blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 7
139
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
16
| license_type
stringclasses 2
values | repo_name
stringlengths 7
55
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
int64 1,471B
1,694B
| revision_date
int64 1,378B
1,694B
| committer_date
int64 1,378B
1,694B
| github_id
float64 1.33M
604M
⌀ | star_events_count
int64 0
43.5k
| fork_events_count
int64 0
1.5k
| gha_license_id
stringclasses 6
values | gha_event_created_at
int64 1,402B
1,695B
⌀ | gha_created_at
int64 1,359B
1,637B
⌀ | gha_language
stringclasses 19
values | src_encoding
stringclasses 2
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 3
6.4M
| extension
stringclasses 4
values | content
stringlengths 3
6.12M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
951c1c87fc2affdd11416301342dba78b4803fe9
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/data/dfinsupp.lean
|
368a874fdb17f24785f1f720e45a3a07fc89bf9a
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 65,870
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Kenny Lau
-/
import algebra.module.pi
import algebra.module.linear_map
import algebra.big_operators.basic
import data.set.finite
import group_theory.submonoid.membership
/-!
# Dependent functions with finite support
For a non-dependent version see `data/finsupp.lean`.
-/
universes u u₁ u₂ v v₁ v₂ v₃ w x y l
open_locale big_operators
variables (ι : Type u) {γ : Type w} (β : ι → Type v) {β₁ : ι → Type v₁} {β₂ : ι → Type v₂}
namespace dfinsupp
variable [Π i, has_zero (β i)]
/-- An auxiliary structure used in the definition of of `dfinsupp`,
the type used to make infinite direct sum of modules over a ring. -/
structure pre : Type (max u v) :=
(to_fun : Π i, β i)
(pre_support : multiset ι)
(zero : ∀ i, i ∈ pre_support ∨ to_fun i = 0)
instance inhabited_pre : inhabited (pre ι β) :=
⟨⟨λ i, 0, ∅, λ i, or.inr rfl⟩⟩
instance : setoid (pre ι β) :=
{ r := λ x y, ∀ i, x.to_fun i = y.to_fun i,
iseqv := ⟨λ f i, rfl, λ f g H i, (H i).symm,
λ f g h H1 H2 i, (H1 i).trans (H2 i)⟩ }
end dfinsupp
variable {ι}
/-- A dependent function `Π i, β i` with finite support. -/
@[reducible]
def dfinsupp [Π i, has_zero (β i)] : Type* :=
quotient (dfinsupp.pre.setoid ι β)
variable {β}
notation `Π₀` binders `, ` r:(scoped f, dfinsupp f) := r
infix ` →ₚ `:25 := dfinsupp
namespace dfinsupp
section basic
variables [Π i, has_zero (β i)] [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)]
instance : has_coe_to_fun (Π₀ i, β i) (λ _, Π i, β i) :=
⟨λ f, quotient.lift_on f pre.to_fun $ λ _ _, funext⟩
instance : has_zero (Π₀ i, β i) := ⟨⟦⟨0, ∅, λ i, or.inr rfl⟩⟧⟩
instance : inhabited (Π₀ i, β i) := ⟨0⟩
@[simp]
lemma coe_pre_mk (f : Π i, β i) (s : multiset ι) (hf) :
⇑(⟦⟨f, s, hf⟩⟧ : Π₀ i, β i) = f := rfl
@[simp] lemma coe_zero : ⇑(0 : Π₀ i, β i) = 0 := rfl
lemma zero_apply (i : ι) : (0 : Π₀ i, β i) i = 0 := rfl
lemma coe_fn_injective : @function.injective (Π₀ i, β i) (Π i, β i) coe_fn :=
λ f g H, quotient.induction_on₂ f g (λ _ _ H, quotient.sound H) (congr_fun H)
@[ext] lemma ext {f g : Π₀ i, β i} (H : ∀ i, f i = g i) : f = g :=
coe_fn_injective (funext H)
lemma ext_iff {f g : Π₀ i, β i} : f = g ↔ ∀ i, f i = g i :=
coe_fn_injective.eq_iff.symm.trans function.funext_iff
/-- The composition of `f : β₁ → β₂` and `g : Π₀ i, β₁ i` is
`map_range f hf g : Π₀ i, β₂ i`, well defined when `f 0 = 0`.
This preserves the structure on `f`, and exists in various bundled forms for when `f` is itself
bundled:
* `dfinsupp.map_range.add_monoid_hom`
* `dfinsupp.map_range.add_equiv`
* `dfinsupp.map_range.linear_map`
* `dfinsupp.map_range.linear_equiv`
-/
def map_range (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) : (Π₀ i, β₁ i) → Π₀ i, β₂ i :=
quotient.map
(λ x, ⟨λ i, f i (x.1 i), x.2, λ i, (x.3 i).imp_right $ λ H, by rw [H, hf]⟩)
(λ x y H i, by simp only [H i])
@[simp] lemma map_range_apply
(f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) (g : Π₀ i, β₁ i) (i : ι) :
map_range f hf g i = f i (g i) :=
quotient.induction_on g $ λ x, rfl
@[simp] lemma map_range_id (h : ∀ i, id (0 : β₁ i) = 0 := λ i, rfl) (g : Π₀ (i : ι), β₁ i) :
map_range (λ i, (id : β₁ i → β₁ i)) h g = g :=
by { ext, simp only [map_range_apply, id.def] }
lemma map_range_comp (f : Π i, β₁ i → β₂ i) (f₂ : Π i, β i → β₁ i)
(hf : ∀ i, f i 0 = 0) (hf₂ : ∀ i, f₂ i 0 = 0) (h : ∀ i, (f i ∘ f₂ i) 0 = 0)
(g : Π₀ (i : ι), β i) :
map_range (λ i, f i ∘ f₂ i) h g = map_range f hf (map_range f₂ hf₂ g) :=
by { ext, simp only [map_range_apply] }
@[simp] lemma map_range_zero (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) :
map_range f hf (0 : Π₀ i, β₁ i) = 0 :=
by { ext, simp only [map_range_apply, coe_zero, pi.zero_apply, hf] }
/-- Let `f i` be a binary operation `β₁ i → β₂ i → β i` such that `f i 0 0 = 0`.
Then `zip_with f hf` is a binary operation `Π₀ i, β₁ i → Π₀ i, β₂ i → Π₀ i, β i`. -/
def zip_with (f : Π i, β₁ i → β₂ i → β i) (hf : ∀ i, f i 0 0 = 0) :
(Π₀ i, β₁ i) → (Π₀ i, β₂ i) → (Π₀ i, β i) :=
begin
refine quotient.map₂
(λ x y, ⟨λ i, f i (x.1 i) (y.1 i), x.2 + y.2, λ i, _⟩) _,
{ cases x.3 i with h1 h1,
{ left, rw multiset.mem_add, left, exact h1 },
cases y.3 i with h2 h2,
{ left, rw multiset.mem_add, right, exact h2 },
right, rw [h1, h2, hf] },
exact λ x₁ x₂ H1 y₁ y₂ H2 i, by simp only [H1 i, H2 i]
end
@[simp] lemma zip_with_apply
(f : Π i, β₁ i → β₂ i → β i) (hf : ∀ i, f i 0 0 = 0) (g₁ : Π₀ i, β₁ i) (g₂ : Π₀ i, β₂ i) (i : ι) :
zip_with f hf g₁ g₂ i = f i (g₁ i) (g₂ i) :=
quotient.induction_on₂ g₁ g₂ $ λ _ _, rfl
end basic
section algebra
instance [Π i, add_zero_class (β i)] : has_add (Π₀ i, β i) :=
⟨zip_with (λ _, (+)) (λ _, add_zero 0)⟩
lemma add_apply [Π i, add_zero_class (β i)] (g₁ g₂ : Π₀ i, β i) (i : ι) :
(g₁ + g₂) i = g₁ i + g₂ i :=
zip_with_apply _ _ g₁ g₂ i
@[simp] lemma coe_add [Π i, add_zero_class (β i)] (g₁ g₂ : Π₀ i, β i) :
⇑(g₁ + g₂) = g₁ + g₂ :=
funext $ add_apply g₁ g₂
instance [Π i, add_zero_class (β i)] : add_zero_class (Π₀ i, β i) :=
{ zero := 0,
add := (+),
zero_add := λ f, ext $ λ i, by simp only [add_apply, zero_apply, zero_add],
add_zero := λ f, ext $ λ i, by simp only [add_apply, zero_apply, add_zero] }
instance [Π i, add_monoid (β i)] : add_monoid (Π₀ i, β i) :=
{ add_monoid .
zero := 0,
add := (+),
add_assoc := λ f g h, ext $ λ i, by simp only [add_apply, add_assoc],
.. dfinsupp.add_zero_class }
/-- Coercion from a `dfinsupp` to a pi type is an `add_monoid_hom`. -/
def coe_fn_add_monoid_hom [Π i, add_zero_class (β i)] : (Π₀ i, β i) →+ (Π i, β i) :=
{ to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add }
/-- Evaluation at a point is an `add_monoid_hom`. This is the finitely-supported version of
`pi.eval_add_monoid_hom`. -/
def eval_add_monoid_hom [Π i, add_zero_class (β i)] (i : ι) : (Π₀ i, β i) →+ β i :=
(pi.eval_add_monoid_hom β i).comp coe_fn_add_monoid_hom
instance [Π i, add_comm_monoid (β i)] : add_comm_monoid (Π₀ i, β i) :=
{ add_comm := λ f g, ext $ λ i, by simp only [add_apply, add_comm],
nsmul := λ n v, v.map_range (λ _, (•) n) (λ _, smul_zero _),
nsmul_zero' := λ n, ext $ λ i, by simp only [map_range_apply, zero_apply, zero_smul],
nsmul_succ' := λ n z, ext $ λ i, by simp only [map_range_apply, add_apply,
nat.succ_eq_one_add, add_smul, one_smul],
.. dfinsupp.add_monoid }
@[simp] lemma coe_finset_sum {α} [Π i, add_comm_monoid (β i)] (s : finset α) (g : α → Π₀ i, β i) :
⇑(∑ a in s, g a) = ∑ a in s, g a :=
(coe_fn_add_monoid_hom : _ →+ (Π i, β i)).map_sum g s
@[simp] lemma finset_sum_apply {α} [Π i, add_comm_monoid (β i)] (s : finset α) (g : α → Π₀ i, β i)
(i : ι) :
(∑ a in s, g a) i = ∑ a in s, g a i :=
(eval_add_monoid_hom i : _ →+ β i).map_sum g s
instance [Π i, add_group (β i)] : has_neg (Π₀ i, β i) :=
⟨λ f, f.map_range (λ _, has_neg.neg) (λ _, neg_zero)⟩
lemma neg_apply [Π i, add_group (β i)] (g : Π₀ i, β i) (i : ι) : (- g) i = - g i :=
map_range_apply _ _ g i
@[simp] lemma coe_neg [Π i, add_group (β i)] (g : Π₀ i, β i) : ⇑(- g) = - g :=
funext $ neg_apply g
instance [Π i, add_group (β i)] : has_sub (Π₀ i, β i) :=
⟨zip_with (λ _, has_sub.sub) (λ _, sub_zero 0)⟩
lemma sub_apply [Π i, add_group (β i)] (g₁ g₂ : Π₀ i, β i) (i : ι) :
(g₁ - g₂) i = g₁ i - g₂ i :=
zip_with_apply _ _ g₁ g₂ i
@[simp] lemma coe_sub [Π i, add_group (β i)] (g₁ g₂ : Π₀ i, β i) :
⇑(g₁ - g₂) = g₁ - g₂ :=
funext $ sub_apply g₁ g₂
instance [Π i, add_group (β i)] : add_group (Π₀ i, β i) :=
{ add_left_neg := λ f, ext $ λ i, by simp only [add_apply, neg_apply, zero_apply, add_left_neg],
sub_eq_add_neg := λ f g, ext $ λ i,
by simp only [sub_apply, add_apply, neg_apply, sub_eq_add_neg],
.. dfinsupp.add_monoid,
.. dfinsupp.has_sub,
.. dfinsupp.has_neg }
instance [Π i, add_comm_group (β i)] : add_comm_group (Π₀ i, β i) :=
{ zsmul := λ n v, v.map_range (λ _, (•) n) (λ _, smul_zero _),
zsmul_neg' := λ n f, ext $ λ i, by
rw [neg_apply, map_range_apply, map_range_apply, zsmul_neg_succ_of_nat, nsmul_eq_smul_cast ℤ,
int.nat_cast_eq_coe_nat],
zsmul_zero' := λ n, ext $ λ i, by simp only [map_range_apply, zero_apply, zero_smul],
zsmul_succ' := λ n f, ext $ λ i, by simp [map_range_apply, add_smul, add_comm],
..@dfinsupp.add_comm_monoid _ β _,
..dfinsupp.add_group }
/-- Dependent functions with finite support inherit a semiring action from an action on each
coordinate. -/
instance [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] :
has_scalar γ (Π₀ i, β i) :=
⟨λc v, v.map_range (λ _, (•) c) (λ _, smul_zero _)⟩
lemma smul_apply [monoid γ] [Π i, add_monoid (β i)]
[Π i, distrib_mul_action γ (β i)] (b : γ) (v : Π₀ i, β i) (i : ι) :
(b • v) i = b • (v i) :=
map_range_apply _ _ v i
@[simp] lemma coe_smul [monoid γ] [Π i, add_monoid (β i)]
[Π i, distrib_mul_action γ (β i)] (b : γ) (v : Π₀ i, β i) :
⇑(b • v) = b • v :=
funext $ smul_apply b v
instance {δ : Type*} [monoid γ] [monoid δ]
[Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] [Π i, distrib_mul_action δ (β i)]
[Π i, smul_comm_class γ δ (β i)] :
smul_comm_class γ δ (Π₀ i, β i) :=
{ smul_comm := λ r s m, ext $ λ i, by simp only [smul_apply, smul_comm r s (m i)] }
instance {δ : Type*} [monoid γ] [monoid δ]
[Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] [Π i, distrib_mul_action δ (β i)]
[has_scalar γ δ] [Π i, is_scalar_tower γ δ (β i)] :
is_scalar_tower γ δ (Π₀ i, β i) :=
{ smul_assoc := λ r s m, ext $ λ i, by simp only [smul_apply, smul_assoc r s (m i)] }
/-- Dependent functions with finite support inherit a `distrib_mul_action` structure from such a
structure on each coordinate. -/
instance [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] :
distrib_mul_action γ (Π₀ i, β i) :=
{ smul_zero := λ c, ext $ λ i, by simp only [smul_apply, smul_zero, zero_apply],
smul_add := λ c x y, ext $ λ i, by simp only [add_apply, smul_apply, smul_add],
one_smul := λ x, ext $ λ i, by simp only [smul_apply, one_smul],
mul_smul := λ r s x, ext $ λ i, by simp only [smul_apply, smul_smul],
..dfinsupp.has_scalar }
/-- Dependent functions with finite support inherit a module structure from such a structure on
each coordinate. -/
instance [semiring γ] [Π i, add_comm_monoid (β i)] [Π i, module γ (β i)] :
module γ (Π₀ i, β i) :=
{ zero_smul := λ c, ext $ λ i, by simp only [smul_apply, zero_smul, zero_apply],
add_smul := λ c x y, ext $ λ i, by simp only [add_apply, smul_apply, add_smul],
..dfinsupp.distrib_mul_action }
end algebra
section filter_and_subtype_domain
/-- `filter p f` is the function which is `f i` if `p i` is true and 0 otherwise. -/
def filter [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p] : (Π₀ i, β i) → Π₀ i, β i :=
quotient.map
(λ x, ⟨λ i, if p i then x.1 i else 0, x.2, λ i, (x.3 i).imp_right $ λ H, by rw [H, if_t_t]⟩)
(λ x y H i, by simp only [H i])
@[simp] lemma filter_apply [Π i, has_zero (β i)]
(p : ι → Prop) [decidable_pred p] (i : ι) (f : Π₀ i, β i) :
f.filter p i = if p i then f i else 0 :=
quotient.induction_on f $ λ x, rfl
lemma filter_apply_pos [Π i, has_zero (β i)]
{p : ι → Prop} [decidable_pred p] (f : Π₀ i, β i) {i : ι} (h : p i) :
f.filter p i = f i :=
by simp only [filter_apply, if_pos h]
lemma filter_apply_neg [Π i, has_zero (β i)]
{p : ι → Prop} [decidable_pred p] (f : Π₀ i, β i) {i : ι} (h : ¬ p i) :
f.filter p i = 0 :=
by simp only [filter_apply, if_neg h]
lemma filter_pos_add_filter_neg [Π i, add_zero_class (β i)] (f : Π₀ i, β i)
(p : ι → Prop) [decidable_pred p] :
f.filter p + f.filter (λi, ¬ p i) = f :=
ext $ λ i, by simp only [add_apply, filter_apply]; split_ifs; simp only [add_zero, zero_add]
@[simp] lemma filter_zero [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p] :
(0 : Π₀ i, β i).filter p = 0 :=
by { ext, simp }
@[simp] lemma filter_add [Π i, add_zero_class (β i)] (p : ι → Prop) [decidable_pred p]
(f g : Π₀ i, β i) :
(f + g).filter p = f.filter p + g.filter p :=
by { ext, simp [ite_add_zero] }
@[simp] lemma filter_smul [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)]
(p : ι → Prop) [decidable_pred p] (r : γ) (f : Π₀ i, β i) :
(r • f).filter p = r • f.filter p :=
by { ext, simp [smul_ite] }
variables (γ β)
/-- `dfinsupp.filter` as an `add_monoid_hom`. -/
@[simps]
def filter_add_monoid_hom [Π i, add_zero_class (β i)] (p : ι → Prop) [decidable_pred p] :
(Π₀ i, β i) →+ (Π₀ i, β i) :=
{ to_fun := filter p,
map_zero' := filter_zero p,
map_add' := filter_add p }
/-- `dfinsupp.filter` as a `linear_map`. -/
@[simps]
def filter_linear_map [semiring γ] [Π i, add_comm_monoid (β i)] [Π i, module γ (β i)]
(p : ι → Prop) [decidable_pred p] :
(Π₀ i, β i) →ₗ[γ] (Π₀ i, β i) :=
{ to_fun := filter p,
map_add' := filter_add p,
map_smul' := filter_smul p }
variables {γ β}
@[simp] lemma filter_neg [Π i, add_group (β i)] (p : ι → Prop) [decidable_pred p]
(f : Π₀ i, β i) :
(-f).filter p = -f.filter p :=
(filter_add_monoid_hom β p).map_neg f
@[simp] lemma filter_sub [Π i, add_group (β i)] (p : ι → Prop) [decidable_pred p]
(f g : Π₀ i, β i) :
(f - g).filter p = f.filter p - g.filter p :=
(filter_add_monoid_hom β p).map_sub f g
/-- `subtype_domain p f` is the restriction of the finitely supported function
`f` to the subtype `p`. -/
def subtype_domain [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p] :
(Π₀ i, β i) → Π₀ i : subtype p, β i :=
quotient.map
(λ x, ⟨λ i, x.1 (i : ι), (x.2.filter p).attach.map $ λ j, ⟨j, (multiset.mem_filter.1 j.2).2⟩,
λ i, (x.3 i).imp_left $ λ H, multiset.mem_map.2
⟨⟨i, multiset.mem_filter.2 ⟨H, i.2⟩⟩, multiset.mem_attach _ _, subtype.eta _ _⟩⟩)
(λ x y H i, H i)
@[simp] lemma subtype_domain_zero [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p] :
subtype_domain p (0 : Π₀ i, β i) = 0 :=
rfl
@[simp] lemma subtype_domain_apply [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p]
{i : subtype p} {v : Π₀ i, β i} :
(subtype_domain p v) i = v i :=
quotient.induction_on v $ λ x, rfl
@[simp] lemma subtype_domain_add [Π i, add_zero_class (β i)] {p : ι → Prop} [decidable_pred p]
(v v' : Π₀ i, β i) :
(v + v').subtype_domain p = v.subtype_domain p + v'.subtype_domain p :=
ext $ λ i, by simp only [add_apply, subtype_domain_apply]
@[simp] lemma subtype_domain_smul [monoid γ] [Π i, add_monoid (β i)]
[Π i, distrib_mul_action γ (β i)] {p : ι → Prop} [decidable_pred p] (r : γ) (f : Π₀ i, β i) :
(r • f).subtype_domain p = r • f.subtype_domain p :=
quotient.induction_on f $ λ x, rfl
variables (γ β)
/-- `subtype_domain` but as an `add_monoid_hom`. -/
@[simps] def subtype_domain_add_monoid_hom [Π i, add_zero_class (β i)]
(p : ι → Prop) [decidable_pred p] : (Π₀ i : ι, β i) →+ Π₀ i : subtype p, β i :=
{ to_fun := subtype_domain p,
map_zero' := subtype_domain_zero,
map_add' := subtype_domain_add }
/-- `dfinsupp.subtype_domain` as a `linear_map`. -/
@[simps]
def subtype_domain_linear_map [semiring γ] [Π i, add_comm_monoid (β i)] [Π i, module γ (β i)]
(p : ι → Prop) [decidable_pred p] :
(Π₀ i, β i) →ₗ[γ] (Π₀ i : subtype p, β i) :=
{ to_fun := subtype_domain p,
map_add' := subtype_domain_add,
map_smul' := subtype_domain_smul }
variables {γ β}
@[simp]
lemma subtype_domain_neg [Π i, add_group (β i)] {p : ι → Prop} [decidable_pred p] {v : Π₀ i, β i} :
(- v).subtype_domain p = - v.subtype_domain p :=
ext $ λ i, by simp only [neg_apply, subtype_domain_apply]
@[simp] lemma subtype_domain_sub [Π i, add_group (β i)] {p : ι → Prop} [decidable_pred p]
{v v' : Π₀ i, β i} :
(v - v').subtype_domain p = v.subtype_domain p - v'.subtype_domain p :=
ext $ λ i, by simp only [sub_apply, subtype_domain_apply]
end filter_and_subtype_domain
variable [dec : decidable_eq ι]
include dec
section basic
variable [Π i, has_zero (β i)]
omit dec
lemma finite_support (f : Π₀ i, β i) : set.finite {i | f i ≠ 0} :=
begin
classical,
exact quotient.induction_on f (λ x, x.2.to_finset.finite_to_set.subset (λ i H,
multiset.mem_to_finset.2 ((x.3 i).resolve_right H)))
end
include dec
/-- Create an element of `Π₀ i, β i` from a finset `s` and a function `x`
defined on this `finset`. -/
def mk (s : finset ι) (x : Π i : (↑s : set ι), β (i : ι)) : Π₀ i, β i :=
⟦⟨λ i, if H : i ∈ s then x ⟨i, H⟩ else 0, s.1,
λ i, if H : i ∈ s then or.inl H else or.inr $ dif_neg H⟩⟧
@[simp] lemma mk_apply {s : finset ι} {x : Π i : (↑s : set ι), β i} {i : ι} :
(mk s x : Π i, β i) i = if H : i ∈ s then x ⟨i, H⟩ else 0 :=
rfl
theorem mk_injective (s : finset ι) : function.injective (@mk ι β _ _ s) :=
begin
intros x y H,
ext i,
have h1 : (mk s x : Π i, β i) i = (mk s y : Π i, β i) i, {rw H},
cases i with i hi,
change i ∈ s at hi,
dsimp only [mk_apply, subtype.coe_mk] at h1,
simpa only [dif_pos hi] using h1
end
omit dec
/-- Given `fintype ι`, `equiv_fun_on_fintype` is the `equiv` between `Π₀ i, β i` and `Π i, β i`.
(All dependent functions on a finite type are finitely supported.) -/
@[simps apply] def equiv_fun_on_fintype [fintype ι] : (Π₀ i, β i) ≃ (Π i, β i) :=
{ to_fun := coe_fn,
inv_fun := λ f, ⟦⟨f, finset.univ.1, λ i, or.inl $ finset.mem_univ_val _⟩⟧,
left_inv := λ x, coe_fn_injective rfl,
right_inv := λ x, rfl }
@[simp] lemma equiv_fun_on_fintype_symm_coe [fintype ι] (f : Π₀ i, β i) :
equiv_fun_on_fintype.symm f = f :=
equiv.symm_apply_apply _ _
include dec
/-- The function `single i b : Π₀ i, β i` sends `i` to `b`
and all other points to `0`. -/
def single (i : ι) (b : β i) : Π₀ i, β i :=
mk {i} $ λ j, eq.rec_on (finset.mem_singleton.1 j.prop).symm b
@[simp] lemma single_apply {i i' b} :
(single i b : Π₀ i, β i) i' = (if h : i = i' then eq.rec_on h b else 0) :=
begin
dsimp only [single],
by_cases h : i = i',
{ have h1 : i' ∈ ({i} : finset ι) := finset.mem_singleton.2 h.symm,
simp only [mk_apply, dif_pos h, dif_pos h1], refl },
{ have h1 : i' ∉ ({i} : finset ι) := finset.not_mem_singleton.2 (ne.symm h),
simp only [mk_apply, dif_neg h, dif_neg h1] }
end
lemma single_eq_pi_single {i b} : ⇑(single i b : Π₀ i, β i) = pi.single i b :=
begin
ext i',
simp only [pi.single, function.update],
split_ifs,
{ simp [h] },
{ simp [ne.symm h] }
end
@[simp] lemma single_zero (i) : (single i 0 : Π₀ i, β i) = 0 :=
quotient.sound $ λ j, if H : j ∈ ({i} : finset _)
then by dsimp only; rw [dif_pos H]; cases finset.mem_singleton.1 H; refl
else dif_neg H
@[simp] lemma single_eq_same {i b} : (single i b : Π₀ i, β i) i = b :=
by simp only [single_apply, dif_pos rfl]
lemma single_eq_of_ne {i i' b} (h : i ≠ i') : (single i b : Π₀ i, β i) i' = 0 :=
by simp only [single_apply, dif_neg h]
lemma single_injective {i} : function.injective (single i : β i → Π₀ i, β i) :=
λ x y H, congr_fun (mk_injective _ H) ⟨i, by simp⟩
/-- Like `finsupp.single_eq_single_iff`, but with a `heq` due to dependent types -/
lemma single_eq_single_iff (i j : ι) (xi : β i) (xj : β j) :
dfinsupp.single i xi = dfinsupp.single j xj ↔ i = j ∧ xi == xj ∨ xi = 0 ∧ xj = 0 :=
begin
split,
{ intro h,
by_cases hij : i = j,
{ subst hij,
exact or.inl ⟨rfl, heq_of_eq (dfinsupp.single_injective h)⟩, },
{ have h_coe : ⇑(dfinsupp.single i xi) = dfinsupp.single j xj := congr_arg coe_fn h,
have hci := congr_fun h_coe i,
have hcj := congr_fun h_coe j,
rw dfinsupp.single_eq_same at hci hcj,
rw dfinsupp.single_eq_of_ne (ne.symm hij) at hci,
rw dfinsupp.single_eq_of_ne (hij) at hcj,
exact or.inr ⟨hci, hcj.symm⟩, }, },
{ rintros (⟨hi, hxi⟩ | ⟨hi, hj⟩),
{ subst hi,
rw eq_of_heq hxi, },
{ rw [hi, hj, dfinsupp.single_zero, dfinsupp.single_zero], }, },
end
@[simp] lemma single_eq_zero {i : ι} {xi : β i} : single i xi = 0 ↔ xi = 0 :=
begin
rw [←single_zero i, single_eq_single_iff],
simp,
end
lemma filter_single (p : ι → Prop) [decidable_pred p] (i : ι) (x : β i) :
(single i x).filter p = if p i then single i x else 0 :=
begin
ext j,
have := apply_ite (λ x : Π₀ i, β i, x j) (p i) (single i x) 0,
dsimp at this,
rw [filter_apply, this],
obtain rfl | hij := decidable.eq_or_ne i j,
{ refl, },
{ rw [single_eq_of_ne hij, if_t_t, if_t_t], },
end
@[simp] lemma filter_single_pos {p : ι → Prop} [decidable_pred p] (i : ι) (x : β i) (h : p i) :
(single i x).filter p = single i x :=
by rw [filter_single, if_pos h]
@[simp] lemma filter_single_neg {p : ι → Prop} [decidable_pred p] (i : ι) (x : β i) (h : ¬p i) :
(single i x).filter p = 0 :=
by rw [filter_single, if_neg h]
/-- Equality of sigma types is sufficient (but not necessary) to show equality of `dfinsupp`s. -/
lemma single_eq_of_sigma_eq
{i j} {xi : β i} {xj : β j} (h : (⟨i, xi⟩ : sigma β) = ⟨j, xj⟩) :
dfinsupp.single i xi = dfinsupp.single j xj :=
by { cases h, refl }
@[simp] lemma equiv_fun_on_fintype_single [fintype ι] (i : ι) (m : β i) :
(@dfinsupp.equiv_fun_on_fintype ι β _ _) (dfinsupp.single i m) = pi.single i m :=
by { ext, simp [dfinsupp.single_eq_pi_single], }
@[simp] lemma equiv_fun_on_fintype_symm_single [fintype ι] (i : ι) (m : β i) :
(@dfinsupp.equiv_fun_on_fintype ι β _ _).symm (pi.single i m) = dfinsupp.single i m :=
by { ext i', simp only [← single_eq_pi_single, equiv_fun_on_fintype_symm_coe] }
/-- Redefine `f i` to be `0`. -/
def erase (i : ι) : (Π₀ i, β i) → Π₀ i, β i :=
quotient.map
(λ x, ⟨λ j, if j = i then 0 else x.1 j, x.2,
λ j, (x.3 j).imp_right $ λ H, by simp only [H, if_t_t]⟩)
(λ x y H j, if h : j = i then by simp only [if_pos h] else by simp only [if_neg h, H j])
@[simp] lemma erase_apply {i j : ι} {f : Π₀ i, β i} :
(f.erase i) j = if j = i then 0 else f j :=
quotient.induction_on f $ λ x, rfl
@[simp] lemma erase_same {i : ι} {f : Π₀ i, β i} : (f.erase i) i = 0 :=
by simp
lemma erase_ne {i i' : ι} {f : Π₀ i, β i} (h : i' ≠ i) : (f.erase i) i' = f i' :=
by simp [h]
lemma erase_eq_sub_single {β : ι → Type*} [Π i, add_group (β i)] (f : Π₀ i, β i) (i : ι) :
f.erase i = f - single i (f i) :=
begin
ext j,
rcases eq_or_ne i j with rfl|h,
{ simp },
{ simp [erase_ne h.symm, single_eq_of_ne h] }
end
@[simp] lemma erase_zero (i : ι) : erase i (0 : Π₀ i, β i) = 0 :=
ext $ λ _, if_t_t _ _
@[simp] lemma filter_ne_eq_erase (f : Π₀ i, β i) (i : ι) : f.filter (≠ i) = f.erase i :=
begin
ext1 j,
simp only [dfinsupp.filter_apply, dfinsupp.erase_apply, ite_not],
end
@[simp] lemma filter_ne_eq_erase' (f : Π₀ i, β i) (i : ι) : f.filter ((≠) i) = f.erase i :=
begin
rw ←filter_ne_eq_erase f i,
congr' with j,
exact ne_comm,
end
lemma erase_single (j : ι) (i : ι) (x : β i) :
(single i x).erase j = if i = j then 0 else single i x :=
by rw [←filter_ne_eq_erase, filter_single, ite_not]
@[simp] lemma erase_single_same (i : ι) (x : β i) : (single i x).erase i = 0 :=
by rw [erase_single, if_pos rfl]
@[simp] lemma erase_single_ne {i j : ι} (x : β i) (h : i ≠ j) : (single i x).erase j = single i x :=
by rw [erase_single, if_neg h]
section update
variables (f : Π₀ i, β i) (i : ι) (b : β i) [decidable (b = 0)]
/-- Replace the value of a `Π₀ i, β i` at a given point `i : ι` by a given value `b : β i`.
If `b = 0`, this amounts to removing `i` from the support.
Otherwise, `i` is added to it.
This is the (dependent) finitely-supported version of `function.update`. -/
def update : Π₀ i, β i :=
quotient.map (λ (x : pre _ _), ⟨function.update x.to_fun i b,
if b = 0 then x.pre_support.erase i else i ::ₘ x.pre_support,
begin
intro j,
rcases eq_or_ne i j with rfl|hi,
{ split_ifs with hb,
{ simp [hb] },
{ simp } },
{ cases x.zero j with hj hj,
{ split_ifs;
simp [multiset.mem_erase_of_ne hi.symm, hj] },
{ simp [function.update_noteq hi.symm, hj] } }
end⟩)
(λ x y h j,
show function.update x.to_fun i b j = function.update y.to_fun i b j,
by rw (funext h : x.to_fun = y.to_fun)) f
variables (j : ι)
@[simp] lemma coe_update : (f.update i b : Π (i : ι), β i) = function.update f i b :=
quotient.induction_on f (λ _, rfl)
@[simp] lemma update_self [decidable (f i = 0)] : f.update i (f i) = f :=
by { ext, simp }
@[simp] lemma update_eq_erase [decidable ((0 : β i) = 0)] : f.update i 0 = f.erase i :=
begin
ext j,
rcases eq_or_ne i j with rfl|hi,
{ simp },
{ simp [hi.symm] }
end
lemma update_eq_single_add_erase {β : ι → Type*} [Π i, add_zero_class (β i)] (f : Π₀ i, β i) (i : ι)
(b : β i) [decidable (b = 0)] :
f.update i b = single i b + f.erase i :=
begin
ext j,
rcases eq_or_ne i j with rfl|h,
{ simp },
{ simp [function.update_noteq h.symm, h, erase_ne, h.symm] }
end
lemma update_eq_erase_add_single {β : ι → Type*} [Π i, add_zero_class (β i)] (f : Π₀ i, β i) (i : ι)
(b : β i) [decidable (b = 0)] :
f.update i b = f.erase i + single i b :=
begin
ext j,
rcases eq_or_ne i j with rfl|h,
{ simp },
{ simp [function.update_noteq h.symm, h, erase_ne, h.symm] }
end
lemma update_eq_sub_add_single {β : ι → Type*} [Π i, add_group (β i)] (f : Π₀ i, β i) (i : ι)
(b : β i) [decidable (b = 0)] :
f.update i b = f - single i (f i) + single i b :=
by rw [update_eq_erase_add_single f i b, erase_eq_sub_single f i]
end update
end basic
section add_monoid
variable [Π i, add_zero_class (β i)]
@[simp] lemma single_add (i : ι) (b₁ b₂ : β i) : single i (b₁ + b₂) = single i b₁ + single i b₂ :=
ext $ assume i',
begin
by_cases h : i = i',
{ subst h, simp only [add_apply, single_eq_same] },
{ simp only [add_apply, single_eq_of_ne h, zero_add] }
end
@[simp] lemma erase_add (i : ι) (f₁ f₂ : Π₀ i, β i) : erase i (f₁ + f₂) = erase i f₁ + erase i f₂ :=
ext $ λ _, by simp [ite_zero_add]
variables (β)
/-- `dfinsupp.single` as an `add_monoid_hom`. -/
@[simps] def single_add_hom (i : ι) : β i →+ Π₀ i, β i :=
{ to_fun := single i, map_zero' := single_zero i, map_add' := single_add i }
/-- `dfinsupp.erase` as an `add_monoid_hom`. -/
@[simps] def erase_add_hom (i : ι) : (Π₀ i, β i) →+ Π₀ i, β i :=
{ to_fun := erase i, map_zero' := erase_zero i, map_add' := erase_add i }
variables {β}
@[simp] lemma single_neg {β : ι → Type v} [Π i, add_group (β i)] (i : ι) (x : β i) :
single i (-x) = -single i x :=
(single_add_hom β i).map_neg x
@[simp] lemma single_sub {β : ι → Type v} [Π i, add_group (β i)] (i : ι) (x y : β i) :
single i (x - y) = single i x - single i y :=
(single_add_hom β i).map_sub x y
@[simp] lemma erase_neg {β : ι → Type v} [Π i, add_group (β i)] (i : ι) (f : Π₀ i, β i) :
(-f).erase i = -f.erase i :=
(erase_add_hom β i).map_neg f
@[simp] lemma erase_sub {β : ι → Type v} [Π i, add_group (β i)] (i : ι) (f g : Π₀ i, β i) :
(f - g).erase i = f.erase i - g.erase i :=
(erase_add_hom β i).map_sub f g
lemma single_add_erase (i : ι) (f : Π₀ i, β i) : single i (f i) + f.erase i = f :=
ext $ λ i',
if h : i = i'
then by subst h; simp only [add_apply, single_apply, erase_apply, dif_pos rfl, if_pos, add_zero]
else by simp only [add_apply, single_apply, erase_apply, dif_neg h, if_neg (ne.symm h), zero_add]
lemma erase_add_single (i : ι) (f : Π₀ i, β i) : f.erase i + single i (f i) = f :=
ext $ λ i',
if h : i = i'
then by subst h; simp only [add_apply, single_apply, erase_apply, dif_pos rfl, if_pos, zero_add]
else by simp only [add_apply, single_apply, erase_apply, dif_neg h, if_neg (ne.symm h), add_zero]
protected theorem induction {p : (Π₀ i, β i) → Prop} (f : Π₀ i, β i)
(h0 : p 0) (ha : ∀i b (f : Π₀ i, β i), f i = 0 → b ≠ 0 → p f → p (single i b + f)) :
p f :=
begin
refine quotient.induction_on f (λ x, _),
cases x with f s H, revert f H,
apply multiset.induction_on s,
{ intros f H, convert h0, ext i, exact (H i).resolve_left id },
intros i s ih f H,
by_cases H1 : i ∈ s,
{ have H2 : ∀ j, j ∈ s ∨ f j = 0,
{ intro j, cases H j with H2 H2,
{ cases multiset.mem_cons.1 H2 with H3 H3,
{ left, rw H3, exact H1 },
{ left, exact H3 } },
right, exact H2 },
have H3 : (⟦{to_fun := f, pre_support := i ::ₘ s, zero := H}⟧ : Π₀ i, β i)
= ⟦{to_fun := f, pre_support := s, zero := H2}⟧,
{ exact quotient.sound (λ i, rfl) },
rw H3, apply ih },
have H2 : p (erase i ⟦{to_fun := f, pre_support := i ::ₘ s, zero := H}⟧),
{ dsimp only [erase, quotient.map_mk],
have H2 : ∀ j, j ∈ s ∨ ite (j = i) 0 (f j) = 0,
{ intro j, cases H j with H2 H2,
{ cases multiset.mem_cons.1 H2 with H3 H3,
{ right, exact if_pos H3 },
{ left, exact H3 } },
right, split_ifs; [refl, exact H2] },
have H3 : (⟦{to_fun := λ (j : ι), ite (j = i) 0 (f j),
pre_support := i ::ₘ s, zero := _}⟧ : Π₀ i, β i)
= ⟦{to_fun := λ (j : ι), ite (j = i) 0 (f j), pre_support := s, zero := H2}⟧ :=
quotient.sound (λ i, rfl),
rw H3, apply ih },
have H3 : single i _ + _ = (⟦{to_fun := f, pre_support := i ::ₘ s, zero := H}⟧ : Π₀ i, β i) :=
single_add_erase _ _,
rw ← H3,
change p (single i (f i) + _),
cases classical.em (f i = 0) with h h,
{ rw [h, single_zero, zero_add], exact H2 },
refine ha _ _ _ _ h H2,
rw erase_same
end
lemma induction₂ {p : (Π₀ i, β i) → Prop} (f : Π₀ i, β i)
(h0 : p 0) (ha : ∀i b (f : Π₀ i, β i), f i = 0 → b ≠ 0 → p f → p (f + single i b)) :
p f :=
dfinsupp.induction f h0 $ λ i b f h1 h2 h3,
have h4 : f + single i b = single i b + f,
{ ext j, by_cases H : i = j,
{ subst H, simp [h1] },
{ simp [H] } },
eq.rec_on h4 $ ha i b f h1 h2 h3
@[simp] lemma add_closure_Union_range_single :
add_submonoid.closure (⋃ i : ι, set.range (single i : β i → (Π₀ i, β i))) = ⊤ :=
top_unique $ λ x hx, (begin
apply dfinsupp.induction x,
exact add_submonoid.zero_mem _,
exact λ a b f ha hb hf, add_submonoid.add_mem _
(add_submonoid.subset_closure $ set.mem_Union.2 ⟨a, set.mem_range_self _⟩) hf
end)
/-- If two additive homomorphisms from `Π₀ i, β i` are equal on each `single a b`, then
they are equal. -/
lemma add_hom_ext {γ : Type w} [add_zero_class γ] ⦃f g : (Π₀ i, β i) →+ γ⦄
(H : ∀ (i : ι) (y : β i), f (single i y) = g (single i y)) :
f = g :=
begin
refine add_monoid_hom.eq_of_eq_on_mdense add_closure_Union_range_single (λ f hf, _),
simp only [set.mem_Union, set.mem_range] at hf,
rcases hf with ⟨x, y, rfl⟩,
apply H
end
/-- If two additive homomorphisms from `Π₀ i, β i` are equal on each `single a b`, then
they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma add_hom_ext' {γ : Type w} [add_zero_class γ] ⦃f g : (Π₀ i, β i) →+ γ⦄
(H : ∀ x, f.comp (single_add_hom β x) = g.comp (single_add_hom β x)) :
f = g :=
add_hom_ext $ λ x, add_monoid_hom.congr_fun (H x)
end add_monoid
@[simp] lemma mk_add [Π i, add_zero_class (β i)] {s : finset ι} {x y : Π i : (↑s : set ι), β i} :
mk s (x + y) = mk s x + mk s y :=
ext $ λ i, by simp only [add_apply, mk_apply]; split_ifs; [refl, rw zero_add]
@[simp] lemma mk_zero [Π i, has_zero (β i)] {s : finset ι} :
mk s (0 : Π i : (↑s : set ι), β i.1) = 0 :=
ext $ λ i, by simp only [mk_apply]; split_ifs; refl
@[simp] lemma mk_neg [Π i, add_group (β i)] {s : finset ι} {x : Π i : (↑s : set ι), β i.1} :
mk s (-x) = -mk s x :=
ext $ λ i, by simp only [neg_apply, mk_apply]; split_ifs; [refl, rw neg_zero]
@[simp] lemma mk_sub [Π i, add_group (β i)] {s : finset ι} {x y : Π i : (↑s : set ι), β i.1} :
mk s (x - y) = mk s x - mk s y :=
ext $ λ i, by simp only [sub_apply, mk_apply]; split_ifs; [refl, rw sub_zero]
/-- If `s` is a subset of `ι` then `mk_add_group_hom s` is the canonical additive
group homomorphism from $\prod_{i\in s}\beta_i$ to $\prod_{\mathtt{i : \iota}}\beta_i.$-/
def mk_add_group_hom [Π i, add_group (β i)] (s : finset ι) :
(Π (i : (s : set ι)), β ↑i) →+ (Π₀ (i : ι), β i) :=
{ to_fun := mk s,
map_zero' := mk_zero,
map_add' := λ _ _, mk_add }
section
variables [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)]
@[simp] lemma mk_smul {s : finset ι} (c : γ) (x : Π i : (↑s : set ι), β (i : ι)) :
mk s (c • x) = c • mk s x :=
ext $ λ i, by simp only [smul_apply, mk_apply]; split_ifs; [refl, rw smul_zero]
@[simp] lemma single_smul {i : ι} (c : γ) (x : β i) :
single i (c • x) = c • single i x :=
ext $ λ i, by simp only [smul_apply, single_apply]; split_ifs; [cases h, rw smul_zero]; refl
end
section support_basic
variables [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)]
/-- Set `{i | f x ≠ 0}` as a `finset`. -/
def support (f : Π₀ i, β i) : finset ι :=
quotient.lift_on f (λ x, x.2.to_finset.filter $ λ i, x.1 i ≠ 0) $
begin
intros x y Hxy,
ext i, split,
{ intro H,
rcases finset.mem_filter.1 H with ⟨h1, h2⟩,
rw Hxy i at h2,
exact finset.mem_filter.2 ⟨multiset.mem_to_finset.2 $ (y.3 i).resolve_right h2, h2⟩ },
{ intro H,
rcases finset.mem_filter.1 H with ⟨h1, h2⟩,
rw ← Hxy i at h2,
exact finset.mem_filter.2 ⟨multiset.mem_to_finset.2 $ (x.3 i).resolve_right h2, h2⟩ },
end
@[simp] theorem support_mk_subset {s : finset ι} {x : Π i : (↑s : set ι), β i.1} :
(mk s x).support ⊆ s :=
λ i H, multiset.mem_to_finset.1 (finset.mem_filter.1 H).1
@[simp] theorem mem_support_to_fun (f : Π₀ i, β i) (i) : i ∈ f.support ↔ f i ≠ 0 :=
begin
refine quotient.induction_on f (λ x, _),
dsimp only [support, quotient.lift_on_mk],
rw [finset.mem_filter, multiset.mem_to_finset],
exact and_iff_right_of_imp (x.3 i).resolve_right
end
theorem eq_mk_support (f : Π₀ i, β i) : f = mk f.support (λ i, f i) :=
begin
change f = mk f.support (λ i, f i.1),
ext i,
by_cases h : f i ≠ 0; [skip, rw [not_not] at h];
simp [h]
end
@[simp] lemma support_zero : (0 : Π₀ i, β i).support = ∅ := rfl
lemma mem_support_iff (f : Π₀ i, β i) : ∀i:ι, i ∈ f.support ↔ f i ≠ 0 :=
f.mem_support_to_fun
@[simp] lemma support_eq_empty {f : Π₀ i, β i} : f.support = ∅ ↔ f = 0 :=
⟨λ H, ext $ by simpa [finset.ext_iff] using H, by simp {contextual:=tt}⟩
instance decidable_zero : decidable_pred (eq (0 : Π₀ i, β i)) :=
λ f, decidable_of_iff _ $ support_eq_empty.trans eq_comm
lemma support_subset_iff {s : set ι} {f : Π₀ i, β i} :
↑f.support ⊆ s ↔ (∀i∉s, f i = 0) :=
by simp [set.subset_def];
exact forall_congr (assume i, not_imp_comm)
lemma support_single_ne_zero {i : ι} {b : β i} (hb : b ≠ 0) : (single i b).support = {i} :=
begin
ext j, by_cases h : i = j,
{ subst h, simp [hb] },
simp [ne.symm h, h]
end
lemma support_single_subset {i : ι} {b : β i} : (single i b).support ⊆ {i} :=
support_mk_subset
section map_range_and_zip_with
variables [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)]
lemma map_range_def [Π i (x : β₁ i), decidable (x ≠ 0)]
{f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} :
map_range f hf g = mk g.support (λ i, f i.1 (g i.1)) :=
begin
ext i,
by_cases h : g i ≠ 0; simp at h; simp [h, hf]
end
@[simp] lemma map_range_single {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {i : ι} {b : β₁ i} :
map_range f hf (single i b) = single i (f i b) :=
dfinsupp.ext $ λ i', by by_cases i = i'; [{subst i', simp}, simp [h, hf]]
variables [Π i (x : β₁ i), decidable (x ≠ 0)] [Π i (x : β₂ i), decidable (x ≠ 0)]
lemma support_map_range {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} :
(map_range f hf g).support ⊆ g.support :=
by simp [map_range_def]
lemma zip_with_def {ι : Type u} {β : ι → Type v} {β₁ : ι → Type v₁} {β₂ : ι → Type v₂}
[dec : decidable_eq ι] [Π (i : ι), has_zero (β i)] [Π (i : ι), has_zero (β₁ i)]
[Π (i : ι), has_zero (β₂ i)] [Π (i : ι) (x : β₁ i), decidable (x ≠ 0)]
[Π (i : ι) (x : β₂ i), decidable (x ≠ 0)]
{f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0}
{g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} :
zip_with f hf g₁ g₂ = mk (g₁.support ∪ g₂.support) (λ i, f i.1 (g₁ i.1) (g₂ i.1)) :=
begin
ext i,
by_cases h1 : g₁ i ≠ 0; by_cases h2 : g₂ i ≠ 0;
simp only [not_not, ne.def] at h1 h2; simp [h1, h2, hf]
end
lemma support_zip_with {f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0}
{g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} :
(zip_with f hf g₁ g₂).support ⊆ g₁.support ∪ g₂.support :=
by simp [zip_with_def]
end map_range_and_zip_with
lemma erase_def (i : ι) (f : Π₀ i, β i) :
f.erase i = mk (f.support.erase i) (λ j, f j.1) :=
by { ext j, by_cases h1 : j = i; by_cases h2 : f j ≠ 0; simp at h2; simp [h1, h2] }
@[simp] lemma support_erase (i : ι) (f : Π₀ i, β i) :
(f.erase i).support = f.support.erase i :=
by { ext j, by_cases h1 : j = i; by_cases h2 : f j ≠ 0; simp at h2; simp [h1, h2] }
lemma support_update_ne_zero (f : Π₀ i, β i) (i : ι) {b : β i} [decidable (b = 0)] (h : b ≠ 0) :
support (f.update i b) = insert i f.support :=
begin
ext j,
rcases eq_or_ne i j with rfl|hi,
{ simp [h] },
{ simp [hi.symm] }
end
lemma support_update (f : Π₀ i, β i) (i : ι) (b : β i) [decidable (b = 0)] :
support (f.update i b) = if b = 0 then support (f.erase i) else insert i f.support :=
begin
ext j,
split_ifs with hb,
{ simp only [hb, update_eq_erase, support_erase] },
{ rw [support_update_ne_zero f _ hb] }
end
section filter_and_subtype_domain
variables {p : ι → Prop} [decidable_pred p]
lemma filter_def (f : Π₀ i, β i) :
f.filter p = mk (f.support.filter p) (λ i, f i.1) :=
by ext i; by_cases h1 : p i; by_cases h2 : f i ≠ 0;
simp at h2; simp [h1, h2]
@[simp] lemma support_filter (f : Π₀ i, β i) :
(f.filter p).support = f.support.filter p :=
by ext i; by_cases h : p i; simp [h]
lemma subtype_domain_def (f : Π₀ i, β i) :
f.subtype_domain p = mk (f.support.subtype p) (λ i, f i) :=
by ext i; by_cases h1 : p i; by_cases h2 : f i ≠ 0;
try {simp at h2}; dsimp; simp [h1, h2, ← subtype.val_eq_coe]
@[simp] lemma support_subtype_domain {f : Π₀ i, β i} :
(subtype_domain p f).support = f.support.subtype p :=
by ext i; by_cases h1 : p i; by_cases h2 : f i ≠ 0;
try {simp at h2}; dsimp; simp [h1, h2]
end filter_and_subtype_domain
end support_basic
lemma support_add [Π i, add_zero_class (β i)] [Π i (x : β i), decidable (x ≠ 0)]
{g₁ g₂ : Π₀ i, β i} :
(g₁ + g₂).support ⊆ g₁.support ∪ g₂.support :=
support_zip_with
@[simp] lemma support_neg [Π i, add_group (β i)] [Π i (x : β i), decidable (x ≠ 0)]
{f : Π₀ i, β i} :
support (-f) = support f :=
by ext i; simp
lemma support_smul {γ : Type w} [semiring γ] [Π i, add_comm_monoid (β i)] [Π i, module γ (β i)]
[Π ( i : ι) (x : β i), decidable (x ≠ 0)]
(b : γ) (v : Π₀ i, β i) : (b • v).support ⊆ v.support :=
support_map_range
instance [Π i, has_zero (β i)] [Π i, decidable_eq (β i)] : decidable_eq (Π₀ i, β i) :=
assume f g, decidable_of_iff (f.support = g.support ∧ (∀i∈f.support, f i = g i))
⟨assume ⟨h₁, h₂⟩, ext $ assume i,
if h : i ∈ f.support then h₂ i h else
have hf : f i = 0, by rwa [f.mem_support_iff, not_not] at h,
have hg : g i = 0, by rwa [h₁, g.mem_support_iff, not_not] at h,
by rw [hf, hg],
by intro h; subst h; simp⟩
section prod_and_sum
/-- `prod f g` is the product of `g i (f i)` over the support of `f`. -/
@[to_additive "`sum f g` is the sum of `g i (f i)` over the support of `f`."]
def prod [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ]
(f : Π₀ i, β i) (g : Π i, β i → γ) : γ :=
∏ i in f.support, g i (f i)
@[to_additive]
lemma prod_map_range_index {β₁ : ι → Type v₁} {β₂ : ι → Type v₂}
[Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)]
[Π i (x : β₁ i), decidable (x ≠ 0)] [Π i (x : β₂ i), decidable (x ≠ 0)] [comm_monoid γ]
{f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} {h : Π i, β₂ i → γ}
(h0 : ∀i, h i 0 = 1) :
(map_range f hf g).prod h = g.prod (λi b, h i (f i b)) :=
begin
rw [map_range_def],
refine (finset.prod_subset support_mk_subset _).trans _,
{ intros i h1 h2,
dsimp, simp [h1] at h2, dsimp at h2,
simp [h1, h2, h0] },
{ refine finset.prod_congr rfl _,
intros i h1,
simp [h1] }
end
@[to_additive]
lemma prod_zero_index [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ] {h : Π i, β i → γ} : (0 : Π₀ i, β i).prod h = 1 :=
rfl
@[to_additive]
lemma prod_single_index [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ]
{i : ι} {b : β i} {h : Π i, β i → γ} (h_zero : h i 0 = 1) :
(single i b).prod h = h i b :=
begin
by_cases h : b ≠ 0,
{ simp [dfinsupp.prod, support_single_ne_zero h] },
{ rw [not_not] at h, simp [h, prod_zero_index, h_zero], refl }
end
@[to_additive]
lemma prod_neg_index [Π i, add_group (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ]
{g : Π₀ i, β i} {h : Π i, β i → γ} (h0 : ∀i, h i 0 = 1) :
(-g).prod h = g.prod (λi b, h i (- b)) :=
prod_map_range_index h0
omit dec
@[to_additive]
lemma prod_comm {ι₁ ι₂ : Sort*} {β₁ : ι₁ → Type*} {β₂ : ι₂ → Type*}
[decidable_eq ι₁] [decidable_eq ι₂] [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)]
[Π i (x : β₁ i), decidable (x ≠ 0)] [Π i (x : β₂ i), decidable (x ≠ 0)] [comm_monoid γ]
(f₁ : Π₀ i, β₁ i) (f₂ : Π₀ i, β₂ i) (h : Π i, β₁ i → Π i, β₂ i → γ) :
f₁.prod (λ i₁ x₁, f₂.prod $ λ i₂ x₂, h i₁ x₁ i₂ x₂) =
f₂.prod (λ i₂ x₂, f₁.prod $ λ i₁ x₁, h i₁ x₁ i₂ x₂) := finset.prod_comm
@[simp] lemma sum_apply {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁}
[Π i₁, has_zero (β₁ i₁)] [Π i (x : β₁ i), decidable (x ≠ 0)]
[Π i, add_comm_monoid (β i)]
{f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i} {i₂ : ι} :
(f.sum g) i₂ = f.sum (λi₁ b, g i₁ b i₂) :=
(eval_add_monoid_hom i₂ : (Π₀ i, β i) →+ β i₂).map_sum _ f.support
include dec
lemma support_sum {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁}
[Π i₁, has_zero (β₁ i₁)] [Π i (x : β₁ i), decidable (x ≠ 0)]
[Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
{f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i} :
(f.sum g).support ⊆ f.support.bUnion (λi, (g i (f i)).support) :=
have ∀i₁ : ι, f.sum (λ (i : ι₁) (b : β₁ i), (g i b) i₁) ≠ 0 →
(∃ (i : ι₁), f i ≠ 0 ∧ ¬ (g i (f i)) i₁ = 0),
from assume i₁ h,
let ⟨i, hi, ne⟩ := finset.exists_ne_zero_of_sum_ne_zero h in
⟨i, (f.mem_support_iff i).mp hi, ne⟩,
by simpa [finset.subset_iff, mem_support_iff, finset.mem_bUnion, sum_apply] using this
@[simp, to_additive] lemma prod_one [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ] {f : Π₀ i, β i} :
f.prod (λi b, (1 : γ)) = 1 :=
finset.prod_const_one
@[simp, to_additive] lemma prod_mul [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ] {f : Π₀ i, β i} {h₁ h₂ : Π i, β i → γ} :
f.prod (λi b, h₁ i b * h₂ i b) = f.prod h₁ * f.prod h₂ :=
finset.prod_mul_distrib
@[simp, to_additive] lemma prod_inv [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_group γ] {f : Π₀ i, β i} {h : Π i, β i → γ} :
f.prod (λi b, (h i b)⁻¹) = (f.prod h)⁻¹ :=
((comm_group.inv_monoid_hom : γ →* γ).map_prod _ f.support).symm
@[to_additive]
lemma prod_add_index [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ] {f g : Π₀ i, β i}
{h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂) :
(f + g).prod h = f.prod h * g.prod h :=
have f_eq : ∏ i in f.support ∪ g.support, h i (f i) = f.prod h,
from (finset.prod_subset (finset.subset_union_left _ _) $
by simp [mem_support_iff, h_zero] {contextual := tt}).symm,
have g_eq : ∏ i in f.support ∪ g.support, h i (g i) = g.prod h,
from (finset.prod_subset (finset.subset_union_right _ _) $
by simp [mem_support_iff, h_zero] {contextual := tt}).symm,
calc ∏ i in (f + g).support, h i ((f + g) i) =
∏ i in f.support ∪ g.support, h i ((f + g) i) :
finset.prod_subset support_add $
by simp [mem_support_iff, h_zero] {contextual := tt}
... = (∏ i in f.support ∪ g.support, h i (f i)) *
(∏ i in f.support ∪ g.support, h i (g i)) :
by simp [h_add, finset.prod_mul_distrib]
... = _ : by rw [f_eq, g_eq]
@[to_additive]
lemma _root_.submonoid.dfinsupp_prod_mem [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ] (S : submonoid γ)
(f : Π₀ i, β i) (g : Π i, β i → γ) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : f.prod g ∈ S :=
S.prod_mem $ λ i hi, h _ $ (f.mem_support_iff _).mp hi
/--
When summing over an `add_monoid_hom`, the decidability assumption is not needed, and the result is
also an `add_monoid_hom`.
-/
def sum_add_hom [Π i, add_zero_class (β i)] [add_comm_monoid γ] (φ : Π i, β i →+ γ) :
(Π₀ i, β i) →+ γ :=
{ to_fun := (λ f,
quotient.lift_on f (λ x, ∑ i in x.2.to_finset, φ i (x.1 i)) $ λ x y H,
begin
have H1 : x.2.to_finset ∩ y.2.to_finset ⊆ x.2.to_finset, from finset.inter_subset_left _ _,
have H2 : x.2.to_finset ∩ y.2.to_finset ⊆ y.2.to_finset, from finset.inter_subset_right _ _,
refine (finset.sum_subset H1 _).symm.trans
((finset.sum_congr rfl _).trans (finset.sum_subset H2 _)),
{ intros i H1 H2, rw finset.mem_inter at H2, rw H i,
simp only [multiset.mem_to_finset] at H1 H2,
rw [(y.3 i).resolve_left (mt (and.intro H1) H2), add_monoid_hom.map_zero] },
{ intros i H1, rw H i },
{ intros i H1 H2, rw finset.mem_inter at H2, rw ← H i,
simp only [multiset.mem_to_finset] at H1 H2,
rw [(x.3 i).resolve_left (mt (λ H3, and.intro H3 H1) H2), add_monoid_hom.map_zero] }
end),
map_add' := assume f g,
begin
refine quotient.induction_on f (λ x, _),
refine quotient.induction_on g (λ y, _),
change ∑ i in _, _ = (∑ i in _, _) + (∑ i in _, _),
simp only, conv { to_lhs, congr, skip, funext, rw add_monoid_hom.map_add },
simp only [finset.sum_add_distrib],
congr' 1,
{ refine (finset.sum_subset _ _).symm,
{ intro i, simp only [multiset.mem_to_finset, multiset.mem_add], exact or.inl },
{ intros i H1 H2, simp only [multiset.mem_to_finset, multiset.mem_add] at H2,
rw [(x.3 i).resolve_left H2, add_monoid_hom.map_zero] } },
{ refine (finset.sum_subset _ _).symm,
{ intro i, simp only [multiset.mem_to_finset, multiset.mem_add], exact or.inr },
{ intros i H1 H2, simp only [multiset.mem_to_finset, multiset.mem_add] at H2,
rw [(y.3 i).resolve_left H2, add_monoid_hom.map_zero] } }
end,
map_zero' := rfl }
@[simp] lemma sum_add_hom_single [Π i, add_zero_class (β i)] [add_comm_monoid γ]
(φ : Π i, β i →+ γ) (i) (x : β i) : sum_add_hom φ (single i x) = φ i x :=
(add_zero _).trans $ congr_arg (φ i) $ show (if H : i ∈ ({i} : finset _) then x else 0) = x,
from dif_pos $ finset.mem_singleton_self i
@[simp] lemma sum_add_hom_comp_single [Π i, add_zero_class (β i)] [add_comm_monoid γ]
(f : Π i, β i →+ γ) (i : ι) :
(sum_add_hom f).comp (single_add_hom β i) = f i :=
add_monoid_hom.ext $ λ x, sum_add_hom_single f i x
/-- While we didn't need decidable instances to define it, we do to reduce it to a sum -/
lemma sum_add_hom_apply [Π i, add_zero_class (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[add_comm_monoid γ] (φ : Π i, β i →+ γ) (f : Π₀ i, β i) :
sum_add_hom φ f = f.sum (λ x, φ x) :=
begin
refine quotient.induction_on f (λ x, _),
change ∑ i in _, _ = (∑ i in finset.filter _ _, _),
rw [finset.sum_filter, finset.sum_congr rfl],
intros i _,
dsimp only,
split_ifs,
refl,
rw [(not_not.mp h), add_monoid_hom.map_zero],
end
lemma _root_.add_submonoid.dfinsupp_sum_add_hom_mem [Π i, add_zero_class (β i)] [add_comm_monoid γ]
(S : add_submonoid γ) (f : Π₀ i, β i) (g : Π i, β i →+ γ) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) :
dfinsupp.sum_add_hom g f ∈ S :=
begin
classical,
rw dfinsupp.sum_add_hom_apply,
convert S.dfinsupp_sum_mem _ _ _,
exact h
end
/-- The supremum of a family of commutative additive submonoids is equal to the range of
`dfinsupp.sum_add_hom`; that is, every element in the `supr` can be produced from taking a finite
number of non-zero elements of `S i`, coercing them to `γ`, and summing them. -/
lemma _root_.add_submonoid.supr_eq_mrange_dfinsupp_sum_add_hom [add_comm_monoid γ]
(S : ι → add_submonoid γ) : supr S = (dfinsupp.sum_add_hom (λ i, (S i).subtype)).mrange :=
begin
apply le_antisymm,
{ apply supr_le _,
intros i y hy,
exact ⟨dfinsupp.single i ⟨y, hy⟩, dfinsupp.sum_add_hom_single _ _ _⟩, },
{ rintros x ⟨v, rfl⟩,
exact add_submonoid.dfinsupp_sum_add_hom_mem _ v _ (λ i _, (le_supr S i : S i ≤ _) (v i).prop) }
end
/-- The bounded supremum of a family of commutative additive submonoids is equal to the range of
`dfinsupp.sum_add_hom` composed with `dfinsupp.filter_add_monoid_hom`; that is, every element in the
bounded `supr` can be produced from taking a finite number of non-zero elements from the `S i` that
satisfy `p i`, coercing them to `γ`, and summing them. -/
lemma _root_.add_submonoid.bsupr_eq_mrange_dfinsupp_sum_add_hom (p : ι → Prop)
[decidable_pred p] [add_comm_monoid γ] (S : ι → add_submonoid γ) :
(⨆ i (h : p i), S i) =
((sum_add_hom (λ i, (S i).subtype)).comp (filter_add_monoid_hom _ p)).mrange :=
begin
apply le_antisymm,
{ apply bsupr_le _,
intros i hi y hy,
refine ⟨dfinsupp.single i ⟨y, hy⟩, _⟩,
rw [add_monoid_hom.comp_apply, filter_add_monoid_hom_apply, filter_single_pos _ _ hi],
exact sum_add_hom_single _ _ _, },
{ rintros x ⟨v, rfl⟩,
refine add_submonoid.dfinsupp_sum_add_hom_mem _ _ _ (λ i hi, _),
refine add_submonoid.mem_supr_of_mem i _,
by_cases hp : p i,
{ simp [hp], },
{ simp [hp] }, }
end
lemma _root_.add_submonoid.mem_supr_iff_exists_dfinsupp [add_comm_monoid γ]
(S : ι → add_submonoid γ) (x : γ) :
x ∈ supr S ↔ ∃ f : Π₀ i, S i, dfinsupp.sum_add_hom (λ i, (S i).subtype) f = x :=
set_like.ext_iff.mp (add_submonoid.supr_eq_mrange_dfinsupp_sum_add_hom S) x
/-- A variant of `add_submonoid.mem_supr_iff_exists_dfinsupp` with the RHS fully unfolded. -/
lemma _root_.add_submonoid.mem_supr_iff_exists_dfinsupp' [add_comm_monoid γ]
(S : ι → add_submonoid γ) [Π i (x : S i), decidable (x ≠ 0)] (x : γ) :
x ∈ supr S ↔ ∃ f : Π₀ i, S i, f.sum (λ i xi, ↑xi) = x :=
begin
rw add_submonoid.mem_supr_iff_exists_dfinsupp,
simp_rw sum_add_hom_apply,
congr',
end
lemma _root_.add_submonoid.mem_bsupr_iff_exists_dfinsupp (p : ι → Prop)
[decidable_pred p] [add_comm_monoid γ] (S : ι → add_submonoid γ) (x : γ) :
x ∈ (⨆ i (h : p i), S i) ↔
∃ f : Π₀ i, S i, dfinsupp.sum_add_hom (λ i, (S i).subtype) (f.filter p) = x :=
set_like.ext_iff.mp (add_submonoid.bsupr_eq_mrange_dfinsupp_sum_add_hom p S) x
omit dec
lemma sum_add_hom_comm {ι₁ ι₂ : Sort*} {β₁ : ι₁ → Type*} {β₂ : ι₂ → Type*} {γ : Type*}
[decidable_eq ι₁] [decidable_eq ι₂] [Π i, add_zero_class (β₁ i)] [Π i, add_zero_class (β₂ i)]
[add_comm_monoid γ]
(f₁ : Π₀ i, β₁ i) (f₂ : Π₀ i, β₂ i) (h : Π i j, β₁ i →+ β₂ j →+ γ) :
sum_add_hom (λ i₂, sum_add_hom (λ i₁, h i₁ i₂) f₁) f₂ =
sum_add_hom (λ i₁, sum_add_hom (λ i₂, (h i₁ i₂).flip) f₂) f₁ :=
begin
refine quotient.induction_on₂ f₁ f₂ (λ x₁ x₂, _),
simp only [sum_add_hom, add_monoid_hom.finset_sum_apply, quotient.lift_on_mk,
add_monoid_hom.coe_mk, add_monoid_hom.flip_apply],
exact finset.sum_comm,
end
include dec
/-- The `dfinsupp` version of `finsupp.lift_add_hom`,-/
@[simps apply symm_apply]
def lift_add_hom [Π i, add_zero_class (β i)] [add_comm_monoid γ] :
(Π i, β i →+ γ) ≃+ ((Π₀ i, β i) →+ γ) :=
{ to_fun := sum_add_hom,
inv_fun := λ F i, F.comp (single_add_hom β i),
left_inv := λ x, by { ext, simp },
right_inv := λ ψ, by { ext, simp },
map_add' := λ F G, by { ext, simp } }
/-- The `dfinsupp` version of `finsupp.lift_add_hom_single_add_hom`,-/
@[simp] lemma lift_add_hom_single_add_hom [Π i, add_comm_monoid (β i)] :
lift_add_hom (single_add_hom β) = add_monoid_hom.id (Π₀ i, β i) :=
lift_add_hom.to_equiv.apply_eq_iff_eq_symm_apply.2 rfl
/-- The `dfinsupp` version of `finsupp.lift_add_hom_apply_single`,-/
lemma lift_add_hom_apply_single [Π i, add_zero_class (β i)] [add_comm_monoid γ]
(f : Π i, β i →+ γ) (i : ι) (x : β i) :
lift_add_hom f (single i x) = f i x :=
by simp
/-- The `dfinsupp` version of `finsupp.lift_add_hom_comp_single`,-/
lemma lift_add_hom_comp_single [Π i, add_zero_class (β i)] [add_comm_monoid γ]
(f : Π i, β i →+ γ) (i : ι) :
(lift_add_hom f).comp (single_add_hom β i) = f i :=
by simp
/-- The `dfinsupp` version of `finsupp.comp_lift_add_hom`,-/
lemma comp_lift_add_hom {δ : Type*} [Π i, add_zero_class (β i)] [add_comm_monoid γ]
[add_comm_monoid δ] (g : γ →+ δ) (f : Π i, β i →+ γ) :
g.comp (lift_add_hom f) = lift_add_hom (λ a, g.comp (f a)) :=
lift_add_hom.symm_apply_eq.1 $ funext $ λ a,
by rw [lift_add_hom_symm_apply, add_monoid_hom.comp_assoc, lift_add_hom_comp_single]
@[simp]
lemma sum_add_hom_zero [Π i, add_zero_class (β i)] [add_comm_monoid γ] :
sum_add_hom (λ i, (0 : β i →+ γ)) = 0 :=
(lift_add_hom : (Π i, β i →+ γ) ≃+ _).map_zero
@[simp]
lemma sum_add_hom_add [Π i, add_zero_class (β i)] [add_comm_monoid γ]
(g : Π i, β i →+ γ) (h : Π i, β i →+ γ) :
sum_add_hom (λ i, g i + h i) = sum_add_hom g + sum_add_hom h :=
lift_add_hom.map_add _ _
@[simp]
lemma sum_add_hom_single_add_hom [Π i, add_comm_monoid (β i)] :
sum_add_hom (single_add_hom β) = add_monoid_hom.id _ :=
lift_add_hom_single_add_hom
lemma comp_sum_add_hom {δ : Type*} [Π i, add_zero_class (β i)] [add_comm_monoid γ]
[add_comm_monoid δ] (g : γ →+ δ) (f : Π i, β i →+ γ) :
g.comp (sum_add_hom f) = sum_add_hom (λ a, g.comp (f a)) :=
comp_lift_add_hom _ _
lemma sum_sub_index [Π i, add_group (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[add_comm_group γ] {f g : Π₀ i, β i}
{h : Π i, β i → γ} (h_sub : ∀i b₁ b₂, h i (b₁ - b₂) = h i b₁ - h i b₂) :
(f - g).sum h = f.sum h - g.sum h :=
begin
have := (lift_add_hom (λ a, add_monoid_hom.of_map_sub (h a) (h_sub a))).map_sub f g,
rw [lift_add_hom_apply, sum_add_hom_apply, sum_add_hom_apply, sum_add_hom_apply] at this,
exact this,
end
@[to_additive]
lemma prod_finset_sum_index {γ : Type w} {α : Type x}
[Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ]
{s : finset α} {g : α → Π₀ i, β i}
{h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂) :
∏ i in s, (g i).prod h = (∑ i in s, g i).prod h :=
begin
classical,
exact finset.induction_on s
(by simp [prod_zero_index])
(by simp [prod_add_index, h_zero, h_add] {contextual := tt})
end
@[to_additive]
lemma prod_sum_index {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁}
[Π i₁, has_zero (β₁ i₁)] [Π i (x : β₁ i), decidable (x ≠ 0)]
[Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ]
{f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i}
{h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂) :
(f.sum g).prod h = f.prod (λi b, (g i b).prod h) :=
(prod_finset_sum_index h_zero h_add).symm
@[simp] lemma sum_single [Π i, add_comm_monoid (β i)]
[Π i (x : β i), decidable (x ≠ 0)] {f : Π₀ i, β i} :
f.sum single = f :=
begin
have := add_monoid_hom.congr_fun lift_add_hom_single_add_hom f,
rw [lift_add_hom_apply, sum_add_hom_apply] at this,
exact this,
end
@[to_additive]
lemma prod_subtype_domain_index [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)]
[comm_monoid γ] {v : Π₀ i, β i} {p : ι → Prop} [decidable_pred p]
{h : Π i, β i → γ} (hp : ∀ x ∈ v.support, p x) :
(v.subtype_domain p).prod (λi b, h i b) = v.prod h :=
finset.prod_bij (λp _, p)
(by simp) (by simp)
(assume ⟨a₀, ha₀⟩ ⟨a₁, ha₁⟩, by simp)
(λ i hi, ⟨⟨i, hp i hi⟩, by simpa using hi, rfl⟩)
omit dec
lemma subtype_domain_sum [Π i, add_comm_monoid (β i)]
{s : finset γ} {h : γ → Π₀ i, β i} {p : ι → Prop} [decidable_pred p] :
(∑ c in s, h c).subtype_domain p = ∑ c in s, (h c).subtype_domain p :=
(subtype_domain_add_monoid_hom β p).map_sum _ s
lemma subtype_domain_finsupp_sum {δ : γ → Type x} [decidable_eq γ]
[Π c, has_zero (δ c)] [Π c (x : δ c), decidable (x ≠ 0)]
[Π i, add_comm_monoid (β i)]
{p : ι → Prop} [decidable_pred p]
{s : Π₀ c, δ c} {h : Π c, δ c → Π₀ i, β i} :
(s.sum h).subtype_domain p = s.sum (λc d, (h c d).subtype_domain p) :=
subtype_domain_sum
end prod_and_sum
/-! ### Bundled versions of `dfinsupp.map_range`
The names should match the equivalent bundled `finsupp.map_range` definitions.
-/
section map_range
omit dec
variables [Π i, add_zero_class (β i)] [Π i, add_zero_class (β₁ i)] [Π i, add_zero_class (β₂ i)]
lemma map_range_add (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0)
(hf' : ∀ i x y, f i (x + y) = f i x + f i y) (g₁ g₂ : Π₀ i, β₁ i):
map_range f hf (g₁ + g₂) = map_range f hf g₁ + map_range f hf g₂ :=
begin
ext,
simp only [map_range_apply f, coe_add, pi.add_apply, hf']
end
/-- `dfinsupp.map_range` as an `add_monoid_hom`. -/
@[simps apply]
def map_range.add_monoid_hom (f : Π i, β₁ i →+ β₂ i) : (Π₀ i, β₁ i) →+ (Π₀ i, β₂ i) :=
{ to_fun := map_range (λ i x, f i x) (λ i, (f i).map_zero),
map_zero' := map_range_zero _ _,
map_add' := map_range_add _ _ (λ i, (f i).map_add) }
@[simp]
lemma map_range.add_monoid_hom_id :
map_range.add_monoid_hom (λ i, add_monoid_hom.id (β₂ i)) = add_monoid_hom.id _ :=
add_monoid_hom.ext map_range_id
lemma map_range.add_monoid_hom_comp (f : Π i, β₁ i →+ β₂ i) (f₂ : Π i, β i →+ β₁ i):
map_range.add_monoid_hom (λ i, (f i).comp (f₂ i)) =
(map_range.add_monoid_hom f).comp (map_range.add_monoid_hom f₂) :=
add_monoid_hom.ext $ map_range_comp (λ i x, f i x) (λ i x, f₂ i x) _ _ _
/-- `dfinsupp.map_range.add_monoid_hom` as an `add_equiv`. -/
@[simps apply]
def map_range.add_equiv (e : Π i, β₁ i ≃+ β₂ i) : (Π₀ i, β₁ i) ≃+ (Π₀ i, β₂ i) :=
{ to_fun := map_range (λ i x, e i x) (λ i, (e i).map_zero),
inv_fun := map_range (λ i x, (e i).symm x) (λ i, (e i).symm.map_zero),
left_inv := λ x, by rw ←map_range_comp; { simp_rw add_equiv.symm_comp_self, simp },
right_inv := λ x, by rw ←map_range_comp; { simp_rw add_equiv.self_comp_symm, simp },
.. map_range.add_monoid_hom (λ i, (e i).to_add_monoid_hom) }
@[simp]
lemma map_range.add_equiv_refl :
(map_range.add_equiv $ λ i, add_equiv.refl (β₁ i)) = add_equiv.refl _ :=
add_equiv.ext map_range_id
lemma map_range.add_equiv_trans (f : Π i, β i ≃+ β₁ i) (f₂ : Π i, β₁ i ≃+ β₂ i):
map_range.add_equiv (λ i, (f i).trans (f₂ i)) =
(map_range.add_equiv f).trans (map_range.add_equiv f₂) :=
add_equiv.ext $ map_range_comp (λ i x, f₂ i x) (λ i x, f i x) _ _ _
@[simp]
lemma map_range.add_equiv_symm (e : Π i, β₁ i ≃+ β₂ i) :
(map_range.add_equiv e).symm = map_range.add_equiv (λ i, (e i).symm) := rfl
end map_range
end dfinsupp
/-! ### Product and sum lemmas for bundled morphisms.
In this section, we provide analogues of `add_monoid_hom.map_sum`, `add_monoid_hom.coe_sum`, and
`add_monoid_hom.sum_apply` for `dfinsupp.sum` and `dfinsupp.sum_add_hom` instead of `finset.sum`.
We provide these for `add_monoid_hom`, `monoid_hom`, `ring_hom`, `add_equiv`, and `mul_equiv`.
Lemmas for `linear_map` and `linear_equiv` are in another file.
-/
section
variables [decidable_eq ι]
namespace monoid_hom
variables {R S : Type*}
variables [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)]
@[simp, to_additive]
lemma map_dfinsupp_prod [comm_monoid R] [comm_monoid S]
(h : R →* S) (f : Π₀ i, β i) (g : Π i, β i → R) :
h (f.prod g) = f.prod (λ a b, h (g a b)) := h.map_prod _ _
@[to_additive]
lemma coe_dfinsupp_prod [monoid R] [comm_monoid S]
(f : Π₀ i, β i) (g : Π i, β i → R →* S) :
⇑(f.prod g) = f.prod (λ a b, (g a b)) := coe_prod _ _
@[simp, to_additive]
lemma dfinsupp_prod_apply [monoid R] [comm_monoid S]
(f : Π₀ i, β i) (g : Π i, β i → R →* S) (r : R) :
(f.prod g) r = f.prod (λ a b, (g a b) r) := finset_prod_apply _ _ _
end monoid_hom
namespace ring_hom
variables {R S : Type*}
variables [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)]
@[simp]
lemma map_dfinsupp_prod [comm_semiring R] [comm_semiring S]
(h : R →+* S) (f : Π₀ i, β i) (g : Π i, β i → R) :
h (f.prod g) = f.prod (λ a b, h (g a b)) := h.map_prod _ _
@[simp]
lemma map_dfinsupp_sum [non_assoc_semiring R] [non_assoc_semiring S]
(h : R →+* S) (f : Π₀ i, β i) (g : Π i, β i → R) :
h (f.sum g) = f.sum (λ a b, h (g a b)) := h.map_sum _ _
end ring_hom
namespace mul_equiv
variables {R S : Type*}
variables [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)]
@[simp, to_additive]
lemma map_dfinsupp_prod [comm_monoid R] [comm_monoid S]
(h : R ≃* S) (f : Π₀ i, β i) (g : Π i, β i → R) :
h (f.prod g) = f.prod (λ a b, h (g a b)) := h.map_prod _ _
end mul_equiv
/-! The above lemmas, repeated for `dfinsupp.sum_add_hom`. -/
namespace add_monoid_hom
variables {R S : Type*}
open dfinsupp
@[simp]
lemma map_dfinsupp_sum_add_hom [add_comm_monoid R] [add_comm_monoid S] [Π i, add_zero_class (β i)]
(h : R →+ S) (f : Π₀ i, β i) (g : Π i, β i →+ R) :
h (sum_add_hom g f) = sum_add_hom (λ i, h.comp (g i)) f :=
congr_fun (comp_lift_add_hom h g) f
@[simp]
lemma dfinsupp_sum_add_hom_apply [add_zero_class R] [add_comm_monoid S] [Π i, add_zero_class (β i)]
(f : Π₀ i, β i) (g : Π i, β i →+ R →+ S) (r : R) :
(sum_add_hom g f) r = sum_add_hom (λ i, (eval r).comp (g i)) f :=
map_dfinsupp_sum_add_hom (eval r) f g
lemma coe_dfinsupp_sum_add_hom [add_zero_class R] [add_comm_monoid S] [Π i, add_zero_class (β i)]
(f : Π₀ i, β i) (g : Π i, β i →+ R →+ S) :
⇑(sum_add_hom g f) = sum_add_hom (λ i, (coe_fn R S).comp (g i)) f :=
map_dfinsupp_sum_add_hom (coe_fn R S) f g
end add_monoid_hom
namespace ring_hom
variables {R S : Type*}
open dfinsupp
@[simp]
lemma map_dfinsupp_sum_add_hom [non_assoc_semiring R] [non_assoc_semiring S]
[Π i, add_zero_class (β i)] (h : R →+* S) (f : Π₀ i, β i) (g : Π i, β i →+ R) :
h (sum_add_hom g f) = sum_add_hom (λ i, h.to_add_monoid_hom.comp (g i)) f :=
add_monoid_hom.congr_fun (comp_lift_add_hom h.to_add_monoid_hom g) f
end ring_hom
namespace add_equiv
variables {R S : Type*}
open dfinsupp
@[simp]
lemma map_dfinsupp_sum_add_hom [add_comm_monoid R] [add_comm_monoid S] [Π i, add_zero_class (β i)]
(h : R ≃+ S) (f : Π₀ i, β i) (g : Π i, β i →+ R) :
h (sum_add_hom g f) = sum_add_hom (λ i, h.to_add_monoid_hom.comp (g i)) f :=
add_monoid_hom.congr_fun (comp_lift_add_hom h.to_add_monoid_hom g) f
end add_equiv
end
|
d9e1decdd06d6a367c9da7eb284d0ac9210c6cea
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/library/init/meta/ac_tactics.lean
|
e8bb6d00b5acc858763ff555c01c3d0000cc23d9
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 496
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.meta.tactic
namespace tactic
/- (flat_assoc op assoc e) -/
meta_constant flat_assoc : expr → expr → expr → tactic (expr × expr)
/- (perm_ac op assoc comm e1 e2) Try to construct a proof that e1 = e2 modulo AC -/
meta_constant perm_ac : expr → expr → expr → expr → expr → tactic expr
end tactic
|
69ca89e12f835c25da03c8a836b333a36f634c62
|
618003631150032a5676f229d13a079ac875ff77
|
/src/analysis/calculus/fderiv.lean
|
78046cc744ebd0d2ffc5ec3da2a65589e8d12c27
|
[
"Apache-2.0"
] |
permissive
|
awainverse/mathlib
|
939b68c8486df66cfda64d327ad3d9165248c777
|
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
|
refs/heads/master
| 1,659,592,962,036
| 1,590,987,592,000
| 1,590,987,592,000
| 268,436,019
| 1
| 0
|
Apache-2.0
| 1,590,990,500,000
| 1,590,990,500,000
| null |
UTF-8
|
Lean
| false
| false
| 102,534
|
lean
|
/-
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-/
import analysis.calculus.tangent_cone
/-!
# The Fréchet derivative
Let `E` and `F` be normed spaces, `f : E → F`, and `f' : E →L[𝕜] F` a
continuous 𝕜-linear map, where `𝕜` is a non-discrete normed field. Then
`has_fderiv_within_at f f' s x`
says that `f` has derivative `f'` at `x`, where the domain of interest
is restricted to `s`. We also have
`has_fderiv_at f f' x := has_fderiv_within_at f f' x univ`
Finally,
`has_strict_fderiv_at f f' x`
means that `f : E → F` has derivative `f' : E →L[𝕜] F` in the sense of strict differentiability,
i.e., `f y - f z - f'(y - z) = o(y - z)` as `y, z → x`. This notion is used in the inverse
function theorem, and is defined here only to avoid proving theorems like
`is_bounded_bilinear_map.has_fderiv_at` twice: first for `has_fderiv_at`, then for
`has_strict_fderiv_at`.
## Main results
In addition to the definition and basic properties of the derivative, this file contains the
usual formulas (and existence assertions) for the derivative of
* constants
* the identity
* bounded linear maps
* bounded bilinear maps
* sum of two functions
* sum of finitely many functions
* multiplication of a function by a scalar constant
* negative of a function
* subtraction of two functions
* multiplication of a function by a scalar function
* multiplication of two scalar functions
* composition of functions (the chain rule)
* inverse function (assuming that it exists; the inverse function theorem is in `inverse.lean`)
For most binary operations we also define `const_op` and `op_const` theorems for the cases when
the first or second argument is a constant. This makes writing chains of `has_deriv_at`'s easier,
and they more frequently lead to the desired result.
One can also interpret the derivative of a function `f : 𝕜 → E` as an element of `E` (by identifying
a linear function from `𝕜` to `E` with its value at `1`). Results on the Fréchet derivative are
translated to this more elementary point of view on the derivative in the file `deriv.lean`. The
derivative of polynomials is handled there, as it is naturally one-dimensional.
The simplifier is set up to prove automatically that some functions are differentiable, or
differentiable at a point (but not differentiable on a set or within a set at a point, as checking
automatically that the good domains are mapped one to the other when using composition is not
something the simplifier can easily do). This means that one can write
`example (x : ℝ) : differentiable ℝ (λ x, sin (exp (3 + x^2)) - 5 * cos x) := by simp`.
If there are divisions, one needs to supply to the simplifier proofs that the denominators do
not vanish, as in
```lean
example (x : ℝ) (h : 1 + sin x ≠ 0) : differentiable_at ℝ (λ x, exp x / (1 + sin x)) x :=
by simp [h]
```
Of course, these examples only work once `exp`, `cos` and `sin` have been shown to be
differentiable, in `analysis.special_functions.trigonometric`.
The simplifier is not set up to compute the Fréchet derivative of maps (as these are in general
complicated multidimensional linear maps), but it will compute one-dimensional derivatives,
see `deriv.lean`.
## Implementation details
The derivative is defined in terms of the `is_o` relation, but also
characterized in terms of the `tendsto` relation.
We also introduce predicates `differentiable_within_at 𝕜 f s x` (where `𝕜` is the base field,
`f` the function to be differentiated, `x` the point at which the derivative is asserted to exist,
and `s` the set along which the derivative is defined), as well as `differentiable_at 𝕜 f x`,
`differentiable_on 𝕜 f s` and `differentiable 𝕜 f` to express the existence of a derivative.
To be able to compute with derivatives, we write `fderiv_within 𝕜 f s x` and `fderiv 𝕜 f x`
for some choice of a derivative if it exists, and the zero function otherwise. This choice only
behaves well along sets for which the derivative is unique, i.e., those for which the tangent
directions span a dense subset of the whole space. The predicates `unique_diff_within_at s x` and
`unique_diff_on s`, defined in `tangent_cone.lean` express this property. We prove that indeed
they imply the uniqueness of the derivative. This is satisfied for open subsets, and in particular
for `univ`. This uniqueness only holds when the field is non-discrete, which we request at the very
beginning: otherwise, a derivative can be defined, but it has no interesting properties whatsoever.
To make sure that the simplifier can prove automatically that functions are differentiable, we tag
many lemmas with the `simp` attribute, for instance those saying that the sum of differentiable
functions is differentiable, as well as their product, their cartesian product, and so on. A notable
exception is the chain rule: we do not mark as a simp lemma the fact that, if `f` and `g` are
differentiable, then their composition also is: `simp` would always be able to match this lemma,
by taking `f` or `g` to be the identity. Instead, for every reasonable function (say, `exp`),
we add a lemma that if `f` is differentiable then so is `(λ x, exp (f x))`. This means adding
some boilerplate lemmas, but these can also be useful in their own right.
Tests for this ability of the simplifier (with more examples) are provided in
`tests/differentiable.lean`.
## Tags
derivative, differentiable, Fréchet, calculus
-/
open filter asymptotics continuous_linear_map set
open_locale topological_space classical
noncomputable theory
section
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E]
variables {F : Type*} [normed_group F] [normed_space 𝕜 F]
variables {G : Type*} [normed_group G] [normed_space 𝕜 G]
variables {G' : Type*} [normed_group G'] [normed_space 𝕜 G']
/-- A function `f` has the continuous linear map `f'` as derivative along the filter `L` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` converges along the filter `L`. This definition
is designed to be specialized for `L = 𝓝 x` (in `has_fderiv_at`), giving rise to the usual notion
of Fréchet derivative, and for `L = nhds_within x s` (in `has_fderiv_within_at`), giving rise to
the notion of Fréchet derivative along the set `s`. -/
def has_fderiv_at_filter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : filter E) :=
is_o (λ x', f x' - f x - f' (x' - x)) (λ x', x' - x) L
/-- A function `f` has the continuous linear map `f'` as derivative at `x` within a set `s` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x` inside `s`. -/
def has_fderiv_within_at (f : E → F) (f' : E →L[𝕜] F) (s : set E) (x : E) :=
has_fderiv_at_filter f f' x (nhds_within x s)
/-- A function `f` has the continuous linear map `f'` as derivative at `x` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x`. -/
def has_fderiv_at (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
has_fderiv_at_filter f f' x (𝓝 x)
/-- A function `f` has derivative `f'` at `a` in the sense of *strict differentiability*
if `f x - f y - f' (x - y) = o(x - y)` as `x, y → a`. This form of differentiability is required,
e.g., by the inverse function theorem. Any `C^1` function on a vector space over `ℝ` is strictly
differentiable but this definition works, e.g., for vector spaces over `p`-adic numbers. -/
def has_strict_fderiv_at (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
is_o (λ p : E × E, f p.1 - f p.2 - f' (p.1 - p.2)) (λ p : E × E, p.1 - p.2) (𝓝 (x, x))
variables (𝕜)
/-- A function `f` is differentiable at a point `x` within a set `s` if it admits a derivative
there (possibly non-unique). -/
def differentiable_within_at (f : E → F) (s : set E) (x : E) :=
∃f' : E →L[𝕜] F, has_fderiv_within_at f f' s x
/-- A function `f` is differentiable at a point `x` if it admits a derivative there (possibly
non-unique). -/
def differentiable_at (f : E → F) (x : E) :=
∃f' : E →L[𝕜] F, has_fderiv_at f f' x
/-- If `f` has a derivative at `x` within `s`, then `fderiv_within 𝕜 f s x` is such a derivative.
Otherwise, it is set to `0`. -/
def fderiv_within (f : E → F) (s : set E) (x : E) : E →L[𝕜] F :=
if h : ∃f', has_fderiv_within_at f f' s x then classical.some h else 0
/-- If `f` has a derivative at `x`, then `fderiv 𝕜 f x` is such a derivative. Otherwise, it is
set to `0`. -/
def fderiv (f : E → F) (x : E) : E →L[𝕜] F :=
if h : ∃f', has_fderiv_at f f' x then classical.some h else 0
/-- `differentiable_on 𝕜 f s` means that `f` is differentiable within `s` at any point of `s`. -/
def differentiable_on (f : E → F) (s : set E) :=
∀x ∈ s, differentiable_within_at 𝕜 f s x
/-- `differentiable 𝕜 f` means that `f` is differentiable at any point. -/
def differentiable (f : E → F) :=
∀x, differentiable_at 𝕜 f x
variables {𝕜}
variables {f f₀ f₁ g : E → F}
variables {f' f₀' f₁' g' : E →L[𝕜] F}
variables (e : E →L[𝕜] F)
variables {x : E}
variables {s t : set E}
variables {L L₁ L₂ : filter E}
lemma fderiv_within_zero_of_not_differentiable_within_at
(h : ¬ differentiable_within_at 𝕜 f s x) : fderiv_within 𝕜 f s x = 0 :=
have ¬ ∃ f', has_fderiv_within_at f f' s x, from h,
by simp [fderiv_within, this]
lemma fderiv_zero_of_not_differentiable_at (h : ¬ differentiable_at 𝕜 f x) : fderiv 𝕜 f x = 0 :=
have ¬ ∃ f', has_fderiv_at f f' x, from h,
by simp [fderiv, this]
section derivative_uniqueness
/- In this section, we discuss the uniqueness of the derivative.
We prove that the definitions `unique_diff_within_at` and `unique_diff_on` indeed imply the
uniqueness of the derivative. -/
/-- If a function f has a derivative f' at x, a rescaled version of f around x converges to f', i.e.,
`n (f (x + (1/n) v) - f x)` converges to `f' v`. More generally, if `c n` tends to infinity and
`c n * d n` tends to `v`, then `c n * (f (x + d n) - f x)` tends to `f' v`. This lemma expresses
this fact, for functions having a derivative within a set. Its specific formulation is useful for
tangent cone related discussions. -/
theorem has_fderiv_within_at.lim (h : has_fderiv_within_at f f' s x) {α : Type*} (l : filter α)
{c : α → 𝕜} {d : α → E} {v : E} (dtop : ∀ᶠ n in l, x + d n ∈ s)
(clim : tendsto (λ n, ∥c n∥) l at_top)
(cdlim : tendsto (λ n, c n • d n) l (𝓝 v)) :
tendsto (λn, c n • (f (x + d n) - f x)) l (𝓝 (f' v)) :=
begin
have tendsto_arg : tendsto (λ n, x + d n) l (nhds_within x s),
{ conv in (nhds_within x s) { rw ← add_zero x },
rw [nhds_within, tendsto_inf],
split,
{ apply tendsto_const_nhds.add (tangent_cone_at.lim_zero l clim cdlim) },
{ rwa tendsto_principal } },
have : is_o (λ y, f y - f x - f' (y - x)) (λ y, y - x) (nhds_within x s) := h,
have : is_o (λ n, f (x + d n) - f x - f' ((x + d n) - x)) (λ n, (x + d n) - x) l :=
this.comp_tendsto tendsto_arg,
have : is_o (λ n, f (x + d n) - f x - f' (d n)) d l := by simpa only [add_sub_cancel'],
have : is_o (λn, c n • (f (x + d n) - f x - f' (d n))) (λn, c n • d n) l :=
(is_O_refl c l).smul_is_o this,
have : is_o (λn, c n • (f (x + d n) - f x - f' (d n))) (λn, (1:ℝ)) l :=
this.trans_is_O (is_O_one_of_tendsto ℝ cdlim),
have L1 : tendsto (λn, c n • (f (x + d n) - f x - f' (d n))) l (𝓝 0) :=
(is_o_one_iff ℝ).1 this,
have L2 : tendsto (λn, f' (c n • d n)) l (𝓝 (f' v)) :=
tendsto.comp f'.cont.continuous_at cdlim,
have L3 : tendsto (λn, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
l (𝓝 (0 + f' v)) :=
L1.add L2,
have : (λn, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
= (λn, c n • (f (x + d n) - f x)),
by { ext n, simp [smul_add, smul_sub] },
rwa [this, zero_add] at L3
end
/-- `unique_diff_within_at` achieves its goal: it implies the uniqueness of the derivative. -/
theorem unique_diff_within_at.eq (H : unique_diff_within_at 𝕜 s x)
(h : has_fderiv_within_at f f' s x) (h₁ : has_fderiv_within_at f f₁' s x) : f' = f₁' :=
begin
have A : ∀y ∈ tangent_cone_at 𝕜 s x, f' y = f₁' y,
{ rintros y ⟨c, d, dtop, clim, cdlim⟩,
exact tendsto_nhds_unique (by simp) (h.lim at_top dtop clim cdlim) (h₁.lim at_top dtop clim cdlim) },
have B : ∀y ∈ submodule.span 𝕜 (tangent_cone_at 𝕜 s x), f' y = f₁' y,
{ assume y hy,
apply submodule.span_induction hy,
{ exact λy hy, A y hy },
{ simp only [continuous_linear_map.map_zero] },
{ simp {contextual := tt} },
{ simp {contextual := tt} } },
have C : ∀y ∈ closure ((submodule.span 𝕜 (tangent_cone_at 𝕜 s x)) : set E), f' y = f₁' y,
{ assume y hy,
let K := {y | f' y = f₁' y},
have : (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E) ⊆ K := B,
have : closure (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E) ⊆ closure K :=
closure_mono this,
have : y ∈ closure K := this hy,
rwa closure_eq_of_is_closed (is_closed_eq f'.continuous f₁'.continuous) at this },
rw H.1 at C,
ext y,
exact C y (mem_univ _)
end
theorem unique_diff_on.eq (H : unique_diff_on 𝕜 s) (hx : x ∈ s)
(h : has_fderiv_within_at f f' s x) (h₁ : has_fderiv_within_at f f₁' s x) : f' = f₁' :=
unique_diff_within_at.eq (H x hx) h h₁
end derivative_uniqueness
section fderiv_properties
/-! ### Basic properties of the derivative -/
theorem has_fderiv_at_filter_iff_tendsto :
has_fderiv_at_filter f f' x L ↔
tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) L (𝓝 0) :=
have h : ∀ x', ∥x' - x∥ = 0 → ∥f x' - f x - f' (x' - x)∥ = 0, from λ x' hx',
by { rw [sub_eq_zero.1 (norm_eq_zero.1 hx')], simp },
begin
unfold has_fderiv_at_filter,
rw [←is_o_norm_left, ←is_o_norm_right, is_o_iff_tendsto h],
exact tendsto_congr (λ _, div_eq_inv_mul),
end
theorem has_fderiv_within_at_iff_tendsto : has_fderiv_within_at f f' s x ↔
tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) (nhds_within x s) (𝓝 0) :=
has_fderiv_at_filter_iff_tendsto
theorem has_fderiv_at_iff_tendsto : has_fderiv_at f f' x ↔
tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) (𝓝 x) (𝓝 0) :=
has_fderiv_at_filter_iff_tendsto
theorem has_fderiv_at_iff_is_o_nhds_zero : has_fderiv_at f f' x ↔
is_o (λh, f (x + h) - f x - f' h) (λh, h) (𝓝 0) :=
begin
split,
{ assume H,
have : tendsto (λ (z : E), z + x) (𝓝 0) (𝓝 (0 + x)),
from tendsto_id.add tendsto_const_nhds,
rw [zero_add] at this,
refine (H.comp_tendsto this).congr _ _;
intro z; simp only [function.comp, add_sub_cancel', add_comm z] },
{ assume H,
have : tendsto (λ (z : E), z - x) (𝓝 x) (𝓝 (x - x)),
from tendsto_id.sub tendsto_const_nhds,
rw [sub_self] at this,
refine (H.comp_tendsto this).congr _ _;
intro z; simp only [function.comp, add_sub_cancel'_right] }
end
theorem has_fderiv_at_filter.mono (h : has_fderiv_at_filter f f' x L₂) (hst : L₁ ≤ L₂) :
has_fderiv_at_filter f f' x L₁ :=
h.mono hst
theorem has_fderiv_within_at.mono (h : has_fderiv_within_at f f' t x) (hst : s ⊆ t) :
has_fderiv_within_at f f' s x :=
h.mono (nhds_within_mono _ hst)
theorem has_fderiv_at.has_fderiv_at_filter (h : has_fderiv_at f f' x) (hL : L ≤ 𝓝 x) :
has_fderiv_at_filter f f' x L :=
h.mono hL
theorem has_fderiv_at.has_fderiv_within_at
(h : has_fderiv_at f f' x) : has_fderiv_within_at f f' s x :=
h.has_fderiv_at_filter inf_le_left
lemma has_fderiv_within_at.differentiable_within_at (h : has_fderiv_within_at f f' s x) :
differentiable_within_at 𝕜 f s x :=
⟨f', h⟩
lemma has_fderiv_at.differentiable_at (h : has_fderiv_at f f' x) : differentiable_at 𝕜 f x :=
⟨f', h⟩
@[simp] lemma has_fderiv_within_at_univ :
has_fderiv_within_at f f' univ x ↔ has_fderiv_at f f' x :=
by { simp only [has_fderiv_within_at, nhds_within_univ], refl }
lemma has_strict_fderiv_at.is_O_sub (hf : has_strict_fderiv_at f f' x) :
is_O (λ p : E × E, f p.1 - f p.2) (λ p : E × E, p.1 - p.2) (𝓝 (x, x)) :=
hf.is_O.congr_of_sub.2 (f'.is_O_comp _ _)
lemma has_fderiv_at_filter.is_O_sub (h : has_fderiv_at_filter f f' x L) :
is_O (λ x', f x' - f x) (λ x', x' - x) L :=
h.is_O.congr_of_sub.2 (f'.is_O_sub _ _)
protected lemma has_strict_fderiv_at.has_fderiv_at (hf : has_strict_fderiv_at f f' x) :
has_fderiv_at f f' x :=
begin
rw [has_fderiv_at, has_fderiv_at_filter, is_o_iff],
exact (λ c hc, tendsto_id.prod_mk_nhds tendsto_const_nhds (is_o_iff.1 hf hc))
end
protected lemma has_strict_fderiv_at.differentiable_at (hf : has_strict_fderiv_at f f' x) :
differentiable_at 𝕜 f x :=
hf.has_fderiv_at.differentiable_at
/-- Directional derivative agrees with `has_fderiv`. -/
lemma has_fderiv_at.lim (hf : has_fderiv_at f f' x) (v : E) {α : Type*} {c : α → 𝕜}
{l : filter α} (hc : tendsto (λ n, ∥c n∥) l at_top) :
tendsto (λ n, (c n) • (f (x + (c n)⁻¹ • v) - f x)) l (𝓝 (f' v)) :=
begin
refine (has_fderiv_within_at_univ.2 hf).lim _ (univ_mem_sets' (λ _, trivial)) hc _,
assume U hU,
refine (eventually_ne_of_tendsto_norm_at_top hc (0:𝕜)).mono (λ y hy, _),
convert mem_of_nhds hU,
dsimp only [],
rw [← mul_smul, mul_inv_cancel hy, one_smul]
end
theorem has_fderiv_at_unique
(h₀ : has_fderiv_at f f₀' x) (h₁ : has_fderiv_at f f₁' x) : f₀' = f₁' :=
begin
rw ← has_fderiv_within_at_univ at h₀ h₁,
exact unique_diff_within_at_univ.eq h₀ h₁
end
lemma has_fderiv_within_at_inter' (h : t ∈ nhds_within x s) :
has_fderiv_within_at f f' (s ∩ t) x ↔ has_fderiv_within_at f f' s x :=
by simp [has_fderiv_within_at, nhds_within_restrict'' s h]
lemma has_fderiv_within_at_inter (h : t ∈ 𝓝 x) :
has_fderiv_within_at f f' (s ∩ t) x ↔ has_fderiv_within_at f f' s x :=
by simp [has_fderiv_within_at, nhds_within_restrict' s h]
lemma has_fderiv_within_at.union (hs : has_fderiv_within_at f f' s x) (ht : has_fderiv_within_at f f' t x) :
has_fderiv_within_at f f' (s ∪ t) x :=
begin
simp only [has_fderiv_within_at, nhds_within_union],
exact hs.join ht,
end
lemma has_fderiv_within_at.nhds_within (h : has_fderiv_within_at f f' s x)
(ht : s ∈ nhds_within x t) : has_fderiv_within_at f f' t x :=
(has_fderiv_within_at_inter' ht).1 (h.mono (inter_subset_right _ _))
lemma has_fderiv_within_at.has_fderiv_at (h : has_fderiv_within_at f f' s x) (hs : s ∈ 𝓝 x) :
has_fderiv_at f f' x :=
by rwa [← univ_inter s, has_fderiv_within_at_inter hs, has_fderiv_within_at_univ] at h
lemma differentiable_within_at.has_fderiv_within_at (h : differentiable_within_at 𝕜 f s x) :
has_fderiv_within_at f (fderiv_within 𝕜 f s x) s x :=
begin
dunfold fderiv_within,
dunfold differentiable_within_at at h,
rw dif_pos h,
exact classical.some_spec h
end
lemma differentiable_at.has_fderiv_at (h : differentiable_at 𝕜 f x) :
has_fderiv_at f (fderiv 𝕜 f x) x :=
begin
dunfold fderiv,
dunfold differentiable_at at h,
rw dif_pos h,
exact classical.some_spec h
end
lemma has_fderiv_at.fderiv (h : has_fderiv_at f f' x) : fderiv 𝕜 f x = f' :=
by { ext, rw has_fderiv_at_unique h h.differentiable_at.has_fderiv_at }
lemma has_fderiv_within_at.fderiv_within
(h : has_fderiv_within_at f f' s x) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 f s x = f' :=
(hxs.eq h h.differentiable_within_at.has_fderiv_within_at).symm
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
lemma has_fderiv_within_at_of_not_mem_closure (h : x ∉ closure s) :
has_fderiv_within_at f f' s x :=
begin
simp [mem_closure_iff_nhds_within_ne_bot] at h,
simp [has_fderiv_within_at, has_fderiv_at_filter, h, is_o, is_O_with],
end
lemma differentiable_within_at.mono (h : differentiable_within_at 𝕜 f t x) (st : s ⊆ t) :
differentiable_within_at 𝕜 f s x :=
begin
rcases h with ⟨f', hf'⟩,
exact ⟨f', hf'.mono st⟩
end
lemma differentiable_within_at_univ :
differentiable_within_at 𝕜 f univ x ↔ differentiable_at 𝕜 f x :=
by simp only [differentiable_within_at, has_fderiv_within_at_univ, differentiable_at]
lemma differentiable_within_at_inter (ht : t ∈ 𝓝 x) :
differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x :=
by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter,
nhds_within_restrict' s ht]
lemma differentiable_within_at_inter' (ht : t ∈ nhds_within x s) :
differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x :=
by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter,
nhds_within_restrict'' s ht]
lemma differentiable_at.differentiable_within_at
(h : differentiable_at 𝕜 f x) : differentiable_within_at 𝕜 f s x :=
(differentiable_within_at_univ.2 h).mono (subset_univ _)
lemma differentiable.differentiable_at (h : differentiable 𝕜 f) :
differentiable_at 𝕜 f x :=
h x
lemma differentiable_within_at.differentiable_at
(h : differentiable_within_at 𝕜 f s x) (hs : s ∈ 𝓝 x) : differentiable_at 𝕜 f x :=
h.imp (λ f' hf', hf'.has_fderiv_at hs)
lemma differentiable_at.fderiv_within
(h : differentiable_at 𝕜 f x) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 f s x = fderiv 𝕜 f x :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact h.has_fderiv_at.has_fderiv_within_at
end
lemma differentiable_on.mono (h : differentiable_on 𝕜 f t) (st : s ⊆ t) :
differentiable_on 𝕜 f s :=
λx hx, (h x (st hx)).mono st
lemma differentiable_on_univ :
differentiable_on 𝕜 f univ ↔ differentiable 𝕜 f :=
by { simp [differentiable_on, differentiable_within_at_univ], refl }
lemma differentiable.differentiable_on (h : differentiable 𝕜 f) : differentiable_on 𝕜 f s :=
(differentiable_on_univ.2 h).mono (subset_univ _)
lemma differentiable_on_of_locally_differentiable_on
(h : ∀x∈s, ∃u, is_open u ∧ x ∈ u ∧ differentiable_on 𝕜 f (s ∩ u)) : differentiable_on 𝕜 f s :=
begin
assume x xs,
rcases h x xs with ⟨t, t_open, xt, ht⟩,
exact (differentiable_within_at_inter (mem_nhds_sets t_open xt)).1 (ht x ⟨xs, xt⟩)
end
lemma fderiv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f t x) :
fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x :=
((differentiable_within_at.has_fderiv_within_at h).mono st).fderiv_within ht
@[simp] lemma fderiv_within_univ : fderiv_within 𝕜 f univ = fderiv 𝕜 f :=
begin
ext x : 1,
by_cases h : differentiable_at 𝕜 f x,
{ apply has_fderiv_within_at.fderiv_within _ unique_diff_within_at_univ,
rw has_fderiv_within_at_univ,
apply h.has_fderiv_at },
{ have : ¬ differentiable_within_at 𝕜 f univ x,
by contrapose! h; rwa ← differentiable_within_at_univ,
rw [fderiv_zero_of_not_differentiable_at h,
fderiv_within_zero_of_not_differentiable_within_at this] }
end
lemma fderiv_within_inter (ht : t ∈ 𝓝 x) (hs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 f (s ∩ t) x = fderiv_within 𝕜 f s x :=
begin
by_cases h : differentiable_within_at 𝕜 f (s ∩ t) x,
{ apply fderiv_within_subset (inter_subset_left _ _) _ ((differentiable_within_at_inter ht).1 h),
apply hs.inter ht },
{ have : ¬ differentiable_within_at 𝕜 f s x,
by contrapose! h; rw differentiable_within_at_inter; assumption,
rw [fderiv_within_zero_of_not_differentiable_within_at h,
fderiv_within_zero_of_not_differentiable_within_at this] }
end
end fderiv_properties
section continuous
/-! ### Deducing continuity from differentiability -/
theorem has_fderiv_at_filter.tendsto_nhds
(hL : L ≤ 𝓝 x) (h : has_fderiv_at_filter f f' x L) :
tendsto f L (𝓝 (f x)) :=
begin
have : tendsto (λ x', f x' - f x) L (𝓝 0),
{ refine h.is_O_sub.trans_tendsto (tendsto_le_left hL _),
rw ← sub_self x, exact tendsto_id.sub tendsto_const_nhds },
have := tendsto.add this tendsto_const_nhds,
rw zero_add (f x) at this,
exact this.congr (by simp)
end
theorem has_fderiv_within_at.continuous_within_at
(h : has_fderiv_within_at f f' s x) : continuous_within_at f s x :=
has_fderiv_at_filter.tendsto_nhds inf_le_left h
theorem has_fderiv_at.continuous_at (h : has_fderiv_at f f' x) :
continuous_at f x :=
has_fderiv_at_filter.tendsto_nhds (le_refl _) h
lemma differentiable_within_at.continuous_within_at (h : differentiable_within_at 𝕜 f s x) :
continuous_within_at f s x :=
let ⟨f', hf'⟩ := h in hf'.continuous_within_at
lemma differentiable_at.continuous_at (h : differentiable_at 𝕜 f x) : continuous_at f x :=
let ⟨f', hf'⟩ := h in hf'.continuous_at
lemma differentiable_on.continuous_on (h : differentiable_on 𝕜 f s) : continuous_on f s :=
λx hx, (h x hx).continuous_within_at
lemma differentiable.continuous (h : differentiable 𝕜 f) : continuous f :=
continuous_iff_continuous_at.2 $ λx, (h x).continuous_at
protected lemma has_strict_fderiv_at.continuous_at (hf : has_strict_fderiv_at f f' x) :
continuous_at f x :=
hf.has_fderiv_at.continuous_at
lemma has_strict_fderiv_at.is_O_sub_rev {f' : E ≃L[𝕜] F}
(hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) x) :
is_O (λ p : E × E, p.1 - p.2) (λ p : E × E, f p.1 - f p.2) (𝓝 (x, x)) :=
((f'.is_O_comp_rev _ _).trans (hf.trans_is_O (f'.is_O_comp_rev _ _)).right_is_O_add).congr
(λ _, rfl) (λ _, sub_add_cancel _ _)
lemma has_fderiv_at_filter.is_O_sub_rev {f' : E ≃L[𝕜] F}
(hf : has_fderiv_at_filter f (f' : E →L[𝕜] F) x L) :
is_O (λ x', x' - x) (λ x', f x' - f x) L :=
((f'.is_O_sub_rev _ _).trans (hf.trans_is_O (f'.is_O_sub_rev _ _)).right_is_O_add).congr
(λ _, rfl) (λ _, sub_add_cancel _ _)
end continuous
section congr
/-! ### congr properties of the derivative -/
theorem has_strict_fderiv_at_congr_of_mem_sets (h : ∀ᶠ y in 𝓝 x, f₀ y = f₁ y)
(h' : ∀ y, f₀' y = f₁' y) :
has_strict_fderiv_at f₀ f₀' x ↔ has_strict_fderiv_at f₁ f₁' x :=
begin
refine is_o_congr ((h.prod_mk_nhds h).mono _) (eventually_of_forall _ $ λ _, rfl),
rintros p ⟨hp₁, hp₂⟩,
simp only [*]
end
theorem has_strict_fderiv_at.congr_of_mem_sets (h : has_strict_fderiv_at f f' x)
(h₁ : ∀ᶠ y in 𝓝 x, f y = f₁ y) : has_strict_fderiv_at f₁ f' x :=
(has_strict_fderiv_at_congr_of_mem_sets h₁ (λ _, rfl)).1 h
theorem has_fderiv_at_filter_congr_of_mem_sets
(hx : f₀ x = f₁ x) (h₀ : ∀ᶠ x in L, f₀ x = f₁ x) (h₁ : ∀ x, f₀' x = f₁' x) :
has_fderiv_at_filter f₀ f₀' x L ↔ has_fderiv_at_filter f₁ f₁' x L :=
is_o_congr (h₀.mono $ λ y hy, by simp only [hy, h₁, hx]) (eventually_of_forall _ $ λ _, rfl)
lemma has_fderiv_at_filter.congr_of_mem_sets (h : has_fderiv_at_filter f f' x L)
(hL : ∀ᶠ x in L, f₁ x = f x) (hx : f₁ x = f x) : has_fderiv_at_filter f₁ f' x L :=
(has_fderiv_at_filter_congr_of_mem_sets hx hL $ λ _, rfl).2 h
lemma has_fderiv_within_at.congr_mono (h : has_fderiv_within_at f f' s x) (ht : ∀x ∈ t, f₁ x = f x)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : has_fderiv_within_at f₁ f' t x :=
has_fderiv_at_filter.congr_of_mem_sets (h.mono h₁) (filter.mem_inf_sets_of_right ht) hx
lemma has_fderiv_within_at.congr (h : has_fderiv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x)
(hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x :=
h.congr_mono hs hx (subset.refl _)
lemma has_fderiv_within_at.congr_of_mem_nhds_within (h : has_fderiv_within_at f f' s x)
(h₁ : ∀ᶠ y in nhds_within x s, f₁ y = f y) (hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x :=
has_fderiv_at_filter.congr_of_mem_sets h h₁ hx
lemma has_fderiv_at.congr_of_mem_nhds (h : has_fderiv_at f f' x)
(h₁ : ∀ᶠ y in 𝓝 x, f₁ y = f y) : has_fderiv_at f₁ f' x :=
has_fderiv_at_filter.congr_of_mem_sets h h₁ (mem_of_nhds h₁ : _)
lemma differentiable_within_at.congr_mono (h : differentiable_within_at 𝕜 f s x)
(ht : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : differentiable_within_at 𝕜 f₁ t x :=
(has_fderiv_within_at.congr_mono h.has_fderiv_within_at ht hx h₁).differentiable_within_at
lemma differentiable_within_at.congr (h : differentiable_within_at 𝕜 f s x)
(ht : ∀x ∈ s, f₁ x = f x) (hx : f₁ x = f x) : differentiable_within_at 𝕜 f₁ s x :=
differentiable_within_at.congr_mono h ht hx (subset.refl _)
lemma differentiable_within_at.congr_of_mem_nhds_within
(h : differentiable_within_at 𝕜 f s x) (h₁ : ∀ᶠ y in nhds_within x s, f₁ y = f y)
(hx : f₁ x = f x) : differentiable_within_at 𝕜 f₁ s x :=
(h.has_fderiv_within_at.congr_of_mem_nhds_within h₁ hx).differentiable_within_at
lemma differentiable_on.congr_mono (h : differentiable_on 𝕜 f s) (h' : ∀x ∈ t, f₁ x = f x)
(h₁ : t ⊆ s) : differentiable_on 𝕜 f₁ t :=
λ x hx, (h x (h₁ hx)).congr_mono h' (h' x hx) h₁
lemma differentiable_on.congr (h : differentiable_on 𝕜 f s) (h' : ∀x ∈ s, f₁ x = f x) :
differentiable_on 𝕜 f₁ s :=
λ x hx, (h x hx).congr h' (h' x hx)
lemma differentiable_on_congr (h' : ∀x ∈ s, f₁ x = f x) :
differentiable_on 𝕜 f₁ s ↔ differentiable_on 𝕜 f s :=
⟨λ h, differentiable_on.congr h (λy hy, (h' y hy).symm),
λ h, differentiable_on.congr h h'⟩
lemma differentiable_at.congr_of_mem_nhds (h : differentiable_at 𝕜 f x)
(hL : ∀ᶠ y in 𝓝 x, f₁ y = f y) : differentiable_at 𝕜 f₁ x :=
has_fderiv_at.differentiable_at (has_fderiv_at_filter.congr_of_mem_sets h.has_fderiv_at hL (mem_of_nhds hL : _))
lemma differentiable_within_at.fderiv_within_congr_mono (h : differentiable_within_at 𝕜 f s x)
(hs : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : unique_diff_within_at 𝕜 t x) (h₁ : t ⊆ s) :
fderiv_within 𝕜 f₁ t x = fderiv_within 𝕜 f s x :=
(has_fderiv_within_at.congr_mono h.has_fderiv_within_at hs hx h₁).fderiv_within hxt
lemma fderiv_within_congr_of_mem_nhds_within (hs : unique_diff_within_at 𝕜 s x)
(hL : ∀ᶠ y in nhds_within x s, f₁ y = f y) (hx : f₁ x = f x) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
if h : differentiable_within_at 𝕜 f s x
then has_fderiv_within_at.fderiv_within (h.has_fderiv_within_at.congr_of_mem_sets hL hx) hs
else
have h' : ¬ differentiable_within_at 𝕜 f₁ s x,
from mt (λ h, h.congr_of_mem_nhds_within (hL.mono $ λ x, eq.symm) hx.symm) h,
by rw [fderiv_within_zero_of_not_differentiable_within_at h,
fderiv_within_zero_of_not_differentiable_within_at h']
lemma fderiv_within_congr (hs : unique_diff_within_at 𝕜 s x)
(hL : ∀y∈s, f₁ y = f y) (hx : f₁ x = f x) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
begin
apply fderiv_within_congr_of_mem_nhds_within hs _ hx,
apply mem_sets_of_superset self_mem_nhds_within,
exact hL
end
lemma fderiv_congr_of_mem_nhds (hL : ∀ᶠ y in 𝓝 x, f₁ y = f y) :
fderiv 𝕜 f₁ x = fderiv 𝕜 f x :=
begin
have A : f₁ x = f x := (mem_of_nhds hL : _),
rw [← fderiv_within_univ, ← fderiv_within_univ],
rw ← nhds_within_univ at hL,
exact fderiv_within_congr_of_mem_nhds_within unique_diff_within_at_univ hL A
end
end congr
section id
/-! ### Derivative of the identity -/
theorem has_strict_fderiv_at_id (x : E) :
has_strict_fderiv_at id (id 𝕜 E) x :=
(is_o_zero _ _).congr_left $ by simp
theorem has_fderiv_at_filter_id (x : E) (L : filter E) :
has_fderiv_at_filter id (id 𝕜 E) x L :=
(is_o_zero _ _).congr_left $ by simp
theorem has_fderiv_within_at_id (x : E) (s : set E) :
has_fderiv_within_at id (id 𝕜 E) s x :=
has_fderiv_at_filter_id _ _
theorem has_fderiv_at_id (x : E) : has_fderiv_at id (id 𝕜 E) x :=
has_fderiv_at_filter_id _ _
@[simp] lemma differentiable_at_id : differentiable_at 𝕜 id x :=
(has_fderiv_at_id x).differentiable_at
@[simp] lemma differentiable_at_id' : differentiable_at 𝕜 (λ x, x) x :=
(has_fderiv_at_id x).differentiable_at
lemma differentiable_within_at_id : differentiable_within_at 𝕜 id s x :=
differentiable_at_id.differentiable_within_at
@[simp] lemma differentiable_id : differentiable 𝕜 (id : E → E) :=
λx, differentiable_at_id
@[simp] lemma differentiable_id' : differentiable 𝕜 (λ (x : E), x) :=
λx, differentiable_at_id
lemma differentiable_on_id : differentiable_on 𝕜 id s :=
differentiable_id.differentiable_on
lemma fderiv_id : fderiv 𝕜 id x = id 𝕜 E :=
has_fderiv_at.fderiv (has_fderiv_at_id x)
lemma fderiv_within_id (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 id s x = id 𝕜 E :=
begin
rw differentiable_at.fderiv_within (differentiable_at_id) hxs,
exact fderiv_id
end
end id
section const
/-! ### derivative of a constant function -/
theorem has_strict_fderiv_at_const (c : F) (x : E) :
has_strict_fderiv_at (λ _, c) (0 : E →L[𝕜] F) x :=
(is_o_zero _ _).congr_left $ λ _, by simp only [zero_apply, sub_self]
theorem has_fderiv_at_filter_const (c : F) (x : E) (L : filter E) :
has_fderiv_at_filter (λ x, c) (0 : E →L[𝕜] F) x L :=
(is_o_zero _ _).congr_left $ λ _, by simp only [zero_apply, sub_self]
theorem has_fderiv_within_at_const (c : F) (x : E) (s : set E) :
has_fderiv_within_at (λ x, c) (0 : E →L[𝕜] F) s x :=
has_fderiv_at_filter_const _ _ _
theorem has_fderiv_at_const (c : F) (x : E) :
has_fderiv_at (λ x, c) (0 : E →L[𝕜] F) x :=
has_fderiv_at_filter_const _ _ _
@[simp] lemma differentiable_at_const (c : F) : differentiable_at 𝕜 (λx, c) x :=
⟨0, has_fderiv_at_const c x⟩
lemma differentiable_within_at_const (c : F) : differentiable_within_at 𝕜 (λx, c) s x :=
differentiable_at.differentiable_within_at (differentiable_at_const _)
lemma fderiv_const_apply (c : F) : fderiv 𝕜 (λy, c) x = 0 :=
has_fderiv_at.fderiv (has_fderiv_at_const c x)
lemma fderiv_const (c : F) : fderiv 𝕜 (λ (y : E), c) = 0 :=
by { ext m, rw fderiv_const_apply, refl }
lemma fderiv_within_const_apply (c : F) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (λy, c) s x = 0 :=
begin
rw differentiable_at.fderiv_within (differentiable_at_const _) hxs,
exact fderiv_const_apply _
end
@[simp] lemma differentiable_const (c : F) : differentiable 𝕜 (λx : E, c) :=
λx, differentiable_at_const _
lemma differentiable_on_const (c : F) : differentiable_on 𝕜 (λx, c) s :=
(differentiable_const _).differentiable_on
end const
section continuous_linear_map
/-!
### Continuous linear maps
There are currently two variants of these in mathlib, the bundled version
(named `continuous_linear_map`, and denoted `E →L[𝕜] F`), and the unbundled version (with a
predicate `is_bounded_linear_map`). We give statements for both versions. -/
protected theorem continuous_linear_map.has_strict_fderiv_at {x : E} :
has_strict_fderiv_at e e x :=
(is_o_zero _ _).congr_left $ λ x, by simp only [e.map_sub, sub_self]
protected lemma continuous_linear_map.has_fderiv_at_filter :
has_fderiv_at_filter e e x L :=
(is_o_zero _ _).congr_left $ λ x, by simp only [e.map_sub, sub_self]
protected lemma continuous_linear_map.has_fderiv_within_at : has_fderiv_within_at e e s x :=
e.has_fderiv_at_filter
protected lemma continuous_linear_map.has_fderiv_at : has_fderiv_at e e x :=
e.has_fderiv_at_filter
@[simp] protected lemma continuous_linear_map.differentiable_at : differentiable_at 𝕜 e x :=
e.has_fderiv_at.differentiable_at
protected lemma continuous_linear_map.differentiable_within_at : differentiable_within_at 𝕜 e s x :=
e.differentiable_at.differentiable_within_at
protected lemma continuous_linear_map.fderiv : fderiv 𝕜 e x = e :=
e.has_fderiv_at.fderiv
protected lemma continuous_linear_map.fderiv_within (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 e s x = e :=
begin
rw differentiable_at.fderiv_within e.differentiable_at hxs,
exact e.fderiv
end
@[simp]protected lemma continuous_linear_map.differentiable : differentiable 𝕜 e :=
λx, e.differentiable_at
protected lemma continuous_linear_map.differentiable_on : differentiable_on 𝕜 e s :=
e.differentiable.differentiable_on
lemma is_bounded_linear_map.has_fderiv_at_filter (h : is_bounded_linear_map 𝕜 f) :
has_fderiv_at_filter f h.to_continuous_linear_map x L :=
h.to_continuous_linear_map.has_fderiv_at_filter
lemma is_bounded_linear_map.has_fderiv_within_at (h : is_bounded_linear_map 𝕜 f) :
has_fderiv_within_at f h.to_continuous_linear_map s x :=
h.has_fderiv_at_filter
lemma is_bounded_linear_map.has_fderiv_at (h : is_bounded_linear_map 𝕜 f) :
has_fderiv_at f h.to_continuous_linear_map x :=
h.has_fderiv_at_filter
lemma is_bounded_linear_map.differentiable_at (h : is_bounded_linear_map 𝕜 f) :
differentiable_at 𝕜 f x :=
h.has_fderiv_at.differentiable_at
lemma is_bounded_linear_map.differentiable_within_at (h : is_bounded_linear_map 𝕜 f) :
differentiable_within_at 𝕜 f s x :=
h.differentiable_at.differentiable_within_at
lemma is_bounded_linear_map.fderiv (h : is_bounded_linear_map 𝕜 f) :
fderiv 𝕜 f x = h.to_continuous_linear_map :=
has_fderiv_at.fderiv (h.has_fderiv_at)
lemma is_bounded_linear_map.fderiv_within (h : is_bounded_linear_map 𝕜 f)
(hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 f s x = h.to_continuous_linear_map :=
begin
rw differentiable_at.fderiv_within h.differentiable_at hxs,
exact h.fderiv
end
lemma is_bounded_linear_map.differentiable (h : is_bounded_linear_map 𝕜 f) :
differentiable 𝕜 f :=
λx, h.differentiable_at
lemma is_bounded_linear_map.differentiable_on (h : is_bounded_linear_map 𝕜 f) :
differentiable_on 𝕜 f s :=
h.differentiable.differentiable_on
end continuous_linear_map
section composition
/-!
### Derivative of the composition of two functions
For composition lemmas, we put x explicit to help the elaborator, as otherwise Lean tends to
get confused since there are too many possibilities for composition -/
variable (x)
theorem has_fderiv_at_filter.comp {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at_filter g g' (f x) (L.map f))
(hf : has_fderiv_at_filter f f' x L) :
has_fderiv_at_filter (g ∘ f) (g'.comp f') x L :=
let eq₁ := (g'.is_O_comp _ _).trans_is_o hf in
let eq₂ := (hg.comp_tendsto tendsto_map).trans_is_O hf.is_O_sub in
by { refine eq₂.triangle (eq₁.congr_left (λ x', _)), simp }
/- A readable version of the previous theorem,
a general form of the chain rule. -/
example {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at_filter g g' (f x) (L.map f))
(hf : has_fderiv_at_filter f f' x L) :
has_fderiv_at_filter (g ∘ f) (g'.comp f') x L :=
begin
unfold has_fderiv_at_filter at hg,
have : is_o (λ x', g (f x') - g (f x) - g' (f x' - f x)) (λ x', f x' - f x) L,
from hg.comp_tendsto (le_refl _),
have eq₁ : is_o (λ x', g (f x') - g (f x) - g' (f x' - f x)) (λ x', x' - x) L,
from this.trans_is_O hf.is_O_sub,
have eq₂ : is_o (λ x', f x' - f x - f' (x' - x)) (λ x', x' - x) L,
from hf,
have : is_O
(λ x', g' (f x' - f x - f' (x' - x))) (λ x', f x' - f x - f' (x' - x)) L,
from g'.is_O_comp _ _,
have : is_o (λ x', g' (f x' - f x - f' (x' - x))) (λ x', x' - x) L,
from this.trans_is_o eq₂,
have eq₃ : is_o (λ x', g' (f x' - f x) - (g' (f' (x' - x)))) (λ x', x' - x) L,
by { refine this.congr_left _, simp},
exact eq₁.triangle eq₃
end
theorem has_fderiv_within_at.comp {g : F → G} {g' : F →L[𝕜] G} {t : set F}
(hg : has_fderiv_within_at g g' t (f x)) (hf : has_fderiv_within_at f f' s x) (hst : s ⊆ f ⁻¹' t) :
has_fderiv_within_at (g ∘ f) (g'.comp f') s x :=
begin
apply has_fderiv_at_filter.comp _ (has_fderiv_at_filter.mono hg _) hf,
calc map f (nhds_within x s)
≤ nhds_within (f x) (f '' s) : hf.continuous_within_at.tendsto_nhds_within_image
... ≤ nhds_within (f x) t : nhds_within_mono _ (image_subset_iff.mpr hst)
end
/-- The chain rule. -/
theorem has_fderiv_at.comp {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_at f f' x) :
has_fderiv_at (g ∘ f) (g'.comp f') x :=
(hg.mono hf.continuous_at).comp x hf
theorem has_fderiv_at.comp_has_fderiv_within_at {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (g ∘ f) (g'.comp f') s x :=
begin
rw ← has_fderiv_within_at_univ at hg,
exact has_fderiv_within_at.comp x hg hf subset_preimage_univ
end
lemma differentiable_within_at.comp {g : F → G} {t : set F}
(hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x)
(h : s ⊆ f ⁻¹' t) : differentiable_within_at 𝕜 (g ∘ f) s x :=
begin
rcases hf with ⟨f', hf'⟩,
rcases hg with ⟨g', hg'⟩,
exact ⟨continuous_linear_map.comp g' f', hg'.comp x hf' h⟩
end
lemma differentiable_at.comp {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) :
differentiable_at 𝕜 (g ∘ f) x :=
(hg.has_fderiv_at.comp x hf.has_fderiv_at).differentiable_at
lemma differentiable_at.comp_differentiable_within_at {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (g ∘ f) s x :=
(differentiable_within_at_univ.2 hg).comp x hf (by simp)
lemma fderiv_within.comp {g : F → G} {t : set F}
(hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x)
(h : maps_to f s t) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (g ∘ f) s x = (fderiv_within 𝕜 g t (f x)).comp (fderiv_within 𝕜 f s x) :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact has_fderiv_within_at.comp x (hg.has_fderiv_within_at) (hf.has_fderiv_within_at) h
end
lemma fderiv.comp {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) :
fderiv 𝕜 (g ∘ f) x = (fderiv 𝕜 g (f x)).comp (fderiv 𝕜 f x) :=
begin
apply has_fderiv_at.fderiv,
exact has_fderiv_at.comp x hg.has_fderiv_at hf.has_fderiv_at
end
lemma fderiv.comp_fderiv_within {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x)
(hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (g ∘ f) s x = (fderiv 𝕜 g (f x)).comp (fderiv_within 𝕜 f s x) :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact has_fderiv_at.comp_has_fderiv_within_at x (hg.has_fderiv_at) (hf.has_fderiv_within_at)
end
lemma differentiable_on.comp {g : F → G} {t : set F}
(hg : differentiable_on 𝕜 g t) (hf : differentiable_on 𝕜 f s) (st : s ⊆ f ⁻¹' t) :
differentiable_on 𝕜 (g ∘ f) s :=
λx hx, differentiable_within_at.comp x (hg (f x) (st hx)) (hf x hx) st
lemma differentiable.comp {g : F → G} (hg : differentiable 𝕜 g) (hf : differentiable 𝕜 f) :
differentiable 𝕜 (g ∘ f) :=
λx, differentiable_at.comp x (hg (f x)) (hf x)
lemma differentiable.comp_differentiable_on {g : F → G} (hg : differentiable 𝕜 g)
(hf : differentiable_on 𝕜 f s) :
differentiable_on 𝕜 (g ∘ f) s :=
(differentiable_on_univ.2 hg).comp hf (by simp)
/-- The chain rule for derivatives in the sense of strict differentiability. -/
protected lemma has_strict_fderiv_at.comp {g : F → G} {g' : F →L[𝕜] G}
(hg : has_strict_fderiv_at g g' (f x)) (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, g (f x)) (g'.comp f') x :=
((hg.comp_tendsto (hf.continuous_at.prod_map' hf.continuous_at)).trans_is_O hf.is_O_sub).triangle $
by simpa only [g'.map_sub, f'.coe_comp'] using (g'.is_O_comp _ _).trans_is_o hf
protected lemma differentiable.iterate {f : E → E} (hf : differentiable 𝕜 f) (n : ℕ) :
differentiable 𝕜 (f^[n]) :=
nat.rec_on n differentiable_id (λ n ihn, ihn.comp hf)
protected lemma differentiable_on.iterate {f : E → E} (hf : differentiable_on 𝕜 f s)
(hs : maps_to f s s) (n : ℕ) :
differentiable_on 𝕜 (f^[n]) s :=
nat.rec_on n differentiable_on_id (λ n ihn, ihn.comp hf hs)
variable {x}
protected lemma has_fderiv_at_filter.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_fderiv_at_filter f f' x L) (hL : tendsto f L L) (hx : f x = x) (n : ℕ) :
has_fderiv_at_filter (f^[n]) (f'^n) x L :=
begin
induction n with n ihn,
{ exact has_fderiv_at_filter_id x L },
{ change has_fderiv_at_filter (f^[n] ∘ f) (f'^(n+1)) x L,
rw [pow_succ'],
refine has_fderiv_at_filter.comp x _ hf,
rw hx,
exact ihn.mono hL }
end
protected lemma has_fderiv_at.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_fderiv_at f f' x) (hx : f x = x) (n : ℕ) :
has_fderiv_at (f^[n]) (f'^n) x :=
begin
refine hf.iterate _ hx n,
convert hf.continuous_at,
exact hx.symm
end
protected lemma has_fderiv_within_at.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_fderiv_within_at f f' s x) (hx : f x = x) (hs : maps_to f s s) (n : ℕ) :
has_fderiv_within_at (f^[n]) (f'^n) s x :=
begin
refine hf.iterate _ hx n,
convert tendsto_inf.2 ⟨hf.continuous_within_at, _⟩,
exacts [hx.symm, tendsto_le_left inf_le_right (tendsto_principal_principal.2 hs)]
end
protected lemma has_strict_fderiv_at.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_strict_fderiv_at f f' x) (hx : f x = x) (n : ℕ) :
has_strict_fderiv_at (f^[n]) (f'^n) x :=
begin
induction n with n ihn,
{ exact has_strict_fderiv_at_id x },
{ change has_strict_fderiv_at (f^[n] ∘ f) (f'^(n+1)) x,
rw [pow_succ'],
refine has_strict_fderiv_at.comp x _ hf,
rwa hx }
end
protected lemma differentiable_at.iterate {f : E → E} (hf : differentiable_at 𝕜 f x)
(hx : f x = x) (n : ℕ) :
differentiable_at 𝕜 (f^[n]) x :=
exists.elim hf $ λ f' hf, (hf.iterate hx n).differentiable_at
protected lemma differentiable_within_at.iterate {f : E → E} (hf : differentiable_within_at 𝕜 f s x)
(hx : f x = x) (hs : maps_to f s s) (n : ℕ) :
differentiable_within_at 𝕜 (f^[n]) s x :=
exists.elim hf $ λ f' hf, (hf.iterate hx hs n).differentiable_within_at
end composition
section cartesian_product
/-! ### Derivative of the cartesian product of two functions -/
section prod
variables {f₂ : E → G} {f₂' : E →L[𝕜] G}
protected lemma has_strict_fderiv_at.prod
(hf₁ : has_strict_fderiv_at f₁ f₁' x) (hf₂ : has_strict_fderiv_at f₂ f₂' x) :
has_strict_fderiv_at (λx, (f₁ x, f₂ x)) (continuous_linear_map.prod f₁' f₂') x :=
hf₁.prod_left hf₂
lemma has_fderiv_at_filter.prod
(hf₁ : has_fderiv_at_filter f₁ f₁' x L) (hf₂ : has_fderiv_at_filter f₂ f₂' x L) :
has_fderiv_at_filter (λx, (f₁ x, f₂ x)) (continuous_linear_map.prod f₁' f₂') x L :=
hf₁.prod_left hf₂
lemma has_fderiv_within_at.prod
(hf₁ : has_fderiv_within_at f₁ f₁' s x) (hf₂ : has_fderiv_within_at f₂ f₂' s x) :
has_fderiv_within_at (λx, (f₁ x, f₂ x)) (continuous_linear_map.prod f₁' f₂') s x :=
hf₁.prod hf₂
lemma has_fderiv_at.prod (hf₁ : has_fderiv_at f₁ f₁' x) (hf₂ : has_fderiv_at f₂ f₂' x) :
has_fderiv_at (λx, (f₁ x, f₂ x)) (continuous_linear_map.prod f₁' f₂') x :=
hf₁.prod hf₂
lemma differentiable_within_at.prod
(hf₁ : differentiable_within_at 𝕜 f₁ s x) (hf₂ : differentiable_within_at 𝕜 f₂ s x) :
differentiable_within_at 𝕜 (λx:E, (f₁ x, f₂ x)) s x :=
(hf₁.has_fderiv_within_at.prod hf₂.has_fderiv_within_at).differentiable_within_at
@[simp]
lemma differentiable_at.prod (hf₁ : differentiable_at 𝕜 f₁ x) (hf₂ : differentiable_at 𝕜 f₂ x) :
differentiable_at 𝕜 (λx:E, (f₁ x, f₂ x)) x :=
(hf₁.has_fderiv_at.prod hf₂.has_fderiv_at).differentiable_at
lemma differentiable_on.prod (hf₁ : differentiable_on 𝕜 f₁ s) (hf₂ : differentiable_on 𝕜 f₂ s) :
differentiable_on 𝕜 (λx:E, (f₁ x, f₂ x)) s :=
λx hx, differentiable_within_at.prod (hf₁ x hx) (hf₂ x hx)
@[simp]
lemma differentiable.prod (hf₁ : differentiable 𝕜 f₁) (hf₂ : differentiable 𝕜 f₂) :
differentiable 𝕜 (λx:E, (f₁ x, f₂ x)) :=
λ x, differentiable_at.prod (hf₁ x) (hf₂ x)
lemma differentiable_at.fderiv_prod
(hf₁ : differentiable_at 𝕜 f₁ x) (hf₂ : differentiable_at 𝕜 f₂ x) :
fderiv 𝕜 (λx:E, (f₁ x, f₂ x)) x =
continuous_linear_map.prod (fderiv 𝕜 f₁ x) (fderiv 𝕜 f₂ x) :=
has_fderiv_at.fderiv (has_fderiv_at.prod hf₁.has_fderiv_at hf₂.has_fderiv_at)
lemma differentiable_at.fderiv_within_prod
(hf₁ : differentiable_within_at 𝕜 f₁ s x) (hf₂ : differentiable_within_at 𝕜 f₂ s x)
(hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (λx:E, (f₁ x, f₂ x)) s x =
continuous_linear_map.prod (fderiv_within 𝕜 f₁ s x) (fderiv_within 𝕜 f₂ s x) :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact has_fderiv_within_at.prod hf₁.has_fderiv_within_at hf₂.has_fderiv_within_at
end
end prod
section fst
variables {f₂ : E → F × G} {f₂' : E →L[𝕜] F × G} {p : E × F}
lemma has_strict_fderiv_at_fst : has_strict_fderiv_at prod.fst (fst 𝕜 E F) p :=
(fst 𝕜 E F).has_strict_fderiv_at
protected lemma has_strict_fderiv_at.fst (h : has_strict_fderiv_at f₂ f₂' x) :
has_strict_fderiv_at (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') x :=
has_strict_fderiv_at_fst.comp x h
lemma has_fderiv_at_filter_fst {L : filter (E × F)} :
has_fderiv_at_filter prod.fst (fst 𝕜 E F) p L :=
(fst 𝕜 E F).has_fderiv_at_filter
protected lemma has_fderiv_at_filter.fst (h : has_fderiv_at_filter f₂ f₂' x L) :
has_fderiv_at_filter (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') x L :=
has_fderiv_at_filter_fst.comp x h
lemma has_fderiv_at_fst : has_fderiv_at prod.fst (fst 𝕜 E F) p :=
has_fderiv_at_filter_fst
protected lemma has_fderiv_at.fst (h : has_fderiv_at f₂ f₂' x) :
has_fderiv_at (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') x :=
h.fst
lemma has_fderiv_within_at_fst {s : set (E × F)} :
has_fderiv_within_at prod.fst (fst 𝕜 E F) s p :=
has_fderiv_at_filter_fst
protected lemma has_fderiv_within_at.fst (h : has_fderiv_within_at f₂ f₂' s x) :
has_fderiv_within_at (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') s x :=
h.fst
lemma differentiable_at_fst : differentiable_at 𝕜 prod.fst p :=
has_fderiv_at_fst.differentiable_at
@[simp] protected lemma differentiable_at.fst (h : differentiable_at 𝕜 f₂ x) :
differentiable_at 𝕜 (λ x, (f₂ x).1) x :=
differentiable_at_fst.comp x h
lemma differentiable_fst : differentiable 𝕜 (prod.fst : E × F → E) :=
λ x, differentiable_at_fst
@[simp] protected lemma differentiable.fst (h : differentiable 𝕜 f₂) :
differentiable 𝕜 (λ x, (f₂ x).1) :=
differentiable_fst.comp h
lemma differentiable_within_at_fst {s : set (E × F)} : differentiable_within_at 𝕜 prod.fst s p :=
differentiable_at_fst.differentiable_within_at
protected lemma differentiable_within_at.fst (h : differentiable_within_at 𝕜 f₂ s x) :
differentiable_within_at 𝕜 (λ x, (f₂ x).1) s x :=
differentiable_at_fst.comp_differentiable_within_at x h
lemma differentiable_on_fst {s : set (E × F)} : differentiable_on 𝕜 prod.fst s :=
differentiable_fst.differentiable_on
protected lemma differentiable_on.fst (h : differentiable_on 𝕜 f₂ s) :
differentiable_on 𝕜 (λ x, (f₂ x).1) s :=
differentiable_fst.comp_differentiable_on h
lemma fderiv_fst : fderiv 𝕜 prod.fst p = fst 𝕜 E F := has_fderiv_at_fst.fderiv
lemma fderiv.fst (h : differentiable_at 𝕜 f₂ x) :
fderiv 𝕜 (λ x, (f₂ x).1) x = (fst 𝕜 F G).comp (fderiv 𝕜 f₂ x) :=
h.has_fderiv_at.fst.fderiv
lemma fderiv_within_fst {s : set (E × F)} (hs : unique_diff_within_at 𝕜 s p) :
fderiv_within 𝕜 prod.fst s p = fst 𝕜 E F :=
has_fderiv_within_at_fst.fderiv_within hs
lemma fderiv_within.fst (hs : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f₂ s x) :
fderiv_within 𝕜 (λ x, (f₂ x).1) s x = (fst 𝕜 F G).comp (fderiv_within 𝕜 f₂ s x) :=
h.has_fderiv_within_at.fst.fderiv_within hs
end fst
section snd
variables {f₂ : E → F × G} {f₂' : E →L[𝕜] F × G} {p : E × F}
lemma has_strict_fderiv_at_snd : has_strict_fderiv_at prod.snd (snd 𝕜 E F) p :=
(snd 𝕜 E F).has_strict_fderiv_at
protected lemma has_strict_fderiv_at.snd (h : has_strict_fderiv_at f₂ f₂' x) :
has_strict_fderiv_at (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') x :=
has_strict_fderiv_at_snd.comp x h
lemma has_fderiv_at_filter_snd {L : filter (E × F)} :
has_fderiv_at_filter prod.snd (snd 𝕜 E F) p L :=
(snd 𝕜 E F).has_fderiv_at_filter
protected lemma has_fderiv_at_filter.snd (h : has_fderiv_at_filter f₂ f₂' x L) :
has_fderiv_at_filter (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') x L :=
has_fderiv_at_filter_snd.comp x h
lemma has_fderiv_at_snd : has_fderiv_at prod.snd (snd 𝕜 E F) p :=
has_fderiv_at_filter_snd
protected lemma has_fderiv_at.snd (h : has_fderiv_at f₂ f₂' x) :
has_fderiv_at (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') x :=
h.snd
lemma has_fderiv_within_at_snd {s : set (E × F)} :
has_fderiv_within_at prod.snd (snd 𝕜 E F) s p :=
has_fderiv_at_filter_snd
protected lemma has_fderiv_within_at.snd (h : has_fderiv_within_at f₂ f₂' s x) :
has_fderiv_within_at (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') s x :=
h.snd
lemma differentiable_at_snd : differentiable_at 𝕜 prod.snd p :=
has_fderiv_at_snd.differentiable_at
@[simp] protected lemma differentiable_at.snd (h : differentiable_at 𝕜 f₂ x) :
differentiable_at 𝕜 (λ x, (f₂ x).2) x :=
differentiable_at_snd.comp x h
lemma differentiable_snd : differentiable 𝕜 (prod.snd : E × F → F) :=
λ x, differentiable_at_snd
@[simp] protected lemma differentiable.snd (h : differentiable 𝕜 f₂) :
differentiable 𝕜 (λ x, (f₂ x).2) :=
differentiable_snd.comp h
lemma differentiable_within_at_snd {s : set (E × F)} : differentiable_within_at 𝕜 prod.snd s p :=
differentiable_at_snd.differentiable_within_at
protected lemma differentiable_within_at.snd (h : differentiable_within_at 𝕜 f₂ s x) :
differentiable_within_at 𝕜 (λ x, (f₂ x).2) s x :=
differentiable_at_snd.comp_differentiable_within_at x h
lemma differentiable_on_snd {s : set (E × F)} : differentiable_on 𝕜 prod.snd s :=
differentiable_snd.differentiable_on
protected lemma differentiable_on.snd (h : differentiable_on 𝕜 f₂ s) :
differentiable_on 𝕜 (λ x, (f₂ x).2) s :=
differentiable_snd.comp_differentiable_on h
lemma fderiv_snd : fderiv 𝕜 prod.snd p = snd 𝕜 E F := has_fderiv_at_snd.fderiv
lemma fderiv.snd (h : differentiable_at 𝕜 f₂ x) :
fderiv 𝕜 (λ x, (f₂ x).2) x = (snd 𝕜 F G).comp (fderiv 𝕜 f₂ x) :=
h.has_fderiv_at.snd.fderiv
lemma fderiv_within_snd {s : set (E × F)} (hs : unique_diff_within_at 𝕜 s p) :
fderiv_within 𝕜 prod.snd s p = snd 𝕜 E F :=
has_fderiv_within_at_snd.fderiv_within hs
lemma fderiv_within.snd (hs : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f₂ s x) :
fderiv_within 𝕜 (λ x, (f₂ x).2) s x = (snd 𝕜 F G).comp (fderiv_within 𝕜 f₂ s x) :=
h.has_fderiv_within_at.snd.fderiv_within hs
end snd
section prod_map
variables {f₂ : G → G'} {f₂' : G →L[𝕜] G'} {y : G} (p : E × G)
-- TODO (Lean 3.8): use `prod.map f f₂``
protected theorem has_strict_fderiv_at.prod_map (hf : has_strict_fderiv_at f f' p.1)
(hf₂ : has_strict_fderiv_at f₂ f₂' p.2) :
has_strict_fderiv_at (λ p : E × G, (f p.1, f₂ p.2)) (f'.prod_map f₂') p :=
(hf.comp p has_strict_fderiv_at_fst).prod (hf₂.comp p has_strict_fderiv_at_snd)
protected theorem has_fderiv_at.prod_map (hf : has_fderiv_at f f' p.1)
(hf₂ : has_fderiv_at f₂ f₂' p.2) :
has_fderiv_at (λ p : E × G, (f p.1, f₂ p.2)) (f'.prod_map f₂') p :=
(hf.comp p has_fderiv_at_fst).prod (hf₂.comp p has_fderiv_at_snd)
@[simp] protected theorem differentiable_at.prod_map (hf : differentiable_at 𝕜 f p.1)
(hf₂ : differentiable_at 𝕜 f₂ p.2) :
differentiable_at 𝕜 (λ p : E × G, (f p.1, f₂ p.2)) p :=
(hf.comp p differentiable_at_fst).prod (hf₂.comp p differentiable_at_snd)
end prod_map
end cartesian_product
section const_smul
/-! ### Derivative of a function multiplied by a constant -/
theorem has_strict_fderiv_at.const_smul (h : has_strict_fderiv_at f f' x) (c : 𝕜) :
has_strict_fderiv_at (λ x, c • f x) (c • f') x :=
(c • (1 : F →L[𝕜] F)).has_strict_fderiv_at.comp x h
theorem has_fderiv_at_filter.const_smul (h : has_fderiv_at_filter f f' x L) (c : 𝕜) :
has_fderiv_at_filter (λ x, c • f x) (c • f') x L :=
(c • (1 : F →L[𝕜] F)).has_fderiv_at_filter.comp x h
theorem has_fderiv_within_at.const_smul (h : has_fderiv_within_at f f' s x) (c : 𝕜) :
has_fderiv_within_at (λ x, c • f x) (c • f') s x :=
h.const_smul c
theorem has_fderiv_at.const_smul (h : has_fderiv_at f f' x) (c : 𝕜) :
has_fderiv_at (λ x, c • f x) (c • f') x :=
h.const_smul c
lemma differentiable_within_at.const_smul (h : differentiable_within_at 𝕜 f s x) (c : 𝕜) :
differentiable_within_at 𝕜 (λy, c • f y) s x :=
(h.has_fderiv_within_at.const_smul c).differentiable_within_at
lemma differentiable_at.const_smul (h : differentiable_at 𝕜 f x) (c : 𝕜) :
differentiable_at 𝕜 (λy, c • f y) x :=
(h.has_fderiv_at.const_smul c).differentiable_at
lemma differentiable_on.const_smul (h : differentiable_on 𝕜 f s) (c : 𝕜) :
differentiable_on 𝕜 (λy, c • f y) s :=
λx hx, (h x hx).const_smul c
lemma differentiable.const_smul (h : differentiable 𝕜 f) (c : 𝕜) :
differentiable 𝕜 (λy, c • f y) :=
λx, (h x).const_smul c
lemma fderiv_within_const_smul (hxs : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f s x) (c : 𝕜) :
fderiv_within 𝕜 (λy, c • f y) s x = c • fderiv_within 𝕜 f s x :=
(h.has_fderiv_within_at.const_smul c).fderiv_within hxs
lemma fderiv_const_smul (h : differentiable_at 𝕜 f x) (c : 𝕜) :
fderiv 𝕜 (λy, c • f y) x = c • fderiv 𝕜 f x :=
(h.has_fderiv_at.const_smul c).fderiv
end const_smul
section add
/-! ### Derivative of the sum of two functions -/
theorem has_strict_fderiv_at.add (hf : has_strict_fderiv_at f f' x)
(hg : has_strict_fderiv_at g g' x) :
has_strict_fderiv_at (λ y, f y + g y) (f' + g') x :=
(hf.add hg).congr_left $ λ y, by simp; abel
theorem has_fderiv_at_filter.add
(hf : has_fderiv_at_filter f f' x L) (hg : has_fderiv_at_filter g g' x L) :
has_fderiv_at_filter (λ y, f y + g y) (f' + g') x L :=
(hf.add hg).congr_left $ λ _, by simp; abel
theorem has_fderiv_within_at.add
(hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at g g' s x) :
has_fderiv_within_at (λ y, f y + g y) (f' + g') s x :=
hf.add hg
theorem has_fderiv_at.add
(hf : has_fderiv_at f f' x) (hg : has_fderiv_at g g' x) :
has_fderiv_at (λ x, f x + g x) (f' + g') x :=
hf.add hg
lemma differentiable_within_at.add
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
differentiable_within_at 𝕜 (λ y, f y + g y) s x :=
(hf.has_fderiv_within_at.add hg.has_fderiv_within_at).differentiable_within_at
@[simp] lemma differentiable_at.add
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
differentiable_at 𝕜 (λ y, f y + g y) x :=
(hf.has_fderiv_at.add hg.has_fderiv_at).differentiable_at
lemma differentiable_on.add
(hf : differentiable_on 𝕜 f s) (hg : differentiable_on 𝕜 g s) :
differentiable_on 𝕜 (λy, f y + g y) s :=
λx hx, (hf x hx).add (hg x hx)
@[simp] lemma differentiable.add
(hf : differentiable 𝕜 f) (hg : differentiable 𝕜 g) :
differentiable 𝕜 (λy, f y + g y) :=
λx, (hf x).add (hg x)
lemma fderiv_within_add (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
fderiv_within 𝕜 (λy, f y + g y) s x = fderiv_within 𝕜 f s x + fderiv_within 𝕜 g s x :=
(hf.has_fderiv_within_at.add hg.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_add
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
fderiv 𝕜 (λy, f y + g y) x = fderiv 𝕜 f x + fderiv 𝕜 g x :=
(hf.has_fderiv_at.add hg.has_fderiv_at).fderiv
theorem has_strict_fderiv_at.add_const (hf : has_strict_fderiv_at f f' x) (c : F) :
has_strict_fderiv_at (λ y, f y + c) f' x :=
add_zero f' ▸ hf.add (has_strict_fderiv_at_const _ _)
theorem has_fderiv_at_filter.add_const
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ y, f y + c) f' x L :=
add_zero f' ▸ hf.add (has_fderiv_at_filter_const _ _ _)
theorem has_fderiv_within_at.add_const
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ y, f y + c) f' s x :=
hf.add_const c
theorem has_fderiv_at.add_const
(hf : has_fderiv_at f f' x) (c : F):
has_fderiv_at (λ x, f x + c) f' x :=
hf.add_const c
lemma differentiable_within_at.add_const
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, f y + c) s x :=
(hf.has_fderiv_within_at.add_const c).differentiable_within_at
lemma differentiable_at.add_const
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, f y + c) x :=
(hf.has_fderiv_at.add_const c).differentiable_at
lemma differentiable_on.add_const
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, f y + c) s :=
λx hx, (hf x hx).add_const c
lemma differentiable.add_const
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, f y + c) :=
λx, (hf x).add_const c
lemma fderiv_within_add_const (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, f y + c) s x = fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.add_const c).fderiv_within hxs
lemma fderiv_add_const
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, f y + c) x = fderiv 𝕜 f x :=
(hf.has_fderiv_at.add_const c).fderiv
theorem has_strict_fderiv_at.const_add (hf : has_strict_fderiv_at f f' x) (c : F) :
has_strict_fderiv_at (λ y, c + f y) f' x :=
zero_add f' ▸ (has_strict_fderiv_at_const _ _).add hf
theorem has_fderiv_at_filter.const_add
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ y, c + f y) f' x L :=
zero_add f' ▸ (has_fderiv_at_filter_const _ _ _).add hf
theorem has_fderiv_within_at.const_add
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ y, c + f y) f' s x :=
hf.const_add c
theorem has_fderiv_at.const_add
(hf : has_fderiv_at f f' x) (c : F):
has_fderiv_at (λ x, c + f x) f' x :=
hf.const_add c
lemma differentiable_within_at.const_add
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, c + f y) s x :=
(hf.has_fderiv_within_at.const_add c).differentiable_within_at
lemma differentiable_at.const_add
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, c + f y) x :=
(hf.has_fderiv_at.const_add c).differentiable_at
lemma differentiable_on.const_add
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, c + f y) s :=
λx hx, (hf x hx).const_add c
lemma differentiable.const_add
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, c + f y) :=
λx, (hf x).const_add c
lemma fderiv_within_const_add (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, c + f y) s x = fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.const_add c).fderiv_within hxs
lemma fderiv_const_add
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, c + f y) x = fderiv 𝕜 f x :=
(hf.has_fderiv_at.const_add c).fderiv
end add
section sum
/-! ### Derivative of a finite sum of functions -/
open_locale big_operators
variables {ι : Type*} {u : finset ι} {A : ι → (E → F)} {A' : ι → (E →L[𝕜] F)}
theorem has_strict_fderiv_at.sum (h : ∀ i ∈ u, has_strict_fderiv_at (A i) (A' i) x) :
has_strict_fderiv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x :=
begin
dsimp [has_strict_fderiv_at] at *,
convert is_o.sum h,
simp [finset.sum_sub_distrib, continuous_linear_map.sum_apply]
end
theorem has_fderiv_at_filter.sum (h : ∀ i ∈ u, has_fderiv_at_filter (A i) (A' i) x L) :
has_fderiv_at_filter (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x L :=
begin
dsimp [has_fderiv_at_filter] at *,
convert is_o.sum h,
simp [continuous_linear_map.sum_apply]
end
theorem has_fderiv_within_at.sum (h : ∀ i ∈ u, has_fderiv_within_at (A i) (A' i) s x) :
has_fderiv_within_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) s x :=
has_fderiv_at_filter.sum h
theorem has_fderiv_at.sum (h : ∀ i ∈ u, has_fderiv_at (A i) (A' i) x) :
has_fderiv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x :=
has_fderiv_at_filter.sum h
theorem differentiable_within_at.sum (h : ∀ i ∈ u, differentiable_within_at 𝕜 (A i) s x) :
differentiable_within_at 𝕜 (λ y, ∑ i in u, A i y) s x :=
has_fderiv_within_at.differentiable_within_at $ has_fderiv_within_at.sum $
λ i hi, (h i hi).has_fderiv_within_at
@[simp] theorem differentiable_at.sum (h : ∀ i ∈ u, differentiable_at 𝕜 (A i) x) :
differentiable_at 𝕜 (λ y, ∑ i in u, A i y) x :=
has_fderiv_at.differentiable_at $ has_fderiv_at.sum $ λ i hi, (h i hi).has_fderiv_at
theorem differentiable_on.sum (h : ∀ i ∈ u, differentiable_on 𝕜 (A i) s) :
differentiable_on 𝕜 (λ y, ∑ i in u, A i y) s :=
λ x hx, differentiable_within_at.sum $ λ i hi, h i hi x hx
@[simp] theorem differentiable.sum (h : ∀ i ∈ u, differentiable 𝕜 (A i)) :
differentiable 𝕜 (λ y, ∑ i in u, A i y) :=
λ x, differentiable_at.sum $ λ i hi, h i hi x
theorem fderiv_within_sum (hxs : unique_diff_within_at 𝕜 s x)
(h : ∀ i ∈ u, differentiable_within_at 𝕜 (A i) s x) :
fderiv_within 𝕜 (λ y, ∑ i in u, A i y) s x = (∑ i in u, fderiv_within 𝕜 (A i) s x) :=
(has_fderiv_within_at.sum (λ i hi, (h i hi).has_fderiv_within_at)).fderiv_within hxs
theorem fderiv_sum (h : ∀ i ∈ u, differentiable_at 𝕜 (A i) x) :
fderiv 𝕜 (λ y, ∑ i in u, A i y) x = (∑ i in u, fderiv 𝕜 (A i) x) :=
(has_fderiv_at.sum (λ i hi, (h i hi).has_fderiv_at)).fderiv
end sum
section neg
/-! ### Derivative of the negative of a function -/
theorem has_strict_fderiv_at.neg (h : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, -f x) (-f') x :=
(-1 : F →L[𝕜] F).has_strict_fderiv_at.comp x h
theorem has_fderiv_at_filter.neg (h : has_fderiv_at_filter f f' x L) :
has_fderiv_at_filter (λ x, -f x) (-f') x L :=
(-1 : F →L[𝕜] F).has_fderiv_at_filter.comp x h
theorem has_fderiv_within_at.neg (h : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, -f x) (-f') s x :=
h.neg
theorem has_fderiv_at.neg (h : has_fderiv_at f f' x) :
has_fderiv_at (λ x, -f x) (-f') x :=
h.neg
lemma differentiable_within_at.neg (h : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (λy, -f y) s x :=
h.has_fderiv_within_at.neg.differentiable_within_at
@[simp] lemma differentiable_at.neg (h : differentiable_at 𝕜 f x) :
differentiable_at 𝕜 (λy, -f y) x :=
h.has_fderiv_at.neg.differentiable_at
lemma differentiable_on.neg (h : differentiable_on 𝕜 f s) :
differentiable_on 𝕜 (λy, -f y) s :=
λx hx, (h x hx).neg
@[simp] lemma differentiable.neg (h : differentiable 𝕜 f) :
differentiable 𝕜 (λy, -f y) :=
λx, (h x).neg
lemma fderiv_within_neg (hxs : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f s x) :
fderiv_within 𝕜 (λy, -f y) s x = - fderiv_within 𝕜 f s x :=
h.has_fderiv_within_at.neg.fderiv_within hxs
lemma fderiv_neg (h : differentiable_at 𝕜 f x) :
fderiv 𝕜 (λy, -f y) x = - fderiv 𝕜 f x :=
h.has_fderiv_at.neg.fderiv
end neg
section sub
/-! ### Derivative of the difference of two functions -/
theorem has_strict_fderiv_at.sub
(hf : has_strict_fderiv_at f f' x) (hg : has_strict_fderiv_at g g' x) :
has_strict_fderiv_at (λ x, f x - g x) (f' - g') x :=
hf.add hg.neg
theorem has_fderiv_at_filter.sub
(hf : has_fderiv_at_filter f f' x L) (hg : has_fderiv_at_filter g g' x L) :
has_fderiv_at_filter (λ x, f x - g x) (f' - g') x L :=
hf.add hg.neg
theorem has_fderiv_within_at.sub
(hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at g g' s x) :
has_fderiv_within_at (λ x, f x - g x) (f' - g') s x :=
hf.sub hg
theorem has_fderiv_at.sub
(hf : has_fderiv_at f f' x) (hg : has_fderiv_at g g' x) :
has_fderiv_at (λ x, f x - g x) (f' - g') x :=
hf.sub hg
lemma differentiable_within_at.sub
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
differentiable_within_at 𝕜 (λ y, f y - g y) s x :=
(hf.has_fderiv_within_at.sub hg.has_fderiv_within_at).differentiable_within_at
@[simp] lemma differentiable_at.sub
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
differentiable_at 𝕜 (λ y, f y - g y) x :=
(hf.has_fderiv_at.sub hg.has_fderiv_at).differentiable_at
lemma differentiable_on.sub
(hf : differentiable_on 𝕜 f s) (hg : differentiable_on 𝕜 g s) :
differentiable_on 𝕜 (λy, f y - g y) s :=
λx hx, (hf x hx).sub (hg x hx)
@[simp] lemma differentiable.sub
(hf : differentiable 𝕜 f) (hg : differentiable 𝕜 g) :
differentiable 𝕜 (λy, f y - g y) :=
λx, (hf x).sub (hg x)
lemma fderiv_within_sub (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
fderiv_within 𝕜 (λy, f y - g y) s x = fderiv_within 𝕜 f s x - fderiv_within 𝕜 g s x :=
(hf.has_fderiv_within_at.sub hg.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_sub
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
fderiv 𝕜 (λy, f y - g y) x = fderiv 𝕜 f x - fderiv 𝕜 g x :=
(hf.has_fderiv_at.sub hg.has_fderiv_at).fderiv
theorem has_strict_fderiv_at.sub_const
(hf : has_strict_fderiv_at f f' x) (c : F) :
has_strict_fderiv_at (λ x, f x - c) f' x :=
hf.add_const (-c)
theorem has_fderiv_at_filter.sub_const
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ x, f x - c) f' x L :=
hf.add_const (-c)
theorem has_fderiv_within_at.sub_const
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ x, f x - c) f' s x :=
hf.sub_const c
theorem has_fderiv_at.sub_const
(hf : has_fderiv_at f f' x) (c : F) :
has_fderiv_at (λ x, f x - c) f' x :=
hf.sub_const c
lemma differentiable_within_at.sub_const
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, f y - c) s x :=
(hf.has_fderiv_within_at.sub_const c).differentiable_within_at
lemma differentiable_at.sub_const
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, f y - c) x :=
(hf.has_fderiv_at.sub_const c).differentiable_at
lemma differentiable_on.sub_const
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, f y - c) s :=
λx hx, (hf x hx).sub_const c
lemma differentiable.sub_const
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, f y - c) :=
λx, (hf x).sub_const c
lemma fderiv_within_sub_const (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, f y - c) s x = fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.sub_const c).fderiv_within hxs
lemma fderiv_sub_const
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, f y - c) x = fderiv 𝕜 f x :=
(hf.has_fderiv_at.sub_const c).fderiv
theorem has_strict_fderiv_at.const_sub
(hf : has_strict_fderiv_at f f' x) (c : F) :
has_strict_fderiv_at (λ x, c - f x) (-f') x :=
hf.neg.const_add c
theorem has_fderiv_at_filter.const_sub
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ x, c - f x) (-f') x L :=
hf.neg.const_add c
theorem has_fderiv_within_at.const_sub
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ x, c - f x) (-f') s x :=
hf.const_sub c
theorem has_fderiv_at.const_sub
(hf : has_fderiv_at f f' x) (c : F) :
has_fderiv_at (λ x, c - f x) (-f') x :=
hf.const_sub c
lemma differentiable_within_at.const_sub
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, c - f y) s x :=
(hf.has_fderiv_within_at.const_sub c).differentiable_within_at
lemma differentiable_at.const_sub
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, c - f y) x :=
(hf.has_fderiv_at.const_sub c).differentiable_at
lemma differentiable_on.const_sub
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, c - f y) s :=
λx hx, (hf x hx).const_sub c
lemma differentiable.const_sub
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, c - f y) :=
λx, (hf x).const_sub c
lemma fderiv_within_const_sub (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, c - f y) s x = -fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.const_sub c).fderiv_within hxs
lemma fderiv_const_sub
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, c - f y) x = -fderiv 𝕜 f x :=
(hf.has_fderiv_at.const_sub c).fderiv
end sub
section bilinear_map
/-! ### Derivative of a bounded bilinear map -/
variables {b : E × F → G} {u : set (E × F) }
open normed_field
lemma is_bounded_bilinear_map.has_strict_fderiv_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
has_strict_fderiv_at b (h.deriv p) p :=
begin
rw has_strict_fderiv_at,
set T := (E × F) × (E × F),
have : is_o (λ q : T, b (q.1 - q.2)) (λ q : T, ∥q.1 - q.2∥ * 1) (𝓝 (p, p)),
{ refine (h.is_O'.comp_tendsto le_top).trans_is_o _,
simp only [(∘)],
refine (is_O_refl (λ q : T, ∥q.1 - q.2∥) _).mul_is_o (is_o.norm_left $ (is_o_one_iff _).2 _),
rw [← sub_self p],
exact continuous_at_fst.sub continuous_at_snd },
simp only [mul_one, is_o_norm_right] at this,
refine (is_o.congr_of_sub _).1 this, clear this,
convert_to is_o (λ q : T, h.deriv (p - q.2) (q.1 - q.2)) (λ q : T, q.1 - q.2) (𝓝 (p, p)),
{ ext q,
rcases q with ⟨⟨x₁, y₁⟩, ⟨x₂, y₂⟩⟩, rcases p with ⟨x, y⟩,
simp only [is_bounded_bilinear_map_deriv_coe, prod.mk_sub_mk, h.map_sub_left, h.map_sub_right],
abel },
have : is_o (λ q : T, p - q.2) (λ q, (1:ℝ)) (𝓝 (p, p)),
from (is_o_one_iff _).2 (sub_self p ▸ tendsto_const_nhds.sub continuous_at_snd),
apply is_bounded_bilinear_map_apply.is_O_comp.trans_is_o,
refine is_o.trans_is_O _ (is_O_const_mul_self 1 _ _).of_norm_right,
refine is_o.mul_is_O _ (is_O_refl _ _),
exact (((h.is_bounded_linear_map_deriv.is_O_id ⊤).comp_tendsto le_top : _).trans_is_o this).norm_left
end
lemma is_bounded_bilinear_map.has_fderiv_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
has_fderiv_at b (h.deriv p) p :=
(h.has_strict_fderiv_at p).has_fderiv_at
lemma is_bounded_bilinear_map.has_fderiv_within_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
has_fderiv_within_at b (h.deriv p) u p :=
(h.has_fderiv_at p).has_fderiv_within_at
lemma is_bounded_bilinear_map.differentiable_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
differentiable_at 𝕜 b p :=
(h.has_fderiv_at p).differentiable_at
lemma is_bounded_bilinear_map.differentiable_within_at (h : is_bounded_bilinear_map 𝕜 b)
(p : E × F) :
differentiable_within_at 𝕜 b u p :=
(h.differentiable_at p).differentiable_within_at
lemma is_bounded_bilinear_map.fderiv (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
fderiv 𝕜 b p = h.deriv p :=
has_fderiv_at.fderiv (h.has_fderiv_at p)
lemma is_bounded_bilinear_map.fderiv_within (h : is_bounded_bilinear_map 𝕜 b) (p : E × F)
(hxs : unique_diff_within_at 𝕜 u p) : fderiv_within 𝕜 b u p = h.deriv p :=
begin
rw differentiable_at.fderiv_within (h.differentiable_at p) hxs,
exact h.fderiv p
end
lemma is_bounded_bilinear_map.differentiable (h : is_bounded_bilinear_map 𝕜 b) :
differentiable 𝕜 b :=
λx, h.differentiable_at x
lemma is_bounded_bilinear_map.differentiable_on (h : is_bounded_bilinear_map 𝕜 b) :
differentiable_on 𝕜 b u :=
h.differentiable.differentiable_on
lemma is_bounded_bilinear_map.continuous (h : is_bounded_bilinear_map 𝕜 b) :
continuous b :=
h.differentiable.continuous
lemma is_bounded_bilinear_map.continuous_left (h : is_bounded_bilinear_map 𝕜 b) {f : F} :
continuous (λe, b (e, f)) :=
h.continuous.comp (continuous_id.prod_mk continuous_const)
lemma is_bounded_bilinear_map.continuous_right (h : is_bounded_bilinear_map 𝕜 b) {e : E} :
continuous (λf, b (e, f)) :=
h.continuous.comp (continuous_const.prod_mk continuous_id)
end bilinear_map
section smul
/-! ### Derivative of the product of a scalar-valued function and a vector-valued function -/
variables {c : E → 𝕜} {c' : E →L[𝕜] 𝕜}
theorem has_strict_fderiv_at.smul (hc : has_strict_fderiv_at c c' x)
(hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) x :=
(is_bounded_bilinear_map_smul.has_strict_fderiv_at (c x, f x)).comp x $
hc.prod hf
theorem has_fderiv_within_at.smul
(hc : has_fderiv_within_at c c' s x) (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) s x :=
(is_bounded_bilinear_map_smul.has_fderiv_at (c x, f x)).comp_has_fderiv_within_at x $
hc.prod hf
theorem has_fderiv_at.smul (hc : has_fderiv_at c c' x) (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) x :=
(is_bounded_bilinear_map_smul.has_fderiv_at (c x, f x)).comp x $
hc.prod hf
lemma differentiable_within_at.smul
(hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (λ y, c y • f y) s x :=
(hc.has_fderiv_within_at.smul hf.has_fderiv_within_at).differentiable_within_at
@[simp] lemma differentiable_at.smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) :
differentiable_at 𝕜 (λ y, c y • f y) x :=
(hc.has_fderiv_at.smul hf.has_fderiv_at).differentiable_at
lemma differentiable_on.smul (hc : differentiable_on 𝕜 c s) (hf : differentiable_on 𝕜 f s) :
differentiable_on 𝕜 (λ y, c y • f y) s :=
λx hx, (hc x hx).smul (hf x hx)
@[simp] lemma differentiable.smul (hc : differentiable 𝕜 c) (hf : differentiable 𝕜 f) :
differentiable 𝕜 (λ y, c y • f y) :=
λx, (hc x).smul (hf x)
lemma fderiv_within_smul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) :
fderiv_within 𝕜 (λ y, c y • f y) s x =
c x • fderiv_within 𝕜 f s x + (fderiv_within 𝕜 c s x).smul_right (f x) :=
(hc.has_fderiv_within_at.smul hf.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) :
fderiv 𝕜 (λ y, c y • f y) x =
c x • fderiv 𝕜 f x + (fderiv 𝕜 c x).smul_right (f x) :=
(hc.has_fderiv_at.smul hf.has_fderiv_at).fderiv
theorem has_strict_fderiv_at.smul_const (hc : has_strict_fderiv_at c c' x) (f : F) :
has_strict_fderiv_at (λ y, c y • f) (c'.smul_right f) x :=
by simpa only [smul_zero, zero_add] using hc.smul (has_strict_fderiv_at_const f x)
theorem has_fderiv_within_at.smul_const (hc : has_fderiv_within_at c c' s x) (f : F) :
has_fderiv_within_at (λ y, c y • f) (c'.smul_right f) s x :=
by simpa only [smul_zero, zero_add] using hc.smul (has_fderiv_within_at_const f x s)
theorem has_fderiv_at.smul_const (hc : has_fderiv_at c c' x) (f : F) :
has_fderiv_at (λ y, c y • f) (c'.smul_right f) x :=
by simpa only [smul_zero, zero_add] using hc.smul (has_fderiv_at_const f x)
lemma differentiable_within_at.smul_const
(hc : differentiable_within_at 𝕜 c s x) (f : F) :
differentiable_within_at 𝕜 (λ y, c y • f) s x :=
(hc.has_fderiv_within_at.smul_const f).differentiable_within_at
lemma differentiable_at.smul_const (hc : differentiable_at 𝕜 c x) (f : F) :
differentiable_at 𝕜 (λ y, c y • f) x :=
(hc.has_fderiv_at.smul_const f).differentiable_at
lemma differentiable_on.smul_const (hc : differentiable_on 𝕜 c s) (f : F) :
differentiable_on 𝕜 (λ y, c y • f) s :=
λx hx, (hc x hx).smul_const f
lemma differentiable.smul_const (hc : differentiable 𝕜 c) (f : F) :
differentiable 𝕜 (λ y, c y • f) :=
λx, (hc x).smul_const f
lemma fderiv_within_smul_const (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (f : F) :
fderiv_within 𝕜 (λ y, c y • f) s x =
(fderiv_within 𝕜 c s x).smul_right f :=
(hc.has_fderiv_within_at.smul_const f).fderiv_within hxs
lemma fderiv_smul_const (hc : differentiable_at 𝕜 c x) (f : F) :
fderiv 𝕜 (λ y, c y • f) x = (fderiv 𝕜 c x).smul_right f :=
(hc.has_fderiv_at.smul_const f).fderiv
end smul
section mul
/-! ### Derivative of the product of two scalar-valued functions -/
variables {c d : E → 𝕜} {c' d' : E →L[𝕜] 𝕜}
theorem has_strict_fderiv_at.mul
(hc : has_strict_fderiv_at c c' x) (hd : has_strict_fderiv_at d d' x) :
has_strict_fderiv_at (λ y, c y * d y) (c x • d' + d x • c') x :=
by { convert hc.smul hd, ext z, apply mul_comm }
theorem has_fderiv_within_at.mul
(hc : has_fderiv_within_at c c' s x) (hd : has_fderiv_within_at d d' s x) :
has_fderiv_within_at (λ y, c y * d y) (c x • d' + d x • c') s x :=
by { convert hc.smul hd, ext z, apply mul_comm }
theorem has_fderiv_at.mul (hc : has_fderiv_at c c' x) (hd : has_fderiv_at d d' x) :
has_fderiv_at (λ y, c y * d y) (c x • d' + d x • c') x :=
by { convert hc.smul hd, ext z, apply mul_comm }
lemma differentiable_within_at.mul
(hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) :
differentiable_within_at 𝕜 (λ y, c y * d y) s x :=
(hc.has_fderiv_within_at.mul hd.has_fderiv_within_at).differentiable_within_at
@[simp] lemma differentiable_at.mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) :
differentiable_at 𝕜 (λ y, c y * d y) x :=
(hc.has_fderiv_at.mul hd.has_fderiv_at).differentiable_at
lemma differentiable_on.mul (hc : differentiable_on 𝕜 c s) (hd : differentiable_on 𝕜 d s) :
differentiable_on 𝕜 (λ y, c y * d y) s :=
λx hx, (hc x hx).mul (hd x hx)
@[simp] lemma differentiable.mul (hc : differentiable 𝕜 c) (hd : differentiable 𝕜 d) :
differentiable 𝕜 (λ y, c y * d y) :=
λx, (hc x).mul (hd x)
lemma fderiv_within_mul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) :
fderiv_within 𝕜 (λ y, c y * d y) s x =
c x • fderiv_within 𝕜 d s x + d x • fderiv_within 𝕜 c s x :=
(hc.has_fderiv_within_at.mul hd.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) :
fderiv 𝕜 (λ y, c y * d y) x =
c x • fderiv 𝕜 d x + d x • fderiv 𝕜 c x :=
(hc.has_fderiv_at.mul hd.has_fderiv_at).fderiv
theorem has_strict_fderiv_at.mul_const (hc : has_strict_fderiv_at c c' x) (d : 𝕜) :
has_strict_fderiv_at (λ y, c y * d) (d • c') x :=
by simpa only [smul_zero, zero_add] using hc.mul (has_strict_fderiv_at_const d x)
theorem has_fderiv_within_at.mul_const (hc : has_fderiv_within_at c c' s x) (d : 𝕜) :
has_fderiv_within_at (λ y, c y * d) (d • c') s x :=
by simpa only [smul_zero, zero_add] using hc.mul (has_fderiv_within_at_const d x s)
theorem has_fderiv_at.mul_const (hc : has_fderiv_at c c' x) (d : 𝕜) :
has_fderiv_at (λ y, c y * d) (d • c') x :=
begin
rw [← has_fderiv_within_at_univ] at *,
exact hc.mul_const d
end
lemma differentiable_within_at.mul_const
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
differentiable_within_at 𝕜 (λ y, c y * d) s x :=
(hc.has_fderiv_within_at.mul_const d).differentiable_within_at
lemma differentiable_at.mul_const (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
differentiable_at 𝕜 (λ y, c y * d) x :=
(hc.has_fderiv_at.mul_const d).differentiable_at
lemma differentiable_on.mul_const (hc : differentiable_on 𝕜 c s) (d : 𝕜) :
differentiable_on 𝕜 (λ y, c y * d) s :=
λx hx, (hc x hx).mul_const d
lemma differentiable.mul_const (hc : differentiable 𝕜 c) (d : 𝕜) :
differentiable 𝕜 (λ y, c y * d) :=
λx, (hc x).mul_const d
lemma fderiv_within_mul_const (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
fderiv_within 𝕜 (λ y, c y * d) s x = d • fderiv_within 𝕜 c s x :=
(hc.has_fderiv_within_at.mul_const d).fderiv_within hxs
lemma fderiv_mul_const (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
fderiv 𝕜 (λ y, c y * d) x = d • fderiv 𝕜 c x :=
(hc.has_fderiv_at.mul_const d).fderiv
theorem has_strict_fderiv_at.const_mul (hc : has_strict_fderiv_at c c' x) (d : 𝕜) :
has_strict_fderiv_at (λ y, d * c y) (d • c') x :=
begin
simp only [mul_comm d],
exact hc.mul_const d,
end
theorem has_fderiv_within_at.const_mul
(hc : has_fderiv_within_at c c' s x) (d : 𝕜) :
has_fderiv_within_at (λ y, d * c y) (d • c') s x :=
begin
simp only [mul_comm d],
exact hc.mul_const d,
end
theorem has_fderiv_at.const_mul (hc : has_fderiv_at c c' x) (d : 𝕜) :
has_fderiv_at (λ y, d * c y) (d • c') x :=
begin
simp only [mul_comm d],
exact hc.mul_const d,
end
lemma differentiable_within_at.const_mul
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
differentiable_within_at 𝕜 (λ y, d * c y) s x :=
(hc.has_fderiv_within_at.const_mul d).differentiable_within_at
lemma differentiable_at.const_mul (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
differentiable_at 𝕜 (λ y, d * c y) x :=
(hc.has_fderiv_at.const_mul d).differentiable_at
lemma differentiable_on.const_mul (hc : differentiable_on 𝕜 c s) (d : 𝕜) :
differentiable_on 𝕜 (λ y, d * c y) s :=
λx hx, (hc x hx).const_mul d
lemma differentiable.const_mul (hc : differentiable 𝕜 c) (d : 𝕜) :
differentiable 𝕜 (λ y, d * c y) :=
λx, (hc x).const_mul d
lemma fderiv_within_const_mul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
fderiv_within 𝕜 (λ y, d * c y) s x = d • fderiv_within 𝕜 c s x :=
(hc.has_fderiv_within_at.const_mul d).fderiv_within hxs
lemma fderiv_const_mul (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
fderiv 𝕜 (λ y, d * c y) x = d • fderiv 𝕜 c x :=
(hc.has_fderiv_at.const_mul d).fderiv
end mul
section continuous_linear_equiv
/-! ### Differentiability of linear equivs, and invariance of differentiability -/
variable (iso : E ≃L[𝕜] F)
protected lemma continuous_linear_equiv.has_strict_fderiv_at :
has_strict_fderiv_at iso (iso : E →L[𝕜] F) x :=
iso.to_continuous_linear_map.has_strict_fderiv_at
protected lemma continuous_linear_equiv.has_fderiv_within_at :
has_fderiv_within_at iso (iso : E →L[𝕜] F) s x :=
iso.to_continuous_linear_map.has_fderiv_within_at
protected lemma continuous_linear_equiv.has_fderiv_at : has_fderiv_at iso (iso : E →L[𝕜] F) x :=
iso.to_continuous_linear_map.has_fderiv_at_filter
protected lemma continuous_linear_equiv.differentiable_at : differentiable_at 𝕜 iso x :=
iso.has_fderiv_at.differentiable_at
protected lemma continuous_linear_equiv.differentiable_within_at :
differentiable_within_at 𝕜 iso s x :=
iso.differentiable_at.differentiable_within_at
protected lemma continuous_linear_equiv.fderiv : fderiv 𝕜 iso x = iso :=
iso.has_fderiv_at.fderiv
protected lemma continuous_linear_equiv.fderiv_within (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 iso s x = iso :=
iso.to_continuous_linear_map.fderiv_within hxs
protected lemma continuous_linear_equiv.differentiable : differentiable 𝕜 iso :=
λx, iso.differentiable_at
protected lemma continuous_linear_equiv.differentiable_on : differentiable_on 𝕜 iso s :=
iso.differentiable.differentiable_on
lemma continuous_linear_equiv.comp_differentiable_within_at_iff {f : G → E} {s : set G} {x : G} :
differentiable_within_at 𝕜 (iso ∘ f) s x ↔ differentiable_within_at 𝕜 f s x :=
begin
refine ⟨λ H, _, λ H, iso.differentiable.differentiable_at.comp_differentiable_within_at x H⟩,
have : differentiable_within_at 𝕜 (iso.symm ∘ (iso ∘ f)) s x :=
iso.symm.differentiable.differentiable_at.comp_differentiable_within_at x H,
rwa [← function.comp.assoc iso.symm iso f, iso.symm_comp_self] at this,
end
lemma continuous_linear_equiv.comp_differentiable_at_iff {f : G → E} {x : G} :
differentiable_at 𝕜 (iso ∘ f) x ↔ differentiable_at 𝕜 f x :=
by rw [← differentiable_within_at_univ, ← differentiable_within_at_univ,
iso.comp_differentiable_within_at_iff]
lemma continuous_linear_equiv.comp_differentiable_on_iff {f : G → E} {s : set G} :
differentiable_on 𝕜 (iso ∘ f) s ↔ differentiable_on 𝕜 f s :=
begin
rw [differentiable_on, differentiable_on],
simp only [iso.comp_differentiable_within_at_iff],
end
lemma continuous_linear_equiv.comp_differentiable_iff {f : G → E} :
differentiable 𝕜 (iso ∘ f) ↔ differentiable 𝕜 f :=
begin
rw [← differentiable_on_univ, ← differentiable_on_univ],
exact iso.comp_differentiable_on_iff
end
lemma continuous_linear_equiv.comp_has_fderiv_within_at_iff
{f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] E} :
has_fderiv_within_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') s x ↔ has_fderiv_within_at f f' s x :=
begin
refine ⟨λ H, _, λ H, iso.has_fderiv_at.comp_has_fderiv_within_at x H⟩,
have A : f = iso.symm ∘ (iso ∘ f), by { rw [← function.comp.assoc, iso.symm_comp_self], refl },
have B : f' = (iso.symm : F →L[𝕜] E).comp ((iso : E →L[𝕜] F).comp f'),
by rw [← continuous_linear_map.comp_assoc, iso.coe_symm_comp_coe, continuous_linear_map.id_comp],
rw [A, B],
exact iso.symm.has_fderiv_at.comp_has_fderiv_within_at x H
end
lemma continuous_linear_equiv.comp_has_strict_fderiv_at_iff {f : G → E} {x : G} {f' : G →L[𝕜] E} :
has_strict_fderiv_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') x ↔ has_strict_fderiv_at f f' x :=
begin
refine ⟨λ H, _, λ H, iso.has_strict_fderiv_at.comp x H⟩,
convert iso.symm.has_strict_fderiv_at.comp x H; ext z; apply (iso.symm_apply_apply _).symm
end
lemma continuous_linear_equiv.comp_has_fderiv_at_iff {f : G → E} {x : G} {f' : G →L[𝕜] E} :
has_fderiv_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') x ↔ has_fderiv_at f f' x :=
by rw [← has_fderiv_within_at_univ, ← has_fderiv_within_at_univ, iso.comp_has_fderiv_within_at_iff]
lemma continuous_linear_equiv.comp_has_fderiv_within_at_iff'
{f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] F} :
has_fderiv_within_at (iso ∘ f) f' s x ↔
has_fderiv_within_at f ((iso.symm : F →L[𝕜] E).comp f') s x :=
by rw [← iso.comp_has_fderiv_within_at_iff, ← continuous_linear_map.comp_assoc,
iso.coe_comp_coe_symm, continuous_linear_map.id_comp]
lemma continuous_linear_equiv.comp_has_fderiv_at_iff' {f : G → E} {x : G} {f' : G →L[𝕜] F} :
has_fderiv_at (iso ∘ f) f' x ↔ has_fderiv_at f ((iso.symm : F →L[𝕜] E).comp f') x :=
by rw [← has_fderiv_within_at_univ, ← has_fderiv_within_at_univ, iso.comp_has_fderiv_within_at_iff']
lemma continuous_linear_equiv.comp_fderiv_within {f : G → E} {s : set G} {x : G}
(hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (iso ∘ f) s x = (iso : E →L[𝕜] F).comp (fderiv_within 𝕜 f s x) :=
begin
by_cases h : differentiable_within_at 𝕜 f s x,
{ rw [fderiv.comp_fderiv_within x iso.differentiable_at h hxs, iso.fderiv] },
{ have : ¬differentiable_within_at 𝕜 (iso ∘ f) s x,
from mt iso.comp_differentiable_within_at_iff.1 h,
rw [fderiv_within_zero_of_not_differentiable_within_at h,
fderiv_within_zero_of_not_differentiable_within_at this,
continuous_linear_map.comp_zero] }
end
lemma continuous_linear_equiv.comp_fderiv {f : G → E} {x : G} :
fderiv 𝕜 (iso ∘ f) x = (iso : E →L[𝕜] F).comp (fderiv 𝕜 f x) :=
begin
rw [← fderiv_within_univ, ← fderiv_within_univ],
exact iso.comp_fderiv_within unique_diff_within_at_univ,
end
end continuous_linear_equiv
/-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an
invertible derivative `f'` at `g a` in the strict sense, then `g` has the derivative `f'⁻¹` at `a`
in the strict sense.
This is one of the easy parts of the inverse function theorem: it assumes that we already have an
inverse function. -/
theorem has_strict_fderiv_at.of_local_left_inverse {f : E → F} {f' : E ≃L[𝕜] F} {g : F → E} {a : F}
(hg : continuous_at g a) (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) (g a))
(hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) :
has_strict_fderiv_at g (f'.symm : F →L[𝕜] E) a :=
begin
replace hg := hg.prod_map' hg,
replace hfg := hfg.prod_mk_nhds hfg,
have : is_O (λ p : F × F, g p.1 - g p.2 - f'.symm (p.1 - p.2))
(λ p : F × F, f' (g p.1 - g p.2) - (p.1 - p.2)) (𝓝 (a, a)),
{ refine ((f'.symm : F →L[𝕜] E).is_O_comp _ _).congr (λ x, _) (λ _, rfl),
simp },
refine this.trans_is_o _, clear this,
refine ((hf.comp_tendsto hg).symm.congr' (hfg.mono _)
(eventually_of_forall _ $ λ _, rfl)).trans_is_O _,
{ rintros p ⟨hp1, hp2⟩,
simp [hp1, hp2] },
{ refine (hf.is_O_sub_rev.comp_tendsto hg).congr'
(eventually_of_forall _ $ λ _, rfl) (hfg.mono _),
rintros p ⟨hp1, hp2⟩,
simp only [(∘), hp1, hp2] }
end
/-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an
invertible derivative `f'` at `g a`, then `g` has the derivative `f'⁻¹` at `a`.
This is one of the easy parts of the inverse function theorem: it assumes that we already have
an inverse function. -/
theorem has_fderiv_at.of_local_left_inverse {f : E → F} {f' : E ≃L[𝕜] F} {g : F → E} {a : F}
(hg : continuous_at g a) (hf : has_fderiv_at f (f' : E →L[𝕜] F) (g a))
(hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) :
has_fderiv_at g (f'.symm : F →L[𝕜] E) a :=
begin
have : is_O (λ x : F, g x - g a - f'.symm (x - a)) (λ x : F, f' (g x - g a) - (x - a)) (𝓝 a),
{ refine ((f'.symm : F →L[𝕜] E).is_O_comp _ _).congr (λ x, _) (λ _, rfl),
simp },
refine this.trans_is_o _, clear this,
refine ((hf.comp_tendsto hg).symm.congr' (hfg.mono _)
(eventually_of_forall _ $ λ _, rfl)).trans_is_O _,
{ rintros p hp,
simp [hp, hfg.self_of_nhds] },
{ refine (hf.is_O_sub_rev.comp_tendsto hg).congr'
(eventually_of_forall _ $ λ _, rfl) (hfg.mono _),
rintros p hp,
simp only [(∘), hp, hfg.self_of_nhds] }
end
end
section
/-
In the special case of a normed space over the reals,
we can use scalar multiplication in the `tendsto` characterization
of the Fréchet derivative.
-/
variables {E : Type*} [normed_group E] [normed_space ℝ E]
variables {F : Type*} [normed_group F] [normed_space ℝ F]
variables {f : E → F} {f' : E →L[ℝ] F} {x : E}
theorem has_fderiv_at_filter_real_equiv {L : filter E} :
tendsto (λ x' : E, ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) L (𝓝 0) ↔
tendsto (λ x' : E, ∥x' - x∥⁻¹ • (f x' - f x - f' (x' - x))) L (𝓝 0) :=
begin
symmetry,
rw [tendsto_iff_norm_tendsto_zero], refine tendsto_congr (λ x', _),
have : ∥x' - x∥⁻¹ ≥ 0, from inv_nonneg.mpr (norm_nonneg _),
simp [norm_smul, real.norm_eq_abs, abs_of_nonneg this]
end
lemma has_fderiv_at.lim_real (hf : has_fderiv_at f f' x) (v : E) :
tendsto (λ (c:ℝ), c • (f (x + c⁻¹ • v) - f x)) at_top (𝓝 (f' v)) :=
begin
apply hf.lim v,
rw tendsto_at_top_at_top,
exact λ b, ⟨b, λ a ha, le_trans ha (le_abs_self _)⟩
end
end
section tangent_cone
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{F : Type*} [normed_group F] [normed_space 𝕜 F]
{f : E → F} {s : set E} {f' : E →L[𝕜] F}
/-- The image of a tangent cone under the differential of a map is included in the tangent cone to
the image. -/
lemma has_fderiv_within_at.maps_to_tangent_cone {x : E} (h : has_fderiv_within_at f f' s x) :
maps_to f' (tangent_cone_at 𝕜 s x) (tangent_cone_at 𝕜 (f '' s) (f x)) :=
begin
rintros v ⟨c, d, dtop, clim, cdlim⟩,
refine ⟨c, (λn, f (x + d n) - f x), mem_sets_of_superset dtop _, clim, h.lim at_top dtop clim cdlim⟩,
simp [-mem_image, mem_image_of_mem] {contextual := tt}
end
/-- If a set has the unique differentiability property at a point x, then the image of this set
under a map with onto derivative has also the unique differentiability property at the image point.
-/
lemma has_fderiv_within_at.unique_diff_within_at {x : E} (h : has_fderiv_within_at f f' s x)
(hs : unique_diff_within_at 𝕜 s x) (h' : closure (range f') = univ) :
unique_diff_within_at 𝕜 (f '' s) (f x) :=
begin
have B : ∀v ∈ (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E),
f' v ∈ (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x)) : set F),
{ assume v hv,
apply submodule.span_induction hv,
{ exact λ w hw, submodule.subset_span (h.maps_to_tangent_cone hw) },
{ simp },
{ assume w₁ w₂ hw₁ hw₂,
rw continuous_linear_map.map_add,
exact submodule.add_mem (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x))) hw₁ hw₂ },
{ assume a w hw,
rw continuous_linear_map.map_smul,
exact submodule.smul_mem (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x))) _ hw } },
rw [unique_diff_within_at, ← univ_subset_iff],
split,
show f x ∈ closure (f '' s), from h.continuous_within_at.mem_closure_image hs.2,
show univ ⊆ closure ↑(submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x))), from calc
univ ⊆ closure (range f') : univ_subset_iff.2 h'
... = closure (f' '' univ) : by rw image_univ
... = closure (f' '' (closure (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E))) : by rw hs.1
... ⊆ closure (closure (f' '' (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E))) :
closure_mono (image_closure_subset_closure_image f'.cont)
... = closure (f' '' (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E)) : closure_closure
... ⊆ closure (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x)) : set F) :
closure_mono (image_subset_iff.mpr B)
end
lemma has_fderiv_within_at.unique_diff_within_at_of_continuous_linear_equiv
{x : E} (e' : E ≃L[𝕜] F) (h : has_fderiv_within_at f (e' : E →L[𝕜] F) s x)
(hs : unique_diff_within_at 𝕜 s x) :
unique_diff_within_at 𝕜 (f '' s) (f x) :=
begin
apply h.unique_diff_within_at hs,
have : set.range (e' : E →L[𝕜] F) = univ := e'.to_linear_equiv.to_equiv.range_eq_univ,
rw [this, closure_univ]
end
lemma continuous_linear_equiv.unique_diff_on_preimage_iff (e : F ≃L[𝕜] E) :
unique_diff_on 𝕜 (e ⁻¹' s) ↔ unique_diff_on 𝕜 s :=
begin
split,
{ assume hs x hx,
have A : s = e '' (e.symm '' s) :=
(equiv.symm_image_image (e.symm.to_linear_equiv.to_equiv) s).symm,
have B : e.symm '' s = e⁻¹' s :=
equiv.image_eq_preimage e.symm.to_linear_equiv.to_equiv s,
rw [A, B, (e.apply_symm_apply x).symm],
refine has_fderiv_within_at.unique_diff_within_at_of_continuous_linear_equiv e
e.has_fderiv_within_at (hs _ _),
rwa [mem_preimage, e.apply_symm_apply x] },
{ assume hs x hx,
have : e ⁻¹' s = e.symm '' s :=
(equiv.image_eq_preimage e.symm.to_linear_equiv.to_equiv s).symm,
rw [this, (e.symm_apply_apply x).symm],
exact has_fderiv_within_at.unique_diff_within_at_of_continuous_linear_equiv e.symm
e.symm.has_fderiv_within_at (hs _ hx) },
end
end tangent_cone
section restrict_scalars
/-!
### Restricting from `ℂ` to `ℝ`, or generally from `𝕜'` to `𝕜`
If a function is differentiable over `ℂ`, then it is differentiable over `ℝ`. In this paragraph,
we give variants of this statement, in the general situation where `ℂ` and `ℝ` are replaced
respectively by `𝕜'` and `𝕜` where `𝕜'` is a normed algebra over `𝕜`.
-/
variables (𝕜 : Type*) [nondiscrete_normed_field 𝕜]
{𝕜' : Type*} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
{E : Type*} [normed_group E] [normed_space 𝕜' E]
{F : Type*} [normed_group F] [normed_space 𝕜' F]
{f : E → F} {f' : E →L[𝕜'] F} {s : set E} {x : E}
local attribute [instance] normed_space.restrict_scalars
lemma has_strict_fderiv_at.restrict_scalars (h : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at f (f'.restrict_scalars 𝕜) x := h
lemma has_fderiv_at.restrict_scalars (h : has_fderiv_at f f' x) :
has_fderiv_at f (f'.restrict_scalars 𝕜) x := h
lemma has_fderiv_within_at.restrict_scalars (h : has_fderiv_within_at f f' s x) :
has_fderiv_within_at f (f'.restrict_scalars 𝕜) s x := h
lemma differentiable_at.restrict_scalars (h : differentiable_at 𝕜' f x) :
differentiable_at 𝕜 f x :=
(h.has_fderiv_at.restrict_scalars 𝕜).differentiable_at
lemma differentiable_within_at.restrict_scalars (h : differentiable_within_at 𝕜' f s x) :
differentiable_within_at 𝕜 f s x :=
(h.has_fderiv_within_at.restrict_scalars 𝕜).differentiable_within_at
lemma differentiable_on.restrict_scalars (h : differentiable_on 𝕜' f s) :
differentiable_on 𝕜 f s :=
λx hx, (h x hx).restrict_scalars 𝕜
lemma differentiable.restrict_scalars (h : differentiable 𝕜' f) :
differentiable 𝕜 f :=
λx, (h x).restrict_scalars 𝕜
end restrict_scalars
|
c9dbbbf956351938ccdb08e122503d032222ea55
|
626e312b5c1cb2d88fca108f5933076012633192
|
/src/algebra/monoid_algebra/basic.lean
|
6a7c84814cd4c240c9e56a5601a1596f78e84a51
|
[
"Apache-2.0"
] |
permissive
|
Bioye97/mathlib
|
9db2f9ee54418d29dd06996279ba9dc874fd6beb
|
782a20a27ee83b523f801ff34efb1a9557085019
|
refs/heads/master
| 1,690,305,956,488
| 1,631,067,774,000
| 1,631,067,774,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 55,862
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Yury G. Kudryashov, Scott Morrison
-/
import algebra.big_operators.finsupp
import linear_algebra.finsupp
import algebra.non_unital_alg_hom
/-!
# Monoid algebras
When the domain of a `finsupp` has a multiplicative or additive structure, we can define
a convolution product. To mathematicians this structure is known as the "monoid algebra",
i.e. the finite formal linear combinations over a given semiring of elements of the monoid.
The "group ring" ℤ[G] or the "group algebra" k[G] are typical uses.
In fact the construction of the "monoid algebra" makes sense when `G` is not even a monoid, but
merely a magma, i.e., when `G` carries a multiplication which is not required to satisfy any
conditions at all. In this case the construction yields a not-necessarily-unital,
not-necessarily-associative algebra but it is still adjoint to the forgetful functor from such
algebras to magmas, and we prove this as `monoid_algebra.lift_magma`.
In this file we define `monoid_algebra k G := G →₀ k`, and `add_monoid_algebra k G`
in the same way, and then define the convolution product on these.
When the domain is additive, this is used to define polynomials:
```
polynomial α := add_monoid_algebra ℕ α
mv_polynomial σ α := add_monoid_algebra (σ →₀ ℕ) α
```
When the domain is multiplicative, e.g. a group, this will be used to define the group ring.
## Implementation note
Unfortunately because additive and multiplicative structures both appear in both cases,
it doesn't appear to be possible to make much use of `to_additive`, and we just settle for
saying everything twice.
Similarly, I attempted to just define
`add_monoid_algebra k G := monoid_algebra k (multiplicative G)`, but the definitional equality
`multiplicative G = G` leaks through everywhere, and seems impossible to use.
-/
noncomputable theory
open_locale classical big_operators
open finset finsupp
universes u₁ u₂ u₃
variables (k : Type u₁) (G : Type u₂)
/-! ### Multiplicative monoids -/
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid, has_coe_to_fun]]
def monoid_algebra : Type (max u₁ u₂) := G →₀ k
end
namespace monoid_algebra
variables {k G}
section has_mul
variables [semiring k] [has_mul G]
/-- The product of `f g : monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x * y = a`. (Think of the group ring of a group.) -/
instance : has_mul (monoid_algebra k G) :=
⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)⟩
lemma mul_def {f g : monoid_algebra k G} :
f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)) :=
rfl
instance : non_unital_non_assoc_semiring (monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add],
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, zero_mul,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero,
sum_add],
zero_mul := assume f, by simp only [mul_def, sum_zero_index],
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero],
.. finsupp.add_comm_monoid }
end has_mul
section semigroup
variables [semiring k] [semigroup G]
instance : non_unital_semiring (monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
.. monoid_algebra.non_unital_non_assoc_semiring}
end semigroup
section has_one
variables [semiring k] [has_one G]
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `1` and zero elsewhere. -/
instance : has_one (monoid_algebra k G) :=
⟨single 1 1⟩
lemma one_def : (1 : monoid_algebra k G) = single 1 1 :=
rfl
end has_one
section mul_one_class
variables [semiring k] [mul_one_class G]
instance : non_assoc_semiring (monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
..monoid_algebra.non_unital_non_assoc_semiring }
variables {R : Type*} [semiring R]
/-- A non-commutative version of `monoid_algebra.lift`: given a additive homomorphism `f : k →+ R`
and a multiplicative monoid homomorphism `g : G →* R`, returns the additive homomorphism from
`monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f` is a ring homomorphism
and the range of either `f` or `g` is in center of `R`, then the result is a ring homomorphism. If
`R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra homomorphism called
`monoid_algebra.lift`. -/
def lift_nc (f : k →+ R) (g : G →* R) : monoid_algebra k G →+ R :=
lift_add_hom (λ x : G, (add_monoid_hom.mul_right (g x)).comp f)
@[simp] lemma lift_nc_single (f : k →+ R) (g : G →* R) (a : G) (b : k) :
lift_nc f g (single a b) = f b * g a :=
lift_add_hom_apply_single _ _ _
@[simp] lemma lift_nc_one (f : k →+* R) (g : G →* R) : lift_nc (f : k →+ R) g 1 = 1 :=
by simp [one_def]
lemma lift_nc_mul (f : k →+* R) (g : G →* R)
(a b : monoid_algebra k G) (h_comm : ∀ {x y}, y ∈ a.support → commute (f (b x)) (g y)) :
lift_nc (f : k →+ R) g (a * b) = lift_nc (f : k →+ R) g a * lift_nc (f : k →+ R) g b :=
begin
conv_rhs { rw [← sum_single a, ← sum_single b] },
simp_rw [mul_def, (lift_nc _ g).map_finsupp_sum, lift_nc_single, finsupp.sum_mul,
finsupp.mul_sum],
refine finset.sum_congr rfl (λ y hy, finset.sum_congr rfl (λ x hx, _)),
simp [mul_assoc, (h_comm hy).left_comm]
end
end mul_one_class
/-! #### Semiring structure -/
section semiring
variables [semiring k] [monoid G]
instance : semiring (monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
.. monoid_algebra.non_unital_semiring,
.. monoid_algebra.non_assoc_semiring }
variables {R : Type*} [semiring R]
/-- `lift_nc` as a `ring_hom`, for when `f x` and `g y` commute -/
def lift_nc_ring_hom (f : k →+* R) (g : G →* R) (h_comm : ∀ x y, commute (f x) (g y)) :
monoid_algebra k G →+* R :=
{ to_fun := lift_nc (f : k →+ R) g,
map_one' := lift_nc_one _ _,
map_mul' := λ a b, lift_nc_mul _ _ _ _ $ λ _ _ _, h_comm _ _,
..(lift_nc (f : k →+ R) g)}
end semiring
instance [comm_semiring k] [comm_monoid G] : comm_semiring (monoid_algebra k G) :=
{ mul_comm := assume f g,
begin
simp only [mul_def, finsupp.sum, mul_comm],
rw [finset.sum_comm],
simp only [mul_comm]
end,
.. monoid_algebra.semiring }
instance [semiring k] [nontrivial k] [nonempty G]: nontrivial (monoid_algebra k G) :=
finsupp.nontrivial
/-! #### Derived instances -/
section derived_instances
instance [semiring k] [subsingleton k] : unique (monoid_algebra k G) :=
finsupp.unique_of_right
instance [ring k] : add_group (monoid_algebra k G) :=
finsupp.add_group
instance [ring k] [monoid G] : ring (monoid_algebra k G) :=
{ neg := has_neg.neg,
add_left_neg := add_left_neg,
.. monoid_algebra.semiring }
instance [comm_ring k] [comm_monoid G] : comm_ring (monoid_algebra k G) :=
{ mul_comm := mul_comm, .. monoid_algebra.ring}
variables {R S : Type*}
instance [monoid R] [semiring k] [distrib_mul_action R k] :
has_scalar R (monoid_algebra k G) :=
finsupp.has_scalar
instance [monoid R] [semiring k] [distrib_mul_action R k] :
distrib_mul_action R (monoid_algebra k G) :=
finsupp.distrib_mul_action G k
instance [semiring R] [semiring k] [module R k] :
module R (monoid_algebra k G) :=
finsupp.module G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_scalar R k] [nonempty G] :
has_faithful_scalar R (monoid_algebra k G) :=
finsupp.has_faithful_scalar
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[has_scalar R S] [is_scalar_tower R S k] :
is_scalar_tower R S (monoid_algebra k G) :=
finsupp.is_scalar_tower G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[smul_comm_class R S k] :
smul_comm_class R S (monoid_algebra k G) :=
finsupp.smul_comm_class G k
instance comap_distrib_mul_action_self [group G] [semiring k] :
distrib_mul_action G (monoid_algebra k G) :=
finsupp.comap_distrib_mul_action_self
end derived_instances
section misc_theorems
variables [semiring k]
local attribute [reducible] monoid_algebra
lemma mul_apply [has_mul G] (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ * a₂ = x then b₁ * b₂ else 0) :=
begin
rw [mul_def],
simp only [finsupp.sum_apply, single_apply],
end
lemma mul_apply_antidiagonal [has_mul G] (f g : monoid_algebra k G) (x : G) (s : finset (G × G))
(hs : ∀ {p : G × G}, p ∈ s ↔ p.1 * p.2 = x) :
(f * g) x = ∑ p in s, (f p.1 * g p.2) :=
let F : G × G → k := λ p, if p.1 * p.2 = x then f p.1 * g p.2 else 0 in
calc (f * g) x = (∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂)) :
mul_apply f g x
... = ∑ p in f.support.product g.support, F p : finset.sum_product.symm
... = ∑ p in (f.support.product g.support).filter (λ p : G × G, p.1 * p.2 = x), f p.1 * g p.2 :
(finset.sum_filter _ _).symm
... = ∑ p in s.filter (λ p : G × G, p.1 ∈ f.support ∧ p.2 ∈ g.support), f p.1 * g p.2 :
sum_congr (by { ext, simp only [mem_filter, mem_product, hs, and_comm] }) (λ _ _, rfl)
... = ∑ p in s, f p.1 * g p.2 : sum_subset (filter_subset _ _) $ λ p hps hp,
begin
simp only [mem_filter, mem_support_iff, not_and, not_not] at hp ⊢,
by_cases h1 : f p.1 = 0,
{ rw [h1, zero_mul] },
{ rw [hp hps h1, mul_zero] }
end
lemma support_mul [has_mul G] (a b : monoid_algebra k G) :
(a * b).support ⊆ a.support.bUnion (λa₁, b.support.bUnion $ λa₂, {a₁ * a₂}) :=
subset.trans support_sum $ bUnion_mono $ assume a₁ _,
subset.trans support_sum $ bUnion_mono $ assume a₂ _, support_single_subset
@[simp] lemma single_mul_single [has_mul G] {a₁ a₂ : G} {b₁ b₂ : k} :
(single a₁ b₁ : monoid_algebra k G) * single a₂ b₂ = single (a₁ * a₂) (b₁ * b₂) :=
(sum_single_index (by simp only [zero_mul, single_zero, sum_zero])).trans
(sum_single_index (by rw [mul_zero, single_zero]))
@[simp] lemma single_pow [monoid G] {a : G} {b : k} :
∀ n : ℕ, (single a b : monoid_algebra k G)^n = single (a^n) (b ^ n)
| 0 := by { simp only [pow_zero], refl }
| (n+1) := by simp only [pow_succ, single_pow n, single_mul_single]
section
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/
lemma map_domain_mul {α : Type*} {β : Type*} {α₂ : Type*} [semiring β] [has_mul α] [has_mul α₂]
{x y : monoid_algebra β α} (f : mul_hom α α₂) :
(map_domain f (x * y : monoid_algebra β α) : monoid_algebra β α₂) =
(map_domain f x * map_domain f y : monoid_algebra β α₂) :=
begin
simp_rw [mul_def, map_domain_sum, map_domain_single, f.map_mul],
rw finsupp.sum_map_domain_index,
{ congr,
ext a b,
rw finsupp.sum_map_domain_index,
{ simp },
{ simp [mul_add] } },
{ simp },
{ simp [add_mul] }
end
variables (k G)
/-- The embedding of a magma into its magma algebra. -/
@[simps] def of_magma [has_mul G] : mul_hom G (monoid_algebra k G) :=
{ to_fun := λ a, single a 1,
map_mul' := λ a b, by simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], }
/-- The embedding of a unital magma into its magma algebra. -/
@[simps] def of [mul_one_class G] : G →* monoid_algebra k G :=
{ to_fun := λ a, single a 1,
map_one' := rfl,
.. of_magma k G }
end
lemma of_injective [mul_one_class G] [nontrivial k] : function.injective (of k G) :=
λ a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h
lemma mul_single_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k}
{x y z : G} (H : ∀ a, a * x = z ↔ a = y) :
(f * single x r) z = f y * r :=
have A : ∀ a₁ b₁, (single x r).sum (λ a₂ b₂, ite (a₁ * a₂ = z) (b₁ * b₂) 0) =
ite (a₁ * x = z) (b₁ * r) 0,
from λ a₁ b₁, sum_single_index $ by simp,
calc (f * single x r) z = sum f (λ a b, if (a = y) then (b * r) else 0) :
-- different `decidable` instances make it not trivial
by { simp only [mul_apply, A, H], congr, funext, split_ifs; refl }
... = if y ∈ f.support then f y * r else 0 : f.support.sum_ite_eq' _ _
... = f y * r : by split_ifs with h; simp at h; simp [h]
lemma mul_single_one_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) :
(f * single 1 r) x = f x * r :=
f.mul_single_apply_aux $ λ a, by rw [mul_one]
lemma single_mul_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k} {x y z : G}
(H : ∀ a, x * a = y ↔ a = z) :
(single x r * f) y = r * f z :=
have f.sum (λ a b, ite (x * a = y) (0 * b) 0) = 0, by simp,
calc (single x r * f) y = sum f (λ a b, ite (x * a = y) (r * b) 0) :
(mul_apply _ _ _).trans $ sum_single_index this
... = f.sum (λ a b, ite (a = z) (r * b) 0) :
by { simp only [H], congr' with g s, split_ifs; refl }
... = if z ∈ f.support then (r * f z) else 0 : f.support.sum_ite_eq' _ _
... = _ : by split_ifs with h; simp at h; simp [h]
lemma single_one_mul_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) :
(single 1 r * f) x = r * f x :=
f.single_mul_apply_aux $ λ a, by rw [one_mul]
lemma lift_nc_smul [mul_one_class G] {R : Type*} [semiring R] (f : k →+* R) (g : G →* R) (c : k)
(φ : monoid_algebra k G) :
lift_nc (f : k →+ R) g (c • φ) = f c * lift_nc (f : k →+ R) g φ :=
begin
suffices : (lift_nc ↑f g).comp (smul_add_hom k (monoid_algebra k G) c) =
(add_monoid_hom.mul_left (f c)).comp (lift_nc ↑f g),
from add_monoid_hom.congr_fun this φ,
ext a b, simp [mul_assoc]
end
end misc_theorems
/-! #### Non-unital, non-associative algebra structure -/
section non_unital_non_assoc_algebra
variables {R : Type*} (k) [semiring R] [semiring k] [distrib_mul_action R k] [has_mul G]
instance is_scalar_tower_self [is_scalar_tower R k k] :
is_scalar_tower R (monoid_algebra k G) (monoid_algebra k G) :=
⟨λ t a b,
begin
ext m,
simp only [mul_apply, finsupp.smul_sum, smul_ite, smul_mul_assoc, sum_smul_index', zero_mul,
if_t_t, implies_true_iff, eq_self_iff_true, sum_zero, coe_smul, smul_eq_mul, pi.smul_apply,
smul_zero],
end⟩
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they
also commute with the algebra multiplication. -/
instance smul_comm_class_self [smul_comm_class R k k] :
smul_comm_class R (monoid_algebra k G) (monoid_algebra k G) :=
⟨λ t a b,
begin
ext m,
simp only [mul_apply, finsupp.sum, finset.smul_sum, smul_ite, mul_smul_comm, sum_smul_index',
implies_true_iff, eq_self_iff_true, coe_smul, ite_eq_right_iff, smul_eq_mul, pi.smul_apply,
mul_zero, smul_zero],
end⟩
instance smul_comm_class_symm_self [smul_comm_class k R k] :
smul_comm_class (monoid_algebra k G) R (monoid_algebra k G) :=
⟨λ t a b, by { haveI := smul_comm_class.symm k R k, rw ← smul_comm, } ⟩
variables {A : Type u₃} [non_unital_non_assoc_semiring A]
/-- A non_unital `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma non_unital_alg_hom_ext [distrib_mul_action k A]
{φ₁ φ₂ : non_unital_alg_hom k (monoid_algebra k G) A}
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
non_unital_alg_hom.to_distrib_mul_action_hom_injective $
finsupp.distrib_mul_action_hom_ext' $
λ a, distrib_mul_action_hom.ext_ring (h a)
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A]
{φ₁ φ₂ : non_unital_alg_hom k (monoid_algebra k G) A}
(h : φ₁.to_mul_hom.comp (of_magma k G) = φ₂.to_mul_hom.comp (of_magma k G)) : φ₁ = φ₂ :=
non_unital_alg_hom_ext k $ mul_hom.congr_fun h
/-- The functor `G ↦ monoid_algebra k G`, from the category of magmas to the category of non-unital,
non-associative algebras over `k` is adjoint to the forgetful functor in the other direction. -/
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] :
mul_hom G A ≃ non_unital_alg_hom k (monoid_algebra k G) A :=
{ to_fun := λ f,
{ to_fun := λ a, a.sum (λ m t, t • f m),
map_smul' := λ t' a,
begin
rw [finsupp.smul_sum, sum_smul_index'],
{ simp_rw smul_assoc, },
{ intros m, exact zero_smul k (f m), },
end,
map_mul' := λ a₁ a₂,
begin
let g : G → k → A := λ m t, t • f m,
have h₁ : ∀ m, g m 0 = 0, { intros, exact zero_smul k (f m), },
have h₂ : ∀ m (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂, { intros, rw ← add_smul, },
simp_rw [finsupp.mul_sum, finsupp.sum_mul, smul_mul_smul, ← f.map_mul, mul_def,
sum_comm a₂ a₁, sum_sum_index h₁ h₂, sum_single_index (h₁ _)],
end,
.. lift_add_hom (λ x, (smul_add_hom k A).flip (f x)) },
inv_fun := λ F, F.to_mul_hom.comp (of_magma k G),
left_inv := λ f, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply,
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul,
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], },
right_inv := λ F, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply,
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul,
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], }, }
end non_unital_non_assoc_algebra
/-! #### Algebra structure -/
section algebra
local attribute [reducible] monoid_algebra
lemma single_one_comm [comm_semiring k] [mul_one_class G] (r : k) (f : monoid_algebra k G) :
single 1 r * f = f * single 1 r :=
by { ext, rw [single_one_mul_apply, mul_single_one_apply, mul_comm] }
/-- `finsupp.single 1` as a `ring_hom` -/
@[simps] def single_one_ring_hom [semiring k] [monoid G] : k →+* monoid_algebra k G :=
{ map_one' := rfl,
map_mul' := λ x y, by rw [single_add_hom, single_mul_single, one_mul],
..finsupp.single_add_hom 1}
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1`
and `single 1 b`, then they are equal. -/
lemma ring_hom_ext {R} [semiring k] [monoid G] [semiring R]
{f g : monoid_algebra k G →+* R} (h₁ : ∀ b, f (single 1 b) = g (single 1 b))
(h_of : ∀ a, f (single a 1) = g (single a 1)) : f = g :=
ring_hom.coe_add_monoid_hom_injective $ add_hom_ext $ λ a b,
by rw [← one_mul a, ← mul_one b, ← single_mul_single, f.coe_add_monoid_hom,
g.coe_add_monoid_hom, f.map_mul, g.map_mul, h₁, h_of]
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1`
and `single 1 b`, then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma ring_hom_ext' {R} [semiring k] [monoid G] [semiring R]
{f g : monoid_algebra k G →+* R} (h₁ : f.comp single_one_ring_hom = g.comp single_one_ring_hom)
(h_of : (f : monoid_algebra k G →* R).comp (of k G) =
(g : monoid_algebra k G →* R).comp (of k G)) :
f = g :=
ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of)
/--
The instance `algebra k (monoid_algebra A G)` whenever we have `algebra k A`.
In particular this provides the instance `algebra k (monoid_algebra k G)`.
-/
instance {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
algebra k (monoid_algebra A G) :=
{ smul_def' := λ r a, by { ext, simp [single_one_mul_apply, algebra.smul_def'', pi.smul_apply], },
commutes' := λ r f, by { ext, simp [single_one_mul_apply, mul_single_one_apply,
algebra.commutes], },
..single_one_ring_hom.comp (algebra_map k A) }
/-- `finsupp.single 1` as a `alg_hom` -/
@[simps]
def single_one_alg_hom {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
A →ₐ[k] monoid_algebra A G :=
{ commutes' := λ r, by { ext, simp, refl, }, ..single_one_ring_hom}
@[simp] lemma coe_algebra_map {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
⇑(algebra_map k (monoid_algebra A G)) = single 1 ∘ (algebra_map k A) :=
rfl
lemma single_eq_algebra_map_mul_of [comm_semiring k] [monoid G] (a : G) (b : k) :
single a b = algebra_map k (monoid_algebra k G) b * of k G a :=
by simp
lemma single_algebra_map_eq_algebra_map_mul_of {A : Type*} [comm_semiring k] [semiring A]
[algebra k A] [monoid G] (a : G) (b : k) :
single a (algebra_map k A b) = algebra_map k (monoid_algebra A G) b * of A G a :=
by simp
lemma induction_on [semiring k] [monoid G] {p : monoid_algebra k G → Prop} (f : monoid_algebra k G)
(hM : ∀ g, p (of k G g)) (hadd : ∀ f g : monoid_algebra k G, p f → p g → p (f + g))
(hsmul : ∀ (r : k) f, p f → p (r • f)) : p f :=
begin
refine finsupp.induction_linear f _ (λ f g hf hg, hadd f g hf hg) (λ g r, _),
{ simpa using hsmul 0 (of k G 1) (hM 1) },
{ convert hsmul r (of k G g) (hM g),
simp only [mul_one, smul_single', of_apply] },
end
end algebra
section lift
variables {k G} [comm_semiring k] [monoid G]
variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B]
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/
def lift_nc_alg_hom (f : A →ₐ[k] B) (g : G →* B) (h_comm : ∀ x y, commute (f x) (g y)) :
monoid_algebra A G →ₐ[k] B :=
{ to_fun := lift_nc_ring_hom (f : A →+* B) g h_comm,
commutes' := by simp [lift_nc_ring_hom],
..(lift_nc_ring_hom (f : A →+* B) g h_comm)}
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma alg_hom_ext ⦃φ₁ φ₂ : monoid_algebra k G →ₐ[k] A⦄
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
alg_hom.to_linear_map_injective $ finsupp.lhom_ext' $ λ a, linear_map.ext_ring (h a)
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma alg_hom_ext' ⦃φ₁ φ₂ : monoid_algebra k G →ₐ[k] A⦄
(h : (φ₁ : monoid_algebra k G →* A).comp (of k G) =
(φ₂ : monoid_algebra k G →* A).comp (of k G)) : φ₁ = φ₂ :=
alg_hom_ext $ monoid_hom.congr_fun h
variables (k G A)
/-- Any monoid homomorphism `G →* A` can be lifted to an algebra homomorphism
`monoid_algebra k G →ₐ[k] A`. -/
def lift : (G →* A) ≃ (monoid_algebra k G →ₐ[k] A) :=
{ inv_fun := λ f, (f : monoid_algebra k G →* A).comp (of k G),
to_fun := λ F, lift_nc_alg_hom (algebra.of_id k A) F $ λ _ _, algebra.commutes _ _,
left_inv := λ f, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] },
right_inv := λ F, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] } }
variables {k G A}
lemma lift_apply' (F : G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, (algebra_map k A b) * F a) := rfl
lemma lift_apply (F : G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, b • F a) :=
by simp only [lift_apply', algebra.smul_def]
lemma lift_def (F : G →* A) :
⇑(lift k G A F) = lift_nc ((algebra_map k A : k →+* A) : k →+ A) F :=
rfl
@[simp] lemma lift_symm_apply (F : monoid_algebra k G →ₐ[k] A) (x : G) :
(lift k G A).symm F x = F (single x 1) := rfl
lemma lift_of (F : G →* A) (x) :
lift k G A F (of k G x) = F x :=
by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply]
@[simp] lemma lift_single (F : G →* A) (a b) :
lift k G A F (single a b) = b • F a :=
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom]
lemma lift_unique' (F : monoid_algebra k G →ₐ[k] A) :
F = lift k G A ((F : monoid_algebra k G →* A).comp (of k G)) :=
((lift k G A).apply_symm_apply F).symm
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by
its values on `F (single a 1)`. -/
lemma lift_unique (F : monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) :
F f = f.sum (λ a b, b • F (single a 1)) :=
by conv_lhs { rw lift_unique' F, simp [lift_apply] }
end lift
section
local attribute [reducible] monoid_algebra
variables (k)
/-- When `V` is a `k[G]`-module, multiplication by a group element `g` is a `k`-linear map. -/
def group_smul.linear_map [monoid G] [comm_semiring k]
(V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V] (g : G) :
V →ₗ[k] V :=
{ to_fun := λ v, (single g (1 : k) • v : V),
map_add' := λ x y, smul_add (single g (1 : k)) x y,
map_smul' := λ c x, smul_algebra_smul_comm _ _ _ }
@[simp]
lemma group_smul.linear_map_apply [monoid G] [comm_semiring k]
(V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V] (g : G) (v : V) :
(group_smul.linear_map k V g) v = (single g (1 : k) • v : V) :=
rfl
section
variables {k}
variables [monoid G] [comm_semiring k] {V W : Type u₃}
[add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V]
[add_comm_monoid W] [module k W] [module (monoid_algebra k G) W]
[is_scalar_tower k (monoid_algebra k G) W]
(f : V →ₗ[k] W)
(h : ∀ (g : G) (v : V), f (single g (1 : k) • v : V) = (single g (1 : k) • (f v) : W))
include h
/-- Build a `k[G]`-linear map from a `k`-linear map and evidence that it is `G`-equivariant. -/
def equivariant_of_linear_of_comm : V →ₗ[monoid_algebra k G] W :=
{ to_fun := f,
map_add' := λ v v', by simp,
map_smul' := λ c v,
begin
apply finsupp.induction c,
{ simp, },
{ intros g r c' nm nz w,
simp only [add_smul, f.map_add, w, add_left_inj, single_eq_algebra_map_mul_of, ← smul_smul],
erw [algebra_map_smul (monoid_algebra k G) r, algebra_map_smul (monoid_algebra k G) r,
f.map_smul, h g v, of_apply],
all_goals { apply_instance } }
end, }
@[simp]
lemma equivariant_of_linear_of_comm_apply (v : V) : (equivariant_of_linear_of_comm f h) v = f v :=
rfl
end
end
section
universe ui
variable {ι : Type ui}
local attribute [reducible] monoid_algebra
lemma prod_single [comm_semiring k] [comm_monoid G]
{s : finset ι} {a : ι → G} {b : ι → k} :
(∏ i in s, single (a i) (b i)) = single (∏ i in s, a i) (∏ i in s, b i) :=
finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih,
single_mul_single, prod_insert has, prod_insert has]
end
section -- We now prove some additional statements that hold for group algebras.
variables [semiring k] [group G]
local attribute [reducible] monoid_algebra
@[simp]
lemma mul_single_apply (f : monoid_algebra k G) (r : k) (x y : G) :
(f * single x r) y = f (y * x⁻¹) * r :=
f.mul_single_apply_aux $ λ a, eq_mul_inv_iff_mul_eq.symm
@[simp]
lemma single_mul_apply (r : k) (x : G) (f : monoid_algebra k G) (y : G) :
(single x r * f) y = r * f (x⁻¹ * y) :=
f.single_mul_apply_aux $ λ z, eq_inv_mul_iff_mul_eq.symm
lemma mul_apply_left (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λ a b, b * (g (a⁻¹ * x))) :=
calc (f * g) x = sum f (λ a b, (single a b * g) x) :
by rw [← finsupp.sum_apply, ← finsupp.sum_mul, f.sum_single]
... = _ : by simp only [single_mul_apply, finsupp.sum]
-- If we'd assumed `comm_semiring`, we could deduce this from `mul_apply_left`.
lemma mul_apply_right (f g : monoid_algebra k G) (x : G) :
(f * g) x = (g.sum $ λa b, (f (x * a⁻¹)) * b) :=
calc (f * g) x = sum g (λ a b, (f * single a b) x) :
by rw [← finsupp.sum_apply, ← finsupp.mul_sum, g.sum_single]
... = _ : by simp only [mul_single_apply, finsupp.sum]
end
section span
variables [semiring k] [mul_one_class G]
/-- An element of `monoid_algebra R M` is in the subalgebra generated by its support. -/
lemma mem_span_support (f : monoid_algebra k G) :
f ∈ submodule.span k (of k G '' (f.support : set G)) :=
by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported]
end span
section opposite
open finsupp opposite
variables [semiring k]
/-- The opposite of an `monoid_algebra R I` equivalent as a ring to
the `monoid_algebra Rᵒᵖ Iᵒᵖ` over the opposite ring, taking elements to their opposite. -/
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [monoid G] :
(monoid_algebra k G)ᵒᵖ ≃+* monoid_algebra kᵒᵖ Gᵒᵖ :=
{ map_mul' := begin
dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom],
rw add_monoid_hom.map_mul_iff,
ext i₁ r₁ i₂ r₂ : 6,
simp
end,
..op_add_equiv.symm.trans $ (finsupp.map_range.add_equiv (op_add_equiv : k ≃+ kᵒᵖ)).trans $
finsupp.dom_congr equiv_to_opposite }
@[simp] lemma op_ring_equiv_single [monoid G] (r : k) (x : G) :
monoid_algebra.op_ring_equiv (op (single x r)) = single (op x) (op r) :=
by simp
@[simp] lemma op_ring_equiv_symm_single [monoid G] (r : kᵒᵖ) (x : Gᵒᵖ) :
monoid_algebra.op_ring_equiv.symm (single x r) = op (single x.unop r.unop) :=
by simp
end opposite
end monoid_algebra
/-! ### Additive monoids -/
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the additive monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid, has_coe_to_fun]]
def add_monoid_algebra := G →₀ k
end
namespace add_monoid_algebra
variables {k G}
section has_mul
variables [semiring k] [has_add G]
/-- The product of `f g : add_monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x + y = a`. (Think of the product of multivariate
polynomials where `α` is the additive monoid of monomial exponents.) -/
instance : has_mul (add_monoid_algebra k G) :=
⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)⟩
lemma mul_def {f g : add_monoid_algebra k G} :
f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)) :=
rfl
instance : non_unital_non_assoc_semiring (add_monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add],
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, mul_zero, zero_mul,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero,
sum_add],
zero_mul := assume f, by simp only [mul_def, sum_zero_index],
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero],
nsmul := λ n f, n • f,
nsmul_zero' := by { intros, ext, simp [-nsmul_eq_mul, add_smul] },
nsmul_succ' := by { intros, ext, simp [-nsmul_eq_mul, nat.succ_eq_one_add, add_smul] },
.. finsupp.add_comm_monoid }
end has_mul
section has_one
variables [semiring k] [has_zero G]
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `0` and zero elsewhere. -/
instance : has_one (add_monoid_algebra k G) :=
⟨single 0 1⟩
lemma one_def : (1 : add_monoid_algebra k G) = single 0 1 :=
rfl
end has_one
section semigroup
variables [semiring k] [add_semigroup G]
instance : non_unital_semiring (add_monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
.. add_monoid_algebra.non_unital_non_assoc_semiring }
end semigroup
section mul_one_class
variables [semiring k] [add_zero_class G]
instance : non_assoc_semiring (add_monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
.. add_monoid_algebra.non_unital_non_assoc_semiring }
variables {R : Type*} [semiring R]
/-- A non-commutative version of `add_monoid_algebra.lift`: given a additive homomorphism `f : k →+
R` and a multiplicative monoid homomorphism `g : multiplicative G →* R`, returns the additive
homomorphism from `add_monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f`
is a ring homomorphism and the range of either `f` or `g` is in center of `R`, then the result is a
ring homomorphism. If `R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra
homomorphism called `add_monoid_algebra.lift`. -/
def lift_nc (f : k →+ R) (g : multiplicative G →* R) : add_monoid_algebra k G →+ R :=
lift_add_hom (λ x : G, (add_monoid_hom.mul_right (g $ multiplicative.of_add x)).comp f)
@[simp] lemma lift_nc_single (f : k →+ R) (g : multiplicative G →* R) (a : G) (b : k) :
lift_nc f g (single a b) = f b * g (multiplicative.of_add a) :=
lift_add_hom_apply_single _ _ _
@[simp] lemma lift_nc_one (f : k →+* R) (g : multiplicative G →* R) :
lift_nc (f : k →+ R) g 1 = 1 :=
@monoid_algebra.lift_nc_one k (multiplicative G) _ _ _ _ f g
lemma lift_nc_mul (f : k →+* R) (g : multiplicative G →* R) (a b : add_monoid_algebra k G)
(h_comm : ∀ {x y}, y ∈ a.support → commute (f (b x)) (g $ multiplicative.of_add y)) :
lift_nc (f : k →+ R) g (a * b) = lift_nc (f : k →+ R) g a * lift_nc (f : k →+ R) g b :=
@monoid_algebra.lift_nc_mul k (multiplicative G) _ _ _ _ f g a b @h_comm
end mul_one_class
/-! #### Semiring structure -/
section semiring
instance {R : Type*} [monoid R] [semiring k] [distrib_mul_action R k] :
has_scalar R (add_monoid_algebra k G) :=
finsupp.has_scalar
variables [semiring k] [add_monoid G]
instance : semiring (add_monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
.. add_monoid_algebra.non_unital_semiring,
.. add_monoid_algebra.non_assoc_semiring, }
variables {R : Type*} [semiring R]
/-- `lift_nc` as a `ring_hom`, for when `f` and `g` commute -/
def lift_nc_ring_hom (f : k →+* R) (g : multiplicative G →* R)
(h_comm : ∀ x y, commute (f x) (g y)) :
add_monoid_algebra k G →+* R :=
{ to_fun := lift_nc (f : k →+ R) g,
map_one' := lift_nc_one _ _,
map_mul' := λ a b, lift_nc_mul _ _ _ _ $ λ _ _ _, h_comm _ _,
..(lift_nc (f : k →+ R) g)}
end semiring
instance [comm_semiring k] [add_comm_monoid G] : comm_semiring (add_monoid_algebra k G) :=
{ mul_comm := @mul_comm (monoid_algebra k $ multiplicative G) _,
.. add_monoid_algebra.semiring }
instance [semiring k] [nontrivial k] [nonempty G] : nontrivial (add_monoid_algebra k G) :=
finsupp.nontrivial
/-! #### Derived instances -/
section derived_instances
instance [semiring k] [subsingleton k] : unique (add_monoid_algebra k G) :=
finsupp.unique_of_right
instance [ring k] : add_group (add_monoid_algebra k G) :=
finsupp.add_group
instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) :=
{ neg := has_neg.neg,
add_left_neg := add_left_neg,
sub := has_sub.sub,
sub_eq_add_neg := finsupp.add_group.sub_eq_add_neg,
.. add_monoid_algebra.semiring }
instance [comm_ring k] [add_comm_monoid G] : comm_ring (add_monoid_algebra k G) :=
{ mul_comm := mul_comm, .. add_monoid_algebra.ring}
variables {R S : Type*}
instance [monoid R] [semiring k] [distrib_mul_action R k] :
distrib_mul_action R (add_monoid_algebra k G) :=
finsupp.distrib_mul_action G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_scalar R k] [nonempty G] :
has_faithful_scalar R (add_monoid_algebra k G) :=
finsupp.has_faithful_scalar
instance [semiring R] [semiring k] [module R k] : module R (add_monoid_algebra k G) :=
finsupp.module G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[has_scalar R S] [is_scalar_tower R S k] :
is_scalar_tower R S (add_monoid_algebra k G) :=
finsupp.is_scalar_tower G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[smul_comm_class R S k] :
smul_comm_class R S (add_monoid_algebra k G) :=
finsupp.smul_comm_class G k
/-! It is hard to state the equivalent of `distrib_mul_action G (add_monoid_algebra k G)`
because we've never discussed actions of additive groups. -/
end derived_instances
section misc_theorems
variables [semiring k]
lemma mul_apply [has_add G] (f g : add_monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ + a₂ = x then b₁ * b₂ else 0) :=
@monoid_algebra.mul_apply k (multiplicative G) _ _ _ _ _
lemma mul_apply_antidiagonal [has_add G] (f g : add_monoid_algebra k G) (x : G) (s : finset (G × G))
(hs : ∀ {p : G × G}, p ∈ s ↔ p.1 + p.2 = x) :
(f * g) x = ∑ p in s, (f p.1 * g p.2) :=
@monoid_algebra.mul_apply_antidiagonal k (multiplicative G) _ _ _ _ _ s @hs
lemma support_mul [has_add G] (a b : add_monoid_algebra k G) :
(a * b).support ⊆ a.support.bUnion (λa₁, b.support.bUnion $ λa₂, {a₁ + a₂}) :=
@monoid_algebra.support_mul k (multiplicative G) _ _ _ _
lemma single_mul_single [has_add G] {a₁ a₂ : G} {b₁ b₂ : k} :
(single a₁ b₁ * single a₂ b₂ : add_monoid_algebra k G) = single (a₁ + a₂) (b₁ * b₂) :=
@monoid_algebra.single_mul_single k (multiplicative G) _ _ _ _ _ _
-- This should be a `@[simp]` lemma, but the simp_nf linter times out if we add this.
-- Probably the correct fix is to make a `[add_]monoid_algebra.single` with the correct type,
-- instead of relying on `finsupp.single`.
lemma single_pow [add_monoid G] {a : G} {b : k} :
∀ n : ℕ, ((single a b)^n : add_monoid_algebra k G) = single (n • a) (b ^ n)
| 0 := by { simp only [pow_zero, zero_nsmul], refl }
| (n+1) :=
by rw [pow_succ, pow_succ, single_pow n, single_mul_single, add_comm, add_nsmul, one_nsmul]
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/
lemma map_domain_mul {α : Type*} {β : Type*} {α₂ : Type*}
[semiring β] [has_add α] [has_add α₂]
{x y : add_monoid_algebra β α} (f : add_hom α α₂) :
(map_domain f (x * y : add_monoid_algebra β α) : add_monoid_algebra β α₂) =
(map_domain f x * map_domain f y : add_monoid_algebra β α₂) :=
begin
simp_rw [mul_def, map_domain_sum, map_domain_single, f.map_add],
rw finsupp.sum_map_domain_index,
{ congr,
ext a b,
rw finsupp.sum_map_domain_index,
{ simp },
{ simp [mul_add] } },
{ simp },
{ simp [add_mul] }
end
section
variables (k G)
/-- The embedding of an additive magma into its additive magma algebra. -/
@[simps] def of_magma [has_add G] : mul_hom (multiplicative G) (add_monoid_algebra k G) :=
{ to_fun := λ a, single a 1,
map_mul' := λ a b, by simpa only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], }
/-- Embedding of a magma with zero into its magma algebra. -/
def of [add_zero_class G] : multiplicative G →* add_monoid_algebra k G :=
{ to_fun := λ a, single a 1,
map_one' := rfl,
.. of_magma k G }
/-- Embedding of a magma with zero `G`, into its magma algebra, having `G` as source. -/
def of' : G → add_monoid_algebra k G := λ a, single a 1
end
@[simp] lemma of_apply [add_zero_class G] (a : multiplicative G) : of k G a = single a.to_add 1 :=
rfl
@[simp] lemma of'_apply (a : G) : of' k G a = single a 1 := rfl
lemma of'_eq_of [add_zero_class G] (a : G) : of' k G a = of k G a := rfl
lemma of_injective [nontrivial k] [add_zero_class G] : function.injective (of k G) :=
λ a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h
lemma mul_single_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k)
(x y z : G) (H : ∀ a, a + x = z ↔ a = y) :
(f * single x r) z = f y * r :=
@monoid_algebra.mul_single_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H
lemma mul_single_zero_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) :
(f * single 0 r) x = f x * r :=
f.mul_single_apply_aux r _ _ _ $ λ a, by rw [add_zero]
lemma single_mul_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k) (x y z : G)
(H : ∀ a, x + a = y ↔ a = z) :
(single x r * f : add_monoid_algebra k G) y = r * f z :=
@monoid_algebra.single_mul_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H
lemma single_zero_mul_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) :
(single 0 r * f : add_monoid_algebra k G) x = r * f x :=
f.single_mul_apply_aux r _ _ _ $ λ a, by rw [zero_add]
lemma lift_nc_smul {R : Type*} [add_zero_class G] [semiring R] (f : k →+* R)
(g : multiplicative G →* R) (c : k) (φ : monoid_algebra k G) :
lift_nc (f : k →+ R) g (c • φ) = f c * lift_nc (f : k →+ R) g φ :=
@monoid_algebra.lift_nc_smul k (multiplicative G) _ _ _ _ f g c φ
variables {k G}
lemma induction_on [add_monoid G] {p : add_monoid_algebra k G → Prop} (f : add_monoid_algebra k G)
(hM : ∀ g, p (of k G (multiplicative.of_add g)))
(hadd : ∀ f g : add_monoid_algebra k G, p f → p g → p (f + g))
(hsmul : ∀ (r : k) f, p f → p (r • f)) : p f :=
begin
refine finsupp.induction_linear f _ (λ f g hf hg, hadd f g hf hg) (λ g r, _),
{ simpa using hsmul 0 (of k G (multiplicative.of_add 0)) (hM 0) },
{ convert hsmul r (of k G (multiplicative.of_add g)) (hM g),
simp only [mul_one, to_add_of_add, smul_single', of_apply] },
end
end misc_theorems
section span
variables [semiring k]
/-- An element of `add_monoid_algebra R M` is in the submodule generated by its support. -/
lemma mem_span_support [add_zero_class G] (f : add_monoid_algebra k G) :
f ∈ submodule.span k (of k G '' (f.support : set G)) :=
by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported]
/-- An element of `add_monoid_algebra R M` is in the subalgebra generated by its support, using
unbundled inclusion. -/
lemma mem_span_support' (f : add_monoid_algebra k G) :
f ∈ submodule.span k (of' k G '' (f.support : set G)) :=
by rw [of', ← finsupp.supported_eq_span_single, finsupp.mem_supported]
end span
end add_monoid_algebra
/-!
#### Conversions between `add_monoid_algebra` and `monoid_algebra`
We have not defined `add_monoid_algebra k G = monoid_algebra k (multiplicative G)`
because historically this caused problems;
since the changes that have made `nsmul` definitional, this would be possible,
but for now we just contruct the ring isomorphisms using `ring_equiv.refl _`.
-/
/-- The equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of
`multiplicative` -/
protected def add_monoid_algebra.to_multiplicative [semiring k] [has_add G] :
add_monoid_algebra k G ≃+* monoid_algebra k (multiplicative G) :=
{ to_fun := equiv_map_domain multiplicative.of_add,
map_mul' := λ x y, begin
repeat {rw equiv_map_domain_eq_map_domain},
dsimp [multiplicative.of_add],
convert monoid_algebra.map_domain_mul (mul_hom.id (multiplicative G)),
end,
..finsupp.dom_congr multiplicative.of_add }
/-- The equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of `additive` -/
protected def monoid_algebra.to_additive [semiring k] [has_mul G] :
monoid_algebra k G ≃+* add_monoid_algebra k (additive G) :=
{ to_fun := equiv_map_domain additive.of_mul,
map_mul' := λ x y, begin
repeat {rw equiv_map_domain_eq_map_domain},
dsimp [additive.of_mul],
convert monoid_algebra.map_domain_mul (mul_hom.id G),
end,
..finsupp.dom_congr additive.of_mul }
namespace add_monoid_algebra
variables {k G}
/-! #### Non-unital, non-associative algebra structure -/
section non_unital_non_assoc_algebra
variables {R : Type*} (k) [semiring R] [semiring k] [distrib_mul_action R k] [has_add G]
instance is_scalar_tower_self [is_scalar_tower R k k] :
is_scalar_tower R (add_monoid_algebra k G) (add_monoid_algebra k G) :=
@monoid_algebra.is_scalar_tower_self k (multiplicative G) R _ _ _ _ _
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they
also commute with the algebra multiplication. -/
instance smul_comm_class_self [smul_comm_class R k k] :
smul_comm_class R (add_monoid_algebra k G) (add_monoid_algebra k G) :=
@monoid_algebra.smul_comm_class_self k (multiplicative G) R _ _ _ _ _
instance smul_comm_class_symm_self [smul_comm_class k R k] :
smul_comm_class (add_monoid_algebra k G) R (add_monoid_algebra k G) :=
@monoid_algebra.smul_comm_class_symm_self k (multiplicative G) R _ _ _ _ _
variables {A : Type u₃} [non_unital_non_assoc_semiring A]
/-- A non_unital `k`-algebra homomorphism from `add_monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma non_unital_alg_hom_ext [distrib_mul_action k A]
{φ₁ φ₂ : non_unital_alg_hom k (add_monoid_algebra k G) A}
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
@monoid_algebra.non_unital_alg_hom_ext k (multiplicative G) _ _ _ _ _ φ₁ φ₂ h
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A]
{φ₁ φ₂ : non_unital_alg_hom k (add_monoid_algebra k G) A}
(h : φ₁.to_mul_hom.comp (of_magma k G) = φ₂.to_mul_hom.comp (of_magma k G)) : φ₁ = φ₂ :=
@monoid_algebra.non_unital_alg_hom_ext' k (multiplicative G) _ _ _ _ _ φ₁ φ₂ h
/-- The functor `G ↦ add_monoid_algebra k G`, from the category of magmas to the category of
non-unital, non-associative algebras over `k` is adjoint to the forgetful functor in the other
direction. -/
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] :
mul_hom (multiplicative G) A ≃ non_unital_alg_hom k (add_monoid_algebra k G) A :=
{ to_fun := λ f, { to_fun := λ a, sum a (λ m t, t • f (multiplicative.of_add m)),
.. (monoid_algebra.lift_magma k f : _)},
inv_fun := λ F, F.to_mul_hom.comp (of_magma k G),
.. (monoid_algebra.lift_magma k : mul_hom (multiplicative G) A ≃ non_unital_alg_hom k _ A) }
end non_unital_non_assoc_algebra
/-! #### Algebra structure -/
section algebra
variables {R : Type*}
local attribute [reducible] add_monoid_algebra
/-- `finsupp.single 0` as a `ring_hom` -/
@[simps] def single_zero_ring_hom [semiring k] [add_monoid G] : k →+* add_monoid_algebra k G :=
{ map_one' := rfl,
map_mul' := λ x y, by rw [single_add_hom, single_mul_single, zero_add],
..finsupp.single_add_hom 0}
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1`
and `single 0 b`, then they are equal. -/
lemma ring_hom_ext {R} [semiring k] [add_monoid G] [semiring R]
{f g : add_monoid_algebra k G →+* R} (h₀ : ∀ b, f (single 0 b) = g (single 0 b))
(h_of : ∀ a, f (single a 1) = g (single a 1)) : f = g :=
@monoid_algebra.ring_hom_ext k (multiplicative G) R _ _ _ _ _ h₀ h_of
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1`
and `single 0 b`, then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma ring_hom_ext' {R} [semiring k] [add_monoid G] [semiring R]
{f g : add_monoid_algebra k G →+* R}
(h₁ : f.comp single_zero_ring_hom = g.comp single_zero_ring_hom)
(h_of : (f : add_monoid_algebra k G →* R).comp (of k G) =
(g : add_monoid_algebra k G →* R).comp (of k G)) :
f = g :=
ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of)
section opposite
open finsupp opposite
variables [semiring k]
/-- The opposite of an `add_monoid_algebra R I` is ring equivalent to
the `add_monoid_algebra Rᵒᵖ I` over the opposite ring, taking elements to their opposite. -/
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [add_comm_monoid G] :
(add_monoid_algebra k G)ᵒᵖ ≃+* add_monoid_algebra kᵒᵖ G :=
{ map_mul' := begin
dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom],
rw add_monoid_hom.map_mul_iff,
ext i r i' r' : 6,
dsimp,
simp only [map_range_single, single_mul_single, ←op_mul, add_comm]
end,
..opposite.op_add_equiv.symm.trans
(finsupp.map_range.add_equiv (opposite.op_add_equiv : k ≃+ kᵒᵖ))}
@[simp] lemma op_ring_equiv_single [add_comm_monoid G] (r : k) (x : G) :
add_monoid_algebra.op_ring_equiv (op (single x r)) = single x (op r) :=
by simp
@[simp] lemma op_ring_equiv_symm_single [add_comm_monoid G] (r : kᵒᵖ) (x : Gᵒᵖ) :
add_monoid_algebra.op_ring_equiv.symm (single x r) = op (single x r.unop) :=
by simp
end opposite
/--
The instance `algebra R (add_monoid_algebra k G)` whenever we have `algebra R k`.
In particular this provides the instance `algebra k (add_monoid_algebra k G)`.
-/
instance [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
algebra R (add_monoid_algebra k G) :=
{ smul_def' := λ r a, by { ext, simp [single_zero_mul_apply, algebra.smul_def'', pi.smul_apply], },
commutes' := λ r f, by { ext, simp [single_zero_mul_apply, mul_single_zero_apply,
algebra.commutes], },
..single_zero_ring_hom.comp (algebra_map R k) }
/-- `finsupp.single 0` as a `alg_hom` -/
@[simps] def single_zero_alg_hom [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
k →ₐ[R] add_monoid_algebra k G :=
{ commutes' := λ r, by { ext, simp, refl, }, ..single_zero_ring_hom}
@[simp] lemma coe_algebra_map [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
(algebra_map R (add_monoid_algebra k G) : R → add_monoid_algebra k G) =
single 0 ∘ (algebra_map R k) :=
rfl
end algebra
section lift
variables {k G} [comm_semiring k] [add_monoid G]
variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B]
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/
def lift_nc_alg_hom (f : A →ₐ[k] B) (g : multiplicative G →* B)
(h_comm : ∀ x y, commute (f x) (g y)) :
add_monoid_algebra A G →ₐ[k] B :=
{ to_fun := lift_nc_ring_hom (f : A →+* B) g h_comm,
commutes' := by simp [lift_nc_ring_hom],
..(lift_nc_ring_hom (f : A →+* B) g h_comm)}
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma alg_hom_ext ⦃φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A⦄
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
@monoid_algebra.alg_hom_ext k (multiplicative G) _ _ _ _ _ _ _ h
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma alg_hom_ext' ⦃φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A⦄
(h : (φ₁ : add_monoid_algebra k G →* A).comp (of k G) =
(φ₂ : add_monoid_algebra k G →* A).comp (of k G)) : φ₁ = φ₂ :=
alg_hom_ext $ monoid_hom.congr_fun h
variables (k G A)
/-- Any monoid homomorphism `G →* A` can be lifted to an algebra homomorphism
`monoid_algebra k G →ₐ[k] A`. -/
def lift : (multiplicative G →* A) ≃ (add_monoid_algebra k G →ₐ[k] A) :=
{ inv_fun := λ f, (f : add_monoid_algebra k G →* A).comp (of k G),
to_fun := λ F, {
to_fun := lift_nc_alg_hom (algebra.of_id k A) F $ λ _ _, algebra.commutes _ _,
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ F},
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ }
variables {k G A}
lemma lift_apply' (F : multiplicative G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, (algebra_map k A b) * F (multiplicative.of_add a)) := rfl
lemma lift_apply (F : multiplicative G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, b • F (multiplicative.of_add a)) :=
by simp only [lift_apply', algebra.smul_def]
lemma lift_def (F : multiplicative G →* A) :
⇑(lift k G A F) = lift_nc ((algebra_map k A : k →+* A) : k →+ A) F :=
rfl
@[simp] lemma lift_symm_apply (F : add_monoid_algebra k G →ₐ[k] A) (x : multiplicative G) :
(lift k G A).symm F x = F (single x.to_add 1) := rfl
lemma lift_of (F : multiplicative G →* A) (x : multiplicative G) :
lift k G A F (of k G x) = F x :=
by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply]
@[simp] lemma lift_single (F : multiplicative G →* A) (a b) :
lift k G A F (single a b) = b • F (multiplicative.of_add a) :=
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom]
lemma lift_unique' (F : add_monoid_algebra k G →ₐ[k] A) :
F = lift k G A ((F : add_monoid_algebra k G →* A).comp (of k G)) :=
((lift k G A).apply_symm_apply F).symm
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by
its values on `F (single a 1)`. -/
lemma lift_unique (F : add_monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) :
F f = f.sum (λ a b, b • F (single a 1)) :=
by conv_lhs { rw lift_unique' F, simp [lift_apply] }
lemma alg_hom_ext_iff {φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A} :
(∀ x, φ₁ (finsupp.single x 1) = φ₂ (finsupp.single x 1)) ↔ φ₁ = φ₂ :=
⟨λ h, alg_hom_ext h, by rintro rfl _; refl⟩
end lift
section
local attribute [reducible] add_monoid_algebra
universe ui
variable {ι : Type ui}
lemma prod_single [comm_semiring k] [add_comm_monoid G]
{s : finset ι} {a : ι → G} {b : ι → k} :
(∏ i in s, single (a i) (b i)) = single (∑ i in s, a i) (∏ i in s, b i) :=
finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih,
single_mul_single, sum_insert has, prod_insert has]
end
end add_monoid_algebra
variables {R : Type*} [comm_semiring R] (k G)
/-- The algebra equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of
`multiplicative`. -/
def add_monoid_algebra.to_multiplicative_alg_equiv [semiring k] [algebra R k] [add_monoid G] :
add_monoid_algebra k G ≃ₐ[R] monoid_algebra k (multiplicative G) :=
{ commutes' := λ r, by simp [add_monoid_algebra.to_multiplicative],
..add_monoid_algebra.to_multiplicative k G }
/-- The algebra equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of
`additive`. -/
def monoid_algebra.to_additive_alg_equiv [semiring k] [algebra R k] [monoid G] :
monoid_algebra k G ≃ₐ[R] add_monoid_algebra k (additive G) :=
{ commutes' := λ r, by simp [monoid_algebra.to_additive],
..monoid_algebra.to_additive k G }
|
8c8b610e874079ed727e3a77f18e72f11d145d3b
|
f3849be5d845a1cb97680f0bbbe03b85518312f0
|
/library/tools/super/cdcl.lean
|
ccad2e71f5fb84c50244ea215a19665f326eb638
|
[
"Apache-2.0"
] |
permissive
|
bjoeris/lean
|
0ed95125d762b17bfcb54dad1f9721f953f92eeb
|
4e496b78d5e73545fa4f9a807155113d8e6b0561
|
refs/heads/master
| 1,611,251,218,281
| 1,495,337,658,000
| 1,495,337,658,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 860
|
lean
|
/-
Copyright (c) 2016 Gabriel Ebner. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Gabriel Ebner
-/
import .clause .clausifier .cdcl_solver
open tactic expr monad super
meta def cdcl_t (th_solver : tactic unit) : tactic unit := do
as_refutation, local_false ← target,
clauses ← clauses_of_context, clauses ← get_clauses_classical clauses,
for clauses (λc, do c_pp ← pp c, clause.validate c <|> fail c_pp),
res ← cdcl.solve (cdcl.theory_solver_of_tactic th_solver) local_false clauses,
match res with
| (cdcl.result.unsat proof) := exact proof
| (cdcl.result.sat interp) :=
let interp' := do e ← interp.to_list, [if e.2 = tt then e.1 else `(not %%e.1)] in
do pp_interp ← pp interp',
fail (to_fmt "satisfying assignment: " ++ pp_interp)
end
meta def cdcl : tactic unit := cdcl_t skip
|
9168a4679507468daadb9f91a1f708dbe597e7ea
|
4bcaca5dc83d49803f72b7b5920b75b6e7d9de2d
|
/tests/lean/interactive/goTo.lean
|
899664ada7d21d40e2b6f53bde1d4a8016f09b0d
|
[
"Apache-2.0"
] |
permissive
|
subfish-zhou/leanprover-zh_CN.github.io
|
30b9fba9bd790720bd95764e61ae796697d2f603
|
8b2985d4a3d458ceda9361ac454c28168d920d3f
|
refs/heads/master
| 1,689,709,967,820
| 1,632,503,056,000
| 1,632,503,056,000
| 409,962,097
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,019
|
lean
|
import Lean.Elab
structure Bar where
structure Foo where
foo₁ : Nat
foo₂ : Nat
bar : Bar
def mkFoo₁ : Foo := {
--v textDocument/definition
foo₁ := 1
--v textDocument/declaration
foo₂ := 2
--v textDocument/typeDefinition
bar := ⟨⟩
}
structure HandWrittenStruct where
n : Nat
-- def HandWrittenStruct.n := fun | mk n => n
--v textDocument/definition
def hws : HandWrittenStruct := {
--v textDocument/definition
n := 3
}
--v textDocument/declaration
def mkFoo₂ := mkFoo₁
syntax (name := elabTest) "test" : term
@[termElab elabTest] def elabElabTest : Lean.Elab.Term.TermElab := fun _ _ => do
let stx ← `(2)
Lean.Elab.Term.elabTerm stx none
--v textDocument/declaration
#check test
--^ textDocument/definition
def Baz (α : Type) := α
#check fun (b : Baz Nat) => b
--^ textDocument/typeDefinition
example : Nat :=
let a := 1
--v textDocument/definition
a + b
--^ textDocument/definition
where
b := 2
|
ca4131f263174687d2f78996e71e48e14ef4ef9d
|
8b9f17008684d796c8022dab552e42f0cb6fb347
|
/hott/init/nat.hlean
|
8c2fbd57d98451e3fb5461ba2f90d2dad8500e5b
|
[
"Apache-2.0"
] |
permissive
|
chubbymaggie/lean
|
0d06ae25f9dd396306fb02190e89422ea94afd7b
|
d2c7b5c31928c98f545b16420d37842c43b4ae9a
|
refs/heads/master
| 1,611,313,622,901
| 1,430,266,839,000
| 1,430,267,083,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 11,420
|
hlean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module init.nat
Authors: Floris van Doorn, Leonardo de Moura
-/
prelude
import init.wf init.tactic init.hedberg init.util init.types.sum
open eq.ops decidable sum
namespace nat
open lift
notation `ℕ` := nat
inductive lt (a : nat) : nat → Type :=
| base : lt a (succ a)
| step : Π {b}, lt a b → lt a (succ b)
notation a < b := lt a b
definition le [reducible] (a b : nat) : Type₀ := a < succ b
notation a ≤ b := le a b
definition pred (a : nat) : nat :=
nat.cases_on a zero (λ a₁, a₁)
protected definition is_inhabited [instance] : inhabited nat :=
inhabited.mk zero
protected definition has_decidable_eq [instance] : decidable_eq nat :=
λn m : nat,
have general : ∀n, decidable (n = m), from
nat.rec_on m
(λ n, nat.cases_on n
(inl rfl)
(λ m, inr (λ (e : succ m = zero), down (nat.no_confusion e))))
(λ (m' : nat) (ih : ∀n, decidable (n = m')) (n : nat), nat.cases_on n
(inr (λ h, down (nat.no_confusion h)))
(λ (n' : nat),
decidable.rec_on (ih n')
(assume Heq : n' = m', inl (eq.rec_on Heq rfl))
(assume Hne : n' ≠ m',
have H1 : succ n' ≠ succ m', from
assume Heq, down (nat.no_confusion Heq (λ e : n' = m', Hne e)),
inr H1))),
general n
-- less-than is well-founded
definition lt.wf [instance] : well_founded lt :=
well_founded.intro (λn, nat.rec_on n
(acc.intro zero (λ (y : nat) (hlt : y < zero),
have aux : ∀ {n₁}, y < n₁ → zero = n₁ → acc lt y, from
λ n₁ hlt, lt.cases_on hlt
(λ heq, down (nat.no_confusion heq))
(λ b hlt heq, down (nat.no_confusion heq)),
aux hlt rfl))
(λ (n : nat) (ih : acc lt n),
acc.intro (succ n) (λ (m : nat) (hlt : m < succ n),
have aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m, from
λ n₁ hlt, lt.cases_on hlt
(λ (heq : succ n = succ m),
down (nat.no_confusion heq (λ (e : n = m),
eq.rec_on e ih)))
(λ b (hlt : m < b) (heq : succ n = succ b),
down (nat.no_confusion heq (λ (e : n = b),
acc.inv (eq.rec_on e ih) hlt))),
aux hlt rfl)))
definition measure {A : Type} (f : A → nat) : A → A → Type₀ :=
inv_image lt f
definition measure.wf {A : Type} (f : A → nat) : well_founded (measure f) :=
inv_image.wf f lt.wf
definition not_lt_zero (a : nat) : ¬ a < zero :=
have aux : ∀ {b}, a < b → b = zero → empty, from
λ b H, lt.cases_on H
(λ heq, down (nat.no_confusion heq))
(λ b h₁ heq, down (nat.no_confusion heq)),
λ H, aux H rfl
definition zero_lt_succ (a : nat) : zero < succ a :=
nat.rec_on a
(lt.base zero)
(λ a (hlt : zero < succ a), lt.step hlt)
definition lt.trans {a b c : nat} (H₁ : a < b) (H₂ : b < c) : a < c :=
have aux : ∀ {d}, d < c → b = d → a < b → a < c, from
(λ d H, lt.rec_on H
(λ h₁ h₂, lt.step (eq.rec_on h₁ h₂))
(λ b hl ih h₁ h₂, lt.step (ih h₁ h₂))),
aux H₂ rfl H₁
definition lt.succ_of_lt {a b : nat} (H : a < b) : succ a < succ b :=
lt.rec_on H
(lt.base (succ a))
(λ b hlt ih, lt.trans ih (lt.base (succ b)))
definition lt.of_succ_lt {a b : nat} (H : succ a < b) : a < b :=
have aux : ∀ {a₁}, a₁ < b → succ a = a₁ → a < b, from
λ a₁ H, lt.rec_on H
(λ e₁, eq.rec_on e₁ (lt.step (lt.base a)))
(λ d hlt ih e₁, lt.step (ih e₁)),
aux H rfl
definition lt.of_succ_lt_succ {a b : nat} (H : succ a < succ b) : a < b :=
have aux : pred (succ a) < pred (succ b), from
lt.rec_on H
(lt.base a)
(λ (b : nat) (hlt : succ a < b) ih,
show pred (succ a) < pred (succ b), from
lt.of_succ_lt hlt),
aux
definition decidable_lt [instance] : decidable_rel lt :=
λ a b, nat.rec_on b
(λ (a : nat), inr (not_lt_zero a))
(λ (b₁ : nat) (ih : ∀ a, decidable (a < b₁)) (a : nat), nat.cases_on a
(inl !zero_lt_succ)
(λ a, decidable.rec_on (ih a)
(λ h_pos : a < b₁, inl (lt.succ_of_lt h_pos))
(λ h_neg : ¬ a < b₁,
have aux : ¬ succ a < succ b₁, from
λ h : succ a < succ b₁, h_neg (lt.of_succ_lt_succ h),
inr aux)))
a
definition le.refl (a : nat) : a ≤ a :=
lt.base a
definition le.of_lt {a b : nat} (H : a < b) : a ≤ b :=
lt.step H
definition eq_or_lt_of_le {a b : nat} (H : a ≤ b) : sum (a = b) (a < b) :=
have aux : Π (a₁ b₁ : nat) (hlt : a₁ < b₁), a₁ = a → b₁ = (succ b) → sum (a = b) (a < b), from
λ a₁ b₁ hlt, lt.rec_on hlt
(λ h₁, eq.rec_on h₁ (λ h₂, down (nat.no_confusion h₂ (λ h₃, eq.rec_on h₃ (sum.inl rfl)))))
(λ b₁ hlt ih h₁, eq.rec_on h₁ (λ h₂, down (nat.no_confusion h₂ (λ h₃, eq.rec_on h₃ (sum.inr hlt))))),
aux a (succ b) H rfl rfl
definition le.of_eq_or_lt {a b : nat} (H : sum (a = b) (a < b)) : a ≤ b :=
sum.rec_on H
(λ hl, eq.rec_on hl !le.refl)
(λ hr, le.of_lt hr)
definition decidable_le [instance] : decidable_rel le :=
λ a b, decidable_iff_equiv _ (iff.intro le.of_eq_or_lt eq_or_lt_of_le)
definition le.rec_on {a : nat} {P : nat → Type} {b : nat} (H : a ≤ b) (H₁ : P a) (H₂ : ∀ b, a < b → P b) : P b :=
begin
cases H with [b', hlt],
apply H₁,
apply (H₂ b hlt)
end
definition lt.irrefl (a : nat) : ¬ a < a :=
nat.rec_on a
!not_lt_zero
(λ (a : nat) (ih : ¬ a < a) (h : succ a < succ a),
ih (lt.of_succ_lt_succ h))
definition lt.asymm {a b : nat} (H : a < b) : ¬ b < a :=
lt.rec_on H
(λ h : succ a < a, !lt.irrefl (lt.of_succ_lt h))
(λ b hlt (ih : ¬ b < a) (h : succ b < a), ih (lt.of_succ_lt h))
definition lt.trichotomy (a b : nat) : a < b ⊎ a = b ⊎ b < a :=
nat.rec_on b
(λa, nat.cases_on a
(sum.inr (sum.inl rfl))
(λ a₁, sum.inr (sum.inr !zero_lt_succ)))
(λ b₁ (ih : ∀a, a < b₁ ⊎ a = b₁ ⊎ b₁ < a) (a : nat), nat.cases_on a
(sum.inl !zero_lt_succ)
(λ a, sum.rec_on (ih a)
(λ h : a < b₁, sum.inl (lt.succ_of_lt h))
(λ h, sum.rec_on h
(λ h : a = b₁, sum.inr (sum.inl (eq.rec_on h rfl)))
(λ h : b₁ < a, sum.inr (sum.inr (lt.succ_of_lt h))))))
a
definition eq_or_lt_of_not_lt {a b : nat} (hnlt : ¬ a < b) : a = b ⊎ b < a :=
sum.rec_on (lt.trichotomy a b)
(λ hlt, absurd hlt hnlt)
(λ h, h)
definition lt_succ_of_le {a b : nat} (h : a ≤ b) : a < succ b :=
h
definition lt_of_succ_le {a b : nat} (h : succ a ≤ b) : a < b :=
lt.of_succ_lt_succ h
definition le.step {a b : nat} (h : a ≤ b) : a ≤ succ b :=
lt.step h
definition succ_le_of_lt {a b : nat} (h : a < b) : succ a ≤ b :=
lt.succ_of_lt h
definition le.trans {a b c : nat} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c :=
begin
cases h₁ with [b', hlt],
apply h₂,
apply (lt.trans hlt h₂)
end
definition lt.of_le_of_lt {a b c : nat} (h₁ : a ≤ b) (h₂ : b < c) : a < c :=
begin
cases h₁ with [b', hlt],
apply h₂,
apply (lt.trans hlt h₂)
end
definition lt.of_lt_of_le {a b c : nat} (h₁ : a < b) (h₂ : b ≤ c) : a < c :=
begin
cases h₁ with [b', hlt],
apply (lt.of_succ_lt_succ h₂),
apply (lt.trans hlt (lt.of_succ_lt_succ h₂))
end
definition lt.of_lt_of_eq {a b c : nat} (h₁ : a < b) (h₂ : b = c) : a < c :=
eq.rec_on h₂ h₁
definition le.of_le_of_eq {a b c : nat} (h₁ : a ≤ b) (h₂ : b = c) : a ≤ c :=
eq.rec_on h₂ h₁
definition lt.of_eq_of_lt {a b c : nat} (h₁ : a = b) (h₂ : b < c) : a < c :=
eq.rec_on (eq.rec_on h₁ rfl) h₂
definition le.of_eq_of_le {a b c : nat} (h₁ : a = b) (h₂ : b ≤ c) : a ≤ c :=
eq.rec_on (eq.rec_on h₁ rfl) h₂
calc_trans lt.trans
calc_trans lt.of_le_of_lt
calc_trans lt.of_lt_of_le
calc_trans lt.of_lt_of_eq
calc_trans lt.of_eq_of_lt
calc_trans le.trans
calc_trans le.of_le_of_eq
calc_trans le.of_eq_of_le
definition max (a b : nat) : nat :=
if a < b then b else a
definition min (a b : nat) : nat :=
if a < b then a else b
definition max_a_a (a : nat) : a = max a a :=
eq.rec_on !if_t_t rfl
definition max.eq_right {a b : nat} (H : a < b) : max a b = b :=
if_pos H
definition max.eq_left {a b : nat} (H : ¬ a < b) : max a b = a :=
if_neg H
definition max.right_eq {a b : nat} (H : a < b) : b = max a b :=
eq.rec_on (max.eq_right H) rfl
definition max.left_eq {a b : nat} (H : ¬ a < b) : a = max a b :=
eq.rec_on (max.eq_left H) rfl
definition max.left (a b : nat) : a ≤ max a b :=
by_cases
(λ h : a < b, le.of_lt (eq.rec_on (max.right_eq h) h))
(λ h : ¬ a < b, eq.rec_on (max.eq_left h) !le.refl)
definition max.right (a b : nat) : b ≤ max a b :=
by_cases
(λ h : a < b, eq.rec_on (max.eq_right h) !le.refl)
(λ h : ¬ a < b, sum.rec_on (eq_or_lt_of_not_lt h)
(λ heq, eq.rec_on heq (eq.rec_on (max_a_a a) !le.refl))
(λ h : b < a,
have aux : a = max a b, from max.left_eq (lt.asymm h),
eq.rec_on aux (le.of_lt h)))
abbreviation gt a b := lt b a
notation a > b := gt a b
abbreviation ge a b := le b a
notation a ≥ b := ge a b
-- add is defined in init.num
definition sub (a b : nat) : nat :=
nat.rec_on b a (λ b₁ r, pred r)
notation a - b := sub a b
definition mul (a b : nat) : nat :=
nat.rec_on b zero (λ b₁ r, r + a)
notation a * b := mul a b
local attribute sub [reducible]
definition succ_sub_succ_eq_sub (a b : nat) : succ a - succ b = a - b :=
nat.rec_on b
rfl
(λ b₁ (ih : succ a - succ b₁ = a - b₁),
eq.rec_on ih (eq.refl (pred (succ a - succ b₁))))
definition sub_eq_succ_sub_succ (a b : nat) : a - b = succ a - succ b :=
eq.rec_on (succ_sub_succ_eq_sub a b) rfl
definition zero_sub_eq_zero (a : nat) : zero - a = zero :=
nat.rec_on a
rfl
(λ a₁ (ih : zero - a₁ = zero), calc
zero - succ a₁ = pred (zero - a₁) : rfl
... = pred zero : ih
... = zero : rfl)
definition zero_eq_zero_sub (a : nat) : zero = zero - a :=
eq.rec_on (zero_sub_eq_zero a) rfl
definition sub.lt {a b : nat} : zero < a → zero < b → a - b < a :=
have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from
λa h₁, lt.rec_on h₁
(λb h₂, lt.cases_on h₂
(lt.base zero)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ zero b₁)
(eq.rec_on (zero_eq_zero_sub b₁) (lt.base zero))))
(λa₁ apos ih b h₂, lt.cases_on h₂
(lt.base a₁)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ a₁ b₁)
(lt.trans (@ih b₁ bpos) (lt.base a₁)))),
λ h₁ h₂, aux h₁ h₂
definition pred_le (a : nat) : pred a ≤ a :=
nat.cases_on a
(le.refl zero)
(λ a₁, le.of_lt (lt.base a₁))
definition sub_le (a b : nat) : a - b ≤ a :=
nat.rec_on b
(le.refl a)
(λ b₁ ih, le.trans !pred_le ih)
end nat
|
cc82f0924dbfe022a20b57555cffc6c637aa7da6
|
618003631150032a5676f229d13a079ac875ff77
|
/src/measure_theory/measurable_space.lean
|
47c37b6b244b0ebde2d8b7790be1113d2539a939
|
[
"Apache-2.0"
] |
permissive
|
awainverse/mathlib
|
939b68c8486df66cfda64d327ad3d9165248c777
|
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
|
refs/heads/master
| 1,659,592,962,036
| 1,590,987,592,000
| 1,590,987,592,000
| 268,436,019
| 1
| 0
|
Apache-2.0
| 1,590,990,500,000
| 1,590,990,500,000
| null |
UTF-8
|
Lean
| false
| false
| 45,207
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
Measurable spaces -- σ-algberas
-/
import data.set.disjointed
import data.set.countable
/-!
# Measurable spaces and measurable functions
This file defines measurable spaces and the functions and isomorphisms
between them.
A measurable space is a set equipped with a σ-algebra, a collection of
subsets closed under complementation and countable union. A function
between measurable spaces is measurable if the preimage of each
measurable subset is measurable.
σ-algebras on a fixed set α form a complete lattice. Here we order
σ-algebras by writing m₁ ≤ m₂ if every set which is m₁-measurable is
also m₂-measurable (that is, m₁ is a subset of m₂). In particular, any
collection of subsets of α generates a smallest σ-algebra which
contains all of them. A function f : α → β induces a Galois connection
between the lattices of σ-algebras on α and β.
A measurable equivalence between measurable spaces is an equivalence
which respects the σ-algebras, that is, for which both directions of
the equivalence are measurable functions.
## Main statements
The main theorem of this file is Dynkin's π-λ theorem, which appears
here as an induction principle `induction_on_inter`. Suppose s is a
collection of subsets of α such that the intersection of two members
of s belongs to s whenever it is nonempty. Let m be the σ-algebra
generated by s. In order to check that a predicate C holds on every
member of m, it suffices to check that C holds on the members of s and
that C is preserved by complementation and *disjoint* countable
unions.
## Implementation notes
Measurability of a function f : α → β between measurable spaces is
defined in terms of the Galois connection induced by f.
## References
* <https://en.wikipedia.org/wiki/Measurable_space>
* <https://en.wikipedia.org/wiki/Sigma-algebra>
* <https://en.wikipedia.org/wiki/Dynkin_system>
## Tags
measurable space, measurable function, dynkin system
-/
local attribute [instance] classical.prop_decidable
open set encodable
open_locale classical
universes u v w x
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} {ι : Sort x}
{s t u : set α}
structure measurable_space (α : Type u) :=
(is_measurable : set α → Prop)
(is_measurable_empty : is_measurable ∅)
(is_measurable_compl : ∀s, is_measurable s → is_measurable (- s))
(is_measurable_Union : ∀f:ℕ → set α, (∀i, is_measurable (f i)) → is_measurable (⋃i, f i))
attribute [class] measurable_space
section
variable [measurable_space α]
/-- `is_measurable s` means that `s` is measurable (in the ambient measure space on `α`) -/
def is_measurable : set α → Prop := ‹measurable_space α›.is_measurable
lemma is_measurable.empty : is_measurable (∅ : set α) :=
‹measurable_space α›.is_measurable_empty
lemma is_measurable.compl : is_measurable s → is_measurable (-s) :=
‹measurable_space α›.is_measurable_compl s
lemma is_measurable.of_compl (h : is_measurable (-s)) : is_measurable s :=
s.compl_compl ▸ h.compl
lemma is_measurable.compl_iff : is_measurable (-s) ↔ is_measurable s :=
⟨is_measurable.of_compl, is_measurable.compl⟩
lemma is_measurable.univ : is_measurable (univ : set α) :=
by simpa using (@is_measurable.empty α _).compl
lemma subsingleton.is_measurable [subsingleton α] {s : set α} : is_measurable s :=
subsingleton.set_cases is_measurable.empty is_measurable.univ s
lemma is_measurable.congr {s t : set α} (hs : is_measurable s) (h : s = t) :
is_measurable t :=
by rwa ← h
lemma encodable.Union_decode2 {α} [encodable β] (f : β → set α) :
(⋃ b, f b) = ⋃ (i : ℕ) (b ∈ decode2 β i), f b :=
ext $ by simp [mem_decode2, exists_swap]
@[elab_as_eliminator] lemma encodable.Union_decode2_cases
{α} [encodable β] {f : β → set α} {C : set α → Prop}
(H0 : C ∅) (H1 : ∀ b, C (f b)) {n} :
C (⋃ b ∈ decode2 β n, f b) :=
match decode2 β n with
| none := by simp; apply H0
| (some b) := by convert H1 b; simp [ext_iff]
end
lemma is_measurable.Union [encodable β] {f : β → set α} (h : ∀b, is_measurable (f b)) :
is_measurable (⋃b, f b) :=
by rw encodable.Union_decode2; exact
‹measurable_space α›.is_measurable_Union
(λ n, ⋃ b ∈ decode2 β n, f b)
(λ n, encodable.Union_decode2_cases is_measurable.empty h)
lemma is_measurable.bUnion {f : β → set α} {s : set β} (hs : countable s)
(h : ∀b∈s, is_measurable (f b)) : is_measurable (⋃b∈s, f b) :=
begin
rw bUnion_eq_Union,
haveI := hs.to_encodable,
exact is_measurable.Union (by simpa using h)
end
lemma is_measurable.sUnion {s : set (set α)} (hs : countable s) (h : ∀t∈s, is_measurable t) :
is_measurable (⋃₀ s) :=
by rw sUnion_eq_bUnion; exact is_measurable.bUnion hs h
lemma is_measurable.Union_Prop {p : Prop} {f : p → set α} (hf : ∀b, is_measurable (f b)) :
is_measurable (⋃b, f b) :=
by by_cases p; simp [h, hf, is_measurable.empty]
lemma is_measurable.Inter [encodable β] {f : β → set α} (h : ∀b, is_measurable (f b)) :
is_measurable (⋂b, f b) :=
is_measurable.compl_iff.1 $
by rw compl_Inter; exact is_measurable.Union (λ b, (h b).compl)
lemma is_measurable.bInter {f : β → set α} {s : set β} (hs : countable s)
(h : ∀b∈s, is_measurable (f b)) : is_measurable (⋂b∈s, f b) :=
is_measurable.compl_iff.1 $
by rw compl_bInter; exact is_measurable.bUnion hs (λ b hb, (h b hb).compl)
lemma is_measurable.sInter {s : set (set α)} (hs : countable s) (h : ∀t∈s, is_measurable t) :
is_measurable (⋂₀ s) :=
by rw sInter_eq_bInter; exact is_measurable.bInter hs h
lemma is_measurable.Inter_Prop {p : Prop} {f : p → set α} (hf : ∀b, is_measurable (f b)) :
is_measurable (⋂b, f b) :=
by by_cases p; simp [h, hf, is_measurable.univ]
lemma is_measurable.union {s₁ s₂ : set α}
(h₁ : is_measurable s₁) (h₂ : is_measurable s₂) : is_measurable (s₁ ∪ s₂) :=
by rw union_eq_Union; exact
is_measurable.Union (bool.forall_bool.2 ⟨h₂, h₁⟩)
lemma is_measurable.inter {s₁ s₂ : set α}
(h₁ : is_measurable s₁) (h₂ : is_measurable s₂) : is_measurable (s₁ ∩ s₂) :=
by rw inter_eq_compl_compl_union_compl; exact
(h₁.compl.union h₂.compl).compl
lemma is_measurable.diff {s₁ s₂ : set α}
(h₁ : is_measurable s₁) (h₂ : is_measurable s₂) : is_measurable (s₁ \ s₂) :=
h₁.inter h₂.compl
lemma is_measurable.sub {s₁ s₂ : set α} :
is_measurable s₁ → is_measurable s₂ → is_measurable (s₁ - s₂) :=
is_measurable.diff
lemma is_measurable.disjointed {f : ℕ → set α} (h : ∀i, is_measurable (f i)) (n) :
is_measurable (disjointed f n) :=
disjointed_induct (h n) (assume t i ht, is_measurable.diff ht $ h _)
lemma is_measurable.const (p : Prop) : is_measurable {a : α | p} :=
by by_cases p; simp [h, is_measurable.empty]; apply is_measurable.univ
end
@[ext] lemma measurable_space.ext :
∀{m₁ m₂ : measurable_space α}, (∀s:set α, m₁.is_measurable s ↔ m₂.is_measurable s) → m₁ = m₂
| ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h :=
have s₁ = s₂, from funext $ assume x, propext $ h x,
by subst this
namespace measurable_space
section complete_lattice
instance : partial_order (measurable_space α) :=
{ le := λm₁ m₂, m₁.is_measurable ≤ m₂.is_measurable,
le_refl := assume a b, le_refl _,
le_trans := assume a b c, le_trans,
le_antisymm := assume a b h₁ h₂, measurable_space.ext $ assume s, ⟨h₁ s, h₂ s⟩ }
/-- The smallest σ-algebra containing a collection `s` of basic sets -/
inductive generate_measurable (s : set (set α)) : set α → Prop
| basic : ∀u∈s, generate_measurable u
| empty : generate_measurable ∅
| compl : ∀s, generate_measurable s → generate_measurable (-s)
| union : ∀f:ℕ → set α, (∀n, generate_measurable (f n)) → generate_measurable (⋃i, f i)
/-- Construct the smallest measure space containing a collection of basic sets -/
def generate_from (s : set (set α)) : measurable_space α :=
{ is_measurable := generate_measurable s,
is_measurable_empty := generate_measurable.empty,
is_measurable_compl := generate_measurable.compl,
is_measurable_Union := generate_measurable.union }
lemma is_measurable_generate_from {s : set (set α)} {t : set α} (ht : t ∈ s) :
(generate_from s).is_measurable t :=
generate_measurable.basic t ht
lemma generate_from_le {s : set (set α)} {m : measurable_space α} (h : ∀t∈s, m.is_measurable t) :
generate_from s ≤ m :=
assume t (ht : generate_measurable s t), ht.rec_on h
(is_measurable_empty m)
(assume s _ hs, is_measurable_compl m s hs)
(assume f _ hf, is_measurable_Union m f hf)
lemma generate_from_le_iff {s : set (set α)} {m : measurable_space α} :
generate_from s ≤ m ↔ s ⊆ {t | m.is_measurable t} :=
iff.intro
(assume h u hu, h _ $ is_measurable_generate_from hu)
(assume h, generate_from_le h)
protected def mk_of_closure (g : set (set α)) (hg : {t | (generate_from g).is_measurable t} = g) :
measurable_space α :=
{ is_measurable := λs, s ∈ g,
is_measurable_empty := hg ▸ is_measurable_empty _,
is_measurable_compl := hg ▸ is_measurable_compl _,
is_measurable_Union := hg ▸ is_measurable_Union _ }
lemma mk_of_closure_sets {s : set (set α)}
{hs : {t | (generate_from s).is_measurable t} = s} :
measurable_space.mk_of_closure s hs = generate_from s :=
measurable_space.ext $ assume t, show t ∈ s ↔ _, by rw [← hs] {occs := occurrences.pos [1] }; refl
def gi_generate_from : galois_insertion (@generate_from α) (λm, {t | @is_measurable α m t}) :=
{ gc := assume s m, generate_from_le_iff,
le_l_u := assume m s, is_measurable_generate_from,
choice :=
λg hg, measurable_space.mk_of_closure g $ le_antisymm hg $ generate_from_le_iff.1 $ le_refl _,
choice_eq := assume g hg, mk_of_closure_sets }
instance : complete_lattice (measurable_space α) :=
gi_generate_from.lift_complete_lattice
instance : inhabited (measurable_space α) := ⟨⊤⟩
lemma is_measurable_bot_iff {s : set α} : @is_measurable α ⊥ s ↔ (s = ∅ ∨ s = univ) :=
let b : measurable_space α :=
{ is_measurable := λs, s = ∅ ∨ s = univ,
is_measurable_empty := or.inl rfl,
is_measurable_compl := by simp [or_imp_distrib] {contextual := tt},
is_measurable_Union := assume f hf, classical.by_cases
(assume h : ∃i, f i = univ,
let ⟨i, hi⟩ := h in
or.inr $ eq_univ_of_univ_subset $ hi ▸ le_supr f i)
(assume h : ¬ ∃i, f i = univ,
or.inl $ eq_empty_of_subset_empty $ Union_subset $ assume i,
(hf i).elim (by simp {contextual := tt}) (assume hi, false.elim $ h ⟨i, hi⟩)) } in
have b = ⊥, from bot_unique $ assume s hs,
hs.elim (assume s, s.symm ▸ @is_measurable_empty _ ⊥) (assume s, s.symm ▸ @is_measurable.univ _ ⊥),
this ▸ iff.rfl
@[simp] theorem is_measurable_top {s : set α} : @is_measurable _ ⊤ s := trivial
@[simp] theorem is_measurable_inf {m₁ m₂ : measurable_space α} {s : set α} :
@is_measurable _ (m₁ ⊓ m₂) s ↔ @is_measurable _ m₁ s ∧ @is_measurable _ m₂ s :=
iff.rfl
@[simp] theorem is_measurable_Inf {ms : set (measurable_space α)} {s : set α} :
@is_measurable _ (Inf ms) s ↔ ∀ m ∈ ms, @is_measurable _ m s :=
show s ∈ (⋂m∈ms, {t | @is_measurable _ m t }) ↔ _, by simp
@[simp] theorem is_measurable_infi {ι} {m : ι → measurable_space α} {s : set α} :
@is_measurable _ (infi m) s ↔ ∀ i, @is_measurable _ (m i) s :=
show s ∈ (λm, {s | @is_measurable _ m s }) (infi m) ↔ _, by rw (@gi_generate_from α).gc.u_infi; simp; refl
theorem is_measurable_sup {m₁ m₂ : measurable_space α} {s : set α} :
@is_measurable _ (m₁ ⊔ m₂) s ↔ generate_measurable (m₁.is_measurable ∪ m₂.is_measurable) s :=
iff.refl _
theorem is_measurable_Sup {ms : set (measurable_space α)} {s : set α} :
@is_measurable _ (Sup ms) s ↔ generate_measurable (⋃₀ (measurable_space.is_measurable '' ms)) s :=
begin
change @is_measurable _ (generate_from _) _ ↔ _,
dsimp [generate_from],
rw (show (⨆ (b : measurable_space α) (H : b ∈ ms), set_of (is_measurable b)) = (⋃₀(is_measurable '' ms)),
{ ext,
simp only [exists_prop, mem_Union, sUnion_image, mem_set_of_eq],
refl, })
end
theorem is_measurable_supr {ι} {m : ι → measurable_space α} {s : set α} :
@is_measurable _ (supr m) s ↔ generate_measurable (⋃i, (m i).is_measurable) s :=
begin
convert @is_measurable_Sup _ (range m) s,
simp,
end
end complete_lattice
section functors
variables {m m₁ m₂ : measurable_space α} {m' : measurable_space β} {f : α → β} {g : β → α}
/-- The forward image of a measure space under a function. `map f m` contains the sets `s : set β`
whose preimage under `f` is measurable. -/
protected def map (f : α → β) (m : measurable_space α) : measurable_space β :=
{ is_measurable := λs, m.is_measurable $ f ⁻¹' s,
is_measurable_empty := m.is_measurable_empty,
is_measurable_compl := assume s hs, m.is_measurable_compl _ hs,
is_measurable_Union := assume f hf, by rw [preimage_Union]; exact m.is_measurable_Union _ hf }
@[simp] lemma map_id : m.map id = m :=
measurable_space.ext $ assume s, iff.rfl
@[simp] lemma map_comp {f : α → β} {g : β → γ} : (m.map f).map g = m.map (g ∘ f) :=
measurable_space.ext $ assume s, iff.rfl
/-- The reverse image of a measure space under a function. `comap f m` contains the sets `s : set α`
such that `s` is the `f`-preimage of a measurable set in `β`. -/
protected def comap (f : α → β) (m : measurable_space β) : measurable_space α :=
{ is_measurable := λs, ∃s', m.is_measurable s' ∧ f ⁻¹' s' = s,
is_measurable_empty := ⟨∅, m.is_measurable_empty, rfl⟩,
is_measurable_compl := assume s ⟨s', h₁, h₂⟩, ⟨-s', m.is_measurable_compl _ h₁, h₂ ▸ rfl⟩,
is_measurable_Union := assume s hs,
let ⟨s', hs'⟩ := classical.axiom_of_choice hs in
⟨⋃i, s' i, m.is_measurable_Union _ (λi, (hs' i).left), by simp [hs'] ⟩ }
@[simp] lemma comap_id : m.comap id = m :=
measurable_space.ext $ assume s, ⟨assume ⟨s', hs', h⟩, h ▸ hs', assume h, ⟨s, h, rfl⟩⟩
@[simp] lemma comap_comp {f : β → α} {g : γ → β} : (m.comap f).comap g = m.comap (f ∘ g) :=
measurable_space.ext $ assume s,
⟨assume ⟨t, ⟨u, h, hu⟩, ht⟩, ⟨u, h, ht ▸ hu ▸ rfl⟩, assume ⟨t, h, ht⟩, ⟨f ⁻¹' t, ⟨_, h, rfl⟩, ht⟩⟩
lemma comap_le_iff_le_map {f : α → β} : m'.comap f ≤ m ↔ m' ≤ m.map f :=
⟨assume h s hs, h _ ⟨_, hs, rfl⟩, assume h s ⟨t, ht, heq⟩, heq ▸ h _ ht⟩
lemma gc_comap_map (f : α → β) :
galois_connection (measurable_space.comap f) (measurable_space.map f) :=
assume f g, comap_le_iff_le_map
lemma map_mono (h : m₁ ≤ m₂) : m₁.map f ≤ m₂.map f := (gc_comap_map f).monotone_u h
lemma monotone_map : monotone (measurable_space.map f) := assume a b h, map_mono h
lemma comap_mono (h : m₁ ≤ m₂) : m₁.comap g ≤ m₂.comap g := (gc_comap_map g).monotone_l h
lemma monotone_comap : monotone (measurable_space.comap g) := assume a b h, comap_mono h
@[simp] lemma comap_bot : (⊥:measurable_space α).comap g = ⊥ := (gc_comap_map g).l_bot
@[simp] lemma comap_sup : (m₁ ⊔ m₂).comap g = m₁.comap g ⊔ m₂.comap g := (gc_comap_map g).l_sup
@[simp] lemma comap_supr {m : ι → measurable_space α} :(⨆i, m i).comap g = (⨆i, (m i).comap g) :=
(gc_comap_map g).l_supr
@[simp] lemma map_top : (⊤:measurable_space α).map f = ⊤ := (gc_comap_map f).u_top
@[simp] lemma map_inf : (m₁ ⊓ m₂).map f = m₁.map f ⊓ m₂.map f := (gc_comap_map f).u_inf
@[simp] lemma map_infi {m : ι → measurable_space α} : (⨅i, m i).map f = (⨅i, (m i).map f) :=
(gc_comap_map f).u_infi
lemma comap_map_le : (m.map f).comap f ≤ m := (gc_comap_map f).l_u_le _
lemma le_map_comap : m ≤ (m.comap g).map g := (gc_comap_map g).le_u_l _
end functors
lemma generate_from_le_generate_from {s t : set (set α)} (h : s ⊆ t) :
generate_from s ≤ generate_from t :=
gi_generate_from.gc.monotone_l h
lemma generate_from_sup_generate_from {s t : set (set α)} :
generate_from s ⊔ generate_from t = generate_from (s ∪ t) :=
(@gi_generate_from α).gc.l_sup.symm
lemma comap_generate_from {f : α → β} {s : set (set β)} :
(generate_from s).comap f = generate_from (preimage f '' s) :=
le_antisymm
(comap_le_iff_le_map.2 $ generate_from_le $ assume t hts,
generate_measurable.basic _ $ mem_image_of_mem _ $ hts)
(generate_from_le $ assume t ⟨u, hu, eq⟩, eq ▸ ⟨u, generate_measurable.basic _ hu, rfl⟩)
end measurable_space
section measurable_functions
open measurable_space
/-- A function `f` between measurable spaces is measurable if the preimage of every
measurable set is measurable. -/
def measurable [m₁ : measurable_space α] [m₂ : measurable_space β] (f : α → β) : Prop :=
m₂ ≤ m₁.map f
lemma subsingleton.measurable [measurable_space α] [measurable_space β] [subsingleton α]
{f : α → β} : measurable f :=
λ s hs, @subsingleton.is_measurable α _ _ _
lemma measurable_id [measurable_space α] : measurable (@id α) := le_refl _
lemma measurable.preimage [measurable_space α] [measurable_space β]
{f : α → β} (hf : measurable f) {s : set β} : is_measurable s → is_measurable (f ⁻¹' s) := hf _
lemma measurable.comp [measurable_space α] [measurable_space β] [measurable_space γ]
{g : β → γ} {f : α → β} (hg : measurable g) (hf : measurable f) : measurable (g ∘ f) :=
le_trans hg $ map_mono hf
lemma measurable_from_top [measurable_space β] {f : α → β} :
@measurable _ _ ⊤ _ f :=
λ s hs, trivial
lemma measurable.mono {ma ma' : measurable_space α} {mb mb' : measurable_space β} {f : α → β}
(hf : @measurable α β ma mb f) (ha : ma ≤ ma') (hb : mb' ≤ mb) :
@measurable α β ma' mb' f :=
calc mb' ≤ mb : hb
... ≤ ma.map f : hf
... ≤ ma'.map f : map_mono ha
lemma measurable_generate_from [measurable_space α] {s : set (set β)} {f : α → β}
(h : ∀t∈s, is_measurable (f ⁻¹' t)) : @measurable _ _ _ (generate_from s) f :=
generate_from_le h
lemma measurable.if [measurable_space α] [measurable_space β]
{p : α → Prop} {h : decidable_pred p} {f g : α → β}
(hp : is_measurable {a | p a}) (hf : measurable f) (hg : measurable g) :
measurable (λa, if p a then f a else g a) :=
λ s hs, show is_measurable {a | (if p a then f a else g a) ∈ s},
begin
convert (hp.inter $ hf s hs).union (hp.compl.inter $ hg s hs),
exact ext (λ a, by by_cases p a ; { rw mem_def, simp [h] })
end
lemma measurable_const {α β} [measurable_space α] [measurable_space β] {a : α} : measurable (λb:β, a) :=
assume s hs, show is_measurable {b : β | a ∈ s}, from
classical.by_cases
(assume h : a ∈ s, by simp [h]; from is_measurable.univ)
(assume h : a ∉ s, by simp [h]; from is_measurable.empty)
lemma measurable_zero {α β} [measurable_space α] [has_zero α] [measurable_space β] :
measurable (λb:β, (0:α)) := measurable_const
end measurable_functions
section constructions
instance : measurable_space empty := ⊤
instance : measurable_space unit := ⊤
instance : measurable_space bool := ⊤
instance : measurable_space ℕ := ⊤
instance : measurable_space ℤ := ⊤
instance : measurable_space ℚ := ⊤
lemma measurable_to_encodable [encodable α] [measurable_space α] [measurable_space β] {f : β → α}
(h : ∀ y, is_measurable {x | f x = y}) : measurable f :=
begin
assume s hs, show is_measurable {x | f x ∈ s},
have : {x | f x ∈ s} = ⋃ (n ∈ s), {x | f x = n}, { ext, simp },
rw this, simp [is_measurable.Union, is_measurable.Union_Prop, h]
end
lemma measurable_unit [measurable_space α] (f : unit → α) : measurable f :=
have f = (λu, f ()) := funext $ assume ⟨⟩, rfl,
by rw this; exact measurable_const
section nat
lemma measurable_from_nat [measurable_space α] {f : ℕ → α} : measurable f :=
measurable_from_top
lemma measurable_to_nat [measurable_space α] {f : α → ℕ} :
(∀ k, is_measurable {x | f x = k}) → measurable f :=
measurable_to_encodable
lemma measurable_find_greatest [measurable_space α] {p : ℕ → α → Prop} :
∀ {N}, (∀ k ≤ N, is_measurable {x | nat.find_greatest (λ n, p n x) N = k}) →
measurable (λ x, nat.find_greatest (λ n, p n x) N)
| 0 := assume h s hs, show is_measurable {x : α | (nat.find_greatest (λ n, p n x) 0) ∈ s},
begin
by_cases h : 0 ∈ s,
{ convert is_measurable.univ, simp only [nat.find_greatest_zero, h] },
{ convert is_measurable.empty, simp only [nat.find_greatest_zero, h], refl }
end
| (n + 1) := assume h,
begin
apply measurable_to_nat, assume k, by_cases hk : k ≤ n + 1,
{ exact h k hk },
{ have := is_measurable.empty, rw ← set_of_false at this, convert this, funext, rw eq_false,
assume h, rw ← h at hk, have := nat.find_greatest_le, contradiction }
end
end nat
section subtype
instance {p : α → Prop} [m : measurable_space α] : measurable_space (subtype p) :=
m.comap subtype.val
lemma measurable.subtype_coe [measurable_space α] [measurable_space β] {p : β → Prop}
{f : α → subtype p} (hf : measurable f) : measurable (λa:α, (f a : β)) :=
measurable.comp (measurable_space.comap_le_iff_le_map.mp (le_refl _)) hf
lemma measurable.subtype_mk [measurable_space α] [measurable_space β] {p : β → Prop}
{f : α → β} (hf : measurable f) {h : ∀ x, p (f x)} :
measurable (λ x, (⟨f x, h x⟩ : subtype p)) :=
measurable_space.comap_le_iff_le_map.mpr $ by rw [measurable_space.map_comp]; exact hf
lemma is_measurable_subtype_image [measurable_space α] {s : set α} {t : set s}
(hs : is_measurable s) : is_measurable t → is_measurable ((coe : s → α) '' t)
| ⟨u, (hu : is_measurable u), (eq : coe ⁻¹' u = t)⟩ :=
begin
rw [← eq, image_preimage_eq_inter_range, range_coe_subtype],
exact is_measurable.inter hu hs
end
lemma measurable_of_measurable_union_cover
[measurable_space α] [measurable_space β]
{f : α → β} (s t : set α) (hs : is_measurable s) (ht : is_measurable t) (h : univ ⊆ s ∪ t)
(hc : measurable (λa:s, f a)) (hd : measurable (λa:t, f a)) :
measurable f :=
assume u (hu : is_measurable u), show is_measurable (f ⁻¹' u), from
begin
rw show f ⁻¹' u = coe '' (coe ⁻¹' (f ⁻¹' u) : set s) ∪ coe '' (coe ⁻¹' (f ⁻¹' u) : set t),
by rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, range_coe_subtype,
range_coe_subtype, ← inter_distrib_left, univ_subset_iff.1 h, inter_univ],
exact is_measurable.union
(is_measurable_subtype_image hs (hc _ hu))
(is_measurable_subtype_image ht (hd _ hu))
end
lemma measurable_of_measurable_on_compl_singleton [measurable_space α] [measurable_space β]
{f : α → β} (a : α) (ha : is_measurable ({a} : set α))
(hf : measurable (set.restrict f {x | x ≠ a})) :
measurable f :=
have ha : is_measurable {x | x = a}, from ha.congr $ set.ext $ λ x, mem_singleton_iff,
measurable_of_measurable_union_cover _ _ ha ha.compl (λ x hx, classical.em _)
(@subsingleton.measurable {x | x = a} _ _ _ ⟨λ x y, subtype.eq $ x.2.trans y.2.symm⟩ _) hf
end subtype
section prod
instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α × β) :=
m₁.comap prod.fst ⊔ m₂.comap prod.snd
lemma measurable.fst [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β × γ} (hf : measurable f) : measurable (λa:α, (f a).1) :=
measurable.comp (measurable_space.comap_le_iff_le_map.mp le_sup_left) hf
lemma measurable.snd [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β × γ} (hf : measurable f) : measurable (λa:α, (f a).2) :=
measurable.comp (measurable_space.comap_le_iff_le_map.mp le_sup_right) hf
lemma measurable.prod [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β × γ} (hf₁ : measurable (λa, (f a).1)) (hf₂ : measurable (λa, (f a).2)) :
measurable f :=
sup_le
(by rw [measurable_space.comap_le_iff_le_map, measurable_space.map_comp]; exact hf₁)
(by rw [measurable_space.comap_le_iff_le_map, measurable_space.map_comp]; exact hf₂)
lemma measurable.prod_mk [measurable_space α] [measurable_space β] [measurable_space γ]
{f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) : measurable (λa:α, (f a, g a)) :=
measurable.prod hf hg
lemma is_measurable.prod [measurable_space α] [measurable_space β] {s : set α} {t : set β}
(hs : is_measurable s) (ht : is_measurable t) : is_measurable (set.prod s t) :=
is_measurable.inter (measurable_id.fst _ hs) (measurable_id.snd _ ht)
end prod
section pi
instance measurable_space.pi {α : Type u} {β : α → Type v} [m : Πa, measurable_space (β a)] :
measurable_space (Πa, β a) :=
⨆a, (m a).comap (λb, b a)
lemma measurable_pi_apply {α : Type u} {β : α → Type v} [Πa, measurable_space (β a)] (a : α) :
measurable (λf:Πa, β a, f a) :=
measurable_space.comap_le_iff_le_map.1 $ le_supr _ a
lemma measurable_pi_lambda {α : Type u} {β : α → Type v} {γ : Type w}
[Πa, measurable_space (β a)] [measurable_space γ]
(f : γ → Πa, β a) (hf : ∀a, measurable (λc, f c a)) :
measurable f :=
supr_le $ assume a, measurable_space.comap_le_iff_le_map.2 (hf a)
end pi
instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α ⊕ β) :=
m₁.map sum.inl ⊓ m₂.map sum.inr
section sum
variables [measurable_space α] [measurable_space β] [measurable_space γ]
lemma measurable_inl : measurable (@sum.inl α β) := inf_le_left
lemma measurable_inr : measurable (@sum.inr α β) := inf_le_right
lemma measurable_sum {f : α ⊕ β → γ}
(hl : measurable (f ∘ sum.inl)) (hr : measurable (f ∘ sum.inr)) : measurable f :=
measurable_space.comap_le_iff_le_map.1 $ le_inf
(measurable_space.comap_le_iff_le_map.2 $ hl)
(measurable_space.comap_le_iff_le_map.2 $ hr)
lemma measurable_sum_rec {f : α → γ} {g : β → γ}
(hf : measurable f) (hg : measurable g) : @measurable (α ⊕ β) γ _ _ (@sum.rec α β (λ_, γ) f g) :=
measurable_sum hf hg
lemma is_measurable_inl_image {s : set α} (hs : is_measurable s) :
is_measurable (sum.inl '' s : set (α ⊕ β)) :=
⟨show is_measurable (sum.inl ⁻¹' _), by rwa [preimage_image_eq]; exact (assume a b, sum.inl.inj),
have sum.inr ⁻¹' (sum.inl '' s : set (α ⊕ β)) = ∅ :=
eq_empty_of_subset_empty $ assume x ⟨y, hy, eq⟩, by contradiction,
show is_measurable (sum.inr ⁻¹' _), by rw [this]; exact is_measurable.empty⟩
lemma is_measurable_range_inl : is_measurable (range sum.inl : set (α ⊕ β)) :=
by rw [← image_univ]; exact is_measurable_inl_image is_measurable.univ
lemma is_measurable_inr_image {s : set β} (hs : is_measurable s) :
is_measurable (sum.inr '' s : set (α ⊕ β)) :=
⟨ have sum.inl ⁻¹' (sum.inr '' s : set (α ⊕ β)) = ∅ :=
eq_empty_of_subset_empty $ assume x ⟨y, hy, eq⟩, by contradiction,
show is_measurable (sum.inl ⁻¹' _), by rw [this]; exact is_measurable.empty,
show is_measurable (sum.inr ⁻¹' _), by rwa [preimage_image_eq]; exact (assume a b, sum.inr.inj)⟩
lemma is_measurable_range_inr : is_measurable (range sum.inr : set (α ⊕ β)) :=
by rw [← image_univ]; exact is_measurable_inr_image is_measurable.univ
end sum
instance {β : α → Type v} [m : Πa, measurable_space (β a)] : measurable_space (sigma β) :=
⨅a, (m a).map (sigma.mk a)
end constructions
/-- Equivalences between measurable spaces. Main application is the simplification of measurability
statements along measurable equivalences. -/
structure measurable_equiv (α β : Type*) [measurable_space α] [measurable_space β] extends α ≃ β :=
(measurable_to_fun : measurable to_fun)
(measurable_inv_fun : measurable inv_fun)
namespace measurable_equiv
instance (α β) [measurable_space α] [measurable_space β] : has_coe_to_fun (measurable_equiv α β) :=
⟨λ_, α → β, λe, e.to_equiv⟩
lemma coe_eq {α β} [measurable_space α] [measurable_space β] (e : measurable_equiv α β) :
(e : α → β) = e.to_equiv := rfl
def refl (α : Type*) [measurable_space α] : measurable_equiv α α :=
{ to_equiv := equiv.refl α,
measurable_to_fun := measurable_id, measurable_inv_fun := measurable_id }
def trans [measurable_space α] [measurable_space β] [measurable_space γ]
(ab : measurable_equiv α β) (bc : measurable_equiv β γ) :
measurable_equiv α γ :=
{ to_equiv := ab.to_equiv.trans bc.to_equiv,
measurable_to_fun := bc.measurable_to_fun.comp ab.measurable_to_fun,
measurable_inv_fun := ab.measurable_inv_fun.comp bc.measurable_inv_fun }
lemma trans_to_equiv {α β} [measurable_space α] [measurable_space β] [measurable_space γ]
(e : measurable_equiv α β) (f : measurable_equiv β γ) :
(e.trans f).to_equiv = e.to_equiv.trans f.to_equiv := rfl
def symm [measurable_space α] [measurable_space β] (ab : measurable_equiv α β) :
measurable_equiv β α :=
{ to_equiv := ab.to_equiv.symm,
measurable_to_fun := ab.measurable_inv_fun,
measurable_inv_fun := ab.measurable_to_fun }
lemma symm_to_equiv {α β} [measurable_space α] [measurable_space β] (e : measurable_equiv α β) :
e.symm.to_equiv = e.to_equiv.symm := rfl
protected def cast {α β} [i₁ : measurable_space α] [i₂ : measurable_space β]
(h : α = β) (hi : i₁ == i₂) : measurable_equiv α β :=
{ to_equiv := equiv.cast h,
measurable_to_fun := by unfreezeI; subst h; subst hi; exact measurable_id,
measurable_inv_fun := by unfreezeI; subst h; subst hi; exact measurable_id }
protected lemma measurable {α β} [measurable_space α] [measurable_space β]
(e : measurable_equiv α β) : measurable (e : α → β) :=
e.measurable_to_fun
protected lemma measurable_coe_iff {α β γ} [measurable_space α] [measurable_space β] [measurable_space γ]
{f : β → γ} (e : measurable_equiv α β) : measurable (f ∘ e) ↔ measurable f :=
iff.intro
(assume hfe,
have measurable (f ∘ (e.symm.trans e).to_equiv) := hfe.comp e.symm.measurable,
by rwa [trans_to_equiv, symm_to_equiv, equiv.symm_trans] at this)
(λh, h.comp e.measurable)
def prod_congr [measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ]
(ab : measurable_equiv α β) (cd : measurable_equiv γ δ) :
measurable_equiv (α × γ) (β × δ) :=
{ to_equiv := equiv.prod_congr ab.to_equiv cd.to_equiv,
measurable_to_fun := measurable.prod_mk
(ab.measurable_to_fun.comp (measurable.fst measurable_id))
(cd.measurable_to_fun.comp (measurable.snd measurable_id)),
measurable_inv_fun := measurable.prod_mk
(ab.measurable_inv_fun.comp (measurable.fst measurable_id))
(cd.measurable_inv_fun.comp (measurable.snd measurable_id)) }
def prod_comm [measurable_space α] [measurable_space β] : measurable_equiv (α × β) (β × α) :=
{ to_equiv := equiv.prod_comm α β,
measurable_to_fun := measurable.prod_mk (measurable.snd measurable_id) (measurable.fst measurable_id),
measurable_inv_fun := measurable.prod_mk (measurable.snd measurable_id) (measurable.fst measurable_id) }
def sum_congr [measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ]
(ab : measurable_equiv α β) (cd : measurable_equiv γ δ) :
measurable_equiv (α ⊕ γ) (β ⊕ δ) :=
{ to_equiv := equiv.sum_congr ab.to_equiv cd.to_equiv,
measurable_to_fun :=
begin
cases ab with ab' abm, cases ab', cases cd with cd' cdm, cases cd',
refine measurable_sum (measurable_inl.comp abm) (measurable_inr.comp cdm)
end,
measurable_inv_fun :=
begin
cases ab with ab' _ abm, cases ab', cases cd with cd' _ cdm, cases cd',
refine measurable_sum (measurable_inl.comp abm) (measurable_inr.comp cdm)
end }
/-- `set.prod s t ≃ (s × t)` as a `measurable_equiv`. -/
def set.prod [measurable_space α] [measurable_space β] (s : set α) (t : set β) :
measurable_equiv (s.prod t) (s × t) :=
{ to_equiv := equiv.set.prod s t,
measurable_to_fun := measurable.prod_mk
measurable_id.subtype_coe.fst.subtype_mk
measurable_id.subtype_coe.snd.subtype_mk,
measurable_inv_fun := measurable.subtype_mk $ measurable.prod_mk
measurable_id.fst.subtype_coe
measurable_id.snd.subtype_coe }
/-- `univ α ≃ α` as a `measurable_equiv`. -/
def set.univ (α : Type*) [measurable_space α] : measurable_equiv (univ : set α) α :=
{ to_equiv := equiv.set.univ α,
measurable_to_fun := measurable_id.subtype_coe,
measurable_inv_fun := measurable_id.subtype_mk }
/-- `{a} ≃ unit` as a `measurable_equiv`. -/
def set.singleton [measurable_space α] (a:α) : measurable_equiv ({a} : set α) unit :=
{ to_equiv := equiv.set.singleton a,
measurable_to_fun := measurable_const,
measurable_inv_fun := measurable_const }
noncomputable def set.image [measurable_space α] [measurable_space β]
(f : α → β) (s : set α)
(hf : function.injective f)
(hfm : measurable f) (hfi : ∀s, is_measurable s → is_measurable (f '' s)) :
measurable_equiv s (f '' s) :=
{ to_equiv := equiv.set.image f s hf,
measurable_to_fun := (hfm.comp measurable_id.subtype_coe).subtype_mk,
measurable_inv_fun :=
assume t ⟨u, (hu : is_measurable u), eq⟩,
begin
clear_, subst eq,
show is_measurable {x : f '' s | ((equiv.set.image f s hf).inv_fun x).val ∈ u},
have : ∀(a ∈ s) (h : ∃a', a' ∈ s ∧ a' = a), classical.some h = a :=
λa ha h, (classical.some_spec h).2,
rw show {x:f '' s | ((equiv.set.image f s hf).inv_fun x).val ∈ u} = subtype.val ⁻¹' (f '' u),
by ext ⟨b, a, hbs, rfl⟩; simp [equiv.set.image, equiv.set.image_of_inj_on, hf, this _ hbs],
exact (measurable.subtype_coe measurable_id) (f '' u) (hfi u hu)
end }
noncomputable def set.range [measurable_space α] [measurable_space β]
(f : α → β) (hf : function.injective f) (hfm : measurable f)
(hfi : ∀s, is_measurable s → is_measurable (f '' s)) :
measurable_equiv α (range f) :=
(measurable_equiv.set.univ _).symm.trans $
(measurable_equiv.set.image f univ hf hfm hfi).trans $
measurable_equiv.cast (by rw image_univ) (by rw image_univ)
def set.range_inl [measurable_space α] [measurable_space β] :
measurable_equiv (range sum.inl : set (α ⊕ β)) α :=
{ to_fun := λab, match ab with
| ⟨sum.inl a, _⟩ := a
| ⟨sum.inr b, p⟩ := have false, by cases p; contradiction, this.elim
end,
inv_fun := λa, ⟨sum.inl a, a, rfl⟩,
left_inv := assume ⟨ab, a, eq⟩, by subst eq; refl,
right_inv := assume a, rfl,
measurable_to_fun := assume s (hs : is_measurable s),
begin
refine ⟨_, is_measurable_inl_image hs, set.ext _⟩,
rintros ⟨ab, a, rfl⟩,
simp [set.range_inl._match_1]
end,
measurable_inv_fun := measurable.subtype_mk measurable_inl }
def set.range_inr [measurable_space α] [measurable_space β] :
measurable_equiv (range sum.inr : set (α ⊕ β)) β :=
{ to_fun := λab, match ab with
| ⟨sum.inr b, _⟩ := b
| ⟨sum.inl a, p⟩ := have false, by cases p; contradiction, this.elim
end,
inv_fun := λb, ⟨sum.inr b, b, rfl⟩,
left_inv := assume ⟨ab, b, eq⟩, by subst eq; refl,
right_inv := assume b, rfl,
measurable_to_fun := assume s (hs : is_measurable s),
begin
refine ⟨_, is_measurable_inr_image hs, set.ext _⟩,
rintros ⟨ab, b, rfl⟩,
simp [set.range_inr._match_1]
end,
measurable_inv_fun := measurable.subtype_mk measurable_inr }
def sum_prod_distrib (α β γ) [measurable_space α] [measurable_space β] [measurable_space γ] :
measurable_equiv ((α ⊕ β) × γ) ((α × γ) ⊕ (β × γ)) :=
{ to_equiv := equiv.sum_prod_distrib α β γ,
measurable_to_fun :=
begin
refine measurable_of_measurable_union_cover
((range sum.inl).prod univ)
((range sum.inr).prod univ)
(is_measurable_range_inl.prod is_measurable.univ)
(is_measurable_range_inr.prod is_measurable.univ)
(assume ⟨ab, c⟩ s, by cases ab; simp [set.prod_eq])
_
_,
{ refine (set.prod (range sum.inl) univ).symm.measurable_coe_iff.1 _,
refine (prod_congr set.range_inl (set.univ _)).symm.measurable_coe_iff.1 _,
dsimp [(∘)],
convert measurable_inl,
ext ⟨a, c⟩, refl },
{ refine (set.prod (range sum.inr) univ).symm.measurable_coe_iff.1 _,
refine (prod_congr set.range_inr (set.univ _)).symm.measurable_coe_iff.1 _,
dsimp [(∘)],
convert measurable_inr,
ext ⟨b, c⟩, refl }
end,
measurable_inv_fun :=
measurable_sum
((measurable_inl.comp (measurable.fst measurable_id)).prod_mk (measurable.snd measurable_id))
((measurable_inr.comp (measurable.fst measurable_id)).prod_mk (measurable.snd measurable_id)) }
def prod_sum_distrib (α β γ) [measurable_space α] [measurable_space β] [measurable_space γ] :
measurable_equiv (α × (β ⊕ γ)) ((α × β) ⊕ (α × γ)) :=
prod_comm.trans $ (sum_prod_distrib _ _ _).trans $ sum_congr prod_comm prod_comm
def sum_prod_sum (α β γ δ)
[measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ] :
measurable_equiv ((α ⊕ β) × (γ ⊕ δ)) (((α × γ) ⊕ (α × δ)) ⊕ ((β × γ) ⊕ (β × δ))) :=
(sum_prod_distrib _ _ _).trans $ sum_congr (prod_sum_distrib _ _ _) (prod_sum_distrib _ _ _)
end measurable_equiv
namespace measurable_equiv
end measurable_equiv
namespace measurable_space
/-- Dynkin systems
The main purpose of Dynkin systems is to provide a powerful induction rule for σ-algebras generated
by intersection stable set systems.
-/
structure dynkin_system (α : Type*) :=
(has : set α → Prop)
(has_empty : has ∅)
(has_compl : ∀{a}, has a → has (-a))
(has_Union_nat : ∀{f:ℕ → set α}, pairwise (disjoint on f) → (∀i, has (f i)) → has (⋃i, f i))
theorem Union_decode2_disjoint_on
{β} [encodable β] {f : β → set α} (hd : pairwise (disjoint on f)) :
pairwise (disjoint on λ i, ⋃ b ∈ decode2 β i, f b) :=
begin
rintro i j ij x ⟨h₁, h₂⟩,
revert h₁ h₂,
simp, intros b₁ e₁ h₁ b₂ e₂ h₂,
refine hd _ _ _ ⟨h₁, h₂⟩,
cases encodable.mem_decode2.1 e₁,
cases encodable.mem_decode2.1 e₂,
exact mt (congr_arg _) ij
end
namespace dynkin_system
@[ext] lemma ext :
∀{d₁ d₂ : dynkin_system α}, (∀s:set α, d₁.has s ↔ d₂.has s) → d₁ = d₂
| ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h :=
have s₁ = s₂, from funext $ assume x, propext $ h x,
by subst this
variable (d : dynkin_system α)
lemma has_compl_iff {a} : d.has (-a) ↔ d.has a :=
⟨λ h, by simpa using d.has_compl h, λ h, d.has_compl h⟩
lemma has_univ : d.has univ :=
by simpa using d.has_compl d.has_empty
theorem has_Union {β} [encodable β] {f : β → set α}
(hd : pairwise (disjoint on f)) (h : ∀i, d.has (f i)) : d.has (⋃i, f i) :=
by rw encodable.Union_decode2; exact
d.has_Union_nat (Union_decode2_disjoint_on hd)
(λ n, encodable.Union_decode2_cases d.has_empty h)
theorem has_union {s₁ s₂ : set α}
(h₁ : d.has s₁) (h₂ : d.has s₂) (h : s₁ ∩ s₂ ⊆ ∅) : d.has (s₁ ∪ s₂) :=
by rw union_eq_Union; exact
d.has_Union (pairwise_disjoint_on_bool.2 h)
(bool.forall_bool.2 ⟨h₂, h₁⟩)
lemma has_diff {s₁ s₂ : set α} (h₁ : d.has s₁) (h₂ : d.has s₂) (h : s₂ ⊆ s₁) : d.has (s₁ \ s₂) :=
d.has_compl_iff.1 begin
simp [diff_eq, compl_inter],
exact d.has_union (d.has_compl h₁) h₂ (λ x ⟨h₁, h₂⟩, h₁ (h h₂)),
end
instance : partial_order (dynkin_system α) :=
{ le := λm₁ m₂, m₁.has ≤ m₂.has,
le_refl := assume a b, le_refl _,
le_trans := assume a b c, le_trans,
le_antisymm := assume a b h₁ h₂, ext $ assume s, ⟨h₁ s, h₂ s⟩ }
def of_measurable_space (m : measurable_space α) : dynkin_system α :=
{ has := m.is_measurable,
has_empty := m.is_measurable_empty,
has_compl := m.is_measurable_compl,
has_Union_nat := assume f _ hf, m.is_measurable_Union f hf }
lemma of_measurable_space_le_of_measurable_space_iff {m₁ m₂ : measurable_space α} :
of_measurable_space m₁ ≤ of_measurable_space m₂ ↔ m₁ ≤ m₂ :=
iff.rfl
/-- The least Dynkin system containing a collection of basic sets. -/
inductive generate_has (s : set (set α)) : set α → Prop
| basic : ∀t∈s, generate_has t
| empty : generate_has ∅
| compl : ∀{a}, generate_has a → generate_has (-a)
| Union : ∀{f:ℕ → set α}, pairwise (disjoint on f) →
(∀i, generate_has (f i)) → generate_has (⋃i, f i)
def generate (s : set (set α)) : dynkin_system α :=
{ has := generate_has s,
has_empty := generate_has.empty,
has_compl := assume a, generate_has.compl,
has_Union_nat := assume f, generate_has.Union }
instance : inhabited (dynkin_system α) := ⟨generate univ⟩
def to_measurable_space (h_inter : ∀s₁ s₂, d.has s₁ → d.has s₂ → d.has (s₁ ∩ s₂)) :=
{ measurable_space .
is_measurable := d.has,
is_measurable_empty := d.has_empty,
is_measurable_compl := assume s h, d.has_compl h,
is_measurable_Union := assume f hf,
have ∀n, d.has (disjointed f n),
from assume n, disjointed_induct (hf n)
(assume t i h, h_inter _ _ h $ d.has_compl $ hf i),
have d.has (⋃n, disjointed f n), from d.has_Union disjoint_disjointed this,
by rwa [Union_disjointed] at this }
lemma of_measurable_space_to_measurable_space
(h_inter : ∀s₁ s₂, d.has s₁ → d.has s₂ → d.has (s₁ ∩ s₂)) :
of_measurable_space (d.to_measurable_space h_inter) = d :=
ext $ assume s, iff.rfl
def restrict_on {s : set α} (h : d.has s) : dynkin_system α :=
{ has := λt, d.has (t ∩ s),
has_empty := by simp [d.has_empty],
has_compl := assume t hts,
have -t ∩ s = (- (t ∩ s)) \ -s,
from set.ext $ assume x, by by_cases x ∈ s; simp [h],
by rw [this]; from d.has_diff (d.has_compl hts) (d.has_compl h)
(compl_subset_compl.mpr $ inter_subset_right _ _),
has_Union_nat := assume f hd hf,
begin
rw [inter_comm, inter_Union],
apply d.has_Union_nat,
{ exact λ i j h x ⟨⟨_, h₁⟩, _, h₂⟩, hd i j h ⟨h₁, h₂⟩ },
{ simpa [inter_comm] using hf },
end }
lemma generate_le {s : set (set α)} (h : ∀t∈s, d.has t) : generate s ≤ d :=
λ t ht, ht.rec_on h d.has_empty
(assume a _ h, d.has_compl h)
(assume f hd _ hf, d.has_Union hd hf)
lemma generate_inter {s : set (set α)}
(hs : ∀t₁ t₂ : set α, t₁ ∈ s → t₂ ∈ s → (t₁ ∩ t₂).nonempty → t₁ ∩ t₂ ∈ s) {t₁ t₂ : set α}
(ht₁ : (generate s).has t₁) (ht₂ : (generate s).has t₂) : (generate s).has (t₁ ∩ t₂) :=
have generate s ≤ (generate s).restrict_on ht₂,
from generate_le _ $ assume s₁ hs₁,
have (generate s).has s₁, from generate_has.basic s₁ hs₁,
have generate s ≤ (generate s).restrict_on this,
from generate_le _ $ assume s₂ hs₂,
show (generate s).has (s₂ ∩ s₁), from
(s₂ ∩ s₁).eq_empty_or_nonempty.elim
(λ h, h.symm ▸ generate_has.empty)
(λ h, generate_has.basic _ (hs _ _ hs₂ hs₁ h)),
have (generate s).has (t₂ ∩ s₁), from this _ ht₂,
show (generate s).has (s₁ ∩ t₂), by rwa [inter_comm],
this _ ht₁
lemma generate_from_eq {s : set (set α)}
(hs : ∀t₁ t₂ : set α, t₁ ∈ s → t₂ ∈ s → (t₁ ∩ t₂).nonempty → t₁ ∩ t₂ ∈ s) :
generate_from s = (generate s).to_measurable_space (assume t₁ t₂, generate_inter hs) :=
le_antisymm
(generate_from_le $ assume t ht, generate_has.basic t ht)
(of_measurable_space_le_of_measurable_space_iff.mp $
by rw [of_measurable_space_to_measurable_space];
from (generate_le _ $ assume t ht, is_measurable_generate_from ht))
end dynkin_system
lemma induction_on_inter {C : set α → Prop} {s : set (set α)} {m : measurable_space α}
(h_eq : m = generate_from s)
(h_inter : ∀t₁ t₂ : set α, t₁ ∈ s → t₂ ∈ s → (t₁ ∩ t₂).nonempty → t₁ ∩ t₂ ∈ s)
(h_empty : C ∅) (h_basic : ∀t∈s, C t) (h_compl : ∀t, m.is_measurable t → C t → C (- t))
(h_union : ∀f:ℕ → set α, (∀i j, i ≠ j → f i ∩ f j ⊆ ∅) →
(∀i, m.is_measurable (f i)) → (∀i, C (f i)) → C (⋃i, f i)) :
∀{t}, m.is_measurable t → C t :=
have eq : m.is_measurable = dynkin_system.generate_has s,
by rw [h_eq, dynkin_system.generate_from_eq h_inter]; refl,
assume t ht,
have dynkin_system.generate_has s t, by rwa [eq] at ht,
this.rec_on h_basic h_empty
(assume t ht, h_compl t $ by rw [eq]; exact ht)
(assume f hf ht, h_union f hf $ assume i, by rw [eq]; exact ht _)
end measurable_space
|
86b708b094a02ba17f5ec5069ad0a7f315c79ff8
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/algebraic_topology/dold_kan/functor_gamma.lean
|
9a5675b665216d7d41c539af4b94d753c510d39a
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 14,319
|
lean
|
/-
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import algebraic_topology.dold_kan.split_simplicial_object
/-!
# Construction of the inverse functor of the Dold-Kan equivalence
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
In this file, we construct the functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`
which shall be the inverse functor of the Dold-Kan equivalence in the case of abelian categories,
and more generally pseudoabelian categories.
By definition, when `K` is a chain_complex, `Γ₀.obj K` is a simplicial object which
sends `Δ : simplex_categoryᵒᵖ` to a certain coproduct indexed by the set
`splitting.index_set Δ` whose elements consists of epimorphisms `e : Δ.unop ⟶ Δ'.unop`
(with `Δ' : simplex_categoryᵒᵖ`); the summand attached to such an `e` is `K.X Δ'.unop.len`.
By construction, `Γ₀.obj K` is a split simplicial object whose splitting is `Γ₀.splitting K`.
We also construct `Γ₂ : karoubi (chain_complex C ℕ) ⥤ karoubi (simplicial_object C)`
which shall be an equivalence for any additive category `C`.
-/
noncomputable theory
open category_theory category_theory.category category_theory.limits
simplex_category simplicial_object opposite category_theory.idempotents
open_locale simplicial dold_kan
namespace algebraic_topology
namespace dold_kan
variables {C : Type*} [category C] [preadditive C] (K K' : chain_complex C ℕ) (f : K ⟶ K')
{Δ'' Δ' Δ : simplex_category} (i' : Δ'' ⟶ Δ') [mono i'] (i : Δ' ⟶ Δ) [mono i]
/-- `is_δ₀ i` is a simple condition used to check whether a monomorphism `i` in
`simplex_category` identifies to the coface map `δ 0`. -/
@[nolint unused_arguments]
def is_δ₀ {Δ Δ' : simplex_category} (i : Δ' ⟶ Δ) [mono i] : Prop :=
(Δ.len = Δ'.len+1) ∧ (i.to_order_hom 0 ≠ 0)
namespace is_δ₀
lemma iff {j : ℕ} {i : fin (j+2)} : is_δ₀ (simplex_category.δ i) ↔ i = 0 :=
begin
split,
{ rintro ⟨h₁, h₂⟩,
by_contradiction,
exact h₂ (fin.succ_above_ne_zero_zero h), },
{ rintro rfl,
exact ⟨rfl, fin.succ_ne_zero _⟩, },
end
lemma eq_δ₀ {n : ℕ} {i : [n] ⟶ [n+1]} [mono i] (hi : is_δ₀ i) :
i = simplex_category.δ 0 :=
begin
unfreezingI { obtain ⟨j, rfl⟩ := simplex_category.eq_δ_of_mono i, },
rw iff at hi,
rw hi,
end
end is_δ₀
namespace Γ₀
namespace obj
/-- In the definition of `(Γ₀.obj K).obj Δ` as a direct sum indexed by `A : splitting.index_set Δ`,
the summand `summand K Δ A` is `K.X A.1.len`. -/
def summand (Δ : simplex_categoryᵒᵖ) (A : splitting.index_set Δ) : C := K.X A.1.unop.len
/-- The functor `Γ₀` sends a chain complex `K` to the simplicial object which
sends `Δ` to the direct sum of the objects `summand K Δ A` for all `A : splitting.index_set Δ` -/
def obj₂ (K : chain_complex C ℕ) (Δ : simplex_categoryᵒᵖ) [has_finite_coproducts C] : C :=
∐ (λ (A : splitting.index_set Δ), summand K Δ A)
namespace termwise
/-- A monomorphism `i : Δ' ⟶ Δ` induces a morphism `K.X Δ.len ⟶ K.X Δ'.len` which
is the identity if `Δ = Δ'`, the differential on the complex `K` if `i = δ 0`, and
zero otherwise. -/
def map_mono (K : chain_complex C ℕ) {Δ' Δ : simplex_category} (i : Δ' ⟶ Δ) [mono i] :
K.X Δ.len ⟶ K.X Δ'.len :=
begin
by_cases Δ = Δ',
{ exact eq_to_hom (by congr'), },
{ by_cases is_δ₀ i,
{ exact K.d Δ.len Δ'.len, },
{ exact 0, }, },
end
variable (Δ)
lemma map_mono_id : map_mono K (𝟙 Δ) = 𝟙 _ :=
by { unfold map_mono, simp only [eq_self_iff_true, eq_to_hom_refl, dite_eq_ite, if_true], }
variable {Δ}
lemma map_mono_δ₀' (hi : is_δ₀ i) : map_mono K i = K.d Δ.len Δ'.len :=
begin
unfold map_mono,
classical,
rw [dif_neg, dif_pos hi],
unfreezingI { rintro rfl, },
simpa only [self_eq_add_right, nat.one_ne_zero] using hi.1,
end
@[simp]
lemma map_mono_δ₀ {n : ℕ} : map_mono K (δ (0 : fin (n+2))) = K.d (n+1) n :=
map_mono_δ₀' K _ (by rw is_δ₀.iff)
lemma map_mono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬is_δ₀ i) : map_mono K i = 0 :=
by { unfold map_mono, rw ne.def at h₁, split_ifs, refl, }
variables {K K'}
@[simp, reassoc]
lemma map_mono_naturality : map_mono K i ≫ f.f Δ'.len = f.f Δ.len ≫ map_mono K' i :=
begin
unfold map_mono,
split_ifs,
{ unfreezingI { subst h, },
simp only [id_comp, eq_to_hom_refl, comp_id], },
{ rw homological_complex.hom.comm, },
{ rw [zero_comp, comp_zero], }
end
variable (K)
@[simp, reassoc]
lemma map_mono_comp : map_mono K i ≫ map_mono K i' = map_mono K (i' ≫ i) :=
begin
/- case where i : Δ' ⟶ Δ is the identity -/
by_cases h₁ : Δ = Δ',
{ unfreezingI { subst h₁, },
simp only [simplex_category.eq_id_of_mono i,
comp_id, id_comp, map_mono_id K, eq_to_hom_refl], },
/- case where i' : Δ'' ⟶ Δ' is the identity -/
by_cases h₂ : Δ' = Δ'',
{ unfreezingI { subst h₂, },
simp only [simplex_category.eq_id_of_mono i',
comp_id, id_comp, map_mono_id K, eq_to_hom_refl], },
/- then the RHS is always zero -/
obtain ⟨k, hk⟩ := nat.exists_eq_add_of_lt (len_lt_of_mono i h₁),
obtain ⟨k', hk'⟩ := nat.exists_eq_add_of_lt (len_lt_of_mono i' h₂),
have eq : Δ.len = Δ''.len + (k+k'+2) := by linarith,
rw map_mono_eq_zero K (i' ≫ i) _ _, rotate,
{ by_contradiction,
simpa only [self_eq_add_right, h] using eq, },
{ by_contradiction,
simp only [h.1, add_right_inj] at eq,
linarith, },
/- in all cases, the LHS is also zero, either by definition, or because d ≫ d = 0 -/
by_cases h₃ : is_δ₀ i,
{ by_cases h₄ : is_δ₀ i',
{ rw [map_mono_δ₀' K i h₃, map_mono_δ₀' K i' h₄,
homological_complex.d_comp_d], },
{ simp only [map_mono_eq_zero K i' h₂ h₄, comp_zero], }, },
{ simp only [map_mono_eq_zero K i h₁ h₃, zero_comp], },
end
end termwise
variable [has_finite_coproducts C]
/-- The simplicial morphism on the simplicial object `Γ₀.obj K` induced by
a morphism `Δ' → Δ` in `simplex_category` is defined on each summand
associated to an `A : Γ_index_set Δ` in terms of the epi-mono factorisation
of `θ ≫ A.e`. -/
def map (K : chain_complex C ℕ) {Δ' Δ : simplex_categoryᵒᵖ} (θ : Δ ⟶ Δ') :
obj₂ K Δ ⟶ obj₂ K Δ' :=
sigma.desc (λ A, termwise.map_mono K (image.ι (θ.unop ≫ A.e)) ≫
(sigma.ι (summand K Δ') (A.pull θ)))
@[reassoc]
lemma map_on_summand₀ {Δ Δ' : simplex_categoryᵒᵖ} (A : splitting.index_set Δ) {θ : Δ ⟶ Δ'}
{Δ'' : simplex_category} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [epi e] [mono i]
(fac : e ≫ i = θ.unop ≫ A.e) :
(sigma.ι (summand K Δ) A) ≫ map K θ =
termwise.map_mono K i ≫ sigma.ι (summand K Δ') (splitting.index_set.mk e) :=
begin
simp only [map, colimit.ι_desc, cofan.mk_ι_app],
have h := simplex_category.image_eq fac,
unfreezingI { subst h, },
congr,
{ exact simplex_category.image_ι_eq fac, },
{ dsimp only [simplicial_object.splitting.index_set.pull],
congr,
exact simplex_category.factor_thru_image_eq fac, },
end
@[reassoc]
lemma map_on_summand₀' {Δ Δ' : simplex_categoryᵒᵖ} (A : splitting.index_set Δ) (θ : Δ ⟶ Δ') :
(sigma.ι (summand K Δ) A) ≫ map K θ =
termwise.map_mono K (image.ι (θ.unop ≫ A.e)) ≫ sigma.ι (summand K _) (A.pull θ) :=
map_on_summand₀ K A (A.fac_pull θ)
end obj
variable [has_finite_coproducts C]
/-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, on objects. -/
@[simps]
def obj (K : chain_complex C ℕ) : simplicial_object C :=
{ obj := λ Δ, obj.obj₂ K Δ,
map := λ Δ Δ' θ, obj.map K θ,
map_id' := λ Δ, begin
ext A,
cases A,
have fac : A.e ≫ 𝟙 A.1.unop = (𝟙 Δ).unop ≫ A.e := by rw [unop_id, comp_id, id_comp],
erw [obj.map_on_summand₀ K A fac, obj.termwise.map_mono_id, id_comp, comp_id],
unfreezingI { rcases A with ⟨Δ', ⟨e, he⟩⟩, },
refl,
end,
map_comp' := λ Δ'' Δ' Δ θ' θ, begin
ext A,
cases A,
have fac : θ.unop ≫ θ'.unop ≫ A.e = (θ' ≫ θ).unop ≫ A.e := by rw [unop_comp, assoc],
rw [← image.fac (θ'.unop ≫ A.e), ← assoc,
← image.fac (θ.unop ≫ factor_thru_image (θ'.unop ≫ A.e)), assoc] at fac,
simpa only [obj.map_on_summand₀'_assoc K A θ', obj.map_on_summand₀' K _ θ,
obj.termwise.map_mono_comp_assoc, obj.map_on_summand₀ K A fac],
end }
lemma splitting_map_eq_id (Δ : simplex_categoryᵒᵖ) :
(simplicial_object.splitting.map (Γ₀.obj K)
(λ (n : ℕ), sigma.ι (Γ₀.obj.summand K (op [n])) (splitting.index_set.id (op [n]))) Δ)
= 𝟙 _ :=
begin
ext A,
discrete_cases,
induction Δ using opposite.rec,
induction Δ with n,
dsimp,
simp only [colimit.ι_desc, cofan.mk_ι_app, comp_id, Γ₀.obj_map],
rw [Γ₀.obj.map_on_summand₀ K
(simplicial_object.splitting.index_set.id A.1) (show A.e ≫ 𝟙 _ = A.e.op.unop ≫ 𝟙 _, by refl),
Γ₀.obj.termwise.map_mono_id, A.ext'],
apply id_comp,
end
/-- By construction, the simplicial `Γ₀.obj K` is equipped with a splitting. -/
def splitting (K : chain_complex C ℕ) : simplicial_object.splitting (Γ₀.obj K) :=
{ N := λ n, K.X n,
ι := λ n, sigma.ι (Γ₀.obj.summand K (op [n])) (splitting.index_set.id (op [n])),
map_is_iso' := λ Δ, begin
rw Γ₀.splitting_map_eq_id,
apply is_iso.id,
end, }
@[simp]
lemma splitting_iso_hom_eq_id (Δ : simplex_categoryᵒᵖ) : ((splitting K).iso Δ).hom = 𝟙 _ :=
splitting_map_eq_id K Δ
@[reassoc]
lemma obj.map_on_summand {Δ Δ' : simplex_categoryᵒᵖ} (A : splitting.index_set Δ) (θ : Δ ⟶ Δ')
{Δ'' : simplex_category}
{e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [epi e] [mono i]
(fac : e ≫ i = θ.unop ≫ A.e) : (Γ₀.splitting K).ι_summand A ≫ (Γ₀.obj K).map θ =
Γ₀.obj.termwise.map_mono K i ≫ (Γ₀.splitting K).ι_summand (splitting.index_set.mk e) :=
begin
dsimp only [simplicial_object.splitting.ι_summand,
simplicial_object.splitting.ι_coprod],
simp only [assoc, Γ₀.splitting_iso_hom_eq_id, id_comp, comp_id],
exact Γ₀.obj.map_on_summand₀ K A fac,
end
@[reassoc]
lemma obj.map_on_summand' {Δ Δ' : simplex_categoryᵒᵖ} (A : splitting.index_set Δ) (θ : Δ ⟶ Δ') :
(splitting K).ι_summand A ≫ (obj K).map θ =
obj.termwise.map_mono K (image.ι (θ.unop ≫ A.e)) ≫ (splitting K).ι_summand (A.pull θ) :=
by { apply obj.map_on_summand, apply image.fac, }
@[reassoc]
lemma obj.map_mono_on_summand_id {Δ Δ' : simplex_category} (i : Δ' ⟶ Δ) [mono i] :
(splitting K).ι_summand (splitting.index_set.id (op Δ)) ≫ (obj K).map i.op =
obj.termwise.map_mono K i ≫ (splitting K).ι_summand (splitting.index_set.id (op Δ')) :=
obj.map_on_summand K (splitting.index_set.id (op Δ)) i.op (rfl : 𝟙 _ ≫ i = i ≫ 𝟙 _)
@[reassoc]
lemma obj.map_epi_on_summand_id {Δ Δ' : simplex_category } (e : Δ' ⟶ Δ) [epi e] :
(Γ₀.splitting K).ι_summand (splitting.index_set.id (op Δ)) ≫ (Γ₀.obj K).map e.op =
(Γ₀.splitting K).ι_summand (splitting.index_set.mk e) :=
by simpa only [Γ₀.obj.map_on_summand K (splitting.index_set.id (op Δ)) e.op
(rfl : e ≫ 𝟙 Δ = e ≫ 𝟙 Δ), Γ₀.obj.termwise.map_mono_id] using id_comp _
/-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, on morphisms. -/
@[simps]
def map {K K' : chain_complex C ℕ} (f : K ⟶ K') : obj K ⟶ obj K' :=
{ app := λ Δ, (Γ₀.splitting K).desc Δ (λ A, f.f A.1.unop.len ≫ (Γ₀.splitting K').ι_summand A),
naturality' := λ Δ' Δ θ, begin
apply (Γ₀.splitting K).hom_ext',
intro A,
simp only [(splitting K).ι_desc_assoc, obj.map_on_summand'_assoc K _ θ,
(splitting K).ι_desc, assoc, obj.map_on_summand' K' _ θ],
apply obj.termwise.map_mono_naturality_assoc,
end, }
end Γ₀
variable [has_finite_coproducts C]
/-- The functor `Γ₀' : chain_complex C ℕ ⥤ simplicial_object.split C`
that induces `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, which
shall be the inverse functor of the Dold-Kan equivalence for
abelian or pseudo-abelian categories. -/
@[simps]
def Γ₀' : chain_complex C ℕ ⥤ simplicial_object.split C :=
{ obj := λ K, simplicial_object.split.mk' (Γ₀.splitting K),
map := λ K K' f,
{ F := Γ₀.map f,
f := f.f,
comm' := λ n, by { dsimp, simpa only [← splitting.ι_summand_id,
(Γ₀.splitting K).ι_desc], }, }, }
/-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, which is
the inverse functor of the Dold-Kan equivalence when `C` is an abelian
category, or more generally a pseudoabelian category. -/
@[simps]
def Γ₀ : chain_complex C ℕ ⥤ simplicial_object C := Γ₀' ⋙ split.forget _
/-- The extension of `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`
on the idempotent completions. It shall be an equivalence of categories
for any additive category `C`. -/
@[simps]
def Γ₂ : karoubi (chain_complex C ℕ) ⥤ karoubi (simplicial_object C) :=
(category_theory.idempotents.functor_extension₂ _ _).obj Γ₀
lemma higher_faces_vanish.on_Γ₀_summand_id (K : chain_complex C ℕ) (n : ℕ) :
higher_faces_vanish (n+1) ((Γ₀.splitting K).ι_summand (splitting.index_set.id (op [n+1]))) :=
begin
intros j hj,
have eq := Γ₀.obj.map_mono_on_summand_id K (simplex_category.δ j.succ),
rw [Γ₀.obj.termwise.map_mono_eq_zero K, zero_comp] at eq, rotate,
{ intro h,
exact (nat.succ_ne_self n) (congr_arg simplex_category.len h), },
{ exact λ h, fin.succ_ne_zero j (by simpa only [is_δ₀.iff] using h), },
exact eq,
end
@[simp, reassoc]
lemma P_infty_on_Γ₀_splitting_summand_eq_self
(K : chain_complex C ℕ) {n : ℕ} :
(Γ₀.splitting K).ι_summand (splitting.index_set.id (op [n])) ≫ (P_infty : K[Γ₀.obj K] ⟶ _).f n =
(Γ₀.splitting K).ι_summand (splitting.index_set.id (op [n])) :=
begin
rw P_infty_f,
cases n,
{ simpa only [P_f_0_eq] using comp_id _, },
{ exact (higher_faces_vanish.on_Γ₀_summand_id K n).comp_P_eq_self, },
end
end dold_kan
end algebraic_topology
|
424f5c7898e68d6bfa3d378844fe804afd85dd30
|
2ee768fce4d0783536570385ee340d97e2411436
|
/src/u_def.lean
|
6236b3ce0bb253d4def3f001822d0b9b6a137342
|
[] |
no_license
|
agjftucker/exists-unique
|
835cf0c0ec622d49dbceb84be37db62e6ab8a6d0
|
1fba6035a08347f424c765d8a1c56b1a15c8abbe
|
refs/heads/master
| 1,683,445,592,336
| 1,622,649,822,000
| 1,622,649,822,000
| 309,485,697
| 2
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,171
|
lean
|
import v_def q_def
local prefix `𝒫`:100 := fun {α : Type} (s : finset α), {t // t ≤ s}
variables {𝒩 : Type} {T : with_top ℝ}
def mono_wrt_assets {β : Tt T → Type*} [∀ t, has_le (β t)] (f : ∀ (t : Tt T), X 𝒩 → β t) : Prop :=
∀ (η : ℝ) (hη : 0 ≤ η) (t : Tt T) (y : X 𝒩), f t y ≤ f t (y + η)
def strict_mono_wrt_assets (E : Tt T → X 𝒩 → 𝒩 → ℝ) : Prop :=
∀ (η : ℝ) (hη : 0 < η) (t : Tt T) (y : X 𝒩) (i : 𝒩), E t y i < E t (y + η) i
lemma mono_of_strict_mono_wrt_assets {E : Tt T → X 𝒩 → 𝒩 → ℝ} :
strict_mono_wrt_assets E → mono_wrt_assets E :=
begin
intros h η hη t y i,
cases lt_or_eq_of_le hη with hlt he,
{ apply le_of_lt,
apply h η hlt, },
{ apply le_of_eq,
congr,
rw ← he,
symmetry,
apply add_zero, },
end
def E_star (ℰ : ∀ (t : Tt T), X 𝒩 → (𝒩 → Tτ t → ℝ) → 𝒩 → ℝ) : debt_fn 𝒩 T → Tt T → X 𝒩 → 𝒩 → ℝ :=
fun υ t y, ℰ t y (υ t y)
section
variables (𝒩) (T)
structure equity_function :=
(ℰ : ∀ (t : Tt T), X 𝒩 → (𝒩 → Tτ t → ℝ) → 𝒩 → ℝ)
(mono_wrt_debt_valuation {t : Tt T} {y : X 𝒩} {υ₁ υ₂ : 𝒩 → Tτ t → ℝ} : υ₁ ≤ υ₂ → ℰ t y υ₁ ≤ ℰ t y υ₂)
(continuity_preserving {υ : debt_fn 𝒩 T} {t : Tt T} : continuous (υ t) → continuous (E_star ℰ υ t))
(mono_preserving_wrt_assets {υ : debt_fn 𝒩 T} : mono_wrt_assets υ → strict_mono_wrt_assets (E_star ℰ υ))
end
instance : has_coe_to_fun (equity_function 𝒩 T) :=
{ F := fun _, ∀ (t : Tt T), X 𝒩 → (𝒩 → Tτ t → ℝ) → 𝒩 → ℝ,
coe := equity_function.ℰ }
variables [decidable_eq 𝒩] (ℋ : well_behaved_soln 𝒩 T) (ℰ : equity_function 𝒩 T)
def v_ {A : finset 𝒩} (ψ : ∀ B < A, Tt T → X 𝒩 → 𝒫 B) : ∀ B < A, debt_fn 𝒩 T :=
finset.strong_induction (fun B υ hB, v_mk ℋ (ψ B hB) (fun C hC, υ C hC (trans hC hB)))
lemma v_eq {ψ : ∀ B, Tt T → X 𝒩 → 𝒫 B} :
∀ A B (hB : B < A), v ℋ ψ B = v_ ℋ (fun C _, ψ C) B hB :=
λ A, finset.strong_induction
begin
intros B ih hB,
conv_lhs { rw [v, finset.strong_induction_eq, ←v], },
conv_rhs { rw [v_, finset.strong_induction_eq, ←v_], },
congr,
funext C hC,
exact ih C hC (trans hC hB),
end
section φc
variables {A : finset 𝒩} (φ_ : ∀ B < A, Tt T → X 𝒩 → 𝒫 B)
def u_ : ∀ B < A, debt_fn 𝒩 T := v_ ℋ φ_
def r_ (t : Tt T) (y : X 𝒩) (C B : 𝒫 A) : Prop :=
∃ (hC : ↑C < A), ∀ i ∈ (B : finset 𝒩), 0 < E_star ℰ (u_ ℋ φ_ C hC) t y i
noncomputable instance (t : Tt T) (y : X 𝒩) : decidable_rel (r_ ℋ ℰ φ_ t y) :=
by { delta r_, apply_instance, }
variable (A)
noncomputable def φ_mk : Tt T → X 𝒩 → 𝒫 A :=
λ t y, si.φ (r_ ℋ ℰ φ_ t y)
end φc
noncomputable def φ : ∀ (A : finset 𝒩), Tt T → X 𝒩 → 𝒫 A :=
finset.strong_induction (φ_mk ℋ ℰ)
def U : finset 𝒩 → Tt T → set (X 𝒩) := V (φ ℋ ℰ)
noncomputable def u : finset 𝒩 → debt_fn 𝒩 T := v ℋ (φ ℋ ℰ)
def r (t : Tt T) (y : X 𝒩) (C B : finset 𝒩) : Prop :=
∀ i ∈ B, 0 < E_star ℰ (u ℋ ℰ C) t y i
def r' (A : finset 𝒩) (t : Tt T) (y : X 𝒩) (C B : 𝒫 A) : Prop :=
r ℋ ℰ t y ↑C ↑B
noncomputable instance dec_mem_U (A : finset 𝒩) (t : Tt T) : ∀ y, decidable (y ∈ U ℋ ℰ A t) :=
by { delta U, apply_instance, }
noncomputable instance (t : Tt T) (y : X 𝒩) : decidable_rel (r ℋ ℰ t y) :=
by { delta r, apply_instance, }
noncomputable instance (A : finset 𝒩) (t : Tt T) (y : X 𝒩) : decidable_rel (r' ℋ ℰ A t y) :=
by { delta r', apply_instance, }
variables {ℋ} {ℰ}
lemma r_iff' {t : Tt T} {y : X 𝒩} (A : finset 𝒩) :
∀ (B C : 𝒫 A), C < B → (r ℋ ℰ t y ↑C ↑B ↔ r' ℋ ℰ A t y C B) :=
fun B C hlt, by refl
lemma r_iff_ (A : finset 𝒩) {t : Tt T} {y : X 𝒩} :
∀ (B C : 𝒫 A), C < B → (r ℋ ℰ t y ↑C ↑B ↔ r_ ℋ ℰ (fun D _, φ ℋ ℰ D) t y C B) :=
begin
rintros ⟨B, hB⟩ ⟨C, hC⟩ hlt,
split,
{ intro hr,
use lt_of_lt_of_le hlt hB,
rwa [u_, ←v_eq], },
{ rintros ⟨hC, hr_⟩,
rwa [u_, ←v_eq] at hr_, },
end
lemma φ_eq {t : Tt T} {y : X 𝒩} (A : finset 𝒩) :
φ ℋ ℰ A t y = si.φ (r' ℋ ℰ A t y) :=
begin
conv_lhs
{ rw [φ, finset.strong_induction_eq, ←φ],
change si.φ (r_ ℋ ℰ (fun B < A, φ ℋ ℰ B) t y), },
rw [si.φ, si.φ],
congr' 2,
ext C,
rw ←q_iff (r_iff_ A),
rw q_iff (r_iff' A),
end
lemma mem_U_of_q {A : finset 𝒩} {t : Tt T} {y : X 𝒩} : q (r ℋ ℰ t y) A → y ∈ U ℋ ℰ A t :=
begin
intro hq,
rw [U, V, φ, finset.strong_induction_eq, ←φ],
apply si.le_φ_of_q (r_iff_ A) ⟨A, refl _⟩,
exact hq,
apply_instance,
end
lemma φ_mono {A B : finset 𝒩} : B ≤ A → ∀ t y, (φ ℋ ℰ B t y : finset 𝒩) ≤ φ ℋ ℰ A t y :=
begin
intros hB t y,
conv_lhs { rw [φ, finset.strong_induction_eq, ←φ], },
conv_rhs { rw [φ, finset.strong_induction_eq, ←φ], },
apply si.φ_mono (r_iff_ A) (r_iff_ B) hB,
apply_instance,
end
|
39230f5972c0fd0df82d35fd28ab7263cb9e91f9
|
bdb33f8b7ea65f7705fc342a178508e2722eb851
|
/logic/function.lean
|
cdc89deaa8552a6f502f913a00dc86533b98bdc3
|
[
"Apache-2.0"
] |
permissive
|
rwbarton/mathlib
|
939ae09bf8d6eb1331fc2f7e067d39567e10e33d
|
c13c5ea701bb1eec057e0a242d9f480a079105e9
|
refs/heads/master
| 1,584,015,335,862
| 1,524,142,167,000
| 1,524,142,167,000
| 130,614,171
| 0
| 0
|
Apache-2.0
| 1,548,902,667,000
| 1,524,437,371,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,317
|
lean
|
/-
Copyright (c) 2016 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
Miscellaneous function constructions and lemmas.
-/
import logic.basic data.option
universes u v w
namespace function
section
variables {α : Sort u} {β : Sort v} {f : α → β}
lemma hfunext {α α': Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : Πa, β a} {f' : Πa, β' a}
(hα : α = α') (h : ∀a a', a == a' → f a == f' a') : f == f' :=
begin
subst hα,
have : ∀a, f a == f' a,
{ intro a, exact h a a (heq.refl a) },
have : β = β',
{ funext a, exact type_eq_of_heq (this a) },
subst this,
apply heq_of_eq,
funext a,
exact eq_of_heq (this a)
end
lemma funext_iff {β : α → Sort*} {f₁ f₂ : Π (x : α), β x} : f₁ = f₂ ↔ (∀a, f₁ a = f₂ a) :=
iff.intro (assume h a, h ▸ rfl) funext
lemma comp_apply {α : Sort u} {β : Sort v} {φ : Sort w} (f : β → φ) (g : α → β) (a : α) :
(f ∘ g) a = f (g a) := rfl
@[simp] theorem injective.eq_iff (I : injective f) {a b : α} :
f a = f b ↔ a = b :=
⟨@I _ _, congr_arg f⟩
def injective.decidable_eq [decidable_eq β] (I : injective f) : decidable_eq α
| a b := decidable_of_iff _ I.eq_iff
theorem cantor_surjective {α} (f : α → α → Prop) : ¬ function.surjective f | h :=
let ⟨D, e⟩ := h (λ a, ¬ f a a) in
(iff_not_self (f D D)).1 $ iff_of_eq (congr_fun e D)
/-- `g` is a partial inverse to `f` (an injective but not necessarily
surjective function) if `g y = some x` implies `f x = y`, and `g y = none`
implies that `y` is not in the range of `f`. -/
def is_partial_inv {α β} (f : α → β) (g : β → option α) : Prop :=
∀ x y, g y = some x ↔ f x = y
theorem injective_of_partial_inv {α β} {f : α → β} {g} (H : is_partial_inv f g) : injective f :=
λ a b h, option.some.inj $ ((H _ _).2 h).symm.trans ((H _ _).2 rfl)
theorem injective_of_partial_inv_right {α β} {f : α → β} {g} (H : is_partial_inv f g)
(x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y :=
((H _ _).1 h₁).symm.trans ((H _ _).1 h₂)
local attribute [instance] classical.prop_decidable
/-- We can use choice to construct explicitly a partial inverse for
a given injective function `f`. -/
noncomputable def partial_inv {α β} (f : α → β) (b : β) : option α :=
if h : ∃ a, f a = b then some (classical.some h) else none
theorem partial_inv_of_injective {α β} {f : α → β} (I : injective f) :
is_partial_inv f (partial_inv f) | a b :=
⟨λ h, if h' : ∃ a, f a = b then begin
rw [partial_inv, dif_pos h'] at h,
injection h with h, subst h,
apply classical.some_spec h'
end else by rw [partial_inv, dif_neg h'] at h; contradiction,
λ e, e ▸ have h : ∃ a', f a' = f a, from ⟨_, rfl⟩,
(dif_pos h).trans (congr_arg _ (I $ classical.some_spec h))⟩
end
section inv_fun
variables {α : Type u} [inhabited α] {β : Sort v} {f : α → β} {s : set α} {a : α} {b : β}
local attribute [instance] classical.prop_decidable
/-- Construct the inverse for a function `f` on domain `s`. -/
noncomputable def inv_fun_on (f : α → β) (s : set α) (b : β) : α :=
if h : ∃a, a ∈ s ∧ f a = b then classical.some h else default α
theorem inv_fun_on_pos (h : ∃a∈s, f a = b) : inv_fun_on f s b ∈ s ∧ f (inv_fun_on f s b) = b :=
by rw [bex_def] at h; rw [inv_fun_on, dif_pos h]; exact classical.some_spec h
theorem inv_fun_on_mem (h : ∃a∈s, f a = b) : inv_fun_on f s b ∈ s := (inv_fun_on_pos h).left
theorem inv_fun_on_eq (h : ∃a∈s, f a = b) : f (inv_fun_on f s b) = b := (inv_fun_on_pos h).right
theorem inv_fun_on_eq' (h : ∀x∈s, ∀y∈s, f x = f y → x = y) (ha : a ∈ s) :
inv_fun_on f s (f a) = a :=
have ∃a'∈s, f a' = f a, from ⟨a, ha, rfl⟩,
h _ (inv_fun_on_mem this) _ ha (inv_fun_on_eq this)
theorem inv_fun_on_neg (h : ¬ ∃a∈s, f a = b) : inv_fun_on f s b = default α :=
by rw [bex_def] at h; rw [inv_fun_on, dif_neg h]
/-- The inverse of a function (which is a left inverse if `f` is injective
and a right inverse if `f` is surjective). -/
noncomputable def inv_fun (f : α → β) : β → α := inv_fun_on f set.univ
theorem inv_fun_eq (h : ∃a, f a = b) : f (inv_fun f b) = b :=
inv_fun_on_eq $ let ⟨a, ha⟩ := h in ⟨a, trivial, ha⟩
theorem inv_fun_eq_of_injective_of_right_inverse {g : β → α}
(hf : injective f) (hg : right_inverse g f) : inv_fun f = g :=
funext $ assume b,
hf begin rw [hg b], exact inv_fun_eq ⟨g b, hg b⟩ end
lemma right_inverse_inv_fun (hf : surjective f) : right_inverse (inv_fun f) f :=
assume b, inv_fun_eq $ hf b
lemma left_inverse_inv_fun (hf : injective f) : left_inverse (inv_fun f) f :=
assume b,
have f (inv_fun f (f b)) = f b,
from inv_fun_eq ⟨b, rfl⟩,
hf this
lemma inv_fun_surjective (hf : injective f) : surjective (inv_fun f) :=
surjective_of_has_right_inverse ⟨_, left_inverse_inv_fun hf⟩
lemma inv_fun_comp (hf : injective f) : inv_fun f ∘ f = id := funext $ left_inverse_inv_fun hf
lemma injective.has_left_inverse (hf : injective f) : has_left_inverse f :=
⟨inv_fun f, left_inverse_inv_fun hf⟩
lemma injective_iff_has_left_inverse : injective f ↔ has_left_inverse f :=
⟨injective.has_left_inverse, injective_of_has_left_inverse⟩
end inv_fun
theorem cantor_injective {α : Type*} (f : (α → Prop) → α) : ¬ function.injective f | h :=
cantor_surjective (inv_fun f) $
surjective_of_has_right_inverse ⟨f, left_inverse_inv_fun h⟩
section surj_inv
variables {α : Sort u} {β : Sort v} {f : α → β}
/-- The inverse of a surjective function. (Unlike `inv_fun`, this does not require
`α` to be inhabited.) -/
noncomputable def surj_inv {f : α → β} (h : surjective f) (b : β) : α := classical.some (h b)
lemma surj_inv_eq (h : surjective f) (b) : f (surj_inv h b) = b := classical.some_spec (h b)
lemma right_inverse_surj_inv (hf : surjective f) : right_inverse (surj_inv hf) f :=
surj_inv_eq hf
lemma left_inverse_surj_inv (hf : bijective f) : left_inverse (surj_inv hf.2) f :=
right_inverse_of_injective_of_left_inverse hf.1 (right_inverse_surj_inv hf.2)
lemma surjective.has_right_inverse (hf : surjective f) : has_right_inverse f :=
⟨_, right_inverse_surj_inv hf⟩
lemma surjective_iff_has_right_inverse : surjective f ↔ has_right_inverse f :=
⟨surjective.has_right_inverse, surjective_of_has_right_inverse⟩
lemma bijective_iff_has_inverse : bijective f ↔ ∃ g, left_inverse g f ∧ right_inverse g f :=
⟨λ hf, ⟨_, left_inverse_surj_inv hf, right_inverse_surj_inv hf.2⟩,
λ ⟨g, gl, gr⟩, ⟨injective_of_left_inverse gl, surjective_of_has_right_inverse ⟨_, gr⟩⟩⟩
lemma injective_surj_inv (h : surjective f) : injective (surj_inv h) :=
injective_of_has_left_inverse ⟨f, right_inverse_surj_inv h⟩
end surj_inv
section update
variables {α : Sort u} {β : α → Sort v} [decidable_eq α]
def update (f : Πa, β a) (a' : α) (v : β a') (a : α) : β a :=
if h : a = a' then eq.rec v h.symm else f a
@[simp] lemma update_same {a : α} {v : β a} {f : Πa, β a} : update f a v a = v :=
dif_pos rfl
@[simp] lemma update_noteq {a a' : α} {v : β a'} {f : Πa, β a} (h : a ≠ a') : update f a' v a = f a :=
dif_neg h
end update
end function
|
9628645d5cd56862a3894cba9b36ba640e8d999f
|
6ae186a0c6ab366b39397ec9250541c9d5aeb023
|
/src/category_theory/arrows.lean
|
9b93d4abe1b711cd324198d68e41f36b68a34a21
|
[] |
no_license
|
ThanhPhamPhuong/lean-category-theory
|
0d5c4fe1137866b4fe29ec2753d99aa0d0667881
|
968a29fe7c0b20e10d8a27e120aca8ddc184e1ea
|
refs/heads/master
| 1,587,206,682,489
| 1,544,045,056,000
| 1,544,045,056,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,099
|
lean
|
-- Copyright (c) 2017 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Scott Morrison
import category_theory.natural_transformation
import category_theory.functor_category
import .tactics.obviously
universes u₁ v₁ u₂ v₂
open category_theory
namespace category_theory.arrows
local attribute [back] category.id -- This says that whenever there is a goal of the form C.Hom X X, we can safely complete it with the identity morphism. This isn't universally true.
-- Is there any point defining these separately (rather than as the functor category from the walking arrow)?
variables (C : Type u₁) [𝒞 : category.{u₁ v₁} C]
include 𝒞
def arrow := Σ (p : C × C), p.1 ⟶ p.2
variable {C}
structure arrow_hom (X Y : arrow C) :=
(morphism : (X.1.1 ⟶ Y.1.1) × (X.1.2 ⟶ Y.1.2))
(commutativity' : morphism.1 ≫ Y.2 = X.2 ≫ morphism.2 . obviously)
restate_axiom arrow_hom.commutativity'
attribute [search] arrow_hom.commutativity
@[extensionality] lemma ext {f g : arrow C} {α β : arrow_hom f g} (w : α.morphism = β.morphism) : α = β :=
begin
induction α with α_morphism,
induction β with β_morphism,
tidy,
end
instance : category (arrow C):=
{ hom := arrow_hom,
id := by obviously,
comp := λ X Y Z f g, ⟨ (f.morphism.1 ≫ g.morphism.1, f.morphism.2 ≫ g.morphism.2) ⟩ }
@[simp] lemma arrow_comp {X Y Z : arrow C} (f : X ⟶ Y) (g : Y ⟶ Z) : f ≫ g = ⟨ (f.morphism.1 ≫ g.morphism.1, f.morphism.2 ≫ g.morphism.2) ⟩ := rfl
end category_theory.arrows
namespace category_theory.functor
open category_theory.arrows
variables {C : Type u₁} [category.{u₁ v₁} C] {D : Type u₂} [category.{u₂ v₂} D]
-- TODO loops?
-- def map_arrows : (C ⥤ D) ⥤ ((arrow C) ⥤ (arrow D)) :=
-- { obj := λ F, { obj := λ X, ⟨ (F X.1.1, F X.1.2), F.map X.2 ⟩,
-- map' := λ X Y f, ⟨ (F.map f.morphism.1, F.map f.morphism.2) ⟩ },
-- map' := λ F G τ, { app := λ X, ⟨ (τ X.1.1, τ X.1.2) ⟩ } }
end category_theory.functor
|
bd7e6246ad5f3b964bc38d8b44d0417bc75c2866
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/set_theory/zfc/basic.lean
|
df5bbe6c3c9114aa3c7f1e75767c3c6e4b23942a
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 41,098
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.set.lattice
import logic.small
import order.well_founded
/-!
# A model of ZFC
In this file, we model Zermelo-Fraenkel set theory (+ Choice) using Lean's underlying type theory.
We do this in four main steps:
* Define pre-sets inductively.
* Define extensional equivalence on pre-sets and give it a `setoid` instance.
* Define ZFC sets by quotienting pre-sets by extensional equivalence.
* Define classes as sets of ZFC sets.
Then the rest is usual set theory.
## The model
* `pSet`: Pre-set. A pre-set is inductively defined by its indexing type and its members, which are
themselves pre-sets.
* `Set`: ZFC set. Defined as `pSet` quotiented by `pSet.equiv`, the extensional equivalence.
* `Class`: Class. Defined as `set Set`.
* `Set.choice`: Axiom of choice. Proved from Lean's axiom of choice.
## Other definitions
* `arity α n`: `n`-ary function `α → α → ... → α`. Defined inductively.
* `arity.const a n`: `n`-ary constant function equal to `a`.
* `pSet.type`: Underlying type of a pre-set.
* `pSet.func`: Underlying family of pre-sets of a pre-set.
* `pSet.equiv`: Extensional equivalence of pre-sets. Defined inductively.
* `pSet.omega`, `Set.omega`: The von Neumann ordinal `ω` as a `pSet`, as a `Set`.
* `pSet.arity.equiv`: Extensional equivalence of `n`-ary `pSet`-valued functions. Extension of
`pSet.equiv`.
* `pSet.resp`: Collection of `n`-ary `pSet`-valued functions that respect extensional equivalence.
* `pSet.eval`: Turns a `pSet`-valued function that respect extensional equivalence into a
`Set`-valued function.
* `classical.all_definable`: All functions are classically definable.
* `Set.is_func` : Predicate that a ZFC set is a subset of `x × y` that can be considered as a ZFC
function `x → y`. That is, each member of `x` is related by the ZFC set to exactly one member of
`y`.
* `Set.funs`: ZFC set of ZFC functions `x → y`.
* `Class.iota`: Definite description operator.
## Notes
To avoid confusion between the Lean `set` and the ZFC `Set`, docstrings in this file refer to them
respectively as "`set`" and "ZFC set".
## TODO
Prove `Set.map_definable_aux` computably.
-/
universes u v
/-- The type of `n`-ary functions `α → α → ... → α`. -/
def arity (α : Type u) : ℕ → Type u
| 0 := α
| (n+1) := α → arity n
@[simp] theorem arity_zero (α : Type u) : arity α 0 = α := rfl
@[simp] theorem arity_succ (α : Type u) (n : ℕ) : arity α n.succ = (α → arity α n) := rfl
namespace arity
/-- Constant `n`-ary function with value `a`. -/
def const {α : Type u} (a : α) : ∀ n, arity α n
| 0 := a
| (n+1) := λ _, const n
@[simp] theorem const_zero {α : Type u} (a : α) : const a 0 = a := rfl
@[simp] theorem const_succ {α : Type u} (a : α) (n : ℕ) : const a n.succ = λ _, const a n := rfl
theorem const_succ_apply {α : Type u} (a : α) (n : ℕ) (x : α) : const a n.succ x = const a n := rfl
instance arity.inhabited {α n} [inhabited α] : inhabited (arity α n) := ⟨const default _⟩
end arity
/-- The type of pre-sets in universe `u`. A pre-set
is a family of pre-sets indexed by a type in `Type u`.
The ZFC universe is defined as a quotient of this
to ensure extensionality. -/
inductive pSet : Type (u+1)
| mk (α : Type u) (A : α → pSet) : pSet
namespace pSet
/-- The underlying type of a pre-set -/
def type : pSet → Type u
| ⟨α, A⟩ := α
/-- The underlying pre-set family of a pre-set -/
def func : Π (x : pSet), x.type → pSet
| ⟨α, A⟩ := A
@[simp] theorem mk_type (α A) : type ⟨α, A⟩ = α := rfl
@[simp] theorem mk_func (α A) : func ⟨α, A⟩ = A := rfl
@[simp] theorem eta : Π (x : pSet), mk x.type x.func = x
| ⟨α, A⟩ := rfl
/-- Two pre-sets are extensionally equivalent if every element of the first family is extensionally
equivalent to some element of the second family and vice-versa. -/
def equiv (x y : pSet) : Prop :=
pSet.rec (λ α z m ⟨β, B⟩, (∀ a, ∃ b, m a (B b)) ∧ (∀ b, ∃ a, m a (B b))) x y
theorem equiv_iff : Π {x y : pSet}, equiv x y ↔
(∀ i, ∃ j, equiv (x.func i) (y.func j)) ∧ (∀ j, ∃ i, equiv (x.func i) (y.func j))
| ⟨α, A⟩ ⟨β, B⟩ := iff.rfl
theorem equiv.exists_left {x y : pSet} (h : equiv x y) : ∀ i, ∃ j, equiv (x.func i) (y.func j) :=
(equiv_iff.1 h).1
theorem equiv.exists_right {x y : pSet} (h : equiv x y) : ∀ j, ∃ i, equiv (x.func i) (y.func j) :=
(equiv_iff.1 h).2
@[refl] protected theorem equiv.refl (x) : equiv x x :=
pSet.rec_on x $ λ α A IH, ⟨λ a, ⟨a, IH a⟩, λ a, ⟨a, IH a⟩⟩
protected theorem equiv.rfl : ∀ {x}, equiv x x := equiv.refl
protected theorem equiv.euc {x} : Π {y z}, equiv x y → equiv z y → equiv x z :=
pSet.rec_on x $ λ α A IH y, pSet.cases_on y $ λ β B ⟨γ, Γ⟩ ⟨αβ, βα⟩ ⟨γβ, βγ⟩,
⟨λ a, let ⟨b, ab⟩ := αβ a, ⟨c, bc⟩ := βγ b in ⟨c, IH a ab bc⟩,
λ c, let ⟨b, cb⟩ := γβ c, ⟨a, ba⟩ := βα b in ⟨a, IH a ba cb⟩⟩
@[symm] protected theorem equiv.symm {x y} : equiv x y → equiv y x :=
(equiv.refl y).euc
@[trans] protected theorem equiv.trans {x y z} (h1 : equiv x y) (h2 : equiv y z) : equiv x z :=
h1.euc h2.symm
protected theorem equiv_of_is_empty (x y : pSet) [is_empty x.type] [is_empty y.type] : equiv x y :=
equiv_iff.2 $ by simp
instance setoid : setoid pSet :=
⟨pSet.equiv, equiv.refl, λ x y, equiv.symm, λ x y z, equiv.trans⟩
/-- A pre-set is a subset of another pre-set if every element of the first family is extensionally
equivalent to some element of the second family.-/
protected def subset (x y : pSet) : Prop := ∀ a, ∃ b, equiv (x.func a) (y.func b)
instance : has_subset pSet := ⟨pSet.subset⟩
instance : is_refl pSet (⊆) := ⟨λ x a, ⟨a, equiv.refl _⟩⟩
instance : is_trans pSet (⊆) :=
⟨λ x y z hxy hyz a, begin
cases hxy a with b hb,
cases hyz b with c hc,
exact ⟨c, hb.trans hc⟩
end⟩
theorem equiv.ext : Π (x y : pSet), equiv x y ↔ (x ⊆ y ∧ y ⊆ x)
| ⟨α, A⟩ ⟨β, B⟩ :=
⟨λ ⟨αβ, βα⟩, ⟨αβ, λ b, let ⟨a, h⟩ := βα b in ⟨a, equiv.symm h⟩⟩,
λ ⟨αβ, βα⟩, ⟨αβ, λ b, let ⟨a, h⟩ := βα b in ⟨a, equiv.symm h⟩⟩⟩
theorem subset.congr_left : Π {x y z : pSet}, equiv x y → (x ⊆ z ↔ y ⊆ z)
| ⟨α, A⟩ ⟨β, B⟩ ⟨γ, Γ⟩ ⟨αβ, βα⟩ :=
⟨λ αγ b, let ⟨a, ba⟩ := βα b, ⟨c, ac⟩ := αγ a in ⟨c, (equiv.symm ba).trans ac⟩,
λ βγ a, let ⟨b, ab⟩ := αβ a, ⟨c, bc⟩ := βγ b in ⟨c, equiv.trans ab bc⟩⟩
theorem subset.congr_right : Π {x y z : pSet}, equiv x y → (z ⊆ x ↔ z ⊆ y)
| ⟨α, A⟩ ⟨β, B⟩ ⟨γ, Γ⟩ ⟨αβ, βα⟩ :=
⟨λ γα c, let ⟨a, ca⟩ := γα c, ⟨b, ab⟩ := αβ a in ⟨b, ca.trans ab⟩,
λ γβ c, let ⟨b, cb⟩ := γβ c, ⟨a, ab⟩ := βα b in ⟨a, cb.trans (equiv.symm ab)⟩⟩
/-- `x ∈ y` as pre-sets if `x` is extensionally equivalent to a member of the family `y`. -/
protected def mem (x y : pSet.{u}) : Prop := ∃ b, equiv x (y.func b)
instance : has_mem pSet pSet := ⟨pSet.mem⟩
theorem mem.mk {α : Type u} (A : α → pSet) (a : α) : A a ∈ mk α A :=
⟨a, equiv.refl (A a)⟩
theorem func_mem (x : pSet) (i : x.type) : x.func i ∈ x :=
by { cases x, apply mem.mk }
theorem mem.ext : Π {x y : pSet.{u}}, (∀ w : pSet.{u}, w ∈ x ↔ w ∈ y) → equiv x y
| ⟨α, A⟩ ⟨β, B⟩ h := ⟨λ a, (h (A a)).1 (mem.mk A a),
λ b, let ⟨a, ha⟩ := (h (B b)).2 (mem.mk B b) in ⟨a, ha.symm⟩⟩
theorem mem.congr_right : Π {x y : pSet.{u}}, equiv x y → (∀ {w : pSet.{u}}, w ∈ x ↔ w ∈ y)
| ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩ w :=
⟨λ ⟨a, ha⟩, let ⟨b, hb⟩ := αβ a in ⟨b, ha.trans hb⟩,
λ ⟨b, hb⟩, let ⟨a, ha⟩ := βα b in ⟨a, hb.euc ha⟩⟩
theorem equiv_iff_mem {x y : pSet.{u}} : equiv x y ↔ (∀ {w : pSet.{u}}, w ∈ x ↔ w ∈ y) :=
⟨mem.congr_right, match x, y with
| ⟨α, A⟩, ⟨β, B⟩, h := ⟨λ a, h.1 (mem.mk A a), λ b,
let ⟨a, h⟩ := h.2 (mem.mk B b) in ⟨a, h.symm⟩⟩
end⟩
theorem mem.congr_left : Π {x y : pSet.{u}}, equiv x y → (∀ {w : pSet.{u}}, x ∈ w ↔ y ∈ w)
| x y h ⟨α, A⟩ := ⟨λ ⟨a, ha⟩, ⟨a, h.symm.trans ha⟩, λ ⟨a, ha⟩, ⟨a, h.trans ha⟩⟩
private theorem mem_wf_aux : Π {x y : pSet.{u}}, equiv x y → acc (∈) y
| ⟨α, A⟩ ⟨β, B⟩ H := ⟨_, begin
rintros ⟨γ, C⟩ ⟨b, hc⟩,
cases H.exists_right b with a ha,
have H := ha.trans hc.symm,
rw mk_func at H,
exact mem_wf_aux H
end⟩
theorem mem_wf : @well_founded pSet (∈) := ⟨λ x, mem_wf_aux $ equiv.refl x⟩
instance : has_well_founded pSet := ⟨_, mem_wf⟩
instance : is_asymm pSet (∈) := mem_wf.is_asymm
theorem mem_asymm {x y : pSet} : x ∈ y → y ∉ x := asymm
theorem mem_irrefl (x : pSet) : x ∉ x := irrefl x
/-- Convert a pre-set to a `set` of pre-sets. -/
def to_set (u : pSet.{u}) : set pSet.{u} := {x | x ∈ u}
@[simp] theorem mem_to_set (a u : pSet.{u}) : a ∈ u.to_set ↔ a ∈ u := iff.rfl
/-- Two pre-sets are equivalent iff they have the same members. -/
theorem equiv.eq {x y : pSet} : equiv x y ↔ to_set x = to_set y :=
equiv_iff_mem.trans set.ext_iff.symm
instance : has_coe pSet (set pSet) := ⟨to_set⟩
/-- The empty pre-set -/
protected def empty : pSet := ⟨_, pempty.elim⟩
instance : has_emptyc pSet := ⟨pSet.empty⟩
instance : inhabited pSet := ⟨∅⟩
instance : is_empty (type (∅)) := pempty.is_empty
@[simp] theorem mem_empty (x : pSet.{u}) : x ∉ (∅ : pSet.{u}) := is_empty.exists_iff.1
@[simp] theorem to_set_empty : to_set ∅ = ∅ := by simp [to_set]
@[simp] theorem empty_subset (x : pSet.{u}) : (∅ : pSet) ⊆ x := λ x, x.elim
protected theorem equiv_empty (x : pSet) [is_empty x.type] : equiv x ∅ :=
pSet.equiv_of_is_empty x _
/-- Insert an element into a pre-set -/
protected def insert (x y : pSet) : pSet := ⟨option y.type, λ o, option.rec x y.func o⟩
instance : has_insert pSet pSet := ⟨pSet.insert⟩
instance : has_singleton pSet pSet := ⟨λ s, insert s ∅⟩
instance : is_lawful_singleton pSet pSet := ⟨λ _, rfl⟩
instance (x y : pSet) : inhabited (insert x y).type := option.inhabited _
/-- The n-th von Neumann ordinal -/
def of_nat : ℕ → pSet
| 0 := ∅
| (n+1) := insert (of_nat n) (of_nat n)
/-- The von Neumann ordinal ω -/
def omega : pSet := ⟨ulift ℕ, λ n, of_nat n.down⟩
/-- The pre-set separation operation `{x ∈ a | p x}` -/
protected def sep (p : pSet → Prop) (x : pSet) : pSet := ⟨{a // p (x.func a)}, λ y, x.func y.1⟩
instance : has_sep pSet pSet := ⟨pSet.sep⟩
/-- The pre-set powerset operator -/
def powerset (x : pSet) : pSet := ⟨set x.type, λ p, ⟨{a // p a}, λ y, x.func y.1⟩⟩
@[simp] theorem mem_powerset : Π {x y : pSet}, y ∈ powerset x ↔ y ⊆ x
| ⟨α, A⟩ ⟨β, B⟩ := ⟨λ ⟨p, e⟩, (subset.congr_left e).2 $ λ ⟨a, pa⟩, ⟨a, equiv.refl (A a)⟩,
λ βα, ⟨{a | ∃ b, equiv (B b) (A a)}, λ b, let ⟨a, ba⟩ := βα b in ⟨⟨a, b, ba⟩, ba⟩,
λ ⟨a, b, ba⟩, ⟨b, ba⟩⟩⟩
/-- The pre-set union operator -/
def sUnion (a : pSet) : pSet := ⟨Σ x, (a.func x).type, λ ⟨x, y⟩, (a.func x).func y⟩
prefix (name := pSet.sUnion) `⋃₀ `:110 := pSet.sUnion
@[simp] theorem mem_sUnion : Π {x y : pSet.{u}}, y ∈ ⋃₀ x ↔ ∃ z ∈ x, y ∈ z
| ⟨α, A⟩ y :=
⟨λ ⟨⟨a, c⟩, (e : equiv y ((A a).func c))⟩,
have func (A a) c ∈ mk (A a).type (A a).func, from mem.mk (A a).func c,
⟨_, mem.mk _ _, (mem.congr_left e).2 (by rwa eta at this)⟩,
λ ⟨⟨β, B⟩, ⟨a, (e : equiv (mk β B) (A a))⟩, ⟨b, yb⟩⟩,
by { rw ←(eta (A a)) at e, exact
let ⟨βt, tβ⟩ := e, ⟨c, bc⟩ := βt b in ⟨⟨a, c⟩, yb.trans bc⟩ }⟩
@[simp] theorem to_set_sUnion (x : pSet.{u}) : (⋃₀ x).to_set = ⋃₀ (to_set '' x.to_set) :=
by { ext, simp }
/-- The image of a function from pre-sets to pre-sets. -/
def image (f : pSet.{u} → pSet.{u}) (x : pSet.{u}) : pSet := ⟨x.type, f ∘ x.func⟩
theorem mem_image {f : pSet.{u} → pSet.{u}} (H : ∀ {x y}, equiv x y → equiv (f x) (f y)) :
Π {x y : pSet.{u}}, y ∈ image f x ↔ ∃ z ∈ x, equiv y (f z)
| ⟨α, A⟩ y := ⟨λ ⟨a, ya⟩, ⟨A a, mem.mk A a, ya⟩, λ ⟨z, ⟨a, za⟩, yz⟩, ⟨a, yz.trans (H za)⟩⟩
/-- Universe lift operation -/
protected def lift : pSet.{u} → pSet.{max u v}
| ⟨α, A⟩ := ⟨ulift α, λ ⟨x⟩, lift (A x)⟩
/-- Embedding of one universe in another -/
@[nolint check_univs] -- intended to be used with explicit universe parameters
def embed : pSet.{max (u+1) v} := ⟨ulift.{v u+1} pSet, λ ⟨x⟩, pSet.lift.{u (max (u+1) v)} x⟩
theorem lift_mem_embed : Π (x : pSet.{u}), pSet.lift.{u (max (u+1) v)} x ∈ embed.{u v} :=
λ x, ⟨⟨x⟩, equiv.rfl⟩
/-- Function equivalence is defined so that `f ~ g` iff `∀ x y, x ~ y → f x ~ g y`. This extends to
equivalence of `n`-ary functions. -/
def arity.equiv : Π {n}, arity pSet.{u} n → arity pSet.{u} n → Prop
| 0 a b := equiv a b
| (n+1) a b := ∀ x y, equiv x y → arity.equiv (a x) (b y)
lemma arity.equiv_const {a : pSet.{u}} : ∀ n, arity.equiv (arity.const a n) (arity.const a n)
| 0 := equiv.rfl
| (n+1) := λ x y h, arity.equiv_const _
/-- `resp n` is the collection of n-ary functions on `pSet` that respect
equivalence, i.e. when the inputs are equivalent the output is as well. -/
def resp (n) := {x : arity pSet.{u} n // arity.equiv x x}
instance resp.inhabited {n} : inhabited (resp n) :=
⟨⟨arity.const default _, arity.equiv_const _⟩⟩
/-- The `n`-ary image of a `(n + 1)`-ary function respecting equivalence as a function respecting
equivalence. -/
def resp.f {n} (f : resp (n+1)) (x : pSet) : resp n :=
⟨f.1 x, f.2 _ _ $ equiv.refl x⟩
/-- Function equivalence for functions respecting equivalence. See `pSet.arity.equiv`. -/
def resp.equiv {n} (a b : resp n) : Prop := arity.equiv a.1 b.1
protected theorem resp.equiv.refl {n} (a : resp n) : resp.equiv a a := a.2
protected theorem resp.equiv.euc : Π {n} {a b c : resp n},
resp.equiv a b → resp.equiv c b → resp.equiv a c
| 0 a b c hab hcb := equiv.euc hab hcb
| (n+1) a b c hab hcb := λ x y h,
@resp.equiv.euc n (a.f x) (b.f y) (c.f y) (hab _ _ h) (hcb _ _ $ equiv.refl y)
protected theorem resp.equiv.symm {n} {a b : resp n} : resp.equiv a b → resp.equiv b a :=
(resp.equiv.refl b).euc
protected theorem resp.equiv.trans {n} {x y z : resp n}
(h1 : resp.equiv x y) (h2 : resp.equiv y z) : resp.equiv x z :=
h1.euc h2.symm
instance resp.setoid {n} : setoid (resp n) :=
⟨resp.equiv, resp.equiv.refl, λ x y, resp.equiv.symm, λ x y z, resp.equiv.trans⟩
end pSet
/-- The ZFC universe of sets consists of the type of pre-sets,
quotiented by extensional equivalence. -/
def Set : Type (u+1) := quotient pSet.setoid.{u}
namespace pSet
namespace resp
/-- Helper function for `pSet.eval`. -/
def eval_aux : Π {n}, {f : resp n → arity Set.{u} n // ∀ (a b : resp n), resp.equiv a b → f a = f b}
| 0 := ⟨λ a, ⟦a.1⟧, λ a b h, quotient.sound h⟩
| (n+1) := let F : resp (n + 1) → arity Set (n + 1) := λ a, @quotient.lift _ _ pSet.setoid
(λ x, eval_aux.1 (a.f x)) (λ b c h, eval_aux.2 _ _ (a.2 _ _ h)) in
⟨F, λ b c h, funext $ @quotient.ind _ _ (λ q, F b q = F c q) $ λ z,
eval_aux.2 (resp.f b z) (resp.f c z) (h _ _ (pSet.equiv.refl z))⟩
/-- An equivalence-respecting function yields an n-ary ZFC set function. -/
def eval (n) : resp n → arity Set.{u} n := eval_aux.1
theorem eval_val {n f x} : (@eval (n+1) f : Set → arity Set n) ⟦x⟧ = eval n (resp.f f x) := rfl
end resp
/-- A set function is "definable" if it is the image of some n-ary pre-set
function. This isn't exactly definability, but is useful as a sufficient
condition for functions that have a computable image. -/
class inductive definable (n) : arity Set.{u} n → Type (u+1)
| mk (f) : definable (resp.eval n f)
attribute [instance] definable.mk
/-- The evaluation of a function respecting equivalence is definable, by that same function. -/
def definable.eq_mk {n} (f) : Π {s : arity Set.{u} n} (H : resp.eval _ f = s), definable n s
| ._ rfl := ⟨f⟩
/-- Turns a definable function into a function that respects equivalence. -/
def definable.resp {n} : Π (s : arity Set.{u} n) [definable n s], resp n
| ._ ⟨f⟩ := f
theorem definable.eq {n} :
Π (s : arity Set.{u} n) [H : definable n s], (@definable.resp n s H).eval _ = s
| ._ ⟨f⟩ := rfl
end pSet
namespace classical
open pSet
/-- All functions are classically definable. -/
noncomputable def all_definable : Π {n} (F : arity Set.{u} n), definable n F
| 0 F := let p := @quotient.exists_rep pSet _ F in
definable.eq_mk ⟨some p, equiv.rfl⟩ (some_spec p)
| (n+1) (F : arity Set.{u} (n + 1)) := begin
have I := λ x, (all_definable (F x)),
refine definable.eq_mk ⟨λ x : pSet, (@definable.resp _ _ (I ⟦x⟧)).1, _⟩ _,
{ dsimp [arity.equiv],
introsI x y h,
rw @quotient.sound pSet _ _ _ h,
exact (definable.resp (F ⟦y⟧)).2 },
refine funext (λ q, quotient.induction_on q $ λ x, _),
simp_rw [resp.eval_val, resp.f, subtype.val_eq_coe, subtype.coe_eta],
exact @definable.eq _ (F ⟦x⟧) (I ⟦x⟧),
end
end classical
namespace Set
open pSet
/-- Turns a pre-set into a ZFC set. -/
def mk : pSet → Set := quotient.mk
@[simp] theorem mk_eq (x : pSet) : @eq Set ⟦x⟧ (mk x) := rfl
@[simp] theorem mk_out : ∀ x : Set, mk x.out = x := quotient.out_eq
theorem eq {x y : pSet} : mk x = mk y ↔ equiv x y := quotient.eq
theorem sound {x y : pSet} (h : pSet.equiv x y) : mk x = mk y := quotient.sound h
theorem exact {x y : pSet} : mk x = mk y → pSet.equiv x y := quotient.exact
@[simp] lemma eval_mk {n f x} :
(@resp.eval (n+1) f : Set → arity Set n) (mk x) = resp.eval n (resp.f f x) :=
rfl
/-- The membership relation for ZFC sets is inherited from the membership relation for pre-sets. -/
protected def mem : Set → Set → Prop :=
quotient.lift₂ pSet.mem
(λ x y x' y' hx hy, propext ((mem.congr_left hx).trans (mem.congr_right hy)))
instance : has_mem Set Set := ⟨Set.mem⟩
@[simp] theorem mk_mem_iff {x y : pSet} : mk x ∈ mk y ↔ x ∈ y := iff.rfl
/-- Convert a ZFC set into a `set` of ZFC sets -/
def to_set (u : Set.{u}) : set Set.{u} := {x | x ∈ u}
@[simp] theorem mem_to_set (a u : Set.{u}) : a ∈ u.to_set ↔ a ∈ u := iff.rfl
instance small_to_set (x : Set.{u}) : small.{u} x.to_set :=
quotient.induction_on x $ λ a, begin
let f : a.type → (mk a).to_set := λ i, ⟨mk $ a.func i, func_mem a i⟩,
suffices : function.surjective f,
{ exact small_of_surjective this },
rintro ⟨y, hb⟩,
induction y using quotient.induction_on,
cases hb with i h,
exact ⟨i, subtype.coe_injective (quotient.sound h.symm)⟩
end
/-- `x ⊆ y` as ZFC sets means that all members of `x` are members of `y`. -/
protected def subset (x y : Set.{u}) :=
∀ ⦃z⦄, z ∈ x → z ∈ y
instance has_subset : has_subset Set :=
⟨Set.subset⟩
lemma subset_def {x y : Set.{u}} : x ⊆ y ↔ ∀ ⦃z⦄, z ∈ x → z ∈ y := iff.rfl
instance : is_refl Set (⊆) := ⟨λ x a, id⟩
instance : is_trans Set (⊆) := ⟨λ x y z hxy hyz a ha, hyz (hxy ha)⟩
@[simp] theorem subset_iff : Π {x y : pSet}, mk x ⊆ mk y ↔ x ⊆ y
| ⟨α, A⟩ ⟨β, B⟩ := ⟨λ h a, @h ⟦A a⟧ (mem.mk A a),
λ h z, quotient.induction_on z (λ z ⟨a, za⟩, let ⟨b, ab⟩ := h a in ⟨b, za.trans ab⟩)⟩
@[simp] theorem to_set_subset_iff {x y : Set} : x.to_set ⊆ y.to_set ↔ x ⊆ y :=
by simp [subset_def, set.subset_def]
@[ext] theorem ext {x y : Set.{u}} : (∀ z : Set.{u}, z ∈ x ↔ z ∈ y) → x = y :=
quotient.induction_on₂ x y (λ u v h, quotient.sound (mem.ext (λ w, h ⟦w⟧)))
theorem ext_iff {x y : Set.{u}} : x = y ↔ (∀ z : Set.{u}, z ∈ x ↔ z ∈ y) :=
⟨λ h, by simp [h], ext⟩
theorem to_set_injective : function.injective to_set := λ x y h, ext $ set.ext_iff.1 h
@[simp] theorem to_set_inj {x y : Set} : x.to_set = y.to_set ↔ x = y :=
to_set_injective.eq_iff
instance : is_antisymm Set (⊆) := ⟨λ a b hab hba, ext $ λ c, ⟨@hab c, @hba c⟩⟩
/-- The empty ZFC set -/
protected def empty : Set := mk ∅
instance : has_emptyc Set := ⟨Set.empty⟩
instance : inhabited Set := ⟨∅⟩
@[simp] theorem mem_empty (x) : x ∉ (∅ : Set.{u}) :=
quotient.induction_on x pSet.mem_empty
@[simp] theorem to_set_empty : to_set ∅ = ∅ := by simp [to_set]
@[simp] theorem empty_subset (x : Set.{u}) : (∅ : Set) ⊆ x :=
quotient.induction_on x $ λ y, subset_iff.2 $ pSet.empty_subset y
theorem eq_empty (x : Set.{u}) : x = ∅ ↔ ∀ y : Set.{u}, y ∉ x :=
⟨λ h y, (h.symm ▸ mem_empty y),
λ h, ext (λ y, ⟨λ yx, absurd yx (h y), λ y0, absurd y0 (mem_empty _)⟩)⟩
/-- `insert x y` is the set `{x} ∪ y` -/
protected def insert : Set → Set → Set :=
resp.eval 2 ⟨pSet.insert, λ u v uv ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨λ o, match o with
| some a := let ⟨b, hb⟩ := αβ a in ⟨some b, hb⟩
| none := ⟨none, uv⟩
end, λ o, match o with
| some b := let ⟨a, ha⟩ := βα b in ⟨some a, ha⟩
| none := ⟨none, uv⟩
end⟩⟩
instance : has_insert Set Set := ⟨Set.insert⟩
instance : has_singleton Set Set := ⟨λ x, insert x ∅⟩
instance : is_lawful_singleton Set Set := ⟨λ x, rfl⟩
@[simp] theorem mem_insert_iff {x y z : Set.{u}} : x ∈ insert y z ↔ x = y ∨ x ∈ z :=
quotient.induction_on₃ x y z
(λ x y ⟨α, A⟩, show x ∈ pSet.mk (option α) (λ o, option.rec y A o) ↔
mk x = mk y ∨ x ∈ pSet.mk α A, from
⟨λ m, match m with
| ⟨some a, ha⟩ := or.inr ⟨a, ha⟩
| ⟨none, h⟩ := or.inl (quotient.sound h)
end, λ m, match m with
| or.inr ⟨a, ha⟩ := ⟨some a, ha⟩
| or.inl h := ⟨none, quotient.exact h⟩
end⟩)
theorem mem_insert (x y : Set) : x ∈ insert x y := mem_insert_iff.2 $ or.inl rfl
theorem mem_insert_of_mem {y z : Set} (x) (h : z ∈ y): z ∈ insert x y := mem_insert_iff.2 $ or.inr h
@[simp] theorem to_set_insert (x y : Set) : (insert x y).to_set = insert x y.to_set :=
by { ext, simp }
@[simp] theorem mem_singleton {x y : Set.{u}} : x ∈ @singleton Set.{u} Set.{u} _ y ↔ x = y :=
iff.trans mem_insert_iff ⟨λ o, or.rec (λ h, h) (λ n, absurd n (mem_empty _)) o, or.inl⟩
@[simp] theorem to_set_singleton (x : Set) : ({x} : Set).to_set = {x} :=
by { ext, simp }
@[simp] theorem mem_pair {x y z : Set.{u}} : x ∈ ({y, z} : Set) ↔ x = y ∨ x = z :=
iff.trans mem_insert_iff $ or_congr iff.rfl mem_singleton
/-- `omega` is the first infinite von Neumann ordinal -/
def omega : Set := mk omega
@[simp] theorem omega_zero : ∅ ∈ omega :=
⟨⟨0⟩, equiv.rfl⟩
@[simp] theorem omega_succ {n} : n ∈ omega.{u} → insert n n ∈ omega.{u} :=
quotient.induction_on n (λ x ⟨⟨n⟩, h⟩, ⟨⟨n+1⟩, Set.exact $
show insert (mk x) (mk x) = insert (mk $ of_nat n) (mk $ of_nat n), { rw Set.sound h, refl } ⟩)
/-- `{x ∈ a | p x}` is the set of elements in `a` satisfying `p` -/
protected def sep (p : Set → Prop) : Set → Set :=
resp.eval 1 ⟨pSet.sep (λ y, p (mk y)), λ ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨λ ⟨a, pa⟩, let ⟨b, hb⟩ := αβ a in ⟨⟨b, by rwa [mk_func, ←Set.sound hb]⟩, hb⟩,
λ ⟨b, pb⟩, let ⟨a, ha⟩ := βα b in ⟨⟨a, by rwa [mk_func, Set.sound ha]⟩, ha⟩⟩⟩
instance : has_sep Set Set := ⟨Set.sep⟩
@[simp] theorem mem_sep {p : Set.{u} → Prop} {x y : Set.{u}} : y ∈ {y ∈ x | p y} ↔ y ∈ x ∧ p y :=
quotient.induction_on₂ x y (λ ⟨α, A⟩ y,
⟨λ ⟨⟨a, pa⟩, h⟩, ⟨⟨a, h⟩, by rwa (@quotient.sound pSet _ _ _ h)⟩,
λ ⟨⟨a, h⟩, pa⟩, ⟨⟨a, by { rw mk_func at h, rwa [mk_func, ←Set.sound h] }⟩, h⟩⟩)
@[simp] theorem to_set_sep (a : Set) (p : Set → Prop) :
{x ∈ a | p x}.to_set = {x ∈ a.to_set | p x} :=
by { ext, simp }
/-- The powerset operation, the collection of subsets of a ZFC set -/
def powerset : Set → Set :=
resp.eval 1 ⟨powerset, λ ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨λ p, ⟨{b | ∃ a, p a ∧ equiv (A a) (B b)},
λ ⟨a, pa⟩, let ⟨b, ab⟩ := αβ a in ⟨⟨b, a, pa, ab⟩, ab⟩,
λ ⟨b, a, pa, ab⟩, ⟨⟨a, pa⟩, ab⟩⟩,
λ q, ⟨{a | ∃ b, q b ∧ equiv (A a) (B b)},
λ ⟨a, b, qb, ab⟩, ⟨⟨b, qb⟩, ab⟩,
λ ⟨b, qb⟩, let ⟨a, ab⟩ := βα b in ⟨⟨a, b, qb, ab⟩, ab⟩⟩⟩⟩
@[simp] theorem mem_powerset {x y : Set.{u}} : y ∈ powerset x ↔ y ⊆ x :=
quotient.induction_on₂ x y ( λ ⟨α, A⟩ ⟨β, B⟩,
show (⟨β, B⟩ : pSet.{u}) ∈ (pSet.powerset.{u} ⟨α, A⟩) ↔ _,
by simp [mem_powerset, subset_iff])
theorem sUnion_lem {α β : Type u} (A : α → pSet) (B : β → pSet) (αβ : ∀ a, ∃ b, equiv (A a) (B b)) :
∀ a, ∃ b, (equiv ((sUnion ⟨α, A⟩).func a) ((sUnion ⟨β, B⟩).func b))
| ⟨a, c⟩ := let ⟨b, hb⟩ := αβ a in
begin
induction ea : A a with γ Γ,
induction eb : B b with δ Δ,
rw [ea, eb] at hb,
cases hb with γδ δγ,
exact
let c : type (A a) := c, ⟨d, hd⟩ := γδ (by rwa ea at c) in
have pSet.equiv ((A a).func c) ((B b).func (eq.rec d (eq.symm eb))), from
match A a, B b, ea, eb, c, d, hd with ._, ._, rfl, rfl, x, y, hd := hd end,
⟨⟨b, by { rw mk_func, exact eq.rec d (eq.symm eb) }⟩, this⟩
end
/-- The union operator, the collection of elements of elements of a ZFC set -/
def sUnion : Set → Set :=
resp.eval 1 ⟨pSet.sUnion, λ ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨sUnion_lem A B αβ, λ a, exists.elim (sUnion_lem B A (λ b,
exists.elim (βα b) (λ c hc, ⟨c, pSet.equiv.symm hc⟩)) a) (λ b hb, ⟨b, pSet.equiv.symm hb⟩)⟩⟩
prefix (name := Set.sUnion) `⋃₀ `:110 := Set.sUnion
@[simp] theorem mem_sUnion {x y : Set.{u}} : y ∈ ⋃₀ x ↔ ∃ z ∈ x, y ∈ z :=
quotient.induction_on₂ x y (λ x y, iff.trans mem_sUnion
⟨λ ⟨z, h⟩, ⟨⟦z⟧, h⟩, λ ⟨z, h⟩, quotient.induction_on z (λ z h, ⟨z, h⟩) h⟩)
theorem mem_sUnion_of_mem {x y z : Set} (hy : y ∈ z) (hz : z ∈ x) : y ∈ ⋃₀ x :=
mem_sUnion.2 ⟨z, hz, hy⟩
@[simp] theorem sUnion_singleton {x : Set.{u}} : ⋃₀ ({x} : Set) = x :=
ext $ λ y, by simp_rw [mem_sUnion, exists_prop, mem_singleton, exists_eq_left]
theorem singleton_injective : function.injective (@singleton Set Set _) :=
λ x y H, let this := congr_arg sUnion H in by rwa [sUnion_singleton, sUnion_singleton] at this
@[simp] theorem singleton_inj {x y : Set} : ({x} : Set) = {y} ↔ x = y := singleton_injective.eq_iff
@[simp] theorem to_set_sUnion (x : Set.{u}) : (⋃₀ x).to_set = ⋃₀ (to_set '' x.to_set) :=
by { ext, simp }
/-- The binary union operation -/
protected def union (x y : Set.{u}) : Set.{u} := ⋃₀ {x, y}
/-- The binary intersection operation -/
protected def inter (x y : Set.{u}) : Set.{u} := {z ∈ x | z ∈ y}
/-- The set difference operation -/
protected def diff (x y : Set.{u}) : Set.{u} := {z ∈ x | z ∉ y}
instance : has_union Set := ⟨Set.union⟩
instance : has_inter Set := ⟨Set.inter⟩
instance : has_sdiff Set := ⟨Set.diff⟩
@[simp] theorem to_set_union (x y : Set.{u}) : (x ∪ y).to_set = x.to_set ∪ y.to_set :=
by { unfold has_union.union, rw Set.union, simp }
@[simp] theorem to_set_inter (x y : Set.{u}) : (x ∩ y).to_set = x.to_set ∩ y.to_set :=
by { unfold has_inter.inter, rw Set.inter, ext, simp }
@[simp] theorem to_set_sdiff (x y : Set.{u}) : (x \ y).to_set = x.to_set \ y.to_set :=
by { change {z ∈ x | z ∉ y}.to_set = _, ext, simp }
@[simp] theorem mem_union {x y z : Set.{u}} : z ∈ x ∪ y ↔ z ∈ x ∨ z ∈ y :=
by { rw ←mem_to_set, simp }
@[simp] theorem mem_inter {x y z : Set.{u}} : z ∈ x ∩ y ↔ z ∈ x ∧ z ∈ y :=
@@mem_sep (λ z : Set.{u}, z ∈ y)
@[simp] theorem mem_diff {x y z : Set.{u}} : z ∈ x \ y ↔ z ∈ x ∧ z ∉ y :=
@@mem_sep (λ z : Set.{u}, z ∉ y)
/-- Induction on the `∈` relation. -/
@[elab_as_eliminator]
theorem induction_on {p : Set → Prop} (x) (h : ∀ x, (∀ y ∈ x, p y) → p x) : p x :=
quotient.induction_on x $ λ u, pSet.rec_on u $ λ α A IH, h _ $ λ y,
show @has_mem.mem _ _ Set.has_mem y ⟦⟨α, A⟩⟧ → p y, from
quotient.induction_on y (λ v ⟨a, ha⟩, by { rw (@quotient.sound pSet _ _ _ ha), exact IH a })
theorem mem_wf : @well_founded Set (∈) := ⟨λ x, induction_on x acc.intro⟩
instance : has_well_founded Set := ⟨_, mem_wf⟩
instance : is_asymm Set (∈) := mem_wf.is_asymm
theorem mem_asymm {x y : Set} : x ∈ y → y ∉ x := asymm
theorem mem_irrefl (x : Set) : x ∉ x := irrefl x
theorem regularity (x : Set.{u}) (h : x ≠ ∅) : ∃ y ∈ x, x ∩ y = ∅ :=
classical.by_contradiction $ λ ne, h $ (eq_empty x).2 $ λ y,
induction_on y $ λ z (IH : ∀ w : Set.{u}, w ∈ z → w ∉ x), show z ∉ x, from λ zx,
ne ⟨z, zx, (eq_empty _).2 (λ w wxz, let ⟨wx, wz⟩ := mem_inter.1 wxz in IH w wz wx)⟩
/-- The image of a (definable) ZFC set function -/
def image (f : Set → Set) [H : definable 1 f] : Set → Set :=
let r := @definable.resp 1 f _ in
resp.eval 1 ⟨image r.1, λ x y e, mem.ext $ λ z,
iff.trans (mem_image r.2) $ iff.trans (by exact
⟨λ ⟨w, h1, h2⟩, ⟨w, (mem.congr_right e).1 h1, h2⟩,
λ ⟨w, h1, h2⟩, ⟨w, (mem.congr_right e).2 h1, h2⟩⟩) $
iff.symm (mem_image r.2)⟩
theorem image.mk :
Π (f : Set.{u} → Set.{u}) [H : definable 1 f] (x) {y} (h : y ∈ x), f y ∈ @image f H x
| ._ ⟨F⟩ x y := quotient.induction_on₂ x y $ λ ⟨α, A⟩ y ⟨a, ya⟩, ⟨a, F.2 _ _ ya⟩
@[simp] theorem mem_image : Π {f : Set.{u} → Set.{u}} [H : definable 1 f] {x y : Set.{u}},
y ∈ @image f H x ↔ ∃ z ∈ x, f z = y
| ._ ⟨F⟩ x y := quotient.induction_on₂ x y $ λ ⟨α, A⟩ y,
⟨λ ⟨a, ya⟩, ⟨⟦A a⟧, mem.mk A a, eq.symm $ quotient.sound ya⟩,
λ ⟨z, hz, e⟩, e ▸ image.mk _ _ hz⟩
@[simp] theorem to_set_image (f : Set → Set) [H : definable 1 f] (x : Set) :
(image f x).to_set = f '' x.to_set :=
by { ext, simp }
/-- Kuratowski ordered pair -/
def pair (x y : Set.{u}) : Set.{u} := {{x}, {x, y}}
@[simp] theorem to_set_pair (x y : Set.{u}) : (pair x y).to_set = {{x}, {x, y}} := by simp [pair]
/-- A subset of pairs `{(a, b) ∈ x × y | p a b}` -/
def pair_sep (p : Set.{u} → Set.{u} → Prop) (x y : Set.{u}) : Set.{u} :=
{z ∈ powerset (powerset (x ∪ y)) | ∃ a ∈ x, ∃ b ∈ y, z = pair a b ∧ p a b}
@[simp] theorem mem_pair_sep {p} {x y z : Set.{u}} :
z ∈ pair_sep p x y ↔ ∃ a ∈ x, ∃ b ∈ y, z = pair a b ∧ p a b :=
begin
refine mem_sep.trans ⟨and.right, λ e, ⟨_, e⟩⟩,
rcases e with ⟨a, ax, b, bY, rfl, pab⟩,
simp only [mem_powerset, subset_def, mem_union, pair, mem_pair],
rintros u (rfl|rfl) v; simp only [mem_singleton, mem_pair],
{ rintro rfl, exact or.inl ax },
{ rintro (rfl|rfl); [left, right]; assumption }
end
theorem pair_injective : function.injective2 pair :=
λ x x' y y' H, begin
have ae := ext_iff.1 H,
simp only [pair, mem_pair] at ae,
obtain rfl : x = x',
{ cases (ae {x}).1 (by simp) with h h,
{ exact singleton_injective h },
{ have m : x' ∈ ({x} : Set),
{ simp [h] },
rw mem_singleton.mp m } },
have he : x = y → y = y',
{ rintro rfl,
cases (ae {x, y'}).2 (by simp only [eq_self_iff_true, or_true]) with xy'x xy'xx,
{ rw [eq_comm, ←mem_singleton, ←xy'x, mem_pair],
exact or.inr rfl },
{ simpa [eq_comm] using (ext_iff.1 xy'xx y').1 (by simp) } },
obtain xyx | xyy' := (ae {x, y}).1 (by simp),
{ obtain rfl := mem_singleton.mp ((ext_iff.1 xyx y).1 $ by simp),
simp [he rfl] },
{ obtain rfl | yy' := mem_pair.mp ((ext_iff.1 xyy' y).1 $ by simp),
{ simp [he rfl] },
{ simp [yy'] } }
end
@[simp] theorem pair_inj {x y x' y' : Set} : pair x y = pair x' y' ↔ x = x' ∧ y = y' :=
pair_injective.eq_iff
/-- The cartesian product, `{(a, b) | a ∈ x, b ∈ y}` -/
def prod : Set.{u} → Set.{u} → Set.{u} := pair_sep (λ a b, true)
@[simp] theorem mem_prod {x y z : Set.{u}} : z ∈ prod x y ↔ ∃ a ∈ x, ∃ b ∈ y, z = pair a b :=
by simp [prod]
@[simp] theorem pair_mem_prod {x y a b : Set.{u}} : pair a b ∈ prod x y ↔ a ∈ x ∧ b ∈ y :=
⟨λ h, let ⟨a', a'x, b', b'y, e⟩ := mem_prod.1 h in
match a', b', pair_injective e, a'x, b'y with ._, ._, ⟨rfl, rfl⟩, ax, bY := ⟨ax, bY⟩ end,
λ ⟨ax, bY⟩, mem_prod.2 ⟨a, ax, b, bY, rfl⟩⟩
/-- `is_func x y f` is the assertion that `f` is a subset of `x × y` which relates to each element
of `x` a unique element of `y`, so that we can consider `f`as a ZFC function `x → y`. -/
def is_func (x y f : Set.{u}) : Prop :=
f ⊆ prod x y ∧ ∀ z : Set.{u}, z ∈ x → ∃! w, pair z w ∈ f
/-- `funs x y` is `y ^ x`, the set of all set functions `x → y` -/
def funs (x y : Set.{u}) : Set.{u} :=
{f ∈ powerset (prod x y) | is_func x y f}
@[simp] theorem mem_funs {x y f : Set.{u}} : f ∈ funs x y ↔ is_func x y f :=
by simp [funs, is_func]
-- TODO(Mario): Prove this computably
noncomputable instance map_definable_aux (f : Set → Set) [H : definable 1 f] :
definable 1 (λ y, pair y (f y)) :=
@classical.all_definable 1 _
/-- Graph of a function: `map f x` is the ZFC function which maps `a ∈ x` to `f a` -/
noncomputable def map (f : Set → Set) [H : definable 1 f] : Set → Set :=
image (λ y, pair y (f y))
@[simp] theorem mem_map {f : Set → Set} [H : definable 1 f] {x y : Set} :
y ∈ map f x ↔ ∃ z ∈ x, pair z (f z) = y :=
mem_image
theorem map_unique {f : Set.{u} → Set.{u}} [H : definable 1 f] {x z : Set.{u}} (zx : z ∈ x) :
∃! w, pair z w ∈ map f x :=
⟨f z, image.mk _ _ zx, λ y yx, let ⟨w, wx, we⟩ := mem_image.1 yx, ⟨wz, fy⟩ := pair_injective we in
by rw[←fy, wz]⟩
@[simp] theorem map_is_func {f : Set → Set} [H : definable 1 f] {x y : Set} :
is_func x y (map f x) ↔ ∀ z ∈ x, f z ∈ y :=
⟨λ ⟨ss, h⟩ z zx, let ⟨t, t1, t2⟩ := h z zx in
(t2 (f z) (image.mk _ _ zx)).symm ▸ (pair_mem_prod.1 (ss t1)).right,
λ h, ⟨λ y yx, let ⟨z, zx, ze⟩ := mem_image.1 yx in ze ▸ pair_mem_prod.2 ⟨zx, h z zx⟩,
λ z, map_unique⟩⟩
end Set
/-- The collection of all classes.
We define `Class` as `set Set`, as this allows us to get many instances automatically. However, in
practice, we treat it as (the definitionally equal) `Set → Prop`. This means, the preferred way to
state that `x : Set` belongs to `A : Class` is to write `A x`. -/
@[derive [has_subset, has_sep Set, has_emptyc, inhabited, has_insert Set, has_union, has_inter,
has_compl, has_sdiff]]
def Class := set Set
namespace Class
/-- Coerce a ZFC set into a class -/
def of_Set (x : Set.{u}) : Class.{u} := {y | y ∈ x}
instance : has_coe Set Class := ⟨of_Set⟩
/-- The universal class -/
def univ : Class := set.univ
/-- Assert that `A` is a ZFC set satisfying `B` -/
def to_Set (B : Class.{u}) (A : Class.{u}) : Prop := ∃ x, ↑x = A ∧ B x
/-- `A ∈ B` if `A` is a ZFC set which satisfies `B` -/
protected def mem (A B : Class.{u}) : Prop := to_Set.{u} B A
instance : has_mem Class Class := ⟨Class.mem⟩
theorem mem_univ {A : Class.{u}} : A ∈ univ.{u} ↔ ∃ x : Set.{u}, ↑x = A :=
exists_congr $ λ x, and_true _
theorem mem_wf : @well_founded Class.{u} (∈) :=
⟨begin
have H : ∀ x : Set.{u}, @acc Class.{u} (∈) ↑x,
{ refine λ a, Set.induction_on a (λ x IH, ⟨x, _⟩),
rintros A ⟨z, rfl, hz⟩,
exact IH z hz },
{ refine λ A, ⟨A, _⟩,
rintros B ⟨x, rfl, hx⟩,
exact H x }
end⟩
instance : has_well_founded Class := ⟨_, mem_wf⟩
instance : is_asymm Class (∈) := mem_wf.is_asymm
theorem mem_asymm {x y : Class} : x ∈ y → y ∉ x := asymm
theorem mem_irrefl (x : Class) : x ∉ x := irrefl x
/-- There is no universal set. -/
theorem univ_not_mem_univ : univ ∉ univ := mem_irrefl _
/-- Convert a conglomerate (a collection of classes) into a class -/
def Cong_to_Class (x : set Class.{u}) : Class.{u} := {y | ↑y ∈ x}
/-- Convert a class into a conglomerate (a collection of classes) -/
def Class_to_Cong (x : Class.{u}) : set Class.{u} := {y | y ∈ x}
/-- The power class of a class is the class of all subclasses that are ZFC sets -/
def powerset (x : Class) : Class := Cong_to_Class (set.powerset x)
/-- The union of a class is the class of all members of ZFC sets in the class -/
def sUnion (x : Class) : Class := ⋃₀ (Class_to_Cong x)
prefix (name := Class.sUnion) `⋃₀ `:110 := Class.sUnion
theorem of_Set.inj {x y : Set.{u}} (h : (x : Class.{u}) = y) : x = y :=
Set.ext $ λ z, by { change (x : Class.{u}) z ↔ (y : Class.{u}) z, rw h }
@[simp] theorem to_Set_of_Set (A : Class.{u}) (x : Set.{u}) : to_Set A x ↔ A x :=
⟨λ ⟨y, yx, py⟩, by rwa of_Set.inj yx at py, λ px, ⟨x, rfl, px⟩⟩
@[simp] theorem mem_hom_left (x : Set.{u}) (A : Class.{u}) : (x : Class.{u}) ∈ A ↔ A x :=
to_Set_of_Set _ _
@[simp] theorem mem_hom_right (x y : Set.{u}) : (y : Class.{u}) x ↔ x ∈ y := iff.rfl
@[simp] theorem subset_hom (x y : Set.{u}) : (x : Class.{u}) ⊆ y ↔ x ⊆ y := iff.rfl
@[simp] theorem sep_hom (p : Class.{u}) (x : Set.{u}) :
(↑{y ∈ x | p y} : Class.{u}) = {y ∈ x | p y} :=
set.ext $ λ y, Set.mem_sep
@[simp] theorem empty_hom : ↑(∅ : Set.{u}) = (∅ : Class.{u}) :=
set.ext $ λ y, (iff_false _).2 (Set.mem_empty y)
@[simp] theorem insert_hom (x y : Set.{u}) : (@insert Set.{u} Class.{u} _ x y) = ↑(insert x y) :=
set.ext $ λ z, iff.symm Set.mem_insert_iff
@[simp] theorem union_hom (x y : Set.{u}) : (x : Class.{u}) ∪ y = (x ∪ y : Set.{u}) :=
set.ext $ λ z, iff.symm Set.mem_union
@[simp] theorem inter_hom (x y : Set.{u}) : (x : Class.{u}) ∩ y = (x ∩ y : Set.{u}) :=
set.ext $ λ z, iff.symm Set.mem_inter
@[simp] theorem diff_hom (x y : Set.{u}) : (x : Class.{u}) \ y = (x \ y : Set.{u}) :=
set.ext $ λ z, iff.symm Set.mem_diff
@[simp] theorem powerset_hom (x : Set.{u}) : powerset.{u} x = Set.powerset x :=
set.ext $ λ z, iff.symm Set.mem_powerset
@[simp] theorem sUnion_hom (x : Set.{u}) : ⋃₀ (x : Class.{u}) = ⋃₀ x :=
set.ext $ λ z, by { refine iff.trans _ Set.mem_sUnion.symm, exact
⟨λ ⟨._, ⟨a, rfl, ax⟩, za⟩, ⟨a, ax, za⟩, λ ⟨a, ax, za⟩, ⟨_, ⟨a, rfl, ax⟩, za⟩⟩ }
/-- The definite description operator, which is `{x}` if `{y | A y} = {x}` and `∅` otherwise. -/
def iota (A : Class) : Class := ⋃₀ {x | ∀ y, A y ↔ y = x}
theorem iota_val (A : Class) (x : Set) (H : ∀ y, A y ↔ y = x) : iota A = ↑x :=
set.ext $ λ y, ⟨λ ⟨._, ⟨x', rfl, h⟩, yx'⟩, by rwa ←((H x').1 $ (h x').2 rfl),
λ yx, ⟨_, ⟨x, rfl, H⟩, yx⟩⟩
/-- Unlike the other set constructors, the `iota` definite descriptor
is a set for any set input, but not constructively so, so there is no
associated `Class → Set` function. -/
theorem iota_ex (A) : iota.{u} A ∈ univ.{u} :=
mem_univ.2 $ or.elim (classical.em $ ∃ x, ∀ y, A y ↔ y = x)
(λ ⟨x, h⟩, ⟨x, eq.symm $ iota_val A x h⟩)
(λ hn, ⟨∅, set.ext (λ z, empty_hom.symm ▸ ⟨false.rec _, λ ⟨._, ⟨x, rfl, H⟩, zA⟩, hn ⟨x, H⟩⟩)⟩)
/-- Function value -/
def fval (F A : Class.{u}) : Class.{u} := iota (λ y, to_Set (λ x, F (Set.pair x y)) A)
infixl ` ′ `:100 := fval
theorem fval_ex (F A : Class.{u}) : F ′ A ∈ univ.{u} := iota_ex _
end Class
namespace Set
@[simp] theorem map_fval {f : Set.{u} → Set.{u}} [H : pSet.definable 1 f]
{x y : Set.{u}} (h : y ∈ x) :
(Set.map f x ′ y : Class.{u}) = f y :=
Class.iota_val _ _ (λ z, by { rw [Class.to_Set_of_Set, Class.mem_hom_right, mem_map], exact
⟨λ ⟨w, wz, pr⟩, let ⟨wy, fw⟩ := Set.pair_injective pr in by rw[←fw, wy],
λ e, by { subst e, exact ⟨_, h, rfl⟩ }⟩ })
variables (x : Set.{u}) (h : ∅ ∉ x)
/-- A choice function on the class of nonempty ZFC sets. -/
noncomputable def choice : Set :=
@map (λ y, classical.epsilon (λ z, z ∈ y)) (classical.all_definable _) x
include h
theorem choice_mem_aux (y : Set.{u}) (yx : y ∈ x) : classical.epsilon (λ z : Set.{u}, z ∈ y) ∈ y :=
@classical.epsilon_spec _ (λ z : Set.{u}, z ∈ y) $ classical.by_contradiction $ λ n, h $
by rwa ←((eq_empty y).2 $ λ z zx, n ⟨z, zx⟩)
theorem choice_is_func : is_func x (⋃₀ x) (choice x) :=
(@map_is_func _ (classical.all_definable _) _ _).2 $
λ y yx, mem_sUnion.2 ⟨y, yx, choice_mem_aux x h y yx⟩
theorem choice_mem (y : Set.{u}) (yx : y ∈ x) : (choice x ′ y : Class.{u}) ∈ (y : Class.{u}) :=
begin
delta choice,
rw [map_fval yx, Class.mem_hom_left, Class.mem_hom_right],
exact choice_mem_aux x h y yx
end
end Set
|
3b1c916d0cc2bd53139d23fdf295f1ffbaacf707
|
5bf112cf7101c6c6303dc3fd0b3179c860e61e56
|
/lean/background/witness.lean
|
42c9b844613103fd96f8e958b322d32f65a9ae9d
|
[
"Apache-2.0"
] |
permissive
|
fredfeng/formal-encoding
|
7ab645f49a553dfad2af03fcb4289e40fc679759
|
024efcf58672ac6b817caa10dfe8cd9708b07f1b
|
refs/heads/master
| 1,597,236,551,123
| 1,568,832,149,000
| 1,568,832,149,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 233
|
lean
|
import .set
namespace IMOGrandChallenge
def determine {X : Type} (s₀ : Set X) : Type :=
{ s : Set X // ∀ x, s.mem x ↔ s₀.mem x }
def compute {X : Type} (target : X) : Type :=
{ x : X // x = target }
end IMOGrandChallenge
|
dc4affe936a20d10065bdfe4b6b020643d1787d8
|
08bd4ba4ca87dba1f09d2c96a26f5d65da81f4b4
|
/src/Init/Notation.lean
|
77bf702fe272c4d0999e6fedd90c3a20bec41815
|
[
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"Apache-2.0",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
gebner/lean4
|
d51c4922640a52a6f7426536ea669ef18a1d9af5
|
8cd9ce06843c9d42d6d6dc43d3e81e3b49dfc20f
|
refs/heads/master
| 1,685,732,780,391
| 1,672,962,627,000
| 1,673,459,398,000
| 373,307,283
| 0
| 0
|
Apache-2.0
| 1,691,316,730,000
| 1,622,669,271,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 22,276
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
Notation for operators defined at Prelude.lean
-/
prelude
import Init.Prelude
import Init.Coe
set_option linter.missingDocs true -- keep it documented
namespace Lean
/--
Auxiliary type used to represent syntax categories. We mainly use auxiliary
definitions with this type to attach doc strings to syntax categories.
-/
structure Parser.Category
namespace Parser.Category
/-- `command` is the syntax category for things that appear at the top level
of a lean file. For example, `def foo := 1` is a `command`, as is
`namespace Foo` and `end Foo`. Commands generally have an effect on the state of
adding something to the environment (like a new definition), as well as
commands like `variable` which modify future commands within a scope. -/
def command : Category := {}
/-- `term` is the builtin syntax category for terms. A term denotes an expression
in lean's type theory, for example `2 + 2` is a term. The difference between
`Term` and `Expr` is that the former is a kind of syntax, while the latter is
the result of elaboration. For example `by simp` is also a `Term`, but it elaborates
to different `Expr`s depending on the context. -/
def term : Category := {}
/-- `tactic` is the builtin syntax category for tactics. These appear after
`by` in proofs, and they are programs that take in the proof context
(the hypotheses in scope plus the type of the term to synthesize) and construct
a term of the expected type. For example, `simp` is a tactic, used in:
```
example : 2 + 2 = 4 := by simp
```
-/
def tactic : Category := {}
/-- `doElem` is a builtin syntax category for elements that can appear in the `do` notation.
For example, `let x ← e` is a `doElem`, and a `do` block consists of a list of `doElem`s. -/
def doElem : Category := {}
/-- `level` is a builtin syntax category for universe levels.
This is the `u` in `Sort u`: it can contain `max` and `imax`, addition with
constants, and variables. -/
def level : Category := {}
/-- `attr` is a builtin syntax category for attributes.
Declarations can be annotated with attributes using the `@[...]` notation. -/
def attr : Category := {}
/-- `stx` is a builtin syntax category for syntax. This is the abbreviated
parser notation used inside `syntax` and `macro` declarations. -/
def stx : Category := {}
/-- `prio` is a builtin syntax category for priorities.
Priorities are used in many different attributes.
Higher numbers denote higher priority, and for example typeclass search will
try high priority instances before low priority.
In addition to literals like `37`, you can also use `low`, `mid`, `high`, as well as
add and subtract priorities. -/
def prio : Category := {}
/-- `prec` is a builtin syntax category for precedences. A precedence is a value
that expresses how tightly a piece of syntax binds: for example `1 + 2 * 3` is
parsed as `1 + (2 * 3)` because `*` has a higher pr0ecedence than `+`.
Higher numbers denote higher precedence.
In addition to literals like `37`, there are some special named priorities:
* `arg` for the precedence of function arguments
* `max` for the highest precedence used in term parsers (not actually the maximum possible value)
* `lead` for the precedence of terms not supposed to be used as arguments
and you can also add and subtract precedences. -/
def prec : Category := {}
end Parser.Category
namespace Parser.Syntax
/-! DSL for specifying parser precedences and priorities -/
/-- Addition of precedences. This is normally used only for offseting, e.g. `max + 1`. -/
syntax:65 (name := addPrec) prec " + " prec:66 : prec
/-- Subtraction of precedences. This is normally used only for offseting, e.g. `max - 1`. -/
syntax:65 (name := subPrec) prec " - " prec:66 : prec
/-- Addition of priorities. This is normally used only for offseting, e.g. `default + 1`. -/
syntax:65 (name := addPrio) prio " + " prio:66 : prio
/-- Subtraction of priorities. This is normally used only for offseting, e.g. `default - 1`. -/
syntax:65 (name := subPrio) prio " - " prio:66 : prio
end Parser.Syntax
instance : CoeOut (TSyntax ks) Syntax where
coe stx := stx.raw
instance : Coe SyntaxNodeKind SyntaxNodeKinds where
coe k := List.cons k List.nil
end Lean
/--
Maximum precedence used in term parsers, in particular for terms in
function position (`ident`, `paren`, ...)
-/
macro "max" : prec => `(prec| 1024)
/-- Precedence used for application arguments (`do`, `by`, ...). -/
macro "arg" : prec => `(prec| 1023)
/-- Precedence used for terms not supposed to be used as arguments (`let`, `have`, ...). -/
macro "lead" : prec => `(prec| 1022)
/-- Parentheses are used for grouping precedence expressions. -/
macro "(" p:prec ")" : prec => return p
/-- Minimum precedence used in term parsers. -/
macro "min" : prec => `(prec| 10)
/-- `(min+1)` (we can only write `min+1` after `Meta.lean`) -/
macro "min1" : prec => `(prec| 11)
/--
`max:prec` as a term. It is equivalent to `eval_prec max` for `eval_prec` defined at `Meta.lean`.
We use `max_prec` to workaround bootstrapping issues.
-/
macro "max_prec" : term => `(1024)
/-- The default priority `default = 1000`, which is used when no priority is set. -/
macro "default" : prio => `(prio| 1000)
/-- The standardized "low" priority `low = 100`, for things that should be lower than default priority. -/
macro "low" : prio => `(prio| 100)
/--
The standardized "medium" priority `med = 1000`. This is lower than `default`, and higher than `low`.
-/
macro "mid" : prio => `(prio| 500)
/-- The standardized "high" priority `high = 10000`, for things that should be higher than default priority. -/
macro "high" : prio => `(prio| 10000)
/-- Parentheses are used for grouping priority expressions. -/
macro "(" p:prio ")" : prio => return p
/-
Note regarding priorities. We want `low < mid < default` because we have the following default instances:
```
@[default_instance low] instance (n : Nat) : OfNat Nat n where ...
@[default_instance mid] instance : Neg Int where ...
@[default_instance default] instance [Add α] : HAdd α α α where ...
@[default_instance default] instance [Sub α] : HSub α α α where ...
...
```
Monomorphic default instances must always "win" to preserve the Lean 3 monomorphic "look&feel".
The `Neg Int` instance must have precedence over the `OfNat Nat n` one, otherwise we fail to elaborate `#check -42`
See issue #1813 for an example that failed when `mid = default`.
-/
-- Basic notation for defining parsers
-- NOTE: precedence must be at least `arg` to be used in `macro` without parentheses
/--
`p+` is shorthand for `many1(p)`. It uses parser `p` 1 or more times, and produces a
`nullNode` containing the array of parsed results. This parser has arity 1.
If `p` has arity more than 1, it is auto-grouped in the items generated by the parser.
-/
syntax:arg stx:max "+" : stx
/--
`p*` is shorthand for `many(p)`. It uses parser `p` 0 or more times, and produces a
`nullNode` containing the array of parsed results. This parser has arity 1.
If `p` has arity more than 1, it is auto-grouped in the items generated by the parser.
-/
syntax:arg stx:max "*" : stx
/--
`(p)?` is shorthand for `optional(p)`. It uses parser `p` 0 or 1 times, and produces a
`nullNode` containing the array of parsed results. This parser has arity 1.
`p` is allowed to have arity n > 1 (in which case the node will have either 0 or n children),
but if it has arity 0 then the result will be ambiguous.
Because `?` is an identifier character, `ident?` will not work as intended.
You have to write either `ident ?` or `(ident)?` for it to parse as the `?` combinator
applied to the `ident` parser.
-/
syntax:arg stx:max "?" : stx
/--
`p1 <|> p2` is shorthand for `orelse(p1, p2)`, and parses either `p1` or `p2`.
It does not backtrack, meaning that if `p1` consumes at least one token then
`p2` will not be tried. Therefore, the parsers should all differ in their first
token. The `atomic(p)` parser combinator can be used to locally backtrack a parser.
(For full backtracking, consider using extensible syntax classes instead.)
On success, if the inner parser does not generate exactly one node, it will be
automatically wrapped in a `group` node, so the result will always be arity 1.
The `<|>` combinator does not generate a node of its own, and in particular
does not tag the inner parsers to distinguish them, which can present a problem
when reconstructing the parse. A well formed `<|>` parser should use disjoint
node kinds for `p1` and `p2`.
-/
syntax:2 stx:2 " <|> " stx:1 : stx
macro_rules
| `(stx| $p +) => `(stx| many1($p))
| `(stx| $p *) => `(stx| many($p))
| `(stx| $p ?) => `(stx| optional($p))
| `(stx| $p₁ <|> $p₂) => `(stx| orelse($p₁, $p₂))
/--
`p,*` is shorthand for `sepBy(p, ",")`. It parses 0 or more occurrences of
`p` separated by `,`, that is: `empty | p | p,p | p,p,p | ...`.
It produces a `nullNode` containing a `SepArray` with the interleaved parser
results. It has arity 1, and auto-groups its component parser if needed.
-/
macro:arg x:stx:max ",*" : stx => `(stx| sepBy($x, ",", ", "))
/--
`p,+` is shorthand for `sepBy(p, ",")`. It parses 1 or more occurrences of
`p` separated by `,`, that is: `p | p,p | p,p,p | ...`.
It produces a `nullNode` containing a `SepArray` with the interleaved parser
results. It has arity 1, and auto-groups its component parser if needed.
-/
macro:arg x:stx:max ",+" : stx => `(stx| sepBy1($x, ",", ", "))
/--
`p,*,?` is shorthand for `sepBy(p, ",", allowTrailingSep)`.
It parses 0 or more occurrences of `p` separated by `,`, possibly including
a trailing `,`, that is: `empty | p | p, | p,p | p,p, | p,p,p | ...`.
It produces a `nullNode` containing a `SepArray` with the interleaved parser
results. It has arity 1, and auto-groups its component parser if needed.
-/
macro:arg x:stx:max ",*,?" : stx => `(stx| sepBy($x, ",", ", ", allowTrailingSep))
/--
`p,+,?` is shorthand for `sepBy1(p, ",", allowTrailingSep)`.
It parses 1 or more occurrences of `p` separated by `,`, possibly including
a trailing `,`, that is: `p | p, | p,p | p,p, | p,p,p | ...`.
It produces a `nullNode` containing a `SepArray` with the interleaved parser
results. It has arity 1, and auto-groups its component parser if needed.
-/
macro:arg x:stx:max ",+,?" : stx => `(stx| sepBy1($x, ",", ", ", allowTrailingSep))
/--
`!p` parses the negation of `p`. That is, it fails if `p` succeeds, and
otherwise parses nothing. It has arity 0.
-/
macro:arg "!" x:stx:max : stx => `(stx| notFollowedBy($x))
/--
The `nat_lit n` macro constructs "raw numeric literals". This corresponds to the
`Expr.lit (.natVal n)` constructor in the `Expr` data type.
Normally, when you write a numeral like `#check 37`, the parser turns this into
an application of `OfNat.ofNat` to the raw literal `37` to cast it into the
target type, even if this type is `Nat` (so the cast is the identity function).
But sometimes it is necessary to talk about the raw numeral directly,
especially when proving properties about the `ofNat` function itself.
-/
syntax (name := rawNatLit) "nat_lit " num : term
@[inherit_doc] infixr:90 " ∘ " => Function.comp
@[inherit_doc] infixr:35 " × " => Prod
@[inherit_doc] infixl:55 " ||| " => HOr.hOr
@[inherit_doc] infixl:58 " ^^^ " => HXor.hXor
@[inherit_doc] infixl:60 " &&& " => HAnd.hAnd
@[inherit_doc] infixl:65 " + " => HAdd.hAdd
@[inherit_doc] infixl:65 " - " => HSub.hSub
@[inherit_doc] infixl:70 " * " => HMul.hMul
@[inherit_doc] infixl:70 " / " => HDiv.hDiv
@[inherit_doc] infixl:70 " % " => HMod.hMod
@[inherit_doc] infixl:75 " <<< " => HShiftLeft.hShiftLeft
@[inherit_doc] infixl:75 " >>> " => HShiftRight.hShiftRight
@[inherit_doc] infixr:80 " ^ " => HPow.hPow
@[inherit_doc] infixl:65 " ++ " => HAppend.hAppend
@[inherit_doc] prefix:75 "-" => Neg.neg
@[inherit_doc] prefix:100 "~~~" => Complement.complement
/-!
Remark: the infix commands above ensure a delaborator is generated for each relations.
We redefine the macros below to be able to use the auxiliary `binop%` elaboration helper for binary operators.
It addresses issue #382. -/
macro_rules | `($x ||| $y) => `(binop% HOr.hOr $x $y)
macro_rules | `($x ^^^ $y) => `(binop% HXor.hXor $x $y)
macro_rules | `($x &&& $y) => `(binop% HAnd.hAnd $x $y)
macro_rules | `($x + $y) => `(binop% HAdd.hAdd $x $y)
macro_rules | `($x - $y) => `(binop% HSub.hSub $x $y)
macro_rules | `($x * $y) => `(binop% HMul.hMul $x $y)
macro_rules | `($x / $y) => `(binop% HDiv.hDiv $x $y)
macro_rules | `($x % $y) => `(binop% HMod.hMod $x $y)
macro_rules | `($x ^ $y) => `(binop% HPow.hPow $x $y)
macro_rules | `($x ++ $y) => `(binop% HAppend.hAppend $x $y)
macro_rules | `(- $x) => `(unop% Neg.neg $x)
-- declare ASCII alternatives first so that the latter Unicode unexpander wins
@[inherit_doc] infix:50 " <= " => LE.le
@[inherit_doc] infix:50 " ≤ " => LE.le
@[inherit_doc] infix:50 " < " => LT.lt
@[inherit_doc] infix:50 " >= " => GE.ge
@[inherit_doc] infix:50 " ≥ " => GE.ge
@[inherit_doc] infix:50 " > " => GT.gt
@[inherit_doc] infix:50 " = " => Eq
@[inherit_doc] infix:50 " == " => BEq.beq
/-!
Remark: the infix commands above ensure a delaborator is generated for each relations.
We redefine the macros below to be able to use the auxiliary `binrel%` elaboration helper for binary relations.
It has better support for applying coercions. For example, suppose we have `binrel% Eq n i` where `n : Nat` and
`i : Int`. The default elaborator fails because we don't have a coercion from `Int` to `Nat`, but
`binrel%` succeeds because it also tries a coercion from `Nat` to `Int` even when the nat occurs before the int. -/
macro_rules | `($x <= $y) => `(binrel% LE.le $x $y)
macro_rules | `($x ≤ $y) => `(binrel% LE.le $x $y)
macro_rules | `($x < $y) => `(binrel% LT.lt $x $y)
macro_rules | `($x > $y) => `(binrel% GT.gt $x $y)
macro_rules | `($x >= $y) => `(binrel% GE.ge $x $y)
macro_rules | `($x ≥ $y) => `(binrel% GE.ge $x $y)
macro_rules | `($x = $y) => `(binrel% Eq $x $y)
macro_rules | `($x == $y) => `(binrel_no_prop% BEq.beq $x $y)
@[inherit_doc] infixr:35 " /\\ " => And
@[inherit_doc] infixr:35 " ∧ " => And
@[inherit_doc] infixr:30 " \\/ " => Or
@[inherit_doc] infixr:30 " ∨ " => Or
@[inherit_doc] notation:max "¬" p:40 => Not p
@[inherit_doc] infixl:35 " && " => and
@[inherit_doc] infixl:30 " || " => or
@[inherit_doc] notation:max "!" b:40 => not b
@[inherit_doc] infix:50 " ∈ " => Membership.mem
/-- `a ∉ b` is negated elementhood. It is notation for `¬ (a ∈ b)`. -/
notation:50 a:50 " ∉ " b:50 => ¬ (a ∈ b)
@[inherit_doc] infixr:67 " :: " => List.cons
@[inherit_doc HOrElse.hOrElse] syntax:20 term:21 " <|> " term:20 : term
@[inherit_doc HAndThen.hAndThen] syntax:60 term:61 " >> " term:60 : term
@[inherit_doc] infixl:55 " >>= " => Bind.bind
@[inherit_doc] notation:60 a:60 " <*> " b:61 => Seq.seq a fun _ : Unit => b
@[inherit_doc] notation:60 a:60 " <* " b:61 => SeqLeft.seqLeft a fun _ : Unit => b
@[inherit_doc] notation:60 a:60 " *> " b:61 => SeqRight.seqRight a fun _ : Unit => b
@[inherit_doc] infixr:100 " <$> " => Functor.map
macro_rules | `($x <|> $y) => `(binop_lazy% HOrElse.hOrElse $x $y)
macro_rules | `($x >> $y) => `(binop_lazy% HAndThen.hAndThen $x $y)
namespace Lean
/--
`binderIdent` matches an `ident` or a `_`. It is used for identifiers in binding
position, where `_` means that the value should be left unnamed and inaccessible.
-/
syntax binderIdent := ident <|> hole
namespace Parser.Tactic
/--
A case tag argument has the form `tag x₁ ... xₙ`; it refers to tag `tag` and renames
the last `n` hypotheses to `x₁ ... xₙ`.
-/
syntax caseArg := binderIdent binderIdent*
end Parser.Tactic
end Lean
@[inherit_doc dite] syntax (name := termDepIfThenElse)
ppRealGroup(ppRealFill(ppIndent("if " Lean.binderIdent " : " term " then") ppSpace term)
ppDedent(ppSpace) ppRealFill("else " term)) : term
macro_rules
| `(if $h:ident : $c then $t else $e) => do
let mvar ← Lean.withRef c `(?m)
`(let_mvar% ?m := $c; wait_if_type_mvar% ?m; dite $mvar (fun $h:ident => $t) (fun $h:ident => $e))
| `(if _%$h : $c then $t else $e) => do
let mvar ← Lean.withRef c `(?m)
`(let_mvar% ?m := $c; wait_if_type_mvar% ?m; dite $mvar (fun _%$h => $t) (fun _%$h => $e))
@[inherit_doc ite] syntax (name := termIfThenElse)
ppRealGroup(ppRealFill(ppIndent("if " term " then") ppSpace term)
ppDedent(ppSpace) ppRealFill("else " term)) : term
macro_rules
| `(if $c then $t else $e) => do
let mvar ← Lean.withRef c `(?m)
`(let_mvar% ?m := $c; wait_if_type_mvar% ?m; ite $mvar $t $e)
/--
`if let pat := d then t else e` is a shorthand syntax for:
```
match d with
| pat => t
| _ => e
```
It matches `d` against the pattern `pat` and the bindings are available in `t`.
If the pattern does not match, it returns `e` instead.
-/
syntax (name := termIfLet)
ppRealGroup(ppRealFill(ppIndent("if " "let " term " := " term " then") ppSpace term)
ppDedent(ppSpace) ppRealFill("else " term)) : term
macro_rules
| `(if let $pat := $d then $t else $e) =>
`(match $d:term with | $pat => $t | _ => $e)
@[inherit_doc cond] syntax (name := boolIfThenElse)
ppRealGroup(ppRealFill(ppIndent("bif " term " then") ppSpace term)
ppDedent(ppSpace) ppRealFill("else " term)) : term
macro_rules
| `(bif $c then $t else $e) => `(cond $c $t $e)
/--
Haskell-like pipe operator `<|`. `f <| x` means the same as the same as `f x`,
except that it parses `x` with lower precedence, which means that `f <| g <| x`
is interpreted as `f (g x)` rather than `(f g) x`.
-/
syntax:min term " <| " term:min : term
macro_rules
| `($f $args* <| $a) => `($f $args* $a)
| `($f <| $a) => `($f $a)
/--
Haskell-like pipe operator `|>`. `x |> f` means the same as the same as `f x`,
and it chains such that `x |> f |> g` is interpreted as `g (f x)`.
-/
syntax:min term " |> " term:min1 : term
macro_rules
| `($a |> $f $args*) => `($f $args* $a)
| `($a |> $f) => `($f $a)
/--
Alternative syntax for `<|`. `f $ x` means the same as the same as `f x`,
except that it parses `x` with lower precedence, which means that `f $ g $ x`
is interpreted as `f (g x)` rather than `(f g) x`.
-/
-- Note that we have a whitespace after `$` to avoid an ambiguity with antiquotations.
syntax:min term atomic(" $" ws) term:min : term
macro_rules
| `($f $args* $ $a) => `($f $args* $a)
| `($f $ $a) => `($f $a)
@[inherit_doc Subtype] syntax "{ " withoutPosition(ident (" : " term)? " // " term) " }" : term
macro_rules
| `({ $x : $type // $p }) => ``(Subtype (fun ($x:ident : $type) => $p))
| `({ $x // $p }) => ``(Subtype (fun ($x:ident : _) => $p))
/--
`without_expected_type t` instructs Lean to elaborate `t` without an expected type.
Recall that terms such as `match ... with ...` and `⟨...⟩` will postpone elaboration until
expected type is known. So, `without_expected_type` is not effective in this case.
-/
macro "without_expected_type " x:term : term => `(let aux := $x; aux)
/--
The syntax `[a, b, c]` is shorthand for `a :: b :: c :: []`, or
`List.cons a (List.cons b (List.cons c List.nil))`. It allows conveniently constructing
list literals.
For lists of length at least 64, an alternative desugaring strategy is used
which uses let bindings as intermediates as in
`let left := [d, e, f]; a :: b :: c :: left` to avoid creating very deep expressions.
Note that this changes the order of evaluation, although it should not be observable
unless you use side effecting operations like `dbg_trace`.
-/
syntax "[" withoutPosition(term,*) "]" : term
/--
Auxiliary syntax for implementing `[$elem,*]` list literal syntax.
The syntax `%[a,b,c|tail]` constructs a value equivalent to `a::b::c::tail`.
It uses binary partitioning to construct a tree of intermediate let bindings as in
`let left := [d, e, f]; a :: b :: c :: left` to avoid creating very deep expressions.
-/
syntax "%[" withoutPosition(term,* "|" term) "]" : term
namespace Lean
macro_rules
| `([ $elems,* ]) => do
-- NOTE: we do not have `TSepArray.getElems` yet at this point
let rec expandListLit (i : Nat) (skip : Bool) (result : TSyntax `term) : MacroM Syntax := do
match i, skip with
| 0, _ => pure result
| i+1, true => expandListLit i false result
| i+1, false => expandListLit i true (← ``(List.cons $(⟨elems.elemsAndSeps.get! i⟩) $result))
if elems.elemsAndSeps.size < 64 then
expandListLit elems.elemsAndSeps.size false (← ``(List.nil))
else
`(%[ $elems,* | List.nil ])
-- Declare `this` as a keyword that unhygienically binds to a scope-less `this` assumption (or other binding).
-- The keyword prevents declaring a `this` binding except through metaprogramming, as is done by `have`/`show`.
/-- Special identifier introduced by "anonymous" `have : ...`, `suffices p ...` etc. -/
macro tk:"this" : term =>
return (⟨(Syntax.ident tk.getHeadInfo "this".toSubstring `this [])⟩ : TSyntax `term)
/--
Category for carrying raw syntax trees between macros; any content is printed as is by the pretty printer.
The only accepted parser for this category is an antiquotation.
-/
declare_syntax_cat rawStx
instance : Coe Syntax (TSyntax `rawStx) where
coe stx := ⟨stx⟩
/-- `with_annotate_term stx e` annotates the lexical range of `stx : Syntax` with term info for `e`. -/
scoped syntax (name := withAnnotateTerm) "with_annotate_term " rawStx ppSpace term : term
/--
The attribute `@[deprecated]` on a declaration indicates that the declaration
is discouraged for use in new code, and/or should be migrated away from in
existing code. It may be removed in a future version of the library.
`@[deprecated myBetterDef]` means that `myBetterDef` is the suggested replacement.
-/
syntax (name := deprecated) "deprecated " (ident)? : attr
/--
When `parent_dir` contains the current Lean file, `include_str "path" / "to" / "file"` becomes
a string literal with the contents of the file at `"parent_dir" / "path" / "to" / "file"`. If this
file cannot be read, elaboration fails.
-/
syntax (name := includeStr) "include_str" term : term
|
fcb5e24b43e17ca675f8b968b71cea816ddd3f59
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/algebra/order/monoid_lemmas.lean
|
aa4a588b59f20ba88f243b35e72e720fb6716915
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 27,389
|
lean
|
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl, Damiano Testa
-/
import algebra.covariant_and_contravariant
import order.monotone
/-!
# Ordered monoids
This file develops the basics of ordered monoids.
## Implementation details
Unfortunately, the number of `'` appended to lemmas in this file
may differ between the multiplicative and the additive version of a lemma.
The reason is that we did not want to change existing names in the library.
## Remark
Almost no monoid is actually present in this file: most assumptions have been generalized to
`has_mul` or `mul_one_class`.
-/
-- TODO: If possible, uniformize lemma names, taking special care of `'`,
-- after the `ordered`-refactor is done.
open function
variables {α β : Type*}
section has_mul
variables [has_mul α]
section has_le
variables [has_le α]
/- The prime on this lemma is present only on the multiplicative version. The unprimed version
is taken by the analogous lemma for semiring, with an extra non-negativity assumption. -/
@[to_additive add_le_add_left]
lemma mul_le_mul_left' [covariant_class α α (*) (≤)] {b c : α} (bc : b ≤ c) (a : α) :
a * b ≤ a * c :=
covariant_class.elim _ bc
@[to_additive le_of_add_le_add_left]
lemma le_of_mul_le_mul_left' [contravariant_class α α (*) (≤)]
{a b c : α} (bc : a * b ≤ a * c) :
b ≤ c :=
contravariant_class.elim _ bc
/- The prime on this lemma is present only on the multiplicative version. The unprimed version
is taken by the analogous lemma for semiring, with an extra non-negativity assumption. -/
@[to_additive add_le_add_right]
lemma mul_le_mul_right' [covariant_class α α (swap (*)) (≤)]
{b c : α} (bc : b ≤ c) (a : α) :
b * a ≤ c * a :=
covariant_class.elim a bc
@[to_additive le_of_add_le_add_right]
lemma le_of_mul_le_mul_right' [contravariant_class α α (swap (*)) (≤)]
{a b c : α} (bc : b * a ≤ c * a) :
b ≤ c :=
contravariant_class.elim a bc
@[simp, to_additive]
lemma mul_le_mul_iff_left [covariant_class α α (*) (≤)] [contravariant_class α α (*) (≤)]
(a : α) {b c : α} :
a * b ≤ a * c ↔ b ≤ c :=
rel_iff_cov α α (*) (≤) a
@[simp, to_additive]
lemma mul_le_mul_iff_right
[covariant_class α α (swap (*)) (≤)] [contravariant_class α α (swap (*)) (≤)]
(a : α) {b c : α} :
b * a ≤ c * a ↔ b ≤ c :=
rel_iff_cov α α (swap (*)) (≤) a
end has_le
section has_lt
variables [has_lt α]
@[simp, to_additive]
lemma mul_lt_mul_iff_left [covariant_class α α (*) (<)] [contravariant_class α α (*) (<)]
(a : α) {b c : α} :
a * b < a * c ↔ b < c :=
rel_iff_cov α α (*) (<) a
@[simp, to_additive]
lemma mul_lt_mul_iff_right
[covariant_class α α (swap (*)) (<)] [contravariant_class α α (swap (*)) (<)]
(a : α) {b c : α} :
b * a < c * a ↔ b < c :=
rel_iff_cov α α (swap (*)) (<) a
@[to_additive add_lt_add_left]
lemma mul_lt_mul_left' [covariant_class α α (*) (<)] {b c : α} (bc : b < c) (a : α) :
a * b < a * c :=
covariant_class.elim _ bc
@[to_additive lt_of_add_lt_add_left]
lemma lt_of_mul_lt_mul_left' [contravariant_class α α (*) (<)]
{a b c : α} (bc : a * b < a * c) :
b < c :=
contravariant_class.elim _ bc
@[to_additive add_lt_add_right]
lemma mul_lt_mul_right' [covariant_class α α (swap (*)) (<)]
{b c : α} (bc : b < c) (a : α) :
b * a < c * a :=
covariant_class.elim a bc
@[to_additive lt_of_add_lt_add_right]
lemma lt_of_mul_lt_mul_right' [contravariant_class α α (swap (*)) (<)]
{a b c : α} (bc : b * a < c * a) :
b < c :=
contravariant_class.elim a bc
end has_lt
end has_mul
-- using one
section mul_one_class
variables [mul_one_class α]
section has_le
variables [has_le α]
@[simp, to_additive le_add_iff_nonneg_right]
lemma le_mul_iff_one_le_right'
[covariant_class α α (*) (≤)] [contravariant_class α α (*) (≤)]
(a : α) {b : α} : a ≤ a * b ↔ 1 ≤ b :=
iff.trans (by rw [mul_one]) (mul_le_mul_iff_left a)
@[simp, to_additive add_le_iff_nonpos_right]
lemma mul_le_iff_le_one_right'
[covariant_class α α (*) (≤)] [contravariant_class α α (*) (≤)]
(a : α) {b : α} :
a * b ≤ a ↔ b ≤ 1 :=
iff.trans (by rw [mul_one]) (mul_le_mul_iff_left a)
@[simp, to_additive le_add_iff_nonneg_left]
lemma le_mul_iff_one_le_left'
[covariant_class α α (swap (*)) (≤)] [contravariant_class α α (swap (*)) (≤)]
(a : α) {b : α} :
a ≤ b * a ↔ 1 ≤ b :=
iff.trans (by rw one_mul) (mul_le_mul_iff_right a)
@[simp, to_additive add_le_iff_nonpos_left]
lemma mul_le_iff_le_one_left'
[covariant_class α α (swap (*)) (≤)] [contravariant_class α α (swap (*)) (≤)]
{a b : α} :
a * b ≤ b ↔ a ≤ 1 :=
iff.trans (by rw one_mul) (mul_le_mul_iff_right b)
end has_le
lemma exists_square_le {α : Type*} [mul_one_class α] [linear_order α] [covariant_class α α (*) (<)]
(a : α) : ∃ (b : α), b * b ≤ a :=
begin
by_cases h : a < 1,
{ use a,
have : a*a < a*1,
exact mul_lt_mul_left' h a,
rw mul_one at this,
exact le_of_lt this },
{ use 1,
push_neg at h,
rwa mul_one }
end
section has_lt
variable [has_lt α]
@[to_additive lt_add_of_pos_right]
lemma lt_mul_of_one_lt_right'
[covariant_class α α (*) (<)]
(a : α) {b : α} (h : 1 < b) : a < a * b :=
calc a = a * 1 : (mul_one _).symm
... < a * b : mul_lt_mul_left' h a
@[simp, to_additive lt_add_iff_pos_right]
lemma lt_mul_iff_one_lt_right'
[covariant_class α α (*) (<)] [contravariant_class α α (*) (<)]
(a : α) {b : α} :
a < a * b ↔ 1 < b :=
iff.trans (by rw mul_one) (mul_lt_mul_iff_left a)
@[simp, to_additive add_lt_iff_neg_left]
lemma mul_lt_iff_lt_one_left'
[covariant_class α α (*) (<)] [contravariant_class α α (*) (<)] {a b : α} :
a * b < a ↔ b < 1 :=
iff.trans (by rw mul_one) (mul_lt_mul_iff_left a)
@[simp, to_additive lt_add_iff_pos_left]
lemma lt_mul_iff_one_lt_left'
[covariant_class α α (swap (*)) (<)] [contravariant_class α α (swap (*)) (<)]
(a : α) {b : α} : a < b * a ↔ 1 < b :=
iff.trans (by rw one_mul) (mul_lt_mul_iff_right a)
@[simp, to_additive add_lt_iff_neg_right]
lemma mul_lt_iff_lt_one_right'
[covariant_class α α (swap (*)) (<)] [contravariant_class α α (swap (*)) (<)]
{a : α} (b : α) :
a * b < b ↔ a < 1 :=
iff.trans (by rw one_mul) (mul_lt_mul_iff_right b)
end has_lt
section preorder
variable [preorder α]
@[to_additive]
lemma mul_le_of_le_of_le_one [covariant_class α α (*) (≤)]
{a b c : α} (hbc : b ≤ c) (ha : a ≤ 1) : b * a ≤ c :=
calc b * a ≤ b * 1 : mul_le_mul_left' ha b
... = b : mul_one b
... ≤ c : hbc
alias mul_le_of_le_of_le_one ← mul_le_one'
attribute [to_additive add_nonpos] mul_le_one'
@[to_additive]
lemma lt_mul_of_lt_of_one_le [covariant_class α α (*) (≤)]
{a b c : α} (hbc : b < c) (ha : 1 ≤ a) : b < c * a :=
calc b < c : hbc
... = c * 1 : (mul_one c).symm
... ≤ c * a : mul_le_mul_left' ha c
@[to_additive]
lemma mul_lt_of_lt_of_le_one [covariant_class α α (*) (≤)]
{a b c : α} (hbc : b < c) (ha : a ≤ 1) : b * a < c :=
calc b * a ≤ b * 1 : mul_le_mul_left' ha b
... = b : mul_one b
... < c : hbc
@[to_additive]
lemma lt_mul_of_le_of_one_lt [covariant_class α α (*) (<)]
{a b c : α} (hbc : b ≤ c) (ha : 1 < a) : b < c * a :=
calc b ≤ c : hbc
... = c * 1 : (mul_one c).symm
... < c * a : mul_lt_mul_left' ha c
@[to_additive]
lemma mul_lt_of_le_one_of_lt [covariant_class α α (swap (*)) (≤)]
{a b c : α} (ha : a ≤ 1) (hb : b < c) : a * b < c :=
calc a * b ≤ 1 * b : mul_le_mul_right' ha b
... = b : one_mul b
... < c : hb
@[to_additive]
lemma mul_le_of_le_one_of_le [covariant_class α α (swap (*)) (≤)]
{a b c : α} (ha : a ≤ 1) (hbc : b ≤ c) :
a * b ≤ c :=
calc a * b ≤ 1 * b : mul_le_mul_right' ha b
... = b : one_mul b
... ≤ c : hbc
@[to_additive]
lemma le_mul_of_one_le_of_le [covariant_class α α (swap (*)) (≤)]
{a b c: α} (ha : 1 ≤ a) (hbc : b ≤ c) : b ≤ a * c :=
calc b ≤ c : hbc
... = 1 * c : (one_mul c).symm
... ≤ a * c : mul_le_mul_right' ha c
/--
Assume monotonicity on the `left`. The lemma assuming `right` is `right.mul_lt_one`. -/
@[to_additive]
lemma left.mul_lt_one [covariant_class α α (*) (<)]
{a b : α} (ha : a < 1) (hb : b < 1) : a * b < 1 :=
calc a * b < a * 1 : mul_lt_mul_left' hb a
... = a : mul_one a
... < 1 : ha
/--
Assume monotonicity on the `right`. The lemma assuming `left` is `left.mul_lt_one`. -/
@[to_additive]
lemma right.mul_lt_one [covariant_class α α (swap (*)) (<)]
{a b : α} (ha : a < 1) (hb : b < 1) : a * b < 1 :=
calc a * b < 1 * b : mul_lt_mul_right' ha b
... = b : one_mul b
... < 1 : hb
@[to_additive]
lemma mul_lt_of_le_of_lt_one
[covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (≤)]
{a b c: α} (hbc : b ≤ c) (ha : a < 1) : b * a < c :=
calc b * a ≤ c * a : mul_le_mul_right' hbc a
... < c * 1 : mul_lt_mul_left' ha c
... = c : mul_one c
@[to_additive]
lemma mul_lt_of_lt_one_of_le [covariant_class α α (swap (*)) (<)]
{a b c : α} (ha : a < 1) (hbc : b ≤ c) : a * b < c :=
calc a * b < 1 * b : mul_lt_mul_right' ha b
... = b : one_mul b
... ≤ c : hbc
@[to_additive]
lemma lt_mul_of_one_lt_of_le [covariant_class α α (swap (*)) (<)]
{a b c : α} (ha : 1 < a) (hbc : b ≤ c) : b < a * c :=
calc b ≤ c : hbc
... = 1 * c : (one_mul c).symm
... < a * c : mul_lt_mul_right' ha c
/-- Assumes left covariance. -/
@[to_additive]
lemma le_mul_of_le_of_le_one [covariant_class α α (*) (≤)]
{a b c : α} (ha : c ≤ a) (hb : 1 ≤ b) : c ≤ a * b :=
calc c ≤ a : ha
... = a * 1 : (mul_one a).symm
... ≤ a * b : mul_le_mul_left' hb a
/- This lemma is present to mimick the name of an existing one. -/
@[to_additive add_nonneg]
lemma one_le_mul [covariant_class α α (*) (≤)]
{a b : α} (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ a * b :=
le_mul_of_le_of_le_one ha hb
/-- Assumes left covariance. -/
@[to_additive]
lemma lt_mul_of_lt_of_one_lt [covariant_class α α (*) (<)]
{a b c : α} (ha : c < a) (hb : 1 < b) : c < a * b :=
calc c < a : ha
... = a * 1 : (mul_one _).symm
... < a * b : mul_lt_mul_left' hb a
/-- Assumes left covariance. -/
@[to_additive]
lemma left.mul_lt_one_of_lt_of_lt_one [covariant_class α α (*) (<)]
{a b c : α} (ha : a < c) (hb : b < 1) : a * b < c :=
calc a * b < a * 1 : mul_lt_mul_left' hb a
... = a : mul_one a
... < c : ha
/-- Assumes right covariance. -/
@[to_additive]
lemma right.mul_lt_one_of_lt_of_lt_one [covariant_class α α (swap (*)) (<)]
{a b c : α} (ha : a < 1) (hb : b < c) : a * b < c :=
calc a * b < 1 * b : mul_lt_mul_right' ha b
... = b : one_mul b
... < c : hb
/-- Assumes right covariance. -/
@[to_additive right.add_nonneg]
lemma right.one_le_mul [covariant_class α α (swap (*)) (≤)]
{a b : α} (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ a * b :=
calc 1 ≤ b : hb
... = 1 * b : (one_mul b).symm
... ≤ a * b : mul_le_mul_right' ha b
/-- Assumes right covariance. -/
@[to_additive right.add_pos]
lemma right.one_lt_mul [covariant_class α α (swap (*)) (<)]
{b : α} (hb : 1 < b) {a: α} (ha : 1 < a) : 1 < a * b :=
calc 1 < b : hb
... = 1 * b : (one_mul _).symm
... < a * b : mul_lt_mul_right' ha b
end preorder
@[to_additive le_add_of_nonneg_right]
lemma le_mul_of_one_le_right' [has_le α] [covariant_class α α (*) (≤)] {a b : α} (h : 1 ≤ b) :
a ≤ a * b :=
calc a = a * 1 : (mul_one _).symm
... ≤ a * b : mul_le_mul_left' h a
@[to_additive add_le_of_nonpos_right]
lemma mul_le_of_le_one_right' [has_le α] [covariant_class α α (*) (≤)] {a b : α} (h : b ≤ 1) :
a * b ≤ a :=
calc a * b ≤ a * 1 : mul_le_mul_left' h a
... = a : mul_one a
end mul_one_class
@[to_additive]
lemma mul_left_cancel'' [semigroup α] [partial_order α]
[contravariant_class α α (*) (≤)] {a b c : α} (h : a * b = a * c) : b = c :=
(le_of_mul_le_mul_left' h.le).antisymm (le_of_mul_le_mul_left' h.ge)
@[to_additive]
lemma mul_right_cancel'' [semigroup α] [partial_order α]
[contravariant_class α α (swap (*)) (≤)] {a b c : α} (h : a * b = c * b) :
a = c :=
le_antisymm (le_of_mul_le_mul_right' h.le) (le_of_mul_le_mul_right' h.ge)
/- This is not instance, since we want to have an instance from `left_cancel_semigroup`s
to the appropriate `covariant_class`. -/
/-- A semigroup with a partial order and satisfying `left_cancel_semigroup`
(i.e. `a * c < b * c → a < b`) is a `left_cancel semigroup`. -/
@[to_additive
"An additive semigroup with a partial order and satisfying `left_cancel_add_semigroup`
(i.e. `c + a < c + b → a < b`) is a `left_cancel add_semigroup`."]
def contravariant.to_left_cancel_semigroup [semigroup α] [partial_order α]
[contravariant_class α α (*) (≤)] :
left_cancel_semigroup α :=
{ mul_left_cancel := λ a b c, mul_left_cancel''
..‹semigroup α› }
/- This is not instance, since we want to have an instance from `right_cancel_semigroup`s
to the appropriate `covariant_class`. -/
/-- A semigroup with a partial order and satisfying `right_cancel_semigroup`
(i.e. `a * c < b * c → a < b`) is a `right_cancel semigroup`. -/
@[to_additive
"An additive semigroup with a partial order and satisfying `right_cancel_add_semigroup`
(`a + c < b + c → a < b`) is a `right_cancel add_semigroup`."]
def contravariant.to_right_cancel_semigroup [semigroup α] [partial_order α]
[contravariant_class α α (swap (*)) (≤)] :
right_cancel_semigroup α :=
{ mul_right_cancel := λ a b c, mul_right_cancel''
..‹semigroup α› }
variables {a b c d : α}
section left
variables [preorder α]
section has_mul
variables [has_mul α]
@[to_additive]
lemma mul_lt_mul_of_lt_of_lt
[covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)]
(h₁ : a < b) (h₂ : c < d) : a * c < b * d :=
calc a * c < a * d : mul_lt_mul_left' h₂ a
... < b * d : mul_lt_mul_right' h₁ d
section contravariant_mul_lt_left_le_right
variables [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (≤)]
@[to_additive]
lemma mul_lt_mul_of_le_of_lt
(h₁ : a ≤ b) (h₂ : c < d) : a * c < b * d :=
(mul_le_mul_right' h₁ _).trans_lt (mul_lt_mul_left' h₂ b)
@[to_additive add_lt_add]
lemma mul_lt_mul''' (h₁ : a < b) (h₂ : c < d) : a * c < b * d :=
mul_lt_mul_of_le_of_lt h₁.le h₂
end contravariant_mul_lt_left_le_right
variable [covariant_class α α (*) (≤)]
@[to_additive]
lemma mul_lt_of_mul_lt_left (h : a * b < c) (hle : d ≤ b) :
a * d < c :=
(mul_le_mul_left' hle a).trans_lt h
@[to_additive]
lemma mul_le_of_mul_le_left (h : a * b ≤ c) (hle : d ≤ b) :
a * d ≤ c :=
@act_rel_of_rel_of_act_rel _ _ _ (≤) _ ⟨λ _ _ _, le_trans⟩ a _ _ _ hle h
@[to_additive]
lemma lt_mul_of_lt_mul_left (h : a < b * c) (hle : c ≤ d) :
a < b * d :=
h.trans_le (mul_le_mul_left' hle b)
@[to_additive]
lemma le_mul_of_le_mul_left (h : a ≤ b * c) (hle : c ≤ d) :
a ≤ b * d :=
@rel_act_of_rel_of_rel_act _ _ _ (≤) _ ⟨λ _ _ _, le_trans⟩ b _ _ _ hle h
@[to_additive]
lemma mul_lt_mul_of_lt_of_le [covariant_class α α (swap (*)) (<)]
(h₁ : a < b) (h₂ : c ≤ d) : a * c < b * d :=
(mul_le_mul_left' h₂ _).trans_lt (mul_lt_mul_right' h₁ d)
end has_mul
/-! Here we start using properties of one, on the left. -/
section mul_one_class
variables [mul_one_class α] [covariant_class α α (*) (≤)]
@[to_additive]
lemma lt_of_mul_lt_of_one_le_left (h : a * b < c) (hle : 1 ≤ b) : a < c :=
(le_mul_of_one_le_right' hle).trans_lt h
@[to_additive]
lemma le_of_mul_le_of_one_le_left (h : a * b ≤ c) (hle : 1 ≤ b) : a ≤ c :=
(le_mul_of_one_le_right' hle).trans h
@[to_additive]
lemma lt_of_lt_mul_of_le_one_left (h : a < b * c) (hle : c ≤ 1) : a < b :=
h.trans_le (mul_le_of_le_one_right' hle)
@[to_additive]
lemma le_of_le_mul_of_le_one_left (h : a ≤ b * c) (hle : c ≤ 1) : a ≤ b :=
h.trans (mul_le_of_le_one_right' hle)
@[to_additive]
theorem mul_lt_of_lt_of_lt_one (bc : b < c) (a1 : a < 1) :
b * a < c :=
calc b * a ≤ b * 1 : mul_le_mul_left' a1.le _
... = b : mul_one b
... < c : bc
end mul_one_class
end left
section right
section preorder
variables [preorder α]
section has_mul
variables [has_mul α]
variable [covariant_class α α (swap (*)) (≤)]
@[to_additive]
lemma mul_lt_of_mul_lt_right (h : a * b < c) (hle : d ≤ a) :
d * b < c :=
(mul_le_mul_right' hle b).trans_lt h
@[to_additive]
lemma mul_le_of_mul_le_right (h : a * b ≤ c) (hle : d ≤ a) :
d * b ≤ c :=
(mul_le_mul_right' hle b).trans h
@[to_additive]
lemma lt_mul_of_lt_mul_right (h : a < b * c) (hle : b ≤ d) :
a < d * c :=
h.trans_le (mul_le_mul_right' hle c)
@[to_additive]
lemma le_mul_of_le_mul_right (h : a ≤ b * c) (hle : b ≤ d) :
a ≤ d * c :=
h.trans (mul_le_mul_right' hle c)
variable [covariant_class α α (*) (≤)]
@[to_additive add_le_add]
lemma mul_le_mul' (h₁ : a ≤ b) (h₂ : c ≤ d) : a * c ≤ b * d :=
(mul_le_mul_left' h₂ _).trans (mul_le_mul_right' h₁ d)
@[to_additive]
lemma mul_le_mul_three {e f : α} (h₁ : a ≤ d) (h₂ : b ≤ e) (h₃ : c ≤ f) :
a * b * c ≤ d * e * f :=
mul_le_mul' (mul_le_mul' h₁ h₂) h₃
end has_mul
/-! Here we start using properties of one, on the right. -/
section mul_one_class
variables [mul_one_class α]
section le_right
variable [covariant_class α α (swap (*)) (≤)]
@[to_additive le_add_of_nonneg_left]
lemma le_mul_of_one_le_left' (h : 1 ≤ b) : a ≤ b * a :=
calc a = 1 * a : (one_mul a).symm
... ≤ b * a : mul_le_mul_right' h a
@[to_additive add_le_of_nonpos_left]
lemma mul_le_of_le_one_left' (h : b ≤ 1) : b * a ≤ a :=
calc b * a ≤ 1 * a : mul_le_mul_right' h a
... = a : one_mul a
@[to_additive]
lemma lt_of_mul_lt_of_one_le_right (h : a * b < c) (hle : 1 ≤ a) : b < c :=
(le_mul_of_one_le_left' hle).trans_lt h
@[to_additive]
lemma le_of_mul_le_of_one_le_right (h : a * b ≤ c) (hle : 1 ≤ a) : b ≤ c :=
(le_mul_of_one_le_left' hle).trans h
@[to_additive]
lemma lt_of_lt_mul_of_le_one_right (h : a < b * c) (hle : b ≤ 1) : a < c :=
h.trans_le (mul_le_of_le_one_left' hle)
@[to_additive]
lemma le_of_le_mul_of_le_one_right (h : a ≤ b * c) (hle : b ≤ 1) : a ≤ c :=
h.trans (mul_le_of_le_one_left' hle)
theorem mul_lt_of_lt_one_of_lt (a1 : a < 1) (bc : b < c) :
a * b < c :=
calc a * b ≤ 1 * b : mul_le_mul_right' a1.le _
... = b : one_mul b
... < c : bc
end le_right
section lt_right
@[to_additive lt_add_of_pos_left]
lemma lt_mul_of_one_lt_left' [covariant_class α α (swap (*)) (<)]
(a : α) {b : α} (h : 1 < b) : a < b * a :=
calc a = 1 * a : (one_mul _).symm
... < b * a : mul_lt_mul_right' h a
end lt_right
end mul_one_class
end preorder
end right
section preorder
variables [preorder α]
section mul_one_class
variables [mul_one_class α]
section covariant_left
variable [covariant_class α α (*) (≤)]
@[to_additive add_pos_of_pos_of_nonneg]
lemma one_lt_mul_of_lt_of_le' (ha : 1 < a) (hb : 1 ≤ b) : 1 < a * b :=
lt_of_lt_of_le ha $ le_mul_of_one_le_right' hb
@[to_additive add_pos]
lemma one_lt_mul' (ha : 1 < a) (hb : 1 < b) : 1 < a * b :=
one_lt_mul_of_lt_of_le' ha hb.le
@[to_additive]
lemma lt_mul_of_lt_of_one_le' (hbc : b < c) (ha : 1 ≤ a) :
b < c * a :=
hbc.trans_le $ le_mul_of_one_le_right' ha
@[to_additive]
lemma lt_mul_of_lt_of_one_lt' (hbc : b < c) (ha : 1 < a) :
b < c * a :=
lt_mul_of_lt_of_one_le' hbc ha.le
@[to_additive]
lemma le_mul_of_le_of_one_le (hbc : b ≤ c) (ha : 1 ≤ a) : b ≤ c * a :=
calc b ≤ c : hbc
... = c * 1 : (mul_one c).symm
... ≤ c * a : mul_le_mul_left' ha c
@[to_additive add_nonneg]
lemma one_le_mul_right (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ a * b :=
calc 1 ≤ a : ha
... = a * 1 : (mul_one a).symm
... ≤ a * b : mul_le_mul_left' hb a
end covariant_left
section covariant_right
variable [covariant_class α α (swap (*)) (≤)]
@[to_additive add_pos_of_nonneg_of_pos]
lemma one_lt_mul_of_le_of_lt' (ha : 1 ≤ a) (hb : 1 < b) : 1 < a * b :=
lt_of_lt_of_le hb $ le_mul_of_one_le_left' ha
@[to_additive]
lemma lt_mul_of_one_le_of_lt (ha : 1 ≤ a) (hbc : b < c) : b < a * c :=
hbc.trans_le $ le_mul_of_one_le_left' ha
@[to_additive]
lemma lt_mul_of_one_lt_of_lt (ha : 1 < a) (hbc : b < c) : b < a * c :=
lt_mul_of_one_le_of_lt ha.le hbc
end covariant_right
end mul_one_class
end preorder
section partial_order
/-! Properties assuming `partial_order`. -/
variables [mul_one_class α] [partial_order α]
[covariant_class α α (*) (≤)] [covariant_class α α (swap (*)) (≤)]
@[to_additive]
lemma mul_eq_one_iff' (ha : 1 ≤ a) (hb : 1 ≤ b) : a * b = 1 ↔ a = 1 ∧ b = 1 :=
iff.intro
(assume hab : a * b = 1,
have a ≤ 1, from hab ▸ le_mul_of_le_of_one_le le_rfl hb,
have a = 1, from le_antisymm this ha,
have b ≤ 1, from hab ▸ le_mul_of_one_le_of_le ha le_rfl,
have b = 1, from le_antisymm this hb,
and.intro ‹a = 1› ‹b = 1›)
(assume ⟨ha', hb'⟩, by rw [ha', hb', mul_one])
end partial_order
section mono
variables [has_mul α] [preorder α] [preorder β] {f g : β → α}
@[to_additive monotone.const_add]
lemma monotone.const_mul' [covariant_class α α (*) (≤)] (hf : monotone f) (a : α) :
monotone (λ x, a * f x) :=
λ x y h, mul_le_mul_left' (hf h) a
@[to_additive monotone.add_const]
lemma monotone.mul_const' [covariant_class α α (swap (*)) (≤)]
(hf : monotone f) (a : α) : monotone (λ x, f x * a) :=
λ x y h, mul_le_mul_right' (hf h) a
/-- The product of two monotone functions is monotone. -/
@[to_additive monotone.add "The sum of two monotone functions is monotone."]
lemma monotone.mul' [covariant_class α α (*) (≤)] [covariant_class α α (swap (*)) (≤)]
(hf : monotone f) (hg : monotone g) : monotone (λ x, f x * g x) :=
λ x y h, mul_le_mul' (hf h) (hg h)
section left
variables [covariant_class α α (*) (<)]
@[to_additive strict_mono.const_add]
lemma strict_mono.const_mul' (hf : strict_mono f) (c : α) :
strict_mono (λ x, c * f x) :=
λ a b ab, mul_lt_mul_left' (hf ab) c
end left
section right
variables [covariant_class α α (swap (*)) (<)]
@[to_additive strict_mono.add_const]
lemma strict_mono.mul_const' (hf : strict_mono f) (c : α) :
strict_mono (λ x, f x * c) :=
λ a b ab, mul_lt_mul_right' (hf ab) c
end right
/-- The product of two strictly monotone functions is strictly monotone. -/
@[to_additive strict_mono.add
"The sum of two strictly monotone functions is strictly monotone."]
lemma strict_mono.mul' [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)]
(hf : strict_mono f) (hg : strict_mono g) :
strict_mono (λ x, f x * g x) :=
λ a b ab, mul_lt_mul_of_lt_of_lt (hf ab) (hg ab)
/-- The product of a monotone function and a strictly monotone function is strictly monotone. -/
@[to_additive monotone.add_strict_mono
"The sum of a monotone function and a strictly monotone function is strictly monotone."]
lemma monotone.mul_strict_mono' [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (≤)]
{f g : β → α} (hf : monotone f) (hg : strict_mono g) :
strict_mono (λ x, f x * g x) :=
λ x y h, mul_lt_mul_of_le_of_lt (hf h.le) (hg h)
variables [covariant_class α α (*) (≤)] [covariant_class α α (swap (*)) (<)]
/-- The product of a strictly monotone function and a monotone function is strictly monotone. -/
@[to_additive strict_mono.add_monotone
"The sum of a strictly monotone function and a monotone function is strictly monotone."]
lemma strict_mono.mul_monotone' (hf : strict_mono f) (hg : monotone g) :
strict_mono (λ x, f x * g x) :=
λ x y h, mul_lt_mul_of_lt_of_le (hf h) (hg h.le)
end mono
/--
An element `a : α` is `mul_le_cancellable` if `x ↦ a * x` is order-reflecting.
We will make a separate version of many lemmas that require `[contravariant_class α α (*) (≤)]` with
`mul_le_cancellable` assumptions instead. These lemmas can then be instantiated to specific types,
like `ennreal`, where we can replace the assumption `add_le_cancellable x` by `x ≠ ∞`.
-/
@[to_additive /-" An element `a : α` is `add_le_cancellable` if `x ↦ a + x` is order-reflecting.
We will make a separate version of many lemmas that require `[contravariant_class α α (+) (≤)]` with
`mul_le_cancellable` assumptions instead. These lemmas can then be instantiated to specific types,
like `ennreal`, where we can replace the assumption `add_le_cancellable x` by `x ≠ ∞`. "-/
]
def mul_le_cancellable [has_mul α] [has_le α] (a : α) : Prop :=
∀ ⦃b c⦄, a * b ≤ a * c → b ≤ c
@[to_additive]
lemma contravariant.mul_le_cancellable [has_mul α] [has_le α] [contravariant_class α α (*) (≤)]
{a : α} : mul_le_cancellable a :=
λ b c, le_of_mul_le_mul_left'
namespace mul_le_cancellable
@[to_additive]
protected lemma injective [has_mul α] [partial_order α] {a : α} (ha : mul_le_cancellable a) :
injective ((*) a) :=
λ b c h, le_antisymm (ha h.le) (ha h.ge)
@[to_additive]
protected lemma inj [has_mul α] [partial_order α] {a b c : α} (ha : mul_le_cancellable a) :
a * b = a * c ↔ b = c :=
ha.injective.eq_iff
@[to_additive]
protected lemma injective_left [comm_semigroup α] [partial_order α] {a : α}
(ha : mul_le_cancellable a) : injective (* a) :=
λ b c h, ha.injective $ by rwa [mul_comm a, mul_comm a]
@[to_additive]
protected lemma inj_left [comm_semigroup α] [partial_order α] {a b c : α}
(hc : mul_le_cancellable c) : a * c = b * c ↔ a = b :=
hc.injective_left.eq_iff
variable [has_le α]
@[to_additive]
protected lemma mul_le_mul_iff_left [has_mul α] [covariant_class α α (*) (≤)]
{a b c : α} (ha : mul_le_cancellable a) : a * b ≤ a * c ↔ b ≤ c :=
⟨λ h, ha h, λ h, mul_le_mul_left' h a⟩
@[to_additive]
protected lemma mul_le_mul_iff_right [comm_semigroup α] [covariant_class α α (*) (≤)]
{a b c : α} (ha : mul_le_cancellable a) : b * a ≤ c * a ↔ b ≤ c :=
by rw [mul_comm b, mul_comm c, ha.mul_le_mul_iff_left]
@[to_additive]
protected lemma le_mul_iff_one_le_right [mul_one_class α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : a ≤ a * b ↔ 1 ≤ b :=
iff.trans (by rw [mul_one]) ha.mul_le_mul_iff_left
@[to_additive]
protected lemma mul_le_iff_le_one_right [mul_one_class α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : a * b ≤ a ↔ b ≤ 1 :=
iff.trans (by rw [mul_one]) ha.mul_le_mul_iff_left
@[to_additive]
protected lemma le_mul_iff_one_le_left [comm_monoid α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : a ≤ b * a ↔ 1 ≤ b :=
by rw [mul_comm, ha.le_mul_iff_one_le_right]
@[to_additive]
protected lemma mul_le_iff_le_one_left [comm_monoid α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : b * a ≤ a ↔ b ≤ 1 :=
by rw [mul_comm, ha.mul_le_iff_le_one_right]
end mul_le_cancellable
|
5c52377d35b5677987d09d9b0c73bf51ec6d87dc
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/ring_theory/witt_vector/init_tail.lean
|
cd5862d6a668a4afa8272b80699ab332a6ea0630
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,817
|
lean
|
/-
Copyright (c) 2020 Johan Commelin and Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Robert Y. Lewis
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.ring_theory.witt_vector.basic
import Mathlib.ring_theory.witt_vector.is_poly
import Mathlib.PostPort
universes u_1
namespace Mathlib
/-!
# `init` and `tail`
Given a Witt vector `x`, we are sometimes interested
in its components before and after an index `n`.
This file defines those operations, proves that `init` is polynomial,
and shows how that polynomial interacts with `mv_polynomial.bind₁`.
## Main declarations
* `witt_vector.init n x`: the first `n` coefficients of `x`, as a Witt vector. All coefficients at
indices ≥ `n` are 0.
* `witt_vector.tail n x`: the complementary part to `init`. All coefficients at indices < `n` are 0,
otherwise they are the same as in `x`.
* `witt_vector.coeff_add_of_disjoint`: if `x` and `y` are Witt vectors such that for every `n`
the `n`-th coefficient of `x` or of `y` is `0`, then the coefficients of `x + y`
are just `x.coeff n + y.coeff n`.
-/
namespace tactic
namespace interactive
/--
`init_ring` is an auxiliary tactic that discharges goals factoring `init` over ring operations.
-/
end interactive
end tactic
namespace witt_vector
/-- `witt_vector.select P x`, for a predicate `P : ℕ → Prop` is the Witt vector
whose `n`-th coefficient is `x.coeff n` if `P n` is true, and `0` otherwise.
-/
def select {p : ℕ} {R : Type u_1} [comm_ring R] (P : ℕ → Prop) (x : witt_vector p R) : witt_vector p R :=
mk p fun (n : ℕ) => ite (P n) (coeff x n) 0
/-- The polynomial that witnesses that `witt_vector.select` is a polynomial function.
`select_poly n` is `X n` if `P n` holds, and `0` otherwise. -/
def select_poly (P : ℕ → Prop) (n : ℕ) : mv_polynomial ℕ ℤ :=
ite (P n) (mv_polynomial.X n) 0
theorem coeff_select {p : ℕ} {R : Type u_1} [comm_ring R] (P : ℕ → Prop) (x : witt_vector p R) (n : ℕ) : coeff (select P x) n = coe_fn (mv_polynomial.aeval (coeff x)) (select_poly P n) := sorry
theorem select_is_poly {p : ℕ} (P : ℕ → Prop) : is_poly p fun (R : Type u_1) (_Rcr : comm_ring R) (x : witt_vector p R) => select P x :=
Exists.intro (select_poly P)
(id fun (R : Type u_1) (_Rcr : comm_ring R) (x : witt_vector p R) => funext fun (i : ℕ) => coeff_select P x i)
theorem select_add_select_not {p : ℕ} [hp : fact (nat.prime p)] {R : Type u_1} [comm_ring R] (P : ℕ → Prop) (x : witt_vector p R) : select P x + select (fun (i : ℕ) => ¬P i) x = x := sorry
theorem coeff_add_of_disjoint {p : ℕ} [hp : fact (nat.prime p)] (n : ℕ) {R : Type u_1} [comm_ring R] (x : witt_vector p R) (y : witt_vector p R) (h : ∀ (n : ℕ), coeff x n = 0 ∨ coeff y n = 0) : coeff (x + y) n = coeff x n + coeff y n := sorry
/-- `witt_vector.init n x` is the Witt vector of which the first `n` coefficients are those from `x`
and all other coefficients are `0`.
See `witt_vector.tail` for the complementary part.
-/
def init {p : ℕ} {R : Type u_1} [comm_ring R] (n : ℕ) : witt_vector p R → witt_vector p R :=
select fun (i : ℕ) => i < n
/-- `witt_vector.tail n x` is the Witt vector of which the first `n` coefficients are `0`
and all other coefficients are those from `x`.
See `witt_vector.init` for the complementary part. -/
def tail {p : ℕ} {R : Type u_1} [comm_ring R] (n : ℕ) : witt_vector p R → witt_vector p R :=
select fun (i : ℕ) => n ≤ i
@[simp] theorem init_add_tail {p : ℕ} [hp : fact (nat.prime p)] {R : Type u_1} [comm_ring R] (x : witt_vector p R) (n : ℕ) : init n x + tail n x = x := sorry
@[simp] theorem init_init {p : ℕ} {R : Type u_1} [comm_ring R] (x : witt_vector p R) (n : ℕ) : init n (init n x) = init n x := sorry
theorem init_add {p : ℕ} [hp : fact (nat.prime p)] {R : Type u_1} [comm_ring R] (x : witt_vector p R) (y : witt_vector p R) (n : ℕ) : init n (x + y) = init n (init n x + init n y) := sorry
theorem init_mul {p : ℕ} [hp : fact (nat.prime p)] {R : Type u_1} [comm_ring R] (x : witt_vector p R) (y : witt_vector p R) (n : ℕ) : init n (x * y) = init n (init n x * init n y) := sorry
theorem init_neg {p : ℕ} [hp : fact (nat.prime p)] {R : Type u_1} [comm_ring R] (x : witt_vector p R) (n : ℕ) : init n (-x) = init n (-init n x) := sorry
theorem init_sub {p : ℕ} [hp : fact (nat.prime p)] {R : Type u_1} [comm_ring R] (x : witt_vector p R) (y : witt_vector p R) (n : ℕ) : init n (x - y) = init n (init n x - init n y) := sorry
/-- `witt_vector.init n x` is polynomial in the coefficients of `x`. -/
theorem init_is_poly (p : ℕ) (n : ℕ) : is_poly p fun (R : Type u_1) (_Rcr : comm_ring R) => init n :=
select_is_poly fun (i : ℕ) => i < n
|
df31228c17b1f8dd2d08bd30fcf189f03ab339ef
|
b2fe74b11b57d362c13326bc5651244f111fa6f4
|
/src/category_theory/sites/sheaf.lean
|
84b69b8d2141f8120a0234ae3a0c076dec676de4
|
[
"Apache-2.0"
] |
permissive
|
midfield/mathlib
|
c4db5fa898b5ac8f2f80ae0d00c95eb6f745f4c7
|
775edc615ecec631d65b6180dbcc7bc26c3abc26
|
refs/heads/master
| 1,675,330,551,921
| 1,608,304,514,000
| 1,608,304,514,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 34,833
|
lean
|
/-
Copyright (c) 2020 Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bhavik Mehta
-/
import category_theory.sites.pretopology
import category_theory.limits.shapes.types
import category_theory.full_subcategory
/-!
# Sheaves on a Grothendieck topology
Defines the notion of a sheaf on a Grothendieck topology, as well as a range of equivalent
conditions useful in different situations.
First define what it means for a presheaf `P : Cᵒᵖ ⥤ Type v` to be a sheaf *for* a particular
presieve `R` on `X`:
* A *family of elements* `x` for `P` at `R` is an element `x_f` of `P Y` for every `f : Y ⟶ X` in
`R`. See `family_of_elements`.
* The family `x` is *compatible* if, for any `f₁ : Y₁ ⟶ X` and `f₂ : Y₂ ⟶ X` both in `R`,
and any `g₁ : Z ⟶ Y₁` and `g₂ : Z ⟶ Y₂` such that `g₁ ≫ f₁ = g₂ ≫ f₂`, the restriction of
`x_f₁` along `g₁` agrees with the restriction of `x_f₂` along `g₂`.
See `family_of_elements.compatible`.
* An *amalgamation* `t` for the family is an element of `P X` such that for every `f : Y ⟶ X` in
`R`, the restriction of `t` on `f` is `x_f`.
See `family_of_elements.is_amalgamation`.
We then say `P` is *separated* for `R` if every compatible family has at most one amalgamation,
and it is a *sheaf* for `R` if every compatible family has a unique amalgamation.
See `is_separated_for` and `is_sheaf_for`.
In the special case where `R` is a sieve, the compatibility condition can be simplified:
* The family `x` is *compatible* if, for any `f : Y ⟶ X` in `R` and `g : Z ⟶ Y`, the restriction of
`x_f` along `g` agrees with `x_(g ≫ f)` (which is well defined since `g ≫ f` is in `R`).
See `family_of_elements.sieve_compatible` and `compatible_iff_sieve_compatible`.
In the special case where `C` has pullbacks, the compatibility condition can be simplified:
* The family `x` is *compatible* if, for any `f : Y ⟶ X` and `g : Z ⟶ X` both in `R`,
the restriction of `x_f` along `π₁ : pullback f g ⟶ Y` agrees with the restriction of `x_g`
along `π₂ : pullback f g ⟶ Z`.
See `family_of_elements.pullback_compatible` and `pullback_compatible_iff`.
Now given a Grothendieck topology `J`, `P` is a sheaf if it is a sheaf for every sieve in the
topology. See `is_sheaf`.
In the case where the topology is generated by a basis, it suffices to check `P` is a sheaf for
every sieve in the pretopology. See `is_sheaf_pretopology`.
We also provide equivalent conditions to satisfy alternate definitions given in the literature.
* Stacks: In `equalizer.presieve.sheaf_condition`, the sheaf condition at a presieve is shown to be
equivalent to that of https://stacks.math.columbia.edu/tag/00VM (and combined with
`is_sheaf_pretopology`, this shows the notions of `is_sheaf` are exactly equivalent.)
The condition of https://stacks.math.columbia.edu/tag/00Z8 is virtually identical to the
statement of `yoneda_condition_iff_sheaf_condition` (since the bijection described there carries
the same information as the unique existence.)
* Maclane-Moerdijk [MM92]: Using `compatible_iff_sieve_compatible`, the definitions of `is_sheaf`
are equivalent. There are also alternate definitions given:
- Yoneda condition: Defined in `yoneda_sheaf_condition` and equivalence in
`yoneda_condition_iff_sheaf_condition`.
- Equalizer condition (Equation 3): Defined in the `equalizer.sieve` namespace, and equivalence
in `equalizer.sieve.sheaf_condition`.
- Matching family for presieves with pullback: `pullback_compatible_iff`.
- Sheaf for a pretopology (Prop 1): `is_sheaf_pretopology` combined with the previous.
- Sheaf for a pretopology as equalizer (Prop 1, bis): `equalizer.presieve.sheaf_condition`
combined with the previous.
## Implementation
The sheaf condition is given as a proposition, rather than a subsingleton in `Type (max u v)`.
This doesn't seem to make a big difference, other than making a couple of definitions noncomputable,
but it means that equivalent conditions can be given as `↔` statements rather than `≃` statements,
which can be convenient.
## References
* [MM92]: *Sheaves in geometry and logic*, Saunders MacLane, and Ieke Moerdijk:
Chapter III, Section 4.
* [Elephant]: *Sketches of an Elephant*, P. T. Johnstone: C2.1.
* https://stacks.math.columbia.edu/tag/00VL (sheaves on a pretopology or site)
* https://stacks.math.columbia.edu/tag/00ZB (sheaves on a topology)
-/
universes v u
namespace category_theory
open opposite category_theory category limits sieve classical
namespace presieve
variables {C : Type u} [category.{v} C]
variables {P : Cᵒᵖ ⥤ Type v}
variables {X Y : C} {S : sieve X} {R : presieve X}
variables (J J₂ : grothendieck_topology C)
/--
A family of elements for a presheaf `P` given a collection of arrows `R` with fixed codomain `X`
consists of an element of `P Y` for every `f : Y ⟶ X` in `R`.
A presheaf is a sheaf (resp, separated) if every *compatible* family of elements has exactly one
(resp, at most one) amalgamation.
This data is referred to as a `family` in [MM92], Chapter III, Section 4. It is also a concrete
version of the elements of the middle object in https://stacks.math.columbia.edu/tag/00VM which is
more useful for direct calculations. It is also used implicitly in Definition C2.1.2 in [Elephant].
-/
def family_of_elements (P : Cᵒᵖ ⥤ Type v) (R : presieve X) :=
Π ⦃Y : C⦄ (f : Y ⟶ X), R f → P.obj (op Y)
instance : inhabited (family_of_elements P (⊥ : presieve X)) := ⟨λ Y f, false.elim⟩
/--
A family of elements for a presheaf on the presieve `R₂` can be restricted to a smaller presieve
`R₁`.
-/
def family_of_elements.restrict {R₁ R₂ : presieve X} (h : R₁ ≤ R₂) :
family_of_elements P R₂ → family_of_elements P R₁ :=
λ x Y f hf, x f (h _ hf)
/--
A family of elements for the arrow set `R` is *compatible* if for any `f₁ : Y₁ ⟶ X` and
`f₂ : Y₂ ⟶ X` in `R`, and any `g₁ : Z ⟶ Y₁` and `g₂ : Z ⟶ Y₂`, if the square `g₁ ≫ f₁ = g₂ ≫ f₂`
commutes then the elements of `P Z` obtained by restricting the element of `P Y₁` along `g₁` and
restricting the element of `P Y₂` along `g₂` are the same.
In special cases, this condition can be simplified, see `pullback_compatible_iff` and
`compatible_iff_sieve_compatible`.
This is referred to as a "compatible family" in Definition C2.1.2 of [Elephant], and on nlab:
https://ncatlab.org/nlab/show/sheaf#GeneralDefinitionInComponents
-/
def family_of_elements.compatible (x : family_of_elements P R) : Prop :=
∀ ⦃Y₁ Y₂ Z⦄ (g₁ : Z ⟶ Y₁) (g₂ : Z ⟶ Y₂) ⦃f₁ : Y₁ ⟶ X⦄ ⦃f₂ : Y₂ ⟶ X⦄
(h₁ : R f₁) (h₂ : R f₂), g₁ ≫ f₁ = g₂ ≫ f₂ → P.map g₁.op (x f₁ h₁) = P.map g₂.op (x f₂ h₂)
/--
If the category `C` has pullbacks, this is an alternative condition for a family of elements to be
compatible: For any `f : Y ⟶ X` and `g : Z ⟶ X` in the presieve `R`, the restriction of the
given elements for `f` and `g` to the pullback agree.
This is equivalent to being compatible (provided `C` has pullbacks), shown in
`pullback_compatible_iff`.
This is the definition for a "matching" family given in [MM92], Chapter III, Section 4,
Equation (5). Viewing the type `family_of_elements` as the middle object of the fork in
https://stacks.math.columbia.edu/tag/00VM, this condition expresses that `pr₀* (x) = pr₁* (x)`,
using the notation defined there.
-/
def family_of_elements.pullback_compatible (x : family_of_elements P R) [has_pullbacks C] : Prop :=
∀ ⦃Y₁ Y₂⦄ ⦃f₁ : Y₁ ⟶ X⦄ ⦃f₂ : Y₂ ⟶ X⦄ (h₁ : R f₁) (h₂ : R f₂),
P.map (pullback.fst : pullback f₁ f₂ ⟶ _).op (x f₁ h₁) = P.map pullback.snd.op (x f₂ h₂)
lemma pullback_compatible_iff (x : family_of_elements P R) [has_pullbacks C] :
x.compatible ↔ x.pullback_compatible :=
begin
split,
{ intros t Y₁ Y₂ f₁ f₂ hf₁ hf₂,
apply t,
apply pullback.condition },
{ intros t Y₁ Y₂ Z g₁ g₂ f₁ f₂ hf₁ hf₂ comm,
rw [←pullback.lift_fst _ _ comm, op_comp, functor_to_types.map_comp_apply, t hf₁ hf₂,
←functor_to_types.map_comp_apply, ←op_comp, pullback.lift_snd] }
end
/-- The restriction of a compatible family is compatible. -/
lemma family_of_elements.compatible.restrict {R₁ R₂ : presieve X} (h : R₁ ≤ R₂)
{x : family_of_elements P R₂} : x.compatible → (x.restrict h).compatible :=
λ q Y₁ Y₂ Z g₁ g₂ f₁ f₂ h₁ h₂ comm, q g₁ g₂ (h _ h₁) (h _ h₂) comm
/--
Extend a family of elements to the sieve generated by an arrow set.
This is the construction described as "easy" in Lemma C2.1.3 of [Elephant].
-/
noncomputable def family_of_elements.sieve_extend (x : family_of_elements P R) :
family_of_elements P (generate R) :=
λ Z f hf, P.map (some (some_spec hf)).op (x _ (some_spec (some_spec (some_spec hf))).1)
/-- The extension of a compatible family to the generated sieve is compatible. -/
lemma family_of_elements.compatible.sieve_extend (x : family_of_elements P R) (hx : x.compatible) :
x.sieve_extend.compatible :=
begin
intros Y₁ Y₂ Z g₁ g₂ f₁ f₂ h₁ h₂ comm,
rw [←(some_spec (some_spec (some_spec h₁))).2, ←(some_spec (some_spec (some_spec h₂))).2,
←assoc, ←assoc] at comm,
dsimp [family_of_elements.sieve_extend],
rw [← functor_to_types.map_comp_apply, ← functor_to_types.map_comp_apply],
apply hx _ _ _ _ comm,
end
/-- The extension of a family agrees with the original family. -/
lemma extend_agrees {x : family_of_elements P R} (t : x.compatible) {f : Y ⟶ X} (hf : R f) :
x.sieve_extend f ⟨_, 𝟙 _, f, hf, id_comp _⟩ = x f hf :=
begin
have h : (generate R) f := ⟨_, _, _, hf, id_comp _⟩,
change P.map (some (some_spec h)).op (x _ _) = x f hf,
rw t (some (some_spec h)) (𝟙 _) _ hf _,
{ simp },
simp_rw [id_comp],
apply (some_spec (some_spec (some_spec h))).2,
end
/-- The restriction of an extension is the original. -/
@[simp]
lemma restrict_extend {x : family_of_elements P R} (t : x.compatible) :
x.sieve_extend.restrict (le_generate R) = x :=
begin
ext Y f hf,
exact extend_agrees t hf,
end
/--
If the arrow set for a family of elements is actually a sieve (i.e. it is downward closed) then the
consistency condition can be simplified.
This is an equivalent condition, see `compatible_iff_sieve_compatible`.
This is the notion of "matching" given for families on sieves given in [MM92], Chapter III,
Section 4, Equation 1, and nlab: https://ncatlab.org/nlab/show/matching+family.
See also the discussion before Lemma C2.1.4 of [Elephant].
-/
def family_of_elements.sieve_compatible (x : family_of_elements P S) : Prop :=
∀ ⦃Y Z⦄ (f : Y ⟶ X) (g : Z ⟶ Y) (hf), x (g ≫ f) (S.downward_closed hf g) = P.map g.op (x f hf)
lemma compatible_iff_sieve_compatible (x : family_of_elements P S) :
x.compatible ↔ x.sieve_compatible :=
begin
split,
{ intros h Y Z f g hf,
simpa using h (𝟙 _) g (S.downward_closed hf g) hf (id_comp _) },
{ intros h Y₁ Y₂ Z g₁ g₂ f₁ f₂ h₁ h₂ k,
simp_rw [← h f₁ g₁ h₁, k, h f₂ g₂ h₂] }
end
lemma family_of_elements.compatible.to_sieve_compatible {x : family_of_elements P S}
(t : x.compatible) : x.sieve_compatible :=
(compatible_iff_sieve_compatible x).1 t
/--
Two compatible families on the sieve generated by a presieve `R` are equal if and only if they are
equal when restricted to `R`.
-/
lemma restrict_inj {x₁ x₂ : family_of_elements P (generate R)}
(t₁ : x₁.compatible) (t₂ : x₂.compatible) :
x₁.restrict (le_generate R) = x₂.restrict (le_generate R) → x₁ = x₂ :=
begin
intro h,
ext Z f ⟨Y, f, g, hg, rfl⟩,
rw compatible_iff_sieve_compatible at t₁ t₂,
erw [t₁ g f ⟨_, _, g, hg, id_comp _⟩, t₂ g f ⟨_, _, g, hg, id_comp _⟩],
congr' 1,
apply congr_fun (congr_fun (congr_fun h _) g) hg,
end
/--
Given a family of elements `x` for the sieve `S` generated by a presieve `R`, if `x` is restricted
to `R` and then extended back up to `S`, the resulting extension equals `x`.
-/
@[simp]
lemma extend_restrict {x : family_of_elements P (generate R)} (t : x.compatible) :
(x.restrict (le_generate R)).sieve_extend = x :=
begin
apply restrict_inj,
{ exact (t.restrict (le_generate R)).sieve_extend _ },
{ exact t },
rw restrict_extend,
exact t.restrict (le_generate R),
end
/--
The given element `t` of `P.obj (op X)` is an *amalgamation* for the family of elements `x` if every
restriction `P.map f.op t = x_f` for every arrow `f` in the presieve `R`.
This is the definition given in https://ncatlab.org/nlab/show/sheaf#GeneralDefinitionInComponents,
and https://ncatlab.org/nlab/show/matching+family, as well as [MM92], Chapter III, Section 4,
equation (2).
-/
def family_of_elements.is_amalgamation (x : family_of_elements P R)
(t : P.obj (op X)) : Prop :=
∀ ⦃Y : C⦄ (f : Y ⟶ X) (h : R f), P.map f.op t = x f h
lemma is_compatible_of_exists_amalgamation (x : family_of_elements P R)
(h : ∃ t, x.is_amalgamation t) : x.compatible :=
begin
cases h with t ht,
intros Y₁ Y₂ Z g₁ g₂ f₁ f₂ h₁ h₂ comm,
rw [←ht _ h₁, ←ht _ h₂, ←functor_to_types.map_comp_apply, ←op_comp, comm],
simp,
end
lemma is_amalgamation_restrict {R₁ R₂ : presieve X} (h : R₁ ≤ R₂)
(x : family_of_elements P R₂) (t : P.obj (op X)) (ht : x.is_amalgamation t) :
(x.restrict h).is_amalgamation t :=
λ Y f hf, ht f (h Y hf)
lemma is_amalgamation_sieve_extend {R : presieve X}
(x : family_of_elements P R) (t : P.obj (op X)) (ht : x.is_amalgamation t) :
x.sieve_extend.is_amalgamation t :=
begin
intros Y f hf,
dsimp [family_of_elements.sieve_extend],
rw [←ht _, ←functor_to_types.map_comp_apply, ←op_comp, (some_spec (some_spec (some_spec hf))).2],
end
/-- A presheaf is separated for a presieve if there is at most one amalgamation. -/
def is_separated_for (P : Cᵒᵖ ⥤ Type v) (R : presieve X) : Prop :=
∀ (x : family_of_elements P R) (t₁ t₂),
x.is_amalgamation t₁ → x.is_amalgamation t₂ → t₁ = t₂
lemma is_separated_for.ext {R : presieve X} (hR : is_separated_for P R)
{t₁ t₂ : P.obj (op X)} (h : ∀ ⦃Y⦄ ⦃f : Y ⟶ X⦄ (hf : R f), P.map f.op t₁ = P.map f.op t₂) :
t₁ = t₂ :=
hR (λ Y f hf, P.map f.op t₂) t₁ t₂ (λ Y f hf, h hf) (λ Y f hf, rfl)
lemma is_separated_for_iff_generate :
is_separated_for P R ↔ is_separated_for P (generate R) :=
begin
split,
{ intros h x t₁ t₂ ht₁ ht₂,
apply h (x.restrict (le_generate R)) t₁ t₂ _ _,
{ exact is_amalgamation_restrict _ x t₁ ht₁ },
{ exact is_amalgamation_restrict _ x t₂ ht₂ } },
{ intros h x t₁ t₂ ht₁ ht₂,
apply h (x.sieve_extend),
{ exact is_amalgamation_sieve_extend x t₁ ht₁ },
{ exact is_amalgamation_sieve_extend x t₂ ht₂ } }
end
lemma is_separated_for_top (P : Cᵒᵖ ⥤ Type v) : is_separated_for P (⊤ : presieve X) :=
λ x t₁ t₂ h₁ h₂,
begin
have q₁ := h₁ (𝟙 X) (by simp),
have q₂ := h₂ (𝟙 X) (by simp),
simp only [op_id, functor_to_types.map_id_apply] at q₁ q₂,
rw [q₁, q₂],
end
/--
We define `P` to be a sheaf for the presieve `R` if every compatible family has a unique
amalgamation.
This is the definition of a sheaf for the given presieve given in C2.1.2 of [Elephant], and
https://ncatlab.org/nlab/show/sheaf#GeneralDefinitionInComponents. Using `compatible_iff_sieve_compatible`,
this is equivalent to the definition of a sheaf in [MM92], Chapter III, Section 4.
-/
def is_sheaf_for (P : Cᵒᵖ ⥤ Type v) (R : presieve X) : Prop :=
∀ (x : family_of_elements P R), x.compatible → ∃! t, x.is_amalgamation t
/--
This is an equivalent condition to be a sheaf, which is useful for the abstraction to local
operators on elementary toposes. However this definition is defined only for sieves, not presieves.
The equivalence between this and `is_sheaf_for` is given in `yoneda_condition_iff_sheaf_condition`.
This version is also useful to establish that being a sheaf is preserved under isomorphism of
presheaves.
See the discussion before Equation (3) of [MM92], Chapter III, Section 4. See also C2.1.4 of
[Elephant]. This is also a direct reformulation of https://stacks.math.columbia.edu/tag/00Z8.
-/
def yoneda_sheaf_condition (P : Cᵒᵖ ⥤ Type v) (S : sieve X) : Prop :=
∀ (f : S.functor ⟶ P), ∃! g, S.functor_inclusion ≫ g = f
/--
(Implementation). This is a (primarily internal) equivalence between natural transformations
and compatible families.
Cf the discussion after Lemma 7.47.10 in https://stacks.math.columbia.edu/tag/00YW. See also
the proof of C2.1.4 of [Elephant], and the discussion in [MM92], Chapter III, Section 4.
-/
def nat_trans_equiv_compatible_family :
(S.functor ⟶ P) ≃ {x : family_of_elements P S // x.compatible} :=
{ to_fun := λ α,
begin
refine ⟨λ Y f hf, _, _⟩,
{ apply α.app (op Y) ⟨_, hf⟩ },
{ rw compatible_iff_sieve_compatible,
intros Y Z f g hf,
dsimp,
rw ← functor_to_types.naturality _ _ α g.op,
refl }
end,
inv_fun := λ t,
{ app := λ Y f, t.1 _ f.2,
naturality' := λ Y Z g,
begin
ext ⟨f, hf⟩,
apply t.2.to_sieve_compatible _,
end },
left_inv := λ α,
begin
ext X ⟨_, _⟩,
refl
end,
right_inv :=
begin
rintro ⟨x, hx⟩,
refl,
end }
/-- (Implementation). A lemma useful to prove `yoneda_condition_iff_sheaf_condition`. -/
lemma extension_iff_amalgamation (x : S.functor ⟶ P) (g : yoneda.obj X ⟶ P) :
S.functor_inclusion ≫ g = x ↔
(nat_trans_equiv_compatible_family x).1.is_amalgamation (yoneda_equiv g) :=
begin
change _ ↔ ∀ ⦃Y : C⦄ (f : Y ⟶ X) (h : S f), P.map f.op (yoneda_equiv g) = x.app (op Y) ⟨f, h⟩,
split,
{ rintro rfl Y f hf,
rw yoneda_equiv_naturality,
dsimp,
simp }, -- See note [dsimp, simp].
{ intro h,
ext Y ⟨f, hf⟩,
have : _ = x.app Y _ := h f hf,
rw yoneda_equiv_naturality at this,
rw ← this,
dsimp,
simp }, -- See note [dsimp, simp].
end
/--
The yoneda version of the sheaf condition is equivalent to the sheaf condition.
C2.1.4 of [Elephant].
-/
lemma is_sheaf_for_iff_yoneda_sheaf_condition :
is_sheaf_for P S ↔ yoneda_sheaf_condition P S :=
begin
rw [is_sheaf_for, yoneda_sheaf_condition],
simp_rw [extension_iff_amalgamation],
rw equiv.forall_congr_left' nat_trans_equiv_compatible_family,
rw subtype.forall,
apply ball_congr,
intros x hx,
rw equiv.exists_unique_congr_left _,
simp,
end
/--
If `P` is a sheaf for the sieve `S` on `X`, a natural transformation from `S` (viewed as a functor)
to `P` can be (uniquely) extended to all of `yoneda.obj X`.
f
S → P
↓ ↗
yX
-/
noncomputable def is_sheaf_for.extend (h : is_sheaf_for P S) (f : S.functor ⟶ P) :
yoneda.obj X ⟶ P :=
classical.some (is_sheaf_for_iff_yoneda_sheaf_condition.1 h f).exists
/--
Show that the extension of `f : S.functor ⟶ P` to all of `yoneda.obj X` is in fact an extension, ie
that the triangle below commutes, provided `P` is a sheaf for `S`
f
S → P
↓ ↗
yX
-/
@[simp, reassoc]
lemma is_sheaf_for.functor_inclusion_comp_extend (h : is_sheaf_for P S) (f : S.functor ⟶ P) :
S.functor_inclusion ≫ h.extend f = f :=
classical.some_spec (is_sheaf_for_iff_yoneda_sheaf_condition.1 h f).exists
/-- The extension of `f` to `yoneda.obj X` is unique. -/
lemma is_sheaf_for.unique_extend (h : is_sheaf_for P S) {f : S.functor ⟶ P} (t : yoneda.obj X ⟶ P)
(ht : S.functor_inclusion ≫ t = f) :
t = h.extend f :=
((is_sheaf_for_iff_yoneda_sheaf_condition.1 h f).unique ht (h.functor_inclusion_comp_extend f))
/--
If `P` is a sheaf for the sieve `S` on `X`, then if two natural transformations from `yoneda.obj X`
to `P` agree when restricted to the subfunctor given by `S`, they are equal.
-/
lemma is_sheaf_for.hom_ext (h : is_sheaf_for P S) (t₁ t₂ : yoneda.obj X ⟶ P)
(ht : S.functor_inclusion ≫ t₁ = S.functor_inclusion ≫ t₂) :
t₁ = t₂ :=
(h.unique_extend t₁ ht).trans (h.unique_extend t₂ rfl).symm
/-- `P` is a sheaf for `R` iff it is separated for `R` and there exists an amalgamation. -/
lemma is_separated_for_and_exists_is_amalgamation_iff_sheaf_for :
is_separated_for P R ∧ (∀ (x : family_of_elements P R), x.compatible → ∃ t, x.is_amalgamation t) ↔
is_sheaf_for P R :=
begin
rw [is_separated_for, ←forall_and_distrib],
apply forall_congr,
intro x,
split,
{ intros z hx, exact exists_unique_of_exists_of_unique (z.2 hx) z.1 },
{ intros h,
refine ⟨_, (exists_of_exists_unique ∘ h)⟩,
intros t₁ t₂ ht₁ ht₂,
apply (h _).unique ht₁ ht₂,
exact is_compatible_of_exists_amalgamation x ⟨_, ht₂⟩ }
end
/--
If `P` is separated for `R` and every family has an amalgamation, then `P` is a sheaf for `R`.
-/
lemma is_separated_for.is_sheaf_for (t : is_separated_for P R) :
(∀ (x : family_of_elements P R), x.compatible → ∃ t, x.is_amalgamation t) →
is_sheaf_for P R :=
begin
rw ← is_separated_for_and_exists_is_amalgamation_iff_sheaf_for,
exact and.intro t,
end
/-- If `P` is a sheaf for `R`, it is separated for `R`. -/
lemma is_sheaf_for.is_separated_for : is_sheaf_for P R → is_separated_for P R :=
λ q, (is_separated_for_and_exists_is_amalgamation_iff_sheaf_for.2 q).1
/-- Get the amalgamation of the given compatible family, provided we have a sheaf. -/
noncomputable def is_sheaf_for.amalgamate
(t : is_sheaf_for P R) (x : family_of_elements P R) (hx : x.compatible) :
P.obj (op X) :=
classical.some (t x hx).exists
lemma is_sheaf_for.is_amalgamation
(t : is_sheaf_for P R) {x : family_of_elements P R} (hx : x.compatible) :
x.is_amalgamation (t.amalgamate x hx) :=
classical.some_spec (t x hx).exists
@[simp]
lemma is_sheaf_for.valid_glue
(t : is_sheaf_for P R) {x : family_of_elements P R} (hx : x.compatible) (f : Y ⟶ X) (Hf : R f) :
P.map f.op (t.amalgamate x hx) = x f Hf :=
t.is_amalgamation hx f Hf
/-- C2.1.3 in [Elephant] -/
lemma is_sheaf_for_iff_generate (R : presieve X) :
is_sheaf_for P R ↔ is_sheaf_for P (generate R) :=
begin
rw ← is_separated_for_and_exists_is_amalgamation_iff_sheaf_for,
rw ← is_separated_for_and_exists_is_amalgamation_iff_sheaf_for,
rw ← is_separated_for_iff_generate,
apply and_congr (iff.refl _),
split,
{ intros q x hx,
apply exists_imp_exists _ (q _ (hx.restrict (le_generate R))),
intros t ht,
simpa [hx] using is_amalgamation_sieve_extend _ _ ht },
{ intros q x hx,
apply exists_imp_exists _ (q _ (hx.sieve_extend _)),
intros t ht,
simpa [hx] using is_amalgamation_restrict (le_generate R) _ _ ht },
end
/--
Every presheaf is a sheaf for the family {𝟙 X}.
[Elephant] C2.1.5(i)
-/
lemma is_sheaf_for_singleton_iso (P : Cᵒᵖ ⥤ Type v) :
is_sheaf_for P (presieve.singleton (𝟙 X)) :=
begin
intros x hx,
refine ⟨x _ (presieve.singleton_self _), _, _⟩,
{ rintro _ _ ⟨rfl, rfl⟩,
simp },
{ intros t ht,
simpa using ht _ (presieve.singleton_self _) }
end
/--
Every presheaf is a sheaf for the maximal sieve.
[Elephant] C2.1.5(ii)
-/
lemma is_sheaf_for_top_sieve (P : Cᵒᵖ ⥤ Type v) :
is_sheaf_for P ((⊤ : sieve X) : presieve X) :=
begin
rw ← generate_of_singleton_split_epi (𝟙 X),
rw ← is_sheaf_for_iff_generate,
apply is_sheaf_for_singleton_iso,
end
/--
If `P` is a sheaf for `S`, and it is iso to `P'`, then `P'` is a sheaf for `S`. This shows that
"being a sheaf for a presieve" is a mathematical or hygenic property.
-/
lemma is_sheaf_for_iso {P' : Cᵒᵖ ⥤ Type v} (i : P ≅ P') : is_sheaf_for P R → is_sheaf_for P' R :=
begin
rw [is_sheaf_for_iff_generate R, is_sheaf_for_iff_generate R],
intro h,
rw [is_sheaf_for_iff_yoneda_sheaf_condition],
intro f,
refine ⟨h.extend (f ≫ i.inv) ≫ i.hom, by simp, _⟩,
intros g' hg',
rw [← i.comp_inv_eq, h.unique_extend (g' ≫ i.inv) (by rw reassoc_of hg')],
end
/--
If a presieve `R` on `X` has a subsieve `S` such that:
* `P` is a sheaf for `S`.
* For every `f` in `R`, `P` is separated for the pullback of `S` along `f`,
then `P` is a sheaf for `R`.
This is closely related to [Elephant] C2.1.6(i).
-/
lemma is_sheaf_for_subsieve_aux (P : Cᵒᵖ ⥤ Type v) {S : sieve X} {R : presieve X}
(h : (S : presieve X) ≤ R)
(hS : is_sheaf_for P S)
(trans : ∀ ⦃Y⦄ ⦃f : Y ⟶ X⦄, R f → is_separated_for P (S.pullback f)) :
is_sheaf_for P R :=
begin
rw ← is_separated_for_and_exists_is_amalgamation_iff_sheaf_for,
split,
{ intros x t₁ t₂ ht₁ ht₂,
exact hS.is_separated_for _ _ _ (is_amalgamation_restrict h x t₁ ht₁)
(is_amalgamation_restrict h x t₂ ht₂) },
{ intros x hx,
use hS.amalgamate _ (hx.restrict h),
intros W j hj,
apply (trans hj).ext,
intros Y f hf,
rw [←functor_to_types.map_comp_apply, ←op_comp,
hS.valid_glue (hx.restrict h) _ hf, family_of_elements.restrict,
←hx (𝟙 _) f _ _ (id_comp _)],
simp },
end
/--
If `P` is a sheaf for every pullback of the sieve `S`, then `P` is a sheaf for any presieve which
contains `S`.
This is closely related to [Elephant] C2.1.6.
-/
lemma is_sheaf_for_subsieve (P : Cᵒᵖ ⥤ Type v) {S : sieve X} {R : presieve X}
(h : (S : presieve X) ≤ R)
(trans : Π ⦃Y⦄ (f : Y ⟶ X), is_sheaf_for P (S.pullback f)) :
is_sheaf_for P R :=
is_sheaf_for_subsieve_aux P h (by simpa using trans (𝟙 _)) (λ Y f hf, (trans f).is_separated_for)
/-- A presheaf is separated for a topology if it is separated for every sieve in the topology. -/
def is_separated (P : Cᵒᵖ ⥤ Type v) : Prop :=
∀ {X} (S : sieve X), S ∈ J X → is_separated_for P S
/--
A presheaf is a sheaf for a topology if it is a sheaf for every sieve in the topology.
If the given topology is given by a pretopology, `is_sheaf_for_pretopology` shows it suffices to
check the sheaf condition at presieves in the pretopology.
-/
def is_sheaf (P : Cᵒᵖ ⥤ Type v) : Prop :=
∀ ⦃X⦄ (S : sieve X), S ∈ J X → is_sheaf_for P S
lemma is_sheaf.is_sheaf_for {P : Cᵒᵖ ⥤ Type v} (hp : is_sheaf J P)
(R : presieve X) (hr : generate R ∈ J X) : is_sheaf_for P R :=
(is_sheaf_for_iff_generate R).2 $ hp _ hr
lemma is_sheaf_of_le (P : Cᵒᵖ ⥤ Type v) {J₁ J₂ : grothendieck_topology C} :
J₁ ≤ J₂ → is_sheaf J₂ P → is_sheaf J₁ P :=
λ h t X S hS, t S (h _ hS)
lemma is_separated_of_is_sheaf (P : Cᵒᵖ ⥤ Type v) (h : is_sheaf J P) : is_separated J P :=
λ X S hS, (h S hS).is_separated_for
/-- The property of being a sheaf is preserved by isomorphism. -/
lemma is_sheaf_iso {P' : Cᵒᵖ ⥤ Type v} (i : P ≅ P') (h : is_sheaf J P) : is_sheaf J P' :=
λ X S hS, is_sheaf_for_iso i (h S hS)
lemma is_sheaf_of_yoneda (h : ∀ {X} (S : sieve X), S ∈ J X → yoneda_sheaf_condition P S) :
is_sheaf J P :=
λ X S hS, is_sheaf_for_iff_yoneda_sheaf_condition.2 (h _ hS)
/--
For a topology generated by a basis, it suffices to check the sheaf condition on the basis
presieves only.
-/
lemma is_sheaf_pretopology [has_pullbacks C] (K : pretopology C) :
is_sheaf (K.to_grothendieck C) P ↔ (∀ {X : C} (R : presieve X), R ∈ K X → is_sheaf_for P R) :=
begin
split,
{ intros PJ X R hR,
rw is_sheaf_for_iff_generate,
apply PJ (sieve.generate R) ⟨_, hR, le_generate R⟩ },
{ rintro PK X S ⟨R, hR, RS⟩,
have gRS : ⇑(generate R) ≤ S,
{ apply gi_generate.gc.monotone_u,
rwa sets_iff_generate },
apply is_sheaf_for_subsieve P gRS _,
intros Y f,
rw [← pullback_arrows_comm, ← is_sheaf_for_iff_generate],
exact PK (pullback_arrows f R) (K.pullbacks f R hR) }
end
end presieve
namespace equalizer
variables {C : Type v} [small_category C] (P : Cᵒᵖ ⥤ Type v) {X : C} (R : presieve X) (S : sieve X)
noncomputable theory
/--
The middle object of the fork diagram given in Equation (3) of [MM92], as well as the fork diagram
of https://stacks.math.columbia.edu/tag/00VM.
-/
def first_obj : Type v :=
∏ (λ (f : Σ Y, {f : Y ⟶ X // R f}), P.obj (op f.1))
/-- Show that `first_obj` is isomorphic to `family_of_elements`. -/
@[simps]
def first_obj_eq_family : first_obj P R ≅ R.family_of_elements P :=
{ hom := λ t Y f hf, pi.π (λ (f : Σ Y, {f : Y ⟶ X // R f}), P.obj (op f.1)) ⟨_, _, hf⟩ t,
inv := pi.lift (λ f x, x _ f.2.2),
hom_inv_id' :=
begin
ext ⟨Y, f, hf⟩ p,
simpa,
end,
inv_hom_id' :=
begin
ext x Y f hf,
apply limits.types.limit.lift_π_apply,
end }
instance : inhabited (first_obj P (⊥ : presieve X)) :=
((first_obj_eq_family P _).to_equiv).inhabited
/--
The left morphism of the fork diagram given in Equation (3) of [MM92], as well as the fork diagram
of https://stacks.math.columbia.edu/tag/00VM.
-/
def fork_map : P.obj (op X) ⟶ first_obj P R :=
pi.lift (λ f, P.map f.2.1.op)
/-!
This section establishes the equivalence between the sheaf condition of Equation (3) [MM92] and
the definition of `is_sheaf_for`.
-/
namespace sieve
/--
The rightmost object of the fork diagram of Equation (3) [MM92], which contains the data used
to check a family is compatible.
-/
def second_obj : Type v :=
∏ (λ (f : Σ Y Z (g : Z ⟶ Y), {f' : Y ⟶ X // S f'}), P.obj (op f.2.1))
/-- The map `p` of Equations (3,4) [MM92]. -/
def first_map : first_obj P S ⟶ second_obj P S :=
pi.lift (λ fg, pi.π _ (⟨_, _, S.downward_closed fg.2.2.2.2 fg.2.2.1⟩ : Σ Y, {f : Y ⟶ X // S f}))
instance : inhabited (second_obj P (⊥ : sieve X)) := ⟨first_map _ _ (default _)⟩
/-- The map `a` of Equations (3,4) [MM92]. -/
def second_map : first_obj P S ⟶ second_obj P S :=
pi.lift (λ fg, pi.π _ ⟨_, fg.2.2.2⟩ ≫ P.map fg.2.2.1.op)
lemma w : fork_map P S ≫ first_map P S = fork_map P S ≫ second_map P S :=
begin
apply limit.hom_ext,
rintro ⟨Y, Z, g, f, hf⟩,
simp [first_map, second_map, fork_map],
end
/--
The family of elements given by `x : first_obj P S` is compatible iff `first_map` and `second_map`
map it to the same point.
-/
lemma compatible_iff (x : first_obj P S) :
((first_obj_eq_family P S).hom x).compatible ↔ first_map P S x = second_map P S x :=
begin
rw presieve.compatible_iff_sieve_compatible,
split,
{ intro t,
ext ⟨Y, Z, g, f, hf⟩,
simpa [first_map, second_map] using t _ g hf },
{ intros t Y Z f g hf,
rw types.limit_ext_iff at t,
simpa [first_map, second_map] using t ⟨Y, Z, g, f, hf⟩ }
end
/-- `P` is a sheaf for `S`, iff the fork given by `w` is an equalizer. -/
lemma equalizer_sheaf_condition :
presieve.is_sheaf_for P S ↔ nonempty (is_limit (fork.of_ι _ (w P S))) :=
begin
rw [types.type_equalizer_iff_unique,
← equiv.forall_congr_left (first_obj_eq_family P S).to_equiv.symm],
simp_rw ← compatible_iff,
simp only [inv_hom_id_apply, iso.to_equiv_symm_fun],
apply ball_congr,
intros x tx,
apply exists_unique_congr,
intro t,
rw ← iso.to_equiv_symm_fun,
rw equiv.eq_symm_apply,
split,
{ intros q,
ext Y f hf,
simpa [first_obj_eq_family, fork_map] using q _ _ },
{ intros q Y f hf,
rw ← q,
simp [first_obj_eq_family, fork_map] }
end
end sieve
/-!
This section establishes the equivalence between the sheaf condition of
https://stacks.math.columbia.edu/tag/00VM and the definition of `is_sheaf_for`.
-/
namespace presieve
variables [has_pullbacks C]
/--
The rightmost object of the fork diagram of https://stacks.math.columbia.edu/tag/00VM, which
contains the data used to check a family of elements for a presieve is compatible.
-/
def second_obj : Type v :=
∏ (λ (fg : (Σ Y, {f : Y ⟶ X // R f}) × (Σ Z, {g : Z ⟶ X // R g})),
P.obj (op (pullback fg.1.2.1 fg.2.2.1)))
/-- The map `pr₀*` of https://stacks.math.columbia.edu/tag/00VL. -/
def first_map : first_obj P R ⟶ second_obj P R :=
pi.lift (λ fg, pi.π _ _ ≫ P.map pullback.fst.op)
instance : inhabited (second_obj P (⊥ : presieve X)) := ⟨first_map _ _ (default _)⟩
/-- The map `pr₁*` of https://stacks.math.columbia.edu/tag/00VL. -/
def second_map : first_obj P R ⟶ second_obj P R :=
pi.lift (λ fg, pi.π _ _ ≫ P.map pullback.snd.op)
lemma w : fork_map P R ≫ first_map P R = fork_map P R ≫ second_map P R :=
begin
apply limit.hom_ext,
rintro ⟨⟨Y, f, hf⟩, ⟨Z, g, hg⟩⟩,
simp only [first_map, second_map, fork_map],
simp only [limit.lift_π, limit.lift_π_assoc, assoc, fan.mk_π_app, subtype.coe_mk,
subtype.val_eq_coe],
rw [← P.map_comp, ← op_comp, pullback.condition],
simp,
end
/--
The family of elements given by `x : first_obj P S` is compatible iff `first_map` and `second_map`
map it to the same point.
-/
lemma compatible_iff (x : first_obj P R) :
((first_obj_eq_family P R).hom x).compatible ↔ first_map P R x = second_map P R x :=
begin
rw presieve.pullback_compatible_iff,
split,
{ intro t,
ext ⟨⟨Y, f, hf⟩, Z, g, hg⟩,
simpa [first_map, second_map] using t hf hg },
{ intros t Y Z f g hf hg,
rw types.limit_ext_iff at t,
simpa [first_map, second_map] using t ⟨⟨Y, f, hf⟩, Z, g, hg⟩ }
end
/--
`P` is a sheaf for `R`, iff the fork given by `w` is an equalizer.
See https://stacks.math.columbia.edu/tag/00VM.
-/
lemma sheaf_condition :
R.is_sheaf_for P ↔ nonempty (is_limit (fork.of_ι _ (w P R))) :=
begin
rw types.type_equalizer_iff_unique,
erw ← equiv.forall_congr_left (first_obj_eq_family P R).to_equiv.symm,
simp_rw [← compatible_iff, ← iso.to_equiv_fun, equiv.apply_symm_apply],
apply ball_congr,
intros x hx,
apply exists_unique_congr,
intros t,
rw equiv.eq_symm_apply,
split,
{ intros q,
ext Y f hf,
simpa [fork_map] using q _ _ },
{ intros q Y f hf,
rw ← q,
simp [fork_map] }
end
end presieve
end equalizer
variables {C : Type u} [category.{v} C]
variables (J : grothendieck_topology C)
/-- The category of sheaves on a grothendieck topology. -/
@[derive category]
def Sheaf (J : grothendieck_topology C) : Type (max u (v+1)) :=
{P : Cᵒᵖ ⥤ Type v // presieve.is_sheaf J P}
instance : inhabited (Sheaf (⊥ : grothendieck_topology C)) :=
⟨⟨(functor.const _).obj punit,
λ X S hS,
begin
simp only [grothendieck_topology.bot_covering] at hS,
subst hS,
apply presieve.is_sheaf_for_top_sieve,
end⟩⟩
/-- The inclusion functor from sheaves to presheaves. -/
@[simps {rhs_md := semireducible}, derive [full, faithful]]
def Sheaf_to_presheaf : Sheaf J ⥤ (Cᵒᵖ ⥤ Type v) :=
full_subcategory_inclusion (presieve.is_sheaf J)
end category_theory
|
2a627b6fa596d78622e5fa97be2bae5d8ae0a788
|
42610cc2e5db9c90269470365e6056df0122eaa0
|
/tests/lean/extra/755.hlean
|
2df1b7cd05b269b839f19e9c927b9c5227a742b3
|
[
"Apache-2.0"
] |
permissive
|
tomsib2001/lean
|
2ab59bfaebd24a62109f800dcf4a7139ebd73858
|
eb639a7d53fb40175bea5c8da86b51d14bb91f76
|
refs/heads/master
| 1,586,128,387,740
| 1,468,968,950,000
| 1,468,968,950,000
| 61,027,234
| 0
| 0
| null | 1,465,813,585,000
| 1,465,813,585,000
| null |
UTF-8
|
Lean
| false
| false
| 1,733
|
hlean
|
import types.eq types.pi hit.colimit
open eq is_trunc unit quotient seq_colim equiv
axiom mysorry : ∀ {A : Type}, A
namespace one_step_tr
section
parameters {A : Type}
variables (a a' : A)
protected definition R (a a' : A) : Type₀ := unit
parameter (A)
definition one_step_tr : Type := quotient R
parameter {A}
definition tr : one_step_tr :=
class_of R a
definition tr_eq : tr a = tr a' :=
eq_of_rel _ star
protected definition rec {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a))
(Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (x : one_step_tr) : P x :=
begin
fapply (quotient.rec_on x),
{ intro a, apply Pt},
{ intro a a' H, cases H, apply Pe}
end
protected definition elim {P : Type} (Pt : A → P)
(Pe : Π(a a' : A), Pt a = Pt a') (x : one_step_tr) : P :=
rec Pt (λa a', pathover_of_eq (Pe a a')) x
theorem rec_tr_eq {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a))
(Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (a a' : A)
: apd (rec Pt Pe) (tr_eq a a') = Pe a a' :=
!rec_eq_of_rel
theorem elim_tr_eq {P : Type} (Pt : A → P)
(Pe : Π(a a' : A), Pt a = Pt a') (a a' : A)
: ap (elim Pt Pe) (tr_eq a a') = Pe a a' :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (tr_eq a a')),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim,rec_tr_eq],
end
end
end one_step_tr
attribute one_step_tr.rec one_step_tr.elim [recursor 5]
open one_step_tr
definition one_step_tr_up (A B : Type)
: (one_step_tr A → B) ≃ Σ(f : A → B), Π(x y : A), f x = f y :=
begin
fapply equiv.MK,
{ intro f, fconstructor, intro a, exact f (tr a), intros, exact ap f !tr_eq},
{ exact mysorry},
{ exact mysorry},
{ exact mysorry},
end
|
789933ebbaf4e9c849f645c5532ad27460f6a23e
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/library/init/function.lean
|
e43ee743f7700470729e787d0d37f95e6ec60c27
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,629
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Jeremy Avigad, Haitao Zhang
General operations on functions.
-/
prelude
import init.prod init.funext init.logic
notation f ` $ `:1 a:1 := f a
universe variables u_a u_b u_c u_d u_e
variables {A : Type u_a} {B : Type u_b} {C : Type u_c} {D : Type u_d} {E : Type u_a}
attribute [inline, reducible]
definition function.comp (f : B → C) (g : A → B) : A → C :=
λx, f (g x)
attribute [inline, reducible]
definition function.dcomp {B : A → Type u_b} {C : Π {x : A}, B x → Type u_c}
(f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) :=
λx, f (g x)
infixr ` ∘ ` := function.comp
infixr ` ∘' `:80 := function.dcomp
namespace function
attribute [reducible]
definition comp_right (f : B → B → B) (g : A → B) : B → A → B :=
λ b a, f b (g a)
attribute [reducible]
definition comp_left (f : B → B → B) (g : A → B) : A → B → B :=
λ a b, f (g a) b
attribute [reducible]
definition on_fun (f : B → B → C) (g : A → B) : A → A → C :=
λx y, f (g x) (g y)
attribute [reducible]
definition combine (f : A → B → C) (op : C → D → E) (g : A → B → D)
: A → B → E :=
λx y, op (f x y) (g x y)
attribute [reducible]
definition const (B : Type u_b) (a : A) : B → A :=
λx, a
attribute [reducible]
definition swap {C : A → B → Type u_c} (f : Πx y, C x y) : Πy x, C x y :=
λy x, f x y
attribute [reducible]
definition app {B : A → Type u_b} (f : Πx, B x) (x : A) : B x :=
f x
attribute [reducible]
definition curry : (A × B → C) → A → B → C :=
λ f a b, f (a, b)
attribute [reducible]
definition uncurry : (A → B → C) → (A × B → C) :=
λ f p, match p with (a, b) := f a b end
theorem curry_uncurry (f : A → B → C) : curry (uncurry f) = f :=
rfl
theorem uncurry_curry (f : A × B → C) : uncurry (curry f) = f :=
funext (λ p, match p with (a, b) := rfl end)
infixl ` on `:1 := on_fun
notation f ` -[` op `]- ` g := combine f op g
lemma left_id (f : A → B) : id ∘ f = f := rfl
lemma right_id (f : A → B) : f ∘ id = f := rfl
theorem comp.assoc (f : C → D) (g : B → C) (h : A → B) : (f ∘ g) ∘ h = f ∘ (g ∘ h) := rfl
theorem comp.left_id (f : A → B) : id ∘ f = f := rfl
theorem comp.right_id (f : A → B) : f ∘ id = f := rfl
theorem comp_const_right (f : B → C) (b : B) : f ∘ (const A b) = const A (f b) := rfl
attribute [reducible]
definition injective (f : A → B) : Prop := ∀ ⦃a₁ a₂⦄, f a₁ = f a₂ → a₁ = a₂
theorem injective_comp {g : B → C} {f : A → B} (Hg : injective g) (Hf : injective f) :
injective (g ∘ f) :=
take a₁ a₂, assume Heq, Hf (Hg Heq)
attribute [reducible]
definition surjective (f : A → B) : Prop := ∀ b, ∃ a, f a = b
theorem surjective_comp {g : B → C} {f : A → B} (Hg : surjective g) (Hf : surjective f) :
surjective (g ∘ f) :=
take (c : C), exists.elim (Hg c) (λ b Hb, exists.elim (Hf b) (λ a Ha,
exists.intro a (show g (f a) = c, from (eq.trans (congr_arg g Ha) Hb))))
definition bijective (f : A → B) := injective f ∧ surjective f
theorem bijective_comp {g : B → C} {f : A → B} (Hg : bijective g) (Hf : bijective f) :
bijective (g ∘ f) :=
and.elim Hg (λ Hginj Hgsurj, and.elim Hf (λ Hfinj Hfsurj,
⟨injective_comp Hginj Hfinj, surjective_comp Hgsurj Hfsurj⟩))
-- g is a left inverse to f
definition left_inverse (g : B → A) (f : A → B) : Prop := ∀x, g (f x) = x
definition id_of_left_inverse {g : B → A} {f : A → B} : left_inverse g f → g ∘ f = id :=
assume h, funext h
definition has_left_inverse (f : A → B) : Prop := ∃ finv : B → A, left_inverse finv f
-- g is a right inverse to f
definition right_inverse (g : B → A) (f : A → B) : Prop := left_inverse f g
definition id_of_right_inverse {g : B → A} {f : A → B} : right_inverse g f → f ∘ g = id :=
assume h, funext h
definition has_right_inverse (f : A → B) : Prop := ∃ finv : B → A, right_inverse finv f
theorem injective_of_left_inverse {g : B → A} {f : A → B} : left_inverse g f → injective f :=
assume h, take a b, assume faeqfb,
have h₁ : a = g (f a), from eq.symm (h a),
have h₂ : g (f b) = b, from h b,
have h₃ : g (f a) = g (f b), from congr_arg g faeqfb,
eq.trans h₁ (eq.trans h₃ h₂)
theorem injective_of_has_left_inverse {f : A → B} : has_left_inverse f → injective f :=
assume h, exists.elim h (λ finv inv, injective_of_left_inverse inv)
theorem right_inverse_of_injective_of_left_inverse {f : A → B} {g : B → A}
(injf : injective f) (lfg : left_inverse f g) :
right_inverse f g :=
take x,
have H : f (g (f x)) = f x, from lfg (f x),
injf H
theorem surjective_of_has_right_inverse {f : A → B} : has_right_inverse f → surjective f :=
assume h, take b,
exists.elim h (λ finv inv,
have h : f (finv b) = b, from calc
f (finv b) = f (finv b) : rfl
... = b : inv b,
⟨finv b, h⟩)
theorem left_inverse_of_surjective_of_right_inverse {f : A → B} {g : B → A}
(surjf : surjective f) (rfg : right_inverse f g) :
left_inverse f g :=
take y, exists.elim (surjf y) (λ x Hx,
calc
f (g y) = f (g (f x)) : Hx ▸ rfl
... = f x : eq.symm (rfg x) ▸ rfl
... = y : Hx)
theorem injective_id : injective (@id A) := take a₁ a₂ H, H
theorem surjective_id : surjective (@id A) := take a, ⟨a, rfl⟩
theorem bijective_id : bijective (@id A) := ⟨injective_id, surjective_id⟩
end function
|
dcad1cd6aa90548fe5469b7abecb7b741e0f35dc
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/analysis/calculus/fderiv/comp.lean
|
4efc624e08deed890b61f1022b12d88eb4549ffe
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 10,846
|
lean
|
/-
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-/
import analysis.calculus.fderiv.basic
/-!
# The derivative of a composition (chain rule)
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
For detailed documentation of the Fréchet derivative,
see the module docstring of `analysis/calculus/fderiv/basic.lean`.
This file contains the usual formulas (and existence assertions) for the derivative of
composition of functions (the chain rule).
-/
open filter asymptotics continuous_linear_map set metric
open_locale topology classical nnreal filter asymptotics ennreal
noncomputable theory
section
variables {𝕜 : Type*} [nontrivially_normed_field 𝕜]
variables {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E]
variables {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F]
variables {G : Type*} [normed_add_comm_group G] [normed_space 𝕜 G]
variables {G' : Type*} [normed_add_comm_group G'] [normed_space 𝕜 G']
variables {f f₀ f₁ g : E → F}
variables {f' f₀' f₁' g' : E →L[𝕜] F}
variables (e : E →L[𝕜] F)
variables {x : E}
variables {s t : set E}
variables {L L₁ L₂ : filter E}
section composition
/-!
### Derivative of the composition of two functions
For composition lemmas, we put x explicit to help the elaborator, as otherwise Lean tends to
get confused since there are too many possibilities for composition -/
variable (x)
theorem has_fderiv_at_filter.comp {g : F → G} {g' : F →L[𝕜] G} {L' : filter F}
(hg : has_fderiv_at_filter g g' (f x) L')
(hf : has_fderiv_at_filter f f' x L) (hL : tendsto f L L') :
has_fderiv_at_filter (g ∘ f) (g'.comp f') x L :=
let eq₁ := (g'.is_O_comp _ _).trans_is_o hf in
let eq₂ := (hg.comp_tendsto hL).trans_is_O hf.is_O_sub in
by { refine eq₂.triangle (eq₁.congr_left (λ x', _)), simp }
/- A readable version of the previous theorem,
a general form of the chain rule. -/
example {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at_filter g g' (f x) (L.map f))
(hf : has_fderiv_at_filter f f' x L) :
has_fderiv_at_filter (g ∘ f) (g'.comp f') x L :=
begin
unfold has_fderiv_at_filter at hg,
have := calc (λ x', g (f x') - g (f x) - g' (f x' - f x)) =o[L] (λ x', f x' - f x) :
hg.comp_tendsto le_rfl
... =O[L] (λ x', x' - x) : hf.is_O_sub,
refine this.triangle _,
calc (λ x' : E, g' (f x' - f x) - g'.comp f' (x' - x))
=ᶠ[L] λ x', g' (f x' - f x - f' (x' - x)) : eventually_of_forall (λ x', by simp)
... =O[L] λ x', f x' - f x - f' (x' - x) : g'.is_O_comp _ _
... =o[L] λ x', x' - x : hf
end
theorem has_fderiv_within_at.comp {g : F → G} {g' : F →L[𝕜] G} {t : set F}
(hg : has_fderiv_within_at g g' t (f x)) (hf : has_fderiv_within_at f f' s x)
(hst : maps_to f s t) :
has_fderiv_within_at (g ∘ f) (g'.comp f') s x :=
hg.comp x hf $ hf.continuous_within_at.tendsto_nhds_within hst
theorem has_fderiv_at.comp_has_fderiv_within_at {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (g ∘ f) (g'.comp f') s x :=
hg.comp x hf hf.continuous_within_at
theorem has_fderiv_within_at.comp_of_mem {g : F → G} {g' : F →L[𝕜] G} {t : set F}
(hg : has_fderiv_within_at g g' t (f x)) (hf : has_fderiv_within_at f f' s x)
(hst : tendsto f (𝓝[s] x) (𝓝[t] f x)) :
has_fderiv_within_at (g ∘ f) (g'.comp f') s x :=
has_fderiv_at_filter.comp x hg hf hst
/-- The chain rule. -/
theorem has_fderiv_at.comp {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_at f f' x) :
has_fderiv_at (g ∘ f) (g'.comp f') x :=
hg.comp x hf hf.continuous_at
lemma differentiable_within_at.comp {g : F → G} {t : set F}
(hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x)
(h : maps_to f s t) : differentiable_within_at 𝕜 (g ∘ f) s x :=
(hg.has_fderiv_within_at.comp x hf.has_fderiv_within_at h).differentiable_within_at
lemma differentiable_within_at.comp' {g : F → G} {t : set F}
(hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (g ∘ f) (s ∩ f⁻¹' t) x :=
hg.comp x (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _)
lemma differentiable_at.comp {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) :
differentiable_at 𝕜 (g ∘ f) x :=
(hg.has_fderiv_at.comp x hf.has_fderiv_at).differentiable_at
lemma differentiable_at.comp_differentiable_within_at {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (g ∘ f) s x :=
hg.differentiable_within_at.comp x hf (maps_to_univ _ _)
lemma fderiv_within.comp {g : F → G} {t : set F}
(hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x)
(h : maps_to f s t) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (g ∘ f) s x = (fderiv_within 𝕜 g t (f x)).comp (fderiv_within 𝕜 f s x) :=
(hg.has_fderiv_within_at.comp x (hf.has_fderiv_within_at) h).fderiv_within hxs
/-- A version of `fderiv_within.comp` that is useful to rewrite the composition of two derivatives
into a single derivative. This version always applies, but creates a new side-goal `f x = y`. -/
lemma fderiv_within_fderiv_within {g : F → G} {f : E → F} {x : E} {y : F} {s : set E} {t : set F}
(hg : differentiable_within_at 𝕜 g t y) (hf : differentiable_within_at 𝕜 f s x)
(h : maps_to f s t) (hxs : unique_diff_within_at 𝕜 s x) (hy : f x = y) (v : E) :
fderiv_within 𝕜 g t y (fderiv_within 𝕜 f s x v) = fderiv_within 𝕜 (g ∘ f) s x v :=
by { subst y, rw [fderiv_within.comp x hg hf h hxs], refl }
/-- Ternary version of `fderiv_within.comp`, with equality assumptions of basepoints added, in
order to apply more easily as a rewrite from right-to-left. -/
lemma fderiv_within.comp₃ {g' : G → G'} {g : F → G} {t : set F} {u : set G} {y : F} {y' : G}
(hg' : differentiable_within_at 𝕜 g' u y') (hg : differentiable_within_at 𝕜 g t y)
(hf : differentiable_within_at 𝕜 f s x)
(h2g : maps_to g t u) (h2f : maps_to f s t)
(h3g : g y = y') (h3f : f x = y) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (g' ∘ g ∘ f) s x = (fderiv_within 𝕜 g' u y').comp
((fderiv_within 𝕜 g t y).comp (fderiv_within 𝕜 f s x)) :=
begin
substs h3g h3f,
exact (hg'.has_fderiv_within_at.comp x
(hg.has_fderiv_within_at.comp x (hf.has_fderiv_within_at) h2f) $ h2g.comp h2f).fderiv_within hxs
end
lemma fderiv.comp {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) :
fderiv 𝕜 (g ∘ f) x = (fderiv 𝕜 g (f x)).comp (fderiv 𝕜 f x) :=
(hg.has_fderiv_at.comp x hf.has_fderiv_at).fderiv
lemma fderiv.comp_fderiv_within {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x)
(hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (g ∘ f) s x = (fderiv 𝕜 g (f x)).comp (fderiv_within 𝕜 f s x) :=
(hg.has_fderiv_at.comp_has_fderiv_within_at x hf.has_fderiv_within_at).fderiv_within hxs
lemma differentiable_on.comp {g : F → G} {t : set F}
(hg : differentiable_on 𝕜 g t) (hf : differentiable_on 𝕜 f s) (st : maps_to f s t) :
differentiable_on 𝕜 (g ∘ f) s :=
λx hx, differentiable_within_at.comp x (hg (f x) (st hx)) (hf x hx) st
lemma differentiable.comp {g : F → G} (hg : differentiable 𝕜 g) (hf : differentiable 𝕜 f) :
differentiable 𝕜 (g ∘ f) :=
λx, differentiable_at.comp x (hg (f x)) (hf x)
lemma differentiable.comp_differentiable_on {g : F → G} (hg : differentiable 𝕜 g)
(hf : differentiable_on 𝕜 f s) :
differentiable_on 𝕜 (g ∘ f) s :=
hg.differentiable_on.comp hf (maps_to_univ _ _)
/-- The chain rule for derivatives in the sense of strict differentiability. -/
protected lemma has_strict_fderiv_at.comp {g : F → G} {g' : F →L[𝕜] G}
(hg : has_strict_fderiv_at g g' (f x)) (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, g (f x)) (g'.comp f') x :=
((hg.comp_tendsto (hf.continuous_at.prod_map' hf.continuous_at)).trans_is_O hf.is_O_sub).triangle $
by simpa only [g'.map_sub, f'.coe_comp'] using (g'.is_O_comp _ _).trans_is_o hf
protected lemma differentiable.iterate {f : E → E} (hf : differentiable 𝕜 f) (n : ℕ) :
differentiable 𝕜 (f^[n]) :=
nat.rec_on n differentiable_id (λ n ihn, ihn.comp hf)
protected lemma differentiable_on.iterate {f : E → E} (hf : differentiable_on 𝕜 f s)
(hs : maps_to f s s) (n : ℕ) :
differentiable_on 𝕜 (f^[n]) s :=
nat.rec_on n differentiable_on_id (λ n ihn, ihn.comp hf hs)
variable {x}
protected lemma has_fderiv_at_filter.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_fderiv_at_filter f f' x L) (hL : tendsto f L L) (hx : f x = x) (n : ℕ) :
has_fderiv_at_filter (f^[n]) (f'^n) x L :=
begin
induction n with n ihn,
{ exact has_fderiv_at_filter_id x L },
{ rw [function.iterate_succ, pow_succ'],
rw ← hx at ihn,
exact ihn.comp x hf hL }
end
protected lemma has_fderiv_at.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_fderiv_at f f' x) (hx : f x = x) (n : ℕ) :
has_fderiv_at (f^[n]) (f'^n) x :=
begin
refine hf.iterate _ hx n,
convert hf.continuous_at,
exact hx.symm
end
protected lemma has_fderiv_within_at.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_fderiv_within_at f f' s x) (hx : f x = x) (hs : maps_to f s s) (n : ℕ) :
has_fderiv_within_at (f^[n]) (f'^n) s x :=
begin
refine hf.iterate _ hx n,
convert tendsto_inf.2 ⟨hf.continuous_within_at, _⟩,
exacts [hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
end
protected lemma has_strict_fderiv_at.iterate {f : E → E} {f' : E →L[𝕜] E}
(hf : has_strict_fderiv_at f f' x) (hx : f x = x) (n : ℕ) :
has_strict_fderiv_at (f^[n]) (f'^n) x :=
begin
induction n with n ihn,
{ exact has_strict_fderiv_at_id x },
{ rw [function.iterate_succ, pow_succ'],
rw ← hx at ihn,
exact ihn.comp x hf }
end
protected lemma differentiable_at.iterate {f : E → E} (hf : differentiable_at 𝕜 f x)
(hx : f x = x) (n : ℕ) :
differentiable_at 𝕜 (f^[n]) x :=
(hf.has_fderiv_at.iterate hx n).differentiable_at
protected lemma differentiable_within_at.iterate {f : E → E} (hf : differentiable_within_at 𝕜 f s x)
(hx : f x = x) (hs : maps_to f s s) (n : ℕ) :
differentiable_within_at 𝕜 (f^[n]) s x :=
(hf.has_fderiv_within_at.iterate hx hs n).differentiable_within_at
end composition
end
|
73b4ed85f8d9a402a360926f7f1cd0f437fcac29
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/noncomputable_bytecode_issue.lean
|
163e996fb78542a82220f779ccc24bd54e5cf12b
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 97
|
lean
|
constant a : nat
meta def ex : tactic expr :=
return `(a)
open tactic
run_cmd ex >> return ()
|
ff4617f785e900807b4f8a5bd93b4b0ceb21a943
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/data/list/forall2.lean
|
c873ed7b4569b41fb4549a4d06713bdd539d1f75
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 10,376
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Johannes Hölzl
-/
import data.list.basic
universes u v w z
open nat function
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type z}
namespace list
/- forall₂ -/
variables {r : α → β → Prop} {p : γ → δ → Prop}
open relator
mk_iff_of_inductive_prop list.forall₂ list.forall₂_iff
@[simp] theorem forall₂_cons {R : α → β → Prop} {a b l₁ l₂} :
forall₂ R (a::l₁) (b::l₂) ↔ R a b ∧ forall₂ R l₁ l₂ :=
⟨λ h, by cases h with h₁ h₂; split; assumption, λ ⟨h₁, h₂⟩, forall₂.cons h₁ h₂⟩
theorem forall₂.imp {R S : α → β → Prop}
(H : ∀ a b, R a b → S a b) {l₁ l₂}
(h : forall₂ R l₁ l₂) : forall₂ S l₁ l₂ :=
by induction h; constructor; solve_by_elim
lemma forall₂.mp {r q s : α → β → Prop} (h : ∀a b, r a b → q a b → s a b) :
∀{l₁ l₂}, forall₂ r l₁ l₂ → forall₂ q l₁ l₂ → forall₂ s l₁ l₂
| [] [] forall₂.nil forall₂.nil := forall₂.nil
| (a::l₁) (b::l₂) (forall₂.cons hr hrs) (forall₂.cons hq hqs) :=
forall₂.cons (h a b hr hq) (forall₂.mp hrs hqs)
lemma forall₂.flip : ∀{a b}, forall₂ (flip r) b a → forall₂ r a b
| _ _ forall₂.nil := forall₂.nil
| (a :: as) (b :: bs) (forall₂.cons h₁ h₂) := forall₂.cons h₁ h₂.flip
lemma forall₂_same {r : α → α → Prop} : ∀{l}, (∀x∈l, r x x) → forall₂ r l l
| [] _ := forall₂.nil
| (a::as) h := forall₂.cons
(h _ (mem_cons_self _ _))
(forall₂_same $ assume a ha, h a $ mem_cons_of_mem _ ha)
lemma forall₂_refl {r} [is_refl α r] (l : list α) : forall₂ r l l :=
forall₂_same $ assume a h, is_refl.refl _
lemma forall₂_eq_eq_eq : forall₂ ((=) : α → α → Prop) = (=) :=
begin
funext a b, apply propext,
split,
{ assume h, induction h, {refl}, simp only [*]; split; refl },
{ assume h, subst h, exact forall₂_refl _ }
end
@[simp, priority 900] lemma forall₂_nil_left_iff {l} : forall₂ r nil l ↔ l = nil :=
⟨λ H, by cases H; refl, by rintro rfl; exact forall₂.nil⟩
@[simp, priority 900] lemma forall₂_nil_right_iff {l} : forall₂ r l nil ↔ l = nil :=
⟨λ H, by cases H; refl, by rintro rfl; exact forall₂.nil⟩
lemma forall₂_cons_left_iff {a l u} :
forall₂ r (a::l) u ↔ (∃b u', r a b ∧ forall₂ r l u' ∧ u = b :: u') :=
iff.intro
(assume h, match u, h with (b :: u'), forall₂.cons h₁ h₂ := ⟨b, u', h₁, h₂, rfl⟩ end)
(assume h, match u, h with _, ⟨b, u', h₁, h₂, rfl⟩ := forall₂.cons h₁ h₂ end)
lemma forall₂_cons_right_iff {b l u} :
forall₂ r u (b::l) ↔ (∃a u', r a b ∧ forall₂ r u' l ∧ u = a :: u') :=
iff.intro
(assume h, match u, h with (b :: u'), forall₂.cons h₁ h₂ := ⟨b, u', h₁, h₂, rfl⟩ end)
(assume h, match u, h with _, ⟨b, u', h₁, h₂, rfl⟩ := forall₂.cons h₁ h₂ end)
lemma forall₂_and_left {r : α → β → Prop} {p : α → Prop} :
∀l u, forall₂ (λa b, p a ∧ r a b) l u ↔ (∀a∈l, p a) ∧ forall₂ r l u
| [] u := by simp only [forall₂_nil_left_iff, forall_prop_of_false (not_mem_nil _),
imp_true_iff, true_and]
| (a::l) u := by simp only [forall₂_and_left l, forall₂_cons_left_iff, forall_mem_cons,
and_assoc, and_comm, and.left_comm, exists_and_distrib_left.symm]
@[simp] lemma forall₂_map_left_iff {f : γ → α} :
∀{l u}, forall₂ r (map f l) u ↔ forall₂ (λc b, r (f c) b) l u
| [] _ := by simp only [map, forall₂_nil_left_iff]
| (a::l) _ := by simp only [map, forall₂_cons_left_iff, forall₂_map_left_iff]
@[simp] lemma forall₂_map_right_iff {f : γ → β} :
∀{l u}, forall₂ r l (map f u) ↔ forall₂ (λa c, r a (f c)) l u
| _ [] := by simp only [map, forall₂_nil_right_iff]
| _ (b::u) := by simp only [map, forall₂_cons_right_iff, forall₂_map_right_iff]
lemma left_unique_forall₂' (hr : left_unique r) :
∀{a b c}, forall₂ r a b → forall₂ r c b → a = c
| a₀ nil a₁ forall₂.nil forall₂.nil := rfl
| (a₀::l₀) (b::l) (a₁::l₁) (forall₂.cons ha₀ h₀) (forall₂.cons ha₁ h₁) :=
hr.unique ha₀ ha₁ ▸ left_unique_forall₂' h₀ h₁ ▸ rfl
lemma left_unique_forall₂ (hr : left_unique r) : left_unique (forall₂ r) :=
⟨@left_unique_forall₂' _ _ _ hr⟩
lemma right_unique_forall₂' (hr : right_unique r) : ∀{a b c}, forall₂ r a b → forall₂ r a c → b = c
| nil a₀ a₁ forall₂.nil forall₂.nil := rfl
| (b::l) (a₀::l₀) (a₁::l₁) (forall₂.cons ha₀ h₀) (forall₂.cons ha₁ h₁) :=
hr.unique ha₀ ha₁ ▸ right_unique_forall₂' h₀ h₁ ▸ rfl
lemma right_unique_forall₂ (hr : right_unique r) : right_unique (forall₂ r) :=
⟨@right_unique_forall₂' _ _ _ hr⟩
lemma bi_unique_forall₂ (hr : bi_unique r) : bi_unique (forall₂ r) :=
@@bi_unique.mk _ (left_unique_forall₂ hr.1) (right_unique_forall₂ hr.2)
theorem forall₂_length_eq {R : α → β → Prop} :
∀ {l₁ l₂}, forall₂ R l₁ l₂ → length l₁ = length l₂
| _ _ forall₂.nil := rfl
| _ _ (forall₂.cons h₁ h₂) := congr_arg succ (forall₂_length_eq h₂)
theorem forall₂_zip {R : α → β → Prop} :
∀ {l₁ l₂}, forall₂ R l₁ l₂ → ∀ {a b}, (a, b) ∈ zip l₁ l₂ → R a b
| _ _ (forall₂.cons h₁ h₂) x y (or.inl rfl) := h₁
| _ _ (forall₂.cons h₁ h₂) x y (or.inr h₃) := forall₂_zip h₂ h₃
theorem forall₂_iff_zip {R : α → β → Prop} {l₁ l₂} : forall₂ R l₁ l₂ ↔
length l₁ = length l₂ ∧ ∀ {a b}, (a, b) ∈ zip l₁ l₂ → R a b :=
⟨λ h, ⟨forall₂_length_eq h, @forall₂_zip _ _ _ _ _ h⟩,
λ h, begin
cases h with h₁ h₂,
induction l₁ with a l₁ IH generalizing l₂,
{ cases length_eq_zero.1 h₁.symm, constructor },
{ cases l₂ with b l₂; injection h₁ with h₁,
exact forall₂.cons (h₂ $ or.inl rfl) (IH h₁ $ λ a b h, h₂ $ or.inr h) }
end⟩
theorem forall₂_take {R : α → β → Prop} :
∀ n {l₁ l₂}, forall₂ R l₁ l₂ → forall₂ R (take n l₁) (take n l₂)
| 0 _ _ _ := by simp only [forall₂.nil, take]
| (n+1) _ _ (forall₂.nil) := by simp only [forall₂.nil, take]
| (n+1) _ _ (forall₂.cons h₁ h₂) := by simp [and.intro h₁ h₂, forall₂_take n]
theorem forall₂_drop {R : α → β → Prop} :
∀ n {l₁ l₂}, forall₂ R l₁ l₂ → forall₂ R (drop n l₁) (drop n l₂)
| 0 _ _ h := by simp only [drop, h]
| (n+1) _ _ (forall₂.nil) := by simp only [forall₂.nil, drop]
| (n+1) _ _ (forall₂.cons h₁ h₂) := by simp [and.intro h₁ h₂, forall₂_drop n]
theorem forall₂_take_append {R : α → β → Prop} (l : list α) (l₁ : list β) (l₂ : list β)
(h : forall₂ R l (l₁ ++ l₂)) : forall₂ R (list.take (length l₁) l) l₁ :=
have h': forall₂ R (take (length l₁) l) (take (length l₁) (l₁ ++ l₂)),
from forall₂_take (length l₁) h,
by rwa [take_left] at h'
theorem forall₂_drop_append {R : α → β → Prop} (l : list α) (l₁ : list β) (l₂ : list β)
(h : forall₂ R l (l₁ ++ l₂)) : forall₂ R (list.drop (length l₁) l) l₂ :=
have h': forall₂ R (drop (length l₁) l) (drop (length l₁) (l₁ ++ l₂)),
from forall₂_drop (length l₁) h,
by rwa [drop_left] at h'
lemma rel_mem (hr : bi_unique r) : (r ⇒ forall₂ r ⇒ iff) (∈) (∈)
| a b h [] [] forall₂.nil := by simp only [not_mem_nil]
| a b h (a'::as) (b'::bs) (forall₂.cons h₁ h₂) := rel_or (rel_eq hr h h₁) (rel_mem h h₂)
lemma rel_map : ((r ⇒ p) ⇒ forall₂ r ⇒ forall₂ p) map map
| f g h [] [] forall₂.nil := forall₂.nil
| f g h (a::as) (b::bs) (forall₂.cons h₁ h₂) := forall₂.cons (h h₁) (rel_map @h h₂)
lemma rel_append : (forall₂ r ⇒ forall₂ r ⇒ forall₂ r) append append
| [] [] h l₁ l₂ hl := hl
| (a::as) (b::bs) (forall₂.cons h₁ h₂) l₁ l₂ hl := forall₂.cons h₁ (rel_append h₂ hl)
lemma rel_join : (forall₂ (forall₂ r) ⇒ forall₂ r) join join
| [] [] forall₂.nil := forall₂.nil
| (a::as) (b::bs) (forall₂.cons h₁ h₂) := rel_append h₁ (rel_join h₂)
lemma rel_bind : (forall₂ r ⇒ (r ⇒ forall₂ p) ⇒ forall₂ p) list.bind list.bind :=
assume a b h₁ f g h₂, rel_join (rel_map @h₂ h₁)
lemma rel_foldl : ((p ⇒ r ⇒ p) ⇒ p ⇒ forall₂ r ⇒ p) foldl foldl
| f g hfg _ _ h _ _ forall₂.nil := h
| f g hfg x y hxy _ _ (forall₂.cons hab hs) := rel_foldl @hfg (hfg hxy hab) hs
lemma rel_foldr : ((r ⇒ p ⇒ p) ⇒ p ⇒ forall₂ r ⇒ p) foldr foldr
| f g hfg _ _ h _ _ forall₂.nil := h
| f g hfg x y hxy _ _ (forall₂.cons hab hs) := hfg hab (rel_foldr @hfg hxy hs)
lemma rel_filter {p : α → Prop} {q : β → Prop} [decidable_pred p] [decidable_pred q]
(hpq : (r ⇒ (↔)) p q) :
(forall₂ r ⇒ forall₂ r) (filter p) (filter q)
| _ _ forall₂.nil := forall₂.nil
| (a::as) (b::bs) (forall₂.cons h₁ h₂) :=
begin
by_cases p a,
{ have : q b, { rwa [← hpq h₁] },
simp only [filter_cons_of_pos _ h, filter_cons_of_pos _ this, forall₂_cons, h₁, rel_filter h₂,
and_true], },
{ have : ¬ q b, { rwa [← hpq h₁] },
simp only [filter_cons_of_neg _ h, filter_cons_of_neg _ this, rel_filter h₂], },
end
theorem filter_map_cons (f : α → option β) (a : α) (l : list α) :
filter_map f (a :: l) = option.cases_on (f a) (filter_map f l) (λb, b :: filter_map f l) :=
begin
generalize eq : f a = b,
cases b,
{ rw filter_map_cons_none _ _ eq },
{ rw filter_map_cons_some _ _ _ eq },
end
lemma rel_filter_map : ((r ⇒ option.rel p) ⇒ forall₂ r ⇒ forall₂ p) filter_map filter_map
| f g hfg _ _ forall₂.nil := forall₂.nil
| f g hfg (a::as) (b::bs) (forall₂.cons h₁ h₂) :=
by rw [filter_map_cons, filter_map_cons];
from match f a, g b, hfg h₁ with
| _, _, option.rel.none := rel_filter_map @hfg h₂
| _, _, option.rel.some h := forall₂.cons h (rel_filter_map @hfg h₂)
end
@[to_additive]
lemma rel_prod [monoid α] [monoid β]
(h : r 1 1) (hf : (r ⇒ r ⇒ r) (*) (*)) : (forall₂ r ⇒ r) prod prod :=
rel_foldl hf h
end list
|
4743048a3f0c7c6395f5424a274aea21a40aa65b
|
274748215b6d042f0d9c9a505f9551fa8e0c5f38
|
/src/affine_algebraic_set/regular_map.lean
|
9a67d1b09d7f237ec20c07f577ed2225aa652e98
|
[
"Apache-2.0"
] |
permissive
|
ImperialCollegeLondon/M4P33
|
878ecb515c77d20cc799ff1ebd78f1bf4fd65c12
|
1a179372db71ad6802d11eacbc1f02f327d55f8f
|
refs/heads/master
| 1,607,519,867,193
| 1,583,344,297,000
| 1,583,344,297,000
| 233,316,107
| 59
| 4
|
Apache-2.0
| 1,579,285,778,000
| 1,578,788,367,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,189
|
lean
|
/-
Copyright (c) 2020 Kevin Buzzard
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard, and whoever else wants to join in.
-/
import affine_algebraic_set.regular_function
-- we want k-algebra homomorphisms
import ring_theory.algebra
-- we want facts about k-algebra homs that aren't in mathlib
import for_mathlib.ring_theory.algebra
/-!
# Regular maps
Definition and basic properties of regular maps
-/
/-
KB mathematician-friendly notation attempt
-/
local notation `subset_of` := set
variables {k : Type*} [comm_ring k] {m : Type*} {n : Type*} {p : Type*}
local notation `k[m]` := mv_polynomial m k
local notation `k[n]` := mv_polynomial n k
local notation `k[p]` := mv_polynomial p k
local notation `𝔸ᵐ` := m → k
local notation `𝔸ⁿ` := n → k
local notation `𝔸ᵖ` := p → k
-- For me(kmb), "function" and "map" are strongly synonymous and I find it difficult
-- to remember which is which when it comes "regular functions" and "regular maps".
-- However I do know that I'm trying to construct the category of affine algebraic sets
-- over an algebraically closed field k so this should inform what we should be proving.
-- We use polynomials
open mv_polynomial
-- We're proving theorems about affine algebraic sets so their names
-- should go in the affine algebraic set namespace
namespace affine_algebraic_set
variables {V : affine_algebraic_set k m} {W : affine_algebraic_set k n}
variables {Y : affine_algebraic_set k p} -- X gets confused with mv_polynomial.X
local notation `k[V]` := regular_fun V
local notation `k[W]` := regular_fun W
local notation `k[Y]` := regular_fun Y
-- There are several equivalent definitions of a regular map. We begin
-- by defining them and showing their equivalence.
def is_morphism1 (φ : (V : subset_of 𝔸ᵐ) → (W : subset_of 𝔸ⁿ)) : Prop :=
∃ F : n → k[V], ∀ (v : (V : subset_of 𝔸ᵐ)) (i : n), (φ v : 𝔸ⁿ) i = F i v
def is_morphism2 (φ : (V : subset_of 𝔸ᵐ) → (W : subset_of 𝔸ⁿ)) : Prop :=
∃ Φ : k[n] →ₐ[k] k[V], ∀ (v : (V : subset_of 𝔸ᵐ)) (i : n), (φ v : 𝔸ⁿ) i = Φ (X i) v
def is_morphism3 (φ : (V : subset_of 𝔸ᵐ) → (W : subset_of 𝔸ⁿ)) : Prop :=
∃ Φ : k[n] →ₐ[k] k[V], ∀ (v : (V : subset_of 𝔸ᵐ)) (G : k[n]), G.eval (φ v) = (Φ G) v
def is_morphism4 (φ : (V : subset_of 𝔸ᵐ) → (W : subset_of 𝔸ⁿ)) : Prop :=
∃ φstar : k[W] →ₐ[k] k[V], ∀ (v : (V : subset_of 𝔸ᵐ)) (g : k[W]), g (φ v) = (φstar g) v
variable (φ : (V : subset_of 𝔸ᵐ) → (W : subset_of 𝔸ⁿ))
lemma four_implies_three : is_morphism4 φ → is_morphism3 φ :=
begin
rintro ⟨φstar, hstar⟩,
use alg_hom.comp φstar mv_polynomial.to_regular_fun_algebra_map,
intros v G,
exact hstar v (to_regular_fun.to_fun G),
end
lemma three_implies_two : is_morphism3 φ → is_morphism2 φ :=
begin
rintro ⟨Φ, hΦ⟩,
use Φ,
intros v i,
rw [←hΦ v (X i), eval_X],
end
lemma two_implies_one : is_morphism2 φ → is_morphism1 φ :=
begin
rintro ⟨Φ, hΦ⟩,
use (λ i, Φ (X i)),
intros v i,
exact hΦ v i,
end
lemma one_implies_two : is_morphism1 φ → is_morphism2 φ :=
begin
rintro ⟨F, hF⟩,
unfold is_morphism2,
-- eval₂ gives the map
let Φ.to_fun : mv_polynomial n k → regular_fun V := eval₂ (mv_polynomial.to_regular_fun.to_fun ∘ C) F,
-- now need that it's a k-algebra hom.
letI Φ.is_ring_hom : is_ring_hom Φ.to_fun := eval₂.is_ring_hom _ _,
letI Φ.is_semiring_hom : is_semiring_hom Φ.to_fun := is_ring_hom.is_semiring_hom _,
letI foo : is_semiring_hom (to_regular_fun.to_fun ∘ C : k → k[V]) := is_semiring_hom.comp _ _,
let Φ.ring_hom := @ring_hom.of _ _ _ _ Φ.to_fun Φ.is_semiring_hom,
let Φ : mv_polynomial n k →ₐ[k] regular_fun V :=
{ to_fun := Φ.to_fun,
commutes' := begin
intro t,
show eval₂ (to_regular_fun.to_fun ∘ C : k → k[V]) F (C t) = _,
convert eval₂_C _ _ _,
exact foo,
end,
..Φ.ring_hom},
use Φ,
intros v i,
rw hF,
apply congr_fun,
apply congr_arg,
show _ = eval₂ (to_regular_fun.to_fun ∘ C) F (X i),
convert (eval₂_X _ _ _).symm,
exact foo,
end
lemma two_implies_three : is_morphism2 φ → is_morphism3 φ :=
begin
rintro ⟨Φ, hΦ⟩,
use Φ,
intros v G,
replace hΦ := hΦ v,
apply mv_polynomial.induction_on G,
{ intro a,
rw eval_C,
show a = (Φ (algebra_map (mv_polynomial n k) a)) v,
rw alg_hom.commutes Φ a,
show a = (C a : k[m]).eval v,
rw eval_C,
},
{ intros p q hp hq,
rw [eval_add, hp, hq, alg_hom.map_add],
refl
},
{ intros p i h,
rw [eval_mul, h, eval_X, hΦ, alg_hom.map_mul],
refl
}
end
lemma three_implies_four : is_morphism3 φ → is_morphism4 φ :=
begin
rintro ⟨Φ,hΦ⟩,
have hI : ∀ f : k[n], f ∈ 𝕀 W → Φ f = 0,
{ intros f hf,
ext v,
rw ←hΦ,
rw mem_𝕀_iff at hf,
rw hf,
refl,
exact (φ v).2
},
have hfΦ : ∀ (f : mv_polynomial n k),
(to_regular_fun_algebra_map : mv_polynomial n k →ₐ[k] regular_fun W) f = 0 → Φ f = 0,
{ intros f hf,
apply hI,
intros x hx,
show (mv_polynomial.to_regular_fun_algebra_map :
mv_polynomial n k →ₐ[k] regular_fun W) f ⟨x, hx⟩ = 0,
rw hf,
refl
},
existsi
(alg_hom.quot.lift mv_polynomial.to_regular_fun_algebra_map to_regular_fun.surjective Φ hfΦ :
regular_fun W →ₐ[k] regular_fun V),
intros v g,
cases to_regular_fun.surjective g with G hG,
rw ←hG,
convert hΦ v G,
apply congr_fun _ v,
dsimp,
apply congr_arg,
refine alg_hom.quot.thm' _ _ Φ _ G,
end
/-- A `morphism` between affine algebraic sets V ⊆ 𝔸ᵐ and W ⊆ 𝔸ⁿ, often called a regular map,
is a pair: a function φ : V → W, and a proof that there exists a k-algebra homomorphism
φstar : k[W] → k[V] such that g ∘ φ = φstar(g) for all g : k[W] -/
structure morphism (V : affine_algebraic_set k m) (W : affine_algebraic_set k n) :=
(to_fun : (V : subset_of 𝔸ᵐ) → (W : subset_of 𝔸ⁿ))
(is_morphism' :
∃ φstar : regular_fun W →ₐ[k] regular_fun V, ∀ (v : (V : subset_of 𝔸ᵐ)) (g : regular_fun W),
g (to_fun v) = (φstar g) v)
-- notation
infixr ` →ᵣ `:25 := morphism
namespace morphism
instance : has_coe_to_fun (V →ᵣ W) :=
{ F := _,
coe := morphism.to_fun }
-- best attempt at prettiness so far
lemma is_morphism (φ : V →ᵣ W) : ∃ (φstar : k[W] →ₐ[k] k[V]), ∀ (v : (V : subset_of 𝔸ᵐ))
(g : k[W]), g (φ v) = φstar g v := φ.is_morphism'
-- lemma some_spec (φ : V →ᵣ W) (x : (V : subset_of 𝔸ᵐ)) (t : n) :
-- classical.some (φ.is_algebraic t) x = (φ x).1 t:=
-- begin
-- cases x,
-- exact (classical.some_spec (φ.is_algebraic t) _ _).symm,
-- end
-- lemma some_spec' (φ : V →ᵣ W) (x : (V : subset_of 𝔸ᵐ)) :
-- (λ (t : n), classical.some (φ.is_algebraic t) x) = (λ (t : n), (φ x).1 t) :=
-- by ext t; apply some_spec φ x t
/-- A regular map between varieties gives a ring map on regular functions. -/
noncomputable def comap (φ : V →ᵣ W) : k[W] →ₐ[k] k[V] :=
{ to_fun := λ f,
{ to_fun := λ x, f (φ x),
is_regular' := begin
unfold is_regular,
cases φ.is_morphism with Φ HΦ,
cases to_regular_fun.surjective (Φ f) with G hG,
use G,
intro x,
rw [HΦ x f, ←hG],
refl,
end
},
map_one' := rfl,
map_mul' := λ f g, rfl,
map_zero' := rfl,
map_add' := λ f g, rfl,
commutes' := λ r, begin
ext x,
convert (show r = r, from rfl),
{ refine eval_C r},
{ refine eval_C r},
end
}
lemma comap_def (φ : V →ᵣ W) (f : k[W]) (v : (V : subset_of 𝔸ᵐ)) :
φ.comap f v = f (φ v) := rfl
def id (V : affine_algebraic_set k m) : V →ᵣ V :=
{ to_fun := id,
is_morphism' := ⟨alg_hom.id k _, λ _ _, rfl⟩}
def comp (φ : W →ᵣ Y) (ψ : V →ᵣ W) : V →ᵣ Y :=
{ to_fun := λ u, φ (ψ u),
is_morphism' := ⟨alg_hom.comp ψ.comap φ.comap, begin
intros v f,
rw ←comap_def,
rw ←comap_def,
refl,
end⟩
}
end morphism
end affine_algebraic_set
|
3894885ffd06d27c5da1a607c34adae38d83ea9c
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/topology/metric_space/algebra.lean
|
61447d7fef0d79c862b83a963f1c3387b904655a
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,443
|
lean
|
/-
Copyright (c) 2021 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import topology.algebra.mul_action
import topology.metric_space.lipschitz
/-!
# Compatibility of algebraic operations with metric space structures
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
In this file we define mixin typeclasses `has_lipschitz_mul`, `has_lipschitz_add`,
`has_bounded_smul` expressing compatibility of multiplication, addition and scalar-multiplication
operations with an underlying metric space structure. The intended use case is to abstract certain
properties shared by normed groups and by `R≥0`.
## Implementation notes
We deduce a `has_continuous_mul` instance from `has_lipschitz_mul`, etc. In principle there should
be an intermediate typeclass for uniform spaces, but the algebraic hierarchy there (see
`uniform_group`) is structured differently.
-/
open_locale nnreal
noncomputable theory
variables (α β : Type*) [pseudo_metric_space α] [pseudo_metric_space β]
section has_lipschitz_mul
/-- Class `has_lipschitz_add M` says that the addition `(+) : X × X → X` is Lipschitz jointly in
the two arguments. -/
class has_lipschitz_add [add_monoid β] : Prop :=
( lipschitz_add : ∃ C, lipschitz_with C (λ p : β × β, p.1 + p.2) )
/-- Class `has_lipschitz_mul M` says that the multiplication `(*) : X × X → X` is Lipschitz jointly
in the two arguments. -/
@[to_additive] class has_lipschitz_mul [monoid β] : Prop :=
( lipschitz_mul : ∃ C, lipschitz_with C (λ p : β × β, p.1 * p.2) )
variables [monoid β]
/-- The Lipschitz constant of a monoid `β` satisfying `has_lipschitz_mul` -/
@[to_additive "The Lipschitz constant of an `add_monoid` `β` satisfying `has_lipschitz_add`"]
def has_lipschitz_mul.C [_i : has_lipschitz_mul β] : ℝ≥0 :=
classical.some _i.lipschitz_mul
variables {β}
@[to_additive] lemma lipschitz_with_lipschitz_const_mul_edist [_i : has_lipschitz_mul β] :
lipschitz_with (has_lipschitz_mul.C β) (λ p : β × β, p.1 * p.2) :=
classical.some_spec _i.lipschitz_mul
variables [has_lipschitz_mul β]
@[to_additive] lemma lipschitz_with_lipschitz_const_mul :
∀ p q : β × β, dist (p.1 * p.2) (q.1 * q.2) ≤ (has_lipschitz_mul.C β) * dist p q :=
begin
rw ← lipschitz_with_iff_dist_le_mul,
exact lipschitz_with_lipschitz_const_mul_edist,
end
@[to_additive, priority 100] -- see Note [lower instance priority]
instance has_lipschitz_mul.has_continuous_mul : has_continuous_mul β :=
⟨ lipschitz_with_lipschitz_const_mul_edist.continuous ⟩
@[to_additive] instance submonoid.has_lipschitz_mul (s : submonoid β) : has_lipschitz_mul s :=
{ lipschitz_mul := ⟨has_lipschitz_mul.C β, begin
rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩,
convert lipschitz_with_lipschitz_const_mul_edist ⟨(x₁:β), x₂⟩ ⟨y₁, y₂⟩ using 1
end⟩ }
@[to_additive] instance mul_opposite.has_lipschitz_mul : has_lipschitz_mul βᵐᵒᵖ :=
{ lipschitz_mul := ⟨has_lipschitz_mul.C β, λ ⟨x₁, x₂⟩ ⟨y₁, y₂⟩,
(lipschitz_with_lipschitz_const_mul_edist ⟨x₂.unop, x₁.unop⟩ ⟨y₂.unop, y₁.unop⟩).trans_eq
(congr_arg _ $ max_comm _ _)⟩ }
-- this instance could be deduced from `normed_add_comm_group.has_lipschitz_add`, but we prove it
-- separately here so that it is available earlier in the hierarchy
instance real.has_lipschitz_add : has_lipschitz_add ℝ :=
{ lipschitz_add := ⟨2, begin
rw lipschitz_with_iff_dist_le_mul,
intros p q,
simp only [real.dist_eq, prod.dist_eq, prod.fst_sub, prod.snd_sub, nnreal.coe_one,
nnreal.coe_bit0],
convert le_trans (abs_add (p.1 - q.1) (p.2 - q.2)) _ using 2,
{ abel },
have := le_max_left (|p.1 - q.1|) (|p.2 - q.2|),
have := le_max_right (|p.1 - q.1|) (|p.2 - q.2|),
linarith,
end⟩ }
-- this instance has the same proof as `add_submonoid.has_lipschitz_add`, but the former can't
-- directly be applied here since `ℝ≥0` is a subtype of `ℝ`, not an additive submonoid.
instance nnreal.has_lipschitz_add : has_lipschitz_add ℝ≥0 :=
{ lipschitz_add := ⟨has_lipschitz_add.C ℝ, begin
rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩,
convert lipschitz_with_lipschitz_const_add_edist ⟨(x₁:ℝ), x₂⟩ ⟨y₁, y₂⟩ using 1
end⟩ }
end has_lipschitz_mul
section has_bounded_smul
variables [has_zero α] [has_zero β] [has_smul α β]
/-- Mixin typeclass on a scalar action of a metric space `α` on a metric space `β` both with
distinguished points `0`, requiring compatibility of the action in the sense that
`dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂` and
`dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0`. -/
class has_bounded_smul : Prop :=
( dist_smul_pair' : ∀ x : α, ∀ y₁ y₂ : β, dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ )
( dist_pair_smul' : ∀ x₁ x₂ : α, ∀ y : β, dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 )
variables {α β} [has_bounded_smul α β]
lemma dist_smul_pair (x : α) (y₁ y₂ : β) : dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ :=
has_bounded_smul.dist_smul_pair' x y₁ y₂
lemma dist_pair_smul (x₁ x₂ : α) (y : β) : dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 :=
has_bounded_smul.dist_pair_smul' x₁ x₂ y
/-- The typeclass `has_bounded_smul` on a metric-space scalar action implies continuity of the
action. -/
@[priority 100] -- see Note [lower instance priority]
instance has_bounded_smul.has_continuous_smul : has_continuous_smul α β :=
{ continuous_smul := begin
rw metric.continuous_iff,
rintros ⟨a, b⟩ ε hε,
have : 0 ≤ dist a 0 := dist_nonneg,
have : 0 ≤ dist b 0 := dist_nonneg,
let δ : ℝ := min 1 ((dist a 0 + dist b 0 + 2)⁻¹ * ε),
have hδ_pos : 0 < δ,
{ refine lt_min_iff.mpr ⟨by norm_num, mul_pos _ hε⟩,
rw inv_pos,
linarith },
refine ⟨δ, hδ_pos, _⟩,
rintros ⟨a', b'⟩ hab',
calc _ ≤ _ : dist_triangle _ (a • b') _
... ≤ δ * (dist a 0 + dist b 0 + δ) : _
... < ε : _,
{ have : 0 ≤ dist a' a := dist_nonneg,
have := dist_triangle b' b 0,
have := dist_comm (a • b') (a' • b'),
have := dist_comm a a',
have : dist a' a ≤ dist (a', b') (a, b) := le_max_left _ _,
have : dist b' b ≤ dist (a', b') (a, b) := le_max_right _ _,
have := dist_smul_pair a b' b,
have := dist_pair_smul a a' b',
nlinarith },
{ have : δ ≤ _ := min_le_right _ _,
have : δ ≤ _ := min_le_left _ _,
have : (dist a 0 + dist b 0 + 2)⁻¹ * (ε * (dist a 0 + dist b 0 + δ)) < ε,
{ rw inv_mul_lt_iff; nlinarith },
nlinarith }
end }
-- this instance could be deduced from `normed_space.has_bounded_smul`, but we prove it separately
-- here so that it is available earlier in the hierarchy
instance real.has_bounded_smul : has_bounded_smul ℝ ℝ :=
{ dist_smul_pair' := λ x y₁ y₂, by simpa [real.dist_eq, mul_sub] using (abs_mul x (y₁ - y₂)).le,
dist_pair_smul' := λ x₁ x₂ y, by simpa [real.dist_eq, sub_mul] using (abs_mul (x₁ - x₂) y).le }
instance nnreal.has_bounded_smul : has_bounded_smul ℝ≥0 ℝ≥0 :=
{ dist_smul_pair' := λ x y₁ y₂, by convert dist_smul_pair (x:ℝ) (y₁:ℝ) y₂ using 1,
dist_pair_smul' := λ x₁ x₂ y, by convert dist_pair_smul (x₁:ℝ) x₂ (y:ℝ) using 1 }
/-- If a scalar is central, then its right action is bounded when its left action is. -/
instance has_bounded_smul.op [has_smul αᵐᵒᵖ β] [is_central_scalar α β] :
has_bounded_smul αᵐᵒᵖ β :=
{ dist_smul_pair' := mul_opposite.rec $ λ x y₁ y₂,
by simpa only [op_smul_eq_smul] using dist_smul_pair x y₁ y₂,
dist_pair_smul' := mul_opposite.rec $ λ x₁, mul_opposite.rec $ λ x₂ y,
by simpa only [op_smul_eq_smul] using dist_pair_smul x₁ x₂ y }
end has_bounded_smul
instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_add (additive α) :=
⟨@has_lipschitz_mul.lipschitz_mul α _ _ _⟩
instance [add_monoid α] [has_lipschitz_add α] : has_lipschitz_mul (multiplicative α) :=
⟨@has_lipschitz_add.lipschitz_add α _ _ _⟩
@[to_additive] instance [monoid α] [has_lipschitz_mul α] : has_lipschitz_mul αᵒᵈ :=
‹has_lipschitz_mul α›
|
479e558f27710605b1ae76194a089dc3f05c5d55
|
675b8263050a5d74b89ceab381ac81ce70535688
|
/src/topology/instances/ennreal.lean
|
e4e18d17035ce8dbada536096c902a70b5c79d80
|
[
"Apache-2.0"
] |
permissive
|
vozor/mathlib
|
5921f55235ff60c05f4a48a90d616ea167068adf
|
f7e728ad8a6ebf90291df2a4d2f9255a6576b529
|
refs/heads/master
| 1,675,607,702,231
| 1,609,023,279,000
| 1,609,023,279,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 43,169
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl
-/
import topology.instances.nnreal
/-!
# Extended non-negative reals
-/
noncomputable theory
open classical set filter metric
open_locale classical topological_space ennreal nnreal big_operators filter
variables {α : Type*} {β : Type*} {γ : Type*}
namespace ennreal
variables {a b c d : ennreal} {r p q : ℝ≥0}
variables {x y z : ennreal} {ε ε₁ ε₂ : ennreal} {s : set ennreal}
section topological_space
open topological_space
/-- Topology on `ennreal`.
Note: this is different from the `emetric_space` topology. The `emetric_space` topology has
`is_open {⊤}`, while this topology doesn't have singleton elements. -/
instance : topological_space ennreal := preorder.topology ennreal
instance : order_topology ennreal := ⟨rfl⟩
instance : t2_space ennreal := by apply_instance -- short-circuit type class inference
instance : second_countable_topology ennreal :=
⟨⟨⋃q ≥ (0:ℚ), {{a : ennreal | a < nnreal.of_real q}, {a : ennreal | ↑(nnreal.of_real q) < a}},
(countable_encodable _).bUnion $ assume a ha, (countable_singleton _).insert _,
le_antisymm
(le_generate_from $ by simp [or_imp_distrib, is_open_lt', is_open_gt'] {contextual := tt})
(le_generate_from $ λ s h, begin
rcases h with ⟨a, hs | hs⟩;
[ rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ a < nnreal.of_real q}, {b | ↑(nnreal.of_real q) < b},
from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn a b, and_assoc]),
rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ ↑(nnreal.of_real q) < a}, {b | b < ↑(nnreal.of_real q)},
from set.ext (assume b,
by simp [hs, @ennreal.lt_iff_exists_rat_btwn b a, and_comm, and_assoc])];
{ apply is_open_Union, intro q,
apply is_open_Union, intro hq,
exact generate_open.basic _ (mem_bUnion hq.1 $ by simp) }
end)⟩⟩
lemma embedding_coe : embedding (coe : ℝ≥0 → ennreal) :=
⟨⟨begin
refine le_antisymm _ _,
{ rw [@order_topology.topology_eq_generate_intervals ennreal _,
← coinduced_le_iff_le_induced],
refine le_generate_from (assume s ha, _),
rcases ha with ⟨a, rfl | rfl⟩,
show is_open {b : ℝ≥0 | a < ↑b},
{ cases a; simp [none_eq_top, some_eq_coe, is_open_lt'] },
show is_open {b : ℝ≥0 | ↑b < a},
{ cases a; simp [none_eq_top, some_eq_coe, is_open_gt', is_open_const] } },
{ rw [@order_topology.topology_eq_generate_intervals ℝ≥0 _],
refine le_generate_from (assume s ha, _),
rcases ha with ⟨a, rfl | rfl⟩,
exact ⟨Ioi a, is_open_Ioi, by simp [Ioi]⟩,
exact ⟨Iio a, is_open_Iio, by simp [Iio]⟩ }
end⟩,
assume a b, coe_eq_coe.1⟩
lemma is_open_ne_top : is_open {a : ennreal | a ≠ ⊤} := is_open_ne
lemma is_open_Ico_zero : is_open (Ico 0 b) := by { rw ennreal.Ico_eq_Iio, exact is_open_Iio}
lemma coe_range_mem_nhds : range (coe : ℝ≥0 → ennreal) ∈ 𝓝 (r : ennreal) :=
have {a : ennreal | a ≠ ⊤} = range (coe : ℝ≥0 → ennreal),
from set.ext $ assume a, by cases a; simp [none_eq_top, some_eq_coe],
this ▸ mem_nhds_sets is_open_ne_top coe_ne_top
@[norm_cast] lemma tendsto_coe {f : filter α} {m : α → ℝ≥0} {a : ℝ≥0} :
tendsto (λa, (m a : ennreal)) f (𝓝 ↑a) ↔ tendsto m f (𝓝 a) :=
embedding_coe.tendsto_nhds_iff.symm
lemma continuous_coe : continuous (coe : ℝ≥0 → ennreal) :=
embedding_coe.continuous
lemma continuous_coe_iff {α} [topological_space α] {f : α → ℝ≥0} :
continuous (λa, (f a : ennreal)) ↔ continuous f :=
embedding_coe.continuous_iff.symm
lemma nhds_coe {r : ℝ≥0} : 𝓝 (r : ennreal) = (𝓝 r).map coe :=
by rw [embedding_coe.induced, map_nhds_induced_eq coe_range_mem_nhds]
lemma nhds_coe_coe {r p : ℝ≥0} : 𝓝 ((r : ennreal), (p : ennreal)) =
(𝓝 (r, p)).map (λp:ℝ≥0×ℝ≥0, (p.1, p.2)) :=
begin
rw [(embedding_coe.prod_mk embedding_coe).map_nhds_eq],
rw [← prod_range_range_eq],
exact prod_mem_nhds_sets coe_range_mem_nhds coe_range_mem_nhds
end
lemma continuous_of_real : continuous ennreal.of_real :=
(continuous_coe_iff.2 continuous_id).comp nnreal.continuous_of_real
lemma tendsto_of_real {f : filter α} {m : α → ℝ} {a : ℝ} (h : tendsto m f (𝓝 a)) :
tendsto (λa, ennreal.of_real (m a)) f (𝓝 (ennreal.of_real a)) :=
tendsto.comp (continuous.tendsto continuous_of_real _) h
lemma tendsto_to_nnreal {a : ennreal} : a ≠ ⊤ →
tendsto (ennreal.to_nnreal) (𝓝 a) (𝓝 a.to_nnreal) :=
begin
cases a; simp [some_eq_coe, none_eq_top, nhds_coe, tendsto_map'_iff, (∘)],
exact tendsto_id
end
lemma continuous_on_to_nnreal : continuous_on ennreal.to_nnreal {a | a ≠ ∞} :=
continuous_on_iff_continuous_restrict.2 $ continuous_iff_continuous_at.2 $ λ x,
(tendsto_to_nnreal x.2).comp continuous_at_subtype_coe
lemma tendsto_to_real {a : ennreal} : a ≠ ⊤ → tendsto (ennreal.to_real) (𝓝 a) (𝓝 a.to_real) :=
λ ha, tendsto.comp ((@nnreal.tendsto_coe _ (𝓝 a.to_nnreal) id (a.to_nnreal)).2 tendsto_id)
(tendsto_to_nnreal ha)
/-- The set of finite `ennreal` numbers is homeomorphic to `ℝ≥0`. -/
def ne_top_homeomorph_nnreal : {a | a ≠ ∞} ≃ₜ ℝ≥0 :=
{ continuous_to_fun := continuous_on_iff_continuous_restrict.1 continuous_on_to_nnreal,
continuous_inv_fun := continuous_subtype_mk _ continuous_coe,
.. ne_top_equiv_nnreal }
/-- The set of finite `ennreal` numbers is homeomorphic to `ℝ≥0`. -/
def lt_top_homeomorph_nnreal : {a | a < ∞} ≃ₜ ℝ≥0 :=
by refine (homeomorph.set_congr $ set.ext $ λ x, _).trans ne_top_homeomorph_nnreal;
simp only [mem_set_of_eq, lt_top_iff_ne_top]
lemma nhds_top : 𝓝 ∞ = ⨅ a ≠ ∞, 𝓟 (Ioi a) :=
nhds_top_order.trans $ by simp [lt_top_iff_ne_top, Ioi]
lemma nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) :=
nhds_top.trans $ infi_ne_top _
lemma tendsto_nhds_top_iff_nnreal {m : α → ennreal} {f : filter α} :
tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a :=
by simp only [nhds_top', tendsto_infi, tendsto_principal, mem_Ioi]
lemma tendsto_nhds_top_iff_nat {m : α → ennreal} {f : filter α} :
tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a :=
tendsto_nhds_top_iff_nnreal.trans ⟨λ h n, by simpa only [ennreal.coe_nat] using h n,
λ h x, let ⟨n, hn⟩ := exists_nat_gt x in
(h n).mono (λ y, lt_trans $ by rwa [← ennreal.coe_nat, coe_lt_coe])⟩
lemma tendsto_nhds_top {m : α → ennreal} {f : filter α}
(h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) : tendsto m f (𝓝 ⊤) :=
tendsto_nhds_top_iff_nat.2 h
lemma tendsto_nat_nhds_top : tendsto (λ n : ℕ, ↑n) at_top (𝓝 ∞) :=
tendsto_nhds_top $ λ n, mem_at_top_sets.2
⟨n+1, λ m hm, ennreal.coe_nat_lt_coe_nat.2 $ nat.lt_of_succ_le hm⟩
@[simp, norm_cast] lemma tendsto_coe_nhds_top {f : α → ℝ≥0} {l : filter α} :
tendsto (λ x, (f x : ennreal)) l (𝓝 ∞) ↔ tendsto f l at_top :=
by rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff];
[simp, apply_instance, apply_instance]
lemma nhds_zero : 𝓝 (0 : ennreal) = ⨅a ≠ 0, 𝓟 (Iio a) :=
nhds_bot_order.trans $ by simp [bot_lt_iff_ne_bot, Iio]
-- using Icc because
-- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0
-- • (x - y ≤ ε ↔ x ≤ ε + y) is true, while (x - y < ε ↔ x < ε + y) is not
lemma Icc_mem_nhds : x ≠ ⊤ → 0 < ε → Icc (x - ε) (x + ε) ∈ 𝓝 x :=
begin
assume xt ε0, rw mem_nhds_sets_iff,
by_cases x0 : x = 0,
{ use Iio (x + ε),
have : Iio (x + ε) ⊆ Icc (x - ε) (x + ε), assume a, rw x0, simpa using le_of_lt,
use this, exact ⟨is_open_Iio, mem_Iio_self_add xt ε0⟩ },
{ use Ioo (x - ε) (x + ε), use Ioo_subset_Icc_self,
exact ⟨is_open_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0 ⟩ }
end
lemma nhds_of_ne_top : x ≠ ⊤ → 𝓝 x = ⨅ε > 0, 𝓟 (Icc (x - ε) (x + ε)) :=
begin
assume xt, refine le_antisymm _ _,
-- first direction
simp only [le_infi_iff, le_principal_iff], assume ε ε0, exact Icc_mem_nhds xt ε0,
-- second direction
rw nhds_generate_from, refine le_infi (assume s, le_infi $ assume hs, _),
simp only [mem_set_of_eq] at hs, rcases hs with ⟨xs, ⟨a, ha⟩⟩,
cases ha,
{ rw ha at *,
rcases exists_between xs with ⟨b, ⟨ab, bx⟩⟩,
have xb_pos : x - b > 0 := zero_lt_sub_iff_lt.2 bx,
have xxb : x - (x - b) = b := sub_sub_cancel (by rwa lt_top_iff_ne_top) (le_of_lt bx),
refine infi_le_of_le (x - b) (infi_le_of_le xb_pos _),
simp only [mem_principal_sets, le_principal_iff],
assume y, rintros ⟨h₁, h₂⟩, rw xxb at h₁, calc a < b : ab ... ≤ y : h₁ },
{ rw ha at *,
rcases exists_between xs with ⟨b, ⟨xb, ba⟩⟩,
have bx_pos : b - x > 0 := zero_lt_sub_iff_lt.2 xb,
have xbx : x + (b - x) = b := add_sub_cancel_of_le (le_of_lt xb),
refine infi_le_of_le (b - x) (infi_le_of_le bx_pos _),
simp only [mem_principal_sets, le_principal_iff],
assume y, rintros ⟨h₁, h₂⟩, rw xbx at h₂, calc y ≤ b : h₂ ... < a : ba },
end
/-- Characterization of neighborhoods for `ennreal` numbers. See also `tendsto_order`
for a version with strict inequalities. -/
protected theorem tendsto_nhds {f : filter α} {u : α → ennreal} {a : ennreal} (ha : a ≠ ⊤) :
tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, (u x) ∈ Icc (a - ε) (a + ε) :=
by simp only [nhds_of_ne_top ha, tendsto_infi, tendsto_principal, mem_Icc]
protected lemma tendsto_at_top [nonempty β] [semilattice_sup β] {f : β → ennreal} {a : ennreal}
(ha : a ≠ ⊤) : tendsto f at_top (𝓝 a) ↔ ∀ε>0, ∃N, ∀n≥N, (f n) ∈ Icc (a - ε) (a + ε) :=
by simp only [ennreal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, filter.eventually]
instance : has_continuous_add ennreal :=
begin
refine ⟨continuous_iff_continuous_at.2 _⟩,
rintro ⟨(_|a), b⟩,
{ exact tendsto_nhds_top_mono' continuous_at_fst (λ p, le_add_right le_rfl) },
rcases b with (_|b),
{ exact tendsto_nhds_top_mono' continuous_at_snd (λ p, le_add_left le_rfl) },
simp only [continuous_at, some_eq_coe, nhds_coe_coe, ← coe_add, tendsto_map'_iff, (∘),
tendsto_coe, tendsto_add]
end
protected lemma tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) :
tendsto (λp:ennreal×ennreal, p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) :=
have ht : ∀b:ennreal, b ≠ 0 → tendsto (λp:ennreal×ennreal, p.1 * p.2) (𝓝 ((⊤:ennreal), b)) (𝓝 ⊤),
begin
refine assume b hb, tendsto_nhds_top $ assume n, _,
rcases exists_between (zero_lt_iff_ne_zero.2 hb) with ⟨ε', hε', hεb'⟩,
rcases ennreal.lt_iff_exists_coe.1 hεb' with ⟨ε, rfl, h⟩,
rcases exists_nat_gt (↑n / ε) with ⟨m, hm⟩,
have hε : ε > 0, from coe_lt_coe.1 hε',
filter_upwards [prod_mem_nhds_sets (lt_mem_nhds $ @coe_lt_top m) (lt_mem_nhds $ h)],
rintros ⟨a₁, a₂⟩ ⟨h₁, h₂⟩,
dsimp at h₁ h₂ ⊢,
calc (n:ennreal) = ↑(((n:ℝ≥0) / ε) * ε) :
begin
norm_cast,
simp [nnreal.div_def, mul_assoc, nnreal.inv_mul_cancel (ne_of_gt hε)]
end
... < (↑m * ε : ℝ≥0) : coe_lt_coe.2 $ mul_lt_mul hm (le_refl _) hε (nat.cast_nonneg _)
... ≤ a₁ * a₂ : by rw [coe_mul]; exact canonically_ordered_semiring.mul_le_mul
(le_of_lt h₁)
(le_of_lt h₂)
end,
begin
cases a, {simp [none_eq_top] at hb, simp [none_eq_top, ht b hb, top_mul, hb] },
cases b, {
simp [none_eq_top] at ha,
simp [*, nhds_swap (a : ennreal) ⊤, none_eq_top, some_eq_coe, top_mul, tendsto_map'_iff, (∘),
mul_comm] },
simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (∘)],
simp only [coe_mul.symm, tendsto_coe, tendsto_mul]
end
protected lemma tendsto.mul {f : filter α} {ma : α → ennreal} {mb : α → ennreal} {a b : ennreal}
(hma : tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : tendsto mb f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) :
tendsto (λa, ma a * mb a) f (𝓝 (a * b)) :=
show tendsto ((λp:ennreal×ennreal, p.1 * p.2) ∘ (λa, (ma a, mb a))) f (𝓝 (a * b)), from
tendsto.comp (ennreal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb)
protected lemma tendsto.const_mul {f : filter α} {m : α → ennreal} {a b : ennreal}
(hm : tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λb, a * m b) f (𝓝 (a * b)) :=
by_cases
(assume : a = 0, by simp [this, tendsto_const_nhds])
(assume ha : a ≠ 0, ennreal.tendsto.mul tendsto_const_nhds (or.inl ha) hm hb)
protected lemma tendsto.mul_const {f : filter α} {m : α → ennreal} {a b : ennreal}
(hm : tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : tendsto (λx, m x * b) f (𝓝 (a * b)) :=
by simpa only [mul_comm] using ennreal.tendsto.const_mul hm ha
protected lemma continuous_at_const_mul {a b : ennreal} (h : a ≠ ⊤ ∨ b ≠ 0) :
continuous_at ((*) a) b :=
tendsto.const_mul tendsto_id h.symm
protected lemma continuous_at_mul_const {a b : ennreal} (h : a ≠ ⊤ ∨ b ≠ 0) :
continuous_at (λ x, x * a) b :=
tendsto.mul_const tendsto_id h.symm
protected lemma continuous_const_mul {a : ennreal} (ha : a ≠ ⊤) : continuous ((*) a) :=
continuous_iff_continuous_at.2 $ λ x, ennreal.continuous_at_const_mul (or.inl ha)
protected lemma continuous_mul_const {a : ennreal} (ha : a ≠ ⊤) : continuous (λ x, x * a) :=
continuous_iff_continuous_at.2 $ λ x, ennreal.continuous_at_mul_const (or.inl ha)
lemma infi_mul_left {ι} [nonempty ι] {f : ι → ennreal} {a : ennreal}
(h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) :
(⨅ i, a * f i) = a * ⨅ i, f i :=
begin
by_cases H : a = ⊤ ∧ (⨅ i, f i) = 0,
{ rcases h H.1 H.2 with ⟨i, hi⟩,
rw [H.2, mul_zero, ← bot_eq_zero, infi_eq_bot],
exact λ b hb, ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩ },
{ rw not_and_distrib at H,
exact (map_infi_of_continuous_at_of_monotone' (ennreal.continuous_at_const_mul H)
ennreal.mul_left_mono).symm }
end
lemma infi_mul_right {ι} [nonempty ι] {f : ι → ennreal} {a : ennreal}
(h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) :
(⨅ i, f i * a) = (⨅ i, f i) * a :=
by simpa only [mul_comm a] using infi_mul_left h
protected lemma continuous_inv : continuous (has_inv.inv : ennreal → ennreal) :=
continuous_iff_continuous_at.2 $ λ a, tendsto_order.2
⟨begin
assume b hb,
simp only [@ennreal.lt_inv_iff_lt_inv b],
exact gt_mem_nhds (ennreal.lt_inv_iff_lt_inv.1 hb),
end,
begin
assume b hb,
simp only [gt_iff_lt, @ennreal.inv_lt_iff_inv_lt _ b],
exact lt_mem_nhds (ennreal.inv_lt_iff_inv_lt.1 hb)
end⟩
@[simp] protected lemma tendsto_inv_iff {f : filter α} {m : α → ennreal} {a : ennreal} :
tendsto (λ x, (m x)⁻¹) f (𝓝 a⁻¹) ↔ tendsto m f (𝓝 a) :=
⟨λ h, by simpa only [function.comp, ennreal.inv_inv]
using (ennreal.continuous_inv.tendsto a⁻¹).comp h,
(ennreal.continuous_inv.tendsto a).comp⟩
protected lemma tendsto.div {f : filter α} {ma : α → ennreal} {mb : α → ennreal} {a b : ennreal}
(hma : tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : tendsto mb f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) :
tendsto (λa, ma a / mb a) f (𝓝 (a / b)) :=
by { apply tendsto.mul hma _ (ennreal.tendsto_inv_iff.2 hmb) _; simp [ha, hb] }
protected lemma tendsto.const_div {f : filter α} {m : α → ennreal} {a b : ennreal}
(hm : tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : tendsto (λb, a / m b) f (𝓝 (a / b)) :=
by { apply tendsto.const_mul (ennreal.tendsto_inv_iff.2 hm), simp [hb] }
protected lemma tendsto.div_const {f : filter α} {m : α → ennreal} {a b : ennreal}
(hm : tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : tendsto (λx, m x / b) f (𝓝 (a / b)) :=
by { apply tendsto.mul_const hm, simp [ha] }
protected lemma tendsto_inv_nat_nhds_zero : tendsto (λ n : ℕ, (n : ennreal)⁻¹) at_top (𝓝 0) :=
ennreal.inv_top ▸ ennreal.tendsto_inv_iff.2 tendsto_nat_nhds_top
lemma Sup_add {s : set ennreal} (hs : s.nonempty) : Sup s + a = ⨆b∈s, b + a :=
have Sup ((λb, b + a) '' s) = Sup s + a,
from is_lub.Sup_eq (is_lub_of_is_lub_of_tendsto
(assume x _ y _ h, add_le_add h (le_refl _))
(is_lub_Sup s)
hs
(tendsto.add (tendsto_id' inf_le_left) tendsto_const_nhds)),
by simp [Sup_image, -add_comm] at this; exact this.symm
lemma supr_add {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : supr s + a = ⨆b, s b + a :=
let ⟨x⟩ := h in
calc supr s + a = Sup (range s) + a : by simp [Sup_range]
... = (⨆b∈range s, b + a) : Sup_add ⟨s x, x, rfl⟩
... = _ : supr_range
lemma add_supr {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : a + supr s = ⨆b, a + s b :=
by rw [add_comm, supr_add]; simp [add_comm]
lemma supr_add_supr {ι : Sort*} {f g : ι → ennreal} (h : ∀i j, ∃k, f i + g j ≤ f k + g k) :
supr f + supr g = (⨆ a, f a + g a) :=
begin
by_cases hι : nonempty ι,
{ letI := hι,
refine le_antisymm _ (supr_le $ λ a, add_le_add (le_supr _ _) (le_supr _ _)),
simpa [add_supr, supr_add] using
λ i j:ι, show f i + g j ≤ ⨆ a, f a + g a, from
let ⟨k, hk⟩ := h i j in le_supr_of_le k hk },
{ have : ∀f:ι → ennreal, (⨆i, f i) = 0 := λ f, bot_unique (supr_le $ assume i, (hι ⟨i⟩).elim),
rw [this, this, this, zero_add] }
end
lemma supr_add_supr_of_monotone {ι : Sort*} [semilattice_sup ι]
{f g : ι → ennreal} (hf : monotone f) (hg : monotone g) :
supr f + supr g = (⨆ a, f a + g a) :=
supr_add_supr $ assume i j, ⟨i ⊔ j, add_le_add (hf $ le_sup_left) (hg $ le_sup_right)⟩
lemma finset_sum_supr_nat {α} {ι} [semilattice_sup ι] {s : finset α} {f : α → ι → ennreal}
(hf : ∀a, monotone (f a)) :
∑ a in s, supr (f a) = (⨆ n, ∑ a in s, f a n) :=
begin
refine finset.induction_on s _ _,
{ simp,
exact (bot_unique $ supr_le $ assume i, le_refl ⊥).symm },
{ assume a s has ih,
simp only [finset.sum_insert has],
rw [ih, supr_add_supr_of_monotone (hf a)],
assume i j h,
exact (finset.sum_le_sum $ assume a ha, hf a h) }
end
section priority
-- for some reason the next proof fails without changing the priority of this instance
local attribute [instance, priority 1000] classical.prop_decidable
lemma mul_Sup {s : set ennreal} {a : ennreal} : a * Sup s = ⨆i∈s, a * i :=
begin
by_cases hs : ∀x∈s, x = (0:ennreal),
{ have h₁ : Sup s = 0 := (bot_unique $ Sup_le $ assume a ha, (hs a ha).symm ▸ le_refl 0),
have h₂ : (⨆i ∈ s, a * i) = 0 :=
(bot_unique $ supr_le $ assume a, supr_le $ assume ha, by simp [hs a ha]),
rw [h₁, h₂, mul_zero] },
{ simp only [not_forall] at hs,
rcases hs with ⟨x, hx, hx0⟩,
have s₁ : Sup s ≠ 0 :=
zero_lt_iff_ne_zero.1 (lt_of_lt_of_le (zero_lt_iff_ne_zero.2 hx0) (le_Sup hx)),
have : Sup ((λb, a * b) '' s) = a * Sup s :=
is_lub.Sup_eq (is_lub_of_is_lub_of_tendsto
(assume x _ y _ h, canonically_ordered_semiring.mul_le_mul (le_refl _) h)
(is_lub_Sup _)
⟨x, hx⟩
(ennreal.tendsto.const_mul (tendsto_id' inf_le_left) (or.inl s₁))),
rw [this.symm, Sup_image] }
end
end priority
lemma mul_supr {ι : Sort*} {f : ι → ennreal} {a : ennreal} : a * supr f = ⨆i, a * f i :=
by rw [← Sup_range, mul_Sup, supr_range]
lemma supr_mul {ι : Sort*} {f : ι → ennreal} {a : ennreal} : supr f * a = ⨆i, f i * a :=
by rw [mul_comm, mul_supr]; congr; funext; rw [mul_comm]
protected lemma tendsto_coe_sub : ∀{b:ennreal}, tendsto (λb:ennreal, ↑r - b) (𝓝 b) (𝓝 (↑r - b)) :=
begin
refine (forall_ennreal.2 $ and.intro (assume a, _) _),
{ simp [@nhds_coe a, tendsto_map'_iff, (∘), tendsto_coe, coe_sub.symm],
exact tendsto_const_nhds.sub tendsto_id },
simp,
exact (tendsto.congr' (mem_sets_of_superset (lt_mem_nhds $ @coe_lt_top r) $
by simp [le_of_lt] {contextual := tt})) tendsto_const_nhds
end
lemma sub_supr {ι : Sort*} [hι : nonempty ι] {b : ι → ennreal} (hr : a < ⊤) :
a - (⨆i, b i) = (⨅i, a - b i) :=
let ⟨i⟩ := hι in
let ⟨r, eq, _⟩ := lt_iff_exists_coe.mp hr in
have Inf ((λb, ↑r - b) '' range b) = ↑r - (⨆i, b i),
from is_glb.Inf_eq $ is_glb_of_is_lub_of_tendsto
(assume x _ y _, sub_le_sub (le_refl _))
is_lub_supr
⟨_, i, rfl⟩
(tendsto.comp ennreal.tendsto_coe_sub (tendsto_id' inf_le_left)),
by rw [eq, ←this]; simp [Inf_image, infi_range, -mem_range]; exact le_refl _
end topological_space
section tsum
variables {f g : α → ennreal}
@[norm_cast] protected lemma has_sum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
has_sum (λa, (f a : ennreal)) ↑r ↔ has_sum f r :=
have (λs:finset α, ∑ a in s, ↑(f a)) = (coe : ℝ≥0 → ennreal) ∘ (λs:finset α, ∑ a in s, f a),
from funext $ assume s, ennreal.coe_finset_sum.symm,
by unfold has_sum; rw [this, tendsto_coe]
protected lemma tsum_coe_eq {f : α → ℝ≥0} (h : has_sum f r) : (∑'a, (f a : ennreal)) = r :=
(ennreal.has_sum_coe.2 h).tsum_eq
protected lemma coe_tsum {f : α → ℝ≥0} : summable f → ↑(tsum f) = (∑'a, (f a : ennreal))
| ⟨r, hr⟩ := by rw [hr.tsum_eq, ennreal.tsum_coe_eq hr]
protected lemma has_sum : has_sum f (⨆s:finset α, ∑ a in s, f a) :=
tendsto_order.2
⟨assume a' ha',
let ⟨s, hs⟩ := lt_supr_iff.mp ha' in
mem_at_top_sets.mpr ⟨s, assume t ht, lt_of_lt_of_le hs $ finset.sum_le_sum_of_subset ht⟩,
assume a' ha',
univ_mem_sets' $ assume s,
have ∑ a in s, f a ≤ ⨆(s : finset α), ∑ a in s, f a,
from le_supr (λ(s : finset α), ∑ a in s, f a) s,
lt_of_le_of_lt this ha'⟩
@[simp] protected lemma summable : summable f := ⟨_, ennreal.has_sum⟩
lemma tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} :
(∑' b, (f b:ennreal)) ≠ ∞ ↔ summable f :=
begin
refine ⟨λ h, _, λ h, ennreal.coe_tsum h ▸ ennreal.coe_ne_top⟩,
lift (∑' b, (f b:ennreal)) to ℝ≥0 using h with a ha,
refine ⟨a, ennreal.has_sum_coe.1 _⟩,
rw ha,
exact ennreal.summable.has_sum
end
protected lemma tsum_eq_supr_sum : (∑'a, f a) = (⨆s:finset α, ∑ a in s, f a) :=
ennreal.has_sum.tsum_eq
protected lemma tsum_eq_supr_sum' {ι : Type*} (s : ι → finset α) (hs : ∀ t, ∃ i, t ⊆ s i) :
(∑' a, f a) = ⨆ i, ∑ a in s i, f a :=
begin
rw [ennreal.tsum_eq_supr_sum],
symmetry,
change (⨆i:ι, (λ t : finset α, ∑ a in t, f a) (s i)) = ⨆s:finset α, ∑ a in s, f a,
exact (finset.sum_mono_set f).supr_comp_eq hs
end
protected lemma tsum_sigma {β : α → Type*} (f : Πa, β a → ennreal) :
(∑'p:Σa, β a, f p.1 p.2) = (∑'a b, f a b) :=
tsum_sigma' (assume b, ennreal.summable) ennreal.summable
protected lemma tsum_sigma' {β : α → Type*} (f : (Σ a, β a) → ennreal) :
(∑'p:(Σa, β a), f p) = (∑'a b, f ⟨a, b⟩) :=
tsum_sigma' (assume b, ennreal.summable) ennreal.summable
protected lemma tsum_prod {f : α → β → ennreal} : (∑'p:α×β, f p.1 p.2) = (∑'a, ∑'b, f a b) :=
tsum_prod' ennreal.summable $ λ _, ennreal.summable
protected lemma tsum_comm {f : α → β → ennreal} : (∑'a, ∑'b, f a b) = (∑'b, ∑'a, f a b) :=
tsum_comm' ennreal.summable (λ _, ennreal.summable) (λ _, ennreal.summable)
protected lemma tsum_add : (∑'a, f a + g a) = (∑'a, f a) + (∑'a, g a) :=
tsum_add ennreal.summable ennreal.summable
protected lemma tsum_le_tsum (h : ∀a, f a ≤ g a) : (∑'a, f a) ≤ (∑'a, g a) :=
tsum_le_tsum h ennreal.summable ennreal.summable
protected lemma sum_le_tsum {f : α → ennreal} (s : finset α) : ∑ x in s, f x ≤ ∑' x, f x :=
sum_le_tsum s (λ x hx, zero_le _) ennreal.summable
protected lemma tsum_eq_supr_nat' {f : ℕ → ennreal} {N : ℕ → ℕ} (hN : tendsto N at_top at_top) :
(∑'i:ℕ, f i) = (⨆i:ℕ, ∑ a in finset.range (N i), f a) :=
ennreal.tsum_eq_supr_sum' _ $ λ t,
let ⟨n, hn⟩ := t.exists_nat_subset_range,
⟨k, _, hk⟩ := exists_le_of_tendsto_at_top hN 0 n in
⟨k, finset.subset.trans hn (finset.range_mono hk)⟩
protected lemma tsum_eq_supr_nat {f : ℕ → ennreal} :
(∑'i:ℕ, f i) = (⨆i:ℕ, ∑ a in finset.range i, f a) :=
ennreal.tsum_eq_supr_sum' _ finset.exists_nat_subset_range
protected lemma le_tsum (a : α) : f a ≤ (∑'a, f a) :=
le_tsum' ennreal.summable a
protected lemma tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞
| ⟨a, ha⟩ := top_unique $ ha ▸ ennreal.le_tsum a
protected lemma ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ :=
λ ha, h $ ennreal.tsum_eq_top_of_eq_top ⟨a, ha⟩
protected lemma tsum_mul_left : (∑'i, a * f i) = a * (∑'i, f i) :=
if h : ∀i, f i = 0 then by simp [h] else
let ⟨i, (hi : f i ≠ 0)⟩ := not_forall.mp h in
have sum_ne_0 : (∑'i, f i) ≠ 0, from ne_of_gt $
calc 0 < f i : lt_of_le_of_ne (zero_le _) hi.symm
... ≤ (∑'i, f i) : ennreal.le_tsum _,
have tendsto (λs:finset α, ∑ j in s, a * f j) at_top (𝓝 (a * (∑'i, f i))),
by rw [← show (*) a ∘ (λs:finset α, ∑ j in s, f j) = λs, ∑ j in s, a * f j,
from funext $ λ s, finset.mul_sum];
exact ennreal.tendsto.const_mul ennreal.summable.has_sum (or.inl sum_ne_0),
has_sum.tsum_eq this
protected lemma tsum_mul_right : (∑'i, f i * a) = (∑'i, f i) * a :=
by simp [mul_comm, ennreal.tsum_mul_left]
@[simp] lemma tsum_supr_eq {α : Type*} (a : α) {f : α → ennreal} :
(∑'b:α, ⨆ (h : a = b), f b) = f a :=
le_antisymm
(by rw [ennreal.tsum_eq_supr_sum]; exact supr_le (assume s,
calc (∑ b in s, ⨆ (h : a = b), f b) ≤ ∑ b in {a}, ⨆ (h : a = b), f b :
finset.sum_le_sum_of_ne_zero $ assume b _ hb,
suffices a = b, by simpa using this.symm,
classical.by_contradiction $ assume h,
by simpa [h] using hb
... = f a : by simp))
(calc f a ≤ (⨆ (h : a = a), f a) : le_supr (λh:a=a, f a) rfl
... ≤ (∑'b:α, ⨆ (h : a = b), f b) : ennreal.le_tsum _)
lemma has_sum_iff_tendsto_nat {f : ℕ → ennreal} (r : ennreal) :
has_sum f r ↔ tendsto (λn:ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) :=
begin
refine ⟨has_sum.tendsto_sum_nat, assume h, _⟩,
rw [← supr_eq_of_tendsto _ h, ← ennreal.tsum_eq_supr_nat],
{ exact ennreal.summable.has_sum },
{ exact assume s t hst, finset.sum_le_sum_of_subset (finset.range_subset.2 hst) }
end
lemma to_nnreal_apply_of_tsum_ne_top {α : Type*} {f : α → ennreal} (hf : (∑' i, f i) ≠ ∞) (x : α) :
(((ennreal.to_nnreal ∘ f) x : ℝ≥0) : ennreal) = f x :=
coe_to_nnreal $ ennreal.ne_top_of_tsum_ne_top hf _
lemma summable_to_nnreal_of_tsum_ne_top {α : Type*} {f : α → ennreal} (hf : (∑' i, f i) ≠ ∞) :
summable (ennreal.to_nnreal ∘ f) :=
by simpa only [←tsum_coe_ne_top_iff_summable, to_nnreal_apply_of_tsum_ne_top hf] using hf
protected lemma tsum_apply {ι α : Type*} {f : ι → α → ennreal} {x : α} :
(∑' i, f i) x = ∑' i, f i x :=
tsum_apply $ pi.summable.mpr $ λ _, ennreal.summable
lemma tsum_sub {f : ℕ → ennreal} {g : ℕ → ennreal} (h₁ : (∑' i, g i) < ∞) (h₂ : g ≤ f) :
(∑' i, (f i - g i)) = (∑' i, f i) - (∑' i, g i) :=
begin
have h₃:(∑' i, (f i - g i)) = (∑' i, (f i - g i) + (g i))-(∑' i, g i),
{ rw [ennreal.tsum_add, add_sub_self h₁]},
have h₄:(λ i, (f i - g i) + (g i)) = f,
{ ext n, rw ennreal.sub_add_cancel_of_le (h₂ n)},
rw h₄ at h₃, apply h₃,
end
end tsum
end ennreal
namespace nnreal
open_locale nnreal
/-- Comparison test of convergence of `ℝ≥0`-valued series. -/
lemma exists_le_has_sum_of_le {f g : β → ℝ≥0} {r : ℝ≥0}
(hgf : ∀b, g b ≤ f b) (hfr : has_sum f r) : ∃p≤r, has_sum g p :=
have (∑'b, (g b : ennreal)) ≤ r,
begin
refine has_sum_le (assume b, _) ennreal.summable.has_sum (ennreal.has_sum_coe.2 hfr),
exact ennreal.coe_le_coe.2 (hgf _)
end,
let ⟨p, eq, hpr⟩ := ennreal.le_coe_iff.1 this in
⟨p, hpr, ennreal.has_sum_coe.1 $ eq ▸ ennreal.summable.has_sum⟩
/-- Comparison test of convergence of `ℝ≥0`-valued series. -/
lemma summable_of_le {f g : β → ℝ≥0} (hgf : ∀b, g b ≤ f b) : summable f → summable g
| ⟨r, hfr⟩ := let ⟨p, _, hp⟩ := exists_le_has_sum_of_le hgf hfr in hp.summable
/-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
the sequence of partial sum converges to `r`. -/
lemma has_sum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} :
has_sum f r ↔ tendsto (λn:ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) :=
begin
rw [← ennreal.has_sum_coe, ennreal.has_sum_iff_tendsto_nat],
simp only [ennreal.coe_finset_sum.symm],
exact ennreal.tendsto_coe
end
lemma not_summable_iff_tendsto_nat_at_top {f : ℕ → ℝ≥0} :
¬ summable f ↔ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top :=
begin
split,
{ intros h,
refine ((tendsto_of_monotone _).resolve_right h).comp _,
exacts [finset.sum_mono_set _, tendsto_finset_range] },
{ rintros hnat ⟨r, hr⟩,
exact not_tendsto_nhds_of_tendsto_at_top hnat _ (has_sum_iff_tendsto_nat.1 hr) }
end
lemma summable_iff_not_tendsto_nat_at_top {f : ℕ → ℝ≥0} :
summable f ↔ ¬ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top :=
by rw [← not_iff_not, not_not, not_summable_iff_tendsto_nat_at_top]
lemma summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : summable f :=
begin
apply summable_iff_not_tendsto_nat_at_top.2 (λ H, _),
rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩,
exact lt_irrefl _ (hn.trans_le (h n)),
end
lemma tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : (∑' n, f n) ≤ c :=
le_of_tendsto' (has_sum_iff_tendsto_nat.1 (summable_of_sum_range_le h).has_sum) h
lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ≥0} (hf : summable f)
{i : β → α} (hi : function.injective i) : (∑' x, f (i x)) ≤ ∑' x, f x :=
tsum_le_tsum_of_inj i hi (λ c hc, zero_le _) (λ b, le_refl _) (summable_comp_injective hf hi) hf
open finset
/-- For `f : ℕ → ℝ≥0`, then `∑' k, f (k + i)` tends to zero. This does not require a summability
assumption on `f`, as otherwise all sums are zero. -/
lemma tendsto_sum_nat_add (f : ℕ → ℝ≥0) : tendsto (λ i, ∑' k, f (k + i)) at_top (𝓝 0) :=
begin
rw ← tendsto_coe,
convert tendsto_sum_nat_add (λ i, (f i : ℝ)),
norm_cast,
end
end nnreal
namespace ennreal
lemma tendsto_sum_nat_add (f : ℕ → ennreal) (hf : (∑' i, f i) ≠ ∞) :
tendsto (λ i, ∑' k, f (k + i)) at_top (𝓝 0) :=
begin
have : ∀ i, (∑' k, (((ennreal.to_nnreal ∘ f) (k + i) : ℝ≥0) : ennreal)) =
(∑' k, (ennreal.to_nnreal ∘ f) (k + i) : ℝ≥0) :=
λ i, (ennreal.coe_tsum
(nnreal.summable_nat_add _ (summable_to_nnreal_of_tsum_ne_top hf) _)).symm,
simp only [λ x, (to_nnreal_apply_of_tsum_ne_top hf x).symm, ←ennreal.coe_zero,
this, ennreal.tendsto_coe] { single_pass := tt },
exact nnreal.tendsto_sum_nat_add _
end
end ennreal
lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ} (hf : summable f) (hn : ∀ a, 0 ≤ f a)
{i : β → α} (hi : function.injective i) : tsum (f ∘ i) ≤ tsum f :=
begin
let g : α → ℝ≥0 := λ a, ⟨f a, hn a⟩,
have hg : summable g, by rwa ← nnreal.summable_coe,
convert nnreal.coe_le_coe.2 (nnreal.tsum_comp_le_tsum_of_inj hg hi);
{ rw nnreal.coe_tsum, congr }
end
/-- Comparison test of convergence of series of non-negative real numbers. -/
lemma summable_of_nonneg_of_le {f g : β → ℝ}
(hg : ∀b, 0 ≤ g b) (hgf : ∀b, g b ≤ f b) (hf : summable f) : summable g :=
let f' (b : β) : ℝ≥0 := ⟨f b, le_trans (hg b) (hgf b)⟩ in
let g' (b : β) : ℝ≥0 := ⟨g b, hg b⟩ in
have summable f', from nnreal.summable_coe.1 hf,
have summable g', from
nnreal.summable_of_le (assume b, (@nnreal.coe_le_coe (g' b) (f' b)).2 $ hgf b) this,
show summable (λb, g' b : β → ℝ), from nnreal.summable_coe.2 this
/-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if
the sequence of partial sum converges to `r`. -/
lemma has_sum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀i, 0 ≤ f i) (r : ℝ) :
has_sum f r ↔ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) :=
begin
lift f to ℕ → ℝ≥0 using hf,
simp only [has_sum, ← nnreal.coe_sum, nnreal.tendsto_coe'],
exact exists_congr (λ hr, nnreal.has_sum_iff_tendsto_nat)
end
lemma not_summable_iff_tendsto_nat_at_top_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
¬ summable f ↔ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top :=
begin
lift f to ℕ → ℝ≥0 using hf,
exact_mod_cast nnreal.not_summable_iff_tendsto_nat_at_top
end
lemma summable_iff_not_tendsto_nat_at_top_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) :
summable f ↔ ¬ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top :=
by rw [← not_iff_not, not_not, not_summable_iff_tendsto_nat_at_top_of_nonneg hf]
lemma summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : summable f :=
begin
apply (summable_iff_not_tendsto_nat_at_top_of_nonneg hf).2 (λ H, _),
rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩,
exact lt_irrefl _ (hn.trans_le (h n)),
end
lemma tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : (∑' n, f n) ≤ c :=
le_of_tendsto' ((has_sum_iff_tendsto_nat_of_nonneg hf _).1
(summable_of_sum_range_le hf h).has_sum) h
section
variables [emetric_space β]
open ennreal filter emetric
/-- In an emetric ball, the distance between points is everywhere finite -/
lemma edist_ne_top_of_mem_ball {a : β} {r : ennreal} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ :=
lt_top_iff_ne_top.1 $
calc edist x y ≤ edist a x + edist a y : edist_triangle_left x.1 y.1 a
... < r + r : by rw [edist_comm a x, edist_comm a y]; exact add_lt_add x.2 y.2
... ≤ ⊤ : le_top
/-- Each ball in an extended metric space gives us a metric space, as the edist
is everywhere finite. -/
def metric_space_emetric_ball (a : β) (r : ennreal) : metric_space (ball a r) :=
emetric_space.to_metric_space edist_ne_top_of_mem_ball
local attribute [instance] metric_space_emetric_ball
lemma nhds_eq_nhds_emetric_ball (a x : β) (r : ennreal) (h : x ∈ ball a r) :
𝓝 x = map (coe : ball a r → β) (𝓝 ⟨x, h⟩) :=
(map_nhds_subtype_coe_eq _ $ mem_nhds_sets emetric.is_open_ball h).symm
end
section
variable [emetric_space α]
open emetric
lemma tendsto_iff_edist_tendsto_0 {l : filter β} {f : β → α} {y : α} :
tendsto f l (𝓝 y) ↔ tendsto (λ x, edist (f x) y) l (𝓝 0) :=
by simp only [emetric.nhds_basis_eball.tendsto_right_iff, emetric.mem_ball,
@tendsto_order ennreal β _ _, forall_prop_of_false ennreal.not_lt_zero, forall_const, true_and]
/-- Yet another metric characterization of Cauchy sequences on integers. This one is often the
most efficient. -/
lemma emetric.cauchy_seq_iff_le_tendsto_0 [nonempty β] [semilattice_sup β] {s : β → α} :
cauchy_seq s ↔ (∃ (b: β → ennreal), (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N)
∧ (tendsto b at_top (𝓝 0))) :=
⟨begin
assume hs,
rw emetric.cauchy_seq_iff at hs,
/- `s` is Cauchy sequence. The sequence `b` will be constructed by taking
the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/
let b := λN, Sup ((λ(p : β × β), edist (s p.1) (s p.2))''{p | p.1 ≥ N ∧ p.2 ≥ N}),
--Prove that it bounds the distances of points in the Cauchy sequence
have C : ∀ n m N, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N,
{ refine λm n N hm hn, le_Sup _,
use (prod.mk m n),
simp only [and_true, eq_self_iff_true, set.mem_set_of_eq],
exact ⟨hm, hn⟩ },
--Prove that it tends to `0`, by using the Cauchy property of `s`
have D : tendsto b at_top (𝓝 0),
{ refine tendsto_order.2 ⟨λa ha, absurd ha (ennreal.not_lt_zero), λε εpos, _⟩,
rcases exists_between εpos with ⟨δ, δpos, δlt⟩,
rcases hs δ δpos with ⟨N, hN⟩,
refine filter.mem_at_top_sets.2 ⟨N, λn hn, _⟩,
have : b n ≤ δ := Sup_le begin
simp only [and_imp, set.mem_image, set.mem_set_of_eq, exists_imp_distrib, prod.exists],
intros d p q hp hq hd,
rw ← hd,
exact le_of_lt (hN p q (le_trans hn hp) (le_trans hn hq))
end,
simpa using lt_of_le_of_lt this δlt },
-- Conclude
exact ⟨b, ⟨C, D⟩⟩
end,
begin
rintros ⟨b, ⟨b_bound, b_lim⟩⟩,
/-b : ℕ → ℝ, b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N,
b_lim : tendsto b at_top (𝓝 0)-/
refine emetric.cauchy_seq_iff.2 (λε εpos, _),
have : ∀ᶠ n in at_top, b n < ε := (tendsto_order.1 b_lim ).2 _ εpos,
rcases filter.mem_at_top_sets.1 this with ⟨N, hN⟩,
exact ⟨N, λm n hm hn, calc
edist (s m) (s n) ≤ b N : b_bound m n N hm hn
... < ε : (hN _ (le_refl N)) ⟩
end⟩
lemma continuous_of_le_add_edist {f : α → ennreal} (C : ennreal)
(hC : C ≠ ⊤) (h : ∀x y, f x ≤ f y + C * edist x y) : continuous f :=
begin
refine continuous_iff_continuous_at.2 (λx, tendsto_order.2 ⟨_, _⟩),
show ∀e, e < f x → ∀ᶠ y in 𝓝 x, e < f y,
{ assume e he,
let ε := min (f x - e) 1,
have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]),
have : 0 < ε := by simp [ε, hC, he, ennreal.zero_lt_one],
have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, mul_eq_zero]),
have I : C * (C⁻¹ * (ε/2)) < ε,
{ by_cases C_zero : C = 0,
{ simp [C_zero, ‹0 < ε›] },
{ calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc]
... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC]
... < ε : ennreal.half_lt_self (‹0 < ε›.ne') (‹ε < ⊤›.ne) }},
have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | e < f y},
{ rintros y hy,
by_cases htop : f y = ⊤,
{ simp [htop, lt_top_iff_ne_top, ne_top_of_lt he] },
{ simp at hy,
have : e + ε < f y + ε := calc
e + ε ≤ e + (f x - e) : add_le_add_left (min_le_left _ _) _
... = f x : by simp [le_of_lt he]
... ≤ f y + C * edist x y : h x y
... = f y + C * edist y x : by simp [edist_comm]
... ≤ f y + C * (C⁻¹ * (ε/2)) :
add_le_add_left (canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy)) _
... < f y + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I,
show e < f y, from
(ennreal.add_lt_add_iff_right ‹ε < ⊤›).1 this }},
apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this },
show ∀e, f x < e → ∀ᶠ y in 𝓝 x, f y < e,
{ assume e he,
let ε := min (e - f x) 1,
have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]),
have : 0 < ε := by simp [ε, he, ennreal.zero_lt_one],
have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, mul_eq_zero]),
have I : C * (C⁻¹ * (ε/2)) < ε,
{ by_cases C_zero : C = 0,
simp [C_zero, ‹0 < ε›],
calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc]
... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC]
... < ε : ennreal.half_lt_self (‹0 < ε›.ne') (‹ε < ⊤›.ne) },
have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | f y < e},
{ rintros y hy,
have htop : f x ≠ ⊤ := ne_top_of_lt he,
show f y < e, from calc
f y ≤ f x + C * edist y x : h y x
... ≤ f x + C * (C⁻¹ * (ε/2)) :
add_le_add_left (canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy)) _
... < f x + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I
... ≤ f x + (e - f x) : add_le_add_left (min_le_left _ _) _
... = e : by simp [le_of_lt he] },
apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this },
end
theorem continuous_edist : continuous (λp:α×α, edist p.1 p.2) :=
begin
apply continuous_of_le_add_edist 2 (by norm_num),
rintros ⟨x, y⟩ ⟨x', y'⟩,
calc edist x y ≤ edist x x' + edist x' y' + edist y' y : edist_triangle4 _ _ _ _
... = edist x' y' + (edist x x' + edist y y') : by simp [edist_comm]; cc
... ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) :
add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _
... = edist x' y' + 2 * edist (x, y) (x', y') : by rw [← mul_two, mul_comm]
end
theorem continuous.edist [topological_space β] {f g : β → α}
(hf : continuous f) (hg : continuous g) : continuous (λb, edist (f b) (g b)) :=
continuous_edist.comp (hf.prod_mk hg : _)
theorem filter.tendsto.edist {f g : β → α} {x : filter β} {a b : α}
(hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) :
tendsto (λx, edist (f x) (g x)) x (𝓝 (edist a b)) :=
(continuous_edist.tendsto (a, b)).comp (hf.prod_mk_nhds hg)
lemma cauchy_seq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ennreal)
(hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) :
cauchy_seq f :=
begin
lift d to (ℕ → nnreal) using (λ i, ennreal.ne_top_of_tsum_ne_top hd i),
rw ennreal.tsum_coe_ne_top_iff_summable at hd,
exact cauchy_seq_of_edist_le_of_summable d hf hd
end
lemma emetric.is_closed_ball {a : α} {r : ennreal} : is_closed (closed_ball a r) :=
is_closed_le (continuous_id.edist continuous_const) continuous_const
/-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ennreal`,
then the distance from `f n` to the limit is bounded by `∑'_{k=n}^∞ d k`. -/
lemma edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ennreal)
(hf : ∀ n, edist (f n) (f n.succ) ≤ d n)
{a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) :
edist (f n) a ≤ ∑' m, d (n + m) :=
begin
refine le_of_tendsto (tendsto_const_nhds.edist ha)
(mem_at_top_sets.2 ⟨n, λ m hnm, _⟩),
refine le_trans (edist_le_Ico_sum_of_edist_le hnm (λ k _ _, hf k)) _,
rw [finset.sum_Ico_eq_sum_range],
exact sum_le_tsum _ (λ _ _, zero_le _) ennreal.summable
end
/-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ennreal`,
then the distance from `f 0` to the limit is bounded by `∑'_{k=0}^∞ d k`. -/
lemma edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → ennreal)
(hf : ∀ n, edist (f n) (f n.succ) ≤ d n)
{a : α} (ha : tendsto f at_top (𝓝 a)) :
edist (f 0) a ≤ ∑' m, d m :=
by simpa using edist_le_tsum_of_edist_le_of_tendsto d hf ha 0
end --section
|
48f43a87f9d20f2dc72aab6bc755166ace193d82
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/stage0/src/Lean/Data/PrefixTree.lean
|
2ad20bab33e2c5ec0519d53f604865a186167ba5
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,820
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Std.Data.RBMap
namespace Lean
open Std
/- Similar to trie, but for arbitrary keys -/
inductive PrefixTreeNode (α : Type u) (β : Type v) where
| Node : Option β → RBNode α (fun _ => PrefixTreeNode α β) → PrefixTreeNode α β
instance : Inhabited (PrefixTreeNode α β) where
default := PrefixTreeNode.Node none RBNode.leaf
namespace PrefixTreeNode
def empty : PrefixTreeNode α β :=
PrefixTreeNode.Node none RBNode.leaf
@[specialize]
partial def insert (t : PrefixTreeNode α β) (cmp : α → α → Ordering) (k : List α) (val : β) : PrefixTreeNode α β :=
let rec insertEmpty (k : List α) : PrefixTreeNode α β :=
match k with
| [] => PrefixTreeNode.Node (some val) RBNode.leaf
| k :: ks =>
let t := insertEmpty ks
PrefixTreeNode.Node none (RBNode.singleton k t)
let rec loop
| PrefixTreeNode.Node _ m, [] =>
PrefixTreeNode.Node (some val) m -- overrides old value
| PrefixTreeNode.Node v m, k :: ks =>
let t := match RBNode.find cmp m k with
| none => insertEmpty ks
| some t => loop t ks
PrefixTreeNode.Node v (RBNode.insert cmp m k t)
loop t k
@[specialize]
partial def find? (t : PrefixTreeNode α β) (cmp : α → α → Ordering) (k : List α) : Option β :=
let rec loop
| PrefixTreeNode.Node val _, [] => val
| PrefixTreeNode.Node _ m, k :: ks =>
match RBNode.find cmp m k with
| none => none
| some t => loop t ks
loop t k
@[specialize]
partial def foldMatchingM [Monad m] (t : PrefixTreeNode α β) (cmp : α → α → Ordering) (k : List α) (init : σ) (f : β → σ → m σ) : m σ :=
let rec fold : PrefixTreeNode α β → σ → m σ
| PrefixTreeNode.Node b? n, d => do
let d ← match b? with
| none => pure d
| some b => f b d
n.foldM (init := d) fun d _ t => fold t d
let rec find : List α → PrefixTreeNode α β → σ → m σ
| [], t, d => fold t d
| k::ks, PrefixTreeNode.Node _ m, d =>
match RBNode.find cmp m k with
| none => pure init
| some t => find ks t d
find k t init
inductive WellFormed (cmp : α → α → Ordering) : PrefixTreeNode α β → Prop where
| emptyWff : WellFormed cmp empty
| insertWff : WellFormed cmp t → WellFormed cmp (insert t cmp k val)
end PrefixTreeNode
def PrefixTree (α : Type u) (β : Type v) (cmp : α → α → Ordering) : Type (max u v) :=
{ t : PrefixTreeNode α β // t.WellFormed cmp }
open PrefixTreeNode
def PrefixTree.empty : PrefixTree α β p :=
⟨PrefixTreeNode.empty, WellFormed.emptyWff⟩
instance : Inhabited (PrefixTree α β p) where
default := PrefixTree.empty
instance : EmptyCollection (PrefixTree α β p) where
emptyCollection := PrefixTree.empty
@[inline]
def PrefixTree.insert (t : PrefixTree α β p) (k : List α) (v : β) : PrefixTree α β p :=
⟨t.val.insert p k v, WellFormed.insertWff t.property⟩
@[inline]
def PrefixTree.find? (t : PrefixTree α β p) (k : List α) : Option β :=
t.val.find? p k
@[inline]
def PrefixTree.foldMatchingM [Monad m] (t : PrefixTree α β p) (k : List α) (init : σ) (f : β → σ → m σ) : m σ :=
t.val.foldMatchingM p k init f
@[inline]
def PrefixTree.foldM [Monad m] (t : PrefixTree α β p) (init : σ) (f : β → σ → m σ) : m σ :=
t.foldMatchingM [] init f
@[inline]
def PrefixTree.forMatchingM [Monad m] (t : PrefixTree α β p) (k : List α) (f : β → m Unit) : m Unit :=
t.val.foldMatchingM p k () (fun b _ => f b)
@[inline]
def PrefixTree.forM [Monad m] (t : PrefixTree α β p) (f : β → m Unit) : m Unit :=
t.forMatchingM [] f
end Lean
|
9927546b2d35a8209cf976873a2fee09eff9d0a9
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/control/fix.lean
|
326c5daa2ac42e33cd6e1995625a843929013e5c
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,244
|
lean
|
/-
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import data.part
import data.nat.upto
import data.stream.defs
/-!
# Fixed point
This module defines a generic `fix` operator for defining recursive
computations that are not necessarily well-founded or productive.
An instance is defined for `part`.
## Main definition
* class `has_fix`
* `part.fix`
-/
universes u v
open_locale classical
variables {α : Type*} {β : α → Type*}
/-- `has_fix α` gives us a way to calculate the fixed point
of function of type `α → α`. -/
class has_fix (α : Type*) :=
(fix : (α → α) → α)
namespace part
open part nat nat.upto
section basic
variables (f : (Π a, part $ β a) → (Π a, part $ β a))
/-- A series of successive, finite approximation of the fixed point of `f`, defined by
`approx f n = f^[n] ⊥`. The limit of this chain is the fixed point of `f`. -/
def fix.approx : stream $ Π a, part $ β a
| 0 := ⊥
| (nat.succ i) := f (fix.approx i)
/-- loop body for finding the fixed point of `f` -/
def fix_aux {p : ℕ → Prop} (i : nat.upto p)
(g : Π j : nat.upto p, i < j → Π a, part $ β a) : Π a, part $ β a :=
f $ λ x : α,
assert (¬p (i.val)) $ λ h : ¬ p (i.val),
g (i.succ h) (nat.lt_succ_self _) x
/-- The least fixed point of `f`.
If `f` is a continuous function (according to complete partial orders),
it satisfies the equations:
1. `fix f = f (fix f)` (is a fixed point)
2. `∀ X, f X ≤ X → fix f ≤ X` (least fixed point)
-/
protected def fix (x : α) : part $ β x :=
part.assert (∃ i, (fix.approx f i x).dom) $ λ h,
well_founded.fix.{1} (nat.upto.wf h) (fix_aux f) nat.upto.zero x
protected lemma fix_def {x : α} (h' : ∃ i, (fix.approx f i x).dom) :
part.fix f x = fix.approx f (nat.succ $ nat.find h') x :=
begin
let p := λ (i : ℕ), (fix.approx f i x).dom,
have : p (nat.find h') := nat.find_spec h',
generalize hk : nat.find h' = k,
replace hk : nat.find h' = k + (@upto.zero p).val := hk,
rw hk at this,
revert hk,
dsimp [part.fix], rw assert_pos h', revert this,
generalize : upto.zero = z, intros,
suffices : ∀ x',
well_founded.fix (fix._proof_1 f x h') (fix_aux f) z x' = fix.approx f (succ k) x',
from this _,
induction k generalizing z; intro,
{ rw [fix.approx,well_founded.fix_eq,fix_aux],
congr, ext : 1, rw assert_neg, refl,
rw nat.zero_add at this,
simpa only [not_not, subtype.val_eq_coe] },
{ rw [fix.approx,well_founded.fix_eq,fix_aux],
congr, ext : 1,
have hh : ¬(fix.approx f (z.val) x).dom,
{ apply nat.find_min h',
rw [hk,nat.succ_add,← nat.add_succ],
apply nat.lt_of_succ_le,
apply nat.le_add_left },
rw succ_add_eq_succ_add at this hk,
rw [assert_pos hh, k_ih (upto.succ z hh) this hk] }
end
lemma fix_def' {x : α} (h' : ¬ ∃ i, (fix.approx f i x).dom) :
part.fix f x = none :=
by dsimp [part.fix]; rw assert_neg h'
end basic
end part
namespace part
instance : has_fix (part α) :=
⟨λ f, part.fix (λ x u, f (x u)) ()⟩
end part
open sigma
namespace pi
instance part.has_fix {β} : has_fix (α → part β) := ⟨part.fix⟩
end pi
|
a9d0323cd1e5d9d386869937ccef139ae7932105
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/measure_theory/special_functions.lean
|
deff8b879ae2134ffe8ea752c8b60d37fbe467f7
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 6,619
|
lean
|
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.special_functions.pow
import analysis.normed_space.inner_product
import measure_theory.borel_space
/-!
# Measurability of real and complex functions
We show that most standard real and complex functions are measurable, notably `exp`, `cos`, `sin`,
`cosh`, `sinh`, `log`, `pow`, `arcsin`, `arccos`, `arctan`, and scalar products.
-/
noncomputable theory
open_locale nnreal ennreal
namespace real
lemma measurable_exp : measurable exp := continuous_exp.measurable
lemma measurable_log : measurable log :=
measurable_of_measurable_on_compl_singleton 0 $ continuous.measurable $
continuous_on_iff_continuous_restrict.1 continuous_on_log
lemma measurable_sin : measurable sin := continuous_sin.measurable
lemma measurable_cos : measurable cos := continuous_cos.measurable
lemma measurable_sinh : measurable sinh := continuous_sinh.measurable
lemma measurable_cosh : measurable cosh := continuous_cosh.measurable
lemma measurable_arcsin : measurable arcsin := continuous_arcsin.measurable
lemma measurable_arccos : measurable arccos := continuous_arccos.measurable
lemma measurable_arctan : measurable arctan := continuous_arctan.measurable
end real
namespace complex
lemma measurable_re : measurable re := continuous_re.measurable
lemma measurable_im : measurable im := continuous_im.measurable
lemma measurable_of_real : measurable (coe : ℝ → ℂ) := continuous_of_real.measurable
lemma measurable_exp : measurable exp := continuous_exp.measurable
lemma measurable_sin : measurable sin := continuous_sin.measurable
lemma measurable_cos : measurable cos := continuous_cos.measurable
lemma measurable_sinh : measurable sinh := continuous_sinh.measurable
lemma measurable_cosh : measurable cosh := continuous_cosh.measurable
lemma measurable_arg : measurable arg :=
have A : measurable (λ x : ℂ, real.arcsin (x.im / x.abs)),
from real.measurable_arcsin.comp (measurable_im.div measurable_norm),
have B : measurable (λ x : ℂ, real.arcsin ((-x).im / x.abs)),
from real.measurable_arcsin.comp ((measurable_im.comp measurable_neg).div measurable_norm),
measurable.ite (is_closed_le continuous_const continuous_re).measurable_set A $
measurable.ite (is_closed_le continuous_const continuous_im).measurable_set
(B.add_const _) (B.sub_const _)
lemma measurable_log : measurable log :=
(measurable_of_real.comp $ real.measurable_log.comp measurable_norm).add $
(measurable_of_real.comp measurable_arg).mul_const I
end complex
section real_composition
open real
variables {α : Type*} [measurable_space α] {f : α → ℝ} (hf : measurable f)
lemma measurable.exp : measurable (λ x, real.exp (f x)) :=
real.measurable_exp.comp hf
lemma measurable.log : measurable (λ x, log (f x)) :=
measurable_log.comp hf
lemma measurable.cos : measurable (λ x, real.cos (f x)) :=
real.measurable_cos.comp hf
lemma measurable.sin : measurable (λ x, real.sin (f x)) :=
real.measurable_sin.comp hf
lemma measurable.cosh : measurable (λ x, real.cosh (f x)) :=
real.measurable_cosh.comp hf
lemma measurable.sinh : measurable (λ x, real.sinh (f x)) :=
real.measurable_sinh.comp hf
lemma measurable.arctan : measurable (λ x, arctan (f x)) :=
measurable_arctan.comp hf
lemma measurable.sqrt : measurable (λ x, sqrt (f x)) :=
continuous_sqrt.measurable.comp hf
end real_composition
section complex_composition
open complex
variables {α : Type*} [measurable_space α] {f : α → ℂ} (hf : measurable f)
lemma measurable.cexp : measurable (λ x, complex.exp (f x)) :=
complex.measurable_exp.comp hf
lemma measurable.ccos : measurable (λ x, complex.cos (f x)) :=
complex.measurable_cos.comp hf
lemma measurable.csin : measurable (λ x, complex.sin (f x)) :=
complex.measurable_sin.comp hf
lemma measurable.ccosh : measurable (λ x, complex.cosh (f x)) :=
complex.measurable_cosh.comp hf
lemma measurable.csinh : measurable (λ x, complex.sinh (f x)) :=
complex.measurable_sinh.comp hf
lemma measurable.carg : measurable (λ x, arg (f x)) :=
measurable_arg.comp hf
lemma measurable.clog : measurable (λ x, log (f x)) :=
measurable_log.comp hf
end complex_composition
section pow_instances
instance complex.has_measurable_pow : has_measurable_pow ℂ ℂ :=
⟨measurable.ite (measurable_fst (measurable_set_singleton 0))
(measurable.ite (measurable_snd (measurable_set_singleton 0)) measurable_one measurable_zero)
(measurable_fst.clog.mul measurable_snd).cexp⟩
instance real.has_measurable_pow : has_measurable_pow ℝ ℝ :=
⟨complex.measurable_re.comp $ ((complex.measurable_of_real.comp measurable_fst).pow
(complex.measurable_of_real.comp measurable_snd))⟩
instance nnreal.has_measurable_pow : has_measurable_pow ℝ≥0 ℝ :=
⟨(measurable_fst.coe_nnreal_real.pow measurable_snd).subtype_mk⟩
instance ennreal.has_measurable_pow : has_measurable_pow ℝ≥0∞ ℝ :=
begin
refine ⟨ennreal.measurable_of_measurable_nnreal_prod _ _⟩,
{ simp_rw ennreal.coe_rpow_def,
refine measurable.ite _ measurable_const
(measurable_fst.pow measurable_snd).coe_nnreal_ennreal,
exact measurable_set.inter (measurable_fst (measurable_set_singleton 0))
(measurable_snd measurable_set_Iio), },
{ simp_rw ennreal.top_rpow_def,
refine measurable.ite measurable_set_Ioi measurable_const _,
exact measurable.ite (measurable_set_singleton 0) measurable_const measurable_const, },
end
end pow_instances
section
variables {α : Type*} {𝕜 : Type*} {E : Type*} [is_R_or_C 𝕜] [inner_product_space 𝕜 E]
local notation `⟪`x`, `y`⟫` := @inner 𝕜 _ _ x y
lemma measurable.inner [measurable_space α] [measurable_space E] [opens_measurable_space E]
[topological_space.second_countable_topology E] [measurable_space 𝕜] [borel_space 𝕜]
{f g : α → E} (hf : measurable f) (hg : measurable g) :
measurable (λ t, ⟪f t, g t⟫) :=
continuous.measurable2 continuous_inner hf hg
lemma ae_measurable.inner [measurable_space α] [measurable_space E] [opens_measurable_space E]
[topological_space.second_countable_topology E] [measurable_space 𝕜] [borel_space 𝕜]
{μ : measure_theory.measure α} {f g : α → E} (hf : ae_measurable f μ) (hg : ae_measurable g μ) :
ae_measurable (λ x, ⟪f x, g x⟫) μ :=
begin
refine ⟨λ x, ⟪hf.mk f x, hg.mk g x⟫, hf.measurable_mk.inner hg.measurable_mk, _⟩,
refine hf.ae_eq_mk.mp (hg.ae_eq_mk.mono (λ x hxg hxf, _)),
dsimp only,
congr,
{ exact hxf, },
{ exact hxg, },
end
end
|
b15688f72a70b80be1873f229cb40bee3e5bfdc4
|
5e3548e65f2c037cb94cd5524c90c623fbd6d46a
|
/src_icannos_totilas/aops/2007-BMO-Problem_2.lean
|
3f63726e306455fbf70f01b27409337c7278fa52
|
[] |
no_license
|
ahayat16/lean_exos
|
d4f08c30adb601a06511a71b5ffb4d22d12ef77f
|
682f2552d5b04a8c8eb9e4ab15f875a91b03845c
|
refs/heads/main
| 1,693,101,073,585
| 1,636,479,336,000
| 1,636,479,336,000
| 415,000,441
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 193
|
lean
|
import data.real.basic
theorem BMO_Problem_2_2007.lean (f : ℝ -> ℝ) : (∀ x y : ℝ, f(f(x)+y) = f(f(x) -y) + 4*f(x)*y)
→ (f = 0 ∨ (∃ c : ℝ, ∀ x : ℝ, f(x) = x^2 +c)) := sorry
|
2777b45d70a76f9ec99a33b6251d59ac845c82e1
|
968e2f50b755d3048175f176376eff7139e9df70
|
/examples/pred_logic/unnamed_208.lean
|
e61ebe34c9a382fa8d5f45f190efa16836d5f1c5
|
[] |
no_license
|
gihanmarasingha/mth1001_sphinx
|
190a003269ba5e54717b448302a27ca26e31d491
|
05126586cbf5786e521be1ea2ef5b4ba3c44e74a
|
refs/heads/master
| 1,672,913,933,677
| 1,604,516,583,000
| 1,604,516,583,000
| 309,245,750
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 56
|
lean
|
def divides (a b : ℤ) : Prop := ∃ m : ℤ, b = a * m
|
79abbfaa2a9c2c9d4bccac01a0fbe2c05c97906e
|
b2fe74b11b57d362c13326bc5651244f111fa6f4
|
/src/group_theory/free_abelian_group.lean
|
94b6dd966eef617a3354123c3bd878354f478116
|
[
"Apache-2.0"
] |
permissive
|
midfield/mathlib
|
c4db5fa898b5ac8f2f80ae0d00c95eb6f745f4c7
|
775edc615ecec631d65b6180dbcc7bc26c3abc26
|
refs/heads/master
| 1,675,330,551,921
| 1,608,304,514,000
| 1,608,304,514,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 13,258
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
Free abelian groups as abelianization of free groups.
-- TODO: rewrite in terms of finsupp
-/
import algebra.group.pi
import group_theory.free_group
import group_theory.abelianization
universes u v
variables (α : Type u)
def free_abelian_group : Type u :=
additive $ abelianization $ free_group α
instance : add_comm_group (free_abelian_group α) :=
@additive.add_comm_group _ $ abelianization.comm_group _
instance : inhabited (free_abelian_group α) := ⟨0⟩
variable {α}
namespace free_abelian_group
def of (x : α) : free_abelian_group α :=
abelianization.of $ free_group.of x
def lift {β : Type v} [add_comm_group β] (f : α → β) : free_abelian_group α →+ β :=
(@abelianization.lift _ _ (multiplicative β) _ (monoid_hom.of (@free_group.to_group _ (multiplicative β) _ f))).to_additive
namespace lift
variables {β : Type v} [add_comm_group β] (f : α → β)
open free_abelian_group
@[simp] protected lemma add (x y : free_abelian_group α) :
lift f (x + y) = lift f x + lift f y :=
is_add_hom.map_add _ _ _
@[simp] protected lemma neg (x : free_abelian_group α) : lift f (-x) = -lift f x :=
is_add_group_hom.map_neg _ _
@[simp] protected lemma sub (x y : free_abelian_group α) :
lift f (x - y) = lift f x - lift f y :=
by simp [sub_eq_add_neg]
@[simp] protected lemma zero : lift f 0 = 0 :=
is_add_group_hom.map_zero _
@[simp] protected lemma of (x : α) : lift f (of x) = f x :=
begin
convert @abelianization.lift.of (free_group α) _ (multiplicative β) _ _ _,
convert free_group.to_group.of.symm
end
protected theorem unique (g : free_abelian_group α →+ β)
(hg : ∀ x, g (of x) = f x) {x} :
g x = lift f x :=
@abelianization.lift.unique (free_group α) _ (multiplicative β) _
(monoid_hom.of (@free_group.to_group _ (multiplicative β) _ f)) g.to_multiplicative
(λ x, @free_group.to_group.unique α (multiplicative β) _ _
((add_monoid_hom.to_multiplicative' g).comp abelianization.of)
hg x) _
protected theorem ext (g h : free_abelian_group α →+ β)
(H : ∀ x, g (of x) = h (of x)) {x} :
g x = h x :=
(lift.unique (g ∘ of) g (λ _, rfl)).trans $
eq.symm $ lift.unique _ _ $ λ x, eq.symm $ H x
lemma map_hom {α β γ} [add_comm_group β] [add_comm_group γ]
(a : free_abelian_group α) (f : α → β) (g : β →+ γ) :
g (lift f a) = lift (g ∘ f) a :=
begin
suffices : (g.comp (lift f)) a = lift (g ∘ f) a,
exact this,
apply @lift.unique,
assume a,
show g ((lift f) (of a)) = g (f a),
simp only [(∘), lift.of],
end
end lift
section
open_locale classical
lemma of_injective : function.injective (of : α → free_abelian_group α) :=
λ x y hoxy, classical.by_contradiction $ assume hxy : x ≠ y,
let f : free_abelian_group α →+ ℤ := lift (λ z, if x = z then 1 else 0) in
have hfx1 : f (of x) = 1, from (lift.of _ _).trans $ if_pos rfl,
have hfy1 : f (of y) = 1, from hoxy ▸ hfx1,
have hfy0 : f (of y) = 0, from (lift.of _ _).trans $ if_neg hxy,
one_ne_zero $ hfy1.symm.trans hfy0
end
section
variables (X : Type*) (G : Type*) [add_comm_group G]
/-- The bijection underlying the free-forgetful adjunction for abelian groups.-/
def hom_equiv : (free_abelian_group X →+ G) ≃ (X → G) :=
{ to_fun := λ f, f.1 ∘ of,
inv_fun := λ f, add_monoid_hom.of (lift f),
left_inv := λ f, begin ext, simp, exact (lift.unique _ _ (λ x, rfl)).symm, end,
right_inv := λ f, funext $ λ x, lift.of f x }
@[simp]
lemma hom_equiv_apply (f) (x) : ((hom_equiv X G) f) x = f (of x) := rfl
@[simp]
lemma hom_equiv_symm_apply (f) (x) : ((hom_equiv X G).symm f) x = (lift f) x := rfl
end
local attribute [instance] quotient_group.left_rel
@[elab_as_eliminator]
protected theorem induction_on
{C : free_abelian_group α → Prop}
(z : free_abelian_group α)
(C0 : C 0)
(C1 : ∀ x, C $ of x)
(Cn : ∀ x, C (of x) → C (-of x))
(Cp : ∀ x y, C x → C y → C (x + y)) : C z :=
quotient.induction_on' z $ λ x, quot.induction_on x $ λ L,
list.rec_on L C0 $ λ ⟨x, b⟩ tl ih,
bool.rec_on b (Cp _ _ (Cn _ (C1 x)) ih) (Cp _ _ (C1 x) ih)
theorem lift.add' {α β} [add_comm_group β] (a : free_abelian_group α) (f g : α → β) :
lift (f + g) a = lift f a + lift g a :=
begin
refine free_abelian_group.induction_on a _ _ _ _,
{ simp only [lift.zero, zero_add] },
{ assume x,
simp only [lift.of, pi.add_apply] },
{ assume x h,
simp only [lift.neg, lift.of, pi.add_apply, neg_add] },
{ assume x y hx hy,
simp only [lift.add, hx, hy],
ac_refl }
end
instance is_add_group_hom_lift' {α} (β) [add_comm_group β] (a : free_abelian_group α) :
is_add_group_hom (λf, (lift f a : β)) :=
{ map_add := λ f g, lift.add' a f g }
variables {β : Type u}
instance : monad free_abelian_group.{u} :=
{ pure := λ α, of,
bind := λ α β x f, lift f x }
@[elab_as_eliminator]
protected theorem induction_on'
{C : free_abelian_group α → Prop}
(z : free_abelian_group α)
(C0 : C 0)
(C1 : ∀ x, C $ pure x)
(Cn : ∀ x, C (pure x) → C (-pure x))
(Cp : ∀ x y, C x → C y → C (x + y)) : C z :=
free_abelian_group.induction_on z C0 C1 Cn Cp
@[simp] lemma map_pure (f : α → β) (x : α) : f <$> (pure x : free_abelian_group α) = pure (f x) :=
lift.of _ _
@[simp] lemma map_zero (f : α → β) : f <$> (0 : free_abelian_group α) = 0 :=
lift.zero (of ∘ f)
@[simp] lemma map_add (f : α → β) (x y : free_abelian_group α) : f <$> (x + y) = f <$> x + f <$> y :=
lift.add _ _ _
@[simp] lemma map_neg (f : α → β) (x : free_abelian_group α) : f <$> (-x) = -(f <$> x) :=
lift.neg _ _
@[simp] lemma map_sub (f : α → β) (x y : free_abelian_group α) : f <$> (x - y) = f <$> x - f <$> y :=
lift.sub _ _ _
@[simp] lemma map_of (f : α → β) (y : α) : f <$> of y = of (f y) := rfl
/-- The additive group homomorphism `free_abelian_group α →+ free_abelian_group β` induced from a
map `α → β` -/
def map (f : α → β) : free_abelian_group α →+ free_abelian_group β :=
add_monoid_hom.mk' (λ x, f <$> x) $ map_add _
lemma lift_comp {α} {β} {γ} [add_comm_group γ]
(f : α → β) (g : β → γ) (x : free_abelian_group α) :
lift (g ∘ f) x = lift g (f <$> x) :=
begin
apply free_abelian_group.induction_on x,
{ simp only [lift.zero, map_zero], },
{ intro y, simp [lift.of, map_of, function.comp_app], },
{ intros x w, simp only [w, neg_inj, lift.neg, map_neg], },
{ intros x y w₁ w₂, simp only [w₁, w₂, lift.add, add_right_inj, map_add], },
end
@[simp] lemma pure_bind (f : α → free_abelian_group β) (x) : pure x >>= f = f x :=
lift.of _ _
@[simp] lemma zero_bind (f : α → free_abelian_group β) : 0 >>= f = 0 :=
lift.zero f
@[simp] lemma add_bind (f : α → free_abelian_group β) (x y : free_abelian_group α) : x + y >>= f = (x >>= f) + (y >>= f) :=
lift.add _ _ _
@[simp] lemma neg_bind (f : α → free_abelian_group β) (x : free_abelian_group α) : -x >>= f = -(x >>= f) :=
lift.neg _ _
@[simp] lemma sub_bind (f : α → free_abelian_group β) (x y : free_abelian_group α) : x - y >>= f = (x >>= f) - (y >>= f) :=
lift.sub _ _ _
@[simp] lemma pure_seq (f : α → β) (x : free_abelian_group α) : pure f <*> x = f <$> x :=
pure_bind _ _
@[simp] lemma zero_seq (x : free_abelian_group α) : (0 : free_abelian_group (α → β)) <*> x = 0 :=
zero_bind _
@[simp] lemma add_seq (f g : free_abelian_group (α → β)) (x : free_abelian_group α) : f + g <*> x = (f <*> x) + (g <*> x) :=
add_bind _ _ _
@[simp] lemma neg_seq (f : free_abelian_group (α → β)) (x : free_abelian_group α) : -f <*> x = -(f <*> x) :=
neg_bind _ _
@[simp] lemma sub_seq (f g : free_abelian_group (α → β)) (x : free_abelian_group α) : f - g <*> x = (f <*> x) - (g <*> x) :=
sub_bind _ _ _
instance is_add_group_hom_seq (f : free_abelian_group (α → β)) : is_add_group_hom ((<*>) f) :=
{ map_add := λ x y, show lift (<$> (x+y)) _ = _, by simp only [map_add]; exact
@@is_add_hom.map_add _ _ _ (@@free_abelian_group.is_add_group_hom_lift' (free_abelian_group β) _ _).to_is_add_hom _ _ }
@[simp] lemma seq_zero (f : free_abelian_group (α → β)) : f <*> 0 = 0 :=
is_add_group_hom.map_zero _
@[simp] lemma seq_add (f : free_abelian_group (α → β)) (x y : free_abelian_group α) : f <*> (x + y) = (f <*> x) + (f <*> y) :=
is_add_hom.map_add _ _ _
@[simp] lemma seq_neg (f : free_abelian_group (α → β)) (x : free_abelian_group α) : f <*> (-x) = -(f <*> x) :=
is_add_group_hom.map_neg _ _
@[simp] lemma seq_sub (f : free_abelian_group (α → β)) (x y : free_abelian_group α) : f <*> (x - y) = (f <*> x) - (f <*> y) :=
is_add_group_hom.map_sub _ _ _
instance : is_lawful_monad free_abelian_group.{u} :=
{ id_map := λ α x, free_abelian_group.induction_on' x (map_zero id) (λ x, map_pure id x)
(λ x ih, by rw [map_neg, ih]) (λ x y ihx ihy, by rw [map_add, ihx, ihy]),
pure_bind := λ α β x f, pure_bind f x,
bind_assoc := λ α β γ x f g, free_abelian_group.induction_on' x
(by iterate 3 { rw zero_bind }) (λ x, by iterate 2 { rw pure_bind })
(λ x ih, by iterate 3 { rw neg_bind }; rw ih)
(λ x y ihx ihy, by iterate 3 { rw add_bind }; rw [ihx, ihy]) }
instance : is_comm_applicative free_abelian_group.{u} :=
{ commutative_prod := λ α β x y, free_abelian_group.induction_on' x
(by rw [map_zero, zero_seq, seq_zero])
(λ p, by rw [map_pure, pure_seq]; exact free_abelian_group.induction_on' y
(by rw [map_zero, map_zero, zero_seq])
(λ q, by rw [map_pure, map_pure, pure_seq, map_pure])
(λ q ih, by rw [map_neg, map_neg, neg_seq, ih])
(λ y₁ y₂ ih1 ih2, by rw [map_add, map_add, add_seq, ih1, ih2]))
(λ p ih, by rw [map_neg, neg_seq, seq_neg, ih])
(λ x₁ x₂ ih1 ih2, by rw [map_add, add_seq, seq_add, ih1, ih2]) }
variable (α)
instance [monoid α] : semigroup (free_abelian_group α) :=
{ mul := λ x, lift $ λ x₂, lift (λ x₁, of $ x₁ * x₂) x,
mul_assoc := λ x y z, begin
unfold has_mul.mul,
refine free_abelian_group.induction_on z (by simp) _ _ _,
{ intros L3, rw [lift.of, lift.of],
refine free_abelian_group.induction_on y (by simp) _ _ _,
{ intros L2, iterate 3 { rw lift.of },
refine free_abelian_group.induction_on x (by simp) _ _ _,
{ intros L1, iterate 3 { rw lift.of }, congr' 1, exact mul_assoc _ _ _ },
{ intros L1 ih, iterate 3 { rw lift.neg }, rw ih },
{ intros x1 x2 ih1 ih2, iterate 3 { rw lift.add }, rw [ih1, ih2] } },
{ intros L2 ih, iterate 4 { rw lift.neg }, rw ih },
{ intros y1 y2 ih1 ih2, iterate 4 { rw lift.add }, rw [ih1, ih2] } },
{ intros L3 ih, iterate 3 { rw lift.neg }, rw ih },
{ intros z1 z2 ih1 ih2, iterate 2 { rw lift.add }, rw [ih1, ih2], exact (lift.add _ _ _).symm }
end }
lemma mul_def [monoid α] (x y : free_abelian_group α) :
x * y = lift (λ x₂, lift (λ x₁, of (x₁ * x₂)) x) y := rfl
lemma of_mul_of [monoid α] (x y : α) : of x * of y = of (x * y) := rfl
lemma of_mul [monoid α] (x y : α) : of (x * y) = of x * of y := rfl
instance [monoid α] : ring (free_abelian_group α) :=
{ one := free_abelian_group.of 1,
mul_one := λ x, begin
unfold has_mul.mul semigroup.mul has_one.one,
rw lift.of,
refine free_abelian_group.induction_on x rfl _ _ _,
{ intros L, erw [lift.of], congr' 1, exact mul_one L },
{ intros L ih, rw [lift.neg, ih] },
{ intros x1 x2 ih1 ih2, rw [lift.add, ih1, ih2] }
end,
one_mul := λ x, begin
unfold has_mul.mul semigroup.mul has_one.one,
refine free_abelian_group.induction_on x rfl _ _ _,
{ intros L, rw [lift.of, lift.of], congr' 1, exact one_mul L },
{ intros L ih, rw [lift.neg, ih] },
{ intros x1 x2 ih1 ih2, rw [lift.add, ih1, ih2] }
end,
left_distrib := λ x y z, lift.add _ _ _,
right_distrib := λ x y z, begin
unfold has_mul.mul semigroup.mul,
refine free_abelian_group.induction_on z rfl _ _ _,
{ intros L, iterate 3 { rw lift.of }, rw lift.add, refl },
{ intros L ih, iterate 3 { rw lift.neg }, rw [ih, neg_add], refl },
{ intros z1 z2 ih1 ih2, iterate 3 { rw lift.add }, rw [ih1, ih2],
rw [add_assoc, add_assoc], congr' 1, apply add_left_comm }
end,
.. free_abelian_group.add_comm_group α,
.. free_abelian_group.semigroup α }
lemma one_def [monoid α] : (1 : free_abelian_group α) = of 1 := rfl
lemma of_one [monoid α] : (of 1 : free_abelian_group α) = 1 := rfl
instance [comm_monoid α] : comm_ring (free_abelian_group α) :=
{ mul_comm := λ x y, begin
refine free_abelian_group.induction_on x (zero_mul y) _ _ _,
{ intros s, refine free_abelian_group.induction_on y (zero_mul _).symm _ _ _,
{ intros t, unfold has_mul.mul semigroup.mul ring.mul,
iterate 4 { rw lift.of }, congr' 1, exact mul_comm _ _ },
{ intros t ih, rw [mul_neg_eq_neg_mul_symm, ih, neg_mul_eq_neg_mul] },
{ intros y1 y2 ih1 ih2, rw [mul_add, add_mul, ih1, ih2] } },
{ intros s ih, rw [neg_mul_eq_neg_mul_symm, ih, neg_mul_eq_mul_neg] },
{ intros x1 x2 ih1 ih2, rw [add_mul, mul_add, ih1, ih2] }
end
.. free_abelian_group.ring α }
end free_abelian_group
|
abccc16ee414de4f65ef8207aad0b6eefbc11441
|
a4673261e60b025e2c8c825dfa4ab9108246c32e
|
/src/Lean/Util/Path.lean
|
be0dcde1468318d6fb7ae73fb05be6b6f79a7248
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/lean4
|
c02dec0cc32c4bccab009285475f265f17d73228
|
2909313475588cc20ac0436e55548a4502050d0a
|
refs/heads/master
| 1,674,129,550,893
| 1,606,415,348,000
| 1,606,415,348,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,415
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Sebastian Ullrich
Management of the Lean search path (`LEAN_PATH`), which is a list of
paths containing package roots: an import `A.B.C` resolves to
`path/A/B/C.olean` for the first entry `path` in `LEAN_PATH`
with a directory `A/`. `import A` resolves to `path/A.olean`.
-/
import Lean.Data.Name
namespace Lean
open System.FilePath (pathSeparator extSeparator)
private def pathSep : String := toString pathSeparator
def realPathNormalized (fname : String) : IO String := do
let fname ← IO.realPath fname
pure (System.FilePath.normalizePath fname)
abbrev SearchPath := List String
builtin_initialize searchPathRef : IO.Ref SearchPath ← IO.mkRef {}
def parseSearchPath (path : String) (sp : SearchPath := ∅) : IO SearchPath :=
pure $ System.FilePath.splitSearchPath path ++ sp
@[extern c inline "LEAN_IS_STAGE0"]
constant isStage0 (u : Unit) : Bool
def getBuiltinSearchPath : IO SearchPath := do
let appDir ← IO.appDir
-- use stage1 stdlib with stage0 executable (which should never be distributed outside of the build directory)
pure [appDir ++ pathSep ++ ".." ++ (if isStage0 () then pathSep ++ ".." ++ pathSep ++ "stage1" else "") ++ pathSep ++ "lib" ++ pathSep ++ "lean"]
def addSearchPathFromEnv (sp : SearchPath) : IO SearchPath := do
let val ← IO.getEnv "LEAN_PATH"
match val with
| none => pure sp
| some val => parseSearchPath val sp
@[export lean_init_search_path]
def initSearchPath (path : Option String := none) : IO Unit :=
match path with
| some path => parseSearchPath path >>= searchPathRef.set
| none => do
let sp ← getBuiltinSearchPath
let sp ← addSearchPathFromEnv sp
searchPathRef.set sp
def modPathToFilePath : Name → String
| Name.str p h _ => modPathToFilePath p ++ pathSep ++ h
| Name.anonymous => ""
| Name.num p _ _ => panic! "ill-formed import"
def findOLean (mod : Name) : IO String := do
let sp ← searchPathRef.get
let pkg := mod.getRoot.toString
let some root ← sp.findM? (fun path => IO.isDir $ path ++ pathSep ++ pkg)
| throw $ IO.userError $ "unknown package '" ++ pkg ++ "'"
pure $ root ++ modPathToFilePath mod ++ ".olean"
/-- Infer module name of source file name. -/
@[export lean_module_name_of_file]
def moduleNameOfFileName (fname : String) (rootDir : Option String) : IO Name := do
let fname ← realPathNormalized fname
let rootDir ← match rootDir with
| some rootDir => pure rootDir
| none => IO.currentDir
let rootDir ← realPathNormalized rootDir
if !rootDir.isPrefixOf fname then
throw $ IO.userError s!"input file '{fname}' must be contained in root directory ({rootDir})"
let fnameSuffix := fname.drop rootDir.length
let fnameSuffix := if fnameSuffix.get 0 == pathSeparator then fnameSuffix.drop 1 else fnameSuffix
let some extPos ← pure (fnameSuffix.revPosOf '.')
| throw (IO.userError ("failed to convert file name '" ++ fname ++ "' to module name, extension is missing"))
let modNameStr := fnameSuffix.extract 0 extPos
let extStr := fnameSuffix.extract (extPos + 1) fnameSuffix.bsize
let parts := modNameStr.splitOn pathSep
let modName := parts.foldl Name.mkStr Name.anonymous
pure modName
end Lean
|
4f7a5284154fe2c49a2f3b01b6d82556e5642411
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/library/init/default.lean
|
dc394d9fe12db2ab90f5d540c6b5374ff42d68bc
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 645
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.core init.logic init.control init.data.basic init.version
import init.propext init.cc_lemmas init.funext init.control.combinators init.function init.classical
import init.util init.coe init.wf init.meta init.meta.well_founded_tactics init.algebra init.data
import init.meta.float
import init.meta.widget
import init.meta.feature_search
@[user_attribute]
meta def debugger.attr : user_attribute :=
{ name := `breakpoint,
descr := "breakpoint for debugger" }
|
d96bc140dadca8223ecb7da4e3a743d4c806501d
|
d436468d80b739ba7e06843c4d0d2070e43448e5
|
/src/order/conditionally_complete_lattice.lean
|
670392a14be7a391e5f3fcb2d3161f840e48a98c
|
[
"Apache-2.0"
] |
permissive
|
roro47/mathlib
|
761fdc002aef92f77818f3fef06bf6ec6fc1a28e
|
80aa7d52537571a2ca62a3fdf71c9533a09422cf
|
refs/heads/master
| 1,599,656,410,625
| 1,573,649,488,000
| 1,573,649,488,000
| 221,452,951
| 0
| 0
|
Apache-2.0
| 1,573,647,693,000
| 1,573,647,692,000
| null |
UTF-8
|
Lean
| false
| false
| 35,630
|
lean
|
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
Adapted from the corresponding theory for complete lattices.
Theory of conditionally complete lattices.
A conditionally complete lattice is a lattice in which every non-empty bounded subset s
has a least upper bound and a greatest lower bound, denoted below by Sup s and Inf s.
Typical examples are real, nat, int with their usual orders.
The theory is very comparable to the theory of complete lattices, except that suitable
boundedness and non-emptyness assumptions have to be added to most statements.
We introduce two predicates bdd_above and bdd_below to express this boundedness, prove
their basic properties, and then go on to prove most useful properties of Sup and Inf
in conditionally complete lattices.
To differentiate the statements between complete lattices and conditionally complete
lattices, we prefix Inf and Sup in the statements by c, giving cInf and cSup. For instance,
Inf_le is a statement in complete lattices ensuring Inf s ≤ x, while cInf_le is the same
statement in conditionally complete lattices with an additional assumption that s is
bounded below.
-/
import
order.lattice order.complete_lattice order.bounds
tactic.finish data.set.finite
set_option old_structure_cmd true
open preorder set lattice
universes u v w
variables {α : Type u} {β : Type v} {ι : Type w}
section preorder
variables [preorder α] [preorder β] {s t : set α} {a b : α}
/-Sets bounded above and bounded below.-/
def bdd_above (s : set α) := ∃x, ∀y∈s, y ≤ x
def bdd_below (s : set α) := ∃x, ∀y∈s, x ≤ y
/-Introduction rules for boundedness above and below.
Most of the time, it is more efficient to use ⟨w, P⟩ where P is a proof
that all elements of the set are bounded by w. However, they are sometimes handy.-/
lemma bdd_above.mk (a : α) (H : ∀y∈s, y≤a) : bdd_above s := ⟨a, H⟩
lemma bdd_below.mk (a : α) (H : ∀y∈s, a≤y) : bdd_below s := ⟨a, H⟩
/-Empty sets and singletons are trivially bounded. For finite sets, we need
a notion of maximum and minimum, i.e., a lattice structure, see later on.-/
@[simp] lemma bdd_above_empty : ∀ [nonempty α], bdd_above (∅ : set α)
| ⟨x⟩ := ⟨x, by simp⟩
@[simp] lemma bdd_below_empty : ∀ [nonempty α], bdd_below (∅ : set α)
| ⟨x⟩ := ⟨x, by simp⟩
@[simp] lemma bdd_above_singleton : bdd_above ({a} : set α) :=
⟨a, by simp only [set.mem_singleton_iff, forall_eq]⟩
@[simp] lemma bdd_below_singleton : bdd_below ({a} : set α) :=
⟨a, by simp only [set.mem_singleton_iff, forall_eq]⟩
/-If a set is included in another one, boundedness of the second implies boundedness
of the first-/
lemma bdd_above_subset (st : s ⊆ t) : bdd_above t → bdd_above s
| ⟨w, hw⟩ := ⟨w, λ y ys, hw _ (st ys)⟩
lemma bdd_below_subset (st : s ⊆ t) : bdd_below t → bdd_below s
| ⟨w, hw⟩ := ⟨w, λ y ys, hw _ (st ys)⟩
/- Boundedness of intersections of sets, in different guises, deduced from the
monotonicity of boundedness.-/
lemma bdd_above_inter_left : bdd_above s → bdd_above (s ∩ t) :=
bdd_above_subset (set.inter_subset_left _ _)
lemma bdd_above_inter_right : bdd_above t → bdd_above (s ∩ t) :=
bdd_above_subset (set.inter_subset_right _ _)
lemma bdd_below_inter_left : bdd_below s → bdd_below (s ∩ t) :=
bdd_below_subset (set.inter_subset_left _ _)
lemma bdd_below_inter_right : bdd_below t → bdd_below (s ∩ t) :=
bdd_below_subset (set.inter_subset_right _ _)
/--The image under a monotone function of a set which is bounded above is bounded above-/
lemma bdd_above_of_bdd_above_of_monotone {f : α → β} (hf : monotone f) : bdd_above s → bdd_above (f '' s)
| ⟨C, hC⟩ := ⟨f C, by rintro y ⟨x, x_bnd, rfl⟩; exact hf (hC x x_bnd)⟩
/--The image under a monotone function of a set which is bounded below is bounded below-/
lemma bdd_below_of_bdd_below_of_monotone {f : α → β} (hf : monotone f) : bdd_below s → bdd_below (f '' s)
| ⟨C, hC⟩ := ⟨f C, by rintro y ⟨x, x_bnd, rfl⟩; exact hf (hC x x_bnd)⟩
end preorder
/--When there is a global maximum, every set is bounded above.-/
@[simp] lemma bdd_above_top [order_top α] (s : set α) : bdd_above s :=
⟨⊤, by intros; apply order_top.le_top⟩
/--When there is a global minimum, every set is bounded below.-/
@[simp] lemma bdd_below_bot [order_bot α] (s : set α) : bdd_below s :=
⟨⊥, by intros; apply order_bot.bot_le⟩
/-When there is a max (i.e., in the class semilattice_sup), then the union of
two bounded sets is bounded, by the maximum of the bounds for the two sets.
With this, we deduce that finite sets are bounded by induction, and that a finite
union of bounded sets is bounded.-/
section semilattice_sup
variables [semilattice_sup α] {s t : set α} {a b : α}
/--The union of two sets is bounded above if and only if each of the sets is.-/
@[simp] lemma bdd_above_union : bdd_above (s ∪ t) ↔ bdd_above s ∧ bdd_above t :=
⟨show bdd_above (s ∪ t) → (bdd_above s ∧ bdd_above t), from
assume : bdd_above (s ∪ t),
have S : bdd_above s, by apply bdd_above_subset _ ‹bdd_above (s ∪ t)›; simp only [set.subset_union_left],
have T : bdd_above t, by apply bdd_above_subset _ ‹bdd_above (s ∪ t)›; simp only [set.subset_union_right],
and.intro S T,
show (bdd_above s ∧ bdd_above t) → bdd_above (s ∪ t), from
assume H : bdd_above s ∧ bdd_above t,
let ⟨⟨ws, hs⟩, ⟨wt, ht⟩⟩ := H in
/-hs : ∀ (y : α), y ∈ s → y ≤ ws ht : ∀ (y : α), y ∈ s → y ≤ wt-/
have Bs : ∀b∈s, b ≤ ws ⊔ wt,
by intros; apply le_trans (hs b ‹b ∈ s›) _; simp only [lattice.le_sup_left],
have Bt : ∀b∈t, b ≤ ws ⊔ wt,
by intros; apply le_trans (ht b ‹b ∈ t›) _; simp only [lattice.le_sup_right],
show bdd_above (s ∪ t),
begin
apply bdd_above.mk (ws ⊔ wt),
intros b H_1,
cases H_1,
apply Bs _ ‹b ∈ s›,
apply Bt _ ‹b ∈ t›,
end⟩
/--Adding a point to a set preserves its boundedness above.-/
@[simp] lemma bdd_above_insert : bdd_above (insert a s) ↔ bdd_above s :=
⟨bdd_above_subset (by simp only [set.subset_insert]),
λ h, by rw [insert_eq, bdd_above_union]; exact ⟨bdd_above_singleton, h⟩⟩
/--A finite set is bounded above.-/
lemma bdd_above_finite [nonempty α] (hs : finite s) : bdd_above s :=
finite.induction_on hs bdd_above_empty $ λ a s _ _, bdd_above_insert.2
/--A finite union of sets which are all bounded above is still bounded above.-/
lemma bdd_above_finite_union [nonempty α] {β : Type v} {I : set β} {S : β → set α} (H : finite I) :
(bdd_above (⋃i∈I, S i)) ↔ (∀i ∈ I, bdd_above (S i)) :=
⟨λ (bdd : bdd_above (⋃i∈I, S i)) i (hi : i ∈ I),
bdd_above_subset (subset_bUnion_of_mem hi) bdd,
show (∀i ∈ I, bdd_above (S i)) → (bdd_above (⋃i∈I, S i)), from
finite.induction_on H
(λ _, by rw bUnion_empty; exact bdd_above_empty)
(λ x s hn hf IH h, by simp only [
set.mem_insert_iff, or_imp_distrib, forall_and_distrib, forall_eq] at h;
rw [set.bUnion_insert, bdd_above_union]; exact ⟨h.1, IH h.2⟩)⟩
end semilattice_sup
/-When there is a min (i.e., in the class semilattice_inf), then the union of
two sets which are bounded from below is bounded from below, by the minimum of
the bounds for the two sets. With this, we deduce that finite sets are
bounded below by induction, and that a finite union of sets which are bounded below
is still bounded below.-/
section semilattice_inf
variables [semilattice_inf α] {s t : set α} {a b : α}
/--The union of two sets is bounded below if and only if each of the sets is.-/
@[simp] lemma bdd_below_union : bdd_below (s ∪ t) ↔ bdd_below s ∧ bdd_below t :=
⟨show bdd_below (s ∪ t) → (bdd_below s ∧ bdd_below t), from
assume : bdd_below (s ∪ t),
have S : bdd_below s, by apply bdd_below_subset _ ‹bdd_below (s ∪ t)›; simp only [set.subset_union_left],
have T : bdd_below t, by apply bdd_below_subset _ ‹bdd_below (s ∪ t)›; simp only [set.subset_union_right],
and.intro S T,
show (bdd_below s ∧ bdd_below t) → bdd_below (s ∪ t), from
assume H : bdd_below s ∧ bdd_below t,
let ⟨⟨ws, hs⟩, ⟨wt, ht⟩⟩ := H in
/-hs : ∀ (y : α), y ∈ s → ws ≤ y ht : ∀ (y : α), y ∈ s → wt ≤ y-/
have Bs : ∀b∈s, ws ⊓ wt ≤ b,
by intros; apply le_trans _ (hs b ‹b ∈ s›); simp only [lattice.inf_le_left],
have Bt : ∀b∈t, ws ⊓ wt ≤ b,
by intros; apply le_trans _ (ht b ‹b ∈ t›); simp only [lattice.inf_le_right],
show bdd_below (s ∪ t),
begin
apply bdd_below.mk (ws ⊓ wt),
intros b H_1,
cases H_1,
apply Bs _ ‹b ∈ s›,
apply Bt _ ‹b ∈ t›,
end⟩
/--Adding a point to a set preserves its boundedness below.-/
@[simp] lemma bdd_below_insert : bdd_below (insert a s) ↔ bdd_below s :=
⟨show bdd_below (insert a s) → bdd_below s, from bdd_below_subset (by simp only [set.subset_insert]),
show bdd_below s → bdd_below (insert a s),
by rw[insert_eq]; simp only [bdd_below_singleton, bdd_below_union, and_self, forall_true_iff] {contextual := tt}⟩
/--A finite set is bounded below.-/
lemma bdd_below_finite [nonempty α] (hs : finite s) : bdd_below s :=
finite.induction_on hs bdd_below_empty $ λ a s _ _, bdd_below_insert.2
/--A finite union of sets which are all bounded below is still bounded below.-/
lemma bdd_below_finite_union [nonempty α] {β : Type v} {I : set β} {S : β → set α} (H : finite I) :
(bdd_below (⋃i∈I, S i)) ↔ (∀i ∈ I, bdd_below (S i)) :=
⟨λ (bdd : bdd_below (⋃i∈I, S i)) i (hi : i ∈ I),
bdd_below_subset (subset_bUnion_of_mem hi) bdd,
show (∀i ∈ I, bdd_below (S i)) → (bdd_below (⋃i∈I, S i)), from
finite.induction_on H
(λ _, by rw bUnion_empty; exact bdd_below_empty)
(λ x s hn hf IH h, by simp only [
set.mem_insert_iff, or_imp_distrib, forall_and_distrib, forall_eq] at h;
rw [set.bUnion_insert, bdd_below_union]; exact ⟨h.1, IH h.2⟩)⟩
end semilattice_inf
namespace lattice
/-- A conditionally complete lattice is a lattice in which
every nonempty subset which is bounded above has a supremum, and
every nonempty subset which is bounded below has an infimum.
Typical examples are real numbers or natural numbers.
To differentiate the statements from the corresponding statements in (unconditional)
complete lattices, we prefix Inf and Sup by a c everywhere. The same statements should
hold in both worlds, sometimes with additional assumptions of non-emptyness or
boundedness.-/
class conditionally_complete_lattice (α : Type u) extends lattice α, has_Sup α, has_Inf α :=
(le_cSup : ∀s a, bdd_above s → a ∈ s → a ≤ Sup s)
(cSup_le : ∀s a, s ≠ ∅ → (∀b∈s, b ≤ a) → Sup s ≤ a)
(cInf_le : ∀s a, bdd_below s → a ∈ s → Inf s ≤ a)
(le_cInf : ∀s a, s ≠ ∅ → (∀b∈s, a ≤ b) → a ≤ Inf s)
class conditionally_complete_linear_order (α : Type u)
extends conditionally_complete_lattice α, decidable_linear_order α
class conditionally_complete_linear_order_bot (α : Type u)
extends conditionally_complete_lattice α, decidable_linear_order α, order_bot α :=
(cSup_empty : Sup ∅ = ⊥)
/- A complete lattice is a conditionally complete lattice, as there are no restrictions
on the properties of Inf and Sup in a complete lattice.-/
instance conditionally_complete_lattice_of_complete_lattice [complete_lattice α]:
conditionally_complete_lattice α :=
{ le_cSup := by intros; apply le_Sup; assumption,
cSup_le := by intros; apply Sup_le; assumption,
cInf_le := by intros; apply Inf_le; assumption,
le_cInf := by intros; apply le_Inf; assumption,
..‹complete_lattice α›}
instance conditionally_complete_linear_order_of_complete_linear_order [complete_linear_order α]:
conditionally_complete_linear_order α :=
{ ..lattice.conditionally_complete_lattice_of_complete_lattice, .. ‹complete_linear_order α› }
section conditionally_complete_lattice
variables [conditionally_complete_lattice α] {s t : set α} {a b : α}
theorem le_cSup (h₁ : bdd_above s) (h₂ : a ∈ s) : a ≤ Sup s :=
conditionally_complete_lattice.le_cSup s a h₁ h₂
theorem cSup_le (h₁ : s ≠ ∅) (h₂ : ∀b∈s, b ≤ a) : Sup s ≤ a :=
conditionally_complete_lattice.cSup_le s a h₁ h₂
theorem cInf_le (h₁ : bdd_below s) (h₂ : a ∈ s) : Inf s ≤ a :=
conditionally_complete_lattice.cInf_le s a h₁ h₂
theorem le_cInf (h₁ : s ≠ ∅) (h₂ : ∀b∈s, a ≤ b) : a ≤ Inf s :=
conditionally_complete_lattice.le_cInf s a h₁ h₂
theorem le_cSup_of_le (_ : bdd_above s) (hb : b ∈ s) (h : a ≤ b) : a ≤ Sup s :=
le_trans h (le_cSup ‹bdd_above s› hb)
theorem cInf_le_of_le (_ : bdd_below s) (hb : b ∈ s) (h : b ≤ a) : Inf s ≤ a :=
le_trans (cInf_le ‹bdd_below s› hb) h
theorem cSup_le_cSup (_ : bdd_above t) (_ : s ≠ ∅) (h : s ⊆ t) : Sup s ≤ Sup t :=
cSup_le ‹s ≠ ∅› (assume (a) (ha : a ∈ s), le_cSup ‹bdd_above t› (h ha))
theorem cInf_le_cInf (_ : bdd_below t) (_ :s ≠ ∅) (h : s ⊆ t) : Inf t ≤ Inf s :=
le_cInf ‹s ≠ ∅› (assume (a) (ha : a ∈ s), cInf_le ‹bdd_below t› (h ha))
theorem cSup_le_iff (_ : bdd_above s) (_ : s ≠ ∅) : Sup s ≤ a ↔ (∀b ∈ s, b ≤ a) :=
⟨assume (_ : Sup s ≤ a) (b) (_ : b ∈ s),
le_trans (le_cSup ‹bdd_above s› ‹b ∈ s›) ‹Sup s ≤ a›,
cSup_le ‹s ≠ ∅›⟩
theorem le_cInf_iff (_ : bdd_below s) (_ : s ≠ ∅) : a ≤ Inf s ↔ (∀b ∈ s, a ≤ b) :=
⟨assume (_ : a ≤ Inf s) (b) (_ : b ∈ s),
le_trans ‹a ≤ Inf s› (cInf_le ‹bdd_below s› ‹b ∈ s›),
le_cInf ‹s ≠ ∅›⟩
lemma cSup_lower_bounds_eq_cInf {s : set α} (h : bdd_below s) (hs : s ≠ ∅) :
Sup (lower_bounds s) = Inf s :=
let ⟨b, hb⟩ := h, ⟨a, ha⟩ := ne_empty_iff_exists_mem.1 hs in
le_antisymm
(cSup_le (ne_empty_iff_exists_mem.2 ⟨b, hb⟩) $ assume a ha, le_cInf hs ha)
(le_cSup ⟨a, assume y hy, hy a ha⟩ $ assume x hx, cInf_le h hx)
lemma cInf_upper_bounds_eq_cSup {s : set α} (h : bdd_above s) (hs : s ≠ ∅) :
Inf (upper_bounds s) = Sup s :=
let ⟨b, hb⟩ := h, ⟨a, ha⟩ := ne_empty_iff_exists_mem.1 hs in
le_antisymm
(cInf_le ⟨a, assume y hy, hy a ha⟩ $ assume x hx, le_cSup h hx)
(le_cInf (ne_empty_iff_exists_mem.2 ⟨b, hb⟩) $ assume a ha, cSup_le hs ha)
/--Introduction rule to prove that b is the supremum of s: it suffices to check that b
is larger than all elements of s, and that this is not the case of any w<b.-/
theorem cSup_intro (_ : s ≠ ∅) (_ : ∀a∈s, a ≤ b) (H : ∀w, w < b → (∃a∈s, w < a)) : Sup s = b :=
have bdd_above s := ⟨b, by assumption⟩,
have (Sup s < b) ∨ (Sup s = b) := lt_or_eq_of_le (cSup_le ‹s ≠ ∅› ‹∀a∈s, a ≤ b›),
have ¬(Sup s < b) :=
assume: Sup s < b,
let ⟨a, _, _⟩ := (H (Sup s) ‹Sup s < b›) in /- a ∈ s, Sup s < a-/
have Sup s < Sup s := lt_of_lt_of_le ‹Sup s < a› (le_cSup ‹bdd_above s› ‹a ∈ s›),
show false, by finish [lt_irrefl (Sup s)],
show Sup s = b, by finish
/--Introduction rule to prove that b is the infimum of s: it suffices to check that b
is smaller than all elements of s, and that this is not the case of any w>b.-/
theorem cInf_intro (_ : s ≠ ∅) (_ : ∀a∈s, b ≤ a) (H : ∀w, b < w → (∃a∈s, a < w)) : Inf s = b :=
have bdd_below s := ⟨b, by assumption⟩,
have (b < Inf s) ∨ (b = Inf s) := lt_or_eq_of_le (le_cInf ‹s ≠ ∅› ‹∀a∈s, b ≤ a›),
have ¬(b < Inf s) :=
assume: b < Inf s,
let ⟨a, _, _⟩ := (H (Inf s) ‹b < Inf s›) in /- a ∈ s, a < Inf s-/
have Inf s < Inf s := lt_of_le_of_lt (cInf_le ‹bdd_below s› ‹a ∈ s›) ‹a < Inf s› ,
show false, by finish [lt_irrefl (Inf s)],
show Inf s = b, by finish
/--When an element a of a set s is larger than all elements of the set, it is Sup s-/
theorem cSup_of_mem_of_le (_ : a ∈ s) (_ : ∀w∈s, w ≤ a) : Sup s = a :=
have bdd_above s := ⟨a, by assumption⟩,
have s ≠ ∅ := ne_empty_of_mem ‹a ∈ s›,
have A : a ≤ Sup s := le_cSup ‹bdd_above s› ‹a ∈ s›,
have B : Sup s ≤ a := cSup_le ‹s ≠ ∅› ‹∀w∈s, w ≤ a›,
le_antisymm B A
/--When an element a of a set s is smaller than all elements of the set, it is Inf s-/
theorem cInf_of_mem_of_le (_ : a ∈ s) (_ : ∀w∈s, a ≤ w) : Inf s = a :=
have bdd_below s := ⟨a, by assumption⟩,
have s ≠ ∅ := ne_empty_of_mem ‹a ∈ s›,
have A : Inf s ≤ a := cInf_le ‹bdd_below s› ‹a ∈ s›,
have B : a ≤ Inf s := le_cInf ‹s ≠ ∅› ‹∀w∈s, a ≤ w›,
le_antisymm A B
/--b < Sup s when there is an element a in s with b < a, when s is bounded above.
This is essentially an iff, except that the assumptions for the two implications are
slightly different (one needs boundedness above for one direction, nonemptyness and linear
order for the other one), so we formulate separately the two implications, contrary to
the complete_lattice case.-/
lemma lt_cSup_of_lt (_ : bdd_above s) (_ : a ∈ s) (_ : b < a) : b < Sup s :=
lt_of_lt_of_le ‹b < a› (le_cSup ‹bdd_above s› ‹a ∈ s›)
/--Inf s < b s when there is an element a in s with a < b, when s is bounded below.
This is essentially an iff, except that the assumptions for the two implications are
slightly different (one needs boundedness below for one direction, nonemptyness and linear
order for the other one), so we formulate separately the two implications, contrary to
the complete_lattice case.-/
lemma cInf_lt_of_lt (_ : bdd_below s) (_ : a ∈ s) (_ : a < b) : Inf s < b :=
lt_of_le_of_lt (cInf_le ‹bdd_below s› ‹a ∈ s›) ‹a < b›
/--The supremum of a singleton is the element of the singleton-/
@[simp] theorem cSup_singleton (a : α) : Sup {a} = a :=
have A : a ≤ Sup {a} :=
by apply le_cSup _ _; simp only [set.mem_singleton,bdd_above_singleton],
have B : Sup {a} ≤ a :=
by apply cSup_le _ _; simp only [set.mem_singleton_iff, forall_eq,ne.def, not_false_iff, set.singleton_ne_empty],
le_antisymm B A
/--The infimum of a singleton is the element of the singleton-/
@[simp] theorem cInf_singleton (a : α) : Inf {a} = a :=
have A : Inf {a} ≤ a :=
by apply cInf_le _ _; simp only [set.mem_singleton,bdd_below_singleton],
have B : a ≤ Inf {a} :=
by apply le_cInf _ _; simp only [set.mem_singleton_iff, forall_eq,ne.def, not_false_iff, set.singleton_ne_empty],
le_antisymm A B
/--If a set is bounded below and above, and nonempty, its infimum is less than or equal to
its supremum.-/
theorem cInf_le_cSup (_ : bdd_below s) (_ : bdd_above s) (_ : s ≠ ∅) : Inf s ≤ Sup s :=
let ⟨w, hw⟩ := exists_mem_of_ne_empty ‹s ≠ ∅› in /-hw : w ∈ s-/
have Inf s ≤ w := cInf_le ‹bdd_below s› ‹w ∈ s›,
have w ≤ Sup s := le_cSup ‹bdd_above s› ‹w ∈ s›,
le_trans ‹Inf s ≤ w› ‹w ≤ Sup s›
/--The sup of a union of sets is the max of the suprema of each subset, under the assumptions
that all sets are bounded above and nonempty.-/
theorem cSup_union (_ : bdd_above s) (_ : s ≠ ∅) (_ : bdd_above t) (_ : t ≠ ∅) :
Sup (s ∪ t) = Sup s ⊔ Sup t :=
have A : Sup (s ∪ t) ≤ Sup s ⊔ Sup t :=
have s ∪ t ≠ ∅ := by simp only [not_and, set.union_empty_iff, ne.def] at *; finish,
have F : ∀b∈ s∪t, b ≤ Sup s ⊔ Sup t :=
begin
intros,
cases H,
apply le_trans (le_cSup ‹bdd_above s› ‹b ∈ s›) _, simp only [lattice.le_sup_left],
apply le_trans (le_cSup ‹bdd_above t› ‹b ∈ t›) _, simp only [lattice.le_sup_right]
end,
cSup_le this F,
have B : Sup s ⊔ Sup t ≤ Sup (s ∪ t) :=
have Sup s ≤ Sup (s ∪ t) := by apply cSup_le_cSup _ ‹s ≠ ∅›; simp only [bdd_above_union,set.subset_union_left]; finish,
have Sup t ≤ Sup (s ∪ t) := by apply cSup_le_cSup _ ‹t ≠ ∅›; simp only [bdd_above_union,set.subset_union_right]; finish,
by simp only [lattice.sup_le_iff]; split; assumption; assumption,
le_antisymm A B
/--The inf of a union of sets is the min of the infima of each subset, under the assumptions
that all sets are bounded below and nonempty.-/
theorem cInf_union (_ : bdd_below s) (_ : s ≠ ∅) (_ : bdd_below t) (_ : t ≠ ∅) :
Inf (s ∪ t) = Inf s ⊓ Inf t :=
have A : Inf s ⊓ Inf t ≤ Inf (s ∪ t) :=
have s ∪ t ≠ ∅ := by simp only [not_and, set.union_empty_iff, ne.def] at *; finish,
have F : ∀b∈ s∪t, Inf s ⊓ Inf t ≤ b :=
begin
intros,
cases H,
apply le_trans _ (cInf_le ‹bdd_below s› ‹b ∈ s›), simp only [lattice.inf_le_left],
apply le_trans _ (cInf_le ‹bdd_below t› ‹b ∈ t›), simp only [lattice.inf_le_right]
end,
le_cInf this F,
have B : Inf (s ∪ t) ≤ Inf s ⊓ Inf t :=
have Inf (s ∪ t) ≤ Inf s := by apply cInf_le_cInf _ ‹s ≠ ∅›; simp only [bdd_below_union,set.subset_union_left]; finish,
have Inf (s ∪ t) ≤ Inf t := by apply cInf_le_cInf _ ‹t ≠ ∅›; simp only [bdd_below_union,set.subset_union_right]; finish,
by simp only [lattice.le_inf_iff]; split; assumption; assumption,
le_antisymm B A
/--The supremum of an intersection of sets is bounded by the minimum of the suprema of each
set, if all sets are bounded above and nonempty.-/
theorem cSup_inter_le (_ : bdd_above s) (_ : bdd_above t) (_ : s ∩ t ≠ ∅) :
Sup (s ∩ t) ≤ Sup s ⊓ Sup t :=
begin
apply cSup_le ‹s ∩ t ≠ ∅› _, simp only [lattice.le_inf_iff, and_imp, set.mem_inter_eq], intros b _ _, split,
apply le_cSup ‹bdd_above s› ‹b ∈ s›,
apply le_cSup ‹bdd_above t› ‹b ∈ t›
end
/--The infimum of an intersection of sets is bounded below by the maximum of the
infima of each set, if all sets are bounded below and nonempty.-/
theorem le_cInf_inter (_ : bdd_below s) (_ : bdd_below t) (_ : s ∩ t ≠ ∅) :
Inf s ⊔ Inf t ≤ Inf (s ∩ t) :=
begin
apply le_cInf ‹s ∩ t ≠ ∅› _, simp only [and_imp, set.mem_inter_eq, lattice.sup_le_iff], intros b _ _, split,
apply cInf_le ‹bdd_below s› ‹b ∈ s›,
apply cInf_le ‹bdd_below t› ‹b ∈ t›
end
/-- The supremum of insert a s is the maximum of a and the supremum of s, if s is
nonempty and bounded above.-/
theorem cSup_insert (_ : bdd_above s) (_ : s ≠ ∅) : Sup (insert a s) = a ⊔ Sup s :=
calc Sup (insert a s)
= Sup ({a} ∪ s) : by rw [insert_eq]
... = Sup {a} ⊔ Sup s : by apply cSup_union _ _ ‹bdd_above s› ‹s ≠ ∅›; simp only [ne.def, not_false_iff, set.singleton_ne_empty,bdd_above_singleton]
... = a ⊔ Sup s : by simp only [eq_self_iff_true, lattice.cSup_singleton]
/-- The infimum of insert a s is the minimum of a and the infimum of s, if s is
nonempty and bounded below.-/
theorem cInf_insert (_ : bdd_below s) (_ : s ≠ ∅) : Inf (insert a s) = a ⊓ Inf s :=
calc Inf (insert a s)
= Inf ({a} ∪ s) : by rw [insert_eq]
... = Inf {a} ⊓ Inf s : by apply cInf_union _ _ ‹bdd_below s› ‹s ≠ ∅›; simp only [ne.def, not_false_iff, set.singleton_ne_empty,bdd_below_singleton]
... = a ⊓ Inf s : by simp only [eq_self_iff_true, lattice.cInf_singleton]
@[simp] lemma cInf_interval : Inf {b | a ≤ b} = a :=
cInf_of_mem_of_le (by simp only [set.mem_set_of_eq]) (λw Hw, by simp only [set.mem_set_of_eq] at Hw; apply Hw)
@[simp] lemma cSup_interval : Sup {b | b ≤ a} = a :=
cSup_of_mem_of_le (by simp only [set.mem_set_of_eq]) (λw Hw, by simp only [set.mem_set_of_eq] at Hw; apply Hw)
/--The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
lemma csupr_le_csupr {f g : β → α} (B : bdd_above (range g)) (H : ∀x, f x ≤ g x) : supr f ≤ supr g :=
begin
classical, by_cases nonempty β,
{ have Rf : range f ≠ ∅, {simpa},
apply cSup_le Rf,
rintros y ⟨x, rfl⟩,
have : g x ∈ range g := ⟨x, rfl⟩,
exact le_cSup_of_le B this (H x) },
{ have Rf : range f = ∅, {simpa},
have Rg : range g = ∅, {simpa},
unfold supr, rw [Rf, Rg] }
end
/--The indexed supremum of a function is bounded above by a uniform bound-/
lemma csupr_le [ne : nonempty β] {f : β → α} {c : α} (H : ∀x, f x ≤ c) : supr f ≤ c :=
cSup_le (by simp [not_not_intro ne]) (by rwa forall_range_iff)
/--The indexed supremum of a function is bounded below by the value taken at one point-/
lemma le_csupr {f : β → α} (H : bdd_above (range f)) {c : β} : f c ≤ supr f :=
le_cSup H (mem_range_self _)
/--The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
lemma cinfi_le_cinfi {f g : β → α} (B : bdd_below (range f)) (H : ∀x, f x ≤ g x) : infi f ≤ infi g :=
begin
classical, by_cases nonempty β,
{ have Rg : range g ≠ ∅, {simpa},
apply le_cInf Rg,
rintros y ⟨x, rfl⟩,
have : f x ∈ range f := ⟨x, rfl⟩,
exact cInf_le_of_le B this (H x) },
{ have Rf : range f = ∅, {simpa},
have Rg : range g = ∅, {simpa},
unfold infi, rw [Rf, Rg] }
end
/--The indexed minimum of a function is bounded below by a uniform lower bound-/
lemma le_cinfi [ne : nonempty β] {f : β → α} {c : α} (H : ∀x, c ≤ f x) : c ≤ infi f :=
le_cInf (by simp [not_not_intro ne]) (by rwa forall_range_iff)
/--The indexed infimum of a function is bounded above by the value taken at one point-/
lemma cinfi_le {f : β → α} (H : bdd_below (range f)) {c : β} : infi f ≤ f c :=
cInf_le H (mem_range_self _)
lemma is_lub_cSup {s : set α} (ne : s ≠ ∅) (H : bdd_above s) : is_lub s (Sup s) :=
⟨assume x, le_cSup H, assume x, cSup_le ne⟩
lemma is_glb_cInf {s : set α} (ne : s ≠ ∅) (H : bdd_below s) : is_glb s (Inf s) :=
⟨assume x, cInf_le H, assume x, le_cInf ne⟩
@[simp] theorem cinfi_const [nonempty ι] {a : α} : (⨅ b:ι, a) = a :=
begin
rcases exists_mem_of_nonempty ι with ⟨x, _⟩,
refine le_antisymm (@cinfi_le _ _ _ _ _ x) (le_cinfi (λi, _root_.le_refl _)),
rw range_const,
exact bdd_below_singleton
end
@[simp] theorem csupr_const [nonempty ι] {a : α} : (⨆ b:ι, a) = a :=
begin
rcases exists_mem_of_nonempty ι with ⟨x, _⟩,
refine le_antisymm (csupr_le (λi, _root_.le_refl _)) (@le_csupr _ _ _ (λ b:ι, a) _ x),
rw range_const,
exact bdd_above_singleton
end
end conditionally_complete_lattice
section conditionally_complete_linear_order
variables [conditionally_complete_linear_order α] {s t : set α} {a b : α}
/-- When b < Sup s, there is an element a in s with b < a, if s is nonempty and the order is
a linear order. -/
lemma exists_lt_of_lt_cSup (_ : s ≠ ∅) (_ : b < Sup s) : ∃a∈s, b < a :=
begin
classical, by_contra h,
have : Sup s ≤ b :=
by apply cSup_le ‹s ≠ ∅› _; finish,
apply lt_irrefl b (lt_of_lt_of_le ‹b < Sup s› ‹Sup s ≤ b›)
end
/--
Indexed version of the above lemma `exists_lt_of_lt_cSup`.
When `b < supr f`, there is an element `i` such that `b < f i`.
-/
lemma exists_lt_of_lt_csupr {ι : Sort*} (ne : nonempty ι) {f : ι → α} (h : b < supr f) :
∃i, b < f i :=
have h' : range f ≠ ∅ := nonempty.elim ne (λ i, ne_empty_of_mem (mem_range_self i)),
let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_lt_cSup h' h in ⟨i, h⟩
/--When Inf s < b, there is an element a in s with a < b, if s is nonempty and the order is
a linear order.-/
lemma exists_lt_of_cInf_lt (_ : s ≠ ∅) (_ : Inf s < b) : ∃a∈s, a < b :=
begin
classical, by_contra h,
have : b ≤ Inf s :=
by apply le_cInf ‹s ≠ ∅› _; finish,
apply lt_irrefl b (lt_of_le_of_lt ‹b ≤ Inf s› ‹Inf s < b›)
end
/--
Indexed version of the above lemma `exists_lt_of_cInf_lt`
When `infi f < a`, there is an element `i` such that `f i < a`.
-/
lemma exists_lt_of_cinfi_lt {ι : Sort*} (ne : nonempty ι) {f : ι → α} (h : infi f < a) :
(∃i, f i < a) :=
have h' : range f ≠ ∅ := nonempty.elim ne (λ i, ne_empty_of_mem (mem_range_self i)),
let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_cInf_lt h' h in ⟨i, h⟩
/--Introduction rule to prove that b is the supremum of s: it suffices to check that
1) b is an upper bound
2) every other upper bound b' satisfies b ≤ b'.-/
theorem cSup_intro' (_ : s ≠ ∅)
(h_is_ub : ∀ a ∈ s, a ≤ b) (h_b_le_ub : ∀ub, (∀ a ∈ s, a ≤ ub) → (b ≤ ub)) : Sup s = b :=
le_antisymm
(show Sup s ≤ b, from cSup_le ‹s ≠ ∅› h_is_ub)
(show b ≤ Sup s, from h_b_le_ub _ $ assume a, le_cSup ⟨b, h_is_ub⟩)
end conditionally_complete_linear_order
section conditionally_complete_linear_order_bot
lemma cSup_empty [conditionally_complete_linear_order_bot α] : (Sup ∅ : α) = ⊥ :=
conditionally_complete_linear_order_bot.cSup_empty α
end conditionally_complete_linear_order_bot
section
open_locale classical
noncomputable instance : has_Inf ℕ :=
⟨λs, if h : ∃n, n ∈ s then @nat.find (λn, n ∈ s) _ h else 0⟩
noncomputable instance : has_Sup ℕ :=
⟨λs, if h : ∃n, ∀a∈s, a ≤ n then @nat.find (λn, ∀a∈s, a ≤ n) _ h else 0⟩
lemma Inf_nat_def {s : set ℕ} (h : ∃n, n ∈ s) : Inf s = @nat.find (λn, n ∈ s) _ h :=
dif_pos _
lemma Sup_nat_def {s : set ℕ} (h : ∃n, ∀a∈s, a ≤ n) :
Sup s = @nat.find (λn, ∀a∈s, a ≤ n) _ h :=
dif_pos _
/-- This instance is necessary, otherwise the lattice operations would be derived via
conditionally_complete_linear_order_bot and marked as noncomputable. -/
instance : lattice ℕ := infer_instance
noncomputable instance : conditionally_complete_linear_order_bot ℕ :=
{ Sup := Sup, Inf := Inf,
le_cSup := assume s a hb ha, by rw [Sup_nat_def hb]; revert a ha; exact @nat.find_spec _ _ hb,
cSup_le := assume s a hs ha, by rw [Sup_nat_def ⟨a, ha⟩]; exact nat.find_min' _ ha,
le_cInf := assume s a hs hb,
by rw [Inf_nat_def (ne_empty_iff_exists_mem.1 hs)]; exact hb _ (@nat.find_spec (λn, n ∈ s) _ _),
cInf_le := assume s a hb ha, by rw [Inf_nat_def ⟨a, ha⟩]; exact nat.find_min' _ ha,
cSup_empty :=
begin
simp only [Sup_nat_def, set.mem_empty_eq, forall_const, forall_prop_of_false, not_false_iff, exists_const],
apply bot_unique (nat.find_min' _ _),
trivial
end,
.. (infer_instance : order_bot ℕ), .. (infer_instance : lattice ℕ),
.. (infer_instance : decidable_linear_order ℕ) }
end
end lattice /-end of namespace lattice-/
namespace with_top
open lattice
open_locale classical
variables [conditionally_complete_linear_order_bot α]
lemma has_lub (s : set (with_top α)) : ∃a, is_lub s a :=
begin
by_cases hs : s = ∅, { subst hs, exact ⟨⊥, is_lub_empty⟩, },
rcases ne_empty_iff_exists_mem.1 hs with ⟨x, hxs⟩,
by_cases bnd : ∃b:α, ↑b ∈ upper_bounds s,
{ rcases bnd with ⟨b, hb⟩,
have bdd : bdd_above {a : α | ↑a ∈ s}, from ⟨b, assume y hy, coe_le_coe.1 $ hb _ hy⟩,
refine ⟨(Sup {a : α | ↑a ∈ s} : α), _, _⟩,
{ assume a has,
rcases (le_coe_iff _ _).1 (hb _ has) with ⟨a, rfl, h⟩,
exact (coe_le_coe.2 $ le_cSup bdd has) },
{ assume a hs,
rcases (le_coe_iff _ _).1 (hb _ hxs) with ⟨x, rfl, h⟩,
refine (coe_le_iff _ _).2 (assume c hc, _), subst hc,
exact (cSup_le (ne_empty_of_mem hxs) $ assume b (hbs : ↑b ∈ s), coe_le_coe.1 $ hs _ hbs), } },
exact ⟨⊤, assume a _, le_top, assume a,
match a with
| some a, ha := (bnd ⟨a, ha⟩).elim
| none, ha := _root_.le_refl ⊤
end⟩
end
lemma has_glb (s : set (with_top α)) : ∃a, is_glb s a :=
begin
by_cases hs : ∃x:α, ↑x ∈ s,
{ rcases hs with ⟨x, hxs⟩,
refine ⟨(Inf {a : α | ↑a ∈ s} : α), _, _⟩,
exact (assume a has, (coe_le_iff _ _).2 $ assume x hx, cInf_le (bdd_below_bot _) $
show ↑x ∈ s, from hx ▸ has),
{ assume a has,
rcases (le_coe_iff _ _).1 (has _ hxs) with ⟨x, rfl, h⟩,
exact (coe_le_coe.2 $ le_cInf (ne_empty_of_mem hxs) $
assume b hbs, coe_le_coe.1 $ has _ hbs) } },
exact ⟨⊤, assume a, match a with
| some a, ha := (hs ⟨a, ha⟩).elim
| none, ha := _root_.le_refl _
end,
assume a _, le_top⟩
end
noncomputable instance : has_Sup (with_top α) := ⟨λs, classical.some $ has_lub s⟩
noncomputable instance : has_Inf (with_top α) := ⟨λs, classical.some $ has_glb s⟩
lemma is_lub_Sup (s : set (with_top α)) : is_lub s (Sup s) := classical.some_spec _
lemma is_glb_Inf (s : set (with_top α)) : is_glb s (Inf s) := classical.some_spec _
noncomputable instance : complete_linear_order (with_top α) :=
{ Sup := Sup, le_Sup := assume s, (is_lub_Sup s).1, Sup_le := assume s, (is_lub_Sup s).2,
Inf := Inf, le_Inf := assume s, (is_glb_Inf s).2, Inf_le := assume s, (is_glb_Inf s).1,
decidable_le := classical.dec_rel _,
.. with_top.linear_order, ..with_top.lattice, ..with_top.order_top, ..with_top.order_bot }
lemma coe_Sup {s : set α} (hb : bdd_above s) : (↑(Sup s) : with_top α) = (⨆a∈s, ↑a) :=
begin
by_cases hs : s = ∅,
{ rw [hs, cSup_empty], simp only [set.mem_empty_eq, lattice.supr_bot, lattice.supr_false], refl },
apply le_antisymm,
{ refine ((coe_le_iff _ _).2 $ assume b hb, cSup_le hs $ assume a has, coe_le_coe.1 $ hb ▸ _),
exact (le_supr_of_le a $ le_supr_of_le has $ _root_.le_refl _) },
{ exact (supr_le $ assume a, supr_le $ assume ha, coe_le_coe.2 $ le_cSup hb ha) }
end
lemma coe_Inf {s : set α} (hs : s ≠ ∅) : (↑(Inf s) : with_top α) = (⨅a∈s, ↑a) :=
let ⟨x, hx⟩ := ne_empty_iff_exists_mem.1 hs in
have (⨅a∈s, ↑a : with_top α) ≤ x, from infi_le_of_le x $ infi_le_of_le hx $ _root_.le_refl _,
let ⟨r, r_eq, hr⟩ := (le_coe_iff _ _).1 this in
le_antisymm
(le_infi $ assume a, le_infi $ assume ha, coe_le_coe.2 $ cInf_le (bdd_below_bot s) ha)
begin
refine (r_eq.symm ▸ coe_le_coe.2 $ le_cInf hs $ assume a has, coe_le_coe.1 $ _),
refine (r_eq ▸ infi_le_of_le a _),
exact (infi_le_of_le has $ _root_.le_refl _),
end
end with_top
namespace enat
open_locale classical
open lattice
noncomputable instance : complete_linear_order enat :=
{ Sup := λ s, with_top_equiv.symm $ Sup (with_top_equiv '' s),
Inf := λ s, with_top_equiv.symm $ Inf (with_top_equiv '' s),
le_Sup := by intros; rw ← with_top_equiv_le; simp; apply le_Sup _; simpa,
Inf_le := by intros; rw ← with_top_equiv_le; simp; apply Inf_le _; simpa,
Sup_le := begin
intros s a h1,
rw [← with_top_equiv_le, with_top_equiv.right_inverse_symm],
apply Sup_le _,
rintros b ⟨x, h2, rfl⟩,
rw with_top_equiv_le,
apply h1,
assumption
end,
le_Inf := begin
intros s a h1,
rw [← with_top_equiv_le, with_top_equiv.right_inverse_symm],
apply le_Inf _,
rintros b ⟨x, h2, rfl⟩,
rw with_top_equiv_le,
apply h1,
assumption
end,
..enat.decidable_linear_order,
..enat.lattice.bounded_lattice }
end enat
section order_dual
open lattice
instance (α : Type*) [conditionally_complete_lattice α] :
conditionally_complete_lattice (order_dual α) :=
{ le_cSup := @cInf_le α _,
cSup_le := @le_cInf α _,
le_cInf := @cSup_le α _,
cInf_le := @le_cSup α _,
..order_dual.lattice.has_Inf α,
..order_dual.lattice.has_Sup α,
..order_dual.lattice.lattice α }
instance (α : Type*) [conditionally_complete_linear_order α] :
conditionally_complete_linear_order (order_dual α) :=
{ ..order_dual.lattice.conditionally_complete_lattice α,
..order_dual.decidable_linear_order α }
end order_dual
|
f23df467b489e6338377b451ca7ed760dff91864
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/algebra/category/Module/monoidal.lean
|
0f80c5596f23fe307b16260c9af247888e3fa7f4
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 12,536
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard, Scott Morrison, Jakob von Raumer
-/
import category_theory.monoidal.braided
import category_theory.closed.monoidal
import algebra.category.Module.basic
import linear_algebra.tensor_product
import category_theory.linear.yoneda
import category_theory.monoidal.linear
/-!
# The symmetric monoidal category structure on R-modules
Mostly this uses existing machinery in `linear_algebra.tensor_product`.
We just need to provide a few small missing pieces to build the
`monoidal_category` instance and then the `symmetric_category` instance.
Note the universe level of the modules must be at least the universe level of the ring,
so that we have a monoidal unit.
For now, we simplify by insisting both universe levels are the same.
We then construct the monoidal closed structure on `Module R`.
If you're happy using the bundled `Module R`, it may be possible to mostly
use this as an interface and not need to interact much with the implementation details.
-/
universes v w x u
open category_theory
namespace Module
variables {R : Type u} [comm_ring R]
namespace monoidal_category
-- The definitions inside this namespace are essentially private.
-- After we build the `monoidal_category (Module R)` instance,
-- you should use that API.
open_locale tensor_product
local attribute [ext] tensor_product.ext
/-- (implementation) tensor product of R-modules -/
def tensor_obj (M N : Module R) : Module R := Module.of R (M ⊗[R] N)
/-- (implementation) tensor product of morphisms R-modules -/
def tensor_hom {M N M' N' : Module R} (f : M ⟶ N) (g : M' ⟶ N') :
tensor_obj M M' ⟶ tensor_obj N N' :=
tensor_product.map f g
lemma tensor_id (M N : Module R) : tensor_hom (𝟙 M) (𝟙 N) = 𝟙 (Module.of R (M ⊗ N)) :=
by { ext1, refl }
lemma tensor_comp {X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Module R}
(f₁ : X₁ ⟶ Y₁) (f₂ : X₂ ⟶ Y₂) (g₁ : Y₁ ⟶ Z₁) (g₂ : Y₂ ⟶ Z₂) :
tensor_hom (f₁ ≫ g₁) (f₂ ≫ g₂) = tensor_hom f₁ f₂ ≫ tensor_hom g₁ g₂ :=
by { ext1, refl }
/-- (implementation) the associator for R-modules -/
def associator (M : Module.{v} R) (N : Module.{w} R) (K : Module.{x} R) :
tensor_obj (tensor_obj M N) K ≅ tensor_obj M (tensor_obj N K) :=
(tensor_product.assoc R M N K).to_Module_iso
section
/-! The `associator_naturality` and `pentagon` lemmas below are very slow to elaborate.
We give them some help by expressing the lemmas first non-categorically, then using
`convert _aux using 1` to have the elaborator work as little as possible. -/
open tensor_product (assoc map)
private lemma associator_naturality_aux
{X₁ X₂ X₃ : Type*}
[add_comm_monoid X₁] [add_comm_monoid X₂] [add_comm_monoid X₃]
[module R X₁] [module R X₂] [module R X₃]
{Y₁ Y₂ Y₃ : Type*}
[add_comm_monoid Y₁] [add_comm_monoid Y₂] [add_comm_monoid Y₃]
[module R Y₁] [module R Y₂] [module R Y₃]
(f₁ : X₁ →ₗ[R] Y₁) (f₂ : X₂ →ₗ[R] Y₂) (f₃ : X₃ →ₗ[R] Y₃) :
(↑(assoc R Y₁ Y₂ Y₃) ∘ₗ (map (map f₁ f₂) f₃)) = ((map f₁ (map f₂ f₃)) ∘ₗ ↑(assoc R X₁ X₂ X₃)) :=
begin
apply tensor_product.ext_threefold,
intros x y z,
refl
end
variables (R)
private lemma pentagon_aux
(W X Y Z : Type*)
[add_comm_monoid W] [add_comm_monoid X] [add_comm_monoid Y] [add_comm_monoid Z]
[module R W] [module R X] [module R Y] [module R Z] :
((map (1 : W →ₗ[R] W) (assoc R X Y Z).to_linear_map).comp (assoc R W (X ⊗[R] Y) Z).to_linear_map)
.comp (map ↑(assoc R W X Y) (1 : Z →ₗ[R] Z)) =
(assoc R W X (Y ⊗[R] Z)).to_linear_map.comp (assoc R (W ⊗[R] X) Y Z).to_linear_map :=
begin
apply tensor_product.ext_fourfold,
intros w x y z,
refl
end
end
lemma associator_naturality {X₁ X₂ X₃ Y₁ Y₂ Y₃ : Module R}
(f₁ : X₁ ⟶ Y₁) (f₂ : X₂ ⟶ Y₂) (f₃ : X₃ ⟶ Y₃) :
tensor_hom (tensor_hom f₁ f₂) f₃ ≫ (associator Y₁ Y₂ Y₃).hom =
(associator X₁ X₂ X₃).hom ≫ tensor_hom f₁ (tensor_hom f₂ f₃) :=
by convert associator_naturality_aux f₁ f₂ f₃ using 1
lemma pentagon (W X Y Z : Module R) :
tensor_hom (associator W X Y).hom (𝟙 Z) ≫ (associator W (tensor_obj X Y) Z).hom
≫ tensor_hom (𝟙 W) (associator X Y Z).hom =
(associator (tensor_obj W X) Y Z).hom ≫ (associator W X (tensor_obj Y Z)).hom :=
by convert pentagon_aux R W X Y Z using 1
/-- (implementation) the left unitor for R-modules -/
def left_unitor (M : Module.{u} R) : Module.of R (R ⊗[R] M) ≅ M :=
(linear_equiv.to_Module_iso (tensor_product.lid R M) : of R (R ⊗ M) ≅ of R M).trans (of_self_iso M)
lemma left_unitor_naturality {M N : Module R} (f : M ⟶ N) :
tensor_hom (𝟙 (Module.of R R)) f ≫ (left_unitor N).hom = (left_unitor M).hom ≫ f :=
begin
ext x y, dsimp,
erw [tensor_product.lid_tmul, tensor_product.lid_tmul],
rw linear_map.map_smul,
refl,
end
/-- (implementation) the right unitor for R-modules -/
def right_unitor (M : Module.{u} R) : Module.of R (M ⊗[R] R) ≅ M :=
(linear_equiv.to_Module_iso (tensor_product.rid R M) : of R (M ⊗ R) ≅ of R M).trans (of_self_iso M)
lemma right_unitor_naturality {M N : Module R} (f : M ⟶ N) :
tensor_hom f (𝟙 (Module.of R R)) ≫ (right_unitor N).hom = (right_unitor M).hom ≫ f :=
begin
ext x y, dsimp,
erw [tensor_product.rid_tmul, tensor_product.rid_tmul],
rw linear_map.map_smul,
refl,
end
lemma triangle (M N : Module.{u} R) :
(associator M (Module.of R R) N).hom ≫ tensor_hom (𝟙 M) (left_unitor N).hom =
tensor_hom (right_unitor M).hom (𝟙 N) :=
begin
apply tensor_product.ext_threefold,
intros x y z,
change R at y,
dsimp [tensor_hom, associator],
erw [tensor_product.lid_tmul, tensor_product.rid_tmul],
exact (tensor_product.smul_tmul _ _ _).symm
end
end monoidal_category
open monoidal_category
instance monoidal_category : monoidal_category (Module.{u} R) :=
{ -- data
tensor_obj := tensor_obj,
tensor_hom := @tensor_hom _ _,
tensor_unit := Module.of R R,
associator := associator,
left_unitor := left_unitor,
right_unitor := right_unitor,
-- properties
tensor_id' := λ M N, tensor_id M N,
tensor_comp' := λ M N K M' N' K' f g h, tensor_comp f g h,
associator_naturality' := λ M N K M' N' K' f g h, associator_naturality f g h,
left_unitor_naturality' := λ M N f, left_unitor_naturality f,
right_unitor_naturality' := λ M N f, right_unitor_naturality f,
pentagon' := λ M N K L, pentagon M N K L,
triangle' := λ M N, triangle M N, }
/-- Remind ourselves that the monoidal unit, being just `R`, is still a commutative ring. -/
instance : comm_ring ((𝟙_ (Module.{u} R) : Module.{u} R) : Type u) :=
(by apply_instance : comm_ring R)
namespace monoidal_category
@[simp]
lemma hom_apply {K L M N : Module.{u} R} (f : K ⟶ L) (g : M ⟶ N) (k : K) (m : M) :
(f ⊗ g) (k ⊗ₜ m) = f k ⊗ₜ g m := rfl
@[simp]
lemma left_unitor_hom_apply {M : Module.{u} R} (r : R) (m : M) :
((λ_ M).hom : 𝟙_ (Module R) ⊗ M ⟶ M) (r ⊗ₜ[R] m) = r • m :=
tensor_product.lid_tmul m r
@[simp]
lemma left_unitor_inv_apply {M : Module.{u} R} (m : M) :
((λ_ M).inv : M ⟶ 𝟙_ (Module.{u} R) ⊗ M) m = 1 ⊗ₜ[R] m :=
tensor_product.lid_symm_apply m
@[simp]
lemma right_unitor_hom_apply {M : Module.{u} R} (m : M) (r : R) :
((ρ_ M).hom : M ⊗ 𝟙_ (Module R) ⟶ M) (m ⊗ₜ r) = r • m :=
tensor_product.rid_tmul m r
@[simp]
lemma right_unitor_inv_apply {M : Module.{u} R} (m : M) :
((ρ_ M).inv : M ⟶ M ⊗ 𝟙_ (Module.{u} R)) m = m ⊗ₜ[R] 1 :=
tensor_product.rid_symm_apply m
@[simp]
lemma associator_hom_apply {M N K : Module.{u} R} (m : M) (n : N) (k : K) :
((α_ M N K).hom : (M ⊗ N) ⊗ K ⟶ M ⊗ (N ⊗ K)) ((m ⊗ₜ n) ⊗ₜ k) = (m ⊗ₜ (n ⊗ₜ k)) := rfl
@[simp]
lemma associator_inv_apply {M N K : Module.{u} R} (m : M) (n : N) (k : K) :
((α_ M N K).inv : M ⊗ (N ⊗ K) ⟶ (M ⊗ N) ⊗ K) (m ⊗ₜ (n ⊗ₜ k)) = ((m ⊗ₜ n) ⊗ₜ k) := rfl
end monoidal_category
/-- (implementation) the braiding for R-modules -/
def braiding (M N : Module R) : tensor_obj M N ≅ tensor_obj N M :=
linear_equiv.to_Module_iso (tensor_product.comm R M N)
@[simp] lemma braiding_naturality {X₁ X₂ Y₁ Y₂ : Module.{u} R} (f : X₁ ⟶ Y₁) (g : X₂ ⟶ Y₂) :
(f ⊗ g) ≫ (Y₁.braiding Y₂).hom =
(X₁.braiding X₂).hom ≫ (g ⊗ f) :=
begin
apply tensor_product.ext',
intros x y,
refl
end
@[simp] lemma hexagon_forward (X Y Z : Module.{u} R) :
(α_ X Y Z).hom ≫ (braiding X _).hom ≫ (α_ Y Z X).hom =
((braiding X Y).hom ⊗ 𝟙 Z) ≫ (α_ Y X Z).hom ≫ (𝟙 Y ⊗ (braiding X Z).hom) :=
begin
apply tensor_product.ext_threefold,
intros x y z,
refl,
end
@[simp] lemma hexagon_reverse (X Y Z : Module.{u} R) :
(α_ X Y Z).inv ≫ (braiding _ Z).hom ≫ (α_ Z X Y).inv =
(𝟙 X ⊗ (Y.braiding Z).hom) ≫ (α_ X Z Y).inv ≫ ((X.braiding Z).hom ⊗ 𝟙 Y) :=
begin
apply (cancel_epi (α_ X Y Z).hom).1,
apply tensor_product.ext_threefold,
intros x y z,
refl,
end
local attribute [ext] tensor_product.ext
/-- The symmetric monoidal structure on `Module R`. -/
instance symmetric_category : symmetric_category (Module.{u} R) :=
{ braiding := braiding,
braiding_naturality' := λ X₁ X₂ Y₁ Y₂ f g, braiding_naturality f g,
hexagon_forward' := hexagon_forward,
hexagon_reverse' := hexagon_reverse, }
namespace monoidal_category
@[simp] lemma braiding_hom_apply {M N : Module.{u} R} (m : M) (n : N) :
((β_ M N).hom : M ⊗ N ⟶ N ⊗ M) (m ⊗ₜ n) = n ⊗ₜ m := rfl
@[simp] lemma braiding_inv_apply {M N : Module.{u} R} (m : M) (n : N) :
((β_ M N).inv : N ⊗ M ⟶ M ⊗ N) (n ⊗ₜ m) = m ⊗ₜ n := rfl
end monoidal_category
open opposite
instance : monoidal_preadditive (Module.{u} R) :=
by refine ⟨_, _, _, _⟩; dsimp only [auto_param]; intros;
refine tensor_product.ext (linear_map.ext $ λ x, linear_map.ext $ λ y, _);
simp only [linear_map.compr₂_apply, tensor_product.mk_apply, monoidal_category.hom_apply,
linear_map.zero_apply, tensor_product.tmul_zero, tensor_product.zero_tmul,
linear_map.add_apply, tensor_product.tmul_add, tensor_product.add_tmul]
instance : monoidal_linear R (Module.{u} R) :=
by refine ⟨_, _⟩; dsimp only [auto_param]; intros;
refine tensor_product.ext (linear_map.ext $ λ x, linear_map.ext $ λ y, _);
simp only [linear_map.compr₂_apply, tensor_product.mk_apply, monoidal_category.hom_apply,
linear_map.smul_apply, tensor_product.tmul_smul, tensor_product.smul_tmul]
/--
Auxiliary definition for the `monoidal_closed` instance on `Module R`.
(This is only a separate definition in order to speed up typechecking. )
-/
@[simps]
def monoidal_closed_hom_equiv (M N P : Module.{u} R) :
((monoidal_category.tensor_left M).obj N ⟶ P) ≃
(N ⟶ ((linear_coyoneda R (Module R)).obj (op M)).obj P) :=
{ to_fun := λ f, linear_map.compr₂ (tensor_product.mk R N M) ((β_ N M).hom ≫ f),
inv_fun := λ f, (β_ M N).hom ≫ tensor_product.lift f,
left_inv := λ f, begin ext m n,
simp only [tensor_product.mk_apply, tensor_product.lift.tmul, linear_map.compr₂_apply,
function.comp_app, coe_comp, monoidal_category.braiding_hom_apply],
end,
right_inv := λ f, begin ext m n,
simp only [tensor_product.mk_apply, tensor_product.lift.tmul, linear_map.compr₂_apply,
symmetric_category.symmetry_assoc],
end, }
instance : monoidal_closed (Module.{u} R) :=
{ closed' := λ M,
{ is_adj :=
{ right := (linear_coyoneda R (Module.{u} R)).obj (op M),
adj := adjunction.mk_of_hom_equiv
{ hom_equiv := λ N P, monoidal_closed_hom_equiv M N P, } } } }
-- I can't seem to express the function coercion here without writing `@coe_fn`.
@[simp]
lemma monoidal_closed_curry {M N P : Module.{u} R} (f : M ⊗ N ⟶ P) (x : M) (y : N) :
@coe_fn _ _ linear_map.has_coe_to_fun ((monoidal_closed.curry f : N →ₗ[R] (M →ₗ[R] P)) y) x =
f (x ⊗ₜ[R] y) :=
rfl
@[simp]
lemma monoidal_closed_uncurry {M N P : Module.{u} R}
(f : N ⟶ (M ⟶[Module.{u} R] P)) (x : M) (y : N) :
monoidal_closed.uncurry f (x ⊗ₜ[R] y) = (@coe_fn _ _ linear_map.has_coe_to_fun (f y)) x :=
by { simp only [monoidal_closed.uncurry, ihom.adjunction, is_left_adjoint.adj], simp, }
end Module
|
faa5ae724b47dffc5a85a88913cd265ab61e07ae
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/category_theory/monoidal/internal/types.lean
|
39831cf76281aeba83c77945a81cca12cb2051e2
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,764
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import algebra.category.Mon.basic
import category_theory.monoidal.CommMon_
import category_theory.monoidal.types.symmetric
/-!
# `Mon_ (Type u) ≌ Mon.{u}`
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
The category of internal monoid objects in `Type`
is equivalent to the category of "native" bundled monoids.
Moreover, this equivalence is compatible with the forgetful functors to `Type`.
-/
universes v u
open category_theory
namespace Mon_Type_equivalence_Mon
instance Mon_monoid (A : Mon_ (Type u)) : monoid (A.X) :=
{ one := A.one punit.star,
mul := λ x y, A.mul (x, y),
one_mul := λ x, by convert congr_fun A.one_mul (punit.star, x),
mul_one := λ x, by convert congr_fun A.mul_one (x, punit.star),
mul_assoc := λ x y z, by convert congr_fun A.mul_assoc ((x, y), z), }
/--
Converting a monoid object in `Type` to a bundled monoid.
-/
def functor : Mon_ (Type u) ⥤ Mon.{u} :=
{ obj := λ A, ⟨A.X⟩,
map := λ A B f,
{ to_fun := f.hom,
map_one' := congr_fun f.one_hom punit.star,
map_mul' := λ x y, congr_fun f.mul_hom (x, y), }, }
/--
Converting a bundled monoid to a monoid object in `Type`.
-/
def inverse : Mon.{u} ⥤ Mon_ (Type u) :=
{ obj := λ A,
{ X := A,
one := λ _, 1,
mul := λ p, p.1 * p.2,
one_mul' := by { ext ⟨_, _⟩, dsimp, simp, },
mul_one' := by { ext ⟨_, _⟩, dsimp, simp, },
mul_assoc' := by { ext ⟨⟨x, y⟩, z⟩, simp [mul_assoc], }, },
map := λ A B f,
{ hom := f, }, }
end Mon_Type_equivalence_Mon
open Mon_Type_equivalence_Mon
/--
The category of internal monoid objects in `Type`
is equivalent to the category of "native" bundled monoids.
-/
def Mon_Type_equivalence_Mon : Mon_ (Type u) ≌ Mon.{u} :=
{ functor := functor,
inverse := inverse,
unit_iso := nat_iso.of_components
(λ A, { hom := { hom := 𝟙 _, }, inv := { hom := 𝟙 _, }, })
(by tidy),
counit_iso := nat_iso.of_components (λ A,
{ hom := { to_fun := id, map_one' := rfl, map_mul' := λ x y, rfl, },
inv := { to_fun := id, map_one' := rfl, map_mul' := λ x y, rfl, }, }) (by tidy), }
/--
The equivalence `Mon_ (Type u) ≌ Mon.{u}`
is naturally compatible with the forgetful functors to `Type u`.
-/
def Mon_Type_equivalence_Mon_forget :
Mon_Type_equivalence_Mon.functor ⋙ forget Mon ≅ Mon_.forget (Type u) :=
nat_iso.of_components (λ A, iso.refl _) (by tidy)
instance Mon_Type_inhabited : inhabited (Mon_ (Type u)) :=
⟨Mon_Type_equivalence_Mon.inverse.obj (Mon.of punit)⟩
namespace CommMon_Type_equivalence_CommMon
instance CommMon_comm_monoid (A : CommMon_ (Type u)) : comm_monoid (A.X) :=
{ mul_comm := λ x y, by convert congr_fun A.mul_comm (y, x),
..Mon_Type_equivalence_Mon.Mon_monoid A.to_Mon_ }
/--
Converting a commutative monoid object in `Type` to a bundled commutative monoid.
-/
def functor : CommMon_ (Type u) ⥤ CommMon.{u} :=
{ obj := λ A, ⟨A.X⟩,
map := λ A B f, Mon_Type_equivalence_Mon.functor.map f, }
/--
Converting a bundled commutative monoid to a commutative monoid object in `Type`.
-/
def inverse : CommMon.{u} ⥤ CommMon_ (Type u) :=
{ obj := λ A,
{ mul_comm' := by { ext ⟨x, y⟩, exact comm_monoid.mul_comm y x, },
..Mon_Type_equivalence_Mon.inverse.obj ((forget₂ CommMon Mon).obj A), },
map := λ A B f, Mon_Type_equivalence_Mon.inverse.map f, }
end CommMon_Type_equivalence_CommMon
open CommMon_Type_equivalence_CommMon
/--
The category of internal commutative monoid objects in `Type`
is equivalent to the category of "native" bundled commutative monoids.
-/
def CommMon_Type_equivalence_CommMon : CommMon_ (Type u) ≌ CommMon.{u} :=
{ functor := functor,
inverse := inverse,
unit_iso := nat_iso.of_components
(λ A, { hom := { hom := 𝟙 _, }, inv := { hom := 𝟙 _, }, })
(by tidy),
counit_iso := nat_iso.of_components (λ A,
{ hom := { to_fun := id, map_one' := rfl, map_mul' := λ x y, rfl, },
inv := { to_fun := id, map_one' := rfl, map_mul' := λ x y, rfl, }, }) (by tidy), }
/--
The equivalences `Mon_ (Type u) ≌ Mon.{u}` and `CommMon_ (Type u) ≌ CommMon.{u}`
are naturally compatible with the forgetful functors to `Mon` and `Mon_ (Type u)`.
-/
def CommMon_Type_equivalence_CommMon_forget :
CommMon_Type_equivalence_CommMon.functor ⋙ forget₂ CommMon Mon ≅
CommMon_.forget₂_Mon_ (Type u) ⋙ Mon_Type_equivalence_Mon.functor :=
nat_iso.of_components (λ A, iso.refl _) (by tidy)
instance CommMon_Type_inhabited : inhabited (CommMon_ (Type u)) :=
⟨CommMon_Type_equivalence_CommMon.inverse.obj (CommMon.of punit)⟩
|
85890cf09bd13a00f28a9d71fcfd045c46809535
|
82e44445c70db0f03e30d7be725775f122d72f3e
|
/archive/100-theorems-list/82_cubing_a_cube.lean
|
b01790dc9c3aa56862dd8259a2efee14b1877bb1
|
[
"Apache-2.0"
] |
permissive
|
stjordanis/mathlib
|
51e286d19140e3788ef2c470bc7b953e4991f0c9
|
2568d41bca08f5d6bf39d915434c8447e21f42ee
|
refs/heads/master
| 1,631,748,053,501
| 1,627,938,886,000
| 1,627,938,886,000
| 228,728,358
| 0
| 0
|
Apache-2.0
| 1,576,630,588,000
| 1,576,630,587,000
| null |
UTF-8
|
Lean
| false
| false
| 23,632
|
lean
|
/-
Copyright (c) 2019 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import data.real.basic
import data.set.intervals
import data.set.pairwise
import set_theory.cardinal
/-!
Proof that a cube (in dimension n ≥ 3) cannot be cubed:
There does not exist a partition of a cube into finitely many smaller cubes (at least two)
of different sizes.
We follow the proof described here:
http://www.alaricstephen.com/main-featured/2017/9/28/cubing-a-cube-proof
-/
open real set function fin
noncomputable theory
variable {n : ℕ}
/-- Given three intervals `I, J, K` such that `J ⊂ I`,
neither endpoint of `J` coincides with an endpoint of `I`, `¬ (K ⊆ J)` and
`K` does not lie completely to the left nor completely to the right of `J`.
Then `I ∩ K \ J` is nonempty. -/
lemma Ico_lemma {α} [linear_order α] {x₁ x₂ y₁ y₂ z₁ z₂ w : α}
(h₁ : x₁ < y₁) (hy : y₁ < y₂) (h₂ : y₂ < x₂)
(hz₁ : z₁ ≤ y₂) (hz₂ : y₁ ≤ z₂) (hw : w ∉ Ico y₁ y₂ ∧ w ∈ Ico z₁ z₂) :
∃w, w ∈ Ico x₁ x₂ ∧ w ∉ Ico y₁ y₂ ∧ w ∈ Ico z₁ z₂ :=
begin
simp only [not_and, not_lt, mem_Ico] at hw,
refine ⟨max x₁ (min w y₂), _, _, _⟩,
{ simp [le_refl, lt_trans h₁ (lt_trans hy h₂), h₂] },
{ simp [hw, lt_irrefl, not_le_of_lt h₁] {contextual := tt} },
{ simp [hw.2.1, hw.2.2, hz₁, lt_of_lt_of_le h₁ hz₂] at ⊢ }
end
/-- A (hyper)-cube (in standard orientation) is a vector `b` consisting of the bottom-left point
of the cube, a width `w` and a proof that `w > 0`. We use functions from `fin n` to denote vectors.
-/
structure cube (n : ℕ) : Type :=
(b : fin n → ℝ) -- bottom-left coordinate
(w : ℝ) -- width
(hw : 0 < w)
namespace cube
lemma hw' (c : cube n) : 0 ≤ c.w := le_of_lt c.hw
/-- The j-th side of a cube is the half-open interval `[b j, b j + w)` -/
def side (c : cube n) (j : fin n) : set ℝ :=
Ico (c.b j) (c.b j + c.w)
@[simp] lemma b_mem_side (c : cube n) (j : fin n) : c.b j ∈ c.side j :=
by simp [side, cube.hw, le_refl]
def to_set (c : cube n) : set (fin n → ℝ) :=
{ x | ∀j, x j ∈ side c j }
def to_set_subset {c c' : cube n} : c.to_set ⊆ c'.to_set ↔ ∀j, c.side j ⊆ c'.side j :=
begin
split, intros h j x hx,
let f : fin n → ℝ := λ j', if j' = j then x else c.b j',
have : f ∈ c.to_set,
{ intro j', by_cases hj' : j' = j; simp [f, hj', if_pos, if_neg, hx] },
convert h this j, { simp [f, if_pos] },
intros h f hf j, exact h j (hf j)
end
def to_set_disjoint {c c' : cube n} : disjoint c.to_set c'.to_set ↔
∃j, disjoint (c.side j) (c'.side j) :=
begin
split, intros h, classical, by_contra h',
simp only [not_disjoint_iff, classical.skolem, not_exists] at h',
cases h' with f hf,
apply not_disjoint_iff.mpr ⟨f, _, _⟩ h; intro j, exact (hf j).1, exact (hf j).2,
rintro ⟨j, hj⟩, rw [set.disjoint_iff], rintros f ⟨h1f, h2f⟩,
apply not_disjoint_iff.mpr ⟨f j, h1f j, h2f j⟩ hj
end
lemma b_mem_to_set (c : cube n) : c.b ∈ c.to_set :=
by simp [to_set]
protected def tail (c : cube (n+1)) : cube n :=
⟨tail c.b, c.w, c.hw⟩
lemma side_tail (c : cube (n+1)) (j : fin n) : c.tail.side j = c.side j.succ := rfl
def bottom (c : cube (n+1)) : set (fin (n+1) → ℝ) :=
{ x | x 0 = c.b 0 ∧ tail x ∈ c.tail.to_set }
lemma b_mem_bottom (c : cube (n+1)) : c.b ∈ c.bottom :=
by simp [bottom, to_set, side, cube.hw, le_refl, cube.tail]
def xm (c : cube (n+1)) : ℝ :=
c.b 0 + c.w
lemma b_lt_xm (c : cube (n+1)) : c.b 0 < c.xm := by simp [xm, hw]
lemma b_ne_xm (c : cube (n+1)) : c.b 0 ≠ c.xm := ne_of_lt c.b_lt_xm
def shift_up (c : cube (n+1)) : cube (n+1) :=
⟨cons c.xm $ tail c.b, c.w, c.hw⟩
@[simp] lemma tail_shift_up (c : cube (n+1)) : c.shift_up.tail = c.tail :=
by simp [shift_up, cube.tail]
@[simp] lemma head_shift_up (c : cube (n+1)) : c.shift_up.b 0 = c.xm := rfl
def unit_cube : cube n :=
⟨λ _, 0, 1, by norm_num⟩
@[simp] lemma side_unit_cube {j : fin n} : unit_cube.side j = Ico 0 1 :=
by norm_num [unit_cube, side]
end cube
open cube
variables {ι : Type} [fintype ι] {cs : ι → cube (n+1)} {i i' : ι}
/-- A finite family of (at least 2) cubes partitioning the unit cube with different sizes -/
def correct (cs : ι → cube n) : Prop :=
pairwise (disjoint on (cube.to_set ∘ cs)) ∧
(⋃(i : ι), (cs i).to_set) = unit_cube.to_set ∧
injective (cube.w ∘ cs) ∧
2 ≤ cardinal.mk ι ∧
3 ≤ n
variable (h : correct cs)
include h
lemma to_set_subset_unit_cube {i} : (cs i).to_set ⊆ unit_cube.to_set :=
by { rw [←h.2.1], exact subset_Union _ i }
lemma side_subset {i j} : (cs i).side j ⊆ Ico 0 1 :=
by { have := to_set_subset_unit_cube h, rw [to_set_subset] at this,
convert this j, norm_num [unit_cube] }
lemma zero_le_of_mem_side {i j x} (hx : x ∈ (cs i).side j) : 0 ≤ x :=
(side_subset h hx).1
lemma zero_le_of_mem {i p} (hp : p ∈ (cs i).to_set) (j) : 0 ≤ p j :=
zero_le_of_mem_side h (hp j)
lemma zero_le_b {i j} : 0 ≤ (cs i).b j :=
zero_le_of_mem h (cs i).b_mem_to_set j
lemma b_add_w_le_one {j} : (cs i).b j + (cs i).w ≤ 1 :=
by { have := side_subset h, rw [side, Ico_subset_Ico_iff] at this, convert this.2, simp [hw] }
/-- The width of any cube in the partition cannot be 1. -/
lemma w_ne_one (i : ι) : (cs i).w ≠ 1 :=
begin
intro hi,
have := h.2.2.2.1, rw [cardinal.two_le_iff' i] at this, cases this with i' hi',
let p := (cs i').b,
have hp : p ∈ (cs i').to_set := (cs i').b_mem_to_set,
have h2p : p ∈ (cs i).to_set,
{ intro j, split,
transitivity (0 : ℝ),
{ rw [←add_le_add_iff_right (1 : ℝ)], convert b_add_w_le_one h, rw hi, rw zero_add },
apply zero_le_b h, apply lt_of_lt_of_le (side_subset h $ (cs i').b_mem_side j).2,
simp [hi, zero_le_b h] },
apply not_disjoint_iff.mpr ⟨p, hp, h2p⟩,
apply h.1, exact hi'.symm
end
/-- The top of a cube (which is the bottom of the cube shifted up by its width) must be covered by
bottoms of (other) cubes in the family. -/
lemma shift_up_bottom_subset_bottoms (hc : (cs i).xm ≠ 1) :
(cs i).shift_up.bottom ⊆ ⋃(i : ι), (cs i).bottom :=
begin
intros p hp, cases hp with hp0 hps, rw [tail_shift_up] at hps,
have : p ∈ (unit_cube : cube (n+1)).to_set,
{ simp only [to_set, forall_fin_succ, hp0, side_unit_cube, mem_set_of_eq, mem_Ico,
head_shift_up], refine ⟨⟨_, _⟩, _⟩,
{ rw [←zero_add (0 : ℝ)], apply add_le_add, apply zero_le_b h, apply (cs i).hw' },
{ exact lt_of_le_of_ne (b_add_w_le_one h) hc },
intro j, exact side_subset h (hps j) },
rw [←h.2.1] at this, rcases this with ⟨_, ⟨i', rfl⟩, hi'⟩,
rw [mem_Union], use i', refine ⟨_, λ j, hi' j.succ⟩,
have : i ≠ i', { rintro rfl, apply not_le_of_lt (hi' 0).2, rw [hp0], refl },
have := h.1 i i' this, rw [on_fun, to_set_disjoint, exists_fin_succ] at this,
rcases this with h0|⟨j, hj⟩,
rw [hp0], symmetry, apply eq_of_Ico_disjoint h0 (by simp [hw]) _,
convert hi' 0, rw [hp0], refl,
exfalso, apply not_disjoint_iff.mpr ⟨tail p j, hps j, hi' j.succ⟩ hj
end
omit h
/-- A valley is a square on which cubes in the family of cubes are placed, so that the cubes
completely cover the valley and none of those cubes is partially outside the square.
We also require that no cube on it has the same size as the valley (so that there are at least
two cubes on the valley).
This is the main concept in the formalization.
We prove that the smallest cube on a valley has another valley on the top of it, which
gives an infinite sequence of cubes in the partition, which contradicts the finiteness.
A valley is characterized by a cube `c` (which is not a cube in the family cs) by considering
the bottom face of `c`. -/
def valley (cs : ι → cube (n+1)) (c : cube (n+1)) : Prop :=
c.bottom ⊆ (⋃(i : ι), (cs i).bottom) ∧
(∀i, (cs i).b 0 = c.b 0 → (∃x, x ∈ (cs i).tail.to_set ∩ c.tail.to_set) →
(cs i).tail.to_set ⊆ c.tail.to_set) ∧
∀(i : ι), (cs i).b 0 = c.b 0 → (cs i).w ≠ c.w
variables {c : cube (n+1)} (v : valley cs c)
/-- The bottom of the unit cube is a valley -/
lemma valley_unit_cube (h : correct cs) : valley cs unit_cube :=
begin
refine ⟨_, _, _⟩,
{ intro v,
simp only [bottom, and_imp, mem_Union, mem_set_of_eq],
intros h0 hv,
have : v ∈ (unit_cube : cube (n+1)).to_set,
{ dsimp only [to_set, unit_cube, mem_set_of_eq],
rw [forall_fin_succ, h0], split, norm_num [side, unit_cube], exact hv },
rw [←h.2.1] at this, rcases this with ⟨_, ⟨i, rfl⟩, hi⟩,
use i,
split, { apply le_antisymm, rw h0, exact zero_le_b h, exact (hi 0).1 },
intro j, exact hi _ },
{ intros i hi h', rw to_set_subset, intro j, convert side_subset h using 1, simp [side_tail] },
{ intros i hi, exact w_ne_one h i }
end
/-- the cubes which lie in the valley `c` -/
def bcubes (cs : ι → cube (n+1)) (c : cube (n+1)) : set ι :=
{ i : ι | (cs i).b 0 = c.b 0 ∧ (cs i).tail.to_set ⊆ c.tail.to_set }
/-- A cube which lies on the boundary of a valley in dimension `j` -/
def on_boundary (hi : i ∈ bcubes cs c) (j : fin n) : Prop :=
c.b j.succ = (cs i).b j.succ ∨ (cs i).b j.succ + (cs i).w = c.b j.succ + c.w
lemma tail_sub (hi : i ∈ bcubes cs c) : ∀j, (cs i).tail.side j ⊆ c.tail.side j :=
by { rw [←to_set_subset], exact hi.2 }
lemma bottom_mem_side (hi : i ∈ bcubes cs c) : c.b 0 ∈ (cs i).side 0 :=
by { convert b_mem_side (cs i) _ using 1, rw hi.1 }
lemma b_le_b (hi : i ∈ bcubes cs c) (j : fin n) : c.b j.succ ≤ (cs i).b j.succ :=
(tail_sub hi j $ b_mem_side _ _).1
lemma t_le_t (hi : i ∈ bcubes cs c) (j : fin n) :
(cs i).b j.succ + (cs i).w ≤ c.b j.succ + c.w :=
begin
have h' := tail_sub hi j, dsimp only [side] at h', rw [Ico_subset_Ico_iff] at h',
exact h'.2, simp [hw]
end
include h v
/-- Every cube in the valley must be smaller than it -/
lemma w_lt_w (hi : i ∈ bcubes cs c) : (cs i).w < c.w :=
begin
apply lt_of_le_of_ne _ (v.2.2 i hi.1),
have j : fin n := ⟨1, nat.le_of_succ_le_succ h.2.2.2.2⟩,
rw [←add_le_add_iff_left ((cs i).b j.succ)],
apply le_trans (t_le_t hi j), rw [add_le_add_iff_right], apply b_le_b hi,
end
open cardinal
/-- There are at least two cubes in a valley -/
lemma two_le_mk_bcubes : 2 ≤ cardinal.mk (bcubes cs c) :=
begin
rw [two_le_iff],
rcases v.1 c.b_mem_bottom with ⟨_, ⟨i, rfl⟩, hi⟩,
have h2i : i ∈ bcubes cs c :=
⟨hi.1.symm, v.2.1 i hi.1.symm ⟨tail c.b, hi.2, λ j, c.b_mem_side j.succ⟩⟩,
let j : fin (n+1) := ⟨2, h.2.2.2.2⟩,
have hj : 0 ≠ j := by { simp only [fin.ext_iff, ne.def], contradiction },
let p : fin (n+1) → ℝ := λ j', if j' = j then c.b j + (cs i).w else c.b j',
have hp : p ∈ c.bottom,
{ split, { simp only [bottom, p, if_neg hj] },
intro j', simp only [tail, side_tail],
by_cases hj' : j'.succ = j,
{ simp [p, -add_comm, if_pos, side, hj', hw', w_lt_w h v h2i] },
{ simp [p, -add_comm, if_neg hj'] }},
rcases v.1 hp with ⟨_, ⟨i', rfl⟩, hi'⟩,
have h2i' : i' ∈ bcubes cs c := ⟨hi'.1.symm, v.2.1 i' hi'.1.symm ⟨tail p, hi'.2, hp.2⟩⟩,
refine ⟨⟨i, h2i⟩, ⟨i', h2i'⟩, _⟩,
intro hii', cases congr_arg subtype.val hii',
apply not_le_of_lt (hi'.2 ⟨1, nat.le_of_succ_le_succ h.2.2.2.2⟩).2,
simp only [-add_comm, tail, cube.tail, p],
rw [if_pos, add_le_add_iff_right],
{ exact (hi.2 _).1 },
refl
end
/-- There is a cube in the valley -/
lemma nonempty_bcubes : (bcubes cs c).nonempty :=
begin
rw [←set.ne_empty_iff_nonempty], intro h', have := two_le_mk_bcubes h v, rw h' at this,
apply not_lt_of_le this, rw mk_emptyc, norm_cast, norm_num
end
/-- There is a smallest cube in the valley -/
lemma exists_mi : ∃(i : ι), i ∈ bcubes cs c ∧ ∀(i' ∈ bcubes cs c),
(cs i).w ≤ (cs i').w :=
by simpa
using (bcubes cs c).exists_min_image (λ i, (cs i).w) (finite.of_fintype _) (nonempty_bcubes h v)
/-- We let `mi` be the (index for the) smallest cube in the valley `c` -/
def mi : ι := classical.some $ exists_mi h v
variables {h v}
lemma mi_mem_bcubes : mi h v ∈ bcubes cs c :=
(classical.some_spec $ exists_mi h v).1
lemma mi_minimal (hi : i ∈ bcubes cs c) : (cs $ mi h v).w ≤ (cs i).w :=
(classical.some_spec $ exists_mi h v).2 i hi
lemma mi_strict_minimal (hii' : mi h v ≠ i) (hi : i ∈ bcubes cs c) :
(cs $ mi h v).w < (cs i).w :=
by { apply lt_of_le_of_ne (mi_minimal hi), apply h.2.2.1.ne, apply hii' }
/-- The top of `mi` cannot be 1, since there is a larger cube in the valley -/
lemma mi_xm_ne_one : (cs $ mi h v).xm ≠ 1 :=
begin
apply ne_of_lt, rcases (two_le_iff' _).mp (two_le_mk_bcubes h v) with ⟨⟨i, hi⟩, h2i⟩,
swap, exact ⟨mi h v, mi_mem_bcubes⟩,
apply lt_of_lt_of_le _ (b_add_w_le_one h), exact i, exact 0,
rw [xm, mi_mem_bcubes.1, hi.1, _root_.add_lt_add_iff_left],
apply mi_strict_minimal _ hi, intro h', apply h2i, rw subtype.ext_iff_val, exact h'
end
/-- If `mi` lies on the boundary of the valley in dimension j, then this lemma expresses that all
other cubes on the same boundary extend further from the boundary.
More precisely, there is a j-th coordinate `x : ℝ` in the valley, but not in `mi`,
such that every cube that shares a (particular) j-th coordinate with `mi` also contains j-th
coordinate `x` -/
lemma smallest_on_boundary {j} (bi : on_boundary (mi_mem_bcubes : mi h v ∈ _) j) :
∃(x : ℝ), x ∈ c.side j.succ \ (cs $ mi h v).side j.succ ∧
∀{{i'}} (hi' : i' ∈ bcubes cs c), i' ≠ mi h v →
(cs $ mi h v).b j.succ ∈ (cs i').side j.succ → x ∈ (cs i').side j.succ :=
begin
let i := mi h v, have hi : i ∈ bcubes cs c := mi_mem_bcubes,
cases bi,
{ refine ⟨(cs i).b j.succ + (cs i).w, ⟨_, _⟩, _⟩,
{ simp [side, bi, hw', w_lt_w h v hi] },
{ intro h', simpa [i, lt_irrefl] using h'.2 },
intros i' hi' i'_i h2i', split,
apply le_trans h2i'.1, { simp [hw'] },
apply lt_of_lt_of_le (add_lt_add_left (mi_strict_minimal i'_i.symm hi') _),
simp [bi.symm, b_le_b hi'] },
let s := bcubes cs c \ { i },
have hs : s.nonempty,
{ rcases (two_le_iff' (⟨i, hi⟩ : bcubes cs c)).mp (two_le_mk_bcubes h v) with ⟨⟨i', hi'⟩, h2i'⟩,
refine ⟨i', hi', _⟩, simp only [mem_singleton_iff], intro h, apply h2i', simp [h] },
rcases set.exists_min_image s (w ∘ cs) (finite.of_fintype _) hs with ⟨i', ⟨hi', h2i'⟩, h3i'⟩,
rw [mem_singleton_iff] at h2i',
let x := c.b j.succ + c.w - (cs i').w,
have hx : x < (cs i).b j.succ,
{ dsimp only [x], rw [←bi, add_sub_assoc, add_lt_iff_neg_left, sub_lt_zero],
apply mi_strict_minimal (ne.symm h2i') hi' },
refine ⟨x, ⟨_, _⟩, _⟩,
{ simp only [side, x, -add_comm, -add_assoc, neg_lt_zero, hw, add_lt_iff_neg_left, and_true,
mem_Ico, sub_eq_add_neg],
rw [add_assoc, le_add_iff_nonneg_right, ←sub_eq_add_neg, sub_nonneg],
apply le_of_lt (w_lt_w h v hi') },
{ simp only [side, not_and_distrib, not_lt, add_comm, not_le, mem_Ico], left, exact hx },
intros i'' hi'' h2i'' h3i'', split, swap, apply lt_trans hx h3i''.2,
simp only [x], rw [le_sub_iff_add_le],
refine le_trans _ (t_le_t hi'' j), rw [add_le_add_iff_left], apply h3i' i'' ⟨hi'', _⟩,
simp [mem_singleton, h2i'']
end
variables (h v)
/-- `mi` cannot lie on the boundary of the valley. Otherwise, the cube adjacent to it in the `j`-th
direction will intersect one of the neighbouring cubes on the same boundary as `mi`. -/
lemma mi_not_on_boundary (j : fin n) : ¬on_boundary (mi_mem_bcubes : mi h v ∈ _) j :=
begin
let i := mi h v, have hi : i ∈ bcubes cs c := mi_mem_bcubes,
rcases (two_le_iff' j).mp _ with ⟨j', hj'⟩, swap,
{ rw [mk_fin, ←nat.cast_two, nat_cast_le], apply nat.le_of_succ_le_succ h.2.2.2.2 },
intro hj,
rcases smallest_on_boundary hj with ⟨x, ⟨hx, h2x⟩, h3x⟩,
let p : fin (n+1) → ℝ := cons (c.b 0) (λ j₂, if j₂ = j then x else (cs i).b j₂.succ),
have hp : p ∈ c.bottom,
{ suffices : ∀ (j' : fin n), ite (j' = j) x ((cs i).b j'.succ) ∈ c.side j'.succ,
{ simpa [bottom, p, to_set, tail, side_tail] },
intro j₂,
by_cases hj₂ : j₂ = j, { simp [hj₂, hx] },
simp only [hj₂, if_false], apply tail_sub hi, apply b_mem_side },
rcases v.1 hp with ⟨_, ⟨i', rfl⟩, hi'⟩,
have h2i' : i' ∈ bcubes cs c := ⟨hi'.1.symm, v.2.1 i' hi'.1.symm ⟨tail p, hi'.2, hp.2⟩⟩,
have i_i' : i ≠ i', { rintro rfl, simpa [p, side_tail, i, h2x] using hi'.2 j },
have : nonempty ↥((cs i').tail.side j' \ (cs i).tail.side j'),
{ apply nonempty_Ico_sdiff, apply mi_strict_minimal i_i' h2i', apply hw },
rcases this with ⟨⟨x', hx'⟩⟩,
let p' : fin (n+1) → ℝ :=
cons (c.b 0) (λ j₂, if j₂ = j' then x' else (cs i).b j₂.succ),
have hp' : p' ∈ c.bottom,
{ suffices : ∀ (j : fin n), ite (j = j') x' ((cs i).b j.succ) ∈ c.side j.succ,
{ simpa [bottom, p', to_set, tail, side_tail] },
intro j₂,
by_cases hj₂ : j₂ = j', simp [hj₂], apply tail_sub h2i', apply hx'.1,
simp only [if_congr, if_false, hj₂], apply tail_sub hi, apply b_mem_side },
rcases v.1 hp' with ⟨_, ⟨i'', rfl⟩, hi''⟩,
have h2i'' : i'' ∈ bcubes cs c := ⟨hi''.1.symm, v.2.1 i'' hi''.1.symm ⟨tail p', hi''.2, hp'.2⟩⟩,
have i'_i'' : i' ≠ i'',
{ rintro ⟨⟩,
have : (cs i).b ∈ (cs i').to_set,
{ simp only [to_set, forall_fin_succ, hi.1, bottom_mem_side h2i', true_and, mem_set_of_eq],
intro j₂, by_cases hj₂ : j₂ = j,
{ simpa [side_tail, p', hj', hj₂] using hi''.2 j },
{ simpa [hj₂] using hi'.2 j₂ } },
apply not_disjoint_iff.mpr ⟨(cs i).b, (cs i).b_mem_to_set, this⟩ (h.1 i i' i_i') },
have i_i'' : i ≠ i'', { intro h, induction h, simpa [hx'.2] using hi''.2 j' },
apply not.elim _ (h.1 i' i'' i'_i''),
simp only [on_fun, to_set_disjoint, not_disjoint_iff, forall_fin_succ, not_exists, comp_app],
refine ⟨⟨c.b 0, bottom_mem_side h2i', bottom_mem_side h2i''⟩, _⟩,
intro j₂,
by_cases hj₂ : j₂ = j,
{ cases hj₂, refine ⟨x, _, _⟩,
{ convert hi'.2 j, simp [p] },
apply h3x h2i'' i_i''.symm, convert hi''.2 j, simp [p', hj'] },
by_cases h2j₂ : j₂ = j',
{ cases h2j₂, refine ⟨x', hx'.1, _⟩, convert hi''.2 j', simp },
refine ⟨(cs i).b j₂.succ, _, _⟩,
{ convert hi'.2 j₂, simp [hj₂] },
{ convert hi''.2 j₂, simp [h2j₂] }
end
variables {h v}
/-- The same result that `mi` cannot lie on the boundary of the valley written as inequalities. -/
lemma mi_not_on_boundary' (j : fin n) : c.tail.b j < (cs (mi h v)).tail.b j ∧
(cs (mi h v)).tail.b j + (cs (mi h v)).w < c.tail.b j + c.w :=
begin
have := mi_not_on_boundary h v j,
simp only [on_boundary, not_or_distrib] at this, cases this with h1 h2,
split,
apply lt_of_le_of_ne (b_le_b mi_mem_bcubes _) h1,
apply lt_of_le_of_ne _ h2,
apply ((Ico_subset_Ico_iff _).mp (tail_sub mi_mem_bcubes j)).2,
simp [hw]
end
/-- The top of `mi` gives rise to a new valley, since the neighbouring cubes extend further upward
than `mi`. -/
def valley_mi : valley cs ((cs (mi h v)).shift_up) :=
begin
let i := mi h v, have hi : i ∈ bcubes cs c := mi_mem_bcubes,
refine ⟨_, _, _⟩,
{ intro p, apply shift_up_bottom_subset_bottoms h mi_xm_ne_one },
{ rintros i' hi' ⟨p2, hp2, h2p2⟩, simp only [head_shift_up] at hi', classical, by_contra h2i',
rw [tail_shift_up] at h2p2, simp only [not_subset, tail_shift_up] at h2i',
rcases h2i' with ⟨p1, hp1, h2p1⟩,
have : ∃p3, p3 ∈ (cs i').tail.to_set ∧ p3 ∉ (cs i).tail.to_set ∧ p3 ∈ c.tail.to_set,
{ simp only [to_set, not_forall, mem_set_of_eq] at h2p1, cases h2p1 with j hj,
rcases Ico_lemma (mi_not_on_boundary' j).1 (by simp [hw]) (mi_not_on_boundary' j).2
(le_trans (hp2 j).1 $ le_of_lt (h2p2 j).2)
(le_trans (h2p2 j).1 $ le_of_lt (hp2 j).2) ⟨hj, hp1 j⟩ with ⟨w, hw, h2w, h3w⟩,
refine ⟨λ j', if j' = j then w else p2 j', _, _, _⟩,
{ intro j', by_cases h : j' = j,
{ simp only [if_pos h], convert h3w },
{ simp only [if_neg h], exact hp2 j' } },
{ simp only [to_set, not_forall, mem_set_of_eq], use j, rw [if_pos rfl], convert h2w },
{ intro j', by_cases h : j' = j,
{ simp only [if_pos h, side_tail], convert hw },
{ simp only [if_neg h], apply hi.2, apply h2p2 } } },
rcases this with ⟨p3, h1p3, h2p3, h3p3⟩,
let p := @cons n (λ_, ℝ) (c.b 0) p3,
have hp : p ∈ c.bottom, { refine ⟨rfl, _⟩, rwa [tail_cons] },
rcases v.1 hp with ⟨_, ⟨i'', rfl⟩, hi''⟩,
have h2i'' : i'' ∈ bcubes cs c,
{ use hi''.1.symm, apply v.2.1 i'' hi''.1.symm,
use tail p, split, exact hi''.2, rw [tail_cons], exact h3p3 },
have h3i'' : (cs i).w < (cs i'').w,
{ apply mi_strict_minimal _ h2i'', rintro rfl, apply h2p3, convert hi''.2, rw [tail_cons] },
let p' := @cons n (λ_, ℝ) (cs i).xm p3,
have hp' : p' ∈ (cs i').to_set,
{ simpa [to_set, forall_fin_succ, p', hi'.symm] using h1p3 },
have h2p' : p' ∈ (cs i'').to_set,
{ simp only [to_set, forall_fin_succ, p', cons_succ, cons_zero, mem_set_of_eq],
refine ⟨_, by simpa [to_set, p] using hi''.2⟩,
have : (cs i).b 0 = (cs i'').b 0, { by rw [hi.1, h2i''.1] },
simp [side, hw', xm, this, h3i''] },
apply not_disjoint_iff.mpr ⟨p', hp', h2p'⟩,
apply h.1, rintro rfl, apply (cs i).b_ne_xm, rw [←hi', ←hi''.1, hi.1], refl },
{ intros i' hi' h2i',
dsimp only [shift_up] at h2i',
replace h2i' := h.2.2.1 h2i'.symm,
induction h2i',
exact b_ne_xm (cs i) hi' }
end
variables (h)
omit v
/-- We get a sequence of cubes whose size is decreasing -/
noncomputable def sequence_of_cubes : ℕ → { i : ι // valley cs ((cs i).shift_up) }
| 0 := let v := valley_unit_cube h in ⟨mi h v, valley_mi⟩
| (k+1) := let v := (sequence_of_cubes k).2 in ⟨mi h v, valley_mi⟩
def decreasing_sequence (k : ℕ) : order_dual ℝ :=
(cs (sequence_of_cubes h k).1).w
lemma strict_mono_sequence_of_cubes : strict_mono $ decreasing_sequence h :=
strict_mono.nat $
begin
intro k, let v := (sequence_of_cubes h k).2, dsimp only [decreasing_sequence, sequence_of_cubes],
apply w_lt_w h v (mi_mem_bcubes : mi h v ∈ _),
end
omit h
/-- The infinite sequence of cubes contradicts the finiteness of the family. -/
theorem not_correct : ¬correct cs :=
begin
intro h, apply not_le_of_lt (lt_omega_iff_fintype.mpr ⟨_inst_1⟩),
rw [omega, lift_id], fapply mk_le_of_injective, exact λ n, (sequence_of_cubes h n).1,
intros n m hnm, apply strict_mono.injective (strict_mono_sequence_of_cubes h),
dsimp only [decreasing_sequence], rw hnm
end
/-- **Dissection of Cubes**: A cube cannot be cubed. -/
theorem cannot_cube_a_cube :
∀{n : ℕ}, n ≥ 3 → -- In ℝ^n for n ≥ 3
∀{ι : Type} [fintype ι] {cs : ι → cube n}, -- given a finite collection of (hyper)cubes
2 ≤ cardinal.mk ι → -- containing at least two elements
pairwise (disjoint on (cube.to_set ∘ cs)) → -- which is pairwise disjoint
(⋃(i : ι), (cs i).to_set) = unit_cube.to_set → -- whose union is the unit cube
injective (cube.w ∘ cs) → -- such that the widths of all cubes are different
false := -- then we can derive a contradiction
begin
intros n hn ι hι cs h1 h2 h3 h4, resetI,
rcases n, cases hn,
exact not_correct ⟨h2, h3, h4, h1, hn⟩
end
|
fca8aa51eec687031d2dd18ad3f7f3a1ac872b21
|
4b846d8dabdc64e7ea03552bad8f7fa74763fc67
|
/library/init/algebra/ordered_ring.lean
|
875929a0eea3d34ba9a12312dd26a7aa13174d5d
|
[
"Apache-2.0"
] |
permissive
|
pacchiano/lean
|
9324b33f3ac3b5c5647285160f9f6ea8d0d767dc
|
fdadada3a970377a6df8afcd629a6f2eab6e84e8
|
refs/heads/master
| 1,611,357,380,399
| 1,489,870,101,000
| 1,489,870,101,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 16,070
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
prelude
import init.algebra.ordered_group init.algebra.ring
/- Make sure instances defined in this file have lower priority than the ones
defined for concrete structures -/
set_option default_priority 100
universe u
class ordered_semiring (α : Type u)
extends semiring α, ordered_cancel_comm_monoid α :=
(mul_le_mul_of_nonneg_left: ∀ a b c : α, a ≤ b → 0 ≤ c → c * a ≤ c * b)
(mul_le_mul_of_nonneg_right: ∀ a b c : α, a ≤ b → 0 ≤ c → a * c ≤ b * c)
(mul_lt_mul_of_pos_left: ∀ a b c : α, a < b → 0 < c → c * a < c * b)
(mul_lt_mul_of_pos_right: ∀ a b c : α, a < b → 0 < c → a * c < b * c)
variable {α : Type u}
section ordered_semiring
variable [ordered_semiring α]
lemma mul_le_mul_of_nonneg_left {a b c : α} (h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b :=
ordered_semiring.mul_le_mul_of_nonneg_left a b c h₁ h₂
lemma mul_le_mul_of_nonneg_right {a b c : α} (h₁ : a ≤ b) (h₂ : 0 ≤ c) : a * c ≤ b * c :=
ordered_semiring.mul_le_mul_of_nonneg_right a b c h₁ h₂
lemma mul_lt_mul_of_pos_left {a b c : α} (h₁ : a < b) (h₂ : 0 < c) : c * a < c * b :=
ordered_semiring.mul_lt_mul_of_pos_left a b c h₁ h₂
lemma mul_lt_mul_of_pos_right {a b c : α} (h₁ : a < b) (h₂ : 0 < c) : a * c < b * c :=
ordered_semiring.mul_lt_mul_of_pos_right a b c h₁ h₂
-- TODO: there are four variations, depending on which variables we assume to be nonneg
lemma mul_le_mul {a b c d : α} (hac : a ≤ c) (hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) : a * b ≤ c * d :=
calc
a * b ≤ c * b : mul_le_mul_of_nonneg_right hac nn_b
... ≤ c * d : mul_le_mul_of_nonneg_left hbd nn_c
lemma mul_nonneg {a b : α} (ha : a ≥ 0) (hb : b ≥ 0) : a * b ≥ 0 :=
have h : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right ha hb,
by rwa [zero_mul] at h
lemma mul_nonpos_of_nonneg_of_nonpos {a b : α} (ha : a ≥ 0) (hb : b ≤ 0) : a * b ≤ 0 :=
have h : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left hb ha,
by rwa mul_zero at h
lemma mul_nonpos_of_nonpos_of_nonneg {a b : α} (ha : a ≤ 0) (hb : b ≥ 0) : a * b ≤ 0 :=
have h : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right ha hb,
by rwa zero_mul at h
lemma mul_lt_mul {a b c d : α} (hac : a < c) (hbd : b ≤ d) (pos_b : 0 < b) (nn_c : 0 ≤ c) : a * b < c * d :=
calc
a * b < c * b : mul_lt_mul_of_pos_right hac pos_b
... ≤ c * d : mul_le_mul_of_nonneg_left hbd nn_c
lemma mul_lt_mul' {a b c d : α} (h1 : a < c) (h2 : b < d) (h3 : b ≥ 0) (h4 : c > 0) :
a * b < c * d :=
calc
a * b ≤ c * b : mul_le_mul_of_nonneg_right (le_of_lt h1) h3
... < c * d : mul_lt_mul_of_pos_left h2 h4
lemma mul_pos {a b : α} (ha : a > 0) (hb : b > 0) : a * b > 0 :=
have h : 0 * b < a * b, from mul_lt_mul_of_pos_right ha hb,
by rwa zero_mul at h
lemma mul_neg_of_pos_of_neg {a b : α} (ha : a > 0) (hb : b < 0) : a * b < 0 :=
have h : a * b < a * 0, from mul_lt_mul_of_pos_left hb ha,
by rwa mul_zero at h
lemma mul_neg_of_neg_of_pos {a b : α} (ha : a < 0) (hb : b > 0) : a * b < 0 :=
have h : a * b < 0 * b, from mul_lt_mul_of_pos_right ha hb,
by rwa zero_mul at h
lemma mul_self_lt_mul_self {a b : α} (h1 : 0 ≤ a) (h2 : a < b) : a * a < b * b :=
mul_lt_mul' h2 h2 h1 (lt_of_le_of_lt h1 h2)
end ordered_semiring
class linear_ordered_semiring (α : Type u) extends ordered_semiring α, linear_strong_order_pair α :=
(zero_lt_one : zero < one)
section linear_ordered_semiring
variable [linear_ordered_semiring α]
lemma zero_lt_one : 0 < (1:α) :=
linear_ordered_semiring.zero_lt_one α
lemma lt_of_mul_lt_mul_left {a b c : α} (h : c * a < c * b) (hc : c ≥ 0) : a < b :=
lt_of_not_ge
(assume h1 : b ≤ a,
have h2 : c * b ≤ c * a, from mul_le_mul_of_nonneg_left h1 hc,
not_lt_of_ge h2 h)
lemma lt_of_mul_lt_mul_right {a b c : α} (h : a * c < b * c) (hc : c ≥ 0) : a < b :=
lt_of_not_ge
(assume h1 : b ≤ a,
have h2 : b * c ≤ a * c, from mul_le_mul_of_nonneg_right h1 hc,
not_lt_of_ge h2 h)
lemma le_of_mul_le_mul_left {a b c : α} (h : c * a ≤ c * b) (hc : c > 0) : a ≤ b :=
le_of_not_gt
(assume h1 : b < a,
have h2 : c * b < c * a, from mul_lt_mul_of_pos_left h1 hc,
not_le_of_gt h2 h)
lemma le_of_mul_le_mul_right {a b c : α} (h : a * c ≤ b * c) (hc : c > 0) : a ≤ b :=
le_of_not_gt
(assume h1 : b < a,
have h2 : b * c < a * c, from mul_lt_mul_of_pos_right h1 hc,
not_le_of_gt h2 h)
lemma pos_of_mul_pos_left {a b : α} (h : 0 < a * b) (h1 : 0 ≤ a) : 0 < b :=
lt_of_not_ge
(assume h2 : b ≤ 0,
have h3 : a * b ≤ 0, from mul_nonpos_of_nonneg_of_nonpos h1 h2,
not_lt_of_ge h3 h)
lemma pos_of_mul_pos_right {a b : α} (h : 0 < a * b) (h1 : 0 ≤ b) : 0 < a :=
lt_of_not_ge
(assume h2 : a ≤ 0,
have h3 : a * b ≤ 0, from mul_nonpos_of_nonpos_of_nonneg h2 h1,
not_lt_of_ge h3 h)
lemma nonneg_of_mul_nonneg_left {a b : α} (h : 0 ≤ a * b) (h1 : 0 < a) : 0 ≤ b :=
le_of_not_gt
(assume h2 : b < 0,
not_le_of_gt (mul_neg_of_pos_of_neg h1 h2) h)
lemma nonneg_of_mul_nonneg_right {a b : α} (h : 0 ≤ a * b) (h1 : 0 < b) : 0 ≤ a :=
le_of_not_gt
(assume h2 : a < 0,
not_le_of_gt (mul_neg_of_neg_of_pos h2 h1) h)
lemma neg_of_mul_neg_left {a b : α} (h : a * b < 0) (h1 : 0 ≤ a) : b < 0 :=
lt_of_not_ge
(assume h2 : b ≥ 0,
not_lt_of_ge (mul_nonneg h1 h2) h)
lemma neg_of_mul_neg_right {a b : α} (h : a * b < 0) (h1 : 0 ≤ b) : a < 0 :=
lt_of_not_ge
(assume h2 : a ≥ 0,
not_lt_of_ge (mul_nonneg h2 h1) h)
lemma nonpos_of_mul_nonpos_left {a b : α} (h : a * b ≤ 0) (h1 : 0 < a) : b ≤ 0 :=
le_of_not_gt
(assume h2 : b > 0,
not_le_of_gt (mul_pos h1 h2) h)
lemma nonpos_of_mul_nonpos_right {a b : α} (h : a * b ≤ 0) (h1 : 0 < b) : a ≤ 0 :=
le_of_not_gt
(assume h2 : a > 0,
not_le_of_gt (mul_pos h2 h1) h)
end linear_ordered_semiring
class decidable_linear_ordered_semiring (α : Type u) extends linear_ordered_semiring α, decidable_linear_order α
class ordered_ring (α : Type u) extends ring α, ordered_comm_group α, zero_ne_one_class α :=
(mul_nonneg : ∀ a b : α, 0 ≤ a → 0 ≤ b → 0 ≤ a * b)
(mul_pos : ∀ a b : α, 0 < a → 0 < b → 0 < a * b)
lemma ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring α] {a b c : α}
(h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b :=
have 0 ≤ b - a, from sub_nonneg_of_le h₁,
have 0 ≤ c * (b - a), from ordered_ring.mul_nonneg c (b - a) h₂ this,
begin
rw mul_sub_left_distrib at this,
apply le_of_sub_nonneg this
end
lemma ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring α] {a b c : α}
(h₁ : a ≤ b) (h₂ : 0 ≤ c) : a * c ≤ b * c :=
have 0 ≤ b - a, from sub_nonneg_of_le h₁,
have 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg (b - a) c this h₂,
begin
rw mul_sub_right_distrib at this,
apply le_of_sub_nonneg this
end
lemma ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring α] {a b c : α}
(h₁ : a < b) (h₂ : 0 < c) : c * a < c * b :=
have 0 < b - a, from sub_pos_of_lt h₁,
have 0 < c * (b - a), from ordered_ring.mul_pos c (b - a) h₂ this,
begin
rw mul_sub_left_distrib at this,
apply lt_of_sub_pos this
end
lemma ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring α] {a b c : α}
(h₁ : a < b) (h₂ : 0 < c) : a * c < b * c :=
have 0 < b - a, from sub_pos_of_lt h₁,
have 0 < (b - a) * c, from ordered_ring.mul_pos (b - a) c this h₂,
begin
rw mul_sub_right_distrib at this,
apply lt_of_sub_pos this
end
instance ordered_ring.to_ordered_semiring [s : ordered_ring α] : ordered_semiring α :=
{ s with
mul_zero := mul_zero,
zero_mul := zero_mul,
add_left_cancel := @add_left_cancel α _,
add_right_cancel := @add_right_cancel α _,
le_of_add_le_add_left := @le_of_add_le_add_left α _,
mul_le_mul_of_nonneg_left := @ordered_ring.mul_le_mul_of_nonneg_left α _,
mul_le_mul_of_nonneg_right := @ordered_ring.mul_le_mul_of_nonneg_right α _,
mul_lt_mul_of_pos_left := @ordered_ring.mul_lt_mul_of_pos_left α _,
mul_lt_mul_of_pos_right := @ordered_ring.mul_lt_mul_of_pos_right α _,
lt_of_add_lt_add_left := @lt_of_add_lt_add_left α _}
section ordered_ring
variable [ordered_ring α]
lemma mul_le_mul_of_nonpos_left {a b c : α} (h : b ≤ a) (hc : c ≤ 0) : c * a ≤ c * b :=
have -c ≥ 0, from neg_nonneg_of_nonpos hc,
have -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left h this,
have -(c * b) ≤ -(c * a), by rwa [-neg_mul_eq_neg_mul, -neg_mul_eq_neg_mul] at this,
le_of_neg_le_neg this
lemma mul_le_mul_of_nonpos_right {a b c : α} (h : b ≤ a) (hc : c ≤ 0) : a * c ≤ b * c :=
have -c ≥ 0, from neg_nonneg_of_nonpos hc,
have b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right h this,
have -(b * c) ≤ -(a * c), by rwa [-neg_mul_eq_mul_neg, -neg_mul_eq_mul_neg] at this,
le_of_neg_le_neg this
lemma mul_nonneg_of_nonpos_of_nonpos {a b : α} (ha : a ≤ 0) (hb : b ≤ 0) : 0 ≤ a * b :=
have 0 * b ≤ a * b, from mul_le_mul_of_nonpos_right ha hb,
by rwa zero_mul at this
lemma mul_lt_mul_of_neg_left {a b c : α} (h : b < a) (hc : c < 0) : c * a < c * b :=
have -c > 0, from neg_pos_of_neg hc,
have -c * b < -c * a, from mul_lt_mul_of_pos_left h this,
have -(c * b) < -(c * a), by rwa [-neg_mul_eq_neg_mul, -neg_mul_eq_neg_mul] at this,
lt_of_neg_lt_neg this
lemma mul_lt_mul_of_neg_right {a b c : α} (h : b < a) (hc : c < 0) : a * c < b * c :=
have -c > 0, from neg_pos_of_neg hc,
have b * -c < a * -c, from mul_lt_mul_of_pos_right h this,
have -(b * c) < -(a * c), by rwa [-neg_mul_eq_mul_neg, -neg_mul_eq_mul_neg] at this,
lt_of_neg_lt_neg this
lemma mul_pos_of_neg_of_neg {a b : α} (ha : a < 0) (hb : b < 0) : 0 < a * b :=
have 0 * b < a * b, from mul_lt_mul_of_neg_right ha hb,
by rwa zero_mul at this
end ordered_ring
class linear_ordered_ring (α : Type u) extends ordered_ring α, linear_strong_order_pair α :=
(zero_lt_one : lt zero one)
instance linear_ordered_ring.to_linear_ordered_semiring [s : linear_ordered_ring α] : linear_ordered_semiring α :=
{ s with
mul_zero := mul_zero,
zero_mul := zero_mul,
add_left_cancel := @add_left_cancel α _,
add_right_cancel := @add_right_cancel α _,
le_of_add_le_add_left := @le_of_add_le_add_left α _,
mul_le_mul_of_nonneg_left := @mul_le_mul_of_nonneg_left α _,
mul_le_mul_of_nonneg_right := @mul_le_mul_of_nonneg_right α _,
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left α _,
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right α _,
le_total := linear_ordered_ring.le_total,
lt_of_add_lt_add_left := @lt_of_add_lt_add_left α _ }
section linear_ordered_ring
variable [linear_ordered_ring α]
lemma mul_self_nonneg (a : α) : a * a ≥ 0 :=
or.elim (le_total 0 a)
(assume h : a ≥ 0, mul_nonneg h h)
(assume h : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos h h)
lemma zero_le_one : 0 ≤ (1:α) :=
have 1 * 1 ≥ (0:α), from mul_self_nonneg (1:α),
by rwa one_mul at this
lemma pos_and_pos_or_neg_and_neg_of_mul_pos {a b : α} (hab : a * b > 0) :
(a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) :=
match lt_trichotomy 0 a with
| or.inl hlt₁ :=
match lt_trichotomy 0 b with
| or.inl hlt₂ := or.inl ⟨hlt₁, hlt₂⟩
| or.inr (or.inl heq₂) := begin rw [-heq₂, mul_zero] at hab, exact absurd hab (lt_irrefl _) end
| or.inr (or.inr hgt₂) := absurd hab (lt_asymm (mul_neg_of_pos_of_neg hlt₁ hgt₂))
end
| or.inr (or.inl heq₁) := begin rw [-heq₁, zero_mul] at hab, exact absurd hab (lt_irrefl _) end
| or.inr (or.inr hgt₁) :=
match lt_trichotomy 0 b with
| or.inl hlt₂ := absurd hab (lt_asymm (mul_neg_of_neg_of_pos hgt₁ hlt₂))
| or.inr (or.inl heq₂) := begin rw [-heq₂, mul_zero] at hab, exact absurd hab (lt_irrefl _) end
| or.inr (or.inr hgt₂) := or.inr ⟨hgt₁, hgt₂⟩
end
end
lemma gt_of_mul_lt_mul_neg_left {a b c : α} (h : c * a < c * b) (hc : c ≤ 0) : a > b :=
have nhc : -c ≥ 0, from neg_nonneg_of_nonpos hc,
have h2 : -(c * b) < -(c * a), from neg_lt_neg h,
have h3 : (-c) * b < (-c) * a, from calc
(-c) * b = - (c * b) : by rewrite neg_mul_eq_neg_mul
... < -(c * a) : h2
... = (-c) * a : by rewrite neg_mul_eq_neg_mul,
lt_of_mul_lt_mul_left h3 nhc
lemma zero_gt_neg_one : -1 < (0:α) :=
begin
note this := neg_lt_neg (@zero_lt_one α _),
rwa neg_zero at this
end
lemma le_of_mul_le_of_ge_one {a b c : α} (h : a * c ≤ b) (hb : b ≥ 0) (hc : c ≥ 1) : a ≤ b :=
have h' : a * c ≤ b * c, from calc
a * c ≤ b : h
... = b * 1 : by rewrite mul_one
... ≤ b * c : mul_le_mul_of_nonneg_left hc hb,
le_of_mul_le_mul_right h' (lt_of_lt_of_le zero_lt_one hc)
lemma nonneg_le_nonneg_of_squares_le {a b : α} (ha : a ≥ 0) (hb : b ≥ 0) (h : a * a ≤ b * b) : a ≤ b :=
begin
apply le_of_not_gt,
intro hab,
note hposa := lt_of_le_of_lt hb hab,
note h' := calc
b * b ≤ a * b : mul_le_mul_of_nonneg_right (le_of_lt hab) hb
... < a * a : mul_lt_mul_of_pos_left hab hposa,
apply (not_le_of_gt h') h
end
end linear_ordered_ring
class linear_ordered_comm_ring (α : Type u) extends linear_ordered_ring α, comm_monoid α
lemma linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero [s : linear_ordered_comm_ring α]
{a b : α} (h : a * b = 0) : a = 0 ∨ b = 0 :=
match lt_trichotomy 0 a with
| or.inl hlt₁ :=
match lt_trichotomy 0 b with
| or.inl hlt₂ :=
have 0 < a * b, from mul_pos hlt₁ hlt₂,
begin rw h at this, exact absurd this (lt_irrefl _) end
| or.inr (or.inl heq₂) := or.inr heq₂^.symm
| or.inr (or.inr hgt₂) :=
have 0 > a * b, from mul_neg_of_pos_of_neg hlt₁ hgt₂,
begin rw h at this, exact absurd this (lt_irrefl _) end
end
| or.inr (or.inl heq₁) := or.inl heq₁^.symm
| or.inr (or.inr hgt₁) :=
match lt_trichotomy 0 b with
| or.inl hlt₂ :=
have 0 > a * b, from mul_neg_of_neg_of_pos hgt₁ hlt₂,
begin rw h at this, exact absurd this (lt_irrefl _) end
| or.inr (or.inl heq₂) := or.inr heq₂^.symm
| or.inr (or.inr hgt₂) :=
have 0 < a * b, from mul_pos_of_neg_of_neg hgt₁ hgt₂,
begin rw h at this, exact absurd this (lt_irrefl _) end
end
end
instance linear_ordered_comm_ring.to_integral_domain [s: linear_ordered_comm_ring α] : integral_domain α :=
{s with
eq_zero_or_eq_zero_of_mul_eq_zero := @linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero α s }
class decidable_linear_ordered_comm_ring (α : Type u) extends linear_ordered_comm_ring α,
decidable_linear_ordered_comm_group α
instance decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_semiring [d : decidable_linear_ordered_comm_ring α] :
decidable_linear_ordered_semiring α :=
let s : linear_ordered_semiring α := @linear_ordered_ring.to_linear_ordered_semiring α _ in
{d with
zero_mul := @linear_ordered_semiring.zero_mul α s,
mul_zero := @linear_ordered_semiring.mul_zero α s,
add_left_cancel := @linear_ordered_semiring.add_left_cancel α s,
add_right_cancel := @linear_ordered_semiring.add_right_cancel α s,
le_of_add_le_add_left := @linear_ordered_semiring.le_of_add_le_add_left α s,
lt_of_add_lt_add_left := @linear_ordered_semiring.lt_of_add_lt_add_left α s,
mul_le_mul_of_nonneg_left := @linear_ordered_semiring.mul_le_mul_of_nonneg_left α s,
mul_le_mul_of_nonneg_right := @linear_ordered_semiring.mul_le_mul_of_nonneg_right α s,
mul_lt_mul_of_pos_left := @linear_ordered_semiring.mul_lt_mul_of_pos_left α s,
mul_lt_mul_of_pos_right := @linear_ordered_semiring.mul_lt_mul_of_pos_right α s}
|
d89deb0cc2be6bac43e9a161b9cd6901cb87f2ba
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/measure_theory/group/fundamental_domain.lean
|
86deeca047398052581f2aedc85bb0875a5bab84
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 12,389
|
lean
|
/-
Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import measure_theory.group.action
import measure_theory.group.pointwise
import measure_theory.integral.set_integral
/-!
# Fundamental domain of a group action
A set `s` is said to be a *fundamental domain* of an action of a group `G` on a measurable space `α`
with respect to a measure `μ` if
* `s` is a measurable set;
* the sets `g • s` over all `g : G` cover almost all points of the whole space;
* the sets `g • s`, are pairwise a.e. disjoint, i.e., `μ (g₁ • s ∩ g₂ • s) = 0` whenever `g₁ ≠ g₂`;
we require this for `g₂ = 1` in the definition, then deduce it for any two `g₁ ≠ g₂`.
In this file we prove that in case of a countable group `G` and a measure preserving action, any two
fundamental domains have the same measure, and for a `G`-invariant function, its integrals over any
two fundamental domains are equal to each other.
We also generate additive versions of all theorems in this file using the `to_additive` attribute.
-/
open_locale ennreal pointwise topological_space nnreal ennreal measure_theory
open measure_theory measure_theory.measure set function topological_space filter
namespace measure_theory
/-- A measurable set `s` is a *fundamental domain* for an additive action of an additive group `G`
on a measurable space `α` with respect to a measure `α` if the sets `g +ᵥ s`, `g : G`, are pairwise
a.e. disjoint and cover the whole space. -/
@[protect_proj] structure is_add_fundamental_domain (G : Type*) {α : Type*} [has_zero G]
[has_vadd G α] [measurable_space α] (s : set α) (μ : measure α . volume_tac) : Prop :=
(measurable_set : measurable_set s)
(ae_covers : ∀ᵐ x ∂μ, ∃ g : G, g +ᵥ x ∈ s)
(ae_disjoint : ∀ g ≠ (0 : G), μ ((g +ᵥ s) ∩ s) = 0)
/-- A measurable set `s` is a *fundamental domain* for an action of a group `G` on a measurable
space `α` with respect to a measure `α` if the sets `g • s`, `g : G`, are pairwise a.e. disjoint and
cover the whole space. -/
@[protect_proj, to_additive is_add_fundamental_domain]
structure is_fundamental_domain (G : Type*) {α : Type*} [has_one G] [has_scalar G α]
[measurable_space α] (s : set α) (μ : measure α . volume_tac) : Prop :=
(measurable_set : measurable_set s)
(ae_covers : ∀ᵐ x ∂μ, ∃ g : G, g • x ∈ s)
(ae_disjoint : ∀ g ≠ (1 : G), μ ((g • s) ∩ s) = 0)
namespace is_fundamental_domain
variables {G α E : Type*} [group G] [mul_action G α] [measurable_space α]
[normed_group E] {s t : set α} {μ : measure α}
/-- If for each `x : α`, exactly one of `g • x`, `g : G`, belongs to a measurable set `s`, then `s`
is a fundamental domain for the action of `G` on `α`. -/
@[to_additive "If for each `x : α`, exactly one of `g +ᵥ x`, `g : G`, belongs to a measurable set
`s`, then `s` is a fundamental domain for the additive action of `G` on `α`."]
lemma mk' (h_meas : measurable_set s) (h_exists : ∀ x : α, ∃! g : G, g • x ∈ s) :
is_fundamental_domain G s μ :=
{ measurable_set := h_meas,
ae_covers := eventually_of_forall $ λ x, (h_exists x).exists,
ae_disjoint := λ g hne,
begin
suffices : g • s ∩ s = ∅, by rw [this, measure_empty],
refine eq_empty_iff_forall_not_mem.2 _, rintro _ ⟨⟨x, hx, rfl⟩, hgx⟩,
rw ← one_smul G x at hx,
exact hne ((h_exists x).unique hgx hx)
end }
@[to_additive] lemma Union_smul_ae_eq (h : is_fundamental_domain G s μ) :
(⋃ g : G, g • s) =ᵐ[μ] univ :=
eventually_eq_univ.2 $ h.ae_covers.mono $
λ x ⟨g, hg⟩, mem_Union.2 ⟨g⁻¹, _, hg, inv_smul_smul _ _⟩
@[to_additive] lemma mono (h : is_fundamental_domain G s μ) {ν : measure α} (hle : ν ≪ μ) :
is_fundamental_domain G s ν :=
⟨h.1, hle h.2, λ g hg, hle (h.3 g hg)⟩
variables [measurable_space G] [has_measurable_smul G α]
@[to_additive]
lemma measurable_set_smul (h : is_fundamental_domain G s μ) (g : G) : measurable_set (g • s) :=
h.measurable_set.const_smul g
variables [smul_invariant_measure G α μ]
@[to_additive] lemma pairwise_ae_disjoint (h : is_fundamental_domain G s μ) :
pairwise (λ g₁ g₂ : G, μ (g₁ • s ∩ g₂ • s) = 0) :=
λ g₁ g₂ hne,
calc μ (g₁ • s ∩ g₂ • s) = μ (g₂ • ((g₂⁻¹ * g₁) • s ∩ s)) :
by rw [smul_set_inter, ← mul_smul, mul_inv_cancel_left]
... = μ ((g₂⁻¹ * g₁) • s ∩ s) : measure_smul_set _ _ _
... = 0 : h.ae_disjoint _ $ mt inv_mul_eq_one.1 hne.symm
variables [encodable G] {ν : measure α}
@[to_additive] lemma sum_restrict_of_ac (h : is_fundamental_domain G s μ) (hν : ν ≪ μ) :
sum (λ g : G, ν.restrict (g • s)) = ν :=
by rw [← restrict_Union_ae (h.pairwise_ae_disjoint.mono $ λ i j h, hν h) h.measurable_set_smul,
restrict_congr_set (hν h.Union_smul_ae_eq), restrict_univ]
@[to_additive] lemma lintegral_eq_tsum_of_ac (h : is_fundamental_domain G s μ) (hν : ν ≪ μ)
(f : α → ℝ≥0∞) : ∫⁻ x, f x ∂ν = ∑' g : G, ∫⁻ x in g • s, f x ∂ν :=
by rw [← lintegral_sum_measure, h.sum_restrict_of_ac hν]
@[to_additive] lemma set_lintegral_eq_tsum' (h : is_fundamental_domain G s μ) (f : α → ℝ≥0∞)
(t : set α) : ∫⁻ x in t, f x ∂μ = ∑' g : G, ∫⁻ x in t ∩ g • s, f x ∂μ :=
calc ∫⁻ x in t, f x ∂μ = ∑' g : G, ∫⁻ x in g • s, f x ∂(μ.restrict t) :
h.lintegral_eq_tsum_of_ac restrict_le_self.absolutely_continuous _
... = ∑' g : G, ∫⁻ x in t ∩ g • s, f x ∂μ :
by simp only [restrict_restrict, h.measurable_set_smul, inter_comm]
@[to_additive] lemma set_lintegral_eq_tsum (h : is_fundamental_domain G s μ) (f : α → ℝ≥0∞)
(t : set α) :
∫⁻ x in t, f x ∂μ = ∑' g : G, ∫⁻ x in g • t ∩ s, f (g⁻¹ • x) ∂μ :=
calc ∫⁻ x in t, f x ∂μ = ∑' g : G, ∫⁻ x in t ∩ g • s, f x ∂μ :
h.set_lintegral_eq_tsum' f t
... = ∑' g : G, ∫⁻ x in t ∩ g⁻¹ • s, f x ∂μ : ((equiv.inv G).tsum_eq _).symm
... = ∑' g : G, ∫⁻ x in g⁻¹ • (g • t ∩ s), f (x) ∂μ :
by simp only [smul_set_inter, inv_smul_smul]
... = ∑' g : G, ∫⁻ x in g • t ∩ s, f (g⁻¹ • x) ∂μ :
tsum_congr $ λ g, ((measure_preserving_smul g⁻¹ μ).set_lintegral_comp_emb
(measurable_embedding_const_smul _) _ _).symm
@[to_additive] lemma measure_eq_tsum_of_ac (h : is_fundamental_domain G s μ) (hν : ν ≪ μ)
(t : set α) :
ν t = ∑' g : G, ν (t ∩ g • s) :=
by simpa only [set_lintegral_one, pi.one_def, measure.restrict_apply (h.measurable_set_smul _),
inter_comm]
using h.lintegral_eq_tsum_of_ac (measure.restrict_le_self.absolutely_continuous.trans hν) 1
@[to_additive] lemma measure_eq_tsum' (h : is_fundamental_domain G s μ) (t : set α) :
μ t = ∑' g : G, μ (t ∩ g • s) :=
h.measure_eq_tsum_of_ac absolutely_continuous.rfl t
@[to_additive] lemma measure_eq_tsum (h : is_fundamental_domain G s μ) (t : set α) :
μ t = ∑' g : G, μ (g • t ∩ s) :=
by simpa only [set_lintegral_one] using h.set_lintegral_eq_tsum (λ _, 1) t
@[to_additive] protected lemma set_lintegral_eq (hs : is_fundamental_domain G s μ)
(ht : is_fundamental_domain G t μ) (f : α → ℝ≥0∞) (hf : ∀ (g : G) x, f (g • x) = f x) :
∫⁻ x in s, f x ∂μ = ∫⁻ x in t, f x ∂μ :=
calc ∫⁻ x in s, f x ∂μ = ∑' g : G, ∫⁻ x in s ∩ g • t, f x ∂μ :
ht.set_lintegral_eq_tsum' _ _
... = ∑' g : G, ∫⁻ x in g • t ∩ s, f (g⁻¹ • x) ∂μ :
by simp only [hf, inter_comm]
... = ∫⁻ x in t, f x ∂μ :
(hs.set_lintegral_eq_tsum _ _).symm
/-- If `s` and `t` are two fundamental domains of the same action, then their measures are equal. -/
@[to_additive] protected lemma measure_eq (hs : is_fundamental_domain G s μ)
(ht : is_fundamental_domain G t μ) : μ s = μ t :=
by simpa only [set_lintegral_one] using hs.set_lintegral_eq ht (λ _, 1) (λ _ _, rfl)
@[to_additive] protected lemma ae_measurable_on_iff {β : Type*} [measurable_space β]
(hs : is_fundamental_domain G s μ) (ht : is_fundamental_domain G t μ) {f : α → β}
(hf : ∀ (g : G) x, f (g • x) = f x) :
ae_measurable f (μ.restrict s) ↔ ae_measurable f (μ.restrict t) :=
calc ae_measurable f (μ.restrict s)
↔ ae_measurable f (measure.sum $ λ g : G, (μ.restrict (g • t ∩ s))) :
by simp only [← restrict_restrict (ht.measurable_set_smul _),
ht.sum_restrict_of_ac restrict_le_self.absolutely_continuous]
... ↔ ∀ g : G, ae_measurable f (μ.restrict (g • (g⁻¹ • s ∩ t))) :
by simp only [smul_set_inter, inter_comm, smul_inv_smul, ae_measurable_sum_measure_iff]
... ↔ ∀ g : G, ae_measurable f (μ.restrict (g⁻¹ • (g⁻¹⁻¹ • s ∩ t))) : inv_surjective.forall
... ↔ ∀ g : G, ae_measurable f (μ.restrict (g⁻¹ • (g • s ∩ t))) : by simp only [inv_inv]
... ↔ ∀ g : G, ae_measurable f (μ.restrict (g • s ∩ t)) :
begin
refine forall_congr (λ g, _),
have he : measurable_embedding ((•) g⁻¹ : α → α) := measurable_embedding_const_smul _,
rw [← image_smul,
← ((measure_preserving_smul g⁻¹ μ).restrict_image_emb he _).ae_measurable_comp_iff he],
simp only [(∘), hf]
end
... ↔ ae_measurable f (μ.restrict t) :
by simp only [← ae_measurable_sum_measure_iff, ← restrict_restrict (hs.measurable_set_smul _),
hs.sum_restrict_of_ac restrict_le_self.absolutely_continuous]
@[to_additive] protected lemma has_finite_integral_on_iff (hs : is_fundamental_domain G s μ)
(ht : is_fundamental_domain G t μ) {f : α → E} (hf : ∀ (g : G) x, f (g • x) = f x) :
has_finite_integral f (μ.restrict s) ↔ has_finite_integral f (μ.restrict t) :=
begin
dunfold has_finite_integral,
rw hs.set_lintegral_eq ht,
intros g x, rw hf
end
variables [measurable_space E]
@[to_additive] protected lemma integrable_on_iff (hs : is_fundamental_domain G s μ)
(ht : is_fundamental_domain G t μ) {f : α → E} (hf : ∀ (g : G) x, f (g • x) = f x) :
integrable_on f s μ ↔ integrable_on f t μ :=
and_congr (hs.ae_measurable_on_iff ht hf) (hs.has_finite_integral_on_iff ht hf)
variables [normed_space ℝ E] [borel_space E] [complete_space E] [second_countable_topology E]
@[to_additive] protected lemma set_integral_eq (hs : is_fundamental_domain G s μ)
(ht : is_fundamental_domain G t μ) {f : α → E} (hf : ∀ (g : G) x, f (g • x) = f x) :
∫ x in s, f x ∂μ = ∫ x in t, f x ∂μ :=
begin
by_cases hfs : integrable_on f s μ,
{ have hft : integrable_on f t μ, by rwa ht.integrable_on_iff hs hf,
have hac : ∀ {u}, μ.restrict u ≪ μ := λ u, restrict_le_self.absolutely_continuous,
calc ∫ x in s, f x ∂μ = ∫ x in ⋃ g : G, g • t, f x ∂(μ.restrict s) :
by rw [restrict_congr_set (hac ht.Union_smul_ae_eq), restrict_univ]
... = ∑' g : G, ∫ x in g • t, f x ∂(μ.restrict s) :
integral_Union_of_null_inter (λ g, (ht.measurable_set_smul g).null_measurable_set)
(ht.pairwise_ae_disjoint.mono $ λ i j h, hac h) hfs.integrable.integrable_on
... = ∑' g : G, ∫ x in s ∩ g • t, f x ∂μ :
by simp only [restrict_restrict (ht.measurable_set_smul _), inter_comm]
... = ∑' g : G, ∫ x in s ∩ g⁻¹ • t, f x ∂μ : ((equiv.inv G).tsum_eq _).symm
... = ∑' g : G, ∫ x in g⁻¹ • (g • s ∩ t), f x ∂μ :
by simp only [smul_set_inter, inv_smul_smul]
... = ∑' g : G, ∫ x in g • s ∩ t, f (g⁻¹ • x) ∂μ :
tsum_congr $ λ g, (measure_preserving_smul g⁻¹ μ).set_integral_image_emb
(measurable_embedding_const_smul _) _ _
... = ∑' g : G, ∫ x in g • s, f x ∂(μ.restrict t) :
by simp only [hf, restrict_restrict (hs.measurable_set_smul _)]
... = ∫ x in ⋃ g : G, g • s, f x ∂(μ.restrict t) :
(integral_Union_of_null_inter (λ g, (hs.measurable_set_smul g).null_measurable_set)
(hs.pairwise_ae_disjoint.mono $ λ i j h, hac h) hft.integrable.integrable_on).symm
... = ∫ x in t, f x ∂μ :
by rw [restrict_congr_set (hac hs.Union_smul_ae_eq), restrict_univ] },
{ rw [integral_undef hfs, integral_undef],
rwa [hs.integrable_on_iff ht hf] at hfs }
end
end is_fundamental_domain
end measure_theory
|
492810a3c38262ab70381d0bfc1be76e57d336f6
|
fe25de614feb5587799621c41487aaee0d083b08
|
/stage0/src/Lean/Meta/Match/CaseArraySizes.lean
|
dafe4ac9772b4ddf050f2e55efcd967856e33050
|
[
"Apache-2.0"
] |
permissive
|
pollend/lean4
|
e8469c2f5fb8779b773618c3267883cf21fb9fac
|
c913886938c4b3b83238a3f99673c6c5a9cec270
|
refs/heads/master
| 1,687,973,251,481
| 1,628,039,739,000
| 1,628,039,739,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,840
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.Tactic.Assert
import Lean.Meta.Match.CaseValues
namespace Lean.Meta
structure CaseArraySizesSubgoal where
mvarId : MVarId
elems : Array FVarId := #[]
diseqs : Array FVarId := #[]
subst : FVarSubst := {}
instance : Inhabited CaseArraySizesSubgoal :=
⟨{ mvarId := arbitrary }⟩
def getArrayArgType (a : Expr) : MetaM Expr := do
let aType ← inferType a
let aType ← whnfD aType
unless aType.isAppOfArity `Array 1 do
throwError "array expected{indentExpr a}"
pure aType.appArg!
private def mkArrayGetLit (a : Expr) (i : Nat) (n : Nat) (h : Expr) : MetaM Expr := do
let lt ← mkLt (mkRawNatLit i) (mkRawNatLit n)
let ltPrf ← mkDecideProof lt
mkAppM `Array.getLit #[a, mkRawNatLit i, h, ltPrf]
private partial def introArrayLit (mvarId : MVarId) (a : Expr) (n : Nat) (xNamePrefix : Name) (aSizeEqN : Expr) : MetaM MVarId := do
let α ← getArrayArgType a
let rec loop (i : Nat) (xs : Array Expr) (args : Array Expr) := do
if i < n then
withLocalDeclD (xNamePrefix.appendIndexAfter (i+1)) α fun xi => do
let xs := xs.push xi
let ai ← mkArrayGetLit a i n aSizeEqN
let args := args.push ai
loop (i+1) xs args
else
let xsLit ← mkArrayLit α xs.toList
let aEqXsLit ← mkEq a xsLit
let aEqLitPrf ← mkAppM `Array.toArrayLitEq #[a, mkRawNatLit n, aSizeEqN]
withLocalDeclD `hEqALit aEqXsLit fun heq => do
let target ← getMVarType mvarId
let newTarget ← mkForallFVars (xs.push heq) target
pure (newTarget, args.push aEqLitPrf)
let (newTarget, args) ← loop 0 #[] #[]
let tag ← getMVarTag mvarId
let newMVar ← mkFreshExprSyntheticOpaqueMVar newTarget tag
assignExprMVar mvarId (mkAppN newMVar args)
pure newMVar.mvarId!
/--
Split goal `... |- C a` into sizes.size + 1 subgoals
1) `..., x_1 ... x_{sizes[0]} |- C #[x_1, ... x_{sizes[0]}]`
...
n) `..., x_1 ... x_{sizes[n-1]} |- C #[x_1, ..., x_{sizes[n-1]}]`
n+1) `..., (h_1 : a.size != sizes[0]), ..., (h_n : a.size != sizes[n-1]) |- C a`
where `n = sizes.size` -/
def caseArraySizes (mvarId : MVarId) (fvarId : FVarId) (sizes : Array Nat) (xNamePrefix := `x) (hNamePrefix := `h) : MetaM (Array CaseArraySizesSubgoal) :=
withMVarContext mvarId do
let a := mkFVar fvarId
let α ← getArrayArgType a
let aSize ← mkAppM `Array.size #[a]
let mvarId ← assertExt mvarId `aSize (mkConst `Nat) aSize
let (aSizeFVarId, mvarId) ← intro1 mvarId
let (hEq, mvarId) ← intro1 mvarId
let subgoals ← caseValues mvarId aSizeFVarId (sizes.map mkRawNatLit) hNamePrefix
subgoals.mapIdxM fun i subgoal => do
let subst := subgoal.subst
let mvarId := subgoal.mvarId
let hEqSz := (subst.get hEq).fvarId!
if h : i.val < sizes.size then
let n := sizes.get ⟨i, h⟩
let mvarId ← clear mvarId subgoal.newHs[0]
let mvarId ← clear mvarId (subst.get aSizeFVarId).fvarId!
withMVarContext mvarId do
let hEqSzSymm ← mkEqSymm (mkFVar hEqSz)
let mvarId ← introArrayLit mvarId a n xNamePrefix hEqSzSymm
let (xs, mvarId) ← introN mvarId n
let (hEqLit, mvarId) ← intro1 mvarId
let mvarId ← clear mvarId hEqSz
let (subst, mvarId) ← substCore mvarId hEqLit false subst
pure { mvarId := mvarId, elems := xs, subst := subst }
else
let (subst, mvarId) ← substCore mvarId hEq false subst
let diseqs := subgoal.newHs.map fun fvarId => (subst.get fvarId).fvarId!
pure { mvarId := mvarId, diseqs := diseqs, subst := subst }
end Lean.Meta
|
b3fc478d223e5c7d2c487e88cae037cce7420028
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/number_theory/fermat4.lean
|
5f3fe6387b5b3ae75fd28dca4695cf52fa9d73e8
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 11,866
|
lean
|
/-
Copyright (c) 2020 Paul van Wamelen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Paul van Wamelen
-/
import number_theory.pythagorean_triples
import ring_theory.coprime.lemmas
import tactic.linear_combination
/-!
# Fermat's Last Theorem for the case n = 4
There are no non-zero integers `a`, `b` and `c` such that `a ^ 4 + b ^ 4 = c ^ 4`.
-/
noncomputable theory
open_locale classical
/-- Shorthand for three non-zero integers `a`, `b`, and `c` satisfying `a ^ 4 + b ^ 4 = c ^ 2`.
We will show that no integers satisfy this equation. Clearly Fermat's Last theorem for n = 4
follows. -/
def fermat_42 (a b c : ℤ) : Prop := a ≠ 0 ∧ b ≠ 0 ∧ a ^ 4 + b ^ 4 = c ^ 2
namespace fermat_42
lemma comm {a b c : ℤ} :
(fermat_42 a b c) ↔ (fermat_42 b a c) :=
by { delta fermat_42, rw add_comm, tauto }
lemma mul {a b c k : ℤ} (hk0 : k ≠ 0) :
fermat_42 a b c ↔ fermat_42 (k * a) (k * b) (k ^ 2 * c) :=
begin
delta fermat_42,
split,
{ intro f42,
split, { exact mul_ne_zero hk0 f42.1 },
split, { exact mul_ne_zero hk0 f42.2.1 },
{ have H : a ^ 4 + b ^ 4 = c ^ 2 := f42.2.2,
linear_combination (H, k ^ 4) } },
{ intro f42,
split, { exact right_ne_zero_of_mul f42.1 },
split, { exact right_ne_zero_of_mul f42.2.1 },
apply (mul_right_inj' (pow_ne_zero 4 hk0)).mp,
have H : (k * a) ^ 4 + (k * b) ^ 4 = (k ^ 2 * c) ^ 2 := f42.2.2,
linear_combination H }
end
lemma ne_zero {a b c : ℤ} (h : fermat_42 a b c) : c ≠ 0 :=
begin
apply ne_zero_pow two_ne_zero _, apply ne_of_gt,
rw [← h.2.2, (by ring : a ^ 4 + b ^ 4 = (a ^ 2) ^ 2 + (b ^ 2) ^ 2)],
exact add_pos (sq_pos_of_ne_zero _ (pow_ne_zero 2 h.1))
(sq_pos_of_ne_zero _ (pow_ne_zero 2 h.2.1))
end
/-- We say a solution to `a ^ 4 + b ^ 4 = c ^ 2` is minimal if there is no other solution with
a smaller `c` (in absolute value). -/
def minimal (a b c : ℤ) : Prop :=
(fermat_42 a b c) ∧ ∀ (a1 b1 c1 : ℤ), (fermat_42 a1 b1 c1) → int.nat_abs c ≤ int.nat_abs c1
/-- if we have a solution to `a ^ 4 + b ^ 4 = c ^ 2` then there must be a minimal one. -/
lemma exists_minimal {a b c : ℤ} (h : fermat_42 a b c) :
∃ (a0 b0 c0), (minimal a0 b0 c0) :=
begin
let S : set ℕ := { n | ∃ (s : ℤ × ℤ × ℤ), fermat_42 s.1 s.2.1 s.2.2 ∧ n = int.nat_abs s.2.2},
have S_nonempty : S.nonempty,
{ use int.nat_abs c,
rw set.mem_set_of_eq,
use ⟨a, ⟨b, c⟩⟩, tauto },
let m : ℕ := nat.find S_nonempty,
have m_mem : m ∈ S := nat.find_spec S_nonempty,
rcases m_mem with ⟨s0, hs0, hs1⟩,
use [s0.1, s0.2.1, s0.2.2, hs0],
intros a1 b1 c1 h1,
rw ← hs1,
apply nat.find_min',
use ⟨a1, ⟨b1, c1⟩⟩, tauto
end
/-- a minimal solution to `a ^ 4 + b ^ 4 = c ^ 2` must have `a` and `b` coprime. -/
lemma coprime_of_minimal {a b c : ℤ} (h : minimal a b c) : is_coprime a b :=
begin
apply int.gcd_eq_one_iff_coprime.mp,
by_contradiction hab,
obtain ⟨p, hp, hpa, hpb⟩ := nat.prime.not_coprime_iff_dvd.mp hab,
obtain ⟨a1, rfl⟩ := (int.coe_nat_dvd_left.mpr hpa),
obtain ⟨b1, rfl⟩ := (int.coe_nat_dvd_left.mpr hpb),
have hpc : (p : ℤ) ^ 2 ∣ c,
{ rw [←int.pow_dvd_pow_iff zero_lt_two, ←h.1.2.2],
apply dvd.intro (a1 ^ 4 + b1 ^ 4), ring },
obtain ⟨c1, rfl⟩ := hpc,
have hf : fermat_42 a1 b1 c1,
exact (fermat_42.mul (int.coe_nat_ne_zero.mpr (nat.prime.ne_zero hp))).mpr h.1,
apply nat.le_lt_antisymm (h.2 _ _ _ hf),
rw [int.nat_abs_mul, lt_mul_iff_one_lt_left, int.nat_abs_pow, int.nat_abs_of_nat],
{ exact nat.one_lt_pow _ _ zero_lt_two (nat.prime.one_lt hp) },
{ exact (nat.pos_of_ne_zero (int.nat_abs_ne_zero_of_ne_zero (ne_zero hf))) },
end
/-- We can swap `a` and `b` in a minimal solution to `a ^ 4 + b ^ 4 = c ^ 2`. -/
lemma minimal_comm {a b c : ℤ} : (minimal a b c) → (minimal b a c) :=
λ ⟨h1, h2⟩, ⟨fermat_42.comm.mp h1, h2⟩
/-- We can assume that a minimal solution to `a ^ 4 + b ^ 4 = c ^ 2` has positive `c`. -/
lemma neg_of_minimal {a b c : ℤ} :
(minimal a b c) → (minimal a b (-c)) :=
begin
rintros ⟨⟨ha, hb, heq⟩, h2⟩,
split,
{ apply and.intro ha (and.intro hb _),
rw heq, exact (neg_sq c).symm },
rwa (int.nat_abs_neg c),
end
/-- We can assume that a minimal solution to `a ^ 4 + b ^ 4 = c ^ 2` has `a` odd. -/
lemma exists_odd_minimal {a b c : ℤ} (h : fermat_42 a b c) :
∃ (a0 b0 c0), (minimal a0 b0 c0) ∧ a0 % 2 = 1 :=
begin
obtain ⟨a0, b0, c0, hf⟩ := exists_minimal h,
cases int.mod_two_eq_zero_or_one a0 with hap hap,
{ cases int.mod_two_eq_zero_or_one b0 with hbp hbp,
{ exfalso,
have h1 : 2 ∣ (int.gcd a0 b0 : ℤ),
{ exact int.dvd_gcd (int.dvd_of_mod_eq_zero hap) (int.dvd_of_mod_eq_zero hbp) },
rw int.gcd_eq_one_iff_coprime.mpr (coprime_of_minimal hf) at h1, revert h1, norm_num },
{ exact ⟨b0, ⟨a0, ⟨c0, minimal_comm hf, hbp⟩⟩⟩ } },
exact ⟨a0, ⟨b0, ⟨c0 , hf, hap⟩⟩⟩,
end
/-- We can assume that a minimal solution to `a ^ 4 + b ^ 4 = c ^ 2` has
`a` odd and `c` positive. -/
lemma exists_pos_odd_minimal {a b c : ℤ} (h : fermat_42 a b c) :
∃ (a0 b0 c0), (minimal a0 b0 c0) ∧ a0 % 2 = 1 ∧ 0 < c0 :=
begin
obtain ⟨a0, b0, c0, hf, hc⟩ := exists_odd_minimal h,
rcases lt_trichotomy 0 c0 with (h1 | rfl | h1),
{ use [a0, b0, c0], tauto },
{ exfalso, exact ne_zero hf.1 rfl},
{ use [a0, b0, -c0, neg_of_minimal hf, hc],
exact neg_pos.mpr h1 },
end
end fermat_42
lemma int.coprime_of_sq_sum {r s : ℤ} (h2 : is_coprime s r) :
is_coprime (r ^ 2 + s ^ 2) r :=
begin
rw [sq, sq],
exact (is_coprime.mul_left h2 h2).mul_add_left_left r
end
lemma int.coprime_of_sq_sum' {r s : ℤ} (h : is_coprime r s) :
is_coprime (r ^ 2 + s ^ 2) (r * s) :=
begin
apply is_coprime.mul_right (int.coprime_of_sq_sum (is_coprime_comm.mp h)),
rw add_comm, apply int.coprime_of_sq_sum h
end
namespace fermat_42
-- If we have a solution to a ^ 4 + b ^ 4 = c ^ 2, we can construct a smaller one. This
-- implies there can't be a smallest solution.
lemma not_minimal {a b c : ℤ}
(h : minimal a b c) (ha2 : a % 2 = 1) (hc : 0 < c) : false :=
begin
-- Use the fact that a ^ 2, b ^ 2, c form a pythagorean triple to obtain m and n such that
-- a ^ 2 = m ^ 2 - n ^ 2, b ^ 2 = 2 * m * n and c = m ^ 2 + n ^ 2
-- first the formula:
have ht : pythagorean_triple (a ^ 2) (b ^ 2) c,
{ delta pythagorean_triple,
have H := h.1.2.2,
linear_combination H },
-- coprime requirement:
have h2 : int.gcd (a ^ 2) (b ^ 2) = 1 :=
int.gcd_eq_one_iff_coprime.mpr (coprime_of_minimal h).pow,
-- in order to reduce the possibilities we get from the classification of pythagorean triples
-- it helps if we know the parity of a ^ 2 (and the sign of c):
have ha22 : a ^ 2 % 2 = 1, { rw [sq, int.mul_mod, ha2], norm_num },
obtain ⟨m, n, ht1, ht2, ht3, ht4, ht5, ht6⟩ := ht.coprime_classification' h2 ha22 hc,
-- Now a, n, m form a pythagorean triple and so we can obtain r and s such that
-- a = r ^ 2 - s ^ 2, n = 2 * r * s and m = r ^ 2 + s ^ 2
-- formula:
have htt : pythagorean_triple a n m,
{ delta pythagorean_triple,
linear_combination ht1 },
-- a and n are coprime, because a ^ 2 = m ^ 2 - n ^ 2 and m and n are coprime.
have h3 : int.gcd a n = 1,
{ apply int.gcd_eq_one_iff_coprime.mpr,
apply @is_coprime.of_mul_left_left _ _ _ a,
rw [← sq, ht1, (by ring : m ^ 2 - n ^ 2 = m ^ 2 + (-n) * n)],
exact (int.gcd_eq_one_iff_coprime.mp ht4).pow_left.add_mul_right_left (-n) },
-- m is positive because b is non-zero and b ^ 2 = 2 * m * n and we already have 0 ≤ m.
have hb20 : b ^ 2 ≠ 0 := mt pow_eq_zero h.1.2.1,
have h4 : 0 < m,
{ apply lt_of_le_of_ne ht6,
rintro rfl,
revert hb20,
rw ht2, simp },
obtain ⟨r, s, htt1, htt2, htt3, htt4, htt5, htt6⟩ := htt.coprime_classification' h3 ha2 h4,
-- Now use the fact that (b / 2) ^ 2 = m * r * s, and m, r and s are pairwise coprime to obtain
-- i, j and k such that m = i ^ 2, r = j ^ 2 and s = k ^ 2.
-- m and r * s are coprime because m = r ^ 2 + s ^ 2 and r and s are coprime.
have hcp : int.gcd m (r * s) = 1,
{ rw htt3,
exact int.gcd_eq_one_iff_coprime.mpr (int.coprime_of_sq_sum'
(int.gcd_eq_one_iff_coprime.mp htt4)) },
-- b is even because b ^ 2 = 2 * m * n.
have hb2 : 2 ∣ b,
{ apply @int.prime.dvd_pow' _ 2 _ (by norm_num : nat.prime 2),
rw [ht2, mul_assoc], exact dvd_mul_right 2 (m * n) },
cases hb2 with b' hb2',
have hs : b' ^ 2 = m * (r * s),
{ apply (mul_right_inj' (by norm_num : (4 : ℤ) ≠ 0)).mp,
linear_combination (hb2', - b - 2 * b') (ht2, 1) (htt2, 2 * m) },
have hrsz : r * s ≠ 0, -- because b ^ 2 is not zero and (b / 2) ^ 2 = m * (r * s)
{ by_contradiction hrsz,
revert hb20, rw [ht2, htt2, mul_assoc, @mul_assoc _ _ _ r s, hrsz],
simp },
have h2b0 : b' ≠ 0,
{ apply ne_zero_pow two_ne_zero,
rw hs, apply mul_ne_zero, { exact ne_of_gt h4}, { exact hrsz } },
obtain ⟨i, hi⟩ := int.sq_of_gcd_eq_one hcp hs.symm,
-- use m is positive to exclude m = - i ^ 2
have hi' : ¬ m = - i ^ 2,
{ by_contradiction h1,
have hit : - i ^ 2 ≤ 0, apply neg_nonpos.mpr (sq_nonneg i),
rw ← h1 at hit,
apply absurd h4 (not_lt.mpr hit) },
replace hi : m = i ^ 2, { apply or.resolve_right hi hi' },
rw mul_comm at hs,
rw [int.gcd_comm] at hcp,
-- obtain d such that r * s = d ^ 2
obtain ⟨d, hd⟩ := int.sq_of_gcd_eq_one hcp hs.symm,
-- (b / 2) ^ 2 and m are positive so r * s is positive
have hd' : ¬ r * s = - d ^ 2,
{ by_contradiction h1,
rw h1 at hs,
have h2 : b' ^ 2 ≤ 0,
{ rw [hs, (by ring : - d ^ 2 * m = - (d ^ 2 * m))],
exact neg_nonpos.mpr ((zero_le_mul_right h4).mpr (sq_nonneg d)) },
have h2' : 0 ≤ b' ^ 2, { apply sq_nonneg b' },
exact absurd (lt_of_le_of_ne h2' (ne.symm (pow_ne_zero _ h2b0))) (not_lt.mpr h2) },
replace hd : r * s = d ^ 2, { apply or.resolve_right hd hd' },
-- r = +/- j ^ 2
obtain ⟨j, hj⟩ := int.sq_of_gcd_eq_one htt4 hd,
have hj0 : j ≠ 0,
{ intro h0, rw [h0, zero_pow zero_lt_two, neg_zero, or_self] at hj,
apply left_ne_zero_of_mul hrsz hj },
rw mul_comm at hd,
rw [int.gcd_comm] at htt4,
-- s = +/- k ^ 2
obtain ⟨k, hk⟩ := int.sq_of_gcd_eq_one htt4 hd,
have hk0 : k ≠ 0,
{ intro h0, rw [h0, zero_pow zero_lt_two, neg_zero, or_self] at hk,
apply right_ne_zero_of_mul hrsz hk },
have hj2 : r ^ 2 = j ^ 4, { cases hj with hjp hjp; { rw hjp, ring } },
have hk2 : s ^ 2 = k ^ 4, { cases hk with hkp hkp; { rw hkp, ring } },
-- from m = r ^ 2 + s ^ 2 we now get a new solution to a ^ 4 + b ^ 4 = c ^ 2:
have hh : i ^ 2 = j ^ 4 + k ^ 4, { rw [← hi, htt3, hj2, hk2] },
have hn : n ≠ 0, { rw ht2 at hb20, apply right_ne_zero_of_mul hb20 },
-- and it has a smaller c: from c = m ^ 2 + n ^ 2 we see that m is smaller than c, and i ^ 2 = m.
have hic : int.nat_abs i < int.nat_abs c,
{ apply int.coe_nat_lt.mp, rw ← (int.eq_nat_abs_of_zero_le (le_of_lt hc)),
apply gt_of_gt_of_ge _ (int.abs_le_self_sq i),
rw [← hi, ht3],
apply gt_of_gt_of_ge _ (int.le_self_sq m),
exact lt_add_of_pos_right (m ^ 2) (sq_pos_of_ne_zero n hn) },
have hic' : int.nat_abs c ≤ int.nat_abs i,
{ apply (h.2 j k i),
exact ⟨hj0, hk0, hh.symm⟩ },
apply absurd (not_le_of_lt hic) (not_not.mpr hic')
end
end fermat_42
lemma not_fermat_42 {a b c : ℤ} (ha : a ≠ 0) (hb : b ≠ 0) :
a ^ 4 + b ^ 4 ≠ c ^ 2 :=
begin
intro h,
obtain ⟨a0, b0, c0, ⟨hf, h2, hp⟩⟩ :=
fermat_42.exists_pos_odd_minimal (and.intro ha (and.intro hb h)),
apply fermat_42.not_minimal hf h2 hp
end
theorem not_fermat_4 {a b c : ℤ} (ha : a ≠ 0) (hb : b ≠ 0) :
a ^ 4 + b ^ 4 ≠ c ^ 4 :=
begin
intro heq,
apply @not_fermat_42 _ _ (c ^ 2) ha hb,
rw heq, ring
end
|
5570ebb8ac4966b73d9ef2bd2ca5f01fed6064f4
|
61c3861020ef87c6c325fc3c3dcbabf5d6b07985
|
/init/equiv.lean
|
597e61c2a3602533cc27261eabc915a533c84fb8
|
[
"Apache-2.0"
] |
permissive
|
jonas-frey/hott3
|
a623be2959e8a713c03fa1b0f34bf76a561dfa87
|
a944051b4eb5919bdc70978ee15fcbb48a824811
|
refs/heads/master
| 1,628,408,720,559
| 1,510,267,042,000
| 1,510,267,042,000
| 106,760,764
| 0
| 0
| null | 1,507,856,238,000
| 1,507,856,238,000
| null |
UTF-8
|
Lean
| false
| false
| 19,624
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
import .path .meta.rewrite
universes u v w
hott_theory
namespace hott
open function
/- Equivalences -/
-- This is our definition of equivalence. In the HoTT-book it's called
-- ihae (half-adjoint equivalence).
class is_equiv {A : Type u} {B : Type v} (f : A → B) := mk' ::
(inv : B → A)
(right_inv : Πb, f (inv b) = b)
(left_inv : Πa, inv (f a) = a)
(adj : Πx, right_inv (f x) = ap f (left_inv x))
attribute [reducible] is_equiv.inv
-- A more bundled version of equivalence
structure equiv (A : Type u) (B : Type v) :=
(to_fun : A → B)
(to_is_equiv : is_equiv to_fun)
namespace is_equiv
/- Some instances and closure properties of equivalences -/
postfix `⁻¹ᶠ`:std.prec.max_plus := inv
section
variables {A : Type u} {B : Type v} {C : Type w} (g : B → C) (f : A → B) {f' : A → B}
-- The variant of mk' where f is explicit.
@[hott] protected def mk := @is_equiv.mk' A B f
-- The identity function is an equivalence.
@[hott,instance] def is_equiv_id (A : Type v) : (is_equiv (id : A → A)) :=
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence.
@[hott, instance] def is_equiv_compose [Hf : is_equiv f] [Hg : is_equiv g]
: is_equiv (g ∘ f) :=
is_equiv.mk (g ∘ f) (f⁻¹ᶠ ∘ g⁻¹ᶠ)
begin intro c, apply (⬝), tactic.swap,
apply right_inv g, apply ap g, apply right_inv f end
begin intro a, dsimp [(∘)], apply (⬝),
{apply ap (inv f), apply left_inv g}, {apply left_inv} end
begin abstract { exact (λa, (whisker_left _ (adj g (f a))) ⬝
(ap_con g _ _)⁻¹ ⬝
ap02 g ((ap_con_eq_con (right_inv f) (left_inv g (f a)))⁻¹ ⬝
(ap_compose f (inv f) _ ◾ adj f a) ⬝
(ap_con f _ _)⁻¹
) ⬝
(ap_compose g f _)⁻¹) } end
-- Any function equal to an equivalence is an equivlance as well.
@[hott] def is_equiv_eq_closed {f : A → B} [Hf : is_equiv f] (Heq : f = f') : is_equiv f' :=
eq.rec_on Heq Hf
end
section
parameters {A : Type u} {B : Type v} (f : A → B) (g : B → A)
(ret : Πb, f (g b) = b) (sec : Πa, g (f a) = a)
@[hott] def adjointify_left_inv' (a : A) : g (f a) = a :=
ap g (ap f (inverse (sec a))) ⬝ ap g (ret (f a)) ⬝ sec a
def adjointify_adj' (a : A) : ret (f a) = ap f (adjointify_left_inv' a) :=
let fgretrfa := ap f (ap g (ret (f a))) in
let fgfinvsect := ap f (ap g (ap f (sec a)⁻¹)) in
let fgfa := f (g (f a)) in
let retrfa := ret (f a) in
have eq1 : ap f (sec a) = _,
from calc ap f (sec a)
= idp ⬝ ap f (sec a) : by rwr idp_con
... = (ret (f a) ⬝ (ret (f a))⁻¹) ⬝ ap f (sec a) : by rwr con.right_inv
... = ((ret fgfa)⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) :
by rwr con_ap_eq_con (λ x, (ret x)⁻¹)
... = ((ret fgfa)⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : by rwr ap_compose
... = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : by rwr con.assoc,
have eq2 : ap f (sec a) ⬝ idp = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)),
from con_idp _ ⬝ eq1,
have eq3 : idp = _,
from calc idp
= (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : eq_inv_con_of_con_eq eq2
... = ((ap f (sec a))⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rwr con.assoc'
... = (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rwr ap_inv
... = ((ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : by rwr con.assoc'
... = ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f (sec a)⁻¹)) ⬝ fgretrfa) ⬝ ap f (sec a) :
by rwr con_ap_eq_con (λ x, (ret x)⁻¹)
... = ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : by rwr ap_compose
... = (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : by rwr con.assoc'
... = retrfa⁻¹ ⬝ ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : by rwr ap_con
... = retrfa⁻¹ ⬝ (ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : by rwr con.assoc'
... = retrfa⁻¹ ⬝ ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a) : by rwr ← ap_con,
show ret (f a) = ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a),
from eq_of_idp_eq_inv_con eq3
@[hott] def adjointify : is_equiv f :=
is_equiv.mk f g ret adjointify_left_inv' adjointify_adj'
end
-- Any function pointwise equal to an equivalence is an equivalence as well.
@[hott] def homotopy_closed {A B : Type _} (f : A → B) {f' : A → B} [Hf : is_equiv f]
(Hty : f ~ f') : is_equiv f' :=
adjointify f'
(inv f)
(λ b, (Hty (inv f b))⁻¹ ⬝ right_inv f b)
(λ a, (ap (inv f) (Hty a))⁻¹ ⬝ left_inv f a)
@[hott] def inv_homotopy_closed {A B : Type _} {f : A → B} {f' : B → A}
[Hf : is_equiv f] (Hty : f⁻¹ᶠ ~ f') : is_equiv f :=
adjointify f
f'
(λ b, ap f (Hty _)⁻¹ᵖ ⬝ right_inv f b)
(λ a, (Hty _)⁻¹ᵖ ⬝ left_inv f a)
@[hott] def inv_homotopy_inv {A B : Type _} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
: inv f ~ inv g :=
λb, (left_inv g (f⁻¹ᶠ b))⁻¹ ⬝ ap g⁻¹ᶠ ((p (f⁻¹ᶠ b))⁻¹ ⬝ right_inv f b)
instance is_equiv_up (A : Type _)
: is_equiv (ulift.up : A → ulift A) :=
adjointify ulift.up ulift.down (λa, by induction a;reflexivity) (λa, idp)
section
variables {A : Type _} {B: Type _} {C : Type _} (f : A → B) {f' : A → B} [Hf : is_equiv f] (g : B → C)
include Hf
-- The function equiv_rect says that given an equivalence f : A → B,
-- and a hypothesis from B, one may always assume that the hypothesis
-- is in the image of e.
-- In fibrational terms, if we have a fibration over B which has a section
-- once pulled back along an equivalence f : A → B, then it has a section
-- over all of B.
@[hott] def is_equiv_rect (P : B → Type _) (g : Πa, P (f a)) (b : B) : P b :=
right_inv f b ▸ g (f⁻¹ᶠ b)
@[hott] def is_equiv_rect' (P : A → B → Type _) (g : Πb, P (f⁻¹ᶠ b) b) (a : A) : P a (f a) :=
transport (λ x, P x (f a)) (left_inv f a) (g (f a))
@[hott] def is_equiv_rect_comp (P : B → Type _)
(df : Π (x : A), P (f x)) (x : A) : is_equiv_rect f P df (f x) = df x :=
calc
is_equiv_rect f P df (f x)
= right_inv f (f x) ▸ df (f⁻¹ᶠ (f x)) : by refl
... = ap f (left_inv f x) ▸ df (f⁻¹ᶠ (f x)) : by rwr adj
... = transport (P∘f) (left_inv f x) (df (f⁻¹ᶠ (f x))) : by rwr tr_compose
... = df x : by rwr (apdt df (left_inv f x))
@[hott]
def adj_inv (b : B) : left_inv f (f⁻¹ᶠ b) = ap f⁻¹ᶠ (right_inv f b) :=
(is_equiv_rect f (λ fa, left_inv f (f⁻¹ᶠ fa) = ap f⁻¹ᶠ (right_inv f fa): _)
(λa, (eq.cancel_right (left_inv f (id a)): _)
(whisker_left _ (ap_id _)⁻¹ᵖ ⬝ (ap_con_eq_con_ap (left_inv f) (left_inv f a))⁻¹) ⬝
ap_compose _ _ _ ⬝ (ap02 f⁻¹ᶠ (adj f a).inverse): _)
b: _)
--The inverse of an equivalence is, again, an equivalence.
@[instance,hott] def is_equiv_inv : is_equiv f⁻¹ᶠ :=
is_equiv.mk f⁻¹ᶠ f (left_inv f) (right_inv f) (adj_inv f)
-- The 2-out-of-3 properties
@[hott] def cancel_right (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) :=
have Hfinv : is_equiv f⁻¹ᶠ, from is_equiv_inv f,
@homotopy_closed _ _ _ _ (is_equiv_compose (g ∘ f) f⁻¹ᶠ) (λb, ap g (@right_inv _ _ f _ b))
@[hott] def cancel_left (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) :=
have Hfinv : is_equiv f⁻¹ᶠ, from is_equiv_inv f,
@homotopy_closed _ _ _ _ (is_equiv_compose f⁻¹ᶠ (f ∘ g)) (λa, left_inv f (g a))
@[hott] def eq_of_fn_eq_fn' {x y : A} (q : f x = f y) : x = y :=
(left_inv f x)⁻¹ ⬝ ap f⁻¹ᶠ q ⬝ left_inv f y
@[hott] def ap_eq_of_fn_eq_fn' {x y : A} (q : f x = f y) : ap f (eq_of_fn_eq_fn' f q) = q :=
ap_con _ _ _ ⬝ whisker_right _ (ap_con _ _ _)
⬝ ((ap_inv _ _ ⬝ inverse2 (adj f _)⁻¹)
◾ (inverse (ap_compose f f⁻¹ᶠ _))
◾ (adj f _)⁻¹)
⬝ con_ap_con_eq_con_con (right_inv f) _ _
⬝ whisker_right _ (con.left_inv _)
⬝ idp_con _
@[hott] def eq_of_fn_eq_fn'_ap {x y : A} (q : x = y) : eq_of_fn_eq_fn' f (ap f q) = q :=
by induction q; apply con.left_inv
@[instance,hott] def is_equiv_ap (x y : A) : is_equiv (ap f : x = y → f x = f y) :=
adjointify
(ap f)
(eq_of_fn_eq_fn' f)
(ap_eq_of_fn_eq_fn' f)
(eq_of_fn_eq_fn'_ap f)
end
section
variables {A : Type u} {B : Type v} {C : Type w} {f : A → B} [Hf : is_equiv f]
include Hf
section rewrite_rules
variables {a : A} {b : B}
@[hott] def eq_of_eq_inv (p : a = f⁻¹ᶠ b) : f a = b :=
ap f p ⬝ right_inv f b
@[hott] def eq_of_inv_eq (p : f⁻¹ᶠ b = a) : b = f a :=
(right_inv f b)⁻¹ ⬝ ap f p
@[hott] def inv_eq_of_eq (p : b = f a) : f⁻¹ᶠ b = a :=
ap f⁻¹ᶠ p ⬝ left_inv f a
@[hott] def eq_inv_of_eq (p : f a = b) : a = f⁻¹ᶠ b :=
(left_inv f a)⁻¹ ⬝ ap f⁻¹ᶠ p
end rewrite_rules
variable (f)
section pre_compose
variables (α : A → C) (β : B → C)
@[hott] def homotopy_of_homotopy_inv_pre (p : β ~ α ∘ f⁻¹ᶠ) : β ∘ f ~ α :=
λ a, p (f a) ⬝ ap α (left_inv f a)
@[hott] def homotopy_of_inv_homotopy_pre (p : α ∘ f⁻¹ᶠ ~ β) : α ~ β ∘ f :=
λ a, (ap α (left_inv f a))⁻¹ ⬝ p (f a)
@[hott] def inv_homotopy_of_homotopy_pre (p : α ~ β ∘ f) : α ∘ f⁻¹ᶠ ~ β :=
λ b, p (f⁻¹ᶠ b) ⬝ ap β (right_inv f b)
@[hott] def homotopy_inv_of_homotopy_pre (p : β ∘ f ~ α) : β ~ α ∘ f⁻¹ᶠ :=
λ b, (ap β (right_inv f b))⁻¹ ⬝ p (f⁻¹ᶠ b)
end pre_compose
section post_compose
variables (α : C → A) (β : C → B)
@[hott] def homotopy_of_homotopy_inv_post (p : α ~ f⁻¹ᶠ ∘ β) : f ∘ α ~ β :=
λ c, ap f (p c) ⬝ right_inv f (β c)
@[hott] def homotopy_of_inv_homotopy_post (p : f⁻¹ᶠ ∘ β ~ α) : β ~ f ∘ α :=
λ c, (right_inv f (β c))⁻¹ ⬝ ap f (p c)
@[hott] def inv_homotopy_of_homotopy_post (p : β ~ f ∘ α) : f⁻¹ᶠ ∘ β ~ α :=
λ c, ap f⁻¹ᶠ (p c) ⬝ left_inv f (α c)
@[hott] def homotopy_inv_of_homotopy_post (p : f ∘ α ~ β) : α ~ f⁻¹ᶠ ∘ β :=
λ c, (left_inv f (α c))⁻¹ ⬝ ap f⁻¹ᶠ (p c)
end post_compose
end
--Transporting is an equivalence
@[hott] def is_equiv_tr {A : Type u} (P : A → Type v) {x y : A}
(p : x = y) : (is_equiv (transport P p)) :=
is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p)
-- a version where the transport is a cast. Note: A and B live in the same universe here.
@[hott, instance] def is_equiv_cast {A B : Type _} (H : A = B) : is_equiv (cast H) :=
is_equiv_tr (λX, X) H
section
variables {A : Type _} {B : A → Type _} {C : A → Type _} (f : Π{a}, B a → C a) [H : Πa, is_equiv (@f a)]
{g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a))
include H
@[hott] def inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
(c : C (g' a)) : f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c) :=
eq_of_fn_eq_fn' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ᶠ c))⁻¹)
@[hott] def fun_commute_of_inv_commute' (p : Π⦃a : A⦄ (c : C (g' a)), f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c))
{a : A} (b : B (g' a)) : f (h b) = h' (f b) :=
eq_of_fn_eq_fn' f⁻¹ᶠ (left_inv f (h b) ⬝ ap h (left_inv f b)⁻¹ ⬝ (p (f b))⁻¹)
@[hott] def ap_inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
(c : C (g' a)) : ap f (inv_commute' @f @h @h' p c)
= right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ᶠ c))⁻¹ :=
ap_eq_of_fn_eq_fn' _ _
-- inv_commute'_fn is in types.equiv
end
-- This is inv_commute' for A ≡ unit
@[hott] def inv_commute1' {B C : Type _} (f : B → C) [is_equiv f] (h : B → B) (h' : C → C)
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c) :=
eq_of_fn_eq_fn' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ᶠ c))⁻¹)
end is_equiv
open is_equiv
namespace eq
local attribute [instance] is_equiv_tr
@[hott] def tr_inv_fn {A : Type _} {B : A → Type _} {a a' : A} (p : a = a') :
transport B p⁻¹ = (transport B p)⁻¹ᶠ := idp
@[hott] def tr_inv {A : Type _} {B : A → Type _} {a a' : A} (p : a = a') (b : B a') :
p⁻¹ ▸ b = (transport B p)⁻¹ᶠ b := idp
@[hott] def cast_inv_fn {A B : Type _} (p : A = B) : cast p⁻¹ = (cast p)⁻¹ᶠ := idp
@[hott] def cast_inv {A B : Type _} (p : A = B) (b : B) : cast p⁻¹ b = (cast p)⁻¹ᶠ b := idp
end eq
infix ` ≃ `:25 := equiv
attribute [instance] equiv.to_is_equiv
namespace equiv
section
variables {A : Type u} {B : Type v} {C : Type w}
instance: has_coe_to_fun (A ≃ B) := ⟨_, to_fun⟩
@[hott, hsimp] def to_fun_equiv {A B : Type _} (f : A → B) (H : is_equiv f) :
@coe_fn _ equiv.has_coe_to_fun (equiv.mk f H) = f :=
idp
open is_equiv
@[hott] protected def MK (f : A → B) (g : B → A)
(right_inv : Πb, f (g b) = b) (left_inv : Πa, g (f a) = a) : A ≃ B :=
equiv.mk f (adjointify f g right_inv left_inv)
@[hott, reducible] def to_inv (f : A ≃ B) : B → A := f⁻¹ᶠ
@[hott, hsimp] def to_right_inv (f : A ≃ B) (b : B) : f (f⁻¹ᶠ b) = b :=
right_inv f b
@[hott, hsimp] def to_left_inv (f : A ≃ B) (a : A) : f⁻¹ᶠ (f a) = a :=
left_inv f a
@[refl, hott]
protected def rfl : A ≃ A :=
equiv.mk id (hott.is_equiv.is_equiv_id _)
@[hott]
protected def refl (A : Type _) : A ≃ A :=
@equiv.rfl A
@[symm, hott]
protected def symm (f : A ≃ B) : B ≃ A :=
equiv.mk f⁻¹ᶠ (is_equiv.is_equiv_inv f)
@[trans, hott]
protected def trans (f : A ≃ B) (g : B ≃ C) : A ≃ C :=
equiv.mk (g ∘ f) (is_equiv_compose _ _)
infixl ` ⬝e `:75 := equiv.trans
postfix `⁻¹ᵉ`:(max + 1) := equiv.symm
@[reducible, hott] def erfl := @equiv.rfl
@[hott] def to_inv_trans (f : A ≃ B) (g : B ≃ C)
: (f ⬝e g)⁻¹ᶠ = g⁻¹ᵉ ⬝e f⁻¹ᵉ :=
idp
@[hott,instance] def is_equiv_to_inv (f : A ≃ B) : is_equiv f⁻¹ᶠ :=
is_equiv.is_equiv_inv _
@[hott] def equiv_change_fun (f : A ≃ B) {f' : A → B} (Heq : f ~ f') : A ≃ B :=
equiv.mk f' (is_equiv.homotopy_closed f Heq)
@[hott] def equiv_change_inv (f : A ≃ B) {f' : B → A} (Heq : f⁻¹ᶠ ~ f') : A ≃ B :=
equiv.mk f (inv_homotopy_closed Heq)
--rename: eq_equiv_fn_eq_fn_of_is_equiv
@[hott] def eq_equiv_fn_eq (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) (is_equiv_ap _ _ _)
--rename: eq_equiv_fn_eq_fn
@[hott] def eq_equiv_fn_eq_of_equiv (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) (is_equiv_ap _ _ _)
@[hott] def equiv_ap (P : A → Type _) {a b : A} (p : a = b) : P a ≃ P b :=
equiv.mk (transport P p) (is_equiv_tr _ _)
@[hott] def equiv_of_eq {A B : Type u} (p : A = B) : A ≃ B :=
equiv.mk (cast p) (is_equiv_tr id _)
@[hott, hsimp] def equiv_of_eq_refl (A : Type _)
: equiv_of_eq (refl A) = equiv.refl A :=
idp
@[hott] def eq_of_fn_eq_fn (f : A ≃ B) {x y : A} (q : f x = f y) : x = y :=
(left_inv _ x)⁻¹ ⬝ ap f⁻¹ᶠ q ⬝ left_inv _ y
@[hott] def eq_of_fn_eq_fn_inv (f : A ≃ B) {x y : B} (q : f⁻¹ᵉ x = f⁻¹ᵉ y) : x = y :=
(right_inv _ x)⁻¹ ⬝ ap f q ⬝ right_inv f y
@[hott] def ap_eq_of_fn_eq_fn (f : A ≃ B) {x y : A} (q : f x = f y) : ap f (eq_of_fn_eq_fn f q) = q :=
ap_eq_of_fn_eq_fn' f q
@[hott] def eq_of_fn_eq_fn_ap (f : A ≃ B) {x y : A} (q : x = y) : eq_of_fn_eq_fn f (ap f q) = q :=
eq_of_fn_eq_fn'_ap f q
@[hott] def to_inv_homotopy_inv {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
inv_homotopy_inv p
--we need this theorem for the funext_of_ua proof
@[hott] theorem inv_eq {A B : Type _} (eqf eqg : A ≃ B) (p : eqf = eqg) : eqf⁻¹ᶠ = eqg⁻¹ᶠ :=
eq.rec_on p idp
@[trans, hott]
def equiv_of_equiv_of_eq {A B C : Type _} (p : A = B) (q : B ≃ C) : A ≃ C :=
equiv_of_eq p ⬝e q
@[trans, hott]
def equiv_of_eq_of_equiv {A B C : Type _} (p : A ≃ B) (q : B = C) : A ≃ C :=
p ⬝e equiv_of_eq q
@[hott] def equiv_lift (A : Type _) : A ≃ ulift A := equiv.mk ulift.up (by apply_instance)
@[hott] def equiv_rect (f : A ≃ B) (P : B → Type _) (g : Πa, P (f a)) (b : B) : P b :=
right_inv f b ▸ g (f⁻¹ᶠ b)
@[hott] def equiv_rect' (f : A ≃ B) (P : A → B → Type _) (g : Πb, P (f⁻¹ᶠ b) b) (a : A) : P a (f a) :=
transport (λ x : A, P x (f a)) (left_inv f a) (g (f a))
@[hott] def equiv_rect_comp (f : A ≃ B) (P : B → Type _)
(df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x :=
calc
equiv_rect f P df (f x)
= right_inv f (f x) ▸ df (f⁻¹ᶠ (f x)) : by refl
... = ap f (left_inv f x) ▸ df (f⁻¹ᶠ (f x)) : by rwr ← adj
... = transport (P∘f) (left_inv f x) (df (f⁻¹ᶠ (f x))) : by rwr tr_compose
... = df x : by apply apdt df (left_inv f x)
end
section
variables {A : Type _} {B : Type _} (f : A ≃ B) {a : A} {b : B}
@[hott] def to_eq_of_eq_inv (p : a = f⁻¹ᶠ b) : f a = b :=
ap f p ⬝ to_right_inv f b
@[hott] def to_eq_of_inv_eq (p : f⁻¹ᶠ b = a) : b = f a :=
(to_right_inv f b)⁻¹ ⬝ ap f p
@[hott] def to_inv_eq_of_eq (p : b = f a) : f⁻¹ᶠ b = a :=
ap _ p ⬝ left_inv f a
@[hott] def to_eq_inv_of_eq (p : f a = b) : a = f⁻¹ᶠ b :=
(left_inv f a)⁻¹ ⬝ ap _ p
end
section
variables {A : Type _} {B : A → Type _} {C : A → Type _} (f : Π{a}, B a ≃ C a)
{g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a))
@[hott] def inv_commute (p : Π⦃a : A⦄ (b : B (g' a)), f.to_fun (h b) = h' (f.to_fun b)) {a : A}
(c : C (g' a)) : f.to_inv (h' c) = h (f.to_inv c) :=
inv_commute' (λ a, f.to_fun) @h @h' p c
@[hott] def fun_commute_of_inv_commute (p : Π⦃a : A⦄ (c : C (g' a)), f.to_inv (h' c) = h (f.to_inv c))
{a : A} (b : B (g' a)) : f.to_fun (h b) = h' (f.to_fun b) :=
fun_commute_of_inv_commute' (λ a, f.to_fun) @h @h' p b
@[hott] def inv_commute1 {B C : Type _} (f : B ≃ C) (h : B → B) (h' : C → C)
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c) :=
inv_commute1' f h h' p c
end
infixl ` ⬝pe `:75 := equiv_of_equiv_of_eq
infixl ` ⬝ep `:75 := equiv_of_eq_of_equiv
end equiv
open equiv
namespace is_equiv
@[hott] def is_equiv_of_equiv_of_homotopy {A B : Type _} (f : A ≃ B)
{f' : A → B} (Hty : f ~ f') : is_equiv f' :=
@homotopy_closed _ _ f f' _ Hty
end is_equiv
end hott
|
79b3f9ba79e0c8c0865a84688becd1f6a4fe7f90
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/probability/kernel/disintegration.lean
|
3636f104864f4f7245062015209af9a86c222b06
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 26,749
|
lean
|
/-
Copyright (c) 2023 Rémy Degenne. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Rémy Degenne
-/
import probability.kernel.cond_cdf
import measure_theory.constructions.polish
import probability.kernel.integral_comp_prod
/-!
# Disintegration of measures on product spaces
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
Let `ρ` be a finite measure on `α × Ω`, where `Ω` is a standard Borel space. In mathlib terms, `Ω`
verifies `[nonempty Ω] [topological_space Ω] [polish_space Ω] [measurable_space Ω] [borel_space Ω]`.
Then there exists a kernel `ρ.cond_kernel : kernel α Ω` such that for any measurable set
`s : set (α × Ω)`, `ρ s = ∫⁻ a, ρ.cond_kernel a {x | (a, x) ∈ s} ∂ρ.fst`.
In terms of kernels, `ρ.cond_kernel` is such that for any measurable space `γ`, we
have a disintegration of the constant kernel from `γ` with value `ρ`:
`kernel.const γ ρ = (kernel.const γ ρ.fst) ⊗ₖ (kernel.prod_mk_left γ (cond_kernel ρ))`,
where `ρ.fst` is the marginal measure of `ρ` on `α`. In particular,
`ρ = ((kernel.const unit ρ.fst) ⊗ₖ (kernel.prod_mk_left unit (cond_kernel ρ))) ()`.
In order to obtain a disintegration for any standard Borel space, we use that these spaces embed
measurably into `ℝ`: it then suffices to define a suitable kernel for `Ω = ℝ`. In the real case,
we define a conditional kernel by taking for each `a : α` the measure associated to the Stieltjes
function `cond_cdf ρ a` (the conditional cumulative distribution function).
## Main definitions
* `measure_theory.measure.cond_kernel ρ : kernel α Ω`: conditional kernel described above.
## Main statements
* `probability_theory.lintegral_cond_kernel`:
`∫⁻ a, ∫⁻ ω, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫⁻ x, f x ∂ρ`
* `probability_theory.lintegral_cond_kernel_mem`:
`∫⁻ a, ρ.cond_kernel a {x | (a, x) ∈ s} ∂ρ.fst = ρ s`
* `probability_theory.kernel.const_eq_comp_prod`:
`kernel.const γ ρ = (kernel.const γ ρ.fst) ⊗ₖ (kernel.prod_mk_left γ ρ.cond_kernel)`
* `probability_theory.measure_eq_comp_prod`:
`ρ = ((kernel.const unit ρ.fst) ⊗ₖ (kernel.prod_mk_left unit ρ.cond_kernel)) ()`
-/
open measure_theory set filter
open_locale ennreal measure_theory topology probability_theory
namespace probability_theory
variables {α : Type*} {mα : measurable_space α}
include mα
section real
/-! ### Disintegration of measures on `α × ℝ` -/
/-- Conditional measure on the second space of the product given the value on the first, as a
kernel. Use the more general `cond_kernel`. -/
noncomputable
def cond_kernel_real (ρ : measure (α × ℝ)) : kernel α ℝ :=
{ val := λ a, (cond_cdf ρ a).measure,
property := measurable_measure_cond_cdf ρ }
instance (ρ : measure (α × ℝ)) : is_markov_kernel (cond_kernel_real ρ) :=
⟨λ a, by { rw cond_kernel_real, apply_instance, } ⟩
lemma cond_kernel_real_Iic (ρ : measure (α × ℝ)) (a : α) (x : ℝ) :
cond_kernel_real ρ a (Iic x) = ennreal.of_real (cond_cdf ρ a x) :=
measure_cond_cdf_Iic ρ a x
lemma set_lintegral_cond_kernel_real_Iic (ρ : measure (α × ℝ)) [is_finite_measure ρ] (x : ℝ)
{s : set α} (hs : measurable_set s) :
∫⁻ a in s, cond_kernel_real ρ a (Iic x) ∂ρ.fst = ρ (s ×ˢ Iic x) :=
by { simp_rw [cond_kernel_real_Iic], exact set_lintegral_cond_cdf ρ x hs, }
lemma set_lintegral_cond_kernel_real_univ (ρ : measure (α × ℝ))
{s : set α} (hs : measurable_set s) :
∫⁻ a in s, cond_kernel_real ρ a univ ∂ρ.fst = ρ (s ×ˢ univ) :=
by simp only [measure_univ, lintegral_const, measure.restrict_apply, measurable_set.univ,
univ_inter, one_mul, measure.fst_apply hs, ← prod_univ]
lemma lintegral_cond_kernel_real_univ (ρ : measure (α × ℝ)) :
∫⁻ a, cond_kernel_real ρ a univ ∂ρ.fst = ρ univ :=
by rw [← set_lintegral_univ, set_lintegral_cond_kernel_real_univ ρ measurable_set.univ,
univ_prod_univ]
variables (ρ : measure (α × ℝ)) [is_finite_measure ρ]
lemma set_lintegral_cond_kernel_real_prod
{s : set α} (hs : measurable_set s) {t : set ℝ} (ht : measurable_set t) :
∫⁻ a in s, cond_kernel_real ρ a t ∂ρ.fst = ρ (s ×ˢ t) :=
begin
-- `set_lintegral_cond_kernel_real_Iic` gives the result for `t = Iic x`. These sets form a
-- π-system that generate the borel σ-algebra, hence we can get the same equality for any
-- measurable set `t`.
refine measurable_space.induction_on_inter (borel_eq_generate_from_Iic ℝ)
is_pi_system_Iic _ _ _ _ ht,
{ simp only [measure_empty, lintegral_const, zero_mul, prod_empty], },
{ rintros t ⟨q, rfl⟩,
exact set_lintegral_cond_kernel_real_Iic ρ q hs, },
{ intros t ht ht_lintegral,
calc ∫⁻ a in s, cond_kernel_real ρ a tᶜ ∂ρ.fst
= ∫⁻ a in s, (cond_kernel_real ρ a univ) - cond_kernel_real ρ a t ∂ρ.fst :
by { congr' with a, rw measure_compl ht (measure_ne_top (cond_kernel_real ρ a) _), }
... = ∫⁻ a in s, (cond_kernel_real ρ a univ) ∂ρ.fst - ∫⁻ a in s, cond_kernel_real ρ a t ∂ρ.fst :
begin
rw lintegral_sub (kernel.measurable_coe (cond_kernel_real ρ) ht),
{ rw ht_lintegral,
exact measure_ne_top ρ _, },
{ exact eventually_of_forall (λ a, measure_mono (subset_univ _)), },
end
... = ρ (s ×ˢ univ) - ρ (s ×ˢ t) :
by rw [set_lintegral_cond_kernel_real_univ ρ hs, ht_lintegral]
... = ρ (s ×ˢ tᶜ) :
begin
rw ← measure_diff _ (hs.prod ht) (measure_ne_top ρ _),
{ rw [prod_diff_prod, compl_eq_univ_diff],
simp only [diff_self, empty_prod, union_empty], },
{ rw prod_subset_prod_iff,
exact or.inl ⟨subset_rfl, subset_univ t⟩, },
end, },
{ intros f hf_disj hf_meas hf_eq,
simp_rw measure_Union hf_disj hf_meas,
rw [lintegral_tsum (λ i, (kernel.measurable_coe _ (hf_meas i)).ae_measurable.restrict),
prod_Union, measure_Union],
{ simp_rw hf_eq, },
{ intros i j hij,
rw [function.on_fun, disjoint_prod],
exact or.inr (hf_disj hij), },
{ exact λ i, measurable_set.prod hs (hf_meas i), }, },
end
lemma lintegral_cond_kernel_real_mem {s : set (α × ℝ)} (hs : measurable_set s) :
∫⁻ a, cond_kernel_real ρ a {x | (a, x) ∈ s} ∂ρ.fst = ρ s :=
begin
-- `set_lintegral_cond_kernel_real_prod` gives the result for sets of the form `t₁ × t₂`. These
-- sets form a π-system that generate the product σ-algebra, hence we can get the same equality
-- for any measurable set `s`.
refine measurable_space.induction_on_inter generate_from_prod.symm is_pi_system_prod _ _ _ _ hs,
{ simp only [mem_empty_iff_false, set_of_false, measure_empty, lintegral_const, zero_mul], },
{ intros t ht,
rw mem_image2 at ht,
obtain ⟨t₁, t₂, ht₁, ht₂, rfl⟩ := ht,
have h_prod_eq_snd : ∀ a ∈ t₁, {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = t₂,
{ intros a ha,
simp only [ha, prod_mk_mem_set_prod_eq, true_and, set_of_mem_eq], },
cases eq_empty_or_nonempty t₂ with h h,
{ simp only [h, prod_empty, mem_empty_iff_false, set_of_false, measure_empty, lintegral_const,
zero_mul], },
rw ← lintegral_add_compl _ ht₁,
have h_eq1 : ∫⁻ a in t₁, cond_kernel_real ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} ∂ρ.fst
= ∫⁻ a in t₁, cond_kernel_real ρ a t₂ ∂ρ.fst,
{ refine set_lintegral_congr_fun ht₁ (eventually_of_forall (λ a ha, _)),
rw h_prod_eq_snd a ha, },
have h_eq2 : ∫⁻ a in t₁ᶜ, cond_kernel_real ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} ∂ρ.fst = 0,
{ suffices h_eq_zero : ∀ a ∈ t₁ᶜ, cond_kernel_real ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = 0,
{ rw set_lintegral_congr_fun ht₁.compl (eventually_of_forall h_eq_zero),
simp only [lintegral_const, zero_mul], },
intros a hat₁,
rw mem_compl_iff at hat₁,
simp only [hat₁, prod_mk_mem_set_prod_eq, false_and, set_of_false, measure_empty], },
rw [h_eq1, h_eq2, add_zero],
exact set_lintegral_cond_kernel_real_prod ρ ht₁ ht₂, },
{ intros t ht ht_eq,
calc ∫⁻ a, cond_kernel_real ρ a {x : ℝ | (a, x) ∈ tᶜ} ∂ρ.fst
= ∫⁻ a, cond_kernel_real ρ a {x : ℝ | (a, x) ∈ t}ᶜ ∂ρ.fst : rfl
... = ∫⁻ a, cond_kernel_real ρ a univ - cond_kernel_real ρ a {x : ℝ | (a, x) ∈ t} ∂ρ.fst :
begin
congr' with a : 1,
exact measure_compl (measurable_prod_mk_left ht) (measure_ne_top (cond_kernel_real ρ a) _),
end
... = ∫⁻ a, cond_kernel_real ρ a univ ∂ρ.fst
- ∫⁻ a, cond_kernel_real ρ a {x : ℝ | (a, x) ∈ t} ∂ρ.fst :
begin
have h_le : (λ a, cond_kernel_real ρ a {x : ℝ | (a, x) ∈ t})
≤ᵐ[ρ.fst] λ a, cond_kernel_real ρ a univ,
{ exact eventually_of_forall (λ a, measure_mono (subset_univ _)), },
rw lintegral_sub _ _ h_le,
{ exact kernel.measurable_kernel_prod_mk_left ht, },
refine ((lintegral_mono_ae h_le).trans_lt _).ne,
rw lintegral_cond_kernel_real_univ,
exact measure_lt_top ρ univ,
end
... = ρ univ - ρ t : by rw [ht_eq, lintegral_cond_kernel_real_univ]
... = ρ tᶜ : (measure_compl ht (measure_ne_top _ _)).symm, },
{ intros f hf_disj hf_meas hf_eq,
have h_eq : ∀ a, {x | (a, x) ∈ ⋃ i, f i} = ⋃ i, {x | (a, x) ∈ f i},
{ intros a,
ext1 x,
simp only [mem_Union, mem_set_of_eq], },
simp_rw h_eq,
have h_disj : ∀ a, pairwise (disjoint on (λ i, {x | (a, x) ∈ f i})),
{ intros a i j hij,
have h_disj := hf_disj hij,
rw [function.on_fun, disjoint_iff_inter_eq_empty] at h_disj ⊢,
ext1 x,
simp only [mem_inter_iff, mem_set_of_eq, mem_empty_iff_false, iff_false],
intros h_mem_both,
suffices : (a, x) ∈ ∅, by rwa mem_empty_iff_false at this,
rwa [← h_disj, mem_inter_iff], },
calc ∫⁻ a, cond_kernel_real ρ a (⋃ i, {x | (a, x) ∈ f i}) ∂ρ.fst
= ∫⁻ a, ∑' i, cond_kernel_real ρ a {x | (a, x) ∈ f i} ∂ρ.fst :
by { congr' with a : 1,
rw measure_Union (h_disj a) (λ i, measurable_prod_mk_left (hf_meas i)), }
... = ∑' i, ∫⁻ a, cond_kernel_real ρ a {x | (a, x) ∈ f i} ∂ρ.fst : lintegral_tsum
(λ i, (kernel.measurable_kernel_prod_mk_left (hf_meas i)).ae_measurable)
... = ∑' i, ρ (f i) : by simp_rw hf_eq
... = ρ (Union f) : (measure_Union hf_disj hf_meas).symm, },
end
theorem kernel.const_eq_comp_prod_real (γ : Type*) [measurable_space γ]
(ρ : measure (α × ℝ)) [is_finite_measure ρ] :
kernel.const γ ρ = (kernel.const γ ρ.fst) ⊗ₖ (kernel.prod_mk_left γ (cond_kernel_real ρ)) :=
begin
ext a s hs : 2,
rw [kernel.comp_prod_apply _ _ _ hs, kernel.const_apply, kernel.const_apply],
simp_rw kernel.prod_mk_left_apply,
rw lintegral_cond_kernel_real_mem ρ hs,
end
theorem measure_eq_comp_prod_real :
ρ = ((kernel.const unit ρ.fst) ⊗ₖ (kernel.prod_mk_left unit (cond_kernel_real ρ))) () :=
by rw [← kernel.const_eq_comp_prod_real unit ρ, kernel.const_apply]
lemma lintegral_cond_kernel_real {f : α × ℝ → ℝ≥0∞} (hf : measurable f) :
∫⁻ a, ∫⁻ y, f (a, y) ∂(cond_kernel_real ρ a) ∂ρ.fst = ∫⁻ x, f x ∂ρ :=
begin
nth_rewrite 1 measure_eq_comp_prod_real ρ,
rw [kernel.lintegral_comp_prod _ _ _ hf, kernel.const_apply],
simp_rw kernel.prod_mk_left_apply,
end
lemma ae_cond_kernel_real_eq_one {s : set ℝ} (hs : measurable_set s) (hρ : ρ {x | x.snd ∈ sᶜ} = 0) :
∀ᵐ a ∂ρ.fst, cond_kernel_real ρ a s = 1 :=
begin
have h : ρ {x | x.snd ∈ sᶜ}
= (kernel.const unit ρ.fst ⊗ₖ kernel.prod_mk_left unit (cond_kernel_real ρ)) ()
{x | x.snd ∈ sᶜ},
{ rw ← measure_eq_comp_prod_real, },
rw [hρ, kernel.comp_prod_apply] at h,
swap, { exact measurable_snd hs.compl, },
rw [eq_comm, lintegral_eq_zero_iff] at h,
swap,
{ simp_rw kernel.prod_mk_left_apply',
simp only [mem_compl_iff, mem_set_of_eq],
exact kernel.measurable_coe _ hs.compl, },
rw kernel.const_apply at h,
simp only [mem_compl_iff, mem_set_of_eq, kernel.prod_mk_left_apply'] at h,
filter_upwards [h] with a ha,
change cond_kernel_real ρ a sᶜ = 0 at ha,
rwa [prob_compl_eq_zero_iff hs] at ha,
apply_instance,
end
end real
section polish
/-! ### Disintegration of measures on Polish Borel spaces
Since every standard Borel space embeds measurably into `ℝ`, we can generalize the disintegration
property on `ℝ` to all these spaces. -/
variables {Ω : Type*} [topological_space Ω] [polish_space Ω] [measurable_space Ω] [borel_space Ω]
[nonempty Ω]
(ρ : measure (α × Ω)) [is_finite_measure ρ]
/-- Existence of a conditional kernel. Use the definition `cond_kernel` to get that kernel. -/
lemma exists_cond_kernel (γ : Type*) [measurable_space γ] :
∃ (η : kernel α Ω) (h : is_markov_kernel η),
kernel.const γ ρ
= @kernel.comp_prod γ α _ _ Ω _ (kernel.const γ ρ.fst) _ (kernel.prod_mk_left γ η)
(by { haveI := h, apply_instance, }) :=
begin
obtain ⟨f, hf⟩ := exists_measurable_embedding_real Ω,
let ρ' : measure (α × ℝ) := ρ.map (prod.map id f),
-- The general idea is to define `η = kernel.comap_right (cond_kernel_real ρ') hf`. There is
-- however an issue: that `η` may not be a Markov kernel since its value is only a
-- probability distribution almost everywhere with respect to `ρ.fst`, not everywhere.
-- We modify it to obtain a Markov kernel which is almost everywhere equal.
let ρ_set := (to_measurable ρ.fst {a | cond_kernel_real ρ' a (range f) = 1}ᶜ)ᶜ,
have hm : measurable_set ρ_set := (measurable_set_to_measurable _ _).compl,
have h_eq_one_of_mem : ∀ a ∈ ρ_set, cond_kernel_real ρ' a (range f) = 1,
{ intros a ha,
rw [mem_compl_iff] at ha,
have h_ss := subset_to_measurable ρ.fst {a : α | cond_kernel_real ρ' a (range f) = 1}ᶜ,
suffices ha' : a ∉ {a : α | cond_kernel_real ρ' a (range f) = 1}ᶜ,
{ rwa not_mem_compl_iff at ha', },
exact not_mem_subset h_ss ha, },
have h_prod_embed : measurable_embedding (prod.map (id : α → α) f) :=
(measurable_embedding.id).prod_mk hf,
have h_fst : ρ'.fst = ρ.fst,
{ ext1 u hu,
rw [measure.fst_apply hu, measure.fst_apply hu,
measure.map_apply h_prod_embed.measurable (measurable_fst hu)],
refl, },
have h_ae : ∀ᵐ a ∂ρ.fst, a ∈ ρ_set,
{ rw ae_iff,
simp only [not_mem_compl_iff, set_of_mem_eq, measure_to_measurable],
change (ρ.fst) {a : α | a ∉ {a' : α | cond_kernel_real ρ' a' (range f) = 1}} = 0,
rw [← ae_iff, ← h_fst],
refine ae_cond_kernel_real_eq_one ρ' hf.measurable_set_range _,
rw measure.map_apply h_prod_embed.measurable,
swap, { exact measurable_snd hf.measurable_set_range.compl, },
convert measure_empty,
ext1 x,
simp only [mem_compl_iff, mem_range, preimage_set_of_eq, prod_map, mem_set_of_eq,
mem_empty_iff_false, iff_false, not_not, exists_apply_eq_apply], },
classical,
obtain ⟨x₀, hx₀⟩ : ∃ x, x ∈ range f := range_nonempty _,
let η' := kernel.piecewise hm (cond_kernel_real ρ')
(kernel.deterministic (λ _, x₀) measurable_const),
-- We show that `kernel.comap_right η' hf` is a suitable Markov kernel.
refine ⟨kernel.comap_right η' hf, _, _⟩,
{ refine kernel.is_markov_kernel.comap_right _ _ (λ a, _),
rw kernel.piecewise_apply',
split_ifs with h_mem h_not_mem,
{ exact h_eq_one_of_mem _ h_mem, },
{ rw [kernel.deterministic_apply' _ _ hf.measurable_set_range, set.indicator_apply,
if_pos hx₀], }, },
have : kernel.const γ ρ = kernel.comap_right (kernel.const γ ρ') h_prod_embed,
{ ext c t ht : 2,
rw [kernel.const_apply, kernel.comap_right_apply' _ _ _ ht, kernel.const_apply,
measure.map_apply h_prod_embed.measurable (h_prod_embed.measurable_set_image.mpr ht)],
congr' with x : 1,
rw ← @prod.mk.eta _ _ x,
simp only [id.def, mem_preimage, prod.map_mk, mem_image, prod.mk.inj_iff, prod.exists],
refine ⟨λ h, ⟨x.1, x.2, h, rfl, rfl⟩, _⟩,
rintros ⟨a, b, h_mem, rfl, hf_eq⟩,
rwa hf.injective hf_eq at h_mem, },
rw [this, kernel.const_eq_comp_prod_real _ ρ'],
ext c t ht : 2,
rw [kernel.comap_right_apply' _ _ _ ht,
kernel.comp_prod_apply _ _ _ (h_prod_embed.measurable_set_image.mpr ht), kernel.const_apply,
h_fst, kernel.comp_prod_apply _ _ _ ht, kernel.const_apply],
refine lintegral_congr_ae _,
filter_upwards [h_ae] with a ha,
rw [kernel.prod_mk_left_apply', kernel.prod_mk_left_apply', kernel.comap_right_apply'],
swap, { exact measurable_prod_mk_left ht, },
have h1 : {c : ℝ | (a, c) ∈ prod.map id f '' t} = f '' {c : Ω | (a, c) ∈ t},
{ ext1 x,
simp only [prod_map, id.def, mem_image, prod.mk.inj_iff, prod.exists, mem_set_of_eq],
split,
{ rintros ⟨a', b, h_mem, rfl, hf_eq⟩,
exact ⟨b, h_mem, hf_eq⟩, },
{ rintros ⟨b, h_mem, hf_eq⟩,
exact ⟨a, b, h_mem, rfl, hf_eq⟩, }, },
have h2 : cond_kernel_real ρ' (c, a).snd = η' (c, a).snd,
{ rw [kernel.piecewise_apply, if_pos ha], },
rw [h1, h2],
end
/-- Conditional kernel of a measure on a product space: a Markov kernel such that
`ρ = ((kernel.const unit ρ.fst) ⊗ₖ (kernel.prod_mk_left unit ρ.cond_kernel)) ()`
(see `probability_theory.measure_eq_comp_prod`). -/
@[irreducible] noncomputable
def _root_.measure_theory.measure.cond_kernel : kernel α Ω :=
(exists_cond_kernel ρ unit).some
lemma cond_kernel_def : ρ.cond_kernel = (exists_cond_kernel ρ unit).some :=
by rw measure_theory.measure.cond_kernel
instance : is_markov_kernel ρ.cond_kernel :=
by { rw cond_kernel_def, exact (exists_cond_kernel ρ unit).some_spec.some, }
lemma kernel.const_unit_eq_comp_prod :
kernel.const unit ρ
= (kernel.const unit ρ.fst) ⊗ₖ (kernel.prod_mk_left unit ρ.cond_kernel) :=
by { simp_rw cond_kernel_def, exact (exists_cond_kernel ρ unit).some_spec.some_spec, }
/-- **Disintegration** of finite product measures on `α × Ω`, where `Ω` is Polish Borel. Such a
measure can be written as the composition-product of the constant kernel with value `ρ.fst`
(marginal measure over `α`) and a Markov kernel from `α` to `Ω`. We call that Markov kernel
`probability_theory.cond_kernel ρ`. -/
theorem measure_eq_comp_prod :
ρ = ((kernel.const unit ρ.fst) ⊗ₖ (kernel.prod_mk_left unit ρ.cond_kernel)) () :=
by rw [← kernel.const_unit_eq_comp_prod, kernel.const_apply]
/-- **Disintegration** of constant kernels. A constant kernel on a product space `α × Ω`, where `Ω`
is Polish Borel, can be written as the composition-product of the constant kernel with value `ρ.fst`
(marginal measure over `α`) and a Markov kernel from `α` to `Ω`. We call that Markov kernel
`probability_theory.cond_kernel ρ`. -/
theorem kernel.const_eq_comp_prod (γ : Type*) [measurable_space γ]
(ρ : measure (α × Ω)) [is_finite_measure ρ] :
kernel.const γ ρ = (kernel.const γ ρ.fst) ⊗ₖ (kernel.prod_mk_left γ ρ.cond_kernel) :=
begin
ext a s hs : 2,
simpa only [kernel.const_apply, kernel.comp_prod_apply _ _ _ hs, kernel.prod_mk_left_apply']
using kernel.ext_iff'.mp (kernel.const_unit_eq_comp_prod ρ) () s hs,
end
lemma lintegral_cond_kernel_mem {s : set (α × Ω)} (hs : measurable_set s) :
∫⁻ a, ρ.cond_kernel a {x | (a, x) ∈ s} ∂ρ.fst = ρ s :=
begin
conv_rhs { rw measure_eq_comp_prod ρ, },
simp_rw [kernel.comp_prod_apply _ _ _ hs, kernel.const_apply, kernel.prod_mk_left_apply],
end
lemma set_lintegral_cond_kernel_eq_measure_prod {s : set α} (hs : measurable_set s)
{t : set Ω} (ht : measurable_set t) :
∫⁻ a in s, ρ.cond_kernel a t ∂ρ.fst = ρ (s ×ˢ t) :=
begin
have : ρ (s ×ˢ t) = ((kernel.const unit ρ.fst ⊗ₖ kernel.prod_mk_left unit ρ.cond_kernel) ())
(s ×ˢ t),
{ congr, exact measure_eq_comp_prod ρ, },
rw [this, kernel.comp_prod_apply _ _ _ (hs.prod ht)],
simp only [prod_mk_mem_set_prod_eq, kernel.lintegral_const, kernel.prod_mk_left_apply],
rw ← lintegral_indicator _ hs,
congr,
ext1 x,
classical,
rw indicator_apply,
split_ifs with hx,
{ simp only [hx, if_true, true_and, set_of_mem_eq], },
{ simp only [hx, if_false, false_and, set_of_false, measure_empty], },
end
lemma lintegral_cond_kernel {f : α × Ω → ℝ≥0∞} (hf : measurable f) :
∫⁻ a, ∫⁻ ω, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫⁻ x, f x ∂ρ :=
begin
conv_rhs { rw measure_eq_comp_prod ρ, },
rw [kernel.lintegral_comp_prod _ _ _ hf, kernel.const_apply],
simp_rw kernel.prod_mk_left_apply,
end
lemma set_lintegral_cond_kernel {f : α × Ω → ℝ≥0∞} (hf : measurable f)
{s : set α} (hs : measurable_set s) {t : set Ω} (ht : measurable_set t) :
∫⁻ a in s, ∫⁻ ω in t, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫⁻ x in s ×ˢ t, f x ∂ρ :=
begin
conv_rhs { rw measure_eq_comp_prod ρ, },
simp_rw [← kernel.restrict_apply _ (hs.prod ht), ← kernel.comp_prod_restrict,
kernel.lintegral_comp_prod _ _ _ hf, kernel.restrict_apply, kernel.const_apply,
kernel.prod_mk_left_apply],
end
lemma set_lintegral_cond_kernel_univ_right {f : α × Ω → ℝ≥0∞} (hf : measurable f)
{s : set α} (hs : measurable_set s) :
∫⁻ a in s, ∫⁻ ω, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫⁻ x in s ×ˢ univ, f x ∂ρ :=
by { rw ← set_lintegral_cond_kernel ρ hf hs measurable_set.univ, simp_rw measure.restrict_univ, }
lemma set_lintegral_cond_kernel_univ_left {f : α × Ω → ℝ≥0∞} (hf : measurable f)
{t : set Ω} (ht : measurable_set t) :
∫⁻ a, ∫⁻ ω in t, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫⁻ x in univ ×ˢ t, f x ∂ρ :=
by { rw ← set_lintegral_cond_kernel ρ hf measurable_set.univ ht, simp_rw measure.restrict_univ, }
section integral_cond_kernel
variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E]
lemma _root_.measure_theory.ae_strongly_measurable.integral_cond_kernel
{ρ : measure (α × Ω)} [is_finite_measure ρ] {f : α × Ω → E} (hf : ae_strongly_measurable f ρ) :
ae_strongly_measurable (λ x, ∫ y, f (x, y) ∂(ρ.cond_kernel x)) ρ.fst :=
begin
rw measure_eq_comp_prod ρ at hf,
exact ae_strongly_measurable.integral_kernel_comp_prod hf,
end
lemma integral_cond_kernel {ρ : measure (α × Ω)} [is_finite_measure ρ]
{f : α × Ω → E} (hf : integrable f ρ) :
∫ a, ∫ x, f (a, x) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫ ω, f ω ∂ρ :=
begin
conv_rhs { rw measure_eq_comp_prod ρ, },
have hf' : integrable f ((kernel.const unit ρ.fst ⊗ₖ kernel.prod_mk_left unit ρ.cond_kernel) ()),
{ rwa measure_eq_comp_prod ρ at hf, },
rw [integral_comp_prod hf', kernel.const_apply],
simp_rw kernel.prod_mk_left_apply,
end
lemma set_integral_cond_kernel {ρ : measure (α × Ω)} [is_finite_measure ρ]
{f : α × Ω → E} {s : set α} (hs : measurable_set s)
{t : set Ω} (ht : measurable_set t) (hf : integrable_on f (s ×ˢ t) ρ) :
∫ a in s, ∫ ω in t, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫ x in s ×ˢ t, f x ∂ρ :=
begin
conv_rhs { rw measure_eq_comp_prod ρ, },
rw set_integral_comp_prod hs ht,
{ simp_rw [kernel.prod_mk_left_apply, kernel.const_apply], },
{ rwa measure_eq_comp_prod ρ at hf, },
end
lemma set_integral_cond_kernel_univ_right {ρ : measure (α × Ω)} [is_finite_measure ρ]
{f : α × Ω → E} {s : set α} (hs : measurable_set s)
(hf : integrable_on f (s ×ˢ univ) ρ) :
∫ a in s, ∫ ω, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫ x in s ×ˢ univ, f x ∂ρ :=
by { rw ← set_integral_cond_kernel hs measurable_set.univ hf, simp_rw measure.restrict_univ, }
lemma set_integral_cond_kernel_univ_left {ρ : measure (α × Ω)} [is_finite_measure ρ]
{f : α × Ω → E} {t : set Ω} (ht : measurable_set t)
(hf : integrable_on f (univ ×ˢ t) ρ) :
∫ a, ∫ ω in t, f (a, ω) ∂(ρ.cond_kernel a) ∂ρ.fst = ∫ x in univ ×ˢ t, f x ∂ρ :=
by { rw ← set_integral_cond_kernel measurable_set.univ ht hf, simp_rw measure.restrict_univ, }
end integral_cond_kernel
end polish
end probability_theory
namespace measure_theory
/-! ### Integrability
We place these lemmas in the `measure_theory` namespace to enable dot notation. -/
open probability_theory
variables {α Ω E F : Type*} {mα : measurable_space α} [measurable_space Ω] [topological_space Ω]
[borel_space Ω] [polish_space Ω] [nonempty Ω]
[normed_add_comm_group E] [normed_space ℝ E] [complete_space E]
[normed_add_comm_group F]
{ρ : measure (α × Ω)} [is_finite_measure ρ]
include mα
lemma ae_strongly_measurable.ae_integrable_cond_kernel_iff
{f : α × Ω → F} (hf : ae_strongly_measurable f ρ) :
(∀ᵐ a ∂ρ.fst, integrable (λ ω, f (a, ω)) (ρ.cond_kernel a))
∧ integrable (λ a, ∫ ω, ‖f (a, ω)‖ ∂(ρ.cond_kernel a)) ρ.fst
↔ integrable f ρ :=
begin
rw measure_eq_comp_prod ρ at hf,
conv_rhs { rw measure_eq_comp_prod ρ, },
rw integrable_comp_prod_iff hf,
simp_rw [kernel.prod_mk_left_apply, kernel.const_apply],
end
lemma integrable.cond_kernel_ae {f : α × Ω → F} (hf_int : integrable f ρ) :
∀ᵐ a ∂ρ.fst, integrable (λ ω, f (a, ω)) (ρ.cond_kernel a) :=
begin
have hf_ae : ae_strongly_measurable f ρ := hf_int.1,
rw ← hf_ae.ae_integrable_cond_kernel_iff at hf_int,
exact hf_int.1,
end
lemma integrable.integral_norm_cond_kernel {f : α × Ω → F} (hf_int : integrable f ρ) :
integrable (λ x, ∫ y, ‖f (x, y)‖ ∂(ρ.cond_kernel x)) ρ.fst :=
begin
have hf_ae : ae_strongly_measurable f ρ := hf_int.1,
rw ← hf_ae.ae_integrable_cond_kernel_iff at hf_int,
exact hf_int.2,
end
lemma integrable.norm_integral_cond_kernel {f : α × Ω → E} (hf_int : integrable f ρ) :
integrable (λ x, ‖∫ y, f (x, y) ∂(ρ.cond_kernel x)‖) ρ.fst :=
begin
refine hf_int.integral_norm_cond_kernel.mono hf_int.1.integral_cond_kernel.norm _,
refine eventually_of_forall (λ x, _),
rw norm_norm,
refine (norm_integral_le_integral_norm _).trans_eq (real.norm_of_nonneg _).symm,
exact integral_nonneg_of_ae (eventually_of_forall (λ y, norm_nonneg _)),
end
lemma integrable.integral_cond_kernel {f : α × Ω → E} (hf_int : integrable f ρ) :
integrable (λ x, ∫ y, f (x, y) ∂(ρ.cond_kernel x)) ρ.fst :=
(integrable_norm_iff hf_int.1.integral_cond_kernel).mp hf_int.norm_integral_cond_kernel
end measure_theory
|
0313e25d3f38ce9b6a9eec25f04a6b0ad4afb04f
|
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
|
/src/computability/primrec.lean
|
fc9a7c5dc2cb4ccb8eddfd4df2a7a9bbf2dddd2c
|
[
"Apache-2.0"
] |
permissive
|
keeferrowan/mathlib
|
f2818da875dbc7780830d09bd4c526b0764a4e50
|
aad2dfc40e8e6a7e258287a7c1580318e865817e
|
refs/heads/master
| 1,661,736,426,952
| 1,590,438,032,000
| 1,590,438,032,000
| 266,892,663
| 0
| 0
|
Apache-2.0
| 1,590,445,835,000
| 1,590,445,835,000
| null |
UTF-8
|
Lean
| false
| false
| 52,018
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Mario Carneiro
-/
import data.equiv.list
/-!
# The primitive recursive functions
The primitive recursive functions are the least collection of functions
`nat → nat` which are closed under projections (using the mkpair
pairing function), composition, zero, successor, and primitive recursion
(i.e. nat.rec where the motive is C n := nat).
We can extend this definition to a large class of basic types by
using canonical encodings of types as natural numbers (Gödel numbering),
which we implement through the type class `encodable`. (More precisely,
we need that the composition of encode with decode yields a
primitive recursive function, so we have the `primcodable` type class
for this.)
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open denumerable encodable
namespace nat
def elim {C : Sort*} : C → (ℕ → C → C) → ℕ → C := @nat.rec (λ _, C)
@[simp] theorem elim_zero {C} (a f) : @nat.elim C a f 0 = a := rfl
@[simp] theorem elim_succ {C} (a f n) :
@nat.elim C a f (succ n) = f n (nat.elim a f n) := rfl
def cases {C : Sort*} (a : C) (f : ℕ → C) : ℕ → C := nat.elim a (λ n _, f n)
@[simp] theorem cases_zero {C} (a f) : @nat.cases C a f 0 = a := rfl
@[simp] theorem cases_succ {C} (a f n) : @nat.cases C a f (succ n) = f n := rfl
@[simp, reducible] def unpaired {α} (f : ℕ → ℕ → α) (n : ℕ) : α :=
f n.unpair.1 n.unpair.2
/-- The primitive recursive functions `ℕ → ℕ`. -/
inductive primrec : (ℕ → ℕ) → Prop
| zero : primrec (λ n, 0)
| succ : primrec succ
| left : primrec (λ n, n.unpair.1)
| right : primrec (λ n, n.unpair.2)
| pair {f g} : primrec f → primrec g → primrec (λ n, mkpair (f n) (g n))
| comp {f g} : primrec f → primrec g → primrec (λ n, f (g n))
| prec {f g} : primrec f → primrec g → primrec (unpaired (λ z n,
n.elim (f z) (λ y IH, g $ mkpair z $ mkpair y IH)))
namespace primrec
theorem of_eq {f g : ℕ → ℕ} (hf : primrec f) (H : ∀ n, f n = g n) : primrec g :=
(funext H : f = g) ▸ hf
theorem const : ∀ (n : ℕ), primrec (λ _, n)
| 0 := zero
| (n+1) := succ.comp (const n)
protected theorem id : primrec id :=
(left.pair right).of_eq $ λ n, by simp
theorem prec1 {f} (m : ℕ) (hf : primrec f) : primrec (λ n,
n.elim m (λ y IH, f $ mkpair y IH)) :=
((prec (const m) (hf.comp right)).comp
(zero.pair primrec.id)).of_eq $
λ n, by simp; dsimp; rw [unpair_mkpair]
theorem cases1 {f} (m : ℕ) (hf : primrec f) : primrec (nat.cases m f) :=
(prec1 m (hf.comp left)).of_eq $ by simp [cases]
theorem cases {f g} (hf : primrec f) (hg : primrec g) :
primrec (unpaired (λ z n, n.cases (f z) (λ y, g $ mkpair z y))) :=
(prec hf (hg.comp (pair left (left.comp right)))).of_eq $ by simp [cases]
protected theorem swap : primrec (unpaired (function.swap mkpair)) :=
(pair right left).of_eq $ λ n, by simp
theorem swap' {f} (hf : primrec (unpaired f)) : primrec (unpaired (function.swap f)) :=
(hf.comp primrec.swap).of_eq $ λ n, by simp
theorem pred : primrec pred :=
(cases1 0 primrec.id).of_eq $ λ n, by cases n; simp *
theorem add : primrec (unpaired (+)) :=
(prec primrec.id ((succ.comp right).comp right)).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, -add_comm, add_succ]
theorem sub : primrec (unpaired has_sub.sub) :=
(prec primrec.id ((pred.comp right).comp right)).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, -add_comm, sub_succ]
theorem mul : primrec (unpaired (*)) :=
(prec zero (add.comp (pair left (right.comp right)))).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, mul_succ, add_comm]
theorem pow : primrec (unpaired (^)) :=
(prec (const 1) (mul.comp (pair (right.comp right) left))).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, pow_succ]
end primrec
end nat
section prio
set_option default_priority 100 -- see Note [default priority]
/-- A `primcodable` type is an `encodable` type for which
the encode/decode functions are primitive recursive. -/
class primcodable (α : Type*) extends encodable α :=
(prim [] : nat.primrec (λ n, encodable.encode (decode n)))
end prio
namespace primcodable
open nat.primrec
@[priority 10] instance of_denumerable (α) [denumerable α] : primcodable α :=
⟨succ.of_eq $ by simp⟩
def of_equiv (α) {β} [primcodable α] (e : β ≃ α) : primcodable β :=
{ prim := (primcodable.prim α).of_eq $ λ n,
show encode (decode α n) =
(option.cases_on (option.map e.symm (decode α n))
0 (λ a, nat.succ (encode (e a))) : ℕ),
by cases decode α n; dsimp; simp,
..encodable.of_equiv α e }
instance empty : primcodable empty :=
⟨zero⟩
instance unit : primcodable punit :=
⟨(cases1 1 zero).of_eq $ λ n, by cases n; simp⟩
instance option {α : Type*} [h : primcodable α] : primcodable (option α) :=
⟨(cases1 1 ((cases1 0 (succ.comp succ)).comp (primcodable.prim α))).of_eq $
λ n, by cases n; simp; cases decode α n; refl⟩
instance bool : primcodable bool :=
⟨(cases1 1 (cases1 2 zero)).of_eq $
λ n, begin
cases n, {refl}, cases n, {refl},
rw decode_ge_two, {refl},
exact dec_trivial
end⟩
end primcodable
/-- `primrec f` means `f` is primitive recursive (after
encoding its input and output as natural numbers). -/
def primrec {α β} [primcodable α] [primcodable β] (f : α → β) : Prop :=
nat.primrec (λ n, encode ((decode α n).map f))
namespace primrec
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]
open nat.primrec
protected theorem encode : primrec (@encode α _) :=
(primcodable.prim α).of_eq $ λ n, by cases decode α n; refl
protected theorem decode : primrec (decode α) :=
succ.comp (primcodable.prim α)
theorem dom_denumerable {α β} [denumerable α] [primcodable β]
{f : α → β} : primrec f ↔ nat.primrec (λ n, encode (f (of_nat α n))) :=
⟨λ h, (pred.comp h).of_eq $ λ n, by simp; refl,
λ h, (succ.comp h).of_eq $ λ n, by simp; refl⟩
theorem nat_iff {f : ℕ → ℕ} : primrec f ↔ nat.primrec f :=
dom_denumerable
theorem encdec : primrec (λ n, encode (decode α n)) :=
nat_iff.2 (primcodable.prim α)
theorem option_some : primrec (@some α) :=
((cases1 0 (succ.comp succ)).comp (primcodable.prim α)).of_eq $
λ n, by cases decode α n; simp
theorem of_eq {f g : α → σ} (hf : primrec f) (H : ∀ n, f n = g n) : primrec g :=
(funext H : f = g) ▸ hf
theorem const (x : σ) : primrec (λ a : α, x) :=
((cases1 0 (const (encode x).succ)).comp (primcodable.prim α)).of_eq $
λ n, by cases decode α n; refl
protected theorem id : primrec (@id α) :=
(primcodable.prim α).of_eq $ by simp
theorem comp {f : β → σ} {g : α → β}
(hf : primrec f) (hg : primrec g) : primrec (λ a, f (g a)) :=
((cases1 0 (hf.comp $ pred.comp hg)).comp (primcodable.prim α)).of_eq $
λ n, begin
cases decode α n, {refl},
simp [encodek]
end
theorem succ : primrec nat.succ := nat_iff.2 nat.primrec.succ
theorem pred : primrec nat.pred := nat_iff.2 nat.primrec.pred
theorem encode_iff {f : α → σ} : primrec (λ a, encode (f a)) ↔ primrec f :=
⟨λ h, nat.primrec.of_eq h $ λ n, by cases decode α n; refl,
primrec.encode.comp⟩
theorem of_nat_iff {α β} [denumerable α] [primcodable β]
{f : α → β} : primrec f ↔ primrec (λ n, f (of_nat α n)) :=
dom_denumerable.trans $ nat_iff.symm.trans encode_iff
protected theorem of_nat (α) [denumerable α] : primrec (of_nat α) :=
of_nat_iff.1 primrec.id
theorem option_some_iff {f : α → σ} : primrec (λ a, some (f a)) ↔ primrec f :=
⟨λ h, encode_iff.1 $ pred.comp $ encode_iff.2 h, option_some.comp⟩
theorem of_equiv {β} {e : β ≃ α} :
by haveI := primcodable.of_equiv α e; exact
primrec e :=
(primcodable.prim α).of_eq $ λ n,
show _ = encode (option.map e (option.map _ _)),
by cases decode α n; simp
theorem of_equiv_symm {β} {e : β ≃ α} :
by haveI := primcodable.of_equiv α e; exact
primrec e.symm :=
by letI := primcodable.of_equiv α e; exact
encode_iff.1
(show primrec (λ a, encode (e (e.symm a))), by simp [primrec.encode])
theorem of_equiv_iff {β} (e : β ≃ α)
{f : σ → β} :
by haveI := primcodable.of_equiv α e; exact
primrec (λ a, e (f a)) ↔ primrec f :=
by letI := primcodable.of_equiv α e; exact
⟨λ h, (of_equiv_symm.comp h).of_eq (λ a, by simp), of_equiv.comp⟩
theorem of_equiv_symm_iff {β} (e : β ≃ α)
{f : σ → α} :
by haveI := primcodable.of_equiv α e; exact
primrec (λ a, e.symm (f a)) ↔ primrec f :=
by letI := primcodable.of_equiv α e; exact
⟨λ h, (of_equiv.comp h).of_eq (λ a, by simp), of_equiv_symm.comp⟩
end primrec
namespace primcodable
open nat.primrec
instance prod {α β} [primcodable α] [primcodable β] : primcodable (α × β) :=
⟨((cases zero ((cases zero succ).comp
(pair right ((primcodable.prim β).comp left)))).comp
(pair right ((primcodable.prim α).comp left))).of_eq $
λ n, begin
simp [nat.unpaired],
cases decode α n.unpair.1, { simp },
cases decode β n.unpair.2; simp
end⟩
end primcodable
namespace primrec
variables {α : Type*} {σ : Type*} [primcodable α] [primcodable σ]
open nat.primrec
theorem fst {α β} [primcodable α] [primcodable β] :
primrec (@prod.fst α β) :=
((cases zero ((cases zero (nat.primrec.succ.comp left)).comp
(pair right ((primcodable.prim β).comp left)))).comp
(pair right ((primcodable.prim α).comp left))).of_eq $
λ n, begin
simp,
cases decode α n.unpair.1; simp,
cases decode β n.unpair.2; simp
end
theorem snd {α β} [primcodable α] [primcodable β] :
primrec (@prod.snd α β) :=
((cases zero ((cases zero (nat.primrec.succ.comp right)).comp
(pair right ((primcodable.prim β).comp left)))).comp
(pair right ((primcodable.prim α).comp left))).of_eq $
λ n, begin
simp,
cases decode α n.unpair.1; simp,
cases decode β n.unpair.2; simp
end
theorem pair {α β γ} [primcodable α] [primcodable β] [primcodable γ]
{f : α → β} {g : α → γ} (hf : primrec f) (hg : primrec g) :
primrec (λ a, (f a, g a)) :=
((cases1 0 (nat.primrec.succ.comp $
pair (nat.primrec.pred.comp hf) (nat.primrec.pred.comp hg))).comp
(primcodable.prim α)).of_eq $
λ n, by cases decode α n; simp [encodek]; refl
theorem unpair : primrec nat.unpair :=
(pair (nat_iff.2 nat.primrec.left) (nat_iff.2 nat.primrec.right)).of_eq $
λ n, by simp
theorem list_nth₁ : ∀ (l : list α), primrec l.nth
| [] := dom_denumerable.2 zero
| (a::l) := dom_denumerable.2 $
(cases1 (encode a).succ $ dom_denumerable.1 $ list_nth₁ l).of_eq $
λ n, by cases n; simp
end primrec
/-- `primrec₂ f` means `f` is a binary primitive recursive function.
This is technically unnecessary since we can always curry all
the arguments together, but there are enough natural two-arg
functions that it is convenient to express this directly. -/
def primrec₂ {α β σ} [primcodable α] [primcodable β] [primcodable σ] (f : α → β → σ) :=
primrec (λ p : α × β, f p.1 p.2)
/-- `primrec_pred p` means `p : α → Prop` is a (decidable)
primitive recursive predicate, which is to say that
`to_bool ∘ p : α → bool` is primitive recursive. -/
def primrec_pred {α} [primcodable α] (p : α → Prop)
[decidable_pred p] := primrec (λ a, to_bool (p a))
/-- `primrec_rel p` means `p : α → β → Prop` is a (decidable)
primitive recursive relation, which is to say that
`to_bool ∘ p : α → β → bool` is primitive recursive. -/
def primrec_rel {α β} [primcodable α] [primcodable β]
(s : α → β → Prop) [∀ a b, decidable (s a b)] :=
primrec₂ (λ a b, to_bool (s a b))
namespace primrec₂
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]
theorem of_eq {f g : α → β → σ} (hg : primrec₂ f) (H : ∀ a b, f a b = g a b) : primrec₂ g :=
(by funext a b; apply H : f = g) ▸ hg
theorem const (x : σ) : primrec₂ (λ (a : α) (b : β), x) := primrec.const _
protected theorem pair : primrec₂ (@prod.mk α β) :=
primrec.pair primrec.fst primrec.snd
theorem left : primrec₂ (λ (a : α) (b : β), a) := primrec.fst
theorem right : primrec₂ (λ (a : α) (b : β), b) := primrec.snd
theorem mkpair : primrec₂ nat.mkpair :=
by simp [primrec₂, primrec]; constructor
theorem unpaired {f : ℕ → ℕ → α} : primrec (nat.unpaired f) ↔ primrec₂ f :=
⟨λ h, by simpa using h.comp mkpair,
λ h, h.comp primrec.unpair⟩
theorem unpaired' {f : ℕ → ℕ → ℕ} : nat.primrec (nat.unpaired f) ↔ primrec₂ f :=
primrec.nat_iff.symm.trans unpaired
theorem encode_iff {f : α → β → σ} : primrec₂ (λ a b, encode (f a b)) ↔ primrec₂ f :=
primrec.encode_iff
theorem option_some_iff {f : α → β → σ} : primrec₂ (λ a b, some (f a b)) ↔ primrec₂ f :=
primrec.option_some_iff
theorem of_nat_iff {α β σ}
[denumerable α] [denumerable β] [primcodable σ]
{f : α → β → σ} : primrec₂ f ↔ primrec₂ (λ m n : ℕ,
f (of_nat α m) (of_nat β n)) :=
(primrec.of_nat_iff.trans $ by simp).trans unpaired
theorem uncurry {f : α → β → σ} : primrec (function.uncurry f) ↔ primrec₂ f :=
by rw [show function.uncurry f = λ (p : α × β), f p.1 p.2,
from funext $ λ ⟨a, b⟩, rfl]; refl
theorem curry {f : α × β → σ} : primrec₂ (function.curry f) ↔ primrec f :=
by rw [← uncurry, function.uncurry_curry]
end primrec₂
section comp
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable δ] [primcodable σ]
theorem primrec.comp₂ {f : γ → σ} {g : α → β → γ}
(hf : primrec f) (hg : primrec₂ g) :
primrec₂ (λ a b, f (g a b)) := hf.comp hg
theorem primrec₂.comp
{f : β → γ → σ} {g : α → β} {h : α → γ}
(hf : primrec₂ f) (hg : primrec g) (hh : primrec h) :
primrec (λ a, f (g a) (h a)) := hf.comp (hg.pair hh)
theorem primrec₂.comp₂
{f : γ → δ → σ} {g : α → β → γ} {h : α → β → δ}
(hf : primrec₂ f) (hg : primrec₂ g) (hh : primrec₂ h) :
primrec₂ (λ a b, f (g a b) (h a b)) := hf.comp hg hh
theorem primrec_pred.comp
{p : β → Prop} [decidable_pred p] {f : α → β} :
primrec_pred p → primrec f →
primrec_pred (λ a, p (f a)) := primrec.comp
theorem primrec_rel.comp
{R : β → γ → Prop} [∀ a b, decidable (R a b)] {f : α → β} {g : α → γ} :
primrec_rel R → primrec f → primrec g →
primrec_pred (λ a, R (f a) (g a)) := primrec₂.comp
theorem primrec_rel.comp₂
{R : γ → δ → Prop} [∀ a b, decidable (R a b)] {f : α → β → γ} {g : α → β → δ} :
primrec_rel R → primrec₂ f → primrec₂ g →
primrec_rel (λ a b, R (f a b) (g a b)) := primrec_rel.comp
end comp
theorem primrec_pred.of_eq {α} [primcodable α]
{p q : α → Prop} [decidable_pred p] [decidable_pred q]
(hp : primrec_pred p) (H : ∀ a, p a ↔ q a) : primrec_pred q :=
primrec.of_eq hp (λ a, to_bool_congr (H a))
theorem primrec_rel.of_eq {α β} [primcodable α] [primcodable β]
{r s : α → β → Prop} [∀ a b, decidable (r a b)] [∀ a b, decidable (s a b)]
(hr : primrec_rel r) (H : ∀ a b, r a b ↔ s a b) : primrec_rel s :=
primrec₂.of_eq hr (λ a b, to_bool_congr (H a b))
namespace primrec₂
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]
open nat.primrec
theorem swap {f : α → β → σ} (h : primrec₂ f) : primrec₂ (function.swap f) :=
h.comp₂ primrec₂.right primrec₂.left
theorem nat_iff {f : α → β → σ} : primrec₂ f ↔
nat.primrec (nat.unpaired $ λ m n : ℕ,
encode $ (decode α m).bind $ λ a, (decode β n).map (f a)) :=
have ∀ (a : option α) (b : option β),
option.map (λ (p : α × β), f p.1 p.2)
(option.bind a (λ (a : α), option.map (prod.mk a) b)) =
option.bind a (λ a, option.map (f a) b),
by intros; cases a; [refl, {cases b; refl}],
by simp [primrec₂, primrec, this]
theorem nat_iff' {f : α → β → σ} : primrec₂ f ↔ primrec₂ (λ m n : ℕ,
option.bind (decode α m) (λ a, option.map (f a) (decode β n))) :=
nat_iff.trans $ unpaired'.trans encode_iff
end primrec₂
namespace primrec
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable δ] [primcodable σ]
theorem to₂ {f : α × β → σ} (hf : primrec f) : primrec₂ (λ a b, f (a, b)) :=
hf.of_eq $ λ ⟨a, b⟩, rfl
theorem nat_elim {f : α → β} {g : α → ℕ × β → β}
(hf : primrec f) (hg : primrec₂ g) :
primrec₂ (λ a (n : ℕ), n.elim (f a) (λ n IH, g a (n, IH))) :=
primrec₂.nat_iff.2 $ ((nat.primrec.cases nat.primrec.zero $
(nat.primrec.prec hf $ nat.primrec.comp hg $ nat.primrec.left.pair $
(nat.primrec.left.comp nat.primrec.right).pair $
nat.primrec.pred.comp $ nat.primrec.right.comp nat.primrec.right).comp $
nat.primrec.right.pair $
nat.primrec.right.comp nat.primrec.left).comp $
nat.primrec.id.pair $ (primcodable.prim α).comp nat.primrec.left).of_eq $
λ n, begin
simp,
cases decode α n.unpair.1 with a, {refl},
simp [encodek],
induction n.unpair.2 with m; simp [encodek],
simp [ih, encodek]
end
theorem nat_elim' {f : α → ℕ} {g : α → β} {h : α → ℕ × β → β}
(hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
primrec (λ a, (f a).elim (g a) (λ n IH, h a (n, IH))) :=
(nat_elim hg hh).comp primrec.id hf
theorem nat_elim₁ {f : ℕ → α → α} (a : α) (hf : primrec₂ f) :
primrec (nat.elim a f) :=
nat_elim' primrec.id (const a) $ comp₂ hf primrec₂.right
theorem nat_cases' {f : α → β} {g : α → ℕ → β}
(hf : primrec f) (hg : primrec₂ g) :
primrec₂ (λ a, nat.cases (f a) (g a)) :=
nat_elim hf $ hg.comp₂ primrec₂.left $
comp₂ fst primrec₂.right
theorem nat_cases {f : α → ℕ} {g : α → β} {h : α → ℕ → β}
(hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
primrec (λ a, (f a).cases (g a) (h a)) :=
(nat_cases' hg hh).comp primrec.id hf
theorem nat_cases₁ {f : ℕ → α} (a : α) (hf : primrec f) :
primrec (nat.cases a f) :=
nat_cases primrec.id (const a) (comp₂ hf primrec₂.right)
theorem nat_iterate {f : α → ℕ} {g : α → β} {h : α → β → β}
(hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
primrec (λ a, (h a)^[f a] (g a)) :=
(nat_elim' hf hg (hh.comp₂ primrec₂.left $ snd.comp₂ primrec₂.right)).of_eq $
λ a, by induction f a; simp [*, -nat.iterate_succ, nat.iterate_succ']
theorem option_cases {o : α → option β} {f : α → σ} {g : α → β → σ}
(ho : primrec o) (hf : primrec f) (hg : primrec₂ g) :
@primrec _ σ _ _ (λ a, option.cases_on (o a) (f a) (g a)) :=
encode_iff.1 $
(nat_cases (encode_iff.2 ho) (encode_iff.2 hf) $
pred.comp₂ $ primrec₂.encode_iff.2 $
(primrec₂.nat_iff'.1 hg).comp₂
((@primrec.encode α _).comp fst).to₂
primrec₂.right).of_eq $
λ a, by cases o a with b; simp [encodek]; refl
theorem option_bind {f : α → option β} {g : α → β → option σ}
(hf : primrec f) (hg : primrec₂ g) :
primrec (λ a, (f a).bind (g a)) :=
(option_cases hf (const none) hg).of_eq $
λ a, by cases f a; refl
theorem option_bind₁ {f : α → option σ} (hf : primrec f) :
primrec (λ o, option.bind o f) :=
option_bind primrec.id (hf.comp snd).to₂
theorem option_map {f : α → option β} {g : α → β → σ}
(hf : primrec f) (hg : primrec₂ g) : primrec (λ a, (f a).map (g a)) :=
option_bind hf (option_some.comp₂ hg)
theorem option_map₁ {f : α → σ} (hf : primrec f) : primrec (option.map f) :=
option_map primrec.id (hf.comp snd).to₂
theorem option_iget [inhabited α] : primrec (@option.iget α _) :=
(option_cases primrec.id (const $ default α) primrec₂.right).of_eq $
λ o, by cases o; refl
theorem option_is_some : primrec (@option.is_some α) :=
(option_cases primrec.id (const ff) (const tt).to₂).of_eq $
λ o, by cases o; refl
theorem option_get_or_else : primrec₂ (@option.get_or_else α) :=
primrec.of_eq (option_cases primrec₂.left primrec₂.right primrec₂.right) $
λ ⟨o, a⟩, by cases o; refl
theorem bind_decode_iff {f : α → β → option σ} : primrec₂ (λ a n,
(decode β n).bind (f a)) ↔ primrec₂ f :=
⟨λ h, by simpa [encodek] using
h.comp fst ((@primrec.encode β _).comp snd),
λ h, option_bind (primrec.decode.comp snd) $
h.comp (fst.comp fst) snd⟩
theorem map_decode_iff {f : α → β → σ} : primrec₂ (λ a n,
(decode β n).map (f a)) ↔ primrec₂ f :=
bind_decode_iff.trans primrec₂.option_some_iff
theorem nat_add : primrec₂ ((+) : ℕ → ℕ → ℕ) :=
primrec₂.unpaired'.1 nat.primrec.add
theorem nat_sub : primrec₂ (has_sub.sub : ℕ → ℕ → ℕ) :=
primrec₂.unpaired'.1 nat.primrec.sub
theorem nat_mul : primrec₂ ((*) : ℕ → ℕ → ℕ) :=
primrec₂.unpaired'.1 nat.primrec.mul
theorem cond {c : α → bool} {f : α → σ} {g : α → σ}
(hc : primrec c) (hf : primrec f) (hg : primrec g) :
primrec (λ a, cond (c a) (f a) (g a)) :=
(nat_cases (encode_iff.2 hc) hg (hf.comp fst).to₂).of_eq $
λ a, by cases c a; refl
theorem ite {c : α → Prop} [decidable_pred c] {f : α → σ} {g : α → σ}
(hc : primrec_pred c) (hf : primrec f) (hg : primrec g) :
primrec (λ a, if c a then f a else g a) :=
by simpa using cond hc hf hg
theorem nat_le : primrec_rel ((≤) : ℕ → ℕ → Prop) :=
(nat_cases nat_sub (const tt) (const ff).to₂).of_eq $
λ p, begin
dsimp [function.swap],
cases e : p.1 - p.2 with n,
{ simp [nat.sub_eq_zero_iff_le.1 e] },
{ simp [not_le.2 (nat.lt_of_sub_eq_succ e)] }
end
theorem nat_min : primrec₂ (@min ℕ _) := ite nat_le fst snd
theorem nat_max : primrec₂ (@max ℕ _) := ite nat_le snd fst
theorem dom_bool (f : bool → α) : primrec f :=
(cond primrec.id (const (f tt)) (const (f ff))).of_eq $
λ b, by cases b; refl
theorem dom_bool₂ (f : bool → bool → α) : primrec₂ f :=
(cond fst
((dom_bool (f tt)).comp snd)
((dom_bool (f ff)).comp snd)).of_eq $
λ ⟨a, b⟩, by cases a; refl
protected theorem bnot : primrec bnot := dom_bool _
protected theorem band : primrec₂ band := dom_bool₂ _
protected theorem bor : primrec₂ bor := dom_bool₂ _
protected theorem not {p : α → Prop} [decidable_pred p]
(hp : primrec_pred p) : primrec_pred (λ a, ¬ p a) :=
(primrec.bnot.comp hp).of_eq $ λ n, by simp
protected theorem and {p q : α → Prop}
[decidable_pred p] [decidable_pred q]
(hp : primrec_pred p) (hq : primrec_pred q) :
primrec_pred (λ a, p a ∧ q a) :=
(primrec.band.comp hp hq).of_eq $ λ n, by simp
protected theorem or {p q : α → Prop}
[decidable_pred p] [decidable_pred q]
(hp : primrec_pred p) (hq : primrec_pred q) :
primrec_pred (λ a, p a ∨ q a) :=
(primrec.bor.comp hp hq).of_eq $ λ n, by simp
protected theorem eq [decidable_eq α] : primrec_rel (@eq α) :=
have primrec_rel (λ a b : ℕ, a = b), from
(primrec.and nat_le nat_le.swap).of_eq $
λ a, by simp [le_antisymm_iff],
(this.comp₂
(primrec.encode.comp₂ primrec₂.left)
(primrec.encode.comp₂ primrec₂.right)).of_eq $
λ a b, encode_injective.eq_iff
theorem nat_lt : primrec_rel ((<) : ℕ → ℕ → Prop) :=
(nat_le.comp snd fst).not.of_eq $ λ p, by simp
theorem option_guard {p : α → β → Prop}
[∀ a b, decidable (p a b)] (hp : primrec_rel p)
{f : α → β} (hf : primrec f) :
primrec (λ a, option.guard (p a) (f a)) :=
ite (hp.comp primrec.id hf) (option_some_iff.2 hf) (const none)
theorem option_orelse :
primrec₂ ((<|>) : option α → option α → option α) :=
(option_cases fst snd (fst.comp fst).to₂).of_eq $
λ ⟨o₁, o₂⟩, by cases o₁; cases o₂; refl
protected theorem decode2 : primrec (decode2 α) :=
option_bind primrec.decode $
option_guard ((@primrec.eq _ _ nat.decidable_eq).comp
(encode_iff.2 snd) (fst.comp fst)) snd
theorem list_find_index₁ {p : α → β → Prop}
[∀ a b, decidable (p a b)] (hp : primrec_rel p) :
∀ (l : list β), primrec (λ a, l.find_index (p a))
| [] := const 0
| (a::l) := ite (hp.comp primrec.id (const a)) (const 0)
(succ.comp (list_find_index₁ l))
theorem list_index_of₁ [decidable_eq α] (l : list α) :
primrec (λ a, l.index_of a) := list_find_index₁ primrec.eq l
theorem dom_fintype [fintype α] (f : α → σ) : primrec f :=
let ⟨l, nd, m⟩ := fintype.exists_univ_list α in
option_some_iff.1 $ begin
haveI := decidable_eq_of_encodable α,
refine ((list_nth₁ (l.map f)).comp (list_index_of₁ l)).of_eq (λ a, _),
rw [list.nth_map, list.nth_le_nth (list.index_of_lt_length.2 (m _)),
list.index_of_nth_le]; refl
end
theorem nat_bodd_div2 : primrec nat.bodd_div2 :=
(nat_elim' primrec.id (const (ff, 0))
(((cond fst
(pair (const ff) (succ.comp snd))
(pair (const tt) snd)).comp snd).comp snd).to₂).of_eq $
λ n, begin
simp [-nat.bodd_div2_eq],
induction n with n IH, {refl},
simp [-nat.bodd_div2_eq, nat.bodd_div2, *],
rcases nat.bodd_div2 n with ⟨_|_, m⟩; simp [nat.bodd_div2]
end
theorem nat_bodd : primrec nat.bodd := fst.comp nat_bodd_div2
theorem nat_div2 : primrec nat.div2 := snd.comp nat_bodd_div2
theorem nat_bit0 : primrec (@bit0 ℕ _) :=
nat_add.comp primrec.id primrec.id
theorem nat_bit1 : primrec (@bit1 ℕ _ _) :=
nat_add.comp nat_bit0 (const 1)
theorem nat_bit : primrec₂ nat.bit :=
(cond primrec.fst
(nat_bit1.comp primrec.snd)
(nat_bit0.comp primrec.snd)).of_eq $
λ n, by cases n.1; refl
theorem nat_div_mod : primrec₂ (λ n k : ℕ, (n / k, n % k)) :=
let f (a : ℕ × ℕ) : ℕ × ℕ := a.1.elim (0, 0) (λ _ IH,
if nat.succ IH.2 = a.2
then (nat.succ IH.1, 0)
else (IH.1, nat.succ IH.2)) in
have hf : primrec f, from
nat_elim' fst (const (0, 0)) $
((ite ((@primrec.eq ℕ _ _).comp (succ.comp $ snd.comp snd) fst)
(pair (succ.comp $ fst.comp snd) (const 0))
(pair (fst.comp snd) (succ.comp $ snd.comp snd)))
.comp (pair (snd.comp fst) (snd.comp snd))).to₂,
suffices ∀ k n, (n / k, n % k) = f (n, k),
from hf.of_eq $ λ ⟨m, n⟩, by simp [this],
λ k n, begin
have : (f (n, k)).2 + k * (f (n, k)).1 = n
∧ (0 < k → (f (n, k)).2 < k)
∧ (k = 0 → (f (n, k)).1 = 0),
{ induction n with n IH, {exact ⟨rfl, id, λ _, rfl⟩},
rw [λ n:ℕ, show f (n.succ, k) =
_root_.ite ((f (n, k)).2.succ = k)
(nat.succ (f (n, k)).1, 0)
((f (n, k)).1, (f (n, k)).2.succ), from rfl],
by_cases h : (f (n, k)).2.succ = k; simp [h],
{ have := congr_arg nat.succ IH.1,
refine ⟨_, λ k0, nat.no_confusion (h.trans k0)⟩,
rwa [← nat.succ_add, h, add_comm, ← nat.mul_succ] at this },
{ exact ⟨by rw [nat.succ_add, IH.1],
λ k0, lt_of_le_of_ne (IH.2.1 k0) h, IH.2.2⟩ } },
revert this, cases f (n, k) with D M,
simp, intros h₁ h₂ h₃,
cases nat.eq_zero_or_pos k,
{ simp [h, h₃ h] at h₁ ⊢, simp [h₁] },
{ exact (nat.div_mod_unique h).2 ⟨h₁, h₂ h⟩ }
end
theorem nat_div : primrec₂ ((/) : ℕ → ℕ → ℕ) := fst.comp₂ nat_div_mod
theorem nat_mod : primrec₂ ((%) : ℕ → ℕ → ℕ) := snd.comp₂ nat_div_mod
end primrec
section
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]
variable (H : nat.primrec (λ n, encodable.encode (decode (list β) n)))
include H
open primrec
private def prim : primcodable (list β) := ⟨H⟩
private lemma list_cases'
{f : α → list β} {g : α → σ} {h : α → β × list β → σ}
(hf : by haveI := prim H; exact primrec f) (hg : primrec g)
(hh : by haveI := prim H; exact primrec₂ h) :
@primrec _ σ _ _ (λ a, list.cases_on (f a) (g a) (λ b l, h a (b, l))) :=
by letI := prim H; exact
have @primrec _ (option σ) _ _ (λ a,
(decode (option (β × list β)) (encode (f a))).map
(λ o, option.cases_on o (g a) (h a))), from
((@map_decode_iff _ (option (β × list β)) _ _ _ _ _).2 $
to₂ $ option_cases snd (hg.comp fst)
(hh.comp₂ (fst.comp₂ primrec₂.left) primrec₂.right))
.comp primrec.id (encode_iff.2 hf),
option_some_iff.1 $ this.of_eq $
λ a, by cases f a with b l; simp [encodek]; refl
private lemma list_foldl'
{f : α → list β} {g : α → σ} {h : α → σ × β → σ}
(hf : by haveI := prim H; exact primrec f) (hg : primrec g)
(hh : by haveI := prim H; exact primrec₂ h) :
primrec (λ a, (f a).foldl (λ s b, h a (s, b)) (g a)) :=
by letI := prim H; exact
let G (a : α) (IH : σ × list β) : σ × list β :=
list.cases_on IH.2 IH (λ b l, (h a (IH.1, b), l)) in
let F (a : α) (n : ℕ) := nat.iterate (G a) n (g a, f a) in
have primrec (λ a, (F a (encode (f a))).1), from
fst.comp $ nat_iterate (encode_iff.2 hf) (pair hg hf) $
list_cases' H (snd.comp snd) snd $ to₂ $ pair
(hh.comp (fst.comp fst) $
pair ((fst.comp snd).comp fst) (fst.comp snd))
(snd.comp snd),
this.of_eq $ λ a, begin
have : ∀ n, F a n =
((list.take n (f a)).foldl (λ s b, h a (s, b)) (g a),
list.drop n (f a)),
{ intro, simp [F],
generalize : f a = l, generalize : g a = x,
induction n with n IH generalizing l x, {refl},
simp, cases l with b l; simp [IH] },
rw [this, list.take_all_of_le (length_le_encode _)]
end
private lemma list_cons' : by haveI := prim H; exact primrec₂ (@list.cons β) :=
by letI := prim H; exact
encode_iff.1 (succ.comp $
primrec₂.mkpair.comp (encode_iff.2 fst) (encode_iff.2 snd))
private lemma list_reverse' : by haveI := prim H; exact
primrec (@list.reverse β) :=
by letI := prim H; exact
(list_foldl' H primrec.id (const []) $ to₂ $
((list_cons' H).comp snd fst).comp snd).of_eq
(suffices ∀ l r, list.foldl (λ (s : list β) (b : β), b :: s) r l = list.reverse_core l r,
from λ l, this l [],
λ l, by induction l; simp [*, list.reverse_core])
end
namespace primcodable
variables {α : Type*} {β : Type*}
variables [primcodable α] [primcodable β]
open primrec
instance sum : primcodable (α ⊕ β) :=
⟨primrec.nat_iff.1 $
(encode_iff.2 (cond nat_bodd
(((@primrec.decode β _).comp nat_div2).option_map $ to₂ $
nat_bit.comp (const tt) (primrec.encode.comp snd))
(((@primrec.decode α _).comp nat_div2).option_map $ to₂ $
nat_bit.comp (const ff) (primrec.encode.comp snd)))).of_eq $
λ n, show _ = encode (decode_sum n), begin
simp [decode_sum],
cases nat.bodd n; simp [decode_sum],
{ cases decode α n.div2; refl },
{ cases decode β n.div2; refl }
end⟩
instance list : primcodable (list α) := ⟨
by letI H := primcodable.prim (list ℕ); exact
have primrec₂ (λ (a : α) (o : option (list ℕ)),
o.map (list.cons (encode a))), from
option_map snd $
(list_cons' H).comp ((@primrec.encode α _).comp (fst.comp fst)) snd,
have primrec (λ n, (of_nat (list ℕ) n).reverse.foldl
(λ o m, (decode α m).bind (λ a, o.map (list.cons (encode a))))
(some [])), from
list_foldl' H
((list_reverse' H).comp (primrec.of_nat (list ℕ)))
(const (some []))
(primrec.comp₂ (bind_decode_iff.2 $ primrec₂.swap this) primrec₂.right),
nat_iff.1 $ (encode_iff.2 this).of_eq $ λ n, begin
rw list.foldl_reverse,
apply nat.case_strong_induction_on n, {refl},
intros n IH, simp,
cases decode α n.unpair.1 with a, {refl},
simp,
suffices : ∀ (o : option (list ℕ)) p (_ : encode o = encode p),
encode (option.map (list.cons (encode a)) o) =
encode (option.map (list.cons a) p),
from this _ _ (IH _ (nat.unpair_le_right n)),
intros o p IH,
cases o; cases p; injection IH with h,
exact congr_arg (λ k, (nat.mkpair (encode a) k).succ.succ) h
end⟩
end primcodable
namespace primrec
variables {α : Type*} {β : Type*} {γ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable σ]
theorem sum_inl : primrec (@sum.inl α β) :=
encode_iff.1 $ nat_bit0.comp primrec.encode
theorem sum_inr : primrec (@sum.inr α β) :=
encode_iff.1 $ nat_bit1.comp primrec.encode
theorem sum_cases
{f : α → β ⊕ γ} {g : α → β → σ} {h : α → γ → σ}
(hf : primrec f) (hg : primrec₂ g) (hh : primrec₂ h) :
@primrec _ σ _ _ (λ a, sum.cases_on (f a) (g a) (h a)) :=
option_some_iff.1 $
(cond (nat_bodd.comp $ encode_iff.2 hf)
(option_map (primrec.decode.comp $ nat_div2.comp $ encode_iff.2 hf) hh)
(option_map (primrec.decode.comp $ nat_div2.comp $ encode_iff.2 hf) hg)).of_eq $
λ a, by cases f a with b c;
simp [nat.div2_bit, nat.bodd_bit, encodek]; refl
theorem list_cons : primrec₂ (@list.cons α) :=
list_cons' (primcodable.prim _)
theorem list_cases
{f : α → list β} {g : α → σ} {h : α → β × list β → σ} :
primrec f → primrec g → primrec₂ h →
@primrec _ σ _ _ (λ a, list.cases_on (f a) (g a) (λ b l, h a (b, l))) :=
list_cases' (primcodable.prim _)
theorem list_foldl
{f : α → list β} {g : α → σ} {h : α → σ × β → σ} :
primrec f → primrec g → primrec₂ h →
primrec (λ a, (f a).foldl (λ s b, h a (s, b)) (g a)) :=
list_foldl' (primcodable.prim _)
theorem list_reverse : primrec (@list.reverse α) :=
list_reverse' (primcodable.prim _)
theorem list_foldr
{f : α → list β} {g : α → σ} {h : α → β × σ → σ}
(hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
primrec (λ a, (f a).foldr (λ b s, h a (b, s)) (g a)) :=
(list_foldl (list_reverse.comp hf) hg $ to₂ $
hh.comp fst $ (pair snd fst).comp snd).of_eq $
λ a, by simp [list.foldl_reverse]
theorem list_head' : primrec (@list.head' α) :=
(list_cases primrec.id (const none)
(option_some_iff.2 $ (fst.comp snd)).to₂).of_eq $
λ l, by cases l; refl
theorem list_head [inhabited α] : primrec (@list.head α _) :=
(option_iget.comp list_head').of_eq $
λ l, l.head_eq_head'.symm
theorem list_tail : primrec (@list.tail α) :=
(list_cases primrec.id (const []) (snd.comp snd).to₂).of_eq $
λ l, by cases l; refl
theorem list_rec
{f : α → list β} {g : α → σ} {h : α → β × list β × σ → σ}
(hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
@primrec _ σ _ _ (λ a,
list.rec_on (f a) (g a) (λ b l IH, h a (b, l, IH))) :=
let F (a : α) := (f a).foldr
(λ (b : β) (s : list β × σ), (b :: s.1, h a (b, s))) ([], g a) in
have primrec F, from
list_foldr hf (pair (const []) hg) $ to₂ $
pair ((list_cons.comp fst (fst.comp snd)).comp snd) hh,
(snd.comp this).of_eq $ λ a, begin
suffices : F a = (f a,
list.rec_on (f a) (g a) (λ b l IH, h a (b, l, IH))), {rw this},
simp [F], induction f a with b l IH; simp *
end
theorem list_nth : primrec₂ (@list.nth α) :=
let F (l : list α) (n : ℕ) :=
l.foldl (λ (s : ℕ ⊕ α) (a : α),
sum.cases_on s
(@nat.cases (ℕ ⊕ α) (sum.inr a) sum.inl) sum.inr)
(sum.inl n) in
have hF : primrec₂ F, from
list_foldl fst (sum_inl.comp snd) ((sum_cases fst
(nat_cases snd
(sum_inr.comp $ snd.comp fst)
(sum_inl.comp snd).to₂).to₂
(sum_inr.comp snd).to₂).comp snd).to₂,
have @primrec _ (option α) _ _ (λ p : list α × ℕ,
sum.cases_on (F p.1 p.2) (λ _, none) some), from
sum_cases hF (const none).to₂ (option_some.comp snd).to₂,
this.to₂.of_eq $ λ l n, begin
dsimp, symmetry,
induction l with a l IH generalizing n, {refl},
cases n with n,
{ rw [(_ : F (a :: l) 0 = sum.inr a)], {refl},
clear IH, dsimp [F],
induction l with b l IH; simp * },
{ apply IH }
end
theorem list_inth [inhabited α] : primrec₂ (@list.inth α _) :=
option_iget.comp₂ list_nth
theorem list_append : primrec₂ ((++) : list α → list α → list α) :=
(list_foldr fst snd $ to₂ $ comp (@list_cons α _) snd).to₂.of_eq $
λ l₁ l₂, by induction l₁; simp *
theorem list_concat : primrec₂ (λ l (a:α), l ++ [a]) :=
list_append.comp fst (list_cons.comp snd (const []))
theorem list_map
{f : α → list β} {g : α → β → σ}
(hf : primrec f) (hg : primrec₂ g) :
primrec (λ a, (f a).map (g a)) :=
(list_foldr hf (const []) $ to₂ $ list_cons.comp
(hg.comp fst (fst.comp snd)) (snd.comp snd)).of_eq $
λ a, by induction f a; simp *
theorem list_range : primrec list.range :=
(nat_elim' primrec.id (const [])
((list_concat.comp snd fst).comp snd).to₂).of_eq $
λ n, by simp; induction n; simp [*, list.range_concat]; refl
theorem list_join : primrec (@list.join α) :=
(list_foldr primrec.id (const []) $ to₂ $
comp (@list_append α _) snd).of_eq $
λ l, by dsimp; induction l; simp *
theorem list_length : primrec (@list.length α) :=
(list_foldr (@primrec.id (list α) _) (const 0) $ to₂ $
(succ.comp $ snd.comp snd).to₂).of_eq $
λ l, by dsimp; induction l; simp [*, -add_comm]
theorem list_find_index {f : α → list β} {p : α → β → Prop}
[∀ a b, decidable (p a b)]
(hf : primrec f) (hp : primrec_rel p) :
primrec (λ a, (f a).find_index (p a)) :=
(list_foldr hf (const 0) $ to₂ $
ite (hp.comp fst $ fst.comp snd) (const 0)
(succ.comp $ snd.comp snd)).of_eq $
λ a, eq.symm $ by dsimp; induction f a with b l;
[refl, simp [*, list.find_index]]
theorem list_index_of [decidable_eq α] : primrec₂ (@list.index_of α _) :=
to₂ $ list_find_index snd $ primrec.eq.comp₂ (fst.comp fst).to₂ snd.to₂
theorem nat_strong_rec
(f : α → ℕ → σ) {g : α → list σ → option σ} (hg : primrec₂ g)
(H : ∀ a n, g a ((list.range n).map (f a)) = some (f a n)) : primrec₂ f :=
suffices primrec₂ (λ a n, (list.range n).map (f a)), from
primrec₂.option_some_iff.1 $
(list_nth.comp (this.comp fst (succ.comp snd)) snd).to₂.of_eq $
λ a n, by simp [list.nth_range (nat.lt_succ_self n)]; refl,
primrec₂.option_some_iff.1 $
(nat_elim (const (some [])) (to₂ $
option_bind (snd.comp snd) $ to₂ $
option_map
(hg.comp (fst.comp fst) snd)
(to₂ $ list_concat.comp (snd.comp fst) snd))).of_eq $
λ a n, begin
simp, induction n with n IH, {refl},
simp [IH, H, list.range_concat]
end
end primrec
namespace primcodable
variables {α : Type*} {β : Type*}
variables [primcodable α] [primcodable β]
open primrec
def subtype {p : α → Prop} [decidable_pred p]
(hp : primrec_pred p) : primcodable (subtype p) :=
⟨have primrec (λ n, (decode α n).bind (λ a, option.guard p a)),
from option_bind primrec.decode (option_guard (hp.comp snd) snd),
nat_iff.1 $ (encode_iff.2 this).of_eq $ λ n,
show _ = encode ((decode α n).bind (λ a, _)), begin
cases decode α n with a, {refl},
dsimp [option.guard],
by_cases h : p a; simp [h]; refl
end⟩
instance fin {n} : primcodable (fin n) :=
@of_equiv _ _
(subtype $ nat_lt.comp primrec.id (const n))
(equiv.fin_equiv_subtype _)
instance vector {n} : primcodable (vector α n) :=
subtype ((@primrec.eq _ _ nat.decidable_eq).comp list_length (const _))
instance fin_arrow {n} : primcodable (fin n → α) :=
of_equiv _ (equiv.vector_equiv_fin _ _).symm
instance array {n} : primcodable (array n α) :=
of_equiv _ (equiv.array_equiv_fin _ _)
section ulower
local attribute [instance, priority 100]
encodable.decidable_range_encode encodable.decidable_eq_of_encodable
instance ulower : primcodable (ulower α) :=
have primrec_pred (λ n, encodable.decode2 α n ≠ none),
from primrec.not (primrec.eq.comp (primrec.option_bind primrec.decode
(primrec.ite (primrec.eq.comp (primrec.encode.comp primrec.snd) primrec.fst)
(primrec.option_some.comp primrec.snd) (primrec.const _))) (primrec.const _)),
primcodable.subtype $
primrec_pred.of_eq this $
by simp [set.range, option.eq_none_iff_forall_not_mem, encodable.mem_decode2]
end ulower
end primcodable
namespace primrec
variables {α : Type*} {β : Type*} {γ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable σ]
theorem subtype_val {p : α → Prop} [decidable_pred p]
{hp : primrec_pred p} :
by haveI := primcodable.subtype hp; exact
primrec (@subtype.val α p) :=
begin
letI := primcodable.subtype hp,
refine (primcodable.prim (subtype p)).of_eq (λ n, _),
rcases decode (subtype p) n with _|⟨a,h⟩; refl
end
theorem subtype_val_iff {p : β → Prop} [decidable_pred p]
{hp : primrec_pred p} {f : α → subtype p} :
by haveI := primcodable.subtype hp; exact
primrec (λ a, (f a).1) ↔ primrec f :=
begin
letI := primcodable.subtype hp,
refine ⟨λ h, _, λ hf, subtype_val.comp hf⟩,
refine nat.primrec.of_eq h (λ n, _),
cases decode α n with a, {refl},
simp, cases f a; refl
end
theorem subtype_mk {p : β → Prop} [decidable_pred p] {hp : primrec_pred p}
{f : α → β} {h : ∀ a, p (f a)} (hf : primrec f) :
by haveI := primcodable.subtype hp; exact
primrec (λ a, @subtype.mk β p (f a) (h a)) :=
subtype_val_iff.1 hf
theorem option_get {f : α → option β} {h : ∀ a, (f a).is_some} :
primrec f → primrec (λ a, option.get (h a)) :=
begin
intro hf,
refine (nat.primrec.pred.comp hf).of_eq (λ n, _),
generalize hx : decode α n = x,
cases x; simp
end
theorem ulower_down : primrec (ulower.down : α → ulower α) :=
by letI : ∀ a, decidable (a ∈ set.range (encode : α → ℕ)) := decidable_range_encode _; exact
subtype_mk primrec.encode
theorem ulower_up : primrec (ulower.up : ulower α → α) :=
by letI : ∀ a, decidable (a ∈ set.range (encode : α → ℕ)) := decidable_range_encode _; exact
option_get (primrec.decode2.comp subtype_val)
theorem fin_val_iff {n} {f : α → fin n} :
primrec (λ a, (f a).1) ↔ primrec f :=
begin
let : primcodable {a//id a<n}, swap,
exactI (iff.trans (by refl) subtype_val_iff).trans (of_equiv_iff _)
end
theorem fin_val {n} : primrec (@fin.val n) := fin_val_iff.2 primrec.id
theorem fin_succ {n} : primrec (@fin.succ n) :=
fin_val_iff.1 $ by simp [succ.comp fin_val]
theorem vector_to_list {n} : primrec (@vector.to_list α n) := subtype_val
theorem vector_to_list_iff {n} {f : α → vector β n} :
primrec (λ a, (f a).to_list) ↔ primrec f := subtype_val_iff
theorem vector_cons {n} : primrec₂ (@vector.cons α n) :=
vector_to_list_iff.1 $ by simp; exact
list_cons.comp fst (vector_to_list_iff.2 snd)
theorem vector_length {n} : primrec (@vector.length α n) := const _
theorem vector_head {n} : primrec (@vector.head α n) :=
option_some_iff.1 $
(list_head'.comp vector_to_list).of_eq $ λ ⟨a::l, h⟩, rfl
theorem vector_tail {n} : primrec (@vector.tail α n) :=
vector_to_list_iff.1 $ (list_tail.comp vector_to_list).of_eq $
λ ⟨l, h⟩, by cases l; refl
theorem vector_nth {n} : primrec₂ (@vector.nth α n) :=
option_some_iff.1 $
(list_nth.comp (vector_to_list.comp fst) (fin_val.comp snd)).of_eq $
λ a, by simp [vector.nth_eq_nth_le]; rw [← list.nth_le_nth]
theorem list_of_fn : ∀ {n} {f : fin n → α → σ},
(∀ i, primrec (f i)) → primrec (λ a, list.of_fn (λ i, f i a))
| 0 f hf := const []
| (n+1) f hf := by simp [list.of_fn_succ]; exact
list_cons.comp (hf 0) (list_of_fn (λ i, hf i.succ))
theorem vector_of_fn {n} {f : fin n → α → σ}
(hf : ∀ i, primrec (f i)) : primrec (λ a, vector.of_fn (λ i, f i a)) :=
vector_to_list_iff.1 $ by simp [list_of_fn hf]
theorem vector_nth' {n} : primrec (@vector.nth α n) := of_equiv_symm
theorem vector_of_fn' {n} : primrec (@vector.of_fn α n) := of_equiv
theorem fin_app {n} : primrec₂ (@id (fin n → σ)) :=
(vector_nth.comp (vector_of_fn'.comp fst) snd).of_eq $
λ ⟨v, i⟩, by simp
theorem fin_curry₁ {n} {f : fin n → α → σ} : primrec₂ f ↔ ∀ i, primrec (f i) :=
⟨λ h i, h.comp (const i) primrec.id,
λ h, (vector_nth.comp ((vector_of_fn h).comp snd) fst).of_eq $ λ a, by simp⟩
theorem fin_curry {n} {f : α → fin n → σ} : primrec f ↔ primrec₂ f :=
⟨λ h, fin_app.comp (h.comp fst) snd,
λ h, (vector_nth'.comp (vector_of_fn (λ i,
show primrec (λ a, f a i), from
h.comp primrec.id (const i)))).of_eq $
λ a, by funext i; simp⟩
end primrec
namespace nat
open vector
/-- An alternative inductive definition of `primrec` which
does not use the pairing function on ℕ, and so has to
work with n-ary functions on ℕ instead of unary functions.
We prove that this is equivalent to the regular notion
in `to_prim` and `of_prim`. -/
inductive primrec' : ∀ {n}, (vector ℕ n → ℕ) → Prop
| zero : @primrec' 0 (λ _, 0)
| succ : @primrec' 1 (λ v, succ v.head)
| nth {n} (i : fin n) : primrec' (λ v, v.nth i)
| comp {m n f} (g : fin n → vector ℕ m → ℕ) :
primrec' f → (∀ i, primrec' (g i)) →
primrec' (λ a, f (of_fn (λ i, g i a)))
| prec {n f g} : @primrec' n f → @primrec' (n+2) g →
primrec' (λ v : vector ℕ (n+1),
v.head.elim (f v.tail) (λ y IH, g (y :: IH :: v.tail)))
end nat
namespace nat.primrec'
open vector primrec nat (primrec') nat.primrec'
hide ite
theorem to_prim {n f} (pf : @primrec' n f) : primrec f :=
begin
induction pf,
case nat.primrec'.zero { exact const 0 },
case nat.primrec'.succ { exact primrec.succ.comp vector_head },
case nat.primrec'.nth : n i {
exact vector_nth.comp primrec.id (const i) },
case nat.primrec'.comp : m n f g _ _ hf hg {
exact hf.comp (vector_of_fn (λ i, hg i)) },
case nat.primrec'.prec : n f g _ _ hf hg {
exact nat_elim' vector_head (hf.comp vector_tail) (hg.comp $
vector_cons.comp (fst.comp snd) $
vector_cons.comp (snd.comp snd) $
(@vector_tail _ _ (n+1)).comp fst).to₂ },
end
theorem of_eq {n} {f g : vector ℕ n → ℕ}
(hf : primrec' f) (H : ∀ i, f i = g i) : primrec' g :=
(funext H : f = g) ▸ hf
theorem const {n} : ∀ m, @primrec' n (λ v, m)
| 0 := zero.comp fin.elim0 (λ i, i.elim0)
| (m+1) := succ.comp _ (λ i, const m)
theorem head {n : ℕ} : @primrec' n.succ head :=
(nth 0).of_eq $ λ v, by simp [nth_zero]
theorem tail {n f} (hf : @primrec' n f) : @primrec' n.succ (λ v, f v.tail) :=
(hf.comp _ (λ i, @nth _ i.succ)).of_eq $
λ v, by rw [← of_fn_nth v.tail]; congr; funext i; simp
def vec {n m} (f : vector ℕ n → vector ℕ m) :=
∀ i, primrec' (λ v, (f v).nth i)
protected theorem nil {n} : @vec n 0 (λ _, nil) := λ i, i.elim0
protected theorem cons {n m f g}
(hf : @primrec' n f) (hg : @vec n m g) :
vec (λ v, f v :: g v) :=
λ i, fin.cases (by simp *) (λ i, by simp [hg i]) i
theorem idv {n} : @vec n n id := nth
theorem comp' {n m f g}
(hf : @primrec' m f) (hg : @vec n m g) :
primrec' (λ v, f (g v)) :=
(hf.comp _ hg).of_eq $ λ v, by simp
theorem comp₁ (f : ℕ → ℕ) (hf : @primrec' 1 (λ v, f v.head))
{n g} (hg : @primrec' n g) : primrec' (λ v, f (g v)) :=
hf.comp _ (λ i, hg)
theorem comp₂ (f : ℕ → ℕ → ℕ)
(hf : @primrec' 2 (λ v, f v.head v.tail.head))
{n g h} (hg : @primrec' n g) (hh : @primrec' n h) :
primrec' (λ v, f (g v) (h v)) :=
by simpa using hf.comp' (hg.cons $ hh.cons primrec'.nil)
theorem prec' {n f g h}
(hf : @primrec' n f) (hg : @primrec' n g) (hh : @primrec' (n+2) h) :
@primrec' n (λ v, (f v).elim (g v)
(λ (y IH : ℕ), h (y :: IH :: v))) :=
by simpa using comp' (prec hg hh) (hf.cons idv)
theorem pred : @primrec' 1 (λ v, v.head.pred) :=
(prec' head (const 0) head).of_eq $
λ v, by simp; cases v.head; refl
theorem add : @primrec' 2 (λ v, v.head + v.tail.head) :=
(prec head (succ.comp₁ _ (tail head))).of_eq $
λ v, by simp; induction v.head; simp [*, nat.succ_add]
theorem sub : @primrec' 2 (λ v, v.head - v.tail.head) :=
begin
suffices, simpa using comp₂ (λ a b, b - a) this (tail head) head,
refine (prec head (pred.comp₁ _ (tail head))).of_eq (λ v, _),
simp, induction v.head; simp [*, nat.sub_succ]
end
theorem mul : @primrec' 2 (λ v, v.head * v.tail.head) :=
(prec (const 0) (tail (add.comp₂ _ (tail head) (head)))).of_eq $
λ v, by simp; induction v.head; simp [*, nat.succ_mul]; rw add_comm
theorem if_lt {n a b f g}
(ha : @primrec' n a) (hb : @primrec' n b)
(hf : @primrec' n f) (hg : @primrec' n g) :
@primrec' n (λ v, if a v < b v then f v else g v) :=
(prec' (sub.comp₂ _ hb ha) hg (tail $ tail hf)).of_eq $
λ v, begin
cases e : b v - a v,
{ simp [not_lt.2 (nat.le_of_sub_eq_zero e)] },
{ simp [nat.lt_of_sub_eq_succ e] }
end
theorem mkpair : @primrec' 2 (λ v, v.head.mkpair v.tail.head) :=
if_lt head (tail head)
(add.comp₂ _ (tail $ mul.comp₂ _ head head) head)
(add.comp₂ _ (add.comp₂ _
(mul.comp₂ _ head head) head) (tail head))
protected theorem encode : ∀ {n}, @primrec' n encode
| 0 := (const 0).of_eq (λ v, by rw v.eq_nil; refl)
| (n+1) := (succ.comp₁ _ (mkpair.comp₂ _ head (tail encode)))
.of_eq $ λ ⟨a::l, e⟩, rfl
theorem sqrt : @primrec' 1 (λ v, v.head.sqrt) :=
begin
suffices H : ∀ n : ℕ, n.sqrt = n.elim 0 (λ x y,
if x.succ < y.succ*y.succ then y else y.succ),
{ simp [H],
have := @prec' 1 _ _ (λ v,
by have x := v.head; have y := v.tail.head; from
if x.succ < y.succ*y.succ then y else y.succ) head (const 0) _,
{ convert this, funext, congr, funext x y, congr; simp },
have x1 := succ.comp₁ _ head,
have y1 := succ.comp₁ _ (tail head),
exact if_lt x1 (mul.comp₂ _ y1 y1) (tail head) y1 },
intro, symmetry,
induction n with n IH, {refl},
dsimp, rw IH, split_ifs,
{ exact le_antisymm (nat.sqrt_le_sqrt (nat.le_succ _))
(nat.lt_succ_iff.1 $ nat.sqrt_lt.2 h) },
{ exact nat.eq_sqrt.2 ⟨not_lt.1 h, nat.sqrt_lt.1 $
nat.lt_succ_iff.2 $ nat.sqrt_succ_le_succ_sqrt _⟩ },
end
theorem unpair₁ {n f} (hf : @primrec' n f) :
@primrec' n (λ v, (f v).unpair.1) :=
begin
have s := sqrt.comp₁ _ hf,
have fss := sub.comp₂ _ hf (mul.comp₂ _ s s),
refine (if_lt fss s fss s).of_eq (λ v, _),
simp [nat.unpair], split_ifs; refl
end
theorem unpair₂ {n f} (hf : @primrec' n f) :
@primrec' n (λ v, (f v).unpair.2) :=
begin
have s := sqrt.comp₁ _ hf,
have fss := sub.comp₂ _ hf (mul.comp₂ _ s s),
refine (if_lt fss s s (sub.comp₂ _ fss s)).of_eq (λ v, _),
simp [nat.unpair], split_ifs; refl
end
theorem of_prim : ∀ {n f}, primrec f → @primrec' n f :=
suffices ∀ f, nat.primrec f → @primrec' 1 (λ v, f v.head), from
λ n f hf, (pred.comp₁ _ $ (this _ hf).comp₁
(λ m, encodable.encode $ (decode (vector ℕ n) m).map f)
primrec'.encode).of_eq (λ i, by simp [encodek]),
λ f hf, begin
induction hf,
case nat.primrec.zero { exact const 0 },
case nat.primrec.succ { exact succ },
case nat.primrec.left { exact unpair₁ head },
case nat.primrec.right { exact unpair₂ head },
case nat.primrec.pair : f g _ _ hf hg {
exact mkpair.comp₂ _ hf hg },
case nat.primrec.comp : f g _ _ hf hg {
exact hf.comp₁ _ hg },
case nat.primrec.prec : f g _ _ hf hg {
simpa using prec' (unpair₂ head)
(hf.comp₁ _ (unpair₁ head))
(hg.comp₁ _ $ mkpair.comp₂ _ (unpair₁ $ tail $ tail head)
(mkpair.comp₂ _ head (tail head))) },
end
theorem prim_iff {n f} : @primrec' n f ↔ primrec f := ⟨to_prim, of_prim⟩
theorem prim_iff₁ {f : ℕ → ℕ} :
@primrec' 1 (λ v, f v.head) ↔ primrec f :=
prim_iff.trans ⟨
λ h, (h.comp $ vector_of_fn $ λ i, primrec.id).of_eq (λ v, by simp),
λ h, h.comp vector_head⟩
theorem prim_iff₂ {f : ℕ → ℕ → ℕ} :
@primrec' 2 (λ v, f v.head v.tail.head) ↔ primrec₂ f :=
prim_iff.trans ⟨
λ h, (h.comp $ vector_cons.comp fst $
vector_cons.comp snd (primrec.const nil)).of_eq (λ v, by simp),
λ h, h.comp vector_head (vector_head.comp vector_tail)⟩
theorem vec_iff {m n f} :
@vec m n f ↔ primrec f :=
⟨λ h, by simpa using vector_of_fn (λ i, to_prim (h i)),
λ h i, of_prim $ vector_nth.comp h (primrec.const i)⟩
end nat.primrec'
theorem primrec.nat_sqrt : primrec nat.sqrt :=
nat.primrec'.prim_iff₁.1 nat.primrec'.sqrt
|
bbb6301d12fe7d7428cd53fb1dbddfa9845edcfe
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/run/362.lean
|
c91736dd6f697fa399b6e9adf111072c16392f17
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 133
|
lean
|
variables {a : Type}
definition foo (A : Type) : A → A :=
begin
intro a, assumption
end
set_option pp.universes true
check foo
|
aaf814072bef7521997f3f6e4df0168c1b6e9869
|
c5b07d17b3c9fb19e4b302465d237fd1d988c14f
|
/src/isos/fseq_ogf.lean
|
becd590a449ec4ad17fd48697d47bca7f6424a86
|
[
"MIT"
] |
permissive
|
skaslev/papers
|
acaec61602b28c33d6115e53913b2002136aa29b
|
f15b379f3c43bbd0a37ac7bb75f4278f7e901389
|
refs/heads/master
| 1,665,505,770,318
| 1,660,378,602,000
| 1,660,378,602,000
| 14,101,547
| 0
| 1
|
MIT
| 1,595,414,522,000
| 1,383,542,702,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 892
|
lean
|
import functors.generating
namespace fseq
-- xᵏ = Σ n:ℕ, δ(k,n) xⁿ
def ogf_iso {k A} : fseq k A ≃ ogf (delta k) A :=
⟨λ x, ⟨k, (⟨0, by simp [delta, nat.zero_lt_succ]⟩, x)⟩,
λ x, dite (x.1=k) (λ h, eq.mp (by rw h) x.2.2) (λ h, begin have z : fin 0 := eq.mp (by simp [delta, if_neg h]) x.2.1, exact fin.elim0 z end),
λ x, by simp; refl,
λ x,
begin
induction x with n x,
induction x with c x,
dsimp,
by_cases n = k,
{ simp [dif_pos h],
dsimp [delta, if_pos h] at c,
congr,
repeat { rw ←h },
{ induction c with c c_h,
induction c with c ih,
{ sorry },
{ simp [delta, if_pos h] at c_h,
exact false.elim (nat.not_lt_zero _ (nat.lt_of_succ_lt_succ c_h)) }},
{ apply eq_rec_heq }},
{ simp [delta, h] at c,
exact fin.elim0 c }
end⟩
instance {n} : has_ogf (fseq n) :=
⟨delta n, @ogf_iso n⟩
end fseq
|
176a247ffbc8489a014c7440511e944d321ea0f4
|
8b9f17008684d796c8022dab552e42f0cb6fb347
|
/tests/lean/run/is_nil.lean
|
3e049c2cbc30f2df7ca22d4d6d417b8327fef138
|
[
"Apache-2.0"
] |
permissive
|
chubbymaggie/lean
|
0d06ae25f9dd396306fb02190e89422ea94afd7b
|
d2c7b5c31928c98f545b16420d37842c43b4ae9a
|
refs/heads/master
| 1,611,313,622,901
| 1,430,266,839,000
| 1,430,267,083,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,344
|
lean
|
import logic
open tactic
inductive list (A : Type) : Type :=
| nil {} : list A
| cons : A → list A → list A
namespace list end list open list
open eq
definition is_nil {A : Type} (l : list A) : Prop
:= list.rec true (fun h t r, false) l
theorem is_nil_nil (A : Type) : is_nil (@nil A)
:= of_eq_true (refl true)
theorem cons_ne_nil {A : Type} (a : A) (l : list A) : ¬ cons a l = nil
:= not.intro (assume H : cons a l = nil,
absurd
(calc true = is_nil (@nil A) : refl _
... = is_nil (cons a l) : { symm H }
... = false : refl _)
true_ne_false)
theorem T : is_nil (@nil Prop)
:= by apply is_nil_nil
(*
local list = Const("list", {1})(Prop)
local isNil = Const("is_nil", {1})(Prop)
local Nil = Const({"list", "nil"}, {1})(Prop)
local m = mk_metavar("m", list)
print(isNil(Nil))
print(isNil(m))
function test_unify(env, m, lhs, rhs, num_s)
print(tostring(lhs) .. " =?= " .. tostring(rhs) .. ", expected: " .. tostring(num_s))
local ss = unify(env, lhs, rhs, name_generator(), substitution())
local n = 0
for s in ss do
print("solution: " .. tostring(s:instantiate(m)))
n = n + 1
end
if num_s ~= n then print("n: " .. n) end
assert(num_s == n)
end
print("=====================")
test_unify(get_env(), m, isNil(Nil), isNil(m), 2)
*)
|
729f7a5b3bc4c99bfec3a4f4138351239968b5f2
|
ec5e5a9dbe7f60fa5784d15211d8bf24ada0825c
|
/src/DataLayout.lean
|
e85461fe33e1e93f9127a5efb5b4cd5ffdf341a6
|
[] |
no_license
|
pnwamk/lean-llvm
|
fcd9a828e52e80eb197f7d9032b3846f2e09ef74
|
ebc3bca9a57a6aef29529d46394f560398fb5c9c
|
refs/heads/master
| 1,668,418,078,706
| 1,593,548,643,000
| 1,593,548,643,000
| 258,617,753
| 0
| 0
| null | 1,587,760,298,000
| 1,587,760,298,000
| null |
UTF-8
|
Lean
| false
| false
| 4,551
|
lean
|
import Init.Data.RBMap
import LeanLLVM.Alignment
import LeanLLVM.AST
import LeanLLVM.Parser
namespace LLVM
namespace parse
section Mangling
open Mangling
def mangling_spec : parse Mangling :=
parse.describe "mangling spec" $
parse.choosePrefix
[ ("e", pure elf)
, ("m", pure mips)
, ("o", pure mach_o)
, ("w", pure windows_coff)
, ("x", pure windows_coff_x86)
]
end Mangling
section LayoutSpec
open LayoutSpec
def pointer_spec : parse LayoutSpec :=
parse.describe "pointer spec spec" $ do
addrSpace <- parse.opt 0 parse.nat;
sz <- parse.textThen ":" parse.nat;
abi <- parse.textThen ":" parse.nat;
pref <- parse.textThen ":" parse.nat;
idx <- parse.opt' (parse.textThen ":" parse.nat);
pure (pointerSize addrSpace sz abi pref idx)
def size_spec (t:AlignType) : parse LayoutSpec :=
parse.describe "size spec" $ do
sz <- parse.nat;
abi <- parse.textThen ":" parse.nat;
pref <- parse.opt' (parse.textThen ":" parse.nat);
pure (alignSize t sz abi pref).
def layout_spec : parse LayoutSpec :=
parse.describe "layout spec" $
parse.choosePrefix
[ ("E", pure (endianness Endian.big))
, ("e", pure (endianness Endian.little))
, ("p", pointer_spec)
, ("i", size_spec AlignType.integer)
, ("v", size_spec AlignType.vector)
, ("f", size_spec AlignType.float)
, ("a", aggregateAlign <$> (parse.textThen ":" parse.nat) <*> (parse.textThen ":" parse.nat))
, ("n", nativeIntSize <$> parse.sepBy parse.nat (parse.text ":"))
, ("S", stackAlign <$> parse.nat)
, ("P", functionAddressSpace <$> parse.nat)
, ("A", stackAlloca <$> parse.nat)
, ("m", mangling <$> (parse.textThen ":" mangling_spec))
]
end LayoutSpec
def data_layout : parse (List LayoutSpec) :=
parse.describe "data layout" $
parse.sepBy layout_spec (parse.text "-")
end parse
end LLVM
namespace LLVM
structure DataLayout :=
(intLayout : Endian)
(stackAlignment : Alignment)
(aggregateAlignment : Alignment)
(ptrSize : Nat) -- size in bytes
(ptrAlign : Alignment)
(integerInfo : AlignInfo)
(vectorInfo : AlignInfo)
(floatInfo : AlignInfo)
def default_data_layout : DataLayout :=
{ intLayout := Endian.big
, stackAlignment := unaligned
, aggregateAlignment := unaligned
, ptrSize := 8 -- 8 bytes, 64 bits
, ptrAlign := align8
, integerInfo := RBMap.fromList
[ ( 1, unaligned)
, ( 8, unaligned)
, (16, align2)
, (32, align4)
, (64, align8)
] _
, floatInfo := RBMap.fromList
[ ( 16, align2)
, ( 32, align4)
, ( 64, align8)
, (128, align16)
] _
, vectorInfo := RBMap.fromList
[ ( 64, align8)
, (128, align16)
] _
}
def updateAlign (x:Nat) (a:Alignment) (ai:AlignInfo) : AlignInfo := ai.insert x a
def addIntegerAlignment (x:Nat) (a:Alignment) (dl:DataLayout) : DataLayout :=
{ dl with integerInfo := updateAlign x a dl.integerInfo }
def addFloatAlignment (x:Nat) (a:Alignment) (dl:DataLayout) : DataLayout :=
{ dl with floatInfo := updateAlign x a dl.floatInfo }
def addVectorAlignment (x:Nat) (a:Alignment) (dl:DataLayout) : DataLayout :=
{ dl with vectorInfo := updateAlign x a dl.vectorInfo }
section LayoutSpec
open LayoutSpec
open AlignType
def addLayoutSpec (dl:DataLayout) : LayoutSpec → Except String DataLayout
| endianness e => pure { dl with intLayout := e }
| stackAlign sa =>
match toAlignment sa with
| none => throw ("invalid stack alignment: " ++ (Nat.toDigits 10 sa).asString)
| some a => pure { dl with stackAlignment := a }
| aggregateAlign abi pref =>
match toAlignment abi with
| none => throw ("invalid aggregate alignment: " ++ (Nat.toDigits 10 abi).asString)
| some a => pure { dl with aggregateAlignment := a }
| pointerSize addr sz abi _pref _idx =>
match toAlignment abi with
| none => throw $ "invalid pointer alignment: " ++ (Nat.toDigits 10 abi).asString
| some a => pure { dl with ptrSize := sz, ptrAlign := a }
| alignSize tp sz abi _pref =>
match toAlignment abi with
| none => throw $ "invalid alignment: " ++ (Nat.toDigits 10 abi).asString
| some a =>
match tp with
| integer => pure (addIntegerAlignment sz a dl)
| vector => pure (addVectorAlignment sz a dl)
| float => pure (addFloatAlignment sz a dl)
| _ => pure dl -- ignore other layout specs
end LayoutSpec
def computeDataLayout (ls:List LayoutSpec) : Except String DataLayout :=
List.foldlM addLayoutSpec default_data_layout ls
end LLVM
|
09812924e6a8322c30ac26957859c6561d532681
|
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
|
/stage0/src/Init/Lean/Elab/SyntheticMVars.lean
|
5f0e7f684e4110049a37b8425d3b9f38a4c16fec
|
[
"Apache-2.0"
] |
permissive
|
mhuisi/lean4
|
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
|
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
|
refs/heads/master
| 1,621,225,489,283
| 1,585,142,689,000
| 1,585,142,689,000
| 250,590,438
| 0
| 2
|
Apache-2.0
| 1,602,443,220,000
| 1,585,327,814,000
|
C
|
UTF-8
|
Lean
| false
| false
| 12,292
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Sebastian Ullrich
-/
prelude
import Init.Lean.Elab.Term
import Init.Lean.Elab.Tactic.Basic
namespace Lean
namespace Elab
namespace Term
open Tactic (TacticM evalTactic getUnsolvedGoals)
def liftTacticElabM {α} (ref : Syntax) (mvarId : MVarId) (x : TacticM α) : TermElabM α :=
withMVarContext mvarId $ fun ctx s =>
let savedSyntheticMVars := s.syntheticMVars;
match x { ref := ref, main := mvarId, .. ctx } { goals := [mvarId], syntheticMVars := [], .. s } with
| EStateM.Result.error ex newS => EStateM.Result.error (Term.Exception.ex ex) { syntheticMVars := savedSyntheticMVars, .. newS.toTermState }
| EStateM.Result.ok a newS => EStateM.Result.ok a { syntheticMVars := savedSyntheticMVars, .. newS.toTermState }
def ensureAssignmentHasNoMVars (ref : Syntax) (mvarId : MVarId) : TermElabM Unit := do
val ← instantiateMVars ref (mkMVar mvarId);
when val.hasExprMVar $ throwError ref ("tactic failed, result still contain metavariables" ++ indentExpr val)
def runTactic (ref : Syntax) (mvarId : MVarId) (tacticCode : Syntax) : TermElabM Unit := do
modify $ fun s => { mctx := s.mctx.instantiateMVarDeclMVars mvarId, .. s };
remainingGoals ← liftTacticElabM ref mvarId $ do { evalTactic tacticCode; getUnsolvedGoals };
let tailRef := ref.getTailWithInfo.getD ref;
unless remainingGoals.isEmpty (reportUnsolvedGoals tailRef remainingGoals);
ensureAssignmentHasNoMVars tailRef mvarId
/-- Auxiliary function used to implement `synthesizeSyntheticMVars`. -/
private def resumeElabTerm (stx : Syntax) (expectedType? : Option Expr) (errToSorry := true) : TermElabM Expr :=
-- Remark: if `ctx.errToSorry` is already false, then we don't enable it. Recall tactics disable `errToSorry`
adaptReader (fun (ctx : Context) => { errToSorry := ctx.errToSorry && errToSorry, .. ctx }) $
elabTerm stx expectedType? false
/--
Try to elaborate `stx` that was postponed by an elaboration method using `Expection.postpone`.
It returns `true` if it succeeded, and `false` otherwise.
It is used to implement `synthesizeSyntheticMVars`. -/
private def resumePostponed (macroStack : MacroStack) (stx : Syntax) (mvarId : MVarId) (postponeOnError : Bool) : TermElabM Bool := do
withMVarContext mvarId $ do
s ← get;
catch
(adaptReader (fun (ctx : Context) => { macroStack := macroStack, .. ctx }) $ do
mvarDecl ← getMVarDecl mvarId;
expectedType ← instantiateMVars stx mvarDecl.type;
result ← resumeElabTerm stx expectedType (!postponeOnError);
/- We must ensure `result` has the expected type because it is the one expected by the method that postponed stx.
That is, the method does not have an opportunity to check whether `result` has the expected type or not. -/
result ← ensureHasType stx expectedType result;
assignExprMVar mvarId result;
pure true)
(fun ex => match ex with
| Exception.postpone => do set s; pure false
| Exception.ex Elab.Exception.unsupportedSyntax => unreachable!
| Exception.ex (Elab.Exception.error msg) =>
if postponeOnError then do
set s; pure false
else do
logMessage msg; pure true)
/--
Similar to `synthesizeInstMVarCore`, but makes sure that `instMVar` local context and instances
are used. It also logs any error message produced. -/
private def synthesizePendingInstMVar (ref : Syntax) (instMVar : MVarId) : TermElabM Bool := do
withMVarContext instMVar $ catch
(synthesizeInstMVarCore ref instMVar)
(fun ex => match ex with
| Exception.ex (Elab.Exception.error errMsg) => do logMessage errMsg; pure true
| _ => unreachable!)
/--
Similar to `synthesizePendingInstMVar`, but generates type mismatch error message. -/
private def synthesizePendingCoeInstMVar (ref : Syntax) (instMVar : MVarId) (expectedType : Expr) (eType : Expr) (e : Expr) (f? : Option Expr) : TermElabM Bool := do
withMVarContext instMVar $ catch
(synthesizeInstMVarCore ref instMVar)
(fun ex => match ex with
| Exception.ex (Elab.Exception.error errMsg) => throwTypeMismatchError ref expectedType eType e f? errMsg.data
| _ => unreachable!)
/--
Return `true` iff `mvarId` is assigned to a term whose the
head is not a metavariable. We use this method to process `SyntheticMVarKind.withDefault`. -/
private def checkWithDefault (ref : Syntax) (mvarId : MVarId) : TermElabM Bool := do
val ← instantiateMVars ref (mkMVar mvarId);
pure $ !val.getAppFn.isMVar
/-- Try to synthesize the given pending synthetic metavariable. -/
private def synthesizeSyntheticMVar (mvarSyntheticDecl : SyntheticMVarDecl) (postponeOnError : Bool) (runTactics : Bool) : TermElabM Bool :=
match mvarSyntheticDecl.kind with
| SyntheticMVarKind.typeClass => synthesizePendingInstMVar mvarSyntheticDecl.ref mvarSyntheticDecl.mvarId
| SyntheticMVarKind.coe expectedType eType e f? => synthesizePendingCoeInstMVar mvarSyntheticDecl.ref mvarSyntheticDecl.mvarId expectedType eType e f?
-- NOTE: actual processing at `synthesizeSyntheticMVarsAux`
| SyntheticMVarKind.withDefault _ => checkWithDefault mvarSyntheticDecl.ref mvarSyntheticDecl.mvarId
| SyntheticMVarKind.postponed macroStack => resumePostponed macroStack mvarSyntheticDecl.ref mvarSyntheticDecl.mvarId postponeOnError
| SyntheticMVarKind.tactic tacticCode =>
if runTactics then do
runTactic mvarSyntheticDecl.ref mvarSyntheticDecl.mvarId tacticCode;
pure true
else
pure false
/--
Try to synthesize the current list of pending synthetic metavariables.
Return `true` if at least one of them was synthesized. -/
private def synthesizeSyntheticMVarsStep (postponeOnError : Bool) (runTactics : Bool) : TermElabM Bool := do
ctx ← read;
traceAtCmdPos `Elab.resuming $ fun _ =>
fmt "resuming synthetic metavariables, mayPostpone: " ++ fmt ctx.mayPostpone ++ ", postponeOnError: " ++ toString postponeOnError;
s ← get;
let syntheticMVars := s.syntheticMVars;
let numSyntheticMVars := syntheticMVars.length;
-- We reset `syntheticMVars` because new synthetic metavariables may be created by `synthesizeSyntheticMVar`.
modify $ fun s => { syntheticMVars := [], .. s };
-- Recall that `syntheticMVars` is a list where head is the most recent pending synthetic metavariable.
-- We use `filterRevM` instead of `filterM` to make sure we process the synthetic metavariables using the order they were created.
-- It would not be incorrect to use `filterM`.
remainingSyntheticMVars ← syntheticMVars.filterRevM $ fun mvarDecl => do {
trace `Elab.postpone mvarDecl.ref $ fun _ => "resuming ?" ++ mvarDecl.mvarId;
succeeded ← synthesizeSyntheticMVar mvarDecl postponeOnError runTactics;
trace `Elab.postpone mvarDecl.ref $ fun _ => if succeeded then fmt "succeeded" else fmt "not ready yet";
pure $ !succeeded
};
-- Merge new synthetic metavariables with `remainingSyntheticMVars`, i.e., metavariables that still couldn't be synthesized
modify $ fun s => { syntheticMVars := s.syntheticMVars ++ remainingSyntheticMVars, .. s };
pure $ numSyntheticMVars != remainingSyntheticMVars.length
/-- Apply default value to any pending synthetic metavariable of kind `SyntheticMVarKind.withDefault` -/
private def synthesizeUsingDefault : TermElabM Bool := do
s ← get;
let len := s.syntheticMVars.length;
newSyntheticMVars ← s.syntheticMVars.filterM $ fun mvarDecl =>
match mvarDecl.kind with
| SyntheticMVarKind.withDefault defaultVal => withMVarContext mvarDecl.mvarId $ do
val ← instantiateMVars mvarDecl.ref (mkMVar mvarDecl.mvarId);
when val.getAppFn.isMVar $
unlessM (isDefEq mvarDecl.ref val defaultVal) $
throwError mvarDecl.ref "failed to assign default value to metavariable"; -- TODO: better error message
pure false
| _ => pure true;
modify $ fun s => { syntheticMVars := newSyntheticMVars, .. s };
pure $ newSyntheticMVars.length != len
/-- Report an error for each synthetic metavariable that could not be resolved. -/
private def reportStuckSyntheticMVars : TermElabM Unit := do
s ← get;
s.syntheticMVars.forM $ fun mvarSyntheticDecl =>
match mvarSyntheticDecl.kind with
| SyntheticMVarKind.typeClass =>
withMVarContext mvarSyntheticDecl.mvarId $ do
mvarDecl ← getMVarDecl mvarSyntheticDecl.mvarId;
logError mvarSyntheticDecl.ref $
"failed to create type class instance for " ++ indentExpr mvarDecl.type
| SyntheticMVarKind.coe expectedType eType e f? =>
withMVarContext mvarSyntheticDecl.mvarId $ do
mvarDecl ← getMVarDecl mvarSyntheticDecl.mvarId;
throwTypeMismatchError mvarSyntheticDecl.ref expectedType eType e f? (some ("failed to create type class instance for " ++ indentExpr mvarDecl.type))
| _ => unreachable! -- TODO handle other cases.
private def getSomeSynthethicMVarsRef : TermElabM Syntax := do
s ← get;
match s.syntheticMVars.find? $ fun (mvarDecl : SyntheticMVarDecl) => !mvarDecl.ref.getPos.isNone with
| some mvarDecl => pure mvarDecl.ref
| none => pure Syntax.missing
/--
Main loop for `synthesizeSyntheticMVars.
It keeps executing `synthesizeSyntheticMVarsStep` while progress is being made.
If `mayPostpone == false`, then it applies default values to `SyntheticMVarKind.withDefault`
metavariables that are still unresolved, and then tries to resolve metavariables
with `mayPostpone == false`. That is, we force them to produce error messages and/or commit to
a "best option". If, after that, we still haven't made progress, we report "stuck" errors. -/
private partial def synthesizeSyntheticMVarsAux (mayPostpone := true) : Unit → TermElabM Unit
| _ => do
let try (x : TermElabM Bool) (k : TermElabM Unit) : TermElabM Unit := condM x (synthesizeSyntheticMVarsAux ()) k;
ref ← getSomeSynthethicMVarsRef;
withIncRecDepth ref $ do
s ← get;
unless s.syntheticMVars.isEmpty $ do
try (synthesizeSyntheticMVarsStep false false) $
unless mayPostpone $ do
/- Resume pending metavariables with "elaboration postponement" disabled.
We postpone elaboration errors in this step by setting `postponeOnError := true`.
Example:
```
#check let x := ⟨1, 2⟩; Prod.fst x
```
The term `⟨1, 2⟩` can't be elaborated because the expected type is not know.
The `x` at `Prod.fst x` is not elaborated because the type of `x` is not known.
When we execute the following step with "elaboration postponement" disabled,
the elaborator fails at `⟨1, 2⟩` and postpones it, and succeeds at `x` and learns
that its type must be of the form `Prod ?α ?β`.
Recall that we postponed `x` at `Prod.fst x` because its type it is not known.
We the type of `x` may learn later its type and it may contain implicit and/or auto arguments.
By disabling postponement, we are essentially giving up the opportunity of learning `x`s type
and assume it does not have implict and/or auto arguments. -/
try (withoutPostponing (synthesizeSyntheticMVarsStep true false)) $
try synthesizeUsingDefault $
try (withoutPostponing (synthesizeSyntheticMVarsStep false false)) $
try (synthesizeSyntheticMVarsStep false true) $
reportStuckSyntheticMVars
/--
Try to process pending synthetic metavariables. If `mayPostpone == false`,
then `syntheticMVars` is `[]` after executing this method. -/
def synthesizeSyntheticMVars (mayPostpone := true) : TermElabM Unit :=
synthesizeSyntheticMVarsAux mayPostpone ()
/-- Elaborate `stx`, and make sure all pending synthetic metavariables created while elaborating `stx` are solved. -/
def elabTermAndSynthesize (stx : Syntax) (expectedType? : Option Expr) : TermElabM Expr := do
s ← get;
let syntheticMVars := s.syntheticMVars;
modify $ fun s => { syntheticMVars := [], .. s };
finally
(do
v ← elabTerm stx expectedType?;
synthesizeSyntheticMVars false;
instantiateMVars stx v)
(modify $ fun s => { syntheticMVars := s.syntheticMVars ++ syntheticMVars, .. s })
end Term
end Elab
end Lean
|
e70e6a378d347302779a88986c20a110a376f1c1
|
3dd1b66af77106badae6edb1c4dea91a146ead30
|
/library/standard/num.lean
|
0373700a2a5002b1e1400960f1b948955cbde9a5
|
[
"Apache-2.0"
] |
permissive
|
silky/lean
|
79c20c15c93feef47bb659a2cc139b26f3614642
|
df8b88dca2f8da1a422cb618cd476ef5be730546
|
refs/heads/master
| 1,610,737,587,697
| 1,406,574,534,000
| 1,406,574,534,000
| 22,362,176
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 822
|
lean
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic
namespace num
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
inductive pos_num : Type :=
| one : pos_num
| bit1 : pos_num → pos_num
| bit0 : pos_num → pos_num
inductive num : Type :=
| zero : num
| pos : pos_num → num
theorem inhabited_pos_num [instance] : inhabited pos_num
:= inhabited_intro one
theorem inhabited_num [instance] : inhabited num
:= inhabited_intro zero
end
|
f934018f0aabb602c994798e3545cd4dd283ee4a
|
e953c38599905267210b87fb5d82dcc3e52a4214
|
/hott/algebra/category/adjoint.hlean
|
0862139b65eb1b9b476ac02cfc1a6d442e182f1e
|
[
"Apache-2.0"
] |
permissive
|
c-cube/lean
|
563c1020bff98441c4f8ba60111fef6f6b46e31b
|
0fb52a9a139f720be418dafac35104468e293b66
|
refs/heads/master
| 1,610,753,294,113
| 1,440,451,356,000
| 1,440,499,588,000
| 41,748,334
| 0
| 0
| null | 1,441,122,656,000
| 1,441,122,656,000
| null |
UTF-8
|
Lean
| false
| false
| 5,783
|
hlean
|
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import algebra.category.constructions .constructions function arity
open category functor nat_trans eq is_trunc iso equiv prod trunc function
namespace category
variables {C D : Precategory} {F : C ⇒ D}
-- do we want to have a structure "is_adjoint" and define
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (is_adjoint : adjoint F right_adjoint)
structure is_left_adjoint [class] (F : C ⇒ D) :=
(G : D ⇒ C)
(η : functor.id ⟹ G ∘f F)
(ε : F ∘f G ⟹ functor.id)
(H : Π(c : C), (ε (F c)) ∘ (F (η c)) = ID (F c))
(K : Π(d : D), (G (ε d)) ∘ (η (G d)) = ID (G d))
abbreviation right_adjoint := @is_left_adjoint.G
abbreviation unit := @is_left_adjoint.η
abbreviation counit := @is_left_adjoint.ε
-- structure is_left_adjoint [class] (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (unit : functor.id ⟹ right_adjoint ∘f F) -- η
-- (counit : F ∘f right_adjoint ⟹ functor.id) -- ε
-- (H : Π(c : C), (counit (F c)) ∘ (F (unit c)) = ID (F c))
-- (K : Π(d : D), (right_adjoint (counit d)) ∘ (unit (right_adjoint d)) = ID (right_adjoint d))
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
mk' ::
(is_iso_unit : is_iso η)
(is_iso_counit : is_iso ε)
structure equivalence (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_equivalence to_functor)
--TODO: review and change
--TODO: make some or all of these structures?
definition faithful (F : C ⇒ D) :=
Π⦃c c' : C⦄ (f f' : c ⟶ c'), F f = F f' → f = f'
definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), ∃(f : c ⟶ c'), F f = g
definition fully_faithful [reducible] (F : C ⇒ D) :=
Π⦃c c' : C⦄, is_equiv (@(to_fun_hom F) c c')
definition split_essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, Σ(c : C), F c ≅ d
definition essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, ∃(c : C), F c ≅ d
definition is_weak_equivalence (F : C ⇒ D) :=
fully_faithful F × essentially_surjective F
definition is_isomorphism (F : C ⇒ D) :=
fully_faithful F × is_equiv (to_fun_ob F)
structure isomorphism (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_isomorphism to_functor)
-- infix `⊣`:55 := adjoint
infix `⋍`:25 := equivalence -- \backsimeq or \equiv
infix `≌`:25 := isomorphism -- \backcong or \iso
/-
definition is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
: is_hprop (is_left_adjoint F) :=
begin
apply is_hprop.mk,
intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
fapply (apd011111 is_left_adjoint.mk),
{ fapply functor_eq,
{ intro d, apply eq_of_iso, fapply iso.MK,
{ exact (G' (ε d) ∘ η' (G d))},
{ exact (G (ε' d) ∘ η (G' d))},
{ apply sorry /-rewrite [assoc, -{((G (ε' d)) ∘ (η (G' d))) ∘ (G' (ε d))}(assoc)],-/
-- apply concat, apply (ap (λc, c ∘ η' _)), rewrite -assoc, apply idp
},
-- rewrite [-nat_trans.assoc] apply sorry
---assoc (G (ε' d)) (η (G' d)) (G' (ε d))
{ apply sorry}},
{ apply sorry},
},
{ apply sorry},
{ apply sorry},
{ apply is_hprop.elim},
{ apply is_hprop.elim},
end
definition is_equivalence.mk (F : C ⇒ D) (G : D ⇒ C) (η : G ∘f F ≅ functor.id)
(ε : F ∘f G ≅ functor.id) : is_equivalence F :=
sorry
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
sorry -- λc c' g, exists.intro ((@(to_fun_hom F) c c')⁻¹ g) _
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
λc c' f f' p, is_injective_of_is_embedding p
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
sorry
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
sorry
definition is_equivalence_equiv (F : C ⇒ D)
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
sorry
definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
sorry
definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
sorry
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
: is_equivalence F ≃ is_weak_equivalence F :=
sorry
definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
sorry
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
≃ Σ(G : D ⇒ C) (η : functor.id = G ∘f F) (ε : F ∘f G = functor.id),
sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
sorry
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
≃ ∃(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id :=
sorry
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=
sorry
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
: is_isomorphism F :=
sorry
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D :=
sorry
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
sorry
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D :=
sorry
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
sorry
-/
end category
|
93af218c3ca60410b2f139cf5fd79481c7dfbf6c
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/analysis/calculus/iterated_deriv.lean
|
67837508500c8ad02c19181af9d7275c21c4fea2
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 14,758
|
lean
|
/-
Copyright (c) 2020 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import analysis.calculus.deriv
import analysis.calculus.cont_diff_def
/-!
# One-dimensional iterated derivatives
We define the `n`-th derivative of a function `f : 𝕜 → F` as a function
`iterated_deriv n f : 𝕜 → F`, as well as a version on domains `iterated_deriv_within n f s : 𝕜 → F`,
and prove their basic properties.
## Main definitions and results
Let `𝕜` be a nontrivially normed field, and `F` a normed vector space over `𝕜`. Let `f : 𝕜 → F`.
* `iterated_deriv n f` is the `n`-th derivative of `f`, seen as a function from `𝕜` to `F`.
It is defined as the `n`-th Fréchet derivative (which is a multilinear map) applied to the
vector `(1, ..., 1)`, to take advantage of all the existing framework, but we show that it
coincides with the naive iterative definition.
* `iterated_deriv_eq_iterate` states that the `n`-th derivative of `f` is obtained by starting
from `f` and differentiating it `n` times.
* `iterated_deriv_within n f s` is the `n`-th derivative of `f` within the domain `s`. It only
behaves well when `s` has the unique derivative property.
* `iterated_deriv_within_eq_iterate` states that the `n`-th derivative of `f` in the domain `s` is
obtained by starting from `f` and differentiating it `n` times within `s`. This only holds when
`s` has the unique derivative property.
## Implementation details
The results are deduced from the corresponding results for the more general (multilinear) iterated
Fréchet derivative. For this, we write `iterated_deriv n f` as the composition of
`iterated_fderiv 𝕜 n f` and a continuous linear equiv. As continuous linear equivs respect
differentiability and commute with differentiation, this makes it possible to prove readily that
the derivative of the `n`-th derivative is the `n+1`-th derivative in `iterated_deriv_within_succ`,
by translating the corresponding result `iterated_fderiv_within_succ_apply_left` for the
iterated Fréchet derivative.
-/
noncomputable theory
open_locale classical topology big_operators
open filter asymptotics set
variables {𝕜 : Type*} [nontrivially_normed_field 𝕜]
variables {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F]
variables {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E]
/-- The `n`-th iterated derivative of a function from `𝕜` to `F`, as a function from `𝕜` to `F`. -/
def iterated_deriv (n : ℕ) (f : 𝕜 → F) (x : 𝕜) : F :=
(iterated_fderiv 𝕜 n f x : ((fin n) → 𝕜) → F) (λ(i : fin n), 1)
/-- The `n`-th iterated derivative of a function from `𝕜` to `F` within a set `s`, as a function
from `𝕜` to `F`. -/
def iterated_deriv_within (n : ℕ) (f : 𝕜 → F) (s : set 𝕜) (x : 𝕜) : F :=
(iterated_fderiv_within 𝕜 n f s x : ((fin n) → 𝕜) → F) (λ(i : fin n), 1)
variables {n : ℕ} {f : 𝕜 → F} {s : set 𝕜} {x : 𝕜}
lemma iterated_deriv_within_univ :
iterated_deriv_within n f univ = iterated_deriv n f :=
by { ext x, rw [iterated_deriv_within, iterated_deriv, iterated_fderiv_within_univ] }
/-! ### Properties of the iterated derivative within a set -/
lemma iterated_deriv_within_eq_iterated_fderiv_within :
iterated_deriv_within n f s x
= (iterated_fderiv_within 𝕜 n f s x : ((fin n) → 𝕜) → F) (λ(i : fin n), 1) := rfl
/-- Write the iterated derivative as the composition of a continuous linear equiv and the iterated
Fréchet derivative -/
lemma iterated_deriv_within_eq_equiv_comp :
iterated_deriv_within n f s
= (continuous_multilinear_map.pi_field_equiv 𝕜 (fin n) F).symm ∘
(iterated_fderiv_within 𝕜 n f s) :=
by { ext x, refl }
/-- Write the iterated Fréchet derivative as the composition of a continuous linear equiv and the
iterated derivative. -/
lemma iterated_fderiv_within_eq_equiv_comp :
iterated_fderiv_within 𝕜 n f s
= (continuous_multilinear_map.pi_field_equiv 𝕜 (fin n) F) ∘ (iterated_deriv_within n f s) :=
by rw [iterated_deriv_within_eq_equiv_comp, ← function.comp.assoc,
linear_isometry_equiv.self_comp_symm, function.left_id]
/-- The `n`-th Fréchet derivative applied to a vector `(m 0, ..., m (n-1))` is the derivative
multiplied by the product of the `m i`s. -/
lemma iterated_fderiv_within_apply_eq_iterated_deriv_within_mul_prod {m : (fin n) → 𝕜} :
(iterated_fderiv_within 𝕜 n f s x : ((fin n) → 𝕜) → F) m
= (∏ i, m i) • iterated_deriv_within n f s x :=
begin
rw [iterated_deriv_within_eq_iterated_fderiv_within, ← continuous_multilinear_map.map_smul_univ],
simp
end
lemma norm_iterated_fderiv_within_eq_norm_iterated_deriv_within :
‖iterated_fderiv_within 𝕜 n f s x‖ = ‖iterated_deriv_within n f s x‖ :=
by rw [iterated_deriv_within_eq_equiv_comp, linear_isometry_equiv.norm_map]
@[simp] lemma iterated_deriv_within_zero :
iterated_deriv_within 0 f s = f :=
by { ext x, simp [iterated_deriv_within] }
@[simp] lemma iterated_deriv_within_one (hs : unique_diff_on 𝕜 s) {x : 𝕜} (hx : x ∈ s):
iterated_deriv_within 1 f s x = deriv_within f s x :=
by { simp [iterated_deriv_within, iterated_fderiv_within_one_apply hs hx], refl }
/-- If the first `n` derivatives within a set of a function are continuous, and its first `n-1`
derivatives are differentiable, then the function is `C^n`. This is not an equivalence in general,
but this is an equivalence when the set has unique derivatives, see
`cont_diff_on_iff_continuous_on_differentiable_on_deriv`. -/
lemma cont_diff_on_of_continuous_on_differentiable_on_deriv {n : ℕ∞}
(Hcont : ∀ (m : ℕ), (m : ℕ∞) ≤ n →
continuous_on (λ x, iterated_deriv_within m f s x) s)
(Hdiff : ∀ (m : ℕ), (m : ℕ∞) < n →
differentiable_on 𝕜 (λ x, iterated_deriv_within m f s x) s) :
cont_diff_on 𝕜 n f s :=
begin
apply cont_diff_on_of_continuous_on_differentiable_on,
{ simpa [iterated_fderiv_within_eq_equiv_comp, linear_isometry_equiv.comp_continuous_on_iff] },
{ simpa [iterated_fderiv_within_eq_equiv_comp, linear_isometry_equiv.comp_differentiable_on_iff] }
end
/-- To check that a function is `n` times continuously differentiable, it suffices to check that its
first `n` derivatives are differentiable. This is slightly too strong as the condition we
require on the `n`-th derivative is differentiability instead of continuity, but it has the
advantage of avoiding the discussion of continuity in the proof (and for `n = ∞` this is optimal).
-/
lemma cont_diff_on_of_differentiable_on_deriv {n : ℕ∞}
(h : ∀(m : ℕ), (m : ℕ∞) ≤ n → differentiable_on 𝕜 (iterated_deriv_within m f s) s) :
cont_diff_on 𝕜 n f s :=
begin
apply cont_diff_on_of_differentiable_on,
simpa only [iterated_fderiv_within_eq_equiv_comp,
linear_isometry_equiv.comp_differentiable_on_iff]
end
/-- On a set with unique derivatives, a `C^n` function has derivatives up to `n` which are
continuous. -/
lemma cont_diff_on.continuous_on_iterated_deriv_within {n : ℕ∞} {m : ℕ}
(h : cont_diff_on 𝕜 n f s) (hmn : (m : ℕ∞) ≤ n) (hs : unique_diff_on 𝕜 s) :
continuous_on (iterated_deriv_within m f s) s :=
by simpa only [iterated_deriv_within_eq_equiv_comp, linear_isometry_equiv.comp_continuous_on_iff]
using h.continuous_on_iterated_fderiv_within hmn hs
/-- On a set with unique derivatives, a `C^n` function has derivatives less than `n` which are
differentiable. -/
lemma cont_diff_on.differentiable_on_iterated_deriv_within {n : ℕ∞} {m : ℕ}
(h : cont_diff_on 𝕜 n f s) (hmn : (m : ℕ∞) < n) (hs : unique_diff_on 𝕜 s) :
differentiable_on 𝕜 (iterated_deriv_within m f s) s :=
by simpa only [iterated_deriv_within_eq_equiv_comp,
linear_isometry_equiv.comp_differentiable_on_iff]
using h.differentiable_on_iterated_fderiv_within hmn hs
/-- The property of being `C^n`, initially defined in terms of the Fréchet derivative, can be
reformulated in terms of the one-dimensional derivative on sets with unique derivatives. -/
lemma cont_diff_on_iff_continuous_on_differentiable_on_deriv {n : ℕ∞}
(hs : unique_diff_on 𝕜 s) :
cont_diff_on 𝕜 n f s ↔
(∀m:ℕ, (m : ℕ∞) ≤ n → continuous_on (iterated_deriv_within m f s) s)
∧ (∀m:ℕ, (m : ℕ∞) < n → differentiable_on 𝕜 (iterated_deriv_within m f s) s) :=
by simp only [cont_diff_on_iff_continuous_on_differentiable_on hs,
iterated_fderiv_within_eq_equiv_comp, linear_isometry_equiv.comp_continuous_on_iff,
linear_isometry_equiv.comp_differentiable_on_iff]
/-- The `n+1`-th iterated derivative within a set with unique derivatives can be obtained by
differentiating the `n`-th iterated derivative. -/
lemma iterated_deriv_within_succ {x : 𝕜} (hxs : unique_diff_within_at 𝕜 s x) :
iterated_deriv_within (n + 1) f s x = deriv_within (iterated_deriv_within n f s) s x :=
begin
rw [iterated_deriv_within_eq_iterated_fderiv_within, iterated_fderiv_within_succ_apply_left,
iterated_fderiv_within_eq_equiv_comp, linear_isometry_equiv.comp_fderiv_within _ hxs,
deriv_within],
change ((continuous_multilinear_map.mk_pi_field 𝕜 (fin n)
((fderiv_within 𝕜 (iterated_deriv_within n f s) s x : 𝕜 → F) 1)) : (fin n → 𝕜 ) → F)
(λ (i : fin n), 1)
= (fderiv_within 𝕜 (iterated_deriv_within n f s) s x : 𝕜 → F) 1,
simp
end
/-- The `n`-th iterated derivative within a set with unique derivatives can be obtained by
iterating `n` times the differentiation operation. -/
lemma iterated_deriv_within_eq_iterate {x : 𝕜} (hs : unique_diff_on 𝕜 s) (hx : x ∈ s) :
iterated_deriv_within n f s x = ((λ (g : 𝕜 → F), deriv_within g s)^[n]) f x :=
begin
induction n with n IH generalizing x,
{ simp },
{ rw [iterated_deriv_within_succ (hs x hx), function.iterate_succ'],
exact deriv_within_congr (hs x hx) (λ y hy, IH hy) (IH hx) }
end
/-- The `n+1`-th iterated derivative within a set with unique derivatives can be obtained by
taking the `n`-th derivative of the derivative. -/
lemma iterated_deriv_within_succ' {x : 𝕜} (hxs : unique_diff_on 𝕜 s) (hx : x ∈ s) :
iterated_deriv_within (n + 1) f s x = (iterated_deriv_within n (deriv_within f s) s) x :=
by { rw [iterated_deriv_within_eq_iterate hxs hx, iterated_deriv_within_eq_iterate hxs hx], refl }
/-! ### Properties of the iterated derivative on the whole space -/
lemma iterated_deriv_eq_iterated_fderiv :
iterated_deriv n f x
= (iterated_fderiv 𝕜 n f x : ((fin n) → 𝕜) → F) (λ(i : fin n), 1) := rfl
/-- Write the iterated derivative as the composition of a continuous linear equiv and the iterated
Fréchet derivative -/
lemma iterated_deriv_eq_equiv_comp :
iterated_deriv n f
= (continuous_multilinear_map.pi_field_equiv 𝕜 (fin n) F).symm ∘ (iterated_fderiv 𝕜 n f) :=
by { ext x, refl }
/-- Write the iterated Fréchet derivative as the composition of a continuous linear equiv and the
iterated derivative. -/
lemma iterated_fderiv_eq_equiv_comp :
iterated_fderiv 𝕜 n f
= (continuous_multilinear_map.pi_field_equiv 𝕜 (fin n) F) ∘ (iterated_deriv n f) :=
by rw [iterated_deriv_eq_equiv_comp, ← function.comp.assoc, linear_isometry_equiv.self_comp_symm,
function.left_id]
/-- The `n`-th Fréchet derivative applied to a vector `(m 0, ..., m (n-1))` is the derivative
multiplied by the product of the `m i`s. -/
lemma iterated_fderiv_apply_eq_iterated_deriv_mul_prod {m : (fin n) → 𝕜} :
(iterated_fderiv 𝕜 n f x : ((fin n) → 𝕜) → F) m = (∏ i, m i) • iterated_deriv n f x :=
by { rw [iterated_deriv_eq_iterated_fderiv, ← continuous_multilinear_map.map_smul_univ], simp }
lemma norm_iterated_fderiv_eq_norm_iterated_deriv :
‖iterated_fderiv 𝕜 n f x‖ = ‖iterated_deriv n f x‖ :=
by rw [iterated_deriv_eq_equiv_comp, linear_isometry_equiv.norm_map]
@[simp] lemma iterated_deriv_zero :
iterated_deriv 0 f = f :=
by { ext x, simp [iterated_deriv] }
@[simp] lemma iterated_deriv_one :
iterated_deriv 1 f = deriv f :=
by { ext x, simp [iterated_deriv], refl }
/-- The property of being `C^n`, initially defined in terms of the Fréchet derivative, can be
reformulated in terms of the one-dimensional derivative. -/
lemma cont_diff_iff_iterated_deriv {n : ℕ∞} :
cont_diff 𝕜 n f ↔
(∀m:ℕ, (m : ℕ∞) ≤ n → continuous (iterated_deriv m f))
∧ (∀m:ℕ, (m : ℕ∞) < n → differentiable 𝕜 (iterated_deriv m f)) :=
by simp only [cont_diff_iff_continuous_differentiable, iterated_fderiv_eq_equiv_comp,
linear_isometry_equiv.comp_continuous_iff, linear_isometry_equiv.comp_differentiable_iff]
/-- To check that a function is `n` times continuously differentiable, it suffices to check that its
first `n` derivatives are differentiable. This is slightly too strong as the condition we
require on the `n`-th derivative is differentiability instead of continuity, but it has the
advantage of avoiding the discussion of continuity in the proof (and for `n = ∞` this is optimal).
-/
lemma cont_diff_of_differentiable_iterated_deriv {n : ℕ∞}
(h : ∀(m : ℕ), (m : ℕ∞) ≤ n → differentiable 𝕜 (iterated_deriv m f)) :
cont_diff 𝕜 n f :=
cont_diff_iff_iterated_deriv.2
⟨λ m hm, (h m hm).continuous, λ m hm, (h m (le_of_lt hm))⟩
lemma cont_diff.continuous_iterated_deriv {n : ℕ∞} (m : ℕ)
(h : cont_diff 𝕜 n f) (hmn : (m : ℕ∞) ≤ n) :
continuous (iterated_deriv m f) :=
(cont_diff_iff_iterated_deriv.1 h).1 m hmn
lemma cont_diff.differentiable_iterated_deriv {n : ℕ∞} (m : ℕ)
(h : cont_diff 𝕜 n f) (hmn : (m : ℕ∞) < n) :
differentiable 𝕜 (iterated_deriv m f) :=
(cont_diff_iff_iterated_deriv.1 h).2 m hmn
/-- The `n+1`-th iterated derivative can be obtained by differentiating the `n`-th
iterated derivative. -/
lemma iterated_deriv_succ : iterated_deriv (n + 1) f = deriv (iterated_deriv n f) :=
begin
ext x,
rw [← iterated_deriv_within_univ, ← iterated_deriv_within_univ, ← deriv_within_univ],
exact iterated_deriv_within_succ unique_diff_within_at_univ,
end
/-- The `n`-th iterated derivative can be obtained by iterating `n` times the
differentiation operation. -/
lemma iterated_deriv_eq_iterate : iterated_deriv n f = (deriv^[n]) f :=
begin
ext x,
rw [← iterated_deriv_within_univ],
convert iterated_deriv_within_eq_iterate unique_diff_on_univ (mem_univ x),
simp [deriv_within_univ]
end
/-- The `n+1`-th iterated derivative can be obtained by taking the `n`-th derivative of the
derivative. -/
lemma iterated_deriv_succ' : iterated_deriv (n + 1) f = iterated_deriv n (deriv f) :=
by { rw [iterated_deriv_eq_iterate, iterated_deriv_eq_iterate], refl }
|
63c731dd6c2e2455fdaf7b2b5d1678e334e633b5
|
d1a52c3f208fa42c41df8278c3d280f075eb020c
|
/stage0/src/Lean/Meta/Tactic/Delta.lean
|
f7a0e18665e28a6ab616565576942127d69d58d1
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
cipher1024/lean4
|
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
|
69114d3b50806264ef35b57394391c3e738a9822
|
refs/heads/master
| 1,642,227,983,603
| 1,642,011,696,000
| 1,642,011,696,000
| 228,607,691
| 0
| 0
|
Apache-2.0
| 1,576,584,269,000
| 1,576,584,268,000
| null |
UTF-8
|
Lean
| false
| false
| 1,482
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.Transform
import Lean.Meta.Tactic.Replace
namespace Lean.Meta
def delta? (e : Expr) (p : Name → Bool := fun _ => true) : CoreM (Option Expr) :=
matchConst e.getAppFn (fun _ => return none) fun fInfo fLvls => do
if p fInfo.name && fInfo.hasValue && fInfo.levelParams.length == fLvls.length then
let f := fInfo.instantiateValueLevelParams fLvls
return some (f.betaRev e.getAppRevArgs)
else
return none
/- Low-level delta expansion. It is used to implement equation lemmas and elimination principles for recursive definitions. -/
def deltaExpand (e : Expr) (p : Name → Bool) : CoreM Expr :=
Core.transform e fun e => do
match (← delta? e p) with
| some e' => TransformStep.visit e'
| none => TransformStep.visit e
def deltaTarget (mvarId : MVarId) (p : Name → Bool) : MetaM MVarId :=
withMVarContext mvarId do
checkNotAssigned mvarId `delta
change mvarId (← deltaExpand (← getMVarType mvarId) p) (checkDefEq := false)
def deltaLocalDecl (mvarId : MVarId) (fvarId : FVarId) (p : Name → Bool) : MetaM MVarId :=
withMVarContext mvarId do
checkNotAssigned mvarId `delta
let localDecl ← getLocalDecl fvarId
changeLocalDecl mvarId fvarId (← deltaExpand (← getMVarType mvarId) p) (checkDefEq := false)
end Lean.Meta
|
420281979a63b6636f7946ece512717f45af9251
|
2a70b774d16dbdf5a533432ee0ebab6838df0948
|
/_target/deps/mathlib/src/data/complex/basic.lean
|
34c0a8fe6eecbd9571b8155ab6b2ecda58e6b4af
|
[
"Apache-2.0"
] |
permissive
|
hjvromen/lewis
|
40b035973df7c77ebf927afab7878c76d05ff758
|
105b675f73630f028ad5d890897a51b3c1146fb0
|
refs/heads/master
| 1,677,944,636,343
| 1,676,555,301,000
| 1,676,555,301,000
| 327,553,599
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 21,266
|
lean
|
/-
Copyright (c) 2017 Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard, Mario Carneiro
-/
import data.real.sqrt
open_locale big_operators
/-!
# The complex numbers
The complex numbers are modelled as ℝ^2 in the obvious way.
-/
/-! ### Definition and basic arithmmetic -/
/-- Complex numbers consist of two `real`s: a real part `re` and an imaginary part `im`. -/
structure complex : Type :=
(re : ℝ) (im : ℝ)
notation `ℂ` := complex
namespace complex
noncomputable instance : decidable_eq ℂ := classical.dec_eq _
/-- The equivalence between the complex numbers and `ℝ × ℝ`. -/
def equiv_real_prod : ℂ ≃ (ℝ × ℝ) :=
{ to_fun := λ z, ⟨z.re, z.im⟩,
inv_fun := λ p, ⟨p.1, p.2⟩,
left_inv := λ ⟨x, y⟩, rfl,
right_inv := λ ⟨x, y⟩, rfl }
@[simp] theorem equiv_real_prod_apply (z : ℂ) : equiv_real_prod z = (z.re, z.im) := rfl
theorem equiv_real_prod_symm_re (x y : ℝ) : (equiv_real_prod.symm (x, y)).re = x := rfl
theorem equiv_real_prod_symm_im (x y : ℝ) : (equiv_real_prod.symm (x, y)).im = y := rfl
@[simp] theorem eta : ∀ z : ℂ, complex.mk z.re z.im = z
| ⟨a, b⟩ := rfl
@[ext]
theorem ext : ∀ {z w : ℂ}, z.re = w.re → z.im = w.im → z = w
| ⟨zr, zi⟩ ⟨_, _⟩ rfl rfl := rfl
theorem ext_iff {z w : ℂ} : z = w ↔ z.re = w.re ∧ z.im = w.im :=
⟨λ H, by simp [H], and.rec ext⟩
instance : has_coe ℝ ℂ := ⟨λ r, ⟨r, 0⟩⟩
@[simp, norm_cast] lemma of_real_re (r : ℝ) : (r : ℂ).re = r := rfl
@[simp, norm_cast] lemma of_real_im (r : ℝ) : (r : ℂ).im = 0 := rfl
@[simp, norm_cast] theorem of_real_inj {z w : ℝ} : (z : ℂ) = w ↔ z = w :=
⟨congr_arg re, congr_arg _⟩
instance : has_zero ℂ := ⟨(0 : ℝ)⟩
instance : inhabited ℂ := ⟨0⟩
@[simp] lemma zero_re : (0 : ℂ).re = 0 := rfl
@[simp] lemma zero_im : (0 : ℂ).im = 0 := rfl
@[simp, norm_cast] lemma of_real_zero : ((0 : ℝ) : ℂ) = 0 := rfl
@[simp] theorem of_real_eq_zero {z : ℝ} : (z : ℂ) = 0 ↔ z = 0 := of_real_inj
theorem of_real_ne_zero {z : ℝ} : (z : ℂ) ≠ 0 ↔ z ≠ 0 := not_congr of_real_eq_zero
instance : has_one ℂ := ⟨(1 : ℝ)⟩
@[simp] lemma one_re : (1 : ℂ).re = 1 := rfl
@[simp] lemma one_im : (1 : ℂ).im = 0 := rfl
@[simp, norm_cast] lemma of_real_one : ((1 : ℝ) : ℂ) = 1 := rfl
instance : has_add ℂ := ⟨λ z w, ⟨z.re + w.re, z.im + w.im⟩⟩
@[simp] lemma add_re (z w : ℂ) : (z + w).re = z.re + w.re := rfl
@[simp] lemma add_im (z w : ℂ) : (z + w).im = z.im + w.im := rfl
@[simp] lemma bit0_re (z : ℂ) : (bit0 z).re = bit0 z.re := rfl
@[simp] lemma bit1_re (z : ℂ) : (bit1 z).re = bit1 z.re := rfl
@[simp] lemma bit0_im (z : ℂ) : (bit0 z).im = bit0 z.im := eq.refl _
@[simp] lemma bit1_im (z : ℂ) : (bit1 z).im = bit0 z.im := add_zero _
@[simp, norm_cast] lemma of_real_add (r s : ℝ) : ((r + s : ℝ) : ℂ) = r + s :=
ext_iff.2 $ by simp
@[simp, norm_cast] lemma of_real_bit0 (r : ℝ) : ((bit0 r : ℝ) : ℂ) = bit0 r :=
ext_iff.2 $ by simp [bit0]
@[simp, norm_cast] lemma of_real_bit1 (r : ℝ) : ((bit1 r : ℝ) : ℂ) = bit1 r :=
ext_iff.2 $ by simp [bit1]
instance : has_neg ℂ := ⟨λ z, ⟨-z.re, -z.im⟩⟩
@[simp] lemma neg_re (z : ℂ) : (-z).re = -z.re := rfl
@[simp] lemma neg_im (z : ℂ) : (-z).im = -z.im := rfl
@[simp, norm_cast] lemma of_real_neg (r : ℝ) : ((-r : ℝ) : ℂ) = -r := ext_iff.2 $ by simp
instance : has_sub ℂ := ⟨λ z w, ⟨z.re - w.re, z.im - w.im⟩⟩
instance : has_mul ℂ := ⟨λ z w, ⟨z.re * w.re - z.im * w.im, z.re * w.im + z.im * w.re⟩⟩
@[simp] lemma mul_re (z w : ℂ) : (z * w).re = z.re * w.re - z.im * w.im := rfl
@[simp] lemma mul_im (z w : ℂ) : (z * w).im = z.re * w.im + z.im * w.re := rfl
@[simp, norm_cast] lemma of_real_mul (r s : ℝ) : ((r * s : ℝ) : ℂ) = r * s := ext_iff.2 $ by simp
lemma smul_re (r : ℝ) (z : ℂ) : (↑r * z).re = r * z.re := by simp
lemma smul_im (r : ℝ) (z : ℂ) : (↑r * z).im = r * z.im := by simp
lemma of_real_smul (r : ℝ) (z : ℂ) : (↑r * z) = ⟨r * z.re, r * z.im⟩ := ext (smul_re _ _) (smul_im _ _)
/-! ### The imaginary unit, `I` -/
/-- The imaginary unit. -/
def I : ℂ := ⟨0, 1⟩
@[simp] lemma I_re : I.re = 0 := rfl
@[simp] lemma I_im : I.im = 1 := rfl
@[simp] lemma I_mul_I : I * I = -1 := ext_iff.2 $ by simp
lemma I_mul (z : ℂ) : I * z = ⟨-z.im, z.re⟩ :=
ext_iff.2 $ by simp
lemma I_ne_zero : (I : ℂ) ≠ 0 := mt (congr_arg im) zero_ne_one.symm
lemma mk_eq_add_mul_I (a b : ℝ) : complex.mk a b = a + b * I :=
ext_iff.2 $ by simp
@[simp] lemma re_add_im (z : ℂ) : (z.re : ℂ) + z.im * I = z :=
ext_iff.2 $ by simp
/-! ### Commutative ring instance and lemmas -/
instance : comm_ring ℂ :=
by refine { zero := 0, add := (+), neg := has_neg.neg, sub := has_sub.sub, one := 1, mul := (*),
sub_eq_add_neg := _, ..};
{ intros, apply ext_iff.2; split; simp; ring }
instance re.is_add_group_hom : is_add_group_hom complex.re :=
{ map_add := complex.add_re }
instance im.is_add_group_hom : is_add_group_hom complex.im :=
{ map_add := complex.add_im }
@[simp] lemma I_pow_bit0 (n : ℕ) : I ^ (bit0 n) = (-1) ^ n :=
by rw [pow_bit0', I_mul_I]
@[simp] lemma I_pow_bit1 (n : ℕ) : I ^ (bit1 n) = (-1) ^ n * I :=
by rw [pow_bit1', I_mul_I]
/-! ### Complex conjugation -/
/-- The complex conjugate. -/
def conj : ℂ →+* ℂ :=
begin
refine_struct { to_fun := λ z : ℂ, (⟨z.re, -z.im⟩ : ℂ), .. };
{ intros, ext; simp [add_comm], },
end
@[simp] lemma conj_re (z : ℂ) : (conj z).re = z.re := rfl
@[simp] lemma conj_im (z : ℂ) : (conj z).im = -z.im := rfl
@[simp] lemma conj_of_real (r : ℝ) : conj r = r := ext_iff.2 $ by simp [conj]
@[simp] lemma conj_I : conj I = -I := ext_iff.2 $ by simp
@[simp] lemma conj_bit0 (z : ℂ) : conj (bit0 z) = bit0 (conj z) := ext_iff.2 $ by simp [bit0]
@[simp] lemma conj_bit1 (z : ℂ) : conj (bit1 z) = bit1 (conj z) := ext_iff.2 $ by simp [bit0]
@[simp] lemma conj_neg_I : conj (-I) = I := ext_iff.2 $ by simp
@[simp] lemma conj_conj (z : ℂ) : conj (conj z) = z :=
ext_iff.2 $ by simp
lemma conj_involutive : function.involutive conj := conj_conj
lemma conj_bijective : function.bijective conj := conj_involutive.bijective
lemma conj_inj {z w : ℂ} : conj z = conj w ↔ z = w :=
conj_bijective.1.eq_iff
@[simp] lemma conj_eq_zero {z : ℂ} : conj z = 0 ↔ z = 0 :=
by simpa using @conj_inj z 0
lemma eq_conj_iff_real {z : ℂ} : conj z = z ↔ ∃ r : ℝ, z = r :=
⟨λ h, ⟨z.re, ext rfl $ eq_zero_of_neg_eq (congr_arg im h)⟩,
λ ⟨h, e⟩, by rw [e, conj_of_real]⟩
lemma eq_conj_iff_re {z : ℂ} : conj z = z ↔ (z.re : ℂ) = z :=
eq_conj_iff_real.trans ⟨by rintro ⟨r, rfl⟩; simp, λ h, ⟨_, h.symm⟩⟩
instance : star_ring ℂ :=
{ star := λ z, conj z,
star_involutive := λ z, by simp,
star_mul := λ r s, by { ext; simp [mul_comm], },
star_add := by simp, }
/-! ### Norm squared -/
/-- The norm squared function. -/
@[pp_nodot] def norm_sq : monoid_with_zero_hom ℂ ℝ :=
{ to_fun := λ z, z.re * z.re + z.im * z.im,
map_zero' := by simp,
map_one' := by simp,
map_mul' := λ z w, by { dsimp, ring } }
lemma norm_sq_apply (z : ℂ) : norm_sq z = z.re * z.re + z.im * z.im := rfl
@[simp] lemma norm_sq_of_real (r : ℝ) : norm_sq r = r * r :=
by simp [norm_sq]
lemma norm_sq_zero : norm_sq 0 = 0 := norm_sq.map_zero
lemma norm_sq_one : norm_sq 1 = 1 := norm_sq.map_one
@[simp] lemma norm_sq_I : norm_sq I = 1 := by simp [norm_sq]
lemma norm_sq_nonneg (z : ℂ) : 0 ≤ norm_sq z :=
add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)
lemma norm_sq_eq_zero {z : ℂ} : norm_sq z = 0 ↔ z = 0 :=
⟨λ h, ext
(eq_zero_of_mul_self_add_mul_self_eq_zero h)
(eq_zero_of_mul_self_add_mul_self_eq_zero $ (add_comm _ _).trans h),
λ h, h.symm ▸ norm_sq_zero⟩
@[simp] lemma norm_sq_pos {z : ℂ} : 0 < norm_sq z ↔ z ≠ 0 :=
(norm_sq_nonneg z).lt_iff_ne.trans $ not_congr (eq_comm.trans norm_sq_eq_zero)
@[simp] lemma norm_sq_neg (z : ℂ) : norm_sq (-z) = norm_sq z :=
by simp [norm_sq]
@[simp] lemma norm_sq_conj (z : ℂ) : norm_sq (conj z) = norm_sq z :=
by simp [norm_sq]
lemma norm_sq_mul (z w : ℂ) : norm_sq (z * w) = norm_sq z * norm_sq w :=
norm_sq.map_mul z w
lemma norm_sq_add (z w : ℂ) : norm_sq (z + w) =
norm_sq z + norm_sq w + 2 * (z * conj w).re :=
by dsimp [norm_sq]; ring
lemma re_sq_le_norm_sq (z : ℂ) : z.re * z.re ≤ norm_sq z :=
le_add_of_nonneg_right (mul_self_nonneg _)
lemma im_sq_le_norm_sq (z : ℂ) : z.im * z.im ≤ norm_sq z :=
le_add_of_nonneg_left (mul_self_nonneg _)
theorem mul_conj (z : ℂ) : z * conj z = norm_sq z :=
ext_iff.2 $ by simp [norm_sq, mul_comm, sub_eq_neg_add, add_comm]
theorem add_conj (z : ℂ) : z + conj z = (2 * z.re : ℝ) :=
ext_iff.2 $ by simp [two_mul]
/-- The coercion `ℝ → ℂ` as a `ring_hom`. -/
def of_real : ℝ →+* ℂ := ⟨coe, of_real_one, of_real_mul, of_real_zero, of_real_add⟩
@[simp] lemma of_real_eq_coe (r : ℝ) : of_real r = r := rfl
@[simp] lemma I_sq : I ^ 2 = -1 := by rw [pow_two, I_mul_I]
@[simp] lemma sub_re (z w : ℂ) : (z - w).re = z.re - w.re := rfl
@[simp] lemma sub_im (z w : ℂ) : (z - w).im = z.im - w.im := rfl
@[simp, norm_cast] lemma of_real_sub (r s : ℝ) : ((r - s : ℝ) : ℂ) = r - s := ext_iff.2 $ by simp
@[simp, norm_cast] lemma of_real_pow (r : ℝ) (n : ℕ) : ((r ^ n : ℝ) : ℂ) = r ^ n :=
by induction n; simp [*, of_real_mul, pow_succ]
theorem sub_conj (z : ℂ) : z - conj z = (2 * z.im : ℝ) * I :=
ext_iff.2 $ by simp [two_mul, sub_eq_add_neg]
lemma norm_sq_sub (z w : ℂ) : norm_sq (z - w) =
norm_sq z + norm_sq w - 2 * (z * conj w).re :=
by rw [sub_eq_add_neg, norm_sq_add]; simp [-mul_re, add_comm, add_left_comm, sub_eq_add_neg]
/-! ### Inversion -/
noncomputable instance : has_inv ℂ := ⟨λ z, conj z * ((norm_sq z)⁻¹:ℝ)⟩
theorem inv_def (z : ℂ) : z⁻¹ = conj z * ((norm_sq z)⁻¹:ℝ) := rfl
@[simp] lemma inv_re (z : ℂ) : (z⁻¹).re = z.re / norm_sq z := by simp [inv_def, division_def]
@[simp] lemma inv_im (z : ℂ) : (z⁻¹).im = -z.im / norm_sq z := by simp [inv_def, division_def]
@[simp, norm_cast] lemma of_real_inv (r : ℝ) : ((r⁻¹ : ℝ) : ℂ) = r⁻¹ :=
ext_iff.2 $ begin
simp,
by_cases r = 0, { simp [h] },
{ rw [← div_div_eq_div_mul, div_self h, one_div] },
end
protected lemma inv_zero : (0⁻¹ : ℂ) = 0 :=
by rw [← of_real_zero, ← of_real_inv, inv_zero]
protected theorem mul_inv_cancel {z : ℂ} (h : z ≠ 0) : z * z⁻¹ = 1 :=
by rw [inv_def, ← mul_assoc, mul_conj, ← of_real_mul,
mul_inv_cancel (mt norm_sq_eq_zero.1 h), of_real_one]
/-! ### Field instance and lemmas -/
noncomputable instance : field ℂ :=
{ inv := has_inv.inv,
exists_pair_ne := ⟨0, 1, mt (congr_arg re) zero_ne_one⟩,
mul_inv_cancel := @complex.mul_inv_cancel,
inv_zero := complex.inv_zero,
..complex.comm_ring }
@[simp] lemma I_fpow_bit0 (n : ℤ) : I ^ (bit0 n) = (-1) ^ n :=
by rw [fpow_bit0', I_mul_I]
@[simp] lemma I_fpow_bit1 (n : ℤ) : I ^ (bit1 n) = (-1) ^ n * I :=
by rw [fpow_bit1', I_mul_I]
lemma div_re (z w : ℂ) : (z / w).re = z.re * w.re / norm_sq w + z.im * w.im / norm_sq w :=
by simp [div_eq_mul_inv, mul_assoc, sub_eq_add_neg]
lemma div_im (z w : ℂ) : (z / w).im = z.im * w.re / norm_sq w - z.re * w.im / norm_sq w :=
by simp [div_eq_mul_inv, mul_assoc, sub_eq_add_neg, add_comm]
@[simp, norm_cast] lemma of_real_div (r s : ℝ) : ((r / s : ℝ) : ℂ) = r / s :=
of_real.map_div r s
@[simp, norm_cast] lemma of_real_fpow (r : ℝ) (n : ℤ) : ((r ^ n : ℝ) : ℂ) = (r : ℂ) ^ n :=
of_real.map_fpow r n
@[simp] lemma div_I (z : ℂ) : z / I = -(z * I) :=
(div_eq_iff_mul_eq I_ne_zero).2 $ by simp [mul_assoc]
@[simp] lemma inv_I : I⁻¹ = -I :=
by simp [inv_eq_one_div]
@[simp] lemma norm_sq_inv (z : ℂ) : norm_sq z⁻¹ = (norm_sq z)⁻¹ :=
norm_sq.map_inv' z
@[simp] lemma norm_sq_div (z w : ℂ) : norm_sq (z / w) = norm_sq z / norm_sq w :=
norm_sq.map_div z w
/-! ### Cast lemmas -/
@[simp, norm_cast] theorem of_real_nat_cast (n : ℕ) : ((n : ℝ) : ℂ) = n :=
of_real.map_nat_cast n
@[simp, norm_cast] lemma nat_cast_re (n : ℕ) : (n : ℂ).re = n :=
by rw [← of_real_nat_cast, of_real_re]
@[simp, norm_cast] lemma nat_cast_im (n : ℕ) : (n : ℂ).im = 0 :=
by rw [← of_real_nat_cast, of_real_im]
@[simp, norm_cast] theorem of_real_int_cast (n : ℤ) : ((n : ℝ) : ℂ) = n :=
of_real.map_int_cast n
@[simp, norm_cast] lemma int_cast_re (n : ℤ) : (n : ℂ).re = n :=
by rw [← of_real_int_cast, of_real_re]
@[simp, norm_cast] lemma int_cast_im (n : ℤ) : (n : ℂ).im = 0 :=
by rw [← of_real_int_cast, of_real_im]
@[simp, norm_cast] theorem of_real_rat_cast (n : ℚ) : ((n : ℝ) : ℂ) = n :=
of_real.map_rat_cast n
@[simp, norm_cast] lemma rat_cast_re (q : ℚ) : (q : ℂ).re = q :=
by rw [← of_real_rat_cast, of_real_re]
@[simp, norm_cast] lemma rat_cast_im (q : ℚ) : (q : ℂ).im = 0 :=
by rw [← of_real_rat_cast, of_real_im]
/-! ### Characteristic zero -/
instance char_zero_complex : char_zero ℂ :=
char_zero_of_inj_zero $ λ n h,
by rwa [← of_real_nat_cast, of_real_eq_zero, nat.cast_eq_zero] at h
theorem re_eq_add_conj (z : ℂ) : (z.re : ℂ) = (z + conj z) / 2 :=
by rw [add_conj]; simp; rw [mul_div_cancel_left (z.re:ℂ) two_ne_zero']
/-! ### Absolute value -/
/-- The complex absolute value function, defined as the square root of the norm squared. -/
@[pp_nodot] noncomputable def abs (z : ℂ) : ℝ := (norm_sq z).sqrt
local notation `abs'` := _root_.abs
@[simp, norm_cast] lemma abs_of_real (r : ℝ) : abs r = abs' r :=
by simp [abs, norm_sq_of_real, real.sqrt_mul_self_eq_abs]
lemma abs_of_nonneg {r : ℝ} (h : 0 ≤ r) : abs r = r :=
(abs_of_real _).trans (abs_of_nonneg h)
lemma abs_of_nat (n : ℕ) : complex.abs n = n :=
calc complex.abs n = complex.abs (n:ℝ) : by rw [of_real_nat_cast]
... = _ : abs_of_nonneg (nat.cast_nonneg n)
lemma mul_self_abs (z : ℂ) : abs z * abs z = norm_sq z :=
real.mul_self_sqrt (norm_sq_nonneg _)
@[simp] lemma abs_zero : abs 0 = 0 := by simp [abs]
@[simp] lemma abs_one : abs 1 = 1 := by simp [abs]
@[simp] lemma abs_I : abs I = 1 := by simp [abs]
@[simp] lemma abs_two : abs 2 = 2 :=
calc abs 2 = abs (2 : ℝ) : by rw [of_real_bit0, of_real_one]
... = (2 : ℝ) : abs_of_nonneg (by norm_num)
lemma abs_nonneg (z : ℂ) : 0 ≤ abs z :=
real.sqrt_nonneg _
@[simp] lemma abs_eq_zero {z : ℂ} : abs z = 0 ↔ z = 0 :=
(real.sqrt_eq_zero $ norm_sq_nonneg _).trans norm_sq_eq_zero
lemma abs_ne_zero {z : ℂ} : abs z ≠ 0 ↔ z ≠ 0 :=
not_congr abs_eq_zero
@[simp] lemma abs_conj (z : ℂ) : abs (conj z) = abs z :=
by simp [abs]
@[simp] lemma abs_mul (z w : ℂ) : abs (z * w) = abs z * abs w :=
by rw [abs, norm_sq_mul, real.sqrt_mul (norm_sq_nonneg _)]; refl
lemma abs_re_le_abs (z : ℂ) : abs' z.re ≤ abs z :=
by rw [mul_self_le_mul_self_iff (_root_.abs_nonneg z.re) (abs_nonneg _),
abs_mul_abs_self, mul_self_abs];
apply re_sq_le_norm_sq
lemma abs_im_le_abs (z : ℂ) : abs' z.im ≤ abs z :=
by rw [mul_self_le_mul_self_iff (_root_.abs_nonneg z.im) (abs_nonneg _),
abs_mul_abs_self, mul_self_abs];
apply im_sq_le_norm_sq
lemma re_le_abs (z : ℂ) : z.re ≤ abs z :=
(abs_le.1 (abs_re_le_abs _)).2
lemma im_le_abs (z : ℂ) : z.im ≤ abs z :=
(abs_le.1 (abs_im_le_abs _)).2
lemma abs_add (z w : ℂ) : abs (z + w) ≤ abs z + abs w :=
(mul_self_le_mul_self_iff (abs_nonneg _)
(add_nonneg (abs_nonneg _) (abs_nonneg _))).2 $
begin
rw [mul_self_abs, add_mul_self_eq, mul_self_abs, mul_self_abs,
add_right_comm, norm_sq_add, add_le_add_iff_left,
mul_assoc, mul_le_mul_left (@zero_lt_two ℝ _ _)],
simpa [-mul_re] using re_le_abs (z * conj w)
end
instance : is_absolute_value abs :=
{ abv_nonneg := abs_nonneg,
abv_eq_zero := λ _, abs_eq_zero,
abv_add := abs_add,
abv_mul := abs_mul }
open is_absolute_value
@[simp] lemma abs_abs (z : ℂ) : abs' (abs z) = abs z :=
_root_.abs_of_nonneg (abs_nonneg _)
@[simp] lemma abs_pos {z : ℂ} : 0 < abs z ↔ z ≠ 0 := abv_pos abs
@[simp] lemma abs_neg : ∀ z, abs (-z) = abs z := abv_neg abs
lemma abs_sub : ∀ z w, abs (z - w) = abs (w - z) := abv_sub abs
lemma abs_sub_le : ∀ a b c, abs (a - c) ≤ abs (a - b) + abs (b - c) := abv_sub_le abs
@[simp] theorem abs_inv : ∀ z, abs z⁻¹ = (abs z)⁻¹ := abv_inv abs
@[simp] theorem abs_div : ∀ z w, abs (z / w) = abs z / abs w := abv_div abs
lemma abs_abs_sub_le_abs_sub : ∀ z w, abs' (abs z - abs w) ≤ abs (z - w) :=
abs_abv_sub_le_abv_sub abs
lemma abs_le_abs_re_add_abs_im (z : ℂ) : abs z ≤ abs' z.re + abs' z.im :=
by simpa [re_add_im] using abs_add z.re (z.im * I)
lemma abs_re_div_abs_le_one (z : ℂ) : abs' (z.re / z.abs) ≤ 1 :=
if hz : z = 0 then by simp [hz, zero_le_one]
else by { simp_rw [_root_.abs_div, abs_abs, div_le_iff (abs_pos.2 hz), one_mul, abs_re_le_abs] }
lemma abs_im_div_abs_le_one (z : ℂ) : abs' (z.im / z.abs) ≤ 1 :=
if hz : z = 0 then by simp [hz, zero_le_one]
else by { simp_rw [_root_.abs_div, abs_abs, div_le_iff (abs_pos.2 hz), one_mul, abs_im_le_abs] }
@[simp, norm_cast] lemma abs_cast_nat (n : ℕ) : abs (n : ℂ) = n :=
by rw [← of_real_nat_cast, abs_of_nonneg (nat.cast_nonneg n)]
@[simp, norm_cast] lemma int_cast_abs (n : ℤ) : ↑(abs' n) = abs n :=
by rw [← of_real_int_cast, abs_of_real, int.cast_abs]
lemma norm_sq_eq_abs (x : ℂ) : norm_sq x = abs x ^ 2 :=
by rw [abs, pow_two, real.mul_self_sqrt (norm_sq_nonneg _)]
/-! ### Cauchy sequences -/
theorem is_cau_seq_re (f : cau_seq ℂ abs) : is_cau_seq abs' (λ n, (f n).re) :=
λ ε ε0, (f.cauchy ε0).imp $ λ i H j ij,
lt_of_le_of_lt (by simpa using abs_re_le_abs (f j - f i)) (H _ ij)
theorem is_cau_seq_im (f : cau_seq ℂ abs) : is_cau_seq abs' (λ n, (f n).im) :=
λ ε ε0, (f.cauchy ε0).imp $ λ i H j ij,
lt_of_le_of_lt (by simpa using abs_im_le_abs (f j - f i)) (H _ ij)
/-- The real part of a complex Cauchy sequence, as a real Cauchy sequence. -/
noncomputable def cau_seq_re (f : cau_seq ℂ abs) : cau_seq ℝ abs' :=
⟨_, is_cau_seq_re f⟩
/-- The imaginary part of a complex Cauchy sequence, as a real Cauchy sequence. -/
noncomputable def cau_seq_im (f : cau_seq ℂ abs) : cau_seq ℝ abs' :=
⟨_, is_cau_seq_im f⟩
lemma is_cau_seq_abs {f : ℕ → ℂ} (hf : is_cau_seq abs f) :
is_cau_seq abs' (abs ∘ f) :=
λ ε ε0, let ⟨i, hi⟩ := hf ε ε0 in
⟨i, λ j hj, lt_of_le_of_lt (abs_abs_sub_le_abs_sub _ _) (hi j hj)⟩
/-- The limit of a Cauchy sequence of complex numbers. -/
noncomputable def lim_aux (f : cau_seq ℂ abs) : ℂ :=
⟨cau_seq.lim (cau_seq_re f), cau_seq.lim (cau_seq_im f)⟩
theorem equiv_lim_aux (f : cau_seq ℂ abs) : f ≈ cau_seq.const abs (lim_aux f) :=
λ ε ε0, (exists_forall_ge_and
(cau_seq.equiv_lim ⟨_, is_cau_seq_re f⟩ _ (half_pos ε0))
(cau_seq.equiv_lim ⟨_, is_cau_seq_im f⟩ _ (half_pos ε0))).imp $
λ i H j ij, begin
cases H _ ij with H₁ H₂,
apply lt_of_le_of_lt (abs_le_abs_re_add_abs_im _),
dsimp [lim_aux] at *,
have := add_lt_add H₁ H₂,
rwa add_halves at this,
end
noncomputable instance : cau_seq.is_complete ℂ abs :=
⟨λ f, ⟨lim_aux f, equiv_lim_aux f⟩⟩
open cau_seq
lemma lim_eq_lim_im_add_lim_re (f : cau_seq ℂ abs) : lim f =
↑(lim (cau_seq_re f)) + ↑(lim (cau_seq_im f)) * I :=
lim_eq_of_equiv_const $
calc f ≈ _ : equiv_lim_aux f
... = cau_seq.const abs (↑(lim (cau_seq_re f)) + ↑(lim (cau_seq_im f)) * I) :
cau_seq.ext (λ _, complex.ext (by simp [lim_aux, cau_seq_re]) (by simp [lim_aux, cau_seq_im]))
lemma lim_re (f : cau_seq ℂ abs) : lim (cau_seq_re f) = (lim f).re :=
by rw [lim_eq_lim_im_add_lim_re]; simp
lemma lim_im (f : cau_seq ℂ abs) : lim (cau_seq_im f) = (lim f).im :=
by rw [lim_eq_lim_im_add_lim_re]; simp
lemma is_cau_seq_conj (f : cau_seq ℂ abs) : is_cau_seq abs (λ n, conj (f n)) :=
λ ε ε0, let ⟨i, hi⟩ := f.2 ε ε0 in
⟨i, λ j hj, by rw [← conj.map_sub, abs_conj]; exact hi j hj⟩
/-- The complex conjugate of a complex Cauchy sequence, as a complex Cauchy sequence. -/
noncomputable def cau_seq_conj (f : cau_seq ℂ abs) : cau_seq ℂ abs :=
⟨_, is_cau_seq_conj f⟩
lemma lim_conj (f : cau_seq ℂ abs) : lim (cau_seq_conj f) = conj (lim f) :=
complex.ext (by simp [cau_seq_conj, (lim_re _).symm, cau_seq_re])
(by simp [cau_seq_conj, (lim_im _).symm, cau_seq_im, (lim_neg _).symm]; refl)
/-- The absolute value of a complex Cauchy sequence, as a real Cauchy sequence. -/
noncomputable def cau_seq_abs (f : cau_seq ℂ abs) : cau_seq ℝ abs' :=
⟨_, is_cau_seq_abs f.2⟩
lemma lim_abs (f : cau_seq ℂ abs) : lim (cau_seq_abs f) = abs (lim f) :=
lim_eq_of_equiv_const (λ ε ε0,
let ⟨i, hi⟩ := equiv_lim f ε ε0 in
⟨i, λ j hj, lt_of_le_of_lt (abs_abs_sub_le_abs_sub _ _) (hi j hj)⟩)
@[simp, norm_cast] lemma of_real_prod {α : Type*} (s : finset α) (f : α → ℝ) :
((∏ i in s, f i : ℝ) : ℂ) = ∏ i in s, (f i : ℂ) :=
ring_hom.map_prod of_real _ _
@[simp, norm_cast] lemma of_real_sum {α : Type*} (s : finset α) (f : α → ℝ) :
((∑ i in s, f i : ℝ) : ℂ) = ∑ i in s, (f i : ℂ) :=
ring_hom.map_sum of_real _ _
end complex
|
78673dacad7e54a2e19cf0ec63391d4508e92c5d
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/src/lake/test/lock/Error.lean
|
337145a16f6cfa5b2283b8c617d52e2bc05abe3c
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 54
|
lean
|
#eval show IO Unit from throw <| .userError "failure"
|
91c03c58c756bb8dea992219c878519623a40dbf
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/algebra/category/Ring/adjunctions.lean
|
d1d6809d85fea02c82eacc3c2ba3c343bb968887
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 1,622
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Johannes Hölzl
-/
import algebra.category.Ring.basic
import data.mv_polynomial.comm_ring
/-!
Multivariable polynomials on a type is the left adjoint of the
forgetful functor from commutative rings to types.
-/
noncomputable theory
universe u
open mv_polynomial
open category_theory
namespace CommRing
open_locale classical
/--
The free functor `Type u ⥤ CommRing` sending a type `X` to the multivariable (commutative)
polynomials with variables `x : X`.
-/
def free : Type u ⥤ CommRing.{u} :=
{ obj := λ α, of (mv_polynomial α ℤ),
map := λ X Y f,
(↑(rename f : _ →ₐ[ℤ] _) : (mv_polynomial X ℤ →+* mv_polynomial Y ℤ)),
-- TODO these next two fields can be done by `tidy`, but the calls in `dsimp` and `simp` it
-- generates are too slow.
map_id' := λ X, ring_hom.ext $ rename_id,
map_comp' := λ X Y Z f g, ring_hom.ext $ λ p, (rename_rename f g p).symm }
@[simp] lemma free_obj_coe {α : Type u} :
(free.obj α : Type u) = mv_polynomial α ℤ := rfl
@[simp] lemma free_map_coe {α β : Type u} {f : α → β} :
⇑(free.map f) = rename f := rfl
/--
The free-forgetful adjunction for commutative rings.
-/
def adj : free ⊣ forget CommRing.{u} :=
adjunction.mk_of_hom_equiv
{ hom_equiv := λ X R, hom_equiv,
hom_equiv_naturality_left_symm' :=
λ _ _ Y f g, ring_hom.ext $ λ x, eval₂_cast_comp f (int.cast_ring_hom Y) g x }
instance : is_right_adjoint (forget CommRing.{u}) := ⟨_, adj⟩
end CommRing
|
b73b758e84cdb19735ac54ce20788832d1c05371
|
32025d5c2d6e33ad3b6dd8a3c91e1e838066a7f7
|
/tests/lean/run/newfrontend1.lean
|
cc3660d434a1a26087ba03374ed6a3ea182b79b6
|
[
"Apache-2.0"
] |
permissive
|
walterhu1015/lean4
|
b2c71b688975177402758924eaa513475ed6ce72
|
2214d81e84646a905d0b20b032c89caf89c737ad
|
refs/heads/master
| 1,671,342,096,906
| 1,599,695,985,000
| 1,599,695,985,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,035
|
lean
|
def x := 1
new_frontend
#check x
variables {α : Type}
def f (a : α) : α :=
a
def tst (xs : List Nat) : Nat :=
xs.foldl (init := 10) (· + ·)
#check tst [1, 2, 3]
#check tst
#check (fun stx => if True then let e := stx; HasPure.pure e else HasPure.pure stx : Nat → Id Nat)
#check let x : Nat := 1; x
def foo (a : Nat) (b : Nat := 10) (c : Bool := Bool.true) : Nat :=
a + b
set_option pp.all true
#check foo 1
#check foo 3 (c := false)
def Nat.boo (a : Nat) :=
succ a -- succ here is resolved as `Nat.succ`.
#check Nat.boo
#check true
-- apply is still a valid identifier name
def apply := "hello"
#check apply
theorem simple1 (x y : Nat) (h : x = y) : x = y :=
by {
assumption
}
theorem simple2 (x y : Nat) : x = y → x = y :=
by {
intro h;
assumption
}
syntax "intro2" : tactic
macro_rules
| `(tactic| intro2) => `(tactic| intro; intro )
theorem simple3 (x y : Nat) : x = x → x = y → x = y :=
by {
intro2;
assumption
}
macro intro3 : tactic => `(intro; intro; intro)
macro check2 x:term : command => `(#check $x #check $x)
macro foo x:term "," y:term : term => `($x + $y + $x)
set_option pp.all false
check2 0+1
check2 foo 0,1
theorem simple4 (x y : Nat) : y = y → x = x → x = y → x = y :=
by {
intro3;
assumption
}
theorem simple5 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intro h1; intro _; intro h3;
exact Eq.trans h3 h1
}
theorem simple6 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intro h1; intro _; intro h3;
refine Eq.trans ?_ h1;
assumption
}
theorem simple7 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intro h1; intro _; intro h3;
refine! Eq.trans ?pre ?post;
exact y;
{ exact h3 };
{ exact h1 }
}
theorem simple8 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intro h1; intro _; intro h3;
refine! Eq.trans ?pre ?post;
case post { exact h1 };
case pre { exact h3 };
}
theorem simple9 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intros h1 _ h3;
traceState;
{ refine! Eq.trans ?pre ?post;
(exact h1) <|> (exact y; exact h3; assumption) }
}
namespace Foo
def Prod.mk := 1
#check (⟨2, 3⟩ : Prod _ _)
end Foo
theorem simple10 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intro h1; intro h2; intro h3;
skip;
apply Eq.trans;
exact h3;
assumption
}
theorem simple11 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intro h1; intro h2; intro h3;
apply @Eq.trans;
traceState;
exact h3;
assumption
}
macro try t:tactic : tactic => `($t <|> skip)
syntax "repeat" tactic : tactic
macro_rules
| `(tactic| repeat $t) => `(tactic| try ($t; repeat $t))
theorem simple12 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intro h1; intro h2; intro h3;
apply @Eq.trans;
try exact h1; -- `exact h1` fails
traceState;
try exact h3;
traceState;
try exact h1;
}
theorem simple13 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intros h1 h2 h3;
traceState;
apply @Eq.trans;
case main.b exact y;
traceState;
repeat assumption
}
theorem simple14 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intros;
apply @Eq.trans;
case main.b exact y;
repeat assumption
}
theorem simple15 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intros h1 h2 h3;
revert y;
intros y h1 h3;
apply Eq.trans;
exact h3;
exact h1
}
theorem simple16 (x y z : Nat) : y = z → x = x → x = y → x = z :=
by {
intros h1 h2 h3;
try (clear x); -- should fail
clear h2;
traceState;
apply Eq.trans;
exact h3;
exact h1
}
macro "blabla" : tactic => `(assumption)
-- Tactic head symbols do not become reserved words
def blabla := 100
#check blabla
theorem simple17 (x : Nat) (h : x = 0) : x = 0 :=
by blabla
theorem simple18 (x : Nat) (h : x = 0) : x = 0 :=
by blabla
theorem simple19 (x y : Nat) (h₁ : x = 0) (h₂ : x = y) : y = 0 :=
by subst x; subst y; exact rfl
theorem tstprec1 (x y z : Nat) : x + y * z = x + (y * z) :=
rfl
theorem tstprec2 (x y z : Nat) : y * z + x = (y * z) + x :=
rfl
set_option pp.all true
#check fun {α} (a : α) => a
#check @(fun α (a : α) => a)
#check
let myid := fun {α} (a : α) => a;
myid [myid 1]
-- In the following example, we need `@` otherwise we will try to insert mvars for α and [HasAdd α],
-- and will fail to generate instance for [HasAdd α]
#check @(fun α (s : HasAdd α) (a : α) => a + a)
def g1 {α} (a₁ a₂ : α) {β} (b : β) : α × α × β :=
(a₁, a₂, b)
def id1 : {α : Type} → α → α :=
fun x => x
def listId : List ({α : Type} → α → α) :=
(fun x => x) :: []
def id2 : {α : Type} → α → α :=
@(fun α (x : α) => id1 x)
def id3 : {α : Type} → α → α :=
@(fun α x => id1 x)
def id4 : {α : Type} → α → α :=
fun x => id1 x
def id5 : {α : Type} → α → α :=
fun {α} x => id1 x
def id6 : {α : Type} → α → α :=
@(fun {α} x => id1 x)
def id7 : {α : Type} → α → α :=
fun {α} x => @id α x
def id8 : {α : Type} → α → α :=
fun {α} x => id (@id α x)
def altTst1 {m σ} [Alternative m] [Monad m] : Alternative (StateT σ m) :=
⟨StateT.failure, StateT.orelse⟩
def altTst2 {m σ} [Alternative m] [Monad m] : Alternative (StateT σ m) :=
⟨@(fun α => StateT.failure), @(fun α => StateT.orelse)⟩
def altTst3 {m σ} [Alternative m] [Monad m] : Alternative (StateT σ m) :=
⟨fun {α} => StateT.failure, fun {α} => StateT.orelse⟩
def altTst4 {m σ} [Alternative m] [Monad m] : Alternative (StateT σ m) :=
⟨@StateT.failure _ _ _ _, @StateT.orelse _ _ _ _⟩
#check_failure 1 + true
/-
universes u v
/-
MonadFunctorT.{u ?M_1 v} (λ (β : Type u), m α) (λ (β : Type u), m' α) n n'
-/
set_option syntaxMaxDepth 100
set_option trace.Elab true
def adapt {m m' σ σ'} {n n' : Type → Type} [MonadFunctor m m' n n'] [MonadStateAdapter σ σ' m m'] : MonadStateAdapter σ σ' n n' :=
⟨fun split join => monadMap (adaptState split join : m α → m' α)⟩
-/
syntax "fn" (term:max)+ "=>" term : term
macro_rules
| `(fn $xs* => $b) => `(fun $xs* => $b)
set_option pp.all false
#check fn x => x+1
#check fn α (a : α) => a
def tst1 : {α : Type} → α → α :=
@(fn α a => a)
#check @tst1
syntax ident "==>" term : term
syntax "{" ident "}" "==>" term : term
macro_rules
| `($x:ident ==> $b) => `(fn $x => $b)
| `({$x:ident} ==> $b) => `(fun {$x:ident} => $b)
#check x ==> x+1
def tst2a : {α : Type} → α → α :=
@(α ==> a ==> a)
def tst2b : {α : Type} → α → α :=
{α} ==> a ==> a
#check @tst2a
#check @tst2b
def tst3a : {α : Type} → {β : Type} → α → β → α × β :=
@(α ==> @(β ==> a ==> b ==> (a, b)))
def tst3b : {α : Type} → {β : Type} → α → β → α × β :=
{α} ==> {β} ==> a ==> b ==> (a, b)
syntax "function" (term:max)+ "=>" term : term
macro_rules
| `(function $xs* => $b) => `(@(fun $xs* => $b))
def tst4 : {α : Type} → {β : Type} → α → β → α × β :=
function α β a b => (a, b)
|
9d04884277cf1a8730f73b04f7448ec271e3d4a6
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/algebraic_geometry/prime_spectrum.lean
|
de8309afa65fe77f7e11ddb701347b4da91d01af
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 15,602
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import topology.opens
import ring_theory.ideal.prod
import linear_algebra.finsupp
import algebra.punit_instances
/-!
# Prime spectrum of a commutative ring
The prime spectrum of a commutative ring is the type of all prime ideals.
It is naturally endowed with a topology: the Zariski topology.
(It is also naturally endowed with a sheaf of rings,
which is constructed in `algebraic_geometry.structure_sheaf`.)
## Main definitions
* `prime_spectrum R`: The prime spectrum of a commutative ring `R`,
i.e., the set of all prime ideals of `R`.
* `zero_locus s`: The zero locus of a subset `s` of `R`
is the subset of `prime_spectrum R` consisting of all prime ideals that contain `s`.
* `vanishing_ideal t`: The vanishing ideal of a subset `t` of `prime_spectrum R`
is the intersection of points in `t` (viewed as prime ideals).
## Conventions
We denote subsets of rings with `s`, `s'`, etc...
whereas we denote subsets of prime spectra with `t`, `t'`, etc...
## Inspiration/contributors
The contents of this file draw inspiration from
<https://github.com/ramonfmir/lean-scheme>
which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau,
and Chris Hughes (on an earlier repository).
-/
noncomputable theory
open_locale classical
universe variables u v
variables (R : Type u) [comm_ring R]
/-- The prime spectrum of a commutative ring `R`
is the type of all prime ideals of `R`.
It is naturally endowed with a topology (the Zariski topology),
and a sheaf of commutative rings (see `algebraic_geometry.structure_sheaf`).
It is a fundamental building block in algebraic geometry. -/
@[nolint has_inhabited_instance]
def prime_spectrum := {I : ideal R // I.is_prime}
variable {R}
namespace prime_spectrum
/-- A method to view a point in the prime spectrum of a commutative ring
as an ideal of that ring. -/
abbreviation as_ideal (x : prime_spectrum R) : ideal R := x.val
instance is_prime (x : prime_spectrum R) :
x.as_ideal.is_prime := x.2
/--
The prime spectrum of the zero ring is empty.
-/
lemma punit (x : prime_spectrum punit) : false :=
x.1.ne_top_iff_one.1 x.2.1 $ subsingleton.elim (0 : punit) 1 ▸ x.1.zero_mem
section
variables (R) (S : Type v) [comm_ring S]
/-- The prime spectrum of `R × S` is in bijection with the disjoint unions of the prime spectrum of
`R` and the prime spectrum of `S`. -/
noncomputable def prime_spectrum_prod :
prime_spectrum (R × S) ≃ prime_spectrum R ⊕ prime_spectrum S :=
ideal.prime_ideals_equiv R S
variables {R S}
@[simp] lemma prime_spectrum_prod_symm_inl_as_ideal (x : prime_spectrum R) :
((prime_spectrum_prod R S).symm (sum.inl x)).as_ideal = ideal.prod x.as_ideal ⊤ :=
by { cases x, refl }
@[simp] lemma prime_spectrum_prod_symm_inr_as_ideal (x : prime_spectrum S) :
((prime_spectrum_prod R S).symm (sum.inr x)).as_ideal = ideal.prod ⊤ x.as_ideal :=
by { cases x, refl }
end
@[ext] lemma ext {x y : prime_spectrum R} :
x = y ↔ x.as_ideal = y.as_ideal :=
subtype.ext_iff_val
/-- The zero locus of a set `s` of elements of a commutative ring `R`
is the set of all prime ideals of the ring that contain the set `s`.
An element `f` of `R` can be thought of as a dependent function
on the prime spectrum of `R`.
At a point `x` (a prime ideal)
the function (i.e., element) `f` takes values in the quotient ring `R` modulo the prime ideal `x`.
In this manner, `zero_locus s` is exactly the subset of `prime_spectrum R`
where all "functions" in `s` vanish simultaneously.
-/
def zero_locus (s : set R) : set (prime_spectrum R) :=
{x | s ⊆ x.as_ideal}
@[simp] lemma mem_zero_locus (x : prime_spectrum R) (s : set R) :
x ∈ zero_locus s ↔ s ⊆ x.as_ideal := iff.rfl
@[simp] lemma zero_locus_span (s : set R) :
zero_locus (ideal.span s : set R) = zero_locus s :=
by { ext x, exact (submodule.gi R R).gc s x.as_ideal }
/-- The vanishing ideal of a set `t` of points
of the prime spectrum of a commutative ring `R`
is the intersection of all the prime ideals in the set `t`.
An element `f` of `R` can be thought of as a dependent function
on the prime spectrum of `R`.
At a point `x` (a prime ideal)
the function (i.e., element) `f` takes values in the quotient ring `R` modulo the prime ideal `x`.
In this manner, `vanishing_ideal t` is exactly the ideal of `R`
consisting of all "functions" that vanish on all of `t`.
-/
def vanishing_ideal (t : set (prime_spectrum R)) : ideal R :=
⨅ (x : prime_spectrum R) (h : x ∈ t), x.as_ideal
lemma coe_vanishing_ideal (t : set (prime_spectrum R)) :
(vanishing_ideal t : set R) = {f : R | ∀ x : prime_spectrum R, x ∈ t → f ∈ x.as_ideal} :=
begin
ext f,
rw [vanishing_ideal, submodule.mem_coe, submodule.mem_infi],
apply forall_congr, intro x,
rw [submodule.mem_infi],
end
lemma mem_vanishing_ideal (t : set (prime_spectrum R)) (f : R) :
f ∈ vanishing_ideal t ↔ ∀ x : prime_spectrum R, x ∈ t → f ∈ x.as_ideal :=
by rw [← submodule.mem_coe, coe_vanishing_ideal, set.mem_set_of_eq]
@[simp] lemma vanishing_ideal_singleton (x : prime_spectrum R) :
vanishing_ideal ({x} : set (prime_spectrum R)) = x.as_ideal :=
by simp [vanishing_ideal]
lemma subset_zero_locus_iff_le_vanishing_ideal (t : set (prime_spectrum R)) (I : ideal R) :
t ⊆ zero_locus I ↔ I ≤ vanishing_ideal t :=
⟨λ h f k, (mem_vanishing_ideal _ _).mpr (λ x j, (mem_zero_locus _ _).mpr (h j) k), λ h,
λ x j, (mem_zero_locus _ _).mpr (le_trans h (λ f h, ((mem_vanishing_ideal _ _).mp h) x j))⟩
section gc
variable (R)
/-- `zero_locus` and `vanishing_ideal` form a galois connection. -/
lemma gc : @galois_connection
(ideal R) (order_dual (set (prime_spectrum R))) _ _
(λ I, zero_locus I) (λ t, vanishing_ideal t) :=
λ I t, subset_zero_locus_iff_le_vanishing_ideal t I
/-- `zero_locus` and `vanishing_ideal` form a galois connection. -/
lemma gc_set : @galois_connection
(set R) (order_dual (set (prime_spectrum R))) _ _
(λ s, zero_locus s) (λ t, vanishing_ideal t) :=
have ideal_gc : galois_connection (ideal.span) coe := (submodule.gi R R).gc,
by simpa [zero_locus_span, function.comp] using galois_connection.compose _ _ _ _ ideal_gc (gc R)
lemma subset_zero_locus_iff_subset_vanishing_ideal (t : set (prime_spectrum R)) (s : set R) :
t ⊆ zero_locus s ↔ s ⊆ vanishing_ideal t :=
(gc_set R) s t
end gc
-- TODO: we actually get the radical ideal,
-- but I think that isn't in mathlib yet.
lemma subset_vanishing_ideal_zero_locus (s : set R) :
s ⊆ vanishing_ideal (zero_locus s) :=
(gc_set R).le_u_l s
lemma le_vanishing_ideal_zero_locus (I : ideal R) :
I ≤ vanishing_ideal (zero_locus I) :=
(gc R).le_u_l I
lemma subset_zero_locus_vanishing_ideal (t : set (prime_spectrum R)) :
t ⊆ zero_locus (vanishing_ideal t) :=
(gc R).l_u_le t
lemma zero_locus_bot :
zero_locus ((⊥ : ideal R) : set R) = set.univ :=
(gc R).l_bot
@[simp] lemma zero_locus_singleton_zero :
zero_locus (0 : set R) = set.univ :=
zero_locus_bot
@[simp] lemma zero_locus_empty :
zero_locus (∅ : set R) = set.univ :=
(gc_set R).l_bot
@[simp] lemma vanishing_ideal_univ :
vanishing_ideal (∅ : set (prime_spectrum R)) = ⊤ :=
by simpa using (gc R).u_top
lemma zero_locus_empty_of_one_mem {s : set R} (h : (1:R) ∈ s) :
zero_locus s = ∅ :=
begin
rw set.eq_empty_iff_forall_not_mem,
intros x hx,
rw mem_zero_locus at hx,
have x_prime : x.as_ideal.is_prime := by apply_instance,
have eq_top : x.as_ideal = ⊤, { rw ideal.eq_top_iff_one, exact hx h },
apply x_prime.ne_top eq_top,
end
lemma zero_locus_empty_iff_eq_top {I : ideal R} :
zero_locus (I : set R) = ∅ ↔ I = ⊤ :=
begin
split,
{ contrapose!,
intro h,
apply set.ne_empty_iff_nonempty.mpr,
rcases ideal.exists_le_maximal I h with ⟨M, hM, hIM⟩,
exact ⟨⟨M, hM.is_prime⟩, hIM⟩ },
{ rintro rfl, apply zero_locus_empty_of_one_mem, trivial }
end
@[simp] lemma zero_locus_univ :
zero_locus (set.univ : set R) = ∅ :=
zero_locus_empty_of_one_mem (set.mem_univ 1)
lemma zero_locus_sup (I J : ideal R) :
zero_locus ((I ⊔ J : ideal R) : set R) = zero_locus I ∩ zero_locus J :=
(gc R).l_sup
lemma zero_locus_union (s s' : set R) :
zero_locus (s ∪ s') = zero_locus s ∩ zero_locus s' :=
(gc_set R).l_sup
lemma vanishing_ideal_union (t t' : set (prime_spectrum R)) :
vanishing_ideal (t ∪ t') = vanishing_ideal t ⊓ vanishing_ideal t' :=
(gc R).u_inf
lemma zero_locus_supr {ι : Sort*} (I : ι → ideal R) :
zero_locus ((⨆ i, I i : ideal R) : set R) = (⋂ i, zero_locus (I i)) :=
(gc R).l_supr
lemma zero_locus_Union {ι : Sort*} (s : ι → set R) :
zero_locus (⋃ i, s i) = (⋂ i, zero_locus (s i)) :=
(gc_set R).l_supr
lemma zero_locus_bUnion (s : set (set R)) :
zero_locus (⋃ s' ∈ s, s' : set R) = ⋂ s' ∈ s, zero_locus s' :=
by simp only [zero_locus_Union]
lemma vanishing_ideal_Union {ι : Sort*} (t : ι → set (prime_spectrum R)) :
vanishing_ideal (⋃ i, t i) = (⨅ i, vanishing_ideal (t i)) :=
(gc R).u_infi
lemma zero_locus_inf (I J : ideal R) :
zero_locus ((I ⊓ J : ideal R) : set R) = zero_locus I ∪ zero_locus J :=
begin
ext x,
split,
{ rintro h,
rw set.mem_union,
simp only [mem_zero_locus] at h ⊢,
-- TODO: The rest of this proof should be factored out.
rw or_iff_not_imp_right,
intros hs r hr,
rw set.not_subset at hs,
rcases hs with ⟨s, hs1, hs2⟩,
apply (ideal.is_prime.mem_or_mem (by apply_instance) _).resolve_left hs2,
apply h,
exact ⟨I.mul_mem_left _ hr, J.mul_mem_right _ hs1⟩ },
{ rintro (h|h),
all_goals
{ rw mem_zero_locus at h ⊢,
refine set.subset.trans _ h,
intros r hr, cases hr, assumption } }
end
lemma union_zero_locus (s s' : set R) :
zero_locus s ∪ zero_locus s' = zero_locus ((ideal.span s) ⊓ (ideal.span s') : ideal R) :=
by { rw zero_locus_inf, simp }
lemma sup_vanishing_ideal_le (t t' : set (prime_spectrum R)) :
vanishing_ideal t ⊔ vanishing_ideal t' ≤ vanishing_ideal (t ∩ t') :=
begin
intros r,
rw [submodule.mem_sup, mem_vanishing_ideal],
rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩,
rw mem_vanishing_ideal at hf hg,
apply submodule.add_mem; solve_by_elim
end
lemma mem_compl_zero_locus_iff_not_mem {f : R} {I : prime_spectrum R} :
I ∈ (zero_locus {f} : set (prime_spectrum R))ᶜ ↔ f ∉ I.as_ideal :=
by rw [set.mem_compl_eq, mem_zero_locus, set.singleton_subset_iff]; refl
/-- The Zariski topology on the prime spectrum of a commutative ring
is defined via the closed sets of the topology:
they are exactly those sets that are the zero locus of a subset of the ring. -/
instance zariski_topology : topological_space (prime_spectrum R) :=
topological_space.of_closed (set.range prime_spectrum.zero_locus)
(⟨set.univ, by simp⟩)
begin
intros Zs h,
rw set.sInter_eq_Inter,
let f : Zs → set R := λ i, classical.some (h i.2),
have hf : ∀ i : Zs, ↑i = zero_locus (f i) := λ i, (classical.some_spec (h i.2)).symm,
simp only [hf],
exact ⟨_, zero_locus_Union _⟩
end
(by { rintro _ _ ⟨s, rfl⟩ ⟨t, rfl⟩, exact ⟨_, (union_zero_locus s t).symm⟩ })
lemma is_open_iff (U : set (prime_spectrum R)) :
is_open U ↔ ∃ s, Uᶜ = zero_locus s :=
by simp only [@eq_comm _ Uᶜ]; refl
lemma is_closed_iff_zero_locus (Z : set (prime_spectrum R)) :
is_closed Z ↔ ∃ s, Z = zero_locus s :=
by rw [← is_open_compl_iff, is_open_iff, compl_compl]
lemma is_closed_zero_locus (s : set R) :
is_closed (zero_locus s) :=
by { rw [is_closed_iff_zero_locus], exact ⟨s, rfl⟩ }
section comap
variables {S : Type v} [comm_ring S] {S' : Type*} [comm_ring S']
/-- The function between prime spectra of commutative rings induced by a ring homomorphism.
This function is continuous. -/
def comap (f : R →+* S) : prime_spectrum S → prime_spectrum R :=
λ y, ⟨ideal.comap f y.as_ideal, by exact ideal.is_prime.comap _⟩
variables (f : R →+* S)
@[simp] lemma comap_as_ideal (y : prime_spectrum S) :
(comap f y).as_ideal = ideal.comap f y.as_ideal :=
rfl
@[simp] lemma comap_id : comap (ring_hom.id R) = id :=
funext $ λ _, subtype.ext $ ideal.ext $ λ _, iff.rfl
@[simp] lemma comap_comp (f : R →+* S) (g : S →+* S') :
comap (g.comp f) = comap f ∘ comap g :=
funext $ λ _, subtype.ext $ ideal.ext $ λ _, iff.rfl
@[simp] lemma preimage_comap_zero_locus (s : set R) :
(comap f) ⁻¹' (zero_locus s) = zero_locus (f '' s) :=
begin
ext x,
simp only [mem_zero_locus, set.mem_preimage, comap_as_ideal, set.image_subset_iff],
refl
end
lemma comap_continuous (f : R →+* S) : continuous (comap f) :=
begin
rw continuous_iff_is_closed,
simp only [is_closed_iff_zero_locus],
rintro _ ⟨s, rfl⟩,
exact ⟨_, preimage_comap_zero_locus f s⟩
end
end comap
lemma zero_locus_vanishing_ideal_eq_closure (t : set (prime_spectrum R)) :
zero_locus (vanishing_ideal t : set R) = closure t :=
begin
apply set.subset.antisymm,
{ rintro x hx t' ⟨ht', ht⟩,
obtain ⟨fs, rfl⟩ : ∃ s, t' = zero_locus s,
by rwa [is_closed_iff_zero_locus] at ht',
rw [subset_zero_locus_iff_subset_vanishing_ideal] at ht,
calc fs ⊆ vanishing_ideal t : ht
... ⊆ x.as_ideal : hx },
{ rw (is_closed_zero_locus _).closure_subset_iff,
exact subset_zero_locus_vanishing_ideal t }
end
/-- The prime spectrum of a commutative ring is a compact topological space. -/
instance : compact_space (prime_spectrum R) :=
begin
apply compact_space_of_finite_subfamily_closed,
intros ι Z hZc hZ,
let I : ι → ideal R := λ i, vanishing_ideal (Z i),
have hI : ∀ i, Z i = zero_locus (I i),
{ intro i,
rw [zero_locus_vanishing_ideal_eq_closure, is_closed.closure_eq],
exact hZc i },
have one_mem : (1:R) ∈ ⨆ (i : ι), I i,
{ rw [← ideal.eq_top_iff_one, ← zero_locus_empty_iff_eq_top, zero_locus_supr],
simpa only [hI] using hZ },
obtain ⟨s, hs⟩ : ∃ s : finset ι, (1:R) ∈ ⨆ i ∈ s, I i :=
submodule.exists_finset_of_mem_supr I one_mem,
show ∃ t : finset ι, (⋂ i ∈ t, Z i) = ∅,
use s,
rw [← ideal.eq_top_iff_one, ←zero_locus_empty_iff_eq_top] at hs,
simpa only [zero_locus_supr, hI] using hs
end
section basic_open
/-- `basic_open r` is the open subset containing all prime ideals not containing `r`. -/
def basic_open (r : R) : topological_space.opens (prime_spectrum R) :=
{ val := { x | r ∉ x.as_ideal },
property := ⟨{r}, set.ext $ λ x, set.singleton_subset_iff.trans $ not_not.symm⟩ }
lemma is_open_basic_open {a : R} : is_open ((basic_open a) : set (prime_spectrum R)) :=
(basic_open a).property
end basic_open
section order
/-!
## The specialization order
We endow `prime_spectrum R` with a partial order,
where `x ≤ y` if and only if `y ∈ closure {x}`.
TODO: maybe define sober topological spaces, and generalise this instance to those
-/
instance : partial_order (prime_spectrum R) :=
subtype.partial_order _
@[simp] lemma as_ideal_le_as_ideal (x y : prime_spectrum R) :
x.as_ideal ≤ y.as_ideal ↔ x ≤ y :=
subtype.coe_le_coe
@[simp] lemma as_ideal_lt_as_ideal (x y : prime_spectrum R) :
x.as_ideal < y.as_ideal ↔ x < y :=
subtype.coe_lt_coe
lemma le_iff_mem_closure (x y : prime_spectrum R) :
x ≤ y ↔ y ∈ closure ({x} : set (prime_spectrum R)) :=
by rw [← as_ideal_le_as_ideal, ← zero_locus_vanishing_ideal_eq_closure,
mem_zero_locus, vanishing_ideal_singleton, submodule.le_def]
end order
end prime_spectrum
|
5ffd2e8d2631636d9d568ea328e1c2625db50f72
|
13133fade54057ee588bc056e4eaa14a24773d23
|
/report/binomial_succ.lean
|
a64da4c2759da2db508204195eda2ad218eb0f77
|
[] |
no_license
|
lkloh/lean-project-15815
|
444cbdca1d1a2dfa258c76c41a6ff846392e13d1
|
2cb657c0e41baa318193f7dce85974ff37d80883
|
refs/heads/master
| 1,611,402,038,933
| 1,432,020,760,000
| 1,432,020,760,000
| 33,372,120
| 0
| 0
| null | 1,431,932,928,000
| 1,428,078,840,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,460
|
lean
|
import data.nat
open nat
-- These are taken from http://afp.sourceforge.net/browser_info/current/AFP/Girth_Chromatic/Binomial.html
-- ****************************************************************** --
definition binomial : nat → nat → nat
| binomial 0 0 := 1
| binomial 0 k := 0
| binomial(succ n) 0 := 1
| binomial(succ n) k := binomial n (k-1) + binomial n k
eval binomial 5 2
-- ****************************************************************** --
-- (n choose 0) = 1
theorem binomial_n_0 : ∀ n, binomial n 0 = 1
| binomial_n_0 0 := show binomial 0 0 = 1, from rfl
| binomial_n_0 (succ n) := show binomial (succ n) 0 = 1, from rfl
-- ****************************************************************** --
-- (0 choose Suc k) = 0
theorem binomial_0_Suc : ∀ k, binomial 0 (succ k) = 0
| binomial_0_Suc 0 := show binomial 0 1 = 0, from rfl
| binomial_0_Suc (succ k) := show binomial 0 (succ k) = 0, from rfl
-- ****************************************************************** --
-- "n choose Suc 0 = n"
theorem binomial_1 : ∀ n, binomial n (succ 0) = n
| binomial_1 0 := show binomial 0 (succ 0) = 0, from rfl
| binomial_1 (succ n) := calc
binomial (succ n) (succ 0) = binomial n 0 + binomial n (succ 0) : rfl
... = binomial n 0 + n : {binomial_1 n}
... = 1 + n : {binomial_n_0 n}
... = n + 1 : add.comm
... = succ n : rfl
-- ****************************************************************** --
-- "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)"
theorem binomial_Suc_Suc {n k : ℕ} : binomial (succ n) (succ k) = binomial n k + binomial n (succ k) :=
rfl
-- ****************************************************************** --
-- "n < k ==> n choose k = 0"
theorem binomial_eq_0 {n : ℕ} : ∀{k}, n < k → binomial n k = 0 :=
nat.induction_on n
(take k, assume H : k > 0,
obtain k' (H' : k = succ k'), from exists_eq_succ_of_lt H,
calc
binomial 0 k = binomial 0 (succ k') : H'
... = 0 : rfl)
(take n',
assume IH : ∀{k}, n' < k → binomial n' k = 0,
take k, assume H : succ n' < k,
obtain k' (H' : k = succ k'), from exists_eq_succ_of_lt H,
have H1 : succ n' < succ k', from eq.subst H' H,
have H2 : n' < succ k', from lt.trans !lt_succ_self H1,
have H3 : n' < k', from lt_of_succ_lt_succ H1,
calc
binomial (succ n') k = binomial (succ n') (succ k') : H'
... = binomial n' k' + binomial n' (succ k') : rfl
... = 0 + binomial n' (succ k') : {IH H3}
... = binomial n' (succ k') : zero_add
... = 0 : IH H2)
-- ****************************************************************** --
-- "n choose n = 1"
theorem binomial_n_n : ∀ n, binomial n n = 1
| binomial_n_n 0 := show binomial 0 0 = 1, from rfl
| binomial_n_n (succ n) := calc
binomial (succ n) (succ n) = binomial n n + binomial n (succ n) : rfl
... = 1 + binomial n (succ n) : {binomial_n_n n}
... = 1 + 0 : binomial_eq_0 (lt_succ_self n)
... = 1 : rfl
-- ****************************************************************** --
-- "Suc n choose n = Suc n"
theorem binomial_Suc_n : ∀ n, binomial (succ n) n = succ n
| binomial_Suc_n 0 := show binomial (succ 0) 0 = 1, from rfl
| binomial_Suc_n (succ n) := calc
binomial (succ (succ n)) (succ n) = binomial (succ n) n + binomial (succ n) (succ n) : rfl
... = binomial (succ n) n + 1 : binomial_n_n
... = (succ n) + 1 : {binomial_Suc_n n}
... = succ (succ n) : rfl
-- ****************************************************************** --
-- "k <= n ==> binomial n k > 0"
theorem zero_less_binomial {k : ℕ} : ∀{n}, k ≤ n → binomial n k > 0 :=
nat.induction_on k
(take n, assume H : 0 ≤ n → binomial n 0 > 0,
obtain n' (H' : n = succ n'), from exists_eq_succ_of_lt H,
calc
binomial n 0 = binomial (succ n') 0 : H'
... = 1 : rfl
... > 0 : dec_trivial)
(take k',
assume IH : ∀{n}, k' ≤ n → binomial n k' > 0,
take n, assume H : succ k' ≤ n,
obtain n' (H' : n = succ n'), from exists_eq_succ_of_lt H,
have H1 : succ k' ≤ succ n', from eq.subst H' H,
have H2 : k' ≤ n', from lt_of_succ_lt_succ H1,
calc
binomial n (succ k') = binomial (succ n') (succ k') : H'
... = binomial n' k' + binomial n' (succ k') : rfl
... > 0 + binomial n' (succ k') : add_lt_add_left (IH H2)
... > 0 : !lt_add_of_pos_right)
-- ****************************************************************** --
|
28d76adda4b1ad80d355ac7f935903a668e519d7
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/data/list/chain.lean
|
2c0b3a49c778678e91d79aa71b7b9505992b947a
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 14,806
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kenny Lau, Yury Kudryashov
-/
import data.list.pairwise
import logic.relation
/-!
# Relation chain
This file provides basic results about `list.chain` (definition in `data.list.defs`).
A list `[a₂, ..., aₙ]` is a `chain` starting at `a₁` with respect to the relation `r` if `r a₁ a₂`
and `r a₂ a₃` and ... and `r aₙ₋₁ aₙ`. We write it `chain r a₁ [a₂, ..., aₙ]`.
A graph-specialized version is in development and will hopefully be added under `combinatorics.`
sometime soon.
-/
universes u v
open nat
namespace list
variables {α : Type u} {β : Type v} {R r : α → α → Prop} {l l₁ l₂ : list α} {a b : α}
mk_iff_of_inductive_prop list.chain list.chain_iff
theorem rel_of_chain_cons {a b : α} {l : list α}
(p : chain R a (b :: l)) : R a b :=
(chain_cons.1 p).1
theorem chain_of_chain_cons {a b : α} {l : list α}
(p : chain R a (b :: l)) : chain R b l :=
(chain_cons.1 p).2
theorem chain.imp' {S : α → α → Prop}
(HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α} (Hab : ∀ ⦃c⦄, R a c → S b c)
{l : list α} (p : chain R a l) : chain S b l :=
by induction p with _ a c l r p IH generalizing b; constructor;
[exact Hab r, exact IH (@HRS _)]
theorem chain.imp {S : α → α → Prop}
(H : ∀ a b, R a b → S a b) {a : α} {l : list α} (p : chain R a l) : chain S a l :=
p.imp' H (H a)
theorem chain.iff {S : α → α → Prop}
(H : ∀ a b, R a b ↔ S a b) {a : α} {l : list α} : chain R a l ↔ chain S a l :=
⟨chain.imp (λ a b, (H a b).1), chain.imp (λ a b, (H a b).2)⟩
theorem chain.iff_mem {a : α} {l : list α} :
chain R a l ↔ chain (λ x y, x ∈ a :: l ∧ y ∈ l ∧ R x y) a l :=
⟨λ p, by induction p with _ a b l r p IH; constructor;
[exact ⟨mem_cons_self _ _, mem_cons_self _ _, r⟩,
exact IH.imp (λ a b ⟨am, bm, h⟩,
⟨mem_cons_of_mem _ am, mem_cons_of_mem _ bm, h⟩)],
chain.imp (λ a b h, h.2.2)⟩
theorem chain_singleton {a b : α} : chain R a [b] ↔ R a b :=
by simp only [chain_cons, chain.nil, and_true]
theorem chain_split {a b : α} {l₁ l₂ : list α} : chain R a (l₁ ++ b :: l₂) ↔
chain R a (l₁ ++ [b]) ∧ chain R b l₂ :=
by induction l₁ with x l₁ IH generalizing a;
simp only [*, nil_append, cons_append, chain.nil, chain_cons, and_true, and_assoc]
@[simp] theorem chain_append_cons_cons {a b c : α} {l₁ l₂ : list α} :
chain R a (l₁ ++ b :: c :: l₂) ↔ chain R a (l₁ ++ [b]) ∧ R b c ∧ chain R c l₂ :=
by rw [chain_split, chain_cons]
theorem chain_iff_forall₂ :
∀ {a : α} {l : list α}, chain R a l ↔ l = [] ∨ forall₂ R (a :: init l) l
| a [] := by simp
| a [b] := by simp [init]
| a (b :: c :: l) := by simp [@chain_iff_forall₂ b]
theorem chain_append_singleton_iff_forall₂ :
chain R a (l ++ [b]) ↔ forall₂ R (a :: l) (l ++ [b]) :=
by simp [chain_iff_forall₂, init]
theorem chain_map (f : β → α) {b : β} {l : list β} :
chain R (f b) (map f l) ↔ chain (λ a b : β, R (f a) (f b)) b l :=
by induction l generalizing b; simp only [map, chain.nil, chain_cons, *]
theorem chain_of_chain_map {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, S (f a) (f b) → R a b) {a : α} {l : list α}
(p : chain S (f a) (map f l)) : chain R a l :=
((chain_map f).1 p).imp H
theorem chain_map_of_chain {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, R a b → S (f a) (f b)) {a : α} {l : list α}
(p : chain R a l) : chain S (f a) (map f l) :=
(chain_map f).2 $ p.imp H
theorem chain_pmap_of_chain {S : β → β → Prop} {p : α → Prop}
{f : Π a, p a → β}
(H : ∀ a b ha hb, R a b → S (f a ha) (f b hb))
{a : α} {l : list α}
(hl₁ : chain R a l) (ha : p a) (hl₂ : ∀ a ∈ l, p a) :
chain S (f a ha) (list.pmap f l hl₂) :=
begin
induction l with lh lt l_ih generalizing a,
{ simp },
{ simp [H _ _ _ _ (rel_of_chain_cons hl₁), l_ih _ (chain_of_chain_cons hl₁)] }
end
theorem chain_of_chain_pmap {S : β → β → Prop} {p : α → Prop}
(f : Π a, p a → β) {l : list α} (hl₁ : ∀ a ∈ l, p a)
{a : α} (ha : p a) (hl₂ : chain S (f a ha) (list.pmap f l hl₁))
(H : ∀ a b ha hb, S (f a ha) (f b hb) → R a b) :
chain R a l :=
begin
induction l with lh lt l_ih generalizing a,
{ simp },
{ simp [H _ _ _ _ (rel_of_chain_cons hl₂), l_ih _ _ (chain_of_chain_cons hl₂)] }
end
protected lemma pairwise.chain (p : pairwise R (a :: l)) : chain R a l :=
begin
cases pairwise_cons.1 p with r p', clear p,
induction p' with b l r' p IH generalizing a, {exact chain.nil},
simp only [chain_cons, forall_mem_cons] at r,
exact chain_cons.2 ⟨r.1, IH r'⟩
end
protected lemma chain.pairwise (tr : transitive R) :
∀ {a : α} {l : list α}, chain R a l → pairwise R (a :: l)
| a [] chain.nil := pairwise_singleton _ _
| a _ (@chain.cons _ _ _ b l h hb) := hb.pairwise.cons begin
simp only [mem_cons_iff, forall_eq_or_imp, h, true_and],
exact λ c hc, tr h (rel_of_pairwise_cons hb.pairwise hc),
end
theorem chain_iff_pairwise (tr : transitive R) {a : α} {l : list α} :
chain R a l ↔ pairwise R (a :: l) :=
⟨chain.pairwise tr, pairwise.chain⟩
protected lemma chain.sublist [is_trans α R] (hl : l₂.chain R a) (h : l₁ <+ l₂) : l₁.chain R a :=
by { rw chain_iff_pairwise (transitive_of_trans R) at ⊢ hl, exact hl.sublist (h.cons_cons a) }
protected lemma chain.rel [is_trans α R] (hl : l.chain R a) (hb : b ∈ l) : R a b :=
by { rw chain_iff_pairwise (transitive_of_trans R) at hl, exact rel_of_pairwise_cons hl hb }
theorem chain_iff_nth_le {R} : ∀ {a : α} {l : list α},
chain R a l ↔ (∀ h : 0 < length l, R a (nth_le l 0 h)) ∧ (∀ i (h : i < length l - 1),
R (nth_le l i (lt_of_lt_pred h)) (nth_le l (i+1) (lt_pred_iff.mp h)))
| a [] := by simp
| a (b :: t) :=
begin
rw [chain_cons, chain_iff_nth_le],
split,
{ rintro ⟨R, ⟨h0, h⟩⟩,
split,
{ intro w, exact R },
intros i w,
cases i,
{ apply h0 },
convert h i _ using 1,
simp only [succ_eq_add_one, add_succ_sub_one, add_zero, length, add_lt_add_iff_right] at w,
exact lt_pred_iff.mpr w, },
rintro ⟨h0, h⟩, split,
{ apply h0, simp, },
split,
{ apply h 0, },
intros i w, convert h (i+1) _ using 1,
exact lt_pred_iff.mp w,
end
theorem chain'.imp {S : α → α → Prop}
(H : ∀ a b, R a b → S a b) {l : list α} (p : chain' R l) : chain' S l :=
by cases l; [trivial, exact p.imp H]
theorem chain'.iff {S : α → α → Prop}
(H : ∀ a b, R a b ↔ S a b) {l : list α} : chain' R l ↔ chain' S l :=
⟨chain'.imp (λ a b, (H a b).1), chain'.imp (λ a b, (H a b).2)⟩
theorem chain'.iff_mem : ∀ {l : list α}, chain' R l ↔ chain' (λ x y, x ∈ l ∧ y ∈ l ∧ R x y) l
| [] := iff.rfl
| (x :: l) :=
⟨λ h, (chain.iff_mem.1 h).imp $ λ a b ⟨h₁, h₂, h₃⟩, ⟨h₁, or.inr h₂, h₃⟩,
chain'.imp $ λ a b h, h.2.2⟩
@[simp] theorem chain'_nil : chain' R [] := trivial
@[simp] theorem chain'_singleton (a : α) : chain' R [a] := chain.nil
@[simp] theorem chain'_cons {x y l} : chain' R (x :: y :: l) ↔ R x y ∧ chain' R (y :: l) :=
chain_cons
theorem chain'_split {a : α} : ∀ {l₁ l₂ : list α}, chain' R (l₁ ++ a :: l₂) ↔
chain' R (l₁ ++ [a]) ∧ chain' R (a :: l₂)
| [] l₂ := (and_iff_right (chain'_singleton a)).symm
| (b :: l₁) l₂ := chain_split
@[simp] theorem chain'_append_cons_cons {b c : α} {l₁ l₂ : list α} :
chain' R (l₁ ++ b :: c :: l₂) ↔ chain' R (l₁ ++ [b]) ∧ R b c ∧ chain' R (c :: l₂) :=
by rw [chain'_split, chain'_cons]
theorem chain'_map (f : β → α) {l : list β} :
chain' R (map f l) ↔ chain' (λ a b : β, R (f a) (f b)) l :=
by cases l; [refl, exact chain_map _]
theorem chain'_of_chain'_map {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, S (f a) (f b) → R a b) {l : list α}
(p : chain' S (map f l)) : chain' R l :=
((chain'_map f).1 p).imp H
theorem chain'_map_of_chain' {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, R a b → S (f a) (f b)) {l : list α}
(p : chain' R l) : chain' S (map f l) :=
(chain'_map f).2 $ p.imp H
theorem pairwise.chain' : ∀ {l : list α}, pairwise R l → chain' R l
| [] _ := trivial
| (a :: l) h := pairwise.chain h
theorem chain'_iff_pairwise (tr : transitive R) : ∀ {l : list α},
chain' R l ↔ pairwise R l
| [] := (iff_true_intro pairwise.nil).symm
| (a :: l) := chain_iff_pairwise tr
protected lemma chain'.sublist [is_trans α R] (hl : l₂.chain' R) (h : l₁ <+ l₂) : l₁.chain' R :=
by { rw chain'_iff_pairwise (transitive_of_trans R) at ⊢ hl, exact hl.sublist h }
theorem chain'.cons {x y l} (h₁ : R x y) (h₂ : chain' R (y :: l)) :
chain' R (x :: y :: l) :=
chain'_cons.2 ⟨h₁, h₂⟩
theorem chain'.tail : ∀ {l} (h : chain' R l), chain' R l.tail
| [] _ := trivial
| [x] _ := trivial
| (x :: y :: l) h := (chain'_cons.mp h).right
theorem chain'.rel_head {x y l} (h : chain' R (x :: y :: l)) : R x y :=
rel_of_chain_cons h
theorem chain'.rel_head' {x l} (h : chain' R (x :: l)) ⦃y⦄ (hy : y ∈ head' l) : R x y :=
by { rw ← cons_head'_tail hy at h, exact h.rel_head }
theorem chain'.cons' {x} :
∀ {l : list α}, chain' R l → (∀ y ∈ l.head', R x y) → chain' R (x :: l)
| [] _ _ := chain'_singleton x
| (a :: l) hl H := hl.cons $ H _ rfl
theorem chain'_cons' {x l} : chain' R (x :: l) ↔ (∀ y ∈ head' l, R x y) ∧ chain' R l :=
⟨λ h, ⟨h.rel_head', h.tail⟩, λ ⟨h₁, h₂⟩, h₂.cons' h₁⟩
theorem chain'.drop : ∀ (n) {l} (h : chain' R l), chain' R (drop n l)
| 0 _ h := h
| _ [] _ := by {rw drop_nil, exact chain'_nil}
| (n + 1) [a] _ := by {unfold drop, rw drop_nil, exact chain'_nil}
| (n + 1) (a :: b :: l) h := chain'.drop n (chain'_cons'.mp h).right
theorem chain'.append : ∀ {l₁ l₂ : list α} (h₁ : chain' R l₁) (h₂ : chain' R l₂)
(h : ∀ (x ∈ l₁.last') (y ∈ l₂.head'), R x y),
chain' R (l₁ ++ l₂)
| [] l₂ h₁ h₂ h := h₂
| [a] l₂ h₁ h₂ h := h₂.cons' $ h _ rfl
| (a :: b :: l) l₂ h₁ h₂ h :=
begin
simp only [last'] at h,
have : chain' R (b :: l) := h₁.tail,
exact (this.append h₂ h).cons h₁.rel_head
end
theorem chain'_pair {x y} : chain' R [x, y] ↔ R x y :=
by simp only [chain'_singleton, chain'_cons, and_true]
theorem chain'.imp_head {x y} (h : ∀ {z}, R x z → R y z) {l} (hl : chain' R (x :: l)) :
chain' R (y :: l) :=
hl.tail.cons' $ λ z hz, h $ hl.rel_head' hz
theorem chain'_reverse : ∀ {l}, chain' R (reverse l) ↔ chain' (flip R) l
| [] := iff.rfl
| [a] := by simp only [chain'_singleton, reverse_singleton]
| (a :: b :: l) := by rw [chain'_cons, reverse_cons, reverse_cons, append_assoc, cons_append,
nil_append, chain'_split, ← reverse_cons, @chain'_reverse (b :: l), and_comm, chain'_pair, flip]
theorem chain'_iff_nth_le {R} : ∀ {l : list α},
chain' R l ↔ ∀ i (h : i < length l - 1),
R (nth_le l i (lt_of_lt_pred h)) (nth_le l (i+1) (lt_pred_iff.mp h))
| [] := by simp
| [a] := by simp
| (a :: b :: t) :=
begin
rw [chain'_cons, chain'_iff_nth_le],
split,
{ rintro ⟨R, h⟩ i w,
cases i,
{ exact R, },
{ convert h i _ using 1,
simp only [succ_eq_add_one, add_succ_sub_one, add_zero, length, add_lt_add_iff_right] at w,
simpa using w, } },
{ rintro h, split,
{ apply h 0, simp, },
{ intros i w, convert h (i+1) _ using 1,
simp only [add_zero, length, add_succ_sub_one] at w,
simpa using w, } },
end
/-- If `l₁ l₂` and `l₃` are lists and `l₁ ++ l₂` and `l₂ ++ l₃` both satisfy
`chain' R`, then so does `l₁ ++ l₂ ++ l₃` provided `l₂ ≠ []` -/
lemma chain'.append_overlap : ∀ {l₁ l₂ l₃ : list α}
(h₁ : chain' R (l₁ ++ l₂)) (h₂ : chain' R (l₂ ++ l₃)) (hn : l₂ ≠ []),
chain' R (l₁ ++ l₂ ++ l₃)
| [] l₂ l₃ h₁ h₂ hn := h₂
| l₁ [] l₃ h₁ h₂ hn := (hn rfl).elim
| [a] (b :: l₂) l₃ h₁ h₂ hn := by { simp at *, tauto }
| (a :: b :: l₁) (c :: l₂) l₃ h₁ h₂ hn := begin
simp only [cons_append, chain'_cons] at h₁ h₂ ⊢,
simp only [← cons_append] at h₁ h₂ ⊢,
exact ⟨h₁.1, chain'.append_overlap h₁.2 h₂ (cons_ne_nil _ _)⟩
end
/--
If `a` and `b` are related by the reflexive transitive closure of `r`, then there is a `r`-chain
starting from `a` and ending on `b`.
The converse of `relation_refl_trans_gen_of_exists_chain`.
-/
lemma exists_chain_of_relation_refl_trans_gen (h : relation.refl_trans_gen r a b) :
∃ l, chain r a l ∧ last (a :: l) (cons_ne_nil _ _) = b :=
begin
apply relation.refl_trans_gen.head_induction_on h,
{ exact ⟨[], chain.nil, rfl⟩ },
{ intros c d e t ih,
obtain ⟨l, hl₁, hl₂⟩ := ih,
refine ⟨d :: l, chain.cons e hl₁, _⟩,
rwa last_cons_cons }
end
/--
Given a chain from `a` to `b`, and a predicate true at `b`, if `r x y → p y → p x` then
the predicate is true everywhere in the chain and at `a`.
That is, we can propagate the predicate up the chain.
-/
lemma chain.induction (p : α → Prop)
(l : list α) (h : chain r a l)
(hb : last (a :: l) (cons_ne_nil _ _) = b)
(carries : ∀ ⦃x y : α⦄, r x y → p y → p x) (final : p b) : ∀ i ∈ a :: l, p i :=
begin
induction l generalizing a,
{ cases hb,
simp [final] },
{ rw chain_cons at h,
rintro _ (rfl | _),
apply carries h.1 (l_ih h.2 hb _ (or.inl rfl)),
apply l_ih h.2 hb _ H }
end
/--
Given a chain from `a` to `b`, and a predicate true at `b`, if `r x y → p y → p x` then
the predicate is true at `a`.
That is, we can propagate the predicate all the way up the chain.
-/
@[elab_as_eliminator]
lemma chain.induction_head (p : α → Prop)
(l : list α) (h : chain r a l)
(hb : last (a :: l) (cons_ne_nil _ _) = b)
(carries : ∀ ⦃x y : α⦄, r x y → p y → p x) (final : p b) : p a :=
(chain.induction p l h hb carries final) _ (mem_cons_self _ _)
/--
If there is an `r`-chain starting from `a` and ending at `b`, then `a` and `b` are related by the
reflexive transitive closure of `r`. The converse of `exists_chain_of_relation_refl_trans_gen`.
-/
lemma relation_refl_trans_gen_of_exists_chain (l) (hl₁ : chain r a l)
(hl₂ : last (a :: l) (cons_ne_nil _ _) = b) :
relation.refl_trans_gen r a b :=
chain.induction_head _ l hl₁ hl₂ (λ x y, relation.refl_trans_gen.head) relation.refl_trans_gen.refl
end list
|
888a49101aea9daa28405f9f89f97ff5d24b307b
|
5ae26df177f810c5006841e9c73dc56e01b978d7
|
/src/order/fixed_points.lean
|
efe2f4ee3968dd768443038acf56185a20094e66
|
[
"Apache-2.0"
] |
permissive
|
ChrisHughes24/mathlib
|
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
|
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
|
refs/heads/master
| 1,583,848,251,477
| 1,565,164,247,000
| 1,565,164,247,000
| 129,409,993
| 0
| 1
|
Apache-2.0
| 1,565,164,817,000
| 1,523,628,059,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,677
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Kenny Lau
Fixed point construction on complete lattices.
-/
import order.complete_lattice
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
namespace lattice
def fixed_points (f : α → α) : set α := { x | f x = x }
section fixedpoint
variables [complete_lattice α] {f : α → α}
/-- Least fixed point of a monotone function -/
def lfp (f : α → α) : α := Inf {a | f a ≤ a}
/-- Greatest fixed point of a monotone function -/
def gfp (f : α → α) : α := Sup {a | a ≤ f a}
theorem lfp_le {a : α} (h : f a ≤ a) : lfp f ≤ a :=
Inf_le h
theorem le_lfp {a : α} (h : ∀b, f b ≤ b → a ≤ b) : a ≤ lfp f :=
le_Inf h
theorem lfp_eq (m : monotone f) : lfp f = f (lfp f) :=
have f (lfp f) ≤ lfp f,
from le_lfp $ assume b, assume h : f b ≤ b, le_trans (m (lfp_le h)) h,
le_antisymm (lfp_le (m this)) this
theorem lfp_induct {p : α → Prop} (m : monotone f)
(step : ∀a, p a → a ≤ lfp f → p (f a)) (sup : ∀s, (∀a∈s, p a) → p (Sup s)) :
p (lfp f) :=
let s := {a | a ≤ lfp f ∧ p a} in
have p_s : p (Sup s),
from sup s (assume a ⟨_, h⟩, h),
have Sup s ≤ lfp f,
from le_lfp $ assume a, assume h : f a ≤ a, Sup_le $ assume b ⟨b_le, _⟩, le_trans b_le (lfp_le h),
have Sup s = lfp f,
from le_antisymm this $ lfp_le $ le_Sup
⟨le_trans (m this) $ ge_of_eq $ lfp_eq m, step _ p_s this⟩,
this ▸ p_s
theorem monotone_lfp : monotone (@lfp α _) :=
assume f g, assume : f ≤ g, le_lfp $ assume a, assume : g a ≤ a, lfp_le $ le_trans (‹f ≤ g› a) this
theorem le_gfp {a : α} (h : a ≤ f a) : a ≤ gfp f :=
le_Sup h
theorem gfp_le {a : α} (h : ∀b, b ≤ f b → b ≤ a) : gfp f ≤ a :=
Sup_le h
theorem gfp_eq (m : monotone f) : gfp f = f (gfp f) :=
have gfp f ≤ f (gfp f),
from gfp_le $ assume b, assume h : b ≤ f b, le_trans h (m (le_gfp h)),
le_antisymm this (le_gfp (m this))
theorem gfp_induct {p : α → Prop} (m : monotone f)
(step : ∀a, p a → gfp f ≤ a → p (f a)) (inf : ∀s, (∀a∈s, p a) → p (Inf s)) :
p (gfp f) :=
let s := {a | gfp f ≤ a ∧ p a} in
have p_s : p (Inf s),
from inf s (assume a ⟨_, h⟩, h),
have gfp f ≤ Inf s,
from gfp_le $ assume a, assume h : a ≤ f a, le_Inf $ assume b ⟨le_b, _⟩, le_trans (le_gfp h) le_b,
have Inf s = gfp f,
from le_antisymm (le_gfp $ Inf_le
⟨le_trans (le_of_eq $ gfp_eq m) (m this), step _ p_s this⟩) this,
this ▸ p_s
theorem monotone_gfp : monotone (@gfp α _) :=
assume f g, assume : f ≤ g, gfp_le $ assume a, assume : a ≤ f a, le_gfp $ le_trans this (‹f ≤ g› a)
end fixedpoint
section fixedpoint_eqn
variables [complete_lattice α] [complete_lattice β] {f : β → α} {g : α → β}
-- Rolling rule
theorem lfp_comp (m_f : monotone f) (m_g : monotone g) : lfp (f ∘ g) = f (lfp (g ∘ f)) :=
le_antisymm
(lfp_le $ m_f $ ge_of_eq $ lfp_eq $ monotone_comp m_f m_g)
(le_lfp $ assume a fg_le,
le_trans (m_f $ lfp_le $ show (g ∘ f) (g a) ≤ g a, from m_g fg_le) fg_le)
theorem gfp_comp (m_f : monotone f) (m_g : monotone g) : gfp (f ∘ g) = f (gfp (g ∘ f)) :=
le_antisymm
(gfp_le $ assume a fg_le,
le_trans fg_le $ m_f $ le_gfp $ show g a ≤ (g ∘ f) (g a), from m_g fg_le)
(le_gfp $ m_f $ le_of_eq $ gfp_eq $ monotone_comp m_f m_g)
-- Diagonal rule
theorem lfp_lfp {h : α → α → α} (m : ∀⦃a b c d⦄, a ≤ b → c ≤ d → h a c ≤ h b d) :
lfp (lfp ∘ h) = lfp (λx, h x x) :=
let f := lfp (lfp ∘ h) in
have f_eq : f = lfp (h f),
from lfp_eq $ monotone_comp (assume a b h x, m h (le_refl _)) monotone_lfp,
le_antisymm
(lfp_le $ lfp_le $ ge_of_eq $ lfp_eq $ assume a b h, m h h)
(lfp_le $ ge_of_eq $
calc f = lfp (h f) : f_eq
... = h f (lfp (h f)) : lfp_eq $ assume a b h, m (le_refl _) h
... = h f f : congr_arg (h f) f_eq.symm)
theorem gfp_gfp {h : α → α → α} (m : ∀⦃a b c d⦄, a ≤ b → c ≤ d → h a c ≤ h b d) :
gfp (gfp ∘ h) = gfp (λx, h x x) :=
let f := gfp (gfp ∘ h) in
have f_eq : f = gfp (h f),
from gfp_eq $ monotone_comp (assume a b h x, m h (le_refl _)) monotone_gfp,
le_antisymm
(le_gfp $ le_of_eq $
calc f = gfp (h f) : f_eq
... = h f (gfp (h f)) : gfp_eq $ assume a b h, m (le_refl _) h
... = h f f : congr_arg (h f) f_eq.symm)
(le_gfp $ le_gfp $ le_of_eq $ gfp_eq $ assume a b h, m h h)
end fixedpoint_eqn
/- The complete lattice of fixed points of a function f -/
namespace fixed_points
variables [complete_lattice α] (f : α → α) (hf : monotone f)
def prev (x : α) : α := gfp (λ z, x ⊓ f z)
def next (x : α) : α := lfp (λ z, x ⊔ f z)
variable {f}
theorem prev_le {x : α} : prev f x ≤ x := gfp_le $ λ z hz, le_trans hz inf_le_left
lemma prev_eq (hf : monotone f) {a : α} (h : f a ≤ a) : prev f a = f (prev f a) :=
calc prev f a = a ⊓ f (prev f a) :
gfp_eq $ show monotone (λz, a ⊓ f z), from assume x y h, inf_le_inf (le_refl _) (hf h)
... = f (prev f a) :
by rw [inf_of_le_right]; exact le_trans (hf prev_le) h
def prev_fixed (hf : monotone f) (a : α) (h : f a ≤ a) : fixed_points f :=
⟨prev f a, (prev_eq hf h).symm⟩
theorem next_le {x : α} : x ≤ next f x := le_lfp $ λ z hz, le_trans le_sup_left hz
lemma next_eq (hf : monotone f) {a : α} (h : a ≤ f a) : next f a = f (next f a) :=
calc next f a = a ⊔ f (next f a) :
lfp_eq $ show monotone (λz, a ⊔ f z), from assume x y h, sup_le_sup (le_refl _) (hf h)
... = f (next f a) :
by rw [sup_of_le_right]; exact le_trans h (hf next_le)
def next_fixed (hf : monotone f) (a : α) (h : a ≤ f a) : fixed_points f :=
⟨next f a, (next_eq hf h).symm⟩
variable f
theorem sup_le_f_of_fixed_points (x y : fixed_points f) : x.1 ⊔ y.1 ≤ f (x.1 ⊔ y.1) :=
sup_le
(x.2 ▸ (hf $ show x.1 ≤ f x.1 ⊔ y.1, from x.2.symm ▸ le_sup_left))
(y.2 ▸ (hf $ show y.1 ≤ x.1 ⊔ f y.1, from y.2.symm ▸ le_sup_right))
theorem f_le_inf_of_fixed_points (x y : fixed_points f) : f (x.1 ⊓ y.1) ≤ x.1 ⊓ y.1 :=
le_inf
(x.2 ▸ (hf $ show f (x.1) ⊓ y.1 ≤ x.1, from x.2.symm ▸ inf_le_left))
(y.2 ▸ (hf $ show x.1 ⊓ f (y.1) ≤ y.1, from y.2.symm ▸ inf_le_right))
theorem Sup_le_f_of_fixed_points (A : set α) (HA : A ⊆ fixed_points f) : Sup A ≤ f (Sup A) :=
Sup_le $ λ x hxA, (HA hxA) ▸ (hf $ le_Sup hxA)
theorem f_le_Inf_of_fixed_points (A : set α) (HA : A ⊆ fixed_points f) : f (Inf A) ≤ Inf A :=
le_Inf $ λ x hxA, (HA hxA) ▸ (hf $ Inf_le hxA)
instance : complete_lattice (fixed_points f) :=
{ le := λx y, x.1 ≤ y.1,
le_refl := λ x, le_refl x,
le_trans := λ x y z, le_trans,
le_antisymm := λ x y hx hy, subtype.eq $ le_antisymm hx hy,
sup := λ x y, next_fixed hf (x.1 ⊔ y.1) (sup_le_f_of_fixed_points f hf x y),
le_sup_left := λ x y, show x.1 ≤ _, from le_trans le_sup_left next_le,
le_sup_right := λ x y, show y.1 ≤ _, from le_trans le_sup_right next_le,
sup_le := λ x y z hxz hyz, lfp_le $ sup_le (sup_le hxz hyz) (z.2.symm ▸ le_refl z.1),
inf := λ x y, prev_fixed hf (x.1 ⊓ y.1) (f_le_inf_of_fixed_points f hf x y),
inf_le_left := λ x y, show _ ≤ x.1, from le_trans prev_le inf_le_left,
inf_le_right := λ x y, show _ ≤ y.1, from le_trans prev_le inf_le_right,
le_inf := λ x y z hxy hxz, le_gfp $ le_inf (le_inf hxy hxz) (x.2.symm ▸ le_refl x),
top := prev_fixed hf ⊤ le_top,
le_top := λ ⟨x, H⟩, le_gfp $ le_inf le_top (H.symm ▸ le_refl x),
bot := next_fixed hf ⊥ bot_le,
bot_le := λ ⟨x, H⟩, lfp_le $ sup_le bot_le (H.symm ▸ le_refl x),
Sup := λ A, next_fixed hf (Sup $ subtype.val '' A)
(Sup_le_f_of_fixed_points f hf (subtype.val '' A) (λ z ⟨x, hx⟩, hx.2 ▸ x.2)),
le_Sup := λ A x hxA, show x.1 ≤ _, from le_trans
(le_Sup $ show x.1 ∈ subtype.val '' A, from ⟨x, hxA, rfl⟩)
next_le,
Sup_le := λ A x Hx, lfp_le $ sup_le (Sup_le $ λ z ⟨y, hyA, hyz⟩, hyz ▸ Hx y hyA) (x.2.symm ▸ le_refl x),
Inf := λ A, prev_fixed hf (Inf $ subtype.val '' A)
(f_le_Inf_of_fixed_points f hf (subtype.val '' A) (λ z ⟨x, hx⟩, hx.2 ▸ x.2)),
le_Inf := λ A x Hx, le_gfp $ le_inf (le_Inf $ λ z ⟨y, hyA, hyz⟩, hyz ▸ Hx y hyA) (x.2.symm ▸ le_refl x.1),
Inf_le := λ A x hxA, show _ ≤ x.1, from le_trans
prev_le
(Inf_le $ show x.1 ∈ subtype.val '' A, from ⟨x, hxA, rfl⟩) }
end fixed_points
end lattice
|
b6d9f1beb403d61e613aaad8ad8b087054041aa9
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/polynomial/coeff_auto.lean
|
8704658afae21d7943b2987f294cba919729eba9
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,963
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.polynomial.monomial
import Mathlib.data.finset.nat_antidiagonal
import Mathlib.PostPort
universes u v u_1
namespace Mathlib
/-!
# Theory of univariate polynomials
The theorems include formulas for computing coefficients, such as
`coeff_add`, `coeff_sum`, `coeff_mul`
-/
namespace polynomial
theorem coeff_one {R : Type u} [semiring R] (n : ℕ) : coeff 1 n = ite (0 = n) 1 0 := coeff_monomial
@[simp] theorem coeff_add {R : Type u} [semiring R] (p : polynomial R) (q : polynomial R) (n : ℕ) :
coeff (p + q) n = coeff p n + coeff q n :=
rfl
theorem coeff_sum {R : Type u} {S : Type v} [semiring R] {p : polynomial R} [semiring S] (n : ℕ)
(f : ℕ → R → polynomial S) :
coeff (finsupp.sum p f) n = finsupp.sum p fun (a : ℕ) (b : R) => coeff (f a b) n :=
finsupp.sum_apply
@[simp] theorem coeff_smul {R : Type u} [semiring R] (p : polynomial R) (r : R) (n : ℕ) :
coeff (r • p) n = r * coeff p n :=
finsupp.smul_apply
theorem mem_support_iff_coeff_ne_zero {R : Type u} {n : ℕ} [semiring R] {p : polynomial R} :
n ∈ finsupp.support p ↔ coeff p n ≠ 0 :=
eq.mpr
(id
(Eq._oldrec (Eq.refl (n ∈ finsupp.support p ↔ coeff p n ≠ 0))
(propext (finsupp.mem_support_to_fun p n))))
(iff.refl (finsupp.to_fun p n ≠ 0))
theorem not_mem_support_iff_coeff_zero {R : Type u} {n : ℕ} [semiring R] {p : polynomial R} :
¬n ∈ finsupp.support p ↔ coeff p n = 0 :=
eq.mpr
(id
(Eq._oldrec (Eq.refl (¬n ∈ finsupp.support p ↔ coeff p n = 0))
(propext (finsupp.mem_support_to_fun p n))))
(eq.mpr (id (Eq._oldrec (Eq.refl (¬finsupp.to_fun p n ≠ 0 ↔ coeff p n = 0)) (propext not_not)))
(iff.refl (finsupp.to_fun p n = 0)))
/-- The nth coefficient, as a linear map. -/
def lcoeff (R : Type u) [semiring R] (n : ℕ) : linear_map R (polynomial R) R := finsupp.lapply n
@[simp] theorem lcoeff_apply {R : Type u} [semiring R] (n : ℕ) (f : polynomial R) :
coe_fn (lcoeff R n) f = coeff f n :=
rfl
@[simp] theorem finset_sum_coeff {R : Type u} [semiring R] {ι : Type u_1} (s : finset ι)
(f : ι → polynomial R) (n : ℕ) :
coeff (finset.sum s fun (b : ι) => f b) n = finset.sum s fun (b : ι) => coeff (f b) n :=
Eq.symm (finset.sum_hom s fun (q : polynomial R) => coe_fn (lcoeff R n) q)
theorem coeff_mul {R : Type u} [semiring R] (p : polynomial R) (q : polynomial R) (n : ℕ) :
coeff (p * q) n =
finset.sum (finset.nat.antidiagonal n)
fun (x : ℕ × ℕ) => coeff p (prod.fst x) * coeff q (prod.snd x) :=
add_monoid_algebra.mul_apply_antidiagonal p q n (finset.nat.antidiagonal n)
fun (x : ℕ × ℕ) => finset.nat.mem_antidiagonal
@[simp] theorem mul_coeff_zero {R : Type u} [semiring R] (p : polynomial R) (q : polynomial R) :
coeff (p * q) 0 = coeff p 0 * coeff q 0 :=
sorry
theorem coeff_mul_X_zero {R : Type u} [semiring R] (p : polynomial R) : coeff (p * X) 0 = 0 := sorry
theorem coeff_X_mul_zero {R : Type u} [semiring R] (p : polynomial R) : coeff (X * p) 0 = 0 := sorry
theorem coeff_C_mul_X {R : Type u} [semiring R] (x : R) (k : ℕ) (n : ℕ) :
coeff (coe_fn C x * X ^ k) n = ite (n = k) x 0 :=
sorry
@[simp] theorem coeff_C_mul {R : Type u} {a : R} {n : ℕ} [semiring R] (p : polynomial R) :
coeff (coe_fn C a * p) n = a * coeff p n :=
add_monoid_algebra.single_zero_mul_apply p a n
theorem C_mul' {R : Type u} [semiring R] (a : R) (f : polynomial R) : coe_fn C a * f = a • f :=
ext fun (n : ℕ) => coeff_C_mul f
@[simp] theorem coeff_mul_C {R : Type u} [semiring R] (p : polynomial R) (n : ℕ) (a : R) :
coeff (p * coe_fn C a) n = coeff p n * a :=
add_monoid_algebra.mul_single_zero_apply p a n
theorem coeff_X_pow {R : Type u} [semiring R] (k : ℕ) (n : ℕ) : coeff (X ^ k) n = ite (n = k) 1 0 :=
sorry
@[simp] theorem coeff_X_pow_self {R : Type u} [semiring R] (n : ℕ) : coeff (X ^ n) n = 1 := sorry
theorem coeff_mul_X_pow {R : Type u} [semiring R] (p : polynomial R) (n : ℕ) (d : ℕ) :
coeff (p * X ^ n) (d + n) = coeff p d :=
sorry
@[simp] theorem coeff_mul_X {R : Type u} [semiring R] (p : polynomial R) (n : ℕ) :
coeff (p * X) (n + 1) = coeff p n :=
sorry
theorem mul_X_pow_eq_zero {R : Type u} [semiring R] {p : polynomial R} {n : ℕ} (H : p * X ^ n = 0) :
p = 0 :=
ext fun (k : ℕ) => Eq.trans (Eq.symm (coeff_mul_X_pow p n k)) (iff.mp ext_iff H (k + n))
theorem C_mul_X_pow_eq_monomial {R : Type u} [semiring R] (c : R) (n : ℕ) :
coe_fn C c * X ^ n = coe_fn (monomial n) c :=
sorry
theorem support_mul_X_pow {R : Type u} [semiring R] (c : R) (n : ℕ) (H : c ≠ 0) :
finsupp.support (coe_fn C c * X ^ n) = singleton n :=
eq.mpr
(id
(Eq._oldrec (Eq.refl (finsupp.support (coe_fn C c * X ^ n) = singleton n))
(C_mul_X_pow_eq_monomial c n)))
(eq.mpr
(id
(Eq._oldrec (Eq.refl (finsupp.support (coe_fn (monomial n) c) = singleton n))
(support_monomial n c H)))
(Eq.refl (singleton n)))
theorem support_C_mul_X_pow' {R : Type u} [semiring R] {c : R} {n : ℕ} :
finsupp.support (coe_fn C c * X ^ n) ⊆ singleton n :=
eq.mpr
(id
(Eq._oldrec (Eq.refl (finsupp.support (coe_fn C c * X ^ n) ⊆ singleton n))
(C_mul_X_pow_eq_monomial c n)))
(support_monomial' n c)
theorem C_dvd_iff_dvd_coeff {R : Type u} [semiring R] (r : R) (φ : polynomial R) :
coe_fn C r ∣ φ ↔ ∀ (i : ℕ), r ∣ coeff φ i :=
sorry
/-- If the coefficients of a polynomial belong to n ideal contains the submodule span of the
coefficients of a polynomial. -/
theorem span_le_of_coeff_mem_C_inverse {R : Type u} [semiring R] {f : polynomial R}
{I : submodule (polynomial R) (polynomial R)}
(cf : ∀ (i : ℕ), coeff f i ∈ ⇑C ⁻¹' submodule.carrier I) :
submodule.span (polynomial R)
(set_of fun (g : polynomial R) => ∃ (i : ℕ), g = coe_fn C (coeff f i)) ≤
I :=
sorry
theorem mem_span_C_coeff {R : Type u} [semiring R] {f : polynomial R} :
f ∈
submodule.span (polynomial R)
(set_of fun (g : polynomial R) => ∃ (i : ℕ), g = coe_fn C (coeff f i)) :=
sorry
theorem exists_coeff_not_mem_C_inverse {R : Type u} [semiring R] {f : polynomial R}
{I : submodule (polynomial R) (polynomial R)} :
¬f ∈ I → ∃ (i : ℕ), ¬coeff f i ∈ ⇑C ⁻¹' submodule.carrier I :=
imp_of_not_imp_not (¬f ∈ I) (∃ (i : ℕ), ¬coeff f i ∈ ⇑C ⁻¹' submodule.carrier I)
fun (cf : ¬∃ (i : ℕ), ¬coeff f i ∈ ⇑C ⁻¹' submodule.carrier I) =>
iff.mpr not_not (span_le_of_coeff_mem_C_inverse (iff.mp not_exists_not cf) mem_span_C_coeff)
end Mathlib
|
755f63216c9dae1aa32ee276101b498bf98dc8c9
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/nat/bitwise.lean
|
54358c6ec377dd12d5db832e4968443235433675
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 9,795
|
lean
|
/-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import data.list.basic
import data.nat.bits
import tactic.linarith
/-!
# Bitwise operations on natural numbers
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
In the first half of this file, we provide theorems for reasoning about natural numbers from their
bitwise properties. In the second half of this file, we show properties of the bitwise operations
`lor`, `land` and `lxor`, which are defined in core.
## Main results
* `eq_of_test_bit_eq`: two natural numbers are equal if they have equal bits at every position.
* `exists_most_significant_bit`: if `n ≠ 0`, then there is some position `i` that contains the most
significant `1`-bit of `n`.
* `lt_of_test_bit`: if `n` and `m` are numbers and `i` is a position such that the `i`-th bit of
of `n` is zero, the `i`-th bit of `m` is one, and all more significant bits are equal, then
`n < m`.
## Future work
There is another way to express bitwise properties of natural number: `digits 2`. The two ways
should be connected.
## Keywords
bitwise, and, or, xor
-/
open function
namespace nat
@[simp] lemma bit_ff : bit ff = bit0 := rfl
@[simp] lemma bit_tt : bit tt = bit1 := rfl
@[simp] lemma bit_eq_zero {n : ℕ} {b : bool} : n.bit b = 0 ↔ n = 0 ∧ b = ff :=
by { cases b; simp [nat.bit0_eq_zero, nat.bit1_ne_zero] }
lemma zero_of_test_bit_eq_ff {n : ℕ} (h : ∀ i, test_bit n i = ff) : n = 0 :=
begin
induction n using nat.binary_rec with b n hn,
{ refl },
{ have : b = ff := by simpa using h 0,
rw [this, bit_ff, bit0_val, hn (λ i, by rw [←h (i + 1), test_bit_succ]), mul_zero] }
end
@[simp] lemma zero_test_bit (i : ℕ) : test_bit 0 i = ff :=
by simp [test_bit]
/-- The ith bit is the ith element of `n.bits`. -/
lemma test_bit_eq_inth (n i : ℕ) : n.test_bit i = n.bits.inth i :=
begin
induction i with i ih generalizing n,
{ simp [test_bit, shiftr, bodd_eq_bits_head, list.inth_zero_eq_head], },
conv_lhs { rw ← bit_decomp n, },
rw [test_bit_succ, ih n.div2, div2_bits_eq_tail],
cases n.bits; simp,
end
/-- Bitwise extensionality: Two numbers agree if they agree at every bit position. -/
lemma eq_of_test_bit_eq {n m : ℕ} (h : ∀ i, test_bit n i = test_bit m i) : n = m :=
begin
induction n using nat.binary_rec with b n hn generalizing m,
{ simp only [zero_test_bit] at h,
exact (zero_of_test_bit_eq_ff (λ i, (h i).symm)).symm },
induction m using nat.binary_rec with b' m hm,
{ simp only [zero_test_bit] at h,
exact zero_of_test_bit_eq_ff h },
suffices h' : n = m,
{ rw [h', show b = b', by simpa using h 0] },
exact hn (λ i, by convert h (i + 1) using 1; rw test_bit_succ)
end
lemma exists_most_significant_bit {n : ℕ} (h : n ≠ 0) :
∃ i, test_bit n i = tt ∧ ∀ j, i < j → test_bit n j = ff :=
begin
induction n using nat.binary_rec with b n hn,
{ exact false.elim (h rfl) },
by_cases h' : n = 0,
{ subst h',
rw (show b = tt, by { revert h, cases b; simp }),
refine ⟨0, ⟨by rw [test_bit_zero], λ j hj, _⟩⟩,
obtain ⟨j', rfl⟩ := exists_eq_succ_of_ne_zero (ne_of_gt hj),
rw [test_bit_succ, zero_test_bit] },
{ obtain ⟨k, ⟨hk, hk'⟩⟩ := hn h',
refine ⟨k + 1, ⟨by rw [test_bit_succ, hk], λ j hj, _⟩⟩,
obtain ⟨j', rfl⟩ := exists_eq_succ_of_ne_zero (show j ≠ 0, by linarith),
exact (test_bit_succ _ _ _).trans (hk' _ (lt_of_succ_lt_succ hj)) }
end
lemma lt_of_test_bit {n m : ℕ} (i : ℕ) (hn : test_bit n i = ff) (hm : test_bit m i = tt)
(hnm : ∀ j, i < j → test_bit n j = test_bit m j) : n < m :=
begin
induction n using nat.binary_rec with b n hn' generalizing i m,
{ contrapose! hm,
rw le_zero_iff at hm,
simp [hm] },
induction m using nat.binary_rec with b' m hm' generalizing i,
{ exact false.elim (bool.ff_ne_tt ((zero_test_bit i).symm.trans hm)) },
by_cases hi : i = 0,
{ subst hi,
simp only [test_bit_zero] at hn hm,
have : n = m,
{ exact eq_of_test_bit_eq (λ i, by convert hnm (i + 1) dec_trivial using 1; rw test_bit_succ) },
rw [hn, hm, this, bit_ff, bit_tt, bit0_val, bit1_val],
exact lt_add_one _ },
{ obtain ⟨i', rfl⟩ := exists_eq_succ_of_ne_zero hi,
simp only [test_bit_succ] at hn hm,
have := hn' _ hn hm (λ j hj, by convert hnm j.succ (succ_lt_succ hj) using 1; rw test_bit_succ),
cases b; cases b';
simp only [bit_ff, bit_tt, bit0_val n, bit1_val n, bit0_val m, bit1_val m];
linarith }
end
@[simp]
lemma test_bit_two_pow_self (n : ℕ) : test_bit (2 ^ n) n = tt :=
by rw [test_bit, shiftr_eq_div_pow, nat.div_self (pow_pos zero_lt_two n), bodd_one]
lemma test_bit_two_pow_of_ne {n m : ℕ} (hm : n ≠ m) : test_bit (2 ^ n) m = ff :=
begin
rw [test_bit, shiftr_eq_div_pow],
cases hm.lt_or_lt with hm hm,
{ rw [nat.div_eq_zero, bodd_zero],
exact nat.pow_lt_pow_of_lt_right one_lt_two hm },
{ rw [pow_div hm.le zero_lt_two, ← tsub_add_cancel_of_le (succ_le_of_lt $ tsub_pos_of_lt hm)],
simp [pow_succ] }
end
lemma test_bit_two_pow (n m : ℕ) : test_bit (2 ^ n) m = (n = m) :=
begin
by_cases n = m,
{ cases h,
simp },
{ rw test_bit_two_pow_of_ne h,
simp [h] }
end
/-- If `f` is a commutative operation on bools such that `f ff ff = ff`, then `bitwise f` is also
commutative. -/
lemma bitwise_comm {f : bool → bool → bool} (hf : ∀ b b', f b b' = f b' b)
(hf' : f ff ff = ff) (n m : ℕ) : bitwise f n m = bitwise f m n :=
suffices bitwise f = swap (bitwise f), by conv_lhs { rw this },
calc bitwise f = bitwise (swap f) : congr_arg _ $ funext $ λ _, funext $ hf _
... = swap (bitwise f) : bitwise_swap hf'
lemma lor_comm (n m : ℕ) : lor n m = lor m n := bitwise_comm bool.bor_comm rfl n m
lemma land_comm (n m : ℕ) : land n m = land m n := bitwise_comm bool.band_comm rfl n m
lemma lxor_comm (n m : ℕ) : lxor n m = lxor m n := bitwise_comm bool.bxor_comm rfl n m
@[simp] lemma zero_lxor (n : ℕ) : lxor 0 n = n := by simp [lxor]
@[simp] lemma lxor_zero (n : ℕ) : lxor n 0 = n := by simp [lxor]
@[simp] lemma zero_land (n : ℕ) : land 0 n = 0 := by simp [land]
@[simp] lemma land_zero (n : ℕ) : land n 0 = 0 := by simp [land]
@[simp] lemma zero_lor (n : ℕ) : lor 0 n = n := by simp [lor]
@[simp] lemma lor_zero (n : ℕ) : lor n 0 = n := by simp [lor]
/-- Proving associativity of bitwise operations in general essentially boils down to a huge case
distinction, so it is shorter to use this tactic instead of proving it in the general case. -/
meta def bitwise_assoc_tac : tactic unit :=
`[induction n using nat.binary_rec with b n hn generalizing m k,
{ simp },
induction m using nat.binary_rec with b' m hm,
{ simp },
induction k using nat.binary_rec with b'' k hk;
simp [hn]]
lemma lxor_assoc (n m k : ℕ) : lxor (lxor n m) k = lxor n (lxor m k) := by bitwise_assoc_tac
lemma land_assoc (n m k : ℕ) : land (land n m) k = land n (land m k) := by bitwise_assoc_tac
lemma lor_assoc (n m k : ℕ) : lor (lor n m) k = lor n (lor m k) := by bitwise_assoc_tac
@[simp] lemma lxor_self (n : ℕ) : lxor n n = 0 :=
zero_of_test_bit_eq_ff $ λ i, by simp
-- These lemmas match `mul_inv_cancel_right` and `mul_inv_cancel_left`.
lemma lxor_cancel_right (n m : ℕ) : lxor (lxor m n) n = m :=
by rw [lxor_assoc, lxor_self, lxor_zero]
lemma lxor_cancel_left (n m : ℕ) : lxor n (lxor n m) = m :=
by rw [←lxor_assoc, lxor_self, zero_lxor]
lemma lxor_right_injective {n : ℕ} : function.injective (lxor n) :=
λ m m' h, by rw [←lxor_cancel_left n m, ←lxor_cancel_left n m', h]
lemma lxor_left_injective {n : ℕ} : function.injective (λ m, lxor m n) :=
λ m m' (h : lxor m n = lxor m' n), by rw [←lxor_cancel_right n m, ←lxor_cancel_right n m', h]
@[simp] lemma lxor_right_inj {n m m' : ℕ} : lxor n m = lxor n m' ↔ m = m' :=
lxor_right_injective.eq_iff
@[simp] lemma lxor_left_inj {n m m' : ℕ} : lxor m n = lxor m' n ↔ m = m' :=
lxor_left_injective.eq_iff
@[simp] lemma lxor_eq_zero {n m : ℕ} : lxor n m = 0 ↔ n = m :=
by rw [←lxor_self n, lxor_right_inj, eq_comm]
lemma lxor_ne_zero {n m : ℕ} : lxor n m ≠ 0 ↔ n ≠ m := lxor_eq_zero.not
lemma lxor_trichotomy {a b c : ℕ} (h : a ≠ lxor b c) :
lxor b c < a ∨ lxor a c < b ∨ lxor a b < c :=
begin
set v := lxor a (lxor b c) with hv,
-- The xor of any two of `a`, `b`, `c` is the xor of `v` and the third.
have hab : lxor a b = lxor c v,
{ rw hv, conv_rhs { rw lxor_comm, simp [lxor_assoc] } },
have hac : lxor a c = lxor b v,
{ rw hv,
conv_rhs { congr, skip, rw lxor_comm },
rw [←lxor_assoc, ←lxor_assoc, lxor_self, zero_lxor, lxor_comm] },
have hbc : lxor b c = lxor a v,
{ simp [hv, ←lxor_assoc] },
-- If `i` is the position of the most significant bit of `v`, then at least one of `a`, `b`, `c`
-- has a one bit at position `i`.
obtain ⟨i, ⟨hi, hi'⟩⟩ := exists_most_significant_bit (lxor_ne_zero.2 h),
have : test_bit a i = tt ∨ test_bit b i = tt ∨ test_bit c i = tt,
{ contrapose! hi,
simp only [eq_ff_eq_not_eq_tt, ne, test_bit_lxor] at ⊢ hi,
rw [hi.1, hi.2.1, hi.2.2, bxor_ff, bxor_ff] },
-- If, say, `a` has a one bit at position `i`, then `a xor v` has a zero bit at position `i`, but
-- the same bits as `a` in positions greater than `j`, so `a xor v < a`.
rcases this with h|h|h;
[{ left, rw hbc }, { right, left, rw hac }, { right, right, rw hab }];
exact lt_of_test_bit i (by simp [h, hi]) h (λ j hj, by simp [hi' _ hj])
end
lemma lt_lxor_cases {a b c : ℕ} (h : a < lxor b c) : lxor a c < b ∨ lxor a b < c :=
(or_iff_right $ λ h', (h.asymm h').elim).1 $ lxor_trichotomy h.ne
end nat
|
ebfa69d0195e712428825aaa44c3ed06e64bd900
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/data/semiquot.lean
|
c0efa7cf9040bcde89bf63dc6fae9388fdf9109c
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,919
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.set.lattice
/-! # Semiquotients
A data type for semiquotients, which are classically equivalent to
nonempty sets, but are useful for programming; the idea is that
a semiquotient set `S` represents some (particular but unknown)
element of `S`. This can be used to model nondeterministic functions,
which return something in a range of values (represented by the
predicate `S`) but are not completely determined.
-/
/-- A member of `semiquot α` is classically a nonempty `set α`,
and in the VM is represented by an element of `α`; the relation
between these is that the VM element is required to be a member
of the set `s`. The specific element of `s` that the VM computes
is hidden by a quotient construction, allowing for the representation
of nondeterministic functions. -/
structure {u} semiquot (α : Type*) := mk' ::
(s : set α)
(val : trunc ↥s)
namespace semiquot
variables {α : Type*} {β : Type*}
instance : has_mem α (semiquot α) := ⟨λ a q, a ∈ q.s⟩
/-- Construct a `semiquot α` from `h : a ∈ s` where `s : set α`. -/
def mk {a : α} {s : set α} (h : a ∈ s) : semiquot α :=
⟨s, trunc.mk ⟨a, h⟩⟩
theorem ext_s {q₁ q₂ : semiquot α} : q₁ = q₂ ↔ q₁.s = q₂.s :=
⟨congr_arg _,
λ h, by cases q₁; cases q₂; congr; exact h⟩
theorem ext {q₁ q₂ : semiquot α} : q₁ = q₂ ↔ ∀ a, a ∈ q₁ ↔ a ∈ q₂ :=
ext_s.trans set.ext_iff
theorem exists_mem (q : semiquot α) : ∃ a, a ∈ q :=
let ⟨⟨a, h⟩, h₂⟩ := q.2.exists_rep in ⟨a, h⟩
theorem eq_mk_of_mem {q : semiquot α} {a : α} (h : a ∈ q) :
q = @mk _ a q.1 h := ext_s.2 rfl
theorem nonempty (q : semiquot α) : q.s.nonempty := q.exists_mem
/-- `pure a` is `a` reinterpreted as an unspecified element of `{a}`. -/
protected def pure (a : α) : semiquot α := mk (set.mem_singleton a)
@[simp] theorem mem_pure' {a b : α} : a ∈ semiquot.pure b ↔ a = b :=
set.mem_singleton_iff
/-- Replace `s` in a `semiquot` with a superset. -/
def blur' (q : semiquot α) {s : set α} (h : q.s ⊆ s) : semiquot α :=
⟨s, trunc.lift (λ a : q.s, trunc.mk ⟨a.1, h a.2⟩)
(λ _ _, trunc.eq _ _) q.2⟩
/-- Replace `s` in a `q : semiquot α` with a union `s ∪ q.s` -/
def blur (s : set α) (q : semiquot α) : semiquot α :=
blur' q (set.subset_union_right s q.s)
theorem blur_eq_blur' (q : semiquot α) (s : set α) (h : q.s ⊆ s) :
blur s q = blur' q h :=
by unfold blur; congr; exact set.union_eq_self_of_subset_right h
@[simp] theorem mem_blur' (q : semiquot α) {s : set α} (h : q.s ⊆ s)
{a : α} : a ∈ blur' q h ↔ a ∈ s := iff.rfl
/-- Convert a `trunc α` to a `semiquot α`. -/
def of_trunc (q : trunc α) : semiquot α :=
⟨set.univ, q.map (λ a, ⟨a, trivial⟩)⟩
/-- Convert a `semiquot α` to a `trunc α`. -/
def to_trunc (q : semiquot α) : trunc α :=
q.2.map subtype.val
/-- If `f` is a constant on `q.s`, then `q.lift_on f` is the value of `f`
at any point of `q`. -/
def lift_on (q : semiquot α) (f : α → β) (h : ∀ a b ∈ q, f a = f b) : β :=
trunc.lift_on q.2 (λ x, f x.1) (λ x y, h _ _ x.2 y.2)
theorem lift_on_of_mem (q : semiquot α)
(f : α → β) (h : ∀ a b ∈ q, f a = f b)
(a : α) (aq : a ∈ q) : lift_on q f h = f a :=
by revert h; rw eq_mk_of_mem aq; intro; refl
/-- Apply a function to the unknown value stored in a `semiquot α`. -/
def map (f : α → β) (q : semiquot α) : semiquot β :=
⟨f '' q.1, q.2.map (λ x, ⟨f x.1, set.mem_image_of_mem _ x.2⟩)⟩
@[simp] theorem mem_map (f : α → β) (q : semiquot α) (b : β) :
b ∈ map f q ↔ ∃ a, a ∈ q ∧ f a = b := set.mem_image _ _ _
/-- Apply a function returning a `semiquot` to a `semiquot`. -/
def bind (q : semiquot α) (f : α → semiquot β) : semiquot β :=
⟨⋃ a ∈ q.1, (f a).1,
q.2.bind (λ a, (f a.1).2.map (λ b, ⟨b.1, set.mem_bUnion a.2 b.2⟩))⟩
@[simp] theorem mem_bind (q : semiquot α) (f : α → semiquot β) (b : β) :
b ∈ bind q f ↔ ∃ a ∈ q, b ∈ f a := set.mem_bUnion_iff
instance : monad semiquot :=
{ pure := @semiquot.pure,
map := @semiquot.map,
bind := @semiquot.bind }
@[simp] lemma map_def {β} : ((<$>) : (α → β) → semiquot α → semiquot β) = map := rfl
@[simp] lemma bind_def {β} : ((>>=) : semiquot α → (α → semiquot β) → semiquot β) = bind := rfl
@[simp] theorem mem_pure {a b : α} : a ∈ (pure b : semiquot α) ↔ a = b :=
set.mem_singleton_iff
theorem mem_pure_self (a : α) : a ∈ (pure a : semiquot α) :=
set.mem_singleton a
@[simp] theorem pure_inj {a b : α} : (pure a : semiquot α) = pure b ↔ a = b :=
ext_s.trans set.singleton_eq_singleton_iff
instance : is_lawful_monad semiquot :=
{ pure_bind := λ α β x f, ext.2 $ by simp,
bind_assoc := λ α β γ s f g, ext.2 $ by simp; exact
λ c, ⟨λ ⟨b, ⟨a, as, bf⟩, cg⟩, ⟨a, as, b, bf, cg⟩,
λ ⟨a, as, b, bf, cg⟩, ⟨b, ⟨a, as, bf⟩, cg⟩⟩,
id_map := λ α q, ext.2 $ by simp,
bind_pure_comp_eq_map := λ α β f s, ext.2 $ by simp [eq_comm] }
instance : has_le (semiquot α) := ⟨λ s t, s.s ⊆ t.s⟩
instance : partial_order (semiquot α) :=
{ le := λ s t, ∀ ⦃x⦄, x ∈ s → x ∈ t,
le_refl := λ s, set.subset.refl _,
le_trans := λ s t u, set.subset.trans,
le_antisymm := λ s t h₁ h₂, ext_s.2 (set.subset.antisymm h₁ h₂) }
instance : semilattice_sup (semiquot α) :=
{ sup := λ s, blur s.s,
le_sup_left := λ s t, set.subset_union_left _ _,
le_sup_right := λ s t, set.subset_union_right _ _,
sup_le := λ s t u, set.union_subset,
..semiquot.partial_order }
@[simp] theorem pure_le {a : α} {s : semiquot α} : pure a ≤ s ↔ a ∈ s :=
set.singleton_subset_iff
/-- Assert that a `semiquot` contains only one possible value. -/
def is_pure (q : semiquot α) : Prop := ∀ a b ∈ q, a = b
/-- Extract the value from a `is_pure` semiquotient. -/
def get (q : semiquot α) (h : q.is_pure) : α := lift_on q id h
theorem get_mem {q : semiquot α} (p) : get q p ∈ q :=
let ⟨a, h⟩ := exists_mem q in
by unfold get; rw lift_on_of_mem q _ _ a h; exact h
theorem eq_pure {q : semiquot α} (p) : q = pure (get q p) :=
ext.2 $ λ a, by simp; exact
⟨λ h, p _ _ h (get_mem _), λ e, e.symm ▸ get_mem _⟩
@[simp] theorem pure_is_pure (a : α) : is_pure (pure a)
| b c ab ac := by { simp at ab ac, cc }
theorem is_pure_iff {s : semiquot α} : is_pure s ↔ ∃ a, s = pure a :=
⟨λ h, ⟨_, eq_pure h⟩, λ ⟨a, e⟩, e.symm ▸ pure_is_pure _⟩
theorem is_pure.mono {s t : semiquot α}
(st : s ≤ t) (h : is_pure t) : is_pure s
| a b as bs := h _ _ (st as) (st bs)
theorem is_pure.min {s t : semiquot α} (h : is_pure t) : s ≤ t ↔ s = t :=
⟨λ st, le_antisymm st $ by rw [eq_pure h, eq_pure (h.mono st)]; simp;
exact h _ _ (get_mem _) (st $ get_mem _),
le_of_eq⟩
theorem is_pure_of_subsingleton [subsingleton α] (q : semiquot α) : is_pure q
| a b aq bq := subsingleton.elim _ _
/-- `univ : semiquot α` represents an unspecified element of `univ : set α`. -/
def univ [inhabited α] : semiquot α :=
mk $ set.mem_univ (default _)
instance [inhabited α] : inhabited (semiquot α) := ⟨univ⟩
@[simp] theorem mem_univ [inhabited α] : ∀ a, a ∈ @univ α _ :=
@set.mem_univ α
@[congr] theorem univ_unique (I J : inhabited α) : @univ _ I = @univ _ J :=
ext.2 $ by simp
@[simp] theorem is_pure_univ [inhabited α] : @is_pure α univ ↔ subsingleton α :=
⟨λ h, ⟨λ a b, h a b trivial trivial⟩, λ ⟨h⟩ a b _ _, h a b⟩
instance [inhabited α] : order_top (semiquot α) :=
{ top := univ,
le_top := λ s, set.subset_univ _ }
instance [inhabited α] : semilattice_sup_top (semiquot α) :=
{ ..semiquot.order_top,
..semiquot.semilattice_sup }
end semiquot
|
df83b331120ebe472fb3598d9782c88226c63bcf
|
a45212b1526d532e6e83c44ddca6a05795113ddc
|
/src/analysis/specific_limits.lean
|
b5ba18f8379e135e341ad0b38e614e5cbd7b7f26
|
[
"Apache-2.0"
] |
permissive
|
fpvandoorn/mathlib
|
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
|
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
|
refs/heads/master
| 1,624,791,089,608
| 1,556,715,231,000
| 1,556,715,231,000
| 165,722,980
| 5
| 0
|
Apache-2.0
| 1,552,657,455,000
| 1,547,494,646,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,954
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
A collection of specific limit computations.
-/
import analysis.normed_space.basic
import topology.instances.ennreal
noncomputable theory
local attribute [instance] classical.prop_decidable
open classical function lattice filter finset metric
variables {α : Type*} {β : Type*} {ι : Type*}
lemma summable_of_absolute_convergence_real {f : ℕ → ℝ} :
(∃r, tendsto (λn, (range n).sum (λi, abs (f i))) at_top (nhds r)) → summable f
| ⟨r, hr⟩ :=
begin
refine summable_of_summable_norm ⟨r, (has_sum_iff_tendsto_nat_of_nonneg _ _).2 _⟩,
exact assume i, norm_nonneg _,
simpa only using hr
end
lemma tendsto_pow_at_top_at_top_of_gt_1 {r : ℝ} (h : r > 1) : tendsto (λn:ℕ, r ^ n) at_top at_top :=
tendsto_infi.2 $ assume p, tendsto_principal.2 $
let ⟨n, hn⟩ := exists_nat_gt (p / (r - 1)) in
have hn_nn : (0:ℝ) ≤ n, from nat.cast_nonneg n,
have r - 1 > 0, from sub_lt_iff_lt_add.mp $ by simp; assumption,
have p ≤ r ^ n,
from calc p = (p / (r - 1)) * (r - 1) : (div_mul_cancel _ $ ne_of_gt this).symm
... ≤ n * (r - 1) : mul_le_mul (le_of_lt hn) (le_refl _) (le_of_lt this) hn_nn
... ≤ 1 + n * (r - 1) : le_add_of_nonneg_of_le zero_le_one (le_refl _)
... = 1 + add_monoid.smul n (r - 1) : by rw [add_monoid.smul_eq_mul]
... ≤ (1 + (r - 1)) ^ n : pow_ge_one_add_mul (le_of_lt this) _
... ≤ r ^ n : by simp; exact le_refl _,
show {n | p ≤ r ^ n} ∈ at_top,
from mem_at_top_sets.mpr ⟨n, assume m hnm, le_trans this (pow_le_pow (le_of_lt h) hnm)⟩
lemma tendsto_inverse_at_top_nhds_0 : tendsto (λr:ℝ, r⁻¹) at_top (nhds 0) :=
tendsto_orderable_unbounded (no_top 0) (no_bot 0) $ assume l u hl hu,
mem_at_top_sets.mpr ⟨u⁻¹ + 1, assume b hb,
have u⁻¹ < b, from lt_of_lt_of_le (lt_add_of_pos_right _ zero_lt_one) hb,
⟨lt_trans hl $ inv_pos $ lt_trans (inv_pos hu) this,
lt_of_one_div_lt_one_div hu $
begin
rw [inv_eq_one_div],
simp [-one_div_eq_inv, div_div_eq_mul_div, div_one],
simp [this]
end⟩⟩
lemma tendsto_pow_at_top_nhds_0_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) :
tendsto (λn:ℕ, r^n) at_top (nhds 0) :=
by_cases
(assume : r = 0, (tendsto_add_at_top_iff_nat 1).mp $ by simp [pow_succ, this, tendsto_const_nhds])
(assume : r ≠ 0,
have tendsto (λn, (r⁻¹ ^ n)⁻¹) at_top (nhds 0),
from (tendsto_pow_at_top_at_top_of_gt_1 $ one_lt_inv (lt_of_le_of_ne h₁ this.symm) h₂).comp
tendsto_inverse_at_top_nhds_0,
tendsto.congr' (univ_mem_sets' $ by simp *) this)
lemma tendsto_pow_at_top_nhds_0_of_lt_1_normed_field {K : Type*} [normed_field K] {ξ : K}
(_ : ∥ξ∥ < 1) : tendsto (λ n : ℕ, ξ^n) at_top (nhds 0) :=
begin
rw[tendsto_iff_norm_tendsto_zero],
convert tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg ξ) ‹∥ξ∥ < 1›,
ext n,
simp
end
lemma tendsto_pow_at_top_at_top_of_gt_1_nat {k : ℕ} (h : 1 < k) :
tendsto (λn:ℕ, k ^ n) at_top at_top :=
tendsto_coe_nat_real_at_top_iff.1 $
have hr : 1 < (k : ℝ), by rw [← nat.cast_one, nat.cast_lt]; exact h,
by simpa using tendsto_pow_at_top_at_top_of_gt_1 hr
lemma tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ)⁻¹) at_top (nhds 0) :=
tendsto.comp (tendsto_coe_nat_real_at_top_iff.2 tendsto_id) tendsto_inverse_at_top_nhds_0
lemma tendsto_one_div_at_top_nhds_0_nat : tendsto (λ n : ℕ, 1/(n : ℝ)) at_top (nhds 0) :=
by simpa only [inv_eq_one_div] using tendsto_inverse_at_top_nhds_0_nat
lemma tendsto_one_div_add_at_top_nhds_0_nat :
tendsto (λ n : ℕ, 1 / ((n : ℝ) + 1)) at_top (nhds 0) :=
suffices tendsto (λ n : ℕ, 1 / (↑(n + 1) : ℝ)) at_top (nhds 0), by simpa,
(tendsto_add_at_top_iff_nat 1).2 tendsto_one_div_at_top_nhds_0_nat
lemma has_sum_geometric {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) :
has_sum (λn:ℕ, r ^ n) (1 / (1 - r)) :=
have r ≠ 1, from ne_of_lt h₂,
have r + -1 ≠ 0,
by rw [←sub_eq_add_neg, ne, sub_eq_iff_eq_add]; simp; assumption,
have tendsto (λn, (r ^ n - 1) * (r - 1)⁻¹) at_top (nhds ((0 - 1) * (r - 1)⁻¹)),
from tendsto_mul
(tendsto_sub (tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂) tendsto_const_nhds) tendsto_const_nhds,
(has_sum_iff_tendsto_nat_of_nonneg (pow_nonneg h₁) _).mpr $
by simp [neg_inv, geom_sum, div_eq_mul_inv, *] at *
lemma summable_geometric {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : summable (λn:ℕ, r ^ n) :=
⟨_, has_sum_geometric h₁ h₂⟩
lemma tsum_geometric {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : (∑n:ℕ, r ^ n) = 1 / (1 - r) :=
tsum_eq_has_sum (has_sum_geometric h₁ h₂)
lemma has_sum_geometric_two : has_sum (λn:ℕ, ((1:ℝ)/2) ^ n) 2 :=
by convert has_sum_geometric _ _; norm_num
lemma summable_geometric_two : summable (λn:ℕ, ((1:ℝ)/2) ^ n) :=
⟨_, has_sum_geometric_two⟩
lemma tsum_geometric_two : (∑n:ℕ, ((1:ℝ)/2) ^ n) = 2 :=
tsum_eq_has_sum has_sum_geometric_two
lemma has_sum_geometric_two' (a : ℝ) : has_sum (λn:ℕ, (a / 2) / 2 ^ n) a :=
begin
convert has_sum_mul_left (a / 2) (has_sum_geometric
(le_of_lt one_half_pos) one_half_lt_one),
{ funext n, simp,
rw ← pow_inv; [refl, exact two_ne_zero] },
{ norm_num, rw div_mul_cancel _ two_ne_zero }
end
def pos_sum_of_encodable {ε : ℝ} (hε : 0 < ε)
(ι) [encodable ι] : {ε' : ι → ℝ // (∀ i, 0 < ε' i) ∧ ∃ c, has_sum ε' c ∧ c ≤ ε} :=
begin
let f := λ n, (ε / 2) / 2 ^ n,
have hf : has_sum f ε := has_sum_geometric_two' _,
have f0 : ∀ n, 0 < f n := λ n, div_pos (half_pos hε) (pow_pos two_pos _),
refine ⟨f ∘ encodable.encode, λ i, f0 _, _⟩,
rcases summable_comp_of_summable_of_injective f (summable_spec hf) (@encodable.encode_injective ι _)
with ⟨c, hg⟩,
refine ⟨c, hg, has_sum_le_inj _ (@encodable.encode_injective ι _) _ _ hg hf⟩,
{ assume i _, exact le_of_lt (f0 _) },
{ assume n, exact le_refl _ }
end
lemma cauchy_seq_of_le_geometric [metric_space α] (r C : ℝ) (hr : r < 1) {f : ℕ → α}
(hu : ∀n, dist (f n) (f (n+1)) ≤ C * r^n) : cauchy_seq f :=
begin
refine cauchy_seq_of_summable_dist (summable_of_norm_bounded (λn, C * r^n) _ _),
{ by_cases h : C = 0,
{ simp [h, summable_zero] },
{ have Cpos : C > 0,
{ have := le_trans dist_nonneg (hu 0),
simp only [mul_one, pow_zero] at this,
exact lt_of_le_of_ne this (ne.symm h) },
have rnonneg: r ≥ 0,
{ have := le_trans dist_nonneg (hu 1),
simp only [pow_one] at this,
exact nonneg_of_mul_nonneg_left this Cpos },
refine summable_mul_left C _,
exact summable_spec (@has_sum_geometric r rnonneg hr) }},
show ∀n, abs (dist (f n) (f (n+1))) ≤ C * r^n,
{ assume n, rw abs_of_nonneg (dist_nonneg), exact hu n }
end
namespace nnreal
theorem exists_pos_sum_of_encodable {ε : nnreal} (hε : 0 < ε) (ι) [encodable ι] :
∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ ∃c, has_sum ε' c ∧ c < ε :=
let ⟨a, a0, aε⟩ := dense hε in
let ⟨ε', hε', c, hc, hcε⟩ := pos_sum_of_encodable a0 ι in
⟨ λi, ⟨ε' i, le_of_lt $ hε' i⟩, assume i, nnreal.coe_lt.2 $ hε' i,
⟨c, has_sum_le (assume i, le_of_lt $ hε' i) has_sum_zero hc ⟩, nnreal.has_sum_coe.1 hc,
lt_of_le_of_lt (nnreal.coe_le.1 hcε) aε ⟩
end nnreal
namespace ennreal
theorem exists_pos_sum_of_encodable {ε : ennreal} (hε : 0 < ε) (ι) [encodable ι] :
∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ (∑ i, (ε' i : ennreal)) < ε :=
begin
rcases dense hε with ⟨r, h0r, hrε⟩,
rcases lt_iff_exists_coe.1 hrε with ⟨x, rfl, hx⟩,
rcases nnreal.exists_pos_sum_of_encodable (coe_lt_coe.1 h0r) ι with ⟨ε', hp, c, hc, hcr⟩,
exact ⟨ε', hp, (ennreal.tsum_coe_eq hc).symm ▸ lt_trans (coe_lt_coe.2 hcr) hrε⟩
end
end ennreal
|
9c297eabef7472abc477ab93597d19e5b7d646a8
|
f4bff2062c030df03d65e8b69c88f79b63a359d8
|
/src/game/sup_inf/supProdConst.lean
|
44c37ad8dee8d96e0a91865534fc000a1d482ac8
|
[
"Apache-2.0"
] |
permissive
|
adastra7470/real-number-game
|
776606961f52db0eb824555ed2f8e16f92216ea3
|
f9dcb7d9255a79b57e62038228a23346c2dc301b
|
refs/heads/master
| 1,669,221,575,893
| 1,594,669,800,000
| 1,594,669,800,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,258
|
lean
|
import game.sup_inf.infSumConst
namespace xena -- hide
/-
# Chapter 3 : Sup and Inf
## Level 8
Again a classical result.
-/
-- supremum of constant × set
def const_times_set (c: ℝ) (A : set ℝ) := { x : ℝ | ∃ y ∈ A, x = c * y }
/- Lemma
If $A$ is a set of reals and $c > 0$, then
$$ \textrm{sup} (cA) = c \cdot \textrm{sup} (A)$$
-/
lemma sup_const_times_set (c : ℝ) (hc: 0 < c) (A : set ℝ) (h1A : A.nonempty)
(h2A : bdd_above A) (a : ℝ) :
(is_lub A a) → is_lub (const_times_set c A) (c * a) :=
begin
intro h,
cases h with hA1 hA2,
split,
{ -- prove that (c*a) is an upper bound
intros x h0,
cases h0 with y h1, cases h1 with yA h2,
have H13A := hA1 y yA, rw h2,
exact (mul_le_mul_left hc).mpr H13A,
},
-- now prove that (c*a) is the least upper bound
intros S hS,
set y1 := S / c with hys,
have H : y1 ∈ upper_bounds A,
intros x hx,
have G := hA1 x hx,
set xc := c * x with hxc,
have G1 : xc ∈ const_times_set c A,
use x, existsi hx, exact hxc,
have G2 := hS xc G1, rw hxc at G2,
rw hys, exact (le_div_iff' hc).mpr G2,
have F := hA2 y1 H, rw hys at F,
have E := (mul_le_mul_left hc).mpr F,
exact (le_div_iff' hc).mp F, done
end
end xena -- hide
|
509468288f4dbd4a11ca598ec5ce802cc8a05f2f
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/hott/algebra/order.hlean
|
71ce0a29d7c772ea855574b62db17f97843e0dd1
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 16,735
|
hlean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Weak orders "≤", strict orders "<", and structures that include both.
-/
import algebra.binary algebra.priority
open eq eq.ops algebra
-- set_option class.force_new true
variable {A : Type}
/- weak orders -/
namespace algebra
structure weak_order [class] (A : Type) extends has_le A :=
(le_refl : Πa, le a a)
(le_trans : Πa b c, le a b → le b c → le a c)
(le_antisymm : Πa b, le a b → le b a → a = b)
section
variable [s : weak_order A]
include s
definition le.refl [refl] (a : A) : a ≤ a := !weak_order.le_refl
definition le_of_eq {a b : A} (H : a = b) : a ≤ b := H ▸ le.refl a
definition le.trans [trans] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
definition ge.trans [trans] {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1
definition le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm
-- Alternate syntax. (Abbreviations do not migrate well.)
definition eq_of_le_of_ge {a b : A} : a ≤ b → b ≤ a → a = b := !le.antisymm
end
structure linear_weak_order [class] (A : Type) extends weak_order A :=
(le_total : Πa b, le a b ⊎ le b a)
section
variables [linear_weak_order A]
theorem le.total (a b : A) : a ≤ b ⊎ b ≤ a := !linear_weak_order.le_total
theorem le_of_not_ge {a b : A} (H : ¬ a ≥ b) : a ≤ b := sum.resolve_left !le.total H
definition le_by_cases (a b : A) {P : Type} (H1 : a ≤ b → P) (H2 : b ≤ a → P) : P :=
begin
cases (le.total a b) with H H,
{ exact H1 H},
{ exact H2 H}
end
end
/- strict orders -/
structure strict_order [class] (A : Type) extends has_lt A :=
(lt_irrefl : Πa, ¬ lt a a)
(lt_trans : Πa b c, lt a b → lt b c → lt a c)
section
variable [s : strict_order A]
include s
definition lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl
definition not_lt_self (a : A) : ¬ a < a := !lt.irrefl -- alternate syntax
theorem lt_self_iff_empty (a : A) : a < a ↔ empty :=
iff_empty_intro (lt.irrefl a)
definition lt.trans [trans] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
definition gt.trans [trans] {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1
theorem ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b :=
assume eq_ab : a = b,
show empty, from lt.irrefl b (eq_ab ▸ lt_ab)
theorem ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b :=
ne.symm (ne_of_lt gt_ab)
theorem lt.asymm {a b : A} (H : a < b) : ¬ b < a :=
assume H1 : b < a, lt.irrefl _ (lt.trans H H1)
theorem not_lt_of_gt {a b : A} (H : a > b) : ¬ a < b := !lt.asymm H -- alternate syntax
end
/- well-founded orders -/
structure wf_strict_order [class] (A : Type) extends strict_order A :=
(wf_rec : ΠP : A → Type, (Πx, (Πy, lt y x → P y) → P x) → Πx, P x)
definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
(x : A) (H : Πx, (Πy, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_strict_order.wf_rec P H x
/- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(le_of_lt : Π a b, lt a b → le a b)
(lt_of_lt_of_le : Π a b c, lt a b → le b c → lt a c)
(lt_of_le_of_lt : Π a b c, le a b → lt b c → lt a c)
(lt_irrefl : Π a, ¬ lt a a)
section
variable [s : order_pair A]
variables {a b c : A}
include s
definition le_of_lt : a < b → a ≤ b := !order_pair.le_of_lt
definition lt_of_lt_of_le [trans] : a < b → b ≤ c → a < c := !order_pair.lt_of_lt_of_le
definition lt_of_le_of_lt [trans] : a ≤ b → b < c → a < c := !order_pair.lt_of_le_of_lt
private definition lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a := !order_pair.lt_irrefl
private theorem lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c :=
lt_of_lt_of_le lt_ab (le_of_lt lt_bc)
definition order_pair.to_strict_order [trans_instance] : strict_order A :=
⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄
definition gt_of_gt_of_ge [trans] (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1
definition gt_of_ge_of_gt [trans] (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1
theorem not_le_of_gt (H : a > b) : ¬ a ≤ b :=
assume H1 : a ≤ b,
lt.irrefl _ (lt_of_lt_of_le H H1)
theorem not_lt_of_ge (H : a ≥ b) : ¬ a < b :=
assume H1 : a < b,
lt.irrefl _ (lt_of_le_of_lt H H1)
end
structure strong_order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(le_iff_lt_sum_eq : Πa b, le a b ↔ lt a b ⊎ a = b)
(lt_irrefl : Π a, ¬ lt a a)
definition le_iff_lt_sum_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ⊎ a = b :=
!strong_order_pair.le_iff_lt_sum_eq
theorem lt_sum_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ⊎ a = b :=
iff.mp le_iff_lt_sum_eq le_ab
theorem le_of_lt_sum_eq [s : strong_order_pair A] {a b : A} (lt_sum_eq : a < b ⊎ a = b) : a ≤ b :=
iff.mpr le_iff_lt_sum_eq lt_sum_eq
private definition lt_irrefl' [s : strong_order_pair A] (a : A) : ¬ a < a :=
!strong_order_pair.lt_irrefl
private theorem le_of_lt' [s : strong_order_pair A] (a b : A) : a < b → a ≤ b :=
take Hlt, le_of_lt_sum_eq (sum.inl Hlt)
private theorem lt_iff_le_prod_ne [s : strong_order_pair A] {a b : A} : a < b ↔ (a ≤ b × a ≠ b) :=
iff.intro
(take Hlt, pair (le_of_lt_sum_eq (sum.inl Hlt)) (take Hab, absurd (Hab ▸ Hlt) !lt_irrefl'))
(take Hand,
have Hor : a < b ⊎ a = b, from lt_sum_eq_of_le (prod.pr1 Hand),
sum_resolve_left Hor (prod.pr2 Hand))
theorem lt_of_le_of_ne [s : strong_order_pair A] {a b : A} : a ≤ b → a ≠ b → a < b :=
take H1 H2, iff.mpr lt_iff_le_prod_ne (pair H1 H2)
private theorem ne_of_lt' [s : strong_order_pair A] {a b : A} (H : a < b) : a ≠ b :=
prod.pr2 ((iff.mp (@lt_iff_le_prod_ne _ _ _ _)) H)
private theorem lt_of_lt_of_le' [s : strong_order_pair A] (a b c : A) : a < b → b ≤ c → a < c :=
assume lt_ab : a < b,
assume le_bc : b ≤ c,
have le_ac : a ≤ c, from le.trans (le_of_lt' _ _ lt_ab) le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisymm (le_of_lt' _ _ lt_ab) le_ba,
show empty, from ne_of_lt' lt_ab eq_ab,
show a < c, from iff.mpr (lt_iff_le_prod_ne) (pair le_ac ne_ac)
theorem lt_of_le_of_lt' [s : strong_order_pair A] (a b c : A) : a ≤ b → b < c → a < c :=
assume le_ab : a ≤ b,
assume lt_bc : b < c,
have le_ac : a ≤ c, from le.trans le_ab (le_of_lt' _ _ lt_bc),
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
have eq_bc : b = c, from le.antisymm (le_of_lt' _ _ lt_bc) le_cb,
show empty, from ne_of_lt' lt_bc eq_bc,
show a < c, from iff.mpr (lt_iff_le_prod_ne) (pair le_ac ne_ac)
definition strong_order_pair.to_order_pair [trans_instance] [s : strong_order_pair A] : order_pair A :=
⦃ order_pair, s,
lt_irrefl := lt_irrefl',
le_of_lt := le_of_lt',
lt_of_le_of_lt := lt_of_le_of_lt',
lt_of_lt_of_le := lt_of_lt_of_le' ⦄
/- linear orders -/
structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A
structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A,
linear_weak_order A
definition linear_strong_order_pair.to_linear_order_pair [trans_instance]
[s : linear_strong_order_pair A] : linear_order_pair A :=
⦃ linear_order_pair, s, strong_order_pair.to_order_pair ⦄
section
variable [s : linear_strong_order_pair A]
variables (a b c : A)
include s
theorem lt.trichotomy : a < b ⊎ a = b ⊎ b < a :=
sum.elim (le.total a b)
(assume H : a ≤ b,
sum.elim (iff.mp !le_iff_lt_sum_eq H) (assume H1, sum.inl H1) (assume H1, sum.inr (sum.inl H1)))
(assume H : b ≤ a,
sum.elim (iff.mp !le_iff_lt_sum_eq H)
(assume H1, sum.inr (sum.inr H1))
(assume H1, sum.inr (sum.inl (H1⁻¹))))
definition lt.by_cases {a b : A} {P : Type}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
sum.elim !lt.trichotomy
(assume H, H1 H)
(assume H, sum.elim H (assume H', H2 H') (assume H', H3 H'))
definition lt_ge_by_cases {a b : A} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
lt.by_cases H1 (λH, H2 (H ▸ le.refl a)) (λH, H2 (le_of_lt H))
theorem le_of_not_gt {a b : A} (H : ¬ a > b) : a ≤ b :=
lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H')
theorem lt_of_not_ge {a b : A} (H : ¬ a ≥ b) : a < b :=
lt.by_cases
(assume H', absurd (le_of_lt H') H)
(assume H', absurd (H' ▸ !le.refl) H)
(assume H', H')
theorem lt_sum_ge : a < b ⊎ a ≥ b :=
lt.by_cases
(assume H1 : a < b, sum.inl H1)
(assume H1 : a = b, sum.inr (H1 ▸ le.refl a))
(assume H1 : a > b, sum.inr (le_of_lt H1))
theorem le_sum_gt : a ≤ b ⊎ a > b :=
!sum.swap (lt_sum_ge b a)
theorem lt_sum_gt_of_ne {a b : A} (H : a ≠ b) : a < b ⊎ a > b :=
lt.by_cases (assume H1, sum.inl H1) (assume H1, absurd H1 H) (assume H1, sum.inr H1)
end
open decidable
structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A :=
(decidable_lt : decidable_rel lt)
section
variable [s : decidable_linear_order A]
variables {a b c d : A}
include s
open decidable
definition decidable_lt [instance] : decidable (a < b) :=
@decidable_linear_order.decidable_lt _ _ _ _
definition decidable_le [instance] : decidable (a ≤ b) :=
by_cases
(assume H : a < b, inl (le_of_lt H))
(assume H : ¬ a < b,
have H1 : b ≤ a, from le_of_not_gt H,
by_cases
(assume H2 : b < a, inr (not_le_of_gt H2))
(assume H2 : ¬ b < a, inl (le_of_not_gt H2)))
definition has_decidable_eq [instance] : decidable (a = b) :=
by_cases
(assume H : a ≤ b,
by_cases
(assume H1 : b ≤ a, inl (le.antisymm H H1))
(assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a))))
(assume H : ¬ a ≤ b,
(inr (assume H1 : a = b, H (H1 ▸ !le.refl))))
theorem eq_sum_lt_of_not_lt {a b : A} (H : ¬ a < b) : a = b ⊎ b < a :=
if Heq : a = b then sum.inl Heq else sum.inr (lt_of_not_ge (λ Hge, H (lt_of_le_of_ne Hge Heq)))
theorem eq_sum_lt_of_le {a b : A} (H : a ≤ b) : a = b ⊎ a < b :=
begin
cases eq_sum_lt_of_not_lt (not_lt_of_ge H),
exact sum.inl a_1⁻¹,
exact sum.inr a_1
end
-- testing equality first may result in more definitional equalities
definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B :=
if a = b then t_eq else (if a < b then t_lt else t_gt)
theorem lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) :
lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H
theorem lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) :
lt.cases a b t_lt t_eq t_gt = t_lt :=
if_neg (ne_of_lt H) ⬝ if_pos H
theorem lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) :
lt.cases a b t_lt t_eq t_gt = t_gt :=
if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H)
definition min (a b : A) : A := if a ≤ b then a else b
definition max (a b : A) : A := if a ≤ b then b else a
/- these show min and max form a lattice -/
theorem min_le_left (a b : A) : min a b ≤ a :=
by_cases
(assume H : a ≤ b, by rewrite [↑min, if_pos H])
(assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H]; apply le_of_lt (lt_of_not_ge H))
theorem min_le_right (a b : A) : min a b ≤ b :=
by_cases
(assume H : a ≤ b, by rewrite [↑min, if_pos H]; apply H)
(assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H])
theorem le_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) : c ≤ min a b :=
by_cases
(assume H : a ≤ b, by rewrite [↑min, if_pos H]; apply H₁)
(assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H]; apply H₂)
theorem le_max_left (a b : A) : a ≤ max a b :=
by_cases
(assume H : a ≤ b, by rewrite [↑max, if_pos H]; apply H)
(assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H])
theorem le_max_right (a b : A) : b ≤ max a b :=
by_cases
(assume H : a ≤ b, by rewrite [↑max, if_pos H])
(assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H]; apply le_of_lt (lt_of_not_ge H))
theorem max_le {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) : max a b ≤ c :=
by_cases
(assume H : a ≤ b, by rewrite [↑max, if_pos H]; apply H₂)
(assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H]; apply H₁)
theorem le_max_left_iff_unit (a b : A) : a ≤ max a b ↔ unit :=
iff_unit_intro (le_max_left a b)
theorem le_max_right_iff_unit (a b : A) : b ≤ max a b ↔ unit :=
iff_unit_intro (le_max_right a b)
/- these are also proved for lattices, but with inf and sup in place of min and max -/
theorem eq_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) (H₃ : Π{d}, d ≤ a → d ≤ b → d ≤ c) :
c = min a b :=
le.antisymm (le_min H₁ H₂) (H₃ !min_le_left !min_le_right)
theorem min.comm (a b : A) : min a b = min b a :=
eq_min !min_le_right !min_le_left (λ c H₁ H₂, le_min H₂ H₁)
theorem min.assoc (a b c : A) : min (min a b) c = min a (min b c) :=
begin
apply eq_min,
{ apply le.trans, apply min_le_left, apply min_le_left },
{ apply le_min, apply le.trans, apply min_le_left, apply min_le_right, apply min_le_right },
{ intros [d, H₁, H₂], apply le_min, apply le_min H₁, apply le.trans H₂, apply min_le_left,
apply le.trans H₂, apply min_le_right }
end
theorem min.left_comm (a b c : A) : min a (min b c) = min b (min a c) :=
binary.left_comm (@min.comm A s) (@min.assoc A s) a b c
theorem min.right_comm (a b c : A) : min (min a b) c = min (min a c) b :=
binary.right_comm (@min.comm A s) (@min.assoc A s) a b c
theorem min_self (a : A) : min a a = a :=
by apply inverse; apply eq_min (le.refl a) !le.refl; intros; assumption
theorem min_eq_left {a b : A} (H : a ≤ b) : min a b = a :=
by apply inverse; apply eq_min !le.refl H; intros; assumption
theorem min_eq_right {a b : A} (H : b ≤ a) : min a b = b :=
eq.subst !min.comm (min_eq_left H)
theorem eq_max {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) (H₃ : Π{d}, a ≤ d → b ≤ d → c ≤ d) :
c = max a b :=
le.antisymm (H₃ !le_max_left !le_max_right) (max_le H₁ H₂)
theorem max.comm (a b : A) : max a b = max b a :=
eq_max !le_max_right !le_max_left (λ c H₁ H₂, max_le H₂ H₁)
theorem max.assoc (a b c : A) : max (max a b) c = max a (max b c) :=
begin
apply eq_max,
{ apply le.trans, apply le_max_left a b, apply le_max_left },
{ apply max_le, apply le.trans, apply le_max_right a b, apply le_max_left, apply le_max_right },
{ intros [d, H₁, H₂], apply max_le, apply max_le H₁, apply le.trans !le_max_left H₂,
apply le.trans !le_max_right H₂}
end
theorem max.left_comm (a b c : A) : max a (max b c) = max b (max a c) :=
binary.left_comm (@max.comm A s) (@max.assoc A s) a b c
theorem max.right_comm (a b c : A) : max (max a b) c = max (max a c) b :=
binary.right_comm (@max.comm A s) (@max.assoc A s) a b c
theorem max_self (a : A) : max a a = a :=
by apply inverse; apply eq_max (le.refl a) !le.refl; intros; assumption
theorem max_eq_left {a b : A} (H : b ≤ a) : max a b = a :=
by apply inverse; apply eq_max !le.refl H; intros; assumption
theorem max_eq_right {a b : A} (H : a ≤ b) : max a b = b :=
eq.subst !max.comm (max_eq_left H)
/- these rely on lt_of_lt -/
theorem min_eq_left_of_lt {a b : A} (H : a < b) : min a b = a :=
min_eq_left (le_of_lt H)
theorem min_eq_right_of_lt {a b : A} (H : b < a) : min a b = b :=
min_eq_right (le_of_lt H)
theorem max_eq_left_of_lt {a b : A} (H : b < a) : max a b = a :=
max_eq_left (le_of_lt H)
theorem max_eq_right_of_lt {a b : A} (H : a < b) : max a b = b :=
max_eq_right (le_of_lt H)
/- these use the fact that it is a linear ordering -/
theorem lt_min {a b c : A} (H₁ : a < b) (H₂ : a < c) : a < min b c :=
sum.elim !le_sum_gt
(assume H : b ≤ c, by rewrite (min_eq_left H); apply H₁)
(assume H : b > c, by rewrite (min_eq_right_of_lt H); apply H₂)
theorem max_lt {a b c : A} (H₁ : a < c) (H₂ : b < c) : max a b < c :=
sum.elim !le_sum_gt
(assume H : a ≤ b, by rewrite (max_eq_right H); apply H₂)
(assume H : a > b, by rewrite (max_eq_left_of_lt H); apply H₁)
end
end algebra
|
004adfa7ae73188c1fddf7f5e9541b26aa907d02
|
64874bd1010548c7f5a6e3e8902efa63baaff785
|
/tests/lean/run/induniv.lean
|
e8b9745d422baadd4d62efb55fa972560c2fe83f
|
[
"Apache-2.0"
] |
permissive
|
tjiaqi/lean
|
4634d729795c164664d10d093f3545287c76628f
|
d0ce4cf62f4246b0600c07e074d86e51f2195e30
|
refs/heads/master
| 1,622,323,796,480
| 1,422,643,069,000
| 1,422,643,069,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,023
|
lean
|
prelude
inductive list (A : Type) : Type :=
nil {} : list A,
cons : A → list A → list A
section
variable A : Type
inductive list2 : Type :=
nil2 {} : list2,
cons2 : A → list2 → list2
end
constant num : Type.{1}
namespace Tree
inductive tree (A : Type) : Type :=
node : A → forest A → tree A
with forest : Type :=
nil : forest A,
cons : tree A → forest A → forest A
end Tree
inductive group_struct (A : Type) : Type :=
mk_group_struct : (A → A → A) → A → group_struct A
inductive group : Type :=
mk_group : Π (A : Type), (A → A → A) → A → group
section
variable A : Type
variable B : Type
inductive pair : Type :=
mk_pair : A → B → pair
end
definition Prop := Type.{0}
inductive eq {A : Type} (a : A) : A → Prop :=
refl : eq a a
section
variable {A : Type}
inductive eq2 (a : A) : A → Prop :=
refl2 : eq2 a a
end
section
variable A : Type
variable B : Type
inductive triple (C : Type) : Type :=
mk_triple : A → B → C → triple C
end
|
d945d5d40c915baeb76cee9ea6489f6dcef444bb
|
947fa6c38e48771ae886239b4edce6db6e18d0fb
|
/src/probability/independence.lean
|
e43fcb7cb62ee89d1bc6ee48ed9ad5fb2ff4a7dc
|
[
"Apache-2.0"
] |
permissive
|
ramonfmir/mathlib
|
c5dc8b33155473fab97c38bd3aa6723dc289beaa
|
14c52e990c17f5a00c0cc9e09847af16fabbed25
|
refs/heads/master
| 1,661,979,343,526
| 1,660,830,384,000
| 1,660,830,384,000
| 182,072,989
| 0
| 0
| null | 1,555,585,876,000
| 1,555,585,876,000
| null |
UTF-8
|
Lean
| false
| false
| 36,090
|
lean
|
/-
Copyright (c) 2021 Rémy Degenne. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Rémy Degenne
-/
import algebra.big_operators.intervals
import measure_theory.constructions.pi
/-!
# Independence of sets of sets and measure spaces (σ-algebras)
* A family of sets of sets `π : ι → set (set Ω)` is independent with respect to a measure `μ` if for
any finite set of indices `s = {i_1, ..., i_n}`, for any sets `f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`,
`μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `. It will be used for families of π-systems.
* A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a
measure `μ` (typically defined on a finer σ-algebra) if the family of sets of measurable sets they
define is independent. I.e., `m : ι → measurable_space Ω` is independent with respect to a
measure `μ` if for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
`f i_1 ∈ m i_1, ..., f i_n ∈ m i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i)`.
* Independence of sets (or events in probabilistic parlance) is defined as independence of the
measurable space structures they generate: a set `s` generates the measurable space structure with
measurable sets `∅, s, sᶜ, univ`.
* Independence of functions (or random variables) is also defined as independence of the measurable
space structures they generate: a function `f` for which we have a measurable space `m` on the
codomain generates `measurable_space.comap f m`.
## Main statements
* `Indep_sets.Indep`: if π-systems are independent as sets of sets, then the
measurable space structures they generate are independent.
* `indep_sets.indep`: variant with two π-systems.
## Implementation notes
We provide one main definition of independence:
* `Indep_sets`: independence of a family of sets of sets `pi : ι → set (set Ω)`.
Three other independence notions are defined using `Indep_sets`:
* `Indep`: independence of a family of measurable space structures `m : ι → measurable_space Ω`,
* `Indep_set`: independence of a family of sets `s : ι → set Ω`,
* `Indep_fun`: independence of a family of functions. For measurable spaces
`m : Π (i : ι), measurable_space (β i)`, we consider functions `f : Π (i : ι), Ω → β i`.
Additionally, we provide four corresponding statements for two measurable space structures (resp.
sets of sets, sets, functions) instead of a family. These properties are denoted by the same names
as for a family, but without a capital letter, for example `indep_fun` is the version of `Indep_fun`
for two functions.
The definition of independence for `Indep_sets` uses finite sets (`finset`). An alternative and
equivalent way of defining independence would have been to use countable sets.
TODO: prove that equivalence.
Most of the definitions and lemma in this file list all variables instead of using the `variables`
keyword at the beginning of a section, for example
`lemma indep.symm {Ω} {m₁ m₂ : measurable_space Ω} [measurable_space Ω] {μ : measure Ω} ...` .
This is intentional, to be able to control the order of the `measurable_space` variables. Indeed
when defining `μ` in the example above, the measurable space used is the last one defined, here
`[measurable_space Ω]`, and not `m₁` or `m₂`.
## References
* Williams, David. Probability with martingales. Cambridge university press, 1991.
Part A, Chapter 4.
-/
open measure_theory measurable_space
open_locale big_operators classical measure_theory
namespace probability_theory
section definitions
/-- A family of sets of sets `π : ι → set (set Ω)` is independent with respect to a measure `μ` if
for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
`f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `.
It will be used for families of pi_systems. -/
def Indep_sets {Ω ι} [measurable_space Ω] (π : ι → set (set Ω)) (μ : measure Ω . volume_tac) :
Prop :=
∀ (s : finset ι) {f : ι → set Ω} (H : ∀ i, i ∈ s → f i ∈ π i), μ (⋂ i ∈ s, f i) = ∏ i in s, μ (f i)
/-- Two sets of sets `s₁, s₂` are independent with respect to a measure `μ` if for any sets
`t₁ ∈ p₁, t₂ ∈ s₂`, then `μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/
def indep_sets {Ω} [measurable_space Ω] (s1 s2 : set (set Ω)) (μ : measure Ω . volume_tac) : Prop :=
∀ t1 t2 : set Ω, t1 ∈ s1 → t2 ∈ s2 → μ (t1 ∩ t2) = μ t1 * μ t2
/-- A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a
measure `μ` (typically defined on a finer σ-algebra) if the family of sets of measurable sets they
define is independent. `m : ι → measurable_space Ω` is independent with respect to measure `μ` if
for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
`f i_1 ∈ m i_1, ..., f i_n ∈ m i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `. -/
def Indep {Ω ι} (m : ι → measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
Prop :=
Indep_sets (λ x, {s | measurable_set[m x] s}) μ
/-- Two measurable space structures (or σ-algebras) `m₁, m₂` are independent with respect to a
measure `μ` (defined on a third σ-algebra) if for any sets `t₁ ∈ m₁, t₂ ∈ m₂`,
`μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/
def indep {Ω} (m₁ m₂ : measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
Prop :=
indep_sets {s | measurable_set[m₁] s} {s | measurable_set[m₂] s} μ
/-- A family of sets is independent if the family of measurable space structures they generate is
independent. For a set `s`, the generated measurable space has measurable sets `∅, s, sᶜ, univ`. -/
def Indep_set {Ω ι} [measurable_space Ω] (s : ι → set Ω) (μ : measure Ω . volume_tac) : Prop :=
Indep (λ i, generate_from {s i}) μ
/-- Two sets are independent if the two measurable space structures they generate are independent.
For a set `s`, the generated measurable space structure has measurable sets `∅, s, sᶜ, univ`. -/
def indep_set {Ω} [measurable_space Ω] (s t : set Ω) (μ : measure Ω . volume_tac) : Prop :=
indep (generate_from {s}) (generate_from {t}) μ
/-- A family of functions defined on the same space `Ω` and taking values in possibly different
spaces, each with a measurable space structure, is independent if the family of measurable space
structures they generate on `Ω` is independent. For a function `g` with codomain having measurable
space structure `m`, the generated measurable space structure is `measurable_space.comap g m`. -/
def Indep_fun {Ω ι} [measurable_space Ω] {β : ι → Type*} (m : Π (x : ι), measurable_space (β x))
(f : Π (x : ι), Ω → β x) (μ : measure Ω . volume_tac) : Prop :=
Indep (λ x, measurable_space.comap (f x) (m x)) μ
/-- Two functions are independent if the two measurable space structures they generate are
independent. For a function `f` with codomain having measurable space structure `m`, the generated
measurable space structure is `measurable_space.comap f m`. -/
def indep_fun {Ω β γ} [measurable_space Ω] [mβ : measurable_space β] [mγ : measurable_space γ]
(f : Ω → β) (g : Ω → γ) (μ : measure Ω . volume_tac) : Prop :=
indep (measurable_space.comap f mβ) (measurable_space.comap g mγ) μ
end definitions
section indep
lemma indep_sets.symm {Ω} {s₁ s₂ : set (set Ω)} [measurable_space Ω] {μ : measure Ω}
(h : indep_sets s₁ s₂ μ) :
indep_sets s₂ s₁ μ :=
by { intros t1 t2 ht1 ht2, rw [set.inter_comm, mul_comm], exact h t2 t1 ht2 ht1, }
lemma indep.symm {Ω} {m₁ m₂ : measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
(h : indep m₁ m₂ μ) :
indep m₂ m₁ μ :=
indep_sets.symm h
lemma indep_sets_of_indep_sets_of_le_left {Ω} {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
{μ : measure Ω} (h_indep : indep_sets s₁ s₂ μ) (h31 : s₃ ⊆ s₁) :
indep_sets s₃ s₂ μ :=
λ t1 t2 ht1 ht2, h_indep t1 t2 (set.mem_of_subset_of_mem h31 ht1) ht2
lemma indep_sets_of_indep_sets_of_le_right {Ω} {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
{μ : measure Ω} (h_indep : indep_sets s₁ s₂ μ) (h32 : s₃ ⊆ s₂) :
indep_sets s₁ s₃ μ :=
λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (set.mem_of_subset_of_mem h32 ht2)
lemma indep_of_indep_of_le_left {Ω} {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
{μ : measure Ω} (h_indep : indep m₁ m₂ μ) (h31 : m₃ ≤ m₁) :
indep m₃ m₂ μ :=
λ t1 t2 ht1 ht2, h_indep t1 t2 (h31 _ ht1) ht2
lemma indep_of_indep_of_le_right {Ω} {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
{μ : measure Ω} (h_indep : indep m₁ m₂ μ) (h32 : m₃ ≤ m₂) :
indep m₁ m₃ μ :=
λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (h32 _ ht2)
lemma indep_sets.union {Ω} [measurable_space Ω] {s₁ s₂ s' : set (set Ω)} {μ : measure Ω}
(h₁ : indep_sets s₁ s' μ) (h₂ : indep_sets s₂ s' μ) :
indep_sets (s₁ ∪ s₂) s' μ :=
begin
intros t1 t2 ht1 ht2,
cases (set.mem_union _ _ _).mp ht1 with ht1₁ ht1₂,
{ exact h₁ t1 t2 ht1₁ ht2, },
{ exact h₂ t1 t2 ht1₂ ht2, },
end
@[simp] lemma indep_sets.union_iff {Ω} [measurable_space Ω] {s₁ s₂ s' : set (set Ω)}
{μ : measure Ω} :
indep_sets (s₁ ∪ s₂) s' μ ↔ indep_sets s₁ s' μ ∧ indep_sets s₂ s' μ :=
⟨λ h, ⟨indep_sets_of_indep_sets_of_le_left h (set.subset_union_left s₁ s₂),
indep_sets_of_indep_sets_of_le_left h (set.subset_union_right s₁ s₂)⟩,
λ h, indep_sets.union h.left h.right⟩
lemma indep_sets.Union {Ω ι} [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
{μ : measure Ω} (hyp : ∀ n, indep_sets (s n) s' μ) :
indep_sets (⋃ n, s n) s' μ :=
begin
intros t1 t2 ht1 ht2,
rw set.mem_Union at ht1,
cases ht1 with n ht1,
exact hyp n t1 t2 ht1 ht2,
end
lemma indep_sets.inter {Ω} [measurable_space Ω] {s₁ s' : set (set Ω)} (s₂ : set (set Ω))
{μ : measure Ω} (h₁ : indep_sets s₁ s' μ) :
indep_sets (s₁ ∩ s₂) s' μ :=
λ t1 t2 ht1 ht2, h₁ t1 t2 ((set.mem_inter_iff _ _ _).mp ht1).left ht2
lemma indep_sets.Inter {Ω ι} [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
{μ : measure Ω} (h : ∃ n, indep_sets (s n) s' μ) :
indep_sets (⋂ n, s n) s' μ :=
by {intros t1 t2 ht1 ht2, cases h with n h, exact h t1 t2 (set.mem_Inter.mp ht1 n) ht2 }
lemma indep_sets_singleton_iff {Ω} [measurable_space Ω] {s t : set Ω} {μ : measure Ω} :
indep_sets {s} {t} μ ↔ μ (s ∩ t) = μ s * μ t :=
⟨λ h, h s t rfl rfl,
λ h s1 t1 hs1 ht1, by rwa [set.mem_singleton_iff.mp hs1, set.mem_singleton_iff.mp ht1]⟩
end indep
/-! ### Deducing `indep` from `Indep` -/
section from_Indep_to_indep
lemma Indep_sets.indep_sets {Ω ι} {s : ι → set (set Ω)} [measurable_space Ω] {μ : measure Ω}
(h_indep : Indep_sets s μ) {i j : ι} (hij : i ≠ j) :
indep_sets (s i) (s j) μ :=
begin
intros t₁ t₂ ht₁ ht₂,
have hf_m : ∀ (x : ι), x ∈ {i, j} → (ite (x=i) t₁ t₂) ∈ s x,
{ intros x hx,
cases finset.mem_insert.mp hx with hx hx,
{ simp [hx, ht₁], },
{ simp [finset.mem_singleton.mp hx, hij.symm, ht₂], }, },
have h1 : t₁ = ite (i = i) t₁ t₂, by simp only [if_true, eq_self_iff_true],
have h2 : t₂ = ite (j = i) t₁ t₂, by simp only [hij.symm, if_false],
have h_inter : (⋂ (t : ι) (H : t ∈ ({i, j} : finset ι)), ite (t = i) t₁ t₂)
= (ite (i = i) t₁ t₂) ∩ (ite (j = i) t₁ t₂),
by simp only [finset.set_bInter_singleton, finset.set_bInter_insert],
have h_prod : (∏ (t : ι) in ({i, j} : finset ι), μ (ite (t = i) t₁ t₂))
= μ (ite (i = i) t₁ t₂) * μ (ite (j = i) t₁ t₂),
by simp only [hij, finset.prod_singleton, finset.prod_insert, not_false_iff,
finset.mem_singleton],
rw h1,
nth_rewrite 1 h2,
nth_rewrite 3 h2,
rw [←h_inter, ←h_prod, h_indep {i, j} hf_m],
end
lemma Indep.indep {Ω ι} {m : ι → measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
(h_indep : Indep m μ) {i j : ι} (hij : i ≠ j) :
indep (m i) (m j) μ :=
begin
change indep_sets ((λ x, measurable_set[m x]) i) ((λ x, measurable_set[m x]) j) μ,
exact Indep_sets.indep_sets h_indep hij,
end
lemma Indep_fun.indep_fun {Ω ι : Type*} {m₀ : measurable_space Ω} {μ : measure Ω} {β : ι → Type*}
{m : Π x, measurable_space (β x)} {f : Π i, Ω → β i} (hf_Indep : Indep_fun m f μ)
{i j : ι} (hij : i ≠ j) :
indep_fun (f i) (f j) μ :=
hf_Indep.indep hij
end from_Indep_to_indep
/-!
## π-system lemma
Independence of measurable spaces is equivalent to independence of generating π-systems.
-/
section from_measurable_spaces_to_sets_of_sets
/-! ### Independence of measurable space structures implies independence of generating π-systems -/
lemma Indep.Indep_sets {Ω ι} [measurable_space Ω] {μ : measure Ω} {m : ι → measurable_space Ω}
{s : ι → set (set Ω)} (hms : ∀ n, m n = generate_from (s n))
(h_indep : Indep m μ) :
Indep_sets s μ :=
λ S f hfs, h_indep S $ λ x hxS,
((hms x).symm ▸ measurable_set_generate_from (hfs x hxS) : measurable_set[m x] (f x))
lemma indep.indep_sets {Ω} [measurable_space Ω] {μ : measure Ω} {s1 s2 : set (set Ω)}
(h_indep : indep (generate_from s1) (generate_from s2) μ) :
indep_sets s1 s2 μ :=
λ t1 t2 ht1 ht2, h_indep t1 t2 (measurable_set_generate_from ht1) (measurable_set_generate_from ht2)
end from_measurable_spaces_to_sets_of_sets
section from_pi_systems_to_measurable_spaces
/-! ### Independence of generating π-systems implies independence of measurable space structures -/
private lemma indep_sets.indep_aux {Ω} {m2 : measurable_space Ω}
{m : measurable_space Ω} {μ : measure Ω} [is_probability_measure μ] {p1 p2 : set (set Ω)}
(h2 : m2 ≤ m) (hp2 : is_pi_system p2) (hpm2 : m2 = generate_from p2)
(hyp : indep_sets p1 p2 μ) {t1 t2 : set Ω} (ht1 : t1 ∈ p1) (ht2m : measurable_set[m2] t2) :
μ (t1 ∩ t2) = μ t1 * μ t2 :=
begin
let μ_inter := μ.restrict t1,
let ν := (μ t1) • μ,
have h_univ : μ_inter set.univ = ν set.univ,
by rw [measure.restrict_apply_univ, measure.smul_apply, smul_eq_mul, measure_univ, mul_one],
haveI : is_finite_measure μ_inter := @restrict.is_finite_measure Ω _ t1 μ ⟨measure_lt_top μ t1⟩,
rw [set.inter_comm, ←@measure.restrict_apply Ω _ μ t1 t2 (h2 t2 ht2m)],
refine ext_on_measurable_space_of_generate_finite m p2 (λ t ht, _) h2 hpm2 hp2 h_univ ht2m,
have ht2 : measurable_set[m] t,
{ refine h2 _ _,
rw hpm2,
exact measurable_set_generate_from ht, },
rw [measure.restrict_apply ht2, measure.smul_apply, set.inter_comm],
exact hyp t1 t ht1 ht,
end
lemma indep_sets.indep {Ω} {m1 m2 : measurable_space Ω} {m : measurable_space Ω}
{μ : measure Ω} [is_probability_measure μ] {p1 p2 : set (set Ω)} (h1 : m1 ≤ m) (h2 : m2 ≤ m)
(hp1 : is_pi_system p1) (hp2 : is_pi_system p2) (hpm1 : m1 = generate_from p1)
(hpm2 : m2 = generate_from p2) (hyp : indep_sets p1 p2 μ) :
indep m1 m2 μ :=
begin
intros t1 t2 ht1 ht2,
let μ_inter := μ.restrict t2,
let ν := (μ t2) • μ,
have h_univ : μ_inter set.univ = ν set.univ,
by rw [measure.restrict_apply_univ, measure.smul_apply, smul_eq_mul, measure_univ, mul_one],
haveI : is_finite_measure μ_inter := @restrict.is_finite_measure Ω _ t2 μ ⟨measure_lt_top μ t2⟩,
rw [mul_comm, ←@measure.restrict_apply Ω _ μ t2 t1 (h1 t1 ht1)],
refine ext_on_measurable_space_of_generate_finite m p1 (λ t ht, _) h1 hpm1 hp1 h_univ ht1,
have ht1 : measurable_set[m] t,
{ refine h1 _ _,
rw hpm1,
exact measurable_set_generate_from ht, },
rw [measure.restrict_apply ht1, measure.smul_apply, smul_eq_mul, mul_comm],
exact indep_sets.indep_aux h2 hp2 hpm2 hyp ht ht2,
end
variables {Ω ι : Type*} {m0 : measurable_space Ω} {μ : measure Ω}
lemma Indep_sets.pi_Union_Inter_singleton {π : ι → set (set Ω)} {a : ι} {S : finset ι}
(hp_ind : Indep_sets π μ) (haS : a ∉ S) :
indep_sets (pi_Union_Inter π {S}) (π a) μ :=
begin
rintros t1 t2 ⟨s, hs_mem, ft1, hft1_mem, ht1_eq⟩ ht2_mem_pia,
rw set.mem_singleton_iff at hs_mem,
subst hs_mem,
let f := λ n, ite (n = a) t2 (ite (n ∈ s) (ft1 n) set.univ),
have h_f_mem : ∀ n ∈ insert a s, f n ∈ π n,
{ intros n hn_mem_insert,
simp_rw f,
cases (finset.mem_insert.mp hn_mem_insert) with hn_mem hn_mem,
{ simp [hn_mem, ht2_mem_pia], },
{ have hn_ne_a : n ≠ a, by { rintro rfl, exact haS hn_mem, },
simp [hn_ne_a, hn_mem, hft1_mem n hn_mem], }, },
have h_f_mem_pi : ∀ n ∈ s, f n ∈ π n, from λ x hxS, h_f_mem x (by simp [hxS]),
have h_t1 : t1 = ⋂ n ∈ s, f n,
{ suffices h_forall : ∀ n ∈ s, f n = ft1 n,
{ rw ht1_eq,
congr' with n x,
congr' with hns y,
simp only [(h_forall n hns).symm], },
intros n hnS,
have hn_ne_a : n ≠ a, by { rintro rfl, exact haS hnS, },
simp_rw [f, if_pos hnS, if_neg hn_ne_a], },
have h_μ_t1 : μ t1 = ∏ n in s, μ (f n), by rw [h_t1, ←hp_ind s h_f_mem_pi],
have h_t2 : t2 = f a, by { simp_rw [f], simp, },
have h_μ_inter : μ (t1 ∩ t2) = ∏ n in insert a s, μ (f n),
{ have h_t1_inter_t2 : t1 ∩ t2 = ⋂ n ∈ insert a s, f n,
by rw [h_t1, h_t2, finset.set_bInter_insert, set.inter_comm],
rw [h_t1_inter_t2, ←hp_ind (insert a s) h_f_mem], },
rw [h_μ_inter, finset.prod_insert haS, h_t2, mul_comm, h_μ_t1],
end
/-- Auxiliary lemma for `Indep_sets.Indep`. -/
theorem Indep_sets.Indep_aux [is_probability_measure μ] (m : ι → measurable_space Ω)
(h_le : ∀ i, m i ≤ m0) (π : ι → set (set Ω)) (h_pi : ∀ n, is_pi_system (π n))
(hp_univ : ∀ i, set.univ ∈ π i) (h_generate : ∀ i, m i = generate_from (π i))
(h_ind : Indep_sets π μ) :
Indep m μ :=
begin
refine finset.induction (by simp [measure_univ]) _,
intros a S ha_notin_S h_rec f hf_m,
have hf_m_S : ∀ x ∈ S, measurable_set[m x] (f x) := λ x hx, hf_m x (by simp [hx]),
rw [finset.set_bInter_insert, finset.prod_insert ha_notin_S, ←h_rec hf_m_S],
let p := pi_Union_Inter π {S},
set m_p := generate_from p with hS_eq_generate,
have h_indep : indep m_p (m a) μ,
{ have hp : is_pi_system p := is_pi_system_pi_Union_Inter π h_pi {S} (sup_closed_singleton S),
have h_le' : ∀ i, generate_from (π i) ≤ m0 := λ i, (h_generate i).symm.trans_le (h_le i),
have hm_p : m_p ≤ m0 := generate_from_pi_Union_Inter_le π h_le' {S},
exact indep_sets.indep hm_p (h_le a) hp (h_pi a) hS_eq_generate (h_generate a)
(h_ind.pi_Union_Inter_singleton ha_notin_S), },
refine h_indep.symm (f a) (⋂ n ∈ S, f n) (hf_m a (finset.mem_insert_self a S)) _,
have h_le_p : ∀ i ∈ S, m i ≤ m_p,
{ intros n hn,
rw [hS_eq_generate, h_generate n],
exact le_generate_from_pi_Union_Inter {S} hp_univ (set.mem_singleton _) hn, },
have h_S_f : ∀ i ∈ S, measurable_set[m_p] (f i) := λ i hi, (h_le_p i hi) (f i) (hf_m_S i hi),
exact S.measurable_set_bInter h_S_f,
end
/-- The measurable space structures generated by independent pi-systems are independent. -/
theorem Indep_sets.Indep [is_probability_measure μ] (m : ι → measurable_space Ω)
(h_le : ∀ i, m i ≤ m0) (π : ι → set (set Ω)) (h_pi : ∀ n, is_pi_system (π n))
(h_generate : ∀ i, m i = generate_from (π i)) (h_ind : Indep_sets π μ) :
Indep m μ :=
begin
-- We want to apply `Indep_sets.Indep_aux`, but `π i` does not contain `univ`, hence we replace
-- `π` with a new augmented pi-system `π'`, and prove all hypotheses for that pi-system.
let π' := λ i, insert set.univ (π i),
have h_subset : ∀ i, π i ⊆ π' i := λ i, set.subset_insert _ _,
have h_pi' : ∀ n, is_pi_system (π' n) := λ n, (h_pi n).insert_univ,
have h_univ' : ∀ i, set.univ ∈ π' i, from λ i, set.mem_insert _ _,
have h_gen' : ∀ i, m i = generate_from (π' i),
{ intros i,
rw [h_generate i, generate_from_insert_univ (π i)], },
have h_ind' : Indep_sets π' μ,
{ intros S f hfπ',
let S' := finset.filter (λ i, f i ≠ set.univ) S,
have h_mem : ∀ i ∈ S', f i ∈ π i,
{ intros i hi,
simp_rw [S', finset.mem_filter] at hi,
cases hfπ' i hi.1,
{ exact absurd h hi.2, },
{ exact h, }, },
have h_left : (⋂ i ∈ S, f i) = ⋂ i ∈ S', f i,
{ ext1 x,
simp only [set.mem_Inter, finset.mem_filter, ne.def, and_imp],
split,
{ exact λ h i hiS hif, h i hiS, },
{ intros h i hiS,
by_cases hfi_univ : f i = set.univ,
{ rw hfi_univ, exact set.mem_univ _, },
{ exact h i hiS hfi_univ, }, }, },
have h_right : ∏ i in S, μ (f i) = ∏ i in S', μ (f i),
{ rw ← finset.prod_filter_mul_prod_filter_not S (λ i, f i ≠ set.univ),
simp only [ne.def, finset.filter_congr_decidable, not_not],
suffices : ∏ x in finset.filter (λ x, f x = set.univ) S, μ (f x) = 1,
{ rw [this, mul_one], },
calc ∏ x in finset.filter (λ x, f x = set.univ) S, μ (f x)
= ∏ x in finset.filter (λ x, f x = set.univ) S, μ set.univ :
finset.prod_congr rfl (λ x hx, by { rw finset.mem_filter at hx, rw hx.2, })
... = ∏ x in finset.filter (λ x, f x = set.univ) S, 1 :
finset.prod_congr rfl (λ _ _, measure_univ)
... = 1 : finset.prod_const_one, },
rw [h_left, h_right],
exact h_ind S' h_mem, },
exact Indep_sets.Indep_aux m h_le π' h_pi' h_univ' h_gen' h_ind',
end
end from_pi_systems_to_measurable_spaces
section indep_set
/-! ### Independence of measurable sets
We prove the following equivalences on `indep_set`, for measurable sets `s, t`.
* `indep_set s t μ ↔ μ (s ∩ t) = μ s * μ t`,
* `indep_set s t μ ↔ indep_sets {s} {t} μ`.
-/
variables {Ω : Type*} [measurable_space Ω] {s t : set Ω} (S T : set (set Ω))
lemma indep_set_iff_indep_sets_singleton (hs_meas : measurable_set s) (ht_meas : measurable_set t)
(μ : measure Ω . volume_tac) [is_probability_measure μ] :
indep_set s t μ ↔ indep_sets {s} {t} μ :=
⟨indep.indep_sets, λ h, indep_sets.indep
(generate_from_le (λ u hu, by rwa set.mem_singleton_iff.mp hu))
(generate_from_le (λ u hu, by rwa set.mem_singleton_iff.mp hu)) (is_pi_system.singleton s)
(is_pi_system.singleton t) rfl rfl h⟩
lemma indep_set_iff_measure_inter_eq_mul (hs_meas : measurable_set s) (ht_meas : measurable_set t)
(μ : measure Ω . volume_tac) [is_probability_measure μ] :
indep_set s t μ ↔ μ (s ∩ t) = μ s * μ t :=
(indep_set_iff_indep_sets_singleton hs_meas ht_meas μ).trans indep_sets_singleton_iff
lemma indep_sets.indep_set_of_mem (hs : s ∈ S) (ht : t ∈ T) (hs_meas : measurable_set s)
(ht_meas : measurable_set t) (μ : measure Ω . volume_tac) [is_probability_measure μ]
(h_indep : indep_sets S T μ) :
indep_set s t μ :=
(indep_set_iff_measure_inter_eq_mul hs_meas ht_meas μ).mpr (h_indep s t hs ht)
end indep_set
section indep_fun
/-! ### Independence of random variables
-/
variables {Ω β β' γ γ' : Type*} {mΩ : measurable_space Ω} {μ : measure Ω} {f : Ω → β} {g : Ω → β'}
lemma indep_fun_iff_measure_inter_preimage_eq_mul
{mβ : measurable_space β} {mβ' : measurable_space β'} :
indep_fun f g μ
↔ ∀ s t, measurable_set s → measurable_set t
→ μ (f ⁻¹' s ∩ g ⁻¹' t) = μ (f ⁻¹' s) * μ (g ⁻¹' t) :=
begin
split; intro h,
{ refine λ s t hs ht, h (f ⁻¹' s) (g ⁻¹' t) ⟨s, hs, rfl⟩ ⟨t, ht, rfl⟩, },
{ rintros _ _ ⟨s, hs, rfl⟩ ⟨t, ht, rfl⟩, exact h s t hs ht, },
end
lemma Indep_fun_iff_measure_inter_preimage_eq_mul {ι : Type*} {β : ι → Type*}
(m : Π x, measurable_space (β x)) (f : Π i, Ω → β i) :
Indep_fun m f μ
↔ ∀ (S : finset ι) {sets : Π i : ι, set (β i)} (H : ∀ i, i ∈ S → measurable_set[m i] (sets i)),
μ (⋂ i ∈ S, (f i) ⁻¹' (sets i)) = ∏ i in S, μ ((f i) ⁻¹' (sets i)) :=
begin
refine ⟨λ h S sets h_meas, h _ (λ i hi_mem, ⟨sets i, h_meas i hi_mem, rfl⟩), _⟩,
intros h S setsΩ h_meas,
let setsβ : (Π i : ι, set (β i)) := λ i,
dite (i ∈ S) (λ hi_mem, (h_meas i hi_mem).some) (λ _, set.univ),
have h_measβ : ∀ i ∈ S, measurable_set[m i] (setsβ i),
{ intros i hi_mem,
simp_rw [setsβ, dif_pos hi_mem],
exact (h_meas i hi_mem).some_spec.1, },
have h_preim : ∀ i ∈ S, setsΩ i = (f i) ⁻¹' (setsβ i),
{ intros i hi_mem,
simp_rw [setsβ, dif_pos hi_mem],
exact (h_meas i hi_mem).some_spec.2.symm, },
have h_left_eq : μ (⋂ i ∈ S, setsΩ i) = μ (⋂ i ∈ S, (f i) ⁻¹' (setsβ i)),
{ congr' with i x,
simp only [set.mem_Inter],
split; intros h hi_mem; specialize h hi_mem,
{ rwa h_preim i hi_mem at h, },
{ rwa h_preim i hi_mem, }, },
have h_right_eq : (∏ i in S, μ (setsΩ i)) = ∏ i in S, μ ((f i) ⁻¹' (setsβ i)),
{ refine finset.prod_congr rfl (λ i hi_mem, _),
rw h_preim i hi_mem, },
rw [h_left_eq, h_right_eq],
exact h S h_measβ,
end
lemma indep_fun_iff_indep_set_preimage {mβ : measurable_space β} {mβ' : measurable_space β'}
[is_probability_measure μ] (hf : measurable f) (hg : measurable g) :
indep_fun f g μ ↔ ∀ s t, measurable_set s → measurable_set t → indep_set (f ⁻¹' s) (g ⁻¹' t) μ :=
begin
refine indep_fun_iff_measure_inter_preimage_eq_mul.trans _,
split; intros h s t hs ht; specialize h s t hs ht,
{ rwa indep_set_iff_measure_inter_eq_mul (hf hs) (hg ht) μ, },
{ rwa ← indep_set_iff_measure_inter_eq_mul (hf hs) (hg ht) μ, },
end
lemma indep_fun.ae_eq {mβ : measurable_space β} {f g f' g' : Ω → β}
(hfg : indep_fun f g μ) (hf : f =ᵐ[μ] f') (hg : g =ᵐ[μ] g') :
indep_fun f' g' μ :=
begin
rintro _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩,
have h1 : f ⁻¹' A =ᵐ[μ] f' ⁻¹' A := hf.fun_comp A,
have h2 : g ⁻¹' B =ᵐ[μ] g' ⁻¹' B := hg.fun_comp B,
rw [←measure_congr h1, ←measure_congr h2, ←measure_congr (h1.inter h2)],
exact hfg _ _ ⟨_, hA, rfl⟩ ⟨_, hB, rfl⟩
end
lemma indep_fun.comp {mβ : measurable_space β} {mβ' : measurable_space β'}
{mγ : measurable_space γ} {mγ' : measurable_space γ'} {φ : β → γ} {ψ : β' → γ'}
(hfg : indep_fun f g μ) (hφ : measurable φ) (hψ : measurable ψ) :
indep_fun (φ ∘ f) (ψ ∘ g) μ :=
begin
rintro _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩,
apply hfg,
{ exact ⟨φ ⁻¹' A, hφ hA, set.preimage_comp.symm⟩ },
{ exact ⟨ψ ⁻¹' B, hψ hB, set.preimage_comp.symm⟩ }
end
/-- If `f` is a family of mutually independent random variables (`Indep_fun m f μ`) and `S, T` are
two disjoint finite index sets, then the tuple formed by `f i` for `i ∈ S` is independent of the
tuple `(f i)_i` for `i ∈ T`. -/
lemma Indep_fun.indep_fun_finset [is_probability_measure μ]
{ι : Type*} {β : ι → Type*} {m : Π i, measurable_space (β i)}
{f : Π i, Ω → β i} (S T : finset ι) (hST : disjoint S T) (hf_Indep : Indep_fun m f μ)
(hf_meas : ∀ i, measurable (f i)) :
indep_fun (λ a (i : S), f i a) (λ a (i : T), f i a) μ :=
begin
-- We introduce π-systems, build from the π-system of boxes which generates `measurable_space.pi`.
let πSβ := (set.pi (set.univ : set S) ''
(set.pi (set.univ : set S) (λ i, {s : set (β i) | measurable_set[m i] s}))),
let πS := {s : set Ω | ∃ t ∈ πSβ, (λ a (i : S), f i a) ⁻¹' t = s},
have hπS_pi : is_pi_system πS := is_pi_system_pi.comap (λ a i, f i a),
have hπS_gen : measurable_space.pi.comap (λ a (i : S), f i a) = generate_from πS,
{ rw [generate_from_pi.symm, comap_generate_from],
{ congr' with s,
simp only [set.mem_image, set.mem_set_of_eq, exists_prop], },
{ exact finset.fintype_coe_sort S, }, },
let πTβ := (set.pi (set.univ : set T) ''
(set.pi (set.univ : set T) (λ i, {s : set (β i) | measurable_set[m i] s}))),
let πT := {s : set Ω | ∃ t ∈ πTβ, (λ a (i : T), f i a) ⁻¹' t = s},
have hπT_pi : is_pi_system πT := is_pi_system_pi.comap (λ a i, f i a),
have hπT_gen : measurable_space.pi.comap (λ a (i : T), f i a) = generate_from πT,
{ rw [generate_from_pi.symm, comap_generate_from],
{ congr' with s,
simp only [set.mem_image, set.mem_set_of_eq, exists_prop], },
{ exact finset.fintype_coe_sort T, }, },
-- To prove independence, we prove independence of the generating π-systems.
refine indep_sets.indep (measurable.comap_le (measurable_pi_iff.mpr (λ i, hf_meas i)))
(measurable.comap_le (measurable_pi_iff.mpr (λ i, hf_meas i))) hπS_pi hπT_pi hπS_gen hπT_gen _,
rintros _ _ ⟨s, ⟨sets_s, hs1, hs2⟩, rfl⟩ ⟨t, ⟨sets_t, ht1, ht2⟩, rfl⟩,
simp only [set.mem_univ_pi, set.mem_set_of_eq] at hs1 ht1,
rw [← hs2, ← ht2],
let sets_s' : (Π i : ι, set (β i)) := λ i, dite (i ∈ S) (λ hi, sets_s ⟨i, hi⟩) (λ _, set.univ),
have h_sets_s'_eq : ∀ {i} (hi : i ∈ S), sets_s' i = sets_s ⟨i, hi⟩,
{ intros i hi, simp_rw [sets_s', dif_pos hi], },
have h_sets_s'_univ : ∀ {i} (hi : i ∈ T), sets_s' i = set.univ,
{ intros i hi, simp_rw [sets_s', dif_neg (finset.disjoint_right.mp hST hi)], },
let sets_t' : (Π i : ι, set (β i)) := λ i, dite (i ∈ T) (λ hi, sets_t ⟨i, hi⟩) (λ _, set.univ),
have h_sets_t'_univ : ∀ {i} (hi : i ∈ S), sets_t' i = set.univ,
{ intros i hi, simp_rw [sets_t', dif_neg (finset.disjoint_left.mp hST hi)], },
have h_meas_s' : ∀ i ∈ S, measurable_set (sets_s' i),
{ intros i hi, rw h_sets_s'_eq hi, exact hs1 _, },
have h_meas_t' : ∀ i ∈ T, measurable_set (sets_t' i),
{ intros i hi, simp_rw [sets_t', dif_pos hi], exact ht1 _, },
have h_eq_inter_S : (λ (ω : Ω) (i : ↥S), f ↑i ω) ⁻¹' set.pi set.univ sets_s
= ⋂ i ∈ S, (f i) ⁻¹' (sets_s' i),
{ ext1 x,
simp only [set.mem_preimage, set.mem_univ_pi, set.mem_Inter],
split; intro h,
{ intros i hi, rw [h_sets_s'_eq hi], exact h ⟨i, hi⟩, },
{ rintros ⟨i, hi⟩, specialize h i hi, rw [h_sets_s'_eq hi] at h, exact h, }, },
have h_eq_inter_T : (λ (ω : Ω) (i : ↥T), f ↑i ω) ⁻¹' set.pi set.univ sets_t
= ⋂ i ∈ T, (f i) ⁻¹' (sets_t' i),
{ ext1 x,
simp only [set.mem_preimage, set.mem_univ_pi, set.mem_Inter],
split; intro h,
{ intros i hi, simp_rw [sets_t', dif_pos hi], exact h ⟨i, hi⟩, },
{ rintros ⟨i, hi⟩, specialize h i hi, simp_rw [sets_t', dif_pos hi] at h, exact h, }, },
rw Indep_fun_iff_measure_inter_preimage_eq_mul at hf_Indep,
rw [h_eq_inter_S, h_eq_inter_T, hf_Indep S h_meas_s', hf_Indep T h_meas_t'],
have h_Inter_inter : (⋂ i ∈ S, (f i) ⁻¹' (sets_s' i)) ∩ (⋂ i ∈ T, (f i) ⁻¹' (sets_t' i))
= ⋂ i ∈ (S ∪ T), (f i) ⁻¹' (sets_s' i ∩ sets_t' i),
{ ext1 x,
simp only [set.mem_inter_eq, set.mem_Inter, set.mem_preimage, finset.mem_union],
split; intro h,
{ intros i hi,
cases hi,
{ rw h_sets_t'_univ hi, exact ⟨h.1 i hi, set.mem_univ _⟩, },
{ rw h_sets_s'_univ hi, exact ⟨set.mem_univ _, h.2 i hi⟩, }, },
{ exact ⟨λ i hi, (h i (or.inl hi)).1, λ i hi, (h i (or.inr hi)).2⟩, }, },
rw [h_Inter_inter, hf_Indep (S ∪ T)],
swap, { intros i hi_mem,
rw finset.mem_union at hi_mem,
cases hi_mem,
{ rw [h_sets_t'_univ hi_mem, set.inter_univ], exact h_meas_s' i hi_mem, },
{ rw [h_sets_s'_univ hi_mem, set.univ_inter], exact h_meas_t' i hi_mem, }, },
rw finset.prod_union hST,
congr' 1,
{ refine finset.prod_congr rfl (λ i hi, _),
rw [h_sets_t'_univ hi, set.inter_univ], },
{ refine finset.prod_congr rfl (λ i hi, _),
rw [h_sets_s'_univ hi, set.univ_inter], },
end
lemma Indep_fun.indep_fun_prod [is_probability_measure μ]
{ι : Type*} {β : ι → Type*} {m : Π i, measurable_space (β i)}
{f : Π i, Ω → β i} (hf_Indep : Indep_fun m f μ) (hf_meas : ∀ i, measurable (f i))
(i j k : ι) (hik : i ≠ k) (hjk : j ≠ k) :
indep_fun (λ a, (f i a, f j a)) (f k) μ :=
begin
classical,
have h_right : f k = (λ p : (Π j : ({k} : finset ι), β j), p ⟨k, finset.mem_singleton_self k⟩)
∘ (λ a (j : ({k} : finset ι)), f j a) := rfl,
have h_meas_right : measurable
(λ p : (Π j : ({k} : finset ι), β j), p ⟨k, finset.mem_singleton_self k⟩),
from measurable_pi_apply ⟨k, finset.mem_singleton_self k⟩,
let s : finset ι := {i, j},
have h_left : (λ ω, (f i ω, f j ω))
= (λ p : (Π l : s, β l), (p ⟨i, finset.mem_insert_self i _⟩,
p ⟨j, finset.mem_insert_of_mem (finset.mem_singleton_self _)⟩))
∘ (λ a (j : s), f j a),
{ ext1 a,
simp only [prod.mk.inj_iff],
split; refl, },
have h_meas_left : measurable (λ p : (Π l : s, β l), (p ⟨i, finset.mem_insert_self i _⟩,
p ⟨j, finset.mem_insert_of_mem (finset.mem_singleton_self _)⟩)),
from measurable.prod (measurable_pi_apply ⟨i, finset.mem_insert_self i {j}⟩)
(measurable_pi_apply ⟨j, finset.mem_insert_of_mem (finset.mem_singleton_self j)⟩),
rw [h_left, h_right],
refine (hf_Indep.indep_fun_finset s {k} _ hf_meas).comp h_meas_left h_meas_right,
intros x hx,
simp only [finset.inf_eq_inter, finset.mem_inter, finset.mem_insert, finset.mem_singleton] at hx,
simp only [finset.bot_eq_empty, finset.not_mem_empty],
cases hx.1 with hx_eq hx_eq; rw hx_eq at hx,
{ exact hik hx.2, },
{ exact hjk hx.2, },
end
@[to_additive]
lemma Indep_fun.mul [is_probability_measure μ]
{ι : Type*} {β : Type*} {m : measurable_space β} [has_mul β] [has_measurable_mul₂ β]
{f : ι → Ω → β} (hf_Indep : Indep_fun (λ _, m) f μ) (hf_meas : ∀ i, measurable (f i))
(i j k : ι) (hik : i ≠ k) (hjk : j ≠ k) :
indep_fun (f i * f j) (f k) μ :=
begin
have : indep_fun (λ ω, (f i ω, f j ω)) (f k) μ := hf_Indep.indep_fun_prod hf_meas i j k hik hjk,
change indep_fun ((λ p : β × β, p.fst * p.snd) ∘ (λ ω, (f i ω, f j ω))) (id ∘ (f k)) μ,
exact indep_fun.comp this (measurable_fst.mul measurable_snd) measurable_id,
end
@[to_additive]
lemma Indep_fun.indep_fun_finset_prod_of_not_mem [is_probability_measure μ]
{ι : Type*} {β : Type*} {m : measurable_space β} [comm_monoid β] [has_measurable_mul₂ β]
{f : ι → Ω → β} (hf_Indep : Indep_fun (λ _, m) f μ) (hf_meas : ∀ i, measurable (f i))
{s : finset ι} {i : ι} (hi : i ∉ s) :
indep_fun (∏ j in s, f j) (f i) μ :=
begin
classical,
have h_right : f i = (λ p : (Π j : ({i} : finset ι), β), p ⟨i, finset.mem_singleton_self i⟩)
∘ (λ a (j : ({i} : finset ι)), f j a) := rfl,
have h_meas_right : measurable
(λ p : (Π j : ({i} : finset ι), β), p ⟨i, finset.mem_singleton_self i⟩),
from measurable_pi_apply ⟨i, finset.mem_singleton_self i⟩,
have h_left : (∏ j in s, f j) = (λ p : (Π j : s, β), ∏ j, p j) ∘ (λ a (j : s), f j a),
{ ext1 a,
simp only [function.comp_app],
have : (∏ (j : ↥s), f ↑j a) = (∏ (j : ↥s), f ↑j) a, by rw finset.prod_apply,
rw [this, finset.prod_coe_sort], },
have h_meas_left : measurable (λ p : (Π j : s, β), ∏ j, p j),
from finset.univ.measurable_prod (λ (j : ↥s) (H : j ∈ finset.univ), measurable_pi_apply j),
rw [h_left, h_right],
exact (hf_Indep.indep_fun_finset s {i} (finset.disjoint_singleton_left.mpr hi).symm hf_meas).comp
h_meas_left h_meas_right,
end
@[to_additive]
lemma Indep_fun.indep_fun_prod_range_succ [is_probability_measure μ]
{β : Type*} {m : measurable_space β} [comm_monoid β] [has_measurable_mul₂ β]
{f : ℕ → Ω → β} (hf_Indep : Indep_fun (λ _, m) f μ) (hf_meas : ∀ i, measurable (f i))
(n : ℕ) :
indep_fun (∏ j in finset.range n, f j) (f n) μ :=
hf_Indep.indep_fun_finset_prod_of_not_mem hf_meas finset.not_mem_range_self
end indep_fun
end probability_theory
|
81804c6c31e697ddc606b8350a34f7addc0263a8
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/equiv/local_equiv.lean
|
a475f15a2e615cb35489981705316894f0241b42
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 26,536
|
lean
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.equiv.basic
import Mathlib.PostPort
universes u_5 u_6 l u_1 u_2 u_3 u_4
namespace Mathlib
/-!
# Local equivalences
This files defines equivalences between subsets of given types.
An element `e` of `local_equiv α β` is made of two maps `e.to_fun` and `e.inv_fun` respectively
from α to β and from β to α (just like equivs), which are inverse to each other on the subsets
`e.source` and `e.target` of respectively α and β.
They are designed in particular to define charts on manifolds.
The main functionality is `e.trans f`, which composes the two local equivalences by restricting
the source and target to the maximal set where the composition makes sense.
As for equivs, we register a coercion to functions and use it in our simp normal form: we write
`e x` and `e.symm y` instead of `e.to_fun x` and `e.inv_fun y`.
## Main definitions
`equiv.to_local_equiv`: associating a local equiv to an equiv, with source = target = univ
`local_equiv.symm` : the inverse of a local equiv
`local_equiv.trans` : the composition of two local equivs
`local_equiv.refl` : the identity local equiv
`local_equiv.of_set` : the identity on a set `s`
`eq_on_source` : equivalence relation describing the "right" notion of equality for local
equivs (see below in implementation notes)
## Implementation notes
There are at least three possible implementations of local equivalences:
* equivs on subtypes
* pairs of functions taking values in `option α` and `option β`, equal to none where the local
equivalence is not defined
* pairs of functions defined everywhere, keeping the source and target as additional data
Each of these implementations has pros and cons.
* When dealing with subtypes, one still need to define additional API for composition and
restriction of domains. Checking that one always belongs to the right subtype makes things very
tedious, and leads quickly to DTT hell (as the subtype `u ∩ v` is not the "same" as `v ∩ u`, for
instance).
* With option-valued functions, the composition is very neat (it is just the usual composition, and
the domain is restricted automatically). These are implemented in `pequiv.lean`. For manifolds,
where one wants to discuss thoroughly the smoothness of the maps, this creates however a lot of
overhead as one would need to extend all classes of smoothness to option-valued maps.
* The local_equiv version as explained above is easier to use for manifolds. The drawback is that
there is extra useless data (the values of `to_fun` and `inv_fun` outside of `source` and `target`).
In particular, the equality notion between local equivs is not "the right one", i.e., coinciding
source and target and equality there. Moreover, there are no local equivs in this sense between
an empty type and a nonempty type. Since empty types are not that useful, and since one almost never
needs to talk about equal local equivs, this is not an issue in practice.
Still, we introduce an equivalence relation `eq_on_source` that captures this right notion of
equality, and show that many properties are invariant under this equivalence relation.
-/
-- register in the simpset `mfld_simps` several lemmas that are often useful when dealing
-- with manifolds
namespace tactic.interactive
/-- A very basic tactic to show that sets showing up in manifolds coincide or are included in
one another. -/
end tactic.interactive
/-- Local equivalence between subsets `source` and `target` of α and β respectively. The (global)
maps `to_fun : α → β` and `inv_fun : β → α` map `source` to `target` and conversely, and are inverse
to each other there. The values of `to_fun` outside of `source` and of `inv_fun` outside of `target`
are irrelevant. -/
structure local_equiv (α : Type u_5) (β : Type u_6)
where
to_fun : α → β
inv_fun : β → α
source : set α
target : set β
map_source' : ∀ {x : α}, x ∈ source → to_fun x ∈ target
map_target' : ∀ {x : β}, x ∈ target → inv_fun x ∈ source
left_inv' : ∀ {x : α}, x ∈ source → inv_fun (to_fun x) = x
right_inv' : ∀ {x : β}, x ∈ target → to_fun (inv_fun x) = x
/-- Associating a local_equiv to an equiv-/
def equiv.to_local_equiv {α : Type u_1} {β : Type u_2} (e : α ≃ β) : local_equiv α β :=
local_equiv.mk (equiv.to_fun e) (equiv.inv_fun e) set.univ set.univ sorry sorry sorry sorry
namespace local_equiv
/-- The inverse of a local equiv -/
protected def symm {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : local_equiv β α :=
mk (inv_fun e) (to_fun e) (target e) (source e) (map_target' e) (map_source' e) (right_inv' e) (left_inv' e)
protected instance has_coe_to_fun {α : Type u_1} {β : Type u_2} : has_coe_to_fun (local_equiv α β) :=
has_coe_to_fun.mk (fun (x : local_equiv α β) => α → β) to_fun
@[simp] theorem coe_mk {α : Type u_1} {β : Type u_2} (f : α → β) (g : β → α) (s : set α) (t : set β) (ml : ∀ {x : α}, x ∈ s → f x ∈ t) (mr : ∀ {x : β}, x ∈ t → g x ∈ s) (il : ∀ {x : α}, x ∈ s → g (f x) = x) (ir : ∀ {x : β}, x ∈ t → f (g x) = x) : ⇑(mk f g s t ml mr il ir) = f :=
rfl
@[simp] theorem coe_symm_mk {α : Type u_1} {β : Type u_2} (f : α → β) (g : β → α) (s : set α) (t : set β) (ml : ∀ {x : α}, x ∈ s → f x ∈ t) (mr : ∀ {x : β}, x ∈ t → g x ∈ s) (il : ∀ {x : α}, x ∈ s → g (f x) = x) (ir : ∀ {x : β}, x ∈ t → f (g x) = x) : ⇑(local_equiv.symm (mk f g s t ml mr il ir)) = g :=
rfl
@[simp] theorem to_fun_as_coe {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : to_fun e = ⇑e :=
rfl
@[simp] theorem inv_fun_as_coe {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : inv_fun e = ⇑(local_equiv.symm e) :=
rfl
@[simp] theorem map_source {α : Type u_1} {β : Type u_2} (e : local_equiv α β) {x : α} (h : x ∈ source e) : coe_fn e x ∈ target e :=
map_source' e h
protected theorem maps_to {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : set.maps_to (⇑e) (source e) (target e) :=
fun (_x : α) => map_source e
@[simp] theorem map_target {α : Type u_1} {β : Type u_2} (e : local_equiv α β) {x : β} (h : x ∈ target e) : coe_fn (local_equiv.symm e) x ∈ source e :=
map_target' e h
theorem symm_maps_to {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : set.maps_to (⇑(local_equiv.symm e)) (target e) (source e) :=
local_equiv.maps_to (local_equiv.symm e)
@[simp] theorem left_inv {α : Type u_1} {β : Type u_2} (e : local_equiv α β) {x : α} (h : x ∈ source e) : coe_fn (local_equiv.symm e) (coe_fn e x) = x :=
left_inv' e h
protected theorem left_inv_on {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : set.left_inv_on (⇑(local_equiv.symm e)) (⇑e) (source e) :=
fun (_x : α) => left_inv e
@[simp] theorem right_inv {α : Type u_1} {β : Type u_2} (e : local_equiv α β) {x : β} (h : x ∈ target e) : coe_fn e (coe_fn (local_equiv.symm e) x) = x :=
right_inv' e h
protected theorem right_inv_on {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : set.right_inv_on (⇑(local_equiv.symm e)) (⇑e) (target e) :=
fun (_x : β) => right_inv e
/-- Associating to a local_equiv an equiv between the source and the target -/
protected def to_equiv {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : ↥(source e) ≃ ↥(target e) :=
equiv.mk (fun (x : ↥(source e)) => { val := coe_fn e ↑x, property := sorry })
(fun (y : ↥(target e)) => { val := coe_fn (local_equiv.symm e) ↑y, property := sorry }) sorry sorry
@[simp] theorem symm_source {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : source (local_equiv.symm e) = target e :=
rfl
@[simp] theorem symm_target {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : target (local_equiv.symm e) = source e :=
rfl
@[simp] theorem symm_symm {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : local_equiv.symm (local_equiv.symm e) = e := sorry
/-- A local equiv induces a bijection between its source and target -/
theorem bij_on_source {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : set.bij_on (⇑e) (source e) (target e) :=
set.inv_on.bij_on { left := local_equiv.left_inv_on e, right := local_equiv.right_inv_on e } (local_equiv.maps_to e)
(symm_maps_to e)
theorem image_eq_target_inter_inv_preimage {α : Type u_1} {β : Type u_2} (e : local_equiv α β) {s : set α} (h : s ⊆ source e) : ⇑e '' s = target e ∩ ⇑(local_equiv.symm e) ⁻¹' s := sorry
theorem image_inter_source_eq {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : ⇑e '' (s ∩ source e) = target e ∩ ⇑(local_equiv.symm e) ⁻¹' (s ∩ source e) :=
image_eq_target_inter_inv_preimage e (set.inter_subset_right s (source e))
theorem image_inter_source_eq' {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : ⇑e '' (s ∩ source e) = target e ∩ ⇑(local_equiv.symm e) ⁻¹' s := sorry
theorem symm_image_eq_source_inter_preimage {α : Type u_1} {β : Type u_2} (e : local_equiv α β) {s : set β} (h : s ⊆ target e) : ⇑(local_equiv.symm e) '' s = source e ∩ ⇑e ⁻¹' s :=
image_eq_target_inter_inv_preimage (local_equiv.symm e) h
theorem symm_image_inter_target_eq {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set β) : ⇑(local_equiv.symm e) '' (s ∩ target e) = source e ∩ ⇑e ⁻¹' (s ∩ target e) :=
image_inter_source_eq (local_equiv.symm e) s
theorem symm_image_inter_target_eq' {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set β) : ⇑(local_equiv.symm e) '' (s ∩ target e) = source e ∩ ⇑e ⁻¹' s :=
image_inter_source_eq' (local_equiv.symm e) s
theorem source_inter_preimage_inv_preimage {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : source e ∩ ⇑e ⁻¹' (⇑(local_equiv.symm e) ⁻¹' s) = source e ∩ s := sorry
theorem target_inter_inv_preimage_preimage {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set β) : target e ∩ ⇑(local_equiv.symm e) ⁻¹' (⇑e ⁻¹' s) = target e ∩ s :=
source_inter_preimage_inv_preimage (local_equiv.symm e) s
theorem image_source_eq_target {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : ⇑e '' source e = target e :=
set.bij_on.image_eq (bij_on_source e)
theorem source_subset_preimage_target {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : source e ⊆ ⇑e ⁻¹' target e :=
fun (x : α) (hx : x ∈ source e) => map_source e hx
theorem inv_image_target_eq_source {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : ⇑(local_equiv.symm e) '' target e = source e :=
set.bij_on.image_eq (bij_on_source (local_equiv.symm e))
theorem target_subset_preimage_source {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : target e ⊆ ⇑(local_equiv.symm e) ⁻¹' source e :=
fun (x : β) (hx : x ∈ target e) => map_target e hx
/-- Two local equivs that have the same `source`, same `to_fun` and same `inv_fun`, coincide. -/
protected theorem ext {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (h : ∀ (x : α), coe_fn e x = coe_fn e' x) (hsymm : ∀ (x : β), coe_fn (local_equiv.symm e) x = coe_fn (local_equiv.symm e') x) (hs : source e = source e') : e = e' := sorry
/-- Restricting a local equivalence to e.source ∩ s -/
protected def restr {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : local_equiv α β :=
mk (⇑e) (⇑(local_equiv.symm e)) (source e ∩ s) (target e ∩ ⇑(local_equiv.symm e) ⁻¹' s) sorry sorry sorry sorry
@[simp] theorem restr_coe {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : ⇑(local_equiv.restr e s) = ⇑e :=
rfl
@[simp] theorem restr_coe_symm {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : ⇑(local_equiv.symm (local_equiv.restr e s)) = ⇑(local_equiv.symm e) :=
rfl
@[simp] theorem restr_source {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : source (local_equiv.restr e s) = source e ∩ s :=
rfl
@[simp] theorem restr_target {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set α) : target (local_equiv.restr e s) = target e ∩ ⇑(local_equiv.symm e) ⁻¹' s :=
rfl
theorem restr_eq_of_source_subset {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {s : set α} (h : source e ⊆ s) : local_equiv.restr e s = e := sorry
@[simp] theorem restr_univ {α : Type u_1} {β : Type u_2} {e : local_equiv α β} : local_equiv.restr e set.univ = e :=
restr_eq_of_source_subset (set.subset_univ (source e))
/-- The identity local equiv -/
protected def refl (α : Type u_1) : local_equiv α α :=
equiv.to_local_equiv (equiv.refl α)
@[simp] theorem refl_source {α : Type u_1} : source (local_equiv.refl α) = set.univ :=
rfl
@[simp] theorem refl_target {α : Type u_1} : target (local_equiv.refl α) = set.univ :=
rfl
@[simp] theorem refl_coe {α : Type u_1} : ⇑(local_equiv.refl α) = id :=
rfl
@[simp] theorem refl_symm {α : Type u_1} : local_equiv.symm (local_equiv.refl α) = local_equiv.refl α :=
rfl
@[simp] theorem refl_restr_source {α : Type u_1} (s : set α) : source (local_equiv.restr (local_equiv.refl α) s) = s := sorry
@[simp] theorem refl_restr_target {α : Type u_1} (s : set α) : target (local_equiv.restr (local_equiv.refl α) s) = s := sorry
/-- The identity local equiv on a set `s` -/
def of_set {α : Type u_1} (s : set α) : local_equiv α α :=
mk id id s s sorry sorry sorry sorry
@[simp] theorem of_set_source {α : Type u_1} (s : set α) : source (of_set s) = s :=
rfl
@[simp] theorem of_set_target {α : Type u_1} (s : set α) : target (of_set s) = s :=
rfl
@[simp] theorem of_set_coe {α : Type u_1} (s : set α) : ⇑(of_set s) = id :=
rfl
@[simp] theorem of_set_symm {α : Type u_1} (s : set α) : local_equiv.symm (of_set s) = of_set s :=
rfl
/-- Composing two local equivs if the target of the first coincides with the source of the
second. -/
protected def trans' {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) (h : target e = source e') : local_equiv α γ :=
mk (⇑e' ∘ ⇑e) (⇑(local_equiv.symm e) ∘ ⇑(local_equiv.symm e')) (source e) (target e') sorry sorry sorry sorry
/-- Composing two local equivs, by restricting to the maximal domain where their composition
is well defined. -/
protected def trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : local_equiv α γ :=
local_equiv.trans' (local_equiv.symm (local_equiv.restr (local_equiv.symm e) (source e')))
(local_equiv.restr e' (target e)) sorry
@[simp] theorem coe_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : ⇑(local_equiv.trans e e') = ⇑e' ∘ ⇑e :=
rfl
@[simp] theorem coe_trans_symm {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : ⇑(local_equiv.symm (local_equiv.trans e e')) = ⇑(local_equiv.symm e) ∘ ⇑(local_equiv.symm e') :=
rfl
theorem trans_symm_eq_symm_trans_symm {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : local_equiv.symm (local_equiv.trans e e') = local_equiv.trans (local_equiv.symm e') (local_equiv.symm e) := sorry
@[simp] theorem trans_source {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : source (local_equiv.trans e e') = source e ∩ ⇑e ⁻¹' source e' :=
rfl
theorem trans_source' {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : source (local_equiv.trans e e') = source e ∩ ⇑e ⁻¹' (target e ∩ source e') := sorry
theorem trans_source'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : source (local_equiv.trans e e') = ⇑(local_equiv.symm e) '' (target e ∩ source e') := sorry
theorem image_trans_source {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : ⇑e '' source (local_equiv.trans e e') = target e ∩ source e' :=
image_source_eq_target (local_equiv.symm (local_equiv.restr (local_equiv.symm e) (source e')))
@[simp] theorem trans_target {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : target (local_equiv.trans e e') = target e' ∩ ⇑(local_equiv.symm e') ⁻¹' target e :=
rfl
theorem trans_target' {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : target (local_equiv.trans e e') = target e' ∩ ⇑(local_equiv.symm e') ⁻¹' (source e' ∩ target e) :=
trans_source' (local_equiv.symm e') (local_equiv.symm e)
theorem trans_target'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : target (local_equiv.trans e e') = ⇑e' '' (source e' ∩ target e) :=
trans_source'' (local_equiv.symm e') (local_equiv.symm e)
theorem inv_image_trans_target {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) : ⇑(local_equiv.symm e') '' target (local_equiv.trans e e') = source e' ∩ target e :=
image_trans_source (local_equiv.symm e') (local_equiv.symm e)
theorem trans_assoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (e : local_equiv α β) (e' : local_equiv β γ) (e'' : local_equiv γ δ) : local_equiv.trans (local_equiv.trans e e') e'' = local_equiv.trans e (local_equiv.trans e' e'') := sorry
@[simp] theorem trans_refl {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : local_equiv.trans e (local_equiv.refl β) = e := sorry
@[simp] theorem refl_trans {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : local_equiv.trans (local_equiv.refl α) e = e := sorry
theorem trans_refl_restr {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set β) : local_equiv.trans e (local_equiv.restr (local_equiv.refl β) s) = local_equiv.restr e (⇑e ⁻¹' s) := sorry
theorem trans_refl_restr' {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (s : set β) : local_equiv.trans e (local_equiv.restr (local_equiv.refl β) s) = local_equiv.restr e (source e ∩ ⇑e ⁻¹' s) := sorry
theorem restr_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : local_equiv α β) (e' : local_equiv β γ) (s : set α) : local_equiv.trans (local_equiv.restr e s) e' = local_equiv.restr (local_equiv.trans e e') s := sorry
/-- `eq_on_source e e'` means that `e` and `e'` have the same source, and coincide there. Then `e`
and `e'` should really be considered the same local equiv. -/
def eq_on_source {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (e' : local_equiv α β) :=
source e = source e' ∧ set.eq_on (⇑e) (⇑e') (source e)
/-- `eq_on_source` is an equivalence relation -/
protected instance eq_on_source_setoid {α : Type u_1} {β : Type u_2} : setoid (local_equiv α β) :=
setoid.mk eq_on_source sorry
theorem eq_on_source_refl {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : e ≈ e :=
setoid.refl e
/-- Two equivalent local equivs have the same source -/
theorem eq_on_source.source_eq {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (h : e ≈ e') : source e = source e' :=
and.left h
/-- Two equivalent local equivs coincide on the source -/
theorem eq_on_source.eq_on {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (h : e ≈ e') : set.eq_on (⇑e) (⇑e') (source e) :=
and.right h
/-- Two equivalent local equivs have the same target -/
theorem eq_on_source.target_eq {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (h : e ≈ e') : target e = target e' := sorry
/-- If two local equivs are equivalent, so are their inverses. -/
theorem eq_on_source.symm' {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (h : e ≈ e') : local_equiv.symm e ≈ local_equiv.symm e' := sorry
/-- Two equivalent local equivs have coinciding inverses on the target -/
theorem eq_on_source.symm_eq_on {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (h : e ≈ e') : set.eq_on (⇑(local_equiv.symm e)) (⇑(local_equiv.symm e')) (target e) :=
eq_on_source.eq_on (eq_on_source.symm' h)
/-- Composition of local equivs respects equivalence -/
theorem eq_on_source.trans' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {e : local_equiv α β} {e' : local_equiv α β} {f : local_equiv β γ} {f' : local_equiv β γ} (he : e ≈ e') (hf : f ≈ f') : local_equiv.trans e f ≈ local_equiv.trans e' f' := sorry
/-- Restriction of local equivs respects equivalence -/
theorem eq_on_source.restr {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (he : e ≈ e') (s : set α) : local_equiv.restr e s ≈ local_equiv.restr e' s := sorry
/-- Preimages are respected by equivalence -/
theorem eq_on_source.source_inter_preimage_eq {α : Type u_1} {β : Type u_2} {e : local_equiv α β} {e' : local_equiv α β} (he : e ≈ e') (s : set β) : source e ∩ ⇑e ⁻¹' s = source e' ∩ ⇑e' ⁻¹' s := sorry
/-- Composition of a local equiv and its inverse is equivalent to the restriction of the identity
to the source -/
theorem trans_self_symm {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : local_equiv.trans e (local_equiv.symm e) ≈ of_set (source e) := sorry
/-- Composition of the inverse of a local equiv and this local equiv is equivalent to the
restriction of the identity to the target -/
theorem trans_symm_self {α : Type u_1} {β : Type u_2} (e : local_equiv α β) : local_equiv.trans (local_equiv.symm e) e ≈ of_set (target e) :=
trans_self_symm (local_equiv.symm e)
/-- Two equivalent local equivs are equal when the source and target are univ -/
theorem eq_of_eq_on_source_univ {α : Type u_1} {β : Type u_2} (e : local_equiv α β) (e' : local_equiv α β) (h : e ≈ e') (s : source e = set.univ) (t : target e = set.univ) : e = e' := sorry
/-- The product of two local equivs, as a local equiv on the product. -/
def prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (e : local_equiv α β) (e' : local_equiv γ δ) : local_equiv (α × γ) (β × δ) :=
mk (fun (p : α × γ) => (coe_fn e (prod.fst p), coe_fn e' (prod.snd p)))
(fun (p : β × δ) => (coe_fn (local_equiv.symm e) (prod.fst p), coe_fn (local_equiv.symm e') (prod.snd p)))
(set.prod (source e) (source e')) (set.prod (target e) (target e')) sorry sorry sorry sorry
@[simp] theorem prod_source {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (e : local_equiv α β) (e' : local_equiv γ δ) : source (prod e e') = set.prod (source e) (source e') :=
rfl
@[simp] theorem prod_target {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (e : local_equiv α β) (e' : local_equiv γ δ) : target (prod e e') = set.prod (target e) (target e') :=
rfl
@[simp] theorem prod_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (e : local_equiv α β) (e' : local_equiv γ δ) : ⇑(prod e e') = fun (p : α × γ) => (coe_fn e (prod.fst p), coe_fn e' (prod.snd p)) :=
rfl
theorem prod_coe_symm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (e : local_equiv α β) (e' : local_equiv γ δ) : ⇑(local_equiv.symm (prod e e')) =
fun (p : β × δ) => (coe_fn (local_equiv.symm e) (prod.fst p), coe_fn (local_equiv.symm e') (prod.snd p)) :=
rfl
@[simp] theorem prod_symm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (e : local_equiv α β) (e' : local_equiv γ δ) : local_equiv.symm (prod e e') = prod (local_equiv.symm e) (local_equiv.symm e') := sorry
@[simp] theorem prod_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {η : Type u_5} {ε : Type u_6} (e : local_equiv α β) (f : local_equiv β γ) (e' : local_equiv δ η) (f' : local_equiv η ε) : local_equiv.trans (prod e e') (prod f f') = prod (local_equiv.trans e f) (local_equiv.trans e' f') := sorry
end local_equiv
namespace set
-- All arguments are explicit to avoid missing information in the pretty printer output
/-- A bijection between two sets `s : set α` and `t : set β` provides a local equivalence
between `α` and `β`. -/
@[simp] theorem bij_on.to_local_equiv_inv_fun {α : Type u_1} {β : Type u_2} [Nonempty α] (f : α → β) (s : set α) (t : set β) (hf : bij_on f s t) (b : β) : local_equiv.inv_fun (bij_on.to_local_equiv f s t hf) b = function.inv_fun_on f s b :=
Eq.refl (local_equiv.inv_fun (bij_on.to_local_equiv f s t hf) b)
/-- A map injective on a subset of its domain provides a local equivalence. -/
@[simp] def inj_on.to_local_equiv {α : Type u_1} {β : Type u_2} [Nonempty α] (f : α → β) (s : set α) (hf : inj_on f s) : local_equiv α β :=
bij_on.to_local_equiv f s (f '' s) (inj_on.bij_on_image hf)
end set
namespace equiv
/- equivs give rise to local_equiv. We set up simp lemmas to reduce most properties of the local
equiv to that of the equiv. -/
@[simp] theorem to_local_equiv_coe {α : Type u_1} {β : Type u_2} (e : α ≃ β) : ⇑(to_local_equiv e) = ⇑e :=
rfl
@[simp] theorem to_local_equiv_symm_coe {α : Type u_1} {β : Type u_2} (e : α ≃ β) : ⇑(local_equiv.symm (to_local_equiv e)) = ⇑(equiv.symm e) :=
rfl
@[simp] theorem to_local_equiv_source {α : Type u_1} {β : Type u_2} (e : α ≃ β) : local_equiv.source (to_local_equiv e) = set.univ :=
rfl
@[simp] theorem to_local_equiv_target {α : Type u_1} {β : Type u_2} (e : α ≃ β) : local_equiv.target (to_local_equiv e) = set.univ :=
rfl
@[simp] theorem refl_to_local_equiv {α : Type u_1} : to_local_equiv (equiv.refl α) = local_equiv.refl α :=
rfl
@[simp] theorem symm_to_local_equiv {α : Type u_1} {β : Type u_2} (e : α ≃ β) : to_local_equiv (equiv.symm e) = local_equiv.symm (to_local_equiv e) :=
rfl
@[simp] theorem trans_to_local_equiv {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : α ≃ β) (e' : β ≃ γ) : to_local_equiv (equiv.trans e e') = local_equiv.trans (to_local_equiv e) (to_local_equiv e') := sorry
|
bf588241c96b90afaf55dece3fd7da19133faacf
|
842b7df4a999c5c50bbd215b8617dd705e43c2e1
|
/nat_num_game/src/Advanced_Proposition_World/adv_prop_wrld9.lean
|
0f802defcaf8eb5fbd903ed0d0c54f7ded07cc6a
|
[] |
no_license
|
Samyak-Surti/LeanCode
|
1c245631f74b00057d20483c8ac75916e8643b14
|
944eac3e5f43e2614ed246083b97fbdf24181d83
|
refs/heads/master
| 1,669,023,730,828
| 1,595,534,784,000
| 1,595,534,784,000
| 282,037,186
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 246
|
lean
|
lemma not_iff_imp_false (P : Prop) : ¬ P ↔ P → false := iff.rfl --hide
lemma contra (P Q : Prop) : (P ∧ ¬ P) → Q :=
begin
intro f,
cases f with p np,
exfalso,
--rw not_iff_imp_false at np,
apply np,
exact p,
end
|
a001918974c507aa554fd645e1025878b024df04
|
8e2026ac8a0660b5a490dfb895599fb445bb77a0
|
/library/init/native/result.lean
|
72f22417f6866ac436cba9ff40a59319f53f686c
|
[
"Apache-2.0"
] |
permissive
|
pcmoritz/lean
|
6a8575115a724af933678d829b4f791a0cb55beb
|
35eba0107e4cc8a52778259bb5392300267bfc29
|
refs/heads/master
| 1,607,896,326,092
| 1,490,752,175,000
| 1,490,752,175,000
| 86,612,290
| 0
| 0
| null | 1,490,809,641,000
| 1,490,809,641,000
| null |
UTF-8
|
Lean
| false
| false
| 2,488
|
lean
|
/-
Copyright (c) 2016 Jared Roesch. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jared Roesch
-/
prelude
import init.meta.interactive
namespace native
inductive result (E : Type) (R : Type) : Type
| err {} : E → result
| ok {} : R → result
def unwrap_or {E T : Type} : result E T → T → T
| (result.err _) default := default
| (result.ok t) _ := t
def result.and_then {E T U : Type} : result E T → (T → result E U) → result E U
| (result.err e) _ := result.err e
| (result.ok t) f := f t
instance result_monad (E : Type) : monad (result E) :=
{pure := @result.ok E, bind := @result.and_then E,
id_map := by intros; cases x; dsimp [result.and_then]; apply rfl,
pure_bind := by intros; apply rfl,
bind_assoc := by intros; cases x; simp [result.and_then]}
inductive resultT (M : Type → Type) (E : Type) (A : Type) : Type
| run : M (result E A) → resultT
section resultT
variable {M : Type → Type}
def resultT.pure [monad : monad M] {E A : Type} (x : A) : resultT M E A :=
resultT.run $ return (result.ok x)
def resultT.and_then [monad : monad M] {E A B : Type} : resultT M E A → (A → resultT M E B) → resultT M E B
| (resultT.run action) f := resultT.run (do
res_a ← action,
-- a little ugly with this match
match res_a with
| result.err e := return (result.err e)
| result.ok a := let (resultT.run actionB) := f a in actionB
end)
instance resultT_monad [m : monad M] (E : Type) : monad (resultT M E) :=
{pure := @resultT.pure M m E, bind := @resultT.and_then M m E,
id_map := begin
intros, cases x,
dsimp [resultT.and_then],
assert h : @resultT.and_then._match_1 _ m E α _ resultT.pure = pure,
{ apply funext, intro x,
cases x; simp [resultT.and_then._match_1, resultT.pure, resultT.and_then._match_2] },
{ rw [h, @monad.bind_pure _ (result E α) _] },
end,
pure_bind := begin
intros,
dsimp [resultT.pure, resultT.and_then, return, pure, bind],
rw [monad.pure_bind], dsimp [resultT.and_then._match_1],
cases f x, dsimp [resultT.and_then._match_2], apply rfl,
end,
bind_assoc := begin
intros,
cases x, dsimp [resultT.and_then, bind],
apply congr_arg, rw [monad.bind_assoc],
apply congr_arg, apply funext, intro,
cases x with e a; dsimp [resultT.and_then._match_1, pure],
{ rw [monad.pure_bind], apply rfl },
{ cases f a, apply rfl },
end}
end resultT
end native
|
bfed6c63f20dfce678096efc8472fe3f4c88cb70
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/instPatVar.lean
|
35592a8e2e570d5314d673c47844ee65f693f989
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 239
|
lean
|
class Pretty (α : Type u) where
pretty : α → Std.Format
export Pretty (pretty)
def concat (xs : List ((α : Type u) × Pretty α × α)) : Std.Format :=
match xs with
| [] => ""
| ⟨_, _, v⟩ :: xs => pretty v ++ concat xs
|
f478eebff140985aa4dfa29d73e63c9eb5746d37
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/stage0/src/Lean/Elab/GenInjective.lean
|
8a97530f6adb87231cddde0757f9e387c8217e22
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 492
|
lean
|
/-
Copyright (c) 2021 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Elab.Command
import Lean.Meta.Injective
namespace Lean.Elab.Command
@[builtinCommandElab genInjectiveTheorems] def elabGenInjectiveTheorems : CommandElab := fun stx => do
let declName ← resolveGlobalConstNoOverloadWithInfo stx[1]
liftTermElabM do
Meta.mkInjectiveTheorems declName
end Lean.Elab.Command
|
c27b03cc0ad66ef9b4a83a00268803edc3c21c49
|
c09f5945267fd905e23a77be83d9a78580e04a4a
|
/src/topology/maps.lean
|
ca922f9b54781097e174a3798466265886a6c8ab
|
[
"Apache-2.0"
] |
permissive
|
OHIHIYA20/mathlib
|
023a6df35355b5b6eb931c404f7dd7535dccfa89
|
1ec0a1f49db97d45e8666a3bf33217ff79ca1d87
|
refs/heads/master
| 1,587,964,529,965
| 1,551,819,319,000
| 1,551,819,319,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 15,465
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
Specific classes of maps between topological spaces: embeddings, open maps, quotient maps.
-/
import topology.order topology.separation
noncomputable theory
open set filter lattice
local attribute [instance] classical.prop_decidable
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
section embedding
/-- A function between topological spaces is an embedding if it is injective,
and for all `s : set α`, `s` is open iff it is the preimage of an open set. -/
def embedding [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop :=
function.injective f ∧ tα = tβ.induced f
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
lemma embedding_id : embedding (@id α) :=
⟨assume a₁ a₂ h, h, induced_id.symm⟩
lemma embedding_compose {f : α → β} {g : β → γ} (hf : embedding f) (hg : embedding g) :
embedding (g ∘ f) :=
⟨assume a₁ a₂ h, hf.left $ hg.left h, by rw [hf.right, hg.right, induced_compose]⟩
lemma embedding_prod_mk {f : α → β} {g : γ → δ} (hf : embedding f) (hg : embedding g) :
embedding (λx:α×γ, (f x.1, g x.2)) :=
⟨assume ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, by simp; exact assume h₁ h₂, ⟨hf.left h₁, hg.left h₂⟩,
by rw [prod.topological_space, prod.topological_space, hf.right, hg.right,
induced_compose, induced_compose, induced_sup, induced_compose, induced_compose]⟩
lemma embedding_of_embedding_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g)
(hgf : embedding (g ∘ f)) : embedding f :=
⟨assume a₁ a₂ h, hgf.left $ by simp [h, (∘)],
le_antisymm
(by rw [hgf.right, ← continuous_iff_induced_le];
apply continuous_induced_dom.comp hg)
(by rwa ← continuous_iff_induced_le)⟩
lemma embedding_open {f : α → β} {s : set α}
(hf : embedding f) (h : is_open (range f)) (hs : is_open s) : is_open (f '' s) :=
let ⟨t, ht, h_eq⟩ := by rw [hf.right] at hs; exact hs in
have is_open (t ∩ range f), from is_open_inter ht h,
h_eq ▸ by rwa [image_preimage_eq_inter_range]
lemma embedding_is_closed {f : α → β} {s : set α}
(hf : embedding f) (h : is_closed (range f)) (hs : is_closed s) : is_closed (f '' s) :=
let ⟨t, ht, h_eq⟩ := by rw [hf.right, is_closed_induced_iff] at hs; exact hs in
have is_closed (t ∩ range f), from is_closed_inter ht h,
h_eq.symm ▸ by rwa [image_preimage_eq_inter_range]
lemma embedding.map_nhds_eq [topological_space α] [topological_space β] {f : α → β}
(hf : embedding f) (a : α) (h : range f ∈ (nhds (f a)).sets) : (nhds a).map f = nhds (f a) :=
by rw [hf.2]; exact map_nhds_induced_eq h
lemma embedding.tendsto_nhds_iff {ι : Type*}
{f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : embedding g) :
tendsto f a (nhds b) ↔ tendsto (g ∘ f) a (nhds (g b)) :=
by rw [tendsto, tendsto, hg.right, nhds_induced_eq_comap, ← map_le_iff_le_comap, filter.map_map]
lemma embedding.continuous_iff {f : α → β} {g : β → γ} (hg : embedding g) :
continuous f ↔ continuous (g ∘ f) :=
by simp [continuous_iff_continuous_at, continuous_at, embedding.tendsto_nhds_iff hg]
lemma embedding.continuous {f : α → β} (hf : embedding f) : continuous f :=
hf.continuous_iff.mp continuous_id
lemma embedding.closure_eq_preimage_closure_image {e : α → β} (he : embedding e) (s : set α) :
closure s = e ⁻¹' closure (e '' s) :=
by ext x; rw [set.mem_preimage_eq, ← closure_induced he.1, he.2]
end embedding
-- TODO: use embeddings from above!
structure dense_embedding [topological_space α] [topological_space β] (e : α → β) : Prop :=
(dense : ∀x, x ∈ closure (range e))
(inj : function.injective e)
(induced : ∀a, comap e (nhds (e a)) = nhds a)
theorem dense_embedding.mk'
[topological_space α] [topological_space β] (e : α → β)
(c : continuous e)
(dense : ∀x, x ∈ closure (range e))
(inj : function.injective e)
(H : ∀ (a:α) s ∈ (nhds a).sets,
∃t ∈ (nhds (e a)).sets, ∀ b, e b ∈ t → b ∈ s) :
dense_embedding e :=
⟨dense, inj, λ a, le_antisymm
(by simpa [le_def] using H a)
(tendsto_iff_comap.1 $ c.tendsto _)⟩
namespace dense_embedding
variables [topological_space α] [topological_space β]
variables {e : α → β} (de : dense_embedding e)
protected lemma embedding (de : dense_embedding e) : embedding e :=
⟨de.inj, eq_of_nhds_eq_nhds begin intro a, rw [← de.induced a, nhds_induced_eq_comap] end⟩
protected lemma continuous_at (de : dense_embedding e) {a : α} : continuous_at e a :=
by rw [continuous_at, ←de.induced a]; exact tendsto_comap
protected lemma continuous (de : dense_embedding e) {a : α} : continuous e :=
continuous_iff_continuous_at.mpr $ λ a, de.continuous_at
lemma inj_iff (de : dense_embedding e) {x y} : e x = e y ↔ x = y := de.inj.eq_iff
lemma closure_range : closure (range e) = univ :=
let h := de.dense in
set.ext $ assume x, ⟨assume _, trivial, assume _, @h x⟩
lemma self_sub_closure_image_preimage_of_open {s : set β} (de : dense_embedding e) :
is_open s → s ⊆ closure (e '' (e ⁻¹' s)) :=
begin
intros s_op b b_in_s,
rw [image_preimage_eq_inter_range, mem_closure_iff],
intros U U_op b_in,
rw ←inter_assoc,
have ne_e : U ∩ s ≠ ∅ := ne_empty_of_mem ⟨b_in, b_in_s⟩,
exact (dense_iff_inter_open.1 de.closure_range) _ (is_open_inter U_op s_op) ne_e
end
lemma closure_image_nhds_of_nhds {s : set α} {a : α} (de : dense_embedding e) :
s ∈ (nhds a).sets → closure (e '' s) ∈ (nhds (e a)).sets :=
begin
rw [← de.induced a, mem_comap_sets],
intro h,
rcases h with ⟨t, t_nhd, sub⟩,
rw mem_nhds_sets_iff at t_nhd,
rcases t_nhd with ⟨U, U_sub, ⟨U_op, e_a_in_U⟩⟩,
have := calc e ⁻¹' U ⊆ e⁻¹' t : preimage_mono U_sub
... ⊆ s : sub,
have := calc U ⊆ closure (e '' (e ⁻¹' U)) : self_sub_closure_image_preimage_of_open de U_op
... ⊆ closure (e '' s) : closure_mono (image_subset e this),
have U_nhd : U ∈ (nhds (e a)).sets := mem_nhds_sets U_op e_a_in_U,
exact (nhds (e a)).sets_of_superset U_nhd this
end
variables [topological_space δ] {f : γ → α} {g : γ → δ} {h : δ → β}
/--
γ -f→ α
g↓ ↓e
δ -h→ β
-/
lemma tendsto_comap_nhds_nhds {d : δ} {a : α} (de : dense_embedding e) (H : tendsto h (nhds d) (nhds (e a)))
(comm : h ∘ g = e ∘ f) : tendsto f (comap g (nhds d)) (nhds a) :=
begin
have lim1 : map g (comap g (nhds d)) ≤ nhds d := map_comap_le,
replace lim1 : map h (map g (comap g (nhds d))) ≤ map h (nhds d) := map_mono lim1,
rw [filter.map_map, comm, ← filter.map_map, map_le_iff_le_comap] at lim1,
have lim2 : comap e (map h (nhds d)) ≤ comap e (nhds (e a)) := comap_mono H,
rw de.induced at lim2,
exact le_trans lim1 lim2,
end
protected lemma nhds_inf_neq_bot (de : dense_embedding e) {b : β} : nhds b ⊓ principal (range e) ≠ ⊥ :=
begin
have h := de.dense,
simp [closure_eq_nhds] at h,
exact h _
end
lemma comap_nhds_neq_bot (de : dense_embedding e) {b : β} : comap e (nhds b) ≠ ⊥ :=
forall_sets_neq_empty_iff_neq_bot.mp $
assume s ⟨t, ht, (hs : e ⁻¹' t ⊆ s)⟩,
have t ∩ range e ∈ (nhds b ⊓ principal (range e)).sets,
from inter_mem_inf_sets ht (subset.refl _),
let ⟨_, ⟨hx₁, y, rfl⟩⟩ := inhabited_of_mem_sets de.nhds_inf_neq_bot this in
subset_ne_empty hs $ ne_empty_of_mem hx₁
variables [topological_space γ]
/-- If `e : α → β` is a dense embedding, then any function `α → γ` extends to a function `β → γ`.
It only extends the parts of `β` which are not mapped by `e`, everything else equal to `f (e a)`.
This allows us to gain equality even if `γ` is not T2. -/
def extend (de : dense_embedding e) (f : α → γ) (b : β) : γ :=
have nonempty γ, from
let ⟨_, ⟨_, a, _⟩⟩ := exists_mem_of_ne_empty (mem_closure_iff.1 (de.dense b) _ is_open_univ trivial) in
⟨f a⟩,
if hb : b ∈ range e
then f (classical.some hb)
else @lim _ _ (classical.inhabited_of_nonempty this) (map f (comap e (nhds b)))
lemma extend_e_eq {f : α → γ} (a : α) : de.extend f (e a) = f a :=
have e a ∈ range e := ⟨a, rfl⟩,
begin
simp [extend, this],
congr,
refine classical.some_spec2 (λx, x = a) _,
exact assume a h, de.inj h
end
lemma extend_eq [t2_space γ] {b : β} {c : γ} {f : α → γ} (hf : map f (comap e (nhds b)) ≤ nhds c) :
de.extend f b = c :=
begin
by_cases hb : b ∈ range e,
{ rcases hb with ⟨a, rfl⟩,
rw [extend_e_eq],
have f_a_c : tendsto f (pure a) (nhds c),
{ rw [de.induced] at hf,
refine le_trans (map_mono _) hf,
exact pure_le_nhds a },
have f_a_fa : tendsto f (pure a) (nhds (f a)),
{ rw [tendsto, filter.map_pure], exact pure_le_nhds _ },
exact tendsto_nhds_unique pure_neq_bot f_a_fa f_a_c },
{ simp [extend, hb],
exact @lim_eq _ _ (id _) _ _ _ (by simp; exact comap_nhds_neq_bot de) hf }
end
lemma tendsto_extend [regular_space γ] {b : β} {f : α → γ} (de : dense_embedding e)
(hf : {b | ∃c, tendsto f (comap e $ nhds b) (nhds c)} ∈ (nhds b).sets) :
tendsto (de.extend f) (nhds b) (nhds (de.extend f b)) :=
let φ := {b | tendsto f (comap e $ nhds b) (nhds $ de.extend f b)} in
have hφ : φ ∈ (nhds b).sets,
from (nhds b).sets_of_superset hf $ assume b ⟨c, hc⟩,
show tendsto f (comap e (nhds b)) (nhds (de.extend f b)), from (de.extend_eq hc).symm ▸ hc,
assume s hs,
let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_is_closed hs in
let ⟨s', hs'₁, (hs'₂ : e ⁻¹' s' ⊆ f ⁻¹' s'')⟩ := mem_of_nhds hφ hs''₁ in
let ⟨t, (ht₁ : t ⊆ φ ∩ s'), ht₂, ht₃⟩ := mem_nhds_sets_iff.mp $ inter_mem_sets hφ hs'₁ in
have h₁ : closure (f '' (e ⁻¹' s')) ⊆ s'',
by rw [closure_subset_iff_subset_of_is_closed hs''₃, image_subset_iff]; exact hs'₂,
have h₂ : t ⊆ de.extend f ⁻¹' closure (f '' (e ⁻¹' t)), from
assume b' hb',
have nhds b' ≤ principal t, by simp; exact mem_nhds_sets ht₂ hb',
have map f (comap e (nhds b')) ≤ nhds (de.extend f b') ⊓ principal (f '' (e ⁻¹' t)),
from calc _ ≤ map f (comap e (nhds b' ⊓ principal t)) : map_mono $ comap_mono $ le_inf (le_refl _) this
... ≤ map f (comap e (nhds b')) ⊓ map f (comap e (principal t)) :
le_inf (map_mono $ comap_mono $ inf_le_left) (map_mono $ comap_mono $ inf_le_right)
... ≤ map f (comap e (nhds b')) ⊓ principal (f '' (e ⁻¹' t)) : by simp [le_refl]
... ≤ _ : inf_le_inf ((ht₁ hb').left) (le_refl _),
show de.extend f b' ∈ closure (f '' (e ⁻¹' t)),
begin
rw [closure_eq_nhds],
apply neq_bot_of_le_neq_bot _ this,
simp,
exact de.comap_nhds_neq_bot
end,
(nhds b).sets_of_superset
(show t ∈ (nhds b).sets, from mem_nhds_sets ht₂ ht₃)
(calc t ⊆ de.extend f ⁻¹' closure (f '' (e ⁻¹' t)) : h₂
... ⊆ de.extend f ⁻¹' closure (f '' (e ⁻¹' s')) :
preimage_mono $ closure_mono $ image_subset f $ preimage_mono $ subset.trans ht₁ $ inter_subset_right _ _
... ⊆ de.extend f ⁻¹' s'' : preimage_mono h₁
... ⊆ de.extend f ⁻¹' s : preimage_mono hs''₂)
lemma continuous_extend [regular_space γ] {f : α → γ} (de : dense_embedding e)
(hf : ∀b, ∃c, tendsto f (comap e (nhds b)) (nhds c)) : continuous (de.extend f) :=
continuous_iff_continuous_at.mpr $ assume b, de.tendsto_extend $ univ_mem_sets' hf
end dense_embedding
/-- A function between topological spaces is a quotient map if it is surjective,
and for all `s : set β`, `s` is open iff its preimage is an open set. -/
def quotient_map {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop :=
function.surjective f ∧ tβ = tα.coinduced f
namespace quotient_map
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
protected lemma id : quotient_map (@id α) :=
⟨assume a, ⟨a, rfl⟩, coinduced_id.symm⟩
protected lemma comp {f : α → β} {g : β → γ} (hf : quotient_map f) (hg : quotient_map g) :
quotient_map (g ∘ f) :=
⟨function.surjective_comp hg.left hf.left, by rw [hg.right, hf.right, coinduced_compose]⟩
protected lemma of_quotient_map_compose {f : α → β} {g : β → γ}
(hf : continuous f) (hg : continuous g)
(hgf : quotient_map (g ∘ f)) : quotient_map g :=
⟨assume b, let ⟨a, h⟩ := hgf.left b in ⟨f a, h⟩,
le_antisymm
(by rwa ← continuous_iff_le_coinduced)
(by rw [hgf.right, ← continuous_iff_le_coinduced];
apply hf.comp continuous_coinduced_rng)⟩
protected lemma continuous_iff {f : α → β} {g : β → γ} (hf : quotient_map f) :
continuous g ↔ continuous (g ∘ f) :=
by rw [continuous_iff_le_coinduced, continuous_iff_le_coinduced, hf.right, coinduced_compose]
protected lemma continuous {f : α → β} (hf : quotient_map f) : continuous f :=
hf.continuous_iff.mp continuous_id
end quotient_map
section is_open_map
variables [topological_space α] [topological_space β]
def is_open_map (f : α → β) := ∀ U : set α, is_open U → is_open (f '' U)
lemma is_open_map_iff_nhds_le (f : α → β) : is_open_map f ↔ ∀(a:α), nhds (f a) ≤ (nhds a).map f :=
begin
split,
{ assume h a s hs,
rcases mem_nhds_sets_iff.1 hs with ⟨t, hts, ht, hat⟩,
exact filter.mem_sets_of_superset
(mem_nhds_sets (h t ht) (mem_image_of_mem _ hat))
(image_subset_iff.2 hts) },
{ refine assume h s hs, is_open_iff_mem_nhds.2 _,
rintros b ⟨a, ha, rfl⟩,
exact h _ (filter.image_mem_map $ mem_nhds_sets hs ha) }
end
end is_open_map
namespace is_open_map
variables [topological_space α] [topological_space β] [topological_space γ]
open function
protected lemma id : is_open_map (@id α) := assume s hs, by rwa [image_id]
protected lemma comp
{f : α → β} {g : β → γ} (hf : is_open_map f) (hg : is_open_map g) : is_open_map (g ∘ f) :=
by intros s hs; rw [image_comp]; exact hg _ (hf _ hs)
lemma of_inverse {f : α → β} {f' : β → α}
(h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') :
is_open_map f :=
assume s hs,
have f' ⁻¹' s = f '' s, by ext x; simp [mem_image_iff_of_inverse r_inv l_inv],
this ▸ h s hs
lemma to_quotient_map {f : α → β}
(open_map : is_open_map f) (cont : continuous f) (surj : function.surjective f) :
quotient_map f :=
⟨ surj,
begin
ext s,
show is_open s ↔ is_open (f ⁻¹' s),
split,
{ exact cont s },
{ assume h,
rw ← @image_preimage_eq _ _ _ s surj,
exact open_map _ h }
end⟩
end is_open_map
section sierpinski
variables [topological_space α]
@[simp] lemma is_open_singleton_true : is_open ({true} : set Prop) :=
topological_space.generate_open.basic _ (by simp)
lemma continuous_Prop {p : α → Prop} : continuous p ↔ is_open {x | p x} :=
⟨assume h : continuous p,
have is_open (p ⁻¹' {true}),
from h _ is_open_singleton_true,
by simp [preimage, eq_true] at this; assumption,
assume h : is_open {x | p x},
continuous_generated_from $ assume s (hs : s ∈ {{true}}),
by simp at hs; simp [hs, preimage, eq_true, h]⟩
end sierpinski
|
b4fd27a8673192fd7f13682440110e694e96ed8a
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/order/atoms.lean
|
1d7ecf25d069049bf8cb94d105b544a2aae7ebd7
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 21,301
|
lean
|
/-
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import order.complete_boolean_algebra
import order.modular_lattice
import data.fintype.basic
/-!
# Atoms, Coatoms, and Simple Lattices
This module defines atoms, which are minimal non-`⊥` elements in bounded lattices, simple lattices,
which are lattices with only two elements, and related ideas.
## Main definitions
### Atoms and Coatoms
* `is_atom a` indicates that the only element below `a` is `⊥`.
* `is_coatom a` indicates that the only element above `a` is `⊤`.
### Atomic and Atomistic Lattices
* `is_atomic` indicates that every element other than `⊥` is above an atom.
* `is_coatomic` indicates that every element other than `⊤` is below a coatom.
* `is_atomistic` indicates that every element is the `Sup` of a set of atoms.
* `is_coatomistic` indicates that every element is the `Inf` of a set of coatoms.
### Simple Lattices
* `is_simple_lattice` indicates that a bounded lattice has only two elements, `⊥` and `⊤`.
* `is_simple_lattice.bounded_distrib_lattice`
* Given an instance of `is_simple_lattice`, we provide the following definitions. These are not
made global instances as they contain data :
* `is_simple_lattice.boolean_algebra`
* `is_simple_lattice.complete_lattice`
* `is_simple_lattice.complete_boolean_algebra`
## Main results
* `is_atom_dual_iff_is_coatom` and `is_coatom_dual_iff_is_atom` express the (definitional) duality
of `is_atom` and `is_coatom`.
* `is_simple_lattice_iff_is_atom_top` and `is_simple_lattice_iff_is_coatom_bot` express the
connection between atoms, coatoms, and simple lattices
* `is_compl.is_atom_iff_is_coatom` and `is_compl.is_coatom_if_is_atom`: In a modular
bounded lattice, a complement of an atom is a coatom and vice versa.
* ``is_atomic_iff_is_coatomic`: A modular complemented lattice is atomic iff it is coatomic.
-/
variable {α : Type*}
section atoms
section is_atom
variables [partial_order α] [order_bot α]
/-- An atom of an `order_bot` is an element with no other element between it and `⊥`,
which is not `⊥`. -/
def is_atom (a : α) : Prop := a ≠ ⊥ ∧ (∀ b, b < a → b = ⊥)
lemma eq_bot_or_eq_of_le_atom {a b : α} (ha : is_atom a) (hab : b ≤ a) : b = ⊥ ∨ b = a :=
hab.lt_or_eq.imp_left (ha.2 b)
lemma is_atom.Iic {x a : α} (ha : is_atom a) (hax : a ≤ x) : is_atom (⟨a, hax⟩ : set.Iic x) :=
⟨λ con, ha.1 (subtype.mk_eq_mk.1 con), λ ⟨b, hb⟩ hba, subtype.mk_eq_mk.2 (ha.2 b hba)⟩
lemma is_atom.of_is_atom_coe_Iic {x : α} {a : set.Iic x} (ha : is_atom a) : is_atom (a : α) :=
⟨λ con, ha.1 (subtype.ext con), λ b hba, subtype.mk_eq_mk.1 (ha.2 ⟨b, hba.le.trans a.prop⟩ hba)⟩
end is_atom
section is_coatom
variables [partial_order α] [order_top α]
/-- A coatom of an `order_top` is an element with no other element between it and `⊤`,
which is not `⊤`. -/
def is_coatom (a : α) : Prop := a ≠ ⊤ ∧ (∀ b, a < b → b = ⊤)
lemma eq_top_or_eq_of_coatom_le {a b : α} (ha : is_coatom a) (hab : a ≤ b) : b = ⊤ ∨ b = a :=
hab.lt_or_eq.imp (ha.2 b) eq_comm.2
lemma is_coatom.Ici {x a : α} (ha : is_coatom a) (hax : x ≤ a) : is_coatom (⟨a, hax⟩ : set.Ici x) :=
⟨λ con, ha.1 (subtype.mk_eq_mk.1 con), λ ⟨b, hb⟩ hba, subtype.mk_eq_mk.2 (ha.2 b hba)⟩
lemma is_coatom.of_is_coatom_coe_Ici {x : α} {a : set.Ici x} (ha : is_coatom a) :
is_coatom (a : α) :=
⟨λ con, ha.1 (subtype.ext con), λ b hba, subtype.mk_eq_mk.1 (ha.2 ⟨b, le_trans a.prop hba.le⟩ hba)⟩
end is_coatom
section pairwise
lemma is_atom.inf_eq_bot_of_ne [semilattice_inf_bot α] {a b : α}
(ha : is_atom a) (hb : is_atom b) (hab : a ≠ b) : a ⊓ b = ⊥ :=
or.elim (eq_bot_or_eq_of_le_atom ha inf_le_left) id
(λ h1, or.elim (eq_bot_or_eq_of_le_atom hb inf_le_right) id
(λ h2, false.rec _ (hab (le_antisymm (inf_eq_left.mp h1) (inf_eq_right.mp h2)))))
lemma is_atom.disjoint_of_ne [semilattice_inf_bot α] {a b : α}
(ha : is_atom a) (hb : is_atom b) (hab : a ≠ b) : disjoint a b :=
disjoint_iff.mpr (is_atom.inf_eq_bot_of_ne ha hb hab)
lemma is_coatom.sup_eq_top_of_ne [semilattice_sup_top α] {a b : α}
(ha : is_coatom a) (hb : is_coatom b) (hab : a ≠ b) : a ⊔ b = ⊤ :=
or.elim (eq_top_or_eq_of_coatom_le ha le_sup_left) id
(λ h1, or.elim (eq_top_or_eq_of_coatom_le hb le_sup_right) id
(λ h2, false.rec _ (hab (le_antisymm (sup_eq_right.mp h2) (sup_eq_left.mp h1)))))
end pairwise
variables [partial_order α] {a : α}
@[simp]
lemma is_coatom_dual_iff_is_atom [order_bot α] : is_coatom (order_dual.to_dual a) ↔ is_atom a :=
iff.rfl
@[simp]
lemma is_atom_dual_iff_is_coatom [order_top α] : is_atom (order_dual.to_dual a) ↔ is_coatom a :=
iff.rfl
end atoms
section atomic
variables [partial_order α] (α)
/-- A lattice is atomic iff every element other than `⊥` has an atom below it. -/
class is_atomic [order_bot α] : Prop :=
(eq_bot_or_exists_atom_le : ∀ (b : α), b = ⊥ ∨ ∃ (a : α), is_atom a ∧ a ≤ b)
/-- A lattice is coatomic iff every element other than `⊤` has a coatom above it. -/
class is_coatomic [order_top α] : Prop :=
(eq_top_or_exists_le_coatom : ∀ (b : α), b = ⊤ ∨ ∃ (a : α), is_coatom a ∧ b ≤ a)
export is_atomic (eq_bot_or_exists_atom_le) is_coatomic (eq_top_or_exists_le_coatom)
variable {α}
@[simp] theorem is_coatomic_dual_iff_is_atomic [order_bot α] :
is_coatomic (order_dual α) ↔ is_atomic α :=
⟨λ h, ⟨λ b, by apply h.eq_top_or_exists_le_coatom⟩, λ h, ⟨λ b, by apply h.eq_bot_or_exists_atom_le⟩⟩
@[simp] theorem is_atomic_dual_iff_is_coatomic [order_top α] :
is_atomic (order_dual α) ↔ is_coatomic α :=
⟨λ h, ⟨λ b, by apply h.eq_bot_or_exists_atom_le⟩, λ h, ⟨λ b, by apply h.eq_top_or_exists_le_coatom⟩⟩
namespace is_atomic
variables [order_bot α] [is_atomic α]
instance is_coatomic_dual : is_coatomic (order_dual α) :=
is_coatomic_dual_iff_is_atomic.2 ‹is_atomic α›
instance {x : α} : is_atomic (set.Iic x) :=
⟨λ ⟨y, hy⟩, (eq_bot_or_exists_atom_le y).imp subtype.mk_eq_mk.2
(λ ⟨a, ha, hay⟩, ⟨⟨a, hay.trans hy⟩, ha.Iic (hay.trans hy), hay⟩)⟩
end is_atomic
namespace is_coatomic
variables [order_top α] [is_coatomic α]
instance is_coatomic : is_atomic (order_dual α) :=
is_atomic_dual_iff_is_coatomic.2 ‹is_coatomic α›
instance {x : α} : is_coatomic (set.Ici x) :=
⟨λ ⟨y, hy⟩, (eq_top_or_exists_le_coatom y).imp subtype.mk_eq_mk.2
(λ ⟨a, ha, hay⟩, ⟨⟨a, le_trans hy hay⟩, ha.Ici (le_trans hy hay), hay⟩)⟩
end is_coatomic
theorem is_atomic_iff_forall_is_atomic_Iic [order_bot α] :
is_atomic α ↔ ∀ (x : α), is_atomic (set.Iic x) :=
⟨@is_atomic.set.Iic.is_atomic _ _ _, λ h, ⟨λ x, ((@eq_bot_or_exists_atom_le _ _ _ (h x))
(⊤ : set.Iic x)).imp subtype.mk_eq_mk.1 (exists_imp_exists' coe
(λ ⟨a, ha⟩, and.imp_left (is_atom.of_is_atom_coe_Iic)))⟩⟩
theorem is_coatomic_iff_forall_is_coatomic_Ici [order_top α] :
is_coatomic α ↔ ∀ (x : α), is_coatomic (set.Ici x) :=
is_atomic_dual_iff_is_coatomic.symm.trans $ is_atomic_iff_forall_is_atomic_Iic.trans $ forall_congr
(λ x, is_coatomic_dual_iff_is_atomic.symm.trans iff.rfl)
end atomic
section atomistic
variables (α) [complete_lattice α]
/-- A lattice is atomistic iff every element is a `Sup` of a set of atoms. -/
class is_atomistic : Prop :=
(eq_Sup_atoms : ∀ (b : α), ∃ (s : set α), b = Sup s ∧ ∀ a, a ∈ s → is_atom a)
/-- A lattice is coatomistic iff every element is an `Inf` of a set of coatoms. -/
class is_coatomistic : Prop :=
(eq_Inf_coatoms : ∀ (b : α), ∃ (s : set α), b = Inf s ∧ ∀ a, a ∈ s → is_coatom a)
export is_atomistic (eq_Sup_atoms) is_coatomistic (eq_Inf_coatoms)
variable {α}
@[simp]
theorem is_coatomistic_dual_iff_is_atomistic : is_coatomistic (order_dual α) ↔ is_atomistic α :=
⟨λ h, ⟨λ b, by apply h.eq_Inf_coatoms⟩, λ h, ⟨λ b, by apply h.eq_Sup_atoms⟩⟩
@[simp]
theorem is_atomistic_dual_iff_is_coatomistic : is_atomistic (order_dual α) ↔ is_coatomistic α :=
⟨λ h, ⟨λ b, by apply h.eq_Sup_atoms⟩, λ h, ⟨λ b, by apply h.eq_Inf_coatoms⟩⟩
namespace is_atomistic
instance is_coatomistic_dual [h : is_atomistic α] : is_coatomistic (order_dual α) :=
is_coatomistic_dual_iff_is_atomistic.2 h
variable [is_atomistic α]
@[priority 100]
instance : is_atomic α :=
⟨λ b, by { rcases eq_Sup_atoms b with ⟨s, rfl, hs⟩,
cases s.eq_empty_or_nonempty with h h,
{ simp [h] },
{ exact or.intro_right _ ⟨h.some, hs _ h.some_spec, le_Sup h.some_spec⟩ } } ⟩
end is_atomistic
section is_atomistic
variables [is_atomistic α]
@[simp]
theorem Sup_atoms_le_eq (b : α) : Sup {a : α | is_atom a ∧ a ≤ b} = b :=
begin
rcases eq_Sup_atoms b with ⟨s, rfl, hs⟩,
exact le_antisymm (Sup_le (λ _, and.right)) (Sup_le_Sup (λ a ha, ⟨hs a ha, le_Sup ha⟩)),
end
@[simp]
theorem Sup_atoms_eq_top : Sup {a : α | is_atom a} = ⊤ :=
begin
refine eq.trans (congr rfl (set.ext (λ x, _))) (Sup_atoms_le_eq ⊤),
exact (and_iff_left le_top).symm,
end
theorem le_iff_atom_le_imp {a b : α} :
a ≤ b ↔ ∀ c : α, is_atom c → c ≤ a → c ≤ b :=
⟨λ ab c hc ca, le_trans ca ab, λ h, begin
rw [← Sup_atoms_le_eq a, ← Sup_atoms_le_eq b],
exact Sup_le_Sup (λ c hc, ⟨hc.1, h c hc.1 hc.2⟩),
end⟩
end is_atomistic
namespace is_coatomistic
instance is_atomistic_dual [h : is_coatomistic α] : is_atomistic (order_dual α) :=
is_atomistic_dual_iff_is_coatomistic.2 h
variable [is_coatomistic α]
@[priority 100]
instance : is_coatomic α :=
⟨λ b, by { rcases eq_Inf_coatoms b with ⟨s, rfl, hs⟩,
cases s.eq_empty_or_nonempty with h h,
{ simp [h] },
{ exact or.intro_right _ ⟨h.some, hs _ h.some_spec, Inf_le h.some_spec⟩ } } ⟩
end is_coatomistic
end atomistic
/-- A lattice is simple iff it has only two elements, `⊥` and `⊤`. -/
class is_simple_lattice (α : Type*) [bounded_lattice α] extends nontrivial α : Prop :=
(eq_bot_or_eq_top : ∀ (a : α), a = ⊥ ∨ a = ⊤)
export is_simple_lattice (eq_bot_or_eq_top)
theorem is_simple_lattice_iff_is_simple_lattice_order_dual [bounded_lattice α] :
is_simple_lattice α ↔ is_simple_lattice (order_dual α) :=
begin
split; intro i; haveI := i,
{ exact { exists_pair_ne := @exists_pair_ne α _,
eq_bot_or_eq_top := λ a, or.symm (eq_bot_or_eq_top ((order_dual.of_dual a)) : _ ∨ _) } },
{ exact { exists_pair_ne := @exists_pair_ne (order_dual α) _,
eq_bot_or_eq_top := λ a, or.symm (eq_bot_or_eq_top (order_dual.to_dual a)) } }
end
section is_simple_lattice
variables [bounded_lattice α] [is_simple_lattice α]
instance : is_simple_lattice (order_dual α) :=
is_simple_lattice_iff_is_simple_lattice_order_dual.1 (by apply_instance)
@[simp] lemma is_atom_top : is_atom (⊤ : α) :=
⟨top_ne_bot, λ a ha, or.resolve_right (eq_bot_or_eq_top a) (ne_of_lt ha)⟩
@[simp] lemma is_coatom_bot : is_coatom (⊥ : α) := is_atom_dual_iff_is_coatom.1 is_atom_top
end is_simple_lattice
namespace is_simple_lattice
section bounded_lattice
variables [bounded_lattice α] [is_simple_lattice α]
/-- A simple `bounded_lattice` is also distributive. -/
@[priority 100]
instance : bounded_distrib_lattice α :=
{ le_sup_inf := λ x y z, by { rcases eq_bot_or_eq_top x with rfl | rfl; simp },
.. (infer_instance : bounded_lattice α) }
@[priority 100]
instance : is_atomic α :=
⟨λ b, (eq_bot_or_eq_top b).imp_right (λ h, ⟨⊤, ⟨is_atom_top, ge_of_eq h⟩⟩)⟩
@[priority 100]
instance : is_coatomic α := is_atomic_dual_iff_is_coatomic.1 is_simple_lattice.is_atomic
end bounded_lattice
/- It is important that in this section `is_simple_lattice` is the last type-class argument. -/
section decidable_eq
variables [decidable_eq α] [bounded_lattice α] [is_simple_lattice α]
/-- Every simple lattice is order-isomorphic to `bool`. -/
def order_iso_bool : α ≃o bool :=
{ to_fun := λ x, x = ⊤,
inv_fun := λ x, cond x ⊤ ⊥,
left_inv := λ x, by { rcases (eq_bot_or_eq_top x) with rfl | rfl; simp [bot_ne_top] },
right_inv := λ x, by { cases x; simp [bot_ne_top] },
map_rel_iff' := λ a b, begin
rcases (eq_bot_or_eq_top a) with rfl | rfl,
{ simp [bot_ne_top] },
{ rcases (eq_bot_or_eq_top b) with rfl | rfl,
{ simp [bot_ne_top.symm, bot_ne_top, bool.ff_lt_tt] },
{ simp [bot_ne_top] } }
end }
/- It is important that `is_simple_lattice` is the last type-class argument of this instance,
so that type-class inference fails quickly if it doesn't apply. -/
@[priority 200]
instance : fintype α := fintype.of_equiv bool (order_iso_bool.to_equiv).symm
/-- A simple `bounded_lattice` is also a `boolean_algebra`. -/
protected def boolean_algebra : boolean_algebra α :=
{ compl := λ x, if x = ⊥ then ⊤ else ⊥,
sdiff := λ x y, if x = ⊤ ∧ y = ⊥ then ⊤ else ⊥,
sdiff_eq := λ x y, by rcases eq_bot_or_eq_top x with rfl | rfl;
simp [bot_ne_top, has_sdiff.sdiff, compl],
inf_compl_le_bot := λ x, by rcases eq_bot_or_eq_top x with rfl | rfl; simp,
top_le_sup_compl := λ x, by rcases eq_bot_or_eq_top x with rfl | rfl; simp,
sup_inf_sdiff := λ x y, by rcases eq_bot_or_eq_top x with rfl | rfl;
rcases eq_bot_or_eq_top y with rfl | rfl; simp [bot_ne_top],
inf_inf_sdiff := λ x y, by rcases eq_bot_or_eq_top x with rfl | rfl;
rcases eq_bot_or_eq_top y with rfl | rfl; simp,
.. is_simple_lattice.bounded_distrib_lattice }
end decidable_eq
variables [bounded_lattice α] [is_simple_lattice α]
open_locale classical
/-- A simple `bounded_lattice` is also complete. -/
protected noncomputable def complete_lattice : complete_lattice α :=
{ Sup := λ s, if ⊤ ∈ s then ⊤ else ⊥,
Inf := λ s, if ⊥ ∈ s then ⊥ else ⊤,
le_Sup := λ s x h, by { rcases eq_bot_or_eq_top x with rfl | rfl,
{ exact bot_le },
{ rw if_pos h } },
Sup_le := λ s x h, by { rcases eq_bot_or_eq_top x with rfl | rfl,
{ rw if_neg,
intro con,
exact bot_ne_top (eq_top_iff.2 (h ⊤ con)) },
{ exact le_top } },
Inf_le := λ s x h, by { rcases eq_bot_or_eq_top x with rfl | rfl,
{ rw if_pos h },
{ exact le_top } },
le_Inf := λ s x h, by { rcases eq_bot_or_eq_top x with rfl | rfl,
{ exact bot_le },
{ rw if_neg,
intro con,
exact top_ne_bot (eq_bot_iff.2 (h ⊥ con)) } },
.. (infer_instance : bounded_lattice α) }
/-- A simple `bounded_lattice` is also a `complete_boolean_algebra`. -/
protected noncomputable def complete_boolean_algebra : complete_boolean_algebra α :=
{ infi_sup_le_sup_Inf := λ x s, by { rcases eq_bot_or_eq_top x with rfl | rfl,
{ simp only [bot_sup_eq, ← Inf_eq_infi], apply le_refl },
{ simp only [top_sup_eq, le_top] }, },
inf_Sup_le_supr_inf := λ x s, by { rcases eq_bot_or_eq_top x with rfl | rfl,
{ simp only [bot_inf_eq, bot_le] },
{ simp only [top_inf_eq, ← Sup_eq_supr], apply le_refl } },
.. is_simple_lattice.complete_lattice,
.. is_simple_lattice.boolean_algebra }
end is_simple_lattice
namespace is_simple_lattice
variables [complete_lattice α] [is_simple_lattice α]
set_option default_priority 100
instance : is_atomistic α :=
⟨λ b, (eq_bot_or_eq_top b).elim
(λ h, ⟨∅, ⟨h.trans Sup_empty.symm, λ a ha, false.elim (set.not_mem_empty _ ha)⟩⟩)
(λ h, ⟨{⊤}, h.trans Sup_singleton.symm, λ a ha, (set.mem_singleton_iff.1 ha).symm ▸ is_atom_top⟩)⟩
instance : is_coatomistic α := is_atomistic_dual_iff_is_coatomistic.1 is_simple_lattice.is_atomistic
end is_simple_lattice
namespace fintype
namespace is_simple_lattice
variables [bounded_lattice α] [is_simple_lattice α] [decidable_eq α]
lemma univ : (finset.univ : finset α) = {⊤, ⊥} :=
begin
change finset.map _ (finset.univ : finset bool) = _,
rw fintype.univ_bool,
simp only [finset.map_insert, function.embedding.coe_fn_mk, finset.map_singleton],
refl,
end
lemma card : fintype.card α = 2 :=
(fintype.of_equiv_card _).trans fintype.card_bool
end is_simple_lattice
end fintype
namespace bool
instance : is_simple_lattice bool :=
⟨λ a, begin
rw [← finset.mem_singleton, or.comm, ← finset.mem_insert,
top_eq_tt, bot_eq_ff, ← fintype.univ_bool],
apply finset.mem_univ,
end⟩
end bool
theorem is_simple_lattice_iff_is_atom_top [bounded_lattice α] :
is_simple_lattice α ↔ is_atom (⊤ : α) :=
⟨λ h, @is_atom_top _ _ h, λ h, {
exists_pair_ne := ⟨⊤, ⊥, h.1⟩,
eq_bot_or_eq_top := λ a, ((eq_or_lt_of_le le_top).imp_right (h.2 a)).symm }⟩
theorem is_simple_lattice_iff_is_coatom_bot [bounded_lattice α] :
is_simple_lattice α ↔ is_coatom (⊥ : α) :=
is_simple_lattice_iff_is_simple_lattice_order_dual.trans is_simple_lattice_iff_is_atom_top
namespace set
theorem is_simple_lattice_Iic_iff_is_atom [bounded_lattice α] {a : α} :
is_simple_lattice (Iic a) ↔ is_atom a :=
is_simple_lattice_iff_is_atom_top.trans $ and_congr (not_congr subtype.mk_eq_mk)
⟨λ h b ab, subtype.mk_eq_mk.1 (h ⟨b, le_of_lt ab⟩ ab),
λ h ⟨b, hab⟩ hbotb, subtype.mk_eq_mk.2 (h b (subtype.mk_lt_mk.1 hbotb))⟩
theorem is_simple_lattice_Ici_iff_is_coatom [bounded_lattice α] {a : α} :
is_simple_lattice (Ici a) ↔ is_coatom a :=
is_simple_lattice_iff_is_coatom_bot.trans $ and_congr (not_congr subtype.mk_eq_mk)
⟨λ h b ab, subtype.mk_eq_mk.1 (h ⟨b, le_of_lt ab⟩ ab),
λ h ⟨b, hab⟩ hbotb, subtype.mk_eq_mk.2 (h b (subtype.mk_lt_mk.1 hbotb))⟩
end set
namespace order_iso
variables {β : Type*} [partial_order α] [partial_order β]
@[simp] lemma is_atom_iff [order_bot α] [order_bot β] (f : α ≃o β) (a : α) :
is_atom (f a) ↔ is_atom a :=
and_congr (not_congr ⟨λ h, f.injective (f.map_bot.symm ▸ h), λ h, f.map_bot ▸ (congr rfl h)⟩)
⟨λ h b hb, f.injective ((h (f b) ((f : α ↪o β).lt_iff_lt.2 hb)).trans f.map_bot.symm),
λ h b hb, f.symm.injective begin
rw f.symm.map_bot,
apply h,
rw [← f.symm_apply_apply a],
exact (f.symm : β ↪o α).lt_iff_lt.2 hb,
end⟩
@[simp] lemma is_coatom_iff [order_top α] [order_top β] (f : α ≃o β) (a : α) :
is_coatom (f a) ↔ is_coatom a :=
f.dual.is_atom_iff a
lemma is_simple_lattice_iff {α β} [bounded_lattice α] [bounded_lattice β] (f : α ≃o β) :
is_simple_lattice α ↔ is_simple_lattice β :=
by rw [is_simple_lattice_iff_is_atom_top, is_simple_lattice_iff_is_atom_top,
← f.is_atom_iff ⊤, f.map_top]
lemma is_simple_lattice {α β} [bounded_lattice α] [bounded_lattice β]
[h : is_simple_lattice β] (f : α ≃o β) :
is_simple_lattice α :=
f.is_simple_lattice_iff.mpr h
lemma is_atomic_iff [order_bot α] [order_bot β] (f : α ≃o β) :
is_atomic α ↔ is_atomic β :=
begin
suffices : (∀ b : α, b = ⊥ ∨ ∃ (a : α), is_atom a ∧ a ≤ b) ↔
(∀ b : β, b = ⊥ ∨ ∃ (a : β), is_atom a ∧ a ≤ b),
from ⟨λ ⟨p⟩, ⟨this.mp p⟩, λ ⟨p⟩, ⟨this.mpr p⟩⟩,
apply f.to_equiv.forall_congr,
simp_rw [rel_iso.coe_fn_to_equiv],
intro b, apply or_congr,
{ rw [f.apply_eq_iff_eq_symm_apply, map_bot], },
{ split,
{ exact λ ⟨a, ha⟩, ⟨f a, ⟨(f.is_atom_iff a).mpr ha.1, f.le_iff_le.mpr ha.2⟩⟩, },
{ rintros ⟨b, ⟨hb1, hb2⟩⟩,
refine ⟨f.symm b, ⟨(f.symm.is_atom_iff b).mpr hb1, _⟩⟩,
rwa [←f.le_iff_le, f.apply_symm_apply], }, },
end
lemma is_coatomic_iff [order_top α] [order_top β] (f : α ≃o β) :
is_coatomic α ↔ is_coatomic β :=
by { rw [←is_atomic_dual_iff_is_coatomic, ←is_atomic_dual_iff_is_coatomic],
exact f.dual.is_atomic_iff }
end order_iso
section is_modular_lattice
variables [bounded_lattice α] [is_modular_lattice α]
namespace is_compl
variables {a b : α} (hc : is_compl a b)
include hc
lemma is_atom_iff_is_coatom : is_atom a ↔ is_coatom b :=
set.is_simple_lattice_Iic_iff_is_atom.symm.trans $ hc.Iic_order_iso_Ici.is_simple_lattice_iff.trans
set.is_simple_lattice_Ici_iff_is_coatom
lemma is_coatom_iff_is_atom : is_coatom a ↔ is_atom b := hc.symm.is_atom_iff_is_coatom.symm
end is_compl
variables [is_complemented α]
lemma is_coatomic_of_is_atomic_of_is_complemented_of_is_modular [is_atomic α] : is_coatomic α :=
⟨λ x, begin
rcases exists_is_compl x with ⟨y, xy⟩,
apply (eq_bot_or_exists_atom_le y).imp _ _,
{ rintro rfl,
exact eq_top_of_is_compl_bot xy },
{ rintro ⟨a, ha, ay⟩,
rcases exists_is_compl (xy.symm.Iic_order_iso_Ici ⟨a, ay⟩) with ⟨⟨b, xb⟩, hb⟩,
refine ⟨↑(⟨b, xb⟩ : set.Ici x), is_coatom.of_is_coatom_coe_Ici _, xb⟩,
rw [← hb.is_atom_iff_is_coatom, order_iso.is_atom_iff],
apply ha.Iic }
end⟩
lemma is_atomic_of_is_coatomic_of_is_complemented_of_is_modular [is_coatomic α] : is_atomic α :=
is_coatomic_dual_iff_is_atomic.1 is_coatomic_of_is_atomic_of_is_complemented_of_is_modular
theorem is_atomic_iff_is_coatomic : is_atomic α ↔ is_coatomic α :=
⟨λ h, @is_coatomic_of_is_atomic_of_is_complemented_of_is_modular _ _ _ _ h,
λ h, @is_atomic_of_is_coatomic_of_is_complemented_of_is_modular _ _ _ _ h⟩
end is_modular_lattice
|
8079778fef8d31d65e9e466f42cbfbac7af9a42a
|
82e44445c70db0f03e30d7be725775f122d72f3e
|
/src/order/complete_lattice.lean
|
cbb44041c9289dddbc0dd2f542e55004deb3892f
|
[
"Apache-2.0"
] |
permissive
|
stjordanis/mathlib
|
51e286d19140e3788ef2c470bc7b953e4991f0c9
|
2568d41bca08f5d6bf39d915434c8447e21f42ee
|
refs/heads/master
| 1,631,748,053,501
| 1,627,938,886,000
| 1,627,938,886,000
| 228,728,358
| 0
| 0
|
Apache-2.0
| 1,576,630,588,000
| 1,576,630,587,000
| null |
UTF-8
|
Lean
| false
| false
| 52,686
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import order.bounds
/-!
# Theory of complete lattices
## Main definitions
* `Sup` and `Inf` are the supremum and the infimum of a set;
* `supr (f : ι → α)` and `infi (f : ι → α)` are indexed supremum and infimum of a function,
defined as `Sup` and `Inf` of the range of this function;
* `class complete_lattice`: a bounded lattice such that `Sup s` is always the least upper boundary
of `s` and `Inf s` is always the greatest lower boundary of `s`;
* `class complete_linear_order`: a linear ordered complete lattice.
## Naming conventions
We use `Sup`/`Inf`/`supr`/`infi` for the corresponding functions in the statement. Sometimes we
also use `bsupr`/`binfi` for "bounded" supremum or infimum, i.e. one of `⨆ i ∈ s, f i`,
`⨆ i (hi : p i), f i`, or more generally `⨆ i (hi : p i), f i hi`.
## Notation
* `⨆ i, f i` : `supr f`, the supremum of the range of `f`;
* `⨅ i, f i` : `infi f`, the infimum of the range of `f`.
-/
set_option old_structure_cmd true
open set
variables {α β β₂ : Type*} {ι ι₂ : Sort*}
/-- class for the `Sup` operator -/
class has_Sup (α : Type*) := (Sup : set α → α)
/-- class for the `Inf` operator -/
class has_Inf (α : Type*) := (Inf : set α → α)
export has_Sup (Sup) has_Inf (Inf)
/-- Supremum of a set -/
add_decl_doc has_Sup.Sup
/-- Infimum of a set -/
add_decl_doc has_Inf.Inf
/-- Indexed supremum -/
def supr [has_Sup α] {ι} (s : ι → α) : α := Sup (range s)
/-- Indexed infimum -/
def infi [has_Inf α] {ι} (s : ι → α) : α := Inf (range s)
@[priority 50] instance has_Inf_to_nonempty (α) [has_Inf α] : nonempty α := ⟨Inf ∅⟩
@[priority 50] instance has_Sup_to_nonempty (α) [has_Sup α] : nonempty α := ⟨Sup ∅⟩
notation `⨆` binders `, ` r:(scoped f, supr f) := r
notation `⨅` binders `, ` r:(scoped f, infi f) := r
instance (α) [has_Inf α] : has_Sup (order_dual α) := ⟨(Inf : set α → α)⟩
instance (α) [has_Sup α] : has_Inf (order_dual α) := ⟨(Sup : set α → α)⟩
/--
Note that we rarely use `complete_semilattice_Sup`
(in fact, any such object is always a `complete_lattice`, so it's usually best to start there).
Nevertheless it is sometimes a useful intermediate step in constructions.
-/
class complete_semilattice_Sup (α : Type*) extends partial_order α, has_Sup α :=
(le_Sup : ∀s, ∀a∈s, a ≤ Sup s)
(Sup_le : ∀s a, (∀b∈s, b ≤ a) → Sup s ≤ a)
section
variables [complete_semilattice_Sup α] {s t : set α} {a b : α}
@[ematch] theorem le_Sup : a ∈ s → a ≤ Sup s := complete_semilattice_Sup.le_Sup s a
theorem Sup_le : (∀b∈s, b ≤ a) → Sup s ≤ a := complete_semilattice_Sup.Sup_le s a
lemma is_lub_Sup (s : set α) : is_lub s (Sup s) := ⟨assume x, le_Sup, assume x, Sup_le⟩
lemma is_lub.Sup_eq (h : is_lub s a) : Sup s = a := (is_lub_Sup s).unique h
theorem le_Sup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ Sup s :=
le_trans h (le_Sup hb)
theorem Sup_le_Sup (h : s ⊆ t) : Sup s ≤ Sup t :=
(is_lub_Sup s).mono (is_lub_Sup t) h
@[simp] theorem Sup_le_iff : Sup s ≤ a ↔ (∀b ∈ s, b ≤ a) :=
is_lub_le_iff (is_lub_Sup s)
lemma le_Sup_iff :
a ≤ Sup s ↔ (∀ b, (∀ x ∈ s, x ≤ b) → a ≤ b) :=
⟨λ h b hb, le_trans h (Sup_le hb), λ hb, hb _ (λ x, le_Sup)⟩
theorem Sup_le_Sup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : Sup s ≤ Sup t :=
le_of_forall_le' begin
simp only [Sup_le_iff],
introv h₀ h₁,
rcases h _ h₁ with ⟨y,hy,hy'⟩,
solve_by_elim [le_trans hy']
end
-- We will generalize this to conditionally complete lattices in `cSup_singleton`.
theorem Sup_singleton {a : α} : Sup {a} = a :=
is_lub_singleton.Sup_eq
end
/--
Note that we rarely use `complete_semilattice_Inf`
(in fact, any such object is always a `complete_lattice`, so it's usually best to start there).
Nevertheless it is sometimes a useful intermediate step in constructions.
-/
class complete_semilattice_Inf (α : Type*) extends partial_order α, has_Inf α :=
(Inf_le : ∀s, ∀a∈s, Inf s ≤ a)
(le_Inf : ∀s a, (∀b∈s, a ≤ b) → a ≤ Inf s)
section
variables [complete_semilattice_Inf α] {s t : set α} {a b : α}
@[ematch] theorem Inf_le : a ∈ s → Inf s ≤ a := complete_semilattice_Inf.Inf_le s a
theorem le_Inf : (∀b∈s, a ≤ b) → a ≤ Inf s := complete_semilattice_Inf.le_Inf s a
lemma is_glb_Inf (s : set α) : is_glb s (Inf s) := ⟨assume a, Inf_le, assume a, le_Inf⟩
lemma is_glb.Inf_eq (h : is_glb s a) : Inf s = a := (is_glb_Inf s).unique h
theorem Inf_le_of_le (hb : b ∈ s) (h : b ≤ a) : Inf s ≤ a :=
le_trans (Inf_le hb) h
theorem Inf_le_Inf (h : s ⊆ t) : Inf t ≤ Inf s :=
(is_glb_Inf s).mono (is_glb_Inf t) h
@[simp] theorem le_Inf_iff : a ≤ Inf s ↔ (∀b ∈ s, a ≤ b) :=
le_is_glb_iff (is_glb_Inf s)
lemma Inf_le_iff :
Inf s ≤ a ↔ (∀ b, (∀ x ∈ s, b ≤ x) → b ≤ a) :=
⟨λ h b hb, le_trans (le_Inf hb) h, λ hb, hb _ (λ x, Inf_le)⟩
theorem Inf_le_Inf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : Inf t ≤ Inf s :=
le_of_forall_le begin
simp only [le_Inf_iff],
introv h₀ h₁,
rcases h _ h₁ with ⟨y,hy,hy'⟩,
solve_by_elim [le_trans _ hy']
end
-- We will generalize this to conditionally complete lattices in `cInf_singleton`.
theorem Inf_singleton {a : α} : Inf {a} = a :=
is_glb_singleton.Inf_eq
end
/-- A complete lattice is a bounded lattice which
has suprema and infima for every subset. -/
@[protect_proj]
class complete_lattice (α : Type*) extends
bounded_lattice α, complete_semilattice_Sup α, complete_semilattice_Inf α.
/-- Create a `complete_lattice` from a `partial_order` and `Inf` function
that returns the greatest lower bound of a set. Usually this constructor provides
poor definitional equalities. If other fields are known explicitly, they should be
provided; for example, if `inf` is known explicitly, construct the `complete_lattice`
instance as
```
instance : complete_lattice my_T :=
{ inf := better_inf,
le_inf := ...,
inf_le_right := ...,
inf_le_left := ...
-- don't care to fix sup, Sup, bot, top
..complete_lattice_of_Inf my_T _ }
```
-/
def complete_lattice_of_Inf (α : Type*) [H1 : partial_order α]
[H2 : has_Inf α] (is_glb_Inf : ∀ s : set α, is_glb s (Inf s)) :
complete_lattice α :=
{ bot := Inf univ,
bot_le := λ x, (is_glb_Inf univ).1 trivial,
top := Inf ∅,
le_top := λ a, (is_glb_Inf ∅).2 $ by simp,
sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x},
inf := λ a b, Inf {a, b},
le_inf := λ a b c hab hac, by { apply (is_glb_Inf _).2, simp [*] },
inf_le_right := λ a b, (is_glb_Inf _).1 $ mem_insert_of_mem _ $ mem_singleton _,
inf_le_left := λ a b, (is_glb_Inf _).1 $ mem_insert _ _,
sup_le := λ a b c hac hbc, (is_glb_Inf _).1 $ by simp [*],
le_sup_left := λ a b, (is_glb_Inf _).2 $ λ x, and.left,
le_sup_right := λ a b, (is_glb_Inf _).2 $ λ x, and.right,
le_Inf := λ s a ha, (is_glb_Inf s).2 ha,
Inf_le := λ s a ha, (is_glb_Inf s).1 ha,
Sup := λ s, Inf (upper_bounds s),
le_Sup := λ s a ha, (is_glb_Inf (upper_bounds s)).2 $ λ b hb, hb ha,
Sup_le := λ s a ha, (is_glb_Inf (upper_bounds s)).1 ha,
.. H1, .. H2 }
/--
Any `complete_semilattice_Inf` is in fact a `complete_lattice`.
Note that this construction has bad definitional properties:
see the doc-string on `complete_lattice_of_Inf`.
-/
def complete_lattice_of_complete_semilattice_Inf (α : Type*) [complete_semilattice_Inf α] :
complete_lattice α :=
complete_lattice_of_Inf α (λ s, is_glb_Inf s)
/-- Create a `complete_lattice` from a `partial_order` and `Sup` function
that returns the least upper bound of a set. Usually this constructor provides
poor definitional equalities. If other fields are known explicitly, they should be
provided; for example, if `inf` is known explicitly, construct the `complete_lattice`
instance as
```
instance : complete_lattice my_T :=
{ inf := better_inf,
le_inf := ...,
inf_le_right := ...,
inf_le_left := ...
-- don't care to fix sup, Inf, bot, top
..complete_lattice_of_Sup my_T _ }
```
-/
def complete_lattice_of_Sup (α : Type*) [H1 : partial_order α]
[H2 : has_Sup α] (is_lub_Sup : ∀ s : set α, is_lub s (Sup s)) :
complete_lattice α :=
{ top := Sup univ,
le_top := λ x, (is_lub_Sup univ).1 trivial,
bot := Sup ∅,
bot_le := λ x, (is_lub_Sup ∅).2 $ by simp,
sup := λ a b, Sup {a, b},
sup_le := λ a b c hac hbc, (is_lub_Sup _).2 (by simp [*]),
le_sup_left := λ a b, (is_lub_Sup _).1 $ mem_insert _ _,
le_sup_right := λ a b, (is_lub_Sup _).1 $ mem_insert_of_mem _ $ mem_singleton _,
inf := λ a b, Sup {x | x ≤ a ∧ x ≤ b},
le_inf := λ a b c hab hac, (is_lub_Sup _).1 $ by simp [*],
inf_le_left := λ a b, (is_lub_Sup _).2 (λ x, and.left),
inf_le_right := λ a b, (is_lub_Sup _).2 (λ x, and.right),
Inf := λ s, Sup (lower_bounds s),
Sup_le := λ s a ha, (is_lub_Sup s).2 ha,
le_Sup := λ s a ha, (is_lub_Sup s).1 ha,
Inf_le := λ s a ha, (is_lub_Sup (lower_bounds s)).2 (λ b hb, hb ha),
le_Inf := λ s a ha, (is_lub_Sup (lower_bounds s)).1 ha,
.. H1, .. H2 }
/--
Any `complete_semilattice_Sup` is in fact a `complete_lattice`.
Note that this construction has bad definitional properties:
see the doc-string on `complete_lattice_of_Sup`.
-/
def complete_lattice_of_complete_semilattice_Sup (α : Type*) [complete_semilattice_Sup α] :
complete_lattice α :=
complete_lattice_of_Sup α (λ s, is_lub_Sup s)
/-- A complete linear order is a linear order whose lattice structure is complete. -/
class complete_linear_order (α : Type*) extends complete_lattice α, linear_order α
namespace order_dual
variable (α)
instance [complete_lattice α] : complete_lattice (order_dual α) :=
{ le_Sup := @complete_lattice.Inf_le α _,
Sup_le := @complete_lattice.le_Inf α _,
Inf_le := @complete_lattice.le_Sup α _,
le_Inf := @complete_lattice.Sup_le α _,
.. order_dual.bounded_lattice α, ..order_dual.has_Sup α, ..order_dual.has_Inf α }
instance [complete_linear_order α] : complete_linear_order (order_dual α) :=
{ .. order_dual.complete_lattice α, .. order_dual.linear_order α }
end order_dual
section
variables [complete_lattice α] {s t : set α} {a b : α}
theorem Inf_le_Sup (hs : s.nonempty) : Inf s ≤ Sup s :=
is_glb_le_is_lub (is_glb_Inf s) (is_lub_Sup s) hs
theorem Sup_union {s t : set α} : Sup (s ∪ t) = Sup s ⊔ Sup t :=
((is_lub_Sup s).union (is_lub_Sup t)).Sup_eq
theorem Sup_inter_le {s t : set α} : Sup (s ∩ t) ≤ Sup s ⊓ Sup t :=
by finish
/-
Sup_le (assume a ⟨a_s, a_t⟩, le_inf (le_Sup a_s) (le_Sup a_t))
-/
theorem Inf_union {s t : set α} : Inf (s ∪ t) = Inf s ⊓ Inf t :=
((is_glb_Inf s).union (is_glb_Inf t)).Inf_eq
theorem le_Inf_inter {s t : set α} : Inf s ⊔ Inf t ≤ Inf (s ∩ t) :=
@Sup_inter_le (order_dual α) _ _ _
@[simp] theorem Sup_empty : Sup ∅ = (⊥ : α) :=
(@is_lub_empty α _).Sup_eq
@[simp] theorem Inf_empty : Inf ∅ = (⊤ : α) :=
(@is_glb_empty α _).Inf_eq
@[simp] theorem Sup_univ : Sup univ = (⊤ : α) :=
(@is_lub_univ α _).Sup_eq
@[simp] theorem Inf_univ : Inf univ = (⊥ : α) :=
(@is_glb_univ α _).Inf_eq
-- TODO(Jeremy): get this automatically
@[simp] theorem Sup_insert {a : α} {s : set α} : Sup (insert a s) = a ⊔ Sup s :=
((is_lub_Sup s).insert a).Sup_eq
@[simp] theorem Inf_insert {a : α} {s : set α} : Inf (insert a s) = a ⊓ Inf s :=
((is_glb_Inf s).insert a).Inf_eq
theorem Sup_le_Sup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : Sup s ≤ Sup t :=
le_trans (Sup_le_Sup h) (le_of_eq (trans Sup_insert bot_sup_eq))
theorem Inf_le_Inf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : Inf t ≤ Inf s :=
le_trans (le_of_eq (trans top_inf_eq.symm Inf_insert.symm)) (Inf_le_Inf h)
theorem Sup_pair {a b : α} : Sup {a, b} = a ⊔ b :=
(@is_lub_pair α _ a b).Sup_eq
theorem Inf_pair {a b : α} : Inf {a, b} = a ⊓ b :=
(@is_glb_pair α _ a b).Inf_eq
@[simp] theorem Inf_eq_top : Inf s = ⊤ ↔ (∀a∈s, a = ⊤) :=
iff.intro
(assume h a ha, top_unique $ h ▸ Inf_le ha)
(assume h, top_unique $ le_Inf $ assume a ha, top_le_iff.2 $ h a ha)
lemma eq_singleton_top_of_Inf_eq_top_of_nonempty {s : set α}
(h_inf : Inf s = ⊤) (hne : s.nonempty) : s = {⊤} :=
by { rw set.eq_singleton_iff_nonempty_unique_mem, rw Inf_eq_top at h_inf, exact ⟨hne, h_inf⟩, }
@[simp] theorem Sup_eq_bot : Sup s = ⊥ ↔ (∀a∈s, a = ⊥) :=
@Inf_eq_top (order_dual α) _ _
lemma eq_singleton_bot_of_Sup_eq_bot_of_nonempty {s : set α}
(h_sup : Sup s = ⊥) (hne : s.nonempty) : s = {⊥} :=
by { rw set.eq_singleton_iff_nonempty_unique_mem, rw Sup_eq_bot at h_sup, exact ⟨hne, h_sup⟩, }
/--Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
is larger than all elements of `s`, and that this is not the case of any `w<b`.
See `cSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
lattices. -/
theorem Sup_eq_of_forall_le_of_forall_lt_exists_gt (_ : ∀a∈s, a ≤ b)
(H : ∀w, w < b → (∃a∈s, w < a)) : Sup s = b :=
have bdd_above s := ⟨b, by assumption⟩,
have (Sup s < b) ∨ (Sup s = b) := lt_or_eq_of_le (Sup_le ‹∀a∈s, a ≤ b›),
have ¬(Sup s < b) :=
assume: Sup s < b,
let ⟨a, _, _⟩ := (H (Sup s) ‹Sup s < b›) in /- a ∈ s, Sup s < a-/
have Sup s < Sup s := lt_of_lt_of_le ‹Sup s < a› (le_Sup ‹a ∈ s›),
show false, by finish [lt_irrefl (Sup s)],
show Sup s = b, by finish
/--Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
is smaller than all elements of `s`, and that this is not the case of any `w>b`.
See `cInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
lattices. -/
theorem Inf_eq_of_forall_ge_of_forall_gt_exists_lt (_ : ∀a∈s, b ≤ a)
(H : ∀w, b < w → (∃a∈s, a < w)) : Inf s = b :=
@Sup_eq_of_forall_le_of_forall_lt_exists_gt (order_dual α) _ _ ‹_› ‹_› ‹_›
end
section complete_linear_order
variables [complete_linear_order α] {s t : set α} {a b : α}
lemma Inf_lt_iff : Inf s < b ↔ (∃a∈s, a < b) :=
is_glb_lt_iff (is_glb_Inf s)
lemma lt_Sup_iff : b < Sup s ↔ (∃a∈s, b < a) :=
lt_is_lub_iff (is_lub_Sup s)
lemma Sup_eq_top : Sup s = ⊤ ↔ (∀b<⊤, ∃a∈s, b < a) :=
iff.intro
(assume (h : Sup s = ⊤) b hb, by rwa [←h, lt_Sup_iff] at hb)
(assume h, top_unique $ le_of_not_gt $ assume h',
let ⟨a, ha, h⟩ := h _ h' in
lt_irrefl a $ lt_of_le_of_lt (le_Sup ha) h)
lemma Inf_eq_bot : Inf s = ⊥ ↔ (∀b>⊥, ∃a∈s, a < b) :=
@Sup_eq_top (order_dual α) _ _
lemma lt_supr_iff {f : ι → α} : a < supr f ↔ (∃i, a < f i) :=
lt_Sup_iff.trans exists_range_iff
lemma infi_lt_iff {f : ι → α} : infi f < a ↔ (∃i, f i < a) :=
Inf_lt_iff.trans exists_range_iff
end complete_linear_order
/-
### supr & infi
-/
section
variables [complete_lattice α] {s t : ι → α} {a b : α}
-- TODO: this declaration gives error when starting smt state
--@[ematch]
theorem le_supr (s : ι → α) (i : ι) : s i ≤ supr s :=
le_Sup ⟨i, rfl⟩
@[ematch] theorem le_supr' (s : ι → α) (i : ι) : (: s i ≤ supr s :) :=
le_Sup ⟨i, rfl⟩
/- TODO: this version would be more powerful, but, alas, the pattern matcher
doesn't accept it.
@[ematch] theorem le_supr' (s : ι → α) (i : ι) : (: s i :) ≤ (: supr s :) :=
le_Sup ⟨i, rfl⟩
-/
lemma is_lub_supr : is_lub (range s) (⨆j, s j) := is_lub_Sup _
lemma is_lub.supr_eq (h : is_lub (range s) a) : (⨆j, s j) = a := h.Sup_eq
lemma is_glb_infi : is_glb (range s) (⨅j, s j) := is_glb_Inf _
lemma is_glb.infi_eq (h : is_glb (range s) a) : (⨅j, s j) = a := h.Inf_eq
theorem le_supr_of_le (i : ι) (h : a ≤ s i) : a ≤ supr s :=
le_trans h (le_supr _ i)
theorem le_bsupr {p : ι → Prop} {f : Π i (h : p i), α} (i : ι) (hi : p i) :
f i hi ≤ ⨆ i hi, f i hi :=
le_supr_of_le i $ le_supr (f i) hi
theorem le_bsupr_of_le {p : ι → Prop} {f : Π i (h : p i), α} (i : ι) (hi : p i) (h : a ≤ f i hi) :
a ≤ ⨆ i hi, f i hi :=
le_trans h (le_bsupr i hi)
theorem supr_le (h : ∀i, s i ≤ a) : supr s ≤ a :=
Sup_le $ assume b ⟨i, eq⟩, eq ▸ h i
theorem bsupr_le {p : ι → Prop} {f : Π i (h : p i), α} (h : ∀ i hi, f i hi ≤ a) :
(⨆ i (hi : p i), f i hi) ≤ a :=
supr_le $ λ i, supr_le $ h i
theorem bsupr_le_supr (p : ι → Prop) (f : ι → α) : (⨆ i (H : p i), f i) ≤ ⨆ i, f i :=
bsupr_le (λ i hi, le_supr f i)
theorem supr_le_supr (h : ∀i, s i ≤ t i) : supr s ≤ supr t :=
supr_le $ assume i, le_supr_of_le i (h i)
theorem supr_le_supr2 {t : ι₂ → α} (h : ∀i, ∃j, s i ≤ t j) : supr s ≤ supr t :=
supr_le $ assume j, exists.elim (h j) le_supr_of_le
theorem bsupr_le_bsupr {p : ι → Prop} {f g : Π i (hi : p i), α} (h : ∀ i hi, f i hi ≤ g i hi) :
(⨆ i hi, f i hi) ≤ ⨆ i hi, g i hi :=
bsupr_le $ λ i hi, le_trans (h i hi) (le_bsupr i hi)
theorem supr_le_supr_const (h : ι → ι₂) : (⨆ i:ι, a) ≤ (⨆ j:ι₂, a) :=
supr_le $ le_supr _ ∘ h
theorem bsupr_le_bsupr' {p q : ι → Prop} (hpq : ∀ i, p i → q i) {f : ι → α} :
(⨆ i (hpi : p i), f i) ≤ ⨆ i (hqi : q i), f i :=
supr_le_supr $ λ i, supr_le_supr_const (hpq i)
@[simp] theorem supr_le_iff : supr s ≤ a ↔ (∀i, s i ≤ a) :=
(is_lub_le_iff is_lub_supr).trans forall_range_iff
theorem supr_lt_iff : supr s < a ↔ ∃ b < a, ∀ i, s i ≤ b :=
⟨λ h, ⟨supr s, h, λ i, le_supr s i⟩, λ ⟨b, hba, hsb⟩, (supr_le hsb).trans_lt hba⟩
theorem Sup_eq_supr {s : set α} : Sup s = (⨆a ∈ s, a) :=
le_antisymm
(Sup_le $ assume b h, le_supr_of_le b $ le_supr _ h)
(supr_le $ assume b, supr_le $ assume h, le_Sup h)
lemma Sup_eq_supr' {α} [has_Sup α] (s : set α) : Sup s = ⨆ x : s, (x : α) :=
by rw [supr, subtype.range_coe]
lemma Sup_sUnion {s : set (set α)} :
Sup (⋃₀ s) = ⨆ (t ∈ s), Sup t :=
begin
apply le_antisymm,
{ apply Sup_le (λ b hb, _),
rcases hb with ⟨t, ts, bt⟩,
apply le_trans _ (le_supr _ t),
exact le_trans (le_Sup bt) (le_supr _ ts), },
{ apply supr_le (λ t, _),
exact supr_le (λ ts, Sup_le_Sup (λ x xt, ⟨t, ts, xt⟩)) }
end
lemma le_supr_iff : (a ≤ supr s) ↔ (∀ b, (∀ i, s i ≤ b) → a ≤ b) :=
⟨λ h b hb, le_trans h (supr_le hb), λ h, h _ $ λ i, le_supr s i⟩
lemma monotone.le_map_supr [complete_lattice β] {f : α → β} (hf : monotone f) :
(⨆ i, f (s i)) ≤ f (supr s) :=
supr_le $ λ i, hf $ le_supr _ _
lemma monotone.le_map_supr2 [complete_lattice β] {f : α → β} (hf : monotone f)
{ι' : ι → Sort*} (s : Π i, ι' i → α) :
(⨆ i (h : ι' i), f (s i h)) ≤ f (⨆ i (h : ι' i), s i h) :=
calc (⨆ i h, f (s i h)) ≤ (⨆ i, f (⨆ h, s i h)) :
supr_le_supr $ λ i, hf.le_map_supr
... ≤ f (⨆ i (h : ι' i), s i h) : hf.le_map_supr
lemma monotone.le_map_Sup [complete_lattice β] {s : set α} {f : α → β} (hf : monotone f) :
(⨆a∈s, f a) ≤ f (Sup s) :=
by rw [Sup_eq_supr]; exact hf.le_map_supr2 _
lemma supr_comp_le {ι' : Sort*} (f : ι' → α) (g : ι → ι') :
(⨆ x, f (g x)) ≤ ⨆ y, f y :=
supr_le_supr2 $ λ x, ⟨_, le_refl _⟩
lemma monotone.supr_comp_eq [preorder β] {f : β → α} (hf : monotone f)
{s : ι → β} (hs : ∀ x, ∃ i, x ≤ s i) :
(⨆ x, f (s x)) = ⨆ y, f y :=
le_antisymm (supr_comp_le _ _) (supr_le_supr2 $ λ x, (hs x).imp $ λ i hi, hf hi)
lemma function.surjective.supr_comp {α : Type*} [has_Sup α] {f : ι → ι₂}
(hf : function.surjective f) (g : ι₂ → α) :
(⨆ x, g (f x)) = ⨆ y, g y :=
by simp only [supr, hf.range_comp]
lemma supr_congr {α : Type*} [has_Sup α] {f : ι → α} {g : ι₂ → α} (h : ι → ι₂)
(h1 : function.surjective h) (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y :=
by { convert h1.supr_comp g, exact (funext h2).symm }
-- TODO: finish doesn't do well here.
@[congr] theorem supr_congr_Prop {α : Type*} [has_Sup α] {p q : Prop} {f₁ : p → α} {f₂ : q → α}
(pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : supr f₁ = supr f₂ :=
begin
have := propext pq, subst this,
congr' with x,
apply f
end
theorem infi_le (s : ι → α) (i : ι) : infi s ≤ s i :=
Inf_le ⟨i, rfl⟩
@[ematch] theorem infi_le' (s : ι → α) (i : ι) : (: infi s ≤ s i :) :=
Inf_le ⟨i, rfl⟩
theorem infi_le_of_le (i : ι) (h : s i ≤ a) : infi s ≤ a :=
le_trans (infi_le _ i) h
theorem binfi_le {p : ι → Prop} {f : Π i (hi : p i), α} (i : ι) (hi : p i) :
(⨅ i hi, f i hi) ≤ f i hi :=
infi_le_of_le i $ infi_le (f i) hi
theorem binfi_le_of_le {p : ι → Prop} {f : Π i (hi : p i), α} (i : ι) (hi : p i) (h : f i hi ≤ a) :
(⨅ i hi, f i hi) ≤ a :=
le_trans (binfi_le i hi) h
theorem le_infi (h : ∀i, a ≤ s i) : a ≤ infi s :=
le_Inf $ assume b ⟨i, eq⟩, eq ▸ h i
theorem le_binfi {p : ι → Prop} {f : Π i (h : p i), α} (h : ∀ i hi, a ≤ f i hi) :
a ≤ ⨅ i hi, f i hi :=
le_infi $ λ i, le_infi $ h i
theorem infi_le_binfi (p : ι → Prop) (f : ι → α) : (⨅ i, f i) ≤ ⨅ i (H : p i), f i :=
le_binfi (λ i hi, infi_le f i)
theorem infi_le_infi (h : ∀i, s i ≤ t i) : infi s ≤ infi t :=
le_infi $ assume i, infi_le_of_le i (h i)
theorem infi_le_infi2 {t : ι₂ → α} (h : ∀j, ∃i, s i ≤ t j) : infi s ≤ infi t :=
le_infi $ assume j, exists.elim (h j) infi_le_of_le
theorem binfi_le_binfi {p : ι → Prop} {f g : Π i (h : p i), α} (h : ∀ i hi, f i hi ≤ g i hi) :
(⨅ i hi, f i hi) ≤ ⨅ i hi, g i hi :=
le_binfi $ λ i hi, le_trans (binfi_le i hi) (h i hi)
theorem infi_le_infi_const (h : ι₂ → ι) : (⨅ i:ι, a) ≤ (⨅ j:ι₂, a) :=
le_infi $ infi_le _ ∘ h
@[simp] theorem le_infi_iff : a ≤ infi s ↔ (∀i, a ≤ s i) :=
⟨assume : a ≤ infi s, assume i, le_trans this (infi_le _ _), le_infi⟩
theorem Inf_eq_infi {s : set α} : Inf s = (⨅a ∈ s, a) :=
@Sup_eq_supr (order_dual α) _ _
theorem Inf_eq_infi' {α} [has_Inf α] (s : set α) : Inf s = ⨅ a : s, a :=
@Sup_eq_supr' (order_dual α) _ _
lemma monotone.map_infi_le [complete_lattice β] {f : α → β} (hf : monotone f) :
f (infi s) ≤ (⨅ i, f (s i)) :=
le_infi $ λ i, hf $ infi_le _ _
lemma monotone.map_infi2_le [complete_lattice β] {f : α → β} (hf : monotone f)
{ι' : ι → Sort*} (s : Π i, ι' i → α) :
f (⨅ i (h : ι' i), s i h) ≤ (⨅ i (h : ι' i), f (s i h)) :=
@monotone.le_map_supr2 (order_dual α) (order_dual β) _ _ _ f hf.order_dual _ _
lemma monotone.map_Inf_le [complete_lattice β] {s : set α} {f : α → β} (hf : monotone f) :
f (Inf s) ≤ ⨅ a∈s, f a :=
by rw [Inf_eq_infi]; exact hf.map_infi2_le _
lemma le_infi_comp {ι' : Sort*} (f : ι' → α) (g : ι → ι') :
(⨅ y, f y) ≤ ⨅ x, f (g x) :=
infi_le_infi2 $ λ x, ⟨_, le_refl _⟩
lemma monotone.infi_comp_eq [preorder β] {f : β → α} (hf : monotone f)
{s : ι → β} (hs : ∀ x, ∃ i, s i ≤ x) :
(⨅ x, f (s x)) = ⨅ y, f y :=
le_antisymm (infi_le_infi2 $ λ x, (hs x).imp $ λ i hi, hf hi) (le_infi_comp _ _)
lemma function.surjective.infi_comp {α : Type*} [has_Inf α] {f : ι → ι₂}
(hf : function.surjective f) (g : ι₂ → α) :
(⨅ x, g (f x)) = ⨅ y, g y :=
@function.surjective.supr_comp _ _ (order_dual α) _ f hf g
lemma infi_congr {α : Type*} [has_Inf α] {f : ι → α} {g : ι₂ → α} (h : ι → ι₂)
(h1 : function.surjective h) (h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y :=
@supr_congr _ _ (order_dual α) _ _ _ h h1 h2
@[congr] theorem infi_congr_Prop {α : Type*} [has_Inf α] {p q : Prop} {f₁ : p → α} {f₂ : q → α}
(pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : infi f₁ = infi f₂ :=
@supr_congr_Prop (order_dual α) _ p q f₁ f₂ pq f
lemma supr_const_le {x : α} : (⨆ (h : ι), x) ≤ x :=
supr_le (λ _, le_rfl)
lemma le_infi_const {x : α} : x ≤ (⨅ (h : ι), x) :=
le_infi (λ _, le_rfl)
-- We will generalize this to conditionally complete lattices in `cinfi_const`.
theorem infi_const [nonempty ι] {a : α} : (⨅ b:ι, a) = a :=
by rw [infi, range_const, Inf_singleton]
-- We will generalize this to conditionally complete lattices in `csupr_const`.
theorem supr_const [nonempty ι] {a : α} : (⨆ b:ι, a) = a :=
@infi_const (order_dual α) _ _ _ _
@[simp] lemma infi_top : (⨅i:ι, ⊤ : α) = ⊤ :=
top_unique $ le_infi $ assume i, le_refl _
@[simp] lemma supr_bot : (⨆i:ι, ⊥ : α) = ⊥ :=
@infi_top (order_dual α) _ _
@[simp] lemma infi_eq_top : infi s = ⊤ ↔ (∀i, s i = ⊤) :=
Inf_eq_top.trans forall_range_iff
@[simp] lemma supr_eq_bot : supr s = ⊥ ↔ (∀i, s i = ⊥) :=
Sup_eq_bot.trans forall_range_iff
@[simp] lemma infi_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
le_antisymm (infi_le _ _) (le_infi $ assume h, le_refl _)
@[simp] lemma infi_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨅ h : p, f h) = ⊤ :=
le_antisymm le_top $ le_infi $ assume h, (hp h).elim
@[simp] lemma supr_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
le_antisymm (supr_le $ assume h, le_refl _) (le_supr _ _)
@[simp] lemma supr_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨆ h : p, f h) = ⊥ :=
le_antisymm (supr_le $ assume h, (hp h).elim) bot_le
/--Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
See `csupr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
lattices. -/
theorem supr_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
(h₂ : ∀ w, w < b → (∃ i, w < f i)) : (⨆ (i : ι), f i) = b :=
Sup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁)
(λ w hw, exists_range_iff.mpr $ h₂ w hw)
/--Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
See `cinfi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
lattices. -/
theorem infi_eq_of_forall_ge_of_forall_gt_exists_lt {f : ι → α} (h₁ : ∀ i, b ≤ f i)
(h₂ : ∀ w, b < w → (∃ i, f i < w)) : (⨅ (i : ι), f i) = b :=
@supr_eq_of_forall_le_of_forall_lt_exists_gt (order_dual α) _ _ _ ‹_› ‹_› ‹_›
lemma supr_eq_dif {p : Prop} [decidable p] (a : p → α) :
(⨆h:p, a h) = (if h : p then a h else ⊥) :=
by by_cases p; simp [h]
lemma supr_eq_if {p : Prop} [decidable p] (a : α) :
(⨆h:p, a) = (if p then a else ⊥) :=
supr_eq_dif (λ _, a)
lemma infi_eq_dif {p : Prop} [decidable p] (a : p → α) :
(⨅h:p, a h) = (if h : p then a h else ⊤) :=
@supr_eq_dif (order_dual α) _ _ _ _
lemma infi_eq_if {p : Prop} [decidable p] (a : α) :
(⨅h:p, a) = (if p then a else ⊤) :=
infi_eq_dif (λ _, a)
-- TODO: should this be @[simp]?
theorem infi_comm {f : ι → ι₂ → α} : (⨅i, ⨅j, f i j) = (⨅j, ⨅i, f i j) :=
le_antisymm
(le_infi $ assume i, le_infi $ assume j, infi_le_of_le j $ infi_le _ i)
(le_infi $ assume j, le_infi $ assume i, infi_le_of_le i $ infi_le _ j)
/- TODO: this is strange. In the proof below, we get exactly the desired
among the equalities, but close does not get it.
begin
apply @le_antisymm,
simp, intros,
begin [smt]
ematch, ematch, ematch, trace_state, have := le_refl (f i_1 i),
trace_state, close
end
end
-/
-- TODO: should this be @[simp]?
theorem supr_comm {f : ι → ι₂ → α} : (⨆i, ⨆j, f i j) = (⨆j, ⨆i, f i j) :=
@infi_comm (order_dual α) _ _ _ _
@[simp] theorem infi_infi_eq_left {b : β} {f : Πx:β, x = b → α} :
(⨅x, ⨅h:x = b, f x h) = f b rfl :=
le_antisymm
(infi_le_of_le b $ infi_le _ rfl)
(le_infi $ assume b', le_infi $ assume eq, match b', eq with ._, rfl := le_refl _ end)
@[simp] theorem infi_infi_eq_right {b : β} {f : Πx:β, b = x → α} :
(⨅x, ⨅h:b = x, f x h) = f b rfl :=
le_antisymm
(infi_le_of_le b $ infi_le _ rfl)
(le_infi $ assume b', le_infi $ assume eq, match b', eq with ._, rfl := le_refl _ end)
@[simp] theorem supr_supr_eq_left {b : β} {f : Πx:β, x = b → α} :
(⨆x, ⨆h : x = b, f x h) = f b rfl :=
@infi_infi_eq_left (order_dual α) _ _ _ _
@[simp] theorem supr_supr_eq_right {b : β} {f : Πx:β, b = x → α} :
(⨆x, ⨆h : b = x, f x h) = f b rfl :=
@infi_infi_eq_right (order_dual α) _ _ _ _
attribute [ematch] le_refl
theorem infi_subtype {p : ι → Prop} {f : subtype p → α} : (⨅ x, f x) = (⨅ i (h:p i), f ⟨i, h⟩) :=
le_antisymm
(le_infi $ assume i, le_infi $ assume : p i, infi_le _ _)
(le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _)
lemma infi_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
(⨅ i (h : p i), f i h) = (⨅ x : subtype p, f x x.property) :=
(@infi_subtype _ _ _ p (λ x, f x.val x.property)).symm
lemma infi_subtype'' {ι} (s : set ι) (f : ι → α) :
(⨅ i : s, f i) = ⨅ (t : ι) (H : t ∈ s), f t :=
infi_subtype
theorem infi_inf_eq {f g : ι → α} : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ (⨅ x, g x) :=
le_antisymm
(le_inf
(le_infi $ assume i, infi_le_of_le i inf_le_left)
(le_infi $ assume i, infi_le_of_le i inf_le_right))
(le_infi $ assume i, le_inf
(inf_le_of_left_le $ infi_le _ _)
(inf_le_of_right_le $ infi_le _ _))
/- TODO: here is another example where more flexible pattern matching
might help.
begin
apply @le_antisymm,
safe, pose h := f a ⊓ g a, begin [smt] ematch, ematch end
end
-/
lemma infi_inf [h : nonempty ι] {f : ι → α} {a : α} : (⨅x, f x) ⊓ a = (⨅ x, f x ⊓ a) :=
by rw [infi_inf_eq, infi_const]
lemma inf_infi [nonempty ι] {f : ι → α} {a : α} : a ⊓ (⨅x, f x) = (⨅ x, a ⊓ f x) :=
by rw [inf_comm, infi_inf]; simp [inf_comm]
lemma binfi_inf {p : ι → Prop} {f : Π i (hi : p i), α} {a : α} (h : ∃ i, p i) :
(⨅i (h : p i), f i h) ⊓ a = (⨅ i (h : p i), f i h ⊓ a) :=
by haveI : nonempty {i // p i} := (let ⟨i, hi⟩ := h in ⟨⟨i, hi⟩⟩);
rw [infi_subtype', infi_subtype', infi_inf]
lemma inf_binfi {p : ι → Prop} {f : Π i (hi : p i), α} {a : α} (h : ∃ i, p i) :
a ⊓ (⨅i (h : p i), f i h) = (⨅ i (h : p i), a ⊓ f i h) :=
by simpa only [inf_comm] using binfi_inf h
theorem supr_sup_eq {f g : ι → α} : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ (⨆ x, g x) :=
@infi_inf_eq (order_dual α) ι _ _ _
lemma supr_sup [h : nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = (⨆ x, f x ⊔ a) :=
@infi_inf (order_dual α) _ _ _ _ _
lemma sup_supr [nonempty ι] {f : ι → α} {a : α} : a ⊔ (⨆ x, f x) = (⨆ x, a ⊔ f x) :=
@inf_infi (order_dual α) _ _ _ _ _
/-! ### `supr` and `infi` under `Prop` -/
@[simp] theorem infi_false {s : false → α} : infi s = ⊤ :=
le_antisymm le_top (le_infi $ assume i, false.elim i)
@[simp] theorem supr_false {s : false → α} : supr s = ⊥ :=
le_antisymm (supr_le $ assume i, false.elim i) bot_le
theorem infi_true {s : true → α} : infi s = s trivial :=
infi_pos trivial
theorem supr_true {s : true → α} : supr s = s trivial :=
supr_pos trivial
@[simp] theorem infi_exists {p : ι → Prop} {f : Exists p → α} :
(⨅ x, f x) = (⨅ i, ⨅ h:p i, f ⟨i, h⟩) :=
le_antisymm
(le_infi $ assume i, le_infi $ assume : p i, infi_le _ _)
(le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _)
@[simp] theorem supr_exists {p : ι → Prop} {f : Exists p → α} :
(⨆ x, f x) = (⨆ i, ⨆ h:p i, f ⟨i, h⟩) :=
@infi_exists (order_dual α) _ _ _ _
theorem infi_and {p q : Prop} {s : p ∧ q → α} : infi s = (⨅ h₁ h₂, s ⟨h₁, h₂⟩) :=
le_antisymm
(le_infi $ assume i, le_infi $ assume j, infi_le _ _)
(le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _)
/-- The symmetric case of `infi_and`, useful for rewriting into a infimum over a conjunction -/
lemma infi_and' {p q : Prop} {s : p → q → α} :
(⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ (h : p ∧ q), s h.1 h.2 :=
by { symmetry, exact infi_and }
theorem supr_and {p q : Prop} {s : p ∧ q → α} : supr s = (⨆ h₁ h₂, s ⟨h₁, h₂⟩) :=
@infi_and (order_dual α) _ _ _ _
/-- The symmetric case of `supr_and`, useful for rewriting into a supremum over a conjunction -/
lemma supr_and' {p q : Prop} {s : p → q → α} :
(⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ (h : p ∧ q), s h.1 h.2 :=
by { symmetry, exact supr_and }
theorem infi_or {p q : Prop} {s : p ∨ q → α} :
infi s = (⨅ h : p, s (or.inl h)) ⊓ (⨅ h : q, s (or.inr h)) :=
le_antisymm
(le_inf
(infi_le_infi2 $ assume j, ⟨_, le_refl _⟩)
(infi_le_infi2 $ assume j, ⟨_, le_refl _⟩))
(le_infi $ assume i, match i with
| or.inl i := inf_le_of_left_le $ infi_le _ _
| or.inr j := inf_le_of_right_le $ infi_le _ _
end)
theorem supr_or {p q : Prop} {s : p ∨ q → α} :
(⨆ x, s x) = (⨆ i, s (or.inl i)) ⊔ (⨆ j, s (or.inr j)) :=
@infi_or (order_dual α) _ _ _ _
lemma Sup_range {α : Type*} [has_Sup α] {f : ι → α} : Sup (range f) = supr f := rfl
lemma Inf_range {α : Type*} [has_Inf α] {f : ι → α} : Inf (range f) = infi f := rfl
lemma supr_range' {α} [has_Sup α] (g : β → α) (f : ι → β) :
(⨆ b : range f, g b) = ⨆ i, g (f i) :=
by rw [supr, supr, ← image_eq_range, ← range_comp]
lemma infi_range' {α} [has_Inf α] (g : β → α) (f : ι → β) :
(⨅ b : range f, g b) = ⨅ i, g (f i) :=
@supr_range' _ _ (order_dual α) _ _ _
lemma infi_range {g : β → α} {f : ι → β} : (⨅b∈range f, g b) = (⨅i, g (f i)) :=
by rw [← infi_subtype'', infi_range']
lemma supr_range {g : β → α} {f : ι → β} : (⨆b∈range f, g b) = (⨆i, g (f i)) :=
@infi_range (order_dual α) _ _ _ _ _
theorem Inf_image' {α} [has_Inf α] {s : set β} {f : β → α} :
Inf (f '' s) = (⨅ a : s, f a) :=
by rw [infi, image_eq_range]
theorem Sup_image' {α} [has_Sup α] {s : set β} {f : β → α} :
Sup (f '' s) = (⨆ a : s, f a) :=
@Inf_image' _ (order_dual α) _ _ _
theorem Inf_image {s : set β} {f : β → α} : Inf (f '' s) = (⨅ a ∈ s, f a) :=
by rw [← infi_subtype'', Inf_image']
theorem Sup_image {s : set β} {f : β → α} : Sup (f '' s) = (⨆ a ∈ s, f a) :=
@Inf_image (order_dual α) _ _ _ _
/-
### supr and infi under set constructions
-/
theorem infi_emptyset {f : β → α} : (⨅ x ∈ (∅ : set β), f x) = ⊤ :=
by simp
theorem supr_emptyset {f : β → α} : (⨆ x ∈ (∅ : set β), f x) = ⊥ :=
by simp
theorem infi_univ {f : β → α} : (⨅ x ∈ (univ : set β), f x) = (⨅ x, f x) :=
by simp
theorem supr_univ {f : β → α} : (⨆ x ∈ (univ : set β), f x) = (⨆ x, f x) :=
by simp
theorem infi_union {f : β → α} {s t : set β} : (⨅ x ∈ s ∪ t, f x) = (⨅x∈s, f x) ⊓ (⨅x∈t, f x) :=
by simp only [← infi_inf_eq, infi_or]
lemma infi_split (f : β → α) (p : β → Prop) :
(⨅ i, f i) = (⨅ i (h : p i), f i) ⊓ (⨅ i (h : ¬ p i), f i) :=
by simpa [classical.em] using @infi_union _ _ _ f {i | p i} {i | ¬ p i}
lemma infi_split_single (f : β → α) (i₀ : β) :
(⨅ i, f i) = f i₀ ⊓ (⨅ i (h : i ≠ i₀), f i) :=
by convert infi_split _ _; simp
theorem infi_le_infi_of_subset {f : β → α} {s t : set β} (h : s ⊆ t) :
(⨅ x ∈ t, f x) ≤ (⨅ x ∈ s, f x) :=
by rw [(union_eq_self_of_subset_left h).symm, infi_union]; exact inf_le_left
theorem supr_union {f : β → α} {s t : set β} : (⨆ x ∈ s ∪ t, f x) = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) :=
@infi_union (order_dual α) _ _ _ _ _
lemma supr_split (f : β → α) (p : β → Prop) :
(⨆ i, f i) = (⨆ i (h : p i), f i) ⊔ (⨆ i (h : ¬ p i), f i) :=
@infi_split (order_dual α) _ _ _ _
lemma supr_split_single (f : β → α) (i₀ : β) :
(⨆ i, f i) = f i₀ ⊔ (⨆ i (h : i ≠ i₀), f i) :=
@infi_split_single (order_dual α) _ _ _ _
theorem supr_le_supr_of_subset {f : β → α} {s t : set β} (h : s ⊆ t) :
(⨆ x ∈ s, f x) ≤ (⨆ x ∈ t, f x) :=
@infi_le_infi_of_subset (order_dual α) _ _ _ _ _ h
theorem infi_insert {f : β → α} {s : set β} {b : β} :
(⨅ x ∈ insert b s, f x) = f b ⊓ (⨅x∈s, f x) :=
eq.trans infi_union $ congr_arg (λx:α, x ⊓ (⨅x∈s, f x)) infi_infi_eq_left
theorem supr_insert {f : β → α} {s : set β} {b : β} :
(⨆ x ∈ insert b s, f x) = f b ⊔ (⨆x∈s, f x) :=
eq.trans supr_union $ congr_arg (λx:α, x ⊔ (⨆x∈s, f x)) supr_supr_eq_left
theorem infi_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : set β), f x) = f b :=
by simp
theorem infi_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : set β), f x) = f a ⊓ f b :=
by rw [infi_insert, infi_singleton]
theorem supr_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : set β), f x) = f b :=
@infi_singleton (order_dual α) _ _ _ _
theorem supr_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : set β), f x) = f a ⊔ f b :=
by rw [supr_insert, supr_singleton]
lemma infi_image {γ} {f : β → γ} {g : γ → α} {t : set β} :
(⨅ c ∈ f '' t, g c) = (⨅ b ∈ t, g (f b)) :=
by rw [← Inf_image, ← Inf_image, ← image_comp]
lemma supr_image {γ} {f : β → γ} {g : γ → α} {t : set β} :
(⨆ c ∈ f '' t, g c) = (⨆ b ∈ t, g (f b)) :=
@infi_image (order_dual α) _ _ _ _ _ _
/-!
### `supr` and `infi` under `Type`
-/
theorem infi_of_empty' (h : ι → false) {s : ι → α} : infi s = ⊤ :=
top_unique (le_infi $ assume i, (h i).elim)
theorem supr_of_empty' (h : ι → false) {s : ι → α} : supr s = ⊥ :=
bot_unique (supr_le $ assume i, (h i).elim)
theorem infi_of_empty (h : ¬nonempty ι) {s : ι → α} : infi s = ⊤ :=
infi_of_empty' (λ i, h ⟨i⟩)
theorem supr_of_empty (h : ¬nonempty ι) {s : ι → α} : supr s = ⊥ :=
supr_of_empty' (λ i, h ⟨i⟩)
@[simp] theorem infi_empty {s : empty → α} : infi s = ⊤ :=
infi_of_empty nonempty_empty
@[simp] theorem supr_empty {s : empty → α} : supr s = ⊥ :=
supr_of_empty nonempty_empty
lemma supr_bool_eq {f : bool → α} : (⨆b:bool, f b) = f tt ⊔ f ff :=
le_antisymm
(supr_le $ assume b, match b with tt := le_sup_left | ff := le_sup_right end)
(sup_le (le_supr _ _) (le_supr _ _))
lemma infi_bool_eq {f : bool → α} : (⨅b:bool, f b) = f tt ⊓ f ff :=
@supr_bool_eq (order_dual α) _ _
lemma is_glb_binfi {s : set β} {f : β → α} : is_glb (f '' s) (⨅ x ∈ s, f x) :=
by simpa only [range_comp, subtype.range_coe, infi_subtype'] using @is_glb_infi α s _ (f ∘ coe)
theorem supr_subtype {p : ι → Prop} {f : subtype p → α} : (⨆ x, f x) = (⨆ i (h:p i), f ⟨i, h⟩) :=
@infi_subtype (order_dual α) _ _ _ _
lemma supr_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
(⨆ i (h : p i), f i h) = (⨆ x : subtype p, f x x.property) :=
(@supr_subtype _ _ _ p (λ x, f x.val x.property)).symm
lemma supr_subtype'' {ι} (s : set ι) (f : ι → α) :
(⨆ i : s, f i) = ⨆ (t : ι) (H : t ∈ s), f t :=
supr_subtype
lemma is_lub_bsupr {s : set β} {f : β → α} : is_lub (f '' s) (⨆ x ∈ s, f x) :=
by simpa only [range_comp, subtype.range_coe, supr_subtype'] using @is_lub_supr α s _ (f ∘ coe)
theorem infi_sigma {p : β → Type*} {f : sigma p → α} : (⨅ x, f x) = (⨅ i (h:p i), f ⟨i, h⟩) :=
le_antisymm
(le_infi $ assume i, le_infi $ assume : p i, infi_le _ _)
(le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _)
theorem supr_sigma {p : β → Type*} {f : sigma p → α} : (⨆ x, f x) = (⨆ i (h:p i), f ⟨i, h⟩) :=
@infi_sigma (order_dual α) _ _ _ _
theorem infi_prod {γ : Type*} {f : β × γ → α} : (⨅ x, f x) = (⨅ i j, f (i, j)) :=
le_antisymm
(le_infi $ assume i, le_infi $ assume j, infi_le _ _)
(le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _)
theorem supr_prod {γ : Type*} {f : β × γ → α} : (⨆ x, f x) = (⨆ i j, f (i, j)) :=
@infi_prod (order_dual α) _ _ _ _
theorem infi_sum {γ : Type*} {f : β ⊕ γ → α} :
(⨅ x, f x) = (⨅ i, f (sum.inl i)) ⊓ (⨅ j, f (sum.inr j)) :=
le_antisymm
(le_inf
(infi_le_infi2 $ assume i, ⟨_, le_refl _⟩)
(infi_le_infi2 $ assume j, ⟨_, le_refl _⟩))
(le_infi $ assume s, match s with
| sum.inl i := inf_le_of_left_le $ infi_le _ _
| sum.inr j := inf_le_of_right_le $ infi_le _ _
end)
theorem supr_sum {γ : Type*} {f : β ⊕ γ → α} :
(⨆ x, f x) = (⨆ i, f (sum.inl i)) ⊔ (⨆ j, f (sum.inr j)) :=
@infi_sum (order_dual α) _ _ _ _
theorem supr_option (f : option β → α) :
(⨆ o, f o) = f none ⊔ ⨆ b, f (option.some b) :=
eq_of_forall_ge_iff $ λ c, by simp only [supr_le_iff, sup_le_iff, option.forall]
theorem infi_option (f : option β → α) :
(⨅ o, f o) = f none ⊓ ⨅ b, f (option.some b) :=
@supr_option (order_dual α) _ _ _
/-!
### `supr` and `infi` under `ℕ`
-/
lemma supr_ge_eq_supr_nat_add {u : ℕ → α} (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) :=
begin
apply le_antisymm;
simp only [supr_le_iff],
{ exact λ i hi, le_Sup ⟨i - n, by { dsimp only, rw nat.sub_add_cancel hi }⟩ },
{ exact λ i, le_Sup ⟨i + n, supr_pos (nat.le_add_left _ _)⟩ }
end
lemma infi_ge_eq_infi_nat_add {u : ℕ → α} (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
@supr_ge_eq_supr_nat_add (order_dual α) _ _ _
lemma monotone.supr_nat_add {f : ℕ → α} (hf : monotone f) (k : ℕ) :
(⨆ n, f (n + k)) = ⨆ n, f n :=
le_antisymm (supr_le (λ i, (le_refl _).trans (le_supr _ (i + k))))
(supr_le_supr (λ i, hf (nat.le_add_right i k)))
@[simp] lemma supr_infi_ge_nat_add (f : ℕ → α) (k : ℕ) :
(⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i :=
begin
have hf : monotone (λ n, ⨅ i ≥ n, f i),
from λ n m hnm, le_infi (λ i, (infi_le _ i).trans (le_infi (λ h, infi_le _ (hnm.trans h)))),
rw ←monotone.supr_nat_add hf k,
{ simp_rw [infi_ge_eq_infi_nat_add, ←nat.add_assoc], },
end
lemma sup_supr_nat_succ (u : ℕ → α) : u 0 ⊔ (⨆ i, u (i + 1)) = ⨆ i, u i :=
begin
refine eq_of_forall_ge_iff (λ c, _),
simp only [sup_le_iff, supr_le_iff],
refine ⟨λ h, _, λ h, ⟨h _, λ i, h _⟩⟩,
rintro (_|i),
exacts [h.1, h.2 i]
end
lemma inf_infi_nat_succ (u : ℕ → α) : u 0 ⊓ (⨅ i, u (i + 1)) = ⨅ i, u i :=
@sup_supr_nat_succ (order_dual α) _ u
end
section complete_linear_order
variables [complete_linear_order α]
lemma supr_eq_top (f : ι → α) : supr f = ⊤ ↔ (∀b<⊤, ∃i, b < f i) :=
by simp only [← Sup_range, Sup_eq_top, set.exists_range_iff]
lemma infi_eq_bot (f : ι → α) : infi f = ⊥ ↔ (∀b>⊥, ∃i, f i < b) :=
by simp only [← Inf_range, Inf_eq_bot, set.exists_range_iff]
end complete_linear_order
/-!
### Instances
-/
instance Prop.complete_lattice : complete_lattice Prop :=
{ Sup := λs, ∃a∈s, a,
le_Sup := assume s a h p, ⟨a, h, p⟩,
Sup_le := assume s a h ⟨b, h', p⟩, h b h' p,
Inf := λs, ∀a:Prop, a∈s → a,
Inf_le := assume s a h p, p a h,
le_Inf := assume s a h p b hb, h b hb p,
.. Prop.bounded_distrib_lattice }
@[simp] lemma Inf_Prop_eq {s : set Prop} : Inf s = (∀p ∈ s, p) := rfl
@[simp] lemma Sup_Prop_eq {s : set Prop} : Sup s = (∃p ∈ s, p) := rfl
@[simp] lemma infi_Prop_eq {ι : Sort*} {p : ι → Prop} : (⨅i, p i) = (∀i, p i) :=
le_antisymm (assume h i, h _ ⟨i, rfl⟩ ) (assume h p ⟨i, eq⟩, eq ▸ h i)
@[simp] lemma supr_Prop_eq {ι : Sort*} {p : ι → Prop} : (⨆i, p i) = (∃i, p i) :=
le_antisymm (λ ⟨q, ⟨i, (eq : p i = q)⟩, hq⟩, ⟨i, eq.symm ▸ hq⟩) (λ ⟨i, hi⟩, ⟨p i, ⟨i, rfl⟩, hi⟩)
instance pi.has_Sup {α : Type*} {β : α → Type*} [Π i, has_Sup (β i)] : has_Sup (Π i, β i) :=
⟨λ s i, ⨆ f : s, (f : Π i, β i) i⟩
instance pi.has_Inf {α : Type*} {β : α → Type*} [Π i, has_Inf (β i)] : has_Inf (Π i, β i) :=
⟨λ s i, ⨅ f : s, (f : Π i, β i) i⟩
instance pi.complete_lattice {α : Type*} {β : α → Type*} [∀ i, complete_lattice (β i)] :
complete_lattice (Π i, β i) :=
{ Sup := Sup,
Inf := Inf,
le_Sup := λ s f hf i, le_supr (λ f : s, (f : Π i, β i) i) ⟨f, hf⟩,
Inf_le := λ s f hf i, infi_le (λ f : s, (f : Π i, β i) i) ⟨f, hf⟩,
Sup_le := λ s f hf i, supr_le $ λ g, hf g g.2 i,
le_Inf := λ s f hf i, le_infi $ λ g, hf g g.2 i,
.. pi.bounded_lattice }
lemma Inf_apply {α : Type*} {β : α → Type*} [Π i, has_Inf (β i)]
{s : set (Πa, β a)} {a : α} :
(Inf s) a = (⨅ f : s, (f : Πa, β a) a) :=
rfl
@[simp] lemma infi_apply {α : Type*} {β : α → Type*} {ι : Sort*} [Π i, has_Inf (β i)]
{f : ι → Πa, β a} {a : α} :
(⨅i, f i) a = (⨅i, f i a) :=
by rw [infi, Inf_apply, infi, infi, ← image_eq_range (λ f : Π i, β i, f a) (range f), ← range_comp]
lemma Sup_apply {α : Type*} {β : α → Type*} [Π i, has_Sup (β i)] {s : set (Πa, β a)} {a : α} :
(Sup s) a = (⨆f:s, (f : Πa, β a) a) :=
rfl
lemma unary_relation_Sup_iff {α : Type*} (s : set (α → Prop)) {a : α} :
Sup s a ↔ ∃ (r : α → Prop), r ∈ s ∧ r a :=
by { change (∃ _, _) ↔ _, simp [-eq_iff_iff] }
lemma binary_relation_Sup_iff {α β : Type*} (s : set (α → β → Prop)) {a : α} {b : β} :
Sup s a b ↔ ∃ (r : α → β → Prop), r ∈ s ∧ r a b :=
by { change (∃ _, _) ↔ _, simp [-eq_iff_iff] }
@[simp] lemma supr_apply {α : Type*} {β : α → Type*} {ι : Sort*} [Π i, has_Sup (β i)]
{f : ι → Πa, β a} {a : α} :
(⨆i, f i) a = (⨆i, f i a) :=
@infi_apply α (λ i, order_dual (β i)) _ _ f a
section complete_lattice
variables [preorder α] [complete_lattice β]
theorem monotone_Sup_of_monotone {s : set (α → β)} (m_s : ∀f∈s, monotone f) : monotone (Sup s) :=
assume x y h, supr_le $ λ f, le_supr_of_le f $ m_s f f.2 h
theorem monotone_Inf_of_monotone {s : set (α → β)} (m_s : ∀f∈s, monotone f) : monotone (Inf s) :=
assume x y h, le_infi $ λ f, infi_le_of_le f $ m_s f f.2 h
end complete_lattice
namespace prod
variables (α β)
instance [has_Inf α] [has_Inf β] : has_Inf (α × β) :=
⟨λs, (Inf (prod.fst '' s), Inf (prod.snd '' s))⟩
instance [has_Sup α] [has_Sup β] : has_Sup (α × β) :=
⟨λs, (Sup (prod.fst '' s), Sup (prod.snd '' s))⟩
instance [complete_lattice α] [complete_lattice β] : complete_lattice (α × β) :=
{ le_Sup := assume s p hab, ⟨le_Sup $ mem_image_of_mem _ hab, le_Sup $ mem_image_of_mem _ hab⟩,
Sup_le := assume s p h,
⟨ Sup_le $ ball_image_of_ball $ assume p hp, (h p hp).1,
Sup_le $ ball_image_of_ball $ assume p hp, (h p hp).2⟩,
Inf_le := assume s p hab, ⟨Inf_le $ mem_image_of_mem _ hab, Inf_le $ mem_image_of_mem _ hab⟩,
le_Inf := assume s p h,
⟨ le_Inf $ ball_image_of_ball $ assume p hp, (h p hp).1,
le_Inf $ ball_image_of_ball $ assume p hp, (h p hp).2⟩,
.. prod.bounded_lattice α β,
.. prod.has_Sup α β,
.. prod.has_Inf α β }
end prod
section complete_lattice
variables [complete_lattice α] {a : α} {s : set α}
/-- This is a weaker version of `sup_Inf_eq` -/
lemma sup_Inf_le_infi_sup :
a ⊔ Inf s ≤ (⨅ b ∈ s, a ⊔ b) :=
le_infi $ assume i, le_infi $ assume h, sup_le_sup_left (Inf_le h) _
/-- This is a weaker version of `Inf_sup_eq` -/
lemma Inf_sup_le_infi_sup :
Inf s ⊔ a ≤ (⨅ b ∈ s, b ⊔ a) :=
le_infi $ assume i, le_infi $ assume h, sup_le_sup_right (Inf_le h) _
/-- This is a weaker version of `inf_Sup_eq` -/
lemma supr_inf_le_inf_Sup :
(⨆ b ∈ s, a ⊓ b) ≤ a ⊓ Sup s :=
supr_le $ assume i, supr_le $ assume h, inf_le_inf_left _ (le_Sup h)
/-- This is a weaker version of `Sup_inf_eq` -/
lemma supr_inf_le_Sup_inf :
(⨆ b ∈ s, b ⊓ a) ≤ Sup s ⊓ a :=
supr_le $ assume i, supr_le $ assume h, inf_le_inf_right _ (le_Sup h)
lemma disjoint_Sup_left {a : set α} {b : α} (d : disjoint (Sup a) b) {i} (hi : i ∈ a) :
disjoint i b :=
(supr_le_iff.mp (supr_le_iff.mp (supr_inf_le_Sup_inf.trans (d : _)) i : _) hi : _)
lemma disjoint_Sup_right {a : set α} {b : α} (d : disjoint b (Sup a)) {i} (hi : i ∈ a) :
disjoint b i :=
(supr_le_iff.mp (supr_le_iff.mp (supr_inf_le_inf_Sup.trans (d : _)) i : _) hi : _)
end complete_lattice
namespace complete_lattice
variables [complete_lattice α]
/-- An independent set of elements in a complete lattice is one in which every element is disjoint
from the `Sup` of the rest. -/
def set_independent (s : set α) : Prop := ∀ ⦃a⦄, a ∈ s → disjoint a (Sup (s \ {a}))
variables {s : set α} (hs : set_independent s)
@[simp]
lemma set_independent_empty : set_independent (∅ : set α) :=
λ x hx, (set.not_mem_empty x hx).elim
theorem set_independent.mono {t : set α} (hst : t ⊆ s) :
set_independent t :=
λ a ha, (hs (hst ha)).mono_right (Sup_le_Sup (diff_subset_diff_left hst))
/-- If the elements of a set are independent, then any pair within that set is disjoint. -/
lemma set_independent.disjoint {x y : α} (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : disjoint x y :=
disjoint_Sup_right (hs hx) ((mem_diff y).mpr ⟨hy, by simp [h.symm]⟩)
include hs
/-- If the elements of a set are independent, then any element is disjoint from the `Sup` of some
subset of the rest. -/
lemma set_independent.disjoint_Sup {x : α} {y : set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
disjoint x (Sup y) :=
begin
have := (hs.mono $ insert_subset.mpr ⟨hx, hy⟩) (mem_insert x _),
rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this,
exact this,
end
omit hs
/-- An independent indexed family of elements in a complete lattice is one in which every element
is disjoint from the `supr` of the rest.
Example: an indexed family of non-zero elements in a
vector space is linearly independent iff the indexed family of subspaces they generate is
independent in this sense.
Example: an indexed family of submodules of a module is independent in this sense if
and only the natural map from the direct sum of the submodules to the module is injective. -/
def independent {ι : Sort*} {α : Type*} [complete_lattice α] (t : ι → α) : Prop :=
∀ i : ι, disjoint (t i) (⨆ (j ≠ i), t j)
lemma set_independent_iff {α : Type*} [complete_lattice α] (s : set α) :
set_independent s ↔ independent (coe : s → α) :=
begin
simp_rw [independent, set_independent, set_coe.forall, Sup_eq_supr],
apply forall_congr, intro a, apply forall_congr, intro ha,
congr' 2,
convert supr_subtype.symm,
simp [supr_and],
end
variables {t : ι → α} (ht : independent t)
theorem independent_def : independent t ↔ ∀ i : ι, disjoint (t i) (⨆ (j ≠ i), t j) :=
iff.rfl
theorem independent_def' {ι : Type*} {t : ι → α} :
independent t ↔ ∀ i, disjoint (t i) (Sup (t '' {j | j ≠ i})) :=
by {simp_rw Sup_image, refl}
theorem independent_def'' {ι : Type*} {t : ι → α} :
independent t ↔ ∀ i, disjoint (t i) (Sup {a | ∃ j ≠ i, t j = a}) :=
by {rw independent_def', tidy}
@[simp]
lemma independent_empty (t : empty → α) : independent t.
@[simp]
lemma independent_pempty (t : pempty → α) : independent t.
/-- If the elements of a set are independent, then any pair within that set is disjoint. -/
lemma independent.disjoint {x y : ι} (h : x ≠ y) : disjoint (t x) (t y) :=
disjoint_Sup_right (ht x) ⟨y, by simp [h.symm]⟩
lemma independent.mono {ι : Type*} {α : Type*} [complete_lattice α]
{s t : ι → α} (hs : independent s) (hst : t ≤ s) :
independent t :=
λ i, (hs i).mono (hst i) (supr_le_supr $ λ j, supr_le_supr $ λ _, hst j)
/-- Composing an indepedent indexed family with an injective function on the index results in
another indepedendent indexed family. -/
lemma independent.comp {ι ι' : Sort*} {α : Type*} [complete_lattice α]
{s : ι → α} (hs : independent s) (f : ι' → ι) (hf : function.injective f) :
independent (s ∘ f) :=
λ i, (hs (f i)).mono_right begin
refine (supr_le_supr $ λ i, _).trans (supr_comp_le _ f),
exact supr_le_supr_const hf.ne,
end
/-- If the elements of a set are independent, then any element is disjoint from the `supr` of some
subset of the rest. -/
lemma independent.disjoint_bsupr {ι : Type*} {α : Type*} [complete_lattice α]
{t : ι → α} (ht : independent t) {x : ι} {y : set ι} (hx : x ∉ y) :
disjoint (t x) (⨆ i ∈ y, t i) :=
disjoint.mono_right (bsupr_le_bsupr' $ λ i hi, (ne_of_mem_of_not_mem hi hx : _)) (ht x)
end complete_lattice
|
04ef9c568ce59f9330943ec9d58a79305d0af2da
|
07f5f86b00fed90a419ccda4298d8b795a68f657
|
/library/init/meta/converter/interactive.lean
|
60524208652a382c2745226f287a509367956e2c
|
[
"Apache-2.0"
] |
permissive
|
VBaratham/lean
|
8ec5c3167b4835cfbcd7f25e2173d61ad9416b3a
|
450ca5834c1c35318e4b47d553bb9820c1b3eee7
|
refs/heads/master
| 1,629,649,471,814
| 1,512,060,373,000
| 1,512,060,469,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,837
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Converter monad for building simplifiers.
-/
prelude
import init.meta.interactive init.meta.converter.conv
namespace conv
meta def save_info (p : pos) : conv unit :=
do s ← tactic.read,
tactic.save_info_thunk p (λ _, s.to_format tt)
meta def step {α : Type} (c : conv α) : conv unit :=
c >> return ()
meta def istep {α : Type} (line0 col0 line col : nat) (c : conv α) : conv unit :=
tactic.istep line0 col0 line col c
meta def execute (c : conv unit) : tactic unit :=
c
meta def solve1 (c : conv unit) : conv unit :=
tactic.solve1 $ c >> tactic.repeat tactic.reflexivity
namespace interactive
open lean
open lean.parser
open interactive
open interactive.types
meta def itactic : Type :=
conv unit
meta def skip : conv unit :=
conv.skip
meta def whnf : conv unit :=
conv.whnf
meta def dsimp (no_dflt : parse only_flag) (es : parse tactic.simp_arg_list) (attr_names : parse with_ident_list)
(cfg : tactic.dsimp_config := {}) : conv unit :=
do (s, u) ← tactic.mk_simp_set no_dflt attr_names es,
conv.dsimp (some s) u cfg
meta def trace_lhs : conv unit :=
lhs >>= tactic.trace
meta def change (p : parse texpr) : conv unit :=
tactic.i_to_expr p >>= conv.change
meta def congr : conv unit :=
conv.congr
meta def funext : conv unit :=
conv.funext
private meta def is_relation : conv unit :=
(lhs >>= tactic.relation_lhs_rhs >> return ())
<|>
tactic.fail "current expression is not a relation"
meta def to_lhs : conv unit :=
is_relation >> congr >> tactic.swap >> skip
meta def to_rhs : conv unit :=
is_relation >> congr >> skip
meta def done : conv unit :=
tactic.done
meta def find (p : parse parser.pexpr) (c : itactic) : conv unit :=
do (r, lhs, _) ← tactic.target_lhs_rhs,
pat ← tactic.pexpr_to_pattern p,
s ← simp_lemmas.mk_default, -- to be able to use congruence lemmas @[congr]
(found, new_lhs, pr) ←
tactic.ext_simplify_core ff {zeta := ff, beta := ff, single_pass := tt, eta := ff,
proj := ff, fail_if_unchanged := ff, memoize := ff} s
(λ u, return u)
(λ found s r p e, do
guard (not found),
matched ← (tactic.match_pattern_core reducible pat e >> return tt) <|> return ff,
guard matched,
⟨new_e, pr⟩ ← c.convert e r,
return (tt, new_e, pr, ff))
(λ a s r p e, tactic.failed)
r lhs,
when (not found) $ tactic.fail "find converter failed, pattern was not found",
update_lhs new_lhs pr
meta def for (p : parse parser.pexpr) (occs : parse (list_of small_nat)) (c : itactic) : conv unit :=
do (r, lhs, _) ← tactic.target_lhs_rhs,
pat ← tactic.pexpr_to_pattern p,
s ← simp_lemmas.mk_default, -- to be able to use congruence lemmas @[congr]
(found, new_lhs, pr) ←
tactic.ext_simplify_core 1 {zeta := ff, beta := ff, single_pass := tt, eta := ff,
proj := ff, fail_if_unchanged := ff, memoize := ff} s
(λ u, return u)
(λ i s r p e, do
matched ← (tactic.match_pattern_core reducible pat e >> return tt) <|> return ff,
guard matched,
if i ∈ occs then do
⟨new_e, pr⟩ ← c.convert e r,
return (i+1, new_e, some pr, tt)
else return (i+1, e, none, tt))
(λ a s r p e, tactic.failed)
r lhs,
update_lhs new_lhs pr
meta def simp (no_dflt : parse only_flag) (hs : parse tactic.simp_arg_list) (attr_names : parse with_ident_list)
(cfg : tactic.simp_config_ext := {})
: conv unit :=
do (s, u) ← tactic.mk_simp_set no_dflt attr_names hs,
(r, lhs, rhs) ← tactic.target_lhs_rhs,
(new_lhs, pr) ← tactic.simplify s u lhs cfg.to_simp_config r cfg.discharger,
update_lhs new_lhs pr,
return ()
meta def guard_lhs (p : parse texpr) : tactic unit :=
do t ← lhs, tactic.interactive.guard_expr_eq t p
section rw
open tactic.interactive (rw_rules rw_rule get_rule_eqn_lemmas to_expr')
open tactic (rewrite_cfg)
private meta def rw_lhs (h : expr) (cfg : rewrite_cfg) : conv unit :=
do l ← conv.lhs,
(new_lhs, prf, _) ← tactic.rewrite h l cfg,
update_lhs new_lhs prf
private meta def rw_core (rs : list rw_rule) (cfg : rewrite_cfg) : conv unit :=
rs.mmap' $ λ r, do
save_info r.pos,
eq_lemmas ← get_rule_eqn_lemmas r,
orelse'
(do h ← to_expr' r.rule, rw_lhs h {symm := r.symm, ..cfg})
(eq_lemmas.mfirst $ λ n, do e ← tactic.mk_const n, rw_lhs e {symm := r.symm, ..cfg})
(eq_lemmas.empty)
meta def rewrite (q : parse rw_rules) (cfg : rewrite_cfg := {}) : conv unit :=
rw_core q.rules cfg
meta def rw (q : parse rw_rules) (cfg : rewrite_cfg := {}) : conv unit :=
rw_core q.rules cfg
end rw
end interactive
end conv
namespace tactic
namespace interactive
open lean
open lean.parser
open interactive
open interactive.types
open tactic
local postfix `?`:9001 := optional
private meta def conv_at (h_name : name) (c : conv unit) : tactic unit :=
do h ← get_local h_name,
h_type ← infer_type h,
(new_h_type, pr) ← c.convert h_type,
replace_hyp h new_h_type pr,
return ()
private meta def conv_target (c : conv unit) : tactic unit :=
do t ← target,
(new_t, pr) ← c.convert t,
replace_target new_t pr,
try tactic.triv, try (tactic.reflexivity reducible)
meta def conv (loc : parse (tk "at" *> ident)?)
(p : parse (tk "in" *> parser.pexpr)?)
(c : conv.interactive.itactic) : tactic unit :=
do let c :=
match p with
| some p := _root_.conv.interactive.find p c
| none := c
end,
match loc with
| some h := conv_at h c
| none := conv_target c
end
end interactive
end tactic
|
3d5e55a2e4aedde7d590367be3f798058721a2d7
|
75db7e3219bba2fbf41bf5b905f34fcb3c6ca3f2
|
/hott/cubical/square.hlean
|
3608f41df6f5cc23e6139ca9f95b58ef1a73a681
|
[
"Apache-2.0"
] |
permissive
|
jroesch/lean
|
30ef0860fa905d35b9ad6f76de1a4f65c9af6871
|
3de4ec1a6ce9a960feb2a48eeea8b53246fa34f2
|
refs/heads/master
| 1,586,090,835,348
| 1,455,142,203,000
| 1,455,142,277,000
| 51,536,958
| 1
| 0
| null | 1,455,215,811,000
| 1,455,215,811,000
| null |
UTF-8
|
Lean
| false
| false
| 27,641
|
hlean
|
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
Squares in a type
-/
import types.eq
open eq equiv is_equiv sigma
namespace eq
variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
inductive square {A : Type} {a₀₀ : A}
: Π{a₂₀ a₀₂ a₂₂ : A}, a₀₀ = a₂₀ → a₀₂ = a₂₂ → a₀₀ = a₀₂ → a₂₀ = a₂₂ → Type :=
ids : square idp idp idp idp
/- square top bottom left right -/
variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
definition ids [reducible] [constructor] := @square.ids
definition idsquare [reducible] [constructor] (a : A) := @square.ids A a
definition hrefl [unfold 4] (p : a = a') : square idp idp p p :=
by induction p; exact ids
definition vrefl [unfold 4] (p : a = a') : square p p idp idp :=
by induction p; exact ids
definition hrfl [reducible] [unfold 4] {p : a = a'} : square idp idp p p :=
!hrefl
definition vrfl [reducible] [unfold 4] {p : a = a'} : square p p idp idp :=
!vrefl
definition hdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square idp idp p q :=
by induction r;apply hrefl
definition vdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square p q idp idp :=
by induction r;apply vrefl
definition hdeg_square_idp (p : a = a') : hdeg_square (refl p) = hrfl :=
by cases p; reflexivity
definition vdeg_square_idp (p : a = a') : vdeg_square (refl p) = vrfl :=
by cases p; reflexivity
definition hconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁)
: square (p₁₀ ⬝ p₃₀) (p₁₂ ⬝ p₃₂) p₀₁ p₄₁ :=
by induction s₃₁; exact s₁₁
definition vconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃)
: square p₁₀ p₁₄ (p₀₁ ⬝ p₀₃) (p₂₁ ⬝ p₂₃) :=
by induction s₁₃; exact s₁₁
definition hinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₁₂⁻¹ p₂₁ p₀₁ :=
by induction s₁₁;exact ids
definition vinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₂ p₁₀ p₀₁⁻¹ p₂₁⁻¹ :=
by induction s₁₁;exact ids
definition eq_vconcat [unfold 11] {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
square p p₁₂ p₀₁ p₂₁ :=
by induction r; exact s₁₁
definition vconcat_eq [unfold 12] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) :
square p₁₀ p p₀₁ p₂₁ :=
by induction r; exact s₁₁
definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
square p₁₀ p₁₂ p p₂₁ :=
by induction r; exact s₁₁
definition hconcat_eq [unfold 12] {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) :
square p₁₀ p₁₂ p₀₁ p :=
by induction r; exact s₁₁
infix ` ⬝h `:75 := hconcat --type using \tr
infix ` ⬝v `:75 := vconcat --type using \tr
infix ` ⬝hp `:75 := hconcat_eq --type using \tr
infix ` ⬝vp `:75 := vconcat_eq --type using \tr
infix ` ⬝ph `:75 := eq_hconcat --type using \tr
infix ` ⬝pv `:75 := eq_vconcat --type using \tr
postfix `⁻¹ʰ`:(max+1) := hinverse --type using \-1h
postfix `⁻¹ᵛ`:(max+1) := vinverse --type using \-1v
definition transpose [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₀₁ p₂₁ p₁₀ p₁₂ :=
by induction s₁₁;exact ids
definition aps [unfold 12] {B : Type} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (ap f p₁₀) (ap f p₁₂) (ap f p₀₁) (ap f p₂₁) :=
by induction s₁₁;exact ids
definition natural_square [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') :
square (ap f q) (ap g q) (p a) (p a') :=
eq.rec_on q hrfl
definition natural_square_tr [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') :
square (p a) (p a') (ap f q) (ap g q) :=
eq.rec_on q vrfl
/- canceling, whiskering and moving thinks along the sides of the square -/
definition whisker_tl (p : a = a₀₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁ :=
by induction s₁₁;induction p;constructor
definition whisker_br (p : a₂₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p) :=
by induction p;exact s₁₁
definition whisker_rt (p : a = a₂₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁) :=
by induction s₁₁;induction p;constructor
definition whisker_tr (p : a₂₀ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁) :=
by induction s₁₁;induction p;constructor
definition whisker_bl (p : a = a₀₂) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁ :=
by induction s₁₁;induction p;constructor
definition whisker_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁ :=
by induction s₁₁;induction p;constructor
definition cancel_tl (p : a = a₀₀) (s₁₁ : square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite +idp_con at s₁₁; exact s₁₁
definition cancel_br (p : a₂₂ = a) (s₁₁ : square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p;exact s₁₁
definition cancel_rt (p : a = a₂₀) (s₁₁ : square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite idp_con at s₁₁; exact s₁₁
definition cancel_tr (p : a₂₀ = a) (s₁₁ : square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁
definition cancel_bl (p : a = a₀₂) (s₁₁ : square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite idp_con at s₁₁; exact s₁₁
definition cancel_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁
definition move_top_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁)
: square (p⁻¹ ⬝ p₁₀) p₁₂ q p₂₁ :=
by apply cancel_tl p; rewrite con_inv_cancel_left; exact s
definition move_top_of_left' {p : a = a₀₀} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p⁻¹ ⬝ q) p₂₁)
: square (p ⬝ p₁₀) p₁₂ q p₂₁ :=
by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s
definition move_left_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁)
: square q p₁₂ (p⁻¹ ⬝ p₀₁) p₂₁ :=
by apply cancel_tl p; rewrite con_inv_cancel_left; exact s
definition move_left_of_top' {p : a = a₀₀} {q : a = a₂₀} (s : square (p⁻¹ ⬝ q) p₁₂ p₀₁ p₂₁)
: square q p₁₂ (p ⬝ p₀₁) p₂₁ :=
by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s
definition move_bot_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q))
: square p₁₀ (p₁₂ ⬝ q⁻¹) p₀₁ p :=
by apply cancel_br q; rewrite inv_con_cancel_right; exact s
definition move_bot_of_right' {p : a₂₀ = a} {q : a₂₂ = a} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q⁻¹))
: square p₁₀ (p₁₂ ⬝ q) p₀₁ p :=
by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s
definition move_right_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁)
: square p₁₀ p p₀₁ (p₂₁ ⬝ q⁻¹) :=
by apply cancel_br q; rewrite inv_con_cancel_right; exact s
definition move_right_of_bot' {p : a₀₂ = a} {q : a₂₂ = a} (s : square p₁₀ (p ⬝ q⁻¹) p₀₁ p₂₁)
: square p₁₀ p p₀₁ (p₂₁ ⬝ q) :=
by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s
definition move_top_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q))
: square (p₁₀ ⬝ p) p₁₂ p₀₁ q :=
by apply cancel_rt p; rewrite con_inv_cancel_right; exact s
definition move_right_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁)
: square p p₁₂ p₀₁ (q ⬝ p₂₁) :=
by apply cancel_tr q; rewrite inv_con_cancel_left; exact s
definition move_bot_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁)
: square p₁₀ (q ⬝ p₁₂) p p₂₁ :=
by apply cancel_lb q; rewrite inv_con_cancel_left; exact s
definition move_left_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁)
: square p₁₀ q (p₀₁ ⬝ p) p₂₁ :=
by apply cancel_bl p; rewrite con_inv_cancel_right; exact s
/- some higher ∞-groupoid operations -/
definition vconcat_vrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: s₁₁ ⬝v vrefl p₁₂ = s₁₁ :=
by induction s₁₁; reflexivity
definition hconcat_hrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: s₁₁ ⬝h hrefl p₂₁ = s₁₁ :=
by induction s₁₁; reflexivity
/- equivalences -/
definition eq_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂ :=
by induction s₁₁; apply idp
definition square_of_eq (r : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₁₂; esimp at r; induction r; induction p₂₁; induction p₁₀; exact ids
definition eq_top_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹ :=
by induction s₁₁; apply idp
definition square_of_eq_top (r : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₂₁; induction p₁₂; esimp at r;induction r;induction p₁₀;exact ids
definition eq_bot_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
by induction s₁₁; apply idp
definition square_of_eq_bot (r : p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ = p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₂₁; induction p₁₀; esimp at r; induction r; induction p₀₁; exact ids
definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂)
(l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b :=
begin
fapply equiv.MK,
{ exact eq_of_square},
{ exact square_of_eq},
{ intro s, induction b, esimp [concat] at s, induction s, induction r, induction t, apply idp},
{ intro s, induction s, apply idp},
end
definition hdeg_square_equiv' [constructor] (p q : a = a') : square idp idp p q ≃ p = q :=
by transitivity _;apply square_equiv_eq;transitivity _;apply eq_equiv_eq_symm;
apply equiv_eq_closed_right;apply idp_con
definition vdeg_square_equiv' [constructor] (p q : a = a') : square p q idp idp ≃ p = q :=
by transitivity _;apply square_equiv_eq;apply equiv_eq_closed_right; apply idp_con
definition eq_of_hdeg_square [reducible] {p q : a = a'} (s : square idp idp p q) : p = q :=
to_fun !hdeg_square_equiv' s
definition eq_of_vdeg_square [reducible] {p q : a = a'} (s : square p q idp idp) : p = q :=
to_fun !vdeg_square_equiv' s
definition top_deg_square (l : a₁ = a₂) (b : a₂ = a₃) (r : a₄ = a₃)
: square (l ⬝ b ⬝ r⁻¹) b l r :=
by induction r;induction b;induction l;constructor
definition bot_deg_square (l : a₁ = a₂) (t : a₁ = a₃) (r : a₃ = a₄)
: square t (l⁻¹ ⬝ t ⬝ r) l r :=
by induction r;induction t;induction l;constructor
/-
the following two equivalences have as underlying inverse function the functions
hdeg_square and vdeg_square, respectively.
See example below the definition
-/
definition hdeg_square_equiv [constructor] (p q : a = a') :
square idp idp p q ≃ p = q :=
begin
fapply equiv_change_fun,
{ fapply equiv_change_inv, apply hdeg_square_equiv', exact hdeg_square,
intro s, induction s, induction p, reflexivity},
{ exact eq_of_hdeg_square},
{ reflexivity}
end
definition vdeg_square_equiv [constructor] (p q : a = a') :
square p q idp idp ≃ p = q :=
begin
fapply equiv_change_fun,
{ fapply equiv_change_inv, apply vdeg_square_equiv',exact vdeg_square,
intro s, induction s, induction p, reflexivity},
{ exact eq_of_vdeg_square},
{ reflexivity}
end
example (p q : a = a') : to_inv (hdeg_square_equiv p q) = hdeg_square := idp
/-
characterization of pathovers in a equality type. The type B of the equality is fixed here.
A version where B may also varies over the path p is given in the file squareover
-/
definition eq_pathover [unfold 7] {f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'}
(s : square q r (ap f p) (ap g p)) : q =[p] r :=
by induction p;apply pathover_idp_of_eq;exact eq_of_vdeg_square s
definition square_of_pathover [unfold 7]
{f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'}
(s : q =[p] r) : square q r (ap f p) (ap g p) :=
by induction p;apply vdeg_square;exact eq_of_pathover_idp s
/- interaction of equivalences with operations on squares -/
definition eq_pathover_equiv_square [constructor] {f g : A → B}
(p : a = a') (q : f a = g a) (r : f a' = g a') : q =[p] r ≃ square q r (ap f p) (ap g p) :=
equiv.MK square_of_pathover
eq_pathover
begin
intro s, induction p, esimp [square_of_pathover,eq_pathover],
exact ap vdeg_square (to_right_inv !pathover_idp (eq_of_vdeg_square s))
⬝ to_left_inv !vdeg_square_equiv s
end
begin
intro s, induction p, esimp [square_of_pathover,eq_pathover],
exact ap pathover_idp_of_eq (to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s))
⬝ to_left_inv !pathover_idp s
end
definition square_of_pathover_eq_concato {f g : A → B} {p : a = a'} {q q' : f a = g a}
{r : f a' = g a'} (s' : q = q') (s : q' =[p] r)
: square_of_pathover (s' ⬝po s) = s' ⬝pv square_of_pathover s :=
by induction s;induction s';reflexivity
definition square_of_pathover_concato_eq {f g : A → B} {p : a = a'} {q : f a = g a}
{r r' : f a' = g a'} (s' : r = r') (s : q =[p] r)
: square_of_pathover (s ⬝op s') = square_of_pathover s ⬝vp s' :=
by induction s;induction s';reflexivity
definition square_of_pathover_concato {f g : A → B} {p : a = a'} {p' : a' = a''} {q : f a = g a}
{q' : f a' = g a'} {q'' : f a'' = g a''} (s : q =[p] q') (s' : q' =[p'] q'')
: square_of_pathover (s ⬝o s')
= ap_con f p p' ⬝ph (square_of_pathover s ⬝v square_of_pathover s') ⬝hp (ap_con g p p')⁻¹ :=
by induction s';induction s;esimp [ap_con,hconcat_eq];exact !vconcat_vrfl⁻¹
definition eq_of_square_hrfl [unfold 4] (p : a = a') : eq_of_square hrfl = idp_con p :=
by induction p;reflexivity
definition eq_of_square_vrfl [unfold 4] (p : a = a') : eq_of_square vrfl = (idp_con p)⁻¹ :=
by induction p;reflexivity
definition eq_of_square_hdeg_square {p q : a = a'} (r : p = q)
: eq_of_square (hdeg_square r) = !idp_con ⬝ r⁻¹ :=
by induction r;induction p;reflexivity
definition eq_of_square_vdeg_square {p q : a = a'} (r : p = q)
: eq_of_square (vdeg_square r) = r ⬝ !idp_con⁻¹ :=
by induction r;induction p;reflexivity
definition eq_of_square_eq_vconcat {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: eq_of_square (r ⬝pv s₁₁) = whisker_right r p₂₁ ⬝ eq_of_square s₁₁ :=
by induction s₁₁;cases r;reflexivity
definition eq_of_square_eq_hconcat {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: eq_of_square (r ⬝ph s₁₁) = eq_of_square s₁₁ ⬝ (whisker_right r p₁₂)⁻¹ :=
by induction r;reflexivity
definition eq_of_square_vconcat_eq {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p)
: eq_of_square (s₁₁ ⬝vp r) = eq_of_square s₁₁ ⬝ whisker_left p₀₁ r :=
by induction r;reflexivity
definition eq_of_square_hconcat_eq {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p)
: eq_of_square (s₁₁ ⬝hp r) = (whisker_left p₁₀ r)⁻¹ ⬝ eq_of_square s₁₁ :=
by induction s₁₁; induction r;reflexivity
-- definition vconcat_eq [unfold 11] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) :
-- square p₁₀ p p₀₁ p₂₁ :=
-- by induction r; exact s₁₁
-- definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁)
-- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ p₁₂ p p₂₁ :=
-- by induction r; exact s₁₁
-- definition hconcat_eq [unfold 11] {p : a₂₀ = a₂₂}
-- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) : square p₁₀ p₁₂ p₀₁ p :=
-- by induction r; exact s₁₁
-- the following definition is very slow, maybe it's interesting to see why?
-- definition eq_pathover_equiv_square' {f g : A → B}(p : a = a') (q : f a = g a) (r : f a' = g a')
-- : square q r (ap f p) (ap g p) ≃ q =[p] r :=
-- equiv.MK eq_pathover
-- square_of_pathover
-- (λs, begin
-- induction p, rewrite [↑[square_of_pathover,eq_pathover],
-- to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s),
-- to_left_inv !pathover_idp s]
-- end)
-- (λs, begin
-- induction p, rewrite [↑[square_of_pathover,eq_pathover],▸*,
-- to_right_inv !(@pathover_idp A) (eq_of_vdeg_square s),
-- to_left_inv !vdeg_square_equiv s]
-- end)
/- recursors for squares where some sides are reflexivity -/
definition rec_on_b [recursor] {a₀₀ : A}
{P : Π{a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂}, square t idp l r → Type}
{a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂}
(s : square t idp l r) (H : P ids) : P s :=
have H2 : P (square_of_eq (eq_of_square s)),
from eq.rec_on (eq_of_square s : t ⬝ r = l) (by induction r; induction t; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ H2
definition rec_on_r [recursor] {a₀₀ : A}
{P : Π{a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂}, square t b l idp → Type}
{a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂}
(s : square t b l idp) (H : P ids) : P s :=
let p : l ⬝ b = t := (eq_of_square s)⁻¹ in
have H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹),
from @eq.rec_on _ _ (λx p, P (square_of_eq p⁻¹)) _ p (by induction b; induction l; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ !inv_inv ▸ H2
definition rec_on_l [recursor] {a₀₁ : A}
{P : Π {a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂},
square t b idp r → Type}
{a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂}
(s : square t b idp r) (H : P ids) : P s :=
let p : t ⬝ r = b := eq_of_square s ⬝ !idp_con in
have H2 : P (square_of_eq (p ⬝ !idp_con⁻¹)),
from eq.rec_on p (by induction r; induction t; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ !con_inv_cancel_right ▸ H2
definition rec_on_t [recursor] {a₁₀ : A}
{P : Π {a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂}, square idp b l r → Type}
{a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂}
(s : square idp b l r) (H : P ids) : P s :=
let p : l ⬝ b = r := (eq_of_square s)⁻¹ ⬝ !idp_con in
assert H2 : P (square_of_eq ((p ⬝ !idp_con⁻¹)⁻¹)),
from eq.rec_on p (by induction b; induction l; exact H),
assert H3 : P (square_of_eq ((eq_of_square s)⁻¹⁻¹)),
from eq.rec_on !con_inv_cancel_right H2,
assert H4 : P (square_of_eq (eq_of_square s)),
from eq.rec_on !inv_inv H3,
proof
left_inv (to_fun !square_equiv_eq) s ▸ H4
qed
definition rec_on_tb [recursor] {a : A}
{P : Π{b : A} {l : a = b} {r : a = b}, square idp idp l r → Type}
{b : A} {l : a = b} {r : a = b}
(s : square idp idp l r) (H : P ids) : P s :=
have H2 : P (square_of_eq (eq_of_square s)),
from eq.rec_on (eq_of_square s : idp ⬝ r = l) (by induction r; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ H2
definition rec_on_lr [recursor] {a : A}
{P : Π{a' : A} {t : a = a'} {b : a = a'}, square t b idp idp → Type}
{a' : A} {t : a = a'} {b : a = a'}
(s : square t b idp idp) (H : P ids) : P s :=
let p : idp ⬝ b = t := (eq_of_square s)⁻¹ in
assert H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹),
from @eq.rec_on _ _ (λx q, P (square_of_eq q⁻¹)) _ p (by induction b; exact H),
to_left_inv (!square_equiv_eq) s ▸ !inv_inv ▸ H2
--we can also do the other recursors (tl, tr, bl, br, tbl, tbr, tlr, blr), but let's postpone this until they are needed
definition whisker_square [unfold 14 15 16 17] (r₁₀ : p₁₀ = p₁₀') (r₁₂ : p₁₂ = p₁₂')
(r₀₁ : p₀₁ = p₀₁') (r₂₁ : p₂₁ = p₂₁') (s : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀' p₁₂' p₀₁' p₂₁' :=
by induction r₁₀; induction r₁₂; induction r₀₁; induction r₂₁; exact s
/- squares commute with some operations on 2-paths -/
definition square_inv2 {p₁ p₂ p₃ p₄ : a = a'}
{t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄} (s : square t b l r)
: square (inverse2 t) (inverse2 b) (inverse2 l) (inverse2 r) :=
by induction s;constructor
definition square_con2 {p₁ p₂ p₃ p₄ : a₁ = a₂} {q₁ q₂ q₃ q₄ : a₂ = a₃}
{t₁ : p₁ = p₂} {b₁ : p₃ = p₄} {l₁ : p₁ = p₃} {r₁ : p₂ = p₄}
{t₂ : q₁ = q₂} {b₂ : q₃ = q₄} {l₂ : q₁ = q₃} {r₂ : q₂ = q₄}
(s₁ : square t₁ b₁ l₁ r₁) (s₂ : square t₂ b₂ l₂ r₂)
: square (t₁ ◾ t₂) (b₁ ◾ b₂) (l₁ ◾ l₂) (r₁ ◾ r₂) :=
by induction s₂;induction s₁;constructor
open is_trunc
definition is_hset.elims [H : is_hset A] : square p₁₀ p₁₂ p₀₁ p₂₁ :=
square_of_eq !is_hset.elim
-- definition square_of_con_inv_hsquare {p₁ p₂ p₃ p₄ : a₁ = a₂}
-- {t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄}
-- (s : square (con_inv_eq_idp t) (con_inv_eq_idp b) (l ◾ r⁻²) idp)
-- : square t b l r :=
-- sorry --by induction s
/- Square fillers -/
-- TODO replace by "more algebraic" fillers?
variables (p₁₀ p₁₂ p₀₁ p₂₁)
definition square_fill_t : Σ (p : a₀₀ = a₂₀), square p p₁₂ p₀₁ p₂₁ :=
by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩
definition square_fill_b : Σ (p : a₀₂ = a₂₂), square p₁₀ p p₀₁ p₂₁ :=
by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩
definition square_fill_l : Σ (p : a₀₀ = a₀₂), square p₁₀ p₁₂ p p₂₁ :=
by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩
definition square_fill_r : Σ (p : a₂₀ = a₂₂) , square p₁₀ p₁₂ p₀₁ p :=
by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩
/- Squares having an 'ap' term on one face -/
--TODO find better names
definition square_Flr_ap_idp {A B : Type} {c : B} {f : A → B} (p : Π a, f a = c)
{a b : A} (q : a = b) : square (p a) (p b) (ap f q) idp :=
by induction q; apply vrfl
definition square_Flr_idp_ap {A B : Type} {c : B} {f : A → B} (p : Π a, c = f a)
{a b : A} (q : a = b) : square (p a) (p b) idp (ap f q) :=
by induction q; apply vrfl
definition square_ap_idp_Flr {A B : Type} {b : B} {f : A → B} (p : Π a, f a = b)
{a b : A} (q : a = b) : square (ap f q) idp (p a) (p b) :=
by induction q; apply hrfl
/- Matching eq_hconcat with hconcat etc. -/
-- TODO maybe rename hconcat_eq and the like?
variable (s₁₁)
definition ph_eq_pv_h_vp {p : a₀₀ = a₀₂} (r : p = p₀₁) :
r ⬝ph s₁₁ = !idp_con⁻¹ ⬝pv ((hdeg_square r) ⬝h s₁₁) ⬝vp !idp_con :=
by cases r; cases s₁₁; esimp
definition hdeg_h_eq_pv_ph_vp {p : a₀₀ = a₀₂} (r : p = p₀₁) :
hdeg_square r ⬝h s₁₁ = !idp_con ⬝pv (r ⬝ph s₁₁) ⬝vp !idp_con⁻¹ :=
by cases r; cases s₁₁; esimp
definition hp_eq_h {p : a₂₀ = a₂₂} (r : p₂₁ = p) :
s₁₁ ⬝hp r = s₁₁ ⬝h hdeg_square r :=
by cases r; cases s₁₁; esimp
definition pv_eq_ph_vdeg_v_vh {p : a₀₀ = a₂₀} (r : p = p₁₀) :
r ⬝pv s₁₁ = !idp_con⁻¹ ⬝ph ((vdeg_square r) ⬝v s₁₁) ⬝hp !idp_con :=
by cases r; cases s₁₁; esimp
definition vdeg_v_eq_ph_pv_hp {p : a₀₀ = a₂₀} (r : p = p₁₀) :
vdeg_square r ⬝v s₁₁ = !idp_con ⬝ph (r ⬝pv s₁₁) ⬝hp !idp_con⁻¹ :=
by cases r; cases s₁₁; esimp
definition vp_eq_v {p : a₀₂ = a₂₂} (r : p₁₂ = p) :
s₁₁ ⬝vp r = s₁₁ ⬝v vdeg_square r :=
by cases r; cases s₁₁; esimp
end eq
|
509592ab9136817c7fcd5a968721bfe773f83cba
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/category_theory/groupoid.lean
|
4889ac68b322323ca3a077b95ee202ce6f6038f6
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,090
|
lean
|
/-
Copyright (c) 2018 Reid Barton All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Scott Morrison, David Wärn
-/
import category_theory.full_subcategory
import category_theory.products.basic
import category_theory.pi.basic
import category_theory.category.basic
import combinatorics.quiver.connected_component
/-!
# Groupoids
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
We define `groupoid` as a typeclass extending `category`,
asserting that all morphisms have inverses.
The instance `is_iso.of_groupoid (f : X ⟶ Y) : is_iso f` means that you can then write
`inv f` to access the inverse of any morphism `f`.
`groupoid.iso_equiv_hom : (X ≅ Y) ≃ (X ⟶ Y)` provides the equivalence between
isomorphisms and morphisms in a groupoid.
We provide a (non-instance) constructor `groupoid.of_is_iso` from an existing category
with `is_iso f` for every `f`.
## See also
See also `category_theory.core` for the groupoid of isomorphisms in a category.
-/
namespace category_theory
universes v v₂ u u₂ -- morphism levels before object levels. See note [category_theory universes].
/-- A `groupoid` is a category such that all morphisms are isomorphisms. -/
class groupoid (obj : Type u) extends category.{v} obj : Type (max u (v+1)) :=
(inv : Π {X Y : obj}, (X ⟶ Y) → (Y ⟶ X))
(inv_comp' : ∀ {X Y : obj} (f : X ⟶ Y), comp (inv f) f = id Y . obviously)
(comp_inv' : ∀ {X Y : obj} (f : X ⟶ Y), comp f (inv f) = id X . obviously)
restate_axiom groupoid.inv_comp'
restate_axiom groupoid.comp_inv'
initialize_simps_projections groupoid (-to_category_to_category_struct_to_quiver_hom,
to_category_to_category_struct_comp → comp, to_category_to_category_struct_id → id,
-to_category_to_category_struct, -to_category)
/--
A `large_groupoid` is a groupoid
where the objects live in `Type (u+1)` while the morphisms live in `Type u`.
-/
abbreviation large_groupoid (C : Type (u+1)) : Type (u+1) := groupoid.{u} C
/--
A `small_groupoid` is a groupoid
where the objects and morphisms live in the same universe.
-/
abbreviation small_groupoid (C : Type u) : Type (u+1) := groupoid.{u} C
section
variables {C : Type u} [groupoid.{v} C] {X Y : C}
@[priority 100] -- see Note [lower instance priority]
instance is_iso.of_groupoid (f : X ⟶ Y) : is_iso f :=
⟨⟨groupoid.inv f, groupoid.comp_inv f, groupoid.inv_comp f⟩⟩
@[simp] lemma groupoid.inv_eq_inv (f : X ⟶ Y) : groupoid.inv f = inv f :=
is_iso.eq_inv_of_hom_inv_id $ groupoid.comp_inv f
/-- `groupoid.inv` is involutive. -/
@[simps] def groupoid.inv_equiv : (X ⟶ Y) ≃ (Y ⟶ X) :=
⟨groupoid.inv, groupoid.inv, λ f, by simp, λ f, by simp⟩
@[priority 100]
instance groupoid_has_involutive_reverse : quiver.has_involutive_reverse C :=
{ reverse' := λ X Y f, groupoid.inv f,
inv' := λ X Y f, by { dsimp [quiver.reverse], simp, } }
@[simp] lemma groupoid.reverse_eq_inv (f : X ⟶ Y) : quiver.reverse f = groupoid.inv f := rfl
instance functor_map_reverse {D : Type*} [groupoid D] (F : C ⥤ D) :
F.to_prefunctor.map_reverse :=
{ map_reverse' := λ X Y f, by
simp only [quiver.reverse, quiver.has_reverse.reverse', groupoid.inv_eq_inv,
functor.to_prefunctor_map, functor.map_inv], }
variables (X Y)
/-- In a groupoid, isomorphisms are equivalent to morphisms. -/
def groupoid.iso_equiv_hom : (X ≅ Y) ≃ (X ⟶ Y) :=
{ to_fun := iso.hom,
inv_fun := λ f, ⟨f, groupoid.inv f⟩,
left_inv := λ i, iso.ext rfl,
right_inv := λ f, rfl }
variables (C)
/-- The functor from a groupoid `C` to its opposite sending every morphism to its inverse. -/
@[simps] noncomputable def groupoid.inv_functor : C ⥤ Cᵒᵖ :=
{ obj := opposite.op,
map := λ {X Y} f, (inv f).op }
end
section
variables {C : Type u} [category.{v} C]
/-- A category where every morphism `is_iso` is a groupoid. -/
noncomputable
def groupoid.of_is_iso (all_is_iso : ∀ {X Y : C} (f : X ⟶ Y), is_iso f) : groupoid.{v} C :=
{ inv := λ X Y f, inv f }
/-- A category with a unique morphism between any two objects is a groupoid -/
def groupoid.of_hom_unique (all_unique : ∀ {X Y : C}, unique (X ⟶ Y)) : groupoid.{v} C :=
{ inv := λ X Y f, all_unique.default }
end
instance induced_category.groupoid {C : Type u} (D : Type u₂) [groupoid.{v} D] (F : C → D) :
groupoid.{v} (induced_category D F) :=
{ inv := λ X Y f, groupoid.inv f,
inv_comp' := λ X Y f, groupoid.inv_comp f,
comp_inv' := λ X Y f, groupoid.comp_inv f,
.. induced_category.category F }
section
instance groupoid_pi {I : Type u} {J : I → Type u₂} [∀ i, groupoid.{v} (J i)] :
groupoid.{max u v} (Π i : I, J i) :=
{ inv := λ (x y : Π i, J i) (f : Π i, x i ⟶ y i), (λ i : I, groupoid.inv (f i)), }
instance groupoid_prod {α : Type u} {β : Type v} [groupoid.{u₂} α] [groupoid.{v₂} β] :
groupoid.{max u₂ v₂} (α × β) :=
{ inv := λ (x y : α × β) (f : x ⟶ y), (groupoid.inv f.1, groupoid.inv f.2) }
end
end category_theory
|
fa7ab06df612a1ed5b85db14b10f47d2f815eae5
|
4e3bf8e2b29061457a887ac8889e88fa5aa0e34c
|
/lean/love02_tactical_proofs_homework_sheet.lean
|
3430650abd9c5638a4cbbe58ef4e025fbe1e287d
|
[] |
no_license
|
mukeshtiwari/logical_verification_2019
|
9f964c067a71f65eb8884743273fbeef99e6503d
|
16f62717f55ed5b7b87e03ae0134791a9bef9b9a
|
refs/heads/master
| 1,619,158,844,208
| 1,585,139,500,000
| 1,585,139,500,000
| 249,906,380
| 0
| 0
| null | 1,585,118,728,000
| 1,585,118,727,000
| null |
UTF-8
|
Lean
| false
| false
| 1,666
|
lean
|
/- LoVe Homework 2: Tactical Proofs -/
import .love02_tactical_proofs_exercise
namespace LoVe
/- Question 1: Connectives and Quantifiers -/
/- 1.1. Complete the following proofs using basic tactics. -/
lemma B (a b c : Prop) :
(a → b) → (c → a) → c → b :=
sorry
lemma S (a b c : Prop) :
(a → b → c) → (a → b) → a → c :=
sorry
lemma more_nonsense (a b c d : Prop) :
((a → b) → c → d) → c → b → d :=
sorry
lemma even_more_nonsense (a b c : Prop) :
(a → b) → (a → c) → a → b → c :=
sorry
/- 1.2. Prove the following lemma. -/
lemma weak_peirce (a b : Prop) :
((((a → b) → a) → a) → b) → b :=
sorry
/- Question 2 (**optional**): Logical Connectives -/
/- 2.1 (**optional**). Prove the following property about double negation.
Hint: You will need to apply the elimination rule for `false` at a key point in
the proof. -/
lemma herman (p : Prop) : ¬¬ (¬¬ p → p) :=
sorry
/- 2.2 (**optional**). Prove the missing link in our chain of classical axiom
implications.
Hint: You will need to apply the double negation hypothesis for `p ∨ ¬ p`. You
will also need the left and right introduction rules for `or` at some point. -/
#check excluded_middle
#check peirce
#check double_negation
lemma em_of_dn : double_negation → excluded_middle :=
sorry
/- 2.3 (**optional**). We have proved three of the six possible implications
between `excluded_middle`, `peirce`, and `double_negation`. State and prove the
three missing implications, exploiting the three theorems we already have. -/
#check peirce_of_em
#check dn_of_peirce
#check em_of_dn
-- enter your solution here
end LoVe
|
ba2981f0f957c2d8fab99cf6f076e751d78c00bf
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/number_theory/prime_counting.lean
|
80d226d27dfa81961a361ff217e3952fcd814501
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,410
|
lean
|
/-
Copyright (c) 2021 Bolton Bailey. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bolton Bailey
-/
import data.nat.prime
import data.nat.totient
import algebra.periodic
import data.finset.locally_finite
import data.nat.count
import data.nat.nth
/-!
# The Prime Counting Function
In this file we define the prime counting function: the function on natural numbers that returns
the number of primes less than or equal to its input.
## Main Results
The main definitions for this file are
- `nat.prime_counting`: The prime counting function π
- `nat.prime_counting'`: π(n - 1)
We then prove that these are monotone in `nat.monotone_prime_counting` and
`nat.monotone_prime_counting'`. The last main theorem `nat.prime_counting'_add_le` is an upper
bound on `π'` which arises by observing that all numbers greater than `k` and not coprime to `k`
are not prime, and so only at most `φ(k)/k` fraction of the numbers from `k` to `n` are prime.
## Notation
We use the standard notation `π` to represent the prime counting function (and `π'` to represent
the reindexed version).
-/
namespace nat
open finset
/--
A variant of the traditional prime counting function which gives the number of primes
*strictly* less than the input. More convenient for avoiding off-by-one errors.
-/
def prime_counting' : ℕ → ℕ := nat.count prime
/-- The prime counting function: Returns the number of primes less than or equal to the input. -/
def prime_counting (n : ℕ) : ℕ := prime_counting' (n + 1)
localized "notation (name := prime_counting) `π` := nat.prime_counting" in nat
localized "notation (name := prime_counting') `π'` := nat.prime_counting'" in nat
lemma monotone_prime_counting' : monotone prime_counting' := count_monotone prime
lemma monotone_prime_counting : monotone prime_counting :=
λ a b a_le_b, monotone_prime_counting' (add_le_add_right a_le_b 1)
@[simp] lemma prime_counting'_nth_eq (n : ℕ) : π' (nth prime n) = n :=
count_nth_of_infinite _ infinite_set_of_prime _
@[simp] lemma prime_nth_prime (n : ℕ) : prime (nth prime n) :=
nth_mem_of_infinite _ infinite_set_of_prime _
/-- A linear upper bound on the size of the `prime_counting'` function -/
lemma prime_counting'_add_le {a k : ℕ} (h0 : 0 < a) (h1 : a < k) (n : ℕ) :
π' (k + n) ≤ π' k + nat.totient a * (n / a + 1) :=
calc π' (k + n)
≤ ((range k).filter (prime)).card + ((Ico k (k + n)).filter (prime)).card :
begin
rw [prime_counting', count_eq_card_filter_range, range_eq_Ico,
←Ico_union_Ico_eq_Ico (zero_le k) (le_self_add), filter_union],
apply card_union_le,
end
... ≤ π' k + ((Ico k (k + n)).filter (prime)).card :
by rw [prime_counting', count_eq_card_filter_range]
... ≤ π' k + ((Ico k (k + n)).filter (coprime a)).card :
begin
refine add_le_add_left (card_le_of_subset _) k.prime_counting',
simp only [subset_iff, and_imp, mem_filter, mem_Ico],
intros p succ_k_le_p p_lt_n p_prime,
split,
{ exact ⟨succ_k_le_p, p_lt_n⟩, },
{ rw coprime_comm,
exact coprime_of_lt_prime h0 (gt_of_ge_of_gt succ_k_le_p h1) p_prime, },
end
... ≤ π' k + totient a * (n / a + 1) :
begin
rw [add_le_add_iff_left],
exact Ico_filter_coprime_le k n h0,
end
end nat
|
e35a80c89cf30b409f55158d719eb9546186d654
|
e0f9ba56b7fedc16ef8697f6caeef5898b435143
|
/src/data/finset.lean
|
a7e251f37da8cf49aa1d5bfde6183dad2c643bf3
|
[
"Apache-2.0"
] |
permissive
|
anrddh/mathlib
|
6a374da53c7e3a35cb0298b0cd67824efef362b4
|
a4266a01d2dcb10de19369307c986d038c7bb6a6
|
refs/heads/master
| 1,656,710,827,909
| 1,589,560,456,000
| 1,589,560,456,000
| 264,271,800
| 0
| 0
|
Apache-2.0
| 1,589,568,062,000
| 1,589,568,061,000
| null |
UTF-8
|
Lean
| false
| false
| 122,816
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Jeremy Avigad, Minchao Wu, Mario Carneiro
Finite sets.
-/
import data.multiset
import tactic.monotonicity
import tactic.apply
open multiset subtype nat
variables {α : Type*} {β : Type*} {γ : Type*}
/-- `finset α` is the type of finite sets of elements of `α`. It is implemented
as a multiset (a list up to permutation) which has no duplicate elements. -/
structure finset (α : Type*) :=
(val : multiset α)
(nodup : nodup val)
namespace finset
theorem eq_of_veq : ∀ {s t : finset α}, s.1 = t.1 → s = t
| ⟨s, _⟩ ⟨t, _⟩ rfl := rfl
@[simp] theorem val_inj {s t : finset α} : s.1 = t.1 ↔ s = t :=
⟨eq_of_veq, congr_arg _⟩
@[simp] theorem erase_dup_eq_self [decidable_eq α] (s : finset α) : erase_dup s.1 = s.1 :=
erase_dup_eq_self.2 s.2
instance has_decidable_eq [decidable_eq α] : decidable_eq (finset α)
| s₁ s₂ := decidable_of_iff _ val_inj
/- membership -/
instance : has_mem α (finset α) := ⟨λ a s, a ∈ s.1⟩
theorem mem_def {a : α} {s : finset α} : a ∈ s ↔ a ∈ s.1 := iff.rfl
@[simp] theorem mem_mk {a : α} {s nd} : a ∈ @finset.mk α s nd ↔ a ∈ s := iff.rfl
instance decidable_mem [h : decidable_eq α] (a : α) (s : finset α) : decidable (a ∈ s) :=
multiset.decidable_mem _ _
/-! ### set coercion -/
/-- Convert a finset to a set in the natural way. -/
instance : has_lift (finset α) (set α) := ⟨λ s, {x | x ∈ s}⟩
@[simp] lemma mem_coe {a : α} {s : finset α} : a ∈ (↑s : set α) ↔ a ∈ s := iff.rfl
@[simp] lemma set_of_mem {α} {s : finset α} : {a | a ∈ s} = ↑s := rfl
instance decidable_mem' [decidable_eq α] (a : α) (s : finset α) :
decidable (a ∈ (↑s : set α)) := s.decidable_mem _
/-! ### extensionality -/
theorem ext {s₁ s₂ : finset α} : s₁ = s₂ ↔ ∀ a, a ∈ s₁ ↔ a ∈ s₂ :=
val_inj.symm.trans $ nodup_ext s₁.2 s₂.2
@[ext]
theorem ext' {s₁ s₂ : finset α} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
ext.2
@[simp] theorem coe_inj {s₁ s₂ : finset α} : (↑s₁ : set α) = ↑s₂ ↔ s₁ = s₂ :=
set.ext_iff.trans ext.symm
lemma coe_injective {α} : function.injective (coe : finset α → set α) :=
λ s t, coe_inj.1
/-! ### subset -/
instance : has_subset (finset α) := ⟨λ s₁ s₂, ∀ ⦃a⦄, a ∈ s₁ → a ∈ s₂⟩
theorem subset_def {s₁ s₂ : finset α} : s₁ ⊆ s₂ ↔ s₁.1 ⊆ s₂.1 := iff.rfl
@[simp] theorem subset.refl (s : finset α) : s ⊆ s := subset.refl _
theorem subset.trans {s₁ s₂ s₃ : finset α} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ := subset.trans
theorem superset.trans {s₁ s₂ s₃ : finset α} : s₁ ⊇ s₂ → s₂ ⊇ s₃ → s₁ ⊇ s₃ :=
λ h' h, subset.trans h h'
-- TODO: these should be global attributes, but this will require fixing other files
local attribute [trans] subset.trans superset.trans
theorem mem_of_subset {s₁ s₂ : finset α} {a : α} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := mem_of_subset
theorem subset.antisymm {s₁ s₂ : finset α} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ :=
ext.2 $ λ a, ⟨@H₁ a, @H₂ a⟩
theorem subset_iff {s₁ s₂ : finset α} : s₁ ⊆ s₂ ↔ ∀ ⦃x⦄, x ∈ s₁ → x ∈ s₂ := iff.rfl
@[simp] theorem coe_subset {s₁ s₂ : finset α} :
(↑s₁ : set α) ⊆ ↑s₂ ↔ s₁ ⊆ s₂ := iff.rfl
@[simp] theorem val_le_iff {s₁ s₂ : finset α} : s₁.1 ≤ s₂.1 ↔ s₁ ⊆ s₂ := le_iff_subset s₁.2
instance : has_ssubset (finset α) := ⟨λa b, a ⊆ b ∧ ¬ b ⊆ a⟩
instance : partial_order (finset α) :=
{ le := (⊆),
lt := (⊂),
le_refl := subset.refl,
le_trans := @subset.trans _,
le_antisymm := @subset.antisymm _ }
theorem subset.antisymm_iff {s₁ s₂ : finset α} : s₁ = s₂ ↔ s₁ ⊆ s₂ ∧ s₂ ⊆ s₁ :=
le_antisymm_iff
@[simp] theorem le_iff_subset {s₁ s₂ : finset α} : s₁ ≤ s₂ ↔ s₁ ⊆ s₂ := iff.rfl
@[simp] theorem lt_iff_ssubset {s₁ s₂ : finset α} : s₁ < s₂ ↔ s₁ ⊂ s₂ := iff.rfl
@[simp] lemma coe_ssubset {s₁ s₂ : finset α} : (↑s₁ : set α) ⊂ ↑s₂ ↔ s₁ ⊂ s₂ :=
show (↑s₁ : set α) ⊂ ↑s₂ ↔ s₁ ⊆ s₂ ∧ ¬s₂ ⊆ s₁,
by simp only [set.ssubset_def, finset.coe_subset]
@[simp] theorem val_lt_iff {s₁ s₂ : finset α} : s₁.1 < s₂.1 ↔ s₁ ⊂ s₂ :=
and_congr val_le_iff $ not_congr val_le_iff
/-! ### Nonempty -/
/-- The property `s.nonempty` expresses the fact that the finset `s` is not empty. It should be used
in theorem assumptions instead of `∃ x, x ∈ s` or `s ≠ ∅` as it gives access to a nice API thanks
to the dot notation. -/
protected def nonempty (s : finset α) : Prop := ∃ x:α, x ∈ s
@[norm_cast] lemma coe_nonempty {s : finset α} : (↑s:set α).nonempty ↔ s.nonempty := iff.rfl
lemma nonempty.bex {s : finset α} (h : s.nonempty) : ∃ x:α, x ∈ s := h
lemma nonempty.mono {s t : finset α} (hst : s ⊆ t) (hs : s.nonempty) : t.nonempty :=
set.nonempty.mono hst hs
/-! ### empty -/
/-- The empty finset -/
protected def empty : finset α := ⟨0, nodup_zero⟩
instance : has_emptyc (finset α) := ⟨finset.empty⟩
instance : inhabited (finset α) := ⟨∅⟩
@[simp] theorem empty_val : (∅ : finset α).1 = 0 := rfl
@[simp] theorem not_mem_empty (a : α) : a ∉ (∅ : finset α) := id
@[simp] theorem ne_empty_of_mem {a : α} {s : finset α} (h : a ∈ s) : s ≠ ∅
| e := not_mem_empty a $ e ▸ h
@[simp] theorem empty_subset (s : finset α) : ∅ ⊆ s := zero_subset _
theorem eq_empty_of_forall_not_mem {s : finset α} (H : ∀x, x ∉ s) : s = ∅ :=
eq_of_veq (eq_zero_of_forall_not_mem H)
lemma eq_empty_iff_forall_not_mem {s : finset α} : s = ∅ ↔ ∀ x, x ∉ s :=
⟨by rintro rfl x; exact id, λ h, eq_empty_of_forall_not_mem h⟩
@[simp] theorem val_eq_zero {s : finset α} : s.1 = 0 ↔ s = ∅ := @val_inj _ s ∅
theorem subset_empty {s : finset α} : s ⊆ ∅ ↔ s = ∅ := subset_zero.trans val_eq_zero
theorem nonempty_of_ne_empty {s : finset α} (h : s ≠ ∅) : s.nonempty :=
exists_mem_of_ne_zero (mt val_eq_zero.1 h)
theorem nonempty_iff_ne_empty {s : finset α} : s.nonempty ↔ s ≠ ∅ :=
⟨λ ⟨a, ha⟩, ne_empty_of_mem ha, nonempty_of_ne_empty⟩
theorem eq_empty_or_nonempty (s : finset α) : s = ∅ ∨ s.nonempty :=
classical.by_cases or.inl (λ h, or.inr (nonempty_of_ne_empty h))
@[simp] lemma coe_empty : ↑(∅ : finset α) = (∅ : set α) := rfl
/-! ### singleton -/
/--
`finset.singleton a` is the set `{a}` containing `a` and nothing else.
This differs from `singleton a` in that it does not require a `decidable_eq` instance for `α`.
-/
def singleton (a : α) : finset α := ⟨_, nodup_singleton a⟩
local prefix `ι`:90 := singleton
@[simp] theorem singleton_val (a : α) : (ι a).1 = a :: 0 := rfl
@[simp] theorem mem_singleton {a b : α} : b ∈ ι a ↔ b = a := mem_singleton
theorem not_mem_singleton {a b : α} : a ∉ ι b ↔ a ≠ b := not_iff_not_of_iff mem_singleton
theorem mem_singleton_self (a : α) : a ∈ ι a := or.inl rfl
theorem singleton_inj {a b : α} : ι a = ι b ↔ a = b :=
⟨λ h, mem_singleton.1 (h ▸ mem_singleton_self _), congr_arg _⟩
@[simp] theorem singleton_ne_empty (a : α) : ι a ≠ ∅ := ne_empty_of_mem (mem_singleton_self _)
@[simp] lemma coe_singleton (a : α) : ↑(ι a) = ({a} : set α) := rfl
lemma eq_singleton_iff_unique_mem {s : finset α} {a : α} :
s = finset.singleton a ↔ a ∈ s ∧ ∀ x ∈ s, x = a :=
begin
split; intro t,
rw t,
refine ⟨finset.mem_singleton_self _, λ _, finset.mem_singleton.1⟩,
ext, rw finset.mem_singleton,
refine ⟨t.right _, λ r, r.symm ▸ t.left⟩
end
lemma singleton_iff_unique_mem (s : finset α) : (∃ a, s = finset.singleton a) ↔ ∃! a, a ∈ s :=
by simp only [eq_singleton_iff_unique_mem, exists_unique]
@[simp] lemma singleton_subset_iff {s : finset α} {a : α} :
singleton a ⊆ s ↔ a ∈ s :=
set.singleton_subset_iff
/-! ### insert -/
section decidable_eq
variables [decidable_eq α]
/-- `insert a s` is the set `{a} ∪ s` containing `a` and the elements of `s`. -/
instance : has_insert α (finset α) := ⟨λ a s, ⟨_, nodup_ndinsert a s.2⟩⟩
theorem insert_def (a : α) (s : finset α) : insert a s = ⟨_, nodup_ndinsert a s.2⟩ := rfl
@[simp] theorem insert_val (a : α) (s : finset α) : (insert a s).1 = ndinsert a s.1 := rfl
theorem insert_val' (a : α) (s : finset α) : (insert a s).1 = erase_dup (a :: s.1) :=
by rw [erase_dup_cons, erase_dup_eq_self]; refl
theorem insert_val_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : (insert a s).1 = a :: s.1 :=
by rw [insert_val, ndinsert_of_not_mem h]
@[simp] theorem mem_insert {a b : α} {s : finset α} : a ∈ insert b s ↔ a = b ∨ a ∈ s := mem_ndinsert
theorem mem_insert_self (a : α) (s : finset α) : a ∈ insert a s := mem_ndinsert_self a s.1
theorem mem_insert_of_mem {a b : α} {s : finset α} (h : a ∈ s) : a ∈ insert b s := mem_ndinsert_of_mem h
theorem mem_of_mem_insert_of_ne {a b : α} {s : finset α} (h : b ∈ insert a s) : b ≠ a → b ∈ s :=
(mem_insert.1 h).resolve_left
@[simp] lemma coe_insert (a : α) (s : finset α) : ↑(insert a s) = (insert a ↑s : set α) :=
set.ext $ λ x, by simp only [mem_coe, mem_insert, set.mem_insert_iff]
@[simp] theorem insert_eq_of_mem {a : α} {s : finset α} (h : a ∈ s) : insert a s = s :=
eq_of_veq $ ndinsert_of_mem h
theorem insert.comm (a b : α) (s : finset α) : insert a (insert b s) = insert b (insert a s) :=
ext.2 $ λ x, by simp only [finset.mem_insert, or.left_comm]
@[simp] theorem insert_idem (a : α) (s : finset α) : insert a (insert a s) = insert a s :=
ext.2 $ λ x, by simp only [finset.mem_insert, or.assoc.symm, or_self]
@[simp] theorem insert_ne_empty (a : α) (s : finset α) : insert a s ≠ ∅ :=
ne_empty_of_mem (mem_insert_self a s)
lemma ne_insert_of_not_mem (s t : finset α) {a : α} (h : a ∉ s) :
s ≠ insert a t :=
by { contrapose! h, simp [h] }
theorem insert_subset {a : α} {s t : finset α} : insert a s ⊆ t ↔ a ∈ t ∧ s ⊆ t :=
by simp only [subset_iff, mem_insert, forall_eq, or_imp_distrib, forall_and_distrib]
theorem subset_insert (a : α) (s : finset α) : s ⊆ insert a s :=
λ b, mem_insert_of_mem
theorem insert_subset_insert (a : α) {s t : finset α} (h : s ⊆ t) : insert a s ⊆ insert a t :=
insert_subset.2 ⟨mem_insert_self _ _, subset.trans h (subset_insert _ _)⟩
lemma ssubset_iff {s t : finset α} : s ⊂ t ↔ (∃a, a ∉ s ∧ insert a s ⊆ t) :=
iff.intro
(assume ⟨h₁, h₂⟩,
have ∃a ∈ t, a ∉ s, by simpa only [finset.subset_iff, classical.not_forall] using h₂,
let ⟨a, hat, has⟩ := this in ⟨a, has, insert_subset.mpr ⟨hat, h₁⟩⟩)
(assume ⟨a, hat, has⟩,
let ⟨h₁, h₂⟩ := insert_subset.mp has in
⟨h₂, assume h, hat $ h h₁⟩)
lemma ssubset_insert {s : finset α} {a : α} (h : a ∉ s) : s ⊂ insert a s :=
ssubset_iff.mpr ⟨a, h, subset.refl _⟩
@[recursor 6] protected theorem induction {α : Type*} {p : finset α → Prop} [decidable_eq α]
(h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α}, a ∉ s → p s → p (insert a s)) : ∀ s, p s
| ⟨s, nd⟩ := multiset.induction_on s (λ _, h₁) (λ a s IH nd, begin
cases nodup_cons.1 nd with m nd',
rw [← (eq_of_veq _ : insert a (finset.mk s _) = ⟨a::s, nd⟩)],
{ exact h₂ (by exact m) (IH nd') },
{ rw [insert_val, ndinsert_of_not_mem m] }
end) nd
/--
To prove a proposition about an arbitrary `finset α`,
it suffices to prove it for the empty `finset`,
and to show that if it holds for some `finset α`,
then it holds for the `finset` obtained by inserting a new element.
-/
@[elab_as_eliminator] protected theorem induction_on {α : Type*} {p : finset α → Prop} [decidable_eq α]
(s : finset α) (h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α}, a ∉ s → p s → p (insert a s)) : p s :=
finset.induction h₁ h₂ s
@[simp] theorem singleton_eq_singleton (a : α) : {a} = ι a := rfl
theorem insert_empty_eq_singleton (a : α) : {a} = ι a := rfl
theorem insert_singleton_self_eq (a : α) : ({a, a} : finset α) = ι a :=
insert_eq_of_mem $ mem_singleton_self _
@[simp] theorem insert_singleton_self_eq' {a : α} : insert a (ι a) = ι a :=
insert_singleton_self_eq _
/-! ### union -/
/-- `s ∪ t` is the set such that `a ∈ s ∪ t` iff `a ∈ s` or `a ∈ t`. -/
instance : has_union (finset α) := ⟨λ s₁ s₂, ⟨_, nodup_ndunion s₁.1 s₂.2⟩⟩
theorem union_val_nd (s₁ s₂ : finset α) : (s₁ ∪ s₂).1 = ndunion s₁.1 s₂.1 := rfl
@[simp] theorem union_val (s₁ s₂ : finset α) : (s₁ ∪ s₂).1 = s₁.1 ∪ s₂.1 :=
ndunion_eq_union s₁.2
@[simp] theorem mem_union {a : α} {s₁ s₂ : finset α} : a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ ∨ a ∈ s₂ := mem_ndunion
theorem mem_union_left {a : α} {s₁ : finset α} (s₂ : finset α) (h : a ∈ s₁) : a ∈ s₁ ∪ s₂ := mem_union.2 $ or.inl h
theorem mem_union_right {a : α} {s₂ : finset α} (s₁ : finset α) (h : a ∈ s₂) : a ∈ s₁ ∪ s₂ := mem_union.2 $ or.inr h
theorem not_mem_union {a : α} {s₁ s₂ : finset α} : a ∉ s₁ ∪ s₂ ↔ a ∉ s₁ ∧ a ∉ s₂ :=
by rw [mem_union, not_or_distrib]
@[simp] lemma coe_union (s₁ s₂ : finset α) : ↑(s₁ ∪ s₂) = (↑s₁ ∪ ↑s₂ : set α) := set.ext $ λ x, mem_union
theorem union_subset {s₁ s₂ s₃ : finset α} (h₁ : s₁ ⊆ s₃) (h₂ : s₂ ⊆ s₃) : s₁ ∪ s₂ ⊆ s₃ :=
val_le_iff.1 (ndunion_le.2 ⟨h₁, val_le_iff.2 h₂⟩)
theorem subset_union_left (s₁ s₂ : finset α) : s₁ ⊆ s₁ ∪ s₂ := λ x, mem_union_left _
theorem subset_union_right (s₁ s₂ : finset α) : s₂ ⊆ s₁ ∪ s₂ := λ x, mem_union_right _
theorem union_comm (s₁ s₂ : finset α) : s₁ ∪ s₂ = s₂ ∪ s₁ :=
ext.2 $ λ x, by simp only [mem_union, or_comm]
instance : is_commutative (finset α) (∪) := ⟨union_comm⟩
@[simp] theorem union_assoc (s₁ s₂ s₃ : finset α) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) :=
ext.2 $ λ x, by simp only [mem_union, or_assoc]
instance : is_associative (finset α) (∪) := ⟨union_assoc⟩
@[simp] theorem union_idempotent (s : finset α) : s ∪ s = s :=
ext.2 $ λ _, mem_union.trans $ or_self _
instance : is_idempotent (finset α) (∪) := ⟨union_idempotent⟩
theorem union_left_comm (s₁ s₂ s₃ : finset α) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) :=
ext.2 $ λ _, by simp only [mem_union, or.left_comm]
theorem union_right_comm (s₁ s₂ s₃ : finset α) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ :=
ext.2 $ λ x, by simp only [mem_union, or_assoc, or_comm (x ∈ s₂)]
theorem union_self (s : finset α) : s ∪ s = s := union_idempotent s
@[simp] theorem union_empty (s : finset α) : s ∪ ∅ = s :=
ext.2 $ λ x, mem_union.trans $ or_false _
@[simp] theorem empty_union (s : finset α) : ∅ ∪ s = s :=
ext.2 $ λ x, mem_union.trans $ false_or _
theorem insert_eq (a : α) (s : finset α) : insert a s = {a} ∪ s := rfl
@[simp] theorem insert_union (a : α) (s t : finset α) : insert a s ∪ t = insert a (s ∪ t) :=
by simp only [insert_eq, union_assoc]
@[simp] theorem union_insert (a : α) (s t : finset α) : s ∪ insert a t = insert a (s ∪ t) :=
by simp only [insert_eq, union_left_comm]
theorem insert_union_distrib (a : α) (s t : finset α) : insert a (s ∪ t) = insert a s ∪ insert a t :=
by simp only [insert_union, union_insert, insert_idem]
@[simp] lemma union_eq_left_iff_subset {s t : finset α} :
s ∪ t = s ↔ t ⊆ s :=
begin
split,
{ assume h,
have : t ⊆ s ∪ t := subset_union_right _ _,
rwa h at this },
{ assume h,
exact subset.antisymm (union_subset (subset.refl _) h) (subset_union_left _ _) }
end
@[simp] lemma left_eq_union_iff_subset {s t : finset α} :
s = s ∪ t ↔ t ⊆ s :=
by rw [← union_eq_left_iff_subset, eq_comm]
@[simp] lemma union_eq_right_iff_subset {s t : finset α} :
t ∪ s = s ↔ t ⊆ s :=
by rw [union_comm, union_eq_left_iff_subset]
@[simp] lemma right_eq_union_iff_subset {s t : finset α} :
s = t ∪ s ↔ t ⊆ s :=
by rw [← union_eq_right_iff_subset, eq_comm]
/-! ### inter -/
/-- `s ∩ t` is the set such that `a ∈ s ∩ t` iff `a ∈ s` and `a ∈ t`. -/
instance : has_inter (finset α) := ⟨λ s₁ s₂, ⟨_, nodup_ndinter s₂.1 s₁.2⟩⟩
theorem inter_val_nd (s₁ s₂ : finset α) : (s₁ ∩ s₂).1 = ndinter s₁.1 s₂.1 := rfl
@[simp] theorem inter_val (s₁ s₂ : finset α) : (s₁ ∩ s₂).1 = s₁.1 ∩ s₂.1 :=
ndinter_eq_inter s₁.2
@[simp] theorem mem_inter {a : α} {s₁ s₂ : finset α} : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ := mem_ndinter
theorem mem_of_mem_inter_left {a : α} {s₁ s₂ : finset α} (h : a ∈ s₁ ∩ s₂) : a ∈ s₁ := (mem_inter.1 h).1
theorem mem_of_mem_inter_right {a : α} {s₁ s₂ : finset α} (h : a ∈ s₁ ∩ s₂) : a ∈ s₂ := (mem_inter.1 h).2
theorem mem_inter_of_mem {a : α} {s₁ s₂ : finset α} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
and_imp.1 mem_inter.2
theorem inter_subset_left (s₁ s₂ : finset α) : s₁ ∩ s₂ ⊆ s₁ := λ a, mem_of_mem_inter_left
theorem inter_subset_right (s₁ s₂ : finset α) : s₁ ∩ s₂ ⊆ s₂ := λ a, mem_of_mem_inter_right
theorem subset_inter {s₁ s₂ s₃ : finset α} : s₁ ⊆ s₂ → s₁ ⊆ s₃ → s₁ ⊆ s₂ ∩ s₃ :=
by simp only [subset_iff, mem_inter] {contextual:=tt}; intros; split; trivial
@[simp] lemma coe_inter (s₁ s₂ : finset α) : ↑(s₁ ∩ s₂) = (↑s₁ ∩ ↑s₂ : set α) := set.ext $ λ _, mem_inter
@[simp] theorem union_inter_cancel_left {s t : finset α} : (s ∪ t) ∩ s = s :=
by rw [← coe_inj, coe_inter, coe_union, set.union_inter_cancel_left]
@[simp] theorem union_inter_cancel_right {s t : finset α} : (s ∪ t) ∩ t = t :=
by rw [← coe_inj, coe_inter, coe_union, set.union_inter_cancel_right]
theorem inter_comm (s₁ s₂ : finset α) : s₁ ∩ s₂ = s₂ ∩ s₁ :=
ext.2 $ λ _, by simp only [mem_inter, and_comm]
@[simp] theorem inter_assoc (s₁ s₂ s₃ : finset α) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) :=
ext.2 $ λ _, by simp only [mem_inter, and_assoc]
theorem inter_left_comm (s₁ s₂ s₃ : finset α) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
ext.2 $ λ _, by simp only [mem_inter, and.left_comm]
theorem inter_right_comm (s₁ s₂ s₃ : finset α) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
ext.2 $ λ _, by simp only [mem_inter, and.right_comm]
@[simp] theorem inter_self (s : finset α) : s ∩ s = s :=
ext.2 $ λ _, mem_inter.trans $ and_self _
@[simp] theorem inter_empty (s : finset α) : s ∩ ∅ = ∅ :=
ext.2 $ λ _, mem_inter.trans $ and_false _
@[simp] theorem empty_inter (s : finset α) : ∅ ∩ s = ∅ :=
ext.2 $ λ _, mem_inter.trans $ false_and _
@[simp] lemma inter_union_self (s t : finset α) : s ∩ (t ∪ s) = s :=
by rw [inter_comm, union_inter_cancel_right]
@[simp] theorem insert_inter_of_mem {s₁ s₂ : finset α} {a : α} (h : a ∈ s₂) :
insert a s₁ ∩ s₂ = insert a (s₁ ∩ s₂) :=
ext.2 $ λ x, have x = a ∨ x ∈ s₂ ↔ x ∈ s₂, from or_iff_right_of_imp $ by rintro rfl; exact h,
by simp only [mem_inter, mem_insert, or_and_distrib_left, this]
@[simp] theorem inter_insert_of_mem {s₁ s₂ : finset α} {a : α} (h : a ∈ s₁) :
s₁ ∩ insert a s₂ = insert a (s₁ ∩ s₂) :=
by rw [inter_comm, insert_inter_of_mem h, inter_comm]
@[simp] theorem insert_inter_of_not_mem {s₁ s₂ : finset α} {a : α} (h : a ∉ s₂) :
insert a s₁ ∩ s₂ = s₁ ∩ s₂ :=
ext.2 $ λ x, have ¬ (x = a ∧ x ∈ s₂), by rintro ⟨rfl, H⟩; exact h H,
by simp only [mem_inter, mem_insert, or_and_distrib_right, this, false_or]
@[simp] theorem inter_insert_of_not_mem {s₁ s₂ : finset α} {a : α} (h : a ∉ s₁) :
s₁ ∩ insert a s₂ = s₁ ∩ s₂ :=
by rw [inter_comm, insert_inter_of_not_mem h, inter_comm]
@[simp] theorem singleton_inter_of_mem {a : α} {s : finset α} (H : a ∈ s) : ι a ∩ s = ι a :=
show insert a ∅ ∩ s = insert a ∅, by rw [insert_inter_of_mem H, empty_inter]
@[simp] theorem singleton_inter_of_not_mem {a : α} {s : finset α} (H : a ∉ s) : ι a ∩ s = ∅ :=
eq_empty_of_forall_not_mem $ by simp only [mem_inter, mem_singleton]; rintro x ⟨rfl, h⟩; exact H h
@[simp] theorem inter_singleton_of_mem {a : α} {s : finset α} (h : a ∈ s) : s ∩ ι a = ι a :=
by rw [inter_comm, singleton_inter_of_mem h]
@[simp] theorem inter_singleton_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : s ∩ ι a = ∅ :=
by rw [inter_comm, singleton_inter_of_not_mem h]
@[mono]
lemma inter_subset_inter {x y s t : finset α} (h : x ⊆ y) (h' : s ⊆ t) : x ∩ s ⊆ y ∩ t :=
begin
intros a a_in,
rw finset.mem_inter at a_in ⊢,
exact ⟨h a_in.1, h' a_in.2⟩
end
lemma inter_subset_inter_right {x y s : finset α} (h : x ⊆ y) : x ∩ s ⊆ y ∩ s :=
finset.inter_subset_inter h (finset.subset.refl _)
lemma inter_subset_inter_left {x y s : finset α} (h : x ⊆ y) : s ∩ x ⊆ s ∩ y :=
finset.inter_subset_inter (finset.subset.refl _) h
/-! ### lattice laws -/
instance : lattice (finset α) :=
{ sup := (∪),
sup_le := assume a b c, union_subset,
le_sup_left := subset_union_left,
le_sup_right := subset_union_right,
inf := (∩),
le_inf := assume a b c, subset_inter,
inf_le_left := inter_subset_left,
inf_le_right := inter_subset_right,
..finset.partial_order }
@[simp] theorem sup_eq_union (s t : finset α) : s ⊔ t = s ∪ t := rfl
@[simp] theorem inf_eq_inter (s t : finset α) : s ⊓ t = s ∩ t := rfl
instance : semilattice_inf_bot (finset α) :=
{ bot := ∅, bot_le := empty_subset, ..finset.lattice }
instance {α : Type*} [decidable_eq α] : semilattice_sup_bot (finset α) :=
{ ..finset.semilattice_inf_bot, ..finset.lattice }
instance : distrib_lattice (finset α) :=
{ le_sup_inf := assume a b c, show (a ∪ b) ∩ (a ∪ c) ⊆ a ∪ b ∩ c,
by simp only [subset_iff, mem_inter, mem_union, and_imp, or_imp_distrib] {contextual:=tt};
simp only [true_or, imp_true_iff, true_and, or_true],
..finset.lattice }
theorem inter_distrib_left (s t u : finset α) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := inf_sup_left
theorem inter_distrib_right (s t u : finset α) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := inf_sup_right
theorem union_distrib_left (s t u : finset α) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := sup_inf_left
theorem union_distrib_right (s t u : finset α) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := sup_inf_right
lemma union_eq_empty_iff (A B : finset α) : A ∪ B = ∅ ↔ A = ∅ ∧ B = ∅ := sup_eq_bot_iff
/-! ### erase -/
/-- `erase s a` is the set `s - {a}`, that is, the elements of `s` which are
not equal to `a`. -/
def erase (s : finset α) (a : α) : finset α := ⟨_, nodup_erase_of_nodup a s.2⟩
@[simp] theorem erase_val (s : finset α) (a : α) : (erase s a).1 = s.1.erase a := rfl
@[simp] theorem mem_erase {a b : α} {s : finset α} : a ∈ erase s b ↔ a ≠ b ∧ a ∈ s :=
mem_erase_iff_of_nodup s.2
theorem not_mem_erase (a : α) (s : finset α) : a ∉ erase s a := mem_erase_of_nodup s.2
@[simp] theorem erase_empty (a : α) : erase ∅ a = ∅ := rfl
theorem ne_of_mem_erase {a b : α} {s : finset α} : b ∈ erase s a → b ≠ a :=
by simp only [mem_erase]; exact and.left
theorem mem_of_mem_erase {a b : α} {s : finset α} : b ∈ erase s a → b ∈ s := mem_of_mem_erase
theorem mem_erase_of_ne_of_mem {a b : α} {s : finset α} : a ≠ b → a ∈ s → a ∈ erase s b :=
by simp only [mem_erase]; exact and.intro
theorem erase_insert {a : α} {s : finset α} (h : a ∉ s) : erase (insert a s) a = s :=
ext.2 $ assume x, by simp only [mem_erase, mem_insert, and_or_distrib_left, not_and_self, false_or];
apply and_iff_right_of_imp; rintro H rfl; exact h H
theorem insert_erase {a : α} {s : finset α} (h : a ∈ s) : insert a (erase s a) = s :=
ext.2 $ assume x, by simp only [mem_insert, mem_erase, or_and_distrib_left, dec_em, true_and];
apply or_iff_right_of_imp; rintro rfl; exact h
theorem erase_subset_erase (a : α) {s t : finset α} (h : s ⊆ t) : erase s a ⊆ erase t a :=
val_le_iff.1 $ erase_le_erase _ $ val_le_iff.2 h
theorem erase_subset (a : α) (s : finset α) : erase s a ⊆ s := erase_subset _ _
@[simp] lemma coe_erase (a : α) (s : finset α) : ↑(erase s a) = (↑s \ {a} : set α) :=
set.ext $ λ _, mem_erase.trans $ by rw [and_comm, set.mem_diff, set.mem_singleton_iff]; refl
lemma erase_ssubset {a : α} {s : finset α} (h : a ∈ s) : s.erase a ⊂ s :=
calc s.erase a ⊂ insert a (s.erase a) : ssubset_insert $ not_mem_erase _ _
... = _ : insert_erase h
theorem erase_eq_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : erase s a = s :=
eq_of_veq $ erase_of_not_mem h
theorem subset_insert_iff {a : α} {s t : finset α} : s ⊆ insert a t ↔ erase s a ⊆ t :=
by simp only [subset_iff, or_iff_not_imp_left, mem_erase, mem_insert, and_imp];
exact forall_congr (λ x, forall_swap)
theorem erase_insert_subset (a : α) (s : finset α) : erase (insert a s) a ⊆ s :=
subset_insert_iff.1 $ subset.refl _
theorem insert_erase_subset (a : α) (s : finset α) : s ⊆ insert a (erase s a) :=
subset_insert_iff.2 $ subset.refl _
/-! ### sdiff -/
/-- `s \ t` is the set consisting of the elements of `s` that are not in `t`. -/
instance : has_sdiff (finset α) := ⟨λs₁ s₂, ⟨s₁.1 - s₂.1, nodup_of_le (sub_le_self _ _) s₁.2⟩⟩
@[simp] theorem mem_sdiff {a : α} {s₁ s₂ : finset α} :
a ∈ s₁ \ s₂ ↔ a ∈ s₁ ∧ a ∉ s₂ := mem_sub_of_nodup s₁.2
lemma not_mem_sdiff_of_mem_right {a : α} {s t : finset α} (h : a ∈ t) : a ∉ s \ t :=
by simp only [mem_sdiff, h, not_true, not_false_iff, and_false]
theorem sdiff_union_of_subset {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : (s₂ \ s₁) ∪ s₁ = s₂ :=
ext.2 $ λ a, by simpa only [mem_sdiff, mem_union, or_comm,
or_and_distrib_left, dec_em, and_true] using or_iff_right_of_imp (@h a)
theorem union_sdiff_of_subset {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁ ∪ (s₂ \ s₁) = s₂ :=
(union_comm _ _).trans (sdiff_union_of_subset h)
theorem inter_sdiff (s t u : finset α) : s ∩ (t \ u) = s ∩ t \ u :=
by { ext x, simp [and_assoc] }
@[simp] theorem inter_sdiff_self (s₁ s₂ : finset α) : s₁ ∩ (s₂ \ s₁) = ∅ :=
eq_empty_of_forall_not_mem $
by simp only [mem_inter, mem_sdiff]; rintro x ⟨h, _, hn⟩; exact hn h
@[simp] theorem sdiff_inter_self (s₁ s₂ : finset α) : (s₂ \ s₁) ∩ s₁ = ∅ :=
(inter_comm _ _).trans (inter_sdiff_self _ _)
@[simp] theorem sdiff_self (s₁ : finset α) : s₁ \ s₁ = ∅ :=
by ext; simp
theorem sdiff_inter_distrib_right (s₁ s₂ s₃ : finset α) : s₁ \ (s₂ ∩ s₃) = (s₁ \ s₂) ∪ (s₁ \ s₃) :=
by ext; simp only [and_or_distrib_left, mem_union, classical.not_and_distrib, mem_sdiff, mem_inter]
@[simp] theorem sdiff_inter_self_left (s₁ s₂ : finset α) : s₁ \ (s₁ ∩ s₂) = s₁ \ s₂ :=
by simp only [sdiff_inter_distrib_right, sdiff_self, empty_union]
@[simp] theorem sdiff_inter_self_right (s₁ s₂ : finset α) : s₁ \ (s₂ ∩ s₁) = s₁ \ s₂ :=
by simp only [sdiff_inter_distrib_right, sdiff_self, union_empty]
@[simp] theorem sdiff_empty {s₁ : finset α} : s₁ \ ∅ = s₁ :=
ext.2 (by simp)
@[mono]
theorem sdiff_subset_sdiff {s₁ s₂ t₁ t₂ : finset α} (h₁ : t₁ ⊆ t₂) (h₂ : s₂ ⊆ s₁) : t₁ \ s₁ ⊆ t₂ \ s₂ :=
by simpa only [subset_iff, mem_sdiff, and_imp] using λ a m₁ m₂, and.intro (h₁ m₁) (mt (@h₂ _) m₂)
theorem sdiff_subset_self {s₁ s₂ : finset α} : s₁ \ s₂ ⊆ s₁ :=
suffices s₁ \ s₂ ⊆ s₁ \ ∅, by simpa [sdiff_empty] using this,
sdiff_subset_sdiff (subset.refl _) (empty_subset _)
@[simp] lemma coe_sdiff (s₁ s₂ : finset α) : ↑(s₁ \ s₂) = (↑s₁ \ ↑s₂ : set α) :=
set.ext $ λ _, mem_sdiff
@[simp] theorem union_sdiff_self_eq_union {s t : finset α} : s ∪ (t \ s) = s ∪ t :=
ext.2 $ λ a, by simp only [mem_union, mem_sdiff, or_iff_not_imp_left,
imp_and_distrib, and_iff_left id]
@[simp] theorem sdiff_union_self_eq_union {s t : finset α} : (s \ t) ∪ t = s ∪ t :=
by rw [union_comm, union_sdiff_self_eq_union, union_comm]
lemma union_sdiff_symm {s t : finset α} : s ∪ (t \ s) = t ∪ (s \ t) :=
by rw [union_sdiff_self_eq_union, union_sdiff_self_eq_union, union_comm]
lemma sdiff_union_inter (s t : finset α) : (s \ t) ∪ (s ∩ t) = s :=
by { simp only [ext, mem_union, mem_sdiff, mem_inter], tauto }
@[simp] lemma sdiff_idem (s t : finset α) : s \ t \ t = s \ t :=
by { simp only [ext, mem_sdiff], tauto }
lemma sdiff_eq_empty_iff_subset {s t : finset α} : s \ t = ∅ ↔ s ⊆ t :=
by { rw [subset_iff, ext], simp }
@[simp] lemma empty_sdiff (s : finset α) : ∅ \ s = ∅ :=
by { rw sdiff_eq_empty_iff_subset, exact empty_subset _ }
lemma insert_sdiff_of_not_mem (s : finset α) {t : finset α} {x : α} (h : x ∉ t) :
(insert x s) \ t = insert x (s \ t) :=
begin
rw [← coe_inj, coe_insert, coe_sdiff, coe_sdiff, coe_insert],
exact set.insert_diff_of_not_mem ↑s h
end
lemma insert_sdiff_of_mem (s : finset α) {t : finset α} {x : α} (h : x ∈ t) :
(insert x s) \ t = s \ t :=
begin
rw [← coe_inj, coe_sdiff, coe_sdiff, coe_insert],
exact set.insert_diff_of_mem ↑s h
end
@[simp] lemma sdiff_subset (s t : finset α) : s \ t ⊆ s :=
by simp [subset_iff, mem_sdiff] {contextual := tt}
lemma union_sdiff_distrib (s₁ s₂ t : finset α) : (s₁ ∪ s₂) \ t = s₁ \ t ∪ s₂ \ t :=
by { simp only [ext, mem_sdiff, mem_union], tauto }
lemma sdiff_union_distrib (s t₁ t₂ : finset α) : s \ (t₁ ∪ t₂) = (s \ t₁) ∩ (s \ t₂) :=
by { simp only [ext, mem_union, mem_sdiff, mem_inter], tauto }
lemma union_sdiff_self (s t : finset α) : (s ∪ t) \ t = s \ t :=
by rw [union_sdiff_distrib, sdiff_self, union_empty]
lemma sdiff_singleton_eq_erase (a : α) (s : finset α) : s \ singleton a = erase s a :=
by { ext, rw [mem_erase, mem_sdiff, mem_singleton], tauto }
lemma sdiff_sdiff_self_left (s t : finset α) : s \ (s \ t) = s ∩ t :=
by { simp only [ext, mem_sdiff, mem_inter], tauto }
lemma inter_eq_inter_of_sdiff_eq_sdiff {s t₁ t₂ : finset α} : s \ t₁ = s \ t₂ → s ∩ t₁ = s ∩ t₂ :=
by { simp only [ext, mem_sdiff, mem_inter], intros b c, replace b := b c, split; tauto }
end decidable_eq
/-! ### attach -/
/-- `attach s` takes the elements of `s` and forms a new set of elements of the
subtype `{x // x ∈ s}`. -/
def attach (s : finset α) : finset {x // x ∈ s} := ⟨attach s.1, nodup_attach.2 s.2⟩
@[simp] theorem attach_val (s : finset α) : s.attach.1 = s.1.attach := rfl
@[simp] theorem mem_attach (s : finset α) : ∀ x, x ∈ s.attach := mem_attach _
@[simp] theorem attach_empty : attach (∅ : finset α) = ∅ := rfl
/-! ### piecewise -/
section piecewise
/-- `s.piecewise f g` is the function equal to `f` on the finset `s`, and to `g` on its complement. -/
def piecewise {α : Type*} {δ : α → Sort*} (s : finset α) (f g : Πi, δ i) [∀j, decidable (j ∈ s)] :
Πi, δ i :=
λi, if i ∈ s then f i else g i
variables {δ : α → Sort*} (s : finset α) (f g : Πi, δ i)
@[simp] lemma piecewise_insert_self [decidable_eq α] {j : α} [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g j = f j :=
by simp [piecewise]
@[simp] lemma piecewise_empty [∀i : α, decidable (i ∈ (∅ : finset α))] : piecewise ∅ f g = g :=
by { ext i, simp [piecewise] }
variable [∀j, decidable (j ∈ s)]
@[norm_cast] lemma piecewise_coe [∀j, decidable (j ∈ (↑s : set α))] :
(↑s : set α).piecewise f g = s.piecewise f g :=
by { ext, congr }
@[simp, priority 980]
lemma piecewise_eq_of_mem {i : α} (hi : i ∈ s) : s.piecewise f g i = f i :=
by simp [piecewise, hi]
@[simp, priority 980]
lemma piecewise_eq_of_not_mem {i : α} (hi : i ∉ s) : s.piecewise f g i = g i :=
by simp [piecewise, hi]
@[simp, priority 990]
lemma piecewise_insert_of_ne [decidable_eq α] {i j : α} [∀i, decidable (i ∈ insert j s)]
(h : i ≠ j) : (insert j s).piecewise f g i = s.piecewise f g i :=
by simp [piecewise, h]
lemma piecewise_insert [decidable_eq α] (j : α) [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g = function.update (s.piecewise f g) j (f j) :=
begin
classical,
rw [← piecewise_coe, ← piecewise_coe, ← set.piecewise_insert, ← coe_insert j s],
congr
end
lemma update_eq_piecewise {β : Type*} [decidable_eq α] (f : α → β) (i : α) (v : β) :
function.update f i v = piecewise (singleton i) (λj, v) f :=
begin
ext j,
by_cases h : j = i,
{ rw [h], simp },
{ simp [h] }
end
end piecewise
section decidable_pi_exists
variables {s : finset α}
instance decidable_dforall_finset {p : Πa∈s, Prop} [hp : ∀a (h : a ∈ s), decidable (p a h)] :
decidable (∀a (h : a ∈ s), p a h) :=
multiset.decidable_dforall_multiset
/-- decidable equality for functions whose domain is bounded by finsets -/
instance decidable_eq_pi_finset {β : α → Type*} [h : ∀a, decidable_eq (β a)] :
decidable_eq (Πa∈s, β a) :=
multiset.decidable_eq_pi_multiset
instance decidable_dexists_finset {p : Πa∈s, Prop} [hp : ∀a (h : a ∈ s), decidable (p a h)] :
decidable (∃a (h : a ∈ s), p a h) :=
multiset.decidable_dexists_multiset
end decidable_pi_exists
/-! ### filter -/
section filter
variables {p q : α → Prop} [decidable_pred p] [decidable_pred q]
/-- `filter p s` is the set of elements of `s` that satisfy `p`. -/
def filter (p : α → Prop) [decidable_pred p] (s : finset α) : finset α :=
⟨_, nodup_filter p s.2⟩
@[simp] theorem filter_val (s : finset α) : (filter p s).1 = s.1.filter p := rfl
@[simp] theorem mem_filter {s : finset α} {a : α} : a ∈ s.filter p ↔ a ∈ s ∧ p a := mem_filter
@[simp] theorem filter_subset (s : finset α) : s.filter p ⊆ s := filter_subset _
theorem filter_ssubset {s : finset α} : s.filter p ⊂ s ↔ ∃ x ∈ s, ¬ p x :=
⟨λ h, let ⟨x, hs, hp⟩ := set.exists_of_ssubset h in ⟨x, hs, mt (λ hp, mem_filter.2 ⟨hs, hp⟩) hp⟩,
λ ⟨x, hs, hp⟩, ⟨s.filter_subset, λ h, hp (mem_filter.1 (h hs)).2⟩⟩
theorem filter_filter (s : finset α) :
(s.filter p).filter q = s.filter (λa, p a ∧ q a) :=
ext.2 $ assume a, by simp only [mem_filter, and_comm, and.left_comm]
@[simp] lemma filter_true {s : finset α} [h : decidable_pred (λ _, true)] :
@finset.filter α (λ _, true) h s = s :=
by ext; simp
@[simp] theorem filter_false {h} (s : finset α) : @filter α (λa, false) h s = ∅ :=
ext.2 $ assume a, by simp only [mem_filter, and_false]; refl
lemma filter_congr {s : finset α} (H : ∀ x ∈ s, p x ↔ q x) : filter p s = filter q s :=
eq_of_veq $ filter_congr H
lemma filter_empty : filter p ∅ = ∅ :=
subset_empty.1 $ filter_subset _
lemma filter_subset_filter {s t : finset α} (h : s ⊆ t) : s.filter p ⊆ t.filter p :=
assume a ha, mem_filter.2 ⟨h (mem_filter.1 ha).1, (mem_filter.1 ha).2⟩
@[simp] lemma coe_filter (s : finset α) : ↑(s.filter p) = ({x ∈ ↑s | p x} : set α) :=
set.ext $ λ _, mem_filter
theorem filter_singleton (a : α) : filter p (singleton a) = if p a then singleton a else ∅ :=
by { classical, ext x, simp, split_ifs with h; by_cases h' : x = a; simp [h, h'] }
variable [decidable_eq α]
theorem filter_union (s₁ s₂ : finset α) :
(s₁ ∪ s₂).filter p = s₁.filter p ∪ s₂.filter p :=
ext.2 $ λ _, by simp only [mem_filter, mem_union, or_and_distrib_right]
theorem filter_union_right (p q : α → Prop) [decidable_pred p] [decidable_pred q] (s : finset α) :
s.filter p ∪ s.filter q = s.filter (λx, p x ∨ q x) :=
ext.2 $ λ x, by simp only [mem_filter, mem_union, and_or_distrib_left.symm]
lemma filter_mem_eq_inter {s t : finset α} : s.filter (λ i, i ∈ t) = s ∩ t :=
ext' $ λ i, by rw [mem_filter, mem_inter]
theorem filter_inter {s t : finset α} : filter p s ∩ t = filter p (s ∩ t) :=
by { ext, simp only [mem_inter, mem_filter, and.right_comm] }
theorem inter_filter {s t : finset α} : s ∩ filter p t = filter p (s ∩ t) :=
by rw [inter_comm, filter_inter, inter_comm]
theorem filter_insert (a : α) (s : finset α) :
filter p (insert a s) = if p a then insert a (filter p s) else (filter p s) :=
by { ext x, simp, split_ifs with h; by_cases h' : x = a; simp [h, h'] }
theorem filter_or [decidable_pred (λ a, p a ∨ q a)] (s : finset α) :
s.filter (λ a, p a ∨ q a) = s.filter p ∪ s.filter q :=
ext.2 $ λ _, by simp only [mem_filter, mem_union, and_or_distrib_left]
theorem filter_and [decidable_pred (λ a, p a ∧ q a)] (s : finset α) :
s.filter (λ a, p a ∧ q a) = s.filter p ∩ s.filter q :=
ext.2 $ λ _, by simp only [mem_filter, mem_inter, and_comm, and.left_comm, and_self]
theorem filter_not [decidable_pred (λ a, ¬ p a)] (s : finset α) :
s.filter (λ a, ¬ p a) = s \ s.filter p :=
ext.2 $ by simpa only [mem_filter, mem_sdiff, and_comm, not_and] using λ a, and_congr_right $
λ h : a ∈ s, (imp_iff_right h).symm.trans imp_not_comm
theorem sdiff_eq_filter (s₁ s₂ : finset α) :
s₁ \ s₂ = filter (∉ s₂) s₁ := ext.2 $ λ _, by simp only [mem_sdiff, mem_filter]
theorem sdiff_eq_self (s₁ s₂ : finset α) :
s₁ \ s₂ = s₁ ↔ s₁ ∩ s₂ ⊆ ∅ :=
by { simp [subset.antisymm_iff,sdiff_subset_self],
split; intro h,
{ transitivity' ((s₁ \ s₂) ∩ s₂), mono, simp },
{ calc s₁ \ s₂
⊇ s₁ \ (s₁ ∩ s₂) : by simp [(⊇)]
... ⊇ s₁ \ ∅ : by mono using [(⊇)]
... ⊇ s₁ : by simp [(⊇)] } }
theorem filter_union_filter_neg_eq [decidable_pred (λ a, ¬ p a)]
(s : finset α) : s.filter p ∪ s.filter (λa, ¬ p a) = s :=
by simp only [filter_not, union_sdiff_of_subset (filter_subset s)]
theorem filter_inter_filter_neg_eq (s : finset α) : s.filter p ∩ s.filter (λa, ¬ p a) = ∅ :=
by simp only [filter_not, inter_sdiff_self]
lemma subset_union_elim {s : finset α} {t₁ t₂ : set α} (h : ↑s ⊆ t₁ ∪ t₂) :
∃s₁ s₂ : finset α, s₁ ∪ s₂ = s ∧ ↑s₁ ⊆ t₁ ∧ ↑s₂ ⊆ t₂ \ t₁ :=
begin
classical,
refine ⟨s.filter (∈ t₁), s.filter (∉ t₁), _, _ , _⟩,
{ simp [filter_union_right, classical.or_not] },
{ intro x, simp },
{ intro x, simp, intros hx hx₂, refine ⟨or.resolve_left (h hx) hx₂, hx₂⟩ }
end
/- We can simplify an application of filter where the decidability is inferred in "the wrong way" -/
@[simp] lemma filter_congr_decidable {α} (s : finset α) (p : α → Prop) (h : decidable_pred p)
[decidable_pred p] : @filter α p h s = s.filter p :=
by congr
section classical
open_locale classical
/-- The following instance allows us to write `{ x ∈ s | p x }` for `finset.filter s p`.
Since the former notation requires us to define this for all propositions `p`, and `finset.filter`
only works for decidable propositions, the notation `{ x ∈ s | p x }` is only compatible with
classical logic because it uses `classical.prop_decidable`.
We don't want to redo all lemmas of `finset.filter` for `has_sep.sep`, so we make sure that `simp`
unfolds the notation `{ x ∈ s | p x }` to `finset.filter s p`. If `p` happens to be decidable, the
simp-lemma `filter_congr_decidable` will make sure that `finset.filter` uses the right instance
for decidability.
-/
noncomputable instance {α : Type*} : has_sep α (finset α) := ⟨λ p x, x.filter p⟩
@[simp] lemma sep_def {α : Type*} (s : finset α) (p : α → Prop) : {x ∈ s | p x} = s.filter p := rfl
end classical
/--
After filtering out everything that does not equal a given value, at most that value remains.
This is equivalent to `filter_eq'` with the equality the other way.
-/
-- This is not a good simp lemma, as it would prevent `finset.mem_filter` from firing
-- on, e.g. `x ∈ s.filter(eq b)`.
lemma filter_eq [decidable_eq β] (s : finset β) (b : β) :
s.filter(eq b) = ite (b ∈ s) {b} ∅ :=
begin
split_ifs,
{ ext,
simp only [mem_filter, insert_empty_eq_singleton, mem_singleton],
exact ⟨λ h, h.2.symm, by { rintro ⟨h⟩, exact ⟨h, rfl⟩, }⟩ },
{ ext,
simp only [mem_filter, not_and, iff_false, not_mem_empty],
rintros m ⟨e⟩, exact h m, }
end
/--
After filtering out everything that does not equal a given value, at most that value remains.
This is equivalent to `filter_eq` with the equality the other way.
-/
lemma filter_eq' [decidable_eq β] (s : finset β) (b : β) :
s.filter (λ a, a = b) = ite (b ∈ s) {b} ∅ :=
trans (filter_congr (λ _ _, ⟨eq.symm, eq.symm⟩)) (filter_eq s b)
end filter
/-! ### range -/
section range
variables {n m l : ℕ}
/-- `range n` is the set of natural numbers less than `n`. -/
def range (n : ℕ) : finset ℕ := ⟨_, nodup_range n⟩
@[simp] theorem range_val (n : ℕ) : (range n).1 = multiset.range n := rfl
@[simp] theorem mem_range : m ∈ range n ↔ m < n := mem_range
@[simp] theorem range_zero : range 0 = ∅ := rfl
@[simp] theorem range_one : range 1 = {0} := rfl
theorem range_succ : range (succ n) = insert n (range n) :=
eq_of_veq $ (range_succ n).trans $ (ndinsert_of_not_mem not_mem_range_self).symm
theorem range_add_one : range (n + 1) = insert n (range n) :=
range_succ
@[simp] theorem not_mem_range_self : n ∉ range n := not_mem_range_self
@[simp] theorem range_subset {n m} : range n ⊆ range m ↔ n ≤ m := range_subset
theorem range_mono : monotone range := λ _ _, range_subset.2
end range
/- useful rules for calculations with quantifiers -/
theorem exists_mem_empty_iff (p : α → Prop) : (∃ x, x ∈ (∅ : finset α) ∧ p x) ↔ false :=
by simp only [not_mem_empty, false_and, exists_false]
theorem exists_mem_insert [d : decidable_eq α]
(a : α) (s : finset α) (p : α → Prop) :
(∃ x, x ∈ insert a s ∧ p x) ↔ p a ∨ (∃ x, x ∈ s ∧ p x) :=
by simp only [mem_insert, or_and_distrib_right, exists_or_distrib, exists_eq_left]
theorem forall_mem_empty_iff (p : α → Prop) : (∀ x, x ∈ (∅ : finset α) → p x) ↔ true :=
iff_true_intro $ λ _, false.elim
theorem forall_mem_insert [d : decidable_eq α]
(a : α) (s : finset α) (p : α → Prop) :
(∀ x, x ∈ insert a s → p x) ↔ p a ∧ (∀ x, x ∈ s → p x) :=
by simp only [mem_insert, or_imp_distrib, forall_and_distrib, forall_eq]
end finset
/-- Equivalence between the set of natural numbers which are `≥ k` and `ℕ`, given by `n → n - k`. -/
def not_mem_range_equiv (k : ℕ) : {n // n ∉ range k} ≃ ℕ :=
{ to_fun := λ i, i.1 - k,
inv_fun := λ j, ⟨j + k, by simp⟩,
left_inv :=
begin
assume j,
rw subtype.ext,
apply nat.sub_add_cancel,
simpa using j.2
end,
right_inv := λ j, nat.add_sub_cancel _ _ }
@[simp] lemma coe_not_mem_range_equiv (k : ℕ) :
(not_mem_range_equiv k : {n // n ∉ range k} → ℕ) = (λ i, i - k) := rfl
@[simp] lemma coe_not_mem_range_equiv_symm (k : ℕ) :
((not_mem_range_equiv k).symm : ℕ → {n // n ∉ range k}) = λ j, ⟨j + k, by simp⟩ := rfl
namespace option
/-- Construct an empty or singleton finset from an `option` -/
def to_finset (o : option α) : finset α :=
match o with
| none := ∅
| some a := finset.singleton a
end
@[simp] theorem to_finset_none : none.to_finset = (∅ : finset α) := rfl
@[simp] theorem to_finset_some {a : α} : (some a).to_finset = finset.singleton a := rfl
@[simp] theorem mem_to_finset {a : α} {o : option α} : a ∈ o.to_finset ↔ a ∈ o :=
by cases o; simp only [to_finset, finset.mem_singleton, option.mem_def, eq_comm]; refl
end option
/-! ### erase_dup on list and multiset -/
namespace multiset
variable [decidable_eq α]
/-- `to_finset s` removes duplicates from the multiset `s` to produce a finset. -/
def to_finset (s : multiset α) : finset α := ⟨_, nodup_erase_dup s⟩
@[simp] theorem to_finset_val (s : multiset α) : s.to_finset.1 = s.erase_dup := rfl
theorem to_finset_eq {s : multiset α} (n : nodup s) : finset.mk s n = s.to_finset :=
finset.val_inj.1 (erase_dup_eq_self.2 n).symm
@[simp] theorem mem_to_finset {a : α} {s : multiset α} : a ∈ s.to_finset ↔ a ∈ s :=
mem_erase_dup
@[simp] lemma to_finset_zero :
to_finset (0 : multiset α) = ∅ :=
rfl
@[simp] lemma to_finset_cons (a : α) (s : multiset α) :
to_finset (a :: s) = insert a (to_finset s) :=
finset.eq_of_veq erase_dup_cons
@[simp] lemma to_finset_add (s t : multiset α) :
to_finset (s + t) = to_finset s ∪ to_finset t :=
finset.ext' $ by simp
@[simp] lemma to_finset_smul (s : multiset α) :
∀(n : ℕ) (hn : n ≠ 0), (add_monoid.smul n s).to_finset = s.to_finset
| 0 h := by contradiction
| (n+1) h :=
begin
by_cases n = 0,
{ rw [h, zero_add, add_monoid.one_smul] },
{ rw [add_monoid.add_smul, to_finset_add, add_monoid.one_smul, to_finset_smul n h,
finset.union_idempotent] }
end
@[simp] lemma to_finset_inter (s t : multiset α) :
to_finset (s ∩ t) = to_finset s ∩ to_finset t :=
finset.ext' $ by simp
theorem to_finset_eq_empty {m : multiset α} : m.to_finset = ∅ ↔ m = 0 :=
finset.val_inj.symm.trans multiset.erase_dup_eq_zero
end multiset
namespace list
variable [decidable_eq α]
/-- `to_finset l` removes duplicates from the list `l` to produce a finset. -/
def to_finset (l : list α) : finset α := multiset.to_finset l
@[simp] theorem to_finset_val (l : list α) : l.to_finset.1 = (l.erase_dup : multiset α) := rfl
theorem to_finset_eq {l : list α} (n : nodup l) : @finset.mk α l n = l.to_finset :=
multiset.to_finset_eq n
@[simp] theorem mem_to_finset {a : α} {l : list α} : a ∈ l.to_finset ↔ a ∈ l :=
mem_erase_dup
@[simp] theorem to_finset_nil : to_finset (@nil α) = ∅ :=
rfl
@[simp] theorem to_finset_cons {a : α} {l : list α} : to_finset (a :: l) = insert a (to_finset l) :=
finset.eq_of_veq $ by by_cases h : a ∈ l; simp [finset.insert_val', multiset.erase_dup_cons, h]
end list
namespace finset
/-! ### map -/
section map
open function
/-- When `f` is an embedding of `α` in `β` and `s` is a finset in `α`, then `s.map f` is the image
finset in `β`. The embedding condition guarantees that there are no duplicates in the image. -/
def map (f : α ↪ β) (s : finset α) : finset β :=
⟨s.1.map f, nodup_map f.2 s.2⟩
@[simp] theorem map_val (f : α ↪ β) (s : finset α) : (map f s).1 = s.1.map f := rfl
@[simp] theorem map_empty (f : α ↪ β) : (∅ : finset α).map f = ∅ := rfl
variables {f : α ↪ β} {s : finset α}
@[simp] theorem mem_map {b : β} : b ∈ s.map f ↔ ∃ a ∈ s, f a = b :=
mem_map.trans $ by simp only [exists_prop]; refl
theorem mem_map' (f : α ↪ β) {a} {s : finset α} : f a ∈ s.map f ↔ a ∈ s :=
mem_map_of_inj f.2
theorem mem_map_of_mem (f : α ↪ β) {a} {s : finset α} : a ∈ s → f a ∈ s.map f :=
(mem_map' _).2
@[simp] theorem coe_map (f : α ↪ β) (s : finset α) : (↑(s.map f) : set β) = f '' ↑s :=
set.ext $ λ x, mem_map.trans set.mem_image_iff_bex.symm
theorem coe_map_subset_range (f : α ↪ β) (s : finset α) : (↑(s.map f) : set β) ⊆ set.range f :=
calc ↑(s.map f) = f '' ↑s : coe_map f s
... ⊆ set.range f : set.image_subset_range f ↑s
theorem map_to_finset [decidable_eq α] [decidable_eq β] {s : multiset α} :
s.to_finset.map f = (s.map f).to_finset :=
ext.2 $ λ _, by simp only [mem_map, multiset.mem_map, exists_prop, multiset.mem_to_finset]
theorem map_refl : s.map (embedding.refl _) = s :=
ext.2 $ λ _, by simpa only [mem_map, exists_prop] using exists_eq_right
theorem map_map {g : β ↪ γ} : (s.map f).map g = s.map (f.trans g) :=
eq_of_veq $ by simp only [map_val, multiset.map_map]; refl
theorem map_subset_map {s₁ s₂ : finset α} : s₁.map f ⊆ s₂.map f ↔ s₁ ⊆ s₂ :=
⟨λ h x xs, (mem_map' _).1 $ h $ (mem_map' f).2 xs,
λ h, by simp [subset_def, map_subset_map h]⟩
theorem map_inj {s₁ s₂ : finset α} : s₁.map f = s₂.map f ↔ s₁ = s₂ :=
by simp only [subset.antisymm_iff, map_subset_map]
/-- Associate to an embedding `f` from `α` to `β` the embedding that maps a finset to its image
under `f`. -/
def map_embedding (f : α ↪ β) : finset α ↪ finset β := ⟨map f, λ s₁ s₂, map_inj.1⟩
@[simp] theorem map_embedding_apply : map_embedding f s = map f s := rfl
theorem map_filter {p : β → Prop} [decidable_pred p] :
(s.map f).filter p = (s.filter (p ∘ f)).map f :=
ext.2 $ λ b, by simp only [mem_filter, mem_map, exists_prop, and_assoc]; exact
⟨by rintro ⟨⟨x, h1, rfl⟩, h2⟩; exact ⟨x, h1, h2, rfl⟩,
by rintro ⟨x, h1, h2, rfl⟩; exact ⟨⟨x, h1, rfl⟩, h2⟩⟩
theorem map_union [decidable_eq α] [decidable_eq β]
{f : α ↪ β} (s₁ s₂ : finset α) : (s₁ ∪ s₂).map f = s₁.map f ∪ s₂.map f :=
ext.2 $ λ _, by simp only [mem_map, mem_union, exists_prop, or_and_distrib_right, exists_or_distrib]
theorem map_inter [decidable_eq α] [decidable_eq β]
{f : α ↪ β} (s₁ s₂ : finset α) : (s₁ ∩ s₂).map f = s₁.map f ∩ s₂.map f :=
ext.2 $ λ b, by simp only [mem_map, mem_inter, exists_prop]; exact
⟨by rintro ⟨a, ⟨m₁, m₂⟩, rfl⟩; exact ⟨⟨a, m₁, rfl⟩, ⟨a, m₂, rfl⟩⟩,
by rintro ⟨⟨a, m₁, e⟩, ⟨a', m₂, rfl⟩⟩; cases f.2 e; exact ⟨_, ⟨m₁, m₂⟩, rfl⟩⟩
@[simp] theorem map_singleton (f : α ↪ β) (a : α) : (singleton a).map f = singleton (f a) :=
ext.2 $ λ _, by simp only [mem_map, mem_singleton, exists_prop, exists_eq_left]; exact eq_comm
@[simp] theorem map_insert [decidable_eq α] [decidable_eq β]
(f : α ↪ β) (a : α) (s : finset α) :
(insert a s).map f = insert (f a) (s.map f) :=
by simp only [insert_eq, insert_empty_eq_singleton, map_union, map_singleton]
@[simp] theorem map_eq_empty : s.map f = ∅ ↔ s = ∅ :=
⟨λ h, eq_empty_of_forall_not_mem $
λ a m, ne_empty_of_mem (mem_map_of_mem _ m) h, λ e, e.symm ▸ rfl⟩
lemma attach_map_val {s : finset α} : s.attach.map (embedding.subtype _) = s :=
eq_of_veq $ by rw [map_val, attach_val]; exact attach_map_val _
end map
lemma range_add_one' (n : ℕ) :
range (n + 1) = insert 0 ((range n).map ⟨λi, i + 1, assume i j, nat.succ_inj⟩) :=
by ext (⟨⟩ | ⟨n⟩); simp [nat.succ_eq_add_one, nat.zero_lt_succ n]
/-! ### image -/
section image
variables [decidable_eq β]
/-- `image f s` is the forward image of `s` under `f`. -/
def image (f : α → β) (s : finset α) : finset β := (s.1.map f).to_finset
@[simp] theorem image_val (f : α → β) (s : finset α) : (image f s).1 = (s.1.map f).erase_dup := rfl
@[simp] theorem image_empty (f : α → β) : (∅ : finset α).image f = ∅ := rfl
variables {f : α → β} {s : finset α}
@[simp] theorem mem_image {b : β} : b ∈ s.image f ↔ ∃ a ∈ s, f a = b :=
by simp only [mem_def, image_val, mem_erase_dup, multiset.mem_map, exists_prop]
theorem mem_image_of_mem (f : α → β) {a} {s : finset α} (h : a ∈ s) : f a ∈ s.image f :=
mem_image.2 ⟨_, h, rfl⟩
@[simp] lemma coe_image {f : α → β} : ↑(s.image f) = f '' ↑s :=
set.ext $ λ _, mem_image.trans set.mem_image_iff_bex.symm
lemma nonempty.image (h : s.nonempty) (f : α → β) : (s.image f).nonempty :=
let ⟨a, ha⟩ := h in ⟨f a, mem_image_of_mem f ha⟩
theorem image_to_finset [decidable_eq α] {s : multiset α} : s.to_finset.image f = (s.map f).to_finset :=
ext.2 $ λ _, by simp only [mem_image, multiset.mem_to_finset, exists_prop, multiset.mem_map]
theorem image_val_of_inj_on (H : ∀x∈s, ∀y∈s, f x = f y → x = y) : (image f s).1 = s.1.map f :=
multiset.erase_dup_eq_self.2 (nodup_map_on H s.2)
theorem image_id [decidable_eq α] : s.image id = s :=
ext.2 $ λ _, by simp only [mem_image, exists_prop, id, exists_eq_right]
theorem image_image [decidable_eq γ] {g : β → γ} : (s.image f).image g = s.image (g ∘ f) :=
eq_of_veq $ by simp only [image_val, erase_dup_map_erase_dup_eq, multiset.map_map]
theorem image_subset_image {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁.image f ⊆ s₂.image f :=
by simp only [subset_def, image_val, subset_erase_dup', erase_dup_subset', multiset.map_subset_map h]
theorem image_mono (f : α → β) : monotone (finset.image f) := λ _ _, image_subset_image
theorem coe_image_subset_range : ↑(s.image f) ⊆ set.range f :=
calc ↑(s.image f) = f '' ↑s : coe_image
... ⊆ set.range f : set.image_subset_range f ↑s
theorem image_filter {p : β → Prop} [decidable_pred p] :
(s.image f).filter p = (s.filter (p ∘ f)).image f :=
ext.2 $ λ b, by simp only [mem_filter, mem_image, exists_prop]; exact
⟨by rintro ⟨⟨x, h1, rfl⟩, h2⟩; exact ⟨x, ⟨h1, h2⟩, rfl⟩,
by rintro ⟨x, ⟨h1, h2⟩, rfl⟩; exact ⟨⟨x, h1, rfl⟩, h2⟩⟩
theorem image_union [decidable_eq α] {f : α → β} (s₁ s₂ : finset α) : (s₁ ∪ s₂).image f = s₁.image f ∪ s₂.image f :=
ext.2 $ λ _, by simp only [mem_image, mem_union, exists_prop, or_and_distrib_right, exists_or_distrib]
theorem image_inter [decidable_eq α] (s₁ s₂ : finset α) (hf : ∀x y, f x = f y → x = y) : (s₁ ∩ s₂).image f = s₁.image f ∩ s₂.image f :=
ext.2 $ by simp only [mem_image, exists_prop, mem_inter]; exact λ b,
⟨λ ⟨a, ⟨m₁, m₂⟩, e⟩, ⟨⟨a, m₁, e⟩, ⟨a, m₂, e⟩⟩,
λ ⟨⟨a, m₁, e₁⟩, ⟨a', m₂, e₂⟩⟩, ⟨a, ⟨m₁, hf _ _ (e₂.trans e₁.symm) ▸ m₂⟩, e₁⟩⟩.
@[simp] theorem image_singleton (f : α → β) (a : α) : (singleton a).image f = singleton (f a) :=
ext.2 $ λ x, by simpa only [mem_image, exists_prop, mem_singleton, exists_eq_left] using eq_comm
@[simp] theorem image_insert [decidable_eq α] (f : α → β) (a : α) (s : finset α) :
(insert a s).image f = insert (f a) (s.image f) :=
by simp only [insert_eq, insert_empty_eq_singleton, image_singleton, image_union]
@[simp] theorem image_eq_empty : s.image f = ∅ ↔ s = ∅ :=
⟨λ h, eq_empty_of_forall_not_mem $
λ a m, ne_empty_of_mem (mem_image_of_mem _ m) h, λ e, e.symm ▸ rfl⟩
lemma attach_image_val [decidable_eq α] {s : finset α} : s.attach.image subtype.val = s :=
eq_of_veq $ by rw [image_val, attach_val, multiset.attach_map_val, erase_dup_eq_self]
@[simp] lemma attach_insert [decidable_eq α] {a : α} {s : finset α} :
attach (insert a s) = insert (⟨a, mem_insert_self a s⟩ : {x // x ∈ insert a s})
((attach s).image (λx, ⟨x.1, mem_insert_of_mem x.2⟩)) :=
ext.2 $ λ ⟨x, hx⟩, ⟨or.cases_on (mem_insert.1 hx)
(assume h : x = a, λ _, mem_insert.2 $ or.inl $ subtype.eq h)
(assume h : x ∈ s, λ _, mem_insert_of_mem $ mem_image.2 $ ⟨⟨x, h⟩, mem_attach _ _, subtype.eq rfl⟩),
λ _, finset.mem_attach _ _⟩
theorem map_eq_image (f : α ↪ β) (s : finset α) : s.map f = s.image f :=
eq_of_veq $ (multiset.erase_dup_eq_self.2 (s.map f).2).symm
lemma image_const {s : finset α} (h : s.nonempty) (b : β) : s.image (λa, b) = singleton b :=
ext.2 $ assume b', by simp only [mem_image, exists_prop, exists_and_distrib_right,
h.bex, true_and, mem_singleton, eq_comm]
/-- Given a finset `s` and a predicate `p`, `s.subtype p` is the finset of `subtype p` whose
elements belong to `s`. -/
protected def subtype {α} (p : α → Prop) [decidable_pred p] (s : finset α) : finset (subtype p) :=
(s.filter p).attach.map ⟨λ x, ⟨x.1, (finset.mem_filter.1 x.2).2⟩,
λ x y H, subtype.eq $ subtype.mk.inj H⟩
@[simp] lemma mem_subtype {p : α → Prop} [decidable_pred p] {s : finset α} :
∀{a : subtype p}, a ∈ s.subtype p ↔ a.val ∈ s
| ⟨a, ha⟩ := by simp [finset.subtype, ha]
lemma subset_image_iff {f : α → β}
{s : finset β} {t : set α} : ↑s ⊆ f '' t ↔ ∃s' : finset α, ↑s' ⊆ t ∧ s'.image f = s :=
begin
classical,
split, swap,
{ rintro ⟨s, hs, rfl⟩, rw [coe_image], exact set.image_subset f hs },
intro h, induction s using finset.induction with a s has ih h,
{ refine ⟨∅, set.empty_subset _, _⟩,
convert finset.image_empty _ },
rw [finset.coe_insert, set.insert_subset] at h,
rcases ih h.2 with ⟨s', hst, hsi⟩,
rcases h.1 with ⟨x, hxt, rfl⟩,
refine ⟨insert x s', _, _⟩,
{ rw [finset.coe_insert, set.insert_subset], exact ⟨hxt, hst⟩ },
rw [finset.image_insert, hsi],
congr
end
end image
/-! ### card -/
section card
/-- `card s` is the cardinality (number of elements) of `s`. -/
def card (s : finset α) : nat := s.1.card
theorem card_def (s : finset α) : s.card = s.1.card := rfl
@[simp] theorem card_empty : card (∅ : finset α) = 0 := rfl
@[simp] theorem card_eq_zero {s : finset α} : card s = 0 ↔ s = ∅ :=
card_eq_zero.trans val_eq_zero
theorem card_pos {s : finset α} : 0 < card s ↔ s.nonempty :=
pos_iff_ne_zero.trans $ (not_congr card_eq_zero).trans nonempty_iff_ne_empty.symm
theorem card_ne_zero_of_mem {s : finset α} {a : α} (h : a ∈ s) : card s ≠ 0 :=
(not_congr card_eq_zero).2 (ne_empty_of_mem h)
theorem card_eq_one {s : finset α} : s.card = 1 ↔ ∃ a, s = finset.singleton a :=
by cases s; simp [multiset.card_eq_one, finset.singleton, finset.card]
@[simp] theorem card_insert_of_not_mem [decidable_eq α]
{a : α} {s : finset α} (h : a ∉ s) : card (insert a s) = card s + 1 :=
by simpa only [card_cons, card, insert_val] using
congr_arg multiset.card (ndinsert_of_not_mem h)
theorem card_insert_le [decidable_eq α] (a : α) (s : finset α) : card (insert a s) ≤ card s + 1 :=
by by_cases a ∈ s; [{rw [insert_eq_of_mem h], apply nat.le_add_right},
rw [card_insert_of_not_mem h]]
@[simp] theorem card_singleton (a : α) : card (singleton a) = 1 := card_singleton _
theorem card_erase_of_mem [decidable_eq α] {a : α} {s : finset α} : a ∈ s → card (erase s a) = pred (card s) := card_erase_of_mem
theorem card_erase_lt_of_mem [decidable_eq α] {a : α} {s : finset α} : a ∈ s → card (erase s a) < card s := card_erase_lt_of_mem
theorem card_erase_le [decidable_eq α] {a : α} {s : finset α} : card (erase s a) ≤ card s := card_erase_le
@[simp] theorem card_range (n : ℕ) : card (range n) = n := card_range n
@[simp] theorem card_attach {s : finset α} : card (attach s) = card s := multiset.card_attach
end card
end finset
theorem multiset.to_finset_card_le [decidable_eq α] (m : multiset α) : m.to_finset.card ≤ m.card :=
card_le_of_le (erase_dup_le _)
theorem list.to_finset_card_le [decidable_eq α] (l : list α) : l.to_finset.card ≤ l.length :=
multiset.to_finset_card_le ⟦l⟧
namespace finset
section card
theorem card_image_le [decidable_eq β] {f : α → β} {s : finset α} : card (image f s) ≤ card s :=
by simpa only [card_map] using (s.1.map f).to_finset_card_le
theorem card_image_of_inj_on [decidable_eq β] {f : α → β} {s : finset α}
(H : ∀x∈s, ∀y∈s, f x = f y → x = y) : card (image f s) = card s :=
by simp only [card, image_val_of_inj_on H, card_map]
theorem card_image_of_injective [decidable_eq β] {f : α → β} (s : finset α)
(H : function.injective f) : card (image f s) = card s :=
card_image_of_inj_on $ λ x _ y _ h, H h
@[simp] lemma card_map {α β} (f : α ↪ β) {s : finset α} : (s.map f).card = s.card :=
multiset.card_map _ _
lemma card_eq_of_bijective {s : finset α} {n : ℕ}
(f : ∀i, i < n → α)
(hf : ∀a∈s, ∃i, ∃h:i<n, f i h = a) (hf' : ∀i (h : i < n), f i h ∈ s)
(f_inj : ∀i j (hi : i < n) (hj : j < n), f i hi = f j hj → i = j) :
card s = n :=
begin
classical,
have : ∀ (a : α), a ∈ s ↔ ∃i (hi : i ∈ range n), f i (mem_range.1 hi) = a,
from assume a, ⟨assume ha, let ⟨i, hi, eq⟩ := hf a ha in ⟨i, mem_range.2 hi, eq⟩,
assume ⟨i, hi, eq⟩, eq ▸ hf' i (mem_range.1 hi)⟩,
have : s = ((range n).attach.image $ λi, f i.1 (mem_range.1 i.2)),
by simpa only [ext, mem_image, exists_prop, subtype.exists, mem_attach, true_and],
calc card s = card ((range n).attach.image $ λi, f i.1 (mem_range.1 i.2)) :
by rw [this]
... = card ((range n).attach) :
card_image_of_injective _ $ assume ⟨i, hi⟩ ⟨j, hj⟩ eq,
subtype.eq $ f_inj i j (mem_range.1 hi) (mem_range.1 hj) eq
... = card (range n) : card_attach
... = n : card_range n
end
lemma card_eq_succ [decidable_eq α] {s : finset α} {n : ℕ} :
s.card = n + 1 ↔ (∃a t, a ∉ t ∧ insert a t = s ∧ card t = n) :=
iff.intro
(assume eq,
have 0 < card s, from eq.symm ▸ nat.zero_lt_succ _,
let ⟨a, has⟩ := card_pos.mp this in
⟨a, s.erase a, s.not_mem_erase a, insert_erase has, by simp only [eq, card_erase_of_mem has, pred_succ]⟩)
(assume ⟨a, t, hat, s_eq, n_eq⟩, s_eq ▸ n_eq ▸ card_insert_of_not_mem hat)
theorem card_le_of_subset {s t : finset α} : s ⊆ t → card s ≤ card t :=
multiset.card_le_of_le ∘ val_le_iff.mpr
theorem eq_of_subset_of_card_le {s t : finset α} (h : s ⊆ t) (h₂ : card t ≤ card s) : s = t :=
eq_of_veq $ multiset.eq_of_le_of_card_le (val_le_iff.mpr h) h₂
lemma card_lt_card {s t : finset α} (h : s ⊂ t) : s.card < t.card :=
card_lt_of_lt (val_lt_iff.2 h)
lemma card_le_card_of_inj_on {s : finset α} {t : finset β}
(f : α → β) (hf : ∀a∈s, f a ∈ t) (f_inj : ∀a₁∈s, ∀a₂∈s, f a₁ = f a₂ → a₁ = a₂) :
card s ≤ card t :=
begin
classical,
calc card s = card (s.image f) : by rw [card_image_of_inj_on f_inj]
... ≤ card t : card_le_of_subset $
assume x hx, match x, finset.mem_image.1 hx with _, ⟨a, ha, rfl⟩ := hf a ha end
end
lemma card_le_of_inj_on {n} {s : finset α}
(f : ℕ → α) (hf : ∀i<n, f i ∈ s) (f_inj : ∀i j, i<n → j<n → f i = f j → i = j) : n ≤ card s :=
calc n = card (range n) : (card_range n).symm
... ≤ card s : card_le_card_of_inj_on f
(by simpa only [mem_range])
(by simp only [mem_range]; exact assume a₁ h₁ a₂ h₂, f_inj a₁ a₂ h₁ h₂)
/-- Suppose that, given objects defined on all strict subsets of any finset `s`, one knows how to
define an object on `s`. Then one can inductively define an object on all finsets, starting from
the empty set and iterating. This can be used either to define data, or to prove properties. -/
@[elab_as_eliminator] def strong_induction_on {p : finset α → Sort*} :
∀ (s : finset α), (∀s, (∀t ⊂ s, p t) → p s) → p s
| ⟨s, nd⟩ ih := multiset.strong_induction_on s
(λ s IH nd, ih ⟨s, nd⟩ (λ ⟨t, nd'⟩ ss, IH t (val_lt_iff.2 ss) nd')) nd
@[elab_as_eliminator] lemma case_strong_induction_on [decidable_eq α] {p : finset α → Prop}
(s : finset α) (h₀ : p ∅) (h₁ : ∀ a s, a ∉ s → (∀t ⊆ s, p t) → p (insert a s)) : p s :=
finset.strong_induction_on s $ λ s,
finset.induction_on s (λ _, h₀) $ λ a s n _ ih, h₁ a s n $
λ t ss, ih _ (lt_of_le_of_lt ss (ssubset_insert n) : t < _)
lemma card_congr {s : finset α} {t : finset β} (f : Π a ∈ s, β)
(h₁ : ∀ a ha, f a ha ∈ t) (h₂ : ∀ a b ha hb, f a ha = f b hb → a = b)
(h₃ : ∀ b ∈ t, ∃ a ha, f a ha = b) : s.card = t.card :=
by haveI := classical.prop_decidable; exact
calc s.card = s.attach.card : card_attach.symm
... = (s.attach.image (λ (a : {a // a ∈ s}), f a.1 a.2)).card :
eq.symm (card_image_of_injective _ (λ a b h, subtype.eq (h₂ _ _ _ _ h)))
... = t.card : congr_arg card (finset.ext.2 $ λ b,
⟨λ h, let ⟨a, ha₁, ha₂⟩ := mem_image.1 h in ha₂ ▸ h₁ _ _,
λ h, let ⟨a, ha₁, ha₂⟩ := h₃ b h in mem_image.2 ⟨⟨a, ha₁⟩, by simp [ha₂]⟩⟩)
lemma card_union_add_card_inter [decidable_eq α] (s t : finset α) :
(s ∪ t).card + (s ∩ t).card = s.card + t.card :=
finset.induction_on t (by simp) $ λ a r har, by by_cases a ∈ s; simp *; cc
lemma card_union_le [decidable_eq α] (s t : finset α) :
(s ∪ t).card ≤ s.card + t.card :=
card_union_add_card_inter s t ▸ le_add_right _ _
lemma surj_on_of_inj_on_of_card_le {s : finset α} {t : finset β}
(f : Π a ∈ s, β) (hf : ∀ a ha, f a ha ∈ t)
(hinj : ∀ a₁ a₂ ha₁ ha₂, f a₁ ha₁ = f a₂ ha₂ → a₁ = a₂)
(hst : card t ≤ card s) :
(∀ b ∈ t, ∃ a ha, b = f a ha) :=
by haveI := classical.dec_eq β; exact
λ b hb,
have h : card (image (λ (a : {a // a ∈ s}), f (a.val) a.2) (attach s)) = card s,
from @card_attach _ s ▸ card_image_of_injective _
(λ ⟨a₁, ha₁⟩ ⟨a₂, ha₂⟩ h, subtype.eq $ hinj _ _ _ _ h),
have h₁ : image (λ a : {a // a ∈ s}, f a.1 a.2) s.attach = t :=
eq_of_subset_of_card_le (λ b h, let ⟨a, ha₁, ha₂⟩ := mem_image.1 h in
ha₂ ▸ hf _ _) (by simp [hst, h]),
begin
rw ← h₁ at hb,
rcases mem_image.1 hb with ⟨a, ha₁, ha₂⟩,
exact ⟨a, a.2, ha₂.symm⟩,
end
open function
lemma inj_on_of_surj_on_of_card_le {s : finset α} {t : finset β}
(f : Π a ∈ s, β) (hf : ∀ a ha, f a ha ∈ t)
(hsurj : ∀ b ∈ t, ∃ a ha, b = f a ha)
(hst : card s ≤ card t)
⦃a₁ a₂⦄ (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s)
(ha₁a₂: f a₁ ha₁ = f a₂ ha₂) : a₁ = a₂ :=
by haveI : inhabited {x // x ∈ s} := ⟨⟨a₁, ha₁⟩⟩; exact
let f' : {x // x ∈ s} → {x // x ∈ t} := λ x, ⟨f x.1 x.2, hf x.1 x.2⟩ in
let g : {x // x ∈ t} → {x // x ∈ s} :=
@surj_inv _ _ f'
(λ x, let ⟨y, hy₁, hy₂⟩ := hsurj x.1 x.2 in ⟨⟨y, hy₁⟩, subtype.eq hy₂.symm⟩) in
have hg : injective g, from function.injective_surj_inv _,
have hsg : surjective g, from λ x,
let ⟨y, hy⟩ := surj_on_of_inj_on_of_card_le (λ (x : {x // x ∈ t}) (hx : x ∈ t.attach), g x)
(λ x _, show (g x) ∈ s.attach, from mem_attach _ _)
(λ x y _ _ hxy, hg hxy) (by simpa) x (mem_attach _ _) in
⟨y, hy.snd.symm⟩,
have hif : injective f',
from injective_of_has_left_inverse
⟨g, left_inverse_of_surjective_of_right_inverse hsg
(right_inverse_surj_inv _)⟩,
subtype.ext.1 (@hif ⟨a₁, ha₁⟩ ⟨a₂, ha₂⟩ (subtype.eq ha₁a₂))
end card
/-! ### bind -/
section bind
variables [decidable_eq β] {s : finset α} {t : α → finset β}
/-- `bind s t` is the union of `t x` over `x ∈ s` -/
protected def bind (s : finset α) (t : α → finset β) : finset β := (s.1.bind (λ a, (t a).1)).to_finset
@[simp] theorem bind_val (s : finset α) (t : α → finset β) :
(s.bind t).1 = (s.1.bind (λ a, (t a).1)).erase_dup := rfl
@[simp] theorem bind_empty : finset.bind ∅ t = ∅ := rfl
@[simp] theorem mem_bind {b : β} : b ∈ s.bind t ↔ ∃a∈s, b ∈ t a :=
by simp only [mem_def, bind_val, mem_erase_dup, mem_bind, exists_prop]
@[simp] theorem bind_insert [decidable_eq α] {a : α} : (insert a s).bind t = t a ∪ s.bind t :=
ext.2 $ λ x, by simp only [mem_bind, exists_prop, mem_union, mem_insert,
or_and_distrib_right, exists_or_distrib, exists_eq_left]
-- ext.2 $ λ x, by simp [or_and_distrib_right, exists_or_distrib]
@[simp] lemma singleton_bind {a : α} : (singleton a).bind t = t a :=
begin
classical,
have : (insert a ∅ : finset α).bind t = t a, from bind_insert.trans (union_empty _),
convert this
end
theorem bind_inter (s : finset α) (f : α → finset β) (t : finset β) :
s.bind f ∩ t = s.bind (λ x, f x ∩ t) :=
begin
ext x,
simp only [mem_bind, mem_inter],
tauto
end
theorem inter_bind (t : finset β) (s : finset α) (f : α → finset β) :
t ∩ s.bind f = s.bind (λ x, t ∩ f x) :=
by rw [inter_comm, bind_inter]; simp [inter_comm]
theorem image_bind [decidable_eq γ] {f : α → β} {s : finset α} {t : β → finset γ} :
(s.image f).bind t = s.bind (λa, t (f a)) :=
by haveI := classical.dec_eq α; exact
finset.induction_on s rfl (λ a s has ih,
by simp only [image_insert, bind_insert, ih])
theorem bind_image [decidable_eq γ] {s : finset α} {t : α → finset β} {f : β → γ} :
(s.bind t).image f = s.bind (λa, (t a).image f) :=
by haveI := classical.dec_eq α; exact
finset.induction_on s rfl (λ a s has ih,
by simp only [bind_insert, image_union, ih])
theorem bind_to_finset [decidable_eq α] (s : multiset α) (t : α → multiset β) :
(s.bind t).to_finset = s.to_finset.bind (λa, (t a).to_finset) :=
ext.2 $ λ x, by simp only [multiset.mem_to_finset, mem_bind, multiset.mem_bind, exists_prop]
lemma bind_mono {t₁ t₂ : α → finset β} (h : ∀a∈s, t₁ a ⊆ t₂ a) : s.bind t₁ ⊆ s.bind t₂ :=
have ∀b a, a ∈ s → b ∈ t₁ a → (∃ (a : α), a ∈ s ∧ b ∈ t₂ a),
from assume b a ha hb, ⟨a, ha, finset.mem_of_subset (h a ha) hb⟩,
by simpa only [subset_iff, mem_bind, exists_imp_distrib, and_imp, exists_prop]
lemma bind_subset_bind_of_subset_left {α : Type*} {s₁ s₂ : finset α}
(t : α → finset β) (h : s₁ ⊆ s₂) : s₁.bind t ⊆ s₂.bind t :=
begin
intro x,
simp only [and_imp, mem_bind, exists_prop],
exact Exists.imp (λ a ha, ⟨h ha.1, ha.2⟩)
end
lemma bind_singleton {f : α → β} : s.bind (λa, {f a}) = s.image f :=
ext.2 $ λ x, by simp only [mem_bind, mem_image, insert_empty_eq_singleton, mem_singleton, eq_comm]
lemma image_bind_filter_eq [decidable_eq α] (s : finset β) (g : β → α) :
(s.image g).bind (λa, s.filter $ (λc, g c = a)) = s :=
begin
ext b,
suffices : (∃ a, a ∈ s ∧ b ∈ s ∧ g b = g a) ↔ b ∈ s, by simpa,
exact ⟨λ ⟨a, ha, hb, hab⟩, hb, λ hb, ⟨b, hb, hb, rfl⟩⟩
end
end bind
/-! ### prod-/
section prod
variables {s : finset α} {t : finset β}
/-- `product s t` is the set of pairs `(a, b)` such that `a ∈ s` and `b ∈ t`. -/
protected def product (s : finset α) (t : finset β) : finset (α × β) := ⟨_, nodup_product s.2 t.2⟩
@[simp] theorem product_val : (s.product t).1 = s.1.product t.1 := rfl
@[simp] theorem mem_product {p : α × β} : p ∈ s.product t ↔ p.1 ∈ s ∧ p.2 ∈ t := mem_product
theorem product_eq_bind [decidable_eq α] [decidable_eq β] (s : finset α) (t : finset β) :
s.product t = s.bind (λa, t.image $ λb, (a, b)) :=
ext.2 $ λ ⟨x, y⟩, by simp only [mem_product, mem_bind, mem_image, exists_prop, prod.mk.inj_iff,
and.left_comm, exists_and_distrib_left, exists_eq_right, exists_eq_left]
@[simp] theorem card_product (s : finset α) (t : finset β) : card (s.product t) = card s * card t :=
multiset.card_product _ _
end prod
/-! ### sigma -/
section sigma
variables {σ : α → Type*} {s : finset α} {t : Πa, finset (σ a)}
/-- `sigma s t` is the set of dependent pairs `⟨a, b⟩` such that `a ∈ s` and `b ∈ t a`. -/
protected def sigma (s : finset α) (t : Πa, finset (σ a)) : finset (Σa, σ a) :=
⟨_, nodup_sigma s.2 (λ a, (t a).2)⟩
@[simp] theorem mem_sigma {p : sigma σ} : p ∈ s.sigma t ↔ p.1 ∈ s ∧ p.2 ∈ t (p.1) := mem_sigma
theorem sigma_mono {s₁ s₂ : finset α} {t₁ t₂ : Πa, finset (σ a)}
(H1 : s₁ ⊆ s₂) (H2 : ∀a, t₁ a ⊆ t₂ a) : s₁.sigma t₁ ⊆ s₂.sigma t₂ :=
λ ⟨x, sx⟩ H, let ⟨H3, H4⟩ := mem_sigma.1 H in mem_sigma.2 ⟨H1 H3, H2 x H4⟩
theorem sigma_eq_bind [decidable_eq α] [∀a, decidable_eq (σ a)] (s : finset α) (t : Πa, finset (σ a)) :
s.sigma t = s.bind (λa, (t a).image $ λb, ⟨a, b⟩) :=
ext.2 $ λ ⟨x, y⟩, by simp only [mem_sigma, mem_bind, mem_image, exists_prop,
and.left_comm, exists_and_distrib_left, exists_eq_left, heq_iff_eq, exists_eq_right]
end sigma
/-! ### pi -/
section pi
variables {δ : α → Type*} [decidable_eq α]
/-- Given a finset `s` of `α` and for all `a : α` a finset `t a` of `δ a`, then one can define the
finset `s.pi t` of all functions defined on elements of `s` taking values in `t a` for `a ∈ s`.
Note that the elements of `s.pi t` are only partially defined, on `s`. -/
def pi (s : finset α) (t : Πa, finset (δ a)) : finset (Πa∈s, δ a) :=
⟨s.1.pi (λ a, (t a).1), nodup_pi s.2 (λ a _, (t a).2)⟩
@[simp] lemma pi_val (s : finset α) (t : Πa, finset (δ a)) :
(s.pi t).1 = s.1.pi (λ a, (t a).1) := rfl
@[simp] lemma mem_pi {s : finset α} {t : Πa, finset (δ a)} {f : Πa∈s, δ a} :
f ∈ s.pi t ↔ (∀a (h : a ∈ s), f a h ∈ t a) :=
mem_pi _ _ _
/-- The empty dependent product function, defined on the emptyset. The assumption `a ∈ ∅` is never
satisfied. -/
def pi.empty (β : α → Sort*) (a : α) (h : a ∈ (∅ : finset α)) : β a :=
multiset.pi.empty β a h
/-- Given a function `f` defined on a finset `s`, define a new function on the finset `s ∪ {a}`,
equal to `f` on `s` and sending `a` to a given value `b`. This function is denoted
`s.pi.cons a b f`. If `a` already belongs to `s`, the new function takes the value `b` at `a`
anyway. -/
def pi.cons (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (a' : α) (h : a' ∈ insert a s) : δ a' :=
multiset.pi.cons s.1 a b f _ (multiset.mem_cons.2 $ mem_insert.symm.2 h)
@[simp] lemma pi.cons_same (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (h : a ∈ insert a s) :
pi.cons s a b f a h = b :=
multiset.pi.cons_same _
lemma pi.cons_ne {s : finset α} {a a' : α} {b : δ a} {f : Πa, a ∈ s → δ a} {h : a' ∈ insert a s} (ha : a ≠ a') :
pi.cons s a b f a' h = f a' ((mem_insert.1 h).resolve_left ha.symm) :=
multiset.pi.cons_ne _ _
lemma injective_pi_cons {a : α} {b : δ a} {s : finset α} (hs : a ∉ s) :
function.injective (pi.cons s a b) :=
assume e₁ e₂ eq,
@multiset.injective_pi_cons α _ δ a b s.1 hs _ _ $
funext $ assume e, funext $ assume h,
have pi.cons s a b e₁ e (by simpa only [mem_cons, mem_insert] using h) = pi.cons s a b e₂ e (by simpa only [mem_cons, mem_insert] using h),
by rw [eq],
this
@[simp] lemma pi_empty {t : Πa:α, finset (δ a)} :
pi (∅ : finset α) t = singleton (pi.empty δ) := rfl
@[simp] lemma pi_insert [∀a, decidable_eq (δ a)]
{s : finset α} {t : Πa:α, finset (δ a)} {a : α} (ha : a ∉ s) :
pi (insert a s) t = (t a).bind (λb, (pi s t).image (pi.cons s a b)) :=
begin
apply eq_of_veq,
rw ← multiset.erase_dup_eq_self.2 (pi (insert a s) t).2,
refine (λ s' (h : s' = a :: s.1), (_ : erase_dup (multiset.pi s' (λ a, (t a).1)) =
erase_dup ((t a).1.bind $ λ b,
erase_dup $ (multiset.pi s.1 (λ (a : α), (t a).val)).map $
λ f a' h', multiset.pi.cons s.1 a b f a' (h ▸ h')))) _ (insert_val_of_not_mem ha),
subst s', rw pi_cons,
congr, funext b,
rw multiset.erase_dup_eq_self.2,
exact multiset.nodup_map (multiset.injective_pi_cons ha) (pi s t).2,
end
lemma pi_subset {s : finset α} (t₁ t₂ : Πa, finset (δ a)) (h : ∀ a ∈ s, t₁ a ⊆ t₂ a) :
s.pi t₁ ⊆ s.pi t₂ :=
λ g hg, mem_pi.2 $ λ a ha, h a ha (mem_pi.mp hg a ha)
end pi
/-! ### powerset -/
section powerset
/-- When `s` is a finset, `s.powerset` is the finset of all subsets of `s` (seen as finsets). -/
def powerset (s : finset α) : finset (finset α) :=
⟨s.1.powerset.pmap finset.mk
(λ t h, nodup_of_le (mem_powerset.1 h) s.2),
nodup_pmap (λ a ha b hb, congr_arg finset.val)
(nodup_powerset.2 s.2)⟩
@[simp] theorem mem_powerset {s t : finset α} : s ∈ powerset t ↔ s ⊆ t :=
by cases s; simp only [powerset, mem_mk, mem_pmap, mem_powerset, exists_prop, exists_eq_right]; rw ← val_le_iff
@[simp] theorem empty_mem_powerset (s : finset α) : ∅ ∈ powerset s :=
mem_powerset.2 (empty_subset _)
@[simp] theorem mem_powerset_self (s : finset α) : s ∈ powerset s :=
mem_powerset.2 (subset.refl _)
@[simp] lemma powerset_empty [decidable_eq α] : finset.powerset (∅ : finset α) = {∅} := rfl
@[simp] theorem powerset_mono {s t : finset α} : powerset s ⊆ powerset t ↔ s ⊆ t :=
⟨λ h, (mem_powerset.1 $ h $ mem_powerset_self _),
λ st u h, mem_powerset.2 $ subset.trans (mem_powerset.1 h) st⟩
@[simp] theorem card_powerset (s : finset α) :
card (powerset s) = 2 ^ card s :=
(card_pmap _ _ _).trans (card_powerset s.1)
lemma not_mem_of_mem_powerset_of_not_mem {s t : finset α} {a : α}
(ht : t ∈ s.powerset) (h : a ∉ s) : a ∉ t :=
by { apply mt _ h, apply mem_powerset.1 ht }
lemma powerset_insert [decidable_eq α] (s : finset α) (a : α) :
powerset (insert a s) = s.powerset ∪ s.powerset.image (insert a) :=
begin
ext t,
simp only [exists_prop, mem_powerset, mem_image, mem_union, subset_insert_iff],
by_cases h : a ∈ t,
{ split,
{ exact λH, or.inr ⟨_, H, insert_erase h⟩ },
{ intros H,
cases H,
{ exact subset.trans (erase_subset a t) H },
{ rcases H with ⟨u, hu⟩,
rw ← hu.2,
exact subset.trans (erase_insert_subset a u) hu.1 } } },
{ have : ¬ ∃ (u : finset α), u ⊆ s ∧ insert a u = t,
by simp [ne.symm (ne_insert_of_not_mem _ _ h)],
simp [finset.erase_eq_of_not_mem h, this] }
end
end powerset
section powerset_len
/-- Given an integer `n` and a finset `s`, then `powerset_len n s` is the finset of subsets of `s`
of cardinality `n`.-/
def powerset_len (n : ℕ) (s : finset α) : finset (finset α) :=
⟨(s.1.powerset_len n).pmap finset.mk
(λ t h, nodup_of_le (mem_powerset_len.1 h).1 s.2),
nodup_pmap (λ a ha b hb, congr_arg finset.val)
(nodup_powerset_len s.2)⟩
theorem mem_powerset_len {n} {s t : finset α} :
s ∈ powerset_len n t ↔ s ⊆ t ∧ card s = n :=
by cases s; simp [powerset_len, val_le_iff.symm]; refl
@[simp] theorem powerset_len_mono {n} {s t : finset α} (h : s ⊆ t) :
powerset_len n s ⊆ powerset_len n t :=
λ u h', mem_powerset_len.2 $
and.imp (λ h₂, subset.trans h₂ h) id (mem_powerset_len.1 h')
@[simp] theorem card_powerset_len (n : ℕ) (s : finset α) :
card (powerset_len n s) = nat.choose (card s) n :=
(card_pmap _ _ _).trans (card_powerset_len n s.1)
end powerset_len
/-! ### fold -/
section fold
variables (op : β → β → β) [hc : is_commutative β op] [ha : is_associative β op]
local notation a * b := op a b
include hc ha
/-- `fold op b f s` folds the commutative associative operation `op` over the
`f`-image of `s`, i.e. `fold (+) b f {1,2,3} = `f 1 + f 2 + f 3 + b`. -/
def fold (b : β) (f : α → β) (s : finset α) : β := (s.1.map f).fold op b
variables {op} {f : α → β} {b : β} {s : finset α} {a : α}
@[simp] theorem fold_empty : (∅ : finset α).fold op b f = b := rfl
@[simp] theorem fold_insert [decidable_eq α] (h : a ∉ s) : (insert a s).fold op b f = f a * s.fold op b f :=
by unfold fold; rw [insert_val, ndinsert_of_not_mem h, map_cons, fold_cons_left]
@[simp] theorem fold_singleton : (singleton a).fold op b f = f a * b := rfl
@[simp] theorem fold_map {g : γ ↪ α} {s : finset γ} :
(s.map g).fold op b f = s.fold op b (f ∘ g) :=
by simp only [fold, map, multiset.map_map]
@[simp] theorem fold_image [decidable_eq α] {g : γ → α} {s : finset γ}
(H : ∀ (x ∈ s) (y ∈ s), g x = g y → x = y) : (s.image g).fold op b f = s.fold op b (f ∘ g) :=
by simp only [fold, image_val_of_inj_on H, multiset.map_map]
@[congr] theorem fold_congr {g : α → β} (H : ∀ x ∈ s, f x = g x) : s.fold op b f = s.fold op b g :=
by rw [fold, fold, map_congr H]
theorem fold_op_distrib {f g : α → β} {b₁ b₂ : β} :
s.fold op (b₁ * b₂) (λx, f x * g x) = s.fold op b₁ f * s.fold op b₂ g :=
by simp only [fold, fold_distrib]
theorem fold_hom {op' : γ → γ → γ} [is_commutative γ op'] [is_associative γ op']
{m : β → γ} (hm : ∀x y, m (op x y) = op' (m x) (m y)) :
s.fold op' (m b) (λx, m (f x)) = m (s.fold op b f) :=
by rw [fold, fold, ← fold_hom op hm, multiset.map_map]
theorem fold_union_inter [decidable_eq α] {s₁ s₂ : finset α} {b₁ b₂ : β} :
(s₁ ∪ s₂).fold op b₁ f * (s₁ ∩ s₂).fold op b₂ f = s₁.fold op b₂ f * s₂.fold op b₁ f :=
by unfold fold; rw [← fold_add op, ← map_add, union_val,
inter_val, union_add_inter, map_add, hc.comm, fold_add]
@[simp] theorem fold_insert_idem [decidable_eq α] [hi : is_idempotent β op] :
(insert a s).fold op b f = f a * s.fold op b f :=
by haveI := classical.prop_decidable;
rw [fold, insert_val', ← fold_erase_dup_idem op, erase_dup_map_erase_dup_eq,
fold_erase_dup_idem op]; simp only [map_cons, fold_cons_left, fold]
lemma fold_op_rel_iff_and
{r : β → β → Prop} (hr : ∀ {x y z}, r x (op y z) ↔ (r x y ∧ r x z)) {c : β} :
r c (s.fold op b f) ↔ (r c b ∧ ∀ x∈s, r c (f x)) :=
begin
classical,
apply finset.induction_on s, { simp },
clear s, intros a s ha IH,
rw [finset.fold_insert ha, hr, IH, ← and_assoc, and_comm (r c (f a)), and_assoc],
apply and_congr iff.rfl,
split,
{ rintro ⟨h₁, h₂⟩, intros b hb, rw finset.mem_insert at hb,
rcases hb with rfl|hb; solve_by_elim },
{ intro h, split,
{ exact h a (finset.mem_insert_self _ _), },
{ intros b hb, apply h b, rw finset.mem_insert, right, exact hb } }
end
lemma fold_op_rel_iff_or
{r : β → β → Prop} (hr : ∀ {x y z}, r x (op y z) ↔ (r x y ∨ r x z)) {c : β} :
r c (s.fold op b f) ↔ (r c b ∨ ∃ x∈s, r c (f x)) :=
begin
classical,
apply finset.induction_on s, { simp },
clear s, intros a s ha IH,
rw [finset.fold_insert ha, hr, IH, ← or_assoc, or_comm (r c (f a)), or_assoc],
apply or_congr iff.rfl,
split,
{ rintro (h₁|⟨x, hx, h₂⟩),
{ use a, simp [h₁] },
{ refine ⟨x, by simp [hx], h₂⟩ } },
{ rintro ⟨x, hx, h⟩,
rw mem_insert at hx, cases hx,
{ left, rwa hx at h },
{ right, exact ⟨x, hx, h⟩ } }
end
omit hc ha
section order
variables [decidable_linear_order β] (c : β)
lemma le_fold_min : c ≤ s.fold min b f ↔ (c ≤ b ∧ ∀ x∈s, c ≤ f x) :=
fold_op_rel_iff_and $ λ x y z, le_min_iff
lemma fold_min_le : s.fold min b f ≤ c ↔ (b ≤ c ∨ ∃ x∈s, f x ≤ c) :=
begin
show _ ≥ _ ↔ _,
apply fold_op_rel_iff_or,
intros x y z,
show _ ≤ _ ↔ _,
exact min_le_iff
end
lemma lt_fold_min : c < s.fold min b f ↔ (c < b ∧ ∀ x∈s, c < f x) :=
fold_op_rel_iff_and $ λ x y z, lt_min_iff
lemma fold_min_lt : s.fold min b f < c ↔ (b < c ∨ ∃ x∈s, f x < c) :=
begin
show _ > _ ↔ _,
apply fold_op_rel_iff_or,
intros x y z,
show _ < _ ↔ _,
exact min_lt_iff
end
lemma fold_max_le : s.fold max b f ≤ c ↔ (b ≤ c ∧ ∀ x∈s, f x ≤ c) :=
begin
show _ ≥ _ ↔ _,
apply fold_op_rel_iff_and,
intros x y z,
show _ ≤ _ ↔ _,
exact max_le_iff
end
lemma le_fold_max : c ≤ s.fold max b f ↔ (c ≤ b ∨ ∃ x∈s, c ≤ f x) :=
fold_op_rel_iff_or $ λ x y z, le_max_iff
lemma fold_max_lt : s.fold max b f < c ↔ (b < c ∧ ∀ x∈s, f x < c) :=
begin
show _ > _ ↔ _,
apply fold_op_rel_iff_and,
intros x y z,
show _ < _ ↔ _,
exact max_lt_iff
end
lemma lt_fold_max : c < s.fold max b f ↔ (c < b ∨ ∃ x∈s, c < f x) :=
fold_op_rel_iff_or $ λ x y z, lt_max_iff
end order
end fold
/-! ### sup -/
section sup
variables [semilattice_sup_bot α]
/-- Supremum of a finite set: `sup {a, b, c} f = f a ⊔ f b ⊔ f c` -/
def sup (s : finset β) (f : β → α) : α := s.fold (⊔) ⊥ f
variables {s s₁ s₂ : finset β} {f : β → α}
lemma sup_val : s.sup f = (s.1.map f).sup := rfl
@[simp] lemma sup_empty : (∅ : finset β).sup f = ⊥ :=
fold_empty
@[simp] lemma sup_insert [decidable_eq β] {b : β} : (insert b s : finset β).sup f = f b ⊔ s.sup f :=
fold_insert_idem
@[simp] lemma sup_singleton' {b : β} : (singleton b).sup f = f b :=
sup_singleton
lemma sup_singleton [decidable_eq β] {b : β} : ({b} : finset β).sup f = f b :=
sup_singleton
lemma sup_union [decidable_eq β] : (s₁ ∪ s₂).sup f = s₁.sup f ⊔ s₂.sup f :=
finset.induction_on s₁ (by rw [empty_union, sup_empty, bot_sup_eq]) $ λ a s has ih,
by rw [insert_union, sup_insert, sup_insert, ih, sup_assoc]
theorem sup_congr {f g : β → α} (hs : s₁ = s₂) (hfg : ∀a∈s₂, f a = g a) : s₁.sup f = s₂.sup g :=
by subst hs; exact finset.fold_congr hfg
lemma sup_mono_fun {g : β → α} : (∀b∈s, f b ≤ g b) → s.sup f ≤ s.sup g :=
by letI := classical.dec_eq β; from
finset.induction_on s (λ _, le_refl _) (λ a s has ih H,
by simp only [mem_insert, or_imp_distrib, forall_and_distrib, forall_eq] at H;
simp only [sup_insert]; exact sup_le_sup H.1 (ih H.2))
lemma le_sup {b : β} (hb : b ∈ s) : f b ≤ s.sup f :=
by letI := classical.dec_eq β; from
calc f b ≤ f b ⊔ s.sup f : le_sup_left
... = (insert b s).sup f : sup_insert.symm
... = s.sup f : by rw [insert_eq_of_mem hb]
lemma sup_le {a : α} : (∀b ∈ s, f b ≤ a) → s.sup f ≤ a :=
by letI := classical.dec_eq β; from
finset.induction_on s (λ _, bot_le) (λ n s hns ih H,
by simp only [mem_insert, or_imp_distrib, forall_and_distrib, forall_eq] at H;
simp only [sup_insert]; exact sup_le H.1 (ih H.2))
@[simp] lemma sup_le_iff {a : α} : s.sup f ≤ a ↔ (∀b ∈ s, f b ≤ a) :=
iff.intro (assume h b hb, le_trans (le_sup hb) h) sup_le
lemma sup_mono (h : s₁ ⊆ s₂) : s₁.sup f ≤ s₂.sup f :=
sup_le $ assume b hb, le_sup (h hb)
@[simp] lemma sup_lt_iff [is_total α (≤)] {a : α} (ha : ⊥ < a) :
s.sup f < a ↔ (∀b ∈ s, f b < a) :=
by letI := classical.dec_eq β; from
⟨ λh b hb, lt_of_le_of_lt (le_sup hb) h,
finset.induction_on s (by simp [ha]) (by simp {contextual := tt}) ⟩
lemma comp_sup_eq_sup_comp [is_total α (≤)] {γ : Type} [semilattice_sup_bot γ]
(g : α → γ) (mono_g : monotone g) (bot : g ⊥ = ⊥) : g (s.sup f) = s.sup (g ∘ f) :=
have A : ∀x y, g (x ⊔ y) = g x ⊔ g y :=
begin
assume x y,
cases (@is_total.total _ (≤) _ x y) with h,
{ simp [sup_of_le_right h, sup_of_le_right (mono_g h)] },
{ simp [sup_of_le_left h, sup_of_le_left (mono_g h)] }
end,
by letI := classical.dec_eq β; from
finset.induction_on s (by simp [bot]) (by simp [A] {contextual := tt})
theorem subset_range_sup_succ (s : finset ℕ) : s ⊆ range (s.sup id).succ :=
λ n hn, mem_range.2 $ nat.lt_succ_of_le $ le_sup hn
theorem exists_nat_subset_range (s : finset ℕ) : ∃n : ℕ, s ⊆ range n :=
⟨_, s.subset_range_sup_succ⟩
end sup
lemma sup_eq_supr [complete_lattice β] (s : finset α) (f : α → β) : s.sup f = (⨆a∈s, f a) :=
le_antisymm
(finset.sup_le $ assume a ha, le_supr_of_le a $ le_supr _ ha)
(supr_le $ assume a, supr_le $ assume ha, le_sup ha)
/-! ### inf -/
section inf
variables [semilattice_inf_top α]
/-- Infimum of a finite set: `inf {a, b, c} f = f a ⊓ f b ⊓ f c` -/
def inf (s : finset β) (f : β → α) : α := s.fold (⊓) ⊤ f
variables {s s₁ s₂ : finset β} {f : β → α}
lemma inf_val : s.inf f = (s.1.map f).inf := rfl
@[simp] lemma inf_empty : (∅ : finset β).inf f = ⊤ :=
fold_empty
@[simp] lemma inf_insert [decidable_eq β] {b : β} : (insert b s : finset β).inf f = f b ⊓ s.inf f :=
fold_insert_idem
@[simp] lemma inf_singleton' {b : β} : (singleton b).inf f = f b :=
inf_singleton
lemma inf_singleton [decidable_eq β] {b : β} : ({b} : finset β).inf f = f b :=
inf_singleton'
lemma inf_union [decidable_eq β] : (s₁ ∪ s₂).inf f = s₁.inf f ⊓ s₂.inf f :=
finset.induction_on s₁ (by rw [empty_union, inf_empty, top_inf_eq]) $ λ a s has ih,
by rw [insert_union, inf_insert, inf_insert, ih, inf_assoc]
theorem inf_congr {f g : β → α} (hs : s₁ = s₂) (hfg : ∀a∈s₂, f a = g a) : s₁.inf f = s₂.inf g :=
by subst hs; exact finset.fold_congr hfg
lemma inf_mono_fun {g : β → α} : (∀b∈s, f b ≤ g b) → s.inf f ≤ s.inf g :=
by letI := classical.dec_eq β; from
finset.induction_on s (λ _, le_refl _) (λ a s has ih H,
by simp only [mem_insert, or_imp_distrib, forall_and_distrib, forall_eq] at H;
simp only [inf_insert]; exact inf_le_inf H.1 (ih H.2))
lemma inf_le {b : β} (hb : b ∈ s) : s.inf f ≤ f b :=
by letI := classical.dec_eq β; from
calc f b ≥ f b ⊓ s.inf f : inf_le_left
... = (insert b s).inf f : inf_insert.symm
... = s.inf f : by rw [insert_eq_of_mem hb]
lemma le_inf {a : α} : (∀b ∈ s, a ≤ f b) → a ≤ s.inf f :=
by letI := classical.dec_eq β; from
finset.induction_on s (λ _, le_top) (λ n s hns ih H,
by simp only [mem_insert, or_imp_distrib, forall_and_distrib, forall_eq] at H;
simp only [inf_insert]; exact le_inf H.1 (ih H.2))
lemma le_inf_iff {a : α} : a ≤ s.inf f ↔ (∀b ∈ s, a ≤ f b) :=
iff.intro (assume h b hb, le_trans h (inf_le hb)) le_inf
lemma inf_mono (h : s₁ ⊆ s₂) : s₂.inf f ≤ s₁.inf f :=
le_inf $ assume b hb, inf_le (h hb)
lemma lt_inf [is_total α (≤)] {a : α} : (a < ⊤) → (∀b ∈ s, a < f b) → a < s.inf f :=
by letI := classical.dec_eq β; from
finset.induction_on s (by simp) (by simp {contextual := tt})
lemma comp_inf_eq_inf_comp [is_total α (≤)] {γ : Type} [semilattice_inf_top γ]
(g : α → γ) (mono_g : monotone g) (top : g ⊤ = ⊤) : g (s.inf f) = s.inf (g ∘ f) :=
have A : ∀x y, g (x ⊓ y) = g x ⊓ g y :=
begin
assume x y,
cases (@is_total.total _ (≤) _ x y) with h,
{ simp [inf_of_le_left h, inf_of_le_left (mono_g h)] },
{ simp [inf_of_le_right h, inf_of_le_right (mono_g h)] }
end,
by letI := classical.dec_eq β; from
finset.induction_on s (by simp [top]) (by simp [A] {contextual := tt})
end inf
lemma inf_eq_infi [complete_lattice β] (s : finset α) (f : α → β) : s.inf f = (⨅a∈s, f a) :=
le_antisymm
(le_infi $ assume a, le_infi $ assume ha, inf_le ha)
(finset.le_inf $ assume a ha, infi_le_of_le a $ infi_le _ ha)
/-! ### max and min of finite sets -/
section max_min
variables [decidable_linear_order α]
/-- Let `s` be a finset in a linear order. Then `s.max` is the maximum of `s` if `s` is not empty,
and `none` otherwise. It belongs to `option α`. If you want to get an element of `α`, see
`s.max'`. -/
protected def max : finset α → option α :=
fold (option.lift_or_get max) none some
theorem max_eq_sup_with_bot (s : finset α) :
s.max = @sup (with_bot α) α _ s some := rfl
@[simp] theorem max_empty : (∅ : finset α).max = none := rfl
@[simp] theorem max_insert {a : α} {s : finset α} :
(insert a s).max = option.lift_or_get max (some a) s.max := fold_insert_idem
theorem max_singleton {a : α} : finset.max {a} = some a := max_insert
@[simp] theorem max_singleton' {a : α} : finset.max (singleton a) = some a := max_singleton
theorem max_of_mem {s : finset α} {a : α} (h : a ∈ s) : ∃ b, b ∈ s.max :=
(@le_sup (with_bot α) _ _ _ _ _ h _ rfl).imp $ λ b, Exists.fst
theorem max_of_nonempty {s : finset α} (h : s.nonempty) : ∃ a, a ∈ s.max :=
let ⟨a, ha⟩ := h in max_of_mem ha
theorem max_eq_none {s : finset α} : s.max = none ↔ s = ∅ :=
⟨λ h, s.eq_empty_or_nonempty.elim id
(λ H, let ⟨a, ha⟩ := max_of_nonempty H in by rw h at ha; cases ha),
λ h, h.symm ▸ max_empty⟩
theorem mem_of_max {s : finset α} : ∀ {a : α}, a ∈ s.max → a ∈ s :=
finset.induction_on s (λ _ H, by cases H)
(λ b s _ (ih : ∀ {a}, a ∈ s.max → a ∈ s) a (h : a ∈ (insert b s).max),
begin
by_cases p : b = a,
{ induction p, exact mem_insert_self b s },
{ cases option.lift_or_get_choice max_choice (some b) s.max with q q;
rw [max_insert, q] at h,
{ cases h, cases p rfl },
{ exact mem_insert_of_mem (ih h) } }
end)
theorem le_max_of_mem {s : finset α} {a b : α} (h₁ : a ∈ s) (h₂ : b ∈ s.max) : a ≤ b :=
by rcases @le_sup (with_bot α) _ _ _ _ _ h₁ _ rfl with ⟨b', hb, ab⟩;
cases h₂.symm.trans hb; assumption
/-- Let `s` be a finset in a linear order. Then `s.min` is the minimum of `s` if `s` is not empty,
and `none` otherwise. It belongs to `option α`. If you want to get an element of `α`, see
`s.min'`. -/
protected def min : finset α → option α :=
fold (option.lift_or_get min) none some
theorem min_eq_inf_with_top (s : finset α) :
s.min = @inf (with_top α) α _ s some := rfl
@[simp] theorem min_empty : (∅ : finset α).min = none := rfl
@[simp] theorem min_insert {a : α} {s : finset α} :
(insert a s).min = option.lift_or_get min (some a) s.min :=
fold_insert_idem
theorem min_singleton {a : α} : finset.min {a} = some a := min_insert
@[simp] theorem min_singleton' {a : α} : finset.min (singleton a) = some a := min_singleton
theorem min_of_mem {s : finset α} {a : α} (h : a ∈ s) : ∃ b, b ∈ s.min :=
(@inf_le (with_top α) _ _ _ _ _ h _ rfl).imp $ λ b, Exists.fst
theorem min_of_nonempty {s : finset α} (h : s.nonempty) : ∃ a, a ∈ s.min :=
let ⟨a, ha⟩ := h in min_of_mem ha
theorem min_eq_none {s : finset α} : s.min = none ↔ s = ∅ :=
⟨λ h, s.eq_empty_or_nonempty.elim id
(λ H, let ⟨a, ha⟩ := min_of_nonempty H in by rw h at ha; cases ha),
λ h, h.symm ▸ min_empty⟩
theorem mem_of_min {s : finset α} : ∀ {a : α}, a ∈ s.min → a ∈ s :=
finset.induction_on s (λ _ H, by cases H) $
λ b s _ (ih : ∀ {a}, a ∈ s.min → a ∈ s) a (h : a ∈ (insert b s).min),
begin
by_cases p : b = a,
{ induction p, exact mem_insert_self b s },
{ cases option.lift_or_get_choice min_choice (some b) s.min with q q;
rw [min_insert, q] at h,
{ cases h, cases p rfl },
{ exact mem_insert_of_mem (ih h) } }
end
theorem min_le_of_mem {s : finset α} {a b : α} (h₁ : b ∈ s) (h₂ : a ∈ s.min) : a ≤ b :=
by rcases @inf_le (with_top α) _ _ _ _ _ h₁ _ rfl with ⟨b', hb, ab⟩;
cases h₂.symm.trans hb; assumption
/-- Given a nonempty finset `s` in a linear order `α `, then `s.min' h` is its minimum, as an
element of `α`, where `h` is a proof of nonemptiness. Without this assumption, use instead `s.min`,
taking values in `option α`. -/
def min' (s : finset α) (H : s.nonempty) : α :=
@option.get _ s.min $
let ⟨k, hk⟩ := H in
let ⟨b, hb⟩ := min_of_mem hk in by simp at hb; simp [hb]
/-- Given a nonempty finset `s` in a linear order `α `, then `s.max' h` is its maximum, as an
element of `α`, where `h` is a proof of nonemptiness. Without this assumption, use instead `s.max`,
taking values in `option α`. -/
def max' (s : finset α) (H : s.nonempty) : α :=
@option.get _ s.max $
let ⟨k, hk⟩ := H in
let ⟨b, hb⟩ := max_of_mem hk in by simp at hb; simp [hb]
variables (s : finset α) (H : s.nonempty)
theorem min'_mem : s.min' H ∈ s := mem_of_min $ by simp [min']
theorem min'_le (x) (H2 : x ∈ s) : s.min' H ≤ x := min_le_of_mem H2 $ option.get_mem _
theorem le_min' (x) (H2 : ∀ y ∈ s, x ≤ y) : x ≤ s.min' H := H2 _ $ min'_mem _ _
theorem max'_mem : s.max' H ∈ s := mem_of_max $ by simp [max']
theorem le_max' (x) (H2 : x ∈ s) : x ≤ s.max' H := le_max_of_mem H2 $ option.get_mem _
theorem max'_le (x) (H2 : ∀ y ∈ s, y ≤ x) : s.max' H ≤ x := H2 _ $ max'_mem _ _
theorem min'_lt_max' {i j} (H1 : i ∈ s) (H2 : j ∈ s) (H3 : i ≠ j) : s.min' H < s.max' H :=
begin
rcases lt_trichotomy i j with H4 | H4 | H4,
{ have H5 := min'_le s H i H1,
have H6 := le_max' s H j H2,
apply lt_of_le_of_lt H5,
apply lt_of_lt_of_le H4 H6 },
{ cc },
{ have H5 := min'_le s H j H2,
have H6 := le_max' s H i H1,
apply lt_of_le_of_lt H5,
apply lt_of_lt_of_le H4 H6 }
end
/--
If there's more than 1 element, the min' is less than the max'. An alternate version of
`min'_lt_max'` which is sometimes more convenient.
-/
lemma min'_lt_max'_of_card (h₂ : 1 < card s) : s.min' H < s.max' H :=
begin
apply lt_of_not_ge,
intro a,
apply not_le_of_lt h₂ (le_of_eq _),
rw card_eq_one,
use max' s H,
rw eq_singleton_iff_unique_mem,
refine ⟨max'_mem _ _, λ t Ht, le_antisymm (le_max' s H t Ht) (le_trans a (min'_le s H t Ht))⟩,
end
end max_min
section exists_max_min
variables [linear_order α]
lemma exists_max_image (s : finset β) (f : β → α) (h : s.nonempty) : ∃ x ∈ s, ∀ x' ∈ s, f x' ≤ f x :=
begin
letI := classical.DLO α,
cases max_of_nonempty (h.image f) with y hy,
rcases mem_image.mp (mem_of_max hy) with ⟨x, hx, rfl⟩,
exact ⟨x, hx, λ x' hx', le_max_of_mem (mem_image_of_mem f hx') hy⟩,
end
lemma exists_min_image (s : finset β) (f : β → α) (h : s.nonempty) : ∃ x ∈ s, ∀ x' ∈ s, f x ≤ f x' :=
begin
letI := classical.DLO α,
cases min_of_nonempty (h.image f) with y hy,
rcases mem_image.mp (mem_of_min hy) with ⟨x, hx, rfl⟩,
exact ⟨x, hx, λ x' hx', min_le_of_mem (mem_image_of_mem f hx') hy⟩
end
end exists_max_min
/-! ### sort -/
section sort
variables (r : α → α → Prop) [decidable_rel r]
[is_trans α r] [is_antisymm α r] [is_total α r]
/-- `sort s` constructs a sorted list from the unordered set `s`.
(Uses merge sort algorithm.) -/
def sort (s : finset α) : list α := sort r s.1
@[simp] theorem sort_sorted (s : finset α) : list.sorted r (sort r s) :=
sort_sorted _ _
@[simp] theorem sort_eq (s : finset α) : ↑(sort r s) = s.1 :=
sort_eq _ _
@[simp] theorem sort_nodup (s : finset α) : (sort r s).nodup :=
(by rw sort_eq; exact s.2 : @multiset.nodup α (sort r s))
@[simp] theorem sort_to_finset [decidable_eq α] (s : finset α) : (sort r s).to_finset = s :=
list.to_finset_eq (sort_nodup r s) ▸ eq_of_veq (sort_eq r s)
@[simp] theorem mem_sort {s : finset α} {a : α} : a ∈ sort r s ↔ a ∈ s :=
multiset.mem_sort _
@[simp] theorem length_sort {s : finset α} : (sort r s).length = s.card :=
multiset.length_sort _
end sort
section sort_linear_order
variables [decidable_linear_order α]
theorem sort_sorted_lt (s : finset α) :
list.sorted (<) (sort (≤) s) :=
(sort_sorted _ _).imp₂ (@lt_of_le_of_ne _ _) (sort_nodup _ _)
lemma sorted_zero_eq_min' (s : finset α) (h : 0 < (s.sort (≤)).length) (H : s.nonempty) :
(s.sort (≤)).nth_le 0 h = s.min' H :=
begin
let l := s.sort (≤),
apply le_antisymm,
{ have : s.min' H ∈ l := (finset.mem_sort (≤)).mpr (s.min'_mem H),
obtain ⟨i, i_lt, hi⟩ : ∃ i (hi : i < l.length), l.nth_le i hi = s.min' H :=
list.mem_iff_nth_le.1 this,
rw ← hi,
exact list.nth_le_of_sorted_of_le (s.sort_sorted (≤)) (nat.zero_le i) },
{ have : l.nth_le 0 h ∈ s := (finset.mem_sort (≤)).1 (list.nth_le_mem l 0 h),
exact s.min'_le H _ this }
end
lemma sorted_last_eq_max' (s : finset α) (h : (s.sort (≤)).length - 1 < (s.sort (≤)).length)
(H : s.nonempty) : (s.sort (≤)).nth_le ((s.sort (≤)).length - 1) h = s.max' H :=
begin
let l := s.sort (≤),
apply le_antisymm,
{ have : l.nth_le ((s.sort (≤)).length - 1) h ∈ s :=
(finset.mem_sort (≤)).1 (list.nth_le_mem l _ h),
exact s.le_max' H _ this },
{ have : s.max' H ∈ l := (finset.mem_sort (≤)).mpr (s.max'_mem H),
obtain ⟨i, i_lt, hi⟩ : ∃ i (hi : i < l.length), l.nth_le i hi = s.max' H :=
list.mem_iff_nth_le.1 this,
rw ← hi,
have : i ≤ l.length - 1 := nat.le_pred_of_lt i_lt,
exact list.nth_le_of_sorted_of_le (s.sort_sorted (≤)) (nat.le_pred_of_lt i_lt) },
end
/-- Given a finset `s` of cardinal `k` in a linear order `α`, the map `mono_of_fin s h`
is the increasing bijection between `fin k` and `s` as an `α`-valued map. Here, `h` is a proof that
the cardinality of `s` is `k`. We use this instead of a map `fin s.card → α` to avoid
casting issues in further uses of this function. -/
def mono_of_fin (s : finset α) {k : ℕ} (h : s.card = k) (i : fin k) : α :=
have A : (i : ℕ) < (s.sort (≤)).length, by simpa [h] using i.2,
(s.sort (≤)).nth_le i A
lemma mono_of_fin_strict_mono (s : finset α) {k : ℕ} (h : s.card = k) :
strict_mono (s.mono_of_fin h) :=
begin
assume i j hij,
exact list.pairwise_iff_nth_le.1 s.sort_sorted_lt _ _ _ hij
end
lemma mono_of_fin_bij_on (s : finset α) {k : ℕ} (h : s.card = k) :
set.bij_on (s.mono_of_fin h) set.univ ↑s :=
begin
have A : ∀ j, j ∈ s ↔ j ∈ (s.sort (≤)) := λ j, by simp,
apply set.bij_on.mk,
{ assume i hi,
simp only [mono_of_fin, set.mem_preimage, mem_coe, list.nth_le, A],
exact list.nth_le_mem _ _ _ },
{ exact ((mono_of_fin_strict_mono s h).injective).inj_on _ },
{ assume x hx,
simp only [mem_coe, A] at hx,
obtain ⟨i, il, hi⟩ : ∃ (i : ℕ) (h : i < (s.sort (≤)).length), (s.sort (≤)).nth_le i h = x :=
list.nth_le_of_mem hx,
simp [h] at il,
exact ⟨⟨i, il⟩, set.mem_univ _, hi⟩ }
end
lemma mono_of_fin_injective (s : finset α) {k : ℕ} (h : s.card = k) :
function.injective (s.mono_of_fin h) :=
set.injective_iff_inj_on_univ.mpr (s.mono_of_fin_bij_on h).inj_on
/-- The bijection `mono_of_fin s h` sends `0` to the minimum of `s`. -/
lemma mono_of_fin_zero {s : finset α} {k : ℕ} (h : s.card = k) (hs : s.nonempty) (hz : 0 < k) :
mono_of_fin s h ⟨0, hz⟩ = s.min' hs :=
begin
apply le_antisymm,
{ have : min' s hs ∈ s := min'_mem s hs,
rcases (mono_of_fin_bij_on s h).surj_on this with ⟨a, _, ha⟩,
rw ← ha,
apply (mono_of_fin_strict_mono s h).monotone,
exact zero_le a.val },
{ have : mono_of_fin s h ⟨0, hz⟩ ∈ s := (mono_of_fin_bij_on s h).maps_to (set.mem_univ _),
exact min'_le s hs _ this }
end
/-- The bijection `mono_of_fin s h` sends `k-1` to the maximum of `s`. -/
lemma mono_of_fin_last {s : finset α} {k : ℕ} (h : s.card = k) (hs : s.nonempty) (hz : 0 < k) :
mono_of_fin s h ⟨k-1, buffer.lt_aux_2 hz⟩ = s.max' hs :=
begin
have h'' : k - 1 < k := buffer.lt_aux_2 hz,
apply le_antisymm,
{ have : mono_of_fin s h ⟨k-1, h''⟩ ∈ s := (mono_of_fin_bij_on s h).maps_to (set.mem_univ _),
exact le_max' s hs _ this },
{ have : max' s hs ∈ s := max'_mem s hs,
rcases (mono_of_fin_bij_on s h).surj_on this with ⟨a, _, ha⟩,
rw ← ha,
apply (mono_of_fin_strict_mono s h).monotone,
exact le_pred_of_lt a.2},
end
/-- Any increasing bijection between `fin k` and a finset of cardinality `k` has to coincide with
the increasing bijection `mono_of_fin s h`. For a statement assuming only that `f` maps `univ` to
`s`, see `mono_of_fin_unique'`.-/
lemma mono_of_fin_unique {s : finset α} {k : ℕ} (h : s.card = k) {f : fin k → α}
(hbij : set.bij_on f set.univ ↑s) (hmono : strict_mono f) : f = s.mono_of_fin h :=
begin
ext i,
rcases i with ⟨i, hi⟩,
induction i using nat.strong_induction_on with i IH,
rcases lt_trichotomy (f ⟨i, hi⟩) (mono_of_fin s h ⟨i, hi⟩) with H|H|H,
{ have A : f ⟨i, hi⟩ ∈ ↑s := hbij.maps_to (set.mem_univ _),
rcases (mono_of_fin_bij_on s h).surj_on A with ⟨j, _, hj⟩,
rw ← hj at H,
have ji : j < ⟨i, hi⟩ := (mono_of_fin_strict_mono s h).lt_iff_lt.1 H,
have : f j = mono_of_fin s h j,
by { convert IH j.1 ji (lt_trans ji hi), rw fin.ext_iff },
rw ← this at hj,
exact (ne_of_lt (hmono ji) hj).elim },
{ exact H },
{ have A : mono_of_fin s h ⟨i, hi⟩ ∈ ↑s := (mono_of_fin_bij_on s h).maps_to (set.mem_univ _),
rcases hbij.surj_on A with ⟨j, _, hj⟩,
rw ← hj at H,
have ji : j < ⟨i, hi⟩ := hmono.lt_iff_lt.1 H,
have : f j = mono_of_fin s h j,
by { convert IH j.1 ji (lt_trans ji hi), rw fin.ext_iff },
rw this at hj,
exact (ne_of_lt (mono_of_fin_strict_mono s h ji) hj).elim }
end
/-- Two parametrizations `mono_of_fin` of the same set take the same value on `i` and `j` if and
only if `i = j`. Since they can be defined on a priori not defeq types `fin k` and `fin l` (although
necessarily `k = l`), the conclusion is rather written `i.val = j.val`. -/
@[simp] lemma mono_of_fin_eq_mono_of_fin_iff
{k l : ℕ} {s : finset α} {i : fin k} {j : fin l} {h : s.card = k} {h' : s.card = l} :
s.mono_of_fin h i = s.mono_of_fin h' j ↔ i.val = j.val :=
begin
have A : k = l, by rw [← h', ← h],
have : s.mono_of_fin h = (s.mono_of_fin h') ∘ (λ j : (fin k), ⟨j.1, A ▸ j.2⟩) := rfl,
rw [this, function.comp_app, (s.mono_of_fin_injective h').eq_iff, fin.ext_iff]
end
/-- Given a finset `s` of cardinal `k` in a linear order `α`, the equiv `mono_equiv_of_fin s h`
is the increasing bijection between `fin k` and `s` as an `s`-valued map. Here, `h` is a proof that
the cardinality of `s` is `k`. We use this instead of a map `fin s.card → α` to avoid
casting issues in further uses of this function. -/
noncomputable def mono_equiv_of_fin (s : finset α) {k : ℕ} (h : s.card = k) :
fin k ≃ {x // x ∈ s} :=
(s.mono_of_fin_bij_on h).equiv _
end sort_linear_order
/-! ### disjoint -/
section disjoint
variable [decidable_eq α]
theorem disjoint_left {s t : finset α} : disjoint s t ↔ ∀ {a}, a ∈ s → a ∉ t :=
by simp only [_root_.disjoint, inf_eq_inter, le_iff_subset, subset_iff, mem_inter, not_and, and_imp]; refl
theorem disjoint_val {s t : finset α} : disjoint s t ↔ s.1.disjoint t.1 :=
disjoint_left
theorem disjoint_iff_inter_eq_empty {s t : finset α} : disjoint s t ↔ s ∩ t = ∅ :=
disjoint_iff
instance decidable_disjoint (U V : finset α) : decidable (disjoint U V) :=
decidable_of_decidable_of_iff (by apply_instance) eq_bot_iff
theorem disjoint_right {s t : finset α} : disjoint s t ↔ ∀ {a}, a ∈ t → a ∉ s :=
by rw [disjoint.comm, disjoint_left]
theorem disjoint_iff_ne {s t : finset α} : disjoint s t ↔ ∀ a ∈ s, ∀ b ∈ t, a ≠ b :=
by simp only [disjoint_left, imp_not_comm, forall_eq']
theorem disjoint_of_subset_left {s t u : finset α} (h : s ⊆ u) (d : disjoint u t) : disjoint s t :=
disjoint_left.2 (λ x m₁, (disjoint_left.1 d) (h m₁))
theorem disjoint_of_subset_right {s t u : finset α} (h : t ⊆ u) (d : disjoint s u) : disjoint s t :=
disjoint_right.2 (λ x m₁, (disjoint_right.1 d) (h m₁))
@[simp] theorem disjoint_empty_left (s : finset α) : disjoint ∅ s := disjoint_bot_left
@[simp] theorem disjoint_empty_right (s : finset α) : disjoint s ∅ := disjoint_bot_right
@[simp] theorem singleton_disjoint {s : finset α} {a : α} : disjoint (singleton a) s ↔ a ∉ s :=
by simp only [disjoint_left, mem_singleton, forall_eq]
@[simp] theorem disjoint_singleton {s : finset α} {a : α} : disjoint s (singleton a) ↔ a ∉ s :=
disjoint.comm.trans singleton_disjoint
@[simp] theorem disjoint_insert_left {a : α} {s t : finset α} :
disjoint (insert a s) t ↔ a ∉ t ∧ disjoint s t :=
by simp only [disjoint_left, mem_insert, or_imp_distrib, forall_and_distrib, forall_eq]
@[simp] theorem disjoint_insert_right {a : α} {s t : finset α} :
disjoint s (insert a t) ↔ a ∉ s ∧ disjoint s t :=
disjoint.comm.trans $ by rw [disjoint_insert_left, disjoint.comm]
@[simp] theorem disjoint_union_left {s t u : finset α} :
disjoint (s ∪ t) u ↔ disjoint s u ∧ disjoint t u :=
by simp only [disjoint_left, mem_union, or_imp_distrib, forall_and_distrib]
@[simp] theorem disjoint_union_right {s t u : finset α} :
disjoint s (t ∪ u) ↔ disjoint s t ∧ disjoint s u :=
by simp only [disjoint_right, mem_union, or_imp_distrib, forall_and_distrib]
lemma sdiff_disjoint {s t : finset α} : disjoint (t \ s) s :=
disjoint_left.2 $ assume a ha, (mem_sdiff.1 ha).2
lemma disjoint_sdiff {s t : finset α} : disjoint s (t \ s) :=
sdiff_disjoint.symm
lemma disjoint_sdiff_inter (s t : finset α) : disjoint (s \ t) (s ∩ t) :=
disjoint_of_subset_right (inter_subset_right _ _) sdiff_disjoint
lemma sdiff_eq_self_iff_disjoint {s t : finset α} : s \ t = s ↔ disjoint s t :=
by rw [sdiff_eq_self, subset_empty, disjoint_iff_inter_eq_empty]
lemma sdiff_eq_self_of_disjoint {s t : finset α} (h : disjoint s t) : s \ t = s :=
sdiff_eq_self_iff_disjoint.2 h
lemma disjoint_self_iff_empty (s : finset α) : disjoint s s ↔ s = ∅ :=
disjoint_self
lemma disjoint_bind_left {ι : Type*}
(s : finset ι) (f : ι → finset α) (t : finset α) :
disjoint (s.bind f) t ↔ (∀i∈s, disjoint (f i) t) :=
begin
classical,
refine s.induction _ _,
{ simp only [forall_mem_empty_iff, bind_empty, disjoint_empty_left] },
{ assume i s his ih,
simp only [disjoint_union_left, bind_insert, his, forall_mem_insert, ih] }
end
lemma disjoint_bind_right {ι : Type*}
(s : finset α) (t : finset ι) (f : ι → finset α) :
disjoint s (t.bind f) ↔ (∀i∈t, disjoint s (f i)) :=
by simpa only [disjoint.comm] using disjoint_bind_left t f s
@[simp] theorem card_disjoint_union {s t : finset α} (h : disjoint s t) :
card (s ∪ t) = card s + card t :=
by rw [← card_union_add_card_inter, disjoint_iff_inter_eq_empty.1 h, card_empty, add_zero]
theorem card_sdiff {s t : finset α} (h : s ⊆ t) : card (t \ s) = card t - card s :=
suffices card (t \ s) = card ((t \ s) ∪ s) - card s, by rwa sdiff_union_of_subset h at this,
by rw [card_disjoint_union sdiff_disjoint, nat.add_sub_cancel]
lemma disjoint_filter {s : finset α} {p q : α → Prop} [decidable_pred p] [decidable_pred q] :
disjoint (s.filter p) (s.filter q) ↔ (∀ x ∈ s, p x → ¬ q x) :=
by split; simp [disjoint_left] {contextual := tt}
lemma pi_disjoint_of_disjoint {δ : α → Type*} [∀a, decidable_eq (δ a)]
{s : finset α} [decidable_eq (Πa∈s, δ a)]
(t₁ t₂ : Πa, finset (δ a)) {a : α} (ha : a ∈ s) (h : disjoint (t₁ a) (t₂ a)) :
disjoint (s.pi t₁) (s.pi t₂) :=
disjoint_iff_ne.2 $ λ f₁ hf₁ f₂ hf₂ eq₁₂,
disjoint_iff_ne.1 h (f₁ a ha) (mem_pi.mp hf₁ a ha) (f₂ a ha) (mem_pi.mp hf₂ a ha)
$ congr_fun (congr_fun eq₁₂ a) ha
lemma disjoint_iff_disjoint_coe {α : Type*} {a b : finset α} [decidable_eq α] :
disjoint a b ↔ disjoint (↑a : set α) (↑b : set α) :=
by { rw [finset.disjoint_left, set.disjoint_left], refl }
end disjoint
/--
Given a set A and a set B inside it, we can shrink A to any appropriate size, and keep B
inside it.
-/
lemma exists_intermediate_set {A B : finset α} (i : ℕ)
(h₁ : i + card B ≤ card A) (h₂ : B ⊆ A) :
∃ (C : finset α), B ⊆ C ∧ C ⊆ A ∧ card C = i + card B :=
begin
classical,
rcases nat.le.dest h₁ with ⟨k, _⟩,
clear h₁,
induction k with k ih generalizing A,
{ exact ⟨A, h₂, subset.refl _, h.symm⟩ },
{ have : (A \ B).nonempty,
{ rw [← card_pos, card_sdiff h₂, ← h, nat.add_right_comm,
nat.add_sub_cancel, nat.add_succ],
apply nat.succ_pos },
rcases this with ⟨a, ha⟩,
have z : i + card B + k = card (erase A a),
{ rw [card_erase_of_mem, ← h, nat.add_succ, nat.pred_succ],
rw mem_sdiff at ha,
exact ha.1 },
rcases ih _ z with ⟨B', hB', B'subA', cards⟩,
{ exact ⟨B', hB', trans B'subA' (erase_subset _ _), cards⟩ },
{ rintros t th,
apply mem_erase_of_ne_of_mem _ (h₂ th),
rintro rfl,
exact not_mem_sdiff_of_mem_right th ha } }
end
/-- We can shrink A to any smaller size. -/
lemma exists_smaller_set (A : finset α) (i : ℕ) (h₁ : i ≤ card A) :
∃ (B : finset α), B ⊆ A ∧ card B = i :=
let ⟨B, _, x₁, x₂⟩ := exists_intermediate_set i (by simpa) (empty_subset A) in ⟨B, x₁, x₂⟩
instance [has_repr α] : has_repr (finset α) := ⟨λ s, repr s.1⟩
/-- Given a finset `s` of `ℕ` contained in `{0,..., n-1}`, the corresponding finset in `fin n`
is `s.attach_fin h` where `h` is a proof that all elements of `s` are less than `n`. -/
def attach_fin (s : finset ℕ) {n : ℕ} (h : ∀ m ∈ s, m < n) : finset (fin n) :=
⟨s.1.pmap (λ a ha, ⟨a, ha⟩) h, multiset.nodup_pmap (λ _ _ _ _, fin.mk.inj) s.2⟩
@[simp] lemma mem_attach_fin {n : ℕ} {s : finset ℕ} (h : ∀ m ∈ s, m < n) {a : fin n} :
a ∈ s.attach_fin h ↔ a.1 ∈ s :=
⟨λ h, let ⟨b, hb₁, hb₂⟩ := multiset.mem_pmap.1 h in hb₂ ▸ hb₁,
λ h, multiset.mem_pmap.2 ⟨a.1, h, fin.eta _ _⟩⟩
@[simp] lemma card_attach_fin {n : ℕ} (s : finset ℕ) (h : ∀ m ∈ s, m < n) :
(s.attach_fin h).card = s.card := multiset.card_pmap _ _ _
/-! ### choose -/
section choose
variables (p : α → Prop) [decidable_pred p] (l : finset α)
/-- Given a finset `l` and a predicate `p`, associate to a proof that there is a unique element of
`l` satisfying `p` this unique element, as an element of the corresponding subtype. -/
def choose_x (hp : (∃! a, a ∈ l ∧ p a)) : { a // a ∈ l ∧ p a } :=
multiset.choose_x p l.val hp
/-- Given a finset `l` and a predicate `p`, associate to a proof that there is a unique element of
`l` satisfying `p` this unique element, as an element of the ambient type. -/
def choose (hp : ∃! a, a ∈ l ∧ p a) : α := choose_x p l hp
lemma choose_spec (hp : ∃! a, a ∈ l ∧ p a) : choose p l hp ∈ l ∧ p (choose p l hp) :=
(choose_x p l hp).property
lemma choose_mem (hp : ∃! a, a ∈ l ∧ p a) : choose p l hp ∈ l := (choose_spec _ _ _).1
lemma choose_property (hp : ∃! a, a ∈ l ∧ p a) : p (choose p l hp) := (choose_spec _ _ _).2
end choose
theorem lt_wf {α} : well_founded (@has_lt.lt (finset α) _) :=
have H : subrelation (@has_lt.lt (finset α) _)
(inv_image (<) card),
from λ x y hxy, card_lt_card hxy,
subrelation.wf H $ inv_image.wf _ $ nat.lt_wf
/-! ### intervals -/
/- Ico (a closed open interval) -/
variables {n m l : ℕ}
/-- `Ico n m` is the set of natural numbers `n ≤ k < m`. -/
def Ico (n m : ℕ) : finset ℕ := ⟨_, Ico.nodup n m⟩
namespace Ico
@[simp] theorem val (n m : ℕ) : (Ico n m).1 = multiset.Ico n m := rfl
@[simp] theorem to_finset (n m : ℕ) : (multiset.Ico n m).to_finset = Ico n m :=
(multiset.to_finset_eq _).symm
theorem image_add (n m k : ℕ) : (Ico n m).image ((+) k) = Ico (n + k) (m + k) :=
by simp [image, multiset.Ico.map_add]
theorem image_sub (n m k : ℕ) (h : k ≤ n) : (Ico n m).image (λ x, x - k) = Ico (n - k) (m - k) :=
begin
dsimp [image],
rw [multiset.Ico.map_sub _ _ _ h, ←multiset.to_finset_eq],
refl,
end
theorem zero_bot (n : ℕ) : Ico 0 n = range n :=
eq_of_veq $ multiset.Ico.zero_bot _
@[simp] theorem card (n m : ℕ) : (Ico n m).card = m - n :=
multiset.Ico.card _ _
@[simp] theorem mem {n m l : ℕ} : l ∈ Ico n m ↔ n ≤ l ∧ l < m :=
multiset.Ico.mem
theorem eq_empty_of_le {n m : ℕ} (h : m ≤ n) : Ico n m = ∅ :=
eq_of_veq $ multiset.Ico.eq_zero_of_le h
@[simp] theorem self_eq_empty (n : ℕ) : Ico n n = ∅ :=
eq_empty_of_le $ le_refl n
@[simp] theorem eq_empty_iff {n m : ℕ} : Ico n m = ∅ ↔ m ≤ n :=
iff.trans val_eq_zero.symm multiset.Ico.eq_zero_iff
theorem subset_iff {m₁ n₁ m₂ n₂ : ℕ} (hmn : m₁ < n₁) :
Ico m₁ n₁ ⊆ Ico m₂ n₂ ↔ (m₂ ≤ m₁ ∧ n₁ ≤ n₂) :=
begin
simp only [subset_iff, mem],
refine ⟨λ h, ⟨_, _⟩, _⟩,
{ exact (h ⟨le_refl _, hmn⟩).1 },
{ refine le_of_pred_lt (@h (pred n₁) ⟨le_pred_of_lt hmn, pred_lt _⟩).2,
exact ne_of_gt (lt_of_le_of_lt (nat.zero_le m₁) hmn) },
{ rintros ⟨hm, hn⟩ k ⟨hmk, hkn⟩,
exact ⟨le_trans hm hmk, lt_of_lt_of_le hkn hn⟩ }
end
protected theorem subset {m₁ n₁ m₂ n₂ : ℕ} (hmm : m₂ ≤ m₁) (hnn : n₁ ≤ n₂) :
Ico m₁ n₁ ⊆ Ico m₂ n₂ :=
begin
simp only [finset.subset_iff, Ico.mem],
assume x hx,
exact ⟨le_trans hmm hx.1, lt_of_lt_of_le hx.2 hnn⟩
end
lemma union_consecutive {n m l : ℕ} (hnm : n ≤ m) (hml : m ≤ l) :
Ico n m ∪ Ico m l = Ico n l :=
by rw [← to_finset, ← to_finset, ← multiset.to_finset_add,
multiset.Ico.add_consecutive hnm hml, to_finset]
@[simp] lemma inter_consecutive (n m l : ℕ) : Ico n m ∩ Ico m l = ∅ :=
begin
rw [← to_finset, ← to_finset, ← multiset.to_finset_inter, multiset.Ico.inter_consecutive],
simp,
end
lemma disjoint_consecutive (n m l : ℕ) : disjoint (Ico n m) (Ico m l) :=
le_of_eq $ inter_consecutive n m l
@[simp] theorem succ_singleton (n : ℕ) : Ico n (n+1) = {n} :=
eq_of_veq $ multiset.Ico.succ_singleton
theorem succ_top {n m : ℕ} (h : n ≤ m) : Ico n (m + 1) = insert m (Ico n m) :=
by rw [← to_finset, multiset.Ico.succ_top h, multiset.to_finset_cons, to_finset]
theorem succ_top' {n m : ℕ} (h : n < m) : Ico n m = insert (m - 1) (Ico n (m - 1)) :=
begin
have w : m = m - 1 + 1 := (nat.sub_add_cancel (nat.one_le_of_lt h)).symm,
conv { to_lhs, rw w },
rw succ_top,
exact nat.le_pred_of_lt h
end
theorem insert_succ_bot {n m : ℕ} (h : n < m) : insert n (Ico (n + 1) m) = Ico n m :=
by rw [eq_comm, ← to_finset, multiset.Ico.eq_cons h, multiset.to_finset_cons, to_finset]
@[simp] theorem pred_singleton {m : ℕ} (h : 0 < m) : Ico (m - 1) m = {m - 1} :=
eq_of_veq $ multiset.Ico.pred_singleton h
@[simp] theorem not_mem_top {n m : ℕ} : m ∉ Ico n m :=
multiset.Ico.not_mem_top
lemma filter_lt_of_top_le {n m l : ℕ} (hml : m ≤ l) : (Ico n m).filter (λ x, x < l) = Ico n m :=
eq_of_veq $ multiset.Ico.filter_lt_of_top_le hml
lemma filter_lt_of_le_bot {n m l : ℕ} (hln : l ≤ n) : (Ico n m).filter (λ x, x < l) = ∅ :=
eq_of_veq $ multiset.Ico.filter_lt_of_le_bot hln
lemma filter_lt_of_ge {n m l : ℕ} (hlm : l ≤ m) : (Ico n m).filter (λ x, x < l) = Ico n l :=
eq_of_veq $ multiset.Ico.filter_lt_of_ge hlm
@[simp] lemma filter_lt (n m l : ℕ) : (Ico n m).filter (λ x, x < l) = Ico n (min m l) :=
eq_of_veq $ multiset.Ico.filter_lt n m l
lemma filter_le_of_le_bot {n m l : ℕ} (hln : l ≤ n) : (Ico n m).filter (λ x, l ≤ x) = Ico n m :=
eq_of_veq $ multiset.Ico.filter_le_of_le_bot hln
lemma filter_le_of_top_le {n m l : ℕ} (hml : m ≤ l) : (Ico n m).filter (λ x, l ≤ x) = ∅ :=
eq_of_veq $ multiset.Ico.filter_le_of_top_le hml
lemma filter_le_of_le {n m l : ℕ} (hnl : n ≤ l) : (Ico n m).filter (λ x, l ≤ x) = Ico l m :=
eq_of_veq $ multiset.Ico.filter_le_of_le hnl
@[simp] lemma filter_le (n m l : ℕ) : (Ico n m).filter (λ x, l ≤ x) = Ico (max n l) m :=
eq_of_veq $ multiset.Ico.filter_le n m l
@[simp] lemma diff_left (l n m : ℕ) : (Ico n m) \ (Ico n l) = Ico (max n l) m :=
by ext k; by_cases n ≤ k; simp [h, and_comm]
@[simp] lemma diff_right (l n m : ℕ) : (Ico n m) \ (Ico l m) = Ico n (min m l) :=
have ∀k, (k < m ∧ (l ≤ k → m ≤ k)) ↔ (k < m ∧ k < l) :=
assume k, and_congr_right $ assume hk, by rw [← not_imp_not]; simp [hk],
by ext k; by_cases n ≤ k; simp [h, this]
end Ico
lemma range_eq_Ico (n : ℕ) : finset.range n = finset.Ico 0 n :=
by { ext i, simp }
-- TODO We don't yet attempt to reproduce the entire interface for `Ico` for `Ico_ℤ`.
/-- `Ico_ℤ l u` is the set of integers `l ≤ k < u`. -/
def Ico_ℤ (l u : ℤ) : finset ℤ :=
(finset.range (u - l).to_nat).map
{ to_fun := λ n, n + l,
inj' := λ n m h, by simpa using h }
@[simp] lemma Ico_ℤ.mem {n m l : ℤ} : l ∈ Ico_ℤ n m ↔ n ≤ l ∧ l < m :=
begin
dsimp [Ico_ℤ],
simp only [int.lt_to_nat, exists_prop, mem_range, add_comm, function.embedding.coe_fn_mk, mem_map],
split,
{ rintro ⟨a, ⟨h, rfl⟩⟩,
exact ⟨int.le.intro rfl, lt_sub_iff_add_lt'.mp h⟩ },
{ rintro ⟨h₁, h₂⟩,
use (l - n).to_nat,
split; simp [h₁, h₂], }
end
@[simp] lemma Ico_ℤ.card (l u : ℤ) : (Ico_ℤ l u).card = (u - l).to_nat := by simp [Ico_ℤ]
end finset
namespace multiset
lemma count_sup [decidable_eq β] (s : finset α) (f : α → multiset β) (b : β) :
count b (s.sup f) = s.sup (λa, count b (f a)) :=
begin
letI := classical.dec_eq α,
refine s.induction _ _,
{ exact count_zero _ },
{ assume i s his ih,
rw [finset.sup_insert, sup_eq_union, count_union, finset.sup_insert, ih],
refl }
end
end multiset
namespace list
variable [decidable_eq α]
theorem to_finset_card_of_nodup {l : list α} (h : l.nodup) : l.to_finset.card = l.length :=
congr_arg card $ (@multiset.erase_dup_eq_self α _ l).2 h
end list
section lattice
variables {ι : Sort*} [complete_lattice α]
lemma supr_eq_supr_finset (s : ι → α) : (⨆i, s i) = (⨆t:finset (plift ι), ⨆i∈t, s (plift.down i)) :=
begin
classical,
exact le_antisymm
(supr_le $ assume b, le_supr_of_le {plift.up b} $ le_supr_of_le (plift.up b) $ le_supr_of_le
(by simp) $ le_refl _)
(supr_le $ assume t, supr_le $ assume b, supr_le $ assume hb, le_supr _ _)
end
lemma infi_eq_infi_finset (s : ι → α) : (⨅i, s i) = (⨅t:finset (plift ι), ⨅i∈t, s (plift.down i)) :=
begin
classical,
exact le_antisymm
(le_infi $ assume t, le_infi $ assume b, le_infi $ assume hb, infi_le _ _)
(le_infi $ assume b, infi_le_of_le {plift.up b} $ infi_le_of_le (plift.up b) $ infi_le_of_le
(by simp) $ le_refl _)
end
end lattice
namespace set
variables {ι : Sort*}
lemma Union_eq_Union_finset (s : ι → set α) :
(⋃i, s i) = (⋃t:finset (plift ι), ⋃i∈t, s (plift.down i)) :=
supr_eq_supr_finset s
lemma Inter_eq_Inter_finset (s : ι → set α) :
(⋂i, s i) = (⋂t:finset (plift ι), ⋂i∈t, s (plift.down i)) :=
infi_eq_infi_finset s
end set
namespace finset
namespace nat
/-- The antidiagonal of a natural number `n` is
the finset of pairs `(i,j)` such that `i+j = n`. -/
def antidiagonal (n : ℕ) : finset (ℕ × ℕ) :=
(multiset.nat.antidiagonal n).to_finset
/-- A pair (i,j) is contained in the antidiagonal of `n` if and only if `i+j=n`. -/
@[simp] lemma mem_antidiagonal {n : ℕ} {x : ℕ × ℕ} :
x ∈ antidiagonal n ↔ x.1 + x.2 = n :=
by rw [antidiagonal, multiset.mem_to_finset, multiset.nat.mem_antidiagonal]
/-- The cardinality of the antidiagonal of `n` is `n+1`. -/
@[simp] lemma card_antidiagonal (n : ℕ) : (antidiagonal n).card = n+1 :=
by simpa using list.to_finset_card_of_nodup (list.nat.nodup_antidiagonal n)
/-- The antidiagonal of `0` is the list `[(0,0)]` -/
@[simp] lemma antidiagonal_zero : antidiagonal 0 = {(0, 0)} :=
by { rw [antidiagonal, multiset.nat.antidiagonal_zero], refl }
end nat
end finset
namespace finset
/-! ### bUnion -/
variables [decidable_eq α]
@[simp] theorem bUnion_singleton (a : α) (s : α → set β) : (⋃ x ∈ ({a} : finset α), s x) = s a :=
supr_singleton
theorem supr_union {α} [complete_lattice α] {β} [decidable_eq β] {f : β → α} {s t : finset β} :
(⨆ x ∈ s ∪ t, f x) = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) :=
calc (⨆ x ∈ s ∪ t, f x) = (⨆ x, (⨆h : x∈s, f x) ⊔ (⨆h : x∈t, f x)) :
congr_arg _ $ funext $ λ x, by { convert supr_or, rw finset.mem_union, rw finset.mem_union, refl, refl }
... = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) : supr_sup_eq
lemma bUnion_union (s t : finset α) (u : α → set β) :
(⋃ x ∈ s ∪ t, u x) = (⋃ x ∈ s, u x) ∪ (⋃ x ∈ t, u x) :=
supr_union
@[simp] lemma bUnion_insert (a : α) (s : finset α) (t : α → set β) :
(⋃ x ∈ insert a s, t x) = t a ∪ (⋃ x ∈ s, t x) :=
begin rw insert_eq, simp only [bUnion_union, finset.bUnion_singleton] end
end finset
|
3d101572f8b448c1b5eb62f488d075a230cacb84
|
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
|
/src/data/hash_map.lean
|
8571127cfd0f8fbe7d5fc354ca6d746020603560
|
[
"Apache-2.0"
] |
permissive
|
keeferrowan/mathlib
|
f2818da875dbc7780830d09bd4c526b0764a4e50
|
aad2dfc40e8e6a7e258287a7c1580318e865817e
|
refs/heads/master
| 1,661,736,426,952
| 1,590,438,032,000
| 1,590,438,032,000
| 266,892,663
| 0
| 0
|
Apache-2.0
| 1,590,445,835,000
| 1,590,445,835,000
| null |
UTF-8
|
Lean
| false
| false
| 27,885
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
-/
import data.pnat.basic
import data.array.lemmas
import algebra.group
import data.sigma.basic
universes u v w
/-- `bucket_array α β` is the underlying data type for `hash_map α β`,
an array of linked lists of key-value pairs. -/
def bucket_array (α : Type u) (β : α → Type v) (n : ℕ+) :=
array n.1 (list Σ a, β a)
/-- Make a hash_map index from a `nat` hash value and a (positive) buffer size -/
def hash_map.mk_idx (n : ℕ+) (i : nat) : fin n.1 :=
⟨i % n.1, nat.mod_lt _ n.2⟩
namespace bucket_array
section
parameters {α : Type u} {β : α → Type v} (hash_fn : α → nat)
variables {n : ℕ+} (data : bucket_array α β n)
instance : inhabited (bucket_array α β n) :=
⟨mk_array _ []⟩
/-- Read the bucket corresponding to an element -/
def read (a : α) : list Σ a, β a :=
let bidx := hash_map.mk_idx n (hash_fn a) in
data.read bidx
/-- Write the bucket corresponding to an element -/
def write (a : α) (l : list Σ a, β a) : bucket_array α β n :=
let bidx := hash_map.mk_idx n (hash_fn a) in
data.write bidx l
/-- Modify (read, apply `f`, and write) the bucket corresponding to an element -/
def modify (a : α) (f : list (Σ a, β a) → list (Σ a, β a)) : bucket_array α β n :=
let bidx := hash_map.mk_idx n (hash_fn a) in
array.write data bidx (f (array.read data bidx))
/-- The list of all key-value pairs in the bucket list -/
def as_list : list Σ a, β a := data.to_list.join
theorem mem_as_list {a : Σ a, β a} : a ∈ data.as_list ↔ ∃i, a ∈ array.read data i :=
have (∃ (l : list (Σ (a : α), β a)) (i : fin (n.val)), a ∈ l ∧ array.read data i = l) ↔
∃ (i : fin (n.val)), a ∈ array.read data i,
by rw exists_swap; exact exists_congr (λ i, by simp),
by simp [as_list]; simpa [array.mem.def, and_comm]
/-- Fold a function `f` over the key-value pairs in the bucket list -/
def foldl {δ : Type w} (d : δ) (f : δ → Π a, β a → δ) : δ :=
data.foldl d (λ b d, b.foldl (λ r a, f r a.1 a.2) d)
theorem foldl_eq {δ : Type w} (d : δ) (f : δ → Π a, β a → δ) :
data.foldl d f = data.as_list.foldl (λ r a, f r a.1 a.2) d :=
by rw [foldl, as_list, list.foldl_join, ← array.to_list_foldl]
end
end bucket_array
namespace hash_map
section
parameters {α : Type u} {β : α → Type v} (hash_fn : α → nat)
/-- Insert the pair `⟨a, b⟩` into the correct location in the bucket array
(without checking for duplication) -/
def reinsert_aux {n} (data : bucket_array α β n) (a : α) (b : β a) : bucket_array α β n :=
data.modify hash_fn a (λl, ⟨a, b⟩ :: l)
theorem mk_as_list (n : ℕ+) : bucket_array.as_list (mk_array n.1 [] : bucket_array α β n) = [] :=
list.eq_nil_iff_forall_not_mem.mpr $ λ x m,
let ⟨i, h⟩ := (bucket_array.mem_as_list _).1 m in h
parameter [decidable_eq α]
/-- Search a bucket for a key `a` and return the value -/
def find_aux (a : α) : list (Σ a, β a) → option (β a)
| [] := none
| (⟨a',b⟩::t) := if h : a' = a then some (eq.rec_on h b) else find_aux t
theorem find_aux_iff {a : α} {b : β a} : Π {l : list Σ a, β a}, (l.map sigma.fst).nodup → (find_aux a l = some b ↔ sigma.mk a b ∈ l)
| [] nd := ⟨λn, by injection n, false.elim⟩
| (⟨a',b'⟩::t) nd := begin
by_cases a' = a,
{ clear find_aux_iff, subst h,
suffices : b' = b ↔ b' = b ∨ sigma.mk a' b ∈ t, {simpa [find_aux, eq_comm]},
refine (or_iff_left_of_imp (λ m, _)).symm,
have : a' ∉ t.map sigma.fst, from list.not_mem_of_nodup_cons nd,
exact this.elim (list.mem_map_of_mem sigma.fst m) },
{ have : sigma.mk a b ≠ ⟨a', b'⟩,
{ intro e, injection e with e, exact h e.symm },
simp at nd, simp [find_aux, h, ne.symm h, find_aux_iff, nd] }
end
/-- Returns `tt` if the bucket `l` contains the key `a` -/
def contains_aux (a : α) (l : list Σ a, β a) : bool :=
(find_aux a l).is_some
theorem contains_aux_iff {a : α} {l : list Σ a, β a} (nd : (l.map sigma.fst).nodup) : contains_aux a l ↔ a ∈ l.map sigma.fst :=
begin
unfold contains_aux,
cases h : find_aux a l with b; simp,
{ assume (b : β a) (m : sigma.mk a b ∈ l),
rw (find_aux_iff nd).2 m at h,
contradiction },
{ show ∃ (b : β a), sigma.mk a b ∈ l,
exact ⟨_, (find_aux_iff nd).1 h⟩ },
end
/-- Modify a bucket to replace a value in the list. Leaves the list
unchanged if the key is not found. -/
def replace_aux (a : α) (b : β a) : list (Σ a, β a) → list (Σ a, β a)
| [] := []
| (⟨a', b'⟩::t) := if a' = a then ⟨a, b⟩::t else ⟨a', b'⟩ :: replace_aux t
/-- Modify a bucket to remove a key, if it exists. -/
def erase_aux (a : α) : list (Σ a, β a) → list (Σ a, β a)
| [] := []
| (⟨a', b'⟩::t) := if a' = a then t else ⟨a', b'⟩ :: erase_aux t
/-- The predicate `valid bkts sz` means that `bkts` satisfies the `hash_map`
invariants: There are exactly `sz` elements in it, every pair is in the
bucket determined by its key and the hash function, and no key appears
multiple times in the list. -/
structure valid {n} (bkts : bucket_array α β n) (sz : nat) : Prop :=
(len : bkts.as_list.length = sz)
(idx : ∀ {i} {a : Σ a, β a}, a ∈ array.read bkts i →
mk_idx n (hash_fn a.1) = i)
(nodup : ∀i, ((array.read bkts i).map sigma.fst).nodup)
theorem valid.idx_enum {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz)
{i l} (he : (i, l) ∈ bkts.to_list.enum) {a} {b : β a} (hl : sigma.mk a b ∈ l) :
∃ h, mk_idx n (hash_fn a) = ⟨i, h⟩ :=
(array.mem_to_list_enum.mp he).imp (λ h e, by subst e; exact v.idx hl)
theorem valid.idx_enum_1 {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz)
{i l} (he : (i, l) ∈ bkts.to_list.enum) {a} {b : β a} (hl : sigma.mk a b ∈ l) :
(mk_idx n (hash_fn a)).1 = i :=
let ⟨h, e⟩ := v.idx_enum _ he hl in by rw e; refl
theorem valid.as_list_nodup {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) : (bkts.as_list.map sigma.fst).nodup :=
begin
suffices : (bkts.to_list.map (list.map sigma.fst)).pairwise list.disjoint,
{ simp [bucket_array.as_list, list.nodup_join, this],
change ∀ l s, array.mem s bkts → list.map sigma.fst s = l → l.nodup,
introv m e, subst e, cases m with i e, subst e,
apply v.nodup },
rw [← list.enum_map_snd bkts.to_list, list.pairwise_map, list.pairwise_map],
have : (bkts.to_list.enum.map prod.fst).nodup := by simp [list.nodup_range],
refine list.pairwise.imp_of_mem _ ((list.pairwise_map _).1 this),
rw prod.forall, intros i l₁,
rw prod.forall, intros j l₂ me₁ me₂ ij,
simp [list.disjoint], intros a b ml₁ b' ml₂,
apply ij, rwa [← v.idx_enum_1 _ me₁ ml₁, ← v.idx_enum_1 _ me₂ ml₂]
end
theorem mk_valid (n : ℕ+) : @valid n (mk_array n.1 []) 0 :=
⟨by simp [mk_as_list], λ i a h, by cases h, λ i, list.nodup_nil⟩
theorem valid.find_aux_iff {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) {a : α} {b : β a} :
find_aux a (bkts.read hash_fn a) = some b ↔ sigma.mk a b ∈ bkts.as_list :=
(find_aux_iff (v.nodup _)).trans $
by rw bkts.mem_as_list; exact ⟨λ h, ⟨_, h⟩, λ ⟨i, h⟩, (v.idx h).symm ▸ h⟩
theorem valid.contains_aux_iff {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) (a : α) :
contains_aux a (bkts.read hash_fn a) ↔ a ∈ bkts.as_list.map sigma.fst :=
by simp [contains_aux, option.is_some_iff_exists, v.find_aux_iff hash_fn]
section
parameters {n : ℕ+} {bkts : bucket_array α β n}
{bidx : fin n.1} {f : list (Σ a, β a) → list (Σ a, β a)}
(u v1 v2 w : list Σ a, β a)
local notation `L` := array.read bkts bidx
private def bkts' : bucket_array α β n := array.write bkts bidx (f L)
variables (hl : L = u ++ v1 ++ w)
(hfl : f L = u ++ v2 ++ w)
include hl hfl
theorem append_of_modify : ∃ u' w', bkts.as_list = u' ++ v1 ++ w' ∧ bkts'.as_list = u' ++ v2 ++ w' :=
begin
unfold bucket_array.as_list,
have h : bidx.1 < bkts.to_list.length, {simp [bidx.2]},
refine ⟨(bkts.to_list.take bidx.1).join ++ u, w ++ (bkts.to_list.drop (bidx.1+1)).join, _, _⟩,
{ conv { to_lhs,
rw [← list.take_append_drop bidx.1 bkts.to_list, list.drop_eq_nth_le_cons h],
simp [hl] }, simp },
{ conv { to_lhs,
rw [bkts', array.write_to_list, list.update_nth_eq_take_cons_drop _ h],
simp [hfl] }, simp }
end
variables (hvnd : (v2.map sigma.fst).nodup)
(hal : ∀ (a : Σ a, β a), a ∈ v2 → mk_idx n (hash_fn a.1) = bidx)
(djuv : (u.map sigma.fst).disjoint (v2.map sigma.fst))
(djwv : (w.map sigma.fst).disjoint (v2.map sigma.fst))
include hvnd hal djuv djwv
theorem valid.modify {sz : ℕ} (v : valid bkts sz) :
v1.length ≤ sz + v2.length ∧ valid bkts' (sz + v2.length - v1.length) :=
begin
rcases append_of_modify u v1 v2 w hl hfl with ⟨u', w', e₁, e₂⟩,
rw [← v.len, e₁],
suffices : valid bkts' (u' ++ v2 ++ w').length,
{ simpa [ge, add_comm, add_left_comm, nat.le_add_right, nat.add_sub_cancel_left] },
refine ⟨congr_arg _ e₂, λ i a, _, λ i, _⟩,
{ by_cases bidx = i,
{ subst i, rw [bkts', array.read_write, hfl],
have := @valid.idx _ _ _ v bidx a,
simp only [hl, list.mem_append, or_imp_distrib, forall_and_distrib] at this ⊢,
exact ⟨⟨this.1.1, hal _⟩, this.2⟩ },
{ rw [bkts', array.read_write_of_ne _ _ h], apply v.idx } },
{ by_cases bidx = i,
{ subst i, rw [bkts', array.read_write, hfl],
have := @valid.nodup _ _ _ v bidx,
simp [hl, list.nodup_append] at this,
simp [list.nodup_append, this, hvnd, djuv, djwv.symm] },
{ rw [bkts', array.read_write_of_ne _ _ h], apply v.nodup } }
end
end
theorem valid.replace_aux (a : α) (b : β a) : Π (l : list (Σ a, β a)), a ∈ l.map sigma.fst →
∃ (u w : list Σ a, β a) b', l = u ++ [⟨a, b'⟩] ++ w ∧ replace_aux a b l = u ++ [⟨a, b⟩] ++ w
| [] := false.elim
| (⟨a', b'⟩::t) := begin
by_cases e : a' = a,
{ subst a',
suffices : ∃ (u w : list Σ a, β a) (b'' : β a),
(sigma.mk a b') :: t = u ++ ⟨a, b''⟩ :: w ∧
replace_aux a b (⟨a, b'⟩ :: t) = u ++ ⟨a, b⟩ :: w, {simpa},
refine ⟨[], t, b', _⟩, simp [replace_aux] },
{ suffices : ∀ (x : β a) (_ : sigma.mk a x ∈ t), ∃ u w (b'' : β a),
(sigma.mk a' b') :: t = u ++ ⟨a, b''⟩ :: w ∧
(sigma.mk a' b') :: (replace_aux a b t) = u ++ ⟨a, b⟩ :: w,
{ simpa [replace_aux, ne.symm e, e] },
intros x m,
have IH : ∀ (x : β a) (_ : sigma.mk a x ∈ t), ∃ u w (b'' : β a),
t = u ++ ⟨a, b''⟩ :: w ∧ replace_aux a b t = u ++ ⟨a, b⟩ :: w,
{ simpa using valid.replace_aux t },
rcases IH x m with ⟨u, w, b'', hl, hfl⟩,
exact ⟨⟨a', b'⟩ :: u, w, b'', by simp [hl, hfl.symm, ne.symm e]⟩ }
end
theorem valid.replace {n : ℕ+}
{bkts : bucket_array α β n} {sz : ℕ} (a : α) (b : β a)
(Hc : contains_aux a (bkts.read hash_fn a))
(v : valid bkts sz) : valid (bkts.modify hash_fn a (replace_aux a b)) sz :=
begin
have nd := v.nodup (mk_idx n (hash_fn a)),
rcases hash_map.valid.replace_aux a b (array.read bkts (mk_idx n (hash_fn a)))
((contains_aux_iff nd).1 Hc) with ⟨u, w, b', hl, hfl⟩,
simp [hl, list.nodup_append] at nd,
refine (v.modify hash_fn
u [⟨a, b'⟩] [⟨a, b⟩] w hl hfl (list.nodup_singleton _)
(λa' e, by simp at e; rw e)
(λa' e1 e2, _)
(λa' e1 e2, _)).2;
{ revert e1, simp [-sigma.exists] at e2, subst a', simp [nd] }
end
theorem valid.insert {n : ℕ+}
{bkts : bucket_array α β n} {sz : ℕ} (a : α) (b : β a)
(Hnc : ¬ contains_aux a (bkts.read hash_fn a))
(v : valid bkts sz) : valid (reinsert_aux bkts a b) (sz+1) :=
begin
have nd := v.nodup (mk_idx n (hash_fn a)),
refine (v.modify hash_fn
[] [] [⟨a, b⟩] (bkts.read hash_fn a) rfl rfl (list.nodup_singleton _)
(λa' e, by simp at e; rw e)
(λa', false.elim)
(λa' e1 e2, _)).2,
simp [-sigma.exists] at e2, subst a',
exact Hnc ((contains_aux_iff nd).2 e1)
end
theorem valid.erase_aux (a : α) : Π (l : list (Σ a, β a)), a ∈ l.map sigma.fst →
∃ (u w : list Σ a, β a) b, l = u ++ [⟨a, b⟩] ++ w ∧ erase_aux a l = u ++ [] ++ w
| [] := false.elim
| (⟨a', b'⟩::t) := begin
by_cases e : a' = a,
{ subst a',
simpa [erase_aux, and_comm] using show ∃ u w (x : β a),
t = u ++ w ∧ (sigma.mk a b') :: t = u ++ ⟨a, x⟩ :: w,
from ⟨[], t, b', by simp⟩ },
{ simp [erase_aux, e, ne.symm e],
suffices : ∀ (b : β a) (_ : sigma.mk a b ∈ t), ∃ u w (x : β a),
(sigma.mk a' b') :: t = u ++ ⟨a, x⟩ :: w ∧
(sigma.mk a' b') :: (erase_aux a t) = u ++ w,
{ simpa [replace_aux, ne.symm e, e] },
intros b m,
have IH : ∀ (x : β a) (_ : sigma.mk a x ∈ t), ∃ u w (x : β a),
t = u ++ ⟨a, x⟩ :: w ∧ erase_aux a t = u ++ w,
{ simpa using valid.erase_aux t },
rcases IH b m with ⟨u, w, b'', hl, hfl⟩,
exact ⟨⟨a', b'⟩ :: u, w, b'', by simp [hl, hfl.symm]⟩ }
end
theorem valid.erase {n} {bkts : bucket_array α β n} {sz}
(a : α) (Hc : contains_aux a (bkts.read hash_fn a))
(v : valid bkts sz) : valid (bkts.modify hash_fn a (erase_aux a)) (sz-1) :=
begin
have nd := v.nodup (mk_idx n (hash_fn a)),
rcases hash_map.valid.erase_aux a (array.read bkts (mk_idx n (hash_fn a)))
((contains_aux_iff nd).1 Hc) with ⟨u, w, b, hl, hfl⟩,
refine (v.modify hash_fn u [⟨a, b⟩] [] w hl hfl list.nodup_nil _ _ _).2;
simp
end
end
end hash_map
/-- A hash map data structure, representing a finite key-value map
with key type `α` and value type `β` (which may depend on `α`). -/
structure hash_map (α : Type u) [decidable_eq α] (β : α → Type v) :=
(hash_fn : α → nat)
(size : ℕ)
(nbuckets : ℕ+)
(buckets : bucket_array α β nbuckets)
(is_valid : hash_map.valid hash_fn buckets size)
/-- Construct an empty hash map with buffer size `nbuckets` (default 8). -/
def mk_hash_map {α : Type u} [decidable_eq α] {β : α → Type v} (hash_fn : α → nat) (nbuckets := 8) : hash_map α β :=
let n := if nbuckets = 0 then 8 else nbuckets in
let nz : n > 0 := by abstract { cases nbuckets; simp [if_pos, nat.succ_ne_zero] } in
{ hash_fn := hash_fn,
size := 0,
nbuckets := ⟨n, nz⟩,
buckets := mk_array n [],
is_valid := hash_map.mk_valid _ _ }
namespace hash_map
variables {α : Type u} {β : α → Type v} [decidable_eq α]
/-- Return the value corresponding to a key, or `none` if not found -/
def find (m : hash_map α β) (a : α) : option (β a) :=
find_aux a (m.buckets.read m.hash_fn a)
/-- Return `tt` if the key exists in the map -/
def contains (m : hash_map α β) (a : α) : bool :=
(m.find a).is_some
instance : has_mem α (hash_map α β) := ⟨λa m, m.contains a⟩
/-- Fold a function over the key-value pairs in the map -/
def fold {δ : Type w} (m : hash_map α β) (d : δ) (f : δ → Π a, β a → δ) : δ :=
m.buckets.foldl d f
/-- The list of key-value pairs in the map -/
def entries (m : hash_map α β) : list Σ a, β a :=
m.buckets.as_list
/-- The list of keys in the map -/
def keys (m : hash_map α β) : list α :=
m.entries.map sigma.fst
theorem find_iff (m : hash_map α β) (a : α) (b : β a) :
m.find a = some b ↔ sigma.mk a b ∈ m.entries :=
m.is_valid.find_aux_iff _
theorem contains_iff (m : hash_map α β) (a : α) :
m.contains a ↔ a ∈ m.keys :=
m.is_valid.contains_aux_iff _ _
theorem entries_empty (hash_fn : α → nat) (n) :
(@mk_hash_map α _ β hash_fn n).entries = [] :=
by dsimp [entries, mk_hash_map]; rw mk_as_list
theorem keys_empty (hash_fn : α → nat) (n) :
(@mk_hash_map α _ β hash_fn n).keys = [] :=
by dsimp [keys]; rw entries_empty; refl
theorem find_empty (hash_fn : α → nat) (n a) :
(@mk_hash_map α _ β hash_fn n).find a = none :=
by induction h : (@mk_hash_map α _ β hash_fn n).find a; [refl,
{ have := (find_iff _ _ _).1 h, rw entries_empty at this, contradiction }]
theorem not_contains_empty (hash_fn : α → nat) (n a) :
¬ (@mk_hash_map α _ β hash_fn n).contains a :=
by apply bool_iff_false.2; dsimp [contains]; rw [find_empty]; refl
theorem insert_lemma (hash_fn : α → nat) {n n'}
{bkts : bucket_array α β n} {sz} (v : valid hash_fn bkts sz) :
valid hash_fn (bkts.foldl (mk_array _ [] : bucket_array α β n') (reinsert_aux hash_fn)) sz :=
begin
suffices : ∀ (l : list Σ a, β a) (t : bucket_array α β n') sz,
valid hash_fn t sz → ((l ++ t.as_list).map sigma.fst).nodup →
valid hash_fn (l.foldl (λr (a : Σ a, β a), reinsert_aux hash_fn r a.1 a.2) t) (sz + l.length),
{ have p := this bkts.as_list _ _ (mk_valid _ _),
rw [mk_as_list, list.append_nil, zero_add, v.len] at p,
rw bucket_array.foldl_eq,
exact p (v.as_list_nodup _) },
intro l, induction l with c l IH; intros t sz v nd, {exact v},
rw show sz + (c :: l).length = sz + 1 + l.length, by simp [add_comm, add_assoc],
rcases (show (l.map sigma.fst).nodup ∧
((bucket_array.as_list t).map sigma.fst).nodup ∧
c.fst ∉ l.map sigma.fst ∧
c.fst ∉ (bucket_array.as_list t).map sigma.fst ∧
(l.map sigma.fst).disjoint ((bucket_array.as_list t).map sigma.fst),
by simpa [list.nodup_append, not_or_distrib, and_comm, and.left_comm] using nd)
with ⟨nd1, nd2, nm1, nm2, dj⟩,
have v' := v.insert _ _ c.2 (λHc, nm2 $ (v.contains_aux_iff _ c.1).1 Hc),
apply IH _ _ v',
suffices : ∀ ⦃a : α⦄ (b : β a), sigma.mk a b ∈ l →
∀ (b' : β a), sigma.mk a b' ∈ (reinsert_aux hash_fn t c.1 c.2).as_list → false,
{ simpa [list.nodup_append, nd1, v'.as_list_nodup _, list.disjoint] },
intros a b m1 b' m2,
rcases (reinsert_aux hash_fn t c.1 c.2).mem_as_list.1 m2 with ⟨i, im⟩,
have : sigma.mk a b' ∉ array.read t i,
{ intro m3,
have : a ∈ list.map sigma.fst t.as_list :=
list.mem_map_of_mem sigma.fst (t.mem_as_list.2 ⟨_, m3⟩),
exact dj (list.mem_map_of_mem sigma.fst m1) this },
by_cases h : mk_idx n' (hash_fn c.1) = i,
{ subst h,
have e : sigma.mk a b' = ⟨c.1, c.2⟩,
{ simpa [reinsert_aux, bucket_array.modify, array.read_write, this] using im },
injection e with e, subst a,
exact nm1.elim (@list.mem_map_of_mem _ _ sigma.fst _ _ m1) },
{ apply this,
simpa [reinsert_aux, bucket_array.modify, array.read_write_of_ne _ _ h] using im }
end
/-- Insert a key-value pair into the map. (Modifies `m` in-place when applicable) -/
def insert : Π (m : hash_map α β) (a : α) (b : β a), hash_map α β
| ⟨hash_fn, size, n, buckets, v⟩ a b :=
let bkt := buckets.read hash_fn a in
if hc : contains_aux a bkt then
{ hash_fn := hash_fn,
size := size,
nbuckets := n,
buckets := buckets.modify hash_fn a (replace_aux a b),
is_valid := v.replace _ a b hc }
else
let size' := size + 1,
buckets' := buckets.modify hash_fn a (λl, ⟨a, b⟩::l),
valid' := v.insert _ a b hc in
if size' ≤ n.1 then
{ hash_fn := hash_fn,
size := size',
nbuckets := n,
buckets := buckets',
is_valid := valid' }
else
let n' : ℕ+ := ⟨n.1 * 2, mul_pos n.2 dec_trivial⟩,
buckets'' : bucket_array α β n' :=
buckets'.foldl (mk_array _ []) (reinsert_aux hash_fn) in
{ hash_fn := hash_fn,
size := size',
nbuckets := n',
buckets := buckets'',
is_valid := insert_lemma _ valid' }
theorem mem_insert : Π (m : hash_map α β) (a b a' b'),
(sigma.mk a' b' : sigma β) ∈ (m.insert a b).entries ↔
if a = a' then b == b' else sigma.mk a' b' ∈ m.entries
| ⟨hash_fn, size, n, bkts, v⟩ a b a' b' := begin
let bkt := bkts.read hash_fn a,
have nd : (bkt.map sigma.fst).nodup := v.nodup (mk_idx n (hash_fn a)),
have lem : Π (bkts' : bucket_array α β n) (v1 u w)
(hl : bucket_array.as_list bkts = u ++ v1 ++ w)
(hfl : bucket_array.as_list bkts' = u ++ [⟨a, b⟩] ++ w)
(veq : (v1 = [] ∧ ¬ contains_aux a bkt) ∨ ∃b'', v1 = [⟨a, b''⟩]),
sigma.mk a' b' ∈ bkts'.as_list ↔
if a = a' then b == b' else sigma.mk a' b' ∈ bkts.as_list,
{ intros bkts' v1 u w hl hfl veq,
rw [hl, hfl],
by_cases h : a = a',
{ subst a',
suffices : b = b' ∨ sigma.mk a b' ∈ u ∨ sigma.mk a b' ∈ w ↔ b = b',
{ simpa [eq_comm, or.left_comm] },
refine or_iff_left_of_imp (not.elim $ not_or_distrib.2 _),
rcases veq with ⟨rfl, Hnc⟩ | ⟨b'', rfl⟩,
{ have na := (not_iff_not_of_iff $ v.contains_aux_iff _ _).1 Hnc,
simp [hl, not_or_distrib] at na, simp [na] },
{ have nd' := v.as_list_nodup _,
simp [hl, list.nodup_append] at nd', simp [nd'] } },
{ suffices : sigma.mk a' b' ∉ v1, {simp [h, ne.symm h, this]},
rcases veq with ⟨rfl, Hnc⟩ | ⟨b'', rfl⟩; simp [ne.symm h] } },
by_cases Hc : (contains_aux a bkt : Prop),
{ rcases hash_map.valid.replace_aux a b (array.read bkts (mk_idx n (hash_fn a)))
((contains_aux_iff nd).1 Hc) with ⟨u', w', b'', hl', hfl'⟩,
rcases (append_of_modify u' [⟨a, b''⟩] [⟨a, b⟩] w' hl' hfl') with ⟨u, w, hl, hfl⟩,
simpa [insert, @dif_pos (contains_aux a bkt) _ Hc]
using lem _ _ u w hl hfl (or.inr ⟨b'', rfl⟩) },
{ let size' := size + 1,
let bkts' := bkts.modify hash_fn a (λl, ⟨a, b⟩::l),
have mi : sigma.mk a' b' ∈ bkts'.as_list ↔
if a = a' then b == b' else sigma.mk a' b' ∈ bkts.as_list :=
let ⟨u, w, hl, hfl⟩ := append_of_modify [] [] [⟨a, b⟩] _ rfl rfl in
lem bkts' _ u w hl hfl $ or.inl ⟨rfl, Hc⟩,
simp [insert, @dif_neg (contains_aux a bkt) _ Hc],
by_cases h : size' ≤ n.1,
-- TODO(Mario): Why does the by_cases assumption look different than the stated one?
{ simpa [show size' ≤ n.1, from h] using mi },
{ let n' : ℕ+ := ⟨n.1 * 2, mul_pos n.2 dec_trivial⟩,
let bkts'' : bucket_array α β n' := bkts'.foldl (mk_array _ []) (reinsert_aux hash_fn),
suffices : sigma.mk a' b' ∈ bkts''.as_list ↔ sigma.mk a' b' ∈ bkts'.as_list.reverse,
{ simpa [show ¬ size' ≤ n.1, from h, mi] },
rw [show bkts'' = bkts'.as_list.foldl _ _, from bkts'.foldl_eq _ _,
← list.foldr_reverse],
induction bkts'.as_list.reverse with a l IH,
{ simp [mk_as_list] },
{ cases a with a'' b'',
let B := l.foldr (λ (y : sigma β) (x : bucket_array α β n'),
reinsert_aux hash_fn x y.1 y.2) (mk_array n'.1 []),
rcases append_of_modify [] [] [⟨a'', b''⟩] _ rfl rfl with ⟨u, w, hl, hfl⟩,
simp [IH.symm, or.left_comm, show B.as_list = _, from hl,
show (reinsert_aux hash_fn B a'' b'').as_list = _, from hfl] } } }
end
theorem find_insert_eq (m : hash_map α β) (a : α) (b : β a) : (m.insert a b).find a = some b :=
(find_iff (m.insert a b) a b).2 $ (mem_insert m a b a b).2 $ by rw if_pos rfl
theorem find_insert_ne (m : hash_map α β) (a a' : α) (b : β a) (h : a ≠ a') :
(m.insert a b).find a' = m.find a' :=
option.eq_of_eq_some $ λb',
let t := mem_insert m a b a' b' in
(find_iff _ _ _).trans $ iff.trans (by rwa if_neg h at t) (find_iff _ _ _).symm
theorem find_insert (m : hash_map α β) (a' a : α) (b : β a) :
(m.insert a b).find a' = if h : a = a' then some (eq.rec_on h b) else m.find a' :=
if h : a = a' then by rw dif_pos h; exact
match a', h with ._, rfl := find_insert_eq m a b end
else by rw dif_neg h; exact find_insert_ne m a a' b h
/-- Insert a list of key-value pairs into the map. (Modifies `m` in-place when applicable) -/
def insert_all (l : list (Σ a, β a)) (m : hash_map α β) : hash_map α β :=
l.foldl (λ m ⟨a, b⟩, insert m a b) m
/-- Construct a hash map from a list of key-value pairs. -/
def of_list (l : list (Σ a, β a)) (hash_fn) : hash_map α β :=
insert_all l (mk_hash_map hash_fn (2 * l.length))
/-- Remove a key from the map. (Modifies `m` in-place when applicable) -/
def erase (m : hash_map α β) (a : α) : hash_map α β :=
match m with ⟨hash_fn, size, n, buckets, v⟩ :=
if hc : contains_aux a (buckets.read hash_fn a) then
{ hash_fn := hash_fn,
size := size - 1,
nbuckets := n,
buckets := buckets.modify hash_fn a (erase_aux a),
is_valid := v.erase _ a hc }
else m
end
theorem mem_erase : Π (m : hash_map α β) (a a' b'),
(sigma.mk a' b' : sigma β) ∈ (m.erase a).entries ↔
a ≠ a' ∧ sigma.mk a' b' ∈ m.entries
| ⟨hash_fn, size, n, bkts, v⟩ a a' b' := begin
let bkt := bkts.read hash_fn a,
by_cases Hc : (contains_aux a bkt : Prop),
{ let bkts' := bkts.modify hash_fn a (erase_aux a),
suffices : sigma.mk a' b' ∈ bkts'.as_list ↔ a ≠ a' ∧ sigma.mk a' b' ∈ bkts.as_list,
{ simpa [erase, @dif_pos (contains_aux a bkt) _ Hc] },
have nd := v.nodup (mk_idx n (hash_fn a)),
rcases valid.erase_aux a bkt ((contains_aux_iff nd).1 Hc) with ⟨u', w', b, hl', hfl'⟩,
rcases append_of_modify u' [⟨a, b⟩] [] _ hl' hfl' with ⟨u, w, hl, hfl⟩,
suffices : ∀_:sigma.mk a' b' ∈ u ∨ sigma.mk a' b' ∈ w, a ≠ a',
{ have : sigma.mk a' b' ∈ u ∨ sigma.mk a' b' ∈ w ↔ (¬a = a' ∧ a' = a) ∧ b' == b ∨
¬a = a' ∧ (sigma.mk a' b' ∈ u ∨ sigma.mk a' b' ∈ w),
{ simp [eq_comm, not_and_self_iff, and_iff_right_of_imp this] },
simpa [hl, show bkts'.as_list = _, from hfl, and_or_distrib_left,
and_comm, and.left_comm, or.left_comm] },
intros m e, subst a', revert m, apply not_or_distrib.2,
have nd' := v.as_list_nodup _,
simp [hl, list.nodup_append] at nd', simp [nd'] },
{ suffices : ∀_:sigma.mk a' b' ∈ bucket_array.as_list bkts, a ≠ a',
{ simp [erase, @dif_neg (contains_aux a bkt) _ Hc, entries, and_iff_right_of_imp this] },
intros m e, subst a',
exact Hc ((v.contains_aux_iff _ _).2 (list.mem_map_of_mem sigma.fst m)) }
end
theorem find_erase_eq (m : hash_map α β) (a : α) : (m.erase a).find a = none :=
begin
cases h : (m.erase a).find a with b, {refl},
exact absurd rfl ((mem_erase m a a b).1 ((find_iff (m.erase a) a b).1 h)).left
end
theorem find_erase_ne (m : hash_map α β) (a a' : α) (h : a ≠ a') :
(m.erase a).find a' = m.find a' :=
option.eq_of_eq_some $ λb',
(find_iff _ _ _).trans $ (mem_erase m a a' b').trans $
(and_iff_right h).trans (find_iff _ _ _).symm
theorem find_erase (m : hash_map α β) (a' a : α) :
(m.erase a).find a' = if a = a' then none else m.find a' :=
if h : a = a' then by subst a'; simp [find_erase_eq m a]
else by rw if_neg h; exact find_erase_ne m a a' h
section string
variables [has_to_string α] [∀ a, has_to_string (β a)]
open prod
private def key_data_to_string (a : α) (b : β a) (first : bool) : string :=
(if first then "" else ", ") ++ sformat!"{a} ← {b}"
private def to_string (m : hash_map α β) : string :=
"⟨" ++ (fst (fold m ("", tt) (λ p a b, (fst p ++ key_data_to_string a b (snd p), ff)))) ++ "⟩"
instance : has_to_string (hash_map α β) :=
⟨to_string⟩
end string
section format
open format prod
variables [has_to_format α] [∀ a, has_to_format (β a)]
private meta def format_key_data (a : α) (b : β a) (first : bool) : format :=
(if first then to_fmt "" else to_fmt "," ++ line) ++ to_fmt a ++ space ++ to_fmt "←" ++ space ++ to_fmt b
private meta def to_format (m : hash_map α β) : format :=
group $ to_fmt "⟨" ++ nest 1 (fst (fold m (to_fmt "", tt) (λ p a b, (fst p ++ format_key_data a b (snd p), ff)))) ++
to_fmt "⟩"
meta instance : has_to_format (hash_map α β) :=
⟨to_format⟩
end format
end hash_map
|
57d11b77e12073beebdbadafc848cfb262154115
|
5e3548e65f2c037cb94cd5524c90c623fbd6d46a
|
/src_icannos_totilas/aops/2008-iTest-Problem_90.lean
|
3dc7d0ee86db80fad96504c74a0fbf3986f3872e
|
[] |
no_license
|
ahayat16/lean_exos
|
d4f08c30adb601a06511a71b5ffb4d22d12ef77f
|
682f2552d5b04a8c8eb9e4ab15f875a91b03845c
|
refs/heads/main
| 1,693,101,073,585
| 1,636,479,336,000
| 1,636,479,336,000
| 415,000,441
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 255
|
lean
|
import data.real.basic
import data.real.nnreal
theorem exo:
let P (a b c N: nnreal) := N = (a^2+b^2)/(c^2+a*b)+(b^2+c^2)/(a^2+b*c)+(c^2+a^2)/(b^2+c*a) in
(forall a b c N, P a b c N -> N >= 3) /\ (exists a b c N, P a b c N /\ N = 3)
:=
sorry
|
7477c40e294813c579f3eb2f10c3c14e154d3cb3
|
75db7e3219bba2fbf41bf5b905f34fcb3c6ca3f2
|
/library/init/simplifier.lean
|
de6804522298a84cbea97560f6b6c21b211942e6
|
[
"Apache-2.0"
] |
permissive
|
jroesch/lean
|
30ef0860fa905d35b9ad6f76de1a4f65c9af6871
|
3de4ec1a6ce9a960feb2a48eeea8b53246fa34f2
|
refs/heads/master
| 1,586,090,835,348
| 1,455,142,203,000
| 1,455,142,277,000
| 51,536,958
| 1
| 0
| null | 1,455,215,811,000
| 1,455,215,811,000
| null |
UTF-8
|
Lean
| false
| false
| 3,002
|
lean
|
/-
Copyright (c) 2015 Daniel Selsam. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Daniel Selsam
-/
prelude
import init.logic
namespace simplifier
namespace empty
end empty
namespace prove
attribute eq_self_iff_true [simp]
end prove
namespace unit_simp
open eq.ops
-- TODO(dhs): prove these lemmas elsewhere and only gather the
-- [simp] attributes here
variables {A B C : Prop}
lemma and_imp [simp] : (A ∧ B → C) ↔ (A → B → C) :=
iff.intro (assume H a b, H (and.intro a b))
(assume H ab, H (and.left ab) (and.right ab))
lemma or_imp [simp] : (A ∨ B → C) ↔ ((A → C) ∧ (B → C)) :=
iff.intro (assume H, and.intro (assume a, H (or.inl a))
(assume b, H (or.inr b)))
(assume H ab, and.rec_on H
(assume Hac Hbc, or.rec_on ab Hac Hbc))
lemma imp_and [simp] : (A → B ∧ C) ↔ ((A → B) ∧ (A → C)) :=
iff.intro (assume H, and.intro (assume a, and.left (H a))
(assume a, and.right (H a)))
(assume H a, and.rec_on H
(assume Hab Hac, and.intro (Hab a) (Hac a)))
-- TODO(dhs, leo): do we want to pre-process away the [iff]s?
/-
lemma iff_and_imp [simp] : ((A ↔ B) → C) ↔ (((A → B) ∧ (B → A)) → C) :=
iff.intro (assume H1 H2, and.rec_on H2 (assume ab ba, H1 (iff.intro ab ba)))
(assume H1 H2, H1 (and.intro (iff.elim_left H2) (iff.elim_right H2)))
-/
lemma a_of_a [simp] : (A → A) ↔ true :=
iff.intro (assume H, trivial)
(assume t a, a)
lemma not_true_of_false [simp] : ¬ true ↔ false :=
iff.intro (assume H, H trivial)
(assume f, false.rec (¬ true) f)
lemma imp_true [simp] : (A → true) ↔ true :=
iff.intro (assume H, trivial)
(assume t a, trivial)
lemma true_imp [simp] : (true → A) ↔ A :=
iff.intro (assume H, H trivial)
(assume a t, a)
-- lemma fold_not [simp] : (A → false) ↔ ¬ A :=
-- iff.intro id id
lemma false_imp [simp] : (false → A) ↔ true :=
iff.intro (assume H, trivial)
(assume t f, false.rec A f)
lemma ite_and [simp] [A_dec : decidable A] : ite A B C ↔ ((A → B) ∧ (¬ A → C)) :=
iff.intro (assume H, and.intro (assume a, implies_of_if_pos H a)
(assume a, implies_of_if_neg H a))
(assume H, and.rec_on H
(assume Hab Hnac, decidable.rec_on A_dec
(assume a,
assert rw : @decidable.inl A a = A_dec, from
subsingleton.rec_on (subsingleton_decidable A)
(assume H, H (@decidable.inl A a) A_dec),
by rewrite [rw, if_pos a] ; exact Hab a)
(assume na,
assert rw : @decidable.inr A na = A_dec, from
subsingleton.rec_on (subsingleton_decidable A)
(assume H, H (@decidable.inr A na) A_dec),
by rewrite [rw, if_neg na] ; exact Hnac na)))
end unit_simp
end simplifier
|
469ae897b69104b5742964966b5ec7f0802fb061
|
cc62cd292c1acc80a10b1c645915b70d2cdee661
|
/src/category_theory/presheaves/sheaves_of_types.lean
|
b793113a9d7fda02cd0b255ea09b8f5cdfece952
|
[] |
no_license
|
RitaAhmadi/lean-category-theory
|
4afb881c4b387ee2c8ce706c454fbf9db8897a29
|
a27b4ae5eac978e9188d2e867c3d11d9a5b87a9e
|
refs/heads/master
| 1,651,786,183,402
| 1,565,604,314,000
| 1,565,604,314,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,465
|
lean
|
-- import category_theory.presheaves.sheaves
-- import category_theory.limits.preserves
-- import category_theory.functor.isomorphism
-- universes u v
-- open category_theory
-- open category_theory.limits
-- open category_theory.examples
-- open topological_space
-- -- We now provide an alternative 'pointwise' constructor for sheaves of types.
-- -- This should eventually be generalised to sheaves of categories with a
-- -- fibre functor with reflects iso and preserves limits.
-- section
-- variables {X : Top.{v}}
-- structure compatible_sections (c : cover X) (F : (opens X)ᵒᵖ ⥤ (Type u)) :=
-- (sections : Π i : c.I, F.obj (c.U i))
-- (compatibility : Π i j : c.I, res_left i j F (sections i) = res_right i j F (sections j))
-- structure gluing {c : cover X} {F : (opens X)ᵒᵖ ⥤ (Type u)} (s : compatible_sections c F) :=
-- («section» : F.obj c.union)
-- (restrictions : ∀ i : c.I, (F.map (c.sub i)) «section» = s.sections i)
-- (uniqueness : ∀ (Γ : F.obj c.union) (w : ∀ i : c.I, (F.map (c.sub i)) Γ = s.sections i), Γ = «section»)
-- -- definition sheaf.of_types
-- -- (presheaf : (opens X)ᵒᵖ ⥤ (Type v))
-- -- (sheaf_condition : Π (c : cover X)
-- -- (s : compatible_sections c presheaf), gluing s) :
-- -- sheaf.{v+1 v} X (Type v) :=
-- -- { presheaf := presheaf,
-- -- sheaf_condition := ⟨ λ c,
-- -- let σ : Π s : fork (left c presheaf) (right c presheaf), s.X → compatible_sections c presheaf :=
-- -- λ s x, { sections := λ i, pi.π (λ i : c.I, presheaf.obj (c.U i)) i (s.ι x),
-- -- compatibility := λ i j, congr_fun (congr_fun s.w x) (i,j), } in
-- -- { lift := λ s x, (sheaf_condition c (σ s x)).«section»,
-- -- fac' := λ s, funext $ λ x, funext $ λ i, (sheaf_condition c (σ s x)).restrictions i,
-- -- uniq' := λ s m w, funext $ λ x, (sheaf_condition c (σ s x)).uniqueness (m x) (λ i, congr_fun (congr_fun w x) i),
-- -- } ⟩ }
-- end
-- section
-- variables {X : Top.{u}}
-- variables {V : Type (u+1)} [𝒱 : large_category V] [has_products.{u+1 u} V] (ℱ : V ⥤ (Type u))
-- [faithful ℱ] [category_theory.limits.preserves_limits ℱ] [reflects_isos ℱ]
-- include 𝒱
-- -- This is a good project!
-- def sheaf.of_sheaf_of_types
-- (presheaf : (opens X)ᵒᵖ ⥤ V)
-- (underlying_is_sheaf : is_sheaf (presheaf ⋙ ℱ)) : is_sheaf presheaf := sorry
-- end
|
e83e1dc5f603fe0b0b62a83e3e5003af7db0df5b
|
63abd62053d479eae5abf4951554e1064a4c45b4
|
/src/analysis/complex/roots_of_unity.lean
|
ef459be4ce158d6b72b9c9ec6ea2db1f9176c986
|
[
"Apache-2.0"
] |
permissive
|
Lix0120/mathlib
|
0020745240315ed0e517cbf32e738d8f9811dd80
|
e14c37827456fc6707f31b4d1d16f1f3a3205e91
|
refs/heads/master
| 1,673,102,855,024
| 1,604,151,044,000
| 1,604,151,044,000
| 308,930,245
| 0
| 0
|
Apache-2.0
| 1,604,164,710,000
| 1,604,163,547,000
| null |
UTF-8
|
Lean
| false
| false
| 3,600
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import ring_theory.roots_of_unity
import analysis.special_functions.trigonometric
import analysis.special_functions.pow
/-!
# Complex roots of unity
In this file we show that the `n`-th complex roots of unity
are exactly the complex numbers `e ^ (2 * real.pi * complex.I * (i / n))` for `i ∈ finset.range n`.
## Main declarations
* `complex.mem_roots_of_unity`: the complex `n`-th roots of unity are exactly the
complex numbers of the form `e ^ (2 * real.pi * complex.I * (i / n))` for some `i < n`.
* `complex.card_roots_of_unity`: the number of `n`-th roots of unity is exactly `n`.
-/
namespace complex
open polynomial real
open_locale nat
lemma is_primitive_root_exp_of_coprime (i n : ℕ) (h0 : n ≠ 0) (hi : i.coprime n) :
is_primitive_root (exp (2 * pi * I * (i / n))) n :=
begin
rw is_primitive_root.iff_def,
simp only [← exp_nat_mul, exp_eq_one_iff],
have hn0 : (n : ℂ) ≠ 0, by exact_mod_cast h0,
split,
{ use i,
field_simp [hn0, mul_comm (i : ℂ), mul_comm (n : ℂ)] },
{ simp only [hn0, mul_right_comm _ _ ↑n, mul_left_inj' two_pi_I_ne_zero, ne.def, not_false_iff,
mul_comm _ (i : ℂ), ← mul_assoc _ (i : ℂ), exists_imp_distrib] with field_simps,
norm_cast,
rintro l k hk,
have : n ∣ i * l,
{ rw [← int.coe_nat_dvd, hk], apply dvd_mul_left },
exact hi.symm.dvd_of_dvd_mul_left this }
end
lemma is_primitive_root_exp (n : ℕ) (h0 : n ≠ 0) : is_primitive_root (exp (2 * pi * I / n)) n :=
by simpa only [nat.cast_one, one_div]
using is_primitive_root_exp_of_coprime 1 n h0 n.coprime_one_left
lemma is_primitive_root_iff (ζ : ℂ) (n : ℕ) (hn : n ≠ 0) :
is_primitive_root ζ n ↔ (∃ (i < (n : ℕ)) (hi : i.coprime n), exp (2 * pi * I * (i / n)) = ζ) :=
begin
have hn0 : (n : ℂ) ≠ 0 := by exact_mod_cast hn,
split, swap,
{ rintro ⟨i, -, hi, rfl⟩, exact is_primitive_root_exp_of_coprime i n hn hi },
intro h,
obtain ⟨i, hi, rfl⟩ :=
(is_primitive_root_exp n hn).eq_pow_of_pow_eq_one h.pow_eq_one (nat.pos_of_ne_zero hn),
refine ⟨i, hi, ((is_primitive_root_exp n hn).pow_iff_coprime (nat.pos_of_ne_zero hn) i).mp h, _⟩,
rw [← exp_nat_mul],
congr' 1,
field_simp [hn0, mul_comm (i : ℂ)]
end
/-- The complex `n`-th roots of unity are exactly the
complex numbers of the form `e ^ (2 * real.pi * complex.I * (i / n))` for some `i < n`. -/
lemma mem_roots_of_unity (n : ℕ+) (x : units ℂ) :
x ∈ roots_of_unity n ℂ ↔ (∃ i < (n : ℕ), exp (2 * pi * I * (i / n)) = x) :=
begin
rw [mem_roots_of_unity, units.ext_iff, units.coe_pow, units.coe_one],
have hn0 : (n : ℂ) ≠ 0 := by exact_mod_cast (n.ne_zero),
split,
{ intro h,
obtain ⟨i, hi, H⟩ : ∃ i < (n : ℕ), exp (2 * pi * I / n) ^ i = x,
{ simpa only using (is_primitive_root_exp n n.ne_zero).eq_pow_of_pow_eq_one h n.pos },
refine ⟨i, hi, _⟩,
rw [← H, ← exp_nat_mul],
congr' 1,
field_simp [hn0, mul_comm (i : ℂ)] },
{ rintro ⟨i, hi, H⟩,
rw [← H, ← exp_nat_mul, exp_eq_one_iff],
use i,
field_simp [hn0, mul_comm ((n : ℕ) : ℂ), mul_comm (i : ℂ)] }
end
lemma card_roots_of_unity (n : ℕ+) : fintype.card (roots_of_unity n ℂ) = n :=
(is_primitive_root_exp n n.ne_zero).card_roots_of_unity
lemma card_primitive_roots (k : ℕ) (h : k ≠ 0) : (primitive_roots k ℂ).card = φ k :=
(is_primitive_root_exp k h).card_primitive_roots (nat.pos_of_ne_zero h)
end complex
|
eab1a8abfa9de231d4d248bf52e140af9fd2d236
|
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
|
/library/init/meta/task.lean
|
8d34056a194a76f4b1ef01b21614c62ba958fb82
|
[
"Apache-2.0"
] |
permissive
|
bre7k30/lean
|
de893411bcfa7b3c5572e61b9e1c52951b310aa4
|
5a924699d076dab1bd5af23a8f910b433e598d7a
|
refs/heads/master
| 1,610,900,145,817
| 1,488,006,845,000
| 1,488,006,845,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 726
|
lean
|
prelude
import init.category
meta constant {u} task : Type u → Type u
namespace task
meta constant {u} get {α : Type u} (t : task α) : α
protected meta constant {u} pure {α : Type u} (t : α) : task α
protected meta constant {u v} map {α : Type u} {β : Type v} (f : α → β) (t : task α) : task β
protected meta constant {u} flatten {α : Type u} : task (task α) → task α
protected meta def {u v} bind {α : Type u} {β : Type v} (t : task α) (f : α → task β) : task β :=
task.flatten (task.map f t)
meta instance : monad task :=
{ map := @task.map, bind := @task.bind, ret := @task.pure }
@[inline]
meta def {u} delay {α : Type u} (f : unit → α) : task α :=
task.map f (return ())
end task
|
69b8c1c4f8f741d5929a4e8ed8b20acceb4c4684
|
f5373ccdc976e6390397d9f4220a74c76f706f4a
|
/src/tools/json_server.lean
|
03f3f9aa4cb68109f92687caff3923e05a85b1f7
|
[] |
no_license
|
jasonrute/lean_gym_prototype
|
fcd91fdc454f9e351bbe258c765f50276407547e
|
ab29624d14e4e069e15afe0b1d90248b5b394b86
|
refs/heads/master
| 1,682,628,526,780
| 1,590,539,315,000
| 1,590,539,315,000
| 264,938,525
| 3
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,074
|
lean
|
import system.io
import tools.json
import tools.json_serialization
import tools.dumb_json
open json
/- A way to get data and put data (one line at a time),
such as stdin/stdout, files, or a child process. -/
meta structure io_streams :=
-- get one line of text It does not have a new line at the end.
(get_line : io string)
-- put one line of text The input string will not have a new line at the end.
(put_str_ln : string → io unit)
/- Since io.fs.get_line both returns a char_buffer and ends
with a new line, this is a slight modification. -/
meta def io.fs.get_line_str (handle : io.handle) : io string := do
cb <- io.fs.get_line handle,
return (cb.take (cb.size - 1)).to_string -- drop new_line at end
-- examples of streams
namespace io_streams
/- Built-in stdin and stdout streams. Use these instead of
io.stdin and io.stdout as the latter two will interfere with
the Lean language server if run in vscode/emacs. -/
meta def stdin_stdout_streams : io_streams := {
get_line := io.get_line,
put_str_ln := io.put_str_ln
}
/- Read from a file handle (e.g. for testing) and write to stdout -/
meta def file_stdout_streams (read_handle : io.handle) : io_streams := {
get_line := io.fs.get_line_str read_handle,
put_str_ln := io.put_str_ln
}
/- Read from a file handle and write to another file handle -/
meta def file_streams (read_handle : io.handle) (write_handle : io.handle): io_streams := {
get_line := io.fs.get_line_str read_handle,
put_str_ln := λ s, io.fs.put_str_ln write_handle s >> io.fs.flush write_handle
}
/- Spawn a child process and pipe stdin and stdout -/
meta def child_process_streams (proc : io.proc.child) : io_streams := {
get_line := io.fs.get_line_str proc.stdout,
put_str_ln := λ s, io.fs.put_str_ln proc.stdin s >> io.fs.flush proc.stdin
}
end io_streams
/- An implementation of a server with fixed request and response types.
It uses JSON as the intermediate format but one can specify the exact
protocal for reading and writing the JSON. (One motivation is that reading
standard ) -/
meta structure json_server
/- The type of the message the external agent uses to request information from lean. -/
(request_type : Type)
/- The type of the response that Lean provides. -/
(response_type : Type)
/- The request and response types must both be serializable as json. -/
[has_to_json response_type]
/- The request and response types must both be serializable as json. -/
[has_from_json request_type] :=
/- Streams to read from and write to -/
(read_write : io_streams)
/- The protocol used to deserialize `json` type objects. -/
(get_json : io_streams → io json)
/- The protocol used to serialize `json` type objects. -/
(put_json : io_streams → (json → io unit))
namespace json_server
-- does this already exist?
meta def exceptional_to_io {α : Type} : exceptional α → io α
| (exceptional.success a) := return a
| (exceptional.exception e) := io.fail $ "Exception: " ++ to_string (e options.mk)
/- Reads one line, and converts it into JSON. (Unfortionately this is VERY slow in Lean 3.) -/
meta def get_standard_json (read_write : io_streams) : io json := do
s <- read_write.get_line,
exceptional_to_io (json.of_string s)
/- Reads a custom data format of json sent via multiple lines of text.) -/
meta def get_custom_json (read_write : io_streams) : io json := do
dumb_json.load_json read_write.get_line
/- Writes one line of standard JSON encoding.-/
meta def put_standard_json (read_write : io_streams) (j : json): io unit :=
read_write.put_str_ln (to_string j)
meta def send_response {α β : Type} [has_from_json α] [has_to_json β] (server : json_server α β) (response : β) : io unit := do
server.put_json server.read_write (to_json response)
meta def get_request {α β : Type} [has_from_json α] [has_to_json β] (server : json_server α β) : io α := do
j <- server.get_json server.read_write,
-- uncomment to debug json
--stderr <- io.stderr,
--io.fs.put_str_ln stderr (to_string j),
a <- exceptional_to_io (from_json α j),
return a
end json_server
|
66d5ad628d8a2aad67716cff2df5b4055087ca8b
|
9c2e8d73b5c5932ceb1333265f17febc6a2f0a39
|
/src/S4/ops.lean
|
83cc103aaae193836a4212584ef61a985582f650
|
[
"MIT"
] |
permissive
|
minchaowu/ModalTab
|
2150392108dfdcaffc620ff280a8b55fe13c187f
|
9bb0bf17faf0554d907ef7bdd639648742889178
|
refs/heads/master
| 1,626,266,863,244
| 1,592,056,874,000
| 1,592,056,874,000
| 153,314,364
| 12
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 11,300
|
lean
|
import .size
open nnf list
namespace list
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
theorem mapp {p : β → Prop} (f : α → β) : Π (l : list α) (h : ∀ x∈l, p (f x)) x, x ∈ list.map f l → p x
| [] h x := by simp
| (hd::tl) h x :=
begin
intro hmem, cases hmem,
{rw hmem, apply h, simp},
{apply mapp tl, intros a ha, apply h, simp [ha], exact hmem}
end
theorem pmapp {p : β → Prop} {q : α → Prop} (f : Π a, q a → β) : Π (l : list α)
(h : ∀ y (hy : q y) (h₁ : y ∈ l), p (f y hy))
(hf : ∀ y ∈ l, q y) x, x ∈ list.pmap f l hf → p x
| [] h hf x := by simp
| (hd::tl) h hf x :=
begin
intro hmem,
cases hmem,
{rw hmem, apply h, simp},
{apply pmapp tl, intros a ha hamem,
apply h, simp [ha], right, exact hamem, exact hmem}
end
@[simp] def ne_empty_head : Π l : list α, l ≠ [] → α
| [] h := by contradiction
| (a :: l) h := a
theorem mem_pmap_of_mem {p : α → Prop} (f : Π a, p a → β) {a : α} {l : list α} (h : a ∈ l) (hf : ∀ y ∈ l, p y) :
f a (hf a h) ∈ pmap f l hf :=
begin
induction l with b l' ih,
{cases h},
{rcases h with rfl | h,
{exact or.inl rfl},
{apply or.inr,
have hpy : ∀ (y : α), y ∈ l' → p y,
{intros y hy, apply hf, right, exact hy},
have := ih h hpy, exact this}}
end
end list
@[simp] def unbox : list nnf → list nnf
| [] := []
| ((box φ) :: l) := φ :: unbox l
| (e :: l) := unbox l
theorem unbox_iff : Π {Γ φ}, box φ ∈ Γ ↔ φ ∈ unbox Γ
| [] φ := begin split, repeat {intro h, simpa using h} end
| (hd::tl) φ :=
begin
split,
{ intro h, cases h₁ : hd,
case nnf.box : ψ
{ dsimp [unbox], cases h,
{left, rw h₁ at h, injection h},
{right, exact (@unbox_iff tl φ).1 h} },
all_goals
{ dsimp [unbox], cases h,
{rw h₁ at h, contradiction},
{exact (@unbox_iff tl φ).1 h} } },
{ intro h, cases h₁ : hd,
case nnf.box : ψ
{ rw h₁ at h, dsimp [unbox] at h, cases h,
{simp [h]}, {right, exact (@unbox_iff tl φ).2 h} },
all_goals
{ rw h₁ at h, dsimp [unbox] at h, right, exact (@unbox_iff tl φ).2 h } }
end
theorem unbox_size_aux : Π {Γ}, node_size (unbox Γ) ≤ node_size Γ
| [] := by simp
| (hd::tl) :=
begin
cases h : hd,
case nnf.box : ψ
{ dsimp, apply add_le_add,
{ dsimp [sizeof, has_sizeof.sizeof, nnf.sizeof],
rw add_comm, apply nat.le_succ },
{ apply unbox_size_aux } },
all_goals
{ dsimp, apply le_add_of_nonneg_of_le,
{ dsimp [sizeof, has_sizeof.sizeof, nnf.sizeof], rw add_comm, apply nat.zero_le },
{ apply unbox_size_aux } }
end
@[simp] def rebox : list nnf → list nnf
| [] := []
| (hd::tl) := box hd :: rebox tl
theorem rebox_unbox_of_mem : Π {Γ} (h : ∀ {φ}, φ ∈ unbox Γ → box φ ∈ Γ), rebox (unbox Γ) ⊆ Γ
| [] h := by simp
| (hd::tl) h :=
begin
cases hψ : hd,
case nnf.box : φ {dsimp, simp [cons_subset_cons], apply subset_cons_of_subset, apply rebox_unbox_of_mem, simp [unbox_iff]},
all_goals {dsimp, apply subset_cons_of_subset, apply rebox_unbox_of_mem, simp [unbox_iff]}
end
theorem unbox_rebox : Π {Γ}, unbox (rebox Γ) = Γ
| [] := by simp
| (hd::tl) := by simp [unbox_rebox]
-- Just that I don't want to say ∃ φ s.t. ...
def box_only_rebox : Π {Γ}, box_only (rebox Γ)
| [] := {no_var := by simp,
no_neg := by simp,
no_and := by simp,
no_or := by simp,
no_dia := by simp}
| (hd::tl) :=
begin
cases h : hd,
all_goals {
exact { no_var := begin
intros n h, cases h, contradiction,
apply (@box_only_rebox tl).no_var, assumption
end,
no_neg := begin
intros n h, cases h, contradiction,
apply (@box_only_rebox tl).no_neg, assumption
end,
no_and := begin
intros φ ψ h, cases h, contradiction,
apply (@box_only_rebox tl).no_and, assumption
end,
no_or := begin
intros φ ψ h, cases h, contradiction,
apply (@box_only_rebox tl).no_or, assumption
end,
no_dia := begin
intros φ h, cases h, contradiction,
apply (@box_only_rebox tl).no_dia, assumption
end} }
end
theorem rebox_iff : Π {φ Γ}, box φ ∈ rebox Γ ↔ φ ∈ Γ
| φ [] := by simp
| φ (hd::tl) :=
begin
split,
{intro h, cases h₁ : hd,
all_goals { cases h,
{left, rw ←h₁, injection h},
{right, have := (@rebox_iff φ tl).1, exact this h } }},
{intro h, cases h₁ : hd,
all_goals { dsimp, cases h,
{left, rw ←h₁, rw h},
{right, have := (@rebox_iff φ tl).2, exact this h } } }
end
@[simp] def undia : list nnf → list nnf
| [] := []
| ((dia φ) :: l) := φ :: undia l
| (e :: l) := undia l
theorem undia_iff : Π {Γ φ}, dia φ ∈ Γ ↔ φ ∈ undia Γ
| [] φ := begin split, repeat {intro h, simpa using h} end
| (hd::tl) φ :=
begin
split,
{ intro h, cases h₁ : hd,
case nnf.dia : ψ
{ dsimp [undia], cases h,
{left, rw h₁ at h, injection h},
{right, exact (@undia_iff tl φ).1 h} },
all_goals
{ dsimp [undia], cases h,
{rw h₁ at h, contradiction},
{exact (@undia_iff tl φ).1 h} } },
{ intro h, cases h₁ : hd,
case nnf.dia : ψ
{ rw h₁ at h, dsimp [undia] at h, cases h,
{simp [h]}, {right, exact (@undia_iff tl φ).2 h} },
all_goals
{ rw h₁ at h, dsimp [undia] at h, right, exact (@undia_iff tl φ).2 h } }
end
def get_contra : Π Γ : list nnf,
psum {p : nat // var p ∈ Γ ∧ neg p ∈ Γ}
(∀ n, var n ∈ Γ → neg n ∉ Γ)
| [] := psum.inr $ λ _ h, absurd h $ not_mem_nil _
| (hd :: tl) :=
begin
cases h : hd,
case nnf.var : n
{apply dite (neg n ∈ tl),
{intro t,
exact psum.inl ⟨n, ⟨mem_cons_self _ _, mem_cons_of_mem _ t⟩⟩},
{intro e,
cases (get_contra tl),
{left, constructor, constructor,
apply mem_cons_of_mem, exact val.2.1,
apply mem_cons_of_mem, exact val.2.2},
{right,
intros m hm hin,
by_cases eq : m=n,
{apply e, cases hin, contradiction, rw ←eq, assumption},
{cases hm, apply eq, injection hm, apply val, exact hm,
cases hin, contradiction, assumption} } }
},
case nnf.neg : n
{ apply dite (var n ∈ tl),
{ intro t,
exact psum.inl ⟨n, ⟨mem_cons_of_mem _ t, mem_cons_self _ _⟩⟩ },
{ intro e,
cases (get_contra tl),
{left, constructor, constructor,
apply mem_cons_of_mem, exact val.2.1,
apply mem_cons_of_mem, exact val.2.2 },
{ right,
intros m hm hin,
by_cases eq : m=n,
{ apply e, cases hm, contradiction, rw ←eq, assumption },
{ cases hin, apply eq, injection hin, apply val,
swap, exact hin, cases hm, contradiction, assumption }
}
}
},
all_goals
{
cases (get_contra tl),
{ left, constructor, constructor,
apply mem_cons_of_mem, exact val.2.1,
apply mem_cons_of_mem, exact val.2.2 },
{ right,
intros m hm hin,
{apply val, swap 3, exact m,
cases hm, contradiction, assumption,
cases hin, contradiction, assumption} }
}
end
def get_contra_seqt : Π Γ : sseqt,
psum {p : nat // var p ∈ Γ.m ∧ neg p ∈ Γ.m}
(∀ n, var n ∈ Γ.m → neg n ∉ Γ.m)
:= λ Γ, get_contra Γ.m
def get_and : Π Γ : list nnf,
psum {p : nnf × nnf // and p.1 p.2 ∈ Γ}
(∀ φ ψ, nnf.and φ ψ ∉ Γ)
| [] := psum.inr $ λ _ _, not_mem_nil _
| (hd :: tl) :=
begin
cases h : hd,
case nnf.and : φ ψ { left, constructor,swap,
constructor, exact φ, exact ψ, simp
},
all_goals
{ cases (get_and tl),
{left,
constructor,
apply mem_cons_of_mem,
exact val.2},
{right, intros γ ψ h,
cases h, contradiction,
apply val, assumption }
}
end
def get_and_seqt : Π Γ : sseqt,
psum {p : nnf × nnf // and p.1 p.2 ∈ Γ.m}
(∀ φ ψ, nnf.and φ ψ ∉ Γ.m)
:= λ Γ, get_and Γ.m
def get_or : Π Γ : list nnf,
psum {p : nnf × nnf // or p.1 p.2 ∈ Γ}
(∀ φ ψ, nnf.or φ ψ ∉ Γ)
| [] := psum.inr $ λ _ _, not_mem_nil _
| (hd :: tl) :=
begin
cases h : hd,
case nnf.or : φ ψ { left, constructor,swap,
constructor, exact φ, exact ψ, simp },
all_goals
{ cases (get_or tl),
{left,
constructor,
apply mem_cons_of_mem,
exact val.2},
{right, intros γ ψ h,
cases h, contradiction,
apply val, assumption}
}
end
def get_or_seqt : Π Γ : sseqt,
psum {p : nnf × nnf // or p.1 p.2 ∈ Γ.m}
(∀ φ ψ, nnf.or φ ψ ∉ Γ.m)
:= λ Γ, get_or Γ.m
def get_dia : Π Γ : list nnf,
psum {p : nnf // dia p ∈ Γ}
(∀ φ, nnf.dia φ ∉ Γ)
| [] := psum.inr $ λ _, not_mem_nil _
| (hd :: tl) :=
begin
cases h : hd,
case nnf.dia : φ { left, constructor, swap, exact φ, simp },
all_goals
{ cases (get_dia tl),
{left,
constructor,
apply mem_cons_of_mem,
exact val.2},
{right, intros γ h,
cases h, contradiction,
apply val, assumption } }
end
def get_dia_seqt : Π Γ : sseqt,
psum {p : nnf // dia p ∈ Γ.m}
(∀ φ, nnf.dia φ ∉ Γ.m)
:= λ Γ, get_dia Γ.m
def get_box : Π Γ : list nnf,
psum {l : nnf // box l ∈ Γ}
(∀ φ, nnf.box φ ∉ Γ)
| [] := psum.inr $ λ _, not_mem_nil _
| (hd :: tl) :=
begin
cases h : hd,
case nnf.box : φ { left, constructor, swap, exact φ, simp },
all_goals
{ cases (get_box tl),
{left,
constructor,
apply mem_cons_of_mem,
exact val.2},
{right, intros γ h,
cases h, contradiction,
apply val, assumption } }
end
def get_box_seqt : Π Γ : sseqt,
psum {p : nnf // box p ∈ Γ.m}
(∀ φ, nnf.box φ ∉ Γ.m)
:= λ Γ, get_box Γ.m
@[simp] def get_var : list nnf → list ℕ
| [] := []
| ((var n) :: l) := n :: get_var l
| (e :: l) := get_var l
theorem get_var_iff : Π {Γ n}, var n ∈ Γ ↔ n ∈ get_var Γ
| [] φ := begin split, repeat {intro h, simpa using h} end
| (hd::tl) φ :=
begin
split,
{ intro h, cases h₁ : hd,
case nnf.var : n
{ dsimp, cases h,
{left, rw h₁ at h, injection h},
{right, exact (@get_var_iff tl φ).1 h} },
all_goals
{ dsimp, cases h,
{rw h₁ at h, contradiction},
{exact (@get_var_iff tl φ).1 h} } },
{ intro h, cases h₁ : hd,
case nnf.var : n
{ rw h₁ at h, dsimp at h, cases h,
{simp [h]}, {right, exact (@get_var_iff tl φ).2 h} },
all_goals
{ rw h₁ at h, dsimp [undia] at h, right, exact (@get_var_iff tl φ).2 h } }
end
|
f5af03444ab21e41e5179a07ed9d1a6128c7167b
|
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
|
/stage0/src/Lean/Data/Lsp/Communication.lean
|
1647ee0ae731370ee0a4ed21c504d0f3cb1f80ef
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/lean4
|
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
|
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
|
refs/heads/master
| 1,678,305,356,877
| 1,614,708,995,000
| 1,614,708,995,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,507
|
lean
|
/-
Copyright (c) 2020 Marc Huisinga. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Marc Huisinga, Wojciech Nawrocki
-/
import Init.System.IO
import Lean.Data.JsonRpc
/-! Reading/writing LSP messages from/to IO handles. -/
namespace IO.FS.Stream
open Lean
open Lean.JsonRpc
section
private def parseHeaderField (s : String) : Option (String × String) := do
guard $ s ≠ "" ∧ s.takeRight 2 = "\r\n"
let xs := (s.dropRight 2).splitOn ": "
match xs with
| [] => none
| [_] => none
| name :: value :: rest =>
let value := ": ".intercalate (value :: rest)
some ⟨name, value⟩
private partial def readHeaderFields (h : FS.Stream) : IO (List (String × String)) := do
let l ← h.getLine
if (←h.isEof) then
throw $ userError "Stream was closed"
if l = "\r\n" then
pure []
else
match parseHeaderField l with
| some hf =>
let tail ← readHeaderFields h
pure (hf :: tail)
| none => throw $ userError s!"Invalid header field: {l}"
/-- Returns the Content-Length. -/
private def readLspHeader (h : FS.Stream) : IO Nat := do
let fields ← readHeaderFields h
match fields.lookup "Content-Length" with
| some length => match length.toNat? with
| some n => pure n
| none => throw $ userError s!"Content-Length header field value '{length}' is not a Nat"
| none => throw $ userError s!"No Content-Length field in header: {fields}"
def readLspMessage (h : FS.Stream) : IO Message := do
try
let nBytes ← readLspHeader h
h.readMessage nBytes
catch e =>
throw $ userError s!"Cannot read LSP message: {e}"
def readLspRequestAs (h : FS.Stream) (expectedMethod : String) (α) [FromJson α] : IO (Request α) := do
try
let nBytes ← readLspHeader h
h.readRequestAs nBytes expectedMethod α
catch e =>
throw $ userError s!"Cannot read LSP request: {e}"
def readLspNotificationAs (h : FS.Stream) (expectedMethod : String) (α) [FromJson α] : IO (Notification α) := do
try
let nBytes ← readLspHeader h
h.readNotificationAs nBytes expectedMethod α
catch e =>
throw $ userError s!"Cannot read LSP notification: {e}"
def readLspResponseAs (h : FS.Stream) (expectedID : RequestID) (α) [FromJson α] : IO (Response α) := do
try
let nBytes ← readLspHeader h
h.readResponseAs nBytes expectedID α
catch e =>
throw $ userError s!"Cannot read LSP response: {e}"
end
section
variable [ToJson α]
def writeLspMessage (h : FS.Stream) (msg : Message) : IO Unit := do
-- inlined implementation instead of using jsonrpc's writeMessage
-- to maintain the atomicity of putStr
let j := (toJson msg).compress
let header := s!"Content-Length: {toString j.utf8ByteSize}\r\n\r\n"
h.putStr (header ++ j)
h.flush
def writeLspRequest (h : FS.Stream) (r : Request α) : IO Unit :=
h.writeLspMessage r
def writeLspNotification (h : FS.Stream) (n : Notification α) : IO Unit :=
h.writeLspMessage n
def writeLspResponse (h : FS.Stream) (r : Response α) : IO Unit :=
h.writeLspMessage r
def writeLspResponseError (h : FS.Stream) (e : ResponseError Unit) : IO Unit :=
h.writeLspMessage (Message.responseError e.id e.code e.message none)
def writeLspResponseErrorWithData (h : FS.Stream) (e : ResponseError α) : IO Unit :=
h.writeLspMessage e
end
end IO.FS.Stream
|
f84c0c3efb3664e37eb1469be26d8ad8f2cd69a5
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/algebraic_geometry/prime_spectrum/basic.lean
|
19489e8ab4019548148315620a9e902b7d4d3712
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 35,534
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import algebra.punit_instances
import linear_algebra.finsupp
import ring_theory.ideal.over
import ring_theory.ideal.prod
import ring_theory.localization.away
import ring_theory.nilpotent
import topology.sets.closeds
import topology.sober
/-!
# Prime spectrum of a commutative ring
The prime spectrum of a commutative ring is the type of all prime ideals.
It is naturally endowed with a topology: the Zariski topology.
(It is also naturally endowed with a sheaf of rings,
which is constructed in `algebraic_geometry.structure_sheaf`.)
## Main definitions
* `prime_spectrum R`: The prime spectrum of a commutative ring `R`,
i.e., the set of all prime ideals of `R`.
* `zero_locus s`: The zero locus of a subset `s` of `R`
is the subset of `prime_spectrum R` consisting of all prime ideals that contain `s`.
* `vanishing_ideal t`: The vanishing ideal of a subset `t` of `prime_spectrum R`
is the intersection of points in `t` (viewed as prime ideals).
## Conventions
We denote subsets of rings with `s`, `s'`, etc...
whereas we denote subsets of prime spectra with `t`, `t'`, etc...
## Inspiration/contributors
The contents of this file draw inspiration from <https://github.com/ramonfmir/lean-scheme>
which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau,
and Chris Hughes (on an earlier repository).
-/
noncomputable theory
open_locale classical
universes u v
variables (R : Type u) (S : Type v) [comm_ring R] [comm_ring S]
/-- The prime spectrum of a commutative ring `R` is the type of all prime ideals of `R`.
It is naturally endowed with a topology (the Zariski topology),
and a sheaf of commutative rings (see `algebraic_geometry.structure_sheaf`).
It is a fundamental building block in algebraic geometry. -/
@[ext] structure prime_spectrum :=
(as_ideal : ideal R)
(is_prime : as_ideal.is_prime)
attribute [instance] prime_spectrum.is_prime
namespace prime_spectrum
variables {R S}
instance [nontrivial R] : nonempty $ prime_spectrum R :=
let ⟨I, hI⟩ := ideal.exists_maximal R in ⟨⟨I, hI.is_prime⟩⟩
/-- The prime spectrum of the zero ring is empty. -/
lemma punit (x : prime_spectrum punit) : false :=
x.1.ne_top_iff_one.1 x.2.1 $ subsingleton.elim (0 : punit) 1 ▸ x.1.zero_mem
variables (R S)
/-- The map from the direct sum of prime spectra to the prime spectrum of a direct product. -/
@[simp] def prime_spectrum_prod_of_sum :
prime_spectrum R ⊕ prime_spectrum S → prime_spectrum (R × S)
| (sum.inl ⟨I, hI⟩) := ⟨ideal.prod I ⊤, by exactI ideal.is_prime_ideal_prod_top⟩
| (sum.inr ⟨J, hJ⟩) := ⟨ideal.prod ⊤ J, by exactI ideal.is_prime_ideal_prod_top'⟩
/-- The prime spectrum of `R × S` is in bijection with the disjoint unions of the prime spectrum of
`R` and the prime spectrum of `S`. -/
noncomputable def prime_spectrum_prod :
prime_spectrum (R × S) ≃ prime_spectrum R ⊕ prime_spectrum S :=
equiv.symm $ equiv.of_bijective (prime_spectrum_prod_of_sum R S)
begin
split,
{ rintro (⟨I, hI⟩|⟨J, hJ⟩) (⟨I', hI'⟩|⟨J', hJ'⟩) h;
simp only [ideal.prod.ext_iff, prime_spectrum_prod_of_sum] at h,
{ simp only [h] },
{ exact false.elim (hI.ne_top h.left) },
{ exact false.elim (hJ.ne_top h.right) },
{ simp only [h] } },
{ rintro ⟨I, hI⟩,
rcases (ideal.ideal_prod_prime I).mp hI with (⟨p, ⟨hp, rfl⟩⟩|⟨p, ⟨hp, rfl⟩⟩),
{ exact ⟨sum.inl ⟨p, hp⟩, rfl⟩ },
{ exact ⟨sum.inr ⟨p, hp⟩, rfl⟩ } }
end
variables {R S}
@[simp] lemma prime_spectrum_prod_symm_inl_as_ideal (x : prime_spectrum R) :
((prime_spectrum_prod R S).symm $ sum.inl x).as_ideal = ideal.prod x.as_ideal ⊤ :=
by { cases x, refl }
@[simp] lemma prime_spectrum_prod_symm_inr_as_ideal (x : prime_spectrum S) :
((prime_spectrum_prod R S).symm $ sum.inr x).as_ideal = ideal.prod ⊤ x.as_ideal :=
by { cases x, refl }
/-- The zero locus of a set `s` of elements of a commutative ring `R` is the set of all prime ideals
of the ring that contain the set `s`.
An element `f` of `R` can be thought of as a dependent function on the prime spectrum of `R`.
At a point `x` (a prime ideal) the function (i.e., element) `f` takes values in the quotient ring
`R` modulo the prime ideal `x`. In this manner, `zero_locus s` is exactly the subset of
`prime_spectrum R` where all "functions" in `s` vanish simultaneously.
-/
def zero_locus (s : set R) : set (prime_spectrum R) :=
{x | s ⊆ x.as_ideal}
@[simp] lemma mem_zero_locus (x : prime_spectrum R) (s : set R) :
x ∈ zero_locus s ↔ s ⊆ x.as_ideal := iff.rfl
@[simp] lemma zero_locus_span (s : set R) :
zero_locus (ideal.span s : set R) = zero_locus s :=
by { ext x, exact (submodule.gi R R).gc s x.as_ideal }
/-- The vanishing ideal of a set `t` of points of the prime spectrum of a commutative ring `R` is
the intersection of all the prime ideals in the set `t`.
An element `f` of `R` can be thought of as a dependent function on the prime spectrum of `R`.
At a point `x` (a prime ideal) the function (i.e., element) `f` takes values in the quotient ring
`R` modulo the prime ideal `x`. In this manner, `vanishing_ideal t` is exactly the ideal of `R`
consisting of all "functions" that vanish on all of `t`.
-/
def vanishing_ideal (t : set (prime_spectrum R)) : ideal R :=
⨅ (x : prime_spectrum R) (h : x ∈ t), x.as_ideal
lemma coe_vanishing_ideal (t : set (prime_spectrum R)) :
(vanishing_ideal t : set R) = {f : R | ∀ x : prime_spectrum R, x ∈ t → f ∈ x.as_ideal} :=
begin
ext f,
rw [vanishing_ideal, set_like.mem_coe, submodule.mem_infi],
apply forall_congr, intro x,
rw [submodule.mem_infi],
end
lemma mem_vanishing_ideal (t : set (prime_spectrum R)) (f : R) :
f ∈ vanishing_ideal t ↔ ∀ x : prime_spectrum R, x ∈ t → f ∈ x.as_ideal :=
by rw [← set_like.mem_coe, coe_vanishing_ideal, set.mem_set_of_eq]
@[simp] lemma vanishing_ideal_singleton (x : prime_spectrum R) :
vanishing_ideal ({x} : set (prime_spectrum R)) = x.as_ideal :=
by simp [vanishing_ideal]
lemma subset_zero_locus_iff_le_vanishing_ideal (t : set (prime_spectrum R)) (I : ideal R) :
t ⊆ zero_locus I ↔ I ≤ vanishing_ideal t :=
⟨λ h f k, (mem_vanishing_ideal _ _).mpr (λ x j, (mem_zero_locus _ _).mpr (h j) k), λ h,
λ x j, (mem_zero_locus _ _).mpr (le_trans h (λ f h, ((mem_vanishing_ideal _ _).mp h) x j))⟩
section gc
variable (R)
/-- `zero_locus` and `vanishing_ideal` form a galois connection. -/
lemma gc : @galois_connection (ideal R) (set (prime_spectrum R))ᵒᵈ _ _
(λ I, zero_locus I) (λ t, vanishing_ideal t) :=
λ I t, subset_zero_locus_iff_le_vanishing_ideal t I
/-- `zero_locus` and `vanishing_ideal` form a galois connection. -/
lemma gc_set : @galois_connection (set R) (set (prime_spectrum R))ᵒᵈ _ _
(λ s, zero_locus s) (λ t, vanishing_ideal t) :=
have ideal_gc : galois_connection (ideal.span) coe := (submodule.gi R R).gc,
by simpa [zero_locus_span, function.comp] using ideal_gc.compose (gc R)
lemma subset_zero_locus_iff_subset_vanishing_ideal (t : set (prime_spectrum R)) (s : set R) :
t ⊆ zero_locus s ↔ s ⊆ vanishing_ideal t :=
(gc_set R) s t
end gc
lemma subset_vanishing_ideal_zero_locus (s : set R) :
s ⊆ vanishing_ideal (zero_locus s) :=
(gc_set R).le_u_l s
lemma le_vanishing_ideal_zero_locus (I : ideal R) :
I ≤ vanishing_ideal (zero_locus I) :=
(gc R).le_u_l I
@[simp] lemma vanishing_ideal_zero_locus_eq_radical (I : ideal R) :
vanishing_ideal (zero_locus (I : set R)) = I.radical := ideal.ext $ λ f,
begin
rw [mem_vanishing_ideal, ideal.radical_eq_Inf, submodule.mem_Inf],
exact ⟨(λ h x hx, h ⟨x, hx.2⟩ hx.1), (λ h x hx, h x.1 ⟨hx, x.2⟩)⟩
end
@[simp] lemma zero_locus_radical (I : ideal R) : zero_locus (I.radical : set R) = zero_locus I :=
vanishing_ideal_zero_locus_eq_radical I ▸ (gc R).l_u_l_eq_l I
lemma subset_zero_locus_vanishing_ideal (t : set (prime_spectrum R)) :
t ⊆ zero_locus (vanishing_ideal t) :=
(gc R).l_u_le t
lemma zero_locus_anti_mono {s t : set R} (h : s ⊆ t) : zero_locus t ⊆ zero_locus s :=
(gc_set R).monotone_l h
lemma zero_locus_anti_mono_ideal {s t : ideal R} (h : s ≤ t) :
zero_locus (t : set R) ⊆ zero_locus (s : set R) :=
(gc R).monotone_l h
lemma vanishing_ideal_anti_mono {s t : set (prime_spectrum R)} (h : s ⊆ t) :
vanishing_ideal t ≤ vanishing_ideal s :=
(gc R).monotone_u h
lemma zero_locus_subset_zero_locus_iff (I J : ideal R) :
zero_locus (I : set R) ⊆ zero_locus (J : set R) ↔ J ≤ I.radical :=
⟨λ h, ideal.radical_le_radical_iff.mp (vanishing_ideal_zero_locus_eq_radical I ▸
vanishing_ideal_zero_locus_eq_radical J ▸ vanishing_ideal_anti_mono h),
λ h, zero_locus_radical I ▸ zero_locus_anti_mono_ideal h⟩
lemma zero_locus_subset_zero_locus_singleton_iff (f g : R) :
zero_locus ({f} : set R) ⊆ zero_locus {g} ↔ g ∈ (ideal.span ({f} : set R)).radical :=
by rw [← zero_locus_span {f}, ← zero_locus_span {g}, zero_locus_subset_zero_locus_iff,
ideal.span_le, set.singleton_subset_iff, set_like.mem_coe]
lemma zero_locus_bot :
zero_locus ((⊥ : ideal R) : set R) = set.univ :=
(gc R).l_bot
@[simp] lemma zero_locus_singleton_zero :
zero_locus ({0} : set R) = set.univ :=
zero_locus_bot
@[simp] lemma zero_locus_empty :
zero_locus (∅ : set R) = set.univ :=
(gc_set R).l_bot
@[simp] lemma vanishing_ideal_univ :
vanishing_ideal (∅ : set (prime_spectrum R)) = ⊤ :=
by simpa using (gc R).u_top
lemma zero_locus_empty_of_one_mem {s : set R} (h : (1:R) ∈ s) :
zero_locus s = ∅ :=
begin
rw set.eq_empty_iff_forall_not_mem,
intros x hx,
rw mem_zero_locus at hx,
have x_prime : x.as_ideal.is_prime := by apply_instance,
have eq_top : x.as_ideal = ⊤, { rw ideal.eq_top_iff_one, exact hx h },
apply x_prime.ne_top eq_top,
end
@[simp] lemma zero_locus_singleton_one :
zero_locus ({1} : set R) = ∅ :=
zero_locus_empty_of_one_mem (set.mem_singleton (1 : R))
lemma zero_locus_empty_iff_eq_top {I : ideal R} :
zero_locus (I : set R) = ∅ ↔ I = ⊤ :=
begin
split,
{ contrapose!,
intro h,
apply set.ne_empty_iff_nonempty.mpr,
rcases ideal.exists_le_maximal I h with ⟨M, hM, hIM⟩,
exact ⟨⟨M, hM.is_prime⟩, hIM⟩ },
{ rintro rfl, apply zero_locus_empty_of_one_mem, trivial }
end
@[simp] lemma zero_locus_univ :
zero_locus (set.univ : set R) = ∅ :=
zero_locus_empty_of_one_mem (set.mem_univ 1)
lemma vanishing_ideal_eq_top_iff {s : set (prime_spectrum R)} : vanishing_ideal s = ⊤ ↔ s = ∅ :=
by rw [← top_le_iff, ← subset_zero_locus_iff_le_vanishing_ideal,
submodule.top_coe, zero_locus_univ, set.subset_empty_iff]
lemma zero_locus_sup (I J : ideal R) :
zero_locus ((I ⊔ J : ideal R) : set R) = zero_locus I ∩ zero_locus J :=
(gc R).l_sup
lemma zero_locus_union (s s' : set R) :
zero_locus (s ∪ s') = zero_locus s ∩ zero_locus s' :=
(gc_set R).l_sup
lemma vanishing_ideal_union (t t' : set (prime_spectrum R)) :
vanishing_ideal (t ∪ t') = vanishing_ideal t ⊓ vanishing_ideal t' :=
(gc R).u_inf
lemma zero_locus_supr {ι : Sort*} (I : ι → ideal R) :
zero_locus ((⨆ i, I i : ideal R) : set R) = (⋂ i, zero_locus (I i)) :=
(gc R).l_supr
lemma zero_locus_Union {ι : Sort*} (s : ι → set R) :
zero_locus (⋃ i, s i) = (⋂ i, zero_locus (s i)) :=
(gc_set R).l_supr
lemma zero_locus_bUnion (s : set (set R)) :
zero_locus (⋃ s' ∈ s, s' : set R) = ⋂ s' ∈ s, zero_locus s' :=
by simp only [zero_locus_Union]
lemma vanishing_ideal_Union {ι : Sort*} (t : ι → set (prime_spectrum R)) :
vanishing_ideal (⋃ i, t i) = (⨅ i, vanishing_ideal (t i)) :=
(gc R).u_infi
lemma zero_locus_inf (I J : ideal R) :
zero_locus ((I ⊓ J : ideal R) : set R) = zero_locus I ∪ zero_locus J :=
set.ext $ λ x, x.2.inf_le
lemma union_zero_locus (s s' : set R) :
zero_locus s ∪ zero_locus s' = zero_locus ((ideal.span s) ⊓ (ideal.span s') : ideal R) :=
by { rw zero_locus_inf, simp }
lemma zero_locus_mul (I J : ideal R) :
zero_locus ((I * J : ideal R) : set R) = zero_locus I ∪ zero_locus J :=
set.ext $ λ x, x.2.mul_le
lemma zero_locus_singleton_mul (f g : R) :
zero_locus ({f * g} : set R) = zero_locus {f} ∪ zero_locus {g} :=
set.ext $ λ x, by simpa using x.2.mul_mem_iff_mem_or_mem
@[simp] lemma zero_locus_pow (I : ideal R) {n : ℕ} (hn : 0 < n) :
zero_locus ((I ^ n : ideal R) : set R) = zero_locus I :=
zero_locus_radical (I ^ n) ▸ (I.radical_pow n hn).symm ▸ zero_locus_radical I
@[simp] lemma zero_locus_singleton_pow (f : R) (n : ℕ) (hn : 0 < n) :
zero_locus ({f ^ n} : set R) = zero_locus {f} :=
set.ext $ λ x, by simpa using x.2.pow_mem_iff_mem n hn
lemma sup_vanishing_ideal_le (t t' : set (prime_spectrum R)) :
vanishing_ideal t ⊔ vanishing_ideal t' ≤ vanishing_ideal (t ∩ t') :=
begin
intros r,
rw [submodule.mem_sup, mem_vanishing_ideal],
rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩,
rw mem_vanishing_ideal at hf hg,
apply submodule.add_mem; solve_by_elim
end
lemma mem_compl_zero_locus_iff_not_mem {f : R} {I : prime_spectrum R} :
I ∈ (zero_locus {f} : set (prime_spectrum R))ᶜ ↔ f ∉ I.as_ideal :=
by rw [set.mem_compl_iff, mem_zero_locus, set.singleton_subset_iff]; refl
/-- The Zariski topology on the prime spectrum of a commutative ring is defined via the closed sets
of the topology: they are exactly those sets that are the zero locus of a subset of the ring. -/
instance zariski_topology : topological_space (prime_spectrum R) :=
topological_space.of_closed (set.range prime_spectrum.zero_locus)
(⟨set.univ, by simp⟩)
begin
intros Zs h,
rw set.sInter_eq_Inter,
choose f hf using λ i : Zs, h i.prop,
simp only [← hf],
exact ⟨_, zero_locus_Union _⟩
end
(by { rintro _ ⟨s, rfl⟩ _ ⟨t, rfl⟩, exact ⟨_, (union_zero_locus s t).symm⟩ })
lemma is_open_iff (U : set (prime_spectrum R)) :
is_open U ↔ ∃ s, Uᶜ = zero_locus s :=
by simp only [@eq_comm _ Uᶜ]; refl
lemma is_closed_iff_zero_locus (Z : set (prime_spectrum R)) :
is_closed Z ↔ ∃ s, Z = zero_locus s :=
by rw [← is_open_compl_iff, is_open_iff, compl_compl]
lemma is_closed_iff_zero_locus_ideal (Z : set (prime_spectrum R)) :
is_closed Z ↔ ∃ (I : ideal R), Z = zero_locus I :=
(is_closed_iff_zero_locus _).trans
⟨λ ⟨s, hs⟩, ⟨_, (zero_locus_span s).substr hs⟩, λ ⟨I, hI⟩, ⟨I, hI⟩⟩
lemma is_closed_iff_zero_locus_radical_ideal (Z : set (prime_spectrum R)) :
is_closed Z ↔ ∃ (I : ideal R), I.is_radical ∧ Z = zero_locus I :=
(is_closed_iff_zero_locus_ideal _).trans
⟨λ ⟨I, hI⟩, ⟨_, I.radical_is_radical, (zero_locus_radical I).substr hI⟩, λ ⟨I, _, hI⟩, ⟨I, hI⟩⟩
lemma is_closed_zero_locus (s : set R) :
is_closed (zero_locus s) :=
by { rw [is_closed_iff_zero_locus], exact ⟨s, rfl⟩ }
lemma is_closed_singleton_iff_is_maximal (x : prime_spectrum R) :
is_closed ({x} : set (prime_spectrum R)) ↔ x.as_ideal.is_maximal :=
begin
refine (is_closed_iff_zero_locus _).trans ⟨λ h, _, λ h, _⟩,
{ obtain ⟨s, hs⟩ := h,
rw [eq_comm, set.eq_singleton_iff_unique_mem] at hs,
refine ⟨⟨x.2.1, λ I hI, not_not.1 (mt (ideal.exists_le_maximal I) $
not_exists.2 (λ J, not_and.2 $ λ hJ hIJ,_))⟩⟩,
exact ne_of_lt (lt_of_lt_of_le hI hIJ) (symm $ congr_arg prime_spectrum.as_ideal
(hs.2 ⟨J, hJ.is_prime⟩ (λ r hr, hIJ (le_of_lt hI $ hs.1 hr)))) },
{ refine ⟨x.as_ideal.1, _⟩,
rw [eq_comm, set.eq_singleton_iff_unique_mem],
refine ⟨λ _ h, h, λ y hy, prime_spectrum.ext _ _ (h.eq_of_le y.2.ne_top hy).symm⟩ }
end
lemma zero_locus_vanishing_ideal_eq_closure (t : set (prime_spectrum R)) :
zero_locus (vanishing_ideal t : set R) = closure t :=
begin
apply set.subset.antisymm,
{ rintro x hx t' ⟨ht', ht⟩,
obtain ⟨fs, rfl⟩ : ∃ s, t' = zero_locus s,
by rwa [is_closed_iff_zero_locus] at ht',
rw [subset_zero_locus_iff_subset_vanishing_ideal] at ht,
exact set.subset.trans ht hx },
{ rw (is_closed_zero_locus _).closure_subset_iff,
exact subset_zero_locus_vanishing_ideal t }
end
lemma vanishing_ideal_closure (t : set (prime_spectrum R)) :
vanishing_ideal (closure t) = vanishing_ideal t :=
zero_locus_vanishing_ideal_eq_closure t ▸ (gc R).u_l_u_eq_u t
lemma closure_singleton (x) : closure ({x} : set (prime_spectrum R)) = zero_locus x.as_ideal :=
by rw [← zero_locus_vanishing_ideal_eq_closure, vanishing_ideal_singleton]
lemma is_radical_vanishing_ideal (s : set (prime_spectrum R)) :
(vanishing_ideal s).is_radical :=
by { rw [← vanishing_ideal_closure, ← zero_locus_vanishing_ideal_eq_closure,
vanishing_ideal_zero_locus_eq_radical], apply ideal.radical_is_radical }
lemma vanishing_ideal_anti_mono_iff {s t : set (prime_spectrum R)}
(ht : is_closed t) : s ⊆ t ↔ vanishing_ideal t ≤ vanishing_ideal s :=
⟨vanishing_ideal_anti_mono, λ h,
begin
rw [← ht.closure_subset_iff, ← ht.closure_eq],
convert ← zero_locus_anti_mono_ideal h;
apply zero_locus_vanishing_ideal_eq_closure,
end⟩
lemma vanishing_ideal_strict_anti_mono_iff {s t : set (prime_spectrum R)}
(hs : is_closed s) (ht : is_closed t) :
s ⊂ t ↔ vanishing_ideal t < vanishing_ideal s :=
by rw [set.ssubset_def, vanishing_ideal_anti_mono_iff hs,
vanishing_ideal_anti_mono_iff ht, lt_iff_le_not_le]
/-- The antitone order embedding of closed subsets of `Spec R` into ideals of `R`. -/
def closeds_embedding (R : Type*) [comm_ring R] :
(topological_space.closeds $ prime_spectrum R)ᵒᵈ ↪o ideal R :=
order_embedding.of_map_le_iff (λ s, vanishing_ideal s.of_dual)
(λ s t, (vanishing_ideal_anti_mono_iff s.2).symm)
lemma t1_space_iff_is_field [is_domain R] :
t1_space (prime_spectrum R) ↔ is_field R :=
begin
refine ⟨_, λ h, _⟩,
{ introI h,
have hbot : ideal.is_prime (⊥ : ideal R) := ideal.bot_prime,
exact not_not.1 (mt (ring.ne_bot_of_is_maximal_of_not_is_field $
(is_closed_singleton_iff_is_maximal _).1 (t1_space.t1 ⟨⊥, hbot⟩)) (not_not.2 rfl)) },
{ refine ⟨λ x, (is_closed_singleton_iff_is_maximal x).2 _⟩,
by_cases hx : x.as_ideal = ⊥,
{ exact hx.symm ▸ @ideal.bot_is_maximal R (@field.to_division_ring _ h.to_field) },
{ exact absurd h (ring.not_is_field_iff_exists_prime.2 ⟨x.as_ideal, ⟨hx, x.2⟩⟩) } }
end
local notation `Z(` a `)` := zero_locus (a : set R)
lemma is_irreducible_zero_locus_iff_of_radical (I : ideal R) (hI : I.is_radical) :
is_irreducible (zero_locus (I : set R)) ↔ I.is_prime :=
begin
rw [ideal.is_prime_iff, is_irreducible],
apply and_congr,
{ rw [← set.ne_empty_iff_nonempty, ne.def, zero_locus_empty_iff_eq_top] },
{ transitivity ∀ (x y : ideal R), Z(I) ⊆ Z(x) ∪ Z(y) → Z(I) ⊆ Z(x) ∨ Z(I) ⊆ Z(y),
{ simp_rw [is_preirreducible_iff_closed_union_closed, is_closed_iff_zero_locus_ideal],
split,
{ rintros h x y, exact h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩ },
{ rintros h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩, exact h x y } },
{ simp_rw [← zero_locus_inf, subset_zero_locus_iff_le_vanishing_ideal,
vanishing_ideal_zero_locus_eq_radical, hI.radical],
split,
{ simp_rw [← set_like.mem_coe, ← set.singleton_subset_iff,
← ideal.span_le, ← ideal.span_singleton_mul_span_singleton],
refine λ h x y h', h _ _ _,
rw [← hI.radical_le_iff] at h' ⊢,
simpa only [ideal.radical_inf, ideal.radical_mul] using h' },
{ simp_rw [or_iff_not_imp_left, set_like.not_le_iff_exists],
rintros h s t h' ⟨x, hx, hx'⟩ y hy,
exact h (h' ⟨ideal.mul_mem_right _ _ hx, ideal.mul_mem_left _ _ hy⟩) hx' } } }
end
lemma is_irreducible_zero_locus_iff (I : ideal R) :
is_irreducible (zero_locus (I : set R)) ↔ I.radical.is_prime :=
zero_locus_radical I ▸ is_irreducible_zero_locus_iff_of_radical _ I.radical_is_radical
lemma is_irreducible_iff_vanishing_ideal_is_prime {s : set (prime_spectrum R)} :
is_irreducible s ↔ (vanishing_ideal s).is_prime :=
by rw [← is_irreducible_iff_closure, ← zero_locus_vanishing_ideal_eq_closure,
is_irreducible_zero_locus_iff_of_radical _ (is_radical_vanishing_ideal s)]
instance [is_domain R] : irreducible_space (prime_spectrum R) :=
begin
rw [irreducible_space_def, set.top_eq_univ, ← zero_locus_bot, is_irreducible_zero_locus_iff],
simpa using ideal.bot_prime
end
instance : quasi_sober (prime_spectrum R) :=
⟨λ S h₁ h₂, ⟨⟨_, is_irreducible_iff_vanishing_ideal_is_prime.1 h₁⟩,
by rw [is_generic_point, closure_singleton, zero_locus_vanishing_ideal_eq_closure, h₂.closure_eq]⟩⟩
section comap
variables {S' : Type*} [comm_ring S']
lemma preimage_comap_zero_locus_aux (f : R →+* S) (s : set R) :
(λ y, ⟨ideal.comap f y.as_ideal, infer_instance⟩ :
prime_spectrum S → prime_spectrum R) ⁻¹' (zero_locus s) = zero_locus (f '' s) :=
begin
ext x,
simp only [mem_zero_locus, set.image_subset_iff],
refl
end
/-- The function between prime spectra of commutative rings induced by a ring homomorphism.
This function is continuous. -/
def comap (f : R →+* S) : C(prime_spectrum S, prime_spectrum R) :=
{ to_fun := λ y, ⟨ideal.comap f y.as_ideal, infer_instance⟩,
continuous_to_fun :=
begin
simp only [continuous_iff_is_closed, is_closed_iff_zero_locus],
rintro _ ⟨s, rfl⟩,
exact ⟨_, preimage_comap_zero_locus_aux f s⟩
end }
variables (f : R →+* S)
@[simp] lemma comap_as_ideal (y : prime_spectrum S) :
(comap f y).as_ideal = ideal.comap f y.as_ideal :=
rfl
@[simp] lemma comap_id : comap (ring_hom.id R) = continuous_map.id _ := by { ext, refl }
@[simp] lemma comap_comp (f : R →+* S) (g : S →+* S') :
comap (g.comp f) = (comap f).comp (comap g) :=
rfl
lemma comap_comp_apply (f : R →+* S) (g : S →+* S') (x : prime_spectrum S') :
prime_spectrum.comap (g.comp f) x = (prime_spectrum.comap f) (prime_spectrum.comap g x) :=
rfl
@[simp] lemma preimage_comap_zero_locus (s : set R) :
(comap f) ⁻¹' (zero_locus s) = zero_locus (f '' s) :=
preimage_comap_zero_locus_aux f s
lemma comap_injective_of_surjective (f : R →+* S) (hf : function.surjective f) :
function.injective (comap f) :=
λ x y h, prime_spectrum.ext _ _ (ideal.comap_injective_of_surjective f hf
(congr_arg prime_spectrum.as_ideal h : (comap f x).as_ideal = (comap f y).as_ideal))
lemma comap_singleton_is_closed_of_surjective (f : R →+* S) (hf : function.surjective f)
(x : prime_spectrum S) (hx : is_closed ({x} : set (prime_spectrum S))) :
is_closed ({comap f x} : set (prime_spectrum R)) :=
begin
haveI : x.as_ideal.is_maximal := (is_closed_singleton_iff_is_maximal x).1 hx,
exact (is_closed_singleton_iff_is_maximal _).2 (ideal.comap_is_maximal_of_surjective f hf)
end
lemma comap_singleton_is_closed_of_is_integral (f : R →+* S) (hf : f.is_integral)
(x : prime_spectrum S) (hx : is_closed ({x} : set (prime_spectrum S))) :
is_closed ({comap f x} : set (prime_spectrum R)) :=
(is_closed_singleton_iff_is_maximal _).2 (ideal.is_maximal_comap_of_is_integral_of_is_maximal'
f hf x.as_ideal $ (is_closed_singleton_iff_is_maximal x).1 hx)
variable S
lemma localization_comap_inducing [algebra R S] (M : submonoid R)
[is_localization M S] : inducing (comap (algebra_map R S)) :=
begin
constructor,
rw topological_space_eq_iff,
intro U,
simp_rw ← is_closed_compl_iff,
generalize : Uᶜ = Z,
simp_rw [is_closed_induced_iff, is_closed_iff_zero_locus],
split,
{ rintro ⟨s, rfl⟩,
refine ⟨_,⟨(algebra_map R S) ⁻¹' (ideal.span s),rfl⟩,_⟩,
rw [preimage_comap_zero_locus, ← zero_locus_span, ← zero_locus_span s],
congr' 1,
exact congr_arg submodule.carrier (is_localization.map_comap M S (ideal.span s)) },
{ rintro ⟨_, ⟨t, rfl⟩, rfl⟩, simp }
end
lemma localization_comap_injective [algebra R S] (M : submonoid R)
[is_localization M S] : function.injective (comap (algebra_map R S)) :=
begin
intros p q h,
replace h := congr_arg (λ (x : prime_spectrum R), ideal.map (algebra_map R S) x.as_ideal) h,
dsimp only at h,
erw [is_localization.map_comap M S, is_localization.map_comap M S] at h,
ext1,
exact h
end
lemma localization_comap_embedding [algebra R S] (M : submonoid R)
[is_localization M S] : embedding (comap (algebra_map R S)) :=
⟨localization_comap_inducing S M, localization_comap_injective S M⟩
lemma localization_comap_range [algebra R S] (M : submonoid R)
[is_localization M S] :
set.range (comap (algebra_map R S)) = { p | disjoint (M : set R) p.as_ideal } :=
begin
ext x,
split,
{ simp_rw disjoint_iff_inf_le,
rintro ⟨p, rfl⟩ x ⟨hx₁, hx₂⟩,
exact (p.2.1 : ¬ _)
(p.as_ideal.eq_top_of_is_unit_mem hx₂ (is_localization.map_units S ⟨x, hx₁⟩)) },
{ intro h,
use ⟨x.as_ideal.map (algebra_map R S),
is_localization.is_prime_of_is_prime_disjoint M S _ x.2 h⟩,
ext1,
exact is_localization.comap_map_of_is_prime_disjoint M S _ x.2 h }
end
section spec_of_surjective
/-! The comap of a surjective ring homomorphism is a closed embedding between the prime spectra. -/
open function ring_hom
lemma comap_inducing_of_surjective (hf : surjective f) : inducing (comap f) :=
{ induced := begin
simp_rw [topological_space_eq_iff, ←is_closed_compl_iff, is_closed_induced_iff,
is_closed_iff_zero_locus],
refine λ s, ⟨λ ⟨F, hF⟩, ⟨zero_locus (f ⁻¹' F), ⟨f ⁻¹' F, rfl⟩,
by rw [preimage_comap_zero_locus, surjective.image_preimage hf, hF]⟩, _⟩,
rintros ⟨-, ⟨F, rfl⟩, hF⟩,
exact ⟨f '' F, hF.symm.trans (preimage_comap_zero_locus f F)⟩,
end }
lemma image_comap_zero_locus_eq_zero_locus_comap (hf : surjective f) (I : ideal S) :
comap f '' zero_locus I = zero_locus (I.comap f) :=
begin
simp only [set.ext_iff, set.mem_image, mem_zero_locus, set_like.coe_subset_coe],
refine λ p, ⟨_, λ h_I_p, _⟩,
{ rintro ⟨p, hp, rfl⟩ a ha,
exact hp ha },
{ have hp : ker f ≤ p.as_ideal := (ideal.comap_mono bot_le).trans h_I_p,
refine ⟨⟨p.as_ideal.map f, ideal.map_is_prime_of_surjective hf hp⟩, λ x hx, _, _⟩,
{ obtain ⟨x', rfl⟩ := hf x,
exact ideal.mem_map_of_mem f (h_I_p hx) },
{ ext x,
change f x ∈ p.as_ideal.map f ↔ _,
rw ideal.mem_map_iff_of_surjective f hf,
refine ⟨_, λ hx, ⟨x, hx, rfl⟩⟩,
rintros ⟨x', hx', heq⟩,
rw ← sub_sub_cancel x' x,
refine p.as_ideal.sub_mem hx' (hp _),
rwa [mem_ker, map_sub, sub_eq_zero] } },
end
lemma range_comap_of_surjective (hf : surjective f) :
set.range (comap f) = zero_locus (ker f) :=
begin
rw ← set.image_univ,
convert image_comap_zero_locus_eq_zero_locus_comap _ _ hf _,
rw zero_locus_bot,
end
lemma is_closed_range_comap_of_surjective (hf : surjective f) : is_closed (set.range (comap f)) :=
begin
rw range_comap_of_surjective _ f hf,
exact is_closed_zero_locus ↑(ker f),
end
lemma closed_embedding_comap_of_surjective (hf : surjective f) : closed_embedding (comap f) :=
{ induced := (comap_inducing_of_surjective S f hf).induced,
inj := comap_injective_of_surjective f hf,
closed_range := is_closed_range_comap_of_surjective S f hf }
end spec_of_surjective
end comap
section basic_open
/-- `basic_open r` is the open subset containing all prime ideals not containing `r`. -/
def basic_open (r : R) : topological_space.opens (prime_spectrum R) :=
{ val := { x | r ∉ x.as_ideal },
property := ⟨{r}, set.ext $ λ x, set.singleton_subset_iff.trans $ not_not.symm⟩ }
@[simp] lemma mem_basic_open (f : R) (x : prime_spectrum R) :
x ∈ basic_open f ↔ f ∉ x.as_ideal := iff.rfl
lemma is_open_basic_open {a : R} : is_open ((basic_open a) : set (prime_spectrum R)) :=
(basic_open a).property
@[simp] lemma basic_open_eq_zero_locus_compl (r : R) :
(basic_open r : set (prime_spectrum R)) = (zero_locus {r})ᶜ :=
set.ext $ λ x, by simpa only [set.mem_compl_iff, mem_zero_locus, set.singleton_subset_iff]
@[simp] lemma basic_open_one : basic_open (1 : R) = ⊤ :=
topological_space.opens.ext $ by simp
@[simp] lemma basic_open_zero : basic_open (0 : R) = ⊥ :=
topological_space.opens.ext $ by simp
lemma basic_open_le_basic_open_iff (f g : R) :
basic_open f ≤ basic_open g ↔ f ∈ (ideal.span ({g} : set R)).radical :=
by rw [topological_space.opens.le_def, basic_open_eq_zero_locus_compl,
basic_open_eq_zero_locus_compl, set.le_eq_subset, set.compl_subset_compl,
zero_locus_subset_zero_locus_singleton_iff]
lemma basic_open_mul (f g : R) : basic_open (f * g) = basic_open f ⊓ basic_open g :=
topological_space.opens.ext $ by {simp [zero_locus_singleton_mul]}
lemma basic_open_mul_le_left (f g : R) : basic_open (f * g) ≤ basic_open f :=
by { rw basic_open_mul f g, exact inf_le_left }
lemma basic_open_mul_le_right (f g : R) : basic_open (f * g) ≤ basic_open g :=
by { rw basic_open_mul f g, exact inf_le_right }
@[simp] lemma basic_open_pow (f : R) (n : ℕ) (hn : 0 < n) : basic_open (f ^ n) = basic_open f :=
topological_space.opens.ext $ by simpa using zero_locus_singleton_pow f n hn
lemma is_topological_basis_basic_opens : topological_space.is_topological_basis
(set.range (λ (r : R), (basic_open r : set (prime_spectrum R)))) :=
begin
apply topological_space.is_topological_basis_of_open_of_nhds,
{ rintros _ ⟨r, rfl⟩,
exact is_open_basic_open },
{ rintros p U hp ⟨s, hs⟩,
rw [← compl_compl U, set.mem_compl_iff, ← hs, mem_zero_locus, set.not_subset] at hp,
obtain ⟨f, hfs, hfp⟩ := hp,
refine ⟨basic_open f, ⟨f, rfl⟩, hfp, _⟩,
rw [← set.compl_subset_compl, ← hs, basic_open_eq_zero_locus_compl, compl_compl],
exact zero_locus_anti_mono (set.singleton_subset_iff.mpr hfs) }
end
lemma is_basis_basic_opens :
topological_space.opens.is_basis (set.range (@basic_open R _)) :=
begin
unfold topological_space.opens.is_basis,
convert is_topological_basis_basic_opens,
rw ← set.range_comp,
end
lemma is_compact_basic_open (f : R) : is_compact (basic_open f : set (prime_spectrum R)) :=
is_compact_of_finite_subfamily_closed $ λ ι Z hZc hZ,
begin
let I : ι → ideal R := λ i, vanishing_ideal (Z i),
have hI : ∀ i, Z i = zero_locus (I i) := λ i,
by simpa only [zero_locus_vanishing_ideal_eq_closure] using (hZc i).closure_eq.symm,
rw [basic_open_eq_zero_locus_compl f, set.inter_comm, ← set.diff_eq,
set.diff_eq_empty, funext hI, ← zero_locus_supr] at hZ,
obtain ⟨n, hn⟩ : f ∈ (⨆ (i : ι), I i).radical,
{ rw ← vanishing_ideal_zero_locus_eq_radical,
apply vanishing_ideal_anti_mono hZ,
exact (subset_vanishing_ideal_zero_locus {f} (set.mem_singleton f)) },
rcases submodule.exists_finset_of_mem_supr I hn with ⟨s, hs⟩,
use s,
-- Using simp_rw here, because `hI` and `zero_locus_supr` need to be applied underneath binders
simp_rw [basic_open_eq_zero_locus_compl f, set.inter_comm (zero_locus {f})ᶜ, ← set.diff_eq,
set.diff_eq_empty, hI, ← zero_locus_supr],
rw ← zero_locus_radical, -- this one can't be in `simp_rw` because it would loop
apply zero_locus_anti_mono,
rw set.singleton_subset_iff,
exact ⟨n, hs⟩
end
@[simp]
lemma basic_open_eq_bot_iff (f : R) :
basic_open f = ⊥ ↔ is_nilpotent f :=
begin
rw [← subtype.coe_injective.eq_iff, basic_open_eq_zero_locus_compl],
simp only [set.eq_univ_iff_forall, set.singleton_subset_iff,
topological_space.opens.coe_bot, nilpotent_iff_mem_prime, set.compl_empty_iff, mem_zero_locus,
set_like.mem_coe],
exact ⟨λ h I hI, h ⟨I, hI⟩, λ h ⟨I, hI⟩, h I hI⟩
end
lemma localization_away_comap_range (S : Type v) [comm_ring S] [algebra R S] (r : R)
[is_localization.away r S] : set.range (comap (algebra_map R S)) = basic_open r :=
begin
rw localization_comap_range S (submonoid.powers r),
ext,
simp only [mem_zero_locus, basic_open_eq_zero_locus_compl, set_like.mem_coe, set.mem_set_of_eq,
set.singleton_subset_iff, set.mem_compl_iff, disjoint_iff_inf_le],
split,
{ intros h₁ h₂,
exact h₁ ⟨submonoid.mem_powers r, h₂⟩ },
{ rintros h₁ _ ⟨⟨n, rfl⟩, h₃⟩,
exact h₁ (x.2.mem_of_pow_mem _ h₃) },
end
lemma localization_away_open_embedding (S : Type v) [comm_ring S] [algebra R S] (r : R)
[is_localization.away r S] : open_embedding (comap (algebra_map R S)) :=
{ to_embedding := localization_comap_embedding S (submonoid.powers r),
open_range := by { rw localization_away_comap_range S r, exact is_open_basic_open } }
end basic_open
/-- The prime spectrum of a commutative ring is a compact topological space. -/
instance : compact_space (prime_spectrum R) :=
{ is_compact_univ := by { convert is_compact_basic_open (1 : R), rw basic_open_one, refl } }
section order
/-!
## The specialization order
We endow `prime_spectrum R` with a partial order, where `x ≤ y` if and only if `y ∈ closure {x}`.
-/
instance : partial_order (prime_spectrum R) := partial_order.lift as_ideal ext
@[simp] lemma as_ideal_le_as_ideal (x y : prime_spectrum R) : x.as_ideal ≤ y.as_ideal ↔ x ≤ y :=
iff.rfl
@[simp] lemma as_ideal_lt_as_ideal (x y : prime_spectrum R) : x.as_ideal < y.as_ideal ↔ x < y :=
iff.rfl
lemma le_iff_mem_closure (x y : prime_spectrum R) :
x ≤ y ↔ y ∈ closure ({x} : set (prime_spectrum R)) :=
by rw [← as_ideal_le_as_ideal, ← zero_locus_vanishing_ideal_eq_closure,
mem_zero_locus, vanishing_ideal_singleton, set_like.coe_subset_coe]
lemma le_iff_specializes (x y : prime_spectrum R) :
x ≤ y ↔ x ⤳ y :=
(le_iff_mem_closure x y).trans specializes_iff_mem_closure.symm
/-- `nhds` as an order embedding. -/
@[simps { fully_applied := tt }]
def nhds_order_embedding : prime_spectrum R ↪o filter (prime_spectrum R) :=
order_embedding.of_map_le_iff nhds $ λ a b, (le_iff_specializes a b).symm
instance : t0_space (prime_spectrum R) := ⟨nhds_order_embedding.injective⟩
end order
/-- If `x` specializes to `y`, then there is a natural map from the localization of `y` to the
localization of `x`. -/
def localization_map_of_specializes {x y : prime_spectrum R} (h : x ⤳ y) :
localization.at_prime y.as_ideal →+* localization.at_prime x.as_ideal :=
@is_localization.lift _ _ _ _ _ _ _ _
localization.is_localization (algebra_map R (localization.at_prime x.as_ideal))
begin
rintro ⟨a, ha⟩,
rw [← prime_spectrum.le_iff_specializes, ← as_ideal_le_as_ideal, ← set_like.coe_subset_coe,
← set.compl_subset_compl] at h,
exact (is_localization.map_units _ ⟨a, (show a ∈ x.as_ideal.prime_compl, from h ha)⟩ : _)
end
end prime_spectrum
namespace local_ring
variables [local_ring R]
/-- The closed point in the prime spectrum of a local ring. -/
def closed_point : prime_spectrum R := ⟨maximal_ideal R, (maximal_ideal.is_maximal R).is_prime⟩
variable {R}
lemma is_local_ring_hom_iff_comap_closed_point {S : Type v} [comm_ring S] [local_ring S]
(f : R →+* S) : is_local_ring_hom f ↔ prime_spectrum.comap f (closed_point S) = closed_point R :=
by { rw [(local_hom_tfae f).out 0 4, prime_spectrum.ext_iff], refl }
@[simp] lemma comap_closed_point {S : Type v} [comm_ring S] [local_ring S] (f : R →+* S)
[is_local_ring_hom f] : prime_spectrum.comap f (closed_point S) = closed_point R :=
(is_local_ring_hom_iff_comap_closed_point f).mp infer_instance
end local_ring
|
0e39647f62467f3861ad1e23bb24f661edb627a7
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/probability/hitting_time.lean
|
62171ead4962e875ae6a339e0c2b1ab5d53497f6
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,075
|
lean
|
/-
Copyright (c) 2022 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Rémy Degenne
-/
import probability.stopping
/-!
# Hitting time
Given a stochastic process, the hitting time provides the first time the process ``hits'' some
subset of the state space. The hitting time is a stopping time in the case that the time index is
discrete and the process is adapted (this is true in a far more general setting however we have
only proved it for the discrete case so far).
## Main definition
* `measure_theory.hitting`: the hitting time of a stochastic process
## Main results
* `measure_theory.hitting_is_stopping_time`: a discrete hitting time of an adapted process is a
stopping time
## Implementation notes
In the definition of the hitting time, we bound the hitting time by an upper and lower bound.
This is to ensure that our result is meaningful in the case we are taking the infimum of an
empty set or the infimum of a set which is unbounded from below. With this, we can talk about
hitting times indexed by the natural numbers or the reals. By taking the bounds to be
`⊤` and `⊥`, we obtain the standard definition in the case that the index is `ℕ∞` or `ℝ≥0∞`.
-/
open filter order topological_space
open_locale classical measure_theory nnreal ennreal topological_space big_operators
namespace measure_theory
variables {Ω β ι : Type*} {m : measurable_space Ω}
/-- Hitting time: given a stochastic process `u` and a set `s`, `hitting u s n m` is the first time
`u` is in `s` after time `n` and before time `m` (if `u` does not hit `s` after time `n` and
before `m` then the hitting time is simply `m`).
The hitting time is a stopping time if the process is adapted and discrete. -/
noncomputable def hitting [preorder ι] [has_Inf ι] (u : ι → Ω → β) (s : set β) (n m : ι) : Ω → ι :=
λ x, if ∃ j ∈ set.Icc n m, u j x ∈ s then Inf (set.Icc n m ∩ {i : ι | u i x ∈ s}) else m
section inequalities
variables [conditionally_complete_linear_order ι] {u : ι → Ω → β} {s : set β} {n i : ι} {ω : Ω}
/-- This lemma is strictly weaker than `hitting_of_le`. -/
lemma hitting_of_lt {m : ι} (h : m < n) : hitting u s n m ω = m :=
begin
simp_rw [hitting],
have h_not : ¬ ∃ (j : ι) (H : j ∈ set.Icc n m), u j ω ∈ s,
{ push_neg,
intro j,
rw set.Icc_eq_empty_of_lt h,
simp only [set.mem_empty_eq, is_empty.forall_iff], },
simp only [h_not, if_false],
end
lemma hitting_le {m : ι} (ω : Ω) : hitting u s n m ω ≤ m :=
begin
cases le_or_lt n m with h_le h_lt,
{ simp only [hitting],
split_ifs,
{ obtain ⟨j, hj₁, hj₂⟩ := h,
exact (cInf_le (bdd_below.inter_of_left bdd_below_Icc) (set.mem_inter hj₁ hj₂)).trans hj₁.2 },
{ exact le_rfl }, },
{ rw hitting_of_lt h_lt, },
end
lemma not_mem_of_lt_hitting {m k : ι}
(hk₁ : k < hitting u s n m ω) (hk₂ : n ≤ k) :
u k ω ∉ s :=
begin
classical,
intro h,
have hexists : ∃ j ∈ set.Icc n m, u j ω ∈ s,
refine ⟨k, ⟨hk₂, le_trans hk₁.le $ hitting_le _⟩, h⟩,
refine not_le.2 hk₁ _,
simp_rw [hitting, if_pos hexists],
exact cInf_le bdd_below_Icc.inter_of_left ⟨⟨hk₂, le_trans hk₁.le $ hitting_le _⟩, h⟩,
end
lemma hitting_eq_end_iff {m : ι} :
hitting u s n m ω = m ↔ (∃ j ∈ set.Icc n m, u j ω ∈ s) →
Inf (set.Icc n m ∩ {i : ι | u i ω ∈ s}) = m :=
by rw [hitting, ite_eq_right_iff]
lemma hitting_of_le {m : ι} (hmn : m ≤ n) :
hitting u s n m ω = m :=
begin
obtain (rfl | h) := le_iff_eq_or_lt.1 hmn,
{ simp only [hitting, set.Icc_self, ite_eq_right_iff, set.mem_Icc, exists_prop,
forall_exists_index, and_imp],
intros i hi₁ hi₂ hi,
rw [set.inter_eq_left_iff_subset.2, cInf_singleton],
exact set.singleton_subset_iff.2 (le_antisymm hi₂ hi₁ ▸ hi) },
{ exact hitting_of_lt h }
end
lemma le_hitting {m : ι} (hnm : n ≤ m) (ω : Ω) : n ≤ hitting u s n m ω :=
begin
simp only [hitting],
split_ifs,
{ refine le_cInf _ (λ b hb, _),
{ obtain ⟨k, hk_Icc, hk_s⟩ := h,
exact ⟨k, hk_Icc, hk_s⟩, },
{ rw set.mem_inter_iff at hb,
exact hb.1.1, }, },
{ exact hnm },
end
lemma le_hitting_of_exists {m : ι} (h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s) :
n ≤ hitting u s n m ω :=
begin
refine le_hitting _ ω,
by_contra,
rw set.Icc_eq_empty_of_lt (not_le.mp h) at h_exists,
simpa using h_exists,
end
lemma hitting_mem_Icc {m : ι} (hnm : n ≤ m) (ω : Ω) : hitting u s n m ω ∈ set.Icc n m :=
⟨le_hitting hnm ω, hitting_le ω⟩
lemma hitting_mem_set [is_well_order ι (<)] {m : ι} (h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s) :
u (hitting u s n m ω) ω ∈ s :=
begin
simp_rw [hitting, if_pos h_exists],
have h_nonempty : (set.Icc n m ∩ {i : ι | u i ω ∈ s}).nonempty,
{ obtain ⟨k, hk₁, hk₂⟩ := h_exists,
exact ⟨k, set.mem_inter hk₁ hk₂⟩, },
have h_mem := Inf_mem h_nonempty,
rw [set.mem_inter_iff] at h_mem,
exact h_mem.2,
end
lemma hitting_mem_set_of_hitting_lt [is_well_order ι (<)] {m : ι}
(hl : hitting u s n m ω < m) :
u (hitting u s n m ω) ω ∈ s :=
begin
by_cases h : ∃ j ∈ set.Icc n m, u j ω ∈ s,
{ exact hitting_mem_set h },
{ simp_rw [hitting, if_neg h] at hl,
exact false.elim (hl.ne rfl) }
end
lemma hitting_le_of_mem {m : ι} (hin : n ≤ i) (him : i ≤ m) (his : u i ω ∈ s) :
hitting u s n m ω ≤ i :=
begin
have h_exists : ∃ k ∈ set.Icc n m, u k ω ∈ s := ⟨i, ⟨hin, him⟩, his⟩,
simp_rw [hitting, if_pos h_exists],
exact cInf_le (bdd_below.inter_of_left bdd_below_Icc) (set.mem_inter ⟨hin, him⟩ his),
end
lemma hitting_le_iff_of_exists [is_well_order ι (<)] {m : ι}
(h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s) :
hitting u s n m ω ≤ i ↔ ∃ j ∈ set.Icc n i, u j ω ∈ s :=
begin
split; intro h',
{ exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h_exists, h'⟩, hitting_mem_set h_exists⟩, },
{ have h'' : ∃ k ∈ set.Icc n (min m i), u k ω ∈ s,
{ obtain ⟨k₁, hk₁_mem, hk₁_s⟩ := h_exists,
obtain ⟨k₂, hk₂_mem, hk₂_s⟩ := h',
refine ⟨min k₁ k₂, ⟨le_min hk₁_mem.1 hk₂_mem.1, min_le_min hk₁_mem.2 hk₂_mem.2⟩, _⟩,
exact min_rec' (λ j, u j ω ∈ s) hk₁_s hk₂_s, },
obtain ⟨k, hk₁, hk₂⟩ := h'',
refine le_trans _ (hk₁.2.trans (min_le_right _ _)),
exact hitting_le_of_mem hk₁.1 (hk₁.2.trans (min_le_left _ _)) hk₂, },
end
lemma hitting_le_iff_of_lt [is_well_order ι (<)] {m : ι} (i : ι) (hi : i < m) :
hitting u s n m ω ≤ i ↔ ∃ j ∈ set.Icc n i, u j ω ∈ s :=
begin
by_cases h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s,
{ rw hitting_le_iff_of_exists h_exists, },
{ simp_rw [hitting, if_neg h_exists],
push_neg at h_exists,
simp only [not_le.mpr hi, set.mem_Icc, false_iff, not_exists, and_imp],
exact λ k hkn hki, h_exists k ⟨hkn, hki.trans hi.le⟩, },
end
lemma hitting_lt_iff [is_well_order ι (<)] {m : ι} (i : ι) (hi : i ≤ m) :
hitting u s n m ω < i ↔ ∃ j ∈ set.Ico n i, u j ω ∈ s :=
begin
split; intro h',
{ have h : ∃ j ∈ set.Icc n m, u j ω ∈ s,
{ by_contra,
simp_rw [hitting, if_neg h, ← not_le] at h',
exact h' hi, },
exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h, h'⟩, hitting_mem_set h⟩, },
{ obtain ⟨k, hk₁, hk₂⟩ := h',
refine lt_of_le_of_lt _ hk₁.2,
exact hitting_le_of_mem hk₁.1 (hk₁.2.le.trans hi) hk₂, },
end
lemma hitting_eq_hitting_of_exists
{m₁ m₂ : ι} (h : m₁ ≤ m₂) (h' : ∃ j ∈ set.Icc n m₁, u j ω ∈ s) :
hitting u s n m₁ ω = hitting u s n m₂ ω :=
begin
simp only [hitting, if_pos h'],
obtain ⟨j, hj₁, hj₂⟩ := h',
rw if_pos,
{ refine le_antisymm _ (cInf_le_cInf bdd_below_Icc.inter_of_left ⟨j, hj₁, hj₂⟩
(set.inter_subset_inter_left _ (set.Icc_subset_Icc_right h))),
refine le_cInf ⟨j, set.Icc_subset_Icc_right h hj₁, hj₂⟩ (λ i hi, _),
by_cases hi' : i ≤ m₁,
{ exact cInf_le bdd_below_Icc.inter_of_left ⟨⟨hi.1.1, hi'⟩, hi.2⟩ },
{ exact ((cInf_le bdd_below_Icc.inter_of_left ⟨hj₁, hj₂⟩).trans (hj₁.2.trans le_rfl)).trans
(le_of_lt (not_le.1 hi')) } },
exact ⟨j, ⟨hj₁.1, hj₁.2.trans h⟩, hj₂⟩,
end
lemma hitting_mono {m₁ m₂ : ι} (hm : m₁ ≤ m₂) :
hitting u s n m₁ ω ≤ hitting u s n m₂ ω :=
begin
by_cases h : ∃ j ∈ set.Icc n m₁, u j ω ∈ s,
{ exact (hitting_eq_hitting_of_exists hm h).le },
{ simp_rw [hitting, if_neg h],
split_ifs with h',
{ obtain ⟨j, hj₁, hj₂⟩ := h',
refine le_cInf ⟨j, hj₁, hj₂⟩ _,
by_contra hneg, push_neg at hneg,
obtain ⟨i, hi₁, hi₂⟩ := hneg,
exact h ⟨i, ⟨hi₁.1.1, hi₂.le⟩, hi₁.2⟩ },
{ exact hm } }
end
end inequalities
/-- A discrete hitting time is a stopping time. -/
lemma hitting_is_stopping_time
[conditionally_complete_linear_order ι] [is_well_order ι (<)] [countable ι]
[topological_space β] [pseudo_metrizable_space β] [measurable_space β] [borel_space β]
{f : filtration ι m} {u : ι → Ω → β} {s : set β} {n n' : ι}
(hu : adapted f u) (hs : measurable_set s) :
is_stopping_time f (hitting u s n n') :=
begin
intro i,
cases le_or_lt n' i with hi hi,
{ have h_le : ∀ ω, hitting u s n n' ω ≤ i := λ x, (hitting_le x).trans hi,
simp [h_le], },
{ have h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ j ∈ set.Icc n i, u j ⁻¹' s,
{ ext x,
rw [set.mem_set_of_eq, hitting_le_iff_of_lt _ hi],
simp only [set.mem_Icc, exists_prop, set.mem_Union, set.mem_preimage], },
rw h_set_eq_Union,
exact measurable_set.Union (λ j, measurable_set.Union $
λ hj, f.mono hj.2 _ ((hu j).measurable hs)) }
end
lemma stopped_value_hitting_mem [conditionally_complete_linear_order ι] [is_well_order ι (<)]
{u : ι → Ω → β} {s : set β} {n m : ι} {ω : Ω} (h : ∃ j ∈ set.Icc n m, u j ω ∈ s) :
stopped_value u (hitting u s n m) ω ∈ s :=
begin
simp only [stopped_value, hitting, if_pos h],
obtain ⟨j, hj₁, hj₂⟩ := h,
have : Inf (set.Icc n m ∩ {i | u i ω ∈ s}) ∈ set.Icc n m ∩ {i | u i ω ∈ s} :=
Inf_mem (set.nonempty_of_mem ⟨hj₁, hj₂⟩),
exact this.2,
end
/-- The hitting time of a discrete process with the starting time indexed by a stopping time
is a stopping time. -/
lemma is_stopping_time_hitting_is_stopping_time
[conditionally_complete_linear_order ι] [is_well_order ι (<)] [countable ι]
[topological_space ι] [order_topology ι] [first_countable_topology ι]
[topological_space β] [pseudo_metrizable_space β] [measurable_space β] [borel_space β]
{f : filtration ι m} {u : ι → Ω → β} {τ : Ω → ι} (hτ : is_stopping_time f τ)
{N : ι} (hτbdd : ∀ x, τ x ≤ N) {s : set β} (hs : measurable_set s) (hf : adapted f u) :
is_stopping_time f (λ x, hitting u s (τ x) N x) :=
begin
intro n,
have h₁ : {x | hitting u s (τ x) N x ≤ n} =
(⋃ i ≤ n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
(⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}),
{ ext x,
simp [← exists_or_distrib, ← or_and_distrib_right, le_or_lt] },
have h₂ : (⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) = ∅,
{ ext x,
simp only [gt_iff_lt, set.mem_Union, set.mem_inter_eq, set.mem_set_of_eq,
exists_prop, set.mem_empty_eq, iff_false, not_exists, not_and, not_le],
rintro m hm rfl,
exact lt_of_lt_of_le hm (le_hitting (hτbdd _) _) },
rw [h₁, h₂, set.union_empty],
exact measurable_set.Union (λ i, measurable_set.Union
(λ hi, (f.mono hi _ (hτ.measurable_set_eq i)).inter (hitting_is_stopping_time hf hs n))),
end
section complete_lattice
variables [complete_lattice ι] {u : ι → Ω → β} {s : set β} {f : filtration ι m}
lemma hitting_eq_Inf (ω : Ω) : hitting u s ⊥ ⊤ ω = Inf {i : ι | u i ω ∈ s} :=
begin
simp only [hitting, set.mem_Icc, bot_le, le_top, and_self, exists_true_left, set.Icc_bot,
set.Iic_top, set.univ_inter, ite_eq_left_iff, not_exists],
intro h_nmem_s,
symmetry,
rw Inf_eq_top,
exact λ i hi_mem_s, absurd hi_mem_s (h_nmem_s i),
end
end complete_lattice
section conditionally_complete_linear_order_bot
variables [conditionally_complete_linear_order_bot ι] [is_well_order ι (<)]
variables {u : ι → Ω → β} {s : set β} {f : filtration ℕ m}
lemma hitting_bot_le_iff {i n : ι} {ω : Ω} (hx : ∃ j, j ≤ n ∧ u j ω ∈ s) :
hitting u s ⊥ n ω ≤ i ↔ ∃ j ≤ i, u j ω ∈ s :=
begin
cases lt_or_le i n with hi hi,
{ rw hitting_le_iff_of_lt _ hi,
simp, },
{ simp only [(hitting_le ω).trans hi, true_iff],
obtain ⟨j, hj₁, hj₂⟩ := hx,
exact ⟨j, hj₁.trans hi, hj₂⟩, },
end
end conditionally_complete_linear_order_bot
end measure_theory
|
56db59e3dae710c93f9307c9573c199800b7b2bc
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/run/blast21.lean
|
1def7095f83c6df8b409d1e0f70e004316969b66
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 465
|
lean
|
namespace ex
set_option blast.strategy "backward"
constant typ : Type₁
constant subtype : typ → typ → Prop
constant subtype_refl : ∀ T, subtype T T
constant subtype_trans : ∀ S T U, subtype S T → subtype T U → subtype S U
attribute subtype_refl subtype_trans [intro]
lemma L1 : ∀ T1 T2 T3 T4 T5 T6, subtype T1 T2 → subtype T2 T3 → subtype T3 T4 → subtype T4 T5 → subtype T5 T6 → subtype T1 T6 :=
by blast
reveal L1
print L1
end ex
|
592c1c2b63743ee5fae5fe6fd846dc38a01a3a62
|
b70447c014d9e71cf619ebc9f539b262c19c2e0b
|
/hott/types/fin.hlean
|
4174f94132e0dd245fd9358ee81b1296db97f439
|
[
"Apache-2.0"
] |
permissive
|
ia0/lean2
|
c20d8da69657f94b1d161f9590a4c635f8dc87f3
|
d86284da630acb78fa5dc3b0b106153c50ffccd0
|
refs/heads/master
| 1,611,399,322,751
| 1,495,751,007,000
| 1,495,751,007,000
| 93,104,167
| 0
| 0
| null | 1,496,355,488,000
| 1,496,355,487,000
| null |
UTF-8
|
Lean
| false
| false
| 22,732
|
hlean
|
/-
Copyright (c) 2015 Haitao Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Haitao Zhang, Leonardo de Moura, Jakob von Raumer, Floris van Doorn
Finite ordinal types.
-/
import types.list algebra.bundled function logic types.prod types.sum types.nat.div
open eq function list equiv is_trunc algebra sigma sum nat
structure fin (n : nat) := (val : nat) (is_lt : val < n)
definition less_than [reducible] := fin
namespace fin
attribute fin.val [coercion]
section def_equal
variable {n : nat}
protected definition sigma_char : fin n ≃ Σ (val : nat), val < n :=
begin
fapply equiv.MK,
intro i, cases i with i ilt, apply dpair i ilt,
intro s, cases s with i ilt, apply fin.mk i ilt,
intro s, cases s with i ilt, reflexivity,
intro i, cases i with i ilt, reflexivity
end
definition is_set_fin [instance] : is_set (fin n) :=
begin
assert H : Πa, is_set (a < n), exact _, -- I don't know why this is necessary
apply is_trunc_equiv_closed_rev, apply fin.sigma_char,
end
definition eq_of_veq : Π {i j : fin n}, (val i) = j → i = j :=
begin
intro i j, cases i with i ilt, cases j with j jlt, esimp,
intro p, induction p, apply ap (mk i), apply !is_prop.elim
end
definition fin_eq := @eq_of_veq
definition eq_of_veq_refl (i : fin n) : eq_of_veq (refl (val i)) = idp :=
!is_prop.elim
definition veq_of_eq : Π {i j : fin n}, i = j → (val i) = j :=
by intro i j P; apply ap val; exact P
definition eq_iff_veq {i j : fin n} : (val i) = j ↔ i = j :=
pair eq_of_veq veq_of_eq
definition val_inj := @eq_of_veq n
end def_equal
section decidable
open decidable
protected definition has_decidable_eq [instance] (n : nat) :
Π (i j : fin n), decidable (i = j) :=
begin
intros i j, apply decidable_of_decidable_of_iff,
apply nat.has_decidable_eq i j, apply eq_iff_veq,
end
end decidable
/-lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk :=
take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe)
lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl
definition upto [reducible] (n : nat) : list (fin n) :=
dmap (λ i, i < n) fin.mk (list.upto n)
lemma nodup_upto (n : nat) : nodup (upto n) :=
dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n)
lemma mem_upto (n : nat) : Π (i : fin n), i ∈ upto n :=
take i, fin.destruct i
(take ival Piltn,
have ival ∈ list.upto n, from mem_upto_of_lt Piltn,
mem_dmap Piltn this)
lemma upto_zero : upto 0 = [] :=
by rewrite [↑upto, list.upto_nil, dmap_nil]
lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n :=
map_dmap_of_inv_of_pos (val_mk n) (@lt_of_mem_upto n)
lemma length_upto (n : nat) : length (upto n) = n :=
calc
length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹
... = n : list.length_upto n
definition is_fintype [instance] (n : nat) : fintype (fin n) :=
fintype.mk (upto n) (nodup_upto n) (mem_upto n)
section pigeonhole
open fintype
lemma card_fin (n : nat) : card (fin n) = n := length_upto n
theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬Σ f : fin n → fin m, injective f :=
assume Pex, absurd Pmltn (not_lt_of_ge
(calc
n = card (fin n) : card_fin
... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex
... = m : card_fin))
end pigeonhole-/
protected definition zero [constructor] (n : nat) : fin (succ n) :=
mk 0 !zero_lt_succ
definition fin_has_zero [instance] (n : nat) : has_zero (fin (succ n)) :=
has_zero.mk (fin.zero n)
definition val_zero (n : nat) : val (0 : fin (succ n)) = 0 := rfl
definition mk_mod [reducible] (n i : nat) : fin (succ n) :=
mk (i % (succ n)) (mod_lt _ !zero_lt_succ)
theorem mk_mod_zero_eq (n : nat) : mk_mod n 0 = 0 :=
apd011 fin.mk rfl !is_prop.elimo
variable {n : nat}
theorem val_lt : Π i : fin n, val i < n
| (mk v h) := h
lemma max_lt (i j : fin n) : max i j < n :=
max_lt (is_lt i) (is_lt j)
definition lift [constructor] : fin n → Π m : nat, fin (n + m)
| (mk v h) m := mk v (lt_add_of_lt_right h m)
definition lift_succ [constructor] (i : fin n) : fin (nat.succ n) :=
have r : fin (n+1), from lift i 1,
r
definition maxi [reducible] : fin (succ n) :=
mk n !lt_succ_self
definition val_lift : Π (i : fin n) (m : nat), val i = val (lift i m)
| (mk v h) m := rfl
lemma mk_succ_ne_zero {i : nat} : Π {P}, mk (succ i) P ≠ (0 : fin (succ n)) :=
assume P Pe, absurd (veq_of_eq Pe) !succ_ne_zero
lemma mk_mod_eq {i : fin (succ n)} : i = mk_mod n i :=
eq_of_veq begin rewrite [↑mk_mod, mod_eq_of_lt !is_lt] end
lemma mk_mod_of_lt {i : nat} (Plt : i < succ n) : mk_mod n i = mk i Plt :=
begin esimp [mk_mod], congruence, exact mod_eq_of_lt Plt end
section lift_lower
lemma lift_zero : lift_succ (0 : fin (succ n)) = (0 : fin (succ (succ n))) :=
by apply eq_of_veq; reflexivity
lemma ne_max_of_lt_max {i : fin (succ n)} : i < n → i ≠ maxi :=
begin
intro hlt he,
have he' : maxi = i, by apply he⁻¹,
induction he', apply nat.lt_irrefl n hlt,
end
lemma lt_max_of_ne_max {i : fin (succ n)} : i ≠ maxi → i < n :=
assume hne : i ≠ maxi,
have vne : val i ≠ n, from
assume he,
have val (@maxi n) = n, from rfl,
have val i = val (@maxi n), from he ⬝ this⁻¹,
absurd (eq_of_veq this) hne,
have val i < nat.succ n, from val_lt i,
lt_of_le_of_ne (le_of_lt_succ this) vne
lemma lift_succ_ne_max {i : fin n} : lift_succ i ≠ maxi :=
begin
cases i with v hlt, esimp [lift_succ, lift, max], intro he,
injection he, substvars,
exact absurd hlt (lt.irrefl v)
end
lemma lift_succ_inj [instance] : is_embedding (@lift_succ n) :=
begin
apply is_embedding_of_is_injective, intro i j,
induction i with iv ilt, induction j with jv jlt, intro Pmkeq,
apply eq_of_veq, apply veq_of_eq Pmkeq
end
definition lt_of_inj_of_max (f : fin (succ n) → fin (succ n)) :
is_embedding f → (f maxi = maxi) → Π i : fin (succ n), i < n → f i < n :=
assume Pinj Peq, take i, assume Pilt,
have P1 : f i = f maxi → i = maxi, from assume Peq, is_injective_of_is_embedding Peq,
have f i ≠ maxi, from
begin rewrite -Peq, intro P2, apply absurd (P1 P2) (ne_max_of_lt_max Pilt) end,
lt_max_of_ne_max this
definition lift_fun : (fin n → fin n) → (fin (succ n) → fin (succ n)) :=
λ f i, dite (i = maxi) (λ Pe, maxi) (λ Pne, lift_succ (f (mk i (lt_max_of_ne_max Pne))))
definition lower_inj (f : fin (succ n) → fin (succ n)) (inj : is_embedding f) :
f maxi = maxi → fin n → fin n :=
assume Peq, take i, mk (f (lift_succ i)) (lt_of_inj_of_max f inj Peq (lift_succ i) (lt_max_of_ne_max lift_succ_ne_max))
lemma lift_fun_max {f : fin n → fin n} : lift_fun f maxi = maxi :=
begin rewrite [↑lift_fun, dif_pos rfl] end
lemma lift_fun_of_ne_max {f : fin n → fin n} {i} (Pne : i ≠ maxi) :
lift_fun f i = lift_succ (f (mk i (lt_max_of_ne_max Pne))) :=
begin rewrite [↑lift_fun, dif_neg Pne] end
lemma lift_fun_eq {f : fin n → fin n} {i : fin n} :
lift_fun f (lift_succ i) = lift_succ (f i) :=
begin
rewrite [lift_fun_of_ne_max lift_succ_ne_max], do 2 congruence,
apply eq_of_veq, esimp, rewrite -val_lift,
end
lemma lift_fun_of_inj {f : fin n → fin n} : is_embedding f → is_embedding (lift_fun f) :=
begin
intro Pemb, apply is_embedding_of_is_injective, intro i j,
have Pdi : decidable (i = maxi), by apply _,
have Pdj : decidable (j = maxi), by apply _,
cases Pdi with Pimax Pinmax,
cases Pdj with Pjmax Pjnmax,
substvars, intros, reflexivity,
substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pjnmax],
intro Plmax, apply absurd Plmax⁻¹ lift_succ_ne_max,
cases Pdj with Pjmax Pjnmax,
substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pinmax],
intro Plmax, apply absurd Plmax lift_succ_ne_max,
rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax],
intro Peq, apply eq_of_veq,
cases i with i ilt, cases j with j jlt, esimp at *,
fapply veq_of_eq, apply is_injective_of_is_embedding,
apply @is_injective_of_is_embedding _ _ lift_succ _ _ _ Peq,
end
lemma lift_fun_inj : is_embedding (@lift_fun n) :=
begin
apply is_embedding_of_is_injective, intro f f' Peq, apply eq_of_homotopy, intro i,
have H : lift_fun f (lift_succ i) = lift_fun f' (lift_succ i), by apply congr_fun Peq _,
revert H, rewrite [*lift_fun_eq], apply is_injective_of_is_embedding,
end
lemma lower_inj_apply {f Pinj Pmax} (i : fin n) :
val (lower_inj f Pinj Pmax i) = val (f (lift_succ i)) :=
by rewrite [↑lower_inj]
end lift_lower
section madd
definition madd (i j : fin (succ n)) : fin (succ n) :=
mk ((i + j) % (succ n)) (mod_lt _ !zero_lt_succ)
definition minv : Π i : fin (succ n), fin (succ n)
| (mk iv ilt) := mk ((succ n - iv) % succ n) (mod_lt _ !zero_lt_succ)
lemma val_madd : Π i j : fin (succ n), val (madd i j) = (i + j) % (succ n)
| (mk iv ilt) (mk jv jlt) := by esimp
lemma madd_inj : Π {i : fin (succ n)}, is_embedding (madd i)
| (mk iv ilt) := is_embedding_of_is_injective
(take j₁ j₂, fin.destruct j₁ (fin.destruct j₂ (λ jv₁ jlt₁ jv₂ jlt₂, begin
rewrite [↑madd],
intro Peq', note Peq := ap val Peq', congruence,
rewrite [-(mod_eq_of_lt jlt₁), -(mod_eq_of_lt jlt₂)],
apply mod_eq_mod_of_add_mod_eq_add_mod_left Peq
end)))
lemma madd_mk_mod {i j : nat} : madd (mk_mod n i) (mk_mod n j) = mk_mod n (i+j) :=
eq_of_veq begin esimp [madd, mk_mod], rewrite [ mod_add_mod, add_mod_mod ] end
lemma val_mod : Π i : fin (succ n), (val i) % (succ n) = val i
| (mk iv ilt) := by esimp; rewrite [(mod_eq_of_lt ilt)]
lemma madd_comm (i j : fin (succ n)) : madd i j = madd j i :=
by apply eq_of_veq; rewrite [*val_madd, add.comm (val i)]
lemma zero_madd (i : fin (succ n)) : madd 0 i = i :=
have H : madd (fin.zero n) i = i,
by apply eq_of_veq; rewrite [val_madd, ↑fin.zero, nat.zero_add, mod_eq_of_lt (is_lt i)],
H
lemma madd_zero (i : fin (succ n)) : madd i (fin.zero n) = i :=
!madd_comm ▸ zero_madd i
lemma madd_assoc (i j k : fin (succ n)) : madd (madd i j) k = madd i (madd j k) :=
by apply eq_of_veq; rewrite [*val_madd, mod_add_mod, add_mod_mod, add.assoc (val i)]
lemma madd_left_inv : Π i : fin (succ n), madd (minv i) i = fin.zero n
| (mk iv ilt) := eq_of_veq (by
rewrite [val_madd, ↑minv, mod_add_mod, nat.sub_add_cancel (le_of_lt ilt), mod_self])
definition madd_is_ab_group [instance] : add_ab_group (fin (succ n)) :=
ab_group.mk _ madd madd_assoc (fin.zero n) zero_madd madd_zero minv madd_left_inv madd_comm
definition gfin (n : ℕ) [H : is_succ n] : AddAbGroup.{0} :=
by induction H with n; exact AddAbGroup.mk (fin (succ n)) _
end madd
definition pred [constructor] : fin n → fin n
| (mk v h) := mk (nat.pred v) (pre_lt_of_lt h)
lemma val_pred : Π (i : fin n), val (pred i) = nat.pred (val i)
| (mk v h) := rfl
lemma pred_zero : pred (fin.zero n) = fin.zero n :=
begin
induction n, reflexivity, apply eq_of_veq, reflexivity,
end
definition mk_pred (i : nat) (h : succ i < succ n) : fin n :=
mk i (lt_of_succ_lt_succ h)
definition succ : fin n → fin (succ n)
| (mk v h) := mk (nat.succ v) (succ_lt_succ h)
lemma val_succ : Π (i : fin n), val (succ i) = nat.succ (val i)
| (mk v h) := rfl
lemma succ_max : fin.succ maxi = (@maxi (nat.succ n)) := rfl
lemma lift_succ.comm : lift_succ ∘ (@succ n) = succ ∘ lift_succ :=
eq_of_homotopy take i,
eq_of_veq (begin rewrite [↑lift_succ, -val_lift, *val_succ, -val_lift] end)
definition elim0 {C : fin 0 → Type} : Π i : fin 0, C i
| (mk v h) := absurd h !not_lt_zero
definition zero_succ_cases {C : fin (nat.succ n) → Type} :
C (fin.zero n) → (Π j : fin n, C (succ j)) → (Π k : fin (nat.succ n), C k) :=
begin
intros CO CS k,
induction k with [vk, pk],
induction (nat.decidable_lt 0 vk) with [HT, HF],
{ show C (mk vk pk), from
let vj := nat.pred vk in
have vk = nat.succ vj, from
inverse (succ_pred_of_pos HT),
have vj < n, from
lt_of_succ_lt_succ (eq.subst `vk = nat.succ vj` pk),
have succ (mk vj `vj < n`) = mk vk pk, by apply val_inj; apply (succ_pred_of_pos HT),
eq.rec_on this (CS (mk vj `vj < n`)) },
{ show C (mk vk pk), from
have vk = 0, from
eq_zero_of_le_zero (le_of_not_gt HF),
have fin.zero n = mk vk pk, from
val_inj (inverse this),
eq.rec_on this CO }
end
definition succ_maxi_cases {C : fin (nat.succ n) → Type} :
(Π j : fin n, C (lift_succ j)) → C maxi → (Π k : fin (nat.succ n), C k) :=
begin
intros CL CM k,
induction k with [vk, pk],
induction (nat.decidable_lt vk n) with [HT, HF],
{ show C (mk vk pk), from
have HL : lift_succ (mk vk HT) = mk vk pk, from
val_inj rfl,
eq.rec_on HL (CL (mk vk HT)) },
{ show C (mk vk pk), from
have HMv : vk = n, from
le.antisymm (le_of_lt_succ pk) (le_of_not_gt HF),
have HM : maxi = mk vk pk, from
val_inj (inverse HMv),
eq.rec_on HM CM }
end
open decidable
-- TODO there has to be a less painful way to do this
definition elim_succ_maxi_cases_lift_succ {C : fin (nat.succ n) → Type}
{Cls : Π j : fin n, C (lift_succ j)} {Cm : C maxi} (i : fin n) :
succ_maxi_cases Cls Cm (lift_succ i) = Cls i :=
begin
esimp[succ_maxi_cases], cases i with i ilt, esimp,
apply decidable.rec,
{ intro ilt', esimp[val_inj], apply concat,
apply ap (λ x, eq.rec_on x _), esimp[eq_of_veq, rfl], reflexivity,
have H : ilt = ilt', by apply is_prop.elim, cases H,
have H' : is_prop.elim (lt_add_of_lt_right ilt 1) (lt_add_of_lt_right ilt 1) = idp,
by apply is_prop.elim,
krewrite H' },
{ intro a, exact absurd ilt a },
end
definition elim_succ_maxi_cases_maxi {C : fin (nat.succ n) → Type}
{Cls : Π j : fin n, C (lift_succ j)} {Cm : C maxi} :
succ_maxi_cases Cls Cm maxi = Cm :=
begin
esimp[succ_maxi_cases, maxi],
apply decidable.rec,
{ intro a, apply absurd a !nat.lt_irrefl },
{ intro a, esimp[val_inj], apply concat,
have H : (le.antisymm (le_of_lt_succ (lt_succ_self n)) (le_of_not_gt a))⁻¹ = idp,
by apply is_prop.elim,
apply ap _ H, krewrite eq_of_veq_refl },
end
definition foldr {A B : Type} (m : A → B → B) (b : B) : Π {n : nat}, (fin n → A) → B :=
nat.rec (λ f, b) (λ n IH f, m (f (fin.zero n)) (IH (λ i : fin n, f (succ i))))
definition foldl {A B : Type} (m : B → A → B) (b : B) : Π {n : nat}, (fin n → A) → B :=
nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi))
theorem choice {C : fin n → Type} :
(Π i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) :=
begin
revert C,
induction n with [n, IH],
{ intros C H,
apply nonempty.intro,
exact elim0 },
{ intros C H,
fapply nonempty.elim (H (fin.zero n)),
intro CO,
fapply nonempty.elim (IH (λ i, C (succ i)) (λ i, H (succ i))),
intro CS,
apply nonempty.intro,
exact zero_succ_cases CO CS }
end
/-section
open list
local postfix `+1`:100 := nat.succ
lemma dmap_map_lift {n : nat} : Π l : list nat, (Π i, i ∈ l → i < n) → dmap (λ i, i < n +1) mk l = map lift_succ (dmap (λ i, i < n) mk l)
| [] := assume Plt, rfl
| (i::l) := assume Plt, begin
rewrite [@dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (lt_succ_of_lt (Plt i !mem_cons)), @dmap_cons_of_pos _ _ (λ i, i < n) _ _ _ (Plt i !mem_cons), map_cons],
congruence,
apply dmap_map_lift,
intro j Pjinl, apply Plt, apply mem_cons_of_mem, assumption end
lemma upto_succ (n : nat) : upto (n +1) = maxi :: map lift_succ (upto n) :=
begin
rewrite [↑fin.upto, list.upto_succ, @dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (nat.self_lt_succ n)],
congruence,
apply dmap_map_lift, apply @list.lt_of_mem_upto
end
definition upto_step : Π {n : nat}, fin.upto (n +1) = (map succ (upto n))++[0]
| 0 := rfl
| (i +1) := begin rewrite [upto_succ i, map_cons, append_cons, succ_max, upto_succ, -lift_zero],
congruence, rewrite [map_map, -lift_succ.comm, -map_map, -(map_singleton _ 0), -map_append, -upto_step] end
end-/
open sum equiv decidable
definition fin_zero_equiv_empty : fin 0 ≃ empty :=
begin
fapply equiv.MK, rotate 1, do 2 (intro x; contradiction),
rotate 1, do 2 (intro x; apply elim0 x)
end
definition is_contr_fin_one [instance] : is_contr (fin 1) :=
begin
fapply is_contr.mk, exact 0,
intro x, induction x with v vlt,
apply eq_of_veq, rewrite val_zero,
apply inverse, apply eq_zero_of_le_zero, apply le_of_succ_le_succ, exact vlt,
end
definition fin_sum_equiv (n m : nat) : (fin n + fin m) ≃ fin (n+m) :=
begin
fapply equiv.MK,
{ intro s, induction s with l r,
induction l with v vlt, apply mk v, apply lt_add_of_lt_right, exact vlt,
induction r with v vlt, apply mk (v + n), rewrite {n + m}add.comm,
apply add_lt_add_of_lt_of_le vlt, apply nat.le_refl },
{ intro f, induction f with v vlt,
exact if h : v < n
then sum.inl (mk v h)
else sum.inr (mk (v-n) (nat.sub_lt_of_lt_add vlt (le_of_not_gt h))) },
{ intro f, cases f with v vlt, esimp, apply @by_cases (v < n),
intro vltn, rewrite [dif_pos vltn], apply eq_of_veq, reflexivity,
intro nvltn, rewrite [dif_neg nvltn], apply eq_of_veq, esimp,
apply nat.sub_add_cancel, apply le_of_not_gt, apply nvltn },
{ intro s, cases s with f g,
cases f with v vlt, rewrite [dif_pos vlt],
cases g with v vlt, esimp, have ¬ v + n < n, from
suppose v + n < n,
have v < n - n, from nat.lt_sub_of_add_lt this !le.refl,
have v < 0, by rewrite [nat.sub_self at this]; exact this,
absurd this !not_lt_zero,
apply concat, apply dif_neg this, apply ap inr, apply eq_of_veq, esimp,
apply nat.add_sub_cancel },
end
definition fin_succ_equiv (n : nat) : fin (n + 1) ≃ fin n + unit :=
begin
fapply equiv.MK,
{ apply succ_maxi_cases, esimp, apply inl, apply inr unit.star },
{ intro d, cases d, apply lift_succ a, apply maxi },
{ intro d, cases d,
cases a with a alt, esimp, apply elim_succ_maxi_cases_lift_succ,
cases a, apply elim_succ_maxi_cases_maxi },
{ intro a, apply succ_maxi_cases, esimp,
intro j, krewrite elim_succ_maxi_cases_lift_succ,
krewrite elim_succ_maxi_cases_maxi },
end
open prod
definition fin_prod_equiv (n m : nat) : (fin n × fin m) ≃ fin (n*m) :=
begin
induction n,
{ krewrite nat.zero_mul,
calc fin 0 × fin m ≃ empty × fin m : fin_zero_equiv_empty
... ≃ fin m × empty : prod_comm_equiv
... ≃ empty : prod_empty_equiv
... ≃ fin 0 : fin_zero_equiv_empty },
{ have H : (a + 1) * m = a * m + m, by rewrite [nat.right_distrib, one_mul],
calc fin (a + 1) × fin m
≃ (fin a + unit) × fin m : prod.prod_equiv_prod_right !fin_succ_equiv
... ≃ (fin a × fin m) + (unit × fin m) : sum_prod_right_distrib
... ≃ (fin a × fin m) + (fin m × unit) : prod_comm_equiv
... ≃ fin (a * m) + (fin m × unit) : v_0
... ≃ fin (a * m) + fin m : prod_unit_equiv
... ≃ fin (a * m + m) : fin_sum_equiv
... ≃ fin ((a + 1) * m) : equiv_of_eq (ap fin H⁻¹) },
end
definition fin_two_equiv_bool : fin 2 ≃ bool :=
let H := equiv_unit_of_is_contr (fin 1) in
calc
fin 2 ≃ fin (1 + 1) : equiv.refl
... ≃ fin 1 + fin 1 : fin_sum_equiv
... ≃ unit + unit : H
... ≃ bool : bool_equiv_unit_sum_unit
definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (nat.succ n) :=
let H := equiv_unit_of_is_contr (fin 1) in
calc
fin n + unit ≃ fin n + fin 1 : H
... ≃ fin (nat.succ n) : fin_sum_equiv
definition fin_sum_equiv_cancel {n : nat} {A B : Type} (H : (fin n) + A ≃ (fin n) + B) :
A ≃ B :=
begin
induction n with n IH,
{ calc A ≃ A + empty : sum_empty_equiv
... ≃ empty + A : sum_comm_equiv
... ≃ fin 0 + A : fin_zero_equiv_empty
... ≃ fin 0 + B : H
... ≃ empty + B : fin_zero_equiv_empty
... ≃ B + empty : sum_comm_equiv
... ≃ B : sum_empty_equiv },
{ apply IH, apply unit_sum_equiv_cancel,
calc unit + (fin n + A) ≃ (unit + fin n) + A : sum_assoc_equiv
... ≃ (fin n + unit) + A : sum_comm_equiv
... ≃ fin (nat.succ n) + A : fin_sum_unit_equiv
... ≃ fin (nat.succ n) + B : H
... ≃ (fin n + unit) + B : fin_sum_unit_equiv
... ≃ (unit + fin n) + B : sum_comm_equiv
... ≃ unit + (fin n + B) : sum_assoc_equiv },
end
definition eq_of_fin_equiv {m n : nat} (H :fin m ≃ fin n) : m = n :=
begin
revert n H, induction m with m IH IH,
{ intro n H, cases n, reflexivity, exfalso,
apply to_fun fin_zero_equiv_empty, apply to_inv H, apply fin.zero },
{ intro n H, cases n with n, exfalso,
apply to_fun fin_zero_equiv_empty, apply to_fun H, apply fin.zero,
have unit + fin m ≃ unit + fin n, from
calc unit + fin m ≃ fin m + unit : sum_comm_equiv
... ≃ fin (nat.succ m) : fin_succ_equiv
... ≃ fin (nat.succ n) : H
... ≃ fin n + unit : fin_succ_equiv
... ≃ unit + fin n : sum_comm_equiv,
have fin m ≃ fin n, from unit_sum_equiv_cancel this,
apply ap nat.succ, apply IH _ this },
end
definition cyclic_succ {n : ℕ} (x : fin n) : fin n :=
begin
cases n with n,
{ exfalso, apply not_lt_zero _ (is_lt x)},
{ exact
if H : val x = n
then fin.mk 0 !zero_lt_succ
else fin.mk (nat.succ (val x))
(succ_lt_succ (lt_of_le_of_ne (le_of_lt_succ (is_lt x)) H))}
end
/-
We want to say that fin (succ n) always has a 0 and 1. However, we want a bit more, because
sometimes we want a zero of (fin a) where a is either
- equal to a successor, but not definitionally a successor (e.g. (0 : fin (3 + n)))
- definitionally equal to a successor, but not in a way that type class inference can infer.
(e.g. (0 : fin 4). Note that 4 is bit0 (bit0 one), but (bit0 x) (defined as x + x),
is not always a successor)
To solve this we use an auxillary class `is_succ` which can solve whether a number is a
successor.
-/
/- this is a version of `madd` which might compute better -/
protected definition add {n : ℕ} (x y : fin n) : fin n :=
iterate cyclic_succ (val y) x
definition has_zero_fin [instance] (n : ℕ) [H : is_succ n] : has_zero (fin n) :=
by induction H with n; exact has_zero.mk (fin.zero n)
definition has_one_fin [instance] (n : ℕ) [H : is_succ n] : has_one (fin n) :=
by induction H with n; exact has_one.mk (cyclic_succ (fin.zero n))
definition has_add_fin [instance] (n : ℕ) : has_add (fin n) :=
has_add.mk fin.add
end fin
|
6641fe5061fe0c274bcdbfbe465d6dcb30c41952
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/analysis/special_functions/exp.lean
|
c55a8ce2522d441cda602213f914fc075d06896f
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 10,469
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne
-/
import analysis.complex.basic
import data.complex.exponential
/-!
# Complex and real exponential
In this file we prove continuity of `complex.exp` and `real.exp`. We also prove a few facts about
limits of `real.exp` at infinity.
## Tags
exp
-/
noncomputable theory
open finset filter metric asymptotics set function
open_locale classical topological_space
namespace complex
variables {z y x : ℝ}
lemma exp_bound_sq (x z : ℂ) (hz : ∥z∥ ≤ 1) :
∥exp (x + z) - exp x - z • exp x∥ ≤ ∥exp x∥ * ∥z∥ ^ 2 :=
calc ∥exp (x + z) - exp x - z * exp x∥
= ∥exp x * (exp z - 1 - z)∥ : by { congr, rw [exp_add], ring }
... = ∥exp x∥ * ∥exp z - 1 - z∥ : normed_field.norm_mul _ _
... ≤ ∥exp x∥ * ∥z∥^2 : mul_le_mul_of_nonneg_left (abs_exp_sub_one_sub_id_le hz) (norm_nonneg _)
lemma locally_lipschitz_exp {r : ℝ} (hr_nonneg : 0 ≤ r) (hr_le : r ≤ 1) (x y : ℂ)
(hyx : ∥y - x∥ < r) :
∥exp y - exp x∥ ≤ (1 + r) * ∥exp x∥ * ∥y - x∥ :=
begin
have hy_eq : y = x + (y - x), by abel,
have hyx_sq_le : ∥y - x∥ ^ 2 ≤ r * ∥y - x∥,
{ rw pow_two,
exact mul_le_mul hyx.le le_rfl (norm_nonneg _) hr_nonneg, },
have h_sq : ∀ z, ∥z∥ ≤ 1 → ∥exp (x + z) - exp x∥ ≤ ∥z∥ * ∥exp x∥ + ∥exp x∥ * ∥z∥ ^ 2,
{ intros z hz,
have : ∥exp (x + z) - exp x - z • exp x∥ ≤ ∥exp x∥ * ∥z∥ ^ 2, from exp_bound_sq x z hz,
rw [← sub_le_iff_le_add', ← norm_smul z],
exact (norm_sub_norm_le _ _).trans this, },
calc ∥exp y - exp x∥ = ∥exp (x + (y - x)) - exp x∥ : by nth_rewrite 0 hy_eq
... ≤ ∥y - x∥ * ∥exp x∥ + ∥exp x∥ * ∥y - x∥ ^ 2 : h_sq (y - x) (hyx.le.trans hr_le)
... ≤ ∥y - x∥ * ∥exp x∥ + ∥exp x∥ * (r * ∥y - x∥) :
add_le_add_left (mul_le_mul le_rfl hyx_sq_le (sq_nonneg _) (norm_nonneg _)) _
... = (1 + r) * ∥exp x∥ * ∥y - x∥ : by ring,
end
@[continuity] lemma continuous_exp : continuous exp :=
continuous_iff_continuous_at.mpr $
λ x, continuous_at_of_locally_lipschitz zero_lt_one (2 * ∥exp x∥)
(locally_lipschitz_exp zero_le_one le_rfl x)
lemma continuous_on_exp {s : set ℂ} : continuous_on exp s :=
continuous_exp.continuous_on
end complex
section complex_continuous_exp_comp
variable {α : Type*}
open complex
lemma filter.tendsto.cexp {l : filter α} {f : α → ℂ} {z : ℂ} (hf : tendsto f l (𝓝 z)) :
tendsto (λ x, exp (f x)) l (𝓝 (exp z)) :=
(continuous_exp.tendsto _).comp hf
variables [topological_space α] {f : α → ℂ} {s : set α} {x : α}
lemma continuous_within_at.cexp (h : continuous_within_at f s x) :
continuous_within_at (λ y, exp (f y)) s x :=
h.cexp
lemma continuous_at.cexp (h : continuous_at f x) : continuous_at (λ y, exp (f y)) x :=
h.cexp
lemma continuous_on.cexp (h : continuous_on f s) : continuous_on (λ y, exp (f y)) s :=
λ x hx, (h x hx).cexp
lemma continuous.cexp (h : continuous f) : continuous (λ y, exp (f y)) :=
continuous_iff_continuous_at.2 $ λ x, h.continuous_at.cexp
end complex_continuous_exp_comp
namespace real
@[continuity] lemma continuous_exp : continuous exp :=
complex.continuous_re.comp complex.continuous_of_real.cexp
lemma continuous_on_exp {s : set ℝ} : continuous_on exp s :=
continuous_exp.continuous_on
end real
section real_continuous_exp_comp
variable {α : Type*}
open real
lemma filter.tendsto.exp {l : filter α} {f : α → ℝ} {z : ℝ} (hf : tendsto f l (𝓝 z)) :
tendsto (λ x, exp (f x)) l (𝓝 (exp z)) :=
(continuous_exp.tendsto _).comp hf
variables [topological_space α] {f : α → ℝ} {s : set α} {x : α}
lemma continuous_within_at.exp (h : continuous_within_at f s x) :
continuous_within_at (λ y, exp (f y)) s x :=
h.exp
lemma continuous_at.exp (h : continuous_at f x) : continuous_at (λ y, exp (f y)) x :=
h.exp
lemma continuous_on.exp (h : continuous_on f s) : continuous_on (λ y, exp (f y)) s :=
λ x hx, (h x hx).exp
lemma continuous.exp (h : continuous f) : continuous (λ y, exp (f y)) :=
continuous_iff_continuous_at.2 $ λ x, h.continuous_at.exp
end real_continuous_exp_comp
namespace real
variables {x y z : ℝ}
/-- The real exponential function tends to `+∞` at `+∞`. -/
lemma tendsto_exp_at_top : tendsto exp at_top at_top :=
begin
have A : tendsto (λx:ℝ, x + 1) at_top at_top :=
tendsto_at_top_add_const_right at_top 1 tendsto_id,
have B : ∀ᶠ x in at_top, x + 1 ≤ exp x :=
eventually_at_top.2 ⟨0, λx hx, add_one_le_exp_of_nonneg hx⟩,
exact tendsto_at_top_mono' at_top B A
end
/-- The real exponential function tends to `0` at `-∞` or, equivalently, `exp(-x)` tends to `0`
at `+∞` -/
lemma tendsto_exp_neg_at_top_nhds_0 : tendsto (λx, exp (-x)) at_top (𝓝 0) :=
(tendsto_inv_at_top_zero.comp tendsto_exp_at_top).congr (λx, (exp_neg x).symm)
/-- The real exponential function tends to `1` at `0`. -/
lemma tendsto_exp_nhds_0_nhds_1 : tendsto exp (𝓝 0) (𝓝 1) :=
by { convert continuous_exp.tendsto 0, simp }
lemma tendsto_exp_at_bot : tendsto exp at_bot (𝓝 0) :=
(tendsto_exp_neg_at_top_nhds_0.comp tendsto_neg_at_bot_at_top).congr $
λ x, congr_arg exp $ neg_neg x
lemma tendsto_exp_at_bot_nhds_within : tendsto exp at_bot (𝓝[Ioi 0] 0) :=
tendsto_inf.2 ⟨tendsto_exp_at_bot, tendsto_principal.2 $ eventually_of_forall exp_pos⟩
/-- The function `exp(x)/x^n` tends to `+∞` at `+∞`, for any natural number `n` -/
lemma tendsto_exp_div_pow_at_top (n : ℕ) : tendsto (λx, exp x / x^n) at_top at_top :=
begin
refine (at_top_basis_Ioi.tendsto_iff (at_top_basis' 1)).2 (λ C hC₁, _),
have hC₀ : 0 < C, from zero_lt_one.trans_le hC₁,
have : 0 < (exp 1 * C)⁻¹ := inv_pos.2 (mul_pos (exp_pos _) hC₀),
obtain ⟨N, hN⟩ : ∃ N, ∀ k ≥ N, (↑k ^ n : ℝ) / exp 1 ^ k < (exp 1 * C)⁻¹ :=
eventually_at_top.1 ((tendsto_pow_const_div_const_pow_of_one_lt n
(one_lt_exp_iff.2 zero_lt_one)).eventually (gt_mem_nhds this)),
simp only [← exp_nat_mul, mul_one, div_lt_iff, exp_pos, ← div_eq_inv_mul] at hN,
refine ⟨N, trivial, λ x hx, _⟩, rw set.mem_Ioi at hx,
have hx₀ : 0 < x, from N.cast_nonneg.trans_lt hx,
rw [set.mem_Ici, le_div_iff (pow_pos hx₀ _), ← le_div_iff' hC₀],
calc x ^ n ≤ ⌈x⌉₊ ^ n : pow_le_pow_of_le_left hx₀.le (nat.le_ceil _) _
... ≤ exp ⌈x⌉₊ / (exp 1 * C) : (hN _ (nat.lt_ceil.2 hx).le).le
... ≤ exp (x + 1) / (exp 1 * C) : div_le_div_of_le (mul_pos (exp_pos _) hC₀).le
(exp_le_exp.2 $ (nat.ceil_lt_add_one hx₀.le).le)
... = exp x / C : by rw [add_comm, exp_add, mul_div_mul_left _ _ (exp_pos _).ne']
end
/-- The function `x^n * exp(-x)` tends to `0` at `+∞`, for any natural number `n`. -/
lemma tendsto_pow_mul_exp_neg_at_top_nhds_0 (n : ℕ) : tendsto (λx, x^n * exp (-x)) at_top (𝓝 0) :=
(tendsto_inv_at_top_zero.comp (tendsto_exp_div_pow_at_top n)).congr $ λx,
by rw [comp_app, inv_eq_one_div, div_div_eq_mul_div, one_mul, div_eq_mul_inv, exp_neg]
/-- The function `(b * exp x + c) / (x ^ n)` tends to `+∞` at `+∞`, for any positive natural number
`n` and any real numbers `b` and `c` such that `b` is positive. -/
lemma tendsto_mul_exp_add_div_pow_at_top (b c : ℝ) (n : ℕ) (hb : 0 < b) (hn : 1 ≤ n) :
tendsto (λ x, (b * (exp x) + c) / (x^n)) at_top at_top :=
begin
refine tendsto.congr' (eventually_eq_of_mem (Ioi_mem_at_top 0) _)
(((tendsto_exp_div_pow_at_top n).const_mul_at_top hb).at_top_add
((tendsto_pow_neg_at_top hn).mul (@tendsto_const_nhds _ _ _ c _))),
intros x hx,
simp only [zpow_neg₀ x n],
ring,
end
/-- The function `(x ^ n) / (b * exp x + c)` tends to `0` at `+∞`, for any positive natural number
`n` and any real numbers `b` and `c` such that `b` is nonzero. -/
lemma tendsto_div_pow_mul_exp_add_at_top (b c : ℝ) (n : ℕ) (hb : 0 ≠ b) (hn : 1 ≤ n) :
tendsto (λ x, x^n / (b * (exp x) + c)) at_top (𝓝 0) :=
begin
have H : ∀ d e, 0 < d → tendsto (λ (x:ℝ), x^n / (d * (exp x) + e)) at_top (𝓝 0),
{ intros b' c' h,
convert (tendsto_mul_exp_add_div_pow_at_top b' c' n h hn).inv_tendsto_at_top ,
ext x,
simpa only [pi.inv_apply] using inv_div.symm },
cases lt_or_gt_of_ne hb,
{ exact H b c h },
{ convert (H (-b) (-c) (neg_pos.mpr h)).neg,
{ ext x,
field_simp,
rw [← neg_add (b * exp x) c, neg_div_neg_eq] },
{ exact neg_zero.symm } },
end
/-- `real.exp` as an order isomorphism between `ℝ` and `(0, +∞)`. -/
def exp_order_iso : ℝ ≃o Ioi (0 : ℝ) :=
strict_mono.order_iso_of_surjective _ (exp_strict_mono.cod_restrict exp_pos) $
(continuous_subtype_mk _ continuous_exp).surjective
(by simp only [tendsto_Ioi_at_top, subtype.coe_mk, tendsto_exp_at_top])
(by simp [tendsto_exp_at_bot_nhds_within])
@[simp] lemma coe_exp_order_iso_apply (x : ℝ) : (exp_order_iso x : ℝ) = exp x := rfl
@[simp] lemma coe_comp_exp_order_iso : coe ∘ exp_order_iso = exp := rfl
@[simp] lemma range_exp : range exp = Ioi 0 :=
by rw [← coe_comp_exp_order_iso, range_comp, exp_order_iso.range_eq, image_univ, subtype.range_coe]
@[simp] lemma map_exp_at_top : map exp at_top = at_top :=
by rw [← coe_comp_exp_order_iso, ← filter.map_map, order_iso.map_at_top, map_coe_Ioi_at_top]
@[simp] lemma comap_exp_at_top : comap exp at_top = at_top :=
by rw [← map_exp_at_top, comap_map exp_injective, map_exp_at_top]
@[simp] lemma tendsto_exp_comp_at_top {α : Type*} {l : filter α} {f : α → ℝ} :
tendsto (λ x, exp (f x)) l at_top ↔ tendsto f l at_top :=
by rw [← tendsto_comap_iff, comap_exp_at_top]
lemma tendsto_comp_exp_at_top {α : Type*} {l : filter α} {f : ℝ → α} :
tendsto (λ x, f (exp x)) at_top l ↔ tendsto f at_top l :=
by rw [← tendsto_map'_iff, map_exp_at_top]
@[simp] lemma map_exp_at_bot : map exp at_bot = 𝓝[Ioi 0] 0 :=
by rw [← coe_comp_exp_order_iso, ← filter.map_map, exp_order_iso.map_at_bot, ← map_coe_Ioi_at_bot]
lemma comap_exp_nhds_within_Ioi_zero : comap exp (𝓝[Ioi 0] 0) = at_bot :=
by rw [← map_exp_at_bot, comap_map exp_injective]
lemma tendsto_comp_exp_at_bot {α : Type*} {l : filter α} {f : ℝ → α} :
tendsto (λ x, f (exp x)) at_bot l ↔ tendsto f (𝓝[Ioi 0] 0) l :=
by rw [← map_exp_at_bot, tendsto_map'_iff]
end real
|
533adf229943de168da06232dc21efcc9faabe7e
|
9cb9db9d79fad57d80ca53543dc07efb7c4f3838
|
/src/for_mathlib/free_abelian_group.lean
|
d4641d5579af10fbf3c1d2c6bcea87fa69a12116
|
[] |
no_license
|
mr-infty/lean-liquid
|
3ff89d1f66244b434654c59bdbd6b77cb7de0109
|
a8db559073d2101173775ccbd85729d3a4f1ed4d
|
refs/heads/master
| 1,678,465,145,334
| 1,614,565,310,000
| 1,614,565,310,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 13,779
|
lean
|
import group_theory.free_abelian_group
import data.finsupp.basic
/-!
In this file we define the equivalence between `free_abelian_group X`
and `X →₀ ℤ` (the type of finitely supported function `X → ℤ`).
Both types come with useful machinery, and the purpose of this file
is to transport some of the machinery from one to the author.
We also define a new induction principle on `free_abelian_group X`,
needed for proving that the maps in `Mbar_complex` compose the way they should.
This induction principle is `induction_on_free_predicate` below.
A `free_predicate` on a free abelian group is a predicate that contains
`a : free_abelian_group X` if and only if it contains all the summands of `a`.
-/
noncomputable theory
open_locale big_operators
namespace int
variables {A : Type*} [add_comm_group A]
/-- `int.cast_add_hom' a` is the additive group homomorphism `ℤ → A`
that sends `1 : ℤ` to `a : A`. -/
def cast_add_hom' (a : A) : ℤ →+ A :=
add_monoid_hom.mk' (λ n, n • a) $ λ m n, add_smul _ _ _
@[simp] lemma cast_add_hom'_apply (a : A) (n : ℤ) : cast_add_hom' a n = n • a := rfl
end int
namespace free_abelian_group
variables (X : Type*)
/-- The group homomorphism `free_abelian_group X →+ (X →₀ ℤ)`. -/
def to_finsupp : free_abelian_group X →+ (X →₀ ℤ) :=
free_abelian_group.lift $ λ x, finsupp.single x (1 : ℤ)
/-- The group homomorphism `(X →₀ ℤ) →+ free_abelian_group X`. -/
def from_finsupp : (X →₀ ℤ) →+ free_abelian_group X :=
finsupp.lift_add_hom $ λ x, @int.cast_add_hom' (free_abelian_group X) _ (of x)
@[simp] lemma from_finsupp_comp_single_add_hom (x : X) :
(from_finsupp X).comp (finsupp.single_add_hom x) =
@int.cast_add_hom' (free_abelian_group X) _ (of x) :=
begin
ext,
simp only [add_monoid_hom.coe_comp, finsupp.single_add_hom_apply, function.comp_app,
one_smul, int.cast_add_hom'_apply, from_finsupp, finsupp.lift_add_hom_apply_single]
end
@[simp] lemma to_finsupp_comp_from_finsupp :
(to_finsupp X).comp (from_finsupp X) = add_monoid_hom.id _ :=
begin
ext x y, simp only [add_monoid_hom.id_comp],
rw [add_monoid_hom.comp_assoc, from_finsupp_comp_single_add_hom],
simp only [to_finsupp, add_monoid_hom.coe_comp, finsupp.single_add_hom_apply,
function.comp_app, one_smul, lift.of, int.cast_add_hom'_apply],
end
@[simp] lemma from_finsupp_comp_to_finsupp :
(from_finsupp X).comp (to_finsupp X) = add_monoid_hom.id _ :=
begin
ext,
simp only [from_finsupp, to_finsupp, finsupp.lift_add_hom_apply_single, add_monoid_hom.coe_comp,
function.comp_app, one_smul, add_monoid_hom.id_apply, lift.of, int.cast_add_hom'_apply]
end
variable {X}
@[simp] lemma to_finsupp_of (x : X) :
to_finsupp X (of x) = finsupp.single x 1 :=
by simp only [to_finsupp, lift.of]
@[simp] lemma to_finsupp_from_finsupp (f) :
(to_finsupp X) (from_finsupp X f) = f :=
by rw [← add_monoid_hom.comp_apply, to_finsupp_comp_from_finsupp, add_monoid_hom.id_apply]
@[simp] lemma from_finsupp_to_finsupp (x) :
(from_finsupp X) (to_finsupp X x) = x :=
by rw [← add_monoid_hom.comp_apply, from_finsupp_comp_to_finsupp, add_monoid_hom.id_apply]
variable (X)
/-- The additive equivalence between `free_abelian_group X` and `(X →₀ ℤ)`. -/
@[simps]
def equiv_finsupp : free_abelian_group X ≃+ (X →₀ ℤ) :=
{ to_fun := to_finsupp X,
inv_fun := from_finsupp X,
left_inv := from_finsupp_to_finsupp,
right_inv := to_finsupp_from_finsupp,
map_add' := (to_finsupp X).map_add }
variable {X}
/-- `coeff x` is the additive group homomorphism `free_abelian_group X →+ ℤ`
that sends `a` to the multiplicity of `x : X` in `a`. -/
def coeff (x : X) : free_abelian_group X →+ ℤ :=
(finsupp.apply_add_hom x).comp (to_finsupp X)
/-- `support a` for `a : free_abelian_group X` is the finite set of `x : X`
that occur in the formal sum `a`. -/
def support (a : free_abelian_group X) : finset X :=
(to_finsupp X a).support
lemma mem_support_iff (x : X) (a : free_abelian_group X) :
x ∈ a.support ↔ coeff x a ≠ 0 :=
by { rw [support, finsupp.mem_support_iff], exact iff.rfl }
lemma not_mem_support_iff (x : X) (a : free_abelian_group X) :
x ∉ a.support ↔ coeff x a = 0 :=
by { rw [support, finsupp.not_mem_support_iff], exact iff.rfl }
@[simp] lemma support_zero : support (0 : free_abelian_group X) = ∅ :=
by simp only [support, finsupp.support_zero, add_monoid_hom.map_zero]
@[simp] lemma support_of (x : X) : support (of x) = {x} :=
by simp only [support, to_finsupp_of, finsupp.support_single_ne_zero (one_ne_zero)]
@[simp] lemma support_neg (a : free_abelian_group X) : support (-a) = support a :=
by simp only [support, add_monoid_hom.map_neg, finsupp.support_neg]
@[simp] lemma support_gsmul (k : ℤ) (h : k ≠ 0) (a : free_abelian_group X) :
support (k •ℤ a) = support a :=
begin
ext x,
simp only [mem_support_iff, add_monoid_hom.map_gsmul],
simp only [h, gsmul_int_int, false_or, ne.def, mul_eq_zero]
end
@[simp] lemma support_smul (k : ℤ) (h : k ≠ 0) (a : free_abelian_group X) :
support (k • a) = support a :=
by rw [← gsmul_eq_smul, support_gsmul k h]
@[simp] lemma support_smul_nat (k : ℕ) (h : k ≠ 0) (a : free_abelian_group X) :
support (k • a) = support a :=
by { apply support_smul k _ a, exact_mod_cast h }
open_locale classical
lemma support_add (a b : free_abelian_group X) : (support (a + b)) ⊆ a.support ∪ b.support :=
begin
simp only [support, add_monoid_hom.map_add],
apply finsupp.support_add
end
lemma support_add_smul_of (a : free_abelian_group X) (n : ℤ) (hn : n ≠ 0)
(x : X) (hxa : x ∉ a.support) :
support (a + n • of x) = insert x a.support :=
begin
apply finset.subset.antisymm,
{ apply finset.subset.trans (support_add _ _),
intros y,
simp only [finset.mem_union, finset.mem_insert, support_smul n hn, support_of, or_comm (y = x),
finset.mem_singleton, imp_self] },
{ intros y,
simp only [finset.mem_insert],
rintro (rfl|hya),
{ rw not_mem_support_iff at hxa,
simp only [coeff, add_monoid_hom.coe_comp, finsupp.apply_add_hom_apply,
function.comp_app] at hxa,
simp only [support, add_monoid_hom.map_add, pi.add_apply, finsupp.mem_support_iff,
ne.def, finsupp.coe_add, hxa, zero_add, ← gsmul_eq_smul, add_monoid_hom.map_gsmul,
to_finsupp_of],
rw [← finsupp.single_add_hom_apply, ← add_monoid_hom.map_gsmul, gsmul_one],
simpa only [int.cast_id, finsupp.single_eq_same, finsupp.single_add_hom_apply] },
{ rw not_mem_support_iff at hxa,
rw mem_support_iff at hya,
simp only [coeff, add_monoid_hom.coe_comp, finsupp.apply_add_hom_apply,
function.comp_app, ne.def] at hxa hya,
simp only [support, add_monoid_hom.map_add, pi.add_apply, finsupp.mem_support_iff,
ne.def, finsupp.coe_add, ← gsmul_eq_smul, add_monoid_hom.map_gsmul, to_finsupp_of],
rwa [← finsupp.single_add_hom_apply, ← add_monoid_hom.map_gsmul, gsmul_one,
finsupp.single_add_hom_apply, finsupp.single_apply, if_neg, add_zero],
rintro rfl, contradiction } }
end
lemma support_sum (s : finset X) (n : X → ℤ) :
(support (∑ x in s, n x • of x)) ⊆ s :=
begin
apply finset.induction_on s,
{ simp only [finset.empty_subset, finset.sum_empty, support_zero] },
intros x s hxs IH,
rw finset.sum_insert hxs,
apply finset.subset.trans (support_add _ _),
by_cases hn : n x = 0,
{ simp only [hn, finset.empty_union, zero_smul, support_zero],
apply finset.subset.trans IH (finset.subset_insert x s) },
rw [support_smul _ hn, support_of],
intros y hy,
simp only [finset.mem_union, finset.mem_singleton] at hy,
simp only [finset.mem_insert],
apply or.imp id _ hy,
intro h, exact IH h
end
@[simp] lemma coeff_of_self (x : X) : coeff x (of x) = 1 :=
by simp only [coeff, add_monoid_hom.coe_comp, finsupp.apply_add_hom_apply,
finsupp.single_eq_same, function.comp_app, to_finsupp_of]
lemma sum_support_coeff (a : free_abelian_group X) :
∑ x in a.support, coeff x a • (of x) = a :=
begin
apply (equiv_finsupp X).injective,
simp only [equiv_finsupp_apply],
rw [← finsupp.sum_single (to_finsupp X a), finsupp.sum],
simp only [(to_finsupp X).map_sum, ← gsmul_eq_smul, add_monoid_hom.map_gsmul, to_finsupp_of],
apply finset.sum_congr rfl,
intros x hx,
simp only [← finsupp.single_add_hom_apply, ← add_monoid_hom.map_gsmul, gsmul_one, coeff,
int.cast_id, add_monoid_hom.comp_apply, finsupp.apply_add_hom_apply]
end
-- probably needs a better name
@[elab_as_eliminator] protected lemma induction_on''
{P : free_abelian_group X → Prop}
(a : free_abelian_group X)
(h0 : P 0)
(h1 : ∀ (n:ℤ) (h : n ≠ 0) x, P (n • of x))
(h2 : ∀ (a : free_abelian_group X) (n : ℤ) (hn : n ≠ 0) (x : X) (h : x ∉ a.support),
P a → (∀ (n:ℤ), P (n • of x)) → P (a + n • of x)) :
P a :=
begin
rw ← sum_support_coeff a,
generalize hs : a.support = s,
classical,
apply finset.induction_on s; clear_dependent s,
{ simpa only [finset.sum_empty] },
intros x s hxs IH,
rw [finset.sum_insert hxs, add_comm],
by_cases hxa : coeff x a = 0,
{ rw [hxa, zero_smul, add_zero], exact IH },
apply h2 _ _ hxa _ _ IH,
{ intro n, by_cases hn : n = 0, { rwa [hn, zero_smul] }, exact h1 n hn x },
contrapose! hxs,
apply support_sum _ _ hxs
end
/-- A `free_predicate` on a free abelian group is a predicate that cuts out a subgroup
generated by a subset of the generators of the free abelian group. -/
def free_predicate (Q : free_abelian_group X → Prop) :=
∀ a : free_abelian_group X, Q a ↔ ∀ x ∈ a.support, Q (of x)
namespace free_predicate
variables {Q : free_abelian_group X → Prop} {a b : free_abelian_group X}
lemma zero (h : free_predicate Q) : Q 0 :=
begin
rw h,
simp only [finset.not_mem_empty, forall_prop_of_false,
not_false_iff, support_zero, forall_true_iff]
end
lemma add (h : free_predicate Q) (ha : Q a) (hb : Q b) : Q (a + b) :=
begin
rw h at ha hb ⊢,
intros x hx,
replace hx := support_add _ _ hx,
simp only [finset.mem_union] at hx,
cases hx; solve_by_elim
end
lemma neg (h : free_predicate Q) (ha : Q a) : Q (-a) :=
begin
rw h at ha ⊢,
intros x hx,
rw support_neg at hx,
solve_by_elim
end
lemma neg_iff (h : free_predicate Q) : Q (-a) ↔ Q a :=
⟨λ ha, by simpa only [neg_neg] using h.neg ha, h.neg⟩
/-- The additive subgroup of elements of `free_abelian_group X` satisfying a given `free_predicate`. -/
def add_subgroup (h : free_predicate Q) : add_subgroup (free_abelian_group X) :=
{ carrier := {a | Q a},
zero_mem' := h.zero,
add_mem' := λ a b ha hb, h.add ha hb,
neg_mem' := λ a ha, h.neg ha }
lemma gsmul (h : free_predicate Q) (n : ℤ) (ha : Q a) : Q (n •ℤ a) :=
add_subgroup.gsmul_mem h.add_subgroup ha n
lemma of_gsmul (h : free_predicate Q) (n : ℤ) (hn : n ≠ 0) (ha : Q (n •ℤ a)) : Q a :=
by { rw h at ha ⊢, simpa only [support_gsmul n hn] using ha }
lemma gsmul_iff (h : free_predicate Q) (n : ℤ) (hn : n ≠ 0) : Q (n •ℤ a) ↔ Q a :=
⟨h.of_gsmul n hn, h.gsmul n⟩
lemma smul (h : free_predicate Q) (n : ℤ) (ha : Q a) : Q (n • a) :=
by { rw ← gsmul_eq_smul, apply h.gsmul _ ha }
lemma of_smul (h : free_predicate Q) (n : ℤ) (hn : n ≠ 0) (ha : Q (n • a)) : Q a :=
by rwa [← gsmul_eq_smul, h.gsmul_iff n hn] at ha
lemma smul_iff (h : free_predicate Q) (n : ℤ) (hn : n ≠ 0) : Q (n • a) ↔ Q a :=
⟨h.of_smul n hn, h.smul n⟩
lemma smul_nat (h : free_predicate Q) (n : ℕ) (ha : Q a) : Q (n • a) :=
h.smul n ha
lemma of_smul_nat (h : free_predicate Q) (n : ℕ) (hn : n ≠ 0) (ha : Q (n • a)) : Q a :=
h.of_smul n (by exact_mod_cast hn) ha
lemma smul_nat_iff (h : free_predicate Q) (n : ℕ) (hn : n ≠ 0) : Q (n • a) ↔ Q a :=
⟨h.of_smul_nat n hn, h.smul_nat n⟩
end free_predicate
/-- An induction principle for elements of `free_abelian_group X`
satisfying some `free_predicate Q`. -/
@[elab_as_eliminator] protected lemma induction_on_free_predicate
{P : free_abelian_group X → Prop}
(Q : free_abelian_group X → Prop)
(hQ : free_predicate Q)
(a : free_abelian_group X)
(hQa : Q a)
(hP0 : P 0)
(hof : ∀ x, Q (of x) → P (of x))
(hneg : ∀ a, Q a → P a → P (-a))
(hadd : ∀ a b, Q a → Q b → P a → P b → P (a + b)) :
P a :=
begin
revert hQa,
have N : ∀ (n:ℕ) x, Q (n • of x) → P (n • of x),
{ intros n x,
induction n with n ih,
{ intro, exact hP0 },
{ intro hQx,
have hQ1x : Q (of x) := hQ.of_smul_nat n.succ n.succ_ne_zero hQx,
have hQnx : Q (n • of x) := hQ.smul_nat n hQ1x,
rw [nat.succ_eq_add_one, add_smul, one_smul],
apply hadd _ _ hQnx hQ1x (ih hQnx) (hof _ hQ1x) } },
apply free_abelian_group.induction_on'' a,
{ intro, exact hP0 },
{ intros n hn x,
cases le_or_lt 0 n with h0n hn0,
{ lift n to ℕ using h0n, apply N },
{ have h0n : 0 ≤ -n, { rw [neg_nonneg], exact hn0.le },
lift -n to ℕ using h0n with k hk,
intro hQx,
have hQ1x : Q (of x) := hQ.of_smul n hn hQx,
rw [← neg_neg n, neg_smul],
apply hneg _ (hQ.smul _ hQ1x),
rw ← hk,
exact N _ _ (hQ.smul_nat k hQ1x) } },
{ intros a n hn x hxa IH1 IH2 hq,
have hQa : Q a,
{ rw hQ at hq ⊢, intros x hxa', apply hq, rw support_add_smul_of _ _ hn _ hxa,
apply finset.mem_insert_of_mem hxa' },
have hQx : Q (of x),
{ rw hQ at hq ⊢, intros x' hxa', apply hq, rw support_add_smul_of _ _ hn _ hxa,
rw [support_of, finset.mem_singleton] at hxa', subst hxa',
apply finset.mem_insert_self },
exact hadd _ _ hQa (hQ.smul n hQx) (IH1 hQa) (IH2 n (hQ.smul n hQx)) }
end
end free_abelian_group
#lint- only unused_arguments def_lemma doc_blame
|
f62ac6a299d8aeac6869fce642d65f82c633241f
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/stage0/src/Lean/ScopedEnvExtension.lean
|
f6e7cde48454fa02c2f587ee8fcfbe37d39be087
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,502
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Environment
import Lean.Data.NameTrie
import Lean.Attributes
namespace Lean
namespace ScopedEnvExtension
inductive Entry (α : Type) where
| global : α → Entry α
| scoped : Name → α → Entry α
structure State (σ : Type) where
state : σ
activeScopes : NameSet := {}
structure ScopedEntries (β : Type) where
map : SMap Name (Std.PArray β) := {}
deriving Inhabited
structure StateStack (α : Type) (β : Type) (σ : Type) where
stateStack : List (State σ) := {}
scopedEntries : ScopedEntries β := {}
newEntries : List (Entry α) := []
deriving Inhabited
structure Descr (α : Type) (β : Type) (σ : Type) where
name : Name
mkInitial : IO σ
ofOLeanEntry : σ → α → ImportM β
toOLeanEntry : β → α
addEntry : σ → β → σ
finalizeImport : σ → σ := id
instance [Inhabited α] : Inhabited (Descr α β σ) where
default := {
name := default
mkInitial := default
ofOLeanEntry := default
toOLeanEntry := default
addEntry := fun s _ => s
}
def mkInitial (descr : Descr α β σ) : IO (StateStack α β σ) :=
return { stateStack := [ { state := (← descr.mkInitial ) } ] }
def ScopedEntries.insert (scopedEntries : ScopedEntries β) (ns : Name) (b : β) : ScopedEntries β :=
match scopedEntries.map.find? ns with
| none => { map := scopedEntries.map.insert ns <| ({} : Std.PArray β).push b }
| some bs => { map := scopedEntries.map.insert ns <| bs.push b }
def addImportedFn (descr : Descr α β σ) (as : Array (Array (Entry α))) : ImportM (StateStack α β σ) := do
let mut s ← descr.mkInitial
let mut scopedEntries : ScopedEntries β := {}
for a in as do
for e in a do
match e with
| Entry.global a =>
let b ← descr.ofOLeanEntry s a
s := descr.addEntry s b
| Entry.scoped ns a =>
let b ← descr.ofOLeanEntry s a
scopedEntries := scopedEntries.insert ns b
s := descr.finalizeImport s
return { stateStack := [ { state := s } ], scopedEntries := scopedEntries }
def addEntryFn (descr : Descr α β σ) (s : StateStack α β σ) (e : Entry β) : StateStack α β σ :=
match s with
| { stateStack := stateStack, scopedEntries := scopedEntries, newEntries := newEntries } =>
match e with
| Entry.global b => {
scopedEntries := scopedEntries
newEntries := (Entry.global (descr.toOLeanEntry b)) :: newEntries
stateStack := stateStack.map fun s => { s with state := descr.addEntry s.state b }
}
| Entry.«scoped» ns b =>
{
scopedEntries := scopedEntries.insert ns b
newEntries := (Entry.«scoped» ns (descr.toOLeanEntry b)) :: newEntries
stateStack := stateStack.map fun s =>
if s.activeScopes.contains ns then
{ s with state := descr.addEntry s.state b }
else
s
}
def exportEntriesFn (s : StateStack α β σ) : Array (Entry α) :=
s.newEntries.toArray.reverse
end ScopedEnvExtension
open ScopedEnvExtension
structure ScopedEnvExtension (α : Type) (β : Type) (σ : Type) where
descr : Descr α β σ
ext : PersistentEnvExtension (Entry α) (Entry β) (StateStack α β σ)
deriving Inhabited
builtin_initialize scopedEnvExtensionsRef : IO.Ref (Array (ScopedEnvExtension EnvExtensionEntry EnvExtensionEntry EnvExtensionState)) ← IO.mkRef #[]
unsafe def registerScopedEnvExtensionUnsafe (descr : Descr α β σ) : IO (ScopedEnvExtension α β σ) := do
let ext ← registerPersistentEnvExtension {
name := descr.name
mkInitial := mkInitial descr
addImportedFn := addImportedFn descr
addEntryFn := addEntryFn descr
exportEntriesFn := exportEntriesFn
statsFn := fun s => format "number of local entries: " ++ format s.newEntries.length
}
let ext := { descr := descr, ext := ext : ScopedEnvExtension α β σ }
scopedEnvExtensionsRef.modify fun exts => exts.push (unsafeCast ext)
return ext
@[implementedBy registerScopedEnvExtensionUnsafe]
opaque registerScopedEnvExtension (descr : Descr α β σ) : IO (ScopedEnvExtension α β σ)
def ScopedEnvExtension.pushScope (ext : ScopedEnvExtension α β σ) (env : Environment) : Environment :=
let s := ext.ext.getState env
match s.stateStack with
| [] => env
| state :: stack => ext.ext.setState env { s with stateStack := state :: state :: stack }
def ScopedEnvExtension.popScope (ext : ScopedEnvExtension α β σ) (env : Environment) : Environment :=
let s := ext.ext.getState env
match s.stateStack with
| _ :: state₂ :: stack => ext.ext.setState env { s with stateStack := state₂ :: stack }
| _ => env
def ScopedEnvExtension.addEntry (ext : ScopedEnvExtension α β σ) (env : Environment) (b : β) : Environment :=
ext.ext.addEntry env (Entry.global b)
def ScopedEnvExtension.addScopedEntry (ext : ScopedEnvExtension α β σ) (env : Environment) (namespaceName : Name) (b : β) : Environment :=
ext.ext.addEntry env (Entry.«scoped» namespaceName b)
def ScopedEnvExtension.addLocalEntry (ext : ScopedEnvExtension α β σ) (env : Environment) (b : β) : Environment :=
let s := ext.ext.getState env
match s.stateStack with
| [] => env
| top :: states =>
let top := { top with state := ext.descr.addEntry top.state b }
ext.ext.setState env { s with stateStack := top :: states }
def ScopedEnvExtension.add [Monad m] [MonadResolveName m] [MonadEnv m] (ext : ScopedEnvExtension α β σ) (b : β) (kind := AttributeKind.global) : m Unit := do
match kind with
| AttributeKind.global => modifyEnv (ext.addEntry · b)
| AttributeKind.local => modifyEnv (ext.addLocalEntry · b)
| AttributeKind.scoped => modifyEnv (ext.addScopedEntry · (← getCurrNamespace) b)
def ScopedEnvExtension.getState [Inhabited σ] (ext : ScopedEnvExtension α β σ) (env : Environment) : σ :=
match ext.ext.getState env |>.stateStack with
| top :: _ => top.state
| _ => unreachable!
def ScopedEnvExtension.activateScoped (ext : ScopedEnvExtension α β σ) (env : Environment) (namespaceName : Name) : Environment :=
let s := ext.ext.getState env
match s.stateStack with
| top :: stack =>
if top.activeScopes.contains namespaceName then
env
else
let activeScopes := top.activeScopes.insert namespaceName
let top :=
match s.scopedEntries.map.find? namespaceName with
| none =>
{ top with activeScopes := activeScopes }
| some bs => Id.run do
let mut state := top.state
for b in bs do
state := ext.descr.addEntry state b
{ state := state, activeScopes := activeScopes }
ext.ext.setState env { s with stateStack := top :: stack }
| _ => env
def ScopedEnvExtension.modifyState (ext : ScopedEnvExtension α β σ) (env : Environment) (f : σ → σ) : Environment :=
let s := ext.ext.getState env
match s.stateStack with
| top :: stack => ext.ext.setState env { s with stateStack := { top with state := f top.state } :: stack }
| _ => env
def pushScope [Monad m] [MonadEnv m] [MonadLiftT (ST IO.RealWorld) m] : m Unit := do
for ext in (← scopedEnvExtensionsRef.get) do
modifyEnv ext.pushScope
def popScope [Monad m] [MonadEnv m] [MonadLiftT (ST IO.RealWorld) m] : m Unit := do
for ext in (← scopedEnvExtensionsRef.get) do
modifyEnv ext.popScope
def activateScoped [Monad m] [MonadEnv m] [MonadLiftT (ST IO.RealWorld) m] (namespaceName : Name) : m Unit := do
for ext in (← scopedEnvExtensionsRef.get) do
modifyEnv (ext.activateScoped · namespaceName)
abbrev SimpleScopedEnvExtension (α : Type) (σ : Type) := ScopedEnvExtension α α σ
structure SimpleScopedEnvExtension.Descr (α : Type) (σ : Type) where
name : Name
addEntry : σ → α → σ
initial : σ
finalizeImport : σ → σ := id
def registerSimpleScopedEnvExtension (descr : SimpleScopedEnvExtension.Descr α σ) : IO (SimpleScopedEnvExtension α σ) := do
registerScopedEnvExtension {
name := descr.name
mkInitial := return descr.initial
addEntry := descr.addEntry
toOLeanEntry := id
ofOLeanEntry := fun _ a => return a
finalizeImport := descr.finalizeImport
}
end Lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.