ ≤ b₂) : Ioo a b₁ ⊆ Ioo a b₂ := Ioo_subset_Ioo (le_refl _) h lemma Ico_subset_Ico (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) : Ico a₁ b₁ ⊆ Ico a₂ b₂ := λ x ⟨hx₁, hx₂⟩, ⟨le_trans h₁ hx₁, lt_of_lt_of_le hx₂ h₂⟩ lemma Ico_subset_Ico_left (h : a₁ ≤ a₂) : Ico a₂ b ⊆ Ico a₁ b := Ico_subset_Ico h (le_refl _) lemma Ico_subset_Ico_right (h : b₁ ≤ b₂) : Ico a b₁ ⊆ Ico a b₂ := Ico_subset_Ico (le_refl _) h lemma Icc_subset_Icc (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) : Icc a₁ b₁ ⊆ Icc a₂ b₂ := λ x ⟨hx₁, hx₂⟩, ⟨le_trans h₁ hx₁, le_trans hx₂ h₂⟩ lemma Icc_subset_Icc_left (h : a₁ ≤ a₂) : Icc a₂ b ⊆ Icc a₁ b := Icc_subset_Icc h (le_refl _) lemma Icc_subset_Icc_right (h : b₁ ≤ b₂) : Icc a b₁ ⊆ Icc a b₂ := Icc_subset_Icc (le_refl _) h lemma Ioc_subset_Ioc (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) : Ioc a₁ b₁ ⊆ Ioc a₂ b₂ := λ x ⟨hx₁, hx₂⟩, ⟨lt_of_le_of_lt h₁ hx₁, le_trans hx₂ h₂⟩ lemma Ioc_subset_Ioc_left (h : a₁ ≤ a₂) : Ioc a₂ b ⊆ Ioc a₁ b := Ioc_subset_Ioc h (le_refl _) lemma Ioc_subset_Ioc_right (h : b₁ ≤ b₂) : Ioc a b₁ ⊆ Ioc a b₂ := Ioc_subset_Ioc (le_refl _) h lemma Ico_subset_Ioo_left (h₁ : a₁ < a₂) : Ico a₂ b ⊆ Ioo a₁ b := λ x, and.imp_left $ lt_of_lt_of_le h₁ lemma Icc_subset_Ico_right (h₁ : b₁ < b₂) : Icc a b₁ ⊆ Ico a b₂ := λ x, and.imp_right $ λ h₂, lt_of_le_of_lt h₂ h₁ lemma Ioo_subset_Ico_self : Ioo a b ⊆ Ico a b := λ x, and.imp_left le_of_lt lemma Ioo_subset_Ioc_self : Ioo a b ⊆ Ioc a b := λ x, and.imp_right le_of_lt lemma Ico_subset_Icc_self : Ico a b ⊆ Icc a b := λ x, and.imp_right le_of_lt lemma Ioc_subset_Icc_self : Ioc a b ⊆ Icc a b := λ x, and.imp_left le_of_lt lemma Ioo_subset_Icc_self : Ioo a b ⊆ Icc a b := subset.trans Ioo_subset_Ico_self Ico_subset_Icc_self lemma Ico_subset_Iio_self : Ico a b ⊆ Iio b := λ x, and.right lemma Ioo_subset_Iio_self : Ioo a b ⊆ Iio b := λ x, and.right lemma Ioc_subset_Ioi_self : Ioc a b ⊆ Ioi a := λ x, and.left lemma Ioo_subset_Ioi_self : Ioo a b ⊆ Ioi a := λ x, and.left lemma Ioi_subset_Ici_self : Ioi a ⊆ Ici a := λx hx, le_of_lt hx lemma Iio_subset_Iic_self : Iio a ⊆ Iic a := λx hx, le_of_lt hx lemma Icc_subset_Icc_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Icc a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ ≤ b₂ := ⟨λ h, ⟨(h ⟨le_refl _, h₁⟩).1, (h ⟨h₁, le_refl _⟩).2⟩, λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨le_trans h hx, le_trans hx' h'⟩⟩ lemma Icc_subset_Ioo_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Ioo a₂ b₂ ↔ a₂ < a₁ ∧ b₁ < b₂ := ⟨λ h, ⟨(h ⟨le_refl _, h₁⟩).1, (h ⟨h₁, le_refl _⟩).2⟩, λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨lt_of_lt_of_le h hx, lt_of_le_of_lt hx' h'⟩⟩ lemma Icc_subset_Ico_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Ico a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ < b₂ := ⟨λ h, ⟨(h ⟨le_refl _, h₁⟩).1, (h ⟨h₁, le_refl _⟩).2⟩, λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨le_trans h hx, lt_of_le_of_lt hx' h'⟩⟩ lemma Icc_subset_Ioc_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Ioc a₂ b₂ ↔ a₂ < a₁ ∧ b₁ ≤ b₂ := ⟨λ h, ⟨(h ⟨le_refl _, h₁⟩).1, (h ⟨h₁, le_refl _⟩).2⟩, λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨lt_of_lt_of_le h hx, le_trans hx' h'⟩⟩ lemma Icc_subset_Iio_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Iio b₂ ↔ b₁ < b₂ := ⟨λ h, h ⟨h₁, le_refl _⟩, λ h x ⟨hx, hx'⟩, lt_of_le_of_lt hx' h⟩ lemma Icc_subset_Ioi_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Ioi a₂ ↔ a₂ < a₁ := ⟨λ h, h ⟨le_refl _, h₁⟩, λ h x ⟨hx, hx'⟩, lt_of_lt_of_le h hx⟩ lemma Icc_subset_Iic_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Iic b₂ ↔ b₁ ≤ b₂ := ⟨λ h, h ⟨h₁, le_refl _⟩, λ h x ⟨hx, hx'⟩, le_trans hx' h⟩ lemma Icc_subset_Ici_iff (h₁ : a₁ ≤ b₁) : Icc a₁ b₁ ⊆ Ici a₂ ↔ a₂ ≤ a₁ := ⟨λ h, h ⟨le_refl _, h₁⟩, λ h x ⟨hx, hx'⟩, le_trans h hx⟩ /-- If `a ≤ b`, then `(b, +∞) ⊆ (a, +∞)`. In preorders, this is just an implication. If you need the equivalence in linear orders, use `Ioi_subset_Ioi_iff`. -/ lemma Ioi_subset_Ioi (h : a ≤ b) : Ioi b ⊆ Ioi a := λx hx, lt_of_le_of_lt h hx /-- If `a ≤ b`, then `(b, +∞) ⊆ [a, +∞)`. In preorders, this is just an implication. If you need the equivalence in dense linear orders, use `Ioi_subset_Ici_iff`. -/ lemma Ioi_subset_Ici (h : a ≤ b) : Ioi b ⊆ Ici a := subset.trans (Ioi_subset_Ioi h) Ioi_subset_Ici_self /-- If `a ≤ b`, then `(-∞, a) ⊆ (-∞, b)`. In preorders, this is just an implication. If you need the equivalence in linear orders, use `Iio_subset_Iio_iff`. -/ lemma Iio_subset_Iio (h : a ≤ b) : Iio a ⊆ Iio b := λx hx, lt_of_lt_of_le hx h /-- If `a ≤ b`, then `(-∞, a) ⊆ (-∞, b]`. In preorders, this is just an implication. If you need the equivalence in dense linear orders, use `Iio_subset_Iic_iff`. -/ lemma Iio_subset_Iic (h : a ≤ b) : Iio a ⊆ Iic b := subset.trans (Iio_subset_Iio h) Iio_subset_Iic_self lemma Ici_inter_Iic : Ici a ∩ Iic b = Icc a b := rfl lemma Ici_inter_Iio : Ici a ∩ Iio b = Ico a b := rfl lemma Ioi_inter_Iic : Ioi a ∩ Iic b = Ioc a b := rfl lemma Ioi_inter_Iio : Ioi a ∩ Iio b = Ioo a b := rfl end intervals section partial_order variables {α : Type u} [partial_order α] {a b : α} @[simp] lemma Icc_self (a : α) : Icc a a = {a} := set.ext $ by simp [Icc, le_antisymm_iff, and_comm] lemma Ico_diff_Ioo_eq_singleton (h : a < b) : Ico a b \ Ioo a b = {a} := set.ext $ λ x, begin simp [not_and'], split, { rintro ⟨⟨ax, xb⟩, hne⟩, exact (eq_or_lt_of_le ax).elim eq.symm (λ h', absurd h' (hne xb)) }, { rintro rfl, exact ⟨⟨le_refl _, h⟩, λ _, lt_irrefl x⟩ } end lemma Ioc_diff_Ioo_eq_singleton (h : a < b) : Ioc a b \ Ioo a b = {b} := set.ext $ λ x, begin simp, split, { rintro ⟨⟨ax, xb⟩, hne⟩, exact (eq_or_lt_of_le xb).elim id (λ h', absurd h' (hne ax)) }, { rintro rfl, exact ⟨⟨h, le_refl _⟩, λ _, lt_irrefl x⟩ } end lemma Icc_diff_Ico_eq_singleton (h : a ≤ b) : Icc a b \ Ico a b = {b} := set.ext $ λ x, begin simp, split, { rintro ⟨⟨ax, xb⟩, h⟩, exact classical.by_contradiction (λ ne, h ax (lt_of_le_of_ne xb ne)) }, { rintro rfl, exact ⟨⟨h, le_refl _⟩, λ _, lt_irrefl x⟩ } end lemma Icc_diff_Ioc_eq_singleton (h : a ≤ b) : Icc a b \ Ioc a b = {a} := set.ext $ λ x, begin simp [not_and'], split, { rintro ⟨⟨ax, xb⟩, h⟩, exact classical.by_contradiction (λ hne, h xb (lt_of_le_of_ne ax (ne.symm hne))) }, { rintro rfl, exact ⟨⟨le_refl _, h⟩, λ _, lt_irrefl x⟩ } end end partial_order section linear_order variables {α : Type u} [linear_order α] {a a₁ a₂ b b₁ b₂ : α} lemma Ioo_eq_empty_iff [densely_ordered α] : Ioo a b = ∅ ↔ b ≤ a := ⟨λ eq, le_of_not_lt $ λ h, let ⟨x, h₁, h₂⟩ := dense h in eq_empty_iff_forall_not_mem.1 eq x ⟨h₁, h₂⟩, Ioo_eq_empty⟩ lemma Ico_eq_empty_iff : Ico a b = ∅ ↔ b ≤ a := ⟨λ eq, le_of_not_lt $ λ h, eq_empty_iff_forall_not_mem.1 eq a ⟨le_refl _, h⟩, Ico_eq_empty⟩ lemma Icc_eq_empty_iff : Icc a b = ∅ ↔ b < a := ⟨λ eq, lt_of_not_ge $ λ h, eq_empty_iff_forall_not_mem.1 eq a ⟨le_refl _, h⟩, Icc_eq_empty⟩ lemma Ico_subset_Ico_iff (h₁ : a₁ < b₁) : Ico a₁ b₁ ⊆ Ico a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ ≤ b₂ := ⟨λ h, have a₂ ≤ a₁ ∧ a₁ < b₂ := h ⟨le_refl _, h₁⟩, ⟨this.1, le_of_not_lt $ λ h', lt_irrefl b₂ (h ⟨le_of_lt this.2, h'⟩).2⟩, λ ⟨h₁, h₂⟩, Ico_subset_Ico h₁ h₂⟩ lemma Ioo_subset_Ioo_iff [densely_ordered α] (h₁ : a₁ < b₁) : Ioo a₁ b₁ ⊆ Ioo a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ ≤ b₂ := ⟨λ h, begin rcases dense h₁ with ⟨x, xa, xb⟩, split; refine le_of_not_lt (λ h', _), { have ab := lt_trans (h ⟨xa, xb⟩).1 xb, exact lt_irrefl _ (h ⟨h', ab⟩).1 }, { have ab := lt_trans xa (h ⟨xa, xb⟩).2, exact lt_irrefl _ (h ⟨ab, h'⟩).2 } end, λ ⟨h₁, h₂⟩, Ioo_subset_Ioo h₁ h₂⟩ lemma Ico_eq_Ico_iff (h : a₁ < b₁ ∨ a₂ < b₂) : Ico a₁ b₁ = Ico a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨λ e, begin simp [subset.antisymm_iff] at e, simp [le_antisymm_iff], cases h; simp [Ico_subset_Ico_iff h] at e; [ rcases e with ⟨⟨h₁, h₂⟩, e'⟩, rcases e with ⟨e', ⟨h₁, h₂⟩⟩ ]; have := (Ico_subset_Ico_iff (lt_of_le_of_lt h₁ $ lt_of_lt_of_le h h₂)).1 e'; tauto end, λ ⟨h₁, h₂⟩, by rw [h₁, h₂]⟩ @[simp] lemma Ioi_subset_Ioi_iff : Ioi b ⊆ Ioi a ↔ a ≤ b := begin refine ⟨λh, _, λh, Ioi_subset_Ioi h⟩, classical, by_contradiction ba, exact lt_irrefl _ (h (not_le.mp ba)) end @[simp] lemma Ioi_subset_Ici_iff [densely_ordered α] : Ioi b ⊆ Ici a ↔ a ≤ b := begin refine ⟨λh, _, λh, Ioi_subset_Ici h⟩, classical, by_contradiction ba, obtain ⟨c, bc, ca⟩ : ∃c, b < c ∧ c < a := dense (not_le.mp ba), exact lt_irrefl _ (lt_of_lt_of_le ca (h bc)) end @[simp] lemma Iio_subset_Iio_iff : Iio a ⊆ Iio b ↔ a ≤ b := begin refine ⟨λh, _, λh, Iio_subset_Iio h⟩, classical, by_contradiction ab, exact lt_irrefl _ (h (not_le.mp ab)) end @[simp] lemma Iio_subset_Iic_iff [densely_ordered α] : Iio a ⊆ Iic b ↔ a ≤ b := begin refine ⟨λh, _, λh, Iio_subset_Iic h⟩, classical, by_contradiction ba, obtain ⟨c, bc, ca⟩ : ∃c, b < c ∧ c < a := dense (not_le.mp ba), exact lt_irrefl _ (lt_of_lt_of_le bc (h ca)) end end linear_order section lattice open lattice section inf variables {α : Type u} [semilattice_inf α] @[simp] lemma Iic_inter_Iic {a b : α} : Iic a ∩ Iic b = Iic (a ⊓ b) := by { ext x, simp [Iic] } @[simp] lemma Iio_inter_Iio [is_total α (≤)] {a b : α} : Iio a ∩ Iio b = Iio (a ⊓ b) := by { ext x, simp [Iio] } end inf section sup variables {α : Type u} [semilattice_sup α] @[simp] lemma Ici_inter_Ici {a b : α} : Ici a ∩ Ici b = Ici (a ⊔ b) := by { ext x, simp [Ici] } @[simp] lemma Ioi_inter_Ioi [is_total α (≤)] {a b : α} : Ioi a ∩ Ioi b = Ioi (a ⊔ b) := by { ext x, simp [Ioi] } end sup section both variables {α : Type u} [lattice α] [ht : is_total α (≤)] {a₁ a₂ b₁ b₂ : α} lemma Icc_inter_Icc : Icc a₁ b₁ ∩ Icc a₂ b₂ = Icc (a₁ ⊔ a₂) (b₁ ⊓ b₂) := by simp only [Ici_inter_Iic.symm, Ici_inter_Ici.symm, Iic_inter_Iic.symm]; ac_refl include ht lemma Ico_inter_Ico : Ico a₁ b₁ ∩ Ico a₂ b₂ = Ico (a₁ ⊔ a₂) (b₁ ⊓ b₂) := by simp only [Ici_inter_Iio.symm, Ici_inter_Ici.symm, Iio_inter_Iio.symm]; ac_refl lemma Ioc_inter_Ioc : Ioc a₁ b₁ ∩ Ioc a₂ b₂ = Ioc (a₁ ⊔ a₂) (b₁ ⊓ b₂) := by simp only [Ioi_inter_Iic.symm, Ioi_inter_Ioi.symm, Iic_inter_Iic.symm]; ac_refl lemma Ioo_inter_Ioo : Ioo a₁ b₁ ∩ Ioo a₂ b₂ = Ioo (a₁ ⊔ a₂) (b₁ ⊓ b₂) := by simp only [Ioi_inter_Iio.symm, Ioi_inter_Ioi.symm, Iio_inter_Iio.symm]; ac_refl end both end lattice section decidable_linear_order variables {α : Type u} [decidable_linear_order α] {a a₁ a₂ b b₁ b₂ : α} @[simp] lemma Ico_diff_Iio {a b c : α} : Ico a b \ Iio c = Ico (max a c) b := set.ext $ by simp [Ico, Iio, iff_def, max_le_iff] {contextual:=tt} @[simp] lemma Ico_inter_Iio {a b c : α} : Ico a b ∩ Iio c = Ico a (min b c) := set.ext $ by simp [Ico, Iio, iff_def, lt_min_iff] {contextual:=tt} end decidable_linear_order section ordered_comm_group variables {α : Type u} [ordered_comm_group α] lemma image_add_left_Icc (a b c : α) : ((+) a) '' Icc b c = Icc (a + b) (a + c) := begin ext x, split, { rintros ⟨x, hx, rfl⟩, exact ⟨add_le_add_left hx.1 a, add_le_add_left hx.2 a⟩}, { intro hx, refine ⟨-a + x, _, add_neg_cancel_left _ _⟩, exact ⟨le_neg_add_iff_add_le.2 hx.1, neg_add_le_iff_le_add.2 hx.2⟩ } end lemma image_add_right_Icc (a b c : α) : (λ x, x + c) '' Icc a b = Icc (a + c) (b + c) := by convert image_add_left_Icc c a b using 1; simp only [add_comm _ c] lemma image_neg_Iio (r : α) : image (λz, -z) (Iio r) = Ioi (-r) := begin ext z, apply iff.intro, { intros hz, apply exists.elim hz, intros z' hz', rw [←hz'.2], simp only [mem_Ioi, neg_lt_neg_iff], exact hz'.1 }, { intros hz, simp only [mem_image, mem_Iio], use -z, simp [hz], exact neg_lt.1 hz } end lemma image_neg_Iic (r : α) : image (λz, -z) (Iic r) = Ici (-r) := begin apply set.ext, intros z, apply iff.intro, { intros hz, apply exists.elim hz, intros z' hz', rw [←hz'.2], simp only [neg_le_neg_iff, mem_Ici], exact hz'.1 }, { intros hz, simp only [mem_image, mem_Iic], use -z, simp [hz], exact neg_le.1 hz } end end ordered_comm_group section decidable_linear_ordered_comm_group variables {α : Type u} [decidable_linear_ordered_comm_group α] /-- If we remove a smaller interval from a larger, the result is nonempty -/ lemma nonempty_Ico_sdiff {x dx y dy : α} (h : dy < dx) (hx : 0 < dx) : nonempty ↥(Ico x (x + dx) \ Ico y (y + dy)) := begin cases lt_or_le x y with h' h', { use x, simp* }, { use max x (x + dy), simp [*, le_refl] } end end decidable_linear_ordered_comm_group section linear_ordered_field variables {α : Type u} [linear_ordered_field α] lemma image_mul_right_Icc' (a b : α) {c : α} (h : 0 < c) : (λ x, x * c) '' Icc a b = Icc (a * c) (b * c) := begin ext x, split, { rintros ⟨x, hx, rfl⟩, exact ⟨mul_le_mul_of_nonneg_right hx.1 (le_of_lt h), mul_le_mul_of_nonneg_right hx.2 (le_of_lt h)⟩ }, { intro hx, refine ⟨x / c, _, div_mul_cancel x (ne_of_gt h)⟩, exact ⟨le_div_of_mul_le h hx.1, div_le_of_le_mul h (mul_comm b c ▸ hx.2)⟩ } end lemma image_mul_right_Icc {a b c : α} (hab : a ≤ b) (hc : 0 ≤ c) : (λ x, x * c) '' Icc a b = Icc (a * c) (b * c) := begin cases eq_or_lt_of_le hc, { subst c, simp [(nonempty_Icc.2 hab).image_const] }, exact image_mul_right_Icc' a b ‹0 < c› end lemma image_mul_left_Icc' {a : α} (h : 0 < a) (b c : α) : ((*) a) '' Icc b c = Icc (a * b) (a * c) := by { convert image_mul_right_Icc' b c h using 1; simp only [mul_comm _ a] } lemma image_mul_left_Icc {a b c : α} (ha : 0 ≤ a) (hbc : b ≤ c) : ((*) a) '' Icc b c = Icc (a * b) (a * c) := by { convert image_mul_right_Icc hbc ha using 1; simp only [mul_comm _ a] } end linear_ordered_field end set
422a8dde32787f2869755901c16370756bf2e237
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/topology/instances/add_circle.lean
008031f3968c7244f1eeb5e4e30ce1d52ed4f1d0
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
12,143
lean
/- Copyright (c) 2022 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import group_theory.divisible import group_theory.order_of_element import ring_theory.int.basic import algebra.order.floor import algebra.order.to_interval_mod import topology.instances.real /-! # The additive circle We define the additive circle `add_circle p` as the quotient `𝕜 ⧸ (ℤ ∙ p)` for some period `p : 𝕜`. See also `circle` and `real.angle`. For the normed group structure on `add_circle`, see `add_circle.normed_add_comm_group` in a later file. ## Main definitions: * `add_circle`: the additive circle `𝕜 ⧸ (ℤ ∙ p)` for some period `p : 𝕜` * `unit_add_circle`: the special case `ℝ ⧸ ℤ` * `add_circle.equiv_add_circle`: the rescaling equivalence `add_circle p ≃+ add_circle q` * `add_circle.equiv_Ico`: the natural equivalence `add_circle p ≃ Ico 0 p` * `add_circle.add_order_of_div_of_gcd_eq_one`: rational points have finite order * `add_circle.exists_gcd_eq_one_of_is_of_fin_add_order`: finite-order points are rational ## Implementation notes: Although the most important case is `𝕜 = ℝ` we wish to support other types of scalars, such as the rational circle `add_circle (1 : ℚ)`, and so we set things up more generally. ## TODO * Link with periodicity * Lie group structure * Exponential equivalence to `circle` -/ noncomputable theory open set add_subgroup topological_space variables {𝕜 : Type*} /-- The "additive circle": `𝕜 ⧸ (ℤ ∙ p)`. See also `circle` and `real.angle`. -/ @[derive [add_comm_group, topological_space, topological_add_group, inhabited, has_coe_t 𝕜], nolint unused_arguments] def add_circle [linear_ordered_add_comm_group 𝕜] [topological_space 𝕜] [order_topology 𝕜] (p : 𝕜) := 𝕜 ⧸ zmultiples p namespace add_circle section linear_ordered_add_comm_group variables [linear_ordered_add_comm_group 𝕜] [topological_space 𝕜] [order_topology 𝕜] (p : 𝕜) lemma coe_nsmul {n : ℕ} {x : 𝕜} : (↑(n • x) : add_circle p) = n • (x : add_circle p) := rfl lemma coe_zsmul {n : ℤ} {x : 𝕜} : (↑(n • x) : add_circle p) = n • (x : add_circle p) := rfl lemma coe_neg {x : 𝕜} : (↑(-x) : add_circle p) = -(x : add_circle p) := rfl lemma coe_eq_zero_iff {x : 𝕜} : (x : add_circle p) = 0 ↔ ∃ (n : ℤ), n • p = x := by simp [add_subgroup.mem_zmultiples_iff] lemma coe_eq_zero_of_pos_iff (hp : 0 < p) {x : 𝕜} (hx : 0 < x) : (x : add_circle p) = 0 ↔ ∃ (n : ℕ), n • p = x := begin rw coe_eq_zero_iff, split; rintros ⟨n, rfl⟩, { replace hx : 0 < n, { contrapose! hx, simpa only [←neg_nonneg, ←zsmul_neg, zsmul_neg'] using zsmul_nonneg hp.le (neg_nonneg.2 hx) }, exact ⟨n.to_nat, by rw [← coe_nat_zsmul, int.to_nat_of_nonneg hx.le]⟩, }, { exact ⟨(n : ℤ), by simp⟩, }, end @[continuity, nolint unused_arguments] protected lemma continuous_mk' : continuous (quotient_add_group.mk' (zmultiples p) : 𝕜 → add_circle p) := continuous_coinduced_rng variables [hp : fact (0 < p)] include hp variables [archimedean 𝕜] /-- The natural equivalence between `add_circle p` and the half-open interval `[0, p)`. -/ def equiv_Ico : add_circle p ≃ Ico 0 p := (quotient_add_group.equiv_Ico_mod 0 hp.out).trans $ equiv.set.of_eq $ by rw zero_add @[continuity] lemma continuous_equiv_Ico_symm : continuous (equiv_Ico p).symm := continuous_quotient_mk.comp continuous_subtype_coe /-- The image of the closed-open interval `[0, p)` under the quotient map `𝕜 → add_circle p` is the entire space. -/ @[simp] lemma coe_image_Ico_eq : (coe : 𝕜 → add_circle p) '' Ico 0 p = univ := by { rw image_eq_range, exact (equiv_Ico p).symm.range_eq_univ } /-- The image of the closed interval `[0, p]` under the quotient map `𝕜 → add_circle p` is the entire space. -/ @[simp] lemma coe_image_Icc_eq : (coe : 𝕜 → add_circle p) '' Icc 0 p = univ := eq_top_mono (image_subset _ Ico_subset_Icc_self) $ coe_image_Ico_eq _ end linear_ordered_add_comm_group section linear_ordered_field variables [linear_ordered_field 𝕜] [topological_space 𝕜] [order_topology 𝕜] (p q : 𝕜) /-- An auxiliary definition used only for constructing `add_circle.equiv_add_circle`. -/ private def equiv_add_circle_aux (hp : p ≠ 0) : add_circle p →+ add_circle q := quotient_add_group.lift _ ((quotient_add_group.mk' (zmultiples q)).comp $ add_monoid_hom.mul_right (p⁻¹ * q)) (λ x h, by obtain ⟨z, rfl⟩ := mem_zmultiples_iff.1 h; simp [hp, mul_assoc (z : 𝕜), ← mul_assoc p]) /-- The rescaling equivalence between additive circles with different periods. -/ def equiv_add_circle (hp : p ≠ 0) (hq : q ≠ 0) : add_circle p ≃+ add_circle q := { to_fun := equiv_add_circle_aux p q hp, inv_fun := equiv_add_circle_aux q p hq, left_inv := by { rintros ⟨x⟩, show quotient_add_group.mk _ = _, congr, field_simp [hp, hq], }, right_inv := by { rintros ⟨x⟩, show quotient_add_group.mk _ = _, congr, field_simp [hp, hq], }, .. equiv_add_circle_aux p q hp } @[simp] lemma equiv_add_circle_apply_mk (hp : p ≠ 0) (hq : q ≠ 0) (x : 𝕜) : equiv_add_circle p q hp hq (x : 𝕜) = (x * (p⁻¹ * q) : 𝕜) := rfl @[simp] lemma equiv_add_circle_symm_apply_mk (hp : p ≠ 0) (hq : q ≠ 0) (x : 𝕜) : (equiv_add_circle p q hp hq).symm (x : 𝕜) = (x * (q⁻¹ * p) : 𝕜) := rfl variables [hp : fact (0 < p)] include hp section floor_ring variables [floor_ring 𝕜] @[simp] lemma coe_equiv_Ico_mk_apply (x : 𝕜) : (equiv_Ico p $ quotient_add_group.mk x : 𝕜) = int.fract (x / p) * p := to_Ico_mod_eq_fract_mul _ x instance : divisible_by (add_circle p) ℤ := { div := λ x n, (↑(((n : 𝕜)⁻¹) * (equiv_Ico p x : 𝕜)) : add_circle p), div_zero := λ x, by simp only [algebra_map.coe_zero, quotient_add_group.coe_zero, inv_zero, zero_mul], div_cancel := λ n x hn, begin replace hn : (n : 𝕜) ≠ 0, { norm_cast, assumption, }, change n • quotient_add_group.mk' _ ((n : 𝕜)⁻¹ * ↑(equiv_Ico p x)) = x, rw [← map_zsmul, ← smul_mul_assoc, zsmul_eq_mul, mul_inv_cancel hn, one_mul], exact (equiv_Ico p).symm_apply_apply x, end, } end floor_ring section finite_order_points variables {p} lemma add_order_of_div_of_gcd_eq_one {m n : ℕ} (hn : 0 < n) (h : gcd m n = 1) : add_order_of (↑(↑m / ↑n * p) : add_circle p) = n := begin rcases m.eq_zero_or_pos with rfl | hm, { rw [gcd_zero_left, normalize_eq] at h, simp [h], }, set x : add_circle p := ↑(↑m / ↑n * p), have hn₀ : (n : 𝕜) ≠ 0, { norm_cast, exact ne_of_gt hn, }, have hnx : n • x = 0, { rw [← coe_nsmul, nsmul_eq_mul, ← mul_assoc, mul_div, mul_div_cancel_left _ hn₀, ← nsmul_eq_mul, quotient_add_group.eq_zero_iff], exact nsmul_mem_zmultiples p m, }, apply nat.dvd_antisymm (add_order_of_dvd_of_nsmul_eq_zero hnx), suffices : ∃ (z : ℕ), z * n = (add_order_of x) * m, { obtain ⟨z, hz⟩ := this, simpa only [h, mul_one, gcd_comm n] using dvd_mul_gcd_of_dvd_mul (dvd.intro_left z hz), }, replace hp := hp.out, have : 0 < add_order_of x • (↑m / ↑n * p) := smul_pos (add_order_of_pos' $ (is_of_fin_add_order_iff_nsmul_eq_zero _).2 ⟨n, hn, hnx⟩) (by positivity), obtain ⟨z, hz⟩ := (coe_eq_zero_of_pos_iff p hp this).mp (add_order_of_nsmul_eq_zero x), rw [← smul_mul_assoc, nsmul_eq_mul, nsmul_eq_mul, mul_left_inj' hp.ne.symm, mul_div, eq_div_iff hn₀] at hz, norm_cast at hz, exact ⟨z, hz⟩, end lemma add_order_of_div_of_gcd_eq_one' {m : ℤ} {n : ℕ} (hn : 0 < n) (h : gcd m.nat_abs n = 1) : add_order_of (↑(↑m / ↑n * p) : add_circle p) = n := begin induction m, { simp only [int.of_nat_eq_coe, int.cast_coe_nat, int.nat_abs_of_nat] at h ⊢, exact add_order_of_div_of_gcd_eq_one hn h, }, { simp only [int.cast_neg_succ_of_nat, neg_div, neg_mul, coe_neg, order_of_neg], exact add_order_of_div_of_gcd_eq_one hn h, }, end lemma add_order_of_coe_rat {q : ℚ} : add_order_of (↑(↑q * p) : add_circle p) = q.denom := begin have : (↑(q.denom : ℤ) : 𝕜) ≠ 0, { norm_cast, exact q.pos.ne.symm, }, rw [← @rat.num_denom q, rat.cast_mk_of_ne_zero _ _ this, int.cast_coe_nat, rat.num_denom, add_order_of_div_of_gcd_eq_one' q.pos q.cop], apply_instance, end variables (p) lemma gcd_mul_add_order_of_div_eq {n : ℕ} (m : ℕ) (hn : 0 < n) : gcd m n * add_order_of (↑(↑m / ↑n * p) : add_circle p) = n := begin let n' := n / gcd m n, let m' := m / gcd m n, have h₀ : 0 < gcd m n, { rw zero_lt_iff at hn ⊢, contrapose! hn, exact ((gcd_eq_zero_iff m n).mp hn).2, }, have hk' : 0 < n' := nat.div_pos (nat.le_of_dvd hn $ gcd_dvd_right m n) h₀, have hgcd : gcd m' n' = 1 := nat.coprime_div_gcd_div_gcd h₀, simp only [mul_left_inj' hp.out.ne.symm, ← nat.cast_div_div_div_cancel_right (gcd_dvd_right m n) (gcd_dvd_left m n), add_order_of_div_of_gcd_eq_one hk' hgcd, mul_comm _ n', nat.div_mul_cancel (gcd_dvd_right m n)], end variables {p} [floor_ring 𝕜] lemma exists_gcd_eq_one_of_is_of_fin_add_order {u : add_circle p} (h : is_of_fin_add_order u) : ∃ m, gcd m (add_order_of u) = 1 ∧ m < (add_order_of u) ∧ ↑(((m : 𝕜) / add_order_of u) * p) = u := begin rcases eq_or_ne u 0 with rfl | hu, { exact ⟨0, by simp⟩, }, set n := add_order_of u, change ∃ m, gcd m n = 1 ∧ m < n ∧ ↑((↑m / ↑n) * p) = u, have hn : 0 < n := add_order_of_pos' h, have hn₀ : (n : 𝕜) ≠ 0, { norm_cast, exact ne_of_gt hn, }, let x := (equiv_Ico p u : 𝕜), have hxu : (x : add_circle p) = u := (equiv_Ico p).symm_apply_apply u, have hx₀ : 0 < (add_order_of (x : add_circle p)), { rw ← hxu at h, exact add_order_of_pos' h, }, have hx₁ : 0 < x, { refine lt_of_le_of_ne (equiv_Ico p u).2.1 _, contrapose! hu, rw [← hxu, ← hu, quotient_add_group.coe_zero], }, obtain ⟨m, hm : m • p = add_order_of ↑x • x⟩ := (coe_eq_zero_of_pos_iff p hp.out (by positivity)).mp (add_order_of_nsmul_eq_zero (x : add_circle p)), replace hm : ↑m * p = ↑n * x, { simpa only [hxu, nsmul_eq_mul] using hm, }, have hux : ↑(↑m / ↑n * p) = u, { rw [← hxu, ← mul_div_right_comm, hm, mul_comm _ x, mul_div_cancel x hn₀], }, refine ⟨m, (_ : gcd m n = 1), (_ : m < n), hux⟩, { have := gcd_mul_add_order_of_div_eq p m hn, rwa [hux, nat.mul_left_eq_self_iff hn] at this, }, { have : n • x < n • p := smul_lt_smul_of_pos (equiv_Ico p u).2.2 hn, rwa [nsmul_eq_mul, nsmul_eq_mul, ← hm, mul_lt_mul_right hp.out, nat.cast_lt] at this, }, end end finite_order_points end linear_ordered_field variables (p : ℝ) /-- The "additive circle" `ℝ ⧸ (ℤ ∙ p)` is compact. -/ instance compact_space [fact (0 < p)] : compact_space $ add_circle p := begin rw [← is_compact_univ_iff, ← coe_image_Icc_eq p], exact is_compact_Icc.image (add_circle.continuous_mk' p), end /-- The action on `ℝ` by right multiplication of its the subgroup `zmultiples p` (the multiples of `p:ℝ`) is properly discontinuous. -/ instance : properly_discontinuous_vadd (zmultiples p).opposite ℝ := (zmultiples p).properly_discontinuous_vadd_opposite_of_tendsto_cofinite (add_subgroup.tendsto_zmultiples_subtype_cofinite p) /-- The "additive circle" `ℝ ⧸ (ℤ ∙ p)` is Hausdorff. -/ instance : t2_space (add_circle p) := t2_space_of_properly_discontinuous_vadd_of_t2_space /-- The "additive circle" `ℝ ⧸ (ℤ ∙ p)` is normal. -/ instance [fact (0 < p)] : normal_space (add_circle p) := normal_of_compact_t2 /-- The "additive circle" `ℝ ⧸ (ℤ ∙ p)` is second-countable. -/ instance : second_countable_topology (add_circle p) := quotient_add_group.second_countable_topology end add_circle private lemma fact_zero_lt_one : fact ((0:ℝ) < 1) := ⟨zero_lt_one⟩ local attribute [instance] fact_zero_lt_one /-- The unit circle `ℝ ⧸ ℤ`. -/ @[derive [compact_space, normal_space, second_countable_topology]] abbreviation unit_add_circle := add_circle (1 : ℝ)
2498feb942232c0755b210fa7d10d6eaac08e47f
b2fe74b11b57d362c13326bc5651244f111fa6f4
/src/analysis/specific_limits.lean
fbee36253c7cd14907fb3b599c02fdd9404da399
[ "Apache-2.0" ]
permissive
midfield/mathlib
c4db5fa898b5ac8f2f80ae0d00c95eb6f745f4c7
775edc615ecec631d65b6180dbcc7bc26c3abc26
refs/heads/master
1,675,330,551,921
1,608,304,514,000
1,608,304,514,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
24,670
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import analysis.normed_space.basic import algebra.geom_sum import order.filter.archimedean import order.iterate import topology.instances.ennreal import tactic.ring_exp /-! # A collection of specific limit computations -/ noncomputable theory open classical function filter finset metric open_locale classical topological_space nat big_operators uniformity nnreal variables {α : Type*} {β : Type*} {ι : Type*} lemma tendsto_norm_at_top_at_top : tendsto (norm : ℝ → ℝ) at_top at_top := tendsto_abs_at_top_at_top lemma summable_of_absolute_convergence_real {f : ℕ → ℝ} : (∃r, tendsto (λn, (∑ i in range n, abs (f i))) at_top (𝓝 r)) → summable f | ⟨r, hr⟩ := begin refine summable_of_summable_norm ⟨r, (has_sum_iff_tendsto_nat_of_nonneg _ _).2 _⟩, exact assume i, norm_nonneg _, simpa only using hr end lemma tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ)⁻¹) at_top (𝓝 0) := tendsto_inv_at_top_zero.comp tendsto_coe_nat_at_top_at_top lemma tendsto_const_div_at_top_nhds_0_nat (C : ℝ) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) := by simpa only [mul_zero] using tendsto_const_nhds.mul tendsto_inverse_at_top_nhds_0_nat lemma nnreal.tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ≥0)⁻¹) at_top (𝓝 0) := by { rw ← nnreal.tendsto_coe, convert tendsto_inverse_at_top_nhds_0_nat, simp } lemma nnreal.tendsto_const_div_at_top_nhds_0_nat (C : ℝ≥0) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) := by simpa using tendsto_const_nhds.mul nnreal.tendsto_inverse_at_top_nhds_0_nat lemma tendsto_one_div_add_at_top_nhds_0_nat : tendsto (λ n : ℕ, 1 / ((n : ℝ) + 1)) at_top (𝓝 0) := suffices tendsto (λ n : ℕ, 1 / (↑(n + 1) : ℝ)) at_top (𝓝 0), by simpa, (tendsto_add_at_top_iff_nat 1).2 (tendsto_const_div_at_top_nhds_0_nat 1) /-! ### Powers -/ lemma tendsto_add_one_pow_at_top_at_top_of_pos [linear_ordered_semiring α] [archimedean α] {r : α} (h : 0 < r) : tendsto (λ n:ℕ, (r + 1)^n) at_top at_top := tendsto_at_top_at_top_of_monotone' (λ n m, pow_le_pow (le_add_of_nonneg_left (le_of_lt h))) $ not_bdd_above_iff.2 $ λ x, set.exists_range_iff.2 $ add_one_pow_unbounded_of_pos _ h lemma tendsto_pow_at_top_at_top_of_one_lt [linear_ordered_ring α] [archimedean α] {r : α} (h : 1 < r) : tendsto (λn:ℕ, r ^ n) at_top at_top := sub_add_cancel r 1 ▸ tendsto_add_one_pow_at_top_at_top_of_pos (sub_pos.2 h) lemma nat.tendsto_pow_at_top_at_top_of_one_lt {m : ℕ} (h : 1 < m) : tendsto (λn:ℕ, m ^ n) at_top at_top := nat.sub_add_cancel (le_of_lt h) ▸ tendsto_add_one_pow_at_top_at_top_of_pos (nat.sub_pos_of_lt h) lemma tendsto_norm_zero' {𝕜 : Type*} [normed_group 𝕜] : tendsto (norm : 𝕜 → ℝ) (𝓝[{x | x ≠ 0}] 0) (𝓝[set.Ioi 0] 0) := tendsto_norm_zero.inf $ tendsto_principal_principal.2 $ λ x hx, norm_pos_iff.2 hx lemma normed_field.tendsto_norm_inverse_nhds_within_0_at_top {𝕜 : Type*} [normed_field 𝕜] : tendsto (λ x:𝕜, ∥x⁻¹∥) (𝓝[{x | x ≠ 0}] 0) at_top := (tendsto_inv_zero_at_top.comp tendsto_norm_zero').congr $ λ x, (normed_field.norm_inv x).symm lemma tendsto_pow_at_top_nhds_0_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : tendsto (λn:ℕ, r^n) at_top (𝓝 0) := by_cases (assume : r = 0, (tendsto_add_at_top_iff_nat 1).mp $ by simp [pow_succ, this, tendsto_const_nhds]) (assume : r ≠ 0, have tendsto (λn, (r⁻¹ ^ n)⁻¹) at_top (𝓝 0), from tendsto_inv_at_top_zero.comp (tendsto_pow_at_top_at_top_of_one_lt $ one_lt_inv (lt_of_le_of_ne h₁ this.symm) h₂), tendsto.congr' (univ_mem_sets' $ by simp *) this) lemma uniformity_basis_dist_pow_of_lt_1 {α : Type*} [metric_space α] {r : ℝ} (h₀ : 0 < r) (h₁ : r < 1) : (𝓤 α).has_basis (λ k : ℕ, true) (λ k, {p : α × α | dist p.1 p.2 < r ^ k}) := metric.mk_uniformity_basis (λ i _, pow_pos h₀ _) $ λ ε ε0, (exists_pow_lt_of_lt_one ε0 h₁).imp $ λ k hk, ⟨trivial, hk.le⟩ lemma geom_lt {u : ℕ → ℝ} {c : ℝ} (hc : 0 ≤ c) {n : ℕ} (hn : 0 < n) (h : ∀ k < n, c * u k < u (k + 1)) : c ^ n * u 0 < u n := (monotone_mul_left_of_nonneg hc).seq_pos_lt_seq_of_le_of_lt hn (by simp) (λ k hk, by simp [pow_succ, mul_assoc]) h lemma geom_le {u : ℕ → ℝ} {c : ℝ} (hc : 0 ≤ c) (n : ℕ) (h : ∀ k < n, c * u k ≤ u (k + 1)) : c ^ n * u 0 ≤ u n := by refine (monotone_mul_left_of_nonneg hc).seq_le_seq n _ _ h; simp [pow_succ, mul_assoc, le_refl] /-- If a sequence `v` of real numbers satisfies `k * v n ≤ v (n+1)` with `1 < k`, then it goes to +∞. -/ lemma tendsto_at_top_of_geom_le {v : ℕ → ℝ} {c : ℝ} (h₀ : 0 < v 0) (hc : 1 < c) (hu : ∀ n, c * v n ≤ v (n + 1)) : tendsto v at_top at_top := tendsto_at_top_mono (λ n, geom_le (zero_le_one.trans hc.le) n (λ k hk, hu k)) $ (tendsto_pow_at_top_at_top_of_one_lt hc).at_top_mul_const h₀ lemma nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : ℝ≥0} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := nnreal.tendsto_coe.1 $ by simp only [nnreal.coe_pow, nnreal.coe_zero, tendsto_pow_at_top_nhds_0_of_lt_1 r.coe_nonneg hr] lemma ennreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : ennreal} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := begin rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, rw [← ennreal.coe_zero], norm_cast at *, apply nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 hr end /-- In a normed ring, the powers of an element x with `∥x∥ < 1` tend to zero. -/ lemma tendsto_pow_at_top_nhds_0_of_norm_lt_1 {R : Type*} [normed_ring R] {x : R} (h : ∥x∥ < 1) : tendsto (λ (n : ℕ), x ^ n) at_top (𝓝 0) := begin apply squeeze_zero_norm' (eventually_norm_pow_le x), exact tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg _) h, end lemma tendsto_pow_at_top_nhds_0_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : tendsto (λn:ℕ, r^n) at_top (𝓝 0) := tendsto_pow_at_top_nhds_0_of_norm_lt_1 h /-! ### Geometric series-/ section geometric lemma has_sum_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := have r ≠ 1, from ne_of_lt h₂, have tendsto (λn, (r ^ n - 1) * (r - 1)⁻¹) at_top (𝓝 ((0 - 1) * (r - 1)⁻¹)), from ((tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂).sub tendsto_const_nhds).mul tendsto_const_nhds, have (λ n, (∑ i in range n, r ^ i)) = (λ n, geom_series r n) := rfl, (has_sum_iff_tendsto_nat_of_nonneg (pow_nonneg h₁) _).mpr $ by simp [neg_inv, geom_sum, div_eq_mul_inv, *] at * lemma summable_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, has_sum_geometric_of_lt_1 h₁ h₂⟩ lemma tsum_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := (has_sum_geometric_of_lt_1 h₁ h₂).tsum_eq lemma has_sum_geometric_two : has_sum (λn:ℕ, ((1:ℝ)/2) ^ n) 2 := by convert has_sum_geometric_of_lt_1 _ _; norm_num lemma summable_geometric_two : summable (λn:ℕ, ((1:ℝ)/2) ^ n) := ⟨_, has_sum_geometric_two⟩ lemma tsum_geometric_two : (∑'n:ℕ, ((1:ℝ)/2) ^ n) = 2 := has_sum_geometric_two.tsum_eq lemma sum_geometric_two_le (n : ℕ) : ∑ (i : ℕ) in range n, (1 / (2 : ℝ)) ^ i ≤ 2 := begin have : ∀ i, 0 ≤ (1 / (2 : ℝ)) ^ i, { intro i, apply pow_nonneg, norm_num }, convert sum_le_tsum (range n) (λ i _, this i) summable_geometric_two, exact tsum_geometric_two.symm end lemma has_sum_geometric_two' (a : ℝ) : has_sum (λn:ℕ, (a / 2) / 2 ^ n) a := begin convert has_sum.mul_left (a / 2) (has_sum_geometric_of_lt_1 (le_of_lt one_half_pos) one_half_lt_one), { funext n, simp, refl, }, { norm_num } end lemma summable_geometric_two' (a : ℝ) : summable (λ n:ℕ, (a / 2) / 2 ^ n) := ⟨a, has_sum_geometric_two' a⟩ lemma tsum_geometric_two' (a : ℝ) : (∑' n:ℕ, (a / 2) / 2^n) = a := (has_sum_geometric_two' a).tsum_eq lemma nnreal.has_sum_geometric {r : ℝ≥0} (hr : r < 1) : has_sum (λ n : ℕ, r ^ n) (1 - r)⁻¹ := begin apply nnreal.has_sum_coe.1, push_cast, rw [nnreal.coe_sub (le_of_lt hr)], exact has_sum_geometric_of_lt_1 r.coe_nonneg hr end lemma nnreal.summable_geometric {r : ℝ≥0} (hr : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, nnreal.has_sum_geometric hr⟩ lemma tsum_geometric_nnreal {r : ℝ≥0} (hr : r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := (nnreal.has_sum_geometric hr).tsum_eq /-- The series `pow r` converges to `(1-r)⁻¹`. For `r < 1` the RHS is a finite number, and for `1 ≤ r` the RHS equals `∞`. -/ lemma ennreal.tsum_geometric (r : ennreal) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := begin cases lt_or_le r 1 with hr hr, { rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, norm_cast at *, convert ennreal.tsum_coe_eq (nnreal.has_sum_geometric hr), rw [ennreal.coe_inv $ ne_of_gt $ nnreal.sub_pos.2 hr] }, { rw [ennreal.sub_eq_zero_of_le hr, ennreal.inv_zero, ennreal.tsum_eq_supr_nat, supr_eq_top], refine λ a ha, (ennreal.exists_nat_gt (lt_top_iff_ne_top.1 ha)).imp (λ n hn, lt_of_lt_of_le hn _), have : ∀ k:ℕ, 1 ≤ r^k, by simpa using canonically_ordered_semiring.pow_le_pow_of_le_left hr, calc (n:ennreal) = (∑ i in range n, 1) : by rw [sum_const, nsmul_one, card_range] ... ≤ ∑ i in range n, r ^ i : sum_le_sum (λ k _, this k) } end variables {K : Type*} [normed_field K] {ξ : K} lemma has_sum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : has_sum (λn:ℕ, ξ ^ n) (1 - ξ)⁻¹ := begin have xi_ne_one : ξ ≠ 1, by { contrapose! h, simp [h] }, have A : tendsto (λn, (ξ ^ n - 1) * (ξ - 1)⁻¹) at_top (𝓝 ((0 - 1) * (ξ - 1)⁻¹)), from ((tendsto_pow_at_top_nhds_0_of_norm_lt_1 h).sub tendsto_const_nhds).mul tendsto_const_nhds, have B : (λ n, (∑ i in range n, ξ ^ i)) = (λ n, geom_series ξ n) := rfl, rw [has_sum_iff_tendsto_nat_of_summable_norm, B], { simpa [geom_sum, xi_ne_one, neg_inv] using A }, { simp [normed_field.norm_pow, summable_geometric_of_lt_1 (norm_nonneg _) h] } end lemma summable_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : summable (λn:ℕ, ξ ^ n) := ⟨_, has_sum_geometric_of_norm_lt_1 h⟩ lemma tsum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : (∑'n:ℕ, ξ ^ n) = (1 - ξ)⁻¹ := (has_sum_geometric_of_norm_lt_1 h).tsum_eq lemma has_sum_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := has_sum_geometric_of_norm_lt_1 h lemma summable_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : summable (λn:ℕ, r ^ n) := summable_geometric_of_norm_lt_1 h lemma tsum_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := tsum_geometric_of_norm_lt_1 h /-- A geometric series in a normed field is summable iff the norm of the common ratio is less than one. -/ @[simp] lemma summable_geometric_iff_norm_lt_1 : summable (λ n : ℕ, ξ ^ n) ↔ ∥ξ∥ < 1 := begin refine ⟨λ h, _, summable_geometric_of_norm_lt_1⟩, obtain ⟨k : ℕ, hk : dist (ξ ^ k) 0 < 1⟩ := (h.tendsto_cofinite_zero.eventually (ball_mem_nhds _ zero_lt_one)).exists, simp only [normed_field.norm_pow, dist_zero_right] at hk, rw [← one_pow k] at hk, exact lt_of_pow_lt_pow _ zero_le_one hk end end geometric /-! ### Sequences with geometrically decaying distance in metric spaces In this paragraph, we discuss sequences in metric spaces or emetric spaces for which the distance between two consecutive terms decays geometrically. We show that such sequences are Cauchy sequences, and bound their distances to the limit. We also discuss series with geometrically decaying terms. -/ section edist_le_geometric variables [emetric_space α] (r C : ennreal) (hr : r < 1) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C * r^n) include hr hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, `C ≠ ∞`, `r < 1`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric : cauchy_seq f := begin refine cauchy_seq_of_edist_le_of_tsum_ne_top _ hu _, rw [ennreal.tsum_mul_left, ennreal.tsum_geometric], refine ennreal.mul_ne_top hC (ennreal.inv_ne_top.2 _), exact ne_of_gt (ennreal.zero_lt_sub_iff_lt.2 hr) end omit hr hC /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : edist (f n) a ≤ (C * r^n) / (1 - r) := begin convert edist_le_tsum_of_edist_le_of_tendsto _ hu ha _, simp only [pow_add, ennreal.tsum_mul_left, ennreal.tsum_geometric, ennreal.div_def, mul_assoc] end /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : edist (f 0) a ≤ C / (1 - r) := by simpa only [pow_zero, mul_one] using edist_le_of_edist_le_geometric_of_tendsto r C hu ha 0 end edist_le_geometric section edist_le_geometric_two variables [emetric_space α] (C : ennreal) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C / 2^n) {a : α} (ha : tendsto f at_top (𝓝 a)) include hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric_two : cauchy_seq f := begin simp only [ennreal.div_def, ennreal.inv_pow] at hu, refine cauchy_seq_of_edist_le_geometric 2⁻¹ C _ hC hu, simp [ennreal.one_lt_two] end omit hC include ha /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f n` to the limit of `f` is bounded above by `2 * C * 2^-n`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto (n : ℕ) : edist (f n) a ≤ 2 * C / 2^n := begin simp only [ennreal.div_def, ennreal.inv_pow] at hu, rw [ennreal.div_def, mul_assoc, mul_comm, ennreal.inv_pow], convert edist_le_of_edist_le_geometric_of_tendsto 2⁻¹ C hu ha n, rw [ennreal.one_sub_inv_two, ennreal.inv_inv] end /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f 0` to the limit of `f` is bounded above by `2 * C`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto₀: edist (f 0) a ≤ 2 * C := by simpa only [pow_zero, ennreal.div_def, ennreal.inv_one, mul_one] using edist_le_of_edist_le_geometric_two_of_tendsto C hu ha 0 end edist_le_geometric_two section le_geometric variables [metric_space α] {r C : ℝ} (hr : r < 1) {f : ℕ → α} (hu : ∀n, dist (f n) (f (n+1)) ≤ C * r^n) include hr hu lemma aux_has_sum_of_le_geometric : has_sum (λ n : ℕ, C * r^n) (C / (1 - r)) := begin have h0 : 0 ≤ C, by simpa using le_trans dist_nonneg (hu 0), rcases eq_or_lt_of_le h0 with rfl | Cpos, { simp [has_sum_zero] }, { have rnonneg: r ≥ 0, from nonneg_of_mul_nonneg_left (by simpa only [pow_one] using le_trans dist_nonneg (hu 1)) Cpos, refine has_sum.mul_left C _, by simpa using has_sum_geometric_of_lt_1 rnonneg hr } end variables (r C) /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then `f` is a Cauchy sequence. Note that this lemma does not assume `0 ≤ C` or `0 ≤ r`. -/ lemma cauchy_seq_of_le_geometric : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C / (1 - r) := (aux_has_sum_of_le_geometric hr hu).tsum_eq ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ ha /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ (C * r^n) / (1 - r) := begin have := aux_has_sum_of_le_geometric hr hu, convert dist_le_tsum_of_dist_le_of_tendsto _ hu ⟨_, this⟩ ha n, simp only [pow_add, mul_left_comm C, mul_div_right_comm], rw [mul_comm], exact (this.mul_left _).tsum_eq.symm end omit hr hu variable (hu₂ : ∀ n, dist (f n) (f (n+1)) ≤ (C / 2) / 2^n) /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then `f` is a Cauchy sequence. -/ lemma cauchy_seq_of_le_geometric_two : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu₂ $ ⟨_, has_sum_geometric_two' C⟩ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C`. -/ lemma dist_le_of_le_geometric_two_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C := (tsum_geometric_two' C) ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu₂ (summable_geometric_two' C) ha include hu₂ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f n` to the limit of `f` is bounded above by `C / 2^n`. -/ lemma dist_le_of_le_geometric_two_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ C / 2^n := begin convert dist_le_tsum_of_dist_le_of_tendsto _ hu₂ (summable_geometric_two' C) ha n, simp only [add_comm n, pow_add, (div_div_eq_div_mul _ _ _).symm], symmetry, exact ((has_sum_geometric_two' C).mul_right _).tsum_eq end end le_geometric section summable_le_geometric variables [normed_group α] {r C : ℝ} {f : ℕ → α} lemma dist_partial_sum_le_of_le_geometric (hf : ∀n, ∥f n∥ ≤ C * r^n) (n : ℕ) : dist (∑ i in range n, f i) (∑ i in range (n+1), f i) ≤ C * r ^ n := begin rw [sum_range_succ, dist_eq_norm, ← norm_neg], convert hf n, rw [neg_sub, add_sub_cancel] end /-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` form a Cauchy sequence. This lemma does not assume `0 ≤ r` or `0 ≤ C`. -/ lemma cauchy_seq_finset_of_geometric_bound (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) : cauchy_seq (λ s : finset (ℕ), ∑ x in s, f x) := cauchy_seq_finset_of_norm_bounded _ (aux_has_sum_of_le_geometric hr (dist_partial_sum_le_of_le_geometric hf)).summable hf /-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` are within distance `C * r ^ n / (1 - r)` of the sum of the series. This lemma does not assume `0 ≤ r` or `0 ≤ C`. -/ lemma norm_sub_le_of_geometric_bound_of_has_sum (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) {a : α} (ha : has_sum f a) (n : ℕ) : ∥(∑ x in finset.range n, f x) - a∥ ≤ (C * r ^ n) / (1 - r) := begin rw ← dist_eq_norm, apply dist_le_of_le_geometric_of_tendsto r C hr (dist_partial_sum_le_of_le_geometric hf), exact ha.tendsto_sum_nat end end summable_le_geometric section normed_ring_geometric variables {R : Type*} [normed_ring R] [complete_space R] open normed_space /-- A geometric series in a complete normed ring is summable. Proved above (same name, different namespace) for not-necessarily-complete normed fields. -/ lemma normed_ring.summable_geometric_of_norm_lt_1 (x : R) (h : ∥x∥ < 1) : summable (λ (n:ℕ), x ^ n) := begin have h1 : summable (λ (n:ℕ), ∥x∥ ^ n) := summable_geometric_of_lt_1 (norm_nonneg _) h, refine summable_of_norm_bounded_eventually _ h1 _, rw nat.cofinite_eq_at_top, exact eventually_norm_pow_le x, end /-- Bound for the sum of a geometric series in a normed ring. This formula does not assume that the normed ring satisfies the axiom `∥1∥ = 1`. -/ lemma normed_ring.tsum_geometric_of_norm_lt_1 (x : R) (h : ∥x∥ < 1) : ∥(∑' (n:ℕ), x ^ n)∥ ≤ ∥(1:R)∥ - 1 + (1 - ∥x∥)⁻¹ := begin rw tsum_eq_zero_add (normed_ring.summable_geometric_of_norm_lt_1 x h), simp only [pow_zero], refine le_trans (norm_add_le _ _) _, have : ∥(∑' (b : ℕ), (λ n, x ^ (n + 1)) b)∥ ≤ (1 - ∥x∥)⁻¹ - 1, { refine tsum_of_norm_bounded _ (λ b, norm_pow_le' _ (nat.succ_pos b)), convert (has_sum_nat_add_iff' 1).mpr (has_sum_geometric_of_lt_1 (norm_nonneg x) h), simp }, linarith end lemma geom_series_mul_neg (x : R) (h : ∥x∥ < 1) : (∑' (i:ℕ), x ^ i) * (1 - x) = 1 := begin have := ((normed_ring.summable_geometric_of_norm_lt_1 x h).has_sum.mul_right (1 - x)), refine tendsto_nhds_unique this.tendsto_sum_nat _, have : tendsto (λ (n : ℕ), 1 - x ^ n) at_top (𝓝 1), { simpa using tendsto_const_nhds.sub (tendsto_pow_at_top_nhds_0_of_norm_lt_1 h) }, convert ← this, ext n, rw [←geom_sum_mul_neg, geom_series_def, finset.sum_mul], end lemma mul_neg_geom_series (x : R) (h : ∥x∥ < 1) : (1 - x) * (∑' (i:ℕ), x ^ i) = 1 := begin have := (normed_ring.summable_geometric_of_norm_lt_1 x h).has_sum.mul_left (1 - x), refine tendsto_nhds_unique this.tendsto_sum_nat _, have : tendsto (λ (n : ℕ), 1 - x ^ n) at_top (nhds 1), { simpa using tendsto_const_nhds.sub (tendsto_pow_at_top_nhds_0_of_norm_lt_1 h) }, convert ← this, ext n, rw [←mul_neg_geom_sum, geom_series_def, finset.mul_sum] end end normed_ring_geometric /-! ### Positive sequences with small sums on encodable types -/ /-- For any positive `ε`, define on an encodable type a positive sequence with sum less than `ε` -/ def pos_sum_of_encodable {ε : ℝ} (hε : 0 < ε) (ι) [encodable ι] : {ε' : ι → ℝ // (∀ i, 0 < ε' i) ∧ ∃ c, has_sum ε' c ∧ c ≤ ε} := begin let f := λ n, (ε / 2) / 2 ^ n, have hf : has_sum f ε := has_sum_geometric_two' _, have f0 : ∀ n, 0 < f n := λ n, div_pos (half_pos hε) (pow_pos zero_lt_two _), refine ⟨f ∘ encodable.encode, λ i, f0 _, _⟩, rcases hf.summable.comp_injective (@encodable.encode_injective ι _) with ⟨c, hg⟩, refine ⟨c, hg, has_sum_le_inj _ (@encodable.encode_injective ι _) _ _ hg hf⟩, { assume i _, exact le_of_lt (f0 _) }, { assume n, exact le_refl _ } end namespace nnreal theorem exists_pos_sum_of_encodable {ε : ℝ≥0} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → ℝ≥0, (∀ i, 0 < ε' i) ∧ ∃c, has_sum ε' c ∧ c < ε := let ⟨a, a0, aε⟩ := exists_between hε in let ⟨ε', hε', c, hc, hcε⟩ := pos_sum_of_encodable a0 ι in ⟨ λi, ⟨ε' i, le_of_lt $ hε' i⟩, assume i, nnreal.coe_lt_coe.2 $ hε' i, ⟨c, has_sum_le (assume i, le_of_lt $ hε' i) has_sum_zero hc ⟩, nnreal.has_sum_coe.1 hc, lt_of_le_of_lt (nnreal.coe_le_coe.1 hcε) aε ⟩ end nnreal namespace ennreal theorem exists_pos_sum_of_encodable {ε : ennreal} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → ℝ≥0, (∀ i, 0 < ε' i) ∧ (∑' i, (ε' i : ennreal)) < ε := begin rcases exists_between hε with ⟨r, h0r, hrε⟩, rcases lt_iff_exists_coe.1 hrε with ⟨x, rfl, hx⟩, rcases nnreal.exists_pos_sum_of_encodable (coe_lt_coe.1 h0r) ι with ⟨ε', hp, c, hc, hcr⟩, exact ⟨ε', hp, (ennreal.tsum_coe_eq hc).symm ▸ lt_trans (coe_lt_coe.2 hcr) hrε⟩ end end ennreal /-! ### Factorial -/ lemma factorial_tendsto_at_top : tendsto nat.factorial at_top at_top := tendsto_at_top_at_top_of_monotone nat.monotone_factorial (λ n, ⟨n, n.self_le_factorial⟩) lemma tendsto_factorial_div_pow_self_at_top : tendsto (λ n, n! / n^n : ℕ → ℝ) at_top (𝓝 0) := tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds (tendsto_const_div_at_top_nhds_0_nat 1) (eventually_of_forall $ λ n, div_nonneg (by exact_mod_cast n.factorial_pos.le) (pow_nonneg (by exact_mod_cast n.zero_le) _)) begin rw eventually_iff_exists_mem, use [set.Ioi 0, Ioi_mem_at_top 0], rintros n (hn : 0 < n), rcases nat.exists_eq_succ_of_ne_zero hn.ne.symm with ⟨k, rfl⟩, rw [← prod_range_add_one_eq_factorial, pow_eq_prod_const, div_eq_mul_inv, ← inv_eq_one_div, prod_nat_cast, nat.cast_succ, ← prod_inv_distrib', ← prod_mul_distrib, finset.prod_range_succ'], simp only [prod_range_succ', one_mul, nat.cast_add, zero_add, nat.cast_one], refine mul_le_of_le_one_left (inv_nonneg.mpr $ by exact_mod_cast hn.le) (prod_le_one _ _); intros x hx; rw finset.mem_range at hx, { refine mul_nonneg _ (inv_nonneg.mpr _); norm_cast; linarith }, { refine (div_le_one $ by exact_mod_cast hn).mpr _, norm_cast, linarith } end
da69e384c2ec311bcf62f5ce4717fe17859b0d7d
c777c32c8e484e195053731103c5e52af26a25d1
/src/measure_theory/function/ae_eq_of_integral.lean
9ab0cfcf0be01546c1f0431efc7c2fdf8ab54404
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
29,220
lean
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import analysis.normed_space.dual import measure_theory.function.strongly_measurable.lp import measure_theory.integral.set_integral /-! # From equality of integrals to equality of functions This file provides various statements of the general form "if two functions have the same integral on all sets, then they are equal almost everywhere". The different lemmas use various hypotheses on the class of functions, on the target space or on the possible finiteness of the measure. ## Main statements All results listed below apply to two functions `f, g`, together with two main hypotheses, * `f` and `g` are integrable on all measurable sets with finite measure, * for all measurable sets `s` with finite measure, `∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ`. The conclusion is then `f =ᵐ[μ] g`. The main lemmas are: * `ae_eq_of_forall_set_integral_eq_of_sigma_finite`: case of a sigma-finite measure. * `ae_fin_strongly_measurable.ae_eq_of_forall_set_integral_eq`: for functions which are `ae_fin_strongly_measurable`. * `Lp.ae_eq_of_forall_set_integral_eq`: for elements of `Lp`, for `0 < p < ∞`. * `integrable.ae_eq_of_forall_set_integral_eq`: for integrable functions. For each of these results, we also provide a lemma about the equality of one function and 0. For example, `Lp.ae_eq_zero_of_forall_set_integral_eq_zero`. We also register the corresponding lemma for integrals of `ℝ≥0∞`-valued functions, in `ae_eq_of_forall_set_lintegral_eq_of_sigma_finite`. Generally useful lemmas which are not related to integrals: * `ae_eq_zero_of_forall_inner`: if for all constants `c`, `λ x, inner c (f x) =ᵐ[μ] 0` then `f =ᵐ[μ] 0`. * `ae_eq_zero_of_forall_dual`: if for all constants `c` in the dual space, `λ x, c (f x) =ᵐ[μ] 0` then `f =ᵐ[μ] 0`. -/ open measure_theory topological_space normed_space filter open_locale ennreal nnreal measure_theory namespace measure_theory section ae_eq_of_forall variables {α E 𝕜 : Type*} {m : measurable_space α} {μ : measure α} [is_R_or_C 𝕜] lemma ae_eq_zero_of_forall_inner [normed_add_comm_group E] [inner_product_space 𝕜 E] [second_countable_topology E] {f : α → E} (hf : ∀ c : E, (λ x, (inner c (f x) : 𝕜)) =ᵐ[μ] 0) : f =ᵐ[μ] 0 := begin let s := dense_seq E, have hs : dense_range s := dense_range_dense_seq E, have hf' : ∀ᵐ x ∂μ, ∀ n : ℕ, inner (s n) (f x) = (0 : 𝕜), from ae_all_iff.mpr (λ n, hf (s n)), refine hf'.mono (λ x hx, _), rw [pi.zero_apply, ← @inner_self_eq_zero 𝕜], have h_closed : is_closed {c : E | inner c (f x) = (0 : 𝕜)}, from is_closed_eq (continuous_id.inner continuous_const) continuous_const, exact @is_closed_property ℕ E _ s (λ c, inner c (f x) = (0 : 𝕜)) hs h_closed (λ n, hx n) _, end local notation `⟪`x`, `y`⟫` := y x variables (𝕜) lemma ae_eq_zero_of_forall_dual_of_is_separable [normed_add_comm_group E] [normed_space 𝕜 E] {t : set E} (ht : topological_space.is_separable t) {f : α → E} (hf : ∀ c : dual 𝕜 E, (λ x, ⟪f x, c⟫) =ᵐ[μ] 0) (h't : ∀ᵐ x ∂μ, f x ∈ t) : f =ᵐ[μ] 0 := begin rcases ht with ⟨d, d_count, hd⟩, haveI : encodable d := d_count.to_encodable, have : ∀ (x : d), ∃ g : E →L[𝕜] 𝕜, ‖g‖ ≤ 1 ∧ g x = ‖(x : E)‖ := λ x, exists_dual_vector'' 𝕜 x, choose s hs using this, have A : ∀ (a : E), a ∈ t → (∀ x, ⟪a, s x⟫ = (0 : 𝕜)) → a = 0, { assume a hat ha, contrapose! ha, have a_pos : 0 < ‖a‖, by simp only [ha, norm_pos_iff, ne.def, not_false_iff], have a_mem : a ∈ closure d := hd hat, obtain ⟨x, hx⟩ : ∃ (x : d), dist a x < ‖a‖ / 2, { rcases metric.mem_closure_iff.1 a_mem (‖a‖/2) (half_pos a_pos) with ⟨x, h'x, hx⟩, exact ⟨⟨x, h'x⟩, hx⟩ }, use x, have I : ‖a‖/2 < ‖(x : E)‖, { have : ‖a‖ ≤ ‖(x : E)‖ + ‖a - x‖ := norm_le_insert' _ _, have : ‖a - x‖ < ‖a‖/2, by rwa dist_eq_norm at hx, linarith }, assume h, apply lt_irrefl (‖s x x‖), calc ‖s x x‖ = ‖s x (x - a)‖ : by simp only [h, sub_zero, continuous_linear_map.map_sub] ... ≤ 1 * ‖(x : E) - a‖ : continuous_linear_map.le_of_op_norm_le _ (hs x).1 _ ... < ‖a‖ / 2 : by { rw [one_mul], rwa dist_eq_norm' at hx } ... < ‖(x : E)‖ : I ... = ‖s x x‖ : by rw [(hs x).2, is_R_or_C.norm_coe_norm] }, have hfs : ∀ (y : d), ∀ᵐ x ∂μ, ⟪f x, s y⟫ = (0 : 𝕜), from λ y, hf (s y), have hf' : ∀ᵐ x ∂μ, ∀ (y : d), ⟪f x, s y⟫ = (0 : 𝕜), by rwa ae_all_iff, filter_upwards [hf', h't] with x hx h'x, exact A (f x) h'x hx, end lemma ae_eq_zero_of_forall_dual [normed_add_comm_group E] [normed_space 𝕜 E] [second_countable_topology E] {f : α → E} (hf : ∀ c : dual 𝕜 E, (λ x, ⟪f x, c⟫) =ᵐ[μ] 0) : f =ᵐ[μ] 0 := ae_eq_zero_of_forall_dual_of_is_separable 𝕜 (is_separable_of_separable_space (set.univ : set E)) hf (eventually_of_forall (λ x, set.mem_univ _)) variables {𝕜} end ae_eq_of_forall variables {α E : Type*} {m m0 : measurable_space α} {μ : measure α} {s t : set α} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] {p : ℝ≥0∞} section ae_eq_of_forall_set_integral_eq lemma ae_const_le_iff_forall_lt_measure_zero {β} [linear_order β] [topological_space β] [order_topology β] [first_countable_topology β] (f : α → β) (c : β) : (∀ᵐ x ∂μ, c ≤ f x) ↔ ∀ b < c, μ {x | f x ≤ b} = 0 := begin rw ae_iff, push_neg, split, { assume h b hb, exact measure_mono_null (λ y hy, (lt_of_le_of_lt hy hb : _)) h }, assume hc, by_cases h : ∀ b, c ≤ b, { have : {a : α | f a < c} = ∅, { apply set.eq_empty_iff_forall_not_mem.2 (λ x hx, _), exact (lt_irrefl _ (lt_of_lt_of_le hx (h (f x)))).elim }, simp [this] }, by_cases H : ¬ (is_lub (set.Iio c) c), { have : c ∈ upper_bounds (set.Iio c) := λ y hy, le_of_lt hy, obtain ⟨b, b_up, bc⟩ : ∃ (b : β), b ∈ upper_bounds (set.Iio c) ∧ b < c, by simpa [is_lub, is_least, this, lower_bounds] using H, exact measure_mono_null (λ x hx, b_up hx) (hc b bc) }, push_neg at H h, obtain ⟨u, u_mono, u_lt, u_lim, -⟩ : ∃ (u : ℕ → β), strict_mono u ∧ (∀ (n : ℕ), u n < c) ∧ tendsto u at_top (nhds c) ∧ ∀ (n : ℕ), u n ∈ set.Iio c := H.exists_seq_strict_mono_tendsto_of_not_mem (lt_irrefl c) h, have h_Union : {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}, { ext1 x, simp_rw [set.mem_Union, set.mem_set_of_eq], split; intro h, { obtain ⟨n, hn⟩ := ((tendsto_order.1 u_lim).1 _ h).exists, exact ⟨n, hn.le⟩ }, { obtain ⟨n, hn⟩ := h, exact hn.trans_lt (u_lt _), }, }, rw [h_Union, measure_Union_null_iff], assume n, exact hc _ (u_lt n), end section ennreal open_locale topology lemma ae_le_of_forall_set_lintegral_le_of_sigma_finite [sigma_finite μ] {f g : α → ℝ≥0∞} (hf : measurable f) (hg : measurable g) (h : ∀ s, measurable_set s → μ s < ∞ → ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ) : f ≤ᵐ[μ] g := begin have A : ∀ (ε N : ℝ≥0) (p : ℕ), 0 < ε → μ ({x | g x + ε ≤ f x ∧ g x ≤ N} ∩ spanning_sets μ p) = 0, { assume ε N p εpos, let s := {x | g x + ε ≤ f x ∧ g x ≤ N} ∩ spanning_sets μ p, have s_meas : measurable_set s, { have A : measurable_set {x | g x + ε ≤ f x} := measurable_set_le (hg.add measurable_const) hf, have B : measurable_set {x | g x ≤ N} := measurable_set_le hg measurable_const, exact (A.inter B).inter (measurable_spanning_sets μ p) }, have s_lt_top : μ s < ∞ := (measure_mono (set.inter_subset_right _ _)).trans_lt (measure_spanning_sets_lt_top μ p), have A : ∫⁻ x in s, g x ∂μ + ε * μ s ≤ ∫⁻ x in s, g x ∂μ + 0 := calc ∫⁻ x in s, g x ∂μ + ε * μ s = ∫⁻ x in s, g x ∂μ + ∫⁻ x in s, ε ∂μ : by simp only [lintegral_const, set.univ_inter, measurable_set.univ, measure.restrict_apply] ... = ∫⁻ x in s, (g x + ε) ∂μ : (lintegral_add_right _ measurable_const).symm ... ≤ ∫⁻ x in s, f x ∂μ : set_lintegral_mono (hg.add measurable_const) hf (λ x hx, hx.1.1) ... ≤ ∫⁻ x in s, g x ∂μ + 0 : by { rw [add_zero], exact h s s_meas s_lt_top }, have B : ∫⁻ x in s, g x ∂μ ≠ ∞, { apply ne_of_lt, calc ∫⁻ x in s, g x ∂μ ≤ ∫⁻ x in s, N ∂μ : set_lintegral_mono hg measurable_const (λ x hx, hx.1.2) ... = N * μ s : by simp only [lintegral_const, set.univ_inter, measurable_set.univ, measure.restrict_apply] ... < ∞ : by simp only [lt_top_iff_ne_top, s_lt_top.ne, and_false, ennreal.coe_ne_top, with_top.mul_eq_top_iff, ne.def, not_false_iff, false_and, or_self] }, have : (ε : ℝ≥0∞) * μ s ≤ 0 := ennreal.le_of_add_le_add_left B A, simpa only [ennreal.coe_eq_zero, nonpos_iff_eq_zero, mul_eq_zero, εpos.ne', false_or] }, obtain ⟨u, u_mono, u_pos, u_lim⟩ : ∃ (u : ℕ → ℝ≥0), strict_anti u ∧ (∀ n, 0 < u n) ∧ tendsto u at_top (nhds 0) := exists_seq_strict_anti_tendsto (0 : ℝ≥0), let s := λ (n : ℕ), {x | g x + u n ≤ f x ∧ g x ≤ (n : ℝ≥0)} ∩ spanning_sets μ n, have μs : ∀ n, μ (s n) = 0 := λ n, A _ _ _ (u_pos n), have B : {x | f x ≤ g x}ᶜ ⊆ ⋃ n, s n, { assume x hx, simp at hx, have L1 : ∀ᶠ n in at_top, g x + u n ≤ f x, { have : tendsto (λ n, g x + u n) at_top (𝓝 (g x + (0 : ℝ≥0))) := tendsto_const_nhds.add (ennreal.tendsto_coe.2 u_lim), simp at this, exact eventually_le_of_tendsto_lt hx this }, have L2 : ∀ᶠ (n : ℕ) in (at_top : filter ℕ), g x ≤ (n : ℝ≥0), { have : tendsto (λ (n : ℕ), ((n : ℝ≥0) : ℝ≥0∞)) at_top (𝓝 ∞), { simp only [ennreal.coe_nat], exact ennreal.tendsto_nat_nhds_top }, exact eventually_ge_of_tendsto_gt (hx.trans_le le_top) this }, apply set.mem_Union.2, exact ((L1.and L2).and (eventually_mem_spanning_sets μ x)).exists }, refine le_antisymm _ bot_le, calc μ {x : α | (λ (x : α), f x ≤ g x) x}ᶜ ≤ μ (⋃ n, s n) : measure_mono B ... ≤ ∑' n, μ (s n) : measure_Union_le _ ... = 0 : by simp only [μs, tsum_zero] end lemma ae_eq_of_forall_set_lintegral_eq_of_sigma_finite [sigma_finite μ] {f g : α → ℝ≥0∞} (hf : measurable f) (hg : measurable g) (h : ∀ s, measurable_set s → μ s < ∞ → ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ) : f =ᵐ[μ] g := begin have A : f ≤ᵐ[μ] g := ae_le_of_forall_set_lintegral_le_of_sigma_finite hf hg (λ s hs h's, le_of_eq (h s hs h's)), have B : g ≤ᵐ[μ] f := ae_le_of_forall_set_lintegral_le_of_sigma_finite hg hf (λ s hs h's, ge_of_eq (h s hs h's)), filter_upwards [A, B] with x using le_antisymm, end end ennreal section real variables {f : α → ℝ} /-- Don't use this lemma. Use `ae_nonneg_of_forall_set_integral_nonneg`. -/ lemma ae_nonneg_of_forall_set_integral_nonneg_of_strongly_measurable (hfm : strongly_measurable f) (hf : integrable f μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin simp_rw [eventually_le, pi.zero_apply], rw ae_const_le_iff_forall_lt_measure_zero, intros b hb_neg, let s := {x | f x ≤ b}, have hs : measurable_set s, from hfm.measurable_set_le strongly_measurable_const, have mus : μ s < ∞, { let c : ℝ≥0 := ⟨|b|, abs_nonneg _⟩, have c_pos : (c : ℝ≥0∞) ≠ 0, by simpa using hb_neg.ne, calc μ s ≤ μ {x | (c : ℝ≥0∞) ≤ ‖f x‖₊} : begin apply measure_mono, assume x hx, simp only [set.mem_set_of_eq] at hx, simpa only [nnnorm, abs_of_neg hb_neg, abs_of_neg (hx.trans_lt hb_neg), real.norm_eq_abs, subtype.mk_le_mk, neg_le_neg_iff, set.mem_set_of_eq, ennreal.coe_le_coe] using hx, end ... ≤ (∫⁻ x, ‖f x‖₊ ∂μ) / c : meas_ge_le_lintegral_div hfm.ae_measurable.ennnorm c_pos ennreal.coe_ne_top ... < ∞ : ennreal.div_lt_top (ne_of_lt hf.2) c_pos }, have h_int_gt : ∫ x in s, f x ∂μ ≤ b * (μ s).to_real, { have h_const_le : ∫ x in s, f x ∂μ ≤ ∫ x in s, b ∂μ, { refine set_integral_mono_ae_restrict hf.integrable_on (integrable_on_const.mpr (or.inr mus)) _, rw [eventually_le, ae_restrict_iff hs], exact eventually_of_forall (λ x hxs, hxs), }, rwa [set_integral_const, smul_eq_mul, mul_comm] at h_const_le, }, by_contra, refine (lt_self_iff_false (∫ x in s, f x ∂μ)).mp (h_int_gt.trans_lt _), refine (mul_neg_iff.mpr (or.inr ⟨hb_neg, _⟩)).trans_le _, swap, { simp_rw measure.restrict_restrict hs, exact hf_zero s hs mus, }, refine (ennreal.to_real_nonneg).lt_of_ne (λ h_eq, h _), cases (ennreal.to_real_eq_zero_iff _).mp h_eq.symm with hμs_eq_zero hμs_eq_top, { exact hμs_eq_zero, }, { exact absurd hμs_eq_top mus.ne, }, end lemma ae_nonneg_of_forall_set_integral_nonneg (hf : integrable f μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin rcases hf.1 with ⟨f', hf'_meas, hf_ae⟩, have hf'_integrable : integrable f' μ, from integrable.congr hf hf_ae, have hf'_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f' x ∂μ, { intros s hs h's, rw set_integral_congr_ae hs (hf_ae.mono (λ x hx hxs, hx.symm)), exact hf_zero s hs h's, }, exact (ae_nonneg_of_forall_set_integral_nonneg_of_strongly_measurable hf'_meas hf'_integrable hf'_zero).trans hf_ae.symm.le, end lemma ae_le_of_forall_set_integral_le {f g : α → ℝ} (hf : integrable f μ) (hg : integrable g μ) (hf_le : ∀ s, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ ≤ ∫ x in s, g x ∂μ) : f ≤ᵐ[μ] g := begin rw ← eventually_sub_nonneg, refine ae_nonneg_of_forall_set_integral_nonneg (hg.sub hf) (λ s hs, _), rw [integral_sub' hg.integrable_on hf.integrable_on, sub_nonneg], exact hf_le s hs end lemma ae_nonneg_restrict_of_forall_set_integral_nonneg_inter {f : α → ℝ} {t : set α} (hf : integrable_on f t μ) (hf_zero : ∀ s, measurable_set s → μ (s ∩ t) < ∞ → 0 ≤ ∫ x in (s ∩ t), f x ∂μ) : 0 ≤ᵐ[μ.restrict t] f := begin refine ae_nonneg_of_forall_set_integral_nonneg hf (λ s hs h's, _), simp_rw measure.restrict_restrict hs, apply hf_zero s hs, rwa measure.restrict_apply hs at h's, end lemma ae_nonneg_of_forall_set_integral_nonneg_of_sigma_finite [sigma_finite μ] {f : α → ℝ} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin apply ae_of_forall_measure_lt_top_ae_restrict, assume t t_meas t_lt_top, apply ae_nonneg_restrict_of_forall_set_integral_nonneg_inter (hf_int_finite t t_meas t_lt_top), assume s s_meas hs, exact hf_zero _ (s_meas.inter t_meas) (lt_of_le_of_lt (measure_mono (set.inter_subset_right _ _)) t_lt_top) end lemma ae_fin_strongly_measurable.ae_nonneg_of_forall_set_integral_nonneg {f : α → ℝ} (hf : ae_fin_strongly_measurable f μ) (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin let t := hf.sigma_finite_set, suffices : 0 ≤ᵐ[μ.restrict t] f, from ae_of_ae_restrict_of_ae_restrict_compl _ this hf.ae_eq_zero_compl.symm.le, haveI : sigma_finite (μ.restrict t) := hf.sigma_finite_restrict, refine ae_nonneg_of_forall_set_integral_nonneg_of_sigma_finite (λ s hs hμts, _) (λ s hs hμts, _), { rw [integrable_on, measure.restrict_restrict hs], rw measure.restrict_apply hs at hμts, exact hf_int_finite (s ∩ t) (hs.inter hf.measurable_set) hμts, }, { rw measure.restrict_restrict hs, rw measure.restrict_apply hs at hμts, exact hf_zero (s ∩ t) (hs.inter hf.measurable_set) hμts, }, end lemma ae_nonneg_restrict_of_forall_set_integral_nonneg {f : α → ℝ} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : 0 ≤ᵐ[μ.restrict t] f := begin refine ae_nonneg_restrict_of_forall_set_integral_nonneg_inter (hf_int_finite t ht (lt_top_iff_ne_top.mpr hμt)) (λ s hs h's, _), refine (hf_zero (s ∩ t) (hs.inter ht) _), exact (measure_mono (set.inter_subset_right s t)).trans_lt (lt_top_iff_ne_top.mpr hμt), end lemma ae_eq_zero_restrict_of_forall_set_integral_eq_zero_real {f : α → ℝ} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : f =ᵐ[μ.restrict t] 0 := begin suffices h_and : f ≤ᵐ[μ.restrict t] 0 ∧ 0 ≤ᵐ[μ.restrict t] f, from h_and.1.mp (h_and.2.mono (λ x hx1 hx2, le_antisymm hx2 hx1)), refine ⟨_, ae_nonneg_restrict_of_forall_set_integral_nonneg hf_int_finite (λ s hs hμs, (hf_zero s hs hμs).symm.le) ht hμt⟩, suffices h_neg : 0 ≤ᵐ[μ.restrict t] -f, { refine h_neg.mono (λ x hx, _), rw pi.neg_apply at hx, simpa using hx, }, refine ae_nonneg_restrict_of_forall_set_integral_nonneg (λ s hs hμs, (hf_int_finite s hs hμs).neg) (λ s hs hμs, _) ht hμt, simp_rw pi.neg_apply, rw [integral_neg, neg_nonneg], exact (hf_zero s hs hμs).le, end end real lemma ae_eq_zero_restrict_of_forall_set_integral_eq_zero {f : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : f =ᵐ[μ.restrict t] 0 := begin rcases (hf_int_finite t ht hμt.lt_top).ae_strongly_measurable.is_separable_ae_range with ⟨u, u_sep, hu⟩, refine ae_eq_zero_of_forall_dual_of_is_separable ℝ u_sep (λ c, _) hu, refine ae_eq_zero_restrict_of_forall_set_integral_eq_zero_real _ _ ht hμt, { assume s hs hμs, exact continuous_linear_map.integrable_comp c (hf_int_finite s hs hμs) }, { assume s hs hμs, rw [continuous_linear_map.integral_comp_comm c (hf_int_finite s hs hμs), hf_zero s hs hμs], exact continuous_linear_map.map_zero _ } end lemma ae_eq_restrict_of_forall_set_integral_eq {f g : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : f =ᵐ[μ.restrict t] g := begin rw ← sub_ae_eq_zero, have hfg' : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw integral_sub' (hf_int_finite s hs hμs) (hg_int_finite s hs hμs), exact sub_eq_zero.mpr (hfg_zero s hs hμs), }, have hfg_int : ∀ s, measurable_set s → μ s < ∞ → integrable_on (f-g) s μ, from λ s hs hμs, (hf_int_finite s hs hμs).sub (hg_int_finite s hs hμs), exact ae_eq_zero_restrict_of_forall_set_integral_eq_zero hfg_int hfg' ht hμt, end lemma ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite [sigma_finite μ] {f : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) : f =ᵐ[μ] 0 := begin let S := spanning_sets μ, rw [← @measure.restrict_univ _ _ μ, ← Union_spanning_sets μ, eventually_eq, ae_iff, measure.restrict_apply' (measurable_set.Union (measurable_spanning_sets μ))], rw [set.inter_Union, measure_Union_null_iff], intro n, have h_meas_n : measurable_set (S n), from (measurable_spanning_sets μ n), have hμn : μ (S n) < ∞, from measure_spanning_sets_lt_top μ n, rw ← measure.restrict_apply' h_meas_n, exact ae_eq_zero_restrict_of_forall_set_integral_eq_zero hf_int_finite hf_zero h_meas_n hμn.ne, end lemma ae_eq_of_forall_set_integral_eq_of_sigma_finite [sigma_finite μ] {f g : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg_eq : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) : f =ᵐ[μ] g := begin rw ← sub_ae_eq_zero, have hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw [integral_sub' (hf_int_finite s hs hμs) (hg_int_finite s hs hμs), sub_eq_zero.mpr (hfg_eq s hs hμs)], }, have hfg_int : ∀ s, measurable_set s → μ s < ∞ → integrable_on (f-g) s μ, from λ s hs hμs, (hf_int_finite s hs hμs).sub (hg_int_finite s hs hμs), exact ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite hfg_int hfg, end lemma ae_fin_strongly_measurable.ae_eq_zero_of_forall_set_integral_eq_zero {f : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) (hf : ae_fin_strongly_measurable f μ) : f =ᵐ[μ] 0 := begin let t := hf.sigma_finite_set, suffices : f =ᵐ[μ.restrict t] 0, from ae_of_ae_restrict_of_ae_restrict_compl _ this hf.ae_eq_zero_compl, haveI : sigma_finite (μ.restrict t) := hf.sigma_finite_restrict, refine ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite _ _, { intros s hs hμs, rw [integrable_on, measure.restrict_restrict hs], rw [measure.restrict_apply hs] at hμs, exact hf_int_finite _ (hs.inter hf.measurable_set) hμs, }, { intros s hs hμs, rw [measure.restrict_restrict hs], rw [measure.restrict_apply hs] at hμs, exact hf_zero _ (hs.inter hf.measurable_set) hμs, }, end lemma ae_fin_strongly_measurable.ae_eq_of_forall_set_integral_eq {f g : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg_eq : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) (hf : ae_fin_strongly_measurable f μ) (hg : ae_fin_strongly_measurable g μ) : f =ᵐ[μ] g := begin rw ← sub_ae_eq_zero, have hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw [integral_sub' (hf_int_finite s hs hμs) (hg_int_finite s hs hμs), sub_eq_zero.mpr (hfg_eq s hs hμs)], }, have hfg_int : ∀ s, measurable_set s → μ s < ∞ → integrable_on (f-g) s μ, from λ s hs hμs, (hf_int_finite s hs hμs).sub (hg_int_finite s hs hμs), exact (hf.sub hg).ae_eq_zero_of_forall_set_integral_eq_zero hfg_int hfg, end lemma Lp.ae_eq_zero_of_forall_set_integral_eq_zero (f : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) : f =ᵐ[μ] 0 := ae_fin_strongly_measurable.ae_eq_zero_of_forall_set_integral_eq_zero hf_int_finite hf_zero (Lp.fin_strongly_measurable _ hp_ne_zero hp_ne_top).ae_fin_strongly_measurable lemma Lp.ae_eq_of_forall_set_integral_eq (f g : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) : f =ᵐ[μ] g := ae_fin_strongly_measurable.ae_eq_of_forall_set_integral_eq hf_int_finite hg_int_finite hfg (Lp.fin_strongly_measurable _ hp_ne_zero hp_ne_top).ae_fin_strongly_measurable (Lp.fin_strongly_measurable _ hp_ne_zero hp_ne_top).ae_fin_strongly_measurable lemma ae_eq_zero_of_forall_set_integral_eq_of_fin_strongly_measurable_trim (hm : m ≤ m0) {f : α → E} (hf_int_finite : ∀ s, measurable_set[m] s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set[m] s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) (hf : fin_strongly_measurable f (μ.trim hm)) : f =ᵐ[μ] 0 := begin obtain ⟨t, ht_meas, htf_zero, htμ⟩ := hf.exists_set_sigma_finite, haveI : sigma_finite ((μ.restrict t).trim hm) := by rwa restrict_trim hm μ ht_meas at htμ, have htf_zero : f =ᵐ[μ.restrict tᶜ] 0, { rw [eventually_eq, ae_restrict_iff' (measurable_set.compl (hm _ ht_meas))], exact eventually_of_forall htf_zero, }, have hf_meas_m : strongly_measurable[m] f, from hf.strongly_measurable, suffices : f =ᵐ[μ.restrict t] 0, from ae_of_ae_restrict_of_ae_restrict_compl _ this htf_zero, refine measure_eq_zero_of_trim_eq_zero hm _, refine ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite _ _, { intros s hs hμs, rw [integrable_on, restrict_trim hm (μ.restrict t) hs, measure.restrict_restrict (hm s hs)], rw [← restrict_trim hm μ ht_meas, measure.restrict_apply hs, trim_measurable_set_eq hm (hs.inter ht_meas)] at hμs, refine integrable.trim hm _ hf_meas_m, exact hf_int_finite _ (hs.inter ht_meas) hμs, }, { intros s hs hμs, rw [restrict_trim hm (μ.restrict t) hs, measure.restrict_restrict (hm s hs)], rw [← restrict_trim hm μ ht_meas, measure.restrict_apply hs, trim_measurable_set_eq hm (hs.inter ht_meas)] at hμs, rw ← integral_trim hm hf_meas_m, exact hf_zero _ (hs.inter ht_meas) hμs, }, end lemma integrable.ae_eq_zero_of_forall_set_integral_eq_zero {f : α → E} (hf : integrable f μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) : f =ᵐ[μ] 0 := begin have hf_Lp : mem_ℒp f 1 μ, from mem_ℒp_one_iff_integrable.mpr hf, let f_Lp := hf_Lp.to_Lp f, have hf_f_Lp : f =ᵐ[μ] f_Lp, from (mem_ℒp.coe_fn_to_Lp hf_Lp).symm, refine hf_f_Lp.trans _, refine Lp.ae_eq_zero_of_forall_set_integral_eq_zero f_Lp one_ne_zero ennreal.coe_ne_top _ _, { exact λ s hs hμs, integrable.integrable_on (L1.integrable_coe_fn _), }, { intros s hs hμs, rw integral_congr_ae (ae_restrict_of_ae hf_f_Lp.symm), exact hf_zero s hs hμs, }, end lemma integrable.ae_eq_of_forall_set_integral_eq (f g : α → E) (hf : integrable f μ) (hg : integrable g μ) (hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) : f =ᵐ[μ] g := begin rw ← sub_ae_eq_zero, have hfg' : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw integral_sub' hf.integrable_on hg.integrable_on, exact sub_eq_zero.mpr (hfg s hs hμs), }, exact integrable.ae_eq_zero_of_forall_set_integral_eq_zero (hf.sub hg) hfg', end end ae_eq_of_forall_set_integral_eq section lintegral lemma ae_measurable.ae_eq_of_forall_set_lintegral_eq {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hg : ae_measurable g μ) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (hgi : ∫⁻ x, g x ∂μ ≠ ∞) (hfg : ∀ ⦃s⦄, measurable_set s → μ s < ∞ → ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ) : f =ᵐ[μ] g := begin refine ennreal.eventually_eq_of_to_real_eventually_eq (ae_lt_top' hf hfi).ne_of_lt (ae_lt_top' hg hgi).ne_of_lt (integrable.ae_eq_of_forall_set_integral_eq _ _ (integrable_to_real_of_lintegral_ne_top hf hfi) (integrable_to_real_of_lintegral_ne_top hg hgi) (λ s hs hs', _)), rw [integral_eq_lintegral_of_nonneg_ae, integral_eq_lintegral_of_nonneg_ae], { congr' 1, rw [lintegral_congr_ae (of_real_to_real_ae_eq _), lintegral_congr_ae (of_real_to_real_ae_eq _)], { exact hfg hs hs' }, { refine (ae_lt_top' hg.restrict (ne_of_lt (lt_of_le_of_lt _ hgi.lt_top))), exact @set_lintegral_univ α _ μ g ▸ lintegral_mono_set (set.subset_univ _) }, { refine (ae_lt_top' hf.restrict (ne_of_lt (lt_of_le_of_lt _ hfi.lt_top))), exact @set_lintegral_univ α _ μ f ▸ lintegral_mono_set (set.subset_univ _) } }, -- putting the proofs where they are used is extremely slow exacts [ ae_of_all _ (λ x, ennreal.to_real_nonneg), hg.ennreal_to_real.restrict.ae_strongly_measurable, ae_of_all _ (λ x, ennreal.to_real_nonneg), hf.ennreal_to_real.restrict.ae_strongly_measurable] end end lintegral end measure_theory
b9a58fd128aaee6c74280319c43954b7db3f03ed
dfd42d30132c2867977fefe7edae98b6dc703aeb
/src/complex_analysis_prep.lean
c28ecd83014f01ddb74a847e11ce03fc8e53d0de
[]
no_license
justadzr/lean-2021
1e42057ac75c794c94b8f148a27a24150c685f68
dfc6b30de2f27bdba5fbc51183e2b84e73a920d1
refs/heads/master
1,689,652,366,522
1,630,313,809,000
1,630,313,809,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
26,992
lean
--- Will clean up these imports import tactic import analysis.calculus.iterated_deriv import topology.continuous_function.polynomial import topology.separation import topology.path_connected import analysis.complex.basic import analysis.calculus.tangent_cone import analysis.normed_space.units import analysis.asymptotics.asymptotic_equivalent import analysis.analytic.basic import geometry.manifold.algebra.smooth_functions import linear_algebra.finite_dimensional import analysis.normed_space.inner_product import topology.metric_space.basic import topology.continuous_on import analysis.calculus.formal_multilinear_series open set complex classical filter asymptotics continuous_linear_map set metric is_open differentiable open_locale topological_space classical nnreal asymptotics filter ennreal unit_interval noncomputable theory --- Some assumptions theorem holomorph_analytic (f : ℂ → ℂ) (z : ℂ) : differentiable_at ℂ f z ↔ analytic_at ℂ f z := sorry theorem smooth_within_at_iff_holomorph_within_at (f : ℂ → ℂ) {s : set ℂ} (h : is_open s) : ∀ (z : ℂ), (differentiable_within_at ℂ f s z ↔ times_cont_diff_within_at ℂ ⊤ f s z):= sorry theorem smooth_at_iff_holomorph_at (f : ℂ → ℂ) : ∀ (z : ℂ), (differentiable_at ℂ f z ↔ times_cont_diff_at ℂ ⊤ f z) := sorry theorem smooth_on_iff_holomorph_on (f : ℂ → ℂ) {s : set ℂ} (h : is_open s) : differentiable_on ℂ f s ↔ times_cont_diff_on ℂ ⊤ f s := sorry section accuml_pts --- Need this? --- def isolated_pt (X : Type*) [topological_space X] (U : set X) (z : X) : Prop := --- ∃ (V : set X), is_open V ∧ U ∩ (V \ {z}) = ∅ def accumulation_pt (X : Type*) [topological_space X] (U : set X) (z : X) : Prop := ∀ (V : set X), V ∈ (𝓝 z) → ∃ (v : X), v ∈ U ∩ V ∧ ¬ v = z lemma accumulation_pt_open_inter {X : Type*} [topological_space X] {U : set X} {U' : set X} {z : X} (hU' : is_open U') (HU' : z ∈ U') (hz : accumulation_pt X U z) : accumulation_pt X (U ∩ U') z := λ V hV, (set.inter_assoc U U' V).symm ▸ (hz (U' ∩ V) $ _root_.mem_nhds_iff.mpr $ let ⟨t, ht, ht₁, ht₂⟩ := _root_.mem_nhds_iff.mp hV in ⟨U' ∩ t, ⟨set.inter_subset_inter_right U' ht, ⟨is_open.inter hU' ht₁, ⟨HU', ht₂⟩⟩⟩⟩) -- lemma accumulation_pt_mem_closure {X : Type*} [topological_space X] {U : set X} {z : X} (hz : accumulation_pt X U z) : z ∈ closure U := begin rw _root_.mem_closure_iff, intros o ho hxo, rcases hz o (is_open.mem_nhds ho hxo) with ⟨v, hv₁, hv₂⟩, use v, rw set.inter_comm at hv₁, exact hv₁, end end accuml_pts section crowded_space class crowded_space (X : Type*) [t : topological_space X] := (is_crowded : ∀ (x : X), ¬ t.is_open {x}) lemma crowded_space.def (X : Type*) [t : topological_space X] [cr : crowded_space X] : ∀ (x : X), ¬ t.is_open {x} := cr.is_crowded lemma mem_frontier (X : Type*) [t : topological_space X] {U : set X} {z : X} : z ∈ frontier U → ∀ (V : set X), V ∈ 𝓝 z → (V ∩ U ≠ ∅ ∧ V \ U ≠ ∅) := begin intros hz, rw frontier at hz, have h : ∀ (o : set X), is_open o → z ∈ o → (o ∩ U).nonempty := _root_.mem_closure_iff.mp (mem_of_mem_diff hz), have h' : ¬ (∃ (o : set X) (H : o ⊆ U), is_open o ∧ z ∈ o), { let p := not_mem_of_mem_diff hz, rw [mem_interior] at p, exact p, }, simp at h', intros V hV, rcases _root_.mem_nhds_iff.mp hV with ⟨V', hV'₁, hV'₂, hV'₃⟩, split, { exact set.nonempty.ne_empty (set.nonempty.mono (set.inter_subset_inter_left _ hV'₁) $ h V' hV'₂ hV'₃), }, { by_contra w, simp at w, rw [diff_eq_empty] at w, show false, from (h' V' (set.subset.trans hV'₁ w) hV'₂) hV'₃, }, end lemma t1_space_connected_with_two_points_is_crowded (X : Type*) [t : topological_space X] [c : connected_space X] [h : t1_space X] (hX : ∀ (x : X), ∃ (y : X), ¬ y = x) (x : X) : ¬ t.is_open {x} := begin by_contra w, rcases hX x with ⟨y, hy⟩, have minor₁ : is_open {x}ᶜ := is_open_compl_singleton, have : set.nonempty {x}ᶜ, { use y, rw [← ne.def, ← mem_compl_singleton_iff] at hy, exact hy, }, exact (ne_empty_iff_nonempty.mpr $ nonempty_inter w (is_open_compl_singleton) (union_compl_self {x}) (set.singleton_nonempty x) this) (set.inter_compl_self {x}), end lemma accumulation_pt_of_mem_open_nondiscrete (X : Type*) [t : topological_space X] [cr : crowded_space X] {U : set X} (hU : is_open U) {z : X} (hz : z ∈ U) : accumulation_pt X U z := begin let ht := crowded_space.def X, intros V hV, rw is_open_iff_forall_mem_open at hU, rcases _root_.mem_nhds_iff.mp hV with ⟨V', hV'₁, hV'₂, hV'₃⟩, rcases hU z hz with ⟨U', hU'₁, hU'₂, hU'₃⟩, have : ¬ (U' ∩ V') = {z} := by_contra (λ h, ht z $ (not_not.mp h) ▸ is_open.inter hU'₂ hV'₂), rw set.ext_iff at this, simp at this, rcases this with ⟨v, hV⟩, use v, rw iff_iff_implies_and_implies at hV, cases not_and_distrib.mp hV, { simp at h, exact ⟨⟨hU'₁ h.1, hV'₁ h.2.1⟩, h.2.2⟩, }, { simp at h, exfalso, exact h.2 (h.1.symm ▸ hU'₃) (h.1.symm ▸ hV'₃), }, end lemma accumulation_pt_of_open_mem_frontier {X : Type*} [t : topological_space X] [cr : crowded_space X] {U : set X} (hU : is_open U) {z : X} (hz : z ∈ frontier U) : accumulation_pt X U z := if h : z ∈ U then accumulation_pt_of_mem_open_nondiscrete X hU h else begin rw accumulation_pt, intros V hV, let p := (mem_frontier X hz V hV).1, rcases set.nonempty_def.mp (set.ne_empty_iff_nonempty.mp p) with ⟨v, hv⟩, use v, have : ¬ v = z := begin by_contra w, rw ← w at h, exact h hv.2, end, rw set.inter_comm at hv, exact ⟨hv, this⟩, end instance complex_plane_crowded_space : crowded_space ℂ := { is_crowded := begin have : ∀ (x : ℂ), ∃ y, ¬ y = x := begin intros x, by_cases (x = 0), { rw h, exact ⟨1, one_ne_zero⟩, }, { exact ⟨0, λ h', h h'.symm⟩, }, end, exact t1_space_connected_with_two_points_is_crowded ℂ this, end } end crowded_space section accuml_pts_homeomorph lemma mem_image_closure_mem_closure {X : Type*} [topological_space X] {U : set X} {x : X} (hx : x ∈ closure U) {Y : Type*} [topological_space Y] {e : local_homeomorph X Y} (he : x ∈ e.to_local_equiv.source) : e x ∈ closure (e '' U) := begin rw _root_.mem_closure_iff at hx ⊢, intros o ho hxo, have : e.is_image (e⁻¹' o) o := begin intros y hy, split, { intros h, exact h, }, { intros h, exact set.mem_preimage.mp h }, end, let o' := e.to_local_equiv.source ∩ e⁻¹' o, have subkey : x ∈ o' := ⟨he, hxo⟩, have key : is_open o' := (local_homeomorph.is_image.is_open_iff this).mpr (is_open.inter e.open_target ho), rcases hx o' key subkey with ⟨z, hz₁, hz₂⟩, rcases hz₁ with ⟨hz₁₁, hz₁₂⟩, use e z, exact ⟨hz₁₂, set.mem_image_of_mem e hz₂⟩, end lemma mem_closure_inter {X : Type*} [topological_space X] {U : set X} {x : X} (hx : x ∈ closure U) {U' : set X} (hU' : is_open U') (h : x ∈ U') : x ∈ closure (U ∩ U') := begin rw _root_.mem_closure_iff at hx ⊢, intros o ho hxo, specialize hx (o ∩ U') (is_open.inter ho hU') ⟨hxo, h⟩, rw set.inter_assoc at hx, nth_rewrite 1 set.inter_comm at hx, exact hx, end lemma accumulation_pt_local_homeomorph {X : Type*} [topological_space X] {U : set X} {x : X} (hx : accumulation_pt X U x) {Y : Type*} [topological_space Y] {e : local_homeomorph X Y} (he : x ∈ e.to_local_equiv.source) : accumulation_pt Y (e '' U) (e x) := begin rw accumulation_pt at hx ⊢, intros V hV, rcases _root_.mem_nhds_iff.mp hV with ⟨V', hV'₁, hV'₂, hV'₃⟩, specialize hx (e.to_local_equiv.source ∩ e⁻¹' (V' ∩ e.to_local_equiv.target)), have : (e.to_local_equiv.source ∩ e⁻¹' (V' ∩ e.to_local_equiv.target)) ∈ 𝓝 x := begin have minor : is_open (V' ∩ e.to_local_equiv.target) := is_open.inter hV'₂ e.open_target, have key : x ∈ (e⁻¹' (V' ∩ e.to_local_equiv.target)) := set.mem_preimage.mpr ⟨hV'₃, local_equiv.map_source _ he⟩, refine is_open.mem_nhds _ ⟨he, key⟩, apply local_homeomorph.preimage_open_of_open, exact is_open.inter hV'₂ e.open_target, end, rcases hx this with ⟨a, ha₁, ha₂⟩, rcases ha₁ with ⟨haa, hab⟩, let p := set.mem_image_of_mem e hab, use e a, split, { split, exact set.mem_image_of_mem e haa, nth_rewrite 1 set.inter_comm at p, rw [← local_homeomorph.coe_coe, ← local_equiv.symm_image_target_inter_eq e.to_local_equiv V'] at p, have : set.left_inv_on ⇑(e.to_local_equiv) ⇑(e.to_local_equiv.symm) e.to_local_equiv.target := begin nth_rewrite 0 ← local_equiv.symm_symm e.to_local_equiv, rw [←local_homeomorph.symm_source, local_homeomorph.symm_to_local_equiv], exact local_equiv.left_inv_on e.to_local_equiv.symm, end, rw set.left_inv_on.image_image' this (set.inter_subset_left e.to_local_equiv.target V') at p, exact hV'₁ p.2, }, rw set.mem_image at p, rcases p with ⟨b, hb⟩, rcases hb with ⟨left, right⟩, rcases left with ⟨hb₁, hb₂⟩, { intros w, have key : a = b := by rwa [eq_comm, ←local_homeomorph.coe_coe e, set.inj_on.eq_iff (local_equiv.inj_on e.to_local_equiv) hab.1 hb₁] at right, rw ← right at w, rw [eq_comm, ←local_homeomorph.coe_coe e, set.inj_on.eq_iff (local_equiv.inj_on e.to_local_equiv) he hb₁] at w, rw ← key at w, exact ha₂ (eq_comm.mp w), }, end end accuml_pts_homeomorph section complex_theorems theorem identity_theorem {f : ℂ → ℂ} {g : ℂ → ℂ} {U : set ℂ} (hU₁ : is_open U) (hU₂ : is_connected U) (hf : differentiable_on ℂ f U) (hg : differentiable_on ℂ g U) {s₀ : ℂ} {S : set ℂ} (hS : S ⊆ U) (hS' : set.eq_on f g S) (hs₀ : s₀ ∈ S) (hs₀' : accumulation_pt ℂ S s₀): set.eq_on f g U := sorry theorem eq_of_eq_on_open {f : ℂ → ℂ} {g : ℂ → ℂ} {U : set ℂ} (hU₁ : is_open U) (hU₂ : is_connected U) (hf : differentiable_on ℂ f U) (hg : differentiable_on ℂ g U) {V : set ℂ} (hV₁ : is_open V) (hV₂ : V.nonempty) (hV₃ : set.eq_on f g V) (hV₄ : V ⊆ U) : set.eq_on f g U := let ⟨v, hv⟩ := hV₂ in identity_theorem hU₁ hU₂ hf hg hV₄ hV₃ hv $ accumulation_pt_of_mem_open_nondiscrete ℂ hV₁ hv theorem open_mapping_complex {f : ℂ → ℂ} {U : set ℂ} (hU₁ : is_open U) (hU₂ : is_connected U) (hf₁ : differentiable_on ℂ f U) (hf₂ : ∃ (x y : ℂ), x ∈ U ∧ y ∈ U ∧ ¬ f x = f y) : ∀ (U' : set ℂ), U' ⊆ U → is_open U' → is_open (f '' U'):= sorry end complex_theorems /- Trash codes. A bad attempt to prove the identity theorem only assuming some standard results -/ /- lemma nonvanishing_has_local_expansion (ε : ℝ) {hε : ε > 0} (f : ℂ → ℂ) (w : ℂ) {hf₁ : ∃ (z : ℂ), z ∈ ball w ε ∧ ¬f z = 0} {hf₂ : ∀ (z : ℂ), z ∈ ball w ε → analytic_at ℂ f z} {hf₂ : f w = 0}: ∃ (k : ℕ) (r : ℝ) (g : ℂ → ℂ), k > 0 ∧ r ≤ ε ∧ 0 < r ∧ ∀ (x : ℂ), x ∈ ball w r → f = (λ x, ((x - w) ^ k) * g x) ∧ ¬ g x = 0 ∧ analytic_at ℂ g x:= sorry -- I cannot prove the following theorem neatly. I tried to prove it with some disguting inductions, -- but Lean's treatments of derivatives are not quite nice in this case. Maybe using g's expansion -- would be easier. But again, that requires at least one induction. lemma nonvanishing_iter_deriv_of_nonvanishing (f : ℂ → ℂ) (w : ℂ) {hf : analytic_at ℂ f w}: (∃ (k : ℕ), ¬ iterated_deriv k f w = 0) ↔ (∃ (ε : ℝ), 0 < ε ∧ (∀ (z : ℂ), z ∈ ball w ε → analytic_at ℂ f z) ∧ (∃ (z : ℂ), z ∈ ball w ε ∧ ¬f z = 0)) := sorry lemma nonvanishing_disk_of_continuous (f : ℂ → ℂ) (z : ℂ) {hf₁ : continuous_at f z} {hf₂ : ¬ f z = 0}: ∃ (ε : ℝ), 0 < ε ∧ ∀ (x : ℂ), x ∈ ball z ε → ¬ f x = 0 := begin have := hf₁, rw continuous_at_iff at this, let ε' := ∥f z∥ / 2, rw [← ne.def, ← norm_pos_iff] at hf₂, have hε' : 0 < ∥f z∥ / 2 := by linarith, rcases this ε' hε' with ⟨δ, hδ, h⟩, use min ε' δ, split, simp, exact ⟨hε', hδ⟩, { intros x hx, rw [mem_ball', dist_comm] at hx, have lt_δ : dist x z < δ := lt_of_lt_of_le hx (min_le_right _ _), specialize h lt_δ, rw [dist_eq_norm, norm_sub_rev] at h, have key : 0 < ∥f x∥ := calc ∥f x∥ = ∥f z - (f z - f x)∥ : by simp ... ≥ ∥f z∥ - ∥f z - f x∥ : norm_sub_norm_le _ _ ... ≥ ∥f z∥ - ε' : begin simp, apply le_of_lt, exact h, end ... ≥ ∥f z∥ - ∥f z∥ / 2 : begin simp, apply le_of_eq, rw ← norm_eq_abs, end ... = ∥f z∥ / 2 : by linarith ... > 0 : hε', rw [norm_pos_iff] at key, exact key, }, end lemma is_open_nonvanishing_of_continuous (f : ℂ → ℂ) (U : set ℂ) {hU : is_open U} {hf : ∀ (z : ℂ), z ∈ U → continuous_at f z} : is_open {z : ℂ | z ∈ U ∧ ¬ f z = 0} := begin rw metric.is_open_iff at *, dsimp, intros z hz, rcases hz with ⟨hz₁, hz₂⟩, specialize hU z hz₁, specialize hf z hz₁, rcases hU with ⟨δ, hδ₁, hδ₂⟩, rcases nonvanishing_disk_of_continuous f z with ⟨ε, hε₁, hε₂⟩, assumption', use min δ ε, split, simp at hδ₁, exact lt_min hδ₁ hε₁, rw subset_def, dsimp, intros x hx, have key₁ : x ∈ U := hδ₂ ((ball_subset_ball $ min_le_left δ ε) hx), have key₂ : ¬ f x = 0 := hε₂ x ((ball_subset_ball $ min_le_right δ ε) hx), exact ⟨key₁, key₂⟩, end lemma isolated_zeros_of_nonvanishing (ε : ℝ) {hε : ε > 0} (f : ℂ → ℂ) (w : ℂ) {hf₁ : ∃ (z : ℂ), z ∈ ball w ε ∧ ¬f z = 0} {hf₂ : ∀ (z : ℂ), z ∈ ball w ε → analytic_at ℂ f z}: ∃ (r : ℝ), r ≤ ε ∧ 0 < r ∧ ∀ (x : ℂ), x ∈ ball w r → ¬ x - w = 0 → ¬ f x = 0:= begin by_cases (f w = 0), -- the case where f w = 0; use f's local expansion around w { rcases nonvanishing_has_local_expansion ε f w with ⟨k, r, g, H⟩, rcases H with ⟨H₁, H₂, H₃, H₄⟩, use r, split, exact H₂, { split, exact H₃, { intros x hx₁ hx₂, by_contra h', specialize H₄ x hx₁, rcases H₄ with ⟨h₂₁, h₂₂, h₂₃⟩, rw h₂₁ at h', have key : (x - w) ^ k = 0 ∨ g x = 0 := eq_zero_or_eq_zero_of_mul_eq_zero h', cases key with key₁ key₂, { rw [← complex.cpow_nat_cast, complex.cpow_eq_zero_iff] at key₁, exact hx₂ key₁.1, }, { exact h₂₂ key₂, }, }, }, assumption', }, -- the case where f w ≠ 0; use the continuity of f at w { specialize hf₂ w (mem_ball_self hε), rcases nonvanishing_disk_of_continuous f w with ⟨r, hr⟩, assumption', use min r ε, split, exact min_le_right _ _, split, { simp, exact ⟨hr.1, hε⟩, }, { intros x hx₁ hx₂, rw [mem_ball'] at hx₁, have key : dist w x < r := lt_of_lt_of_le hx₁ (min_le_left _ _), rw [← mem_ball'] at key, exact hr.2 x key, }, exact analytic_at.continuous_at hf₂, }, end def is_accumulation_point (U : set ℂ) (z : ℂ) : Prop := ∀ (V : set ℂ), V ∈ (𝓝 z) → ∃ (v : ℂ), v ∈ U ∩ V ∧ ¬ v - z = 0 lemma vanishing_disk_of_accumulation_point (U : set ℂ) {hU : is_open U} (f : ℂ → ℂ) {hf : ∀ (z : ℂ), z ∈ U → analytic_at ℂ f z} (s₀ : ℂ) {hs₀ : is_accumulation_point {s : ℂ | f s = 0 ∧ s ∈ U} s₀} {hs₀' : s₀ ∈ {s : ℂ | f s = 0 ∧ s ∈ U}}: ∃ (ε : ℝ), 0 < ε ∧ ball s₀ ε ⊆ U ∧ ∀ (z : ℂ), z ∈ ball s₀ ε → f z = 0 := begin by_contra w, simp only [not_exists, not_and] at w, dsimp at hs₀', rw metric.is_open_iff at hU, specialize hU s₀ hs₀'.2, rcases hU with ⟨ε, hε₁, hε₂⟩, specialize w ε hε₁ hε₂, simp only [not_forall] at w, rcases w with ⟨z, hz₁, hz₂⟩, have hf₁ : ∃ (z : ℂ), z ∈ ball s₀ ε ∧ ¬f z = 0 := ⟨z, ⟨hz₁, hz₂⟩⟩, have hf₂ : ∀ (x : ℂ), x ∈ ball s₀ ε → analytic_at ℂ f x := λ x hx, hf x $ hε₂ hx, rcases isolated_zeros_of_nonvanishing ε f s₀ with ⟨r, hr₁, hr₂, hr₃⟩, assumption', have : ∃ (v : ℂ), v ∈ {s : ℂ | f s = 0 ∧ s ∈ U} ∩ (ball s₀ r) ∧ ¬ v - s₀ = 0 := hs₀ (ball s₀ r) (ball_mem_nhds s₀ hr₂), rcases this with ⟨v, hv₁, hv₂⟩, dsimp at hv₁, show false, from (hr₃ v hv₁.2 hv₂) hv₁.1.1, end theorem vanishing_if_zeros_accumulate (U : set ℂ) {hU₁ : is_open U} {hU₂ : is_connected U} (f : ℂ → ℂ) {hf : ∀ (z : ℂ), z ∈ U → analytic_at ℂ f z} (s₀ : ℂ) {hs₀ : is_accumulation_point {s : ℂ | f s = 0 ∧ s ∈ U} s₀} {hs₀' : s₀ ∈ {s : ℂ | f s = 0 ∧ s ∈ U}}: ∀ (z : ℂ), z ∈ U → f z = 0:= begin let U₁ : set ℂ := {z : ℂ | z ∈ U ∧ ∃ (r : ℝ), 0 < r ∧ ball z r ⊆ U ∧ ∀ (x : ℂ), x ∈ ball z r → f x = 0}, let U₂ : set ℂ := {z : ℂ | z ∈ U ∧ ∃ (k : ℕ), ¬ iterated_deriv k f z = 0}, have h₁ : U₁ ∪ U₂ = U := begin ext, split, { intro h, dsimp at h, cases h with H₁ H₂, exact H₁.1, exact H₂.1, }, { intro H, by_cases (x ∈ U₂), exact (mem_union_right U₁) h, { by_cases h' : f x = 0, { have key : is_accumulation_point {s : ℂ | f s = 0 ∧ s ∈ U} x ∧ x ∈ {s : ℂ | f s = 0 ∧ s ∈ U}:= begin by_contradiction w, rw not_and_distrib at w, cases w with w₁ w₂, { -- sorry, unfold is_accumulation_point at w₁, simp at w₁, rcases w₁ with ⟨U', hU₁', hU₂'⟩, rw metric.mem_nhds_iff at hU₁', rcases hU₁' with ⟨r, hr₁, hr₂⟩, let U'' : set ℂ := ball x r ∩ U, have key₁ : is_open U'' := is_open.inter metric.is_open_ball hU₁, rw metric.is_open_iff at key₁, specialize key₁ x (mem_inter (mem_ball_self hr₁) H), rcases key₁ with ⟨ε, hε₁, hε₂⟩, let x' : ℂ := x + ε / 2, have key₂ : x' ∈ ball x ε := begin simp, have : 0 ≤ ε / 2 := by linarith, exact calc dist x' x = ∥(x + ε / 2) - x∥ : by rw dist_eq_norm ... = complex.abs ↑(ε / 2) : by simp ... = ε / 2 : by rw complex.abs_of_nonneg this ... < ε : by linarith, end, have key₃ : ¬ f x' = 0 := begin by_contra w', have : x' ∈ U'' := hε₂ key₂, simp only [mem_inter_eq] at this, specialize hU₂' x' w' this.2 (hr₂ this.1), have key : ¬ x' - x = 0 := begin simp, exact ne_of_gt hε₁, end, show false, from key hU₂', end, have : ∃ (ε : ℝ), ε > 0 ∧ (∀ (z : ℂ), z ∈ ball x ε → analytic_at ℂ f z) ∧ ∃ (z : ℂ), z ∈ ball x ε ∧ ¬f z = 0 := begin use ε, split, exact hε₁, split, intros z hz, exact hf z (mem_of_mem_inter_right (hε₂ hz)), exact ⟨x', ⟨key₂, key₃⟩⟩, end, have key₄ : x ∈ U₂ := begin dsimp, split, exact H, rcases iff.elim_right (nonvanishing_iter_deriv_of_nonvanishing f x) this with ⟨k, hk⟩, use k, exact hf x H, end, show false, from h key₄, }, { simp at w₂, show false, from (w₂ h') H, }, end, rcases vanishing_disk_of_accumulation_point U f x with ⟨ε, hε₁, hε₂, hε₃⟩, assumption', have : x ∈ U₁ := begin dsimp [U₁], split, exact H, { use ε, exact ⟨hε₁, ⟨hε₂, hε₃⟩⟩, }, end, exact (mem_union_left U₂) this, exact key.1, exact key.2, }, { have key₁ : ∃ (k : ℕ), ¬ iterated_deriv k f x = 0 := by use 0, have key₂ : x ∈ U₂ := begin simp, exact ⟨H, key₁⟩, end, exfalso, exact h key₂, }, }, }, end, have h₂ : U₁ ∩ U₂ = ∅ := begin by_contra, rw [← ne.def, ne_empty_iff_nonempty, nonempty_def] at h, rcases h with ⟨x, hx⟩, dsimp at hx, rcases iff.elim_left (nonvanishing_iter_deriv_of_nonvanishing f x) hx.2.2 with ⟨ε, hε₁, hε₂, hε₃⟩, rcases isolated_zeros_of_nonvanishing ε f x with ⟨r, hr₁, hr₂, hr₃⟩, assumption', swap, exact hf x hx.1.1, rcases hx.1.2 with ⟨r', hr₁', hr₂', hr₃'⟩, let r'' : ℝ := min r r', have minor₁ : 0 < r'' := begin rw lt_min_iff, exact ⟨hr₂, gt.lt hr₁'⟩, end, have minor₂ : ∃ (x' : ℂ), x' ∈ ball x r'' ∧ ¬ x' - x = 0 := begin let x' : ℂ := x + r'' / 2, use x', split, simp only [metric.mem_ball], have : 0 ≤ r'' / 2 := by linarith, exact calc dist x' x = ∥(x + r'' / 2) - x∥ : by rw dist_eq_norm ... = complex.abs ↑(r'' / 2) : by simp ... = r'' / 2 : by rw complex.abs_of_nonneg this ... < r'' : by linarith, simp, exact ne_of_gt minor₁, end, rcases minor₂ with ⟨x', hx₁', hx₂'⟩, have key₁ : f x' = 0 := hr₃' x' ((ball_subset_ball (min_le_right r r')) hx₁'), have key₂ : ¬ f x' = 0 := hr₃ x' ((ball_subset_ball (min_le_left r r')) hx₁') hx₂', show false, from key₂ key₁, end, have h₃ : is_open U₁ := begin rw metric.is_open_iff, intros x hx, dsimp at hx, rcases hx with ⟨hx₁, ε, hε₁, hε₂, hε₃⟩, use ε, split, exact hε₁, intros z hz, dsimp, split, exact hε₂ hz, have : ∃ (r : ℝ), (0 < r ∧ ball z r ⊆ U) ∧ ball z r ⊆ ball x ε := begin have key : is_open (ball x ε) := is_open_ball, rw metric.is_open_iff at key, specialize key z hz, rcases key with ⟨r, hr₁, hr₂⟩, use r, split, exact ⟨hr₁, subset.trans hr₂ hε₂⟩, exact hr₂, end, rcases this with ⟨r, hr₁, hr₂⟩, use r, split, exact hr₁.1, split, exact hr₁.2, intros x' hx', exact hε₃ x' (hr₂ hx'), end, have h₄ : is_open U₂ := begin sorry, end, have h₅ : U₁.nonempty := begin rw nonempty_def, use s₀, dsimp, simp at hs₀', split, exact hs₀'.2, rcases vanishing_disk_of_accumulation_point U f s₀ with ⟨ε, hε₁, hε₂, hε₃⟩, assumption', use ε, exact ⟨hε₁, ⟨hε₂, hε₃⟩⟩, end, have hfinal : U₁ = U := begin have : is_preconnected U := is_connected.is_preconnected hU₂, rw is_preconnected_iff_subset_of_disjoint at this, specialize this U₁ U₂ h₃ h₄ (eq.subset (eq.symm h₁)), have minor : U ∩ (U₁ ∩ U₂) = ∅ := begin rw h₂, simp, end, specialize this minor, cases this, { have minor' : U₁ ⊆ U := begin let h := set.subset_union_left U₁ U₂, rw h₁ at h, exact h, end, exact has_subset.subset.antisymm minor' this, }, { have minor₁ : U₁ ⊆ U := begin let h := set.subset_union_left U₁ U₂, rw h₁ at h, exact h, end, have minor₂ : U₂ ⊆ U := begin let h := set.subset_union_right U₁ U₂, rw h₁ at h, exact h, end, have minor₃ : U₂ = U := has_subset.subset.antisymm minor₂ this, have key : U₁ = ∅ := begin rw [inter_comm, ← set.subset_empty_iff, ← set.diff_eq_self] at h₂, rw ← h₂, by_contra w, rw [← ne.def, set.ne_empty_iff_nonempty, set.nonempty_diff, minor₃] at w, show false, from w minor₁, end, rw [← set.not_nonempty_iff_eq_empty] at key, exfalso, exact key h₅, }, end, intros z hz, have : z ∈ U₁ := (eq.subset (eq.symm hfinal)) hz, dsimp at this, rcases this.2 with ⟨r, hr₁, hr₂, hr₃⟩, specialize hr₃ z (mem_ball_self hr₁), exact hr₃, end theorem eq_if_eq_points_accumulate (U : set ℂ) {hU₁ : is_open U} {hU₂ : is_connected U} (f : ℂ → ℂ) {hf : ∀ (z : ℂ), z ∈ U → analytic_at ℂ f z} (g : ℂ → ℂ) {hg : ∀ (z : ℂ), z ∈ U → analytic_at ℂ g z} (s₀ : ℂ) {hs₀ : is_accumulation_point {s : ℂ | f s = g s ∧ s ∈ U} s₀} {hs₀' : s₀ ∈ {s : ℂ | f s = g s ∧ s ∈ U}} : ∀ (z : ℂ), z ∈ U → f z = g z := begin let h : ℂ → ℂ := f - g, have minor : ∀ (z : ℂ), z ∈ U → analytic_at ℂ h z := λ z hz, analytic_at.sub (hf z hz) $ hg z hz, have key : {s : ℂ | f s = g s ∧ s ∈ U} = {s : ℂ | h s = 0 ∧ s ∈ U} := begin ext, split, { intros hx, dsimp at hx, simp, split, exact calc h x = (f - g) x : by refl ... = f x - g x : by simp ... = f x - f x : by rw ← hx.1 ... = 0 : by ring, exact hx.2, }, { intros hx, dsimp at hx, simp, split, exact calc f x = f x - g x + g x : by simp ... = (f - g) x + g x : by simp ... = h x + g x : by refl ... = 0 + g x : by rw hx.1 ... = g x : by ring, exact hx.2, }, end, rw key at hs₀ hs₀', intros z hz, have : h z = 0 := vanishing_if_zeros_accumulate U h s₀ z hz, assumption', exact calc f z = f z - g z + g z : by simp ... = (f - g) z + g z : by simp ... = h z + g z : by refl ... = 0 + g z : by rw this ... = g z : by ring, end -/
c0c0328d3408496f938cdceb36cda8d4401f7835
ba4794a0deca1d2aaa68914cd285d77880907b5c
/src/game/world9/level4.lean
999bb784b5bcad6ebc73015f66bcd06150811a3e
[ "Apache-2.0" ]
permissive
ChrisHughes24/natural_number_game
c7c00aa1f6a95004286fd456ed13cf6e113159ce
9d09925424da9f6275e6cfe427c8bcf12bb0944f
refs/heads/master
1,600,715,773,528
1,573,910,462,000
1,573,910,462,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,288
lean
import game.world9.level3 -- hide namespace mynat -- hide /- # Multiplication World ## Level 4: `mul_left_cancel` This is the last of the bonus multiplication levels. `mul_left_cancel` will be useful in inequality world. It might be worth noting that `revert` is the opposite of `intro`. `revert` can be a convenient tactic just before the beginning of an induction proof. -/ /- Theorem If $a \neq 0$, $b$ and $c$ are natural numbers such that $ ab = ac, $ then $b = c$. -/ theorem mul_left_cancel (a b c : mynat) (ha : a ≠ 0) : a * b = a * c → b = c := begin [less_leaky] revert b, induction c with d hd, { intro b, rw mul_zero, intro h, cases (eq_zero_or_eq_zero_of_mul_eq_zero _ _ h) with h1 h2, exfalso, apply ha, assumption, assumption }, { intros b hb, cases b with c, { rw mul_zero at hb, exfalso, apply ha, symmetry at hb, cases (eq_zero_or_eq_zero_of_mul_eq_zero _ _ hb) with h h, exact h, exfalso, exact succ_ne_zero _ h, }, { have h : c = d, apply hd, rw mul_succ at hb, rw mul_succ at hb, apply add_right_cancel _ _ _ hb, rw h, refl, } } end end mynat -- hide /- You should now be ready for inequality world. -/
c1c8a38d1126de3d28bb07ba6722375cec010e68
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
/src/Lean/Data/Name.lean
c853d9b55c99e7bd0204b26d1ce92522da896cca
[ "Apache-2.0" ]
permissive
WojciechKarpiel/lean4
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
f6e1314fa08293dea66a329e05b6c196a0189163
refs/heads/master
1,686,633,402,214
1,625,821,189,000
1,625,821,258,000
384,640,886
0
0
Apache-2.0
1,625,903,617,000
1,625,903,026,000
null
UTF-8
Lean
false
false
5,465
lean
/- Copyright (c) 2018 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import Std.Data.HashSet import Std.Data.RBMap import Std.Data.RBTree namespace Lean instance : Coe String Name := ⟨Name.mkSimple⟩ namespace Name @[export lean_name_hash] def hashEx : Name → UInt64 := Name.hash def getPrefix : Name → Name | anonymous => anonymous | str p s _ => p | num p s _ => p def getString! : Name → String | str _ s _ => s | _ => unreachable! def getNumParts : Name → Nat | anonymous => 0 | str p _ _ => getNumParts p + 1 | num p _ _ => getNumParts p + 1 def updatePrefix : Name → Name → Name | anonymous, newP => anonymous | str p s _, newP => Name.mkStr newP s | num p s _, newP => Name.mkNum newP s def components' : Name → List Name | anonymous => [] | str n s _ => Name.mkStr anonymous s :: components' n | num n v _ => Name.mkNum anonymous v :: components' n def components (n : Name) : List Name := n.components'.reverse def eqStr : Name → String → Bool | str anonymous s _, s' => s == s' | _, _ => false def isPrefixOf : Name → Name → Bool | p, anonymous => p == anonymous | p, n@(num p' _ _) => p == n || isPrefixOf p p' | p, n@(str p' _ _) => p == n || isPrefixOf p p' def isSuffixOf : Name → Name → Bool | anonymous, _ => true | str p₁ s₁ _, str p₂ s₂ _ => s₁ == s₂ && isSuffixOf p₁ p₂ | num p₁ n₁ _, num p₂ n₂ _ => n₁ == n₂ && isSuffixOf p₁ p₂ | _, _ => false def cmp : Name → Name → Ordering | anonymous, anonymous => Ordering.eq | anonymous, _ => Ordering.lt | _, anonymous => Ordering.gt | num p₁ i₁ _, num p₂ i₂ _ => match cmp p₁ p₂ with | Ordering.eq => compare i₁ i₂ | ord => ord | num _ _ _, str _ _ _ => Ordering.lt | str _ _ _, num _ _ _ => Ordering.gt | str p₁ n₁ _, str p₂ n₂ _ => match cmp p₁ p₂ with | Ordering.eq => compare n₁ n₂ | ord => ord def lt (x y : Name) : Bool := cmp x y == Ordering.lt def quickCmpAux : Name → Name → Ordering | anonymous, anonymous => Ordering.eq | anonymous, _ => Ordering.lt | _, anonymous => Ordering.gt | num n v _, num n' v' _ => match compare v v' with | Ordering.eq => n.quickCmpAux n' | ord => ord | num _ _ _, str _ _ _ => Ordering.lt | str _ _ _, num _ _ _ => Ordering.gt | str n s _, str n' s' _ => match compare s s' with | Ordering.eq => n.quickCmpAux n' | ord => ord def quickCmp (n₁ n₂ : Name) : Ordering := match compare n₁.hash n₂.hash with | Ordering.eq => quickCmpAux n₁ n₂ | ord => ord def quickLt (n₁ n₂ : Name) : Bool := quickCmp n₁ n₂ == Ordering.lt /- Alternative HasLt instance. -/ @[inline] protected def hasLtQuick : LT Name := ⟨fun a b => Name.quickLt a b = true⟩ @[inline] instance : DecidableRel (@LT.lt Name Name.hasLtQuick) := inferInstanceAs (DecidableRel (fun a b => Name.quickLt a b = true)) /- The frontend does not allow user declarations to start with `_` in any of its parts. We use name parts starting with `_` internally to create auxiliary names (e.g., `_private`). -/ def isInternal : Name → Bool | str p s _ => s.get 0 == '_' || isInternal p | num p _ _ => isInternal p | _ => false def isAtomic : Name → Bool | anonymous => true | str anonymous _ _ => true | num anonymous _ _ => true | _ => false def isAnonymous : Name → Bool | anonymous => true | _ => false def isStr : Name → Bool | str .. => true | _ => false def isNum : Name → Bool | num .. => true | _ => false end Name open Std (RBMap RBTree mkRBMap mkRBTree) def NameMap (α : Type) := Std.RBMap Name α Name.quickCmp @[inline] def mkNameMap (α : Type) : NameMap α := Std.mkRBMap Name α Name.quickCmp namespace NameMap variable {α : Type} instance (α : Type) : EmptyCollection (NameMap α) := ⟨mkNameMap α⟩ instance (α : Type) : Inhabited (NameMap α) where default := {} def insert (m : NameMap α) (n : Name) (a : α) := Std.RBMap.insert m n a def contains (m : NameMap α) (n : Name) : Bool := Std.RBMap.contains m n @[inline] def find? (m : NameMap α) (n : Name) : Option α := Std.RBMap.find? m n end NameMap def NameSet := RBTree Name Name.quickCmp namespace NameSet def empty : NameSet := mkRBTree Name Name.quickCmp instance : EmptyCollection NameSet := ⟨empty⟩ instance : Inhabited NameSet := ⟨{}⟩ def insert (s : NameSet) (n : Name) : NameSet := Std.RBTree.insert s n def contains (s : NameSet) (n : Name) : Bool := Std.RBMap.contains s n instance : ForIn m NameSet Name := inferInstanceAs (ForIn _ (Std.RBTree ..) ..) end NameSet def NameHashSet := Std.HashSet Name namespace NameHashSet @[inline] def empty : NameHashSet := Std.HashSet.empty instance : EmptyCollection NameHashSet := ⟨empty⟩ instance : Inhabited NameHashSet := ⟨{}⟩ def insert (s : NameHashSet) (n : Name) := Std.HashSet.insert s n def contains (s : NameHashSet) (n : Name) : Bool := Std.HashSet.contains s n end NameHashSet end Lean open Lean def String.toName (s : String) : Name := let ps := s.splitOn "."; ps.foldl (fun n p => Name.mkStr n p.trim) Name.anonymous
3493215bd310c031e6724b8d3759506d196ec346
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/cc_ac_bug.lean
a55367e8701b68f190415b2d9d110fa8ac508dee
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
349
lean
instance aa : is_associative ℕ (+) := ⟨nat.add_assoc⟩ instance ac : is_commutative ℕ (+) := ⟨nat.add_comm⟩ instance ma : is_associative ℕ (*) := ⟨nat.mul_assoc⟩ instance mc : is_commutative ℕ (*) := ⟨nat.mul_comm⟩ example (a b c : nat) (f : nat → nat → nat) : f (b * c) (c * b * a) = f (c * b) (a * c * b) := by ac_refl
93affb9e0e48c09ce467cef941531dce382b3a4b
491068d2ad28831e7dade8d6dff871c3e49d9431
/tests/lean/nary_overload2.lean
483cc9271e2d064bdc284019c18e8f693e132c8b
[ "Apache-2.0" ]
permissive
davidmueller13/lean
65a3ed141b4088cd0a268e4de80eb6778b21a0e9
c626e2e3c6f3771e07c32e82ee5b9e030de5b050
refs/heads/master
1,611,278,313,401
1,444,021,177,000
1,444,021,177,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
366
lean
import data.list data.examples.vector open nat list vector check [1, 2, 3] check ([1, 2, 3] : vector nat _) check ([1, 2, 3] : list nat) check (#list [1, 2, 3]) check (#vector [1, 2, 3]) example : (#vector [1, 2, 3]) = [1, 2, 3] := rfl example : (#vector [1, 2, 3]) = ([1, 2, 3] : vector nat _) := rfl example : (#list [1, 2, 3]) = ([1, 2, 3] : list nat) := rfl
3ab197b18666d94cf7de78dc157c154d1f801a20
31f556cdeb9239ffc2fad8f905e33987ff4feab9
/src/Lean/Compiler/LCNF/MonoTypes.lean
f3a1e7e6afd9cffc839fbe57f5a9244661848627
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
tobiasgrosser/lean4
ce0fd9cca0feba1100656679bf41f0bffdbabb71
ebdbdc10436a4d9d6b66acf78aae7a23f5bd073f
refs/heads/master
1,673,103,412,948
1,664,930,501,000
1,664,930,501,000
186,870,185
0
0
Apache-2.0
1,665,129,237,000
1,557,939,901,000
Lean
UTF-8
Lean
false
false
1,557
lean
/- Copyright (c) 2022 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Compiler.LCNF.InferType namespace Lean.Compiler.LCNF /-- Convert a LCNF type from the base phase to the mono phase. LCNF types in the mono phase do not have dependencies, and universe levels have been erased. The type contains only `→` and constants. -/ partial def toMonoType (type : Expr) : CompilerM Expr := do let type := type.headBeta if type.isAnyType then return anyTypeExpr else if type.isErased then return erasedExpr else if isTypeFormerType type then return erasedExpr else match type with | .const .. => visitApp type #[] | .app .. => type.withApp visitApp | .forallE _ d b _ => mkArrow (← toMonoType d) (← toMonoType (b.instantiate1 anyTypeExpr)) | _ => return anyTypeExpr where visitApp (f : Expr) (args : Array Expr) : CompilerM Expr := do match f with | .const declName _ => let mut result := mkConst declName for arg in args do let arg := arg.headBeta if arg.isAnyType || arg.isErased then result := mkApp result arg else let argType := (← inferType arg).headBeta if argType.isAnyType || argType matches .sort _ then result := mkApp result (← toMonoType arg) else result := mkApp result erasedExpr return result | _ => return anyTypeExpr end Lean.Compiler.LCNF
325bab44f77ee6200388668150b86af163ff2884
42610cc2e5db9c90269470365e6056df0122eaa0
/hott/algebra/category/iso.hlean
cec39ec3197527fc4658bd385a73b05e665a2837
[ "Apache-2.0" ]
permissive
tomsib2001/lean
2ab59bfaebd24a62109f800dcf4a7139ebd73858
eb639a7d53fb40175bea5c8da86b51d14bb91f76
refs/heads/master
1,586,128,387,740
1,468,968,950,000
1,468,968,950,000
61,027,234
0
0
null
1,465,813,585,000
1,465,813,585,000
null
UTF-8
Lean
false
false
16,906
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn, Jakob von Raumer -/ import .precategory types.sigma arity open eq category prod equiv is_equiv sigma sigma.ops is_trunc namespace iso structure split_mono [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) := {retraction_of : b ⟶ a} (retraction_comp : retraction_of ∘ f = id) structure split_epi [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) := {section_of : b ⟶ a} (comp_section : f ∘ section_of = id) structure is_iso [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) := (inverse : b ⟶ a) (left_inverse : inverse ∘ f = id) (right_inverse : f ∘ inverse = id) attribute is_iso.inverse [reducible] open split_mono split_epi is_iso abbreviation retraction_of [unfold 6] := @split_mono.retraction_of abbreviation retraction_comp [unfold 6] := @split_mono.retraction_comp abbreviation section_of [unfold 6] := @split_epi.section_of abbreviation comp_section [unfold 6] := @split_epi.comp_section abbreviation inverse [unfold 6] := @is_iso.inverse abbreviation left_inverse [unfold 6] := @is_iso.left_inverse abbreviation right_inverse [unfold 6] := @is_iso.right_inverse postfix ⁻¹ := inverse --a second notation for the inverse, which is not overloaded postfix [parsing_only] `⁻¹ʰ`:std.prec.max_plus := inverse -- input using \-1h variables {ob : Type} [C : precategory ob] variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a} include C definition split_mono_of_is_iso [constructor] [instance] [priority 300] (f : a ⟶ b) [H : is_iso f] : split_mono f := split_mono.mk !left_inverse definition split_epi_of_is_iso [constructor] [instance] [priority 300] (f : a ⟶ b) [H : is_iso f] : split_epi f := split_epi.mk !right_inverse definition is_iso_id [constructor] [instance] [priority 500] (a : ob) : is_iso (ID a) := is_iso.mk _ !id_id !id_id definition is_iso_inverse [constructor] [instance] [priority 200] (f : a ⟶ b) {H : is_iso f} : is_iso f⁻¹ := is_iso.mk _ !right_inverse !left_inverse theorem left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a} (Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' := by rewrite [-(id_right g), -Hr, assoc, Hl, id_left] theorem retraction_eq [H : split_mono f] (H2 : f ∘ h = id) : retraction_of f = h := left_inverse_eq_right_inverse !retraction_comp H2 theorem section_eq [H : split_epi f] (H2 : h ∘ f = id) : section_of f = h := (left_inverse_eq_right_inverse H2 !comp_section)⁻¹ theorem inverse_eq_right [H : is_iso f] (H2 : f ∘ h = id) : f⁻¹ = h := left_inverse_eq_right_inverse !left_inverse H2 theorem inverse_eq_left [H : is_iso f] (H2 : h ∘ f = id) : f⁻¹ = h := (left_inverse_eq_right_inverse H2 !right_inverse)⁻¹ theorem retraction_eq_section (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f] : retraction_of f = section_of f := retraction_eq !comp_section definition is_iso_of_split_epi_of_split_mono [constructor] (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f] : is_iso f := is_iso.mk _ ((retraction_eq_section f) ▸ (retraction_comp f)) (comp_section f) theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' := @inverse_eq_left _ _ _ _ _ _ H !left_inverse theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] [H : is_iso (f⁻¹)] : (f⁻¹)⁻¹ = f := inverse_eq_right !left_inverse theorem inverse_eq_inverse {f g : a ⟶ b} [H : is_iso f] [H : is_iso g] (p : f = g) : f⁻¹ = g⁻¹ := by cases p;apply inverse_unique theorem retraction_id (a : ob) : retraction_of (ID a) = id := retraction_eq !id_id theorem section_id (a : ob) : section_of (ID a) = id := section_eq !id_id theorem id_inverse (a : ob) [H : is_iso (ID a)] : (ID a)⁻¹ = id := inverse_eq_left !id_id definition split_mono_comp [constructor] [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b) [Hf : split_mono f] [Hg : split_mono g] : split_mono (g ∘ f) := split_mono.mk (show (retraction_of f ∘ retraction_of g) ∘ g ∘ f = id, by rewrite [-assoc, assoc _ g f, retraction_comp, id_left, retraction_comp]) definition split_epi_comp [constructor] [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b) [Hf : split_epi f] [Hg : split_epi g] : split_epi (g ∘ f) := split_epi.mk (show (g ∘ f) ∘ section_of f ∘ section_of g = id, by rewrite [-assoc, {f ∘ _}assoc, comp_section, id_left, comp_section]) definition is_iso_comp [constructor] [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b) [Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) := !is_iso_of_split_epi_of_split_mono theorem is_prop_is_iso [instance] (f : hom a b) : is_prop (is_iso f) := begin apply is_prop.mk, intro H H', cases H with g li ri, cases H' with g' li' ri', fapply (apd0111 (@is_iso.mk ob C a b f)), apply left_inverse_eq_right_inverse, apply li, apply ri', apply is_prop.elim, apply is_prop.elim, end end iso open iso /- isomorphic objects -/ structure iso {ob : Type} [C : precategory ob] (a b : ob) := (to_hom : hom a b) (struct : is_iso to_hom) infix ` ≅ `:50 := iso notation c ` ≅[`:50 C:0 `] `:0 c':50 := @iso C _ c c' attribute iso.struct [instance] [priority 2000] namespace iso variables {ob : Type} [C : precategory ob] variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a} include C attribute to_hom [coercion] protected definition MK [constructor] (f : a ⟶ b) (g : b ⟶ a) (H1 : g ∘ f = id) (H2 : f ∘ g = id) := @(mk f) (is_iso.mk _ H1 H2) variable {C} definition to_inv [reducible] [unfold 5] (f : a ≅ b) : b ⟶ a := (to_hom f)⁻¹ definition to_left_inverse [unfold 5] (f : a ≅ b) : (to_hom f)⁻¹ ∘ (to_hom f) = id := left_inverse (to_hom f) definition to_right_inverse [unfold 5] (f : a ≅ b) : (to_hom f) ∘ (to_hom f)⁻¹ = id := right_inverse (to_hom f) variable [C] protected definition refl [constructor] (a : ob) : a ≅ a := mk (ID a) _ protected definition symm [constructor] ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a := mk (to_hom H)⁻¹ _ protected definition trans [constructor] ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c := mk (to_hom H2 ∘ to_hom H1) _ infixl ` ⬝i `:75 := iso.trans postfix [parsing_only] `⁻¹ⁱ`:(max + 1) := iso.symm definition change_hom [constructor] (H : a ≅ b) (f : a ⟶ b) (p : to_hom H = f) : a ≅ b := iso.MK f (to_inv H) (p ▸ to_left_inverse H) (p ▸ to_right_inverse H) definition change_inv [constructor] (H : a ≅ b) (g : b ⟶ a) (p : to_inv H = g) : a ≅ b := iso.MK (to_hom H) g (p ▸ to_left_inverse H) (p ▸ to_right_inverse H) definition iso_mk_eq {f f' : a ⟶ b} [H : is_iso f] [H' : is_iso f'] (p : f = f') : iso.mk f _ = iso.mk f' _ := apd011 iso.mk p !is_prop.elim variable {C} definition iso_eq {f f' : a ≅ b} (p : to_hom f = to_hom f') : f = f' := by (cases f; cases f'; apply (iso_mk_eq p)) variable [C] -- The structure for isomorphism can be characterized up to equivalence by a sigma type. protected definition sigma_char ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) := begin fapply (equiv.mk), {intro S, apply iso.mk, apply (S.2)}, {fapply adjointify, {intro p, cases p with f H, exact sigma.mk f H}, {intro p, cases p, apply idp}, {intro S, cases S, apply idp}}, end -- The type of isomorphisms between two objects is a set definition is_set_iso [instance] : is_set (a ≅ b) := begin apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv (!iso.sigma_char), end definition iso_of_eq [unfold 5] (p : a = b) : a ≅ b := eq.rec_on p (iso.refl a) definition hom_of_eq [reducible] [unfold 5] (p : a = b) : a ⟶ b := iso.to_hom (iso_of_eq p) definition inv_of_eq [reducible] [unfold 5] (p : a = b) : b ⟶ a := iso.to_inv (iso_of_eq p) definition iso_of_eq_inv (p : a = b) : iso_of_eq p⁻¹ = iso.symm (iso_of_eq p) := eq.rec_on p idp theorem hom_of_eq_inv (p : a = b) : hom_of_eq p⁻¹ = inv_of_eq p := eq.rec_on p idp theorem inv_of_eq_inv (p : a = b) : inv_of_eq p⁻¹ = hom_of_eq p := eq.rec_on p idp definition iso_of_eq_con (p : a = b) (q : b = c) : iso_of_eq (p ⬝ q) = iso.trans (iso_of_eq p) (iso_of_eq q) := eq.rec_on q (eq.rec_on p (iso_eq !id_id⁻¹)) section open funext variables {X : Type} {x y : X} {F G : X → ob} definition transport_hom_of_eq (p : F = G) (f : hom (F x) (F y)) : p ▸ f = hom_of_eq (apd10 p y) ∘ f ∘ inv_of_eq (apd10 p x) := by induction p; exact !id_leftright⁻¹ definition transport_hom_of_eq_right (p : x = y) (f : hom c (F x)) : p ▸ f = hom_of_eq (ap F p) ∘ f := by induction p; exact !id_left⁻¹ definition transport_hom_of_eq_left (p : x = y) (f : hom (F x) c) : p ▸ f = f ∘ inv_of_eq (ap F p) := by induction p; exact !id_right⁻¹ definition transport_hom (p : F ~ G) (f : hom (F x) (F y)) : eq_of_homotopy p ▸ f = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) := calc eq_of_homotopy p ▸ f = hom_of_eq (apd10 (eq_of_homotopy p) y) ∘ f ∘ inv_of_eq (apd10 (eq_of_homotopy p) x) : transport_hom_of_eq ... = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) : {right_inv apd10 p} end structure mono [class] (f : a ⟶ b) := (elim : ∀c (g h : hom c a), f ∘ g = f ∘ h → g = h) structure epi [class] (f : a ⟶ b) := (elim : ∀c (g h : hom b c), g ∘ f = h ∘ f → g = h) definition mono_of_split_mono [instance] (f : a ⟶ b) [H : split_mono f] : mono f := mono.mk (λ c g h H, calc g = id ∘ g : by rewrite id_left ... = (retraction_of f ∘ f) ∘ g : by rewrite retraction_comp ... = (retraction_of f ∘ f) ∘ h : by rewrite [-assoc, H, -assoc] ... = id ∘ h : by rewrite retraction_comp ... = h : by rewrite id_left) definition epi_of_split_epi [instance] (f : a ⟶ b) [H : split_epi f] : epi f := epi.mk (λ c g h H, calc g = g ∘ id : by rewrite id_right ... = g ∘ f ∘ section_of f : by rewrite -(comp_section f) ... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc] ... = h ∘ id : by rewrite comp_section ... = h : by rewrite id_right) definition mono_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : mono f] [Hg : mono g] : mono (g ∘ f) := mono.mk (λ d h₁ h₂ H, have H2 : g ∘ (f ∘ h₁) = g ∘ (f ∘ h₂), begin rewrite *assoc, exact H end, !mono.elim (!mono.elim H2)) definition epi_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : epi f] [Hg : epi g] : epi (g ∘ f) := epi.mk (λ d h₁ h₂ H, have H2 : (h₁ ∘ g) ∘ f = (h₂ ∘ g) ∘ f, begin rewrite -*assoc, exact H end, !epi.elim (!epi.elim H2)) end iso attribute iso.refl [refl] attribute iso.symm [symm] attribute iso.trans [trans] namespace iso /- rewrite lemmas for inverses, modified from https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v -/ section variables {ob : Type} [C : precategory ob] include C variables {a b c d : ob} (f : b ⟶ a) (r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b) (g : d ⟶ c) variable [Hq : is_iso q] include Hq theorem comp.right_inverse : q ∘ q⁻¹ = id := !right_inverse theorem comp.left_inverse : q⁻¹ ∘ q = id := !left_inverse theorem inverse_comp_cancel_left : q⁻¹ ∘ (q ∘ p) = p := by rewrite [assoc, left_inverse, id_left] theorem comp_inverse_cancel_left : q ∘ (q⁻¹ ∘ g) = g := by rewrite [assoc, right_inverse, id_left] theorem comp_inverse_cancel_right : (r ∘ q) ∘ q⁻¹ = r := by rewrite [-assoc, right_inverse, id_right] theorem inverse_comp_cancel_right : (f ∘ q⁻¹) ∘ q = f := by rewrite [-assoc, left_inverse, id_right] theorem comp_inverse [Hp : is_iso p] [Hpq : is_iso (q ∘ p)] : (q ∘ p)⁻¹ʰ = p⁻¹ʰ ∘ q⁻¹ʰ := inverse_eq_left (show (p⁻¹ʰ ∘ q⁻¹ʰ) ∘ q ∘ p = id, from by rewrite [-assoc, inverse_comp_cancel_left, left_inverse]) theorem inverse_comp_inverse_left [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q := inverse_involutive q ▸ comp_inverse q⁻¹ g theorem inverse_comp_inverse_right [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ := inverse_involutive f ▸ comp_inverse q f⁻¹ theorem inverse_comp_inverse_inverse [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q := inverse_involutive r ▸ inverse_comp_inverse_left q r⁻¹ end section variables {ob : Type} {C : precategory ob} include C variables {d c b a : ob} {r' : c ⟶ d} {i : b ⟶ c} {f : b ⟶ a} {r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b} {g : d ⟶ c} {h : c ⟶ b} {p' : a ⟶ b} {x : b ⟶ d} {z : a ⟶ c} {y : d ⟶ b} {w : c ⟶ a} variable [Hq : is_iso q] include Hq theorem comp_eq_of_eq_inverse_comp (H : y = q⁻¹ ∘ g) : q ∘ y = g := H⁻¹ ▸ comp_inverse_cancel_left q g theorem comp_eq_of_eq_comp_inverse (H : w = f ∘ q⁻¹) : w ∘ q = f := H⁻¹ ▸ inverse_comp_cancel_right f q theorem eq_comp_of_inverse_comp_eq (H : q⁻¹ ∘ g = y) : g = q ∘ y := (comp_eq_of_eq_inverse_comp H⁻¹)⁻¹ theorem eq_comp_of_comp_inverse_eq (H : f ∘ q⁻¹ = w) : f = w ∘ q := (comp_eq_of_eq_comp_inverse H⁻¹)⁻¹ variable {Hq} theorem inverse_comp_eq_of_eq_comp (H : z = q ∘ p) : q⁻¹ ∘ z = p := H⁻¹ ▸ inverse_comp_cancel_left q p theorem comp_inverse_eq_of_eq_comp (H : x = r ∘ q) : x ∘ q⁻¹ = r := H⁻¹ ▸ comp_inverse_cancel_right r q theorem eq_inverse_comp_of_comp_eq (H : q ∘ p = z) : p = q⁻¹ ∘ z := (inverse_comp_eq_of_eq_comp H⁻¹)⁻¹ theorem eq_comp_inverse_of_comp_eq (H : r ∘ q = x) : r = x ∘ q⁻¹ := (comp_inverse_eq_of_eq_comp H⁻¹)⁻¹ theorem eq_inverse_of_comp_eq_id' (H : h ∘ q = id) : h = q⁻¹ := (inverse_eq_left H)⁻¹ theorem eq_inverse_of_comp_eq_id (H : q ∘ h = id) : h = q⁻¹ := (inverse_eq_right H)⁻¹ theorem inverse_eq_of_id_eq_comp (H : id = h ∘ q) : q⁻¹ = h := (eq_inverse_of_comp_eq_id' H⁻¹)⁻¹ theorem inverse_eq_of_id_eq_comp' (H : id = q ∘ h) : q⁻¹ = h := (eq_inverse_of_comp_eq_id H⁻¹)⁻¹ variable [Hq] theorem eq_of_comp_inverse_eq_id (H : i ∘ q⁻¹ = id) : i = q := eq_inverse_of_comp_eq_id' H ⬝ inverse_involutive q theorem eq_of_inverse_comp_eq_id (H : q⁻¹ ∘ i = id) : i = q := eq_inverse_of_comp_eq_id H ⬝ inverse_involutive q theorem eq_of_id_eq_comp_inverse (H : id = i ∘ q⁻¹) : q = i := (eq_of_comp_inverse_eq_id H⁻¹)⁻¹ theorem eq_of_id_eq_inverse_comp (H : id = q⁻¹ ∘ i) : q = i := (eq_of_inverse_comp_eq_id H⁻¹)⁻¹ variables (q) theorem comp.cancel_left (H : q ∘ p = q ∘ p') : p = p' := by rewrite [-inverse_comp_cancel_left q p, H, inverse_comp_cancel_left q] theorem comp.cancel_right (H : r ∘ q = r' ∘ q) : r = r' := by rewrite [-comp_inverse_cancel_right r q, H, comp_inverse_cancel_right _ q] end end iso namespace iso /- precomposition and postcomposition by an iso is an equivalence -/ definition is_equiv_postcompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (g : b ⟶ c) [is_iso g] : is_equiv (λ(f : a ⟶ b), g ∘ f) := begin fapply adjointify, { exact λf', g⁻¹ ∘ f'}, { intro f', apply comp_inverse_cancel_left}, { intro f, apply inverse_comp_cancel_left} end definition equiv_postcompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (g : b ⟶ c) [is_iso g] : (a ⟶ b) ≃ (a ⟶ c) := equiv.mk (λ(f : a ⟶ b), g ∘ f) (is_equiv_postcompose g) definition is_equiv_precompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (f : a ⟶ b) [is_iso f] : is_equiv (λ(g : b ⟶ c), g ∘ f) := begin fapply adjointify, { exact λg', g' ∘ f⁻¹}, { intro g', apply comp_inverse_cancel_right}, { intro g, apply inverse_comp_cancel_right} end definition equiv_precompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (f : a ⟶ b) [is_iso f] : (b ⟶ c) ≃ (a ⟶ c) := equiv.mk (λ(g : b ⟶ c), g ∘ f) (is_equiv_precompose f) end iso
01d0a9ee88eebffe1e2907f21874fcc96e0b1d75
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
/tests/lean/run/hmul2.lean
2dfceddb128c02e97e630ce84a3f76fa77fbc1a4
[ "Apache-2.0" ]
permissive
williamdemeo/lean4
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
refs/heads/master
1,678,305,356,877
1,614,708,995,000
1,614,708,995,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
652
lean
instance [Mul α] : HMul α (Array α) (Array α) where hMul a as := as.map (a * .) #check fun x => x * 2 #check fun y : Int => let x := 1; x * y #check fun y : Int => let* x := 1; x * y def f1 (n : Nat) (i : Int) := i * n def f2 (n : Nat) (i : Int) := n * i def f3 (n : Nat) (i : Int) := n * (n * (n * (n * i))) def f4 (n : Nat) (i : Int) := n + (n + (n * (n * i))) def f5 (n : Nat) (i : Int) := n + (n + (n * (i, i).1)) #eval (2:Nat) * #[3, 4, 5] def f6 (n : Nat) (i : Int) := let y := 2 * i let x := y * n n + x def f7 (n : Nat) (i : Int) := n + (n * 2 * i) def f8 (n : Nat) (i : Int) := n * 2 + (i * 1 * n * 2 * i)
c4b55d83e34a389b6d041493b52d9c256632ba5e
af6139dd14451ab8f69cf181cf3a20f22bd699be
/library/init/native/default.lean
0a5e8fe4c4d0720acd92454e961b5dc2a53a7c7c
[ "Apache-2.0" ]
permissive
gitter-badger/lean-1
1cca01252d3113faa45681b6a00e1b5e3a0f6203
5c7ade4ee4f1cdf5028eabc5db949479d6737c85
refs/heads/master
1,611,425,383,521
1,487,871,140,000
1,487,871,140,000
82,995,612
0
0
null
1,487,905,618,000
1,487,905,618,000
null
UTF-8
Lean
false
false
23,794
lean
/- Copyright (c) 2016 Jared Roesch. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jared Roesch -/ prelude import init.meta.format import init.meta.expr import init.category.state import init.data.string import init.data.list.instances import init.native.ir import init.native.format import init.native.internal import init.native.anf import init.native.cf import init.native.pass import init.native.util import init.native.config import init.native.result namespace native inductive error : Type | string : string → error | many : list error → error meta def error.to_string : error → string | (error.string s) := s | (error.many es) := to_string $ list.map error.to_string es meta def arity_map : Type := rb_map name nat meta def get_arity : expr → nat | (expr.lam _ _ _ body) := 1 + get_arity body | _ := 0 @[reducible] def ir_result (A : Type*) := native.result error A meta def mk_arity_map : list (name × expr) → arity_map | [] := rb_map.mk name nat | ((n, body) :: rest) := rb_map.insert (mk_arity_map rest) n (get_arity body) @[reducible] meta def ir_compiler_state := (config × arity_map × nat) @[reducible] meta def ir_compiler (A : Type) := native.resultT (state ir_compiler_state) error A meta def lift {A} (action : state ir_compiler_state A) : ir_compiler A := ⟨fmap (fun (a : A), native.result.ok a) action⟩ meta def trace_ir (s : string) : ir_compiler unit := do (conf, map, counter) ← lift $ state.read, if config.debug conf then trace s (return ()) else return () -- An `exotic` monad combinator that accumulates errors. meta def run {M E A} (res : native.resultT M E A) : M (native.result E A) := match res with | ⟨action⟩ := action end meta def sequence_err : list (ir_compiler format) → ir_compiler (list format × list error) | [] := return ([], []) | (action :: remaining) := ⟨ fun s, match (run (sequence_err remaining)) s with | (native.result.err e, s') := (native.result.err e, s) | (native.result.ok (res, errs), s') := match (run action) s' with | (native.result.err e, s'') := (native.result.ok (res, e :: errs), s'') | (native.result.ok v, s'') := (native.result.ok (v :: res, errs), s'') end end ⟩ -- meta lemma sequence_err_always_ok : -- forall xs v s s', sequence_err xs s = native.result.ok (v, s') := sorry meta def lift_result {A} (action : ir_result A) : ir_compiler A := ⟨fun s, (action, s)⟩ -- TODO: fix naming here private meta def take_arguments' : expr → list name → (list name × expr) | (expr.lam n _ _ body) ns := take_arguments' body (n :: ns) | e' ns := (ns, e') meta def fresh_name : ir_compiler name := do (conf, map, counter) ← lift state.read, let fresh := name.mk_numeral (unsigned.of_nat counter) `native._ir_compiler_ in do lift $ state.write (conf, map, counter + 1), return fresh meta def take_arguments (e : expr) : ir_compiler (list name × expr) := let (arg_names, body) := take_arguments' e [] in do fresh_names ← monad.mapm (fun x, fresh_name) arg_names, let locals := list.map mk_local fresh_names in return $ (fresh_names, expr.instantiate_vars body (list.reverse locals)) -- meta def lift_state {A} (action : state arity_map A) : ir_compiler A := -- fun (s : arity_map), match action s with -- | (a, s) := (return a, s) -- end meta def mk_error {T} : string → ir_compiler T := fun s, do trace_ir "CREATEDERROR", lift_result (native.result.err $ error.string s) meta def lookup_arity (n : name) : ir_compiler nat := do (_, map, counter) ← lift state.read, if n = `nat.cases_on then pure 2 else match rb_map.find map n with | option.none := mk_error $ "could not find arity for: " ++ to_string n | option.some n := return n end meta def mk_nat_literal (n : nat) : ir_compiler ir.expr := return (ir.expr.lit $ ir.literal.nat n) def repeat {A : Type} : nat → A → list A | 0 _ := [] | (n + 1) a := a :: repeat n a def zip {A B : Type} : list A → list B → list (A × B) | [] [] := [] | [] (y :: ys) := [] | (x :: xs) [] := [] | (x :: xs) (y :: ys) := (x, y) :: zip xs ys private def upto' : ℕ → list ℕ | 0 := [] | (n + 1) := n :: upto' n def upto (n : ℕ) : list ℕ := list.reverse $ upto' n def label {A : Type} (xs : list A) : list (nat × A) := zip (upto (list.length xs)) xs -- lemma label_size_eq : -- forall A (xs : list A), -- list.length (label xs) = list.length xs := -- begin -- intros, -- induction xs, -- apply sorry -- apply sorry -- end -- HELPERS -- meta def assert_name : ir.expr → ir_compiler name | (ir.expr.locl n) := lift_result $ native.result.ok n | e := mk_error $ "expected name found: " ++ to_string (format_cpp.expr e) meta def assert_expr : ir.stmt → ir_compiler ir.expr | (ir.stmt.e exp) := return exp | s := mk_error ("internal invariant violated, found: " ++ (to_string (format_cpp.stmt s))) meta def mk_call (head : name) (args : list ir.expr) : ir_compiler ir.expr := let args'' := list.map assert_name args in do args' ← monad.sequence args'', return (ir.expr.call head args') meta def mk_under_sat_call (head : name) (args : list ir.expr) : ir_compiler ir.expr := let args'' := list.map assert_name args in do args' ← monad.sequence args'', return $ ir.expr.mk_native_closure head args' meta def bind_value_with_ty (val : ir.expr) (ty : ir.ty) (body : name → ir_compiler ir.stmt) : ir_compiler ir.stmt := do fresh ← fresh_name, ir.stmt.letb fresh ty val <$> (body fresh) meta def bind_value (val : ir.expr) (body : name → ir_compiler ir.stmt) : ir_compiler ir.stmt := bind_value_with_ty val ir.ty.object body -- not in love with this --solution-- hack, revisit meta def compile_local (n : name) : ir_compiler name := return $ (mk_str_name "_$local$_" (name.to_string_with_sep "_" n)) meta def mk_invoke (loc : name) (args : list ir.expr) : ir_compiler ir.expr := let args'' := list.map assert_name args in do args' ← monad.sequence args'', loc' ← compile_local loc, lift_result (native.result.ok $ ir.expr.invoke loc' args') meta def mk_over_sat_call (head : name) (fst snd : list ir.expr) : ir_compiler ir.expr := let fst' := list.map assert_name fst, snd' := list.map assert_name snd in do args' ← monad.sequence fst', args'' ← monad.sequence snd', fresh ← fresh_name, locl ← compile_local fresh, invoke ← ir.stmt.e <$> (mk_invoke fresh (fmap ir.expr.locl args'')), return $ ir.expr.block (ir.stmt.seq [ ir.stmt.letb locl ir.ty.object (ir.expr.call head args') ir.stmt.nop, invoke ]) meta def is_return (n : name) : bool := `native_compiler.return = n meta def compile_call (head : name) (arity : nat) (args : list ir.expr) : ir_compiler ir.expr := do trace_ir $ "compile_call: " ++ (to_string head), if list.length args = arity then mk_call head args else if list.length args < arity then mk_under_sat_call head args else mk_over_sat_call head (list.taken arity args) (list.dropn arity args) meta def mk_object (arity : unsigned) (args : list ir.expr) : ir_compiler ir.expr := let args'' := list.map assert_name args in do args' ← monad.sequence args'', lift_result (native.result.ok $ ir.expr.mk_object (unsigned.to_nat arity) args') meta def one_or_error (args : list expr) : ir_compiler expr := match args with | ((h : expr) :: []) := lift_result $ native.result.ok h | _ := mk_error "internal invariant violated, should only have one argument" end meta def panic (msg : string) : ir_compiler ir.expr := return $ ir.expr.panic msg -- END HELPERS -- meta def bind_case_fields' (scrut : name) : list (nat × name) → ir.stmt → ir_compiler ir.stmt | [] body := return body | ((n, f) :: fs) body := do loc ← compile_local f, ir.stmt.letb f ir.ty.object (ir.expr.project scrut n) <$> (bind_case_fields' fs body) meta def bind_case_fields (scrut : name) (fs : list name) (body : ir.stmt) : ir_compiler ir.stmt := bind_case_fields' scrut (label fs) body meta def mk_cases_on (case_name scrut : name) (cases : list (nat × ir.stmt)) (default : ir.stmt) : ir.stmt := ir.stmt.seq [ ir.stmt.letb `ctor_index ir.ty.int (ir.expr.call `cidx [scrut]) ir.stmt.nop, ir.stmt.switch `ctor_index cases default ] meta def compile_cases (action : expr → ir_compiler ir.stmt) (scrut : name) : list (nat × expr) → ir_compiler (list (nat × ir.stmt)) | [] := return [] | ((n, body) :: cs) := do (fs, body') ← take_arguments body, body'' ← action body', cs' ← compile_cases cs, case ← bind_case_fields scrut fs body'', return $ (n, case) :: cs' meta def compile_cases_on_to_ir_expr (case_name : name) (cases : list expr) (action : expr → ir_compiler ir.stmt) : ir_compiler ir.expr := do default ← panic "default case should never be reached", match cases with | [] := mk_error $ "found " ++ to_string case_name ++ "applied to zero arguments" | (h :: cs) := do ir_scrut ← action h >>= assert_expr, ir.expr.block <$> bind_value ir_scrut (fun scrut, do cs' ← compile_cases action scrut (label cs), return (mk_cases_on case_name scrut cs' (ir.stmt.e default))) end meta def bind_builtin_case_fields' (scrut : name) : list (nat × name) → ir.stmt → ir_compiler ir.stmt | [] body := return body | ((n, f) :: fs) body := do loc ← compile_local f, ir.stmt.letb loc ir.ty.object (ir.expr.project scrut n) <$> (bind_builtin_case_fields' fs body) meta def bind_builtin_case_fields (scrut : name) (fs : list name) (body : ir.stmt) : ir_compiler ir.stmt := bind_builtin_case_fields' scrut (label fs) body meta def compile_builtin_cases (action : expr → ir_compiler ir.stmt) (scrut : name) : list (nat × expr) → ir_compiler (list (nat × ir.stmt)) | [] := return [] | ((n, body) :: cs) := do (fs, body') ← take_arguments body, body'' ← action body', cs' ← compile_builtin_cases cs, case ← bind_builtin_case_fields scrut fs body'', return $ (n, case) :: cs' meta def in_lean_ns (n : name) : name := mk_simple_name ("lean::" ++ name.to_string_with_sep "_" n) meta def mk_builtin_cases_on (case_name scrut : name) (cases : list (nat × ir.stmt)) (default : ir.stmt) : ir.stmt := -- replace `ctor_index with a generated name ir.stmt.seq [ ir.stmt.letb `buffer ir.ty.object_buffer ir.expr.uninitialized ir.stmt.nop, ir.stmt.letb `ctor_index ir.ty.int (ir.expr.call (in_lean_ns case_name) [scrut, `buffer]) ir.stmt.nop, ir.stmt.switch `ctor_index cases default ] meta def compile_builtin_cases_on_to_ir_expr (case_name : name) (cases : list expr) (action : expr → ir_compiler ir.stmt) : ir_compiler ir.expr := do default ← panic "default case should never be reached", match cases with | [] := mk_error $ "found " ++ to_string case_name ++ "applied to zero arguments" | (h :: cs) := do ir_scrut ← action h >>= assert_expr, ir.expr.block <$> bind_value ir_scrut (fun scrut, do cs' ← compile_builtin_cases action scrut (label cs), return (mk_builtin_cases_on case_name scrut cs' (ir.stmt.e default))) end meta def mk_is_simple (scrut : name) : ir.expr := ir.expr.call `is_simple [scrut] meta def mk_is_zero (n : name) : ir.expr := ir.expr.equals (ir.expr.raw_int 0) (ir.expr.locl n) meta def mk_cidx (obj : name) : ir.expr := ir.expr.call `cidx [obj] -- we should add applicative brackets meta def mk_simple_nat_cases_on (scrut : name) (zero_case succ_case : ir.stmt) : ir_compiler ir.stmt := bind_value_with_ty (mk_cidx scrut) (ir.ty.name `int) (fun cidx, bind_value_with_ty (mk_is_zero cidx) (ir.ty.name `bool) (fun is_zero, pure $ ir.stmt.ite is_zero zero_case succ_case)) meta def mk_mpz_nat_cases_on (scrut : name) (zero_case succ_case : ir.stmt) : ir_compiler ir.stmt := ir.stmt.e <$> panic "mpz" meta def mk_nat_cases_on (scrut : name) (zero_case succ_case : ir.stmt) : ir_compiler ir.stmt := bind_value_with_ty (mk_is_simple scrut) (ir.ty.name `bool) (fun is_simple, ir.stmt.ite is_simple <$> mk_simple_nat_cases_on scrut zero_case succ_case <*> mk_mpz_nat_cases_on scrut zero_case succ_case) meta def assert_two_cases (cases : list expr) : ir_compiler (expr × expr) := match cases with | c1 :: c2 :: _ := return (c1, c2) | _ := mk_error "nat.cases_on should have exactly two cases" end meta def mk_vm_nat (n : name) : ir.expr := ir.expr.call (in_lean_ns `mk_vm_simple) [n] meta def compile_succ_case (action : expr → ir_compiler ir.stmt) (scrut : name) (succ_case : expr) : ir_compiler ir.stmt := do (fs, body') ← take_arguments succ_case, body'' ← action body', match fs with | pred :: _ := do loc ← compile_local pred, fresh ← fresh_name, bind_value_with_ty (mk_cidx scrut) (ir.ty.name `int) (fun cidx, bind_value_with_ty (ir.expr.sub (ir.expr.locl cidx) (ir.expr.raw_int 1)) (ir.ty.name `int) (fun sub, pure $ ir.stmt.letb loc ir.ty.object (mk_vm_nat sub) body'' )) | _ := mk_error "compile_succ_case too many fields" end meta def compile_nat_cases_on_to_ir_expr (case_name : name) (cases : list expr) (action : expr → ir_compiler ir.stmt) : ir_compiler ir.expr := match cases with | [] := mk_error $ "found " ++ to_string case_name ++ "applied to zero arguments" | (h :: cs) := do ir_scrut ← action h >>= assert_expr, (zero_case, succ_case) ← assert_two_cases cs, trace_ir (to_string zero_case), trace_ir (to_string succ_case), ir.expr.block <$> bind_value ir_scrut (fun scrut, do zc ← action zero_case, sc ← compile_succ_case action scrut succ_case, mk_nat_cases_on scrut zc sc ) end -- this→emit_indented("if (is_simple("); -- action(scrutinee); -- this→emit_string("))"); -- this→emit_block([&] () { -- this→emit_indented("if (cidx("); -- action(scrutinee); -- this→emit_string(") == 0) "); -- this→emit_block([&] () { -- action(zero_case); -- *this→m_output_stream << ";\n"; -- }); -- this→emit_string("else "); -- this→emit_block([&] () { -- action(succ_case); -- *this→m_output_stream << ";\n"; -- }); -- }); -- this→emit_string("else "); -- this→emit_block([&] () { -- this→emit_indented("if (to_mpz("); -- action(scrutinee); -- this→emit_string(") == 0) "); -- this→emit_block([&] () { -- action(zero_case); -- *this→m_output_stream << ";\n"; -- }); -- this→emit_string("else "); -- this→emit_block([&] () { -- action(succ_case); -- }); -- }); -- this code isnt' great working around the semi-functional frontend meta def compile_expr_app_to_ir_expr (head : expr) (args : list expr) (action : expr → ir_compiler ir.stmt) : ir_compiler ir.expr := do trace_ir (to_string head ++ to_string args), if expr.is_constant head = bool.tt then (if is_return (expr.const_name head) then do rexp ← one_or_error args, (ir.expr.block ∘ ir.stmt.return) <$> ((action rexp) >>= assert_expr) else if is_nat_cases_on (expr.const_name head) then compile_nat_cases_on_to_ir_expr (expr.const_name head) args action else match is_internal_cnstr head with | option.some n := do args' ← monad.sequence $ list.map (fun x, action x >>= assert_expr) args, mk_object n args' | option.none := match is_internal_cases head with | option.some n := compile_cases_on_to_ir_expr (expr.const_name head) args action | option.none := match get_builtin (expr.const_name head) with | option.some builtin := match builtin with | builtin.vm n := mk_error "vm" | builtin.cfun n arity := do args' ← monad.sequence $ list.map (fun x, action x >>= assert_expr) args, compile_call n arity args' | builtin.cases n arity := compile_builtin_cases_on_to_ir_expr (expr.const_name head) args action end | option.none := do args' ← monad.sequence $ list.map (fun x, action x >>= assert_expr) args, arity ← lookup_arity (expr.const_name head), compile_call (expr.const_name head) arity args' end end end) else if expr.is_local_constant head then do args' ← monad.sequence $ list.map (fun x, action x >>= assert_expr) args, mk_invoke (expr.local_uniq_name head) args' else (mk_error ("unsupported call position" ++ (to_string head))) meta def compile_expr_macro_to_ir_expr (e : expr) : ir_compiler ir.expr := match native.get_nat_value e with | option.none := mk_error "unsupported macro" | option.some n := mk_nat_literal n end meta def compile_expr_to_ir_expr (action : expr → ir_compiler ir.stmt): expr → ir_compiler ir.expr | (expr.const n ls) := match native.is_internal_cnstr (expr.const n ls) with | option.none := -- TODO, do I need to case on arity here? I should probably always emit a call match get_builtin n with | option.some (builtin.cfun n' arity) := compile_call n arity [] | _ := if n = "_neutral_" then (pure $ ir.expr.mk_object 0 []) else do arity ← lookup_arity n, compile_call n arity [] end | option.some arity := pure $ ir.expr.mk_object (unsigned.to_nat arity) [] end | (expr.var i) := mk_error "there should be no bound variables in compiled terms" | (expr.sort _) := mk_error "found sort" | (expr.mvar _ _) := mk_error "unexpected meta-variable in expr" | (expr.local_const n _ _ _) := ir.expr.locl <$> compile_local n | (expr.app f x) := let head := expr.get_app_fn (expr.app f x), args := expr.get_app_args (expr.app f x) in compile_expr_app_to_ir_expr head args action | (expr.lam _ _ _ _) := mk_error "found lam" | (expr.pi _ _ _ _) := mk_error "found pi" | (expr.elet n _ v body) := mk_error "internal error: can not translate let binding into a ir_expr" | (expr.macro d sz args) := compile_expr_macro_to_ir_expr (expr.macro d sz args) meta def compile_expr_to_ir_stmt : expr → ir_compiler ir.stmt | (expr.pi _ _ _ _) := mk_error "found pi, should not be translating a Pi for any reason (yet ...)" | (expr.elet n _ v body) := do n' ← compile_local n, v' ← compile_expr_to_ir_expr compile_expr_to_ir_stmt v, -- this is a scoping fail, we need to fix how we compile locals body' ← compile_expr_to_ir_stmt (expr.instantiate_vars body [mk_local n]), -- not the best solution, here need to think hard about how to prevent thing, more aggressive anf? match v' with | ir.expr.block stmt := return (ir.stmt.seq [ir.stmt.letb n' ir.ty.object ir.expr.uninitialized ir.stmt.nop, body']) | _ := return (ir.stmt.letb n' ir.ty.object v' body') end | e' := ir.stmt.e <$> compile_expr_to_ir_expr compile_expr_to_ir_stmt e' meta def compile_defn_to_ir (decl_name : name) (args : list name) (body : expr) : ir_compiler ir.defn := do body' ← compile_expr_to_ir_stmt body, let params := (zip args (repeat (list.length args) (ir.ty.ref ir.ty.object))) in pure (ir.defn.mk decl_name params ir.ty.object body') def unwrap_or_else {T R : Type} : ir_result T → (T → R) → (error → R) → R | (native.result.err e) f err := err e | (native.result.ok t) f err := f t meta def replace_main (n : name) : name := if n = `main then "___lean__main" else n meta def trace_expr (e : expr) : ir_compiler unit := trace ("trace_expr: " ++ to_string e) (return ()) meta def compile_defn (decl_name : name) (e : expr) : ir_compiler format := let arity := get_arity e in do (args, body) ← take_arguments e, ir ← compile_defn_to_ir (replace_main decl_name) args body, return $ format_cpp.defn ir meta def compile' : list (name × expr) → list (ir_compiler format) | [] := [] | ((n, e) :: rest) := do let decl := (fun d, d ++ format.line ++ format.line) <$> compile_defn n e in decl :: (compile' rest) meta def format_error : error → format | (error.string s) := to_fmt s | (error.many es) := format_concat (list.map format_error es) meta def mk_lean_name (n : name) : ir.expr := ir.expr.constructor (in_lean_ns `name) (name.components n) meta def emit_declare_vm_builtins : list (name × expr) → ir_compiler (list ir.stmt) | [] := return [] | ((n, body) :: es) := do vm_name ← pure $ (mk_lean_name n), tail ← emit_declare_vm_builtins es, fresh ← fresh_name, let cpp_name := in_lean_ns `name, single_binding := ir.stmt.seq [ ir.stmt.letb fresh (ir.ty.name cpp_name) vm_name ir.stmt.nop, ir.stmt.e $ ir.expr.assign `env (ir.expr.call `add_native [`env, fresh, replace_main n]) ] in return $ single_binding :: tail meta def emit_main (procs : list (name × expr)) : ir_compiler ir.defn := do builtins ← emit_declare_vm_builtins procs, arity ← lookup_arity `main, vm_simple_obj ← fresh_name, call_main ← compile_call "___lean__main" arity [ir.expr.locl vm_simple_obj], return (ir.defn.mk `main [] ir.ty.int $ ir.stmt.seq ([ ir.stmt.e $ ir.expr.call (in_lean_ns `initialize) [], ir.stmt.letb `env (ir.ty.name (in_lean_ns `environment)) ir.expr.uninitialized ir.stmt.nop ] ++ builtins ++ [ ir.stmt.letb `ios (ir.ty.name (in_lean_ns `io_state)) (ir.expr.call (in_lean_ns `get_global_ios) []) ir.stmt.nop, ir.stmt.letb `opts (ir.ty.name (in_lean_ns `options)) (ir.expr.call (in_lean_ns `get_options_from_ios) [`ios]) ir.stmt.nop, ir.stmt.letb `S (ir.ty.name (in_lean_ns `vm_state)) (ir.expr.constructor (in_lean_ns `vm_state) [`env, `opts]) ir.stmt.nop, ir.stmt.letb `scoped (ir.ty.name (in_lean_ns `scope_vm_state)) (ir.expr.constructor (in_lean_ns `scope_vm_state) [`S]) ir.stmt.nop, ir.stmt.e $ ir.expr.assign `g_env (ir.expr.address_of `env), ir.stmt.letb vm_simple_obj ir.ty.object (ir.expr.mk_object 0 []) ir.stmt.nop, ir.stmt.e call_main ])) -- -- call_mains -- -- buffer<expr> args; -- -- auto unit = mk_neutral_expr(); -- -- args.push_back(unit); -- -- // Make sure to invoke the C call machinery since it is non-deterministic -- -- // which case we enter here. -- -- compile_to_c_call(main_fn, args, 0, name_map<unsigned>()); -- -- *this→m_output_stream << ";\n return 0;\n}" << std::endl; -- ] meta def unzip {A B} : list (A × B) → (list A × list B) | [] := ([], []) | ((x, y) :: rest) := let (xs, ys) := unzip rest in (x :: xs, y :: ys) meta def configuration : ir_compiler config := do (conf, _, _) ← lift $ state.read, pure conf meta def apply_pre_ir_passes (procs : list procedure) (conf : config) : list procedure := run_passes conf [anf, cf] procs meta def driver (procs : list (name × expr)) : ir_compiler (list format × list error) := do procs' ← apply_pre_ir_passes procs <$> configuration, (fmt_decls, errs) ← sequence_err (compile' procs'), main ← emit_main procs', return (format_cpp.defn main :: fmt_decls, errs) meta def compile (conf : config) (procs : list (name × expr)) : format := let arities := mk_arity_map procs in -- Put this in a combinator or something ... match run (driver procs) (conf, arities, 0) with | (native.result.err e, s) := error.to_string e | (native.result.ok (decls, errs), s) := if list.length errs = 0 then format_concat decls else format_error (error.many errs) end -- meta def compile (procs : list (name)) end native
6a4e1771d23dcbedf920439e3d4af7cbcf3a1544
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/analysis/convex/krein_milman.lean
e1f8047f531c47d3a9e023486a132e86d5c5b659
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
5,438
lean
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import analysis.convex.exposed import analysis.normed_space.hahn_banach.separation /-! # The Krein-Milman theorem This file proves the Krein-Milman lemma and the Krein-Milman theorem. ## The lemma The lemma states that a nonempty compact set `s` has an extreme point. The proof goes: 1. Using Zorn's lemma, find a minimal nonempty closed `t` that is an extreme subset of `s`. We will show that `t` is a singleton, thus corresponding to an extreme point. 2. By contradiction, `t` contains two distinct points `x` and `y`. 3. With the (geometric) Hahn-Banach theorem, find an hyperplane that separates `x` and `y`. 4. Look at the extreme (actually exposed) subset of `t` obtained by going the furthest away from the separating hyperplane in the direction of `x`. It is nonempty, closed and an extreme subset of `s`. 5. It is a strict subset of `t` (`y` isn't in it), so `t` isn't minimal. Absurd. ## The theorem The theorem states that a compact convex set `s` is the closure of the convex hull of its extreme points. It is an almost immediate strengthening of the lemma. The proof goes: 1. By contradiction, `s \ closure (convex_hull ℝ (extreme_points ℝ s))` is nonempty, say with `x`. 2. With the (geometric) Hahn-Banach theorem, find an hyperplane that separates `x` from `closure (convex_hull ℝ (extreme_points ℝ s))`. 3. Look at the extreme (actually exposed) subset of `s \ closure (convex_hull ℝ (extreme_points ℝ s))` obtained by going the furthest away from the separating hyperplane. It is nonempty by assumption of nonemptiness and compactness, so by the lemma it has an extreme point. 4. This point is also an extreme point of `s`. Absurd. ## Related theorems When the space is finite dimensional, the `closure` can be dropped to strengthen the result of the Krein-Milman theorem. This leads to the Minkowski-Carathéodory theorem (currently not in mathlib). Birkhoff's theorem is the Minkowski-Carathéodory theorem applied to the set of bistochastic matrices, permutation matrices being the extreme points. ## References See chapter 8 of [Barry Simon, *Convexity*][simon2011] ## TODO * Both theorems are currently stated for normed `ℝ`-spaces due to our version of geometric Hahn-Banach. They are more generally true in a LCTVS without changes to the proofs. -/ open set open_locale classical variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] {s : set E} /-- **Krein-Milman lemma**: In a LCTVS (currently only in normed `ℝ`-spaces), any nonempty compact set has an extreme point. -/ lemma is_compact.has_extreme_point (hscomp : is_compact s) (hsnemp : s.nonempty) : (s.extreme_points ℝ).nonempty := begin let S : set (set E) := {t | t.nonempty ∧ is_closed t ∧ is_extreme ℝ s t}, suffices h : ∃ t ∈ S, ∀ u ∈ S, u ⊆ t → u = t, { obtain ⟨t, ⟨⟨x, hxt⟩, htclos, hst⟩, hBmin⟩ := h, refine ⟨x, mem_extreme_points_iff_extreme_singleton.2 _⟩, rwa ←eq_singleton_iff_unique_mem.2 ⟨hxt, λ y hyB, _⟩, by_contra hyx, obtain ⟨l, hl⟩ := geometric_hahn_banach_point_point hyx, obtain ⟨z, hzt, hz⟩ := (compact_of_is_closed_subset hscomp htclos hst.1).exists_forall_ge ⟨x, hxt⟩ l.continuous.continuous_on, have h : is_exposed ℝ t {z ∈ t | ∀ w ∈ t, l w ≤ l z} := λ h, ⟨l, rfl⟩, rw ←hBmin {z ∈ t | ∀ w ∈ t, l w ≤ l z} ⟨⟨z, hzt, hz⟩, h.is_closed htclos, hst.trans h.is_extreme⟩ (t.sep_subset _) at hyB, exact hl.not_le (hyB.2 x hxt) }, refine zorn_superset _ (λ F hFS hF, _), obtain rfl | hFnemp := F.eq_empty_or_nonempty, { exact ⟨s, ⟨hsnemp, hscomp.is_closed, is_extreme.rfl⟩, λ _, false.elim⟩ }, refine ⟨⋂₀ F, ⟨_, is_closed_sInter $ λ t ht, (hFS ht).2.1, is_extreme_sInter hFnemp $ λ t ht, (hFS ht).2.2⟩, λ t ht, sInter_subset_of_mem ht⟩, haveI : nonempty ↥F := hFnemp.to_subtype, rw sInter_eq_Inter, refine is_compact.nonempty_Inter_of_directed_nonempty_compact_closed _ (λ t u, _) (λ t, (hFS t.mem).1) (λ t, compact_of_is_closed_subset hscomp (hFS t.mem).2.1 (hFS t.mem).2.2.1) (λ t, (hFS t.mem).2.1), obtain htu | hut := hF.total t.mem u.mem, exacts [⟨t, subset.rfl, htu⟩, ⟨u, hut, subset.rfl⟩], end /-- **Krein-Milman theorem**: In a LCTVS (currently only in normed `ℝ`-spaces), any compact convex set is the closure of the convex hull of its extreme points. -/ lemma closure_convex_hull_extreme_points (hscomp : is_compact s) (hAconv : convex ℝ s) : closure (convex_hull ℝ $ s.extreme_points ℝ) = s := begin apply (closure_minimal (convex_hull_min extreme_points_subset hAconv) hscomp.is_closed).antisymm, by_contra hs, obtain ⟨x, hxA, hxt⟩ := not_subset.1 hs, obtain ⟨l, r, hlr, hrx⟩ := geometric_hahn_banach_closed_point (convex_convex_hull _ _).closure is_closed_closure hxt, have h : is_exposed ℝ s {y ∈ s | ∀ z ∈ s, l z ≤ l y} := λ _, ⟨l, rfl⟩, obtain ⟨z, hzA, hz⟩ := hscomp.exists_forall_ge ⟨x, hxA⟩ l.continuous.continuous_on, obtain ⟨y, hy⟩ := (h.is_compact hscomp).has_extreme_point ⟨z, hzA, hz⟩, linarith [hlr _ (subset_closure $ subset_convex_hull _ _ $ h.is_extreme.extreme_points_subset_extreme_points hy), hy.1.2 x hxA], end
f7c47cae1685e2aa48611229e0cb50200bd8e4c3
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/src/analysis/calculus/parametric_integral.lean
1e03a079d2c31afe08250ace973404643b4d1a9f
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
14,570
lean
/- Copyright (c) 2021 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot -/ import measure_theory.integral.set_integral import analysis.calculus.mean_value /-! # Derivatives of integrals depending on parameters A parametric integral is a function with shape `f = λ x : H, ∫ a : α, F x a ∂μ` for some `F : H → α → E`, where `H` and `E` are normed spaces and `α` is a measured space with measure `μ`. We already know from `continuous_of_dominated` in `measure_theory.bochner_integral` how to guarantee that `f` is continuous using the dominated convergence theorem. In this file, we want to express the derivative of `f` as the integral of the derivative of `F` with respect to `x`. ## Main results As explained above, all results express the derivative of a parametric integral as the integral of a derivative. The variations come from the assumptions and from the different ways of expressing derivative, especially Fréchet derivatives vs elementary derivative of function of one real variable. * `has_fderiv_at_of_dominated_loc_of_lip`: this version assumes `F x` is ae-measurable for x near `x₀`, `F x₀` is integrable, `λ x, F x a` has derivative `F' a : H →L[ℝ] E` at `x₀` which is ae-measurable, `λ x, F x a` is locally Lipschitz near `x₀` for almost every `a`, with a Lipschitz bound which is integrable with respect to `a`. A subtle point is that the "near x₀" in the last condition has to be uniform in `a`. This is controlled by a positive number `ε`. * `has_fderiv_at_of_dominated_of_fderiv_le`: this version assume `λ x, F x a` has derivative `F' x a` for `x` near `x₀` and `F' x` is bounded by an integrable function independent from `x` near `x₀`. `has_deriv_at_of_dominated_loc_of_lip` and `has_deriv_at_of_dominated_loc_of_deriv_le ` are versions of the above two results that assume `H = ℝ` and use the high-school derivative `deriv` instead of Fréchet derivative `fderiv`. -/ noncomputable theory open topological_space measure_theory filter metric open_locale topological_space filter variables {α : Type*} [measurable_space α] {μ : measure α} {E : Type*} [normed_group E] [normed_space ℝ E] [complete_space E] [second_countable_topology E] [measurable_space E] [borel_space E] {H : Type*} [normed_group H] [normed_space ℝ H] [second_countable_topology $ H →L[ℝ] E] /-- Differentiation under integral of `x ↦ ∫ F x a` at a given point `x₀`, assuming `F x₀` is integrable, `x ↦ F x a` is locally Lipschitz on a ball around `x₀` for ae `a` with integrable Lipschitz bound (with a ball radius independent of `a`), and `F x` is ae-measurable for `x` in the same ball. See `has_fderiv_at_of_dominated_loc_of_lip` for a slightly more general version. -/ lemma has_fderiv_at_of_dominated_loc_of_lip' {F : H → α → E} {F' : α → (H →L[ℝ] E)} {x₀ : H} {bound : α → ℝ} {ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ x ∈ ball x₀ ε, ae_measurable (F x) μ) (hF_int : integrable (F x₀) μ) (hF'_meas : ae_measurable F' μ) (h_lipsch : ∀ᵐ a ∂μ, lipschitz_on_with (real.nnabs $ bound a) (λ x, F x a) (ball x₀ ε)) (bound_integrable : integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, has_fderiv_at (λ x, F x a) (F' a) x₀) : integrable F' μ ∧ has_fderiv_at (λ x, ∫ a, F x a ∂μ) (∫ a, F' a ∂μ) x₀ := begin have x₀_in : x₀ ∈ ball x₀ ε := mem_ball_self ε_pos, have nneg : ∀ x, 0 ≤ ∥x - x₀∥⁻¹ := λ x, inv_nonneg.mpr (norm_nonneg _) , set b : α → ℝ := λ a, abs (bound a), have b_int : integrable b μ := bound_integrable.norm, have b_nonneg : ∀ a, 0 ≤ b a := λ a, abs_nonneg _, have hF_int' : ∀ x ∈ ball x₀ ε, integrable (F x) μ, { intros x x_in, have : ∀ᵐ a ∂μ, ∥F x₀ a - F x a∥ ≤ ε * ∥(bound a : ℝ)∥, { apply h_lipsch.mono, intros a ha, rw lipschitz_on_with_iff_norm_sub_le at ha, apply (ha x₀ x₀_in x x_in).trans, rw [mul_comm, real.coe_nnabs, real.norm_eq_abs], rw [mem_ball, dist_eq_norm, norm_sub_rev] at x_in, exact mul_le_mul_of_nonneg_right (le_of_lt x_in) (abs_nonneg _) }, exact integrable_of_norm_sub_le (hF_meas x x_in) hF_int (integrable.const_mul bound_integrable.norm ε) this }, have hF'_int : integrable F' μ, { have : ∀ᵐ a ∂μ, ∥F' a∥ ≤ b a, { apply (h_diff.and h_lipsch).mono, rintros a ⟨ha_diff, ha_lip⟩, exact ha_diff.le_of_lip (ball_mem_nhds _ ε_pos) ha_lip }, exact b_int.mono' hF'_meas this }, refine ⟨hF'_int, _⟩, have h_ball: ball x₀ ε ∈ 𝓝 x₀ := ball_mem_nhds x₀ ε_pos, have : ∀ᶠ x in 𝓝 x₀, ∥x - x₀∥⁻¹ * ∥∫ a, F x a ∂μ - ∫ a, F x₀ a ∂μ - (∫ a, F' a ∂μ) (x - x₀)∥ = ∥∫ a, ∥x - x₀∥⁻¹ • (F x a - F x₀ a - F' a (x - x₀)) ∂μ∥, { apply mem_of_superset (ball_mem_nhds _ ε_pos), intros x x_in, rw [set.mem_set_of_eq, ← norm_smul_of_nonneg (nneg _), integral_smul, integral_sub, integral_sub, ← continuous_linear_map.integral_apply hF'_int], exacts [hF_int' x x_in, hF_int, (hF_int' x x_in).sub hF_int, hF'_int.apply_continuous_linear_map _] }, rw [has_fderiv_at_iff_tendsto, tendsto_congr' this, ← tendsto_zero_iff_norm_tendsto_zero, ← show ∫ (a : α), ∥x₀ - x₀∥⁻¹ • (F x₀ a - F x₀ a - (F' a) (x₀ - x₀)) ∂μ = 0, by simp], apply tendsto_integral_filter_of_dominated_convergence, { apply is_countably_generated_nhds }, { filter_upwards [h_ball], intros x x_in, apply ae_measurable.const_smul, exact ((hF_meas _ x_in).sub (hF_meas _ x₀_in)).sub (hF'_meas.apply_continuous_linear_map _) }, { simp [measurable_const] }, { apply mem_of_superset h_ball, intros x hx, apply (h_diff.and h_lipsch).mono, rintros a ⟨ha_deriv, ha_bound⟩, show ∥∥x - x₀∥⁻¹ • (F x a - F x₀ a - F' a (x - x₀))∥ ≤ b a + ∥F' a∥, replace ha_bound : ∥F x a - F x₀ a∥ ≤ b a * ∥x - x₀∥, { rw lipschitz_on_with_iff_norm_sub_le at ha_bound, exact ha_bound _ hx _ x₀_in }, calc ∥∥x - x₀∥⁻¹ • (F x a - F x₀ a - F' a (x - x₀))∥ = ∥∥x - x₀∥⁻¹ • (F x a - F x₀ a) - ∥x - x₀∥⁻¹ • F' a (x - x₀)∥ : by rw smul_sub ... ≤ ∥∥x - x₀∥⁻¹ • (F x a - F x₀ a)∥ + ∥∥x - x₀∥⁻¹ • F' a (x - x₀)∥ : norm_sub_le _ _ ... = ∥x - x₀∥⁻¹ * ∥F x a - F x₀ a∥ + ∥x - x₀∥⁻¹ * ∥F' a (x - x₀)∥ : by { rw [norm_smul_of_nonneg, norm_smul_of_nonneg] ; exact nneg _} ... ≤ ∥x - x₀∥⁻¹ * (b a * ∥x - x₀∥) + ∥x - x₀∥⁻¹ * (∥F' a∥ * ∥x - x₀∥) : add_le_add _ _ ... ≤ b a + ∥F' a∥ : _, exact mul_le_mul_of_nonneg_left ha_bound (nneg _), apply mul_le_mul_of_nonneg_left ((F' a).le_op_norm _) (nneg _), by_cases h : ∥x - x₀∥ = 0, { simpa [h] using add_nonneg (b_nonneg a) (norm_nonneg (F' a)) }, { field_simp [h] } }, { exact b_int.add hF'_int.norm }, { apply h_diff.mono, intros a ha, suffices : tendsto (λ x, ∥x - x₀∥⁻¹ • (F x a - F x₀ a - F' a (x - x₀))) (𝓝 x₀) (𝓝 0), by simpa, rw tendsto_zero_iff_norm_tendsto_zero, have : (λ x, ∥x - x₀∥⁻¹ * ∥F x a - F x₀ a - F' a (x - x₀)∥) = λ x, ∥∥x - x₀∥⁻¹ • (F x a - F x₀ a - F' a (x - x₀))∥, { ext x, rw norm_smul_of_nonneg (nneg _) }, rwa [has_fderiv_at_iff_tendsto, this] at ha }, end /-- Differentiation under integral of `x ↦ ∫ F x a` at a given point `x₀`, assuming `F x₀` is integrable, `x ↦ F x a` is locally Lipschitz on a ball around `x₀` for ae `a` (with a ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/ lemma has_fderiv_at_of_dominated_loc_of_lip {F : H → α → E} {F' : α → (H →L[ℝ] E)} {x₀ : H} {bound : α → ℝ} {ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, ae_measurable (F x) μ) (hF_int : integrable (F x₀) μ) (hF'_meas : ae_measurable F' μ) (h_lip : ∀ᵐ a ∂μ, lipschitz_on_with (real.nnabs $ bound a) (λ x, F x a) (ball x₀ ε)) (bound_integrable : integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, has_fderiv_at (λ x, F x a) (F' a) x₀) : integrable F' μ ∧ has_fderiv_at (λ x, ∫ a, F x a ∂μ) (∫ a, F' a ∂μ) x₀ := begin obtain ⟨ε', ε'_pos, h'⟩ : ∃ ε' > 0, ∀ x ∈ ball x₀ ε', ae_measurable (F x) μ, by simpa using nhds_basis_ball.eventually_iff.mp hF_meas, set δ := min ε ε', have δ_pos : 0 < δ := lt_min ε_pos ε'_pos, replace h' : ∀ x, x ∈ ball x₀ δ → ae_measurable (F x) μ, { intros x x_in, exact h' _ (ball_subset_ball (min_le_right ε ε') x_in) }, replace h_lip : ∀ᵐ (a : α) ∂μ, lipschitz_on_with (real.nnabs $ bound a) (λ x, F x a) (ball x₀ δ), { apply h_lip.mono, intros a lip, exact lip.mono (ball_subset_ball $ min_le_left ε ε') }, apply has_fderiv_at_of_dominated_loc_of_lip' δ_pos ; assumption end /-- Differentiation under integral of `x ↦ ∫ F x a` at a given point `x₀`, assuming `F x₀` is integrable, `x ↦ F x a` is differentiable on a ball around `x₀` for ae `a` with derivative norm uniformly bounded by an integrable function (the ball radius is independent of `a`), and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/ lemma has_fderiv_at_of_dominated_of_fderiv_le {F : H → α → E} {F' : H → α → (H →L[ℝ] E)} {x₀ : H} {bound : α → ℝ} {ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, ae_measurable (F x) μ) (hF_int : integrable (F x₀) μ) (hF'_meas : ae_measurable (F' x₀) μ) (h_bound : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ∥F' x a∥ ≤ bound a) (bound_integrable : integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, has_fderiv_at (λ x, F x a) (F' x a) x) : has_fderiv_at (λ x, ∫ a, F x a ∂μ) (∫ a, F' x₀ a ∂μ) x₀ := begin have x₀_in : x₀ ∈ ball x₀ ε := mem_ball_self ε_pos, have diff_x₀ : ∀ᵐ a ∂μ, has_fderiv_at (λ x, F x a) (F' x₀ a) x₀ := h_diff.mono (λ a ha, ha x₀ x₀_in), have : ∀ᵐ a ∂μ, lipschitz_on_with (real.nnabs (bound a)) (λ x, F x a) (ball x₀ ε), { apply (h_diff.and h_bound).mono, rintros a ⟨ha_deriv, ha_bound⟩, refine (convex_ball _ _).lipschitz_on_with_of_nnnorm_has_fderiv_within_le (λ x x_in, (ha_deriv x x_in).has_fderiv_within_at) (λ x x_in, _), rw [← nnreal.coe_le_coe, coe_nnnorm, real.coe_nnabs], exact (ha_bound x x_in).trans (le_abs_self _) }, exact (has_fderiv_at_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas this bound_integrable diff_x₀).2 end /-- Derivative under integral of `x ↦ ∫ F x a` at a given point `x₀ : ℝ`, assuming `F x₀` is integrable, `x ↦ F x a` is locally Lipschitz on an interval around `x₀` for ae `a` (with interval radius independent of `a`) with integrable Lipschitz bound, and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/ lemma has_deriv_at_of_dominated_loc_of_lip {F : ℝ → α → E} {F' : α → E} {x₀ : ℝ} {ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, ae_measurable (F x) μ) (hF_int : integrable (F x₀) μ) (hF'_meas : ae_measurable F' μ) {bound : α → ℝ} (h_lipsch : ∀ᵐ a ∂μ, lipschitz_on_with (real.nnabs $ bound a) (λ x, F x a) (ball x₀ ε)) (bound_integrable : integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, has_deriv_at (λ x, F x a) (F' a) x₀) : (integrable F' μ) ∧ has_deriv_at (λ x, ∫ a, F x a ∂μ) (∫ a, F' a ∂μ) x₀ := begin have hm := (continuous_linear_map.smul_rightL ℝ ℝ E 1).continuous.measurable.comp_ae_measurable hF'_meas, cases has_fderiv_at_of_dominated_loc_of_lip ε_pos hF_meas hF_int hm h_lipsch bound_integrable h_diff with hF'_int key, replace hF'_int : integrable F' μ, { rw [← integrable_norm_iff hm] at hF'_int, simpa only [integrable_norm_iff, hF'_meas, one_mul, norm_one, continuous_linear_map.norm_smul_rightL_apply] using hF'_int}, refine ⟨hF'_int, _⟩, simp_rw has_deriv_at_iff_has_fderiv_at at h_diff ⊢, rwa continuous_linear_map.integral_comp_comm _ hF'_int at key, all_goals { apply_instance, }, end /-- Derivative under integral of `x ↦ ∫ F x a` at a given point `x₀ : ℝ`, assuming `F x₀` is integrable, `x ↦ F x a` is differentiable on an interval around `x₀` for ae `a` (with interval radius independent of `a`) with derivative uniformly bounded by an integrable function, and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/ lemma has_deriv_at_of_dominated_loc_of_deriv_le {F : ℝ → α → E} {F' : ℝ → α → E} {x₀ : ℝ} {ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, ae_measurable (F x) μ) (hF_int : integrable (F x₀) μ) (hF'_meas : ae_measurable (F' x₀) μ) {bound : α → ℝ} (h_bound : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ∥F' x a∥ ≤ bound a) (bound_integrable : integrable bound μ) (h_diff : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, has_deriv_at (λ x, F x a) (F' x a) x) : (integrable (F' x₀) μ) ∧ has_deriv_at (λn, ∫ a, F n a ∂μ) (∫ a, F' x₀ a ∂μ) x₀ := begin have x₀_in : x₀ ∈ ball x₀ ε := mem_ball_self ε_pos, have diff_x₀ : ∀ᵐ a ∂μ, has_deriv_at (λ x, F x a) (F' x₀ a) x₀ := h_diff.mono (λ a ha, ha x₀ x₀_in), have : ∀ᵐ a ∂μ, lipschitz_on_with (real.nnabs (bound a)) (λ (x : ℝ), F x a) (ball x₀ ε), { apply (h_diff.and h_bound).mono, rintros a ⟨ha_deriv, ha_bound⟩, refine (convex_ball _ _).lipschitz_on_with_of_nnnorm_has_deriv_within_le (λ x x_in, (ha_deriv x x_in).has_deriv_within_at) (λ x x_in, _), rw [← nnreal.coe_le_coe, coe_nnnorm, real.coe_nnabs], exact (ha_bound x x_in).trans (le_abs_self _) }, exact has_deriv_at_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas this bound_integrable diff_x₀ end
b6bcfdb2f861eac0f4fda3a303a4abb9ccd7c19a
4b846d8dabdc64e7ea03552bad8f7fa74763fc67
/library/init/algebra/ring.lean
ab1d561c0a80ca7c1c8e73f89663e7afd10e6017
[ "Apache-2.0" ]
permissive
pacchiano/lean
9324b33f3ac3b5c5647285160f9f6ea8d0d767dc
fdadada3a970377a6df8afcd629a6f2eab6e84e8
refs/heads/master
1,611,357,380,399
1,489,870,101,000
1,489,870,101,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,876
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ prelude import init.algebra.group /- Make sure instances defined in this file have lower priority than the ones defined for concrete structures -/ set_option default_priority 100 universe u class distrib (α : Type u) extends has_mul α, has_add α := (left_distrib : ∀ a b c : α, a * (b + c) = (a * b) + (a * c)) (right_distrib : ∀ a b c : α, (a + b) * c = (a * c) + (b * c)) variable {α : Type u} lemma left_distrib [distrib α] (a b c : α) : a * (b + c) = a * b + a * c := distrib.left_distrib a b c def mul_add := @left_distrib lemma right_distrib [distrib α] (a b c : α) : (a + b) * c = a * c + b * c := distrib.right_distrib a b c def add_mul := @right_distrib class mul_zero_class (α : Type u) extends has_mul α, has_zero α := (zero_mul : ∀ a : α, 0 * a = 0) (mul_zero : ∀ a : α, a * 0 = 0) @[simp] lemma zero_mul [mul_zero_class α] (a : α) : 0 * a = 0 := mul_zero_class.zero_mul a @[simp] lemma mul_zero [mul_zero_class α] (a : α) : a * 0 = 0 := mul_zero_class.mul_zero a class zero_ne_one_class (α : Type u) extends has_zero α, has_one α := (zero_ne_one : 0 ≠ (1:α)) lemma zero_ne_one [s: zero_ne_one_class α] : 0 ≠ (1:α) := @zero_ne_one_class.zero_ne_one α s /- semiring -/ class semiring (α : Type u) extends add_comm_monoid α, monoid α, distrib α, mul_zero_class α section semiring variables [semiring α] lemma one_add_one_eq_two : 1 + 1 = (2 : α) := begin unfold bit0, reflexivity end lemma ne_zero_of_mul_ne_zero_right {a b : α} (h : a * b ≠ 0) : a ≠ 0 := suppose a = 0, have a * b = 0, by rw [this, zero_mul], h this lemma ne_zero_of_mul_ne_zero_left {a b : α} (h : a * b ≠ 0) : b ≠ 0 := suppose b = 0, have a * b = 0, by rw [this, mul_zero], h this lemma distrib_three_right (a b c d : α) : (a + b + c) * d = a * d + b * d + c * d := by simp [right_distrib] end semiring class comm_semiring (α : Type u) extends semiring α, comm_monoid α /- ring -/ class ring (α : Type u) extends add_comm_group α, monoid α, distrib α lemma ring.mul_zero [ring α] (a : α) : a * 0 = 0 := have a * 0 + 0 = a * 0 + a * 0, from calc a * 0 + 0 = a * (0 + 0) : by simp ... = a * 0 + a * 0 : by rw left_distrib, show a * 0 = 0, from (add_left_cancel this)^.symm lemma ring.zero_mul [ring α] (a : α) : 0 * a = 0 := have 0 * a + 0 = 0 * a + 0 * a, from calc 0 * a + 0 = (0 + 0) * a : by simp ... = 0 * a + 0 * a : by rewrite right_distrib, show 0 * a = 0, from (add_left_cancel this)^.symm instance ring.to_semiring [s : ring α] : semiring α := { s with mul_zero := ring.mul_zero, zero_mul := ring.zero_mul } lemma neg_mul_eq_neg_mul [s : ring α] (a b : α) : -(a * b) = -a * b := neg_eq_of_add_eq_zero begin rw [-right_distrib, add_right_neg, zero_mul] end lemma neg_mul_eq_mul_neg [s : ring α] (a b : α) : -(a * b) = a * -b := neg_eq_of_add_eq_zero begin rw [-left_distrib, add_right_neg, mul_zero] end @[simp] lemma neg_mul_eq_neg_mul_symm [s : ring α] (a b : α) : - a * b = - (a * b) := eq.symm (neg_mul_eq_neg_mul a b) @[simp] lemma mul_neg_eq_neg_mul_symm [s : ring α] (a b : α) : a * - b = - (a * b) := eq.symm (neg_mul_eq_mul_neg a b) lemma neg_mul_neg [s : ring α] (a b : α) : -a * -b = a * b := by simp lemma neg_mul_comm [s : ring α] (a b : α) : -a * b = a * -b := by simp theorem neg_eq_neg_one_mul [s : ring α] (a : α) : -a = -1 * a := by simp lemma mul_sub_left_distrib [s : ring α] (a b c : α) : a * (b - c) = a * b - a * c := calc a * (b - c) = a * b + a * -c : left_distrib a b (-c) ... = a * b - a * c : by simp def mul_sub := @mul_sub_left_distrib lemma mul_sub_right_distrib [s : ring α] (a b c : α) : (a - b) * c = a * c - b * c := calc (a - b) * c = a * c + -b * c : right_distrib a (-b) c ... = a * c - b * c : by simp def sub_mul := @mul_sub_right_distrib class comm_ring (α : Type u) extends ring α, comm_semigroup α instance comm_ring.to_comm_semiring [s : comm_ring α] : comm_semiring α := { s with mul_zero := mul_zero, zero_mul := zero_mul } section comm_ring variable [comm_ring α] lemma mul_self_sub_mul_self_eq (a b : α) : a * a - b * b = (a + b) * (a - b) := by simp [right_distrib, left_distrib] lemma mul_self_sub_one_eq (a : α) : a * a - 1 = (a + 1) * (a - 1) := by simp [right_distrib, left_distrib] lemma add_mul_self_eq (a b : α) : (a + b) * (a + b) = a*a + 2*a*b + b*b := calc (a + b)*(a + b) = a*a + (1+1)*a*b + b*b : by simp [right_distrib, left_distrib] ... = a*a + 2*a*b + b*b : by rw one_add_one_eq_two end comm_ring class no_zero_divisors (α : Type u) extends has_mul α, has_zero α := (eq_zero_or_eq_zero_of_mul_eq_zero : ∀ a b : α, a * b = 0 → a = 0 ∨ b = 0) lemma eq_zero_or_eq_zero_of_mul_eq_zero [no_zero_divisors α] {a b : α} (h : a * b = 0) : a = 0 ∨ b = 0 := no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero a b h lemma eq_zero_of_mul_self_eq_zero [no_zero_divisors α] {a : α} (h : a * a = 0) : a = 0 := or.elim (eq_zero_or_eq_zero_of_mul_eq_zero h) (assume h', h') (assume h', h') class integral_domain (α : Type u) extends comm_ring α, no_zero_divisors α, zero_ne_one_class α section integral_domain variable [integral_domain α] lemma mul_ne_zero {a b : α} (h₁ : a ≠ 0) (h₂ : b ≠ 0) : a * b ≠ 0 := λ h, or.elim (eq_zero_or_eq_zero_of_mul_eq_zero h) (assume h₃, h₁ h₃) (assume h₄, h₂ h₄) lemma eq_of_mul_eq_mul_right {a b c : α} (ha : a ≠ 0) (h : b * a = c * a) : b = c := have b * a - c * a = 0, from sub_eq_zero_of_eq h, have (b - c) * a = 0, by rw [mul_sub_right_distrib, this], have b - c = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this)^.resolve_right ha, eq_of_sub_eq_zero this lemma eq_of_mul_eq_mul_left {a b c : α} (ha : a ≠ 0) (h : a * b = a * c) : b = c := have a * b - a * c = 0, from sub_eq_zero_of_eq h, have a * (b - c) = 0, by rw [mul_sub_left_distrib, this], have b - c = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this)^.resolve_left ha, eq_of_sub_eq_zero this lemma eq_zero_of_mul_eq_self_right {a b : α} (h₁ : b ≠ 1) (h₂ : a * b = a) : a = 0 := have hb : b - 1 ≠ 0, from suppose b - 1 = 0, have b = 0 + 1, from eq_add_of_sub_eq this, have b = 1, by rwa zero_add at this, h₁ this, have a * b - a = 0, by simp [h₂], have a * (b - 1) = 0, by rwa [mul_sub_left_distrib, mul_one], show a = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this)^.resolve_right hb lemma eq_zero_of_mul_eq_self_left {a b : α} (h₁ : b ≠ 1) (h₂ : b * a = a) : a = 0 := eq_zero_of_mul_eq_self_right h₁ (by rwa mul_comm at h₂) lemma mul_self_eq_mul_self_iff (a b : α) : a * a = b * b ↔ a = b ∨ a = -b := iff.intro (suppose a * a = b * b, have (a - b) * (a + b) = 0, by rewrite [mul_comm, -mul_self_sub_mul_self_eq, this, sub_self], have a - b = 0 ∨ a + b = 0, from eq_zero_or_eq_zero_of_mul_eq_zero this, or.elim this (suppose a - b = 0, or.inl (eq_of_sub_eq_zero this)) (suppose a + b = 0, or.inr (eq_neg_of_add_eq_zero this))) (suppose a = b ∨ a = -b, or.elim this (suppose a = b, by rewrite this) (suppose a = -b, by rewrite [this, neg_mul_neg])) lemma mul_self_eq_one_iff (a : α) : a * a = 1 ↔ a = 1 ∨ a = -1 := have a * a = 1 * 1 ↔ a = 1 ∨ a = -1, from mul_self_eq_mul_self_iff a 1, by rwa mul_one at this end integral_domain /- TODO(Leo): remove the following annotations as soon as we have support for arithmetic in the SMT tactic framework -/ attribute [ematch] add_zero zero_add mul_one one_mul mul_zero zero_mul
ce943479a407e9da65fb6a6905745438ec7b335e
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/topology/continuous_function/bounded.lean
97d79c627990e05e3e6afc68bd34ba484deace25
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
52,315
lean
/- Copyright (c) 2018 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel, Mario Carneiro, Yury Kudryashov, Heather Macbeth -/ import analysis.normed_space.operator_norm import analysis.normed_space.star.basic import topology.continuous_function.algebra import data.real.sqrt import analysis.normed_space.lattice_ordered_group /-! # Bounded continuous functions The type of bounded continuous functions taking values in a metric space, with the uniform distance. -/ noncomputable theory open_locale topological_space classical nnreal open set filter metric function universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- The type of bounded continuous functions from a topological space to a metric space -/ structure bounded_continuous_function (α : Type u) (β : Type v) [topological_space α] [metric_space β] extends continuous_map α β : Type (max u v) := (bounded' : ∃C, ∀x y:α, dist (to_fun x) (to_fun y) ≤ C) localized "infixr ` →ᵇ `:25 := bounded_continuous_function" in bounded_continuous_function namespace bounded_continuous_function section basics variables [topological_space α] [metric_space β] [metric_space γ] variables {f g : α →ᵇ β} {x : α} {C : ℝ} instance : has_coe_to_fun (α →ᵇ β) (λ _, α → β) := ⟨λ f, f.to_fun⟩ @[simp] lemma coe_to_continuous_fun (f : α →ᵇ β) : (f.to_continuous_map : α → β) = f := rfl /-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections. -/ def simps.apply (h : α →ᵇ β) : α → β := h initialize_simps_projections bounded_continuous_function (to_continuous_map_to_fun → apply) protected lemma bounded (f : α →ᵇ β) : ∃C, ∀ x y : α, dist (f x) (f y) ≤ C := f.bounded' @[continuity] protected lemma continuous (f : α →ᵇ β) : continuous f := f.to_continuous_map.continuous @[ext] lemma ext (H : ∀x, f x = g x) : f = g := by { cases f, cases g, congr, ext, exact H x, } lemma ext_iff : f = g ↔ ∀ x, f x = g x := ⟨λ h, λ x, h ▸ rfl, ext⟩ lemma coe_injective : @injective (α →ᵇ β) (α → β) coe_fn := λ f g h, ext $ congr_fun h lemma bounded_range (f : α →ᵇ β) : bounded (range f) := bounded_range_iff.2 f.bounded lemma bounded_image (f : α →ᵇ β) (s : set α) : bounded (f '' s) := f.bounded_range.mono $ image_subset_range _ _ lemma eq_of_empty [is_empty α] (f g : α →ᵇ β) : f = g := ext $ is_empty.elim ‹_› /-- A continuous function with an explicit bound is a bounded continuous function. -/ def mk_of_bound (f : C(α, β)) (C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β := ⟨f, ⟨C, h⟩⟩ @[simp] lemma mk_of_bound_coe {f} {C} {h} : (mk_of_bound f C h : α → β) = (f : α → β) := rfl /-- A continuous function on a compact space is automatically a bounded continuous function. -/ def mk_of_compact [compact_space α] (f : C(α, β)) : α →ᵇ β := ⟨f, bounded_range_iff.1 (is_compact_range f.continuous).bounded⟩ @[simp] lemma mk_of_compact_apply [compact_space α] (f : C(α, β)) (a : α) : mk_of_compact f a = f a := rfl /-- If a function is bounded on a discrete space, it is automatically continuous, and therefore gives rise to an element of the type of bounded continuous functions -/ @[simps] def mk_of_discrete [discrete_topology α] (f : α → β) (C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β := ⟨⟨f, continuous_of_discrete_topology⟩, ⟨C, h⟩⟩ /-- The uniform distance between two bounded continuous functions -/ instance : has_dist (α →ᵇ β) := ⟨λf g, Inf {C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C}⟩ lemma dist_eq : dist f g = Inf {C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C} := rfl lemma dist_set_exists : ∃ C, 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C := begin rcases f.bounded_range.union g.bounded_range with ⟨C, hC⟩, refine ⟨max 0 C, le_max_left _ _, λ x, (hC _ _ _ _).trans (le_max_right _ _)⟩; [left, right]; apply mem_range_self end /-- The pointwise distance is controlled by the distance between functions, by definition. -/ lemma dist_coe_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := le_cInf dist_set_exists $ λb hb, hb.2 x /- This lemma will be needed in the proof of the metric space instance, but it will become useless afterwards as it will be superseded by the general result that the distance is nonnegative in metric spaces. -/ private lemma dist_nonneg' : 0 ≤ dist f g := le_cInf dist_set_exists (λ C, and.left) /-- The distance between two functions is controlled by the supremum of the pointwise distances -/ lemma dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀x:α, dist (f x) (g x) ≤ C := ⟨λ h x, le_trans (dist_coe_le_dist x) h, λ H, cInf_le ⟨0, λ C, and.left⟩ ⟨C0, H⟩⟩ lemma dist_le_iff_of_nonempty [nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := ⟨λ h x, le_trans (dist_coe_le_dist x) h, λ w, (dist_le (le_trans dist_nonneg (w (nonempty.some ‹_›)))).mpr w⟩ lemma dist_lt_of_nonempty_compact [nonempty α] [compact_space α] (w : ∀x:α, dist (f x) (g x) < C) : dist f g < C := begin have c : continuous (λ x, dist (f x) (g x)), { continuity, }, obtain ⟨x, -, le⟩ := is_compact.exists_forall_ge compact_univ set.univ_nonempty (continuous.continuous_on c), exact lt_of_le_of_lt (dist_le_iff_of_nonempty.mpr (λ y, le y trivial)) (w x), end lemma dist_lt_iff_of_compact [compact_space α] (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀x:α, dist (f x) (g x) < C := begin fsplit, { intros w x, exact lt_of_le_of_lt (dist_coe_le_dist x) w, }, { by_cases h : nonempty α, { resetI, exact dist_lt_of_nonempty_compact, }, { rintro -, convert C0, apply le_antisymm _ dist_nonneg', rw [dist_eq], exact cInf_le ⟨0, λ C, and.left⟩ ⟨le_rfl, λ x, false.elim (h (nonempty.intro x))⟩, }, }, end lemma dist_lt_iff_of_nonempty_compact [nonempty α] [compact_space α] : dist f g < C ↔ ∀x:α, dist (f x) (g x) < C := ⟨λ w x, lt_of_le_of_lt (dist_coe_le_dist x) w, dist_lt_of_nonempty_compact⟩ /-- The type of bounded continuous functions, with the uniform distance, is a metric space. -/ instance : metric_space (α →ᵇ β) := { dist_self := λ f, le_antisymm ((dist_le le_rfl).2 $ λ x, by simp) dist_nonneg', eq_of_dist_eq_zero := λ f g hfg, by ext x; exact eq_of_dist_eq_zero (le_antisymm (hfg ▸ dist_coe_le_dist _) dist_nonneg), dist_comm := λ f g, by simp [dist_eq, dist_comm], dist_triangle := λ f g h, (dist_le (add_nonneg dist_nonneg' dist_nonneg')).2 $ λ x, le_trans (dist_triangle _ _ _) (add_le_add (dist_coe_le_dist _) (dist_coe_le_dist _)) } /-- On an empty space, bounded continuous functions are at distance 0 -/ lemma dist_zero_of_empty [is_empty α] : dist f g = 0 := dist_eq_zero.2 (eq_of_empty f g) lemma dist_eq_supr : dist f g = ⨆ x : α, dist (f x) (g x) := begin casesI is_empty_or_nonempty α, { rw [supr_of_empty', real.Sup_empty, dist_zero_of_empty] }, refine (dist_le_iff_of_nonempty.mpr $ le_csupr _).antisymm (csupr_le dist_coe_le_dist), exact dist_set_exists.imp (λ C hC, forall_range_iff.2 hC.2) end variables (α) {β} /-- Constant as a continuous bounded function. -/ @[simps {fully_applied := ff}] def const (b : β) : α →ᵇ β := ⟨continuous_map.const b, 0, by simp [le_refl]⟩ variable {α} lemma const_apply' (a : α) (b : β) : (const α b : α → β) a = b := rfl /-- If the target space is inhabited, so is the space of bounded continuous functions -/ instance [inhabited β] : inhabited (α →ᵇ β) := ⟨const α default⟩ lemma lipschitz_evalx (x : α) : lipschitz_with 1 (λ f : α →ᵇ β, f x) := lipschitz_with.mk_one $ λ f g, dist_coe_le_dist x theorem uniform_continuous_coe : @uniform_continuous (α →ᵇ β) (α → β) _ _ coe_fn := uniform_continuous_pi.2 $ λ x, (lipschitz_evalx x).uniform_continuous lemma continuous_coe : continuous (λ (f : α →ᵇ β) x, f x) := uniform_continuous.continuous uniform_continuous_coe /-- When `x` is fixed, `(f : α →ᵇ β) ↦ f x` is continuous -/ @[continuity] theorem continuous_evalx {x : α} : continuous (λ f : α →ᵇ β, f x) := (continuous_apply x).comp continuous_coe /-- The evaluation map is continuous, as a joint function of `u` and `x` -/ @[continuity] theorem continuous_eval : continuous (λ p : (α →ᵇ β) × α, p.1 p.2) := continuous_prod_of_continuous_lipschitz _ 1 (λ f, f.continuous) $ lipschitz_evalx /-- Bounded continuous functions taking values in a complete space form a complete space. -/ instance [complete_space β] : complete_space (α →ᵇ β) := complete_of_cauchy_seq_tendsto $ λ (f : ℕ → α →ᵇ β) (hf : cauchy_seq f), begin /- We have to show that `f n` converges to a bounded continuous function. For this, we prove pointwise convergence to define the limit, then check it is a continuous bounded function, and then check the norm convergence. -/ rcases cauchy_seq_iff_le_tendsto_0.1 hf with ⟨b, b0, b_bound, b_lim⟩, have f_bdd := λx n m N hn hm, le_trans (dist_coe_le_dist x) (b_bound n m N hn hm), have fx_cau : ∀x, cauchy_seq (λn, f n x) := λx, cauchy_seq_iff_le_tendsto_0.2 ⟨b, b0, f_bdd x, b_lim⟩, choose F hF using λx, cauchy_seq_tendsto_of_complete (fx_cau x), /- F : α → β, hF : ∀ (x : α), tendsto (λ (n : ℕ), f n x) at_top (𝓝 (F x)) `F` is the desired limit function. Check that it is uniformly approximated by `f N` -/ have fF_bdd : ∀x N, dist (f N x) (F x) ≤ b N := λ x N, le_of_tendsto (tendsto_const_nhds.dist (hF x)) (filter.eventually_at_top.2 ⟨N, λn hn, f_bdd x N n N (le_refl N) hn⟩), refine ⟨⟨⟨F, _⟩, _⟩, _⟩, { /- Check that `F` is continuous, as a uniform limit of continuous functions -/ have : tendsto_uniformly (λn x, f n x) F at_top, { refine metric.tendsto_uniformly_iff.2 (λ ε ε0, _), refine ((tendsto_order.1 b_lim).2 ε ε0).mono (λ n hn x, _), rw dist_comm, exact lt_of_le_of_lt (fF_bdd x n) hn }, exact this.continuous (eventually_of_forall $ λ N, (f N).continuous) }, { /- Check that `F` is bounded -/ rcases (f 0).bounded with ⟨C, hC⟩, refine ⟨C + (b 0 + b 0), λ x y, _⟩, calc dist (F x) (F y) ≤ dist (f 0 x) (f 0 y) + (dist (f 0 x) (F x) + dist (f 0 y) (F y)) : dist_triangle4_left _ _ _ _ ... ≤ C + (b 0 + b 0) : by mono* }, { /- Check that `F` is close to `f N` in distance terms -/ refine tendsto_iff_dist_tendsto_zero.2 (squeeze_zero (λ _, dist_nonneg) _ b_lim), exact λ N, (dist_le (b0 _)).2 (λx, fF_bdd x N) } end /-- Composition of a bounded continuous function and a continuous function. -/ @[simps { fully_applied := ff }] def comp_continuous {δ : Type*} [topological_space δ] (f : α →ᵇ β) (g : C(δ, α)) : δ →ᵇ β := { to_continuous_map := f.1.comp g, bounded' := f.bounded'.imp (λ C hC x y, hC _ _) } lemma lipschitz_comp_continuous {δ : Type*} [topological_space δ] (g : C(δ, α)) : lipschitz_with 1 (λ f : α →ᵇ β, f.comp_continuous g) := lipschitz_with.mk_one $ λ f₁ f₂, (dist_le dist_nonneg).2 $ λ x, dist_coe_le_dist (g x) lemma continuous_comp_continuous {δ : Type*} [topological_space δ] (g : C(δ, α)) : continuous (λ f : α →ᵇ β, f.comp_continuous g) := (lipschitz_comp_continuous g).continuous /-- Restrict a bounded continuous function to a set. -/ @[simps apply { fully_applied := ff }] def restrict (f : α →ᵇ β) (s : set α) : s →ᵇ β := f.comp_continuous (continuous_map.id.restrict s) /-- Composition (in the target) of a bounded continuous function with a Lipschitz map again gives a bounded continuous function -/ def comp (G : β → γ) {C : ℝ≥0} (H : lipschitz_with C G) (f : α →ᵇ β) : α →ᵇ γ := ⟨⟨λx, G (f x), H.continuous.comp f.continuous⟩, let ⟨D, hD⟩ := f.bounded in ⟨max C 0 * D, λ x y, calc dist (G (f x)) (G (f y)) ≤ C * dist (f x) (f y) : H.dist_le_mul _ _ ... ≤ max C 0 * dist (f x) (f y) : mul_le_mul_of_nonneg_right (le_max_left C 0) dist_nonneg ... ≤ max C 0 * D : mul_le_mul_of_nonneg_left (hD _ _) (le_max_right C 0)⟩⟩ /-- The composition operator (in the target) with a Lipschitz map is Lipschitz -/ lemma lipschitz_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) : lipschitz_with C (comp G H : (α →ᵇ β) → α →ᵇ γ) := lipschitz_with.of_dist_le_mul $ λ f g, (dist_le (mul_nonneg C.2 dist_nonneg)).2 $ λ x, calc dist (G (f x)) (G (g x)) ≤ C * dist (f x) (g x) : H.dist_le_mul _ _ ... ≤ C * dist f g : mul_le_mul_of_nonneg_left (dist_coe_le_dist _) C.2 /-- The composition operator (in the target) with a Lipschitz map is uniformly continuous -/ lemma uniform_continuous_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) : uniform_continuous (comp G H : (α →ᵇ β) → α →ᵇ γ) := (lipschitz_comp H).uniform_continuous /-- The composition operator (in the target) with a Lipschitz map is continuous -/ lemma continuous_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) : continuous (comp G H : (α →ᵇ β) → α →ᵇ γ) := (lipschitz_comp H).continuous /-- Restriction (in the target) of a bounded continuous function taking values in a subset -/ def cod_restrict (s : set β) (f : α →ᵇ β) (H : ∀x, f x ∈ s) : α →ᵇ s := ⟨⟨s.cod_restrict f H, continuous_subtype_mk _ f.continuous⟩, f.bounded⟩ section extend variables {δ : Type*} [topological_space δ] [discrete_topology δ] /-- A version of `function.extend` for bounded continuous maps. We assume that the domain has discrete topology, so we only need to verify boundedness. -/ def extend (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : δ →ᵇ β := { to_fun := extend f g h, continuous_to_fun := continuous_of_discrete_topology, bounded' := begin rw [← bounded_range_iff, range_extend f.injective, metric.bounded_union], exact ⟨g.bounded_range, h.bounded_image _⟩ end } @[simp] lemma extend_apply (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) (x : α) : extend f g h (f x) = g x := extend_apply f.injective _ _ _ @[simp] lemma extend_comp (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h ∘ f = g := extend_comp f.injective _ _ lemma extend_apply' {f : α ↪ δ} {x : δ} (hx : x ∉ range f) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h x = h x := extend_apply' _ _ _ hx lemma extend_of_empty [is_empty α] (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h = h := coe_injective $ function.extend_of_empty f g h @[simp] lemma dist_extend_extend (f : α ↪ δ) (g₁ g₂ : α →ᵇ β) (h₁ h₂ : δ →ᵇ β) : dist (g₁.extend f h₁) (g₂.extend f h₂) = max (dist g₁ g₂) (dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ)) := begin refine le_antisymm ((dist_le $ le_max_iff.2 $ or.inl dist_nonneg).2 $ λ x, _) (max_le _ _), { rcases em (∃ y, f y = x) with (⟨x, rfl⟩|hx), { simp only [extend_apply], exact (dist_coe_le_dist x).trans (le_max_left _ _) }, { simp only [extend_apply' hx], lift x to ((range f)ᶜ : set δ) using hx, calc dist (h₁ x) (h₂ x) = dist (h₁.restrict (range f)ᶜ x) (h₂.restrict (range f)ᶜ x) : rfl ... ≤ dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ) : dist_coe_le_dist x ... ≤ _ : le_max_right _ _ } }, { refine (dist_le dist_nonneg).2 (λ x, _), rw [← extend_apply f g₁ h₁, ← extend_apply f g₂ h₂], exact dist_coe_le_dist _ }, { refine (dist_le dist_nonneg).2 (λ x, _), calc dist (h₁ x) (h₂ x) = dist (extend f g₁ h₁ x) (extend f g₂ h₂ x) : by rw [extend_apply' x.coe_prop, extend_apply' x.coe_prop] ... ≤ _ : dist_coe_le_dist _ } end lemma isometry_extend (f : α ↪ δ) (h : δ →ᵇ β) : isometry (λ g : α →ᵇ β, extend f g h) := isometry_emetric_iff_metric.2 $ λ g₁ g₂, by simp [dist_nonneg] end extend end basics section arzela_ascoli variables [topological_space α] [compact_space α] [metric_space β] variables {f g : α →ᵇ β} {x : α} {C : ℝ} /- Arzela-Ascoli theorem asserts that, on a compact space, a set of functions sharing a common modulus of continuity and taking values in a compact set forms a compact subset for the topology of uniform convergence. In this section, we prove this theorem and several useful variations around it. -/ /-- First version, with pointwise equicontinuity and range in a compact space -/ theorem arzela_ascoli₁ [compact_space β] (A : set (α →ᵇ β)) (closed : is_closed A) (H : ∀ (x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), f ∈ A → dist (f y) (f z) < ε) : is_compact A := begin refine compact_of_totally_bounded_is_closed _ closed, refine totally_bounded_of_finite_discretization (λ ε ε0, _), rcases exists_between ε0 with ⟨ε₁, ε₁0, εε₁⟩, let ε₂ := ε₁/2/2, /- We have to find a finite discretization of `u`, i.e., finite information that is sufficient to reconstruct `u` up to ε. This information will be provided by the values of `u` on a sufficiently dense set tα, slightly translated to fit in a finite ε₂-dense set tβ in the image. Such sets exist by compactness of the source and range. Then, to check that these data determine the function up to ε, one uses the control on the modulus of continuity to extend the closeness on tα to closeness everywhere. -/ have ε₂0 : ε₂ > 0 := half_pos (half_pos ε₁0), have : ∀x:α, ∃U, x ∈ U ∧ is_open U ∧ ∀ (y z ∈ U) {f : α →ᵇ β}, f ∈ A → dist (f y) (f z) < ε₂ := λ x, let ⟨U, nhdsU, hU⟩ := H x _ ε₂0, ⟨V, VU, openV, xV⟩ := _root_.mem_nhds_iff.1 nhdsU in ⟨V, xV, openV, λy hy z hz f hf, hU y (VU hy) z (VU hz) f hf⟩, choose U hU using this, /- For all x, the set hU x is an open set containing x on which the elements of A fluctuate by at most ε₂. We extract finitely many of these sets that cover the whole space, by compactness -/ rcases compact_univ.elim_finite_subcover_image (λx _, (hU x).2.1) (λx hx, mem_bUnion (mem_univ _) (hU x).1) with ⟨tα, _, ⟨_⟩, htα⟩, /- tα : set α, htα : univ ⊆ ⋃x ∈ tα, U x -/ rcases @finite_cover_balls_of_compact β _ _ compact_univ _ ε₂0 with ⟨tβ, _, ⟨_⟩, htβ⟩, resetI, /- tβ : set β, htβ : univ ⊆ ⋃y ∈ tβ, ball y ε₂ -/ /- Associate to every point `y` in the space a nearby point `F y` in tβ -/ choose F hF using λy, show ∃z∈tβ, dist y z < ε₂, by simpa using htβ (mem_univ y), /- F : β → β, hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ -/ /- Associate to every function a discrete approximation, mapping each point in `tα` to a point in `tβ` close to its true image by the function. -/ refine ⟨tα → tβ, by apply_instance, λ f a, ⟨F (f a), (hF (f a)).1⟩, _⟩, rintro ⟨f, hf⟩ ⟨g, hg⟩ f_eq_g, /- If two functions have the same approximation, then they are within distance ε -/ refine lt_of_le_of_lt ((dist_le $ le_of_lt ε₁0).2 (λ x, _)) εε₁, obtain ⟨x', x'tα, hx'⟩ : ∃x' ∈ tα, x ∈ U x' := mem_Union₂.1 (htα (mem_univ x)), calc dist (f x) (g x) ≤ dist (f x) (f x') + dist (g x) (g x') + dist (f x') (g x') : dist_triangle4_right _ _ _ _ ... ≤ ε₂ + ε₂ + ε₁/2 : le_of_lt (add_lt_add (add_lt_add _ _) _) ... = ε₁ : by rw [add_halves, add_halves], { exact (hU x').2.2 _ hx' _ ((hU x').1) hf }, { exact (hU x').2.2 _ hx' _ ((hU x').1) hg }, { have F_f_g : F (f x') = F (g x') := (congr_arg (λ f:tα → tβ, (f ⟨x', x'tα⟩ : β)) f_eq_g : _), calc dist (f x') (g x') ≤ dist (f x') (F (f x')) + dist (g x') (F (f x')) : dist_triangle_right _ _ _ ... = dist (f x') (F (f x')) + dist (g x') (F (g x')) : by rw F_f_g ... < ε₂ + ε₂ : add_lt_add (hF (f x')).2 (hF (g x')).2 ... = ε₁/2 : add_halves _ } end /-- Second version, with pointwise equicontinuity and range in a compact subset -/ theorem arzela_ascoli₂ (s : set β) (hs : is_compact s) (A : set (α →ᵇ β)) (closed : is_closed A) (in_s : ∀(f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s) (H : ∀(x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), f ∈ A → dist (f y) (f z) < ε) : is_compact A := /- This version is deduced from the previous one by restricting to the compact type in the target, using compactness there and then lifting everything to the original space. -/ begin have M : lipschitz_with 1 coe := lipschitz_with.subtype_coe s, let F : (α →ᵇ s) → α →ᵇ β := comp coe M, refine compact_of_is_closed_subset ((_ : is_compact (F ⁻¹' A)).image (continuous_comp M)) closed (λ f hf, _), { haveI : compact_space s := is_compact_iff_compact_space.1 hs, refine arzela_ascoli₁ _ (continuous_iff_is_closed.1 (continuous_comp M) _ closed) (λ x ε ε0, bex.imp_right (λ U U_nhds hU y hy z hz f hf, _) (H x ε ε0)), calc dist (f y) (f z) = dist (F f y) (F f z) : rfl ... < ε : hU y hy z hz (F f) hf }, { let g := cod_restrict s f (λx, in_s f x hf), rw [show f = F g, by ext; refl] at hf ⊢, exact ⟨g, hf, rfl⟩ } end /-- Third (main) version, with pointwise equicontinuity and range in a compact subset, but without closedness. The closure is then compact -/ theorem arzela_ascoli (s : set β) (hs : is_compact s) (A : set (α →ᵇ β)) (in_s : ∀(f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s) (H : ∀(x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), f ∈ A → dist (f y) (f z) < ε) : is_compact (closure A) := /- This version is deduced from the previous one by checking that the closure of A, in addition to being closed, still satisfies the properties of compact range and equicontinuity -/ arzela_ascoli₂ s hs (closure A) is_closed_closure (λ f x hf, (mem_of_closed' hs.is_closed).2 $ λ ε ε0, let ⟨g, gA, dist_fg⟩ := metric.mem_closure_iff.1 hf ε ε0 in ⟨g x, in_s g x gA, lt_of_le_of_lt (dist_coe_le_dist _) dist_fg⟩) (λ x ε ε0, show ∃ U ∈ 𝓝 x, ∀ y z ∈ U, ∀ (f : α →ᵇ β), f ∈ closure A → dist (f y) (f z) < ε, begin refine bex.imp_right (λ U U_set hU y hy z hz f hf, _) (H x (ε/2) (half_pos ε0)), rcases metric.mem_closure_iff.1 hf (ε/2/2) (half_pos (half_pos ε0)) with ⟨g, gA, dist_fg⟩, replace dist_fg := λ x, lt_of_le_of_lt (dist_coe_le_dist x) dist_fg, calc dist (f y) (f z) ≤ dist (f y) (g y) + dist (f z) (g z) + dist (g y) (g z) : dist_triangle4_right _ _ _ _ ... < ε/2/2 + ε/2/2 + ε/2 : add_lt_add (add_lt_add (dist_fg y) (dist_fg z)) (hU y hy z hz g gA) ... = ε : by rw [add_halves, add_halves] end) /- To apply the previous theorems, one needs to check the equicontinuity. An important instance is when the source space is a metric space, and there is a fixed modulus of continuity for all the functions in the set A -/ lemma equicontinuous_of_continuity_modulus {α : Type u} [metric_space α] (b : ℝ → ℝ) (b_lim : tendsto b (𝓝 0) (𝓝 0)) (A : set (α →ᵇ β)) (H : ∀(x y:α) (f : α →ᵇ β), f ∈ A → dist (f x) (f y) ≤ b (dist x y)) (x:α) (ε : ℝ) (ε0 : 0 < ε) : ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), f ∈ A → dist (f y) (f z) < ε := begin rcases tendsto_nhds_nhds.1 b_lim ε ε0 with ⟨δ, δ0, hδ⟩, refine ⟨ball x (δ/2), ball_mem_nhds x (half_pos δ0), λ y hy z hz f hf, _⟩, have : dist y z < δ := calc dist y z ≤ dist y x + dist z x : dist_triangle_right _ _ _ ... < δ/2 + δ/2 : add_lt_add hy hz ... = δ : add_halves _, calc dist (f y) (f z) ≤ b (dist y z) : H y z f hf ... ≤ |b (dist y z)| : le_abs_self _ ... = dist (b (dist y z)) 0 : by simp [real.dist_eq] ... < ε : hδ (by simpa [real.dist_eq] using this), end end arzela_ascoli section has_lipschitz_add /- In this section, if `β` is an `add_monoid` whose addition operation is Lipschitz, then we show that the space of bounded continuous functions from `α` to `β` inherits a topological `add_monoid` structure, by using pointwise operations and checking that they are compatible with the uniform distance. Implementation note: The material in this section could have been written for `has_lipschitz_mul` and transported by `@[to_additive]`. We choose not to do this because this causes a few lemma names (for example, `coe_mul`) to conflict with later lemma names for normed rings; this is only a trivial inconvenience, but in any case there are no obvious applications of the multiplicative version. -/ variables [topological_space α] [metric_space β] [add_monoid β] instance : has_zero (α →ᵇ β) := ⟨const α 0⟩ @[simp] lemma coe_zero : ((0 : α →ᵇ β) : α → β) = 0 := rfl lemma forall_coe_zero_iff_zero (f : α →ᵇ β) : (∀x, f x = 0) ↔ f = 0 := (@ext_iff _ _ _ _ f 0).symm @[simp] lemma zero_comp_continuous [topological_space γ] (f : C(γ, α)) : (0 : α →ᵇ β).comp_continuous f = 0 := rfl variables [has_lipschitz_add β] variables (f g : α →ᵇ β) {x : α} {C : ℝ} /-- The pointwise sum of two bounded continuous functions is again bounded continuous. -/ instance : has_add (α →ᵇ β) := { add := λ f g, bounded_continuous_function.mk_of_bound (f.to_continuous_map + g.to_continuous_map) (↑(has_lipschitz_add.C β) * max (classical.some f.bounded) (classical.some g.bounded)) begin intros x y, refine le_trans (lipschitz_with_lipschitz_const_add ⟨f x, g x⟩ ⟨f y, g y⟩) _, rw prod.dist_eq, refine mul_le_mul_of_nonneg_left _ (has_lipschitz_add.C β).coe_nonneg, apply max_le_max, exact classical.some_spec f.bounded x y, exact classical.some_spec g.bounded x y, end } @[simp] lemma coe_add : ⇑(f + g) = f + g := rfl lemma add_apply : (f + g) x = f x + g x := rfl lemma add_comp_continuous [topological_space γ] (h : C(γ, α)) : (g + f).comp_continuous h = g.comp_continuous h + f.comp_continuous h := rfl instance : add_monoid (α →ᵇ β) := { add_assoc := assume f g h, by ext; simp [add_assoc], zero_add := assume f, by ext; simp, add_zero := assume f, by ext; simp, .. bounded_continuous_function.has_add, .. bounded_continuous_function.has_zero } instance : has_lipschitz_add (α →ᵇ β) := { lipschitz_add := ⟨has_lipschitz_add.C β, begin have C_nonneg := (has_lipschitz_add.C β).coe_nonneg, rw lipschitz_with_iff_dist_le_mul, rintros ⟨f₁, g₁⟩ ⟨f₂, g₂⟩, rw dist_le (mul_nonneg C_nonneg dist_nonneg), intros x, refine le_trans (lipschitz_with_lipschitz_const_add ⟨f₁ x, g₁ x⟩ ⟨f₂ x, g₂ x⟩) _, refine mul_le_mul_of_nonneg_left _ C_nonneg, apply max_le_max; exact dist_coe_le_dist x, end⟩ } /-- Coercion of a `normed_group_hom` is an `add_monoid_hom`. Similar to `add_monoid_hom.coe_fn` -/ @[simps] def coe_fn_add_hom : (α →ᵇ β) →+ (α → β) := { to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add } variables (α β) /-- The additive map forgetting that a bounded continuous function is bounded. -/ @[simps] def to_continuous_map_add_hom : (α →ᵇ β) →+ C(α, β) := { to_fun := to_continuous_map, map_zero' := by { ext, simp, }, map_add' := by { intros, ext, simp, }, } end has_lipschitz_add section comm_has_lipschitz_add variables [topological_space α] [metric_space β] [add_comm_monoid β] [has_lipschitz_add β] @[to_additive] instance : add_comm_monoid (α →ᵇ β) := { add_comm := assume f g, by ext; simp [add_comm], .. bounded_continuous_function.add_monoid } open_locale big_operators @[simp] lemma coe_sum {ι : Type*} (s : finset ι) (f : ι → (α →ᵇ β)) : ⇑(∑ i in s, f i) = (∑ i in s, (f i : α → β)) := (@coe_fn_add_hom α β _ _ _ _).map_sum f s lemma sum_apply {ι : Type*} (s : finset ι) (f : ι → (α →ᵇ β)) (a : α) : (∑ i in s, f i) a = (∑ i in s, f i a) := by simp end comm_has_lipschitz_add section normed_group /- In this section, if β is a normed group, then we show that the space of bounded continuous functions from α to β inherits a normed group structure, by using pointwise operations and checking that they are compatible with the uniform distance. -/ variables [topological_space α] [normed_group β] variables (f g : α →ᵇ β) {x : α} {C : ℝ} instance : has_norm (α →ᵇ β) := ⟨λu, dist u 0⟩ lemma norm_def : ∥f∥ = dist f 0 := rfl /-- The norm of a bounded continuous function is the supremum of `∥f x∥`. We use `Inf` to ensure that the definition works if `α` has no elements. -/ lemma norm_eq (f : α →ᵇ β) : ∥f∥ = Inf {C : ℝ | 0 ≤ C ∧ ∀ (x : α), ∥f x∥ ≤ C} := by simp [norm_def, bounded_continuous_function.dist_eq] /-- When the domain is non-empty, we do not need the `0 ≤ C` condition in the formula for ∥f∥ as an `Inf`. -/ lemma norm_eq_of_nonempty [h : nonempty α] : ∥f∥ = Inf {C : ℝ | ∀ (x : α), ∥f x∥ ≤ C} := begin unfreezingI { obtain ⟨a⟩ := h, }, rw norm_eq, congr, ext, simp only [and_iff_right_iff_imp], exact λ h', le_trans (norm_nonneg (f a)) (h' a), end @[simp] lemma norm_eq_zero_of_empty [h : is_empty α] : ∥f∥ = 0 := dist_zero_of_empty lemma norm_coe_le_norm (x : α) : ∥f x∥ ≤ ∥f∥ := calc ∥f x∥ = dist (f x) ((0 : α →ᵇ β) x) : by simp [dist_zero_right] ... ≤ ∥f∥ : dist_coe_le_dist _ lemma dist_le_two_norm' {f : γ → β} {C : ℝ} (hC : ∀ x, ∥f x∥ ≤ C) (x y : γ) : dist (f x) (f y) ≤ 2 * C := calc dist (f x) (f y) ≤ ∥f x∥ + ∥f y∥ : dist_le_norm_add_norm _ _ ... ≤ C + C : add_le_add (hC x) (hC y) ... = 2 * C : (two_mul _).symm /-- Distance between the images of any two points is at most twice the norm of the function. -/ lemma dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ∥f∥ := dist_le_two_norm' f.norm_coe_le_norm x y variable {f} /-- The norm of a function is controlled by the supremum of the pointwise norms -/ lemma norm_le (C0 : (0 : ℝ) ≤ C) : ∥f∥ ≤ C ↔ ∀x:α, ∥f x∥ ≤ C := by simpa using @dist_le _ _ _ _ f 0 _ C0 lemma norm_le_of_nonempty [nonempty α] {f : α →ᵇ β} {M : ℝ} : ∥f∥ ≤ M ↔ ∀ x, ∥f x∥ ≤ M := begin simp_rw [norm_def, ←dist_zero_right], exact dist_le_iff_of_nonempty, end lemma norm_lt_iff_of_compact [compact_space α] {f : α →ᵇ β} {M : ℝ} (M0 : 0 < M) : ∥f∥ < M ↔ ∀ x, ∥f x∥ < M := begin simp_rw [norm_def, ←dist_zero_right], exact dist_lt_iff_of_compact M0, end lemma norm_lt_iff_of_nonempty_compact [nonempty α] [compact_space α] {f : α →ᵇ β} {M : ℝ} : ∥f∥ < M ↔ ∀ x, ∥f x∥ < M := begin simp_rw [norm_def, ←dist_zero_right], exact dist_lt_iff_of_nonempty_compact, end variable (f) /-- Norm of `const α b` is less than or equal to `∥b∥`. If `α` is nonempty, then it is equal to `∥b∥`. -/ lemma norm_const_le (b : β) : ∥const α b∥ ≤ ∥b∥ := (norm_le (norm_nonneg b)).2 $ λ x, le_rfl @[simp] lemma norm_const_eq [h : nonempty α] (b : β) : ∥const α b∥ = ∥b∥ := le_antisymm (norm_const_le b) $ h.elim $ λ x, (const α b).norm_coe_le_norm x /-- Constructing a bounded continuous function from a uniformly bounded continuous function taking values in a normed group. -/ def of_normed_group {α : Type u} {β : Type v} [topological_space α] [normed_group β] (f : α → β) (Hf : continuous f) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) : α →ᵇ β := ⟨⟨λn, f n, Hf⟩, ⟨_, dist_le_two_norm' H⟩⟩ @[simp] lemma coe_of_normed_group {α : Type u} {β : Type v} [topological_space α] [normed_group β] (f : α → β) (Hf : continuous f) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) : (of_normed_group f Hf C H : α → β) = f := rfl lemma norm_of_normed_group_le {f : α → β} (hfc : continuous f) {C : ℝ} (hC : 0 ≤ C) (hfC : ∀ x, ∥f x∥ ≤ C) : ∥of_normed_group f hfc C hfC∥ ≤ C := (norm_le hC).2 hfC /-- Constructing a bounded continuous function from a uniformly bounded function on a discrete space, taking values in a normed group -/ def of_normed_group_discrete {α : Type u} {β : Type v} [topological_space α] [discrete_topology α] [normed_group β] (f : α → β) (C : ℝ) (H : ∀x, norm (f x) ≤ C) : α →ᵇ β := of_normed_group f continuous_of_discrete_topology C H @[simp] lemma coe_of_normed_group_discrete {α : Type u} {β : Type v} [topological_space α] [discrete_topology α] [normed_group β] (f : α → β) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) : (of_normed_group_discrete f C H : α → β) = f := rfl /-- Taking the pointwise norm of a bounded continuous function with values in a `normed_group`, yields a bounded continuous function with values in ℝ. -/ def norm_comp : α →ᵇ ℝ := f.comp norm lipschitz_with_one_norm @[simp] lemma coe_norm_comp : (f.norm_comp : α → ℝ) = norm ∘ f := rfl @[simp] lemma norm_norm_comp : ∥f.norm_comp∥ = ∥f∥ := by simp only [norm_eq, coe_norm_comp, norm_norm] lemma bdd_above_range_norm_comp : bdd_above $ set.range $ norm ∘ f := (real.bounded_iff_bdd_below_bdd_above.mp $ @bounded_range _ _ _ _ f.norm_comp).2 lemma norm_eq_supr_norm : ∥f∥ = ⨆ x : α, ∥f x∥ := begin casesI is_empty_or_nonempty α with hα _, { suffices : range (norm ∘ f) = ∅, { rw [f.norm_eq_zero_of_empty, supr, this, real.Sup_empty], }, simp only [hα, range_eq_empty, not_nonempty_iff], }, { rw [norm_eq_of_nonempty, supr, ← cInf_upper_bounds_eq_cSup f.bdd_above_range_norm_comp (range_nonempty _)], congr, ext, simp only [forall_apply_eq_imp_iff', mem_range, exists_imp_distrib], }, end /-- The pointwise opposite of a bounded continuous function is again bounded continuous. -/ instance : has_neg (α →ᵇ β) := ⟨λf, of_normed_group (-f) f.continuous.neg ∥f∥ $ λ x, trans_rel_right _ (norm_neg _) (f.norm_coe_le_norm x)⟩ /-- The pointwise difference of two bounded continuous functions is again bounded continuous. -/ instance : has_sub (α →ᵇ β) := ⟨λf g, of_normed_group (f - g) (f.continuous.sub g.continuous) (∥f∥ + ∥g∥) $ λ x, by { simp only [sub_eq_add_neg], exact le_trans (norm_add_le _ _) (add_le_add (f.norm_coe_le_norm x) $ trans_rel_right _ (norm_neg _) (g.norm_coe_le_norm x)) }⟩ @[simp] lemma coe_neg : ⇑(-f) = -f := rfl lemma neg_apply : (-f) x = -f x := rfl instance : add_comm_group (α →ᵇ β) := { add_left_neg := assume f, by ext; simp, add_comm := assume f g, by ext; simp [add_comm], sub_eq_add_neg := assume f g, by { ext, apply sub_eq_add_neg }, ..bounded_continuous_function.add_monoid, ..bounded_continuous_function.has_neg, ..bounded_continuous_function.has_sub } @[simp] lemma coe_sub : ⇑(f - g) = f - g := rfl lemma sub_apply : (f - g) x = f x - g x := rfl instance : normed_group (α →ᵇ β) := { dist_eq := λ f g, by simp only [norm_eq, dist_eq, dist_eq_norm, sub_apply] } lemma abs_diff_coe_le_dist : ∥f x - g x∥ ≤ dist f g := by { rw dist_eq_norm, exact (f - g).norm_coe_le_norm x } lemma coe_le_coe_add_dist {f g : α →ᵇ ℝ} : f x ≤ g x + dist f g := sub_le_iff_le_add'.1 $ (abs_le.1 $ @dist_coe_le_dist _ _ _ _ f g x).2 lemma norm_comp_continuous_le [topological_space γ] (f : α →ᵇ β) (g : C(γ, α)) : ∥f.comp_continuous g∥ ≤ ∥f∥ := ((lipschitz_comp_continuous g).dist_le_mul f 0).trans $ by rw [nnreal.coe_one, one_mul, dist_zero_right] end normed_group section has_bounded_smul /-! ### `has_bounded_smul` (in particular, topological module) structure In this section, if `β` is a metric space and a `𝕜`-module whose addition and scalar multiplication are compatible with the metric structure, then we show that the space of bounded continuous functions from `α` to `β` inherits a so-called `has_bounded_smul` structure (in particular, a `has_continuous_mul` structure, which is the mathlib formulation of being a topological module), by using pointwise operations and checking that they are compatible with the uniform distance. -/ variables {𝕜 : Type*} [metric_space 𝕜] [semiring 𝕜] variables [topological_space α] [metric_space β] [add_comm_monoid β] [module 𝕜 β] [has_bounded_smul 𝕜 β] variables {f g : α →ᵇ β} {x : α} {C : ℝ} instance : has_scalar 𝕜 (α →ᵇ β) := ⟨λ c f, bounded_continuous_function.mk_of_bound (c • f.to_continuous_map) (dist c 0 * (classical.some f.bounded)) begin intros x y, refine (dist_smul_pair c (f x) (f y)).trans _, refine mul_le_mul_of_nonneg_left _ dist_nonneg, exact classical.some_spec f.bounded x y end ⟩ @[simp] lemma coe_smul (c : 𝕜) (f : α →ᵇ β) : ⇑(c • f) = λ x, c • (f x) := rfl lemma smul_apply (c : 𝕜) (f : α →ᵇ β) (x : α) : (c • f) x = c • f x := rfl instance : has_bounded_smul 𝕜 (α →ᵇ β) := { dist_smul_pair' := λ c f₁ f₂, begin rw dist_le (mul_nonneg dist_nonneg dist_nonneg), intros x, refine (dist_smul_pair c (f₁ x) (f₂ x)).trans _, exact mul_le_mul_of_nonneg_left (dist_coe_le_dist x) dist_nonneg end, dist_pair_smul' := λ c₁ c₂ f, begin rw dist_le (mul_nonneg dist_nonneg dist_nonneg), intros x, refine (dist_pair_smul c₁ c₂ (f x)).trans _, convert mul_le_mul_of_nonneg_left (dist_coe_le_dist x) dist_nonneg, simp end } variables [has_lipschitz_add β] instance : module 𝕜 (α →ᵇ β) := { smul := (•), smul_add := λ c f g, ext $ λ x, smul_add c (f x) (g x), add_smul := λ c₁ c₂ f, ext $ λ x, add_smul c₁ c₂ (f x), mul_smul := λ c₁ c₂ f, ext $ λ x, mul_smul c₁ c₂ (f x), one_smul := λ f, ext $ λ x, one_smul 𝕜 (f x), smul_zero := λ c, ext $ λ x, smul_zero c, zero_smul := λ f, ext $ λ x, zero_smul 𝕜 (f x), .. bounded_continuous_function.add_comm_monoid } variables (𝕜) /-- The evaluation at a point, as a continuous linear map from `α →ᵇ β` to `β`. -/ def eval_clm (x : α) : (α →ᵇ β) →L[𝕜] β := { to_fun := λ f, f x, map_add' := λ f g, by simp only [pi.add_apply, coe_add], map_smul' := λ c f, by simp only [coe_smul, ring_hom.id_apply] } @[simp] lemma eval_clm_apply (x : α) (f : α →ᵇ β) : eval_clm 𝕜 x f = f x := rfl variables (α β) /-- The linear map forgetting that a bounded continuous function is bounded. -/ @[simps] def to_continuous_map_linear_map : (α →ᵇ β) →ₗ[𝕜] C(α, β) := { to_fun := to_continuous_map, map_smul' := by { intros, ext, simp, }, map_add' := by { intros, ext, simp, }, } end has_bounded_smul section normed_space /-! ### Normed space structure In this section, if `β` is a normed space, then we show that the space of bounded continuous functions from `α` to `β` inherits a normed space structure, by using pointwise operations and checking that they are compatible with the uniform distance. -/ variables {𝕜 : Type*} variables [topological_space α] [normed_group β] variables {f g : α →ᵇ β} {x : α} {C : ℝ} instance [normed_field 𝕜] [normed_space 𝕜 β] : normed_space 𝕜 (α →ᵇ β) := ⟨λ c f, begin refine norm_of_normed_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _, exact (λ x, trans_rel_right _ (norm_smul _ _) (mul_le_mul_of_nonneg_left (f.norm_coe_le_norm _) (norm_nonneg _))) end⟩ variables [nondiscrete_normed_field 𝕜] [normed_space 𝕜 β] variables [normed_group γ] [normed_space 𝕜 γ] variables (α) -- TODO does this work in the `has_bounded_smul` setting, too? /-- Postcomposition of bounded continuous functions into a normed module by a continuous linear map is a continuous linear map. Upgraded version of `continuous_linear_map.comp_left_continuous`, similar to `linear_map.comp_left`. -/ protected def _root_.continuous_linear_map.comp_left_continuous_bounded (g : β →L[𝕜] γ) : (α →ᵇ β) →L[𝕜] (α →ᵇ γ) := linear_map.mk_continuous { to_fun := λ f, of_normed_group (g ∘ f) (g.continuous.comp f.continuous) (∥g∥ * ∥f∥) (λ x, (g.le_op_norm_of_le (f.norm_coe_le_norm x))), map_add' := λ f g, by ext; simp, map_smul' := λ c f, by ext; simp } ∥g∥ (λ f, norm_of_normed_group_le _ (mul_nonneg (norm_nonneg g) (norm_nonneg f)) _) @[simp] lemma _root_.continuous_linear_map.comp_left_continuous_bounded_apply (g : β →L[𝕜] γ) (f : α →ᵇ β) (x : α) : (g.comp_left_continuous_bounded α f) x = g (f x) := rfl end normed_space section normed_ring /-! ### Normed ring structure In this section, if `R` is a normed ring, then we show that the space of bounded continuous functions from `α` to `R` inherits a normed ring structure, by using pointwise operations and checking that they are compatible with the uniform distance. -/ variables [topological_space α] {R : Type*} [normed_ring R] instance : ring (α →ᵇ R) := { one := const α 1, mul := λ f g, of_normed_group (f * g) (f.continuous.mul g.continuous) (∥f∥ * ∥g∥) $ λ x, le_trans (normed_ring.norm_mul (f x) (g x)) $ mul_le_mul (f.norm_coe_le_norm x) (g.norm_coe_le_norm x) (norm_nonneg _) (norm_nonneg _), one_mul := λ f, ext $ λ x, one_mul (f x), mul_one := λ f, ext $ λ x, mul_one (f x), mul_assoc := λ f₁ f₂ f₃, ext $ λ x, mul_assoc _ _ _, left_distrib := λ f₁ f₂ f₃, ext $ λ x, left_distrib _ _ _, right_distrib := λ f₁ f₂ f₃, ext $ λ x, right_distrib _ _ _, .. bounded_continuous_function.add_comm_group } @[simp] lemma coe_mul (f g : α →ᵇ R) : ⇑(f * g) = f * g := rfl lemma mul_apply (f g : α →ᵇ R) (x : α) : (f * g) x = f x * g x := rfl instance : normed_ring (α →ᵇ R) := { norm_mul := λ f g, norm_of_normed_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _, .. bounded_continuous_function.normed_group } end normed_ring section normed_comm_ring /-! ### Normed commutative ring structure In this section, if `R` is a normed commutative ring, then we show that the space of bounded continuous functions from `α` to `R` inherits a normed commutative ring structure, by using pointwise operations and checking that they are compatible with the uniform distance. -/ variables [topological_space α] {R : Type*} [normed_comm_ring R] instance : comm_ring (α →ᵇ R) := { mul_comm := λ f₁ f₂, ext $ λ x, mul_comm _ _, .. bounded_continuous_function.ring } instance : normed_comm_ring (α →ᵇ R) := { .. bounded_continuous_function.comm_ring, .. bounded_continuous_function.normed_group } end normed_comm_ring section normed_algebra /-! ### Normed algebra structure In this section, if `γ` is a normed algebra, then we show that the space of bounded continuous functions from `α` to `γ` inherits a normed algebra structure, by using pointwise operations and checking that they are compatible with the uniform distance. -/ variables {𝕜 : Type*} [normed_field 𝕜] variables [topological_space α] [normed_group β] [normed_space 𝕜 β] variables [normed_ring γ] [normed_algebra 𝕜 γ] variables {f g : α →ᵇ γ} {x : α} {c : 𝕜} /-- `bounded_continuous_function.const` as a `ring_hom`. -/ def C : 𝕜 →+* (α →ᵇ γ) := { to_fun := λ (c : 𝕜), const α ((algebra_map 𝕜 γ) c), map_one' := ext $ λ x, (algebra_map 𝕜 γ).map_one, map_mul' := λ c₁ c₂, ext $ λ x, (algebra_map 𝕜 γ).map_mul _ _, map_zero' := ext $ λ x, (algebra_map 𝕜 γ).map_zero, map_add' := λ c₁ c₂, ext $ λ x, (algebra_map 𝕜 γ).map_add _ _ } instance : algebra 𝕜 (α →ᵇ γ) := { to_ring_hom := C, commutes' := λ c f, ext $ λ x, algebra.commutes' _ _, smul_def' := λ c f, ext $ λ x, algebra.smul_def' _ _, ..bounded_continuous_function.module, ..bounded_continuous_function.ring } @[simp] lemma algebra_map_apply (k : 𝕜) (a : α) : algebra_map 𝕜 (α →ᵇ γ) k a = k • 1 := by { rw algebra.algebra_map_eq_smul_one, refl, } instance [nonempty α] : normed_algebra 𝕜 (α →ᵇ γ) := { norm_algebra_map_eq := λ c, begin calc ∥ (algebra_map 𝕜 (α →ᵇ γ)).to_fun c∥ = ∥(algebra_map 𝕜 γ) c∥ : _ ... = ∥c∥ : norm_algebra_map_eq _ _, apply norm_const_eq ((algebra_map 𝕜 γ) c), assumption, end, ..bounded_continuous_function.algebra } /-! ### Structure as normed module over scalar functions If `β` is a normed `𝕜`-space, then we show that the space of bounded continuous functions from `α` to `β` is naturally a module over the algebra of bounded continuous functions from `α` to `𝕜`. -/ instance has_scalar' : has_scalar (α →ᵇ 𝕜) (α →ᵇ β) := ⟨λ (f : α →ᵇ 𝕜) (g : α →ᵇ β), of_normed_group (λ x, (f x) • (g x)) (f.continuous.smul g.continuous) (∥f∥ * ∥g∥) (λ x, calc ∥f x • g x∥ ≤ ∥f x∥ * ∥g x∥ : normed_space.norm_smul_le _ _ ... ≤ ∥f∥ * ∥g∥ : mul_le_mul (f.norm_coe_le_norm _) (g.norm_coe_le_norm _) (norm_nonneg _) (norm_nonneg _)) ⟩ instance module' : module (α →ᵇ 𝕜) (α →ᵇ β) := module.of_core $ { smul := (•), smul_add := λ c f₁ f₂, ext $ λ x, smul_add _ _ _, add_smul := λ c₁ c₂ f, ext $ λ x, add_smul _ _ _, mul_smul := λ c₁ c₂ f, ext $ λ x, mul_smul _ _ _, one_smul := λ f, ext $ λ x, one_smul 𝕜 (f x) } lemma norm_smul_le (f : α →ᵇ 𝕜) (g : α →ᵇ β) : ∥f • g∥ ≤ ∥f∥ * ∥g∥ := norm_of_normed_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _ /- TODO: When `normed_module` has been added to `normed_space.basic`, the above facts show that the space of bounded continuous functions from `α` to `β` is naturally a normed module over the algebra of bounded continuous functions from `α` to `𝕜`. -/ end normed_algebra lemma nnreal.upper_bound {α : Type*} [topological_space α] (f : α →ᵇ ℝ≥0) (x : α) : f x ≤ nndist f 0 := begin have key : nndist (f x) ((0 : α →ᵇ ℝ≥0) x) ≤ nndist f 0, { exact @dist_coe_le_dist α ℝ≥0 _ _ f 0 x, }, simp only [coe_zero, pi.zero_apply] at key, rwa nnreal.nndist_zero_eq_val' (f x) at key, end /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of bounded continuous functions from `α` to `β`, by using the star operation pointwise. If `𝕜` is normed field and a ⋆-ring over which `β` is a normed algebra and a star module, then the space of bounded continuous functions from `α` to `β` is a star module. If `β` is a ⋆-ring in addition to being a normed ⋆-group, then `α →ᵇ β` inherits a ⋆-ring structure. In summary, if `β` is a C⋆-algebra over `𝕜`, then so is `α →ᵇ β`; note that completeness is guaranteed when `β` is complete (see `bounded_continuous_function.complete`). -/ section normed_group variables {𝕜 : Type*} [normed_field 𝕜] [star_ring 𝕜] variables [topological_space α] [normed_group β] [star_add_monoid β] [normed_star_monoid β] variables [normed_space 𝕜 β] [star_module 𝕜 β] instance : star_add_monoid (α →ᵇ β) := { star := λ f, f.comp star star_normed_group_hom.lipschitz, star_involutive := λ f, ext $ λ x, star_star (f x), star_add := λ f g, ext $ λ x, star_add (f x) (g x) } /-- The right-hand side of this equality can be parsed `star ∘ ⇑f` because of the instance `pi.has_star`. Upon inspecting the goal, one sees `⊢ ⇑(star f) = star ⇑f`.-/ @[simp] lemma coe_star (f : α →ᵇ β) : ⇑(star f) = star f := rfl @[simp] lemma star_apply (f : α →ᵇ β) (x : α) : star f x = star (f x) := rfl instance : normed_star_monoid (α →ᵇ β) := { norm_star := λ f, by { simp only [norm_eq], congr, ext, conv_lhs { find (∥_∥) { erw (@norm_star β _ _ _ (f x)) } } } } instance : star_module 𝕜 (α →ᵇ β) := { star_smul := λ k f, ext $ λ x, star_smul k (f x) } end normed_group section cstar_ring variables [topological_space α] variables [normed_ring β] [star_ring β] instance [normed_star_monoid β] : star_ring (α →ᵇ β) := { star_mul := λ f g, ext $ λ x, star_mul (f x) (g x), ..bounded_continuous_function.star_add_monoid } variable [cstar_ring β] instance : cstar_ring (α →ᵇ β) := { norm_star_mul_self := begin intro f, refine le_antisymm _ _, { rw [←sq, norm_le (sq_nonneg _)], dsimp [star_apply], intro x, rw [cstar_ring.norm_star_mul_self, ←sq], refine sq_le_sq' _ _, { linarith [norm_nonneg (f x), norm_nonneg f] }, { exact norm_coe_le_norm f x }, }, { rw [←sq, ←real.le_sqrt (norm_nonneg _) (norm_nonneg _), norm_le (real.sqrt_nonneg _)], intro x, rw [real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ←cstar_ring.norm_star_mul_self], exact norm_coe_le_norm (star f * f) x } end } end cstar_ring section normed_lattice_ordered_group variables [topological_space α] [normed_lattice_add_comm_group β] instance : partial_order (α →ᵇ β) := partial_order.lift (λ f, f.to_fun) (by tidy) /-- Continuous normed lattice group valued functions form a meet-semilattice -/ instance : semilattice_inf (α →ᵇ β) := { inf := λ f g, { to_fun := λ t, f t ⊓ g t, continuous_to_fun := f.continuous.inf g.continuous, bounded' := begin cases f.bounded' with C₁ hf, cases g.bounded' with C₂ hg, refine ⟨C₁ + C₂, λ x y, _⟩, simp_rw normed_group.dist_eq at hf hg ⊢, exact (norm_inf_sub_inf_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)), end }, inf_le_left := λ f g, continuous_map.le_def.mpr (λ _, inf_le_left), inf_le_right := λ f g, continuous_map.le_def.mpr (λ _, inf_le_right), le_inf := λ f g₁ g₂ w₁ w₂, continuous_map.le_def.mpr (λ _, le_inf (continuous_map.le_def.mp w₁ _) (continuous_map.le_def.mp w₂ _)), ..bounded_continuous_function.partial_order } instance : semilattice_sup (α →ᵇ β) := { sup := λ f g, { to_fun := λ t, f t ⊔ g t, continuous_to_fun := f.continuous.sup g.continuous, bounded' := begin cases f.bounded' with C₁ hf, cases g.bounded' with C₂ hg, refine ⟨C₁ + C₂, λ x y, _⟩, simp_rw normed_group.dist_eq at hf hg ⊢, exact (norm_sup_sub_sup_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)), end }, le_sup_left := λ f g, continuous_map.le_def.mpr (λ _, le_sup_left), le_sup_right := λ f g, continuous_map.le_def.mpr (λ _, le_sup_right), sup_le := λ f g₁ g₂ w₁ w₂, continuous_map.le_def.mpr (λ _, sup_le (continuous_map.le_def.mp w₁ _) (continuous_map.le_def.mp w₂ _)), ..bounded_continuous_function.partial_order } instance : lattice (α →ᵇ β) := { .. bounded_continuous_function.semilattice_sup, .. bounded_continuous_function.semilattice_inf } @[simp] lemma coe_fn_sup (f g : α →ᵇ β) : ⇑(f ⊔ g) = f ⊔ g := rfl @[simp] lemma coe_fn_abs (f : α →ᵇ β) : ⇑|f| = |f| := rfl instance : normed_lattice_add_comm_group (α →ᵇ β) := { add_le_add_left := begin intros f g h₁ h t, simp only [coe_to_continuous_fun, pi.add_apply, add_le_add_iff_left, coe_add, continuous_map.to_fun_eq_coe], exact h₁ _, end, solid := begin intros f g h, have i1: ∀ t, ∥f t∥ ≤ ∥g t∥ := λ t, solid (h t), rw norm_le (norm_nonneg _), exact λ t, (i1 t).trans (norm_coe_le_norm g t), end, ..bounded_continuous_function.lattice, } end normed_lattice_ordered_group end bounded_continuous_function
b69f29ccc1e82fddc201dce314f456dbb5fc859b
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/constructor_cases.lean
590f151539ce97c9a5737c46a8dc6155bc37df23
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
910
lean
example (p q r : Prop) : p → q → r → r ∧ p ∧ q := begin intros hp hq hr, with_cases { repeat { constructor } }, case left { exact hr }, case right left { exact hp }, case right right { exact hq } end example (p q r : Prop) : p → q → r → r ∧ p ∧ q := begin intros hp hq hr, with_cases { repeat { constructor } }, case right left { exact hp }, case right right { exact hq }, case left { exact hr } end example (p q r : Prop) : p → q → r → r ∧ p ∧ q := begin intros hp hq hr, with_cases { repeat { split } }, case right left { exact hp }, case right right { exact hq }, case left { exact hr } end open tactic example (n : nat) : nat := begin with_cases { right }, /- The tactic `right` should not extend the tag since nat.succ has only one argument. -/ (do t : list name ← get_main_tag, trace t, guard (t.tail = [])), case { exact n } end
17cae0a0daced66ae928ca4fe8261aa2dd015e77
649957717d58c43b5d8d200da34bf374293fe739
/src/data/equiv/denumerable.lean
091a74b63a4dfe3d05b3dc82d4a562b365ced53a
[ "Apache-2.0" ]
permissive
Vtec234/mathlib
b50c7b21edea438df7497e5ed6a45f61527f0370
fb1848bbbfce46152f58e219dc0712f3289d2b20
refs/heads/master
1,592,463,095,113
1,562,737,749,000
1,562,737,749,000
196,202,858
0
0
Apache-2.0
1,562,762,338,000
1,562,762,337,000
null
UTF-8
Lean
false
false
8,833
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro Denumerable (countably infinite) types, as a typeclass extending encodable. This is used to provide explicit encode/decode functions from nat, where the functions are known inverses of each other. -/ import data.equiv.encodable data.sigma data.fintype data.list.min_max open nat /-- A denumerable type is one which is (constructively) bijective with ℕ. Although we already have a name for this property, namely `α ≃ ℕ`, we are here interested in using it as a typeclass. -/ class denumerable (α : Type*) extends encodable α := (decode_inv : ∀ n, ∃ a ∈ decode n, encode a = n) namespace denumerable section variables {α : Type*} {β : Type*} [denumerable α] [denumerable β] open encodable @[simp] theorem decode_is_some (α) [denumerable α] (n : ℕ) : (decode α n).is_some := option.is_some_iff_exists.2 $ (decode_inv α n).imp $ λ a, Exists.fst def of_nat (α) [f : denumerable α] (n : ℕ) : α := option.get (decode_is_some α n) @[simp] theorem decode_eq_of_nat (α) [denumerable α] (n : ℕ) : decode α n = some (of_nat α n) := option.eq_some_of_is_some _ @[simp] theorem of_nat_of_decode {n b} (h : decode α n = some b) : of_nat α n = b := option.some.inj $ (decode_eq_of_nat _ _).symm.trans h @[simp] theorem encode_of_nat (n) : encode (of_nat α n) = n := let ⟨a, h, e⟩ := decode_inv α n in by rwa [of_nat_of_decode h] @[simp] theorem of_nat_encode (a) : of_nat α (encode a) = a := of_nat_of_decode (encodek _) def eqv (α) [denumerable α] : α ≃ ℕ := ⟨encode, of_nat α, of_nat_encode, encode_of_nat⟩ def mk' {α} (e : α ≃ ℕ) : denumerable α := { encode := e, decode := some ∘ e.symm, encodek := λ a, congr_arg some (e.symm_apply_apply _), decode_inv := λ n, ⟨_, rfl, e.apply_symm_apply _⟩ } def of_equiv (α) {β} [denumerable α] (e : β ≃ α) : denumerable β := { decode_inv := λ n, by simp, ..encodable.of_equiv _ e } @[simp] theorem of_equiv_of_nat (α) {β} [denumerable α] (e : β ≃ α) (n) : @of_nat β (of_equiv _ e) n = e.symm (of_nat α n) := by apply of_nat_of_decode; show option.map _ _ = _; simp def equiv₂ (α β) [denumerable α] [denumerable β] : α ≃ β := (eqv α).trans (eqv β).symm instance nat : denumerable nat := ⟨λ n, ⟨_, rfl, rfl⟩⟩ @[simp] theorem of_nat_nat (n) : of_nat ℕ n = n := rfl instance option : denumerable (option α) := ⟨λ n, by cases n; simp⟩ instance sum : denumerable (α ⊕ β) := ⟨λ n, begin suffices : ∃ a ∈ @decode_sum α β _ _ n, encode_sum a = bit (bodd n) (div2 n), {simpa [bit_decomp]}, simp [decode_sum]; cases bodd n; simp [decode_sum, bit, encode_sum] end⟩ section sigma variables {γ : α → Type*} [∀ a, denumerable (γ a)] instance sigma : denumerable (sigma γ) := ⟨λ n, by simp [decode_sigma]; exact ⟨_, _, ⟨rfl, heq.rfl⟩, by simp⟩⟩ @[simp] theorem sigma_of_nat_val (n : ℕ) : of_nat (sigma γ) n = ⟨of_nat α (unpair n).1, of_nat (γ _) (unpair n).2⟩ := option.some.inj $ by rw [← decode_eq_of_nat, decode_sigma_val]; simp; refl end sigma instance prod : denumerable (α × β) := of_equiv _ (equiv.sigma_equiv_prod α β).symm @[simp] theorem prod_of_nat_val (n : ℕ) : of_nat (α × β) n = (of_nat α (unpair n).1, of_nat β (unpair n).2) := by simp; refl @[simp] theorem prod_nat_of_nat : of_nat (ℕ × ℕ) = unpair := by funext; simp instance int : denumerable ℤ := denumerable.mk' equiv.int_equiv_nat instance pnat : denumerable ℕ+ := denumerable.mk' equiv.pnat_equiv_nat instance ulift : denumerable (ulift α) := of_equiv _ equiv.ulift instance plift : denumerable (plift α) := of_equiv _ equiv.plift def pair : (α × α) ≃ α := equiv₂ _ _ end end denumerable namespace nat.subtype open function encodable lattice variables {s : set ℕ} [decidable_pred s] [infinite s] lemma exists_succ (x : s) : ∃ n, x.1 + n + 1 ∈ s := classical.by_contradiction $ λ h, have ∀ (a : ℕ) (ha : a ∈ s), a < x.val.succ, from λ a ha, lt_of_not_ge (λ hax, h ⟨a - (x.1 + 1), by rwa [add_right_comm, nat.add_sub_cancel' hax]⟩), infinite.not_fintype ⟨(((multiset.range x.1.succ).filter (∈ s)).pmap (λ (y : ℕ) (hy : y ∈ s), subtype.mk y hy) (by simp [-multiset.range_succ])).to_finset, by simpa [subtype.ext, multiset.mem_filter, -multiset.range_succ]⟩ def succ (x : s) : s := have h : ∃ m, x.1 + m + 1 ∈ s, from exists_succ x, ⟨x.1 + nat.find h + 1, nat.find_spec h⟩ lemma succ_le_of_lt {x y : s} (h : y < x) : succ y ≤ x := have hx : ∃ m, y.1 + m + 1 ∈ s, from exists_succ _, let ⟨k, hk⟩ := nat.exists_eq_add_of_lt h in have nat.find hx ≤ k, from nat.find_min' _ (hk ▸ x.2), show y.1 + nat.find hx + 1 ≤ x.1, by rw hk; exact add_le_add_right (add_le_add_left this _) _ lemma le_succ_of_forall_lt_le {x y : s} (h : ∀ z < x, z ≤ y) : x ≤ succ y := have hx : ∃ m, y.1 + m + 1 ∈ s, from exists_succ _, show x.1 ≤ y.1 + nat.find hx + 1, from le_of_not_gt $ λ hxy, have y.1 + nat.find hx + 1 ≤ y.1 := h ⟨_, nat.find_spec hx⟩ hxy, not_lt_of_le this $ calc y.1 ≤ y.1 + nat.find hx : le_add_of_nonneg_right (nat.zero_le _) ... < y.1 + nat.find hx + 1 : nat.lt_succ_self _ lemma lt_succ_self (x : s) : x < succ x := calc x.1 ≤ x.1 + _ : le_add_right (le_refl _) ... < succ x : nat.lt_succ_self (x.1 + _) lemma lt_succ_iff_le {x y : s} : x < succ y ↔ x ≤ y := ⟨λ h, le_of_not_gt (λ h', not_le_of_gt h (succ_le_of_lt h')), λ h, lt_of_le_of_lt h (lt_succ_self _)⟩ def of_nat (s : set ℕ) [decidable_pred s] [infinite s] : ℕ → s | 0 := ⊥ | (n+1) := succ (of_nat n) lemma of_nat_surjective_aux : ∀ {x : ℕ} (hx : x ∈ s), ∃ n, of_nat s n = ⟨x, hx⟩ | x := λ hx, let t : list s := ((list.range x).filter (λ y, y ∈ s)).pmap (λ (y : ℕ) (hy : y ∈ s), ⟨y, hy⟩) (by simp) in have hmt : ∀ {y : s}, y ∈ t ↔ y < ⟨x, hx⟩, by simp [list.mem_filter, subtype.ext, t]; intros; refl, if ht : t = [] then ⟨0, le_antisymm (@bot_le s _ _) (le_of_not_gt (λ h, list.not_mem_nil ⊥ $ by rw [← ht, hmt]; exact h))⟩ else by letI : inhabited s := ⟨⊥⟩; exact have wf : (list.maximum t).1 < x, by simpa [hmt] using list.maximum_mem ht, let ⟨a, ha⟩ := of_nat_surjective_aux (list.maximum t).2 in ⟨a + 1, le_antisymm (by rw of_nat; exact succ_le_of_lt (by rw ha; exact wf)) $ by rw of_nat; exact le_succ_of_forall_lt_le (λ z hz, by rw ha; exact list.le_maximum_of_mem (hmt.2 hz))⟩ lemma of_nat_surjective : surjective (of_nat s) := λ ⟨x, hx⟩, of_nat_surjective_aux hx private def to_fun_aux (x : s) : ℕ := (list.range x).countp s private lemma to_fun_aux_eq (x : s) : to_fun_aux x = ((finset.range x).filter s).card := by rw [to_fun_aux, list.countp_eq_length_filter]; refl open finset private lemma right_inverse_aux : ∀ n, to_fun_aux (of_nat s n) = n | 0 := begin rw [to_fun_aux_eq, card_eq_zero, eq_empty_iff_forall_not_mem], assume n, rw [mem_filter, of_nat, mem_range], assume h, exact not_lt_of_le bot_le (show (⟨n, h.2⟩ : s) < ⊥, from h.1) end | (n+1) := have ih : to_fun_aux (of_nat s n) = n, from right_inverse_aux n, have h₁ : (of_nat s n : ℕ) ∉ (range (of_nat s n)).filter s, by simp, have h₂ : (range (succ (of_nat s n))).filter s = insert (of_nat s n) ((range (of_nat s n)).filter s), begin simp only [finset.ext, mem_insert, mem_range, mem_filter], assume m, exact ⟨λ h, by simp only [h.2, and_true]; exact or.symm (lt_or_eq_of_le ((@lt_succ_iff_le _ _ _ ⟨m, h.2⟩ _).1 h.1)), λ h, h.elim (λ h, h.symm ▸ ⟨lt_succ_self _, subtype.property _⟩) (λ h, ⟨lt_of_le_of_lt (le_of_lt h.1) (lt_succ_self _), h.2⟩)⟩ end, begin clear_aux_decl, simp only [to_fun_aux_eq, of_nat, range_succ] at *, conv {to_rhs, rw [← ih, ← card_insert_of_not_mem h₁, ← h₂] }, end def denumerable (s : set ℕ) [decidable_pred s] [infinite s] : denumerable s := denumerable.of_equiv ℕ { to_fun := to_fun_aux, inv_fun := of_nat s, left_inv := left_inverse_of_surjective_of_right_inverse of_nat_surjective right_inverse_aux, right_inv := right_inverse_aux } end nat.subtype namespace denumerable open encodable def of_encodable_of_infinite (α : Type*) [encodable α] [infinite α] : denumerable α := begin letI := @decidable_range_encode α _; letI : infinite (set.range (@encode α _)) := infinite.of_injective _ (equiv.set.range _ encode_injective).injective, letI := nat.subtype.denumerable (set.range (@encode α _)), exact denumerable.of_equiv (set.range (@encode α _)) (equiv_range_encode α) end end denumerable
9fdd61d63cb41cf9c44c62be8774a766c316f7eb
5756a081670ba9c1d1d3fca7bd47cb4e31beae66
/Test/importMathbin/ImportMathbin.lean
e83c9558f59518fbb32c95f4e0da6c59a8bcd47d
[ "Apache-2.0" ]
permissive
leanprover-community/mathport
2c9bdc8292168febf59799efdc5451dbf0450d4a
13051f68064f7638970d39a8fecaede68ffbf9e1
refs/heads/master
1,693,841,364,079
1,693,813,111,000
1,693,813,111,000
379,357,010
27
10
Apache-2.0
1,691,309,132,000
1,624,384,521,000
Lean
UTF-8
Lean
false
false
83
lean
import Mathbin #lookup3 algebraic_geometry.Scheme #check AlgebraicGeometry.Scheme
136675b3a101306859731bf08f2eaf319e534869
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/do_eqv_proofs.lean
6b822d3dd1ee2b44e3c70edd4277e81e460dd755
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
612
lean
theorem ex1 [Monad m] [LawfulMonad m] (b : Bool) (ma : m α) (mb : α → m α) : (do let mut x ← ma if b then x ← mb x pure x) = (ma >>= fun x => if b then mb x else pure x) := by cases b <;> simp attribute [simp] map_eq_pure_bind seq_eq_bind_map theorem ex2 [Monad m] [LawfulMonad m] (b : Bool) (ma : m α) (mb : α → m α) (a : α) : (do let mut x ← ma if b then x ← mb x pure x) = (StateT.run' (m := m) (do ma >>= set if b then get >>= fun x => mb x >>= set get) a) := by cases b <;> simp
a62fc8201c0b01615a3315214a7bf03865f54c7c
130c49f47783503e462c16b2eff31933442be6ff
/stage0/src/Lean/Server/Rpc/Basic.lean
9254288f160bf5927b670b0baa082f035e6632ea
[ "Apache-2.0" ]
permissive
Hazel-Brown/lean4
8aa5860e282435ffc30dcdfccd34006c59d1d39c
79e6732fc6bbf5af831b76f310f9c488d44e7a16
refs/heads/master
1,689,218,208,951
1,629,736,869,000
1,629,736,896,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,541
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Wojciech Nawrocki -/ import Lean.Data.Lsp.Extra /-! Allows LSP clients to make Remote Procedure Calls to the server. The single use case for these is to allow the infoview UI to refer to and manipulate heavy-weight objects residing on the server. It would be inefficient to serialize these into JSON and send over. For example, the client can format an `Expr` without transporting the whole `Environment`. All RPC requests are relative to an open file and an RPC session for that file. The client must first connect to the session using `$/lean/rpc/connect`. -/ namespace Lean.Server /-- Monads with an RPC session in their state. -/ class MonadRpcSession (m : Type → Type) where rpcSessionId : m UInt64 rpcStoreRef (typeName : Name) (obj : NonScalar) : m Lsp.RpcRef rpcGetRef (r : Lsp.RpcRef) : m (Option (Name × NonScalar)) rpcReleaseRef (r : Lsp.RpcRef) : m Bool export MonadRpcSession (rpcSessionId rpcStoreRef rpcGetRef rpcReleaseRef) instance {m n : Type → Type} [MonadLift m n] [MonadRpcSession m] : MonadRpcSession n where rpcSessionId := liftM (rpcSessionId : m _) rpcStoreRef typeName obj := liftM (rpcStoreRef typeName obj : m _) rpcGetRef r := liftM (rpcGetRef r : m _) rpcReleaseRef r := liftM (rpcReleaseRef r : m _) /-- `RpcEncoding α β` means that `α` may participate in RPC calls with its on-the-wire LSP encoding being `β`. This is useful when `α` contains fields which must be marshalled in a special way. In particular, we encode `WithRpcRef` fields as opaque references rather than send their content. Structures with `From/ToJson` use JSON as their `RpcEncoding`. Structures containing non-JSON-serializable fields can be auto-encoded in two ways: - `deriving RpcEncoding` acts like `From/ToJson` but marshalls any `WithRpcRef` fields as `Lsp.RpcRef`s. - `deriving RpcEncoding with { withRef := true }` generates an encoding for `WithRpcRef TheType`. -/ -- TODO(WN): for Lean.js, have third parameter defining the client-side structure; -- or, compile `WithRpcRef` to "opaque reference" on the client class RpcEncoding (α : Type) (β : outParam Type) where rpcEncode {m : Type → Type} [Monad m] [MonadRpcSession m] : α → m β -- TODO(WN): ExceptT String or RpcError where | InvalidSession | InvalidParams (msg : String) | .. rpcDecode {m : Type → Type} [Monad m] [MonadRpcSession m] : β → ExceptT String m α export RpcEncoding (rpcEncode rpcDecode) instance [FromJson α] [ToJson α] : RpcEncoding α α where rpcEncode := pure rpcDecode := pure instance [RpcEncoding α β] : RpcEncoding (Option α) (Option β) where rpcEncode v := match v with | none => none | some v => some <$> rpcEncode v rpcDecode v := match v with | none => none | some v => some <$> rpcDecode v -- TODO(WN): instance [RpcEncoding α β] [Traversable t] : RpcEncoding (t α) (t β) instance [RpcEncoding α β] : RpcEncoding (Array α) (Array β) where rpcEncode a := a.mapM rpcEncode rpcDecode b := b.mapM rpcDecode instance [RpcEncoding α α'] [RpcEncoding β β'] : RpcEncoding (α × β) (α' × β') where rpcEncode := fun (a, b) => do let a' ← rpcEncode a let b' ← rpcEncode b return (a', b') rpcDecode := fun (a', b') => do let a ← rpcDecode a' let b ← rpcDecode b' return (a, b) structure RpcEncoding.DerivingParams where withRef : Bool := false /-- Marks fields to encode as opaque references in LSP packets. -/ structure WithRpcRef (α : Type u) where val : α namespace WithRpcRef variable {m : Type → Type} [Monad m] [MonadRpcSession m] /-- This is unsafe because we must ensure that: - the stored `NonScalar` is never used to access the value as a type other than `α` - the type `α` is not a scalar -/ protected unsafe def encodeUnsafe [Monad m] (typeName : Name) (r : WithRpcRef α) : m Lsp.RpcRef := do let obj := @unsafeCast α NonScalar r.val rpcStoreRef typeName obj protected unsafe def decodeUnsafeAs (α) (typeName : Name) (r : Lsp.RpcRef) : ExceptT String m (WithRpcRef α) := do match (← rpcGetRef r) with | none => throw s!"RPC reference '{r}' is not valid" | some (nm, obj) => if nm != typeName then throw s!"RPC call type mismatch in reference '{r}'\nexpected '{typeName}', got '{nm}'" WithRpcRef.mk <| @unsafeCast NonScalar α obj end WithRpcRef end Lean.Server
d900c258dd98dedac7d2f443ffa9cd8a2c42bb24
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
/src/algebra/module/submodule_lattice.lean
65ee4271dab8487ddc01f85a4cd090c1a4827f54
[ "Apache-2.0" ]
permissive
waynemunro/mathlib
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
065a70810b5480d584033f7bbf8e0409480c2118
refs/heads/master
1,693,417,182,397
1,634,644,781,000
1,634,644,781,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
8,783
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov -/ import algebra.module.submodule import algebra.punit_instances /-! # The lattice structure on `submodule`s This file defines the lattice structure on submodules, `submodule.complete_lattice`, with `⊥` defined as `{0}` and `⊓` defined as intersection of the underlying carrier. If `p` and `q` are submodules of a module, `p ≤ q` means that `p ⊆ q`. Many results about operations on this lattice structure are defined in `linear_algebra/basic.lean`, most notably those which use `span`. ## Implementation notes This structure should match the `add_submonoid.complete_lattice` structure, and we should try to unify the APIs where possible. -/ variables {R S M : Type*} section add_comm_monoid variables [semiring R] [semiring S] [add_comm_monoid M] [module R M] [module S M] variables [has_scalar S R] [is_scalar_tower S R M] variables {p q : submodule R M} namespace submodule /-- The set `{0}` is the bottom element of the lattice of submodules. -/ instance : has_bot (submodule R M) := ⟨{ carrier := {0}, smul_mem' := by simp { contextual := tt }, .. (⊥ : add_submonoid M)}⟩ instance inhabited' : inhabited (submodule R M) := ⟨⊥⟩ @[simp] lemma bot_coe : ((⊥ : submodule R M) : set M) = {0} := rfl @[simp] lemma bot_to_add_submonoid : (⊥ : submodule R M).to_add_submonoid = ⊥ := rfl section variables (R) @[simp] lemma restrict_scalars_bot : restrict_scalars S (⊥ : submodule R M) = ⊥ := rfl @[simp] lemma mem_bot {x : M} : x ∈ (⊥ : submodule R M) ↔ x = 0 := set.mem_singleton_iff end instance unique_bot : unique (⊥ : submodule R M) := ⟨infer_instance, λ x, subtype.ext $ (mem_bot R).1 x.mem⟩ lemma nonzero_mem_of_bot_lt {I : submodule R M} (bot_lt : ⊥ < I) : ∃ a : I, a ≠ 0 := begin have h := (set_like.lt_iff_le_and_exists.1 bot_lt).2, tidy, end instance : order_bot (submodule R M) := { bot := ⊥, bot_le := λ p x, by simp {contextual := tt}, ..set_like.partial_order } protected lemma eq_bot_iff (p : submodule R M) : p = ⊥ ↔ ∀ x ∈ p, x = (0 : M) := ⟨ λ h, h.symm ▸ λ x hx, (mem_bot R).mp hx, λ h, eq_bot_iff.mpr (λ x hx, (mem_bot R).mpr (h x hx)) ⟩ @[ext] protected lemma bot_ext (x y : (⊥ : submodule R M)) : x = y := begin rcases x with ⟨x, xm⟩, rcases y with ⟨y, ym⟩, congr, rw (submodule.eq_bot_iff _).mp rfl x xm, rw (submodule.eq_bot_iff _).mp rfl y ym, end protected lemma ne_bot_iff (p : submodule R M) : p ≠ ⊥ ↔ ∃ x ∈ p, x ≠ (0 : M) := by { haveI := classical.prop_decidable, simp_rw [ne.def, p.eq_bot_iff, not_forall] } /-- The bottom submodule is linearly equivalent to punit as an `R`-module. -/ @[simps] def bot_equiv_punit : (⊥ : submodule R M) ≃ₗ[R] punit := { to_fun := λ x, punit.star, inv_fun := λ x, 0, map_add' := by { intros, ext, }, map_smul' := by { intros, ext, }, left_inv := by { intro x, ext, }, right_inv := by { intro x, ext, }, } /-- The universal set is the top element of the lattice of submodules. -/ instance : has_top (submodule R M) := ⟨{ carrier := set.univ, smul_mem' := λ _ _ _, trivial, .. (⊤ : add_submonoid M)}⟩ @[simp] lemma top_coe : ((⊤ : submodule R M) : set M) = set.univ := rfl @[simp] lemma top_to_add_submonoid : (⊤ : submodule R M).to_add_submonoid = ⊤ := rfl @[simp] lemma mem_top {x : M} : x ∈ (⊤ : submodule R M) := trivial section variables (R) @[simp] lemma restrict_scalars_top : restrict_scalars S (⊤ : submodule R M) = ⊤ := rfl end instance : order_top (submodule R M) := { top := ⊤, le_top := λ p x _, trivial, ..set_like.partial_order } lemma eq_top_iff' {p : submodule R M} : p = ⊤ ↔ ∀ x, x ∈ p := eq_top_iff.trans ⟨λ h x, h trivial, λ h x _, h x⟩ /-- The top submodule is linearly equivalent to the module. -/ @[simps] def top_equiv_self : (⊤ : submodule R M) ≃ₗ[R] M := { to_fun := λ x, x, inv_fun := λ x, ⟨x, by simp⟩, map_add' := by { intros, refl, }, map_smul' := by { intros, refl, }, left_inv := by { intro x, ext, refl, }, right_inv := by { intro x, refl, }, } instance : has_Inf (submodule R M) := ⟨λ S, { carrier := ⋂ s ∈ S, (s : set M), zero_mem' := by simp, add_mem' := by simp [add_mem] {contextual := tt}, smul_mem' := by simp [smul_mem] {contextual := tt} }⟩ private lemma Inf_le' {S : set (submodule R M)} {p} : p ∈ S → Inf S ≤ p := set.bInter_subset_of_mem private lemma le_Inf' {S : set (submodule R M)} {p} : (∀q ∈ S, p ≤ q) → p ≤ Inf S := set.subset_bInter instance : has_inf (submodule R M) := ⟨λ p q, { carrier := p ∩ q, zero_mem' := by simp, add_mem' := by simp [add_mem] {contextual := tt}, smul_mem' := by simp [smul_mem] {contextual := tt} }⟩ instance : complete_lattice (submodule R M) := { sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x}, le_sup_left := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, ha, le_sup_right := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, hb, sup_le := λ a b c h₁ h₂, Inf_le' ⟨h₁, h₂⟩, inf := (⊓), le_inf := λ a b c, set.subset_inter, inf_le_left := λ a b, set.inter_subset_left _ _, inf_le_right := λ a b, set.inter_subset_right _ _, Sup := λtt, Inf {t | ∀t'∈tt, t' ≤ t}, le_Sup := λ s p hs, le_Inf' $ λ q hq, hq _ hs, Sup_le := λ s p hs, Inf_le' hs, Inf := Inf, le_Inf := λ s a, le_Inf', Inf_le := λ s a, Inf_le', ..submodule.order_top, ..submodule.order_bot } @[simp] theorem inf_coe : (p ⊓ q : set M) = p ∩ q := rfl @[simp] theorem mem_inf {p q : submodule R M} {x : M} : x ∈ p ⊓ q ↔ x ∈ p ∧ x ∈ q := iff.rfl @[simp] theorem Inf_coe (P : set (submodule R M)) : (↑(Inf P) : set M) = ⋂ p ∈ P, ↑p := rfl @[simp] theorem infi_coe {ι} (p : ι → submodule R M) : (↑⨅ i, p i : set M) = ⋂ i, ↑(p i) := by rw [infi, Inf_coe]; ext a; simp; exact ⟨λ h i, h _ i rfl, λ h i x e, e ▸ h _⟩ @[simp] lemma mem_Inf {S : set (submodule R M)} {x : M} : x ∈ Inf S ↔ ∀ p ∈ S, x ∈ p := set.mem_bInter_iff @[simp] theorem mem_infi {ι} (p : ι → submodule R M) {x} : x ∈ (⨅ i, p i) ↔ ∀ i, x ∈ p i := by rw [← set_like.mem_coe, infi_coe, set.mem_Inter]; refl lemma mem_sup_left {S T : submodule R M} : ∀ {x : M}, x ∈ S → x ∈ S ⊔ T := show S ≤ S ⊔ T, from le_sup_left lemma mem_sup_right {S T : submodule R M} : ∀ {x : M}, x ∈ T → x ∈ S ⊔ T := show T ≤ S ⊔ T, from le_sup_right lemma add_mem_sup {S T : submodule R M} {s t : M} (hs : s ∈ S) (ht : t ∈ T) : s + t ∈ S ⊔ T := add_mem _ (mem_sup_left hs) (mem_sup_right ht) lemma mem_supr_of_mem {ι : Sort*} {b : M} {p : ι → submodule R M} (i : ι) (h : b ∈ p i) : b ∈ (⨆i, p i) := have p i ≤ (⨆i, p i) := le_supr p i, @this b h open_locale big_operators lemma sum_mem_supr {ι : Type*} [fintype ι] {f : ι → M} {p : ι → submodule R M} (h : ∀ i, f i ∈ p i) : ∑ i, f i ∈ ⨆ i, p i := sum_mem _ $ λ i hi, mem_supr_of_mem i (h i) lemma sum_mem_bsupr {ι : Type*} {s : finset ι} {f : ι → M} {p : ι → submodule R M} (h : ∀ i ∈ s, f i ∈ p i) : ∑ i in s, f i ∈ ⨆ i ∈ s, p i := sum_mem _ $ λ i hi, mem_supr_of_mem i $ mem_supr_of_mem hi (h i hi) /-! Note that `submodule.mem_supr` is provided in `linear_algebra/basic.lean`. -/ lemma mem_Sup_of_mem {S : set (submodule R M)} {s : submodule R M} (hs : s ∈ S) : ∀ {x : M}, x ∈ s → x ∈ Sup S := show s ≤ Sup S, from le_Sup hs end submodule section nat_submodule /-- An additive submonoid is equivalent to a ℕ-submodule. -/ def add_submonoid.to_nat_submodule : add_submonoid M ≃o submodule ℕ M := { to_fun := λ S, { smul_mem' := λ r s hs, S.nsmul_mem hs _, ..S }, inv_fun := submodule.to_add_submonoid, left_inv := λ ⟨S, _, _⟩, rfl, right_inv := λ ⟨S, _, _, _⟩, rfl, map_rel_iff' := λ a b, iff.rfl } @[simp] lemma add_submonoid.to_nat_submodule_symm : ⇑(add_submonoid.to_nat_submodule.symm : _ ≃o add_submonoid M) = submodule.to_add_submonoid := rfl @[simp] lemma add_submonoid.coe_to_nat_submodule (S : add_submonoid M) : (S.to_nat_submodule : set M) = S := rfl @[simp] lemma add_submonoid.to_nat_submodule_to_add_submonoid (S : add_submonoid M) : S.to_nat_submodule.to_add_submonoid = S := add_submonoid.to_nat_submodule.symm_apply_apply S @[simp] lemma submodule.to_add_submonoid_to_nat_submodule (S : submodule ℕ M) : S.to_add_submonoid.to_nat_submodule = S := add_submonoid.to_nat_submodule.apply_symm_apply S end nat_submodule end add_comm_monoid
3282ab6907a1a41bfef1001d253fa67ebc7226f2
7cdf3413c097e5d36492d12cdd07030eb991d394
/src/game/world3/level5.lean
0cb4dc6f77a214dbb3a3cd2581ce2f6abd721097
[]
no_license
alreadydone/natural_number_game
3135b9385a9f43e74cfbf79513fc37e69b99e0b3
1a39e693df4f4e871eb449890d3c7715a25c2ec9
refs/heads/master
1,599,387,390,105
1,573,200,587,000
1,573,200,691,000
220,397,084
0
0
null
1,573,192,734,000
1,573,192,733,000
null
UTF-8
Lean
false
false
1,158
lean
import game.world3.level4 -- hide import mynat.mul -- hide namespace mynat -- hide /- # Multiplication World ## Level 5: `mul_assoc` Currently our tools for multiplication include the following: * `mul_zero m : m * 0 = 0` * `zero_mul m : 0 * m = 0` * `mul_succ a b : a * succ b = a * b + a` * `mul_add t a b : t * (a + b) = t * a + t * b` These things above are the tools we need to prove that multiplication is associative. ## Random tactic hints 1) Did you know you can do `repeat {rw mul_succ}`? 2) Did you know you can do `rwa [hd, mul_add]`? (I learnt that trick from Ken Lee) -/ /- Lemma Multiplication is associative. In other words, for all natural numbers $a$, $b$ and $c$, we have $$ (ab)c = a(bc). $$ -/ lemma mul_assoc (a b c : mynat) : (a * b) * c = a * (b * c) := begin [less_leaky] induction c with d hd, { repeat {rw mul_zero}, }, { rw mul_succ, rw mul_succ, rw hd, rw mul_add, refl, } end /- A mathematician could now remark that you have proved that the natural numbers form a monoid under multiplication. -/ def collectible_4 : monoid mynat := by structure_helper -- hide end mynat -- hide
4fe7862cda0bce79f94b06ba3148cd9b057faf43
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/tactic/fresh_names_auto.lean
d9924f8ad83b8a729be39fc28533d9a86f9dffea
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
987
lean
/- Copyright (c) 2020 Jannis Limperg. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jannis Limperg -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.sum import Mathlib.meta.rb_map import Mathlib.tactic.dependencies import Mathlib.PostPort namespace Mathlib /-! # Tactics for giving hypotheses fresh names When introducing hypotheses, we often want to make sure that their names are fresh, i.e. not used by any other hypothesis in the context. This file provides tactics which allow you to give a list of possible names for each hypothesis, with the tactics picking the first name that is not yet used in the context. If all names are already used, the tactics use a name derived from the first name in the list. -/ namespace tactic -- This implementation is a bit of a hack, but probably fine in practice since -- we're unlikely to need more than two or three iterations of the loop. end Mathlib
c7a9aa1fb38eb8dd08da502ed27d9e183b3f38ad
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/ring_theory/witt_vector/identities.lean
5c98a4fe921e888a88e7d161f20e558d3d611910
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
5,750
lean
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import ring_theory.witt_vector.frobenius import ring_theory.witt_vector.verschiebung import ring_theory.witt_vector.mul_p /-! ## Identities between operations on the ring of Witt vectors In this file we derive common identities between the Frobenius and Verschiebung operators. ## Main declarations * `frobenius_verschiebung`: the composition of Frobenius and Verschiebung is multiplication by `p` * `verschiebung_mul_frobenius`: the “projection formula”: `V(x * F y) = V x * y` * `iterate_verschiebung_mul_coeff`: an identity from [Haze09] 6.2 ## References * [Hazewinkel, *Witt Vectors*][Haze09] * [Commelin and Lewis, *Formalizing the Ring of Witt Vectors*][CL21] -/ namespace witt_vector variables {p : ℕ} {R : Type*} [hp : fact p.prime] [comm_ring R] local notation `𝕎` := witt_vector p -- type as `\bbW` include hp noncomputable theory /-- The composition of Frobenius and Verschiebung is multiplication by `p`. -/ lemma frobenius_verschiebung (x : 𝕎 R) : frobenius (verschiebung x) = x * p := by { ghost_calc x, ghost_simp [mul_comm] } /-- Verschiebung is the same as multiplication by `p` on the ring of Witt vectors of `zmod p`. -/ lemma verschiebung_zmod (x : 𝕎 (zmod p)) : verschiebung x = x * p := by rw [← frobenius_verschiebung, frobenius_zmodp] lemma coeff_p_pow [char_p R p] (i : ℕ) : (p ^ i : 𝕎 R).coeff i = 1 := begin induction i with i h, { simp only [one_coeff_zero, ne.def, pow_zero] }, { rw [pow_succ', ← frobenius_verschiebung, coeff_frobenius_char_p, verschiebung_coeff_succ, h, one_pow], } end lemma coeff_p_pow_eq_zero [char_p R p] {i j : ℕ} (hj : j ≠ i) : (p ^ i : 𝕎 R).coeff j = 0 := begin induction i with i hi generalizing j, { rw [pow_zero, one_coeff_eq_of_pos], exact nat.pos_of_ne_zero hj }, { rw [pow_succ', ← frobenius_verschiebung, coeff_frobenius_char_p], cases j, { rw [verschiebung_coeff_zero, zero_pow], exact nat.prime.pos hp.out }, { rw [verschiebung_coeff_succ, hi, zero_pow], { exact nat.prime.pos hp.out }, { exact ne_of_apply_ne (λ (j : ℕ), j.succ) hj } } } end /-- The “projection formula” for Frobenius and Verschiebung. -/ lemma verschiebung_mul_frobenius (x y : 𝕎 R) : verschiebung (x * frobenius y) = verschiebung x * y := by { ghost_calc x y, rintro ⟨⟩; ghost_simp [mul_assoc] } lemma mul_char_p_coeff_zero [char_p R p] (x : 𝕎 R) : (x * p).coeff 0 = 0 := begin rw [← frobenius_verschiebung, coeff_frobenius_char_p, verschiebung_coeff_zero, zero_pow], exact nat.prime.pos hp.out end lemma mul_char_p_coeff_succ [char_p R p] (x : 𝕎 R) (i : ℕ) : (x * p).coeff (i + 1) = (x.coeff i)^p := by rw [← frobenius_verschiebung, coeff_frobenius_char_p, verschiebung_coeff_succ] lemma verschiebung_frobenius [char_p R p] (x : 𝕎 R) : verschiebung (frobenius x) = x * p := begin ext ⟨i⟩, { rw [mul_char_p_coeff_zero, verschiebung_coeff_zero], }, { rw [mul_char_p_coeff_succ, verschiebung_coeff_succ, coeff_frobenius_char_p], } end lemma verschiebung_frobenius_comm [char_p R p] : function.commute (verschiebung : 𝕎 R → 𝕎 R) frobenius := λ x, by rw [verschiebung_frobenius, frobenius_verschiebung] /-! ## Iteration lemmas -/ open function lemma iterate_verschiebung_coeff (x : 𝕎 R) (n k : ℕ) : (verschiebung^[n] x).coeff (k + n) = x.coeff k := begin induction n with k ih, { simp }, { rw [iterate_succ_apply', nat.add_succ, verschiebung_coeff_succ], exact ih } end lemma iterate_verschiebung_mul_left (x y : 𝕎 R) (i : ℕ) : (verschiebung^[i] x) * y = (verschiebung^[i] (x * (frobenius^[i] y))) := begin induction i with i ih generalizing y, { simp }, { rw [iterate_succ_apply', ← verschiebung_mul_frobenius, ih, iterate_succ_apply'], refl } end section char_p variable [char_p R p] lemma iterate_verschiebung_mul (x y : 𝕎 R) (i j : ℕ) : (verschiebung^[i] x) * (verschiebung^[j] y) = (verschiebung^[i + j] ((frobenius^[j] x) * (frobenius^[i] y))) := begin calc _ = (verschiebung^[i] (x * (frobenius^[i] ((verschiebung^[j] y))))) : _ ... = (verschiebung^[i] (x * (verschiebung^[j] ((frobenius^[i] y))))) : _ ... = (verschiebung^[i] ((verschiebung^[j] ((frobenius^[i] y)) * x))) : _ ... = (verschiebung^[i] ((verschiebung^[j] ((frobenius^[i] y) * (frobenius^[j] x))))) : _ ... = (verschiebung^[i + j] ((frobenius^[i] y) * (frobenius^[j] x))) : _ ... = _ : _, { apply iterate_verschiebung_mul_left }, { rw verschiebung_frobenius_comm.iterate_iterate; apply_instance }, { rw mul_comm }, { rw iterate_verschiebung_mul_left }, { rw iterate_add_apply }, { rw mul_comm } end lemma iterate_frobenius_coeff (x : 𝕎 R) (i k : ℕ) : ((frobenius^[i] x)).coeff k = (x.coeff k)^(p^i) := begin induction i with i ih, { simp }, { rw [iterate_succ_apply', coeff_frobenius_char_p, ih], ring_exp } end /-- This is a slightly specialized form of [Hazewinkel, *Witt Vectors*][Haze09] 6.2 equation 5. -/ lemma iterate_verschiebung_mul_coeff (x y : 𝕎 R) (i j : ℕ) : ((verschiebung^[i] x) * (verschiebung^[j] y)).coeff (i + j) = (x.coeff 0)^(p ^ j) * (y.coeff 0)^(p ^ i) := begin calc _ = (verschiebung^[i + j] ((frobenius^[j] x) * (frobenius^[i] y))).coeff (i + j) : _ ... = ((frobenius^[j] x) * (frobenius^[i] y)).coeff 0 : _ ... = (frobenius^[j] x).coeff 0 * ((frobenius^[i] y)).coeff 0 : _ ... = _ : _, { rw iterate_verschiebung_mul }, { convert iterate_verschiebung_coeff _ _ _ using 2, rw zero_add }, { apply mul_coeff_zero }, { simp only [iterate_frobenius_coeff] } end end char_p end witt_vector
8df022f9fa1556bf0c070e63dd4c880661152fe2
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
/stage0/src/Lean/Parser/StrInterpolation.lean
25322b4825f9b906e79e4081a6c4b0f84c7f1610
[ "Apache-2.0" ]
permissive
williamdemeo/lean4
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
refs/heads/master
1,678,305,356,877
1,614,708,995,000
1,614,708,995,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,786
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Parser.Basic namespace Lean.Parser def isQuotableCharForStrInterpolant (c : Char) : Bool := c == '{' || isQuotableCharDefault c partial def interpolatedStrFn (p : ParserFn) : ParserFn := fun c s => let input := c.input let stackSize := s.stackSize let rec parse (startPos : Nat) (c : ParserContext) (s : ParserState) : ParserState := let i := s.pos if input.atEnd i then s.mkEOIError else let curr := input.get i let s := s.setPos (input.next i) if curr == '\"' then let s := mkNodeToken interpolatedStrLitKind startPos c s s.mkNode interpolatedStrKind stackSize else if curr == '\\' then andthenFn (quotedCharCoreFn isQuotableCharForStrInterpolant) (parse startPos) c s else if curr == '{' then let s := mkNodeToken interpolatedStrLitKind startPos c s let s := p c s if s.hasError then s else let pos := s.pos andthenFn (satisfyFn (· == '}') "expected '}'") (parse pos) c s else parse startPos c s let startPos := s.pos if input.atEnd startPos then s.mkEOIError else let curr := input.get s.pos; if curr != '\"' then s.mkError "interpolated string" else let s := s.next input startPos parse startPos c s @[inline] def interpolatedStrNoAntiquot (p : Parser) : Parser := { fn := interpolatedStrFn p.fn, info := mkAtomicInfo "interpolatedStr" } def interpolatedStr (p : Parser) : Parser := withAntiquot (mkAntiquot "interpolatedStr" interpolatedStrKind) $ interpolatedStrNoAntiquot p end Lean.Parser
b3fd9717309ce7c4b7c620e7d9e15b048224d100
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/analysis/inner_product_space/of_norm.lean
7c36dba00df14b273e17f36689d81e9f1c3d41bb
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
16,022
lean
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import topology.algebra.algebra import analysis.inner_product_space.basic /-! # Inner product space derived from a norm > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines an `inner_product_space` instance from a norm that respects the parallellogram identity. The parallelogram identity is a way to express the inner product of `x` and `y` in terms of the norms of `x`, `y`, `x + y`, `x - y`. ## Main results - `inner_product_space.of_norm`: a normed space whose norm respects the parallellogram identity, can be seen as an inner product space. ## Implementation notes We define `inner_` $$\langle x, y \rangle := \frac{1}{4} (‖x + y‖^2 - ‖x - y‖^2 + i ‖ix + y‖ ^ 2 - i ‖ix - y‖^2)$$ and use the parallelogram identity $$‖x + y‖^2 + ‖x - y‖^2 = 2 (‖x‖^2 + ‖y‖^2)$$ to prove it is an inner product, i.e., that it is conjugate-symmetric (`inner_.conj_symm`) and linear in the first argument. `add_left` is proved by judicious application of the parallelogram identity followed by tedious arithmetic. `smul_left` is proved step by step, first noting that $\langle λ x, y \rangle = λ \langle x, y \rangle$ for $λ ∈ ℕ$, $λ = -1$, hence $λ ∈ ℤ$ and $λ ∈ ℚ$ by arithmetic. Then by continuity and the fact that ℚ is dense in ℝ, the same is true for ℝ. The case of ℂ then follows by applying the result for ℝ and more arithmetic. ## TODO Move upstream to `analysis.inner_product_space.basic`. ## References - [Jordan, P. and von Neumann, J., *On inner products in linear, metric spaces*][Jordan1935] - https://math.stackexchange.com/questions/21792/norms-induced-by-inner-products-and-the-parallelogram-law - https://math.dartmouth.edu/archive/m113w10/public_html/jordan-vneumann-thm.pdf ## Tags inner product space, Hilbert space, norm -/ open is_R_or_C open_locale complex_conjugate variables {𝕜 : Type*} [is_R_or_C 𝕜] (E : Type*) [normed_add_comm_group E] /-- Predicate for the parallelogram identity to hold in a normed group. This is a scalar-less version of `inner_product_space`. If you have an `inner_product_spaceable` assumption, you can locally upgrade that to `inner_product_space 𝕜 E` using `casesI nonempty_inner_product_space 𝕜 E`. -/ class inner_product_spaceable : Prop := (parallelogram_identity : ∀ x y : E, ‖x + y‖ * ‖x + y‖ + ‖x - y‖ * ‖x - y‖ = 2 * (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖)) variables (𝕜) {E} lemma inner_product_space.to_inner_product_spaceable [inner_product_space 𝕜 E] : inner_product_spaceable E := ⟨parallelogram_law_with_norm 𝕜⟩ @[priority 100] -- See note [lower instance priority] instance inner_product_space.to_inner_product_spaceable_of_real [inner_product_space ℝ E] : inner_product_spaceable E := ⟨parallelogram_law_with_norm ℝ⟩ variables [normed_space 𝕜 E] local notation `𝓚` := algebra_map ℝ 𝕜 /-- Auxiliary definition of the inner product derived from the norm. -/ private noncomputable def inner_ (x y : E) : 𝕜 := 4⁻¹ * ((𝓚 ‖x + y‖) * (𝓚 ‖x + y‖) - (𝓚 ‖x - y‖) * (𝓚 ‖x - y‖) + (I:𝕜) * (𝓚 ‖(I:𝕜) • x + y‖) * (𝓚 ‖(I:𝕜) • x + y‖) - (I:𝕜) * (𝓚 ‖(I:𝕜) • x - y‖) * (𝓚 ‖(I:𝕜) • x - y‖)) namespace inner_product_spaceable variables {𝕜} (E) /-- Auxiliary definition for the `add_left` property -/ private def inner_prop (r : 𝕜) : Prop := ∀ x y : E, inner_ 𝕜 (r • x) y = conj r * inner_ 𝕜 x y variables {E} lemma inner_prop_neg_one : inner_prop E ((-1 : ℤ) : 𝕜) := begin intros x y, simp only [inner_, neg_mul_eq_neg_mul, one_mul, int.cast_one, one_smul, ring_hom.map_one, map_neg, int.cast_neg, neg_smul, neg_one_mul], rw neg_mul_comm, congr' 1, have h₁ : ‖-x - y‖ = ‖x + y‖, { rw [←neg_add', norm_neg], }, have h₂ : ‖-x + y‖ = ‖x - y‖, { rw [←neg_sub, norm_neg, sub_eq_neg_add], }, have h₃ : ‖(I : 𝕜) • (-x) + y‖ = ‖(I : 𝕜) • x - y‖, { rw [←neg_sub, norm_neg, sub_eq_neg_add, ←smul_neg], }, have h₄ : ‖(I : 𝕜) • (-x) - y‖ = ‖(I : 𝕜) • x + y‖, { rw [smul_neg, ←neg_add', norm_neg] }, rw [h₁, h₂, h₃, h₄], ring, end lemma continuous.inner_ {f g : ℝ → E} (hf : continuous f) (hg : continuous g) : continuous (λ x, inner_ 𝕜 (f x) (g x)) := by { unfold inner_, continuity } lemma inner_.norm_sq (x : E) : ‖x‖ ^ 2 = re (inner_ 𝕜 x x) := begin simp only [inner_], have h₁ : norm_sq (4 : 𝕜) = 16, { have : ((4 : ℝ) : 𝕜) = (4 : 𝕜), { simp only [of_real_one, of_real_bit0] }, rw [←this, norm_sq_eq_def', is_R_or_C.norm_of_nonneg (by norm_num : (0 : ℝ) ≤ 4)], norm_num }, have h₂ : ‖x + x‖ = 2 * ‖x‖, { rw [←two_smul 𝕜, norm_smul, is_R_or_C.norm_two] }, simp only [inner, h₁, h₂, one_im, bit0_zero, add_zero, norm_zero, I_re, of_real_im, map_add, bit0_im, zero_div, zero_mul, add_monoid_hom.map_neg, of_real_re, map_sub, sub_zero, inv_re, one_re, inv_im, bit0_re, mul_re, mul_zero, sub_self, neg_zero, algebra_map_eq_of_real], ring, end lemma inner_.conj_symm (x y : E) : conj (inner_ 𝕜 y x) = inner_ 𝕜 x y := begin simp only [inner_], have h4 : conj (4⁻¹ : 𝕜) = 4⁻¹, { rw [is_R_or_C.conj_inv, ←of_real_one, ←of_real_bit0, ←of_real_bit0, conj_of_real] }, rw [map_mul, h4], congr' 1, simp only [map_sub, map_add, algebra_map_eq_of_real, ←of_real_mul, conj_of_real, map_mul, conj_I], rw [add_comm y x, norm_sub_rev], by_cases hI : (I : 𝕜) = 0, { simp only [hI, neg_zero, zero_mul] }, have h₁ : ‖(I : 𝕜) • y - x‖ = ‖(I : 𝕜) • x + y‖, { transitivity ‖(I : 𝕜) • ((I : 𝕜) • y - x)‖, { rw [norm_smul, norm_I_of_ne_zero hI, one_mul] }, { rw [smul_sub, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ←neg_add', add_comm, norm_neg] } }, have h₂ : ‖(I : 𝕜) • y + x‖ = ‖(I : 𝕜) • x - y‖, { transitivity ‖(I : 𝕜) • ((I : 𝕜) • y + x)‖, { rw [norm_smul, norm_I_of_ne_zero hI, one_mul] }, { rw [smul_add, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ←neg_add_eq_sub] }}, rw [h₁, h₂, ←sub_add_eq_add_sub], simp only [neg_mul, sub_eq_add_neg, neg_neg], end variables [inner_product_spaceable E] private lemma add_left_aux1 (x y z : E) : ‖x + y + z‖ * ‖x + y + z‖ = (‖2 • x + y‖ * ‖2 • x + y‖ + ‖2 • z + y‖ * ‖2 • z + y‖) / 2 - ‖x - z‖ * ‖x - z‖ := begin rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm], convert parallelogram_identity (x + y + z) (x - z) using 4; { rw two_smul, abel } end private lemma add_left_aux2 (x y z : E) : ‖x + y - z‖ * ‖x + y - z‖ = (‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 - ‖x + z‖ * ‖x + z‖ := begin rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm], have h₀ := parallelogram_identity (x + y - z) (x + z), convert h₀ using 4; { rw two_smul, abel } end private lemma add_left_aux2' (x y z : E) : ‖x + y + z‖ * ‖x + y + z‖ - ‖x + y - z‖ * ‖x + y - z‖ = ‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 := by { rw [add_left_aux1 , add_left_aux2], ring } private lemma add_left_aux3 (y z : E) : ‖2 • z + y‖ * ‖2 • z + y‖ = 2 * (‖y + z‖ * ‖y + z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖ := begin apply eq_sub_of_add_eq, convert parallelogram_identity (y + z) z using 4; { try { rw two_smul }, abel } end private lemma add_left_aux4 (y z : E) : ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖ := begin apply eq_sub_of_add_eq', have h₀ := parallelogram_identity (y - z) z, convert h₀ using 4; { try { rw two_smul }, abel } end private lemma add_left_aux4' (y z : E) : (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 = (‖y + z‖ * ‖y + z‖) - (‖y - z‖ * ‖y - z‖) := by { rw [add_left_aux3 , add_left_aux4], ring } private lemma add_left_aux5 (x y z : E) : ‖(I : 𝕜) • (x + y) + z‖ * ‖(I : 𝕜) • (x + y) + z‖ = (‖(I : 𝕜) • (2 • x + y)‖ * ‖(I : 𝕜) • (2 • x + y)‖ + ‖(I : 𝕜) • y + 2 • z‖ * ‖(I : 𝕜) • y + 2 • z‖) / 2 - ‖(I : 𝕜) • x - z‖ * ‖(I : 𝕜) • x - z‖ := begin rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm], have h₀ := parallelogram_identity ((I : 𝕜) • (x + y) + z) ((I : 𝕜) • x - z), convert h₀ using 4; { try { simp only [two_smul, smul_add] }, abel } end private lemma add_left_aux6 (x y z : E) : ‖(I : 𝕜) • (x + y) - z‖ * ‖(I : 𝕜) • (x + y) - z‖ = (‖(I : 𝕜) • (2 • x + y)‖ * ‖(I : 𝕜) • (2 • x + y)‖ + ‖(I : 𝕜) • y - 2 • z‖ * ‖(I : 𝕜) • y - 2 • z‖) / 2 - ‖(I : 𝕜) • x + z‖ * ‖(I : 𝕜) • x + z‖ := begin rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm], have h₀ := parallelogram_identity ((I : 𝕜) • (x + y) - z) ((I : 𝕜) • x + z), convert h₀ using 4; { try { simp only [two_smul, smul_add] }, abel } end private lemma add_left_aux7 (y z : E) : ‖(I : 𝕜) • y + 2 • z‖ * ‖(I : 𝕜) • y + 2 • z‖ = 2 * (‖(I : 𝕜) • y + z‖ * ‖(I : 𝕜) • y + z‖ + ‖z‖ * ‖z‖) - ‖(I : 𝕜) • y‖ * ‖(I : 𝕜) • y‖ := begin apply eq_sub_of_add_eq, have h₀ := parallelogram_identity ((I : 𝕜) • y + z) z, convert h₀ using 4; { try { simp only [two_smul, smul_add] }, abel } end private lemma add_left_aux8 (y z : E) : ‖(I : 𝕜) • y - 2 • z‖ * ‖(I : 𝕜) • y - 2 • z‖ = 2 * (‖(I : 𝕜) • y - z‖ * ‖(I : 𝕜) • y - z‖ + ‖z‖ * ‖z‖) - ‖(I : 𝕜) • y‖ * ‖(I : 𝕜) • y‖ := begin apply eq_sub_of_add_eq', have h₀ := parallelogram_identity ((I : 𝕜) • y - z) z, convert h₀ using 4; { try { simp only [two_smul, smul_add] }, abel } end lemma add_left (x y z : E) : inner_ 𝕜 (x + y) z = inner_ 𝕜 x z + inner_ 𝕜 y z := begin simp only [inner_, ←mul_add], congr, simp only [mul_assoc, ←map_mul, add_sub_assoc, ←mul_sub, ←map_sub], rw add_add_add_comm, simp only [←map_add, ←mul_add], congr, { rw [←add_sub_assoc, add_left_aux2', add_left_aux4'] }, { rw [add_left_aux5, add_left_aux6, add_left_aux7, add_left_aux8], simp only [map_sub, map_mul, map_add, div_eq_mul_inv], ring } end lemma nat (n : ℕ) (x y : E) : inner_ 𝕜 ((n : 𝕜) • x) y = (n : 𝕜) * inner_ 𝕜 x y := begin induction n with n ih, { simp only [inner_, nat.nat_zero_eq_zero, zero_sub, nat.cast_zero, zero_mul, eq_self_iff_true, zero_smul, zero_add, mul_zero, sub_self, norm_neg, smul_zero], }, { simp only [nat.cast_succ, add_smul, one_smul], rw [add_left, ih, add_mul, one_mul] } end private lemma nat_prop (r : ℕ) : inner_prop E (r : 𝕜) := λ x y, by { simp only [map_nat_cast], exact nat r x y } private lemma int_prop (n : ℤ) : inner_prop E (n : 𝕜) := begin intros x y, rw ←n.sign_mul_nat_abs, simp only [int.cast_coe_nat, map_nat_cast, map_int_cast, int.cast_mul, map_mul, mul_smul], obtain hn | rfl | hn := lt_trichotomy n 0, { rw [int.sign_eq_neg_one_of_neg hn, inner_prop_neg_one ((n.nat_abs : 𝕜) • x), nat], simp only [map_neg, neg_mul, one_mul, mul_eq_mul_left_iff, true_or, int.nat_abs_eq_zero, eq_self_iff_true, int.cast_one, map_one, neg_inj, nat.cast_eq_zero, int.cast_neg] }, { simp only [inner_, int.cast_zero, zero_sub, nat.cast_zero, zero_mul, eq_self_iff_true, int.sign_zero, zero_smul, zero_add, mul_zero, smul_zero, sub_self, norm_neg, int.nat_abs_zero] }, { rw int.sign_eq_one_of_pos hn, simp only [one_mul, mul_eq_mul_left_iff, true_or, int.nat_abs_eq_zero, eq_self_iff_true, int.cast_one, one_smul, nat.cast_eq_zero, nat] } end private lemma rat_prop (r : ℚ) : inner_prop E (r : 𝕜) := begin intros x y, have : (r.denom : 𝕜) ≠ 0, { haveI : char_zero 𝕜 := is_R_or_C.char_zero_R_or_C, exact_mod_cast r.pos.ne' }, rw [←r.num_div_denom, ←mul_right_inj' this, ←nat r.denom _ y, smul_smul, rat.cast_div], simp only [map_nat_cast, rat.cast_coe_nat, map_int_cast, rat.cast_coe_int, map_div₀], rw [←mul_assoc, mul_div_cancel' _ this, int_prop _ x, map_int_cast], end private lemma real_prop (r : ℝ) : inner_prop E (r : 𝕜) := begin intros x y, revert r, rw ←function.funext_iff, refine rat.dense_embedding_coe_real.dense.equalizer _ _ (funext $ λ X, _), { exact (continuous_of_real.smul continuous_const).inner_ continuous_const }, { exact (continuous_conj.comp continuous_of_real).mul continuous_const }, { simp only [function.comp_app, is_R_or_C.of_real_rat_cast, rat_prop _ _] } end private lemma I_prop : inner_prop E (I : 𝕜) := begin by_cases hI : (I : 𝕜) = 0, { rw [hI, ←nat.cast_zero], exact nat_prop _ }, intros x y, have hI' : (-I : 𝕜) * I = 1, { rw [←inv_I, inv_mul_cancel hI], }, rw [conj_I, inner_, inner_, mul_left_comm], congr' 1, rw [smul_smul, I_mul_I_of_nonzero hI, neg_one_smul], rw [mul_sub, mul_add, mul_sub, mul_assoc I (𝓚 ‖I • x - y‖), ←mul_assoc (-I) I, hI', one_mul, mul_assoc I (𝓚 ‖I • x + y‖), ←mul_assoc (-I) I, hI', one_mul], have h₁ : ‖-x - y‖ = ‖x + y‖, { rw [←neg_add', norm_neg], }, have h₂ : ‖-x + y‖ = ‖x - y‖, { rw [←neg_sub, norm_neg, sub_eq_neg_add], }, rw [h₁, h₂], simp only [sub_eq_add_neg, mul_assoc], rw [←neg_mul_eq_neg_mul, ←neg_mul_eq_neg_mul], abel end lemma inner_prop (r : 𝕜) : inner_prop E r := begin intros x y, rw [←re_add_im r, add_smul, add_left, real_prop _ x, ←smul_smul, real_prop _ _ y, I_prop, map_add, map_mul, conj_of_real, conj_of_real, conj_I], ring, end end inner_product_spaceable open inner_product_spaceable /-- **Fréchet–von Neumann–Jordan Theorem**. A normed space `E` whose norm satisfies the parallelogram identity can be given a compatible inner product. -/ noncomputable def inner_product_space.of_norm (h : ∀ x y : E, ‖x + y‖ * ‖x + y‖ + ‖x - y‖ * ‖x - y‖ = 2 * (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖)) : inner_product_space 𝕜 E := begin haveI : inner_product_spaceable E := ⟨h⟩, exact { inner := inner_ 𝕜, norm_sq_eq_inner := inner_.norm_sq, conj_symm := inner_.conj_symm, add_left := add_left, smul_left := λ _ _ _, inner_prop _ _ _ } end variables (𝕜 E) [inner_product_spaceable E] /-- **Fréchet–von Neumann–Jordan Theorem**. A normed space `E` whose norm satisfies the parallelogram identity can be given a compatible inner product. Do `casesI nonempty_inner_product_space 𝕜 E` to locally upgrade `inner_product_spaceable E` to `inner_product_space 𝕜 E`. -/ lemma nonempty_inner_product_space : nonempty (inner_product_space 𝕜 E) := ⟨{ inner := inner_ 𝕜, norm_sq_eq_inner := inner_.norm_sq, conj_symm := inner_.conj_symm, add_left := add_left, smul_left := λ _ _ _, inner_prop _ _ _ }⟩ variables {𝕜 E} [normed_space ℝ E] -- TODO: Replace `inner_product_space.to_uniform_convex_space` @[priority 100] -- See note [lower instance priority] instance inner_product_spaceable.to_uniform_convex_space : uniform_convex_space E := by { casesI nonempty_inner_product_space ℝ E, apply_instance }
9b993d370cd3237c69644586dca2ccea485fe6fe
1446f520c1db37e157b631385707cc28a17a595e
/stage0/src/Init/Lean/Elab/Quotation.lean
26d0d9491d128afdbcf649718b6630ebcee372f5
[ "Apache-2.0" ]
permissive
bdbabiak/lean4
cab06b8a2606d99a168dd279efdd404edb4e825a
3f4d0d78b2ce3ef541cb643bbe21496bd6b057ac
refs/heads/master
1,615,045,275,530
1,583,793,696,000
1,583,793,696,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
22,461
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich Elaboration of syntax quotations as terms and patterns (in `match_syntax`). See also `./Hygiene.lean` for the basic hygiene workings and data types. -/ prelude import Init.Lean.Syntax import Init.Lean.Elab.ResolveName import Init.Lean.Elab.Term import Init.Lean.Parser -- TODO: remove after removing old elaborator /- TODO Quotations are currently integrated hackily into the old frontend. This implies the following restrictions: * quotations have to fit in a single line, because that's how the old scanner works :) * `open` commands are not respected (but `export`, `namespace` are) * antiquotation terms have to be trivial (locals, consts (w/ projections), and apps, basically) After removing the old frontend, quotations in this and other files should be cleaned up. -/ namespace Lean /-- Reflect a runtime datum back to surface syntax (best-effort). -/ class HasQuote (α : Type) := (quote : α → Syntax) export HasQuote (quote) instance Syntax.HasQuote : HasQuote Syntax := ⟨id⟩ instance String.HasQuote : HasQuote String := ⟨fun s => Syntax.node `Lean.Parser.Term.str #[mkStxStrLit s]⟩ instance Nat.HasQuote : HasQuote Nat := ⟨fun n => Syntax.node `Lean.Parser.Term.num #[mkStxNumLit $ toString n]⟩ instance Substring.HasQuote : HasQuote Substring := ⟨fun s => mkCAppStx `String.toSubstring #[quote s.toString]⟩ private def quoteName : Name → Syntax | Name.anonymous => mkCTermId `Lean.Name.anonymous | Name.str n s _ => mkCAppStx `Lean.mkNameStr #[quoteName n, quote s] | Name.num n i _ => mkCAppStx `Lean.mkNameNum #[quoteName n, quote i] instance Name.hasQuote : HasQuote Name := ⟨quoteName⟩ instance Prod.hasQuote {α β : Type} [HasQuote α] [HasQuote β] : HasQuote (α × β) := ⟨fun ⟨a, b⟩ => mkCAppStx `Prod.mk #[quote a, quote b]⟩ private def quoteList {α : Type} [HasQuote α] : List α → Syntax | [] => mkCTermId `List.nil | (x::xs) => mkCAppStx `List.cons #[quote x, quoteList xs] instance List.hasQuote {α : Type} [HasQuote α] : HasQuote (List α) := ⟨quoteList⟩ instance Array.hasQuote {α : Type} [HasQuote α] : HasQuote (Array α) := ⟨fun xs => mkCAppStx `List.toArray #[quote xs.toList]⟩ private def quoteOption {α : Type} [HasQuote α] : Option α → Syntax | none => mkTermId `Option.none | (some x) => mkCAppStx `Option.some #[quote x] instance Option.hasQuote {α : Type} [HasQuote α] : HasQuote (Option α) := ⟨quoteOption⟩ namespace Elab namespace Term namespace Quotation -- antiquotation node kinds are formed from the original node kind (if any) plus "antiquot" def isAntiquot : Syntax → Bool | Syntax.node (Name.str _ "antiquot" _) _ => true | _ => false -- Antiquotations can be escaped as in `$$x`, which is useful for nesting macros. def isEscapedAntiquot (stx : Syntax) : Bool := !(stx.getArg 1).getArgs.isEmpty def unescapeAntiquot (stx : Syntax) : Syntax := if isAntiquot stx then stx.setArg 1 $ mkNullNode (stx.getArg 1).getArgs.pop else stx def getAntiquotTerm (stx : Syntax) : Syntax := let e := stx.getArg 2; if e.isIdent then mkTermIdFromIdent e else -- `e` is from `"(" >> termParser >> ")"` e.getArg 1 def antiquotKind? : Syntax → Option SyntaxNodeKind | Syntax.node (Name.str k "antiquot" _) args => -- we treat all antiquotations where the kind was left implicit (`$e`) the same (see `elimAntiquotChoices`) if (args.get! 3).isNone then some Name.anonymous else some k | _ => none -- `$e*` is an antiquotation "splice" matching an arbitrary number of syntax nodes def isAntiquotSplice (stx : Syntax) : Bool := isAntiquot stx && (stx.getArg 5).getOptional?.isSome -- If any item of a `many` node is an antiquotation splice, its result should -- be substituted into the `many` node's children def isAntiquotSplicePat (stx : Syntax) : Bool := stx.isOfKind nullKind && stx.getArgs.any (fun arg => isAntiquotSplice arg && !isEscapedAntiquot arg) /-- A term like `($e) is actually ambiguous: the antiquotation could be of kind `term`, or `ident`, or ... . But it shouldn't really matter because antiquotations without explicit kinds behave the same at runtime. So we replace `choice` nodes that contain at least one implicit antiquotation with that antiquotation. -/ private partial def elimAntiquotChoices : Syntax → Syntax | Syntax.node `choice args => match args.find? (fun arg => antiquotKind? arg == Name.anonymous) with | some anti => anti | none => Syntax.node `choice $ args.map elimAntiquotChoices | Syntax.node k args => Syntax.node k $ args.map elimAntiquotChoices | stx => stx -- Elaborate the content of a syntax quotation term private partial def quoteSyntax : Syntax → TermElabM Syntax | Syntax.ident info rawVal val preresolved => do -- Add global scopes at compilation time (now), add macro scope at runtime (in the quotation). -- See the paper for details. r ← resolveGlobalName val; let preresolved := r ++ preresolved; let val := quote val; -- `scp` is bound in stxQuot.expand `(Syntax.ident none $(quote rawVal) (addMacroScope mainModule $val scp) $(quote preresolved)) -- if antiquotation, insert contents as-is, else recurse | stx@(Syntax.node k _) => if isAntiquot stx && !isEscapedAntiquot stx then -- splices must occur in a `many` node if isAntiquotSplice stx then throwError stx "unexpected antiquotation splice" else pure $ getAntiquotTerm stx else do empty ← `(Array.empty); -- if escaped antiquotation, decrement by one escape level let stx := unescapeAntiquot stx; args ← stx.getArgs.foldlM (fun args arg => if k == nullKind && isAntiquotSplice arg then -- antiquotation splice pattern: inject args array `(Array.append $args $(getAntiquotTerm arg)) else do arg ← quoteSyntax arg; `(Array.push $args $arg)) empty; `(Syntax.node $(quote k) $args) | Syntax.atom info val => `(Syntax.atom none $(quote val)) | Syntax.missing => unreachable! def stxQuot.expand (stx : Syntax) : TermElabM Syntax := do let quoted := stx.getArg 1; /- Syntax quotations are monadic values depending on the current macro scope. For efficiency, we bind the macro scope once for each quotation, then build the syntax tree in a completely pure computation depending on this binding. Note that regular function calls do not introduce a new macro scope (i.e. we preserve referential transparency), so we can refer to this same `scp` inside `quoteSyntax` by including it literally in a syntax quotation. -/ -- TODO: simplify to `(do scp ← getCurrMacroScope; pure $(quoteSyntax quoted)) stx ← quoteSyntax (elimAntiquotChoices quoted); `(bind getCurrMacroScope (fun scp => bind getMainModule (fun mainModule => pure $stx))) /- NOTE: It may seem like the newly introduced binding `scp` may accidentally capture identifiers in an antiquotation introduced by `quoteSyntax`. However, note that the syntax quotation above enjoys the same hygiene guarantees as anywhere else in Lean; that is, we implement hygienic quotations by making use of the hygienic quotation support of the bootstrapped Lean compiler! Aside: While this might sound "dangerous", it is in fact less reliant on a "chain of trust" than other bootstrapping parts of Lean: because this implementation itself never uses `scp` (or any other identifier) both inside and outside quotations, it can actually correctly be compiled by an unhygienic (but otherwise correct) implementation of syntax quotations. As long as it is then compiled again with the resulting executable (i.e. up to stage 2), the result is a correct hygienic implementation. In this sense the implementation is "self-stabilizing". It was in fact originally compiled by an unhygienic prototype implementation. -/ @[builtinTermElab stxQuot] def elabStxQuot : TermElab := adaptExpander stxQuot.expand /- match_syntax -/ -- an "alternative" of patterns plus right-hand side private abbrev Alt := List Syntax × Syntax /-- Information on a pattern's head that influences the compilation of a single match step. -/ structure HeadInfo := -- Node kind to match, if any (kind : Option SyntaxNodeKind := none) -- Nested patterns for each argument, if any. In a single match step, we only -- check that the arity matches. The arity is usually implied by the node kind, -- but not in the case of `many` nodes. (argPats : Option (Array Syntax) := none) -- Function to apply to the right-hand side in case the match succeeds. Used to -- bind pattern variables. (rhsFn : Syntax → TermElabM Syntax := pure) instance HeadInfo.Inhabited : Inhabited HeadInfo := ⟨{}⟩ /-- `h1.generalizes h2` iff h1 is equal to or more general than h2, i.e. it matches all nodes h2 matches. This induces a partial ordering. -/ def HeadInfo.generalizes : HeadInfo → HeadInfo → Bool | { kind := none, .. }, _ => true | { kind := some k1, argPats := none, .. }, { kind := some k2, .. } => k1 == k2 | { kind := some k1, argPats := some ps1, .. }, { kind := some k2, argPats := some ps2, .. } => k1 == k2 && ps1.size == ps2.size | _, _ => false private def getHeadInfo (alt : Alt) : HeadInfo := let pat := alt.fst.head!; let unconditional (rhsFn) := { HeadInfo . rhsFn := rhsFn }; -- variable pattern if pat.isOfKind `Lean.Parser.Term.id then unconditional $ fun rhs => `(let $pat := discr; $rhs) -- wildcard pattern else if pat.isOfKind `Lean.Parser.Term.hole then unconditional pure -- quotation pattern else if pat.isOfKind `Lean.Parser.Term.stxQuot then let quoted := pat.getArg 1; if quoted.isAtom then -- We assume that atoms are uniquely determined by the node kind and never have to be checked unconditional pure else if isAntiquot quoted && !isEscapedAntiquot quoted then -- quotation contains a single antiquotation let k := antiquotKind? quoted; -- Antiquotation kinds like `$id:id` influence the parser, but also need to be considered by -- match_syntax (but not by quotation terms). For example, `($id:id) and `($e) are not -- distinguishable without checking the kind of the node to be captured. Note that some -- antiquotations like the latter one for terms do not correspond to any actual node kind -- (signified by `k == Name.anonymous`), so we would only check for `Term.id` here. -- -- if stx.isOfKind `Lean.Parser.Term.id then -- let id := stx; ... -- else -- let e := stx; ... let kind := if k == Name.anonymous then none else k; let anti := getAntiquotTerm quoted; -- Splices should only appear inside a nullKind node, see next case if isAntiquotSplice quoted then unconditional $ fun _ => throwError quoted "unexpected antiquotation splice" else if anti.isOfKind `Lean.Parser.Term.id then { kind := kind, rhsFn := fun rhs => `(let $anti := discr; $rhs) } else unconditional $ fun _ => throwError anti ("match_syntax: antiquotation must be variable " ++ toString anti) else if isAntiquotSplicePat quoted && quoted.getArgs.size == 1 then -- quotation is a single antiquotation splice => bind args array let anti := getAntiquotTerm (quoted.getArg 0); unconditional $ fun rhs => `(let $anti := Syntax.getArgs discr; $rhs) -- TODO: support for more complex antiquotation splices else -- not an antiquotation or escaped antiquotation: match head shape let quoted := unescapeAntiquot quoted; let argPats := quoted.getArgs.map $ fun arg => Syntax.node `Lean.Parser.Term.stxQuot #[mkAtom "`(", arg, mkAtom ")"]; { kind := quoted.getKind, argPats := argPats } else unconditional $ fun _ => throwError pat ("match_syntax: unexpected pattern kind " ++ toString pat) -- Assuming that the first pattern of the alternative is taken, replace it with patterns (if any) for its -- child nodes. -- Ex: `($a + (- $b)) => `($a), `(+), `(- $b) -- Note: The atom pattern `(+) will be discarded in a later step private def explodeHeadPat (numArgs : Nat) : HeadInfo × Alt → TermElabM Alt | (info, (pat::pats, rhs)) => do let newPats := match info.argPats with | some argPats => argPats.toList | none => List.replicate numArgs $ Unhygienic.run `(_); rhs ← info.rhsFn rhs; pure (newPats ++ pats, rhs) | _ => unreachable! private partial def compileStxMatch (ref : Syntax) : List Syntax → List Alt → TermElabM Syntax | [], ([], rhs)::_ => pure rhs -- nothing left to match | _, [] => throwError ref "non-exhaustive 'match_syntax'" | discr::discrs, alts => do let alts := (alts.map getHeadInfo).zip alts; -- Choose a most specific pattern, ie. a minimal element according to `generalizes`. -- If there are multiple minimal elements, the choice does not matter. let (info, alt) := alts.tail!.foldl (fun (min : HeadInfo × Alt) (alt : HeadInfo × Alt) => if min.1.generalizes alt.1 then alt else min) alts.head!; -- introduce pattern matches on the discriminant's children if there are any nested patterns newDiscrs ← match info.argPats with | some pats => (List.range pats.size).mapM $ fun i => `(Syntax.getArg discr $(quote i)) | none => pure []; -- collect matching alternatives and explode them let yesAlts := alts.filter $ fun (alt : HeadInfo × Alt) => alt.1.generalizes info; yesAlts ← yesAlts.mapM $ explodeHeadPat newDiscrs.length; -- NOTE: use fresh macro scopes for recursive call so that different `discr`s introduced by the quotations below do not collide yes ← withFreshMacroScope $ compileStxMatch (newDiscrs ++ discrs) yesAlts; some kind ← pure info.kind -- unconditional match step | `(let discr := $discr; $yes); -- conditional match step let noAlts := (alts.filter $ fun (alt : HeadInfo × Alt) => !info.generalizes alt.1).map Prod.snd; no ← withFreshMacroScope $ compileStxMatch (discr::discrs) noAlts; cond ← match info.argPats with | some pats => `(Syntax.isOfKind discr $(quote kind) && Array.size (Syntax.getArgs discr) == $(quote pats.size)) | none => `(Syntax.isOfKind discr $(quote kind)); `(let discr := $discr; if $cond = true then $yes else $no) | _, _ => unreachable! private partial def getPatternVarsAux : Syntax → List Syntax | stx@(Syntax.node k args) => if isAntiquot stx && !isEscapedAntiquot stx then let anti := getAntiquotTerm stx; if anti.isOfKind `Lean.Parser.Term.id then [anti] else [] else List.join $ args.toList.map getPatternVarsAux | _ => [] -- Get all pattern vars (as Term.id nodes) in `stx` partial def getPatternVars (stx : Syntax) : List Syntax := if stx.isOfKind `Lean.Parser.Term.stxQuot then do let quoted := stx.getArg 1; getPatternVarsAux stx else if stx.isOfKind `Lean.Parser.Term.id then [stx] else [] -- Transform alternatives by binding all right-hand sides to outside the match_syntax in order to prevent -- code duplication during match_syntax compilation private def letBindRhss (cont : List Alt → TermElabM Syntax) : List Alt → List Alt → TermElabM Syntax | [], altsRev' => cont altsRev'.reverse | (pats, rhs)::alts, altsRev' => do let vars := List.join $ pats.map getPatternVars; match vars with -- no antiquotations => introduce Unit parameter to preserve evaluation order | [] => do -- NOTE: references binding below rhs' ← `(rhs ()); -- NOTE: new macro scope so that introduced bindings do not collide stx ← withFreshMacroScope $ letBindRhss alts ((pats, rhs')::altsRev'); `(let rhs := fun _ => $rhs; $stx) | _ => do -- rhs ← `(fun $vars* => $rhs) let rhs := Syntax.node `Lean.Parser.Term.fun #[mkAtom "fun", Syntax.node `null vars.toArray, mkAtom "=>", rhs]; rhs' ← `(rhs); stx ← withFreshMacroScope $ letBindRhss alts ((pats, rhs')::altsRev'); `(let rhs := $rhs; $stx) def match_syntax.expand (stx : Syntax) : TermElabM Syntax := do let discr := stx.getArg 1; let alts := stx.getArg 4; alts ← alts.getArgs.getSepElems.mapM $ fun alt => do { let pats := alt.getArg 0; pat ← if pats.getArgs.size == 1 then pure $ pats.getArg 0 else throwError stx "match_syntax: expected exactly one pattern per alternative"; let pat := if pat.isOfKind `Lean.Parser.Term.stxQuot then pat.setArg 1 $ elimAntiquotChoices $ pat.getArg 1 else pat; match pat.find? $ fun stx => stx.getKind == choiceKind with | some choiceStx => throwError choiceStx "invalid pattern, nested syntax has multiple interpretations" | none => let rhs := alt.getArg 2; pure ([pat], rhs) }; -- letBindRhss (compileStxMatch stx [discr]) alts.toList [] compileStxMatch stx [discr] alts.toList @[builtinTermElab «match_syntax»] def elabMatchSyntax : TermElab := adaptExpander match_syntax.expand -- REMOVE with old frontend private def exprPlaceholder := mkMVar Name.anonymous private unsafe partial def toPreterm : Syntax → TermElabM Expr | stx => let args := stx.getArgs; match stx.getKind with | `Lean.Parser.Term.id => match args.get! 0 with | Syntax.ident _ _ val preresolved => do resolved ← resolveName stx val preresolved []; match resolved with | (pre,projs)::_ => let pre := match pre with | Expr.const c _ _ => Lean.mkConst c -- remove universes confusing the old frontend | _ => pre; pure $ projs.foldl (fun e proj => mkMData (MData.empty.setName `fieldNotation proj) e) pre | [] => unreachable! | _ => unreachable! | `Lean.Parser.Term.fun => do let params := (args.get! 1).getArgs; let body := args.get! 3; if params.size == 0 then toPreterm body else do let param := params.get! 0; (n, ty) ← if param.isOfKind `Lean.Parser.Term.id then pure (param.getIdAt 0, exprPlaceholder) else if param.isOfKind `Lean.Parser.Term.hole then pure (`_a, exprPlaceholder) else do { let n := ((param.getArg 1).getArg 0).getIdAt 0; ty ← toPreterm $ (((param.getArg 1).getArg 1).getArg 0).getArg 1; pure (n, ty) }; lctx ← getLCtx; let lctx := lctx.mkLocalDecl n n ty; let params := params.eraseIdx 0; stx ← `(fun $params* => $body); adaptReader (fun (ctx : Context) => { lctx := lctx, .. ctx }) $ do e ← toPreterm stx; pure $ lctx.mkLambda #[mkFVar n] e | `Lean.Parser.Term.let => do let decl := args.get! 1; let n := if (decl.getArg 0).isIdent then (decl.getArg 0).getId else (decl.getArg 0).getIdAt 0; let val := decl.getArg 4; let body := args.get! 3; val ← toPreterm val; lctx ← getLCtx; let lctx := lctx.mkLetDecl n n exprPlaceholder val; adaptReader (fun (ctx : Context) => { lctx := lctx, .. ctx }) $ do e ← toPreterm $ body; pure $ lctx.mkLambda #[mkFVar n] e | `Lean.Parser.Term.app => do fn ← toPreterm $ args.get! 0; as ← (args.get! 1).getArgs.mapM toPreterm; pure $ mkAppN fn as | `Lean.Parser.Term.if => do let con := args.get! 2; let yes := args.get! 4; let no := args.get! 6; toPreterm $ Unhygienic.run `(ite $con $yes $no) | `Lean.Parser.Term.paren => let inner := (args.get! 1).getArgs; if inner.size == 0 then pure $ Lean.mkConst `Unit.unit else toPreterm $ inner.get! 0 | `Lean.Parser.Term.band => let lhs := args.get! 0; let rhs := args.get! 2; toPreterm $ Unhygienic.run `(and $lhs $rhs) | `Lean.Parser.Term.beq => let lhs := args.get! 0; let rhs := args.get! 2; toPreterm $ Unhygienic.run `(HasBeq.beq $lhs $rhs) | `Lean.Parser.Term.eq => let lhs := args.get! 0; let rhs := args.get! 2; toPreterm $ Unhygienic.run `(Eq $lhs $rhs) | `Lean.Parser.Term.str => pure $ mkStrLit $ (stx.getArg 0).isStrLit?.getD "" | `Lean.Parser.Term.num => pure $ mkNatLit $ (stx.getArg 0).isNatLit?.getD 0 | `expr => pure $ unsafeCast $ stx.getArg 0 -- HACK: see below | k => throwError stx $ "stxQuot: unimplemented kind " ++ toString k @[export lean_parse_expr] def oldParseExpr (env : Environment) (input : String) (pos : String.Pos) : Except String (Syntax × String.Pos) := do let c := Parser.mkParserContext env (Parser.mkInputContext input "<foo>"); let s := Parser.mkParserState c.input; let s := s.setPos pos; let s := (Parser.termParser Parser.appPrec : Parser.Parser).fn { rbp := Parser.appPrec, .. c } s; let stx := s.stxStack.back; match s.errorMsg with | some errorMsg => Except.error $ toString errorMsg | none => Except.ok (stx, s.pos) structure OldContext := (env : Environment) (locals : List Name) (open_nss : List Name) private def oldRunTermElabM {α} (ctx : OldContext) (x : TermElabM α) : Except String α := do match x {fileName := "foo", fileMap := FileMap.ofString "", cmdPos := 0, currNamespace := ctx.env.getNamespace, currRecDepth := 0, maxRecDepth := 10000, openDecls := ctx.open_nss.map $ fun n => OpenDecl.simple n [], lctx := ctx.locals.foldl (fun lctx l => LocalContext.mkLocalDecl lctx l l exprPlaceholder) $ LocalContext.mkEmpty ()} {env := ctx.env} with | EStateM.Result.ok a _ => Except.ok a | EStateM.Result.error msg _ => Except.error $ toString msg @[export lean_expand_stx_quot] unsafe def oldExpandStxQuot (ctx : OldContext) (stx : Syntax) : Except String Expr := oldRunTermElabM ctx $ do stx ← stxQuot.expand stx; toPreterm stx @[export lean_get_antiquot_vars] def oldGetPatternVars (ctx : OldContext) (pats : List Syntax) : Except String (List Name) := oldRunTermElabM ctx $ do let vars := List.join $ pats.map getPatternVars; pure $ vars.map $ fun var => var.getIdAt 0 @[export lean_expand_match_syntax] unsafe def oldExpandMatchSyntax (ctx : OldContext) (discr : Syntax) (alts : List (List Syntax × Syntax)) : Except String Expr := oldRunTermElabM ctx $ do -- HACK: discr and the RHSs are actually `Expr` let discr := Syntax.node `expr #[discr]; let alts := alts.map $ fun alt => let pats := alt.1.map elimAntiquotChoices; (pats, Syntax.node `expr #[alt.2]); -- letBindRhss (compileStxMatch Syntax.missing [discr]) alts [] stx ← compileStxMatch Syntax.missing [discr] alts; toPreterm stx end Quotation end Term end Elab end Lean
9ff083ed57d738179d58241ded5766781f642efa
4727251e0cd73359b15b664c3170e5d754078599
/src/data/finset/sum.lean
8933dd3cdc3e6073583b0931e8c550fd376e559e
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
2,824
lean
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import data.finset.card import data.multiset.sum /-! # Disjoint sum of finsets This file defines the disjoint sum of two finsets as `finset (α ⊕ β)`. Beware not to confuse with the `finset.sum` operation which computes the additive sum. ## Main declarations * `finset.disj_sum`: `s.disj_sum t` is the disjoint sum of `s` and `t`. -/ open function multiset sum namespace finset variables {α β : Type*} (s : finset α) (t : finset β) /-- Disjoint sum of finsets. -/ def disj_sum : finset (α ⊕ β) := ⟨s.1.disj_sum t.1, s.2.disj_sum t.2⟩ @[simp] lemma val_disj_sum : (s.disj_sum t).1 = s.1.disj_sum t.1 := rfl @[simp] lemma empty_disj_sum : (∅ : finset α).disj_sum t = t.map embedding.inr := val_inj.1 $ multiset.zero_disj_sum _ @[simp] lemma disj_sum_empty : s.disj_sum (∅ : finset β) = s.map embedding.inl := val_inj.1 $ multiset.disj_sum_zero _ @[simp] lemma card_disj_sum : (s.disj_sum t).card = s.card + t.card := multiset.card_disj_sum _ _ variables {s t} {s₁ s₂ : finset α} {t₁ t₂ : finset β} {a : α} {b : β} {x : α ⊕ β} lemma mem_disj_sum : x ∈ s.disj_sum t ↔ (∃ a, a ∈ s ∧ inl a = x) ∨ ∃ b, b ∈ t ∧ inr b = x := multiset.mem_disj_sum @[simp] lemma inl_mem_disj_sum : inl a ∈ s.disj_sum t ↔ a ∈ s := inl_mem_disj_sum @[simp] lemma inr_mem_disj_sum : inr b ∈ s.disj_sum t ↔ b ∈ t := inr_mem_disj_sum lemma disj_sum_mono (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) : s₁.disj_sum t₁ ⊆ s₂.disj_sum t₂ := val_le_iff.1 $ disj_sum_mono (val_le_iff.2 hs) (val_le_iff.2 ht) lemma disj_sum_mono_left (t : finset β) : monotone (λ s : finset α, s.disj_sum t) := λ s₁ s₂ hs, disj_sum_mono hs subset.rfl lemma disj_sum_mono_right (s : finset α) : monotone (s.disj_sum : finset β → finset (α ⊕ β)) := λ t₁ t₂, disj_sum_mono subset.rfl lemma disj_sum_ssubset_disj_sum_of_ssubset_of_subset (hs : s₁ ⊂ s₂) (ht : t₁ ⊆ t₂) : s₁.disj_sum t₁ ⊂ s₂.disj_sum t₂ := val_lt_iff.1 $ disj_sum_lt_disj_sum_of_lt_of_le (val_lt_iff.2 hs) (val_le_iff.2 ht) lemma disj_sum_ssubset_disj_sum_of_subset_of_ssubset (hs : s₁ ⊆ s₂) (ht : t₁ ⊂ t₂) : s₁.disj_sum t₁ ⊂ s₂.disj_sum t₂ := val_lt_iff.1 $ disj_sum_lt_disj_sum_of_le_of_lt (val_le_iff.2 hs) (val_lt_iff.2 ht) lemma disj_sum_strict_mono_left (t : finset β) : strict_mono (λ s : finset α, s.disj_sum t) := λ s₁ s₂ hs, disj_sum_ssubset_disj_sum_of_ssubset_of_subset hs subset.rfl lemma disj_sum_strict_mono_right (s : finset α) : strict_mono (s.disj_sum : finset β → finset (α ⊕ β)) := λ s₁ s₂, disj_sum_ssubset_disj_sum_of_subset_of_ssubset subset.rfl end finset
035258348d3bd7579b532594b33cb4e6cc4bc85d
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/topology/sheaves/sheaf_condition/opens_le_cover.lean
42427fa1f5c9236fa0da853f117c7e21c6009f11
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,457
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import topology.sheaves.presheaf import category_theory.limits.final import topology.sheaves.sheaf_condition.pairwise_intersections /-! # Another version of the sheaf condition. Given a family of open sets `U : ι → opens X` we can form the subcategory `{ V : opens X // ∃ i, V ≤ U i }`, which has `supr U` as a cocone. The sheaf condition on a presheaf `F` is equivalent to `F` sending the opposite of this cocone to a limit cone in `C`, for every `U`. This condition is particularly nice when checking the sheaf condition because we don't need to do any case bashing (depending on whether we're looking at single or double intersections, or equivalently whether we're looking at the first or second object in an equalizer diagram). ## References * This is the definition Lurie uses in [Spectral Algebraic Geometry][LurieSAG]. -/ universes v u noncomputable theory open category_theory open category_theory.limits open topological_space open opposite open topological_space.opens namespace Top variables {C : Type u} [category.{v} C] variables {X : Top.{v}} (F : presheaf C X) {ι : Type v} (U : ι → opens X) namespace presheaf namespace sheaf_condition /-- The category of open sets contained in some element of the cover. -/ def opens_le_cover : Type v := { V : opens X // ∃ i, V ≤ U i } instance [inhabited ι] : inhabited (opens_le_cover U) := ⟨⟨⊥, default ι, bot_le⟩⟩ instance : category (opens_le_cover U) := category_theory.full_subcategory _ namespace opens_le_cover variables {U} /-- An arbitrarily chosen index such that `V ≤ U i`. -/ def index (V : opens_le_cover U) : ι := V.property.some /-- The morphism from `V` to `U i` for some `i`. -/ def hom_to_index (V : opens_le_cover U) : V.val ⟶ U (index V) := (V.property.some_spec).hom end opens_le_cover /-- `supr U` as a cocone over the opens sets contained in some element of the cover. (In fact this is a colimit cocone.) -/ def opens_le_cover_cocone : cocone (full_subcategory_inclusion _ : opens_le_cover U ⥤ opens X) := { X := supr U, ι := { app := λ V : opens_le_cover U, V.hom_to_index ≫ opens.le_supr U _, } } end sheaf_condition open sheaf_condition /-- An equivalent formulation of the sheaf condition (which we prove equivalent to the usual one below as `is_sheaf_iff_is_sheaf_opens_le_cover`). A presheaf is a sheaf if `F` sends the cone `(opens_le_cover_cocone U).op` to a limit cone. (Recall `opens_le_cover_cocone U`, has cone point `supr U`, mapping down to any `V` which is contained in some `U i`.) -/ def is_sheaf_opens_le_cover : Prop := ∀ ⦃ι : Type v⦄ (U : ι → opens X), nonempty (is_limit (F.map_cone (opens_le_cover_cocone U).op)) namespace sheaf_condition open category_theory.pairwise /-- Implementation detail: the object level of `pairwise_to_opens_le_cover : pairwise ι ⥤ opens_le_cover U` -/ @[simp] def pairwise_to_opens_le_cover_obj : pairwise ι → opens_le_cover U | (single i) := ⟨U i, ⟨i, le_refl _⟩⟩ | (pair i j) := ⟨U i ⊓ U j, ⟨i, inf_le_left⟩⟩ open category_theory.pairwise.hom /-- Implementation detail: the morphism level of `pairwise_to_opens_le_cover : pairwise ι ⥤ opens_le_cover U` -/ def pairwise_to_opens_le_cover_map : Π {V W : pairwise ι}, (V ⟶ W) → (pairwise_to_opens_le_cover_obj U V ⟶ pairwise_to_opens_le_cover_obj U W) | _ _ (id_single i) := 𝟙 _ | _ _ (id_pair i j) := 𝟙 _ | _ _ (left i j) := hom_of_le inf_le_left | _ _ (right i j) := hom_of_le inf_le_right /-- The category of single and double intersections of the `U i` maps into the category of open sets below some `U i`. -/ @[simps] def pairwise_to_opens_le_cover : pairwise ι ⥤ opens_le_cover U := { obj := pairwise_to_opens_le_cover_obj U, map := λ V W i, pairwise_to_opens_le_cover_map U i, } instance (V : opens_le_cover U) : nonempty (structured_arrow V (pairwise_to_opens_le_cover U)) := ⟨{ right := single (V.index), hom := V.hom_to_index }⟩ /-- The diagram consisting of the `U i` and `U i ⊓ U j` is cofinal in the diagram of all opens contained in some `U i`. -/ -- This is a case bash: for each pair of types of objects in `pairwise ι`, -- we have to explicitly construct a zigzag. instance : functor.final (pairwise_to_opens_le_cover U) := ⟨λ V, is_connected_of_zigzag $ λ A B, begin rcases A with ⟨⟨⟩, ⟨i⟩|⟨i,j⟩, a⟩; rcases B with ⟨⟨⟩, ⟨i'⟩|⟨i',j'⟩, b⟩; dsimp at *, { refine ⟨[ { left := punit.star, right := pair i i', hom := (le_inf a.le b.le).hom, }, _], _, rfl⟩, exact list.chain.cons (or.inr ⟨{ left := 𝟙 _, right := left i i', }⟩) (list.chain.cons (or.inl ⟨{ left := 𝟙 _, right := right i i', }⟩) list.chain.nil) }, { refine ⟨[ { left := punit.star, right := pair i' i, hom := (le_inf (b.le.trans inf_le_left) a.le).hom, }, { left := punit.star, right := single i', hom := (b.le.trans inf_le_left).hom, }, _], _, rfl⟩, exact list.chain.cons (or.inr ⟨{ left := 𝟙 _, right := right i' i, }⟩) (list.chain.cons (or.inl ⟨{ left := 𝟙 _, right := left i' i, }⟩) (list.chain.cons (or.inr ⟨{ left := 𝟙 _, right := left i' j', }⟩) list.chain.nil)) }, { refine ⟨[ { left := punit.star, right := single i, hom := (a.le.trans inf_le_left).hom, }, { left := punit.star, right := pair i i', hom := (le_inf (a.le.trans inf_le_left) b.le).hom, }, _], _, rfl⟩, exact list.chain.cons (or.inl ⟨{ left := 𝟙 _, right := left i j, }⟩) (list.chain.cons (or.inr ⟨{ left := 𝟙 _, right := left i i', }⟩) (list.chain.cons (or.inl ⟨{ left := 𝟙 _, right := right i i', }⟩) list.chain.nil)) }, { refine ⟨[ { left := punit.star, right := single i, hom := (a.le.trans inf_le_left).hom, }, { left := punit.star, right := pair i i', hom := (le_inf (a.le.trans inf_le_left) (b.le.trans inf_le_left)).hom, }, { left := punit.star, right := single i', hom := (b.le.trans inf_le_left).hom, }, _], _, rfl⟩, exact list.chain.cons (or.inl ⟨{ left := 𝟙 _, right := left i j, }⟩) (list.chain.cons (or.inr ⟨{ left := 𝟙 _, right := left i i', }⟩) (list.chain.cons (or.inl ⟨{ left := 𝟙 _, right := right i i', }⟩) (list.chain.cons (or.inr ⟨{ left := 𝟙 _, right := left i' j', }⟩) list.chain.nil))), }, end⟩ /-- The diagram in `opens X` indexed by pairwise intersections from `U` is isomorphic (in fact, equal) to the diagram factored through `opens_le_cover U`. -/ def pairwise_diagram_iso : pairwise.diagram U ≅ pairwise_to_opens_le_cover U ⋙ full_subcategory_inclusion _ := { hom := { app := begin rintro (i|⟨i,j⟩); exact 𝟙 _, end, }, inv := { app := begin rintro (i|⟨i,j⟩); exact 𝟙 _, end, }, } /-- The cocone `pairwise.cocone U` with cocone point `supr U` over `pairwise.diagram U` is isomorphic to the cocone `opens_le_cover_cocone U` (with the same cocone point) after appropriate whiskering and postcomposition. -/ def pairwise_cocone_iso : (pairwise.cocone U).op ≅ (cones.postcompose_equivalence (nat_iso.op (pairwise_diagram_iso U : _) : _)).functor.obj ((opens_le_cover_cocone U).op.whisker (pairwise_to_opens_le_cover U).op) := cones.ext (iso.refl _) (by tidy) end sheaf_condition open sheaf_condition /-- The sheaf condition in terms of a limit diagram over all `{ V : opens X // ∃ i, V ≤ U i }` is equivalent to the reformulation in terms of a limit diagram over `U i` and `U i ⊓ U j`. -/ lemma is_sheaf_opens_le_cover_iff_is_sheaf_pairwise_intersections (F : presheaf C X) : F.is_sheaf_opens_le_cover ↔ F.is_sheaf_pairwise_intersections := forall_congr (λ ι, forall_congr (λ U, equiv.nonempty_congr $ calc is_limit (F.map_cone (opens_le_cover_cocone U).op) ≃ is_limit ((F.map_cone (opens_le_cover_cocone U).op).whisker (pairwise_to_opens_le_cover U).op) : (functor.initial.is_limit_whisker_equiv (pairwise_to_opens_le_cover U).op _).symm ... ≃ is_limit (F.map_cone ((opens_le_cover_cocone U).op.whisker (pairwise_to_opens_le_cover U).op)) : is_limit.equiv_iso_limit F.map_cone_whisker.symm ... ≃ is_limit ((cones.postcompose_equivalence _).functor.obj (F.map_cone ((opens_le_cover_cocone U).op.whisker (pairwise_to_opens_le_cover U).op))) : (is_limit.postcompose_hom_equiv _ _).symm ... ≃ is_limit (F.map_cone ((cones.postcompose_equivalence _).functor.obj ((opens_le_cover_cocone U).op.whisker (pairwise_to_opens_le_cover U).op))) : is_limit.equiv_iso_limit (functor.map_cone_postcompose_equivalence_functor _).symm ... ≃ is_limit (F.map_cone (pairwise.cocone U).op) : is_limit.equiv_iso_limit ((cones.functoriality _ _).map_iso (pairwise_cocone_iso U : _).symm))) variables [has_products C] /-- The sheaf condition in terms of an equalizer diagram is equivalent to the reformulation in terms of a limit diagram over all `{ V : opens X // ∃ i, V ≤ U i }`. -/ lemma is_sheaf_iff_is_sheaf_opens_le_cover (F : presheaf C X) : F.is_sheaf ↔ F.is_sheaf_opens_le_cover := iff.trans (is_sheaf_iff_is_sheaf_pairwise_intersections F) (is_sheaf_opens_le_cover_iff_is_sheaf_pairwise_intersections F).symm end presheaf end Top
89f8c28d1cd1903d82a6607c1515ed2c3186c67d
2c096fdfecf64e46ea7bc6ce5521f142b5926864
/src/Lean/Elab/ElabRules.lean
a47bab0bfc2c8e5dad47763a8d91ec022d16b867
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
Kha/lean4
1005785d2c8797ae266a303968848e5f6ce2fe87
b99e11346948023cd6c29d248cd8f3e3fb3474cf
refs/heads/master
1,693,355,498,027
1,669,080,461,000
1,669,113,138,000
184,748,176
0
0
Apache-2.0
1,665,995,520,000
1,556,884,930,000
Lean
UTF-8
Lean
false
false
5,630
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Elab.MacroArgUtil import Lean.Elab.AuxDef namespace Lean.Elab.Command open Lean.Syntax open Lean.Parser.Term hiding macroArg open Lean.Parser.Command def withExpectedType (expectedType? : Option Expr) (x : Expr → TermElabM Expr) : TermElabM Expr := do Term.tryPostponeIfNoneOrMVar expectedType? let some expectedType ← pure expectedType? | throwError "expected type must be known" x expectedType def elabElabRulesAux (doc? : Option (TSyntax ``docComment)) (attrs? : Option (TSepArray ``attrInstance ",")) (attrKind : TSyntax ``attrKind) (k : SyntaxNodeKind) (cat? expty? : Option (Ident)) (alts : Array (TSyntax ``matchAlt)) : CommandElabM Syntax := do let alts ← alts.mapM fun (alt : TSyntax ``matchAlt) => match alt with | `(matchAltExpr| | $pats,* => $rhs) => do let pat := pats.elemsAndSeps[0]! if !pat.isQuot then throwUnsupportedSyntax let quoted := getQuotContent pat let k' := quoted.getKind if checkRuleKind k' k then pure alt else if k' == choiceKind then match quoted.getArgs.find? fun quotAlt => checkRuleKind quotAlt.getKind k with | none => throwErrorAt alt "invalid elab_rules alternative, expected syntax node kind '{k}'" | some quoted => let pat := pat.setArg 1 quoted let pats := ⟨pats.elemsAndSeps.set! 0 pat⟩ `(matchAltExpr| | $pats,* => $rhs) else throwErrorAt alt "invalid elab_rules alternative, unexpected syntax node kind '{k'}'" | _ => throwUnsupportedSyntax let catName ← match cat?, expty? with | some cat, _ => pure cat.getId | _, some _ => pure `term -- TODO: infer category from quotation kind, possibly even kind of quoted syntax? | _, _ => throwError "invalid elab_rules command, specify category using `elab_rules : <cat> ...`" let mkAttrs (kind : Name) : CommandElabM (TSyntaxArray ``attrInstance) := do let attr ← `(attrInstance| $attrKind:attrKind $(mkIdent kind):ident $(← mkIdentFromRef k):ident) pure <| match attrs? with | some attrs => attrs.getElems.push attr | none => #[attr] if let some expId := expty? then if catName == `term then `($[$doc?:docComment]? @[$(← mkAttrs `term_elab),*] aux_def elabRules $(mkIdent k) : Lean.Elab.Term.TermElab := fun stx expectedType? => Lean.Elab.Command.withExpectedType expectedType? fun $expId => match stx with $alts:matchAlt* | _ => no_error_if_unused% throwUnsupportedSyntax) else throwErrorAt expId "syntax category '{catName}' does not support expected type specification" else if catName == `term then `($[$doc?:docComment]? @[$(← mkAttrs `term_elab),*] aux_def elabRules $(mkIdent k) : Lean.Elab.Term.TermElab := fun stx _ => match stx with $alts:matchAlt* | _ => no_error_if_unused% throwUnsupportedSyntax) else if catName == `command then `($[$doc?:docComment]? @[$(← mkAttrs `command_elab),*] aux_def elabRules $(mkIdent k) : Lean.Elab.Command.CommandElab := fun $alts:matchAlt* | _ => no_error_if_unused% throwUnsupportedSyntax) else if catName == `tactic || catName == `conv then `($[$doc?:docComment]? @[$(← mkAttrs `tactic),*] aux_def elabRules $(mkIdent k) : Lean.Elab.Tactic.Tactic := fun $alts:matchAlt* | _ => no_error_if_unused% throwUnsupportedSyntax) else -- We considered making the command extensible and support new user-defined categories. We think it is unnecessary. -- If users want this feature, they add their own `elab_rules` macro that uses this one as a fallback. throwError "unsupported syntax category '{catName}'" @[builtin_command_elab «elab_rules»] def elabElabRules : CommandElab := adaptExpander fun stx => match stx with | `($[$doc?:docComment]? $[@[$attrs?,*]]? $attrKind:attrKind elab_rules $[: $cat?]? $[<= $expty?]? $alts:matchAlt*) => expandNoKindMacroRulesAux alts "elab_rules" fun kind? alts => `($[$doc?:docComment]? $[@[$attrs?,*]]? $attrKind:attrKind elab_rules $[(kind := $(mkIdent <$> kind?))]? $[: $cat?]? $[<= $expty?]? $alts:matchAlt*) | `($[$doc?:docComment]? $[@[$attrs?,*]]? $attrKind:attrKind elab_rules (kind := $kind) $[: $cat?]? $[<= $expty?]? $alts:matchAlt*) => do elabElabRulesAux doc? attrs? attrKind (← resolveSyntaxKind kind.getId) cat? expty? alts | _ => throwUnsupportedSyntax @[builtin_command_elab Lean.Parser.Command.elab] def elabElab : CommandElab | `($[$doc?:docComment]? $[@[$attrs?,*]]? $attrKind:attrKind elab%$tk$[:$prec?]? $[(name := $name?)]? $[(priority := $prio?)]? $args:macroArg* : $cat $[<= $expectedType?]? => $rhs) => do let prio ← liftMacroM <| evalOptPrio prio? let (stxParts, patArgs) := (← args.mapM expandMacroArg).unzip -- name let name ← match name? with | some name => pure name.getId | none => liftMacroM <| mkNameFromParserSyntax cat.getId (mkNullNode stxParts) let nameId := name?.getD (mkIdentFrom tk name (canonical := true)) let pat := ⟨mkNode ((← getCurrNamespace) ++ name) patArgs⟩ elabCommand <|← `( $[$doc?:docComment]? $[@[$attrs?,*]]? $attrKind:attrKind syntax%$tk$[:$prec?]? (name := $nameId) (priority := $(quote prio):num) $[$stxParts]* : $cat $[$doc?:docComment]? elab_rules : $cat $[<= $expectedType?]? | `($pat) => $rhs) | _ => throwUnsupportedSyntax end Lean.Elab.Command
7da1ba012d78f586051dedf431b0ea6dbfbd9ac5
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/topology/algebra/infinite_sum.lean
3656c1706bba2851b1447be320ba062bcb8d199f
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
50,757
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import algebra.big_operators.intervals import topology.instances.real import topology.algebra.module import algebra.indicator_function import data.equiv.encodable.lattice import data.nat.parity import order.filter.at_top_bot /-! # Infinite sum over a topological monoid This sum is known as unconditionally convergent, as it sums to the same value under all possible permutations. For Euclidean spaces (finite dimensional Banach spaces) this is equivalent to absolute convergence. Note: There are summable sequences which are not unconditionally convergent! The other way holds generally, see `has_sum.tendsto_sum_nat`. ## References * Bourbaki: General Topology (1995), Chapter 3 §5 (Infinite sums in commutative groups) -/ noncomputable theory open finset filter function classical open_locale topological_space classical big_operators nnreal variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} section has_sum variables [add_comm_monoid α] [topological_space α] /-- Infinite sum on a topological monoid The `at_top` filter on `finset β` is the limit of all finite sets towards the entire type. So we sum up bigger and bigger sets. This sum operation is invariant under reordering. In particular, the function `ℕ → ℝ` sending `n` to `(-1)^n / (n+1)` does not have a sum for this definition, but a series which is absolutely convergent will have the correct sum. This is based on Mario Carneiro's [infinite sum `df-tsms` in Metamath](http://us.metamath.org/mpeuni/df-tsms.html). For the definition or many statements, `α` does not need to be a topological monoid. We only add this assumption later, for the lemmas where it is relevant. -/ def has_sum (f : β → α) (a : α) : Prop := tendsto (λs:finset β, ∑ b in s, f b) at_top (𝓝 a) /-- `summable f` means that `f` has some (infinite) sum. Use `tsum` to get the value. -/ def summable (f : β → α) : Prop := ∃a, has_sum f a /-- `∑' i, f i` is the sum of `f` it exists, or 0 otherwise -/ @[irreducible] def tsum {β} (f : β → α) := if h : summable f then classical.some h else 0 -- see Note [operator precedence of big operators] notation `∑'` binders `, ` r:(scoped:67 f, tsum f) := r variables {f g : β → α} {a b : α} {s : finset β} lemma summable.has_sum (ha : summable f) : has_sum f (∑'b, f b) := by simp [ha, tsum]; exact some_spec ha lemma has_sum.summable (h : has_sum f a) : summable f := ⟨a, h⟩ /-- Constant zero function has sum `0` -/ lemma has_sum_zero : has_sum (λb, 0 : β → α) 0 := by simp [has_sum, tendsto_const_nhds] lemma summable_zero : summable (λb, 0 : β → α) := has_sum_zero.summable lemma tsum_eq_zero_of_not_summable (h : ¬ summable f) : ∑'b, f b = 0 := by simp [tsum, h] lemma has_sum.has_sum_of_sum_eq {g : γ → α} (h_eq : ∀u:finset γ, ∃v:finset β, ∀v', v ⊆ v' → ∃u', u ⊆ u' ∧ ∑ x in u', g x = ∑ b in v', f b) (hf : has_sum g a) : has_sum f a := le_trans (map_at_top_finset_sum_le_of_sum_eq h_eq) hf lemma has_sum_iff_has_sum {g : γ → α} (h₁ : ∀u:finset γ, ∃v:finset β, ∀v', v ⊆ v' → ∃u', u ⊆ u' ∧ ∑ x in u', g x = ∑ b in v', f b) (h₂ : ∀v:finset β, ∃u:finset γ, ∀u', u ⊆ u' → ∃v', v ⊆ v' ∧ ∑ b in v', f b = ∑ x in u', g x) : has_sum f a ↔ has_sum g a := ⟨has_sum.has_sum_of_sum_eq h₂, has_sum.has_sum_of_sum_eq h₁⟩ lemma function.injective.has_sum_iff {g : γ → β} (hg : injective g) (hf : ∀ x ∉ set.range g, f x = 0) : has_sum (f ∘ g) a ↔ has_sum f a := by simp only [has_sum, tendsto, hg.map_at_top_finset_sum_eq hf] lemma function.injective.summable_iff {g : γ → β} (hg : injective g) (hf : ∀ x ∉ set.range g, f x = 0) : summable (f ∘ g) ↔ summable f := exists_congr $ λ _, hg.has_sum_iff hf lemma has_sum_subtype_iff_of_support_subset {s : set β} (hf : support f ⊆ s) : has_sum (f ∘ coe : s → α) a ↔ has_sum f a := subtype.coe_injective.has_sum_iff $ by simpa using support_subset_iff'.1 hf lemma has_sum_subtype_iff_indicator {s : set β} : has_sum (f ∘ coe : s → α) a ↔ has_sum (s.indicator f) a := by rw [← set.indicator_range_comp, subtype.range_coe, has_sum_subtype_iff_of_support_subset set.support_indicator_subset] @[simp] lemma has_sum_subtype_support : has_sum (f ∘ coe : support f → α) a ↔ has_sum f a := has_sum_subtype_iff_of_support_subset $ set.subset.refl _ lemma has_sum_fintype [fintype β] (f : β → α) : has_sum f (∑ b, f b) := order_top.tendsto_at_top_nhds _ protected lemma finset.has_sum (s : finset β) (f : β → α) : has_sum (f ∘ coe : (↑s : set β) → α) (∑ b in s, f b) := by { rw ← sum_attach, exact has_sum_fintype _ } protected lemma finset.summable (s : finset β) (f : β → α) : summable (f ∘ coe : (↑s : set β) → α) := (s.has_sum f).summable protected lemma set.finite.summable {s : set β} (hs : s.finite) (f : β → α) : summable (f ∘ coe : s → α) := by convert hs.to_finset.summable f; simp only [hs.coe_to_finset] /-- If a function `f` vanishes outside of a finite set `s`, then it `has_sum` `∑ b in s, f b`. -/ lemma has_sum_sum_of_ne_finset_zero (hf : ∀b∉s, f b = 0) : has_sum f (∑ b in s, f b) := (has_sum_subtype_iff_of_support_subset $ support_subset_iff'.2 hf).1 $ s.has_sum f lemma summable_of_ne_finset_zero (hf : ∀b∉s, f b = 0) : summable f := (has_sum_sum_of_ne_finset_zero hf).summable lemma has_sum_single {f : β → α} (b : β) (hf : ∀b' ≠ b, f b' = 0) : has_sum f (f b) := suffices has_sum f (∑ b' in {b}, f b'), by simpa using this, has_sum_sum_of_ne_finset_zero $ by simpa [hf] lemma has_sum_ite_eq (b : β) [decidable_pred (= b)] (a : α) : has_sum (λb', if b' = b then a else 0) a := begin convert has_sum_single b _, { exact (if_pos rfl).symm }, assume b' hb', exact if_neg hb' end lemma equiv.has_sum_iff (e : γ ≃ β) : has_sum (f ∘ e) a ↔ has_sum f a := e.injective.has_sum_iff $ by simp lemma function.injective.has_sum_range_iff {g : γ → β} (hg : injective g) : has_sum (λ x : set.range g, f x) a ↔ has_sum (f ∘ g) a := (equiv.of_injective g hg).has_sum_iff.symm lemma equiv.summable_iff (e : γ ≃ β) : summable (f ∘ e) ↔ summable f := exists_congr $ λ a, e.has_sum_iff lemma summable.prod_symm {f : β × γ → α} (hf : summable f) : summable (λ p : γ × β, f p.swap) := (equiv.prod_comm γ β).summable_iff.2 hf lemma equiv.has_sum_iff_of_support {g : γ → α} (e : support f ≃ support g) (he : ∀ x : support f, g (e x) = f x) : has_sum f a ↔ has_sum g a := have (g ∘ coe) ∘ e = f ∘ coe, from funext he, by rw [← has_sum_subtype_support, ← this, e.has_sum_iff, has_sum_subtype_support] lemma has_sum_iff_has_sum_of_ne_zero_bij {g : γ → α} (i : support g → β) (hi : ∀ ⦃x y⦄, i x = i y → (x : γ) = y) (hf : support f ⊆ set.range i) (hfg : ∀ x, f (i x) = g x) : has_sum f a ↔ has_sum g a := iff.symm $ equiv.has_sum_iff_of_support (equiv.of_bijective (λ x, ⟨i x, λ hx, x.coe_prop $ hfg x ▸ hx⟩) ⟨λ x y h, subtype.ext $ hi $ subtype.ext_iff.1 h, λ y, (hf y.coe_prop).imp $ λ x hx, subtype.ext hx⟩) hfg lemma equiv.summable_iff_of_support {g : γ → α} (e : support f ≃ support g) (he : ∀ x : support f, g (e x) = f x) : summable f ↔ summable g := exists_congr $ λ _, e.has_sum_iff_of_support he protected lemma has_sum.map [add_comm_monoid γ] [topological_space γ] (hf : has_sum f a) (g : α →+ γ) (hg : continuous g) : has_sum (g ∘ f) (g a) := have g ∘ (λs:finset β, ∑ b in s, f b) = (λs:finset β, ∑ b in s, g (f b)), from funext $ g.map_sum _, show tendsto (λs:finset β, ∑ b in s, g (f b)) at_top (𝓝 (g a)), from this ▸ (hg.tendsto a).comp hf protected lemma summable.map [add_comm_monoid γ] [topological_space γ] (hf : summable f) (g : α →+ γ) (hg : continuous g) : summable (g ∘ f) := (hf.has_sum.map g hg).summable /-- If `f : ℕ → α` has sum `a`, then the partial sums `∑_{i=0}^{n-1} f i` converge to `a`. -/ lemma has_sum.tendsto_sum_nat {f : ℕ → α} (h : has_sum f a) : tendsto (λn:ℕ, ∑ i in range n, f i) at_top (𝓝 a) := h.comp tendsto_finset_range lemma has_sum.unique {a₁ a₂ : α} [t2_space α] : has_sum f a₁ → has_sum f a₂ → a₁ = a₂ := tendsto_nhds_unique lemma summable.has_sum_iff_tendsto_nat [t2_space α] {f : ℕ → α} {a : α} (hf : summable f) : has_sum f a ↔ tendsto (λn:ℕ, ∑ i in range n, f i) at_top (𝓝 a) := begin refine ⟨λ h, h.tendsto_sum_nat, λ h, _⟩, rw tendsto_nhds_unique h hf.has_sum.tendsto_sum_nat, exact hf.has_sum end lemma equiv.summable_iff_of_has_sum_iff {α' : Type*} [add_comm_monoid α'] [topological_space α'] (e : α' ≃ α) {f : β → α} {g : γ → α'} (he : ∀ {a}, has_sum f (e a) ↔ has_sum g a) : summable f ↔ summable g := ⟨λ ⟨a, ha⟩, ⟨e.symm a, he.1 $ by rwa [e.apply_symm_apply]⟩, λ ⟨a, ha⟩, ⟨e a, he.2 ha⟩⟩ variable [has_continuous_add α] lemma has_sum.add (hf : has_sum f a) (hg : has_sum g b) : has_sum (λb, f b + g b) (a + b) := by simp only [has_sum, sum_add_distrib]; exact hf.add hg lemma summable.add (hf : summable f) (hg : summable g) : summable (λb, f b + g b) := (hf.has_sum.add hg.has_sum).summable lemma has_sum_sum {f : γ → β → α} {a : γ → α} {s : finset γ} : (∀i∈s, has_sum (f i) (a i)) → has_sum (λb, ∑ i in s, f i b) (∑ i in s, a i) := finset.induction_on s (by simp only [has_sum_zero, sum_empty, forall_true_iff]) (by simp only [has_sum.add, sum_insert, mem_insert, forall_eq_or_imp, forall_2_true_iff, not_false_iff, forall_true_iff] {contextual := tt}) lemma summable_sum {f : γ → β → α} {s : finset γ} (hf : ∀i∈s, summable (f i)) : summable (λb, ∑ i in s, f i b) := (has_sum_sum $ assume i hi, (hf i hi).has_sum).summable lemma has_sum.add_disjoint {s t : set β} (hs : disjoint s t) (ha : has_sum (f ∘ coe : s → α) a) (hb : has_sum (f ∘ coe : t → α) b) : has_sum (f ∘ coe : s ∪ t → α) (a + b) := begin rw has_sum_subtype_iff_indicator at *, rw set.indicator_union_of_disjoint hs, exact ha.add hb end lemma has_sum.add_is_compl {s t : set β} (hs : is_compl s t) (ha : has_sum (f ∘ coe : s → α) a) (hb : has_sum (f ∘ coe : t → α) b) : has_sum f (a + b) := by simpa [← hs.compl_eq] using (has_sum_subtype_iff_indicator.1 ha).add (has_sum_subtype_iff_indicator.1 hb) lemma has_sum.add_compl {s : set β} (ha : has_sum (f ∘ coe : s → α) a) (hb : has_sum (f ∘ coe : sᶜ → α) b) : has_sum f (a + b) := ha.add_is_compl is_compl_compl hb lemma summable.add_compl {s : set β} (hs : summable (f ∘ coe : s → α)) (hsc : summable (f ∘ coe : sᶜ → α)) : summable f := (hs.has_sum.add_compl hsc.has_sum).summable lemma has_sum.compl_add {s : set β} (ha : has_sum (f ∘ coe : sᶜ → α) a) (hb : has_sum (f ∘ coe : s → α) b) : has_sum f (a + b) := ha.add_is_compl is_compl_compl.symm hb lemma has_sum.even_add_odd {f : ℕ → α} (he : has_sum (λ k, f (2 * k)) a) (ho : has_sum (λ k, f (2 * k + 1)) b) : has_sum f (a + b) := begin have := mul_right_injective' (@two_ne_zero ℕ _ _), replace he := this.has_sum_range_iff.2 he, replace ho := ((add_left_injective 1).comp this).has_sum_range_iff.2 ho, refine he.add_is_compl _ ho, simpa [(∘)] using nat.is_compl_even_odd end lemma summable.compl_add {s : set β} (hs : summable (f ∘ coe : sᶜ → α)) (hsc : summable (f ∘ coe : s → α)) : summable f := (hs.has_sum.compl_add hsc.has_sum).summable lemma summable.even_add_odd {f : ℕ → α} (he : summable (λ k, f (2 * k))) (ho : summable (λ k, f (2 * k + 1))) : summable f := (he.has_sum.even_add_odd ho.has_sum).summable lemma has_sum.sigma [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α} {a : α} (ha : has_sum f a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) : has_sum g a := begin refine (at_top_basis.tendsto_iff (closed_nhds_basis a)).mpr _, rintros s ⟨hs, hsc⟩, rcases mem_at_top_sets.mp (ha hs) with ⟨u, hu⟩, use [u.image sigma.fst, trivial], intros bs hbs, simp only [set.mem_preimage, ge_iff_le, finset.le_iff_subset] at hu, have : tendsto (λ t : finset (Σ b, γ b), ∑ p in t.filter (λ p, p.1 ∈ bs), f p) at_top (𝓝 $ ∑ b in bs, g b), { simp only [← sigma_preimage_mk, sum_sigma], refine tendsto_finset_sum _ (λ b hb, _), change tendsto (λ t, (λ t, ∑ s in t, f ⟨b, s⟩) (preimage t (sigma.mk b) _)) at_top (𝓝 (g b)), exact tendsto.comp (hf b) (tendsto_finset_preimage_at_top_at_top _) }, refine hsc.mem_of_tendsto this (eventually_at_top.2 ⟨u, λ t ht, hu _ (λ x hx, _)⟩), exact mem_filter.2 ⟨ht hx, hbs $ mem_image_of_mem _ hx⟩ end /-- If a series `f` on `β × γ` has sum `a` and for each `b` the restriction of `f` to `{b} × γ` has sum `g b`, then the series `g` has sum `a`. -/ lemma has_sum.prod_fiberwise [regular_space α] {f : β × γ → α} {g : β → α} {a : α} (ha : has_sum f a) (hf : ∀b, has_sum (λc, f (b, c)) (g b)) : has_sum g a := has_sum.sigma ((equiv.sigma_equiv_prod β γ).has_sum_iff.2 ha) hf lemma summable.sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) (hf : ∀b, summable (λc, f ⟨b, c⟩)) : summable (λb, ∑'c, f ⟨b, c⟩) := (ha.has_sum.sigma (assume b, (hf b).has_sum)).summable lemma has_sum.sigma_of_has_sum [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α} {a : α} (ha : has_sum g a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) (hf' : summable f) : has_sum f a := by simpa [(hf'.has_sum.sigma hf).unique ha] using hf'.has_sum end has_sum section tsum variables [add_comm_monoid α] [topological_space α] [t2_space α] variables {f g : β → α} {a a₁ a₂ : α} lemma has_sum.tsum_eq (ha : has_sum f a) : ∑'b, f b = a := (summable.has_sum ⟨a, ha⟩).unique ha lemma summable.has_sum_iff (h : summable f) : has_sum f a ↔ ∑'b, f b = a := iff.intro has_sum.tsum_eq (assume eq, eq ▸ h.has_sum) @[simp] lemma tsum_zero : ∑'b:β, (0:α) = 0 := has_sum_zero.tsum_eq lemma tsum_eq_sum {f : β → α} {s : finset β} (hf : ∀b∉s, f b = 0) : ∑' b, f b = ∑ b in s, f b := (has_sum_sum_of_ne_finset_zero hf).tsum_eq lemma tsum_congr {α β : Type*} [add_comm_monoid α] [topological_space α] {f g : β → α} (hfg : ∀ b, f b = g b) : ∑' b, f b = ∑' b, g b := congr_arg tsum (funext hfg) lemma tsum_fintype [fintype β] (f : β → α) : ∑'b, f b = ∑ b, f b := (has_sum_fintype f).tsum_eq @[simp] lemma finset.tsum_subtype (s : finset β) (f : β → α) : ∑' x : {x // x ∈ s}, f x = ∑ x in s, f x := (s.has_sum f).tsum_eq @[simp] lemma finset.tsum_subtype' (s : finset β) (f : β → α) : ∑' x : (s : set β), f x = ∑ x in s, f x := s.tsum_subtype f lemma tsum_eq_single {f : β → α} (b : β) (hf : ∀b' ≠ b, f b' = 0) : ∑'b, f b = f b := (has_sum_single b hf).tsum_eq @[simp] lemma tsum_ite_eq (b : β) [decidable_pred (= b)] (a : α) : ∑' b', (if b' = b then a else 0) = a := (has_sum_ite_eq b a).tsum_eq lemma tsum_dite_right (P : Prop) [decidable P] (x : β → ¬ P → α) : ∑' (b : β), (if h : P then (0 : α) else x b h) = if h : P then (0 : α) else ∑' (b : β), x b h := by by_cases hP : P; simp [hP] lemma tsum_dite_left (P : Prop) [decidable P] (x : β → P → α) : ∑' (b : β), (if h : P then x b h else 0) = if h : P then (∑' (b : β), x b h) else 0 := by by_cases hP : P; simp [hP] lemma equiv.tsum_eq_tsum_of_has_sum_iff_has_sum {α' : Type*} [add_comm_monoid α'] [topological_space α'] (e : α' ≃ α) (h0 : e 0 = 0) {f : β → α} {g : γ → α'} (h : ∀ {a}, has_sum f (e a) ↔ has_sum g a) : ∑' b, f b = e (∑' c, g c) := by_cases (assume : summable g, (h.mpr this.has_sum).tsum_eq) (assume hg : ¬ summable g, have hf : ¬ summable f, from mt (e.summable_iff_of_has_sum_iff @h).1 hg, by simp [tsum, hf, hg, h0]) lemma tsum_eq_tsum_of_has_sum_iff_has_sum {f : β → α} {g : γ → α} (h : ∀{a}, has_sum f a ↔ has_sum g a) : ∑'b, f b = ∑'c, g c := (equiv.refl α).tsum_eq_tsum_of_has_sum_iff_has_sum rfl @h lemma equiv.tsum_eq (j : γ ≃ β) (f : β → α) : ∑'c, f (j c) = ∑'b, f b := tsum_eq_tsum_of_has_sum_iff_has_sum $ λ a, j.has_sum_iff lemma equiv.tsum_eq_tsum_of_support {f : β → α} {g : γ → α} (e : support f ≃ support g) (he : ∀ x, g (e x) = f x) : (∑' x, f x) = ∑' y, g y := tsum_eq_tsum_of_has_sum_iff_has_sum $ λ _, e.has_sum_iff_of_support he lemma tsum_eq_tsum_of_ne_zero_bij {g : γ → α} (i : support g → β) (hi : ∀ ⦃x y⦄, i x = i y → (x : γ) = y) (hf : support f ⊆ set.range i) (hfg : ∀ x, f (i x) = g x) : ∑' x, f x = ∑' y, g y := tsum_eq_tsum_of_has_sum_iff_has_sum $ λ _, has_sum_iff_has_sum_of_ne_zero_bij i hi hf hfg lemma tsum_subtype (s : set β) (f : β → α) : ∑' x:s, f x = ∑' x, s.indicator f x := tsum_eq_tsum_of_has_sum_iff_has_sum $ λ _, has_sum_subtype_iff_indicator section has_continuous_add variable [has_continuous_add α] lemma tsum_add (hf : summable f) (hg : summable g) : ∑'b, (f b + g b) = (∑'b, f b) + (∑'b, g b) := (hf.has_sum.add hg.has_sum).tsum_eq lemma tsum_sum {f : γ → β → α} {s : finset γ} (hf : ∀i∈s, summable (f i)) : ∑'b, ∑ i in s, f i b = ∑ i in s, ∑'b, f i b := (has_sum_sum $ assume i hi, (hf i hi).has_sum).tsum_eq lemma tsum_sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (h₁ : ∀b, summable (λc, f ⟨b, c⟩)) (h₂ : summable f) : ∑'p, f p = ∑'b c, f ⟨b, c⟩ := (h₂.has_sum.sigma (assume b, (h₁ b).has_sum)).tsum_eq.symm lemma tsum_prod' [regular_space α] {f : β × γ → α} (h : summable f) (h₁ : ∀b, summable (λc, f (b, c))) : ∑'p, f p = ∑'b c, f (b, c) := (h.has_sum.prod_fiberwise (assume b, (h₁ b).has_sum)).tsum_eq.symm lemma tsum_comm' [regular_space α] {f : β → γ → α} (h : summable (function.uncurry f)) (h₁ : ∀b, summable (f b)) (h₂ : ∀ c, summable (λ b, f b c)) : ∑' c b, f b c = ∑' b c, f b c := begin erw [← tsum_prod' h h₁, ← tsum_prod' h.prod_symm h₂, ← (equiv.prod_comm β γ).tsum_eq], refl, assumption end end has_continuous_add section encodable open encodable variable [encodable γ] /-- You can compute a sum over an encodably type by summing over the natural numbers and taking a supremum. This is useful for outer measures. -/ theorem tsum_supr_decode₂ [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0) (s : γ → β) : ∑' i : ℕ, m (⨆ b ∈ decode₂ γ i, s b) = ∑' b : γ, m (s b) := begin have H : ∀ n, m (⨆ b ∈ decode₂ γ n, s b) ≠ 0 → (decode₂ γ n).is_some, { intros n h, cases decode₂ γ n with b, { refine (h $ by simp [m0]).elim }, { exact rfl } }, symmetry, refine tsum_eq_tsum_of_ne_zero_bij (λ a, option.get (H a.1 a.2)) _ _ _, { rintros ⟨m, hm⟩ ⟨n, hn⟩ e, have := mem_decode₂.1 (option.get_mem (H n hn)), rwa [← e, mem_decode₂.1 (option.get_mem (H m hm))] at this }, { intros b h, refine ⟨⟨encode b, _⟩, _⟩, { simp only [mem_support, encodek₂] at h ⊢, convert h, simp [set.ext_iff, encodek₂] }, { exact option.get_of_mem _ (encodek₂ _) } }, { rintros ⟨n, h⟩, dsimp only [subtype.coe_mk], transitivity, swap, rw [show decode₂ γ n = _, from option.get_mem (H n h)], congr, simp [ext_iff, -option.some_get] } end /-- `tsum_supr_decode₂` specialized to the complete lattice of sets. -/ theorem tsum_Union_decode₂ (m : set β → α) (m0 : m ∅ = 0) (s : γ → set β) : ∑' i, m (⋃ b ∈ decode₂ γ i, s b) = ∑' b, m (s b) := tsum_supr_decode₂ m m0 s /-! Some properties about measure-like functions. These could also be functions defined on complete sublattices of sets, with the property that they are countably sub-additive. `R` will probably be instantiated with `(≤)` in all applications. -/ /-- If a function is countably sub-additive then it is sub-additive on encodable types -/ theorem rel_supr_tsum [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0) (R : α → α → Prop) (m_supr : ∀(s : ℕ → β), R (m (⨆ i, s i)) ∑' i, m (s i)) (s : γ → β) : R (m (⨆ b : γ, s b)) ∑' b : γ, m (s b) := by { rw [← supr_decode₂, ← tsum_supr_decode₂ _ m0 s], exact m_supr _ } /-- If a function is countably sub-additive then it is sub-additive on finite sets -/ theorem rel_supr_sum [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0) (R : α → α → Prop) (m_supr : ∀(s : ℕ → β), R (m (⨆ i, s i)) (∑' i, m (s i))) (s : δ → β) (t : finset δ) : R (m (⨆ d ∈ t, s d)) (∑ d in t, m (s d)) := by { cases t.nonempty_encodable, rw [supr_subtype'], convert rel_supr_tsum m m0 R m_supr _, rw [← finset.tsum_subtype], assumption } /-- If a function is countably sub-additive then it is binary sub-additive -/ theorem rel_sup_add [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0) (R : α → α → Prop) (m_supr : ∀(s : ℕ → β), R (m (⨆ i, s i)) (∑' i, m (s i))) (s₁ s₂ : β) : R (m (s₁ ⊔ s₂)) (m s₁ + m s₂) := begin convert rel_supr_tsum m m0 R m_supr (λ b, cond b s₁ s₂), { simp only [supr_bool_eq, cond] }, { rw [tsum_fintype, fintype.sum_bool, cond, cond] } end end encodable variables [has_continuous_add α] lemma tsum_add_tsum_compl {s : set β} (hs : summable (f ∘ coe : s → α)) (hsc : summable (f ∘ coe : sᶜ → α)) : (∑' x : s, f x) + (∑' x : sᶜ, f x) = ∑' x, f x := (hs.has_sum.add_compl hsc.has_sum).tsum_eq.symm lemma tsum_union_disjoint {s t : set β} (hd : disjoint s t) (hs : summable (f ∘ coe : s → α)) (ht : summable (f ∘ coe : t → α)) : (∑' x : s ∪ t, f x) = (∑' x : s, f x) + (∑' x : t, f x) := (hs.has_sum.add_disjoint hd ht.has_sum).tsum_eq lemma tsum_even_add_odd {f : ℕ → α} (he : summable (λ k, f (2 * k))) (ho : summable (λ k, f (2 * k + 1))) : (∑' k, f (2 * k)) + (∑' k, f (2 * k + 1)) = ∑' k, f k := (he.has_sum.even_add_odd ho.has_sum).tsum_eq.symm end tsum section pi variables {ι : Type*} {π : α → Type*} [∀ x, add_comm_monoid (π x)] [∀ x, topological_space (π x)] lemma pi.has_sum {f : ι → ∀ x, π x} {g : ∀ x, π x} : has_sum f g ↔ ∀ x, has_sum (λ i, f i x) (g x) := by simp only [has_sum, tendsto_pi, sum_apply] lemma pi.summable {f : ι → ∀ x, π x} : summable f ↔ ∀ x, summable (λ i, f i x) := by simp only [summable, pi.has_sum, skolem] lemma tsum_apply [∀ x, t2_space (π x)] {f : ι → ∀ x, π x}{x : α} (hf : summable f) : (∑' i, f i) x = ∑' i, f i x := (pi.has_sum.mp hf.has_sum x).tsum_eq.symm end pi section topological_group variables [add_comm_group α] [topological_space α] [topological_add_group α] variables {f g : β → α} {a a₁ a₂ : α} -- `by simpa using` speeds up elaboration. Why? lemma has_sum.neg (h : has_sum f a) : has_sum (λb, - f b) (- a) := by simpa only using h.map (-add_monoid_hom.id α) continuous_neg lemma summable.neg (hf : summable f) : summable (λb, - f b) := hf.has_sum.neg.summable lemma summable.of_neg (hf : summable (λb, - f b)) : summable f := by simpa only [neg_neg] using hf.neg lemma summable_neg_iff : summable (λ b, - f b) ↔ summable f := ⟨summable.of_neg, summable.neg⟩ lemma has_sum.sub (hf : has_sum f a₁) (hg : has_sum g a₂) : has_sum (λb, f b - g b) (a₁ - a₂) := by { simp only [sub_eq_add_neg], exact hf.add hg.neg } lemma summable.sub (hf : summable f) (hg : summable g) : summable (λb, f b - g b) := (hf.has_sum.sub hg.has_sum).summable lemma has_sum.update (hf : has_sum f a₁) (b : β) [decidable_eq β] (a : α) : has_sum (update f b a) (a - f b + a₁) := begin convert ((has_sum_ite_eq b _).add hf), ext b', by_cases h : b' = b, { rw [h, update_same], simp only [eq_self_iff_true, if_true, sub_add_cancel] }, simp only [h, update_noteq, if_false, ne.def, zero_add, not_false_iff], end lemma summable.update (hf : summable f) (b : β) [decidable_eq β] (a : α) : summable (update f b a) := (hf.has_sum.update b a).summable lemma has_sum.has_sum_compl_iff {s : set β} (hf : has_sum (f ∘ coe : s → α) a₁) : has_sum (f ∘ coe : sᶜ → α) a₂ ↔ has_sum f (a₁ + a₂) := begin refine ⟨λ h, hf.add_compl h, λ h, _⟩, rw [has_sum_subtype_iff_indicator] at hf ⊢, rw [set.indicator_compl], simpa only [add_sub_cancel'] using h.sub hf end lemma has_sum.has_sum_iff_compl {s : set β} (hf : has_sum (f ∘ coe : s → α) a₁) : has_sum f a₂ ↔ has_sum (f ∘ coe : sᶜ → α) (a₂ - a₁) := iff.symm $ hf.has_sum_compl_iff.trans $ by rw [add_sub_cancel'_right] lemma summable.summable_compl_iff {s : set β} (hf : summable (f ∘ coe : s → α)) : summable (f ∘ coe : sᶜ → α) ↔ summable f := ⟨λ ⟨a, ha⟩, (hf.has_sum.has_sum_compl_iff.1 ha).summable, λ ⟨a, ha⟩, (hf.has_sum.has_sum_iff_compl.1 ha).summable⟩ protected lemma finset.has_sum_compl_iff (s : finset β) : has_sum (λ x : {x // x ∉ s}, f x) a ↔ has_sum f (a + ∑ i in s, f i) := (s.has_sum f).has_sum_compl_iff.trans $ by rw [add_comm] protected lemma finset.has_sum_iff_compl (s : finset β) : has_sum f a ↔ has_sum (λ x : {x // x ∉ s}, f x) (a - ∑ i in s, f i) := (s.has_sum f).has_sum_iff_compl protected lemma finset.summable_compl_iff (s : finset β) : summable (λ x : {x // x ∉ s}, f x) ↔ summable f := (s.summable f).summable_compl_iff lemma set.finite.summable_compl_iff {s : set β} (hs : s.finite) : summable (f ∘ coe : sᶜ → α) ↔ summable f := (hs.summable f).summable_compl_iff lemma has_sum_ite_eq_extract [decidable_eq β] (hf : has_sum f a) (b : β) : has_sum (λ n, ite (n = b) 0 (f n)) (a - f b) := begin convert hf.update b 0 using 1, { ext n, rw function.update_apply, }, { rw [sub_add_eq_add_sub, zero_add], }, end section tsum variables [t2_space α] lemma tsum_neg (hf : summable f) : ∑'b, - f b = - ∑'b, f b := hf.has_sum.neg.tsum_eq lemma tsum_sub (hf : summable f) (hg : summable g) : ∑'b, (f b - g b) = ∑'b, f b - ∑'b, g b := (hf.has_sum.sub hg.has_sum).tsum_eq lemma sum_add_tsum_compl {s : finset β} (hf : summable f) : (∑ x in s, f x) + (∑' x : (↑s : set β)ᶜ, f x) = ∑' x, f x := ((s.has_sum f).add_compl (s.summable_compl_iff.2 hf).has_sum).tsum_eq.symm /-- Let `f : β → α` be a sequence with summable series and let `b ∈ β` be an index. Lemma `tsum_ite_eq_extract` writes `Σ f n` as the sum of `f b` plus the series of the remaining terms. -/ lemma tsum_ite_eq_extract [decidable_eq β] (hf : summable f) (b : β) : ∑' n, f n = f b + ∑' n, ite (n = b) 0 (f n) := begin rw (has_sum_ite_eq_extract hf.has_sum b).tsum_eq, exact (add_sub_cancel'_right _ _).symm, end end tsum /-! ### Sums on subtypes If `s` is a finset of `α`, we show that the summability of `f` in the whole space and on the subtype `univ - s` are equivalent, and relate their sums. For a function defined on `ℕ`, we deduce the formula `(∑ i in range k, f i) + (∑' i, f (i + k)) = (∑' i, f i)`, in `sum_add_tsum_nat_add`. -/ section subtype lemma has_sum_nat_add_iff {f : ℕ → α} (k : ℕ) {a : α} : has_sum (λ n, f (n + k)) a ↔ has_sum f (a + ∑ i in range k, f i) := begin refine iff.trans _ ((range k).has_sum_compl_iff), rw [← (not_mem_range_equiv k).symm.has_sum_iff], refl end lemma summable_nat_add_iff {f : ℕ → α} (k : ℕ) : summable (λ n, f (n + k)) ↔ summable f := iff.symm $ (equiv.add_right (∑ i in range k, f i)).summable_iff_of_has_sum_iff $ λ a, (has_sum_nat_add_iff k).symm lemma has_sum_nat_add_iff' {f : ℕ → α} (k : ℕ) {a : α} : has_sum (λ n, f (n + k)) (a - ∑ i in range k, f i) ↔ has_sum f a := by simp [has_sum_nat_add_iff] lemma sum_add_tsum_nat_add [t2_space α] {f : ℕ → α} (k : ℕ) (h : summable f) : (∑ i in range k, f i) + (∑' i, f (i + k)) = ∑' i, f i := by simpa only [add_comm] using ((has_sum_nat_add_iff k).1 ((summable_nat_add_iff k).2 h).has_sum).unique h.has_sum lemma tsum_eq_zero_add [t2_space α] {f : ℕ → α} (hf : summable f) : ∑'b, f b = f 0 + ∑'b, f (b + 1) := by simpa only [sum_range_one] using (sum_add_tsum_nat_add 1 hf).symm /-- For `f : ℕ → α`, then `∑' k, f (k + i)` tends to zero. This does not require a summability assumption on `f`, as otherwise all sums are zero. -/ lemma tendsto_sum_nat_add [t2_space α] (f : ℕ → α) : tendsto (λ i, ∑' k, f (k + i)) at_top (𝓝 0) := begin by_cases hf : summable f, { have h₀ : (λ i, (∑' i, f i) - ∑ j in range i, f j) = λ i, ∑' (k : ℕ), f (k + i), { ext1 i, rw [sub_eq_iff_eq_add, add_comm, sum_add_tsum_nat_add i hf] }, have h₁ : tendsto (λ i : ℕ, ∑' i, f i) at_top (𝓝 (∑' i, f i)) := tendsto_const_nhds, simpa only [h₀, sub_self] using tendsto.sub h₁ hf.has_sum.tendsto_sum_nat }, { convert tendsto_const_nhds, ext1 i, rw ← summable_nat_add_iff i at hf, { exact tsum_eq_zero_of_not_summable hf }, { apply_instance } } end end subtype end topological_group section topological_semiring variables [semiring α] [topological_space α] [topological_semiring α] variables {f g : β → α} {a a₁ a₂ : α} lemma has_sum.mul_left (a₂) (h : has_sum f a₁) : has_sum (λb, a₂ * f b) (a₂ * a₁) := by simpa only using h.map (add_monoid_hom.mul_left a₂) (continuous_const.mul continuous_id) lemma has_sum.mul_right (a₂) (hf : has_sum f a₁) : has_sum (λb, f b * a₂) (a₁ * a₂) := by simpa only using hf.map (add_monoid_hom.mul_right a₂) (continuous_id.mul continuous_const) lemma summable.mul_left (a) (hf : summable f) : summable (λb, a * f b) := (hf.has_sum.mul_left _).summable lemma summable.mul_right (a) (hf : summable f) : summable (λb, f b * a) := (hf.has_sum.mul_right _).summable section tsum variables [t2_space α] lemma summable.tsum_mul_left (a) (hf : summable f) : ∑'b, a * f b = a * ∑'b, f b := (hf.has_sum.mul_left _).tsum_eq lemma summable.tsum_mul_right (a) (hf : summable f) : (∑'b, f b * a) = (∑'b, f b) * a := (hf.has_sum.mul_right _).tsum_eq end tsum end topological_semiring section has_continuous_smul variables {R : Type*} [semiring R] [topological_space R] [topological_space α] [add_comm_monoid α] [module R α] [has_continuous_smul R α] {f : β → α} lemma has_sum.smul {a : α} {r : R} (hf : has_sum f a) : has_sum (λ z, r • f z) (r • a) := hf.map (const_smul_hom α r) (continuous_const.smul continuous_id) lemma summable.smul {r : R} (hf : summable f) : summable (λ z, r • f z) := hf.has_sum.smul.summable lemma tsum_smul [t2_space α] {r : R} (hf : summable f) : ∑' z, r • f z = r • ∑' z, f z := hf.has_sum.smul.tsum_eq end has_continuous_smul section division_ring variables [division_ring α] [topological_space α] [topological_semiring α] {f g : β → α} {a a₁ a₂ : α} lemma has_sum.div_const (h : has_sum f a) (b : α) : has_sum (λ x, f x / b) (a / b) := by simp only [div_eq_mul_inv, h.mul_right b⁻¹] lemma has_sum_mul_left_iff (h : a₂ ≠ 0) : has_sum f a₁ ↔ has_sum (λb, a₂ * f b) (a₂ * a₁) := ⟨has_sum.mul_left _, λ H, by simpa only [inv_mul_cancel_left' h] using H.mul_left a₂⁻¹⟩ lemma has_sum_mul_right_iff (h : a₂ ≠ 0) : has_sum f a₁ ↔ has_sum (λb, f b * a₂) (a₁ * a₂) := ⟨has_sum.mul_right _, λ H, by simpa only [mul_inv_cancel_right' h] using H.mul_right a₂⁻¹⟩ lemma summable_mul_left_iff (h : a ≠ 0) : summable f ↔ summable (λb, a * f b) := ⟨λ H, H.mul_left _, λ H, by simpa only [inv_mul_cancel_left' h] using H.mul_left a⁻¹⟩ lemma summable_mul_right_iff (h : a ≠ 0) : summable f ↔ summable (λb, f b * a) := ⟨λ H, H.mul_right _, λ H, by simpa only [mul_inv_cancel_right' h] using H.mul_right a⁻¹⟩ lemma tsum_mul_left [t2_space α] : (∑' x, a * f x) = a * ∑' x, f x := if hf : summable f then hf.tsum_mul_left a else if ha : a = 0 then by simp [ha] else by rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt (summable_mul_left_iff ha).2 hf), mul_zero] lemma tsum_mul_right [t2_space α] : (∑' x, f x * a) = (∑' x, f x) * a := if hf : summable f then hf.tsum_mul_right a else if ha : a = 0 then by simp [ha] else by rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt (summable_mul_right_iff ha).2 hf), zero_mul] end division_ring section order_topology variables [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] variables {f g : β → α} {a a₁ a₂ : α} lemma has_sum_le (h : ∀b, f b ≤ g b) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := le_of_tendsto_of_tendsto' hf hg $ assume s, sum_le_sum $ assume b _, h b @[mono] lemma has_sum_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f ≤ g) : a₁ ≤ a₂ := has_sum_le h hf hg lemma has_sum_le_of_sum_le (hf : has_sum f a) (h : ∀ s : finset β, ∑ b in s, f b ≤ a₂) : a ≤ a₂ := le_of_tendsto' hf h lemma le_has_sum_of_le_sum (hf : has_sum f a) (h : ∀ s : finset β, a₂ ≤ ∑ b in s, f b) : a₂ ≤ a := ge_of_tendsto' hf h lemma has_sum_le_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c) (h : ∀b, f b ≤ g (i b)) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := have has_sum (λc, (partial_inv i c).cases_on' 0 f) a₁, begin refine (has_sum_iff_has_sum_of_ne_zero_bij (i ∘ coe) _ _ _).2 hf, { exact assume c₁ c₂ eq, hi eq }, { intros c hc, rw [mem_support] at hc, cases eq : partial_inv i c with b; rw eq at hc, { contradiction }, { rw [partial_inv_of_injective hi] at eq, exact ⟨⟨b, hc⟩, eq⟩ } }, { assume c, simp [partial_inv_left hi, option.cases_on'] } end, begin refine has_sum_le (assume c, _) this hg, by_cases c ∈ set.range i, { rcases h with ⟨b, rfl⟩, rw [partial_inv_left hi, option.cases_on'], exact h _ }, { have : partial_inv i c = none := dif_neg h, rw [this, option.cases_on'], exact hs _ h } end lemma tsum_le_tsum_of_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c) (h : ∀b, f b ≤ g (i b)) (hf : summable f) (hg : summable g) : tsum f ≤ tsum g := has_sum_le_inj i hi hs h hf.has_sum hg.has_sum lemma sum_le_has_sum (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : has_sum f a) : ∑ b in s, f b ≤ a := ge_of_tendsto hf (eventually_at_top.2 ⟨s, λ t hst, sum_le_sum_of_subset_of_nonneg hst $ λ b hbt hbs, hs b hbs⟩) lemma is_lub_has_sum (h : ∀ b, 0 ≤ f b) (hf : has_sum f a) : is_lub (set.range (λ s : finset β, ∑ b in s, f b)) a := is_lub_of_tendsto (finset.sum_mono_set_of_nonneg h) hf lemma le_has_sum (hf : has_sum f a) (b : β) (hb : ∀ b' ≠ b, 0 ≤ f b') : f b ≤ a := calc f b = ∑ b in {b}, f b : finset.sum_singleton.symm ... ≤ a : sum_le_has_sum _ (by { convert hb, simp }) hf lemma sum_le_tsum {f : β → α} (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : summable f) : ∑ b in s, f b ≤ ∑' b, f b := sum_le_has_sum s hs hf.has_sum lemma le_tsum (hf : summable f) (b : β) (hb : ∀ b' ≠ b, 0 ≤ f b') : f b ≤ ∑' b, f b := le_has_sum (summable.has_sum hf) b hb lemma tsum_le_tsum (h : ∀b, f b ≤ g b) (hf : summable f) (hg : summable g) : ∑'b, f b ≤ ∑'b, g b := has_sum_le h hf.has_sum hg.has_sum @[mono] lemma tsum_mono (hf : summable f) (hg : summable g) (h : f ≤ g) : ∑' n, f n ≤ ∑' n, g n := tsum_le_tsum h hf hg lemma tsum_le_of_sum_le (hf : summable f) (h : ∀ s : finset β, ∑ b in s, f b ≤ a₂) : ∑' b, f b ≤ a₂ := has_sum_le_of_sum_le hf.has_sum h lemma tsum_le_of_sum_le' (ha₂ : 0 ≤ a₂) (h : ∀ s : finset β, ∑ b in s, f b ≤ a₂) : ∑' b, f b ≤ a₂ := begin by_cases hf : summable f, { exact tsum_le_of_sum_le hf h }, { rw tsum_eq_zero_of_not_summable hf, exact ha₂ } end lemma has_sum.nonneg (h : ∀ b, 0 ≤ g b) (ha : has_sum g a) : 0 ≤ a := has_sum_le h has_sum_zero ha lemma has_sum.nonpos (h : ∀ b, g b ≤ 0) (ha : has_sum g a) : a ≤ 0 := has_sum_le h ha has_sum_zero lemma tsum_nonneg (h : ∀ b, 0 ≤ g b) : 0 ≤ ∑'b, g b := begin by_cases hg : summable g, { exact hg.has_sum.nonneg h }, { simp [tsum_eq_zero_of_not_summable hg] } end lemma tsum_nonpos (h : ∀ b, f b ≤ 0) : ∑'b, f b ≤ 0 := begin by_cases hf : summable f, { exact hf.has_sum.nonpos h }, { simp [tsum_eq_zero_of_not_summable hf] } end end order_topology section ordered_topological_group variables [ordered_add_comm_group α] [topological_space α] [topological_add_group α] [order_closed_topology α] {f g : β → α} {a₁ a₂ : α} lemma has_sum_lt {i : β} (h : ∀ (b : β), f b ≤ g b) (hi : f i < g i) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ < a₂ := have update f i 0 ≤ update g i 0 := update_le_update_iff.mpr ⟨rfl.le, λ i _, h i⟩, have 0 - f i + a₁ ≤ 0 - g i + a₂ := has_sum_le this (hf.update i 0) (hg.update i 0), by simpa only [zero_sub, add_neg_cancel_left] using add_lt_add_of_lt_of_le hi this @[mono] lemma has_sum_strict_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f < g) : a₁ < a₂ := let ⟨hle, i, hi⟩ := pi.lt_def.mp h in has_sum_lt hle hi hf hg lemma tsum_lt_tsum {i : β} (h : ∀ (b : β), f b ≤ g b) (hi : f i < g i) (hf : summable f) (hg : summable g) : ∑' n, f n < ∑' n, g n := has_sum_lt h hi hf.has_sum hg.has_sum @[mono] lemma tsum_strict_mono (hf : summable f) (hg : summable g) (h : f < g) : ∑' n, f n < ∑' n, g n := let ⟨hle, i, hi⟩ := pi.lt_def.mp h in tsum_lt_tsum hle hi hf hg lemma tsum_pos (hsum : summable g) (hg : ∀ b, 0 ≤ g b) (i : β) (hi : 0 < g i) : 0 < ∑' b, g b := by { rw ← tsum_zero, exact tsum_lt_tsum hg hi summable_zero hsum } end ordered_topological_group section canonically_ordered variables [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] variables {f : β → α} {a : α} lemma le_has_sum' (hf : has_sum f a) (b : β) : f b ≤ a := le_has_sum hf b $ λ _ _, zero_le _ lemma le_tsum' (hf : summable f) (b : β) : f b ≤ ∑' b, f b := le_tsum hf b $ λ _ _, zero_le _ lemma has_sum_zero_iff : has_sum f 0 ↔ ∀ x, f x = 0 := begin refine ⟨_, λ h, _⟩, { contrapose!, exact λ ⟨x, hx⟩ h, irrefl _ (lt_of_lt_of_le (pos_iff_ne_zero.2 hx) (le_has_sum' h x)) }, { convert has_sum_zero, exact funext h } end lemma tsum_eq_zero_iff (hf : summable f) : ∑' i, f i = 0 ↔ ∀ x, f x = 0 := by rw [←has_sum_zero_iff, hf.has_sum_iff] lemma tsum_ne_zero_iff (hf : summable f) : ∑' i, f i ≠ 0 ↔ ∃ x, f x ≠ 0 := by rw [ne.def, tsum_eq_zero_iff hf, not_forall] lemma is_lub_has_sum' (hf : has_sum f a) : is_lub (set.range (λ s : finset β, ∑ b in s, f b)) a := is_lub_of_tendsto (finset.sum_mono_set f) hf end canonically_ordered section uniform_group variables [add_comm_group α] [uniform_space α] lemma summable_iff_cauchy_seq_finset [complete_space α] {f : β → α} : summable f ↔ cauchy_seq (λ (s : finset β), ∑ b in s, f b) := cauchy_map_iff_exists_tendsto.symm variables [uniform_add_group α] {f g : β → α} {a a₁ a₂ : α} lemma cauchy_seq_finset_iff_vanishing : cauchy_seq (λ (s : finset β), ∑ b in s, f b) ↔ ∀ e ∈ 𝓝 (0:α), (∃s:finset β, ∀t, disjoint t s → ∑ b in t, f b ∈ e) := begin simp only [cauchy_seq, cauchy_map_iff, and_iff_right at_top_ne_bot, prod_at_top_at_top_eq, uniformity_eq_comap_nhds_zero α, tendsto_comap_iff, (∘)], rw [tendsto_at_top'], split, { assume h e he, rcases h e he with ⟨⟨s₁, s₂⟩, h⟩, use [s₁ ∪ s₂], assume t ht, specialize h (s₁ ∪ s₂, (s₁ ∪ s₂) ∪ t) ⟨le_sup_left, le_sup_of_le_left le_sup_right⟩, simpa only [finset.sum_union ht.symm, add_sub_cancel'] using h }, { assume h e he, rcases exists_nhds_half_neg he with ⟨d, hd, hde⟩, rcases h d hd with ⟨s, h⟩, use [(s, s)], rintros ⟨t₁, t₂⟩ ⟨ht₁, ht₂⟩, have : ∑ b in t₂, f b - ∑ b in t₁, f b = ∑ b in t₂ \ s, f b - ∑ b in t₁ \ s, f b, { simp only [(finset.sum_sdiff ht₁).symm, (finset.sum_sdiff ht₂).symm, add_sub_add_right_eq_sub] }, simp only [this], exact hde _ (h _ finset.sdiff_disjoint) _ (h _ finset.sdiff_disjoint) } end variable [complete_space α] lemma summable_iff_vanishing : summable f ↔ ∀ e ∈ 𝓝 (0:α), (∃s:finset β, ∀t, disjoint t s → ∑ b in t, f b ∈ e) := by rw [summable_iff_cauchy_seq_finset, cauchy_seq_finset_iff_vanishing] /- TODO: generalize to monoid with a uniform continuous subtraction operator: `(a + b) - b = a` -/ lemma summable.summable_of_eq_zero_or_self (hf : summable f) (h : ∀b, g b = 0 ∨ g b = f b) : summable g := summable_iff_vanishing.2 $ assume e he, let ⟨s, hs⟩ := summable_iff_vanishing.1 hf e he in ⟨s, assume t ht, have eq : ∑ b in t.filter (λb, g b = f b), f b = ∑ b in t, g b := calc ∑ b in t.filter (λb, g b = f b), f b = ∑ b in t.filter (λb, g b = f b), g b : finset.sum_congr rfl (assume b hb, (finset.mem_filter.1 hb).2.symm) ... = ∑ b in t, g b : begin refine finset.sum_subset (finset.filter_subset _ _) _, assume b hbt hb, simp only [(∉), finset.mem_filter, and_iff_right hbt] at hb, exact (h b).resolve_right hb end, eq ▸ hs _ $ finset.disjoint_of_subset_left (finset.filter_subset _ _) ht⟩ protected lemma summable.indicator (hf : summable f) (s : set β) : summable (s.indicator f) := hf.summable_of_eq_zero_or_self $ set.indicator_eq_zero_or_self _ _ lemma summable.comp_injective {i : γ → β} (hf : summable f) (hi : injective i) : summable (f ∘ i) := begin simpa only [set.indicator_range_comp] using (hi.summable_iff _).2 (hf.indicator (set.range i)), exact λ x hx, set.indicator_of_not_mem hx _ end lemma summable.subtype (hf : summable f) (s : set β) : summable (f ∘ coe : s → α) := hf.comp_injective subtype.coe_injective lemma summable_subtype_and_compl {s : set β} : summable (λ x : s, f x) ∧ summable (λ x : sᶜ, f x) ↔ summable f := ⟨and_imp.2 summable.add_compl, λ h, ⟨h.subtype s, h.subtype sᶜ⟩⟩ lemma summable.sigma_factor {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) (b : β) : summable (λc, f ⟨b, c⟩) := ha.comp_injective sigma_mk_injective lemma summable.sigma [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) : summable (λb, ∑'c, f ⟨b, c⟩) := ha.sigma' (λ b, ha.sigma_factor b) lemma summable.prod_factor {f : β × γ → α} (h : summable f) (b : β) : summable (λ c, f (b, c)) := h.comp_injective $ λ c₁ c₂ h, (prod.ext_iff.1 h).2 lemma tsum_sigma [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) : ∑'p, f p = ∑'b c, f ⟨b, c⟩ := tsum_sigma' (λ b, ha.sigma_factor b) ha lemma tsum_prod [regular_space α] {f : β × γ → α} (h : summable f) : ∑'p, f p = ∑'b c, f ⟨b, c⟩ := tsum_prod' h h.prod_factor lemma tsum_comm [regular_space α] {f : β → γ → α} (h : summable (function.uncurry f)) : ∑' c b, f b c = ∑' b c, f b c := tsum_comm' h h.prod_factor h.prod_symm.prod_factor end uniform_group section topological_group variables {G : Type*} [topological_space G] [add_comm_group G] [topological_add_group G] {f : α → G} lemma summable.vanishing (hf : summable f) ⦃e : set G⦄ (he : e ∈ 𝓝 (0 : G)) : ∃ s : finset α, ∀ t, disjoint t s → ∑ k in t, f k ∈ e := begin letI : uniform_space G := topological_add_group.to_uniform_space G, letI : uniform_add_group G := topological_add_group_is_uniform, rcases hf with ⟨y, hy⟩, exact cauchy_seq_finset_iff_vanishing.1 hy.cauchy_seq e he end /-- Series divergence test: if `f` is a convergent series, then `f x` tends to zero along `cofinite`. -/ lemma summable.tendsto_cofinite_zero (hf : summable f) : tendsto f cofinite (𝓝 0) := begin intros e he, rw [filter.mem_map], rcases hf.vanishing he with ⟨s, hs⟩, refine s.eventually_cofinite_nmem.mono (λ x hx, _), by simpa using hs {x} (singleton_disjoint.2 hx) end lemma summable.tendsto_at_top_zero {f : ℕ → G} (hf : summable f) : tendsto f at_top (𝓝 0) := by { rw ←nat.cofinite_eq_at_top, exact hf.tendsto_cofinite_zero } end topological_group section linear_order /-! For infinite sums taking values in a linearly ordered monoid, the existence of a least upper bound for the finite sums is a criterion for summability. This criterion is useful when applied in a linearly ordered monoid which is also a complete or conditionally complete linear order, such as `ℝ`, `ℝ≥0`, `ℝ≥0∞`, because it is then easy to check the existence of a least upper bound. -/ lemma has_sum_of_is_lub_of_nonneg [linear_ordered_add_comm_monoid β] [topological_space β] [order_topology β] {f : α → β} (b : β) (h : ∀ b, 0 ≤ f b) (hf : is_lub (set.range (λ s, ∑ a in s, f a)) b) : has_sum f b := tendsto_at_top_is_lub (finset.sum_mono_set_of_nonneg h) hf lemma has_sum_of_is_lub [canonically_linear_ordered_add_monoid β] [topological_space β] [order_topology β] {f : α → β} (b : β) (hf : is_lub (set.range (λ s, ∑ a in s, f a)) b) : has_sum f b := tendsto_at_top_is_lub (finset.sum_mono_set f) hf lemma summable_abs_iff [linear_ordered_add_comm_group β] [uniform_space β] [uniform_add_group β] [complete_space β] {f : α → β} : summable (λ x, abs (f x)) ↔ summable f := have h1 : ∀ x : {x | 0 ≤ f x}, abs (f x) = f x := λ x, abs_of_nonneg x.2, have h2 : ∀ x : {x | 0 ≤ f x}ᶜ, abs (f x) = -f x := λ x, abs_of_neg (not_le.1 x.2), calc summable (λ x, abs (f x)) ↔ summable (λ x : {x | 0 ≤ f x}, abs (f x)) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, abs (f x)) : summable_subtype_and_compl.symm ... ↔ summable (λ x : {x | 0 ≤ f x}, f x) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, -f x) : by simp only [h1, h2] ... ↔ _ : by simp only [summable_neg_iff, summable_subtype_and_compl] alias summable_abs_iff ↔ summable.of_abs summable.abs end linear_order section cauchy_seq open finset.Ico filter /-- If the extended distance between consecutive points of a sequence is estimated by a summable series of `nnreal`s, then the original sequence is a Cauchy sequence. -/ lemma cauchy_seq_of_edist_le_of_summable [pseudo_emetric_space α] {f : ℕ → α} (d : ℕ → ℝ≥0) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f := begin refine emetric.cauchy_seq_iff_nnreal.2 (λ ε εpos, _), -- Actually we need partial sums of `d` to be a Cauchy sequence replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq, -- Now we take the same `N` as in one of the definitions of a Cauchy sequence refine (metric.cauchy_seq_iff'.1 hd ε (nnreal.coe_pos.2 εpos)).imp (λ N hN n hn, _), have hsum := hN n hn, -- We simplify the known inequality rw [dist_nndist, nnreal.nndist_eq, ← sum_range_add_sum_Ico _ hn, nnreal.add_sub_cancel'] at hsum, norm_cast at hsum, replace hsum := lt_of_le_of_lt (le_max_left _ _) hsum, rw edist_comm, -- Then use `hf` to simplify the goal to the same form apply lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn (λ k _ _, hf k)), assumption_mod_cast end /-- If the distance between consecutive points of a sequence is estimated by a summable series, then the original sequence is a Cauchy sequence. -/ lemma cauchy_seq_of_dist_le_of_summable [pseudo_metric_space α] {f : ℕ → α} (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f := begin refine metric.cauchy_seq_iff'.2 (λε εpos, _), replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq, refine (metric.cauchy_seq_iff'.1 hd ε εpos).imp (λ N hN n hn, _), have hsum := hN n hn, rw [real.dist_eq, ← sum_Ico_eq_sub _ hn] at hsum, calc dist (f n) (f N) = dist (f N) (f n) : dist_comm _ _ ... ≤ ∑ x in Ico N n, d x : dist_le_Ico_sum_of_dist_le hn (λ k _ _, hf k) ... ≤ abs (∑ x in Ico N n, d x) : le_abs_self _ ... < ε : hsum end lemma cauchy_seq_of_summable_dist [pseudo_metric_space α] {f : ℕ → α} (h : summable (λn, dist (f n) (f n.succ))) : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ (λ _, le_refl _) h lemma dist_le_tsum_of_dist_le_of_tendsto [pseudo_metric_space α] {f : ℕ → α} (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ ∑' m, d (n + m) := begin refine le_of_tendsto (tendsto_const_nhds.dist ha) (eventually_at_top.2 ⟨n, λ m hnm, _⟩), refine le_trans (dist_le_Ico_sum_of_dist_le hnm (λ k _ _, hf k)) _, rw [sum_Ico_eq_sum_range], refine sum_le_tsum (range _) (λ _ _, le_trans dist_nonneg (hf _)) _, exact hd.comp_injective (add_right_injective n) end lemma dist_le_tsum_of_dist_le_of_tendsto₀ [pseudo_metric_space α] {f : ℕ → α} (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ tsum d := by simpa only [zero_add] using dist_le_tsum_of_dist_le_of_tendsto d hf hd ha 0 lemma dist_le_tsum_dist_of_tendsto [pseudo_metric_space α] {f : ℕ → α} (h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) (n) : dist (f n) a ≤ ∑' m, dist (f (n+m)) (f (n+m).succ) := show dist (f n) a ≤ ∑' m, (λx, dist (f x) (f x.succ)) (n + m), from dist_le_tsum_of_dist_le_of_tendsto (λ n, dist (f n) (f n.succ)) (λ _, le_refl _) h ha n lemma dist_le_tsum_dist_of_tendsto₀ [pseudo_metric_space α] {f : ℕ → α} (h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ ∑' n, dist (f n) (f n.succ) := by simpa only [zero_add] using dist_le_tsum_dist_of_tendsto h ha 0 end cauchy_seq
92c0aca8851c005d383dda89ce12fb2e9ea8e0c2
bdb33f8b7ea65f7705fc342a178508e2722eb851
/analysis/real.lean
e12e7fd14582225fc0b6c74f663220235eaae650
[ "Apache-2.0" ]
permissive
rwbarton/mathlib
939ae09bf8d6eb1331fc2f7e067d39567e10e33d
c13c5ea701bb1eec057e0a242d9f480a079105e9
refs/heads/master
1,584,015,335,862
1,524,142,167,000
1,524,142,167,000
130,614,171
0
0
Apache-2.0
1,548,902,667,000
1,524,437,371,000
Lean
UTF-8
Lean
false
false
15,142
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro The real numbers ℝ. They are constructed as the topological completion of ℚ. With the following steps: (1) prove that ℚ forms a uniform space. (2) subtraction and addition are uniform continuous functions in this space (3) for multiplication and inverse this only holds on bounded subsets (4) ℝ is defined as separated Cauchy filters over ℚ (the separation requires a quotient construction) (5) extend the uniform continuous functions along the completion (6) proof field properties using the principle of extension of identities TODO generalizations: * topological groups & rings * order topologies * Archimedean fields -/ import logic.function analysis.metric_space noncomputable theory open classical set lattice filter local attribute [instance] prop_decidable universes u v w variables {α : Type u} {β : Type v} {γ : Type w} instance : metric_space ℚ := metric_space.induced coe rat.cast_injective real.metric_space theorem rat.dist_eq (x y : ℚ) : dist x y = abs (x - y) := rfl instance : metric_space ℤ := begin letI M := metric_space.induced coe int.cast_injective real.metric_space, refine @metric_space.replace_uniformity _ int.uniform_space M (le_antisymm refl_le_uniformity $ λ r ru, mem_uniformity_dist.2 ⟨1, zero_lt_one, λ a b h, mem_principal_sets.1 ru $ dist_le_zero.1 (_ : (abs (a - b) : ℝ) ≤ 0)⟩), simpa using (@int.cast_le ℝ _ _ 0).2 (int.lt_add_one_iff.1 $ (@int.cast_lt ℝ _ (abs (a - b)) 1).1 $ by simpa using h) end theorem uniform_continuous_of_rat : uniform_continuous (coe : ℚ → ℝ) := uniform_continuous_vmap theorem uniform_embedding_of_rat : uniform_embedding (coe : ℚ → ℝ) := metric_space.induced_uniform_embedding _ _ _ theorem dense_embedding_of_rat : dense_embedding (coe : ℚ → ℝ) := uniform_embedding_of_rat.dense_embedding $ λ x, mem_closure_iff_nhds.2 $ λ t ht, let ⟨ε,ε0, hε⟩ := mem_nhds_iff_metric.1 ht in let ⟨q, h⟩ := exists_rat_near x ε0 in ne_empty_iff_exists_mem.2 ⟨_, hε (mem_ball'.2 h), q, rfl⟩ theorem embedding_of_rat : embedding (coe : ℚ → ℝ) := dense_embedding_of_rat.embedding theorem continuous_of_rat : continuous (coe : ℚ → ℝ) := uniform_continuous_of_rat.continuous theorem real.uniform_continuous_add : uniform_continuous (λp : ℝ × ℝ, p.1 + p.2) := uniform_continuous_of_metric.2 $ λ ε ε0, let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0 in ⟨δ, δ0, λ a b h, let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ h₁ h₂⟩ -- TODO(Mario): Find a way to use rat_add_continuous_lemma theorem rat.uniform_continuous_add : uniform_continuous (λp : ℚ × ℚ, p.1 + p.2) := uniform_embedding_of_rat.uniform_continuous_iff.2 $ by simp [(∘)]; exact ((uniform_continuous_fst.comp uniform_continuous_of_rat).prod_mk (uniform_continuous_snd.comp uniform_continuous_of_rat)).comp real.uniform_continuous_add theorem real.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℝ _) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨_, ε0, λ a b h, by rw dist_comm at h; simpa [real.dist_eq] using h⟩ theorem rat.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℚ _) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨_, ε0, λ a b h, by rw dist_comm at h; simpa [rat.dist_eq] using h⟩ instance : uniform_add_group ℝ := uniform_add_group.mk' real.uniform_continuous_add real.uniform_continuous_neg instance : uniform_add_group ℚ := uniform_add_group.mk' rat.uniform_continuous_add rat.uniform_continuous_neg instance : topological_add_group ℝ := by apply_instance instance : topological_add_group ℚ := by apply_instance instance : orderable_topology ℚ := induced_orderable_topology _ (λ x y, rat.cast_lt) (@exists_rat_btwn _ _ _) /- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (λp:ℚ, p + r) := _ lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) := _ -/ lemma real.uniform_continuous_inv (s : set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ abs x) : uniform_continuous (λp:s, p.1⁻¹) := uniform_continuous_of_metric.2 $ λ ε ε0, let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0 in ⟨δ, δ0, λ a b h, Hδ (H _ a.2) (H _ b.2) h⟩ lemma real.uniform_continuous_abs : uniform_continuous (abs : ℝ → ℝ) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨ε, ε0, λ a b, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩ lemma real.continuous_abs : continuous (abs : ℝ → ℝ) := real.uniform_continuous_abs.continuous lemma rat.uniform_continuous_abs : uniform_continuous (abs : ℚ → ℚ) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨ε, ε0, λ a b h, lt_of_le_of_lt (by simpa [rat.dist_eq] using abs_abs_sub_abs_le_abs_sub _ _) h⟩ lemma rat.continuous_abs : continuous (abs : ℚ → ℚ) := rat.uniform_continuous_abs.continuous lemma real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : tendsto (λq, q⁻¹) (nhds r) (nhds r⁻¹) := by rw ← abs_pos_iff at r0; exact tendsto_of_uniform_continuous_subtype (real.uniform_continuous_inv {x | abs r / 2 < abs x} (half_pos r0) (λ x h, le_of_lt h)) (mem_nhds_sets (real.continuous_abs _ $ is_open_lt' (abs r / 2)) (half_lt_self r0)) lemma real.continuous_inv' : continuous (λa:{r:ℝ // r ≠ 0}, a.val⁻¹) := continuous_iff_tendsto.mpr $ assume ⟨r, hr⟩, (continuous_iff_tendsto.mp continuous_subtype_val _).comp (real.tendsto_inv hr) lemma real.continuous_inv [topological_space α] {f : α → ℝ} (h : ∀a, f a ≠ 0) (hf : continuous f) : continuous (λa, (f a)⁻¹) := show continuous ((has_inv.inv ∘ @subtype.val ℝ (λr, r ≠ 0)) ∘ λa, ⟨f a, h a⟩), from (continuous_subtype_mk _ hf).comp real.continuous_inv' lemma real.uniform_continuous_mul_const {x : ℝ} : uniform_continuous ((*) x) := uniform_continuous_of_metric.2 $ λ ε ε0, begin cases no_top (abs x) with y xy, have y0 := lt_of_le_of_lt (abs_nonneg _) xy, refine ⟨_, div_pos ε0 y0, λ a b h, _⟩, rw [real.dist_eq, ← mul_sub, abs_mul, ← mul_div_cancel' ε (ne_of_gt y0)], exact mul_lt_mul' (le_of_lt xy) h (abs_nonneg _) y0 end lemma real.uniform_continuous_mul (s : set (ℝ × ℝ)) {r₁ r₂ : ℝ} (r₁0 : 0 < r₁) (r₂0 : 0 < r₂) (H : ∀ x ∈ s, abs (x : ℝ × ℝ).1 < r₁ ∧ abs x.2 < r₂) : uniform_continuous (λp:s, p.1.1 * p.1.2) := uniform_continuous_of_metric.2 $ λ ε ε0, let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0 r₁0 r₂0 in ⟨δ, δ0, λ a b h, let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩ lemma real.continuous_mul : continuous (λp : ℝ × ℝ, p.1 * p.2) := continuous_iff_tendsto.2 $ λ ⟨a₁, a₂⟩, tendsto_of_uniform_continuous_subtype (real.uniform_continuous_mul ({x | abs x < abs a₁ + 1}.prod {x | abs x < abs a₂ + 1}) (lt_of_le_of_lt (abs_nonneg _) (lt_add_one _)) (lt_of_le_of_lt (abs_nonneg _) (lt_add_one _)) (λ x, id)) (mem_nhds_sets (is_open_prod (real.continuous_abs _ $ is_open_gt' _) (real.continuous_abs _ $ is_open_gt' _)) ⟨lt_add_one (abs a₁), lt_add_one (abs a₂)⟩) instance : topological_ring ℝ := { continuous_mul := real.continuous_mul, ..real.topological_add_group } instance : topological_semiring ℝ := by apply_instance lemma rat.continuous_mul : continuous (λp : ℚ × ℚ, p.1 * p.2) := embedding_of_rat.continuous_iff.2 $ by simp [(∘)]; exact ((continuous_fst.comp continuous_of_rat).prod_mk (continuous_snd.comp continuous_of_rat)).comp real.continuous_mul instance : topological_ring ℚ := { continuous_mul := rat.continuous_mul, ..rat.topological_add_group } theorem real.ball_eq_Ioo (x ε : ℝ) : ball x ε = Ioo (x - ε) (x + ε) := set.ext $ λ y, by rw [mem_ball, real.dist_eq, abs_sub_lt_iff, sub_lt_iff_lt_add', and_comm, sub_lt]; refl theorem real.Ioo_eq_ball (x y : ℝ) : Ioo x y = ball ((x + y) / 2) ((y - x) / 2) := by rw [real.ball_eq_Ioo, ← sub_div, add_comm, ← sub_add, add_sub_cancel', add_self_div_two, ← add_div, add_assoc, add_sub_cancel'_right, add_self_div_two] lemma real.totally_bounded_Ioo (a b : ℝ) : totally_bounded (Ioo a b) := totally_bounded_of_metric.2 $ λ ε ε0, begin rcases exists_nat_gt ((b - a) / ε) with ⟨n, ba⟩, rw [div_lt_iff' ε0, sub_lt_iff_lt_add'] at ba, let s := (λ i:ℕ, a + ε * i) '' {i:ℕ | i < n}, refine ⟨s, finite_image _ ⟨set.fintype_lt_nat _⟩, λ x h, _⟩, rcases h with ⟨ax, xb⟩, let i : ℕ := ⌊(x - a) / ε⌋.to_nat, have : (i : ℤ) = ⌊(x - a) / ε⌋ := int.to_nat_of_nonneg (floor_nonneg.2 $ le_of_lt (div_pos (sub_pos.2 ax) ε0)), simp, refine ⟨_, ⟨i, _, rfl⟩, _⟩, { rw [← int.coe_nat_lt, this], refine int.cast_lt.1 (lt_of_le_of_lt (floor_le _) _), rw [int.cast_coe_nat, div_lt_iff' ε0, sub_lt_iff_lt_add'], exact lt_trans xb ba }, { rw [real.dist_eq, ← int.cast_coe_nat, this, abs_of_nonneg, ← sub_sub, sub_lt_iff_lt_add'], { have := lt_floor_add_one ((x - a) / ε), rwa [div_lt_iff' ε0, mul_add, mul_one] at this }, { have := floor_le ((x - a) / ε), rwa [ge, sub_nonneg, ← le_sub_iff_add_le', ← le_div_iff' ε0] } } end lemma real.totally_bounded_ball (x ε : ℝ) : totally_bounded (ball x ε) := by rw real.ball_eq_Ioo; apply real.totally_bounded_Ioo lemma real.totally_bounded_Ico (a b : ℝ) : totally_bounded (Ico a b) := let ⟨c, ac⟩ := no_bot a in totally_bounded_subset (by exact λ x ⟨h₁, h₂⟩, ⟨lt_of_lt_of_le ac h₁, h₂⟩) (real.totally_bounded_Ioo c b) lemma real.totally_bounded_Icc (a b : ℝ) : totally_bounded {q:ℝ | a ≤ q ∧ q ≤ b} := let ⟨c, bc⟩ := no_top b in totally_bounded_subset (by exact λ x ⟨h₁, h₂⟩, ⟨h₁, lt_of_le_of_lt h₂ bc⟩) (real.totally_bounded_Ico a c) lemma rat.totally_bounded_Icc (a b : ℚ) : totally_bounded {q:ℚ | a ≤ q ∧ q ≤ b} := begin have := totally_bounded_preimage uniform_embedding_of_rat (real.totally_bounded_Icc a b), rwa (set.ext (λ q, _) : set_of _ = _), dsimp, rw ← @rat.cast_le ℝ _ q b, simp end -- TODO(Mario): Generalize to first-countable uniform spaces? instance : complete_space ℝ := ⟨λ f cf, begin have := (cauchy_of_metric.1 cf).2, let S : ∀ ε:{ε:ℝ//ε>0}, {t : f.sets // ∀ x y ∈ t.1, dist x y < ε} := λ ε, classical.choice (let ⟨t, tf, h⟩ := (cauchy_of_metric.1 cf).2 ε ε.2 in ⟨⟨⟨t, tf⟩, h⟩⟩), let g : ℕ → {ε:ℝ//ε>0} := λ n, ⟨(n:ℕ+)⁻¹, inv_pos (nat.cast_pos.2 (n:ℕ+).pos)⟩, have hg : ∀ ε > 0, ∃ n, ∀ j ≥ n, (g j : ℝ) < ε, { intros ε ε0, cases exists_nat_gt ε⁻¹ with n hn, refine ⟨n, λ j nj, _⟩, have hj := lt_of_lt_of_le hn (nat.cast_le.2 nj), have j0 := lt_trans (inv_pos ε0) hj, have jε := (inv_lt j0 ε0).2 hj, rwa ← pnat.nat_coe_coe (nat.cast_pos.1 j0) at jε }, let F : ∀ n : ℕ, {t : f.sets // ∀ x y ∈ t.1, dist x y < g n}, { refine λ n, ⟨⟨_, Inter_mem_sets (finite_le_nat n) (λ i _, (S (g i)).1.2)⟩, _⟩, have : (⋂ i ∈ {i : ℕ | i ≤ n}, (S (g i)).1.1) ⊆ S (g n) := bInter_subset_of_mem (le_refl n), exact λ x y xs ys, (S (g n)).2 _ _ (this xs) (this ys) }, let G : ∀ n : ℕ, F n, { refine λ n, classical.choice _, cases inhabited_of_mem_sets cf.1 (F n).1.2 with x xS, exact ⟨⟨x, xS⟩⟩ }, let c : cau_seq ℝ abs, { refine ⟨λ n, G n, λ ε ε0, _⟩, cases hg _ ε0 with n hn, refine ⟨n, λ j jn, _⟩, have : (F j).1.1 ⊆ (F n) := bInter_subset_bInter_left (λ i h, @le_trans _ _ i n j h jn), exact lt_trans ((F n).2 _ _ (this (G j).2) (G n).2) (hn _ $ le_refl _) }, refine ⟨real.lim c, λ s h, _⟩, rcases mem_nhds_iff_metric.1 h with ⟨ε, ε0, hε⟩, cases exists_forall_ge_and (hg _ $ half_pos ε0) (real.equiv_lim c _ $ half_pos ε0) with n hn, cases hn _ (le_refl _) with h₁ h₂, refine upwards_sets _ (F n).1.2 (subset.trans _ $ subset.trans (ball_half_subset (G n) h₂) hε), exact λ x h, lt_trans ((F n).2 x (G n) h (G n).2) h₁ end⟩ -- TODO(Mario): This proof has nothing to do with reals theorem real.Cauchy_eq {f g : Cauchy ℝ} : lim f.1 = lim g.1 ↔ (f, g) ∈ separation_rel (Cauchy ℝ) := begin split, { intros e s hs, rcases Cauchy.mem_uniformity'.1 hs with ⟨t, tu, ts⟩, apply ts, rcases comp_mem_uniformity_sets tu with ⟨d, du, dt⟩, refine mem_prod_iff.2 ⟨_, le_nhds_lim_of_cauchy f.2 (mem_nhds_right (lim f.1) du), _, le_nhds_lim_of_cauchy g.2 (mem_nhds_left (lim g.1) du), λ x h, _⟩, cases x with a b, cases h with h₁ h₂, rw ← e at h₂, exact dt ⟨_, h₁, h₂⟩ }, { intros H, refine separated_def.1 (by apply_instance) _ _ (λ t tu, _), rcases mem_uniformity_is_closed tu with ⟨d, du, dc, dt⟩, refine H {p | (lim p.1.1, lim p.2.1) ∈ t} (Cauchy.mem_uniformity'.2 ⟨d, du, λ f g h, _⟩), rcases mem_prod_iff.1 h with ⟨x, xf, y, yg, h⟩, have limc : ∀ (f : Cauchy ℝ) (x ∈ f.1.sets), lim f.1 ∈ closure x, { intros f x xf, rw closure_eq_nhds, exact neq_bot_of_le_neq_bot f.2.1 (le_inf (le_nhds_lim_of_cauchy f.2) (le_principal_iff.2 xf)) }, have := (closure_subset_iff_subset_of_is_closed dc).2 h, rw closure_prod_eq at this, refine dt (this ⟨_, _⟩); dsimp; apply limc; assumption } end section lemma closure_of_rat_image_lt {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q < x}) = {r | ↑q ≤ r} := subset.antisymm ((closure_subset_iff_subset_of_is_closed (is_closed_ge' _)).2 (image_subset_iff.2 $ λ p h, le_of_lt $ (@rat.cast_lt ℝ _ _ _).2 h)) $ λ x hx, mem_closure_iff_nhds.2 $ λ t ht, let ⟨ε, ε0, hε⟩ := mem_nhds_iff_metric.1 ht in let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0) in ne_empty_iff_exists_mem.2 ⟨_, hε (show abs _ < _, by rwa [abs_of_nonneg (le_of_lt $ sub_pos.2 h₁), sub_lt_iff_lt_add']), p, rat.cast_lt.1 (@lt_of_le_of_lt ℝ _ _ _ _ hx h₁), rfl⟩ /- TODO(Mario): Put these back only if needed later lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} := _ lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) : closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} := _-/ lemma compact_ivl {a b : ℝ} : compact {r:ℝ | a ≤ r ∧ r ≤ b} := compact_of_totally_bounded_is_closed (real.totally_bounded_Icc a b) (is_closed_inter (is_closed_ge' a) (is_closed_le' b)) lemma exists_supremum_real {s : set ℝ} {a b : ℝ} (ha : a ∈ s) (hb : b ∈ upper_bounds s) : ∃x, is_lub s x := ⟨real.Sup s, λ x xs, real.le_Sup s ⟨_, hb⟩ xs, λ u h, real.Sup_le_ub _ ⟨_, ha⟩ h⟩ end
3d71940c528b79370ecc9d464a138706203309d1
037dba89703a79cd4a4aec5e959818147f97635d
/src/2020/logic/logic_video.lean
643b5fa0e3f29f9786be11ab30b2989fff9f39d9
[]
no_license
ImperialCollegeLondon/M40001_lean
3a6a09298da395ab51bc220a535035d45bbe919b
62a76fa92654c855af2b2fc2bef8e60acd16ccec
refs/heads/master
1,666,750,403,259
1,665,771,117,000
1,665,771,117,000
209,141,835
115
12
null
1,640,270,596,000
1,568,749,174,000
Lean
UTF-8
Lean
false
false
2,102
lean
import tactic -- Definition: a Proposition is a type `P`, where `P : Prop`. variables (P Q R : Prop) -- In Lean, `P → Q` means `P ⇒ Q` example : P → P := begin intro hP, -- let hP be the hypothesis that P is true exact hP, -- our goal is exactly our hypothesis end example : P → (Q → P) := begin intro hP, -- let hP be the hypothesis that P is true intro hQ, exact hP, end -- is → associative? i.e. Does (P → Q) → R equal P → (Q → R) ? -- (A+B)+C = A+(B+C) -- (A-B)-C ≠ A-(B-C) -- (A-B)-C -- 2^(1^3) -- this is the convention for powers -- CONVENTION: P → Q → R with no brackets MEANS P → (Q → R) example : P → Q → P := begin intro hP, intro hQ, exact hP, end /-- Modus Ponens : if P is true, and P → Q, then Q is true -/ theorem modus_ponens : P → (P → Q) → Q := begin intro hP, intro hPQ, -- hPQ is the hypothesis that P → Q apply hPQ, -- apply the hypothesis that P → Q exact hP, end -- If `a<b` and `b<c` then `a<c` -- that's called "transitivity of <" -- theorem transitivity : (P → Q) → (Q → R) → (P → R) := -- begin -- sorry -- end example : (P → Q → R) → (P → Q) → (P → R) := begin intro hPQR, intro hPQ, intro hP, apply hPQR, assumption, apply hPQ, assumption, end -- in Lean, the definition of ¬ P is `P → false` -- if P is true, ¬ P is false, and P → false is false -- if P is false, then ¬ P is true, and P → false is true example : P → ¬ (¬ P) := begin intro hP, change (¬ P → false), intro hnP, change P → false at hnP, apply hnP, assumption, end example : ¬ (¬ P) → P := begin finish, end example : P → ¬ (¬ P) := begin apply modus_ponens, end -- and example : P ∧ Q → P := begin intro hPaQ, cases hPaQ with hP hQ, assumption, end theorem and.elim' : P ∧ Q → (P → Q → R) → R := begin intro hPaQ, intro hPQR, cases hPaQ with hP hQ, apply hPQR; assumption, end theorem and.intro' : P → Q → P ∧ Q := begin intro hP, intro hQ, split, assumption, assumption, end
1fd8b7bfc53a117b9c5c5a15de87324655fa04f9
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/algebra/group/commute.lean
b8227479be7cc704cf0c974a9a6d07566da16a5f
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
9,662
lean
/- Copyright (c) 2019 Neil Strickland. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Neil Strickland, Yury Kudryashov -/ import algebra.group.semiconj /-! # Commuting pairs of elements in monoids > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We define the predicate `commute a b := a * b = b * a` and provide some operations on terms `(h : commute a b)`. E.g., if `a`, `b`, and c are elements of a semiring, and that `hb : commute a b` and `hc : commute a c`. Then `hb.pow_left 5` proves `commute (a ^ 5) b` and `(hb.pow_right 2).add_right (hb.mul_right hc)` proves `commute a (b ^ 2 + b * c)`. Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like `rw [(hb.pow_left 5).eq]` rather than just `rw [hb.pow_left 5]`. This file defines only a few operations (`mul_left`, `inv_right`, etc). Other operations (`pow_right`, field inverse etc) are in the files that define corresponding notions. ## Implementation details Most of the proofs come from the properties of `semiconj_by`. -/ variables {G : Type*} /-- Two elements commute if `a * b = b * a`. -/ @[to_additive add_commute "Two elements additively commute if `a + b = b + a`"] def commute {S : Type*} [has_mul S] (a b : S) : Prop := semiconj_by a b b namespace commute section has_mul variables {S : Type*} [has_mul S] /-- Equality behind `commute a b`; useful for rewriting. -/ @[to_additive "Equality behind `add_commute a b`; useful for rewriting."] protected lemma eq {a b : S} (h : commute a b) : a * b = b * a := h /-- Any element commutes with itself. -/ @[refl, simp, to_additive "Any element commutes with itself."] protected lemma refl (a : S) : commute a a := eq.refl (a * a) /-- If `a` commutes with `b`, then `b` commutes with `a`. -/ @[symm, to_additive "If `a` commutes with `b`, then `b` commutes with `a`."] protected lemma symm {a b : S} (h : commute a b) : commute b a := eq.symm h @[to_additive] protected theorem semiconj_by {a b : S} (h : commute a b) : semiconj_by a b b := h @[to_additive] protected theorem symm_iff {a b : S} : commute a b ↔ commute b a := ⟨commute.symm, commute.symm⟩ @[to_additive] instance : is_refl S commute := ⟨commute.refl⟩ -- This instance is useful for `finset.noncomm_prod` @[to_additive] instance on_is_refl {f : G → S} : is_refl G (λ a b, commute (f a) (f b)) := ⟨λ _, commute.refl _⟩ end has_mul section semigroup variables {S : Type*} [semigroup S] {a b c : S} /-- If `a` commutes with both `b` and `c`, then it commutes with their product. -/ @[simp, to_additive "If `a` commutes with both `b` and `c`, then it commutes with their sum."] lemma mul_right (hab : commute a b) (hac : commute a c) : commute a (b * c) := hab.mul_right hac /-- If both `a` and `b` commute with `c`, then their product commutes with `c`. -/ @[simp, to_additive "If both `a` and `b` commute with `c`, then their product commutes with `c`."] lemma mul_left (hac : commute a c) (hbc : commute b c) : commute (a * b) c := hac.mul_left hbc @[to_additive] protected lemma right_comm (h : commute b c) (a : S) : a * b * c = a * c * b := by simp only [mul_assoc, h.eq] @[to_additive] protected lemma left_comm (h : commute a b) (c) : a * (b * c) = b * (a * c) := by simp only [← mul_assoc, h.eq] @[to_additive] protected lemma mul_mul_mul_comm (hbc : commute b c) (a d : S) : (a * b) * (c * d) = (a * c) * (b * d) := by simp only [hbc.left_comm, mul_assoc] end semigroup @[to_additive] protected theorem all {S : Type*} [comm_semigroup S] (a b : S) : commute a b := mul_comm a b section mul_one_class variables {M : Type*} [mul_one_class M] @[simp, to_additive] theorem one_right (a : M) : commute a 1 := semiconj_by.one_right a @[simp, to_additive] theorem one_left (a : M) : commute 1 a := semiconj_by.one_left a end mul_one_class section monoid variables {M : Type*} [monoid M] {a b : M} {u u₁ u₂ : Mˣ} @[simp, to_additive] theorem pow_right (h : commute a b) (n : ℕ) : commute a (b ^ n) := h.pow_right n @[simp, to_additive] theorem pow_left (h : commute a b) (n : ℕ) : commute (a ^ n) b := (h.symm.pow_right n).symm @[simp, to_additive] theorem pow_pow (h : commute a b) (m n : ℕ) : commute (a ^ m) (b ^ n) := (h.pow_left m).pow_right n @[simp, to_additive] theorem self_pow (a : M) (n : ℕ) : commute a (a ^ n) := (commute.refl a).pow_right n @[simp, to_additive] theorem pow_self (a : M) (n : ℕ) : commute (a ^ n) a := (commute.refl a).pow_left n @[simp, to_additive] theorem pow_pow_self (a : M) (m n : ℕ) : commute (a ^ m) (a ^ n) := (commute.refl a).pow_pow m n @[to_additive succ_nsmul'] theorem _root_.pow_succ' (a : M) (n : ℕ) : a ^ (n + 1) = a ^ n * a := (pow_succ a n).trans (self_pow _ _) @[to_additive] theorem units_inv_right : commute a u → commute a ↑u⁻¹ := semiconj_by.units_inv_right @[simp, to_additive] theorem units_inv_right_iff : commute a ↑u⁻¹ ↔ commute a u := semiconj_by.units_inv_right_iff @[to_additive] theorem units_inv_left : commute ↑u a → commute ↑u⁻¹ a := semiconj_by.units_inv_symm_left @[simp, to_additive] theorem units_inv_left_iff: commute ↑u⁻¹ a ↔ commute ↑u a := semiconj_by.units_inv_symm_left_iff @[to_additive] theorem units_coe : commute u₁ u₂ → commute (u₁ : M) u₂ := semiconj_by.units_coe @[to_additive] theorem units_of_coe : commute (u₁ : M) u₂ → commute u₁ u₂ := semiconj_by.units_of_coe @[simp, to_additive] theorem units_coe_iff : commute (u₁ : M) u₂ ↔ commute u₁ u₂ := semiconj_by.units_coe_iff /-- If the product of two commuting elements is a unit, then the left multiplier is a unit. -/ @[to_additive "If the sum of two commuting elements is an additive unit, then the left summand is an additive unit."] def _root_.units.left_of_mul (u : Mˣ) (a b : M) (hu : a * b = u) (hc : commute a b) : Mˣ := { val := a, inv := b * ↑u⁻¹, val_inv := by rw [← mul_assoc, hu, u.mul_inv], inv_val := have commute a u, from hu ▸ (commute.refl _).mul_right hc, by rw [← this.units_inv_right.right_comm, ← hc.eq, hu, u.mul_inv] } /-- If the product of two commuting elements is a unit, then the right multiplier is a unit. -/ @[to_additive "If the sum of two commuting elements is an additive unit, then the right summand is an additive unit."] def _root_.units.right_of_mul (u : Mˣ) (a b : M) (hu : a * b = u) (hc : commute a b) : Mˣ := u.left_of_mul b a (hc.eq ▸ hu) hc.symm @[to_additive] lemma is_unit_mul_iff (h : commute a b) : is_unit (a * b) ↔ is_unit a ∧ is_unit b := ⟨λ ⟨u, hu⟩, ⟨(u.left_of_mul a b hu.symm h).is_unit, (u.right_of_mul a b hu.symm h).is_unit⟩, λ H, H.1.mul H.2⟩ @[simp, to_additive] lemma _root_.is_unit_mul_self_iff : is_unit (a * a) ↔ is_unit a := (commute.refl a).is_unit_mul_iff.trans (and_self _) end monoid section division_monoid variables [division_monoid G] {a b c d : G} @[to_additive] protected lemma inv_inv : commute a b → commute a⁻¹ b⁻¹ := semiconj_by.inv_inv_symm @[simp, to_additive] lemma inv_inv_iff : commute a⁻¹ b⁻¹ ↔ commute a b := semiconj_by.inv_inv_symm_iff @[to_additive] protected lemma mul_inv (hab : commute a b) : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by rw [hab.eq, mul_inv_rev] @[to_additive] protected lemma inv (hab : commute a b) : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by rw [hab.eq, mul_inv_rev] @[to_additive] protected lemma div_mul_div_comm (hbd : commute b d) (hbc : commute b⁻¹ c) : a / b * (c / d) = a * c / (b * d) := by simp_rw [div_eq_mul_inv, mul_inv_rev, hbd.inv_inv.symm.eq, hbc.mul_mul_mul_comm] @[to_additive] protected lemma mul_div_mul_comm (hcd : commute c d) (hbc : commute b c⁻¹) : a * b / (c * d) = a / c * (b / d) := (hcd.div_mul_div_comm hbc.symm).symm @[to_additive] protected lemma div_div_div_comm (hbc : commute b c) (hbd : commute b⁻¹ d) (hcd : commute c⁻¹ d) : a / b / (c / d) = a / c / (b / d) := by simp_rw [div_eq_mul_inv, mul_inv_rev, inv_inv, hbd.symm.eq, hcd.symm.eq, hbc.inv_inv.mul_mul_mul_comm] end division_monoid section group variables [group G] {a b : G} @[to_additive] theorem inv_right : commute a b → commute a b⁻¹ := semiconj_by.inv_right @[simp, to_additive] theorem inv_right_iff : commute a b⁻¹ ↔ commute a b := semiconj_by.inv_right_iff @[to_additive] theorem inv_left : commute a b → commute a⁻¹ b := semiconj_by.inv_symm_left @[simp, to_additive] theorem inv_left_iff : commute a⁻¹ b ↔ commute a b := semiconj_by.inv_symm_left_iff @[to_additive] protected theorem inv_mul_cancel (h : commute a b) : a⁻¹ * b * a = b := by rw [h.inv_left.eq, inv_mul_cancel_right] @[to_additive] theorem inv_mul_cancel_assoc (h : commute a b) : a⁻¹ * (b * a) = b := by rw [← mul_assoc, h.inv_mul_cancel] @[to_additive] protected theorem mul_inv_cancel (h : commute a b) : a * b * a⁻¹ = b := by rw [h.eq, mul_inv_cancel_right] @[to_additive] theorem mul_inv_cancel_assoc (h : commute a b) : a * (b * a⁻¹) = b := by rw [← mul_assoc, h.mul_inv_cancel] end group end commute section comm_group variables [comm_group G] (a b : G) @[simp, to_additive] lemma mul_inv_cancel_comm : a * b * a⁻¹ = b := (commute.all a b).mul_inv_cancel @[simp, to_additive] lemma mul_inv_cancel_comm_assoc : a * (b * a⁻¹) = b := (commute.all a b).mul_inv_cancel_assoc @[simp, to_additive] lemma inv_mul_cancel_comm : a⁻¹ * b * a = b := (commute.all a b).inv_mul_cancel @[simp, to_additive] lemma inv_mul_cancel_comm_assoc : a⁻¹ * (b * a) = b := (commute.all a b).inv_mul_cancel_assoc end comm_group
195d11a0d7587105e4d2337d68e849456202512f
4b846d8dabdc64e7ea03552bad8f7fa74763fc67
/library/init/data/option/basic.lean
aa98a6cb1eab4084fce598a1e368fce2f0f7b26c
[ "Apache-2.0" ]
permissive
pacchiano/lean
9324b33f3ac3b5c5647285160f9f6ea8d0d767dc
fdadada3a970377a6df8afcd629a6f2eab6e84e8
refs/heads/master
1,611,357,380,399
1,489,870,101,000
1,489,870,101,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
3,148
lean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.logic init.category open decidable universes u v namespace option def to_monad {m : Type → Type} [monad m] [alternative m] {A} : option A → m A | none := failure | (some a) := return a def get_or_else {α : Type u} : option α → α → α | (some x) _ := x | none e := e def is_some {α : Type u} : option α → bool | (some _) := tt | none := ff def is_none {α : Type u} : option α → bool | (some _) := ff | none := tt def rhoare {α : Type u} : bool → α → option α | tt a := none | ff a := some a def lhoare {α : Type u} : α → option α → α | a none := a | _ (some b) := b infixr `|>`:1 := rhoare infixr `<|`:1 := lhoare end option instance (α : Type u) : inhabited (option α) := ⟨none⟩ instance {α : Type u} [d : decidable_eq α] : decidable_eq (option α) | none none := is_true rfl | none (some v₂) := is_false (λ h, option.no_confusion h) | (some v₁) none := is_false (λ h, option.no_confusion h) | (some v₁) (some v₂) := match (d v₁ v₂) with | (is_true e) := is_true (congr_arg (@some α) e) | (is_false n) := is_false (λ h, option.no_confusion h (λ e, absurd e n)) end @[inline] def option_bind {α : Type u} {β : Type v} : option α → (α → option β) → option β | none b := none | (some a) b := b a instance : monad option := {pure := @some, bind := @option_bind} def option_orelse {α : Type u} : option α → option α → option α | (some a) o := some a | none (some a) := some a | none none := none instance : alternative option := { option.monad with failure := @none, orelse := @option_orelse } def option_t (m : Type u → Type v) [monad m] (α : Type u) : Type v := m (option α) @[inline] def option_t_bind {m : Type u → Type v} [monad m] {α β : Type u} (a : option_t m α) (b : α → option_t m β) : option_t m β := show m (option β), from do o ← a, match o with | none := return none | (some a) := b a end @[inline] def option_t_return {m : Type u → Type v} [monad m] {α : Type u} (a : α) : option_t m α := show m (option α), from return (some a) instance {m : Type u → Type v} [monad m] : monad (option_t m) := {pure := @option_t_return m _, bind := @option_t_bind m _} def option_t_orelse {m : Type u → Type v} [monad m] {α : Type u} (a : option_t m α) (b : option_t m α) : option_t m α := show m (option α), from do o ← a, match o with | none := b | (some v) := return (some v) end def option_t_fail {m : Type u → Type v} [monad m] {α : Type u} : option_t m α := show m (option α), from return none instance {m : Type u → Type v} [monad m] : alternative (option_t m) := { option_t.monad with failure := @option_t_fail m _, orelse := @option_t_orelse m _ } def option_t.lift {m : Type u → Type v} [monad m] {α : Type u} (a : m α) : option_t m α := (some <$> a : m (option α))
33e62343f37416c336fb21249e495bf1a2855047
4b846d8dabdc64e7ea03552bad8f7fa74763fc67
/tests/lean/let_elim_issue.lean
6e002b596560260fba7b232e87b3ee362f8b404e
[ "Apache-2.0" ]
permissive
pacchiano/lean
9324b33f3ac3b5c5647285160f9f6ea8d0d767dc
fdadada3a970377a6df8afcd629a6f2eab6e84e8
refs/heads/master
1,611,357,380,399
1,489,870,101,000
1,489,870,101,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
124
lean
import system.io open io def tst : io unit := put_str "hello\n" >> put_str "world\n" >> put_str "from Lean\n" #eval tst
c39a556af891428af39d24aaecef30061d00373e
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/linear_algebra/quadratic_form/basic.lean
d67715f33d6d6fd30c02efa162c4023bc6b58e81
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
36,605
lean
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Kexing Ying, Eric Wieser -/ import algebra.invertible import linear_algebra.bilinear_form import linear_algebra.matrix.determinant import linear_algebra.special_linear_group /-! # Quadratic forms This file defines quadratic forms over a `R`-module `M`. A quadratic form is a map `Q : M → R` such that (`to_fun_smul`) `Q (a • x) = a * a * Q x` (`polar_...`) The map `polar Q := λ x y, Q (x + y) - Q x - Q y` is bilinear. They come with a scalar multiplication, `(a • Q) x = Q (a • x) = a * a * Q x`, and composition with linear maps `f`, `Q.comp f x = Q (f x)`. ## Main definitions * `quadratic_form.associated`: associated bilinear form * `quadratic_form.pos_def`: positive definite quadratic forms * `quadratic_form.anisotropic`: anisotropic quadratic forms * `quadratic_form.discr`: discriminant of a quadratic form ## Main statements * `quadratic_form.associated_left_inverse`, * `quadratic_form.associated_right_inverse`: in a commutative ring where 2 has an inverse, there is a correspondence between quadratic forms and symmetric bilinear forms * `bilin_form.exists_orthogonal_basis`: There exists an orthogonal basis with respect to any nondegenerate, symmetric bilinear form `B`. ## Notation In this file, the variable `R` is used when a `ring` structure is sufficient and `R₁` is used when specifically a `comm_ring` is required. This allows us to keep `[module R M]` and `[module R₁ M]` assumptions in the variables without confusion between `*` from `ring` and `*` from `comm_ring`. The variable `S` is used when `R` itself has a `•` action. ## References * https://en.wikipedia.org/wiki/Quadratic_form * https://en.wikipedia.org/wiki/Discriminant#Quadratic_forms ## Tags quadratic form, homogeneous polynomial, quadratic polynomial -/ universes u v w variables {S : Type*} variables {R : Type*} {M : Type*} [add_comm_group M] [ring R] variables {R₁ : Type*} [comm_ring R₁] namespace quadratic_form /-- Up to a factor 2, `Q.polar` is the associated bilinear form for a quadratic form `Q`.d Source of this name: https://en.wikipedia.org/wiki/Quadratic_form#Generalization -/ def polar (f : M → R) (x y : M) := f (x + y) - f x - f y lemma polar_add (f g : M → R) (x y : M) : polar (f + g) x y = polar f x y + polar g x y := by { simp only [polar, pi.add_apply], abel } lemma polar_neg (f : M → R) (x y : M) : polar (-f) x y = - polar f x y := by { simp only [polar, pi.neg_apply, sub_eq_add_neg, neg_add] } lemma polar_smul [monoid S] [distrib_mul_action S R] (f : M → R) (s : S) (x y : M) : polar (s • f) x y = s • polar f x y := by { simp only [polar, pi.smul_apply, smul_sub] } lemma polar_comm (f : M → R) (x y : M) : polar f x y = polar f y x := by rw [polar, polar, add_comm, sub_sub, sub_sub, add_comm (f x) (f y)] end quadratic_form variables [module R M] [module R₁ M] open quadratic_form /-- A quadratic form over a module. -/ structure quadratic_form (R : Type u) (M : Type v) [ring R] [add_comm_group M] [module R M] := (to_fun : M → R) (to_fun_smul : ∀ (a : R) (x : M), to_fun (a • x) = a * a * to_fun x) (polar_add_left' : ∀ (x x' y : M), polar to_fun (x + x') y = polar to_fun x y + polar to_fun x' y) (polar_smul_left' : ∀ (a : R) (x y : M), polar to_fun (a • x) y = a • polar to_fun x y) (polar_add_right' : ∀ (x y y' : M), polar to_fun x (y + y') = polar to_fun x y + polar to_fun x y') (polar_smul_right' : ∀ (a : R) (x y : M), polar to_fun x (a • y) = a • polar to_fun x y) namespace quadratic_form variables {Q : quadratic_form R M} instance : has_coe_to_fun (quadratic_form R M) (λ _, M → R) := ⟨to_fun⟩ /-- The `simp` normal form for a quadratic form is `coe_fn`, not `to_fun`. -/ @[simp] lemma to_fun_eq_apply : Q.to_fun = ⇑ Q := rfl lemma map_smul (a : R) (x : M) : Q (a • x) = a * a * Q x := Q.to_fun_smul a x lemma map_add_self (x : M) : Q (x + x) = 4 * Q x := by { rw [←one_smul R x, ←add_smul, map_smul], norm_num } @[simp] lemma map_zero : Q 0 = 0 := by rw [←@zero_smul R _ _ _ _ (0 : M), map_smul, zero_mul, zero_mul] @[simp] lemma map_neg (x : M) : Q (-x) = Q x := by rw [←@neg_one_smul R _ _ _ _ x, map_smul, neg_one_mul, neg_neg, one_mul] lemma map_sub (x y : M) : Q (x - y) = Q (y - x) := by rw [←neg_sub, map_neg] @[simp] lemma polar_zero_left (y : M) : polar Q 0 y = 0 := by simp only [polar, zero_add, quadratic_form.map_zero, sub_zero, sub_self] @[simp] lemma polar_add_left (x x' y : M) : polar Q (x + x') y = polar Q x y + polar Q x' y := Q.polar_add_left' x x' y @[simp] lemma polar_smul_left (a : R) (x y : M) : polar Q (a • x) y = a * polar Q x y := Q.polar_smul_left' a x y @[simp] lemma polar_neg_left (x y : M) : polar Q (-x) y = -polar Q x y := by rw [←neg_one_smul R x, polar_smul_left, neg_one_mul] @[simp] lemma polar_sub_left (x x' y : M) : polar Q (x - x') y = polar Q x y - polar Q x' y := by rw [sub_eq_add_neg, sub_eq_add_neg, polar_add_left, polar_neg_left] @[simp] lemma polar_zero_right (y : M) : polar Q y 0 = 0 := by simp only [add_zero, polar, quadratic_form.map_zero, sub_self] @[simp] lemma polar_add_right (x y y' : M) : polar Q x (y + y') = polar Q x y + polar Q x y' := Q.polar_add_right' x y y' @[simp] lemma polar_smul_right (a : R) (x y : M) : polar Q x (a • y) = a * polar Q x y := Q.polar_smul_right' a x y @[simp] lemma polar_neg_right (x y : M) : polar Q x (-y) = -polar Q x y := by rw [←neg_one_smul R y, polar_smul_right, neg_one_mul] @[simp] lemma polar_sub_right (x y y' : M) : polar Q x (y - y') = polar Q x y - polar Q x y' := by rw [sub_eq_add_neg, sub_eq_add_neg, polar_add_right, polar_neg_right] @[simp] lemma polar_self (x : M) : polar Q x x = 2 * Q x := begin rw [polar, map_add_self, sub_sub, sub_eq_iff_eq_add, ←two_mul, ←two_mul, ←mul_assoc], norm_num end section of_tower variables [comm_semiring S] [algebra S R] [module S M] [is_scalar_tower S R M] @[simp] lemma polar_smul_left_of_tower (a : S) (x y : M) : polar Q (a • x) y = a • polar Q x y := by rw [←is_scalar_tower.algebra_map_smul R a x, polar_smul_left, algebra.smul_def] @[simp] lemma polar_smul_right_of_tower (a : S) (x y : M) : polar Q x (a • y) = a • polar Q x y := by rw [←is_scalar_tower.algebra_map_smul R a y, polar_smul_right, algebra.smul_def] end of_tower variable {Q' : quadratic_form R M} @[ext] lemma ext (H : ∀ (x : M), Q x = Q' x) : Q = Q' := by { cases Q, cases Q', congr, funext, apply H } lemma congr_fun (h : Q = Q') (x : M) : Q x = Q' x := h ▸ rfl lemma ext_iff : Q = Q' ↔ (∀ x, Q x = Q' x) := ⟨congr_fun, ext⟩ instance : has_zero (quadratic_form R M) := ⟨ { to_fun := λ x, 0, to_fun_smul := λ a x, by simp only [mul_zero], polar_add_left' := λ x x' y, by simp only [add_zero, polar, sub_self], polar_smul_left' := λ a x y, by simp only [polar, smul_zero, sub_self], polar_add_right' := λ x y y', by simp only [add_zero, polar, sub_self], polar_smul_right' := λ a x y, by simp only [polar, smul_zero, sub_self]} ⟩ @[simp] lemma coe_fn_zero : ⇑(0 : quadratic_form R M) = 0 := rfl @[simp] lemma zero_apply (x : M) : (0 : quadratic_form R M) x = 0 := rfl instance : inhabited (quadratic_form R M) := ⟨0⟩ instance : has_add (quadratic_form R M) := ⟨ λ Q Q', { to_fun := Q + Q', to_fun_smul := λ a x, by simp only [pi.add_apply, map_smul, mul_add], polar_add_left' := λ x x' y, by simp only [polar_add, polar_add_left, add_assoc, add_left_comm], polar_smul_left' := λ a x y, by simp only [polar_add, smul_eq_mul, mul_add, polar_smul_left], polar_add_right' := λ x y y', by simp only [polar_add, polar_add_right, add_assoc, add_left_comm], polar_smul_right' := λ a x y, by simp only [polar_add, smul_eq_mul, mul_add, polar_smul_right] } ⟩ @[simp] lemma coe_fn_add (Q Q' : quadratic_form R M) : ⇑(Q + Q') = Q + Q' := rfl @[simp] lemma add_apply (Q Q' : quadratic_form R M) (x : M) : (Q + Q') x = Q x + Q' x := rfl instance : has_neg (quadratic_form R M) := ⟨ λ Q, { to_fun := -Q, to_fun_smul := λ a x, by simp only [pi.neg_apply, map_smul, mul_neg_eq_neg_mul_symm], polar_add_left' := λ x x' y, by simp only [polar_neg, polar_add_left, neg_add], polar_smul_left' := λ a x y, by simp only [polar_neg, polar_smul_left, mul_neg_eq_neg_mul_symm, smul_eq_mul], polar_add_right' := λ x y y', by simp only [polar_neg, polar_add_right, neg_add], polar_smul_right' := λ a x y, by simp only [polar_neg, polar_smul_right, mul_neg_eq_neg_mul_symm, smul_eq_mul] } ⟩ @[simp] lemma coe_fn_neg (Q : quadratic_form R M) : ⇑(-Q) = -Q := rfl @[simp] lemma neg_apply (Q : quadratic_form R M) (x : M) : (-Q) x = -Q x := rfl instance : add_comm_group (quadratic_form R M) := { add := (+), zero := 0, neg := has_neg.neg, add_comm := λ Q Q', by { ext, simp only [add_apply, add_comm] }, add_assoc := λ Q Q' Q'', by { ext, simp only [add_apply, add_assoc] }, add_left_neg := λ Q, by { ext, simp only [add_apply, neg_apply, zero_apply, add_left_neg] }, add_zero := λ Q, by { ext, simp only [zero_apply, add_apply, add_zero] }, zero_add := λ Q, by { ext, simp only [zero_apply, add_apply, zero_add] } } @[simp] lemma coe_fn_sub (Q Q' : quadratic_form R M) : ⇑(Q - Q') = Q - Q' := by simp only [quadratic_form.coe_fn_neg, add_left_inj, quadratic_form.coe_fn_add, sub_eq_add_neg] @[simp] lemma sub_apply (Q Q' : quadratic_form R M) (x : M) : (Q - Q') x = Q x - Q' x := by simp only [quadratic_form.neg_apply, add_left_inj, quadratic_form.add_apply, sub_eq_add_neg] /-- `@coe_fn (quadratic_form R M)` as an `add_monoid_hom`. This API mirrors `add_monoid_hom.coe_fn`. -/ @[simps apply] def coe_fn_add_monoid_hom : quadratic_form R M →+ (M → R) := { to_fun := coe_fn, map_zero' := coe_fn_zero, map_add' := coe_fn_add } /-- Evaluation on a particular element of the module `M` is an additive map over quadratic forms. -/ @[simps apply] def eval_add_monoid_hom (m : M) : quadratic_form R M →+ R := (pi.eval_add_monoid_hom _ m).comp coe_fn_add_monoid_hom section sum open_locale big_operators @[simp] lemma coe_fn_sum {ι : Type*} (Q : ι → quadratic_form R M) (s : finset ι) : ⇑(∑ i in s, Q i) = ∑ i in s, Q i := (coe_fn_add_monoid_hom : _ →+ (M → R)).map_sum Q s @[simp] lemma sum_apply {ι : Type*} (Q : ι → quadratic_form R M) (s : finset ι) (x : M) : (∑ i in s, Q i) x = ∑ i in s, Q i x := (eval_add_monoid_hom x : _ →+ R).map_sum Q s end sum section has_scalar variables [monoid S] [distrib_mul_action S R] [smul_comm_class S R R] /-- `quadratic_form R M` inherits the scalar action from any algebra over `R`. When `R` is commutative, this provides an `R`-action via `algebra.id`. -/ instance : has_scalar S (quadratic_form R M) := ⟨ λ a Q, { to_fun := a • Q, to_fun_smul := λ b x, by rw [pi.smul_apply, map_smul, pi.smul_apply, mul_smul_comm], polar_add_left' := λ x x' y, by simp only [polar_smul, polar_add_left, smul_add], polar_smul_left' := λ b x y, begin simp only [polar_smul, polar_smul_left, ←mul_smul_comm, smul_eq_mul], end, polar_add_right' := λ x y y', by simp only [polar_smul, polar_add_right, smul_add], polar_smul_right' := λ b x y, begin simp only [polar_smul, polar_smul_right, ←mul_smul_comm, smul_eq_mul], end } ⟩ @[simp] lemma coe_fn_smul (a : S) (Q : quadratic_form R M) : ⇑(a • Q) = a • Q := rfl @[simp] lemma smul_apply (a : S) (Q : quadratic_form R M) (x : M) : (a • Q) x = a • Q x := rfl instance : distrib_mul_action S (quadratic_form R M) := { mul_smul := λ a b Q, ext (λ x, by simp only [smul_apply, mul_smul]), one_smul := λ Q, ext (λ x, by simp only [quadratic_form.smul_apply, one_smul]), smul_add := λ a Q Q', by { ext, simp only [add_apply, smul_apply, smul_add] }, smul_zero := λ a, by { ext, simp only [zero_apply, smul_apply, smul_zero] }, } end has_scalar section module instance [semiring S] [module S R] [smul_comm_class S R R] : module S (quadratic_form R M) := { zero_smul := λ Q, by { ext, simp only [zero_apply, smul_apply, zero_smul] }, add_smul := λ a b Q, by { ext, simp only [add_apply, smul_apply, add_smul] } } end module section comp variables {N : Type v} [add_comm_group N] [module R N] /-- Compose the quadratic form with a linear function. -/ def comp (Q : quadratic_form R N) (f : M →ₗ[R] N) : quadratic_form R M := { to_fun := λ x, Q (f x), to_fun_smul := λ a x, by simp only [map_smul, f.map_smul], polar_add_left' := λ x x' y, by convert polar_add_left (f x) (f x') (f y) using 1; simp only [polar, f.map_add], polar_smul_left' := λ a x y, by convert polar_smul_left a (f x) (f y) using 1; simp only [polar, f.map_smul, f.map_add, smul_eq_mul], polar_add_right' := λ x y y', by convert polar_add_right (f x) (f y) (f y') using 1; simp only [polar, f.map_add], polar_smul_right' := λ a x y, by convert polar_smul_right a (f x) (f y) using 1; simp only [polar, f.map_smul, f.map_add, smul_eq_mul] } @[simp] lemma comp_apply (Q : quadratic_form R N) (f : M →ₗ[R] N) (x : M) : (Q.comp f) x = Q (f x) := rfl end comp section comm_ring /-- Create a quadratic form in a commutative ring by proving only one side of the bilinearity. -/ def mk_left (f : M → R₁) (to_fun_smul : ∀ a x, f (a • x) = a * a * f x) (polar_add_left : ∀ x x' y, polar f (x + x') y = polar f x y + polar f x' y) (polar_smul_left : ∀ a x y, polar f (a • x) y = a * polar f x y) : quadratic_form R₁ M := { to_fun := f, to_fun_smul := to_fun_smul, polar_add_left' := polar_add_left, polar_smul_left' := polar_smul_left, polar_add_right' := λ x y y', by rw [polar_comm, polar_add_left, polar_comm f y x, polar_comm f y' x], polar_smul_right' := λ a x y, by rw [polar_comm, polar_smul_left, polar_comm f y x, smul_eq_mul] } /-- The product of linear forms is a quadratic form. -/ def lin_mul_lin (f g : M →ₗ[R₁] R₁) : quadratic_form R₁ M := mk_left (f * g) (λ a x, by { simp only [smul_eq_mul, ring_hom.id_apply, pi.mul_apply, linear_map.map_smulₛₗ], ring }) (λ x x' y, by { simp only [polar, pi.mul_apply, linear_map.map_add], ring }) (λ a x y, begin simp only [polar, pi.mul_apply, linear_map.map_add, linear_map.map_smul, smul_eq_mul], ring end) @[simp] lemma lin_mul_lin_apply (f g : M →ₗ[R₁] R₁) (x) : lin_mul_lin f g x = f x * g x := rfl @[simp] lemma add_lin_mul_lin (f g h : M →ₗ[R₁] R₁) : lin_mul_lin (f + g) h = lin_mul_lin f h + lin_mul_lin g h := ext (λ x, add_mul _ _ _) @[simp] lemma lin_mul_lin_add (f g h : M →ₗ[R₁] R₁) : lin_mul_lin f (g + h) = lin_mul_lin f g + lin_mul_lin f h := ext (λ x, mul_add _ _ _) variables {N : Type v} [add_comm_group N] [module R₁ N] @[simp] lemma lin_mul_lin_comp (f g : M →ₗ[R₁] R₁) (h : N →ₗ[R₁] M) : (lin_mul_lin f g).comp h = lin_mul_lin (f.comp h) (g.comp h) := rfl variables {n : Type*} /-- `proj i j` is the quadratic form mapping the vector `x : n → R₁` to `x i * x j` -/ def proj (i j : n) : quadratic_form R₁ (n → R₁) := lin_mul_lin (@linear_map.proj _ _ _ (λ _, R₁) _ _ i) (@linear_map.proj _ _ _ (λ _, R₁) _ _ j) @[simp] lemma proj_apply (i j : n) (x : n → R₁) : proj i j x = x i * x j := rfl end comm_ring end quadratic_form /-! ### Associated bilinear forms Over a commutative ring with an inverse of 2, the theory of quadratic forms is basically identical to that of symmetric bilinear forms. The map from quadratic forms to bilinear forms giving this identification is called the `associated` quadratic form. -/ variables {B : bilin_form R M} namespace bilin_form open quadratic_form lemma polar_to_quadratic_form (x y : M) : polar (λ x, B x x) x y = B x y + B y x := by { simp only [add_assoc, add_sub_cancel', add_right, polar, add_left_inj, add_neg_cancel_left, add_left, sub_eq_add_neg _ (B y y), add_comm (B y x) _] } /-- A bilinear form gives a quadratic form by applying the argument twice. -/ def to_quadratic_form (B : bilin_form R M) : quadratic_form R M := ⟨ λ x, B x x, λ a x, by simp only [mul_assoc, smul_right, smul_left], λ x x' y, by simp only [add_assoc, add_right, add_left_inj, polar_to_quadratic_form, add_left, add_left_comm], λ a x y, by simp only [smul_add, add_left_inj, polar_to_quadratic_form, smul_right, smul_eq_mul, smul_left, smul_right, mul_add], λ x y y', by simp only [add_assoc, add_right, add_left_inj, polar_to_quadratic_form, add_left, add_left_comm], λ a x y, by simp only [smul_add, add_left_inj, polar_to_quadratic_form, smul_right, smul_eq_mul, smul_left, smul_right, mul_add]⟩ @[simp] lemma to_quadratic_form_apply (B : bilin_form R M) (x : M) : B.to_quadratic_form x = B x x := rfl section variables (R M) @[simp] lemma to_quadratic_form_zero : (0 : bilin_form R M).to_quadratic_form = 0 := rfl end end bilin_form namespace quadratic_form open bilin_form sym_bilin_form section associated_hom variables (S) [comm_semiring S] [algebra S R] variables [invertible (2 : R)] {B₁ : bilin_form R M} /-- `associated_hom` is the map that sends a quadratic form on a module `M` over `R` to its associated symmetric bilinear form. As provided here, this has the structure of an `S`-linear map where `S` is a commutative subring of `R`. Over a commutative ring, use `associated`, which gives an `R`-linear map. Over a general ring with no nontrivial distinguished commutative subring, use `associated'`, which gives an additive homomorphism (or more precisely a `ℤ`-linear map.) -/ def associated_hom : quadratic_form R M →ₗ[S] bilin_form R M := { to_fun := λ Q, { bilin := λ x y, ⅟2 * polar Q x y, bilin_add_left := λ x y z, by rw [← mul_add, polar_add_left], bilin_smul_left := λ x y z, begin have htwo : x * ⅟2 = ⅟2 * x := (commute.one_right x).bit0_right.inv_of_right, simp only [polar_smul_left, ← mul_assoc, htwo] end, bilin_add_right := λ x y z, by rw [← mul_add, polar_add_right], bilin_smul_right := λ x y z, begin have htwo : x * ⅟2 = ⅟2 * x := (commute.one_right x).bit0_right.inv_of_right, simp only [polar_smul_right, ← mul_assoc, htwo] end }, map_add' := λ Q Q', by { ext, simp only [bilin_form.add_apply, coe_fn_mk, polar_add, coe_fn_add, mul_add] }, map_smul' := λ s Q, by { ext, simp only [ring_hom.id_apply, polar_smul, algebra.mul_smul_comm, coe_fn_mk, coe_fn_smul, bilin_form.smul_apply] } } variables (Q : quadratic_form R M) (S) @[simp] lemma associated_apply (x y : M) : associated_hom S Q x y = ⅟2 * (Q (x + y) - Q x - Q y) := rfl lemma associated_is_sym : is_sym (associated_hom S Q) := λ x y, by simp only [associated_apply, add_comm, add_left_comm, sub_eq_add_neg] @[simp] lemma associated_comp {N : Type v} [add_comm_group N] [module R N] (f : N →ₗ[R] M) : associated_hom S (Q.comp f) = (associated_hom S Q).comp f f := by { ext, simp only [quadratic_form.comp_apply, bilin_form.comp_apply, associated_apply, linear_map.map_add] } lemma associated_to_quadratic_form (B : bilin_form R M) (x y : M) : associated_hom S B.to_quadratic_form x y = ⅟2 * (B x y + B y x) := by simp only [associated_apply, ← polar_to_quadratic_form, polar, to_quadratic_form_apply] lemma associated_left_inverse (h : is_sym B₁) : associated_hom S (B₁.to_quadratic_form) = B₁ := bilin_form.ext $ λ x y, by rw [associated_to_quadratic_form, sym h x y, ←two_mul, ←mul_assoc, inv_of_mul_self, one_mul] lemma to_quadratic_form_associated : (associated_hom S Q).to_quadratic_form = Q := quadratic_form.ext $ λ x, calc (associated_hom S Q).to_quadratic_form x = ⅟2 * (Q x + Q x) : by simp only [add_assoc, add_sub_cancel', one_mul, to_quadratic_form_apply, add_mul, associated_apply, map_add_self, bit0] ... = Q x : by rw [← two_mul (Q x), ←mul_assoc, inv_of_mul_self, one_mul] -- note: usually `right_inverse` lemmas are named the other way around, but this is consistent -- with historical naming in this file. lemma associated_right_inverse : function.right_inverse (associated_hom S) (bilin_form.to_quadratic_form : _ → quadratic_form R M) := λ Q, to_quadratic_form_associated S Q lemma associated_eq_self_apply (x : M) : associated_hom S Q x x = Q x := begin rw [associated_apply, map_add_self], suffices : (⅟2) * (2 * Q x) = Q x, { convert this, simp only [bit0, add_mul, one_mul], abel }, simp only [← mul_assoc, one_mul, inv_of_mul_self], end /-- `associated'` is the `ℤ`-linear map that sends a quadratic form on a module `M` over `R` to its associated symmetric bilinear form. -/ abbreviation associated' : quadratic_form R M →ₗ[ℤ] bilin_form R M := associated_hom ℤ /-- Symmetric bilinear forms can be lifted to quadratic forms -/ instance : can_lift (bilin_form R M) (quadratic_form R M) := { coe := associated_hom ℕ, cond := is_sym, prf := λ B hB, ⟨B.to_quadratic_form, associated_left_inverse _ hB⟩ } /-- There exists a non-null vector with respect to any quadratic form `Q` whose associated bilinear form is non-zero, i.e. there exists `x` such that `Q x ≠ 0`. -/ lemma exists_quadratic_form_ne_zero {Q : quadratic_form R M} (hB₁ : Q.associated' ≠ 0) : ∃ x, Q x ≠ 0 := begin rw ←not_forall, intro h, apply hB₁, rw [(quadratic_form.ext h : Q = 0), linear_map.map_zero], end end associated_hom section associated variables [invertible (2 : R₁)] -- Note: When possible, rather than writing lemmas about `associated`, write a lemma applying to -- the more general `associated_hom` and place it in the previous section. /-- `associated` is the linear map that sends a quadratic form over a commutative ring to its associated symmetric bilinear form. -/ abbreviation associated : quadratic_form R₁ M →ₗ[R₁] bilin_form R₁ M := associated_hom R₁ @[simp] lemma associated_lin_mul_lin (f g : M →ₗ[R₁] R₁) : (lin_mul_lin f g).associated = ⅟(2 : R₁) • (bilin_form.lin_mul_lin f g + bilin_form.lin_mul_lin g f) := by { ext, simp only [smul_add, algebra.id.smul_eq_mul, bilin_form.lin_mul_lin_apply, quadratic_form.lin_mul_lin_apply, bilin_form.smul_apply, associated_apply, bilin_form.add_apply, linear_map.map_add], ring } end associated section anisotropic /-- An anisotropic quadratic form is zero only on zero vectors. -/ def anisotropic (Q : quadratic_form R M) : Prop := ∀ x, Q x = 0 → x = 0 lemma not_anisotropic_iff_exists (Q : quadratic_form R M) : ¬anisotropic Q ↔ ∃ x ≠ 0, Q x = 0 := by simp only [anisotropic, not_forall, exists_prop, and_comm] /-- The associated bilinear form of an anisotropic quadratic form is nondegenerate. -/ lemma nondegenerate_of_anisotropic [invertible (2 : R)] (Q : quadratic_form R M) (hB : Q.anisotropic) : Q.associated'.nondegenerate := begin intros x hx, refine hB _ _, rw ← hx x, exact (associated_eq_self_apply _ _ x).symm, end end anisotropic section pos_def variables {R₂ : Type u} [ordered_ring R₂] [module R₂ M] {Q₂ : quadratic_form R₂ M} /-- A positive definite quadratic form is positive on nonzero vectors. -/ def pos_def (Q₂ : quadratic_form R₂ M) : Prop := ∀ x ≠ 0, 0 < Q₂ x lemma pos_def.smul {R} [linear_ordered_comm_ring R] [module R M] {Q : quadratic_form R M} (h : pos_def Q) {a : R} (a_pos : 0 < a) : pos_def (a • Q) := λ x hx, mul_pos a_pos (h x hx) variables {n : Type*} lemma pos_def.add (Q Q' : quadratic_form R₂ M) (hQ : pos_def Q) (hQ' : pos_def Q') : pos_def (Q + Q') := λ x hx, add_pos (hQ x hx) (hQ' x hx) lemma lin_mul_lin_self_pos_def {R} [linear_ordered_comm_ring R] [module R M] (f : M →ₗ[R] R) (hf : linear_map.ker f = ⊥) : pos_def (lin_mul_lin f f) := λ x hx, mul_self_pos (λ h, hx (linear_map.ker_eq_bot.mp hf (by rw [h, linear_map.map_zero]))) end pos_def end quadratic_form section /-! ### Quadratic forms and matrices Connect quadratic forms and matrices, in order to explicitly compute with them. The convention is twos out, so there might be a factor 2⁻¹ in the entries of the matrix. The determinant of the matrix is the discriminant of the quadratic form. -/ variables {n : Type w} [fintype n] [decidable_eq n] /-- `M.to_quadratic_form` is the map `λ x, col x ⬝ M ⬝ row x` as a quadratic form. -/ def matrix.to_quadratic_form' (M : matrix n n R₁) : quadratic_form R₁ (n → R₁) := M.to_bilin'.to_quadratic_form variables [invertible (2 : R₁)] /-- A matrix representation of the quadratic form. -/ def quadratic_form.to_matrix' (Q : quadratic_form R₁ (n → R₁)) : matrix n n R₁ := Q.associated.to_matrix' open quadratic_form lemma quadratic_form.to_matrix'_smul (a : R₁) (Q : quadratic_form R₁ (n → R₁)) : (a • Q).to_matrix' = a • Q.to_matrix' := by simp only [to_matrix', linear_equiv.map_smul, linear_map.map_smul] end namespace quadratic_form variables {n : Type w} [fintype n] variables [decidable_eq n] [invertible (2 : R₁)] variables {m : Type w} [decidable_eq m] [fintype m] open_locale matrix @[simp] lemma to_matrix'_comp (Q : quadratic_form R₁ (m → R₁)) (f : (n → R₁) →ₗ[R₁] (m → R₁)) : (Q.comp f).to_matrix' = f.to_matrix'ᵀ ⬝ Q.to_matrix' ⬝ f.to_matrix' := by { ext, simp only [quadratic_form.associated_comp, bilin_form.to_matrix'_comp, to_matrix'] } section discriminant variables {Q : quadratic_form R₁ (n → R₁)} /-- The discriminant of a quadratic form generalizes the discriminant of a quadratic polynomial. -/ def discr (Q : quadratic_form R₁ (n → R₁)) : R₁ := Q.to_matrix'.det lemma discr_smul (a : R₁) : (a • Q).discr = a ^ fintype.card n * Q.discr := by simp only [discr, to_matrix'_smul, matrix.det_smul] lemma discr_comp (f : (n → R₁) →ₗ[R₁] (n → R₁)) : (Q.comp f).discr = f.to_matrix'.det * f.to_matrix'.det * Q.discr := by simp only [matrix.det_transpose, mul_left_comm, quadratic_form.to_matrix'_comp, mul_comm, matrix.det_mul, discr] end discriminant end quadratic_form namespace quadratic_form variables {M₁ : Type*} {M₂ : Type*} {M₃ : Type*} variables [add_comm_group M₁] [add_comm_group M₂] [add_comm_group M₃] variables [module R M₁] [module R M₂] [module R M₃] /-- An isometry between two quadratic spaces `M₁, Q₁` and `M₂, Q₂` over a ring `R`, is a linear equivalence between `M₁` and `M₂` that commutes with the quadratic forms. -/ @[nolint has_inhabited_instance] structure isometry (Q₁ : quadratic_form R M₁) (Q₂ : quadratic_form R M₂) extends M₁ ≃ₗ[R] M₂ := (map_app' : ∀ m, Q₂ (to_fun m) = Q₁ m) /-- Two quadratic forms over a ring `R` are equivalent if there exists an isometry between them: a linear equivalence that transforms one quadratic form into the other. -/ def equivalent (Q₁ : quadratic_form R M₁) (Q₂ : quadratic_form R M₂) := nonempty (Q₁.isometry Q₂) namespace isometry variables {Q₁ : quadratic_form R M₁} {Q₂ : quadratic_form R M₂} {Q₃ : quadratic_form R M₃} instance : has_coe (Q₁.isometry Q₂) (M₁ ≃ₗ[R] M₂) := ⟨isometry.to_linear_equiv⟩ @[simp] lemma to_linear_equiv_eq_coe (f : Q₁.isometry Q₂) : f.to_linear_equiv = f := rfl instance : has_coe_to_fun (Q₁.isometry Q₂) (λ _, M₁ → M₂) := ⟨λ f, ⇑(f : M₁ ≃ₗ[R] M₂)⟩ @[simp] lemma coe_to_linear_equiv (f : Q₁.isometry Q₂) : ⇑(f : M₁ ≃ₗ[R] M₂) = f := rfl @[simp] lemma map_app (f : Q₁.isometry Q₂) (m : M₁) : Q₂ (f m) = Q₁ m := f.map_app' m /-- The identity isometry from a quadratic form to itself. -/ @[refl] def refl (Q : quadratic_form R M) : Q.isometry Q := { map_app' := λ m, rfl, .. linear_equiv.refl R M } /-- The inverse isometry of an isometry between two quadratic forms. -/ @[symm] def symm (f : Q₁.isometry Q₂) : Q₂.isometry Q₁ := { map_app' := by { intro m, rw ← f.map_app, congr, exact f.to_linear_equiv.apply_symm_apply m }, .. (f : M₁ ≃ₗ[R] M₂).symm } /-- The composition of two isometries between quadratic forms. -/ @[trans] def trans (f : Q₁.isometry Q₂) (g : Q₂.isometry Q₃) : Q₁.isometry Q₃ := { map_app' := by { intro m, rw [← f.map_app, ← g.map_app], refl }, .. (f : M₁ ≃ₗ[R] M₂).trans (g : M₂ ≃ₗ[R] M₃) } end isometry namespace equivalent variables {Q₁ : quadratic_form R M₁} {Q₂ : quadratic_form R M₂} {Q₃ : quadratic_form R M₃} @[refl] lemma refl (Q : quadratic_form R M) : Q.equivalent Q := ⟨isometry.refl Q⟩ @[symm] lemma symm (h : Q₁.equivalent Q₂) : Q₂.equivalent Q₁ := h.elim $ λ f, ⟨f.symm⟩ @[trans] lemma trans (h : Q₁.equivalent Q₂) (h' : Q₂.equivalent Q₃) : Q₁.equivalent Q₃ := h'.elim $ h.elim $ λ f g, ⟨f.trans g⟩ end equivalent end quadratic_form namespace bilin_form /-- A bilinear form is nondegenerate if the quadratic form it is associated with is anisotropic. -/ lemma nondegenerate_of_anisotropic {B : bilin_form R M} (hB : B.to_quadratic_form.anisotropic) : B.nondegenerate := λ x hx, hB _ (hx x) /-- There exists a non-null vector with respect to any symmetric, nonzero bilinear form `B` on a module `M` over a ring `R` with invertible `2`, i.e. there exists some `x : M` such that `B x x ≠ 0`. -/ lemma exists_bilin_form_self_ne_zero [htwo : invertible (2 : R)] {B : bilin_form R M} (hB₁ : B ≠ 0) (hB₂ : sym_bilin_form.is_sym B) : ∃ x, ¬ B.is_ortho x x := begin lift B to quadratic_form R M using hB₂ with Q, obtain ⟨x, hx⟩ := quadratic_form.exists_quadratic_form_ne_zero hB₁, exact ⟨x, λ h, hx (Q.associated_eq_self_apply ℕ x ▸ h)⟩, end open finite_dimensional variables {V : Type u} {K : Type v} [field K] [add_comm_group V] [module K V] variable [finite_dimensional K V] /-- Given a symmetric bilinear form `B` on some vector space `V` over a field `K` in which `2` is invertible, there exists an orthogonal basis with respect to `B`. -/ lemma exists_orthogonal_basis [hK : invertible (2 : K)] {B : bilin_form K V} (hB₂ : sym_bilin_form.is_sym B) : ∃ (v : basis (fin (finrank K V)) K V), B.is_Ortho v := begin tactic.unfreeze_local_instances, induction hd : finrank K V with d ih generalizing V, { exact ⟨basis_of_finrank_zero hd, λ _ _ _, zero_left _⟩ }, haveI := finrank_pos_iff.1 (hd.symm ▸ nat.succ_pos d : 0 < finrank K V), -- either the bilinear form is trivial or we can pick a non-null `x` obtain rfl | hB₁ := eq_or_ne B 0, { let b := finite_dimensional.fin_basis K V, rw hd at b, refine ⟨b, λ i j hij, rfl⟩, }, obtain ⟨x, hx⟩ := exists_bilin_form_self_ne_zero hB₁ hB₂, rw [← submodule.finrank_add_eq_of_is_compl (is_compl_span_singleton_orthogonal hx).symm, finrank_span_singleton (ne_zero_of_not_is_ortho_self x hx)] at hd, let B' := B.restrict (B.orthogonal $ K ∙ x), obtain ⟨v', hv₁⟩ := ih (B.restrict_sym hB₂ _ : sym_bilin_form.is_sym B') (nat.succ.inj hd), -- concatenate `x` with the basis obtained by induction let b := basis.mk_fin_cons x v' (begin rintros c y hy hc, rw add_eq_zero_iff_neg_eq at hc, rw [← hc, submodule.neg_mem_iff] at hy, have := (is_compl_span_singleton_orthogonal hx).disjoint, rw submodule.disjoint_def at this, have := this (c • x) (submodule.smul_mem _ _ $ submodule.mem_span_singleton_self _) hy, exact (smul_eq_zero.1 this).resolve_right (λ h, hx $ h.symm ▸ zero_left _), end) (begin intro y, refine ⟨-B x y/B x x, λ z hz, _⟩, obtain ⟨c, rfl⟩ := submodule.mem_span_singleton.1 hz, rw [is_ortho, smul_left, add_right, smul_right, div_mul_cancel _ hx, add_neg_self, mul_zero], end), refine ⟨b, _⟩, { rw basis.coe_mk_fin_cons, intros j i, refine fin.cases _ (λ i, _) i; refine fin.cases _ (λ j, _) j; intro hij; simp only [function.on_fun, fin.cons_zero, fin.cons_succ, function.comp_apply], { exact (hij rfl).elim }, { rw [is_ortho, hB₂], exact (v' j).prop _ (submodule.mem_span_singleton_self x) }, { exact (v' i).prop _ (submodule.mem_span_singleton_self x) }, { exact hv₁ _ _ (ne_of_apply_ne _ hij), }, } end end bilin_form namespace quadratic_form open_locale big_operators open finset bilin_form variables {M₁ : Type*} [add_comm_group M₁] [module R M₁] variables {ι : Type*} [fintype ι] {v : basis ι R M} /-- A quadratic form composed with a `linear_equiv` is isometric to itself. -/ def isometry_of_comp_linear_equiv (Q : quadratic_form R M) (f : M₁ ≃ₗ[R] M) : Q.isometry (Q.comp (f : M₁ →ₗ[R] M)) := { map_app' := begin intro, simp only [comp_apply, linear_equiv.coe_coe, linear_equiv.to_fun_eq_coe, linear_equiv.apply_symm_apply, f.apply_symm_apply], end, .. f.symm } /-- Given a quadratic form `Q` and a basis, `basis_repr` is the basis representation of `Q`. -/ noncomputable def basis_repr (Q : quadratic_form R M) (v : basis ι R M) : quadratic_form R (ι → R) := Q.comp v.equiv_fun.symm @[simp] lemma basis_repr_apply (Q : quadratic_form R M) (w : ι → R) : Q.basis_repr v w = Q (∑ i : ι, w i • v i) := by { rw ← v.equiv_fun_symm_apply, refl } /-- A quadratic form is isometric to its bases representations. -/ noncomputable def isometry_basis_repr (Q : quadratic_form R M) (v : basis ι R M): isometry Q (Q.basis_repr v) := isometry_of_comp_linear_equiv Q v.equiv_fun.symm section variable (R₁) /-- The weighted sum of squares with respect to some weight as a quadratic form. The weights are applied using `•`; typically this definition is used either with `S = R₁` or `[algebra S R₁]`, although this is stated more generally. -/ def weighted_sum_squares [monoid S] [distrib_mul_action S R₁] [smul_comm_class S R₁ R₁] (w : ι → S) : quadratic_form R₁ (ι → R₁) := ∑ i : ι, w i • proj i i end @[simp] lemma weighted_sum_squares_apply [monoid S] [distrib_mul_action S R₁] [smul_comm_class S R₁ R₁] (w : ι → S) (v : ι → R₁) : weighted_sum_squares R₁ w v = ∑ i : ι, w i • (v i * v i) := quadratic_form.sum_apply _ _ _ /-- On an orthogonal basis, the basis representation of `Q` is just a sum of squares. -/ lemma basis_repr_eq_of_is_Ortho [invertible (2 : R₁)] (Q : quadratic_form R₁ M) (v : basis ι R₁ M) (hv₂ : (associated Q).is_Ortho v) : Q.basis_repr v = weighted_sum_squares _ (λ i, Q (v i)) := begin ext w, rw [basis_repr_apply, ←@associated_eq_self_apply R₁, sum_left, weighted_sum_squares_apply], refine sum_congr rfl (λ j hj, _), rw [←@associated_eq_self_apply R₁, sum_right, sum_eq_single_of_mem j hj], { rw [smul_left, smul_right, smul_eq_mul], ring }, { intros i _ hij, rw [smul_left, smul_right, show associated_hom R₁ Q (v j) (v i) = 0, from hv₂ j i hij.symm, mul_zero, mul_zero] }, end variables {V : Type*} {K : Type*} [field K] [invertible (2 : K)] variables [add_comm_group V] [module K V] /-- Given an orthogonal basis, a quadratic form is isometric with a weighted sum of squares. -/ noncomputable def isometry_weighted_sum_squares (Q : quadratic_form K V) (v : basis (fin (finite_dimensional.finrank K V)) K V) (hv₁ : (associated Q).is_Ortho v): Q.isometry (weighted_sum_squares K (λ i, Q (v i))) := begin let iso := Q.isometry_basis_repr v, refine ⟨iso, λ m, _⟩, convert iso.map_app m, rw basis_repr_eq_of_is_Ortho _ _ hv₁, end variables [finite_dimensional K V] lemma equivalent_weighted_sum_squares (Q : quadratic_form K V) : ∃ w : fin (finite_dimensional.finrank K V) → K, equivalent Q (weighted_sum_squares K w) := let ⟨v, hv₁⟩ := exists_orthogonal_basis (associated_is_sym _ Q) in ⟨_, ⟨Q.isometry_weighted_sum_squares v hv₁⟩⟩ lemma equivalent_weighted_sum_squares_units_of_nondegenerate' (Q : quadratic_form K V) (hQ : (associated Q).nondegenerate) : ∃ w : fin (finite_dimensional.finrank K V) → units K, equivalent Q (weighted_sum_squares K w) := begin obtain ⟨v, hv₁⟩ := exists_orthogonal_basis (associated_is_sym _ Q), have hv₂ := hv₁.not_is_ortho_basis_self_of_nondegenerate hQ, simp_rw [is_ortho, associated_eq_self_apply] at hv₂, exact ⟨λ i, units.mk0 _ (hv₂ i), ⟨Q.isometry_weighted_sum_squares v hv₁⟩⟩, end end quadratic_form
5a686746517161d5faeb6a7064210026b19aebac
fecda8e6b848337561d6467a1e30cf23176d6ad0
/src/data/padics/padic_norm.lean
221f80a272163970df9ebdfa5c46be4fb2a51baf
[ "Apache-2.0" ]
permissive
spolu/mathlib
bacf18c3d2a561d00ecdc9413187729dd1f705ed
480c92cdfe1cf3c2d083abded87e82162e8814f4
refs/heads/master
1,671,684,094,325
1,600,736,045,000
1,600,736,045,000
297,564,749
1
0
null
1,600,758,368,000
1,600,758,367,000
null
UTF-8
Lean
false
false
25,160
lean
/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis -/ import algebra.gcd_monoid import algebra.field_power import ring_theory.multiplicity import data.real.cau_seq import tactic.ring_exp import tactic.basic /-! # p-adic norm This file defines the p-adic valuation and the p-adic norm on ℚ. The p-adic valuation on ℚ is the difference of the multiplicities of `p` in the numerator and denominator of `q`. This function obeys the standard properties of a valuation, with the appropriate assumptions on p. The valuation induces a norm on ℚ. This norm is a nonarchimedean absolute value. It takes values in {0} ∪ {1/p^k | k ∈ ℤ}. ## Notations This file uses the local notation `/.` for `rat.mk`. ## Implementation notes Much, but not all, of this file assumes that `p` is prime. This assumption is inferred automatically by taking `[fact (prime p)]` as a type class argument. ## References * [F. Q. Gouêva, *p-adic numbers*][gouvea1997] * [R. Y. Lewis, *A formal proof of Hensel's lemma over the p-adic integers*][lewis2019] * <https://en.wikipedia.org/wiki/P-adic_number> ## Tags p-adic, p adic, padic, norm, valuation -/ universe u open nat open_locale rat open multiplicity /-- For `p ≠ 1`, the p-adic valuation of an integer `z ≠ 0` is the largest natural number `n` such that p^n divides z. `padic_val_rat` defines the valuation of a rational `q` to be the valuation of `q.num` minus the valuation of `q.denom`. If `q = 0` or `p = 1`, then `padic_val_rat p q` defaults to 0. -/ def padic_val_rat (p : ℕ) (q : ℚ) : ℤ := if h : q ≠ 0 ∧ p ≠ 1 then (multiplicity (p : ℤ) q.num).get (multiplicity.finite_int_iff.2 ⟨h.2, rat.num_ne_zero_of_ne_zero h.1⟩) - (multiplicity (p : ℤ) q.denom).get (multiplicity.finite_int_iff.2 ⟨h.2, by exact_mod_cast rat.denom_ne_zero _⟩) else 0 /-- A simplification of the definition of `padic_val_rat p q` when `q ≠ 0` and `p` is prime. -/ lemma padic_val_rat_def (p : ℕ) [hp : fact p.prime] {q : ℚ} (hq : q ≠ 0) : padic_val_rat p q = (multiplicity (p : ℤ) q.num).get (finite_int_iff.2 ⟨hp.ne_one, rat.num_ne_zero_of_ne_zero hq⟩) - (multiplicity (p : ℤ) q.denom).get (finite_int_iff.2 ⟨hp.ne_one, by exact_mod_cast rat.denom_ne_zero _⟩) := dif_pos ⟨hq, hp.ne_one⟩ namespace padic_val_rat open multiplicity variables {p : ℕ} /-- `padic_val_rat p q` is symmetric in `q`. -/ @[simp] protected lemma neg (q : ℚ) : padic_val_rat p (-q) = padic_val_rat p q := begin unfold padic_val_rat, split_ifs, { simp [-add_comm]; refl }, { exfalso, simp * at * }, { exfalso, simp * at * }, { refl } end /-- `padic_val_rat p 1` is 0 for any `p`. -/ @[simp] protected lemma one : padic_val_rat p 1 = 0 := by unfold padic_val_rat; split_ifs; simp * /-- For `p ≠ 0, p ≠ 1, `padic_val_rat p p` is 1. -/ @[simp] lemma padic_val_rat_self (hp : 1 < p) : padic_val_rat p p = 1 := by unfold padic_val_rat; split_ifs; simp [*, nat.one_lt_iff_ne_zero_and_ne_one] at * /-- The p-adic value of an integer `z ≠ 0` is the multiplicity of `p` in `z`. -/ lemma padic_val_rat_of_int (z : ℤ) (hp : p ≠ 1) (hz : z ≠ 0) : padic_val_rat p (z : ℚ) = (multiplicity (p : ℤ) z).get (finite_int_iff.2 ⟨hp, hz⟩) := by rw [padic_val_rat, dif_pos]; simp *; refl end padic_val_rat /-- A convenience function for the case of `padic_val_rat` when both inputs are natural numbers. -/ def padic_val_nat (p : ℕ) (n : ℕ) : ℕ := int.to_nat (padic_val_rat p n) section padic_val_nat /-- `padic_val_nat` is defined as an `int.to_nat` cast; this lemma ensures that the cast is well-behaved. -/ lemma zero_le_padic_val_rat_of_nat (p n : ℕ) : 0 ≤ padic_val_rat p n := begin unfold padic_val_rat, split_ifs, { simp, }, { trivial, }, end /-- `padic_val_rat` coincides with `padic_val_nat`. -/ @[simp, norm_cast] lemma padic_val_rat_of_nat (p n : ℕ) : ↑(padic_val_nat p n) = padic_val_rat p n := begin unfold padic_val_nat, rw int.to_nat_of_nonneg (zero_le_padic_val_rat_of_nat p n), end /-- A simplification of `padic_val_nat` when one input is prime, by analogy with `padic_val_rat_def`. -/ lemma padic_val_nat_def {p : ℕ} [hp : fact p.prime] {n : ℕ} (hn : n ≠ 0) : padic_val_nat p n = (multiplicity p n).get (multiplicity.finite_nat_iff.2 ⟨nat.prime.ne_one hp, bot_lt_iff_ne_bot.mpr hn⟩) := begin have n_nonzero : (n : ℚ) ≠ 0, by simpa only [cast_eq_zero, ne.def], -- Infinite loop with @simp padic_val_rat_of_nat unless we restrict the available lemmas here, -- hence the very long list simpa only [ int.coe_nat_multiplicity p n, rat.coe_nat_denom n, (padic_val_rat_of_nat p n).symm, int.coe_nat_zero, int.coe_nat_inj', sub_zero, get_one_right, int.coe_nat_succ, zero_add, rat.coe_nat_num ] using padic_val_rat_def p n_nonzero, end lemma one_le_padic_val_nat_of_dvd {n p : nat} [prime : fact p.prime] (nonzero : n ≠ 0) (div : p ∣ n) : 1 ≤ padic_val_nat p n := begin rw @padic_val_nat_def _ prime _ nonzero, let one_le_mul : _ ≤ multiplicity p n := @multiplicity.le_multiplicity_of_pow_dvd _ _ _ p n 1 (begin norm_num, exact div end), simp only [enat.coe_one] at one_le_mul, rcases one_le_mul with ⟨_, q⟩, dsimp at q, solve_by_elim, end @[simp] lemma padic_val_nat_zero (m : nat) : padic_val_nat m 0 = 0 := by simpa @[simp] lemma padic_val_nat_one (m : nat) : padic_val_nat m 1 = 0 := by simp [padic_val_nat] end padic_val_nat namespace padic_val_rat open multiplicity variables (p : ℕ) [p_prime : fact p.prime] include p_prime /-- The multiplicity of `p : ℕ` in `a : ℤ` is finite exactly when `a ≠ 0`. -/ lemma finite_int_prime_iff {p : ℕ} [p_prime : fact p.prime] {a : ℤ} : finite (p : ℤ) a ↔ a ≠ 0 := by simp [finite_int_iff, ne.symm (ne_of_lt (p_prime.one_lt))] /-- A rewrite lemma for `padic_val_rat p q` when `q` is expressed in terms of `rat.mk`. -/ protected lemma defn {q : ℚ} {n d : ℤ} (hqz : q ≠ 0) (qdf : q = n /. d) : padic_val_rat p q = (multiplicity (p : ℤ) n).get (finite_int_iff.2 ⟨ne.symm $ ne_of_lt p_prime.one_lt, λ hn, by simp * at *⟩) - (multiplicity (p : ℤ) d).get (finite_int_iff.2 ⟨ne.symm $ ne_of_lt p_prime.one_lt, λ hd, by simp * at *⟩) := have hn : n ≠ 0, from rat.mk_num_ne_zero_of_ne_zero hqz qdf, have hd : d ≠ 0, from rat.mk_denom_ne_zero_of_ne_zero hqz qdf, let ⟨c, hc1, hc2⟩ := rat.num_denom_mk hn hd qdf in by rw [padic_val_rat, dif_pos]; simp [hc1, hc2, multiplicity.mul' (nat.prime_iff_prime_int.1 p_prime), (ne.symm (ne_of_lt p_prime.one_lt)), hqz] /-- A rewrite lemma for `padic_val_rat p (q * r)` with conditions `q ≠ 0`, `r ≠ 0`. -/ protected lemma mul {q r : ℚ} (hq : q ≠ 0) (hr : r ≠ 0) : padic_val_rat p (q * r) = padic_val_rat p q + padic_val_rat p r := have q*r = (q.num * r.num) /. (↑q.denom * ↑r.denom), by rw_mod_cast rat.mul_num_denom, have hq' : q.num /. q.denom ≠ 0, by rw rat.num_denom; exact hq, have hr' : r.num /. r.denom ≠ 0, by rw rat.num_denom; exact hr, have hp' : _root_.prime (p : ℤ), from nat.prime_iff_prime_int.1 p_prime, begin rw [padic_val_rat.defn p (mul_ne_zero hq hr) this], conv_rhs { rw [←(@rat.num_denom q), padic_val_rat.defn p hq', ←(@rat.num_denom r), padic_val_rat.defn p hr'] }, rw [multiplicity.mul' hp', multiplicity.mul' hp']; simp [add_comm, add_left_comm, sub_eq_add_neg] end /-- A rewrite lemma for `padic_val_rat p (q^k) with condition `q ≠ 0`. -/ protected lemma pow {q : ℚ} (hq : q ≠ 0) {k : ℕ} : padic_val_rat p (q ^ k) = k * padic_val_rat p q := by induction k; simp [*, padic_val_rat.mul _ hq (pow_ne_zero _ hq), pow_succ, add_mul, add_comm] /-- A rewrite lemma for `padic_val_rat p (q⁻¹)` with condition `q ≠ 0`. -/ protected lemma inv {q : ℚ} (hq : q ≠ 0) : padic_val_rat p (q⁻¹) = -padic_val_rat p q := by rw [eq_neg_iff_add_eq_zero, ← padic_val_rat.mul p (inv_ne_zero hq) hq, inv_mul_cancel hq, padic_val_rat.one] /-- A rewrite lemma for `padic_val_rat p (q / r)` with conditions `q ≠ 0`, `r ≠ 0`. -/ protected lemma div {q r : ℚ} (hq : q ≠ 0) (hr : r ≠ 0) : padic_val_rat p (q / r) = padic_val_rat p q - padic_val_rat p r := by rw [div_eq_mul_inv, padic_val_rat.mul p hq (inv_ne_zero hr), padic_val_rat.inv p hr, sub_eq_add_neg] /-- A condition for `padic_val_rat p (n₁ / d₁) ≤ padic_val_rat p (n₂ / d₂), in terms of divisibility by `p^n`. -/ lemma padic_val_rat_le_padic_val_rat_iff {n₁ n₂ d₁ d₂ : ℤ} (hn₁ : n₁ ≠ 0) (hn₂ : n₂ ≠ 0) (hd₁ : d₁ ≠ 0) (hd₂ : d₂ ≠ 0) : padic_val_rat p (n₁ /. d₁) ≤ padic_val_rat p (n₂ /. d₂) ↔ ∀ (n : ℕ), ↑p ^ n ∣ n₁ * d₂ → ↑p ^ n ∣ n₂ * d₁ := have hf1 : finite (p : ℤ) (n₁ * d₂), from finite_int_prime_iff.2 (mul_ne_zero hn₁ hd₂), have hf2 : finite (p : ℤ) (n₂ * d₁), from finite_int_prime_iff.2 (mul_ne_zero hn₂ hd₁), by conv { to_lhs, rw [padic_val_rat.defn p (rat.mk_ne_zero_of_ne_zero hn₁ hd₁) rfl, padic_val_rat.defn p (rat.mk_ne_zero_of_ne_zero hn₂ hd₂) rfl, sub_le_iff_le_add', ← add_sub_assoc, le_sub_iff_add_le], norm_cast, rw [← multiplicity.mul' (nat.prime_iff_prime_int.1 p_prime) hf1, add_comm, ← multiplicity.mul' (nat.prime_iff_prime_int.1 p_prime) hf2, enat.get_le_get, multiplicity_le_multiplicity_iff] } /-- Sufficient conditions to show that the p-adic valuation of `q` is less than or equal to the p-adic vlauation of `q + r`. -/ theorem le_padic_val_rat_add_of_le {q r : ℚ} (hq : q ≠ 0) (hr : r ≠ 0) (hqr : q + r ≠ 0) (h : padic_val_rat p q ≤ padic_val_rat p r) : padic_val_rat p q ≤ padic_val_rat p (q + r) := have hqn : q.num ≠ 0, from rat.num_ne_zero_of_ne_zero hq, have hqd : (q.denom : ℤ) ≠ 0, by exact_mod_cast rat.denom_ne_zero _, have hrn : r.num ≠ 0, from rat.num_ne_zero_of_ne_zero hr, have hrd : (r.denom : ℤ) ≠ 0, by exact_mod_cast rat.denom_ne_zero _, have hqdv : q.num /. q.denom ≠ 0, from rat.mk_ne_zero_of_ne_zero hqn hqd, have hrdv : r.num /. r.denom ≠ 0, from rat.mk_ne_zero_of_ne_zero hrn hrd, have hqreq : q + r = (((q.num * r.denom + q.denom * r.num : ℤ)) /. (↑q.denom * ↑r.denom : ℤ)), from rat.add_num_denom _ _, have hqrd : q.num * ↑(r.denom) + ↑(q.denom) * r.num ≠ 0, from rat.mk_num_ne_zero_of_ne_zero hqr hqreq, begin conv_lhs { rw ←(@rat.num_denom q) }, rw [hqreq, padic_val_rat_le_padic_val_rat_iff p hqn hqrd hqd (mul_ne_zero hqd hrd), ← multiplicity_le_multiplicity_iff, mul_left_comm, multiplicity.mul (nat.prime_iff_prime_int.1 p_prime), add_mul], rw [←(@rat.num_denom q), ←(@rat.num_denom r), padic_val_rat_le_padic_val_rat_iff p hqn hrn hqd hrd, ← multiplicity_le_multiplicity_iff] at h, calc _ ≤ min (multiplicity ↑p (q.num * ↑(r.denom) * ↑(q.denom))) (multiplicity ↑p (↑(q.denom) * r.num * ↑(q.denom))) : (le_min (by rw [@multiplicity.mul _ _ _ _ (_ * _) _ (nat.prime_iff_prime_int.1 p_prime), add_comm]) (by rw [mul_assoc, @multiplicity.mul _ _ _ _ (q.denom : ℤ) (_ * _) (nat.prime_iff_prime_int.1 p_prime)]; exact add_le_add_left h _)) ... ≤ _ : min_le_multiplicity_add end /-- The minimum of the valuations of `q` and `r` is less than or equal to the valuation of `q + r`. -/ theorem min_le_padic_val_rat_add {q r : ℚ} (hq : q ≠ 0) (hr : r ≠ 0) (hqr : q + r ≠ 0) : min (padic_val_rat p q) (padic_val_rat p r) ≤ padic_val_rat p (q + r) := (le_total (padic_val_rat p q) (padic_val_rat p r)).elim (λ h, by rw [min_eq_left h]; exact le_padic_val_rat_add_of_le _ hq hr hqr h) (λ h, by rw [min_eq_right h, add_comm]; exact le_padic_val_rat_add_of_le _ hr hq (by rwa add_comm) h) end padic_val_rat namespace padic_val_nat /-- A rewrite lemma for `padic_val_nat p (q * r)` with conditions `q ≠ 0`, `r ≠ 0`. -/ protected lemma mul (p : ℕ) [p_prime : fact p.prime] {q r : ℕ} (hq : q ≠ 0) (hr : r ≠ 0) : padic_val_nat p (q * r) = padic_val_nat p q + padic_val_nat p r := begin apply int.coe_nat_inj, simp only [padic_val_rat_of_nat, nat.cast_mul], rw padic_val_rat.mul, norm_cast, exact cast_ne_zero.mpr hq, exact cast_ne_zero.mpr hr, end /-- Dividing out by a prime factor reduces the padic_val_nat by 1. -/ protected lemma div {p : ℕ} [p_prime : fact p.prime] {b : ℕ} (dvd : p ∣ b) : (padic_val_nat p (b / p)) = (padic_val_nat p b) - 1 := begin by_cases b_split : (b = 0), { simp [b_split], }, { have split_frac : padic_val_rat p (b / p) = padic_val_rat p b - padic_val_rat p p := padic_val_rat.div p (nat.cast_ne_zero.mpr b_split) (nat.cast_ne_zero.mpr (nat.prime.ne_zero p_prime)), rw padic_val_rat.padic_val_rat_self (nat.prime.one_lt p_prime) at split_frac, have r : 1 ≤ padic_val_nat p b := one_le_padic_val_nat_of_dvd b_split dvd, exact_mod_cast split_frac, } end end padic_val_nat section padic_val_nat /-- If a prime doesn't appear in `n`, `padic_val_nat p n` is `0`. -/ lemma padic_val_nat_of_not_dvd {p : ℕ} [fact p.prime] {n : ℕ} (not_dvd : ¬(p ∣ n)) : padic_val_nat p n = 0 := begin by_cases hn : n = 0, { subst hn, simp at not_dvd, trivial, }, { rw padic_val_nat_def hn, exact (@multiplicity.unique' _ _ _ p n 0 (by simp) (by simpa using not_dvd)).symm, assumption, }, end lemma padic_val_nat_primes {p q : ℕ} [p_prime : fact p.prime] [q_prime : fact q.prime] (neq : p ≠ q) : padic_val_nat p q = 0 := @padic_val_nat_of_not_dvd p p_prime q $ (not_congr (iff.symm (prime_dvd_prime_iff_eq p_prime q_prime))).mp neq protected lemma padic_val_nat.div' {p : ℕ} [p_prime : fact p.prime] : ∀ {m : ℕ} (cpm : coprime p m) {b : ℕ} (dvd : m ∣ b), padic_val_nat p (b / m) = padic_val_nat p b | 0 := λ cpm b dvd, by { rw zero_dvd_iff at dvd, rw [dvd, nat.zero_div], } | (n + 1) := λ cpm b dvd, begin rcases dvd with ⟨c, rfl⟩, rw [mul_div_right c (nat.succ_pos _)],by_cases hc : c = 0, { rw [hc, mul_zero] }, { rw padic_val_nat.mul, { suffices : ¬ p ∣ (n+1), { rw [padic_val_nat_of_not_dvd this, zero_add] }, contrapose! cpm, exact p_prime.dvd_iff_not_coprime.mp cpm }, { exact nat.succ_ne_zero _ }, { exact hc } }, end lemma padic_val_nat_eq_factors_count (p : ℕ) [hp : fact p.prime] : ∀ (n : ℕ), padic_val_nat p n = (factors n).count p | 0 := rfl | 1 := by { rw padic_val_nat_one, refl } | (m + 2) := let n := m + 2 in let q := min_fac n in have hq : fact q.prime := min_fac_prime (show m + 2 ≠ 1, by linarith), have wf : n / q < n := nat.div_lt_self (nat.succ_pos _) hq.one_lt, begin rw factors_add_two, show padic_val_nat p n = list.count p (q :: (factors (n / q))), rw [list.count_cons', ← padic_val_nat_eq_factors_count], split_ifs with h, have p_dvd_n : p ∣ n, { have: q ∣ n := nat.min_fac_dvd n, cc }, { rw [←h, padic_val_nat.div], { have: 1 ≤ padic_val_nat p n := one_le_padic_val_nat_of_dvd (by linarith) p_dvd_n, exact (nat.sub_eq_iff_eq_add this).mp rfl, }, { exact p_dvd_n, }, }, { suffices : p.coprime q, { rw [padic_val_nat.div' this (min_fac_dvd n), add_zero], }, rwa nat.coprime_primes hp hq, }, end open_locale big_operators lemma prod_pow_prime_padic_val_nat (n : nat) (hn : n ≠ 0) (m : nat) (pr : n < m) : ∏ p in finset.filter nat.prime (finset.range m), p ^ (padic_val_nat p n) = n := begin rw ← nat.pos_iff_ne_zero at hn, have H : (factors n : multiset ℕ).prod = n, { rw [multiset.coe_prod, prod_factors hn], }, rw finset.prod_multiset_count at H, conv_rhs { rw ← H, }, refine finset.prod_bij_ne_one (λ p hp hp', p) _ _ _ _, { rintro p hp hpn, rw [finset.mem_filter, finset.mem_range] at hp, haveI Hp : fact p.prime := hp.2, rw [multiset.mem_to_finset, multiset.mem_coe, mem_factors_iff_dvd hn Hp], contrapose! hpn, rw [padic_val_nat_of_not_dvd hpn, nat.pow_zero], }, { intros, assumption }, { intros p hp hpn, rw [multiset.mem_to_finset, multiset.mem_coe] at hp, haveI Hp : fact p.prime := mem_factors hp, simp only [exists_prop, ne.def, finset.mem_filter, finset.mem_range], refine ⟨p, ⟨_, Hp⟩, ⟨_, rfl⟩⟩, { rw mem_factors_iff_dvd hn Hp at hp, exact lt_of_le_of_lt (le_of_dvd hn hp) pr }, { rw padic_val_nat_eq_factors_count, simpa [ne.def, multiset.coe_count] using hpn } }, { intros p hp hpn, rw [finset.mem_filter, finset.mem_range] at hp, haveI Hp : fact p.prime := hp.2, rw [padic_val_nat_eq_factors_count, multiset.coe_count] } end end padic_val_nat /-- If `q ≠ 0`, the p-adic norm of a rational `q` is `p ^ (-(padic_val_rat p q))`. If `q = 0`, the p-adic norm of `q` is 0. -/ def padic_norm (p : ℕ) (q : ℚ) : ℚ := if q = 0 then 0 else (↑p : ℚ) ^ (-(padic_val_rat p q)) namespace padic_norm section padic_norm open padic_val_rat variables (p : ℕ) /-- Unfolds the definition of the p-adic norm of `q` when `q ≠ 0`. -/ @[simp] protected lemma eq_fpow_of_nonzero {q : ℚ} (hq : q ≠ 0) : padic_norm p q = p ^ (-(padic_val_rat p q)) := by simp [hq, padic_norm] /-- The p-adic norm is nonnegative. -/ protected lemma nonneg (q : ℚ) : 0 ≤ padic_norm p q := if hq : q = 0 then by simp [hq, padic_norm] else begin unfold padic_norm; split_ifs, apply fpow_nonneg_of_nonneg, exact_mod_cast nat.zero_le _ end /-- The p-adic norm of 0 is 0. -/ @[simp] protected lemma zero : padic_norm p 0 = 0 := by simp [padic_norm] /-- The p-adic norm of 1 is 1. -/ @[simp] protected lemma one : padic_norm p 1 = 1 := by simp [padic_norm] /-- The p-adic norm of `p` is `1/p` if `p > 1`. See also `padic_norm.padic_norm_p_of_prime` for a version that assumes `p` is prime. -/ lemma padic_norm_p {p : ℕ} (hp : 1 < p) : padic_norm p p = 1 / p := by simp [padic_norm, (show p ≠ 0, by linarith), padic_val_rat.padic_val_rat_self hp] /-- The p-adic norm of `p` is `1/p` if `p` is prime. See also `padic_norm.padic_norm_p` for a version that assumes `1 < p`. -/ @[simp] lemma padic_norm_p_of_prime (p : ℕ) [fact p.prime] : padic_norm p p = 1 / p := padic_norm_p $ nat.prime.one_lt ‹_› /-- The p-adic norm of `p` is less than 1 if `1 < p`. See also `padic_norm.padic_norm_p_lt_one_of_prime` for a version assuming `prime p`. -/ lemma padic_norm_p_lt_one {p : ℕ} (hp : 1 < p) : padic_norm p p < 1 := begin rw [padic_norm_p hp, div_lt_iff, one_mul], { exact_mod_cast hp }, { exact_mod_cast zero_lt_one.trans hp }, end /-- The p-adic norm of `p` is less than 1 if `p` is prime. See also `padic_norm.padic_norm_p_lt_one` for a version assuming `1 < p`. -/ lemma padic_norm_p_lt_one_of_prime (p : ℕ) [fact p.prime] : padic_norm p p < 1 := padic_norm_p_lt_one $ nat.prime.one_lt ‹_› /-- `padic_norm p q` takes discrete values `p ^ -z` for `z : ℤ`. -/ protected theorem values_discrete {q : ℚ} (hq : q ≠ 0) : ∃ z : ℤ, padic_norm p q = p ^ (-z) := ⟨ (padic_val_rat p q), by simp [padic_norm, hq] ⟩ variable [hp : fact p.prime] include hp /-- If `q ≠ 0`, then `padic_norm p q ≠ 0`. -/ protected lemma nonzero {q : ℚ} (hq : q ≠ 0) : padic_norm p q ≠ 0 := begin rw padic_norm.eq_fpow_of_nonzero p hq, apply fpow_ne_zero_of_ne_zero, exact_mod_cast ne_of_gt hp.pos end /-- `padic_norm p` is symmetric. -/ @[simp] protected lemma neg (q : ℚ) : padic_norm p (-q) = padic_norm p q := if hq : q = 0 then by simp [hq] else by simp [padic_norm, hq, hp.one_lt] /-- If the p-adic norm of `q` is 0, then `q` is 0. -/ lemma zero_of_padic_norm_eq_zero {q : ℚ} (h : padic_norm p q = 0) : q = 0 := begin apply by_contradiction, intro hq, unfold padic_norm at h, rw if_neg hq at h, apply absurd h, apply fpow_ne_zero_of_ne_zero, exact_mod_cast hp.ne_zero end /-- The p-adic norm is multiplicative. -/ @[simp] protected theorem mul (q r : ℚ) : padic_norm p (q*r) = padic_norm p q * padic_norm p r := if hq : q = 0 then by simp [hq] else if hr : r = 0 then by simp [hr] else have q*r ≠ 0, from mul_ne_zero hq hr, have (↑p : ℚ) ≠ 0, by simp [hp.ne_zero], by simp [padic_norm, *, padic_val_rat.mul, fpow_add this, mul_comm] /-- The p-adic norm respects division. -/ @[simp] protected theorem div (q r : ℚ) : padic_norm p (q / r) = padic_norm p q / padic_norm p r := if hr : r = 0 then by simp [hr] else eq_div_of_mul_eq (padic_norm.nonzero _ hr) (by rw [←padic_norm.mul, div_mul_cancel _ hr]) /-- The p-adic norm of an integer is at most 1. -/ protected theorem of_int (z : ℤ) : padic_norm p ↑z ≤ 1 := if hz : z = 0 then by simp [hz, zero_le_one] else begin unfold padic_norm, rw [if_neg _], { refine fpow_le_one_of_nonpos _ _, { exact_mod_cast le_of_lt hp.one_lt, }, { rw [padic_val_rat_of_int _ hp.ne_one hz, neg_nonpos], norm_cast, simp }}, exact_mod_cast hz end private lemma nonarchimedean_aux {q r : ℚ} (h : padic_val_rat p q ≤ padic_val_rat p r) : padic_norm p (q + r) ≤ max (padic_norm p q) (padic_norm p r) := have hnqp : padic_norm p q ≥ 0, from padic_norm.nonneg _ _, have hnrp : padic_norm p r ≥ 0, from padic_norm.nonneg _ _, if hq : q = 0 then by simp [hq, max_eq_right hnrp, le_max_right] else if hr : r = 0 then by simp [hr, max_eq_left hnqp, le_max_left] else if hqr : q + r = 0 then le_trans (by simpa [hqr] using hnqp) (le_max_left _ _) else begin unfold padic_norm, split_ifs, apply le_max_iff.2, left, apply fpow_le_of_le, { exact_mod_cast le_of_lt hp.one_lt }, { apply neg_le_neg, have : padic_val_rat p q = min (padic_val_rat p q) (padic_val_rat p r), from (min_eq_left h).symm, rw this, apply min_le_padic_val_rat_add; assumption } end /-- The p-adic norm is nonarchimedean: the norm of `p + q` is at most the max of the norm of `p` and the norm of `q`. -/ protected theorem nonarchimedean {q r : ℚ} : padic_norm p (q + r) ≤ max (padic_norm p q) (padic_norm p r) := begin wlog hle := le_total (padic_val_rat p q) (padic_val_rat p r) using [q r], exact nonarchimedean_aux p hle end /-- The p-adic norm respects the triangle inequality: the norm of `p + q` is at most the norm of `p` plus the norm of `q`. -/ theorem triangle_ineq (q r : ℚ) : padic_norm p (q + r) ≤ padic_norm p q + padic_norm p r := calc padic_norm p (q + r) ≤ max (padic_norm p q) (padic_norm p r) : padic_norm.nonarchimedean p ... ≤ padic_norm p q + padic_norm p r : max_le_add_of_nonneg (padic_norm.nonneg p _) (padic_norm.nonneg p _) /-- The p-adic norm of a difference is at most the max of each component. Restates the archimedean property of the p-adic norm. -/ protected theorem sub {q r : ℚ} : padic_norm p (q - r) ≤ max (padic_norm p q) (padic_norm p r) := by rw [sub_eq_add_neg, ←padic_norm.neg p r]; apply padic_norm.nonarchimedean /-- If the p-adic norms of `q` and `r` are different, then the norm of `q + r` is equal to the max of the norms of `q` and `r`. -/ lemma add_eq_max_of_ne {q r : ℚ} (hne : padic_norm p q ≠ padic_norm p r) : padic_norm p (q + r) = max (padic_norm p q) (padic_norm p r) := begin wlog hle := le_total (padic_norm p r) (padic_norm p q) using [q r], have hlt : padic_norm p r < padic_norm p q, from lt_of_le_of_ne hle hne.symm, have : padic_norm p q ≤ max (padic_norm p (q + r)) (padic_norm p r), from calc padic_norm p q = padic_norm p (q + r - r) : by congr; ring ... ≤ max (padic_norm p (q + r)) (padic_norm p (-r)) : padic_norm.nonarchimedean p ... = max (padic_norm p (q + r)) (padic_norm p r) : by simp, have hnge : padic_norm p r ≤ padic_norm p (q + r), { apply le_of_not_gt, intro hgt, rw max_eq_right_of_lt hgt at this, apply not_lt_of_ge this, assumption }, have : padic_norm p q ≤ padic_norm p (q + r), by rwa [max_eq_left hnge] at this, apply _root_.le_antisymm, { apply padic_norm.nonarchimedean p }, { rw max_eq_left_of_lt hlt, assumption } end /-- The p-adic norm is an absolute value: positive-definite and multiplicative, satisfying the triangle inequality. -/ instance : is_absolute_value (padic_norm p) := { abv_nonneg := padic_norm.nonneg p, abv_eq_zero := begin intros, constructor; intro, { apply zero_of_padic_norm_eq_zero p, assumption }, { simp [*] } end, abv_add := padic_norm.triangle_ineq p, abv_mul := padic_norm.mul p } variable {p} lemma dvd_iff_norm_le {n : ℕ} {z : ℤ} : ↑(p^n) ∣ z ↔ padic_norm p z ≤ ↑p ^ (-n : ℤ) := begin unfold padic_norm, split_ifs with hz, { norm_cast at hz, have : 0 ≤ (p^n : ℚ), {apply pow_nonneg, exact_mod_cast le_of_lt hp.pos }, simp [hz, this] }, { rw [fpow_le_iff_le, neg_le_neg_iff, padic_val_rat_of_int _ hp.ne_one _], { norm_cast, rw [← enat.coe_le_coe, enat.coe_get, ← multiplicity.pow_dvd_iff_le_multiplicity], simp }, { exact_mod_cast hz }, { exact_mod_cast hp.one_lt } } end end padic_norm end padic_norm
0527ac4c7a6e2e5dfb263464cf7a10fd112c9fd7
4727251e0cd73359b15b664c3170e5d754078599
/src/category_theory/limits/colimit_limit.lean
443a4fdc24ba3d612fa8b35019cc3ce20a1c5198
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
4,441
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.limits.types import category_theory.functor.currying import category_theory.limits.functor_category /-! # The morphism comparing a colimit of limits with the corresponding limit of colimits. For `F : J × K ⥤ C` there is always a morphism $\colim_k \lim_j F(j,k) → \lim_j \colim_k F(j, k)$. While it is not usually an isomorphism, with additional hypotheses on `J` and `K` it may be, in which case we say that "colimits commute with limits". The prototypical example, proved in `category_theory.limits.filtered_colimit_commutes_finite_limit`, is that when `C = Type`, filtered colimits commute with finite limits. ## References * Borceux, Handbook of categorical algebra 1, Section 2.13 * [Stacks: Filtered colimits](https://stacks.math.columbia.edu/tag/002W) -/ universes v₂ v u open category_theory namespace category_theory.limits variables {J K : Type v} [small_category J] [small_category K] variables {C : Type u} [category.{v} C] variables (F : J × K ⥤ C) open category_theory.prod lemma map_id_left_eq_curry_map {j : J} {k k' : K} {f : k ⟶ k'} : F.map ((𝟙 j, f) : (j, k) ⟶ (j, k')) = ((curry.obj F).obj j).map f := rfl lemma map_id_right_eq_curry_swap_map {j j' : J} {f : j ⟶ j'} {k : K} : F.map ((f, 𝟙 k) : (j, k) ⟶ (j', k)) = ((curry.obj (swap K J ⋙ F)).obj k).map f := rfl variables [has_limits_of_shape J C] variables [has_colimits_of_shape K C] /-- The universal morphism $\colim_k \lim_j F(j,k) → \lim_j \colim_k F(j, k)$. -/ noncomputable def colimit_limit_to_limit_colimit : colimit ((curry.obj (swap K J ⋙ F)) ⋙ lim) ⟶ limit ((curry.obj F) ⋙ colim) := limit.lift ((curry.obj F) ⋙ colim) { X := _, π := { app := λ j, colimit.desc ((curry.obj (swap K J ⋙ F)) ⋙ lim) { X := _, ι := { app := λ k, limit.π ((curry.obj (swap K J ⋙ F)).obj k) j ≫ colimit.ι ((curry.obj F).obj j) k, naturality' := begin dsimp, intros k k' f, simp only [functor.comp_map, curry.obj_map_app, limits.lim_map_π_assoc, swap_map, category.comp_id, map_id_left_eq_curry_map, colimit.w], end }, }, naturality' := begin dsimp, intros j j' f, ext k, simp only [limits.colimit.ι_map, curry.obj_map_app, limits.colimit.ι_desc_assoc, limits.colimit.ι_desc, category.id_comp, category.assoc, map_id_right_eq_curry_swap_map, limit.w_assoc], end } } /-- Since `colimit_limit_to_limit_colimit` is a morphism from a colimit to a limit, this lemma characterises it. -/ @[simp, reassoc] lemma ι_colimit_limit_to_limit_colimit_π (j) (k) : colimit.ι _ k ≫ colimit_limit_to_limit_colimit F ≫ limit.π _ j = limit.π ((curry.obj (swap K J ⋙ F)).obj k) j ≫ colimit.ι ((curry.obj F).obj j) k := by { dsimp [colimit_limit_to_limit_colimit], simp, } @[simp] lemma ι_colimit_limit_to_limit_colimit_π_apply (F : J × K ⥤ Type v) (j) (k) (f) : limit.π ((curry.obj F) ⋙ colim) j (colimit_limit_to_limit_colimit F (colimit.ι ((curry.obj (swap K J ⋙ F)) ⋙ lim) k f)) = colimit.ι ((curry.obj F).obj j) k (limit.π ((curry.obj (swap K J ⋙ F)).obj k) j f) := by { dsimp [colimit_limit_to_limit_colimit], simp, } /-- The map `colimit_limit_to_limit_colimit` realized as a map of cones. -/ @[simps] noncomputable def colimit_limit_to_limit_colimit_cone (G : J ⥤ K ⥤ C) [has_limit G] : colim.map_cone (limit.cone G) ⟶ limit.cone (G ⋙ colim) := { hom := colim.map (limit_iso_swap_comp_lim G).hom ≫ colimit_limit_to_limit_colimit (uncurry.obj G : _) ≫ lim.map (whisker_right (currying.unit_iso.app G).inv colim), w' := λ j, begin ext1 k, simp only [limit_obj_iso_limit_comp_evaluation_hom_π_assoc, iso.app_inv, ι_colimit_limit_to_limit_colimit_π_assoc, whisker_right_app, colimit.ι_map, functor.map_cone_π_app, category.id_comp, eq_to_hom_refl, eq_to_hom_app, colimit.ι_map_assoc, limit.cone_π, lim_map_π_assoc, lim_map_π, category.assoc, currying_unit_iso_inv_app_app_app, limit_iso_swap_comp_lim_hom_app, lim_map_eq_lim_map], dsimp, simp only [category.id_comp], erw limit_obj_iso_limit_comp_evaluation_hom_π_assoc, end } end category_theory.limits
72274d37a9d49517d4be9a1939f8ce16582664f3
1d265c7dd8cb3d0e1d645a19fd6157a2084c3921
/src/lessons/lesson13.lean
6f2c3bc05a28fa6623577a8b0b3e7f389dd342cd
[ "MIT" ]
permissive
hanzhi713/lean-proofs
de432372f220d302be09b5ca4227f8986567e4fd
4d8356a878645b9ba7cb036f87737f3f1e68ede5
refs/heads/master
1,585,580,245,658
1,553,646,623,000
1,553,646,623,000
151,342,188
0
1
null
null
null
null
UTF-8
Lean
false
false
1,352
lean
example : ∃ P Q : Prop, (P ∨ Q) ∧ (¬P ∨ ¬Q) ∧ (¬P ∨ Q) := begin apply exists.intro false, apply exists.intro true, split, show false ∨ true, from or.inr true.intro, split, show ¬false ∨ ¬true, apply or.inl, assume f, assumption, show ¬false ∨ true, from or.inr true.intro, end example : ¬ ∃ P Q : Prop, (P ∨ Q) ∧ (¬P ∨ ¬Q) ∧ (¬P ∨ Q) ∧ (¬Q) := begin assume h, apply exists.elim h, intros, apply exists.elim a_1, intros, have na2 : ¬a_2 := a_3.2.2.2, cases a_3.1 with pfa pfa_2, cases a_3.2.1 with pfna pfna_2, exact pfna pfa, cases a_3.2.2.1 with pfna pfa_2, exact pfna pfa, exact na2 pfa_2, exact na2 pfa_2, end example : ∃ P Q R : Prop,(P ∨ Q ∨ R) ∧ (¬P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬Q ∨ ¬R) := begin apply exists.intro true, apply exists.intro true, apply exists.intro false, split, exact or.inl true.intro, split, apply or.inr, apply or.inr, assume f, assumption, split, apply or.inr, apply or.inl, exact true.intro, apply or.inr, assume f, assumption end
b8af3d2fe0633efddd9fa7eee332d6fe4f742cb7
e00ea76a720126cf9f6d732ad6216b5b824d20a7
/src/ring_theory/algebraic.lean
71c34334bbd9a5a4c6827049d3410c0cf28c80bd
[ "Apache-2.0" ]
permissive
vaibhavkarve/mathlib
a574aaf68c0a431a47fa82ce0637f0f769826bfe
17f8340912468f49bdc30acdb9a9fa02eeb0473a
refs/heads/master
1,621,263,802,637
1,585,399,588,000
1,585,399,588,000
250,833,447
0
0
Apache-2.0
1,585,410,341,000
1,585,410,341,000
null
UTF-8
Lean
false
false
3,408
lean
/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import ring_theory.integral_closure /-! # Algebraic elements and algebraic extensions An element of an R-algebra is algebraic over R if it is the root of a nonzero polynomial. An R-algebra is algebraic over R if and only if all its elements are algebraic over R. The main result in this file proves transitivity of algebraicity: a tower of algebraic field extensions is algebraic. -/ universe variables u v open_locale classical open polynomial section variables (R : Type u) {A : Type v} [comm_ring R] [comm_ring A] [algebra R A] /-- An element of an R-algebra is algebraic over R if it is the root of a nonzero polynomial. -/ def is_algebraic (x : A) : Prop := ∃ p : polynomial R, p ≠ 0 ∧ aeval R A x p = 0 variables {R} /-- A subalgebra is algebraic if all its elements are algebraic. -/ def subalgebra.is_algebraic (S : subalgebra R A) : Prop := ∀ x ∈ S, is_algebraic R x variables (R A) /-- An algebra is algebraic if all its elements are algebraic. -/ def algebra.is_algebraic : Prop := ∀ x : A, is_algebraic R x variables {R A} /-- A subalgebra is algebraic if and only if it is algebraic an algebra. -/ lemma subalgebra.is_algebraic_iff (S : subalgebra R A) : S.is_algebraic ↔ @algebra.is_algebraic R S _ _ (by convert S.algebra) := begin delta algebra.is_algebraic subalgebra.is_algebraic, rw [subtype.forall'], apply forall_congr, rintro ⟨x, hx⟩, apply exists_congr, intro p, apply and_congr iff.rfl, have h : function.injective (S.val) := subtype.val_injective, conv_rhs { rw [← h.eq_iff, alg_hom.map_zero], }, apply eq_iff_eq_cancel_right.mpr, symmetry, apply hom_eval₂, end /-- An algebra is algebraic if and only if it is algebraic as a subalgebra. -/ lemma algebra.is_algebraic_iff : algebra.is_algebraic R A ↔ (⊤ : subalgebra R A).is_algebraic := begin delta algebra.is_algebraic subalgebra.is_algebraic, simp only [algebra.mem_top, forall_prop_of_true, iff_self], end end section zero_ne_one variables (R : Type u) {A : Type v} [nonzero_comm_ring R] [comm_ring A] [algebra R A] /-- An integral element of an algebra is algebraic.-/ lemma is_integral.is_algebraic {x : A} (h : is_integral R x) : is_algebraic R x := by { rcases h with ⟨p, hp, hpx⟩, exact ⟨p, hp.ne_zero, hpx⟩ } end zero_ne_one section field variables (K : Type u) {A : Type v} [field K] [comm_ring A] [algebra K A] /-- An element of an algebra over a field is algebraic if and only if it is integral.-/ lemma is_algebraic_iff_is_integral {x : A} : is_algebraic K x ↔ is_integral K x := begin refine ⟨_, is_integral.is_algebraic K⟩, rintro ⟨p, hp, hpx⟩, refine ⟨_, monic_mul_leading_coeff_inv hp, _⟩, rw [alg_hom.map_mul, hpx, zero_mul], end end field namespace algebra variables {K : Type*} {L : Type*} {A : Type*} variables [field K] [field L] [comm_ring A] variables [algebra K L] [algebra L A] /-- If L is an algebraic field extension of K and A is an algebraic algebra over L, then A is algebraic over K. -/ lemma is_algebraic_trans (L_alg : is_algebraic K L) (A_alg : is_algebraic L A) : is_algebraic K (comap K L A) := begin simp only [is_algebraic, is_algebraic_iff_is_integral] at L_alg A_alg ⊢, exact is_integral_trans L_alg A_alg, end end algebra
5dfafae195f516410a8800d61c54d5e44e6b3078
5ae26df177f810c5006841e9c73dc56e01b978d7
/src/category/monad/cont.lean
02c0fad9c53f542f75a4681d2f80963ccb01e5dc
[ "Apache-2.0" ]
permissive
ChrisHughes24/mathlib
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
refs/heads/master
1,583,848,251,477
1,565,164,247,000
1,565,164,247,000
129,409,993
0
1
Apache-2.0
1,565,164,817,000
1,523,628,059,000
Lean
UTF-8
Lean
false
false
8,780
lean
/- Copyright (c) 2019 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Simon Hudon Monad encapsulating continuation passing programming style, similar to Haskell's `Cont`, `ContT` and `MonadCont`: http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Cont.html -/ import tactic.ext import category.monad.basic category.monad.writer universes u v w structure monad_cont.label (α : Type w) (m : Type u → Type v) (β : Type u) := (apply : α → m β) def monad_cont.goto {α β} {m : Type u → Type v} (f : monad_cont.label α m β) (x : α) := f.apply x class monad_cont (m : Type u → Type v) := (call_cc : Π {α β}, ((monad_cont.label α m β) → m α) → m α) open monad_cont class is_lawful_monad_cont (m : Type u → Type v) [monad m] [monad_cont m] extends is_lawful_monad m := (call_cc_bind_right {α ω γ} (cmd : m α) (next : (label ω m γ) → α → m ω) : call_cc (λ f, cmd >>= next f) = cmd >>= λ x, call_cc (λ f, next f x)) (call_cc_bind_left {α} (β) (x : α) (dead : label α m β → β → m α) : call_cc (λ f : label α m β, goto f x >>= dead f) = pure x) (call_cc_dummy {α β} (dummy : m α) : call_cc (λ f : label α m β, dummy) = dummy) export is_lawful_monad_cont def cont_t (r : Type u) (m : Type u → Type v) (α : Type w) := (α → m r) → m r @[reducible] def cont (r : Type u) (α : Type w) := cont_t r id α namespace cont_t export monad_cont (label goto) variables {r : Type u} {m : Type u → Type v} {α β γ ω : Type w} def run : cont_t r m α → (α → m r) → m r := id def map (f : m r → m r) (x : cont_t r m α) : cont_t r m α := f ∘ x lemma run_cont_t_map_cont_t (f : m r → m r) (x : cont_t r m α) : run (map f x) = f ∘ run x := rfl def with_cont_t (f : (β → m r) → α → m r) (x : cont_t r m α) : cont_t r m β := λ g, x $ f g lemma run_with_cont_t (f : (β → m r) → α → m r) (x : cont_t r m α) : run (with_cont_t f x) = run x ∘ f := rfl @[extensionality] protected lemma ext {x y : cont_t r m α} (h : ∀ f, x.run f = y.run f) : x = y := by { ext; apply h } instance : monad (cont_t r m) := { pure := λ α x f, f x, bind := λ α β x f g, x $ λ i, f i g } instance : is_lawful_monad (cont_t r m) := { id_map := by { intros, refl }, pure_bind := by { intros, ext, refl }, bind_assoc := by { intros, ext, refl } } def cont_t.monad_lift [monad m] {α} : m α → cont_t r m α := λ x f, x >>= f instance [monad m] : has_monad_lift m (cont_t r m) := { monad_lift := λ α, cont_t.monad_lift } lemma monad_lift_bind [monad m] [is_lawful_monad m] {α β} (x : m α) (f : α → m β) : (monad_lift (x >>= f) : cont_t r m β) = monad_lift x >>= monad_lift ∘ f := by { ext, simp only [monad_lift,has_monad_lift.monad_lift,(∘),(>>=),bind_assoc,id.def,run,cont_t.monad_lift] } instance : monad_cont (cont_t r m) := { call_cc := λ α β f g, f ⟨λ x h, g x⟩ g } instance : is_lawful_monad_cont (cont_t r m) := { call_cc_bind_right := by intros; ext; refl, call_cc_bind_left := by intros; ext; refl, call_cc_dummy := by intros; ext; refl } instance (ε) [monad_except ε m] : monad_except ε (cont_t r m) := { throw := λ x e f, throw e, catch := λ α act h f, catch (act f) (λ e, h e f) } instance : monad_run (λ α, (α → m r) → ulift.{u v} (m r)) (cont_t.{u v u} r m) := { run := λ α f x, ⟨ f x ⟩ } end cont_t variables {m : Type u → Type v} [monad m] def except_t.mk_label {α β ε} : label (except.{u u} ε α) m β → label α (except_t ε m) β | ⟨ f ⟩ := ⟨ λ a, monad_lift $ f (except.ok a) ⟩ lemma except_t.goto_mk_label {α β ε : Type*} (x : label (except.{u u} ε α) m β) (i : α) : goto (except_t.mk_label x) i = ⟨ except.ok <$> goto x (except.ok i) ⟩ := by cases x; refl def except_t.call_cc {ε} [monad_cont m] {α β : Type*} (f : label α (except_t ε m) β → except_t ε m α) : except_t ε m α := except_t.mk (call_cc $ λ x : label _ m β, except_t.run $ f (except_t.mk_label x) : m (except ε α)) instance {ε} [monad_cont m] : monad_cont (except_t ε m) := { call_cc := λ α β, except_t.call_cc } instance {ε} [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (except_t ε m) := { call_cc_bind_right := by { intros, simp [call_cc,except_t.call_cc,call_cc_bind_right], ext, dsimp, congr, ext ⟨ ⟩; simp [except_t.bind_cont,@call_cc_dummy m _], }, call_cc_bind_left := by { intros, simp [call_cc,except_t.call_cc,call_cc_bind_right,except_t.goto_mk_label,map_eq_bind_pure_comp,bind_assoc,@call_cc_bind_left m _], ext, refl }, call_cc_dummy := by { intros, simp [call_cc,except_t.call_cc,@call_cc_dummy m _], ext, refl }, } def option_t.mk_label {α β} : label (option.{u} α) m β → label α (option_t m) β | ⟨ f ⟩ := ⟨ λ a, monad_lift $ f (some a) ⟩ lemma option_t.goto_mk_label {α β : Type*} (x : label (option.{u} α) m β) (i : α) : goto (option_t.mk_label x) i = ⟨ some <$> goto x (some i) ⟩ := by cases x; refl def option_t.call_cc [monad_cont m] {α β : Type*} (f : label α (option_t m) β → option_t m α) : option_t m α := option_t.mk (call_cc $ λ x : label _ m β, option_t.run $ f (option_t.mk_label x) : m (option α)) instance [monad_cont m] : monad_cont (option_t m) := { call_cc := λ α β, option_t.call_cc } instance [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (option_t m) := { call_cc_bind_right := by { intros, simp [call_cc,option_t.call_cc,call_cc_bind_right], ext, dsimp, congr, ext ⟨ ⟩; simp [option_t.bind_cont,@call_cc_dummy m _], }, call_cc_bind_left := by { intros, simp [call_cc,option_t.call_cc,call_cc_bind_right,option_t.goto_mk_label,map_eq_bind_pure_comp,bind_assoc,@call_cc_bind_left m _], ext, refl }, call_cc_dummy := by { intros, simp [call_cc,option_t.call_cc,@call_cc_dummy m _], ext, refl }, } def writer_t.mk_label {α β ω} [has_one ω] : label (α × ω) m β → label α (writer_t ω m) β | ⟨ f ⟩ := ⟨ λ a, monad_lift $ f (a,1) ⟩ lemma writer_t.goto_mk_label {α β ω : Type*} [has_one ω] (x : label (α × ω) m β) (i : α) : goto (writer_t.mk_label x) i = monad_lift (goto x (i,1)) := by cases x; refl def writer_t.call_cc [monad_cont m] {α β ω : Type*} [has_one ω] (f : label α (writer_t ω m) β → writer_t ω m α) : writer_t ω m α := ⟨ call_cc (writer_t.run ∘ f ∘ writer_t.mk_label : label (α × ω) m β → m (α × ω)) ⟩ instance (ω) [monad m] [has_one ω] [monad_cont m] : monad_cont (writer_t ω m) := { call_cc := λ α β, writer_t.call_cc } def state_t.mk_label {α β σ : Type u} : label (α × σ) m (β × σ) → label α (state_t σ m) β | ⟨ f ⟩ := ⟨ λ a, ⟨ λ s, f (a,s) ⟩ ⟩ lemma state_t.goto_mk_label {α β σ : Type u} (x : label (α × σ) m (β × σ)) (i : α) : goto (state_t.mk_label x) i = ⟨ λ s, (goto x (i,s)) ⟩ := by cases x; refl def state_t.call_cc {σ} [monad_cont m] {α β : Type*} (f : label α (state_t σ m) β → state_t σ m α) : state_t σ m α := ⟨ λ r, call_cc (λ f', (f $ state_t.mk_label f').run r) ⟩ instance {σ} [monad_cont m] : monad_cont (state_t σ m) := { call_cc := λ α β, state_t.call_cc } instance {σ} [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (state_t σ m) := { call_cc_bind_right := by { intros, simp [call_cc,state_t.call_cc,call_cc_bind_right,(>>=),state_t.bind], ext, dsimp, congr, ext ⟨x₀,x₁⟩, refl }, call_cc_bind_left := by { intros, simp [call_cc,state_t.call_cc,call_cc_bind_left,(>>=),state_t.bind,state_t.goto_mk_label], ext, refl }, call_cc_dummy := by { intros, simp [call_cc,state_t.call_cc,call_cc_bind_right,(>>=),state_t.bind,@call_cc_dummy m _], ext, refl }, } def reader_t.mk_label {α β} (ρ) : label α m β → label α (reader_t ρ m) β | ⟨ f ⟩ := ⟨ monad_lift ∘ f ⟩ lemma reader_t.goto_mk_label {α ρ β} (x : label α m β) (i : α) : goto (reader_t.mk_label ρ x) i = monad_lift (goto x i) := by cases x; refl def reader_t.call_cc {ε} [monad_cont m] {α β : Type*} (f : label α (reader_t ε m) β → reader_t ε m α) : reader_t ε m α := ⟨ λ r, call_cc (λ f', (f $ reader_t.mk_label _ f').run r) ⟩ instance {ρ} [monad_cont m] : monad_cont (reader_t ρ m) := { call_cc := λ α β, reader_t.call_cc } instance {ρ} [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (reader_t ρ m) := { call_cc_bind_right := by { intros, simp [call_cc,reader_t.call_cc,call_cc_bind_right], ext, refl }, call_cc_bind_left := by { intros, simp [call_cc,reader_t.call_cc,call_cc_bind_left,reader_t.goto_mk_label], ext, refl }, call_cc_dummy := by { intros, simp [call_cc,reader_t.call_cc,@call_cc_dummy m _], ext, refl } }
2a73497ed0ea25e2ce519b13668fe96b3f3081e2
4f643cce24b2d005aeeb5004c2316a8d6cc7f3b1
/omin/cells.lean
b963796c492658228a270738b0594b5b082946e2
[]
no_license
rwbarton/lean-omin
da209ed061d64db65a8f7f71f198064986f30eb9
fd733c6d95ef6f4743aae97de5e15df79877c00e
refs/heads/master
1,674,408,673,325
1,607,343,535,000
1,607,343,535,000
285,150,399
9
0
null
null
null
null
UTF-8
Lean
false
false
1,653
lean
import o_minimal.o_minimal import data.set.disjointed import data.setoid.partition namespace o_minimal variables {R : Type*} [DUNLO R] variables (S : struc R) [definable_constants S] [is_definable_le S R] namespace struc def cell : Π {n}, set (finvec n R) → Prop | 0 s := s = set.univ | (n+1) s := ∃ (s₀ : set (finvec n R)) (h : cell s₀), s = {x | x.init ∈ s₀} ∨ (∃ (f : finvec n R → R) (hf : def_fun S f), s = {x | x.init ∈ s₀ ∧ x (fin.last n) = f x.init} ∨ s = {x | x.init ∈ s₀ ∧ x (fin.last n) ∈ set.Ioi (f x.init)} ∨ s = {x | x.init ∈ s₀ ∧ x (fin.last n) ∈ set.Iio (f x.init)}) ∨ (∃ (f g : finvec n R → R) (hf : def_fun S f) (hg : def_fun S g), (∀ x₀ ∈ s₀, f x₀ < g x₀) ∧ s = {x | x.init ∈ s₀ ∧ x (fin.last n) ∈ set.Ioo (f x.init) (g x.init)}) lemma init_definable (n : ℕ) : def_fun S (finvec.init : finvec (n+1) R → finvec n R) := begin sorry end lemma cell.definable : ∀ {n} (s : set (finvec n R)) (hs : S.cell s), def_set S s | 0 s hs := by { cases hs, apply def_set_univ } | (n+1) s hs := begin obtain ⟨s₀, hs₀, H|H|H⟩ := hs, { cases H, show def_set S (finvec.init ⁻¹' s₀), sorry }, sorry, sorry, end def decomposition : Π {n} (C : set (set (finvec n R))), Prop | 0 C := C = {set.univ} | (n+1) C := C.finite ∧ setoid.is_partition C ∧ ∀ s ∈ C, S.cell s ∧ decomposition ((set.image finvec.init) '' C) end struc end o_minimal
2a167eadf2349c331626bce67d57facea0afd16d
83c8119e3298c0bfc53fc195c41a6afb63d01513
/tests/lean/run/simp_tc_err.lean
f728247647101d114fd29a421a47db5177538fc5
[ "Apache-2.0" ]
permissive
anfelor/lean
584b91c4e87a6d95f7630c2a93fb082a87319ed0
31cfc2b6bf7d674f3d0f73848b842c9c9869c9f1
refs/heads/master
1,610,067,141,310
1,585,992,232,000
1,585,992,232,000
251,683,543
0
0
Apache-2.0
1,585,676,570,000
1,585,676,569,000
null
UTF-8
Lean
false
false
470
lean
def c : ℕ := default _ def d : ℕ := default _ class foo (α : Type) -- type class resolution for [foo α] will always time out instance foo.foo {α} [foo α] : foo α := ‹foo α› -- would break simp on any term containing c @[simp] lemma c_eq_d [foo ℕ] : c = d := by refl set_option trace.simplify.rewrite true example : c = d + 0 := begin -- shouldn't fail, even though type class resolution for c_eq_d times out simp, guard_target c = d, refl, end
bd94f385a3691392fc105ea67a75976044f2730f
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/data/nat/with_bot.lean
6f1b74c9e3dae374dd3edb4e2d0154a9c3a66c76
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
2,164
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import data.nat.order.basic import algebra.order.monoid.with_top /-! # `with_bot ℕ` Lemmas about the type of natural numbers with a bottom element adjoined. -/ namespace nat namespace with_bot lemma add_eq_zero_iff {n m : with_bot ℕ} : n + m = 0 ↔ n = 0 ∧ m = 0 := begin rcases ⟨n, m⟩ with ⟨_ | _, _ | _⟩, any_goals { tautology }, repeat { erw [with_bot.coe_eq_coe] }, exact add_eq_zero_iff end lemma add_eq_one_iff {n m : with_bot ℕ} : n + m = 1 ↔ n = 0 ∧ m = 1 ∨ n = 1 ∧ m = 0 := begin rcases ⟨n, m⟩ with ⟨_ | _, _ | _⟩, any_goals { tautology }, repeat { erw [with_bot.coe_eq_coe] }, exact add_eq_one_iff end lemma add_eq_two_iff {n m : with_bot ℕ} : n + m = 2 ↔ n = 0 ∧ m = 2 ∨ n = 1 ∧ m = 1 ∨ n = 2 ∧ m = 0 := begin rcases ⟨n, m⟩ with ⟨_ | _, _ | _⟩, any_goals { tautology }, repeat { erw [with_bot.coe_eq_coe] }, exact add_eq_two_iff end lemma add_eq_three_iff {n m : with_bot ℕ} : n + m = 3 ↔ n = 0 ∧ m = 3 ∨ n = 1 ∧ m = 2 ∨ n = 2 ∧ m = 1 ∨ n = 3 ∧ m = 0 := begin rcases ⟨n, m⟩ with ⟨_ | _, _ | _⟩, any_goals { tautology }, repeat { erw [with_bot.coe_eq_coe] }, exact add_eq_three_iff end @[simp] lemma coe_nonneg {n : ℕ} : 0 ≤ (n : with_bot ℕ) := by { rw [← with_bot.coe_zero, with_bot.coe_le_coe], exact nat.zero_le _ } @[simp] lemma lt_zero_iff (n : with_bot ℕ) : n < 0 ↔ n = ⊥ := option.cases_on n dec_trivial $ λ n, iff_of_false (by simp [with_bot.some_eq_coe]) (λ h, option.no_confusion h) lemma one_le_iff_zero_lt {x : with_bot ℕ} : 1 ≤ x ↔ 0 < x := begin refine ⟨λ h, lt_of_lt_of_le (with_bot.coe_lt_coe.mpr zero_lt_one) h, λ h, _⟩, induction x using with_bot.rec_bot_coe, { exact (not_lt_bot h).elim }, { exact with_bot.coe_le_coe.mpr (nat.succ_le_iff.mpr (with_bot.coe_lt_coe.mp h)) } end lemma lt_one_iff_le_zero {x : with_bot ℕ} : x < 1 ↔ x ≤ 0 := not_iff_not.mp (by simpa using one_le_iff_zero_lt) end with_bot end nat
b4b2a4547d981fedf91bbacc2aaa65234ed2802b
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/topology/metric_space/baire.lean
21e4a43a3f940d65bb1c6fe0795bbed4db01fa4f
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
16,555
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.specific_limits.basic import topology.G_delta import topology.sets.compacts /-! # Baire theorem > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. In a complete metric space, a countable intersection of dense open subsets is dense. The good concept underlying the theorem is that of a Gδ set, i.e., a countable intersection of open sets. Then Baire theorem can also be formulated as the fact that a countable intersection of dense Gδ sets is a dense Gδ set. We prove Baire theorem, giving several different formulations that can be handy. We also prove the important consequence that, if the space is covered by a countable union of closed sets, then the union of their interiors is dense. We also prove that in Baire spaces, the `residual` sets are exactly those containing a dense Gδ set. -/ noncomputable theory open_locale classical topology filter ennreal open filter encodable set topological_space variables {α : Type*} {β : Type*} {γ : Type*} {ι : Type*} section Baire_theorem open emetric ennreal /-- The property `baire_space α` means that the topological space `α` has the Baire property: any countable intersection of open dense subsets is dense. Formulated here when the source space is ℕ (and subsumed below by `dense_Inter_of_open` working with any encodable source space).-/ class baire_space (α : Type*) [topological_space α] : Prop := (baire_property : ∀ f : ℕ → set α, (∀ n, is_open (f n)) → (∀ n, dense (f n)) → dense (⋂n, f n)) /-- Baire theorems asserts that various topological spaces have the Baire property. Two versions of these theorems are given. The first states that complete pseudo_emetric spaces are Baire. -/ @[priority 100] instance baire_category_theorem_emetric_complete [pseudo_emetric_space α] [complete_space α] : baire_space α := begin refine ⟨λ f ho hd, _⟩, let B : ℕ → ℝ≥0∞ := λn, 1/2^n, have Bpos : ∀n, 0 < B n, { intro n, simp only [B, one_div, one_mul, ennreal.inv_pos], exact pow_ne_top two_ne_top }, /- Translate the density assumption into two functions `center` and `radius` associating to any n, x, δ, δpos a center and a positive radius such that `closed_ball center radius` is included both in `f n` and in `closed_ball x δ`. We can also require `radius ≤ (1/2)^(n+1)`, to ensure we get a Cauchy sequence later. -/ have : ∀n x δ, δ ≠ 0 → ∃y r, 0 < r ∧ r ≤ B (n+1) ∧ closed_ball y r ⊆ (closed_ball x δ) ∩ f n, { assume n x δ δpos, have : x ∈ closure (f n) := hd n x, rcases emetric.mem_closure_iff.1 this (δ/2) (ennreal.half_pos δpos) with ⟨y, ys, xy⟩, rw edist_comm at xy, obtain ⟨r, rpos, hr⟩ : ∃ r > 0, closed_ball y r ⊆ f n := nhds_basis_closed_eball.mem_iff.1 (is_open_iff_mem_nhds.1 (ho n) y ys), refine ⟨y, min (min (δ/2) r) (B (n+1)), _, _, λz hz, ⟨_, _⟩⟩, show 0 < min (min (δ / 2) r) (B (n+1)), from lt_min (lt_min (ennreal.half_pos δpos) rpos) (Bpos (n+1)), show min (min (δ / 2) r) (B (n+1)) ≤ B (n+1), from min_le_right _ _, show z ∈ closed_ball x δ, from calc edist z x ≤ edist z y + edist y x : edist_triangle _ _ _ ... ≤ (min (min (δ / 2) r) (B (n+1))) + (δ/2) : add_le_add hz (le_of_lt xy) ... ≤ δ/2 + δ/2 : add_le_add (le_trans (min_le_left _ _) (min_le_left _ _)) le_rfl ... = δ : ennreal.add_halves δ, show z ∈ f n, from hr (calc edist z y ≤ min (min (δ / 2) r) (B (n+1)) : hz ... ≤ r : le_trans (min_le_left _ _) (min_le_right _ _)) }, choose! center radius Hpos HB Hball using this, refine λ x, (mem_closure_iff_nhds_basis nhds_basis_closed_eball).2 (λ ε εpos, _), /- `ε` is positive. We have to find a point in the ball of radius `ε` around `x` belonging to all `f n`. For this, we construct inductively a sequence `F n = (c n, r n)` such that the closed ball `closed_ball (c n) (r n)` is included in the previous ball and in `f n`, and such that `r n` is small enough to ensure that `c n` is a Cauchy sequence. Then `c n` converges to a limit which belongs to all the `f n`. -/ let F : ℕ → (α × ℝ≥0∞) := λn, nat.rec_on n (prod.mk x (min ε (B 0))) (λn p, prod.mk (center n p.1 p.2) (radius n p.1 p.2)), let c : ℕ → α := λn, (F n).1, let r : ℕ → ℝ≥0∞ := λn, (F n).2, have rpos : ∀ n, 0 < r n, { assume n, induction n with n hn, exact lt_min εpos (Bpos 0), exact Hpos n (c n) (r n) hn.ne' }, have r0 : ∀ n, r n ≠ 0 := λ n, (rpos n).ne', have rB : ∀n, r n ≤ B n, { assume n, induction n with n hn, exact min_le_right _ _, exact HB n (c n) (r n) (r0 n) }, have incl : ∀n, closed_ball (c (n+1)) (r (n+1)) ⊆ (closed_ball (c n) (r n)) ∩ (f n) := λ n, Hball n (c n) (r n) (r0 n), have cdist : ∀n, edist (c n) (c (n+1)) ≤ B n, { assume n, rw edist_comm, have A : c (n+1) ∈ closed_ball (c (n+1)) (r (n+1)) := mem_closed_ball_self, have I := calc closed_ball (c (n+1)) (r (n+1)) ⊆ closed_ball (c n) (r n) : subset.trans (incl n) (inter_subset_left _ _) ... ⊆ closed_ball (c n) (B n) : closed_ball_subset_closed_ball (rB n), exact I A }, have : cauchy_seq c := cauchy_seq_of_edist_le_geometric_two _ one_ne_top cdist, -- as the sequence `c n` is Cauchy in a complete space, it converges to a limit `y`. rcases cauchy_seq_tendsto_of_complete this with ⟨y, ylim⟩, -- this point `y` will be the desired point. We will check that it belongs to all -- `f n` and to `ball x ε`. use y, simp only [exists_prop, set.mem_Inter], have I : ∀n, ∀m ≥ n, closed_ball (c m) (r m) ⊆ closed_ball (c n) (r n), { assume n, refine nat.le_induction _ (λm hnm h, _), { exact subset.refl _ }, { exact subset.trans (incl m) (subset.trans (inter_subset_left _ _) h) }}, have yball : ∀n, y ∈ closed_ball (c n) (r n), { assume n, refine is_closed_ball.mem_of_tendsto ylim _, refine (filter.eventually_ge_at_top n).mono (λ m hm, _), exact I n m hm mem_closed_ball_self }, split, show ∀n, y ∈ f n, { assume n, have : closed_ball (c (n+1)) (r (n+1)) ⊆ f n := subset.trans (incl n) (inter_subset_right _ _), exact this (yball (n+1)) }, show edist y x ≤ ε, from le_trans (yball 0) (min_le_left _ _), end /-- The second theorem states that locally compact spaces are Baire. -/ @[priority 100] instance baire_category_theorem_locally_compact [topological_space α] [t2_space α] [locally_compact_space α] : baire_space α := begin constructor, intros f ho hd, /- To prove that an intersection of open dense subsets is dense, prove that its intersection with any open neighbourhood `U` is dense. Define recursively a decreasing sequence `K` of compact neighbourhoods: start with some compact neighbourhood inside `U`, then at each step, take its interior, intersect with `f n`, then choose a compact neighbourhood inside the intersection.-/ apply dense_iff_inter_open.2, intros U U_open U_nonempty, rcases exists_positive_compacts_subset U_open U_nonempty with ⟨K₀, hK₀⟩, have : ∀ n (K : positive_compacts α), ∃ K' : positive_compacts α, ↑K' ⊆ f n ∩ interior K, { refine λ n K, exists_positive_compacts_subset ((ho n).inter is_open_interior) _, rw inter_comm, exact (hd n).inter_open_nonempty _ is_open_interior K.interior_nonempty }, choose K_next hK_next, let K : ℕ → positive_compacts α := λ n, nat.rec_on n K₀ K_next, /- This is a decreasing sequence of positive compacts contained in suitable open sets `f n`.-/ have hK_decreasing : ∀ (n : ℕ), ↑(K (n + 1)) ⊆ f n ∩ K n, from λ n, (hK_next n (K n)).trans $ inter_subset_inter_right _ interior_subset, /- Prove that ̀`⋂ n : ℕ, K n` is inside `U ∩ ⋂ n : ℕ, (f n)`. -/ have hK_subset : (⋂ n, K n : set α) ⊆ U ∩ (⋂ n, f n), { intros x hx, simp only [mem_inter_iff, mem_Inter] at hx ⊢, exact ⟨hK₀ $ hx 0, λ n, (hK_decreasing n (hx (n + 1))).1⟩ }, /- Prove that `⋂ n : ℕ, K n` is not empty, as an intersection of a decreasing sequence of nonempty compact subsets.-/ have hK_nonempty : (⋂ n, K n : set α).nonempty, from is_compact.nonempty_Inter_of_sequence_nonempty_compact_closed _ (λ n, (hK_decreasing n).trans (inter_subset_right _ _)) (λ n, (K n).nonempty) (K 0).is_compact (λ n, (K n).is_compact.is_closed), exact hK_nonempty.mono hK_subset end variables [topological_space α] [baire_space α] /-- Definition of a Baire space. -/ theorem dense_Inter_of_open_nat {f : ℕ → set α} (ho : ∀ n, is_open (f n)) (hd : ∀ n, dense (f n)) : dense (⋂ n, f n) := baire_space.baire_property f ho hd /-- Baire theorem: a countable intersection of dense open sets is dense. Formulated here with ⋂₀. -/ theorem dense_sInter_of_open {S : set (set α)} (ho : ∀s∈S, is_open s) (hS : S.countable) (hd : ∀s∈S, dense s) : dense (⋂₀S) := begin cases S.eq_empty_or_nonempty with h h, { simp [h] }, { rcases hS.exists_eq_range h with ⟨f, hf⟩, have F : ∀n, f n ∈ S := λn, by rw hf; exact mem_range_self _, rw [hf, sInter_range], exact dense_Inter_of_open_nat (λn, ho _ (F n)) (λn, hd _ (F n)) } end /-- Baire theorem: a countable intersection of dense open sets is dense. Formulated here with an index set which is a countable set in any type. -/ theorem dense_bInter_of_open {S : set β} {f : β → set α} (ho : ∀s∈S, is_open (f s)) (hS : S.countable) (hd : ∀s∈S, dense (f s)) : dense (⋂s∈S, f s) := begin rw ← sInter_image, apply dense_sInter_of_open, { rwa ball_image_iff }, { exact hS.image _ }, { rwa ball_image_iff } end /-- Baire theorem: a countable intersection of dense open sets is dense. Formulated here with an index set which is an encodable type. -/ theorem dense_Inter_of_open [encodable β] {f : β → set α} (ho : ∀s, is_open (f s)) (hd : ∀s, dense (f s)) : dense (⋂s, f s) := begin rw ← sInter_range, apply dense_sInter_of_open, { rwa forall_range_iff }, { exact countable_range _ }, { rwa forall_range_iff } end /-- A set is residual (comeagre) if and only if it includes a dense `Gδ` set. -/ lemma mem_residual {s : set α} : s ∈ residual α ↔ ∃ t ⊆ s, is_Gδ t ∧ dense t := begin split, { rw mem_residual_iff, rintros ⟨S, hSo, hSd, Sct, Ss⟩, refine ⟨_, Ss, ⟨_, λ t ht, hSo _ ht, Sct, rfl⟩, _⟩, exact dense_sInter_of_open hSo Sct hSd, }, rintros ⟨t, ts, ho, hd⟩, exact mem_of_superset (residual_of_dense_Gδ ho hd) ts, end /-- A property holds on a residual (comeagre) set if and only if it holds on some dense `Gδ` set. -/ lemma eventually_residual {p : α → Prop} : (∀ᶠ x in residual α, p x) ↔ ∃ (t : set α), is_Gδ t ∧ dense t ∧ ∀ (x : α), x ∈ t → p x := begin -- this can probably be improved... convert @mem_residual _ _ _ p, simp_rw [exists_prop, and_comm ((_ : set α) ⊆ p), and_assoc], refl, end lemma dense_of_mem_residual {s : set α} (hs : s ∈ residual α) : dense s := let ⟨t, hts, _, hd⟩ := mem_residual.1 hs in hd.mono hts /-- Baire theorem: a countable intersection of dense Gδ sets is dense. Formulated here with ⋂₀. -/ theorem dense_sInter_of_Gδ {S : set (set α)} (ho : ∀s∈S, is_Gδ s) (hS : S.countable) (hd : ∀s∈S, dense s) : dense (⋂₀S) := dense_of_mem_residual ((countable_sInter_mem hS).mpr (λ s hs, residual_of_dense_Gδ (ho _ hs) (hd _ hs))) /-- Baire theorem: a countable intersection of dense Gδ sets is dense. Formulated here with an index set which is an encodable type. -/ theorem dense_Inter_of_Gδ [encodable β] {f : β → set α} (ho : ∀s, is_Gδ (f s)) (hd : ∀s, dense (f s)) : dense (⋂s, f s) := begin rw ← sInter_range, exact dense_sInter_of_Gδ (forall_range_iff.2 ‹_›) (countable_range _) (forall_range_iff.2 ‹_›) end /-- Baire theorem: a countable intersection of dense Gδ sets is dense. Formulated here with an index set which is a countable set in any type. -/ theorem dense_bInter_of_Gδ {S : set β} {f : Π x ∈ S, set α} (ho : ∀s∈S, is_Gδ (f s ‹_›)) (hS : S.countable) (hd : ∀s∈S, dense (f s ‹_›)) : dense (⋂s∈S, f s ‹_›) := begin rw bInter_eq_Inter, haveI := hS.to_encodable, exact dense_Inter_of_Gδ (λ s, ho s s.2) (λ s, hd s s.2) end /-- Baire theorem: the intersection of two dense Gδ sets is dense. -/ theorem dense.inter_of_Gδ {s t : set α} (hs : is_Gδ s) (ht : is_Gδ t) (hsc : dense s) (htc : dense t) : dense (s ∩ t) := begin rw [inter_eq_Inter], apply dense_Inter_of_Gδ; simp [bool.forall_bool, *] end /-- If a countable family of closed sets cover a dense `Gδ` set, then the union of their interiors is dense. Formulated here with `⋃`. -/ lemma is_Gδ.dense_Union_interior_of_closed [encodable ι] {s : set α} (hs : is_Gδ s) (hd : dense s) {f : ι → set α} (hc : ∀ i, is_closed (f i)) (hU : s ⊆ ⋃ i, f i) : dense (⋃ i, interior (f i)) := begin let g := λ i, (frontier (f i))ᶜ, have hgo : ∀ i, is_open (g i), from λ i, is_closed_frontier.is_open_compl, have hgd : dense (⋂ i, g i), { refine dense_Inter_of_open hgo (λ i x, _), rw [closure_compl, interior_frontier (hc _)], exact id }, refine (hd.inter_of_Gδ hs (is_Gδ_Inter_of_open $ λ i, hgo i) hgd).mono _, rintro x ⟨hxs, hxg⟩, rw [mem_Inter] at hxg, rcases mem_Union.1 (hU hxs) with ⟨i, hi⟩, exact mem_Union.2 ⟨i, self_diff_frontier (f i) ▸ ⟨hi, hxg _⟩⟩, end /-- If a countable family of closed sets cover a dense `Gδ` set, then the union of their interiors is dense. Formulated here with a union over a countable set in any type. -/ lemma is_Gδ.dense_bUnion_interior_of_closed {t : set ι} {s : set α} (hs : is_Gδ s) (hd : dense s) (ht : t.countable) {f : ι → set α} (hc : ∀ i ∈ t, is_closed (f i)) (hU : s ⊆ ⋃ i ∈ t, f i) : dense (⋃ i ∈ t, interior (f i)) := begin haveI := ht.to_encodable, simp only [bUnion_eq_Union, set_coe.forall'] at *, exact hs.dense_Union_interior_of_closed hd hc hU end /-- If a countable family of closed sets cover a dense `Gδ` set, then the union of their interiors is dense. Formulated here with `⋃₀`. -/ lemma is_Gδ.dense_sUnion_interior_of_closed {T : set (set α)} {s : set α} (hs : is_Gδ s) (hd : dense s) (hc : T.countable) (hc' : ∀ t ∈ T, is_closed t) (hU : s ⊆ ⋃₀ T) : dense (⋃ t ∈ T, interior t) := hs.dense_bUnion_interior_of_closed hd hc hc' $ by rwa [← sUnion_eq_bUnion] /-- Baire theorem: if countably many closed sets cover the whole space, then their interiors are dense. Formulated here with an index set which is a countable set in any type. -/ theorem dense_bUnion_interior_of_closed {S : set β} {f : β → set α} (hc : ∀s∈S, is_closed (f s)) (hS : S.countable) (hU : (⋃s∈S, f s) = univ) : dense (⋃s∈S, interior (f s)) := is_Gδ_univ.dense_bUnion_interior_of_closed dense_univ hS hc hU.ge /-- Baire theorem: if countably many closed sets cover the whole space, then their interiors are dense. Formulated here with `⋃₀`. -/ theorem dense_sUnion_interior_of_closed {S : set (set α)} (hc : ∀s∈S, is_closed s) (hS : S.countable) (hU : (⋃₀ S) = univ) : dense (⋃s∈S, interior s) := is_Gδ_univ.dense_sUnion_interior_of_closed dense_univ hS hc hU.ge /-- Baire theorem: if countably many closed sets cover the whole space, then their interiors are dense. Formulated here with an index set which is an encodable type. -/ theorem dense_Union_interior_of_closed [encodable β] {f : β → set α} (hc : ∀s, is_closed (f s)) (hU : (⋃s, f s) = univ) : dense (⋃s, interior (f s)) := is_Gδ_univ.dense_Union_interior_of_closed dense_univ hc hU.ge /-- One of the most useful consequences of Baire theorem: if a countable union of closed sets covers the space, then one of the sets has nonempty interior. -/ theorem nonempty_interior_of_Union_of_closed [nonempty α] [encodable β] {f : β → set α} (hc : ∀s, is_closed (f s)) (hU : (⋃s, f s) = univ) : ∃s, (interior $ f s).nonempty := by simpa using (dense_Union_interior_of_closed hc hU).nonempty end Baire_theorem
cbcbfc6fb26f06856026ae1d85c62ccd0f81266e
d7189ea2ef694124821b033e533f18905b5e87ef
/galois/vector/default.lean
971039cf36e177b978b49c987f4a8a45f87e7246
[ "Apache-2.0" ]
permissive
digama0/lean-protocol-support
eaa7e6f8b8e0d5bbfff1f7f52bfb79a3b11b0f59
cabfa3abedbdd6fdca6e2da6fbbf91a13ed48dda
refs/heads/master
1,625,421,450,627
1,506,035,462,000
1,506,035,462,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
753
lean
import .basic .simplify_eq .init_last .map_accum_lemmas .repeat_lemmas .rotate .tail_lemmas .zero_length_lemmas universe variables u namespace vector variable {α : Type u} section ind open nat parameter {α' : Type u} variables {P : ∀ {n : ℕ}, vector α' n → Prop} variables {n : ℕ} (v : vector α' n) variables h₀ : P nil variables hn : ∀ {n : ℕ} (x : α') (v : vector α' n), P v → P (x :: v) include hn lemma induction : ∀ {n : ℕ} (v : vector α' n), P v | 0 ⟨[],P⟩ := h₀ | (succ n) ⟨x :: xs, P⟩ := begin apply hn x ⟨xs,_⟩ (induction ⟨xs, _⟩), have P' : succ (list.length xs) = succ n, { apply P }, injection P', end lemma induction_on : P v := induction h₀ @hn v end ind end vector
4ff2a4cd1f5bed2e09bdb96f36766a0d9e9d46d2
da23b545e1653cafd4ab88b3a42b9115a0b1355f
/src/tidy/its.lean
0c0b263a172e2a357e760f5aff063b467208de2f
[]
no_license
minchaowu/lean-tidy
137f5058896e0e81dae84bf8d02b74101d21677a
2d4c52d66cf07c59f8746e405ba861b4fa0e3835
refs/heads/master
1,585,283,406,120
1,535,094,033,000
1,535,094,033,000
145,945,792
0
0
null
null
null
null
UTF-8
Lean
false
false
574
lean
--- Copyright (c) 2017 Scott Morrison. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Authors: Scott Morrison import .transport namespace tactic meta def its { α : Type } (e : expr) (discharger : tactic α) : tactic α := (`[refine (transport %%e _)] <|> `[refine (cast _ %%e)]) >> discharger end tactic open tactic open interactive open interactive.types namespace tactic.interactive meta def its (q : parse texpr) : tactic unit := i_to_expr ``(%%q) >>= λ e, tactic.its e (skip) end tactic.interactive
f06d2067026f4279ef814f9d5d87f1a71a122c2b
0851884047bb567d19e188e8f1ad959c5ae9c5ce
/src/M1P2/sheet-6.lean
c1610a8748826cb38209e3f9694c13b634f28b3e
[ "Apache-2.0" ]
permissive
yz5216/xena-UROP-2018
00d3f71a831324966d40d302544ed2cbbec3fd0f
5e9da9dc64dc51897677f8b73ab9f94061a8d977
refs/heads/master
1,584,922,436,989
1,531,487,250,000
1,531,487,250,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
3,235
lean
import algebra.order data.fintype group_theory.subgroup data.set.basic data.equiv variables {G : Type*} [group G] variables (H K : set G) variables [is_subgroup H] [is_subgroup K] -- sheet 6 -- 1. Let G be a group. For each of the following statements, say whether or not it is true in general, and give a proof or a counterexample. -- (a) If G is not cyclic then G is not abelian. -- False (e.g : (ℝ,+)) -- -- (b) For every element g of G there is an abelian subgroup of G which contains g. -- theorem sheet06_q1b: -- -- (c) If G = ⟨g⟩ is an infinite cyclic group, then the only generators for G are g -- -- and g−1. -- theorem sheet06_q1c: -- -- (d) If G is infinite then G has an element of infinite order. -- theorem sheet06_q1d: -- -- (e) If the order of every non-identity element of G is a prime number, then G is cyclic. -- theorem sheet06_q1e: -- (f) If G has order 4, then G is abelian. --False. (e.g: Klein Four Group) -- (g) If G is abelian then every subgroup of G is abelian. theorem sheet06_q1g (G : Type*) [comm_group G] (H : set G) [is_subgroup H] : comm_group H := sorry -- -- (h) If G is cyclic then every subgroup of G is cyclic. -- theorem sheet06_q1h: -- -- (i) If x, y ∈ G, then x and y−1xy have the same order. -- theorem sheet06_q1i: -- (j) If x,y ∈ G have order 2, then xy has order 2. --theorem sheet06_q1j: definition gsymmetric (n : ℕ) := equiv.perm (fin n) -- -- *2. (a) Write down all of the cycle shapes of the elements of S5. For each cycle shape, calculate how many elements there are with that shape. (Check that your answers add up to |S5| = 120.) -- theorem sheet06_q2a: -- -- (b) How many elements of S5 have order 2? -- theorem sheet06_q2b: -- -- (c) How many subgroups of size 3 are there in the group S5? -- theorem sheet06_q2c: -- -- 3. (a) Let H1 be the cyclic subgroup ⟨(1234)⟩ of S4. Write down the right cosets of H in S4. -- theorem sheet06_q2d: -- -- (b) Find a subgroup H2 of S4 of order 4, in which all of the non-identity elements have the same cycle shape. Write down its right cosets in S4. -- theorem sheet06_q2e: -- -- (c) Which of the right cosets you have found for H1 and H2 are also left cosets? -- theorem sheet06_q2f: -- 4. Let G be a finite group of order n, and H a subgroup of G of order m. -- -- (a) Forx,y∈G,showthatHx=Hy⇐⇒xy−1 ∈H. -- theorem sheet06_q4a (x y : G) : x * l = x * l ↔ x * y⁻¹ ∈ H := sorry -- -- (b) Suppose that r = n/m. Let x ∈ G. Show that there is an integer k in the range 1≤k≤r,suchthatxk ∈H. -- theorem sheet06_q4b: -- -- (c) Give an example to show that in (b), the integer k need not divide r. -- theorem sheet06_q4c: -- -- 5. Let G be a group,and let S be a subset of G.We say that S generates G if every element in G can be written as a product of elements of S and their inverses. (For example, if G is the cyclic group ⟨g⟩, then {g} generates G.) -- theorem sheet06_q4d: -- -- (a) Let 2≤k≤n. Show that a k-cycle(a1 ...,ak)in S n can be written as a product of k−1 distinct cycles of length 2. Deduce that the set of 2-cycles in Sn generates Sn. -- theorem sheet06_q4e: -- -- (b) Show that the group (Q, +) is not generated by any finite subset. -- theorem sheet06_q4f:
4271957616fbbb184c69e98b85b9436c97474fe9
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/tests/lean/run/817.lean
f658ce79951478cb1e649367edaa3a0c0523da9d
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
254
lean
variables A B : Prop premises (H₁ : A) (H₂ : A → B) example : B := suffices A ∧ (A → B), from and.right this (and.left this), and.intro H₁ H₂ example : B := suffices H : A ∧ (A → B), from and.right H (and.left H), and.intro H₁ H₂
5e5424868352e93396d182ba82f985fcb6732913
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/tactic/cache.lean
2616b6dbcfacfabad7e1290e454f81f04fe72757
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
1,819
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.tactic.doc_commands import Mathlib.PostPort namespace Mathlib /-! # Instance cache tactics For performance reasons, Lean does not automatically update its database of class instances during a proof. The group of tactics in this file helps to force such updates. -/ namespace tactic /-- Reset the instance cache for the main goal. -/ /-- Unfreeze the local instances while executing `tac` on the main goal. -/ /-- Unfreeze local instances while executing `tac`, if the passed expression is amongst the frozen instances. -/ namespace interactive /-- `unfreezingI { tac }` executes tac while temporarily unfreezing the instance cache. -/ /-- Reset the instance cache. This allows any new instances added to the context to be used in typeclass inference. -/ /-- Like `subst`, but can also substitute in instance arguments. -/ /-- Like `cases`, but can also be used with instance arguments. -/ /-- Like `intro`, but uses the introduced variable in typeclass inference. -/ /-- Like `intros`, but uses the introduced variable(s) in typeclass inference. -/ /-- Used to add typeclasses to the context so that they can be used in typeclass inference. The syntax is the same as `have`, but the proof-omitted version is not supported. For this one must write `have : t, { <proof> }, resetI, <proof>`. -/ /-- Used to add typeclasses to the context so that they can be used in typeclass inference. The syntax is the same as `let`. -/ /-- Like `exact`, but uses all variables in the context for typeclass inference. -/ /-- For performance reasons, Lean does not automatically update its database
a2712e05580d5a218e50d4329950da86b63285ab
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/enumNoConfusionIssue.lean
5324dd263c5e5c029c6c921daf3f593598ba057a
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
249
lean
inductive MyBool := | MyTrue | MyFalse inductive T := | mk (b: MyBool) (u: Unit) inductive isTrue: T → Type := | intro: isTrue (.mk .MyTrue ()) example {τ: T} (h: isTrue τ): Unit := match τ, h with | .mk .MyTrue (), .intro => ()
ebb261d754217cf47d8402e172025189e66fa8b4
94e33a31faa76775069b071adea97e86e218a8ee
/src/data/finsupp/pointwise.lean
2daa18123b874af935745c3f4235a146e1a624e9
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
3,754
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import data.finsupp.basic /-! # The pointwise product on `finsupp`. For the convolution product on `finsupp` when the domain has a binary operation, see the type synonyms `add_monoid_algebra` (which is in turn used to define `polynomial` and `mv_polynomial`) and `monoid_algebra`. -/ noncomputable theory open finset universes u₁ u₂ u₃ u₄ u₅ variables {α : Type u₁} {β : Type u₂} {γ : Type u₃} {δ : Type u₄} {ι : Type u₅} namespace finsupp /-! ### Declarations about the pointwise product on `finsupp`s -/ section variables [mul_zero_class β] /-- The product of `f g : α →₀ β` is the finitely supported function whose value at `a` is `f a * g a`. -/ instance : has_mul (α →₀ β) := ⟨zip_with (*) (mul_zero 0)⟩ lemma coe_mul (g₁ g₂ : α →₀ β) : ⇑(g₁ * g₂) = g₁ * g₂ := rfl @[simp] lemma mul_apply {g₁ g₂ : α →₀ β} {a : α} : (g₁ * g₂) a = g₁ a * g₂ a := rfl lemma support_mul [decidable_eq α] {g₁ g₂ : α →₀ β} : (g₁ * g₂).support ⊆ g₁.support ∩ g₂.support := begin intros a h, simp only [mul_apply, mem_support_iff] at h, simp only [mem_support_iff, mem_inter, ne.def], rw ←not_or_distrib, intro w, apply h, cases w; { rw w, simp }, end instance : mul_zero_class (α →₀ β) := finsupp.coe_fn_injective.mul_zero_class _ coe_zero coe_mul end instance [semigroup_with_zero β] : semigroup_with_zero (α →₀ β) := finsupp.coe_fn_injective.semigroup_with_zero _ coe_zero coe_mul instance [non_unital_non_assoc_semiring β] : non_unital_non_assoc_semiring (α →₀ β) := finsupp.coe_fn_injective.non_unital_non_assoc_semiring _ coe_zero coe_add coe_mul (λ _ _, rfl) instance [non_unital_semiring β] : non_unital_semiring (α →₀ β) := finsupp.coe_fn_injective.non_unital_semiring _ coe_zero coe_add coe_mul (λ _ _, rfl) instance [non_unital_comm_semiring β] : non_unital_comm_semiring (α →₀ β) := finsupp.coe_fn_injective.non_unital_comm_semiring _ coe_zero coe_add coe_mul (λ _ _, rfl) instance [non_unital_non_assoc_ring β] : non_unital_non_assoc_ring (α →₀ β) := finsupp.coe_fn_injective.non_unital_non_assoc_ring _ coe_zero coe_add coe_mul coe_neg coe_sub (λ _ _, rfl) (λ _ _, rfl) instance [non_unital_ring β] : non_unital_ring (α →₀ β) := finsupp.coe_fn_injective.non_unital_ring _ coe_zero coe_add coe_mul coe_neg coe_sub (λ _ _, rfl) (λ _ _, rfl) instance [non_unital_comm_ring β] : non_unital_comm_ring (α →₀ β) := finsupp.coe_fn_injective.non_unital_comm_ring _ coe_zero coe_add coe_mul coe_neg coe_sub (λ _ _, rfl) (λ _ _, rfl) -- TODO can this be generalized in the direction of `pi.has_smul'` -- (i.e. dependent functions and finsupps) -- TODO in theory this could be generalised, we only really need `smul_zero` for the definition instance pointwise_scalar [semiring β] : has_smul (α → β) (α →₀ β) := { smul := λ f g, finsupp.of_support_finite (λ a, f a • g a) begin apply set.finite.subset g.finite_support, simp only [function.support_subset_iff, finsupp.mem_support_iff, ne.def, finsupp.fun_support_eq, finset.mem_coe], intros x hx h, apply hx, rw [h, smul_zero], end } @[simp] lemma coe_pointwise_smul [semiring β] (f : α → β) (g : α →₀ β) : ⇑(f • g) = f • g := rfl /-- The pointwise multiplicative action of functions on finitely supported functions -/ instance pointwise_module [semiring β] : module (α → β) (α →₀ β) := function.injective.module _ coe_fn_add_hom coe_fn_injective coe_pointwise_smul end finsupp
7b3e86cd1956ff0ae2b96523af83c87abbd8b7bf
0c2a1563358eee96560284575fc5cfbac6eddd09
/src/polyomino/basic.lean
73dfa67a4c3a3e22654d4b7f563baed5a4d05ee2
[]
no_license
kendfrey/polyomino
2f51d691418cf71180b8a938af66de2281694162
a795101d85ee4d91aa33981381fbbcd10157dae7
refs/heads/master
1,670,925,213,201
1,598,668,120,000
1,598,668,120,000
291,185,915
0
0
null
null
null
null
UTF-8
Lean
false
false
1,632
lean
import tactic import tactic.nth_rewrite namespace polyomino inductive adjacent : ℤ × ℤ → ℤ × ℤ → Prop | up {x y} : adjacent ⟨x, y⟩ ⟨x, y + 1⟩ | down {x y} : adjacent ⟨x, y⟩ ⟨x, y - 1⟩ | right {x y} : adjacent ⟨x, y⟩ ⟨x + 1, y⟩ | left {x y} : adjacent ⟨x, y⟩ ⟨x - 1, y⟩ @[symm] theorem adjacent.symm {x y} : adjacent x y → adjacent y x := begin intros adj_x_y, cases adj_x_y with x y x y x y x y, { nth_rewrite 1 ← add_sub_cancel y 1, apply adjacent.down, }, { nth_rewrite 1 ← sub_add_cancel y 1, apply adjacent.up, }, { nth_rewrite 1 ← add_sub_cancel x 1, apply adjacent.left, }, { nth_rewrite 1 ← sub_add_cancel x 1, apply adjacent.right, }, end inductive connected : finset (ℤ × ℤ) → Prop | empty : connected ∅ | singleton (x : ℤ × ℤ) : connected {x} | insert (s x y) : y ∈ s → adjacent x y → connected s → connected (insert x s) lemma connected.induction_on {p : finset (ℤ × ℤ) → Prop} {s} : connected s → p ∅ → (∀ x, p {x}) → (∀ x y s, x ∉ s → y ∈ s → adjacent x y → connected s → p (insert x s)) → p s := begin intros conn_s p_empty p_singleton p_insert, induction conn_s with _ s₁ a b b_mem_s _ _ ih, { apply p_empty, }, { apply p_singleton, }, clear s, rename s₁ s, by_cases h : a ∈ s, { rw finset.insert_eq_of_mem h, apply ih, }, { apply p_insert; assumption, }, end end polyomino structure polyomino (n : ℕ) := (shape : finset (ℤ × ℤ)) (card : shape.card = n) (conn : polyomino.connected shape)
6814d178a5986c9c1444a3c757f5bf850e9afa68
d7189ea2ef694124821b033e533f18905b5e87ef
/galois/temporal/fixpoint.lean
a9ca3959f7756617b882e0d9dff744ff3ee82e29
[ "Apache-2.0" ]
permissive
digama0/lean-protocol-support
eaa7e6f8b8e0d5bbfff1f7f52bfb79a3b11b0f59
cabfa3abedbdd6fdca6e2da6fbbf91a13ed48dda
refs/heads/master
1,625,421,450,627
1,506,035,462,000
1,506,035,462,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
11,555
lean
import .temporal .first import galois.subset.fixpoint open subset namespace temporal universes u v def always_fixpoint {T : Type u} (P : tProp T) (X : tProp T) := P ∩ ◯ X def until_fixpoint {T : Type u} (P Q : tProp T) (X : tProp T) := Q ∪ (P ∩ ◯ X) lemma always_fixpoint_mono {T : Type u} (P : tProp T) : monotone (always_fixpoint P) := begin unfold monotone, intros X Y H, unfold always_fixpoint, apply bintersection_mono, apply included_refl, apply next_mono, assumption end lemma nextn_continuous {T : Type u} (n : ℕ) : continuous (@nextn T n) := begin unfold continuous, intros Ix f, apply included_eq, { intros x H, intros ix, dsimp [function.comp], apply H, }, { intros x H, unfold nextn, intros ix, apply H, } end lemma next_continuous {T : Type u} : continuous (@next T) := nextn_continuous 1 lemma always_fixpoint_continuous {T : Type u} (P : tProp T) : continuous_inh (always_fixpoint P) := begin unfold continuous_inh, intros Ix inh f, unfold always_fixpoint, rw next_continuous, unfold has_inter.inter, rw and_continuous_r, reflexivity, end lemma until_fixpoint_mono {T : Type u} (P Q : tProp T) : monotone (until_fixpoint P Q) := begin unfold monotone, intros X Y H, unfold until_fixpoint, apply bunion_mono, apply included_refl, apply bintersection_mono, apply included_refl, apply next_mono, assumption end lemma until_fixpoint_continuous {T : Type u} (P Q : tProp T) [decidable_pred Q] : continuous_inh (until_fixpoint P Q) := begin unfold continuous_inh, intros Ix inh f, unfold until_fixpoint, rw next_continuous, unfold has_inter.inter, rw and_continuous_r, unfold has_union.union, rw or_continuous_r, reflexivity, end lemma nextn_cocontinuous {T : Type u} (n : ℕ) : cocontinuous (@nextn T n) := begin unfold cocontinuous, intros Ix f, apply included_eq, { intros x H, induction H, constructor; assumption }, { intros x H, induction H, constructor; assumption } end lemma next_cocontinuous {T : Type u} : cocontinuous (@next T) := nextn_cocontinuous 1 lemma until_fixpoint_cocontinuous_l {T : Type u} {Ix : Type} [inhabited Ix] (P : Ix → tProp T) (Q : tProp T) : until_fixpoint (union_ix P) Q = λ x, union_ix (λ ix, until_fixpoint (P ix) Q x) := begin apply funext, intros X, unfold until_fixpoint, rw inter_comm, unfold has_inter.inter, rw and_cocontinuous_r, unfold has_union.union, rw or_cocontinuous_r, dsimp [function.comp], f_equal, apply funext, intros ix, f_equal, apply inter_comm, end def weak_until {T : Type u} (P Q : tProp T) : tProp T := greatest_fixpointn (until_fixpoint P Q) -- \MCW infix `𝓦` : 50 := weak_until @[trace_map] lemma weak_until_map {A : Type v} {T : Type u} (P Q : tProp T) (f : A → T) : (P 𝓦 Q) ∘ trace.map f = ((P ∘ trace.map f) 𝓦 (Q ∘ trace.map f)) := begin unfold weak_until, unfold greatest_fixpointn, rw intersection_ix_precompose, f_equal, apply funext, intros n, induction n; simp [iterate], reflexivity, rw ← ih_1, unfold until_fixpoint, rw or_precompose, rw and_precompose, rw next_map, end @[ltl] def release {T : Type u} (P Q : tProp T) : tProp T := Q 𝓦 (Q ∩ P) -- \MCR infix `𝓡` : 50 := release lemma always_fixpoint_fixes {T : Type u} (P : tProp T) : always_fixpoint P (□ P) = □ P := begin unfold always_fixpoint, symmetry, apply always_and_next end lemma always_greatest_fixpoint {T : Type u} (P : tProp T) : □ P = greatest_fixpoint (always_fixpoint P) := begin apply included_eq, { intros x H, apply (union_st.mk (□ P)), unfold always_fixpoint, rw ← always_and_next, apply (included_refl _), assumption }, { apply (greatest_fixpoint_le _ _), apply always_fixpoint_mono, intros x H, unfold always_fixpoint at H, intros tr xtr, have Hx : □ x tr, { apply temporal_induction, assumption, intros n IH, rw H at IH, induction IH with H1 H2, assumption }, { rw H at Hx, rw ← always_and at Hx, induction Hx with H1 H2, assumption, } } end lemma always_greatest_fixpointn {T : Type u} (P : tProp T) : □ P = greatest_fixpointn (always_fixpoint P) := begin rw always_greatest_fixpoint, symmetry, apply greatest_fixpointn_same, apply continuous_chain_cocont, apply always_fixpoint_continuous, end lemma curry {T : Type u} {P Q R : tProp T} (H : ⊩ P ∩ Q => R) : ⊩ P => Q => R := begin intros tr HP HQ, apply H, constructor; assumption end lemma weak_until_unfold {T : Type u} (P Q : tProp T) [decidable_pred Q] : P 𝓦 Q = (Q ∪ (P ∩ ◯ (P 𝓦 Q))) := begin have H : P 𝓦 Q = until_fixpoint P Q (P 𝓦 Q), unfold weak_until, symmetry, apply greatest_fixpointn_fixed, apply continuous_chain_cocont, apply until_fixpoint_continuous, apply H end lemma weak_until_not_always_lemma {T : Type u} (P Q : tProp T) (n : ℕ) : ⊩ □ (tNot Q) => iterate (until_fixpoint P Q) tt n => iterate (always_fixpoint P) tt n := begin induction n; intros tr notQ H; simp [iterate], simp [iterate] at H, unfold until_fixpoint at H, unfold always_fixpoint, induction H with H H, specialize (notQ 0), rw delayn_zero at notQ, contradiction, induction H with Hl Hr, constructor, assumption, unfold next nextn, apply ih_1, intros n, rw delayn_combine, apply notQ, apply next_delay, rw delayn_zero, assumption end lemma weak_until_not_always {T : Type u} (P Q : tProp T) : ⊩ P 𝓦 Q => □ (tNot Q) => □ P := begin intros tr PWQ notQ, rw always_greatest_fixpointn, intros n, apply weak_until_not_always_lemma, assumption, apply PWQ, end lemma weak_until_always_mono {T : Type u} (A B P : tProp T) : ⊩ □ (A => B) => A 𝓦 P => B 𝓦 P := begin intros tr H AWP n, specialize (AWP n), revert tr, induction n, case nat.zero { simp [iterate], }, case nat.succ a ih_1 { simp [iterate], intros tr AB H, unfold until_fixpoint, unfold until_fixpoint at H, induction H with H H, apply or.inl, assumption, apply or.inr, induction H with Hl Hr, constructor, rw ← (delayn_zero tr), apply AB, rw delayn_zero, assumption, unfold next nextn, apply ih_1, intros n, rw delayn_combine, apply AB, apply Hr }, end lemma weak_until_mono {T : Type u} {A B P : tProp T} (AB : A ≤ B) : (A 𝓦 P) ≤ (B 𝓦 P) := begin intros tr AP, apply weak_until_always_mono, intros n, apply AB, assumption end lemma not_weakuntil_yes {T : Type u} (P : tProp T) [decP : decidable_pred P] : ⊩ tNot P 𝓦 P := begin intros tr n, revert tr, induction n; simp [iterate]; intros tr, trivial, have H := decP tr, induction H with H H, { apply or.inr, constructor, apply H, apply ih_1 }, { apply or.inl, assumption } end lemma always_weak_until {T : Type u} (P Q : tProp T) [decidable_pred Q] : ⊩ □ (P ∪ Q) => P 𝓦 Q := begin rw always_greatest_fixpointn, apply greatest_fixpointn_mono, apply chain_cocont_mono, apply continuous_chain_cocont, apply always_fixpoint_continuous, unfold always_fixpoint until_fixpoint, intros X tr H, induction H with Hl Hr, induction Hl with Hl Hl, { apply or.inr, constructor; assumption }, { apply or.inl, assumption } end /-- An anologue of `temporal_induction`. If we can prove `P` holds now, and if, assuming `Q` doesn't hold, `P` implies `◯ P`, then `◯ P` holds weak-until `Q`. -/ lemma weak_until_induction {T : Type u} (P Q : tProp T) [decQ : decidable_pred Q] : ⊩ (P => □ (tNot Q => P => (◯ P)) => ◯ P 𝓦 Q) := begin intros tr H0 HS n, revert tr, induction n; simp [iterate]; intros tr H0 HS, trivial, unfold until_fixpoint, have H := decQ tr, induction H with HQ HQ, { apply or.inr, constructor, specialize (HS 0), rw delayn_zero at HS, specialize (HS HQ H0), assumption, unfold next nextn, apply ih_1, specialize (HS 0 HQ H0), assumption, intros n, rw delayn_combine, apply HS }, { apply or.inl, assumption } end lemma eventually_strengthen_until {T : Type u} {P Q : tProp T} [decidable_pred Q] : ⊩ ◇ Q => (P 𝓦 Q) => (P 𝓤 Q) := begin intros tr evQ PWQ, have H := eventually_first_dec _ _ evQ, clear evQ, unfold first at H, induction H with k Hk, induction Hk with Hkl Hkr, constructor, split, assumption, clear Hkl, revert tr, induction k; intros, { exfalso, apply nat.not_lt_zero, assumption, }, { cases n' with n' n', specialize (Hkr _ a_1), specialize (PWQ 1), simp [iterate] at PWQ, unfold until_fixpoint at PWQ, induction PWQ with H H, exfalso, apply Hkr, assumption, induction H with Hl Hr, rw delayn_zero, assumption, rw ← (@delayn_combine _ 1 n'), apply ih_1, rw weak_until_unfold at PWQ, induction PWQ with H H, exfalso, apply Hkr, tactic.swap, rw delayn_zero, assumption, apply nat.zero_lt_succ, induction H with Hl Hr, assumption, intros, rw delayn_combine, apply Hkr, rw nat.succ_lt_succ_iff, assumption, rw ← nat.succ_lt_succ_iff, assumption, } end lemma fair_strengthen_until {T : Type u} (P Q : tProp T) [decidable_pred Q] : ⊩ □ (P 𝓦 Q) => □ (◇ Q) => □ (P 𝓤 Q) := begin intros tr PQ fairQ n, apply eventually_strengthen_until; apply PQ <|> apply fairQ, end lemma weak_until_implies_release {T : Type u} {P Q : tProp T} : ⊩ P => (◯ P 𝓦 Q) => Q 𝓡 P := begin intros tr HP HPimpQ n, specialize (HPimpQ n), revert tr, induction n; simp [iterate]; intros tr H0 HS, unfold until_fixpoint, unfold until_fixpoint at HS, induction HS with HS HS, { apply or.inl, constructor; assumption }, { apply or.inr, induction HS with HSl HSr, constructor, assumption, unfold next nextn, apply ih_1, assumption, apply HSr } end lemma release_induction {T : Type u} (P Q : tProp T) [decQ : decidable_pred Q] : ⊩ (P => □ (tNot Q => P => (◯ P)) => Q 𝓡 P) := begin intros tr H0 HS, apply weak_until_implies_release, assumption, apply weak_until_induction; assumption end lemma next_weak_until_always_loop_lemma {T : Type u} (P Q : tProp T) : ⊩ □ (P=>◯ P𝓦Q) => □ (P ∩ Q=>◯ P) => □ (P=>◯ P) := begin intros tr PuntilQ QimpP n HP, specialize (PuntilQ n HP), specialize (PuntilQ 1), simp [iterate] at PuntilQ, unfold until_fixpoint at PuntilQ, induction PuntilQ with H H, apply QimpP, split; assumption, induction H with H H, assumption, end lemma next_weak_until_always_loop {T : Type u} (P Q : tProp T) : ⊩ P => □ (P => ◯ P 𝓦 Q) => □ (Q => ◯ P) => □ P := begin intros tr HP PuntilQ QimpP, apply temporal_induction, assumption, clear HP, apply next_weak_until_always_loop_lemma; try { assumption }, intros n Hn, induction Hn with HP HQ, apply QimpP, assumption, end lemma next_weak_until_always_loop' {T : Type u} (P Q : tProp T) : ⊩ P => □ (P => ◯ P 𝓦 Q) => □ (P ∩ Q => ◯ P) => □ P := begin intros tr HP PuntilQ QimpP, apply temporal_induction, assumption, clear HP, apply next_weak_until_always_loop_lemma; assumption end lemma next_weak_until_combine {T : Type u} (P Q : tProp T) [decidable_pred Q] : ⊩ ◇ P => □ (P => ◯ P 𝓦 Q) => fair Q => ◇ (P ∩ Q) := begin intros tr evP PuntilQ evQ, apply eventually_cut, apply evP, intros n Pnow, specialize (evQ n), specialize (PuntilQ n Pnow), have H := eventually_strengthen_until _ evQ PuntilQ, apply now_until_eventually, assumption, assumption, end lemma now_continuous {T : Type u} : continuous (@now T) := begin unfold continuous now later intersection_ix, dsimp [function.comp], intros, apply funext, intros tr, unfold now later, end lemma now_cocontinuous {T : Type u} : cocontinuous (@now T) := begin unfold cocontinuous now later intersection_ix, dsimp [function.comp], intros, apply funext, intros tr, unfold now later, apply propext, split; intros H; induction H; constructor; assumption, end end temporal
09e5c0419605a9911e720dbee20c1c59a997f2fa
94e33a31faa76775069b071adea97e86e218a8ee
/src/category_theory/abelian/basic.lean
f720095bfa1e22b7508ee6f0f273add14ebd1183
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
30,092
lean
/- Copyright (c) 2020 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel, Johan Commelin, Scott Morrison -/ import category_theory.limits.constructions.pullbacks import category_theory.limits.shapes.biproducts import category_theory.limits.shapes.images import category_theory.limits.constructions.limits_of_products_and_equalizers import category_theory.limits.constructions.epi_mono import category_theory.abelian.non_preadditive /-! # Abelian categories This file contains the definition and basic properties of abelian categories. There are many definitions of abelian category. Our definition is as follows: A category is called abelian if it is preadditive, has a finite products, kernels and cokernels, and if every monomorphism and epimorphism is normal. It should be noted that if we also assume coproducts, then preadditivity is actually a consequence of the other properties, as we show in `non_preadditive_abelian.lean`. However, this fact is of little practical relevance, since essentially all interesting abelian categories come with a preadditive structure. In this way, by requiring preadditivity, we allow the user to pass in the "native" preadditive structure for the specific category they are working with. ## Main definitions * `abelian` is the type class indicating that a category is abelian. It extends `preadditive`. * `abelian.image f` is `kernel (cokernel.π f)`, and * `abelian.coimage f` is `cokernel (kernel.ι f)`. ## Main results * In an abelian category, mono + epi = iso. * If `f : X ⟶ Y`, then the map `factor_thru_image f : X ⟶ image f` is an epimorphism, and the map `factor_thru_coimage f : coimage f ⟶ Y` is a monomorphism. * Factoring through the image and coimage is a strong epi-mono factorisation. This means that * every abelian category has images. We provide the isomorphism `image_iso_image : abelian.image f ≅ limits.image f`. * the canonical morphism `coimage_image_comparison : coimage f ⟶ image f` is an isomorphism. * We provide the alternate characterisation of an abelian category as a category with (co)kernels and finite products, and in which the canonical coimage-image comparison morphism is always an isomorphism. * Every epimorphism is a cokernel of its kernel. Every monomorphism is a kernel of its cokernel. * The pullback of an epimorphism is an epimorphism. The pushout of a monomorphism is a monomorphism. (This is not to be confused with the fact that the pullback of a monomorphism is a monomorphism, which is true in any category). ## Implementation notes The typeclass `abelian` does not extend `non_preadditive_abelian`, to avoid having to deal with comparing the two `has_zero_morphisms` instances (one from `preadditive` in `abelian`, and the other a field of `non_preadditive_abelian`). As a consequence, at the beginning of this file we trivially build a `non_preadditive_abelian` instance from an `abelian` instance, and use this to restate a number of theorems, in each case just reusing the proof from `non_preadditive_abelian.lean`. We don't show this yet, but abelian categories are finitely complete and finitely cocomplete. However, the limits we can construct at this level of generality will most likely be less nice than the ones that can be created in specific applications. For this reason, we adopt the following convention: * If the statement of a theorem involves limits, the existence of these limits should be made an explicit typeclass parameter. * If a limit only appears in a proof, but not in the statement of a theorem, the limit should not be a typeclass parameter, but instead be created using `abelian.has_pullbacks` or a similar definition. ## References * [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2] * [P. Aluffi, *Algebra: Chapter 0*][aluffi2016] -/ noncomputable theory open category_theory open category_theory.preadditive open category_theory.limits universes v u namespace category_theory variables {C : Type u} [category.{v} C] variables (C) /-- A (preadditive) category `C` is called abelian if it has all finite products, all kernels and cokernels, and if every monomorphism is the kernel of some morphism and every epimorphism is the cokernel of some morphism. (This definition implies the existence of zero objects: finite products give a terminal object, and in a preadditive category any terminal object is a zero object.) -/ class abelian extends preadditive C, normal_mono_category C, normal_epi_category C := [has_finite_products : has_finite_products C] [has_kernels : has_kernels C] [has_cokernels : has_cokernels C] attribute [instance, priority 100] abelian.has_finite_products attribute [instance, priority 100] abelian.has_kernels abelian.has_cokernels end category_theory open category_theory /-! We begin by providing an alternative constructor: a preadditive category with kernels, cokernels, and finite products, in which the coimage-image comparison morphism is always an isomorphism, is an abelian category. -/ namespace category_theory.abelian variables {C : Type u} [category.{v} C] [preadditive C] variables [limits.has_kernels C] [limits.has_cokernels C] namespace of_coimage_image_comparison_is_iso /-- The factorisation of a morphism through its abelian image. -/ @[simps] def image_mono_factorisation {X Y : C} (f : X ⟶ Y) : mono_factorisation f := { I := abelian.image f, m := kernel.ι _, m_mono := infer_instance, e := kernel.lift _ f (cokernel.condition _), fac' := kernel.lift_ι _ _ _ } lemma image_mono_factorisation_e' {X Y : C} (f : X ⟶ Y) : (image_mono_factorisation f).e = cokernel.π _ ≫ abelian.coimage_image_comparison f := begin ext, simp only [abelian.coimage_image_comparison, image_mono_factorisation_e, category.assoc, cokernel.π_desc_assoc], end /-- If the coimage-image comparison morphism for a morphism `f` is an isomorphism, we obtain an image factorisation of `f`. -/ def image_factorisation {X Y : C} (f : X ⟶ Y) [is_iso (abelian.coimage_image_comparison f)] : image_factorisation f := { F := image_mono_factorisation f, is_image := { lift := λ F, inv (abelian.coimage_image_comparison f) ≫ cokernel.desc _ F.e F.kernel_ι_comp, lift_fac' := λ F, begin simp only [image_mono_factorisation_m, is_iso.inv_comp_eq, category.assoc, abelian.coimage_image_comparison], ext, rw [limits.coequalizer.π_desc_assoc, limits.coequalizer.π_desc_assoc, F.fac, kernel.lift_ι] end } } instance [has_zero_object C] {X Y : C} (f : X ⟶ Y) [mono f] [is_iso (abelian.coimage_image_comparison f)] : is_iso (image_mono_factorisation f).e := by { rw image_mono_factorisation_e', exact is_iso.comp_is_iso } instance [has_zero_object C] {X Y : C} (f : X ⟶ Y) [epi f] : is_iso (image_mono_factorisation f).m := by { dsimp, apply_instance } variables [∀ {X Y : C} (f : X ⟶ Y), is_iso (abelian.coimage_image_comparison f)] /-- A category in which coimage-image comparisons are all isomorphisms has images. -/ lemma has_images : has_images C := { has_image := λ X Y f, { exists_image := ⟨image_factorisation f⟩ } } variables [limits.has_finite_products C] local attribute [instance] limits.has_finite_biproducts.of_has_finite_products /-- A category with finite products in which coimage-image comparisons are all isomorphisms is a normal mono category. -/ def normal_mono_category : normal_mono_category C := { normal_mono_of_mono := λ X Y f m, { Z := _, g := cokernel.π f, w := by simp, is_limit := begin haveI : limits.has_images C := has_images, haveI : has_equalizers C := preadditive.has_equalizers_of_has_kernels, haveI : has_zero_object C := limits.has_zero_object_of_has_finite_biproducts _, have aux : _ := _, refine is_limit_aux _ (λ A, limit.lift _ _ ≫ inv (image_mono_factorisation f).e) aux _, { intros A g hg, rw [kernel_fork.ι_of_ι] at hg, rw [← cancel_mono f, hg, ← aux, kernel_fork.ι_of_ι], }, { intro A, simp only [kernel_fork.ι_of_ι, category.assoc], convert limit.lift_π _ _ using 2, rw [is_iso.inv_comp_eq, eq_comm], exact (image_mono_factorisation f).fac, }, end }, } /-- A category with finite products in which coimage-image comparisons are all isomorphisms is a normal epi category. -/ def normal_epi_category : normal_epi_category C := { normal_epi_of_epi := λ X Y f m, { W := kernel f, g := kernel.ι _, w := kernel.condition _, is_colimit := begin haveI : limits.has_images C := has_images, haveI : has_equalizers C := preadditive.has_equalizers_of_has_kernels, haveI : has_zero_object C := limits.has_zero_object_of_has_finite_biproducts _, have aux : _ := _, refine is_colimit_aux _ (λ A, inv (image_mono_factorisation f).m ≫ inv (abelian.coimage_image_comparison f) ≫ colimit.desc _ _) aux _, { intros A g hg, rw [cokernel_cofork.π_of_π] at hg, rw [← cancel_epi f, hg, ← aux, cokernel_cofork.π_of_π], }, { intro A, simp only [cokernel_cofork.π_of_π, ← category.assoc], convert colimit.ι_desc _ _ using 2, rw [is_iso.comp_inv_eq, is_iso.comp_inv_eq, eq_comm, ←image_mono_factorisation_e'], exact (image_mono_factorisation f).fac, } end }, } end of_coimage_image_comparison_is_iso variables [∀ {X Y : C} (f : X ⟶ Y), is_iso (abelian.coimage_image_comparison f)] [limits.has_finite_products C] local attribute [instance] of_coimage_image_comparison_is_iso.normal_mono_category local attribute [instance] of_coimage_image_comparison_is_iso.normal_epi_category /-- A preadditive category with kernels, cokernels, and finite products, in which the coimage-image comparison morphism is always an isomorphism, is an abelian category. The Stacks project uses this characterisation at the definition of an abelian category. See <https://stacks.math.columbia.edu/tag/0109>. -/ def of_coimage_image_comparison_is_iso : abelian C := {} end category_theory.abelian namespace category_theory.abelian variables {C : Type u} [category.{v} C] [abelian C] /-- An abelian category has finite biproducts. -/ @[priority 100] instance has_finite_biproducts : has_finite_biproducts C := limits.has_finite_biproducts.of_has_finite_products @[priority 100] instance has_binary_biproducts : has_binary_biproducts C := limits.has_binary_biproducts_of_finite_biproducts _ @[priority 100] instance has_zero_object : has_zero_object C := has_zero_object_of_has_initial_object section to_non_preadditive_abelian /-- Every abelian category is, in particular, `non_preadditive_abelian`. -/ def non_preadditive_abelian : non_preadditive_abelian C := { ..‹abelian C› } end to_non_preadditive_abelian section /-! We now promote some instances that were constructed using `non_preadditive_abelian`. -/ local attribute [instance] non_preadditive_abelian variables {P Q : C} (f : P ⟶ Q) /-- The map `p : P ⟶ image f` is an epimorphism -/ instance : epi (abelian.factor_thru_image f) := by apply_instance instance is_iso_factor_thru_image [mono f] : is_iso (abelian.factor_thru_image f) := by apply_instance /-- The canonical morphism `i : coimage f ⟶ Q` is a monomorphism -/ instance : mono (abelian.factor_thru_coimage f) := by apply_instance instance is_iso_factor_thru_coimage [epi f] : is_iso (abelian.factor_thru_coimage f) := by apply_instance end section factor local attribute [instance] non_preadditive_abelian variables {P Q : C} (f : P ⟶ Q) section lemma mono_of_kernel_ι_eq_zero (h : kernel.ι f = 0) : mono f := mono_of_kernel_zero h lemma epi_of_cokernel_π_eq_zero (h : cokernel.π f = 0) : epi f := begin apply normal_mono_category.epi_of_zero_cokernel _ (cokernel f), simp_rw ←h, exact is_colimit.of_iso_colimit (colimit.is_colimit (parallel_pair f 0)) (iso_of_π _) end end section variables {f} lemma image_ι_comp_eq_zero {R : C} {g : Q ⟶ R} (h : f ≫ g = 0) : abelian.image.ι f ≫ g = 0 := zero_of_epi_comp (abelian.factor_thru_image f) $ by simp [h] lemma comp_coimage_π_eq_zero {R : C} {g : Q ⟶ R} (h : f ≫ g = 0) : f ≫ abelian.coimage.π g = 0 := zero_of_comp_mono (abelian.factor_thru_coimage g) $ by simp [h] end /-- Factoring through the image is a strong epi-mono factorisation. -/ @[simps] def image_strong_epi_mono_factorisation : strong_epi_mono_factorisation f := { I := abelian.image f, m := image.ι f, m_mono := by apply_instance, e := abelian.factor_thru_image f, e_strong_epi := strong_epi_of_epi _ } /-- Factoring through the coimage is a strong epi-mono factorisation. -/ @[simps] def coimage_strong_epi_mono_factorisation : strong_epi_mono_factorisation f := { I := abelian.coimage f, m := abelian.factor_thru_coimage f, m_mono := by apply_instance, e := coimage.π f, e_strong_epi := strong_epi_of_epi _ } end factor section has_strong_epi_mono_factorisations /-- An abelian category has strong epi-mono factorisations. -/ @[priority 100] instance : has_strong_epi_mono_factorisations C := has_strong_epi_mono_factorisations.mk $ λ X Y f, image_strong_epi_mono_factorisation f /- In particular, this means that it has well-behaved images. -/ example : has_images C := by apply_instance example : has_image_maps C := by apply_instance end has_strong_epi_mono_factorisations section images variables {X Y : C} (f : X ⟶ Y) /-- The coimage-image comparison morphism is always an isomorphism in an abelian category. See `category_theory.abelian.of_coimage_image_comparison_is_iso` for the converse. -/ instance : is_iso (coimage_image_comparison f) := begin convert is_iso.of_iso (is_image.iso_ext (coimage_strong_epi_mono_factorisation f).to_mono_is_image (image_strong_epi_mono_factorisation f).to_mono_is_image), ext, change _ = _ ≫ (image_strong_epi_mono_factorisation f).m, simp [-image_strong_epi_mono_factorisation_to_mono_factorisation_m] end /-- There is a canonical isomorphism between the abelian coimage and the abelian image of a morphism. -/ abbreviation coimage_iso_image : abelian.coimage f ≅ abelian.image f := as_iso (coimage_image_comparison f) /-- There is a canonical isomorphism between the abelian coimage and the categorical image of a morphism. -/ abbreviation coimage_iso_image' : abelian.coimage f ≅ image f := is_image.iso_ext (coimage_strong_epi_mono_factorisation f).to_mono_is_image (image.is_image f) /-- There is a canonical isomorphism between the abelian image and the categorical image of a morphism. -/ abbreviation image_iso_image : abelian.image f ≅ image f := is_image.iso_ext (image_strong_epi_mono_factorisation f).to_mono_is_image (image.is_image f) end images section cokernel_of_kernel variables {X Y : C} {f : X ⟶ Y} local attribute [instance] non_preadditive_abelian /-- In an abelian category, an epi is the cokernel of its kernel. More precisely: If `f` is an epimorphism and `s` is some limit kernel cone on `f`, then `f` is a cokernel of `fork.ι s`. -/ def epi_is_cokernel_of_kernel [epi f] (s : fork f 0) (h : is_limit s) : is_colimit (cokernel_cofork.of_π f (kernel_fork.condition s)) := non_preadditive_abelian.epi_is_cokernel_of_kernel s h /-- In an abelian category, a mono is the kernel of its cokernel. More precisely: If `f` is a monomorphism and `s` is some colimit cokernel cocone on `f`, then `f` is a kernel of `cofork.π s`. -/ def mono_is_kernel_of_cokernel [mono f] (s : cofork f 0) (h : is_colimit s) : is_limit (kernel_fork.of_ι f (cokernel_cofork.condition s)) := non_preadditive_abelian.mono_is_kernel_of_cokernel s h variables (f) /-- In an abelian category, any morphism that turns to zero when precomposed with the kernel of an epimorphism factors through that epimorphism. -/ def epi_desc [epi f] {T : C} (g : X ⟶ T) (hg : kernel.ι f ≫ g = 0) : Y ⟶ T := (epi_is_cokernel_of_kernel _ (limit.is_limit _)).desc (cokernel_cofork.of_π _ hg) @[simp, reassoc] lemma comp_epi_desc [epi f] {T : C} (g : X ⟶ T) (hg : kernel.ι f ≫ g = 0) : f ≫ epi_desc f g hg = g := (epi_is_cokernel_of_kernel _ (limit.is_limit _)).fac (cokernel_cofork.of_π _ hg) walking_parallel_pair.one /-- In an abelian category, any morphism that turns to zero when postcomposed with the cokernel of a monomorphism factors through that monomorphism. -/ def mono_lift [mono f] {T : C} (g : T ⟶ Y) (hg : g ≫ cokernel.π f = 0) : T ⟶ X := (mono_is_kernel_of_cokernel _ (colimit.is_colimit _)).lift (kernel_fork.of_ι _ hg) @[simp, reassoc] lemma mono_lift_comp [mono f] {T : C} (g : T ⟶ Y) (hg : g ≫ cokernel.π f = 0) : mono_lift f g hg ≫ f = g := (mono_is_kernel_of_cokernel _ (colimit.is_colimit _)).fac (kernel_fork.of_ι _ hg) walking_parallel_pair.zero end cokernel_of_kernel section @[priority 100] instance has_equalizers : has_equalizers C := preadditive.has_equalizers_of_has_kernels /-- Any abelian category has pullbacks -/ @[priority 100] instance has_pullbacks : has_pullbacks C := has_pullbacks_of_has_binary_products_of_has_equalizers C end section @[priority 100] instance has_coequalizers : has_coequalizers C := preadditive.has_coequalizers_of_has_cokernels /-- Any abelian category has pushouts -/ @[priority 100] instance has_pushouts : has_pushouts C := has_pushouts_of_has_binary_coproducts_of_has_coequalizers C @[priority 100] instance has_finite_limits : has_finite_limits C := limits.finite_limits_from_equalizers_and_finite_products @[priority 100] instance has_finite_colimits : has_finite_colimits C := limits.finite_colimits_from_coequalizers_and_finite_coproducts end namespace pullback_to_biproduct_is_kernel variables [limits.has_pullbacks C] {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) /-! This section contains a slightly technical result about pullbacks and biproducts. We will need it in the proof that the pullback of an epimorphism is an epimorpism. -/ /-- The canonical map `pullback f g ⟶ X ⊞ Y` -/ abbreviation pullback_to_biproduct : pullback f g ⟶ X ⊞ Y := biprod.lift pullback.fst pullback.snd /-- The canonical map `pullback f g ⟶ X ⊞ Y` induces a kernel cone on the map `biproduct X Y ⟶ Z` induced by `f` and `g`. A slightly more intuitive way to think of this may be that it induces an equalizer fork on the maps induced by `(f, 0)` and `(0, g)`. -/ abbreviation pullback_to_biproduct_fork : kernel_fork (biprod.desc f (-g)) := kernel_fork.of_ι (pullback_to_biproduct f g) $ by rw [biprod.lift_desc, comp_neg, pullback.condition, add_right_neg] /-- The canonical map `pullback f g ⟶ X ⊞ Y` is a kernel of the map induced by `(f, -g)`. -/ def is_limit_pullback_to_biproduct : is_limit (pullback_to_biproduct_fork f g) := fork.is_limit.mk _ (λ s, pullback.lift (fork.ι s ≫ biprod.fst) (fork.ι s ≫ biprod.snd) $ sub_eq_zero.1 $ by rw [category.assoc, category.assoc, ←comp_sub, sub_eq_add_neg, ←comp_neg, ←biprod.desc_eq, kernel_fork.condition s]) (λ s, begin ext; rw [fork.ι_of_ι, category.assoc], { rw [biprod.lift_fst, pullback.lift_fst] }, { rw [biprod.lift_snd, pullback.lift_snd] } end) (λ s m h, by ext; simp [←h]) end pullback_to_biproduct_is_kernel namespace biproduct_to_pushout_is_cokernel variables [limits.has_pushouts C] {W X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) /-- The canonical map `Y ⊞ Z ⟶ pushout f g` -/ abbreviation biproduct_to_pushout : Y ⊞ Z ⟶ pushout f g := biprod.desc pushout.inl pushout.inr /-- The canonical map `Y ⊞ Z ⟶ pushout f g` induces a cokernel cofork on the map `X ⟶ Y ⊞ Z` induced by `f` and `-g`. -/ abbreviation biproduct_to_pushout_cofork : cokernel_cofork (biprod.lift f (-g)) := cokernel_cofork.of_π (biproduct_to_pushout f g) $ by rw [biprod.lift_desc, neg_comp, pushout.condition, add_right_neg] /-- The cofork induced by the canonical map `Y ⊞ Z ⟶ pushout f g` is in fact a colimit cokernel cofork. -/ def is_colimit_biproduct_to_pushout : is_colimit (biproduct_to_pushout_cofork f g) := cofork.is_colimit.mk _ (λ s, pushout.desc (biprod.inl ≫ cofork.π s) (biprod.inr ≫ cofork.π s) $ sub_eq_zero.1 $ by rw [←category.assoc, ←category.assoc, ←sub_comp, sub_eq_add_neg, ←neg_comp, ←biprod.lift_eq, cofork.condition s, zero_comp]) (λ s, by ext; simp) (λ s m h, by ext; simp [←h] ) end biproduct_to_pushout_is_cokernel section epi_pullback variables [limits.has_pullbacks C] {W X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) /-- In an abelian category, the pullback of an epimorphism is an epimorphism. Proof from [aluffi2016, IX.2.3], cf. [borceux-vol2, 1.7.6] -/ instance epi_pullback_of_epi_f [epi f] : epi (pullback.snd : pullback f g ⟶ Y) := -- It will suffice to consider some morphism e : Y ⟶ R such that -- pullback.snd ≫ e = 0 and show that e = 0. epi_of_cancel_zero _ $ λ R e h, begin -- Consider the morphism u := (0, e) : X ⊞ Y⟶ R. let u := biprod.desc (0 : X ⟶ R) e, -- The composite pullback f g ⟶ X ⊞ Y ⟶ R is zero by assumption. have hu : pullback_to_biproduct_is_kernel.pullback_to_biproduct f g ≫ u = 0 := by simpa, -- pullback_to_biproduct f g is a kernel of (f, -g), so (f, -g) is a -- cokernel of pullback_to_biproduct f g have := epi_is_cokernel_of_kernel _ (pullback_to_biproduct_is_kernel.is_limit_pullback_to_biproduct f g), -- We use this fact to obtain a factorization of u through (f, -g) via some d : Z ⟶ R. obtain ⟨d, hd⟩ := cokernel_cofork.is_colimit.desc' this u hu, change Z ⟶ R at d, change biprod.desc f (-g) ≫ d = u at hd, -- But then f ≫ d = 0: have : f ≫ d = 0, calc f ≫ d = (biprod.inl ≫ biprod.desc f (-g)) ≫ d : by rw biprod.inl_desc ... = biprod.inl ≫ u : by rw [category.assoc, hd] ... = 0 : biprod.inl_desc _ _, -- But f is an epimorphism, so d = 0... have : d = 0 := (cancel_epi f).1 (by simpa), -- ...or, in other words, e = 0. calc e = biprod.inr ≫ u : by rw biprod.inr_desc ... = biprod.inr ≫ biprod.desc f (-g) ≫ d : by rw ←hd ... = biprod.inr ≫ biprod.desc f (-g) ≫ 0 : by rw this ... = (biprod.inr ≫ biprod.desc f (-g)) ≫ 0 : by rw ←category.assoc ... = 0 : has_zero_morphisms.comp_zero _ _ end /-- In an abelian category, the pullback of an epimorphism is an epimorphism. -/ instance epi_pullback_of_epi_g [epi g] : epi (pullback.fst : pullback f g ⟶ X) := -- It will suffice to consider some morphism e : X ⟶ R such that -- pullback.fst ≫ e = 0 and show that e = 0. epi_of_cancel_zero _ $ λ R e h, begin -- Consider the morphism u := (e, 0) : X ⊞ Y ⟶ R. let u := biprod.desc e (0 : Y ⟶ R), -- The composite pullback f g ⟶ X ⊞ Y ⟶ R is zero by assumption. have hu : pullback_to_biproduct_is_kernel.pullback_to_biproduct f g ≫ u = 0 := by simpa, -- pullback_to_biproduct f g is a kernel of (f, -g), so (f, -g) is a -- cokernel of pullback_to_biproduct f g have := epi_is_cokernel_of_kernel _ (pullback_to_biproduct_is_kernel.is_limit_pullback_to_biproduct f g), -- We use this fact to obtain a factorization of u through (f, -g) via some d : Z ⟶ R. obtain ⟨d, hd⟩ := cokernel_cofork.is_colimit.desc' this u hu, change Z ⟶ R at d, change biprod.desc f (-g) ≫ d = u at hd, -- But then (-g) ≫ d = 0: have : (-g) ≫ d = 0, calc (-g) ≫ d = (biprod.inr ≫ biprod.desc f (-g)) ≫ d : by rw biprod.inr_desc ... = biprod.inr ≫ u : by rw [category.assoc, hd] ... = 0 : biprod.inr_desc _ _, -- But g is an epimorphism, thus so is -g, so d = 0... have : d = 0 := (cancel_epi (-g)).1 (by simpa), -- ...or, in other words, e = 0. calc e = biprod.inl ≫ u : by rw biprod.inl_desc ... = biprod.inl ≫ biprod.desc f (-g) ≫ d : by rw ←hd ... = biprod.inl ≫ biprod.desc f (-g) ≫ 0 : by rw this ... = (biprod.inl ≫ biprod.desc f (-g)) ≫ 0 : by rw ←category.assoc ... = 0 : has_zero_morphisms.comp_zero _ _ end lemma epi_snd_of_is_limit [epi f] {s : pullback_cone f g} (hs : is_limit s) : epi s.snd := begin convert epi_of_epi_fac (is_limit.cone_point_unique_up_to_iso_hom_comp (limit.is_limit _) hs _), { refl }, { exact abelian.epi_pullback_of_epi_f _ _ } end lemma epi_fst_of_is_limit [epi g] {s : pullback_cone f g} (hs : is_limit s) : epi s.fst := begin convert epi_of_epi_fac (is_limit.cone_point_unique_up_to_iso_hom_comp (limit.is_limit _) hs _), { refl }, { exact abelian.epi_pullback_of_epi_g _ _ } end /-- Suppose `f` and `g` are two morphisms with a common codomain and suppose we have written `g` as an epimorphism followed by a monomorphism. If `f` factors through the mono part of this factorization, then any pullback of `g` along `f` is an epimorphism. -/ lemma epi_fst_of_factor_thru_epi_mono_factorization (g₁ : Y ⟶ W) [epi g₁] (g₂ : W ⟶ Z) [mono g₂] (hg : g₁ ≫ g₂ = g) (f' : X ⟶ W) (hf : f' ≫ g₂ = f) (t : pullback_cone f g) (ht : is_limit t) : epi t.fst := by apply epi_fst_of_is_limit _ _ (pullback_cone.is_limit_of_factors f g g₂ f' g₁ hf hg t ht) end epi_pullback section mono_pushout variables [limits.has_pushouts C] {W X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) instance mono_pushout_of_mono_f [mono f] : mono (pushout.inr : Z ⟶ pushout f g) := mono_of_cancel_zero _ $ λ R e h, begin let u := biprod.lift (0 : R ⟶ Y) e, have hu : u ≫ biproduct_to_pushout_is_cokernel.biproduct_to_pushout f g = 0 := by simpa, have := mono_is_kernel_of_cokernel _ (biproduct_to_pushout_is_cokernel.is_colimit_biproduct_to_pushout f g), obtain ⟨d, hd⟩ := kernel_fork.is_limit.lift' this u hu, change R ⟶ X at d, change d ≫ biprod.lift f (-g) = u at hd, have : d ≫ f = 0, calc d ≫ f = d ≫ biprod.lift f (-g) ≫ biprod.fst : by rw biprod.lift_fst ... = u ≫ biprod.fst : by rw [←category.assoc, hd] ... = 0 : biprod.lift_fst _ _, have : d = 0 := (cancel_mono f).1 (by simpa), calc e = u ≫ biprod.snd : by rw biprod.lift_snd ... = (d ≫ biprod.lift f (-g)) ≫ biprod.snd : by rw ←hd ... = (0 ≫ biprod.lift f (-g)) ≫ biprod.snd : by rw this ... = 0 ≫ biprod.lift f (-g) ≫ biprod.snd : by rw category.assoc ... = 0 : zero_comp end instance mono_pushout_of_mono_g [mono g] : mono (pushout.inl : Y ⟶ pushout f g) := mono_of_cancel_zero _ $ λ R e h, begin let u := biprod.lift e (0 : R ⟶ Z), have hu : u ≫ biproduct_to_pushout_is_cokernel.biproduct_to_pushout f g = 0 := by simpa, have := mono_is_kernel_of_cokernel _ (biproduct_to_pushout_is_cokernel.is_colimit_biproduct_to_pushout f g), obtain ⟨d, hd⟩ := kernel_fork.is_limit.lift' this u hu, change R ⟶ X at d, change d ≫ biprod.lift f (-g) = u at hd, have : d ≫ (-g) = 0, calc d ≫ (-g) = d ≫ biprod.lift f (-g) ≫ biprod.snd : by rw biprod.lift_snd ... = u ≫ biprod.snd : by rw [←category.assoc, hd] ... = 0 : biprod.lift_snd _ _, have : d = 0 := (cancel_mono (-g)).1 (by simpa), calc e = u ≫ biprod.fst : by rw biprod.lift_fst ... = (d ≫ biprod.lift f (-g)) ≫ biprod.fst : by rw ←hd ... = (0 ≫ biprod.lift f (-g)) ≫ biprod.fst : by rw this ... = 0 ≫ biprod.lift f (-g) ≫ biprod.fst : by rw category.assoc ... = 0 : zero_comp end lemma mono_inr_of_is_colimit [mono f] {s : pushout_cocone f g} (hs : is_colimit s) : mono s.inr := begin convert mono_of_mono_fac (is_colimit.comp_cocone_point_unique_up_to_iso_hom hs (colimit.is_colimit _) _), { refl }, { exact abelian.mono_pushout_of_mono_f _ _ } end lemma mono_inl_of_is_colimit [mono g] {s : pushout_cocone f g} (hs : is_colimit s) : mono s.inl := begin convert mono_of_mono_fac (is_colimit.comp_cocone_point_unique_up_to_iso_hom hs (colimit.is_colimit _) _), { refl }, { exact abelian.mono_pushout_of_mono_g _ _ } end /-- Suppose `f` and `g` are two morphisms with a common domain and suppose we have written `g` as an epimorphism followed by a monomorphism. If `f` factors through the epi part of this factorization, then any pushout of `g` along `f` is a monomorphism. -/ lemma mono_inl_of_factor_thru_epi_mono_factorization (f : X ⟶ Y) (g : X ⟶ Z) (g₁ : X ⟶ W) [epi g₁] (g₂ : W ⟶ Z) [mono g₂] (hg : g₁ ≫ g₂ = g) (f' : W ⟶ Y) (hf : g₁ ≫ f' = f) (t : pushout_cocone f g) (ht : is_colimit t) : mono t.inl := by apply mono_inl_of_is_colimit _ _ (pushout_cocone.is_colimit_of_factors _ _ _ _ _ hf hg t ht) end mono_pushout end category_theory.abelian namespace category_theory.non_preadditive_abelian variables (C : Type u) [category.{v} C] [non_preadditive_abelian C] /-- Every non_preadditive_abelian category can be promoted to an abelian category. -/ def abelian : abelian C := { has_finite_products := by apply_instance, /- We need the `convert`s here because the instances we have are slightly different from the instances we need: `has_kernels` depends on an instance of `has_zero_morphisms`. In the case of `non_preadditive_abelian`, this instance is an explicit argument. However, in the case of `abelian`, the `has_zero_morphisms` instance is derived from `preadditive`. So we need to transform an instance of "has kernels with non_preadditive_abelian.has_zero_morphisms" to an instance of "has kernels with non_preadditive_abelian.preadditive.has_zero_morphisms". Luckily, we have a `subsingleton` instance for `has_zero_morphisms`, so `convert` can immediately close the goal it creates for the two instances of `has_zero_morphisms`, and the proof is complete. -/ has_kernels := by convert (by apply_instance : limits.has_kernels C), has_cokernels := by convert (by apply_instance : limits.has_cokernels C), normal_mono_of_mono := by { introsI, convert normal_mono_of_mono f }, normal_epi_of_epi := by { introsI, convert normal_epi_of_epi f }, ..non_preadditive_abelian.preadditive } end category_theory.non_preadditive_abelian
41e47038636f653bb8adc2de611ce4e295bcdb22
367134ba5a65885e863bdc4507601606690974c1
/src/ring_theory/polynomial/vieta.lean
84ea0f6e6513c278728ae68a706d605e4268f06e
[ "Apache-2.0" ]
permissive
kodyvajjha/mathlib
9bead00e90f68269a313f45f5561766cfd8d5cad
b98af5dd79e13a38d84438b850a2e8858ec21284
refs/heads/master
1,624,350,366,310
1,615,563,062,000
1,615,563,062,000
162,666,963
0
0
Apache-2.0
1,545,367,651,000
1,545,367,651,000
null
UTF-8
Lean
false
false
4,419
lean
/- Copyright (c) 2020 Hanting Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Hanting Zhang -/ import ring_theory.polynomial.symmetric /-! # Vieta's Formula The main result is `vieta.prod_X_add_C_eq_sum_esymm`, which shows that the product of linear terms `λ + X i` is equal to a linear combination of the symmetric polynomials `esymm σ R j`. ## Implementation Notes: We first take the viewpoint where the "roots" `X i` are variables. This means we work over `polynomial (mv_polynomial σ R)`, which enables us to talk about linear combinations of `esymm σ R j`. We then derive Vieta's formula in `polynomial R` by giving a valuation from each `X i` to `r i`. -/ universes u open_locale big_operators open finset polynomial fintype namespace mv_polynomial variables {R : Type u} [comm_semiring R] variables (σ : Type u) [fintype σ] /-- A sum version of Vieta's formula. Viewing `X i` as variables, the product of linear terms `λ + X i` is equal to a linear combination of the symmetric polynomials `esymm σ R j`. -/ lemma prod_X_add_C_eq_sum_esymm : (∏ i : σ, (polynomial.C (X i) + polynomial.X) : polynomial (mv_polynomial σ R) )= ∑ j in range (card σ + 1), (polynomial.C (esymm σ R j) * polynomial.X ^ (card σ - j)) := begin classical, rw [prod_add, sum_powerset], refine sum_congr begin congr end (λ j hj, _), rw [esymm, polynomial.C.map_sum, sum_mul], refine sum_congr rfl (λ t ht, _), have h : (univ \ t).card = card σ - j := by { rw card_sdiff (mem_powerset_len.mp ht).1, congr, exact (mem_powerset_len.mp ht).2 }, rw [(polynomial.C : mv_polynomial σ R →+* polynomial _).map_prod, prod_const, ← h], congr, end /-- A fully expanded sum version of Vieta's formula, evaluated at the roots. The product of linear terms `X + r i` is equal to `∑ j in range (n + 1), e_j * X ^ (n - j)`, where `e_j` is the `j`th symmetric polynomial of the constant terms `r i`. -/ lemma prod_X_add_C_eval (r : σ → R) : ∏ i : σ, (polynomial.C (r i) + polynomial.X) = ∑ i in range (card σ + 1), (∑ t in powerset_len i (univ : finset σ), ∏ i in t, polynomial.C (r i)) * polynomial.X ^ (card σ - i) := begin classical, have h := @prod_X_add_C_eq_sum_esymm _ _ σ _, apply_fun (polynomial.map (eval r)) at h, rw [map_prod, map_sum] at h, convert h, simp only [eval_X, map_add, polynomial.map_C, polynomial.map_X, eq_self_iff_true], funext, simp only [function.funext_iff, esymm, polynomial.map_C, map_sum, polynomial.C.map_sum, polynomial.map_C, map_pow, polynomial.map_X, map_mul], congr, funext, simp only [eval_prod, eval_X, (polynomial.C : R →+* polynomial R).map_prod], end lemma esymm_to_sum (r : σ → R) (j : ℕ) : polynomial.C (eval r (esymm σ R j)) = ∑ t in powerset_len j (univ : finset σ), ∏ i in t, polynomial.C (r i) := by simp only [esymm, eval_sum, eval_prod, eval_X, polynomial.C.map_sum, (polynomial.C : R →+* polynomial _).map_prod] /-- Vieta's formula for the coefficients of the product of linear terms `X + r i`, The `k`th coefficient is `∑ t in powerset_len (card σ - k) (univ : finset σ), ∏ i in t, r i`, i.e. the symmetric polynomial `esymm σ R (card σ - k)` of the constant terms `r i`. -/ lemma prod_X_add_C_coeff (r : σ → R) (k : ℕ) (h : k ≤ card σ): polynomial.coeff (∏ i : σ, (polynomial.C (r i) + polynomial.X)) k = ∑ t in powerset_len (card σ - k) (univ : finset σ), ∏ i in t, r i := begin have hk : filter (λ (x : ℕ), k = card σ - x) (range (card σ + 1)) = {card σ - k} := begin refine finset.ext (λ a, ⟨λ ha, _, λ ha, _ ⟩), rw mem_singleton, have hσ := (nat.sub_eq_iff_eq_add (mem_range_succ_iff.mp (mem_filter.mp ha).1)).mp ((mem_filter.mp ha).2).symm, symmetry, rwa [(nat.sub_eq_iff_eq_add h), add_comm], rw mem_filter, have haσ : a ∈ range (card σ + 1) := by { rw mem_singleton.mp ha, exact mem_range_succ_iff.mpr (nat.sub_le_self _ k) }, refine ⟨haσ, eq.symm _⟩, rw nat.sub_eq_iff_eq_add (mem_range_succ_iff.mp haσ), have hσ := (nat.sub_eq_iff_eq_add h).mp (mem_singleton.mp ha).symm, rwa add_comm, end, simp only [prod_X_add_C_eval, ← esymm_to_sum, finset_sum_coeff, coeff_C_mul_X, sum_ite, hk, sum_singleton, esymm, eval_sum, eval_prod, eval_X, add_zero, sum_const_zero], end end mv_polynomial
f8301c5808288a7f6455df5efda08e017cb52b55
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/tactic/rewrite_search/search_auto.lean
752d4e99e49125cc32c36a334256fb36bad68a5a
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
1,096
lean
/- Copyright (c) 2020 Kevin Lacker, Keeley Hoek, Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Lacker, Keeley Hoek, Scott Morrison -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.buffer.basic import Mathlib.meta.rb_map import Mathlib.tactic.rewrite_search.discovery import Mathlib.tactic.rewrite_search.types import Mathlib.PostPort namespace Mathlib /-! # The graph algorithm part of rewrite search `search.lean` contains the logic to do a graph search. The search algorithm starts with an equation to prove, treats the left hand side and right hand side as two vertices in a graph, and uses rewrite rules to find a path that connects the two sides. -/ namespace tactic.rewrite_search /-- An edge represents a proof that can get from one expression to another. It represents the fact that, starting from the vertex `fr`, the expression in `proof` can prove the vertex `to`. `how` contains information that the explainer will use to generate Lean code for the proof. -/ end Mathlib
bb049402b22e0f09b1912291647efc0b0e064503
618003631150032a5676f229d13a079ac875ff77
/src/analysis/asymptotics.lean
79140b3cff90dd37d2ba0329526763a264a897c3
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
46,332
lean
/- Copyright (c) 2019 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Yury Kudryashov -/ import analysis.normed_space.basic import topology.local_homeomorph /-! # Asymptotics We introduce these relations: * `is_O_with c f g l` : "f is big O of g along l with constant c"; * `is_O f g l` : "f is big O of g along l"; * `is_o f g l` : "f is little o of g along l". Here `l` is any filter on the domain of `f` and `g`, which are assumed to be the same. The codomains of `f` and `g` do not need to be the same; all that is needed that there is a norm associated with these types, and it is the norm that is compared asymptotically. The relation `is_O_with c` is introduced to factor out common algebraic arguments in the proofs of similar properties of `is_O` and `is_o`. Usually proofs outside of this file should use `is_O` instead. Often the ranges of `f` and `g` will be the real numbers, in which case the norm is the absolute value. In general, we have `is_O f g l ↔ is_O (λ x, ∥f x∥) (λ x, ∥g x∥) l`, and similarly for `is_o`. But our setup allows us to use the notions e.g. with functions to the integers, rationals, complex numbers, or any normed vector space without mentioning the norm explicitly. If `f` and `g` are functions to a normed field like the reals or complex numbers and `g` is always nonzero, we have `is_o f g l ↔ tendsto (λ x, f x / (g x)) l (𝓝 0)`. In fact, the right-to-left direction holds without the hypothesis on `g`, and in the other direction it suffices to assume that `f` is zero wherever `g` is. (This generalization is useful in defining the Fréchet derivative.) -/ open filter set open_locale topological_space big_operators classical namespace asymptotics variables {α : Type*} {β : Type*} {E : Type*} {F : Type*} {G : Type*} {E' : Type*} {F' : Type*} {G' : Type*} {R : Type*} {R' : Type*} {𝕜 : Type*} {𝕜' : Type*} variables [has_norm E] [has_norm F] [has_norm G] [normed_group E'] [normed_group F'] [normed_group G'] [normed_ring R] [normed_ring R'] [normed_field 𝕜] [normed_field 𝕜'] {c c' : ℝ} {f : α → E} {g : α → F} {k : α → G} {f' : α → E'} {g' : α → F'} {k' : α → G'} {l l' : filter α} section defs /-! ### Definitions -/ /-- This version of the Landau notation `is_O_with C f g l` where `f` and `g` are two functions on a type `α` and `l` is a filter on `α`, means that eventually for `l`, `∥f∥` is bounded by `C * ∥g∥`. In other words, `∥f∥ / ∥g∥` is eventually bounded by `C`, modulo division by zero issues that are avoided by this definition. Probably you want to use `is_O` instead of this relation. -/ def is_O_with (c : ℝ) (f : α → E) (g : α → F) (l : filter α) : Prop := ∀ᶠ x in l, ∥ f x ∥ ≤ c * ∥ g x ∥ /-- Definition of `is_O_with`. We record it in a lemma as we will set `is_O_with` to be irreducible at the end of this file. -/ lemma is_O_with_iff {c : ℝ} {f : α → E} {g : α → F} {l : filter α} : is_O_with c f g l ↔ ∀ᶠ x in l, ∥ f x ∥ ≤ c * ∥ g x ∥ := iff.rfl lemma is_O_with.of_bound {c : ℝ} {f : α → E} {g : α → F} {l : filter α} (h : ∀ᶠ x in l, ∥ f x ∥ ≤ c * ∥ g x ∥) : is_O_with c f g l := h /-- The Landau notation `is_O f g l` where `f` and `g` are two functions on a type `α` and `l` is a filter on `α`, means that eventually for `l`, `∥f∥` is bounded by a constant multiple of `∥g∥`. In other words, `∥f∥ / ∥g∥` is eventually bounded, modulo division by zero issues that are avoided by this definition. -/ def is_O (f : α → E) (g : α → F) (l : filter α) : Prop := ∃ c : ℝ, is_O_with c f g l /-- Definition of `is_O` in terms of `is_O_with`. We record it in a lemma as we will set `is_O` to be irreducible at the end of this file. -/ lemma is_O_iff_is_O_with {f : α → E} {g : α → F} {l : filter α} : is_O f g l ↔ ∃ c : ℝ, is_O_with c f g l := iff.rfl /-- Definition of `is_O` in terms of filters. We record it in a lemma as we will set `is_O` to be irreducible at the end of this file. -/ lemma is_O_iff {f : α → E} {g : α → F} {l : filter α} : is_O f g l ↔ ∃ c : ℝ, ∀ᶠ x in l, ∥ f x ∥ ≤ c * ∥ g x ∥ := iff.rfl lemma is_O.of_bound (c : ℝ) {f : α → E} {g : α → F} {l : filter α} (h : ∀ᶠ x in l, ∥ f x ∥ ≤ c * ∥ g x ∥) : is_O f g l := ⟨c, h⟩ /-- The Landau notation `is_o f g l` where `f` and `g` are two functions on a type `α` and `l` is a filter on `α`, means that eventually for `l`, `∥f∥` is bounded by an arbitrarily small constant multiple of `∥g∥`. In other words, `∥f∥ / ∥g∥` tends to `0` along `l`, modulo division by zero issues that are avoided by this definition. -/ def is_o (f : α → E) (g : α → F) (l : filter α) : Prop := ∀ ⦃c : ℝ⦄, 0 < c → is_O_with c f g l /-- Definition of `is_o` in terms of `is_O_with`. We record it in a lemma as we will set `is_o` to be irreducible at the end of this file. -/ lemma is_o_iff_forall_is_O_with {f : α → E} {g : α → F} {l : filter α} : is_o f g l ↔ ∀ ⦃c : ℝ⦄, 0 < c → is_O_with c f g l := iff.rfl /-- Definition of `is_o` in terms of filters. We record it in a lemma as we will set `is_o` to be irreducible at the end of this file. -/ lemma is_o_iff {f : α → E} {g : α → F} {l : filter α} : is_o f g l ↔ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ x in l, ∥ f x ∥ ≤ c * ∥ g x ∥ := iff.rfl lemma is_o.def {f : α → E} {g : α → F} {l : filter α} (h : is_o f g l) {c : ℝ} (hc : 0 < c) : ∀ᶠ x in l, ∥ f x ∥ ≤ c * ∥ g x ∥ := h hc lemma is_o.def' {f : α → E} {g : α → F} {l : filter α} (h : is_o f g l) {c : ℝ} (hc : 0 < c) : is_O_with c f g l := h hc end defs /-! ### Conversions -/ theorem is_O_with.is_O (h : is_O_with c f g l) : is_O f g l := ⟨c, h⟩ theorem is_o.is_O_with (hgf : is_o f g l) : is_O_with 1 f g l := hgf zero_lt_one theorem is_o.is_O (hgf : is_o f g l) : is_O f g l := hgf.is_O_with.is_O theorem is_O_with.weaken (h : is_O_with c f g' l) (hc : c ≤ c') : is_O_with c' f g' l := mem_sets_of_superset h $ λ x hx, calc ∥f x∥ ≤ c * ∥g' x∥ : hx ... ≤ _ : mul_le_mul_of_nonneg_right hc (norm_nonneg _) theorem is_O_with.exists_pos (h : is_O_with c f g' l) : ∃ c' (H : 0 < c'), is_O_with c' f g' l := ⟨max c 1, lt_of_lt_of_le zero_lt_one (le_max_right c 1), h.weaken $ le_max_left c 1⟩ theorem is_O.exists_pos (h : is_O f g' l) : ∃ c (H : 0 < c), is_O_with c f g' l := let ⟨c, hc⟩ := h in hc.exists_pos theorem is_O_with.exists_nonneg (h : is_O_with c f g' l) : ∃ c' (H : 0 ≤ c'), is_O_with c' f g' l := let ⟨c, cpos, hc⟩ := h.exists_pos in ⟨c, le_of_lt cpos, hc⟩ theorem is_O.exists_nonneg (h : is_O f g' l) : ∃ c (H : 0 ≤ c), is_O_with c f g' l := let ⟨c, hc⟩ := h in hc.exists_nonneg /-! ### Congruence -/ theorem is_O_with_congr {c₁ c₂} {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hc : c₁ = c₂) (hf : ∀ᶠ x in l, f₁ x = f₂ x) (hg : ∀ᶠ x in l, g₁ x = g₂ x) : is_O_with c₁ f₁ g₁ l ↔ is_O_with c₂ f₂ g₂ l := begin subst c₂, apply filter.congr_sets, filter_upwards [hf, hg], assume x e₁ e₂, dsimp at e₁ e₂ ⊢, rw [e₁, e₂] end theorem is_O_with.congr' {c₁ c₂} {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hc : c₁ = c₂) (hf : ∀ᶠ x in l, f₁ x = f₂ x) (hg : ∀ᶠ x in l, g₁ x = g₂ x) : is_O_with c₁ f₁ g₁ l → is_O_with c₂ f₂ g₂ l := (is_O_with_congr hc hf hg).mp theorem is_O_with.congr {c₁ c₂} {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hc : c₁ = c₂) (hf : ∀ x, f₁ x = f₂ x) (hg : ∀ x, g₁ x = g₂ x) : is_O_with c₁ f₁ g₁ l → is_O_with c₂ f₂ g₂ l := λ h, h.congr' hc (univ_mem_sets' hf) (univ_mem_sets' hg) theorem is_O_with.congr_left {f₁ f₂ : α → E} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) : is_O_with c f₁ g l → is_O_with c f₂ g l := is_O_with.congr rfl hf (λ _, rfl) theorem is_O_with.congr_right {g₁ g₂ : α → F} {l : filter α} (hg : ∀ x, g₁ x = g₂ x) : is_O_with c f g₁ l → is_O_with c f g₂ l := is_O_with.congr rfl (λ _, rfl) hg theorem is_O_with.congr_const {c₁ c₂} {l : filter α} (hc : c₁ = c₂) : is_O_with c₁ f g l → is_O_with c₂ f g l := is_O_with.congr hc (λ _, rfl) (λ _, rfl) theorem is_O_congr {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hf : ∀ᶠ x in l, f₁ x = f₂ x) (hg : ∀ᶠ x in l, g₁ x = g₂ x) : is_O f₁ g₁ l ↔ is_O f₂ g₂ l := exists_congr $ λ c, is_O_with_congr rfl hf hg theorem is_O.congr' {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hf : ∀ᶠ x in l, f₁ x = f₂ x) (hg : ∀ᶠ x in l, g₁ x = g₂ x) : is_O f₁ g₁ l → is_O f₂ g₂ l := (is_O_congr hf hg).mp theorem is_O.congr {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) (hg : ∀ x, g₁ x = g₂ x) : is_O f₁ g₁ l → is_O f₂ g₂ l := λ h, h.congr' (univ_mem_sets' hf) (univ_mem_sets' hg) theorem is_O.congr_left {f₁ f₂ : α → E} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) : is_O f₁ g l → is_O f₂ g l := is_O.congr hf (λ _, rfl) theorem is_O.congr_right {g₁ g₂ : α → E} {l : filter α} (hg : ∀ x, g₁ x = g₂ x) : is_O f g₁ l → is_O f g₂ l := is_O.congr (λ _, rfl) hg theorem is_o_congr {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hf : ∀ᶠ x in l, f₁ x = f₂ x) (hg : ∀ᶠ x in l, g₁ x = g₂ x) : is_o f₁ g₁ l ↔ is_o f₂ g₂ l := ball_congr (λ c hc, is_O_with_congr (eq.refl c) hf hg) theorem is_o.congr' {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hf : ∀ᶠ x in l, f₁ x = f₂ x) (hg : ∀ᶠ x in l, g₁ x = g₂ x) : is_o f₁ g₁ l → is_o f₂ g₂ l := (is_o_congr hf hg).mp theorem is_o.congr {f₁ f₂ : α → E} {g₁ g₂ : α → F} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) (hg : ∀ x, g₁ x = g₂ x) : is_o f₁ g₁ l → is_o f₂ g₂ l := λ h, h.congr' (univ_mem_sets' hf) (univ_mem_sets' hg) theorem is_o.congr_left {f₁ f₂ : α → E} {l : filter α} (hf : ∀ x, f₁ x = f₂ x) : is_o f₁ g l → is_o f₂ g l := is_o.congr hf (λ _, rfl) theorem is_o.congr_right {g₁ g₂ : α → E} {l : filter α} (hg : ∀ x, g₁ x = g₂ x) : is_o f g₁ l → is_o f g₂ l := is_o.congr (λ _, rfl) hg /-! ### Filter operations and transitivity -/ theorem is_O_with.comp_tendsto (hcfg : is_O_with c f g l) {k : β → α} {l' : filter β} (hk : tendsto k l' l): is_O_with c (f ∘ k) (g ∘ k) l' := hk hcfg theorem is_O.comp_tendsto (hfg : is_O f g l) {k : β → α} {l' : filter β} (hk : tendsto k l' l) : is_O (f ∘ k) (g ∘ k) l' := hfg.imp (λ c h, h.comp_tendsto hk) theorem is_o.comp_tendsto (hfg : is_o f g l) {k : β → α} {l' : filter β} (hk : tendsto k l' l) : is_o (f ∘ k) (g ∘ k) l' := λ c cpos, (hfg cpos).comp_tendsto hk theorem is_O_with.mono (h : is_O_with c f g l') (hl : l ≤ l') : is_O_with c f g l := hl h theorem is_O.mono (h : is_O f g l') (hl : l ≤ l') : is_O f g l := h.imp (λ c h, h.mono hl) theorem is_o.mono (h : is_o f g l') (hl : l ≤ l') : is_o f g l := λ c cpos, (h cpos).mono hl theorem is_O_with.trans (hfg : is_O_with c f g l) (hgk : is_O_with c' g k l) (hc : 0 ≤ c) : is_O_with (c * c') f k l := begin filter_upwards [hfg, hgk], assume x hx hx', calc ∥f x∥ ≤ c * ∥g x∥ : hx ... ≤ c * (c' * ∥k x∥) : mul_le_mul_of_nonneg_left hx' hc ... = c * c' * ∥k x∥ : (mul_assoc _ _ _).symm end theorem is_O.trans (hfg : is_O f g' l) (hgk : is_O g' k l) : is_O f k l := let ⟨c, cnonneg, hc⟩ := hfg.exists_nonneg, ⟨c', hc'⟩ := hgk in (hc.trans hc' cnonneg).is_O theorem is_o.trans_is_O_with (hfg : is_o f g l) (hgk : is_O_with c g k l) (hc : 0 < c) : is_o f k l := begin intros c' c'pos, have : 0 < c' / c, from div_pos c'pos hc, exact ((hfg this).trans hgk (le_of_lt this)).congr_const (div_mul_cancel _ (ne_of_gt hc)) end theorem is_o.trans_is_O (hfg : is_o f g l) (hgk : is_O g k' l) : is_o f k' l := let ⟨c, cpos, hc⟩ := hgk.exists_pos in hfg.trans_is_O_with hc cpos theorem is_O_with.trans_is_o (hfg : is_O_with c f g l) (hgk : is_o g k l) (hc : 0 < c) : is_o f k l := begin intros c' c'pos, have : 0 < c' / c, from div_pos c'pos hc, exact (hfg.trans (hgk this) (le_of_lt hc)).congr_const (mul_div_cancel' _ (ne_of_gt hc)) end theorem is_O.trans_is_o (hfg : is_O f g' l) (hgk : is_o g' k l) : is_o f k l := let ⟨c, cpos, hc⟩ := hfg.exists_pos in hc.trans_is_o hgk cpos theorem is_o.trans (hfg : is_o f g l) (hgk : is_o g k' l) : is_o f k' l := hfg.trans_is_O hgk.is_O theorem is_o.trans' (hfg : is_o f g' l) (hgk : is_o g' k l) : is_o f k l := hfg.is_O.trans_is_o hgk section variable (l) theorem is_O_with_of_le' (hfg : ∀ x, ∥f x∥ ≤ c * ∥g x∥) : is_O_with c f g l := univ_mem_sets' hfg theorem is_O_with_of_le (hfg : ∀ x, ∥f x∥ ≤ ∥g x∥) : is_O_with 1 f g l := is_O_with_of_le' l $ λ x, by { rw one_mul, exact hfg x } theorem is_O_of_le' (hfg : ∀ x, ∥f x∥ ≤ c * ∥g x∥) : is_O f g l := (is_O_with_of_le' l hfg).is_O theorem is_O_of_le (hfg : ∀ x, ∥f x∥ ≤ ∥g x∥) : is_O f g l := (is_O_with_of_le l hfg).is_O end theorem is_O_with_refl (f : α → E) (l : filter α) : is_O_with 1 f f l := is_O_with_of_le l $ λ _, le_refl _ theorem is_O_refl (f : α → E) (l : filter α) : is_O f f l := (is_O_with_refl f l).is_O theorem is_O_with.trans_le (hfg : is_O_with c f g l) (hgk : ∀ x, ∥g x∥ ≤ ∥k x∥) (hc : 0 ≤ c) : is_O_with c f k l := (hfg.trans (is_O_with_of_le l hgk) hc).congr_const $ mul_one c theorem is_O.trans_le (hfg : is_O f g' l) (hgk : ∀ x, ∥g' x∥ ≤ ∥k x∥) : is_O f k l := hfg.trans (is_O_of_le l hgk) section bot variables (c f g) theorem is_O_with_bot : is_O_with c f g ⊥ := trivial theorem is_O_bot : is_O f g ⊥ := (is_O_with_bot c f g).is_O theorem is_o_bot : is_o f g ⊥ := λ c _, is_O_with_bot c f g end bot theorem is_O_with.join (h : is_O_with c f g l) (h' : is_O_with c f g l') : is_O_with c f g (l ⊔ l') := mem_sup_sets.2 ⟨h, h'⟩ theorem is_O_with.join' (h : is_O_with c f g' l) (h' : is_O_with c' f g' l') : is_O_with (max c c') f g' (l ⊔ l') := mem_sup_sets.2 ⟨(h.weaken $ le_max_left c c'), (h'.weaken $ le_max_right c c')⟩ theorem is_O.join (h : is_O f g' l) (h' : is_O f g' l') : is_O f g' (l ⊔ l') := let ⟨c, hc⟩ := h, ⟨c', hc'⟩ := h' in (hc.join' hc').is_O theorem is_o.join (h : is_o f g l) (h' : is_o f g l') : is_o f g (l ⊔ l') := λ c cpos, (h cpos).join (h' cpos) /-! ### Simplification : norm -/ @[simp] theorem is_O_with_norm_right : is_O_with c f (λ x, ∥g' x∥) l ↔ is_O_with c f g' l := by simp only [is_O_with, norm_norm] alias is_O_with_norm_right ↔ asymptotics.is_O_with.of_norm_right asymptotics.is_O_with.norm_right @[simp] theorem is_O_norm_right : is_O f (λ x, ∥g' x∥) l ↔ is_O f g' l := exists_congr $ λ _, is_O_with_norm_right alias is_O_norm_right ↔ asymptotics.is_O.of_norm_right asymptotics.is_O.norm_right @[simp] theorem is_o_norm_right : is_o f (λ x, ∥g' x∥) l ↔ is_o f g' l := forall_congr $ λ _, forall_congr $ λ _, is_O_with_norm_right alias is_o_norm_right ↔ asymptotics.is_o.of_norm_right asymptotics.is_o.norm_right @[simp] theorem is_O_with_norm_left : is_O_with c (λ x, ∥f' x∥) g l ↔ is_O_with c f' g l := by simp only [is_O_with, norm_norm] alias is_O_with_norm_left ↔ asymptotics.is_O_with.of_norm_left asymptotics.is_O_with.norm_left @[simp] theorem is_O_norm_left : is_O (λ x, ∥f' x∥) g l ↔ is_O f' g l := exists_congr $ λ _, is_O_with_norm_left alias is_O_norm_left ↔ asymptotics.is_O.of_norm_left asymptotics.is_O.norm_left @[simp] theorem is_o_norm_left : is_o (λ x, ∥f' x∥) g l ↔ is_o f' g l := forall_congr $ λ _, forall_congr $ λ _, is_O_with_norm_left alias is_o_norm_left ↔ asymptotics.is_o.of_norm_left asymptotics.is_o.norm_left theorem is_O_with_norm_norm : is_O_with c (λ x, ∥f' x∥) (λ x, ∥g' x∥) l ↔ is_O_with c f' g' l := is_O_with_norm_left.trans is_O_with_norm_right alias is_O_with_norm_norm ↔ asymptotics.is_O_with.of_norm_norm asymptotics.is_O_with.norm_norm theorem is_O_norm_norm : is_O (λ x, ∥f' x∥) (λ x, ∥g' x∥) l ↔ is_O f' g' l := is_O_norm_left.trans is_O_norm_right alias is_O_norm_norm ↔ asymptotics.is_O.of_norm_norm asymptotics.is_O.norm_norm theorem is_o_norm_norm : is_o (λ x, ∥f' x∥) (λ x, ∥g' x∥) l ↔ is_o f' g' l := is_o_norm_left.trans is_o_norm_right alias is_o_norm_norm ↔ asymptotics.is_o.of_norm_norm asymptotics.is_o.norm_norm /-! ### Simplification: negate -/ @[simp] theorem is_O_with_neg_right : is_O_with c f (λ x, -(g' x)) l ↔ is_O_with c f g' l := by simp only [is_O_with, norm_neg] alias is_O_with_neg_right ↔ asymptotics.is_O_with.of_neg_right asymptotics.is_O_with.neg_right @[simp] theorem is_O_neg_right : is_O f (λ x, -(g' x)) l ↔ is_O f g' l := exists_congr $ λ _, is_O_with_neg_right alias is_O_neg_right ↔ asymptotics.is_O.of_neg_right asymptotics.is_O.neg_right @[simp] theorem is_o_neg_right : is_o f (λ x, -(g' x)) l ↔ is_o f g' l := forall_congr $ λ _, forall_congr $ λ _, is_O_with_neg_right alias is_o_neg_right ↔ asymptotics.is_o.of_neg_right asymptotics.is_o.neg_right @[simp] theorem is_O_with_neg_left : is_O_with c (λ x, -(f' x)) g l ↔ is_O_with c f' g l := by simp only [is_O_with, norm_neg] alias is_O_with_neg_left ↔ asymptotics.is_O_with.of_neg_left asymptotics.is_O_with.neg_left @[simp] theorem is_O_neg_left : is_O (λ x, -(f' x)) g l ↔ is_O f' g l := exists_congr $ λ _, is_O_with_neg_left alias is_O_neg_left ↔ asymptotics.is_O.of_neg_left asymptotics.is_O.neg_left @[simp] theorem is_o_neg_left : is_o (λ x, -(f' x)) g l ↔ is_o f' g l := forall_congr $ λ _, forall_congr $ λ _, is_O_with_neg_left alias is_o_neg_left ↔ asymptotics.is_o.of_neg_right asymptotics.is_o.neg_left /-! ### Product of functions (right) -/ lemma is_O_with_fst_prod : is_O_with 1 f' (λ x, (f' x, g' x)) l := is_O_with_of_le l $ λ x, le_max_left _ _ lemma is_O_with_snd_prod : is_O_with 1 g' (λ x, (f' x, g' x)) l := is_O_with_of_le l $ λ x, le_max_right _ _ lemma is_O_fst_prod : is_O f' (λ x, (f' x, g' x)) l := is_O_with_fst_prod.is_O lemma is_O_snd_prod : is_O g' (λ x, (f' x, g' x)) l := is_O_with_snd_prod.is_O lemma is_O_fst_prod' {f' : α → E' × F'} : is_O (λ x, (f' x).1) f' l := is_O_fst_prod lemma is_O_snd_prod' {f' : α → E' × F'} : is_O (λ x, (f' x).2) f' l := is_O_snd_prod section variables (f' k') lemma is_O_with.prod_rightl (h : is_O_with c f g' l) (hc : 0 ≤ c) : is_O_with c f (λ x, (g' x, k' x)) l := (h.trans is_O_with_fst_prod hc).congr_const (mul_one c) lemma is_O.prod_rightl (h : is_O f g' l) : is_O f (λx, (g' x, k' x)) l := let ⟨c, cnonneg, hc⟩ := h.exists_nonneg in (hc.prod_rightl k' cnonneg).is_O lemma is_o.prod_rightl (h : is_o f g' l) : is_o f (λ x, (g' x, k' x)) l := λ c cpos, (h cpos).prod_rightl k' (le_of_lt cpos) lemma is_O_with.prod_rightr (h : is_O_with c f g' l) (hc : 0 ≤ c) : is_O_with c f (λ x, (f' x, g' x)) l := (h.trans is_O_with_snd_prod hc).congr_const (mul_one c) lemma is_O.prod_rightr (h : is_O f g' l) : is_O f (λx, (f' x, g' x)) l := let ⟨c, cnonneg, hc⟩ := h.exists_nonneg in (hc.prod_rightr f' cnonneg).is_O lemma is_o.prod_rightr (h : is_o f g' l) : is_o f (λx, (f' x, g' x)) l := λ c cpos, (h cpos).prod_rightr f' (le_of_lt cpos) end lemma is_O_with.prod_left_same (hf : is_O_with c f' k' l) (hg : is_O_with c g' k' l) : is_O_with c (λ x, (f' x, g' x)) k' l := begin filter_upwards [hf, hg], simp only [mem_set_of_eq], exact λ x, max_le end lemma is_O_with.prod_left (hf : is_O_with c f' k' l) (hg : is_O_with c' g' k' l) : is_O_with (max c c') (λ x, (f' x, g' x)) k' l := (hf.weaken $ le_max_left c c').prod_left_same (hg.weaken $ le_max_right c c') lemma is_O_with.prod_left_fst (h : is_O_with c (λ x, (f' x, g' x)) k' l) : is_O_with c f' k' l := (is_O_with_fst_prod.trans h zero_le_one).congr_const $ one_mul c lemma is_O_with.prod_left_snd (h : is_O_with c (λ x, (f' x, g' x)) k' l) : is_O_with c g' k' l := (is_O_with_snd_prod.trans h zero_le_one).congr_const $ one_mul c lemma is_O_with_prod_left : is_O_with c (λ x, (f' x, g' x)) k' l ↔ is_O_with c f' k' l ∧ is_O_with c g' k' l := ⟨λ h, ⟨h.prod_left_fst, h.prod_left_snd⟩, λ h, h.1.prod_left_same h.2⟩ lemma is_O.prod_left (hf : is_O f' k' l) (hg : is_O g' k' l) : is_O (λ x, (f' x, g' x)) k' l := let ⟨c, hf⟩ := hf, ⟨c', hg⟩ := hg in (hf.prod_left hg).is_O lemma is_O.prod_left_fst (h : is_O (λ x, (f' x, g' x)) k' l) : is_O f' k' l := is_O_fst_prod.trans h lemma is_O.prod_left_snd (h : is_O (λ x, (f' x, g' x)) k' l) : is_O g' k' l := is_O_snd_prod.trans h @[simp] lemma is_O_prod_left : is_O (λ x, (f' x, g' x)) k' l ↔ is_O f' k' l ∧ is_O g' k' l := ⟨λ h, ⟨h.prod_left_fst, h.prod_left_snd⟩, λ h, h.1.prod_left h.2⟩ lemma is_o.prod_left (hf : is_o f' k' l) (hg : is_o g' k' l) : is_o (λ x, (f' x, g' x)) k' l := λ c hc, (hf hc).prod_left_same (hg hc) lemma is_o.prod_left_fst (h : is_o (λ x, (f' x, g' x)) k' l) : is_o f' k' l := is_O_fst_prod.trans_is_o h lemma is_o.prod_left_snd (h : is_o (λ x, (f' x, g' x)) k' l) : is_o g' k' l := is_O_snd_prod.trans_is_o h @[simp] lemma is_o_prod_left : is_o (λ x, (f' x, g' x)) k' l ↔ is_o f' k' l ∧ is_o g' k' l := ⟨λ h, ⟨h.prod_left_fst, h.prod_left_snd⟩, λ h, h.1.prod_left h.2⟩ /-! ### Addition and subtraction -/ section add_sub variables {c₁ c₂ : ℝ} {f₁ f₂ : α → E'} theorem is_O_with.add (h₁ : is_O_with c₁ f₁ g l) (h₂ : is_O_with c₂ f₂ g l) : is_O_with (c₁ + c₂) (λ x, f₁ x + f₂ x) g l := by filter_upwards [h₁, h₂] λ x hx₁ hx₂, calc ∥f₁ x + f₂ x∥ ≤ c₁ * ∥g x∥ + c₂ * ∥g x∥ : norm_add_le_of_le hx₁ hx₂ ... = (c₁ + c₂) * ∥g x∥ : (add_mul _ _ _).symm theorem is_O.add : is_O f₁ g l → is_O f₂ g l → is_O (λ x, f₁ x + f₂ x) g l | ⟨c₁, hc₁⟩ ⟨c₂, hc₂⟩ := (hc₁.add hc₂).is_O theorem is_o.add (h₁ : is_o f₁ g l) (h₂ : is_o f₂ g l) : is_o (λ x, f₁ x + f₂ x) g l := λ c cpos, ((h₁ $ half_pos cpos).add (h₂ $ half_pos cpos)).congr_const (add_halves c) theorem is_O.add_is_o (h₁ : is_O f₁ g l) (h₂ : is_o f₂ g l) : is_O (λ x, f₁ x + f₂ x) g l := h₁.add h₂.is_O theorem is_o.add_is_O (h₁ : is_o f₁ g l) (h₂ : is_O f₂ g l) : is_O (λ x, f₁ x + f₂ x) g l := h₁.is_O.add h₂ theorem is_O_with.add_is_o (h₁ : is_O_with c₁ f₁ g l) (h₂ : is_o f₂ g l) (hc : c₁ < c₂) : is_O_with c₂ (λx, f₁ x + f₂ x) g l := (h₁.add (h₂ (sub_pos.2 hc))).congr_const (add_sub_cancel'_right _ _) theorem is_o.add_is_O_with (h₁ : is_o f₁ g l) (h₂ : is_O_with c₁ f₂ g l) (hc : c₁ < c₂) : is_O_with c₂ (λx, f₁ x + f₂ x) g l := (h₂.add_is_o h₁ hc).congr_left $ λ _, add_comm _ _ theorem is_O_with.sub (h₁ : is_O_with c₁ f₁ g l) (h₂ : is_O_with c₂ f₂ g l) : is_O_with (c₁ + c₂) (λ x, f₁ x - f₂ x) g l := h₁.add h₂.neg_left theorem is_O_with.sub_is_o (h₁ : is_O_with c₁ f₁ g l) (h₂ : is_o f₂ g l) (hc : c₁ < c₂) : is_O_with c₂ (λ x, f₁ x - f₂ x) g l := h₁.add_is_o h₂.neg_left hc theorem is_O.sub (h₁ : is_O f₁ g l) (h₂ : is_O f₂ g l) : is_O (λ x, f₁ x - f₂ x) g l := h₁.add h₂.neg_left theorem is_o.sub (h₁ : is_o f₁ g l) (h₂ : is_o f₂ g l) : is_o (λ x, f₁ x - f₂ x) g l := h₁.add h₂.neg_left end add_sub /-! ### Lemmas about `is_O (f₁ - f₂) g l` / `is_o (f₁ - f₂) g l` treated as a binary relation -/ section is_oO_as_rel variables {f₁ f₂ f₃ : α → E'} theorem is_O_with.symm (h : is_O_with c (λ x, f₁ x - f₂ x) g l) : is_O_with c (λ x, f₂ x - f₁ x) g l := h.neg_left.congr_left $ λ x, neg_sub _ _ theorem is_O_with_comm : is_O_with c (λ x, f₁ x - f₂ x) g l ↔ is_O_with c (λ x, f₂ x - f₁ x) g l := ⟨is_O_with.symm, is_O_with.symm⟩ theorem is_O.symm (h : is_O (λ x, f₁ x - f₂ x) g l) : is_O (λ x, f₂ x - f₁ x) g l := h.neg_left.congr_left $ λ x, neg_sub _ _ theorem is_O_comm : is_O (λ x, f₁ x - f₂ x) g l ↔ is_O (λ x, f₂ x - f₁ x) g l := ⟨is_O.symm, is_O.symm⟩ theorem is_o.symm (h : is_o (λ x, f₁ x - f₂ x) g l) : is_o (λ x, f₂ x - f₁ x) g l := by simpa only [neg_sub] using h.neg_left theorem is_o_comm : is_o (λ x, f₁ x - f₂ x) g l ↔ is_o (λ x, f₂ x - f₁ x) g l := ⟨is_o.symm, is_o.symm⟩ theorem is_O_with.triangle (h₁ : is_O_with c (λ x, f₁ x - f₂ x) g l) (h₂ : is_O_with c' (λ x, f₂ x - f₃ x) g l) : is_O_with (c + c') (λ x, f₁ x - f₃ x) g l := (h₁.add h₂).congr_left $ λ x, sub_add_sub_cancel _ _ _ theorem is_O.triangle (h₁ : is_O (λ x, f₁ x - f₂ x) g l) (h₂ : is_O (λ x, f₂ x - f₃ x) g l) : is_O (λ x, f₁ x - f₃ x) g l := (h₁.add h₂).congr_left $ λ x, sub_add_sub_cancel _ _ _ theorem is_o.triangle (h₁ : is_o (λ x, f₁ x - f₂ x) g l) (h₂ : is_o (λ x, f₂ x - f₃ x) g l) : is_o (λ x, f₁ x - f₃ x) g l := (h₁.add h₂).congr_left $ λ x, sub_add_sub_cancel _ _ _ theorem is_O.congr_of_sub (h : is_O (λ x, f₁ x - f₂ x) g l) : is_O f₁ g l ↔ is_O f₂ g l := ⟨λ h', (h'.sub h).congr_left (λ x, sub_sub_cancel _ _), λ h', (h.add h').congr_left (λ x, sub_add_cancel _ _)⟩ theorem is_o.congr_of_sub (h : is_o (λ x, f₁ x - f₂ x) g l) : is_o f₁ g l ↔ is_o f₂ g l := ⟨λ h', (h'.sub h).congr_left (λ x, sub_sub_cancel _ _), λ h', (h.add h').congr_left (λ x, sub_add_cancel _ _)⟩ end is_oO_as_rel /-! ### Zero, one, and other constants -/ section zero_const variables (g g' l) theorem is_o_zero : is_o (λ x, (0 : E')) g' l := λ c hc, univ_mem_sets' $ λ x, by simpa using mul_nonneg (le_of_lt hc) (norm_nonneg $ g' x) theorem is_O_with_zero (hc : 0 ≤ c) : is_O_with c (λ x, (0 : E')) g' l := univ_mem_sets' $ λ x, by simpa using mul_nonneg hc (norm_nonneg $ g' x) theorem is_O_with_zero' : is_O_with 0 (λ x, (0 : E')) g l := univ_mem_sets' $ λ x, by simp theorem is_O_zero : is_O (λ x, (0 : E')) g l := ⟨0, is_O_with_zero' _ _⟩ theorem is_O_refl_left : is_O (λ x, f' x - f' x) g' l := (is_O_zero g' l).congr_left $ λ x, (sub_self _).symm theorem is_o_refl_left : is_o (λ x, f' x - f' x) g' l := (is_o_zero g' l).congr_left $ λ x, (sub_self _).symm variables {g g' l} theorem is_O_with_zero_right_iff : is_O_with c f' (λ x, (0 : F')) l ↔ ∀ᶠ x in l, f' x = 0 := by simp only [is_O_with, exists_prop, true_and, norm_zero, mul_zero, norm_le_zero_iff] theorem is_O_zero_right_iff : is_O f' (λ x, (0 : F')) l ↔ ∀ᶠ x in l, f' x = 0 := ⟨λ h, let ⟨c, hc⟩ := h in (is_O_with_zero_right_iff).1 hc, λ h, (is_O_with_zero_right_iff.2 h : is_O_with 1 _ _ _).is_O⟩ theorem is_o_zero_right_iff : is_o f' (λ x, (0 : F')) l ↔ ∀ᶠ x in l, f' x = 0 := ⟨λ h, is_O_zero_right_iff.1 h.is_O, λ h c hc, is_O_with_zero_right_iff.2 h⟩ theorem is_O_with_const_const (c : E) {c' : F'} (hc' : c' ≠ 0) (l : filter α) : is_O_with (∥c∥ / ∥c'∥) (λ x : α, c) (λ x, c') l := begin apply univ_mem_sets', intro x, rw [mem_set_of_eq, div_mul_cancel], rwa [ne.def, norm_eq_zero] end theorem is_O_const_const (c : E) {c' : F'} (hc' : c' ≠ 0) (l : filter α) : is_O (λ x : α, c) (λ x, c') l := (is_O_with_const_const c hc' l).is_O end zero_const theorem is_O_with_const_one (c : E) (l : filter α) : is_O_with ∥c∥ (λ x : α, c) (λ x, (1 : 𝕜)) l := begin refine (is_O_with_const_const c _ l).congr_const _, { rw [normed_field.norm_one, div_one] }, { exact one_ne_zero } end theorem is_O_const_one (c : E) (l : filter α) : is_O (λ x : α, c) (λ x, (1 : 𝕜)) l := (is_O_with_const_one c l).is_O section variable (𝕜) theorem is_o_const_iff_is_o_one {c : F'} (hc : c ≠ 0) : is_o f (λ x, c) l ↔ is_o f (λ x, (1:𝕜)) l := ⟨λ h, h.trans_is_O $ is_O_const_one c l, λ h, h.trans_is_O $ is_O_const_const _ hc _⟩ end theorem is_o_const_iff {c : F'} (hc : c ≠ 0) : is_o f' (λ x, c) l ↔ tendsto f' l (𝓝 0) := (is_o_const_iff_is_o_one ℝ hc).trans begin clear hc c, simp only [is_o, is_O_with, normed_field.norm_one, mul_one, metric.nhds_basis_closed_ball.tendsto_right_iff, metric.mem_closed_ball, dist_zero_right] end theorem is_O_const_of_tendsto {y : E'} (h : tendsto f' l (𝓝 y)) {c : F'} (hc : c ≠ 0) : is_O f' (λ x, c) l := begin refine is_O.trans _ (is_O_const_const (∥y∥ + 1) hc l), use 1, simp only [is_O_with, one_mul], have : tendsto (λx, ∥f' x∥) l (𝓝 ∥y∥), from (continuous_norm.tendsto _).comp h, have Iy : ∥y∥ < ∥∥y∥ + 1∥, from lt_of_lt_of_le (lt_add_one _) (le_abs_self _), exact this (ge_mem_nhds Iy) end section variable (𝕜) theorem is_o_one_iff : is_o f' (λ x, (1 : 𝕜)) l ↔ tendsto f' l (𝓝 0) := is_o_const_iff one_ne_zero theorem is_O_one_of_tendsto {y : E'} (h : tendsto f' l (𝓝 y)) : is_O f' (λ x, (1:𝕜)) l := is_O_const_of_tendsto h one_ne_zero theorem is_O.trans_tendsto_nhds (hfg : is_O f g' l) {y : F'} (hg : tendsto g' l (𝓝 y)) : is_O f (λ x, (1:𝕜)) l := hfg.trans $ is_O_one_of_tendsto 𝕜 hg end theorem is_O.trans_tendsto (hfg : is_O f' g' l) (hg : tendsto g' l (𝓝 0)) : tendsto f' l (𝓝 0) := (is_o_one_iff ℝ).1 $ hfg.trans_is_o $ (is_o_one_iff ℝ).2 hg theorem is_o.trans_tendsto (hfg : is_o f' g' l) (hg : tendsto g' l (𝓝 0)) : tendsto f' l (𝓝 0) := hfg.is_O.trans_tendsto hg /-! ### Multiplication by a constant -/ theorem is_O_with_const_mul_self (c : R) (f : α → R) (l : filter α) : is_O_with ∥c∥ (λ x, c * f x) f l := is_O_with_of_le' _ $ λ x, norm_mul_le _ _ theorem is_O_const_mul_self (c : R) (f : α → R) (l : filter α) : is_O (λ x, c * f x) f l := (is_O_with_const_mul_self c f l).is_O theorem is_O_with.const_mul_left {f : α → R} (h : is_O_with c f g l) (c' : R) : is_O_with (∥c'∥ * c) (λ x, c' * f x) g l := (is_O_with_const_mul_self c' f l).trans h (norm_nonneg c') theorem is_O.const_mul_left {f : α → R} (h : is_O f g l) (c' : R) : is_O (λ x, c' * f x) g l := let ⟨c, hc⟩ := h in (hc.const_mul_left c').is_O theorem is_O_with_self_const_mul' (u : units R) (f : α → R) (l : filter α) : is_O_with ∥(↑u⁻¹:R)∥ f (λ x, ↑u * f x) l := (is_O_with_const_mul_self ↑u⁻¹ _ l).congr_left $ λ x, u.inv_mul_cancel_left (f x) theorem is_O_with_self_const_mul (c : 𝕜) (hc : c ≠ 0) (f : α → 𝕜) (l : filter α) : is_O_with ∥c∥⁻¹ f (λ x, c * f x) l := (is_O_with_self_const_mul' (units.mk0 c hc) f l).congr_const $ normed_field.norm_inv c theorem is_O_self_const_mul' {c : R} (hc : is_unit c) (f : α → R) (l : filter α) : is_O f (λ x, c * f x) l := let ⟨u, hu⟩ := hc in hu ▸ (is_O_with_self_const_mul' u f l).is_O theorem is_O_self_const_mul (c : 𝕜) (hc : c ≠ 0) (f : α → 𝕜) (l : filter α) : is_O f (λ x, c * f x) l := is_O_self_const_mul' (is_unit.mk0 c hc) f l theorem is_O_const_mul_left_iff' {f : α → R} {c : R} (hc : is_unit c) : is_O (λ x, c * f x) g l ↔ is_O f g l := ⟨(is_O_self_const_mul' hc f l).trans, λ h, h.const_mul_left c⟩ theorem is_O_const_mul_left_iff {f : α → 𝕜} {c : 𝕜} (hc : c ≠ 0) : is_O (λ x, c * f x) g l ↔ is_O f g l := is_O_const_mul_left_iff' $ is_unit.mk0 c hc theorem is_o.const_mul_left {f : α → R} (h : is_o f g l) (c : R) : is_o (λ x, c * f x) g l := (is_O_const_mul_self c f l).trans_is_o h theorem is_o_const_mul_left_iff' {f : α → R} {c : R} (hc : is_unit c) : is_o (λ x, c * f x) g l ↔ is_o f g l := ⟨(is_O_self_const_mul' hc f l).trans_is_o, λ h, h.const_mul_left c⟩ theorem is_o_const_mul_left_iff {f : α → 𝕜} {c : 𝕜} (hc : c ≠ 0) : is_o (λ x, c * f x) g l ↔ is_o f g l := is_o_const_mul_left_iff' $ is_unit.mk0 c hc theorem is_O_with.of_const_mul_right {g : α → R} {c : R} (hc' : 0 ≤ c') (h : is_O_with c' f (λ x, c * g x) l) : is_O_with (c' * ∥c∥) f g l := h.trans (is_O_with_const_mul_self c g l) hc' theorem is_O.of_const_mul_right {g : α → R} {c : R} (h : is_O f (λ x, c * g x) l) : is_O f g l := let ⟨c, cnonneg, hc⟩ := h.exists_nonneg in (hc.of_const_mul_right cnonneg).is_O theorem is_O_with.const_mul_right' {g : α → R} {u : units R} {c' : ℝ} (hc' : 0 ≤ c') (h : is_O_with c' f g l) : is_O_with (c' * ∥(↑u⁻¹:R)∥) f (λ x, ↑u * g x) l := h.trans (is_O_with_self_const_mul' _ _ _) hc' theorem is_O_with.const_mul_right {g : α → 𝕜} {c : 𝕜} (hc : c ≠ 0) {c' : ℝ} (hc' : 0 ≤ c') (h : is_O_with c' f g l) : is_O_with (c' * ∥c∥⁻¹) f (λ x, c * g x) l := h.trans (is_O_with_self_const_mul c hc g l) hc' theorem is_O.const_mul_right' {g : α → R} {c : R} (hc : is_unit c) (h : is_O f g l) : is_O f (λ x, c * g x) l := h.trans (is_O_self_const_mul' hc g l) theorem is_O.const_mul_right {g : α → 𝕜} {c : 𝕜} (hc : c ≠ 0) (h : is_O f g l) : is_O f (λ x, c * g x) l := h.const_mul_right' $ is_unit.mk0 c hc theorem is_O_const_mul_right_iff' {g : α → R} {c : R} (hc : is_unit c) : is_O f (λ x, c * g x) l ↔ is_O f g l := ⟨λ h, h.of_const_mul_right, λ h, h.const_mul_right' hc⟩ theorem is_O_const_mul_right_iff {g : α → 𝕜} {c : 𝕜} (hc : c ≠ 0) : is_O f (λ x, c * g x) l ↔ is_O f g l := is_O_const_mul_right_iff' $ is_unit.mk0 c hc theorem is_o.of_const_mul_right {g : α → R} {c : R} (h : is_o f (λ x, c * g x) l) : is_o f g l := h.trans_is_O (is_O_const_mul_self c g l) theorem is_o.const_mul_right' {g : α → R} {c : R} (hc : is_unit c) (h : is_o f g l) : is_o f (λ x, c * g x) l := h.trans_is_O (is_O_self_const_mul' hc g l) theorem is_o.const_mul_right {g : α → 𝕜} {c : 𝕜} (hc : c ≠ 0) (h : is_o f g l) : is_o f (λ x, c * g x) l := h.const_mul_right' $ is_unit.mk0 c hc theorem is_o_const_mul_right_iff' {g : α → R} {c : R} (hc : is_unit c) : is_o f (λ x, c * g x) l ↔ is_o f g l := ⟨λ h, h.of_const_mul_right, λ h, h.const_mul_right' hc⟩ theorem is_o_const_mul_right_iff {g : α → 𝕜} {c : 𝕜} (hc : c ≠ 0) : is_o f (λ x, c * g x) l ↔ is_o f g l := is_o_const_mul_right_iff' $ is_unit.mk0 c hc /-! ### Multiplication -/ theorem is_O_with.mul {f₁ f₂ : α → R} {g₁ g₂ : α → 𝕜} {c₁ c₂ : ℝ} (h₁ : is_O_with c₁ f₁ g₁ l) (h₂ : is_O_with c₂ f₂ g₂ l) : is_O_with (c₁ * c₂) (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := begin filter_upwards [h₁, h₂], simp only [mem_set_of_eq], intros x hx₁ hx₂, apply le_trans (norm_mul_le _ _), convert mul_le_mul hx₁ hx₂ (norm_nonneg _) (le_trans (norm_nonneg _) hx₁) using 1, rw normed_field.norm_mul, ac_refl end theorem is_O.mul {f₁ f₂ : α → R} {g₁ g₂ : α → 𝕜} (h₁ : is_O f₁ g₁ l) (h₂ : is_O f₂ g₂ l) : is_O (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := let ⟨c, hc⟩ := h₁, ⟨c', hc'⟩ := h₂ in (hc.mul hc').is_O theorem is_O.mul_is_o {f₁ f₂ : α → R} {g₁ g₂ : α → 𝕜} (h₁ : is_O f₁ g₁ l) (h₂ : is_o f₂ g₂ l) : is_o (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := begin intros c cpos, rcases h₁.exists_pos with ⟨c', c'pos, hc'⟩, exact (hc'.mul (h₂ (div_pos cpos c'pos))).congr_const (mul_div_cancel' _ (ne_of_gt c'pos)) end theorem is_o.mul_is_O {f₁ f₂ : α → R} {g₁ g₂ : α → 𝕜} (h₁ : is_o f₁ g₁ l) (h₂ : is_O f₂ g₂ l) : is_o (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := begin intros c cpos, rcases h₂.exists_pos with ⟨c', c'pos, hc'⟩, exact ((h₁ (div_pos cpos c'pos)).mul hc').congr_const (div_mul_cancel _ (ne_of_gt c'pos)) end theorem is_o.mul {f₁ f₂ : α → R} {g₁ g₂ : α → 𝕜} (h₁ : is_o f₁ g₁ l) (h₂ : is_o f₂ g₂ l) : is_o (λ x, f₁ x * f₂ x) (λ x, g₁ x * g₂ x) l := h₁.mul_is_O h₂.is_O /-! ### Scalar multiplication -/ section smul_const variables [normed_space 𝕜 E'] theorem is_O_with.const_smul_left (h : is_O_with c f' g l) (c' : 𝕜) : is_O_with (∥c'∥ * c) (λ x, c' • f' x) g l := by refine ((h.norm_left.const_mul_left (∥c'∥)).congr _ _ (λ _, rfl)).of_norm_left; intros; simp only [norm_norm, norm_smul] theorem is_O_const_smul_left_iff {c : 𝕜} (hc : c ≠ 0) : is_O (λ x, c • f' x) g l ↔ is_O f' g l := begin have cne0 : ∥c∥ ≠ 0, from mt norm_eq_zero.mp hc, rw [←is_O_norm_left], simp only [norm_smul], rw [is_O_const_mul_left_iff cne0, is_O_norm_left], end theorem is_o_const_smul_left (h : is_o f' g l) (c : 𝕜) : is_o (λ x, c • f' x) g l := begin refine ((h.norm_left.const_mul_left (∥c∥)).congr_left _).of_norm_left, exact λ x, (norm_smul _ _).symm end theorem is_o_const_smul_left_iff {c : 𝕜} (hc : c ≠ 0) : is_o (λ x, c • f' x) g l ↔ is_o f' g l := begin have cne0 : ∥c∥ ≠ 0, from mt norm_eq_zero.mp hc, rw [←is_o_norm_left], simp only [norm_smul], rw [is_o_const_mul_left_iff cne0, is_o_norm_left] end theorem is_O_const_smul_right {c : 𝕜} (hc : c ≠ 0) : is_O f (λ x, c • f' x) l ↔ is_O f f' l := begin have cne0 : ∥c∥ ≠ 0, from mt norm_eq_zero.mp hc, rw [←is_O_norm_right], simp only [norm_smul], rw [is_O_const_mul_right_iff cne0, is_O_norm_right] end theorem is_o_const_smul_right {c : 𝕜} (hc : c ≠ 0) : is_o f (λ x, c • f' x) l ↔ is_o f f' l := begin have cne0 : ∥c∥ ≠ 0, from mt norm_eq_zero.mp hc, rw [←is_o_norm_right], simp only [norm_smul], rw [is_o_const_mul_right_iff cne0, is_o_norm_right] end end smul_const section smul variables [normed_space 𝕜 E'] [normed_space 𝕜 F'] theorem is_O_with.smul {k₁ k₂ : α → 𝕜} (h₁ : is_O_with c k₁ k₂ l) (h₂ : is_O_with c' f' g' l) : is_O_with (c * c') (λ x, k₁ x • f' x) (λ x, k₂ x • g' x) l := by refine ((h₁.norm_norm.mul h₂.norm_norm).congr rfl _ _).of_norm_norm; by intros; simp only [norm_smul] theorem is_O.smul {k₁ k₂ : α → 𝕜} (h₁ : is_O k₁ k₂ l) (h₂ : is_O f' g' l) : is_O (λ x, k₁ x • f' x) (λ x, k₂ x • g' x) l := by refine ((h₁.norm_norm.mul h₂.norm_norm).congr _ _).of_norm_norm; by intros; simp only [norm_smul] theorem is_O.smul_is_o {k₁ k₂ : α → 𝕜} (h₁ : is_O k₁ k₂ l) (h₂ : is_o f' g' l) : is_o (λ x, k₁ x • f' x) (λ x, k₂ x • g' x) l := by refine ((h₁.norm_norm.mul_is_o h₂.norm_norm).congr _ _).of_norm_norm; by intros; simp only [norm_smul] theorem is_o.smul_is_O {k₁ k₂ : α → 𝕜} (h₁ : is_o k₁ k₂ l) (h₂ : is_O f' g' l) : is_o (λ x, k₁ x • f' x) (λ x, k₂ x • g' x) l := by refine ((h₁.norm_norm.mul_is_O h₂.norm_norm).congr _ _).of_norm_norm; by intros; simp only [norm_smul] theorem is_o.smul {k₁ k₂ : α → 𝕜} (h₁ : is_o k₁ k₂ l) (h₂ : is_o f' g' l) : is_o (λ x, k₁ x • f' x) (λ x, k₂ x • g' x) l := by refine ((h₁.norm_norm.mul h₂.norm_norm).congr _ _).of_norm_norm; by intros; simp only [norm_smul] end smul /-! ### Sum -/ section sum variables {ι : Type*} {A : ι → α → E'} {C : ι → ℝ} {s : finset ι} theorem is_O_with.sum (h : ∀ i ∈ s, is_O_with (C i) (A i) g l) : is_O_with (∑ i in s, C i) (λ x, ∑ i in s, A i x) g l := begin induction s using finset.induction_on with i s is IH, { simp only [is_O_with_zero', finset.sum_empty, forall_true_iff] }, { simp only [is, finset.sum_insert, not_false_iff], exact (h _ (finset.mem_insert_self i s)).add (IH (λ j hj, h _ (finset.mem_insert_of_mem hj))) } end theorem is_O.sum (h : ∀ i ∈ s, is_O (A i) g l) : is_O (λ x, ∑ i in s, A i x) g l := begin induction s using finset.induction_on with i s is IH, { simp only [is_O_zero, finset.sum_empty, forall_true_iff] }, { simp only [is, finset.sum_insert, not_false_iff], exact (h _ (finset.mem_insert_self i s)).add (IH (λ j hj, h _ (finset.mem_insert_of_mem hj))) } end theorem is_o.sum (h : ∀ i ∈ s, is_o (A i) g' l) : is_o (λ x, ∑ i in s, A i x) g' l := begin induction s using finset.induction_on with i s is IH, { simp only [is_o_zero, finset.sum_empty, forall_true_iff] }, { simp only [is, finset.sum_insert, not_false_iff], exact (h _ (finset.mem_insert_self i s)).add (IH (λ j hj, h _ (finset.mem_insert_of_mem hj))) } end end sum /-! ### Relation between `f = o(g)` and `f / g → 0` -/ theorem is_o.tendsto_0 {f g : α → 𝕜} {l : filter α} (h : is_o f g l) : tendsto (λ x, f x / (g x)) l (𝓝 0) := have eq₁ : is_o (λ x, f x / g x) (λ x, g x / g x) l, from h.mul_is_O (is_O_refl _ _), have eq₂ : is_O (λ x, g x / g x) (λ x, (1 : 𝕜)) l, from is_O_of_le _ (λ x, by by_cases h : ∥g x∥ = 0; simp [h, zero_le_one]), (is_o_one_iff 𝕜).mp (eq₁.trans_is_O eq₂) private theorem is_o_of_tendsto {f g : α → 𝕜} {l : filter α} (hgf : ∀ x, g x = 0 → f x = 0) (h : tendsto (λ x, f x / (g x)) l (𝓝 0)) : is_o f g l := have eq₁ : is_o (λ x, f x / (g x)) (λ x, (1 : 𝕜)) l, from (is_o_one_iff _).mpr h, have eq₂ : is_o (λ x, f x / g x * g x) g l, by convert eq₁.mul_is_O (is_O_refl _ _); simp, have eq₃ : is_O f (λ x, f x / g x * g x) l, begin refine is_O_of_le _ (λ x, _), by_cases H : g x = 0, { simp only [H, hgf _ H, mul_zero] }, { simp only [div_mul_cancel _ H] } end, eq₃.trans_is_o eq₂ theorem is_o_iff_tendsto {f g : α → 𝕜} {l : filter α} (hgf : ∀ x, g x = 0 → f x = 0) : is_o f g l ↔ tendsto (λ x, f x / (g x)) l (𝓝 0) := iff.intro is_o.tendsto_0 (is_o_of_tendsto hgf) /-! ### Miscellanous lemmas -/ theorem is_o_pow_pow {m n : ℕ} (h : m < n) : is_o (λ(x : 𝕜), x^n) (λx, x^m) (𝓝 0) := begin let p := n - m, have nmp : n = m + p := (nat.add_sub_cancel' (le_of_lt h)).symm, have : (λ(x : 𝕜), x^m) = (λx, x^m * 1), by simp only [mul_one], simp only [this, pow_add, nmp], refine is_O.mul_is_o (is_O_refl _ _) ((is_o_one_iff _).2 _), convert (continuous_pow p).tendsto (0 : 𝕜), exact (zero_pow (nat.sub_pos_of_lt h)).symm end theorem is_o_pow_id {n : ℕ} (h : 1 < n) : is_o (λ(x : 𝕜), x^n) (λx, x) (𝓝 0) := by { convert is_o_pow_pow h, simp only [pow_one] } theorem is_O_with.right_le_sub_of_lt_1 {f₁ f₂ : α → E'} (h : is_O_with c f₁ f₂ l) (hc : c < 1) : is_O_with (1 / (1 - c)) f₂ (λx, f₂ x - f₁ x) l := mem_sets_of_superset h $ λ x hx, begin simp only [mem_set_of_eq] at hx ⊢, rw [mul_comm, one_div_eq_inv, ← div_eq_mul_inv, le_div_iff, mul_sub, mul_one, mul_comm], { exact le_trans (sub_le_sub_left hx _) (norm_sub_norm_le _ _) }, { exact sub_pos.2 hc } end theorem is_O_with.right_le_add_of_lt_1 {f₁ f₂ : α → E'} (h : is_O_with c f₁ f₂ l) (hc : c < 1) : is_O_with (1 / (1 - c)) f₂ (λx, f₁ x + f₂ x) l := (h.neg_right.right_le_sub_of_lt_1 hc).neg_right.of_neg_left.congr rfl (λ x, rfl) (λ x, by rw [neg_sub, sub_neg_eq_add]) theorem is_o.right_is_O_sub {f₁ f₂ : α → E'} (h : is_o f₁ f₂ l) : is_O f₂ (λx, f₂ x - f₁ x) l := ((h.def' one_half_pos).right_le_sub_of_lt_1 one_half_lt_one).is_O theorem is_o.right_is_O_add {f₁ f₂ : α → E'} (h : is_o f₁ f₂ l) : is_O f₂ (λx, f₁ x + f₂ x) l := ((h.def' one_half_pos).right_le_add_of_lt_1 one_half_lt_one).is_O end asymptotics namespace local_homeomorph variables {α : Type*} {β : Type*} [topological_space α] [topological_space β] variables {E : Type*} [has_norm E] {F : Type*} [has_norm F] open asymptotics /-- Transfer `is_O_with` over a `local_homeomorph`. -/ lemma is_O_with_congr (e : local_homeomorph α β) {b : β} (hb : b ∈ e.target) {f : β → E} {g : β → F} {C : ℝ} : is_O_with C f g (𝓝 b) ↔ is_O_with C (f ∘ e) (g ∘ e) (𝓝 (e.symm b)) := ⟨λ h, h.comp_tendsto $ by { convert e.continuous_at (e.map_target hb), exact (e.right_inv hb).symm }, λ h, (h.comp_tendsto (e.continuous_at_symm hb)).congr' rfl ((e.eventually_right_inverse hb).mono $ λ x hx, congr_arg f hx) ((e.eventually_right_inverse hb).mono $ λ x hx, congr_arg g hx)⟩ /-- Transfer `is_O` over a `local_homeomorph`. -/ lemma is_O_congr (e : local_homeomorph α β) {b : β} (hb : b ∈ e.target) {f : β → E} {g : β → F} : is_O f g (𝓝 b) ↔ is_O (f ∘ e) (g ∘ e) (𝓝 (e.symm b)) := exists_congr $ λ C, e.is_O_with_congr hb /-- Transfer `is_o` over a `local_homeomorph`. -/ lemma is_o_congr (e : local_homeomorph α β) {b : β} (hb : b ∈ e.target) {f : β → E} {g : β → F} : is_o f g (𝓝 b) ↔ is_o (f ∘ e) (g ∘ e) (𝓝 (e.symm b)) := forall_congr $ λ c, forall_congr $ λ hc, e.is_O_with_congr hb end local_homeomorph namespace homeomorph variables {α : Type*} {β : Type*} [topological_space α] [topological_space β] variables {E : Type*} [has_norm E] {F : Type*} [has_norm F] open asymptotics /-- Transfer `is_O_with` over a `homeomorph`. -/ lemma is_O_with_congr (e : α ≃ₜ β) {b : β} {f : β → E} {g : β → F} {C : ℝ} : is_O_with C f g (𝓝 b) ↔ is_O_with C (f ∘ e) (g ∘ e) (𝓝 (e.symm b)) := e.to_local_homeomorph.is_O_with_congr trivial /-- Transfer `is_O` over a `homeomorph`. -/ lemma is_O_congr (e : α ≃ₜ β) {b : β} {f : β → E} {g : β → F} : is_O f g (𝓝 b) ↔ is_O (f ∘ e) (g ∘ e) (𝓝 (e.symm b)) := exists_congr $ λ C, e.is_O_with_congr /-- Transfer `is_o` over a `homeomorph`. -/ lemma is_o_congr (e : α ≃ₜ β) {b : β} {f : β → E} {g : β → F} : is_o f g (𝓝 b) ↔ is_o (f ∘ e) (g ∘ e) (𝓝 (e.symm b)) := forall_congr $ λ c, forall_congr $ λ hc, e.is_O_with_congr end homeomorph attribute [irreducible] asymptotics.is_o asymptotics.is_O asymptotics.is_O_with
a9e2fac135bb07311bba8e0ef5d5a46c7ad61641
4e3bf8e2b29061457a887ac8889e88fa5aa0e34c
/lean/love09_hoare_logic_homework_solution.lean
7607800cddef3fae4fe29888abd7bb27ad9e1182
[]
no_license
mukeshtiwari/logical_verification_2019
9f964c067a71f65eb8884743273fbeef99e6503d
16f62717f55ed5b7b87e03ae0134791a9bef9b9a
refs/heads/master
1,619,158,844,208
1,585,139,500,000
1,585,139,500,000
249,906,380
0
0
null
1,585,118,728,000
1,585,118,727,000
null
UTF-8
Lean
false
false
1,261
lean
/- LoVe Homework 9: Hoare Logic -/ import .love08_operational_semantics_exercise_sheet import .love09_hoare_logic_demo namespace LoVe /- Question 1: Hoare Logic for Dijkstra's Guarded Command Language -/ /- Recall the definition of GCL from exercise 8: -/ #check gcl namespace gcl #check big_step /- The definition of Hoare triples for partial correctness is unsurprising: -/ def partial_hoare (P : state → Prop) (S : gcl state) (Q : state → Prop) : Prop := ∀s t, P s → (S, s) ~~> t → Q t local notation `{* ` P : 1 ` *} ` S : 1 ` {* ` Q : 1 ` *}` := partial_hoare P S Q namespace partial_hoare variables {P : state → Prop} {S : gcl state} /- 1.7 **optional**. Prove the rule you stated for `loop`. Hint: This one is difficult and requires some generalization, as explained in Section 5.8 ("Induction Pitfalls") of the lecture notes. -/ lemma loop_intro (h : {* P *} S {* P *}) : {* P *} loop S {* P *} := begin intros s t hs, generalize eq : (loop S, s) = ps, intro hst, induction hst generalizing s; cases eq, { assumption }, { clear eq, rename hst_s s, rename hst_t t, rename hst_u u, apply hst_ih_hrest t, apply h s, repeat { assumption }, { refl } } end end partial_hoare end gcl end LoVe
7487929a4c82a78177f638da37cf17ebaed06ae9
5756a081670ba9c1d1d3fca7bd47cb4e31beae66
/Mathport/Syntax/Translate/Tactic/Mathlib/Congr.lean
18ff30e90bed2280be6dc237c0b7e5bc8b1dbc2e
[ "Apache-2.0" ]
permissive
leanprover-community/mathport
2c9bdc8292168febf59799efdc5451dbf0450d4a
13051f68064f7638970d39a8fecaede68ffbf9e1
refs/heads/master
1,693,841,364,079
1,693,813,111,000
1,693,813,111,000
379,357,010
27
10
Apache-2.0
1,691,309,132,000
1,624,384,521,000
Lean
UTF-8
Lean
false
false
1,574
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathport.Syntax.Translate.Tactic.Basic import Mathport.Syntax.Translate.Tactic.Lean3 import Mathport.Syntax.Translate.Tactic.Mathlib.RCases open Lean open Lean.Elab.Tactic (Location) namespace Mathport.Translate.Tactic open AST3 Parser -- # tactic.congr @[tr_tactic congr'] def trCongr' : TacM Syntax.Tactic := do let n := (← parse (smallNat)?).map quote match ← parse (tk "with" *> return (← rintroPat*, ← (tk ":" *> smallNat)?))? with | none => `(tactic| congr $(n)?) | some (pats, ks) => `(tactic| congr $[$(n):num]? with $(← liftM <| pats.mapM trRIntroPat)* $[: $(ks.map quote)]?) @[tr_tactic rcongr] def trRCongr : TacM Syntax.Tactic := do `(tactic| rcongr $(← liftM $ (← parse rintroPat*).mapM trRIntroPat):rintroPat*) @[tr_tactic convert] def trConvert : TacM Syntax.Tactic := do let sym := optTk (← parse (tk "<-")?).isSome let r ← trExpr (← parse pExpr) let n ← parse (tk "using" *> smallNat)? `(tactic| convert $[←%$sym]? $r $[using $(n.map quote)]?) @[tr_tactic convert_to] def trConvertTo : TacM Syntax.Tactic := do `(tactic| convert_to $(← trExpr (← parse pExpr)):term $[using $((← parse (tk "using" *> smallNat)?).map Quote.quote)]?) @[tr_tactic ac_change] def trAcChange : TacM Syntax.Tactic := do `(tactic| ac_change $(← trExpr (← parse pExpr)) $[using $((← parse (tk "using" *> smallNat)?).map Quote.quote)]?)