blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
a187822daa8b5f928c4492037c04d0be0fafc9c0
57aec6ee746bc7e3a3dd5e767e53bd95beb82f6d
/stage0/src/Init/Data/Fin/Basic.lean
a91785d33475734185fbbdea548142ace835049a
[ "Apache-2.0" ]
permissive
collares/lean4
861a9269c4592bce49b71059e232ff0bfe4594cc
52a4f535d853a2c7c7eea5fee8a4fa04c682c1ee
refs/heads/master
1,691,419,031,324
1,618,678,138,000
1,618,678,138,000
358,989,750
0
0
Apache-2.0
1,618,696,333,000
1,618,696,333,000
null
UTF-8
Lean
false
false
2,991
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import Init.Data.Nat.Div import Init.Data.Nat.Bitwise import Init.Coe open Nat namespace Fin instance coeToNat {n} : Coe (Fin n) Nat := ⟨fun v => v.val⟩ def elim0.{u} {α : Sort u} : Fin 0 → α | ⟨_, h⟩ => absurd h (notLtZero _) variable {n : Nat} protected def ofNat {n : Nat} (a : Nat) : Fin (succ n) := ⟨a % succ n, Nat.mod_lt _ (Nat.zeroLtSucc _)⟩ protected def ofNat' {n : Nat} (a : Nat) (h : n > 0) : Fin n := ⟨a % n, Nat.mod_lt _ h⟩ private theorem mlt {b : Nat} : {a : Nat} → a < n → b % n < n | 0, h => Nat.mod_lt _ h | a+1, h => have n > 0 from Nat.ltTrans (Nat.zeroLtSucc _) h; Nat.mod_lt _ this protected def add : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a + b) % n, mlt h⟩ protected def mul : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a * b) % n, mlt h⟩ protected def sub : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a + (n - b)) % n, mlt h⟩ /- Remark: mod/div/modn/land/lor can be defined without using (% n), but we are trying to minimize the number of Nat theorems needed to boostrap Lean. -/ protected def mod : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a % b) % n, mlt h⟩ protected def div : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a / b) % n, mlt h⟩ protected def modn : Fin n → Nat → Fin n | ⟨a, h⟩, m => ⟨(a % m) % n, mlt h⟩ def land : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(Nat.land a b) % n, mlt h⟩ def lor : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(Nat.lor a b) % n, mlt h⟩ def xor : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(Nat.xor a b) % n, mlt h⟩ def shiftLeft : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a <<< b) % n, mlt h⟩ def shiftRight : Fin n → Fin n → Fin n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a >>> b) % n, mlt h⟩ instance : Add (Fin n) where add := Fin.add instance : Sub (Fin n) where sub := Fin.sub instance : Mul (Fin n) where mul := Fin.mul instance : Mod (Fin n) where mod := Fin.mod instance : Div (Fin n) where div := Fin.div instance : AndOp (Fin n) where and := Fin.land instance : OrOp (Fin n) where or := Fin.lor instance : Xor (Fin n) where xor := Fin.xor instance : ShiftLeft (Fin n) where shiftLeft := Fin.shiftLeft instance : ShiftRight (Fin n) where shiftRight := Fin.shiftRight instance : HMod (Fin n) Nat (Fin n) where hMod := Fin.modn instance : OfNat (Fin (no_index (n+1))) i where ofNat := Fin.ofNat i theorem vneOfNe {i j : Fin n} (h : i ≠ j) : val i ≠ val j := fun h' => absurd (eqOfVeq h') h theorem modn_lt : ∀ {m : Nat} (i : Fin n), m > 0 → (i % m).val < m | m, ⟨a, h⟩, hp => Nat.ltOfLeOfLt (mod_le _ _) (mod_lt _ hp) end Fin open Fin
8209a25b2dbfcd09310e17b3417dde0959e4e148
a4673261e60b025e2c8c825dfa4ab9108246c32e
/src/Lean/Elab/LetRec.lean
aed232888f8b68941551ee7d89c294ff27695a2f
[ "Apache-2.0" ]
permissive
jcommelin/lean4
c02dec0cc32c4bccab009285475f265f17d73228
2909313475588cc20ac0436e55548a4502050d0a
refs/heads/master
1,674,129,550,893
1,606,415,348,000
1,606,415,348,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,890
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Elab.Attributes import Lean.Elab.Binders import Lean.Elab.DeclModifiers import Lean.Elab.SyntheticMVars namespace Lean.Elab.Term open Meta structure LetRecDeclView := (ref : Syntax) (attrs : Array Attribute) (shortDeclName : Name) (declName : Name) (numParams : Nat) (type : Expr) (mvar : Expr) -- auxiliary metavariable used to lift the 'let rec' (valStx : Syntax) structure LetRecView := (decls : Array LetRecDeclView) (body : Syntax) /- group ("let " >> nonReservedSymbol "rec ") >> sepBy1 (group (optional «attributes» >> letDecl)) ", " >> "; " >> termParser -/ private def mkLetRecDeclView (letRec : Syntax) : TermElabM LetRecView := do let decls ← letRec[1].getSepArgs.mapM fun (attrDeclStx : Syntax) => do let attrOptStx := attrDeclStx[0] let attrs ← if attrOptStx.isNone then pure #[] else elabDeclAttrs attrOptStx[0] let decl := attrDeclStx[1][0] if decl.isOfKind `Lean.Parser.Term.letPatDecl then throwErrorAt decl "patterns are not allowed in 'let rec' expressions" else if decl.isOfKind `Lean.Parser.Term.letIdDecl || decl.isOfKind `Lean.Parser.Term.letEqnsDecl then let shortDeclName := decl[0].getId let currDeclName? ← getDeclName? let declName := currDeclName?.getD Name.anonymous ++ shortDeclName checkNotAlreadyDeclared declName applyAttributesAt declName attrs AttributeApplicationTime.beforeElaboration let binders := decl[1].getArgs let typeStx := expandOptType decl decl[2] let (type, numParams) ← elabBinders binders fun xs => do let type ← elabType typeStx registerCustomErrorIfMVar type typeStx "failed to infer 'let rec' declaration type" let type ← mkForallFVars xs type pure (type, xs.size) let mvar ← mkFreshExprMVar type MetavarKind.syntheticOpaque let valStx ← if decl.isOfKind `Lean.Parser.Term.letIdDecl then pure decl[4] else liftMacroM $ expandMatchAltsIntoMatch decl decl[3] pure { ref := decl, attrs := attrs, shortDeclName := shortDeclName, declName := declName, numParams := numParams, type := type, mvar := mvar, valStx := valStx : LetRecDeclView } else throwUnsupportedSyntax pure { decls := decls, body := letRec[3] } private partial def withAuxLocalDecls {α} (views : Array LetRecDeclView) (k : Array Expr → TermElabM α) : TermElabM α := let rec loop (i : Nat) (fvars : Array Expr) : TermElabM α := if h : i < views.size then let view := views.get ⟨i, h⟩ withLocalDeclD view.shortDeclName view.type fun fvar => loop (i+1) (fvars.push fvar) else k fvars loop 0 #[] private def elabLetRecDeclValues (view : LetRecView) : TermElabM (Array Expr) := view.decls.mapM fun view => do forallBoundedTelescope view.type view.numParams fun xs type => withDeclName view.declName do let value ← elabTermEnsuringType view.valStx type mkLambdaFVars xs value private def abortIfContainsSyntheticSorry (e : Expr) : TermElabM Unit := do let e ← instantiateMVars e if e.hasSyntheticSorry then throwAbort private def registerLetRecsToLift (views : Array LetRecDeclView) (fvars : Array Expr) (values : Array Expr) : TermElabM Unit := do let letRecsToLiftCurr := (← get).letRecsToLift for view in views do if letRecsToLiftCurr.any fun toLift => toLift.declName == view.declName then withRef view.ref do throwError! "'{view.declName}' has already been declared" let lctx ← getLCtx let localInsts ← getLocalInstances let toLift := views.mapIdx fun i view => { ref := view.ref, fvarId := fvars[i].fvarId!, attrs := view.attrs, shortDeclName := view.shortDeclName, declName := view.declName, lctx := lctx, localInstances := localInsts, type := view.type, val := values[i], mvarId := view.mvar.mvarId! : LetRecToLift } modify fun s => { s with letRecsToLift := toLift.toList ++ s.letRecsToLift } @[builtinTermElab «letrec»] def elabLetRec : TermElab := fun stx expectedType? => do let view ← mkLetRecDeclView stx withAuxLocalDecls view.decls fun fvars => do let values ← elabLetRecDeclValues view let body ← elabTermEnsuringType view.body expectedType? registerLetRecsToLift view.decls fvars values let mvars := view.decls.map (·.mvar) pure $ mkAppN (← mkLambdaFVars fvars body) mvars end Lean.Elab.Term
c19055c040838517609dc5e5fa52f65cd75aac8d
94e33a31faa76775069b071adea97e86e218a8ee
/src/measure_theory/measure/measure_space_def.lean
f47853e491359c31c9bbf87b03952b5e4bb0b3a2
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
22,519
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import measure_theory.measure.outer_measure import order.filter.countable_Inter import data.set.accumulate /-! # Measure spaces This file defines measure spaces, the almost-everywhere filter and ae_measurable functions. See `measure_theory.measure_space` for their properties and for extended documentation. Given a measurable space `α`, a measure on `α` is a function that sends measurable sets to the extended nonnegative reals that satisfies the following conditions: 1. `μ ∅ = 0`; 2. `μ` is countably additive. This means that the measure of a countable union of pairwise disjoint sets is equal to the measure of the individual sets. Every measure can be canonically extended to an outer measure, so that it assigns values to all subsets, not just the measurable subsets. On the other hand, a measure that is countably additive on measurable sets can be restricted to measurable sets to obtain a measure. In this file a measure is defined to be an outer measure that is countably additive on measurable sets, with the additional assumption that the outer measure is the canonical extension of the restricted measure. Measures on `α` form a complete lattice, and are closed under scalar multiplication with `ℝ≥0∞`. ## Implementation notes Given `μ : measure α`, `μ s` is the value of the *outer measure* applied to `s`. This conveniently allows us to apply the measure to sets without proving that they are measurable. We get countable subadditivity for all sets, but only countable additivity for measurable sets. See the documentation of `measure_theory.measure_space` for ways to construct measures and proving that two measure are equal. A `measure_space` is a class that is a measurable space with a canonical measure. The measure is denoted `volume`. This file does not import `measure_theory.measurable_space`, but only `measurable_space_def`. ## References * <https://en.wikipedia.org/wiki/Measure_(mathematics)> * <https://en.wikipedia.org/wiki/Almost_everywhere> ## Tags measure, almost everywhere, measure space -/ noncomputable theory open classical set filter (hiding map) function measurable_space open_locale classical topological_space big_operators filter ennreal nnreal variables {α β γ δ ι : Type*} namespace measure_theory /-- A measure is defined to be an outer measure that is countably additive on measurable sets, with the additional assumption that the outer measure is the canonical extension of the restricted measure. -/ structure measure (α : Type*) [measurable_space α] extends outer_measure α := (m_Union ⦃f : ℕ → set α⦄ : (∀ i, measurable_set (f i)) → pairwise (disjoint on f) → measure_of (⋃ i, f i) = ∑' i, measure_of (f i)) (trimmed : to_outer_measure.trim = to_outer_measure) /-- Measure projections for a measure space. For measurable sets this returns the measure assigned by the `measure_of` field in `measure`. But we can extend this to _all_ sets, but using the outer measure. This gives us monotonicity and subadditivity for all sets. -/ instance measure.has_coe_to_fun [measurable_space α] : has_coe_to_fun (measure α) (λ _, set α → ℝ≥0∞) := ⟨λ m, m.to_outer_measure⟩ section variables [measurable_space α] {μ μ₁ μ₂ : measure α} {s s₁ s₂ t : set α} namespace measure /-! ### General facts about measures -/ /-- Obtain a measure by giving a countably additive function that sends `∅` to `0`. -/ def of_measurable (m : Π (s : set α), measurable_set s → ℝ≥0∞) (m0 : m ∅ measurable_set.empty = 0) (mU : ∀ {{f : ℕ → set α}} (h : ∀ i, measurable_set (f i)), pairwise (disjoint on f) → m (⋃ i, f i) (measurable_set.Union h) = ∑' i, m (f i) (h i)) : measure α := { m_Union := λ f hf hd, show induced_outer_measure m _ m0 (Union f) = ∑' i, induced_outer_measure m _ m0 (f i), begin rw [induced_outer_measure_eq m0 mU, mU hf hd], congr, funext n, rw induced_outer_measure_eq m0 mU end, trimmed := show (induced_outer_measure m _ m0).trim = induced_outer_measure m _ m0, begin unfold outer_measure.trim, congr, funext s hs, exact induced_outer_measure_eq m0 mU hs end, ..induced_outer_measure m _ m0 } lemma of_measurable_apply {m : Π (s : set α), measurable_set s → ℝ≥0∞} {m0 : m ∅ measurable_set.empty = 0} {mU : ∀ {{f : ℕ → set α}} (h : ∀ i, measurable_set (f i)), pairwise (disjoint on f) → m (⋃ i, f i) (measurable_set.Union h) = ∑' i, m (f i) (h i)} (s : set α) (hs : measurable_set s) : of_measurable m m0 mU s = m s hs := induced_outer_measure_eq m0 mU hs lemma to_outer_measure_injective : injective (to_outer_measure : measure α → outer_measure α) := λ ⟨m₁, u₁, h₁⟩ ⟨m₂, u₂, h₂⟩ h, by { congr, exact h } @[ext] lemma ext (h : ∀ s, measurable_set s → μ₁ s = μ₂ s) : μ₁ = μ₂ := to_outer_measure_injective $ by rw [← trimmed, outer_measure.trim_congr h, trimmed] lemma ext_iff : μ₁ = μ₂ ↔ ∀ s, measurable_set s → μ₁ s = μ₂ s := ⟨by { rintro rfl s hs, refl }, measure.ext⟩ end measure @[simp] lemma coe_to_outer_measure : ⇑μ.to_outer_measure = μ := rfl lemma to_outer_measure_apply (s : set α) : μ.to_outer_measure s = μ s := rfl lemma measure_eq_trim (s : set α) : μ s = μ.to_outer_measure.trim s := by rw μ.trimmed; refl lemma measure_eq_infi (s : set α) : μ s = ⨅ t (st : s ⊆ t) (ht : measurable_set t), μ t := by rw [measure_eq_trim, outer_measure.trim_eq_infi]; refl /-- A variant of `measure_eq_infi` which has a single `infi`. This is useful when applying a lemma next that only works for non-empty infima, in which case you can use `nonempty_measurable_superset`. -/ lemma measure_eq_infi' (μ : measure α) (s : set α) : μ s = ⨅ t : { t // s ⊆ t ∧ measurable_set t}, μ t := by simp_rw [infi_subtype, infi_and, subtype.coe_mk, ← measure_eq_infi] lemma measure_eq_induced_outer_measure : μ s = induced_outer_measure (λ s _, μ s) measurable_set.empty μ.empty s := measure_eq_trim _ lemma to_outer_measure_eq_induced_outer_measure : μ.to_outer_measure = induced_outer_measure (λ s _, μ s) measurable_set.empty μ.empty := μ.trimmed.symm lemma measure_eq_extend (hs : measurable_set s) : μ s = extend (λ t (ht : measurable_set t), μ t) s := (extend_eq _ hs).symm @[simp] lemma measure_empty : μ ∅ = 0 := μ.empty lemma nonempty_of_measure_ne_zero (h : μ s ≠ 0) : s.nonempty := ne_empty_iff_nonempty.1 $ λ h', h $ h'.symm ▸ measure_empty lemma measure_mono (h : s₁ ⊆ s₂) : μ s₁ ≤ μ s₂ := μ.mono h lemma measure_mono_null (h : s₁ ⊆ s₂) (h₂ : μ s₂ = 0) : μ s₁ = 0 := nonpos_iff_eq_zero.1 $ h₂ ▸ measure_mono h lemma measure_mono_top (h : s₁ ⊆ s₂) (h₁ : μ s₁ = ∞) : μ s₂ = ∞ := top_unique $ h₁ ▸ measure_mono h /-- For every set there exists a measurable superset of the same measure. -/ lemma exists_measurable_superset (μ : measure α) (s : set α) : ∃ t, s ⊆ t ∧ measurable_set t ∧ μ t = μ s := by simpa only [← measure_eq_trim] using μ.to_outer_measure.exists_measurable_superset_eq_trim s /-- For every set `s` and a countable collection of measures `μ i` there exists a measurable superset `t ⊇ s` such that each measure `μ i` takes the same value on `s` and `t`. -/ lemma exists_measurable_superset_forall_eq {ι} [encodable ι] (μ : ι → measure α) (s : set α) : ∃ t, s ⊆ t ∧ measurable_set t ∧ ∀ i, μ i t = μ i s := by simpa only [← measure_eq_trim] using outer_measure.exists_measurable_superset_forall_eq_trim (λ i, (μ i).to_outer_measure) s lemma exists_measurable_superset₂ (μ ν : measure α) (s : set α) : ∃ t, s ⊆ t ∧ measurable_set t ∧ μ t = μ s ∧ ν t = ν s := by simpa only [bool.forall_bool.trans and.comm] using exists_measurable_superset_forall_eq (λ b, cond b μ ν) s lemma exists_measurable_superset_of_null (h : μ s = 0) : ∃ t, s ⊆ t ∧ measurable_set t ∧ μ t = 0 := h ▸ exists_measurable_superset μ s lemma exists_measurable_superset_iff_measure_eq_zero : (∃ t, s ⊆ t ∧ measurable_set t ∧ μ t = 0) ↔ μ s = 0 := ⟨λ ⟨t, hst, _, ht⟩, measure_mono_null hst ht, exists_measurable_superset_of_null⟩ theorem measure_Union_le [encodable β] (s : β → set α) : μ (⋃ i, s i) ≤ ∑' i, μ (s i) := μ.to_outer_measure.Union _ lemma measure_bUnion_le {s : set β} (hs : s.countable) (f : β → set α) : μ (⋃ b ∈ s, f b) ≤ ∑' p : s, μ (f p) := begin haveI := hs.to_encodable, rw [bUnion_eq_Union], apply measure_Union_le end lemma measure_bUnion_finset_le (s : finset β) (f : β → set α) : μ (⋃ b ∈ s, f b) ≤ ∑ p in s, μ (f p) := begin rw [← finset.sum_attach, finset.attach_eq_univ, ← tsum_fintype], exact measure_bUnion_le s.countable_to_set f end lemma measure_Union_fintype_le [fintype β] (f : β → set α) : μ (⋃ b, f b) ≤ ∑ p, μ (f p) := by { convert measure_bUnion_finset_le finset.univ f, simp } lemma measure_bUnion_lt_top {s : set β} {f : β → set α} (hs : s.finite) (hfin : ∀ i ∈ s, μ (f i) ≠ ∞) : μ (⋃ i ∈ s, f i) < ∞ := begin convert (measure_bUnion_finset_le hs.to_finset f).trans_lt _, { ext, rw [finite.mem_to_finset] }, apply ennreal.sum_lt_top, simpa only [finite.mem_to_finset] end lemma measure_Union_null [encodable β] {s : β → set α} : (∀ i, μ (s i) = 0) → μ (⋃ i, s i) = 0 := μ.to_outer_measure.Union_null @[simp] lemma measure_Union_null_iff [encodable ι] {s : ι → set α} : μ (⋃ i, s i) = 0 ↔ ∀ i, μ (s i) = 0 := μ.to_outer_measure.Union_null_iff lemma measure_bUnion_null_iff {s : set ι} (hs : s.countable) {t : ι → set α} : μ (⋃ i ∈ s, t i) = 0 ↔ ∀ i ∈ s, μ (t i) = 0 := μ.to_outer_measure.bUnion_null_iff hs lemma measure_sUnion_null_iff {S : set (set α)} (hS : S.countable) : μ (⋃₀ S) = 0 ↔ ∀ s ∈ S, μ s = 0 := μ.to_outer_measure.sUnion_null_iff hS theorem measure_union_le (s₁ s₂ : set α) : μ (s₁ ∪ s₂) ≤ μ s₁ + μ s₂ := μ.to_outer_measure.union _ _ lemma measure_union_null : μ s₁ = 0 → μ s₂ = 0 → μ (s₁ ∪ s₂) = 0 := μ.to_outer_measure.union_null @[simp] lemma measure_union_null_iff : μ (s₁ ∪ s₂) = 0 ↔ μ s₁ = 0 ∧ μ s₂ = 0:= ⟨λ h, ⟨measure_mono_null (subset_union_left _ _) h, measure_mono_null (subset_union_right _ _) h⟩, λ h, measure_union_null h.1 h.2⟩ lemma measure_union_lt_top (hs : μ s < ∞) (ht : μ t < ∞) : μ (s ∪ t) < ∞ := (measure_union_le s t).trans_lt (ennreal.add_lt_top.mpr ⟨hs, ht⟩) @[simp] lemma measure_union_lt_top_iff : μ (s ∪ t) < ∞ ↔ μ s < ∞ ∧ μ t < ∞ := begin refine ⟨λ h, ⟨_, _⟩, λ h, measure_union_lt_top h.1 h.2⟩, { exact (measure_mono (set.subset_union_left s t)).trans_lt h, }, { exact (measure_mono (set.subset_union_right s t)).trans_lt h, }, end lemma measure_union_ne_top (hs : μ s ≠ ∞) (ht : μ t ≠ ∞) : μ (s ∪ t) ≠ ∞ := (measure_union_lt_top hs.lt_top ht.lt_top).ne @[simp] lemma measure_union_eq_top_iff : μ (s ∪ t) = ∞ ↔ μ s = ∞ ∨ μ t = ∞ := not_iff_not.1 $ by simp only [← lt_top_iff_ne_top, ← ne.def, not_or_distrib, measure_union_lt_top_iff] lemma exists_measure_pos_of_not_measure_Union_null [encodable β] {s : β → set α} (hs : μ (⋃ n, s n) ≠ 0) : ∃ n, 0 < μ (s n) := begin contrapose! hs, exact measure_Union_null (λ n, nonpos_iff_eq_zero.1 (hs n)) end lemma measure_inter_lt_top_of_left_ne_top (hs_finite : μ s ≠ ∞) : μ (s ∩ t) < ∞ := (measure_mono (set.inter_subset_left s t)).trans_lt hs_finite.lt_top lemma measure_inter_lt_top_of_right_ne_top (ht_finite : μ t ≠ ∞) : μ (s ∩ t) < ∞ := inter_comm t s ▸ measure_inter_lt_top_of_left_ne_top ht_finite lemma measure_inter_null_of_null_right (S : set α) {T : set α} (h : μ T = 0) : μ (S ∩ T) = 0 := measure_mono_null (inter_subset_right S T) h lemma measure_inter_null_of_null_left {S : set α} (T : set α) (h : μ S = 0) : μ (S ∩ T) = 0 := measure_mono_null (inter_subset_left S T) h /-! ### The almost everywhere filter -/ /-- The “almost everywhere” filter of co-null sets. -/ def measure.ae {α} {m : measurable_space α} (μ : measure α) : filter α := { sets := {s | μ sᶜ = 0}, univ_sets := by simp, inter_sets := λ s t hs ht, by simp only [compl_inter, mem_set_of_eq]; exact measure_union_null hs ht, sets_of_superset := λ s t hs hst, measure_mono_null (set.compl_subset_compl.2 hst) hs } notation `∀ᵐ` binders ` ∂` μ `, ` r:(scoped P, filter.eventually P (measure.ae μ)) := r notation `∃ᵐ` binders ` ∂` μ `, ` r:(scoped P, filter.frequently P (measure.ae μ)) := r notation f ` =ᵐ[`:50 μ:50 `] `:0 g:50 := f =ᶠ[measure.ae μ] g notation f ` ≤ᵐ[`:50 μ:50 `] `:0 g:50 := f ≤ᶠ[measure.ae μ] g lemma mem_ae_iff {s : set α} : s ∈ μ.ae ↔ μ sᶜ = 0 := iff.rfl lemma ae_iff {p : α → Prop} : (∀ᵐ a ∂ μ, p a) ↔ μ { a | ¬ p a } = 0 := iff.rfl lemma compl_mem_ae_iff {s : set α} : sᶜ ∈ μ.ae ↔ μ s = 0 := by simp only [mem_ae_iff, compl_compl] lemma frequently_ae_iff {p : α → Prop} : (∃ᵐ a ∂μ, p a) ↔ μ {a | p a} ≠ 0 := not_congr compl_mem_ae_iff lemma frequently_ae_mem_iff {s : set α} : (∃ᵐ a ∂μ, a ∈ s) ↔ μ s ≠ 0 := not_congr compl_mem_ae_iff lemma measure_zero_iff_ae_nmem {s : set α} : μ s = 0 ↔ ∀ᵐ a ∂ μ, a ∉ s := compl_mem_ae_iff.symm lemma ae_of_all {p : α → Prop} (μ : measure α) : (∀ a, p a) → ∀ᵐ a ∂ μ, p a := eventually_of_forall --instance ae_is_measurably_generated : is_measurably_generated μ.ae := --⟨λ s hs, let ⟨t, hst, htm, htμ⟩ := exists_measurable_superset_of_null hs in -- ⟨tᶜ, compl_mem_ae_iff.2 htμ, htm.compl, compl_subset_comm.1 hst⟩⟩ instance : countable_Inter_filter μ.ae := ⟨begin intros S hSc hS, rw [mem_ae_iff, compl_sInter, sUnion_image], exact (measure_bUnion_null_iff hSc).2 hS end⟩ lemma ae_imp_iff {p : α → Prop} {q : Prop} : (∀ᵐ x ∂μ, q → p x) ↔ (q → ∀ᵐ x ∂μ, p x) := filter.eventually_imp_distrib_left lemma ae_all_iff [encodable ι] {p : α → ι → Prop} : (∀ᵐ a ∂ μ, ∀ i, p a i) ↔ (∀ i, ∀ᵐ a ∂ μ, p a i) := eventually_countable_forall lemma ae_ball_iff {S : set ι} (hS : S.countable) {p : Π (x : α) (i ∈ S), Prop} : (∀ᵐ x ∂ μ, ∀ i ∈ S, p x i ‹_›) ↔ ∀ i ∈ S, ∀ᵐ x ∂ μ, p x i ‹_› := eventually_countable_ball hS lemma ae_eq_refl (f : α → δ) : f =ᵐ[μ] f := eventually_eq.rfl lemma ae_eq_symm {f g : α → δ} (h : f =ᵐ[μ] g) : g =ᵐ[μ] f := h.symm lemma ae_eq_trans {f g h: α → δ} (h₁ : f =ᵐ[μ] g) (h₂ : g =ᵐ[μ] h) : f =ᵐ[μ] h := h₁.trans h₂ lemma ae_le_of_ae_lt {f g : α → ℝ≥0∞} (h : ∀ᵐ x ∂μ, f x < g x) : f ≤ᵐ[μ] g := begin rw [filter.eventually_le, ae_iff], rw ae_iff at h, refine measure_mono_null (λ x hx, _) h, exact not_lt.2 (le_of_lt (not_le.1 hx)), end @[simp] lemma ae_eq_empty : s =ᵐ[μ] (∅ : set α) ↔ μ s = 0 := eventually_eq_empty.trans $ by simp only [ae_iff, not_not, set_of_mem_eq] @[simp] lemma ae_eq_univ : s =ᵐ[μ] (univ : set α) ↔ μ sᶜ = 0 := eventually_eq_univ lemma ae_le_set : s ≤ᵐ[μ] t ↔ μ (s \ t) = 0 := calc s ≤ᵐ[μ] t ↔ ∀ᵐ x ∂μ, x ∈ s → x ∈ t : iff.rfl ... ↔ μ (s \ t) = 0 : by simp [ae_iff]; refl lemma ae_le_set_inter {s' t' : set α} (h : s ≤ᵐ[μ] t) (h' : s' ≤ᵐ[μ] t') : (s ∩ s' : set α) ≤ᵐ[μ] (t ∩ t' : set α) := h.inter h' @[simp] lemma union_ae_eq_right : (s ∪ t : set α) =ᵐ[μ] t ↔ μ (s \ t) = 0 := by simp [eventually_le_antisymm_iff, ae_le_set, union_diff_right, diff_eq_empty.2 (set.subset_union_right _ _)] lemma diff_ae_eq_self : (s \ t : set α) =ᵐ[μ] s ↔ μ (s ∩ t) = 0 := by simp [eventually_le_antisymm_iff, ae_le_set, diff_diff_right, diff_diff, diff_eq_empty.2 (set.subset_union_right _ _)] lemma diff_null_ae_eq_self (ht : μ t = 0) : (s \ t : set α) =ᵐ[μ] s := diff_ae_eq_self.mpr (measure_mono_null (inter_subset_right _ _) ht) lemma ae_eq_set {s t : set α} : s =ᵐ[μ] t ↔ μ (s \ t) = 0 ∧ μ (t \ s) = 0 := by simp [eventually_le_antisymm_iff, ae_le_set] lemma ae_eq_set_inter {s' t' : set α} (h : s =ᵐ[μ] t) (h' : s' =ᵐ[μ] t') : (s ∩ s' : set α) =ᵐ[μ] (t ∩ t' : set α) := h.inter h' @[to_additive] lemma _root_.set.mul_indicator_ae_eq_one {M : Type*} [has_one M] {f : α → M} {s : set α} (h : s.mul_indicator f =ᵐ[μ] 1) : μ (s ∩ function.mul_support f) = 0 := by simpa [filter.eventually_eq, ae_iff] using h /-- If `s ⊆ t` modulo a set of measure `0`, then `μ s ≤ μ t`. -/ @[mono] lemma measure_mono_ae (H : s ≤ᵐ[μ] t) : μ s ≤ μ t := calc μ s ≤ μ (s ∪ t) : measure_mono $ subset_union_left s t ... = μ (t ∪ s \ t) : by rw [union_diff_self, set.union_comm] ... ≤ μ t + μ (s \ t) : measure_union_le _ _ ... = μ t : by rw [ae_le_set.1 H, add_zero] alias measure_mono_ae ← _root_.filter.eventually_le.measure_le /-- If two sets are equal modulo a set of measure zero, then `μ s = μ t`. -/ lemma measure_congr (H : s =ᵐ[μ] t) : μ s = μ t := le_antisymm H.le.measure_le H.symm.le.measure_le alias measure_congr ← _root_.filter.eventually_eq.measure_eq lemma measure_mono_null_ae (H : s ≤ᵐ[μ] t) (ht : μ t = 0) : μ s = 0 := nonpos_iff_eq_zero.1 $ ht ▸ H.measure_le /-- A measurable set `t ⊇ s` such that `μ t = μ s`. It even satisfies `μ (t ∩ u) = μ (s ∩ u)` for any measurable set `u` if `μ s ≠ ∞`, see `measure_to_measurable_inter`. (This property holds without the assumption `μ s ≠ ∞` when the space is sigma-finite, see `measure_to_measurable_inter_of_sigma_finite`). If `s` is a null measurable set, then we also have `t =ᵐ[μ] s`, see `null_measurable_set.to_measurable_ae_eq`. This notion is sometimes called a "measurable hull" in the literature. -/ @[irreducible] def to_measurable (μ : measure α) (s : set α) : set α := if h : ∃ t ⊇ s, measurable_set t ∧ t =ᵐ[μ] s then h.some else if h' : ∃ t ⊇ s, measurable_set t ∧ (∀ u, measurable_set u → μ (t ∩ u) = μ (s ∩ u)) then h'.some else (exists_measurable_superset μ s).some lemma subset_to_measurable (μ : measure α) (s : set α) : s ⊆ to_measurable μ s := begin rw to_measurable, split_ifs with hs h's, exacts [hs.some_spec.fst, h's.some_spec.fst, (exists_measurable_superset μ s).some_spec.1] end lemma ae_le_to_measurable : s ≤ᵐ[μ] to_measurable μ s := (subset_to_measurable _ _).eventually_le @[simp] lemma measurable_set_to_measurable (μ : measure α) (s : set α) : measurable_set (to_measurable μ s) := begin rw to_measurable, split_ifs with hs h's, exacts [hs.some_spec.snd.1, h's.some_spec.snd.1, (exists_measurable_superset μ s).some_spec.2.1] end @[simp] lemma measure_to_measurable (s : set α) : μ (to_measurable μ s) = μ s := begin rw to_measurable, split_ifs with hs h's, { exact measure_congr hs.some_spec.snd.2 }, { simpa only [inter_univ] using h's.some_spec.snd.2 univ measurable_set.univ }, { exact (exists_measurable_superset μ s).some_spec.2.2 } end /-- A measure space is a measurable space equipped with a measure, referred to as `volume`. -/ class measure_space (α : Type*) extends measurable_space α := (volume : measure α) export measure_space (volume) /-- `volume` is the canonical measure on `α`. -/ add_decl_doc volume section measure_space notation `∀ᵐ` binders `, ` r:(scoped P, filter.eventually P (measure_theory.measure.ae measure_theory.measure_space.volume)) := r notation `∃ᵐ` binders `, ` r:(scoped P, filter.frequently P (measure_theory.measure.ae measure_theory.measure_space.volume)) := r /-- The tactic `exact volume`, to be used in optional (`auto_param`) arguments. -/ meta def volume_tac : tactic unit := `[exact measure_theory.measure_space.volume] end measure_space end end measure_theory section open measure_theory /-! # Almost everywhere measurable functions A function is almost everywhere measurable if it coincides almost everywhere with a measurable function. We define this property, called `ae_measurable f μ`. It's properties are discussed in `measure_theory.measure_space`. -/ variables {m : measurable_space α} [measurable_space β] {f g : α → β} {μ ν : measure α} /-- A function is almost everywhere measurable if it coincides almost everywhere with a measurable function. -/ def ae_measurable {m : measurable_space α} (f : α → β) (μ : measure α . measure_theory.volume_tac) : Prop := ∃ g : α → β, measurable g ∧ f =ᵐ[μ] g lemma measurable.ae_measurable (h : measurable f) : ae_measurable f μ := ⟨f, h, ae_eq_refl f⟩ namespace ae_measurable /-- Given an almost everywhere measurable function `f`, associate to it a measurable function that coincides with it almost everywhere. `f` is explicit in the definition to make sure that it shows in pretty-printing. -/ def mk (f : α → β) (h : ae_measurable f μ) : α → β := classical.some h lemma measurable_mk (h : ae_measurable f μ) : measurable (h.mk f) := (classical.some_spec h).1 lemma ae_eq_mk (h : ae_measurable f μ) : f =ᵐ[μ] (h.mk f) := (classical.some_spec h).2 lemma congr (hf : ae_measurable f μ) (h : f =ᵐ[μ] g) : ae_measurable g μ := ⟨hf.mk f, hf.measurable_mk, h.symm.trans hf.ae_eq_mk⟩ end ae_measurable lemma ae_measurable_congr (h : f =ᵐ[μ] g) : ae_measurable f μ ↔ ae_measurable g μ := ⟨λ hf, ae_measurable.congr hf h, λ hg, ae_measurable.congr hg h.symm⟩ @[simp] lemma ae_measurable_const {b : β} : ae_measurable (λ a : α, b) μ := measurable_const.ae_measurable lemma ae_measurable_id : ae_measurable id μ := measurable_id.ae_measurable lemma ae_measurable_id' : ae_measurable (λ x, x) μ := measurable_id.ae_measurable lemma measurable.comp_ae_measurable [measurable_space δ] {f : α → δ} {g : δ → β} (hg : measurable g) (hf : ae_measurable f μ) : ae_measurable (g ∘ f) μ := ⟨g ∘ hf.mk f, hg.comp hf.measurable_mk, eventually_eq.fun_comp hf.ae_eq_mk _⟩ end
5b6c3902f0d57780ae5f3527e4d95bb2f54d486f
d1a52c3f208fa42c41df8278c3d280f075eb020c
/tests/lean/run/matchEqsBug.lean
6b4ea20a4d2c67822434cea48d7133158851728a
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
733
lean
import Lean syntax (name := test) "test%" ident : command open Lean.Elab open Lean.Elab.Command @[commandElab test] def elabTest : CommandElab := fun stx => do let id ← resolveGlobalConstNoOverloadWithInfo stx[1] liftTermElabM none do IO.println (repr (← Lean.Meta.Match.getEquationsFor id)) return () def f (x : List Nat) : Nat := match x with | [] => 1 | [a] => 2 | _ => 3 def g (x : Unit) (y : Bool) : Unit := match x, y with | _, true => () | x, _ => x set_option trace.Meta.Match.matchEqs true test% f.match_1 #check f.match_1.splitter def g.match_1.splitter := 4 test% g.match_1 #check g.match_1._matchEqns_1.eq_1 #check g.match_1._matchEqns_1.eq_2 #check g.match_1._matchEqns_1.splitter
82b44664fdad9c5036a32f4e51ff90203f3d4065
8eeb99d0fdf8125f5d39a0ce8631653f588ee817
/src/number_theory/arithmetic_function.lean
fadf03036794beac0fadb4c49368c591d2104862
[ "Apache-2.0" ]
permissive
jesse-michael-han/mathlib
a15c58378846011b003669354cbab7062b893cfe
fa6312e4dc971985e6b7708d99a5bc3062485c89
refs/heads/master
1,625,200,760,912
1,602,081,753,000
1,602,081,753,000
181,787,230
0
0
null
1,555,460,682,000
1,555,460,682,000
null
UTF-8
Lean
false
false
7,942
lean
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import algebra.big_operators.ring import number_theory.divisors /-! # Arithmetic Functions and Dirichlet Convolution This file defines arithmetic functions, which are functions from `ℕ` to a specified type that map 0 to 0. In the literature, they are often instead defined as functions from `ℕ+`. These arithmetic functions are endowed with a multiplication, given by Dirichlet convolution, and pointwise addition, to form the Dirichlet ring. ## Main Definitions * `arithmetic_function α` consists of functions `f : ℕ → α` such that `f 0 = 0`. ## Tags arithmetic functions, dirichlet convolution, divisors -/ open finset open_locale big_operators namespace nat variable (α : Type*) /-- An arithmetic function is a function from `ℕ` that maps 0 to 0. In the literature, they are often instead defined as functions from `ℕ+`. Multiplication on `arithmetic_functions` is by Dirichlet convolution. -/ structure arithmetic_function [has_zero α] := (to_fun : ℕ → α) (map_zero' : to_fun 0 = 0) variable {α} namespace arithmetic_function section has_zero variable [has_zero α] instance : has_coe_to_fun (arithmetic_function α) := ⟨λ _, ℕ → α, to_fun⟩ @[simp] lemma to_fun_eq (f : arithmetic_function α) : f.to_fun = f := rfl @[simp] lemma map_zero {f : arithmetic_function α} : f 0 = 0 := f.map_zero' theorem coe_inj {f g : arithmetic_function α} : (f : ℕ → α) = g ↔ f = g := begin split; intro h, { cases f, cases g, cases h, refl }, { rw h } end instance : has_zero (arithmetic_function α) := ⟨⟨λ _, 0, rfl⟩⟩ @[simp] lemma zero_apply {x : ℕ} : (0 : arithmetic_function α) x = 0 := rfl instance : inhabited (arithmetic_function α) := ⟨0⟩ @[ext] theorem ext ⦃f g : arithmetic_function α⦄ (h : ∀ x, f x = g x) : f = g := coe_inj.1 (funext h) theorem ext_iff {f g : arithmetic_function α} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, λ h, ext h⟩ section has_one variable [has_one α] instance : has_one (arithmetic_function α) := ⟨⟨λ x, ite (x = 1) 1 0, rfl⟩⟩ @[simp] lemma one_one : (1 : arithmetic_function α) 1 = 1 := rfl @[simp] lemma one_apply_ne {x : ℕ} (h : x ≠ 1) : (1 : arithmetic_function α) x = 0 := if_neg h end has_one end has_zero instance nat_coe [semiring α] : has_coe (arithmetic_function ℕ) (arithmetic_function α) := ⟨λ f, ⟨↑(f : ℕ → ℕ), by { transitivity ↑(f 0), refl, simp }⟩⟩ @[simp] lemma nat_coe_apply [semiring α] {f : arithmetic_function ℕ} {x : ℕ} : (f : arithmetic_function α) x = f x := rfl instance int_coe [ring α] : has_coe (arithmetic_function ℤ) (arithmetic_function α) := ⟨λ f, ⟨↑(f : ℕ → ℤ), by { transitivity ↑(f 0), refl, simp }⟩⟩ @[simp] lemma int_coe_apply [ring α] {f : arithmetic_function ℤ} {x : ℕ} : (f : arithmetic_function α) x = f x := rfl @[simp] lemma coe_coe [ring α] {f : arithmetic_function ℕ} : ((f : arithmetic_function ℤ) : arithmetic_function α) = f := by { ext, simp, } section add_monoid variable [add_monoid α] instance : has_add (arithmetic_function α) := ⟨λ f g, ⟨λ n, f n + g n, by simp⟩⟩ @[simp] lemma add_apply {f g : arithmetic_function α} {n : ℕ} : (f + g) n = f n + g n := rfl instance : add_monoid (arithmetic_function α) := { add_assoc := λ _ _ _, ext (λ _, add_assoc _ _ _), zero_add := λ _, ext (λ _, zero_add _), add_zero := λ _, ext (λ _, add_zero _), .. arithmetic_function.has_zero, .. arithmetic_function.has_add } end add_monoid instance [add_comm_monoid α] : add_comm_monoid (arithmetic_function α) := { add_comm := λ _ _, ext (λ _, add_comm _ _), .. arithmetic_function.add_monoid } instance [add_group α] : add_group (arithmetic_function α) := { neg := λ f, ⟨λ n, - f n, by simp⟩, add_left_neg := λ _, ext (λ _, add_left_neg _), .. arithmetic_function.add_monoid } instance [add_comm_group α] : add_comm_group (arithmetic_function α) := { .. arithmetic_function.add_comm_monoid, .. arithmetic_function.add_group } section dirichlet_ring variable [semiring α] /-- The Dirichlet convolution of two arithmetic functions `f` and `g` is another arithmetic function such that `(f * g) n` is the sum of `f x * g y` over all `(x,y)` such that `x * y = n`. -/ instance : has_mul (arithmetic_function α) := ⟨λ f g, ⟨λ n, ∑ x in divisors_antidiagonal n, f x.fst * g x.snd, by simp⟩⟩ @[simp] lemma mul_apply {f g : arithmetic_function α} {n : ℕ} : (f * g) n = ∑ x in divisors_antidiagonal n, f x.fst * g x.snd := rfl instance : monoid (arithmetic_function α) := { one_mul := λ f, begin ext, rw mul_apply, by_cases x0 : x = 0, {simp [x0]}, have h : {(1,x)} ⊆ divisors_antidiagonal x := by simp [x0], rw ← sum_subset h, {simp}, intros y ymem ynmem, have y1ne : y.fst ≠ 1, { intro con, simp only [con, mem_divisors_antidiagonal, one_mul, ne.def] at ymem, simp only [mem_singleton, prod.ext_iff] at ynmem, tauto }, simp [y1ne], end, mul_one := λ f, begin ext, rw mul_apply, by_cases x0 : x = 0, {simp [x0]}, have h : {(x,1)} ⊆ divisors_antidiagonal x := by simp [x0], rw ← sum_subset h, {simp}, intros y ymem ynmem, have y2ne : y.snd ≠ 1, { intro con, simp only [con, mem_divisors_antidiagonal, mul_one, ne.def] at ymem, simp only [mem_singleton, prod.ext_iff] at ynmem, tauto }, simp [y2ne], end, mul_assoc := λ f g h, begin ext n, simp only [mul_apply], have := @finset.sum_sigma (ℕ × ℕ) α _ _ (divisors_antidiagonal n) (λ p, (divisors_antidiagonal p.1)) (λ x, f x.2.1 * g x.2.2 * h x.1.2), convert this.symm using 1; clear this, { apply finset.sum_congr rfl, intros p hp, exact finset.sum_mul }, have := @finset.sum_sigma (ℕ × ℕ) α _ _ (divisors_antidiagonal n) (λ p, (divisors_antidiagonal p.2)) (λ x, f x.1.1 * (g x.2.1 * h x.2.2)), convert this.symm using 1; clear this, { apply finset.sum_congr rfl, intros p hp, rw finset.mul_sum }, apply finset.sum_bij, swap 5, { rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, exact ⟨(k, l*j), (l, j)⟩ }, { rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, simp only [finset.mem_sigma, mem_divisors_antidiagonal] at H ⊢, finish }, { rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, simp only [mul_assoc] }, { rintros ⟨⟨a,b⟩, ⟨c,d⟩⟩ ⟨⟨i,j⟩, ⟨k,l⟩⟩ H₁ H₂, simp only [finset.mem_sigma, mem_divisors_antidiagonal, and_imp, prod.mk.inj_iff, add_comm, heq_iff_eq] at H₁ H₂ ⊢, finish }, { rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, refine ⟨⟨(i*k, l), (i, k)⟩, _, _⟩; { simp only [finset.mem_sigma, mem_divisors_antidiagonal] at H ⊢, finish } } end, .. arithmetic_function.has_one, .. arithmetic_function.has_mul } instance : semiring (arithmetic_function α) := { zero_mul := λ f, by { ext, simp, }, mul_zero := λ f, by { ext, simp, }, left_distrib := λ a b c, by { ext, simp [← sum_add_distrib, mul_add] }, right_distrib := λ a b c, by { ext, simp [← sum_add_distrib, add_mul] }, .. arithmetic_function.has_zero, .. arithmetic_function.has_mul, .. arithmetic_function.has_add, .. arithmetic_function.add_comm_monoid, .. arithmetic_function.monoid } end dirichlet_ring instance [comm_semiring α] : comm_semiring (arithmetic_function α) := { mul_comm := λ f g, by { ext, rw [mul_apply, ← map_swap_divisors_antidiagonal, sum_map], simp [mul_comm] }, .. arithmetic_function.semiring } instance [comm_ring α] : comm_ring (arithmetic_function α) := { .. arithmetic_function.add_comm_group, .. arithmetic_function.comm_semiring } end arithmetic_function end nat
5e9738023791952c4e8ad7f80674eb72a287879f
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/impLambdaTac.lean
36f875c72a424bcc0b394c1c5449bb6ea87d52a1
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
681
lean
example (P : Prop) : ∀ {p : P}, P := by exact fun {p} => p example (P : Prop) : ∀ {p : P}, P := by intro h; exact h example (P : Prop) : ∀ {p : P}, P := by exact @id _ example (P : Prop) : ∀ {p : P}, P := by exact no_implicit_lambda% id macro "exact'" x:term : tactic => `(tactic| exact no_implicit_lambda% $x) example (P : Prop) : ∀ {p : P}, P := by exact' id example (P : Prop) : ∀ {p : P}, P := by apply id example (P : Prop) : ∀ p : P, P := by have : _ := 1 apply id example (P : Prop) : ∀ {p : P}, P := by refine no_implicit_lambda% (have : _ := 1; ?_) apply id example (P : Prop) : ∀ {p : P}, P := by have : _ := 1 apply id
6e104288d8826b60677874f5e842bbdc591b7d11
bdb33f8b7ea65f7705fc342a178508e2722eb851
/order/boolean_algebra.lean
1a7971f00856941e2918283e3ed6810617e0d0f8
[ "Apache-2.0" ]
permissive
rwbarton/mathlib
939ae09bf8d6eb1331fc2f7e067d39567e10e33d
c13c5ea701bb1eec057e0a242d9f480a079105e9
refs/heads/master
1,584,015,335,862
1,524,142,167,000
1,524,142,167,000
130,614,171
0
0
Apache-2.0
1,548,902,667,000
1,524,437,371,000
Lean
UTF-8
Lean
false
false
3,674
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Type class hierarchy for Boolean algebras. -/ import order.bounded_lattice set_option old_structure_cmd true namespace lattice universes u variables {α : Type u} {w x y z : α} /-- A boolean algebra is a bounded distributive lattice with a complementation operation `-` such that `x ⊓ - x = ⊥` and `x ⊔ - x = ⊤`. This is a generalization of (classical) logic of propositions, or the powerset lattice. -/ class boolean_algebra α extends bounded_distrib_lattice α, has_neg α, has_sub α := (inf_neg_eq_bot : ∀x:α, x ⊓ - x = ⊥) (sup_neg_eq_top : ∀x:α, x ⊔ - x = ⊤) (sub_eq : ∀x y:α, x - y = x ⊓ - y) section boolean_algebra variables [boolean_algebra α] @[simp] theorem inf_neg_eq_bot : x ⊓ - x = ⊥ := boolean_algebra.inf_neg_eq_bot x @[simp] theorem neg_inf_eq_bot : - x ⊓ x = ⊥ := eq.trans inf_comm inf_neg_eq_bot @[simp] theorem sup_neg_eq_top : x ⊔ - x = ⊤ := boolean_algebra.sup_neg_eq_top x @[simp] theorem neg_sup_eq_top : - x ⊔ x = ⊤ := eq.trans sup_comm sup_neg_eq_top theorem sub_eq : x - y = x ⊓ - y := boolean_algebra.sub_eq x y theorem neg_unique (i : x ⊓ y = ⊥) (s : x ⊔ y = ⊤) : - x = y := have (- x ⊓ x) ⊔ (- x ⊓ y) = (y ⊓ x) ⊔ (y ⊓ - x), by rsimp, have - x ⊓ (x ⊔ y) = y ⊓ (x ⊔ - x), begin [smt] eblast_using inf_sup_left end, by rsimp @[simp] theorem neg_top : - ⊤ = (⊥:α) := neg_unique (by simp) (by simp) @[simp] theorem neg_bot : - ⊥ = (⊤:α) := neg_unique (by simp) (by simp) @[simp] theorem neg_neg : - (- x) = x := neg_unique (by simp) (by simp) theorem neg_eq_neg_of_eq (h : - x = - y) : x = y := have - - x = - - y, from congr_arg has_neg.neg h, by simp [neg_neg] at this; assumption @[simp] theorem neg_eq_neg_iff : - x = - y ↔ x = y := ⟨neg_eq_neg_of_eq, congr_arg has_neg.neg⟩ @[simp] theorem neg_inf : - (x ⊓ y) = -x ⊔ -y := neg_unique -- TODO: try rsimp if it supports custom lemmas (calc (x ⊓ y) ⊓ (- x ⊔ - y) = (y ⊓ (x ⊓ - x)) ⊔ (x ⊓ (y ⊓ - y)) : by rw [inf_sup_left]; ac_refl ... = ⊥ : by simp) (calc (x ⊓ y) ⊔ (- x ⊔ - y) = (- y ⊔ (x ⊔ - x)) ⊓ (- x ⊔ (y ⊔ - y)) : by rw [sup_inf_right]; ac_refl ... = ⊤ : by simp) @[simp] theorem neg_sup : - (x ⊔ y) = -x ⊓ -y := begin [smt] eblast_using [neg_neg, neg_inf] end theorem neg_le_neg (h : y ≤ x) : - x ≤ - y := le_of_inf_eq $ calc -x ⊓ -y = - (x ⊔ y) : neg_sup.symm ... = -x : congr_arg has_neg.neg $ sup_of_le_left h theorem neg_le_neg_iff_le : - y ≤ - x ↔ x ≤ y := ⟨assume h, by have h := neg_le_neg h; simp at h; assumption, neg_le_neg⟩ theorem le_neg_of_le_neg (h : y ≤ - x) : x ≤ - y := have - (- x) ≤ - y, from neg_le_neg h, by simp at this; assumption theorem neg_le_of_neg_le (h : - y ≤ x) : - x ≤ y := have - x ≤ - (- y), from neg_le_neg h, by simp at this; assumption theorem neg_le_iff_neg_le : y ≤ - x ↔ x ≤ - y := ⟨le_neg_of_le_neg, le_neg_of_le_neg⟩ theorem sup_sub_same : x ⊔ (y - x) = x ⊔ y := by simp [sub_eq, sup_inf_left] theorem sub_eq_left (h : x ⊓ y = ⊥) : x - y = x := calc x - y = (x ⊓ -y) ⊔ (x ⊓ y) : by simp [h, sub_eq] ... = (-y ⊓ x) ⊔ (y ⊓ x) : by simp [inf_comm] ... = (-y ⊔ y) ⊓ x : inf_sup_right.symm ... = x : by simp theorem sub_le_sub (h₁ : w ≤ y) (h₂ : z ≤ x) : w - x ≤ y - z := by rw [sub_eq, sub_eq]; from inf_le_inf h₁ (neg_le_neg h₂) end boolean_algebra end lattice
793e99c1dc74ef0d146fbe1581411ac582a62512
8b9f17008684d796c8022dab552e42f0cb6fb347
/tests/lean/run/forest.lean
ef0195d040de3f32738de7d92c0f5e2d77956593
[ "Apache-2.0" ]
permissive
chubbymaggie/lean
0d06ae25f9dd396306fb02190e89422ea94afd7b
d2c7b5c31928c98f545b16420d37842c43b4ae9a
refs/heads/master
1,611,313,622,901
1,430,266,839,000
1,430,267,083,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,489
lean
import data.prod data.unit open prod inductive tree (A : Type) : Type := | node : A → forest A → tree A with forest : Type := | nil : forest A | cons : tree A → forest A → forest A namespace manual definition tree.below.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (t : tree A) : Type.{max 1 l₂} := @tree.rec_on A (λ t : tree A, Type.{max 1 l₂}) (λ t : forest A, Type.{max 1 l₂}) t (λ (a : A) (f : forest A) (r : Type.{max 1 l₂}), prod.{l₂ (max 1 l₂)} (C₂ f) r) unit.{max 1 l₂} (λ (t : tree A) (f : forest A) (rt : Type.{max 1 l₂}) (rf : Type.{max 1 l₂}), prod.{(max 1 l₂) (max 1 l₂)} (prod.{l₂ (max 1 l₂)} (C₁ t) rt) (prod.{l₂ (max 1 l₂)} (C₂ f) rf)) definition forest.below.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (f : forest A) : Type.{max 1 l₂} := @forest.rec_on A (λ t : tree A, Type.{max 1 l₂}) (λ t : forest A, Type.{max 1 l₂}) f (λ (a : A) (f : forest A) (r : Type.{max 1 l₂}), prod.{l₂ (max 1 l₂)} (C₂ f) r) unit.{max 1 l₂} (λ (t : tree A) (f : forest A) (rt : Type.{max 1 l₂}) (rf : Type.{max 1 l₂}), prod.{(max 1 l₂) (max 1 l₂)} (prod.{l₂ (max 1 l₂)} (C₁ t) rt) (prod.{l₂ (max 1 l₂)} (C₂ f) rf)) definition tree.brec_on.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (t : tree A) (F₁ : Π (t : tree A), tree.below A C₁ C₂ t → C₁ t) (F₂ : Π (f : forest A), forest.below A C₁ C₂ f → C₂ f) : C₁ t := have general : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t), from @tree.rec_on A (λ (t' : tree A), prod.{l₂ (max 1 l₂)} (C₁ t') (tree.below A C₁ C₂ t')) (λ (f' : forest A), prod.{l₂ (max 1 l₂)} (C₂ f') (forest.below A C₁ C₂ f')) t (λ (a : A) (f : forest A) (r : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : tree.below A C₁ C₂ (tree.node a f), from r, have c : C₁ (tree.node a f), from F₁ (tree.node a f) b, prod.mk.{l₂ (max 1 l₂)} c b) (have b : forest.below A C₁ C₂ (forest.nil A), from unit.star.{max 1 l₂}, have c : C₂ (forest.nil A), from F₂ (forest.nil A) b, prod.mk.{l₂ (max 1 l₂)} c b) (λ (t : tree A) (f : forest A) (rt : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t)) (rf : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : forest.below A C₁ C₂ (forest.cons t f), from prod.mk.{(max 1 l₂) (max 1 l₂)} rt rf, have c : C₂ (forest.cons t f), from F₂ (forest.cons t f) b, prod.mk.{l₂ (max 1 l₂)} c b), pr₁ general definition forest.brec_on.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (f : forest A) (F₁ : Π (t : tree A), tree.below A C₁ C₂ t → C₁ t) (F₂ : Π (f : forest A), forest.below A C₁ C₂ f → C₂ f) : C₂ f := have general : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f), from @forest.rec_on A (λ (t' : tree A), prod.{l₂ (max 1 l₂)} (C₁ t') (tree.below A C₁ C₂ t')) (λ (f' : forest A), prod.{l₂ (max 1 l₂)} (C₂ f') (forest.below A C₁ C₂ f')) f (λ (a : A) (f : forest A) (r : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : tree.below A C₁ C₂ (tree.node a f), from r, have c : C₁ (tree.node a f), from F₁ (tree.node a f) b, prod.mk.{l₂ (max 1 l₂)} c b) (have b : forest.below A C₁ C₂ (forest.nil A), from unit.star.{max 1 l₂}, have c : C₂ (forest.nil A), from F₂ (forest.nil A) b, prod.mk.{l₂ (max 1 l₂)} c b) (λ (t : tree A) (f : forest A) (rt : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t)) (rf : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : forest.below A C₁ C₂ (forest.cons t f), from prod.mk.{(max 1 l₂) (max 1 l₂)} rt rf, have c : C₂ (forest.cons t f), from F₂ (forest.cons t f) b, prod.mk.{l₂ (max 1 l₂)} c b), pr₁ general end manual
27def045b3aa22b417aa6c8ce7c7e9a010019d49
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
/src/topology/algebra/infinite_sum.lean
2e9a000597b50f1103eb699087d1c14cb9e11ad9
[ "Apache-2.0" ]
permissive
DanielFabian/mathlib
efc3a50b5dde303c59eeb6353ef4c35a345d7112
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
refs/heads/master
1,668,739,922,971
1,595,201,756,000
1,595,201,756,000
279,469,476
0
0
null
1,594,696,604,000
1,594,696,604,000
null
UTF-8
Lean
false
false
35,936
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Infinite sum over a topological monoid This sum is known as unconditionally convergent, as it sums to the same value under all possible permutations. For Euclidean spaces (finite dimensional Banach spaces) this is equivalent to absolute convergence. Note: There are summable sequences which are not unconditionally convergent! The other way holds generally, see `has_sum.tendsto_sum_nat`. Reference: * Bourbaki: General Topology (1995), Chapter 3 §5 (Infinite sums in commutative groups) -/ import topology.instances.real noncomputable theory open finset filter function classical open_locale topological_space classical big_operators variables {α : Type*} {β : Type*} {γ : Type*} section has_sum variables [add_comm_monoid α] [topological_space α] /-- Infinite sum on a topological monoid The `at_top` filter on `finset α` is the limit of all finite sets towards the entire type. So we sum up bigger and bigger sets. This sum operation is still invariant under reordering, and a absolute sum operator. This is based on Mario Carneiro's infinite sum in Metamath. For the definition or many statements, α does not need to be a topological monoid. We only add this assumption later, for the lemmas where it is relevant. -/ def has_sum (f : β → α) (a : α) : Prop := tendsto (λs:finset β, ∑ b in s, f b) at_top (𝓝 a) /-- `summable f` means that `f` has some (infinite) sum. Use `tsum` to get the value. -/ def summable (f : β → α) : Prop := ∃a, has_sum f a /-- `tsum f` is the sum of `f` it exists, or 0 otherwise -/ def tsum (f : β → α) := if h : summable f then classical.some h else 0 notation `∑'` binders `, ` r:(scoped f, tsum f) := r variables {f g : β → α} {a b : α} {s : finset β} lemma summable.has_sum (ha : summable f) : has_sum f (∑'b, f b) := by simp [ha, tsum]; exact some_spec ha lemma has_sum.summable (h : has_sum f a) : summable f := ⟨a, h⟩ /-- Constant zero function has sum `0` -/ lemma has_sum_zero : has_sum (λb, 0 : β → α) 0 := by simp [has_sum, tendsto_const_nhds] lemma summable_zero : summable (λb, 0 : β → α) := has_sum_zero.summable lemma tsum_eq_zero_of_not_summable (h : ¬ summable f) : (∑'b, f b) = 0 := by simp [tsum, h] /-- If a function `f` vanishes outside of a finite set `s`, then it `has_sum` `∑ b in s, f b`. -/ lemma has_sum_sum_of_ne_finset_zero (hf : ∀b∉s, f b = 0) : has_sum f (∑ b in s, f b) := tendsto_infi' s $ tendsto.congr' (assume t (ht : s ⊆ t), show ∑ b in s, f b = ∑ b in t, f b, from sum_subset ht $ assume x _, hf _) tendsto_const_nhds lemma has_sum_fintype [fintype β] (f : β → α) : has_sum f (∑ b, f b) := has_sum_sum_of_ne_finset_zero $ λ a h, h.elim (mem_univ _) lemma summable_sum_of_ne_finset_zero (hf : ∀b∉s, f b = 0) : summable f := (has_sum_sum_of_ne_finset_zero hf).summable lemma has_sum_single {f : β → α} (b : β) (hf : ∀b' ≠ b, f b' = 0) : has_sum f (f b) := suffices has_sum f (∑ b' in {b}, f b'), by simpa using this, has_sum_sum_of_ne_finset_zero $ by simpa [hf] lemma has_sum_ite_eq (b : β) (a : α) : has_sum (λb', if b' = b then a else 0) a := begin convert has_sum_single b _, { exact (if_pos rfl).symm }, assume b' hb', exact if_neg hb' end lemma has_sum_of_iso {j : γ → β} {i : β → γ} (hf : has_sum f a) (h₁ : ∀x, i (j x) = x) (h₂ : ∀x, j (i x) = x) : has_sum (f ∘ j) a := have ∀x y, j x = j y → x = y, from assume x y h, have i (j x) = i (j y), by rw [h], by rwa [h₁, h₁] at this, have (λs:finset γ, ∑ x in s, f (j x)) = (λs:finset β, ∑ b in s, f b) ∘ (λs:finset γ, s.image j), from funext $ assume s, (sum_image $ assume x _ y _, this x y).symm, show tendsto (λs:finset γ, ∑ x in s, f (j x)) at_top (𝓝 a), by rw [this]; apply hf.comp (tendsto_finset_image_at_top_at_top h₂) lemma has_sum_iff_has_sum_of_iso {j : γ → β} (i : β → γ) (h₁ : ∀x, i (j x) = x) (h₂ : ∀x, j (i x) = x) : has_sum (f ∘ j) a ↔ has_sum f a := iff.intro (assume hfj, have has_sum ((f ∘ j) ∘ i) a, from has_sum_of_iso hfj h₂ h₁, by simp [(∘), h₂] at this; assumption) (assume hf, has_sum_of_iso hf h₁ h₂) lemma equiv.has_sum_iff (e : γ ≃ β) : has_sum (f ∘ e) a ↔ has_sum f a := has_sum_iff_has_sum_of_iso e.symm e.left_inv e.right_inv lemma equiv.summable_iff (e : γ ≃ β) : summable (f ∘ e) ↔ summable f := ⟨λ H, (e.has_sum_iff.1 H.has_sum).summable, λ H, (e.has_sum_iff.2 H.has_sum).summable⟩ lemma has_sum_hom (g : α → γ) [add_comm_monoid γ] [topological_space γ] [is_add_monoid_hom g] (h₃ : continuous g) (hf : has_sum f a) : has_sum (g ∘ f) (g a) := have (λs:finset β, ∑ b in s, g (f b)) = g ∘ (λs:finset β, ∑ b in s, f b), from funext $ assume s, s.sum_hom g, show tendsto (λs:finset β, ∑ b in s, g (f b)) at_top (𝓝 (g a)), by rw [this]; exact tendsto.comp (continuous_iff_continuous_at.mp h₃ a) hf /-- If `f : ℕ → α` has sum `a`, then the partial sums `∑_{i=0}^{n-1} f i` converge to `a`. -/ lemma has_sum.tendsto_sum_nat {f : ℕ → α} (h : has_sum f a) : tendsto (λn:ℕ, ∑ i in range n, f i) at_top (𝓝 a) := @tendsto.comp _ _ _ finset.range (λ s : finset ℕ, ∑ n in s, f n) _ _ _ h tendsto_finset_range lemma has_sum_unique {a₁ a₂ : α} [t2_space α] : has_sum f a₁ → has_sum f a₂ → a₁ = a₂ := tendsto_nhds_unique at_top_ne_bot lemma has_sum_iff_tendsto_nat_of_summable [t2_space α] {f : ℕ → α} {a : α} (hf : summable f) : has_sum f a ↔ tendsto (λn:ℕ, ∑ i in range n, f i) at_top (𝓝 a) := begin refine ⟨λ h, h.tendsto_sum_nat, λ h, _⟩, rw tendsto_nhds_unique at_top_ne_bot h hf.has_sum.tendsto_sum_nat, exact hf.has_sum end variable [topological_add_monoid α] lemma has_sum.add (hf : has_sum f a) (hg : has_sum g b) : has_sum (λb, f b + g b) (a + b) := by simp [has_sum, sum_add_distrib]; exact hf.add hg lemma summable.add (hf : summable f) (hg : summable g) : summable (λb, f b + g b) := (hf.has_sum.add hg.has_sum).summable lemma has_sum_sum {f : γ → β → α} {a : γ → α} {s : finset γ} : (∀i∈s, has_sum (f i) (a i)) → has_sum (λb, ∑ i in s, f i b) (∑ i in s, a i) := finset.induction_on s (by simp [has_sum_zero]) (by simp [has_sum.add] {contextual := tt}) lemma summable_sum {f : γ → β → α} {s : finset γ} (hf : ∀i∈s, summable (f i)) : summable (λb, ∑ i in s, f i b) := (has_sum_sum $ assume i hi, (hf i hi).has_sum).summable lemma has_sum.sigma [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α} {a : α} (ha : has_sum f a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) : has_sum g a := assume s' hs', let ⟨s, hs, hss', hsc⟩ := nhds_is_closed hs', ⟨u, hu⟩ := mem_at_top_sets.mp $ ha hs, fsts := u.image sigma.fst, snds := λb, u.bind (λp, (if h : p.1 = b then {cast (congr_arg γ h) p.2} else ∅ : finset (γ b))) in have u_subset : u ⊆ fsts.sigma snds, from subset_iff.mpr $ assume ⟨b, c⟩ hu, have hb : b ∈ fsts, from finset.mem_image.mpr ⟨_, hu, rfl⟩, have hc : c ∈ snds b, from mem_bind.mpr ⟨_, hu, by simp; refl⟩, by simp [mem_sigma, hb, hc] , mem_at_top_sets.mpr $ exists.intro fsts $ assume bs (hbs : fsts ⊆ bs), have h : ∀cs : Π b ∈ bs, finset (γ b), ((⋂b (hb : b ∈ bs), (λp:Πb, finset (γ b), p b) ⁻¹' {cs' | cs b hb ⊆ cs' }) ∩ (λp, ∑ b in bs, ∑ c in p b, f ⟨b, c⟩) ⁻¹' s).nonempty, from assume cs, let cs' := λb, (if h : b ∈ bs then cs b h else ∅) ∪ snds b in have sum_eq : ∑ b in bs, ∑ c in cs' b, f ⟨b, c⟩ = ∑ x in bs.sigma cs', f x, from sum_sigma.symm, have ∑ x in bs.sigma cs', f x ∈ s, from hu _ $ finset.subset.trans u_subset $ sigma_mono hbs $ assume b, @finset.subset_union_right (γ b) _ _ _, exists.intro cs' $ by simp [sum_eq, this]; { intros b hb, simp [cs', hb, finset.subset_union_left] }, have tendsto (λp:(Πb:β, finset (γ b)), ∑ b in bs, ∑ c in p b, f ⟨b, c⟩) (⨅b (h : b ∈ bs), at_top.comap (λp, p b)) (𝓝 (∑ b in bs, g b)), from tendsto_finset_sum bs $ assume c hc, tendsto_infi' c $ tendsto_infi' hc $ by apply tendsto.comp (hf c) tendsto_comap, have ∑ b in bs, g b ∈ s, from mem_of_closed_of_tendsto' this hsc $ forall_sets_nonempty_iff_ne_bot.mp $ begin simp only [mem_inf_sets, exists_imp_distrib, forall_and_distrib, and_imp, filter.mem_infi_sets_finset, mem_comap_sets, mem_at_top_sets, and_comm, mem_principal_sets, set.preimage_subset_iff, exists_prop, skolem], intros s₁ s₂ s₃ hs₁ hs₃ p hs₂ p' hp cs hp', have : (⋂b (h : b ∈ bs), (λp:(Πb, finset (γ b)), p b) ⁻¹' {cs' | cs b h ⊆ cs' }) ≤ (⨅b∈bs, p b), from (infi_le_infi $ assume b, infi_le_infi $ assume hb, le_trans (set.preimage_mono $ hp' b hb) (hp b hb)), exact (h _).mono (set.subset.trans (set.inter_subset_inter (le_trans this hs₂) hs₃) hs₁) end, hss' this lemma summable.sigma [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) (hf : ∀b, summable (λc, f ⟨b, c⟩)) : summable (λb, ∑'c, f ⟨b, c⟩) := (ha.has_sum.sigma (assume b, (hf b).has_sum)).summable lemma has_sum.sigma_of_has_sum [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α} {a : α} (ha : has_sum g a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) (hf' : summable f) : has_sum f a := by simpa [has_sum_unique (hf'.has_sum.sigma hf) ha] using hf'.has_sum end has_sum section has_sum_iff_has_sum_of_iso_ne_zero variables [add_comm_monoid α] [topological_space α] variables {f : β → α} {g : γ → α} {a : α} lemma has_sum.has_sum_of_sum_eq (h_eq : ∀u:finset γ, ∃v:finset β, ∀v', v ⊆ v' → ∃u', u ⊆ u' ∧ ∑ x in u', g x = ∑ b in v', f b) (hf : has_sum g a) : has_sum f a := suffices at_top.map (λs:finset β, ∑ b in s, f b) ≤ at_top.map (λs:finset γ, ∑ x in s, g x), from le_trans this hf, by rw [map_at_top_eq, map_at_top_eq]; from (le_infi $ assume b, let ⟨v, hv⟩ := h_eq b in infi_le_of_le v $ by simp [set.image_subset_iff]; exact hv) lemma has_sum_iff_has_sum (h₁ : ∀u:finset γ, ∃v:finset β, ∀v', v ⊆ v' → ∃u', u ⊆ u' ∧ ∑ x in u', g x = ∑ b in v', f b) (h₂ : ∀v:finset β, ∃u:finset γ, ∀u', u ⊆ u' → ∃v', v ⊆ v' ∧ ∑ b in v', f b = ∑ x in u', g x) : has_sum f a ↔ has_sum g a := ⟨has_sum.has_sum_of_sum_eq h₂, has_sum.has_sum_of_sum_eq h₁⟩ variables (i : Π⦃c⦄, g c ≠ 0 → β) (hi : ∀⦃c⦄ (h : g c ≠ 0), f (i h) ≠ 0) (j : Π⦃b⦄, f b ≠ 0 → γ) (hj : ∀⦃b⦄ (h : f b ≠ 0), g (j h) ≠ 0) (hji : ∀⦃c⦄ (h : g c ≠ 0), j (hi h) = c) (hij : ∀⦃b⦄ (h : f b ≠ 0), i (hj h) = b) (hgj : ∀⦃b⦄ (h : f b ≠ 0), g (j h) = f b) include hi hj hji hij hgj -- FIXME this causes a deterministic timeout with `-T50000` lemma has_sum.has_sum_ne_zero : has_sum g a → has_sum f a := have j_inj : ∀x y (hx : f x ≠ 0) (hy : f y ≠ 0), (j hx = j hy ↔ x = y), from assume x y hx hy, ⟨assume h, have i (hj hx) = i (hj hy), by simp [h], by rwa [hij, hij] at this; assumption, by simp {contextual := tt}⟩, let ii : finset γ → finset β := λu, u.bind $ λc, if h : g c = 0 then ∅ else {i h} in let jj : finset β → finset γ := λv, v.bind $ λb, if h : f b = 0 then ∅ else {j h} in has_sum.has_sum_of_sum_eq $ assume u, exists.intro (ii u) $ assume v hv, exists.intro (u ∪ jj v) $ and.intro (subset_union_left _ _) $ have ∀c:γ, c ∈ u ∪ jj v → c ∉ jj v → g c = 0, from assume c hc hnc, classical.by_contradiction $ assume h : g c ≠ 0, have c ∈ u, from (finset.mem_union.1 hc).resolve_right hnc, have i h ∈ v, from hv $ by simp [mem_bind]; existsi c; simp [h, this], have j (hi h) ∈ jj v, by simp [mem_bind]; existsi i h; simp [h, hi, this], by rw [hji h] at this; exact hnc this, calc ∑ x in u ∪ jj v, g x = ∑ x in jj v, g x : (sum_subset (subset_union_right _ _) this).symm ... = ∑ x in v, _ : sum_bind $ by intros x _ y _ _; by_cases f x = 0; by_cases f y = 0; simp [*]; cc ... = ∑ x in v, f x : sum_congr rfl $ by intros x hx; by_cases f x = 0; simp [*] lemma has_sum_iff_has_sum_of_ne_zero : has_sum f a ↔ has_sum g a := iff.intro (has_sum.has_sum_ne_zero j hj i hi hij hji $ assume b hb, by rw [←hgj (hi _), hji]) (has_sum.has_sum_ne_zero i hi j hj hji hij hgj) lemma summable_iff_summable_ne_zero : summable g ↔ summable f := exists_congr $ assume a, has_sum_iff_has_sum_of_ne_zero j hj i hi hij hji $ assume b hb, by rw [←hgj (hi _), hji] end has_sum_iff_has_sum_of_iso_ne_zero section has_sum_iff_has_sum_of_bij_ne_zero variables [add_comm_monoid α] [topological_space α] variables {f : β → α} {g : γ → α} {a : α} (i : Π⦃c⦄, g c ≠ 0 → β) (h₁ : ∀⦃c₁ c₂⦄ (h₁ : g c₁ ≠ 0) (h₂ : g c₂ ≠ 0), i h₁ = i h₂ → c₁ = c₂) (h₂ : ∀⦃b⦄, f b ≠ 0 → ∃c (h : g c ≠ 0), i h = b) (h₃ : ∀⦃c⦄ (h : g c ≠ 0), f (i h) = g c) include i h₁ h₂ h₃ lemma has_sum_iff_has_sum_of_ne_zero_bij : has_sum f a ↔ has_sum g a := have hi : ∀⦃c⦄ (h : g c ≠ 0), f (i h) ≠ 0, from assume c h, by simp [h₃, h], let j : Π⦃b⦄, f b ≠ 0 → γ := λb h, some $ h₂ h in have hj : ∀⦃b⦄ (h : f b ≠ 0), ∃(h : g (j h) ≠ 0), i h = b, from assume b h, some_spec $ h₂ h, have hj₁ : ∀⦃b⦄ (h : f b ≠ 0), g (j h) ≠ 0, from assume b h, let ⟨h₁, _⟩ := hj h in h₁, have hj₂ : ∀⦃b⦄ (h : f b ≠ 0), i (hj₁ h) = b, from assume b h, let ⟨h₁, h₂⟩ := hj h in h₂, has_sum_iff_has_sum_of_ne_zero i hi j hj₁ (assume c h, h₁ (hj₁ _) h $ hj₂ _) hj₂ (assume b h, by rw [←h₃ (hj₁ _), hj₂]) lemma summable_iff_summable_ne_zero_bij : summable f ↔ summable g := exists_congr $ assume a, has_sum_iff_has_sum_of_ne_zero_bij @i h₁ h₂ h₃ end has_sum_iff_has_sum_of_bij_ne_zero section subtype variables [add_comm_monoid α] [topological_space α] {s : finset β} {f : β → α} {a : α} lemma has_sum_subtype_iff_of_eq_zero (h : ∀ x ∈ s, f x = 0) : has_sum (λ b : {b // b ∉ s}, f b) a ↔ has_sum f a := begin symmetry, apply has_sum_iff_has_sum_of_ne_zero_bij (λ (b : {b // b ∉ s}) hb, (b : β)), { exact λ c₁ c₂ h₁ h₂ H, subtype.eq H }, { assume b hb, have : b ∉ s := λ H, hb (h b H), exact ⟨⟨b, this⟩, hb, rfl⟩ }, { dsimp, simp } end end subtype section tsum variables [add_comm_monoid α] [topological_space α] [t2_space α] variables {f g : β → α} {a a₁ a₂ : α} lemma tsum_eq_has_sum (ha : has_sum f a) : (∑'b, f b) = a := has_sum_unique (summable.has_sum ⟨a, ha⟩) ha lemma summable.has_sum_iff (h : summable f) : has_sum f a ↔ (∑'b, f b) = a := iff.intro tsum_eq_has_sum (assume eq, eq ▸ h.has_sum) @[simp] lemma tsum_zero : (∑'b:β, 0:α) = 0 := tsum_eq_has_sum has_sum_zero lemma tsum_eq_sum {f : β → α} {s : finset β} (hf : ∀b∉s, f b = 0) : (∑'b, f b) = ∑ b in s, f b := tsum_eq_has_sum $ has_sum_sum_of_ne_finset_zero hf lemma tsum_fintype [fintype β] (f : β → α) : (∑'b, f b) = ∑ b, f b := tsum_eq_has_sum $ has_sum_fintype f @[simp] lemma tsum_subtype_eq_sum {f : β → α} {s : finset β} : (∑'x : {x // x ∈ s}, f x) = ∑ x in s, f x := by { rw [tsum_fintype], conv_rhs { rw ← finset.sum_attach }, refl } lemma tsum_eq_single {f : β → α} (b : β) (hf : ∀b' ≠ b, f b' = 0) : (∑'b, f b) = f b := tsum_eq_has_sum $ has_sum_single b hf @[simp] lemma tsum_ite_eq (b : β) (a : α) : (∑'b', if b' = b then a else 0) = a := tsum_eq_has_sum (has_sum_ite_eq b a) lemma tsum_eq_tsum_of_has_sum_iff_has_sum {f : β → α} {g : γ → α} (h : ∀{a}, has_sum f a ↔ has_sum g a) : (∑'b, f b) = (∑'c, g c) := by_cases (assume : ∃a, has_sum f a, let ⟨a, hfa⟩ := this in have hga : has_sum g a, from h.mp hfa, by rw [tsum_eq_has_sum hfa, tsum_eq_has_sum hga]) (assume hf : ¬ summable f, have hg : ¬ summable g, from assume ⟨a, hga⟩, hf ⟨a, h.mpr hga⟩, by simp [tsum, hf, hg]) lemma tsum_eq_tsum_of_ne_zero {f : β → α} {g : γ → α} (i : Π⦃c⦄, g c ≠ 0 → β) (hi : ∀⦃c⦄ (h : g c ≠ 0), f (i h) ≠ 0) (j : Π⦃b⦄, f b ≠ 0 → γ) (hj : ∀⦃b⦄ (h : f b ≠ 0), g (j h) ≠ 0) (hji : ∀⦃c⦄ (h : g c ≠ 0), j (hi h) = c) (hij : ∀⦃b⦄ (h : f b ≠ 0), i (hj h) = b) (hgj : ∀⦃b⦄ (h : f b ≠ 0), g (j h) = f b) : (∑'i, f i) = (∑'j, g j) := tsum_eq_tsum_of_has_sum_iff_has_sum $ assume a, has_sum_iff_has_sum_of_ne_zero i hi j hj hji hij hgj lemma tsum_eq_tsum_of_ne_zero_bij {f : β → α} {g : γ → α} (i : Π⦃c⦄, g c ≠ 0 → β) (h₁ : ∀⦃c₁ c₂⦄ (h₁ : g c₁ ≠ 0) (h₂ : g c₂ ≠ 0), i h₁ = i h₂ → c₁ = c₂) (h₂ : ∀⦃b⦄, f b ≠ 0 → ∃c (h : g c ≠ 0), i h = b) (h₃ : ∀⦃c⦄ (h : g c ≠ 0), f (i h) = g c) : (∑'i, f i) = (∑'j, g j) := tsum_eq_tsum_of_has_sum_iff_has_sum $ assume a, has_sum_iff_has_sum_of_ne_zero_bij i h₁ h₂ h₃ lemma tsum_eq_tsum_of_iso (j : γ → β) (i : β → γ) (h₁ : ∀x, i (j x) = x) (h₂ : ∀x, j (i x) = x) : (∑'c, f (j c)) = (∑'b, f b) := tsum_eq_tsum_of_has_sum_iff_has_sum $ assume a, has_sum_iff_has_sum_of_iso i h₁ h₂ lemma tsum_equiv (j : γ ≃ β) : (∑'c, f (j c)) = (∑'b, f b) := tsum_eq_tsum_of_iso j j.symm (by simp) (by simp) variable [topological_add_monoid α] lemma tsum_add (hf : summable f) (hg : summable g) : (∑'b, f b + g b) = (∑'b, f b) + (∑'b, g b) := tsum_eq_has_sum $ hf.has_sum.add hg.has_sum lemma tsum_sum {f : γ → β → α} {s : finset γ} (hf : ∀i∈s, summable (f i)) : (∑'b, ∑ i in s, f i b) = ∑ i in s, ∑'b, f i b := tsum_eq_has_sum $ has_sum_sum $ assume i hi, (hf i hi).has_sum lemma tsum_sigma [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (h₁ : ∀b, summable (λc, f ⟨b, c⟩)) (h₂ : summable f) : (∑'p, f p) = (∑'b c, f ⟨b, c⟩) := (tsum_eq_has_sum $ h₂.has_sum.sigma (assume b, (h₁ b).has_sum)).symm end tsum section topological_group variables [add_comm_group α] [topological_space α] [topological_add_group α] variables {f g : β → α} {a a₁ a₂ : α} lemma has_sum.neg : has_sum f a → has_sum (λb, - f b) (- a) := has_sum_hom has_neg.neg continuous_neg lemma summable.neg (hf : summable f) : summable (λb, - f b) := hf.has_sum.neg.summable lemma has_sum.sub (hf : has_sum f a₁) (hg : has_sum g a₂) : has_sum (λb, f b - g b) (a₁ - a₂) := by { simp [sub_eq_add_neg], exact hf.add hg.neg } lemma summable.sub (hf : summable f) (hg : summable g) : summable (λb, f b - g b) := (hf.has_sum.sub hg.has_sum).summable section tsum variables [t2_space α] lemma tsum_neg (hf : summable f) : (∑'b, - f b) = - (∑'b, f b) := tsum_eq_has_sum $ hf.has_sum.neg lemma tsum_sub (hf : summable f) (hg : summable g) : (∑'b, f b - g b) = (∑'b, f b) - (∑'b, g b) := tsum_eq_has_sum $ hf.has_sum.sub hg.has_sum lemma tsum_eq_zero_add {f : ℕ → α} (hf : summable f) : (∑'b, f b) = f 0 + (∑'b, f (b + 1)) := begin let f₁ : ℕ → α := λ n, nat.rec (f 0) (λ _ _, 0) n, let f₂ : ℕ → α := λ n, nat.rec 0 (λ k _, f (k+1)) n, have : f = λ n, f₁ n + f₂ n, { ext n, symmetry, cases n, apply add_zero, apply zero_add }, have hf₁ : summable f₁, { fapply summable_sum_of_ne_finset_zero, { exact {0} }, { rintros (_ | n) hn, { exfalso, apply hn, apply finset.mem_singleton_self }, { refl } } }, have hf₂ : summable f₂, { have : f₂ = λ n, f n - f₁ n, ext, rw [eq_sub_iff_add_eq', this], rw [this], apply hf.sub hf₁ }, conv_lhs { rw [this] }, rw [tsum_add hf₁ hf₂, tsum_eq_single 0], { congr' 1, fapply tsum_eq_tsum_of_ne_zero_bij (λ n _, n + 1), { intros _ _ _ _, exact nat.succ.inj }, { rintros (_ | n) h, { contradiction }, { exact ⟨n, h, rfl⟩ } }, { intros, refl }, { apply_instance } }, { rintros (_ | n) hn, { contradiction }, { refl } }, { apply_instance } end end tsum /-! ### Sums on subtypes If `s` is a finset of `α`, we show that the summability of `f` in the whole space and on the subtype `univ - s` are equivalent, and relate their sums. For a function defined on `ℕ`, we deduce the formula `(∑ i in range k, f i) + (∑' i, f (i + k)) = (∑' i, f i)`, in `sum_add_tsum_nat_add`. -/ section subtype variables {s : finset β} lemma has_sum_subtype_iff : has_sum (λ b : {b // b ∉ s}, f b) a ↔ has_sum f (a + ∑ b in s, f b) := begin let gs := λ b, if b ∈ s then f b else 0, let g := λ b, if b ∉ s then f b else 0, have f_sum_iff : has_sum f (a + ∑ b in s, f b) = has_sum (λ b, g b + gs b) (a + ∑ b in s, f b), { congr, ext i, simp [gs, g], split_ifs; simp }, have g_zero : ∀ b ∈ s, g b = 0, { assume b hb, dsimp [g], split_ifs, refl }, have gs_sum : has_sum gs (∑ b in s, f b), { have : (∑ b in s, f b) = (∑ b in s, gs b), { apply sum_congr rfl (λ b hb, _), dsimp [gs], split_ifs, { refl }, { exact false.elim (h hb) } }, rw this, apply has_sum_sum_of_ne_finset_zero (λ b hb, _), dsimp [gs], split_ifs, { exact false.elim (hb h) }, { refl } }, have : (λ b : {b // b ∉ s}, f b) = (λ b : {b // b ∉ s}, g b), { ext i, simp [g], split_ifs, { exact false.elim (i.2 h) }, { refl } }, rw [this, has_sum_subtype_iff_of_eq_zero g_zero, f_sum_iff], exact ⟨λ H, H.add gs_sum, λ H, by simpa using H.sub gs_sum⟩, end lemma has_sum_subtype_iff' : has_sum (λ b : {b // b ∉ s}, f b) (a - ∑ b in s, f b) ↔ has_sum f a := by simp [has_sum_subtype_iff] lemma summable_subtype_iff (s : finset β): summable (λ b : {b // b ∉ s}, f b) ↔ summable f := ⟨λ H, (has_sum_subtype_iff.1 H.has_sum).summable, λ H, (has_sum_subtype_iff'.2 H.has_sum).summable⟩ lemma sum_add_tsum_subtype [t2_space α] (s : finset β) (h : summable f) : (∑ b in s, f b) + (∑' (b : {b // b ∉ s}), f b) = (∑' b, f b) := by simpa [add_comm] using has_sum_unique (has_sum_subtype_iff.1 ((summable_subtype_iff s).2 h).has_sum) h.has_sum lemma summable_nat_add_iff {f : ℕ → α} (k : ℕ) : summable (λ n, f (n + k)) ↔ summable f := begin refine iff.trans _ (summable_subtype_iff (range k)), rw [← (not_mem_range_equiv k).symm.summable_iff], refl end lemma has_sum_nat_add_iff {f : ℕ → α} (k : ℕ) {a : α} : has_sum (λ n, f (n + k)) a ↔ has_sum f (a + ∑ i in range k, f i) := begin refine iff.trans _ has_sum_subtype_iff, rw [← (not_mem_range_equiv k).symm.has_sum_iff], refl end lemma has_sum_nat_add_iff' {f : ℕ → α} (k : ℕ) {a : α} : has_sum (λ n, f (n + k)) (a - ∑ i in range k, f i) ↔ has_sum f a := by simp [has_sum_nat_add_iff] lemma sum_add_tsum_nat_add [t2_space α] {f : ℕ → α} (k : ℕ) (h : summable f) : (∑ i in range k, f i) + (∑' i, f (i + k)) = (∑' i, f i) := by simpa [add_comm] using has_sum_unique ((has_sum_nat_add_iff k).1 ((summable_nat_add_iff k).2 h).has_sum) h.has_sum end subtype end topological_group section topological_semiring variables [semiring α] [topological_space α] [topological_semiring α] variables {f g : β → α} {a a₁ a₂ : α} lemma has_sum.mul_left (a₂) : has_sum f a₁ → has_sum (λb, a₂ * f b) (a₂ * a₁) := has_sum_hom _ (continuous_const.mul continuous_id) lemma has_sum.mul_right (a₂) (hf : has_sum f a₁) : has_sum (λb, f b * a₂) (a₁ * a₂) := @has_sum_hom _ _ _ _ _ f a₁ (λa, a * a₂) _ _ _ (continuous_id.mul continuous_const) hf lemma summable.mul_left (a) (hf : summable f) : summable (λb, a * f b) := (hf.has_sum.mul_left _).summable lemma summable.mul_right (a) (hf : summable f) : summable (λb, f b * a) := (hf.has_sum.mul_right _).summable section tsum variables [t2_space α] lemma tsum_mul_left (a) (hf : summable f) : (∑'b, a * f b) = a * (∑'b, f b) := tsum_eq_has_sum $ hf.has_sum.mul_left _ lemma tsum_mul_right (a) (hf : summable f) : (∑'b, f b * a) = (∑'b, f b) * a := tsum_eq_has_sum $ hf.has_sum.mul_right _ end tsum end topological_semiring section field variables [field α] [topological_space α] [topological_semiring α] {f g : β → α} {a a₁ a₂ : α} lemma has_sum_mul_left_iff (h : a₂ ≠ 0) : has_sum f a₁ ↔ has_sum (λb, a₂ * f b) (a₂ * a₁) := ⟨has_sum.mul_left _, λ H, by simpa [← mul_assoc, inv_mul_cancel h] using H.mul_left a₂⁻¹⟩ lemma has_sum_mul_right_iff (h : a₂ ≠ 0) : has_sum f a₁ ↔ has_sum (λb, f b * a₂) (a₁ * a₂) := by { simp only [mul_comm _ a₂], exact has_sum_mul_left_iff h } lemma summable_mul_left_iff (h : a ≠ 0) : summable f ↔ summable (λb, a * f b) := ⟨λ H, H.mul_left _, λ H, by simpa [← mul_assoc, inv_mul_cancel h] using H.mul_left a⁻¹⟩ lemma summable_mul_right_iff (h : a ≠ 0) : summable f ↔ summable (λb, f b * a) := by { simp only [mul_comm _ a], exact summable_mul_left_iff h } end field section order_topology variables [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] variables {f g : β → α} {a a₁ a₂ : α} lemma has_sum_le (h : ∀b, f b ≤ g b) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := le_of_tendsto_of_tendsto' at_top_ne_bot hf hg $ assume s, sum_le_sum $ assume b _, h b lemma has_sum_le_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c) (h : ∀b, f b ≤ g (i b)) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := have has_sum (λc, (partial_inv i c).cases_on' 0 f) a₁, begin refine (has_sum_iff_has_sum_of_ne_zero_bij (λb _, i b) _ _ _).2 hf, { assume c₁ c₂ h₁ h₂ eq, exact hi eq }, { assume c hc, cases eq : partial_inv i c with b; rw eq at hc, { contradiction }, { rw [partial_inv_of_injective hi] at eq, exact ⟨b, hc, eq⟩ } }, { assume c hc, rw [partial_inv_left hi, option.cases_on'] } end, begin refine has_sum_le (assume c, _) this hg, by_cases c ∈ set.range i, { rcases h with ⟨b, rfl⟩, rw [partial_inv_left hi, option.cases_on'], exact h _ }, { have : partial_inv i c = none := dif_neg h, rw [this, option.cases_on'], exact hs _ h } end lemma tsum_le_tsum_of_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c) (h : ∀b, f b ≤ g (i b)) (hf : summable f) (hg : summable g) : tsum f ≤ tsum g := has_sum_le_inj i hi hs h hf.has_sum hg.has_sum lemma sum_le_has_sum {f : β → α} (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : has_sum f a) : ∑ b in s, f b ≤ a := ge_of_tendsto at_top_ne_bot hf (eventually_at_top.2 ⟨s, λ t hst, sum_le_sum_of_subset_of_nonneg hst $ λ b hbt hbs, hs b hbs⟩) lemma sum_le_tsum {f : β → α} (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : summable f) : ∑ b in s, f b ≤ tsum f := sum_le_has_sum s hs hf.has_sum lemma tsum_le_tsum (h : ∀b, f b ≤ g b) (hf : summable f) (hg : summable g) : (∑'b, f b) ≤ (∑'b, g b) := has_sum_le h hf.has_sum hg.has_sum lemma tsum_nonneg (h : ∀ b, 0 ≤ g b) : 0 ≤ (∑'b, g b) := begin by_cases hg : summable g, { simpa using tsum_le_tsum h summable_zero hg }, { simp [tsum_eq_zero_of_not_summable hg] } end lemma tsum_nonpos (h : ∀ b, f b ≤ 0) : (∑'b, f b) ≤ 0 := begin by_cases hf : summable f, { simpa using tsum_le_tsum h hf summable_zero}, { simp [tsum_eq_zero_of_not_summable hf] } end end order_topology section uniform_group variables [add_comm_group α] [uniform_space α] variables {f g : β → α} {a a₁ a₂ : α} lemma summable_iff_cauchy_seq_finset [complete_space α] : summable f ↔ cauchy_seq (λ (s : finset β), ∑ b in s, f b) := (cauchy_map_iff_exists_tendsto at_top_ne_bot).symm variable [uniform_add_group α] lemma cauchy_seq_finset_iff_vanishing : cauchy_seq (λ (s : finset β), ∑ b in s, f b) ↔ ∀ e ∈ 𝓝 (0:α), (∃s:finset β, ∀t, disjoint t s → ∑ b in t, f b ∈ e) := begin simp only [cauchy_seq, cauchy_map_iff, and_iff_right at_top_ne_bot, prod_at_top_at_top_eq, uniformity_eq_comap_nhds_zero α, tendsto_comap_iff, (∘)], rw [tendsto_at_top' (_ : finset β × finset β → α)], split, { assume h e he, rcases h e he with ⟨⟨s₁, s₂⟩, h⟩, use [s₁ ∪ s₂], assume t ht, specialize h (s₁ ∪ s₂, (s₁ ∪ s₂) ∪ t) ⟨le_sup_left, le_sup_left_of_le le_sup_right⟩, simpa only [finset.sum_union ht.symm, add_sub_cancel'] using h }, { assume h e he, rcases exists_nhds_half_neg he with ⟨d, hd, hde⟩, rcases h d hd with ⟨s, h⟩, use [(s, s)], rintros ⟨t₁, t₂⟩ ⟨ht₁, ht₂⟩, have : ∑ b in t₂, f b - ∑ b in t₁, f b = ∑ b in t₂ \ s, f b - ∑ b in t₁ \ s, f b, { simp only [(finset.sum_sdiff ht₁).symm, (finset.sum_sdiff ht₂).symm, add_sub_add_right_eq_sub] }, simp only [this], exact hde _ _ (h _ finset.sdiff_disjoint) (h _ finset.sdiff_disjoint) } end variable [complete_space α] lemma summable_iff_vanishing : summable f ↔ ∀ e ∈ 𝓝 (0:α), (∃s:finset β, ∀t, disjoint t s → ∑ b in t, f b ∈ e) := by rw [summable_iff_cauchy_seq_finset, cauchy_seq_finset_iff_vanishing] /- TODO: generalize to monoid with a uniform continuous subtraction operator: `(a + b) - b = a` -/ lemma summable.summable_of_eq_zero_or_self (hf : summable f) (h : ∀b, g b = 0 ∨ g b = f b) : summable g := summable_iff_vanishing.2 $ assume e he, let ⟨s, hs⟩ := summable_iff_vanishing.1 hf e he in ⟨s, assume t ht, have eq : ∑ b in t.filter (λb, g b = f b), f b = ∑ b in t, g b := calc ∑ b in t.filter (λb, g b = f b), f b = ∑ b in t.filter (λb, g b = f b), g b : finset.sum_congr rfl (assume b hb, (finset.mem_filter.1 hb).2.symm) ... = ∑ b in t, g b : begin refine finset.sum_subset (finset.filter_subset _) _, assume b hbt hb, simp only [(∉), finset.mem_filter, and_iff_right hbt] at hb, exact (h b).resolve_right hb end, eq ▸ hs _ $ finset.disjoint_of_subset_left (finset.filter_subset _) ht⟩ lemma summable.summable_comp_of_injective {i : γ → β} (hf : summable f) (hi : injective i) : summable (f ∘ i) := suffices summable (λb, if b ∈ set.range i then f b else 0), begin refine (summable_iff_summable_ne_zero_bij (λc _, i c) _ _ _).1 this, { assume c₁ c₂ hc₁ hc₂ eq, exact hi eq }, { assume b hb, split_ifs at hb, { rcases h with ⟨c, rfl⟩, exact ⟨c, hb, rfl⟩ }, { contradiction } }, { assume c hc, exact if_pos (set.mem_range_self _) } end, hf.summable_of_eq_zero_or_self $ assume b, by by_cases b ∈ set.range i; simp [h] lemma summable.sigma_factor {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) (b : β) : summable (λc, f ⟨b, c⟩) := ha.summable_comp_of_injective (λ x y hxy, by simpa using hxy) lemma summable.sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) : summable (λb, ∑'c, f ⟨b, c⟩) := ha.sigma (λ b, ha.sigma_factor b) lemma tsum_sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α} (ha : summable f) : (∑'p, f p) = (∑'b c, f ⟨b, c⟩) := tsum_sigma (λ b, ha.sigma_factor b) ha end uniform_group section cauchy_seq open finset.Ico filter /-- If the extended distance between consequent points of a sequence is estimated by a summable series of `nnreal`s, then the original sequence is a Cauchy sequence. -/ lemma cauchy_seq_of_edist_le_of_summable [emetric_space α] {f : ℕ → α} (d : ℕ → nnreal) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f := begin refine emetric.cauchy_seq_iff_nnreal.2 (λ ε εpos, _), -- Actually we need partial sums of `d` to be a Cauchy sequence replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := let ⟨_, H⟩ := hd in cauchy_seq_of_tendsto_nhds _ H.tendsto_sum_nat, -- Now we take the same `N` as in one of the definitions of a Cauchy sequence refine (metric.cauchy_seq_iff'.1 hd ε (nnreal.coe_pos.2 εpos)).imp (λ N hN n hn, _), have hsum := hN n hn, -- We simplify the known inequality rw [dist_nndist, nnreal.nndist_eq, ← sum_range_add_sum_Ico _ hn, nnreal.add_sub_cancel'] at hsum, norm_cast at hsum, replace hsum := lt_of_le_of_lt (le_max_left _ _) hsum, rw edist_comm, -- Then use `hf` to simplify the goal to the same form apply lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn (λ k _ _, hf k)), assumption_mod_cast end /-- If the distance between consequent points of a sequence is estimated by a summable series, then the original sequence is a Cauchy sequence. -/ lemma cauchy_seq_of_dist_le_of_summable [metric_space α] {f : ℕ → α} (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f := begin refine metric.cauchy_seq_iff'.2 (λε εpos, _), replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := let ⟨_, H⟩ := hd in cauchy_seq_of_tendsto_nhds _ H.tendsto_sum_nat, refine (metric.cauchy_seq_iff'.1 hd ε εpos).imp (λ N hN n hn, _), have hsum := hN n hn, rw [real.dist_eq, ← sum_Ico_eq_sub _ hn] at hsum, calc dist (f n) (f N) = dist (f N) (f n) : dist_comm _ _ ... ≤ ∑ x in Ico N n, d x : dist_le_Ico_sum_of_dist_le hn (λ k _ _, hf k) ... ≤ abs (∑ x in Ico N n, d x) : le_abs_self _ ... < ε : hsum end lemma cauchy_seq_of_summable_dist [metric_space α] {f : ℕ → α} (h : summable (λn, dist (f n) (f n.succ))) : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ (λ _, le_refl _) h lemma dist_le_tsum_of_dist_le_of_tendsto [metric_space α] {f : ℕ → α} (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ ∑' m, d (n + m) := begin refine le_of_tendsto at_top_ne_bot (tendsto_const_nhds.dist ha) (eventually_at_top.2 ⟨n, λ m hnm, _⟩), refine le_trans (dist_le_Ico_sum_of_dist_le hnm (λ k _ _, hf k)) _, rw [sum_Ico_eq_sum_range], refine sum_le_tsum (range _) (λ _ _, le_trans dist_nonneg (hf _)) _, exact hd.summable_comp_of_injective (add_right_injective n) end lemma dist_le_tsum_of_dist_le_of_tendsto₀ [metric_space α] {f : ℕ → α} (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ tsum d := by simpa only [zero_add] using dist_le_tsum_of_dist_le_of_tendsto d hf hd ha 0 lemma dist_le_tsum_dist_of_tendsto [metric_space α] {f : ℕ → α} (h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) (n) : dist (f n) a ≤ ∑' m, dist (f (n+m)) (f (n+m).succ) := show dist (f n) a ≤ ∑' m, (λx, dist (f x) (f x.succ)) (n + m), from dist_le_tsum_of_dist_le_of_tendsto (λ n, dist (f n) (f n.succ)) (λ _, le_refl _) h ha n lemma dist_le_tsum_dist_of_tendsto₀ [metric_space α] {f : ℕ → α} (h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ ∑' n, dist (f n) (f n.succ) := by simpa only [zero_add] using dist_le_tsum_dist_of_tendsto h ha 0 end cauchy_seq
94aa0af1ba7abd78c58770301d52b009e42b215b
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
/src/algebra/group_with_zero.lean
43df4f03cee22bf93d957e9250779feaf83168aa
[ "Apache-2.0" ]
permissive
dupuisf/mathlib
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
refs/heads/master
1,669,494,854,016
1,595,692,409,000
1,595,692,409,000
272,046,630
0
0
Apache-2.0
1,592,066,143,000
1,592,066,142,000
null
UTF-8
Lean
false
false
36,826
lean
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import logic.nontrivial import algebra.group.commute import algebra.group.units_hom import algebra.group.inj_surj /-! # Groups with an adjoined zero element This file describes structures that are not usually studied on their own right in mathematics, namely a special sort of monoid: apart from a distinguished “zero element” they form a group, or in other words, they are groups with an adjoined zero element. Examples are: * division rings; * the value monoid of a multiplicative valuation; * in particular, the non-negative real numbers. ## Main definitions * `group_with_zero` * `comm_group_with_zero` ## Implementation details As is usual in mathlib, we extend the inverse function to the zero element, and require `0⁻¹ = 0`. -/ set_option old_structure_cmd true open_locale classical open function variables {M₀ G₀ M₀' G₀' : Type*} mk_simp_attribute field_simps "The simpset `field_simps` is used by the tactic `field_simp` to reduce an expression in a field to an expression of the form `n / d` where `n` and `d` are division-free." section section prio set_option default_priority 100 -- see Note [default priority] /-- Typeclass for expressing that a type `M₀` with multiplication and a zero satisfies `0 * a = 0` and `a * 0 = 0` for all `a : M₀`. -/ @[protect_proj, ancestor has_mul has_zero] class mul_zero_class (M₀ : Type*) extends has_mul M₀, has_zero M₀ := (zero_mul : ∀ a : M₀, 0 * a = 0) (mul_zero : ∀ a : M₀, a * 0 = 0) end prio section mul_zero_class variables [mul_zero_class M₀] {a b : M₀} @[ematch, simp] lemma zero_mul (a : M₀) : 0 * a = 0 := mul_zero_class.zero_mul a @[ematch, simp] lemma mul_zero (a : M₀) : a * 0 = 0 := mul_zero_class.mul_zero a /-- Pullback a `mul_zero_class` instance along an injective function. -/ protected def function.injective.mul_zero_class [has_mul M₀'] [has_zero M₀'] (f : M₀' → M₀) (hf : injective f) (zero : f 0 = 0) (mul : ∀ a b, f (a * b) = f a * f b) : mul_zero_class M₀' := { mul := (*), zero := 0, zero_mul := λ a, hf $ by simp only [mul, zero, zero_mul], mul_zero := λ a, hf $ by simp only [mul, zero, mul_zero] } /-- Pushforward a `mul_zero_class` instance along an surjective function. -/ protected def function.surjective.mul_zero_class [has_mul M₀'] [has_zero M₀'] (f : M₀ → M₀') (hf : surjective f) (zero : f 0 = 0) (mul : ∀ a b, f (a * b) = f a * f b) : mul_zero_class M₀' := { mul := (*), zero := 0, mul_zero := hf.forall.2 $ λ x, by simp only [← zero, ← mul, mul_zero], zero_mul := hf.forall.2 $ λ x, by simp only [← zero, ← mul, zero_mul] } lemma mul_eq_zero_of_left (h : a = 0) (b : M₀) : a * b = 0 := h.symm ▸ zero_mul b lemma mul_eq_zero_of_right (a : M₀) (h : b = 0) : a * b = 0 := h.symm ▸ mul_zero a lemma left_ne_zero_of_mul : a * b ≠ 0 → a ≠ 0 := mt (λ h, mul_eq_zero_of_left h b) lemma right_ne_zero_of_mul : a * b ≠ 0 → b ≠ 0 := mt (mul_eq_zero_of_right a) lemma ne_zero_and_ne_zero_of_mul (h : a * b ≠ 0) : a ≠ 0 ∧ b ≠ 0 := ⟨left_ne_zero_of_mul h, right_ne_zero_of_mul h⟩ end mul_zero_class /-- Predicate typeclass for expressing that `a * b = 0` implies `a = 0` or `b = 0` for all `a` and `b` of type `G₀`. -/ class no_zero_divisors (M₀ : Type*) [has_mul M₀] [has_zero M₀] : Prop := (eq_zero_or_eq_zero_of_mul_eq_zero : ∀ {a b : M₀}, a * b = 0 → a = 0 ∨ b = 0) export no_zero_divisors (eq_zero_or_eq_zero_of_mul_eq_zero) /-- Pushforward a `no_zero_divisors` instance along an injective function. -/ protected lemma function.injective.no_zero_divisors [has_mul M₀] [has_zero M₀] [has_mul M₀'] [has_zero M₀'] [no_zero_divisors M₀'] (f : M₀ → M₀') (hf : injective f) (zero : f 0 = 0) (mul : ∀ x y, f (x * y) = f x * f y) : no_zero_divisors M₀ := { eq_zero_or_eq_zero_of_mul_eq_zero := λ x y H, have f x * f y = 0, by rw [← mul, H, zero], (eq_zero_or_eq_zero_of_mul_eq_zero this).imp (λ H, hf $ by rwa zero) (λ H, hf $ by rwa zero) } lemma eq_zero_of_mul_self_eq_zero [has_mul M₀] [has_zero M₀] [no_zero_divisors M₀] {a : M₀} (h : a * a = 0) : a = 0 := (eq_zero_or_eq_zero_of_mul_eq_zero h).elim id id section variables [mul_zero_class M₀] [no_zero_divisors M₀] {a b : M₀} /-- If `α` has no zero divisors, then the product of two elements equals zero iff one of them equals zero. -/ @[simp] theorem mul_eq_zero : a * b = 0 ↔ a = 0 ∨ b = 0 := ⟨eq_zero_or_eq_zero_of_mul_eq_zero, λo, o.elim (λ h, mul_eq_zero_of_left h b) (mul_eq_zero_of_right a)⟩ /-- If `α` has no zero divisors, then the product of two elements equals zero iff one of them equals zero. -/ @[simp] theorem zero_eq_mul : 0 = a * b ↔ a = 0 ∨ b = 0 := by rw [eq_comm, mul_eq_zero] /-- If `α` has no zero divisors, then the product of two elements is nonzero iff both of them are nonzero. -/ theorem mul_ne_zero_iff : a * b ≠ 0 ↔ a ≠ 0 ∧ b ≠ 0 := (not_congr mul_eq_zero).trans not_or_distrib theorem mul_ne_zero (ha : a ≠ 0) (hb : b ≠ 0) : a * b ≠ 0 := mul_ne_zero_iff.2 ⟨ha, hb⟩ /-- If `α` has no zero divisors, then for elements `a, b : α`, `a * b` equals zero iff so is `b * a`. -/ theorem mul_eq_zero_comm : a * b = 0 ↔ b * a = 0 := mul_eq_zero.trans $ (or_comm _ _).trans mul_eq_zero.symm /-- If `α` has no zero divisors, then for elements `a, b : α`, `a * b` is nonzero iff so is `b * a`. -/ theorem mul_ne_zero_comm : a * b ≠ 0 ↔ b * a ≠ 0 := not_congr mul_eq_zero_comm lemma mul_self_eq_zero : a * a = 0 ↔ a = 0 := by simp lemma zero_eq_mul_self : 0 = a * a ↔ a = 0 := by simp end end -- default_priority 100 section prio set_option default_priority 10 -- see Note [default priority] /-- A type `M` is a “monoid with zero” if it is a monoid with zero element, and `0` is left and right absorbing. -/ @[protect_proj] class monoid_with_zero (M₀ : Type*) extends monoid M₀, mul_zero_class M₀. /-- A type `M` is a `cancel_monoid_with_zero` if it is a monoid with zero element, `0` is left and right absorbing, and left/right multiplication by a non-zero element is injective. -/ @[protect_proj] class cancel_monoid_with_zero (M₀ : Type*) extends monoid_with_zero M₀ := (mul_left_cancel_of_ne_zero : ∀ {a b c : M₀}, a ≠ 0 → a * b = a * c → b = c) (mul_right_cancel_of_ne_zero : ∀ {a b c : M₀}, b ≠ 0 → a * b = c * b → a = c) section variables [monoid_with_zero M₀] [nontrivial M₀] {a b : M₀} /-- In a nontrivial monoid with zero, zero and one are different. -/ @[simp] lemma zero_ne_one : 0 ≠ (1:M₀) := begin assume h, rcases exists_pair_ne M₀ with ⟨x, y, hx⟩, apply hx, calc x = 1 * x : by rw [one_mul] ... = 0 : by rw [← h, zero_mul] ... = 1 * y : by rw [← h, zero_mul] ... = y : by rw [one_mul] end @[simp] lemma one_ne_zero : (1:M₀) ≠ 0 := zero_ne_one.symm lemma ne_zero_of_eq_one {a : M₀} (h : a = 1) : a ≠ 0 := calc a = 1 : h ... ≠ 0 : one_ne_zero lemma left_ne_zero_of_mul_eq_one (h : a * b = 1) : a ≠ 0 := left_ne_zero_of_mul $ ne_zero_of_eq_one h lemma right_ne_zero_of_mul_eq_one (h : a * b = 1) : b ≠ 0 := right_ne_zero_of_mul $ ne_zero_of_eq_one h /-- Pullback a `nontrivial` instance along a function sending `0` to `0` and `1` to `1`. -/ protected lemma pullback_nonzero [has_zero M₀'] [has_one M₀'] (f : M₀' → M₀) (zero : f 0 = 0) (one : f 1 = 1) : nontrivial M₀' := ⟨⟨0, 1, mt (congr_arg f) $ by { rw [zero, one], exact zero_ne_one }⟩⟩ end /-- A type `M` is a commutative “monoid with zero” if it is a commutative monoid with zero element, and `0` is left and right absorbing. -/ @[protect_proj] class comm_monoid_with_zero (M₀ : Type*) extends comm_monoid M₀, monoid_with_zero M₀. /-- A type `G₀` is a “group with zero” if it is a monoid with zero element (distinct from `1`) such that every nonzero element is invertible. The type is required to come with an “inverse” function, and the inverse of `0` must be `0`. Examples include division rings and the ordered monoids that are the target of valuations in general valuation theory.-/ class group_with_zero (G₀ : Type*) extends monoid_with_zero G₀, has_inv G₀, nontrivial G₀ := (inv_zero : (0 : G₀)⁻¹ = 0) (mul_inv_cancel : ∀ a:G₀, a ≠ 0 → a * a⁻¹ = 1) /-- A type `G₀` is a commutative “group with zero” if it is a commutative monoid with zero element (distinct from `1`) such that every nonzero element is invertible. The type is required to come with an “inverse” function, and the inverse of `0` must be `0`. -/ class comm_group_with_zero (G₀ : Type*) extends comm_monoid_with_zero G₀, group_with_zero G₀. /-- The division operation on a group with zero element. -/ instance group_with_zero.has_div {G₀ : Type*} [group_with_zero G₀] : has_div G₀ := ⟨λ g h, g * h⁻¹⟩ end prio section monoid_with_zero /-- Pullback a `monoid_with_zero` class along an injective function. -/ protected def function.injective.monoid_with_zero [has_zero M₀'] [has_mul M₀'] [has_one M₀'] [monoid_with_zero M₀] (f : M₀' → M₀) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : monoid_with_zero M₀' := { .. hf.monoid f one mul, .. hf.mul_zero_class f zero mul } /-- Pushforward a `monoid_with_zero` class along a surjective function. -/ protected def function.surjective.monoid_with_zero [has_zero M₀'] [has_mul M₀'] [has_one M₀'] [monoid_with_zero M₀] (f : M₀ → M₀') (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : monoid_with_zero M₀' := { .. hf.monoid f one mul, .. hf.mul_zero_class f zero mul } /-- Pullback a `monoid_with_zero` class along an injective function. -/ protected def function.injective.comm_monoid_with_zero [has_zero M₀'] [has_mul M₀'] [has_one M₀'] [comm_monoid_with_zero M₀] (f : M₀' → M₀) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : comm_monoid_with_zero M₀' := { .. hf.comm_monoid f one mul, .. hf.mul_zero_class f zero mul } /-- Pushforward a `monoid_with_zero` class along a surjective function. -/ protected def function.surjective.comm_monoid_with_zero [has_zero M₀'] [has_mul M₀'] [has_one M₀'] [comm_monoid_with_zero M₀] (f : M₀ → M₀') (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : comm_monoid_with_zero M₀' := { .. hf.comm_monoid f one mul, .. hf.mul_zero_class f zero mul } variables [monoid_with_zero M₀] namespace units @[simp] lemma ne_zero [nontrivial M₀] (u : units M₀) : (u : M₀) ≠ 0 := left_ne_zero_of_mul_eq_one u.mul_inv -- We can't use `mul_eq_zero` + `units.ne_zero` in the next two lemmas because we don't assume -- `nonzero M₀`. @[simp] lemma mul_left_eq_zero (u : units M₀) {a : M₀} : a * u = 0 ↔ a = 0 := ⟨λ h, by simpa using mul_eq_zero_of_left h ↑u⁻¹, λ h, mul_eq_zero_of_left h u⟩ @[simp] lemma mul_right_eq_zero (u : units M₀) {a : M₀} : ↑u * a = 0 ↔ a = 0 := ⟨λ h, by simpa using mul_eq_zero_of_right ↑u⁻¹ h, mul_eq_zero_of_right u⟩ end units namespace is_unit lemma ne_zero [nontrivial M₀] {a : M₀} (ha : is_unit a) : a ≠ 0 := let ⟨u, hu⟩ := ha in hu ▸ u.ne_zero lemma mul_right_eq_zero {a b : M₀} (ha : is_unit a) : a * b = 0 ↔ b = 0 := let ⟨u, hu⟩ := ha in hu ▸ u.mul_right_eq_zero lemma mul_left_eq_zero {a b : M₀} (hb : is_unit b) : a * b = 0 ↔ a = 0 := let ⟨u, hu⟩ := hb in hu ▸ u.mul_left_eq_zero end is_unit /-- In a monoid with zero, if zero equals one, then zero is the only element. -/ lemma eq_zero_of_zero_eq_one (h : (0 : M₀) = 1) (a : M₀) : a = 0 := by rw [← mul_one a, ← h, mul_zero] /-- In a monoid with zero, if zero equals one, then zero is the unique element. Somewhat arbitrarily, we define the default element to be `0`. All other elements will be provably equal to it, but not necessarily definitionally equal. -/ def unique_of_zero_eq_one (h : (0 : M₀) = 1) : unique M₀ := { default := 0, uniq := eq_zero_of_zero_eq_one h } /-- In a monoid with zero, if zero equals one, then all elements of that semiring are equal. -/ theorem subsingleton_of_zero_eq_one (h : (0 : M₀) = 1) : subsingleton M₀ := @unique.subsingleton _ (unique_of_zero_eq_one h) lemma eq_of_zero_eq_one (h : (0 : M₀) = 1) (a b : M₀) : a = b := @subsingleton.elim _ (subsingleton_of_zero_eq_one h) a b @[simp] theorem is_unit_zero_iff : is_unit (0 : M₀) ↔ (0:M₀) = 1 := ⟨λ ⟨⟨_, a, (a0 : 0 * a = 1), _⟩, rfl⟩, by rwa zero_mul at a0, λ h, ⟨⟨0, 0, eq_of_zero_eq_one h _ _, eq_of_zero_eq_one h _ _⟩, rfl⟩⟩ @[simp] theorem not_is_unit_zero [nontrivial M₀] : ¬ is_unit (0 : M₀) := mt is_unit_zero_iff.1 zero_ne_one variable (M₀) /-- In a monoid with zero, either zero and one are nonequal, or zero is the only element. -/ lemma zero_ne_one_or_forall_eq_0 : (0 : M₀) ≠ 1 ∨ (∀a:M₀, a = 0) := not_or_of_imp eq_zero_of_zero_eq_one end monoid_with_zero section cancel_monoid_with_zero variables [cancel_monoid_with_zero M₀] {a b c : M₀} lemma mul_left_cancel' (ha : a ≠ 0) (h : a * b = a * c) : b = c := cancel_monoid_with_zero.mul_left_cancel_of_ne_zero ha h lemma mul_right_cancel' (hb : b ≠ 0) (h : a * b = c * b) : a = c := cancel_monoid_with_zero.mul_right_cancel_of_ne_zero hb h lemma mul_left_inj' (hc : c ≠ 0) : a * c = b * c ↔ a = b := ⟨mul_right_cancel' hc, λ h, h ▸ rfl⟩ lemma mul_right_inj' (ha : a ≠ 0) : a * b = a * c ↔ b = c := ⟨mul_left_cancel' ha, λ h, h ▸ rfl⟩ /-- Pullback a `monoid_with_zero` class along an injective function. -/ protected def function.injective.cancel_monoid_with_zero [has_zero M₀'] [has_mul M₀'] [has_one M₀'] (f : M₀' → M₀) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : cancel_monoid_with_zero M₀' := { mul_left_cancel_of_ne_zero := λ x y z hx H, hf $ mul_left_cancel' ((hf.ne_iff' zero).2 hx) $ by erw [← mul, ← mul, H]; refl, mul_right_cancel_of_ne_zero := λ x y z hx H, hf $ mul_right_cancel' ((hf.ne_iff' zero).2 hx) $ by erw [← mul, ← mul, H]; refl, .. hf.monoid f one mul, .. hf.mul_zero_class f zero mul } /-- An element of a `cancel_monoid_with_zero` fixed by right multiplication by an element other than one must be zero. -/ theorem eq_zero_of_mul_eq_self_right (h₁ : b ≠ 1) (h₂ : a * b = a) : a = 0 := classical.by_contradiction $ λ ha, h₁ $ mul_left_cancel' ha $ h₂.symm ▸ (mul_one a).symm /-- An element of a `cancel_monoid_with_zero` fixed by left multiplication by an element other than one must be zero. -/ theorem eq_zero_of_mul_eq_self_left (h₁ : b ≠ 1) (h₂ : b * a = a) : a = 0 := classical.by_contradiction $ λ ha, h₁ $ mul_right_cancel' ha $ h₂.symm ▸ (one_mul a).symm end cancel_monoid_with_zero section group_with_zero variables [group_with_zero G₀] lemma div_eq_mul_inv {a b : G₀} : a / b = a * b⁻¹ := rfl alias div_eq_mul_inv ← division_def @[simp] lemma inv_zero : (0 : G₀)⁻¹ = 0 := group_with_zero.inv_zero @[simp] lemma mul_inv_cancel {a : G₀} (h : a ≠ 0) : a * a⁻¹ = 1 := group_with_zero.mul_inv_cancel a h /-- Pullback a `group_with_zero` class along an injective function. -/ protected def function.injective.group_with_zero [has_zero G₀'] [has_mul G₀'] [has_one G₀'] [has_inv G₀'] (f : G₀' → G₀) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹) : group_with_zero G₀' := { inv := has_inv.inv, inv_zero := hf $ by erw [inv, zero, inv_zero], mul_inv_cancel := λ x hx, hf $ by erw [one, mul, inv, mul_inv_cancel ((hf.ne_iff' zero).2 hx)], .. hf.monoid_with_zero f zero one mul, .. pullback_nonzero f zero one } /-- Pushforward a `group_with_zero` class along an surjective function. -/ protected def function.surjective.group_with_zero [has_zero G₀'] [has_mul G₀'] [has_one G₀'] [has_inv G₀'] (h01 : (0:G₀') ≠ 1) (f : G₀ → G₀') (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹) : group_with_zero G₀' := { inv := has_inv.inv, inv_zero := by erw [← zero, ← inv, inv_zero], mul_inv_cancel := hf.forall.2 $ λ x hx, by erw [← inv, ← mul, mul_inv_cancel (mt (congr_arg f) $ trans_rel_left ne hx zero.symm)]; exact one, exists_pair_ne := ⟨0, 1, h01⟩, .. hf.monoid_with_zero f zero one mul } @[simp] lemma mul_inv_cancel_right' {b : G₀} (h : b ≠ 0) (a : G₀) : (a * b) * b⁻¹ = a := calc (a * b) * b⁻¹ = a * (b * b⁻¹) : mul_assoc _ _ _ ... = a : by simp [h] @[simp] lemma mul_inv_cancel_left' {a : G₀} (h : a ≠ 0) (b : G₀) : a * (a⁻¹ * b) = b := calc a * (a⁻¹ * b) = (a * a⁻¹) * b : (mul_assoc _ _ _).symm ... = b : by simp [h] lemma inv_ne_zero {a : G₀} (h : a ≠ 0) : a⁻¹ ≠ 0 := assume a_eq_0, by simpa [a_eq_0] using mul_inv_cancel h @[simp] lemma inv_mul_cancel {a : G₀} (h : a ≠ 0) : a⁻¹ * a = 1 := calc a⁻¹ * a = (a⁻¹ * a) * a⁻¹ * a⁻¹⁻¹ : by simp [inv_ne_zero h] ... = a⁻¹ * a⁻¹⁻¹ : by simp [h] ... = 1 : by simp [inv_ne_zero h] @[simp] lemma inv_mul_cancel_right' {b : G₀} (h : b ≠ 0) (a : G₀) : (a * b⁻¹) * b = a := calc (a * b⁻¹) * b = a * (b⁻¹ * b) : mul_assoc _ _ _ ... = a : by simp [h] @[simp] lemma inv_mul_cancel_left' {a : G₀} (h : a ≠ 0) (b : G₀) : a⁻¹ * (a * b) = b := calc a⁻¹ * (a * b) = (a⁻¹ * a) * b : (mul_assoc _ _ _).symm ... = b : by simp [h] @[simp] lemma inv_one : 1⁻¹ = (1:G₀) := calc 1⁻¹ = 1 * 1⁻¹ : by rw [one_mul] ... = (1:G₀) : by simp @[simp] lemma inv_inv' (a : G₀) : a⁻¹⁻¹ = a := begin classical, by_cases h : a = 0, { simp [h] }, calc a⁻¹⁻¹ = a * (a⁻¹ * a⁻¹⁻¹) : by simp [h] ... = a : by simp [inv_ne_zero h] end /-- Multiplying `a` by itself and then by its inverse results in `a` (whether or not `a` is zero). -/ @[simp] lemma mul_self_mul_inv (a : G₀) : a * a * a⁻¹ = a := begin classical, by_cases h : a = 0, { rw [h, inv_zero, mul_zero] }, { rw [mul_assoc, mul_inv_cancel h, mul_one] } end /-- Multiplying `a` by its inverse and then by itself results in `a` (whether or not `a` is zero). -/ @[simp] lemma mul_inv_mul_self (a : G₀) : a * a⁻¹ * a = a := begin classical, by_cases h : a = 0, { rw [h, inv_zero, mul_zero] }, { rw [mul_inv_cancel h, one_mul] } end /-- Multiplying `a⁻¹` by `a` twice results in `a` (whether or not `a` is zero). -/ @[simp] lemma inv_mul_mul_self (a : G₀) : a⁻¹ * a * a = a := begin classical, by_cases h : a = 0, { rw [h, inv_zero, mul_zero] }, { rw [inv_mul_cancel h, one_mul] } end /-- Multiplying `a` by itself and then dividing by itself results in `a` (whether or not `a` is zero). -/ @[simp] lemma mul_self_div_self (a : G₀) : a * a / a = a := mul_self_mul_inv a /-- Dividing `a` by itself and then multiplying by itself results in `a` (whether or not `a` is zero). -/ @[simp] lemma div_self_mul_self (a : G₀) : a / a * a = a := mul_inv_mul_self a lemma inv_involutive' : function.involutive (has_inv.inv : G₀ → G₀) := inv_inv' lemma eq_inv_of_mul_right_eq_one {a b : G₀} (h : a * b = 1) : b = a⁻¹ := by rw [← inv_mul_cancel_left' (left_ne_zero_of_mul_eq_one h) b, h, mul_one] lemma eq_inv_of_mul_left_eq_one {a b : G₀} (h : a * b = 1) : a = b⁻¹ := by rw [← mul_inv_cancel_right' (right_ne_zero_of_mul_eq_one h) a, h, one_mul] lemma inv_injective' : function.injective (@has_inv.inv G₀ _) := inv_involutive'.injective @[simp] lemma inv_inj' {g h : G₀} : g⁻¹ = h⁻¹ ↔ g = h := inv_injective'.eq_iff lemma inv_eq_iff {g h : G₀} : g⁻¹ = h ↔ h⁻¹ = g := by rw [← inv_inj', eq_comm, inv_inv'] end group_with_zero namespace units variables [group_with_zero G₀] variables {a b : G₀} /-- Embed a non-zero element of a `group_with_zero` into the unit group. By combining this function with the operations on units, or the `/ₚ` operation, it is possible to write a division as a partial function with three arguments. -/ def mk0 (a : G₀) (ha : a ≠ 0) : units G₀ := ⟨a, a⁻¹, mul_inv_cancel ha, inv_mul_cancel ha⟩ @[simp] lemma coe_mk0 {a : G₀} (h : a ≠ 0) : (mk0 a h : G₀) = a := rfl @[simp] lemma mk0_coe (u : units G₀) (h : (u : G₀) ≠ 0) : mk0 (u : G₀) h = u := units.ext rfl @[simp, norm_cast] lemma coe_inv' (u : units G₀) : ((u⁻¹ : units G₀) : G₀) = u⁻¹ := eq_inv_of_mul_left_eq_one u.inv_mul @[simp] lemma mul_inv' (u : units G₀) : (u : G₀) * u⁻¹ = 1 := mul_inv_cancel u.ne_zero @[simp] lemma inv_mul' (u : units G₀) : (u⁻¹ : G₀) * u = 1 := inv_mul_cancel u.ne_zero @[simp] lemma mk0_inj {a b : G₀} (ha : a ≠ 0) (hb : b ≠ 0) : units.mk0 a ha = units.mk0 b hb ↔ a = b := ⟨λ h, by injection h, λ h, units.ext h⟩ @[simp] lemma exists_iff_ne_zero {x : G₀} : (∃ u : units G₀, ↑u = x) ↔ x ≠ 0 := ⟨λ ⟨u, hu⟩, hu ▸ u.ne_zero, assume hx, ⟨mk0 x hx, rfl⟩⟩ end units section group_with_zero variables [group_with_zero G₀] lemma is_unit.mk0 (x : G₀) (hx : x ≠ 0) : is_unit x := is_unit_unit (units.mk0 x hx) lemma is_unit_iff_ne_zero {x : G₀} : is_unit x ↔ x ≠ 0 := units.exists_iff_ne_zero section prio set_option default_priority 10 -- see Note [default priority] instance group_with_zero.no_zero_divisors : no_zero_divisors G₀ := { eq_zero_or_eq_zero_of_mul_eq_zero := λ a b h, begin classical, contrapose! h, exact ((units.mk0 a h.1) * (units.mk0 b h.2)).ne_zero end, .. (‹_› : group_with_zero G₀) } instance group_with_zero.cancel_monoid_with_zero : cancel_monoid_with_zero G₀ := { mul_left_cancel_of_ne_zero := λ x y z hx h, by rw [← inv_mul_cancel_left' hx y, h, inv_mul_cancel_left' hx z], mul_right_cancel_of_ne_zero := λ x y z hy h, by rw [← mul_inv_cancel_right' hy x, h, mul_inv_cancel_right' hy z], .. (‹_› : group_with_zero G₀) } end prio lemma mul_inv_rev' (x y : G₀) : (x * y)⁻¹ = y⁻¹ * x⁻¹ := begin classical, by_cases hx : x = 0, { simp [hx] }, by_cases hy : y = 0, { simp [hy] }, symmetry, apply eq_inv_of_mul_left_eq_one, simp [mul_assoc, hx, hy] end @[simp] lemma div_self {a : G₀} (h : a ≠ 0) : a / a = 1 := mul_inv_cancel h @[simp] lemma div_one (a : G₀) : a / 1 = a := by simp [div_eq_mul_inv] lemma one_div (a : G₀) : 1 / a = a⁻¹ := one_mul _ @[simp] lemma zero_div (a : G₀) : 0 / a = 0 := zero_mul _ @[simp] lemma div_zero (a : G₀) : a / 0 = 0 := show a * 0⁻¹ = 0, by rw [inv_zero, mul_zero] @[simp] lemma div_mul_cancel (a : G₀) {b : G₀} (h : b ≠ 0) : a / b * b = a := inv_mul_cancel_right' h a lemma div_mul_cancel_of_imp {a b : G₀} (h : b = 0 → a = 0) : a / b * b = a := classical.by_cases (λ hb : b = 0, by simp [*]) (div_mul_cancel a) @[simp] lemma mul_div_cancel (a : G₀) {b : G₀} (h : b ≠ 0) : a * b / b = a := mul_inv_cancel_right' h a lemma mul_div_cancel_of_imp {a b : G₀} (h : b = 0 → a = 0) : a * b / b = a := classical.by_cases (λ hb : b = 0, by simp [*]) (mul_div_cancel a) lemma mul_div_assoc {a b c : G₀} : a * b / c = a * (b / c) := mul_assoc _ _ _ local attribute [simp] div_eq_mul_inv mul_comm mul_assoc mul_left_comm lemma div_eq_mul_one_div (a b : G₀) : a / b = a * (1 / b) := by simp lemma mul_one_div_cancel {a : G₀} (h : a ≠ 0) : a * (1 / a) = 1 := by simp [h] lemma one_div_mul_cancel {a : G₀} (h : a ≠ 0) : (1 / a) * a = 1 := by simp [h] lemma one_div_one : 1 / 1 = (1:G₀) := div_self (ne.symm zero_ne_one) lemma one_div_ne_zero {a : G₀} (h : a ≠ 0) : 1 / a ≠ 0 := by simpa only [one_div] using inv_ne_zero h lemma eq_one_div_of_mul_eq_one {a b : G₀} (h : a * b = 1) : b = 1 / a := by simpa only [one_div] using eq_inv_of_mul_right_eq_one h lemma eq_one_div_of_mul_eq_one_left {a b : G₀} (h : b * a = 1) : b = 1 / a := by simpa only [one_div] using eq_inv_of_mul_left_eq_one h @[simp] lemma one_div_div (a b : G₀) : 1 / (a / b) = b / a := by rw [one_div, div_eq_mul_inv, mul_inv_rev', inv_inv', div_eq_mul_inv] @[simp] lemma one_div_one_div (a : G₀) : 1 / (1 / a) = a := by simp lemma eq_of_one_div_eq_one_div {a b : G₀} (h : 1 / a = 1 / b) : a = b := by rw [← one_div_one_div a, h, one_div_one_div] variables {a b c : G₀} @[simp] lemma inv_eq_zero {a : G₀} : a⁻¹ = 0 ↔ a = 0 := by rw [inv_eq_iff, inv_zero, eq_comm] lemma one_div_mul_one_div_rev (a b : G₀) : (1 / a) * (1 / b) = 1 / (b * a) := by simp only [div_eq_mul_inv, one_mul, mul_inv_rev'] theorem divp_eq_div (a : G₀) (u : units G₀) : a /ₚ u = a / u := congr_arg _ $ u.coe_inv' @[simp] theorem divp_mk0 (a : G₀) {b : G₀} (hb : b ≠ 0) : a /ₚ units.mk0 b hb = a / b := divp_eq_div _ _ lemma inv_div : (a / b)⁻¹ = b / a := (mul_inv_rev' _ _).trans (by rw inv_inv'; refl) lemma inv_div_left : a⁻¹ / b = (b * a)⁻¹ := (mul_inv_rev' _ _).symm lemma div_ne_zero (ha : a ≠ 0) (hb : b ≠ 0) : a / b ≠ 0 := mul_ne_zero ha (inv_ne_zero hb) @[simp] lemma div_eq_zero_iff : a / b = 0 ↔ a = 0 ∨ b = 0:= by simp [div_eq_mul_inv] lemma div_ne_zero_iff : a / b ≠ 0 ↔ a ≠ 0 ∧ b ≠ 0 := (not_congr div_eq_zero_iff).trans not_or_distrib lemma div_left_inj' (hc : c ≠ 0) : a / c = b / c ↔ a = b := by rw [← divp_mk0 _ hc, ← divp_mk0 _ hc, divp_left_inj] lemma div_eq_iff_mul_eq (hb : b ≠ 0) : a / b = c ↔ c * b = a := ⟨λ h, by rw [← h, div_mul_cancel _ hb], λ h, by rw [← h, mul_div_cancel _ hb]⟩ lemma eq_div_iff_mul_eq (hc : c ≠ 0) : a = b / c ↔ a * c = b := by rw [eq_comm, div_eq_iff_mul_eq hc] lemma div_eq_of_eq_mul {x : G₀} (hx : x ≠ 0) {y z : G₀} (h : y = z * x) : y / x = z := (div_eq_iff_mul_eq hx).2 h.symm lemma eq_div_of_mul_eq {x : G₀} (hx : x ≠ 0) {y z : G₀} (h : z * x = y) : z = y / x := eq.symm $ div_eq_of_eq_mul hx h.symm lemma eq_of_div_eq_one (h : a / b = 1) : a = b := begin classical, by_cases hb : b = 0, { rw [hb, div_zero] at h, exact eq_of_zero_eq_one h a b }, { rwa [div_eq_iff_mul_eq hb, one_mul, eq_comm] at h } end lemma div_eq_one_iff_eq (hb : b ≠ 0) : a / b = 1 ↔ a = b := ⟨eq_of_div_eq_one, λ h, h.symm ▸ div_self hb⟩ lemma div_mul_left {a b : G₀} (hb : b ≠ 0) : b / (a * b) = 1 / a := by simp only [div_eq_mul_inv, mul_inv_rev', mul_inv_cancel_left' hb, one_mul] lemma mul_div_mul_right (a b : G₀) {c : G₀} (hc : c ≠ 0) : (a * c) / (b * c) = a / b := by simp only [div_eq_mul_inv, mul_inv_rev', mul_assoc, mul_inv_cancel_left' hc] lemma mul_mul_div (a : G₀) {b : G₀} (hb : b ≠ 0) : a = a * b * (1 / b) := by simp [hb] end group_with_zero section comm_group_with_zero -- comm variables [comm_group_with_zero G₀] {a b c : G₀} /-- Pullback a `comm_group_with_zero` class along an injective function. -/ protected def function.injective.comm_group_with_zero [has_zero G₀'] [has_mul G₀'] [has_one G₀'] [has_inv G₀'] (f : G₀' → G₀) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹) : comm_group_with_zero G₀' := { .. hf.group_with_zero f zero one mul inv, .. hf.comm_semigroup f mul } /-- Pushforward a `comm_group_with_zero` class along an surjective function. -/ protected def function.surjective.comm_group_with_zero [has_zero G₀'] [has_mul G₀'] [has_one G₀'] [has_inv G₀'] (h01 : (0:G₀') ≠ 1) (f : G₀ → G₀') (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹) : comm_group_with_zero G₀' := { .. hf.group_with_zero h01 f zero one mul inv, .. hf.comm_semigroup f mul } lemma mul_inv' : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by rw [mul_inv_rev', mul_comm] lemma one_div_mul_one_div (a b : G₀) : (1 / a) * (1 / b) = 1 / (a * b) := by rw [one_div_mul_one_div_rev, mul_comm b] lemma div_mul_right {a : G₀} (b : G₀) (ha : a ≠ 0) : a / (a * b) = 1 / b := by rw [mul_comm, div_mul_left ha] lemma mul_div_cancel_left_of_imp {a b : G₀} (h : a = 0 → b = 0) : a * b / a = b := by rw [mul_comm, mul_div_cancel_of_imp h] lemma mul_div_cancel_left {a : G₀} (b : G₀) (ha : a ≠ 0) : a * b / a = b := mul_div_cancel_left_of_imp $ λ h, (ha h).elim lemma mul_div_cancel_of_imp' {a b : G₀} (h : b = 0 → a = 0) : b * (a / b) = a := by rw [mul_comm, div_mul_cancel_of_imp h] lemma mul_div_cancel' (a : G₀) {b : G₀} (hb : b ≠ 0) : b * (a / b) = a := by rw [mul_comm, (div_mul_cancel _ hb)] local attribute [simp] mul_assoc mul_comm mul_left_comm lemma div_mul_div (a b c d : G₀) : (a / b) * (c / d) = (a * c) / (b * d) := by { simp [div_eq_mul_inv], rw [mul_inv_rev', mul_comm d⁻¹] } lemma mul_div_mul_left (a b : G₀) {c : G₀} (hc : c ≠ 0) : (c * a) / (c * b) = a / b := by rw [mul_comm c, mul_comm c, mul_div_mul_right _ _ hc] @[field_simps] lemma div_mul_eq_mul_div (a b c : G₀) : (b / c) * a = (b * a) / c := by simp [div_eq_mul_inv] lemma div_mul_eq_mul_div_comm (a b c : G₀) : (b / c) * a = b * (a / c) := by rw [div_mul_eq_mul_div, ← one_mul c, ← div_mul_div, div_one, one_mul] lemma mul_eq_mul_of_div_eq_div (a : G₀) {b : G₀} (c : G₀) {d : G₀} (hb : b ≠ 0) (hd : d ≠ 0) (h : a / b = c / d) : a * d = c * b := by rw [← mul_one (a*d), mul_assoc, mul_comm d, ← mul_assoc, ← div_self hb, ← div_mul_eq_mul_div_comm, h, div_mul_eq_mul_div, div_mul_cancel _ hd] @[field_simps] lemma div_div_eq_mul_div (a b c : G₀) : a / (b / c) = (a * c) / b := by rw [div_eq_mul_one_div, one_div_div, ← mul_div_assoc] @[field_simps] lemma div_div_eq_div_mul (a b c : G₀) : (a / b) / c = a / (b * c) := by rw [div_eq_mul_one_div, div_mul_div, mul_one] lemma div_div_div_div_eq (a : G₀) {b c d : G₀} : (a / b) / (c / d) = (a * d) / (b * c) := by rw [div_div_eq_mul_div, div_mul_eq_mul_div, div_div_eq_div_mul] lemma div_mul_eq_div_mul_one_div (a b c : G₀) : a / (b * c) = (a / b) * (1 / c) := by rw [← div_div_eq_div_mul, ← div_eq_mul_one_div] /-- Dividing `a` by the result of dividing `a` by itself results in `a` (whether or not `a` is zero). -/ @[simp] lemma div_div_self (a : G₀) : a / (a / a) = a := begin rw div_div_eq_mul_div, exact mul_self_div_self a end lemma ne_zero_of_one_div_ne_zero {a : G₀} (h : 1 / a ≠ 0) : a ≠ 0 := assume ha : a = 0, begin rw [ha, div_zero] at h, contradiction end lemma eq_zero_of_one_div_eq_zero {a : G₀} (h : 1 / a = 0) : a = 0 := classical.by_cases (assume ha, ha) (assume ha, ((one_div_ne_zero ha) h).elim) lemma div_helper {a : G₀} (b : G₀) (h : a ≠ 0) : (1 / (a * b)) * a = 1 / b := by rw [div_mul_eq_mul_div, one_mul, div_mul_right _ h] end comm_group_with_zero section comm_group_with_zero variables [comm_group_with_zero G₀] {a b c d : G₀} lemma div_eq_inv_mul : a / b = b⁻¹ * a := mul_comm _ _ lemma mul_div_right_comm (a b c : G₀) : (a * b) / c = (a / c) * b := by rw [div_eq_mul_inv, mul_assoc, mul_comm b, ← mul_assoc]; refl lemma mul_comm_div' (a b c : G₀) : (a / b) * c = a * (c / b) := by rw [← mul_div_assoc, mul_div_right_comm] lemma div_mul_comm' (a b c : G₀) : (a / b) * c = (c / b) * a := by rw [div_mul_eq_mul_div, mul_comm, mul_div_right_comm] lemma mul_div_comm (a b c : G₀) : a * (b / c) = b * (a / c) := by rw [← mul_div_assoc, mul_comm, mul_div_assoc] lemma div_right_comm (a : G₀) : (a / b) / c = (a / c) / b := by rw [div_div_eq_div_mul, div_div_eq_div_mul, mul_comm] lemma div_div_div_cancel_right (a : G₀) (hc : c ≠ 0) : (a / c) / (b / c) = a / b := by rw [div_div_eq_mul_div, div_mul_cancel _ hc] lemma div_mul_div_cancel (a : G₀) (hc : c ≠ 0) : (a / c) * (c / b) = a / b := by rw [← mul_div_assoc, div_mul_cancel _ hc] @[field_simps] lemma div_eq_div_iff (hb : b ≠ 0) (hd : d ≠ 0) : a / b = c / d ↔ a * d = c * b := calc a / b = c / d ↔ a / b * (b * d) = c / d * (b * d) : by rw [mul_left_inj' (mul_ne_zero hb hd)] ... ↔ a * d = c * b : by rw [← mul_assoc, div_mul_cancel _ hb, ← mul_assoc, mul_right_comm, div_mul_cancel _ hd] @[field_simps] lemma div_eq_iff (hb : b ≠ 0) : a / b = c ↔ a = c * b := by simpa using @div_eq_div_iff _ _ a b c 1 hb one_ne_zero @[field_simps] lemma eq_div_iff (hb : b ≠ 0) : c = a / b ↔ c * b = a := by simpa using @div_eq_div_iff _ _ c 1 a b one_ne_zero hb lemma div_div_cancel' (ha : a ≠ 0) : a / (a / b) = b := by rw [div_eq_mul_inv, inv_div, mul_div_cancel' _ ha] end comm_group_with_zero namespace semiconj_by @[simp] lemma zero_right [mul_zero_class G₀] (a : G₀) : semiconj_by a 0 0 := by simp only [semiconj_by, mul_zero, zero_mul] @[simp] lemma zero_left [mul_zero_class G₀] (x y : G₀) : semiconj_by 0 x y := by simp only [semiconj_by, mul_zero, zero_mul] variables [group_with_zero G₀] {a x y x' y' : G₀} @[simp] lemma inv_symm_left_iff' : semiconj_by a⁻¹ x y ↔ semiconj_by a y x := classical.by_cases (λ ha : a = 0, by simp only [ha, inv_zero, semiconj_by.zero_left]) (λ ha, @units_inv_symm_left_iff _ _ (units.mk0 a ha) _ _) lemma inv_symm_left' (h : semiconj_by a x y) : semiconj_by a⁻¹ y x := semiconj_by.inv_symm_left_iff'.2 h lemma inv_right' (h : semiconj_by a x y) : semiconj_by a x⁻¹ y⁻¹ := begin classical, by_cases ha : a = 0, { simp only [ha, zero_left] }, by_cases hx : x = 0, { subst x, simp only [semiconj_by, mul_zero, @eq_comm _ _ (y * a), mul_eq_zero] at h, simp [h.resolve_right ha] }, { have := mul_ne_zero ha hx, rw [h.eq, mul_ne_zero_iff] at this, exact @units_inv_right _ _ _ (units.mk0 x hx) (units.mk0 y this.1) h }, end @[simp] lemma inv_right_iff' : semiconj_by a x⁻¹ y⁻¹ ↔ semiconj_by a x y := ⟨λ h, inv_inv' x ▸ inv_inv' y ▸ h.inv_right', inv_right'⟩ lemma div_right (h : semiconj_by a x y) (h' : semiconj_by a x' y') : semiconj_by a (x / x') (y / y') := h.mul_right h'.inv_right' end semiconj_by namespace commute @[simp] theorem zero_right [mul_zero_class G₀] (a : G₀) :commute a 0 := semiconj_by.zero_right a @[simp] theorem zero_left [mul_zero_class G₀] (a : G₀) : commute 0 a := semiconj_by.zero_left a a variables [group_with_zero G₀] {a b c : G₀} @[simp] theorem inv_left_iff' : commute a⁻¹ b ↔ commute a b := semiconj_by.inv_symm_left_iff' theorem inv_left' (h : commute a b) : commute a⁻¹ b := inv_left_iff'.2 h @[simp] theorem inv_right_iff' : commute a b⁻¹ ↔ commute a b := semiconj_by.inv_right_iff' theorem inv_right' (h : commute a b) : commute a b⁻¹ := inv_right_iff'.2 h theorem inv_inv' (h : commute a b) : commute a⁻¹ b⁻¹ := h.inv_left'.inv_right' @[simp] theorem div_right (hab : commute a b) (hac : commute a c) : commute a (b / c) := hab.div_right hac @[simp] theorem div_left (hac : commute a c) (hbc : commute b c) : commute (a / b) c := hac.mul_left hbc.inv_left' end commute namespace monoid_hom section group_with_zero variables [group_with_zero G₀] [group_with_zero G₀'] (f : G₀ →* G₀') (h0 : f 0 = 0) {a : G₀} include h0 lemma map_ne_zero : f a ≠ 0 ↔ a ≠ 0 := ⟨λ hfa ha, hfa $ ha.symm ▸ h0, λ ha, ((is_unit.mk0 a ha).map f).ne_zero⟩ lemma map_eq_zero : f a = 0 ↔ a = 0 := by { classical, exact not_iff_not.1 (f.map_ne_zero h0) } variables (a) (b : G₀) /-- A monoid homomorphism between groups with zeros sending `0` to `0` sends `a⁻¹` to `(f a)⁻¹`. -/ lemma map_inv' : f a⁻¹ = (f a)⁻¹ := begin classical, by_cases h : a = 0, by simp [h, h0], apply eq_inv_of_mul_left_eq_one, rw [← f.map_mul, inv_mul_cancel h, f.map_one] end lemma map_div : f (a / b) = f a / f b := (f.map_mul _ _).trans $ congr_arg _ $ f.map_inv' h0 b end group_with_zero section comm_group_with_zero @[simp] lemma map_units_inv {M G₀ : Type*} [monoid M] [comm_group_with_zero G₀] (f : M →* G₀) (u : units M) : f ↑u⁻¹ = (f u)⁻¹ := have f (u * ↑u⁻¹) = 1 := by rw [←units.coe_mul, mul_inv_self, units.coe_one, f.map_one], inv_unique (trans (f.map_mul _ _).symm this) (mul_inv_cancel (λ hu, zero_ne_one (trans (by rw [f.map_mul, hu, zero_mul]) this))) end comm_group_with_zero end monoid_hom
7f6ccc7c8cbb888c30f53897db02dd5fb01dc0d5
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/data/fintype/order.lean
b3234143e11f735d7980660536b8358b0fac9f55
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
6,156
lean
/- Copyright (c) 2021 Peter Nelson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Peter Nelson, Yaël Dillies -/ import data.fintype.lattice import data.finset.order /-! # Order structures on finite types > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file provides order instances on fintypes. ## Computable instances On a `fintype`, we can construct * an `order_bot` from `semilattice_inf`. * an `order_top` from `semilattice_sup`. * a `bounded_order` from `lattice`. Those are marked as `def` to avoid defeqness issues. ## Completion instances Those instances are noncomputable because the definitions of `Sup` and `Inf` use `set.to_finset` and set membership is undecidable in general. On a `fintype`, we can promote: * a `lattice` to a `complete_lattice`. * a `distrib_lattice` to a `complete_distrib_lattice`. * a `linear_order` to a `complete_linear_order`. * a `boolean_algebra` to a `complete_boolean_algebra`. Those are marked as `def` to avoid typeclass loops. ## Concrete instances We provide a few instances for concrete types: * `fin.complete_linear_order` * `bool.complete_linear_order` * `bool.complete_boolean_algebra` -/ open finset namespace fintype variables {ι α : Type*} [fintype ι] [fintype α] section nonempty variables (α) [nonempty α] /-- Constructs the `⊥` of a finite nonempty `semilattice_inf`. -/ @[reducible] -- See note [reducible non-instances] def to_order_bot [semilattice_inf α] : order_bot α := { bot := univ.inf' univ_nonempty id, bot_le := λ a, inf'_le _ $ mem_univ a } /-- Constructs the `⊤` of a finite nonempty `semilattice_sup` -/ @[reducible] -- See note [reducible non-instances] def to_order_top [semilattice_sup α] : order_top α := { top := univ.sup' univ_nonempty id, le_top := λ a, le_sup' _ $ mem_univ a } /-- Constructs the `⊤` and `⊥` of a finite nonempty `lattice`. -/ @[reducible] -- See note [reducible non-instances] def to_bounded_order [lattice α] : bounded_order α := { ..to_order_bot α, ..to_order_top α } end nonempty section bounded_order variables (α) open_locale classical /-- A finite bounded lattice is complete. -/ @[reducible] -- See note [reducible non-instances] noncomputable def to_complete_lattice [lattice α] [bounded_order α] : complete_lattice α := { Sup := λ s, s.to_finset.sup id, Inf := λ s, s.to_finset.inf id, le_Sup := λ _ _ ha, finset.le_sup (set.mem_to_finset.mpr ha), Sup_le := λ s _ ha, finset.sup_le (λ b hb, ha _ $ set.mem_to_finset.mp hb), Inf_le := λ _ _ ha, finset.inf_le (set.mem_to_finset.mpr ha), le_Inf := λ s _ ha, finset.le_inf (λ b hb, ha _ $ set.mem_to_finset.mp hb), .. ‹lattice α›, .. ‹bounded_order α› } /-- A finite bounded distributive lattice is completely distributive. -/ @[reducible] -- See note [reducible non-instances] noncomputable def to_complete_distrib_lattice [distrib_lattice α] [bounded_order α] : complete_distrib_lattice α := { infi_sup_le_sup_Inf := λ a s, begin convert (finset.inf_sup_distrib_left _ _ _).ge, convert (finset.inf_eq_infi _ _).symm, simp_rw set.mem_to_finset, refl, end, inf_Sup_le_supr_inf := λ a s, begin convert (finset.sup_inf_distrib_left _ _ _).le, convert (finset.sup_eq_supr _ _).symm, simp_rw set.mem_to_finset, refl, end, ..to_complete_lattice α } /-- A finite bounded linear order is complete. -/ @[reducible] -- See note [reducible non-instances] noncomputable def to_complete_linear_order [linear_order α] [bounded_order α] : complete_linear_order α := { ..to_complete_lattice α, .. ‹linear_order α› } /-- A finite boolean algebra is complete. -/ @[reducible] -- See note [reducible non-instances] noncomputable def to_complete_boolean_algebra [boolean_algebra α] : complete_boolean_algebra α := { ..fintype.to_complete_distrib_lattice α, .. ‹boolean_algebra α› } end bounded_order section nonempty variables (α) [nonempty α] /-- A nonempty finite lattice is complete. If the lattice is already a `bounded_order`, then use `fintype.to_complete_lattice` instead, as this gives definitional equality for `⊥` and `⊤`. -/ @[reducible] -- See note [reducible non-instances] noncomputable def to_complete_lattice_of_nonempty [lattice α] : complete_lattice α := @to_complete_lattice _ _ _ $ @to_bounded_order α _ ⟨classical.arbitrary α⟩ _ /-- A nonempty finite linear order is complete. If the linear order is already a `bounded_order`, then use `fintype.to_complete_linear_order` instead, as this gives definitional equality for `⊥` and `⊤`. -/ @[reducible] -- See note [reducible non-instances] noncomputable def to_complete_linear_order_of_nonempty [linear_order α] : complete_linear_order α := { ..to_complete_lattice_of_nonempty α, .. ‹linear_order α› } end nonempty end fintype /-! ### Concrete instances -/ noncomputable instance {n : ℕ} : complete_linear_order (fin (n + 1)) := fintype.to_complete_linear_order _ noncomputable instance : complete_linear_order bool := fintype.to_complete_linear_order _ noncomputable instance : complete_boolean_algebra bool := fintype.to_complete_boolean_algebra _ /-! ### Directed Orders -/ variable {α : Type*} theorem directed.fintype_le {r : α → α → Prop} [is_trans α r] {β γ : Type*} [nonempty γ] {f : γ → α} [fintype β] (D : directed r f) (g : β → γ) : ∃ z, ∀ i, r (f (g i)) (f z) := begin classical, obtain ⟨z, hz⟩ := D.finset_le (finset.image g finset.univ), exact ⟨z, λ i, hz (g i) (finset.mem_image_of_mem g (finset.mem_univ i))⟩, end lemma fintype.exists_le [nonempty α] [preorder α] [is_directed α (≤)] {β : Type*} [fintype β] (f : β → α) : ∃ M, ∀ i, (f i) ≤ M := directed_id.fintype_le _ lemma fintype.bdd_above_range [nonempty α] [preorder α] [is_directed α (≤)] {β : Type*} [fintype β] (f : β → α) : bdd_above (set.range f) := begin obtain ⟨M, hM⟩ := fintype.exists_le f, refine ⟨M, λ a ha, _⟩, obtain ⟨b, rfl⟩ := ha, exact hM b, end
78b9653c43c4f6af7b321d1d25004f5c8f9491ae
ac89c256db07448984849346288e0eeffe8b20d0
/stage0/src/Lean/Meta/Tactic/Simp/SimpLemmas.lean
cbfa5d3d1d04dec781f538192dcc3db1734e3acc
[ "Apache-2.0" ]
permissive
chepinzhang/lean4
002cc667f35417a418f0ebc9cb4a44559bb0ccac
24fe2875c68549b5481f07c57eab4ad4a0ae5305
refs/heads/master
1,688,942,838,326
1,628,801,942,000
1,628,801,995,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
11,172
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.ScopedEnvExtension import Lean.Util.Recognizers import Lean.Meta.LevelDefEq import Lean.Meta.DiscrTree import Lean.Meta.AppBuilder import Lean.Meta.Tactic.AuxLemma namespace Lean.Meta /-- The fields `levelParams` and `proof` are used to encode the proof of the simp lemma. If the `proof` is a global declaration `c`, we store `Expr.const c []` at `proof` without the universe levels, and `levelParams` is set to `#[]` When using the lemma, we create fresh universe metavariables. Motivation: most simp lemmas are global declarations, and this approach is faster and saves memory. The field `levelParams` is not empty only when we elaborate an expression provided by the user, and it contains universe metavariables. Then, we use `abstractMVars` to abstract the universe metavariables and create new fresh universe parameters that are stored at the field `levelParams`. -/ structure SimpLemma where keys : Array DiscrTree.Key levelParams : Array Name -- non empty for local universe polymorhic proofs. proof : Expr priority : Nat post : Bool perm : Bool -- true is lhs and rhs are identical modulo permutation of variables name? : Option Name := none -- for debugging and tracing purposes deriving Inhabited def SimpLemma.getName (s : SimpLemma) : Name := match s.name? with | some n => n | none => "<unknown>" instance : ToFormat SimpLemma where format s := let perm := if s.perm then ":perm" else "" let name := format s.getName let prio := f!":{s.priority}" name ++ prio ++ perm instance : ToMessageData SimpLemma where toMessageData s := format s instance : BEq SimpLemma where beq e₁ e₂ := e₁.proof == e₂.proof structure SimpLemmas where pre : DiscrTree SimpLemma := DiscrTree.empty post : DiscrTree SimpLemma := DiscrTree.empty lemmaNames : Std.PHashSet Name := {} toUnfold : Std.PHashSet Name := {} erased : Std.PHashSet Name := {} deriving Inhabited def addSimpLemmaEntry (d : SimpLemmas) (e : SimpLemma) : SimpLemmas := if e.post then { d with post := d.post.insertCore e.keys e, lemmaNames := updateLemmaNames d.lemmaNames } else { d with pre := d.pre.insertCore e.keys e, lemmaNames := updateLemmaNames d.lemmaNames } where updateLemmaNames (s : Std.PHashSet Name) : Std.PHashSet Name := match e.name? with | none => s | some name => s.insert name def SimpLemmas.addDeclToUnfold (d : SimpLemmas) (declName : Name) : SimpLemmas := { d with toUnfold := d.toUnfold.insert declName } def SimpLemmas.isDeclToUnfold (d : SimpLemmas) (declName : Name) : Bool := d.toUnfold.contains declName def SimpLemmas.isLemma (d : SimpLemmas) (declName : Name) : Bool := d.lemmaNames.contains declName def SimpLemmas.eraseCore [Monad m] [MonadError m] (d : SimpLemmas) (declName : Name) : m SimpLemmas := do return { d with erased := d.erased.insert declName, lemmaNames := d.lemmaNames.erase declName, toUnfold := d.toUnfold.erase declName } def SimpLemmas.erase [Monad m] [MonadError m] (d : SimpLemmas) (declName : Name) : m SimpLemmas := do unless d.isLemma declName || d.isDeclToUnfold declName do throwError "'{declName}' does not have [simp] attribute" d.eraseCore declName inductive SimpEntry where | lemma : SimpLemma → SimpEntry | toUnfold : Name → SimpEntry deriving Inhabited builtin_initialize simpExtension : SimpleScopedEnvExtension SimpEntry SimpLemmas ← registerSimpleScopedEnvExtension { name := `simpExt initial := {} addEntry := fun d e => match e with | SimpEntry.lemma e => addSimpLemmaEntry d e | SimpEntry.toUnfold n => d.addDeclToUnfold n } private partial def isPerm : Expr → Expr → MetaM Bool | Expr.app f₁ a₁ _, Expr.app f₂ a₂ _ => isPerm f₁ f₂ <&&> isPerm a₁ a₂ | Expr.mdata _ s _, t => isPerm s t | s, Expr.mdata _ t _ => isPerm s t | s@(Expr.mvar ..), t@(Expr.mvar ..) => isDefEq s t | Expr.forallE n₁ d₁ b₁ _, Expr.forallE n₂ d₂ b₂ _ => isPerm d₁ d₂ <&&> withLocalDeclD n₁ d₁ fun x => isPerm (b₁.instantiate1 x) (b₂.instantiate1 x) | Expr.lam n₁ d₁ b₁ _, Expr.lam n₂ d₂ b₂ _ => isPerm d₁ d₂ <&&> withLocalDeclD n₁ d₁ fun x => isPerm (b₁.instantiate1 x) (b₂.instantiate1 x) | Expr.letE n₁ t₁ v₁ b₁ _, Expr.letE n₂ t₂ v₂ b₂ _ => isPerm t₁ t₂ <&&> isPerm v₁ v₂ <&&> withLetDecl n₁ t₁ v₁ fun x => isPerm (b₁.instantiate1 x) (b₂.instantiate1 x) | Expr.proj _ i₁ b₁ _, Expr.proj _ i₂ b₂ _ => i₁ == i₂ <&&> isPerm b₁ b₂ | s, t => s == t private partial def shouldPreprocess (type : Expr) : MetaM Bool := forallTelescopeReducing type fun xs result => return !result.isEq private partial def preprocess (e type : Expr) : MetaM (List (Expr × Expr)) := do let type ← whnf type if type.isForall then forallTelescopeReducing type fun xs type => do let e := mkAppN e xs let ps ← preprocess e type ps.mapM fun (e, type) => return (← mkLambdaFVars xs e, ← mkForallFVars xs type) else if type.isEq then return [(e, type)] else if let some (lhs, rhs) := type.iff? then let type ← mkEq lhs rhs let e ← mkPropExt e return [(e, type)] else if let some (_, lhs, rhs) := type.ne? then let type ← mkEq (← mkEq lhs rhs) (mkConst ``False) let e ← mkEqFalse e return [(e, type)] else if let some p := type.not? then let type ← mkEq p (mkConst ``False) let e ← mkEqFalse e return [(e, type)] else if let some (type₁, type₂) := type.and? then let e₁ := mkProj ``And 0 e let e₂ := mkProj ``And 1 e return (← preprocess e₁ type₁) ++ (← preprocess e₂ type₂) else let type ← mkEq type (mkConst ``True) let e ← mkEqTrue e return [(e, type)] private def checkTypeIsProp (type : Expr) : MetaM Unit := unless (← isProp type) do throwError "invalid 'simp', proposition expected{indentExpr type}" private def mkSimpLemmaCore (e : Expr) (levelParams : Array Name) (proof : Expr) (post : Bool) (prio : Nat) (name? : Option Name) : MetaM SimpLemma := do let type ← instantiateMVars (← inferType e) withNewMCtxDepth do let (xs, _, type) ← withReducible <| forallMetaTelescopeReducing type let type ← whnfR type let (keys, perm) ← match type.eq? with | some (_, lhs, rhs) => pure (← DiscrTree.mkPath lhs, ← isPerm lhs rhs) | none => throwError "unexpected kind of 'simp' theorem{indentExpr type}" return { keys := keys, perm := perm, post := post, levelParams := levelParams, proof := proof, name? := name?, priority := prio } private def mkSimpLemmasFromConst (declName : Name) (post : Bool) (prio : Nat) : MetaM (Array SimpLemma) := do let cinfo ← getConstInfo declName let val := mkConst declName (cinfo.levelParams.map mkLevelParam) withReducible do let type ← inferType val checkTypeIsProp type if (← shouldPreprocess type) then let mut r := #[] for (val, type) in (← preprocess val type) do let auxName ← mkAuxLemma cinfo.levelParams type val r := r.push <| (← mkSimpLemmaCore (mkConst auxName (cinfo.levelParams.map mkLevelParam)) #[] (mkConst auxName) post prio declName) return r else #[← mkSimpLemmaCore (mkConst declName (cinfo.levelParams.map mkLevelParam)) #[] (mkConst declName) post prio declName] def addSimpLemma (declName : Name) (post : Bool) (attrKind : AttributeKind) (prio : Nat) : MetaM Unit := do let simpLemmas ← mkSimpLemmasFromConst declName post prio for simpLemma in simpLemmas do simpExtension.add (SimpEntry.lemma simpLemma) attrKind builtin_initialize registerBuiltinAttribute { name := `simp descr := "simplification theorem" add := fun declName stx attrKind => let go : MetaM Unit := do let info ← getConstInfo declName if (← isProp info.type) then let post := if stx[1].isNone then true else stx[1][0].getKind == ``Lean.Parser.Tactic.simpPost let prio ← getAttrParamOptPrio stx[2] addSimpLemma declName post attrKind prio else if info.hasValue then simpExtension.add (SimpEntry.toUnfold declName) attrKind else throwError "invalid 'simp', it is not a proposition nor a definition (to unfold)" discard <| go.run {} {} erase := fun declName => do let s ← simpExtension.getState (← getEnv) let s ← s.erase declName modifyEnv fun env => simpExtension.modifyState env fun _ => s } def getSimpLemmas : MetaM SimpLemmas := return simpExtension.getState (← getEnv) /- Auxiliary method for adding a global declaration to a `SimpLemmas` datastructure. -/ def SimpLemmas.addConst (s : SimpLemmas) (declName : Name) (post : Bool := true) (prio : Nat := eval_prio default) : MetaM SimpLemmas := do let simpLemmas ← mkSimpLemmasFromConst declName post prio return simpLemmas.foldl addSimpLemmaEntry s def SimpLemma.getValue (simpLemma : SimpLemma) : MetaM Expr := do if simpLemma.proof.isConst && simpLemma.levelParams.isEmpty then let info ← getConstInfo simpLemma.proof.constName! if info.levelParams.isEmpty then return simpLemma.proof else return simpLemma.proof.updateConst! (← info.levelParams.mapM (fun _ => mkFreshLevelMVar)) else let us ← simpLemma.levelParams.mapM fun _ => mkFreshLevelMVar simpLemma.proof.instantiateLevelParamsArray simpLemma.levelParams us private def preprocessProof (val : Expr) : MetaM (Array Expr) := do let type ← inferType val checkTypeIsProp type let ps ← preprocess val type return ps.toArray.map fun (val, _) => val /- Auxiliary method for creating simp lemmas from a proof term `val`. -/ def mkSimpLemmas (levelParams : Array Name) (proof : Expr) (post : Bool := true) (prio : Nat := eval_prio default) (name? : Option Name := none): MetaM (Array SimpLemma) := withReducible do (← preprocessProof proof).mapM fun val => mkSimpLemmaCore val levelParams val post prio name? /- Auxiliary method for adding a local simp lemma to a `SimpLemmas` datastructure. -/ def SimpLemmas.add (s : SimpLemmas) (levelParams : Array Name) (proof : Expr) (post : Bool := true) (prio : Nat := eval_prio default) (name? : Option Name := none): MetaM SimpLemmas := do if proof.isConst then s.addConst proof.constName! post prio else let simpLemmas ← mkSimpLemmas levelParams proof post prio (← getName? proof) return simpLemmas.foldl addSimpLemmaEntry s where getName? (e : Expr) : MetaM (Option Name) := do match name? with | some _ => return name? | none => let f := e.getAppFn if f.isConst then return f.constName! else if f.isFVar then let localDecl ← getFVarLocalDecl f return localDecl.userName else return none end Lean.Meta
5d4b982c1c2b67faae23174bac4e8248b8dc8cbb
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
/src/topology/constructions.lean
e985bca79c8dd9bfd7f252a1794d98b4b2ef7b86
[ "Apache-2.0" ]
permissive
keeferrowan/mathlib
f2818da875dbc7780830d09bd4c526b0764a4e50
aad2dfc40e8e6a7e258287a7c1580318e865817e
refs/heads/master
1,661,736,426,952
1,590,438,032,000
1,590,438,032,000
266,892,663
0
0
Apache-2.0
1,590,445,835,000
1,590,445,835,000
null
UTF-8
Lean
false
false
32,237
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import topology.maps /-! # Constructions of new topological spaces from old ones This file constructs products, sums, subtypes and quotients of topological spaces and sets up their basic theory, such as criteria for maps into or out of these constructions to be continuous; descriptions of the open sets, neighborhood filters, and generators of these constructions; and their behavior with respect to embeddings and other specific classes of maps. ## Implementation note The constructed topologies are defined using induced and coinduced topologies along with the complete lattice structure on topologies. Their universal properties (for example, a map `X → Y × Z` is continuous if and only if both projections `X → Y`, `X → Z` are) follow easily using order-theoretic descriptions of continuity. With more work we can also extract descriptions of the open sets, neighborhood filters and so on. ## Tags product, sum, disjoint union, subspace, quotient space -/ noncomputable theory open topological_space set filter open_locale classical topological_space filter universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} section constructions instance {p : α → Prop} [t : topological_space α] : topological_space (subtype p) := induced coe t instance {r : α → α → Prop} [t : topological_space α] : topological_space (quot r) := coinduced (quot.mk r) t instance {s : setoid α} [t : topological_space α] : topological_space (quotient s) := coinduced quotient.mk t instance [t₁ : topological_space α] [t₂ : topological_space β] : topological_space (α × β) := induced prod.fst t₁ ⊓ induced prod.snd t₂ instance [t₁ : topological_space α] [t₂ : topological_space β] : topological_space (α ⊕ β) := coinduced sum.inl t₁ ⊔ coinduced sum.inr t₂ instance {β : α → Type v} [t₂ : Πa, topological_space (β a)] : topological_space (sigma β) := ⨆a, coinduced (sigma.mk a) (t₂ a) instance Pi.topological_space {β : α → Type v} [t₂ : Πa, topological_space (β a)] : topological_space (Πa, β a) := ⨅a, induced (λf, f a) (t₂ a) instance ulift.topological_space [t : topological_space α] : topological_space (ulift.{v u} α) := t.induced ulift.down lemma quotient_dense_of_dense [setoid α] [topological_space α] {s : set α} (H : ∀ x, x ∈ closure s) : closure (quotient.mk '' s) = univ := eq_univ_of_forall $ λ x, begin rw mem_closure_iff, intros U U_op x_in_U, let V := quotient.mk ⁻¹' U, cases quotient.exists_rep x with y y_x, have y_in_V : y ∈ V, by simp only [mem_preimage, y_x, x_in_U], have V_op : is_open V := U_op, obtain ⟨w, w_in_V, w_in_range⟩ : (V ∩ s).nonempty := mem_closure_iff.1 (H y) V V_op y_in_V, exact ⟨_, w_in_V, mem_image_of_mem quotient.mk w_in_range⟩ end instance {p : α → Prop} [topological_space α] [discrete_topology α] : discrete_topology (subtype p) := ⟨bot_unique $ assume s hs, ⟨subtype.val '' s, is_open_discrete _, (set.preimage_image_eq _ subtype.val_injective)⟩⟩ instance sum.discrete_topology [topological_space α] [topological_space β] [hα : discrete_topology α] [hβ : discrete_topology β] : discrete_topology (α ⊕ β) := ⟨by unfold sum.topological_space; simp [hα.eq_bot, hβ.eq_bot]⟩ instance sigma.discrete_topology {β : α → Type v} [Πa, topological_space (β a)] [h : Πa, discrete_topology (β a)] : discrete_topology (sigma β) := ⟨by { unfold sigma.topological_space, simp [λ a, (h a).eq_bot] }⟩ section topα variable [topological_space α] /- The 𝓝 filter and the subspace topology. -/ theorem mem_nhds_subtype (s : set α) (a : {x // x ∈ s}) (t : set {x // x ∈ s}) : t ∈ 𝓝 a ↔ ∃ u ∈ 𝓝 a.val, (@subtype.val α s) ⁻¹' u ⊆ t := mem_nhds_induced subtype.val a t theorem nhds_subtype (s : set α) (a : {x // x ∈ s}) : 𝓝 a = comap subtype.val (𝓝 a.val) := nhds_induced subtype.val a end topα end constructions section prod open topological_space variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] lemma continuous_fst : continuous (@prod.fst α β) := continuous_inf_dom_left continuous_induced_dom lemma continuous_at_fst {p : α × β} : continuous_at prod.fst p := continuous_fst.continuous_at lemma continuous_snd : continuous (@prod.snd α β) := continuous_inf_dom_right continuous_induced_dom lemma continuous_at_snd {p : α × β} : continuous_at prod.snd p := continuous_snd.continuous_at lemma continuous.prod_mk {f : γ → α} {g : γ → β} (hf : continuous f) (hg : continuous g) : continuous (λx, (f x, g x)) := continuous_inf_rng (continuous_induced_rng hf) (continuous_induced_rng hg) lemma continuous.prod_map {f : γ → α} {g : δ → β} (hf : continuous f) (hg : continuous g) : continuous (λ x : γ × δ, (f x.1, g x.2)) := (hf.comp continuous_fst).prod_mk (hg.comp continuous_snd) lemma filter.eventually.prod_inl_nhds {p : α → Prop} {a : α} (h : ∀ᶠ x in 𝓝 a, p x) (b : β) : ∀ᶠ x in 𝓝 (a, b), p (x : α × β).1 := continuous_at_fst h lemma filter.eventually.prod_inr_nhds {p : β → Prop} {b : β} (h : ∀ᶠ x in 𝓝 b, p x) (a : α) : ∀ᶠ x in 𝓝 (a, b), p (x : α × β).2 := continuous_at_snd h lemma filter.eventually.prod_mk_nhds {pa : α → Prop} {a} (ha : ∀ᶠ x in 𝓝 a, pa x) {pb : β → Prop} {b} (hb : ∀ᶠ y in 𝓝 b, pb y) : ∀ᶠ p in 𝓝 (a, b), pa (p : α × β).1 ∧ pb p.2 := (ha.prod_inl_nhds b).and (hb.prod_inr_nhds a) lemma continuous_swap : continuous (prod.swap : α × β → β × α) := continuous.prod_mk continuous_snd continuous_fst lemma is_open_prod {s : set α} {t : set β} (hs : is_open s) (ht : is_open t) : is_open (set.prod s t) := is_open_inter (continuous_fst s hs) (continuous_snd t ht) lemma nhds_prod_eq {a : α} {b : β} : 𝓝 (a, b) = filter.prod (𝓝 a) (𝓝 b) := by rw [filter.prod, prod.topological_space, nhds_inf, nhds_induced, nhds_induced] instance [discrete_topology α] [discrete_topology β] : discrete_topology (α × β) := ⟨eq_of_nhds_eq_nhds $ assume ⟨a, b⟩, by rw [nhds_prod_eq, nhds_discrete α, nhds_discrete β, nhds_bot, filter.prod_pure_pure]⟩ lemma prod_mem_nhds_sets {s : set α} {t : set β} {a : α} {b : β} (ha : s ∈ 𝓝 a) (hb : t ∈ 𝓝 b) : set.prod s t ∈ 𝓝 (a, b) := by rw [nhds_prod_eq]; exact prod_mem_prod ha hb lemma nhds_swap (a : α) (b : β) : 𝓝 (a, b) = (𝓝 (b, a)).map prod.swap := by rw [nhds_prod_eq, filter.prod_comm, nhds_prod_eq]; refl lemma filter.tendsto.prod_mk_nhds {γ} {a : α} {b : β} {f : filter γ} {ma : γ → α} {mb : γ → β} (ha : tendsto ma f (𝓝 a)) (hb : tendsto mb f (𝓝 b)) : tendsto (λc, (ma c, mb c)) f (𝓝 (a, b)) := by rw [nhds_prod_eq]; exact filter.tendsto.prod_mk ha hb lemma continuous_at.prod {f : α → β} {g : α → γ} {x : α} (hf : continuous_at f x) (hg : continuous_at g x) : continuous_at (λx, (f x, g x)) x := hf.prod_mk_nhds hg lemma continuous_at.prod_map {f : α → γ} {g : β → δ} {p : α × β} (hf : continuous_at f p.fst) (hg : continuous_at g p.snd) : continuous_at (λ p : α × β, (f p.1, g p.2)) p := (hf.comp continuous_fst.continuous_at).prod (hg.comp continuous_snd.continuous_at) lemma continuous_at.prod_map' {f : α → γ} {g : β → δ} {x : α} {y : β} (hf : continuous_at f x) (hg : continuous_at g y) : continuous_at (λ p : α × β, (f p.1, g p.2)) (x, y) := have hf : continuous_at f (x, y).fst, from hf, have hg : continuous_at g (x, y).snd, from hg, hf.prod_map hg lemma prod_generate_from_generate_from_eq {α : Type*} {β : Type*} {s : set (set α)} {t : set (set β)} (hs : ⋃₀ s = univ) (ht : ⋃₀ t = univ) : @prod.topological_space α β (generate_from s) (generate_from t) = generate_from {g | ∃u∈s, ∃v∈t, g = set.prod u v} := let G := generate_from {g | ∃u∈s, ∃v∈t, g = set.prod u v} in le_antisymm (le_generate_from $ assume g ⟨u, hu, v, hv, g_eq⟩, g_eq.symm ▸ @is_open_prod _ _ (generate_from s) (generate_from t) _ _ (generate_open.basic _ hu) (generate_open.basic _ hv)) (le_inf (coinduced_le_iff_le_induced.mp $ le_generate_from $ assume u hu, have (⋃v∈t, set.prod u v) = prod.fst ⁻¹' u, from calc (⋃v∈t, set.prod u v) = set.prod u univ : set.ext $ assume ⟨a, b⟩, by rw ← ht; simp [and.left_comm] {contextual:=tt} ... = prod.fst ⁻¹' u : by simp [set.prod, preimage], show G.is_open (prod.fst ⁻¹' u), from this ▸ @is_open_Union _ _ G _ $ assume v, @is_open_Union _ _ G _ $ assume hv, generate_open.basic _ ⟨_, hu, _, hv, rfl⟩) (coinduced_le_iff_le_induced.mp $ le_generate_from $ assume v hv, have (⋃u∈s, set.prod u v) = prod.snd ⁻¹' v, from calc (⋃u∈s, set.prod u v) = set.prod univ v: set.ext $ assume ⟨a, b⟩, by rw [←hs]; by_cases b ∈ v; simp [h] {contextual:=tt} ... = prod.snd ⁻¹' v : by simp [set.prod, preimage], show G.is_open (prod.snd ⁻¹' v), from this ▸ @is_open_Union _ _ G _ $ assume u, @is_open_Union _ _ G _ $ assume hu, generate_open.basic _ ⟨_, hu, _, hv, rfl⟩)) lemma prod_eq_generate_from : prod.topological_space = generate_from {g | ∃(s:set α) (t:set β), is_open s ∧ is_open t ∧ g = set.prod s t} := le_antisymm (le_generate_from $ assume g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ is_open_prod hs ht) (le_inf (ball_image_of_ball $ λt ht, generate_open.basic _ ⟨t, univ, by simpa [set.prod_eq] using ht⟩) (ball_image_of_ball $ λt ht, generate_open.basic _ ⟨univ, t, by simpa [set.prod_eq] using ht⟩)) lemma is_open_prod_iff {s : set (α×β)} : is_open s ↔ (∀a b, (a, b) ∈ s → ∃u v, is_open u ∧ is_open v ∧ a ∈ u ∧ b ∈ v ∧ set.prod u v ⊆ s) := begin rw [is_open_iff_nhds], simp [nhds_prod_eq, mem_prod_iff], simp [mem_nhds_sets_iff], exact forall_congr (assume a, ball_congr $ assume b h, ⟨assume ⟨u', ⟨u, us, uo, au⟩, v', ⟨v, vs, vo, bv⟩, h⟩, ⟨u, uo, v, vo, au, bv, subset.trans (set.prod_mono us vs) h⟩, assume ⟨u, uo, v, vo, au, bv, h⟩, ⟨u, ⟨u, subset.refl u, uo, au⟩, v, ⟨v, subset.refl v, vo, bv⟩, h⟩⟩) end /-- The first projection in a product of topological spaces sends open sets to open sets. -/ lemma is_open_map_fst : is_open_map (@prod.fst α β) := begin assume s hs, rw is_open_iff_forall_mem_open, assume x xs, rw mem_image_eq at xs, rcases xs with ⟨⟨y₁, y₂⟩, ys, yx⟩, rcases is_open_prod_iff.1 hs _ _ ys with ⟨o₁, o₂, o₁_open, o₂_open, yo₁, yo₂, ho⟩, simp at yx, rw yx at yo₁, refine ⟨o₁, _, o₁_open, yo₁⟩, assume z zs, rw mem_image_eq, exact ⟨(z, y₂), ho (by simp [zs, yo₂]), rfl⟩ end /-- The second projection in a product of topological spaces sends open sets to open sets. -/ lemma is_open_map_snd : is_open_map (@prod.snd α β) := begin /- This lemma could be proved by composing the fact that the first projection is open, and exchanging coordinates is a homeomorphism, hence open. As the `prod_comm` homeomorphism is defined later, we rather go for the direct proof, copy-pasting the proof for the first projection. -/ assume s hs, rw is_open_iff_forall_mem_open, assume x xs, rw mem_image_eq at xs, rcases xs with ⟨⟨y₁, y₂⟩, ys, yx⟩, rcases is_open_prod_iff.1 hs _ _ ys with ⟨o₁, o₂, o₁_open, o₂_open, yo₁, yo₂, ho⟩, simp at yx, rw yx at yo₂, refine ⟨o₂, _, o₂_open, yo₂⟩, assume z zs, rw mem_image_eq, exact ⟨(y₁, z), ho (by simp [zs, yo₁]), rfl⟩ end /-- A product set is open in a product space if and only if each factor is open, or one of them is empty -/ lemma is_open_prod_iff' {s : set α} {t : set β} : is_open (set.prod s t) ↔ (is_open s ∧ is_open t) ∨ (s = ∅) ∨ (t = ∅) := begin cases (set.prod s t).eq_empty_or_nonempty with h h, { simp [h, prod_eq_empty_iff.1 h] }, { have st : s.nonempty ∧ t.nonempty, from prod_nonempty_iff.1 h, split, { assume H : is_open (set.prod s t), refine or.inl ⟨_, _⟩, show is_open s, { rw ← fst_image_prod s st.2, exact is_open_map_fst _ H }, show is_open t, { rw ← snd_image_prod st.1 t, exact is_open_map_snd _ H } }, { assume H, simp [st.1.ne_empty, st.2.ne_empty] at H, exact is_open_prod H.1 H.2 } } end lemma closure_prod_eq {s : set α} {t : set β} : closure (set.prod s t) = set.prod (closure s) (closure t) := set.ext $ assume ⟨a, b⟩, have filter.prod (𝓝 a) (𝓝 b) ⊓ principal (set.prod s t) = filter.prod (𝓝 a ⊓ principal s) (𝓝 b ⊓ principal t), by rw [←prod_inf_prod, prod_principal_principal], by simp [closure_eq_nhds, nhds_prod_eq, this]; exact prod_ne_bot lemma mem_closure2 {s : set α} {t : set β} {u : set γ} {f : α → β → γ} {a : α} {b : β} (hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t) (hu : ∀a b, a ∈ s → b ∈ t → f a b ∈ u) : f a b ∈ closure u := have (a, b) ∈ closure (set.prod s t), by rw [closure_prod_eq]; from ⟨ha, hb⟩, show (λp:α×β, f p.1 p.2) (a, b) ∈ closure u, from mem_closure hf this $ assume ⟨a, b⟩ ⟨ha, hb⟩, hu a b ha hb lemma is_closed_prod {s₁ : set α} {s₂ : set β} (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (set.prod s₁ s₂) := closure_eq_iff_is_closed.mp $ by simp [h₁, h₂, closure_prod_eq, closure_eq_of_is_closed] lemma inducing.prod_mk {f : α → β} {g : γ → δ} (hf : inducing f) (hg : inducing g) : inducing (λx:α×γ, (f x.1, g x.2)) := ⟨by rw [prod.topological_space, prod.topological_space, hf.induced, hg.induced, induced_compose, induced_compose, induced_inf, induced_compose, induced_compose]⟩ lemma embedding.prod_mk {f : α → β} {g : γ → δ} (hf : embedding f) (hg : embedding g) : embedding (λx:α×γ, (f x.1, g x.2)) := { inj := assume ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, by simp; exact assume h₁ h₂, ⟨hf.inj h₁, hg.inj h₂⟩, ..hf.to_inducing.prod_mk hg.to_inducing } protected lemma is_open_map.prod {f : α → β} {g : γ → δ} (hf : is_open_map f) (hg : is_open_map g) : is_open_map (λ p : α × γ, (f p.1, g p.2)) := begin rw [is_open_map_iff_nhds_le], rintros ⟨a, b⟩, rw [nhds_prod_eq, nhds_prod_eq, ← filter.prod_map_map_eq], exact filter.prod_mono (is_open_map_iff_nhds_le.1 hf a) (is_open_map_iff_nhds_le.1 hg b) end protected lemma open_embedding.prod {f : α → β} {g : γ → δ} (hf : open_embedding f) (hg : open_embedding g) : open_embedding (λx:α×γ, (f x.1, g x.2)) := open_embedding_of_embedding_open (hf.1.prod_mk hg.1) (hf.is_open_map.prod hg.is_open_map) lemma embedding_graph {f : α → β} (hf : continuous f) : embedding (λx, (x, f x)) := embedding_of_embedding_compose (continuous_id.prod_mk hf) continuous_fst embedding_id end prod section sum variables [topological_space α] [topological_space β] [topological_space γ] lemma continuous_inl : continuous (@sum.inl α β) := continuous_sup_rng_left continuous_coinduced_rng lemma continuous_inr : continuous (@sum.inr α β) := continuous_sup_rng_right continuous_coinduced_rng lemma continuous_sum_rec {f : α → γ} {g : β → γ} (hf : continuous f) (hg : continuous g) : @continuous (α ⊕ β) γ _ _ (@sum.rec α β (λ_, γ) f g) := continuous_sup_dom hf hg lemma embedding_inl : embedding (@sum.inl α β) := { induced := begin unfold sum.topological_space, apply le_antisymm, { rw ← coinduced_le_iff_le_induced, exact le_sup_left }, { intros u hu, existsi (sum.inl '' u), change (is_open (sum.inl ⁻¹' (@sum.inl α β '' u)) ∧ is_open (sum.inr ⁻¹' (@sum.inl α β '' u))) ∧ sum.inl ⁻¹' (sum.inl '' u) = u, have : sum.inl ⁻¹' (@sum.inl α β '' u) = u := preimage_image_eq u (λ _ _, sum.inl.inj_iff.mp), rw this, have : sum.inr ⁻¹' (@sum.inl α β '' u) = ∅ := eq_empty_iff_forall_not_mem.mpr (assume a ⟨b, _, h⟩, sum.inl_ne_inr h), rw this, exact ⟨⟨hu, is_open_empty⟩, rfl⟩ } end, inj := λ _ _, sum.inl.inj_iff.mp } lemma embedding_inr : embedding (@sum.inr α β) := { induced := begin unfold sum.topological_space, apply le_antisymm, { rw ← coinduced_le_iff_le_induced, exact le_sup_right }, { intros u hu, existsi (sum.inr '' u), change (is_open (sum.inl ⁻¹' (@sum.inr α β '' u)) ∧ is_open (sum.inr ⁻¹' (@sum.inr α β '' u))) ∧ sum.inr ⁻¹' (sum.inr '' u) = u, have : sum.inl ⁻¹' (@sum.inr α β '' u) = ∅ := eq_empty_iff_forall_not_mem.mpr (assume b ⟨a, _, h⟩, sum.inr_ne_inl h), rw this, have : sum.inr ⁻¹' (@sum.inr α β '' u) = u := preimage_image_eq u (λ _ _, sum.inr.inj_iff.mp), rw this, exact ⟨⟨is_open_empty, hu⟩, rfl⟩ } end, inj := λ _ _, sum.inr.inj_iff.mp } end sum section subtype variables [topological_space α] [topological_space β] [topological_space γ] {p : α → Prop} lemma embedding_subtype_val : embedding (@subtype.val α p) := ⟨⟨rfl⟩, subtype.val_injective⟩ lemma continuous_subtype_val : continuous (@subtype.val α p) := continuous_induced_dom lemma continuous_subtype_coe : continuous (coe : subtype p → α) := continuous_subtype_val lemma is_open.open_embedding_subtype_val {s : set α} (hs : is_open s) : open_embedding (subtype.val : s → α) := { induced := rfl, inj := subtype.val_injective, open_range := (subtype.val_range : range subtype.val = s).symm ▸ hs } lemma is_open.is_open_map_subtype_val {s : set α} (hs : is_open s) : is_open_map (subtype.val : s → α) := hs.open_embedding_subtype_val.is_open_map lemma is_open_map.restrict {f : α → β} (hf : is_open_map f) {s : set α} (hs : is_open s) : is_open_map (s.restrict f) := hf.comp hs.is_open_map_subtype_val lemma is_closed.closed_embedding_subtype_val {s : set α} (hs : is_closed s) : closed_embedding (subtype.val : {x // x ∈ s} → α) := { induced := rfl, inj := subtype.val_injective, closed_range := (subtype.val_range : range subtype.val = s).symm ▸ hs } lemma continuous_subtype_mk {f : β → α} (hp : ∀x, p (f x)) (h : continuous f) : continuous (λx, (⟨f x, hp x⟩ : subtype p)) := continuous_induced_rng h lemma continuous_inclusion {s t : set α} (h : s ⊆ t) : continuous (inclusion h) := continuous_subtype_mk _ continuous_subtype_val lemma continuous_at_subtype_val {p : α → Prop} {a : subtype p} : continuous_at subtype.val a := continuous_iff_continuous_at.mp continuous_subtype_val _ lemma map_nhds_subtype_val_eq {a : α} (ha : p a) (h : {a | p a} ∈ 𝓝 a) : map (@subtype.val α p) (𝓝 ⟨a, ha⟩) = 𝓝 a := map_nhds_induced_eq (by simp [subtype.val_image, h]) lemma nhds_subtype_eq_comap {a : α} {h : p a} : 𝓝 (⟨a, h⟩ : subtype p) = comap subtype.val (𝓝 a) := nhds_induced _ _ lemma tendsto_subtype_rng {β : Type*} {p : α → Prop} {b : filter β} {f : β → subtype p} : ∀{a:subtype p}, tendsto f b (𝓝 a) ↔ tendsto (λx, subtype.val (f x)) b (𝓝 a.val) | ⟨a, ha⟩ := by rw [nhds_subtype_eq_comap, tendsto_comap_iff] lemma continuous_subtype_nhds_cover {ι : Sort*} {f : α → β} {c : ι → α → Prop} (c_cover : ∀x:α, ∃i, {x | c i x} ∈ 𝓝 x) (f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) : continuous f := continuous_iff_continuous_at.mpr $ assume x, let ⟨i, (c_sets : {x | c i x} ∈ 𝓝 x)⟩ := c_cover x in let x' : subtype (c i) := ⟨x, mem_of_nhds c_sets⟩ in calc map f (𝓝 x) = map f (map subtype.val (𝓝 x')) : congr_arg (map f) (map_nhds_subtype_val_eq _ $ c_sets).symm ... = map (λx:subtype (c i), f x.val) (𝓝 x') : rfl ... ≤ 𝓝 (f x) : continuous_iff_continuous_at.mp (f_cont i) x' lemma continuous_subtype_is_closed_cover {ι : Sort*} {f : α → β} (c : ι → α → Prop) (h_lf : locally_finite (λi, {x | c i x})) (h_is_closed : ∀i, is_closed {x | c i x}) (h_cover : ∀x, ∃i, c i x) (f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) : continuous f := continuous_iff_is_closed.mpr $ assume s hs, have ∀i, is_closed (@subtype.val α {x | c i x} '' (f ∘ subtype.val ⁻¹' s)), from assume i, embedding_is_closed embedding_subtype_val (by simp [subtype.val_range]; exact h_is_closed i) (continuous_iff_is_closed.mp (f_cont i) _ hs), have is_closed (⋃i, @subtype.val α {x | c i x} '' (f ∘ subtype.val ⁻¹' s)), from is_closed_Union_of_locally_finite (locally_finite_subset h_lf $ assume i x ⟨⟨x', hx'⟩, _, heq⟩, heq ▸ hx') this, have f ⁻¹' s = (⋃i, @subtype.val α {x | c i x} '' (f ∘ subtype.val ⁻¹' s)), begin apply set.ext, have : ∀ (x : α), f x ∈ s ↔ ∃ (i : ι), c i x ∧ f x ∈ s := λ x, ⟨λ hx, let ⟨i, hi⟩ := h_cover x in ⟨i, hi, hx⟩, λ ⟨i, hi, hx⟩, hx⟩, simp [and.comm, and.left_comm], simpa [(∘)], end, by rwa [this] lemma closure_subtype {x : {a // p a}} {s : set {a // p a}}: x ∈ closure s ↔ x.val ∈ closure (subtype.val '' s) := closure_induced $ assume x y, subtype.eq end subtype section quotient variables [topological_space α] [topological_space β] [topological_space γ] variables {r : α → α → Prop} {s : setoid α} lemma quotient_map_quot_mk : quotient_map (@quot.mk α r) := ⟨quot.exists_rep, rfl⟩ lemma continuous_quot_mk : continuous (@quot.mk α r) := continuous_coinduced_rng lemma continuous_quot_lift {f : α → β} (hr : ∀ a b, r a b → f a = f b) (h : continuous f) : continuous (quot.lift f hr : quot r → β) := continuous_coinduced_dom h lemma quotient_map_quotient_mk : quotient_map (@quotient.mk α s) := quotient_map_quot_mk lemma continuous_quotient_mk : continuous (@quotient.mk α s) := continuous_coinduced_rng lemma continuous_quotient_lift {f : α → β} (hs : ∀ a b, a ≈ b → f a = f b) (h : continuous f) : continuous (quotient.lift f hs : quotient s → β) := continuous_coinduced_dom h end quotient section pi variables {ι : Type*} {π : ι → Type*} open topological_space lemma continuous_pi [topological_space α] [∀i, topological_space (π i)] {f : α → Πi:ι, π i} (h : ∀i, continuous (λa, f a i)) : continuous f := continuous_infi_rng $ assume i, continuous_induced_rng $ h i lemma continuous_apply [∀i, topological_space (π i)] (i : ι) : continuous (λp:Πi, π i, p i) := continuous_infi_dom continuous_induced_dom /-- Embedding a factor into a product space (by fixing arbitrarily all the other coordinates) is continuous. -/ lemma continuous_update [decidable_eq ι] [∀i, topological_space (π i)] {i : ι} {f : Πi:ι, π i} : continuous (λ x : π i, function.update f i x) := begin refine continuous_pi (λj, _), by_cases h : j = i, { rw h, simpa using continuous_id }, { simpa [h] using continuous_const } end lemma nhds_pi [t : ∀i, topological_space (π i)] {a : Πi, π i} : 𝓝 a = (⨅i, comap (λx, x i) (𝓝 (a i))) := calc 𝓝 a = (⨅i, @nhds _ (@topological_space.induced _ _ (λx:Πi, π i, x i) (t i)) a) : nhds_infi ... = (⨅i, comap (λx, x i) (𝓝 (a i))) : by simp [nhds_induced] lemma is_open_set_pi [∀a, topological_space (π a)] {i : set ι} {s : Πa, set (π a)} (hi : finite i) (hs : ∀a∈i, is_open (s a)) : is_open (pi i s) := by rw [pi_def]; exact (is_open_bInter hi $ assume a ha, continuous_apply a _ $ hs a ha) lemma pi_eq_generate_from [∀a, topological_space (π a)] : Pi.topological_space = generate_from {g | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, is_open (s a)) ∧ g = pi ↑i s} := le_antisymm (le_generate_from $ assume g ⟨s, i, hi, eq⟩, eq.symm ▸ is_open_set_pi (finset.finite_to_set _) hi) (le_infi $ assume a s ⟨t, ht, s_eq⟩, generate_open.basic _ $ ⟨function.update (λa, univ) a t, {a}, by simpa using ht, by ext f; simp [s_eq.symm, pi]⟩) lemma pi_generate_from_eq {g : Πa, set (set (π a))} : @Pi.topological_space ι π (λa, generate_from (g a)) = generate_from {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} := let G := {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} in begin rw [pi_eq_generate_from], refine le_antisymm (generate_from_mono _) (le_generate_from _), exact assume s ⟨t, i, ht, eq⟩, ⟨t, i, assume a ha, generate_open.basic _ (ht a ha), eq⟩, { rintros s ⟨t, i, hi, rfl⟩, rw [pi_def], apply is_open_bInter (finset.finite_to_set _), assume a ha, show ((generate_from G).coinduced (λf:Πa, π a, f a)).is_open (t a), refine le_generate_from _ _ (hi a ha), exact assume s hs, generate_open.basic _ ⟨function.update (λa, univ) a s, {a}, by simp [hs]⟩ } end lemma pi_generate_from_eq_fintype {g : Πa, set (set (π a))} [fintype ι] (hg : ∀a, ⋃₀ g a = univ) : @Pi.topological_space ι π (λa, generate_from (g a)) = generate_from {t | ∃(s:Πa, set (π a)), (∀a, s a ∈ g a) ∧ t = pi univ s} := let G := {t | ∃(s:Πa, set (π a)), (∀a, s a ∈ g a) ∧ t = pi univ s} in begin rw [pi_generate_from_eq], refine le_antisymm (generate_from_mono _) (le_generate_from _), exact assume s ⟨t, ht, eq⟩, ⟨t, finset.univ, by simp [ht, eq]⟩, { rintros s ⟨t, i, ht, rfl⟩, apply is_open_iff_forall_mem_open.2 _, assume f hf, choose c hc using show ∀a, ∃s, s ∈ g a ∧ f a ∈ s, { assume a, have : f a ∈ ⋃₀ g a, { rw [hg], apply mem_univ }, simpa }, refine ⟨pi univ (λa, if a ∈ i then t a else (c : Πa, set (π a)) a), _, _, _⟩, { simp [pi_if] }, { refine generate_open.basic _ ⟨_, assume a, _, rfl⟩, by_cases a ∈ i; simp [*, pi] at * }, { have : f ∈ pi {a | a ∉ i} c, { simp [*, pi] at * }, simpa [pi_if, hf] } } end end pi section sigma variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)] lemma continuous_sigma_mk {i : ι} : continuous (@sigma.mk ι σ i) := continuous_supr_rng continuous_coinduced_rng lemma is_open_sigma_iff {s : set (sigma σ)} : is_open s ↔ ∀ i, is_open (sigma.mk i ⁻¹' s) := by simp only [is_open_supr_iff, is_open_coinduced] lemma is_closed_sigma_iff {s : set (sigma σ)} : is_closed s ↔ ∀ i, is_closed (sigma.mk i ⁻¹' s) := is_open_sigma_iff lemma is_open_map_sigma_mk {i : ι} : is_open_map (@sigma.mk ι σ i) := begin intros s hs, rw is_open_sigma_iff, intro j, classical, by_cases h : i = j, { subst j, convert hs, exact set.preimage_image_eq _ injective_sigma_mk }, { convert is_open_empty, apply set.eq_empty_of_subset_empty, rintro x ⟨y, _, hy⟩, have : i = j, by cc, contradiction } end lemma is_open_range_sigma_mk {i : ι} : is_open (set.range (@sigma.mk ι σ i)) := by { rw ←set.image_univ, exact is_open_map_sigma_mk _ is_open_univ } lemma is_closed_map_sigma_mk {i : ι} : is_closed_map (@sigma.mk ι σ i) := begin intros s hs, rw is_closed_sigma_iff, intro j, classical, by_cases h : i = j, { subst j, convert hs, exact set.preimage_image_eq _ injective_sigma_mk }, { convert is_closed_empty, apply set.eq_empty_of_subset_empty, rintro x ⟨y, _, hy⟩, have : i = j, by cc, contradiction } end lemma is_closed_sigma_mk {i : ι} : is_closed (set.range (@sigma.mk ι σ i)) := by { rw ←set.image_univ, exact is_closed_map_sigma_mk _ is_closed_univ } lemma open_embedding_sigma_mk {i : ι} : open_embedding (@sigma.mk ι σ i) := open_embedding_of_continuous_injective_open continuous_sigma_mk injective_sigma_mk is_open_map_sigma_mk lemma closed_embedding_sigma_mk {i : ι} : closed_embedding (@sigma.mk ι σ i) := closed_embedding_of_continuous_injective_closed continuous_sigma_mk injective_sigma_mk is_closed_map_sigma_mk lemma embedding_sigma_mk {i : ι} : embedding (@sigma.mk ι σ i) := closed_embedding_sigma_mk.1 /-- A map out of a sum type is continuous if its restriction to each summand is. -/ lemma continuous_sigma [topological_space β] {f : sigma σ → β} (h : ∀ i, continuous (λ a, f ⟨i, a⟩)) : continuous f := continuous_supr_dom (λ i, continuous_coinduced_dom (h i)) lemma continuous_sigma_map {κ : Type*} {τ : κ → Type*} [Π k, topological_space (τ k)] {f₁ : ι → κ} {f₂ : Π i, σ i → τ (f₁ i)} (hf : ∀ i, continuous (f₂ i)) : continuous (sigma.map f₁ f₂) := continuous_sigma $ λ i, show continuous (λ a, sigma.mk (f₁ i) (f₂ i a)), from continuous_sigma_mk.comp (hf i) lemma is_open_map_sigma [topological_space β] {f : sigma σ → β} (h : ∀ i, is_open_map (λ a, f ⟨i, a⟩)) : is_open_map f := begin intros s hs, rw is_open_sigma_iff at hs, have : s = ⋃ i, sigma.mk i '' (sigma.mk i ⁻¹' s), { rw Union_image_preimage_sigma_mk_eq_self }, rw this, rw [image_Union], apply is_open_Union, intro i, rw [image_image], exact h i _ (hs i) end /-- The sum of embeddings is an embedding. -/ lemma embedding_sigma_map {τ : ι → Type*} [Π i, topological_space (τ i)] {f : Π i, σ i → τ i} (hf : ∀ i, embedding (f i)) : embedding (sigma.map id f) := begin refine ⟨⟨_⟩, injective_sigma_map function.injective_id (λ i, (hf i).inj)⟩, refine le_antisymm (continuous_iff_le_induced.mp (continuous_sigma_map (λ i, (hf i).continuous))) _, intros s hs, replace hs := is_open_sigma_iff.mp hs, have : ∀ i, ∃ t, is_open t ∧ f i ⁻¹' t = sigma.mk i ⁻¹' s, { intro i, apply is_open_induced_iff.mp, convert hs i, exact (hf i).induced.symm }, choose t ht using this, apply is_open_induced_iff.mpr, refine ⟨⋃ i, sigma.mk i '' t i, is_open_Union (λ i, is_open_map_sigma_mk _ (ht i).1), _⟩, ext p, rcases p with ⟨i, x⟩, change (sigma.mk i (f i x) ∈ ⋃ (i : ι), sigma.mk i '' t i) ↔ x ∈ sigma.mk i ⁻¹' s, rw [←(ht i).2, mem_Union], split, { rintro ⟨j, hj⟩, rw mem_image at hj, rcases hj with ⟨y, hy₁, hy₂⟩, rcases sigma.mk.inj_iff.mp hy₂ with ⟨rfl, hy⟩, replace hy := eq_of_heq hy, subst y, exact hy₁ }, { intro hx, use i, rw mem_image, exact ⟨f i x, hx, rfl⟩ } end end sigma section ulift lemma continuous_ulift_down [topological_space α] : continuous (ulift.down : ulift.{v u} α → α) := continuous_induced_dom lemma continuous_ulift_up [topological_space α] : continuous (ulift.up : α → ulift.{v u} α) := continuous_induced_rng continuous_id end ulift lemma mem_closure_of_continuous [topological_space α] [topological_space β] {f : α → β} {a : α} {s : set α} {t : set β} (hf : continuous f) (ha : a ∈ closure s) (h : ∀a∈s, f a ∈ closure t) : f a ∈ closure t := calc f a ∈ f '' closure s : mem_image_of_mem _ ha ... ⊆ closure (f '' s) : image_closure_subset_closure_image hf ... ⊆ closure (closure t) : closure_mono $ image_subset_iff.mpr $ h ... ⊆ closure t : begin rw [closure_eq_of_is_closed], exact subset.refl _, exact is_closed_closure end lemma mem_closure_of_continuous2 [topological_space α] [topological_space β] [topological_space γ] {f : α → β → γ} {a : α} {b : β} {s : set α} {t : set β} {u : set γ} (hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t) (h : ∀a∈s, ∀b∈t, f a b ∈ closure u) : f a b ∈ closure u := have (a,b) ∈ closure (set.prod s t), by simp [closure_prod_eq, ha, hb], show f (a, b).1 (a, b).2 ∈ closure u, from @mem_closure_of_continuous (α×β) _ _ _ (λp:α×β, f p.1 p.2) (a,b) _ u hf this $ assume ⟨p₁, p₂⟩ ⟨h₁, h₂⟩, h p₁ h₁ p₂ h₂
a16f447cf29874842d59a7a3789ee03ce518b6dd
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/data/finsupp/ne_locus.lean
39b84a7643a10194679154245381a283302e9ef8
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
5,426
lean
/- Copyright (c) 2022 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import data.finsupp.defs /-! # Locus of unequal values of finitely supported functions Let `α N` be two Types, assume that `N` has a `0` and let `f g : α →₀ N` be finitely supported functions. ## Main definition * `finsupp.ne_locus f g : finset α`, the finite subset of `α` where `f` and `g` differ. In the case in which `N` is an additive group, `finsupp.ne_locus f g` coincides with `finsupp.support (f - g)`. -/ variables {α M N P : Type*} namespace finsupp variable [decidable_eq α] section N_has_zero variables [decidable_eq N] [has_zero N] (f g : α →₀ N) /-- Given two finitely supported functions `f g : α →₀ N`, `finsupp.ne_locus f g` is the `finset` where `f` and `g` differ. This generalizes `(f - g).support` to situations without subtraction. -/ def ne_locus (f g : α →₀ N) : finset α := (f.support ∪ g.support).filter (λ x, f x ≠ g x) @[simp] lemma mem_ne_locus {f g : α →₀ N} {a : α} : a ∈ f.ne_locus g ↔ f a ≠ g a := by simpa only [ne_locus, finset.mem_filter, finset.mem_union, mem_support_iff, and_iff_right_iff_imp] using ne.ne_or_ne _ lemma not_mem_ne_locus {f g : α →₀ N} {a : α} : a ∉ f.ne_locus g ↔ f a = g a := mem_ne_locus.not.trans not_ne_iff @[simp] lemma coe_ne_locus : ↑(f.ne_locus g) = {x | f x ≠ g x} := by { ext, exact mem_ne_locus } @[simp] lemma ne_locus_eq_empty {f g : α →₀ N} : f.ne_locus g = ∅ ↔ f = g := ⟨λ h, ext (λ a, not_not.mp (mem_ne_locus.not.mp (finset.eq_empty_iff_forall_not_mem.mp h a))), λ h, h ▸ by simp only [ne_locus, ne.def, eq_self_iff_true, not_true, finset.filter_false]⟩ @[simp] lemma nonempty_ne_locus_iff {f g : α →₀ N} : (f.ne_locus g).nonempty ↔ f ≠ g := finset.nonempty_iff_ne_empty.trans ne_locus_eq_empty.not lemma ne_locus_comm : f.ne_locus g = g.ne_locus f := by simp_rw [ne_locus, finset.union_comm, ne_comm] @[simp] lemma ne_locus_zero_right : f.ne_locus 0 = f.support := by { ext, rw [mem_ne_locus, mem_support_iff, coe_zero, pi.zero_apply] } @[simp] lemma ne_locus_zero_left : (0 : α →₀ N).ne_locus f = f.support := (ne_locus_comm _ _).trans (ne_locus_zero_right _) end N_has_zero section ne_locus_and_maps lemma subset_map_range_ne_locus [decidable_eq N] [has_zero N] [decidable_eq M] [has_zero M] (f g : α →₀ N) {F : N → M} (F0 : F 0 = 0) : (f.map_range F F0).ne_locus (g.map_range F F0) ⊆ f.ne_locus g := λ x, by simpa only [mem_ne_locus, map_range_apply, not_imp_not] using congr_arg F lemma zip_with_ne_locus_eq_left [decidable_eq N] [has_zero M] [decidable_eq P] [has_zero P] [has_zero N] {F : M → N → P} (F0 : F 0 0 = 0) (f : α →₀ M) (g₁ g₂ : α →₀ N) (hF : ∀ f, function.injective (λ g, F f g)) : (zip_with F F0 f g₁).ne_locus (zip_with F F0 f g₂) = g₁.ne_locus g₂ := by { ext, simpa only [mem_ne_locus] using (hF _).ne_iff } lemma zip_with_ne_locus_eq_right [decidable_eq M] [has_zero M] [decidable_eq P] [has_zero P] [has_zero N] {F : M → N → P} (F0 : F 0 0 = 0) (f₁ f₂ : α →₀ M) (g : α →₀ N) (hF : ∀ g, function.injective (λ f, F f g)) : (zip_with F F0 f₁ g).ne_locus (zip_with F F0 f₂ g) = f₁.ne_locus f₂ := by { ext, simpa only [mem_ne_locus] using (hF _).ne_iff } lemma map_range_ne_locus_eq [decidable_eq N] [decidable_eq M] [has_zero M] [has_zero N] (f g : α →₀ N) {F : N → M} (F0 : F 0 = 0) (hF : function.injective F) : (f.map_range F F0).ne_locus (g.map_range F F0) = f.ne_locus g := by { ext, simpa only [mem_ne_locus] using hF.ne_iff } end ne_locus_and_maps variables [decidable_eq N] @[simp] lemma ne_locus_add_left [add_left_cancel_monoid N] (f g h : α →₀ N) : (f + g).ne_locus (f + h) = g.ne_locus h := zip_with_ne_locus_eq_left _ _ _ _ add_right_injective @[simp] lemma ne_locus_add_right [add_right_cancel_monoid N] (f g h : α →₀ N) : (f + h).ne_locus (g + h) = f.ne_locus g := zip_with_ne_locus_eq_right _ _ _ _ add_left_injective section add_group variables [add_group N] (f f₁ f₂ g g₁ g₂ : α →₀ N) @[simp] lemma ne_locus_neg_neg : ne_locus (-f) (-g) = f.ne_locus g := map_range_ne_locus_eq _ _ neg_zero neg_injective lemma ne_locus_neg : ne_locus (-f) g = f.ne_locus (-g) := by rw [←ne_locus_neg_neg, neg_neg] lemma ne_locus_eq_support_sub : f.ne_locus g = (f - g).support := by rw [←ne_locus_add_right _ _ (-g), add_right_neg, ne_locus_zero_right, sub_eq_add_neg] @[simp] lemma ne_locus_sub_left : ne_locus (f - g₁) (f - g₂) = ne_locus g₁ g₂ := by simp only [sub_eq_add_neg, ne_locus_add_left, ne_locus_neg_neg] @[simp] lemma ne_locus_sub_right : ne_locus (f₁ - g) (f₂ - g) = ne_locus f₁ f₂ := by simpa only [sub_eq_add_neg] using ne_locus_add_right _ _ _ @[simp] lemma ne_locus_self_add_right : ne_locus f (f + g) = g.support := by rw [←ne_locus_zero_left, ←ne_locus_add_left f 0 g, add_zero] @[simp] lemma ne_locus_self_add_left : ne_locus (f + g) f = g.support := by rw [ne_locus_comm, ne_locus_self_add_right] @[simp] lemma ne_locus_self_sub_right : ne_locus f (f - g) = g.support := by rw [sub_eq_add_neg, ne_locus_self_add_right, support_neg] @[simp] lemma ne_locus_self_sub_left : ne_locus (f - g) f = g.support := by rw [ne_locus_comm, ne_locus_self_sub_right] end add_group end finsupp
569b605958fa000d3872d8c86eb107949a0825a6
d1a52c3f208fa42c41df8278c3d280f075eb020c
/src/Lean/Meta/Check.lean
4cf14d1d0a87900d58ab437e999ee1a4b2ed6555
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
6,900
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Meta.InferType /- This is not the Kernel type checker, but an auxiliary method for checking whether terms produced by tactics and `isDefEq` are type correct. -/ namespace Lean.Meta private def ensureType (e : Expr) : MetaM Unit := do discard <| getLevel e def throwLetTypeMismatchMessage {α} (fvarId : FVarId) : MetaM α := do let lctx ← getLCtx match lctx.find? fvarId with | some (LocalDecl.ldecl _ _ n t v _) => do let vType ← inferType v throwError "invalid let declaration, term{indentExpr v}\nhas type{indentExpr vType}\nbut is expected to have type{indentExpr t}" | _ => unreachable! private def checkConstant (constName : Name) (us : List Level) : MetaM Unit := do let cinfo ← getConstInfo constName unless us.length == cinfo.levelParams.length do throwIncorrectNumberOfLevels constName us private def getFunctionDomain (f : Expr) : MetaM (Expr × BinderInfo) := do let fType ← inferType f let fType ← whnfD fType match fType with | Expr.forallE _ d _ c => return (d, c.binderInfo) | _ => throwFunctionExpected f /- Given to expressions `a` and `b`, this method tries to annotate terms with `pp.explicit := true` to expose "implicit" differences. For example, suppose `a` and `b` are of the form ```lean @HashMap Nat Nat eqInst hasInst1 @HashMap Nat Nat eqInst hasInst2 ``` By default, the pretty printer formats both of them as `HashMap Nat Nat`. So, counterintuitive error messages such as ```lean error: application type mismatch HashMap.insert m argument m has type HashMap Nat Nat but is expected to have type HashMap Nat Nat ``` would be produced. By adding `pp.explicit := true`, we can generate the more informative error ```lean error: application type mismatch HashMap.insert m argument m has type @HashMap Nat Nat eqInst hasInst1 but is expected to have type @HashMap Nat Nat eqInst hasInst2 ``` Remark: this method implements a simple heuristic, we should extend it as we find other counterintuitive error messages. -/ partial def addPPExplicitToExposeDiff (a b : Expr) : MetaM (Expr × Expr) := do if (← getOptions).getBool `pp.all false || (← getOptions).getBool `pp.explicit false then return (a, b) else visit (← instantiateMVars a) (← instantiateMVars b) where visit (a b : Expr) : MetaM (Expr × Expr) := do try if !a.isApp || !b.isApp then return (a, b) else if a.getAppNumArgs != b.getAppNumArgs then return (a, b) else if not (← isDefEq a.getAppFn b.getAppFn) then return (a, b) else let fType ← inferType a.getAppFn forallBoundedTelescope fType a.getAppNumArgs fun xs _ => do let mut as := a.getAppArgs let mut bs := b.getAppArgs if let some (as', bs') ← hasExplicitDiff? xs as bs then return (mkAppN a.getAppFn as', mkAppN b.getAppFn bs') else for i in [:as.size] do unless (← isDefEq as[i] bs[i]) do let (ai, bi) ← visit as[i] bs[i] as := as.set! i ai bs := bs.set! i bi let a := mkAppN a.getAppFn as let b := mkAppN b.getAppFn bs return (a.setAppPPExplicit, b.setAppPPExplicit) catch _ => return (a, b) hasExplicitDiff? (xs as bs : Array Expr) : MetaM (Option (Array Expr × Array Expr)) := do for i in [:xs.size] do let localDecl ← getLocalDecl xs[i].fvarId! if localDecl.binderInfo.isExplicit then unless (← isDefEq as[i] bs[i]) do let (ai, bi) ← visit as[i] bs[i] return some (as.set! i ai, bs.set! i bi) return none /- Return error message "has type{givenType}\nbut is expected to have type{expectedType}" -/ def mkHasTypeButIsExpectedMsg (givenType expectedType : Expr) : MetaM MessageData := do try let givenTypeType ← inferType givenType let expectedTypeType ← inferType expectedType let (givenType, expectedType) ← addPPExplicitToExposeDiff givenType expectedType let (givenTypeType, expectedTypeType) ← addPPExplicitToExposeDiff givenTypeType expectedTypeType m!"has type{indentD m!"{givenType} : {givenTypeType}"}\nbut is expected to have type{indentD m!"{expectedType} : {expectedTypeType}"}" catch _ => let (givenType, expectedType) ← addPPExplicitToExposeDiff givenType expectedType m!"has type{indentExpr givenType}\nbut is expected to have type{indentExpr expectedType}" def throwAppTypeMismatch {α} (f a : Expr) (extraMsg : MessageData := Format.nil) : MetaM α := do let (expectedType, binfo) ← getFunctionDomain f let mut e := mkApp f a unless binfo.isExplicit do e := e.setAppPPExplicit let aType ← inferType a throwError "application type mismatch{indentExpr e}\nargument{indentExpr a}\n{← mkHasTypeButIsExpectedMsg aType expectedType}" def checkApp (f a : Expr) : MetaM Unit := do let fType ← inferType f let fType ← whnf fType match fType with | Expr.forallE _ d _ _ => let aType ← inferType a unless (← isDefEq d aType) do throwAppTypeMismatch f a | _ => throwFunctionExpected (mkApp f a) private partial def checkAux : Expr → MetaM Unit | e@(Expr.forallE ..) => checkForall e | e@(Expr.lam ..) => checkLambdaLet e | e@(Expr.letE ..) => checkLambdaLet e | Expr.const c lvls _ => checkConstant c lvls | Expr.app f a _ => do checkAux f; checkAux a; checkApp f a | Expr.mdata _ e _ => checkAux e | Expr.proj _ _ e _ => checkAux e | _ => pure () where checkLambdaLet (e : Expr) : MetaM Unit := lambdaLetTelescope e fun xs b => do xs.forM fun x => do let xDecl ← getFVarLocalDecl x; match xDecl with | LocalDecl.cdecl (type := t) .. => ensureType t checkAux t | LocalDecl.ldecl (type := t) (value := v) .. => ensureType t checkAux t let vType ← inferType v unless (← isDefEq t vType) do throwLetTypeMismatchMessage x.fvarId! checkAux v checkAux b checkForall (e : Expr) : MetaM Unit := forallTelescope e fun xs b => do xs.forM fun x => do let xDecl ← getFVarLocalDecl x ensureType xDecl.type checkAux xDecl.type ensureType b checkAux b def check (e : Expr) : MetaM Unit := traceCtx `Meta.check do withTransparency TransparencyMode.all $ checkAux e def isTypeCorrect (e : Expr) : MetaM Bool := do try check e pure true catch ex => trace[Meta.typeError] ex.toMessageData pure false builtin_initialize registerTraceClass `Meta.check registerTraceClass `Meta.typeError end Lean.Meta
439de65a060ec39f8d72cc1ed47ef3cbdceb3a25
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
/src/category_theory/limits/over.lean
18f0c9798aa8333d0b8ec8c041234bb8773bd33e
[ "Apache-2.0" ]
permissive
dupuisf/mathlib
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
refs/heads/master
1,669,494,854,016
1,595,692,409,000
1,595,692,409,000
272,046,630
0
0
Apache-2.0
1,592,066,143,000
1,592,066,142,000
null
UTF-8
Lean
false
false
5,308
lean
/- Copyright (c) 2018 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Reid Barton, Bhavik Mehta -/ import category_theory.over import category_theory.limits.preserves universes v u -- declare the `v`'s first; see `category_theory.category` for an explanation open category_theory category_theory.limits variables {J : Type v} [small_category J] variables {C : Type u} [category.{v} C] variable {X : C} namespace category_theory.functor @[simps] def to_cocone (F : J ⥤ over X) : cocone (F ⋙ over.forget) := { X := X, ι := { app := λ j, (F.obj j).hom } } @[simps] def to_cone (F : J ⥤ under X) : cone (F ⋙ under.forget) := { X := X, π := { app := λ j, (F.obj j).hom } } end category_theory.functor namespace category_theory.over @[simps] def colimit (F : J ⥤ over X) [has_colimit (F ⋙ forget)] : cocone F := { X := mk $ colimit.desc (F ⋙ forget) F.to_cocone, ι := { app := λ j, hom_mk $ colimit.ι (F ⋙ forget) j, naturality' := begin intros j j' f, have := colimit.w (F ⋙ forget) f, tidy end } } def forget_colimit_is_colimit (F : J ⥤ over X) [has_colimit (F ⋙ forget)] : is_colimit (forget.map_cocone (colimit F)) := is_colimit.of_iso_colimit (colimit.is_colimit (F ⋙ forget)) (cocones.ext (iso.refl _) (by tidy)) instance : reflects_colimits (forget : over X ⥤ C) := { reflects_colimits_of_shape := λ J 𝒥, { reflects_colimit := λ F, by constructor; exactI λ t ht, { desc := λ s, hom_mk (ht.desc (forget.map_cocone s)) begin apply ht.hom_ext, intro j, rw [←category.assoc, ht.fac], transitivity (F.obj j).hom, exact w (s.ι.app j), -- TODO: How to write (s.ι.app j).w? exact (w (t.ι.app j)).symm, end, fac' := begin intros s j, ext, exact ht.fac (forget.map_cocone s) j -- TODO: Ask Simon about multiple ext lemmas for defeq types (comma_morphism & over.category.hom) end, uniq' := begin intros s m w, ext1 j, exact ht.uniq (forget.map_cocone s) m.left (λ j, congr_arg comma_morphism.left (w j)) end } } } instance has_colimit {F : J ⥤ over X} [has_colimit (F ⋙ forget)] : has_colimit F := { cocone := colimit F, is_colimit := reflects_colimit.reflects (forget_colimit_is_colimit F) } instance has_colimits_of_shape [has_colimits_of_shape J C] : has_colimits_of_shape J (over X) := { has_colimit := λ F, by apply_instance } instance has_colimits [has_colimits C] : has_colimits (over X) := { has_colimits_of_shape := λ J 𝒥, by resetI; apply_instance } instance forget_preserves_colimit {X : C} {F : J ⥤ over X} [has_colimit (F ⋙ forget)] : preserves_colimit F (forget : over X ⥤ C) := preserves_colimit_of_preserves_colimit_cocone (colimit.is_colimit F) (forget_colimit_is_colimit F) instance forget_preserves_colimits_of_shape [has_colimits_of_shape J C] {X : C} : preserves_colimits_of_shape J (forget : over X ⥤ C) := { preserves_colimit := λ F, by apply_instance } instance forget_preserves_colimits [has_colimits C] {X : C} : preserves_colimits (forget : over X ⥤ C) := { preserves_colimits_of_shape := λ J 𝒥, by apply_instance } end category_theory.over namespace category_theory.under @[simps] def limit (F : J ⥤ under X) [has_limit (F ⋙ forget)] : cone F := { X := mk $ limit.lift (F ⋙ forget) F.to_cone, π := { app := λ j, hom_mk $ limit.π (F ⋙ forget) j, naturality' := begin intros j j' f, have := (limit.w (F ⋙ forget) f).symm, tidy end } } def forget_limit_is_limit (F : J ⥤ under X) [has_limit (F ⋙ forget)] : is_limit (forget.map_cone (limit F)) := is_limit.of_iso_limit (limit.is_limit (F ⋙ forget)) (cones.ext (iso.refl _) (by tidy)) instance : reflects_limits (forget : under X ⥤ C) := { reflects_limits_of_shape := λ J 𝒥, { reflects_limit := λ F, by constructor; exactI λ t ht, { lift := λ s, hom_mk (ht.lift (forget.map_cone s)) begin apply ht.hom_ext, intro j, rw [category.assoc, ht.fac], transitivity (F.obj j).hom, exact w (s.π.app j), exact (w (t.π.app j)).symm, end, fac' := begin intros s j, ext, exact ht.fac (forget.map_cone s) j end, uniq' := begin intros s m w, ext1 j, exact ht.uniq (forget.map_cone s) m.right (λ j, congr_arg comma_morphism.right (w j)) end } } } instance has_limit {F : J ⥤ under X} [has_limit (F ⋙ forget)] : has_limit F := { cone := limit F, is_limit := reflects_limit.reflects (forget_limit_is_limit F) } instance has_limits_of_shape [has_limits_of_shape J C] : has_limits_of_shape J (under X) := { has_limit := λ F, by apply_instance } instance has_limits [has_limits C] : has_limits (under X) := { has_limits_of_shape := λ J 𝒥, by resetI; apply_instance } instance forget_preserves_limits [has_limits C] {X : C} : preserves_limits (forget : under X ⥤ C) := { preserves_limits_of_shape := λ J 𝒥, { preserves_limit := λ F, by exactI preserves_limit_of_preserves_limit_cone (limit.is_limit F) (forget_limit_is_limit F) } } end category_theory.under
5b93d8a43e0c91cddde8a7d9692741e3fce75cef
76df16d6c3760cb415f1294caee997cc4736e09b
/lean/src/interp/sym/thm.lean
a313837493930ee9ec2a7424ee704a29e415fcba
[ "MIT" ]
permissive
uw-unsat/leanette-popl22-artifact
70409d9cbd8921d794d27b7992bf1d9a4087e9fe
80fea2519e61b45a283fbf7903acdf6d5528dbe7
refs/heads/master
1,681,592,449,670
1,637,037,431,000
1,637,037,431,000
414,331,908
6
1
null
null
null
null
UTF-8
Lean
false
false
18,577
lean
import ...cs.svm import ...cs.sym import ...cs.lang import .defs import ..tactic import ...basic.basic namespace interp section interp variables {Model SymB SymV D O : Type} [inhabited Model] [inhabited SymV] {f : sym.factory Model SymB SymV D O} open sym open lang lemma mk_tt_ne_mk_ff : f.mk_tt ≠ f.mk_ff := begin intro h, have t_sound := f.mk_tt_sound (default Model), have f_sound := f.mk_ff_sound (default Model), contra [h, f_sound] at t_sound, end lemma interpVar_evalS {a : ℕ} {ε : sym.env SymV} {v : SymV} {σ : sym.state SymB} (h : ε.nth a = some v) : evalS f (exp.var a) ε σ (sym.result.ans σ v) := begin simp only [list.nth_eq_some] at h, cases h with _ h', subst_vars, constructor, end -- The symbolic interpreter is sound: -- if running `interpS` with `fuel` produces a symbolic result `r` -- on a program `e` and a symbolic environment `ε`, then -- `evalS` also produces `r` on `e` and `ε`. lemma interpS_soundness {fuel : ℕ} {e : exp D O} {ε : sym.env SymV} {r : sym.result SymB SymV} {σ : sym.state SymB} (h : interpS f fuel e ε σ = some r) : evalS f e ε σ r := begin induction fuel with fuel ih generalizing e ε σ r, case zero { contradiction }, case succ { cases e, all_goals { simp only [interpS] at h }, case [error, abort, bool, datum, lam] { all_goals { subst_vars, constructor }, }, case var : a { cases_on_interp h_a : ε.nth a : v, simp only [interpS] at h, subst_vars, apply interpVar_evalS, assumption, }, case call : a_f a_a { cases_on_interp h_f : ε.nth a_f : v_f, simp only [interpS] at h, cases_on_interp h_f : ε.nth a_a : v_a, simp only [interpS] at h, split_ifs at h with h_if, case_c { subst_vars, apply_c evalS.call_halt, case h1 { apply interpVar_evalS, assumption }, case h2 { apply interpVar_evalS, assumption }, case h3 { simp }, case h4 { simp only [bor_coe_iff] at h_if, simp [h_if], }, }, case_c { generalize_hyp h_map : list.mmap _ _ = r_map at h, cases_on_interp h_r : r_map : grs, subst r_map, simp only [interpS] at h, subst_vars, apply_c evalS.call_sym, case h1 { apply interpVar_evalS, assumption }, case h2 { apply interpVar_evalS, assumption }, case h3 { simp }, case h4 { simp at h_if, simp only [← not_or_distrib, h_if, not_false_iff], }, case h5 { apply_c list.ext_le, case hl { simp [mmap.length h_map] }, case h { intros i hi hj, have hi' := hi, have hj' := hj, simp only [list.length_map] at hi' hj', replace h_map := mmap.eq_some h_map i hi' hj', cases h_nth : list.nth_le (f.cast v_f) i hi' with g cl, cases cl with x e_b ε_static, simp only [h_nth, interpS] at h_map, cases_on_interp h_body : interpS f fuel e_b (list.update_nth ε_static x v_a) (f.assume (f.assert σ (f.some choice.guard (f.cast v_f))) g) : r_body, simp only [interpS] at h_map, simp [← h_map, h_nth], }, }, case h6 { intros i hi hj, replace h_map := mmap.eq_some h_map i hi hj, apply ih, cases list.nth_le (f.cast v_f) i hi with g cl, cases cl with x e_b ε_static, simp only [interpS] at h_map ⊢, cases_on_interp h_body : interpS f fuel e_b (list.update_nth ε_static x v_a) (f.assume (f.assert σ (f.some choice.guard (f.cast v_f))) g) : r_body, simp only [interpS] at h_map, simp [← h_map], }, }, }, case app : o as { cases_on_interp h_as : mmap (λ (a : ℕ), ε.nth a) as : vs, simp only [interpS] at h, subst_vars, constructor_c, case h1 { apply mmap.length, assumption }, case h2 { intros i hi_a hi_v, apply interpVar_evalS, exact mmap.eq_some h_as i hi_a hi_v, }, }, case let0 : x e_v e_b { cases_on_interp h_v : interpS f fuel e_v ε σ : r_v, cases r_v, case halt { simp only [interpS] at h, subst_vars, apply evalS.let0_halt, apply ih, assumption, }, case ans { simp only [interpS] at h, apply_c evalS.let0, case [h1, h2] { all_goals { apply ih, assumption }, }, }, }, case if0 : a_c e_t e_e { cases_on_interp h_c : ε.nth a_c : v_c, simp only [interpS] at h, split_ifs at h with h_if h_if', case_c { apply_c evalS.if0_true, case hc { apply interpVar_evalS, assumption }, case hv { assumption }, case hr { apply ih, assumption }, }, case_c { apply_c evalS.if0_false, case hc { apply interpVar_evalS, assumption }, case hv { assumption }, case hr { apply ih, assumption }, }, case_c { cases_on_interp h_rt : interpS f fuel e_t ε (f.assume σ (f.truth v_c)) : rt, cases_on_interp h_rf : interpS f fuel e_e ε (f.assume σ (f.not (f.truth v_c))) : rf, simp only [interpS] at h, unfold_coes at h, simp only at h, subst_vars, apply_c evalS.if0_sym, case hc { apply interpVar_evalS, assumption }, case hv { simp [h_if, h_if'] }, case ht { apply ih, assumption }, case hf { apply ih, assumption }, }, }, }, end lemma interpS_bump_fuel {fuel : ℕ} {e : exp D O} {ε : sym.env SymV} {r : sym.result SymB SymV} {σ : sym.state SymB} (h : interpS f fuel e ε σ = some r) : interpS f (fuel + 1) e ε σ = some r := begin induction fuel with fuel ih generalizing e ε σ r, case zero { contradiction }, case succ { cases e, all_goals { simp only [interpS] at h }, case [error, abort, bool, datum, lam] { all_goals { subst_vars, constructor_c, }, }, case var { simpa [interpS] }, case call : a_f a_a { cases_on_interp h_f : ε.nth a_f : v_f, simp only [interpS] at h, cases_on_interp h_a : ε.nth a_a : v_a, simp only [interpS] at h, split_ifs at h with h_if, case_b { generalize_hyp h_map : list.mmap _ _ = r_map at h, cases_on_interp h_r : r_map : grs, simp only [interpS] at h, simp only [interpS, h_f, h_a, ← h], split_ifs, generalize h_map' : list.mmap _ _ = r_map', have : r_map = r_map' := by { cases r_map', case none { obtain ⟨i, hi, h_map''⟩ := mmap.eq_none h_map', have h_len := mmap.length h_map, replace h_map := mmap.eq_some h_map, specialize h_map i hi (by simp [← h_len, hi]), cases list.nth_le (f.cast v_f) i hi with g cl, cases cl with x e_b ε_static, simp only [interpS] at h_map h_map'', cases_on_interp h_body : interpS f fuel e_b (list.update_nth ε_static x v_a) (f.assume (f.assert σ (f.some choice.guard (f.cast v_f))) g) : r_body, replace ih := ih h_body, simp only [interpS] at ih, contra [ih, interpS] at h_map'', }, case some { subst r_map, simp only, apply_c list.ext_le, case hl { simp [← mmap.length h_map, ← mmap.length h_map'] }, case h { intros i hi hj, have h_len : i < (f.cast v_f).length := by simp [mmap.length h_map, hi], replace h_map := mmap.eq_some h_map i h_len hi, replace h_map' := mmap.eq_some h_map' i h_len hj, cases list.nth_le (f.cast v_f) i h_len with g cl, cases cl with x e_b ε_static, simp only [interpS] at h_map h_map', cases_on_interp h_body : interpS f fuel e_b (list.update_nth ε_static x v_a) (f.assume (f.assert σ (f.some choice.guard (f.cast v_f))) g) : r_body, replace ih := ih h_body, simp only [interpS] at ih h_map, simp only [ih, interpS] at h_map', simp [← h_map, ← h_map'], }, }, }, simp [← this, h_r, interpS], }, case_c { simpa [interpS, h_if, h_f, h_a] }, }, case app : o as { cases_on_interp h_as : mmap (λ (a : ℕ), ε.nth a) as : vs, simp [interpS, h_as, h], }, case if0 : a_c e_t e_e { cases_on_interp h_c : ε.nth a_c : v_c, simp only [interpS] at h, simp only [interpS, h_c] at ⊢, split_ifs at h ⊢ with h_if h_if', case_c { exact ih h }, case_c { exact ih h }, case_c { cases_on_interp h_rt : interpS f fuel e_t ε (f.assume σ (f.truth v_c)) : r_t, cases_on_interp h_rf : interpS f fuel e_e ε (f.assume σ (f.not (f.truth v_c))) : r_f, simp only [interpS] at h, replace h_rt := ih h_rt, replace h_rf := ih h_rf, simp only [interpS] at h_rt h_rf, simp [h_rt, h_rf, interpS, h], }, }, case let0 : x e_v e_b { cases_on_interp h_v : interpS f fuel e_v ε σ : r_v, replace h_v := ih h_v, cases r_v, case halt { simp only [interpS] at h h_v, simp only [interpS, h_v], assumption, }, case ans { simp only [interpS] at h h_v, simp only [interpS, h_v], exact ih h, }, }, }, end lemma interpS_bump_large_fuel {e : exp D O} {ε : sym.env SymV} {σ : sym.state SymB} {r : sym.result SymB SymV} {fuel : ℕ} (extra_fuel : ℕ) (h : interpS f fuel e ε σ = some r) : interpS f (fuel + extra_fuel) e ε σ = some r := begin induction extra_fuel, case zero { assumption }, case succ { apply interpS_bump_fuel, assumption }, end lemma interpS_bump_fuel_app_sym {gcs : choices SymB (clos D O SymV)} {grs : choices SymB (sym.result SymB SymV)} {v : SymV} {σ : sym.state SymB} (h : ∀ (i : ℕ) (hi_gcs : i < list.length gcs) (hi_grs : i < list.length grs), (λ (gc : choice SymB (clos D O SymV)), ∃ (fuel : ℕ), interpS f fuel gc.value.exp (gc.value.env.update_nth gc.value.var v) (f.assume σ gc.guard) = some (list.nth_le grs i hi_grs).value) (list.nth_le gcs i hi_gcs)) : ∃ (fuel : ℕ), ∀ (i : ℕ) (hi_gcs : i < list.length gcs) (hi_grs : i < list.length grs), (λ (gc : choice SymB (clos D O SymV)), interpS f fuel gc.value.exp (gc.value.env.update_nth gc.value.var v) (f.assume σ gc.guard) = some (list.nth_le grs i hi_grs).value) (list.nth_le gcs i hi_gcs) := begin induction gcs with hd tl ih generalizing grs, case nil { use 0, intros, contra at hi_gcs, }, case cons { cases grs, case nil { use 0, intros, contra at hi_grs, }, case cons { cases hd with g v, specialize ih (by { intros, specialize h (i + 1) (by simpa) (by simpa), cases h with fuel h, use fuel, assumption, }), cases ih with fuel ih, specialize h 0 (by simp) (by simp), cases h with fuel' h, use fuel + fuel', intros, cases i, case zero { replace h := interpS_bump_large_fuel fuel h, rewrite (by linarith : fuel + fuel' = fuel' + fuel), subst_vars, assumption, }, case succ { apply interpS_bump_large_fuel, apply ih, }, }, }, end -- The symbolic interpreter is complete: -- If `evalS` produces a symbolic result `r` -- on a program `e` and a symbolic environment `ε`, then -- there exists a `fuel` such that running `interpS` with `fuel` also -- produces `r` on `e` and `ε` lemma interpS_completeness {e : exp D O} {ε : sym.env SymV} {r : sym.result SymB SymV} {σ : sym.state SymB} (h : evalS f e ε σ r) : ∃ (fuel : ℕ), interpS f fuel e ε σ = some r := begin induction h, case [bool, error, abort, datum, lam] { all_goals { use 1, trivial, }, }, case call_halt : ε_static _ _ a_f a_a _ _ _ _ _ h_not_clos h_e_f h_e_a { use 1, cases h_e_f with _ h_e_f, replace h_e_f := interpS_bump_fuel h_e_f, cases h_e_a with _ h_e_a, replace h_e_a := interpS_bump_fuel h_e_a, simp only [interpS] at h_e_f h_e_a ⊢, cases_on_interp h_f : ε_static.nth a_f : v_f, cases_on_interp h_a : ε_static.nth a_a : v_a, simp only [interpS] at h_e_f h_e_a ⊢, cases h_e_a, cases h_e_f, subst_vars, simp [interpS, h_a, h_not_clos], }, case call_sym : ε_static _ _ a_f a_a _ _ _ _ _ _ h_cond h_guard_same _ h_e_f h_e_a h_e_b { have h_len_g := h_guard_same, apply_fun list.length at h_len_g, simp only [list.length_map] at h_len_g, replace h_e_b := interpS_bump_fuel_app_sym h_e_b, cases h_e_b with fuel h_e_b, cases h_e_f with _ h_e_f, replace h_e_f := interpS_bump_fuel h_e_f, cases h_e_a with _ h_e_a, replace h_e_a := interpS_bump_fuel h_e_a, use fuel + 1, simp only [interpS] at h_e_f h_e_a ⊢, cases_on_interp h_f : ε_static.nth a_f : v_f, simp only [interpS] at h_e_f ⊢, cases_on_interp h_a : ε_static.nth a_a : v_a, simp only [interpS] at h_e_a ⊢, cases h_e_f, cases h_e_a, subst_vars, simp only [h_cond, bor_coe_iff, if_false, or_self], cases h_map : mmap _ _, case none { rcases mmap.eq_none h_map with ⟨i, hi, h_map'⟩, specialize h_e_b i hi (by { simpa [← h_len_g] }), cases list.nth_le (f.cast v_f) i hi with g cl, cases cl, contra [interpS, h_e_b] at h_map', }, case some { have h_len := mmap.length h_map, replace h_map := mmap.eq_some h_map, simp only [interpS], congr, apply_c list.ext_le, case hl { simp [← h_len_g, ← h_len] }, case h { intros i hi hj, have h_len_cast : i < list.length (f.cast v_f) := by simpa [h_len_g], specialize h_map i h_len_cast hi, specialize h_e_b i (by simpa [h_len]) hj, cases h_cast : list.nth_le (f.cast v_f) i h_len_cast with g cl, cases cl, simp only [h_cast] at h_e_b, simp only [interpS, h_e_b, h_cast] at h_map, cases h_nth : list.nth_le h_grs i hj, simp only [h_nth] at h_map, apply_fun choice.guard at h_nth, rw [list.nth_le_map_rev choice.guard, ← list.nth_le_of_eq h_guard_same] at h_nth, case_b { simpa }, case_c { simp only [h_cast, list.nth_le_map'] at h_nth, simp [← h_map, h_nth], }, }, }, }, case var : ε' _ x h { use 1, generalize h' : ε'.nth_le x h = v, apply_fun some at h', simp only [← list.nth_le_nth] at h', simp [h', interpS], }, case app : ε _ o xs vs h_len h ih { use 1, simp only [interpS], cases h_map : mmap (λ (a : ℕ), ε.nth a) xs, case none { rcases mmap.eq_none h_map with ⟨i, hi, h_map'⟩, have hi' : i < vs.length := by { simp only [h_len] at hi, assumption }, specialize ih i hi hi', cases ih with _ ih, replace ih := interpS_bump_fuel ih, simp only at h_map', contra [interpS, h_map'] at ih, }, case some { simp only [interpS], have h_len_eq := mmap.length h_map, replace h_map := mmap.eq_some h_map, congr, apply_c list.ext_le, case hl { cc }, case h { intros i hi_a hi_v, have hi' : i < xs.length := by { simp only [← h_len] at hi_v, assumption }, specialize h_map i (by assumption) (by assumption), specialize ih i (by assumption) (by assumption), specialize h i (by assumption) (by assumption), cases ih with _ ih, replace ih := interpS_bump_fuel ih, simp only [interpS] at ih, cases_on_interp h_interp : ε.nth (xs.nth_le i hi') : v, simp only [interpS] at ih, cases ih, subst_vars, simp only [h_interp] at h_map, simp [h_map], }, }, }, case let0 : _ _ _ _ _ _ _ _ _ _ h_e_v h_e_b { cases h_e_v with fuel_v h_e_v, cases h_e_b with fuel_b h_e_b, use fuel_v + fuel_b + 1, simp only [ interpS, interpS_bump_large_fuel fuel_b h_e_v, ← interpS_bump_large_fuel fuel_v h_e_b ], congr' 1, linarith, }, case let0_halt : _ _ _ _ _ _ _ h_e_v { cases h_e_v with fuel_v h_e_v, use fuel_v + 1, simp [interpS, h_e_v], }, case [if0_true : ε _ a_c e_t e_e _ _ _ h_c _ h_e_c h_e_b, if0_false : ε _ a_c e_t e_e _ _ _ h_c _ h_e_c h_e_b] { all_goals { cases h_e_c with _ h_e_c, cases h_e_b with fuel_b h_e_b, use fuel_b + 1, replace h_e_c := interpS_bump_fuel h_e_c, simp only [interpS] at ⊢ h_e_c, cases_on_interp h_interp : ε.nth a_c : v_c, simp only [interpS] at h_e_c, cases h_e_c, subst_vars, simp [h_e_b], }, case_c { simp only [interpS, eq_ff_eq_not_eq_tt, ite_eq_left_iff], intro h, contra [h] at h_c, }, case_c { simp only [interpS, h_c, if_true, ite_eq_right_iff], intro h_contradict, simp only [f.is_ff_sound] at h_c, simp only [f.is_tt_sound] at h_contradict, simp only [h_contradict] at h_c, cases mk_tt_ne_mk_ff h_c, }, }, case if0_sym : ε _ a_c e_t e_e _ _ _ _ h_c _ _ h_e_c h_e_t h_e_f { cases h_e_c with _ h_e_c, replace h_e_c := interpS_bump_fuel h_e_c, simp only [interpS] at h_e_c, cases_on_interp h_c' : list.nth ε a_c : v_c, simp only [interpS, true_and, eq_self_iff_true] at h_e_c, cases h_e_t with fuel_t h_e_t, cases h_e_f with fuel_f h_e_f, use fuel_t + fuel_f + 1, subst_vars, simp only [interpS, h_c', h_c, if_false], replace h_e_t := interpS_bump_large_fuel fuel_f h_e_t, replace h_e_f := interpS_bump_large_fuel fuel_t h_e_f, simp only [(by linarith : fuel_f + fuel_t = fuel_t + fuel_f)] at h_e_f, simp only [h_e_t, h_e_f, interpS], unfold_coes, }, end end interp end interp
177d0cf906d35f2b5b864b5b861a286451551041
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
/src/category_theory/preadditive.lean
dbd54b7e1e6d4bed90c8eb5fb09f56a8a5ac1abd
[ "Apache-2.0" ]
permissive
keeferrowan/mathlib
f2818da875dbc7780830d09bd4c526b0764a4e50
aad2dfc40e8e6a7e258287a7c1580318e865817e
refs/heads/master
1,661,736,426,952
1,590,438,032,000
1,590,438,032,000
266,892,663
0
0
Apache-2.0
1,590,445,835,000
1,590,445,835,000
null
UTF-8
Lean
false
false
6,539
lean
/- Copyright (c) 2020 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import algebra.group.hom import category_theory.limits.shapes.kernels /-! # Preadditive categories A preadditive category is a category in which `X ⟶ Y` is an abelian group in such a way that composition of morphisms is linear in both variables. This file contains a definition of preadditive category that directly encodes the definition given above. The definition could also be phrased as follows: A preadditive category is a category enriched over the category of Abelian groups. Once the general framework to state this in Lean is available, the contents of this file should become obsolete. ## Main results * Definition of preadditive categories and basic properties * In a preadditive category, `f : Q ⟶ R` is mono if and only if `g ≫ f = 0 → g = 0` for all composable `g`. * A preadditive category with kernels has equalizers. ## Implementation notes The simp normal form for negation and composition is to push negations as far as possible to the outside. For example, `f ≫ (-g)` and `(-f) ≫ g` both become `-(f ≫ g)`, and `(-f) ≫ (-g)` is simplified to `f ≫ g`. ## References * [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2] ## Tags additive, preadditive, Hom group, Ab-category, Ab-enriched -/ universes v u open category_theory.limits open add_monoid_hom namespace category_theory variables (C : Type u) [category.{v} C] /-- A category is called preadditive if `P ⟶ Q` is an abelian group such that composition is linear in both variables. -/ class preadditive := (hom_group : Π P Q : C, add_comm_group (P ⟶ Q) . tactic.apply_instance) (add_comp' : ∀ (P Q R : C) (f f' : P ⟶ Q) (g : Q ⟶ R), (f + f') ≫ g = f ≫ g + f' ≫ g . obviously) (comp_add' : ∀ (P Q R : C) (f : P ⟶ Q) (g g' : Q ⟶ R), f ≫ (g + g') = f ≫ g + f ≫ g' . obviously) attribute [instance] preadditive.hom_group restate_axiom preadditive.add_comp' restate_axiom preadditive.comp_add' attribute [simp] preadditive.add_comp preadditive.comp_add end category_theory open category_theory namespace category_theory.preadditive section preadditive variables {C : Type u} [category.{v} C] [preadditive.{v} C] /-- Composition by a fixed left argument as a group homomorphism -/ def left_comp {P Q : C} (R : C) (f : P ⟶ Q) : (Q ⟶ R) →+ (P ⟶ R) := mk' (λ g, f ≫ g) $ λ g g', by simp /-- Composition by a fixed right argument as a group homomorphism -/ def right_comp (P : C) {Q R : C} (g : Q ⟶ R) : (P ⟶ Q) →+ (P ⟶ R) := mk' (λ f, f ≫ g) $ λ f f', by simp @[simp] lemma sub_comp {P Q R : C} (f f' : P ⟶ Q) (g : Q ⟶ R) : (f - f') ≫ g = f ≫ g - f' ≫ g := map_sub (right_comp P g) f f' @[simp] lemma comp_sub {P Q R : C} (f : P ⟶ Q) (g g' : Q ⟶ R) : f ≫ (g - g') = f ≫ g - f ≫ g' := map_sub (left_comp R f) g g' @[simp] lemma neg_comp {P Q R : C} (f : P ⟶ Q) (g : Q ⟶ R) : (-f) ≫ g = -(f ≫ g) := map_neg (right_comp _ _) _ @[simp] lemma comp_neg {P Q R : C} (f : P ⟶ Q) (g : Q ⟶ R) : f ≫ (-g) = -(f ≫ g) := map_neg (left_comp _ _) _ lemma neg_comp_neg {P Q R : C} (f : P ⟶ Q) (g : Q ⟶ R) : (-f) ≫ (-g) = f ≫ g := by simp instance {P Q : C} {f : P ⟶ Q} [epi f] : epi (-f) := ⟨λ R g g', by { rw [neg_comp, neg_comp, ←comp_neg, ←comp_neg, cancel_epi], exact neg_inj }⟩ instance {P Q : C} {f : P ⟶ Q} [mono f] : mono (-f) := ⟨λ R g g', by { rw [comp_neg, comp_neg, ←neg_comp, ←neg_comp, cancel_mono], exact neg_inj }⟩ @[priority 100] instance preadditive_has_zero_morphisms : has_zero_morphisms.{v} C := { has_zero := infer_instance, comp_zero' := λ P Q f R, map_zero $ left_comp R f, zero_comp' := λ P Q R f, map_zero $ right_comp P f } lemma mono_of_cancel_zero {Q R : C} (f : Q ⟶ R) (h : ∀ {P : C} (g : P ⟶ Q), g ≫ f = 0 → g = 0) : mono f := ⟨λ P g g' hg, sub_eq_zero.1 $ h _ $ (map_sub (right_comp P f) g g').trans $ sub_eq_zero.2 hg⟩ lemma mono_iff_cancel_zero {Q R : C} (f : Q ⟶ R) : mono f ↔ ∀ (P : C) (g : P ⟶ Q), g ≫ f = 0 → g = 0 := ⟨λ m P g, by exactI zero_of_comp_mono _, mono_of_cancel_zero f⟩ lemma epi_of_cancel_zero {P Q : C} (f : P ⟶ Q) (h : ∀ {R : C} (g : Q ⟶ R), f ≫ g = 0 → g = 0) : epi f := ⟨λ R g g' hg, sub_eq_zero.1 $ h _ $ (map_sub (left_comp R f) g g').trans $ sub_eq_zero.2 hg⟩ lemma epi_iff_cancel_zero {P Q : C} (f : P ⟶ Q) : epi f ↔ ∀ (R : C) (g : Q ⟶ R), f ≫ g = 0 → g = 0 := ⟨λ e R g, by exactI zero_of_epi_comp _, epi_of_cancel_zero f⟩ end preadditive section equalizers variables {C : Type u} [category.{v} C] [preadditive.{v} C] section variables {X Y : C} (f : X ⟶ Y) (g : X ⟶ Y) /-- A kernel of `f - g` is an equalizer of `f` and `g`. -/ def has_limit_parallel_pair [has_limit (parallel_pair (f - g) 0)] : has_limit (parallel_pair f g) := { cone := fork.of_ι (kernel.ι (f - g)) (sub_eq_zero.1 $ by { rw ←comp_sub, exact kernel.condition _ }), is_limit := fork.is_limit.mk _ (λ s, kernel.lift (f - g) (fork.ι s) $ by { rw comp_sub, apply sub_eq_zero.2, exact fork.condition _ }) (λ s, by simp) (λ s m h, by { ext, simpa using h walking_parallel_pair.zero }) } end section /-- If a preadditive category has all kernels, then it also has all equalizers. -/ def has_equalizers_of_has_kernels [has_kernels.{v} C] : has_equalizers.{v} C := @has_equalizers_of_has_limit_parallel_pair _ _ (λ _ _ f g, has_limit_parallel_pair f g) end section variables {X Y : C} (f : X ⟶ Y) (g : X ⟶ Y) /-- A cokernel of `f - g` is a coequalizer of `f` and `g`. -/ def has_colimit_parallel_pair [has_colimit (parallel_pair (f - g) 0)] : has_colimit (parallel_pair f g) := { cocone := cofork.of_π (cokernel.π (f - g)) (sub_eq_zero.1 $ by { rw ←sub_comp, exact cokernel.condition _ }), is_colimit := cofork.is_colimit.mk _ (λ s, cokernel.desc (f - g) (cofork.π s) $ by { rw sub_comp, apply sub_eq_zero.2, exact cofork.condition _ }) (λ s, by simp) (λ s m h, by { ext, simpa using h walking_parallel_pair.one }) } end section /-- If a preadditive category has all cokernels, then it also has all coequalizers. -/ def has_coequalizers_of_has_cokernels [has_cokernels.{v} C] : has_coequalizers.{v} C := @has_coequalizers_of_has_colimit_parallel_pair _ _ (λ _ _ f g, has_colimit_parallel_pair f g) end end equalizers end category_theory.preadditive
831d0d242dfb8f801673b1e7c28c000934b4cf0f
ce6917c5bacabee346655160b74a307b4a5ab620
/src/ch5/ex0402.lean
3cc01f715c7499d6074ebccdc0277d67081ee6d2
[]
no_license
Ailrun/Theorem_Proving_in_Lean
ae6a23f3c54d62d401314d6a771e8ff8b4132db2
2eb1b5caf93c6a5a555c79e9097cf2ba5a66cf68
refs/heads/master
1,609,838,270,467
1,586,846,743,000
1,586,846,743,000
240,967,761
1
0
null
null
null
null
UTF-8
Lean
false
false
348
lean
example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := begin apply iff.intro, intro h, cases h.right with hq hr, exact or.inl ⟨h.left, hq⟩, exact or.inr ⟨h.left, hr⟩, intro h, cases h with hpq hpr, exact ⟨hpq.left, or.inl hpq.right⟩, exact ⟨hpr.left, or.inr hpr.right⟩ end
0bf3387eb46d75ef3e64c26da2d75bdd19963bb4
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/combinatorics/simple_graph/basic.lean
b41ea9aa0d7e80315f122b71a44eb6345a0d1f3e
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
30,369
lean
/- Copyright (c) 2020 Aaron Anderson, Jalex Stark, Kyle Miller. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson, Jalex Stark, Kyle Miller, Alena Gusakov, Hunter Monroe -/ import data.fintype.basic import data.rel import data.set.finite import data.sym.sym2 /-! # Simple graphs This module defines simple graphs on a vertex type `V` as an irreflexive symmetric relation. There is a basic API for locally finite graphs and for graphs with finitely many vertices. ## Main definitions * `simple_graph` is a structure for symmetric, irreflexive relations * `neighbor_set` is the `set` of vertices adjacent to a given vertex * `common_neighbors` is the intersection of the neighbor sets of two given vertices * `neighbor_finset` is the `finset` of vertices adjacent to a given vertex, if `neighbor_set` is finite * `incidence_set` is the `set` of edges containing a given vertex * `incidence_finset` is the `finset` of edges containing a given vertex, if `incidence_set` is finite * `homo`, `embedding`, and `iso` for graph homomorphisms, graph embeddings, and graph isomorphisms. Note that a graph embedding is a stronger notion than an injective graph homomorphism, since its image is an induced subgraph. * `boolean_algebra` instance: Under the subgraph relation, `simple_graph` forms a `boolean_algebra`. In other words, this is the lattice of spanning subgraphs of the complete graph. ## Notations * `→g`, `↪g`, and `≃g` for graph homomorphisms, graph embeddings, and graph isomorphisms, respectively. ## Implementation notes * A locally finite graph is one with instances `Π v, fintype (G.neighbor_set v)`. * Given instances `decidable_rel G.adj` and `fintype V`, then the graph is locally finite, too. * Morphisms of graphs are abbreviations for `rel_hom`, `rel_embedding`, and `rel_iso`. To make use of pre-existing simp lemmas, definitions involving morphisms are abbreviations as well. ## Naming Conventions * If the vertex type of a graph is finite, we refer to its cardinality as `card_verts`. ## Todo * Upgrade `simple_graph.boolean_algebra` to a `complete_boolean_algebra`. * This is the simplest notion of an unoriented graph. This should eventually fit into a more complete combinatorics hierarchy which includes multigraphs and directed graphs. We begin with simple graphs in order to start learning what the combinatorics hierarchy should look like. -/ open finset universes u v w /-- A simple graph is an irreflexive symmetric relation `adj` on a vertex type `V`. The relation describes which pairs of vertices are adjacent. There is exactly one edge for every pair of adjacent edges; see `simple_graph.edge_set` for the corresponding edge set. -/ @[ext] structure simple_graph (V : Type u) := (adj : V → V → Prop) (symm : symmetric adj . obviously) (loopless : irreflexive adj . obviously) /-- Construct the simple graph induced by the given relation. It symmetrizes the relation and makes it irreflexive. -/ def simple_graph.from_rel {V : Type u} (r : V → V → Prop) : simple_graph V := { adj := λ a b, (a ≠ b) ∧ (r a b ∨ r b a), symm := λ a b ⟨hn, hr⟩, ⟨hn.symm, hr.symm⟩, loopless := λ a ⟨hn, _⟩, hn rfl } noncomputable instance {V : Type u} [fintype V] : fintype (simple_graph V) := by { classical, exact fintype.of_injective simple_graph.adj simple_graph.ext } @[simp] lemma simple_graph.from_rel_adj {V : Type u} (r : V → V → Prop) (v w : V) : (simple_graph.from_rel r).adj v w ↔ v ≠ w ∧ (r v w ∨ r w v) := iff.rfl /-- The complete graph on a type `V` is the simple graph with all pairs of distinct vertices adjacent. In `mathlib`, this is usually referred to as `⊤`. -/ def complete_graph (V : Type u) : simple_graph V := { adj := ne } /-- The graph with no edges on a given vertex type `V`. `mathlib` prefers the notation `⊥`. -/ def empty_graph (V : Type u) : simple_graph V := { adj := λ i j, false } namespace simple_graph variables {V : Type u} {W : Type v} {X : Type w} (G : simple_graph V) (G' : simple_graph W) @[simp] lemma irrefl {v : V} : ¬G.adj v v := G.loopless v lemma adj_comm (u v : V) : G.adj u v ↔ G.adj v u := ⟨λ x, G.symm x, λ x, G.symm x⟩ @[symm] lemma adj_symm {u v : V} (h : G.adj u v) : G.adj v u := G.symm h lemma ne_of_adj {a b : V} (hab : G.adj a b) : a ≠ b := by { rintro rfl, exact G.irrefl hab } section order /-- The relation that one `simple_graph` is a subgraph of another. Note that this should be spelled `≤`. -/ def is_subgraph (x y : simple_graph V) : Prop := ∀ ⦃v w : V⦄, x.adj v w → y.adj v w instance : has_le (simple_graph V) := ⟨is_subgraph⟩ @[simp] lemma is_subgraph_eq_le : (is_subgraph : simple_graph V → simple_graph V → Prop) = (≤) := rfl /-- The supremum of two graphs `x ⊔ y` has edges where either `x` or `y` have edges. -/ instance : has_sup (simple_graph V) := ⟨λ x y, { adj := x.adj ⊔ y.adj, symm := λ v w h, by rwa [pi.sup_apply, pi.sup_apply, x.adj_comm, y.adj_comm] }⟩ @[simp] lemma sup_adj (x y : simple_graph V) (v w : V) : (x ⊔ y).adj v w ↔ x.adj v w ∨ y.adj v w := iff.rfl /-- The infinum of two graphs `x ⊓ y` has edges where both `x` and `y` have edges. -/ instance : has_inf (simple_graph V) := ⟨λ x y, { adj := x.adj ⊓ y.adj, symm := λ v w h, by rwa [pi.inf_apply, pi.inf_apply, x.adj_comm, y.adj_comm] }⟩ @[simp] lemma inf_adj (x y : simple_graph V) (v w : V) : (x ⊓ y).adj v w ↔ x.adj v w ∧ y.adj v w := iff.rfl /-- We define `Gᶜ` to be the `simple_graph V` such that no two adjacent vertices in `G` are adjacent in the complement, and every nonadjacent pair of vertices is adjacent (still ensuring that vertices are not adjacent to themselves). -/ instance : has_compl (simple_graph V) := ⟨λ G, { adj := λ v w, v ≠ w ∧ ¬G.adj v w, symm := λ v w ⟨hne, _⟩, ⟨hne.symm, by rwa adj_comm⟩, loopless := λ v ⟨hne, _⟩, (hne rfl).elim }⟩ @[simp] lemma compl_adj (G : simple_graph V) (v w : V) : Gᶜ.adj v w ↔ v ≠ w ∧ ¬G.adj v w := iff.rfl /-- The difference of two graphs `x / y` has the edges of `x` with the edges of `y` removed. -/ instance : has_sdiff (simple_graph V) := ⟨λ x y, { adj := x.adj \ y.adj, symm := λ v w h, by change x.adj w v ∧ ¬ y.adj w v; rwa [x.adj_comm, y.adj_comm] }⟩ @[simp] lemma sdiff_adj (x y : simple_graph V) (v w : V) : (x \ y).adj v w ↔ (x.adj v w ∧ ¬ y.adj v w) := iff.rfl instance : boolean_algebra (simple_graph V) := { le := (≤), sup := (⊔), inf := (⊓), compl := has_compl.compl, sdiff := (\), top := complete_graph V, bot := empty_graph V, le_top := λ x v w h, x.ne_of_adj h, bot_le := λ x v w h, h.elim, sup_le := λ x y z hxy hyz v w h, h.cases_on (λ h, hxy h) (λ h, hyz h), sdiff_eq := λ x y, by { ext v w, refine ⟨λ h, ⟨h.1, ⟨_, h.2⟩⟩, λ h, ⟨h.1, h.2.2⟩⟩, rintro rfl, exact x.irrefl h.1 }, sup_inf_sdiff := λ a b, by { ext v w, refine ⟨λ h, _, λ h', _⟩, obtain ⟨ha, _⟩|⟨ha, _⟩ := h; exact ha, by_cases b.adj v w; exact or.inl ⟨h', h⟩ <|> exact or.inr ⟨h', h⟩ }, inf_inf_sdiff := λ a b, by { ext v w, exact ⟨λ ⟨⟨_, hb⟩,⟨_, hb'⟩⟩, hb' hb, λ h, h.elim⟩ }, le_sup_left := λ x y v w h, or.inl h, le_sup_right := λ x y v w h, or.inr h, le_inf := λ x y z hxy hyz v w h, ⟨hxy h, hyz h⟩, le_sup_inf := λ a b c v w h, or.dcases_on h.2 or.inl $ or.dcases_on h.1 (λ h _, or.inl h) $ λ hb hc, or.inr ⟨hb, hc⟩, inf_compl_le_bot := λ a v w h, false.elim $ h.2.2 h.1, top_le_sup_compl := λ a v w ne, by { by_cases a.adj v w, exact or.inl h, exact or.inr ⟨ne, h⟩ }, inf_le_left := λ x y v w h, h.1, inf_le_right := λ x y v w h, h.2, .. partial_order.lift adj ext } @[simp] lemma top_adj (v w : V) : (⊤ : simple_graph V).adj v w ↔ v ≠ w := iff.rfl @[simp] lemma bot_adj (v w : V) : (⊥ : simple_graph V).adj v w ↔ false := iff.rfl @[simp] lemma complete_graph_eq_top (V : Type u) : complete_graph V = ⊤ := rfl @[simp] lemma empty_graph_eq_bot (V : Type u) : empty_graph V = ⊥ := rfl instance (V : Type u) : inhabited (simple_graph V) := ⟨⊤⟩ section decidable variables (V) (H : simple_graph V) [decidable_rel G.adj] [decidable_rel H.adj] instance bot.adj_decidable : decidable_rel (⊥ : simple_graph V).adj := λ v w, decidable.false instance sup.adj_decidable : decidable_rel (G ⊔ H).adj := λ v w, or.decidable instance inf.adj_decidable : decidable_rel (G ⊓ H).adj := λ v w, and.decidable instance sdiff.adj_decidable : decidable_rel (G \ H).adj := λ v w, and.decidable variable [decidable_eq V] instance top.adj_decidable : decidable_rel (⊤ : simple_graph V).adj := λ v w, not.decidable instance compl.adj_decidable : decidable_rel Gᶜ.adj := λ v w, and.decidable end decidable end order /-- `G.support` is the set of vertices that form edges in `G`. -/ def support : set V := rel.dom G.adj lemma mem_support {v : V} : v ∈ G.support ↔ ∃ w, G.adj v w := iff.rfl lemma support_mono {G G' : simple_graph V} (h : G ≤ G') : G.support ⊆ G'.support := rel.dom_mono h /-- `G.neighbor_set v` is the set of vertices adjacent to `v` in `G`. -/ def neighbor_set (v : V) : set V := set_of (G.adj v) instance neighbor_set.mem_decidable (v : V) [decidable_rel G.adj] : decidable_pred (∈ G.neighbor_set v) := by { unfold neighbor_set, apply_instance } /-- The edges of G consist of the unordered pairs of vertices related by `G.adj`. The way `edge_set` is defined is such that `mem_edge_set` is proved by `refl`. (That is, `⟦(v, w)⟧ ∈ G.edge_set` is definitionally equal to `G.adj v w`.) -/ def edge_set : set (sym2 V) := sym2.from_rel G.symm /-- The `incidence_set` is the set of edges incident to a given vertex. -/ def incidence_set (v : V) : set (sym2 V) := {e ∈ G.edge_set | v ∈ e} lemma incidence_set_subset (v : V) : G.incidence_set v ⊆ G.edge_set := λ _ h, h.1 @[simp] lemma mem_edge_set {v w : V} : ⟦(v, w)⟧ ∈ G.edge_set ↔ G.adj v w := iff.rfl /-- Two vertices are adjacent iff there is an edge between them. The condition `v ≠ w` ensures they are different endpoints of the edge, which is necessary since when `v = w` the existential `∃ (e ∈ G.edge_set), v ∈ e ∧ w ∈ e` is satisfied by every edge incident to `v`. -/ lemma adj_iff_exists_edge {v w : V} : G.adj v w ↔ v ≠ w ∧ ∃ (e ∈ G.edge_set), v ∈ e ∧ w ∈ e := begin refine ⟨λ _, ⟨G.ne_of_adj ‹_›, ⟦(v,w)⟧, _⟩, _⟩, { simpa }, { rintro ⟨hne, e, he, hv⟩, rw sym2.elems_iff_eq hne at hv, subst e, rwa mem_edge_set at he } end lemma edge_other_ne {e : sym2 V} (he : e ∈ G.edge_set) {v : V} (h : v ∈ e) : h.other ≠ v := begin erw [← sym2.mem_other_spec h, sym2.eq_swap] at he, exact G.ne_of_adj he, end instance decidable_mem_edge_set [decidable_rel G.adj] : decidable_pred (∈ G.edge_set) := sym2.from_rel.decidable_pred _ instance edges_fintype [decidable_eq V] [fintype V] [decidable_rel G.adj] : fintype G.edge_set := subtype.fintype _ instance decidable_mem_incidence_set [decidable_eq V] [decidable_rel G.adj] (v : V) : decidable_pred (∈ G.incidence_set v) := λ e, and.decidable /-- The `edge_set` of the graph as a `finset`. -/ def edge_finset [decidable_eq V] [fintype V] [decidable_rel G.adj] : finset (sym2 V) := set.to_finset G.edge_set @[simp] lemma mem_edge_finset [decidable_eq V] [fintype V] [decidable_rel G.adj] (e : sym2 V) : e ∈ G.edge_finset ↔ e ∈ G.edge_set := set.mem_to_finset @[simp] lemma edge_set_univ_card [decidable_eq V] [fintype V] [decidable_rel G.adj] : (univ : finset G.edge_set).card = G.edge_finset.card := fintype.card_of_subtype G.edge_finset (mem_edge_finset _) @[simp] lemma mem_neighbor_set (v w : V) : w ∈ G.neighbor_set v ↔ G.adj v w := iff.rfl @[simp] lemma mem_incidence_set (v w : V) : ⟦(v, w)⟧ ∈ G.incidence_set v ↔ G.adj v w := by simp [incidence_set] lemma mem_incidence_iff_neighbor {v w : V} : ⟦(v, w)⟧ ∈ G.incidence_set v ↔ w ∈ G.neighbor_set v := by simp only [mem_incidence_set, mem_neighbor_set] lemma adj_incidence_set_inter {v : V} {e : sym2 V} (he : e ∈ G.edge_set) (h : v ∈ e) : G.incidence_set v ∩ G.incidence_set h.other = {e} := begin ext e', simp only [incidence_set, set.mem_sep_eq, set.mem_inter_eq, set.mem_singleton_iff], split, { intro h', rw ←sym2.mem_other_spec h, exact (sym2.elems_iff_eq (edge_other_ne G he h).symm).mp ⟨h'.1.2, h'.2.2⟩, }, { rintro rfl, use [he, h, he], apply sym2.mem_other_mem, }, end lemma compl_neighbor_set_disjoint (G : simple_graph V) (v : V) : disjoint (G.neighbor_set v) (Gᶜ.neighbor_set v) := begin rw set.disjoint_iff, rintro w ⟨h, h'⟩, rw [mem_neighbor_set, compl_adj] at h', exact h'.2 h, end lemma neighbor_set_union_compl_neighbor_set_eq (G : simple_graph V) (v : V) : G.neighbor_set v ∪ Gᶜ.neighbor_set v = {v}ᶜ := begin ext w, have h := @ne_of_adj _ G, simp_rw [set.mem_union, mem_neighbor_set, compl_adj, set.mem_compl_eq, set.mem_singleton_iff], tauto, end /-- The set of common neighbors between two vertices `v` and `w` in a graph `G` is the intersection of the neighbor sets of `v` and `w`. -/ def common_neighbors (v w : V) : set V := G.neighbor_set v ∩ G.neighbor_set w lemma common_neighbors_eq (v w : V) : G.common_neighbors v w = G.neighbor_set v ∩ G.neighbor_set w := rfl lemma mem_common_neighbors {u v w : V} : u ∈ G.common_neighbors v w ↔ G.adj v u ∧ G.adj w u := by simp [common_neighbors] lemma common_neighbors_symm (v w : V) : G.common_neighbors v w = G.common_neighbors w v := by { rw [common_neighbors, set.inter_comm], refl } lemma not_mem_common_neighbors_left (v w : V) : v ∉ G.common_neighbors v w := λ h, ne_of_adj G h.1 rfl lemma not_mem_common_neighbors_right (v w : V) : w ∉ G.common_neighbors v w := λ h, ne_of_adj G h.2 rfl lemma common_neighbors_subset_neighbor_set (v w : V) : G.common_neighbors v w ⊆ G.neighbor_set v := by simp [common_neighbors] instance decidable_mem_common_neighbors [decidable_rel G.adj] (v w : V) : decidable_pred (∈ G.common_neighbors v w) := λ a, and.decidable section incidence variable [decidable_eq V] /-- Given an edge incident to a particular vertex, get the other vertex on the edge. -/ def other_vertex_of_incident {v : V} {e : sym2 V} (h : e ∈ G.incidence_set v) : V := h.2.other' lemma edge_mem_other_incident_set {v : V} {e : sym2 V} (h : e ∈ G.incidence_set v) : e ∈ G.incidence_set (G.other_vertex_of_incident h) := by { use h.1, simp [other_vertex_of_incident, sym2.mem_other_mem'] } lemma incidence_other_prop {v : V} {e : sym2 V} (h : e ∈ G.incidence_set v) : G.other_vertex_of_incident h ∈ G.neighbor_set v := by { cases h with he hv, rwa [←sym2.mem_other_spec' hv, mem_edge_set] at he } @[simp] lemma incidence_other_neighbor_edge {v w : V} (h : w ∈ G.neighbor_set v) : G.other_vertex_of_incident (G.mem_incidence_iff_neighbor.mpr h) = w := sym2.congr_right.mp (sym2.mem_other_spec' (G.mem_incidence_iff_neighbor.mpr h).right) /-- There is an equivalence between the set of edges incident to a given vertex and the set of vertices adjacent to the vertex. -/ @[simps] def incidence_set_equiv_neighbor_set (v : V) : G.incidence_set v ≃ G.neighbor_set v := { to_fun := λ e, ⟨G.other_vertex_of_incident e.2, G.incidence_other_prop e.2⟩, inv_fun := λ w, ⟨⟦(v, w.1)⟧, G.mem_incidence_iff_neighbor.mpr w.2⟩, left_inv := λ x, by simp [other_vertex_of_incident], right_inv := λ ⟨w, hw⟩, by simp } end incidence section finite_at /-! ## Finiteness at a vertex This section contains definitions and lemmas concerning vertices that have finitely many adjacent vertices. We denote this condition by `fintype (G.neighbor_set v)`. We define `G.neighbor_finset v` to be the `finset` version of `G.neighbor_set v`. Use `neighbor_finset_eq_filter` to rewrite this definition as a `filter`. -/ variables (v : V) [fintype (G.neighbor_set v)] /-- `G.neighbors v` is the `finset` version of `G.adj v` in case `G` is locally finite at `v`. -/ def neighbor_finset : finset V := (G.neighbor_set v).to_finset @[simp] lemma mem_neighbor_finset (w : V) : w ∈ G.neighbor_finset v ↔ G.adj v w := set.mem_to_finset /-- `G.degree v` is the number of vertices adjacent to `v`. -/ def degree : ℕ := (G.neighbor_finset v).card @[simp] lemma card_neighbor_set_eq_degree : fintype.card (G.neighbor_set v) = G.degree v := (set.to_finset_card _).symm lemma degree_pos_iff_exists_adj : 0 < G.degree v ↔ ∃ w, G.adj v w := by simp only [degree, card_pos, finset.nonempty, mem_neighbor_finset] instance incidence_set_fintype [decidable_eq V] : fintype (G.incidence_set v) := fintype.of_equiv (G.neighbor_set v) (G.incidence_set_equiv_neighbor_set v).symm /-- This is the `finset` version of `incidence_set`. -/ def incidence_finset [decidable_eq V] : finset (sym2 V) := (G.incidence_set v).to_finset @[simp] lemma card_incidence_set_eq_degree [decidable_eq V] : fintype.card (G.incidence_set v) = G.degree v := by { rw fintype.card_congr (G.incidence_set_equiv_neighbor_set v), simp } @[simp] lemma mem_incidence_finset [decidable_eq V] (e : sym2 V) : e ∈ G.incidence_finset v ↔ e ∈ G.incidence_set v := set.mem_to_finset end finite_at section locally_finite /-- A graph is locally finite if every vertex has a finite neighbor set. -/ @[reducible] def locally_finite := Π (v : V), fintype (G.neighbor_set v) variable [locally_finite G] /-- A locally finite simple graph is regular of degree `d` if every vertex has degree `d`. -/ def is_regular_of_degree (d : ℕ) : Prop := ∀ (v : V), G.degree v = d lemma is_regular_of_degree_eq {d : ℕ} (h : G.is_regular_of_degree d) (v : V) : G.degree v = d := h v end locally_finite section finite variable [fintype V] instance neighbor_set_fintype [decidable_rel G.adj] (v : V) : fintype (G.neighbor_set v) := @subtype.fintype _ _ (by { simp_rw mem_neighbor_set, apply_instance }) _ lemma neighbor_finset_eq_filter {v : V} [decidable_rel G.adj] : G.neighbor_finset v = finset.univ.filter (G.adj v) := by { ext, simp } @[simp] lemma complete_graph_degree [decidable_eq V] (v : V) : (⊤ : simple_graph V).degree v = fintype.card V - 1 := begin convert univ.card.pred_eq_sub_one, erw [degree, neighbor_finset_eq_filter, filter_ne, card_erase_of_mem (mem_univ v)], end lemma complete_graph_is_regular [decidable_eq V] : (⊤ : simple_graph V).is_regular_of_degree (fintype.card V - 1) := by { intro v, simp } /-- The minimum degree of all vertices (and `0` if there are no vertices). The key properties of this are given in `exists_minimal_degree_vertex`, `min_degree_le_degree` and `le_min_degree_of_forall_le_degree`. -/ def min_degree [decidable_rel G.adj] : ℕ := option.get_or_else (univ.image (λ v, G.degree v)).min 0 /-- There exists a vertex of minimal degree. Note the assumption of being nonempty is necessary, as the lemma implies there exists a vertex. -/ lemma exists_minimal_degree_vertex [decidable_rel G.adj] [nonempty V] : ∃ v, G.min_degree = G.degree v := begin obtain ⟨t, ht : _ = _⟩ := min_of_nonempty (univ_nonempty.image (λ v, G.degree v)), obtain ⟨v, _, rfl⟩ := mem_image.mp (mem_of_min ht), refine ⟨v, by simp [min_degree, ht]⟩, end /-- The minimum degree in the graph is at most the degree of any particular vertex. -/ lemma min_degree_le_degree [decidable_rel G.adj] (v : V) : G.min_degree ≤ G.degree v := begin obtain ⟨t, ht⟩ := finset.min_of_mem (mem_image_of_mem (λ v, G.degree v) (mem_univ v)), have := finset.min_le_of_mem (mem_image_of_mem _ (mem_univ v)) ht, rw option.mem_def at ht, rwa [min_degree, ht, option.get_or_else_some], end /-- In a nonempty graph, if `k` is at most the degree of every vertex, it is at most the minimum degree. Note the assumption that the graph is nonempty is necessary as long as `G.min_degree` is defined to be a natural. -/ lemma le_min_degree_of_forall_le_degree [decidable_rel G.adj] [nonempty V] (k : ℕ) (h : ∀ v, k ≤ G.degree v) : k ≤ G.min_degree := begin rcases G.exists_minimal_degree_vertex with ⟨v, hv⟩, rw hv, apply h end /-- The maximum degree of all vertices (and `0` if there are no vertices). The key properties of this are given in `exists_maximal_degree_vertex`, `degree_le_max_degree` and `max_degree_le_of_forall_degree_le`. -/ def max_degree [decidable_rel G.adj] : ℕ := option.get_or_else (univ.image (λ v, G.degree v)).max 0 /-- There exists a vertex of maximal degree. Note the assumption of being nonempty is necessary, as the lemma implies there exists a vertex. -/ lemma exists_maximal_degree_vertex [decidable_rel G.adj] [nonempty V] : ∃ v, G.max_degree = G.degree v := begin obtain ⟨t, ht⟩ := max_of_nonempty (univ_nonempty.image (λ v, G.degree v)), have ht₂ := mem_of_max ht, simp only [mem_image, mem_univ, exists_prop_of_true] at ht₂, rcases ht₂ with ⟨v, rfl⟩, rw option.mem_def at ht, refine ⟨v, _⟩, rw [max_degree, ht], refl end /-- The maximum degree in the graph is at least the degree of any particular vertex. -/ lemma degree_le_max_degree [decidable_rel G.adj] (v : V) : G.degree v ≤ G.max_degree := begin obtain ⟨t, ht : _ = _⟩ := finset.max_of_mem (mem_image_of_mem (λ v, G.degree v) (mem_univ v)), have := finset.le_max_of_mem (mem_image_of_mem _ (mem_univ v)) ht, rwa [max_degree, ht, option.get_or_else_some], end /-- In a graph, if `k` is at least the degree of every vertex, then it is at least the maximum degree. -/ lemma max_degree_le_of_forall_degree_le [decidable_rel G.adj] (k : ℕ) (h : ∀ v, G.degree v ≤ k) : G.max_degree ≤ k := begin by_cases hV : (univ : finset V).nonempty, { haveI : nonempty V := univ_nonempty_iff.mp hV, obtain ⟨v, hv⟩ := G.exists_maximal_degree_vertex, rw hv, apply h }, { rw not_nonempty_iff_eq_empty at hV, rw [max_degree, hV, image_empty], exact zero_le k }, end lemma degree_lt_card_verts [decidable_rel G.adj] (v : V) : G.degree v < fintype.card V := begin classical, apply finset.card_lt_card, rw finset.ssubset_iff, exact ⟨v, by simp, finset.subset_univ _⟩, end /-- The maximum degree of a nonempty graph is less than the number of vertices. Note that the assumption that `V` is nonempty is necessary, as otherwise this would assert the existence of a natural number less than zero. -/ lemma max_degree_lt_card_verts [decidable_rel G.adj] [nonempty V] : G.max_degree < fintype.card V := begin cases G.exists_maximal_degree_vertex with v hv, rw hv, apply G.degree_lt_card_verts v, end lemma card_common_neighbors_le_degree_left [decidable_rel G.adj] (v w : V) : fintype.card (G.common_neighbors v w) ≤ G.degree v := begin rw [←card_neighbor_set_eq_degree], exact set.card_le_of_subset (set.inter_subset_left _ _), end lemma card_common_neighbors_le_degree_right [decidable_rel G.adj] (v w : V) : fintype.card (G.common_neighbors v w) ≤ G.degree w := begin convert G.card_common_neighbors_le_degree_left w v using 3, apply common_neighbors_symm, end lemma card_common_neighbors_lt_card_verts [decidable_rel G.adj] (v w : V) : fintype.card (G.common_neighbors v w) < fintype.card V := nat.lt_of_le_of_lt (G.card_common_neighbors_le_degree_left _ _) (G.degree_lt_card_verts v) /-- If the condition `G.adj v w` fails, then `card_common_neighbors_le_degree` is the best we can do in general. -/ lemma adj.card_common_neighbors_lt_degree {G : simple_graph V} [decidable_rel G.adj] {v w : V} (h : G.adj v w) : fintype.card (G.common_neighbors v w) < G.degree v := begin classical, erw [←set.to_finset_card], apply finset.card_lt_card, rw finset.ssubset_iff, use w, split, { rw set.mem_to_finset, apply not_mem_common_neighbors_right }, { rw finset.insert_subset, split, { simpa, }, { rw [neighbor_finset, ← set.subset_iff_to_finset_subset], apply common_neighbors_subset_neighbor_set } }, end end finite section maps /-- A graph homomorphism is a map on vertex sets that respects adjacency relations. The notation `G →g G'` represents the type of graph homomorphisms. -/ abbreviation hom := rel_hom G.adj G'.adj /-- A graph embedding is an embedding `f` such that for vertices `v w : V`, `G.adj f(v) f(w) ↔ G.adj v w `. Its image is an induced subgraph of G'. The notation `G ↪g G'` represents the type of graph embeddings. -/ abbreviation embedding := rel_embedding G.adj G'.adj /-- A graph isomorphism is an bijective map on vertex sets that respects adjacency relations. The notation `G ≃g G'` represents the type of graph isomorphisms. -/ abbreviation iso := rel_iso G.adj G'.adj infix ` →g ` : 50 := hom infix ` ↪g ` : 50 := embedding infix ` ≃g ` : 50 := iso namespace hom variables {G G'} (f : G →g G') /-- The identity homomorphism from a graph to itself. -/ abbreviation id : G →g G := rel_hom.id _ lemma map_adj {v w : V} (h : G.adj v w) : G'.adj (f v) (f w) := f.map_rel' h lemma map_mem_edge_set {e : sym2 V} (h : e ∈ G.edge_set) : e.map f ∈ G'.edge_set := quotient.ind (λ e h, sym2.from_rel_prop.mpr (f.map_rel' h)) e h lemma apply_mem_neighbor_set {v w : V} (h : w ∈ G.neighbor_set v) : f w ∈ G'.neighbor_set (f v) := map_adj f h /-- The map between edge sets induced by a homomorphism. The underlying map on edges is given by `sym2.map`. -/ @[simps] def map_edge_set (e : G.edge_set) : G'.edge_set := ⟨sym2.map f e, f.map_mem_edge_set e.property⟩ /-- The map between neighbor sets induced by a homomorphism. -/ @[simps] def map_neighbor_set (v : V) (w : G.neighbor_set v) : G'.neighbor_set (f v) := ⟨f w, f.apply_mem_neighbor_set w.property⟩ lemma map_edge_set.injective (hinj : function.injective f) : function.injective f.map_edge_set := begin rintros ⟨e₁, h₁⟩ ⟨e₂, h₂⟩, dsimp [hom.map_edge_set], repeat { rw subtype.mk_eq_mk }, apply sym2.map.injective hinj, end variable {G'' : simple_graph X} /-- Composition of graph homomorphisms. -/ abbreviation comp (f' : G' →g G'') (f : G →g G') : G →g G'' := f'.comp f @[simp] lemma coe_comp (f' : G' →g G'') (f : G →g G') : ⇑(f'.comp f) = f' ∘ f := rfl end hom namespace embedding variables {G G'} (f : G ↪g G') /-- The identity embedding from a graph to itself. -/ abbreviation refl : G ↪g G := rel_embedding.refl _ /-- An embedding of graphs gives rise to a homomorphism of graphs. -/ abbreviation to_hom : G →g G' := f.to_rel_hom lemma map_adj_iff {v w : V} : G'.adj (f v) (f w) ↔ G.adj v w := f.map_rel_iff lemma map_mem_edge_set_iff {e : sym2 V} : e.map f ∈ G'.edge_set ↔ e ∈ G.edge_set := quotient.ind (λ ⟨v, w⟩, f.map_adj_iff) e lemma apply_mem_neighbor_set_iff {v w : V} : f w ∈ G'.neighbor_set (f v) ↔ w ∈ G.neighbor_set v := map_adj_iff f /-- A graph embedding induces an embedding of edge sets. -/ @[simps] def map_edge_set : G.edge_set ↪ G'.edge_set := { to_fun := hom.map_edge_set f, inj' := hom.map_edge_set.injective f f.inj' } /-- A graph embedding induces an embedding of neighbor sets. -/ @[simps] def map_neighbor_set (v : V) : G.neighbor_set v ↪ G'.neighbor_set (f v) := { to_fun := λ w, ⟨f w, f.apply_mem_neighbor_set_iff.mpr w.2⟩, inj' := begin rintros ⟨w₁, h₁⟩ ⟨w₂, h₂⟩ h, rw subtype.mk_eq_mk at h ⊢, exact f.inj' h, end } variables {G'' : simple_graph X} /-- Composition of graph embeddings. -/ abbreviation comp (f' : G' ↪g G'') (f : G ↪g G') : G ↪g G'' := f.trans f' @[simp] lemma coe_comp (f' : G' ↪g G'') (f : G ↪g G') : ⇑(f'.comp f) = f' ∘ f := rfl end embedding namespace iso variables {G G'} (f : G ≃g G') /-- The identity isomorphism of a graph with itself. -/ abbreviation refl : G ≃g G := rel_iso.refl _ /-- An isomorphism of graphs gives rise to an embedding of graphs. -/ abbreviation to_embedding : G ↪g G' := f.to_rel_embedding /-- An isomorphism of graphs gives rise to a homomorphism of graphs. -/ abbreviation to_hom : G →g G' := f.to_embedding.to_hom /-- The inverse of a graph isomorphism. --/ abbreviation symm : G' ≃g G := f.symm lemma map_adj_iff {v w : V} : G'.adj (f v) (f w) ↔ G.adj v w := f.map_rel_iff lemma map_mem_edge_set_iff {e : sym2 V} : e.map f ∈ G'.edge_set ↔ e ∈ G.edge_set := quotient.ind (λ ⟨v, w⟩, f.map_adj_iff) e lemma apply_mem_neighbor_set_iff {v w : V} : f w ∈ G'.neighbor_set (f v) ↔ w ∈ G.neighbor_set v := map_adj_iff f /-- An isomorphism of graphs induces an equivalence of edge sets. -/ @[simps] def map_edge_set : G.edge_set ≃ G'.edge_set := { to_fun := hom.map_edge_set f, inv_fun := hom.map_edge_set f.symm, left_inv := begin rintro ⟨e, h⟩, simp only [hom.map_edge_set, sym2.map_map, rel_iso.coe_coe_fn, rel_embedding.coe_coe_fn, subtype.mk_eq_mk, subtype.coe_mk, coe_coe], apply congr_fun, convert sym2.map_id, exact funext (λ _, rel_iso.symm_apply_apply _ _), end, right_inv := begin rintro ⟨e, h⟩, simp only [hom.map_edge_set, sym2.map_map, rel_iso.coe_coe_fn, rel_embedding.coe_coe_fn, subtype.mk_eq_mk, subtype.coe_mk, coe_coe], apply congr_fun, convert sym2.map_id, exact funext (λ _, rel_iso.apply_symm_apply _ _), end } /-- A graph isomorphism induces an equivalence of neighbor sets. -/ @[simps] def map_neighbor_set (v : V) : G.neighbor_set v ≃ G'.neighbor_set (f v) := { to_fun := λ w, ⟨f w, f.apply_mem_neighbor_set_iff.mpr w.2⟩, inv_fun := λ w, ⟨f.symm w, begin convert f.symm.apply_mem_neighbor_set_iff.mpr w.2, simp only [rel_iso.symm_apply_apply], end⟩, left_inv := λ w, by simp, right_inv := λ w, by simp } lemma card_eq_of_iso [fintype V] [fintype W] (f : G ≃g G') : fintype.card V = fintype.card W := by convert (fintype.of_equiv_card f.to_equiv).symm variables {G'' : simple_graph X} /-- Composition of graph isomorphisms. -/ abbreviation comp (f' : G' ≃g G'') (f : G ≃g G') : G ≃g G'' := f.trans f' @[simp] lemma coe_comp (f' : G' ≃g G'') (f : G ≃g G') : ⇑(f'.comp f) = f' ∘ f := rfl end iso end maps end simple_graph
06581ce3648837023a3a06602772706030872172
31f556cdeb9239ffc2fad8f905e33987ff4feab9
/src/Lean/Parser/Command.lean
4fe3e584b7327893879d2a3dc5983ab405a669a7
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
tobiasgrosser/lean4
ce0fd9cca0feba1100656679bf41f0bffdbabb71
ebdbdc10436a4d9d6b66acf78aae7a23f5bd073f
refs/heads/master
1,673,103,412,948
1,664,930,501,000
1,664,930,501,000
186,870,185
0
0
Apache-2.0
1,665,129,237,000
1,557,939,901,000
Lean
UTF-8
Lean
false
false
14,639
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Sebastian Ullrich -/ import Lean.Parser.Term import Lean.Parser.Do namespace Lean namespace Parser /-- Syntax quotation for terms. -/ @[builtinTermParser] def Term.quot := leading_parser "`(" >> incQuotDepth termParser >> ")" @[builtinTermParser] def Term.precheckedQuot := leading_parser "`" >> Term.quot namespace Command /-- Syntax quotation for (sequences of) commands. The identical syntax for term quotations takes priority, so ambiguous quotations like `` `($x $y) `` will be parsed as an application, not two commands. Use `` `($x:command $y:command) `` instead. Multiple commands will be put in a `` `null `` node, but a single command will not (so that you can directly match against a quotation in a command kind's elaborator). -/ @[builtinTermParser low] def quot := leading_parser "`(" >> incQuotDepth (many1Unbox commandParser) >> ")" /- A mutual block may be broken in different cliques, we identify them using an `ident` (an element of the clique) We provide two kinds of hints to the termination checker: 1- A wellfounded relation (`p` is `termParser`) 2- A tactic for proving the recursive applications are "decreasing" (`p` is `tacticSeq`) -/ def terminationHintMany (p : Parser) := leading_parser atomic (lookahead (ident >> " => ")) >> many1Indent (group (ppLine >> ident >> " => " >> p >> optional ";")) def terminationHint1 (p : Parser) := leading_parser p def terminationHint (p : Parser) := terminationHintMany p <|> terminationHint1 p def terminationByCore := leading_parser "termination_by' " >> terminationHint termParser def decreasingBy := leading_parser "decreasing_by " >> terminationHint Tactic.tacticSeq def terminationByElement := leading_parser ppLine >> (ident <|> Term.hole) >> many (ident <|> Term.hole) >> " => " >> termParser >> optional ";" def terminationBy := leading_parser ppLine >> "termination_by " >> many1Indent terminationByElement def terminationSuffix := optional (terminationBy <|> terminationByCore) >> optional decreasingBy @[builtinCommandParser] def moduleDoc := leading_parser ppDedent $ "/-!" >> commentBody >> ppLine def namedPrio := leading_parser (atomic ("(" >> nonReservedSymbol "priority") >> " := " >> priorityParser >> ")") def optNamedPrio := optional (ppSpace >> namedPrio) def «private» := leading_parser "private " def «protected» := leading_parser "protected " def visibility := «private» <|> «protected» def «noncomputable» := leading_parser "noncomputable " def «unsafe» := leading_parser "unsafe " def «partial» := leading_parser "partial " def «nonrec» := leading_parser "nonrec " def declModifiers (inline : Bool) := leading_parser optional docComment >> optional (Term.«attributes» >> if inline then skip else ppDedent ppLine) >> optional visibility >> optional «noncomputable» >> optional «unsafe» >> optional («partial» <|> «nonrec») def declId := leading_parser ident >> optional (".{" >> sepBy1 ident ", " >> "}") def declSig := leading_parser many (ppSpace >> (Term.binderIdent <|> Term.bracketedBinder)) >> Term.typeSpec def optDeclSig := leading_parser many (ppSpace >> (Term.binderIdent <|> Term.bracketedBinder)) >> Term.optType def declValSimple := leading_parser " :=" >> ppHardLineUnlessUngrouped >> termParser >> optional Term.whereDecls def declValEqns := leading_parser Term.matchAltsWhereDecls def whereStructField := leading_parser Term.letDecl def whereStructInst := leading_parser " where" >> sepByIndent (ppGroup whereStructField) "; " (allowTrailingSep := true) >> optional Term.whereDecls /- Remark: we should not use `Term.whereDecls` at `declVal` because `Term.whereDecls` is defined using `Term.letRecDecl` which may contain attributes. Issue #753 showns an example that fails to be parsed when we used `Term.whereDecls`. -/ def declVal := withAntiquot (mkAntiquot "declVal" `Lean.Parser.Command.declVal (isPseudoKind := true)) <| declValSimple <|> declValEqns <|> whereStructInst def «abbrev» := leading_parser "abbrev " >> declId >> ppIndent optDeclSig >> declVal def optDefDeriving := optional (atomic ("deriving " >> notSymbol "instance") >> sepBy1 ident ", ") def «def» := leading_parser "def " >> declId >> ppIndent optDeclSig >> declVal >> optDefDeriving >> terminationSuffix def «theorem» := leading_parser "theorem " >> declId >> ppIndent declSig >> declVal >> terminationSuffix def «opaque» := leading_parser "opaque " >> declId >> ppIndent declSig >> optional declValSimple /- As `declSig` starts with a space, "instance" does not need a trailing space if we put `ppSpace` in the optional fragments. -/ def «instance» := leading_parser Term.attrKind >> "instance" >> optNamedPrio >> optional (ppSpace >> declId) >> ppIndent declSig >> declVal >> terminationSuffix def «axiom» := leading_parser "axiom " >> declId >> ppIndent declSig /- As `declSig` starts with a space, "example" does not need a trailing space. -/ def «example» := leading_parser "example" >> ppIndent optDeclSig >> declVal def ctor := leading_parser atomic (optional docComment >> "\n| ") >> ppGroup (declModifiers true >> rawIdent >> optDeclSig) def derivingClasses := sepBy1 (group (ident >> optional (" with " >> Term.structInst))) ", " def optDeriving := leading_parser optional (ppLine >> atomic ("deriving " >> notSymbol "instance") >> derivingClasses) def computedField := leading_parser declModifiers true >> ident >> " : " >> termParser >> Term.matchAlts def computedFields := leading_parser "with" >> manyIndent (ppLine >> ppGroup computedField) /-- In Lean, every concrete type other than the universes and every type constructor other than dependent arrows is an instance of a general family of type constructions known as inductive types. It is remarkable that it is possible to construct a substantial edifice of mathematics based on nothing more than the type universes, dependent arrow types, and inductive types; everything else follows from those. Intuitively, an inductive type is built up from a specified list of constructor. For example, `List α` is the list of elements of type `α`, and is defined as follows ``` inductive List (α : Type u) where | nil | cons (head : α) (tail : List α) ``` A list of elements of type `α` is either the empty list, `nil`, or an element `head : α` followed by a list `tail : List α`. For more information about [inductive types](https://leanprover.github.io/theorem_proving_in_lean4/inductive_types.html). -/ def «inductive» := leading_parser "inductive " >> declId >> optDeclSig >> optional (symbol " :=" <|> " where") >> many ctor >> optional (ppDedent ppLine >> computedFields) >> optDeriving def classInductive := leading_parser atomic (group (symbol "class " >> "inductive ")) >> declId >> ppIndent optDeclSig >> optional (symbol " :=" <|> " where") >> many ctor >> optDeriving def structExplicitBinder := leading_parser atomic (declModifiers true >> "(") >> many1 ident >> ppIndent optDeclSig >> optional (Term.binderTactic <|> Term.binderDefault) >> ")" def structImplicitBinder := leading_parser atomic (declModifiers true >> "{") >> many1 ident >> declSig >> "}" def structInstBinder := leading_parser atomic (declModifiers true >> "[") >> many1 ident >> declSig >> "]" def structSimpleBinder := leading_parser atomic (declModifiers true >> ident) >> optDeclSig >> optional (Term.binderTactic <|> Term.binderDefault) def structFields := leading_parser manyIndent (ppLine >> checkColGe >> ppGroup (structExplicitBinder <|> structImplicitBinder <|> structInstBinder <|> structSimpleBinder)) def structCtor := leading_parser atomic (declModifiers true >> ident >> " :: ") def structureTk := leading_parser "structure " def classTk := leading_parser "class " def «extends» := leading_parser " extends " >> sepBy1 termParser ", " def «structure» := leading_parser (structureTk <|> classTk) >> declId >> many (ppSpace >> Term.bracketedBinder) >> optional «extends» >> Term.optType >> optional ((symbol " := " <|> " where ") >> optional structCtor >> structFields) >> optDeriving @[builtinCommandParser] def declaration := leading_parser declModifiers false >> («abbrev» <|> «def» <|> «theorem» <|> «opaque» <|> «instance» <|> «axiom» <|> «example» <|> «inductive» <|> classInductive <|> «structure») @[builtinCommandParser] def «deriving» := leading_parser "deriving " >> "instance " >> derivingClasses >> " for " >> sepBy1 ident ", " @[builtinCommandParser] def noncomputableSection := leading_parser "noncomputable " >> "section " >> optional ident @[builtinCommandParser] def «section» := leading_parser "section " >> optional ident @[builtinCommandParser] def «namespace» := leading_parser "namespace " >> ident @[builtinCommandParser] def «end» := leading_parser "end " >> optional ident @[builtinCommandParser] def «variable» := leading_parser "variable" >> many1 (ppSpace >> Term.bracketedBinder) @[builtinCommandParser] def «universe» := leading_parser "universe " >> many1 ident @[builtinCommandParser] def check := leading_parser "#check " >> termParser @[builtinCommandParser] def check_failure := leading_parser "#check_failure " >> termParser -- Like `#check`, but succeeds only if term does not type check @[builtinCommandParser] def reduce := leading_parser "#reduce " >> termParser @[builtinCommandParser] def eval := leading_parser "#eval " >> termParser @[builtinCommandParser] def synth := leading_parser "#synth " >> termParser @[builtinCommandParser] def exit := leading_parser "#exit" @[builtinCommandParser] def print := leading_parser "#print " >> (ident <|> strLit) @[builtinCommandParser] def printAxioms := leading_parser "#print " >> nonReservedSymbol "axioms " >> ident @[builtinCommandParser] def «resolve_name» := leading_parser "#resolve_name " >> ident @[builtinCommandParser] def «init_quot» := leading_parser "init_quot" def optionValue := nonReservedSymbol "true" <|> nonReservedSymbol "false" <|> strLit <|> numLit @[builtinCommandParser] def «set_option» := leading_parser "set_option " >> ident >> ppSpace >> optionValue def eraseAttr := leading_parser "-" >> rawIdent @[builtinCommandParser] def «attribute» := leading_parser "attribute " >> "[" >> sepBy1 (eraseAttr <|> Term.attrInstance) ", " >> "] " >> many1 ident @[builtinCommandParser] def «export» := leading_parser "export " >> ident >> " (" >> many1 ident >> ")" def openHiding := leading_parser atomic (ident >> "hiding") >> many1 (checkColGt >> ident) def openRenamingItem := leading_parser ident >> unicodeSymbol " → " " -> " >> checkColGt >> ident def openRenaming := leading_parser atomic (ident >> "renaming") >> sepBy1 openRenamingItem ", " def openOnly := leading_parser atomic (ident >> " (") >> many1 ident >> ")" def openSimple := leading_parser many1 (checkColGt >> ident) def openScoped := leading_parser "scoped " >> many1 (checkColGt >> ident) def openDecl := withAntiquot (mkAntiquot "openDecl" `Lean.Parser.Command.openDecl (isPseudoKind := true)) <| openHiding <|> openRenaming <|> openOnly <|> openSimple <|> openScoped @[builtinCommandParser] def «open» := leading_parser withPosition ("open " >> openDecl) @[builtinCommandParser] def «mutual» := leading_parser "mutual " >> many1 (ppLine >> notSymbol "end" >> commandParser) >> ppDedent (ppLine >> "end") >> terminationSuffix def initializeKeyword := leading_parser "initialize " <|> "builtin_initialize " @[builtinCommandParser] def «initialize» := leading_parser declModifiers false >> initializeKeyword >> optional (atomic (ident >> Term.typeSpec >> Term.leftArrow)) >> Term.doSeq @[builtinCommandParser] def «in» := trailing_parser withOpen (" in " >> commandParser) @[builtinCommandParser] def addDocString := leading_parser docComment >> "add_decl_doc" >> ident /-- This is an auxiliary command for generation constructor injectivity theorems for inductive types defined at `Prelude.lean`. It is meant for bootstrapping purposes only. -/ @[builtinCommandParser] def genInjectiveTheorems := leading_parser "gen_injective_theorems% " >> ident @[runBuiltinParserAttributeHooks] abbrev declModifiersF := declModifiers false @[runBuiltinParserAttributeHooks] abbrev declModifiersT := declModifiers true builtin_initialize register_parser_alias (kind := ``declModifiers) "declModifiers" declModifiersF register_parser_alias (kind := ``declModifiers) "nestedDeclModifiers" declModifiersT register_parser_alias declId register_parser_alias declSig register_parser_alias declVal register_parser_alias optDeclSig register_parser_alias openDecl register_parser_alias docComment end Command namespace Term /-- `open Foo in e` is like `open Foo` but scoped to a single term. It makes the given namespaces available in the term `e`. -/ @[builtinTermParser] def «open» := leading_parser:leadPrec "open " >> Command.openDecl >> withOpenDecl (" in " >> termParser) /-- `set_option opt val in e` is like `set_option opt val` but scoped to a single term. It sets the option `opt` to the value `val` in the term `e`. -/ @[builtinTermParser] def «set_option» := leading_parser:leadPrec "set_option " >> ident >> ppSpace >> Command.optionValue >> " in " >> termParser end Term namespace Tactic /-- `open Foo in tacs` (the tactic) acts like `open Foo` at command level, but it opens a namespace only within the tactics `tacs`. -/ @[builtinTacticParser] def «open» := leading_parser:leadPrec "open " >> Command.openDecl >> withOpenDecl (" in " >> tacticSeq) /-- `set_option opt val in tacs` (the tactic) acts like `set_option opt val` at the command level, but it sets the option only within the tactics `tacs`. -/ @[builtinTacticParser] def «set_option» := leading_parser:leadPrec "set_option " >> ident >> ppSpace >> Command.optionValue >> " in " >> tacticSeq end Tactic end Parser end Lean
3636a15c3c8cbf4b20a34aa6a3e7bd74c738959a
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
/src/topology/algebra/ordered/basic.lean
d673ebad2ed30bb0d247bd3e53ec12c36b7fb355
[ "Apache-2.0" ]
permissive
waynemunro/mathlib
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
065a70810b5480d584033f7bbf8e0409480c2118
refs/heads/master
1,693,417,182,397
1,634,644,781,000
1,634,644,781,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
146,579
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov -/ import algebra.group_with_zero.power import data.set.intervals.pi import order.filter.interval import topology.algebra.group import tactic.linarith import tactic.tfae /-! # Theory of topology on ordered spaces ## Main definitions The order topology on an ordered space is the topology generated by all open intervals (or equivalently by those of the form `(-∞, a)` and `(b, +∞)`). We define it as `preorder.topology α`. However, we do *not* register it as an instance (as many existing ordered types already have topologies, which would be equal but not definitionally equal to `preorder.topology α`). Instead, we introduce a class `order_topology α` (which is a `Prop`, also known as a mixin) saying that on the type `α` having already a topological space structure and a preorder structure, the topological structure is equal to the order topology. We also introduce another (mixin) class `order_closed_topology α` saying that the set of points `(x, y)` with `x ≤ y` is closed in the product space. This is automatically satisfied on a linear order with the order topology. We prove many basic properties of such topologies. ## Main statements This file contains the proofs of the following facts. For exact requirements (`order_closed_topology` vs `order_topology`, `preorder` vs `partial_order` vs `linear_order` etc) see their statements. ### Open / closed sets * `is_open_lt` : if `f` and `g` are continuous functions, then `{x | f x < g x}` is open; * `is_open_Iio`, `is_open_Ioi`, `is_open_Ioo` : open intervals are open; * `is_closed_le` : if `f` and `g` are continuous functions, then `{x | f x ≤ g x}` is closed; * `is_closed_Iic`, `is_closed_Ici`, `is_closed_Icc` : closed intervals are closed; * `frontier_le_subset_eq`, `frontier_lt_subset_eq` : frontiers of both `{x | f x ≤ g x}` and `{x | f x < g x}` are included by `{x | f x = g x}`; * `exists_Ioc_subset_of_mem_nhds`, `exists_Ico_subset_of_mem_nhds` : if `x < y`, then any neighborhood of `x` includes an interval `[x, z)` for some `z ∈ (x, y]`, and any neighborhood of `y` includes an interval `(z, y]` for some `z ∈ [x, y)`. ### Convergence and inequalities * `le_of_tendsto_of_tendsto` : if `f` converges to `a`, `g` converges to `b`, and eventually `f x ≤ g x`, then `a ≤ b` * `le_of_tendsto`, `ge_of_tendsto` : if `f` converges to `a` and eventually `f x ≤ b` (resp., `b ≤ f x`), then `a ≤ b` (resp., `b ≤ a); we also provide primed versions that assume the inequalities to hold for all `x`. ### Min, max, `Sup` and `Inf` * `continuous.min`, `continuous.max`: pointwise `min`/`max` of two continuous functions is continuous. * `tendsto.min`, `tendsto.max` : if `f` tends to `a` and `g` tends to `b`, then their pointwise `min`/`max` tend to `min a b` and `max a b`, respectively. * `tendsto_of_tendsto_of_tendsto_of_le_of_le` : theorem known as squeeze theorem, sandwich theorem, theorem of Carabinieri, and two policemen (and a drunk) theorem; if `g` and `h` both converge to `a`, and eventually `g x ≤ f x ≤ h x`, then `f` converges to `a`. ### Connected sets and Intermediate Value Theorem * `is_preconnected_I??` : all intervals `I??` are preconnected, * `is_preconnected.intermediate_value`, `intermediate_value_univ` : Intermediate Value Theorem for connected sets and connected spaces, respectively; * `intermediate_value_Icc`, `intermediate_value_Icc'`: Intermediate Value Theorem for functions on closed intervals. ### Miscellaneous facts * `is_closed.Icc_subset_of_forall_mem_nhds_within` : “Continuous induction” principle; if `s ∩ [a, b]` is closed, `a ∈ s`, and for each `x ∈ [a, b) ∩ s` some of its right neighborhoods is included `s`, then `[a, b] ⊆ s`. * `is_closed.Icc_subset_of_forall_exists_gt`, `is_closed.mem_of_ge_of_forall_exists_gt` : two other versions of the “continuous induction” principle. ## Implementation notes We do _not_ register the order topology as an instance on a preorder (or even on a linear order). Indeed, on many such spaces, a topology has already been constructed in a different way (think of the discrete spaces `ℕ` or `ℤ`, or `ℝ` that could inherit a topology as the completion of `ℚ`), and is in general not defeq to the one generated by the intervals. We make it available as a definition `preorder.topology α` though, that can be registered as an instance when necessary, or for specific types. -/ open classical set filter topological_space open function open order_dual (to_dual of_dual) open_locale topological_space classical filter universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- A topology on a set which is both a topological space and a preorder is _order-closed_ if the set of points `(x, y)` with `x ≤ y` is closed in the product space. We introduce this as a mixin. This property is satisfied for the order topology on a linear order, but it can be satisfied more generally, and suffices to derive many interesting properties relating order and topology. -/ class order_closed_topology (α : Type*) [topological_space α] [preorder α] : Prop := (is_closed_le' : is_closed {p:α×α | p.1 ≤ p.2}) instance : Π [topological_space α], topological_space (order_dual α) := id instance [topological_space α] [h : first_countable_topology α] : first_countable_topology (order_dual α) := h @[to_additive] instance [topological_space α] [has_mul α] [h : has_continuous_mul α] : has_continuous_mul (order_dual α) := h section order_closed_topology section preorder variables [topological_space α] [preorder α] [t : order_closed_topology α] include t namespace subtype instance {p : α → Prop} : order_closed_topology (subtype p) := have this : continuous (λ (p : (subtype p) × (subtype p)), ((p.fst : α), (p.snd : α))) := (continuous_subtype_coe.comp continuous_fst).prod_mk (continuous_subtype_coe.comp continuous_snd), order_closed_topology.mk (t.is_closed_le'.preimage this) end subtype lemma is_closed_le_prod : is_closed {p : α × α | p.1 ≤ p.2} := t.is_closed_le' lemma is_closed_le [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : is_closed {b | f b ≤ g b} := continuous_iff_is_closed.mp (hf.prod_mk hg) _ is_closed_le_prod lemma is_closed_le' (a : α) : is_closed {b | b ≤ a} := is_closed_le continuous_id continuous_const lemma is_closed_Iic {a : α} : is_closed (Iic a) := is_closed_le' a lemma is_closed_ge' (a : α) : is_closed {b | a ≤ b} := is_closed_le continuous_const continuous_id lemma is_closed_Ici {a : α} : is_closed (Ici a) := is_closed_ge' a instance : order_closed_topology (order_dual α) := ⟨(@order_closed_topology.is_closed_le' α _ _ _).preimage continuous_swap⟩ lemma is_closed_Icc {a b : α} : is_closed (Icc a b) := is_closed.inter is_closed_Ici is_closed_Iic @[simp] lemma closure_Icc (a b : α) : closure (Icc a b) = Icc a b := is_closed_Icc.closure_eq @[simp] lemma closure_Iic (a : α) : closure (Iic a) = Iic a := is_closed_Iic.closure_eq @[simp] lemma closure_Ici (a : α) : closure (Ici a) = Ici a := is_closed_Ici.closure_eq lemma le_of_tendsto_of_tendsto {f g : β → α} {b : filter β} {a₁ a₂ : α} [ne_bot b] (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) (h : f ≤ᶠ[b] g) : a₁ ≤ a₂ := have tendsto (λb, (f b, g b)) b (𝓝 (a₁, a₂)), by rw [nhds_prod_eq]; exact hf.prod_mk hg, show (a₁, a₂) ∈ {p:α×α | p.1 ≤ p.2}, from t.is_closed_le'.mem_of_tendsto this h lemma le_of_tendsto_of_tendsto' {f g : β → α} {b : filter β} {a₁ a₂ : α} [ne_bot b] (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) (h : ∀ x, f x ≤ g x) : a₁ ≤ a₂ := le_of_tendsto_of_tendsto hf hg (eventually_of_forall h) lemma le_of_tendsto {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ᶠ c in x, f c ≤ b) : a ≤ b := le_of_tendsto_of_tendsto lim tendsto_const_nhds h lemma le_of_tendsto' {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ c, f c ≤ b) : a ≤ b := le_of_tendsto lim (eventually_of_forall h) lemma ge_of_tendsto {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ᶠ c in x, b ≤ f c) : b ≤ a := le_of_tendsto_of_tendsto tendsto_const_nhds lim h lemma ge_of_tendsto' {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ c, b ≤ f c) : b ≤ a := ge_of_tendsto lim (eventually_of_forall h) @[simp] lemma closure_le_eq [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : closure {b | f b ≤ g b} = {b | f b ≤ g b} := (is_closed_le hf hg).closure_eq lemma closure_lt_subset_le [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : closure {b | f b < g b} ⊆ {b | f b ≤ g b} := by { rw [←closure_le_eq hf hg], exact closure_mono (λ b, le_of_lt) } lemma continuous_within_at.closure_le [topological_space β] {f g : β → α} {s : set β} {x : β} (hx : x ∈ closure s) (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) (h : ∀ y ∈ s, f y ≤ g y) : f x ≤ g x := show (f x, g x) ∈ {p : α × α | p.1 ≤ p.2}, from order_closed_topology.is_closed_le'.closure_subset ((hf.prod hg).mem_closure hx h) /-- If `s` is a closed set and two functions `f` and `g` are continuous on `s`, then the set `{x ∈ s | f x ≤ g x}` is a closed set. -/ lemma is_closed.is_closed_le [topological_space β] {f g : β → α} {s : set β} (hs : is_closed s) (hf : continuous_on f s) (hg : continuous_on g s) : is_closed {x ∈ s | f x ≤ g x} := (hf.prod hg).preimage_closed_of_closed hs order_closed_topology.is_closed_le' omit t lemma nhds_within_Ici_ne_bot {a b : α} (H₂ : a ≤ b) : ne_bot (𝓝[Ici a] b) := nhds_within_ne_bot_of_mem H₂ @[instance] lemma nhds_within_Ici_self_ne_bot (a : α) : ne_bot (𝓝[Ici a] a) := nhds_within_Ici_ne_bot (le_refl a) lemma nhds_within_Iic_ne_bot {a b : α} (H : a ≤ b) : ne_bot (𝓝[Iic b] a) := nhds_within_ne_bot_of_mem H @[instance] lemma nhds_within_Iic_self_ne_bot (a : α) : ne_bot (𝓝[Iic a] a) := nhds_within_Iic_ne_bot (le_refl a) end preorder section partial_order variables [topological_space α] [partial_order α] [t : order_closed_topology α] include t private lemma is_closed_eq_aux : is_closed {p : α × α | p.1 = p.2} := by simp only [le_antisymm_iff]; exact is_closed.inter t.is_closed_le' (is_closed_le continuous_snd continuous_fst) @[priority 90] -- see Note [lower instance priority] instance order_closed_topology.to_t2_space : t2_space α := { t2 := have is_open {p : α × α | p.1 ≠ p.2} := is_closed_eq_aux.is_open_compl, assume a b h, let ⟨u, v, hu, hv, ha, hb, h⟩ := is_open_prod_iff.mp this a b h in ⟨u, v, hu, hv, ha, hb, set.eq_empty_iff_forall_not_mem.2 $ assume a ⟨h₁, h₂⟩, have a ≠ a, from @h (a, a) ⟨h₁, h₂⟩, this rfl⟩ } end partial_order section linear_order variables [topological_space α] [linear_order α] [order_closed_topology α] lemma is_open_lt_prod : is_open {p : α × α | p.1 < p.2} := by { simp_rw [← is_closed_compl_iff, compl_set_of, not_lt], exact is_closed_le continuous_snd continuous_fst } lemma is_open_lt [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : is_open {b | f b < g b} := by simp [lt_iff_not_ge, -not_le]; exact (is_closed_le hg hf).is_open_compl variables {a b : α} lemma is_open_Iio : is_open (Iio a) := is_open_lt continuous_id continuous_const lemma is_open_Ioi : is_open (Ioi a) := is_open_lt continuous_const continuous_id lemma is_open_Ioo : is_open (Ioo a b) := is_open.inter is_open_Ioi is_open_Iio @[simp] lemma interior_Ioi : interior (Ioi a) = Ioi a := is_open_Ioi.interior_eq @[simp] lemma interior_Iio : interior (Iio a) = Iio a := is_open_Iio.interior_eq @[simp] lemma interior_Ioo : interior (Ioo a b) = Ioo a b := is_open_Ioo.interior_eq lemma eventually_le_of_tendsto_lt {l : filter γ} {f : γ → α} {u v : α} (hv : v < u) (h : tendsto f l (𝓝 v)) : ∀ᶠ a in l, f a ≤ u := eventually.mono (tendsto_nhds.1 h (< u) is_open_Iio hv) (λ v, le_of_lt) lemma eventually_ge_of_tendsto_gt {l : filter γ} {f : γ → α} {u v : α} (hv : u < v) (h : tendsto f l (𝓝 v)) : ∀ᶠ a in l, u ≤ f a := eventually.mono (tendsto_nhds.1 h (> u) is_open_Ioi hv) (λ v, le_of_lt) variables [topological_space γ] /-- Intermediate value theorem for two functions: if `f` and `g` are two continuous functions on a preconnected space and `f a ≤ g a` and `g b ≤ f b`, then for some `x` we have `f x = g x`. -/ lemma intermediate_value_univ₂ [preconnected_space γ] {a b : γ} {f g : γ → α} (hf : continuous f) (hg : continuous g) (ha : f a ≤ g a) (hb : g b ≤ f b) : ∃ x, f x = g x := begin obtain ⟨x, h, hfg, hgf⟩ : (univ ∩ {x | f x ≤ g x ∧ g x ≤ f x}).nonempty, from is_preconnected_closed_iff.1 preconnected_space.is_preconnected_univ _ _ (is_closed_le hf hg) (is_closed_le hg hf) (λ x hx, le_total _ _) ⟨a, trivial, ha⟩ ⟨b, trivial, hb⟩, exact ⟨x, le_antisymm hfg hgf⟩ end lemma intermediate_value_univ₂_eventually₁ [preconnected_space γ] {a : γ} {l : filter γ} [ne_bot l] {f g : γ → α} (hf : continuous f) (hg : continuous g) (ha : f a ≤ g a) (he : g ≤ᶠ[l] f) : ∃ x, f x = g x := let ⟨c, hc⟩ := he.frequently.exists in intermediate_value_univ₂ hf hg ha hc lemma intermediate_value_univ₂_eventually₂ [preconnected_space γ] {l₁ l₂ : filter γ} [ne_bot l₁] [ne_bot l₂] {f g : γ → α} (hf : continuous f) (hg : continuous g) (he₁ : f ≤ᶠ[l₁] g ) (he₂ : g ≤ᶠ[l₂] f) : ∃ x, f x = g x := let ⟨c₁, hc₁⟩ := he₁.frequently.exists, ⟨c₂, hc₂⟩ := he₂.frequently.exists in intermediate_value_univ₂ hf hg hc₁ hc₂ /-- Intermediate value theorem for two functions: if `f` and `g` are two functions continuous on a preconnected set `s` and for some `a b ∈ s` we have `f a ≤ g a` and `g b ≤ f b`, then for some `x ∈ s` we have `f x = g x`. -/ lemma is_preconnected.intermediate_value₂ {s : set γ} (hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f g : γ → α} (hf : continuous_on f s) (hg : continuous_on g s) (ha' : f a ≤ g a) (hb' : g b ≤ f b) : ∃ x ∈ s, f x = g x := let ⟨x, hx⟩ := @intermediate_value_univ₂ α s _ _ _ _ (subtype.preconnected_space hs) ⟨a, ha⟩ ⟨b, hb⟩ _ _ (continuous_on_iff_continuous_restrict.1 hf) (continuous_on_iff_continuous_restrict.1 hg) ha' hb' in ⟨x, x.2, hx⟩ lemma is_preconnected.intermediate_value₂_eventually₁ {s : set γ} (hs : is_preconnected s) {a : γ} {l : filter γ} (ha : a ∈ s) [ne_bot l] (hl : l ≤ 𝓟 s) {f g : γ → α} (hf : continuous_on f s) (hg : continuous_on g s) (ha' : f a ≤ g a) (he : g ≤ᶠ[l] f) : ∃ x ∈ s, f x = g x := begin rw continuous_on_iff_continuous_restrict at hf hg, obtain ⟨b, h⟩ := @intermediate_value_univ₂_eventually₁ _ _ _ _ _ _ (subtype.preconnected_space hs) ⟨a, ha⟩ _ (comap_coe_ne_bot_of_le_principal hl) _ _ hf hg ha' (eventually_comap' he), exact ⟨b, b.prop, h⟩, end lemma is_preconnected.intermediate_value₂_eventually₂ {s : set γ} (hs : is_preconnected s) {l₁ l₂ : filter γ} [ne_bot l₁] [ne_bot l₂] (hl₁ : l₁ ≤ 𝓟 s) (hl₂ : l₂ ≤ 𝓟 s) {f g : γ → α} (hf : continuous_on f s) (hg : continuous_on g s) (he₁ : f ≤ᶠ[l₁] g) (he₂ : g ≤ᶠ[l₂] f) : ∃ x ∈ s, f x = g x := begin rw continuous_on_iff_continuous_restrict at hf hg, obtain ⟨b, h⟩ := @intermediate_value_univ₂_eventually₂ _ _ _ _ _ _ (subtype.preconnected_space hs) _ _ (comap_coe_ne_bot_of_le_principal hl₁) (comap_coe_ne_bot_of_le_principal hl₂) _ _ hf hg (eventually_comap' he₁) (eventually_comap' he₂), exact ⟨b, b.prop, h⟩, end /-- **Intermediate Value Theorem** for continuous functions on connected sets. -/ lemma is_preconnected.intermediate_value {s : set γ} (hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f : γ → α} (hf : continuous_on f s) : Icc (f a) (f b) ⊆ f '' s := λ x hx, mem_image_iff_bex.2 $ hs.intermediate_value₂ ha hb hf continuous_on_const hx.1 hx.2 lemma is_preconnected.intermediate_value_Ico {s : set γ} (hs : is_preconnected s) {a : γ} {l : filter γ} (ha : a ∈ s) [ne_bot l] (hl : l ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) {v : α} (ht : tendsto f l (𝓝 v)) : Ico (f a) v ⊆ f '' s := λ y h, bex_def.1 $ hs.intermediate_value₂_eventually₁ ha hl hf continuous_on_const h.1 (eventually_ge_of_tendsto_gt h.2 ht) lemma is_preconnected.intermediate_value_Ioc {s : set γ} (hs : is_preconnected s) {a : γ} {l : filter γ} (ha : a ∈ s) [ne_bot l] (hl : l ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) {v : α} (ht : tendsto f l (𝓝 v)) : Ioc v (f a) ⊆ f '' s := λ y h, bex_def.1 $ bex.imp_right (λ x _, eq.symm) $ hs.intermediate_value₂_eventually₁ ha hl continuous_on_const hf h.2 (eventually_le_of_tendsto_lt h.1 ht) lemma is_preconnected.intermediate_value_Ioo {s : set γ} (hs : is_preconnected s) {l₁ l₂ : filter γ} [ne_bot l₁] [ne_bot l₂] (hl₁ : l₁ ≤ 𝓟 s) (hl₂ : l₂ ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) {v₁ v₂ : α} (ht₁ : tendsto f l₁ (𝓝 v₁)) (ht₂ : tendsto f l₂ (𝓝 v₂)) : Ioo v₁ v₂ ⊆ f '' s := λ y h, bex_def.1 $ hs.intermediate_value₂_eventually₂ hl₁ hl₂ hf continuous_on_const (eventually_le_of_tendsto_lt h.1 ht₁) (eventually_ge_of_tendsto_gt h.2 ht₂) lemma is_preconnected.intermediate_value_Ici {s : set γ} (hs : is_preconnected s) {a : γ} {l : filter γ} (ha : a ∈ s) [ne_bot l] (hl : l ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) (ht : tendsto f l at_top) : Ici (f a) ⊆ f '' s := λ y h, bex_def.1 $ hs.intermediate_value₂_eventually₁ ha hl hf continuous_on_const h (tendsto_at_top.1 ht y) lemma is_preconnected.intermediate_value_Iic {s : set γ} (hs : is_preconnected s) {a : γ} {l : filter γ} (ha : a ∈ s) [ne_bot l] (hl : l ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) (ht : tendsto f l at_bot) : Iic (f a) ⊆ f '' s := λ y h, bex_def.1 $ bex.imp_right (λ x _, eq.symm) $ hs.intermediate_value₂_eventually₁ ha hl continuous_on_const hf h (tendsto_at_bot.1 ht y) lemma is_preconnected.intermediate_value_Ioi {s : set γ} (hs : is_preconnected s) {l₁ l₂ : filter γ} [ne_bot l₁] [ne_bot l₂] (hl₁ : l₁ ≤ 𝓟 s) (hl₂ : l₂ ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) {v : α} (ht₁ : tendsto f l₁ (𝓝 v)) (ht₂ : tendsto f l₂ at_top) : Ioi v ⊆ f '' s := λ y h, bex_def.1 $ hs.intermediate_value₂_eventually₂ hl₁ hl₂ hf continuous_on_const (eventually_le_of_tendsto_lt h ht₁) (tendsto_at_top.1 ht₂ y) lemma is_preconnected.intermediate_value_Iio {s : set γ} (hs : is_preconnected s) {l₁ l₂ : filter γ} [ne_bot l₁] [ne_bot l₂] (hl₁ : l₁ ≤ 𝓟 s) (hl₂ : l₂ ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) {v : α} (ht₁ : tendsto f l₁ at_bot) (ht₂ : tendsto f l₂ (𝓝 v)) : Iio v ⊆ f '' s := λ y h, bex_def.1 $ hs.intermediate_value₂_eventually₂ hl₁ hl₂ hf continuous_on_const (tendsto_at_bot.1 ht₁ y) (eventually_ge_of_tendsto_gt h ht₂) lemma is_preconnected.intermediate_value_Iii {s : set γ} (hs : is_preconnected s) {l₁ l₂ : filter γ} [ne_bot l₁] [ne_bot l₂] (hl₁ : l₁ ≤ 𝓟 s) (hl₂ : l₂ ≤ 𝓟 s) {f : γ → α} (hf : continuous_on f s) (ht₁ : tendsto f l₁ at_bot) (ht₂ : tendsto f l₂ at_top) : univ ⊆ f '' s := λ y h, bex_def.1 $ hs.intermediate_value₂_eventually₂ hl₁ hl₂ hf continuous_on_const (tendsto_at_bot.1 ht₁ y) (tendsto_at_top.1 ht₂ y) /-- **Intermediate Value Theorem** for continuous functions on connected spaces. -/ lemma intermediate_value_univ [preconnected_space γ] (a b : γ) {f : γ → α} (hf : continuous f) : Icc (f a) (f b) ⊆ range f := λ x hx, intermediate_value_univ₂ hf continuous_const hx.1 hx.2 /-- **Intermediate Value Theorem** for continuous functions on connected spaces. -/ lemma mem_range_of_exists_le_of_exists_ge [preconnected_space γ] {c : α} {f : γ → α} (hf : continuous f) (h₁ : ∃ a, f a ≤ c) (h₂ : ∃ b, c ≤ f b) : c ∈ range f := let ⟨a, ha⟩ := h₁, ⟨b, hb⟩ := h₂ in intermediate_value_univ a b hf ⟨ha, hb⟩ /-- If a preconnected set contains endpoints of an interval, then it includes the whole interval. -/ lemma is_preconnected.Icc_subset {s : set α} (hs : is_preconnected s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) : Icc a b ⊆ s := by simpa only [image_id] using hs.intermediate_value ha hb continuous_on_id /-- If a preconnected set contains endpoints of an interval, then it includes the whole interval. -/ lemma is_connected.Icc_subset {s : set α} (hs : is_connected s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) : Icc a b ⊆ s := hs.2.Icc_subset ha hb /-- If preconnected set in a linear order space is unbounded below and above, then it is the whole space. -/ lemma is_preconnected.eq_univ_of_unbounded {s : set α} (hs : is_preconnected s) (hb : ¬bdd_below s) (ha : ¬bdd_above s) : s = univ := begin refine eq_univ_of_forall (λ x, _), obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, y < x := not_bdd_below_iff.1 hb x, obtain ⟨z, zs, hz⟩ : ∃ z ∈ s, x < z := not_bdd_above_iff.1 ha x, exact hs.Icc_subset ys zs ⟨le_of_lt hy, le_of_lt hz⟩ end /-! ### Neighborhoods to the left and to the right on an `order_closed_topology` Limits to the left and to the right of real functions are defined in terms of neighborhoods to the left and to the right, either open or closed, i.e., members of `𝓝[Ioi a] a` and `𝓝[Ici a] a` on the right, and similarly on the left. Here we simply prove that all right-neighborhoods of a point are equal, and we'll prove later other useful characterizations which require the stronger hypothesis `order_topology α` -/ /-! #### Right neighborhoods, point excluded -/ lemma Ioo_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ioo a c ∈ 𝓝[Ioi b] b := mem_nhds_within.2 ⟨Iio c, is_open_Iio, H.2, by rw [inter_comm, Ioi_inter_Iio]; exact Ioo_subset_Ioo_left H.1⟩ lemma Ioc_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ioc a c ∈ 𝓝[Ioi b] b := mem_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Ioc_self lemma Ico_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ico a c ∈ 𝓝[Ioi b] b := mem_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Ico_self lemma Icc_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Icc a c ∈ 𝓝[Ioi b] b := mem_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Icc_self @[simp] lemma nhds_within_Ioc_eq_nhds_within_Ioi {a b : α} (h : a < b) : 𝓝[Ioc a b] a = 𝓝[Ioi a] a := le_antisymm (nhds_within_mono _ Ioc_subset_Ioi_self) $ nhds_within_le_of_mem $ Ioc_mem_nhds_within_Ioi $ left_mem_Ico.2 h @[simp] lemma nhds_within_Ioo_eq_nhds_within_Ioi {a b : α} (h : a < b) : 𝓝[Ioo a b] a = 𝓝[Ioi a] a := le_antisymm (nhds_within_mono _ Ioo_subset_Ioi_self) $ nhds_within_le_of_mem $ Ioo_mem_nhds_within_Ioi $ left_mem_Ico.2 h @[simp] lemma continuous_within_at_Ioc_iff_Ioi [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ioc a b) a ↔ continuous_within_at f (Ioi a) a := by simp only [continuous_within_at, nhds_within_Ioc_eq_nhds_within_Ioi h] @[simp] lemma continuous_within_at_Ioo_iff_Ioi [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ioo a b) a ↔ continuous_within_at f (Ioi a) a := by simp only [continuous_within_at, nhds_within_Ioo_eq_nhds_within_Ioi h] /-! #### Left neighborhoods, point excluded -/ lemma Ioo_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Ioo a c ∈ 𝓝[Iio b] b := by simpa only [dual_Ioo] using Ioo_mem_nhds_within_Ioi (show to_dual b ∈ Ico (to_dual c) (to_dual a), from H.symm) lemma Ico_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Ico a c ∈ 𝓝[Iio b] b := mem_of_superset (Ioo_mem_nhds_within_Iio H) Ioo_subset_Ico_self lemma Ioc_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Ioc a c ∈ 𝓝[Iio b] b := mem_of_superset (Ioo_mem_nhds_within_Iio H) Ioo_subset_Ioc_self lemma Icc_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Icc a c ∈ 𝓝[Iio b] b := mem_of_superset (Ioo_mem_nhds_within_Iio H) Ioo_subset_Icc_self @[simp] lemma nhds_within_Ico_eq_nhds_within_Iio {a b : α} (h : a < b) : 𝓝[Ico a b] b = 𝓝[Iio b] b := by simpa only [dual_Ioc] using nhds_within_Ioc_eq_nhds_within_Ioi h.dual @[simp] lemma nhds_within_Ioo_eq_nhds_within_Iio {a b : α} (h : a < b) : 𝓝[Ioo a b] b = 𝓝[Iio b] b := by simpa only [dual_Ioo] using nhds_within_Ioo_eq_nhds_within_Ioi h.dual @[simp] lemma continuous_within_at_Ico_iff_Iio {a b : α} {f : α → γ} (h : a < b) : continuous_within_at f (Ico a b) b ↔ continuous_within_at f (Iio b) b := by simp only [continuous_within_at, nhds_within_Ico_eq_nhds_within_Iio h] @[simp] lemma continuous_within_at_Ioo_iff_Iio {a b : α} {f : α → γ} (h : a < b) : continuous_within_at f (Ioo a b) b ↔ continuous_within_at f (Iio b) b := by simp only [continuous_within_at, nhds_within_Ioo_eq_nhds_within_Iio h] /-! #### Right neighborhoods, point included -/ lemma Ioo_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ioo a c) : Ioo a c ∈ 𝓝[Ici b] b := mem_nhds_within_of_mem_nhds $ is_open.mem_nhds is_open_Ioo H lemma Ioc_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ioo a c) : Ioc a c ∈ 𝓝[Ici b] b := mem_of_superset (Ioo_mem_nhds_within_Ici H) Ioo_subset_Ioc_self lemma Ico_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ico a c) : Ico a c ∈ 𝓝[Ici b] b := mem_nhds_within.2 ⟨Iio c, is_open_Iio, H.2, by simp only [inter_comm, Ici_inter_Iio, Ico_subset_Ico_left H.1]⟩ lemma Icc_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ico a c) : Icc a c ∈ 𝓝[Ici b] b := mem_of_superset (Ico_mem_nhds_within_Ici H) Ico_subset_Icc_self @[simp] lemma nhds_within_Icc_eq_nhds_within_Ici {a b : α} (h : a < b) : 𝓝[Icc a b] a = 𝓝[Ici a] a := le_antisymm (nhds_within_mono _ Icc_subset_Ici_self) $ nhds_within_le_of_mem $ Icc_mem_nhds_within_Ici $ left_mem_Ico.2 h @[simp] lemma nhds_within_Ico_eq_nhds_within_Ici {a b : α} (h : a < b) : 𝓝[Ico a b] a = 𝓝[Ici a] a := le_antisymm (nhds_within_mono _ (λ x, and.left)) $ nhds_within_le_of_mem $ Ico_mem_nhds_within_Ici $ left_mem_Ico.2 h @[simp] lemma continuous_within_at_Icc_iff_Ici [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Icc a b) a ↔ continuous_within_at f (Ici a) a := by simp only [continuous_within_at, nhds_within_Icc_eq_nhds_within_Ici h] @[simp] lemma continuous_within_at_Ico_iff_Ici [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ico a b) a ↔ continuous_within_at f (Ici a) a := by simp only [continuous_within_at, nhds_within_Ico_eq_nhds_within_Ici h] /-! #### Left neighborhoods, point included -/ lemma Ioo_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioo a c) : Ioo a c ∈ 𝓝[Iic b] b := mem_nhds_within_of_mem_nhds $ is_open.mem_nhds is_open_Ioo H lemma Ico_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioo a c) : Ico a c ∈ 𝓝[Iic b] b := mem_of_superset (Ioo_mem_nhds_within_Iic H) Ioo_subset_Ico_self lemma Ioc_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioc a c) : Ioc a c ∈ 𝓝[Iic b] b := by simpa only [dual_Ico] using Ico_mem_nhds_within_Ici (show to_dual b ∈ Ico (to_dual c) (to_dual a), from H.symm) lemma Icc_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioc a c) : Icc a c ∈ 𝓝[Iic b] b := mem_of_superset (Ioc_mem_nhds_within_Iic H) Ioc_subset_Icc_self @[simp] lemma nhds_within_Icc_eq_nhds_within_Iic {a b : α} (h : a < b) : 𝓝[Icc a b] b = 𝓝[Iic b] b := by simpa only [dual_Icc] using nhds_within_Icc_eq_nhds_within_Ici h.dual @[simp] lemma nhds_within_Ioc_eq_nhds_within_Iic {a b : α} (h : a < b) : 𝓝[Ioc a b] b = 𝓝[Iic b] b := by simpa only [dual_Ico] using nhds_within_Ico_eq_nhds_within_Ici h.dual @[simp] lemma continuous_within_at_Icc_iff_Iic [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Icc a b) b ↔ continuous_within_at f (Iic b) b := by simp only [continuous_within_at, nhds_within_Icc_eq_nhds_within_Iic h] @[simp] lemma continuous_within_at_Ioc_iff_Iic [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ioc a b) b ↔ continuous_within_at f (Iic b) b := by simp only [continuous_within_at, nhds_within_Ioc_eq_nhds_within_Iic h] end linear_order section linear_order variables [topological_space α] [linear_order α] [order_closed_topology α] {f g : β → α} section variables [topological_space β] lemma frontier_le_subset_eq (hf : continuous f) (hg : continuous g) : frontier {b | f b ≤ g b} ⊆ {b | f b = g b} := begin rw [frontier_eq_closure_inter_closure, closure_le_eq hf hg], rintros b ⟨hb₁, hb₂⟩, refine le_antisymm hb₁ (closure_lt_subset_le hg hf _), convert hb₂ using 2, simp only [not_le.symm], refl end lemma frontier_Iic_subset (a : α) : frontier (Iic a) ⊆ {a} := frontier_le_subset_eq (@continuous_id α _) continuous_const lemma frontier_Ici_subset (a : α) : frontier (Ici a) ⊆ {a} := @frontier_Iic_subset (order_dual α) _ _ _ _ lemma frontier_lt_subset_eq (hf : continuous f) (hg : continuous g) : frontier {b | f b < g b} ⊆ {b | f b = g b} := by rw ← frontier_compl; convert frontier_le_subset_eq hg hf; simp [ext_iff, eq_comm] lemma continuous_if_le [topological_space γ] [Π x, decidable (f x ≤ g x)] {f' g' : β → γ} (hf : continuous f) (hg : continuous g) (hf' : continuous_on f' {x | f x ≤ g x}) (hg' : continuous_on g' {x | g x ≤ f x}) (hfg : ∀ x, f x = g x → f' x = g' x) : continuous (λ x, if f x ≤ g x then f' x else g' x) := begin refine continuous_if (λ a ha, hfg _ (frontier_le_subset_eq hf hg ha)) _ (hg'.mono _), { rwa [(is_closed_le hf hg).closure_eq] }, { simp only [not_le], exact closure_lt_subset_le hg hf } end lemma continuous.if_le [topological_space γ] [Π x, decidable (f x ≤ g x)] {f' g' : β → γ} (hf' : continuous f') (hg' : continuous g') (hf : continuous f) (hg : continuous g) (hfg : ∀ x, f x = g x → f' x = g' x) : continuous (λ x, if f x ≤ g x then f' x else g' x) := continuous_if_le hf hg hf'.continuous_on hg'.continuous_on hfg @[continuity] lemma continuous.min (hf : continuous f) (hg : continuous g) : continuous (λb, min (f b) (g b)) := by { simp only [min_def], exact hf.if_le hg hf hg (λ x, id) } @[continuity] lemma continuous.max (hf : continuous f) (hg : continuous g) : continuous (λb, max (f b) (g b)) := @continuous.min (order_dual α) _ _ _ _ _ _ _ hf hg end lemma continuous_min : continuous (λ p : α × α, min p.1 p.2) := continuous_fst.min continuous_snd lemma continuous_max : continuous (λ p : α × α, max p.1 p.2) := continuous_fst.max continuous_snd lemma filter.tendsto.max {b : filter β} {a₁ a₂ : α} (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) : tendsto (λb, max (f b) (g b)) b (𝓝 (max a₁ a₂)) := (continuous_max.tendsto (a₁, a₂)).comp (hf.prod_mk_nhds hg) lemma filter.tendsto.min {b : filter β} {a₁ a₂ : α} (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) : tendsto (λb, min (f b) (g b)) b (𝓝 (min a₁ a₂)) := (continuous_min.tendsto (a₁, a₂)).comp (hf.prod_mk_nhds hg) lemma is_preconnected.ord_connected {s : set α} (h : is_preconnected s) : ord_connected s := ⟨λ x hx y hy, h.Icc_subset hx hy⟩ end linear_order end order_closed_topology instance [preorder α] [topological_space α] [order_closed_topology α] [preorder β] [topological_space β] [order_closed_topology β] : order_closed_topology (α × β) := ⟨(is_closed_le (continuous_fst.comp continuous_fst) (continuous_fst.comp continuous_snd)).inter (is_closed_le (continuous_snd.comp continuous_fst) (continuous_snd.comp continuous_snd))⟩ instance {ι : Type*} {α : ι → Type*} [Π i, preorder (α i)] [Π i, topological_space (α i)] [Π i, order_closed_topology (α i)] : order_closed_topology (Π i, α i) := begin constructor, simp only [pi.le_def, set_of_forall], exact is_closed_Inter (λ i, is_closed_le ((continuous_apply i).comp continuous_fst) ((continuous_apply i).comp continuous_snd)) end instance pi.order_closed_topology' [preorder β] [topological_space β] [order_closed_topology β] : order_closed_topology (α → β) := pi.order_closed_topology /-- The order topology on an ordered type is the topology generated by open intervals. We register it on a preorder, but it is mostly interesting in linear orders, where it is also order-closed. We define it as a mixin. If you want to introduce the order topology on a preorder, use `preorder.topology`. -/ class order_topology (α : Type*) [t : topological_space α] [preorder α] : Prop := (topology_eq_generate_intervals : t = generate_from {s | ∃a, s = Ioi a ∨ s = Iio a}) /-- (Order) topology on a partial order `α` generated by the subbase of open intervals `(a, ∞) = { x ∣ a < x }, (-∞ , b) = {x ∣ x < b}` for all `a, b` in `α`. We do not register it as an instance as many ordered sets are already endowed with the same topology, most often in a non-defeq way though. Register as a local instance when necessary. -/ def preorder.topology (α : Type*) [preorder α] : topological_space α := generate_from {s : set α | ∃ (a : α), s = {b : α | a < b} ∨ s = {b : α | b < a}} section order_topology instance {α : Type*} [topological_space α] [partial_order α] [order_topology α] : order_topology (order_dual α) := ⟨by convert @order_topology.topology_eq_generate_intervals α _ _ _; conv in (_ ∨ _) { rw or.comm }; refl⟩ section partial_order variables [topological_space α] [partial_order α] [t : order_topology α] include t lemma is_open_iff_generate_intervals {s : set α} : is_open s ↔ generate_open {s | ∃a, s = Ioi a ∨ s = Iio a} s := by rw [t.topology_eq_generate_intervals]; refl lemma is_open_lt' (a : α) : is_open {b:α | a < b} := by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inl rfl⟩ lemma is_open_gt' (a : α) : is_open {b:α | b < a} := by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inr rfl⟩ lemma lt_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 b, a < x := is_open.mem_nhds (is_open_lt' _) h lemma le_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 b, a ≤ x := (𝓝 b).sets_of_superset (lt_mem_nhds h) $ assume b hb, le_of_lt hb lemma gt_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 a, x < b := is_open.mem_nhds (is_open_gt' _) h lemma ge_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 a, x ≤ b := (𝓝 a).sets_of_superset (gt_mem_nhds h) $ assume b hb, le_of_lt hb lemma nhds_eq_order (a : α) : 𝓝 a = (⨅b ∈ Iio a, 𝓟 (Ioi b)) ⊓ (⨅b ∈ Ioi a, 𝓟 (Iio b)) := by rw [t.topology_eq_generate_intervals, nhds_generate_from]; from le_antisymm (le_inf (le_binfi $ assume b hb, infi_le_of_le {c : α | b < c} $ infi_le _ ⟨hb, b, or.inl rfl⟩) (le_binfi $ assume b hb, infi_le_of_le {c : α | c < b} $ infi_le _ ⟨hb, b, or.inr rfl⟩)) (le_infi $ assume s, le_infi $ assume ⟨ha, b, hs⟩, match s, ha, hs with | _, h, (or.inl rfl) := inf_le_of_left_le $ infi_le_of_le b $ infi_le _ h | _, h, (or.inr rfl) := inf_le_of_right_le $ infi_le_of_le b $ infi_le _ h end) lemma tendsto_order {f : β → α} {a : α} {x : filter β} : tendsto f x (𝓝 a) ↔ (∀ a' < a, ∀ᶠ b in x, a' < f b) ∧ (∀ a' > a, ∀ᶠ b in x, f b < a') := by simp [nhds_eq_order a, tendsto_inf, tendsto_infi, tendsto_principal] instance tendsto_Icc_class_nhds (a : α) : tendsto_Ixx_class Icc (𝓝 a) (𝓝 a) := begin simp only [nhds_eq_order, infi_subtype'], refine ((has_basis_infi_principal_finite _).inf (has_basis_infi_principal_finite _)).tendsto_Ixx_class (λ s hs, _), refine ((ord_connected_bInter _).inter (ord_connected_bInter _)).out; intros _ _, exacts [ord_connected_Ioi, ord_connected_Iio] end instance tendsto_Ico_class_nhds (a : α) : tendsto_Ixx_class Ico (𝓝 a) (𝓝 a) := tendsto_Ixx_class_of_subset (λ _ _, Ico_subset_Icc_self) instance tendsto_Ioc_class_nhds (a : α) : tendsto_Ixx_class Ioc (𝓝 a) (𝓝 a) := tendsto_Ixx_class_of_subset (λ _ _, Ioc_subset_Icc_self) instance tendsto_Ioo_class_nhds (a : α) : tendsto_Ixx_class Ioo (𝓝 a) (𝓝 a) := tendsto_Ixx_class_of_subset (λ _ _, Ioo_subset_Icc_self) /-- Also known as squeeze or sandwich theorem. This version assumes that inequalities hold eventually for the filter. -/ lemma tendsto_of_tendsto_of_tendsto_of_le_of_le' {f g h : β → α} {b : filter β} {a : α} (hg : tendsto g b (𝓝 a)) (hh : tendsto h b (𝓝 a)) (hgf : ∀ᶠ b in b, g b ≤ f b) (hfh : ∀ᶠ b in b, f b ≤ h b) : tendsto f b (𝓝 a) := tendsto_order.2 ⟨assume a' h', have ∀ᶠ b in b, a' < g b, from (tendsto_order.1 hg).left a' h', by filter_upwards [this, hgf] assume a, lt_of_lt_of_le, assume a' h', have ∀ᶠ b in b, h b < a', from (tendsto_order.1 hh).right a' h', by filter_upwards [this, hfh] assume a h₁ h₂, lt_of_le_of_lt h₂ h₁⟩ /-- Also known as squeeze or sandwich theorem. This version assumes that inequalities hold everywhere. -/ lemma tendsto_of_tendsto_of_tendsto_of_le_of_le {f g h : β → α} {b : filter β} {a : α} (hg : tendsto g b (𝓝 a)) (hh : tendsto h b (𝓝 a)) (hgf : g ≤ f) (hfh : f ≤ h) : tendsto f b (𝓝 a) := tendsto_of_tendsto_of_tendsto_of_le_of_le' hg hh (eventually_of_forall hgf) (eventually_of_forall hfh) lemma nhds_order_unbounded {a : α} (hu : ∃u, a < u) (hl : ∃l, l < a) : 𝓝 a = (⨅l (h₂ : l < a) u (h₂ : a < u), 𝓟 (Ioo l u)) := have ∃ u, u ∈ Ioi a, from hu, have ∃ l, l ∈ Iio a, from hl, by { simp only [nhds_eq_order, inf_binfi, binfi_inf, *, inf_principal, Ioi_inter_Iio], refl } lemma tendsto_order_unbounded {f : β → α} {a : α} {x : filter β} (hu : ∃u, a < u) (hl : ∃l, l < a) (h : ∀l u, l < a → a < u → ∀ᶠ b in x, l < f b ∧ f b < u) : tendsto f x (𝓝 a) := by rw [nhds_order_unbounded hu hl]; from (tendsto_infi.2 $ assume l, tendsto_infi.2 $ assume hl, tendsto_infi.2 $ assume u, tendsto_infi.2 $ assume hu, tendsto_principal.2 $ h l u hl hu) end partial_order instance tendsto_Ixx_nhds_within {α : Type*} [preorder α] [topological_space α] (a : α) {s t : set α} {Ixx} [tendsto_Ixx_class Ixx (𝓝 a) (𝓝 a)] [tendsto_Ixx_class Ixx (𝓟 s) (𝓟 t)]: tendsto_Ixx_class Ixx (𝓝[s] a) (𝓝[t] a) := filter.tendsto_Ixx_class_inf instance tendsto_Icc_class_nhds_pi {ι : Type*} {α : ι → Type*} [Π i, partial_order (α i)] [Π i, topological_space (α i)] [∀ i, order_topology (α i)] (f : Π i, α i) : tendsto_Ixx_class Icc (𝓝 f) (𝓝 f) := begin constructor, conv in ((𝓝 f).lift' powerset) { rw [nhds_pi] }, simp only [lift'_infi_powerset, comap_lift'_eq2 monotone_powerset, tendsto_infi, tendsto_lift', mem_powerset_iff, subset_def, mem_preimage], intros i s hs, have : tendsto (λ g : Π i, α i, g i) (𝓝 f) (𝓝 (f i)) := ((continuous_apply i).tendsto f), refine (tendsto_lift'.1 ((this.comp tendsto_fst).Icc (this.comp tendsto_snd)) s hs).mono _, exact λ p hp g hg, hp ⟨hg.1 _, hg.2 _⟩ end theorem induced_order_topology' {α : Type u} {β : Type v} [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β] (f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y) (H₁ : ∀ {a x}, x < f a → ∃ b < a, x ≤ f b) (H₂ : ∀ {a x}, f a < x → ∃ b > a, f b ≤ x) : @order_topology _ (induced f ta) _ := begin letI := induced f ta, refine ⟨eq_of_nhds_eq_nhds (λ a, _)⟩, rw [nhds_induced, nhds_generate_from, nhds_eq_order (f a)], apply le_antisymm, { refine le_infi (λ s, le_infi $ λ hs, le_principal_iff.2 _), rcases hs with ⟨ab, b, rfl|rfl⟩, { exact mem_comap.2 ⟨{x | f b < x}, mem_inf_of_left $ mem_infi_of_mem _ $ mem_infi_of_mem (hf.2 ab) $ mem_principal_self _, λ x, hf.1⟩ }, { exact mem_comap.2 ⟨{x | x < f b}, mem_inf_of_right $ mem_infi_of_mem _ $ mem_infi_of_mem (hf.2 ab) $ mem_principal_self _, λ x, hf.1⟩ } }, { rw [← map_le_iff_le_comap], refine le_inf _ _; refine le_infi (λ x, le_infi $ λ h, le_principal_iff.2 _); simp, { rcases H₁ h with ⟨b, ab, xb⟩, refine mem_infi_of_mem _ (mem_infi_of_mem ⟨ab, b, or.inl rfl⟩ (mem_principal.2 _)), exact λ c hc, lt_of_le_of_lt xb (hf.2 hc) }, { rcases H₂ h with ⟨b, ab, xb⟩, refine mem_infi_of_mem _ (mem_infi_of_mem ⟨ab, b, or.inr rfl⟩ (mem_principal.2 _)), exact λ c hc, lt_of_lt_of_le (hf.2 hc) xb } }, end theorem induced_order_topology {α : Type u} {β : Type v} [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β] (f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y) (H : ∀ {x y}, x < y → ∃ a, x < f a ∧ f a < y) : @order_topology _ (induced f ta) _ := induced_order_topology' f @hf (λ a x xa, let ⟨b, xb, ba⟩ := H xa in ⟨b, hf.1 ba, le_of_lt xb⟩) (λ a x ax, let ⟨b, ab, bx⟩ := H ax in ⟨b, hf.1 ab, le_of_lt bx⟩) /-- On an `ord_connected` subset of a linear order, the order topology for the restriction of the order is the same as the restriction to the subset of the order topology. -/ instance order_topology_of_ord_connected {α : Type u} [ta : topological_space α] [linear_order α] [order_topology α] {t : set α} [ht : ord_connected t] : order_topology t := begin letI := induced (coe : t → α) ta, refine ⟨eq_of_nhds_eq_nhds (λ a, _)⟩, rw [nhds_induced, nhds_generate_from, nhds_eq_order (a : α)], apply le_antisymm, { refine le_infi (λ s, le_infi $ λ hs, le_principal_iff.2 _), rcases hs with ⟨ab, b, rfl|rfl⟩, { refine ⟨Ioi b, _, λ _, id⟩, refine mem_inf_of_left (mem_infi_of_mem b _), exact mem_infi_of_mem ab (mem_principal_self (Ioi ↑b)) }, { refine ⟨Iio b, _, λ _, id⟩, refine mem_inf_of_right (mem_infi_of_mem b _), exact mem_infi_of_mem ab (mem_principal_self (Iio b)) } }, { rw [← map_le_iff_le_comap], refine le_inf _ _, { refine le_infi (λ x, le_infi $ λ h, le_principal_iff.2 _), by_cases hx : x ∈ t, { refine mem_infi_of_mem (Ioi ⟨x, hx⟩) (mem_infi_of_mem ⟨h, ⟨⟨x, hx⟩, or.inl rfl⟩⟩ _), exact λ _, id }, simp only [set_coe.exists, mem_set_of_eq, mem_map'], convert univ_sets _, suffices hx' : ∀ (y : t), ↑y ∈ Ioi x, { simp [hx'] }, intros y, revert hx, contrapose!, -- here we use the `ord_connected` hypothesis exact λ hx, ht.out y.2 a.2 ⟨le_of_not_gt hx, le_of_lt h⟩ }, { refine le_infi (λ x, le_infi $ λ h, le_principal_iff.2 _), by_cases hx : x ∈ t, { refine mem_infi_of_mem (Iio ⟨x, hx⟩) (mem_infi_of_mem ⟨h, ⟨⟨x, hx⟩, or.inr rfl⟩⟩ _), exact λ _, id }, simp only [set_coe.exists, mem_set_of_eq, mem_map'], convert univ_sets _, suffices hx' : ∀ (y : t), ↑y ∈ Iio x, { simp [hx'] }, intros y, revert hx, contrapose!, -- here we use the `ord_connected` hypothesis exact λ hx, ht.out a.2 y.2 ⟨le_of_lt h, le_of_not_gt hx⟩ } } end lemma nhds_top_order [topological_space α] [order_top α] [order_topology α] : 𝓝 (⊤:α) = (⨅l (h₂ : l < ⊤), 𝓟 (Ioi l)) := by simp [nhds_eq_order (⊤:α)] lemma nhds_bot_order [topological_space α] [order_bot α] [order_topology α] : 𝓝 (⊥:α) = (⨅l (h₂ : ⊥ < l), 𝓟 (Iio l)) := by simp [nhds_eq_order (⊥:α)] lemma nhds_top_basis [topological_space α] [semilattice_sup_top α] [is_total α has_le.le] [order_topology α] [nontrivial α] : (𝓝 ⊤).has_basis (λ a : α, a < ⊤) (λ a : α, Ioi a) := ⟨ begin simp only [nhds_top_order], refine @filter.mem_binfi_of_directed α α (λ a, 𝓟 (Ioi a)) (λ a, a < ⊤) _ _, { rintros a (ha : a < ⊤) b (hb : b < ⊤), use a ⊔ b, simp only [filter.le_principal_iff, ge_iff_le, order.preimage], exact ⟨sup_lt_iff.mpr ⟨ha, hb⟩, Ioi_subset_Ioi le_sup_left, Ioi_subset_Ioi le_sup_right⟩ }, { obtain ⟨a, ha⟩ : ∃ a : α, a ≠ ⊤ := exists_ne ⊤, exact ⟨a, lt_top_iff_ne_top.mpr ha⟩ } end ⟩ lemma nhds_bot_basis [topological_space α] [semilattice_inf_bot α] [is_total α has_le.le] [order_topology α] [nontrivial α] : (𝓝 ⊥).has_basis (λ a : α, ⊥ < a) (λ a : α, Iio a) := @nhds_top_basis (order_dual α) _ _ _ _ _ lemma nhds_top_basis_Ici [topological_space α] [semilattice_sup_top α] [is_total α has_le.le] [order_topology α] [nontrivial α] [densely_ordered α] : (𝓝 ⊤).has_basis (λ a : α, a < ⊤) Ici := nhds_top_basis.to_has_basis (λ a ha, let ⟨b, hab, hb⟩ := exists_between ha in ⟨b, hb, Ici_subset_Ioi.mpr hab⟩) (λ a ha, ⟨a, ha, Ioi_subset_Ici_self⟩) lemma nhds_bot_basis_Iic [topological_space α] [semilattice_inf_bot α] [is_total α has_le.le] [order_topology α] [nontrivial α] [densely_ordered α] : (𝓝 ⊥).has_basis (λ a : α, ⊥ < a) Iic := @nhds_top_basis_Ici (order_dual α) _ _ _ _ _ _ lemma tendsto_nhds_top_mono [topological_space β] [order_top β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊤)) (hg : f ≤ᶠ[l] g) : tendsto g l (𝓝 ⊤) := begin simp only [nhds_top_order, tendsto_infi, tendsto_principal] at hf ⊢, intros x hx, filter_upwards [hf x hx, hg], exact λ x, lt_of_lt_of_le end lemma tendsto_nhds_bot_mono [topological_space β] [order_bot β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊥)) (hg : g ≤ᶠ[l] f) : tendsto g l (𝓝 ⊥) := @tendsto_nhds_top_mono α (order_dual β) _ _ _ _ _ _ hf hg lemma tendsto_nhds_top_mono' [topological_space β] [order_top β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊤)) (hg : f ≤ g) : tendsto g l (𝓝 ⊤) := tendsto_nhds_top_mono hf (eventually_of_forall hg) lemma tendsto_nhds_bot_mono' [topological_space β] [order_bot β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊥)) (hg : g ≤ f) : tendsto g l (𝓝 ⊥) := tendsto_nhds_bot_mono hf (eventually_of_forall hg) section linear_order variables [topological_space α] [linear_order α] [order_topology α] lemma exists_Ioc_subset_of_mem_nhds' {a : α} {s : set α} (hs : s ∈ 𝓝 a) {l : α} (hl : l < a) : ∃ l' ∈ Ico l a, Ioc l' a ⊆ s := begin rw [nhds_eq_order a] at hs, rcases hs with ⟨t₁, ht₁, t₂, ht₂, rfl⟩, -- First we show that `t₂` includes `(-∞, a]`, so it suffices to show `(l', ∞) ⊆ t₁` suffices : ∃ l' ∈ Ico l a, Ioi l' ⊆ t₁, { have A : 𝓟 (Iic a) ≤ ⨅ b ∈ Ioi a, 𝓟 (Iio b), from (le_infi $ λ b, le_infi $ λ hb, principal_mono.2 $ Iic_subset_Iio.2 hb), have B : t₁ ∩ Iic a ⊆ t₁ ∩ t₂, from inter_subset_inter_right _ (A ht₂), from this.imp (λ l', Exists.imp $ λ hl' hl x hx, B ⟨hl hx.1, hx.2⟩) }, clear ht₂ t₂, -- Now we find `l` such that `(l', ∞) ⊆ t₁` rw [mem_binfi_of_directed] at ht₁, { rcases ht₁ with ⟨b, hb, hb'⟩, exact ⟨max b l, ⟨le_max_right _ _, max_lt hb hl⟩, λ x hx, hb' $ Ioi_subset_Ioi (le_max_left _ _) hx⟩ }, { intros b hb b' hb', simp only [mem_Iio] at hb hb', use [max b b', max_lt hb hb'], simp [le_refl] }, exact ⟨l, hl⟩ end lemma exists_Ico_subset_of_mem_nhds' {a : α} {s : set α} (hs : s ∈ 𝓝 a) {u : α} (hu : a < u) : ∃ u' ∈ Ioc a u, Ico a u' ⊆ s := by simpa only [order_dual.exists, exists_prop, dual_Ico, dual_Ioc] using exists_Ioc_subset_of_mem_nhds' (show of_dual ⁻¹' s ∈ 𝓝 (to_dual a), from hs) hu.dual lemma exists_Ioc_subset_of_mem_nhds {a : α} {s : set α} (hs : s ∈ 𝓝 a) (h : ∃ l, l < a) : ∃ l < a, Ioc l a ⊆ s := let ⟨l', hl'⟩ := h in let ⟨l, hl⟩ := exists_Ioc_subset_of_mem_nhds' hs hl' in ⟨l, hl.fst.2, hl.snd⟩ lemma exists_Ico_subset_of_mem_nhds {a : α} {s : set α} (hs : s ∈ 𝓝 a) (h : ∃ u, a < u) : ∃ u (_ : a < u), Ico a u ⊆ s := let ⟨l', hl'⟩ := h in let ⟨l, hl⟩ := exists_Ico_subset_of_mem_nhds' hs hl' in ⟨l, hl.fst.1, hl.snd⟩ lemma order_separated {a₁ a₂ : α} (h : a₁ < a₂) : ∃u v : set α, is_open u ∧ is_open v ∧ a₁ ∈ u ∧ a₂ ∈ v ∧ (∀b₁∈u, ∀b₂∈v, b₁ < b₂) := match dense_or_discrete a₁ a₂ with | or.inl ⟨a, ha₁, ha₂⟩ := ⟨{a' | a' < a}, {a' | a < a'}, is_open_gt' a, is_open_lt' a, ha₁, ha₂, assume b₁ h₁ b₂ h₂, lt_trans h₁ h₂⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a | a < a₂}, {a | a₁ < a}, is_open_gt' a₂, is_open_lt' a₁, h, h, assume b₁ hb₁ b₂ hb₂, calc b₁ ≤ a₁ : h₂ _ hb₁ ... < a₂ : h ... ≤ b₂ : h₁ _ hb₂⟩ end @[priority 100] -- see Note [lower instance priority] instance order_topology.to_order_closed_topology : order_closed_topology α := { is_closed_le' := is_open_compl_iff.1 $ is_open_prod_iff.mpr $ assume a₁ a₂ (h : ¬ a₁ ≤ a₂), have h : a₂ < a₁, from lt_of_not_ge h, let ⟨u, v, hu, hv, ha₁, ha₂, h⟩ := order_separated h in ⟨v, u, hv, hu, ha₂, ha₁, assume ⟨b₁, b₂⟩ ⟨h₁, h₂⟩, not_le_of_gt $ h b₂ h₂ b₁ h₁⟩ } lemma order_topology.t2_space : t2_space α := by apply_instance @[priority 100] -- see Note [lower instance priority] instance order_topology.regular_space : regular_space α := { regular := assume s a hs ha, have hs' : sᶜ ∈ 𝓝 a, from is_open.mem_nhds hs.is_open_compl ha, have ∃t:set α, is_open t ∧ (∀l∈ s, l < a → l ∈ t) ∧ 𝓝[t] a = ⊥, from by_cases (assume h : ∃l, l < a, let ⟨l, hl, h⟩ := exists_Ioc_subset_of_mem_nhds hs' h in match dense_or_discrete l a with | or.inl ⟨b, hb₁, hb₂⟩ := ⟨{a | a < b}, is_open_gt' _, assume c hcs hca, show c < b, from lt_of_not_ge $ assume hbc, h ⟨lt_of_lt_of_le hb₁ hbc, le_of_lt hca⟩ hcs, inf_principal_eq_bot.2 $ (𝓝 a).sets_of_superset ((is_open_lt' _).mem_nhds hb₂) $ assume x (hx : b < x), show ¬ x < b, from not_lt.2 $ le_of_lt hx⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a' | a' < a}, is_open_gt' _, assume b hbs hba, hba, inf_principal_eq_bot.2 $ (𝓝 a).sets_of_superset ((is_open_lt' _).mem_nhds hl) $ assume x (hx : l < x), show ¬ x < a, from not_lt.2 $ h₁ _ hx⟩ end) (assume : ¬ ∃l, l < a, ⟨∅, is_open_empty, assume l _ hl, (this ⟨l, hl⟩).elim, nhds_within_empty _⟩), let ⟨t₁, ht₁o, ht₁s, ht₁a⟩ := this in have ∃t:set α, is_open t ∧ (∀u∈ s, u>a → u ∈ t) ∧ 𝓝[t] a = ⊥, from by_cases (assume h : ∃u, u > a, let ⟨u, hu, h⟩ := exists_Ico_subset_of_mem_nhds hs' h in match dense_or_discrete a u with | or.inl ⟨b, hb₁, hb₂⟩ := ⟨{a | b < a}, is_open_lt' _, assume c hcs hca, show c > b, from lt_of_not_ge $ assume hbc, h ⟨le_of_lt hca, lt_of_le_of_lt hbc hb₂⟩ hcs, inf_principal_eq_bot.2 $ (𝓝 a).sets_of_superset ((is_open_gt' _).mem_nhds hb₁) $ assume x (hx : b > x), show ¬ x > b, from not_lt.2 $ le_of_lt hx⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a' | a' > a}, is_open_lt' _, assume b hbs hba, hba, inf_principal_eq_bot.2 $ (𝓝 a).sets_of_superset ((is_open_gt' _).mem_nhds hu) $ assume x (hx : u > x), show ¬ x > a, from not_lt.2 $ h₂ _ hx⟩ end) (assume : ¬ ∃u, u > a, ⟨∅, is_open_empty, assume l _ hl, (this ⟨l, hl⟩).elim, nhds_within_empty _⟩), let ⟨t₂, ht₂o, ht₂s, ht₂a⟩ := this in ⟨t₁ ∪ t₂, is_open.union ht₁o ht₂o, assume x hx, have x ≠ a, from assume eq, ha $ eq ▸ hx, (ne_iff_lt_or_gt.mp this).imp (ht₁s _ hx) (ht₂s _ hx), by rw [nhds_within_union, ht₁a, ht₂a, bot_sup_eq]⟩, ..order_topology.t2_space } /-- A set is a neighborhood of `a` if and only if it contains an interval `(l, u)` containing `a`, provided `a` is neither a bottom element nor a top element. -/ lemma mem_nhds_iff_exists_Ioo_subset' {a : α} {s : set α} (hl : ∃ l, l < a) (hu : ∃ u, a < u) : s ∈ 𝓝 a ↔ ∃l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s := begin split, { assume h, rcases exists_Ico_subset_of_mem_nhds h hu with ⟨u, au, hu⟩, rcases exists_Ioc_subset_of_mem_nhds h hl with ⟨l, la, hl⟩, refine ⟨l, u, ⟨la, au⟩, λx hx, _⟩, cases le_total a x with hax hax, { exact hu ⟨hax, hx.2⟩ }, { exact hl ⟨hx.1, hax⟩ } }, { rintros ⟨l, u, ha, h⟩, apply mem_of_superset (is_open.mem_nhds is_open_Ioo ha) h } end /-- A set is a neighborhood of `a` if and only if it contains an interval `(l, u)` containing `a`. -/ lemma mem_nhds_iff_exists_Ioo_subset [no_top_order α] [no_bot_order α] {a : α} {s : set α} : s ∈ 𝓝 a ↔ ∃l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s := mem_nhds_iff_exists_Ioo_subset' (no_bot a) (no_top a) lemma nhds_basis_Ioo' {a : α} (hl : ∃ l, l < a) (hu : ∃ u, a < u) : (𝓝 a).has_basis (λ b : α × α, b.1 < a ∧ a < b.2) (λ b, Ioo b.1 b.2) := ⟨λ s, (mem_nhds_iff_exists_Ioo_subset' hl hu).trans $ by simp⟩ lemma nhds_basis_Ioo [no_top_order α] [no_bot_order α] (a : α) : (𝓝 a).has_basis (λ b : α × α, b.1 < a ∧ a < b.2) (λ b, Ioo b.1 b.2) := nhds_basis_Ioo' (no_bot a) (no_top a) lemma filter.eventually.exists_Ioo_subset [no_top_order α] [no_bot_order α] {a : α} {p : α → Prop} (hp : ∀ᶠ x in 𝓝 a, p x) : ∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ {x | p x} := mem_nhds_iff_exists_Ioo_subset.1 hp lemma Iio_mem_nhds {a b : α} (h : a < b) : Iio b ∈ 𝓝 a := is_open.mem_nhds is_open_Iio h lemma Ioi_mem_nhds {a b : α} (h : a < b) : Ioi a ∈ 𝓝 b := is_open.mem_nhds is_open_Ioi h lemma Iic_mem_nhds {a b : α} (h : a < b) : Iic b ∈ 𝓝 a := mem_of_superset (Iio_mem_nhds h) Iio_subset_Iic_self lemma Ici_mem_nhds {a b : α} (h : a < b) : Ici a ∈ 𝓝 b := mem_of_superset (Ioi_mem_nhds h) Ioi_subset_Ici_self lemma Ioo_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Ioo a b ∈ 𝓝 x := is_open.mem_nhds is_open_Ioo ⟨ha, hb⟩ lemma Ioc_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Ioc a b ∈ 𝓝 x := mem_of_superset (Ioo_mem_nhds ha hb) Ioo_subset_Ioc_self lemma Ico_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Ico a b ∈ 𝓝 x := mem_of_superset (Ioo_mem_nhds ha hb) Ioo_subset_Ico_self lemma Icc_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Icc a b ∈ 𝓝 x := mem_of_superset (Ioo_mem_nhds ha hb) Ioo_subset_Icc_self section pi /-! ### Intervals in `Π i, π i` belong to `𝓝 x` For each lemma `pi_Ixx_mem_nhds` we add a non-dependent version `pi_Ixx_mem_nhds'` because sometimes Lean fails to unify different instances while trying to apply the dependent version to, e.g., `ι → ℝ`. -/ variables {ι : Type*} {π : ι → Type*} [fintype ι] [Π i, linear_order (π i)] [Π i, topological_space (π i)] [∀ i, order_topology (π i)] {a b x : Π i, π i} {a' b' x' : ι → α} lemma pi_Iic_mem_nhds (ha : ∀ i, x i < a i) : Iic a ∈ 𝓝 x := pi_univ_Iic a ▸ set_pi_mem_nhds (finite.of_fintype _) (λ i _, Iic_mem_nhds (ha _)) lemma pi_Iic_mem_nhds' (ha : ∀ i, x' i < a' i) : Iic a' ∈ 𝓝 x' := pi_Iic_mem_nhds ha lemma pi_Ici_mem_nhds (ha : ∀ i, a i < x i) : Ici a ∈ 𝓝 x := pi_univ_Ici a ▸ set_pi_mem_nhds (finite.of_fintype _) (λ i _, Ici_mem_nhds (ha _)) lemma pi_Ici_mem_nhds' (ha : ∀ i, a' i < x' i) : Ici a' ∈ 𝓝 x' := pi_Ici_mem_nhds ha lemma pi_Icc_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Icc a b ∈ 𝓝 x := pi_univ_Icc a b ▸ set_pi_mem_nhds (finite.of_fintype _) (λ i _, Icc_mem_nhds (ha _) (hb _)) lemma pi_Icc_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Icc a' b' ∈ 𝓝 x' := pi_Icc_mem_nhds ha hb variables [nonempty ι] lemma pi_Iio_mem_nhds (ha : ∀ i, x i < a i) : Iio a ∈ 𝓝 x := begin refine mem_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Iio_subset a), exact Iio_mem_nhds (ha i) end lemma pi_Iio_mem_nhds' (ha : ∀ i, x' i < a' i) : Iio a' ∈ 𝓝 x' := pi_Iio_mem_nhds ha lemma pi_Ioi_mem_nhds (ha : ∀ i, a i < x i) : Ioi a ∈ 𝓝 x := @pi_Iio_mem_nhds ι (λ i, order_dual (π i)) _ _ _ _ _ _ _ ha lemma pi_Ioi_mem_nhds' (ha : ∀ i, a' i < x' i) : Ioi a' ∈ 𝓝 x' := pi_Ioi_mem_nhds ha lemma pi_Ioc_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Ioc a b ∈ 𝓝 x := begin refine mem_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Ioc_subset a b), exact Ioc_mem_nhds (ha i) (hb i) end lemma pi_Ioc_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Ioc a' b' ∈ 𝓝 x' := pi_Ioc_mem_nhds ha hb lemma pi_Ico_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Ico a b ∈ 𝓝 x := begin refine mem_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Ico_subset a b), exact Ico_mem_nhds (ha i) (hb i) end lemma pi_Ico_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Ico a' b' ∈ 𝓝 x' := pi_Ico_mem_nhds ha hb lemma pi_Ioo_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Ioo a b ∈ 𝓝 x := begin refine mem_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Ioo_subset a b), exact Ioo_mem_nhds (ha i) (hb i) end lemma pi_Ioo_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Ioo a' b' ∈ 𝓝 x' := pi_Ioo_mem_nhds ha hb end pi lemma disjoint_nhds_at_top [no_top_order α] (x : α) : disjoint (𝓝 x) at_top := begin rw filter.disjoint_iff, cases no_top x with a ha, use [Iio a, Iio_mem_nhds ha, Ici a, mem_at_top a], rw [inter_comm, Ici_inter_Iio, Ico_self] end @[simp] lemma inf_nhds_at_top [no_top_order α] (x : α) : 𝓝 x ⊓ at_top = ⊥ := disjoint_iff.1 (disjoint_nhds_at_top x) lemma disjoint_nhds_at_bot [no_bot_order α] (x : α) : disjoint (𝓝 x) at_bot := @disjoint_nhds_at_top (order_dual α) _ _ _ _ x @[simp] lemma inf_nhds_at_bot [no_bot_order α] (x : α) : 𝓝 x ⊓ at_bot = ⊥ := @inf_nhds_at_top (order_dual α) _ _ _ _ x lemma not_tendsto_nhds_of_tendsto_at_top [no_top_order α] {F : filter β} [ne_bot F] {f : β → α} (hf : tendsto f F at_top) (x : α) : ¬ tendsto f F (𝓝 x) := hf.not_tendsto (disjoint_nhds_at_top x).symm lemma not_tendsto_at_top_of_tendsto_nhds [no_top_order α] {F : filter β} [ne_bot F] {f : β → α} {x : α} (hf : tendsto f F (𝓝 x)) : ¬ tendsto f F at_top := hf.not_tendsto (disjoint_nhds_at_top x) lemma not_tendsto_nhds_of_tendsto_at_bot [no_bot_order α] {F : filter β} [ne_bot F] {f : β → α} (hf : tendsto f F at_bot) (x : α) : ¬ tendsto f F (𝓝 x) := hf.not_tendsto (disjoint_nhds_at_bot x).symm lemma not_tendsto_at_bot_of_tendsto_nhds [no_bot_order α] {F : filter β} [ne_bot F] {f : β → α} {x : α} (hf : tendsto f F (𝓝 x)) : ¬ tendsto f F at_bot := hf.not_tendsto (disjoint_nhds_at_bot x) /-! ### Neighborhoods to the left and to the right on an `order_topology` We've seen some properties of left and right neighborhood of a point in an `order_closed_topology`. In an `order_topology`, such neighborhoods can be characterized as the sets containing suitable intervals to the right or to the left of `a`. We give now these characterizations. -/ -- NB: If you extend the list, append to the end please to avoid breaking the API /-- The following statements are equivalent: 0. `s` is a neighborhood of `a` within `(a, +∞)` 1. `s` is a neighborhood of `a` within `(a, b]` 2. `s` is a neighborhood of `a` within `(a, b)` 3. `s` includes `(a, u)` for some `u ∈ (a, b]` 4. `s` includes `(a, u)` for some `u > a` -/ lemma tfae_mem_nhds_within_Ioi {a b : α} (hab : a < b) (s : set α) : tfae [s ∈ 𝓝[Ioi a] a, -- 0 : `s` is a neighborhood of `a` within `(a, +∞)` s ∈ 𝓝[Ioc a b] a, -- 1 : `s` is a neighborhood of `a` within `(a, b]` s ∈ 𝓝[Ioo a b] a, -- 2 : `s` is a neighborhood of `a` within `(a, b)` ∃ u ∈ Ioc a b, Ioo a u ⊆ s, -- 3 : `s` includes `(a, u)` for some `u ∈ (a, b]` ∃ u ∈ Ioi a, Ioo a u ⊆ s] := -- 4 : `s` includes `(a, u)` for some `u > a` begin tfae_have : 1 ↔ 2, by rw [nhds_within_Ioc_eq_nhds_within_Ioi hab], tfae_have : 1 ↔ 3, by rw [nhds_within_Ioo_eq_nhds_within_Ioi hab], tfae_have : 4 → 5, from λ ⟨u, umem, hu⟩, ⟨u, umem.1, hu⟩, tfae_have : 5 → 1, { rintros ⟨u, hau, hu⟩, exact mem_of_superset (Ioo_mem_nhds_within_Ioi ⟨le_refl a, hau⟩) hu }, tfae_have : 1 → 4, { assume h, rcases mem_nhds_within_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩, rcases exists_Ico_subset_of_mem_nhds' va hab with ⟨u, au, hu⟩, refine ⟨u, au, λx hx, _⟩, refine hv ⟨hu ⟨le_of_lt hx.1, hx.2⟩, _⟩, exact hx.1 }, tfae_finish end lemma mem_nhds_within_Ioi_iff_exists_mem_Ioc_Ioo_subset {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioc a u', Ioo a u ⊆ s := (tfae_mem_nhds_within_Ioi hu' s).out 0 3 /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u)` with `a < u < u'`, provided `a` is not a top element. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioo_subset' {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioi a, Ioo a u ⊆ s := (tfae_mem_nhds_within_Ioi hu' s).out 0 4 /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u)` with `a < u`. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioo_subset [no_top_order α] {a : α} {s : set α} : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioi a, Ioo a u ⊆ s := let ⟨u', hu'⟩ := no_top a in mem_nhds_within_Ioi_iff_exists_Ioo_subset' hu' /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u]` with `a < u`. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioc_subset [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioi a, Ioc a u ⊆ s := begin rw mem_nhds_within_Ioi_iff_exists_Ioo_subset, split, { rintros ⟨u, au, as⟩, rcases exists_between au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ioo_subset_Ioc_self as⟩ } end /-- The following statements are equivalent: 0. `s` is a neighborhood of `b` within `(-∞, b)` 1. `s` is a neighborhood of `b` within `[a, b)` 2. `s` is a neighborhood of `b` within `(a, b)` 3. `s` includes `(l, b)` for some `l ∈ [a, b)` 4. `s` includes `(l, b)` for some `l < b` -/ lemma tfae_mem_nhds_within_Iio {a b : α} (h : a < b) (s : set α) : tfae [s ∈ 𝓝[Iio b] b, -- 0 : `s` is a neighborhood of `b` within `(-∞, b)` s ∈ 𝓝[Ico a b] b, -- 1 : `s` is a neighborhood of `b` within `[a, b)` s ∈ 𝓝[Ioo a b] b, -- 2 : `s` is a neighborhood of `b` within `(a, b)` ∃ l ∈ Ico a b, Ioo l b ⊆ s, -- 3 : `s` includes `(l, b)` for some `l ∈ [a, b)` ∃ l ∈ Iio b, Ioo l b ⊆ s] := -- 4 : `s` includes `(l, b)` for some `l < b` by simpa only [exists_prop, order_dual.exists, dual_Ioi, dual_Ioc, dual_Ioo] using tfae_mem_nhds_within_Ioi h.dual (of_dual ⁻¹' s) lemma mem_nhds_within_Iio_iff_exists_mem_Ico_Ioo_subset {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Ico l' a, Ioo l a ⊆ s := (tfae_mem_nhds_within_Iio hl' s).out 0 3 /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `(l, a)` with `l < a`, provided `a` is not a bottom element. -/ lemma mem_nhds_within_Iio_iff_exists_Ioo_subset' {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Iio a, Ioo l a ⊆ s := (tfae_mem_nhds_within_Iio hl' s).out 0 4 /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `(l, a)` with `l < a`. -/ lemma mem_nhds_within_Iio_iff_exists_Ioo_subset [no_bot_order α] {a : α} {s : set α} : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Iio a, Ioo l a ⊆ s := let ⟨l', hl'⟩ := no_bot a in mem_nhds_within_Iio_iff_exists_Ioo_subset' hl' /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `[l, a)` with `l < a`. -/ lemma mem_nhds_within_Iio_iff_exists_Ico_subset [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Iio a, Ico l a ⊆ s := begin have : of_dual ⁻¹' s ∈ 𝓝[Ioi (to_dual a)] (to_dual a) ↔ _ := mem_nhds_within_Ioi_iff_exists_Ioc_subset, simpa only [order_dual.exists, exists_prop, dual_Ioc] using this, end /-- The following statements are equivalent: 0. `s` is a neighborhood of `a` within `[a, +∞)` 1. `s` is a neighborhood of `a` within `[a, b]` 2. `s` is a neighborhood of `a` within `[a, b)` 3. `s` includes `[a, u)` for some `u ∈ (a, b]` 4. `s` includes `[a, u)` for some `u > a` -/ lemma tfae_mem_nhds_within_Ici {a b : α} (hab : a < b) (s : set α) : tfae [s ∈ 𝓝[Ici a] a, -- 0 : `s` is a neighborhood of `a` within `[a, +∞)` s ∈ 𝓝[Icc a b] a, -- 1 : `s` is a neighborhood of `a` within `[a, b]` s ∈ 𝓝[Ico a b] a, -- 2 : `s` is a neighborhood of `a` within `[a, b)` ∃ u ∈ Ioc a b, Ico a u ⊆ s, -- 3 : `s` includes `[a, u)` for some `u ∈ (a, b]` ∃ u ∈ Ioi a, Ico a u ⊆ s] := -- 4 : `s` includes `[a, u)` for some `u > a` begin tfae_have : 1 ↔ 2, by rw [nhds_within_Icc_eq_nhds_within_Ici hab], tfae_have : 1 ↔ 3, by rw [nhds_within_Ico_eq_nhds_within_Ici hab], tfae_have : 4 → 5, from λ ⟨u, umem, hu⟩, ⟨u, umem.1, hu⟩, tfae_have : 5 → 1, { rintros ⟨u, hau, hu⟩, exact mem_of_superset (Ico_mem_nhds_within_Ici ⟨le_refl a, hau⟩) hu }, tfae_have : 1 → 4, { assume h, rcases mem_nhds_within_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩, rcases exists_Ico_subset_of_mem_nhds' va hab with ⟨u, au, hu⟩, refine ⟨u, au, λx hx, _⟩, refine hv ⟨hu ⟨hx.1, hx.2⟩, _⟩, exact hx.1 }, tfae_finish end lemma mem_nhds_within_Ici_iff_exists_mem_Ioc_Ico_subset {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioc a u', Ico a u ⊆ s := (tfae_mem_nhds_within_Ici hu' s).out 0 3 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u)` with `a < u < u'`, provided `a` is not a top element. -/ lemma mem_nhds_within_Ici_iff_exists_Ico_subset' {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioi a, Ico a u ⊆ s := (tfae_mem_nhds_within_Ici hu' s).out 0 4 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u)` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Ico_subset [no_top_order α] {a : α} {s : set α} : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioi a, Ico a u ⊆ s := let ⟨u', hu'⟩ := no_top a in mem_nhds_within_Ici_iff_exists_Ico_subset' hu' /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u]` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Icc_subset' [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioi a, Icc a u ⊆ s := begin rw mem_nhds_within_Ici_iff_exists_Ico_subset, split, { rintros ⟨u, au, as⟩, rcases exists_between au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ico_subset_Icc_self as⟩ } end /-- The following statements are equivalent: 0. `s` is a neighborhood of `b` within `(-∞, b]` 1. `s` is a neighborhood of `b` within `[a, b]` 2. `s` is a neighborhood of `b` within `(a, b]` 3. `s` includes `(l, b]` for some `l ∈ [a, b)` 4. `s` includes `(l, b]` for some `l < b` -/ lemma tfae_mem_nhds_within_Iic {a b : α} (h : a < b) (s : set α) : tfae [s ∈ 𝓝[Iic b] b, -- 0 : `s` is a neighborhood of `b` within `(-∞, b]` s ∈ 𝓝[Icc a b] b, -- 1 : `s` is a neighborhood of `b` within `[a, b]` s ∈ 𝓝[Ioc a b] b, -- 2 : `s` is a neighborhood of `b` within `(a, b]` ∃ l ∈ Ico a b, Ioc l b ⊆ s, -- 3 : `s` includes `(l, b]` for some `l ∈ [a, b)` ∃ l ∈ Iio b, Ioc l b ⊆ s] := -- 4 : `s` includes `(l, b]` for some `l < b` by simpa only [exists_prop, order_dual.exists, dual_Ici, dual_Ioc, dual_Icc, dual_Ico] using tfae_mem_nhds_within_Ici h.dual (of_dual ⁻¹' s) lemma mem_nhds_within_Iic_iff_exists_mem_Ico_Ioc_subset {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Ico l' a, Ioc l a ⊆ s := (tfae_mem_nhds_within_Iic hl' s).out 0 3 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `(l, a]` with `l < a`, provided `a` is not a bottom element. -/ lemma mem_nhds_within_Iic_iff_exists_Ioc_subset' {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Iio a, Ioc l a ⊆ s := (tfae_mem_nhds_within_Iic hl' s).out 0 4 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `(l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Ioc_subset [no_bot_order α] {a : α} {s : set α} : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Iio a, Ioc l a ⊆ s := let ⟨l', hl'⟩ := no_bot a in mem_nhds_within_Iic_iff_exists_Ioc_subset' hl' /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `[l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Icc_subset' [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Iio a, Icc l a ⊆ s := begin convert @mem_nhds_within_Ici_iff_exists_Icc_subset' (order_dual α) _ _ _ _ _ _ _, simp_rw (show ∀ u : order_dual α, @Icc (order_dual α) _ a u = @Icc α _ u a, from λ u, dual_Icc), refl, end /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u]` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Icc_subset [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Ici a] a ↔ ∃u, a < u ∧ Icc a u ⊆ s := begin rw mem_nhds_within_Ici_iff_exists_Ico_subset, split, { rintros ⟨u, au, as⟩, rcases exists_between au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ico_subset_Icc_self as⟩ } end /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `[l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Icc_subset [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Iic a] a ↔ ∃l, l < a ∧ Icc l a ⊆ s := begin rw mem_nhds_within_Iic_iff_exists_Ioc_subset, split, { rintros ⟨l, la, as⟩, rcases exists_between la with ⟨v, hv⟩, refine ⟨v, hv.2, λx hx, as ⟨lt_of_lt_of_le hv.1 hx.1, hx.2⟩⟩, }, { rintros ⟨l, la, as⟩, exact ⟨l, la, subset.trans Ioc_subset_Icc_self as⟩ } end end linear_order section linear_ordered_add_comm_group variables [topological_space α] [linear_ordered_add_comm_group α] [order_topology α] variables {l : filter β} {f g : β → α} lemma nhds_eq_infi_abs_sub (a : α) : 𝓝 a = (⨅r>0, 𝓟 {b | |a - b| < r}) := begin simp only [le_antisymm_iff, nhds_eq_order, le_inf_iff, le_infi_iff, le_principal_iff, mem_Ioi, mem_Iio, abs_sub_lt_iff, @sub_lt_iff_lt_add _ _ _ _ _ _ a, @sub_lt _ _ _ _ a, set_of_and], refine ⟨_, _, _⟩, { intros ε ε0, exact inter_mem_inf (mem_infi_of_mem (a - ε) $ mem_infi_of_mem (sub_lt_self a ε0) (mem_principal_self _)) (mem_infi_of_mem (ε + a) $ mem_infi_of_mem (by simpa) (mem_principal_self _)) }, { intros b hb, exact mem_infi_of_mem (a - b) (mem_infi_of_mem (sub_pos.2 hb) (by simp [Ioi])) }, { intros b hb, exact mem_infi_of_mem (b - a) (mem_infi_of_mem (sub_pos.2 hb) (by simp [Iio])) } end lemma order_topology_of_nhds_abs {α : Type*} [topological_space α] [linear_ordered_add_comm_group α] (h_nhds : ∀a:α, 𝓝 a = (⨅r>0, 𝓟 {b | |a - b| < r})) : order_topology α := begin refine ⟨eq_of_nhds_eq_nhds $ λ a, _⟩, rw [h_nhds], letI := preorder.topology α, letI : order_topology α := ⟨rfl⟩, exact (nhds_eq_infi_abs_sub a).symm end lemma linear_ordered_add_comm_group.tendsto_nhds {x : filter β} {a : α} : tendsto f x (𝓝 a) ↔ ∀ ε > (0 : α), ∀ᶠ b in x, |f b - a| < ε := by simp [nhds_eq_infi_abs_sub, abs_sub_comm a] lemma eventually_abs_sub_lt (a : α) {ε : α} (hε : 0 < ε) : ∀ᶠ x in 𝓝 a, |x - a| < ε := (nhds_eq_infi_abs_sub a).symm ▸ mem_infi_of_mem ε (mem_infi_of_mem hε $ by simp only [abs_sub_comm, mem_principal_self]) @[priority 100] -- see Note [lower instance priority] instance linear_ordered_add_comm_group.topological_add_group : topological_add_group α := { continuous_add := begin refine continuous_iff_continuous_at.2 _, rintro ⟨a, b⟩, refine linear_ordered_add_comm_group.tendsto_nhds.2 (λ ε ε0, _), rcases dense_or_discrete 0 ε with (⟨δ, δ0, δε⟩|⟨h₁, h₂⟩), { -- If there exists `δ ∈ (0, ε)`, then we choose `δ`-nhd of `a` and `(ε-δ)`-nhd of `b` filter_upwards [prod_is_open.mem_nhds (eventually_abs_sub_lt a δ0) (eventually_abs_sub_lt b (sub_pos.2 δε))], rintros ⟨x, y⟩ ⟨hx : |x - a| < δ, hy : |y - b| < ε - δ⟩, rw [add_sub_comm], calc |x - a + (y - b)| ≤ |x - a| + |y - b| : abs_add _ _ ... < δ + (ε - δ) : add_lt_add hx hy ... = ε : add_sub_cancel'_right _ _ }, { -- Otherewise `ε`-nhd of each point `a` is `{a}` have hε : ∀ {x y}, |x - y| < ε → x = y, { intros x y h, simpa [sub_eq_zero] using h₂ _ h }, filter_upwards [prod_is_open.mem_nhds (eventually_abs_sub_lt a ε0) (eventually_abs_sub_lt b ε0)], rintros ⟨x, y⟩ ⟨hx : |x - a| < ε, hy : |y - b| < ε⟩, simpa [hε hx, hε hy] } end, continuous_neg := continuous_iff_continuous_at.2 $ λ a, linear_ordered_add_comm_group.tendsto_nhds.2 $ λ ε ε0, (eventually_abs_sub_lt a ε0).mono $ λ x hx, by rwa [neg_sub_neg, abs_sub_comm] } @[continuity] lemma continuous_abs : continuous (abs : α → α) := continuous_id.max continuous_neg lemma filter.tendsto.abs {f : β → α} {a : α} {l : filter β} (h : tendsto f l (𝓝 a)) : tendsto (λ x, |f x|) l (𝓝 (|a|)) := (continuous_abs.tendsto _).comp h lemma nhds_basis_Ioo_pos [no_bot_order α] [no_top_order α] (a : α) : (𝓝 a).has_basis (λ ε : α, (0 : α) < ε) (λ ε, Ioo (a-ε) (a+ε)) := ⟨begin refine λ t, (nhds_basis_Ioo a).mem_iff.trans ⟨_, _⟩, { rintros ⟨⟨l, u⟩, ⟨hl : l < a, hu : a < u⟩, h' : Ioo l u ⊆ t⟩, refine ⟨min (a-l) (u-a), by apply lt_min; rwa sub_pos, _⟩, rintros x ⟨hx, hx'⟩, apply h', rw [sub_lt, lt_min_iff, sub_lt_sub_iff_left] at hx, rw [← sub_lt_iff_lt_add', lt_min_iff, sub_lt_sub_iff_right] at hx', exact ⟨hx.1, hx'.2⟩ }, { rintros ⟨ε, ε_pos, h⟩, exact ⟨(a-ε, a+ε), by simp [ε_pos], h⟩ }, end⟩ lemma nhds_basis_abs_sub_lt [no_bot_order α] [no_top_order α] (a : α) : (𝓝 a).has_basis (λ ε : α, (0 : α) < ε) (λ ε, {b | |b - a| < ε}) := begin convert nhds_basis_Ioo_pos a, { ext ε, change |x - a| < ε ↔ a - ε < x ∧ x < a + ε, simp [abs_lt, sub_lt_iff_lt_add, add_comm ε a, add_comm x ε] } end variable (α) lemma nhds_basis_zero_abs_sub_lt [no_bot_order α] [no_top_order α] : (𝓝 (0 : α)).has_basis (λ ε : α, (0 : α) < ε) (λ ε, {b | |b| < ε}) := by simpa using nhds_basis_abs_sub_lt (0 : α) variable {α} /-- If `a` is positive we can form a basis from only nonnegative `Ioo` intervals -/ lemma nhds_basis_Ioo_pos_of_pos [no_bot_order α] [no_top_order α] {a : α} (ha : 0 < a) : (𝓝 a).has_basis (λ ε : α, (0 : α) < ε ∧ ε ≤ a) (λ ε, Ioo (a-ε) (a+ε)) := ⟨ λ t, (nhds_basis_Ioo_pos a).mem_iff.trans ⟨λ h, let ⟨i, hi, hit⟩ := h in ⟨min i a, ⟨lt_min hi ha, min_le_right i a⟩, trans (Ioo_subset_Ioo (sub_le_sub_left (min_le_left i a) a) (add_le_add_left (min_le_left i a) a)) hit⟩, λ h, let ⟨i, hi, hit⟩ := h in ⟨i, hi.1, hit⟩ ⟩ ⟩ section variables [topological_space β] {b : β} {a : α} {s : set β} lemma continuous.abs (h : continuous f) : continuous (λ x, |f x|) := continuous_abs.comp h lemma continuous_at.abs (h : continuous_at f b) : continuous_at (λ x, |f x|) b := h.abs lemma continuous_within_at.abs (h : continuous_within_at f s b) : continuous_within_at (λ x, |f x|) s b := h.abs lemma continuous_on.abs (h : continuous_on f s) : continuous_on (λ x, |f x|) s := λ x hx, (h x hx).abs lemma tendsto_abs_nhds_within_zero : tendsto (abs : α → α) (𝓝[{0}ᶜ] 0) (𝓝[Ioi 0] 0) := (continuous_abs.tendsto' (0 : α) 0 abs_zero).inf $ tendsto_principal_principal.2 $ λ x, abs_pos.2 end /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `C` and `g` tends to `at_top` then `f + g` tends to `at_top`. -/ lemma filter.tendsto.add_at_top {C : α} (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_top) : tendsto (λ x, f x + g x) l at_top := begin nontriviality α, obtain ⟨C', hC'⟩ : ∃ C', C' < C := no_bot C, refine tendsto_at_top_add_left_of_le' _ C' _ hg, exact (hf.eventually (lt_mem_nhds hC')).mono (λ x, le_of_lt) end /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `C` and `g` tends to `at_bot` then `f + g` tends to `at_bot`. -/ lemma filter.tendsto.add_at_bot {C : α} (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_bot) : tendsto (λ x, f x + g x) l at_bot := @filter.tendsto.add_at_top (order_dual α) _ _ _ _ _ _ _ _ hf hg /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `at_top` and `g` tends to `C` then `f + g` tends to `at_top`. -/ lemma filter.tendsto.at_top_add {C : α} (hf : tendsto f l at_top) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, f x + g x) l at_top := by { conv in (_ + _) { rw add_comm }, exact hg.add_at_top hf } /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `at_bot` and `g` tends to `C` then `f + g` tends to `at_bot`. -/ lemma filter.tendsto.at_bot_add {C : α} (hf : tendsto f l at_bot) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, f x + g x) l at_bot := by { conv in (_ + _) { rw add_comm }, exact hg.add_at_bot hf } end linear_ordered_add_comm_group section linear_ordered_field variables [linear_ordered_field α] [topological_space α] [order_topology α] variables {l : filter β} {f g : β → α} section continuous_mul lemma mul_tendsto_nhds_zero_right (x : α) : tendsto (uncurry ((*) : α → α → α)) (𝓝 0 ×ᶠ 𝓝 x) $ 𝓝 0 := begin have hx : 0 < 2 * (1 + |x|) := (mul_pos (zero_lt_two) $ lt_of_lt_of_le zero_lt_one $ le_add_of_le_of_nonneg le_rfl (abs_nonneg x)), rw ((nhds_basis_zero_abs_sub_lt α).prod $ nhds_basis_abs_sub_lt x).tendsto_iff (nhds_basis_zero_abs_sub_lt α), refine λ ε ε_pos, ⟨(ε/(2 * (1 + |x|)), 1), ⟨div_pos ε_pos hx, zero_lt_one⟩, _⟩, suffices : ∀ (a b : α), |a| < ε / (2 * (1 + |x|)) → |b - x| < 1 → |a| * |b| < ε, by simpa only [and_imp, prod.forall, mem_prod, ← abs_mul], intros a b h h', refine lt_of_le_of_lt (mul_le_mul_of_nonneg_left _ (abs_nonneg a)) ((lt_div_iff hx).1 h), calc |b| = |(b - x) + x| : by rw sub_add_cancel b x ... ≤ |b - x| + |x| : abs_add (b - x) x ... ≤ 1 + |x| : add_le_add_right (le_of_lt h') (|x|) ... ≤ 2 * (1 + |x|) : by linarith, end lemma mul_tendsto_nhds_zero_left (x : α) : tendsto (uncurry ((*) : α → α → α)) (𝓝 x ×ᶠ 𝓝 0) $ 𝓝 0 := begin intros s hs, have := mul_tendsto_nhds_zero_right x hs, rw [filter.mem_map, mem_prod_iff] at this ⊢, obtain ⟨U, hU, V, hV, h⟩ := this, exact ⟨V, hV, U, hU, λ y hy, ((mul_comm y.2 y.1) ▸ h (⟨hy.2, hy.1⟩ : (prod.mk y.2 y.1) ∈ (U.prod V)) : y.1 * y.2 ∈ s)⟩, end lemma nhds_eq_map_mul_left_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) : 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1) := begin have hx₀' : 0 < |x₀| := abs_pos.2 hx₀, refine filter.ext (λ t, _), simp only [exists_prop, set_of_subset_set_of, (nhds_basis_abs_sub_lt x₀).mem_iff, (nhds_basis_abs_sub_lt (1 : α)).mem_iff, filter.mem_map'], refine ⟨λ h, _, λ h, _⟩, { obtain ⟨i, hi, hit⟩ := h, refine ⟨i / (|x₀|), div_pos hi (abs_pos.2 hx₀), λ x hx, hit _⟩, calc |x₀ * x - x₀| = |x₀ * (x - 1)| : congr_arg abs (by ring_nf) ... = |x₀| * |x - 1| : abs_mul x₀ (x - 1) ... < |x₀| * (i / |x₀|) : mul_lt_mul' le_rfl hx (abs_nonneg (x - 1)) (abs_pos.2 hx₀) ... = |x₀| * i / |x₀| : by ring ... = i : mul_div_cancel_left i (λ h, hx₀ (abs_eq_zero.1 h)) }, { obtain ⟨i, hi, hit⟩ := h, refine ⟨i * |x₀|, mul_pos hi (abs_pos.2 hx₀), λ x hx, _⟩, have : |x / x₀ - 1| < i, calc |x / x₀ - 1| = |x / x₀ - x₀ / x₀| : (by rw div_self hx₀) ... = |(x - x₀) / x₀| : congr_arg abs (sub_div x x₀ x₀).symm ... = |x - x₀| / |x₀| : abs_div (x - x₀) x₀ ... < i * |x₀| / |x₀| : div_lt_div hx le_rfl (mul_nonneg (le_of_lt hi) (abs_nonneg x₀)) (abs_pos.2 hx₀) ... = i : by rw [← mul_div_assoc', div_self (ne_of_lt $ abs_pos.2 hx₀).symm, mul_one], specialize hit (x / x₀) this, rwa [mul_div_assoc', mul_div_cancel_left x hx₀] at hit } end lemma nhds_eq_map_mul_right_nhds_one {x₀ : α} (hx₀ : x₀ ≠ 0) : 𝓝 x₀ = map (λ x, x*x₀) (𝓝 1) := by simp_rw [mul_comm _ x₀, nhds_eq_map_mul_left_nhds_one hx₀] lemma mul_tendsto_nhds_one_nhds_one : tendsto (uncurry ((*) : α → α → α)) (𝓝 1 ×ᶠ 𝓝 1) $ 𝓝 1 := begin rw ((nhds_basis_Ioo_pos (1 : α)).prod $ nhds_basis_Ioo_pos (1 : α)).tendsto_iff (nhds_basis_Ioo_pos_of_pos (zero_lt_one : (0 : α) < 1)), intros ε hε, have hε' : 0 ≤ 1 - ε / 4 := by linarith, have ε_pos : 0 < ε / 4 := by linarith, have ε_pos' : 0 < ε / 2 := by linarith, simp only [and_imp, prod.forall, mem_Ioo, function.uncurry_apply_pair, mem_prod, prod.exists], refine ⟨ε/4, ε/4, ⟨ε_pos, ε_pos⟩, λ a b ha ha' hb hb', _⟩, have ha0 : 0 ≤ a := le_trans hε' (le_of_lt ha), have hb0 : 0 ≤ b := le_trans hε' (le_of_lt hb), refine ⟨lt_of_le_of_lt _ (mul_lt_mul'' ha hb hε' hε'), lt_of_lt_of_le (mul_lt_mul'' ha' hb' ha0 hb0) _⟩, { calc 1 - ε = 1 - ε / 2 - ε/2 : by ring_nf ... ≤ 1 - ε/2 - ε/2 + (ε/2)*(ε/2) : le_add_of_nonneg_right (le_of_lt (mul_pos ε_pos' ε_pos')) ... = (1 - ε/2) * (1 - ε/2) : by ring_nf ... ≤ (1 - ε/4) * (1 - ε/4) : mul_le_mul (by linarith) (by linarith) (by linarith) hε' }, { calc (1 + ε/4) * (1 + ε/4) = 1 + ε/2 + (ε/4)*(ε/4) : by ring_nf ... = 1 + ε/2 + (ε * ε) / 16 : by ring_nf ... ≤ 1 + ε/2 + ε/2 : add_le_add_left (div_le_div (le_of_lt hε.1) (le_trans ((mul_le_mul_left hε.1).2 hε.2) (le_of_eq $ mul_one ε)) zero_lt_two (by linarith)) (1 + ε/2) ... ≤ 1 + ε : by ring_nf } end @[priority 100] instance linear_ordered_field.has_continuous_mul : has_continuous_mul α := ⟨begin rw continuous_iff_continuous_at, rintro ⟨x₀, y₀⟩, by_cases hx₀ : x₀ = 0, { rw [hx₀, continuous_at, zero_mul, nhds_prod_eq], exact mul_tendsto_nhds_zero_right y₀ }, by_cases hy₀ : y₀ = 0, { rw [hy₀, continuous_at, mul_zero, nhds_prod_eq], exact mul_tendsto_nhds_zero_left x₀ }, have hxy : x₀ * y₀ ≠ 0 := mul_ne_zero hx₀ hy₀, have key : (λ p : α × α, x₀ * p.1 * (p.2 * y₀)) = ((λ x, x₀*x) ∘ (λ x, x*y₀)) ∘ (uncurry (*)), { ext p, simp [uncurry, mul_assoc] }, have key₂ : (λ x, x₀*x) ∘ (λ x, y₀*x) = λ x, (x₀ *y₀)*x, { ext x, simp }, calc map (uncurry (*)) (𝓝 (x₀, y₀)) = map (uncurry (*)) (𝓝 x₀ ×ᶠ 𝓝 y₀) : by rw nhds_prod_eq ... = map (λ (p : α × α), x₀ * p.1 * (p.2 * y₀)) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw [uncurry, nhds_eq_map_mul_left_nhds_one hx₀, nhds_eq_map_mul_right_nhds_one hy₀, prod_map_map_eq, filter.map_map] ... = map ((λ x, x₀ * x) ∘ λ x, x * y₀) (map (uncurry (*)) (𝓝 1 ×ᶠ 𝓝 1)) : by rw [key, ← filter.map_map] ... ≤ map ((λ (x : α), x₀ * x) ∘ λ x, x * y₀) (𝓝 1) : map_mono (mul_tendsto_nhds_one_nhds_one) ... = 𝓝 (x₀*y₀) : by rw [← filter.map_map, ← nhds_eq_map_mul_right_nhds_one hy₀, nhds_eq_map_mul_left_nhds_one hy₀, filter.map_map, key₂, ← nhds_eq_map_mul_left_nhds_one hxy], end⟩ end continuous_mul /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to a positive constant `C` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.at_top_mul {C : α} (hC : 0 < C) (hf : tendsto f l at_top) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_top := begin refine tendsto_at_top_mono' _ _ (hf.at_top_mul_const (half_pos hC)), filter_upwards [hg.eventually (lt_mem_nhds (half_lt_self hC)), hf.eventually (eventually_ge_at_top 0)], exact λ x hg hf, mul_le_mul_of_nonneg_left hg.le hf end /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and `g` tends to `at_top` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.mul_at_top {C : α} (hC : 0 < C) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_top) : tendsto (λ x, (f x * g x)) l at_top := by simpa only [mul_comm] using hg.at_top_mul hC hf /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to a negative constant `C` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.at_top_mul_neg {C : α} (hC : C < 0) (hf : tendsto f l at_top) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_bot := by simpa only [(∘), neg_mul_eq_mul_neg, neg_neg] using tendsto_neg_at_top_at_bot.comp (hf.at_top_mul (neg_pos.2 hC) hg.neg) /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and `g` tends to `at_top` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.neg_mul_at_top {C : α} (hC : C < 0) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_top) : tendsto (λ x, (f x * g x)) l at_bot := by simpa only [mul_comm] using hg.at_top_mul_neg hC hf /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to a positive constant `C` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.at_bot_mul {C : α} (hC : 0 < C) (hf : tendsto f l at_bot) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_bot := by simpa [(∘)] using tendsto_neg_at_top_at_bot.comp ((tendsto_neg_at_bot_at_top.comp hf).at_top_mul hC hg) /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to a negative constant `C` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.at_bot_mul_neg {C : α} (hC : C < 0) (hf : tendsto f l at_bot) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_top := by simpa [(∘)] using tendsto_neg_at_bot_at_top.comp ((tendsto_neg_at_bot_at_top.comp hf).at_top_mul_neg hC hg) /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and `g` tends to `at_bot` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.mul_at_bot {C : α} (hC : 0 < C) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_bot) : tendsto (λ x, (f x * g x)) l at_bot := by simpa only [mul_comm] using hg.at_bot_mul hC hf /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and `g` tends to `at_bot` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.neg_mul_at_bot {C : α} (hC : C < 0) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_bot) : tendsto (λ x, (f x * g x)) l at_top := by simpa only [mul_comm] using hg.at_bot_mul_neg hC hf /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/ lemma tendsto_inv_zero_at_top : tendsto (λx:α, x⁻¹) (𝓝[set.Ioi (0:α)] 0) at_top := begin refine (at_top_basis' 1).tendsto_right_iff.2 (λ b hb, _), have hb' : 0 < b := zero_lt_one.trans_le hb, filter_upwards [Ioc_mem_nhds_within_Ioi ⟨le_rfl, inv_pos.2 hb'⟩], exact λ x hx, (le_inv hx.1 hb').1 hx.2 end /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/ lemma tendsto_inv_at_top_zero' : tendsto (λr:α, r⁻¹) at_top (𝓝[set.Ioi (0:α)] 0) := begin refine (has_basis.tendsto_iff at_top_basis ⟨λ s, mem_nhds_within_Ioi_iff_exists_Ioc_subset⟩).2 _, refine λ b hb, ⟨b⁻¹, trivial, λ x hx, _⟩, have : 0 < x := lt_of_lt_of_le (inv_pos.2 hb) hx, exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩ end lemma tendsto_inv_at_top_zero : tendsto (λr:α, r⁻¹) at_top (𝓝 0) := tendsto_inv_at_top_zero'.mono_right inf_le_left lemma filter.tendsto.div_at_top [has_continuous_mul α] {f g : β → α} {l : filter β} {a : α} (h : tendsto f l (𝓝 a)) (hg : tendsto g l at_top) : tendsto (λ x, f x / g x) l (𝓝 0) := by { simp only [div_eq_mul_inv], exact mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg) } lemma filter.tendsto.inv_tendsto_at_top (h : tendsto f l at_top) : tendsto (f⁻¹) l (𝓝 0) := tendsto_inv_at_top_zero.comp h lemma filter.tendsto.inv_tendsto_zero (h : tendsto f l (𝓝[set.Ioi 0] 0)) : tendsto (f⁻¹) l at_top := tendsto_inv_zero_at_top.comp h /-- The function `x^(-n)` tends to `0` at `+∞` for any positive natural `n`. A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/ lemma tendsto_pow_neg_at_top {n : ℕ} (hn : 1 ≤ n) : tendsto (λ x : α, x ^ (-(n:ℤ))) at_top (𝓝 0) := tendsto.congr (λ x, (fpow_neg x n).symm) (filter.tendsto.inv_tendsto_at_top (by simpa [gpow_coe_nat] using tendsto_pow_at_top hn)) lemma tendsto_fpow_at_top_zero {n : ℤ} (hn : n < 0) : tendsto (λ x : α, x^n) at_top (𝓝 0) := begin have : 1 ≤ -n := le_neg.mp (int.le_of_lt_add_one (hn.trans_le (neg_add_self 1).symm.le)), apply tendsto.congr (show ∀ x : α, x^-(-n) = x^n, by simp), lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N, exact tendsto_pow_neg_at_top (by exact_mod_cast this) end lemma tendsto_const_mul_fpow_at_top_zero {n : ℤ} {c : α} (hn : n < 0) : tendsto (λ x, c * x ^ n) at_top (𝓝 0) := (mul_zero c) ▸ (filter.tendsto.const_mul c (tendsto_fpow_at_top_zero hn)) lemma tendsto_const_mul_pow_nhds_iff {n : ℕ} {c d : α} (hc : c ≠ 0) : tendsto (λ x : α, c * x ^ n) at_top (𝓝 d) ↔ n = 0 ∧ c = d := begin refine ⟨λ h, _, λ h, _⟩, { have hn : n = 0, { by_contradiction hn, have hn : 1 ≤ n := nat.succ_le_iff.2 (lt_of_le_of_ne (zero_le _) (ne.symm hn)), by_cases hc' : 0 < c, { have := (tendsto_const_mul_pow_at_top_iff c n).2 ⟨hn, hc'⟩, exact not_tendsto_nhds_of_tendsto_at_top this d h }, { have := (tendsto_neg_const_mul_pow_at_top_iff c n).2 ⟨hn, lt_of_le_of_ne (not_lt.1 hc') hc⟩, exact not_tendsto_nhds_of_tendsto_at_bot this d h } }, have : (λ x : α, c * x ^ n) = (λ x : α, c), by simp [hn], rw [this, tendsto_const_nhds_iff] at h, exact ⟨hn, h⟩ }, { obtain ⟨hn, hcd⟩ := h, simpa [hn, hcd] using tendsto_const_nhds } end lemma tendsto_const_mul_fpow_at_top_zero_iff {n : ℤ} {c d : α} (hc : c ≠ 0) : tendsto (λ x : α, c * x ^ n) at_top (𝓝 d) ↔ (n = 0 ∧ c = d) ∨ (n < 0 ∧ d = 0) := begin refine ⟨λ h, _, λ h, _⟩, { by_cases hn : 0 ≤ n, { lift n to ℕ using hn, simp only [gpow_coe_nat] at h, rw [tendsto_const_mul_pow_nhds_iff hc, ← int.coe_nat_eq_zero] at h, exact or.inl h }, { rw not_le at hn, refine or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_fpow_at_top_zero hn)⟩ } }, { cases h, { simp only [h.left, h.right, gpow_zero, mul_one], exact tendsto_const_nhds }, { exact h.2.symm ▸ tendsto_const_mul_fpow_at_top_zero h.1} } end end linear_ordered_field lemma preimage_neg [add_group α] : preimage (has_neg.neg : α → α) = image (has_neg.neg : α → α) := (image_eq_preimage_of_inverse neg_neg neg_neg).symm lemma filter.map_neg [add_group α] : map (has_neg.neg : α → α) = comap (has_neg.neg : α → α) := funext $ assume f, map_eq_comap_of_inverse (funext neg_neg) (funext neg_neg) section order_topology variables [topological_space α] [topological_space β] [linear_order α] [linear_order β] [order_topology α] [order_topology β] lemma is_lub.frequently_mem {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : ∃ᶠ x in 𝓝[Iic a] a, x ∈ s := begin rcases hs with ⟨a', ha'⟩, intro h, rcases (ha.1 ha').eq_or_lt with (rfl|ha'a), { exact h.self_of_nhds_within le_rfl ha' }, { rcases (mem_nhds_within_Iic_iff_exists_Ioc_subset' ha'a).1 h with ⟨b, hba, hb⟩, rcases ha.exists_between hba with ⟨b', hb's, hb'⟩, exact hb hb' hb's }, end lemma is_lub.frequently_nhds_mem {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : ∃ᶠ x in 𝓝 a, x ∈ s := (ha.frequently_mem hs).filter_mono inf_le_left lemma is_glb.frequently_mem {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) : ∃ᶠ x in 𝓝[Ici a] a, x ∈ s := @is_lub.frequently_mem (order_dual α) _ _ _ _ _ ha hs lemma is_glb.frequently_nhds_mem {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) : ∃ᶠ x in 𝓝 a, x ∈ s := (ha.frequently_mem hs).filter_mono inf_le_left lemma is_lub.mem_closure {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : a ∈ closure s := (ha.frequently_nhds_mem hs).mem_closure lemma is_glb.mem_closure {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) : a ∈ closure s := (ha.frequently_nhds_mem hs).mem_closure lemma is_lub.nhds_within_ne_bot {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : ne_bot (𝓝[s] a) := mem_closure_iff_nhds_within_ne_bot.1 (ha.mem_closure hs) lemma is_glb.nhds_within_ne_bot : ∀ {a : α} {s : set α}, is_glb s a → s.nonempty → ne_bot (𝓝[s] a) := @is_lub.nhds_within_ne_bot (order_dual α) _ _ _ lemma is_lub_of_mem_nhds {s : set α} {a : α} {f : filter α} (hsa : a ∈ upper_bounds s) (hsf : s ∈ f) [ne_bot (f ⊓ 𝓝 a)] : is_lub s a := ⟨hsa, assume b hb, not_lt.1 $ assume hba, have s ∩ {a | b < a} ∈ f ⊓ 𝓝 a, from inter_mem_inf hsf (is_open.mem_nhds (is_open_lt' _) hba), let ⟨x, ⟨hxs, hxb⟩⟩ := filter.nonempty_of_mem this in have b < b, from lt_of_lt_of_le hxb $ hb hxs, lt_irrefl b this⟩ lemma is_lub_of_mem_closure {s : set α} {a : α} (hsa : a ∈ upper_bounds s) (hsf : a ∈ closure s) : is_lub s a := begin rw [mem_closure_iff_cluster_pt, cluster_pt, inf_comm] at hsf, haveI : (𝓟 s ⊓ 𝓝 a).ne_bot := hsf, exact is_lub_of_mem_nhds hsa (mem_principal_self s), end lemma is_glb_of_mem_nhds : ∀ {s : set α} {a : α} {f : filter α}, a ∈ lower_bounds s → s ∈ f → ne_bot (f ⊓ 𝓝 a) → is_glb s a := @is_lub_of_mem_nhds (order_dual α) _ _ _ lemma is_glb_of_mem_closure {s : set α} {a : α} (hsa : a ∈ lower_bounds s) (hsf : a ∈ closure s) : is_glb s a := @is_lub_of_mem_closure (order_dual α) _ _ _ s a hsa hsf lemma is_lub.mem_upper_bounds_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] {f : α → γ} {s : set α} {a : α} {b : γ} (hf : monotone_on f s) (ha : is_lub s a) (hb : tendsto f (𝓝[s] a) (𝓝 b)) : b ∈ upper_bounds (f '' s) := begin rintro _ ⟨x, hx, rfl⟩, replace ha := ha.inter_Ici_of_mem hx, haveI := ha.nhds_within_ne_bot ⟨x, hx, le_rfl⟩, refine ge_of_tendsto (hb.mono_left (nhds_within_mono _ (inter_subset_left s (Ici x)))) _, exact mem_of_superset self_mem_nhds_within (λ y hy, hf hx hy.1 hy.2) end -- For a version of this theorem in which the convergence considered on the domain `α` is as -- `x : α` tends to infinity, rather than tending to a point `x` in `α`, see `is_lub_of_tendsto`, -- below lemma is_lub.is_lub_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] {f : α → γ} {s : set α} {a : α} {b : γ} (hf : monotone_on f s) (ha : is_lub s a) (hs : s.nonempty) (hb : tendsto f (𝓝[s] a) (𝓝 b)) : is_lub (f '' s) b := begin haveI := ha.nhds_within_ne_bot hs, exact ⟨ha.mem_upper_bounds_of_tendsto hf hb, λ b' hb', le_of_tendsto hb (mem_of_superset self_mem_nhds_within $ λ x hx, hb' $ mem_image_of_mem _ hx)⟩ end lemma is_glb.mem_lower_bounds_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] {f : α → γ} {s : set α} {a : α} {b : γ} (hf : monotone_on f s) (ha : is_glb s a) (hb : tendsto f (𝓝[s] a) (𝓝 b)) : b ∈ lower_bounds (f '' s) := @is_lub.mem_upper_bounds_of_tendsto (order_dual α) (order_dual γ) _ _ _ _ _ _ _ _ _ _ hf.dual ha hb -- For a version of this theorem in which the convergence considered on the domain `α` is as -- `x : α` tends to negative infinity, rather than tending to a point `x` in `α`, see -- `is_glb_of_tendsto`, below lemma is_glb.is_glb_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] {f : α → γ} {s : set α} {a : α} {b : γ} (hf : monotone_on f s) : is_glb s a → s.nonempty → tendsto f (𝓝[s] a) (𝓝 b) → is_glb (f '' s) b := @is_lub.is_lub_of_tendsto (order_dual α) (order_dual γ) _ _ _ _ _ _ f s a b hf.dual lemma is_lub.mem_lower_bounds_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] {f : α → γ} {s : set α} {a : α} {b : γ} (hf : antitone_on f s) (ha : is_lub s a) (hb : tendsto f (𝓝[s] a) (𝓝 b)) : b ∈ lower_bounds (f '' s) := @is_lub.mem_upper_bounds_of_tendsto α (order_dual γ) _ _ _ _ _ _ _ _ _ _ hf ha hb lemma is_lub.is_glb_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] : ∀ {f : α → γ} {s : set α} {a : α} {b : γ}, (antitone_on f s) → is_lub s a → s.nonempty → tendsto f (𝓝[s] a) (𝓝 b) → is_glb (f '' s) b := @is_lub.is_lub_of_tendsto α (order_dual γ) _ _ _ _ _ _ lemma is_glb.mem_upper_bounds_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] {f : α → γ} {s : set α} {a : α} {b : γ} (hf : antitone_on f s) (ha : is_glb s a) (hb : tendsto f (𝓝[s] a) (𝓝 b)) : b ∈ upper_bounds (f '' s) := @is_glb.mem_lower_bounds_of_tendsto α (order_dual γ) _ _ _ _ _ _ _ _ _ _ hf ha hb lemma is_glb.is_lub_of_tendsto [preorder γ] [topological_space γ] [order_closed_topology γ] : ∀ {f : α → γ} {s : set α} {a : α} {b : γ}, (antitone_on f s) → is_glb s a → s.nonempty → tendsto f (𝓝[s] a) (𝓝 b) → is_lub (f '' s) b := @is_glb.is_glb_of_tendsto α (order_dual γ) _ _ _ _ _ _ lemma is_lub.mem_of_is_closed {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) (sc : is_closed s) : a ∈ s := sc.closure_subset $ ha.mem_closure hs alias is_lub.mem_of_is_closed ← is_closed.is_lub_mem lemma is_glb.mem_of_is_closed {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) (sc : is_closed s) : a ∈ s := sc.closure_subset $ ha.mem_closure hs alias is_glb.mem_of_is_closed ← is_closed.is_glb_mem /-! ### Existence of sequences tending to Inf or Sup of a given set -/ lemma is_lub.exists_seq_strict_mono_tendsto_of_not_mem' {t : set α} {x : α} (htx : is_lub t x) (not_mem : x ∉ t) (ht : t.nonempty) (hx : is_countably_generated (𝓝 x)) : ∃ u : ℕ → α, strict_mono u ∧ (∀ n, u n < x) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := begin rcases ht with ⟨l, hl⟩, have hl : l < x, { rcases lt_or_eq_of_le (htx.1 hl) with h|rfl, { exact h }, { exact (not_mem hl).elim } }, obtain ⟨s, hs⟩ : ∃ s : ℕ → set α, (𝓝 x).has_basis (λ (_x : ℕ), true) s := let ⟨s, hs⟩ := hx.exists_antitone_basis in ⟨s, hs.to_has_basis⟩, have : ∀ n k, k < x → ∃ y, Icc y x ⊆ s n ∧ k < y ∧ y < x ∧ y ∈ t, { assume n k hk, obtain ⟨L, hL, h⟩ : ∃ (L : α) (hL : L ∈ Ico k x), Ioc L x ⊆ s n := exists_Ioc_subset_of_mem_nhds' (hs.mem_of_mem trivial) hk, obtain ⟨y, hy⟩ : ∃ (y : α), L < y ∧ y < x ∧ y ∈ t, { rcases htx.exists_between' not_mem hL.2 with ⟨y, yt, hy⟩, refine ⟨y, hy.1, hy.2, yt⟩ }, exact ⟨y, λ z hz, h ⟨hy.1.trans_le hz.1, hz.2⟩, hL.1.trans_lt hy.1, hy.2⟩ }, choose! f hf using this, let u : ℕ → α := λ n, nat.rec_on n (f 0 l) (λ n h, f n.succ h), have I : ∀ n, u n < x, { assume n, induction n with n IH, { exact (hf 0 l hl).2.2.1 }, { exact (hf n.succ _ IH).2.2.1 } }, have S : strict_mono u := strict_mono_nat_of_lt_succ (λ n, (hf n.succ _ (I n)).2.1), refine ⟨u, S, I, hs.tendsto_right_iff.2 (λ n _, _), (λ n, _)⟩, { simp only [ge_iff_le, eventually_at_top], refine ⟨n, λ p hp, _⟩, have up : u p ∈ Icc (u n) x := ⟨S.monotone hp, (I p).le⟩, have : Icc (u n) x ⊆ s n, by { cases n, { exact (hf 0 l hl).1 }, { exact (hf n.succ (u n) (I n)).1 } }, exact this up }, { cases n, { exact (hf 0 l hl).2.2.2 }, { exact (hf n.succ _ (I n)).2.2.2 } } end lemma is_lub.exists_seq_monotone_tendsto' {t : set α} {x : α} (htx : is_lub t x) (ht : t.nonempty) (hx : is_countably_generated (𝓝 x)) : ∃ u : ℕ → α, monotone u ∧ (∀ n, u n ≤ x) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := begin by_cases h : x ∈ t, { exact ⟨λ n, x, monotone_const, λ n, le_rfl, tendsto_const_nhds, λ n, h⟩ }, { rcases htx.exists_seq_strict_mono_tendsto_of_not_mem' h ht hx with ⟨u, hu⟩, exact ⟨u, hu.1.monotone, λ n, (hu.2.1 n).le, hu.2.2⟩ } end lemma is_lub.exists_seq_strict_mono_tendsto_of_not_mem [first_countable_topology α] {t : set α} {x : α} (htx : is_lub t x) (ht : t.nonempty) (not_mem : x ∉ t) : ∃ u : ℕ → α, strict_mono u ∧ (∀ n, u n < x) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := htx.exists_seq_strict_mono_tendsto_of_not_mem' not_mem ht (is_countably_generated_nhds x) lemma is_lub.exists_seq_monotone_tendsto [first_countable_topology α] {t : set α} {x : α} (htx : is_lub t x) (ht : t.nonempty) : ∃ u : ℕ → α, monotone u ∧ (∀ n, u n ≤ x) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := htx.exists_seq_monotone_tendsto' ht (is_countably_generated_nhds x) lemma exists_seq_strict_mono_tendsto' {α : Type*} [linear_order α] [topological_space α] [densely_ordered α] [order_topology α] [first_countable_topology α] {x y : α} (hy : y < x) : ∃ u : ℕ → α, strict_mono u ∧ (∀ n, u n < x) ∧ tendsto u at_top (𝓝 x) := begin have hx : x ∉ Iio x := λ h, (lt_irrefl x h).elim, have ht : set.nonempty (Iio x) := ⟨y, hy⟩, rcases is_lub_Iio.exists_seq_strict_mono_tendsto_of_not_mem ht hx with ⟨u, hu⟩, exact ⟨u, hu.1, hu.2.1, hu.2.2.1⟩, end lemma exists_seq_strict_mono_tendsto [densely_ordered α] [no_bot_order α] [first_countable_topology α] (x : α) : ∃ u : ℕ → α, strict_mono u ∧ (∀ n, u n < x) ∧ tendsto u at_top (𝓝 x) := begin obtain ⟨y, hy⟩ : ∃ y, y < x := no_bot _, exact exists_seq_strict_mono_tendsto' hy end lemma exists_seq_tendsto_Sup {α : Type*} [conditionally_complete_linear_order α] [topological_space α] [order_topology α] [first_countable_topology α] {S : set α} (hS : S.nonempty) (hS' : bdd_above S) : ∃ (u : ℕ → α), monotone u ∧ tendsto u at_top (𝓝 (Sup S)) ∧ (∀ n, u n ∈ S) := begin rcases (is_lub_cSup hS hS').exists_seq_monotone_tendsto hS with ⟨u, hu⟩, exact ⟨u, hu.1, hu.2.2⟩, end lemma is_glb.exists_seq_strict_anti_tendsto_of_not_mem' {t : set α} {x : α} (htx : is_glb t x) (not_mem : x ∉ t) (ht : t.nonempty) (hx : is_countably_generated (𝓝 x)) : ∃ u : ℕ → α, strict_anti u ∧ (∀ n, x < u n) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := @is_lub.exists_seq_strict_mono_tendsto_of_not_mem' (order_dual α) _ _ _ t x htx not_mem ht hx lemma is_glb.exists_seq_antitone_tendsto' {t : set α} {x : α} (htx : is_glb t x) (ht : t.nonempty) (hx : is_countably_generated (𝓝 x)) : ∃ u : ℕ → α, antitone u ∧ (∀ n, x ≤ u n) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := @is_lub.exists_seq_monotone_tendsto' (order_dual α) _ _ _ t x htx ht hx lemma is_glb.exists_seq_strict_anti_tendsto_of_not_mem [first_countable_topology α] {t : set α} {x : α} (htx : is_glb t x) (ht : t.nonempty) (not_mem : x ∉ t) : ∃ u : ℕ → α, strict_anti u ∧ (∀ n, x < u n) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := htx.exists_seq_strict_anti_tendsto_of_not_mem' not_mem ht (is_countably_generated_nhds x) lemma is_glb.exists_seq_antitone_tendsto [first_countable_topology α] {t : set α} {x : α} (htx : is_glb t x) (ht : t.nonempty) : ∃ u : ℕ → α, antitone u ∧ (∀ n, x ≤ u n) ∧ tendsto u at_top (𝓝 x) ∧ (∀ n, u n ∈ t) := htx.exists_seq_antitone_tendsto' ht (is_countably_generated_nhds x) lemma exists_seq_strict_anti_tendsto' [densely_ordered α] [first_countable_topology α] {x y : α} (hy : x < y) : ∃ u : ℕ → α, strict_anti u ∧ (∀ n, x < u n) ∧ tendsto u at_top (𝓝 x) := @exists_seq_strict_mono_tendsto' (order_dual α) _ _ _ _ _ x y hy lemma exists_seq_strict_anti_tendsto [densely_ordered α] [no_top_order α] [first_countable_topology α] (x : α) : ∃ u : ℕ → α, strict_anti u ∧ (∀ n, x < u n) ∧ tendsto u at_top (𝓝 x) := @exists_seq_strict_mono_tendsto (order_dual α) _ _ _ _ _ _ x lemma exists_seq_tendsto_Inf {α : Type*} [conditionally_complete_linear_order α] [topological_space α] [order_topology α] [first_countable_topology α] {S : set α} (hS : S.nonempty) (hS' : bdd_below S) : ∃ (u : ℕ → α), antitone u ∧ tendsto u at_top (𝓝 (Inf S)) ∧ (∀ n, u n ∈ S) := @exists_seq_tendsto_Sup (order_dual α) _ _ _ _ S hS hS' /-- A compact set is bounded below -/ lemma is_compact.bdd_below {α : Type u} [topological_space α] [linear_order α] [order_closed_topology α] [nonempty α] {s : set α} (hs : is_compact s) : bdd_below s := begin by_contra H, rcases hs.elim_finite_subcover_image (λ x (_ : x ∈ s), @is_open_Ioi _ _ _ _ x) _ with ⟨t, st, ft, ht⟩, { refine H (ft.bdd_below.imp $ λ C hC y hy, _), rcases mem_bUnion_iff.1 (ht hy) with ⟨x, hx, xy⟩, exact le_trans (hC hx) (le_of_lt xy) }, { refine λ x hx, mem_bUnion_iff.2 (not_imp_comm.1 _ H), exact λ h, ⟨x, λ y hy, le_of_not_lt (h.imp $ λ ys, ⟨_, hy, ys⟩)⟩ } end /-- A compact set is bounded above -/ lemma is_compact.bdd_above {α : Type u} [topological_space α] [linear_order α] [order_topology α] : Π [nonempty α] {s : set α}, is_compact s → bdd_above s := @is_compact.bdd_below (order_dual α) _ _ _ end order_topology section densely_ordered variables [topological_space α] [linear_order α] [order_topology α] [densely_ordered α] {a b : α} {s : set α} /-- The closure of the interval `(a, +∞)` is the closed interval `[a, +∞)`, unless `a` is a top element. -/ lemma closure_Ioi' {a b : α} (hab : a < b) : closure (Ioi a) = Ici a := begin apply subset.antisymm, { exact closure_minimal Ioi_subset_Ici_self is_closed_Ici }, { rw [← diff_subset_closure_iff, Ici_diff_Ioi_same, singleton_subset_iff], exact is_glb_Ioi.mem_closure ⟨_, hab⟩ } end /-- The closure of the interval `(a, +∞)` is the closed interval `[a, +∞)`. -/ @[simp] lemma closure_Ioi (a : α) [no_top_order α] : closure (Ioi a) = Ici a := let ⟨b, hb⟩ := no_top a in closure_Ioi' hb /-- The closure of the interval `(-∞, a)` is the closed interval `(-∞, a]`, unless `a` is a bottom element. -/ lemma closure_Iio' {a b : α} (hab : b < a) : closure (Iio a) = Iic a := @closure_Ioi' (order_dual α) _ _ _ _ _ _ hab /-- The closure of the interval `(-∞, a)` is the interval `(-∞, a]`. -/ @[simp] lemma closure_Iio (a : α) [no_bot_order α] : closure (Iio a) = Iic a := let ⟨b, hb⟩ := no_bot a in closure_Iio' hb /-- The closure of the open interval `(a, b)` is the closed interval `[a, b]`. -/ @[simp] lemma closure_Ioo {a b : α} (hab : a < b) : closure (Ioo a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ioo_subset_Icc_self is_closed_Icc }, { rw [← diff_subset_closure_iff, Icc_diff_Ioo_same hab.le], have hab' : (Ioo a b).nonempty, from nonempty_Ioo.2 hab, simp only [insert_subset, singleton_subset_iff], exact ⟨(is_glb_Ioo hab).mem_closure hab', (is_lub_Ioo hab).mem_closure hab'⟩ } end /-- The closure of the interval `(a, b]` is the closed interval `[a, b]`. -/ @[simp] lemma closure_Ioc {a b : α} (hab : a < b) : closure (Ioc a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ioc_subset_Icc_self is_closed_Icc }, { apply subset.trans _ (closure_mono Ioo_subset_Ioc_self), rw closure_Ioo hab } end /-- The closure of the interval `[a, b)` is the closed interval `[a, b]`. -/ @[simp] lemma closure_Ico {a b : α} (hab : a < b) : closure (Ico a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ico_subset_Icc_self is_closed_Icc }, { apply subset.trans _ (closure_mono Ioo_subset_Ico_self), rw closure_Ioo hab } end @[simp] lemma interior_Ici [no_bot_order α] {a : α} : interior (Ici a) = Ioi a := by rw [← compl_Iio, interior_compl, closure_Iio, compl_Iic] @[simp] lemma interior_Iic [no_top_order α] {a : α} : interior (Iic a) = Iio a := by rw [← compl_Ioi, interior_compl, closure_Ioi, compl_Ici] @[simp] lemma interior_Icc [no_bot_order α] [no_top_order α] {a b : α}: interior (Icc a b) = Ioo a b := by rw [← Ici_inter_Iic, interior_inter, interior_Ici, interior_Iic, Ioi_inter_Iio] @[simp] lemma interior_Ico [no_bot_order α] {a b : α} : interior (Ico a b) = Ioo a b := by rw [← Ici_inter_Iio, interior_inter, interior_Ici, interior_Iio, Ioi_inter_Iio] @[simp] lemma interior_Ioc [no_top_order α] {a b : α} : interior (Ioc a b) = Ioo a b := by rw [← Ioi_inter_Iic, interior_inter, interior_Ioi, interior_Iic, Ioi_inter_Iio] @[simp] lemma frontier_Ici [no_bot_order α] {a : α} : frontier (Ici a) = {a} := by simp [frontier] @[simp] lemma frontier_Iic [no_top_order α] {a : α} : frontier (Iic a) = {a} := by simp [frontier] @[simp] lemma frontier_Ioi [no_top_order α] {a : α} : frontier (Ioi a) = {a} := by simp [frontier] @[simp] lemma frontier_Iio [no_bot_order α] {a : α} : frontier (Iio a) = {a} := by simp [frontier] @[simp] lemma frontier_Icc [no_bot_order α] [no_top_order α] {a b : α} (h : a < b) : frontier (Icc a b) = {a, b} := by simp [frontier, le_of_lt h, Icc_diff_Ioo_same] @[simp] lemma frontier_Ioo {a b : α} (h : a < b) : frontier (Ioo a b) = {a, b} := by simp [frontier, h, le_of_lt h, Icc_diff_Ioo_same] @[simp] lemma frontier_Ico [no_bot_order α] {a b : α} (h : a < b) : frontier (Ico a b) = {a, b} := by simp [frontier, h, le_of_lt h, Icc_diff_Ioo_same] @[simp] lemma frontier_Ioc [no_top_order α] {a b : α} (h : a < b) : frontier (Ioc a b) = {a, b} := by simp [frontier, h, le_of_lt h, Icc_diff_Ioo_same] lemma nhds_within_Ioi_ne_bot' {a b c : α} (H₁ : a < c) (H₂ : a ≤ b) : ne_bot (𝓝[Ioi a] b) := mem_closure_iff_nhds_within_ne_bot.1 $ by { rw [closure_Ioi' H₁], exact H₂ } lemma nhds_within_Ioi_ne_bot [no_top_order α] {a b : α} (H : a ≤ b) : ne_bot (𝓝[Ioi a] b) := let ⟨c, hc⟩ := no_top a in nhds_within_Ioi_ne_bot' hc H lemma nhds_within_Ioi_self_ne_bot' {a b : α} (H : a < b) : ne_bot (𝓝[Ioi a] a) := nhds_within_Ioi_ne_bot' H (le_refl a) @[instance] lemma nhds_within_Ioi_self_ne_bot [no_top_order α] (a : α) : ne_bot (𝓝[Ioi a] a) := nhds_within_Ioi_ne_bot (le_refl a) lemma nhds_within_Iio_ne_bot' {a b c : α} (H₁ : a < c) (H₂ : b ≤ c) : ne_bot (𝓝[Iio c] b) := mem_closure_iff_nhds_within_ne_bot.1 $ by { rw [closure_Iio' H₁], exact H₂ } lemma nhds_within_Iio_ne_bot [no_bot_order α] {a b : α} (H : a ≤ b) : ne_bot (𝓝[Iio b] a) := let ⟨c, hc⟩ := no_bot b in nhds_within_Iio_ne_bot' hc H lemma nhds_within_Iio_self_ne_bot' {a b : α} (H : a < b) : ne_bot (𝓝[Iio b] b) := nhds_within_Iio_ne_bot' H (le_refl b) @[instance] lemma nhds_within_Iio_self_ne_bot [no_bot_order α] (a : α) : ne_bot (𝓝[Iio a] a) := nhds_within_Iio_ne_bot (le_refl a) lemma right_nhds_within_Ico_ne_bot {a b : α} (H : a < b) : ne_bot (𝓝[Ico a b] b) := (is_lub_Ico H).nhds_within_ne_bot (nonempty_Ico.2 H) lemma left_nhds_within_Ioc_ne_bot {a b : α} (H : a < b) : ne_bot (𝓝[Ioc a b] a) := (is_glb_Ioc H).nhds_within_ne_bot (nonempty_Ioc.2 H) lemma left_nhds_within_Ioo_ne_bot {a b : α} (H : a < b) : ne_bot (𝓝[Ioo a b] a) := (is_glb_Ioo H).nhds_within_ne_bot (nonempty_Ioo.2 H) lemma right_nhds_within_Ioo_ne_bot {a b : α} (H : a < b) : ne_bot (𝓝[Ioo a b] b) := (is_lub_Ioo H).nhds_within_ne_bot (nonempty_Ioo.2 H) lemma comap_coe_nhds_within_Iio_of_Ioo_subset (hb : s ⊆ Iio b) (hs : s.nonempty → ∃ a < b, Ioo a b ⊆ s) : comap (coe : s → α) (𝓝[Iio b] b) = at_top := begin nontriviality, haveI : nonempty s := nontrivial_iff_nonempty.1 ‹_›, rcases hs (nonempty_subtype.1 ‹_›) with ⟨a, h, hs⟩, ext u, split, { rintros ⟨t, ht, hts⟩, obtain ⟨x, ⟨hxa : a ≤ x, hxb : x < b⟩, hxt : Ioo x b ⊆ t⟩ := (mem_nhds_within_Iio_iff_exists_mem_Ico_Ioo_subset h).mp ht, obtain ⟨y, hxy, hyb⟩ := exists_between hxb, refine mem_of_superset (mem_at_top ⟨y, hs ⟨hxa.trans_lt hxy, hyb⟩⟩) _, rintros ⟨z, hzs⟩ (hyz : y ≤ z), refine hts (hxt ⟨hxy.trans_le _, hb _⟩); assumption }, { intros hu, obtain ⟨x : s, hx : ∀ z, x ≤ z → z ∈ u⟩ := mem_at_top_sets.1 hu, exact ⟨Ioo x b, Ioo_mem_nhds_within_Iio (right_mem_Ioc.2 $ hb x.2), λ z hz, hx _ hz.1.le⟩ } end lemma comap_coe_nhds_within_Ioi_of_Ioo_subset (ha : s ⊆ Ioi a) (hs : s.nonempty → ∃ b > a, Ioo a b ⊆ s) : comap (coe : s → α) (𝓝[Ioi a] a) = at_bot := comap_coe_nhds_within_Iio_of_Ioo_subset (show of_dual ⁻¹' s ⊆ Iio (to_dual a), from ha) (λ h, by simpa only [order_dual.exists, dual_Ioo] using hs h) lemma map_coe_at_top_of_Ioo_subset (hb : s ⊆ Iio b) (hs : ∀ a' < b, ∃ a < b, Ioo a b ⊆ s) : map (coe : s → α) at_top = 𝓝[Iio b] b := begin rcases eq_empty_or_nonempty (Iio b) with (hb'|⟨a, ha⟩), { rw [filter_eq_bot_of_is_empty at_top, map_bot, hb', nhds_within_empty], exact ⟨λ x, hb'.subset (hb x.2)⟩ }, { rw [← comap_coe_nhds_within_Iio_of_Ioo_subset hb (λ _, hs a ha), map_comap_of_mem], rw subtype.range_coe, exact (mem_nhds_within_Iio_iff_exists_Ioo_subset' ha).2 (hs a ha) }, end lemma map_coe_at_bot_of_Ioo_subset (ha : s ⊆ Ioi a) (hs : ∀ b' > a, ∃ b > a, Ioo a b ⊆ s) : map (coe : s → α) at_bot = (𝓝[Ioi a] a) := begin -- the elaborator gets stuck without `(... : _)` refine (map_coe_at_top_of_Ioo_subset (show of_dual ⁻¹' s ⊆ Iio (to_dual a), from ha) (λ b' hb', _) : _), simpa only [order_dual.exists, dual_Ioo] using hs b' hb', end /-- The `at_top` filter for an open interval `Ioo a b` comes from the left-neighbourhoods filter at the right endpoint in the ambient order. -/ lemma comap_coe_Ioo_nhds_within_Iio (a b : α) : comap (coe : Ioo a b → α) (𝓝[Iio b] b) = at_top := comap_coe_nhds_within_Iio_of_Ioo_subset Ioo_subset_Iio_self $ λ h, ⟨a, nonempty_Ioo.1 h, subset.refl _⟩ /-- The `at_bot` filter for an open interval `Ioo a b` comes from the right-neighbourhoods filter at the left endpoint in the ambient order. -/ lemma comap_coe_Ioo_nhds_within_Ioi (a b : α) : comap (coe : Ioo a b → α) (𝓝[Ioi a] a) = at_bot := comap_coe_nhds_within_Ioi_of_Ioo_subset Ioo_subset_Ioi_self $ λ h, ⟨b, nonempty_Ioo.1 h, subset.refl _⟩ lemma comap_coe_Ioi_nhds_within_Ioi (a : α) : comap (coe : Ioi a → α) (𝓝[Ioi a] a) = at_bot := comap_coe_nhds_within_Ioi_of_Ioo_subset (subset.refl _) $ λ ⟨x, hx⟩, ⟨x, hx, Ioo_subset_Ioi_self⟩ lemma comap_coe_Iio_nhds_within_Iio (a : α) : comap (coe : Iio a → α) (𝓝[Iio a] a) = at_top := @comap_coe_Ioi_nhds_within_Ioi (order_dual α) _ _ _ _ a @[simp] lemma map_coe_Ioo_at_top {a b : α} (h : a < b) : map (coe : Ioo a b → α) at_top = 𝓝[Iio b] b := map_coe_at_top_of_Ioo_subset Ioo_subset_Iio_self $ λ _ _, ⟨_, h, subset.refl _⟩ @[simp] lemma map_coe_Ioo_at_bot {a b : α} (h : a < b) : map (coe : Ioo a b → α) at_bot = 𝓝[Ioi a] a := map_coe_at_bot_of_Ioo_subset Ioo_subset_Ioi_self $ λ _ _, ⟨_, h, subset.refl _⟩ @[simp] lemma map_coe_Ioi_at_bot (a : α) : map (coe : Ioi a → α) at_bot = 𝓝[Ioi a] a := map_coe_at_bot_of_Ioo_subset (subset.refl _) $ λ b hb, ⟨b, hb, Ioo_subset_Ioi_self⟩ @[simp] lemma map_coe_Iio_at_top (a : α) : map (coe : Iio a → α) at_top = 𝓝[Iio a] a := @map_coe_Ioi_at_bot (order_dual α) _ _ _ _ _ variables {l : filter β} {f : α → β} @[simp] lemma tendsto_comp_coe_Ioo_at_top (h : a < b) : tendsto (λ x : Ioo a b, f x) at_top l ↔ tendsto f (𝓝[Iio b] b) l := by rw [← map_coe_Ioo_at_top h, tendsto_map'_iff] @[simp] lemma tendsto_comp_coe_Ioo_at_bot (h : a < b) : tendsto (λ x : Ioo a b, f x) at_bot l ↔ tendsto f (𝓝[Ioi a] a) l := by rw [← map_coe_Ioo_at_bot h, tendsto_map'_iff] @[simp] lemma tendsto_comp_coe_Ioi_at_bot : tendsto (λ x : Ioi a, f x) at_bot l ↔ tendsto f (𝓝[Ioi a] a) l := by rw [← map_coe_Ioi_at_bot, tendsto_map'_iff] @[simp] lemma tendsto_comp_coe_Iio_at_top : tendsto (λ x : Iio a, f x) at_top l ↔ tendsto f (𝓝[Iio a] a) l := by rw [← map_coe_Iio_at_top, tendsto_map'_iff] @[simp] lemma tendsto_Ioo_at_top {f : β → Ioo a b} : tendsto f l at_top ↔ tendsto (λ x, (f x : α)) l (𝓝[Iio b] b) := by rw [← comap_coe_Ioo_nhds_within_Iio, tendsto_comap_iff] @[simp] lemma tendsto_Ioo_at_bot {f : β → Ioo a b} : tendsto f l at_bot ↔ tendsto (λ x, (f x : α)) l (𝓝[Ioi a] a) := by rw [← comap_coe_Ioo_nhds_within_Ioi, tendsto_comap_iff] @[simp] lemma tendsto_Ioi_at_bot {f : β → Ioi a} : tendsto f l at_bot ↔ tendsto (λ x, (f x : α)) l (𝓝[Ioi a] a) := by rw [← comap_coe_Ioi_nhds_within_Ioi, tendsto_comap_iff] @[simp] lemma tendsto_Iio_at_top {f : β → Iio a} : tendsto f l at_top ↔ tendsto (λ x, (f x : α)) l (𝓝[Iio a] a) := by rw [← comap_coe_Iio_nhds_within_Iio, tendsto_comap_iff] end densely_ordered section complete_linear_order variables [complete_linear_order α] [topological_space α] [order_topology α] [complete_linear_order β] [topological_space β] [order_topology β] [nonempty γ] lemma Sup_mem_closure {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) : Sup s ∈ closure s := (is_lub_Sup s).mem_closure hs lemma Inf_mem_closure {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) : Inf s ∈ closure s := (is_glb_Inf s).mem_closure hs lemma is_closed.Sup_mem {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) : Sup s ∈ s := (is_lub_Sup s).mem_of_is_closed hs hc lemma is_closed.Inf_mem {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) : Inf s ∈ s := (is_glb_Inf s).mem_of_is_closed hs hc /-- A monotone function continuous at the supremum of a nonempty set sends this supremum to the supremum of the image of this set. -/ lemma map_Sup_of_continuous_at_of_monotone' {f : α → β} {s : set α} (Cf : continuous_at f (Sup s)) (Mf : monotone f) (hs : s.nonempty) : f (Sup s) = Sup (f '' s) := --This is a particular case of the more general is_lub.is_lub_of_tendsto ((is_lub_Sup _).is_lub_of_tendsto (λ x hx y hy xy, Mf xy) hs $ Cf.mono_left inf_le_left).Sup_eq.symm /-- A monotone function `s` sending `bot` to `bot` and continuous at the supremum of a set sends this supremum to the supremum of the image of this set. -/ lemma map_Sup_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Sup s)) (Mf : monotone f) (fbot : f ⊥ = ⊥) : f (Sup s) = Sup (f '' s) := begin cases s.eq_empty_or_nonempty with h h, { simp [h, fbot] }, { exact map_Sup_of_continuous_at_of_monotone' Cf Mf h } end /-- A monotone function continuous at the indexed supremum over a nonempty `Sort` sends this indexed supremum to the indexed supremum of the composition. -/ lemma map_supr_of_continuous_at_of_monotone' {ι : Sort*} [nonempty ι] {f : α → β} {g : ι → α} (Cf : continuous_at f (supr g)) (Mf : monotone f) : f (⨆ i, g i) = ⨆ i, f (g i) := by rw [supr, map_Sup_of_continuous_at_of_monotone' Cf Mf (range_nonempty g), ← range_comp, supr] /-- If a monotone function sending `bot` to `bot` is continuous at the indexed supremum over a `Sort`, then it sends this indexed supremum to the indexed supremum of the composition. -/ lemma map_supr_of_continuous_at_of_monotone {ι : Sort*} {f : α → β} {g : ι → α} (Cf : continuous_at f (supr g)) (Mf : monotone f) (fbot : f ⊥ = ⊥) : f (⨆ i, g i) = ⨆ i, f (g i) := by rw [supr, map_Sup_of_continuous_at_of_monotone Cf Mf fbot, ← range_comp, supr] /-- A monotone function continuous at the infimum of a nonempty set sends this infimum to the infimum of the image of this set. -/ lemma map_Inf_of_continuous_at_of_monotone' {f : α → β} {s : set α} (Cf : continuous_at f (Inf s)) (Mf : monotone f) (hs : s.nonempty) : f (Inf s) = Inf (f '' s) := @map_Sup_of_continuous_at_of_monotone' (order_dual α) (order_dual β) _ _ _ _ _ _ f s Cf Mf.dual hs /-- A monotone function `s` sending `top` to `top` and continuous at the infimum of a set sends this infimum to the infimum of the image of this set. -/ lemma map_Inf_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Inf s)) (Mf : monotone f) (ftop : f ⊤ = ⊤) : f (Inf s) = Inf (f '' s) := @map_Sup_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ f s Cf Mf.dual ftop /-- A monotone function continuous at the indexed infimum over a nonempty `Sort` sends this indexed infimum to the indexed infimum of the composition. -/ lemma map_infi_of_continuous_at_of_monotone' {ι : Sort*} [nonempty ι] {f : α → β} {g : ι → α} (Cf : continuous_at f (infi g)) (Mf : monotone f) : f (⨅ i, g i) = ⨅ i, f (g i) := @map_supr_of_continuous_at_of_monotone' (order_dual α) (order_dual β) _ _ _ _ _ _ ι _ f g Cf Mf.dual /-- If a monotone function sending `top` to `top` is continuous at the indexed infimum over a `Sort`, then it sends this indexed infimum to the indexed infimum of the composition. -/ lemma map_infi_of_continuous_at_of_monotone {ι : Sort*} {f : α → β} {g : ι → α} (Cf : continuous_at f (infi g)) (Mf : monotone f) (ftop : f ⊤ = ⊤) : f (infi g) = infi (f ∘ g) := @map_supr_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ ι f g Cf Mf.dual ftop end complete_linear_order section conditionally_complete_linear_order variables [conditionally_complete_linear_order α] [topological_space α] [order_topology α] [conditionally_complete_linear_order β] [topological_space β] [order_topology β] [nonempty γ] lemma cSup_mem_closure {s : set α} (hs : s.nonempty) (B : bdd_above s) : Sup s ∈ closure s := (is_lub_cSup hs B).mem_closure hs lemma cInf_mem_closure {s : set α} (hs : s.nonempty) (B : bdd_below s) : Inf s ∈ closure s := (is_glb_cInf hs B).mem_closure hs lemma is_closed.cSup_mem {s : set α} (hc : is_closed s) (hs : s.nonempty) (B : bdd_above s) : Sup s ∈ s := (is_lub_cSup hs B).mem_of_is_closed hs hc lemma is_closed.cInf_mem {s : set α} (hc : is_closed s) (hs : s.nonempty) (B : bdd_below s) : Inf s ∈ s := (is_glb_cInf hs B).mem_of_is_closed hs hc /-- If a monotone function is continuous at the supremum of a nonempty bounded above set `s`, then it sends this supremum to the supremum of the image of `s`. -/ lemma map_cSup_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Sup s)) (Mf : monotone f) (ne : s.nonempty) (H : bdd_above s) : f (Sup s) = Sup (f '' s) := begin refine ((is_lub_cSup (ne.image f) (Mf.map_bdd_above H)).unique _).symm, refine (is_lub_cSup ne H).is_lub_of_tendsto (λx hx y hy xy, Mf xy) ne _, exact Cf.mono_left inf_le_left end /-- If a monotone function is continuous at the indexed supremum of a bounded function on a nonempty `Sort`, then it sends this supremum to the supremum of the composition. -/ lemma map_csupr_of_continuous_at_of_monotone {f : α → β} {g : γ → α} (Cf : continuous_at f (⨆ i, g i)) (Mf : monotone f) (H : bdd_above (range g)) : f (⨆ i, g i) = ⨆ i, f (g i) := by rw [supr, map_cSup_of_continuous_at_of_monotone Cf Mf (range_nonempty _) H, ← range_comp, supr] /-- If a monotone function is continuous at the infimum of a nonempty bounded below set `s`, then it sends this infimum to the infimum of the image of `s`. -/ lemma map_cInf_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Inf s)) (Mf : monotone f) (ne : s.nonempty) (H : bdd_below s) : f (Inf s) = Inf (f '' s) := @map_cSup_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ f s Cf Mf.dual ne H /-- A continuous monotone function sends indexed infimum to indexed infimum in conditionally complete linear order, under a boundedness assumption. -/ lemma map_cinfi_of_continuous_at_of_monotone {f : α → β} {g : γ → α} (Cf : continuous_at f (⨅ i, g i)) (Mf : monotone f) (H : bdd_below (range g)) : f (⨅ i, g i) = ⨅ i, f (g i) := @map_csupr_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ _ _ _ _ Cf Mf.dual H /-- A monotone map has a limit to the left of any point `x`, equal to `Sup (f '' (Iio x))`. -/ lemma monotone.tendsto_nhds_within_Iio {α : Type*} [linear_order α] [topological_space α] [order_topology α] {f : α → β} (Mf : monotone f) (x : α) : tendsto f (𝓝[Iio x] x) (𝓝 (Sup (f '' (Iio x)))) := begin rcases eq_empty_or_nonempty (Iio x) with h|h, { simp [h] }, refine tendsto_order.2 ⟨λ l hl, _, λ m hm, _⟩, { obtain ⟨z, zx, lz⟩ : ∃ (a : α), a < x ∧ l < f a, by simpa only [mem_image, exists_prop, exists_exists_and_eq_and] using exists_lt_of_lt_cSup (nonempty_image_iff.2 h) hl, exact (mem_nhds_within_Iio_iff_exists_Ioo_subset' zx).2 ⟨z, zx, λ y hy, lz.trans_le (Mf (hy.1.le))⟩ }, { filter_upwards [self_mem_nhds_within], assume y hy, apply lt_of_le_of_lt _ hm, exact le_cSup (Mf.map_bdd_above bdd_above_Iio) (mem_image_of_mem _ hy) } end /-- A monotone map has a limit to the right of any point `x`, equal to `Inf (f '' (Ioi x))`. -/ lemma monotone.tendsto_nhds_within_Ioi {α : Type*} [linear_order α] [topological_space α] [order_topology α] {f : α → β} (Mf : monotone f) (x : α) : tendsto f (𝓝[Ioi x] x) (𝓝 (Inf (f '' (Ioi x)))) := @monotone.tendsto_nhds_within_Iio (order_dual β) _ _ _ (order_dual α) _ _ _ f Mf.dual x /-- A bounded connected subset of a conditionally complete linear order includes the open interval `(Inf s, Sup s)`. -/ lemma is_connected.Ioo_cInf_cSup_subset {s : set α} (hs : is_connected s) (hb : bdd_below s) (ha : bdd_above s) : Ioo (Inf s) (Sup s) ⊆ s := λ x hx, let ⟨y, ys, hy⟩ := (is_glb_lt_iff (is_glb_cInf hs.nonempty hb)).1 hx.1 in let ⟨z, zs, hz⟩ := (lt_is_lub_iff (is_lub_cSup hs.nonempty ha)).1 hx.2 in hs.Icc_subset ys zs ⟨le_of_lt hy, le_of_lt hz⟩ lemma eq_Icc_cInf_cSup_of_connected_bdd_closed {s : set α} (hc : is_connected s) (hb : bdd_below s) (ha : bdd_above s) (hcl : is_closed s) : s = Icc (Inf s) (Sup s) := subset.antisymm (subset_Icc_cInf_cSup hb ha) $ hc.Icc_subset (hcl.cInf_mem hc.nonempty hb) (hcl.cSup_mem hc.nonempty ha) lemma is_preconnected.Ioi_cInf_subset {s : set α} (hs : is_preconnected s) (hb : bdd_below s) (ha : ¬bdd_above s) : Ioi (Inf s) ⊆ s := begin have sne : s.nonempty := @nonempty_of_not_bdd_above α _ s ⟨Inf ∅⟩ ha, intros x hx, obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, y < x := (is_glb_lt_iff (is_glb_cInf sne hb)).1 hx, obtain ⟨z, zs, hz⟩ : ∃ z ∈ s, x < z := not_bdd_above_iff.1 ha x, exact hs.Icc_subset ys zs ⟨le_of_lt hy, le_of_lt hz⟩ end lemma is_preconnected.Iio_cSup_subset {s : set α} (hs : is_preconnected s) (hb : ¬bdd_below s) (ha : bdd_above s) : Iio (Sup s) ⊆ s := @is_preconnected.Ioi_cInf_subset (order_dual α) _ _ _ s hs ha hb /-- A preconnected set in a conditionally complete linear order is either one of the intervals `[Inf s, Sup s]`, `[Inf s, Sup s)`, `(Inf s, Sup s]`, `(Inf s, Sup s)`, `[Inf s, +∞)`, `(Inf s, +∞)`, `(-∞, Sup s]`, `(-∞, Sup s)`, `(-∞, +∞)`, or `∅`. The converse statement requires `α` to be densely ordererd. -/ lemma is_preconnected.mem_intervals {s : set α} (hs : is_preconnected s) : s ∈ ({Icc (Inf s) (Sup s), Ico (Inf s) (Sup s), Ioc (Inf s) (Sup s), Ioo (Inf s) (Sup s), Ici (Inf s), Ioi (Inf s), Iic (Sup s), Iio (Sup s), univ, ∅} : set (set α)) := begin rcases s.eq_empty_or_nonempty with rfl|hne, { apply_rules [or.inr, mem_singleton] }, have hs' : is_connected s := ⟨hne, hs⟩, by_cases hb : bdd_below s; by_cases ha : bdd_above s, { rcases mem_Icc_Ico_Ioc_Ioo_of_subset_of_subset (hs'.Ioo_cInf_cSup_subset hb ha) (subset_Icc_cInf_cSup hb ha) with hs|hs|hs|hs, { exact (or.inl hs) }, { exact (or.inr $ or.inl hs) }, { exact (or.inr $ or.inr $ or.inl hs) }, { exact (or.inr $ or.inr $ or.inr $ or.inl hs) } }, { refine (or.inr $ or.inr $ or.inr $ or.inr _), cases mem_Ici_Ioi_of_subset_of_subset (hs.Ioi_cInf_subset hb ha) (λ x hx, cInf_le hb hx) with hs hs, { exact or.inl hs }, { exact or.inr (or.inl hs) } }, { iterate 6 { apply or.inr }, cases mem_Iic_Iio_of_subset_of_subset (hs.Iio_cSup_subset hb ha) (λ x hx, le_cSup ha hx) with hs hs, { exact or.inl hs }, { exact or.inr (or.inl hs) } }, { iterate 8 { apply or.inr }, exact or.inl (hs.eq_univ_of_unbounded hb ha) } end /-- A preconnected set is either one of the intervals `Icc`, `Ico`, `Ioc`, `Ioo`, `Ici`, `Ioi`, `Iic`, `Iio`, or `univ`, or `∅`. The converse statement requires `α` to be densely ordered. Though one can represent `∅` as `(Inf s, Inf s)`, we include it into the list of possible cases to improve readability. -/ lemma set_of_is_preconnected_subset_of_ordered : {s : set α | is_preconnected s} ⊆ -- bounded intervals (range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo)) ∪ -- unbounded intervals and `univ` (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) := begin intros s hs, rcases hs.mem_intervals with hs|hs|hs|hs|hs|hs|hs|hs|hs|hs, { exact (or.inl $ or.inl $ or.inl $ or.inl ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inl $ or.inl $ or.inl $ or.inr ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inl $ or.inl $ or.inr ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inl $ or.inr ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inl $ or.inl $ or.inl ⟨Inf s, hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inl $ or.inl $ or.inr ⟨Inf s, hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inl $ or.inr ⟨Sup s, hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inr ⟨Sup s, hs.symm⟩) }, { exact (or.inr $ or.inr $ or.inl hs) }, { exact (or.inr $ or.inr $ or.inr hs) } end /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and the set `s ∩ [a, b)` has no maximal point, then `b ∈ s`. -/ lemma is_closed.mem_of_ge_of_forall_exists_gt {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hab : a ≤ b) (hgt : ∀ x ∈ s ∩ Ico a b, (s ∩ Ioc x b).nonempty) : b ∈ s := begin let S := s ∩ Icc a b, replace ha : a ∈ S, from ⟨ha, left_mem_Icc.2 hab⟩, have Sbd : bdd_above S, from ⟨b, λ z hz, hz.2.2⟩, let c := Sup (s ∩ Icc a b), have c_mem : c ∈ S, from hs.cSup_mem ⟨_, ha⟩ Sbd, have c_le : c ≤ b, from cSup_le ⟨_, ha⟩ (λ x hx, hx.2.2), cases eq_or_lt_of_le c_le with hc hc, from hc ▸ c_mem.1, exfalso, rcases hgt c ⟨c_mem.1, c_mem.2.1, hc⟩ with ⟨x, xs, cx, xb⟩, exact not_lt_of_le (le_cSup Sbd ⟨xs, le_trans (le_cSup Sbd ha) (le_of_lt cx), xb⟩) cx end /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and for any `a ≤ x < y ≤ b`, `x ∈ s`, the set `s ∩ (x, y]` is not empty, then `[a, b] ⊆ s`. -/ lemma is_closed.Icc_subset_of_forall_exists_gt {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hgt : ∀ x ∈ s ∩ Ico a b, ∀ y ∈ Ioi x, (s ∩ Ioc x y).nonempty) : Icc a b ⊆ s := begin assume y hy, have : is_closed (s ∩ Icc a y), { suffices : s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y, { rw this, exact is_closed.inter hs is_closed_Icc }, rw [inter_assoc], congr, exact (inter_eq_self_of_subset_right $ Icc_subset_Icc_right hy.2).symm }, exact is_closed.mem_of_ge_of_forall_exists_gt this ha hy.1 (λ x hx, hgt x ⟨hx.1, Ico_subset_Ico_right hy.2 hx.2⟩ y hx.2.2) end section densely_ordered variables [densely_ordered α] {a b : α} /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and for any `x ∈ s ∩ [a, b)` the set `s` includes some open neighborhood of `x` within `(x, +∞)`, then `[a, b] ⊆ s`. -/ lemma is_closed.Icc_subset_of_forall_mem_nhds_within {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hgt : ∀ x ∈ s ∩ Ico a b, s ∈ 𝓝[Ioi x] x) : Icc a b ⊆ s := begin apply hs.Icc_subset_of_forall_exists_gt ha, rintros x ⟨hxs, hxab⟩ y hyxb, have : s ∩ Ioc x y ∈ 𝓝[Ioi x] x, from inter_mem (hgt x ⟨hxs, hxab⟩) (Ioc_mem_nhds_within_Ioi ⟨le_refl _, hyxb⟩), exact (nhds_within_Ioi_self_ne_bot' hxab.2).nonempty_of_mem this end /-- A closed interval in a densely ordered conditionally complete linear order is preconnected. -/ lemma is_preconnected_Icc : is_preconnected (Icc a b) := is_preconnected_closed_iff.2 begin rintros s t hs ht hab ⟨x, hx⟩ ⟨y, hy⟩, wlog hxy : x ≤ y := le_total x y using [x y s t, y x t s], have xyab : Icc x y ⊆ Icc a b := Icc_subset_Icc hx.1.1 hy.1.2, by_contradiction hst, suffices : Icc x y ⊆ s, from hst ⟨y, xyab $ right_mem_Icc.2 hxy, this $ right_mem_Icc.2 hxy, hy.2⟩, apply (is_closed.inter hs is_closed_Icc).Icc_subset_of_forall_mem_nhds_within hx.2, rintros z ⟨zs, hz⟩, have zt : z ∈ tᶜ, from λ zt, hst ⟨z, xyab $ Ico_subset_Icc_self hz, zs, zt⟩, have : tᶜ ∩ Ioc z y ∈ 𝓝[Ioi z] z, { rw [← nhds_within_Ioc_eq_nhds_within_Ioi hz.2], exact mem_nhds_within.2 ⟨tᶜ, ht.is_open_compl, zt, subset.refl _⟩}, apply mem_of_superset this, have : Ioc z y ⊆ s ∪ t, from λ w hw, hab (xyab ⟨le_trans hz.1 (le_of_lt hw.1), hw.2⟩), exact λ w ⟨wt, wzy⟩, (this wzy).elim id (λ h, (wt h).elim) end lemma is_preconnected_interval : is_preconnected (interval a b) := is_preconnected_Icc lemma set.ord_connected.is_preconnected {s : set α} (h : s.ord_connected) : is_preconnected s := is_preconnected_of_forall_pair $ λ x y hx hy, ⟨interval x y, h.interval_subset hx hy, left_mem_interval, right_mem_interval, is_preconnected_interval⟩ lemma is_preconnected_iff_ord_connected {s : set α} : is_preconnected s ↔ ord_connected s := ⟨is_preconnected.ord_connected, set.ord_connected.is_preconnected⟩ lemma is_preconnected_Ici : is_preconnected (Ici a) := ord_connected_Ici.is_preconnected lemma is_preconnected_Iic : is_preconnected (Iic a) := ord_connected_Iic.is_preconnected lemma is_preconnected_Iio : is_preconnected (Iio a) := ord_connected_Iio.is_preconnected lemma is_preconnected_Ioi : is_preconnected (Ioi a) := ord_connected_Ioi.is_preconnected lemma is_preconnected_Ioo : is_preconnected (Ioo a b) := ord_connected_Ioo.is_preconnected lemma is_preconnected_Ioc : is_preconnected (Ioc a b) := ord_connected_Ioc.is_preconnected lemma is_preconnected_Ico : is_preconnected (Ico a b) := ord_connected_Ico.is_preconnected @[priority 100] instance ordered_connected_space : preconnected_space α := ⟨ord_connected_univ.is_preconnected⟩ /-- In a dense conditionally complete linear order, the set of preconnected sets is exactly the set of the intervals `Icc`, `Ico`, `Ioc`, `Ioo`, `Ici`, `Ioi`, `Iic`, `Iio`, `(-∞, +∞)`, or `∅`. Though one can represent `∅` as `(Inf s, Inf s)`, we include it into the list of possible cases to improve readability. -/ lemma set_of_is_preconnected_eq_of_ordered : {s : set α | is_preconnected s} = -- bounded intervals (range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo)) ∪ -- unbounded intervals and `univ` (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) := begin refine subset.antisymm set_of_is_preconnected_subset_of_ordered _, simp only [subset_def, -mem_range, forall_range_iff, uncurry, or_imp_distrib, forall_and_distrib, mem_union, mem_set_of_eq, insert_eq, mem_singleton_iff, forall_eq, forall_true_iff, and_true, is_preconnected_Icc, is_preconnected_Ico, is_preconnected_Ioc, is_preconnected_Ioo, is_preconnected_Ioi, is_preconnected_Iio, is_preconnected_Ici, is_preconnected_Iic, is_preconnected_univ, is_preconnected_empty], end variables {δ : Type*} [linear_order δ] [topological_space δ] [order_closed_topology δ] /-- **Intermediate Value Theorem** for continuous functions on closed intervals, case `f a ≤ t ≤ f b`.-/ lemma intermediate_value_Icc {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Icc (f a) (f b) ⊆ f '' (Icc a b) := is_preconnected_Icc.intermediate_value (left_mem_Icc.2 hab) (right_mem_Icc.2 hab) hf /-- **Intermediate Value Theorem** for continuous functions on closed intervals, case `f a ≥ t ≥ f b`.-/ lemma intermediate_value_Icc' {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Icc (f b) (f a) ⊆ f '' (Icc a b) := is_preconnected_Icc.intermediate_value (right_mem_Icc.2 hab) (left_mem_Icc.2 hab) hf /-- **Intermediate Value Theorem** for continuous functions on closed intervals, unordered case. -/ lemma intermediate_value_interval {a b : α} {f : α → δ} (hf : continuous_on f (interval a b)) : interval (f a) (f b) ⊆ f '' interval a b := by cases le_total (f a) (f b); simp [*, is_preconnected_interval.intermediate_value] lemma intermediate_value_Ico {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Ico (f a) (f b) ⊆ f '' (Ico a b) := or.elim (eq_or_lt_of_le hab) (λ he y h, absurd h.2 (not_lt_of_le (he ▸ h.1))) (λ hlt, @is_preconnected.intermediate_value_Ico _ _ _ _ _ _ _ (is_preconnected_Ico) _ _ ⟨refl a, hlt⟩ (right_nhds_within_Ico_ne_bot hlt) inf_le_right _ (hf.mono Ico_subset_Icc_self) _ ((hf.continuous_within_at ⟨hab, refl b⟩).mono Ico_subset_Icc_self)) lemma intermediate_value_Ico' {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Ioc (f b) (f a) ⊆ f '' (Ico a b) := or.elim (eq_or_lt_of_le hab) (λ he y h, absurd h.1 (not_lt_of_le (he ▸ h.2))) (λ hlt, @is_preconnected.intermediate_value_Ioc _ _ _ _ _ _ _ (is_preconnected_Ico) _ _ ⟨refl a, hlt⟩ (right_nhds_within_Ico_ne_bot hlt) inf_le_right _ (hf.mono Ico_subset_Icc_self) _ ((hf.continuous_within_at ⟨hab, refl b⟩).mono Ico_subset_Icc_self)) lemma intermediate_value_Ioc {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Ioc (f a) (f b) ⊆ f '' (Ioc a b) := or.elim (eq_or_lt_of_le hab) (λ he y h, absurd h.2 (not_le_of_lt (he ▸ h.1))) (λ hlt, @is_preconnected.intermediate_value_Ioc _ _ _ _ _ _ _ (is_preconnected_Ioc) _ _ ⟨hlt, refl b⟩ (left_nhds_within_Ioc_ne_bot hlt) inf_le_right _ (hf.mono Ioc_subset_Icc_self) _ ((hf.continuous_within_at ⟨refl a, hab⟩).mono Ioc_subset_Icc_self)) lemma intermediate_value_Ioc' {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Ico (f b) (f a) ⊆ f '' (Ioc a b) := or.elim (eq_or_lt_of_le hab) (λ he y h, absurd h.1 (not_le_of_lt (he ▸ h.2))) (λ hlt, @is_preconnected.intermediate_value_Ico _ _ _ _ _ _ _ (is_preconnected_Ioc) _ _ ⟨hlt, refl b⟩ (left_nhds_within_Ioc_ne_bot hlt) inf_le_right _ (hf.mono Ioc_subset_Icc_self) _ ((hf.continuous_within_at ⟨refl a, hab⟩).mono Ioc_subset_Icc_self)) lemma intermediate_value_Ioo {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Ioo (f a) (f b) ⊆ f '' (Ioo a b) := or.elim (eq_or_lt_of_le hab) (λ he y h, absurd h.2 (not_lt_of_lt (he ▸ h.1))) (λ hlt, @is_preconnected.intermediate_value_Ioo _ _ _ _ _ _ _ (is_preconnected_Ioo) _ _ (left_nhds_within_Ioo_ne_bot hlt) (right_nhds_within_Ioo_ne_bot hlt) inf_le_right inf_le_right _ (hf.mono Ioo_subset_Icc_self) _ _ ((hf.continuous_within_at ⟨refl a, hab⟩).mono Ioo_subset_Icc_self) ((hf.continuous_within_at ⟨hab, refl b⟩).mono Ioo_subset_Icc_self)) lemma intermediate_value_Ioo' {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Ioo (f b) (f a) ⊆ f '' (Ioo a b) := or.elim (eq_or_lt_of_le hab) (λ he y h, absurd h.1 (not_lt_of_lt (he ▸ h.2))) (λ hlt, @is_preconnected.intermediate_value_Ioo _ _ _ _ _ _ _ (is_preconnected_Ioo) _ _ (right_nhds_within_Ioo_ne_bot hlt) (left_nhds_within_Ioo_ne_bot hlt) inf_le_right inf_le_right _ (hf.mono Ioo_subset_Icc_self) _ _ ((hf.continuous_within_at ⟨hab, refl b⟩).mono Ioo_subset_Icc_self) ((hf.continuous_within_at ⟨refl a, hab⟩).mono Ioo_subset_Icc_self)) /-- A continuous function which tendsto `at_top` `at_top` and to `at_bot` `at_bot` is surjective. -/ lemma continuous.surjective {f : α → δ} (hf : continuous f) (h_top : tendsto f at_top at_top) (h_bot : tendsto f at_bot at_bot) : function.surjective f := λ p, mem_range_of_exists_le_of_exists_ge hf (h_bot.eventually (eventually_le_at_bot p)).exists (h_top.eventually (eventually_ge_at_top p)).exists /-- A continuous function which tendsto `at_bot` `at_top` and to `at_top` `at_bot` is surjective. -/ lemma continuous.surjective' {f : α → δ} (hf : continuous f) (h_top : tendsto f at_bot at_top) (h_bot : tendsto f at_top at_bot) : function.surjective f := @continuous.surjective (order_dual α) _ _ _ _ _ _ _ _ _ hf h_top h_bot /-- If a function `f : α → β` is continuous on a nonempty interval `s`, its restriction to `s` tends to `at_bot : filter β` along `at_bot : filter ↥s` and tends to `at_top : filter β` along `at_top : filter ↥s`, then the restriction of `f` to `s` is surjective. We formulate the conclusion as `surj_on f s univ`. -/ lemma continuous_on.surj_on_of_tendsto {f : α → β} {s : set α} [ord_connected s] (hs : s.nonempty) (hf : continuous_on f s) (hbot : tendsto (λ x : s, f x) at_bot at_bot) (htop : tendsto (λ x : s, f x) at_top at_top) : surj_on f s univ := by haveI := inhabited_of_nonempty hs.to_subtype; exact (surj_on_iff_surjective.2 $ (continuous_on_iff_continuous_restrict.1 hf).surjective htop hbot) /-- If a function `f : α → β` is continuous on a nonempty interval `s`, its restriction to `s` tends to `at_top : filter β` along `at_bot : filter ↥s` and tends to `at_bot : filter β` along `at_top : filter ↥s`, then the restriction of `f` to `s` is surjective. We formulate the conclusion as `surj_on f s univ`. -/ lemma continuous_on.surj_on_of_tendsto' {f : α → β} {s : set α} [ord_connected s] (hs : s.nonempty) (hf : continuous_on f s) (hbot : tendsto (λ x : s, f x) at_bot at_top) (htop : tendsto (λ x : s, f x) at_top at_bot) : surj_on f s univ := @continuous_on.surj_on_of_tendsto α (order_dual β) _ _ _ _ _ _ _ _ _ _ hs hf hbot htop end densely_ordered end conditionally_complete_linear_order end order_topology
ce5ddc4d3d06fc0c7bdb581457233a2c552c510a
302c785c90d40ad3d6be43d33bc6a558354cc2cf
/src/data/real/pi.lean
580335fa329b132fd58ca616f41a73ee1d81c1f4
[ "Apache-2.0" ]
permissive
ilitzroth/mathlib
ea647e67f1fdfd19a0f7bdc5504e8acec6180011
5254ef14e3465f6504306132fe3ba9cec9ffff16
refs/heads/master
1,680,086,661,182
1,617,715,647,000
1,617,715,647,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
19,769
lean
/- Copyright (c) 2019 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Benjamin Davidson -/ import analysis.special_functions.integrals /-! # Pi This file contains lemmas which establish bounds on or approximations of `real.pi`. Notably, these include `pi_gt_sqrt_two_add_series` and `pi_lt_sqrt_two_add_series`, which bound `π` using series; numerical bounds on `π` such as `pi_gt_314`and `pi_lt_315` (more precise versions are given, too); and exact (infinite) formulas involving `π`, such as `tendsto_sum_pi_div_four`, Leibniz's series for `π`, and `tendsto_prod_pi_div_two`, the Wallis product for `π`. -/ open_locale real namespace real lemma pi_gt_sqrt_two_add_series (n : ℕ) : 2 ^ (n+1) * sqrt (2 - sqrt_two_add_series 0 n) < π := begin have : sqrt (2 - sqrt_two_add_series 0 n) / 2 * 2 ^ (n+2) < π, { rw [← lt_div_iff, ←sin_pi_over_two_pow_succ], apply sin_lt, apply div_pos pi_pos, all_goals { apply pow_pos, norm_num } }, apply lt_of_le_of_lt (le_of_eq _) this, rw [pow_succ _ (n+1), ←mul_assoc, div_mul_cancel, mul_comm], norm_num end lemma pi_lt_sqrt_two_add_series (n : ℕ) : π < 2 ^ (n+1) * sqrt (2 - sqrt_two_add_series 0 n) + 1 / 4 ^ n := begin have : π < (sqrt (2 - sqrt_two_add_series 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n+2), { rw [← div_lt_iff, ← sin_pi_over_two_pow_succ], refine lt_of_lt_of_le (lt_add_of_sub_right_lt (sin_gt_sub_cube _ _)) _, { apply div_pos pi_pos, apply pow_pos, norm_num }, { rw div_le_iff', { refine le_trans pi_le_four _, simp only [show ((4 : ℝ) = 2 ^ 2), by norm_num, mul_one], apply pow_le_pow, norm_num, apply le_add_of_nonneg_left, apply nat.zero_le }, { apply pow_pos, norm_num }}, apply add_le_add_left, rw div_le_div_right, rw [le_div_iff, ←mul_pow], refine le_trans _ (le_of_eq (one_pow 3)), apply pow_le_pow_of_le_left, { apply le_of_lt, apply mul_pos, apply div_pos pi_pos, apply pow_pos, norm_num, apply pow_pos, norm_num }, rw ← le_div_iff, refine le_trans ((div_le_div_right _).mpr pi_le_four) _, apply pow_pos, norm_num, rw [pow_succ, pow_succ, ←mul_assoc, ←div_div_eq_div_mul], convert le_refl _, all_goals { repeat {apply pow_pos}, norm_num }}, apply lt_of_lt_of_le this (le_of_eq _), rw [add_mul], congr' 1, { rw [pow_succ _ (n+1), ←mul_assoc, div_mul_cancel, mul_comm], norm_num }, rw [pow_succ, ←pow_mul, mul_comm n 2, pow_mul, show (2 : ℝ) ^ 2 = 4, by norm_num, pow_succ, pow_succ, ←mul_assoc (2 : ℝ), show (2 : ℝ) * 2 = 4, by norm_num, ←mul_assoc, div_mul_cancel, mul_comm ((2 : ℝ) ^ n), ←div_div_eq_div_mul, div_mul_cancel], apply pow_ne_zero, norm_num, norm_num end /-- From an upper bound on `sqrt_two_add_series 0 n = 2 cos (π / 2 ^ (n+1))` of the form `sqrt_two_add_series 0 n ≤ 2 - (a / 2 ^ (n + 1)) ^ 2)`, one can deduce the lower bound `a < π` thanks to basic trigonometric inequalities as expressed in `pi_gt_sqrt_two_add_series`. -/ theorem pi_lower_bound_start (n : ℕ) {a} (h : sqrt_two_add_series ((0:ℕ) / (1:ℕ)) n ≤ 2 - (a / 2 ^ (n + 1)) ^ 2) : a < π := begin refine lt_of_le_of_lt _ (pi_gt_sqrt_two_add_series n), rw [mul_comm], refine (div_le_iff (pow_pos (by norm_num) _ : (0 : ℝ) < _)).mp (le_sqrt_of_sqr_le _), rwa [le_sub, show (0:ℝ) = (0:ℕ)/(1:ℕ), by rw [nat.cast_zero, zero_div]], end lemma sqrt_two_add_series_step_up (c d : ℕ) {a b n : ℕ} {z : ℝ} (hz : sqrt_two_add_series (c/d) n ≤ z) (hb : 0 < b) (hd : 0 < d) (h : (2 * b + a) * d ^ 2 ≤ c ^ 2 * b) : sqrt_two_add_series (a/b) (n+1) ≤ z := begin refine le_trans _ hz, rw sqrt_two_add_series_succ, apply sqrt_two_add_series_monotone_left, have hb' : 0 < (b:ℝ) := nat.cast_pos.2 hb, have hd' : 0 < (d:ℝ) := nat.cast_pos.2 hd, rw [sqrt_le_left (div_nonneg c.cast_nonneg d.cast_nonneg), div_pow, add_div_eq_mul_add_div _ _ (ne_of_gt hb'), div_le_div_iff hb' (pow_pos hd' _)], exact_mod_cast h end /-- Create a proof of `a < π` for a fixed rational number `a`, given a witness, which is a sequence of rational numbers `sqrt 2 < r 1 < r 2 < ... < r n < 2` satisfying the property that `sqrt (2 + r i) ≤ r(i+1)`, where `r 0 = 0` and `sqrt (2 - r n) ≥ a/2^(n+1)`. -/ meta def pi_lower_bound (l : list ℚ) : tactic unit := do let n := l.length, tactic.apply `(@pi_lower_bound_start %%(reflect n)), l.mmap' (λ r, do let a := r.num.to_nat, let b := r.denom, (() <$ tactic.apply `(@sqrt_two_add_series_step_up %%(reflect a) %%(reflect b))); [tactic.skip, `[norm_num1], `[norm_num1], `[norm_num1]]), `[simp only [sqrt_two_add_series, nat.cast_bit0, nat.cast_bit1, nat.cast_one, nat.cast_zero]], `[norm_num1] /-- From a lower bound on `sqrt_two_add_series 0 n = 2 cos (π / 2 ^ (n+1))` of the form `2 - ((a - 1 / 4 ^ n) / 2 ^ (n + 1)) ^ 2 ≤ sqrt_two_add_series 0 n`, one can deduce the upper bound `π < a` thanks to basic trigonometric formulas as expressed in `pi_lt_sqrt_two_add_series`. -/ theorem pi_upper_bound_start (n : ℕ) {a} (h : 2 - ((a - 1 / 4 ^ n) / 2 ^ (n + 1)) ^ 2 ≤ sqrt_two_add_series ((0:ℕ) / (1:ℕ)) n) (h₂ : 1 / 4 ^ n ≤ a) : π < a := begin refine lt_of_lt_of_le (pi_lt_sqrt_two_add_series n) _, rw [← le_sub_iff_add_le, ← le_div_iff', sqrt_le_left, sub_le], { rwa [nat.cast_zero, zero_div] at h }, { exact div_nonneg (sub_nonneg.2 h₂) (pow_nonneg (le_of_lt zero_lt_two) _) }, { exact pow_pos zero_lt_two _ } end lemma sqrt_two_add_series_step_down (a b : ℕ) {c d n : ℕ} {z : ℝ} (hz : z ≤ sqrt_two_add_series (a/b) n) (hb : 0 < b) (hd : 0 < d) (h : a ^ 2 * d ≤ (2 * d + c) * b ^ 2) : z ≤ sqrt_two_add_series (c/d) (n+1) := begin apply le_trans hz, rw sqrt_two_add_series_succ, apply sqrt_two_add_series_monotone_left, apply le_sqrt_of_sqr_le, have hb' : 0 < (b:ℝ) := nat.cast_pos.2 hb, have hd' : 0 < (d:ℝ) := nat.cast_pos.2 hd, rw [div_pow, add_div_eq_mul_add_div _ _ (ne_of_gt hd'), div_le_div_iff (pow_pos hb' _) hd'], exact_mod_cast h end /-- Create a proof of `π < a` for a fixed rational number `a`, given a witness, which is a sequence of rational numbers `sqrt 2 < r 1 < r 2 < ... < r n < 2` satisfying the property that `sqrt (2 + r i) ≥ r(i+1)`, where `r 0 = 0` and `sqrt (2 - r n) ≥ (a - 1/4^n) / 2^(n+1)`. -/ meta def pi_upper_bound (l : list ℚ) : tactic unit := do let n := l.length, (() <$ tactic.apply `(@pi_upper_bound_start %%(reflect n))); [pure (), `[norm_num1]], l.mmap' (λ r, do let a := r.num.to_nat, let b := r.denom, (() <$ tactic.apply `(@sqrt_two_add_series_step_down %%(reflect a) %%(reflect b))); [pure (), `[norm_num1], `[norm_num1], `[norm_num1]]), `[simp only [sqrt_two_add_series, nat.cast_bit0, nat.cast_bit1, nat.cast_one, nat.cast_zero]], `[norm_num] lemma pi_gt_three : 3 < π := by pi_lower_bound [23/16] lemma pi_gt_314 : 3.14 < π := by pi_lower_bound [99/70, 874/473, 1940/989, 1447/727] lemma pi_lt_315 : π < 3.15 := by pi_upper_bound [140/99, 279/151, 51/26, 412/207] lemma pi_gt_31415 : 3.1415 < π := by pi_lower_bound [ 11482/8119, 5401/2923, 2348/1197, 11367/5711, 25705/12868, 23235/11621] lemma pi_lt_31416 : π < 3.1416 := by pi_upper_bound [ 4756/3363, 101211/54775, 505534/257719, 83289/41846, 411278/205887, 438142/219137, 451504/225769, 265603/132804, 849938/424971] lemma pi_gt_3141592 : 3.141592 < π := by pi_lower_bound [ 11482/8119, 7792/4217, 54055/27557, 949247/476920, 3310126/1657059, 2635492/1318143, 1580265/790192, 1221775/610899, 3612247/1806132, 849943/424972] lemma pi_lt_3141593 : π < 3.141593 := by pi_upper_bound [ 27720/19601, 56935/30813, 49359/25163, 258754/130003, 113599/56868, 1101994/551163, 8671537/4336095, 3877807/1938940, 52483813/26242030, 56946167/28473117, 23798415/11899211] /-! ### Leibniz's Series for Pi -/ open filter set open_locale classical big_operators topological_space local notation `|`x`|` := abs x /-- This theorem establishes Leibniz's series for `π`: The alternating sum of the reciprocals of the odd numbers is `π/4`. Note that this is a conditionally rather than absolutely convergent series. The main tool that this proof uses is the Mean Value Theorem (specifically avoiding the Fundamental Theorem of Calculus). Intuitively, the theorem holds because Leibniz's series is the Taylor series of `arctan x` centered about `0` and evaluated at the value `x = 1`. Therefore, much of this proof consists of reasoning about a function `f := arctan x - ∑ i in finset.range k, (-(1:ℝ))^i * x^(2*i+1) / (2*i+1)`, the difference between `arctan` and the `k`-th partial sum of its Taylor series. Some ingenuity is required due to the fact that the Taylor series is not absolutely convergent at `x = 1`. This proof requires a bound on `f 1`, the key idea being that `f 1` can be split as the sum of `f 1 - f u` and `f u`, where `u` is a sequence of values in [0,1], carefully chosen such that each of these two terms can be controlled (in different ways). We begin the proof by (1) introducing that sequence `u` and then proving that another sequence constructed from `u` tends to `0` at `+∞`. After (2) converting the limit in our goal to an inequality, we (3) introduce the auxiliary function `f` defined above. Next, we (4) compute the derivative of `f`, denoted by `f'`, first generally and then on each of two subintervals of [0,1]. We then (5) prove a bound for `f'`, again both generally as well as on each of the two subintervals. Finally, we (6) apply the Mean Value Theorem twice, obtaining bounds on `f 1 - f u` and `f u - f 0` from the bounds on `f'` (note that `f 0 = 0`). -/ theorem tendsto_sum_pi_div_four : tendsto (λ k, ∑ i in finset.range k, ((-(1:ℝ))^i / (2*i+1))) at_top (𝓝 (π/4)) := begin rw [tendsto_iff_norm_tendsto_zero, ← tendsto_zero_iff_norm_tendsto_zero], -- (1) We introduce a useful sequence `u` of values in [0,1], then prove that another sequence -- constructed from `u` tends to `0` at `+∞` let u := λ k : ℕ, (k:nnreal) ^ (-1 / (2 * (k:ℝ) + 1)), have H : tendsto (λ k : ℕ, (1:ℝ) - (u k) + (u k) ^ (2 * (k:ℝ) + 1)) at_top (𝓝 0), { convert (((tendsto_rpow_div_mul_add (-1) 2 1 $ by norm_num).neg.const_add 1).add tendsto_inv_at_top_zero).comp tendsto_coe_nat_at_top_at_top, { ext k, simp only [nnreal.coe_nat_cast, function.comp_app, nnreal.coe_rpow], rw [← rpow_mul (nat.cast_nonneg k) ((-1)/(2*(k:ℝ)+1)) (2*(k:ℝ)+1), @div_mul_cancel _ _ _ (2*(k:ℝ)+1) (by { norm_cast, linarith }), rpow_neg_one k], ring }, { simp } }, -- (2) We convert the limit in our goal to an inequality refine squeeze_zero_norm _ H, intro k, -- Since `k` is now fixed, we henceforth denote `u k` as `U` let U := u k, -- (3) We introduce an auxiliary function `f` let b := λ (i:ℕ) x, (-(1:ℝ))^i * x^(2*i+1) / (2*i+1), let f := λ x, arctan x - (∑ i in finset.range k, b i x), suffices f_bound : |f 1 - f 0| ≤ (1:ℝ) - U + U ^ (2 * (k:ℝ) + 1), { rw ← norm_neg, convert f_bound, simp only [f], simp [b] }, -- We show that `U` is indeed in [0,1] have hU1 : (U:ℝ) ≤ 1, { by_cases hk : k = 0, { simpa only [U, hk] using zero_rpow_le_one _ }, { exact rpow_le_one_of_one_le_of_nonpos (by { norm_cast, exact nat.succ_le_iff.mpr (nat.pos_of_ne_zero hk) }) (le_of_lt (@div_neg_of_neg_of_pos _ _ (-(1:ℝ)) (2*k+1) (by norm_num) (by { norm_cast, linarith }))) } }, have hU2 := nnreal.coe_nonneg U, -- (4) We compute the derivative of `f`, denoted by `f'` let f' := λ x : ℝ, (-x^2) ^ k / (1 + x^2), have has_deriv_at_f : ∀ x, has_deriv_at f (f' x) x, { intro x, have has_deriv_at_b : ∀ i ∈ finset.range k, (has_deriv_at (b i) ((-x^2)^i) x), { intros i hi, convert has_deriv_at.const_mul ((-1:ℝ)^i / (2*i+1)) (@has_deriv_at.pow _ _ _ _ _ (2*i+1) (has_deriv_at_id x)), { ext y, simp only [b, id.def], ring }, { simp only [nat.add_succ_sub_one, add_zero, mul_one, id.def, nat.cast_bit0, nat.cast_add, nat.cast_one, nat.cast_mul], rw [← mul_assoc, @div_mul_cancel _ _ _ (2*(i:ℝ)+1) (by { norm_cast, linarith }), pow_mul x 2 i, ← mul_pow (-1) (x^2) i], ring_nf } }, convert (has_deriv_at_arctan x).sub (has_deriv_at.sum has_deriv_at_b), have g_sum := @geom_sum_eq _ _ (-x^2) (by linarith [neg_nonpos.mpr (pow_two_nonneg x)]) k, simp only [geom_sum, f'] at g_sum ⊢, rw [g_sum, ← neg_add' (x^2) 1, add_comm (x^2) 1, sub_eq_add_neg, neg_div', neg_div_neg_eq], ring }, have hderiv1 : ∀ x ∈ Icc (U:ℝ) 1, has_deriv_within_at f (f' x) (Icc (U:ℝ) 1) x := λ x hx, (has_deriv_at_f x).has_deriv_within_at, have hderiv2 : ∀ x ∈ Icc 0 (U:ℝ), has_deriv_within_at f (f' x) (Icc 0 (U:ℝ)) x := λ x hx, (has_deriv_at_f x).has_deriv_within_at, -- (5) We prove a general bound for `f'` and then more precise bounds on each of two subintervals have f'_bound : ∀ x ∈ Icc (-1:ℝ) 1, |f' x| ≤ |x|^(2*k), { intros x hx, rw [abs_div, is_absolute_value.abv_pow abs (-x^2) k, abs_neg, is_absolute_value.abv_pow abs x 2, tactic.ring_exp.pow_e_pf_exp rfl rfl, @abs_of_pos _ _ (1+x^2) (by nlinarith)], convert @div_le_div_of_le_left _ _ _ (1+x^2) 1 (pow_nonneg (abs_nonneg x) (2*k)) (by norm_num) (by nlinarith), simp }, have hbound1 : ∀ x ∈ Ico (U:ℝ) 1, |f' x| ≤ 1, { rintros x ⟨hx_left, hx_right⟩, have hincr := pow_le_pow_of_le_left (le_trans hU2 hx_left) (le_of_lt hx_right) (2*k), rw [one_pow (2*k), ← abs_of_nonneg (le_trans hU2 hx_left)] at hincr, rw ← abs_of_nonneg (le_trans hU2 hx_left) at hx_right, linarith [f'_bound x (mem_Icc.mpr (abs_le.mp (le_of_lt hx_right)))] }, have hbound2 : ∀ x ∈ Ico 0 (U:ℝ), |f' x| ≤ U ^ (2*k), { rintros x ⟨hx_left, hx_right⟩, have hincr := pow_le_pow_of_le_left hx_left (le_of_lt hx_right) (2*k), rw ← abs_of_nonneg hx_left at hincr hx_right, rw ← abs_of_nonneg hU2 at hU1 hx_right, linarith [f'_bound x (mem_Icc.mpr (abs_le.mp (le_trans (le_of_lt hx_right) hU1)))] }, -- (6) We twice apply the Mean Value Theorem to obtain bounds on `f` from the bounds on `f'` have mvt1 := norm_image_sub_le_of_norm_deriv_le_segment' hderiv1 hbound1 _ (right_mem_Icc.mpr hU1), have mvt2 := norm_image_sub_le_of_norm_deriv_le_segment' hderiv2 hbound2 _ (right_mem_Icc.mpr hU2), -- The following algebra is enough to complete the proof calc |f 1 - f 0| = |(f 1 - f U) + (f U - f 0)| : by ring_nf ... ≤ 1 * (1-U) + U^(2*k) * (U - 0) : le_trans (abs_add (f 1 - f U) (f U - f 0)) (add_le_add mvt1 mvt2) ... = 1 - U + U^(2*k) * U : by ring ... = 1 - (u k) + (u k)^(2*(k:ℝ)+1) : by { rw [← pow_succ' (U:ℝ) (2*k)], norm_cast }, end open finset interval_integral lemma integral_sin_pow_antimono (n : ℕ) : ∫ (x : ℝ) in 0..π, sin x ^ (n + 1) ≤ ∫ (x : ℝ) in 0..π, sin x ^ n := begin refine integral_mono_on _ _ pi_pos.le (λ x hx, _), { exact ((continuous_pow (n + 1)).comp continuous_sin).interval_integrable 0 π }, { exact ((continuous_pow n).comp continuous_sin).interval_integrable 0 π }, refine pow_le_pow_of_le_one _ (sin_le_one x) (nat.le_add_right n 1), rw interval_of_le pi_pos.le at hx, exact sin_nonneg_of_mem_Icc hx, end lemma integral_sin_pow_div_tendsto_one : tendsto (λ k, (∫ x in 0..π, sin x ^ (2 * k + 1)) / ∫ x in 0..π, sin x ^ (2 * k)) at_top (𝓝 1) := begin have h₃ : ∀ n, (∫ x in 0..π, sin x ^ (2 * n + 1)) / ∫ x in 0..π, sin x ^ (2 * n) ≤ 1 := λ n, (div_le_one (integral_sin_pow_pos _)).mpr (integral_sin_pow_antimono _), have h₄ : ∀ n, (∫ x in 0..π, sin x ^ (2 * n + 1)) / ∫ x in 0..π, sin x ^ (2 * n) ≥ 2 * n / (2 * n + 1), { intro, cases n, { have : 0 ≤ (1 + 1) / π, exact div_nonneg (by norm_num) pi_pos.le, simp [this] }, calc (∫ x in 0..π, sin x ^ (2 * n.succ + 1)) / ∫ x in 0..π, sin x ^ (2 * n.succ) ≥ (∫ x in 0..π, sin x ^ (2 * n.succ + 1)) / ∫ x in 0..π, sin x ^ (2 * n + 1) : by { refine div_le_div (integral_sin_pow_pos _).le (le_refl _) (integral_sin_pow_pos _) _, convert integral_sin_pow_antimono (2 * n + 1) using 1 } ... = 2 * ↑(n.succ) / (2 * ↑(n.succ) + 1) : by { symmetry, rw [eq_div_iff, nat.succ_eq_add_one], convert (integral_sin_pow_succ_succ (2 * n + 1)).symm using 3, simp [mul_add], ring, simp [mul_add], ring, exact norm_num.ne_zero_of_pos _ (integral_sin_pow_pos (2 * n + 1)) } }, refine tendsto_of_tendsto_of_tendsto_of_le_of_le _ _ (λ n, (h₄ n).le) (λ n, (h₃ n)), { refine metric.tendsto_at_top.mpr (λ ε hε, ⟨nat_ceil (1 / ε), λ n hn, _⟩), have h : (2:ℝ) * n / (2 * n + 1) - 1 = -1 / (2 * n + 1), { conv_lhs { congr, skip, rw ← @div_self _ _ ((2:ℝ) * n + 1) (by { norm_cast, linarith }), }, rw [← sub_div, ← sub_sub, sub_self, zero_sub] }, have hpos : (0:ℝ) < 2 * n + 1, { norm_cast, norm_num }, rw [real.dist_eq, h, abs_div, abs_neg, abs_one, abs_of_pos hpos, one_div_lt hpos hε], calc 1 / ε ≤ nat_ceil (1 / ε) : le_nat_ceil _ ... ≤ n : by exact_mod_cast hn.le ... < 2 * n + 1 : by { norm_cast, linarith } }, exact tendsto_const_nhds, end /-- This theorem establishes the Wallis Product for `π`. Our proof is largely about analyzing the behavior of the ratio of the integral of `sin x ^ n` as `n → ∞`. See: https://en.wikipedia.org/wiki/Wallis_product The proof can be broken down into two pieces. (Pieces involving general properties of the integral of `sin x ^n` can be found in `analysis.special_functions.integrals`.) First, we use integration by parts to obtain a recursive formula for `∫ x in 0..π, sin x ^ (n + 2)` in terms of `∫ x in 0..π, sin x ^ n`. From this we can obtain closed form products of `∫ x in 0..π, sin x ^ (2 * n)` and `∫ x in 0..π, sin x ^ (2 * n + 1)` via induction. Next, we study the behavior of the ratio `∫ (x : ℝ) in 0..π, sin x ^ (2 * k + 1)) / ∫ (x : ℝ) in 0..π, sin x ^ (2 * k)` and prove that it converges to one using the squeeze theorem. The final product for `π` is obtained after some algebraic manipulation. -/ theorem tendsto_prod_pi_div_two : tendsto (λ k, ∏ i in range k, (((2:ℝ) * i + 2) / (2 * i + 1)) * ((2 * i + 2) / (2 * i + 3))) at_top (𝓝 (π/2)) := begin suffices h : tendsto (λ k, 2 / π * ∏ i in range k, (((2:ℝ) * i + 2) / (2 * i + 1)) * ((2 * i + 2) / (2 * i + 3))) at_top (𝓝 1), { have := tendsto.const_mul (π / 2) h, have h : π / 2 ≠ 0, norm_num [pi_ne_zero], simp only [← mul_assoc, ← @inv_div _ _ π 2, mul_inv_cancel h, one_mul, mul_one] at this, exact this }, have h : (λ (k : ℕ), (2:ℝ) / π * ∏ (i : ℕ) in range k, ((2 * i + 2) / (2 * i + 1)) * ((2 * i + 2) / (2 * i + 3))) = λ k, (2 * ∏ i in range k, (2 * i + 2) / (2 * i + 3)) / (π * ∏ (i : ℕ) in range k, (2 * i + 1) / (2 * i + 2)), { funext, have h : ∏ (i : ℕ) in range k, ((2:ℝ) * ↑i + 2) / (2 * ↑i + 1) = 1 / (∏ (i : ℕ) in range k, (2 * ↑i + 1) / (2 * ↑i + 2)), { rw [one_div, ← finset.prod_inv_distrib'], refine prod_congr rfl (λ x hx, _), field_simp }, rw [prod_mul_distrib, h], field_simp }, simp only [h, ← integral_sin_pow_even, ← integral_sin_pow_odd], exact integral_sin_pow_div_tendsto_one, end end real
2221b427d18b661a3f396dead13a97450519ac18
ae1e94c332e17c7dc7051ce976d5a9eebe7ab8a5
/src/Lean/AuxRecursor.lean
680a7ab2ae6929463a76dc94f58705818a1beeb3
[ "Apache-2.0" ]
permissive
dupuisf/lean4
d082d13b01243e1de29ae680eefb476961221eef
6a39c65bd28eb0e28c3870188f348c8914502718
refs/heads/master
1,676,948,755,391
1,610,665,114,000
1,610,665,114,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
901
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Environment namespace Lean builtin_initialize auxRecExt : TagDeclarationExtension ← mkTagDeclarationExtension `auxRec @[export lean_mark_aux_recursor] def markAuxRecursor (env : Environment) (n : Name) : Environment := auxRecExt.tag env n @[export lean_is_aux_recursor] def isAuxRecursor (env : Environment) (n : Name) : Bool := auxRecExt.isTagged env n builtin_initialize noConfusionExt : TagDeclarationExtension ← mkTagDeclarationExtension `noConf @[export lean_mark_no_confusion] def markNoConfusion (env : Environment) (n : Name) : Environment := noConfusionExt.tag env n @[export lean_is_no_confusion] def isNoConfusion (env : Environment) (n : Name) : Bool := noConfusionExt.isTagged env n end Lean
5148e54150fb5dce792a3afdddfdaef3321444cc
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/data/string/basic.lean
6c66510d3a53c770fe1fc9b16a88025595d7114b
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
4,206
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.list.basic import data.char /-! # Strings Supplementary theorems about the `string` type. -/ namespace string /-- `<` on string iterators. This coincides with `<` on strings as lists. -/ def ltb : iterator → iterator → bool | s₁ s₂ := begin cases s₂.has_next, {exact ff}, cases h₁ : s₁.has_next, {exact tt}, exact if s₁.curr = s₂.curr then have s₁.next.2.length < s₁.2.length, from match s₁, h₁ with ⟨_, a::l⟩, h := nat.lt_succ_self _ end, ltb s₁.next s₂.next else s₁.curr < s₂.curr, end using_well_founded {rel_tac := λ _ _, `[exact ⟨_, measure_wf (λ s, s.1.2.length)⟩]} instance has_lt' : has_lt string := ⟨λ s₁ s₂, ltb s₁.mk_iterator s₂.mk_iterator⟩ instance decidable_lt : @decidable_rel string (<) := by apply_instance -- short-circuit type class inference @[simp] theorem lt_iff_to_list_lt : ∀ {s₁ s₂ : string}, s₁ < s₂ ↔ s₁.to_list < s₂.to_list | ⟨i₁⟩ ⟨i₂⟩ := suffices ∀ {p₁ p₂ s₁ s₂}, ltb ⟨p₁, s₁⟩ ⟨p₂, s₂⟩ ↔ s₁ < s₂, from this, begin intros, induction s₁ with a s₁ IH generalizing p₁ p₂ s₂; cases s₂ with b s₂; rw ltb; simp [iterator.has_next], { refl, }, { exact iff_of_true rfl list.lex.nil }, { exact iff_of_false bool.ff_ne_tt (not_lt_of_lt list.lex.nil) }, { dsimp [iterator.has_next, iterator.curr, iterator.next], split_ifs, { subst b, exact IH.trans list.lex.cons_iff.symm }, { simp, refine ⟨list.lex.rel, λ e, _⟩, cases e, {cases h rfl}, assumption } } end instance has_le : has_le string := ⟨λ s₁ s₂, ¬ s₂ < s₁⟩ instance decidable_le : @decidable_rel string (≤) := by apply_instance -- short-circuit type class inference @[simp] theorem le_iff_to_list_le {s₁ s₂ : string} : s₁ ≤ s₂ ↔ s₁.to_list ≤ s₂.to_list := (not_congr lt_iff_to_list_lt).trans not_lt theorem to_list_inj : ∀ {s₁ s₂}, to_list s₁ = to_list s₂ ↔ s₁ = s₂ | ⟨s₁⟩ ⟨s₂⟩ := ⟨congr_arg _, congr_arg _⟩ lemma nil_as_string_eq_empty : [].as_string = "" := rfl @[simp] lemma to_list_empty : "".to_list = [] := rfl lemma as_string_inv_to_list (s : string) : s.to_list.as_string = s := by { cases s, refl } @[simp] lemma to_list_singleton (c : char) : (string.singleton c).to_list = [c] := rfl lemma to_list_nonempty : ∀ {s : string}, s ≠ string.empty → s.to_list = s.head :: (s.popn 1).to_list | ⟨s⟩ h := by cases s; [cases h rfl, refl] @[simp] lemma head_empty : "".head = default _ := rfl @[simp] lemma popn_empty {n : ℕ} : "".popn n = "" := begin induction n with n hn, { refl }, { rcases hs : "" with ⟨_ | ⟨hd, tl⟩⟩, { rw hs at hn, conv_rhs { rw ←hn }, simp only [popn, mk_iterator, iterator.nextn, iterator.next] }, { simpa only [←to_list_inj] using hs } } end instance : linear_order string := by refine_struct { lt := (<), le := (≤), decidable_lt := by apply_instance, decidable_le := string.decidable_le, decidable_eq := by apply_instance, .. }; { simp only [le_iff_to_list_le, lt_iff_to_list_lt, ← to_list_inj], introv, apply_field } end string open string lemma list.to_list_inv_as_string (l : list char) : l.as_string.to_list = l := by { cases hl : l.as_string, exact string_imp.mk.inj hl.symm } @[simp] lemma list.length_as_string (l : list char) : l.as_string.length = l.length := rfl @[simp] lemma list.as_string_inj {l l' : list char} : l.as_string = l'.as_string ↔ l = l' := ⟨λ h, by rw [←list.to_list_inv_as_string l, ←list.to_list_inv_as_string l', to_list_inj, h], λ h, h ▸ rfl⟩ @[simp] lemma string.length_to_list (s : string) : s.to_list.length = s.length := by rw [←string.as_string_inv_to_list s, list.to_list_inv_as_string, list.length_as_string] lemma list.as_string_eq {l : list char} {s : string} : l.as_string = s ↔ l = s.to_list := by rw [←as_string_inv_to_list s, list.as_string_inj, as_string_inv_to_list s]
50874f4df26f50931df251221b00454c47f5426e
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/data/fin_auto.lean
ad6aba4bc644aebeada020e6c60654dcb5a3521c
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
48,403
lean
/- Copyright (c) 2017 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Keeley Hoek -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.nat.cast import Mathlib.tactic.localized import Mathlib.order.rel_iso import Mathlib.PostPort universes u u_1 u_2 v namespace Mathlib /-! # The finite type with `n` elements `fin n` is the type whose elements are natural numbers smaller than `n`. This file expands on the development in the core library. ## Main definitions ### Induction principles * `fin_zero_elim` : Elimination principle for the empty set `fin 0`, generalizes `fin.elim0`. * `fin.succ_rec` : Define `C n i` by induction on `i : fin n` interpreted as `(0 : fin (n - i)).succ.succ…`. This function has two arguments: `H0 n` defines `0`-th element `C (n+1) 0` of an `(n+1)`-tuple, and `Hs n i` defines `(i+1)`-st element of `(n+1)`-tuple based on `n`, `i`, and `i`-th element of `n`-tuple. * `fin.succ_rec_on` : same as `fin.succ_rec` but `i : fin n` is the first argument; * `fin.induction` : Define `C i` by induction on `i : fin (n + 1)`, separating into the `nat`-like base cases of `C 0` and `C (i.succ)`. * `fin.induction_on` : same as `fin.induction` but with `i : fin (n + 1)` as the first argument. ### Casts * `cast_lt i h` : embed `i` into a `fin` where `h` proves it belongs into; * `cast_le h` : embed `fin n` into `fin m`, `h : n ≤ m`; * `cast eq` : embed `fin n` into `fin m`, `eq : n = m`; * `cast_add m` : embed `fin n` into `fin (n+m)`; * `cast_succ` : embed `fin n` into `fin (n+1)`; * `succ_above p` : embed `fin n` into `fin (n + 1)` with a hole around `p`; * `pred_above p i h` : embed `i : fin (n+1)` into `fin n` by ignoring `p`; * `sub_nat i h` : subtract `m` from `i ≥ m`, generalizes `fin.pred`; * `add_nat i h` : add `m` on `i` on the right, generalizes `fin.succ`; * `nat_add i h` adds `n` on `i` on the left; * `clamp n m` : `min n m` as an element of `fin (m + 1)`; ### Operation on tuples We interpret maps `Π i : fin n, α i` as tuples `(α 0, …, α (n-1))`. If `α i` is a constant map, then tuples are isomorphic (but not definitionally equal) to `vector`s. We define the following operations: * `tail` : the tail of an `n+1` tuple, i.e., its last `n` entries; * `cons` : adding an element at the beginning of an `n`-tuple, to get an `n+1`-tuple; * `init` : the beginning of an `n+1` tuple, i.e., its first `n` entries; * `snoc` : adding an element at the end of an `n`-tuple, to get an `n+1`-tuple. The name `snoc` comes from `cons` (i.e., adding an element to the left of a tuple) read in reverse order. * `insert_nth` : insert an element to a tuple at a given position. * `find p` : returns the first index `n` where `p n` is satisfied, and `none` if it is never satisfied. ### Misc definitions * `fin.last n` : The greatest value of `fin (n+1)`. -/ /-- Elimination principle for the empty set `fin 0`, dependent version. -/ def fin_zero_elim {α : fin 0 → Sort u} (x : fin 0) : α x := fin.elim0 x theorem fact.succ.pos {n : ℕ} : fact (0 < Nat.succ n) := nat.zero_lt_succ n theorem fact.bit0.pos {n : ℕ} [h : fact (0 < n)] : fact (0 < bit0 n) := nat.zero_lt_bit0 (ne_of_gt h) theorem fact.bit1.pos {n : ℕ} : fact (0 < bit1 n) := nat.zero_lt_bit1 n theorem fact.pow.pos {p : ℕ} {n : ℕ} [h : fact (0 < p)] : fact (0 < p ^ n) := pow_pos h n namespace fin protected instance fin_to_nat (n : ℕ) : has_coe (fin n) ℕ := has_coe.mk subtype.val theorem is_lt {n : ℕ} (i : fin n) : ↑i < n := subtype.property i /-- convert a `ℕ` to `fin n`, provided `n` is positive -/ def of_nat' {n : ℕ} [h : fact (0 < n)] (i : ℕ) : fin n := { val := i % n, property := nat.mod_lt i h } @[simp] protected theorem eta {n : ℕ} (a : fin n) (h : ↑a < n) : { val := ↑a, property := h } = a := sorry theorem ext {n : ℕ} {a : fin n} {b : fin n} (h : ↑a = ↑b) : a = b := eq_of_veq h theorem ext_iff {n : ℕ} (a : fin n) (b : fin n) : a = b ↔ ↑a = ↑b := { mp := congr_arg fun (a : fin n) => ↑a, mpr := eq_of_veq } theorem coe_injective {n : ℕ} : function.injective coe := subtype.coe_injective theorem eq_iff_veq {n : ℕ} (a : fin n) (b : fin n) : a = b ↔ subtype.val a = subtype.val b := { mp := veq_of_eq, mpr := eq_of_veq } theorem ne_iff_vne {n : ℕ} (a : fin n) (b : fin n) : a ≠ b ↔ subtype.val a ≠ subtype.val b := { mp := vne_of_ne, mpr := ne_of_vne } @[simp] theorem mk_eq_subtype_mk {n : ℕ} (a : ℕ) (h : a < n) : mk a h = { val := a, property := h } := rfl protected theorem mk.inj_iff {n : ℕ} {a : ℕ} {b : ℕ} {ha : a < n} {hb : b < n} : { val := a, property := ha } = { val := b, property := hb } ↔ a = b := subtype.mk_eq_mk theorem mk_val {m : ℕ} {n : ℕ} (h : m < n) : subtype.val { val := m, property := h } = m := rfl theorem eq_mk_iff_coe_eq {n : ℕ} {a : fin n} {k : ℕ} {hk : k < n} : a = { val := k, property := hk } ↔ ↑a = k := eq_iff_veq a { val := k, property := hk } @[simp] theorem coe_mk {m : ℕ} {n : ℕ} (h : m < n) : ↑{ val := m, property := h } = m := rfl theorem mk_coe {n : ℕ} (i : fin n) : { val := ↑i, property := is_lt i } = i := fin.eta i (is_lt i) theorem coe_eq_val {n : ℕ} (a : fin n) : ↑a = subtype.val a := rfl @[simp] theorem val_eq_coe {n : ℕ} (a : fin n) : subtype.val a = ↑a := rfl @[simp] theorem val_one {n : ℕ} : subtype.val 1 = 1 := rfl @[simp] theorem val_two {n : ℕ} : subtype.val (bit0 1) = bit0 1 := rfl @[simp] theorem coe_zero {n : ℕ} : ↑0 = 0 := rfl @[simp] theorem coe_one {n : ℕ} : ↑1 = 1 := rfl @[simp] theorem coe_two {n : ℕ} : ↑(bit0 1) = bit0 1 := rfl /-- `a < b` as natural numbers if and only if `a < b` in `fin n`. -/ @[simp] theorem coe_fin_lt {n : ℕ} {a : fin n} {b : fin n} : ↑a < ↑b ↔ a < b := iff.rfl /-- `a ≤ b` as natural numbers if and only if `a ≤ b` in `fin n`. -/ @[simp] theorem coe_fin_le {n : ℕ} {a : fin n} {b : fin n} : ↑a ≤ ↑b ↔ a ≤ b := iff.rfl theorem val_add {n : ℕ} (a : fin n) (b : fin n) : subtype.val (a + b) = (subtype.val a + subtype.val b) % n := sorry theorem coe_add {n : ℕ} (a : fin n) (b : fin n) : ↑(a + b) = (↑a + ↑b) % n := sorry theorem val_mul {n : ℕ} (a : fin n) (b : fin n) : subtype.val (a * b) = subtype.val a * subtype.val b % n := sorry theorem coe_mul {n : ℕ} (a : fin n) (b : fin n) : ↑(a * b) = ↑a * ↑b % n := sorry theorem one_val {n : ℕ} : subtype.val 1 = 1 % (n + 1) := rfl theorem coe_one' {n : ℕ} : ↑1 = 1 % (n + 1) := rfl @[simp] theorem val_zero' (n : ℕ) : subtype.val 0 = 0 := rfl @[simp] theorem mk_zero {n : ℕ} : { val := 0, property := nat.succ_pos' } = 0 := rfl @[simp] theorem mk_one {n : ℕ} : { val := 1, property := nat.succ_lt_succ (nat.succ_pos n) } = 1 := rfl @[simp] theorem mk_bit0 {m : ℕ} {n : ℕ} (h : bit0 m < n) : { val := bit0 m, property := h } = bit0 { val := m, property := has_le.le.trans_lt (nat.le_add_right m m) h } := eq_of_veq (Eq.symm (nat.mod_eq_of_lt h)) @[simp] theorem mk_bit1 {m : ℕ} {n : ℕ} (h : bit1 m < n + 1) : { val := bit1 m, property := h } = bit1 { val := m, property := has_le.le.trans_lt (nat.le_add_right m m) (has_lt.lt.trans (nat.lt_succ_self (m + m)) h) } := sorry @[simp] theorem of_nat_eq_coe (n : ℕ) (a : ℕ) : of_nat a = ↑a := sorry /-- Converting an in-range number to `fin (n + 1)` produces a result whose value is the original number. -/ theorem coe_val_of_lt {n : ℕ} {a : ℕ} (h : a < n + 1) : subtype.val ↑a = a := eq.mpr (id (Eq._oldrec (Eq.refl (subtype.val ↑a = a)) (Eq.symm (of_nat_eq_coe n a)))) (nat.mod_eq_of_lt h) /-- Converting the value of a `fin (n + 1)` to `fin (n + 1)` results in the same value. -/ theorem coe_val_eq_self {n : ℕ} (a : fin (n + 1)) : ↑(subtype.val a) = a := eq.mpr (id (Eq._oldrec (Eq.refl (↑(subtype.val a) = a)) (propext (eq_iff_veq (↑(subtype.val a)) a)))) (coe_val_of_lt (subtype.property a)) /-- Coercing an in-range number to `fin (n + 1)`, and converting back to `ℕ`, results in that number. -/ theorem coe_coe_of_lt {n : ℕ} {a : ℕ} (h : a < n + 1) : ↑↑a = a := coe_val_of_lt h /-- Converting a `fin (n + 1)` to `ℕ` and back results in the same value. -/ @[simp] theorem coe_coe_eq_self {n : ℕ} (a : fin (n + 1)) : ↑↑a = a := coe_val_eq_self a /-- Assume `k = l`. If two functions defined on `fin k` and `fin l` are equal on each element, then they coincide (in the heq sense). -/ protected theorem heq_fun_iff {α : Type u_1} {k : ℕ} {l : ℕ} (h : k = l) {f : fin k → α} {g : fin l → α} : f == g ↔ ∀ (i : fin k), f i = g { val := ↑i, property := h ▸ subtype.property i } := sorry protected theorem heq_ext_iff {k : ℕ} {l : ℕ} (h : k = l) {i : fin k} {j : fin l} : i == j ↔ ↑i = ↑j := sorry protected instance nontrivial {n : ℕ} : nontrivial (fin (n + bit0 1)) := nontrivial.mk (Exists.intro 0 (Exists.intro 1 (of_as_true trivial))) protected instance linear_order {n : ℕ} : linear_order (fin n) := linear_order.mk LessEq Less sorry sorry sorry sorry fin.decidable_le (fin.decidable_eq n) fin.decidable_lt theorem exists_iff {n : ℕ} {p : fin n → Prop} : (∃ (i : fin n), p i) ↔ ∃ (i : ℕ), ∃ (h : i < n), p { val := i, property := h } := sorry theorem forall_iff {n : ℕ} {p : fin n → Prop} : (∀ (i : fin n), p i) ↔ ∀ (i : ℕ) (h : i < n), p { val := i, property := h } := sorry theorem lt_iff_coe_lt_coe {n : ℕ} {a : fin n} {b : fin n} : a < b ↔ ↑a < ↑b := iff.rfl theorem le_iff_coe_le_coe {n : ℕ} {a : fin n} {b : fin n} : a ≤ b ↔ ↑a ≤ ↑b := iff.rfl theorem mk_lt_of_lt_coe {n : ℕ} {b : fin n} {a : ℕ} (h : a < ↑b) : { val := a, property := has_lt.lt.trans h (is_lt b) } < b := h theorem mk_le_of_le_coe {n : ℕ} {b : fin n} {a : ℕ} (h : a ≤ ↑b) : { val := a, property := has_le.le.trans_lt h (is_lt b) } ≤ b := h theorem zero_le {n : ℕ} (a : fin (n + 1)) : 0 ≤ a := nat.zero_le (subtype.val a) @[simp] theorem coe_succ {n : ℕ} (j : fin n) : ↑(fin.succ j) = ↑j + 1 := sorry theorem succ_pos {n : ℕ} (a : fin n) : 0 < fin.succ a := sorry /-- The greatest value of `fin (n+1)` -/ def last (n : ℕ) : fin (n + 1) := { val := n, property := nat.lt_succ_self n } @[simp] theorem coe_last (n : ℕ) : ↑(last n) = n := rfl theorem last_val (n : ℕ) : subtype.val (last n) = n := rfl theorem le_last {n : ℕ} (i : fin (n + 1)) : i ≤ last n := nat.le_of_lt_succ (is_lt i) protected instance bounded_lattice {n : ℕ} : bounded_lattice (fin (n + 1)) := bounded_lattice.mk lattice.sup linear_order.le linear_order.lt sorry sorry sorry sorry sorry sorry lattice.inf sorry sorry sorry (last n) le_last 0 zero_le /-- `fin.succ` as an `order_embedding` -/ def succ_embedding (n : ℕ) : fin n ↪o fin (n + 1) := order_embedding.of_strict_mono fin.succ sorry @[simp] theorem coe_succ_embedding {n : ℕ} : ⇑(succ_embedding n) = fin.succ := rfl @[simp] theorem succ_le_succ_iff {n : ℕ} {a : fin n} {b : fin n} : fin.succ a ≤ fin.succ b ↔ a ≤ b := order_embedding.le_iff_le (succ_embedding n) @[simp] theorem succ_lt_succ_iff {n : ℕ} {a : fin n} {b : fin n} : fin.succ a < fin.succ b ↔ a < b := order_embedding.lt_iff_lt (succ_embedding n) theorem succ_injective (n : ℕ) : function.injective fin.succ := rel_embedding.injective (succ_embedding n) @[simp] theorem succ_inj {n : ℕ} {a : fin n} {b : fin n} : fin.succ a = fin.succ b ↔ a = b := function.injective.eq_iff (succ_injective n) theorem succ_ne_zero {n : ℕ} (k : fin n) : fin.succ k ≠ 0 := sorry @[simp] theorem succ_zero_eq_one {n : ℕ} : fin.succ 0 = 1 := rfl theorem mk_succ_pos {n : ℕ} (i : ℕ) (h : i < n) : 0 < { val := Nat.succ i, property := add_lt_add_right h 1 } := sorry theorem one_lt_succ_succ {n : ℕ} (a : fin n) : 1 < fin.succ (fin.succ a) := sorry theorem succ_succ_ne_one {n : ℕ} (a : fin n) : fin.succ (fin.succ a) ≠ 1 := ne_of_gt (one_lt_succ_succ a) @[simp] theorem coe_pred {n : ℕ} (j : fin (n + 1)) (h : j ≠ 0) : ↑(pred j h) = ↑j - 1 := sorry @[simp] theorem succ_pred {n : ℕ} (i : fin (n + 1)) (h : i ≠ 0) : fin.succ (pred i h) = i := sorry @[simp] theorem pred_succ {n : ℕ} (i : fin n) {h : fin.succ i ≠ 0} : pred (fin.succ i) h = i := sorry @[simp] theorem pred_mk_succ {n : ℕ} (i : ℕ) (h : i < n + 1) : pred { val := i + 1, property := add_lt_add_right h 1 } (ne_of_vne (ne_of_gt (mk_succ_pos i h))) = { val := i, property := h } := sorry @[simp] theorem pred_le_pred_iff {n : ℕ} {a : fin (Nat.succ n)} {b : fin (Nat.succ n)} {ha : a ≠ 0} {hb : b ≠ 0} : pred a ha ≤ pred b hb ↔ a ≤ b := eq.mpr (id (Eq._oldrec (Eq.refl (pred a ha ≤ pred b hb ↔ a ≤ b)) (Eq.symm (propext succ_le_succ_iff)))) (eq.mpr (id (Eq._oldrec (Eq.refl (fin.succ (pred a ha) ≤ fin.succ (pred b hb) ↔ a ≤ b)) (succ_pred a ha))) (eq.mpr (id (Eq._oldrec (Eq.refl (a ≤ fin.succ (pred b hb) ↔ a ≤ b)) (succ_pred b hb))) (iff.refl (a ≤ b)))) @[simp] theorem pred_lt_pred_iff {n : ℕ} {a : fin (Nat.succ n)} {b : fin (Nat.succ n)} {ha : a ≠ 0} {hb : b ≠ 0} : pred a ha < pred b hb ↔ a < b := eq.mpr (id (Eq._oldrec (Eq.refl (pred a ha < pred b hb ↔ a < b)) (Eq.symm (propext succ_lt_succ_iff)))) (eq.mpr (id (Eq._oldrec (Eq.refl (fin.succ (pred a ha) < fin.succ (pred b hb) ↔ a < b)) (succ_pred a ha))) (eq.mpr (id (Eq._oldrec (Eq.refl (a < fin.succ (pred b hb) ↔ a < b)) (succ_pred b hb))) (iff.refl (a < b)))) @[simp] theorem pred_inj {n : ℕ} {a : fin (n + 1)} {b : fin (n + 1)} {ha : a ≠ 0} {hb : b ≠ 0} : pred a ha = pred b hb ↔ a = b := sorry /-- The inclusion map `fin n → ℕ` is a relation embedding. -/ def coe_embedding (n : ℕ) : fin n ↪o ℕ := rel_embedding.mk (function.embedding.mk coe eq_of_veq) sorry /-- The ordering on `fin n` is a well order. -/ protected instance fin.lt.is_well_order (n : ℕ) : is_well_order (fin n) Less := order_embedding.is_well_order (coe_embedding n) /-- `cast_lt i h` embeds `i` into a `fin` where `h` proves it belongs into. -/ def cast_lt {n : ℕ} {m : ℕ} (i : fin m) (h : subtype.val i < n) : fin n := { val := subtype.val i, property := h } @[simp] theorem coe_cast_lt {n : ℕ} {m : ℕ} (i : fin m) (h : subtype.val i < n) : ↑(cast_lt i h) = ↑i := rfl /-- `cast_le h i` embeds `i` into a larger `fin` type. -/ def cast_le {n : ℕ} {m : ℕ} (h : n ≤ m) : fin n ↪o fin m := order_embedding.of_strict_mono (fun (a : fin n) => cast_lt a sorry) sorry @[simp] theorem coe_cast_le {n : ℕ} {m : ℕ} (h : n ≤ m) (i : fin n) : ↑(coe_fn (cast_le h) i) = ↑i := rfl /-- `cast eq i` embeds `i` into a equal `fin` type. -/ def cast {n : ℕ} {m : ℕ} (eq : n = m) : fin n ≃o fin m := rel_iso.mk (equiv.mk ⇑(cast_le sorry) ⇑(cast_le sorry) sorry sorry) sorry @[simp] theorem symm_cast {n : ℕ} {m : ℕ} (h : n = m) : order_iso.symm (cast h) = cast (Eq.symm h) := rfl theorem coe_cast {n : ℕ} {m : ℕ} (h : n = m) (i : fin n) : ↑(coe_fn (cast h) i) = ↑i := rfl @[simp] theorem cast_trans {n : ℕ} {m : ℕ} {k : ℕ} (h : n = m) (h' : m = k) {i : fin n} : coe_fn (cast h') (coe_fn (cast h) i) = coe_fn (cast (Eq.trans h h')) i := rfl @[simp] theorem cast_refl {n : ℕ} {i : fin n} : coe_fn (cast rfl) i = i := ext (Eq.refl ↑(coe_fn (cast rfl) i)) /-- `cast_add m i` embeds `i : fin n` in `fin (n+m)`. -/ def cast_add {n : ℕ} (m : ℕ) : fin n ↪o fin (n + m) := cast_le (nat.le_add_right n m) @[simp] theorem coe_cast_add {n : ℕ} (m : ℕ) (i : fin n) : ↑(coe_fn (cast_add m) i) = ↑i := rfl /-- `cast_succ i` embeds `i : fin n` in `fin (n+1)`. -/ def cast_succ {n : ℕ} : fin n ↪o fin (n + 1) := cast_add 1 @[simp] theorem coe_cast_succ {n : ℕ} (i : fin n) : ↑(coe_fn cast_succ i) = ↑i := rfl theorem cast_succ_lt_succ {n : ℕ} (i : fin n) : coe_fn cast_succ i < fin.succ i := sorry theorem succ_above_aux {n : ℕ} (p : fin (n + 1)) : strict_mono fun (i : fin n) => ite (coe_fn cast_succ i < p) (coe_fn cast_succ i) (fin.succ i) := sorry /-- `succ_above p i` embeds `fin n` into `fin (n + 1)` with a hole around `p`. -/ def succ_above {n : ℕ} (p : fin (n + 1)) : fin n ↪o fin (n + 1) := order_embedding.of_strict_mono (fun (a : fin n) => (fun (i : fin n) => ite (coe_fn cast_succ i < p) (coe_fn cast_succ i) (fin.succ i)) a) (succ_above_aux p) /-- `pred_above p i h` embeds `i : fin (n+1)` into `fin n` by ignoring `p`. -/ def pred_above {n : ℕ} (p : fin (n + 1)) (i : fin (n + 1)) (hi : i ≠ p) : fin n := dite (i < p) (fun (h : i < p) => cast_lt i sorry) fun (h : ¬i < p) => pred i sorry /-- `sub_nat i h` subtracts `m` from `i`, generalizes `fin.pred`. -/ def sub_nat {n : ℕ} (m : ℕ) (i : fin (n + m)) (h : m ≤ ↑i) : fin n := { val := ↑i - m, property := sorry } @[simp] theorem coe_sub_nat {n : ℕ} {m : ℕ} (i : fin (n + m)) (h : m ≤ ↑i) : ↑(sub_nat m i h) = ↑i - m := rfl /-- `add_nat i h` adds `m` to `i`, generalizes `fin.succ`. -/ def add_nat {n : ℕ} (m : ℕ) : fin n ↪o fin (n + m) := order_embedding.of_strict_mono (fun (i : fin n) => { val := ↑i + m, property := sorry }) sorry @[simp] theorem coe_add_nat {n : ℕ} (m : ℕ) (i : fin n) : ↑(coe_fn (add_nat m) i) = ↑i + m := rfl /-- `nat_add i h` adds `n` to `i` "on the left". -/ def nat_add (n : ℕ) {m : ℕ} : fin m ↪o fin (n + m) := order_embedding.of_strict_mono (fun (i : fin m) => { val := n + ↑i, property := sorry }) sorry @[simp] theorem coe_nat_add (n : ℕ) {m : ℕ} (i : fin m) : ↑(coe_fn (nat_add n) i) = n + ↑i := rfl /-- If `e` is an `order_iso` between `fin n` and `fin m`, then `n = m` and `e` is the identity map. In this lemma we state that for each `i : fin n` we have `(e i : ℕ) = (i : ℕ)`. -/ @[simp] theorem coe_order_iso_apply {n : ℕ} {m : ℕ} (e : fin n ≃o fin m) (i : fin n) : ↑(coe_fn e i) = ↑i := sorry protected instance order_iso_subsingleton {n : ℕ} {α : Type u_1} [preorder α] : subsingleton (fin n ≃o α) := sorry protected instance order_iso_subsingleton' {n : ℕ} {α : Type u_1} [preorder α] : subsingleton (α ≃o fin n) := function.injective.subsingleton order_iso.symm_injective protected instance order_iso_unique {n : ℕ} : unique (fin n ≃o fin n) := unique.mk' (fin n ≃o fin n) /-- Two strictly monotone functions from `fin n` are equal provided that their ranges are equal. -/ theorem strict_mono_unique {n : ℕ} {α : Type u_1} [preorder α] {f : fin n → α} {g : fin n → α} (hf : strict_mono f) (hg : strict_mono g) (h : set.range f = set.range g) : f = g := sorry /-- Two order embeddings of `fin n` are equal provided that their ranges are equal. -/ theorem order_embedding_eq {n : ℕ} {α : Type u_1} [preorder α] {f : fin n ↪o α} {g : fin n ↪o α} (h : set.range ⇑f = set.range ⇑g) : f = g := rel_embedding.ext (iff.mp function.funext_iff (strict_mono_unique (order_embedding.strict_mono f) (order_embedding.strict_mono g) h)) @[simp] theorem succ_last (n : ℕ) : fin.succ (last n) = last (Nat.succ n) := rfl @[simp] theorem cast_succ_cast_lt {n : ℕ} (i : fin (n + 1)) (h : ↑i < n) : coe_fn cast_succ (cast_lt i h) = i := eq_of_veq rfl @[simp] theorem cast_lt_cast_succ {n : ℕ} (a : fin n) (h : ↑a < n) : cast_lt (coe_fn cast_succ a) h = a := sorry theorem cast_succ_injective (n : ℕ) : function.injective ⇑cast_succ := rel_embedding.injective cast_succ theorem cast_succ_inj {n : ℕ} {a : fin n} {b : fin n} : coe_fn cast_succ a = coe_fn cast_succ b ↔ a = b := function.injective.eq_iff (cast_succ_injective n) theorem cast_succ_lt_last {n : ℕ} (a : fin n) : coe_fn cast_succ a < last n := iff.mpr lt_iff_coe_lt_coe (is_lt a) @[simp] theorem cast_succ_zero {n : ℕ} : coe_fn cast_succ 0 = 0 := rfl /-- `cast_succ i` is positive when `i` is positive -/ theorem cast_succ_pos {n : ℕ} (i : fin (n + 1)) (h : 0 < i) : 0 < coe_fn cast_succ i := sorry theorem last_pos {n : ℕ} : 0 < last (n + 1) := sorry theorem coe_nat_eq_last (n : ℕ) : ↑n = last n := sorry theorem le_coe_last {n : ℕ} (i : fin (n + 1)) : i ≤ ↑n := eq.mpr (id (Eq._oldrec (Eq.refl (i ≤ ↑n)) (coe_nat_eq_last n))) (le_last i) theorem eq_last_of_not_lt {n : ℕ} {i : fin (n + 1)} (h : ¬↑i < n) : i = last n := le_antisymm (le_last i) (iff.mp not_lt h) theorem add_one_pos {n : ℕ} (i : fin (n + 1)) (h : i < last n) : 0 < i + 1 := sorry theorem one_pos {n : ℕ} : 0 < 1 := succ_pos 0 theorem zero_ne_one {n : ℕ} : 0 ≠ 1 := ne_of_lt one_pos @[simp] theorem zero_eq_one_iff {n : ℕ} : 0 = 1 ↔ n = 0 := { mp := nat.cases_on n (fun (h : 0 = 1) => Eq.refl 0) fun (n : ℕ) (h : 0 = 1) => absurd h zero_ne_one, mpr := fun (ᾰ : n = 0) => Eq._oldrec (Eq.refl 0) (Eq.symm ᾰ) } @[simp] theorem one_eq_zero_iff {n : ℕ} : 1 = 0 ↔ n = 0 := eq.mpr (id (Eq._oldrec (Eq.refl (1 = 0 ↔ n = 0)) (propext eq_comm))) (eq.mpr (id (Eq._oldrec (Eq.refl (0 = 1 ↔ n = 0)) (propext zero_eq_one_iff))) (iff.refl (n = 0))) theorem cast_succ_fin_succ (n : ℕ) (j : fin n) : coe_fn cast_succ (fin.succ j) = fin.succ (coe_fn cast_succ j) := sorry @[simp] theorem coe_eq_cast_succ {n : ℕ} {a : fin n} : ↑a = coe_fn cast_succ a := ext (coe_val_of_lt (nat.lt.step (is_lt a))) @[simp] theorem coe_succ_eq_succ {n : ℕ} {a : fin n} : coe_fn cast_succ a + 1 = fin.succ a := sorry theorem lt_succ {n : ℕ} {a : fin n} : coe_fn cast_succ a < fin.succ a := sorry @[simp] theorem pred_one {n : ℕ} : pred 1 (ne.symm (ne_of_lt one_pos)) = 0 := rfl theorem pred_add_one {n : ℕ} (i : fin (n + bit0 1)) (h : ↑i < n + 1) : pred (i + 1) (ne_of_gt (add_one_pos i (iff.mpr lt_iff_coe_lt_coe h))) = cast_lt i h := sorry theorem nat_add_zero {n : ℕ} : nat_add 0 = rel_iso.to_rel_embedding (cast (Eq.symm (zero_add n))) := rel_embedding.ext fun (x : fin n) => ext (zero_add ↑x) /-- `min n m` as an element of `fin (m + 1)` -/ def clamp (n : ℕ) (m : ℕ) : fin (m + 1) := of_nat (min n m) @[simp] theorem coe_clamp (n : ℕ) (m : ℕ) : ↑(clamp n m) = min n m := nat.mod_eq_of_lt (iff.mpr nat.lt_succ_iff (min_le_right n m)) /-- Embedding `i : fin n` into `fin (n + 1)` with a hole around `p : fin (n + 1)` embeds `i` by `cast_succ` when the resulting `i.cast_succ < p`. -/ theorem succ_above_below {n : ℕ} (p : fin (n + 1)) (i : fin n) (h : coe_fn cast_succ i < p) : coe_fn (succ_above p) i = coe_fn cast_succ i := eq.mpr (id (Eq._oldrec (Eq.refl (coe_fn (succ_above p) i = coe_fn cast_succ i)) (succ_above.equations._eqn_1 p))) (if_pos h) /-- Embedding `fin n` into `fin (n + 1)` with a hole around zero embeds by `succ`. -/ @[simp] theorem succ_above_zero {n : ℕ} : ⇑(succ_above 0) = fin.succ := rfl /-- Embedding `fin n` into `fin (n + 1)` with a hole around `last n` embeds by `cast_succ`. -/ @[simp] theorem succ_above_last {n : ℕ} : succ_above (last n) = cast_succ := sorry theorem succ_above_last_apply {n : ℕ} (i : fin n) : coe_fn (succ_above (last n)) i = coe_fn cast_succ i := eq.mpr (id (Eq._oldrec (Eq.refl (coe_fn (succ_above (last n)) i = coe_fn cast_succ i)) succ_above_last)) (Eq.refl (coe_fn cast_succ i)) /-- Embedding `i : fin n` into `fin (n + 1)` with a hole around `p : fin (n + 1)` embeds `i` by `succ` when the resulting `p < i.succ`. -/ theorem succ_above_above {n : ℕ} (p : fin (n + 1)) (i : fin n) (h : p ≤ coe_fn cast_succ i) : coe_fn (succ_above p) i = fin.succ i := sorry /-- Embedding `i : fin n` into `fin (n + 1)` is always about some hole `p`. -/ theorem succ_above_lt_ge {n : ℕ} (p : fin (n + 1)) (i : fin n) : coe_fn cast_succ i < p ∨ p ≤ coe_fn cast_succ i := lt_or_ge (coe_fn cast_succ i) p /-- Embedding `i : fin n` into `fin (n + 1)` is always about some hole `p`. -/ theorem succ_above_lt_gt {n : ℕ} (p : fin (n + 1)) (i : fin n) : coe_fn cast_succ i < p ∨ p < fin.succ i := or.cases_on (succ_above_lt_ge p i) (fun (h : coe_fn cast_succ i < p) => Or.inl h) fun (h : p ≤ coe_fn cast_succ i) => Or.inr (lt_of_le_of_lt h (cast_succ_lt_succ i)) /-- Embedding `i : fin n` into `fin (n + 1)` using a pivot `p` that is greater results in a value that is less than `p`. -/ @[simp] theorem succ_above_lt_iff {n : ℕ} (p : fin (n + 1)) (i : fin n) : coe_fn (succ_above p) i < p ↔ coe_fn cast_succ i < p := sorry /-- Embedding `i : fin n` into `fin (n + 1)` using a pivot `p` that is lesser results in a value that is greater than `p`. -/ theorem lt_succ_above_iff {n : ℕ} (p : fin (n + 1)) (i : fin n) : p < coe_fn (succ_above p) i ↔ p ≤ coe_fn cast_succ i := sorry /-- Embedding `i : fin n` into `fin (n + 1)` with a hole around `p : fin (n + 1)` never results in `p` itself -/ theorem succ_above_ne {n : ℕ} (p : fin (n + 1)) (i : fin n) : coe_fn (succ_above p) i ≠ p := sorry /-- Embedding a positive `fin n` results in a positive fin (n + 1)` -/ theorem succ_above_pos {n : ℕ} (p : fin (n + bit0 1)) (i : fin (n + 1)) (h : 0 < i) : 0 < coe_fn (succ_above p) i := sorry /-- Given a fixed pivot `x : fin (n + 1)`, `x.succ_above` is injective -/ theorem succ_above_right_injective {n : ℕ} {x : fin (n + 1)} : function.injective ⇑(succ_above x) := rel_embedding.injective (succ_above x) /-- Given a fixed pivot `x : fin (n + 1)`, `x.succ_above` is injective -/ theorem succ_above_right_inj {n : ℕ} {a : fin n} {b : fin n} {x : fin (n + 1)} : coe_fn (succ_above x) a = coe_fn (succ_above x) b ↔ a = b := function.injective.eq_iff succ_above_right_injective /-- Embedding a `fin (n + 1)` into `fin n` and embedding it back around the same hole gives the starting `fin (n + 1)` -/ @[simp] theorem succ_above_pred_above {n : ℕ} (p : fin (n + 1)) (i : fin (n + 1)) (h : i ≠ p) : coe_fn (succ_above p) (pred_above p i h) = i := sorry /-- Embedding a `fin n` into `fin (n + 1)` and embedding it back around the same hole gives the starting `fin n` -/ @[simp] theorem pred_above_succ_above {n : ℕ} (p : fin (n + 1)) (i : fin n) : pred_above p (coe_fn (succ_above p) i) (succ_above_ne p i) = i := sorry @[simp] theorem pred_above_zero {n : ℕ} {i : fin (n + 1)} (hi : i ≠ 0) : pred_above 0 i hi = pred i hi := rfl theorem forall_iff_succ_above {n : ℕ} {p : fin (n + 1) → Prop} (i : fin (n + 1)) : (∀ (j : fin (n + 1)), p j) ↔ p i ∧ ∀ (j : fin n), p (coe_fn (succ_above i) j) := sorry /-- `succ_above` is injective at the pivot -/ theorem succ_above_left_injective {n : ℕ} : function.injective succ_above := sorry /-- `succ_above` is injective at the pivot -/ theorem succ_above_left_inj {n : ℕ} {x : fin (n + 1)} {y : fin (n + 1)} : succ_above x = succ_above y ↔ x = y := function.injective.eq_iff succ_above_left_injective /-- A function `f` on `fin n` is strictly monotone if and only if `f i < f (i+1)` for all `i`. -/ theorem strict_mono_iff_lt_succ {n : ℕ} {α : Type u_1} [preorder α] {f : fin n → α} : strict_mono f ↔ ∀ (i : ℕ) (h : i + 1 < n), f { val := i, property := lt_of_le_of_lt (nat.le_succ i) h } < f { val := i + 1, property := h } := sorry /-- Define `C n i` by induction on `i : fin n` interpreted as `(0 : fin (n - i)).succ.succ…`. This function has two arguments: `H0 n` defines `0`-th element `C (n+1) 0` of an `(n+1)`-tuple, and `Hs n i` defines `(i+1)`-st element of `(n+1)`-tuple based on `n`, `i`, and `i`-th element of `n`-tuple. -/ def succ_rec {C : (n : ℕ) → fin n → Sort u_1} (H0 : (n : ℕ) → C (Nat.succ n) 0) (Hs : (n : ℕ) → (i : fin n) → C n i → C (Nat.succ n) (fin.succ i)) {n : ℕ} (i : fin n) : C n i := sorry /-- Define `C n i` by induction on `i : fin n` interpreted as `(0 : fin (n - i)).succ.succ…`. This function has two arguments: `H0 n` defines `0`-th element `C (n+1) 0` of an `(n+1)`-tuple, and `Hs n i` defines `(i+1)`-st element of `(n+1)`-tuple based on `n`, `i`, and `i`-th element of `n`-tuple. A version of `fin.succ_rec` taking `i : fin n` as the first argument. -/ def succ_rec_on {n : ℕ} (i : fin n) {C : (n : ℕ) → fin n → Sort u_1} (H0 : (n : ℕ) → C (Nat.succ n) 0) (Hs : (n : ℕ) → (i : fin n) → C n i → C (Nat.succ n) (fin.succ i)) : C n i := succ_rec H0 Hs i @[simp] theorem succ_rec_on_zero {C : (n : ℕ) → fin n → Sort u_1} {H0 : (n : ℕ) → C (Nat.succ n) 0} {Hs : (n : ℕ) → (i : fin n) → C n i → C (Nat.succ n) (fin.succ i)} (n : ℕ) : succ_rec_on 0 H0 Hs = H0 n := rfl @[simp] theorem succ_rec_on_succ {C : (n : ℕ) → fin n → Sort u_1} {H0 : (n : ℕ) → C (Nat.succ n) 0} {Hs : (n : ℕ) → (i : fin n) → C n i → C (Nat.succ n) (fin.succ i)} {n : ℕ} (i : fin n) : succ_rec_on (fin.succ i) H0 Hs = Hs n i (succ_rec_on i H0 Hs) := subtype.cases_on i fun (i_val : ℕ) (i_property : i_val < n) => Eq.refl (succ_rec_on (fin.succ { val := i_val, property := i_property }) H0 Hs) /-- Define `C i` by induction on `i : fin (n + 1)` via induction on the underlying `nat` value. This function has two arguments: `h0` handles the base case on `C 0`, and `hs` defines the inductive step using `C i.cast_succ`. -/ def induction {n : ℕ} {C : fin (n + 1) → Sort u_1} (h0 : C 0) (hs : (i : fin n) → C (coe_fn cast_succ i) → C (fin.succ i)) (i : fin (n + 1)) : C i := subtype.cases_on i fun (i : ℕ) (hi : i < n + 1) => Nat.rec (fun (hi : 0 < n + 1) => eq.mpr sorry h0) (fun (i : ℕ) (IH : (hi : i < n + 1) → C { val := i, property := hi }) (hi : Nat.succ i < n + 1) => hs { val := i, property := nat.lt_of_succ_lt_succ hi } (IH sorry)) i hi /-- Define `C i` by induction on `i : fin (n + 1)` via induction on the underlying `nat` value. This function has two arguments: `h0` handles the base case on `C 0`, and `hs` defines the inductive step using `C i.cast_succ`. A version of `fin.induction` taking `i : fin (n + 1)` as the first argument. -/ def induction_on {n : ℕ} (i : fin (n + 1)) {C : fin (n + 1) → Sort u_1} (h0 : C 0) (hs : (i : fin n) → C (coe_fn cast_succ i) → C (fin.succ i)) : C i := induction h0 hs i /-- Define `f : Π i : fin n.succ, C i` by separately handling the cases `i = 0` and `i = j.succ`, `j : fin n`. -/ def cases {n : ℕ} {C : fin (Nat.succ n) → Sort u_1} (H0 : C 0) (Hs : (i : fin n) → C (fin.succ i)) (i : fin (Nat.succ n)) : C i := induction H0 fun (i : fin n) (_x : C (coe_fn cast_succ i)) => Hs i @[simp] theorem cases_zero {n : ℕ} {C : fin (Nat.succ n) → Sort u_1} {H0 : C 0} {Hs : (i : fin n) → C (fin.succ i)} : cases H0 Hs 0 = H0 := rfl @[simp] theorem cases_succ {n : ℕ} {C : fin (Nat.succ n) → Sort u_1} {H0 : C 0} {Hs : (i : fin n) → C (fin.succ i)} (i : fin n) : cases H0 Hs (fin.succ i) = Hs i := subtype.cases_on i fun (i_val : ℕ) (i_property : i_val < n) => Eq.refl (cases H0 Hs (fin.succ { val := i_val, property := i_property })) @[simp] theorem cases_succ' {n : ℕ} {C : fin (Nat.succ n) → Sort u_1} {H0 : C 0} {Hs : (i : fin n) → C (fin.succ i)} {i : ℕ} (h : i + 1 < n + 1) : cases H0 Hs { val := Nat.succ i, property := h } = Hs { val := i, property := nat.lt_of_succ_lt_succ h } := nat.cases_on i (fun (h : 0 + 1 < n + 1) => Eq.refl (cases H0 Hs { val := 1, property := h })) (fun (i : ℕ) (h : Nat.succ i + 1 < n + 1) => Eq.refl (cases H0 Hs { val := Nat.succ (Nat.succ i), property := h })) h theorem forall_fin_succ {n : ℕ} {P : fin (n + 1) → Prop} : (∀ (i : fin (n + 1)), P i) ↔ P 0 ∧ ∀ (i : fin n), P (fin.succ i) := sorry theorem exists_fin_succ {n : ℕ} {P : fin (n + 1) → Prop} : (∃ (i : fin (n + 1)), P i) ↔ P 0 ∨ ∃ (i : fin n), P (fin.succ i) := sorry /-! ### Tuples We can think of the type `Π(i : fin n), α i` as `n`-tuples of elements of possibly varying type `α i`. A particular case is `fin n → α` of elements with all the same type. Here are some relevant operations, first about adding or removing elements at the beginning of a tuple. -/ /-- There is exactly one tuple of size zero. -/ protected instance tuple0_unique (α : fin 0 → Type u) : unique ((i : fin 0) → α i) := unique.mk { default := fin_zero_elim } sorry @[simp] theorem tuple0_le {α : fin 0 → Type u_1} [(i : fin 0) → preorder (α i)] (f : (i : fin 0) → α i) (g : (i : fin 0) → α i) : f ≤ g := fin_zero_elim /-- The tail of an `n+1` tuple, i.e., its last `n` entries. -/ def tail {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) (i : fin n) : α (fin.succ i) := q (fin.succ i) /-- Adding an element at the beginning of an `n`-tuple, to get an `n+1`-tuple. -/ def cons {n : ℕ} {α : fin (n + 1) → Type u} (x : α 0) (p : (i : fin n) → α (fin.succ i)) (i : fin (n + 1)) : α i := cases x p j @[simp] theorem tail_cons {n : ℕ} {α : fin (n + 1) → Type u} (x : α 0) (p : (i : fin n) → α (fin.succ i)) : tail (cons x p) = p := sorry @[simp] theorem cons_succ {n : ℕ} {α : fin (n + 1) → Type u} (x : α 0) (p : (i : fin n) → α (fin.succ i)) (i : fin n) : cons x p (fin.succ i) = p i := sorry @[simp] theorem cons_zero {n : ℕ} {α : fin (n + 1) → Type u} (x : α 0) (p : (i : fin n) → α (fin.succ i)) : cons x p 0 = x := sorry /-- Updating a tuple and adding an element at the beginning commute. -/ @[simp] theorem cons_update {n : ℕ} {α : fin (n + 1) → Type u} (x : α 0) (p : (i : fin n) → α (fin.succ i)) (i : fin n) (y : α (fin.succ i)) : cons x (function.update p i y) = function.update (cons x p) (fin.succ i) y := sorry /-- Adding an element at the beginning of a tuple and then updating it amounts to adding it directly. -/ theorem update_cons_zero {n : ℕ} {α : fin (n + 1) → Type u} (x : α 0) (p : (i : fin n) → α (fin.succ i)) (z : α 0) : function.update (cons x p) 0 z = cons z p := sorry /-- Concatenating the first element of a tuple with its tail gives back the original tuple -/ @[simp] theorem cons_self_tail {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) : cons (q 0) (tail q) = q := sorry /-- Updating the first element of a tuple does not change the tail. -/ @[simp] theorem tail_update_zero {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) (z : α 0) : tail (function.update q 0 z) = tail q := sorry /-- Updating a nonzero element and taking the tail commute. -/ @[simp] theorem tail_update_succ {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) (i : fin n) (y : α (fin.succ i)) : tail (function.update q (fin.succ i) y) = function.update (tail q) i y := sorry theorem comp_cons {n : ℕ} {α : Type u_1} {β : Type u_2} (g : α → β) (y : α) (q : fin n → α) : g ∘ cons y q = cons (g y) (g ∘ q) := sorry theorem comp_tail {n : ℕ} {α : Type u_1} {β : Type u_2} (g : α → β) (q : fin (Nat.succ n) → α) : g ∘ tail q = tail (g ∘ q) := sorry theorem le_cons {n : ℕ} {α : fin (n + 1) → Type u} [(i : fin (n + 1)) → preorder (α i)] {x : α 0} {q : (i : fin (n + 1)) → α i} {p : (i : fin n) → α (fin.succ i)} : q ≤ cons x p ↔ q 0 ≤ x ∧ tail q ≤ p := sorry theorem cons_le {n : ℕ} {α : fin (n + 1) → Type u} [(i : fin (n + 1)) → preorder (α i)] {x : α 0} {q : (i : fin (n + 1)) → α i} {p : (i : fin n) → α (fin.succ i)} : cons x p ≤ q ↔ x ≤ q 0 ∧ p ≤ tail q := le_cons /-- `fin.append ho u v` appends two vectors of lengths `m` and `n` to produce one of length `o = m + n`. `ho` provides control of definitional equality for the vector length. -/ def append {n : ℕ} {m : ℕ} {α : Type u_1} {o : ℕ} (ho : o = m + n) (u : fin m → α) (v : fin n → α) : fin o → α := fun (i : fin o) => dite (↑i < m) (fun (h : ↑i < m) => u { val := ↑i, property := h }) fun (h : ¬↑i < m) => v { val := ↑i - m, property := sorry } @[simp] theorem fin_append_apply_zero {n : ℕ} {m : ℕ} {α : Type u_1} {o : ℕ} (ho : o + 1 = m + 1 + n) (u : fin (m + 1) → α) (v : fin n → α) : append ho u v 0 = u 0 := rfl /-! In the previous section, we have discussed inserting or removing elements on the left of a tuple. In this section, we do the same on the right. A difference is that `fin (n+1)` is constructed inductively from `fin n` starting from the left, not from the right. This implies that Lean needs more help to realize that elements belong to the right types, i.e., we need to insert casts at several places. -/ /-- The beginning of an `n+1` tuple, i.e., its first `n` entries -/ def init {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) (i : fin n) : α (coe_fn cast_succ i) := q (coe_fn cast_succ i) /-- Adding an element at the end of an `n`-tuple, to get an `n+1`-tuple. The name `snoc` comes from `cons` (i.e., adding an element to the left of a tuple) read in reverse order. -/ def snoc {n : ℕ} {α : fin (n + 1) → Type u} (p : (i : fin n) → α (coe_fn cast_succ i)) (x : α (last n)) (i : fin (n + 1)) : α i := dite (subtype.val i < n) (fun (h : subtype.val i < n) => cast sorry (p (cast_lt i h))) fun (h : ¬subtype.val i < n) => cast sorry x @[simp] theorem init_snoc {n : ℕ} {α : fin (n + 1) → Type u} (x : α (last n)) (p : (i : fin n) → α (coe_fn cast_succ i)) : init (snoc p x) = p := sorry @[simp] theorem snoc_cast_succ {n : ℕ} {α : fin (n + 1) → Type u} (x : α (last n)) (p : (i : fin n) → α (coe_fn cast_succ i)) (i : fin n) : snoc p x (coe_fn cast_succ i) = p i := sorry @[simp] theorem snoc_last {n : ℕ} {α : fin (n + 1) → Type u} (x : α (last n)) (p : (i : fin n) → α (coe_fn cast_succ i)) : snoc p x (last n) = x := sorry /-- Updating a tuple and adding an element at the end commute. -/ @[simp] theorem snoc_update {n : ℕ} {α : fin (n + 1) → Type u} (x : α (last n)) (p : (i : fin n) → α (coe_fn cast_succ i)) (i : fin n) (y : α (coe_fn cast_succ i)) : snoc (function.update p i y) x = function.update (snoc p x) (coe_fn cast_succ i) y := sorry /-- Adding an element at the beginning of a tuple and then updating it amounts to adding it directly. -/ theorem update_snoc_last {n : ℕ} {α : fin (n + 1) → Type u} (x : α (last n)) (p : (i : fin n) → α (coe_fn cast_succ i)) (z : α (last n)) : function.update (snoc p x) (last n) z = snoc p z := sorry /-- Concatenating the first element of a tuple with its tail gives back the original tuple -/ @[simp] theorem snoc_init_self {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) : snoc (init q) (q (last n)) = q := sorry /-- Updating the last element of a tuple does not change the beginning. -/ @[simp] theorem init_update_last {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) (z : α (last n)) : init (function.update q (last n) z) = init q := sorry /-- Updating an element and taking the beginning commute. -/ @[simp] theorem init_update_cast_succ {n : ℕ} {α : fin (n + 1) → Type u} (q : (i : fin (n + 1)) → α i) (i : fin n) (y : α (coe_fn cast_succ i)) : init (function.update q (coe_fn cast_succ i) y) = function.update (init q) i y := sorry /-- `tail` and `init` commute. We state this lemma in a non-dependent setting, as otherwise it would involve a cast to convince Lean that the two types are equal, making it harder to use. -/ theorem tail_init_eq_init_tail {n : ℕ} {β : Type u_1} (q : fin (n + bit0 1) → β) : tail (init q) = init (tail q) := sorry /-- `cons` and `snoc` commute. We state this lemma in a non-dependent setting, as otherwise it would involve a cast to convince Lean that the two types are equal, making it harder to use. -/ theorem cons_snoc_eq_snoc_cons {n : ℕ} {β : Type u_1} (a : β) (q : fin n → β) (b : β) : cons a (snoc q b) = snoc (cons a q) b := sorry theorem comp_snoc {n : ℕ} {α : Type u_1} {β : Type u_2} (g : α → β) (q : fin n → α) (y : α) : g ∘ snoc q y = snoc (g ∘ q) (g y) := sorry theorem comp_init {n : ℕ} {α : Type u_1} {β : Type u_2} (g : α → β) (q : fin (Nat.succ n) → α) : g ∘ init q = init (g ∘ q) := sorry /-- Insert an element into a tuple at a given position. For `i = 0` see `fin.cons`, for `i = fin.last n` see `fin.snoc`. -/ def insert_nth {n : ℕ} {α : fin (n + 1) → Type u} (i : fin (n + 1)) (x : α i) (p : (j : fin n) → α (coe_fn (succ_above i) j)) (j : fin (n + 1)) : α j := dite (j = i) (fun (h : j = i) => cast sorry x) fun (h : ¬j = i) => cast sorry (p (pred_above i j h)) @[simp] theorem insert_nth_apply_same {n : ℕ} {α : fin (n + 1) → Type u} (i : fin (n + 1)) (x : α i) (p : (j : fin n) → α (coe_fn (succ_above i) j)) : insert_nth i x p i = x := sorry @[simp] theorem insert_nth_apply_succ_above {n : ℕ} {α : fin (n + 1) → Type u} (i : fin (n + 1)) (x : α i) (p : (j : fin n) → α (coe_fn (succ_above i) j)) (j : fin n) : insert_nth i x p (coe_fn (succ_above i) j) = p j := sorry @[simp] theorem insert_nth_comp_succ_above {n : ℕ} {β : Type v} (i : fin (n + 1)) (x : β) (p : fin n → β) : insert_nth i x p ∘ ⇑(succ_above i) = p := funext (insert_nth_apply_succ_above i x p) theorem insert_nth_eq_iff {n : ℕ} {α : fin (n + 1) → Type u} {i : fin (n + 1)} {x : α i} {p : (j : fin n) → α (coe_fn (succ_above i) j)} {q : (j : fin (n + 1)) → α j} : insert_nth i x p = q ↔ q i = x ∧ p = fun (j : fin n) => q (coe_fn (succ_above i) j) := sorry theorem eq_insert_nth_iff {n : ℕ} {α : fin (n + 1) → Type u} {i : fin (n + 1)} {x : α i} {p : (j : fin n) → α (coe_fn (succ_above i) j)} {q : (j : fin (n + 1)) → α j} : q = insert_nth i x p ↔ q i = x ∧ p = fun (j : fin n) => q (coe_fn (succ_above i) j) := iff.trans eq_comm insert_nth_eq_iff theorem insert_nth_zero {n : ℕ} {α : fin (n + 1) → Type u} (x : α 0) (p : (j : fin n) → α (coe_fn (succ_above 0) j)) : insert_nth 0 x p = cons x fun (j : fin n) => cast (congr_arg α (congr_fun succ_above_zero j)) (p j) := sorry @[simp] theorem insert_nth_zero' {n : ℕ} {β : Type v} (x : β) (p : fin n → β) : insert_nth 0 x p = cons x p := sorry theorem insert_nth_last {n : ℕ} {α : fin (n + 1) → Type u} (x : α (last n)) (p : (j : fin n) → α (coe_fn (succ_above (last n)) j)) : insert_nth (last n) x p = snoc (fun (j : fin n) => cast (congr_arg α (succ_above_last_apply j)) (p j)) x := sorry @[simp] theorem insert_nth_last' {n : ℕ} {β : Type v} (x : β) (p : fin n → β) : insert_nth (last n) x p = snoc p x := sorry theorem insert_nth_le_iff {n : ℕ} {α : fin (n + 1) → Type u} [(i : fin (n + 1)) → preorder (α i)] {i : fin (n + 1)} {x : α i} {p : (j : fin n) → α (coe_fn (succ_above i) j)} {q : (j : fin (n + 1)) → α j} : insert_nth i x p ≤ q ↔ x ≤ q i ∧ p ≤ fun (j : fin n) => q (coe_fn (succ_above i) j) := sorry theorem le_insert_nth_iff {n : ℕ} {α : fin (n + 1) → Type u} [(i : fin (n + 1)) → preorder (α i)] {i : fin (n + 1)} {x : α i} {p : (j : fin n) → α (coe_fn (succ_above i) j)} {q : (j : fin (n + 1)) → α j} : q ≤ insert_nth i x p ↔ q i ≤ x ∧ (fun (j : fin n) => q (coe_fn (succ_above i) j)) ≤ p := sorry theorem insert_nth_mem_Icc {n : ℕ} {α : fin (n + 1) → Type u} [(i : fin (n + 1)) → preorder (α i)] {i : fin (n + 1)} {x : α i} {p : (j : fin n) → α (coe_fn (succ_above i) j)} {q₁ : (j : fin (n + 1)) → α j} {q₂ : (j : fin (n + 1)) → α j} : insert_nth i x p ∈ set.Icc q₁ q₂ ↔ x ∈ set.Icc (q₁ i) (q₂ i) ∧ p ∈ set.Icc (fun (j : fin n) => q₁ (coe_fn (succ_above i) j)) fun (j : fin n) => q₂ (coe_fn (succ_above i) j) := sorry theorem preimage_insert_nth_Icc_of_mem {n : ℕ} {α : fin (n + 1) → Type u} [(i : fin (n + 1)) → preorder (α i)] {i : fin (n + 1)} {x : α i} {q₁ : (j : fin (n + 1)) → α j} {q₂ : (j : fin (n + 1)) → α j} (hx : x ∈ set.Icc (q₁ i) (q₂ i)) : insert_nth i x ⁻¹' set.Icc q₁ q₂ = set.Icc (fun (j : fin n) => q₁ (coe_fn (succ_above i) j)) fun (j : fin n) => q₂ (coe_fn (succ_above i) j) := sorry theorem preimage_insert_nth_Icc_of_not_mem {n : ℕ} {α : fin (n + 1) → Type u} [(i : fin (n + 1)) → preorder (α i)] {i : fin (n + 1)} {x : α i} {q₁ : (j : fin (n + 1)) → α j} {q₂ : (j : fin (n + 1)) → α j} (hx : ¬x ∈ set.Icc (q₁ i) (q₂ i)) : insert_nth i x ⁻¹' set.Icc q₁ q₂ = ∅ := sorry /-- `find p` returns the first index `n` where `p n` is satisfied, and `none` if it is never satisfied. -/ def find {n : ℕ} (p : fin n → Prop) [decidable_pred p] : Option (fin n) := sorry /-- If `find p = some i`, then `p i` holds -/ theorem find_spec {n : ℕ} (p : fin n → Prop) [decidable_pred p] {i : fin n} (hi : i ∈ find p) : p i := sorry /-- `find p` does not return `none` if and only if `p i` holds at some index `i`. -/ theorem is_some_find_iff {n : ℕ} {p : fin n → Prop} [decidable_pred p] : ↥(option.is_some (find p)) ↔ ∃ (i : fin n), p i := sorry /-- `find p` returns `none` if and only if `p i` never holds. -/ theorem find_eq_none_iff {n : ℕ} {p : fin n → Prop} [decidable_pred p] : find p = none ↔ ∀ (i : fin n), ¬p i := sorry /-- If `find p` returns `some i`, then `p j` does not hold for `j < i`, i.e., `i` is minimal among the indices where `p` holds. -/ theorem find_min {n : ℕ} {p : fin n → Prop} [decidable_pred p] {i : fin n} (hi : i ∈ find p) {j : fin n} (hj : j < i) : ¬p j := sorry theorem find_min' {n : ℕ} {p : fin n → Prop} [decidable_pred p] {i : fin n} (h : i ∈ find p) {j : fin n} (hj : p j) : i ≤ j := le_of_not_gt fun (hij : i > j) => find_min h hij hj theorem nat_find_mem_find {n : ℕ} {p : fin n → Prop} [decidable_pred p] (h : ∃ (i : ℕ), ∃ (hin : i < n), p { val := i, property := hin }) : { val := nat.find h, property := Exists.fst (nat.find_spec h) } ∈ find p := sorry theorem mem_find_iff {n : ℕ} {p : fin n → Prop} [decidable_pred p] {i : fin n} : i ∈ find p ↔ p i ∧ ∀ (j : fin n), p j → i ≤ j := sorry theorem find_eq_some_iff {n : ℕ} {p : fin n → Prop} [decidable_pred p] {i : fin n} : find p = some i ↔ p i ∧ ∀ (j : fin n), p j → i ≤ j := mem_find_iff theorem mem_find_of_unique {n : ℕ} {p : fin n → Prop} [decidable_pred p] (h : ∀ (i j : fin n), p i → p j → i = j) {i : fin n} (hi : p i) : i ∈ find p := iff.mpr mem_find_iff { left := hi, right := fun (j : fin n) (hj : p j) => le_of_eq (h i j hi hj) } @[simp] theorem coe_of_nat_eq_mod (m : ℕ) (n : ℕ) : ↑↑n = n % Nat.succ m := eq.mpr (id (Eq._oldrec (Eq.refl (↑↑n = n % Nat.succ m)) (Eq.symm (of_nat_eq_coe m n)))) (Eq.refl ↑(of_nat n)) @[simp] theorem coe_of_nat_eq_mod' (m : ℕ) (n : ℕ) [I : fact (0 < m)] : ↑(of_nat' n) = n % m := rfl @[simp] protected theorem add_zero {n : ℕ} (k : fin (n + 1)) : k + 0 = k := sorry @[simp] protected theorem zero_add {n : ℕ} (k : fin (n + 1)) : 0 + k = k := sorry @[simp] protected theorem mul_one {n : ℕ} (k : fin (n + 1)) : k * 1 = k := sorry @[simp] protected theorem one_mul {n : ℕ} (k : fin (n + 1)) : 1 * k = k := sorry @[simp] protected theorem mul_zero {n : ℕ} (k : fin (n + 1)) : k * 0 = 0 := sorry @[simp] protected theorem zero_mul {n : ℕ} (k : fin (n + 1)) : 0 * k = 0 := sorry protected instance add_comm_monoid (n : ℕ) : add_comm_monoid (fin (n + 1)) := add_comm_monoid.mk Add.add sorry 0 fin.zero_add fin.add_zero sorry end Mathlib
27d5fc10d7b8a2a9b2c530e60cef8b26c2dd6084
6b2a480f27775cba4f3ae191b1c1387a29de586e
/group_rep1/morphism_test.lean
b2a24667a87573ba184fe4d2c60d89026cc7306f
[]
no_license
Or7ando/group_representation
a681de2e19d1930a1e1be573d6735a2f0b8356cb
9b576984f17764ebf26c8caa2a542d248f1b50d2
refs/heads/master
1,662,413,107,324
1,590,302,389,000
1,590,302,389,000
258,130,829
0
1
null
null
null
null
UTF-8
Lean
false
false
1,471
lean
import .group_representation universe variables u v w w' w'' w''' open linear_map variables {G : Type u} [group G] {R : Type v}[ring R] namespace morphism variables {M : Type w} [add_comm_group M] [module R M] {M' : Type w'} [add_comm_group M'] [module R M'] /-- a morphism `f : ρ ⟶ π` between representation is a linear map `f.ℓ : M(ρ) →ₗ[R] M(π)` satisfying `f.ℓ ∘ ρ g = π g ∘ f.ℓ` has function on `set`. -/ structure morphism (ρ : group_representation G R M) (π : group_representation G R M') : Type (max w w') := (ℓ : M →ₗ[R] M') (commute : ∀(g : G), ℓ ∘ ρ g = π g ∘ ℓ) infixr ` ⟶ `:25 := morphism @[ext]lemma ext {ρ : group_representation G R M} {ρ' : group_representation G R M'} ( f g : ρ ⟶ ρ') : (f.ℓ) = g.ℓ → f = g := begin intros, cases f,cases g , congr'; try {assumption}, end variables (ρ : group_representation G R M) variables (ρ' : group_representation G R M') instance : has_coe_to_fun (morphism ρ ρ') := ⟨_,λ f, f.ℓ.to_fun⟩ lemma coersion (f : ρ ⟶ ρ') : ⇑f = (f.ℓ) := rfl theorem commute_apply ( f : ρ ⟶ ρ') (x : M) (g : G) : f ( ρ g x) = ρ' g (f x ) := begin erw ← function.comp_apply f, erw f.commute, exact rfl, end def one (ρ : group_representation G R M) : ρ ⟶ ρ := { ℓ := linear_map.id, commute := λ g, rfl } notation `𝟙` := one end morphism
808f14d831cabda5f5a68f3ca54f201a4ab899ba
d1a52c3f208fa42c41df8278c3d280f075eb020c
/stage0/src/Lean/Data/Lsp/Communication.lean
cbb5252ee894cd506d67064ad0f90415340aa518
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
3,524
lean
/- Copyright (c) 2020 Marc Huisinga. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Marc Huisinga, Wojciech Nawrocki -/ import Init.System.IO import Lean.Data.JsonRpc /-! Reading/writing LSP messages from/to IO handles. -/ namespace IO.FS.Stream open Lean open Lean.JsonRpc section private def parseHeaderField (s : String) : Option (String × String) := OptionM.run do guard $ s ≠ "" ∧ s.takeRight 2 = "\r\n" let xs := (s.dropRight 2).splitOn ": " match xs with | [] => none | [_] => none | name :: value :: rest => let value := ": ".intercalate (value :: rest) some ⟨name, value⟩ private partial def readHeaderFields (h : FS.Stream) : IO (List (String × String)) := do let l ← h.getLine if (←h.isEof) then throw $ userError "Stream was closed" if l = "\r\n" then pure [] else match parseHeaderField l with | some hf => let tail ← readHeaderFields h pure (hf :: tail) | none => throw $ userError s!"Invalid header field: {repr l}" /-- Returns the Content-Length. -/ private def readLspHeader (h : FS.Stream) : IO Nat := do let fields ← readHeaderFields h match fields.lookup "Content-Length" with | some length => match length.toNat? with | some n => pure n | none => throw $ userError s!"Content-Length header field value '{length}' is not a Nat" | none => throw $ userError s!"No Content-Length field in header: {fields}" def readLspMessage (h : FS.Stream) : IO Message := do try let nBytes ← readLspHeader h h.readMessage nBytes catch e => throw $ userError s!"Cannot read LSP message: {e}" def readLspRequestAs (h : FS.Stream) (expectedMethod : String) (α) [FromJson α] : IO (Request α) := do try let nBytes ← readLspHeader h h.readRequestAs nBytes expectedMethod α catch e => throw $ userError s!"Cannot read LSP request: {e}" def readLspNotificationAs (h : FS.Stream) (expectedMethod : String) (α) [FromJson α] : IO (Notification α) := do try let nBytes ← readLspHeader h h.readNotificationAs nBytes expectedMethod α catch e => throw $ userError s!"Cannot read LSP notification: {e}" def readLspResponseAs (h : FS.Stream) (expectedID : RequestID) (α) [FromJson α] : IO (Response α) := do try let nBytes ← readLspHeader h h.readResponseAs nBytes expectedID α catch e => throw $ userError s!"Cannot read LSP response: {e}" end section variable [ToJson α] def writeLspMessage (h : FS.Stream) (msg : Message) : IO Unit := do -- inlined implementation instead of using jsonrpc's writeMessage -- to maintain the atomicity of putStr let j := (toJson msg).compress let header := s!"Content-Length: {toString j.utf8ByteSize}\r\n\r\n" h.putStr (header ++ j) h.flush def writeLspRequest (h : FS.Stream) (r : Request α) : IO Unit := h.writeLspMessage r def writeLspNotification (h : FS.Stream) (n : Notification α) : IO Unit := h.writeLspMessage n def writeLspResponse (h : FS.Stream) (r : Response α) : IO Unit := h.writeLspMessage r def writeLspResponseError (h : FS.Stream) (e : ResponseError Unit) : IO Unit := h.writeLspMessage (Message.responseError e.id e.code e.message none) def writeLspResponseErrorWithData (h : FS.Stream) (e : ResponseError α) : IO Unit := h.writeLspMessage e end end IO.FS.Stream
9e0b2d1273fc2737e62ca3392df5aca513ec09f8
302c785c90d40ad3d6be43d33bc6a558354cc2cf
/src/linear_algebra/pi.lean
188f34db570b7ba8fff80979bc5e06fee5e97e18
[ "Apache-2.0" ]
permissive
ilitzroth/mathlib
ea647e67f1fdfd19a0f7bdc5504e8acec6180011
5254ef14e3465f6504306132fe3ba9cec9ffff16
refs/heads/master
1,680,086,661,182
1,617,715,647,000
1,617,715,647,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,975
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov, Eric Wieser -/ import linear_algebra.basic /-! # Pi types of semimodules This file defines constructors for linear maps whose domains or codomains are pi types. It contains theorems relating these to each other, as well as to `linear_map.ker`. ## Main definitions - pi types in the codomain: - `linear_map.pi` - `linear_map.single` - pi types in the domain: - `linear_map.proj` - `linear_map.diag` -/ universes u v w x y z u' v' w' y' variables {R : Type u} {K : Type u'} {M : Type v} {V : Type v'} {M₂ : Type w} {V₂ : Type w'} variables {M₃ : Type y} {V₃ : Type y'} {M₄ : Type z} {ι : Type x} open function submodule open_locale big_operators namespace linear_map universe i variables [semiring R] [add_comm_monoid M₂] [semimodule R M₂] [add_comm_monoid M₃] [semimodule R M₃] {φ : ι → Type i} [∀i, add_comm_monoid (φ i)] [∀i, semimodule R (φ i)] /-- `pi` construction for linear functions. From a family of linear functions it produces a linear function into a family of modules. -/ def pi (f : Πi, M₂ →ₗ[R] φ i) : M₂ →ₗ[R] (Πi, φ i) := ⟨λc i, f i c, λ c d, funext $ λ i, (f i).map_add _ _, λ c d, funext $ λ i, (f i).map_smul _ _⟩ @[simp] lemma pi_apply (f : Πi, M₂ →ₗ[R] φ i) (c : M₂) (i : ι) : pi f c i = f i c := rfl lemma ker_pi (f : Πi, M₂ →ₗ[R] φ i) : ker (pi f) = (⨅i:ι, ker (f i)) := by ext c; simp [funext_iff]; refl lemma pi_eq_zero (f : Πi, M₂ →ₗ[R] φ i) : pi f = 0 ↔ (∀i, f i = 0) := by simp only [linear_map.ext_iff, pi_apply, funext_iff]; exact ⟨λh a b, h b a, λh a b, h b a⟩ lemma pi_zero : pi (λi, 0 : Πi, M₂ →ₗ[R] φ i) = 0 := by ext; refl lemma pi_comp (f : Πi, M₂ →ₗ[R] φ i) (g : M₃ →ₗ[R] M₂) : (pi f).comp g = pi (λi, (f i).comp g) := rfl /-- The projections from a family of modules are linear maps. -/ def proj (i : ι) : (Πi, φ i) →ₗ[R] φ i := ⟨ λa, a i, assume f g, rfl, assume c f, rfl ⟩ @[simp] lemma coe_proj (i : ι) : ⇑(proj i : (Πi, φ i) →ₗ[R] φ i) = function.eval i := rfl lemma proj_apply (i : ι) (b : Πi, φ i) : (proj i : (Πi, φ i) →ₗ[R] φ i) b = b i := rfl lemma proj_pi (f : Πi, M₂ →ₗ[R] φ i) (i : ι) : (proj i).comp (pi f) = f i := ext $ assume c, rfl lemma infi_ker_proj : (⨅i, ker (proj i) : submodule R (Πi, φ i)) = ⊥ := bot_unique $ set_like.le_def.2 $ assume a h, begin simp only [mem_infi, mem_ker, proj_apply] at h, exact (mem_bot _).2 (funext $ assume i, h i) end lemma apply_single [add_comm_monoid M] [semimodule R M] [decidable_eq ι] (f : Π i, φ i →ₗ[R] M) (i j : ι) (x : φ i) : f j (pi.single i x j) = pi.single i (f i x) j := pi.apply_single (λ i, f i) (λ i, (f i).map_zero) _ _ _ /-- The `linear_map` version of `add_monoid_hom.single` and `pi.single`. -/ def single [decidable_eq ι] (i : ι) : φ i →ₗ[R] (Πi, φ i) := { to_fun := pi.single i, map_smul' := pi.single_smul i, .. add_monoid_hom.single φ i} @[simp] lemma coe_single [decidable_eq ι] (i : ι) : ⇑(single i : φ i →ₗ[R] (Π i, φ i)) = pi.single i := rfl variables (R φ) /-- The linear equivalence between linear functions on a finite product of modules and families of functions on these modules. See note [bundled maps over different rings]. -/ def lsum (S) [add_comm_monoid M] [semimodule R M] [fintype ι] [decidable_eq ι] [semiring S] [semimodule S M] [smul_comm_class R S M] : (Π i, φ i →ₗ[R] M) ≃ₗ[S] ((Π i, φ i) →ₗ[R] M) := { to_fun := λ f, ∑ i : ι, (f i).comp (proj i), inv_fun := λ f i, f.comp (single i), map_add' := λ f g, by simp only [pi.add_apply, add_comp, finset.sum_add_distrib], map_smul' := λ c f, by simp only [pi.smul_apply, smul_comp, finset.smul_sum], left_inv := λ f, by { ext i x, simp [apply_single] }, right_inv := λ f, begin ext, suffices : f (∑ j, pi.single j (x j)) = f x, by simpa [apply_single], rw finset.univ_sum_single end } variables {R φ} section ext variables [fintype ι] [decidable_eq ι] [add_comm_monoid M] [semimodule R M] {f g : (Π i, φ i) →ₗ[R] M} lemma pi_ext (h : ∀ i x, f (pi.single i x) = g (pi.single i x)) : f = g := to_add_monoid_hom_injective $ add_monoid_hom.functions_ext _ _ _ h lemma pi_ext_iff : f = g ↔ ∀ i x, f (pi.single i x) = g (pi.single i x) := ⟨λ h i x, h ▸ rfl, pi_ext⟩ /-- This is used as the ext lemma instead of `linear_map.pi_ext` for reasons explained in note [partially-applied ext lemmas]. -/ @[ext] lemma pi_ext' (h : ∀ i, f.comp (single i) = g.comp (single i)) : f = g := begin refine pi_ext (λ i x, _), convert linear_map.congr_fun (h i) x end lemma pi_ext'_iff : f = g ↔ ∀ i, f.comp (single i) = g.comp (single i) := ⟨λ h i, h ▸ rfl, pi_ext'⟩ end ext section variables (R φ) /-- If `I` and `J` are disjoint index sets, the product of the kernels of the `J`th projections of `φ` is linearly equivalent to the product over `I`. -/ def infi_ker_proj_equiv {I J : set ι} [decidable_pred (λi, i ∈ I)] (hd : disjoint I J) (hu : set.univ ⊆ I ∪ J) : (⨅i ∈ J, ker (proj i) : submodule R (Πi, φ i)) ≃ₗ[R] (Πi:I, φ i) := begin refine linear_equiv.of_linear (pi $ λi, (proj (i:ι)).comp (submodule.subtype _)) (cod_restrict _ (pi $ λi, if h : i ∈ I then proj (⟨i, h⟩ : I) else 0) _) _ _, { assume b, simp only [mem_infi, mem_ker, funext_iff, proj_apply, pi_apply], assume j hjJ, have : j ∉ I := assume hjI, hd ⟨hjI, hjJ⟩, rw [dif_neg this, zero_apply] }, { simp only [pi_comp, comp_assoc, subtype_comp_cod_restrict, proj_pi, dif_pos, subtype.coe_prop], ext b ⟨j, hj⟩, refl }, { ext1 ⟨b, hb⟩, apply subtype.ext, ext j, have hb : ∀i ∈ J, b i = 0, { simpa only [mem_infi, mem_ker, proj_apply] using (mem_infi _).1 hb }, simp only [comp_apply, pi_apply, id_apply, proj_apply, subtype_apply, cod_restrict_apply], split_ifs, { refl }, { exact (hb _ $ (hu trivial).resolve_left h).symm } } end end section variable [decidable_eq ι] /-- `diag i j` is the identity map if `i = j`. Otherwise it is the constant 0 map. -/ def diag (i j : ι) : φ i →ₗ[R] φ j := @function.update ι (λj, φ i →ₗ[R] φ j) _ 0 i id j lemma update_apply (f : Πi, M₂ →ₗ[R] φ i) (c : M₂) (i j : ι) (b : M₂ →ₗ[R] φ i) : (update f i b j) c = update (λi, f i c) i (b c) j := begin by_cases j = i, { rw [h, update_same, update_same] }, { rw [update_noteq h, update_noteq h] } end end end linear_map namespace submodule variables [semiring R] {φ : ι → Type*} [∀ i, add_comm_monoid (φ i)] [∀ i, semimodule R (φ i)] open linear_map /-- A version of `set.pi` for submodules. Given an index set `I` and a family of submodules `p : Π i, submodule R (φ i)`, `pi I s` is the submodule of dependent functions `f : Π i, φ i` such that `f i` belongs to `p a` whenever `i ∈ I`. -/ def pi (I : set ι) (p : Π i, submodule R (φ i)) : submodule R (Π i, φ i) := { carrier := set.pi I (λ i, p i), zero_mem' := λ i hi, (p i).zero_mem, add_mem' := λ x y hx hy i hi, (p i).add_mem (hx i hi) (hy i hi), smul_mem' := λ c x hx i hi, (p i).smul_mem c (hx i hi) } variables {I : set ι} {p : Π i, submodule R (φ i)} {x : Π i, φ i} @[simp] lemma mem_pi : x ∈ pi I p ↔ ∀ i ∈ I, x i ∈ p i := iff.rfl @[simp, norm_cast] lemma coe_pi : (pi I p : set (Π i, φ i)) = set.pi I (λ i, p i) := rfl lemma binfi_comap_proj : (⨅ i ∈ I, comap (proj i) (p i)) = pi I p := by { ext x, simp } lemma infi_comap_proj : (⨅ i, comap (proj i) (p i)) = pi set.univ p := by { ext x, simp } lemma supr_map_single [decidable_eq ι] [fintype ι] : (⨆ i, map (linear_map.single i) (p i)) = pi set.univ p := begin refine (supr_le $ λ i, _).antisymm _, { rintro _ ⟨x, hx : x ∈ p i, rfl⟩ j -, rcases em (j = i) with rfl|hj; simp * }, { intros x hx, rw [← finset.univ_sum_single x], exact sum_mem_supr (λ i, mem_map_of_mem (hx i trivial)) } end end submodule namespace linear_equiv variables [semiring R] {φ ψ : ι → Type*} [∀i, add_comm_monoid (φ i)] [∀i, semimodule R (φ i)] [∀i, add_comm_monoid (ψ i)] [∀i, semimodule R (ψ i)] /-- Combine a family of linear equivalences into a linear equivalence of `pi`-types. -/ @[simps] def pi (e : Π i, φ i ≃ₗ[R] ψ i) : (Π i, φ i) ≃ₗ[R] (Π i, ψ i) := { to_fun := λ f i, e i (f i), inv_fun := λ f i, (e i).symm (f i), map_add' := λ f g, by { ext, simp }, map_smul' := λ c f, by { ext, simp }, left_inv := λ f, by { ext, simp }, right_inv := λ f, by { ext, simp } } variables (ι R M) (S : Type*) [fintype ι] [decidable_eq ι] [semiring S] [add_comm_monoid M] [semimodule R M] [semimodule S M] [smul_comm_class R S M] /-- Linear equivalence between linear functions `Rⁿ → M` and `Mⁿ`. The spaces `Rⁿ` and `Mⁿ` are represented as `ι → R` and `ι → M`, respectively, where `ι` is a finite type. This as an `S`-linear equivalence, under the assumption that `S` acts on `M` commuting with `R`. When `R` is commutative, we can take this to be the usual action with `S = R`. Otherwise, `S = ℕ` shows that the equivalence is additive. See note [bundled maps over different rings]. -/ def pi_ring : ((ι → R) →ₗ[R] M) ≃ₗ[S] (ι → M) := (linear_map.lsum R (λ i : ι, R) S).symm.trans (pi $ λ i, linear_map.ring_lmap_equiv_self R M S) variables {ι R M} @[simp] lemma pi_ring_apply (f : (ι → R) →ₗ[R] M) (i : ι) : pi_ring R M ι S f i = f (pi.single i 1) := rfl @[simp] lemma pi_ring_symm_apply (f : ι → M) (g : ι → R) : (pi_ring R M ι S).symm f g = ∑ i, g i • f i := by simp [pi_ring, linear_map.lsum] end linear_equiv
a3690535c59f490c6f99e304818909e5aa78e7b5
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
/src/algebra/homology/homology.lean
ff12762d5061d2359e06bde5ad3443e4e3a2157a
[ "Apache-2.0" ]
permissive
dupuisf/mathlib
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
refs/heads/master
1,669,494,854,016
1,595,692,409,000
1,595,692,409,000
272,046,630
0
0
Apache-2.0
1,592,066,143,000
1,592,066,142,000
null
UTF-8
Lean
false
false
6,743
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Markus Himmel -/ import algebra.homology.chain_complex import algebra.homology.image_to_kernel_map /-! # (Co)homology groups for complexes We setup that part of the theory of homology groups which works in any category with kernels and images. We define the homology groups themselves, and show that they induce maps on kernels. Under the additional assumption that our category has equalizers and functorial images, we construct induced morphisms on images and functorial induced morphisms in homology. ## Chains and cochains Throughout we work with complexes graded by an arbitrary `[add_comm_group β]`, with a differential with grading `b : β`. Thus we're simultaneously doing homology and cohomology groups (and in future, e.g., enabling computing homologies for successive pages of spectral sequences). At the end of the file we set up abbreviations `cohomology` and `graded_cohomology`, so that when you're working with a `C : cochain_complex V`, you can write `C.cohomology i` rather than the confusing `C.homology i`. -/ universes v u open category_theory open category_theory.limits variables {V : Type u} [category.{v} V] [has_zero_morphisms V] variables {β : Type} [add_comm_group β] {b : β} namespace homological_complex section has_kernels variable [has_kernels V] /-- The map induced by a chain map between the kernels of the differentials. -/ def kernel_map {C C' : homological_complex V b} (f : C ⟶ C') (i : β) : kernel (C.d i) ⟶ kernel (C'.d i) := kernel.lift _ (kernel.ι _ ≫ f.f i) begin rw [category.assoc, ←comm_at f, ←category.assoc, kernel.condition, has_zero_morphisms.zero_comp], end @[simp, reassoc] lemma kernel_map_condition {C C' : homological_complex V b} (f : C ⟶ C') (i : β) : kernel_map f i ≫ kernel.ι (C'.d i) = kernel.ι (C.d i) ≫ f.f i := by simp [kernel_map] @[simp] lemma kernel_map_id (C : homological_complex V b) (i : β) : kernel_map (𝟙 C) i = 𝟙 _ := (cancel_mono (kernel.ι (C.d i))).1 $ by simp @[simp] lemma kernel_map_comp {C C' C'' : homological_complex V b} (f : C ⟶ C') (g : C' ⟶ C'') (i : β) : kernel_map (f ≫ g) i = kernel_map f i ≫ kernel_map g i := (cancel_mono (kernel.ι (C''.d i))).1 $ by simp /-- The kernels of the differentials of a complex form a `β`-graded object. -/ def kernel_functor : homological_complex V b ⥤ graded_object β V := { obj := λ C i, kernel (C.d i), map := λ X Y f i, kernel_map f i } end has_kernels section has_image_maps variables [has_images V] [has_image_maps V] /-- A morphism of complexes induces a morphism on the images of the differentials in every degree. -/ abbreviation image_map {C C' : homological_complex V b} (f : C ⟶ C') (i : β) : image (C.d i) ⟶ image (C'.d i) := image.map (arrow.hom_mk' (comm_at f i).symm) @[simp] lemma image_map_ι {C C' : homological_complex V b} (f : C ⟶ C') (i : β) : image_map f i ≫ image.ι (C'.d i) = image.ι (C.d i) ≫ f.f (i + b) := image.map_hom_mk'_ι (comm_at f i).symm end has_image_maps variables [has_images V] [has_equalizers V] /-- The connecting morphism from the image of `d i` to the kernel of `d (i ± 1)`. -/ def image_to_kernel_map (C : homological_complex V b) (i : β) : image (C.d i) ⟶ kernel (C.d (i+b)) := category_theory.image_to_kernel_map (C.d i) (C.d (i+b)) (by simp) @[simp, reassoc] lemma image_to_kernel_map_condition (C : homological_complex V b) (i : β) : image_to_kernel_map C i ≫ kernel.ι (C.d (i + b)) = image.ι (C.d i) := by simp [image_to_kernel_map, category_theory.image_to_kernel_map] @[reassoc] lemma image_to_kernel_map_comp_kernel_map [has_image_maps V] {C C' : homological_complex V b} (f : C ⟶ C') (i : β) : image_to_kernel_map C i ≫ kernel_map f (i + b) = image_map f i ≫ image_to_kernel_map C' i := by { ext, simp } variables [has_cokernels V] /-- The `i`-th homology group of the complex `C`. -/ def homology_group (i : β) (C : homological_complex V b) : V := cokernel (image_to_kernel_map C (i-b)) variables [has_image_maps V] /-- A chain map induces a morphism in homology at every degree. -/ def homology_map {C C' : homological_complex V b} (f : C ⟶ C') (i : β) : C.homology_group i ⟶ C'.homology_group i := cokernel.desc _ (kernel_map f (i - b + b) ≫ cokernel.π _) $ by simp [image_to_kernel_map_comp_kernel_map_assoc] @[simp, reassoc] lemma homology_map_condition {C C' : homological_complex V b} (f : C ⟶ C') (i : β) : cokernel.π (image_to_kernel_map C (i - b)) ≫ homology_map f i = kernel_map f (i - b + b) ≫ cokernel.π _ := by simp [homology_map] @[simp] lemma homology_map_id (C : homological_complex V b) (i : β) : homology_map (𝟙 C) i = 𝟙 (C.homology_group i) := begin ext, simp only [homology_map_condition, kernel_map_id, category.id_comp], erw [category.comp_id] end @[simp] lemma homology_map_comp {C C' C'' : homological_complex V b} (f : C ⟶ C') (g : C' ⟶ C'') (i : β) : homology_map (f ≫ g) i = homology_map f i ≫ homology_map g i := by { ext, simp } variables (V) /-- The `i`-th homology functor from `β` graded complexes to `V`. -/ @[simps] def homology (i : β) : homological_complex V b ⥤ V := { obj := λ C, C.homology_group i, map := λ C C' f, homology_map f i, } /-- The homology functor from `β` graded complexes to `β` graded objects in `V`. -/ @[simps] def graded_homology : homological_complex V b ⥤ graded_object β V := { obj := λ C i, C.homology_group i, map := λ C C' f i, homology_map f i } end homological_complex /-! We now set up abbreviations so that you can write `C.cohomology i` or `(graded_cohomology V).map f`, etc., when `C` is a cochain complex. -/ namespace cochain_complex variables [has_images V] [has_equalizers V] [has_cokernels V] /-- The `i`-th cohomology group of the cochain complex `C`. -/ abbreviation cohomology_group (C : cochain_complex V) (i : ℤ) : V := C.homology_group i variables [has_image_maps V] /-- A chain map induces a morphism in cohomology at every degree. -/ abbreviation cohomology_map {C C' : cochain_complex V} (f : C ⟶ C') (i : ℤ) : C.cohomology_group i ⟶ C'.cohomology_group i := homological_complex.homology_map f i variables (V) /-- The `i`-th homology functor from cohain complexes to `V`. -/ abbreviation cohomology (i : ℤ) : cochain_complex V ⥤ V := homological_complex.homology V i /-- The cohomology functor from cochain complexes to `ℤ`-graded objects in `V`. -/ abbreviation graded_cohomology : cochain_complex V ⥤ graded_object ℤ V := homological_complex.graded_homology V end cochain_complex
32da0c18b1f943fc4d570746702b56944d575208
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/topology/category/CompHaus/basic.lean
ebb5dd0d439574c15e182f7dd7ba825fee051837
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
9,702
lean
/- Copyright (c) 2020 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Adam Topaz, Bhavik Mehta -/ import category_theory.adjunction.reflective import topology.stone_cech import category_theory.monad.limits import topology.urysohns_lemma import topology.category.Top.limits.basic /-! # The category of Compact Hausdorff Spaces > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We construct the category of compact Hausdorff spaces. The type of compact Hausdorff spaces is denoted `CompHaus`, and it is endowed with a category instance making it a full subcategory of `Top`. The fully faithful functor `CompHaus ⥤ Top` is denoted `CompHaus_to_Top`. **Note:** The file `topology/category/Compactum.lean` provides the equivalence between `Compactum`, which is defined as the category of algebras for the ultrafilter monad, and `CompHaus`. `Compactum_to_CompHaus` is the functor from `Compactum` to `CompHaus` which is proven to be an equivalence of categories in `Compactum_to_CompHaus.is_equivalence`. See `topology/category/Compactum.lean` for a more detailed discussion where these definitions are introduced. -/ universes v u open category_theory /-- The type of Compact Hausdorff topological spaces. -/ structure CompHaus := (to_Top : Top) [is_compact : compact_space to_Top] [is_hausdorff : t2_space to_Top] namespace CompHaus instance : inhabited CompHaus := ⟨{to_Top := { α := pempty }}⟩ instance : has_coe_to_sort CompHaus Type* := ⟨λ X, X.to_Top⟩ instance {X : CompHaus} : compact_space X := X.is_compact instance {X : CompHaus} : t2_space X := X.is_hausdorff instance category : category CompHaus := induced_category.category to_Top instance concrete_category : concrete_category CompHaus := induced_category.concrete_category _ @[simp] lemma coe_to_Top {X : CompHaus} : (X.to_Top : Type*) = X := rfl variables (X : Type*) [topological_space X] [compact_space X] [t2_space X] /-- A constructor for objects of the category `CompHaus`, taking a type, and bundling the compact Hausdorff topology found by typeclass inference. -/ def of : CompHaus := { to_Top := Top.of X, is_compact := ‹_›, is_hausdorff := ‹_› } @[simp] lemma coe_of : (CompHaus.of X : Type _) = X := rfl /-- Any continuous function on compact Hausdorff spaces is a closed map. -/ lemma is_closed_map {X Y : CompHaus.{u}} (f : X ⟶ Y) : is_closed_map f := λ C hC, (hC.is_compact.image f.continuous).is_closed /-- Any continuous bijection of compact Hausdorff spaces is an isomorphism. -/ lemma is_iso_of_bijective {X Y : CompHaus.{u}} (f : X ⟶ Y) (bij : function.bijective f) : is_iso f := begin let E := equiv.of_bijective _ bij, have hE : continuous E.symm, { rw continuous_iff_is_closed, intros S hS, rw ← E.image_eq_preimage, exact is_closed_map f S hS }, refine ⟨⟨⟨E.symm, hE⟩, _, _⟩⟩, { ext x, apply E.symm_apply_apply }, { ext x, apply E.apply_symm_apply } end /-- Any continuous bijection of compact Hausdorff spaces induces an isomorphism. -/ noncomputable def iso_of_bijective {X Y : CompHaus.{u}} (f : X ⟶ Y) (bij : function.bijective f) : X ≅ Y := by letI := is_iso_of_bijective _ bij; exact as_iso f end CompHaus /-- The fully faithful embedding of `CompHaus` in `Top`. -/ @[simps {rhs_md := semireducible}, derive [full, faithful]] def CompHaus_to_Top : CompHaus.{u} ⥤ Top.{u} := induced_functor _ instance CompHaus.forget_reflects_isomorphisms : reflects_isomorphisms (forget CompHaus.{u}) := ⟨by introsI A B f hf; exact CompHaus.is_iso_of_bijective _ ((is_iso_iff_bijective f).mp hf)⟩ /-- (Implementation) The object part of the compactification functor from topological spaces to compact Hausdorff spaces. -/ @[simps] def StoneCech_obj (X : Top) : CompHaus := CompHaus.of (stone_cech X) /-- (Implementation) The bijection of homsets to establish the reflective adjunction of compact Hausdorff spaces in topological spaces. -/ noncomputable def stone_cech_equivalence (X : Top.{u}) (Y : CompHaus.{u}) : (StoneCech_obj X ⟶ Y) ≃ (X ⟶ CompHaus_to_Top.obj Y) := { to_fun := λ f, { to_fun := f ∘ stone_cech_unit, continuous_to_fun := f.2.comp (@continuous_stone_cech_unit X _) }, inv_fun := λ f, { to_fun := stone_cech_extend f.2, continuous_to_fun := continuous_stone_cech_extend f.2 }, left_inv := begin rintro ⟨f : stone_cech X ⟶ Y, hf : continuous f⟩, ext (x : stone_cech X), refine congr_fun _ x, apply continuous.ext_on dense_range_stone_cech_unit (continuous_stone_cech_extend _) hf, rintro _ ⟨y, rfl⟩, apply congr_fun (stone_cech_extend_extends (hf.comp _)) y, end, right_inv := begin rintro ⟨f : (X : Type*) ⟶ Y, hf : continuous f⟩, ext, exact congr_fun (stone_cech_extend_extends hf) _, end } /-- The Stone-Cech compactification functor from topological spaces to compact Hausdorff spaces, left adjoint to the inclusion functor. -/ noncomputable def Top_to_CompHaus : Top.{u} ⥤ CompHaus.{u} := adjunction.left_adjoint_of_equiv stone_cech_equivalence.{u} (λ _ _ _ _ _, rfl) lemma Top_to_CompHaus_obj (X : Top) : ↥(Top_to_CompHaus.obj X) = stone_cech X := rfl /-- The category of compact Hausdorff spaces is reflective in the category of topological spaces. -/ noncomputable instance CompHaus_to_Top.reflective : reflective CompHaus_to_Top := { to_is_right_adjoint := ⟨Top_to_CompHaus, adjunction.adjunction_of_equiv_left _ _⟩ } noncomputable instance CompHaus_to_Top.creates_limits : creates_limits CompHaus_to_Top := monadic_creates_limits _ instance CompHaus.has_limits : limits.has_limits CompHaus := has_limits_of_has_limits_creates_limits CompHaus_to_Top instance CompHaus.has_colimits : limits.has_colimits CompHaus := has_colimits_of_reflective CompHaus_to_Top namespace CompHaus /-- An explicit limit cone for a functor `F : J ⥤ CompHaus`, defined in terms of `Top.limit_cone`. -/ def limit_cone {J : Type v} [small_category J] (F : J ⥤ CompHaus.{max v u}) : limits.cone F := { X := { to_Top := (Top.limit_cone (F ⋙ CompHaus_to_Top)).X, is_compact := begin show compact_space ↥{u : Π j, (F.obj j) | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j}, rw ← is_compact_iff_compact_space, apply is_closed.is_compact, have : {u : Π j, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j} = ⋂ (i j : J) (f : i ⟶ j), {u | F.map f (u i) = u j}, { ext1, simp only [set.mem_Inter, set.mem_set_of_eq], }, rw this, apply is_closed_Inter, intros i, apply is_closed_Inter, intros j, apply is_closed_Inter, intros f, apply is_closed_eq, { exact (continuous_map.continuous (F.map f)).comp (continuous_apply i), }, { exact continuous_apply j, } end, is_hausdorff := show t2_space ↥{u : Π j, (F.obj j) | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j}, from infer_instance }, π := { app := λ j, (Top.limit_cone (F ⋙ CompHaus_to_Top)).π.app j, naturality' := by { intros _ _ _, ext ⟨x, hx⟩, simp only [comp_apply, functor.const_obj_map, id_apply], exact (hx f).symm, } } } /-- The limit cone `CompHaus.limit_cone F` is indeed a limit cone. -/ def limit_cone_is_limit {J : Type v} [small_category J] (F : J ⥤ CompHaus.{max v u}) : limits.is_limit (limit_cone F) := { lift := λ S, (Top.limit_cone_is_limit (F ⋙ CompHaus_to_Top)).lift (CompHaus_to_Top.map_cone S), uniq' := λ S m h, (Top.limit_cone_is_limit _).uniq (CompHaus_to_Top.map_cone S) _ h } lemma epi_iff_surjective {X Y : CompHaus.{u}} (f : X ⟶ Y) : epi f ↔ function.surjective f := begin split, { contrapose!, rintros ⟨y, hy⟩ hf, let C := set.range f, have hC : is_closed C := (is_compact_range f.continuous).is_closed, let D := {y}, have hD : is_closed D := is_closed_singleton, have hCD : disjoint C D, { rw set.disjoint_singleton_right, rintro ⟨y', hy'⟩, exact hy y' hy' }, haveI : normal_space ↥(Y.to_Top) := normal_of_compact_t2, obtain ⟨φ, hφ0, hφ1, hφ01⟩ := exists_continuous_zero_one_of_closed hC hD hCD, haveI : compact_space (ulift.{u} $ set.Icc (0:ℝ) 1) := homeomorph.ulift.symm.compact_space, haveI : t2_space (ulift.{u} $ set.Icc (0:ℝ) 1) := homeomorph.ulift.symm.t2_space, let Z := of (ulift.{u} $ set.Icc (0:ℝ) 1), let g : Y ⟶ Z := ⟨λ y', ⟨⟨φ y', hφ01 y'⟩⟩, continuous_ulift_up.comp (φ.continuous.subtype_mk (λ y', hφ01 y'))⟩, let h : Y ⟶ Z := ⟨λ _, ⟨⟨0, set.left_mem_Icc.mpr zero_le_one⟩⟩, continuous_const⟩, have H : h = g, { rw ← cancel_epi f, ext x, dsimp, simp only [comp_apply, continuous_map.coe_mk, subtype.coe_mk, hφ0 (set.mem_range_self x), pi.zero_apply], }, apply_fun (λ e, (e y).down) at H, dsimp at H, simp only [subtype.mk_eq_mk, hφ1 (set.mem_singleton y), pi.one_apply] at H, exact zero_ne_one H, }, { rw ← category_theory.epi_iff_surjective, apply (forget CompHaus).epi_of_epi_map } end lemma mono_iff_injective {X Y : CompHaus.{u}} (f : X ⟶ Y) : mono f ↔ function.injective f := begin split, { introsI hf x₁ x₂ h, let g₁ : of punit ⟶ X := ⟨λ _, x₁, continuous_const⟩, let g₂ : of punit ⟶ X := ⟨λ _, x₂, continuous_const⟩, have : g₁ ≫ f = g₂ ≫ f, by { ext, exact h }, rw cancel_mono at this, apply_fun (λ e, e punit.star) at this, exact this }, { rw ← category_theory.mono_iff_injective, apply (forget CompHaus).mono_of_mono_map } end end CompHaus
fe976be9a6195a96001188aa34bba554fe9b3f28
9dc8cecdf3c4634764a18254e94d43da07142918
/src/analysis/normed_space/banach.lean
91a2dfc8927d9cbb6a536dba330996c631a976ef
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
21,391
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import topology.metric_space.baire import analysis.normed_space.operator_norm import analysis.normed_space.affine_isometry /-! # Banach open mapping theorem This file contains the Banach open mapping theorem, i.e., the fact that a bijective bounded linear map between Banach spaces has a bounded inverse. -/ open function metric set filter finset open_locale classical topological_space big_operators nnreal variables {𝕜 : Type*} [nontrivially_normed_field 𝕜] {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E] {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F] (f : E →L[𝕜] F) include 𝕜 namespace continuous_linear_map /-- A (possibly nonlinear) right inverse to a continuous linear map, which doesn't have to be linear itself but which satisfies a bound `∥inverse x∥ ≤ C * ∥x∥`. A surjective continuous linear map doesn't always have a continuous linear right inverse, but it always has a nonlinear inverse in this sense, by Banach's open mapping theorem. -/ structure nonlinear_right_inverse := (to_fun : F → E) (nnnorm : ℝ≥0) (bound' : ∀ y, ∥to_fun y∥ ≤ nnnorm * ∥y∥) (right_inv' : ∀ y, f (to_fun y) = y) instance : has_coe_to_fun (nonlinear_right_inverse f) (λ _, F → E) := ⟨λ fsymm, fsymm.to_fun⟩ @[simp] lemma nonlinear_right_inverse.right_inv {f : E →L[𝕜] F} (fsymm : nonlinear_right_inverse f) (y : F) : f (fsymm y) = y := fsymm.right_inv' y lemma nonlinear_right_inverse.bound {f : E →L[𝕜] F} (fsymm : nonlinear_right_inverse f) (y : F) : ∥fsymm y∥ ≤ fsymm.nnnorm * ∥y∥ := fsymm.bound' y end continuous_linear_map /-- Given a continuous linear equivalence, the inverse is in particular an instance of `nonlinear_right_inverse` (which turns out to be linear). -/ noncomputable def continuous_linear_equiv.to_nonlinear_right_inverse (f : E ≃L[𝕜] F) : continuous_linear_map.nonlinear_right_inverse (f : E →L[𝕜] F) := { to_fun := f.inv_fun, nnnorm := ∥(f.symm : F →L[𝕜] E)∥₊, bound' := λ y, continuous_linear_map.le_op_norm (f.symm : F →L[𝕜] E) _, right_inv' := f.apply_symm_apply } noncomputable instance (f : E ≃L[𝕜] F) : inhabited (continuous_linear_map.nonlinear_right_inverse (f : E →L[𝕜] F)) := ⟨f.to_nonlinear_right_inverse⟩ /-! ### Proof of the Banach open mapping theorem -/ variable [complete_space F] namespace continuous_linear_map /-- First step of the proof of the Banach open mapping theorem (using completeness of `F`): by Baire's theorem, there exists a ball in `E` whose image closure has nonempty interior. Rescaling everything, it follows that any `y ∈ F` is arbitrarily well approached by images of elements of norm at most `C * ∥y∥`. For further use, we will only need such an element whose image is within distance `∥y∥/2` of `y`, to apply an iterative process. -/ lemma exists_approx_preimage_norm_le (surj : surjective f) : ∃C ≥ 0, ∀y, ∃x, dist (f x) y ≤ 1/2 * ∥y∥ ∧ ∥x∥ ≤ C * ∥y∥ := begin have A : (⋃n:ℕ, closure (f '' (ball 0 n))) = univ, { refine subset.antisymm (subset_univ _) (λy hy, _), rcases surj y with ⟨x, hx⟩, rcases exists_nat_gt (∥x∥) with ⟨n, hn⟩, refine mem_Union.2 ⟨n, subset_closure _⟩, refine (mem_image _ _ _).2 ⟨x, ⟨_, hx⟩⟩, rwa [mem_ball, dist_eq_norm, sub_zero] }, have : ∃ (n : ℕ) x, x ∈ interior (closure (f '' (ball 0 n))) := nonempty_interior_of_Union_of_closed (λn, is_closed_closure) A, simp only [mem_interior_iff_mem_nhds, metric.mem_nhds_iff] at this, rcases this with ⟨n, a, ε, ⟨εpos, H⟩⟩, rcases normed_field.exists_one_lt_norm 𝕜 with ⟨c, hc⟩, refine ⟨(ε/2)⁻¹ * ∥c∥ * 2 * n, _, λy, _⟩, { refine mul_nonneg (mul_nonneg (mul_nonneg _ (norm_nonneg _)) (by norm_num)) _, exacts [inv_nonneg.2 (div_nonneg (le_of_lt εpos) (by norm_num)), n.cast_nonneg] }, { by_cases hy : y = 0, { use 0, simp [hy] }, { rcases rescale_to_shell hc (half_pos εpos) hy with ⟨d, hd, ydlt, leyd, dinv⟩, let δ := ∥d∥ * ∥y∥/4, have δpos : 0 < δ := div_pos (mul_pos (norm_pos_iff.2 hd) (norm_pos_iff.2 hy)) (by norm_num), have : a + d • y ∈ ball a ε, by simp [dist_eq_norm, lt_of_le_of_lt ydlt.le (half_lt_self εpos)], rcases metric.mem_closure_iff.1 (H this) _ δpos with ⟨z₁, z₁im, h₁⟩, rcases (mem_image _ _ _).1 z₁im with ⟨x₁, hx₁, xz₁⟩, rw ← xz₁ at h₁, rw [mem_ball, dist_eq_norm, sub_zero] at hx₁, have : a ∈ ball a ε, by { simp, exact εpos }, rcases metric.mem_closure_iff.1 (H this) _ δpos with ⟨z₂, z₂im, h₂⟩, rcases (mem_image _ _ _).1 z₂im with ⟨x₂, hx₂, xz₂⟩, rw ← xz₂ at h₂, rw [mem_ball, dist_eq_norm, sub_zero] at hx₂, let x := x₁ - x₂, have I : ∥f x - d • y∥ ≤ 2 * δ := calc ∥f x - d • y∥ = ∥f x₁ - (a + d • y) - (f x₂ - a)∥ : by { congr' 1, simp only [x, f.map_sub], abel } ... ≤ ∥f x₁ - (a + d • y)∥ + ∥f x₂ - a∥ : norm_sub_le _ _ ... ≤ δ + δ : begin apply add_le_add, { rw [← dist_eq_norm, dist_comm], exact le_of_lt h₁ }, { rw [← dist_eq_norm, dist_comm], exact le_of_lt h₂ } end ... = 2 * δ : (two_mul _).symm, have J : ∥f (d⁻¹ • x) - y∥ ≤ 1/2 * ∥y∥ := calc ∥f (d⁻¹ • x) - y∥ = ∥d⁻¹ • f x - (d⁻¹ * d) • y∥ : by rwa [f.map_smul _, inv_mul_cancel, one_smul] ... = ∥d⁻¹ • (f x - d • y)∥ : by rw [mul_smul, smul_sub] ... = ∥d∥⁻¹ * ∥f x - d • y∥ : by rw [norm_smul, norm_inv] ... ≤ ∥d∥⁻¹ * (2 * δ) : begin apply mul_le_mul_of_nonneg_left I, rw inv_nonneg, exact norm_nonneg _ end ... = (∥d∥⁻¹ * ∥d∥) * ∥y∥ /2 : by { simp only [δ], ring } ... = ∥y∥/2 : by { rw [inv_mul_cancel, one_mul], simp [norm_eq_zero, hd] } ... = (1/2) * ∥y∥ : by ring, rw ← dist_eq_norm at J, have K : ∥d⁻¹ • x∥ ≤ (ε / 2)⁻¹ * ∥c∥ * 2 * ↑n * ∥y∥ := calc ∥d⁻¹ • x∥ = ∥d∥⁻¹ * ∥x₁ - x₂∥ : by rw [norm_smul, norm_inv] ... ≤ ((ε / 2)⁻¹ * ∥c∥ * ∥y∥) * (n + n) : begin refine mul_le_mul dinv _ (norm_nonneg _) _, { exact le_trans (norm_sub_le _ _) (add_le_add (le_of_lt hx₁) (le_of_lt hx₂)) }, { apply mul_nonneg (mul_nonneg _ (norm_nonneg _)) (norm_nonneg _), exact inv_nonneg.2 (le_of_lt (half_pos εpos)) } end ... = (ε / 2)⁻¹ * ∥c∥ * 2 * ↑n * ∥y∥ : by ring, exact ⟨d⁻¹ • x, J, K⟩ } }, end variable [complete_space E] /-- The Banach open mapping theorem: if a bounded linear map between Banach spaces is onto, then any point has a preimage with controlled norm. -/ theorem exists_preimage_norm_le (surj : surjective f) : ∃C > 0, ∀y, ∃x, f x = y ∧ ∥x∥ ≤ C * ∥y∥ := begin obtain ⟨C, C0, hC⟩ := exists_approx_preimage_norm_le f surj, /- Second step of the proof: starting from `y`, we want an exact preimage of `y`. Let `g y` be the approximate preimage of `y` given by the first step, and `h y = y - f(g y)` the part that has no preimage yet. We will iterate this process, taking the approximate preimage of `h y`, leaving only `h^2 y` without preimage yet, and so on. Let `u n` be the approximate preimage of `h^n y`. Then `u` is a converging series, and by design the sum of the series is a preimage of `y`. This uses completeness of `E`. -/ choose g hg using hC, let h := λy, y - f (g y), have hle : ∀y, ∥h y∥ ≤ (1/2) * ∥y∥, { assume y, rw [← dist_eq_norm, dist_comm], exact (hg y).1 }, refine ⟨2 * C + 1, by linarith, λy, _⟩, have hnle : ∀n:ℕ, ∥(h^[n]) y∥ ≤ (1/2)^n * ∥y∥, { assume n, induction n with n IH, { simp only [one_div, nat.nat_zero_eq_zero, one_mul, iterate_zero_apply, pow_zero] }, { rw [iterate_succ'], apply le_trans (hle _) _, rw [pow_succ, mul_assoc], apply mul_le_mul_of_nonneg_left IH, norm_num } }, let u := λn, g((h^[n]) y), have ule : ∀n, ∥u n∥ ≤ (1/2)^n * (C * ∥y∥), { assume n, apply le_trans (hg _).2 _, calc C * ∥(h^[n]) y∥ ≤ C * ((1/2)^n * ∥y∥) : mul_le_mul_of_nonneg_left (hnle n) C0 ... = (1 / 2) ^ n * (C * ∥y∥) : by ring }, have sNu : summable (λn, ∥u n∥), { refine summable_of_nonneg_of_le (λn, norm_nonneg _) ule _, exact summable.mul_right _ (summable_geometric_of_lt_1 (by norm_num) (by norm_num)) }, have su : summable u := summable_of_summable_norm sNu, let x := tsum u, have x_ineq : ∥x∥ ≤ (2 * C + 1) * ∥y∥ := calc ∥x∥ ≤ ∑'n, ∥u n∥ : norm_tsum_le_tsum_norm sNu ... ≤ ∑'n, (1/2)^n * (C * ∥y∥) : tsum_le_tsum ule sNu (summable.mul_right _ summable_geometric_two) ... = (∑'n, (1/2)^n) * (C * ∥y∥) : tsum_mul_right ... = 2 * C * ∥y∥ : by rw [tsum_geometric_two, mul_assoc] ... ≤ 2 * C * ∥y∥ + ∥y∥ : le_add_of_nonneg_right (norm_nonneg y) ... = (2 * C + 1) * ∥y∥ : by ring, have fsumeq : ∀n:ℕ, f (∑ i in finset.range n, u i) = y - (h^[n]) y, { assume n, induction n with n IH, { simp [f.map_zero] }, { rw [sum_range_succ, f.map_add, IH, iterate_succ', sub_add] } }, have : tendsto (λn, ∑ i in finset.range n, u i) at_top (𝓝 x) := su.has_sum.tendsto_sum_nat, have L₁ : tendsto (λn, f (∑ i in finset.range n, u i)) at_top (𝓝 (f x)) := (f.continuous.tendsto _).comp this, simp only [fsumeq] at L₁, have L₂ : tendsto (λn, y - (h^[n]) y) at_top (𝓝 (y - 0)), { refine tendsto_const_nhds.sub _, rw tendsto_iff_norm_tendsto_zero, simp only [sub_zero], refine squeeze_zero (λ_, norm_nonneg _) hnle _, rw [← zero_mul ∥y∥], refine (tendsto_pow_at_top_nhds_0_of_lt_1 _ _).mul tendsto_const_nhds; norm_num }, have feq : f x = y - 0 := tendsto_nhds_unique L₁ L₂, rw sub_zero at feq, exact ⟨x, feq, x_ineq⟩ end /-- The Banach open mapping theorem: a surjective bounded linear map between Banach spaces is open. -/ protected theorem is_open_map (surj : surjective f) : is_open_map f := begin assume s hs, rcases exists_preimage_norm_le f surj with ⟨C, Cpos, hC⟩, refine is_open_iff.2 (λy yfs, _), rcases mem_image_iff_bex.1 yfs with ⟨x, xs, fxy⟩, rcases is_open_iff.1 hs x xs with ⟨ε, εpos, hε⟩, refine ⟨ε/C, div_pos εpos Cpos, λz hz, _⟩, rcases hC (z-y) with ⟨w, wim, wnorm⟩, have : f (x + w) = z, by { rw [f.map_add, wim, fxy, add_sub_cancel'_right] }, rw ← this, have : x + w ∈ ball x ε := calc dist (x+w) x = ∥w∥ : by { rw dist_eq_norm, simp } ... ≤ C * ∥z - y∥ : wnorm ... < C * (ε/C) : begin apply mul_lt_mul_of_pos_left _ Cpos, rwa [mem_ball, dist_eq_norm] at hz, end ... = ε : mul_div_cancel' _ (ne_of_gt Cpos), exact set.mem_image_of_mem _ (hε this) end protected theorem quotient_map (surj : surjective f) : quotient_map f := (f.is_open_map surj).to_quotient_map f.continuous surj lemma _root_.affine_map.is_open_map {P Q : Type*} [metric_space P] [normed_add_torsor E P] [metric_space Q] [normed_add_torsor F Q] (f : P →ᵃ[𝕜] Q) (hf : continuous f) (surj : surjective f) : is_open_map f := affine_map.is_open_map_linear_iff.mp $ continuous_linear_map.is_open_map { cont := affine_map.continuous_linear_iff.mpr hf, .. f.linear } (f.surjective_iff_linear_surjective.mpr surj) /-! ### Applications of the Banach open mapping theorem -/ lemma interior_preimage (hsurj : surjective f) (s : set F) : interior (f ⁻¹' s) = f ⁻¹' (interior s) := ((f.is_open_map hsurj).preimage_interior_eq_interior_preimage f.continuous s).symm lemma closure_preimage (hsurj : surjective f) (s : set F) : closure (f ⁻¹' s) = f ⁻¹' (closure s) := ((f.is_open_map hsurj).preimage_closure_eq_closure_preimage f.continuous s).symm lemma frontier_preimage (hsurj : surjective f) (s : set F) : frontier (f ⁻¹' s) = f ⁻¹' (frontier s) := ((f.is_open_map hsurj).preimage_frontier_eq_frontier_preimage f.continuous s).symm lemma exists_nonlinear_right_inverse_of_surjective (f : E →L[𝕜] F) (hsurj : f.range = ⊤) : ∃ (fsymm : nonlinear_right_inverse f), 0 < fsymm.nnnorm := begin choose C hC fsymm h using exists_preimage_norm_le _ (linear_map.range_eq_top.mp hsurj), use { to_fun := fsymm, nnnorm := ⟨C, hC.lt.le⟩, bound' := λ y, (h y).2, right_inv' := λ y, (h y).1 }, exact hC end /-- A surjective continuous linear map between Banach spaces admits a (possibly nonlinear) controlled right inverse. In general, it is not possible to ensure that such a right inverse is linear (take for instance the map from `E` to `E/F` where `F` is a closed subspace of `E` without a closed complement. Then it doesn't have a continuous linear right inverse.) -/ @[irreducible] noncomputable def nonlinear_right_inverse_of_surjective (f : E →L[𝕜] F) (hsurj : f.range = ⊤) : nonlinear_right_inverse f := classical.some (exists_nonlinear_right_inverse_of_surjective f hsurj) lemma nonlinear_right_inverse_of_surjective_nnnorm_pos (f : E →L[𝕜] F) (hsurj : f.range = ⊤) : 0 < (nonlinear_right_inverse_of_surjective f hsurj).nnnorm := begin rw nonlinear_right_inverse_of_surjective, exact classical.some_spec (exists_nonlinear_right_inverse_of_surjective f hsurj) end end continuous_linear_map namespace linear_equiv variables [complete_space E] /-- If a bounded linear map is a bijection, then its inverse is also a bounded linear map. -/ @[continuity] theorem continuous_symm (e : E ≃ₗ[𝕜] F) (h : continuous e) : continuous e.symm := begin rw continuous_def, intros s hs, rw [← e.image_eq_preimage], rw [← e.coe_coe] at h ⊢, exact continuous_linear_map.is_open_map ⟨↑e, h⟩ e.surjective s hs end /-- Associating to a linear equivalence between Banach spaces a continuous linear equivalence when the direct map is continuous, thanks to the Banach open mapping theorem that ensures that the inverse map is also continuous. -/ def to_continuous_linear_equiv_of_continuous (e : E ≃ₗ[𝕜] F) (h : continuous e) : E ≃L[𝕜] F := { continuous_to_fun := h, continuous_inv_fun := e.continuous_symm h, ..e } @[simp] lemma coe_fn_to_continuous_linear_equiv_of_continuous (e : E ≃ₗ[𝕜] F) (h : continuous e) : ⇑(e.to_continuous_linear_equiv_of_continuous h) = e := rfl @[simp] lemma coe_fn_to_continuous_linear_equiv_of_continuous_symm (e : E ≃ₗ[𝕜] F) (h : continuous e) : ⇑(e.to_continuous_linear_equiv_of_continuous h).symm = e.symm := rfl end linear_equiv namespace continuous_linear_equiv variables [complete_space E] /-- Convert a bijective continuous linear map `f : E →L[𝕜] F` from a Banach space to a normed space to a continuous linear equivalence. -/ noncomputable def of_bijective (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) : E ≃L[𝕜] F := (linear_equiv.of_bijective ↑f (linear_map.ker_eq_bot.mp hinj) (linear_map.range_eq_top.mp hsurj)) .to_continuous_linear_equiv_of_continuous f.continuous @[simp] lemma coe_fn_of_bijective (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) : ⇑(of_bijective f hinj hsurj) = f := rfl lemma coe_of_bijective (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) : ↑(of_bijective f hinj hsurj) = f := by { ext, refl } @[simp] lemma of_bijective_symm_apply_apply (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) (x : E) : (of_bijective f hinj hsurj).symm (f x) = x := (of_bijective f hinj hsurj).symm_apply_apply x @[simp] lemma of_bijective_apply_symm_apply (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) (y : F) : f ((of_bijective f hinj hsurj).symm y) = y := (of_bijective f hinj hsurj).apply_symm_apply y end continuous_linear_equiv namespace continuous_linear_map variables [complete_space E] /-- Intermediate definition used to show `continuous_linear_map.closed_complemented_range_of_is_compl_of_ker_eq_bot`. This is `f.coprod G.subtypeL` as an `continuous_linear_equiv`. -/ noncomputable def coprod_subtypeL_equiv_of_is_compl (f : E →L[𝕜] F) {G : submodule 𝕜 F} (h : is_compl f.range G) [complete_space G] (hker : f.ker = ⊥) : (E × G) ≃L[𝕜] F := continuous_linear_equiv.of_bijective (f.coprod G.subtypeL) (begin rw ker_coprod_of_disjoint_range, { rw [hker, submodule.ker_subtypeL, submodule.prod_bot] }, { rw submodule.range_subtypeL, exact h.disjoint } end) (by simp only [range_coprod, h.sup_eq_top, submodule.range_subtypeL]) lemma range_eq_map_coprod_subtypeL_equiv_of_is_compl (f : E →L[𝕜] F) {G : submodule 𝕜 F} (h : is_compl f.range G) [complete_space G] (hker : f.ker = ⊥) : f.range = ((⊤ : submodule 𝕜 E).prod (⊥ : submodule 𝕜 G)).map (f.coprod_subtypeL_equiv_of_is_compl h hker : E × G →ₗ[𝕜] F) := by rw [coprod_subtypeL_equiv_of_is_compl, _root_.coe_coe, continuous_linear_equiv.coe_of_bijective, coe_coprod, linear_map.coprod_map_prod, submodule.map_bot, sup_bot_eq, submodule.map_top, range] /- TODO: remove the assumption `f.ker = ⊥` in the next lemma, by using the map induced by `f` on `E / f.ker`, once we have quotient normed spaces. -/ lemma closed_complemented_range_of_is_compl_of_ker_eq_bot (f : E →L[𝕜] F) (G : submodule 𝕜 F) (h : is_compl f.range G) (hG : is_closed (G : set F)) (hker : f.ker = ⊥) : is_closed (f.range : set F) := begin haveI : complete_space G := hG.complete_space_coe, let g := coprod_subtypeL_equiv_of_is_compl f h hker, rw congr_arg coe (range_eq_map_coprod_subtypeL_equiv_of_is_compl f h hker ), apply g.to_homeomorph.is_closed_image.2, exact is_closed_univ.prod is_closed_singleton, end end continuous_linear_map section closed_graph_thm variables [complete_space E] (g : E →ₗ[𝕜] F) /-- The **closed graph theorem** : a linear map between two Banach spaces whose graph is closed is continuous. -/ theorem linear_map.continuous_of_is_closed_graph (hg : is_closed (g.graph : set $ E × F)) : continuous g := begin letI : complete_space g.graph := complete_space_coe_iff_is_complete.mpr hg.is_complete, let φ₀ : E →ₗ[𝕜] E × F := linear_map.id.prod g, have : function.left_inverse prod.fst φ₀ := λ x, rfl, let φ : E ≃ₗ[𝕜] g.graph := (linear_equiv.of_left_inverse this).trans (linear_equiv.of_eq _ _ g.graph_eq_range_prod.symm), let ψ : g.graph ≃L[𝕜] E := φ.symm.to_continuous_linear_equiv_of_continuous continuous_subtype_coe.fst, exact (continuous_subtype_coe.comp ψ.symm.continuous).snd end /-- A useful form of the **closed graph theorem** : let `f` be a linear map between two Banach spaces. To show that `f` is continuous, it suffices to show that for any convergent sequence `uₙ ⟶ x`, if `f(uₙ) ⟶ y` then `y = f(x)`. -/ theorem linear_map.continuous_of_seq_closed_graph (hg : ∀ (u : ℕ → E) x y, tendsto u at_top (𝓝 x) → tendsto (g ∘ u) at_top (𝓝 y) → y = g x) : continuous g := begin refine g.continuous_of_is_closed_graph (is_seq_closed.is_closed _), rintros φ ⟨x, y⟩ hφg hφ, refine hg (prod.fst ∘ φ) x y ((continuous_fst.tendsto _).comp hφ) _, have : g ∘ prod.fst ∘ φ = prod.snd ∘ φ, { ext n, exact (hφg n).symm }, rw this, exact (continuous_snd.tendsto _).comp hφ end variable {g} namespace continuous_linear_map /-- Upgrade a `linear_map` to a `continuous_linear_map` using the **closed graph theorem**. -/ def of_is_closed_graph (hg : is_closed (g.graph : set $ E × F)) : E →L[𝕜] F := { to_linear_map := g, cont := g.continuous_of_is_closed_graph hg } @[simp] lemma coe_fn_of_is_closed_graph (hg : is_closed (g.graph : set $ E × F)) : ⇑(continuous_linear_map.of_is_closed_graph hg) = g := rfl lemma coe_of_is_closed_graph (hg : is_closed (g.graph : set $ E × F)) : ↑(continuous_linear_map.of_is_closed_graph hg) = g := by { ext, refl } /-- Upgrade a `linear_map` to a `continuous_linear_map` using a variation on the **closed graph theorem**. -/ def of_seq_closed_graph (hg : ∀ (u : ℕ → E) x y, tendsto u at_top (𝓝 x) → tendsto (g ∘ u) at_top (𝓝 y) → y = g x) : E →L[𝕜] F := { to_linear_map := g, cont := g.continuous_of_seq_closed_graph hg } @[simp] lemma coe_fn_of_seq_closed_graph (hg : ∀ (u : ℕ → E) x y, tendsto u at_top (𝓝 x) → tendsto (g ∘ u) at_top (𝓝 y) → y = g x) : ⇑(continuous_linear_map.of_seq_closed_graph hg) = g := rfl lemma coe_of_seq_closed_graph (hg : ∀ (u : ℕ → E) x y, tendsto u at_top (𝓝 x) → tendsto (g ∘ u) at_top (𝓝 y) → y = g x) : ↑(continuous_linear_map.of_seq_closed_graph hg) = g := by { ext, refl } end continuous_linear_map end closed_graph_thm
e7a378c3cf682f48e35fe78167d45516ea6a7f9b
4727251e0cd73359b15b664c3170e5d754078599
/src/analysis/calculus/lhopital.lean
451bad09d3c04db21945d16ff5dfcf3c2b972fcd
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
24,816
lean
/- Copyright (c) 2020 Anatole Dedecker. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anatole Dedecker -/ import analysis.calculus.mean_value /-! # L'Hôpital's rule for 0/0 indeterminate forms In this file, we prove several forms of "L'Hopital's rule" for computing 0/0 indeterminate forms. The proof of `has_deriv_at.lhopital_zero_right_on_Ioo` is based on the one given in the corresponding [Wikibooks](https://en.wikibooks.org/wiki/Calculus/L%27H%C3%B4pital%27s_Rule) chapter, and all other statements are derived from this one by composing by carefully chosen functions. Note that the filter `f'/g'` tends to isn't required to be one of `𝓝 a`, `at_top` or `at_bot`. In fact, we give a slightly stronger statement by allowing it to be any filter on `ℝ`. Each statement is available in a `has_deriv_at` form and a `deriv` form, which is denoted by each statement being in either the `has_deriv_at` or the `deriv` namespace. ## Tags L'Hôpital's rule, L'Hopital's rule -/ open filter set open_locale filter topological_space pointwise variables {a b : ℝ} (hab : a < b) {l : filter ℝ} {f f' g g' : ℝ → ℝ} /-! ## Interval-based versions We start by proving statements where all conditions (derivability, `g' ≠ 0`) have to be satisfied on an explicitly-provided interval. -/ namespace has_deriv_at include hab theorem lhopital_zero_right_on_Ioo (hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x) (hg' : ∀ x ∈ Ioo a b, g' x ≠ 0) (hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[>] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l := begin have sub : ∀ x ∈ Ioo a b, Ioo a x ⊆ Ioo a b := λ x hx, Ioo_subset_Ioo (le_refl a) (le_of_lt hx.2), have hg : ∀ x ∈ (Ioo a b), g x ≠ 0, { intros x hx h, have : tendsto g (𝓝[<] x) (𝓝 0), { rw [← h, ← nhds_within_Ioo_eq_nhds_within_Iio hx.1], exact ((hgg' x hx).continuous_at.continuous_within_at.mono $ sub x hx).tendsto }, obtain ⟨y, hyx, hy⟩ : ∃ c ∈ Ioo a x, g' c = 0, from exists_has_deriv_at_eq_zero' hx.1 hga this (λ y hy, hgg' y $ sub x hx hy), exact hg' y (sub x hx hyx) hy }, have : ∀ x ∈ Ioo a b, ∃ c ∈ Ioo a x, (f x) * (g' c) = (g x) * (f' c), { intros x hx, rw [← sub_zero (f x), ← sub_zero (g x)], exact exists_ratio_has_deriv_at_eq_ratio_slope' g g' hx.1 f f' (λ y hy, hgg' y $ sub x hx hy) (λ y hy, hff' y $ sub x hx hy) hga hfa (tendsto_nhds_within_of_tendsto_nhds (hgg' x hx).continuous_at.tendsto) (tendsto_nhds_within_of_tendsto_nhds (hff' x hx).continuous_at.tendsto) }, choose! c hc using this, have : ∀ x ∈ Ioo a b, ((λ x', (f' x') / (g' x')) ∘ c) x = f x / g x, { intros x hx, rcases hc x hx with ⟨h₁, h₂⟩, field_simp [hg x hx, hg' (c x) ((sub x hx) h₁)], simp only [h₂], rwa mul_comm }, have cmp : ∀ x ∈ Ioo a b, a < c x ∧ c x < x, from λ x hx, (hc x hx).1, rw ← nhds_within_Ioo_eq_nhds_within_Ioi hab, apply tendsto_nhds_within_congr this, simp only, apply hdiv.comp, refine tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _ (tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds (tendsto_nhds_within_of_tendsto_nhds tendsto_id) _ _) _, all_goals { apply eventually_nhds_within_of_forall, intros x hx, have := cmp x hx, try {simp}, linarith [this] } end theorem lhopital_zero_right_on_Ico (hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x) (hcf : continuous_on f (Ico a b)) (hcg : continuous_on g (Ico a b)) (hg' : ∀ x ∈ Ioo a b, g' x ≠ 0) (hfa : f a = 0) (hga : g a = 0) (hdiv : tendsto (λ x, (f' x) / (g' x)) (nhds_within a (Ioi a)) l) : tendsto (λ x, (f x) / (g x)) (nhds_within a (Ioi a)) l := begin refine lhopital_zero_right_on_Ioo hab hff' hgg' hg' _ _ hdiv, { rw [← hfa, ← nhds_within_Ioo_eq_nhds_within_Ioi hab], exact ((hcf a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto }, { rw [← hga, ← nhds_within_Ioo_eq_nhds_within_Ioi hab], exact ((hcg a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto }, end theorem lhopital_zero_left_on_Ioo (hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x) (hg' : ∀ x ∈ Ioo a b, g' x ≠ 0) (hfb : tendsto f (nhds_within b (Iio b)) (𝓝 0)) (hgb : tendsto g (nhds_within b (Iio b)) (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) (nhds_within b (Iio b)) l) : tendsto (λ x, (f x) / (g x)) (nhds_within b (Iio b)) l := begin -- Here, we essentially compose by `has_neg.neg`. The following is mostly technical details. have hdnf : ∀ x ∈ -Ioo a b, has_deriv_at (f ∘ has_neg.neg) (f' (-x) * (-1)) x, from λ x hx, comp x (hff' (-x) hx) (has_deriv_at_neg x), have hdng : ∀ x ∈ -Ioo a b, has_deriv_at (g ∘ has_neg.neg) (g' (-x) * (-1)) x, from λ x hx, comp x (hgg' (-x) hx) (has_deriv_at_neg x), rw preimage_neg_Ioo at hdnf, rw preimage_neg_Ioo at hdng, have := lhopital_zero_right_on_Ioo (neg_lt_neg hab) hdnf hdng (by { intros x hx h, apply hg' _ (by {rw ← preimage_neg_Ioo at hx, exact hx}), rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h }) (hfb.comp tendsto_neg_nhds_within_Ioi_neg) (hgb.comp tendsto_neg_nhds_within_Ioi_neg) (by { simp only [neg_div_neg_eq, mul_one, mul_neg], exact (tendsto_congr $ λ x, rfl).mp (hdiv.comp tendsto_neg_nhds_within_Ioi_neg) }), have := this.comp tendsto_neg_nhds_within_Iio, unfold function.comp at this, simpa only [neg_neg] end theorem lhopital_zero_left_on_Ioc (hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x) (hcf : continuous_on f (Ioc a b)) (hcg : continuous_on g (Ioc a b)) (hg' : ∀ x ∈ Ioo a b, g' x ≠ 0) (hfb : f b = 0) (hgb : g b = 0) (hdiv : tendsto (λ x, (f' x) / (g' x)) (nhds_within b (Iio b)) l) : tendsto (λ x, (f x) / (g x)) (nhds_within b (Iio b)) l := begin refine lhopital_zero_left_on_Ioo hab hff' hgg' hg' _ _ hdiv, { rw [← hfb, ← nhds_within_Ioo_eq_nhds_within_Iio hab], exact ((hcf b $ right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto }, { rw [← hgb, ← nhds_within_Ioo_eq_nhds_within_Iio hab], exact ((hcg b $ right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto }, end omit hab theorem lhopital_zero_at_top_on_Ioi (hff' : ∀ x ∈ Ioi a, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioi a, has_deriv_at g (g' x) x) (hg' : ∀ x ∈ Ioi a, g' x ≠ 0) (hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) at_top l) : tendsto (λ x, (f x) / (g x)) at_top l := begin obtain ⟨ a', haa', ha'⟩ : ∃ a', a < a' ∧ 0 < a' := ⟨1 + max a 0, ⟨lt_of_le_of_lt (le_max_left a 0) (lt_one_add _), lt_of_le_of_lt (le_max_right a 0) (lt_one_add _)⟩⟩, have fact1 : ∀ (x:ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 := λ _ hx, (ne_of_lt hx.1).symm, have fact2 : ∀ x ∈ Ioo 0 a'⁻¹, a < x⁻¹, from λ _ hx, lt_trans haa' ((lt_inv ha' hx.1).mpr hx.2), have hdnf : ∀ x ∈ Ioo 0 a'⁻¹, has_deriv_at (f ∘ has_inv.inv) (f' (x⁻¹) * (-(x^2)⁻¹)) x, from λ x hx, comp x (hff' (x⁻¹) $ fact2 x hx) (has_deriv_at_inv $ fact1 x hx), have hdng : ∀ x ∈ Ioo 0 a'⁻¹, has_deriv_at (g ∘ has_inv.inv) (g' (x⁻¹) * (-(x^2)⁻¹)) x, from λ x hx, comp x (hgg' (x⁻¹) $ fact2 x hx) (has_deriv_at_inv $ fact1 x hx), have := lhopital_zero_right_on_Ioo (inv_pos.mpr ha') hdnf hdng (by { intros x hx, refine mul_ne_zero _ (neg_ne_zero.mpr $ inv_ne_zero $ pow_ne_zero _ $ fact1 x hx), exact hg' _ (fact2 x hx) }) (hftop.comp tendsto_inv_zero_at_top) (hgtop.comp tendsto_inv_zero_at_top) (by { refine (tendsto_congr' _).mp (hdiv.comp tendsto_inv_zero_at_top), rw eventually_eq_iff_exists_mem, use [Ioi 0, self_mem_nhds_within], intros x hx, unfold function.comp, erw mul_div_mul_right, refine neg_ne_zero.mpr (inv_ne_zero $ pow_ne_zero _ $ ne_of_gt hx) }), have := this.comp tendsto_inv_at_top_zero', unfold function.comp at this, simpa only [inv_inv], end theorem lhopital_zero_at_bot_on_Iio (hff' : ∀ x ∈ Iio a, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Iio a, has_deriv_at g (g' x) x) (hg' : ∀ x ∈ Iio a, g' x ≠ 0) (hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) at_bot l) : tendsto (λ x, (f x) / (g x)) at_bot l := begin -- Here, we essentially compose by `has_neg.neg`. The following is mostly technical details. have hdnf : ∀ x ∈ -Iio a, has_deriv_at (f ∘ has_neg.neg) (f' (-x) * (-1)) x, from λ x hx, comp x (hff' (-x) hx) (has_deriv_at_neg x), have hdng : ∀ x ∈ -Iio a, has_deriv_at (g ∘ has_neg.neg) (g' (-x) * (-1)) x, from λ x hx, comp x (hgg' (-x) hx) (has_deriv_at_neg x), rw preimage_neg_Iio at hdnf, rw preimage_neg_Iio at hdng, have := lhopital_zero_at_top_on_Ioi hdnf hdng (by { intros x hx h, apply hg' _ (by {rw ← preimage_neg_Iio at hx, exact hx}), rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h }) (hfbot.comp tendsto_neg_at_top_at_bot) (hgbot.comp tendsto_neg_at_top_at_bot) (by { simp only [mul_one, mul_neg, neg_div_neg_eq], exact (tendsto_congr $ λ x, rfl).mp (hdiv.comp tendsto_neg_at_top_at_bot) }), have := this.comp tendsto_neg_at_bot_at_top, unfold function.comp at this, simpa only [neg_neg], end end has_deriv_at namespace deriv include hab theorem lhopital_zero_right_on_Ioo (hdf : differentiable_on ℝ f (Ioo a b)) (hg' : ∀ x ∈ Ioo a b, deriv g x ≠ 0) (hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[>] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l := begin have hdf : ∀ x ∈ Ioo a b, differentiable_at ℝ f x, from λ x hx, (hdf x hx).differentiable_at (Ioo_mem_nhds hx.1 hx.2), have hdg : ∀ x ∈ Ioo a b, differentiable_at ℝ g x, from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)), exact has_deriv_at.lhopital_zero_right_on_Ioo hab (λ x hx, (hdf x hx).has_deriv_at) (λ x hx, (hdg x hx).has_deriv_at) hg' hfa hga hdiv end theorem lhopital_zero_right_on_Ico (hdf : differentiable_on ℝ f (Ioo a b)) (hcf : continuous_on f (Ico a b)) (hcg : continuous_on g (Ico a b)) (hg' : ∀ x ∈ (Ioo a b), (deriv g) x ≠ 0) (hfa : f a = 0) (hga : g a = 0) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (nhds_within a (Ioi a)) l) : tendsto (λ x, (f x) / (g x)) (nhds_within a (Ioi a)) l := begin refine lhopital_zero_right_on_Ioo hab hdf hg' _ _ hdiv, { rw [← hfa, ← nhds_within_Ioo_eq_nhds_within_Ioi hab], exact ((hcf a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto }, { rw [← hga, ← nhds_within_Ioo_eq_nhds_within_Ioi hab], exact ((hcg a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto }, end theorem lhopital_zero_left_on_Ioo (hdf : differentiable_on ℝ f (Ioo a b)) (hg' : ∀ x ∈ (Ioo a b), (deriv g) x ≠ 0) (hfb : tendsto f (nhds_within b (Iio b)) (𝓝 0)) (hgb : tendsto g (nhds_within b (Iio b)) (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (nhds_within b (Iio b)) l) : tendsto (λ x, (f x) / (g x)) (nhds_within b (Iio b)) l := begin have hdf : ∀ x ∈ Ioo a b, differentiable_at ℝ f x, from λ x hx, (hdf x hx).differentiable_at (Ioo_mem_nhds hx.1 hx.2), have hdg : ∀ x ∈ Ioo a b, differentiable_at ℝ g x, from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)), exact has_deriv_at.lhopital_zero_left_on_Ioo hab (λ x hx, (hdf x hx).has_deriv_at) (λ x hx, (hdg x hx).has_deriv_at) hg' hfb hgb hdiv end omit hab theorem lhopital_zero_at_top_on_Ioi (hdf : differentiable_on ℝ f (Ioi a)) (hg' : ∀ x ∈ (Ioi a), (deriv g) x ≠ 0) (hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_top l) : tendsto (λ x, (f x) / (g x)) at_top l := begin have hdf : ∀ x ∈ Ioi a, differentiable_at ℝ f x, from λ x hx, (hdf x hx).differentiable_at (Ioi_mem_nhds hx), have hdg : ∀ x ∈ Ioi a, differentiable_at ℝ g x, from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)), exact has_deriv_at.lhopital_zero_at_top_on_Ioi (λ x hx, (hdf x hx).has_deriv_at) (λ x hx, (hdg x hx).has_deriv_at) hg' hftop hgtop hdiv, end theorem lhopital_zero_at_bot_on_Iio (hdf : differentiable_on ℝ f (Iio a)) (hg' : ∀ x ∈ (Iio a), (deriv g) x ≠ 0) (hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_bot l) : tendsto (λ x, (f x) / (g x)) at_bot l := begin have hdf : ∀ x ∈ Iio a, differentiable_at ℝ f x, from λ x hx, (hdf x hx).differentiable_at (Iio_mem_nhds hx), have hdg : ∀ x ∈ Iio a, differentiable_at ℝ g x, from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)), exact has_deriv_at.lhopital_zero_at_bot_on_Iio (λ x hx, (hdf x hx).has_deriv_at) (λ x hx, (hdg x hx).has_deriv_at) hg' hfbot hgbot hdiv, end end deriv /-! ## Generic versions The following statements no longer any explicit interval, as they only require conditions holding eventually. -/ namespace has_deriv_at /-- L'Hôpital's rule for approaching a real from the right, `has_deriv_at` version -/ theorem lhopital_zero_nhds_right (hff' : ∀ᶠ x in 𝓝[>] a, has_deriv_at f (f' x) x) (hgg' : ∀ᶠ x in 𝓝[>] a, has_deriv_at g (g' x) x) (hg' : ∀ᶠ x in 𝓝[>] a, g' x ≠ 0) (hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[>] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l := begin rw eventually_iff_exists_mem at *, rcases hff' with ⟨s₁, hs₁, hff'⟩, rcases hgg' with ⟨s₂, hs₂, hgg'⟩, rcases hg' with ⟨s₃, hs₃, hg'⟩, let s := s₁ ∩ s₂ ∩ s₃, have hs : s ∈ 𝓝[>] a := inter_mem (inter_mem hs₁ hs₂) hs₃, rw mem_nhds_within_Ioi_iff_exists_Ioo_subset at hs, rcases hs with ⟨u, hau, hu⟩, refine lhopital_zero_right_on_Ioo hau _ _ _ hfa hga hdiv; intros x hx; apply_assumption; exact (hu hx).1.1 <|> exact (hu hx).1.2 <|> exact (hu hx).2 end /-- L'Hôpital's rule for approaching a real from the left, `has_deriv_at` version -/ theorem lhopital_zero_nhds_left (hff' : ∀ᶠ x in 𝓝[<] a, has_deriv_at f (f' x) x) (hgg' : ∀ᶠ x in 𝓝[<] a, has_deriv_at g (g' x) x) (hg' : ∀ᶠ x in 𝓝[<] a, g' x ≠ 0) (hfa : tendsto f (𝓝[<] a) (𝓝 0)) (hga : tendsto g (𝓝[<] a) (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[<] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[<] a) l := begin rw eventually_iff_exists_mem at *, rcases hff' with ⟨s₁, hs₁, hff'⟩, rcases hgg' with ⟨s₂, hs₂, hgg'⟩, rcases hg' with ⟨s₃, hs₃, hg'⟩, let s := s₁ ∩ s₂ ∩ s₃, have hs : s ∈ 𝓝[<] a := inter_mem (inter_mem hs₁ hs₂) hs₃, rw mem_nhds_within_Iio_iff_exists_Ioo_subset at hs, rcases hs with ⟨l, hal, hl⟩, refine lhopital_zero_left_on_Ioo hal _ _ _ hfa hga hdiv; intros x hx; apply_assumption; exact (hl hx).1.1 <|> exact (hl hx).1.2 <|> exact (hl hx).2 end /-- L'Hôpital's rule for approaching a real, `has_deriv_at` version. This does not require anything about the situation at `a` -/ theorem lhopital_zero_nhds' (hff' : ∀ᶠ x in 𝓝[univ \ {a}] a, has_deriv_at f (f' x) x) (hgg' : ∀ᶠ x in 𝓝[univ \ {a}] a, has_deriv_at g (g' x) x) (hg' : ∀ᶠ x in 𝓝[univ \ {a}] a, g' x ≠ 0) (hfa : tendsto f (𝓝[univ \ {a}] a) (𝓝 0)) (hga : tendsto g (𝓝[univ \ {a}] a) (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[univ \ {a}] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[univ \ {a}] a) l := begin have : univ \ {a} = Iio a ∪ Ioi a, { ext, rw [mem_diff_singleton, eq_true_intro $ mem_univ x, true_and, ne_iff_lt_or_gt], refl }, simp only [this, nhds_within_union, tendsto_sup, eventually_sup] at *, exact ⟨lhopital_zero_nhds_left hff'.1 hgg'.1 hg'.1 hfa.1 hga.1 hdiv.1, lhopital_zero_nhds_right hff'.2 hgg'.2 hg'.2 hfa.2 hga.2 hdiv.2⟩ end /-- **L'Hôpital's rule** for approaching a real, `has_deriv_at` version -/ theorem lhopital_zero_nhds (hff' : ∀ᶠ x in 𝓝 a, has_deriv_at f (f' x) x) (hgg' : ∀ᶠ x in 𝓝 a, has_deriv_at g (g' x) x) (hg' : ∀ᶠ x in 𝓝 a, g' x ≠ 0) (hfa : tendsto f (𝓝 a) (𝓝 0)) (hga : tendsto g (𝓝 a) (𝓝 0)) (hdiv : tendsto (λ x, f' x / g' x) (𝓝 a) l) : tendsto (λ x, f x / g x) (𝓝[univ \ {a}] a) l := begin apply @lhopital_zero_nhds' _ _ _ f' _ g'; apply eventually_nhds_within_of_eventually_nhds <|> apply tendsto_nhds_within_of_tendsto_nhds; assumption end /-- L'Hôpital's rule for approaching +∞, `has_deriv_at` version -/ theorem lhopital_zero_at_top (hff' : ∀ᶠ x in at_top, has_deriv_at f (f' x) x) (hgg' : ∀ᶠ x in at_top, has_deriv_at g (g' x) x) (hg' : ∀ᶠ x in at_top, g' x ≠ 0) (hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) at_top l) : tendsto (λ x, (f x) / (g x)) at_top l := begin rw eventually_iff_exists_mem at *, rcases hff' with ⟨s₁, hs₁, hff'⟩, rcases hgg' with ⟨s₂, hs₂, hgg'⟩, rcases hg' with ⟨s₃, hs₃, hg'⟩, let s := s₁ ∩ s₂ ∩ s₃, have hs : s ∈ at_top := inter_mem (inter_mem hs₁ hs₂) hs₃, rw mem_at_top_sets at hs, rcases hs with ⟨l, hl⟩, have hl' : Ioi l ⊆ s := λ x hx, hl x (le_of_lt hx), refine lhopital_zero_at_top_on_Ioi _ _ (λ x hx, hg' x $ (hl' hx).2) hftop hgtop hdiv; intros x hx; apply_assumption; exact (hl' hx).1.1 <|> exact (hl' hx).1.2 end /-- L'Hôpital's rule for approaching -∞, `has_deriv_at` version -/ theorem lhopital_zero_at_bot (hff' : ∀ᶠ x in at_bot, has_deriv_at f (f' x) x) (hgg' : ∀ᶠ x in at_bot, has_deriv_at g (g' x) x) (hg' : ∀ᶠ x in at_bot, g' x ≠ 0) (hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0)) (hdiv : tendsto (λ x, (f' x) / (g' x)) at_bot l) : tendsto (λ x, (f x) / (g x)) at_bot l := begin rw eventually_iff_exists_mem at *, rcases hff' with ⟨s₁, hs₁, hff'⟩, rcases hgg' with ⟨s₂, hs₂, hgg'⟩, rcases hg' with ⟨s₃, hs₃, hg'⟩, let s := s₁ ∩ s₂ ∩ s₃, have hs : s ∈ at_bot := inter_mem (inter_mem hs₁ hs₂) hs₃, rw mem_at_bot_sets at hs, rcases hs with ⟨l, hl⟩, have hl' : Iio l ⊆ s := λ x hx, hl x (le_of_lt hx), refine lhopital_zero_at_bot_on_Iio _ _ (λ x hx, hg' x $ (hl' hx).2) hfbot hgbot hdiv; intros x hx; apply_assumption; exact (hl' hx).1.1 <|> exact (hl' hx).1.2 end end has_deriv_at namespace deriv /-- **L'Hôpital's rule** for approaching a real from the right, `deriv` version -/ theorem lhopital_zero_nhds_right (hdf : ∀ᶠ x in 𝓝[>] a, differentiable_at ℝ f x) (hg' : ∀ᶠ x in 𝓝[>] a, deriv g x ≠ 0) (hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[>] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l := begin have hdg : ∀ᶠ x in 𝓝[>] a, differentiable_at ℝ g x, from hg'.mp (eventually_of_forall $ λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))), have hdf' : ∀ᶠ x in 𝓝[>] a, has_deriv_at f (deriv f x) x, from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), have hdg' : ∀ᶠ x in 𝓝[>] a, has_deriv_at g (deriv g x) x, from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), exact has_deriv_at.lhopital_zero_nhds_right hdf' hdg' hg' hfa hga hdiv end /-- **L'Hôpital's rule** for approaching a real from the left, `deriv` version -/ theorem lhopital_zero_nhds_left (hdf : ∀ᶠ x in 𝓝[<] a, differentiable_at ℝ f x) (hg' : ∀ᶠ x in 𝓝[<] a, deriv g x ≠ 0) (hfa : tendsto f (𝓝[<] a) (𝓝 0)) (hga : tendsto g (𝓝[<] a) (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[<] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[<] a) l := begin have hdg : ∀ᶠ x in 𝓝[<] a, differentiable_at ℝ g x, from hg'.mp (eventually_of_forall $ λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))), have hdf' : ∀ᶠ x in 𝓝[<] a, has_deriv_at f (deriv f x) x, from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), have hdg' : ∀ᶠ x in 𝓝[<] a, has_deriv_at g (deriv g x) x, from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), exact has_deriv_at.lhopital_zero_nhds_left hdf' hdg' hg' hfa hga hdiv end /-- **L'Hôpital's rule** for approaching a real, `deriv` version. This does not require anything about the situation at `a` -/ theorem lhopital_zero_nhds' (hdf : ∀ᶠ x in 𝓝[univ \ {a}] a, differentiable_at ℝ f x) (hg' : ∀ᶠ x in 𝓝[univ \ {a}] a, deriv g x ≠ 0) (hfa : tendsto f (𝓝[univ \ {a}] a) (𝓝 0)) (hga : tendsto g (𝓝[univ \ {a}] a) (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[univ \ {a}] a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[univ \ {a}] a) l := begin have : univ \ {a} = Iio a ∪ Ioi a, { ext, rw [mem_diff_singleton, eq_true_intro $ mem_univ x, true_and, ne_iff_lt_or_gt], refl }, simp only [this, nhds_within_union, tendsto_sup, eventually_sup] at *, exact ⟨lhopital_zero_nhds_left hdf.1 hg'.1 hfa.1 hga.1 hdiv.1, lhopital_zero_nhds_right hdf.2 hg'.2 hfa.2 hga.2 hdiv.2⟩, end /-- **L'Hôpital's rule** for approaching a real, `deriv` version -/ theorem lhopital_zero_nhds (hdf : ∀ᶠ x in 𝓝 a, differentiable_at ℝ f x) (hg' : ∀ᶠ x in 𝓝 a, deriv g x ≠ 0) (hfa : tendsto f (𝓝 a) (𝓝 0)) (hga : tendsto g (𝓝 a) (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝 a) l) : tendsto (λ x, (f x) / (g x)) (𝓝[univ \ {a}] a) l := begin apply lhopital_zero_nhds'; apply eventually_nhds_within_of_eventually_nhds <|> apply tendsto_nhds_within_of_tendsto_nhds; assumption end /-- **L'Hôpital's rule** for approaching +∞, `deriv` version -/ theorem lhopital_zero_at_top (hdf : ∀ᶠ (x : ℝ) in at_top, differentiable_at ℝ f x) (hg' : ∀ᶠ (x : ℝ) in at_top, deriv g x ≠ 0) (hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_top l) : tendsto (λ x, (f x) / (g x)) at_top l := begin have hdg : ∀ᶠ x in at_top, differentiable_at ℝ g x, from hg'.mp (eventually_of_forall $ λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))), have hdf' : ∀ᶠ x in at_top, has_deriv_at f (deriv f x) x, from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), have hdg' : ∀ᶠ x in at_top, has_deriv_at g (deriv g x) x, from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), exact has_deriv_at.lhopital_zero_at_top hdf' hdg' hg' hftop hgtop hdiv end /-- **L'Hôpital's rule** for approaching -∞, `deriv` version -/ theorem lhopital_zero_at_bot (hdf : ∀ᶠ (x : ℝ) in at_bot, differentiable_at ℝ f x) (hg' : ∀ᶠ (x : ℝ) in at_bot, deriv g x ≠ 0) (hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0)) (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_bot l) : tendsto (λ x, (f x) / (g x)) at_bot l := begin have hdg : ∀ᶠ x in at_bot, differentiable_at ℝ g x, from hg'.mp (eventually_of_forall $ λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))), have hdf' : ∀ᶠ x in at_bot, has_deriv_at f (deriv f x) x, from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), have hdg' : ∀ᶠ x in at_bot, has_deriv_at g (deriv g x) x, from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at), exact has_deriv_at.lhopital_zero_at_bot hdf' hdg' hg' hfbot hgbot hdiv end end deriv
3413988cc4f070acc3c973e5a4e6d9106fcde318
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/data/complex/cardinality.lean
1bbabbe9cde5e59cb49bcb3a36d7d676d92015ab
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
955
lean
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import data.complex.basic import data.real.cardinality /-! # The cardinality of the complex numbers This file shows that the complex numbers have cardinality continuum, i.e. `#ℂ = 𝔠`. -/ open cardinal set open_locale cardinal /-- The cardinality of the complex numbers, as a type. -/ @[simp] theorem mk_complex : #ℂ = 𝔠 := by rw [mk_congr complex.equiv_real_prod, mk_prod, lift_id, mk_real, continuum_mul_self] /-- The cardinality of the complex numbers, as a set. -/ @[simp] lemma mk_univ_complex : #(set.univ : set ℂ) = 𝔠 := by rw [mk_univ, mk_complex] /-- The complex numbers are not countable. -/ lemma not_countable_complex : ¬ (set.univ : set ℂ).countable := by { rw [← le_aleph_0_iff_set_countable, not_le, mk_univ_complex], apply cantor }
e805bea71264bf081cb3d8898c6b9f6065db0b3f
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/analysis/mean_inequalities_pow.lean
e639c518c2bffc1b5b10b7f4f9d8d88249564706
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
16,243
lean
/- Copyright (c) 2019 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne -/ import analysis.convex.jensen import analysis.convex.specific_functions.basic import analysis.special_functions.pow.nnreal import tactic.positivity /-! # Mean value inequalities > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. In this file we prove several mean inequalities for finite sums. Versions for integrals of some of these inequalities are available in `measure_theory.mean_inequalities`. ## Main theorems: generalized mean inequality The inequality says that for two non-negative vectors $w$ and $z$ with $\sum_{i\in s} w_i=1$ and $p ≤ q$ we have $$ \sqrt[p]{\sum_{i\in s} w_i z_i^p} ≤ \sqrt[q]{\sum_{i\in s} w_i z_i^q}. $$ Currently we only prove this inequality for $p=1$. As in the rest of `mathlib`, we provide different theorems for natural exponents (`pow_arith_mean_le_arith_mean_pow`), integer exponents (`zpow_arith_mean_le_arith_mean_zpow`), and real exponents (`rpow_arith_mean_le_arith_mean_rpow` and `arith_mean_le_rpow_mean`). In the first two cases we prove $$ \left(\sum_{i\in s} w_i z_i\right)^n ≤ \sum_{i\in s} w_i z_i^n $$ in order to avoid using real exponents. For real exponents we prove both this and standard versions. ## TODO - each inequality `A ≤ B` should come with a theorem `A = B ↔ _`; one of the ways to prove them is to define `strict_convex_on` functions. - generalized mean inequality with any `p ≤ q`, including negative numbers; - prove that the power mean tends to the geometric mean as the exponent tends to zero. -/ universes u v open finset open_locale classical big_operators nnreal ennreal noncomputable theory variables {ι : Type u} (s : finset ι) namespace real theorem pow_arith_mean_le_arith_mean_pow (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i) (hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) (n : ℕ) : (∑ i in s, w i * z i) ^ n ≤ ∑ i in s, (w i * z i ^ n) := (convex_on_pow n).map_sum_le hw hw' hz theorem pow_arith_mean_le_arith_mean_pow_of_even (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i) (hw' : ∑ i in s, w i = 1) {n : ℕ} (hn : even n) : (∑ i in s, w i * z i) ^ n ≤ ∑ i in s, (w i * z i ^ n) := hn.convex_on_pow.map_sum_le hw hw' (λ _ _, trivial) /-- Specific case of Jensen's inequality for sums of powers -/ lemma pow_sum_div_card_le_sum_pow {f : ι → ℝ} (n : ℕ) (hf : ∀ a ∈ s, 0 ≤ f a) : (∑ x in s, f x) ^ (n + 1) / s.card ^ n ≤ ∑ x in s, (f x) ^ (n + 1) := begin rcases s.eq_empty_or_nonempty with rfl | hs, { simp_rw [finset.sum_empty, zero_pow' _ (nat.succ_ne_zero n), zero_div] }, { have hs0 : 0 < (s.card : ℝ) := nat.cast_pos.2 hs.card_pos, suffices : (∑ x in s, f x / s.card) ^ (n + 1) ≤ ∑ x in s, (f x ^ (n + 1) / s.card), { rwa [← finset.sum_div, ← finset.sum_div, div_pow, pow_succ' (s.card : ℝ), ← div_div, div_le_iff hs0, div_mul, div_self hs0.ne', div_one] at this }, have := @convex_on.map_sum_le ℝ ℝ ℝ ι _ _ _ _ _ _ (set.Ici 0) (λ x, x ^ (n + 1)) s (λ _, 1 / s.card) (coe ∘ f) (convex_on_pow (n + 1)) _ _ (λ i hi, set.mem_Ici.2 (hf i hi)), { simpa only [inv_mul_eq_div, one_div, algebra.id.smul_eq_mul] using this }, { simp only [one_div, inv_nonneg, nat.cast_nonneg, implies_true_iff] }, { simpa only [one_div, finset.sum_const, nsmul_eq_mul] using mul_inv_cancel hs0.ne' } } end theorem zpow_arith_mean_le_arith_mean_zpow (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i) (hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 < z i) (m : ℤ) : (∑ i in s, w i * z i) ^ m ≤ ∑ i in s, (w i * z i ^ m) := (convex_on_zpow m).map_sum_le hw hw' hz theorem rpow_arith_mean_le_arith_mean_rpow (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i) (hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) {p : ℝ} (hp : 1 ≤ p) : (∑ i in s, w i * z i) ^ p ≤ ∑ i in s, (w i * z i ^ p) := (convex_on_rpow hp).map_sum_le hw hw' hz theorem arith_mean_le_rpow_mean (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i) (hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) {p : ℝ} (hp : 1 ≤ p) : ∑ i in s, w i * z i ≤ (∑ i in s, (w i * z i ^ p)) ^ (1 / p) := begin have : 0 < p := by positivity, rw [← rpow_le_rpow_iff _ _ this, ← rpow_mul, one_div_mul_cancel (ne_of_gt this), rpow_one], exact rpow_arith_mean_le_arith_mean_rpow s w z hw hw' hz hp, all_goals { apply_rules [sum_nonneg, rpow_nonneg_of_nonneg], intros i hi, apply_rules [mul_nonneg, rpow_nonneg_of_nonneg, hw i hi, hz i hi] }, end end real namespace nnreal /-- Weighted generalized mean inequality, version sums over finite sets, with `ℝ≥0`-valued functions and natural exponent. -/ theorem pow_arith_mean_le_arith_mean_pow (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) (n : ℕ) : (∑ i in s, w i * z i) ^ n ≤ ∑ i in s, (w i * z i ^ n) := by exact_mod_cast real.pow_arith_mean_le_arith_mean_pow s _ _ (λ i _, (w i).coe_nonneg) (by exact_mod_cast hw') (λ i _, (z i).coe_nonneg) n lemma pow_sum_div_card_le_sum_pow (f : ι → ℝ≥0) (n : ℕ) : (∑ x in s, f x) ^ (n + 1) / s.card ^ n ≤ ∑ x in s, (f x) ^ (n + 1) := by simpa only [← nnreal.coe_le_coe, nnreal.coe_sum, nonneg.coe_div, nnreal.coe_pow] using @real.pow_sum_div_card_le_sum_pow ι s (coe ∘ f) n (λ _ _, nnreal.coe_nonneg _) /-- Weighted generalized mean inequality, version for sums over finite sets, with `ℝ≥0`-valued functions and real exponents. -/ theorem rpow_arith_mean_le_arith_mean_rpow (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) {p : ℝ} (hp : 1 ≤ p) : (∑ i in s, w i * z i) ^ p ≤ ∑ i in s, (w i * z i ^ p) := by exact_mod_cast real.rpow_arith_mean_le_arith_mean_rpow s _ _ (λ i _, (w i).coe_nonneg) (by exact_mod_cast hw') (λ i _, (z i).coe_nonneg) hp /-- Weighted generalized mean inequality, version for two elements of `ℝ≥0` and real exponents. -/ theorem rpow_arith_mean_le_arith_mean2_rpow (w₁ w₂ z₁ z₂ : ℝ≥0) (hw' : w₁ + w₂ = 1) {p : ℝ} (hp : 1 ≤ p) : (w₁ * z₁ + w₂ * z₂) ^ p ≤ w₁ * z₁ ^ p + w₂ * z₂ ^ p := begin have h := rpow_arith_mean_le_arith_mean_rpow univ ![w₁, w₂] ![z₁, z₂] _ hp, { simpa [fin.sum_univ_succ] using h, }, { simp [hw', fin.sum_univ_succ], }, end /-- Unweighted mean inequality, version for two elements of `ℝ≥0` and real exponents. -/ theorem rpow_add_le_mul_rpow_add_rpow (z₁ z₂ : ℝ≥0) {p : ℝ} (hp : 1 ≤ p) : (z₁ + z₂) ^ p ≤ 2^(p-1) * (z₁ ^ p + z₂ ^ p) := begin rcases eq_or_lt_of_le hp with rfl|h'p, { simp only [rpow_one, sub_self, rpow_zero, one_mul] }, convert rpow_arith_mean_le_arith_mean2_rpow (1/2) (1/2) (2 * z₁) (2 * z₂) (add_halves 1) hp, { simp only [one_div, inv_mul_cancel_left₀, ne.def, bit0_eq_zero, one_ne_zero, not_false_iff] }, { simp only [one_div, inv_mul_cancel_left₀, ne.def, bit0_eq_zero, one_ne_zero, not_false_iff] }, { have A : p - 1 ≠ 0 := ne_of_gt (sub_pos.2 h'p), simp only [mul_rpow, rpow_sub' _ A, div_eq_inv_mul, rpow_one, mul_one], ring } end /-- Weighted generalized mean inequality, version for sums over finite sets, with `ℝ≥0`-valued functions and real exponents. -/ theorem arith_mean_le_rpow_mean (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) {p : ℝ} (hp : 1 ≤ p) : ∑ i in s, w i * z i ≤ (∑ i in s, (w i * z i ^ p)) ^ (1 / p) := by exact_mod_cast real.arith_mean_le_rpow_mean s _ _ (λ i _, (w i).coe_nonneg) (by exact_mod_cast hw') (λ i _, (z i).coe_nonneg) hp private lemma add_rpow_le_one_of_add_le_one {p : ℝ} (a b : ℝ≥0) (hab : a + b ≤ 1) (hp1 : 1 ≤ p) : a ^ p + b ^ p ≤ 1 := begin have h_le_one : ∀ x : ℝ≥0, x ≤ 1 → x ^ p ≤ x, from λ x hx, rpow_le_self_of_le_one hx hp1, have ha : a ≤ 1, from (self_le_add_right a b).trans hab, have hb : b ≤ 1, from (self_le_add_left b a).trans hab, exact (add_le_add (h_le_one a ha) (h_le_one b hb)).trans hab, end lemma add_rpow_le_rpow_add {p : ℝ} (a b : ℝ≥0) (hp1 : 1 ≤ p) : a ^ p + b ^ p ≤ (a + b) ^ p := begin have hp_pos : 0 < p := by positivity, by_cases h_zero : a + b = 0, { simp [add_eq_zero_iff.mp h_zero, hp_pos.ne'] }, have h_nonzero : ¬(a = 0 ∧ b = 0), by rwa add_eq_zero_iff at h_zero, have h_add : a/(a+b) + b/(a+b) = 1, by rw [div_add_div_same, div_self h_zero], have h := add_rpow_le_one_of_add_le_one (a/(a+b)) (b/(a+b)) h_add.le hp1, rw [div_rpow a (a+b), div_rpow b (a+b)] at h, have hab_0 : (a + b)^p ≠ 0, by simp [hp_pos, h_nonzero], have hab_0' : 0 < (a + b) ^ p := zero_lt_iff.mpr hab_0, have h_mul : (a + b)^p * (a ^ p / (a + b) ^ p + b ^ p / (a + b) ^ p) ≤ (a + b)^p, { nth_rewrite 3 ←mul_one ((a + b)^p), exact (mul_le_mul_left hab_0').mpr h, }, rwa [div_eq_mul_inv, div_eq_mul_inv, mul_add, mul_comm (a^p), mul_comm (b^p), ←mul_assoc, ←mul_assoc, mul_inv_cancel hab_0, one_mul, one_mul] at h_mul, end lemma rpow_add_rpow_le_add {p : ℝ} (a b : ℝ≥0) (hp1 : 1 ≤ p) : (a ^ p + b ^ p) ^ (1/p) ≤ a + b := begin rw ←@nnreal.le_rpow_one_div_iff _ _ (1/p) (by simp [lt_of_lt_of_le zero_lt_one hp1]), rw one_div_one_div, exact add_rpow_le_rpow_add _ _ hp1, end theorem rpow_add_rpow_le {p q : ℝ} (a b : ℝ≥0) (hp_pos : 0 < p) (hpq : p ≤ q) : (a ^ q + b ^ q) ^ (1/q) ≤ (a ^ p + b ^ p) ^ (1/p) := begin have h_rpow : ∀ a : ℝ≥0, a^q = (a^p)^(q/p), from λ a, by rw [←nnreal.rpow_mul, div_eq_inv_mul, ←mul_assoc, _root_.mul_inv_cancel hp_pos.ne.symm, one_mul], have h_rpow_add_rpow_le_add : ((a^p)^(q/p) + (b^p)^(q/p)) ^ (1/(q/p)) ≤ a^p + b^p, { refine rpow_add_rpow_le_add (a^p) (b^p) _, rwa one_le_div hp_pos, }, rw [h_rpow a, h_rpow b, nnreal.le_rpow_one_div_iff hp_pos, ←nnreal.rpow_mul, mul_comm, mul_one_div], rwa one_div_div at h_rpow_add_rpow_le_add, end lemma rpow_add_le_add_rpow {p : ℝ} (a b : ℝ≥0) (hp : 0 ≤ p) (hp1 : p ≤ 1) : (a + b) ^ p ≤ a ^ p + b ^ p := begin rcases hp.eq_or_lt with rfl|hp_pos, { simp }, have h := rpow_add_rpow_le a b hp_pos hp1, rw one_div_one at h, repeat { rw nnreal.rpow_one at h }, exact (nnreal.le_rpow_one_div_iff hp_pos).mp h end end nnreal namespace ennreal /-- Weighted generalized mean inequality, version for sums over finite sets, with `ℝ≥0∞`-valued functions and real exponents. -/ theorem rpow_arith_mean_le_arith_mean_rpow (w z : ι → ℝ≥0∞) (hw' : ∑ i in s, w i = 1) {p : ℝ} (hp : 1 ≤ p) : (∑ i in s, w i * z i) ^ p ≤ ∑ i in s, (w i * z i ^ p) := begin have hp_pos : 0 < p, positivity, have hp_nonneg : 0 ≤ p, positivity, have hp_not_nonpos : ¬ p ≤ 0, by simp [hp_pos], have hp_not_neg : ¬ p < 0, by simp [hp_nonneg], have h_top_iff_rpow_top : ∀ (i : ι) (hi : i ∈ s), w i * z i = ⊤ ↔ w i * (z i) ^ p = ⊤, by simp [ennreal.mul_eq_top, hp_pos, hp_nonneg, hp_not_nonpos, hp_not_neg], refine le_of_top_imp_top_of_to_nnreal_le _ _, { -- first, prove `(∑ i in s, w i * z i) ^ p = ⊤ → ∑ i in s, (w i * z i ^ p) = ⊤` rw [rpow_eq_top_iff, sum_eq_top_iff, sum_eq_top_iff], intro h, simp only [and_false, hp_not_neg, false_or] at h, rcases h.left with ⟨a, H, ha⟩, use [a, H], rwa ←h_top_iff_rpow_top a H, }, { -- second, suppose both `(∑ i in s, w i * z i) ^ p ≠ ⊤` and `∑ i in s, (w i * z i ^ p) ≠ ⊤`, -- and prove `((∑ i in s, w i * z i) ^ p).to_nnreal ≤ (∑ i in s, (w i * z i ^ p)).to_nnreal`, -- by using `nnreal.rpow_arith_mean_le_arith_mean_rpow`. intros h_top_rpow_sum _, -- show hypotheses needed to put the `.to_nnreal` inside the sums. have h_top : ∀ (a : ι), a ∈ s → w a * z a ≠ ⊤, { have h_top_sum : ∑ (i : ι) in s, w i * z i ≠ ⊤, { intro h, rw [h, top_rpow_of_pos hp_pos] at h_top_rpow_sum, exact h_top_rpow_sum rfl, }, exact λ a ha, (lt_top_of_sum_ne_top h_top_sum ha).ne }, have h_top_rpow : ∀ (a : ι), a ∈ s → w a * z a ^ p ≠ ⊤, { intros i hi, specialize h_top i hi, rwa [ne.def, ←h_top_iff_rpow_top i hi], }, -- put the `.to_nnreal` inside the sums. simp_rw [to_nnreal_sum h_top_rpow, ←to_nnreal_rpow, to_nnreal_sum h_top, to_nnreal_mul, ←to_nnreal_rpow], -- use corresponding nnreal result refine nnreal.rpow_arith_mean_le_arith_mean_rpow s (λ i, (w i).to_nnreal) (λ i, (z i).to_nnreal) _ hp, -- verify the hypothesis `∑ i in s, (w i).to_nnreal = 1`, using `∑ i in s, w i = 1` . have h_sum_nnreal : (∑ i in s, w i) = ↑(∑ i in s, (w i).to_nnreal), { rw coe_finset_sum, refine sum_congr rfl (λ i hi, (coe_to_nnreal _).symm), refine (lt_top_of_sum_ne_top _ hi).ne, exact hw'.symm ▸ ennreal.one_ne_top }, rwa [←coe_eq_coe, ←h_sum_nnreal], }, end /-- Weighted generalized mean inequality, version for two elements of `ℝ≥0∞` and real exponents. -/ theorem rpow_arith_mean_le_arith_mean2_rpow (w₁ w₂ z₁ z₂ : ℝ≥0∞) (hw' : w₁ + w₂ = 1) {p : ℝ} (hp : 1 ≤ p) : (w₁ * z₁ + w₂ * z₂) ^ p ≤ w₁ * z₁ ^ p + w₂ * z₂ ^ p := begin have h := rpow_arith_mean_le_arith_mean_rpow univ ![w₁, w₂] ![z₁, z₂] _ hp, { simpa [fin.sum_univ_succ] using h, }, { simp [hw', fin.sum_univ_succ], }, end /-- Unweighted mean inequality, version for two elements of `ℝ≥0∞` and real exponents. -/ theorem rpow_add_le_mul_rpow_add_rpow (z₁ z₂ : ℝ≥0∞) {p : ℝ} (hp : 1 ≤ p) : (z₁ + z₂) ^ p ≤ 2^(p-1) * (z₁ ^ p + z₂ ^ p) := begin rcases eq_or_lt_of_le hp with rfl|h'p, { simp only [rpow_one, sub_self, rpow_zero, one_mul, le_refl], }, convert rpow_arith_mean_le_arith_mean2_rpow (1/2) (1/2) (2 * z₁) (2 * z₂) (ennreal.add_halves 1) hp, { simp [← mul_assoc, ennreal.inv_mul_cancel two_ne_zero two_ne_top] }, { simp [← mul_assoc, ennreal.inv_mul_cancel two_ne_zero two_ne_top] }, { have A : p - 1 ≠ 0 := ne_of_gt (sub_pos.2 h'p), simp only [mul_rpow_of_nonneg _ _ (zero_le_one.trans hp), rpow_sub _ _ two_ne_zero two_ne_top, ennreal.div_eq_inv_mul, rpow_one, mul_one], ring } end lemma add_rpow_le_rpow_add {p : ℝ} (a b : ℝ≥0∞) (hp1 : 1 ≤ p) : a ^ p + b ^ p ≤ (a + b) ^ p := begin have hp_pos : 0 < p := by positivity, by_cases h_top : a + b = ⊤, { rw ←@ennreal.rpow_eq_top_iff_of_pos (a + b) p hp_pos at h_top, rw h_top, exact le_top, }, obtain ⟨ha_top, hb_top⟩ := add_ne_top.mp h_top, lift a to ℝ≥0 using ha_top, lift b to ℝ≥0 using hb_top, simpa [← ennreal.coe_rpow_of_nonneg _ hp_pos.le] using ennreal.coe_le_coe.2 (nnreal.add_rpow_le_rpow_add a b hp1), end lemma rpow_add_rpow_le_add {p : ℝ} (a b : ℝ≥0∞) (hp1 : 1 ≤ p) : (a ^ p + b ^ p) ^ (1/p) ≤ a + b := begin rw ←@ennreal.le_rpow_one_div_iff _ _ (1/p) (by simp [lt_of_lt_of_le zero_lt_one hp1]), rw one_div_one_div, exact add_rpow_le_rpow_add _ _ hp1, end theorem rpow_add_rpow_le {p q : ℝ} (a b : ℝ≥0∞) (hp_pos : 0 < p) (hpq : p ≤ q) : (a ^ q + b ^ q) ^ (1/q) ≤ (a ^ p + b ^ p) ^ (1/p) := begin have h_rpow : ∀ a : ℝ≥0∞, a^q = (a^p)^(q/p), from λ a, by rw [← ennreal.rpow_mul, _root_.mul_div_cancel' _ hp_pos.ne'], have h_rpow_add_rpow_le_add : ((a^p)^(q/p) + (b^p)^(q/p)) ^ (1/(q/p)) ≤ a^p + b^p, { refine rpow_add_rpow_le_add (a^p) (b^p) _, rwa one_le_div hp_pos, }, rw [h_rpow a, h_rpow b, ennreal.le_rpow_one_div_iff hp_pos, ←ennreal.rpow_mul, mul_comm, mul_one_div], rwa one_div_div at h_rpow_add_rpow_le_add, end lemma rpow_add_le_add_rpow {p : ℝ} (a b : ℝ≥0∞) (hp : 0 ≤ p) (hp1 : p ≤ 1) : (a + b) ^ p ≤ a ^ p + b ^ p := begin rcases hp.eq_or_lt with rfl|hp_pos, { suffices : (1 : ℝ≥0∞) ≤ 1 + 1, { simpa using this }, norm_cast, norm_num }, have h := rpow_add_rpow_le a b hp_pos hp1, rw one_div_one at h, repeat { rw ennreal.rpow_one at h }, exact (ennreal.le_rpow_one_div_iff hp_pos).mp h, end end ennreal
55d42a63122371edd8cdf21c6a578fa93ab92ec2
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/tests/lean/run/root.lean
b1397de2d5cd899bc9aa180b1ef3a8584ac7f5ba
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
225
lean
constant foo : Prop namespace N1 constant foo : Prop check N1.foo check _root_.foo namespace N2 constant foo : Prop check N1.foo check N1.N2.foo print raw foo print raw _root_.foo end N2 end N1
73144394b8edf9720f0854cd862e62cc75376b0e
d29d82a0af640c937e499f6be79fc552eae0aa13
/src/topology/subset_properties.lean
ce4d7f269f78ec2a4f8f077880dd37a856090470
[ "Apache-2.0" ]
permissive
AbdulMajeedkhurasani/mathlib
835f8a5c5cf3075b250b3737172043ab4fa1edf6
79bc7323b164aebd000524ebafd198eb0e17f956
refs/heads/master
1,688,003,895,660
1,627,788,521,000
1,627,788,521,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
66,591
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov -/ import topology.bases import data.finset.order import data.set.accumulate /-! # Properties of subsets of topological spaces In this file we define various properties of subsets of a topological space, and some classes on topological spaces. ## Main definitions We define the following properties for sets in a topological space: * `is_compact`: each open cover has a finite subcover. This is defined in mathlib using filters. The main property of a compact set is `is_compact.elim_finite_subcover`. * `is_clopen`: a set that is both open and closed. * `is_irreducible`: a nonempty set that has contains no non-trivial pair of disjoint opens. See also the section below in the module doc. For each of these definitions (except for `is_clopen`), we also have a class stating that the whole space satisfies that property: `compact_space`, `irreducible_space` Furthermore, we have two more classes: * `locally_compact_space`: for every point `x`, every open neighborhood of `x` contains a compact neighborhood of `x`. The definition is formulated in terms of the neighborhood filter. * `sigma_compact_space`: a space that is the union of a countably many compact subspaces. ## On the definition of irreducible and connected sets/spaces In informal mathematics, irreducible spaces are assumed to be nonempty. We formalise the predicate without that assumption as `is_preirreducible`. In other words, the only difference is whether the empty space counts as irreducible. There are good reasons to consider the empty space to be “too simple to be simple” See also https://ncatlab.org/nlab/show/too+simple+to+be+simple, and in particular https://ncatlab.org/nlab/show/too+simple+to+be+simple#relationship_to_biased_definitions. -/ open set filter classical topological_space open_locale classical topological_space filter universes u v variables {α : Type u} {β : Type v} [topological_space α] {s t : set α} /- compact sets -/ section compact /-- A set `s` is compact if for every nontrivial filter `f` that contains `s`, there exists `a ∈ s` such that every set of `f` meets every neighborhood of `a`. -/ def is_compact (s : set α) := ∀ ⦃f⦄ [ne_bot f], f ≤ 𝓟 s → ∃a∈s, cluster_pt a f /-- The complement to a compact set belongs to a filter `f` if it belongs to each filter `𝓝 a ⊓ f`, `a ∈ s`. -/ lemma is_compact.compl_mem_sets (hs : is_compact s) {f : filter α} (hf : ∀ a ∈ s, sᶜ ∈ 𝓝 a ⊓ f) : sᶜ ∈ f := begin contrapose! hf, simp only [not_mem_iff_inf_principal_compl, compl_compl, inf_assoc, ← exists_prop] at hf ⊢, exact @hs _ hf inf_le_right end /-- The complement to a compact set belongs to a filter `f` if each `a ∈ s` has a neighborhood `t` within `s` such that `tᶜ` belongs to `f`. -/ lemma is_compact.compl_mem_sets_of_nhds_within (hs : is_compact s) {f : filter α} (hf : ∀ a ∈ s, ∃ t ∈ 𝓝[s] a, tᶜ ∈ f) : sᶜ ∈ f := begin refine hs.compl_mem_sets (λ a ha, _), rcases hf a ha with ⟨t, ht, hst⟩, replace ht := mem_inf_principal.1 ht, refine mem_inf_sets.2 ⟨_, ht, _, hst, _⟩, rintros x ⟨h₁, h₂⟩ hs, exact h₂ (h₁ hs) end /-- If `p : set α → Prop` is stable under restriction and union, and each point `x` of a compact set `s` has a neighborhood `t` within `s` such that `p t`, then `p s` holds. -/ @[elab_as_eliminator] lemma is_compact.induction_on {s : set α} (hs : is_compact s) {p : set α → Prop} (he : p ∅) (hmono : ∀ ⦃s t⦄, s ⊆ t → p t → p s) (hunion : ∀ ⦃s t⦄, p s → p t → p (s ∪ t)) (hnhds : ∀ x ∈ s, ∃ t ∈ 𝓝[s] x, p t) : p s := let f : filter α := { sets := {t | p tᶜ}, univ_sets := by simpa, sets_of_superset := λ t₁ t₂ ht₁ ht, hmono (compl_subset_compl.2 ht) ht₁, inter_sets := λ t₁ t₂ ht₁ ht₂, by simp [compl_inter, hunion ht₁ ht₂] } in have sᶜ ∈ f, from hs.compl_mem_sets_of_nhds_within (by simpa using hnhds), by simpa /-- The intersection of a compact set and a closed set is a compact set. -/ lemma is_compact.inter_right (hs : is_compact s) (ht : is_closed t) : is_compact (s ∩ t) := begin introsI f hnf hstf, obtain ⟨a, hsa, ha⟩ : ∃ a ∈ s, cluster_pt a f := hs (le_trans hstf (le_principal_iff.2 (inter_subset_left _ _))), have : a ∈ t := (ht.mem_of_nhds_within_ne_bot $ ha.mono $ le_trans hstf (le_principal_iff.2 (inter_subset_right _ _))), exact ⟨a, ⟨hsa, this⟩, ha⟩ end /-- The intersection of a closed set and a compact set is a compact set. -/ lemma is_compact.inter_left (ht : is_compact t) (hs : is_closed s) : is_compact (s ∩ t) := inter_comm t s ▸ ht.inter_right hs /-- The set difference of a compact set and an open set is a compact set. -/ lemma is_compact.diff (hs : is_compact s) (ht : is_open t) : is_compact (s \ t) := hs.inter_right (is_closed_compl_iff.mpr ht) /-- A closed subset of a compact set is a compact set. -/ lemma compact_of_is_closed_subset (hs : is_compact s) (ht : is_closed t) (h : t ⊆ s) : is_compact t := inter_eq_self_of_subset_right h ▸ hs.inter_right ht lemma is_compact.adherence_nhdset {f : filter α} (hs : is_compact s) (hf₂ : f ≤ 𝓟 s) (ht₁ : is_open t) (ht₂ : ∀a∈s, cluster_pt a f → a ∈ t) : t ∈ f := classical.by_cases mem_sets_of_eq_bot $ assume : f ⊓ 𝓟 tᶜ ≠ ⊥, let ⟨a, ha, (hfa : cluster_pt a $ f ⊓ 𝓟 tᶜ)⟩ := @@hs ⟨this⟩ $ inf_le_of_left_le hf₂ in have a ∈ t, from ht₂ a ha (hfa.of_inf_left), have tᶜ ∩ t ∈ 𝓝[tᶜ] a, from inter_mem_nhds_within _ (is_open.mem_nhds ht₁ this), have A : 𝓝[tᶜ] a = ⊥, from empty_in_sets_eq_bot.1 $ compl_inter_self t ▸ this, have 𝓝[tᶜ] a ≠ ⊥, from hfa.of_inf_right.ne, absurd A this lemma is_compact_iff_ultrafilter_le_nhds : is_compact s ↔ (∀f : ultrafilter α, ↑f ≤ 𝓟 s → ∃a∈s, ↑f ≤ 𝓝 a) := begin refine (forall_ne_bot_le_iff _).trans _, { rintro f g hle ⟨a, has, haf⟩, exact ⟨a, has, haf.mono hle⟩ }, { simp only [ultrafilter.cluster_pt_iff] } end alias is_compact_iff_ultrafilter_le_nhds ↔ is_compact.ultrafilter_le_nhds _ /-- For every open directed cover of a compact set, there exists a single element of the cover which itself includes the set. -/ lemma is_compact.elim_directed_cover {ι : Type v} [hι : nonempty ι] (hs : is_compact s) (U : ι → set α) (hUo : ∀i, is_open (U i)) (hsU : s ⊆ ⋃ i, U i) (hdU : directed (⊆) U) : ∃ i, s ⊆ U i := hι.elim $ λ i₀, is_compact.induction_on hs ⟨i₀, empty_subset _⟩ (λ s₁ s₂ hs ⟨i, hi⟩, ⟨i, subset.trans hs hi⟩) (λ s₁ s₂ ⟨i, hi⟩ ⟨j, hj⟩, let ⟨k, hki, hkj⟩ := hdU i j in ⟨k, union_subset (subset.trans hi hki) (subset.trans hj hkj)⟩) (λ x hx, let ⟨i, hi⟩ := mem_Union.1 (hsU hx) in ⟨U i, mem_nhds_within_of_mem_nhds (is_open.mem_nhds (hUo i) hi), i, subset.refl _⟩) /-- For every open cover of a compact set, there exists a finite subcover. -/ lemma is_compact.elim_finite_subcover {ι : Type v} (hs : is_compact s) (U : ι → set α) (hUo : ∀i, is_open (U i)) (hsU : s ⊆ ⋃ i, U i) : ∃ t : finset ι, s ⊆ ⋃ i ∈ t, U i := hs.elim_directed_cover _ (λ t, is_open_bUnion $ λ i _, hUo i) (Union_eq_Union_finset U ▸ hsU) (directed_of_sup $ λ t₁ t₂ h, bUnion_subset_bUnion_left h) lemma is_compact.elim_nhds_subcover' (hs : is_compact s) (U : Π x ∈ s, set α) (hU : ∀ x ∈ s, U x ‹x ∈ s› ∈ 𝓝 x) : ∃ t : finset s, s ⊆ ⋃ x ∈ t, U (x : s) x.2 := (hs.elim_finite_subcover (λ x : s, interior (U x x.2)) (λ x, is_open_interior) (λ x hx, mem_Union.2 ⟨⟨x, hx⟩, mem_interior_iff_mem_nhds.2 $ hU _ _⟩)).imp $ λ t ht, subset.trans ht $ bUnion_subset_bUnion_right $ λ _ _, interior_subset lemma is_compact.elim_nhds_subcover (hs : is_compact s) (U : α → set α) (hU : ∀ x ∈ s, U x ∈ 𝓝 x) : ∃ t : finset α, (∀ x ∈ t, x ∈ s) ∧ s ⊆ ⋃ x ∈ t, U x := let ⟨t, ht⟩ := hs.elim_nhds_subcover' (λ x _, U x) hU in ⟨t.image coe, λ x hx, let ⟨y, hyt, hyx⟩ := finset.mem_image.1 hx in hyx ▸ y.2, by rwa finset.set_bUnion_finset_image⟩ /-- For every family of closed sets whose intersection avoids a compact set, there exists a finite subfamily whose intersection avoids this compact set. -/ lemma is_compact.elim_finite_subfamily_closed {s : set α} {ι : Type v} (hs : is_compact s) (Z : ι → set α) (hZc : ∀i, is_closed (Z i)) (hsZ : s ∩ (⋂ i, Z i) = ∅) : ∃ t : finset ι, s ∩ (⋂ i ∈ t, Z i) = ∅ := let ⟨t, ht⟩ := hs.elim_finite_subcover (λ i, (Z i)ᶜ) (λ i, (hZc i).is_open_compl) (by simpa only [subset_def, not_forall, eq_empty_iff_forall_not_mem, mem_Union, exists_prop, mem_inter_eq, not_and, iff_self, mem_Inter, mem_compl_eq] using hsZ) in ⟨t, by simpa only [subset_def, not_forall, eq_empty_iff_forall_not_mem, mem_Union, exists_prop, mem_inter_eq, not_and, iff_self, mem_Inter, mem_compl_eq] using ht⟩ /-- If `s` is a compact set in a topological space `α` and `f : ι → set α` is a locally finite family of sets, then `f i ∩ s` is nonempty only for a finitely many `i`. -/ lemma locally_finite.finite_nonempty_inter_compact {ι : Type*} {f : ι → set α} (hf : locally_finite f) {s : set α} (hs : is_compact s) : finite {i | (f i ∩ s).nonempty} := begin choose U hxU hUf using hf, rcases hs.elim_nhds_subcover U (λ x _, hxU x) with ⟨t, -, hsU⟩, refine (t.finite_to_set.bUnion (λ x _, hUf x)).subset _, rintro i ⟨x, hx⟩, rcases mem_bUnion_iff.1 (hsU hx.2) with ⟨c, hct, hcx⟩, exact mem_bUnion hct ⟨x, hx.1, hcx⟩ end /-- To show that a compact set intersects the intersection of a family of closed sets, it is sufficient to show that it intersects every finite subfamily. -/ lemma is_compact.inter_Inter_nonempty {s : set α} {ι : Type v} (hs : is_compact s) (Z : ι → set α) (hZc : ∀i, is_closed (Z i)) (hsZ : ∀ t : finset ι, (s ∩ ⋂ i ∈ t, Z i).nonempty) : (s ∩ ⋂ i, Z i).nonempty := begin simp only [← ne_empty_iff_nonempty] at hsZ ⊢, apply mt (hs.elim_finite_subfamily_closed Z hZc), push_neg, exact hsZ end /-- Cantor's intersection theorem: the intersection of a directed family of nonempty compact closed sets is nonempty. -/ lemma is_compact.nonempty_Inter_of_directed_nonempty_compact_closed {ι : Type v} [hι : nonempty ι] (Z : ι → set α) (hZd : directed (⊇) Z) (hZn : ∀ i, (Z i).nonempty) (hZc : ∀ i, is_compact (Z i)) (hZcl : ∀ i, is_closed (Z i)) : (⋂ i, Z i).nonempty := begin apply hι.elim, intro i₀, let Z' := λ i, Z i ∩ Z i₀, suffices : (⋂ i, Z' i).nonempty, { exact nonempty.mono (Inter_subset_Inter $ assume i, inter_subset_left (Z i) (Z i₀)) this }, rw ← ne_empty_iff_nonempty, intro H, obtain ⟨t, ht⟩ : ∃ (t : finset ι), ((Z i₀) ∩ ⋂ (i ∈ t), Z' i) = ∅, from (hZc i₀).elim_finite_subfamily_closed Z' (assume i, is_closed.inter (hZcl i) (hZcl i₀)) (by rw [H, inter_empty]), obtain ⟨i₁, hi₁⟩ : ∃ i₁ : ι, Z i₁ ⊆ Z i₀ ∧ ∀ i ∈ t, Z i₁ ⊆ Z' i, { rcases directed.finset_le hZd t with ⟨i, hi⟩, rcases hZd i i₀ with ⟨i₁, hi₁, hi₁₀⟩, use [i₁, hi₁₀], intros j hj, exact subset_inter (subset.trans hi₁ (hi j hj)) hi₁₀ }, suffices : ((Z i₀) ∩ ⋂ (i ∈ t), Z' i).nonempty, { rw ← ne_empty_iff_nonempty at this, contradiction }, refine nonempty.mono _ (hZn i₁), exact subset_inter hi₁.left (subset_bInter hi₁.right) end /-- Cantor's intersection theorem for sequences indexed by `ℕ`: the intersection of a decreasing sequence of nonempty compact closed sets is nonempty. -/ lemma is_compact.nonempty_Inter_of_sequence_nonempty_compact_closed (Z : ℕ → set α) (hZd : ∀ i, Z (i+1) ⊆ Z i) (hZn : ∀ i, (Z i).nonempty) (hZ0 : is_compact (Z 0)) (hZcl : ∀ i, is_closed (Z i)) : (⋂ i, Z i).nonempty := have Zmono : _, from @monotone_of_monotone_nat (order_dual _) _ Z hZd, have hZd : directed (⊇) Z, from directed_of_sup Zmono, have ∀ i, Z i ⊆ Z 0, from assume i, Zmono $ zero_le i, have hZc : ∀ i, is_compact (Z i), from assume i, compact_of_is_closed_subset hZ0 (hZcl i) (this i), is_compact.nonempty_Inter_of_directed_nonempty_compact_closed Z hZd hZn hZc hZcl /-- For every open cover of a compact set, there exists a finite subcover. -/ lemma is_compact.elim_finite_subcover_image {b : set β} {c : β → set α} (hs : is_compact s) (hc₁ : ∀i∈b, is_open (c i)) (hc₂ : s ⊆ ⋃i∈b, c i) : ∃b'⊆b, finite b' ∧ s ⊆ ⋃i∈b', c i := begin rcases hs.elim_finite_subcover (λ i, c i : b → set α) _ _ with ⟨d, hd⟩; [skip, simpa using hc₁, simpa using hc₂], refine ⟨↑(d.image coe), _, finset.finite_to_set _, _⟩; simp * end /-- A set `s` is compact if for every family of closed sets whose intersection avoids `s`, there exists a finite subfamily whose intersection avoids `s`. -/ theorem is_compact_of_finite_subfamily_closed (h : Π {ι : Type u} (Z : ι → (set α)), (∀ i, is_closed (Z i)) → s ∩ (⋂ i, Z i) = ∅ → (∃ (t : finset ι), s ∩ (⋂ i ∈ t, Z i) = ∅)) : is_compact s := assume f hfn hfs, classical.by_contradiction $ assume : ¬ (∃x∈s, cluster_pt x f), have hf : ∀x∈s, 𝓝 x ⊓ f = ⊥, by simpa only [cluster_pt, not_exists, not_not, ne_bot_iff], have ¬ ∃x∈s, ∀t∈f.sets, x ∈ closure t, from assume ⟨x, hxs, hx⟩, have ∅ ∈ 𝓝 x ⊓ f, by rw [empty_in_sets_eq_bot, hf x hxs], let ⟨t₁, ht₁, t₂, ht₂, ht⟩ := by rw [mem_inf_sets] at this; exact this in have ∅ ∈ 𝓝[t₂] x, from (𝓝[t₂] x).sets_of_superset (inter_mem_inf_sets ht₁ (subset.refl t₂)) ht, have 𝓝[t₂] x = ⊥, by rwa [empty_in_sets_eq_bot] at this, by simp only [closure_eq_cluster_pts] at hx; exact (hx t₂ ht₂).ne this, let ⟨t, ht⟩ := h (λ i : f.sets, closure i.1) (λ i, is_closed_closure) (by simpa [eq_empty_iff_forall_not_mem, not_exists]) in have (⋂i∈t, subtype.val i) ∈ f, from t.Inter_mem_sets.2 $ assume i hi, i.2, have s ∩ (⋂i∈t, subtype.val i) ∈ f, from inter_mem_sets (le_principal_iff.1 hfs) this, have ∅ ∈ f, from mem_sets_of_superset this $ assume x ⟨hxs, hx⟩, let ⟨i, hit, hxi⟩ := (show ∃i ∈ t, x ∉ closure (subtype.val i), by { rw [eq_empty_iff_forall_not_mem] at ht, simpa [hxs, not_forall] using ht x }) in have x ∈ closure i.val, from subset_closure (mem_bInter_iff.mp hx i hit), show false, from hxi this, hfn.ne $ by rwa [empty_in_sets_eq_bot] at this /-- A set `s` is compact if for every open cover of `s`, there exists a finite subcover. -/ lemma is_compact_of_finite_subcover (h : Π {ι : Type u} (U : ι → (set α)), (∀ i, is_open (U i)) → s ⊆ (⋃ i, U i) → (∃ (t : finset ι), s ⊆ (⋃ i ∈ t, U i))) : is_compact s := is_compact_of_finite_subfamily_closed $ assume ι Z hZc hsZ, let ⟨t, ht⟩ := h (λ i, (Z i)ᶜ) (assume i, is_open_compl_iff.mpr $ hZc i) (by simpa only [subset_def, not_forall, eq_empty_iff_forall_not_mem, mem_Union, exists_prop, mem_inter_eq, not_and, iff_self, mem_Inter, mem_compl_eq] using hsZ) in ⟨t, by simpa only [subset_def, not_forall, eq_empty_iff_forall_not_mem, mem_Union, exists_prop, mem_inter_eq, not_and, iff_self, mem_Inter, mem_compl_eq] using ht⟩ /-- A set `s` is compact if and only if for every open cover of `s`, there exists a finite subcover. -/ lemma is_compact_iff_finite_subcover : is_compact s ↔ (Π {ι : Type u} (U : ι → (set α)), (∀ i, is_open (U i)) → s ⊆ (⋃ i, U i) → (∃ (t : finset ι), s ⊆ (⋃ i ∈ t, U i))) := ⟨assume hs ι, hs.elim_finite_subcover, is_compact_of_finite_subcover⟩ /-- A set `s` is compact if and only if for every family of closed sets whose intersection avoids `s`, there exists a finite subfamily whose intersection avoids `s`. -/ theorem is_compact_iff_finite_subfamily_closed : is_compact s ↔ (Π {ι : Type u} (Z : ι → (set α)), (∀ i, is_closed (Z i)) → s ∩ (⋂ i, Z i) = ∅ → (∃ (t : finset ι), s ∩ (⋂ i ∈ t, Z i) = ∅)) := ⟨assume hs ι, hs.elim_finite_subfamily_closed, is_compact_of_finite_subfamily_closed⟩ @[simp] lemma is_compact_empty : is_compact (∅ : set α) := assume f hnf hsf, not.elim hnf.ne $ empty_in_sets_eq_bot.1 $ le_principal_iff.1 hsf @[simp] lemma is_compact_singleton {a : α} : is_compact ({a} : set α) := λ f hf hfa, ⟨a, rfl, cluster_pt.of_le_nhds' (hfa.trans $ by simpa only [principal_singleton] using pure_le_nhds a) hf⟩ lemma set.subsingleton.is_compact {s : set α} (hs : s.subsingleton) : is_compact s := subsingleton.induction_on hs is_compact_empty $ λ x, is_compact_singleton lemma set.finite.compact_bUnion {s : set β} {f : β → set α} (hs : finite s) (hf : ∀i ∈ s, is_compact (f i)) : is_compact (⋃i ∈ s, f i) := is_compact_of_finite_subcover $ assume ι U hUo hsU, have ∀i : subtype s, ∃t : finset ι, f i ⊆ (⋃ j ∈ t, U j), from assume ⟨i, hi⟩, (hf i hi).elim_finite_subcover _ hUo (calc f i ⊆ ⋃i ∈ s, f i : subset_bUnion_of_mem hi ... ⊆ ⋃j, U j : hsU), let ⟨finite_subcovers, h⟩ := axiom_of_choice this in by haveI : fintype (subtype s) := hs.fintype; exact let t := finset.bUnion finset.univ finite_subcovers in have (⋃i ∈ s, f i) ⊆ (⋃ i ∈ t, U i), from bUnion_subset $ assume i hi, calc f i ⊆ (⋃ j ∈ finite_subcovers ⟨i, hi⟩, U j) : (h ⟨i, hi⟩) ... ⊆ (⋃ j ∈ t, U j) : bUnion_subset_bUnion_left $ assume j hj, finset.mem_bUnion.mpr ⟨_, finset.mem_univ _, hj⟩, ⟨t, this⟩ lemma finset.compact_bUnion (s : finset β) {f : β → set α} (hf : ∀i ∈ s, is_compact (f i)) : is_compact (⋃i ∈ s, f i) := s.finite_to_set.compact_bUnion hf lemma compact_accumulate {K : ℕ → set α} (hK : ∀ n, is_compact (K n)) (n : ℕ) : is_compact (accumulate K n) := (finite_le_nat n).compact_bUnion $ λ k _, hK k lemma compact_Union {f : β → set α} [fintype β] (h : ∀i, is_compact (f i)) : is_compact (⋃i, f i) := by rw ← bUnion_univ; exact finite_univ.compact_bUnion (λ i _, h i) lemma set.finite.is_compact (hs : finite s) : is_compact s := bUnion_of_singleton s ▸ hs.compact_bUnion (λ _ _, is_compact_singleton) lemma finite_of_is_compact_of_discrete [discrete_topology α] (s : set α) (hs : is_compact s) : s.finite := begin have := hs.elim_finite_subcover (λ x : α, ({x} : set α)) (λ x, is_open_discrete _), simp only [set.subset_univ, forall_prop_of_true, set.Union_of_singleton] at this, rcases this with ⟨t, ht⟩, suffices : (⋃ (i : α) (H : i ∈ t), {i} : set α) = (t : set α), { rw this at ht, exact t.finite_to_set.subset ht }, ext x, simp only [exists_prop, set.mem_Union, set.mem_singleton_iff, exists_eq_right', finset.mem_coe] end lemma is_compact.union (hs : is_compact s) (ht : is_compact t) : is_compact (s ∪ t) := by rw union_eq_Union; exact compact_Union (λ b, by cases b; assumption) lemma is_compact.insert (hs : is_compact s) (a) : is_compact (insert a s) := is_compact_singleton.union hs /-- If `V : ι → set α` is a decreasing family of closed compact sets then any neighborhood of `⋂ i, V i` contains some `V i`. We assume each `V i` is compact *and* closed because `α` is not assumed to be Hausdorff. See `exists_subset_nhd_of_compact` for version assuming this. -/ lemma exists_subset_nhd_of_compact' {ι : Type*} [nonempty ι] {V : ι → set α} (hV : directed (⊇) V) (hV_cpct : ∀ i, is_compact (V i)) (hV_closed : ∀ i, is_closed (V i)) {U : set α} (hU : ∀ x ∈ ⋂ i, V i, U ∈ 𝓝 x) : ∃ i, V i ⊆ U := begin set Y := ⋂ i, V i, obtain ⟨W, hsubW, W_op, hWU⟩ : ∃ W, Y ⊆ W ∧ is_open W ∧ W ⊆ U, from exists_open_set_nhds hU, suffices : ∃ i, V i ⊆ W, { rcases this with ⟨i, hi⟩, refine ⟨i, set.subset.trans hi hWU⟩ }, by_contradiction H, push_neg at H, replace H : ∀ i, (V i ∩ Wᶜ).nonempty := λ i, set.inter_compl_nonempty_iff.mpr (H i), have : (⋂ i, V i ∩ Wᶜ).nonempty, { apply is_compact.nonempty_Inter_of_directed_nonempty_compact_closed _ _ H, { intro i, exact (hV_cpct i).inter_right W_op.is_closed_compl }, { intro i, apply (hV_closed i).inter W_op.is_closed_compl }, { intros i j, rcases hV i j with ⟨k, hki, hkj⟩, use k, split ; intro x ; simp only [and_imp, mem_inter_eq, mem_compl_eq] ; tauto } }, have : ¬ (⋂ (i : ι), V i) ⊆ W, by simpa [← Inter_inter, inter_compl_nonempty_iff], contradiction end /-- `filter.cocompact` is the filter generated by complements to compact sets. -/ def filter.cocompact (α : Type*) [topological_space α] : filter α := ⨅ (s : set α) (hs : is_compact s), 𝓟 (sᶜ) lemma filter.has_basis_cocompact : (filter.cocompact α).has_basis is_compact compl := has_basis_binfi_principal' (λ s hs t ht, ⟨s ∪ t, hs.union ht, compl_subset_compl.2 (subset_union_left s t), compl_subset_compl.2 (subset_union_right s t)⟩) ⟨∅, is_compact_empty⟩ lemma filter.mem_cocompact : s ∈ filter.cocompact α ↔ ∃ t, is_compact t ∧ tᶜ ⊆ s := filter.has_basis_cocompact.mem_iff.trans $ exists_congr $ λ t, exists_prop lemma filter.mem_cocompact' : s ∈ filter.cocompact α ↔ ∃ t, is_compact t ∧ sᶜ ⊆ t := filter.mem_cocompact.trans $ exists_congr $ λ t, and_congr_right $ λ ht, compl_subset_comm lemma is_compact.compl_mem_cocompact (hs : is_compact s) : sᶜ ∈ filter.cocompact α := filter.has_basis_cocompact.mem_of_mem hs section tube_lemma variables [topological_space β] /-- `nhds_contain_boxes s t` means that any open neighborhood of `s × t` in `α × β` includes a product of an open neighborhood of `s` by an open neighborhood of `t`. -/ def nhds_contain_boxes (s : set α) (t : set β) : Prop := ∀ (n : set (α × β)) (hn : is_open n) (hp : set.prod s t ⊆ n), ∃ (u : set α) (v : set β), is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ set.prod u v ⊆ n lemma nhds_contain_boxes.symm {s : set α} {t : set β} : nhds_contain_boxes s t → nhds_contain_boxes t s := assume H n hn hp, let ⟨u, v, uo, vo, su, tv, p⟩ := H (prod.swap ⁻¹' n) (hn.preimage continuous_swap) (by rwa [←image_subset_iff, image_swap_prod]) in ⟨v, u, vo, uo, tv, su, by rwa [←image_subset_iff, image_swap_prod] at p⟩ lemma nhds_contain_boxes.comm {s : set α} {t : set β} : nhds_contain_boxes s t ↔ nhds_contain_boxes t s := iff.intro nhds_contain_boxes.symm nhds_contain_boxes.symm lemma nhds_contain_boxes_of_singleton {x : α} {y : β} : nhds_contain_boxes ({x} : set α) ({y} : set β) := assume n hn hp, let ⟨u, v, uo, vo, xu, yv, hp'⟩ := is_open_prod_iff.mp hn x y (hp $ by simp) in ⟨u, v, uo, vo, by simpa, by simpa, hp'⟩ lemma nhds_contain_boxes_of_compact {s : set α} (hs : is_compact s) (t : set β) (H : ∀ x ∈ s, nhds_contain_boxes ({x} : set α) t) : nhds_contain_boxes s t := assume n hn hp, have ∀x : subtype s, ∃uv : set α × set β, is_open uv.1 ∧ is_open uv.2 ∧ {↑x} ⊆ uv.1 ∧ t ⊆ uv.2 ∧ set.prod uv.1 uv.2 ⊆ n, from assume ⟨x, hx⟩, have set.prod {x} t ⊆ n, from subset.trans (prod_mono (by simpa) (subset.refl _)) hp, let ⟨ux,vx,H1⟩ := H x hx n hn this in ⟨⟨ux,vx⟩,H1⟩, let ⟨uvs, h⟩ := classical.axiom_of_choice this in have us_cover : s ⊆ ⋃i, (uvs i).1, from assume x hx, subset_Union _ ⟨x,hx⟩ (by simpa using (h ⟨x,hx⟩).2.2.1), let ⟨s0, s0_cover⟩ := hs.elim_finite_subcover _ (λi, (h i).1) us_cover in let u := ⋃(i ∈ s0), (uvs i).1 in let v := ⋂(i ∈ s0), (uvs i).2 in have is_open u, from is_open_bUnion (λi _, (h i).1), have is_open v, from is_open_bInter s0.finite_to_set (λi _, (h i).2.1), have t ⊆ v, from subset_bInter (λi _, (h i).2.2.2.1), have set.prod u v ⊆ n, from assume ⟨x',y'⟩ ⟨hx',hy'⟩, have ∃i ∈ s0, x' ∈ (uvs i).1, by simpa using hx', let ⟨i,is0,hi⟩ := this in (h i).2.2.2.2 ⟨hi, (bInter_subset_of_mem is0 : v ⊆ (uvs i).2) hy'⟩, ⟨u, v, ‹is_open u›, ‹is_open v›, s0_cover, ‹t ⊆ v›, ‹set.prod u v ⊆ n›⟩ /-- If `s` and `t` are compact sets and `n` is an open neighborhood of `s × t`, then there exist open neighborhoods `u ⊇ s` and `v ⊇ t` such that `u × v ⊆ n`. -/ lemma generalized_tube_lemma {s : set α} (hs : is_compact s) {t : set β} (ht : is_compact t) {n : set (α × β)} (hn : is_open n) (hp : set.prod s t ⊆ n) : ∃ (u : set α) (v : set β), is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ set.prod u v ⊆ n := have _, from nhds_contain_boxes_of_compact hs t $ assume x _, nhds_contain_boxes.symm $ nhds_contain_boxes_of_compact ht {x} $ assume y _, nhds_contain_boxes_of_singleton, this n hn hp end tube_lemma /-- Type class for compact spaces. Separation is sometimes included in the definition, especially in the French literature, but we do not include it here. -/ class compact_space (α : Type*) [topological_space α] : Prop := (compact_univ : is_compact (univ : set α)) @[priority 10] -- see Note [lower instance priority] instance subsingleton.compact_space [subsingleton α] : compact_space α := ⟨subsingleton_univ.is_compact⟩ lemma compact_univ [h : compact_space α] : is_compact (univ : set α) := h.compact_univ lemma cluster_point_of_compact [compact_space α] (f : filter α) [ne_bot f] : ∃ x, cluster_pt x f := by simpa using compact_univ (show f ≤ 𝓟 univ, by simp) lemma compact_space.elim_nhds_subcover {α : Type*} [topological_space α] [compact_space α] (U : α → set α) (hU : ∀ x, U x ∈ 𝓝 x) : ∃ t : finset α, (⋃ x ∈ t, U x) = ⊤ := begin obtain ⟨t, -, s⟩ := is_compact.elim_nhds_subcover compact_univ U (λ x m, hU x), exact ⟨t, by { rw eq_top_iff, exact s }⟩, end theorem compact_space_of_finite_subfamily_closed {α : Type u} [topological_space α] (h : Π {ι : Type u} (Z : ι → (set α)), (∀ i, is_closed (Z i)) → (⋂ i, Z i) = ∅ → ∃ (t : finset ι), (⋂ i ∈ t, Z i) = ∅) : compact_space α := { compact_univ := begin apply is_compact_of_finite_subfamily_closed, intros ι Z, specialize h Z, simpa using h end } lemma is_closed.is_compact [compact_space α] {s : set α} (h : is_closed s) : is_compact s := compact_of_is_closed_subset compact_univ h (subset_univ _) /-- A compact discrete space is finite. -/ noncomputable def fintype_of_compact_of_discrete [compact_space α] [discrete_topology α] : fintype α := fintype_of_univ_finite $ finite_of_is_compact_of_discrete _ compact_univ lemma finite_cover_nhds_interior [compact_space α] {U : α → set α} (hU : ∀ x, U x ∈ 𝓝 x) : ∃ t : finset α, (⋃ x ∈ t, interior (U x)) = univ := let ⟨t, ht⟩ := compact_univ.elim_finite_subcover (λ x, interior (U x)) (λ x, is_open_interior) (λ x _, mem_Union.2 ⟨x, mem_interior_iff_mem_nhds.2 (hU x)⟩) in ⟨t, univ_subset_iff.1 ht⟩ lemma finite_cover_nhds [compact_space α] {U : α → set α} (hU : ∀ x, U x ∈ 𝓝 x) : ∃ t : finset α, (⋃ x ∈ t, U x) = univ := let ⟨t, ht⟩ := finite_cover_nhds_interior hU in ⟨t, univ_subset_iff.1 $ ht ▸ bUnion_subset_bUnion_right (λ x hx, interior_subset)⟩ /-- If `α` is a compact space, then a locally finite family of sets of `α` can have only finitely many nonempty elements. -/ lemma locally_finite.finite_nonempty_of_compact {ι : Type*} [compact_space α] {f : ι → set α} (hf : locally_finite f) : finite {i | (f i).nonempty} := by simpa only [inter_univ] using hf.finite_nonempty_inter_compact compact_univ /-- If `α` is a compact space, then a locally finite family of nonempty sets of `α` can have only finitely many elements, `set.finite` version. -/ lemma locally_finite.finite_of_compact {ι : Type*} [compact_space α] {f : ι → set α} (hf : locally_finite f) (hne : ∀ i, (f i).nonempty) : finite (univ : set ι) := by simpa only [hne] using hf.finite_nonempty_of_compact /-- If `α` is a compact space, then a locally finite family of nonempty sets of `α` can have only finitely many elements, `fintype` version. -/ noncomputable def locally_finite.fintype_of_compact {ι : Type*} [compact_space α] {f : ι → set α} (hf : locally_finite f) (hne : ∀ i, (f i).nonempty) : fintype ι := fintype_of_univ_finite (hf.finite_of_compact hne) variables [topological_space β] lemma is_compact.image_of_continuous_on {f : α → β} (hs : is_compact s) (hf : continuous_on f s) : is_compact (f '' s) := begin intros l lne ls, have : ne_bot (l.comap f ⊓ 𝓟 s) := comap_inf_principal_ne_bot_of_image_mem lne (le_principal_iff.1 ls), obtain ⟨a, has, ha⟩ : ∃ a ∈ s, cluster_pt a (l.comap f ⊓ 𝓟 s) := @@hs this inf_le_right, use [f a, mem_image_of_mem f has], have : tendsto f (𝓝 a ⊓ (comap f l ⊓ 𝓟 s)) (𝓝 (f a) ⊓ l), { convert (hf a has).inf (@tendsto_comap _ _ f l) using 1, rw nhds_within, ac_refl }, exact @@tendsto.ne_bot _ this ha, end lemma is_compact.image {f : α → β} (hs : is_compact s) (hf : continuous f) : is_compact (f '' s) := hs.image_of_continuous_on hf.continuous_on lemma is_compact_range [compact_space α] {f : α → β} (hf : continuous f) : is_compact (range f) := by rw ← image_univ; exact compact_univ.image hf /-- If X is is_compact then pr₂ : X × Y → Y is a closed map -/ theorem is_closed_proj_of_is_compact {X : Type*} [topological_space X] [compact_space X] {Y : Type*} [topological_space Y] : is_closed_map (prod.snd : X × Y → Y) := begin set πX := (prod.fst : X × Y → X), set πY := (prod.snd : X × Y → Y), assume C (hC : is_closed C), rw is_closed_iff_cluster_pt at hC ⊢, assume y (y_closure : cluster_pt y $ 𝓟 (πY '' C)), have : ne_bot (map πX (comap πY (𝓝 y) ⊓ 𝓟 C)), { suffices : ne_bot (map πY (comap πY (𝓝 y) ⊓ 𝓟 C)), by simpa only [map_ne_bot_iff], convert y_closure, calc map πY (comap πY (𝓝 y) ⊓ 𝓟 C) = 𝓝 y ⊓ map πY (𝓟 C) : filter.push_pull' _ _ _ ... = 𝓝 y ⊓ 𝓟 (πY '' C) : by rw map_principal }, resetI, obtain ⟨x, hx⟩ : ∃ x, cluster_pt x (map πX (comap πY (𝓝 y) ⊓ 𝓟 C)), from cluster_point_of_compact _, refine ⟨⟨x, y⟩, _, by simp [πY]⟩, apply hC, rw [cluster_pt, ← filter.map_ne_bot_iff πX], convert hx, calc map πX (𝓝 (x, y) ⊓ 𝓟 C) = map πX (comap πX (𝓝 x) ⊓ comap πY (𝓝 y) ⊓ 𝓟 C) : by rw [nhds_prod_eq, filter.prod] ... = map πX (comap πY (𝓝 y) ⊓ 𝓟 C ⊓ comap πX (𝓝 x)) : by ac_refl ... = map πX (comap πY (𝓝 y) ⊓ 𝓟 C) ⊓ 𝓝 x : by rw filter.push_pull ... = 𝓝 x ⊓ map πX (comap πY (𝓝 y) ⊓ 𝓟 C) : by rw inf_comm end lemma exists_subset_nhd_of_compact_space [compact_space α] {ι : Type*} [nonempty ι] {V : ι → set α} (hV : directed (⊇) V) (hV_closed : ∀ i, is_closed (V i)) {U : set α} (hU : ∀ x ∈ ⋂ i, V i, U ∈ 𝓝 x) : ∃ i, V i ⊆ U := exists_subset_nhd_of_compact' hV (λ i, (hV_closed i).is_compact) hV_closed hU lemma embedding.is_compact_iff_is_compact_image {f : α → β} (hf : embedding f) : is_compact s ↔ is_compact (f '' s) := iff.intro (assume h, h.image hf.continuous) $ assume h, begin rw is_compact_iff_ultrafilter_le_nhds at ⊢ h, intros u us', have : ↑(u.map f) ≤ 𝓟 (f '' s), begin rw [ultrafilter.coe_map, map_le_iff_le_comap, comap_principal], convert us', exact preimage_image_eq _ hf.inj end, rcases h (u.map f) this with ⟨_, ⟨a, ha, ⟨⟩⟩, _⟩, refine ⟨a, ha, _⟩, rwa [hf.induced, nhds_induced, ←map_le_iff_le_comap] end /-- A closed embedding is proper, ie, inverse images of compact sets are contained in compacts. -/ lemma closed_embedding.tendsto_cocompact {f : α → β} (hf : closed_embedding f) : tendsto f (filter.cocompact α) (filter.cocompact β) := begin rw filter.has_basis_cocompact.tendsto_iff filter.has_basis_cocompact, intros K hK, refine ⟨f ⁻¹' (K ∩ (set.range f)), _, λ x hx, by simpa using hx⟩, apply hf.to_embedding.is_compact_iff_is_compact_image.mpr, rw set.image_preimage_eq_of_subset (set.inter_subset_right _ _), exact hK.inter_right hf.closed_range, end lemma compact_iff_compact_in_subtype {p : α → Prop} {s : set {a // p a}} : is_compact s ↔ is_compact ((coe : _ → α) '' s) := embedding_subtype_coe.is_compact_iff_is_compact_image lemma is_compact_iff_is_compact_univ {s : set α} : is_compact s ↔ is_compact (univ : set s) := by rw [compact_iff_compact_in_subtype, image_univ, subtype.range_coe]; refl lemma is_compact_iff_compact_space {s : set α} : is_compact s ↔ compact_space s := is_compact_iff_is_compact_univ.trans ⟨λ h, ⟨h⟩, @compact_space.compact_univ _ _⟩ lemma is_compact.prod {s : set α} {t : set β} (hs : is_compact s) (ht : is_compact t) : is_compact (set.prod s t) := begin rw is_compact_iff_ultrafilter_le_nhds at hs ht ⊢, intros f hfs, rw le_principal_iff at hfs, obtain ⟨a : α, sa : a ∈ s, ha : map prod.fst ↑f ≤ 𝓝 a⟩ := hs (f.map prod.fst) (le_principal_iff.2 $ mem_map.2 $ mem_sets_of_superset hfs (λ x, and.left)), obtain ⟨b : β, tb : b ∈ t, hb : map prod.snd ↑f ≤ 𝓝 b⟩ := ht (f.map prod.snd) (le_principal_iff.2 $ mem_map.2 $ mem_sets_of_superset hfs (λ x, and.right)), rw map_le_iff_le_comap at ha hb, refine ⟨⟨a, b⟩, ⟨sa, tb⟩, _⟩, rw nhds_prod_eq, exact le_inf ha hb end lemma inducing.is_compact_iff {f : α → β} (hf : inducing f) {s : set α} : is_compact (f '' s) ↔ is_compact s := begin split, { introsI hs F F_ne_bot F_le, obtain ⟨_, ⟨x, x_in : x ∈ s, rfl⟩, hx : cluster_pt (f x) (map f F)⟩ := hs (calc map f F ≤ map f (𝓟 s) : map_mono F_le ... = 𝓟 (f '' s) : map_principal), use [x, x_in], suffices : (map f (𝓝 x ⊓ F)).ne_bot, by simpa [filter.map_ne_bot_iff], rwa calc map f (𝓝 x ⊓ F) = map f ((comap f $ 𝓝 $ f x) ⊓ F) : by rw hf.nhds_eq_comap ... = 𝓝 (f x) ⊓ map f F : filter.push_pull' _ _ _ }, { intro hs, exact hs.image hf.continuous } end /-- Finite topological spaces are compact. -/ @[priority 100] instance fintype.compact_space [fintype α] : compact_space α := { compact_univ := finite_univ.is_compact } /-- The product of two compact spaces is compact. -/ instance [compact_space α] [compact_space β] : compact_space (α × β) := ⟨by { rw ← univ_prod_univ, exact compact_univ.prod compact_univ }⟩ /-- The disjoint union of two compact spaces is compact. -/ instance [compact_space α] [compact_space β] : compact_space (α ⊕ β) := ⟨begin rw ← range_inl_union_range_inr, exact (is_compact_range continuous_inl).union (is_compact_range continuous_inr) end⟩ /-- The coproduct of the cocompact filters on two topological spaces is the cocompact filter on their product. -/ lemma filter.coprod_cocompact {β : Type*} [topological_space β]: (filter.cocompact α).coprod (filter.cocompact β) = filter.cocompact (α × β) := begin ext S, simp only [mem_coprod_iff, exists_prop, mem_comap_sets, filter.mem_cocompact], split, { rintro ⟨⟨A, ⟨t, ht, hAt⟩, hAS⟩, B, ⟨t', ht', hBt'⟩, hBS⟩, refine ⟨t.prod t', ht.prod ht', _⟩, refine subset.trans _ (union_subset hAS hBS), rw compl_subset_comm at ⊢ hAt hBt', refine subset.trans _ (set.prod_mono hAt hBt'), intros x, simp only [compl_union, mem_inter_eq, mem_prod, mem_preimage, mem_compl_eq], tauto }, { rintros ⟨t, ht, htS⟩, refine ⟨⟨(prod.fst '' t)ᶜ, _, _⟩, ⟨(prod.snd '' t)ᶜ, _, _⟩⟩, { exact ⟨prod.fst '' t, ht.image continuous_fst, subset.rfl⟩ }, { rw preimage_compl, rw compl_subset_comm at ⊢ htS, exact subset.trans htS (subset_preimage_image prod.fst _) }, { exact ⟨prod.snd '' t, ht.image continuous_snd, subset.rfl⟩ }, { rw preimage_compl, rw compl_subset_comm at ⊢ htS, exact subset.trans htS (subset_preimage_image prod.snd _) } } end section tychonoff variables {ι : Type*} {π : ι → Type*} [∀ i, topological_space (π i)] /-- **Tychonoff's theorem** -/ lemma is_compact_pi_infinite {s : Π i, set (π i)} : (∀ i, is_compact (s i)) → is_compact {x : Π i, π i | ∀ i, x i ∈ s i} := begin simp only [is_compact_iff_ultrafilter_le_nhds, nhds_pi, exists_prop, mem_set_of_eq, le_infi_iff, le_principal_iff], intros h f hfs, have : ∀i:ι, ∃a, a∈s i ∧ tendsto (λx:Πi:ι, π i, x i) f (𝓝 a), { refine λ i, h i (f.map _) (mem_map.2 _), exact mem_sets_of_superset hfs (λ x hx, hx i) }, choose a ha, exact ⟨a, assume i, (ha i).left, assume i, (ha i).right.le_comap⟩ end /-- A version of Tychonoff's theorem that uses `set.pi`. -/ lemma is_compact_univ_pi {s : Π i, set (π i)} (h : ∀ i, is_compact (s i)) : is_compact (pi univ s) := by { convert is_compact_pi_infinite h, simp only [pi, forall_prop_of_true, mem_univ] } instance pi.compact_space [∀ i, compact_space (π i)] : compact_space (Πi, π i) := ⟨by { rw [← pi_univ univ], exact is_compact_univ_pi (λ i, compact_univ) }⟩ /-- Product of compact sets is compact -/ lemma filter.Coprod_cocompact {δ : Type*} {κ : δ → Type*} [Π d, topological_space (κ d)] : filter.Coprod (λ d, filter.cocompact (κ d)) = filter.cocompact (Π d, κ d) := begin ext S, simp only [mem_coprod_iff, exists_prop, mem_comap_sets, filter.mem_cocompact], split, { intros h, rw filter.mem_Coprod_iff at h, choose t ht1 ht2 using h, choose t1 ht11 ht12 using λ d, filter.mem_cocompact.mp (ht1 d), refine ⟨set.pi set.univ t1, _, _⟩, { convert is_compact_pi_infinite ht11, ext, simp }, { refine subset.trans _ (set.Union_subset ht2), intros x, simp only [mem_Union, mem_univ_pi, exists_imp_distrib, mem_compl_eq, not_forall], intros d h, exact ⟨d, ht12 d h⟩ } }, { rintros ⟨t, h1, h2⟩, rw filter.mem_Coprod_iff, intros d, refine ⟨((λ (k : Π (d : δ), κ d), k d) '' t)ᶜ, _, _⟩, { rw filter.mem_cocompact, refine ⟨(λ (k : Π (d : δ), κ d), k d) '' t, _, set.subset.refl _⟩, exact is_compact.image h1 (continuous_pi_iff.mp (continuous_id) d) }, refine subset.trans _ h2, intros x hx, simp only [not_exists, mem_image, mem_preimage, mem_compl_eq] at hx, simpa using mt (hx x) }, end end tychonoff instance quot.compact_space {r : α → α → Prop} [compact_space α] : compact_space (quot r) := ⟨by { rw ← range_quot_mk, exact is_compact_range continuous_quot_mk }⟩ instance quotient.compact_space {s : setoid α} [compact_space α] : compact_space (quotient s) := quot.compact_space /-- There are various definitions of "locally compact space" in the literature, which agree for Hausdorff spaces but not in general. This one is the precise condition on X needed for the evaluation `map C(X, Y) × X → Y` to be continuous for all `Y` when `C(X, Y)` is given the compact-open topology. -/ class locally_compact_space (α : Type*) [topological_space α] : Prop := (local_compact_nhds : ∀ (x : α) (n ∈ 𝓝 x), ∃ s ∈ 𝓝 x, s ⊆ n ∧ is_compact s) lemma compact_basis_nhds [locally_compact_space α] (x : α) : (𝓝 x).has_basis (λ s, s ∈ 𝓝 x ∧ is_compact s) (λ s, s) := has_basis_self.2 $ by simpa only [and_comm] using locally_compact_space.local_compact_nhds x lemma locally_compact_space_of_has_basis {ι : α → Type*} {p : Π x, ι x → Prop} {s : Π x, ι x → set α} (h : ∀ x, (𝓝 x).has_basis (p x) (s x)) (hc : ∀ x i, p x i → is_compact (s x i)) : locally_compact_space α := ⟨λ x t ht, let ⟨i, hp, ht⟩ := (h x).mem_iff.1 ht in ⟨s x i, (h x).mem_of_mem hp, ht, hc x i hp⟩⟩ instance locally_compact_space.prod (α : Type*) (β : Type*) [topological_space α] [topological_space β] [locally_compact_space α] [locally_compact_space β] : locally_compact_space (α × β) := have _ := λ x : α × β, (compact_basis_nhds x.1).prod_nhds' (compact_basis_nhds x.2), locally_compact_space_of_has_basis this $ λ x s ⟨⟨_, h₁⟩, _, h₂⟩, h₁.prod h₂ /-- A reformulation of the definition of locally compact space: In a locally compact space, every open set containing `x` has a compact subset containing `x` in its interior. -/ lemma exists_compact_subset [locally_compact_space α] {x : α} {U : set α} (hU : is_open U) (hx : x ∈ U) : ∃ (K : set α), is_compact K ∧ x ∈ interior K ∧ K ⊆ U := begin rcases locally_compact_space.local_compact_nhds x U (hU.mem_nhds hx) with ⟨K, h1K, h2K, h3K⟩, exact ⟨K, h3K, mem_interior_iff_mem_nhds.2 h1K, h2K⟩, end /-- In a locally compact space every point has a compact neighborhood. -/ lemma exists_compact_mem_nhds [locally_compact_space α] (x : α) : ∃ K, is_compact K ∧ K ∈ 𝓝 x := let ⟨K, hKc, hx, H⟩ := exists_compact_subset is_open_univ (mem_univ x) in ⟨K, hKc, mem_interior_iff_mem_nhds.1 hx⟩ /-- In a locally compact space, every compact set is contained in the interior of a compact set. -/ lemma exists_compact_superset [locally_compact_space α] {K : set α} (hK : is_compact K) : ∃ K', is_compact K' ∧ K ⊆ interior K' := begin choose U hUc hxU using λ x : K, exists_compact_mem_nhds (x : α), have : K ⊆ ⋃ x, interior (U x), from λ x hx, mem_Union.2 ⟨⟨x, hx⟩, mem_interior_iff_mem_nhds.2 (hxU _)⟩, rcases hK.elim_finite_subcover _ _ this with ⟨t, ht⟩, { refine ⟨_, t.compact_bUnion (λ x _, hUc x), λ x hx, _⟩, rcases mem_bUnion_iff.1 (ht hx) with ⟨y, hyt, hy⟩, exact interior_mono (subset_bUnion_of_mem hyt) hy }, { exact λ _, is_open_interior } end lemma ultrafilter.le_nhds_Lim [compact_space α] (F : ultrafilter α) : ↑F ≤ 𝓝 (@Lim _ _ (F : filter α).nonempty_of_ne_bot F) := begin rcases compact_univ.ultrafilter_le_nhds F (by simp) with ⟨x, -, h⟩, exact le_nhds_Lim ⟨x,h⟩, end theorem is_closed.exists_minimal_nonempty_closed_subset [compact_space α] {S : set α} (hS : is_closed S) (hne : S.nonempty) : ∃ (V : set α), V ⊆ S ∧ V.nonempty ∧ is_closed V ∧ (∀ (V' : set α), V' ⊆ V → V'.nonempty → is_closed V' → V' = V) := begin let opens := {U : set α | Sᶜ ⊆ U ∧ is_open U ∧ Uᶜ.nonempty}, obtain ⟨U, ⟨Uc, Uo, Ucne⟩, h⟩ := zorn.zorn_subset opens (λ c hc hz, begin by_cases hcne : c.nonempty, { obtain ⟨U₀, hU₀⟩ := hcne, haveI : nonempty {U // U ∈ c} := ⟨⟨U₀, hU₀⟩⟩, obtain ⟨U₀compl, U₀opn, U₀ne⟩ := hc hU₀, use ⋃₀ c, refine ⟨⟨_, _, _⟩, λ U hU a ha, ⟨U, hU, ha⟩⟩, { exact λ a ha, ⟨U₀, hU₀, U₀compl ha⟩ }, { exact is_open_sUnion (λ _ h, (hc h).2.1) }, { convert_to (⋂(U : {U // U ∈ c}), U.1ᶜ).nonempty, { ext, simp only [not_exists, exists_prop, not_and, set.mem_Inter, subtype.forall, set.mem_set_of_eq, set.mem_compl_eq, subtype.val_eq_coe], refl, }, apply is_compact.nonempty_Inter_of_directed_nonempty_compact_closed, { rintros ⟨U, hU⟩ ⟨U', hU'⟩, obtain ⟨V, hVc, hVU, hVU'⟩ := zorn.chain.directed_on hz U hU U' hU', exact ⟨⟨V, hVc⟩, set.compl_subset_compl.mpr hVU, set.compl_subset_compl.mpr hVU'⟩, }, { exact λ U, (hc U.2).2.2, }, { exact λ U, (is_closed_compl_iff.mpr (hc U.2).2.1).is_compact, }, { exact λ U, (is_closed_compl_iff.mpr (hc U.2).2.1), } } }, { use Sᶜ, refine ⟨⟨set.subset.refl _, is_open_compl_iff.mpr hS, _⟩, λ U Uc, (hcne ⟨U, Uc⟩).elim⟩, rw compl_compl, exact hne, } end), refine ⟨Uᶜ, set.compl_subset_comm.mp Uc, Ucne, is_closed_compl_iff.mpr Uo, _⟩, intros V' V'sub V'ne V'cls, have : V'ᶜ = U, { refine h V'ᶜ ⟨_, is_open_compl_iff.mpr V'cls, _⟩ (set.subset_compl_comm.mp V'sub), exact set.subset.trans Uc (set.subset_compl_comm.mp V'sub), simp only [compl_compl, V'ne], }, rw [←this, compl_compl], end /-- A σ-compact space is a space that is the union of a countable collection of compact subspaces. Note that a locally compact separable T₂ space need not be σ-compact. The sequence can be extracted using `topological_space.compact_covering`. -/ class sigma_compact_space (α : Type*) [topological_space α] : Prop := (exists_compact_covering : ∃ K : ℕ → set α, (∀ n, is_compact (K n)) ∧ (⋃ n, K n) = univ) @[priority 200] -- see Note [lower instance priority] instance compact_space.sigma_compact [compact_space α] : sigma_compact_space α := ⟨⟨λ _, univ, λ _, compact_univ, Union_const _⟩⟩ lemma sigma_compact_space.of_countable (S : set (set α)) (Hc : countable S) (Hcomp : ∀ s ∈ S, is_compact s) (HU : ⋃₀ S = univ) : sigma_compact_space α := ⟨(exists_seq_cover_iff_countable ⟨_, is_compact_empty⟩).2 ⟨S, Hc, Hcomp, HU⟩⟩ @[priority 100] -- see Note [lower instance priority] instance sigma_compact_space_of_locally_compact_second_countable [locally_compact_space α] [second_countable_topology α] : sigma_compact_space α := begin choose K hKc hxK using λ x : α, exists_compact_mem_nhds x, rcases countable_cover_nhds hxK with ⟨s, hsc, hsU⟩, refine sigma_compact_space.of_countable _ (hsc.image K) (ball_image_iff.2 $ λ x _, hKc x) _, rwa sUnion_image end variables (α) [sigma_compact_space α] open sigma_compact_space /-- A choice of compact covering for a `σ`-compact space, chosen to be monotone. -/ def compact_covering : ℕ → set α := accumulate exists_compact_covering.some lemma is_compact_compact_covering (n : ℕ) : is_compact (compact_covering α n) := compact_accumulate (classical.some_spec sigma_compact_space.exists_compact_covering).1 n lemma Union_compact_covering : (⋃ n, compact_covering α n) = univ := begin rw [compact_covering, Union_accumulate], exact (classical.some_spec sigma_compact_space.exists_compact_covering).2 end @[mono] lemma compact_covering_subset ⦃m n : ℕ⦄ (h : m ≤ n) : compact_covering α m ⊆ compact_covering α n := monotone_accumulate h variable {α} lemma exists_mem_compact_covering (x : α) : ∃ n, x ∈ compact_covering α n := Union_eq_univ_iff.mp (Union_compact_covering α) x /-- If `α` is a `σ`-compact space, then a locally finite family of nonempty sets of `α` can have only countably many elements, `set.countable` version. -/ lemma locally_finite.countable_of_sigma_compact {ι : Type*} {f : ι → set α} (hf : locally_finite f) (hne : ∀ i, (f i).nonempty) : countable (univ : set ι) := begin have := λ n, hf.finite_nonempty_inter_compact (is_compact_compact_covering α n), refine (countable_Union (λ n, (this n).countable)).mono (λ i hi, _), rcases hne i with ⟨x, hx⟩, rcases Union_eq_univ_iff.1 (Union_compact_covering α) x with ⟨n, hn⟩, exact mem_Union.2 ⟨n, x, hx, hn⟩ end /-- In a topological space with sigma compact topology, if `f` is a function that sends each point `x` of a closed set `s` to a neighborhood of `x` within `s`, then for some countable set `t ⊆ s`, the neighborhoods `f x`, `x ∈ t`, cover the whole set `s`. -/ lemma countable_cover_nhds_within_of_sigma_compact {f : α → set α} {s : set α} (hs : is_closed s) (hf : ∀ x ∈ s, f x ∈ 𝓝[s] x) : ∃ t ⊆ s, countable t ∧ s ⊆ ⋃ x ∈ t, f x := begin simp only [nhds_within, mem_inf_principal] at hf, choose t ht hsub using λ n, ((is_compact_compact_covering α n).inter_right hs).elim_nhds_subcover _ (λ x hx, hf x hx.right), refine ⟨⋃ n, (t n : set α), Union_subset $ λ n x hx, (ht n x hx).2, countable_Union $ λ n, (t n).countable_to_set, λ x hx, mem_bUnion_iff.2 _⟩, rcases exists_mem_compact_covering x with ⟨n, hn⟩, rcases mem_bUnion_iff.1 (hsub n ⟨hn, hx⟩) with ⟨y, hyt : y ∈ t n, hyf : x ∈ s → x ∈ f y⟩, exact ⟨y, mem_Union.2 ⟨n, hyt⟩, hyf hx⟩ end /-- In a topological space with sigma compact topology, if `f` is a function that sends each point `x` to a neighborhood of `x`, then for some countable set `s`, the neighborhoods `f x`, `x ∈ s`, cover the whole space. -/ lemma countable_cover_nhds_of_sigma_compact {f : α → set α} (hf : ∀ x, f x ∈ 𝓝 x) : ∃ s : set α, countable s ∧ (⋃ x ∈ s, f x) = univ := begin simp only [← nhds_within_univ] at hf, rcases countable_cover_nhds_within_of_sigma_compact is_closed_univ (λ x _, hf x) with ⟨s, -, hsc, hsU⟩, exact ⟨s, hsc, univ_subset_iff.1 hsU⟩ end end compact /-- An [exhaustion by compact sets](https://en.wikipedia.org/wiki/Exhaustion_by_compact_sets) of a topological space is a sequence of compact sets `K n` such that `K n ⊆ interior (K (n + 1))` and `(⋃ n, K n) = univ`. If `X` is a locally compact sigma compact space, then `compact_exhaustion.choice X` provides a choice of an exhaustion by compact sets. This choice is also available as `(default : compact_exhaustion X)`. -/ structure compact_exhaustion (X : Type*) [topological_space X] := (to_fun : ℕ → set X) (is_compact' : ∀ n, is_compact (to_fun n)) (subset_interior_succ' : ∀ n, to_fun n ⊆ interior (to_fun (n + 1))) (Union_eq' : (⋃ n, to_fun n) = univ) namespace compact_exhaustion instance : has_coe_to_fun (compact_exhaustion α) := ⟨_, to_fun⟩ variables {α} (K : compact_exhaustion α) protected lemma is_compact (n : ℕ) : is_compact (K n) := K.is_compact' n lemma subset_interior_succ (n : ℕ) : K n ⊆ interior (K (n + 1)) := K.subset_interior_succ' n lemma subset_succ (n : ℕ) : K n ⊆ K (n + 1) := subset.trans (K.subset_interior_succ n) interior_subset @[mono] protected lemma subset ⦃m n : ℕ⦄ (h : m ≤ n) : K m ⊆ K n := show K m ≤ K n, from monotone_of_monotone_nat K.subset_succ h lemma subset_interior ⦃m n : ℕ⦄ (h : m < n) : K m ⊆ interior (K n) := subset.trans (K.subset_interior_succ m) $ interior_mono $ K.subset h lemma Union_eq : (⋃ n, K n) = univ := K.Union_eq' lemma exists_mem (x : α) : ∃ n, x ∈ K n := Union_eq_univ_iff.1 K.Union_eq x /-- The minimal `n` such that `x ∈ K n`. -/ protected noncomputable def find (x : α) : ℕ := nat.find (K.exists_mem x) lemma mem_find (x : α) : x ∈ K (K.find x) := nat.find_spec (K.exists_mem x) lemma mem_iff_find_le {x : α} {n : ℕ} : x ∈ K n ↔ K.find x ≤ n := ⟨λ h, nat.find_min' (K.exists_mem x) h, λ h, K.subset h $ K.mem_find x⟩ /-- Prepend the empty set to a compact exhaustion `K n`. -/ def shiftr : compact_exhaustion α := { to_fun := λ n, nat.cases_on n ∅ K, is_compact' := λ n, nat.cases_on n is_compact_empty K.is_compact, subset_interior_succ' := λ n, nat.cases_on n (empty_subset _) K.subset_interior_succ, Union_eq' := Union_eq_univ_iff.2 $ λ x, ⟨K.find x + 1, K.mem_find x⟩ } @[simp] lemma find_shiftr (x : α) : K.shiftr.find x = K.find x + 1 := nat.find_comp_succ _ _ (not_mem_empty _) lemma mem_diff_shiftr_find (x : α) : x ∈ K.shiftr (K.find x + 1) \ K.shiftr (K.find x) := ⟨K.mem_find _, mt K.shiftr.mem_iff_find_le.1 $ by simp only [find_shiftr, not_le, nat.lt_succ_self]⟩ /-- A choice of an [exhaustion by compact sets](https://en.wikipedia.org/wiki/Exhaustion_by_compact_sets) of a locally compact sigma compact space. -/ noncomputable def choice (X : Type*) [topological_space X] [locally_compact_space X] [sigma_compact_space X] : compact_exhaustion X := begin apply classical.choice, let K : ℕ → {s : set X // is_compact s} := λ n, nat.rec_on n ⟨∅, is_compact_empty⟩ (λ n s, ⟨(exists_compact_superset s.2).some ∪ compact_covering X n, (exists_compact_superset s.2).some_spec.1.union (is_compact_compact_covering _ _)⟩), refine ⟨⟨λ n, K n, λ n, (K n).2, λ n, _, _⟩⟩, { exact subset.trans (exists_compact_superset (K n).2).some_spec.2 (interior_mono $ subset_union_left _ _) }, { refine univ_subset_iff.1 (Union_compact_covering X ▸ _), exact Union_subset_Union2 (λ n, ⟨n + 1, subset_union_right _ _⟩) } end noncomputable instance [locally_compact_space α] [sigma_compact_space α] : inhabited (compact_exhaustion α) := ⟨compact_exhaustion.choice α⟩ end compact_exhaustion section clopen /-- A set is clopen if it is both open and closed. -/ def is_clopen (s : set α) : Prop := is_open s ∧ is_closed s theorem is_clopen.union {s t : set α} (hs : is_clopen s) (ht : is_clopen t) : is_clopen (s ∪ t) := ⟨is_open.union hs.1 ht.1, is_closed.union hs.2 ht.2⟩ theorem is_clopen.inter {s t : set α} (hs : is_clopen s) (ht : is_clopen t) : is_clopen (s ∩ t) := ⟨is_open.inter hs.1 ht.1, is_closed.inter hs.2 ht.2⟩ @[simp] theorem is_clopen_empty : is_clopen (∅ : set α) := ⟨is_open_empty, is_closed_empty⟩ @[simp] theorem is_clopen_univ : is_clopen (univ : set α) := ⟨is_open_univ, is_closed_univ⟩ theorem is_clopen.compl {s : set α} (hs : is_clopen s) : is_clopen sᶜ := ⟨hs.2.is_open_compl, is_closed_compl_iff.2 hs.1⟩ @[simp] theorem is_clopen_compl_iff {s : set α} : is_clopen sᶜ ↔ is_clopen s := ⟨λ h, compl_compl s ▸ is_clopen.compl h, is_clopen.compl⟩ theorem is_clopen.diff {s t : set α} (hs : is_clopen s) (ht : is_clopen t) : is_clopen (s \ t) := hs.inter ht.compl lemma is_clopen_Union {β : Type*} [fintype β] {s : β → set α} (h : ∀ i, is_clopen (s i)) : is_clopen (⋃ i, s i) := ⟨is_open_Union (forall_and_distrib.1 h).1, is_closed_Union (forall_and_distrib.1 h).2⟩ lemma is_clopen_bUnion {β : Type*} {s : finset β} {f : β → set α} (h : ∀i ∈ s, is_clopen $ f i) : is_clopen (⋃ i ∈ s, f i) := begin refine ⟨is_open_bUnion (λ i hi, (h i hi).1), _⟩, show is_closed (⋃ (i : β) (H : i ∈ (s : set β)), f i), rw bUnion_eq_Union, exact is_closed_Union (λ ⟨i, hi⟩,(h i hi).2) end lemma is_clopen_Inter {β : Type*} [fintype β] {s : β → set α} (h : ∀ i, is_clopen (s i)) : is_clopen (⋂ i, s i) := ⟨(is_open_Inter (forall_and_distrib.1 h).1), (is_closed_Inter (forall_and_distrib.1 h).2)⟩ lemma is_clopen_bInter {β : Type*} {s : finset β} {f : β → set α} (h : ∀i∈s, is_clopen (f i)) : is_clopen (⋂i∈s, f i) := ⟨ is_open_bInter ⟨finset_coe.fintype s⟩ (λ i hi, (h i hi).1), by {show is_closed (⋂ (i : β) (H : i ∈ (↑s : set β)), f i), rw bInter_eq_Inter, apply is_closed_Inter, rintro ⟨i, hi⟩, exact (h i hi).2}⟩ lemma continuous_on.preimage_clopen_of_clopen {β: Type*} [topological_space β] {f : α → β} {s : set α} {t : set β} (hf : continuous_on f s) (hs : is_clopen s) (ht : is_clopen t) : is_clopen (s ∩ f⁻¹' t) := ⟨continuous_on.preimage_open_of_open hf hs.1 ht.1, continuous_on.preimage_closed_of_closed hf hs.2 ht.2⟩ /-- The intersection of a disjoint covering by two open sets of a clopen set will be clopen. -/ theorem is_clopen_inter_of_disjoint_cover_clopen {Z a b : set α} (h : is_clopen Z) (cover : Z ⊆ a ∪ b) (ha : is_open a) (hb : is_open b) (hab : a ∩ b = ∅) : is_clopen (Z ∩ a) := begin refine ⟨is_open.inter h.1 ha, _⟩, have : is_closed (Z ∩ bᶜ) := is_closed.inter h.2 (is_closed_compl_iff.2 hb), convert this using 1, apply subset.antisymm, { exact inter_subset_inter_right Z (subset_compl_iff_disjoint.2 hab) }, { rintros x ⟨hx₁, hx₂⟩, exact ⟨hx₁, by simpa [not_mem_of_mem_compl hx₂] using cover hx₁⟩ } end end clopen section preirreducible /-- A preirreducible set `s` is one where there is no non-trivial pair of disjoint opens on `s`. -/ def is_preirreducible (s : set α) : Prop := ∀ (u v : set α), is_open u → is_open v → (s ∩ u).nonempty → (s ∩ v).nonempty → (s ∩ (u ∩ v)).nonempty /-- An irreducible set `s` is one that is nonempty and where there is no non-trivial pair of disjoint opens on `s`. -/ def is_irreducible (s : set α) : Prop := s.nonempty ∧ is_preirreducible s lemma is_irreducible.nonempty {s : set α} (h : is_irreducible s) : s.nonempty := h.1 lemma is_irreducible.is_preirreducible {s : set α} (h : is_irreducible s) : is_preirreducible s := h.2 theorem is_preirreducible_empty : is_preirreducible (∅ : set α) := λ _ _ _ _ _ ⟨x, h1, h2⟩, h1.elim theorem is_irreducible_singleton {x} : is_irreducible ({x} : set α) := ⟨singleton_nonempty x, λ u v _ _ ⟨y, h1, h2⟩ ⟨z, h3, h4⟩, by rw mem_singleton_iff at h1 h3; substs y z; exact ⟨x, rfl, h2, h4⟩⟩ theorem is_preirreducible.closure {s : set α} (H : is_preirreducible s) : is_preirreducible (closure s) := λ u v hu hv ⟨y, hycs, hyu⟩ ⟨z, hzcs, hzv⟩, let ⟨p, hpu, hps⟩ := mem_closure_iff.1 hycs u hu hyu in let ⟨q, hqv, hqs⟩ := mem_closure_iff.1 hzcs v hv hzv in let ⟨r, hrs, hruv⟩ := H u v hu hv ⟨p, hps, hpu⟩ ⟨q, hqs, hqv⟩ in ⟨r, subset_closure hrs, hruv⟩ lemma is_irreducible.closure {s : set α} (h : is_irreducible s) : is_irreducible (closure s) := ⟨h.nonempty.closure, h.is_preirreducible.closure⟩ theorem exists_preirreducible (s : set α) (H : is_preirreducible s) : ∃ t : set α, is_preirreducible t ∧ s ⊆ t ∧ ∀ u, is_preirreducible u → t ⊆ u → u = t := let ⟨m, hm, hsm, hmm⟩ := zorn.zorn_subset_nonempty {t : set α | is_preirreducible t} (λ c hc hcc hcn, let ⟨t, htc⟩ := hcn in ⟨⋃₀ c, λ u v hu hv ⟨y, hy, hyu⟩ ⟨z, hz, hzv⟩, let ⟨p, hpc, hyp⟩ := mem_sUnion.1 hy, ⟨q, hqc, hzq⟩ := mem_sUnion.1 hz in or.cases_on (zorn.chain.total hcc hpc hqc) (assume hpq : p ⊆ q, let ⟨x, hxp, hxuv⟩ := hc hqc u v hu hv ⟨y, hpq hyp, hyu⟩ ⟨z, hzq, hzv⟩ in ⟨x, mem_sUnion_of_mem hxp hqc, hxuv⟩) (assume hqp : q ⊆ p, let ⟨x, hxp, hxuv⟩ := hc hpc u v hu hv ⟨y, hyp, hyu⟩ ⟨z, hqp hzq, hzv⟩ in ⟨x, mem_sUnion_of_mem hxp hpc, hxuv⟩), λ x hxc, subset_sUnion_of_mem hxc⟩) s H in ⟨m, hm, hsm, λ u hu hmu, hmm _ hu hmu⟩ /-- A maximal irreducible set that contains a given point. -/ def irreducible_component (x : α) : set α := classical.some (exists_preirreducible {x} is_irreducible_singleton.is_preirreducible) lemma irreducible_component_property (x : α) : is_preirreducible (irreducible_component x) ∧ {x} ⊆ (irreducible_component x) ∧ ∀ u, is_preirreducible u → (irreducible_component x) ⊆ u → u = (irreducible_component x) := classical.some_spec (exists_preirreducible {x} is_irreducible_singleton.is_preirreducible) theorem mem_irreducible_component {x : α} : x ∈ irreducible_component x := singleton_subset_iff.1 (irreducible_component_property x).2.1 theorem is_irreducible_irreducible_component {x : α} : is_irreducible (irreducible_component x) := ⟨⟨x, mem_irreducible_component⟩, (irreducible_component_property x).1⟩ theorem eq_irreducible_component {x : α} : ∀ {s : set α}, is_preirreducible s → irreducible_component x ⊆ s → s = irreducible_component x := (irreducible_component_property x).2.2 theorem is_closed_irreducible_component {x : α} : is_closed (irreducible_component x) := closure_eq_iff_is_closed.1 $ eq_irreducible_component is_irreducible_irreducible_component.is_preirreducible.closure subset_closure /-- A preirreducible space is one where there is no non-trivial pair of disjoint opens. -/ class preirreducible_space (α : Type u) [topological_space α] : Prop := (is_preirreducible_univ [] : is_preirreducible (univ : set α)) /-- An irreducible space is one that is nonempty and where there is no non-trivial pair of disjoint opens. -/ class irreducible_space (α : Type u) [topological_space α] extends preirreducible_space α : Prop := (to_nonempty [] : nonempty α) -- see Note [lower instance priority] attribute [instance, priority 50] irreducible_space.to_nonempty theorem nonempty_preirreducible_inter [preirreducible_space α] {s t : set α} : is_open s → is_open t → s.nonempty → t.nonempty → (s ∩ t).nonempty := by simpa only [univ_inter, univ_subset_iff] using @preirreducible_space.is_preirreducible_univ α _ _ s t theorem is_preirreducible.image [topological_space β] {s : set α} (H : is_preirreducible s) (f : α → β) (hf : continuous_on f s) : is_preirreducible (f '' s) := begin rintros u v hu hv ⟨_, ⟨⟨x, hx, rfl⟩, hxu⟩⟩ ⟨_, ⟨⟨y, hy, rfl⟩, hyv⟩⟩, rw ← mem_preimage at hxu hyv, rcases continuous_on_iff'.1 hf u hu with ⟨u', hu', u'_eq⟩, rcases continuous_on_iff'.1 hf v hv with ⟨v', hv', v'_eq⟩, have := H u' v' hu' hv', rw [inter_comm s u', ← u'_eq] at this, rw [inter_comm s v', ← v'_eq] at this, rcases this ⟨x, hxu, hx⟩ ⟨y, hyv, hy⟩ with ⟨z, hzs, hzu', hzv'⟩, refine ⟨f z, mem_image_of_mem f hzs, _, _⟩, all_goals { rw ← mem_preimage, apply mem_of_mem_inter_left, show z ∈ _ ∩ s, simp [*] } end theorem is_irreducible.image [topological_space β] {s : set α} (H : is_irreducible s) (f : α → β) (hf : continuous_on f s) : is_irreducible (f '' s) := ⟨nonempty_image_iff.mpr H.nonempty, H.is_preirreducible.image f hf⟩ lemma subtype.preirreducible_space {s : set α} (h : is_preirreducible s) : preirreducible_space s := { is_preirreducible_univ := begin intros u v hu hv hsu hsv, rw is_open_induced_iff at hu hv, rcases hu with ⟨u, hu, rfl⟩, rcases hv with ⟨v, hv, rfl⟩, rcases hsu with ⟨⟨x, hxs⟩, hxs', hxu⟩, rcases hsv with ⟨⟨y, hys⟩, hys', hyv⟩, rcases h u v hu hv ⟨x, hxs, hxu⟩ ⟨y, hys, hyv⟩ with ⟨z, hzs, ⟨hzu, hzv⟩⟩, exact ⟨⟨z, hzs⟩, ⟨set.mem_univ _, ⟨hzu, hzv⟩⟩⟩ end } lemma subtype.irreducible_space {s : set α} (h : is_irreducible s) : irreducible_space s := { is_preirreducible_univ := (subtype.preirreducible_space h.is_preirreducible).is_preirreducible_univ, to_nonempty := h.nonempty.to_subtype } /-- A set `s` is irreducible if and only if for every finite collection of open sets all of whose members intersect `s`, `s` also intersects the intersection of the entire collection (i.e., there is an element of `s` contained in every member of the collection). -/ lemma is_irreducible_iff_sInter {s : set α} : is_irreducible s ↔ ∀ (U : finset (set α)) (hU : ∀ u ∈ U, is_open u) (H : ∀ u ∈ U, (s ∩ u).nonempty), (s ∩ ⋂₀ ↑U).nonempty := begin split; intro h, { intro U, apply finset.induction_on U, { intros, simpa using h.nonempty }, { intros u U hu IH hU H, rw [finset.coe_insert, sInter_insert], apply h.2, { solve_by_elim [finset.mem_insert_self] }, { apply is_open_sInter (finset.finite_to_set U), intros, solve_by_elim [finset.mem_insert_of_mem] }, { solve_by_elim [finset.mem_insert_self] }, { apply IH, all_goals { intros, solve_by_elim [finset.mem_insert_of_mem] } } } }, { split, { simpa using h ∅ _ _; intro u; simp }, intros u v hu hv hu' hv', simpa using h {u,v} _ _, all_goals { intro t, rw [finset.mem_insert, finset.mem_singleton], rintro (rfl|rfl); assumption } } end /-- A set is preirreducible if and only if for every cover by two closed sets, it is contained in one of the two covering sets. -/ lemma is_preirreducible_iff_closed_union_closed {s : set α} : is_preirreducible s ↔ ∀ (z₁ z₂ : set α), is_closed z₁ → is_closed z₂ → s ⊆ z₁ ∪ z₂ → s ⊆ z₁ ∨ s ⊆ z₂ := begin split, all_goals { intros h t₁ t₂ ht₁ ht₂, specialize h t₁ᶜ t₂ᶜ, simp only [is_open_compl_iff, is_closed_compl_iff] at h, specialize h ht₁ ht₂ }, { contrapose!, simp only [not_subset], rintro ⟨⟨x, hx, hx'⟩, ⟨y, hy, hy'⟩⟩, rcases h ⟨x, hx, hx'⟩ ⟨y, hy, hy'⟩ with ⟨z, hz, hz'⟩, rw ← compl_union at hz', exact ⟨z, hz, hz'⟩ }, { rintro ⟨x, hx, hx'⟩ ⟨y, hy, hy'⟩, rw ← compl_inter at h, delta set.nonempty, rw imp_iff_not_or at h, contrapose! h, split, { intros z hz hz', exact h z ⟨hz, hz'⟩ }, { split; intro H; refine H _ ‹_›; assumption } } end /-- A set is irreducible if and only if for every cover by a finite collection of closed sets, it is contained in one of the members of the collection. -/ lemma is_irreducible_iff_sUnion_closed {s : set α} : is_irreducible s ↔ ∀ (Z : finset (set α)) (hZ : ∀ z ∈ Z, is_closed z) (H : s ⊆ ⋃₀ ↑Z), ∃ z ∈ Z, s ⊆ z := begin rw [is_irreducible, is_preirreducible_iff_closed_union_closed], split; intro h, { intro Z, apply finset.induction_on Z, { intros, rw [finset.coe_empty, sUnion_empty] at H, rcases h.1 with ⟨x, hx⟩, exfalso, tauto }, { intros z Z hz IH hZ H, cases h.2 z (⋃₀ ↑Z) _ _ _ with h' h', { exact ⟨z, finset.mem_insert_self _ _, h'⟩ }, { rcases IH _ h' with ⟨z', hz', hsz'⟩, { exact ⟨z', finset.mem_insert_of_mem hz', hsz'⟩ }, { intros, solve_by_elim [finset.mem_insert_of_mem] } }, { solve_by_elim [finset.mem_insert_self] }, { rw sUnion_eq_bUnion, apply is_closed_bUnion (finset.finite_to_set Z), { intros, solve_by_elim [finset.mem_insert_of_mem] } }, { simpa using H } } }, { split, { by_contradiction hs, simpa using h ∅ _ _, { intro z, simp }, { simpa [set.nonempty] using hs } }, intros z₁ z₂ hz₁ hz₂ H, have := h {z₁, z₂} _ _, simp only [exists_prop, finset.mem_insert, finset.mem_singleton] at this, { rcases this with ⟨z, rfl|rfl, hz⟩; tauto }, { intro t, rw [finset.mem_insert, finset.mem_singleton], rintro (rfl|rfl); assumption }, { simpa using H } } end end preirreducible
e92b7b9718ab5cf184bdae63307edbb35d386b05
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/analysis/convex/between.lean
c93700712f53ec88b000ccfdb135903b5dc4516e
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
22,187
lean
/- Copyright (c) 2022 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers -/ import data.set.intervals.group import analysis.convex.segment import linear_algebra.affine_space.finite_dimensional import tactic.field_simp /-! # Betweenness in affine spaces This file defines notions of a point in an affine space being between two given points. ## Main definitions * `affine_segment R x y`: The segment of points weakly between `x` and `y`. * `wbtw R x y z`: The point `y` is weakly between `x` and `z`. * `sbtw R x y z`: The point `y` is strictly between `x` and `z`. -/ variables (R : Type*) {V V' P P' : Type*} open affine_equiv affine_map section ordered_ring variables [ordered_ring R] [add_comm_group V] [module R V] [add_torsor V P] variables [add_comm_group V'] [module R V'] [add_torsor V' P'] include V /-- The segment of points weakly between `x` and `y`. When convexity is refactored to support abstract affine combination spaces, this will no longer need to be a separate definition from `segment`. However, lemmas involving `+ᵥ` or `-ᵥ` will still be relevant after such a refactoring, as distinct from versions involving `+` or `-` in a module. -/ def affine_segment (x y : P) := line_map x y '' (set.Icc (0 : R) 1) lemma affine_segment_eq_segment (x y : V) : affine_segment R x y = segment R x y := by rw [segment_eq_image_line_map, affine_segment] lemma affine_segment_comm (x y : P) : affine_segment R x y = affine_segment R y x := begin refine set.ext (λ z, _), split; { rintro ⟨t, ht, hxy⟩, refine ⟨1 - t, _, _⟩, { rwa [set.sub_mem_Icc_iff_right, sub_self, sub_zero] }, { rwa [line_map_apply_one_sub] } }, end lemma left_mem_affine_segment (x y : P) : x ∈ affine_segment R x y := ⟨0, set.left_mem_Icc.2 zero_le_one, line_map_apply_zero _ _⟩ lemma right_mem_affine_segment (x y : P) : y ∈ affine_segment R x y := ⟨1, set.right_mem_Icc.2 zero_le_one, line_map_apply_one _ _⟩ include V' variables {R} @[simp] lemma affine_segment_image (f : P →ᵃ[R] P') (x y : P) : f '' affine_segment R x y = affine_segment R (f x) (f y) := begin rw [affine_segment, affine_segment, set.image_image, ←comp_line_map], refl end omit V' variables (R) @[simp] lemma affine_segment_const_vadd_image (x y : P) (v : V) : ((+ᵥ) v) '' affine_segment R x y = affine_segment R (v +ᵥ x) (v +ᵥ y) := affine_segment_image (affine_equiv.const_vadd R P v : P →ᵃ[R] P) x y @[simp] lemma affine_segment_vadd_const_image (x y : V) (p : P) : (+ᵥ p) '' affine_segment R x y = affine_segment R (x +ᵥ p) (y +ᵥ p) := affine_segment_image (affine_equiv.vadd_const R p : V →ᵃ[R] P) x y @[simp] lemma affine_segment_const_vsub_image (x y p : P) : ((-ᵥ) p) '' affine_segment R x y = affine_segment R (p -ᵥ x) (p -ᵥ y) := affine_segment_image (affine_equiv.const_vsub R p : P →ᵃ[R] V) x y @[simp] lemma affine_segment_vsub_const_image (x y p : P) : (-ᵥ p) '' affine_segment R x y = affine_segment R (x -ᵥ p) (y -ᵥ p) := affine_segment_image ((affine_equiv.vadd_const R p).symm : P →ᵃ[R] V) x y variables {R} @[simp] lemma mem_const_vadd_affine_segment {x y z : P} (v : V) : v +ᵥ z ∈ affine_segment R (v +ᵥ x) (v +ᵥ y) ↔ z ∈ affine_segment R x y := by rw [←affine_segment_const_vadd_image, (add_action.injective v).mem_set_image] @[simp] lemma mem_vadd_const_affine_segment {x y z : V} (p : P) : z +ᵥ p ∈ affine_segment R (x +ᵥ p) (y +ᵥ p) ↔ z ∈ affine_segment R x y := by rw [←affine_segment_vadd_const_image, (vadd_right_injective p).mem_set_image] variables {R} @[simp] lemma mem_const_vsub_affine_segment {x y z : P} (p : P) : p -ᵥ z ∈ affine_segment R (p -ᵥ x) (p -ᵥ y) ↔ z ∈ affine_segment R x y := by rw [←affine_segment_const_vsub_image, (vsub_right_injective p).mem_set_image] @[simp] lemma mem_vsub_const_affine_segment {x y z : P} (p : P) : z -ᵥ p ∈ affine_segment R (x -ᵥ p) (y -ᵥ p) ↔ z ∈ affine_segment R x y := by rw [←affine_segment_vsub_const_image, (vsub_left_injective p).mem_set_image] variables (R) /-- The point `y` is weakly between `x` and `z`. -/ def wbtw (x y z : P) : Prop := y ∈ affine_segment R x z /-- The point `y` is strictly between `x` and `z`. -/ def sbtw (x y z : P) : Prop := wbtw R x y z ∧ y ≠ x ∧ y ≠ z variables {R} include V' lemma wbtw.map {x y z : P} (h : wbtw R x y z) (f : P →ᵃ[R] P') : wbtw R (f x) (f y) (f z) := begin rw [wbtw, ←affine_segment_image], exact set.mem_image_of_mem _ h end lemma function.injective.wbtw_map_iff {x y z : P} {f : P →ᵃ[R] P'} (hf : function.injective f) : wbtw R (f x) (f y) (f z) ↔ wbtw R x y z := begin refine ⟨λ h, _, λ h, h.map _⟩, rwa [wbtw, ←affine_segment_image, hf.mem_set_image] at h end lemma function.injective.sbtw_map_iff {x y z : P} {f : P →ᵃ[R] P'} (hf : function.injective f) : sbtw R (f x) (f y) (f z) ↔ sbtw R x y z := by simp_rw [sbtw, hf.wbtw_map_iff, hf.ne_iff] @[simp] lemma affine_equiv.wbtw_map_iff {x y z : P} (f : P ≃ᵃ[R] P') : wbtw R (f x) (f y) (f z) ↔ wbtw R x y z := begin refine function.injective.wbtw_map_iff (_ : function.injective f.to_affine_map), exact f.injective end @[simp] lemma affine_equiv.sbtw_map_iff {x y z : P} (f : P ≃ᵃ[R] P') : sbtw R (f x) (f y) (f z) ↔ sbtw R x y z := begin refine function.injective.sbtw_map_iff (_ : function.injective f.to_affine_map), exact f.injective end omit V' @[simp] lemma wbtw_const_vadd_iff {x y z : P} (v : V) : wbtw R (v +ᵥ x) (v +ᵥ y) (v +ᵥ z) ↔ wbtw R x y z := mem_const_vadd_affine_segment _ @[simp] lemma wbtw_vadd_const_iff {x y z : V} (p : P) : wbtw R (x +ᵥ p) (y +ᵥ p) (z +ᵥ p) ↔ wbtw R x y z := mem_vadd_const_affine_segment _ @[simp] lemma wbtw_const_vsub_iff {x y z : P} (p : P) : wbtw R (p -ᵥ x) (p -ᵥ y) (p -ᵥ z) ↔ wbtw R x y z := mem_const_vsub_affine_segment _ @[simp] lemma wbtw_vsub_const_iff {x y z : P} (p : P) : wbtw R (x -ᵥ p) (y -ᵥ p) (z -ᵥ p) ↔ wbtw R x y z := mem_vsub_const_affine_segment _ @[simp] lemma sbtw_const_vadd_iff {x y z : P} (v : V) : sbtw R (v +ᵥ x) (v +ᵥ y) (v +ᵥ z) ↔ sbtw R x y z := by simp_rw [sbtw, wbtw_const_vadd_iff, (add_action.injective v).ne_iff] @[simp] lemma sbtw_vadd_const_iff {x y z : V} (p : P) : sbtw R (x +ᵥ p) (y +ᵥ p) (z +ᵥ p) ↔ sbtw R x y z := by simp_rw [sbtw, wbtw_vadd_const_iff, (vadd_right_injective p).ne_iff] @[simp] lemma sbtw_const_vsub_iff {x y z : P} (p : P) : sbtw R (p -ᵥ x) (p -ᵥ y) (p -ᵥ z) ↔ sbtw R x y z := by simp_rw [sbtw, wbtw_const_vsub_iff, (vsub_right_injective p).ne_iff] @[simp] lemma sbtw_vsub_const_iff {x y z : P} (p : P) : sbtw R (x -ᵥ p) (y -ᵥ p) (z -ᵥ p) ↔ sbtw R x y z := by simp_rw [sbtw, wbtw_vsub_const_iff, (vsub_left_injective p).ne_iff] lemma sbtw.wbtw {x y z : P} (h : sbtw R x y z) : wbtw R x y z := h.1 lemma sbtw.ne_left {x y z : P} (h : sbtw R x y z) : y ≠ x := h.2.1 lemma sbtw.left_ne {x y z : P} (h : sbtw R x y z) : x ≠ y := h.2.1.symm lemma sbtw.ne_right {x y z : P} (h : sbtw R x y z) : y ≠ z := h.2.2 lemma sbtw.right_ne {x y z : P} (h : sbtw R x y z) : z ≠ y := h.2.2.symm lemma sbtw.mem_image_Ioo {x y z : P} (h : sbtw R x y z) : y ∈ line_map x z '' (set.Ioo (0 : R) 1) := begin rcases h with ⟨⟨t, ht, rfl⟩, hyx, hyz⟩, rcases set.eq_endpoints_or_mem_Ioo_of_mem_Icc ht with rfl|rfl|ho, { exfalso, simpa using hyx }, { exfalso, simpa using hyz }, { exact ⟨t, ho, rfl⟩ } end lemma wbtw_comm {x y z : P} : wbtw R x y z ↔ wbtw R z y x := by rw [wbtw, wbtw, affine_segment_comm] alias wbtw_comm ↔ wbtw.symm _ lemma sbtw_comm {x y z : P} : sbtw R x y z ↔ sbtw R z y x := by rw [sbtw, sbtw, wbtw_comm, ←and_assoc, ←and_assoc, and.right_comm] alias sbtw_comm ↔ sbtw.symm _ variables (R) @[simp] lemma wbtw_self_left (x y : P) : wbtw R x x y := left_mem_affine_segment _ _ _ @[simp] lemma wbtw_self_right (x y : P) : wbtw R x y y := right_mem_affine_segment _ _ _ @[simp] lemma wbtw_self_iff {x y : P} : wbtw R x y x ↔ y = x := begin refine ⟨λ h, _, λ h, _⟩, { simpa [wbtw, affine_segment] using h }, { rw h, exact wbtw_self_left R x x } end @[simp] lemma not_sbtw_self_left (x y : P) : ¬ sbtw R x x y := λ h, h.ne_left rfl @[simp] lemma not_sbtw_self_right (x y : P) : ¬ sbtw R x y y := λ h, h.ne_right rfl variables {R} lemma wbtw.left_ne_right_of_ne_left {x y z : P} (h : wbtw R x y z) (hne : y ≠ x) : x ≠ z := begin rintro rfl, rw wbtw_self_iff at h, exact hne h end lemma wbtw.left_ne_right_of_ne_right {x y z : P} (h : wbtw R x y z) (hne : y ≠ z) : x ≠ z := begin rintro rfl, rw wbtw_self_iff at h, exact hne h end lemma sbtw.left_ne_right {x y z : P} (h : sbtw R x y z) : x ≠ z := h.wbtw.left_ne_right_of_ne_left h.2.1 lemma sbtw_iff_mem_image_Ioo_and_ne [no_zero_smul_divisors R V] {x y z : P} : sbtw R x y z ↔ y ∈ line_map x z '' (set.Ioo (0 : R) 1) ∧ x ≠ z := begin refine ⟨λ h, ⟨h.mem_image_Ioo, h.left_ne_right⟩, λ h, _⟩, rcases h with ⟨⟨t, ht, rfl⟩, hxz⟩, refine ⟨⟨t, set.mem_Icc_of_Ioo ht, rfl⟩, _⟩, rw [line_map_apply, ←@vsub_ne_zero V, ←@vsub_ne_zero V _ _ _ _ z, vadd_vsub_assoc, vadd_vsub_assoc, ←neg_vsub_eq_vsub_rev z x, ←@neg_one_smul R, ←add_smul, ←sub_eq_add_neg], simp [smul_ne_zero, hxz.symm, sub_eq_zero, ht.1.ne.symm, ht.2.ne] end variables (R) @[simp] lemma not_sbtw_self (x y : P) : ¬ sbtw R x y x := λ h, h.left_ne_right rfl lemma wbtw_swap_left_iff [no_zero_smul_divisors R V] {x y : P} (z : P) : (wbtw R x y z ∧ wbtw R y x z) ↔ x = y := begin split, { rintro ⟨hxyz, hyxz⟩, rcases hxyz with ⟨ty, hty, rfl⟩, rcases hyxz with ⟨tx, htx, hx⟩, simp_rw [line_map_apply, ←add_vadd] at hx, rw [←@vsub_eq_zero_iff_eq V, vadd_vsub, vsub_vadd_eq_vsub_sub, smul_sub, smul_smul, ←sub_smul, ←add_smul, smul_eq_zero] at hx, rcases hx with h|h, { nth_rewrite 0 ←mul_one tx at h, rw [←mul_sub, add_eq_zero_iff_neg_eq] at h, have h' : ty = 0, { refine le_antisymm _ hty.1, rw [←h, left.neg_nonpos_iff], exact mul_nonneg htx.1 (sub_nonneg.2 hty.2) }, simp [h'] }, { rw vsub_eq_zero_iff_eq at h, simp [h] } }, { rintro rfl, exact ⟨wbtw_self_left _ _ _, wbtw_self_left _ _ _⟩ } end lemma wbtw_swap_right_iff [no_zero_smul_divisors R V] (x : P) {y z : P} : (wbtw R x y z ∧ wbtw R x z y) ↔ y = z := begin nth_rewrite 0 wbtw_comm, nth_rewrite 1 wbtw_comm, rw eq_comm, exact wbtw_swap_left_iff R x end lemma wbtw_rotate_iff [no_zero_smul_divisors R V] (x : P) {y z : P} : (wbtw R x y z ∧ wbtw R z x y) ↔ x = y := by rw [wbtw_comm, wbtw_swap_right_iff, eq_comm] variables {R} lemma wbtw.swap_left_iff [no_zero_smul_divisors R V] {x y z : P} (h : wbtw R x y z) : wbtw R y x z ↔ x = y := by rw [←wbtw_swap_left_iff R z, and_iff_right h] lemma wbtw.swap_right_iff [no_zero_smul_divisors R V] {x y z : P} (h : wbtw R x y z) : wbtw R x z y ↔ y = z := by rw [←wbtw_swap_right_iff R x, and_iff_right h] lemma wbtw.rotate_iff [no_zero_smul_divisors R V] {x y z : P} (h : wbtw R x y z) : wbtw R z x y ↔ x = y := by rw [←wbtw_rotate_iff R x, and_iff_right h] lemma sbtw.not_swap_left [no_zero_smul_divisors R V] {x y z : P} (h : sbtw R x y z) : ¬ wbtw R y x z := λ hs, h.left_ne (h.wbtw.swap_left_iff.1 hs) lemma sbtw.not_swap_right [no_zero_smul_divisors R V] {x y z : P} (h : sbtw R x y z) : ¬ wbtw R x z y := λ hs, h.ne_right (h.wbtw.swap_right_iff.1 hs) lemma sbtw.not_rotate [no_zero_smul_divisors R V] {x y z : P} (h : sbtw R x y z) : ¬ wbtw R z x y := λ hs, h.left_ne (h.wbtw.rotate_iff.1 hs) @[simp] lemma wbtw_line_map_iff [no_zero_smul_divisors R V] {x y : P} {r : R} : wbtw R x (line_map x y r) y ↔ x = y ∨ r ∈ set.Icc (0 : R) 1 := begin by_cases hxy : x = y, { simp [hxy] }, rw [or_iff_right hxy, wbtw, affine_segment, (line_map_injective R hxy).mem_set_image] end @[simp] lemma sbtw_line_map_iff [no_zero_smul_divisors R V] {x y : P} {r : R} : sbtw R x (line_map x y r) y ↔ x ≠ y ∧ r ∈ set.Ioo (0 : R) 1 := begin rw [sbtw_iff_mem_image_Ioo_and_ne, and_comm, and_congr_right], intro hxy, rw (line_map_injective R hxy).mem_set_image end lemma wbtw.trans_left {w x y z : P} (h₁ : wbtw R w y z) (h₂ : wbtw R w x y) : wbtw R w x z := begin rcases h₁ with ⟨t₁, ht₁, rfl⟩, rcases h₂ with ⟨t₂, ht₂, rfl⟩, refine ⟨t₂ * t₁, ⟨mul_nonneg ht₂.1 ht₁.1, mul_le_one ht₂.2 ht₁.1 ht₁.2⟩, _⟩, simp [line_map_apply, smul_smul] end lemma wbtw.trans_right {w x y z : P} (h₁ : wbtw R w x z) (h₂ : wbtw R x y z) : wbtw R w y z := begin rw wbtw_comm at *, exact h₁.trans_left h₂ end lemma wbtw.trans_sbtw_left [no_zero_smul_divisors R V] {w x y z : P} (h₁ : wbtw R w y z) (h₂ : sbtw R w x y) : sbtw R w x z := begin refine ⟨h₁.trans_left h₂.wbtw, h₂.ne_left, _⟩, rintro rfl, exact h₂.right_ne ((wbtw_swap_right_iff R w).1 ⟨h₁, h₂.wbtw⟩) end lemma wbtw.trans_sbtw_right [no_zero_smul_divisors R V] {w x y z : P} (h₁ : wbtw R w x z) (h₂ : sbtw R x y z) : sbtw R w y z := begin rw wbtw_comm at *, rw sbtw_comm at *, exact h₁.trans_sbtw_left h₂ end lemma sbtw.trans_left [no_zero_smul_divisors R V] {w x y z : P} (h₁ : sbtw R w y z) (h₂ : sbtw R w x y) : sbtw R w x z := h₁.wbtw.trans_sbtw_left h₂ lemma sbtw.trans_right [no_zero_smul_divisors R V] {w x y z : P} (h₁ : sbtw R w x z) (h₂ : sbtw R x y z) : sbtw R w y z := h₁.wbtw.trans_sbtw_right h₂ end ordered_ring section strict_ordered_comm_ring variables [strict_ordered_comm_ring R] [add_comm_group V] [module R V] [add_torsor V P] include V variables {R} lemma wbtw.same_ray_vsub {x y z : P} (h : wbtw R x y z) : same_ray R (y -ᵥ x) (z -ᵥ y) := begin rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩, simp_rw line_map_apply, rcases ht0.lt_or_eq with ht0' | rfl, swap, { simp }, rcases ht1.lt_or_eq with ht1' | rfl, swap, { simp }, refine or.inr (or.inr ⟨1 - t, t, sub_pos.2 ht1', ht0', _⟩), simp [vsub_vadd_eq_vsub_sub, smul_sub, smul_smul, ←sub_smul], ring_nf end lemma wbtw.same_ray_vsub_left {x y z : P} (h : wbtw R x y z) : same_ray R (y -ᵥ x) (z -ᵥ x) := begin rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩, simpa [line_map_apply] using same_ray_nonneg_smul_left (z -ᵥ x) ht0 end lemma wbtw.same_ray_vsub_right {x y z : P} (h : wbtw R x y z) : same_ray R (z -ᵥ x) (z -ᵥ y) := begin rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩, simpa [line_map_apply, vsub_vadd_eq_vsub_sub, sub_smul] using same_ray_nonneg_smul_right (z -ᵥ x) (sub_nonneg.2 ht1) end end strict_ordered_comm_ring section linear_ordered_field variables [linear_ordered_field R] [add_comm_group V] [module R V] [add_torsor V P] include V variables {R} lemma wbtw_smul_vadd_smul_vadd_of_nonneg_of_le (x : P) (v : V) {r₁ r₂ : R} (hr₁ : 0 ≤ r₁) (hr₂ : r₁ ≤ r₂) : wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) := begin refine ⟨r₁ / r₂, ⟨div_nonneg hr₁ (hr₁.trans hr₂), div_le_one_of_le hr₂ (hr₁.trans hr₂)⟩, _⟩, by_cases h : r₁ = 0, { simp [h] }, simp [line_map_apply, smul_smul, ((hr₁.lt_of_ne' h).trans_le hr₂).ne.symm] end lemma wbtw_or_wbtw_smul_vadd_of_nonneg (x : P) (v : V) {r₁ r₂ : R} (hr₁ : 0 ≤ r₁) (hr₂ : 0 ≤ r₂) : wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) := begin rcases le_total r₁ r₂ with h|h, { exact or.inl (wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x v hr₁ h) }, { exact or.inr (wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x v hr₂ h) } end lemma wbtw_smul_vadd_smul_vadd_of_nonpos_of_le (x : P) (v : V) {r₁ r₂ : R} (hr₁ : r₁ ≤ 0) (hr₂ : r₂ ≤ r₁) : wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) := begin convert wbtw_smul_vadd_smul_vadd_of_nonneg_of_le x (-v) (left.nonneg_neg_iff.2 hr₁) (neg_le_neg_iff.2 hr₂) using 1; rw neg_smul_neg end lemma wbtw_or_wbtw_smul_vadd_of_nonpos (x : P) (v : V) {r₁ r₂ : R} (hr₁ : r₁ ≤ 0) (hr₂ : r₂ ≤ 0) : wbtw R x (r₁ • v +ᵥ x) (r₂ • v +ᵥ x) ∨ wbtw R x (r₂ • v +ᵥ x) (r₁ • v +ᵥ x) := begin rcases le_total r₁ r₂ with h|h, { exact or.inr (wbtw_smul_vadd_smul_vadd_of_nonpos_of_le x v hr₂ h) }, { exact or.inl (wbtw_smul_vadd_smul_vadd_of_nonpos_of_le x v hr₁ h) } end lemma wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg (x : P) (v : V) {r₁ r₂ : R} (hr₁ : r₁ ≤ 0) (hr₂ : 0 ≤ r₂) : wbtw R (r₁ • v +ᵥ x) x (r₂ • v +ᵥ x) := begin convert wbtw_smul_vadd_smul_vadd_of_nonneg_of_le (r₁ • v +ᵥ x) v (left.nonneg_neg_iff.2 hr₁) (neg_le_sub_iff_le_add.2 ((le_add_iff_nonneg_left r₁).2 hr₂)) using 1; simp [sub_smul, ←add_vadd] end lemma wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos (x : P) (v : V) {r₁ r₂ : R} (hr₁ : 0 ≤ r₁) (hr₂ : r₂ ≤ 0) : wbtw R (r₁ • v +ᵥ x) x (r₂ • v +ᵥ x) := begin rw wbtw_comm, exact wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg x v hr₂ hr₁ end lemma wbtw.trans_left_right {w x y z : P} (h₁ : wbtw R w y z) (h₂ : wbtw R w x y) : wbtw R x y z := begin rcases h₁ with ⟨t₁, ht₁, rfl⟩, rcases h₂ with ⟨t₂, ht₂, rfl⟩, refine ⟨(t₁ - t₂ * t₁) / (1 - t₂ * t₁), ⟨div_nonneg (sub_nonneg.2 (mul_le_of_le_one_left ht₁.1 ht₂.2)) (sub_nonneg.2 (mul_le_one ht₂.2 ht₁.1 ht₁.2)), div_le_one_of_le (sub_le_sub_right ht₁.2 _) (sub_nonneg.2 (mul_le_one ht₂.2 ht₁.1 ht₁.2))⟩, _⟩, simp only [line_map_apply, smul_smul, ←add_vadd, vsub_vadd_eq_vsub_sub, smul_sub, ←sub_smul, ←add_smul, vadd_vsub, vadd_right_cancel_iff, div_mul_eq_mul_div, div_sub_div_same], nth_rewrite 0 [←mul_one (t₁ - t₂ * t₁)], rw [←mul_sub, mul_div_assoc], by_cases h : 1 - t₂ * t₁ = 0, { rw [sub_eq_zero, eq_comm] at h, rw h, suffices : t₁ = 1, by simp [this], exact eq_of_le_of_not_lt ht₁.2 (λ ht₁lt, (mul_lt_one_of_nonneg_of_lt_one_right ht₂.2 ht₁.1 ht₁lt).ne h) }, { rw div_self h, ring_nf } end lemma wbtw.trans_right_left {w x y z : P} (h₁ : wbtw R w x z) (h₂ : wbtw R x y z) : wbtw R w x y := begin rw wbtw_comm at *, exact h₁.trans_left_right h₂ end lemma sbtw.trans_left_right {w x y z : P} (h₁ : sbtw R w y z) (h₂ : sbtw R w x y) : sbtw R x y z := ⟨h₁.wbtw.trans_left_right h₂.wbtw, h₂.right_ne, h₁.ne_right⟩ lemma sbtw.trans_right_left {w x y z : P} (h₁ : sbtw R w x z) (h₂ : sbtw R x y z) : sbtw R w x y := ⟨h₁.wbtw.trans_right_left h₂.wbtw, h₁.ne_left, h₂.left_ne⟩ lemma wbtw.collinear {x y z : P} (h : wbtw R x y z) : collinear R ({x, y, z} : set P) := begin rw collinear_iff_exists_forall_eq_smul_vadd, refine ⟨x, z -ᵥ x, _⟩, intros p hp, simp_rw [set.mem_insert_iff, set.mem_singleton_iff] at hp, rcases hp with rfl|rfl|rfl, { refine ⟨0, _⟩, simp }, { rcases h with ⟨t, -, rfl⟩, exact ⟨t, rfl⟩ }, { refine ⟨1, _⟩, simp } end lemma collinear.wbtw_or_wbtw_or_wbtw {x y z : P} (h : collinear R ({x, y, z} : set P)) : wbtw R x y z ∨ wbtw R y z x ∨ wbtw R z x y := begin rw collinear_iff_of_mem (set.mem_insert _ _) at h, rcases h with ⟨v, h⟩, simp_rw [set.mem_insert_iff, set.mem_singleton_iff] at h, have hy := h y (or.inr (or.inl rfl)), have hz := h z (or.inr (or.inr rfl)), rcases hy with ⟨ty, rfl⟩, rcases hz with ⟨tz, rfl⟩, rcases lt_trichotomy ty 0 with hy0|rfl|hy0, { rcases lt_trichotomy tz 0 with hz0|rfl|hz0, { nth_rewrite 1 wbtw_comm, rw ←or_assoc, exact or.inl (wbtw_or_wbtw_smul_vadd_of_nonpos _ _ hy0.le hz0.le) }, { simp }, { exact or.inr (or.inr (wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos _ _ hz0.le hy0.le)) } }, { simp }, { rcases lt_trichotomy tz 0 with hz0|rfl|hz0, { refine or.inr (or.inr (wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg _ _ hz0.le hy0.le)) }, { simp }, { nth_rewrite 1 wbtw_comm, rw ←or_assoc, exact or.inl (wbtw_or_wbtw_smul_vadd_of_nonneg _ _ hy0.le hz0.le) } } end lemma wbtw_iff_same_ray_vsub {x y z : P} : wbtw R x y z ↔ same_ray R (y -ᵥ x) (z -ᵥ y) := begin refine ⟨wbtw.same_ray_vsub, λ h, _⟩, rcases h with h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩, { rw vsub_eq_zero_iff_eq at h, simp [h] }, { rw vsub_eq_zero_iff_eq at h, simp [h] }, { refine ⟨r₂ / (r₁ + r₂), ⟨div_nonneg hr₂.le (add_nonneg hr₁.le hr₂.le), div_le_one_of_le (le_add_of_nonneg_left hr₁.le) (add_nonneg hr₁.le hr₂.le)⟩, _⟩, have h' : z = r₂⁻¹ • r₁ • (y -ᵥ x) +ᵥ y, { simp [h, hr₂.ne'] }, rw eq_comm, simp only [line_map_apply, h', vadd_vsub_assoc, smul_smul, ←add_smul, eq_vadd_iff_vsub_eq, smul_add], convert (one_smul _ _).symm, field_simp [(add_pos hr₁ hr₂).ne', hr₂.ne'], ring } end variables (R) lemma wbtw_point_reflection (x y : P) : wbtw R y x (point_reflection R x y) := begin refine ⟨2⁻¹, ⟨by norm_num, by norm_num⟩, _⟩, rw [line_map_apply, point_reflection_apply, vadd_vsub_assoc, ←two_smul R (x -ᵥ y)], simp end lemma sbtw_point_reflection_of_ne {x y : P} (h : x ≠ y) : sbtw R y x (point_reflection R x y) := begin refine ⟨wbtw_point_reflection _ _ _, h, _⟩, nth_rewrite 0 [←point_reflection_self R x], exact (point_reflection_involutive R x).injective.ne h end lemma wbtw_midpoint (x y : P) : wbtw R x (midpoint R x y) y := by { convert wbtw_point_reflection R (midpoint R x y) x, simp } lemma sbtw_midpoint_of_ne {x y : P} (h : x ≠ y) : sbtw R x (midpoint R x y) y := begin have h : midpoint R x y ≠ x, { simp [h] }, convert sbtw_point_reflection_of_ne R h, simp end end linear_ordered_field
51870a5ccf154cae7e89b48729eecc05aab0bb58
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/data/seq/parallel.lean
9d65207055b69187ea78930c9f8a22efcec62b25
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
3,956
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro Parallel computation of a computable sequence of computations by a diagonal enumeration. The important theorems of this operation are proven as terminates_parallel and exists_of_mem_parallel. (This operation is nondeterministic in the sense that it does not honor sequence equivalence (irrelevance of computation time).) -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.seq.wseq import Mathlib.PostPort universes u v namespace Mathlib namespace computation def parallel.aux2 {α : Type u} : List (computation α) → α ⊕ List (computation α) := list.foldr (fun (c : computation α) (o : α ⊕ List (computation α)) => sorry) (sum.inr []) def parallel.aux1 {α : Type u} : List (computation α) × wseq (computation α) → α ⊕ List (computation α) × wseq (computation α) := sorry /-- Parallel computation of an infinite stream of computations, taking the first result -/ def parallel {α : Type u} (S : wseq (computation α)) : computation α := corec sorry ([], S) theorem terminates_parallel.aux {α : Type u} {l : List (computation α)} {S : wseq (computation α)} {c : computation α} : c ∈ l → terminates c → terminates (corec parallel.aux1 (l, S)) := sorry theorem terminates_parallel {α : Type u} {S : wseq (computation α)} {c : computation α} (h : c ∈ S) [T : terminates c] : terminates (parallel S) := sorry theorem exists_of_mem_parallel {α : Type u} {S : wseq (computation α)} {a : α} (h : a ∈ parallel S) : ∃ (c : computation α), ∃ (H : c ∈ S), a ∈ c := sorry theorem map_parallel {α : Type u} {β : Type v} (f : α → β) (S : wseq (computation α)) : map f (parallel S) = parallel (wseq.map (map f) S) := sorry theorem parallel_empty {α : Type u} (S : wseq (computation α)) (h : wseq.head S ~> none) : parallel S = empty α := sorry -- The reason this isn't trivial from exists_of_mem_parallel is because it eliminates to Sort def parallel_rec {α : Type u} {S : wseq (computation α)} (C : α → Sort v) (H : (s : computation α) → s ∈ S → (a : α) → a ∈ s → C a) {a : α} (h : a ∈ parallel S) : C a := let T : wseq (computation (α × computation α)) := wseq.map (fun (c : computation α) => map (fun (a : α) => (a, c)) c) S; (fun (_x : α × computation α) (e : get (parallel T) = _x) => Prod.rec (fun (a' : α) (c : computation α) (e : get (parallel T) = (a', c)) => and.dcases_on sorry fun (ac : a ∈ c) (cs : c ∈ S) => H c cs a ac) _x e) (get (parallel T)) sorry theorem parallel_promises {α : Type u} {S : wseq (computation α)} {a : α} (H : ∀ (s : computation α), s ∈ S → s ~> a) : parallel S ~> a := sorry theorem mem_parallel {α : Type u} {S : wseq (computation α)} {a : α} (H : ∀ (s : computation α), s ∈ S → s ~> a) {c : computation α} (cs : c ∈ S) (ac : a ∈ c) : a ∈ parallel S := mem_of_promises (parallel S) (parallel_promises H) theorem parallel_congr_lem {α : Type u} {S : wseq (computation α)} {T : wseq (computation α)} {a : α} (H : wseq.lift_rel equiv S T) : (∀ (s : computation α), s ∈ S → s ~> a) ↔ ∀ (t : computation α), t ∈ T → t ~> a := sorry -- The parallel operation is only deterministic when all computation paths lead to the same value theorem parallel_congr_left {α : Type u} {S : wseq (computation α)} {T : wseq (computation α)} {a : α} (h1 : ∀ (s : computation α), s ∈ S → s ~> a) (H : wseq.lift_rel equiv S T) : parallel S ~ parallel T := sorry theorem parallel_congr_right {α : Type u} {S : wseq (computation α)} {T : wseq (computation α)} {a : α} (h2 : ∀ (t : computation α), t ∈ T → t ~> a) (H : wseq.lift_rel equiv S T) : parallel S ~ parallel T := parallel_congr_left (iff.mpr (parallel_congr_lem H) h2) H
558af43ba290f592f0a20073731922c5f68f9b9b
82b86ba2ae0d5aed0f01f49c46db5afec0eb2bd7
/stage0/src/Lean/Compiler/ExternAttr.lean
b67206dcc7c745fd25377b6606aad0725959a7ff
[ "Apache-2.0" ]
permissive
banksonian/lean4
3a2e6b0f1eb63aa56ff95b8d07b2f851072d54dc
78da6b3aa2840693eea354a41e89fc5b212a5011
refs/heads/master
1,673,703,624,165
1,605,123,551,000
1,605,123,551,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,857
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Expr import Lean.Environment import Lean.Attributes import Lean.ProjFns import Lean.Meta.Basic namespace Lean inductive ExternEntry | adhoc (backend : Name) | inline (backend : Name) (pattern : String) | standard (backend : Name) (fn : String) | foreign (backend : Name) (fn : String) /- - `@[extern]` encoding: ```.entries = [adhoc `all]``` - `@[extern "level_hash"]` encoding: ```.entries = [standard `all "levelHash"]``` - `@[extern cpp "lean::string_size" llvm "lean_str_size"]` encoding: ```.entries = [standard `cpp "lean::string_size", standard `llvm "leanStrSize"]``` - `@[extern cpp inline "#1 + #2"]` encoding: ```.entries = [inline `cpp "#1 + #2"]``` - `@[extern cpp "foo" llvm adhoc]` encoding: ```.entries = [standard `cpp "foo", adhoc `llvm]``` - `@[extern 2 cpp "io_prim_println"]` encoding: ```.arity? = 2, .entries = [standard `cpp "ioPrimPrintln"]``` -/ structure ExternAttrData := (arity? : Option Nat := none) (entries : List ExternEntry) instance : Inhabited ExternAttrData := ⟨{ entries := [] }⟩ private partial def syntaxToExternEntries (a : Array Syntax) (i : Nat) (entries : List ExternEntry) : Except String (List ExternEntry) := if i == a.size then Except.ok entries else match a[i] with | Syntax.ident _ _ backend _ => let i := i + 1 if i == a.size then Except.error "string or identifier expected" else match a[i].isIdOrAtom? with | some "adhoc" => syntaxToExternEntries a (i+1) (ExternEntry.adhoc backend :: entries) | some "inline" => let i := i + 1 match a[i].isStrLit? with | some pattern => syntaxToExternEntries a (i+1) (ExternEntry.inline backend pattern :: entries) | none => Except.error "string literal expected" | _ => match a[i].isStrLit? with | some fn => syntaxToExternEntries a (i+1) (ExternEntry.standard backend fn :: entries) | none => Except.error "string literal expected" | _ => Except.error "identifier expected" private def syntaxToExternAttrData (s : Syntax) : ExceptT String Id ExternAttrData := match s with | Syntax.missing => Except.ok { entries := [ ExternEntry.adhoc `all ] } | Syntax.node _ args => if args.size == 0 then Except.error "unexpected kind of argument" else let (arity, i) : Option Nat × Nat := match args[0].isNatLit? with | some arity => (some arity, 1) | none => (none, 0) match args[i].isStrLit? with | some str => if args.size == i+1 then Except.ok { arity? := arity, entries := [ ExternEntry.standard `all str ] } else Except.error "invalid extern attribute" | none => match syntaxToExternEntries args i [] with | Except.ok entries => Except.ok { arity? := arity, entries := entries } | Except.error msg => Except.error msg | _ => Except.error "unexpected kind of argument" @[extern "lean_add_extern"] constant addExtern (env : Environment) (n : Name) : ExceptT String Id Environment builtin_initialize externAttr : ParametricAttribute ExternAttrData ← registerParametricAttribute { name := `extern, descr := "builtin and foreign functions", getParam := fun _ stx => ofExcept $ syntaxToExternAttrData stx, afterSet := fun declName _ => do let mut env ← getEnv if env.isProjectionFn declName || env.isConstructor declName then do env ← ofExcept $ addExtern env declName setEnv env else pure (), } @[export lean_get_extern_attr_data] def getExternAttrData (env : Environment) (n : Name) : Option ExternAttrData := externAttr.getParam env n private def parseOptNum : Nat → String.Iterator → Nat → String.Iterator × Nat | 0, it, r => (it, r) | n+1, it, r => if !it.hasNext then (it, r) else let c := it.curr if '0' <= c && c <= '9' then parseOptNum n it.next (r*10 + (c.toNat - '0'.toNat)) else (it, r) def expandExternPatternAux (args : List String) : Nat → String.Iterator → String → String | 0, it, r => r | i+1, it, r => if ¬ it.hasNext then r else let c := it.curr if c ≠ '#' then expandExternPatternAux args i it.next (r.push c) else let it := it.next let (it, j) := parseOptNum it.remainingBytes it 0 let j := j-1 expandExternPatternAux args i it (r ++ args.getD j "") def expandExternPattern (pattern : String) (args : List String) : String := expandExternPatternAux args pattern.length pattern.mkIterator "" def mkSimpleFnCall (fn : String) (args : List String) : String := fn ++ "(" ++ ((args.intersperse ", ").foldl Append.append "") ++ ")" def ExternEntry.backend : ExternEntry → Name | ExternEntry.adhoc n => n | ExternEntry.inline n _ => n | ExternEntry.standard n _ => n | ExternEntry.foreign n _ => n def getExternEntryForAux (backend : Name) : List ExternEntry → Option ExternEntry | [] => none | e::es => if e.backend == `all then some e else if e.backend == backend then some e else getExternEntryForAux backend es def getExternEntryFor (d : ExternAttrData) (backend : Name) : Option ExternEntry := getExternEntryForAux backend d.entries def isExtern (env : Environment) (fn : Name) : Bool := getExternAttrData env fn $.isSome /- We say a Lean function marked as `[extern "<c_fn_nane>"]` is for all backends, and it is implemented using `extern "C"`. Thus, there is no name mangling. -/ def isExternC (env : Environment) (fn : Name) : Bool := match getExternAttrData env fn with | some { entries := [ ExternEntry.standard `all _ ], .. } => true | _ => false def getExternNameFor (env : Environment) (backend : Name) (fn : Name) : Option String := do let data ← getExternAttrData env fn let entry ← getExternEntryFor data backend match entry with | ExternEntry.standard _ n => pure n | ExternEntry.foreign _ n => pure n | _ => failure def getExternConstArity (declName : Name) : CoreM (Option Nat) := do let env ← getEnv match getExternAttrData env declName with | none => pure none | some data => match data.arity? with | some arity => pure arity | none => let cinfo ← getConstInfo declName let (arity, _) ← (Meta.forallTelescopeReducing cinfo.type fun xs _ => pure xs.size : MetaM Nat).run pure (some arity) @[export lean_get_extern_const_arity] def getExternConstArityExport (env : Environment) (declName : Name) : IO (Option Nat) := do try let (arity?, _) ← (getExternConstArity declName).toIO {} { env := env } pure arity? catch _ => pure none end Lean
f7881a1c3a43522c54f8e668c7d3ce9d7e59ed24
d1a52c3f208fa42c41df8278c3d280f075eb020c
/stage0/src/Lean/Meta/AbstractNestedProofs.lean
00c5fd1e96e952beb8650b7ff8820b0d24ef8040
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
3,020
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Meta.Closure namespace Lean.Meta namespace AbstractNestedProofs def isNonTrivialProof (e : Expr) : MetaM Bool := do if !(← isProof e) then pure false else e.withApp fun f args => pure $ !f.isAtomic || args.any fun arg => !arg.isAtomic structure Context where baseName : Name structure State where nextIdx : Nat := 1 abbrev M := ReaderT Context $ MonadCacheT ExprStructEq Expr $ StateRefT State MetaM private def mkAuxLemma (e : Expr) : M Expr := do let ctx ← read let s ← get let lemmaName ← mkAuxName (ctx.baseName ++ `proof) s.nextIdx modify fun s => { s with nextIdx := s.nextIdx + 1 } /- We turn on zeta-expansion to make sure we don't need to perform an expensive `check` step to identify which let-decls can be abstracted. If we design a more efficient test, we can avoid the eager zeta expasion step. It a benchmark created by @selsam, The extra `check` step was a bottleneck. -/ mkAuxDefinitionFor lemmaName e (zeta := true) partial def visit (e : Expr) : M Expr := do if e.isAtomic then pure e else let visitBinders (xs : Array Expr) (k : M Expr) : M Expr := do let localInstances ← getLocalInstances let mut lctx ← getLCtx for x in xs do let xFVarId := x.fvarId! let localDecl ← getLocalDecl xFVarId let type ← visit localDecl.type let localDecl := localDecl.setType type let localDecl ← match localDecl.value? with | some value => do let value ← visit value; pure $ localDecl.setValue value | none => pure localDecl lctx :=lctx.modifyLocalDecl xFVarId fun _ => localDecl withLCtx lctx localInstances k checkCache { val := e : ExprStructEq } fun _ => do if (← isNonTrivialProof e) then mkAuxLemma e else match e with | Expr.lam _ _ _ _ => lambdaLetTelescope e fun xs b => visitBinders xs do mkLambdaFVars xs (← visit b) (usedLetOnly := false) | Expr.letE _ _ _ _ _ => lambdaLetTelescope e fun xs b => visitBinders xs do mkLambdaFVars xs (← visit b) (usedLetOnly := false) | Expr.forallE _ _ _ _ => forallTelescope e fun xs b => visitBinders xs do mkForallFVars xs (← visit b) | Expr.mdata _ b _ => return e.updateMData! (← visit b) | Expr.proj _ _ b _ => return e.updateProj! (← visit b) | Expr.app _ _ _ => e.withApp fun f args => return mkAppN f (← args.mapM visit) | _ => pure e end AbstractNestedProofs /-- Replace proofs nested in `e` with new lemmas. The new lemmas have names of the form `mainDeclName.proof_<idx>` -/ def abstractNestedProofs (mainDeclName : Name) (e : Expr) : MetaM Expr := AbstractNestedProofs.visit e |>.run { baseName := mainDeclName } |>.run |>.run' { nextIdx := 1 } end Lean.Meta
4528b3332f3f8f25c15fb7cf295bc7674fdc6df5
9c2e8d73b5c5932ceb1333265f17febc6a2f0a39
/src/K/semantics.lean
3616a9379ddbaaa4a6cff9e2c928bec2c3c56074
[ "MIT" ]
permissive
minchaowu/ModalTab
2150392108dfdcaffc620ff280a8b55fe13c187f
9bb0bf17faf0554d907ef7bdd639648742889178
refs/heads/master
1,626,266,863,244
1,592,056,874,000
1,592,056,874,000
153,314,364
12
1
null
null
null
null
UTF-8
Lean
false
false
13,267
lean
import .ops open subtype nnf @[simp] def force {states : Type} (k : kripke states) : states → nnf → Prop | s (var n) := k.val n s | s (neg n) := ¬ k.val n s | s (and φ ψ) := force s φ ∧ force s ψ | s (or φ ψ) := force s φ ∨ force s ψ | s (box φ) := ∀ s', k.rel s s' → force s' φ | s (dia φ) := ∃ s', k.rel s s' ∧ force s' φ def sat {st} (k : kripke st) (s) (Γ : list nnf) : Prop := ∀ φ ∈ Γ, force k s φ def unsatisfiable (Γ : list nnf) : Prop := ∀ (st) (k : kripke st) s, ¬ sat k s Γ theorem unsat_singleton {φ} (h : unsatisfiable [φ]) : ∀ {st} (k : kripke st) s, ¬ force k s φ := begin intros st k s hf, apply h, intros ψ hψ, rw list.mem_singleton at hψ, rw hψ, exact hf end theorem sat_of_empty {st} (k : kripke st) (s) : sat k s [] := λ φ h, absurd h $ list.not_mem_nil _ theorem ne_empty_of_unsat {Γ} (h : unsatisfiable Γ): Γ ≠ [] := begin intro heq, rw heq at h, apply h, apply @sat_of_empty nat, apply inhabited_kripke.1, exact 0 end class val_constructible (Γ : list nnf) extends saturated Γ:= (no_contra : ∀ {n}, var n ∈ Γ → neg n ∉ Γ) (v : list ℕ) (hv : ∀ {n}, var n ∈ Γ ↔ n ∈ v) class modal_applicable (Γ : list nnf) extends val_constructible Γ := (φ : nnf) (ex : dia φ ∈ Γ) class model_constructible (Γ : list nnf) extends val_constructible Γ := (no_dia : ∀ {φ}, nnf.dia φ ∉ Γ) -- unbox and undia take a list of formulas, and -- get rid of the outermost box or diamond of each formula respectively def unmodal (Γ : list nnf) : list $ list nnf := list.map (λ d, d :: (unbox Γ)) (undia Γ) theorem unmodal_size (Γ : list nnf) : ∀ (i : list nnf), i ∈ unmodal Γ → (node_size i < node_size Γ) := list.mapp _ _ begin intros φ h, apply undia_size h end def unmodal_mem_box (Γ : list nnf) : ∀ (i : list nnf), i ∈ unmodal Γ → (∀ φ, box φ ∈ Γ → φ ∈ i) := list.mapp _ _ begin intros φ h ψ hψ, right, apply (@unbox_iff Γ ψ).1 hψ end def unmodal_sat_of_sat (Γ : list nnf) : ∀ (i : list nnf), i ∈ unmodal Γ → (∀ {st : Type} (k : kripke st) s Δ (h₁ : ∀ φ, box φ ∈ Γ → box φ ∈ Δ) (h₂ : ∀ φ, dia φ ∈ Γ → dia φ ∈ Δ), sat k s Δ → ∃ s', sat k s' i) := list.mapp _ _ begin intros φ hmem st k s Δ h₁ h₂ h, have : force k s (dia φ), { apply h, apply h₂, rw undia_iff, exact hmem }, rcases this with ⟨w, hrel, hforce⟩, split, swap, { exact w }, { intro ψ, intro hψ, cases hψ, { rw hψ, exact hforce }, { apply (h _ (h₁ _ ((@unbox_iff Γ ψ).2 hψ))) _ hrel} }, end def unmodal_mem_head (Γ : list nnf) : ∀ (i : list nnf), i ∈ unmodal Γ → dia (list.head i) ∈ Γ := list.mapp _ _ begin intros φ hmem, rw undia_iff, exact hmem end def unmodal_unsat_of_unsat (Γ : list nnf) : ∀ (i : list nnf), i ∈ unmodal Γ → Π h : unsatisfiable i, unsatisfiable (dia (list.head i) :: rebox (unbox Γ)) := list.mapp _ _ begin intros φ _, { intro h, intro, intros k s hsat, have ex := hsat (dia φ) (by simp), cases ex with s' hs', apply h st k s', intros ψ hmem, cases hmem, { rw hmem, exact hs'.2 }, { have := (@rebox_iff ψ (unbox Γ)).2 hmem, apply hsat (box ψ) (by right; assumption) s' hs'.1 } } end def mem_unmodal (Γ : list nnf) (φ) (h : φ ∈ undia Γ) : (φ :: unbox Γ) ∈ unmodal Γ := begin apply list.mem_map_of_mem (λ φ, φ :: unbox Γ) h end def unsat_of_unsat_unmodal {Γ : list nnf} (h : modal_applicable Γ) (i) : i ∈ unmodal Γ ∧ unsatisfiable i → unsatisfiable Γ := begin intro hex, intros st k s h, have := unmodal_sat_of_sat Γ i hex.1 k s Γ (λ x hx, hx) (λ x hx, hx) h, cases this with w hw, exact hex.2 _ k w hw end namespace list universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} theorem cons_diff_of_ne_mem [decidable_eq α] {a : α} : Π {l₁ l₂ : list α} (h : a ∉ l₂), (a::l₁).diff l₂ = a :: l₁.diff l₂ | l₁ [] h := by simp | l₁ (hd::tl) h := begin simp, rw erase_cons_tail, apply cons_diff_of_ne_mem, {intro hin, apply h, simp [hin]}, {intro heq, apply h, simp [heq]} end -- TODO: Can we strengthen this? theorem subset_of_diff_filter [decidable_eq α] {a : α} : Π {l₁ l₂ : list α}, l₁.diff (filter (≠ a) l₂) ⊆ a :: l₁.diff l₂ | l₁ [] := by simp | l₁ (hd::tl) := begin by_cases heq : hd = a, {rw heq, simp, by_cases ha : a ∈ l₁, {have hsub₁ := @subset_of_diff_filter l₁ tl, have hsp := @subperm_cons_diff _ _ a (l₁.erase a) tl, have hsub₂ := subperm.subset hsp, have hsub := (perm.subset (perm.diff_right tl (perm_cons_erase ha))), intros x hx, cases hsub₁ hx with hxa, {left, exact hxa}, {exact hsub₂ (hsub h)}}, {rw erase_of_not_mem ha, apply subset_of_diff_filter}}, {simp [heq], apply subset_of_diff_filter} end end list /- Regular lemmas for the propositional part. -/ section variables (φ ψ : nnf) (Γ₁ Γ₂ Δ : list nnf) {st : Type} variables (k : kripke st) (s : st) open list theorem sat_subset (h₁ : Γ₁ ⊆ Γ₂) (h₂ : sat k s Γ₂) : sat k s Γ₁ := λ x hx, h₂ _ (h₁ hx) theorem unsat_subset (h₁ : Γ₁ ⊆ Γ₂) (h₂ : unsatisfiable Γ₁) : unsatisfiable Γ₂ := λ st k s h, (h₂ st k s (sat_subset _ Γ₂ _ _ h₁ h)) theorem sat_sublist (h₁ : Γ₁ <+ Γ₂) (h₂ :sat k s Γ₂) : sat k s Γ₁ := sat_subset _ _ _ _ (sublist.subset h₁) h₂ theorem unsat_sublist (h₁ : Γ₁ <+ Γ₂) (h₂ : unsatisfiable Γ₁) : unsatisfiable Γ₂ := λ st k s h, (h₂ st k s (sat_sublist _ Γ₂ _ _ h₁ h)) theorem unsat_contra {Δ n} : var n ∈ Δ → neg n ∈ Δ → unsatisfiable Δ:= begin intros h₁ h₂, intros v hsat, intros s hsat, have := hsat _ h₁, have := hsat _ h₂, simpa end theorem sat_of_and : force k s (and φ ψ) ↔ (force k s φ) ∧ (force k s ψ) := by split; {intro, simpa}; {intro, simpa} theorem sat_of_sat_erase (h₁ : sat k s $ Δ.erase φ) (h₂ : force k s φ) : sat k s Δ := begin intro ψ, intro h, by_cases (ψ = φ), {rw h, assumption}, {have : ψ ∈ Δ.erase φ, rw mem_erase_of_ne, assumption, exact h, apply h₁, assumption} end theorem unsat_and_of_unsat_split (h₁ : and φ ψ ∈ Δ) (h₂ : unsatisfiable $ φ :: ψ :: Δ.erase (and φ ψ)) : unsatisfiable Δ := begin intro st, intros, intro h, apply h₂, swap 3, exact k, swap, exact s, intro e, intro he, cases he, {rw he, have := h _ h₁, rw sat_of_and at this, exact this.1}, {cases he, {rw he, have := h _ h₁, rw sat_of_and at this, exact this.2}, {have := h _ h₁, apply h, apply mem_of_mem_erase he} } end theorem sat_and_of_sat_split (h₁ : and φ ψ ∈ Δ) (h₂ : sat k s $ φ :: ψ :: Δ.erase (and φ ψ)) : sat k s Δ := begin intro e, intro he, by_cases (e = and φ ψ), { rw h, split, repeat {apply h₂, simp} }, { have : e ∈ Δ.erase (and φ ψ), { rw mem_erase_of_ne, repeat { assumption } }, apply h₂, simp [this] } end theorem unsat_or_of_unsat_split (h : or φ ψ ∈ Δ) (h₁ : unsatisfiable $ φ :: Δ.erase (nnf.or φ ψ)) (h₂ : unsatisfiable $ ψ :: Δ.erase (nnf.or φ ψ)) : unsatisfiable $ Δ := begin intro, intros, intro hsat, have := hsat _ h, cases this, {apply h₁, swap 3, exact k, swap, exact s, intro e, intro he, cases he, rw he, exact this, apply hsat, apply mem_of_mem_erase he}, {apply h₂, swap 3, exact k, swap, exact s, intro e, intro he, cases he, rw he, exact this, apply hsat, apply mem_of_mem_erase he} end theorem sat_or_of_sat_split_left (h : or φ ψ ∈ Δ) (hl : sat k s $ φ :: Δ.erase (nnf.or φ ψ)) : sat k s Δ := begin intros e he, by_cases (e = or φ ψ), { rw h, left, apply hl, simp}, {have : e ∈ Δ.erase (or φ ψ), { rw mem_erase_of_ne, repeat { assumption } }, apply hl, simp [this]} end theorem sat_or_of_sat_split_right (h : or φ ψ ∈ Δ) (hl : sat k s $ ψ :: Δ.erase (nnf.or φ ψ)) : sat k s Δ := begin intros e he, by_cases (e = or φ ψ), { rw h, right, apply hl, simp}, { have : e ∈ Δ.erase (or φ ψ), { rw mem_erase_of_ne, repeat { assumption } }, apply hl, simp [this] } end end def unmodal_jump (Γ : list nnf) : ∀ (i : list nnf), i ∈ unmodal Γ → Π Δ st (k : kripke st) s (hsat : sat k s (Γ.diff Δ)) (hdia : dia i.head ∉ Δ), ∃ s, sat k s (i.diff (list.filter (≠ i.head) (unbox Δ))) := list.mapp _ _ begin intros x hx Δ st k s hsat hdia, rw list.cons_diff_of_ne_mem, swap, {intro hmem, rw [list.mem_filter] at hmem, have := hmem.2, simp at this, exact this}, { rw [←undia_iff] at hx, have := hsat _ (list.mem_diff_of_mem hx hdia), rcases this with ⟨w, hw⟩, split, swap, {exact w}, { apply sat_subset, swap 3, { exact x::list.diff (unbox Γ) (unbox Δ) }, { intros b hb, cases hb, { simp [hb] }, { apply list.subset_of_diff_filter, exact hb } }, { rw unbox_diff, intros c hc, cases hc, {rw hc, exact hw.2}, {have := (@unbox_iff (list.diff Γ Δ) c).2 hc, have hforce := hsat _ this, apply hforce, exact hw.1} } } } end /- Part of the soundness -/ theorem unsat_of_closed_and {Γ Δ} (i : and_instance Γ Δ) (h : unsatisfiable Δ) : unsatisfiable Γ := by cases i; { apply unsat_and_of_unsat_split, repeat {assumption} } theorem unsat_of_closed_or {Γ₁ Γ₂ Δ : list nnf} (i : or_instance Δ Γ₁ Γ₂) (h₁ : unsatisfiable Γ₁) (h₂ : unsatisfiable Γ₂) : unsatisfiable Δ := by cases i; {apply unsat_or_of_unsat_split, repeat {assumption} } /- Tree models -/ inductive model | cons : list ℕ → list model → model instance : decidable_eq model := by tactic.mk_dec_eq_instance instance inhabited_model : inhabited model := ⟨model.cons [] []⟩ open model @[simp] def mval : ℕ → model → bool | p (cons v r) := p ∈ v @[simp] def mrel : model → model → bool | (cons v r) m := m ∈ r theorem mem_of_mrel_tt : Π {v r m}, mrel (cons v r) m = tt → m ∈ r := begin intros v r m h, by_contradiction, simpa using h end @[simp] def builder : kripke model := {val := λ n s, mval n s, rel := λ s₁ s₂, mrel s₁ s₂} inductive batch_sat : list model → list (list nnf) → Prop | bs_nil : batch_sat [] [] | bs_cons (m Γ l₁ l₂) : sat builder m Γ → batch_sat l₁ l₂ → batch_sat (m::l₁) (Γ::l₂) open batch_sat theorem bs_ex : Π l Γ, batch_sat l Γ → ∀ m ∈ l, ∃ i ∈ Γ, sat builder m i | l Γ bs_nil := λ m hm, by simpa using hm | l Γ (bs_cons m Δ l₁ l₂ h hbs) := begin intros n hn, cases hn, {split, swap, exact Δ, split, simp, rw hn, exact h}, {have : ∃ (i : list nnf) (H : i ∈ l₂), sat builder n i, {apply bs_ex, exact hbs, exact hn}, {rcases this with ⟨w, hw, hsat⟩, split, swap, exact w, split, {simp [hw]}, {exact hsat} } } end theorem bs_forall : Π l Γ, batch_sat l Γ → ∀ i ∈ Γ, ∃ m ∈ l, sat builder m i | l Γ bs_nil := λ m hm, by simpa using hm | l Γ (bs_cons m Δ l₁ l₂ h hbs) := begin intros i hi, cases hi, {split, swap, exact m, split, simp, rw hi, exact h}, {have : ∃ (n : model) (H : n ∈ l₁), sat builder n i, {apply bs_forall, exact hbs, exact hi}, {rcases this with ⟨w, hw, hsat⟩, split, swap, exact w, split, {simp [hw]}, {exact hsat} } } end theorem sat_of_batch_sat : Π l Γ (h : modal_applicable Γ), batch_sat l (unmodal Γ) → sat builder (cons h.v l) Γ := begin intros l Γ h hbs φ hφ, cases hfml : φ, case nnf.var : n {rw hfml at hφ, simp, rw ←h.hv, exact hφ}, case nnf.box : ψ {intros s' hs', have hmem := mem_of_mrel_tt hs', have := bs_ex l (unmodal Γ) hbs s' hmem, rcases this with ⟨w, hw, hsat⟩, have := unmodal_mem_box Γ w hw ψ _, swap, {rw ←hfml, exact hφ}, {apply hsat, exact this} }, case nnf.dia : ψ {dsimp, have := bs_forall l (unmodal Γ) hbs (ψ :: unbox Γ) _, swap, {apply mem_unmodal, rw [←undia_iff, ←hfml], exact hφ}, {rcases this with ⟨w, hw, hsat⟩, split, swap, exact w, split, {simp [hw]}, {apply hsat, simp} } }, case nnf.neg : n {rw hfml at hφ, have : var n ∉ Γ, {intro hin, have := h.no_contra, have := this hin, contradiction}, simp, rw ←h.hv, exact this }, case nnf.and : φ ψ {rw hfml at hφ, have := h.no_and, have := @this φ ψ, contradiction}, case nnf.or : φ ψ {rw hfml at hφ, have := h.no_or, have := @this φ ψ, contradiction} end theorem build_model : Π Γ (h : model_constructible Γ), sat builder (cons h.v []) Γ := begin intros, intro, intro hmem, cases heq : φ, case nnf.var : n {rw [heq,h.hv] at hmem, simp [hmem]}, case nnf.neg : n {rw heq at hmem, simp, rw ←h.hv, intro hin, exfalso, apply h.no_contra, repeat {assumption} }, case nnf.box : φ {simp}, case nnf.and : φ ψ { rw heq at hmem, exfalso, apply h.no_and, assumption}, case nnf.or : φ ψ { rw heq at hmem, exfalso, apply h.no_or, assumption}, case nnf.dia : φ { rw heq at hmem, exfalso, apply h.no_dia, assumption}, end
4d64085d8ae65207dc4d138ad4b7f586cdf7e30a
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/measure_theory/function/conditional_expectation/indicator.lean
75145fe2c871c5d336b77ddebd03df048db2393c
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
9,859
lean
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import measure_theory.function.conditional_expectation.basic /-! # Conditional expectation of indicator functions This file proves some results about the conditional expectation of an indicator function and as a corollary, also proves several results about the behaviour of the conditional expectation on a restricted measure. ## Main result * `measure_theory.condexp_indicator`: If `s` is a `m`-measurable set, then the conditional expectation of the indicator function of `s` is almost everywhere equal to the indicator of `s` of the conditional expectation. Namely, `𝔼[s.indicator f | m] = s.indicator 𝔼[f | m]` a.e. -/ noncomputable theory open topological_space measure_theory.Lp filter continuous_linear_map open_locale nnreal ennreal topological_space big_operators measure_theory namespace measure_theory variables {α 𝕜 E : Type*} {m m0 : measurable_space α} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] {μ : measure α} {f : α → E} {s : set α} lemma condexp_ae_eq_restrict_zero (hs : measurable_set[m] s) (hf : f =ᵐ[μ.restrict s] 0) : μ[f | m] =ᵐ[μ.restrict s] 0 := begin by_cases hm : m ≤ m0, swap, { simp_rw condexp_of_not_le hm, }, by_cases hμm : sigma_finite (μ.trim hm), swap, { simp_rw condexp_of_not_sigma_finite hm hμm, }, haveI : sigma_finite (μ.trim hm) := hμm, haveI : sigma_finite ((μ.restrict s).trim hm), { rw ← restrict_trim hm _ hs, exact restrict.sigma_finite _ s, }, by_cases hf_int : integrable f μ, swap, { rw condexp_undef hf_int, }, refine ae_eq_of_forall_set_integral_eq_of_sigma_finite' hm _ _ _ _ _, { exact λ t ht hμt, integrable_condexp.integrable_on.integrable_on, }, { exact λ t ht hμt, (integrable_zero _ _ _).integrable_on, }, { intros t ht hμt, rw [measure.restrict_restrict (hm _ ht), set_integral_condexp hm hf_int (ht.inter hs), ← measure.restrict_restrict (hm _ ht)], refine set_integral_congr_ae (hm _ ht) _, filter_upwards [hf] with x hx h using hx, }, { exact strongly_measurable_condexp.ae_strongly_measurable', }, { exact strongly_measurable_zero.ae_strongly_measurable', }, end /-- Auxiliary lemma for `condexp_indicator`. -/ lemma condexp_indicator_aux (hs : measurable_set[m] s) (hf : f =ᵐ[μ.restrict sᶜ] 0) : μ[s.indicator f | m] =ᵐ[μ] s.indicator (μ[f | m]) := begin by_cases hm : m ≤ m0, swap, { simp_rw [condexp_of_not_le hm, set.indicator_zero'], }, have hsf_zero : ∀ g : α → E, g =ᵐ[μ.restrict sᶜ] 0 → s.indicator g =ᵐ[μ] g, from λ g, indicator_ae_eq_of_restrict_compl_ae_eq_zero (hm _ hs), refine ((hsf_zero (μ[f | m]) (condexp_ae_eq_restrict_zero hs.compl hf)).trans _).symm, exact condexp_congr_ae (hsf_zero f hf).symm, end /-- The conditional expectation of the indicator of a function over an `m`-measurable set with respect to the σ-algebra `m` is a.e. equal to the indicator of the conditional expectation. -/ lemma condexp_indicator (hf_int : integrable f μ) (hs : measurable_set[m] s) : μ[s.indicator f | m] =ᵐ[μ] s.indicator (μ[f | m]) := begin by_cases hm : m ≤ m0, swap, { simp_rw [condexp_of_not_le hm, set.indicator_zero'], }, by_cases hμm : sigma_finite (μ.trim hm), swap, { simp_rw [condexp_of_not_sigma_finite hm hμm, set.indicator_zero'], }, haveI : sigma_finite (μ.trim hm) := hμm, -- use `have` to perform what should be the first calc step because of an error I don't -- understand have : s.indicator (μ[f|m]) =ᵐ[μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m]), by rw set.indicator_self_add_compl s f, refine (this.trans _).symm, calc s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) =ᵐ[μ] s.indicator (μ[s.indicator f|m] + μ[sᶜ.indicator f|m]) : begin have : μ[s.indicator f + sᶜ.indicator f|m] =ᵐ[μ] μ[s.indicator f|m] + μ[sᶜ.indicator f|m], from condexp_add (hf_int.indicator (hm _ hs)) (hf_int.indicator (hm _ hs.compl)), filter_upwards [this] with x hx, classical, rw [set.indicator_apply, set.indicator_apply, hx], end ... = s.indicator (μ[s.indicator f|m]) + s.indicator (μ[sᶜ.indicator f|m]) : s.indicator_add' _ _ ... =ᵐ[μ] s.indicator (μ[s.indicator f|m]) + s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) : begin refine filter.eventually_eq.rfl.add _, have : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᵐ[μ] μ[sᶜ.indicator f|m], { refine (condexp_indicator_aux hs.compl _).symm.trans _, { exact indicator_ae_eq_restrict_compl (hm _ hs.compl), }, { rw [set.indicator_indicator, set.inter_self], }, }, filter_upwards [this] with x hx, by_cases hxs : x ∈ s, { simp only [hx, hxs, set.indicator_of_mem], }, { simp only [hxs, set.indicator_of_not_mem, not_false_iff], }, end ... =ᵐ[μ] s.indicator (μ[s.indicator f|m]) : by rw [set.indicator_indicator, set.inter_compl_self, set.indicator_empty', add_zero] ... =ᵐ[μ] μ[s.indicator f|m] : begin refine (condexp_indicator_aux hs _).symm.trans _, { exact indicator_ae_eq_restrict_compl (hm _ hs), }, { rw [set.indicator_indicator, set.inter_self], }, end end lemma condexp_restrict_ae_eq_restrict (hm : m ≤ m0) [sigma_finite (μ.trim hm)] (hs_m : measurable_set[m] s) (hf_int : integrable f μ) : (μ.restrict s)[f | m] =ᵐ[μ.restrict s] μ[f | m] := begin haveI : sigma_finite ((μ.restrict s).trim hm), { rw ← restrict_trim hm _ hs_m, apply_instance, }, rw ae_eq_restrict_iff_indicator_ae_eq (hm _ hs_m), swap, { apply_instance, }, refine eventually_eq.trans _ (condexp_indicator hf_int hs_m), refine ae_eq_condexp_of_forall_set_integral_eq hm (hf_int.indicator (hm _ hs_m)) _ _ _, { intros t ht hμt, rw [← integrable_indicator_iff (hm _ ht), set.indicator_indicator, set.inter_comm, ← set.indicator_indicator], suffices h_int_restrict : integrable (t.indicator ((μ.restrict s)[f|m])) (μ.restrict s), { rw [integrable_indicator_iff (hm _ hs_m), integrable_on], rw [integrable_indicator_iff (hm _ ht), integrable_on] at h_int_restrict ⊢, exact h_int_restrict, }, exact integrable_condexp.indicator (hm _ ht), }, { intros t ht hμt, calc ∫ x in t, s.indicator ((μ.restrict s)[f|m]) x ∂μ = ∫ x in t, ((μ.restrict s)[f|m]) x ∂(μ.restrict s) : by rw [integral_indicator (hm _ hs_m), measure.restrict_restrict (hm _ hs_m), measure.restrict_restrict (hm _ ht), set.inter_comm] ... = ∫ x in t, f x ∂(μ.restrict s) : set_integral_condexp hm hf_int.integrable_on ht ... = ∫ x in t, s.indicator f x ∂μ : by rw [integral_indicator (hm _ hs_m), measure.restrict_restrict (hm _ hs_m), measure.restrict_restrict (hm _ ht), set.inter_comm], }, { exact (strongly_measurable_condexp.indicator hs_m).ae_strongly_measurable', }, end /-- If the restriction to a `m`-measurable set `s` of a σ-algebra `m` is equal to the restriction to `s` of another σ-algebra `m₂` (hypothesis `hs`), then `μ[f | m] =ᵐ[μ.restrict s] μ[f | m₂]`. -/ lemma condexp_ae_eq_restrict_of_measurable_space_eq_on {m m₂ m0 : measurable_space α} {μ : measure α} (hm : m ≤ m0) (hm₂ : m₂ ≤ m0) [sigma_finite (μ.trim hm)] [sigma_finite (μ.trim hm₂)] (hs_m : measurable_set[m] s) (hs : ∀ t, measurable_set[m] (s ∩ t) ↔ measurable_set[m₂] (s ∩ t)) : μ[f | m] =ᵐ[μ.restrict s] μ[f | m₂] := begin rw ae_eq_restrict_iff_indicator_ae_eq (hm _ hs_m), have hs_m₂ : measurable_set[m₂] s, { rwa [← set.inter_univ s, ← hs set.univ, set.inter_univ], }, by_cases hf_int : integrable f μ, swap, { simp_rw condexp_undef hf_int, }, refine ((condexp_indicator hf_int hs_m).symm.trans _).trans (condexp_indicator hf_int hs_m₂), refine ae_eq_of_forall_set_integral_eq_of_sigma_finite' hm₂ (λ s hs hμs, integrable_condexp.integrable_on) (λ s hs hμs, integrable_condexp.integrable_on) _ _ strongly_measurable_condexp.ae_strongly_measurable', swap, { have : strongly_measurable[m] (μ[s.indicator f | m]) := strongly_measurable_condexp, refine this.ae_strongly_measurable'.ae_strongly_measurable'_of_measurable_space_le_on hm hs_m (λ t, (hs t).mp) _, exact condexp_ae_eq_restrict_zero hs_m.compl (indicator_ae_eq_restrict_compl (hm _ hs_m)), }, intros t ht hμt, have : ∫ x in t, μ[s.indicator f|m] x ∂μ = ∫ x in s ∩ t, μ[s.indicator f|m] x ∂μ, { rw ← integral_add_compl (hm _ hs_m) integrable_condexp.integrable_on, suffices : ∫ x in sᶜ, μ[s.indicator f|m] x ∂μ.restrict t = 0, by rw [this, add_zero, measure.restrict_restrict (hm _ hs_m)], rw measure.restrict_restrict (measurable_set.compl (hm _ hs_m)), suffices : μ[s.indicator f|m] =ᵐ[μ.restrict sᶜ] 0, { rw [set.inter_comm, ← measure.restrict_restrict (hm₂ _ ht)], calc ∫ (x : α) in t, μ[s.indicator f|m] x ∂μ.restrict sᶜ = ∫ (x : α) in t, 0 ∂μ.restrict sᶜ : begin refine set_integral_congr_ae (hm₂ _ ht) _, filter_upwards [this] with x hx h using hx, end ... = 0 : integral_zero _ _, }, refine condexp_ae_eq_restrict_zero hs_m.compl _, exact indicator_ae_eq_restrict_compl (hm _ hs_m), }, have hst_m : measurable_set[m] (s ∩ t) := (hs _).mpr (hs_m₂.inter ht), simp_rw [this, set_integral_condexp hm₂ (hf_int.indicator (hm _ hs_m)) ht, set_integral_condexp hm (hf_int.indicator (hm _ hs_m)) hst_m, integral_indicator (hm _ hs_m), measure.restrict_restrict (hm _ hs_m), ← set.inter_assoc, set.inter_self], end end measure_theory
ddb1821be140ee950ace241e9bf2fc1e5bf09728
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
/src/Lean/Parser/Do.lean
5adfafc70df4d7f521a573c94a64ef743d282d2f
[ "Apache-2.0" ]
permissive
williamdemeo/lean4
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
refs/heads/master
1,678,305,356,877
1,614,708,995,000
1,614,708,995,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,254
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Parser.Term namespace Lean namespace Parser builtin_initialize registerBuiltinParserAttribute `builtinDoElemParser `doElem builtin_initialize registerBuiltinDynamicParserAttribute `doElemParser `doElem @[inline] def doElemParser (rbp : Nat := 0) : Parser := categoryParser `doElem rbp namespace Term def leftArrow : Parser := unicodeSymbol " ← " " <- " @[builtinTermParser] def liftMethod := parser!:minPrec leftArrow >> termParser def doSeqItem := parser! ppLine >> doElemParser >> optional "; " def doSeqIndent := parser! many1Indent doSeqItem def doSeqBracketed := parser! "{" >> withoutPosition (many1 doSeqItem) >> ppLine >> "}" def doSeq := doSeqBracketed <|> doSeqIndent def termBeforeDo := withForbidden "do" termParser attribute [runBuiltinParserAttributeHooks] doSeq termBeforeDo builtin_initialize registerParserAlias! "doSeq" doSeq registerParserAlias! "termBeforeDo" termBeforeDo def notFollowedByRedefinedTermToken := notFollowedBy ("if" <|> "match" <|> "let" <|> "have" <|> "do" <|> "dbgTrace!" <|> "assert!" <|> "for" <|> "unless" <|> "return" <|> symbol "try") "token at 'do' element" @[builtinDoElemParser] def doLet := parser! "let " >> optional "mut " >> letDecl @[builtinDoElemParser] def doLetRec := parser! group ("let " >> nonReservedSymbol "rec ") >> letRecDecls def doIdDecl := parser! atomic (ident >> optType >> leftArrow) >> doElemParser def doPatDecl := parser! atomic (termParser >> leftArrow) >> doElemParser >> optional (checkColGt >> " | " >> doElemParser) @[builtinDoElemParser] def doLetArrow := parser! withPosition ("let " >> optional "mut " >> (doIdDecl <|> doPatDecl)) -- We use `letIdDeclNoBinders` to define `doReassign`. -- Motivation: we do not reassign functions, and avoid parser conflict def letIdDeclNoBinders := node `Lean.Parser.Term.letIdDecl $ atomic (ident >> pushNone >> optType >> " := ") >> termParser @[builtinDoElemParser] def doReassign := parser! notFollowedByRedefinedTermToken >> (letIdDeclNoBinders <|> letPatDecl) @[builtinDoElemParser] def doReassignArrow := parser! notFollowedByRedefinedTermToken >> withPosition (doIdDecl <|> doPatDecl) @[builtinDoElemParser] def doHave := parser! "have " >> Term.haveDecl /- In `do` blocks, we support `if` without an `else`. Thus, we use indentation to prevent examples such as ``` if c_1 then if c_2 then action_1 else action_2 ``` from being parsed as ``` if c_1 then { if c_2 then { action_1 } else { action_2 } } ``` We also have special support for `else if` because we don't want to write ``` if c_1 then action_1 else if c_2 then action_2 else action_3 ``` -/ def elseIf := atomic (group (withPosition (" else " >> checkLineEq >> " if "))) -- ensure `if $e then ...` still binds to `e:term` def doIfLetPure := parser! " := " >> termParser def doIfLetBind := parser! " ← " >> termParser def doIfLet := nodeWithAntiquot "doIfLet" `Lean.Parser.Term.doIfLet <| "let " >> termParser >> (doIfLetPure <|> doIfLetBind) def doIfProp := nodeWithAntiquot "doIfProp" `Lean.Parser.Term.doIfProp <| optIdent >> termParser def doIfCond := withAntiquot (mkAntiquot "doIfCond" none (anonymous := false)) <| doIfLet <|> doIfProp @[builtinDoElemParser] def doIf := parser! withPosition $ "if " >> doIfCond >> " then " >> doSeq >> many (checkColGe "'else if' in 'do' must be indented" >> group (elseIf >> doIfCond >> " then " >> doSeq)) >> optional (checkColGe "'else' in 'do' must be indented" >> " else " >> doSeq) @[builtinDoElemParser] def doUnless := parser! "unless " >> withForbidden "do" termParser >> "do " >> doSeq def doForDecl := parser! termParser >> " in " >> withForbidden "do" termParser @[builtinDoElemParser] def doFor := parser! "for " >> sepBy1 doForDecl ", " >> "do " >> doSeq def doMatchAlts := matchAlts (rhsParser := doSeq) @[builtinDoElemParser] def doMatch := parser!:leadPrec "match " >> sepBy1 matchDiscr ", " >> optType >> " with " >> doMatchAlts def doCatch := parser! atomic ("catch " >> binderIdent) >> optional (" : " >> termParser) >> darrow >> doSeq def doCatchMatch := parser! "catch " >> doMatchAlts def doFinally := parser! "finally " >> doSeq @[builtinDoElemParser] def doTry := parser! "try " >> doSeq >> many (doCatch <|> doCatchMatch) >> optional doFinally @[builtinDoElemParser] def doBreak := parser! "break" @[builtinDoElemParser] def doContinue := parser! "continue" @[builtinDoElemParser] def doReturn := parser!:leadPrec withPosition ("return " >> optional (checkLineEq >> termParser)) @[builtinDoElemParser] def doDbgTrace := parser!:leadPrec "dbgTrace! " >> ((interpolatedStr termParser) <|> termParser) @[builtinDoElemParser] def doAssert := parser!:leadPrec "assert! " >> termParser /- We use `notFollowedBy` to avoid counterintuitive behavior. For example, the `if`-term parser doesn't enforce indentation restrictions, but we don't want it to be used when `doIf` fails. Note that parser priorities would not solve this problem since the `doIf` parser is failing while the `if` parser is succeeding. -/ @[builtinDoElemParser] def doExpr := parser! notFollowedByRedefinedTermToken >> termParser @[builtinDoElemParser] def doNested := parser! "do " >> doSeq @[builtinTermParser] def «do» := parser!:maxPrec "do " >> doSeq @[builtinTermParser] def doElem.quot : Parser := parser! "`(doElem|" >> toggleInsideQuot doElemParser >> ")" /- macros for using `unless`, `for`, `try`, `return` as terms. They expand into `do unless ...`, `do for ...`, `do try ...`, and `do return ...` -/ @[builtinTermParser] def termUnless := parser! "unless " >> withForbidden "do" termParser >> "do " >> doSeq @[builtinTermParser] def termFor := parser! "for " >> sepBy1 doForDecl ", " >> "do " >> doSeq @[builtinTermParser] def termTry := parser! "try " >> doSeq >> many (doCatch <|> doCatchMatch) >> optional doFinally @[builtinTermParser] def termReturn := parser!:leadPrec withPosition ("return " >> optional (checkLineEq >> termParser)) end Term end Parser end Lean
a62b6a6e74ca9f04c07002832e1a36ea4b8f41e3
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/linear_algebra/multilinear/basic.lean
1bc50a50377a7730ccc1d17e9628b20916dae44d
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
61,903
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import linear_algebra.basic import algebra.algebra.basic import algebra.big_operators.order import algebra.big_operators.ring import data.list.fin_range import data.fintype.big_operators import data.fintype.sort /-! # Multilinear maps > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We define multilinear maps as maps from `Π(i : ι), M₁ i` to `M₂` which are linear in each coordinate. Here, `M₁ i` and `M₂` are modules over a ring `R`, and `ι` is an arbitrary type (although some statements will require it to be a fintype). This space, denoted by `multilinear_map R M₁ M₂`, inherits a module structure by pointwise addition and multiplication. ## Main definitions * `multilinear_map R M₁ M₂` is the space of multilinear maps from `Π(i : ι), M₁ i` to `M₂`. * `f.map_smul` is the multiplicativity of the multilinear map `f` along each coordinate. * `f.map_add` is the additivity of the multilinear map `f` along each coordinate. * `f.map_smul_univ` expresses the multiplicativity of `f` over all coordinates at the same time, writing `f (λi, c i • m i)` as `(∏ i, c i) • f m`. * `f.map_add_univ` expresses the additivity of `f` over all coordinates at the same time, writing `f (m + m')` as the sum over all subsets `s` of `ι` of `f (s.piecewise m m')`. * `f.map_sum` expresses `f (Σ_{j₁} g₁ j₁, ..., Σ_{jₙ} gₙ jₙ)` as the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all possible functions. We also register isomorphisms corresponding to currying or uncurrying variables, transforming a multilinear function `f` on `n+1` variables into a linear function taking values in multilinear functions in `n` variables, and into a multilinear function in `n` variables taking values in linear functions. These operations are called `f.curry_left` and `f.curry_right` respectively (with inverses `f.uncurry_left` and `f.uncurry_right`). These operations induce linear equivalences between spaces of multilinear functions in `n+1` variables and spaces of linear functions into multilinear functions in `n` variables (resp. multilinear functions in `n` variables taking values in linear functions), called respectively `multilinear_curry_left_equiv` and `multilinear_curry_right_equiv`. ## Implementation notes Expressing that a map is linear along the `i`-th coordinate when all other coordinates are fixed can be done in two (equivalent) different ways: * fixing a vector `m : Π(j : ι - i), M₁ j.val`, and then choosing separately the `i`-th coordinate * fixing a vector `m : Πj, M₁ j`, and then modifying its `i`-th coordinate The second way is more artificial as the value of `m` at `i` is not relevant, but it has the advantage of avoiding subtype inclusion issues. This is the definition we use, based on `function.update` that allows to change the value of `m` at `i`. Note that the use of `function.update` requires a `decidable_eq ι` term to appear somewhere in the statement of `multilinear_map.map_add'` and `multilinear_map.map_smul'`. Three possible choices are: 1. Requiring `decidable_eq ι` as an argument to `multilinear_map` (as we did originally). 2. Using `classical.dec_eq ι` in the statement of `map_add'` and `map_smul'`. 3. Quantifying over all possible `decidable_eq ι` instances in the statement of `map_add'` and `map_smul'`. Option 1 works fine, but puts unecessary constraints on the user (the zero map certainly does not need decidability). Option 2 looks great at first, but in the common case when `ι = fin n` it introduces non-defeq decidability instance diamonds within the context of proving `map_add'` and `map_smul'`, of the form `fin.decidable_eq n = classical.dec_eq (fin n)`. Option 3 of course does something similar, but of the form `fin.decidable_eq n = _inst`, which is much easier to clean up since `_inst` is a free variable and so the equality can just be substituted. -/ open function fin set open_locale big_operators universes u v v' v₁ v₂ v₃ w u' variables {R : Type u} {ι : Type u'} {n : ℕ} {M : fin n.succ → Type v} {M₁ : ι → Type v₁} {M₂ : Type v₂} {M₃ : Type v₃} {M' : Type v'} /-- Multilinear maps over the ring `R`, from `Πi, M₁ i` to `M₂` where `M₁ i` and `M₂` are modules over `R`. -/ structure multilinear_map (R : Type u) {ι : Type u'} (M₁ : ι → Type v) (M₂ : Type w) [semiring R] [∀i, add_comm_monoid (M₁ i)] [add_comm_monoid M₂] [∀i, module R (M₁ i)] [module R M₂] := (to_fun : (Πi, M₁ i) → M₂) (map_add' : ∀ [decidable_eq ι] (m : Πi, M₁ i) (i : ι) (x y : M₁ i), by exactI to_fun (update m i (x + y)) = to_fun (update m i x) + to_fun (update m i y)) (map_smul' : ∀ [decidable_eq ι] (m : Πi, M₁ i) (i : ι) (c : R) (x : M₁ i), by exactI to_fun (update m i (c • x)) = c • to_fun (update m i x)) namespace multilinear_map section semiring variables [semiring R] [∀i, add_comm_monoid (M i)] [∀i, add_comm_monoid (M₁ i)] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M'] [∀i, module R (M i)] [∀i, module R (M₁ i)] [module R M₂] [module R M₃] [module R M'] (f f' : multilinear_map R M₁ M₂) instance : has_coe_to_fun (multilinear_map R M₁ M₂) (λ f, (Πi, M₁ i) → M₂) := ⟨to_fun⟩ initialize_simps_projections multilinear_map (to_fun → apply) @[simp] lemma to_fun_eq_coe : f.to_fun = f := rfl @[simp] lemma coe_mk (f : (Π i, M₁ i) → M₂) (h₁ h₂ ) : ⇑(⟨f, h₁, h₂⟩ : multilinear_map R M₁ M₂) = f := rfl theorem congr_fun {f g : multilinear_map R M₁ M₂} (h : f = g) (x : Π i, M₁ i) : f x = g x := congr_arg (λ h : multilinear_map R M₁ M₂, h x) h theorem congr_arg (f : multilinear_map R M₁ M₂) {x y : Π i, M₁ i} (h : x = y) : f x = f y := congr_arg (λ x : Π i, M₁ i, f x) h theorem coe_injective : injective (coe_fn : multilinear_map R M₁ M₂ → ((Π i, M₁ i) → M₂)) := by { intros f g h, cases f, cases g, cases h, refl } @[simp, norm_cast] theorem coe_inj {f g : multilinear_map R M₁ M₂} : (f : (Π i, M₁ i) → M₂) = g ↔ f = g := coe_injective.eq_iff @[ext] theorem ext {f f' : multilinear_map R M₁ M₂} (H : ∀ x, f x = f' x) : f = f' := coe_injective (funext H) theorem ext_iff {f g : multilinear_map R M₁ M₂} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, λ h, ext h⟩ @[simp] lemma mk_coe (f : multilinear_map R M₁ M₂) (h₁ h₂) : (⟨f, h₁, h₂⟩ : multilinear_map R M₁ M₂) = f := by { ext, refl, } @[simp] protected lemma map_add [decidable_eq ι] (m : Πi, M₁ i) (i : ι) (x y : M₁ i) : f (update m i (x + y)) = f (update m i x) + f (update m i y) := f.map_add' m i x y @[simp] protected lemma map_smul [decidable_eq ι] (m : Πi, M₁ i) (i : ι) (c : R) (x : M₁ i) : f (update m i (c • x)) = c • f (update m i x) := f.map_smul' m i c x lemma map_coord_zero {m : Πi, M₁ i} (i : ι) (h : m i = 0) : f m = 0 := begin classical, have : (0 : R) • (0 : M₁ i) = 0, by simp, rw [← update_eq_self i m, h, ← this, f.map_smul, zero_smul] end @[simp] lemma map_update_zero [decidable_eq ι] (m : Πi, M₁ i) (i : ι) : f (update m i 0) = 0 := f.map_coord_zero i (update_same i 0 m) @[simp] lemma map_zero [nonempty ι] : f 0 = 0 := begin obtain ⟨i, _⟩ : ∃i:ι, i ∈ set.univ := set.exists_mem_of_nonempty ι, exact map_coord_zero f i rfl end instance : has_add (multilinear_map R M₁ M₂) := ⟨λf f', ⟨λx, f x + f' x, λm i x y, by simp [add_left_comm, add_assoc], λ _ m i c x, by simp [smul_add]⟩⟩ @[simp] lemma add_apply (m : Πi, M₁ i) : (f + f') m = f m + f' m := rfl instance : has_zero (multilinear_map R M₁ M₂) := ⟨⟨λ _, 0, λ _ m i x y, by simp, λ _ m i c x, by simp⟩⟩ instance : inhabited (multilinear_map R M₁ M₂) := ⟨0⟩ @[simp] lemma zero_apply (m : Πi, M₁ i) : (0 : multilinear_map R M₁ M₂) m = 0 := rfl section has_smul variables {R' A : Type*} [monoid R'] [semiring A] [Π i, module A (M₁ i)] [distrib_mul_action R' M₂] [module A M₂] [smul_comm_class A R' M₂] instance : has_smul R' (multilinear_map A M₁ M₂) := ⟨λ c f, ⟨λ m, c • f m, λ _ m i x y, by simp [smul_add], λ _ l i x d, by simp [←smul_comm x c] ⟩⟩ @[simp] lemma smul_apply (f : multilinear_map A M₁ M₂) (c : R') (m : Πi, M₁ i) : (c • f) m = c • f m := rfl lemma coe_smul (c : R') (f : multilinear_map A M₁ M₂) : ⇑(c • f) = c • f := rfl end has_smul instance : add_comm_monoid (multilinear_map R M₁ M₂) := coe_injective.add_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) @[simp] lemma sum_apply {α : Type*} (f : α → multilinear_map R M₁ M₂) (m : Πi, M₁ i) : ∀ {s : finset α}, (∑ a in s, f a) m = ∑ a in s, f a m := begin classical, apply finset.induction, { rw finset.sum_empty, simp }, { assume a s has H, rw finset.sum_insert has, simp [H, has] } end /-- If `f` is a multilinear map, then `f.to_linear_map m i` is the linear map obtained by fixing all coordinates but `i` equal to those of `m`, and varying the `i`-th coordinate. -/ @[simps] def to_linear_map [decidable_eq ι] (m : Πi, M₁ i) (i : ι) : M₁ i →ₗ[R] M₂ := { to_fun := λx, f (update m i x), map_add' := λx y, by simp, map_smul' := λc x, by simp } /-- The cartesian product of two multilinear maps, as a multilinear map. -/ @[simps] def prod (f : multilinear_map R M₁ M₂) (g : multilinear_map R M₁ M₃) : multilinear_map R M₁ (M₂ × M₃) := { to_fun := λ m, (f m, g m), map_add' := λ _ m i x y, by simp, map_smul' := λ _ m i c x, by simp } /-- Combine a family of multilinear maps with the same domain and codomains `M' i` into a multilinear map taking values in the space of functions `Π i, M' i`. -/ @[simps] def pi {ι' : Type*} {M' : ι' → Type*} [Π i, add_comm_monoid (M' i)] [Π i, module R (M' i)] (f : Π i, multilinear_map R M₁ (M' i)) : multilinear_map R M₁ (Π i, M' i) := { to_fun := λ m i, f i m, map_add' := λ _ m i x y, by exactI (funext $ λ j, (f j).map_add _ _ _ _), map_smul' := λ _ m i c x, by exactI (funext $ λ j, (f j).map_smul _ _ _ _) } section variables (R M₂) /-- The evaluation map from `ι → M₂` to `M₂` is multilinear at a given `i` when `ι` is subsingleton. -/ @[simps] def of_subsingleton [subsingleton ι] (i' : ι) : multilinear_map R (λ _ : ι, M₂) M₂ := { to_fun := function.eval i', map_add' := λ _ m i x y, by { rw subsingleton.elim i i', simp only [function.eval, function.update_same], }, map_smul' := λ _ m i r x, by { rw subsingleton.elim i i', simp only [function.eval, function.update_same], } } variables (M₁) {M₂} /-- The constant map is multilinear when `ι` is empty. -/ @[simps {fully_applied := ff}] def const_of_is_empty [is_empty ι] (m : M₂) : multilinear_map R M₁ M₂ := { to_fun := function.const _ m, map_add' := λ _ m, is_empty_elim, map_smul' := λ _ m, is_empty_elim } end /-- Given a multilinear map `f` on `n` variables (parameterized by `fin n`) and a subset `s` of `k` of these variables, one gets a new multilinear map on `fin k` by varying these variables, and fixing the other ones equal to a given value `z`. It is denoted by `f.restr s hk z`, where `hk` is a proof that the cardinality of `s` is `k`. The implicit identification between `fin k` and `s` that we use is the canonical (increasing) bijection. -/ def restr {k n : ℕ} (f : multilinear_map R (λ i : fin n, M') M₂) (s : finset (fin n)) (hk : s.card = k) (z : M') : multilinear_map R (λ i : fin k, M') M₂ := { to_fun := λ v, f (λ j, if h : j ∈ s then v ((s.order_iso_of_fin hk).symm ⟨j, h⟩) else z), map_add' := λ _ v i x y, by { erw [dite_comp_equiv_update, dite_comp_equiv_update, dite_comp_equiv_update], simp }, map_smul' := λ _ v i c x, by { erw [dite_comp_equiv_update, dite_comp_equiv_update], simp } } variable {R} /-- In the specific case of multilinear maps on spaces indexed by `fin (n+1)`, where one can build an element of `Π(i : fin (n+1)), M i` using `cons`, one can express directly the additivity of a multilinear map along the first variable. -/ lemma cons_add (f : multilinear_map R M M₂) (m : Π(i : fin n), M i.succ) (x y : M 0) : f (cons (x+y) m) = f (cons x m) + f (cons y m) := by rw [← update_cons_zero x m (x+y), f.map_add, update_cons_zero, update_cons_zero] /-- In the specific case of multilinear maps on spaces indexed by `fin (n+1)`, where one can build an element of `Π(i : fin (n+1)), M i` using `cons`, one can express directly the multiplicativity of a multilinear map along the first variable. -/ lemma cons_smul (f : multilinear_map R M M₂) (m : Π(i : fin n), M i.succ) (c : R) (x : M 0) : f (cons (c • x) m) = c • f (cons x m) := by rw [← update_cons_zero x m (c • x), f.map_smul, update_cons_zero] /-- In the specific case of multilinear maps on spaces indexed by `fin (n+1)`, where one can build an element of `Π(i : fin (n+1)), M i` using `snoc`, one can express directly the additivity of a multilinear map along the first variable. -/ lemma snoc_add (f : multilinear_map R M M₂) (m : Π(i : fin n), M i.cast_succ) (x y : M (last n)) : f (snoc m (x+y)) = f (snoc m x) + f (snoc m y) := by rw [← update_snoc_last x m (x+y), f.map_add, update_snoc_last, update_snoc_last] /-- In the specific case of multilinear maps on spaces indexed by `fin (n+1)`, where one can build an element of `Π(i : fin (n+1)), M i` using `cons`, one can express directly the multiplicativity of a multilinear map along the first variable. -/ lemma snoc_smul (f : multilinear_map R M M₂) (m : Π(i : fin n), M i.cast_succ) (c : R) (x : M (last n)) : f (snoc m (c • x)) = c • f (snoc m x) := by rw [← update_snoc_last x m (c • x), f.map_smul, update_snoc_last] section variables {M₁' : ι → Type*} [Π i, add_comm_monoid (M₁' i)] [Π i, module R (M₁' i)] variables {M₁'' : ι → Type*} [Π i, add_comm_monoid (M₁'' i)] [Π i, module R (M₁'' i)] /-- If `g` is a multilinear map and `f` is a collection of linear maps, then `g (f₁ m₁, ..., fₙ mₙ)` is again a multilinear map, that we call `g.comp_linear_map f`. -/ def comp_linear_map (g : multilinear_map R M₁' M₂) (f : Π i, M₁ i →ₗ[R] M₁' i) : multilinear_map R M₁ M₂ := { to_fun := λ m, g $ λ i, f i (m i), map_add' := λ _ m i x y, by { resetI, have : ∀ j z, f j (update m i z j) = update (λ k, f k (m k)) i (f i z) j := λ j z, function.apply_update (λ k, f k) _ _ _ _, by simp [this] }, map_smul' := λ _ m i c x, by { resetI, have : ∀ j z, f j (update m i z j) = update (λ k, f k (m k)) i (f i z) j := λ j z, function.apply_update (λ k, f k) _ _ _ _, by simp [this] } } @[simp] lemma comp_linear_map_apply (g : multilinear_map R M₁' M₂) (f : Π i, M₁ i →ₗ[R] M₁' i) (m : Π i, M₁ i) : g.comp_linear_map f m = g (λ i, f i (m i)) := rfl /-- Composing a multilinear map twice with a linear map in each argument is the same as composing with their composition. -/ lemma comp_linear_map_assoc (g : multilinear_map R M₁'' M₂) (f₁ : Π i, M₁' i →ₗ[R] M₁'' i) (f₂ : Π i, M₁ i →ₗ[R] M₁' i) : (g.comp_linear_map f₁).comp_linear_map f₂ = g.comp_linear_map (λ i, f₁ i ∘ₗ f₂ i) := rfl /-- Composing the zero multilinear map with a linear map in each argument. -/ @[simp] lemma zero_comp_linear_map (f : Π i, M₁ i →ₗ[R] M₁' i) : (0 : multilinear_map R M₁' M₂).comp_linear_map f = 0 := ext $ λ _, rfl /-- Composing a multilinear map with the identity linear map in each argument. -/ @[simp] lemma comp_linear_map_id (g : multilinear_map R M₁' M₂) : g.comp_linear_map (λ i, linear_map.id) = g := ext $ λ _, rfl /-- Composing with a family of surjective linear maps is injective. -/ lemma comp_linear_map_injective (f : Π i, M₁ i →ₗ[R] M₁' i) (hf : ∀ i, surjective (f i)) : injective (λ g : multilinear_map R M₁' M₂, g.comp_linear_map f) := λ g₁ g₂ h, ext $ λ x, by simpa [λ i, surj_inv_eq (hf i)] using ext_iff.mp h (λ i, surj_inv (hf i) (x i)) lemma comp_linear_map_inj (f : Π i, M₁ i →ₗ[R] M₁' i) (hf : ∀ i, surjective (f i)) (g₁ g₂ : multilinear_map R M₁' M₂) : g₁.comp_linear_map f = g₂.comp_linear_map f ↔ g₁ = g₂ := (comp_linear_map_injective _ hf).eq_iff /-- Composing a multilinear map with a linear equiv on each argument gives the zero map if and only if the multilinear map is the zero map. -/ @[simp] lemma comp_linear_equiv_eq_zero_iff (g : multilinear_map R M₁' M₂) (f : Π i, M₁ i ≃ₗ[R] M₁' i) : g.comp_linear_map (λ i, (f i : M₁ i →ₗ[R] M₁' i)) = 0 ↔ g = 0 := begin set f' := (λ i, (f i : M₁ i →ₗ[R] M₁' i)), rw [←zero_comp_linear_map f', comp_linear_map_inj f' (λ i, (f i).surjective)], end end /-- If one adds to a vector `m'` another vector `m`, but only for coordinates in a finset `t`, then the image under a multilinear map `f` is the sum of `f (s.piecewise m m')` along all subsets `s` of `t`. This is mainly an auxiliary statement to prove the result when `t = univ`, given in `map_add_univ`, although it can be useful in its own right as it does not require the index set `ι` to be finite.-/ lemma map_piecewise_add [decidable_eq ι] (m m' : Πi, M₁ i) (t : finset ι) : f (t.piecewise (m + m') m') = ∑ s in t.powerset, f (s.piecewise m m') := begin revert m', refine finset.induction_on t (by simp) _, assume i t hit Hrec m', have A : (insert i t).piecewise (m + m') m' = update (t.piecewise (m + m') m') i (m i + m' i) := t.piecewise_insert _ _ _, have B : update (t.piecewise (m + m') m') i (m' i) = t.piecewise (m + m') m', { ext j, by_cases h : j = i, { rw h, simp [hit] }, { simp [h] } }, let m'' := update m' i (m i), have C : update (t.piecewise (m + m') m') i (m i) = t.piecewise (m + m'') m'', { ext j, by_cases h : j = i, { rw h, simp [m'', hit] }, { by_cases h' : j ∈ t; simp [h, hit, m'', h'] } }, rw [A, f.map_add, B, C, finset.sum_powerset_insert hit, Hrec, Hrec, add_comm], congr' 1, apply finset.sum_congr rfl (λs hs, _), have : (insert i s).piecewise m m' = s.piecewise m m'', { ext j, by_cases h : j = i, { rw h, simp [m'', finset.not_mem_of_mem_powerset_of_not_mem hs hit] }, { by_cases h' : j ∈ s; simp [h, m'', h'] } }, rw this end /-- Additivity of a multilinear map along all coordinates at the same time, writing `f (m + m')` as the sum of `f (s.piecewise m m')` over all sets `s`. -/ lemma map_add_univ [decidable_eq ι] [fintype ι] (m m' : Πi, M₁ i) : f (m + m') = ∑ s : finset ι, f (s.piecewise m m') := by simpa using f.map_piecewise_add m m' finset.univ section apply_sum variables {α : ι → Type*} (g : Π i, α i → M₁ i) (A : Π i, finset (α i)) open fintype finset /-- If `f` is multilinear, then `f (Σ_{j₁ ∈ A₁} g₁ j₁, ..., Σ_{jₙ ∈ Aₙ} gₙ jₙ)` is the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all functions with `r 1 ∈ A₁`, ..., `r n ∈ Aₙ`. This follows from multilinearity by expanding successively with respect to each coordinate. Here, we give an auxiliary statement tailored for an inductive proof. Use instead `map_sum_finset`. -/ lemma map_sum_finset_aux [decidable_eq ι] [fintype ι] {n : ℕ} (h : ∑ i, (A i).card = n) : f (λ i, ∑ j in A i, g i j) = ∑ r in pi_finset A, f (λ i, g i (r i)) := begin letI := λ i, classical.dec_eq (α i), induction n using nat.strong_induction_on with n IH generalizing A, -- If one of the sets is empty, then all the sums are zero by_cases Ai_empty : ∃ i, A i = ∅, { rcases Ai_empty with ⟨i, hi⟩, have : ∑ j in A i, g i j = 0, by rw [hi, finset.sum_empty], rw f.map_coord_zero i this, have : pi_finset A = ∅, { apply finset.eq_empty_of_forall_not_mem (λ r hr, _), have : r i ∈ A i := mem_pi_finset.mp hr i, rwa hi at this }, rw [this, finset.sum_empty] }, push_neg at Ai_empty, -- Otherwise, if all sets are at most singletons, then they are exactly singletons and the result -- is again straightforward by_cases Ai_singleton : ∀ i, (A i).card ≤ 1, { have Ai_card : ∀ i, (A i).card = 1, { assume i, have pos : finset.card (A i) ≠ 0, by simp [finset.card_eq_zero, Ai_empty i], have : finset.card (A i) ≤ 1 := Ai_singleton i, exact le_antisymm this (nat.succ_le_of_lt (_root_.pos_iff_ne_zero.mpr pos)) }, have : ∀ (r : Π i, α i), r ∈ pi_finset A → f (λ i, g i (r i)) = f (λ i, ∑ j in A i, g i j), { assume r hr, unfold_coes, congr' with i, have : ∀ j ∈ A i, g i j = g i (r i), { assume j hj, congr, apply finset.card_le_one_iff.1 (Ai_singleton i) hj, exact mem_pi_finset.mp hr i }, simp only [finset.sum_congr rfl this, finset.mem_univ, finset.sum_const, Ai_card i, one_nsmul] }, simp only [sum_congr rfl this, Ai_card, card_pi_finset, prod_const_one, one_nsmul, finset.sum_const] }, -- Remains the interesting case where one of the `A i`, say `A i₀`, has cardinality at least 2. -- We will split into two parts `B i₀` and `C i₀` of smaller cardinality, let `B i = C i = A i` -- for `i ≠ i₀`, apply the inductive assumption to `B` and `C`, and add up the corresponding -- parts to get the sum for `A`. push_neg at Ai_singleton, obtain ⟨i₀, hi₀⟩ : ∃ i, 1 < (A i).card := Ai_singleton, obtain ⟨j₁, j₂, hj₁, hj₂, j₁_ne_j₂⟩ : ∃ j₁ j₂, (j₁ ∈ A i₀) ∧ (j₂ ∈ A i₀) ∧ j₁ ≠ j₂ := finset.one_lt_card_iff.1 hi₀, let B := function.update A i₀ (A i₀ \ {j₂}), let C := function.update A i₀ {j₂}, have B_subset_A : ∀ i, B i ⊆ A i, { assume i, by_cases hi : i = i₀, { rw hi, simp only [B, sdiff_subset, update_same]}, { simp only [hi, B, update_noteq, ne.def, not_false_iff, finset.subset.refl] } }, have C_subset_A : ∀ i, C i ⊆ A i, { assume i, by_cases hi : i = i₀, { rw hi, simp only [C, hj₂, finset.singleton_subset_iff, update_same] }, { simp only [hi, C, update_noteq, ne.def, not_false_iff, finset.subset.refl] } }, -- split the sum at `i₀` as the sum over `B i₀` plus the sum over `C i₀`, to use additivity. have A_eq_BC : (λ i, ∑ j in A i, g i j) = function.update (λ i, ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j), { ext i, by_cases hi : i = i₀, { rw [hi], simp only [function.update_same], have : A i₀ = B i₀ ∪ C i₀, { simp only [B, C, function.update_same, finset.sdiff_union_self_eq_union], symmetry, simp only [hj₂, finset.singleton_subset_iff, finset.union_eq_left_iff_subset] }, rw this, apply finset.sum_union, apply finset.disjoint_right.2 (λ j hj, _), have : j = j₂, by { dsimp [C] at hj, simpa using hj }, rw this, dsimp [B], simp only [mem_sdiff, eq_self_iff_true, not_true, not_false_iff, finset.mem_singleton, update_same, and_false] }, { simp [hi] } }, have Beq : function.update (λ i, ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = (λ i, ∑ j in B i, g i j), { ext i, by_cases hi : i = i₀, { rw hi, simp only [update_same] }, { simp only [hi, B, update_noteq, ne.def, not_false_iff] } }, have Ceq : function.update (λ i, ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = (λ i, ∑ j in C i, g i j), { ext i, by_cases hi : i = i₀, { rw hi, simp only [update_same] }, { simp only [hi, C, update_noteq, ne.def, not_false_iff] } }, -- Express the inductive assumption for `B` have Brec : f (λ i, ∑ j in B i, g i j) = ∑ r in pi_finset B, f (λ i, g i (r i)), { have : ∑ i, finset.card (B i) < ∑ i, finset.card (A i), { refine finset.sum_lt_sum (λ i hi, finset.card_le_of_subset (B_subset_A i)) ⟨i₀, finset.mem_univ _, _⟩, have : {j₂} ⊆ A i₀, by simp [hj₂], simp only [B, finset.card_sdiff this, function.update_same, finset.card_singleton], exact nat.pred_lt (ne_of_gt (lt_trans nat.zero_lt_one hi₀)) }, rw h at this, exact IH _ this B rfl }, -- Express the inductive assumption for `C` have Crec : f (λ i, ∑ j in C i, g i j) = ∑ r in pi_finset C, f (λ i, g i (r i)), { have : ∑ i, finset.card (C i) < ∑ i, finset.card (A i) := finset.sum_lt_sum (λ i hi, finset.card_le_of_subset (C_subset_A i)) ⟨i₀, finset.mem_univ _, by simp [C, hi₀]⟩, rw h at this, exact IH _ this C rfl }, have D : disjoint (pi_finset B) (pi_finset C), { have : disjoint (B i₀) (C i₀), by simp [B, C], exact pi_finset_disjoint_of_disjoint B C this }, have pi_BC : pi_finset A = pi_finset B ∪ pi_finset C, { apply finset.subset.antisymm, { assume r hr, by_cases hri₀ : r i₀ = j₂, { apply finset.mem_union_right, apply mem_pi_finset.2 (λ i, _), by_cases hi : i = i₀, { have : r i₀ ∈ C i₀, by simp [C, hri₀], convert this }, { simp [C, hi, mem_pi_finset.1 hr i] } }, { apply finset.mem_union_left, apply mem_pi_finset.2 (λ i, _), by_cases hi : i = i₀, { have : r i₀ ∈ B i₀, by simp [B, hri₀, mem_pi_finset.1 hr i₀], convert this }, { simp [B, hi, mem_pi_finset.1 hr i] } } }, { exact finset.union_subset (pi_finset_subset _ _ (λ i, B_subset_A i)) (pi_finset_subset _ _ (λ i, C_subset_A i)) } }, rw A_eq_BC, simp only [multilinear_map.map_add, Beq, Ceq, Brec, Crec, pi_BC], rw ← finset.sum_union D, end /-- If `f` is multilinear, then `f (Σ_{j₁ ∈ A₁} g₁ j₁, ..., Σ_{jₙ ∈ Aₙ} gₙ jₙ)` is the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all functions with `r 1 ∈ A₁`, ..., `r n ∈ Aₙ`. This follows from multilinearity by expanding successively with respect to each coordinate. -/ lemma map_sum_finset [decidable_eq ι] [fintype ι] : f (λ i, ∑ j in A i, g i j) = ∑ r in pi_finset A, f (λ i, g i (r i)) := f.map_sum_finset_aux _ _ rfl /-- If `f` is multilinear, then `f (Σ_{j₁} g₁ j₁, ..., Σ_{jₙ} gₙ jₙ)` is the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all functions `r`. This follows from multilinearity by expanding successively with respect to each coordinate. -/ lemma map_sum [decidable_eq ι] [fintype ι] [∀ i, fintype (α i)] : f (λ i, ∑ j, g i j) = ∑ r : Π i, α i, f (λ i, g i (r i)) := f.map_sum_finset g (λ i, finset.univ) lemma map_update_sum {α : Type*} [decidable_eq ι] (t : finset α) (i : ι) (g : α → M₁ i) (m : Π i, M₁ i) : f (update m i (∑ a in t, g a)) = ∑ a in t, f (update m i (g a)) := begin classical, induction t using finset.induction with a t has ih h, { simp }, { simp [finset.sum_insert has, ih] } end end apply_sum /-- Restrict the codomain of a multilinear map to a submodule. This is the multilinear version of `linear_map.cod_restrict`. -/ @[simps] def cod_restrict (f : multilinear_map R M₁ M₂) (p : submodule R M₂) (h : ∀ v, f v ∈ p) : multilinear_map R M₁ p := { to_fun := λ v, ⟨f v, h v⟩, map_add' := λ _ v i x y, subtype.ext $ by exactI multilinear_map.map_add _ _ _ _ _, map_smul' := λ _ v i c x, subtype.ext $ by exactI multilinear_map.map_smul _ _ _ _ _ } section restrict_scalar variables (R) {A : Type*} [semiring A] [has_smul R A] [Π (i : ι), module A (M₁ i)] [module A M₂] [∀ i, is_scalar_tower R A (M₁ i)] [is_scalar_tower R A M₂] /-- Reinterpret an `A`-multilinear map as an `R`-multilinear map, if `A` is an algebra over `R` and their actions on all involved modules agree with the action of `R` on `A`. -/ def restrict_scalars (f : multilinear_map A M₁ M₂) : multilinear_map R M₁ M₂ := { to_fun := f, map_add' := λ _, by exactI f.map_add, map_smul' := λ _ m i, by exactI (f.to_linear_map m i).map_smul_of_tower } @[simp] lemma coe_restrict_scalars (f : multilinear_map A M₁ M₂) : ⇑(f.restrict_scalars R) = f := rfl end restrict_scalar section variables {ι₁ ι₂ ι₃ : Type*} /-- Transfer the arguments to a map along an equivalence between argument indices. The naming is derived from `finsupp.dom_congr`, noting that here the permutation applies to the domain of the domain. -/ @[simps apply] def dom_dom_congr (σ : ι₁ ≃ ι₂) (m : multilinear_map R (λ i : ι₁, M₂) M₃) : multilinear_map R (λ i : ι₂, M₂) M₃ := { to_fun := λ v, m (λ i, v (σ i)), map_add' := λ _ v i a b, by { resetI, letI := σ.injective.decidable_eq, simp_rw function.update_apply_equiv_apply v, rw m.map_add, }, map_smul' := λ _ v i a b, by { resetI, letI := σ.injective.decidable_eq, simp_rw function.update_apply_equiv_apply v, rw m.map_smul, }, } lemma dom_dom_congr_trans (σ₁ : ι₁ ≃ ι₂) (σ₂ : ι₂ ≃ ι₃) (m : multilinear_map R (λ i : ι₁, M₂) M₃) : m.dom_dom_congr (σ₁.trans σ₂) = (m.dom_dom_congr σ₁).dom_dom_congr σ₂ := rfl lemma dom_dom_congr_mul (σ₁ : equiv.perm ι₁) (σ₂ : equiv.perm ι₁) (m : multilinear_map R (λ i : ι₁, M₂) M₃) : m.dom_dom_congr (σ₂ * σ₁) = (m.dom_dom_congr σ₁).dom_dom_congr σ₂ := rfl /-- `multilinear_map.dom_dom_congr` as an equivalence. This is declared separately because it does not work with dot notation. -/ @[simps apply symm_apply] def dom_dom_congr_equiv (σ : ι₁ ≃ ι₂) : multilinear_map R (λ i : ι₁, M₂) M₃ ≃+ multilinear_map R (λ i : ι₂, M₂) M₃ := { to_fun := dom_dom_congr σ, inv_fun := dom_dom_congr σ.symm, left_inv := λ m, by {ext, simp}, right_inv := λ m, by {ext, simp}, map_add' := λ a b, by {ext, simp} } /-- The results of applying `dom_dom_congr` to two maps are equal if and only if those maps are. -/ @[simp] lemma dom_dom_congr_eq_iff (σ : ι₁ ≃ ι₂) (f g : multilinear_map R (λ i : ι₁, M₂) M₃) : f.dom_dom_congr σ = g.dom_dom_congr σ ↔ f = g := (dom_dom_congr_equiv σ : _ ≃+ multilinear_map R (λ i, M₂) M₃).apply_eq_iff_eq end end semiring end multilinear_map namespace linear_map variables [semiring R] [Πi, add_comm_monoid (M₁ i)] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M'] [∀i, module R (M₁ i)] [module R M₂] [module R M₃] [module R M'] /-- Composing a multilinear map with a linear map gives again a multilinear map. -/ def comp_multilinear_map (g : M₂ →ₗ[R] M₃) (f : multilinear_map R M₁ M₂) : multilinear_map R M₁ M₃ := { to_fun := g ∘ f, map_add' := λ m i x y, by simp, map_smul' := λ m i c x, by simp } @[simp] lemma coe_comp_multilinear_map (g : M₂ →ₗ[R] M₃) (f : multilinear_map R M₁ M₂) : ⇑(g.comp_multilinear_map f) = g ∘ f := rfl @[simp] lemma comp_multilinear_map_apply (g : M₂ →ₗ[R] M₃) (f : multilinear_map R M₁ M₂) (m : Π i, M₁ i) : g.comp_multilinear_map f m = g (f m) := rfl /-- The multilinear version of `linear_map.subtype_comp_cod_restrict` -/ @[simp] lemma subtype_comp_multilinear_map_cod_restrict (f : multilinear_map R M₁ M₂) (p : submodule R M₂) (h) : p.subtype.comp_multilinear_map (f.cod_restrict p h) = f := multilinear_map.ext $ λ v, rfl /-- The multilinear version of `linear_map.comp_cod_restrict` -/ @[simp] lemma comp_multilinear_map_cod_restrict (g : M₂ →ₗ[R] M₃) (f : multilinear_map R M₁ M₂) (p : submodule R M₃) (h) : (g.cod_restrict p h).comp_multilinear_map f = (g.comp_multilinear_map f).cod_restrict p (λ v, h (f v)):= multilinear_map.ext $ λ v, rfl variables {ι₁ ι₂ : Type*} @[simp] lemma comp_multilinear_map_dom_dom_congr (σ : ι₁ ≃ ι₂) (g : M₂ →ₗ[R] M₃) (f : multilinear_map R (λ i : ι₁, M') M₂) : (g.comp_multilinear_map f).dom_dom_congr σ = g.comp_multilinear_map (f.dom_dom_congr σ) := by { ext, simp } end linear_map namespace multilinear_map section comm_semiring variables [comm_semiring R] [∀i, add_comm_monoid (M₁ i)] [∀i, add_comm_monoid (M i)] [add_comm_monoid M₂] [∀i, module R (M i)] [∀i, module R (M₁ i)] [module R M₂] (f f' : multilinear_map R M₁ M₂) /-- If one multiplies by `c i` the coordinates in a finset `s`, then the image under a multilinear map is multiplied by `∏ i in s, c i`. This is mainly an auxiliary statement to prove the result when `s = univ`, given in `map_smul_univ`, although it can be useful in its own right as it does not require the index set `ι` to be finite. -/ lemma map_piecewise_smul [decidable_eq ι] (c : ι → R) (m : Πi, M₁ i) (s : finset ι) : f (s.piecewise (λi, c i • m i) m) = (∏ i in s, c i) • f m := begin refine s.induction_on (by simp) _, assume j s j_not_mem_s Hrec, have A : function.update (s.piecewise (λi, c i • m i) m) j (m j) = s.piecewise (λi, c i • m i) m, { ext i, by_cases h : i = j, { rw h, simp [j_not_mem_s] }, { simp [h] } }, rw [s.piecewise_insert, f.map_smul, A, Hrec], simp [j_not_mem_s, mul_smul] end /-- Multiplicativity of a multilinear map along all coordinates at the same time, writing `f (λi, c i • m i)` as `(∏ i, c i) • f m`. -/ lemma map_smul_univ [fintype ι] (c : ι → R) (m : Πi, M₁ i) : f (λi, c i • m i) = (∏ i, c i) • f m := by {classical, simpa using map_piecewise_smul f c m finset.univ} @[simp] lemma map_update_smul [decidable_eq ι] [fintype ι] (m : Πi, M₁ i) (i : ι) (c : R) (x : M₁ i) : f (update (c • m) i x) = c^(fintype.card ι - 1) • f (update m i x) := begin have : f ((finset.univ.erase i).piecewise (c • update m i x) (update m i x)) = (∏ i in finset.univ.erase i, c) • f (update m i x) := map_piecewise_smul f _ _ _, simpa [←function.update_smul c m] using this, end section distrib_mul_action variables {R' A : Type*} [monoid R'] [semiring A] [Π i, module A (M₁ i)] [distrib_mul_action R' M₂] [module A M₂] [smul_comm_class A R' M₂] instance : distrib_mul_action R' (multilinear_map A M₁ M₂) := { one_smul := λ f, ext $ λ x, one_smul _ _, mul_smul := λ c₁ c₂ f, ext $ λ x, mul_smul _ _ _, smul_zero := λ r, ext $ λ x, smul_zero _, smul_add := λ r f₁ f₂, ext $ λ x, smul_add _ _ _ } end distrib_mul_action section module variables {R' A : Type*} [semiring R'] [semiring A] [Π i, module A (M₁ i)] [module A M₂] [add_comm_monoid M₃] [module R' M₃] [module A M₃] [smul_comm_class A R' M₃] /-- The space of multilinear maps over an algebra over `R` is a module over `R`, for the pointwise addition and scalar multiplication. -/ instance [module R' M₂] [smul_comm_class A R' M₂] : module R' (multilinear_map A M₁ M₂) := { add_smul := λ r₁ r₂ f, ext $ λ x, add_smul _ _ _, zero_smul := λ f, ext $ λ x, zero_smul _ _ } instance [no_zero_smul_divisors R' M₃] : no_zero_smul_divisors R' (multilinear_map A M₁ M₃) := coe_injective.no_zero_smul_divisors _ rfl coe_smul variables (M₂ M₃ R' A) /-- `multilinear_map.dom_dom_congr` as a `linear_equiv`. -/ @[simps apply symm_apply] def dom_dom_congr_linear_equiv {ι₁ ι₂} (σ : ι₁ ≃ ι₂) : multilinear_map A (λ i : ι₁, M₂) M₃ ≃ₗ[R'] multilinear_map A (λ i : ι₂, M₂) M₃ := { map_smul' := λ c f, by { ext, simp }, .. (dom_dom_congr_equiv σ : multilinear_map A (λ i : ι₁, M₂) M₃ ≃+ multilinear_map A (λ i : ι₂, M₂) M₃) } variables (R M₁) /-- The dependent version of `multilinear_map.dom_dom_congr_linear_equiv`. -/ @[simps apply symm_apply] def dom_dom_congr_linear_equiv' {ι' : Type*} (σ : ι ≃ ι') : multilinear_map R M₁ M₂ ≃ₗ[R] multilinear_map R (λ i, M₁ (σ.symm i)) M₂ := { to_fun := λ f, { to_fun := f ∘ (σ.Pi_congr_left' M₁).symm, map_add' := λ _ m i, begin resetI, letI := σ.decidable_eq, rw ← σ.apply_symm_apply i, intros x y, simp only [comp_app, Pi_congr_left'_symm_update, f.map_add], end, map_smul' := λ _ m i c, begin resetI, letI := σ.decidable_eq, rw ← σ.apply_symm_apply i, intros x, simp only [comp_app, Pi_congr_left'_symm_update, f.map_smul], end, }, inv_fun := λ f, { to_fun := f ∘ (σ.Pi_congr_left' M₁), map_add' := λ _ m i, begin resetI, letI := σ.symm.decidable_eq, rw ← σ.symm_apply_apply i, intros x y, simp only [comp_app, Pi_congr_left'_update, f.map_add], end, map_smul' := λ _ m i c, begin resetI, letI := σ.symm.decidable_eq, rw ← σ.symm_apply_apply i, intros x, simp only [comp_app, Pi_congr_left'_update, f.map_smul], end, }, map_add' := λ f₁ f₂, by { ext, simp only [comp_app, coe_mk, add_apply], }, map_smul' := λ c f, by { ext, simp only [comp_app, coe_mk, smul_apply, ring_hom.id_apply], }, left_inv := λ f, by { ext, simp only [comp_app, coe_mk, equiv.symm_apply_apply], }, right_inv := λ f, by { ext, simp only [comp_app, coe_mk, equiv.apply_symm_apply], }, } /-- The space of constant maps is equivalent to the space of maps that are multilinear with respect to an empty family. -/ @[simps] def const_linear_equiv_of_is_empty [is_empty ι] : M₂ ≃ₗ[R] multilinear_map R M₁ M₂ := { to_fun := multilinear_map.const_of_is_empty R _, map_add' := λ x y, rfl, map_smul' := λ t x, rfl, inv_fun := λ f, f 0, left_inv := λ _, rfl, right_inv := λ f, ext $ λ x, multilinear_map.congr_arg f $ subsingleton.elim _ _ } end module section variables (R ι) (A : Type*) [comm_semiring A] [algebra R A] [fintype ι] /-- Given an `R`-algebra `A`, `mk_pi_algebra` is the multilinear map on `A^ι` associating to `m` the product of all the `m i`. See also `multilinear_map.mk_pi_algebra_fin` for a version that works with a non-commutative algebra `A` but requires `ι = fin n`. -/ protected def mk_pi_algebra : multilinear_map R (λ i : ι, A) A := { to_fun := λ m, ∏ i, m i, map_add' := λ m i x y, by simp [finset.prod_update_of_mem, add_mul], map_smul' := λ m i c x, by simp [finset.prod_update_of_mem] } variables {R A ι} @[simp] lemma mk_pi_algebra_apply (m : ι → A) : multilinear_map.mk_pi_algebra R ι A m = ∏ i, m i := rfl end section variables (R n) (A : Type*) [semiring A] [algebra R A] /-- Given an `R`-algebra `A`, `mk_pi_algebra_fin` is the multilinear map on `A^n` associating to `m` the product of all the `m i`. See also `multilinear_map.mk_pi_algebra` for a version that assumes `[comm_semiring A]` but works for `A^ι` with any finite type `ι`. -/ protected def mk_pi_algebra_fin : multilinear_map R (λ i : fin n, A) A := { to_fun := λ m, (list.of_fn m).prod, map_add' := begin intros dec m i x y, rw subsingleton.elim dec (by apply_instance), have : (list.fin_range n).index_of i < n, by simpa using list.index_of_lt_length.2 (list.mem_fin_range i), simp [list.of_fn_eq_map, (list.nodup_fin_range n).map_update, list.prod_update_nth, add_mul, this, mul_add, add_mul] end, map_smul' := begin intros dec m i c x, rw subsingleton.elim dec (by apply_instance), have : (list.fin_range n).index_of i < n, by simpa using list.index_of_lt_length.2 (list.mem_fin_range i), simp [list.of_fn_eq_map, (list.nodup_fin_range n).map_update, list.prod_update_nth, this] end } variables {R A n} @[simp] lemma mk_pi_algebra_fin_apply (m : fin n → A) : multilinear_map.mk_pi_algebra_fin R n A m = (list.of_fn m).prod := rfl lemma mk_pi_algebra_fin_apply_const (a : A) : multilinear_map.mk_pi_algebra_fin R n A (λ _, a) = a ^ n := by simp end /-- Given an `R`-multilinear map `f` taking values in `R`, `f.smul_right z` is the map sending `m` to `f m • z`. -/ def smul_right (f : multilinear_map R M₁ R) (z : M₂) : multilinear_map R M₁ M₂ := (linear_map.smul_right linear_map.id z).comp_multilinear_map f @[simp] lemma smul_right_apply (f : multilinear_map R M₁ R) (z : M₂) (m : Π i, M₁ i) : f.smul_right z m = f m • z := rfl variables (R ι) /-- The canonical multilinear map on `R^ι` when `ι` is finite, associating to `m` the product of all the `m i` (multiplied by a fixed reference element `z` in the target module). See also `mk_pi_algebra` for a more general version. -/ protected def mk_pi_ring [fintype ι] (z : M₂) : multilinear_map R (λ(i : ι), R) M₂ := (multilinear_map.mk_pi_algebra R ι R).smul_right z variables {R ι} @[simp] lemma mk_pi_ring_apply [fintype ι] (z : M₂) (m : ι → R) : (multilinear_map.mk_pi_ring R ι z : (ι → R) → M₂) m = (∏ i, m i) • z := rfl lemma mk_pi_ring_apply_one_eq_self [fintype ι] (f : multilinear_map R (λ(i : ι), R) M₂) : multilinear_map.mk_pi_ring R ι (f (λi, 1)) = f := begin ext m, have : m = (λi, m i • 1), by { ext j, simp }, conv_rhs { rw [this, f.map_smul_univ] }, refl end lemma mk_pi_ring_eq_iff [fintype ι] {z₁ z₂ : M₂} : multilinear_map.mk_pi_ring R ι z₁ = multilinear_map.mk_pi_ring R ι z₂ ↔ z₁ = z₂ := begin simp_rw [multilinear_map.ext_iff, mk_pi_ring_apply], split; intro h, { simpa using h (λ _, 1) }, { intro x, simp [h] } end lemma mk_pi_ring_zero [fintype ι] : multilinear_map.mk_pi_ring R ι (0 : M₂) = 0 := by ext; rw [mk_pi_ring_apply, smul_zero, multilinear_map.zero_apply] lemma mk_pi_ring_eq_zero_iff [fintype ι] (z : M₂) : multilinear_map.mk_pi_ring R ι z = 0 ↔ z = 0 := by rw [← mk_pi_ring_zero, mk_pi_ring_eq_iff] end comm_semiring section range_add_comm_group variables [semiring R] [∀i, add_comm_monoid (M₁ i)] [add_comm_group M₂] [∀i, module R (M₁ i)] [module R M₂] (f g : multilinear_map R M₁ M₂) instance : has_neg (multilinear_map R M₁ M₂) := ⟨λ f, ⟨λ m, - f m, λ _ m i x y, by simp [add_comm], λ _ m i c x, by simp⟩⟩ @[simp] lemma neg_apply (m : Πi, M₁ i) : (-f) m = - (f m) := rfl instance : has_sub (multilinear_map R M₁ M₂) := ⟨λ f g, ⟨λ m, f m - g m, λ _ m i x y, by { simp only [multilinear_map.map_add, sub_eq_add_neg, neg_add], cc }, λ _ m i c x, by { simp only [multilinear_map.map_smul, smul_sub] }⟩⟩ @[simp] lemma sub_apply (m : Πi, M₁ i) : (f - g) m = f m - g m := rfl instance : add_comm_group (multilinear_map R M₁ M₂) := { zero := (0 : multilinear_map R M₁ M₂), add := (+), neg := has_neg.neg, sub := has_sub.sub, add_left_neg := λ a, multilinear_map.ext $ λ v, add_left_neg _, sub_eq_add_neg := λ a b, multilinear_map.ext $ λ v, sub_eq_add_neg _ _, zsmul := λ n f, { to_fun := λ m, n • f m, map_add' := λ _ m i x y, by simp [smul_add], map_smul' := λ _ l i x d, by simp [←smul_comm x n]}, zsmul_zero' := λ a, multilinear_map.ext $ λ v, add_comm_group.zsmul_zero' _, zsmul_succ' := λ z a, multilinear_map.ext $ λ v, add_comm_group.zsmul_succ' _ _, zsmul_neg' := λ z a, multilinear_map.ext $ λ v, add_comm_group.zsmul_neg' _ _, .. multilinear_map.add_comm_monoid } end range_add_comm_group section add_comm_group variables [semiring R] [∀i, add_comm_group (M₁ i)] [add_comm_group M₂] [∀i, module R (M₁ i)] [module R M₂] (f : multilinear_map R M₁ M₂) @[simp] lemma map_neg [decidable_eq ι] (m : Πi, M₁ i) (i : ι) (x : M₁ i) : f (update m i (-x)) = -f (update m i x) := eq_neg_of_add_eq_zero_left $ by rw [←multilinear_map.map_add, add_left_neg, f.map_coord_zero i (update_same i 0 m)] @[simp] lemma map_sub [decidable_eq ι] (m : Πi, M₁ i) (i : ι) (x y : M₁ i) : f (update m i (x - y)) = f (update m i x) - f (update m i y) := by rw [sub_eq_add_neg, sub_eq_add_neg, multilinear_map.map_add, map_neg] end add_comm_group section comm_semiring variables [comm_semiring R] [∀i, add_comm_monoid (M₁ i)] [add_comm_monoid M₂] [∀i, module R (M₁ i)] [module R M₂] /-- When `ι` is finite, multilinear maps on `R^ι` with values in `M₂` are in bijection with `M₂`, as such a multilinear map is completely determined by its value on the constant vector made of ones. We register this bijection as a linear equivalence in `multilinear_map.pi_ring_equiv`. -/ protected def pi_ring_equiv [fintype ι] : M₂ ≃ₗ[R] (multilinear_map R (λ(i : ι), R) M₂) := { to_fun := λ z, multilinear_map.mk_pi_ring R ι z, inv_fun := λ f, f (λi, 1), map_add' := λ z z', by { ext m, simp [smul_add] }, map_smul' := λ c z, by { ext m, simp [smul_smul, mul_comm] }, left_inv := λ z, by simp, right_inv := λ f, f.mk_pi_ring_apply_one_eq_self } end comm_semiring end multilinear_map section currying /-! ### Currying We associate to a multilinear map in `n+1` variables (i.e., based on `fin n.succ`) two curried functions, named `f.curry_left` (which is a linear map on `E 0` taking values in multilinear maps in `n` variables) and `f.curry_right` (wich is a multilinear map in `n` variables taking values in linear maps on `E 0`). In both constructions, the variable that is singled out is `0`, to take advantage of the operations `cons` and `tail` on `fin n`. The inverse operations are called `uncurry_left` and `uncurry_right`. We also register linear equiv versions of these correspondences, in `multilinear_curry_left_equiv` and `multilinear_curry_right_equiv`. -/ open multilinear_map variables {R M M₂} [comm_semiring R] [∀i, add_comm_monoid (M i)] [add_comm_monoid M'] [add_comm_monoid M₂] [∀i, module R (M i)] [module R M'] [module R M₂] /-! #### Left currying -/ /-- Given a linear map `f` from `M 0` to multilinear maps on `n` variables, construct the corresponding multilinear map on `n+1` variables obtained by concatenating the variables, given by `m ↦ f (m 0) (tail m)`-/ def linear_map.uncurry_left (f : M 0 →ₗ[R] (multilinear_map R (λ(i : fin n), M i.succ) M₂)) : multilinear_map R M M₂ := { to_fun := λm, f (m 0) (tail m), map_add' := λ dec m i x y, begin rw subsingleton.elim dec (by apply_instance), by_cases h : i = 0, { subst i, rw [update_same, update_same, update_same, f.map_add, add_apply, tail_update_zero, tail_update_zero, tail_update_zero] }, { rw [update_noteq (ne.symm h), update_noteq (ne.symm h), update_noteq (ne.symm h)], revert x y, rw ← succ_pred i h, assume x y, rw [tail_update_succ, multilinear_map.map_add, tail_update_succ, tail_update_succ] } end, map_smul' := λ dec m i c x, begin rw subsingleton.elim dec (by apply_instance), by_cases h : i = 0, { subst i, rw [update_same, update_same, tail_update_zero, tail_update_zero, ← smul_apply, f.map_smul] }, { rw [update_noteq (ne.symm h), update_noteq (ne.symm h)], revert x, rw ← succ_pred i h, assume x, rw [tail_update_succ, tail_update_succ, multilinear_map.map_smul] } end } @[simp] lemma linear_map.uncurry_left_apply (f : M 0 →ₗ[R] (multilinear_map R (λ(i : fin n), M i.succ) M₂)) (m : Πi, M i) : f.uncurry_left m = f (m 0) (tail m) := rfl /-- Given a multilinear map `f` in `n+1` variables, split the first variable to obtain a linear map into multilinear maps in `n` variables, given by `x ↦ (m ↦ f (cons x m))`. -/ def multilinear_map.curry_left (f : multilinear_map R M M₂) : M 0 →ₗ[R] (multilinear_map R (λ(i : fin n), M i.succ) M₂) := { to_fun := λx, { to_fun := λ m, f (cons x m), map_add' := λ dec m i y y', by { rw subsingleton.elim dec (by apply_instance), simp }, map_smul' := λ dec m i y c, by { rw subsingleton.elim dec (by apply_instance), simp }, }, map_add' := λx y, by { ext m, exact cons_add f m x y }, map_smul' := λc x, by { ext m, exact cons_smul f m c x } } @[simp] lemma multilinear_map.curry_left_apply (f : multilinear_map R M M₂) (x : M 0) (m : Π(i : fin n), M i.succ) : f.curry_left x m = f (cons x m) := rfl @[simp] lemma linear_map.curry_uncurry_left (f : M 0 →ₗ[R] (multilinear_map R (λ(i : fin n), M i.succ) M₂)) : f.uncurry_left.curry_left = f := begin ext m x, simp only [tail_cons, linear_map.uncurry_left_apply, multilinear_map.curry_left_apply], rw cons_zero end @[simp] lemma multilinear_map.uncurry_curry_left (f : multilinear_map R M M₂) : f.curry_left.uncurry_left = f := by { ext m, simp, } variables (R M M₂) /-- The space of multilinear maps on `Π(i : fin (n+1)), M i` is canonically isomorphic to the space of linear maps from `M 0` to the space of multilinear maps on `Π(i : fin n), M i.succ `, by separating the first variable. We register this isomorphism as a linear isomorphism in `multilinear_curry_left_equiv R M M₂`. The direct and inverse maps are given by `f.uncurry_left` and `f.curry_left`. Use these unless you need the full framework of linear equivs. -/ def multilinear_curry_left_equiv : (M 0 →ₗ[R] (multilinear_map R (λ(i : fin n), M i.succ) M₂)) ≃ₗ[R] (multilinear_map R M M₂) := { to_fun := linear_map.uncurry_left, map_add' := λf₁ f₂, by { ext m, refl }, map_smul' := λc f, by { ext m, refl }, inv_fun := multilinear_map.curry_left, left_inv := linear_map.curry_uncurry_left, right_inv := multilinear_map.uncurry_curry_left } variables {R M M₂} /-! #### Right currying -/ /-- Given a multilinear map `f` in `n` variables to the space of linear maps from `M (last n)` to `M₂`, construct the corresponding multilinear map on `n+1` variables obtained by concatenating the variables, given by `m ↦ f (init m) (m (last n))`-/ def multilinear_map.uncurry_right (f : (multilinear_map R (λ(i : fin n), M i.cast_succ) (M (last n) →ₗ[R] M₂))) : multilinear_map R M M₂ := { to_fun := λm, f (init m) (m (last n)), map_add' := λ dec m i x y, begin rw subsingleton.elim dec (by apply_instance), by_cases h : i.val < n, { have : last n ≠ i := ne.symm (ne_of_lt h), rw [update_noteq this, update_noteq this, update_noteq this], revert x y, rw [(cast_succ_cast_lt i h).symm], assume x y, rw [init_update_cast_succ, multilinear_map.map_add, init_update_cast_succ, init_update_cast_succ, linear_map.add_apply] }, { revert x y, rw eq_last_of_not_lt h, assume x y, rw [init_update_last, init_update_last, init_update_last, update_same, update_same, update_same, linear_map.map_add] } end, map_smul' := λ dec m i c x, begin rw subsingleton.elim dec (by apply_instance), by_cases h : i.val < n, { have : last n ≠ i := ne.symm (ne_of_lt h), rw [update_noteq this, update_noteq this], revert x, rw [(cast_succ_cast_lt i h).symm], assume x, rw [init_update_cast_succ, init_update_cast_succ, multilinear_map.map_smul, linear_map.smul_apply] }, { revert x, rw eq_last_of_not_lt h, assume x, rw [update_same, update_same, init_update_last, init_update_last, map_smul] } end } @[simp] lemma multilinear_map.uncurry_right_apply (f : (multilinear_map R (λ(i : fin n), M i.cast_succ) ((M (last n)) →ₗ[R] M₂))) (m : Πi, M i) : f.uncurry_right m = f (init m) (m (last n)) := rfl /-- Given a multilinear map `f` in `n+1` variables, split the last variable to obtain a multilinear map in `n` variables taking values in linear maps from `M (last n)` to `M₂`, given by `m ↦ (x ↦ f (snoc m x))`. -/ def multilinear_map.curry_right (f : multilinear_map R M M₂) : multilinear_map R (λ(i : fin n), M (fin.cast_succ i)) ((M (last n)) →ₗ[R] M₂) := { to_fun := λm, { to_fun := λx, f (snoc m x), map_add' := λx y, by rw f.snoc_add, map_smul' := λc x, by simp only [f.snoc_smul, ring_hom.id_apply] }, map_add' := λ dec m i x y, begin rw subsingleton.elim dec (by apply_instance), ext z, change f (snoc (update m i (x + y)) z) = f (snoc (update m i x) z) + f (snoc (update m i y) z), rw [snoc_update, snoc_update, snoc_update, f.map_add] end, map_smul' := λ dec m i c x, begin rw subsingleton.elim dec (by apply_instance), ext z, change f (snoc (update m i (c • x)) z) = c • f (snoc (update m i x) z), rw [snoc_update, snoc_update, f.map_smul] end } @[simp] lemma multilinear_map.curry_right_apply (f : multilinear_map R M M₂) (m : Π(i : fin n), M i.cast_succ) (x : M (last n)) : f.curry_right m x = f (snoc m x) := rfl @[simp] lemma multilinear_map.curry_uncurry_right (f : (multilinear_map R (λ(i : fin n), M i.cast_succ) ((M (last n)) →ₗ[R] M₂))) : f.uncurry_right.curry_right = f := begin ext m x, simp only [snoc_last, multilinear_map.curry_right_apply, multilinear_map.uncurry_right_apply], rw init_snoc end @[simp] lemma multilinear_map.uncurry_curry_right (f : multilinear_map R M M₂) : f.curry_right.uncurry_right = f := by { ext m, simp } variables (R M M₂) /-- The space of multilinear maps on `Π(i : fin (n+1)), M i` is canonically isomorphic to the space of linear maps from the space of multilinear maps on `Π(i : fin n), M i.cast_succ` to the space of linear maps on `M (last n)`, by separating the last variable. We register this isomorphism as a linear isomorphism in `multilinear_curry_right_equiv R M M₂`. The direct and inverse maps are given by `f.uncurry_right` and `f.curry_right`. Use these unless you need the full framework of linear equivs. -/ def multilinear_curry_right_equiv : (multilinear_map R (λ(i : fin n), M i.cast_succ) ((M (last n)) →ₗ[R] M₂)) ≃ₗ[R] (multilinear_map R M M₂) := { to_fun := multilinear_map.uncurry_right, map_add' := λf₁ f₂, by { ext m, refl }, map_smul' := λc f, by { ext m, rw [smul_apply], refl }, inv_fun := multilinear_map.curry_right, left_inv := multilinear_map.curry_uncurry_right, right_inv := multilinear_map.uncurry_curry_right } namespace multilinear_map variables {ι' : Type*} {R M₂} /-- A multilinear map on `Π i : ι ⊕ ι', M'` defines a multilinear map on `Π i : ι, M'` taking values in the space of multilinear maps on `Π i : ι', M'`. -/ def curry_sum (f : multilinear_map R (λ x : ι ⊕ ι', M') M₂) : multilinear_map R (λ x : ι, M') (multilinear_map R (λ x : ι', M') M₂) := { to_fun := λ u, { to_fun := λ v, f (sum.elim u v), map_add' := λ _ v i x y, by { resetI, letI := classical.dec_eq ι, simp only [← sum.update_elim_inr, f.map_add] }, map_smul' := λ _ v i c x, by { resetI, letI := classical.dec_eq ι, simp only [← sum.update_elim_inr, f.map_smul] } }, map_add' := λ _ u i x y, ext $ λ v, by { resetI, letI := classical.dec_eq ι', simp only [multilinear_map.coe_mk, add_apply, ← sum.update_elim_inl, f.map_add] }, map_smul' := λ _ u i c x, ext $ λ v, by { resetI, letI := classical.dec_eq ι', simp only [multilinear_map.coe_mk, smul_apply, ← sum.update_elim_inl, f.map_smul] } } @[simp] lemma curry_sum_apply (f : multilinear_map R (λ x : ι ⊕ ι', M') M₂) (u : ι → M') (v : ι' → M') : f.curry_sum u v = f (sum.elim u v) := rfl /-- A multilinear map on `Π i : ι, M'` taking values in the space of multilinear maps on `Π i : ι', M'` defines a multilinear map on `Π i : ι ⊕ ι', M'`. -/ def uncurry_sum (f : multilinear_map R (λ x : ι, M') (multilinear_map R (λ x : ι', M') M₂)) : multilinear_map R (λ x : ι ⊕ ι', M') M₂ := { to_fun := λ u, f (u ∘ sum.inl) (u ∘ sum.inr), map_add' := λ _ u i x y, by { resetI, letI := (@sum.inl_injective ι ι').decidable_eq, letI := (@sum.inr_injective ι ι').decidable_eq, cases i; simp only [multilinear_map.map_add, add_apply, sum.update_inl_comp_inl, sum.update_inl_comp_inr, sum.update_inr_comp_inl, sum.update_inr_comp_inr] }, map_smul' := λ _ u i c x, by { resetI, letI := (@sum.inl_injective ι ι').decidable_eq, letI := (@sum.inr_injective ι ι').decidable_eq, cases i; simp only [multilinear_map.map_smul, smul_apply, sum.update_inl_comp_inl, sum.update_inl_comp_inr, sum.update_inr_comp_inl, sum.update_inr_comp_inr] } } @[simp] lemma uncurry_sum_aux_apply (f : multilinear_map R (λ x : ι, M') (multilinear_map R (λ x : ι', M') M₂)) (u : ι ⊕ ι' → M') : f.uncurry_sum u = f (u ∘ sum.inl) (u ∘ sum.inr) := rfl variables (ι ι' R M₂ M') /-- Linear equivalence between the space of multilinear maps on `Π i : ι ⊕ ι', M'` and the space of multilinear maps on `Π i : ι, M'` taking values in the space of multilinear maps on `Π i : ι', M'`. -/ def curry_sum_equiv : multilinear_map R (λ x : ι ⊕ ι', M') M₂ ≃ₗ[R] multilinear_map R (λ x : ι, M') (multilinear_map R (λ x : ι', M') M₂) := { to_fun := curry_sum, inv_fun := uncurry_sum, left_inv := λ f, ext $ λ u, by simp, right_inv := λ f, by { ext, simp }, map_add' := λ f g, by { ext, refl }, map_smul' := λ c f, by { ext, refl } } variables {ι ι' R M₂ M'} @[simp] lemma coe_curry_sum_equiv : ⇑(curry_sum_equiv R ι M₂ M' ι') = curry_sum := rfl @[simp] lemma coe_curr_sum_equiv_symm : ⇑(curry_sum_equiv R ι M₂ M' ι').symm = uncurry_sum := rfl variables (R M₂ M') /-- If `s : finset (fin n)` is a finite set of cardinality `k` and its complement has cardinality `l`, then the space of multilinear maps on `λ i : fin n, M'` is isomorphic to the space of multilinear maps on `λ i : fin k, M'` taking values in the space of multilinear maps on `λ i : fin l, M'`. -/ def curry_fin_finset {k l n : ℕ} {s : finset (fin n)} (hk : s.card = k) (hl : sᶜ.card = l) : multilinear_map R (λ x : fin n, M') M₂ ≃ₗ[R] multilinear_map R (λ x : fin k, M') (multilinear_map R (λ x : fin l, M') M₂) := (dom_dom_congr_linear_equiv M' M₂ R R (fin_sum_equiv_of_finset hk hl).symm).trans (curry_sum_equiv R (fin k) M₂ M' (fin l)) variables {R M₂ M'} @[simp] lemma curry_fin_finset_apply {k l n : ℕ} {s : finset (fin n)} (hk : s.card = k) (hl : sᶜ.card = l) (f : multilinear_map R (λ x : fin n, M') M₂) (mk : fin k → M') (ml : fin l → M') : curry_fin_finset R M₂ M' hk hl f mk ml = f (λ i, sum.elim mk ml ((fin_sum_equiv_of_finset hk hl).symm i)) := rfl @[simp] lemma curry_fin_finset_symm_apply {k l n : ℕ} {s : finset (fin n)} (hk : s.card = k) (hl : sᶜ.card = l) (f : multilinear_map R (λ x : fin k, M') (multilinear_map R (λ x : fin l, M') M₂)) (m : fin n → M') : (curry_fin_finset R M₂ M' hk hl).symm f m = f (λ i, m $ fin_sum_equiv_of_finset hk hl (sum.inl i)) (λ i, m $ fin_sum_equiv_of_finset hk hl (sum.inr i)) := rfl @[simp] lemma curry_fin_finset_symm_apply_piecewise_const {k l n : ℕ} {s : finset (fin n)} (hk : s.card = k) (hl : sᶜ.card = l) (f : multilinear_map R (λ x : fin k, M') (multilinear_map R (λ x : fin l, M') M₂)) (x y : M') : (curry_fin_finset R M₂ M' hk hl).symm f (s.piecewise (λ _, x) (λ _, y)) = f (λ _, x) (λ _, y) := begin rw curry_fin_finset_symm_apply, congr, { ext i, rw [fin_sum_equiv_of_finset_inl, finset.piecewise_eq_of_mem], apply finset.order_emb_of_fin_mem }, { ext i, rw [fin_sum_equiv_of_finset_inr, finset.piecewise_eq_of_not_mem], exact finset.mem_compl.1 (finset.order_emb_of_fin_mem _ _ _) } end @[simp] lemma curry_fin_finset_symm_apply_const {k l n : ℕ} {s : finset (fin n)} (hk : s.card = k) (hl : sᶜ.card = l) (f : multilinear_map R (λ x : fin k, M') (multilinear_map R (λ x : fin l, M') M₂)) (x : M') : (curry_fin_finset R M₂ M' hk hl).symm f (λ _, x) = f (λ _, x) (λ _, x) := rfl @[simp] lemma curry_fin_finset_apply_const {k l n : ℕ} {s : finset (fin n)} (hk : s.card = k) (hl : sᶜ.card = l) (f : multilinear_map R (λ x : fin n, M') M₂) (x y : M') : curry_fin_finset R M₂ M' hk hl f (λ _, x) (λ _, y) = f (s.piecewise (λ _, x) (λ _, y)) := begin refine (curry_fin_finset_symm_apply_piecewise_const hk hl _ _ _).symm.trans _, -- `rw` fails rw linear_equiv.symm_apply_apply end end multilinear_map end currying namespace multilinear_map section submodule variables {R M M₂} [ring R] [∀i, add_comm_monoid (M₁ i)] [add_comm_monoid M'] [add_comm_monoid M₂] [∀i, module R (M₁ i)] [module R M'] [module R M₂] /-- The pushforward of an indexed collection of submodule `p i ⊆ M₁ i` by `f : M₁ → M₂`. Note that this is not a submodule - it is not closed under addition. -/ def map [nonempty ι] (f : multilinear_map R M₁ M₂) (p : Π i, submodule R (M₁ i)) : sub_mul_action R M₂ := { carrier := f '' { v | ∀ i, v i ∈ p i}, smul_mem' := λ c _ ⟨x, hx, hf⟩, let ⟨i⟩ := ‹nonempty ι› in by { letI := classical.dec_eq ι, refine ⟨update x i (c • x i), λ j, if hij : j = i then _ else _, hf ▸ _⟩, { rw [hij, update_same], exact (p i).smul_mem _ (hx i) }, { rw [update_noteq hij], exact hx j }, { rw [f.map_smul, update_eq_self] } } } /-- The map is always nonempty. This lemma is needed to apply `sub_mul_action.zero_mem`. -/ lemma map_nonempty [nonempty ι] (f : multilinear_map R M₁ M₂) (p : Π i, submodule R (M₁ i)) : (map f p : set M₂).nonempty := ⟨f 0, 0, λ i, (p i).zero_mem, rfl⟩ /-- The range of a multilinear map, closed under scalar multiplication. -/ def range [nonempty ι] (f : multilinear_map R M₁ M₂) : sub_mul_action R M₂ := f.map (λ i, ⊤) end submodule end multilinear_map
59510d908dfcbe093a8198a619cc1b28037ce07f
618003631150032a5676f229d13a079ac875ff77
/src/data/int/modeq.lean
9ca4fe3791516e0701b553819c49a3a827097273
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
6,036
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import data.nat.modeq import tactic namespace int def modeq (n a b : ℤ) := a % n = b % n notation a ` ≡ `:50 b ` [ZMOD `:50 n `]`:0 := modeq n a b namespace modeq variables {n m a b c d : ℤ} @[refl] protected theorem refl (a : ℤ) : a ≡ a [ZMOD n] := @rfl _ _ @[symm] protected theorem symm : a ≡ b [ZMOD n] → b ≡ a [ZMOD n] := eq.symm @[trans] protected theorem trans : a ≡ b [ZMOD n] → b ≡ c [ZMOD n] → a ≡ c [ZMOD n] := eq.trans lemma coe_nat_modeq_iff {a b n : ℕ} : a ≡ b [ZMOD n] ↔ a ≡ b [MOD n] := by unfold modeq nat.modeq; rw ← int.coe_nat_eq_coe_nat_iff; simp [int.coe_nat_mod] instance : decidable (a ≡ b [ZMOD n]) := by unfold modeq; apply_instance theorem modeq_zero_iff : a ≡ 0 [ZMOD n] ↔ n ∣ a := by rw [modeq, zero_mod, dvd_iff_mod_eq_zero] theorem modeq_iff_dvd : a ≡ b [ZMOD n] ↔ (n:ℤ) ∣ b - a := by rw [modeq, eq_comm]; simp [int.mod_eq_mod_iff_mod_sub_eq_zero, int.dvd_iff_mod_eq_zero, -euclidean_domain.mod_eq_zero] theorem modeq_of_dvd_of_modeq (d : m ∣ n) (h : a ≡ b [ZMOD n]) : a ≡ b [ZMOD m] := modeq_iff_dvd.2 $ dvd_trans d (modeq_iff_dvd.1 h) theorem modeq_mul_left' (hc : 0 ≤ c) (h : a ≡ b [ZMOD n]) : c * a ≡ c * b [ZMOD (c * n)] := or.cases_on (lt_or_eq_of_le hc) (λ hc, by unfold modeq; simp [mul_mod_mul_of_pos _ _ hc, (show _ = _, from h)] ) (λ hc, by simp [hc.symm]) theorem modeq_mul_right' (hc : 0 ≤ c) (h : a ≡ b [ZMOD n]) : a * c ≡ b * c [ZMOD (n * c)] := by rw [mul_comm a, mul_comm b, mul_comm n]; exact modeq_mul_left' hc h theorem modeq_add (h₁ : a ≡ b [ZMOD n]) (h₂ : c ≡ d [ZMOD n]) : a + c ≡ b + d [ZMOD n] := modeq_iff_dvd.2 $ by {convert dvd_add (modeq_iff_dvd.1 h₁) (modeq_iff_dvd.1 h₂), ring} theorem modeq_add_cancel_left (h₁ : a ≡ b [ZMOD n]) (h₂ : a + c ≡ b + d [ZMOD n]) : c ≡ d [ZMOD n] := have d - c = b + d - (a + c) - (b - a) := by ring, modeq_iff_dvd.2 $ by { rw [this], exact dvd_sub (modeq_iff_dvd.1 h₂) (modeq_iff_dvd.1 h₁) } theorem modeq_add_cancel_right (h₁ : c ≡ d [ZMOD n]) (h₂ : a + c ≡ b + d [ZMOD n]) : a ≡ b [ZMOD n] := by rw [add_comm a, add_comm b] at h₂; exact modeq_add_cancel_left h₁ h₂ theorem mod_modeq (a n) : a % n ≡ a [ZMOD n] := int.mod_mod _ _ theorem modeq_neg (h : a ≡ b [ZMOD n]) : -a ≡ -b [ZMOD n] := modeq_add_cancel_left h (by simp) theorem modeq_sub (h₁ : a ≡ b [ZMOD n]) (h₂ : c ≡ d [ZMOD n]) : a - c ≡ b - d [ZMOD n] := by rw [sub_eq_add_neg, sub_eq_add_neg]; exact modeq_add h₁ (modeq_neg h₂) theorem modeq_mul_left (c : ℤ) (h : a ≡ b [ZMOD n]) : c * a ≡ c * b [ZMOD n] := or.cases_on (le_total 0 c) (λ hc, modeq_of_dvd_of_modeq (dvd_mul_left _ _) (modeq_mul_left' hc h)) (λ hc, by rw [← neg_neg c, ← neg_mul_eq_neg_mul, ← neg_mul_eq_neg_mul _ b]; exact modeq_neg (modeq_of_dvd_of_modeq (dvd_mul_left _ _) (modeq_mul_left' (neg_nonneg.2 hc) h))) theorem modeq_mul_right (c : ℤ) (h : a ≡ b [ZMOD n]) : a * c ≡ b * c [ZMOD n] := by rw [mul_comm a, mul_comm b]; exact modeq_mul_left c h theorem modeq_mul (h₁ : a ≡ b [ZMOD n]) (h₂ : c ≡ d [ZMOD n]) : a * c ≡ b * d [ZMOD n] := (modeq_mul_left _ h₂).trans (modeq_mul_right _ h₁) theorem modeq_of_modeq_mul_left (m : ℤ) (h : a ≡ b [ZMOD m * n]) : a ≡ b [ZMOD n] := by rw [modeq_iff_dvd] at *; exact dvd.trans (dvd_mul_left n m) h theorem modeq_of_modeq_mul_right (m : ℤ) : a ≡ b [ZMOD n * m] → a ≡ b [ZMOD n] := mul_comm m n ▸ modeq_of_modeq_mul_left _ lemma modeq_and_modeq_iff_modeq_mul {a b m n : ℤ} (hmn : nat.coprime m.nat_abs n.nat_abs) : a ≡ b [ZMOD m] ∧ a ≡ b [ZMOD n] ↔ (a ≡ b [ZMOD m * n]) := ⟨λ h, begin rw [int.modeq.modeq_iff_dvd, int.modeq.modeq_iff_dvd] at h, rw [int.modeq.modeq_iff_dvd, ← int.nat_abs_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd, int.nat_abs_mul], refine hmn.mul_dvd_of_dvd_of_dvd _ _; rw [← int.coe_nat_dvd, int.nat_abs_dvd, int.dvd_nat_abs]; tauto end, λ h, ⟨int.modeq.modeq_of_modeq_mul_right _ h, int.modeq.modeq_of_modeq_mul_left _ h⟩⟩ lemma gcd_a_modeq (a b : ℕ) : (a : ℤ) * nat.gcd_a a b ≡ nat.gcd a b [ZMOD b] := by rw [← add_zero ((a : ℤ) * _), nat.gcd_eq_gcd_ab]; exact int.modeq.modeq_add rfl (int.modeq.modeq_zero_iff.2 (dvd_mul_right _ _)).symm theorem modeq_add_fac {a b n : ℤ} (c : ℤ) (ha : a ≡ b [ZMOD n]) : a + n*c ≡ b [ZMOD n] := calc a + n*c ≡ b + n*c [ZMOD n] : int.modeq.modeq_add ha (int.modeq.refl _) ... ≡ b + 0 [ZMOD n] : int.modeq.modeq_add (int.modeq.refl _) (int.modeq.modeq_zero_iff.2 (dvd_mul_right _ _)) ... ≡ b [ZMOD n] : by simp open nat lemma mod_coprime {a b : ℕ} (hab : coprime a b) : ∃ y : ℤ, a * y ≡ 1 [ZMOD b] := ⟨ gcd_a a b, have hgcd : nat.gcd a b = 1, from coprime.gcd_eq_one hab, calc ↑a * gcd_a a b ≡ ↑a*gcd_a a b + ↑b*gcd_b a b [ZMOD ↑b] : int.modeq.symm $ modeq_add_fac _ $ int.modeq.refl _ ... ≡ 1 [ZMOD ↑b] : by rw [←gcd_eq_gcd_ab, hgcd]; reflexivity ⟩ lemma exists_unique_equiv (a : ℤ) {b : ℤ} (hb : 0 < b) : ∃ z : ℤ, 0 ≤ z ∧ z < b ∧ z ≡ a [ZMOD b] := ⟨ a % b, int.mod_nonneg _ (ne_of_gt hb), have a % b < abs b, from int.mod_lt _ (ne_of_gt hb), by rwa abs_of_pos hb at this, by simp [int.modeq] ⟩ lemma exists_unique_equiv_nat (a : ℤ) {b : ℤ} (hb : 0 < b) : ∃ z : ℕ, ↑z < b ∧ ↑z ≡ a [ZMOD b] := let ⟨z, hz1, hz2, hz3⟩ := exists_unique_equiv a hb in ⟨z.nat_abs, by split; rw [←int.of_nat_eq_coe, int.of_nat_nat_abs_eq_of_nonneg hz1]; assumption⟩ end modeq @[simp] lemma mod_mul_right_mod (a b c : ℤ) : a % (b * c) % b = a % b := int.modeq.modeq_of_modeq_mul_right _ (int.modeq.mod_modeq _ _) @[simp] lemma mod_mul_left_mod (a b c : ℤ) : a % (b * c) % c = a % c := int.modeq.modeq_of_modeq_mul_left _ (int.modeq.mod_modeq _ _) end int
97d838b707475d6f18a01aaeb624d3fad46b7bf1
130c49f47783503e462c16b2eff31933442be6ff
/src/Lean/Parser/Command.lean
139f544776f77337f973ab0ec183c420e5f93e92
[ "Apache-2.0" ]
permissive
Hazel-Brown/lean4
8aa5860e282435ffc30dcdfccd34006c59d1d39c
79e6732fc6bbf5af831b76f310f9c488d44e7a16
refs/heads/master
1,689,218,208,951
1,629,736,869,000
1,629,736,896,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
10,226
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Sebastian Ullrich -/ import Lean.Parser.Term import Lean.Parser.Do namespace Lean namespace Parser /-- Syntax quotation for terms and (lists of) commands. We prefer terms, so ambiguous quotations like `` `($x $y) `` will be parsed as an application, not two commands. Use `` `($x:command $y:command) `` instead. Multiple command will be put in a `` `null `` node, but a single command will not (so that you can directly match against a quotation in a command kind's elaborator). -/ -- TODO: use two separate quotation parsers with parser priorities instead @[builtinTermParser] def Term.quot := leading_parser "`(" >> incQuotDepth (termParser <|> many1Unbox commandParser) >> ")" @[builtinTermParser] def Term.precheckedQuot := leading_parser "`" >> Term.quot namespace Command @[builtinCommandParser] def moduleDoc := leading_parser ppDedent $ "/-!" >> commentBody >> ppLine def namedPrio := leading_parser (atomic ("(" >> nonReservedSymbol "priority") >> " := " >> priorityParser >> ")") def optNamedPrio := optional namedPrio def «private» := leading_parser "private " def «protected» := leading_parser "protected " def visibility := «private» <|> «protected» def «noncomputable» := leading_parser "noncomputable " def «unsafe» := leading_parser "unsafe " def «partial» := leading_parser "partial " def «nonrec» := leading_parser "nonrec " def declModifiers (inline : Bool) := leading_parser optional docComment >> optional (Term.«attributes» >> if inline then skip else ppDedent ppLine) >> optional visibility >> optional «noncomputable» >> optional «unsafe» >> optional («partial» <|> «nonrec») def declId := leading_parser ident >> optional (".{" >> sepBy1 ident ", " >> "}") def declSig := leading_parser many (ppSpace >> (Term.simpleBinderWithoutType <|> Term.bracketedBinder)) >> Term.typeSpec def optDeclSig := leading_parser many (ppSpace >> (Term.simpleBinderWithoutType <|> Term.bracketedBinder)) >> Term.optType def declValSimple := leading_parser " :=\n" >> termParser >> optional Term.whereDecls def declValEqns := leading_parser Term.matchAltsWhereDecls def declVal := declValSimple <|> declValEqns <|> Term.whereDecls def «abbrev» := leading_parser "abbrev " >> declId >> optDeclSig >> declVal def «def» := leading_parser "def " >> declId >> optDeclSig >> declVal def «theorem» := leading_parser "theorem " >> declId >> declSig >> declVal def «constant» := leading_parser "constant " >> declId >> declSig >> optional declValSimple def «instance» := leading_parser Term.attrKind >> "instance " >> optNamedPrio >> optional declId >> declSig >> declVal def «axiom» := leading_parser "axiom " >> declId >> declSig def «example» := leading_parser "example " >> declSig >> declVal def inferMod := leading_parser atomic (symbol "{" >> "}") def ctor := leading_parser "\n| " >> declModifiers true >> ident >> optional inferMod >> optDeclSig def derivingClasses := sepBy1 (group (ident >> optional (" with " >> Term.structInst))) ", " def optDeriving := leading_parser optional (atomic ("deriving " >> notSymbol "instance") >> derivingClasses) def «inductive» := leading_parser "inductive " >> declId >> optDeclSig >> optional (symbol ":=" <|> "where") >> many ctor >> optDeriving def classInductive := leading_parser atomic (group (symbol "class " >> "inductive ")) >> declId >> optDeclSig >> optional (symbol ":=" <|> "where") >> many ctor >> optDeriving def structExplicitBinder := leading_parser atomic (declModifiers true >> "(") >> many1 ident >> optional inferMod >> optDeclSig >> optional (Term.binderTactic <|> Term.binderDefault) >> ")" def structImplicitBinder := leading_parser atomic (declModifiers true >> "{") >> many1 ident >> optional inferMod >> declSig >> "}" def structInstBinder := leading_parser atomic (declModifiers true >> "[") >> many1 ident >> optional inferMod >> declSig >> "]" def structSimpleBinder := leading_parser atomic (declModifiers true >> ident) >> optional inferMod >> optDeclSig >> optional (Term.binderTactic <|> Term.binderDefault) def structFields := leading_parser manyIndent (ppLine >> checkColGe >>(structExplicitBinder <|> structImplicitBinder <|> structInstBinder <|> structSimpleBinder)) def structCtor := leading_parser atomic (declModifiers true >> ident >> optional inferMod >> " :: ") def structureTk := leading_parser "structure " def classTk := leading_parser "class " def «extends» := leading_parser " extends " >> sepBy1 termParser ", " def «structure» := leading_parser (structureTk <|> classTk) >> declId >> many Term.bracketedBinder >> optional «extends» >> Term.optType >> optional ((symbol " := " <|> " where ") >> optional structCtor >> structFields) >> optDeriving @[builtinCommandParser] def declaration := leading_parser declModifiers false >> («abbrev» <|> «def» <|> «theorem» <|> «constant» <|> «instance» <|> «axiom» <|> «example» <|> «inductive» <|> classInductive <|> «structure») @[builtinCommandParser] def «deriving» := leading_parser "deriving " >> "instance " >> derivingClasses >> " for " >> sepBy1 ident ", " @[builtinCommandParser] def «section» := leading_parser "section " >> optional ident @[builtinCommandParser] def «namespace» := leading_parser "namespace " >> ident @[builtinCommandParser] def «end» := leading_parser "end " >> optional ident @[builtinCommandParser] def «variable» := leading_parser "variable" >> many1 Term.bracketedBinder @[builtinCommandParser] def «universe» := leading_parser "universe " >> many1 ident @[builtinCommandParser] def check := leading_parser "#check " >> termParser @[builtinCommandParser] def check_failure := leading_parser "#check_failure " >> termParser -- Like `#check`, but succeeds only if term does not type check @[builtinCommandParser] def reduce := leading_parser "#reduce " >> termParser @[builtinCommandParser] def eval := leading_parser "#eval " >> termParser @[builtinCommandParser] def synth := leading_parser "#synth " >> termParser @[builtinCommandParser] def exit := leading_parser "#exit" @[builtinCommandParser] def print := leading_parser "#print " >> (ident <|> strLit) @[builtinCommandParser] def printAxioms := leading_parser "#print " >> nonReservedSymbol "axioms " >> ident @[builtinCommandParser] def «resolve_name» := leading_parser "#resolve_name " >> ident @[builtinCommandParser] def «init_quot» := leading_parser "init_quot" def optionValue := nonReservedSymbol "true" <|> nonReservedSymbol "false" <|> strLit <|> numLit @[builtinCommandParser] def «set_option» := leading_parser "set_option " >> ident >> ppSpace >> optionValue def eraseAttr := leading_parser "-" >> ident @[builtinCommandParser] def «attribute» := leading_parser "attribute " >> "[" >> sepBy1 (eraseAttr <|> Term.attrInstance) ", " >> "] " >> many1 ident @[builtinCommandParser] def «export» := leading_parser "export " >> ident >> "(" >> many1 ident >> ")" def openHiding := leading_parser atomic (ident >> "hiding") >> many1 (checkColGt >> ident) def openRenamingItem := leading_parser ident >> unicodeSymbol "→" "->" >> checkColGt >> ident def openRenaming := leading_parser atomic (ident >> "renaming") >> sepBy1 openRenamingItem ", " def openOnly := leading_parser atomic (ident >> "(") >> many1 ident >> ")" def openSimple := leading_parser many1 (checkColGt >> ident) def openScoped := leading_parser "scoped " >> many1 (checkColGt >> ident) def openDecl := openHiding <|> openRenaming <|> openOnly <|> openSimple <|> openScoped @[builtinCommandParser] def «open» := leading_parser withPosition ("open " >> openDecl) @[builtinCommandParser] def «mutual» := leading_parser "mutual " >> many1 (ppLine >> notSymbol "end" >> commandParser) >> ppDedent (ppLine >> "end") @[builtinCommandParser] def «initialize» := leading_parser optional visibility >> "initialize " >> optional (atomic (ident >> Term.typeSpec >> Term.leftArrow)) >> Term.doSeq @[builtinCommandParser] def «builtin_initialize» := leading_parser optional visibility >> "builtin_initialize " >> optional (atomic (ident >> Term.typeSpec >> Term.leftArrow)) >> Term.doSeq @[builtinCommandParser] def «in» := trailing_parser withOpen (" in " >> commandParser) /- This is an auxiliary command for generation constructor injectivity theorems for inductive types defined at `Prelude.lean`. It is meant for bootstrapping purposes only. -/ @[builtinCommandParser] def genInjectiveTheorems := leading_parser "gen_injective_theorems% " >> ident @[runBuiltinParserAttributeHooks] abbrev declModifiersF := declModifiers false @[runBuiltinParserAttributeHooks] abbrev declModifiersT := declModifiers true builtin_initialize register_parser_alias "declModifiers" declModifiersF register_parser_alias "nestedDeclModifiers" declModifiersT register_parser_alias "declId" declId register_parser_alias "declSig" declSig register_parser_alias "declVal" declVal register_parser_alias "optDeclSig" optDeclSig register_parser_alias "openDecl" openDecl end Command namespace Term @[builtinTermParser] def «open» := leading_parser:leadPrec "open " >> Command.openDecl >> withOpenDecl (" in " >> termParser) @[builtinTermParser] def «set_option» := leading_parser:leadPrec "set_option " >> ident >> ppSpace >> Command.optionValue >> " in " >> termParser end Term namespace Tactic @[builtinTacticParser] def «open» := leading_parser:leadPrec "open " >> Command.openDecl >> withOpenDecl (" in " >> tacticSeq) @[builtinTacticParser] def «set_option» := leading_parser:leadPrec "set_option " >> ident >> ppSpace >> Command.optionValue >> " in " >> tacticSeq end Tactic end Parser end Lean
a50538434f60c2dc789cc531a57500efafe338cc
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
/src/tactic/squeeze.lean
7b6c8f553a25074b9ab0e65bb7dc88a8760c7819
[ "Apache-2.0" ]
permissive
dupuisf/mathlib
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
refs/heads/master
1,669,494,854,016
1,595,692,409,000
1,595,692,409,000
272,046,630
0
0
Apache-2.0
1,592,066,143,000
1,592,066,142,000
null
UTF-8
Lean
false
false
14,037
lean
/- Copyright (c) 2019 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Simon Hudon -/ import control.traversable.basic import tactic.simpa open interactive interactive.types lean.parser private meta def loc.to_string_aux : option name → string | none := "⊢" | (some x) := to_string x /-- pretty print a `loc` -/ meta def loc.to_string : loc → string | (loc.ns []) := "" | (loc.ns [none]) := "" | (loc.ns ls) := string.join $ list.intersperse " " (" at" :: ls.map loc.to_string_aux) | loc.wildcard := " at *" /-- shift `pos` `n` columns to the left -/ meta def pos.move_left (p : pos) (n : ℕ) : pos := { line := p.line, column := p.column - n } namespace tactic open list /-- parse structure instance of the shape `{ field1 := value1, .. , field2 := value2 }` -/ meta def struct_inst : lean.parser pexpr := do tk "{", ls ← sep_by (skip_info (tk ",")) ( sum.inl <$> (tk ".." *> texpr) <|> sum.inr <$> (prod.mk <$> ident <* tk ":=" <*> texpr)), tk "}", let (srcs,fields) := partition_map id ls, let (names,values) := unzip fields, pure $ pexpr.mk_structure_instance { field_names := names, field_values := values, sources := srcs } /-- pretty print structure instance -/ meta def struct.to_tactic_format (e : pexpr) : tactic format := do r ← e.get_structure_instance_info, fs ← mzip_with (λ n v, do v ← to_expr v >>= pp, pure $ format!"{n} := {v}" ) r.field_names r.field_values, let ss := r.sources.map (λ s, format!" .. {s}"), let x : format := format.join $ list.intersperse ", " (fs ++ ss), pure format!" {{{x}}" /-- Attribute containing a table that accumulates multiple `squeeze_simp` suggestions -/ @[user_attribute] private meta def squeeze_loc_attr : user_attribute unit (option (list (pos × string × list simp_arg_type × string))) := { name := `_squeeze_loc, parser := fail "this attribute should not be used", descr := "table to accumulate multiple `squeeze_simp` suggestions" } /-- dummy declaration used as target of `squeeze_loc` attribute -/ def squeeze_loc_attr_carrier := () run_cmd squeeze_loc_attr.set ``squeeze_loc_attr_carrier none tt /-- Emit a suggestion to the user. If inside a `squeeze_scope` block, the suggestions emitted through `mk_suggestion` will be aggregated so that every tactic that makes a suggestion can consider multiple execution of the same invocation. If `at_pos` is true, make the suggestion at `p` instead of the current position. -/ meta def mk_suggestion (p : pos) (pre post : string) (args : list simp_arg_type) (at_pos := ff) : tactic unit := do xs ← squeeze_loc_attr.get_param ``squeeze_loc_attr_carrier, match xs with | none := do args ← to_line_wrap_format <$> args.mmap pp, if at_pos then @scope_trace _ p.line p.column $ λ _, _root_.trace sformat!"{pre}{args}{post}" (pure () : tactic unit) else trace sformat!"{pre}{args}{post}" | some xs := do squeeze_loc_attr.set ``squeeze_loc_attr_carrier ((p,pre,args,post) :: xs) ff end local postfix `?`:9001 := optional /-- translate a `pexpr` into a `simp` configuration -/ meta def parse_config : option pexpr → tactic (simp_config_ext × format) | none := pure ({}, "") | (some cfg) := do e ← to_expr ``(%%cfg : simp_config_ext), fmt ← has_to_tactic_format.to_tactic_format cfg, prod.mk <$> eval_expr simp_config_ext e <*> struct.to_tactic_format cfg /-- translate a `pexpr` into a `dsimp` configuration -/ meta def parse_dsimp_config : option pexpr → tactic (dsimp_config × format) | none := pure ({}, "") | (some cfg) := do e ← to_expr ``(%%cfg : simp_config_ext), fmt ← has_to_tactic_format.to_tactic_format cfg, prod.mk <$> eval_expr dsimp_config e <*> struct.to_tactic_format cfg /-- `same_result proof tac` runs tactic `tac` and checks if the proof produced by `tac` is equivalent to `proof`. -/ meta def same_result (pr : proof_state) (tac : tactic unit) : tactic bool := do s ← get_proof_state_after tac, pure $ some pr = s private meta def filter_simp_set_aux (tac : bool → list simp_arg_type → tactic unit) (args : list simp_arg_type) (pr : proof_state) : list simp_arg_type → list simp_arg_type → list simp_arg_type → tactic (list simp_arg_type × list simp_arg_type) | [] ys ds := pure (ys.reverse, ds.reverse) | (x :: xs) ys ds := do b ← same_result pr (tac tt (args ++ xs ++ ys)), if b then filter_simp_set_aux xs ys (x:: ds) else filter_simp_set_aux xs (x :: ys) ds declare_trace squeeze.deleted /-- `filter_simp_set g call_simp user_args simp_args` returns `args'` such that, when calling `call_simp tt /- only -/ args'` on the goal `g` (`g` is a meta var) we end up in the same state as if we had called `call_simp ff (user_args ++ simp_args)` and removing any one element of `args'` changes the resulting proof. -/ meta def filter_simp_set (tac : bool → list simp_arg_type → tactic unit) (user_args simp_args : list simp_arg_type) : tactic (list simp_arg_type) := do some s ← get_proof_state_after (tac ff (user_args ++ simp_args)), (simp_args', _) ← filter_simp_set_aux tac user_args s simp_args [] [], (user_args', ds) ← filter_simp_set_aux tac simp_args' s user_args [] [], when (is_trace_enabled_for `squeeze.deleted = tt ∧ ¬ ds.empty) trace!"deleting provided arguments {ds}", pure (user_args' ++ simp_args') /-- make a `simp_arg_type` that references the name given as an argument -/ meta def name.to_simp_args (n : name) : tactic simp_arg_type := do e ← resolve_name' n, pure $ simp_arg_type.expr e /-- tactic combinator to create a `simp`-like tactic that minimizes its argument list. * `slow`: adds all rfl-lemmas from the environment to the initial list (this is a slower but more accurate strategy) * `no_dflt`: did the user use the `only` keyword? * `args`: list of `simp` arguments * `tac`: how to invoke the underlying `simp` tactic -/ meta def squeeze_simp_core (slow no_dflt : bool) (args : list simp_arg_type) (tac : Π (no_dflt : bool) (args : list simp_arg_type), tactic unit) (mk_suggestion : list simp_arg_type → tactic unit) : tactic unit := do v ← target >>= mk_meta_var, args ← if slow then do simp_set ← attribute.get_instances `simp, simp_set ← simp_set.mfilter $ has_attribute' `_refl_lemma, simp_set ← simp_set.mmap $ resolve_name' >=> pure ∘ simp_arg_type.expr, pure $ args ++ simp_set else pure args, g ← retrieve $ do { g ← main_goal, tac no_dflt args, instantiate_mvars g }, let vs := g.list_constant, vs ← vs.mfilter is_simp_lemma, vs ← vs.mmap strip_prefix, vs ← vs.to_list.mmap name.to_simp_args, with_local_goals' [v] (filter_simp_set tac args vs) >>= mk_suggestion, tac no_dflt args namespace interactive attribute [derive decidable_eq] simp_arg_type /-- combinator meant to aggregate the suggestions issued by multiple calls of `squeeze_simp` (due, for instance, to `;`). Can be used as: ```lean example {α β} (xs ys : list α) (f : α → β) : (xs ++ ys.tail).map f = xs.map f ∧ (xs.tail.map f).length = xs.length := begin have : xs = ys, admit, squeeze_scope { split; squeeze_simp, -- `squeeze_simp` is run twice, the first one requires -- `list.map_append` and the second one `[list.length_map, list.length_tail]` -- prints only one message and combine the suggestions: -- > Try this: simp only [list.length_map, list.length_tail, list.map_append] squeeze_simp [this] -- `squeeze_simp` is run only once -- prints: -- > Try this: simp only [this] }, end ``` -/ meta def squeeze_scope (tac : itactic) : tactic unit := do none ← squeeze_loc_attr.get_param ``squeeze_loc_attr_carrier | pure (), squeeze_loc_attr.set ``squeeze_loc_attr_carrier (some []) ff, finally tac $ do some xs ← squeeze_loc_attr.get_param ``squeeze_loc_attr_carrier | fail "invalid state", let m := native.rb_lmap.of_list xs, squeeze_loc_attr.set ``squeeze_loc_attr_carrier none ff, m.to_list.reverse.mmap' $ λ ⟨p,suggs⟩, do { let ⟨pre,_,post⟩ := suggs.head, let suggs : list (list simp_arg_type) := suggs.map $ prod.fst ∘ prod.snd, mk_suggestion p pre post (suggs.foldl list.union []) tt, pure () } /-- `squeeze_simp`, `squeeze_simpa` and `squeeze_dsimp` perform the same task with the difference that `squeeze_simp` relates to `simp` while `squeeze_simpa` relates to `simpa` and `squeeze_dsimp` relates to `dsimp`. The following applies to `squeeze_simp`, `squeeze_simpa` and `squeeze_dsimp`. `squeeze_simp` behaves like `simp` (including all its arguments) and prints a `simp only` invocation to skip the search through the `simp` lemma list. For instance, the following is easily solved with `simp`: ```lean example : 0 + 1 = 1 + 0 := by simp ``` To guide the proof search and speed it up, we may replace `simp` with `squeeze_simp`: ```lean example : 0 + 1 = 1 + 0 := by squeeze_simp -- prints: -- Try this: simp only [add_zero, eq_self_iff_true, zero_add] ``` `squeeze_simp` suggests a replacement which we can use instead of `squeeze_simp`. ```lean example : 0 + 1 = 1 + 0 := by simp only [add_zero, eq_self_iff_true, zero_add] ``` `squeeze_simp only` prints nothing as it already skips the `simp` list. This tactic is useful for speeding up the compilation of a complete file. Steps: 1. search and replace ` simp` with ` squeeze_simp` (the space helps avoid the replacement of `simp` in `@[simp]`) throughout the file. 2. Starting at the beginning of the file, go to each printout in turn, copy the suggestion in place of `squeeze_simp`. 3. after all the suggestions were applied, search and replace `squeeze_simp` with `simp` to remove the occurrences of `squeeze_simp` that did not produce a suggestion. Known limitation(s): * in cases where `squeeze_simp` is used after a `;` (e.g. `cases x; squeeze_simp`), `squeeze_simp` will produce as many suggestions as the number of goals it is applied to. It is likely that none of the suggestion is a good replacement but they can all be combined by concatenating their list of lemmas. `squeeze_scope` can be used to combine the suggestions: `by squeeze_scope { cases x; squeeze_simp }` * sometimes, `simp` lemmas are also `_refl_lemma` and they can be used without appearing in the resulting proof. `squeeze_simp` won't know to try that lemma unless it is called as `squeeze_simp?` -/ meta def squeeze_simp (key : parse cur_pos) (slow_and_accurate : parse (tk "?")?) (use_iota_eqn : parse (tk "!")?) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (locat : parse location) (cfg : parse struct_inst?) : tactic unit := do (cfg',c) ← parse_config cfg, squeeze_simp_core slow_and_accurate.is_some no_dflt hs (λ l_no_dft l_args, simp use_iota_eqn l_no_dft l_args attr_names locat cfg') (λ args, let use_iota_eqn := if use_iota_eqn.is_some then "!" else "", attrs := if attr_names.empty then "" else string.join (list.intersperse " " (" with" :: attr_names.map to_string)), loc := loc.to_string locat in mk_suggestion (key.move_left 1) sformat!"Try this: simp{use_iota_eqn} only " sformat!"{attrs}{loc}{c}" args) /-- see `squeeze_simp` -/ meta def squeeze_simpa (key : parse cur_pos) (slow_and_accurate : parse (tk "?")?) (use_iota_eqn : parse (tk "!")?) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (tgt : parse (tk "using" *> texpr)?) (cfg : parse struct_inst?) : tactic unit := do (cfg',c) ← parse_config cfg, tgt' ← traverse (λ t, do t ← to_expr t >>= pp, pure format!" using {t}") tgt, squeeze_simp_core slow_and_accurate.is_some no_dflt hs (λ l_no_dft l_args, simpa use_iota_eqn l_no_dft l_args attr_names tgt cfg') (λ args, let use_iota_eqn := if use_iota_eqn.is_some then "!" else "", attrs := if attr_names.empty then "" else string.join (list.intersperse " " (" with" :: attr_names.map to_string)), tgt' := tgt'.get_or_else "" in mk_suggestion (key.move_left 1) sformat!"Try this: simpa{use_iota_eqn} only " sformat!"{attrs}{tgt'}{c}" args) /-- `squeeze_dsimp` behaves like `dsimp` (including all its arguments) and prints a `dsimp only` invocation to skip the search through the `simp` lemma list. See the doc string of `squeeze_simp` for examples. -/ meta def squeeze_dsimp (key : parse cur_pos) (slow_and_accurate : parse (tk "?")?) (use_iota_eqn : parse (tk "!")?) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (locat : parse location) (cfg : parse struct_inst?) : tactic unit := do (cfg',c) ← parse_dsimp_config cfg, squeeze_simp_core slow_and_accurate.is_some no_dflt hs (λ l_no_dft l_args, dsimp l_no_dft l_args attr_names locat cfg') (λ args, let use_iota_eqn := if use_iota_eqn.is_some then "!" else "", attrs := if attr_names.empty then "" else string.join (list.intersperse " " (" with" :: attr_names.map to_string)), loc := loc.to_string locat in mk_suggestion (key.move_left 1) sformat!"Try this: dsimp{use_iota_eqn} only " sformat!"{attrs}{loc}{c}" args) end interactive end tactic open tactic.interactive add_tactic_doc { name := "squeeze_simp / squeeze_simpa / squeeze_dsimp / squeeze_scope", category := doc_category.tactic, decl_names := [``squeeze_simp, ``squeeze_dsimp, ``squeeze_simpa, ``squeeze_scope], tags := ["simplification", "Try this"], inherit_description_from := ``squeeze_simp }
e7448b7e675fd6ee56b33d4b27ea26bc862bc804
26ac254ecb57ffcb886ff709cf018390161a9225
/src/topology/category/Top/opens.lean
1def8a7a375c1e87f2a0e7c4f2b04669891e5128
[ "Apache-2.0" ]
permissive
eric-wieser/mathlib
42842584f584359bbe1fc8b88b3ff937c8acd72d
d0df6b81cd0920ad569158c06a3fd5abb9e63301
refs/heads/master
1,669,546,404,255
1,595,254,668,000
1,595,254,668,000
281,173,504
0
0
Apache-2.0
1,595,263,582,000
1,595,263,581,000
null
UTF-8
Lean
false
false
3,866
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import topology.category.Top.basic import category_theory.eq_to_hom open category_theory open topological_space open opposite universe u namespace topological_space.opens variables {X Y Z : Top.{u}} instance opens_category : category.{u} (opens X) := { hom := λ U V, ulift (plift (U ≤ V)), id := λ X, ⟨ ⟨ le_refl X ⟩ ⟩, comp := λ X Y Z f g, ⟨ ⟨ le_trans f.down.down g.down.down ⟩ ⟩ } def to_Top (X : Top.{u}) : opens X ⥤ Top := { obj := λ U, ⟨U.val, infer_instance⟩, map := λ U V i, ⟨λ x, ⟨x.1, i.down.down x.2⟩, (embedding.continuous_iff embedding_subtype_coe).2 continuous_induced_dom⟩ } /-- `opens.map f` gives the functor from open sets in Y to open set in X, given by taking preimages under f. -/ def map (f : X ⟶ Y) : opens Y ⥤ opens X := { obj := λ U, ⟨ f.val ⁻¹' U.val, f.property _ U.property ⟩, map := λ U V i, ⟨ ⟨ λ a b, i.down.down b ⟩ ⟩ }. @[simp] lemma map_obj (f : X ⟶ Y) (U) (p) : (map f).obj ⟨U, p⟩ = ⟨ f.val ⁻¹' U, f.property _ p ⟩ := rfl @[simp] lemma map_id_obj (U : opens X) : (map (𝟙 X)).obj U = U := by { ext, refl } -- not quite `rfl`, since we don't have eta for records @[simp] lemma map_id_obj' (U) (p) : (map (𝟙 X)).obj ⟨U, p⟩ = ⟨U, p⟩ := rfl @[simp] lemma map_id_obj_unop (U : (opens X)ᵒᵖ) : (map (𝟙 X)).obj (unop U) = unop U := by simp @[simp] lemma op_map_id_obj (U : (opens X)ᵒᵖ) : (map (𝟙 X)).op.obj U = U := by simp section variable (X) def map_id : map (𝟙 X) ≅ 𝟭 (opens X) := { hom := { app := λ U, eq_to_hom (map_id_obj U) }, inv := { app := λ U, eq_to_hom (map_id_obj U).symm } } @[simp] lemma map_id_hom_app (U) : (map_id X).hom.app U = eq_to_hom (map_id_obj U) := rfl @[simp] lemma map_id_inv_app (U) : (map_id X).inv.app U = eq_to_hom (map_id_obj U).symm := rfl end @[simp] lemma map_comp_obj (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).obj U = (map f).obj ((map g).obj U) := by { ext, refl } -- not quite `rfl`, since we don't have eta for records @[simp] lemma map_comp_obj' (f : X ⟶ Y) (g : Y ⟶ Z) (U) (p) : (map (f ≫ g)).obj ⟨U, p⟩ = (map f).obj ((map g).obj ⟨U, p⟩) := rfl @[simp] lemma map_comp_obj_unop (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).obj (unop U) = (map f).obj ((map g).obj (unop U)) := by simp @[simp] lemma op_map_comp_obj (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).op.obj U = (map f).op.obj ((map g).op.obj U) := by simp def map_comp (f : X ⟶ Y) (g : Y ⟶ Z) : map (f ≫ g) ≅ map g ⋙ map f := { hom := { app := λ U, eq_to_hom (map_comp_obj f g U) }, inv := { app := λ U, eq_to_hom (map_comp_obj f g U).symm } } @[simp] lemma map_comp_hom_app (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map_comp f g).hom.app U = eq_to_hom (map_comp_obj f g U) := rfl @[simp] lemma map_comp_inv_app (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map_comp f g).inv.app U = eq_to_hom (map_comp_obj f g U).symm := rfl -- We could make f g implicit here, but it's nice to be able to see when -- they are the identity (often!) def map_iso (f g : X ⟶ Y) (h : f = g) : map f ≅ map g := nat_iso.of_components (λ U, eq_to_iso (congr_fun (congr_arg functor.obj (congr_arg map h)) U) ) (by obviously) @[simp] lemma map_iso_refl (f : X ⟶ Y) (h) : map_iso f f h = iso.refl (map _) := rfl @[simp] lemma map_iso_hom_app (f g : X ⟶ Y) (h : f = g) (U : opens Y) : (map_iso f g h).hom.app U = eq_to_hom (congr_fun (congr_arg functor.obj (congr_arg map h)) U) := rfl @[simp] lemma map_iso_inv_app (f g : X ⟶ Y) (h : f = g) (U : opens Y) : (map_iso f g h).inv.app U = eq_to_hom (congr_fun (congr_arg functor.obj (congr_arg map h.symm)) U) := rfl end topological_space.opens
924df4767c1ffe287fddb3c965c5d2da7a86573e
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/mk_inhabited1.lean
efd321e939f388d3068c85a5625dd8e57b2373ac
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
498
lean
open tactic definition nat_inhabited : inhabited nat := by mk_inhabited_instance definition list_inhabited {A : Type} : inhabited (list A) := by mk_inhabited_instance definition prod_inhabited {A B : Type} [inhabited A] [inhabited B] : inhabited (A × B) := by mk_inhabited_instance definition sum_inhabited₁ {A B : Type} [inhabited A] : inhabited (sum A B) := by mk_inhabited_instance definition sum_inhabited₂ {A B : Type} [inhabited B] : inhabited (sum A B) := by mk_inhabited_instance
b6cf44dbe77aab682f360217fc3e66f4210f87da
d642a6b1261b2cbe691e53561ac777b924751b63
/src/algebra/group/units.lean
7d10b122218183bfcfed4dc3f1dabd7af2e996de
[ "Apache-2.0" ]
permissive
cipher1024/mathlib
fee56b9954e969721715e45fea8bcb95f9dc03fe
d077887141000fefa5a264e30fa57520e9f03522
refs/heads/master
1,651,806,490,504
1,573,508,694,000
1,573,508,694,000
107,216,176
0
0
Apache-2.0
1,647,363,136,000
1,508,213,014,000
Lean
UTF-8
Lean
false
false
5,597
lean
/- Copyright (c) 2017 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Mario Carneiro, Johannes, Hölzl, Chris Hughes Units (i.e., invertible elements) of a multiplicative monoid. -/ import tactic.basic logic.function universe u variable {α : Type u} structure units (α : Type u) [monoid α] := (val : α) (inv : α) (val_inv : val * inv = 1) (inv_val : inv * val = 1) namespace units variables [monoid α] {a b c : units α} instance : has_coe (units α) α := ⟨val⟩ @[ext] theorem ext : function.injective (coe : units α → α) | ⟨v, i₁, vi₁, iv₁⟩ ⟨v', i₂, vi₂, iv₂⟩ e := by change v = v' at e; subst v'; congr; simpa only [iv₂, vi₁, one_mul, mul_one] using mul_assoc i₂ v i₁ theorem ext_iff {a b : units α} : a = b ↔ (a : α) = b := ext.eq_iff.symm instance [decidable_eq α] : decidable_eq (units α) | a b := decidable_of_iff' _ ext_iff protected def mul (u₁ u₂ : units α) : units α := ⟨u₁.val * u₂.val, u₂.inv * u₁.inv, have u₁.val * (u₂.val * u₂.inv) * u₁.inv = 1, by rw [u₂.val_inv]; rw [mul_one, u₁.val_inv], by simpa only [mul_assoc], have u₂.inv * (u₁.inv * u₁.val) * u₂.val = 1, by rw [u₁.inv_val]; rw [mul_one, u₂.inv_val], by simpa only [mul_assoc]⟩ protected def inv' (u : units α) : units α := ⟨u.inv, u.val, u.inv_val, u.val_inv⟩ instance : has_mul (units α) := ⟨units.mul⟩ instance : has_one (units α) := ⟨⟨1, 1, mul_one 1, one_mul 1⟩⟩ instance : has_inv (units α) := ⟨units.inv'⟩ variables (a b) @[simp] lemma coe_mul : (↑(a * b) : α) = a * b := rfl @[simp] lemma coe_one : ((1 : units α) : α) = 1 := rfl lemma val_coe : (↑a : α) = a.val := rfl lemma coe_inv : ((a⁻¹ : units α) : α) = a.inv := rfl @[simp] lemma inv_mul : (↑a⁻¹ * a : α) = 1 := inv_val _ @[simp] lemma mul_inv : (a * ↑a⁻¹ : α) = 1 := val_inv _ @[simp] lemma mul_inv_cancel_left (a : units α) (b : α) : (a:α) * (↑a⁻¹ * b) = b := by rw [← mul_assoc, mul_inv, one_mul] @[simp] lemma inv_mul_cancel_left (a : units α) (b : α) : (↑a⁻¹:α) * (a * b) = b := by rw [← mul_assoc, inv_mul, one_mul] @[simp] lemma mul_inv_cancel_right (a : α) (b : units α) : a * b * ↑b⁻¹ = a := by rw [mul_assoc, mul_inv, mul_one] @[simp] lemma inv_mul_cancel_right (a : α) (b : units α) : a * ↑b⁻¹ * b = a := by rw [mul_assoc, inv_mul, mul_one] instance : group (units α) := by refine {mul := (*), one := 1, inv := has_inv.inv, ..}; { intros, apply ext, simp only [coe_mul, coe_one, mul_assoc, one_mul, mul_one, inv_mul] } instance {α} [comm_monoid α] : comm_group (units α) := { mul_comm := λ u₁ u₂, ext $ mul_comm _ _, ..units.group } instance [has_repr α] : has_repr (units α) := ⟨repr ∘ val⟩ @[simp] theorem mul_left_inj (a : units α) {b c : α} : (a:α) * b = a * c ↔ b = c := ⟨λ h, by simpa only [inv_mul_cancel_left] using congr_arg ((*) ↑(a⁻¹ : units α)) h, congr_arg _⟩ @[simp] theorem mul_right_inj (a : units α) {b c : α} : b * a = c * a ↔ b = c := ⟨λ h, by simpa only [mul_inv_cancel_right] using congr_arg (* ↑(a⁻¹ : units α)) h, congr_arg _⟩ end units theorem nat.units_eq_one (u : units ℕ) : u = 1 := units.ext $ nat.eq_one_of_dvd_one ⟨u.inv, u.val_inv.symm⟩ def units.mk_of_mul_eq_one [comm_monoid α] (a b : α) (hab : a * b = 1) : units α := ⟨a, b, hab, (mul_comm b a).trans hab⟩ section monoid variables [monoid α] {a b c : α} /-- Partial division. It is defined when the second argument is invertible, and unlike the division operator in `division_ring` it is not totalized at zero. -/ def divp (a : α) (u) : α := a * (u⁻¹ : units α) infix ` /ₚ `:70 := divp @[simp] theorem divp_self (u : units α) : (u : α) /ₚ u = 1 := units.mul_inv _ @[simp] theorem divp_one (a : α) : a /ₚ 1 = a := mul_one _ theorem divp_assoc (a b : α) (u : units α) : a * b /ₚ u = a * (b /ₚ u) := mul_assoc _ _ _ @[simp] theorem divp_inv (u : units α) : a /ₚ u⁻¹ = a * u := rfl @[simp] theorem divp_mul_cancel (a : α) (u : units α) : a /ₚ u * u = a := (mul_assoc _ _ _).trans $ by rw [units.inv_mul, mul_one] @[simp] theorem mul_divp_cancel (a : α) (u : units α) : (a * u) /ₚ u = a := (mul_assoc _ _ _).trans $ by rw [units.mul_inv, mul_one] @[simp] theorem divp_right_inj (u : units α) {a b : α} : a /ₚ u = b /ₚ u ↔ a = b := units.mul_right_inj _ theorem divp_divp_eq_divp_mul (x : α) (u₁ u₂ : units α) : (x /ₚ u₁) /ₚ u₂ = x /ₚ (u₂ * u₁) := by simp only [divp, mul_inv_rev, units.coe_mul, mul_assoc] theorem divp_eq_iff_mul_eq {x : α} {u : units α} {y : α} : x /ₚ u = y ↔ y * u = x := u.mul_right_inj.symm.trans $ by rw [divp_mul_cancel]; exact ⟨eq.symm, eq.symm⟩ theorem divp_eq_one_iff_eq {a : α} {u : units α} : a /ₚ u = 1 ↔ a = u := (units.mul_right_inj u).symm.trans $ by rw [divp_mul_cancel, one_mul] @[simp] theorem one_divp (u : units α) : 1 /ₚ u = ↑u⁻¹ := one_mul _ end monoid section comm_monoid variables [comm_monoid α] theorem divp_eq_divp_iff {x y : α} {ux uy : units α} : x /ₚ ux = y /ₚ uy ↔ x * uy = y * ux := by rw [divp_eq_iff_mul_eq, mul_comm, ← divp_assoc, divp_eq_iff_mul_eq, mul_comm y ux] theorem divp_mul_divp (x y : α) (ux uy : units α) : (x /ₚ ux) * (y /ₚ uy) = (x * y) /ₚ (ux * uy) := by rw [← divp_divp_eq_divp_mul, divp_assoc, mul_comm x, divp_assoc, mul_comm] end comm_monoid
39d9ab33ad29b1e358f27598df6365bdba20c264
9dc8cecdf3c4634764a18254e94d43da07142918
/src/measure_theory/measure/hausdorff.lean
fb4aa3800f7ecdd28d110f0bdc3270713d234dc6
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
44,836
lean
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import analysis.special_functions.pow import logic.equiv.list import measure_theory.constructions.borel_space import measure_theory.measure.lebesgue import topology.metric_space.holder import topology.metric_space.metric_separated /-! # Hausdorff measure and metric (outer) measures In this file we define the `d`-dimensional Hausdorff measure on an (extended) metric space `X` and the Hausdorff dimension of a set in an (extended) metric space. Let `μ d δ` be the maximal outer measure such that `μ d δ s ≤ (emetric.diam s) ^ d` for every set of diameter less than `δ`. Then the Hausdorff measure `μH[d] s` of `s` is defined as `⨆ δ > 0, μ d δ s`. By Caratheodory theorem `measure_theory.outer_measure.is_metric.borel_le_caratheodory`, this is a Borel measure on `X`. The value of `μH[d]`, `d > 0`, on a set `s` (measurable or not) is given by ``` μH[d] s = ⨆ (r : ℝ≥0∞) (hr : 0 < r), ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n) (ht : ∀ n, emetric.diam (t n) ≤ r), ∑' n, emetric.diam (t n) ^ d ``` For every set `s` for any `d < d'` we have either `μH[d] s = ∞` or `μH[d'] s = 0`, see `measure_theory.measure.hausdorff_measure_zero_or_top`. In `topology.metric_space.hausdorff_dimension` we use this fact to define the Hausdorff dimension `dimH` of a set in an (extended) metric space. We also define two generalizations of the Hausdorff measure. In one generalization (see `measure_theory.measure.mk_metric`) we take any function `m (diam s)` instead of `(diam s) ^ d`. In an even more general definition (see `measure_theory.measure.mk_metric'`) we use any function of `m : set X → ℝ≥0∞`. Some authors start with a partial function `m` defined only on some sets `s : set X` (e.g., only on balls or only on measurable sets). This is equivalent to our definition applied to `measure_theory.extend m`. We also define a predicate `measure_theory.outer_measure.is_metric` which says that an outer measure is additive on metric separated pairs of sets: `μ (s ∪ t) = μ s + μ t` provided that `⨅ (x ∈ s) (y ∈ t), edist x y ≠ 0`. This is the property required for the Caratheodory theorem `measure_theory.outer_measure.is_metric.borel_le_caratheodory`, so we prove this theorem for any metric outer measure, then prove that outer measures constructed using `mk_metric'` are metric outer measures. ## Main definitions * `measure_theory.outer_measure.is_metric`: an outer measure `μ` is called *metric* if `μ (s ∪ t) = μ s + μ t` for any two metric separated sets `s` and `t`. A metric outer measure in a Borel extended metric space is guaranteed to satisfy the Caratheodory condition, see `measure_theory.outer_measure.is_metric.borel_le_caratheodory`. * `measure_theory.outer_measure.mk_metric'` and its particular case `measure_theory.outer_measure.mk_metric`: a construction of an outer measure that is guaranteed to be metric. Both constructions are generalizations of the Hausdorff measure. The same measures interpreted as Borel measures are called `measure_theory.measure.mk_metric'` and `measure_theory.measure.mk_metric`. * `measure_theory.measure.hausdorff_measure` a.k.a. `μH[d]`: the `d`-dimensional Hausdorff measure. There are many definitions of the Hausdorff measure that differ from each other by a multiplicative constant. We put `μH[d] s = ⨆ r > 0, ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n) (ht : ∀ n, emetric.diam (t n) ≤ r), ∑' n, ⨆ (ht : ¬set.subsingleton (t n)), (emetric.diam (t n)) ^ d`, see `measure_theory.measure.hausdorff_measure_apply'`. In the most interesting case `0 < d` one can omit the `⨆ (ht : ¬set.subsingleton (t n))` part. ## Main statements ### Basic properties * `measure_theory.outer_measure.is_metric.borel_le_caratheodory`: if `μ` is a metric outer measure on an extended metric space `X` (that is, it is additive on pairs of metric separated sets), then every Borel set is Caratheodory measurable (hence, `μ` defines an actual `measure_theory.measure`). See also `measure_theory.measure.mk_metric`. * `measure_theory.measure.hausdorff_measure_mono`: `μH[d] s` is an antitone function of `d`. * `measure_theory.measure.hausdorff_measure_zero_or_top`: if `d₁ < d₂`, then for any `s`, either `μH[d₂] s = 0` or `μH[d₁] s = ∞`. Together with the previous lemma, this means that `μH[d] s` is equal to infinity on some ray `(-∞, D)` and is equal to zero on `(D, +∞)`, where `D` is a possibly infinite number called the *Hausdorff dimension* of `s`; `μH[D] s` can be zero, infinity, or anything in between. * `measure_theory.measure.no_atoms_hausdorff`: Hausdorff measure has no atoms. ### Hausdorff measure in `ℝⁿ` * `measure_theory.hausdorff_measure_pi_real`: for a nonempty `ι`, `μH[card ι]` on `ι → ℝ` equals Lebesgue measure. ## Notations We use the following notation localized in `measure_theory`. - `μH[d]` : `measure_theory.measure.hausdorff_measure d` ## Implementation notes There are a few similar constructions called the `d`-dimensional Hausdorff measure. E.g., some sources only allow coverings by balls and use `r ^ d` instead of `(diam s) ^ d`. While these construction lead to different Hausdorff measures, they lead to the same notion of the Hausdorff dimension. ## TODO * prove that `1`-dimensional Hausdorff measure on `ℝ` equals `volume`; * prove a similar statement for `ℝ × ℝ`. ## References * [Herbert Federer, Geometric Measure Theory, Chapter 2.10][Federer1996] ## Tags Hausdorff measure, measure, metric measure -/ open_locale nnreal ennreal topological_space big_operators open emetric set function filter encodable finite_dimensional topological_space noncomputable theory variables {ι X Y : Type*} [emetric_space X] [emetric_space Y] namespace measure_theory namespace outer_measure /-! ### Metric outer measures In this section we define metric outer measures and prove Caratheodory theorem: a metric outer measure has the Caratheodory property. -/ /-- We say that an outer measure `μ` in an (e)metric space is *metric* if `μ (s ∪ t) = μ s + μ t` for any two metric separated sets `s`, `t`. -/ def is_metric (μ : outer_measure X) : Prop := ∀ (s t : set X), is_metric_separated s t → μ (s ∪ t) = μ s + μ t namespace is_metric variables {μ : outer_measure X} /-- A metric outer measure is additive on a finite set of pairwise metric separated sets. -/ lemma finset_Union_of_pairwise_separated (hm : is_metric μ) {I : finset ι} {s : ι → set X} (hI : ∀ (i ∈ I) (j ∈ I), i ≠ j → is_metric_separated (s i) (s j)) : μ (⋃ i ∈ I, s i) = ∑ i in I, μ (s i) := begin classical, induction I using finset.induction_on with i I hiI ihI hI, { simp }, simp only [finset.mem_insert] at hI, rw [finset.set_bUnion_insert, hm, ihI, finset.sum_insert hiI], exacts [λ i hi j hj hij, (hI i (or.inr hi) j (or.inr hj) hij), is_metric_separated.finset_Union_right (λ j hj, hI i (or.inl rfl) j (or.inr hj) (ne_of_mem_of_not_mem hj hiI).symm)] end /-- Caratheodory theorem. If `m` is a metric outer measure, then every Borel measurable set `t` is Caratheodory measurable: for any (not necessarily measurable) set `s` we have `μ (s ∩ t) + μ (s \ t) = μ s`. -/ lemma borel_le_caratheodory (hm : is_metric μ) : borel X ≤ μ.caratheodory := begin rw [borel_eq_generate_from_is_closed], refine measurable_space.generate_from_le (λ t ht, μ.is_caratheodory_iff_le.2 $ λ s, _), set S : ℕ → set X := λ n, {x ∈ s | (↑n)⁻¹ ≤ inf_edist x t}, have n0 : ∀ {n : ℕ}, (n⁻¹ : ℝ≥0∞) ≠ 0, from λ n, ennreal.inv_ne_zero.2 (ennreal.nat_ne_top _), have Ssep : ∀ n, is_metric_separated (S n) t, from λ n, ⟨n⁻¹, n0, λ x hx y hy, hx.2.trans $ inf_edist_le_edist_of_mem hy⟩, have Ssep' : ∀ n, is_metric_separated (S n) (s ∩ t), from λ n, (Ssep n).mono subset.rfl (inter_subset_right _ _), have S_sub : ∀ n, S n ⊆ s \ t, from λ n, subset_inter (inter_subset_left _ _) (Ssep n).subset_compl_right, have hSs : ∀ n, μ (s ∩ t) + μ (S n) ≤ μ s, from λ n, calc μ (s ∩ t) + μ (S n) = μ (s ∩ t ∪ S n) : eq.symm $ hm _ _ $ (Ssep' n).symm ... ≤ μ (s ∩ t ∪ s \ t) : by { mono*, exact le_rfl } ... = μ s : by rw [inter_union_diff], have Union_S : (⋃ n, S n) = s \ t, { refine subset.antisymm (Union_subset S_sub) _, rintro x ⟨hxs, hxt⟩, rw mem_iff_inf_edist_zero_of_closed ht at hxt, rcases ennreal.exists_inv_nat_lt hxt with ⟨n, hn⟩, exact mem_Union.2 ⟨n, hxs, hn.le⟩ }, /- Now we have `∀ n, μ (s ∩ t) + μ (S n) ≤ μ s` and we need to prove `μ (s ∩ t) + μ (⋃ n, S n) ≤ μ s`. We can't pass to the limit because `μ` is only an outer measure. -/ by_cases htop : μ (s \ t) = ∞, { rw [htop, ennreal.add_top, ← htop], exact μ.mono (diff_subset _ _) }, suffices : μ (⋃ n, S n) ≤ ⨆ n, μ (S n), calc μ (s ∩ t) + μ (s \ t) = μ (s ∩ t) + μ (⋃ n, S n) : by rw Union_S ... ≤ μ (s ∩ t) + ⨆ n, μ (S n) : add_le_add le_rfl this ... = ⨆ n, μ (s ∩ t) + μ (S n) : ennreal.add_supr ... ≤ μ s : supr_le hSs, /- It suffices to show that `∑' k, μ (S (k + 1) \ S k) ≠ ∞`. Indeed, if we have this, then for all `N` we have `μ (⋃ n, S n) ≤ μ (S N) + ∑' k, m (S (N + k + 1) \ S (N + k))` and the second term tends to zero, see `outer_measure.Union_nat_of_monotone_of_tsum_ne_top` for details. -/ have : ∀ n, S n ⊆ S (n + 1), from λ n x hx, ⟨hx.1, le_trans (ennreal.inv_le_inv.2 $ ennreal.coe_nat_le_coe_nat.2 n.le_succ) hx.2⟩, refine (μ.Union_nat_of_monotone_of_tsum_ne_top this _).le, clear this, /- While the sets `S (k + 1) \ S k` are not pairwise metric separated, the sets in each subsequence `S (2 * k + 1) \ S (2 * k)` and `S (2 * k + 2) \ S (2 * k)` are metric separated, so `m` is additive on each of those sequences. -/ rw [← tsum_even_add_odd ennreal.summable ennreal.summable, ennreal.add_ne_top], suffices : ∀ a, (∑' (k : ℕ), μ (S (2 * k + 1 + a) \ S (2 * k + a))) ≠ ∞, from ⟨by simpa using this 0, by simpa using this 1⟩, refine λ r, ne_top_of_le_ne_top htop _, rw [← Union_S, ennreal.tsum_eq_supr_nat, supr_le_iff], intro n, rw [← hm.finset_Union_of_pairwise_separated], { exact μ.mono (Union_subset $ λ i, Union_subset $ λ hi x hx, mem_Union.2 ⟨_, hx.1⟩) }, suffices : ∀ i j, i < j → is_metric_separated (S (2 * i + 1 + r)) (s \ S (2 * j + r)), from λ i _ j _ hij, hij.lt_or_lt.elim (λ h, (this i j h).mono (inter_subset_left _ _) (λ x hx, ⟨hx.1.1, hx.2⟩)) (λ h, (this j i h).symm.mono (λ x hx, ⟨hx.1.1, hx.2⟩) (inter_subset_left _ _)), intros i j hj, have A : ((↑(2 * j + r))⁻¹ : ℝ≥0∞) < (↑(2 * i + 1 + r))⁻¹, by { rw [ennreal.inv_lt_inv, ennreal.coe_nat_lt_coe_nat], linarith }, refine ⟨(↑(2 * i + 1 + r))⁻¹ - (↑(2 * j + r))⁻¹, by simpa using A, λ x hx y hy, _⟩, have : inf_edist y t < (↑(2 * j + r))⁻¹, from not_le.1 (λ hle, hy.2 ⟨hy.1, hle⟩), rcases inf_edist_lt_iff.mp this with ⟨z, hzt, hyz⟩, have hxz : (↑(2 * i + 1 + r))⁻¹ ≤ edist x z, from le_inf_edist.1 hx.2 _ hzt, apply ennreal.le_of_add_le_add_right hyz.ne_top, refine le_trans _ (edist_triangle _ _ _), refine (add_le_add le_rfl hyz.le).trans (eq.trans_le _ hxz), rw [tsub_add_cancel_of_le A.le] end lemma le_caratheodory [measurable_space X] [borel_space X] (hm : is_metric μ) : ‹measurable_space X› ≤ μ.caratheodory := by { rw @borel_space.measurable_eq X _ _, exact hm.borel_le_caratheodory } end is_metric /-! ### Constructors of metric outer measures In this section we provide constructors `measure_theory.outer_measure.mk_metric'` and `measure_theory.outer_measure.mk_metric` and prove that these outer measures are metric outer measures. We also prove basic lemmas about `map`/`comap` of these measures. -/ /-- Auxiliary definition for `outer_measure.mk_metric'`: given a function on sets `m : set X → ℝ≥0∞`, returns the maximal outer measure `μ` such that `μ s ≤ m s` for any set `s` of diameter at most `r`.-/ def mk_metric'.pre (m : set X → ℝ≥0∞) (r : ℝ≥0∞) : outer_measure X := bounded_by $ extend (λ s (hs : diam s ≤ r), m s) /-- Given a function `m : set X → ℝ≥0∞`, `mk_metric' m` is the supremum of `mk_metric'.pre m r` over `r > 0`. Equivalently, it is the limit of `mk_metric'.pre m r` as `r` tends to zero from the right. -/ def mk_metric' (m : set X → ℝ≥0∞) : outer_measure X := ⨆ r > 0, mk_metric'.pre m r /-- Given a function `m : ℝ≥0∞ → ℝ≥0∞` and `r > 0`, let `μ r` be the maximal outer measure such that `μ s ≤ m (emetric.diam s)` whenever `emetric.diam s < r`. Then `mk_metric m = ⨆ r > 0, μ r`. -/ def mk_metric (m : ℝ≥0∞ → ℝ≥0∞) : outer_measure X := mk_metric' (λ s, m (diam s)) namespace mk_metric' variables {m : set X → ℝ≥0∞} {r : ℝ≥0∞} {μ : outer_measure X} {s : set X} lemma le_pre : μ ≤ pre m r ↔ ∀ s : set X, diam s ≤ r → μ s ≤ m s := by simp only [pre, le_bounded_by, extend, le_infi_iff] lemma pre_le (hs : diam s ≤ r) : pre m r s ≤ m s := (bounded_by_le _).trans $ infi_le _ hs lemma mono_pre (m : set X → ℝ≥0∞) {r r' : ℝ≥0∞} (h : r ≤ r') : pre m r' ≤ pre m r := le_pre.2 $ λ s hs, pre_le (hs.trans h) lemma mono_pre_nat (m : set X → ℝ≥0∞) : monotone (λ k : ℕ, pre m k⁻¹) := λ k l h, le_pre.2 $ λ s hs, pre_le (hs.trans $ by simpa) lemma tendsto_pre (m : set X → ℝ≥0∞) (s : set X) : tendsto (λ r, pre m r s) (𝓝[>] 0) (𝓝 $ mk_metric' m s) := begin rw [← map_coe_Ioi_at_bot, tendsto_map'_iff], simp only [mk_metric', outer_measure.supr_apply, supr_subtype'], exact tendsto_at_bot_supr (λ r r' hr, mono_pre _ hr _) end lemma tendsto_pre_nat (m : set X → ℝ≥0∞) (s : set X) : tendsto (λ n : ℕ, pre m n⁻¹ s) at_top (𝓝 $ mk_metric' m s) := begin refine (tendsto_pre m s).comp (tendsto_inf.2 ⟨ennreal.tendsto_inv_nat_nhds_zero, _⟩), refine tendsto_principal.2 (eventually_of_forall $ λ n, _), simp end lemma eq_supr_nat (m : set X → ℝ≥0∞) : mk_metric' m = ⨆ n : ℕ, mk_metric'.pre m n⁻¹ := begin ext1 s, rw supr_apply, refine tendsto_nhds_unique (mk_metric'.tendsto_pre_nat m s) (tendsto_at_top_supr $ λ k l hkl, mk_metric'.mono_pre_nat m hkl s) end /-- `measure_theory.outer_measure.mk_metric'.pre m r` is a trimmed measure provided that `m (closure s) = m s` for any set `s`. -/ lemma trim_pre [measurable_space X] [opens_measurable_space X] (m : set X → ℝ≥0∞) (hcl : ∀ s, m (closure s) = m s) (r : ℝ≥0∞) : (pre m r).trim = pre m r := begin refine le_antisymm (le_pre.2 $ λ s hs, _) (le_trim _), rw trim_eq_infi, refine (infi_le_of_le (closure s) $ infi_le_of_le subset_closure $ infi_le_of_le measurable_set_closure ((pre_le _).trans_eq (hcl _))), rwa diam_closure end end mk_metric' /-- An outer measure constructed using `outer_measure.mk_metric'` is a metric outer measure. -/ lemma mk_metric'_is_metric (m : set X → ℝ≥0∞) : (mk_metric' m).is_metric := begin rintros s t ⟨r, r0, hr⟩, refine tendsto_nhds_unique_of_eventually_eq (mk_metric'.tendsto_pre _ _) ((mk_metric'.tendsto_pre _ _).add (mk_metric'.tendsto_pre _ _)) _, rw [← pos_iff_ne_zero] at r0, filter_upwards [Ioo_mem_nhds_within_Ioi ⟨le_rfl, r0⟩], rintro ε ⟨ε0, εr⟩, refine bounded_by_union_of_top_of_nonempty_inter _, rintro u ⟨x, hxs, hxu⟩ ⟨y, hyt, hyu⟩, have : ε < diam u, from εr.trans_le ((hr x hxs y hyt).trans $ edist_le_diam_of_mem hxu hyu), exact infi_eq_top.2 (λ h, (this.not_le h).elim) end /-- If `c ∉ {0, ∞}` and `m₁ d ≤ c * m₂ d` for `d < ε` for some `ε > 0` (we use `≤ᶠ[𝓝[≥] 0]` to state this), then `mk_metric m₁ hm₁ ≤ c • mk_metric m₂ hm₂`. -/ lemma mk_metric_mono_smul {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} {c : ℝ≥0∞} (hc : c ≠ ∞) (h0 : c ≠ 0) (hle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂) : (mk_metric m₁ : outer_measure X) ≤ c • mk_metric m₂ := begin classical, rcases (mem_nhds_within_Ici_iff_exists_Ico_subset' ennreal.zero_lt_one).1 hle with ⟨r, hr0, hr⟩, refine λ s, le_of_tendsto_of_tendsto (mk_metric'.tendsto_pre _ s) (ennreal.tendsto.const_mul (mk_metric'.tendsto_pre _ s) (or.inr hc)) (mem_of_superset (Ioo_mem_nhds_within_Ioi ⟨le_rfl, hr0⟩) (λ r' hr', _)), simp only [mem_set_of_eq, mk_metric'.pre, ring_hom.id_apply], rw [←smul_eq_mul, ← smul_apply, smul_bounded_by hc], refine le_bounded_by.2 (λ t, (bounded_by_le _).trans _) _, simp only [smul_eq_mul, pi.smul_apply, extend, infi_eq_if], split_ifs with ht ht, { apply hr, exact ⟨zero_le _, ht.trans_lt hr'.2⟩ }, { simp [h0] } end /-- If `m₁ d ≤ m₂ d` for `d < ε` for some `ε > 0` (we use `≤ᶠ[𝓝[≥] 0]` to state this), then `mk_metric m₁ hm₁ ≤ mk_metric m₂ hm₂`-/ lemma mk_metric_mono {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} (hle : m₁ ≤ᶠ[𝓝[≥] 0] m₂) : (mk_metric m₁ : outer_measure X) ≤ mk_metric m₂ := by { convert mk_metric_mono_smul ennreal.one_ne_top ennreal.zero_lt_one.ne' _; simp * } lemma isometry_comap_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) {f : X → Y} (hf : isometry f) (H : monotone m ∨ surjective f) : comap f (mk_metric m) = mk_metric m := begin simp only [mk_metric, mk_metric', mk_metric'.pre, induced_outer_measure, comap_supr], refine surjective_id.supr_congr id (λ ε, surjective_id.supr_congr id $ λ hε, _), rw comap_bounded_by _ (H.imp (λ h_mono, _) id), { congr' with s : 1, apply extend_congr, { simp [hf.ediam_image] }, { intros, simp [hf.injective.subsingleton_image_iff, hf.ediam_image] } }, { assume s t hst, simp only [extend, le_infi_iff], assume ht, apply le_trans _ (h_mono (diam_mono hst)), simp only [(diam_mono hst).trans ht, le_refl, cinfi_pos] } end lemma isometry_map_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) {f : X → Y} (hf : isometry f) (H : monotone m ∨ surjective f) : map f (mk_metric m) = restrict (range f) (mk_metric m) := by rw [← isometry_comap_mk_metric _ hf H, map_comap] lemma isometric_comap_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (f : X ≃ᵢ Y) : comap f (mk_metric m) = mk_metric m := isometry_comap_mk_metric _ f.isometry (or.inr f.surjective) lemma isometric_map_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (f : X ≃ᵢ Y) : map f (mk_metric m) = mk_metric m := by rw [← isometric_comap_mk_metric _ f, map_comap_of_surjective f.surjective] lemma trim_mk_metric [measurable_space X] [borel_space X] (m : ℝ≥0∞ → ℝ≥0∞) : (mk_metric m : outer_measure X).trim = mk_metric m := begin simp only [mk_metric, mk_metric'.eq_supr_nat, trim_supr], congr' 1 with n : 1, refine mk_metric'.trim_pre _ (λ s, _) _, simp end lemma le_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (μ : outer_measure X) (r : ℝ≥0∞) (h0 : 0 < r) (hr : ∀ s, diam s ≤ r → μ s ≤ m (diam s)) : μ ≤ mk_metric m := le_supr₂_of_le r h0 $ mk_metric'.le_pre.2 $ λ s hs, hr _ hs end outer_measure /-! ### Metric measures In this section we use `measure_theory.outer_measure.to_measure` and theorems about `measure_theory.outer_measure.mk_metric'`/`measure_theory.outer_measure.mk_metric` to define `measure_theory.measure.mk_metric'`/`measure_theory.measure.mk_metric`. We also restate some lemmas about metric outer measures for metric measures. -/ namespace measure variables [measurable_space X] [borel_space X] /-- Given a function `m : set X → ℝ≥0∞`, `mk_metric' m` is the supremum of `μ r` over `r > 0`, where `μ r` is the maximal outer measure `μ` such that `μ s ≤ m s` for all `s`. While each `μ r` is an *outer* measure, the supremum is a measure. -/ def mk_metric' (m : set X → ℝ≥0∞) : measure X := (outer_measure.mk_metric' m).to_measure (outer_measure.mk_metric'_is_metric _).le_caratheodory /-- Given a function `m : ℝ≥0∞ → ℝ≥0∞`, `mk_metric m` is the supremum of `μ r` over `r > 0`, where `μ r` is the maximal outer measure `μ` such that `μ s ≤ m s` for all sets `s` that contain at least two points. While each `mk_metric'.pre` is an *outer* measure, the supremum is a measure. -/ def mk_metric (m : ℝ≥0∞ → ℝ≥0∞) : measure X := (outer_measure.mk_metric m).to_measure (outer_measure.mk_metric'_is_metric _).le_caratheodory @[simp] lemma mk_metric'_to_outer_measure (m : set X → ℝ≥0∞) : (mk_metric' m).to_outer_measure = (outer_measure.mk_metric' m).trim := rfl @[simp] lemma mk_metric_to_outer_measure (m : ℝ≥0∞ → ℝ≥0∞) : (mk_metric m : measure X).to_outer_measure = outer_measure.mk_metric m := outer_measure.trim_mk_metric m end measure lemma outer_measure.coe_mk_metric [measurable_space X] [borel_space X] (m : ℝ≥0∞ → ℝ≥0∞) : ⇑(outer_measure.mk_metric m : outer_measure X) = measure.mk_metric m := by rw [← measure.mk_metric_to_outer_measure, coe_to_outer_measure] namespace measure variables [measurable_space X] [borel_space X] /-- If `c ∉ {0, ∞}` and `m₁ d ≤ c * m₂ d` for `d < ε` for some `ε > 0` (we use `≤ᶠ[𝓝[≥] 0]` to state this), then `mk_metric m₁ hm₁ ≤ c • mk_metric m₂ hm₂`. -/ lemma mk_metric_mono_smul {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} {c : ℝ≥0∞} (hc : c ≠ ∞) (h0 : c ≠ 0) (hle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂) : (mk_metric m₁ : measure X) ≤ c • mk_metric m₂ := begin intros s hs, rw [← outer_measure.coe_mk_metric, coe_smul, ← outer_measure.coe_mk_metric], exact outer_measure.mk_metric_mono_smul hc h0 hle s end /-- If `m₁ d ≤ m₂ d` for `d < ε` for some `ε > 0` (we use `≤ᶠ[𝓝[≥] 0]` to state this), then `mk_metric m₁ hm₁ ≤ mk_metric m₂ hm₂`-/ lemma mk_metric_mono {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} (hle : m₁ ≤ᶠ[𝓝[≥] 0] m₂) : (mk_metric m₁ : measure X) ≤ mk_metric m₂ := by { convert mk_metric_mono_smul ennreal.one_ne_top ennreal.zero_lt_one.ne' _; simp * } /-- A formula for `measure_theory.measure.mk_metric`. -/ lemma mk_metric_apply (m : ℝ≥0∞ → ℝ≥0∞) (s : set X) : mk_metric m s = ⨆ (r : ℝ≥0∞) (hr : 0 < r), ⨅ (t : ℕ → set X) (h : s ⊆ Union t) (h' : ∀ n, diam (t n) ≤ r), ∑' n, ⨆ (h : (t n).nonempty), m (diam (t n)) := begin -- We mostly unfold the definitions but we need to switch the order of `∑'` and `⨅` classical, simp only [← outer_measure.coe_mk_metric, outer_measure.mk_metric, outer_measure.mk_metric', outer_measure.supr_apply, outer_measure.mk_metric'.pre, outer_measure.bounded_by_apply, extend], refine surjective_id.supr_congr (λ r, r) (λ r, supr_congr_Prop iff.rfl $ λ hr, surjective_id.infi_congr _ $ λ t, infi_congr_Prop iff.rfl $ λ ht, _), dsimp, by_cases htr : ∀ n, diam (t n) ≤ r, { rw [infi_eq_if, if_pos htr], congr' 1 with n : 1, simp only [infi_eq_if, htr n, id, if_true, supr_and'] }, { rw [infi_eq_if, if_neg htr], push_neg at htr, rcases htr with ⟨n, hn⟩, refine ennreal.tsum_eq_top_of_eq_top ⟨n, _⟩, rw [supr_eq_if, if_pos, infi_eq_if, if_neg], exact hn.not_le, rcases diam_pos_iff.1 ((zero_le r).trans_lt hn) with ⟨x, hx, -⟩, exact ⟨x, hx⟩ } end lemma le_mk_metric (m : ℝ≥0∞ → ℝ≥0∞) (μ : measure X) (ε : ℝ≥0∞) (h₀ : 0 < ε) (h : ∀ s : set X, diam s ≤ ε → μ s ≤ m (diam s)) : μ ≤ mk_metric m := begin rw [← to_outer_measure_le, mk_metric_to_outer_measure], exact outer_measure.le_mk_metric m μ.to_outer_measure ε h₀ h end /-- To bound the Hausdorff measure (or, more generally, for a measure defined using `measure_theory.measure.mk_metric`) of a set, one may use coverings with maximum diameter tending to `0`, indexed by any sequence of countable types. -/ lemma mk_metric_le_liminf_tsum {β : Type*} {ι : β → Type*} [∀ n, countable (ι n)] (s : set X) {l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X) (ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i) (m : ℝ≥0∞ → ℝ≥0∞) : mk_metric m s ≤ liminf l (λ n, ∑' i, m (diam (t n i))) := begin haveI : Π n, encodable (ι n) := λ n, encodable.of_countable _, simp only [mk_metric_apply], refine supr₂_le (λ ε hε, _), refine le_of_forall_le_of_dense (λ c hc, _), rcases ((frequently_lt_of_liminf_lt (by apply_auto_param) hc).and_eventually ((hr.eventually (gt_mem_nhds hε)).and (ht.and hst))).exists with ⟨n, hn, hrn, htn, hstn⟩, set u : ℕ → set X := λ j, ⋃ b ∈ decode₂ (ι n) j, t n b, refine infi₂_le_of_le u (by rwa Union_decode₂) _, refine infi_le_of_le (λ j, _) _, { rw emetric.diam_Union_mem_option, exact supr₂_le (λ _ _, (htn _).trans hrn.le) }, { calc (∑' (j : ℕ), ⨆ (h : (u j).nonempty), m (diam (u j))) = _ : tsum_Union_decode₂ (λ t : set X, ⨆ (h : t.nonempty), m (diam t)) (by simp) _ ... ≤ ∑' (i : ι n), m (diam (t n i)) : ennreal.tsum_le_tsum (λ b, supr_le $ λ htb, le_rfl) ... ≤ c : hn.le } end /-- To bound the Hausdorff measure (or, more generally, for a measure defined using `measure_theory.measure.mk_metric`) of a set, one may use coverings with maximum diameter tending to `0`, indexed by any sequence of finite types. -/ lemma mk_metric_le_liminf_sum {β : Type*} {ι : β → Type*} [hι : ∀ n, fintype (ι n)] (s : set X) {l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X) (ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i) (m : ℝ≥0∞ → ℝ≥0∞) : mk_metric m s ≤ liminf l (λ n, ∑ i, m (diam (t n i))) := by simpa only [tsum_fintype] using mk_metric_le_liminf_tsum s r hr t ht hst m /-! ### Hausdorff measure and Hausdorff dimension -/ /-- Hausdorff measure on an (e)metric space. -/ def hausdorff_measure (d : ℝ) : measure X := mk_metric (λ r, r ^ d) localized "notation (name := hausdorff_measure) `μH[` d `]` := measure_theory.measure.hausdorff_measure d" in measure_theory lemma le_hausdorff_measure (d : ℝ) (μ : measure X) (ε : ℝ≥0∞) (h₀ : 0 < ε) (h : ∀ s : set X, diam s ≤ ε → μ s ≤ diam s ^ d) : μ ≤ μH[d] := le_mk_metric _ μ ε h₀ h /-- A formula for `μH[d] s`. -/ lemma hausdorff_measure_apply (d : ℝ) (s : set X) : μH[d] s = ⨆ (r : ℝ≥0∞) (hr : 0 < r), ⨅ (t : ℕ → set X) (hts : s ⊆ ⋃ n, t n) (ht : ∀ n, diam (t n) ≤ r), ∑' n, ⨆ (h : (t n).nonempty), (diam (t n)) ^ d := mk_metric_apply _ _ /-- To bound the Hausdorff measure of a set, one may use coverings with maximum diameter tending to `0`, indexed by any sequence of countable types. -/ lemma hausdorff_measure_le_liminf_tsum {β : Type*} {ι : β → Type*} [hι : ∀ n, countable (ι n)] (d : ℝ) (s : set X) {l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X) (ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i) : μH[d] s ≤ liminf l (λ n, ∑' i, diam (t n i) ^ d) := mk_metric_le_liminf_tsum s r hr t ht hst _ /-- To bound the Hausdorff measure of a set, one may use coverings with maximum diameter tending to `0`, indexed by any sequence of finite types. -/ lemma hausdorff_measure_le_liminf_sum {β : Type*} {ι : β → Type*} [hι : ∀ n, fintype (ι n)] (d : ℝ) (s : set X) {l : filter β} (r : β → ℝ≥0∞) (hr : tendsto r l (𝓝 0)) (t : Π (n : β), ι n → set X) (ht : ∀ᶠ n in l, ∀ i, diam (t n i) ≤ r n) (hst : ∀ᶠ n in l, s ⊆ ⋃ i, t n i) : μH[d] s ≤ liminf l (λ n, ∑ i, diam (t n i) ^ d) := mk_metric_le_liminf_sum s r hr t ht hst _ /-- If `d₁ < d₂`, then for any set `s` we have either `μH[d₂] s = 0`, or `μH[d₁] s = ∞`. -/ lemma hausdorff_measure_zero_or_top {d₁ d₂ : ℝ} (h : d₁ < d₂) (s : set X) : μH[d₂] s = 0 ∨ μH[d₁] s = ∞ := begin by_contra' H, suffices : ∀ (c : ℝ≥0), c ≠ 0 → μH[d₂] s ≤ c * μH[d₁] s, { rcases ennreal.exists_nnreal_pos_mul_lt H.2 H.1 with ⟨c, hc0, hc⟩, exact hc.not_le (this c (pos_iff_ne_zero.1 hc0)) }, intros c hc, refine le_iff'.1 (mk_metric_mono_smul ennreal.coe_ne_top (by exact_mod_cast hc) _) s, have : 0 < (c ^ (d₂ - d₁)⁻¹ : ℝ≥0∞), { rw [ennreal.coe_rpow_of_ne_zero hc, pos_iff_ne_zero, ne.def, ennreal.coe_eq_zero, nnreal.rpow_eq_zero_iff], exact mt and.left hc }, filter_upwards [Ico_mem_nhds_within_Ici ⟨le_rfl, this⟩], rintro r ⟨hr₀, hrc⟩, lift r to ℝ≥0 using ne_top_of_lt hrc, rw [pi.smul_apply, smul_eq_mul, ← ennreal.div_le_iff_le_mul (or.inr ennreal.coe_ne_top) (or.inr $ mt ennreal.coe_eq_zero.1 hc)], rcases eq_or_ne r 0 with rfl|hr₀, { rcases lt_or_le 0 d₂ with h₂|h₂, { simp only [h₂, ennreal.zero_rpow_of_pos, zero_le', ennreal.coe_nonneg, ennreal.zero_div, ennreal.coe_zero] }, { simp only [h.trans_le h₂, ennreal.div_top, zero_le', ennreal.coe_nonneg, ennreal.zero_rpow_of_neg, ennreal.coe_zero] } }, { have : (r : ℝ≥0∞) ≠ 0, by simpa only [ennreal.coe_eq_zero, ne.def] using hr₀, rw [← ennreal.rpow_sub _ _ this ennreal.coe_ne_top], refine (ennreal.rpow_lt_rpow hrc (sub_pos.2 h)).le.trans _, rw [← ennreal.rpow_mul, inv_mul_cancel (sub_pos.2 h).ne', ennreal.rpow_one], exact le_rfl } end /-- Hausdorff measure `μH[d] s` is monotone in `d`. -/ lemma hausdorff_measure_mono {d₁ d₂ : ℝ} (h : d₁ ≤ d₂) (s : set X) : μH[d₂] s ≤ μH[d₁] s := begin rcases h.eq_or_lt with rfl|h, { exact le_rfl }, cases hausdorff_measure_zero_or_top h s with hs hs, { rw hs, exact zero_le _ }, { rw hs, exact le_top } end variables (X) lemma no_atoms_hausdorff {d : ℝ} (hd : 0 < d) : has_no_atoms (hausdorff_measure d : measure X) := begin refine ⟨λ x, _⟩, rw [← nonpos_iff_eq_zero, hausdorff_measure_apply], refine supr₂_le (λ ε ε0, infi₂_le_of_le (λ n, {x}) _ $ infi_le_of_le (λ n, _) _), { exact subset_Union (λ n, {x} : ℕ → set X) 0 }, { simp only [emetric.diam_singleton, zero_le] }, { simp [hd] } end variables {X} @[simp] lemma hausdorff_measure_zero_singleton (x : X) : μH[0] ({x} : set X) = 1 := begin apply le_antisymm, { let r : ℕ → ℝ≥0∞ := λ _, 0, let t : ℕ → unit → set X := λ n _, {x}, have ht : ∀ᶠ n in at_top, ∀ i, diam (t n i) ≤ r n, by simp only [implies_true_iff, eq_self_iff_true, diam_singleton, eventually_at_top, nonpos_iff_eq_zero, exists_const], simpa [liminf_const] using hausdorff_measure_le_liminf_sum 0 {x} r tendsto_const_nhds t ht }, { rw hausdorff_measure_apply, suffices : (1 : ℝ≥0∞) ≤ ⨅ (t : ℕ → set X) (hts : {x} ⊆ ⋃ n, t n) (ht : ∀ n, diam (t n) ≤ 1), ∑' n, ⨆ (h : (t n).nonempty), (diam (t n)) ^ (0 : ℝ), { apply le_trans this _, convert le_supr₂ (1 : ℝ≥0∞) (ennreal.zero_lt_one), refl }, simp only [ennreal.rpow_zero, le_infi_iff], assume t hst h't, rcases mem_Union.1 (hst (mem_singleton x)) with ⟨m, hm⟩, have A : (t m).nonempty := ⟨x, hm⟩, calc (1 : ℝ≥0∞) = ⨆ (h : (t m).nonempty), 1 : by simp only [A, csupr_pos] ... ≤ ∑' n, ⨆ (h : (t n).nonempty), 1 : ennreal.le_tsum _ } end lemma one_le_hausdorff_measure_zero_of_nonempty {s : set X} (h : s.nonempty) : 1 ≤ μH[0] s := begin rcases h with ⟨x, hx⟩, calc (1 : ℝ≥0∞) = μH[0] ({x} : set X) : (hausdorff_measure_zero_singleton x).symm ... ≤ μH[0] s : measure_mono (singleton_subset_iff.2 hx) end lemma hausdorff_measure_le_one_of_subsingleton {s : set X} (hs : s.subsingleton) {d : ℝ} (hd : 0 ≤ d) : μH[d] s ≤ 1 := begin rcases eq_empty_or_nonempty s with rfl|⟨x, hx⟩, { simp only [measure_empty, zero_le] }, { rw (subsingleton_iff_singleton hx).1 hs, rcases eq_or_lt_of_le hd with rfl|dpos, { simp only [le_refl, hausdorff_measure_zero_singleton] }, { haveI := no_atoms_hausdorff X dpos, simp only [zero_le, measure_singleton] } } end end measure open_locale measure_theory open measure /-! ### Hausdorff measure and Lebesgue measure -/ /-- In the space `ι → ℝ`, Hausdorff measure coincides exactly with Lebesgue measure. -/ @[simp] theorem hausdorff_measure_pi_real {ι : Type*} [fintype ι] : (μH[fintype.card ι] : measure (ι → ℝ)) = volume := begin classical, -- it suffices to check that the two measures coincide on products of rational intervals refine (pi_eq_generate_from (λ i, real.borel_eq_generate_from_Ioo_rat.symm) (λ i, real.is_pi_system_Ioo_rat) (λ i, real.finite_spanning_sets_in_Ioo_rat _) _).symm, simp only [mem_Union, mem_singleton_iff], -- fix such a product `s` of rational intervals, of the form `Π (a i, b i)`. intros s hs, choose a b H using hs, obtain rfl : s = λ i, Ioo (a i) (b i), from funext (λ i, (H i).2), replace H := λ i, (H i).1, apply le_antisymm _, -- first check that `volume s ≤ μH s` { have Hle : volume ≤ (μH[fintype.card ι] : measure (ι → ℝ)), { refine le_hausdorff_measure _ _ ∞ ennreal.coe_lt_top (λ s _, _), rw [ennreal.rpow_nat_cast], exact real.volume_pi_le_diam_pow s }, rw [← volume_pi_pi (λ i, Ioo (a i : ℝ) (b i))], exact measure.le_iff'.1 Hle _ }, /- For the other inequality `μH s ≤ volume s`, we use a covering of `s` by sets of small diameter `1/n`, namely cubes with left-most point of the form `a i + f i / n` with `f i` ranging between `0` and `⌈(b i - a i) * n⌉`. Their number is asymptotic to `n^d * Π (b i - a i)`. -/ have I : ∀ i, 0 ≤ (b i : ℝ) - a i := λ i, by simpa only [sub_nonneg, rat.cast_le] using (H i).le, let γ := λ (n : ℕ), (Π (i : ι), fin ⌈((b i : ℝ) - a i) * n⌉₊), let t : Π (n : ℕ), γ n → set (ι → ℝ) := λ n f, set.pi univ (λ i, Icc (a i + f i / n) (a i + (f i + 1) / n)), have A : tendsto (λ (n : ℕ), 1/(n : ℝ≥0∞)) at_top (𝓝 0), by simp only [one_div, ennreal.tendsto_inv_nat_nhds_zero], have B : ∀ᶠ n in at_top, ∀ (i : γ n), diam (t n i) ≤ 1 / n, { apply eventually_at_top.2 ⟨1, λ n hn, _⟩, assume f, apply diam_pi_le_of_le (λ b, _), simp only [real.ediam_Icc, add_div, ennreal.of_real_div_of_pos (nat.cast_pos.mpr hn), le_refl, add_sub_add_left_eq_sub, add_sub_cancel', ennreal.of_real_one, ennreal.of_real_coe_nat] }, have C : ∀ᶠ n in at_top, set.pi univ (λ (i : ι), Ioo (a i : ℝ) (b i)) ⊆ ⋃ (i : γ n), t n i, { apply eventually_at_top.2 ⟨1, λ n hn, _⟩, have npos : (0 : ℝ) < n := nat.cast_pos.2 hn, assume x hx, simp only [mem_Ioo, mem_univ_pi] at hx, simp only [mem_Union, mem_Ioo, mem_univ_pi, coe_coe], let f : γ n := λ i, ⟨⌊(x i - a i) * n⌋₊, begin apply nat.floor_lt_ceil_of_lt_of_pos, { refine (mul_lt_mul_right npos).2 _, simp only [(hx i).right, sub_lt_sub_iff_right] }, { refine mul_pos _ npos, simpa only [rat.cast_lt, sub_pos] using H i } end⟩, refine ⟨f, λ i, ⟨_, _⟩⟩, { calc (a i : ℝ) + ⌊(x i - a i) * n⌋₊ / n ≤ (a i : ℝ) + ((x i - a i) * n) / n : begin refine add_le_add le_rfl ((div_le_div_right npos).2 _), exact nat.floor_le (mul_nonneg (sub_nonneg.2 (hx i).1.le) npos.le), end ... = x i : by field_simp [npos.ne'] }, { calc x i = (a i : ℝ) + ((x i - a i) * n) / n : by field_simp [npos.ne'] ... ≤ (a i : ℝ) + (⌊(x i - a i) * n⌋₊ + 1) / n : add_le_add le_rfl ((div_le_div_right npos).2 (nat.lt_floor_add_one _).le) } }, calc μH[fintype.card ι] (set.pi univ (λ (i : ι), Ioo (a i : ℝ) (b i))) ≤ liminf at_top (λ (n : ℕ), ∑ (i : γ n), diam (t n i) ^ ↑(fintype.card ι)) : hausdorff_measure_le_liminf_sum _ (set.pi univ (λ i, Ioo (a i : ℝ) (b i))) (λ (n : ℕ), 1/(n : ℝ≥0∞)) A t B C ... ≤ liminf at_top (λ (n : ℕ), ∑ (i : γ n), (1/n) ^ (fintype.card ι)) : begin refine liminf_le_liminf _ (by is_bounded_default), filter_upwards [B] with _ hn, apply finset.sum_le_sum (λ i _, _), rw ennreal.rpow_nat_cast, exact pow_le_pow_of_le_left' (hn i) _, end ... = liminf at_top (λ (n : ℕ), ∏ (i : ι), (⌈((b i : ℝ) - a i) * n⌉₊ : ℝ≥0∞) / n) : begin simp only [finset.card_univ, nat.cast_prod, one_mul, fintype.card_fin, finset.sum_const, nsmul_eq_mul, fintype.card_pi, div_eq_mul_inv, finset.prod_mul_distrib, finset.prod_const] end ... = ∏ (i : ι), volume (Ioo (a i : ℝ) (b i)) : begin simp only [real.volume_Ioo], apply tendsto.liminf_eq, refine ennreal.tendsto_finset_prod_of_ne_top _ (λ i hi, _) (λ i hi, _), { apply tendsto.congr' _ ((ennreal.continuous_of_real.tendsto _).comp ((tendsto_nat_ceil_mul_div_at_top (I i)).comp tendsto_coe_nat_at_top_at_top)), apply eventually_at_top.2 ⟨1, λ n hn, _⟩, simp only [ennreal.of_real_div_of_pos (nat.cast_pos.mpr hn), comp_app, ennreal.of_real_coe_nat] }, { simp only [ennreal.of_real_ne_top, ne.def, not_false_iff] } end end end measure_theory /-! ### Hausdorff measure, Hausdorff dimension, and Hölder or Lipschitz continuous maps -/ open_locale measure_theory open measure_theory measure_theory.measure variables [measurable_space X] [borel_space X] [measurable_space Y] [borel_space Y] namespace holder_on_with variables {C r : ℝ≥0} {f : X → Y} {s t : set X} /-- If `f : X → Y` is Hölder continuous on `s` with a positive exponent `r`, then `μH[d] (f '' s) ≤ C ^ d * μH[r * d] s`. -/ lemma hausdorff_measure_image_le (h : holder_on_with C r f s) (hr : 0 < r) {d : ℝ} (hd : 0 ≤ d) : μH[d] (f '' s) ≤ C ^ d * μH[r * d] s := begin -- We start with the trivial case `C = 0` rcases (zero_le C).eq_or_lt with rfl|hC0, { rcases eq_empty_or_nonempty s with rfl|⟨x, hx⟩, { simp only [measure_empty, nonpos_iff_eq_zero, mul_zero, image_empty] }, have : f '' s = {f x}, { have : (f '' s).subsingleton, by simpa [diam_eq_zero_iff] using h.ediam_image_le, exact (subsingleton_iff_singleton (mem_image_of_mem f hx)).1 this }, rw this, rcases eq_or_lt_of_le hd with rfl|h'd, { simp only [ennreal.rpow_zero, one_mul, mul_zero], rw hausdorff_measure_zero_singleton, exact one_le_hausdorff_measure_zero_of_nonempty ⟨x, hx⟩ }, { haveI := no_atoms_hausdorff Y h'd, simp only [zero_le, measure_singleton] } }, -- Now assume `C ≠ 0` { have hCd0 : (C : ℝ≥0∞) ^ d ≠ 0, by simp [hC0.ne'], have hCd : (C : ℝ≥0∞) ^ d ≠ ∞, by simp [hd], simp only [hausdorff_measure_apply, ennreal.mul_supr, ennreal.mul_infi_of_ne hCd0 hCd, ← ennreal.tsum_mul_left], refine supr_le (λ R, supr_le $ λ hR, _), have : tendsto (λ d : ℝ≥0∞, (C : ℝ≥0∞) * d ^ (r : ℝ)) (𝓝 0) (𝓝 0), from ennreal.tendsto_const_mul_rpow_nhds_zero_of_pos ennreal.coe_ne_top hr, rcases ennreal.nhds_zero_basis_Iic.eventually_iff.1 (this.eventually (gt_mem_nhds hR)) with ⟨δ, δ0, H⟩, refine le_supr₂_of_le δ δ0 (infi₂_mono' $ λ t hst, ⟨λ n, f '' (t n ∩ s), _, infi_mono' $ λ htδ, ⟨λ n, (h.ediam_image_inter_le (t n)).trans (H (htδ n)).le, _⟩⟩), { rw [← image_Union, ← Union_inter], exact image_subset _ (subset_inter hst subset.rfl) }, { apply ennreal.tsum_le_tsum (λ n, _), simp only [supr_le_iff, nonempty_image_iff], assume hft, simp only [nonempty.mono ((t n).inter_subset_left s) hft, csupr_pos], rw [ennreal.rpow_mul, ← ennreal.mul_rpow_of_nonneg _ _ hd], exact ennreal.rpow_le_rpow (h.ediam_image_inter_le _) hd } } end end holder_on_with namespace lipschitz_on_with variables {K : ℝ≥0} {f : X → Y} {s t : set X} /-- If `f : X → Y` is `K`-Lipschitz on `s`, then `μH[d] (f '' s) ≤ K ^ d * μH[d] s`. -/ lemma hausdorff_measure_image_le (h : lipschitz_on_with K f s) {d : ℝ} (hd : 0 ≤ d) : μH[d] (f '' s) ≤ K ^ d * μH[d] s := by simpa only [nnreal.coe_one, one_mul] using h.holder_on_with.hausdorff_measure_image_le zero_lt_one hd end lipschitz_on_with namespace lipschitz_with variables {K : ℝ≥0} {f : X → Y} /-- If `f` is a `K`-Lipschitz map, then it increases the Hausdorff `d`-measures of sets at most by the factor of `K ^ d`.-/ lemma hausdorff_measure_image_le (h : lipschitz_with K f) {d : ℝ} (hd : 0 ≤ d) (s : set X) : μH[d] (f '' s) ≤ K ^ d * μH[d] s := (h.lipschitz_on_with s).hausdorff_measure_image_le hd end lipschitz_with /-! ### Antilipschitz maps do not decrease Hausdorff measures and dimension -/ namespace antilipschitz_with variables {f : X → Y} {K : ℝ≥0} {d : ℝ} lemma hausdorff_measure_preimage_le (hf : antilipschitz_with K f) (hd : 0 ≤ d) (s : set Y) : μH[d] (f ⁻¹' s) ≤ K ^ d * μH[d] s := begin rcases eq_or_ne K 0 with rfl|h0, { rcases eq_empty_or_nonempty (f ⁻¹' s) with hs|⟨x, hx⟩, { simp only [hs, measure_empty, zero_le], }, have : f ⁻¹' s = {x}, { haveI : subsingleton X := hf.subsingleton, have : (f ⁻¹' s).subsingleton, from subsingleton_univ.anti (subset_univ _), exact (subsingleton_iff_singleton hx).1 this }, rw this, rcases eq_or_lt_of_le hd with rfl|h'd, { simp only [ennreal.rpow_zero, one_mul, mul_zero], rw hausdorff_measure_zero_singleton, exact one_le_hausdorff_measure_zero_of_nonempty ⟨f x, hx⟩ }, { haveI := no_atoms_hausdorff X h'd, simp only [zero_le, measure_singleton] } }, have hKd0 : (K : ℝ≥0∞) ^ d ≠ 0, by simp [h0], have hKd : (K : ℝ≥0∞) ^ d ≠ ∞, by simp [hd], simp only [hausdorff_measure_apply, ennreal.mul_supr, ennreal.mul_infi_of_ne hKd0 hKd, ← ennreal.tsum_mul_left], refine supr₂_le (λ ε ε0, _), refine le_supr₂_of_le (ε / K) (by simp [ε0.ne']) _, refine le_infi₂ (λ t hst, le_infi $ λ htε, _), replace hst : f ⁻¹' s ⊆ _ := preimage_mono hst, rw preimage_Union at hst, refine infi₂_le_of_le _ hst (infi_le_of_le (λ n, _) _), { exact (hf.ediam_preimage_le _).trans (ennreal.mul_le_of_le_div' $ htε n) }, { refine ennreal.tsum_le_tsum (λ n, supr_le_iff.2 (λ hft, _)), simp only [nonempty_of_nonempty_preimage hft, csupr_pos], rw [← ennreal.mul_rpow_of_nonneg _ _ hd], exact ennreal.rpow_le_rpow (hf.ediam_preimage_le _) hd } end lemma le_hausdorff_measure_image (hf : antilipschitz_with K f) (hd : 0 ≤ d) (s : set X) : μH[d] s ≤ K ^ d * μH[d] (f '' s) := calc μH[d] s ≤ μH[d] (f ⁻¹' (f '' s)) : measure_mono (subset_preimage_image _ _) ... ≤ K ^ d * μH[d] (f '' s) : hf.hausdorff_measure_preimage_le hd (f '' s) end antilipschitz_with /-! ### Isometries preserve the Hausdorff measure and Hausdorff dimension -/ namespace isometry variables {f : X → Y} {d : ℝ} lemma hausdorff_measure_image (hf : isometry f) (hd : 0 ≤ d ∨ surjective f) (s : set X) : μH[d] (f '' s) = μH[d] s := begin simp only [hausdorff_measure, ← outer_measure.coe_mk_metric, ← outer_measure.comap_apply], rw [outer_measure.isometry_comap_mk_metric _ hf (hd.imp_left _)], exact λ hd x y hxy, ennreal.rpow_le_rpow hxy hd end lemma hausdorff_measure_preimage (hf : isometry f) (hd : 0 ≤ d ∨ surjective f) (s : set Y) : μH[d] (f ⁻¹' s) = μH[d] (s ∩ range f) := by rw [← hf.hausdorff_measure_image hd, image_preimage_eq_inter_range] lemma map_hausdorff_measure (hf : isometry f) (hd : 0 ≤ d ∨ surjective f) : measure.map f μH[d] = (μH[d]).restrict (range f) := begin ext1 s hs, rw [map_apply hf.continuous.measurable hs, restrict_apply hs, hf.hausdorff_measure_preimage hd] end end isometry namespace isometric @[simp] lemma hausdorff_measure_image (e : X ≃ᵢ Y) (d : ℝ) (s : set X) : μH[d] (e '' s) = μH[d] s := e.isometry.hausdorff_measure_image (or.inr e.surjective) s @[simp] lemma hausdorff_measure_preimage (e : X ≃ᵢ Y) (d : ℝ) (s : set Y) : μH[d] (e ⁻¹' s) = μH[d] s := by rw [← e.image_symm, e.symm.hausdorff_measure_image] end isometric
306b942389939957274e2640f24feef223b570d1
0b3933727d99a2f351f5dbe6e24716bb786a6649
/src/sesh/eval.lean
741a614ef1439844b303b4bb9da2a48c4870d10a
[]
no_license
Vtec234/lean-sesh
1e770858215279f65aba92b4782b483ab4f09353
d11d7bb0599406e27d3a4d26242aec13d639ecf7
refs/heads/master
1,587,497,515,696
1,558,362,223,000
1,558,362,223,000
169,809,439
2
0
null
null
null
null
UTF-8
Lean
false
false
16,363
lean
/- Introduces evaluation contexts. -/ import sesh.term import sesh.ren_sub open term open matrix universes u v w /- Oh no, additional axioms. -/ axiom heq.congr {α γ : Sort u} {β δ : Sort v} {f₁ : α → β} {f₂ : γ → δ} {a₁ : α} {a₂ : γ} (h₁ : f₁ == f₂) (h₂ : a₁ == a₂) : f₁ a₁ == f₂ a₂ axiom heq.dcongr {α β : Sort u} {γ δ : Sort v} {ε ζ : Sort w} {f₁ : Π α, γ → ε} {f₂ : Π β, δ → ζ} {a₁₁ : α} {a₁₂ : γ} {a₂₁ : β} {a₂₂ : δ} (h₁ : f₁ == f₂) (h₂ : a₁₁ == a₂₁) (h₃ : a₁₂ == a₂₂) : f₁ a₁₁ a₁₂ == f₂ a₂₁ a₂₂ /- The context except the hole consumes Γₑ resources, while the hole can consume arbitrary resources Γ. The term plugged in for the hole must have type A' (hence the hole is "typed") and the resulting term has type A. In every evaluation context, the hole has the same precontext as the overall expression, since GV never evaluates under binders. Therefore I don't have to allow a fully general (i.e. arbitrary precontext) typing context for the hole. -/ @[reducible] def eval_ctx_fn {γ} (Γₑ: context γ) (A' A: tp): Type := Π (Γ: context γ), term Γ A' → term (Γ + Γₑ) A namespace eval_ctx_fn @[reducible] def apply {γ} {Γₑ Γ': context γ} {A' A: tp} (f: eval_ctx_fn Γₑ A' A) (Γ: context γ) (M: term Γ' A') (h: auto_param (Γ = Γ'+Γₑ) ``solve_context) : term Γ A := cast (by solve_context) $ f Γ' M end eval_ctx_fn /- A value of type (eval_ctx f) specifies that f is a valid function for an evaluation context. It's a Type rather than a Prop, because Prop can only eliminate into Prop but sometimes I need to extract the actual value of a constructor argument out of an eval_ctx. -/ inductive eval_ctx : Π {γ} {A' A: tp} (Γₑ: context γ), eval_ctx_fn Γₑ A' A → Type | EHole: Π (γ: precontext) (A: tp), eval_ctx 0 (λ (Γ: context γ) (M: term Γ A), begin convert M, solve_context end) | EAppLeft: Π {γ} {Γ₁ Γ₂: context γ} {A B: tp} {C'} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (N: term Γ₂ A) (E: eval_ctx_fn Γ₁ C' $ A⊸B), eval_ctx Γ₁ E ------------------------------- → eval_ctx Γₑ (λ Γ M, App _ (E Γ M) N) | EAppRight: Π {γ} {Γ₁ Γ₂: context γ} {A B: tp} {A'} {V: term Γ₁ $ A⊸B} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (hV: value V) (E: eval_ctx_fn Γ₂ A' A), eval_ctx Γ₂ E ------------------------------- → eval_ctx Γₑ (λ Γ M, App _ V $ E Γ M) | ELetUnit: Π {γ} {Γ₁ Γ₂: context γ} {A: tp} {A'} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (N: term Γ₂ A) (E: eval_ctx_fn Γ₁ A' tp.unit), eval_ctx Γ₁ E --------------------------------- → eval_ctx Γₑ (λ Γ M, LetUnit _ (E Γ M) N) | EPairLeft: Π {γ} {Γ₁ Γ₂: context γ} {A B: tp} {A'} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (N: term Γ₂ B) (E: eval_ctx_fn Γ₁ A' A), eval_ctx Γ₁ E ------------------------------ → eval_ctx Γₑ (λ Γ M, Pair _ (E Γ M) N) | EPairRight: Π {γ} {Γ₁ Γ₂: context γ} {A B: tp} {B'} {V: term Γ₁ A} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (hV: value V) (E: eval_ctx_fn Γ₂ B' B), eval_ctx Γ₂ E ------------------------------ → eval_ctx Γₑ (λ Γ M, Pair _ V $ E Γ M) | ELetPair: Π {γ} {Γ₁ Γ₂: context γ} {A B C: tp} {C'} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (N: term (⟦1⬝A⟧::⟦1⬝B⟧::Γ₂) C) (E: eval_ctx_fn Γ₁ C' $ tp.prod A B), eval_ctx Γ₁ E ---------------------------------- → eval_ctx Γₑ (λ Γ M, LetPair _ (E Γ M) N) | EInl: Π {γ} {Γₑ: context γ} {A: tp} {A'} (B: tp) (E: eval_ctx_fn Γₑ A' A), eval_ctx Γₑ E ----------------------------- → eval_ctx Γₑ (λ Γ M, Inl B $ E Γ M) | EInr: Π {γ} {Γₑ: context γ} {B: tp} {B'} (A: tp) (E: eval_ctx_fn Γₑ B' B), eval_ctx Γₑ E --------------------------- → eval_ctx Γₑ (λ Γ M, Inr A $ E Γ M) | ECase: Π {γ} {Γ₁ Γ₂: context γ} {A B C: tp} {D'} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (M: term (⟦1⬝A⟧::Γ₂) C) (N: term (⟦1⬝B⟧::Γ₂) C) (E: eval_ctx_fn Γ₁ D' $ tp.sum A B), eval_ctx Γ₁ E -------------------------------- → eval_ctx Γₑ (λ Γ L, Case _ (E Γ L) M N) | EFork: Π {γ} {Γₑ: context γ} {S: sesh_tp} {T'} (E: eval_ctx_fn Γₑ T' $ S⊸End!), eval_ctx Γₑ E -------------------------- → eval_ctx Γₑ (λ Γ x, Fork (E Γ x)) | ESendLeft: Π {γ} {Γ₁ Γ₂: context γ} {A: tp} {S: sesh_tp} {A'} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (N: term Γ₂ $ !A⬝S) (E: eval_ctx_fn Γ₁ A' A), eval_ctx Γ₁ E ------------------------------ → eval_ctx Γₑ (λ Γ M, Send _ (E Γ M) N) | ESendRight: Π {γ} {Γ₁ Γ₂: context γ} {A: tp} {S: sesh_tp} {T'} {V: term Γ₁ A} (Γₑ: context γ) (hΓ: Γₑ = Γ₁ + Γ₂) (hV: value V) (E: eval_ctx_fn Γ₂ T' $ !A⬝S), eval_ctx Γ₂ E ------------------------------ → eval_ctx Γₑ (λ Γ M, Send _ V $ E Γ M) | ERecv: Π {γ} {Γₑ: context γ} {A: tp} {S: sesh_tp} {T'} (E: eval_ctx_fn Γₑ T' ?A⬝S), eval_ctx Γₑ E -------------------------- → eval_ctx Γₑ (λ Γ M, Recv $ E Γ M) | EWait: Π {γ} {Γₑ: context γ} {T'} (E: eval_ctx_fn Γₑ T' End?), eval_ctx Γₑ E -------------------------- → eval_ctx Γₑ (λ Γ M, Wait $ E Γ M) namespace eval_ctx open matrix.vmul /- The new function we're defining takes a hole term defined over an extended environment (rename ρ Γ) and returns the same expression, but well-typed under the extended environment. -/ def ext: Π {γ δ: precontext} {A' A: tp}{Γ: context γ} {E: eval_ctx_fn Γ A' A} (ρ: ren_fn γ δ), eval_ctx Γ E ----------------------------------------------- → Σ E': eval_ctx_fn (Γ ⊛ (λ B x, identity δ B $ ρ B x)) A' A, eval_ctx (Γ ⊛ (λ B x, identity δ B $ ρ B x)) E' /- In each case we define what happens when the resulting renamed evaluation context is _applied_ to a hole-filling argument, which is the last matched variable (usually M). Most cases proceed by renaming parts of the evaluation context to make sense in the extended typing context and proving that the contexts still make sense. The return value of this function also carries the proof that the returned function is, in fact, an evaluation context. -/ | _ _ _ _ _ _ _ (EHole _ _) := begin rw [matrix.vmul.zero_vmul], exact ⟨_, EHole _ _⟩ end | _ _ _ _ _ _ ρ (EAppLeft _ hΓ N _ E) := let E' := ext ρ E in ⟨_, EAppLeft _ (begin rw [hΓ, vmul_right_distrib] end) (rename ρ _ N) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (EAppRight _ hΓ hV _ E) := let E' := ext ρ E in ⟨_, EAppRight _ (begin rw [hΓ, vmul_right_distrib] end) (hV.rename ρ) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (ELetUnit _ hΓ N _ E) := let E' := ext ρ E in ⟨_, ELetUnit _ (begin rw [hΓ, vmul_right_distrib] end) (rename ρ _ N) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (EPairLeft _ hΓ N _ E) := let E' := ext ρ E in ⟨_, EPairLeft _ (begin rw [hΓ, vmul_right_distrib] end) (rename ρ _ N) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (EPairRight _ hΓ hV _ E) := let E' := ext ρ E in ⟨_, EPairRight _ (begin rw [hΓ, vmul_right_distrib] end) (hV.rename ρ) E'.fst E'.snd⟩ | γ _ _ _ _ _ ρ (ELetPair _ hΓ N _ E) := let E' := ext ρ E in ⟨_, ELetPair _ (begin rw [hΓ, vmul_right_distrib] end) (rename ((ρ.ext _).ext _) _ N) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (EInl C _ E) := let E' := ext ρ E in ⟨_, EInl C E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (EInr C _ E) := let E' := ext ρ E in ⟨_, EInr C E'.fst E'.snd⟩ | γ _ _ _ _ _ ρ (ECase _ hΓ M N _ E) := let E' := ext ρ E in ⟨_, ECase _ (begin rw [hΓ, vmul_right_distrib] end) (rename (ρ.ext _) _ M) (rename (ρ.ext _) _ N) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (EFork _ E) := let E' := ext ρ E in ⟨_, EFork E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (ESendLeft _ hΓ N _ E) := let E' := ext ρ E in ⟨_, ESendLeft _ (begin rw [hΓ, vmul_right_distrib] end) (rename ρ _ N) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (ESendRight _ hΓ hV _ E) := let E' := ext ρ E in ⟨_, ESendRight _ (begin rw [hΓ, vmul_right_distrib] end) (hV.rename ρ) E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (ERecv _ E) := let E' := ext ρ E in ⟨_, ERecv E'.fst E'.snd⟩ | _ _ _ _ _ _ ρ (EWait _ E) := let E' := ext ρ E in ⟨_, EWait E'.fst E'.snd⟩ def wrap: Π {γ} {A'' A' A: tp} {Γₑ Γₑ': context γ} (E: eval_ctx_fn Γₑ A'' A') (hE: eval_ctx Γₑ E) (E': eval_ctx_fn Γₑ' A' A) (hE': eval_ctx Γₑ' E') (Γ: context γ) (hΓ: Γ = Γₑ+Γₑ'), Σ E': eval_ctx_fn Γ A'' A, eval_ctx Γ E' | _ _ _ _ _ _ E hE _ (EHole _ _) Γ hΓ := cast (begin congr; simp [*, hΓ], congr' 1, simp [hΓ] end) (sigma.mk E hE) | _ _ _ _ _ _ E hE _ (EAppLeft _ _ N E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EAppLeft Γ (by solve_context) N EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (EAppRight _ _ hV E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EAppRight Γ (by solve_context) hV EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (ELetUnit _ _ N E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, ELetUnit Γ (by solve_context) N EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (EPairLeft _ _ N E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EPairLeft Γ (by solve_context) N EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (EPairRight _ _ hV E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EPairRight Γ (by solve_context) hV EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (ELetPair _ _ N E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, ELetPair Γ (by solve_context) N EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (EInl B E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EInl B (cast (by rw [hΓ]) EE'.fst) $ cast (begin congr' 1, exact hΓ.symm, h_generalize Hx: EE'.fst == x, exact Hx, end) EE'.snd⟩ | _ _ _ _ _ _ E hE _ (EInr A E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EInr A (cast (by rw [hΓ]) EE'.fst) $ cast (begin congr' 1, exact hΓ.symm, h_generalize Hx: EE'.fst == x, exact Hx, end) EE'.snd⟩ | _ _ _ _ _ _ E hE _ (ECase _ _ M N E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, ECase Γ (by solve_context) M N EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (EFork E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EFork (cast (by rw [hΓ]) EE'.fst) $ cast (begin congr' 1, exact hΓ.symm, h_generalize Hx: EE'.fst == x, exact Hx, end) EE'.snd⟩ | _ _ _ _ _ _ E hE _ (ESendLeft _ _ M E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, ESendLeft Γ (by solve_context) M EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (ESendRight _ _ hV E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, ESendRight Γ (by solve_context) hV EE'.fst EE'.snd⟩ | _ _ _ _ _ _ E hE _ (ERecv E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, ERecv (cast (by rw [hΓ]) EE'.fst) $ cast (begin congr' 1, exact hΓ.symm, h_generalize Hx: EE'.fst == x, exact Hx, end) EE'.snd⟩ | _ _ _ _ _ _ E hE _ (EWait E' hE') Γ hΓ := let EE' := wrap E hE E' hE' _ rfl in ⟨_, EWait (cast (by rw [hΓ]) EE'.fst) $ cast (begin congr' 1, exact hΓ.symm, h_generalize Hx: EE'.fst == x, exact Hx, end) EE'.snd⟩ set_option pp.implicit true lemma wrap_composes {γ} {Γ Γₑ Γₑ': context γ} {A'' A' A: tp} {M: term Γ A''} {E': eval_ctx_fn Γₑ A'' A'} {hE': eval_ctx Γₑ E'} {E: eval_ctx_fn Γₑ' A' A} {hE: eval_ctx Γₑ' E} (Γ': context γ) (hΓ': Γ' = Γ+Γₑ) (EM: term Γ' A') (Γ'': context γ) (hΓ'': Γ'' = Γ'+Γₑ') (EM': term Γ'' A) (hEM: EM = E'.apply Γ' M) (hEM': EM' = E.apply Γ'' EM) : EM' = (wrap E' hE' E hE _ rfl).fst.apply Γ'' M := begin induction hE; simp [*, wrap, eval_ctx_fn.apply], case EHole { h_generalize Hx: (E' Γ M) == x, h_generalize Hy: x == y, h_generalize Hx': (⟨E', hE'⟩: Σ E': eval_ctx_fn Γₑ A'' hE_A, eval_ctx Γₑ E') == x', congr' 1, simp [hΓ'], apply heq.trans Hy.symm, apply heq.trans Hx.symm, apply heq.congr, unfold sigma.fst, sorry }, sorry end end eval_ctx /- An evaluation context is a hole-replacing function together with a proof of its validity. -/ structure eval_ctx' {γ} (Γₑ: context γ) (A' A: tp) := (f: eval_ctx_fn Γₑ A' A) (h: eval_ctx Γₑ f) namespace eval_ctx' def ext {γ δ: precontext} {Γ: context γ} {A' A: tp} (ρ: ren_fn γ δ) (E: eval_ctx' Γ A' A) : eval_ctx' (Γ ⊛ (λ B x, identity δ B $ ρ B x)) A' A := let E' := eval_ctx.ext ρ E.h in ⟨E'.fst, E'.snd⟩ def wrap {γ} {Γₑ Γₑ': context γ} {A'' A' A: tp} (E: eval_ctx' Γₑ A'' A') (E': eval_ctx' Γₑ' A' A) (Γ: context γ) (hΓ: Γ = Γₑ+Γₑ') : eval_ctx' Γ A'' A := let EE' := eval_ctx.wrap E.f E.h E'.f E'.h Γ hΓ in ⟨EE'.fst, EE'.snd⟩ lemma wrap_composes {γ} {Γ Γₑ Γₑ': context γ} {A'' A' A: tp} {M: term Γ A''} {E': eval_ctx' Γₑ A'' A'} {E: eval_ctx' Γₑ' A' A} (Γ': context γ) (hΓ': Γ' = Γ+Γₑ) (EM: term Γ' A') (Γ'': context γ) (hΓ'': Γ'' = Γ'+Γₑ') (EM': term Γ'' A) (hE: EM = E'.f.apply Γ' M) (hE': EM' = E.f.apply Γ'' EM) : EM' = (E'.wrap E _ rfl).f.apply Γ'' M := sorry end eval_ctx' inductive term_reduces : ∀ {γ} {Γ: context γ} {A: tp}, term Γ A → term Γ A → Prop infix ` ⟶M `:55 := term_reduces | EvalLift: ∀ {γ} {Γ Γₑ: context γ} {A A': tp} {M M': term Γ A} (Γ': context γ) (E: eval_ctx' Γₑ A A') (EM EM': term Γ' A') (hΓ': Γ' = Γ+Γₑ) (hStep: M ⟶M M') (hEM: EM = E.f.apply Γ' M) (hEM': EM' = E.f.apply Γ' M'), ----------------------- EM ⟶M EM' | EvalLam: ∀ {γ} {Γ₁ Γ₂: context γ} {A B: tp} {V: term Γ₂ A} (Γ: context γ) (M: term (⟦1⬝A⟧::Γ₁) B) (hV: value V) (_: auto_param (Γ = Γ₁ + Γ₂) ``solve_context), ---------------------------------------------- (App Γ (Abs M) V) ⟶M ssubst _ M V | EvalUnit: ∀ {γ} {Γ: context γ} {A: tp} (M: term Γ A), --------------------------------------- (LetUnit Γ (Unit 0) M $ by simp) ⟶M M | EvalPair: ∀ {γ} {Γ₁₁ Γ₁₂ Γ₂: context γ} {A B C: tp} {V: term Γ₁₁ A} {W: term Γ₁₂ B} (Γ₁ Γ: context γ) (hV: value V) (hW: value W) (M: term (⟦1⬝A⟧::⟦1⬝B⟧::Γ₂) C) (_: auto_param (Γ = Γ₁ + Γ₂) ``solve_context) (_: auto_param (Γ₁ = Γ₁₁ + Γ₁₂) ``solve_context), ----------------------------------------------------------- (LetPair Γ (Pair Γ₁ V W $ by assumption) M $ by assumption) ⟶M dsubst _ M V W | EvalInl: ∀ {γ} {Γ₁ Γ₂: context γ} {A B C: tp} {V: term Γ₁ A} (Γ: context γ) (hV: value V) (M: term (⟦1⬝A⟧::Γ₂) C) (N: term (⟦1⬝B⟧::Γ₂) C) (_: auto_param (Γ = Γ₁ + Γ₂) ``solve_context), ---------------------------------------------- (Case Γ (Inl B V) M N) ⟶M ssubst _ M V | EvalInr: ∀ {γ} {Γ₁ Γ₂: context γ} {A B C: tp} {V: term Γ₁ B} (Γ: context γ) (hV: value V) (M: term (⟦1⬝A⟧::Γ₂) C) (N: term (⟦1⬝B⟧::Γ₂) C) (_: auto_param (Γ = Γ₁ + Γ₂) ``solve_context), ---------------------------------------------- (Case Γ (Inr A V) M N) ⟶M ssubst _ N V infix ` ⟶M `:55 := term_reduces /- This is what I thought initially (WRONG!): I _think_ there is barely any benefit to formalizing evaluation contexts because they would have to be defined for all kinds of terms anyway. Actually no, eval_ctx is _necessary_ to formalize configuration reduction without losing what's left of my sanity. -/
cabe2b629f7983c6c2df6ae4c2fdc04d060ffa3d
9dc8cecdf3c4634764a18254e94d43da07142918
/src/linear_algebra/projective_space/basic.lean
cde97cc906b6b144cc28ffd532a27591bc8ef6f8
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
8,247
lean
/- Copyright (c) 2022 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Adam Topaz -/ import linear_algebra.finite_dimensional /-! # Projective Spaces This file contains the definition of the projectivization of a vector space over a field, as well as the bijection between said projectivization and the collection of all one dimensional subspaces of the vector space. ## Notation `ℙ K V` is notation for `projectivization K V`, the projectivization of a `K`-vector space `V`. ## Constructing terms of `ℙ K V`. We have three ways to construct terms of `ℙ K V`: - `projectivization.mk K v hv` where `v : V` and `hv : v ≠ 0`. - `projectivization.mk' K v` where `v : { w : V // w ≠ 0 }`. - `projectivization.mk'' H h` where `H : submodule K V` and `h : finrank H = 1`. ## Other definitions - For `v : ℙ K V`, `v.submodule` gives the corresponding submodule of `V`. - `projectivization.equiv_submodule` is the equivalence between `ℙ K V` and `{ H : submodule K V // finrank H = 1 }`. - For `v : ℙ K V`, `v.rep : V` is a representative of `v`. ## Projects Everything in this file can be done for `division_ring`s instead of `field`s, but this would require a significant refactor of the results from `linear_algebra.finite_dimensional` and its imports. -/ variables (K V : Type*) [field K] [add_comm_group V] [module K V] /-- The setoid whose quotient is the projectivization of `V`. -/ def projectivization_setoid : setoid { v : V // v ≠ 0 } := (mul_action.orbit_rel Kˣ V).comap coe /-- The projectivization of the `K`-vector space `V`. The notation `ℙ K V` is preferred. -/ @[nolint has_nonempty_instance] def projectivization := quotient (projectivization_setoid K V) notation `ℙ` := projectivization namespace projectivization variables {V} /-- Construct an element of the projectivization from a nonzero vector. -/ def mk (v : V) (hv : v ≠ 0) : ℙ K V := quotient.mk' ⟨v,hv⟩ /-- A variant of `projectivization.mk` in terms of a subtype. `mk` is preferred. -/ def mk' (v : { v : V // v ≠ 0 }) : ℙ K V := quotient.mk' v @[simp] lemma mk'_eq_mk (v : { v : V // v ≠ 0}) : mk' K v = mk K v v.2 := by { dsimp [mk, mk'], congr' 1, simp } instance [nontrivial V] : nonempty (ℙ K V) := let ⟨v, hv⟩ := exists_ne (0 : V) in ⟨mk K v hv⟩ variable {K} /-- Choose a representative of `v : projectivization K V` in `V`. -/ protected noncomputable def rep (v : ℙ K V) : V := v.out' lemma rep_nonzero (v : ℙ K V) : v.rep ≠ 0 := v.out'.2 @[simp] lemma mk_rep (v : ℙ K V) : mk K v.rep v.rep_nonzero = v := by { dsimp [mk, projectivization.rep], simp } open finite_dimensional /-- Consider an element of the projectivization as a submodule of `V`. -/ protected def submodule (v : ℙ K V) : submodule K V := quotient.lift_on' v (λ v, K ∙ (v : V)) $ begin rintro ⟨a, ha⟩ ⟨b, hb⟩ ⟨x, (rfl : x • b = a)⟩, exact (submodule.span_singleton_group_smul_eq _ x _), end variable (K) lemma mk_eq_mk_iff (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) : mk K v hv = mk K w hw ↔ ∃ (a : Kˣ), a • w = v := quotient.eq' /-- Two nonzero vectors go to the same point in projective space if and only if one is a scalar multiple of the other. -/ lemma mk_eq_mk_iff' (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) : mk K v hv = mk K w hw ↔ ∃ (a : K), a • w = v := begin rw mk_eq_mk_iff K v w hv hw, split, { rintro ⟨a, ha⟩, exact ⟨a, ha⟩ }, { rintro ⟨a, ha⟩, refine ⟨units.mk0 a (λ c, hv.symm _), ha⟩, rwa [c, zero_smul] at ha } end lemma exists_smul_eq_mk_rep (v : V) (hv : v ≠ 0) : ∃ (a : Kˣ), a • v = (mk K v hv).rep := show (projectivization_setoid K V).rel _ _, from quotient.mk_out' ⟨v, hv⟩ variable {K} /-- An induction principle for `projectivization`. Use as `induction v using projectivization.ind`. -/ @[elab_as_eliminator] lemma ind {P : ℙ K V → Prop} (h : ∀ (v : V) (h : v ≠ 0), P (mk K v h)) : ∀ p, P p := quotient.ind' $ subtype.rec $ by exact h @[simp] lemma submodule_mk (v : V) (hv : v ≠ 0) : (mk K v hv).submodule = K ∙ v := rfl lemma submodule_eq (v : ℙ K V) : v.submodule = K ∙ v.rep := by { conv_lhs { rw ← v.mk_rep }, refl } lemma finrank_submodule (v : ℙ K V) : finrank K v.submodule = 1 := begin rw submodule_eq, exact finrank_span_singleton v.rep_nonzero, end instance (v : ℙ K V) : finite_dimensional K v.submodule := by { rw ← v.mk_rep, change finite_dimensional K (K ∙ v.rep), apply_instance } lemma submodule_injective : function.injective (projectivization.submodule : ℙ K V → submodule K V) := begin intros u v h, replace h := le_of_eq h, simp only [submodule_eq] at h, rw submodule.le_span_singleton_iff at h, rw [← mk_rep v, ← mk_rep u], apply quotient.sound', obtain ⟨a,ha⟩ := h u.rep (submodule.mem_span_singleton_self _), have : a ≠ 0 := λ c, u.rep_nonzero (by simpa [c] using ha.symm), use [units.mk0 a this, ha], end variables (K V) /-- The equivalence between the projectivization and the collection of subspaces of dimension 1. -/ noncomputable def equiv_submodule : ℙ K V ≃ { H : submodule K V // finrank K H = 1 } := equiv.of_bijective (λ v, ⟨v.submodule, v.finrank_submodule⟩) begin split, { intros u v h, apply_fun (λ e, e.val) at h, apply submodule_injective h }, { rintros ⟨H, h⟩, rw finrank_eq_one_iff' at h, obtain ⟨v, hv, h⟩ := h, have : (v : V) ≠ 0 := λ c, hv (subtype.coe_injective c), use mk K v this, symmetry, ext x, revert x, erw ← set.ext_iff, ext x, dsimp [-set_like.mem_coe], rw [submodule.span_singleton_eq_range], refine ⟨λ hh, _, _⟩, { obtain ⟨c,hc⟩ := h ⟨x,hh⟩, exact ⟨c, congr_arg coe hc⟩ }, { rintros ⟨c,rfl⟩, refine submodule.smul_mem _ _ v.2 } } end variables {K V} /-- Construct an element of the projectivization from a subspace of dimension 1. -/ noncomputable def mk'' (H : _root_.submodule K V) (h : finrank K H = 1) : ℙ K V := (equiv_submodule K V).symm ⟨H,h⟩ @[simp] lemma submodule_mk'' (H : _root_.submodule K V) (h : finrank K H = 1) : (mk'' H h).submodule = H := begin suffices : (equiv_submodule K V) (mk'' H h) = ⟨H,h⟩, by exact congr_arg coe this, dsimp [mk''], simp end @[simp] lemma mk''_submodule (v : ℙ K V) : mk'' v.submodule v.finrank_submodule = v := show (equiv_submodule K V).symm (equiv_submodule K V _) = _, by simp section map variables {L W : Type*} [field L] [add_comm_group W] [module L W] /-- An injective semilinear map of vector spaces induces a map on projective spaces. -/ def map {σ : K →+* L} (f : V →ₛₗ[σ] W) (hf : function.injective f) : ℙ K V → ℙ L W := quotient.map' (λ v, ⟨f v, λ c, v.2 (hf (by simp [c]))⟩) begin rintros ⟨u,hu⟩ ⟨v,hv⟩ ⟨a,ha⟩, use units.map σ.to_monoid_hom a, dsimp at ⊢ ha, erw [← f.map_smulₛₗ, ha], end /-- Mapping with respect to a semilinear map over an isomorphism of fields yields an injective map on projective spaces. -/ lemma map_injective {σ : K →+* L} {τ : L →+* K} [ring_hom_inv_pair σ τ] (f : V →ₛₗ[σ] W) (hf : function.injective f) : function.injective (map f hf) := begin intros u v h, rw [← u.mk_rep, ← v.mk_rep] at *, apply quotient.sound', dsimp [map, mk] at h, simp only [quotient.eq'] at h, obtain ⟨a,ha⟩ := h, use units.map τ.to_monoid_hom a, dsimp at ⊢ ha, have : (a : L) = σ (τ a), by rw ring_hom_inv_pair.comp_apply_eq₂, change (a : L) • f v.rep = f u.rep at ha, rw [this, ← f.map_smulₛₗ] at ha, exact hf ha, end @[simp] lemma map_id : map (linear_map.id : V →ₗ[K] V) (linear_equiv.refl K V).injective = id := by { ext v, induction v using projectivization.ind, refl } @[simp] lemma map_comp {F U : Type*} [field F] [add_comm_group U] [module F U] {σ : K →+* L} {τ : L →+* F} {γ : K →+* F} [ring_hom_comp_triple σ τ γ] (f : V →ₛₗ[σ] W) (hf : function.injective f) (g : W →ₛₗ[τ] U) (hg : function.injective g) : map (g.comp f) (hg.comp hf) = map g hg ∘ map f hf := by { ext v, induction v using projectivization.ind, refl } end map end projectivization
aad4a85e0149639d6edee02e5badb6a8655b7338
9cb9db9d79fad57d80ca53543dc07efb7c4f3838
/src/for_mathlib/normed_group_hom.lean
1249292d260739bbb3c294599ff3795bf5241e88
[]
no_license
mr-infty/lean-liquid
3ff89d1f66244b434654c59bdbd6b77cb7de0109
a8db559073d2101173775ccbd85729d3a4f1ed4d
refs/heads/master
1,678,465,145,334
1,614,565,310,000
1,614,565,310,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
22,606
lean
import analysis.normed_space.basic import topology.sequences open_locale nnreal big_operators /-! # Normed groups homomorphisms This file gathers definitions and elementary constructions about bounded group homormorphisms between normed groups (abreviated to "normed group homs"). The main lemmas relate the boundedness condition to continuity and Lispschitzness. The main construction is to endow the type of normed group homs between two given normed group with a group structure and a norm (we haven't proved yet that these two make a normed group structure). Some easy other constructions are related to subgroups of normed groups. -/ set_option old_structure_cmd true /-- A morphism of normed abelian groups is a bounded group homomorphism. -/ structure normed_group_hom (V W : Type*) [normed_group V] [normed_group W] extends add_monoid_hom V W := (bound' : ∃ C, ∀ v, ∥to_fun v∥ ≤ C * ∥v∥) attribute [nolint doc_blame] normed_group_hom.mk attribute [nolint doc_blame] normed_group_hom.to_add_monoid_hom namespace normed_group_hom -- initialize_simps_projections normed_group_hom (to_fun → apply) variables {V V₁ V₂ V₃ : Type*} variables [normed_group V] [normed_group V₁] [normed_group V₂] [normed_group V₃] variables (f g : normed_group_hom V₁ V₂) instance : has_coe_to_fun (normed_group_hom V₁ V₂) := ⟨_, normed_group_hom.to_fun⟩ @[simp] lemma coe_mk (f) (h₁) (h₂) (h₃) : ⇑(⟨f, h₁, h₂, h₃⟩ : normed_group_hom V₁ V₂) = f := rfl @[simp] lemma mk_to_monoid_hom (f) (h₁) (h₂) (h₃) : (⟨f, h₁, h₂, h₃⟩ : normed_group_hom V₁ V₂).to_add_monoid_hom = ⟨f, h₁, h₂⟩ := rfl @[simp] lemma map_zero : f 0 = 0 := f.to_add_monoid_hom.map_zero @[simp] lemma map_add (x y) : f (x + y) = f x + f y := f.to_add_monoid_hom.map_add _ _ @[simp] lemma map_sum {ι : Type*} (v : ι → V₁) (s : finset ι) : f (∑ i in s, v i) = ∑ i in s, f (v i) := f.to_add_monoid_hom.map_sum _ _ @[simp] lemma map_sub (x y) : f (x - y) = f x - f y := f.to_add_monoid_hom.map_sub _ _ @[simp] lemma map_neg (x) : f (-x) = -(f x) := f.to_add_monoid_hom.map_neg _ /-- Make a normed group hom from a group hom and a norm bound. -/ def mk' (f : V₁ →+ V₂) (C : ℝ≥0) (hC : ∀ x, ∥f x∥ ≤ C * ∥x∥) : normed_group_hom V₁ V₂ := { bound' := ⟨C, hC⟩ .. f} @[simp] lemma coe_mk' (f : V₁ →+ V₂) (C) (hC) : ⇑(mk' f C hC) = f := rfl /-- Predicate asserting a norm bound on a normed group hom. -/ def bound_by (f : normed_group_hom V₁ V₂) (C : ℝ≥0) : Prop := ∀ x, ∥f x∥ ≤ C * ∥x∥ lemma mk'_bound_by (f : V₁ →+ V₂) (C) (hC) : (mk' f C hC).bound_by C := hC lemma bound : ∃ C, 0 < C ∧ f.bound_by C := begin obtain ⟨C, hC⟩ := f.bound', let C' : ℝ≥0 := ⟨max C 1, le_max_right_of_le zero_le_one⟩, use C', simp only [C', ← nnreal.coe_lt_coe, subtype.coe_mk, nnreal.coe_zero, lt_max_iff, zero_lt_one, or_true, true_and], intro v, calc ∥f v∥ ≤ C * ∥v∥ : hC v ... ≤ max C 1 * ∥v∥ : mul_le_mul (le_max_left _ _) le_rfl (norm_nonneg _) _, exact zero_le_one.trans (le_max_right _ _) end lemma lipschitz_of_bound_by (C : ℝ≥0) (h : f.bound_by C) : lipschitz_with (nnreal.of_real C) f := lipschitz_with.of_dist_le' $ λ x y, by simpa only [dist_eq_norm, f.map_sub] using h (x - y) theorem antilipschitz_of_bound_by {K : ℝ≥0} (h : ∀ x, ∥x∥ ≤ K * ∥f x∥) : antilipschitz_with K f := antilipschitz_with.of_le_mul_dist $ λ x y, by simpa only [dist_eq_norm, f.map_sub] using h (x - y) protected lemma uniform_continuous (f : normed_group_hom V₁ V₂) : uniform_continuous f := begin obtain ⟨C, C_pos, hC⟩ := f.bound, exact (lipschitz_of_bound_by f C hC).uniform_continuous end @[continuity] protected lemma continuous (f : normed_group_hom V₁ V₂) : continuous f := f.uniform_continuous.continuous variables {f g} @[ext] theorem ext (H : ∀ x, f x = g x) : f = g := by cases f; cases g; congr'; exact funext H instance : has_zero (normed_group_hom V₁ V₂) := ⟨{ bound' := ⟨0, λ v, show ∥(0 : V₂)∥ ≤ 0 * _, by rw [norm_zero, zero_mul]⟩, .. (0 : V₁ →+ V₂) }⟩ instance : inhabited (normed_group_hom V₁ V₂) := ⟨0⟩ lemma coe_inj ⦃f g : normed_group_hom V₁ V₂⦄ (h : (f : V₁ → V₂) = g) : f = g := by cases f; cases g; cases h; refl /-- The identity as a continuous normed group hom. -/ @[simps] def id : normed_group_hom V V := { bound' := ⟨1, λ v, show ∥v∥ ≤ 1 * ∥v∥, by rw [one_mul]⟩, .. add_monoid_hom.id V } /-- The composition of continuous normed group homs. -/ @[simps] def comp (g : normed_group_hom V₂ V₃) (f : normed_group_hom V₁ V₂) : normed_group_hom V₁ V₃ := { bound' := begin obtain ⟨Cf, Cf_pos, hf⟩ := f.bound, obtain ⟨Cg, Cg_pos, hg⟩ := g.bound, use [Cg * Cf], assume v, calc ∥g (f v)∥ ≤ Cg * ∥f v∥ : hg _ ... ≤ Cg * Cf * ∥v∥ : _, rw mul_assoc, exact mul_le_mul le_rfl (hf v) (norm_nonneg _) Cg_pos.le end .. g.to_add_monoid_hom.comp f.to_add_monoid_hom } /-- Addition of normed group homs. -/ instance : has_add (normed_group_hom V₁ V₂) := ⟨λ f g, { bound' := begin obtain ⟨Cf, Cf_pos, hCf⟩ := f.bound, obtain ⟨Cg, Cg_pos, hCg⟩ := g.bound, use [Cf + Cg], assume v, calc ∥f v + g v∥ ≤ ∥f v∥ + ∥g v∥ : norm_add_le _ _ ... ≤ Cf * ∥v∥ + Cg * ∥v∥ : add_le_add (hCf _) (hCg _) ... = (Cf + Cg) * ∥v∥ : by rw add_mul end, .. (f.to_add_monoid_hom + g.to_add_monoid_hom) }⟩ /-- Opposite of a normed group hom. -/ instance : has_neg (normed_group_hom V₁ V₂) := ⟨λ f, { bound' := begin obtain ⟨C, C_pos, hC⟩ := f.bound, use C, assume v, calc ∥-(f v)∥ = ∥f v∥ : norm_neg _ ... ≤ C * ∥v∥ : hC _ end, .. (-f.to_add_monoid_hom) }⟩ /-- Subtraction of normed group homs. -/ instance : has_sub (normed_group_hom V₁ V₂) := ⟨λ f g, { bound' := begin simp only [add_monoid_hom.sub_apply, add_monoid_hom.to_fun_eq_coe, sub_eq_add_neg], exact (f + -g).bound' end, .. (f.to_add_monoid_hom - g.to_add_monoid_hom) }⟩ @[simp] lemma coe_zero : ⇑(0 : normed_group_hom V₁ V₂) = 0 := rfl @[simp] lemma coe_neg (f : normed_group_hom V₁ V₂) : ⇑(-f) = -f := rfl @[simp] lemma coe_add (f g : normed_group_hom V₁ V₂) : ⇑(f + g) = f + g := rfl @[simp] lemma coe_sub (f g : normed_group_hom V₁ V₂) : ⇑(f - g) = f - g := rfl /-- Homs between two given normed groups form a commutative additive group. -/ instance : add_comm_group (normed_group_hom V₁ V₂) := by refine_struct { .. normed_group_hom.has_add, .. normed_group_hom.has_zero, .. normed_group_hom.has_neg, ..normed_group_hom.has_sub }; { intros, ext, simp [add_assoc, add_comm, add_left_comm, sub_eq_add_neg] } . /-- The norm of a normed groups hom. -/ noncomputable instance : has_norm (normed_group_hom V₁ V₂) := ⟨λ f, ↑(⨅ (r : ℝ≥0) (h : f.bound_by r), r)⟩ /-- Composition of normed groups hom as an additive group morphism. -/ def comp_hom : (normed_group_hom V₂ V₃) →+ (normed_group_hom V₁ V₂) →+ (normed_group_hom V₁ V₃) := add_monoid_hom.mk' (λ g, add_monoid_hom.mk' (λ f, g.comp f) (by { intros, ext, exact g.map_add _ _ })) (by { intros, ext, refl }) @[simp] lemma comp_zero (f : normed_group_hom V₂ V₃) : f.comp (0 : normed_group_hom V₁ V₂) = 0 := by { ext, exact f.map_zero' } @[simp] lemma zero_comp (f : normed_group_hom V₁ V₂) : (0 : normed_group_hom V₂ V₃).comp f = 0 := by { ext, refl } @[simp] lemma sum_apply {ι : Type*} (s : finset ι) (f : ι → normed_group_hom V₁ V₂) (v : V₁) : (∑ i in s, f i) v = ∑ i in s, (f i v) := begin classical, apply finset.induction_on s, { simp only [coe_zero, finset.sum_empty, pi.zero_apply] }, { intros i s his IH, simp only [his, IH, pi.add_apply, finset.sum_insert, not_false_iff, coe_add] } end end normed_group_hom namespace normed_group_hom section kernels variables {V V₁ V₂ V₃ : Type*} variables [normed_group V] [normed_group V₁] [normed_group V₂] [normed_group V₃] variables (f : normed_group_hom V₁ V₂) (g : normed_group_hom V₂ V₃) /-- The kernel of a bounded group homomorphism. Naturally endowed with a `normed_group` instance. -/ def ker : add_subgroup V₁ := f.to_add_monoid_hom.ker /-- The normed group structure on the kernel of a normed group hom. -/ instance : normed_group f.ker := { dist_eq := λ v w, dist_eq_norm _ _ } lemma mem_ker (v : V₁) : v ∈ f.ker ↔ f v = 0 := by { erw f.to_add_monoid_hom.mem_ker, refl } /-- The inclusion of the kernel, as bounded group homomorphism. -/ @[simps] def ker.incl : normed_group_hom f.ker V₁ := { to_fun := (coe : f.ker → V₁), map_zero' := add_subgroup.coe_zero _, map_add' := λ v w, add_subgroup.coe_add _ _ _, bound' := ⟨1, λ v, by { rw [one_mul], refl }⟩ } /-- Given a normed group hom `f : V₁ → V₂` satisfying `g.comp f = 0` for some `g : V₂ → V₃`, the corestriction of `f` to the kernel of `g`. -/ @[simps] def ker.lift (h : g.comp f = 0) : normed_group_hom V₁ g.ker := { to_fun := λ v, ⟨f v, by { erw g.mem_ker, show (g.comp f) v = 0, rw h, refl }⟩, map_zero' := by { simp only [map_zero], refl }, map_add' := λ v w, by { simp only [map_add], refl }, bound' := f.bound' } @[simp] lemma ker.incl_comp_lift (h : g.comp f = 0) : (ker.incl g).comp (ker.lift f g h) = f := by { ext, refl } end kernels section range variables {V V₁ V₂ V₃ : Type*} variables [normed_group V] [normed_group V₁] [normed_group V₂] [normed_group V₃] variables (f : normed_group_hom V₁ V₂) (g : normed_group_hom V₂ V₃) /-- The image of a bounded group homomorphism. Naturally endowed with a `normed_group` instance. -/ def range : add_subgroup V₂ := f.to_add_monoid_hom.range lemma mem_range (v : V₂) : v ∈ f.range ↔ ∃ w, f w = v := by { rw [range, add_monoid_hom.mem_range], refl } end range section quotient open quotient_add_group variables {M N : Type*} [normed_group M] [normed_group N] /-- The definition of the norm on the quotient by an additive subgroup. -/ noncomputable instance norm_on_quotient (S : add_subgroup M) : has_norm (quotient S) := { norm := λ x, Inf {r : ℝ | ∃ (y : M), quotient_add_group.mk' S y = x ∧ r = ∥y∥ } } /-- The norm of the image under the natural morphism to the quotient. -/ lemma quotient_norm_eq (S : add_subgroup M) (m : M) : ∥quotient_add_group.mk' S m∥ = Inf {r : ℝ | ∃ s ∈ S, r = ∥m + s∥ } := begin suffices : {r | ∃ (y : M), quotient_add_group.mk' S y = (quotient_add_group.mk' S m) ∧ r = ∥y∥ } = {r : ℝ | ∃ s ∈ S, r = ∥m + s∥ }, { simp only [this, norm] }, ext r, split, { intro h, obtain ⟨n, hn, rfl⟩ := h, use n - m, split, { rw [← quotient_add_group.ker_mk S, add_monoid_hom.mem_ker, add_monoid_hom.map_sub, hn, sub_self] }, { rw add_sub_cancel'_right } }, { intro h, obtain ⟨s, hs, rfl⟩ := h, use m + s, refine ⟨_, rfl⟩, have hker : s ∈ (quotient_add_group.mk' S).ker := by rwa [quotient_add_group.ker_mk S], rw [add_monoid_hom.mem_ker] at hker, rw [add_monoid_hom.map_add, hker, add_zero] } end /-- The norm of the projection is smaller or equal to the norm of the original element. -/ lemma norm_mk_le (S : add_subgroup M) (m : M) : ∥quotient_add_group.mk' S m∥ ≤ ∥m∥ := begin unfold norm, refine real.Inf_le _ (⟨0, λ r hr, _⟩) _, { rw [set.mem_set_of_eq] at hr, obtain ⟨m, hm, rfl⟩ := hr, exact norm_nonneg m }, { rw [set.mem_set_of_eq], exact ⟨m, rfl, rfl⟩ } end /-- The quotient norm is nonnegative. -/ lemma norm_mk_nonneg (S : add_subgroup M) (m : M) : 0 ≤ ∥quotient_add_group.mk' S m∥ := begin refine real.lb_le_Inf _ _ _, { use ∥m∥, rw [set.mem_set_of_eq], exact ⟨m, rfl, rfl⟩ }, intros y hy, rw [set.mem_set_of_eq] at hy, obtain ⟨z, hz, rfl⟩ := hy, exact norm_nonneg z end lemma norm_mk_lt {S : add_subgroup M} (x : (quotient S)) {ε : ℝ} (hε : 0 < ε) : ∃ (m : M), quotient_add_group.mk' S m = x ∧ ∥m∥ < ∥x∥ + ε := begin obtain ⟨r, hr, hnorm⟩ := (real.Inf_lt _ _ _).1 (lt_add_of_pos_right (∥x∥) hε), { simp only [set.mem_set_of_eq] at hr, obtain ⟨m₁, hm₁⟩ := hr, exact ⟨m₁, hm₁.1, by rwa [← hm₁.2]⟩ }, { obtain ⟨m, hm⟩ := quot.exists_rep x, use ∥m∥, rw [set.mem_set_of_eq], exact ⟨m, hm, rfl⟩ }, { refine ⟨0, λ r h, _⟩, rw [set.mem_set_of_eq] at h, obtain ⟨z, hz, rfl⟩ := h, exact norm_nonneg z } end lemma norm_mk_lt' (S : add_subgroup M) (m : M) {ε : ℝ} (hε : 0 < ε) : ∃ s ∈ S, ∥m + s∥ < ∥quotient_add_group.mk' S m∥ + ε := begin obtain ⟨n, hn⟩ := norm_mk_lt (quotient_add_group.mk' S m) hε, use n - m, split, { rw [← quotient_add_group.ker_mk S, add_monoid_hom.mem_ker, add_monoid_hom.map_sub, hn.1, sub_self] }, { simp only [add_sub_cancel'_right], exact hn.2 } end /-- The quotient norm of `0` is `0`. -/ lemma norm_mk_zero (S : add_subgroup M) : ∥(0 : (quotient S))∥ = 0 := begin refine le_antisymm _ (norm_mk_nonneg S 0), simpa [norm_zero, add_monoid_hom.map_zero] using norm_mk_le S 0 end /-- If `(m : M)` has norm equal to `0` in `quotient S` for a complete subgroup `S` of `M`, then `m ∈ S`. -/ lemma norm_zero_eq_zero (S : add_subgroup M) [complete_space S] (m : M) (h : ∥(quotient_add_group.mk' S) m∥ = 0) : m ∈ S := begin choose g hg using λ n, (norm_mk_lt' S m (@nat.one_div_pos_of_nat ℝ _ n)), simp only [h, one_div, zero_add] at hg, have hcauchy : cauchy_seq g, { rw metric.cauchy_seq_iff, intros ε hε, obtain ⟨k, hk⟩ := exists_nat_ge (ε/2)⁻¹, have kpos := lt_of_lt_of_le (inv_pos.mpr (half_pos hε)) hk, replace hk := (inv_le_inv kpos (inv_pos.mpr (half_pos hε))).2 hk, rw [inv_inv'] at hk, refine ⟨k, λ a b ha hb, _⟩, have apos := lt_trans (lt_of_lt_of_le kpos (nat.cast_le.2 (ge.le ha))) (lt_add_one a), have bpos := lt_trans (lt_of_lt_of_le kpos (nat.cast_le.2 (ge.le hb))) (lt_add_one b), replace ha : (k : ℝ ) ≤ ↑(a + 1) := nat.cast_le.2 (le_add_right ha), replace hb : (k : ℝ ) ≤ ↑(b + 1) := nat.cast_le.2 (le_add_right hb), have haε := le_trans ((inv_le_inv apos kpos).2 ha) hk, have hbε := le_trans ((inv_le_inv bpos kpos).2 hb) hk, calc dist (g a) (g b) = ∥(g a) - (g b)∥ : dist_eq_norm _ _ ... = ∥(m + (g a)) + (-(m + (g b)))∥ : by abel ... ≤ ∥m + (g a)∥ + ∥-(m + (g b))∥ : norm_add_le _ _ ... = ∥m + (g a)∥ + ∥m + (g b)∥ : by rw [norm_neg _] ... < (↑a + 1)⁻¹ + (↑b + 1)⁻¹ : add_lt_add (hg a).2 (hg b).2 ... ≤ ε/2 + ε/2 : add_le_add haε hbε ... = ε : add_halves ε }, have Scom : is_complete (S : set M) := complete_space_coe_iff_is_complete.mp _inst_3, suffices : m ∈ (S : set M), by exact this, obtain ⟨s, hs, hlim⟩ := cauchy_seq_tendsto_of_is_complete Scom (λ n, (hg n).1) hcauchy, suffices : ∥m + s∥ = 0, { rw [norm_eq_zero] at this, rw [eq_neg_of_add_eq_zero this], exact add_subgroup.neg_mem S hs }, have hlimnorm : filter.tendsto (λ n, ∥m + (g n)∥) filter.at_top (nhds 0), { apply (@metric.tendsto_at_top _ _ _ ⟨0⟩ _ _ _).2, intros ε hε, obtain ⟨k, hk⟩ := exists_nat_ge ε⁻¹, have kpos := lt_of_lt_of_le (inv_pos.mpr hε) hk, replace hk := (inv_le_inv kpos (inv_pos.mpr hε)).2 hk, rw [inv_inv'] at hk, refine ⟨k, λ n hn, _⟩, replace hn : (k : ℝ) ≤ ↑(n + 1) := nat.cast_le.2 (le_add_right hn), have npos : (0 : ℝ) < ↑(n + 1) := nat.cast_lt.2 (nat.succ_pos n), replace hn := le_trans ((inv_le_inv npos kpos).2 hn) hk, simp only [dist_zero_right, norm_norm], calc ∥m + g n∥ < (↑n + 1)⁻¹ : (hg n).2 ... ≤ ε : hn }, exact tendsto_nhds_unique ((continuous.to_sequentially_continuous (@continuous_norm M _)) (λ (n : ℕ), m + g n) (tendsto.const_add m hlim)) hlimnorm end /-- The norm on `quotient S` is actually a norm if `S` is a complete subgroup of `M`. -/ lemma quotient.is_normed_group.core (S : add_subgroup M) [complete_space S] : normed_group.core (quotient S) := begin split, { intro x, refine ⟨λ h, _ , λ h, by simpa [h] using norm_mk_zero S⟩, obtain ⟨m, hm⟩ := surjective_quot_mk _ x, replace hm : quotient_add_group.mk' S m = x := hm, rw [← hm, ← add_monoid_hom.mem_ker, quotient_add_group.ker_mk], rw [← hm] at h, exact norm_zero_eq_zero S m h }, { intros x y, refine le_of_forall_pos_le_add (λ ε hε, _), replace hε := half_pos hε, obtain ⟨m, hm⟩ := norm_mk_lt x hε, obtain ⟨n, hn⟩ := norm_mk_lt y hε, have H : quotient_add_group.mk' S (m + n) = x + y := by rw [add_monoid_hom.map_add, hm.1, hn.1], calc ∥x + y∥ = ∥quotient_add_group.mk' S (m + n)∥ : by rw [← H] ... ≤ ∥m + n∥ : norm_mk_le _ _ ... ≤ ∥m∥ + ∥n∥ : norm_add_le _ _ ... ≤ (∥x∥ + ε/2) + (∥y∥ + ε/2) : add_le_add (le_of_lt hm.2) (le_of_lt hn.2) ... = ∥x∥ + ∥y∥ + ε : by ring }, { intro x, suffices : {r : ℝ | ∃ (y : M), quotient_add_group.mk' S y = x ∧ r = ∥y∥ } = {r : ℝ | ∃ (y : M), quotient_add_group.mk' S y = -x ∧ r = ∥y∥ }, { simp only [this, norm] }, ext r, split, { intro h, simp only [set.mem_set_of_eq] at h ⊢, obtain ⟨m, hm, rfl⟩ := h, exact ⟨-m, by simp only [hm, add_monoid_hom.map_neg], by simp only [norm_neg]⟩ }, { intro h, simp only [set.mem_set_of_eq] at h ⊢, obtain ⟨m, hm, rfl⟩ := h, exact ⟨-m, by simp only [hm, add_monoid_hom.map_neg, eq_self_iff_true, and_self, neg_neg, norm_neg]⟩ } } end /-- An instance of `normed_group` on the quotient by a subgroup. -/ noncomputable instance quotient_normed_group (S : add_subgroup M) [complete_space S] : normed_group (quotient S) := normed_group.of_core (quotient S) (quotient.is_normed_group.core S) /-- The canonical morphism `M → (quotient S)` as morphism of normed groups. -/ noncomputable def normed_group.mk (S : add_subgroup M) [complete_space S] : normed_group_hom M (quotient S) := { bound' := ⟨1, λ m, by simpa [one_mul] using norm_mk_le _ m⟩, ..quotient_add_group.mk' S } /-- `normed_group.mk S` agrees with `quotient_add_group.mk' S`. -/ lemma normed_group.mk.apply (S : add_subgroup M) [complete_space S] (m : M) : normed_group.mk S m = quotient_add_group.mk' S m := rfl /-- `normed_group.mk S` is surjective. -/ lemma surjective_normed_group.mk (S : add_subgroup M) [complete_space S] : function.surjective (normed_group.mk S) := surjective_quot_mk _ /-- The kernel of `normed_group.mk S` is `S`. -/ lemma normed_group.mk.ker (S : add_subgroup M) [complete_space S] : (normed_group.mk S).ker = S := quotient_add_group.ker_mk _ /-- `is_quotient f`, for `f : M ⟶ N` means that `N` is isomorphic to the quotient of `M` by the kernel of `f`. -/ structure is_quotient (f : normed_group_hom M N) : Prop := (surjective : function.surjective f) (norm : ∀ x, ∥f x∥ = Inf {r : ℝ | ∃ y ∈ f.ker, r = ∥x + y∥ }) /-- `normed_group.mk S` satisfies `is_quotient`. -/ lemma is_quotient_quotient (S : add_subgroup M) [complete_space S] : is_quotient (normed_group.mk S) := ⟨surjective_normed_group.mk S, λ m, by simpa [normed_group.mk.ker S] using quotient_norm_eq S m⟩ lemma quotient_norm_lift {f : normed_group_hom M N} (hquot : is_quotient f) {ε : ℝ} (hε : 0 < ε) (n : N) : ∃ (m : M), f m = n ∧ ∥m∥ < ∥n∥ + ε := begin have hlt := lt_add_of_pos_right (∥n∥) hε, obtain ⟨m, hm⟩ := hquot.surjective n, nth_rewrite 0 [← hm] at hlt, rw [hquot.norm m] at hlt, replace hlt := (real.Inf_lt _ _ _).1 hlt, { obtain ⟨r, hr, hlt⟩ := hlt, simp only [exists_prop, set.mem_set_of_eq] at hr, obtain ⟨m₁, hm₁⟩ := hr, use (m + m₁), split, { rw [normed_group_hom.map_add, (normed_group_hom.mem_ker f m₁).1 hm₁.1, add_zero, hm] }, rwa [← hm₁.2] }, { use ∥m∥, simp only [exists_prop, set.mem_set_of_eq], use 0, split, { exact (normed_group_hom.ker f).zero_mem }, { rw add_zero } }, { use 0, intros x hx, simp only [exists_prop, set.mem_set_of_eq] at hx, obtain ⟨y, hy⟩ := hx, rw hy.2, exact norm_nonneg _ } end lemma quotient_norm_le {f : normed_group_hom M N} (hquot : is_quotient f) (m : M) : ∥f m∥ ≤ ∥m∥ := begin rw hquot.norm, apply real.Inf_le, { use 0, rintros y ⟨r,hr,rfl⟩, simp }, { refine ⟨0, add_subgroup.zero_mem _, by simp⟩ } end end quotient variables {V W V₁ V₂ V₃ : Type*} variables [normed_group V] [normed_group W] variables [normed_group V₁] [normed_group V₂] [normed_group V₃] variables {f : normed_group_hom V W} /-- A `normed_group_hom` is *norm-nonincreasing* if `∥f v∥ ≤ ∥v∥` for all `v`. -/ def norm_noninc (f : normed_group_hom V W) : Prop := ∀ v, ∥f v∥ ≤ ∥v∥ /-- A strict `normed_group_hom` is a `normed_group_hom` that preserves the norm. -/ def is_strict (f : normed_group_hom V W) : Prop := ∀ v, ∥f v∥ = ∥v∥ namespace norm_noninc lemma bound_by_one (hf : f.norm_noninc) : f.bound_by 1 := λ v, by simpa only [one_mul, nnreal.coe_one] using hf v lemma id : (id : normed_group_hom V V).norm_noninc := λ v, le_rfl lemma comp {g : normed_group_hom V₂ V₃} {f : normed_group_hom V₁ V₂} (hg : g.norm_noninc) (hf : f.norm_noninc) : (g.comp f).norm_noninc := λ v, (hg (f v)).trans (hf v) end norm_noninc namespace is_strict lemma injective (hf : f.is_strict) : function.injective f := begin intros x y h, rw ← sub_eq_zero at *, suffices : ∥ x - y ∥ = 0, by simpa, rw ← hf, simpa, end lemma norm_noninc (hf : f.is_strict) : f.norm_noninc := λ v, le_of_eq $ hf v lemma bound_by_one (hf : f.is_strict) : f.bound_by 1 := hf.norm_noninc.bound_by_one lemma id : (id : normed_group_hom V V).is_strict := λ v, rfl lemma comp {g : normed_group_hom V₂ V₃} {f : normed_group_hom V₁ V₂} (hg : g.is_strict) (hf : f.is_strict) : (g.comp f).is_strict := λ v, (hg (f v)).trans (hf v) end is_strict end normed_group_hom #lint- only unused_arguments def_lemma doc_blame
5645b859097d1d46d9cd60febd80b11590a6941c
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/set_theory/ordinal/topology.lean
329858582a3482ea7b2e3874e54e60dc22e1e5e4
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
9,816
lean
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import set_theory.ordinal.arithmetic import topology.order.basic /-! ### Topology of ordinals > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We prove some miscellaneous results involving the order topology of ordinals. ### Main results * `ordinal.is_closed_iff_sup` / `ordinal.is_closed_iff_bsup`: A set of ordinals is closed iff it's closed under suprema. * `ordinal.is_normal_iff_strict_mono_and_continuous`: A characterization of normal ordinal functions. * `ordinal.enum_ord_is_normal_iff_is_closed`: The function enumerating the ordinals of a set is normal iff the set is closed. -/ noncomputable theory universes u v open cardinal order namespace ordinal variables {s : set ordinal.{u}} {a : ordinal.{u}} instance : topological_space ordinal.{u} := preorder.topology ordinal.{u} instance : order_topology ordinal.{u} := ⟨rfl⟩ theorem is_open_singleton_iff : is_open ({a} : set ordinal) ↔ ¬ is_limit a := begin refine ⟨λ h ha, _, λ ha, _⟩, { obtain ⟨b, c, hbc, hbc'⟩ := (mem_nhds_iff_exists_Ioo_subset' ⟨0, ordinal.pos_iff_ne_zero.2 ha.1⟩ ⟨_, lt_succ a⟩).1 (h.mem_nhds rfl), have hba := ha.2 b hbc.1, exact hba.ne (hbc' ⟨lt_succ b, hba.trans hbc.2⟩) }, { rcases zero_or_succ_or_limit a with rfl | ⟨b, hb⟩ | ha', { convert is_open_gt' (1 : ordinal), ext, exact ordinal.lt_one_iff_zero.symm }, { convert @is_open_Ioo _ _ _ _ b (a + 1), ext c, refine ⟨λ hc, _, _⟩, { rw set.mem_singleton_iff.1 hc, refine ⟨_, lt_succ a⟩, rw hb, exact lt_succ b }, { rintro ⟨hc, hc'⟩, apply le_antisymm (le_of_lt_succ hc'), rw hb, exact succ_le_of_lt hc } }, { exact (ha ha').elim } } end theorem is_open_iff : is_open s ↔ ∀ o ∈ s, is_limit o → ∃ a < o, set.Ioo a o ⊆ s := begin classical, refine ⟨_, λ h, _⟩, { rw is_open_iff_generate_intervals, intros h o hos ho, have ho₀ := ordinal.pos_iff_ne_zero.2 ho.1, induction h with t ht t u ht hu ht' hu' t ht H, { rcases ht with ⟨a, rfl | rfl⟩, { exact ⟨a, hos, λ b hb, hb.1⟩ }, { exact ⟨0, ho₀, λ b hb, hb.2.trans hos⟩ } }, { exact ⟨0, ho₀, λ b _, set.mem_univ b⟩ }, { rcases ht' hos.1 with ⟨a, ha, ha'⟩, rcases hu' hos.2 with ⟨b, hb, hb'⟩, exact ⟨_, max_lt ha hb, λ c hc, ⟨ ha' ⟨(le_max_left a b).trans_lt hc.1, hc.2⟩, hb' ⟨(le_max_right a b).trans_lt hc.1, hc.2⟩⟩⟩ }, { rcases hos with ⟨u, hu, hu'⟩, rcases H u hu hu' with ⟨a, ha, ha'⟩, exact ⟨a, ha, λ b hb, ⟨u, hu, ha' hb⟩⟩ } }, { let f : s → set ordinal := λ o, if ho : is_limit o.val then set.Ioo (classical.some (h o.val o.prop ho)) (o + 1) else {o.val}, have : ∀ a, is_open (f a) := λ a, begin change is_open (dite _ _ _), split_ifs, { exact is_open_Ioo }, { rwa is_open_singleton_iff } end, convert is_open_Union this, ext o, refine ⟨λ ho, set.mem_Union.2 ⟨⟨o, ho⟩, _⟩, _⟩, { split_ifs with ho', { refine ⟨_, lt_succ o⟩, cases classical.some_spec (h o ho ho') with H, exact H }, { exact set.mem_singleton o } }, { rintro ⟨t, ⟨a, ht⟩, hoa⟩, change dite _ _ _ = t at ht, split_ifs at ht with ha; subst ht, { cases classical.some_spec (h a.val a.prop ha) with H has, rcases lt_or_eq_of_le (le_of_lt_succ hoa.2) with hoa' | rfl, { exact has ⟨hoa.1, hoa'⟩ }, { exact a.prop } }, { convert a.prop } } } end theorem mem_closure_iff_sup : a ∈ closure s ↔ ∃ {ι : Type u} [nonempty ι] (f : ι → ordinal), (∀ i, f i ∈ s) ∧ sup.{u u} f = a := begin refine mem_closure_iff.trans ⟨λ h, _, _⟩, { by_cases has : a ∈ s, { exact ⟨punit, by apply_instance, λ _, a, λ _, has, sup_const a⟩ }, { have H := λ b (hba : b < a), h _ (@is_open_Ioo _ _ _ _ b (a + 1)) ⟨hba, lt_succ a⟩, let f : a.out.α → ordinal := λ i, classical.some (H (typein (<) i) (typein_lt_self i)), have hf : ∀ i, f i ∈ set.Ioo (typein (<) i) (a + 1) ∩ s := λ i, classical.some_spec (H _ _), rcases eq_zero_or_pos a with rfl | ha₀, { rcases h _ (is_open_singleton_iff.2 not_zero_is_limit) rfl with ⟨b, hb, hb'⟩, rw set.mem_singleton_iff.1 hb at *, exact (has hb').elim }, refine ⟨_, out_nonempty_iff_ne_zero.2 (ordinal.pos_iff_ne_zero.1 ha₀), f, λ i, (hf i).2, le_antisymm (sup_le (λ i, le_of_lt_succ (hf i).1.2)) _⟩, by_contra' h, cases H _ h with b hb, rcases eq_or_lt_of_le (le_of_lt_succ hb.1.2) with rfl | hba, { exact has hb.2 }, { have : b < f (enum (<) b (by rwa type_lt)) := begin have := (hf (enum (<) b (by rwa type_lt))).1.1, rwa typein_enum at this end, have : b ≤ sup.{u u} f := this.le.trans (le_sup f _), exact this.not_lt hb.1.1 } } }, { rintro ⟨ι, ⟨i⟩, f, hf, rfl⟩ t ht hat, cases eq_zero_or_pos (sup.{u u} f) with ha₀ ha₀, { rw ha₀ at hat, use [0, hat], convert hf i, exact (sup_eq_zero_iff.1 ha₀ i).symm }, rcases (mem_nhds_iff_exists_Ioo_subset' ⟨0, ha₀⟩ ⟨_, lt_succ _⟩).1 (ht.mem_nhds hat) with ⟨b, c, ⟨hab, hac⟩, hbct⟩, cases lt_sup.1 hab with i hi, exact ⟨_, hbct ⟨hi, (le_sup.{u u} f i).trans_lt hac⟩, hf i⟩ } end theorem mem_closed_iff_sup (hs : is_closed s) : a ∈ s ↔ ∃ {ι : Type u} (hι : nonempty ι) (f : ι → ordinal), (∀ i, f i ∈ s) ∧ sup.{u u} f = a := by rw [←mem_closure_iff_sup, hs.closure_eq] theorem mem_closure_iff_bsup : a ∈ closure s ↔ ∃ {o : ordinal} (ho : o ≠ 0) (f : Π a < o, ordinal), (∀ i hi, f i hi ∈ s) ∧ bsup.{u u} o f = a := mem_closure_iff_sup.trans ⟨ λ ⟨ι, ⟨i⟩, f, hf, ha⟩, ⟨_, λ h, (type_eq_zero_iff_is_empty.1 h).elim i, bfamily_of_family f, λ i hi, hf _, by rwa bsup_eq_sup⟩, λ ⟨o, ho, f, hf, ha⟩, ⟨_, out_nonempty_iff_ne_zero.2 ho, family_of_bfamily o f, λ i, hf _ _, by rwa sup_eq_bsup⟩⟩ theorem mem_closed_iff_bsup (hs : is_closed s) : a ∈ s ↔ ∃ {o : ordinal} (ho : o ≠ 0) (f : Π a < o, ordinal), (∀ i hi, f i hi ∈ s) ∧ bsup.{u u} o f = a := by rw [←mem_closure_iff_bsup, hs.closure_eq] theorem is_closed_iff_sup : is_closed s ↔ ∀ {ι : Type u} (hι : nonempty ι) (f : ι → ordinal), (∀ i, f i ∈ s) → sup.{u u} f ∈ s := begin use λ hs ι hι f hf, (mem_closed_iff_sup hs).2 ⟨ι, hι, f, hf, rfl⟩, rw ←closure_subset_iff_is_closed, intros h x hx, rcases mem_closure_iff_sup.1 hx with ⟨ι, hι, f, hf, rfl⟩, exact h hι f hf end theorem is_closed_iff_bsup : is_closed s ↔ ∀ {o : ordinal} (ho : o ≠ 0) (f : Π a < o, ordinal), (∀ i hi, f i hi ∈ s) → bsup.{u u} o f ∈ s := begin rw is_closed_iff_sup, refine ⟨λ H o ho f hf, H (out_nonempty_iff_ne_zero.2 ho) _ _, λ H ι hι f hf, _⟩, { exact λ i, hf _ _ }, { rw ←bsup_eq_sup, apply H (type_ne_zero_iff_nonempty.2 hι), exact λ i hi, hf _ } end theorem is_limit_of_mem_frontier (ha : a ∈ frontier s) : is_limit a := begin simp only [frontier_eq_closure_inter_closure, set.mem_inter_iff, mem_closure_iff] at ha, by_contra h, rw ←is_open_singleton_iff at h, rcases ha.1 _ h rfl with ⟨b, hb, hb'⟩, rcases ha.2 _ h rfl with ⟨c, hc, hc'⟩, rw set.mem_singleton_iff at *, subst hb, subst hc, exact hc' hb' end theorem is_normal_iff_strict_mono_and_continuous (f : ordinal.{u} → ordinal.{u}) : is_normal f ↔ strict_mono f ∧ continuous f := begin refine ⟨λ h, ⟨h.strict_mono, _⟩, _⟩, { rw continuous_def, intros s hs, rw is_open_iff at *, intros o ho ho', rcases hs _ ho (h.is_limit ho') with ⟨a, ha, has⟩, rw [←is_normal.bsup_eq.{u u} h ho', lt_bsup] at ha, rcases ha with ⟨b, hb, hab⟩, exact ⟨b, hb, λ c hc, set.mem_preimage.2 (has ⟨hab.trans (h.strict_mono hc.1), h.strict_mono hc.2⟩)⟩ }, { rw is_normal_iff_strict_mono_limit, rintro ⟨h, h'⟩, refine ⟨h, λ o ho a h, _⟩, suffices : o ∈ (f ⁻¹' set.Iic a), from set.mem_preimage.1 this, rw mem_closed_iff_sup (is_closed.preimage h' (@is_closed_Iic _ _ _ _ a)), exact ⟨_, out_nonempty_iff_ne_zero.2 ho.1, typein (<), λ i, h _ (typein_lt_self i), sup_typein_limit ho.2⟩ } end theorem enum_ord_is_normal_iff_is_closed (hs : s.unbounded (<)) : is_normal (enum_ord s) ↔ is_closed s := begin have Hs := enum_ord_strict_mono hs, refine ⟨λ h, is_closed_iff_sup.2 (λ ι hι f hf, _), λ h, (is_normal_iff_strict_mono_limit _).2 ⟨Hs, λ a ha o H, _⟩⟩, { let g : ι → ordinal.{u} := λ i, (enum_ord_order_iso hs).symm ⟨_, hf i⟩, suffices : enum_ord s (sup.{u u} g) = sup.{u u} f, { rw ←this, exact enum_ord_mem hs _ }, rw @is_normal.sup.{u u u} _ h ι g hι, congr, ext, change ((enum_ord_order_iso hs) _).val = f x, rw order_iso.apply_symm_apply }, { rw is_closed_iff_bsup at h, suffices : enum_ord s a ≤ bsup.{u u} a (λ b < a, enum_ord s b), from this.trans (bsup_le H), cases enum_ord_surjective hs _ (h ha.1 (λ b hb, enum_ord s b) (λ b hb, enum_ord_mem hs b)) with b hb, rw ←hb, apply Hs.monotone, by_contra' hba, apply (Hs (lt_succ b)).not_le, rw hb, exact le_bsup.{u u} _ _ (ha.2 _ hba) } end end ordinal
cd6df32131e927f5d4c8c7dea640f86a8d70cc6b
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
/stage0/src/Init/Lean/Elab/App.lean
9e4ac2541c080cd49e587c84730e59abc1f1956c
[ "Apache-2.0" ]
permissive
mhuisi/lean4
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
refs/heads/master
1,621,225,489,283
1,585,142,689,000
1,585,142,689,000
250,590,438
0
2
Apache-2.0
1,602,443,220,000
1,585,327,814,000
C
UTF-8
Lean
false
false
29,990
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Lean.Util.FindMVar import Init.Lean.Elab.Term import Init.Lean.Elab.Binders namespace Lean namespace Elab namespace Term /-- Auxiliary inductive datatype for combining unelaborated syntax and already elaborated expressions. It is used to elaborate applications. -/ inductive Arg | stx (val : Syntax) | expr (val : Expr) instance Arg.inhabited : Inhabited Arg := ⟨Arg.stx (arbitrary _)⟩ instance Arg.hasToString : HasToString Arg := ⟨fun arg => match arg with | Arg.stx val => toString val | Arg.expr val => toString val⟩ /-- Named arguments created using the notation `(x := val)` -/ structure NamedArg := (name : Name) (val : Arg) instance NamedArg.hasToString : HasToString NamedArg := ⟨fun s => "(" ++ toString s.name ++ " := " ++ toString s.val ++ ")"⟩ instance NamedArg.inhabited : Inhabited NamedArg := ⟨{ name := arbitrary _, val := arbitrary _ }⟩ /-- Add a new named argument to `namedArgs`, and throw an error if it already contains a named argument with the same name. -/ def addNamedArg (ref : Syntax) (namedArgs : Array NamedArg) (namedArg : NamedArg) : TermElabM (Array NamedArg) := do when (namedArgs.any $ fun namedArg' => namedArg.name == namedArg'.name) $ throwError ref ("argument '" ++ toString namedArg.name ++ "' was already set"); pure $ namedArgs.push namedArg def synthesizeAppInstMVars (ref : Syntax) (instMVars : Array MVarId) : TermElabM Unit := instMVars.forM $ fun mvarId => unlessM (synthesizeInstMVarCore ref mvarId) $ registerSyntheticMVar ref mvarId SyntheticMVarKind.typeClass private def ensureArgType (ref : Syntax) (f : Expr) (arg : Expr) (expectedType : Expr) : TermElabM Expr := do argType ← inferType ref arg; ensureHasTypeAux ref expectedType argType arg f private def elabArg (ref : Syntax) (f : Expr) (arg : Arg) (expectedType : Expr) : TermElabM Expr := match arg with | Arg.expr val => ensureArgType ref f val expectedType | Arg.stx val => do val ← elabTerm val expectedType; ensureArgType ref f val expectedType private def mkArrow (d b : Expr) : TermElabM Expr := do n ← mkFreshAnonymousName; pure $ Lean.mkForall n BinderInfo.default d b /- Relevant definitions: ``` class CoeFun (α : Sort u) (γ : α → outParam (Sort v)) abbrev coeFun {α : Sort u} {γ : α → Sort v} (a : α) [CoeFun α γ] : γ a ``` -/ private def tryCoeFun (ref : Syntax) (α : Expr) (a : Expr) : TermElabM Expr := do v ← mkFreshLevelMVar ref; type ← mkArrow α (mkSort v); γ ← mkFreshExprMVar ref type; u ← getLevel ref α; let coeFunInstType := mkAppN (Lean.mkConst `CoeFun [u, v]) #[α, γ]; mvar ← mkFreshExprMVar ref coeFunInstType MetavarKind.synthetic; let mvarId := mvar.mvarId!; synthesized ← catch (withoutMacroStackAtErr $ synthesizeInstMVarCore ref mvarId) (fun ex => match ex with | Exception.ex (Elab.Exception.error errMsg) => throwError ref ("function expected" ++ Format.line ++ errMsg.data) | _ => throwError ref "function expected"); if synthesized then pure $ mkAppN (Lean.mkConst `coeFun [u, v]) #[α, γ, a, mvar] else throwError ref "function expected" /-- Auxiliary structure used to elaborate function application arguments. -/ structure ElabAppArgsCtx := (ref : Syntax) (args : Array Arg) (expectedType? : Option Expr) (explicit : Bool) -- if true, all arguments are treated as explicit (argIdx : Nat := 0) -- position of next explicit argument to be processed (namedArgs : Array NamedArg) -- remaining named arguments to be processed (instMVars : Array MVarId := #[]) -- metavariables for the instance implicit arguments that have already been processed (typeMVars : Array MVarId := #[]) -- metavariables for implicit arguments of the form `{α : Sort u}` that have already been processed (foundExplicit : Bool := false) -- true if an explicit argument has already been processed /- Auxiliary function for retrieving the resulting type of a function application. See `propagateExpectedType`. -/ private partial def getForallBody : Nat → Array NamedArg → Expr → Option Expr | i, namedArgs, type@(Expr.forallE n d b c) => match namedArgs.findIdx? (fun namedArg => namedArg.name == n) with | some idx => getForallBody i (namedArgs.eraseIdx idx) b | none => if !c.binderInfo.isExplicit then getForallBody i namedArgs b else if i > 0 then getForallBody (i-1) namedArgs b else if d.isAutoParam || d.isOptParam then getForallBody i namedArgs b else some type | i, namedArgs, type => if i == 0 && namedArgs.isEmpty then some type else none private def hasTypeMVar (ctx : ElabAppArgsCtx) (type : Expr) : Bool := (type.findMVar? (fun mvarId => ctx.typeMVars.contains mvarId)).isSome private def hasOnlyTypeMVar (ctx : ElabAppArgsCtx) (type : Expr) : Bool := (type.findMVar? (fun mvarId => !ctx.typeMVars.contains mvarId)).isNone /- Auxiliary method for propagating the expected type. We call it as soon as we find the first explict argument. The goal is to propagate the expected type in applications of functions such as ```lean HasAdd.add {α : Type u} : α → α → α List.cons {α : Type u} : α → List α → List α ``` This is particularly useful when there applicable coercions. For example, assume we have a coercion from `Nat` to `Int`, and we have `(x : Nat)` and the expected type is `List Int`. Then, if we don't use this function, the elaborator will fail to elaborate ``` List.cons x [] ``` First, the elaborator creates a new metavariable `?α` for the implicit argument `{α : Type u}`. Then, when it processes `x`, it assigns `?α := Nat`, and then obtain the resultant type `List Nat` which is **not** definitionally equal to `List Int`. We solve the problem by executing this method before we elaborate the first explicit argument (`x` in this example). This method infers that the resultant type is `List ?α` and unifies it with `List Int`. Then, when we elaborate `x`, the elaborate realizes the coercion from `Nat` to `Int` must be used, and the term ``` @List.cons Int (coe x) (@List.nil Int) ``` is produced. The method will do nothing if 1- The resultant type depends on the remaining arguments (i.e., `!eTypeBody.hasLooseBVars`) 2- The resultant type does not contain any type metavariable. 3- The resultant type contains a nontype metavariable. We added conditions 2&3 to be able to restrict this method to simple functions that are "morally" in the Hindley&Milner fragment. For example, consider the following definitions ``` def foo {n m : Nat} (a : bv n) (b : bv m) : bv (n - m) ``` Now, consider ``` def test (x1 : bv 32) (x2 : bv 31) (y1 : bv 64) (y2 : bv 63) : bv 1 := foo x1 x2 = foo y1 y2 ``` When the elaborator reaches the term `foo y1 y2`, the expected type is `bv (32-31)`. If we apply this method, we would solve the unification problem `bv (?n - ?m) =?= bv (32 - 31)`, by assigning `?n := 32` and `?m := 31`. Then, the elaborator fails elaborating `y1` since `bv 64` is **not** definitionally equal to `bv 32`. -/ private def propagateExpectedType (ctx : ElabAppArgsCtx) (eType : Expr) : TermElabM Unit := unless (ctx.explicit || ctx.foundExplicit || ctx.typeMVars.isEmpty) $ do match ctx.expectedType? with | none => pure () | some expectedType => let numRemainingArgs := ctx.args.size - ctx.argIdx; match getForallBody numRemainingArgs ctx.namedArgs eType with | none => pure () | some eTypeBody => unless eTypeBody.hasLooseBVars $ when (hasTypeMVar ctx eTypeBody && hasOnlyTypeMVar ctx eTypeBody) $ do isDefEq ctx.ref expectedType eTypeBody; pure () private def nextArgIsHole (ctx : ElabAppArgsCtx) : Bool := if h : ctx.argIdx < ctx.args.size then match ctx.args.get ⟨ctx.argIdx, h⟩ with | Arg.stx (Syntax.node `Lean.Parser.Term.hole _) => true | _ => false else false /- Elaborate function application arguments. -/ private partial def elabAppArgsAux : ElabAppArgsCtx → Expr → Expr → TermElabM Expr | ctx, e, eType => do let finalize : Unit → TermElabM Expr := fun _ => do { -- all user explicit arguments have been consumed trace `Elab.app.finalize ctx.ref $ fun _ => e; match ctx.expectedType? with | none => pure () | some expectedType => do { -- Try to propagate expected type. Ignore if types are not definitionally equal, caller must handle it. isDefEq ctx.ref expectedType eType; pure () }; synthesizeAppInstMVars ctx.ref ctx.instMVars; pure e }; eType ← whnfForall ctx.ref eType; match eType with | Expr.forallE n d b c => match ctx.namedArgs.findIdx? (fun namedArg => namedArg.name == n) with | some idx => do let arg := ctx.namedArgs.get! idx; let namedArgs := ctx.namedArgs.eraseIdx idx; argElab ← elabArg ctx.ref e arg.val d; propagateExpectedType ctx eType; elabAppArgsAux { foundExplicit := true, namedArgs := namedArgs, .. ctx } (mkApp e argElab) (b.instantiate1 argElab) | none => let processExplictArg : Unit → TermElabM Expr := fun _ => do { propagateExpectedType ctx eType; let ctx := { foundExplicit := true, .. ctx }; if h : ctx.argIdx < ctx.args.size then do argElab ← elabArg ctx.ref e (ctx.args.get ⟨ctx.argIdx, h⟩) d; elabAppArgsAux { argIdx := ctx.argIdx + 1, .. ctx } (mkApp e argElab) (b.instantiate1 argElab) else match ctx.explicit, d.getOptParamDefault?, d.getAutoParamTactic? with | false, some defVal, _ => elabAppArgsAux ctx (mkApp e defVal) (b.instantiate1 defVal) | false, _, some (Expr.const tacticDecl _ _) => do env ← getEnv; match evalSyntaxConstant env tacticDecl with | Except.error err => throwError ctx.ref err | Except.ok tacticSyntax => do tacticBlock ← `(begin $(tacticSyntax.getArgs)* end); -- tacticBlock does not have any position information -- use ctx.ref.getHeadInfo if available let tacticBlock := match ctx.ref.getHeadInfo with | some info => tacticBlock.replaceInfo info | _ => tacticBlock; let d := d.getArg! 0; -- `autoParam type := by tactic` ==> `type` argElab ← elabArg ctx.ref e (Arg.stx tacticBlock) d; elabAppArgsAux ctx (mkApp e argElab) (b.instantiate1 argElab) | false, _, some _ => throwError ctx.ref "invalid autoParam, argument must be a constant" | _, _, _ => if ctx.namedArgs.isEmpty then finalize () else throwError ctx.ref ("explicit parameter '" ++ n ++ "' is missing, unused named arguments " ++ toString (ctx.namedArgs.map $ fun narg => narg.name)) }; match c.binderInfo with | BinderInfo.implicit => if ctx.explicit then processExplictArg () else do a ← mkFreshExprMVar ctx.ref d; typeMVars ← condM (isTypeFormer ctx.ref a) (pure $ ctx.typeMVars.push a.mvarId!) (pure ctx.typeMVars); elabAppArgsAux { typeMVars := typeMVars, .. ctx } (mkApp e a) (b.instantiate1 a) | BinderInfo.instImplicit => if ctx.explicit && nextArgIsHole ctx then do /- Recall that if '@' has been used, and the argument is '_', then we still use type class resolution -/ a ← mkFreshExprMVar ctx.ref d MetavarKind.synthetic; elabAppArgsAux { argIdx := ctx.argIdx + 1, instMVars := ctx.instMVars.push a.mvarId!, .. ctx } (mkApp e a) (b.instantiate1 a) else if ctx.explicit then processExplictArg () else do a ← mkFreshExprMVar ctx.ref d MetavarKind.synthetic; elabAppArgsAux { instMVars := ctx.instMVars.push a.mvarId!, .. ctx } (mkApp e a) (b.instantiate1 a) | _ => processExplictArg () | _ => if ctx.namedArgs.isEmpty && ctx.argIdx == ctx.args.size then finalize () else do e ← tryCoeFun ctx.ref eType e; eType ← inferType ctx.ref e; elabAppArgsAux ctx e eType private def elabAppArgs (ref : Syntax) (f : Expr) (namedArgs : Array NamedArg) (args : Array Arg) (expectedType? : Option Expr) (explicit : Bool) : TermElabM Expr := do fType ← inferType ref f; fType ← instantiateMVars ref fType; trace `Elab.app.args ref $ fun _ => "explicit: " ++ toString explicit ++ ", " ++ f ++ " : " ++ fType; unless (namedArgs.isEmpty && args.isEmpty) $ tryPostponeIfMVar fType; elabAppArgsAux {ref := ref, args := args, expectedType? := expectedType?, explicit := explicit, namedArgs := namedArgs } f fType /-- Auxiliary inductive datatype that represents the resolution of an `LVal`. -/ inductive LValResolution | projFn (baseStructName : Name) (structName : Name) (fieldName : Name) | projIdx (structName : Name) (idx : Nat) | const (baseName : Name) (constName : Name) | localRec (baseName : Name) (fullName : Name) (fvar : Expr) | getOp (fullName : Name) (idx : Syntax) private def throwLValError {α} (ref : Syntax) (e : Expr) (eType : Expr) (msg : MessageData) : TermElabM α := throwError ref $ msg ++ indentExpr e ++ Format.line ++ "has type" ++ indentExpr eType private def resolveLValAux (ref : Syntax) (e : Expr) (eType : Expr) (lval : LVal) : TermElabM LValResolution := match eType.getAppFn, lval with | Expr.const structName _ _, LVal.fieldIdx idx => do when (idx == 0) $ throwError ref "invalid projection, index must be greater than 0"; env ← getEnv; unless (isStructureLike env structName) $ throwLValError ref e eType "invalid projection, structure expected"; let fieldNames := getStructureFields env structName; if h : idx - 1 < fieldNames.size then if isStructure env structName then pure $ LValResolution.projFn structName structName (fieldNames.get ⟨idx - 1, h⟩) else /- `structName` was declared using `inductive` command. So, we don't projection functions for it. Thus, we use `Expr.proj` -/ pure $ LValResolution.projIdx structName (idx - 1) else throwLValError ref e eType ("invalid projection, structure has only " ++ toString fieldNames.size ++ " field(s)") | Expr.const structName _ _, LVal.fieldName fieldName => do env ← getEnv; let searchEnv (fullName : Name) : TermElabM LValResolution := do { match env.find? fullName with | some _ => pure $ LValResolution.const structName fullName | none => throwLValError ref e eType $ "invalid field notation, '" ++ fieldName ++ "' is not a valid \"field\" because environment does not contain '" ++ fullName ++ "'" }; -- search local context first, then environment let searchCtx : Unit → TermElabM LValResolution := fun _ => do { let fullName := structName ++ fieldName; currNamespace ← getCurrNamespace; let localName := fullName.replacePrefix currNamespace Name.anonymous; lctx ← getLCtx; match lctx.findFromUserName? localName with | some localDecl => if localDecl.binderInfo == BinderInfo.auxDecl then /- LVal notation is being used to make a "local" recursive call. -/ pure $ LValResolution.localRec structName fullName localDecl.toExpr else searchEnv fullName | none => searchEnv fullName }; if isStructure env structName then match findField? env structName fieldName with | some baseStructName => pure $ LValResolution.projFn baseStructName structName fieldName | none => searchCtx () else searchCtx () | Expr.const structName _ _, LVal.getOp idx => do env ← getEnv; let fullName := mkNameStr structName "getOp"; match env.find? fullName with | some _ => pure $ LValResolution.getOp fullName idx | none => throwLValError ref e eType $ "invalid [..] notation because environment does not contain '" ++ fullName ++ "'" | _, LVal.getOp idx => throwLValError ref e eType "invalid [..] notation, type is not of the form (C ...) where C is a constant" | _, _ => throwLValError ref e eType "invalid field notation, type is not of the form (C ...) where C is a constant" private partial def resolveLValLoop (ref : Syntax) (e : Expr) (lval : LVal) : Expr → Array Message → TermElabM LValResolution | eType, previousExceptions => do eType ← whnfCore ref eType; tryPostponeIfMVar eType; catch (resolveLValAux ref e eType lval) (fun ex => match ex with | Exception.postpone => throw ex | Exception.ex Elab.Exception.unsupportedSyntax => throw ex | Exception.ex (Elab.Exception.error errMsg) => do eType? ← unfoldDefinition? ref eType; match eType? with | some eType => resolveLValLoop eType (previousExceptions.push errMsg) | none => do previousExceptions.forM $ fun ex => logMessage errMsg; throw (Exception.ex (Elab.Exception.error errMsg))) private def resolveLVal (ref : Syntax) (e : Expr) (lval : LVal) : TermElabM LValResolution := do eType ← inferType ref e; resolveLValLoop ref e lval eType #[] private partial def mkBaseProjections (ref : Syntax) (baseStructName : Name) (structName : Name) (e : Expr) : TermElabM Expr := do env ← getEnv; match getPathToBaseStructure? env baseStructName structName with | none => throwError ref "failed to access field in parent structure" | some path => path.foldlM (fun e projFunName => do projFn ← mkConst ref projFunName; elabAppArgs ref projFn #[{ name := `self, val := Arg.expr e }] #[] none false) e /- Auxiliary method for field notation. It tries to add `e` to `args` as the first explicit parameter which takes an element of type `(C ...)` where `C` is `baseName`. `fullName` is the name of the resolved "field" access function. It is used for reporting errors -/ private def addLValArg (ref : Syntax) (baseName : Name) (fullName : Name) (e : Expr) (args : Array Arg) : Nat → Array NamedArg → Expr → TermElabM (Array Arg) | i, namedArgs, Expr.forallE n d b c => if !c.binderInfo.isExplicit then addLValArg i namedArgs b else /- If there is named argument with name `n`, then we should skip. -/ match namedArgs.findIdx? (fun namedArg => namedArg.name == n) with | some idx => do let namedArgs := namedArgs.eraseIdx idx; addLValArg i namedArgs b | none => do if d.consumeMData.isAppOf baseName then pure $ args.insertAt i (Arg.expr e) else if i < args.size then addLValArg (i+1) namedArgs b else throwError ref $ "invalid field notation, insufficient number of arguments for '" ++ fullName ++ "'" | _, _, fType => throwError ref $ "invalid field notation, function '" ++ fullName ++ "' does not have explicit argument with type (" ++ baseName ++ " ...)" private def elabAppLValsAux (ref : Syntax) (namedArgs : Array NamedArg) (args : Array Arg) (expectedType? : Option Expr) (explicit : Bool) : Expr → List LVal → TermElabM Expr | f, [] => elabAppArgs ref f namedArgs args expectedType? explicit | f, lval::lvals => do lvalRes ← resolveLVal ref f lval; match lvalRes with | LValResolution.projIdx structName idx => let f := mkProj structName idx f; elabAppLValsAux f lvals | LValResolution.projFn baseStructName structName fieldName => do f ← mkBaseProjections ref baseStructName structName f; projFn ← mkConst ref (baseStructName ++ fieldName); if lvals.isEmpty then do namedArgs ← addNamedArg ref namedArgs { name := `self, val := Arg.expr f }; elabAppArgs ref projFn namedArgs args expectedType? explicit else do f ← elabAppArgs ref projFn #[{ name := `self, val := Arg.expr f }] #[] none false; elabAppLValsAux f lvals | LValResolution.const baseName constName => do projFn ← mkConst ref constName; if lvals.isEmpty then do projFnType ← inferType ref projFn; args ← addLValArg ref baseName constName f args 0 namedArgs projFnType; elabAppArgs ref projFn namedArgs args expectedType? explicit else do f ← elabAppArgs ref projFn #[] #[Arg.expr f] none false; elabAppLValsAux f lvals | LValResolution.localRec baseName fullName fvar => if lvals.isEmpty then do fvarType ← inferType ref fvar; args ← addLValArg ref baseName fullName f args 0 namedArgs fvarType; elabAppArgs ref fvar namedArgs args expectedType? explicit else do f ← elabAppArgs ref fvar #[] #[Arg.expr f] none false; elabAppLValsAux f lvals | LValResolution.getOp fullName idx => do getOpFn ← mkConst ref fullName; if lvals.isEmpty then do namedArgs ← addNamedArg ref namedArgs { name := `self, val := Arg.expr f }; namedArgs ← addNamedArg ref namedArgs { name := `idx, val := Arg.stx idx }; elabAppArgs ref getOpFn namedArgs args expectedType? explicit else do f ← elabAppArgs ref getOpFn #[{ name := `self, val := Arg.expr f }, { name := `idx, val := Arg.stx idx }] #[] none false; elabAppLValsAux f lvals private def elabAppLVals (ref : Syntax) (f : Expr) (lvals : List LVal) (namedArgs : Array NamedArg) (args : Array Arg) (expectedType? : Option Expr) (explicit : Bool) : TermElabM Expr := do when (!lvals.isEmpty && explicit) $ throwError ref "invalid use of field notation with `@` modifier"; elabAppLValsAux ref namedArgs args expectedType? explicit f lvals def elabExplicitUniv (stx : Syntax) : TermElabM (List Level) := do let lvls := stx.getArg 1; lvls.foldSepRevArgsM (fun stx lvls => do lvl ← elabLevel stx; pure (lvl::lvls)) [] private partial def elabAppFnId (ref : Syntax) (fIdent : Syntax) (fExplicitUnivs : List Level) (lvals : List LVal) (namedArgs : Array NamedArg) (args : Array Arg) (expectedType? : Option Expr) (explicit : Bool) (acc : Array TermElabResult) : TermElabM (Array TermElabResult) := match fIdent with | Syntax.ident _ _ n preresolved => do funLVals ← resolveName fIdent n preresolved fExplicitUnivs; funLVals.foldlM (fun acc ⟨f, fields⟩ => do let lvals' := fields.map LVal.fieldName; s ← observing $ elabAppLVals ref f (lvals' ++ lvals) namedArgs args expectedType? explicit; pure $ acc.push s) acc | _ => throwUnsupportedSyntax private partial def elabAppFn (ref : Syntax) : Syntax → List LVal → Array NamedArg → Array Arg → Option Expr → Bool → Array TermElabResult → TermElabM (Array TermElabResult) | f, lvals, namedArgs, args, expectedType?, explicit, acc => if f.isIdent then -- A raw identifier is not a valid Term. Recall that `Term.id` is defined as `parser! ident >> optional (explicitUniv <|> namedPattern)` -- We handle it here to make macro development more comfortable. elabAppFnId ref f [] lvals namedArgs args expectedType? explicit acc else if f.getKind == choiceKind then f.getArgs.foldlM (fun acc f => elabAppFn f lvals namedArgs args expectedType? explicit acc) acc else match_syntax f with | `($(e).$idx:fieldIdx) => let idx := idx.isFieldIdx?.get!; elabAppFn (f.getArg 0) (LVal.fieldIdx idx :: lvals) namedArgs args expectedType? explicit acc | `($(e).$field:ident) => let newLVals := field.getId.eraseMacroScopes.components.map (fun n => LVal.fieldName (toString n)); elabAppFn (f.getArg 0) (newLVals ++ lvals) namedArgs args expectedType? explicit acc | `($e[$idx]) => elabAppFn e (LVal.getOp idx :: lvals) namedArgs args expectedType? explicit acc | `($id:ident$us:explicitUniv*) => do -- Remark: `id.<namedPattern>` should already have been expanded us ← if us.isEmpty then pure [] else elabExplicitUniv (us.get! 0); elabAppFnId ref id us lvals namedArgs args expectedType? explicit acc | `(@$id:id) => elabAppFn id lvals namedArgs args expectedType? true acc | _ => do s ← observing $ do { f ← elabTerm f none; elabAppLVals ref f lvals namedArgs args expectedType? explicit }; pure $ acc.push s private def getSuccess (candidates : Array TermElabResult) : Array TermElabResult := candidates.filter $ fun c => match c with | EStateM.Result.ok _ _ => true | _ => false private def toMessageData (msg : Message) (stx : Syntax) : TermElabM MessageData := do strPos ← getPos stx; pos ← getPosition strPos; if pos == msg.pos then pure msg.data else pure $ toString msg.pos.line ++ ":" ++ toString msg.pos.column ++ " " ++ msg.data private def mergeFailures {α} (failures : Array TermElabResult) (stx : Syntax) : TermElabM α := do msgs ← failures.mapM $ fun failure => match failure with | EStateM.Result.ok _ _ => unreachable! | EStateM.Result.error errMsg s => toMessageData errMsg stx; throwError stx ("overloaded, errors " ++ MessageData.ofArray msgs) private def elabAppAux (ref : Syntax) (f : Syntax) (namedArgs : Array NamedArg) (args : Array Arg) (expectedType? : Option Expr) : TermElabM Expr := do /- TODO: if `f` contains `choice` or overloaded symbols, `mayPostpone == true`, and `expectedType? == some ?m` where `?m` is not assigned, then we should postpone until `?m` is assigned. Another (more expensive) option is: execute, and if successes > 1, `mayPostpone == true`, and `expectedType? == some ?m` where `?m` is not assigned, then we postpone `elabAppAux`. It is more expensive because we would have to re-elaborate the whole thing after we assign `?m`. We **can't** continue from `TermElabResult` since they contain a snapshot of the state, and state has changed. -/ candidates ← elabAppFn ref f [] namedArgs args expectedType? false #[]; if candidates.size == 1 then applyResult $ candidates.get! 0 else let successes := getSuccess candidates; if successes.size == 1 then applyResult $ successes.get! 0 else if successes.size > 1 then do lctx ← getLCtx; opts ← getOptions; let msgs : Array MessageData := successes.map $ fun success => match success with | EStateM.Result.ok e s => MessageData.withContext { env := s.env, mctx := s.mctx, lctx := lctx, opts := opts } e | _ => unreachable!; throwError f ("ambiguous, possible interpretations " ++ MessageData.ofArray msgs) else mergeFailures candidates f private partial def expandApp (stx : Syntax) : TermElabM (Syntax × Array NamedArg × Array Arg) := do let f := stx.getArg 0; (namedArgs, args) ← (stx.getArg 1).getArgs.foldlM (fun (acc : Array NamedArg × Array Arg) (stx : Syntax) => do let (namedArgs, args) := acc; if stx.getKind == `Lean.Parser.Term.namedArgument then do -- tparser! try ("(" >> ident >> " := ") >> termParser >> ")" let name := (stx.getArg 1).getId.eraseMacroScopes; let val := stx.getArg 3; namedArgs ← addNamedArg stx namedArgs { name := name, val := Arg.stx val }; pure (namedArgs, args) else pure (namedArgs, args.push $ Arg.stx stx)) (#[], #[]); pure (f, namedArgs, args) @[builtinTermElab app] def elabApp : TermElab := fun stx expectedType? => do (f, namedArgs, args) ← expandApp stx; elabAppAux stx f namedArgs args expectedType? def elabAtom : TermElab := fun stx expectedType? => elabAppAux stx stx #[] #[] expectedType? @[builtinTermElab «id»] def elabId : TermElab := elabAtom @[builtinTermElab explicit] def elabExplicit : TermElab := fun stx expectedType? => match_syntax stx with | `(@$f:fun) => elabFunCore f expectedType? true -- This rule is just a convenience for macro writers, the LHS cannot be built by the parser | `(@($f:fun)) => elabFunCore f expectedType? true -- Elaborate lambda abstraction `f` pretending all binders are explicit. | `(@($f:fun : $type)) => do -- Elaborate lambda abstraction `f` using `type` as the expected type, and pretending all binders are explicit. type ← elabType type; f ← elabFunCore f type true; ensureHasType stx type f | `(@$id:id) => elabAtom stx expectedType? /- Remark: we may support other occurrences `@` in the future, but we did not find compelling applications for them yet. One instance we considered that is barely useful: applications. We found the behavior counterintuitive. Example: ```lean def g1 {α} (a₁ a₂ : α) {β} (b : β) : α × α × β := (a₁, a₂, b) #check @(g1 true) -- α → {β : Type} → β → α × α × β ``` The example above is reasonable, but we say this feautre would produce counterintuitive because of the following small variant ```lean def g2 {α} (a : α) {β} (b : β) : α × β := (a, b) #check @(g2 true) -- ?β → α × ?β ``` That is, `g2 true` "consumed" the arguments `{α} (a : α) {β}` as expected. -/ | _ => throwUnsupportedSyntax @[builtinTermElab choice] def elabChoice : TermElab := elabAtom @[builtinTermElab proj] def elabProj : TermElab := elabAtom @[builtinTermElab arrayRef] def elabArrayRef : TermElab := elabAtom /- A raw identiier is not a valid term, but it is nice to have a handler for them because it allows `macros` to insert them into terms. -/ @[builtinTermElab ident] def elabRawIdent : TermElab := elabAtom @[builtinTermElab sortApp] def elabSortApp : TermElab := fun stx _ => do u ← elabLevel (stx.getArg 1); if (stx.getArg 0).getKind == `Lean.Parser.Term.sort then do pure $ mkSort u else pure $ mkSort (mkLevelSucc u) @[init] private def regTraceClasses : IO Unit := do registerTraceClass `Elab.app; pure () end Term end Elab end Lean
ea85df670f2c0f93eeab7cde1fef92da7fe5ca27
db7224090b4cb10a7442cf43e9b01a18cd5456b4
/Maze.lean
276a7ec53f1dfe13079f0840162cb0297fac36c8
[ "Apache-2.0" ]
permissive
bollu/lean4-maze
324a5664c34037755be995f475c9368e49cb8d1e
ac96b971ab40dc00461e404643f8efd54645f27c
refs/heads/main
1,690,952,076,496
1,633,661,863,000
1,633,661,863,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
15,092
lean
import Lean -- Turn off pp.analyze. When pp.analyze is set to true (the default), some of our -- larger mazes take a long time to display. set_option pp.analyze false -- Coordinates in a two dimensional grid. ⟨0,0⟩ is the upper left. structure Coords where x : Nat -- column number y : Nat -- row number deriving BEq instance : ToString Coords where toString := (λ ⟨x,y⟩ => String.join ["Coords.mk ", toString x, ", ", toString y]) structure GameState where size : Coords -- coordinates of bottom-right cell position : Coords -- row and column of the player walls : List Coords -- maze cells that are not traversible -- We define custom syntax for GameState. declare_syntax_cat game_cell declare_syntax_cat game_cell_sequence declare_syntax_cat game_row declare_syntax_cat horizontal_border declare_syntax_cat game_top_row declare_syntax_cat game_bottom_row syntax "─" : horizontal_border syntax "\n┌" horizontal_border* "┐\n" : game_top_row syntax "└" horizontal_border* "┘\n" : game_bottom_row syntax "░" : game_cell -- empty syntax "▓" : game_cell -- wall syntax "@" : game_cell -- player syntax "│" game_cell* "│\n" : game_row syntax:max game_top_row game_row* game_bottom_row : term inductive CellContents where | empty : CellContents | wall : CellContents | player : CellContents def update_state_with_row_aux : Nat → Nat → List CellContents → GameState → GameState | currentRowNum, currentColNum, [], oldState => oldState | currentRowNum, currentColNum, cell::contents, oldState => let oldState' := update_state_with_row_aux currentRowNum (currentColNum+1) contents oldState match cell with | CellContents.empty => oldState' | CellContents.wall => {oldState' .. with walls := ⟨currentColNum,currentRowNum⟩::oldState'.walls} | CellContents.player => {oldState' .. with position := ⟨currentColNum,currentRowNum⟩} def update_state_with_row : Nat → List CellContents → GameState → GameState | currentRowNum, rowContents, oldState => update_state_with_row_aux currentRowNum 0 rowContents oldState -- size, current row, remaining cells -> gamestate def game_state_from_cells_aux : Coords → Nat → List (List CellContents) → GameState | size, _, [] => ⟨size, ⟨0,0⟩, []⟩ | size, currentRow, row::rows => let prevState := game_state_from_cells_aux size (currentRow + 1) rows update_state_with_row currentRow row prevState -- size, remaining cells -> gamestate def game_state_from_cells : Coords → List (List CellContents) → GameState | size, cells => game_state_from_cells_aux size 0 cells def termOfCell : Lean.Macro | `(game_cell| ░) => `(CellContents.empty) | `(game_cell| ▓) => `(CellContents.wall) | `(game_cell| @) => `(CellContents.player) | _ => Lean.Macro.throwError "unknown game cell" def termOfGameRow : Nat → Lean.Macro | expectedRowSize, `(game_row| │$cells:game_cell*│) => do if cells.size != expectedRowSize then Lean.Macro.throwError "row has wrong size" let cells' ← Array.mapM termOfCell cells `([$cells',*]) | _, _ => Lean.Macro.throwError "unknown game row" macro_rules | `(┌ $tb:horizontal_border* ┐ $rows:game_row* └ $bb:horizontal_border* ┘) => do let rsize := Lean.Syntax.mkNumLit (toString rows.size) let csize := Lean.Syntax.mkNumLit (toString tb.size) if tb.size != bb.size then Lean.Macro.throwError "top/bottom border mismatch" let rows' ← Array.mapM (termOfGameRow tb.size) rows `(game_state_from_cells ⟨$csize,$rsize⟩ [$rows',*]) --------------------------- -- Now we define a delaborator that will cause GameState to be rendered as a maze. def extractXY : Lean.Expr → Lean.MetaM Coords | e => do let e':Lean.Expr ← (Lean.Meta.whnf e) let sizeArgs := Lean.Expr.getAppArgs e' let f := Lean.Expr.getAppFn e' let x ← Lean.Meta.whnf sizeArgs[0] let y ← Lean.Meta.whnf sizeArgs[1] let numCols := (Lean.Expr.natLit? x).get! let numRows := (Lean.Expr.natLit? y).get! Coords.mk numCols numRows partial def extractWallList : Lean.Expr → Lean.MetaM (List Coords) | exp => do let exp':Lean.Expr ← (Lean.Meta.whnf exp) let f := Lean.Expr.getAppFn exp' if f.constName!.toString == "List.cons" then let consArgs := Lean.Expr.getAppArgs exp' let rest ← extractWallList consArgs[2] let ⟨wallCol, wallRow⟩ ← extractXY consArgs[1] (Coords.mk wallCol wallRow) :: rest else [] -- "List.nil" partial def extractGameState : Lean.Expr → Lean.MetaM GameState | exp => do let exp': Lean.Expr ← (Lean.Meta.whnf exp) let gameStateArgs := Lean.Expr.getAppArgs exp' let size ← extractXY gameStateArgs[0] let playerCoords ← extractXY gameStateArgs[1] let walls ← extractWallList gameStateArgs[2] pure ⟨size, playerCoords, walls⟩ def update2dArray {α : Type} : Array (Array α) → Coords → α → Array (Array α) | a, ⟨x,y⟩, v => Array.set! a y $ Array.set! (Array.get! a y) x v def update2dArrayMulti {α : Type} : Array (Array α) → List Coords → α → Array (Array α) | a, [], v => a | a, c::cs, v => let a' := update2dArrayMulti a cs v update2dArray a' c v def delabGameRow : (Array Lean.Syntax) → Lean.PrettyPrinter.Delaborator.Delab | a => `(game_row| │ $a:game_cell* │) def delabGameState : Lean.Expr → Lean.PrettyPrinter.Delaborator.Delab | e => do guard $ e.getAppNumArgs == 3 let ⟨⟨numCols, numRows⟩, playerCoords, walls⟩ ← try extractGameState e catch err => failure -- can happen if game state has variables in it let topBar := Array.mkArray numCols $ ← `(horizontal_border| ─) let emptyCell ← `(game_cell| ░) let emptyRow := Array.mkArray numCols emptyCell let emptyRowStx ← `(game_row| │$emptyRow:game_cell*│) let allRows := Array.mkArray numRows emptyRowStx let a0 := Array.mkArray numRows $ Array.mkArray numCols emptyCell let a1 := update2dArray a0 playerCoords $ ← `(game_cell| @) let a2 := update2dArrayMulti a1 walls $ ← `(game_cell| ▓) let aa ← Array.mapM delabGameRow a2 `(┌$topBar:horizontal_border*┐ $aa:game_row* └$topBar:horizontal_border*┘) -- The attribute [delab] registers this function as a delaborator for the GameState.mk constructor. @[delab app.GameState.mk] def delabGameStateMk : Lean.PrettyPrinter.Delaborator.Delab := do let e ← Lean.PrettyPrinter.Delaborator.SubExpr.getExpr delabGameState e -- We register the same elaborator for applications of the game_state_from_cells function. @[delab app.game_state_from_cells] def delabGameState' : Lean.PrettyPrinter.Delaborator.Delab := do let e ← Lean.PrettyPrinter.Delaborator.SubExpr.getExpr let e' ← (Lean.Meta.whnf e) delabGameState e' -------------------------- inductive Move where | east : Move | west : Move | north : Move | south : Move @[simp] def make_move : GameState → Move → GameState | ⟨s, ⟨x,y⟩, w⟩, Move.east => if w.notElem ⟨x+1, y⟩ ∧ x + 1 ≤ s.x then ⟨s, ⟨x+1, y⟩, w⟩ else ⟨s, ⟨x,y⟩, w⟩ | ⟨s, ⟨x,y⟩, w⟩, Move.west => if w.notElem ⟨x-1, y⟩ then ⟨s, ⟨x-1, y⟩, w⟩ else ⟨s, ⟨x,y⟩, w⟩ | ⟨s, ⟨x,y⟩, w⟩, Move.north => if w.notElem ⟨x, y-1⟩ then ⟨s, ⟨x, y-1⟩, w⟩ else ⟨s, ⟨x,y⟩, w⟩ | ⟨s, ⟨x,y⟩, w⟩, Move.south => if w.notElem ⟨x, y + 1⟩ ∧ y + 1 ≤ s.y then ⟨s, ⟨x, y+1⟩, w⟩ else ⟨s, ⟨x,y⟩, w⟩ def is_win : GameState → Prop | ⟨⟨sx, sy⟩, ⟨x,y⟩, w⟩ => x = 0 ∨ y = 0 ∨ x + 1 = sx ∨ y + 1 = sy def can_escape (state : GameState) : Prop := ∃ (gs : List Move), is_win (List.foldl make_move state gs) theorem can_still_escape (g : GameState) (m : Move) (hg : can_escape (make_move g m)) : can_escape g := have ⟨pms, hpms⟩ := hg Exists.intro (m::pms) hpms theorem step_west {s: Coords} {x y : Nat} {w: List Coords} (hclear' : w.notElem ⟨x,y⟩) (W : can_escape ⟨s,⟨x,y⟩,w⟩) : can_escape ⟨s,⟨x+1,y⟩,w⟩ := by have hmm : GameState.mk s ⟨x,y⟩ w = make_move ⟨s,⟨x+1, y⟩,w⟩ Move.west := by have h' : x + 1 - 1 = x := rfl simp [h', hclear'] rw [hmm] at W exact can_still_escape ⟨s,⟨x+1,y⟩,w⟩ Move.west W theorem step_east {s: Coords} {x y : Nat} {w: List Coords} (hclear' : w.notElem ⟨x+1,y⟩) (hinbounds : x + 1 ≤ s.x) (E : can_escape ⟨s,⟨x+1,y⟩,w⟩) : can_escape ⟨s,⟨x, y⟩,w⟩ := by have hmm : GameState.mk s ⟨x+1,y⟩ w = make_move ⟨s, ⟨x,y⟩,w⟩ Move.east := by simp [hclear', hinbounds] rw [hmm] at E exact can_still_escape ⟨s, ⟨x,y⟩, w⟩ Move.east E theorem step_north {s: Coords} {x y : Nat} {w: List Coords} (hclear' : w.notElem ⟨x,y⟩) (N : can_escape ⟨s,⟨x,y⟩,w⟩) : can_escape ⟨s,⟨x, y+1⟩,w⟩ := by have hmm : GameState.mk s ⟨x,y⟩ w = make_move ⟨s,⟨x, y+1⟩,w⟩ Move.north := by have h' : y + 1 - 1 = y := rfl simp [h', hclear'] rw [hmm] at N exact can_still_escape ⟨s,⟨x,y+1⟩,w⟩ Move.north N theorem step_south {s: Coords} {x y : Nat} {w: List Coords} (hclear' : w.notElem ⟨x,y+1⟩) (hinbounds : y + 1 ≤ s.y) (S : can_escape ⟨s,⟨x,y+1⟩,w⟩) : can_escape ⟨s,⟨x, y⟩,w⟩ := by have hmm : GameState.mk s ⟨x,y+1⟩ w = make_move ⟨s,⟨x, y⟩,w⟩ Move.south := by simp [hclear', hinbounds] rw [hmm] at S exact can_still_escape ⟨s,⟨x,y⟩,w⟩ Move.south S def escape_west {sx sy : Nat} {y : Nat} {w : List Coords} : can_escape ⟨⟨sx, sy⟩,⟨0, y⟩,w⟩ := ⟨[], Or.inl rfl⟩ def escape_east {sy x y : Nat} {w : List Coords} : can_escape ⟨⟨x+1, sy⟩,⟨x, y⟩,w⟩ := ⟨[], Or.inr $ Or.inr $ Or.inl rfl⟩ def escape_north {sx sy : Nat} {x : Nat} {w : List Coords} : can_escape ⟨⟨sx, sy⟩,⟨x, 0⟩,w⟩ := ⟨[], Or.inr $ Or.inl rfl⟩ def escape_south {sx x y : Nat} {w: List Coords} : can_escape ⟨⟨sx, y+1⟩,⟨x, y⟩,w⟩ := ⟨[], Or.inr $ Or.inr $ Or.inr rfl⟩ -- Define an "or" tactic combinator, like <|> in Lean 3. elab t1:tactic " ⟨|⟩ " t2:tactic : tactic => try Lean.Elab.Tactic.evalTactic t1 catch err => Lean.Elab.Tactic.evalTactic t2 elab "fail" m:term : tactic => throwError m -- the `simp`s are to discharge the `hclear` and `hinbounds` side-goals macro "west" : tactic => `((apply step_west; simp) ⟨|⟩ fail "cannot step west") macro "east" : tactic => `((apply step_east; simp; simp) ⟨|⟩ fail "cannot step east") macro "north" : tactic => `((apply step_north; simp) ⟨|⟩ fail "cannot step north") macro "south" : tactic => `((apply step_south; simp; simp) ⟨|⟩ fail "cannot step south") macro "out" : tactic => `(apply escape_north ⟨|⟩ apply escape_south ⟨|⟩ apply escape_east ⟨|⟩ apply escape_west ⟨|⟩ fail "not currently at maze boundary") -- Can escape the trivial maze in any direction. example : can_escape ┌─┐ │@│ └─┘ := by out -- some other mazes with immediate escapes example : can_escape ┌──┐ │░░│ │@░│ │░░│ └──┘ := by out example : can_escape ┌──┐ │░░│ │░@│ │░░│ └──┘ := by out example : can_escape ┌───┐ │░@░│ │░░░│ │░░░│ └───┘ := by out example : can_escape ┌───┐ │░░░│ │░░░│ │░@░│ └───┘ := by out -- Now for some more interesting mazes. def maze1 := ┌──────┐ │▓▓▓▓▓▓│ │▓░░@░▓│ │▓░░░░▓│ │▓░░░░▓│ │▓▓▓▓░▓│ └──────┘ example : can_escape maze1 := by west west east south south east east south out def maze2 := ┌────────┐ │▓▓▓▓▓▓▓▓│ │▓░▓@▓░▓▓│ │▓░▓░░░▓▓│ │▓░░▓░▓▓▓│ │▓▓░▓░▓░░│ │▓░░░░▓░▓│ │▓░▓▓▓▓░▓│ │▓░░░░░░▓│ │▓▓▓▓▓▓▓▓│ └────────┘ example : can_escape maze2 := by south east south south south west west west south south east east east east east north north north east out def maze3 := ┌────────────────────────────┐ │▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓│ │▓░░░░░░░░░░░░░░░░░░░░▓░░░@░▓│ │▓░▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░▓░▓▓▓▓▓│ │▓░▓░░░▓░░░░▓░░░░░░░░░▓░▓░░░▓│ │▓░▓░▓░▓░▓▓▓▓░▓▓▓▓▓▓▓▓▓░▓░▓░▓│ │▓░▓░▓░▓░▓░░░░▓░░░░░░░░░░░▓░▓│ │▓░▓░▓░▓░▓░▓▓▓▓▓▓▓▓▓▓▓▓░▓▓▓░▓│ │▓░▓░▓░▓░░░▓░░░░░░░░░░▓░░░▓░▓│ │▓░▓░▓░▓▓▓░▓░▓▓▓▓▓▓▓▓▓▓░▓░▓░▓│ │▓░▓░▓░░░░░▓░░░░░░░░░░░░▓░▓░▓│ │▓░▓░▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░▓│ │░░▓░░░░░░░░░░░░░░░░░░░░░░░░▓│ │▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓│ └────────────────────────────┘ example : can_escape maze3 := by west west west south admit -- can you finish the proof?
3e79d39169497251c773d21dd270961c08984d59
271e26e338b0c14544a889c31c30b39c989f2e0f
/stage0/src/Init/Data/PersistentHashSet.lean
9a63be93b666a0fb26e122060fc6d715a348cf05
[ "Apache-2.0" ]
permissive
dgorokho/lean4
805f99b0b60c545b64ac34ab8237a8504f89d7d4
e949a052bad59b1c7b54a82d24d516a656487d8a
refs/heads/master
1,607,061,363,851
1,578,006,086,000
1,578,006,086,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,460
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import Init.Data.PersistentHashMap universes u v structure PersistentHashSet (α : Type u) [HasBeq α] [Hashable α] := (set : PersistentHashMap α Unit) abbrev PHashSet (α : Type u) [HasBeq α] [Hashable α] := PersistentHashSet α namespace PersistentHashSet variables {α : Type u} [HasBeq α] [Hashable α] @[inline] def isEmpty (s : PersistentHashSet α) : Bool := s.set.isEmpty @[inline] def empty : PersistentHashSet α := { set := PersistentHashMap.empty } instance : Inhabited (PersistentHashSet α) := ⟨empty⟩ instance : HasEmptyc (PersistentHashSet α) := ⟨empty⟩ @[inline] def insert (s : PersistentHashSet α) (a : α) : PersistentHashSet α := { set := s.set.insert a () } @[inline] def erase (s : PersistentHashSet α) (a : α) : PersistentHashSet α := { set := s.set.erase a } @[inline] def contains (s : PersistentHashSet α) (a : α) : Bool := s.set.contains a @[inline] def size (s : PersistentHashSet α) : Nat := s.set.size @[inline] def foldM {β : Type v} {m : Type v → Type v} [Monad m] (f : β → α → m β) (d : β) (s : PersistentHashSet α) : m β := s.set.foldlM (fun d a _ => f d a) d @[inline] def fold {β : Type v} (f : β → α → β) (d : β) (s : PersistentHashSet α) : β := Id.run $ s.foldM f d end PersistentHashSet
a28c4caf7b751140459842e1d5e4b8ea0aafed1d
618003631150032a5676f229d13a079ac875ff77
/src/order/filter/lift.lean
8858d6693f73e464f30a64ca68f2c865a2d56c05
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
16,554
lean
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Lift filters along filter and set functions. -/ import order.filter.basic open set open_locale classical namespace filter variables {α : Type*} {β : Type*} {γ : Type*} {ι : Sort*} section lift /-- A variant on `bind` using a function `g` taking a set instead of a member of `α`. This is essentially a push-forward along a function mapping each set to a filter. -/ protected def lift (f : filter α) (g : set α → filter β) := ⨅s ∈ f, g s variables {f f₁ f₂ : filter α} {g g₁ g₂ : set α → filter β} lemma mem_lift_sets (hg : monotone g) {s : set β} : s ∈ f.lift g ↔ ∃t∈f, s ∈ g t := mem_binfi (assume s hs t ht, ⟨s ∩ t, inter_mem_sets hs ht, hg $ inter_subset_left s t, hg $ inter_subset_right s t⟩) ⟨univ, univ_mem_sets⟩ lemma mem_lift {s : set β} {t : set α} (ht : t ∈ f) (hs : s ∈ g t) : s ∈ f.lift g := le_principal_iff.mp $ show f.lift g ≤ principal s, from infi_le_of_le t $ infi_le_of_le ht $ le_principal_iff.mpr hs lemma lift_le {f : filter α} {g : set α → filter β} {h : filter β} {s : set α} (hs : s ∈ f) (hg : g s ≤ h) : f.lift g ≤ h := infi_le_of_le s $ infi_le_of_le hs $ hg lemma le_lift {f : filter α} {g : set α → filter β} {h : filter β} (hh : ∀s∈f, h ≤ g s) : h ≤ f.lift g := le_infi $ assume s, le_infi $ assume hs, hh s hs lemma lift_mono (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.lift g₁ ≤ f₂.lift g₂ := infi_le_infi $ assume s, infi_le_infi2 $ assume hs, ⟨hf hs, hg s⟩ lemma lift_mono' (hg : ∀s∈f, g₁ s ≤ g₂ s) : f.lift g₁ ≤ f.lift g₂ := infi_le_infi $ assume s, infi_le_infi $ assume hs, hg s hs lemma map_lift_eq {m : β → γ} (hg : monotone g) : map m (f.lift g) = f.lift (map m ∘ g) := have monotone (map m ∘ g), from map_mono.comp hg, filter_eq $ set.ext $ by simp only [mem_lift_sets hg, mem_lift_sets this, exists_prop, forall_const, mem_map, iff_self, function.comp_app] lemma comap_lift_eq {m : γ → β} (hg : monotone g) : comap m (f.lift g) = f.lift (comap m ∘ g) := have monotone (comap m ∘ g), from comap_mono.comp hg, filter_eq $ set.ext begin simp only [mem_lift_sets hg, mem_lift_sets this, comap, mem_lift_sets, mem_set_of_eq, exists_prop, function.comp_apply], exact λ s, ⟨λ ⟨b, ⟨a, ha, hb⟩, hs⟩, ⟨a, ha, b, hb, hs⟩, λ ⟨a, ha, b, hb, hs⟩, ⟨b, ⟨a, ha, hb⟩, hs⟩⟩ end theorem comap_lift_eq2 {m : β → α} {g : set β → filter γ} (hg : monotone g) : (comap m f).lift g = f.lift (g ∘ preimage m) := le_antisymm (le_infi $ assume s, le_infi $ assume hs, infi_le_of_le (preimage m s) $ infi_le _ ⟨s, hs, subset.refl _⟩) (le_infi $ assume s, le_infi $ assume ⟨s', hs', (h_sub : preimage m s' ⊆ s)⟩, infi_le_of_le s' $ infi_le_of_le hs' $ hg h_sub) lemma map_lift_eq2 {g : set β → filter γ} {m : α → β} (hg : monotone g) : (map m f).lift g = f.lift (g ∘ image m) := le_antisymm (infi_le_infi2 $ assume s, ⟨image m s, infi_le_infi2 $ assume hs, ⟨ f.sets_of_superset hs $ assume a h, mem_image_of_mem _ h, le_refl _⟩⟩) (infi_le_infi2 $ assume t, ⟨preimage m t, infi_le_infi2 $ assume ht, ⟨ht, hg $ assume x, assume h : x ∈ m '' preimage m t, let ⟨y, hy, h_eq⟩ := h in show x ∈ t, from h_eq ▸ hy⟩⟩) lemma lift_comm {g : filter β} {h : set α → set β → filter γ} : f.lift (λs, g.lift (h s)) = g.lift (λt, f.lift (λs, h s t)) := le_antisymm (le_infi $ assume i, le_infi $ assume hi, le_infi $ assume j, le_infi $ assume hj, infi_le_of_le j $ infi_le_of_le hj $ infi_le_of_le i $ infi_le _ hi) (le_infi $ assume i, le_infi $ assume hi, le_infi $ assume j, le_infi $ assume hj, infi_le_of_le j $ infi_le_of_le hj $ infi_le_of_le i $ infi_le _ hi) lemma lift_assoc {h : set β → filter γ} (hg : monotone g) : (f.lift g).lift h = f.lift (λs, (g s).lift h) := le_antisymm (le_infi $ assume s, le_infi $ assume hs, le_infi $ assume t, le_infi $ assume ht, infi_le_of_le t $ infi_le _ $ (mem_lift_sets hg).mpr ⟨_, hs, ht⟩) (le_infi $ assume t, le_infi $ assume ht, let ⟨s, hs, h'⟩ := (mem_lift_sets hg).mp ht in infi_le_of_le s $ infi_le_of_le hs $ infi_le_of_le t $ infi_le _ h') lemma lift_lift_same_le_lift {g : set α → set α → filter β} : f.lift (λs, f.lift (g s)) ≤ f.lift (λs, g s s) := le_infi $ assume s, le_infi $ assume hs, infi_le_of_le s $ infi_le_of_le hs $ infi_le_of_le s $ infi_le _ hs lemma lift_lift_same_eq_lift {g : set α → set α → filter β} (hg₁ : ∀s, monotone (λt, g s t)) (hg₂ : ∀t, monotone (λs, g s t)) : f.lift (λs, f.lift (g s)) = f.lift (λs, g s s) := le_antisymm lift_lift_same_le_lift (le_infi $ assume s, le_infi $ assume hs, le_infi $ assume t, le_infi $ assume ht, infi_le_of_le (s ∩ t) $ infi_le_of_le (inter_mem_sets hs ht) $ calc g (s ∩ t) (s ∩ t) ≤ g s (s ∩ t) : hg₂ (s ∩ t) (inter_subset_left _ _) ... ≤ g s t : hg₁ s (inter_subset_right _ _)) lemma lift_principal {s : set α} (hg : monotone g) : (principal s).lift g = g s := le_antisymm (infi_le_of_le s $ infi_le _ $ subset.refl _) (le_infi $ assume t, le_infi $ assume hi, hg hi) theorem monotone_lift [preorder γ] {f : γ → filter α} {g : γ → set α → filter β} (hf : monotone f) (hg : monotone g) : monotone (λc, (f c).lift (g c)) := assume a b h, lift_mono (hf h) (hg h) lemma lift_ne_bot_iff (hm : monotone g) : (f.lift g ≠ ⊥) ↔ (∀s∈f, g s ≠ ⊥) := begin rw [filter.lift, infi_subtype', infi_ne_bot_iff_of_directed', subtype.forall'], { exact ⟨⟨univ, univ_mem_sets⟩⟩ }, { rintros ⟨s, hs⟩ ⟨t, ht⟩, exact ⟨⟨s ∩ t, inter_mem_sets hs ht⟩, hm (inter_subset_left s t), hm (inter_subset_right s t)⟩ } end @[simp] lemma lift_const {f : filter α} {g : filter β} : f.lift (λx, g) = g := le_antisymm (lift_le univ_mem_sets $ le_refl g) (le_lift $ assume s hs, le_refl g) @[simp] lemma lift_inf {f : filter α} {g h : set α → filter β} : f.lift (λx, g x ⊓ h x) = f.lift g ⊓ f.lift h := by simp only [filter.lift, infi_inf_eq, eq_self_iff_true] @[simp] lemma lift_principal2 {f : filter α} : f.lift principal = f := le_antisymm (assume s hs, mem_lift hs (mem_principal_self s)) (le_infi $ assume s, le_infi $ assume hs, by simp only [hs, le_principal_iff]) lemma lift_infi {f : ι → filter α} {g : set α → filter β} (hι : nonempty ι) (hg : ∀{s t}, g s ⊓ g t = g (s ∩ t)) : (infi f).lift g = (⨅i, (f i).lift g) := le_antisymm (le_infi $ assume i, lift_mono (infi_le _ _) (le_refl _)) (assume s, have g_mono : monotone g, from assume s t h, le_of_inf_eq $ eq.trans hg $ congr_arg g $ inter_eq_self_of_subset_left h, have ∀t∈(infi f), (⨅ (i : ι), filter.lift (f i) g) ≤ g t, from assume t ht, infi_sets_induct ht (let ⟨i⟩ := hι in infi_le_of_le i $ infi_le_of_le univ $ infi_le _ univ_mem_sets) (assume i s₁ s₂ hs₁ hs₂, @hg s₁ s₂ ▸ le_inf (infi_le_of_le i $ infi_le_of_le s₁ $ infi_le _ hs₁) hs₂) (assume s₁ s₂ hs₁ hs₂, le_trans hs₂ $ g_mono hs₁), begin simp only [mem_lift_sets g_mono, exists_imp_distrib], exact assume t ht hs, this t ht hs end) end lift section lift' /-- Specialize `lift` to functions `set α → set β`. This can be viewed as a generalization of `map`. This is essentially a push-forward along a function mapping each set to a set. -/ protected def lift' (f : filter α) (h : set α → set β) := f.lift (principal ∘ h) variables {f f₁ f₂ : filter α} {h h₁ h₂ : set α → set β} lemma mem_lift' {t : set α} (ht : t ∈ f) : h t ∈ (f.lift' h) := le_principal_iff.mp $ show f.lift' h ≤ principal (h t), from infi_le_of_le t $ infi_le_of_le ht $ le_refl _ lemma mem_lift'_sets (hh : monotone h) {s : set β} : s ∈ (f.lift' h) ↔ (∃t∈f, h t ⊆ s) := mem_lift_sets $ monotone_principal.comp hh lemma lift'_le {f : filter α} {g : set α → set β} {h : filter β} {s : set α} (hs : s ∈ f) (hg : principal (g s) ≤ h) : f.lift' g ≤ h := lift_le hs hg lemma lift'_mono (hf : f₁ ≤ f₂) (hh : h₁ ≤ h₂) : f₁.lift' h₁ ≤ f₂.lift' h₂ := lift_mono hf $ assume s, principal_mono.mpr $ hh s lemma lift'_mono' (hh : ∀s∈f, h₁ s ⊆ h₂ s) : f.lift' h₁ ≤ f.lift' h₂ := infi_le_infi $ assume s, infi_le_infi $ assume hs, principal_mono.mpr $ hh s hs lemma lift'_cong (hh : ∀s∈f, h₁ s = h₂ s) : f.lift' h₁ = f.lift' h₂ := le_antisymm (lift'_mono' $ assume s hs, le_of_eq $ hh s hs) (lift'_mono' $ assume s hs, le_of_eq $ (hh s hs).symm) lemma map_lift'_eq {m : β → γ} (hh : monotone h) : map m (f.lift' h) = f.lift' (image m ∘ h) := calc map m (f.lift' h) = f.lift (map m ∘ principal ∘ h) : map_lift_eq $ monotone_principal.comp hh ... = f.lift' (image m ∘ h) : by simp only [(∘), filter.lift', map_principal, eq_self_iff_true] lemma map_lift'_eq2 {g : set β → set γ} {m : α → β} (hg : monotone g) : (map m f).lift' g = f.lift' (g ∘ image m) := map_lift_eq2 $ monotone_principal.comp hg theorem comap_lift'_eq {m : γ → β} (hh : monotone h) : comap m (f.lift' h) = f.lift' (preimage m ∘ h) := calc comap m (f.lift' h) = f.lift (comap m ∘ principal ∘ h) : comap_lift_eq $ monotone_principal.comp hh ... = f.lift' (preimage m ∘ h) : by simp only [(∘), filter.lift', comap_principal, eq_self_iff_true] theorem comap_lift'_eq2 {m : β → α} {g : set β → set γ} (hg : monotone g) : (comap m f).lift' g = f.lift' (g ∘ preimage m) := comap_lift_eq2 $ monotone_principal.comp hg lemma lift'_principal {s : set α} (hh : monotone h) : (principal s).lift' h = principal (h s) := lift_principal $ monotone_principal.comp hh lemma principal_le_lift' {t : set β} (hh : ∀s∈f, t ⊆ h s) : principal t ≤ f.lift' h := le_infi $ assume s, le_infi $ assume hs, principal_mono.mpr (hh s hs) theorem monotone_lift' [preorder γ] {f : γ → filter α} {g : γ → set α → set β} (hf : monotone f) (hg : monotone g) : monotone (λc, (f c).lift' (g c)) := assume a b h, lift'_mono (hf h) (hg h) lemma lift_lift'_assoc {g : set α → set β} {h : set β → filter γ} (hg : monotone g) (hh : monotone h) : (f.lift' g).lift h = f.lift (λs, h (g s)) := calc (f.lift' g).lift h = f.lift (λs, (principal (g s)).lift h) : lift_assoc (monotone_principal.comp hg) ... = f.lift (λs, h (g s)) : by simp only [lift_principal, hh, eq_self_iff_true] lemma lift'_lift'_assoc {g : set α → set β} {h : set β → set γ} (hg : monotone g) (hh : monotone h) : (f.lift' g).lift' h = f.lift' (λs, h (g s)) := lift_lift'_assoc hg (monotone_principal.comp hh) lemma lift'_lift_assoc {g : set α → filter β} {h : set β → set γ} (hg : monotone g) : (f.lift g).lift' h = f.lift (λs, (g s).lift' h) := lift_assoc hg lemma lift_lift'_same_le_lift' {g : set α → set α → set β} : f.lift (λs, f.lift' (g s)) ≤ f.lift' (λs, g s s) := lift_lift_same_le_lift lemma lift_lift'_same_eq_lift' {g : set α → set α → set β} (hg₁ : ∀s, monotone (λt, g s t)) (hg₂ : ∀t, monotone (λs, g s t)) : f.lift (λs, f.lift' (g s)) = f.lift' (λs, g s s) := lift_lift_same_eq_lift (assume s, monotone_principal.comp (hg₁ s)) (assume t, monotone_principal.comp (hg₂ t)) lemma lift'_inf_principal_eq {h : set α → set β} {s : set β} : f.lift' h ⊓ principal s = f.lift' (λt, h t ∩ s) := le_antisymm (le_infi $ assume t, le_infi $ assume ht, calc filter.lift' f h ⊓ principal s ≤ principal (h t) ⊓ principal s : inf_le_inf_right _ (infi_le_of_le t $ infi_le _ ht) ... = _ : by simp only [principal_eq_iff_eq, inf_principal, eq_self_iff_true, function.comp_app]) (le_inf (le_infi $ assume t, le_infi $ assume ht, infi_le_of_le t $ infi_le_of_le ht $ by simp only [le_principal_iff, inter_subset_left, mem_principal_sets, function.comp_app]; exact inter_subset_right _ _) (infi_le_of_le univ $ infi_le_of_le univ_mem_sets $ by simp only [le_principal_iff, inter_subset_right, mem_principal_sets, function.comp_app]; exact inter_subset_left _ _)) lemma lift'_ne_bot_iff (hh : monotone h) : (f.lift' h ≠ ⊥) ↔ (∀s∈f, (h s).nonempty) := calc (f.lift' h ≠ ⊥) ↔ (∀s∈f, principal (h s) ≠ ⊥) : lift_ne_bot_iff (monotone_principal.comp hh) ... ↔ (∀s∈f, (h s).nonempty) : by simp only [principal_ne_bot_iff] @[simp] lemma lift'_id {f : filter α} : f.lift' id = f := lift_principal2 lemma le_lift' {f : filter α} {h : set α → set β} {g : filter β} (h_le : ∀s∈f, h s ∈ g) : g ≤ f.lift' h := le_infi $ assume s, le_infi $ assume hs, by simp only [h_le, le_principal_iff, function.comp_app]; exact h_le s hs lemma lift_infi' {f : ι → filter α} {g : set α → filter β} (hι : nonempty ι) (hf : directed (≥) f) (hg : monotone g) : (infi f).lift g = (⨅i, (f i).lift g) := le_antisymm (le_infi $ assume i, lift_mono (infi_le _ _) (le_refl _)) (assume s, begin rw mem_lift_sets hg, simp only [exists_imp_distrib, mem_infi hf hι], exact assume t i ht hs, mem_infi_sets i $ mem_lift ht hs end) lemma lift'_infi {f : ι → filter α} {g : set α → set β} (hι : nonempty ι) (hg : ∀{s t}, g s ∩ g t = g (s ∩ t)) : (infi f).lift' g = (⨅i, (f i).lift' g) := lift_infi hι $ by simp only [principal_eq_iff_eq, inf_principal, function.comp_app]; apply assume s t, hg theorem comap_eq_lift' {f : filter β} {m : α → β} : comap m f = f.lift' (preimage m) := filter_eq $ set.ext $ by simp only [mem_lift'_sets, monotone_preimage, comap, exists_prop, forall_const, iff_self, mem_set_of_eq] end lift' section prod variables {f : filter α} lemma prod_def {f : filter α} {g : filter β} : f.prod g = (f.lift $ λs, g.lift' $ set.prod s) := have ∀(s:set α) (t : set β), principal (set.prod s t) = (principal s).comap prod.fst ⊓ (principal t).comap prod.snd, by simp only [principal_eq_iff_eq, comap_principal, inf_principal]; intros; refl, begin simp only [filter.lift', function.comp, this, -comap_principal, lift_inf, lift_const, lift_inf], rw [← comap_lift_eq monotone_principal, ← comap_lift_eq monotone_principal], simp only [filter.prod, lift_principal2, eq_self_iff_true] end lemma prod_same_eq : filter.prod f f = f.lift' (λt, set.prod t t) := by rw [prod_def]; from lift_lift'_same_eq_lift' (assume s, set.monotone_prod monotone_const monotone_id) (assume t, set.monotone_prod monotone_id monotone_const) lemma mem_prod_same_iff {s : set (α×α)} : s ∈ filter.prod f f ↔ (∃t∈f, set.prod t t ⊆ s) := by rw [prod_same_eq, mem_lift'_sets]; exact set.monotone_prod monotone_id monotone_id lemma tendsto_prod_self_iff {f : α × α → β} {x : filter α} {y : filter β} : filter.tendsto f (filter.prod x x) y ↔ ∀ W ∈ y, ∃ U ∈ x, ∀ (x x' : α), x ∈ U → x' ∈ U → f (x, x') ∈ W := by simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self] variables {α₁ : Type*} {α₂ : Type*} {β₁ : Type*} {β₂ : Type*} lemma prod_lift_lift {f₁ : filter α₁} {f₂ : filter α₂} {g₁ : set α₁ → filter β₁} {g₂ : set α₂ → filter β₂} (hg₁ : monotone g₁) (hg₂ : monotone g₂) : filter.prod (f₁.lift g₁) (f₂.lift g₂) = f₁.lift (λs, f₂.lift (λt, filter.prod (g₁ s) (g₂ t))) := begin simp only [prod_def], rw [lift_assoc], apply congr_arg, funext x, rw [lift_comm], apply congr_arg, funext y, rw [lift'_lift_assoc], exact hg₂, exact hg₁ end lemma prod_lift'_lift' {f₁ : filter α₁} {f₂ : filter α₂} {g₁ : set α₁ → set β₁} {g₂ : set α₂ → set β₂} (hg₁ : monotone g₁) (hg₂ : monotone g₂) : filter.prod (f₁.lift' g₁) (f₂.lift' g₂) = f₁.lift (λs, f₂.lift' (λt, set.prod (g₁ s) (g₂ t))) := begin rw [prod_def, lift_lift'_assoc], apply congr_arg, funext x, rw [lift'_lift'_assoc], exact hg₂, exact set.monotone_prod monotone_const monotone_id, exact hg₁, exact (monotone_lift' monotone_const $ monotone_lam $ assume x, set.monotone_prod monotone_id monotone_const) end end prod end filter
e033ccf5fc8a282b825be13ba87e50a42c89950f
246309748072bf9f8da313401699689ebbecd94d
/src/algebra/category/CommRing/limits.lean
db01f7cdb62ec4adcc2a4aca623112b20d26537f
[ "Apache-2.0" ]
permissive
YJMD/mathlib
b703a641e5f32a996f7842f7c0043bab2b462ee2
7310eab9fa8c1b1229dca42682f1fa6bfb7dbbf9
refs/heads/master
1,670,714,479,314
1,599,035,445,000
1,599,035,445,000
292,279,930
0
0
null
1,599,050,561,000
1,599,050,560,000
null
UTF-8
Lean
false
false
14,919
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.ring.pi import algebra.category.CommRing.basic import algebra.category.Group.limits import deprecated.subring import ring_theory.subsemiring /-! # The category of (commutative) rings has all limits Further, these limits are preserved by the forgetful functor --- that is, the underlying types are just the limits in the category of types. -/ open category_theory open category_theory.limits universe u namespace SemiRing variables {J : Type u} [small_category J] instance semiring_obj (F : J ⥤ SemiRing) (j) : semiring ((F ⋙ forget SemiRing).obj j) := by { change semiring (F.obj j), apply_instance } /-- The flat sections of a functor into `SemiRing` form a subsemiring of all sections. -/ def sections_subsemiring (F : J ⥤ SemiRing) : subsemiring (Π j, F.obj j) := { carrier := (F ⋙ forget SemiRing).sections, ..(AddMon.sections_add_submonoid (F ⋙ forget₂ SemiRing AddCommMon ⋙ forget₂ AddCommMon AddMon)), ..(Mon.sections_submonoid (F ⋙ forget₂ SemiRing Mon)) } instance limit_semiring (F : J ⥤ SemiRing) : semiring (types.limit_cone (F ⋙ forget SemiRing.{u})).X := (sections_subsemiring F).to_semiring /-- `limit.π (F ⋙ forget SemiRing) j` as a `ring_hom`. -/ def limit_π_ring_hom (F : J ⥤ SemiRing.{u}) (j) : (types.limit_cone (F ⋙ forget SemiRing)).X →+* (F ⋙ forget SemiRing).obj j := { to_fun := (types.limit_cone (F ⋙ forget SemiRing)).π.app j, ..AddMon.limit_π_add_monoid_hom (F ⋙ forget₂ SemiRing AddCommMon.{u} ⋙ forget₂ AddCommMon AddMon) j, ..Mon.limit_π_monoid_hom (F ⋙ forget₂ SemiRing Mon) j, } namespace has_limits -- The next two definitions are used in the construction of `has_limits SemiRing`. -- After that, the limits should be constructed using the generic limits API, -- e.g. `limit F`, `limit.cone F`, and `limit.is_limit F`. /-- Construction of a limit cone in `SemiRing`. (Internal use only; use the limits API.) -/ def limit_cone (F : J ⥤ SemiRing) : cone F := { X := SemiRing.of (types.limit_cone (F ⋙ forget _)).X, π := { app := limit_π_ring_hom F, naturality' := λ j j' f, ring_hom.coe_inj ((types.limit_cone (F ⋙ forget _)).π.naturality f) } } /-- Witness that the limit cone in `SemiRing` is a limit cone. (Internal use only; use the limits API.) -/ def limit_cone_is_limit (F : J ⥤ SemiRing) : is_limit (limit_cone F) := begin refine is_limit.of_faithful (forget SemiRing) (types.limit_cone_is_limit _) (λ s, ⟨_, _, _, _, _⟩) (λ s, rfl); tidy end end has_limits open has_limits /-- The category of rings has all limits. -/ @[irreducible] instance has_limits : has_limits SemiRing := { has_limits_of_shape := λ J 𝒥, by exactI { has_limit := λ F, { cone := limit_cone F, is_limit := limit_cone_is_limit F } } } /-- An auxiliary declaration to speed up typechecking. -/ def forget₂_AddCommMon_preserves_limits_aux (F : J ⥤ SemiRing) : is_limit ((forget₂ SemiRing AddCommMon).map_cone (limit_cone F)) := AddCommMon.limit_cone_is_limit (F ⋙ forget₂ SemiRing AddCommMon) /-- The forgetful functor from semirings to additive commutative monoids preserves all limits. -/ instance forget₂_AddCommMon_preserves_limits : preserves_limits (forget₂ SemiRing AddCommMon) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, preserves_limit_of_preserves_limit_cone (limit_cone_is_limit F) (forget₂_AddCommMon_preserves_limits_aux F) } } /-- An auxiliary declaration to speed up typechecking. -/ def forget₂_Mon_preserves_limits_aux (F : J ⥤ SemiRing) : is_limit ((forget₂ SemiRing Mon).map_cone (limit_cone F)) := Mon.has_limits.limit_cone_is_limit (F ⋙ forget₂ SemiRing Mon) /-- The forgetful functor from semirings to monoids preserves all limits. -/ instance forget₂_Mon_preserves_limits : preserves_limits (forget₂ SemiRing Mon) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, preserves_limit_of_preserves_limit_cone (limit_cone_is_limit F) (forget₂_Mon_preserves_limits_aux F) } } /-- The forgetful functor from semirings to types preserves all limits. -/ instance forget_preserves_limits : preserves_limits (forget SemiRing) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, preserves_limit_of_preserves_limit_cone (limit_cone_is_limit F) (types.limit_cone_is_limit (F ⋙ forget _)) } } end SemiRing namespace CommSemiRing variables {J : Type u} [small_category J] instance comm_semiring_obj (F : J ⥤ CommSemiRing) (j) : comm_semiring ((F ⋙ forget CommSemiRing).obj j) := by { change comm_semiring (F.obj j), apply_instance } instance limit_comm_semiring (F : J ⥤ CommSemiRing) : comm_semiring (types.limit_cone (F ⋙ forget CommSemiRing.{u})).X := @subsemiring.to_comm_semiring (Π j, F.obj j) _ (SemiRing.sections_subsemiring (F ⋙ forget₂ CommSemiRing SemiRing.{u})) /-- We show that the forgetful functor `CommSemiRing ⥤ SemiRing` creates limits. All we need to do is notice that the limit point has a `comm_semiring` instance available, and then reuse the existing limit. -/ instance (F : J ⥤ CommSemiRing) : creates_limit F (forget₂ CommSemiRing SemiRing.{u}) := creates_limit_of_reflects_iso (λ c' t, { lifted_cone := { X := CommSemiRing.of (types.limit_cone (F ⋙ forget _)).X, π := { app := SemiRing.limit_π_ring_hom (F ⋙ forget₂ CommSemiRing SemiRing), naturality' := (SemiRing.has_limits.limit_cone (F ⋙ forget₂ _ _)).π.naturality, } }, valid_lift := is_limit.unique_up_to_iso (SemiRing.has_limits.limit_cone_is_limit _) t, makes_limit := is_limit.of_faithful (forget₂ CommSemiRing SemiRing.{u}) (SemiRing.has_limits.limit_cone_is_limit _) (λ s, _) (λ s, rfl) }) /-- A choice of limit cone for a functor into `CommSemiRing`. (Generally, you'll just want to use `limit F`.) -/ def limit_cone (F : J ⥤ CommSemiRing) : cone F := lift_limit (limit.is_limit (F ⋙ (forget₂ CommSemiRing SemiRing.{u}))) /-- The chosen cone is a limit cone. (Generally, you'll just want to use `limit.cone F`.) -/ def limit_cone_is_limit (F : J ⥤ CommSemiRing) : is_limit (limit_cone F) := lifted_limit_is_limit _ /-- The category of rings has all limits. -/ @[irreducible] instance has_limits : has_limits CommSemiRing.{u} := { has_limits_of_shape := λ J 𝒥, by exactI { has_limit := λ F, has_limit_of_created F (forget₂ CommSemiRing SemiRing.{u}) } } /-- The forgetful functor from rings to semirings preserves all limits. -/ instance forget₂_SemiRing_preserves_limits : preserves_limits (forget₂ CommSemiRing SemiRing) := { preserves_limits_of_shape := λ J 𝒥, { preserves_limit := λ F, by apply_instance } } /-- The forgetful functor from rings to types preserves all limits. (That is, the underlying types could have been computed instead as limits in the category of types.) -/ instance forget_preserves_limits : preserves_limits (forget CommSemiRing) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, limits.comp_preserves_limit (forget₂ CommSemiRing SemiRing) (forget SemiRing) } } end CommSemiRing namespace Ring variables {J : Type u} [small_category J] instance ring_obj (F : J ⥤ Ring) (j) : ring ((F ⋙ forget Ring).obj j) := by { change ring (F.obj j), apply_instance } -- We still don't have bundled subrings, -- so we need to convert the bundled sub-objects back to unbundled instance sections_submonoid' (F : J ⥤ Ring) : is_submonoid (F ⋙ forget Ring).sections := (Mon.sections_submonoid (F ⋙ forget₂ Ring SemiRing ⋙ forget₂ SemiRing Mon)).is_submonoid instance sections_add_subgroup' (F : J ⥤ Ring) : is_add_subgroup (F ⋙ forget Ring).sections := (AddGroup.sections_add_subgroup (F ⋙ forget₂ Ring AddCommGroup ⋙ forget₂ AddCommGroup AddGroup)).is_add_subgroup instance sections_subring (F : J ⥤ Ring) : is_subring (F ⋙ forget Ring).sections := {} instance limit_ring (F : J ⥤ Ring) : ring (types.limit_cone (F ⋙ forget Ring.{u})).X := @subtype.ring ((Π (j : J), (F ⋙ forget _).obj j)) (by apply_instance) _ (by convert (Ring.sections_subring F)) /-- We show that the forgetful functor `CommRing ⥤ Ring` creates limits. All we need to do is notice that the limit point has a `ring` instance available, and then reuse the existing limit. -/ instance (F : J ⥤ Ring) : creates_limit F (forget₂ Ring SemiRing.{u}) := creates_limit_of_reflects_iso (λ c' t, { lifted_cone := { X := Ring.of (types.limit_cone (F ⋙ forget _)).X, π := { app := SemiRing.limit_π_ring_hom (F ⋙ forget₂ Ring SemiRing), naturality' := (SemiRing.has_limits.limit_cone (F ⋙ forget₂ _ _)).π.naturality, } }, valid_lift := is_limit.unique_up_to_iso (SemiRing.has_limits.limit_cone_is_limit _) t, makes_limit := is_limit.of_faithful (forget₂ Ring SemiRing.{u}) (SemiRing.has_limits.limit_cone_is_limit _) (λ s, _) (λ s, rfl) }) /-- A choice of limit cone for a functor into `Ring`. (Generally, you'll just want to use `limit F`.) -/ def limit_cone (F : J ⥤ Ring) : cone F := lift_limit (limit.is_limit (F ⋙ (forget₂ Ring SemiRing.{u}))) /-- The chosen cone is a limit cone. (Generally, you'll just want to use `limit.cone F`.) -/ def limit_cone_is_limit (F : J ⥤ Ring) : is_limit (limit_cone F) := lifted_limit_is_limit _ /-- The category of rings has all limits. -/ @[irreducible] instance has_limits : has_limits Ring := { has_limits_of_shape := λ J 𝒥, by exactI { has_limit := λ F, has_limit_of_created F (forget₂ Ring SemiRing) } } /-- The forgetful functor from rings to semirings preserves all limits. -/ instance forget₂_SemiRing_preserves_limits : preserves_limits (forget₂ Ring SemiRing) := { preserves_limits_of_shape := λ J 𝒥, { preserves_limit := λ F, by apply_instance } } /-- An auxiliary declaration to speed up typechecking. -/ def forget₂_AddCommGroup_preserves_limits_aux (F : J ⥤ Ring) : is_limit ((forget₂ Ring AddCommGroup).map_cone (limit_cone F)) := AddCommGroup.limit_cone_is_limit (F ⋙ forget₂ Ring AddCommGroup) /-- The forgetful functor from rings to additive commutative groups preserves all limits. -/ instance forget₂_AddCommGroup_preserves_limits : preserves_limits (forget₂ Ring AddCommGroup) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, preserves_limit_of_preserves_limit_cone (limit_cone_is_limit F) (forget₂_AddCommGroup_preserves_limits_aux F) } } /-- The forgetful functor from rings to types preserves all limits. (That is, the underlying types could have been computed instead as limits in the category of types.) -/ instance forget_preserves_limits : preserves_limits (forget Ring) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, limits.comp_preserves_limit (forget₂ Ring SemiRing) (forget SemiRing) } } end Ring namespace CommRing variables {J : Type u} [small_category J] instance comm_ring_obj (F : J ⥤ CommRing) (j) : comm_ring ((F ⋙ forget CommRing).obj j) := by { change comm_ring (F.obj j), apply_instance } instance limit_comm_ring (F : J ⥤ CommRing) : comm_ring (types.limit_cone (F ⋙ forget CommRing.{u})).X := @subtype.comm_ring ((Π (j : J), (F ⋙ forget _).obj j)) (by apply_instance) _ (by convert (Ring.sections_subring (F ⋙ forget₂ CommRing Ring.{u}))) /-- We show that the forgetful functor `CommRing ⥤ Ring` creates limits. All we need to do is notice that the limit point has a `comm_ring` instance available, and then reuse the existing limit. -/ instance (F : J ⥤ CommRing) : creates_limit F (forget₂ CommRing Ring.{u}) := /- A terse solution here would be ``` creates_limit_of_fully_faithful_of_iso (CommRing.of (limit (F ⋙ forget _))) (iso.refl _) ``` but it seems this would introduce additional identity morphisms in `limit.π`. -/ creates_limit_of_reflects_iso (λ c' t, { lifted_cone := { X := CommRing.of (types.limit_cone (F ⋙ forget _)).X, π := { app := SemiRing.limit_π_ring_hom (F ⋙ forget₂ CommRing Ring.{u} ⋙ forget₂ Ring SemiRing), naturality' := (SemiRing.has_limits.limit_cone (F ⋙ forget₂ _ _ ⋙ forget₂ _ _)).π.naturality, } }, valid_lift := is_limit.unique_up_to_iso (Ring.limit_cone_is_limit _) t, makes_limit := is_limit.of_faithful (forget₂ CommRing Ring.{u}) (Ring.limit_cone_is_limit _) (λ s, _) (λ s, rfl) }) /-- A choice of limit cone for a functor into `CommRing`. (Generally, you'll just want to use `limit F`.) -/ def limit_cone (F : J ⥤ CommRing) : cone F := lift_limit (limit.is_limit (F ⋙ (forget₂ CommRing Ring.{u}))) /-- The chosen cone is a limit cone. (Generally, you'll just want to use `limit.cone F`.) -/ def limit_cone_is_limit (F : J ⥤ CommRing) : is_limit (limit_cone F) := lifted_limit_is_limit _ /-- The category of commutative rings has all limits. -/ @[irreducible] instance has_limits : has_limits CommRing.{u} := { has_limits_of_shape := λ J 𝒥, by exactI { has_limit := λ F, has_limit_of_created F (forget₂ CommRing Ring.{u}) } } /-- The forgetful functor from commutative rings to rings preserves all limits. (That is, the underlying rings could have been computed instead as limits in the category of rings.) -/ instance forget₂_Ring_preserves_limits : preserves_limits (forget₂ CommRing Ring) := { preserves_limits_of_shape := λ J 𝒥, { preserves_limit := λ F, by apply_instance } } /-- An auxiliary declaration to speed up typechecking. -/ def forget₂_CommSemiRing_preserves_limits_aux (F : J ⥤ CommRing) : is_limit ((forget₂ CommRing CommSemiRing).map_cone (limit_cone F)) := CommSemiRing.limit_cone_is_limit (F ⋙ forget₂ CommRing CommSemiRing) /-- The forgetful functor from commutative rings to commutative semirings preserves all limits. (That is, the underlying commutative semirings could have been computed instead as limits in the category of commutative semirings.) -/ instance forget₂_CommSemiRing_preserves_limits : preserves_limits (forget₂ CommRing CommSemiRing) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, preserves_limit_of_preserves_limit_cone (limit_cone_is_limit F) (forget₂_CommSemiRing_preserves_limits_aux F) } } /-- The forgetful functor from commutative rings to types preserves all limits. (That is, the underlying types could have been computed instead as limits in the category of types.) -/ instance forget_preserves_limits : preserves_limits (forget CommRing) := { preserves_limits_of_shape := λ J 𝒥, by exactI { preserves_limit := λ F, limits.comp_preserves_limit (forget₂ CommRing Ring) (forget Ring) } } end CommRing
d1aed215a25edd9dedd232dc09465886b2caf0f0
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/ring_theory/local_properties.lean
b862b968f5e3793d3e29cc6dc13ca336a72b2879
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
28,730
lean
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import ring_theory.finite_type import ring_theory.localization.at_prime import ring_theory.localization.away import ring_theory.localization.integer import ring_theory.localization.submodule import ring_theory.nilpotent import ring_theory.ring_hom_properties /-! # Local properties of commutative rings In this file, we provide the proofs of various local properties. ## Naming Conventions * `localization_P` : `P` holds for `S⁻¹R` if `P` holds for `R`. * `P_of_localization_maximal` : `P` holds for `R` if `P` holds for `Rₘ` for all maximal `m`. * `P_of_localization_prime` : `P` holds for `R` if `P` holds for `Rₘ` for all prime `m`. * `P_of_localization_span` : `P` holds for `R` if given a spanning set `{fᵢ}`, `P` holds for all `R_{fᵢ}`. ## Main results The following properties are covered: * The triviality of an ideal or an element: `ideal_eq_zero_of_localization`, `eq_zero_of_localization` * `is_reduced` : `localization_is_reduced`, `is_reduced_of_localization_maximal`. * `finite`: `localization_finite`, `finite_of_localization_span` * `finite_type`: `localization_finite_type`, `finite_type_of_localization_span` -/ open_locale pointwise classical big_operators universe u variables {R S : Type u} [comm_ring R] [comm_ring S] (M : submonoid R) variables (N : submonoid S) (R' S' : Type u) [comm_ring R'] [comm_ring S'] (f : R →+* S) variables [algebra R R'] [algebra S S'] section properties section comm_ring variable (P : ∀ (R : Type u) [comm_ring R], Prop) include P /-- A property `P` of comm rings is said to be preserved by localization if `P` holds for `M⁻¹R` whenever `P` holds for `R`. -/ def localization_preserves : Prop := ∀ {R : Type u} [hR : comm_ring R] (M : by exactI submonoid R) (S : Type u) [hS : comm_ring S] [by exactI algebra R S] [by exactI is_localization M S], @P R hR → @P S hS /-- A property `P` of comm rings satisfies `of_localization_maximal` if if `P` holds for `R` whenever `P` holds for `Rₘ` for all maximal ideal `m`. -/ def of_localization_maximal : Prop := ∀ (R : Type u) [comm_ring R], by exactI (∀ (J : ideal R) (hJ : J.is_maximal), by exactI P (localization.at_prime J)) → P R end comm_ring section ring_hom variable (P : ∀ {R S : Type u} [comm_ring R] [comm_ring S] (f : by exactI R →+* S), Prop) include P /-- A property `P` of ring homs is said to be preserved by localization if `P` holds for `M⁻¹R →+* M⁻¹S` whenever `P` holds for `R →+* S`. -/ def ring_hom.localization_preserves := ∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) (M : by exactI submonoid R) (R' S' : Type u) [comm_ring R'] [comm_ring S'] [by exactI algebra R R'] [by exactI algebra S S'] [by exactI is_localization M R'] [by exactI is_localization (M.map f) S'], by exactI (P f → P (is_localization.map S' f (submonoid.le_comap_map M) : R' →+* S')) /-- A property `P` of ring homs satisfies `ring_hom.of_localization_finite_span` if `P` holds for `R →+* S` whenever there exists a finite set `{ r }` that spans `R` such that `P` holds for `Rᵣ →+* Sᵣ`. Note that this is equivalent to `ring_hom.of_localization_span` via `ring_hom.of_localization_span_iff_finite`, but this is easier to prove. -/ def ring_hom.of_localization_finite_span := ∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) (s : finset R) (hs : by exactI ideal.span (s : set R) = ⊤) (H : by exactI (∀ (r : s), P (localization.away_map f r))), by exactI P f /-- A property `P` of ring homs satisfies `ring_hom.of_localization_finite_span` if `P` holds for `R →+* S` whenever there exists a set `{ r }` that spans `R` such that `P` holds for `Rᵣ →+* Sᵣ`. Note that this is equivalent to `ring_hom.of_localization_finite_span` via `ring_hom.of_localization_span_iff_finite`, but this has less restrictions when applying. -/ def ring_hom.of_localization_span := ∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) (s : set R) (hs : by exactI ideal.span s = ⊤) (H : by exactI (∀ (r : s), P (localization.away_map f r))), by exactI P f /-- A property `P` of ring homs satisfies `ring_hom.holds_for_localization_away` if `P` holds for each localization map `R →+* Rᵣ`. -/ def ring_hom.holds_for_localization_away : Prop := ∀ ⦃R : Type u⦄ (S : Type u) [comm_ring R] [comm_ring S] [by exactI algebra R S] (r : R) [by exactI is_localization.away r S], by exactI P (algebra_map R S) /-- A property `P` of ring homs satisfies `ring_hom.of_localization_finite_span_target` if `P` holds for `R →+* S` whenever there exists a finite set `{ r }` that spans `S` such that `P` holds for `R →+* Sᵣ`. Note that this is equivalent to `ring_hom.of_localization_span_target` via `ring_hom.of_localization_span_target_iff_finite`, but this is easier to prove. -/ def ring_hom.of_localization_finite_span_target : Prop := ∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) (s : finset S) (hs : by exactI ideal.span (s : set S) = ⊤) (H : by exactI (∀ (r : s), P ((algebra_map S (localization.away (r : S))).comp f))), by exactI P f /-- A property `P` of ring homs satisfies `ring_hom.of_localization_span_target` if `P` holds for `R →+* S` whenever there exists a set `{ r }` that spans `S` such that `P` holds for `R →+* Sᵣ`. Note that this is equivalent to `ring_hom.of_localization_finite_span_target` via `ring_hom.of_localization_span_target_iff_finite`, but this has less restrictions when applying. -/ def ring_hom.of_localization_span_target : Prop := ∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) (s : set S) (hs : by exactI ideal.span s = ⊤) (H : by exactI (∀ (r : s), P ((algebra_map S (localization.away (r : S))).comp f))), by exactI P f /-- A property `P` of ring homs satisfies `of_localization_prime` if if `P` holds for `R` whenever `P` holds for `Rₘ` for all prime ideals `p`. -/ def ring_hom.of_localization_prime : Prop := ∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S), by exactI (∀ (J : ideal S) (hJ : J.is_prime), by exactI P (localization.local_ring_hom _ J f rfl)) → P f /-- A property of ring homs is local if it is preserved by localizations and compositions, and for each `{ r }` that spans `S`, we have `P (R →+* S) ↔ ∀ r, P (R →+* Sᵣ)`. -/ structure ring_hom.property_is_local : Prop := (localization_preserves : ring_hom.localization_preserves @P) (of_localization_span_target : ring_hom.of_localization_span_target @P) (stable_under_composition : ring_hom.stable_under_composition @P) (holds_for_localization_away : ring_hom.holds_for_localization_away @P) lemma ring_hom.of_localization_span_iff_finite : ring_hom.of_localization_span @P ↔ ring_hom.of_localization_finite_span @P := begin delta ring_hom.of_localization_span ring_hom.of_localization_finite_span, apply forall₅_congr, -- TODO: Using `refine` here breaks `resetI`. introsI, split, { intros h s, exact h s }, { intros h s hs hs', obtain ⟨s', h₁, h₂⟩ := (ideal.span_eq_top_iff_finite s).mp hs, exact h s' h₂ (λ x, hs' ⟨_, h₁ x.prop⟩) } end lemma ring_hom.of_localization_span_target_iff_finite : ring_hom.of_localization_span_target @P ↔ ring_hom.of_localization_finite_span_target @P := begin delta ring_hom.of_localization_span_target ring_hom.of_localization_finite_span_target, apply forall₅_congr, -- TODO: Using `refine` here breaks `resetI`. introsI, split, { intros h s, exact h s }, { intros h s hs hs', obtain ⟨s', h₁, h₂⟩ := (ideal.span_eq_top_iff_finite s).mp hs, exact h s' h₂ (λ x, hs' ⟨_, h₁ x.prop⟩) } end variables {P f R' S'} lemma _root_.ring_hom.property_is_local.respects_iso (hP : ring_hom.property_is_local @P) : ring_hom.respects_iso @P := begin apply hP.stable_under_composition.respects_iso, introv, resetI, letI := e.to_ring_hom.to_algebra, apply_with hP.holds_for_localization_away { instances := ff }, apply is_localization.away_of_is_unit_of_bijective _ is_unit_one, exact e.bijective end -- Almost all arguments are implicit since this is not intended to use mid-proof. lemma ring_hom.localization_preserves.away (H : ring_hom.localization_preserves @P) (r : R) [is_localization.away r R'] [is_localization.away (f r) S'] (hf : P f) : P (by exactI is_localization.away.map R' S' f r) := begin resetI, haveI : is_localization ((submonoid.powers r).map f) S', { rw submonoid.map_powers, assumption }, exact H f (submonoid.powers r) R' S' hf, end lemma ring_hom.property_is_local.of_localization_span (hP : ring_hom.property_is_local @P) : ring_hom.of_localization_span @P := begin introv R hs hs', resetI, apply_fun (ideal.map f) at hs, rw [ideal.map_span, ideal.map_top] at hs, apply hP.of_localization_span_target _ _ hs, rintro ⟨_, r, hr, rfl⟩, have := hs' ⟨r, hr⟩, convert hP.stable_under_composition _ _ (hP.holds_for_localization_away (localization.away r) r) (hs' ⟨r, hr⟩) using 1, exact (is_localization.map_comp _).symm end end ring_hom end properties section ideal -- This proof should work for all modules, but we do not know how to localize a module yet. /-- An ideal is trivial if its localization at every maximal ideal is trivial. -/ lemma ideal_eq_zero_of_localization (I : ideal R) (h : ∀ (J : ideal R) (hJ : J.is_maximal), by exactI is_localization.coe_submodule (localization.at_prime J) I = 0) : I = 0 := begin by_contradiction hI, change I ≠ ⊥ at hI, obtain ⟨x, hx, hx'⟩ := set_like.exists_of_lt hI.bot_lt, rw [submodule.mem_bot] at hx', have H : (ideal.span ({x} : set R)).annihilator ≠ ⊤, { rw [ne.def, submodule.annihilator_eq_top_iff], by_contra, apply hx', rw [← set.mem_singleton_iff, ← @submodule.bot_coe R, ← h], exact ideal.subset_span (set.mem_singleton x) }, obtain ⟨p, hp₁, hp₂⟩ := ideal.exists_le_maximal _ H, resetI, specialize h p hp₁, have : algebra_map R (localization.at_prime p) x = 0, { rw ← set.mem_singleton_iff, change algebra_map R (localization.at_prime p) x ∈ (0 : submodule R (localization.at_prime p)), rw ← h, exact submodule.mem_map_of_mem hx }, rw is_localization.map_eq_zero_iff p.prime_compl at this, obtain ⟨m, hm⟩ := this, apply m.prop, refine hp₂ _, erw submodule.mem_annihilator_span_singleton, rwa mul_comm at hm, end lemma eq_zero_of_localization (r : R) (h : ∀ (J : ideal R) (hJ : J.is_maximal), by exactI algebra_map R (localization.at_prime J) r = 0) : r = 0 := begin rw ← ideal.span_singleton_eq_bot, apply ideal_eq_zero_of_localization, intros J hJ, delta is_localization.coe_submodule, erw [submodule.map_span, submodule.span_eq_bot], rintro _ ⟨_, h', rfl⟩, cases set.mem_singleton_iff.mpr h', exact h J hJ, end end ideal section reduced lemma localization_is_reduced : localization_preserves (λ R hR, by exactI is_reduced R) := begin introv R _ _, resetI, constructor, rintro x ⟨(_|n), e⟩, { simpa using congr_arg (*x) e }, obtain ⟨⟨y, m⟩, hx⟩ := is_localization.surj M x, dsimp only at hx, let hx' := congr_arg (^ n.succ) hx, simp only [mul_pow, e, zero_mul, ← ring_hom.map_pow] at hx', rw [← (algebra_map R S).map_zero] at hx', obtain ⟨m', hm'⟩ := (is_localization.eq_iff_exists M S).mp hx', apply_fun (*m'^n) at hm', simp only [mul_assoc, zero_mul] at hm', rw [mul_comm, ← pow_succ, ← mul_pow] at hm', replace hm' := is_nilpotent.eq_zero ⟨_, hm'.symm⟩, rw [← (is_localization.map_units S m).mul_left_inj, hx, zero_mul, is_localization.map_eq_zero_iff M], exact ⟨m', by rw [← hm', mul_comm]⟩ end instance [is_reduced R] : is_reduced (localization M) := localization_is_reduced M _ infer_instance lemma is_reduced_of_localization_maximal : of_localization_maximal (λ R hR, by exactI is_reduced R) := begin introv R h, constructor, intros x hx, apply eq_zero_of_localization, intros J hJ, specialize h J hJ, resetI, exact (hx.map $ algebra_map R $ localization.at_prime J).eq_zero, end end reduced section surjective lemma localization_preserves_surjective : ring_hom.localization_preserves (λ R S _ _ f, function.surjective f) := begin introv R H x, resetI, obtain ⟨x, ⟨_, s, hs, rfl⟩, rfl⟩ := is_localization.mk'_surjective (M.map f) x, obtain ⟨y, rfl⟩ := H x, use is_localization.mk' R' y ⟨s, hs⟩, rw is_localization.map_mk', refl, end lemma surjective_of_localization_span : ring_hom.of_localization_span (λ R S _ _ f, function.surjective f) := begin introv R e H, rw [← set.range_iff_surjective, set.eq_univ_iff_forall], resetI, letI := f.to_algebra, intro x, apply submodule.mem_of_span_eq_top_of_smul_pow_mem (algebra.of_id R S).to_linear_map.range s e, intro r, obtain ⟨a, e'⟩ := H r (algebra_map _ _ x), obtain ⟨b, ⟨_, n, rfl⟩, rfl⟩ := is_localization.mk'_surjective (submonoid.powers (r : R)) a, erw is_localization.map_mk' at e', rw [eq_comm, is_localization.eq_mk'_iff_mul_eq, subtype.coe_mk, subtype.coe_mk, ← map_mul] at e', obtain ⟨⟨_, n', rfl⟩, e''⟩ := (is_localization.eq_iff_exists (submonoid.powers (f r)) _).mp e', rw [subtype.coe_mk, mul_assoc, ← map_pow, ← map_mul, ← map_mul, ← pow_add, mul_comm] at e'', exact ⟨n + n', _, e''.symm⟩ end end surjective section finite /-- If `S` is a finite `R`-algebra, then `S' = M⁻¹S` is a finite `R' = M⁻¹R`-algebra. -/ lemma localization_finite : ring_hom.localization_preserves @ring_hom.finite := begin introv R hf, -- Setting up the `algebra` and `is_scalar_tower` instances needed resetI, letI := f.to_algebra, letI := ((algebra_map S S').comp f).to_algebra, let f' : R' →+* S' := is_localization.map S' f (submonoid.le_comap_map M), letI := f'.to_algebra, haveI : is_scalar_tower R R' S' := is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, let fₐ : S →ₐ[R] S' := alg_hom.mk' (algebra_map S S') (λ c x, ring_hom.map_mul _ _ _), -- We claim that if `S` is generated by `T` as an `R`-module, -- then `S'` is generated by `T` as an `R'`-module. unfreezingI { obtain ⟨T, hT⟩ := hf }, use T.image (algebra_map S S'), rw eq_top_iff, rintro x -, -- By the hypotheses, for each `x : S'`, we have `x = y / (f r)` for some `y : S` and `r : M`. -- Since `S` is generated by `T`, the image of `y` should fall in the span of the image of `T`. obtain ⟨y, ⟨_, ⟨r, hr, rfl⟩⟩, rfl⟩ := is_localization.mk'_surjective (M.map f) x, rw [is_localization.mk'_eq_mul_mk'_one, mul_comm, finset.coe_image], have hy : y ∈ submodule.span R ↑T, by { rw hT, trivial }, replace hy : algebra_map S S' y ∈ submodule.map fₐ.to_linear_map (submodule.span R T) := submodule.mem_map_of_mem hy, rw submodule.map_span fₐ.to_linear_map T at hy, have H : submodule.span R ((algebra_map S S') '' T) ≤ (submodule.span R' ((algebra_map S S') '' T)).restrict_scalars R, { rw submodule.span_le, exact submodule.subset_span }, -- Now, since `y ∈ span T`, and `(f r)⁻¹ ∈ R'`, `x / (f r)` is in `span T` as well. convert (submodule.span R' ((algebra_map S S') '' T)).smul_mem (is_localization.mk' R' (1 : R) ⟨r, hr⟩) (H hy) using 1, rw algebra.smul_def, erw is_localization.map_mk', rw map_one, refl, end lemma localization_away_map_finite (r : R) [is_localization.away r R'] [is_localization.away (f r) S'] (hf : f.finite) : (is_localization.away.map R' S' f r).finite := localization_finite.away r hf /-- Let `S` be an `R`-algebra, `M` an submonoid of `R`, and `S' = M⁻¹S`. If the image of some `x : S` falls in the span of some finite `s ⊆ S'` over `R`, then there exists some `m : M` such that `m • x` falls in the span of `finset_integer_multiple _ s` over `R`. -/ lemma is_localization.smul_mem_finset_integer_multiple_span [algebra R S] [algebra R S'] [is_scalar_tower R S S'] [is_localization (M.map (algebra_map R S)) S'] (x : S) (s : finset S') (hx : algebra_map S S' x ∈ submodule.span R (s : set S')) : ∃ m : M, m • x ∈ submodule.span R (is_localization.finset_integer_multiple (M.map (algebra_map R S)) s : set S) := begin let g : S →ₐ[R] S' := alg_hom.mk' (algebra_map S S') (λ c x, by simp [algebra.algebra_map_eq_smul_one]), -- We first obtain the `y' ∈ M` such that `s' = y' • s` is falls in the image of `S` in `S'`. let y := is_localization.common_denom_of_finset (M.map (algebra_map R S)) s, have hx₁ : (y : S) • ↑s = g '' _ := (is_localization.finset_integer_multiple_image _ s).symm, obtain ⟨y', hy', e : algebra_map R S y' = y⟩ := y.prop, have : algebra_map R S y' • (s : set S') = y' • s := by simp_rw [algebra.algebra_map_eq_smul_one, smul_assoc, one_smul], rw [← e, this] at hx₁, replace hx₁ := congr_arg (submodule.span R) hx₁, rw submodule.span_smul at hx₁, replace hx : _ ∈ y' • submodule.span R (s : set S') := set.smul_mem_smul_set hx, rw hx₁ at hx, erw [← g.map_smul, ← submodule.map_span (g : S →ₗ[R] S')] at hx, -- Since `x` falls in the span of `s` in `S'`, `y' • x : S` falls in the span of `s'` in `S'`. -- That is, there exists some `x' : S` in the span of `s'` in `S` and `x' = y' • x` in `S'`. -- Thus `a • (y' • x) = a • x' ∈ span s'` in `S` for some `a ∈ M`. obtain ⟨x', hx', hx'' : algebra_map _ _ _ = _⟩ := hx, obtain ⟨⟨_, a, ha₁, rfl⟩, ha₂⟩ := (is_localization.eq_iff_exists (M.map (algebra_map R S)) S').mp hx'', use (⟨a, ha₁⟩ : M) * (⟨y', hy'⟩ : M), convert (submodule.span R (is_localization.finset_integer_multiple (submonoid.map (algebra_map R S) M) s : set S)).smul_mem a hx' using 1, convert ha₂.symm, { rw [mul_comm (y' • x), subtype.coe_mk, submonoid.smul_def, submonoid.coe_mul, ← smul_smul], exact algebra.smul_def _ _ }, { rw mul_comm, exact algebra.smul_def _ _ } end /-- If `S` is an `R' = M⁻¹R` algebra, and `x ∈ span R' s`, then `t • x ∈ span R s` for some `t : M`.-/ lemma multiple_mem_span_of_mem_localization_span [algebra R' S] [algebra R S] [is_scalar_tower R R' S] [is_localization M R'] (s : set S) (x : S) (hx : x ∈ submodule.span R' s) : ∃ t : M, t • x ∈ submodule.span R s := begin classical, obtain ⟨s', hss', hs'⟩ := submodule.mem_span_finite_of_mem_span hx, rsuffices ⟨t, ht⟩ : ∃ t : M, t • x ∈ submodule.span R (s' : set S), { exact ⟨t, submodule.span_mono hss' ht⟩ }, clear hx hss' s, revert x, apply s'.induction_on, { intros x hx, use 1, simpa using hx }, rintros a s ha hs x hx, simp only [finset.coe_insert, finset.image_insert, finset.coe_image, subtype.coe_mk, submodule.mem_span_insert] at hx ⊢, rcases hx with ⟨y, z, hz, rfl⟩, rcases is_localization.surj M y with ⟨⟨y', s'⟩, e⟩, replace e : _ * a = _ * a := (congr_arg (λ x, algebra_map R' S x * a) e : _), simp_rw [ring_hom.map_mul, ← is_scalar_tower.algebra_map_apply, mul_comm (algebra_map R' S y), mul_assoc, ← algebra.smul_def] at e, rcases hs _ hz with ⟨t, ht⟩, refine ⟨t*s', t*y', _, (submodule.span R (s : set S)).smul_mem s' ht, _⟩, rw [smul_add, ← smul_smul, mul_comm, ← smul_smul, ← smul_smul, ← e], refl, end /-- If `S` is an `R' = M⁻¹R` algebra, and `x ∈ adjoin R' s`, then `t • x ∈ adjoin R s` for some `t : M`.-/ lemma multiple_mem_adjoin_of_mem_localization_adjoin [algebra R' S] [algebra R S] [is_scalar_tower R R' S] [is_localization M R'] (s : set S) (x : S) (hx : x ∈ algebra.adjoin R' s) : ∃ t : M, t • x ∈ algebra.adjoin R s := begin change ∃ (t : M), t • x ∈ (algebra.adjoin R s).to_submodule, change x ∈ (algebra.adjoin R' s).to_submodule at hx, simp_rw [algebra.adjoin_eq_span] at hx ⊢, exact multiple_mem_span_of_mem_localization_span M R' _ _ hx end lemma finite_of_localization_span : ring_hom.of_localization_span @ring_hom.finite := begin rw ring_hom.of_localization_span_iff_finite, introv R hs H, -- We first setup the instances resetI, letI := f.to_algebra, letI := λ (r : s), (localization.away_map f r).to_algebra, haveI : ∀ r : s, is_localization ((submonoid.powers (r : R)).map (algebra_map R S)) (localization.away (f r)), { intro r, rw submonoid.map_powers, exact localization.is_localization }, haveI : ∀ r : s, is_scalar_tower R (localization.away (r : R)) (localization.away (f r)) := λ r, is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, -- By the hypothesis, we may find a finite generating set for each `Sᵣ`. This set can then be -- lifted into `R` by multiplying a sufficiently large power of `r`. I claim that the union of -- these generates `S`. constructor, replace H := λ r, (H r).1, choose s₁ s₂ using H, let sf := λ (x : s), is_localization.finset_integer_multiple (submonoid.powers (f x)) (s₁ x), use s.attach.bUnion sf, rw [submodule.span_attach_bUnion, eq_top_iff], -- It suffices to show that `r ^ n • x ∈ span T` for each `r : s`, since `{ r ^ n }` spans `R`. -- This then follows from the fact that each `x : R` is a linear combination of the generating set -- of `Sᵣ`. By multiplying a sufficiently large power of `r`, we can cancel out the `r`s in the -- denominators of both the generating set and the coefficients. rintro x -, apply submodule.mem_of_span_eq_top_of_smul_pow_mem _ (s : set R) hs _ _, intro r, obtain ⟨⟨_, n₁, rfl⟩, hn₁⟩ := multiple_mem_span_of_mem_localization_span (submonoid.powers (r : R)) (localization.away (r : R)) (s₁ r : set (localization.away (f r))) (algebra_map S _ x) (by { rw s₂ r, trivial }), rw [submonoid.smul_def, algebra.smul_def, is_scalar_tower.algebra_map_apply R S, subtype.coe_mk, ← map_mul] at hn₁, obtain ⟨⟨_, n₂, rfl⟩, hn₂⟩ := is_localization.smul_mem_finset_integer_multiple_span (submonoid.powers (r : R)) (localization.away (f r)) _ (s₁ r) hn₁, rw [submonoid.smul_def, ← algebra.smul_def, smul_smul, subtype.coe_mk, ← pow_add] at hn₂, simp_rw submonoid.map_powers at hn₂, use n₂ + n₁, exact le_supr (λ (x : s), submodule.span R (sf x : set S)) r hn₂, end end finite section finite_type lemma localization_finite_type : ring_hom.localization_preserves @ring_hom.finite_type := begin introv R hf, -- mirrors the proof of `localization_map_finite` resetI, letI := f.to_algebra, letI := ((algebra_map S S').comp f).to_algebra, let f' : R' →+* S' := is_localization.map S' f (submonoid.le_comap_map M), letI := f'.to_algebra, haveI : is_scalar_tower R R' S' := is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, let fₐ : S →ₐ[R] S' := alg_hom.mk' (algebra_map S S') (λ c x, ring_hom.map_mul _ _ _), obtain ⟨T, hT⟩ := id hf, use T.image (algebra_map S S'), rw eq_top_iff, rintro x -, obtain ⟨y, ⟨_, ⟨r, hr, rfl⟩⟩, rfl⟩ := is_localization.mk'_surjective (M.map f) x, rw [is_localization.mk'_eq_mul_mk'_one, mul_comm, finset.coe_image], have hy : y ∈ algebra.adjoin R (T : set S), by { rw hT, trivial }, replace hy : algebra_map S S' y ∈ (algebra.adjoin R (T : set S)).map fₐ := subalgebra.mem_map.mpr ⟨_, hy, rfl⟩, rw fₐ.map_adjoin T at hy, have H : algebra.adjoin R ((algebra_map S S') '' T) ≤ (algebra.adjoin R' ((algebra_map S S') '' T)).restrict_scalars R, { rw algebra.adjoin_le_iff, exact algebra.subset_adjoin }, convert (algebra.adjoin R' ((algebra_map S S') '' T)).smul_mem (H hy) (is_localization.mk' R' (1 : R) ⟨r, hr⟩) using 1, rw algebra.smul_def, erw is_localization.map_mk', rw map_one, refl, end lemma localization_away_map_finite_type (r : R) [is_localization.away r R'] [is_localization.away (f r) S'] (hf : f.finite_type) : (is_localization.away.map R' S' f r).finite_type := localization_finite_type.away r hf variable {S'} /-- Let `S` be an `R`-algebra, `M` a submonoid of `S`, `S' = M⁻¹S`. Suppose the image of some `x : S` falls in the adjoin of some finite `s ⊆ S'` over `R`, and `A` is an `R`-subalgebra of `S` containing both `M` and the numerators of `s`. Then, there exists some `m : M` such that `m • x` falls in `A`. -/ lemma is_localization.exists_smul_mem_of_mem_adjoin [algebra R S] [algebra R S'] [is_scalar_tower R S S'] (M : submonoid S) [is_localization M S'] (x : S) (s : finset S') (A : subalgebra R S) (hA₁ : (is_localization.finset_integer_multiple M s : set S) ⊆ A) (hA₂ : M ≤ A.to_submonoid) (hx : algebra_map S S' x ∈ algebra.adjoin R (s : set S')) : ∃ m : M, m • x ∈ A := begin let g : S →ₐ[R] S' := is_scalar_tower.to_alg_hom R S S', let y := is_localization.common_denom_of_finset M s, have hx₁ : (y : S) • ↑s = g '' _ := (is_localization.finset_integer_multiple_image _ s).symm, obtain ⟨n, hn⟩ := algebra.pow_smul_mem_of_smul_subset_of_mem_adjoin (y : S) (s : set S') (A.map g) (by { rw hx₁, exact set.image_subset _ hA₁ }) hx (set.mem_image_of_mem _ (hA₂ y.2)), obtain ⟨x', hx', hx''⟩ := hn n (le_of_eq rfl), rw [algebra.smul_def, ← _root_.map_mul] at hx'', obtain ⟨a, ha₂⟩ := (is_localization.eq_iff_exists M S').mp hx'', use a * y ^ n, convert A.mul_mem hx' (hA₂ a.2), convert ha₂.symm, simp only [submonoid.smul_def, submonoid.coe_pow, smul_eq_mul, submonoid.coe_mul], ring, end /-- Let `S` be an `R`-algebra, `M` an submonoid of `R`, and `S' = M⁻¹S`. If the image of some `x : S` falls in the adjoin of some finite `s ⊆ S'` over `R`, then there exists some `m : M` such that `m • x` falls in the adjoin of `finset_integer_multiple _ s` over `R`. -/ lemma is_localization.lift_mem_adjoin_finset_integer_multiple [algebra R S] [algebra R S'] [is_scalar_tower R S S'] [is_localization (M.map (algebra_map R S)) S'] (x : S) (s : finset S') (hx : algebra_map S S' x ∈ algebra.adjoin R (s : set S')) : ∃ m : M, m • x ∈ algebra.adjoin R (is_localization.finset_integer_multiple (M.map (algebra_map R S)) s : set S) := begin obtain ⟨⟨_, a, ha, rfl⟩, e⟩ := is_localization.exists_smul_mem_of_mem_adjoin (M.map (algebra_map R S)) x s (algebra.adjoin R _) algebra.subset_adjoin _ hx, { exact ⟨⟨a, ha⟩, by simpa [submonoid.smul_def] using e⟩ }, { rintros _ ⟨a, ha, rfl⟩, exact subalgebra.algebra_map_mem _ a } end lemma finite_type_of_localization_span : ring_hom.of_localization_span @ring_hom.finite_type := begin rw ring_hom.of_localization_span_iff_finite, introv R hs H, -- mirrors the proof of `finite_of_localization_span` resetI, letI := f.to_algebra, letI := λ (r : s), (localization.away_map f r).to_algebra, haveI : ∀ r : s, is_localization ((submonoid.powers (r : R)).map (algebra_map R S)) (localization.away (f r)), { intro r, rw submonoid.map_powers, exact localization.is_localization }, haveI : ∀ r : s, is_scalar_tower R (localization.away (r : R)) (localization.away (f r)) := λ r, is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, constructor, replace H := λ r, (H r).1, choose s₁ s₂ using H, let sf := λ (x : s), is_localization.finset_integer_multiple (submonoid.powers (f x)) (s₁ x), use s.attach.bUnion sf, convert (algebra.adjoin_attach_bUnion sf).trans _, rw eq_top_iff, rintro x -, apply (⨆ (x : s), algebra.adjoin R (sf x : set S)).to_submodule .mem_of_span_eq_top_of_smul_pow_mem _ hs _ _, intro r, obtain ⟨⟨_, n₁, rfl⟩, hn₁⟩ := multiple_mem_adjoin_of_mem_localization_adjoin (submonoid.powers (r : R)) (localization.away (r : R)) (s₁ r : set (localization.away (f r))) (algebra_map S (localization.away (f r)) x) (by { rw s₂ r, trivial }), rw [submonoid.smul_def, algebra.smul_def, is_scalar_tower.algebra_map_apply R S, subtype.coe_mk, ← map_mul] at hn₁, obtain ⟨⟨_, n₂, rfl⟩, hn₂⟩ := is_localization.lift_mem_adjoin_finset_integer_multiple (submonoid.powers (r : R)) _ (s₁ r) hn₁, rw [submonoid.smul_def, ← algebra.smul_def, smul_smul, subtype.coe_mk, ← pow_add] at hn₂, simp_rw submonoid.map_powers at hn₂, use n₂ + n₁, exact le_supr (λ (x : s), algebra.adjoin R (sf x : set S)) r hn₂ end end finite_type
68fb3491bebda2c5070906cc8742c58b02b24125
4727251e0cd73359b15b664c3170e5d754078599
/src/algebra/lie/skew_adjoint.lean
4c3ea50651cbeb6c3c914adc9d57a7c80e041f27
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
7,200
lean
/- Copyright (c) 2020 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import algebra.lie.matrix import linear_algebra.matrix.bilinear_form /-! # Lie algebras of skew-adjoint endomorphisms of a bilinear form When a module carries a bilinear form, the Lie algebra of endomorphisms of the module contains a distinguished Lie subalgebra: the skew-adjoint endomorphisms. Such subalgebras are important because they provide a simple, explicit construction of the so-called classical Lie algebras. This file defines the Lie subalgebra of skew-adjoint endomorphims cut out by a bilinear form on a module and proves some basic related results. It also provides the corresponding definitions and results for the Lie algebra of square matrices. ## Main definitions * `skew_adjoint_lie_subalgebra` * `skew_adjoint_lie_subalgebra_equiv` * `skew_adjoint_matrices_lie_subalgebra` * `skew_adjoint_matrices_lie_subalgebra_equiv` ## Tags lie algebra, skew-adjoint, bilinear form -/ universes u v w w₁ section skew_adjoint_endomorphisms open bilin_form variables {R : Type u} {M : Type v} [comm_ring R] [add_comm_group M] [module R M] variables (B : bilin_form R M) lemma bilin_form.is_skew_adjoint_bracket (f g : module.End R M) (hf : f ∈ B.skew_adjoint_submodule) (hg : g ∈ B.skew_adjoint_submodule) : ⁅f, g⁆ ∈ B.skew_adjoint_submodule := begin rw mem_skew_adjoint_submodule at *, have hfg : is_adjoint_pair B B (f * g) (g * f), { rw ←neg_mul_neg g f, exact hf.mul hg, }, have hgf : is_adjoint_pair B B (g * f) (f * g), { rw ←neg_mul_neg f g, exact hg.mul hf, }, change bilin_form.is_adjoint_pair B B (f * g - g * f) (-(f * g - g * f)), rw neg_sub, exact hfg.sub hgf, end /-- Given an `R`-module `M`, equipped with a bilinear form, the skew-adjoint endomorphisms form a Lie subalgebra of the Lie algebra of endomorphisms. -/ def skew_adjoint_lie_subalgebra : lie_subalgebra R (module.End R M) := { lie_mem' := B.is_skew_adjoint_bracket, ..B.skew_adjoint_submodule } variables {N : Type w} [add_comm_group N] [module R N] (e : N ≃ₗ[R] M) /-- An equivalence of modules with bilinear forms gives equivalence of Lie algebras of skew-adjoint endomorphisms. -/ def skew_adjoint_lie_subalgebra_equiv : skew_adjoint_lie_subalgebra (B.comp (↑e : N →ₗ[R] M) ↑e) ≃ₗ⁅R⁆ skew_adjoint_lie_subalgebra B := begin apply lie_equiv.of_subalgebras _ _ e.lie_conj, ext f, simp only [lie_subalgebra.mem_coe, submodule.mem_map_equiv, lie_subalgebra.mem_map_submodule, coe_coe], exact (bilin_form.is_pair_self_adjoint_equiv (-B) B e f).symm, end @[simp] lemma skew_adjoint_lie_subalgebra_equiv_apply (f : skew_adjoint_lie_subalgebra (B.comp ↑e ↑e)) : ↑(skew_adjoint_lie_subalgebra_equiv B e f) = e.lie_conj f := by simp [skew_adjoint_lie_subalgebra_equiv] @[simp] lemma skew_adjoint_lie_subalgebra_equiv_symm_apply (f : skew_adjoint_lie_subalgebra B) : ↑((skew_adjoint_lie_subalgebra_equiv B e).symm f) = e.symm.lie_conj f := by simp [skew_adjoint_lie_subalgebra_equiv] end skew_adjoint_endomorphisms section skew_adjoint_matrices open_locale matrix variables {R : Type u} {n : Type w} [comm_ring R] [decidable_eq n] [fintype n] variables (J : matrix n n R) lemma matrix.lie_transpose (A B : matrix n n R) : ⁅A, B⁆ᵀ = ⁅Bᵀ, Aᵀ⁆ := show (A * B - B * A)ᵀ = (Bᵀ * Aᵀ - Aᵀ * Bᵀ), by simp lemma matrix.is_skew_adjoint_bracket (A B : matrix n n R) (hA : A ∈ skew_adjoint_matrices_submodule J) (hB : B ∈ skew_adjoint_matrices_submodule J) : ⁅A, B⁆ ∈ skew_adjoint_matrices_submodule J := begin simp only [mem_skew_adjoint_matrices_submodule] at *, change ⁅A, B⁆ᵀ ⬝ J = J ⬝ -⁅A, B⁆, change Aᵀ ⬝ J = J ⬝ -A at hA, change Bᵀ ⬝ J = J ⬝ -B at hB, simp only [←matrix.mul_eq_mul] at *, rw [matrix.lie_transpose, lie_ring.of_associative_ring_bracket, lie_ring.of_associative_ring_bracket, sub_mul, mul_assoc, mul_assoc, hA, hB, ←mul_assoc, ←mul_assoc, hA, hB], noncomm_ring, end /-- The Lie subalgebra of skew-adjoint square matrices corresponding to a square matrix `J`. -/ def skew_adjoint_matrices_lie_subalgebra : lie_subalgebra R (matrix n n R) := { lie_mem' := J.is_skew_adjoint_bracket, ..(skew_adjoint_matrices_submodule J) } @[simp] lemma mem_skew_adjoint_matrices_lie_subalgebra (A : matrix n n R) : A ∈ skew_adjoint_matrices_lie_subalgebra J ↔ A ∈ skew_adjoint_matrices_submodule J := iff.rfl /-- An invertible matrix `P` gives a Lie algebra equivalence between those endomorphisms that are skew-adjoint with respect to a square matrix `J` and those with respect to `PᵀJP`. -/ def skew_adjoint_matrices_lie_subalgebra_equiv (P : matrix n n R) (h : invertible P) : skew_adjoint_matrices_lie_subalgebra J ≃ₗ⁅R⁆ skew_adjoint_matrices_lie_subalgebra (Pᵀ ⬝ J ⬝ P) := lie_equiv.of_subalgebras _ _ (P.lie_conj h).symm begin ext A, suffices : P.lie_conj h A ∈ skew_adjoint_matrices_submodule J ↔ A ∈ skew_adjoint_matrices_submodule (Pᵀ ⬝ J ⬝ P), { simp only [lie_subalgebra.mem_coe, submodule.mem_map_equiv, lie_subalgebra.mem_map_submodule, coe_coe], exact this, }, simp [matrix.is_skew_adjoint, J.is_adjoint_pair_equiv _ _ P (is_unit_of_invertible P)], end lemma skew_adjoint_matrices_lie_subalgebra_equiv_apply (P : matrix n n R) (h : invertible P) (A : skew_adjoint_matrices_lie_subalgebra J) : ↑(skew_adjoint_matrices_lie_subalgebra_equiv J P h A) = P⁻¹ ⬝ ↑A ⬝ P := by simp [skew_adjoint_matrices_lie_subalgebra_equiv] /-- An equivalence of matrix algebras commuting with the transpose endomorphisms restricts to an equivalence of Lie algebras of skew-adjoint matrices. -/ def skew_adjoint_matrices_lie_subalgebra_equiv_transpose {m : Type w} [decidable_eq m] [fintype m] (e : matrix n n R ≃ₐ[R] matrix m m R) (h : ∀ A, (e A)ᵀ = e (Aᵀ)) : skew_adjoint_matrices_lie_subalgebra J ≃ₗ⁅R⁆ skew_adjoint_matrices_lie_subalgebra (e J) := lie_equiv.of_subalgebras _ _ e.to_lie_equiv begin ext A, suffices : J.is_skew_adjoint (e.symm A) ↔ (e J).is_skew_adjoint A, by simpa [this], simp [matrix.is_skew_adjoint, matrix.is_adjoint_pair, ← matrix.mul_eq_mul, ← h, ← function.injective.eq_iff e.injective], end @[simp] lemma skew_adjoint_matrices_lie_subalgebra_equiv_transpose_apply {m : Type w} [decidable_eq m] [fintype m] (e : matrix n n R ≃ₐ[R] matrix m m R) (h : ∀ A, (e A)ᵀ = e (Aᵀ)) (A : skew_adjoint_matrices_lie_subalgebra J) : (skew_adjoint_matrices_lie_subalgebra_equiv_transpose J e h A : matrix m m R) = e A := rfl lemma mem_skew_adjoint_matrices_lie_subalgebra_unit_smul (u : Rˣ) (J A : matrix n n R) : A ∈ skew_adjoint_matrices_lie_subalgebra (u • J) ↔ A ∈ skew_adjoint_matrices_lie_subalgebra J := begin change A ∈ skew_adjoint_matrices_submodule (u • J) ↔ A ∈ skew_adjoint_matrices_submodule J, simp only [mem_skew_adjoint_matrices_submodule, matrix.is_skew_adjoint, matrix.is_adjoint_pair], split; intros h, { simpa using congr_arg (λ B, u⁻¹ • B) h, }, { simp [h], }, end end skew_adjoint_matrices
2b6fc0ac3a5ff4a9614444da719af7a67a18875a
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/attrs.lean
6dcbb0649a7b2fa138d39de2064a0fb46bb7cdce
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
267
lean
structure A : Type := (a : nat) structure B : Type := (a : nat) structure C : Type := (a : nat) constant f : A → B constant g : B → C constant h : C → C constant a : A attribute f g [coercion] set_option pp.coercions true set_option pp.beta true check h a
492eb19efcadf8c6b42eb94f937dbada68fe32a3
07c76fbd96ea1786cc6392fa834be62643cea420
/hott/algebra/category/functor/basic.hlean
f6dd0996695aab29c34371e4bc556b523eea0480
[ "Apache-2.0" ]
permissive
fpvandoorn/lean2
5a430a153b570bf70dc8526d06f18fc000a60ad9
0889cf65b7b3cebfb8831b8731d89c2453dd1e9f
refs/heads/master
1,592,036,508,364
1,545,093,958,000
1,545,093,958,000
75,436,854
0
0
null
1,480,718,780,000
1,480,718,780,000
null
UTF-8
Lean
false
false
13,878
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer -/ import ..iso types.pi open function category eq prod prod.ops equiv is_equiv sigma sigma.ops is_trunc funext iso pi structure functor (C D : Precategory) : Type := (to_fun_ob : C → D) (to_fun_hom : Π {a b : C}, hom a b → hom (to_fun_ob a) (to_fun_ob b)) (respect_id : Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) (respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b), to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f) namespace functor infixl ` ⇒ `:55 := functor variables {A B C D E : Precategory} attribute to_fun_ob [coercion] attribute to_fun_hom [coercion] -- The following lemmas will later be used to prove that the type of -- precategories forms a precategory itself protected definition compose [reducible] [constructor] (G : functor D E) (F : functor C D) : functor C E := functor.mk (λ x, G (F x)) (λ a b f, G (F f)) (λ a, abstract calc G (F (ID a)) = G (ID (F a)) : by rewrite respect_id ... = ID (G (F a)) : by rewrite respect_id end) (λ a b c g f, abstract calc G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp ... = G (F g) ∘ G (F f) : by rewrite respect_comp end) infixr ` ∘f `:75 := functor.compose protected definition id [reducible] [constructor] {C : Precategory} : functor C C := mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp) protected definition ID [reducible] [constructor] (C : Precategory) : functor C C := @functor.id C notation 1 := functor.id definition constant_functor [constructor] (C : Precategory) {D : Precategory} (d : D) : C ⇒ D := functor.mk (λc, d) (λc c' f, id) (λc, idp) (λa b c g f, !id_id⁻¹) /- introduction rule for equalities between functors -/ definition functor_mk_eq' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂) : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ := apdt01111 functor.mk pF pH !is_prop.elim !is_prop.elim definition functor_eq' {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ = to_fun_ob F₂), (transport (λx, Πa b f, hom (x a) (x b)) p @(to_fun_hom F₁) = @(to_fun_hom F₂)) → F₁ = F₂ := by induction F₁; induction F₂; apply functor_mk_eq' definition functor_mk_eq {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ ~ F₂) (pH : Π(a b : C) (f : hom a b), hom_of_eq (pF b) ∘ H₁ a b f ∘ inv_of_eq (pF a) = H₂ a b f) : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ := begin fapply functor_mk_eq', { exact eq_of_homotopy pF}, { refine eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf, _))), intros, rewrite [+pi_transport_constant,-pH,-transport_hom]} end definition functor_eq {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ ~ to_fun_ob F₂), (Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) → F₁ = F₂ := by induction F₁; induction F₂; apply functor_mk_eq definition functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)} {H₂ : Π(a b : C), hom a b → hom (F a) (F b)} (id₁ id₂ comp₁ comp₂) (pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f) : functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ := functor_eq (λc, idp) (λa b f, !id_leftright ⬝ !pH) definition preserve_is_iso [constructor] (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] : is_iso (F f) := begin fapply @is_iso.mk, apply (F (f⁻¹)), repeat (apply concat ; symmetry ; apply (respect_comp F) ; apply concat ; apply (ap (λ x, to_fun_hom F x)) ; (apply iso.left_inverse | apply iso.right_inverse); apply (respect_id F) ), end theorem respect_inv (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] [H' : is_iso (F f)] : F (f⁻¹) = (F f)⁻¹ := begin fapply @left_inverse_eq_right_inverse, apply (F f), transitivity to_fun_hom F (f⁻¹ ∘ f), {symmetry, apply (respect_comp F)}, {transitivity to_fun_hom F category.id, {congruence, apply iso.left_inverse}, {apply respect_id}}, apply iso.right_inverse end attribute preserve_is_iso [instance] [priority 100] definition to_fun_iso [constructor] (F : C ⇒ D) {a b : C} (f : a ≅ b) : F a ≅ F b := iso.mk (F f) _ theorem respect_inv' (F : C ⇒ D) {a b : C} (f : hom a b) {H : is_iso f} : F (f⁻¹) = (F f)⁻¹ := respect_inv F f theorem respect_refl (F : C ⇒ D) (a : C) : to_fun_iso F (iso.refl a) = iso.refl (F a) := iso_eq !respect_id theorem respect_symm (F : C ⇒ D) {a b : C} (f : a ≅ b) : to_fun_iso F f⁻¹ⁱ = (to_fun_iso F f)⁻¹ⁱ := iso_eq !respect_inv theorem respect_trans (F : C ⇒ D) {a b c : C} (f : a ≅ b) (g : b ≅ c) : to_fun_iso F (f ⬝i g) = to_fun_iso F f ⬝i to_fun_iso F g := iso_eq !respect_comp definition respect_iso_of_eq (F : C ⇒ D) {a b : C} (p : a = b) : to_fun_iso F (iso_of_eq p) = iso_of_eq (ap F p) := by induction p; apply respect_refl theorem respect_hom_of_eq (F : C ⇒ D) {a b : C} (p : a = b) : F (hom_of_eq p) = hom_of_eq (ap F p) := by induction p; apply respect_id definition respect_inv_of_eq (F : C ⇒ D) {a b : C} (p : a = b) : F (inv_of_eq p) = inv_of_eq (ap F p) := by induction p; apply respect_id protected definition assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) = (H ∘f G) ∘f F := !functor_mk_eq_constant (λa b f, idp) protected definition id_left (F : C ⇒ D) : 1 ∘f F = F := functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp)) protected definition id_right (F : C ⇒ D) : F ∘f 1 = F := functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp)) protected definition comp_id_eq_id_comp (F : C ⇒ D) : F ∘f 1 = 1 ∘f F := !functor.id_right ⬝ !functor.id_left⁻¹ definition functor_of_eq [constructor] {C D : Precategory} (p : C = D :> Precategory) : C ⇒ D := functor.mk (transport carrier p) (λa b f, by induction p; exact f) (by intro c; induction p; reflexivity) (by intros; induction p; reflexivity) protected definition sigma_char : (Σ (to_fun_ob : C → D) (to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b)), (Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) × (Π {a b c : C} (g : hom b c) (f : hom a b), to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)) ≃ (functor C D) := begin fapply equiv.MK, {intro S, induction S with d1 S2, induction S2 with d2 P1, induction P1 with P11 P12, exact functor.mk d1 d2 P11 @P12}, {intro F, induction F with d1 d2 d3 d4, exact ⟨d1, @d2, (d3, @d4)⟩}, {intro F, induction F, reflexivity}, {intro S, induction S with d1 S2, induction S2 with d2 P1, induction P1, reflexivity}, end definition change_fun [constructor] (F : C ⇒ D) (Fob : C → D) (Fhom : Π⦃c c' : C⦄ (f : c ⟶ c'), Fob c ⟶ Fob c') (p : F = Fob) (q : F =[p] Fhom) : C ⇒ D := functor.mk Fob Fhom proof abstract λa, transporto (λFo (Fh : Π⦃c c'⦄, _), Fh (ID a) = ID (Fo a)) q (respect_id F a) end qed proof abstract λa b c g f, transporto (λFo (Fh : Π⦃c c'⦄, _), Fh (g ∘ f) = Fh g ∘ Fh f) q (respect_comp F g f) end qed section local attribute precategory.is_set_hom [instance] [priority 1001] local attribute trunctype.struct [instance] [priority 1] -- remove after #842 is closed protected theorem is_set_functor [instance] [HD : is_set D] : is_set (functor C D) := is_trunc_equiv_closed 0 !functor.sigma_char _ end /- higher equalities in the functor type -/ definition functor_mk_eq'_idp (F : C → D) (H : Π(a b : C), hom a b → hom (F a) (F b)) (id comp) : functor_mk_eq' id id comp comp (idpath F) (idpath H) = idp := begin fapply apd011 (apdt01111 functor.mk idp idp), apply is_prop.elim, apply is_prop.elimo end definition functor_eq'_idp (F : C ⇒ D) : functor_eq' idp idp = (idpath F) := by (cases F; apply functor_mk_eq'_idp) definition functor_eq_eta' {F₁ F₂ : C ⇒ D} (p : F₁ = F₂) : functor_eq' (ap to_fun_ob p) (!tr_compose⁻¹ ⬝ apdt to_fun_hom p) = p := begin cases p, cases F₁, refine _ ⬝ !functor_eq'_idp, esimp end theorem functor_eq2' {F₁ F₂ : C ⇒ D} {p₁ p₂ : to_fun_ob F₁ = to_fun_ob F₂} (q₁ q₂) (r : p₁ = p₂) : functor_eq' p₁ q₁ = functor_eq' p₂ q₂ := by cases r; apply (ap (functor_eq' p₂)); apply is_prop.elim theorem functor_eq2 {F₁ F₂ : C ⇒ D} (p q : F₁ = F₂) (r : ap010 to_fun_ob p ~ ap010 to_fun_ob q) : p = q := begin cases F₁ with ob₁ hom₁ id₁ comp₁, cases F₂ with ob₂ hom₂ id₂ comp₂, rewrite [-functor_eq_eta' p, -functor_eq_eta' q], apply functor_eq2', apply ap_eq_ap_of_homotopy, exact r, end theorem ap010_apd01111_functor {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} {id₁ id₂ comp₁ comp₂} (pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂) (pid : cast (apdt011 _ pF pH) id₁ = id₂) (pcomp : cast (apdt0111 _ pF pH pid) comp₁ = comp₂) (c : C) : ap010 to_fun_ob (apdt01111 functor.mk pF pH pid pcomp) c = ap10 pF c := by induction pF; induction pH; induction pid; induction pcomp; reflexivity definition ap010_functor_eq {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ~ to_fun_ob F₂) (q : (λ(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a)) ~3 @(to_fun_hom F₂)) (c : C) : ap010 to_fun_ob (functor_eq p q) c = p c := begin cases F₁ with F₁o F₁h F₁id F₁comp, cases F₂ with F₂o F₂h F₂id F₂comp, esimp [functor_eq,functor_mk_eq,functor_mk_eq'], rewrite [ap010_apd01111_functor,↑ap10,{apd10 (eq_of_homotopy p)}right_inv apd10] end definition ap010_functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)} {H₂ : Π(a b : C), hom a b → hom (F a) (F b)} {id₁ id₂ comp₁ comp₂} (pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f) (c : C) : ap010 to_fun_ob (functor_mk_eq_constant id₁ id₂ comp₁ comp₂ pH) c = idp := !ap010_functor_eq definition ap010_assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) (a : A) : ap010 to_fun_ob (functor.assoc H G F) a = idp := by apply ap010_functor_mk_eq_constant definition compose_pentagon (K : D ⇒ E) (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : (calc K ∘f H ∘f G ∘f F = (K ∘f H) ∘f G ∘f F : functor.assoc ... = ((K ∘f H) ∘f G) ∘f F : functor.assoc) = (calc K ∘f H ∘f G ∘f F = K ∘f (H ∘f G) ∘f F : ap (λx, K ∘f x) !functor.assoc ... = (K ∘f H ∘f G) ∘f F : functor.assoc ... = ((K ∘f H) ∘f G) ∘f F : ap (λx, x ∘f F) !functor.assoc) := begin have lem1 : Π{F₁ F₂ : A ⇒ D} (p : F₁ = F₂) (a : A), ap010 to_fun_ob (ap (λx, K ∘f x) p) a = ap (to_fun_ob K) (ap010 to_fun_ob p a), by intros; cases p; esimp, have lem2 : Π{F₁ F₂ : B ⇒ E} (p : F₁ = F₂) (a : A), ap010 to_fun_ob (ap (λx, x ∘f F) p) a = ap010 to_fun_ob p (F a), by intros; cases p; esimp, apply functor_eq2, intro a, esimp, rewrite [+ap010_con,lem1,lem2, ap010_assoc K H (G ∘f F) a, ap010_assoc (K ∘f H) G F a, ap010_assoc H G F a, ap010_assoc K H G (F a), ap010_assoc K (H ∘f G) F a], end definition hom_pathover_functor {c₁ c₂ : C} {p : c₁ = c₂} (F G : C ⇒ D) {f₁ : F c₁ ⟶ G c₁} {f₂ : F c₂ ⟶ G c₂} (q : to_fun_hom G (hom_of_eq p) ∘ f₁ = f₂ ∘ to_fun_hom F (hom_of_eq p)) : f₁ =[p] f₂ := hom_pathover (hom_whisker_right _ (respect_hom_of_eq G _)⁻¹ ⬝ q ⬝ hom_whisker_left _ (respect_hom_of_eq F _)) definition hom_pathover_constant_left_functor_right {c₁ c₂ : C} {p : c₁ = c₂} {d : D} (F : C ⇒ D) {f₁ : d ⟶ F c₁} {f₂ : d ⟶ F c₂} (q : to_fun_hom F (hom_of_eq p) ∘ f₁ = f₂) : f₁ =[p] f₂ := hom_pathover_constant_left (hom_whisker_right _ (respect_hom_of_eq F _)⁻¹ ⬝ q) definition hom_pathover_functor_left_constant_right {c₁ c₂ : C} {p : c₁ = c₂} {d : D} (F : C ⇒ D) {f₁ : F c₁ ⟶ d} {f₂ : F c₂ ⟶ d} (q : f₁ = f₂ ∘ to_fun_hom F (hom_of_eq p)) : f₁ =[p] f₂ := hom_pathover_constant_right (q ⬝ hom_whisker_left _ (respect_hom_of_eq F _)) definition hom_pathover_id_left_functor_right {c₁ c₂ : C} {p : c₁ = c₂} (F : C ⇒ C) {f₁ : c₁ ⟶ F c₁} {f₂ : c₂ ⟶ F c₂} (q : to_fun_hom F (hom_of_eq p) ∘ f₁ = f₂ ∘ hom_of_eq p) : f₁ =[p] f₂ := hom_pathover_id_left (hom_whisker_right _ (respect_hom_of_eq F _)⁻¹ ⬝ q) definition hom_pathover_functor_left_id_right {c₁ c₂ : C} {p : c₁ = c₂} (F : C ⇒ C) {f₁ : F c₁ ⟶ c₁} {f₂ : F c₂ ⟶ c₂} (q : hom_of_eq p ∘ f₁ = f₂ ∘ to_fun_hom F (hom_of_eq p)) : f₁ =[p] f₂ := hom_pathover_id_right (q ⬝ hom_whisker_left _ (respect_hom_of_eq F _)) end functor
c56afd4d327fef1699beb09621909acd96feee1e
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/tests/compiler/phashmap2.lean
6285c13184704a0a27ecc9fc73b5b7298bed5c7e
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
1,572
lean
import Std.Data.PersistentHashMap import Lean.Data.Format open Lean Std Std.PersistentHashMap abbrev Map := PersistentHashMap Nat Nat partial def formatMap : Node Nat Nat → Format | Node.collision keys vals _ => Format.sbracket $ keys.size.fold (fun i fmt => let k := keys.get! i; let v := vals.get! i; let p := if i > 0 then fmt ++ format "," ++ Format.line else fmt; p ++ "c@" ++ Format.paren (format k ++ " => " ++ format v)) Format.nil | Node.entries entries => Format.sbracket $ entries.size.fold (fun i fmt => let entry := entries.get! i; let p := if i > 0 then fmt ++ format "," ++ Format.line else fmt; p ++ match entry with | Entry.null => "<null>" | Entry.ref node => formatMap node | Entry.entry k v => Format.paren (format k ++ " => " ++ format v)) Format.nil def main : IO Unit := do let a : Array Nat := [1, 2, 3].toArray; IO.println (a.indexOf? 2); let m : Map := PersistentHashMap.empty; let m := m.insert 1 1; let m := m.insert 33 2; let m := m.insert 65 3; -- IO.println (formatMap m.root); IO.println m.stats; let m := m.erase 33; IO.println (m.find? 1); IO.println (m.find? 33); IO.println (m.find? 65); IO.println m.stats; let m := m.erase 1; IO.println (m.find? 1); IO.println (m.find? 33); IO.println (m.find? 65); IO.println m.stats; let m := m.erase 1; IO.println (m.find? 1); IO.println (m.find? 33); IO.println (m.find? 65); let m := m.erase 65; IO.println (m.find? 1); IO.println (m.find? 33); IO.println (m.find? 65); IO.println m.stats
85c207b198b58280cb7f9af4d5b3a3a2a878f070
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/crashDiv0.lean
2d487f44c5b5798cf29618aaa0108b5a342f1879
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
30
lean
#eval (2147483648 % 0) + (-0)
386c77ce138dfe151511b5af9b36226e6e77feed
63abd62053d479eae5abf4951554e1064a4c45b4
/src/measure_theory/probability_mass_function.lean
925e323d12f09da8ec415efaa128f5dcdf809e92
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
6,028
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl -/ import topology.instances.ennreal /-! # Probability mass functions This file is about probability mass functions or discrete probability measures: a function `α → ℝ≥0` such that the values have (infinite) sum `1`. This file features the monadic structure of `pmf` and the Bernoulli distribution ## Implementation Notes This file is not yet connected to the `measure_theory` library in any way. At some point we need to define a `measure` from a `pmf` and prove the appropriate lemmas about that. ## Tags probability mass function, discrete probability measure, bernoulli distribution -/ noncomputable theory variables {α : Type*} {β : Type*} {γ : Type*} open_locale classical big_operators nnreal /-- A probability mass function, or discrete probability measures is a function `α → ℝ≥0` such that the values have (infinite) sum `1`. -/ def {u} pmf (α : Type u) : Type u := { f : α → ℝ≥0 // has_sum f 1 } namespace pmf instance : has_coe_to_fun (pmf α) := ⟨λ p, α → ℝ≥0, λ p a, p.1 a⟩ @[ext] protected lemma ext : ∀ {p q : pmf α}, (∀ a, p a = q a) → p = q | ⟨f, hf⟩ ⟨g, hg⟩ eq := subtype.eq $ funext eq lemma has_sum_coe_one (p : pmf α) : has_sum p 1 := p.2 lemma summable_coe (p : pmf α) : summable p := (p.has_sum_coe_one).summable @[simp] lemma tsum_coe (p : pmf α) : (∑' a, p a) = 1 := p.has_sum_coe_one.tsum_eq /-- The support of a `pmf` is the set where it is nonzero. -/ def support (p : pmf α) : set α := {a | p.1 a ≠ 0} /-- The pure `pmf` is the `pmf` where all the mass lies in one point. The value of `pure a` is `1` at `a` and `0` elsewhere. -/ def pure (a : α) : pmf α := ⟨λ a', if a' = a then 1 else 0, has_sum_ite_eq _ _⟩ @[simp] lemma pure_apply (a a' : α) : pure a a' = (if a' = a then 1 else 0) := rfl instance [inhabited α] : inhabited (pmf α) := ⟨pure (default α)⟩ lemma coe_le_one (p : pmf α) (a : α) : p a ≤ 1 := has_sum_le (by intro b; split_ifs; simp [h]; exact le_refl _) (has_sum_ite_eq a (p a)) p.2 protected lemma bind.summable (p : pmf α) (f : α → pmf β) (b : β) : summable (λ a : α, p a * f a b) := begin refine nnreal.summable_of_le (assume a, _) p.summable_coe, suffices : p a * f a b ≤ p a * 1, { simpa }, exact mul_le_mul_of_nonneg_left ((f a).coe_le_one _) (p a).2 end /-- The monadic bind operation for `pmf`. -/ def bind (p : pmf α) (f : α → pmf β) : pmf β := ⟨λ b, ∑'a, p a * f a b, begin apply ennreal.has_sum_coe.1, simp only [ennreal.coe_tsum (bind.summable p f _)], rw [ennreal.summable.has_sum_iff, ennreal.tsum_comm], simp [ennreal.tsum_mul_left, (ennreal.coe_tsum (f _).summable_coe).symm, (ennreal.coe_tsum p.summable_coe).symm] end⟩ @[simp] lemma bind_apply (p : pmf α) (f : α → pmf β) (b : β) : p.bind f b = (∑'a, p a * f a b) := rfl lemma coe_bind_apply (p : pmf α) (f : α → pmf β) (b : β) : (p.bind f b : ennreal) = (∑'a, p a * f a b) := eq.trans (ennreal.coe_tsum $ bind.summable p f b) $ by simp @[simp] lemma pure_bind (a : α) (f : α → pmf β) : (pure a).bind f = f a := have ∀ b a', ite (a' = a) 1 0 * f a' b = ite (a' = a) (f a b) 0, from assume b a', by split_ifs; simp; subst h; simp, by ext b; simp [this] @[simp] lemma bind_pure (p : pmf α) : p.bind pure = p := have ∀ a a', (p a * ite (a' = a) 1 0) = ite (a = a') (p a') 0, from assume a a', begin split_ifs; try { subst a }; try { subst a' }; simp * at * end, by ext b; simp [this] @[simp] lemma bind_bind (p : pmf α) (f : α → pmf β) (g : β → pmf γ) : (p.bind f).bind g = p.bind (λ a, (f a).bind g) := begin ext1 b, simp only [ennreal.coe_eq_coe.symm, coe_bind_apply, ennreal.tsum_mul_left.symm, ennreal.tsum_mul_right.symm], rw [ennreal.tsum_comm], simp [mul_assoc, mul_left_comm, mul_comm] end lemma bind_comm (p : pmf α) (q : pmf β) (f : α → β → pmf γ) : p.bind (λ a, q.bind (f a)) = q.bind (λ b, p.bind (λ a, f a b)) := begin ext1 b, simp only [ennreal.coe_eq_coe.symm, coe_bind_apply, ennreal.tsum_mul_left.symm, ennreal.tsum_mul_right.symm], rw [ennreal.tsum_comm], simp [mul_assoc, mul_left_comm, mul_comm] end /-- The functorial action of a function on a `pmf`. -/ def map (f : α → β) (p : pmf α) : pmf β := bind p (pure ∘ f) lemma bind_pure_comp (f : α → β) (p : pmf α) : bind p (pure ∘ f) = map f p := rfl lemma map_id (p : pmf α) : map id p = p := by simp [map] lemma map_comp (p : pmf α) (f : α → β) (g : β → γ) : (p.map f).map g = p.map (g ∘ f) := by simp [map] lemma pure_map (a : α) (f : α → β) : (pure a).map f = pure (f a) := by simp [map] /-- The monadic sequencing operation for `pmf`. -/ def seq (f : pmf (α → β)) (p : pmf α) : pmf β := f.bind (λ m, p.bind $ λ a, pure (m a)) /-- Given a non-empty multiset `s` we construct the `pmf` which sends `a` to the fraction of elements in `s` that are `a`. -/ def of_multiset (s : multiset α) (hs : s ≠ 0) : pmf α := ⟨λ a, s.count a / s.card, have ∑ a in s.to_finset, (s.count a : ℝ) / s.card = 1, by simp [div_eq_inv_mul, finset.mul_sum.symm, (finset.sum_nat_cast _ _).symm, hs], have ∑ a in s.to_finset, (s.count a : ℝ≥0) / s.card = 1, by rw [← nnreal.eq_iff, nnreal.coe_one, ← this, nnreal.coe_sum]; simp, begin rw ← this, apply has_sum_sum_of_ne_finset_zero, simp {contextual := tt}, end⟩ /-- Given a finite type `α` and a function `f : α → ℝ≥0` with sum 1, we get a `pmf`. -/ def of_fintype [fintype α] (f : α → ℝ≥0) (h : ∑ x, f x = 1) : pmf α := ⟨f, h ▸ has_sum_sum_of_ne_finset_zero (by simp)⟩ /-- A `pmf` which assigns probability `p` to `tt` and `1 - p` to `ff`. -/ def bernoulli (p : ℝ≥0) (h : p ≤ 1) : pmf bool := of_fintype (λ b, cond b p (1 - p)) (nnreal.eq $ by simp [h]) end pmf
c28fea5d3e69153d4287c3f5c6e0846675ea9ece
cb3da1b91380e7462b579b426a278072c688954a
/src/playground.lean
03dcc7a80c8b7b68595b04763561acf8564c194c
[]
no_license
hcheval/tikhonov-mann
35c93e46a8287f6479a848a9d4f02013e0bc2035
6ab7fcefe9e1156c20bd5d1998a7deabd1eeb018
refs/heads/master
1,689,232,126,344
1,630,182,255,000
1,630,182,255,000
399,859,996
0
0
null
null
null
null
UTF-8
Lean
false
false
2,981
lean
import tactic import data.real.basic import topology.metric_space.basic open_locale big_operators #print finset.sum_mono_set_of_nonneg open finset (range) example (n m : ℕ) (h : n ≤ m) : finset.range n ≤ finset.range m := finset.range_mono h lemma nonneg_sub_of_nonneg_sum {x : ℕ → ℝ} {n j : ℕ} (x_nonneg : ∀ i, 0 ≤ x i) : 0 ≤ (∑ i in finset.range (n + j), (x i)) - (∑ i in finset.range n, (x i)) := by { have h₁ : range n ≤ range (n + j) := sorry, have : (∑ i in finset.range n, (x i)) ≤ (∑ i in finset.range (n + j), (x i)) := by { have := @finset.sum_mono_set_of_nonneg ℕ ℝ _ x x_nonneg, specialize this h₁, dsimp only at this, exact this, }, exact sub_nonneg.mpr this, } example (a b : ℝ) (h₁ : 0 ≤ a) (h₂ : a ≤ 1) (h₃ : 0 ≤ b): a * b ≤ b := by { exact mul_le_of_le_one_left h₃ h₂, } example (a : ℝ) (h₁ : 0 ≤ a) (h₂ : a ≤ 1) : 0 ≤ 1 - a := sub_nonneg.mpr h₂ example (a : ℝ) (h₁ : 0 ≤ a) (h₂ : a ≤ 1) : 1 - a ≤ 1 := sub_le_self 1 h₁ example (a b c : ℝ) (h₁ : a ≤ b) : a + c ≤ b + c := add_le_add_right h₁ c example (a b : ℝ) (h₁ : 0 ≤ a) (h₂ : a ≤ 1) (h₃ : 0 ≤ b) : a * b ≤ b := mul_le_of_le_one_left h₃ h₂ example (a : ℝ) (h : 0 ≤ a) : 0 ≤ 1 / a := one_div_nonneg.mpr h example (a : ℕ) : 0 ≤ (a : ℝ) := nat.cast_nonneg a example (a : ℝ) (h : 0 ≤ a) : 0 ≤ a + 1 := by linarith #check finset.prod_le_one -- ???????? example (a b c : ℝ) (h : a = b * c) (h₁) : a / b = c := congr_fun (congr_fun h₁ a) b example (a b c : ℝ) (h : a = b * c) (h₁ : 0 ≠ b) : a / b = c := (cancel_factors.cancel_factors_eq_div (eq.symm h) (ne.symm h₁)).symm example (a b : ℝ) (h : a ≠ b) : b ≠ a := by library_search example (a b : ℝ) : dist a b = abs (a - b) := real.dist_eq a b #check abs_eq_self example (n m : ℕ) (x : ℕ → ℝ) : ∏ i in range m, x (n + i) = ∏ i in finset.Ico n (n + m), x i := by { -- library_search, } #check finset.prod_Ico_eq_prod_range #check @finset.sum_sdiff #check @finset.Ico.subset_iff #check finset.range_eq_Ico example (n m : ℕ) (h : n ≤ m) : n + (m - n) = n + m - n := begin exact (nat.add_sub_assoc h n).symm, end #check finset.Ico.diff example (a b c : ℕ) : a = b + (a - b) := begin simp, end example (n : ℕ) : n ≤ n + 1 := nat.le_succ n lemma some_ineq (a n m : ℕ) (h : a ≤ n) : a.succ ≤ n + m + 1 := by { have h₁ : a + 1 ≤ n + 1 := add_le_add_right h 1, have h₂ : n + 1 ≤ n + m + 1 := by { rw [add_comm n m, add_assoc], exact le_add_self, }, exact le_trans h₁ h₂, } -- example (a b : ℕ) : (a : ℝ) = (b : ℝ) → a = b := by { -- intros h, -- library_search, -- } lemma le_Ico_of_le (a b c : ℕ) (h : a ≤ b) : finset.Ico b c ≤ finset.Ico a c := by { dsimp, simp [has_subset.subset], intros x h₁ h₂, exact and.intro (le_trans h h₁) h₂, }
675d1888bff891e251cf28d2fc22c8d7bc9acb32
137c667471a40116a7afd7261f030b30180468c2
/src/analysis/calculus/fderiv_symmetric.lean
15f7100ce6d6f9dbb737220a65931be6adb36d5a
[ "Apache-2.0" ]
permissive
bragadeesh153/mathlib
46bf814cfb1eecb34b5d1549b9117dc60f657792
b577bb2cd1f96eb47031878256856020b76f73cd
refs/heads/master
1,687,435,188,334
1,626,384,207,000
1,626,384,207,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
19,496
lean
/- Copyright (c) 2021 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.calculus.deriv import analysis.convex.topology import analysis.calculus.mean_value /-! # Symmetry of the second derivative We show that, over the reals, the second derivative is symmetric. The most precise result is `convex.second_derivative_within_at_symmetric`. It asserts that, if a function is differentiable inside a convex set `s` with nonempty interior, and has a second derivative within `s` at a point `x`, then this second derivative at `x` is symmetric. Note that this result does not require continuity of the first derivative. The following particular cases of this statement are especially relevant: `second_derivative_symmetric_of_eventually` asserts that, if a function is differentiable on a neighborhood of `x`, and has a second derivative at `x`, then this second derivative is symmetric. `second_derivative_symmetric` asserts that, if a function is differentiable, and has a second derivative at `x`, then this second derivative is symmetric. ## Implementation note For the proof, we obtain an asymptotic expansion to order two of `f (x + v + w) - f (x + v)`, by using the mean value inequality applied to a suitable function along the segment `[x + v, x + v + w]`. This expansion involves `f'' ⬝ w` as we move along a segment directed by `w` (see `convex.taylor_approx_two_segment`). Consider the alternate sum `f (x + v + w) + f x - f (x + v) - f (x + w)`, corresponding to the values of `f` along a rectangle based at `x` with sides `v` and `w`. One can write it using the two sides directed by `w`, as `(f (x + v + w) - f (x + v)) - (f (x + w) - f x)`. Together with the previous asymptotic expansion, one deduces that it equals `f'' v w + o(1)` when `v, w` tends to `0`. Exchanging the roles of `v` and `w`, one instead gets an asymptotic expansion `f'' w v`, from which the equality `f'' v w = f'' w v` follows. In our most general statement, we only assume that `f` is differentiable inside a convex set `s`, so a few modifications have to be made. Since we don't assume continuity of `f` at `x`, we consider instead the rectangle based at `x + v + w` with sides `v` and `w`, in `convex.is_o_alternate_sum_square`, but the argument is essentially the same. It only works when `v` and `w` both point towards the interior of `s`, to make sure that all the sides of the rectangle are contained in `s` by convexity. The general case follows by linearity, though. -/ open asymptotics set open_locale topological_space variables {E F : Type*} [normed_group E] [normed_space ℝ E] [normed_group F] [normed_space ℝ F] {s : set E} (s_conv : convex s) {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ x ∈ interior s, has_fderiv_at f (f' x) x) {x : E} (xs : x ∈ s) (hx : has_fderiv_within_at f' f'' (interior s) x) include s_conv xs hx hf /-- Assume that `f` is differentiable inside a convex set `s`, and that its derivative `f'` is differentiable at a point `x`. Then, given two vectors `v` and `w` pointing inside `s`, one can Taylor-expand to order two the function `f` on the segment `[x + h v, x + h (v + w)]`, giving a bilinear estimate for `f (x + hv + hw) - f (x + hv)` in terms of `f' w` and of `f'' ⬝ w`, up to `o(h^2)`. This is a technical statement used to show that the second derivative is symmetric. -/ lemma convex.taylor_approx_two_segment {v w : E} (hv : x + v ∈ interior s) (hw : x + v + w ∈ interior s) : is_o (λ (h : ℝ), f (x + h • v + h • w) - f (x + h • v) - h • f' x w - h^2 • f'' v w - (h^2/2) • f'' w w) (λ h, h^2) (𝓝[Ioi (0 : ℝ)] 0) := begin -- it suffices to check that the expression is bounded by `ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2` for -- small enough `h`, for any positive `ε`. apply is_o.trans_is_O (is_o_iff.2 (λ ε εpos, _)) (is_O_const_mul_self ((∥v∥ + ∥w∥) * ∥w∥) _ _), -- consider a ball of radius `δ` around `x` in which the Taylor approximation for `f''` is -- good up to `δ`. rw [has_fderiv_within_at, has_fderiv_at_filter, is_o_iff] at hx, rcases metric.mem_nhds_within_iff.1 (hx εpos) with ⟨δ, δpos, sδ⟩, have E1 : ∀ᶠ h in 𝓝[Ioi (0:ℝ)] 0, h * (∥v∥ + ∥w∥) < δ, { have : filter.tendsto (λ h, h * (∥v∥ + ∥w∥)) (𝓝[Ioi (0:ℝ)] 0) (𝓝 (0 * (∥v∥ + ∥w∥))) := (continuous_id.mul continuous_const).continuous_within_at, apply (tendsto_order.1 this).2 δ, simpa using δpos }, have E2 : ∀ᶠ h in 𝓝[Ioi (0:ℝ)] 0, (h : ℝ) < 1 := mem_nhds_within_Ioi_iff_exists_Ioo_subset.2 ⟨(1 : ℝ), by simp, λ x hx, hx.2⟩, filter_upwards [E1, E2, self_mem_nhds_within], -- we consider `h` small enough that all points under consideration belong to this ball, -- and also with `0 < h < 1`. assume h hδ h_lt_1 hpos, replace hpos : 0 < h := hpos, have xt_mem : ∀ t ∈ Icc (0 : ℝ) 1, x + h • v + (t * h) • w ∈ interior s, { assume t ht, have : x + h • v ∈ interior s := s_conv.add_smul_mem_interior xs hv ⟨hpos, h_lt_1.le⟩, rw [← smul_smul], apply s_conv.interior.add_smul_mem this _ ht, rw add_assoc at hw, convert s_conv.add_smul_mem_interior xs hw ⟨hpos, h_lt_1.le⟩ using 1, simp only [add_assoc, smul_add] }, -- define a function `g` on `[0,1]` (identified with `[v, v + w]`) such that `g 1 - g 0` is the -- quantity to be estimated. We will check that its derivative is given by an explicit -- expression `g'`, that we can bound. Then the desired bound for `g 1 - g 0` follows from the -- mean value inequality. let g := λ t, f (x + h • v + (t * h) • w) - (t * h) • f' x w - (t * h^2) • f'' v w - ((t * h)^2/2) • f'' w w, set g' := λ t, f' (x + h • v + (t * h) • w) (h • w) - h • f' x w - h^2 • f'' v w - (t * h^2) • f'' w w with hg', -- check that `g'` is the derivative of `g`, by a straightforward computation have g_deriv : ∀ t ∈ Icc (0 : ℝ) 1, has_deriv_within_at g (g' t) (Icc 0 1) t, { assume t ht, apply_rules [has_deriv_within_at.sub, has_deriv_within_at.add], { refine (hf _ _).comp_has_deriv_within_at _ _, { exact xt_mem t ht }, apply has_deriv_at.has_deriv_within_at, suffices : has_deriv_at (λ u, x + h • v + (u * h) • w) (0 + 0 + (1 * h) • w) t, by simpa only [one_mul, zero_add], apply_rules [has_deriv_at.add, has_deriv_at_const, has_deriv_at.smul_const, has_deriv_at_id'] }, { suffices : has_deriv_within_at (λ u, (u * h) • f' x w) ((1 * h) • f' x w) (Icc 0 1) t, by simpa only [one_mul], apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, has_deriv_at_id'] }, { suffices : has_deriv_within_at (λ u, (u * h ^ 2) • f'' v w) ((1 * h^2) • f'' v w) (Icc 0 1) t, by simpa only [one_mul], apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, has_deriv_at_id'] }, { suffices H : has_deriv_within_at (λ u, ((u * h) ^ 2 / 2) • f'' w w) (((((2 : ℕ) : ℝ) * (t * h) ^ (2 - 1) * (1 * h))/2) • f'' w w) (Icc 0 1) t, { convert H using 2, simp only [one_mul, nat.cast_bit0, pow_one, nat.cast_one], ring }, apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, has_deriv_at_id', has_deriv_at.pow] } }, -- check that `g'` is uniformly bounded, with a suitable bound `ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2`. have g'_bound : ∀ t ∈ Ico (0 : ℝ) 1, ∥g' t∥ ≤ ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2, { assume t ht, have I : ∥h • v + (t * h) • w∥ ≤ h * (∥v∥ + ∥w∥) := calc ∥h • v + (t * h) • w∥ ≤ ∥h • v∥ + ∥(t * h) • w∥ : norm_add_le _ _ ... = h * ∥v∥ + t * (h * ∥w∥) : by simp only [norm_smul, real.norm_eq_abs, hpos.le, abs_of_nonneg, abs_mul, ht.left, mul_assoc] ... ≤ h * ∥v∥ + 1 * (h * ∥w∥) : add_le_add (le_refl _) (mul_le_mul_of_nonneg_right ht.2.le (mul_nonneg hpos.le (norm_nonneg _))) ... = h * (∥v∥ + ∥w∥) : by ring, calc ∥g' t∥ = ∥(f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)) (h • w)∥ : begin rw hg', have : h * (t * h) = t * (h * h), by ring, simp only [continuous_linear_map.coe_sub', continuous_linear_map.map_add, pow_two, continuous_linear_map.add_apply, pi.smul_apply, smul_sub, smul_add, smul_smul, ← sub_sub, continuous_linear_map.coe_smul', pi.sub_apply, continuous_linear_map.map_smul, this] end ... ≤ ∥f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)∥ * ∥h • w∥ : continuous_linear_map.le_op_norm _ _ ... ≤ (ε * ∥h • v + (t * h) • w∥) * (∥h • w∥) : begin apply mul_le_mul_of_nonneg_right _ (norm_nonneg _), have H : x + h • v + (t * h) • w ∈ metric.ball x δ ∩ interior s, { refine ⟨_, xt_mem t ⟨ht.1, ht.2.le⟩⟩, rw [add_assoc, add_mem_ball_iff_norm], exact I.trans_lt hδ }, have := sδ H, simp only [mem_set_of_eq] at this, convert this; abel end ... ≤ (ε * (∥h • v∥ + ∥h • w∥)) * (∥h • w∥) : begin apply mul_le_mul_of_nonneg_right _ (norm_nonneg _), apply mul_le_mul_of_nonneg_left _ (εpos.le), apply (norm_add_le _ _).trans, refine add_le_add (le_refl _) _, simp only [norm_smul, real.norm_eq_abs, abs_mul, abs_of_nonneg, ht.1, hpos.le, mul_assoc], exact mul_le_of_le_one_left (mul_nonneg hpos.le (norm_nonneg _)) ht.2.le, end ... = ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2 : by { simp only [norm_smul, real.norm_eq_abs, abs_mul, abs_of_nonneg, hpos.le], ring } }, -- conclude using the mean value inequality have I : ∥g 1 - g 0∥ ≤ ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2, by simpa using norm_image_sub_le_of_norm_deriv_le_segment' g_deriv g'_bound 1 (right_mem_Icc.2 zero_le_one), convert I using 1, { congr' 1, dsimp only [g], simp only [nat.one_ne_zero, add_zero, one_mul, zero_div, zero_mul, sub_zero, zero_smul, ne.def, not_false_iff, bit0_eq_zero, zero_pow'], abel }, { simp only [real.norm_eq_abs, abs_mul, add_nonneg (norm_nonneg v) (norm_nonneg w), abs_of_nonneg, mul_assoc, pow_bit0_abs, norm_nonneg, abs_pow] } end /-- One can get `f'' v w` as the limit of `h ^ (-2)` times the alternate sum of the values of `f` along the vertices of a quadrilateral with sides `h v` and `h w` based at `x`. In a setting where `f` is not guaranteed to be continuous at `f`, we can still get this if we use a quadrilateral based at `h v + h w`. -/ lemma convex.is_o_alternate_sum_square {v w : E} (h4v : x + (4 : ℝ) • v ∈ interior s) (h4w : x + (4 : ℝ) • w ∈ interior s) : is_o (λ (h : ℝ), f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h^2 • f'' v w) (λ h, h^2) (𝓝[Ioi (0 : ℝ)] 0) := begin have A : (1 : ℝ)/2 ∈ Ioc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩, have B : (1 : ℝ)/2 ∈ Icc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩, have C : ∀ (w : E), (2 : ℝ) • w = 2 • w := λ w, by simp only [two_smul], have h2v2w : x + (2 : ℝ) • v + (2 : ℝ) • w ∈ interior s, { convert s_conv.interior.add_smul_sub_mem h4v h4w B using 1, simp only [smul_sub, smul_smul, one_div, add_sub_add_left_eq_sub, mul_add, add_smul], norm_num, simp only [show (4 : ℝ) = (2 : ℝ) + (2 : ℝ), by norm_num, add_smul], abel }, have h2vww : x + (2 • v + w) + w ∈ interior s, { convert h2v2w using 1, simp only [two_smul], abel }, have h2v : x + (2 : ℝ) • v ∈ interior s, { convert s_conv.add_smul_sub_mem_interior xs h4v A using 1, simp only [smul_smul, one_div, add_sub_cancel', add_right_inj], norm_num }, have h2w : x + (2 : ℝ) • w ∈ interior s, { convert s_conv.add_smul_sub_mem_interior xs h4w A using 1, simp only [smul_smul, one_div, add_sub_cancel', add_right_inj], norm_num }, have hvw : x + (v + w) ∈ interior s, { convert s_conv.add_smul_sub_mem_interior xs h2v2w A using 1, simp only [smul_smul, one_div, add_sub_cancel', add_right_inj, smul_add, smul_sub], norm_num, abel }, have h2vw : x + (2 • v + w) ∈ interior s, { convert s_conv.interior.add_smul_sub_mem h2v h2v2w B using 1, simp only [smul_add, smul_sub, smul_smul, ← C], norm_num, abel }, have hvww : x + (v + w) + w ∈ interior s, { convert s_conv.interior.add_smul_sub_mem h2w h2v2w B using 1, simp only [one_div, add_sub_cancel', inv_smul_smul', add_sub_add_right_eq_sub, ne.def, not_false_iff, bit0_eq_zero, one_ne_zero], rw two_smul, abel }, have TA1 := s_conv.taylor_approx_two_segment hf xs hx h2vw h2vww, have TA2 := s_conv.taylor_approx_two_segment hf xs hx hvw hvww, convert TA1.sub TA2, ext h, simp only [two_smul, smul_add, ← add_assoc, continuous_linear_map.map_add, continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', continuous_linear_map.map_smul], abel, end /-- Assume that `f` is differentiable inside a convex set `s`, and that its derivative `f'` is differentiable at a point `x`. Then, given two vectors `v` and `w` pointing inside `s`, one has `f'' v w = f'' w v`. Superseded by `convex.second_derivative_within_at_symmetric`, which removes the assumption that `v` and `w` point inside `s`. -/ lemma convex.second_derivative_within_at_symmetric_of_mem_interior {v w : E} (h4v : x + (4 : ℝ) • v ∈ interior s) (h4w : x + (4 : ℝ) • w ∈ interior s) : f'' w v = f'' v w := begin have A : is_o (λ (h : ℝ), h^2 • (f'' w v- f'' v w)) (λ h, h^2) (𝓝[Ioi (0 : ℝ)] 0), { convert (s_conv.is_o_alternate_sum_square hf xs hx h4v h4w).sub (s_conv.is_o_alternate_sum_square hf xs hx h4w h4v), ext h, simp only [add_comm, smul_add, smul_sub], abel }, have B : is_o (λ (h : ℝ), f'' w v - f'' v w) (λ h, (1 : ℝ)) (𝓝[Ioi (0 : ℝ)] 0), { have : is_O (λ (h : ℝ), 1/h^2) (λ h, 1/h^2) (𝓝[Ioi (0 : ℝ)] 0) := is_O_refl _ _, have C := this.smul_is_o A, apply C.congr' _ _, { filter_upwards [self_mem_nhds_within], assume h hpos, rw [← one_smul ℝ (f'' w v - f'' v w), smul_smul, smul_smul], congr' 1, field_simp [has_lt.lt.ne' hpos] }, { filter_upwards [self_mem_nhds_within], assume h hpos, field_simp [has_lt.lt.ne' hpos, has_scalar.smul] } }, simpa only [sub_eq_zero] using (is_o_const_const_iff (@one_ne_zero ℝ _ _)).1 B, end omit s_conv xs hx hf /-- If a function is differentiable inside a convex set with nonempty interior, and has a second derivative at a point of this convex set, then this second derivative is symmetric. -/ theorem convex.second_derivative_within_at_symmetric {s : set E} (s_conv : convex s) (hne : (interior s).nonempty) {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ x ∈ interior s, has_fderiv_at f (f' x) x) {x : E} (xs : x ∈ s) (hx : has_fderiv_within_at f' f'' (interior s) x) (v w : E) : f'' v w = f'' w v := begin /- we work around a point `x + 4 z` in the interior of `s`. For any vector `m`, then `x + 4 (z + t m)` also belongs to the interior of `s` for small enough `t`. This means that we will be able to apply `second_derivative_within_at_symmetric_of_mem_interior` to show that `f''` is symmetric, after cancelling all the contributions due to `z`. -/ rcases hne with ⟨y, hy⟩, obtain ⟨z, hz⟩ : ∃ z, z = ((1:ℝ) / 4) • (y - x) := ⟨((1:ℝ) / 4) • (y - x), rfl⟩, have A : ∀ (m : E), filter.tendsto (λ (t : ℝ), x + (4 : ℝ) • (z + t • m)) (𝓝 0) (𝓝 y), { assume m, have : x + (4 : ℝ) • (z + (0 : ℝ) • m) = y, by simp [hz], rw ← this, refine tendsto_const_nhds.add _, refine tendsto_const_nhds.smul _, refine tendsto_const_nhds.add _, exact continuous_at_id.smul continuous_at_const }, have B : ∀ (m : E), ∀ᶠ t in 𝓝[Ioi (0 : ℝ)] (0 : ℝ), x + (4 : ℝ) • (z + t • m) ∈ interior s, { assume m, apply nhds_within_le_nhds, apply A m, rw [mem_interior_iff_mem_nhds] at hy, exact interior_mem_nhds.2 hy }, -- we choose `t m > 0` such that `x + 4 (z + (t m) m)` belongs to the interior of `s`, for any -- vector `m`. choose t ts tpos using λ m, ((B m).and self_mem_nhds_within).exists, -- applying `second_derivative_within_at_symmetric_of_mem_interior` to the vectors `z` -- and `z + (t m) m`, we deduce that `f'' m z = f'' z m` for all `m`. have C : ∀ (m : E), f'' m z = f'' z m, { assume m, have : f'' (z + t m • m) (z + t 0 • 0) = f'' (z + t 0 • 0) (z + t m • m) := s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts 0) (ts m), simp only [continuous_linear_map.map_add, continuous_linear_map.map_smul, add_right_inj, continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', add_zero, continuous_linear_map.zero_apply, smul_zero, continuous_linear_map.map_zero] at this, exact smul_left_injective F (tpos m).ne' this }, -- applying `second_derivative_within_at_symmetric_of_mem_interior` to the vectors `z + (t v) v` -- and `z + (t w) w`, we deduce that `f'' v w = f'' w v`. Cross terms involving `z` can be -- eliminated thanks to the fact proved above that `f'' m z = f'' z m`. have : f'' (z + t v • v) (z + t w • w) = f'' (z + t w • w) (z + t v • v) := s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts w) (ts v), simp only [continuous_linear_map.map_add, continuous_linear_map.map_smul, smul_add, smul_smul, continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', C] at this, rw ← sub_eq_zero at this, abel at this, simp only [one_gsmul, neg_smul, sub_eq_zero, mul_comm, ← sub_eq_add_neg] at this, apply smul_left_injective F _ this, simp [(tpos v).ne', (tpos w).ne'] end /-- If a function is differentiable around `x`, and has two derivatives at `x`, then the second derivative is symmetric. -/ theorem second_derivative_symmetric_of_eventually {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ᶠ y in 𝓝 x, has_fderiv_at f (f' y) y) (hx : has_fderiv_at f' f'' x) (v w : E) : f'' v w = f'' w v := begin rcases metric.mem_nhds_iff.1 hf with ⟨ε, εpos, hε⟩, have A : (interior (metric.ball x ε)).nonempty, by { rw metric.is_open_ball.interior_eq, exact metric.nonempty_ball εpos }, exact convex.second_derivative_within_at_symmetric (convex_ball x ε) A (λ y hy, hε (interior_subset hy)) (metric.mem_ball_self εpos) hx.has_fderiv_within_at v w, end /-- If a function is differentiable, and has two derivatives at `x`, then the second derivative is symmetric. -/ theorem second_derivative_symmetric {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ y, has_fderiv_at f (f' y) y) (hx : has_fderiv_at f' f'' x) (v w : E) : f'' v w = f'' w v := second_derivative_symmetric_of_eventually (filter.eventually_of_forall hf) hx v w
4d9aefd406e82c6d7db460b28aeaaa764f22f093
75db7e3219bba2fbf41bf5b905f34fcb3c6ca3f2
/library/data/pnat.lean
8c90792bd474de08d839830feb2448fd3348beef
[ "Apache-2.0" ]
permissive
jroesch/lean
30ef0860fa905d35b9ad6f76de1a4f65c9af6871
3de4ec1a6ce9a960feb2a48eeea8b53246fa34f2
refs/heads/master
1,586,090,835,348
1,455,142,203,000
1,455,142,277,000
51,536,958
1
0
null
1,455,215,811,000
1,455,215,811,000
null
UTF-8
Lean
false
false
12,725
lean
/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis Basic facts about the positive natural numbers. Developed primarily for use in the construction of ℝ. For the most part, the only theorems here are those needed for that construction. -/ import data.rat.order data.nat open nat rat subtype eq.ops namespace pnat definition pnat := { n : ℕ | n > 0 } notation `ℕ+` := pnat definition pos (n : ℕ) (H : n > 0) : ℕ+ := tag n H definition nat_of_pnat (p : ℕ+) : ℕ := elt_of p reserve postfix `~`:std.prec.max_plus local postfix ~ := nat_of_pnat theorem pnat_pos (p : ℕ+) : p~ > 0 := has_property p protected definition add (p q : ℕ+) : ℕ+ := tag (p~ + q~) (add_pos (pnat_pos p) (pnat_pos q)) protected definition mul (p q : ℕ+) : ℕ+ := tag (p~ * q~) (mul_pos (pnat_pos p) (pnat_pos q)) protected definition le (p q : ℕ+) := p~ ≤ q~ protected definition lt (p q : ℕ+) := p~ < q~ definition pnat_has_add [instance] [reducible] : has_add pnat := has_add.mk pnat.add definition pnat_has_mul [instance] [reducible] : has_mul pnat := has_mul.mk pnat.mul definition pnat_has_le [instance] [reducible] : has_le pnat := has_le.mk pnat.le definition pnat_has_lt [instance] [reducible] : has_lt pnat := has_lt.mk pnat.lt definition pnat_has_one [instance] [reducible] : has_one pnat := has_one.mk (pos (1:nat) dec_trivial) protected lemma mul_def (p q : ℕ+) : p * q = tag (p~ * q~) (mul_pos (pnat_pos p) (pnat_pos q)) := rfl protected lemma le_def (p q : ℕ+) : (p ≤ q) = (p~ ≤ q~) := rfl protected lemma lt_def (p q : ℕ+) : (p < q) = (p~ < q~) := rfl protected theorem pnat.eq {p q : ℕ+} : p~ = q~ → p = q := subtype.eq definition pnat_le_decidable [instance] (p q : ℕ+) : decidable (p ≤ q) := begin rewrite pnat.le_def, exact nat.decidable_le p~ q~ end definition pnat_lt_decidable [instance] {p q : ℕ+} : decidable (p < q) := begin rewrite pnat.lt_def, exact nat.decidable_lt p~ q~ end protected theorem le_trans {p q r : ℕ+} : p ≤ q → q ≤ r → p ≤ r := begin rewrite *pnat.le_def, apply nat.le_trans end definition max (p q : ℕ+) : ℕ+ := tag (max p~ q~) (lt_of_lt_of_le (!pnat_pos) (!le_max_right)) protected theorem max_right (a b : ℕ+) : max a b ≥ b := begin change b ≤ max a b, rewrite pnat.le_def, apply le_max_right end protected theorem max_left (a b : ℕ+) : max a b ≥ a := begin change a ≤ max a b, rewrite pnat.le_def, apply le_max_left end protected theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b := begin rewrite pnat.lt_def at H, exact pnat.eq (max_eq_right_of_lt H) end protected theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a := begin rewrite pnat.lt_def at H, exact pnat.eq (max_eq_left (le_of_not_gt H)) end protected theorem le_of_lt {a b : ℕ+} : a < b → a ≤ b := begin rewrite [pnat.lt_def, pnat.le_def], apply nat.le_of_lt end protected theorem not_lt_of_ge {a b : ℕ+} : a ≤ b → ¬ (b < a) := begin rewrite [pnat.lt_def, pnat.le_def], apply not_lt_of_ge end protected theorem le_of_not_gt {a b : ℕ+} : ¬ a < b → b ≤ a := begin rewrite [pnat.lt_def, pnat.le_def], apply le_of_not_gt end protected theorem eq_of_le_of_ge {a b : ℕ+} : a ≤ b → b ≤ a → a = b := begin rewrite [+pnat.le_def], intros H1 H2, exact pnat.eq (eq_of_le_of_ge H1 H2) end protected theorem le_refl (a : ℕ+) : a ≤ a := begin rewrite pnat.le_def end notation 2 := (tag 2 dec_trivial : ℕ+) notation 3 := (tag 3 dec_trivial : ℕ+) definition pone : ℕ+ := tag 1 dec_trivial definition rat_of_pnat [reducible] (n : ℕ+) : ℚ := n~ theorem pnat.to_rat_of_nat (n : ℕ+) : rat_of_pnat n = of_nat n~ := rfl -- these will come in rat theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial theorem rat_of_pnat_ge_one (n : ℕ+) : rat_of_pnat n ≥ 1 := of_nat_le_of_nat_of_le (pnat_pos n) theorem rat_of_pnat_is_pos (n : ℕ+) : rat_of_pnat n > 0 := of_nat_lt_of_nat_of_lt (pnat_pos n) theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n := of_nat_le_of_nat_of_le H theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : m < n) : of_nat m < of_nat n := of_nat_lt_of_nat_of_lt H theorem rat_of_pnat_le_of_pnat_le {m n : ℕ+} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n := begin rewrite pnat.le_def at H, exact of_nat_le_of_nat_of_le H end theorem rat_of_pnat_lt_of_pnat_lt {m n : ℕ+} (H : m < n) : rat_of_pnat m < rat_of_pnat n := begin rewrite pnat.lt_def at H, exact of_nat_lt_of_nat_of_lt H end theorem pnat_le_of_rat_of_pnat_le {m n : ℕ+} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n := begin rewrite pnat.le_def, exact le_of_of_nat_le_of_nat H end definition inv (n : ℕ+) : ℚ := (1 : ℚ) / rat_of_pnat n local postfix `⁻¹` := inv protected theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := one_div_pos_of_pos !rat_of_pnat_is_pos theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) := begin unfold inv, change 1 / rat_of_pnat n ≤ 1 / 1, apply one_div_le_one_div_of_le, apply zero_lt_one, apply rat_of_pnat_ge_one end theorem inv_lt_one_of_gt {n : ℕ+} (H : n~ > 1) : n⁻¹ < (1 : ℚ) := begin unfold inv, change 1 / rat_of_pnat n < 1 / 1, apply one_div_lt_one_div_of_lt, apply zero_lt_one, rewrite pnat.to_rat_of_nat, apply (of_nat_lt_of_nat_of_lt H) end theorem pone_inv : pone⁻¹ = 1 := rfl theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ := begin apply le_of_lt, apply add_pos, repeat apply pnat.inv_pos end protected theorem one_mul (n : ℕ+) : pone * n = n := begin apply pnat.eq, unfold pone, rewrite [pnat.mul_def, ↑nat_of_pnat, one_mul] end theorem pone_le (n : ℕ+) : pone ≤ n := begin rewrite pnat.le_def, exact succ_le_of_lt (pnat_pos n) end theorem pnat_to_rat_mul (a b : ℕ+) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := rfl theorem mul_lt_mul_left {a b c : ℕ+} (H : a < b) : a * c < b * c := begin rewrite [pnat.lt_def at *], exact mul_lt_mul_of_pos_right H !pnat_pos end theorem one_lt_two : pone < 2 := !nat.le_refl theorem inv_two_mul_lt_inv (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ := begin rewrite ↑inv, apply one_div_lt_one_div_of_lt, apply rat_of_pnat_is_pos, have H : n~ < (2 * n)~, begin rewrite -pnat.one_mul at {1}, rewrite -pnat.lt_def, apply mul_lt_mul_left, apply one_lt_two end, apply of_nat_lt_of_nat_of_lt, apply H end theorem inv_two_mul_le_inv (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := rat.le_of_lt !inv_two_mul_lt_inv theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := one_div_le_one_div_of_le !rat_of_pnat_is_pos (rat_of_pnat_le_of_pnat_le H) theorem inv_gt_of_lt {p q : ℕ+} (H : p < q) : q⁻¹ < p⁻¹ := one_div_lt_one_div_of_lt !rat_of_pnat_is_pos (rat_of_pnat_lt_of_pnat_lt H) theorem ge_of_inv_le {p q : ℕ+} (H : p⁻¹ ≤ q⁻¹) : q ≤ p := pnat_le_of_rat_of_pnat_le (le_of_one_div_le_one_div !rat_of_pnat_is_pos H) theorem two_mul (p : ℕ+) : rat_of_pnat (2 * p) = (1 + 1) * rat_of_pnat p := by rewrite pnat_to_rat_mul protected theorem add_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := begin rewrite [↑inv, -(add_halves (1 / (rat_of_pnat p))), div_div_eq_div_mul], have H : rat_of_pnat (2 * p) = rat_of_pnat p * (1 + 1), by rewrite [rat.mul_comm, two_mul], rewrite *H end theorem add_halves_double (m n : ℕ+) : m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := have hsimp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), by intros; rewrite [rat.add_assoc, -(rat.add_assoc a b b), {_+b}rat.add_comm, -*rat.add_assoc], by rewrite [-pnat.add_halves m, -pnat.add_halves n, hsimp] protected theorem inv_mul_eq_mul_inv {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ := begin rewrite [↑inv, pnat_to_rat_mul, one_div_mul_one_div] end protected theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ := begin rewrite [pnat.inv_mul_eq_mul_inv, -{q⁻¹}rat.one_mul at {2}], apply mul_le_mul, apply inv_le_one, apply le.refl, apply le_of_lt, apply pnat.inv_pos, apply rat.le_of_lt rat.zero_lt_one end theorem pnat_mul_le_mul_left' (a b c : ℕ+) : a ≤ b → c * a ≤ c * b := begin rewrite +pnat.le_def, intro H, apply mul_le_mul_of_nonneg_left H, apply le_of_lt, apply pnat_pos end protected theorem mul_assoc (a b c : ℕ+) : a * b * c = a * (b * c) := pnat.eq !mul.assoc protected theorem mul_comm (a b : ℕ+) : a * b = b * a := pnat.eq !mul.comm protected theorem add_assoc (a b c : ℕ+) : a + b + c = a + (b + c) := pnat.eq !add.assoc protected theorem mul_le_mul_left (p q : ℕ+) : q ≤ p * q := begin rewrite [-pnat.one_mul at {1}, pnat.mul_comm, pnat.mul_comm p], apply pnat_mul_le_mul_left', apply pone_le end protected theorem mul_le_mul_right (p q : ℕ+) : p ≤ p * q := by rewrite pnat.mul_comm; apply pnat.mul_le_mul_left theorem pnat.lt_of_not_le {p q : ℕ+} : ¬ p ≤ q → q < p := begin rewrite [pnat.le_def, pnat.lt_def], apply lt_of_not_ge end protected theorem inv_cancel_left (p : ℕ+) : rat_of_pnat p * p⁻¹ = (1 : ℚ) := mul_one_div_cancel (ne.symm (ne_of_lt !rat_of_pnat_is_pos)) protected theorem inv_cancel_right (p : ℕ+) : p⁻¹ * rat_of_pnat p = (1 : ℚ) := by rewrite rat.mul_comm; apply pnat.inv_cancel_left theorem lt_add_left (p q : ℕ+) : p < p + q := begin have H : p~ < p~ + q~, begin rewrite -nat.add_zero at {1}, apply nat.add_lt_add_left, apply pnat_pos end, apply H end theorem inv_add_lt_left (p q : ℕ+) : (p + q)⁻¹ < p⁻¹ := by apply inv_gt_of_lt; apply lt_add_left theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_pnat n := begin apply div_le_of_le_mul, apply lt_of_lt_of_le, apply pnat.inv_pos, rotate 1, apply H, apply le_mul_of_div_le, apply rat_of_pnat_is_pos, apply H end theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ := assert hsimp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, begin intro a b c, rewrite[-*rat.mul_assoc], exact (!mul.right_comm ▸ rfl), end, by rewrite [rat.mul_comm, *pnat.inv_mul_eq_mul_inv, hsimp, *pnat.inv_cancel_left, *rat.one_mul] definition pceil (a : ℚ) : ℕ+ := tag (ubound a) !ubound_pos theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a := le.trans (inv_ge_of_le H) (one_div_le_one_div_of_le Ha (ubound_ge a)) theorem inv_pceil_div (a b : ℚ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a := assert (pceil (a / b))⁻¹ ≤ 1 / (1 / (b / a)), begin apply one_div_le_one_div_of_le, show 0 < 1 / (b / a), from one_div_pos_of_pos (div_pos_of_pos_of_pos Hb Ha), show 1 / (b / a) ≤ rat_of_pnat (pceil (a / b)), begin rewrite div_div_eq_mul_div, rewrite one_mul, apply ubound_ge end end, begin rewrite one_div_one_div at this, exact this end theorem sep_by_inv {a b : ℚ} : a > b → ∃ N : ℕ+, a > (b + N⁻¹ + N⁻¹) := begin change b < a → ∃ N : ℕ+, (b + N⁻¹ + N⁻¹) < a, intro H, apply exists.elim (exists_add_lt_and_pos_of_lt H), intro c Hc, existsi (pceil ((1 + 1 + 1) / c)), apply lt.trans, rotate 1, apply and.left Hc, rewrite rat.add_assoc, apply rat.add_lt_add_left, rewrite -(add_halves c) at {3}, apply add_lt_add, repeat (apply lt_of_le_of_lt; apply inv_pceil_div; apply dec_trivial; apply and.right Hc; apply div_lt_div_of_pos_of_lt_of_pos; apply two_pos; exact dec_trivial; apply and.right Hc) end theorem nonneg_of_ge_neg_invs (a : ℚ) : (∀ n : ℕ+, -n⁻¹ ≤ a) → 0 ≤ a := begin intro H, apply le_of_not_gt, suppose a < 0, have H2 : 0 < -a, from neg_pos_of_neg this, (not_lt_of_ge !H) (iff.mp !lt_neg_iff_lt_neg (calc (pceil (of_num 2 / -a))⁻¹ ≤ -a / of_num 2 : !inv_pceil_div dec_trivial H2 ... < -a / 1 : div_lt_div_of_pos_of_lt_of_pos dec_trivial dec_trivial H2 ... = -a : !div_one)) end theorem pnat_bound {ε : ℚ} (Hε : ε > 0) : ∃ p : ℕ+, p⁻¹ ≤ ε := begin existsi (pceil (1 / ε)), rewrite -(one_div_one_div ε) at {2}, apply pceil_helper, apply pnat.le_refl, apply one_div_pos_of_pos Hε end theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial, by rewrite[*pnat.inv_mul_eq_mul_inv,-*right_distrib,T,rat.one_mul] theorem rat_power_two_le (k : ℕ+) : rat_of_pnat k ≤ 2^k~ := !binary_nat_bound end pnat
3eddd95ab99f2d54578f0b07fcf8e2518ad8d080
5abe9de35738a0e2931cac47648658509f165c1e
/Prova_em_Lean/Exercicios_a_c_d_e.lean
4eea92561c6dff409a2fd9af890a740c16f00146
[]
no_license
AlessandroDangelo/Matem-tica-Discreta-1
2d827d50d5c48144e4783e85af6e87d1a515b0b5
b154612d20d88a9fb173a238aa2a9f8e5375d9f7
refs/heads/main
1,680,075,356,062
1,617,378,986,000
1,617,378,986,000
354,065,141
0
0
null
null
null
null
UTF-8
Lean
false
false
586
lean
variables P Q S T R : Prop. lemma exA (H1 : (P ∧ Q) ∧ R) (H2 : S ∧ T) : Q ∧ S := and.intro -- Q ∧ S (and.elim_right --Q (and.elim_left H1)) (and.elim_left H2). -- S lemma exC (H1 : P) (H2 : P →(P → Q)) : Q := show Q, from (H2 H1 (show P, from (H1))). lemma exD : (P ∧ Q) → P := assume H : P ∧ Q, (and.elim_left H). lemma exE (H : P) : Q → P ∧ Q := assume H1 : Q, and.intro H -- P H1. -- Q
e96d9628e09de6153c7e0fcb09264c0af4e7929b
c777c32c8e484e195053731103c5e52af26a25d1
/src/data/int/interval.lean
4856c9e4000093df436a4d5e60f4116d90e7c684
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
7,035
lean
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import algebra.char_zero.lemmas import order.locally_finite import data.finset.locally_finite /-! # Finite intervals of integers > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file proves that `ℤ` is a `locally_finite_order` and calculates the cardinality of its intervals as finsets and fintypes. -/ open finset int instance : locally_finite_order ℤ := { finset_Icc := λ a b, (finset.range (b + 1 - a).to_nat).map $ nat.cast_embedding.trans $ add_left_embedding a, finset_Ico := λ a b, (finset.range (b - a).to_nat).map $ nat.cast_embedding.trans $ add_left_embedding a, finset_Ioc := λ a b, (finset.range (b - a).to_nat).map $ nat.cast_embedding.trans $ add_left_embedding (a + 1), finset_Ioo := λ a b, (finset.range (b - a - 1).to_nat).map $ nat.cast_embedding.trans $ add_left_embedding (a + 1), finset_mem_Icc := λ a b x, begin simp_rw [mem_map, exists_prop, mem_range, int.lt_to_nat, function.embedding.trans_apply, nat.cast_embedding_apply, add_left_embedding_apply], split, { rintro ⟨a, h, rfl⟩, rw [lt_sub_iff_add_lt, int.lt_add_one_iff, add_comm] at h, exact ⟨int.le.intro rfl, h⟩ }, { rintro ⟨ha, hb⟩, use (x - a).to_nat, rw ←lt_add_one_iff at hb, rw to_nat_sub_of_le ha, exact ⟨sub_lt_sub_right hb _, add_sub_cancel'_right _ _⟩ } end, finset_mem_Ico := λ a b x, begin simp_rw [mem_map, exists_prop, mem_range, int.lt_to_nat, function.embedding.trans_apply, nat.cast_embedding_apply, add_left_embedding_apply], split, { rintro ⟨a, h, rfl⟩, exact ⟨int.le.intro rfl, lt_sub_iff_add_lt'.mp h⟩ }, { rintro ⟨ha, hb⟩, use (x - a).to_nat, rw to_nat_sub_of_le ha, exact ⟨sub_lt_sub_right hb _, add_sub_cancel'_right _ _⟩ } end, finset_mem_Ioc := λ a b x, begin simp_rw [mem_map, exists_prop, mem_range, int.lt_to_nat, function.embedding.trans_apply, nat.cast_embedding_apply, add_left_embedding_apply], split, { rintro ⟨a, h, rfl⟩, rw [←add_one_le_iff, le_sub_iff_add_le', add_comm _ (1 : ℤ), ←add_assoc] at h, exact ⟨int.le.intro rfl, h⟩ }, { rintro ⟨ha, hb⟩, use (x - (a + 1)).to_nat, rw [to_nat_sub_of_le ha, ←add_one_le_iff, sub_add, add_sub_cancel], exact ⟨sub_le_sub_right hb _, add_sub_cancel'_right _ _⟩ } end, finset_mem_Ioo := λ a b x, begin simp_rw [mem_map, exists_prop, mem_range, int.lt_to_nat, function.embedding.trans_apply, nat.cast_embedding_apply, add_left_embedding_apply], split, { rintro ⟨a, h, rfl⟩, rw [sub_sub, lt_sub_iff_add_lt'] at h, exact ⟨int.le.intro rfl, h⟩ }, { rintro ⟨ha, hb⟩, use (x - (a + 1)).to_nat, rw [to_nat_sub_of_le ha, sub_sub], exact ⟨sub_lt_sub_right hb _, add_sub_cancel'_right _ _⟩ } end } namespace int variables (a b : ℤ) lemma Icc_eq_finset_map : Icc a b = (finset.range (b + 1 - a).to_nat).map (nat.cast_embedding.trans $ add_left_embedding a) := rfl lemma Ico_eq_finset_map : Ico a b = (finset.range (b - a).to_nat).map (nat.cast_embedding.trans $ add_left_embedding a) := rfl lemma Ioc_eq_finset_map : Ioc a b = (finset.range (b - a).to_nat).map (nat.cast_embedding.trans $ add_left_embedding (a + 1)) := rfl lemma Ioo_eq_finset_map : Ioo a b = (finset.range (b - a - 1).to_nat).map (nat.cast_embedding.trans $ add_left_embedding (a + 1)) := rfl @[simp] lemma card_Icc : (Icc a b).card = (b + 1 - a).to_nat := by { change (finset.map _ _).card = _, rw [finset.card_map, finset.card_range] } @[simp] lemma card_Ico : (Ico a b).card = (b - a).to_nat := by { change (finset.map _ _).card = _, rw [finset.card_map, finset.card_range] } @[simp] lemma card_Ioc : (Ioc a b).card = (b - a).to_nat := by { change (finset.map _ _).card = _, rw [finset.card_map, finset.card_range] } @[simp] lemma card_Ioo : (Ioo a b).card = (b - a - 1).to_nat := by { change (finset.map _ _).card = _, rw [finset.card_map, finset.card_range] } lemma card_Icc_of_le (h : a ≤ b + 1) : ((Icc a b).card : ℤ) = b + 1 - a := by rw [card_Icc, to_nat_sub_of_le h] lemma card_Ico_of_le (h : a ≤ b) : ((Ico a b).card : ℤ) = b - a := by rw [card_Ico, to_nat_sub_of_le h] lemma card_Ioc_of_le (h : a ≤ b) : ((Ioc a b).card : ℤ) = b - a := by rw [card_Ioc, to_nat_sub_of_le h] lemma card_Ioo_of_lt (h : a < b) : ((Ioo a b).card : ℤ) = b - a - 1 := by rw [card_Ioo, sub_sub, to_nat_sub_of_le h] @[simp] lemma card_fintype_Icc : fintype.card (set.Icc a b) = (b + 1 - a).to_nat := by rw [←card_Icc, fintype.card_of_finset] @[simp] lemma card_fintype_Ico : fintype.card (set.Ico a b) = (b - a).to_nat := by rw [←card_Ico, fintype.card_of_finset] @[simp] lemma card_fintype_Ioc : fintype.card (set.Ioc a b) = (b - a).to_nat := by rw [←card_Ioc, fintype.card_of_finset] @[simp] lemma card_fintype_Ioo : fintype.card (set.Ioo a b) = (b - a - 1).to_nat := by rw [←card_Ioo, fintype.card_of_finset] lemma card_fintype_Icc_of_le (h : a ≤ b + 1) : (fintype.card (set.Icc a b) : ℤ) = b + 1 - a := by rw [card_fintype_Icc, to_nat_sub_of_le h] lemma card_fintype_Ico_of_le (h : a ≤ b) : (fintype.card (set.Ico a b) : ℤ) = b - a := by rw [card_fintype_Ico, to_nat_sub_of_le h] lemma card_fintype_Ioc_of_le (h : a ≤ b) : (fintype.card (set.Ioc a b) : ℤ) = b - a := by rw [card_fintype_Ioc, to_nat_sub_of_le h] lemma card_fintype_Ioo_of_lt (h : a < b) : (fintype.card (set.Ioo a b) : ℤ) = b - a - 1 := by rw [card_fintype_Ioo, sub_sub, to_nat_sub_of_le h] lemma image_Ico_mod (n a : ℤ) (h : 0 ≤ a) : (Ico n (n+a)).image (% a) = Ico 0 a := begin obtain rfl | ha := eq_or_lt_of_le h, { simp, }, ext i, simp only [mem_image, exists_prop, mem_range, mem_Ico], split, { rintro ⟨i, h, rfl⟩, exact ⟨mod_nonneg i (ne_of_gt ha), mod_lt_of_pos i ha⟩, }, intro hia, have hn := int.mod_add_div n a, obtain hi | hi := lt_or_le i (n % a), { refine ⟨i + a * (n/a + 1), ⟨_, _⟩, _⟩, { rw [add_comm (n/a), mul_add, mul_one, ← add_assoc], refine hn.symm.le.trans (add_le_add_right _ _), simpa only [zero_add] using add_le_add (hia.left) (int.mod_lt_of_pos n ha).le, }, { refine lt_of_lt_of_le (add_lt_add_right hi (a * (n/a + 1))) _, rw [mul_add, mul_one, ← add_assoc, hn], }, { rw [int.add_mul_mod_self_left, int.mod_eq_of_lt hia.left hia.right], } }, { refine ⟨i + a * (n/a), ⟨_, _⟩, _⟩, { exact hn.symm.le.trans (add_le_add_right hi _), }, { rw [add_comm n a], refine add_lt_add_of_lt_of_le hia.right (le_trans _ hn.le), simp only [zero_le, le_add_iff_nonneg_left], exact int.mod_nonneg n (ne_of_gt ha), }, { rw [int.add_mul_mod_self_left, int.mod_eq_of_lt hia.left hia.right], } }, end end int
77f89eabf3ba979a46e6383422a6ab1693967e8d
94e33a31faa76775069b071adea97e86e218a8ee
/src/geometry/manifold/smooth_manifold_with_corners.lean
8c6bf28da0a37d9855db99ae4dec9af670476df8
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
42,081
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.calculus.cont_diff import geometry.manifold.charted_space /-! # Smooth manifolds (possibly with boundary or corners) A smooth manifold is a manifold modelled on a normed vector space, or a subset like a half-space (to get manifolds with boundaries) for which the changes of coordinates are smooth maps. We define a model with corners as a map `I : H → E` embedding nicely the topological space `H` in the vector space `E` (or more precisely as a structure containing all the relevant properties). Given such a model with corners `I` on `(E, H)`, we define the groupoid of local homeomorphisms of `H` which are smooth when read in `E` (for any regularity `n : with_top ℕ`). With this groupoid at hand and the general machinery of charted spaces, we thus get the notion of `C^n` manifold with respect to any model with corners `I` on `(E, H)`. We also introduce a specific type class for `C^∞` manifolds as these are the most commonly used. ## Main definitions * `model_with_corners 𝕜 E H` : a structure containing informations on the way a space `H` embeds in a model vector space E over the field `𝕜`. This is all that is needed to define a smooth manifold with model space `H`, and model vector space `E`. * `model_with_corners_self 𝕜 E` : trivial model with corners structure on the space `E` embedded in itself by the identity. * `cont_diff_groupoid n I` : when `I` is a model with corners on `(𝕜, E, H)`, this is the groupoid of local homeos of `H` which are of class `C^n` over the normed field `𝕜`, when read in `E`. * `smooth_manifold_with_corners I M` : a type class saying that the charted space `M`, modelled on the space `H`, has `C^∞` changes of coordinates with respect to the model with corners `I` on `(𝕜, E, H)`. This type class is just a shortcut for `has_groupoid M (cont_diff_groupoid ∞ I)`. * `ext_chart_at I x`: in a smooth manifold with corners with the model `I` on `(E, H)`, the charts take values in `H`, but often we may want to use their `E`-valued version, obtained by composing the charts with `I`. Since the target is in general not open, we can not register them as local homeomorphisms, but we register them as local equivs. `ext_chart_at I x` is the canonical such local equiv around `x`. As specific examples of models with corners, we define (in the file `real_instances.lean`) * `model_with_corners_self ℝ (euclidean_space (fin n))` for the model space used to define `n`-dimensional real manifolds without boundary (with notation `𝓡 n` in the locale `manifold`) * `model_with_corners ℝ (euclidean_space (fin n)) (euclidean_half_space n)` for the model space used to define `n`-dimensional real manifolds with boundary (with notation `𝓡∂ n` in the locale `manifold`) * `model_with_corners ℝ (euclidean_space (fin n)) (euclidean_quadrant n)` for the model space used to define `n`-dimensional real manifolds with corners With these definitions at hand, to invoke an `n`-dimensional real manifold without boundary, one could use `variables {n : ℕ} {M : Type*} [topological_space M] [charted_space (euclidean_space (fin n)) M] [smooth_manifold_with_corners (𝓡 n) M]`. However, this is not the recommended way: a theorem proved using this assumption would not apply for instance to the tangent space of such a manifold, which is modelled on `(euclidean_space (fin n)) × (euclidean_space (fin n))` and not on `euclidean_space (fin (2 * n))`! In the same way, it would not apply to product manifolds, modelled on `(euclidean_space (fin n)) × (euclidean_space (fin m))`. The right invocation does not focus on one specific construction, but on all constructions sharing the right properties, like `variables {E : Type*} [normed_group E] [normed_space ℝ E] [finite_dimensional ℝ E] {I : model_with_corners ℝ E E} [I.boundaryless] {M : Type*} [topological_space M] [charted_space E M] [smooth_manifold_with_corners I M]` Here, `I.boundaryless` is a typeclass property ensuring that there is no boundary (this is for instance the case for `model_with_corners_self`, or products of these). Note that one could consider as a natural assumption to only use the trivial model with corners `model_with_corners_self ℝ E`, but again in product manifolds the natural model with corners will not be this one but the product one (and they are not defeq as `(λp : E × F, (p.1, p.2))` is not defeq to the identity). So, it is important to use the above incantation to maximize the applicability of theorems. ## Implementation notes We want to talk about manifolds modelled on a vector space, but also on manifolds with boundary, modelled on a half space (or even manifolds with corners). For the latter examples, we still want to define smooth functions, tangent bundles, and so on. As smooth functions are well defined on vector spaces or subsets of these, one could take for model space a subtype of a vector space. With the drawback that the whole vector space itself (which is the most basic example) is not directly a subtype of itself: the inclusion of `univ : set E` in `set E` would show up in the definition, instead of `id`. A good abstraction covering both cases it to have a vector space `E` (with basic example the Euclidean space), a model space `H` (with basic example the upper half space), and an embedding of `H` into `E` (which can be the identity for `H = E`, or `subtype.val` for manifolds with corners). We say that the pair `(E, H)` with their embedding is a model with corners, and we encompass all the relevant properties (in particular the fact that the image of `H` in `E` should have unique differentials) in the definition of `model_with_corners`. We concentrate on `C^∞` manifolds: all the definitions work equally well for `C^n` manifolds, but later on it is a pain to carry all over the smoothness parameter, especially when one wants to deal with `C^k` functions as there would be additional conditions `k ≤ n` everywhere. Since one deals almost all the time with `C^∞` (or analytic) manifolds, this seems to be a reasonable choice that one could revisit later if needed. `C^k` manifolds are still available, but they should be called using `has_groupoid M (cont_diff_groupoid k I)` where `I` is the model with corners. I have considered using the model with corners `I` as a typeclass argument, possibly `out_param`, to get lighter notations later on, but it did not turn out right, as on `E × F` there are two natural model with corners, the trivial (identity) one, and the product one, and they are not defeq and one needs to indicate to Lean which one we want to use. This means that when talking on objects on manifolds one will most often need to specify the model with corners one is using. For instance, the tangent bundle will be `tangent_bundle I M` and the derivative will be `mfderiv I I' f`, instead of the more natural notations `tangent_bundle 𝕜 M` and `mfderiv 𝕜 f` (the field has to be explicit anyway, as some manifolds could be considered both as real and complex manifolds). -/ noncomputable theory universes u v w u' v' w' open set filter open_locale manifold filter topological_space localized "notation `∞` := (⊤ : with_top ℕ)" in manifold section model_with_corners /-! ### Models with corners. -/ /-- A structure containing informations on the way a space `H` embeds in a model vector space `E` over the field `𝕜`. This is all what is needed to define a smooth manifold with model space `H`, and model vector space `E`. -/ @[nolint has_inhabited_instance] structure model_with_corners (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] (H : Type*) [topological_space H] extends local_equiv H E := (source_eq : source = univ) (unique_diff' : unique_diff_on 𝕜 to_local_equiv.target) (continuous_to_fun : continuous to_fun . tactic.interactive.continuity') (continuous_inv_fun : continuous inv_fun . tactic.interactive.continuity') attribute [simp, mfld_simps] model_with_corners.source_eq /-- A vector space is a model with corners. -/ def model_with_corners_self (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] : model_with_corners 𝕜 E E := { to_local_equiv := local_equiv.refl E, source_eq := rfl, unique_diff' := unique_diff_on_univ, continuous_to_fun := continuous_id, continuous_inv_fun := continuous_id } localized "notation `𝓘(` 𝕜 `, ` E `)` := model_with_corners_self 𝕜 E" in manifold localized "notation `𝓘(` 𝕜 `)` := model_with_corners_self 𝕜 𝕜" in manifold section variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) namespace model_with_corners instance : has_coe_to_fun (model_with_corners 𝕜 E H) (λ _, H → E) := ⟨λ e, e.to_fun⟩ /-- The inverse to a model with corners, only registered as a local equiv. -/ protected def symm : local_equiv E H := I.to_local_equiv.symm /-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections. -/ def simps.apply (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] (H : Type*) [topological_space H] (I : model_with_corners 𝕜 E H) : H → E := I /-- See Note [custom simps projection] -/ def simps.symm_apply (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] (H : Type*) [topological_space H] (I : model_with_corners 𝕜 E H) : E → H := I.symm initialize_simps_projections model_with_corners (to_local_equiv_to_fun → apply, to_local_equiv_inv_fun → symm_apply, to_local_equiv_source → source, to_local_equiv_target → target, -to_local_equiv) /- Register a few lemmas to make sure that `simp` puts expressions in normal form -/ @[simp, mfld_simps] lemma to_local_equiv_coe : (I.to_local_equiv : H → E) = I := rfl @[simp, mfld_simps] lemma mk_coe (e : local_equiv H E) (a b c d) : ((model_with_corners.mk e a b c d : model_with_corners 𝕜 E H) : H → E) = (e : H → E) := rfl @[simp, mfld_simps] lemma to_local_equiv_coe_symm : (I.to_local_equiv.symm : E → H) = I.symm := rfl @[simp, mfld_simps] lemma mk_symm (e : local_equiv H E) (a b c d) : (model_with_corners.mk e a b c d : model_with_corners 𝕜 E H).symm = e.symm := rfl @[continuity] protected lemma continuous : continuous I := I.continuous_to_fun protected lemma continuous_at {x} : continuous_at I x := I.continuous.continuous_at protected lemma continuous_within_at {s x} : continuous_within_at I s x := I.continuous_at.continuous_within_at @[continuity] lemma continuous_symm : continuous I.symm := I.continuous_inv_fun lemma continuous_at_symm {x} : continuous_at I.symm x := I.continuous_symm.continuous_at lemma continuous_within_at_symm {s x} : continuous_within_at I.symm s x := I.continuous_symm.continuous_within_at lemma continuous_on_symm {s} : continuous_on I.symm s := I.continuous_symm.continuous_on @[simp, mfld_simps] lemma target_eq : I.target = range (I : H → E) := by { rw [← image_univ, ← I.source_eq], exact (I.to_local_equiv.image_source_eq_target).symm } protected lemma unique_diff : unique_diff_on 𝕜 (range I) := I.target_eq ▸ I.unique_diff' @[simp, mfld_simps] protected lemma left_inv (x : H) : I.symm (I x) = x := by { refine I.left_inv' _, simp } protected lemma left_inverse : function.left_inverse I.symm I := I.left_inv @[simp, mfld_simps] lemma symm_comp_self : I.symm ∘ I = id := I.left_inverse.comp_eq_id protected lemma right_inv_on : right_inv_on I.symm I (range I) := I.left_inverse.right_inv_on_range @[simp, mfld_simps] protected lemma right_inv {x : E} (hx : x ∈ range I) : I (I.symm x) = x := I.right_inv_on hx protected lemma image_eq (s : set H) : I '' s = I.symm ⁻¹' s ∩ range I := begin refine (I.to_local_equiv.image_eq_target_inter_inv_preimage _).trans _, { rw I.source_eq, exact subset_univ _ }, { rw [inter_comm, I.target_eq, I.to_local_equiv_coe_symm] } end protected lemma closed_embedding : closed_embedding I := I.left_inverse.closed_embedding I.continuous_symm I.continuous lemma closed_range : is_closed (range I) := I.closed_embedding.closed_range lemma map_nhds_eq (x : H) : map I (𝓝 x) = 𝓝[range I] (I x) := I.closed_embedding.to_embedding.map_nhds_eq x lemma image_mem_nhds_within {x : H} {s : set H} (hs : s ∈ 𝓝 x) : I '' s ∈ 𝓝[range I] (I x) := I.map_nhds_eq x ▸ image_mem_map hs lemma symm_map_nhds_within_range (x : H) : map I.symm (𝓝[range I] (I x)) = 𝓝 x := by rw [← I.map_nhds_eq, map_map, I.symm_comp_self, map_id] lemma unique_diff_preimage {s : set H} (hs : is_open s) : unique_diff_on 𝕜 (I.symm ⁻¹' s ∩ range I) := by { rw inter_comm, exact I.unique_diff.inter (hs.preimage I.continuous_inv_fun) } lemma unique_diff_preimage_source {β : Type*} [topological_space β] {e : local_homeomorph H β} : unique_diff_on 𝕜 (I.symm ⁻¹' (e.source) ∩ range I) := I.unique_diff_preimage e.open_source lemma unique_diff_at_image {x : H} : unique_diff_within_at 𝕜 (range I) (I x) := I.unique_diff _ (mem_range_self _) protected lemma locally_compact [locally_compact_space E] (I : model_with_corners 𝕜 E H) : locally_compact_space H := begin have : ∀ (x : H), (𝓝 x).has_basis (λ s, s ∈ 𝓝 (I x) ∧ is_compact s) (λ s, I.symm '' (s ∩ range ⇑I)), { intro x, rw ← I.symm_map_nhds_within_range, exact ((compact_basis_nhds (I x)).inf_principal _).map _ }, refine locally_compact_space_of_has_basis this _, rintro x s ⟨-, hsc⟩, exact (hsc.inter_right I.closed_range).image I.continuous_symm end open topological_space protected lemma second_countable_topology [second_countable_topology E] (I : model_with_corners 𝕜 E H) : second_countable_topology H := I.closed_embedding.to_embedding.second_countable_topology end model_with_corners section variables (𝕜 E) /-- In the trivial model with corners, the associated local equiv is the identity. -/ @[simp, mfld_simps] lemma model_with_corners_self_local_equiv : (𝓘(𝕜, E)).to_local_equiv = local_equiv.refl E := rfl @[simp, mfld_simps] lemma model_with_corners_self_coe : (𝓘(𝕜, E) : E → E) = id := rfl @[simp, mfld_simps] lemma model_with_corners_self_coe_symm : (𝓘(𝕜, E).symm : E → E) = id := rfl end end section model_with_corners_prod /-- Given two model_with_corners `I` on `(E, H)` and `I'` on `(E', H')`, we define the model with corners `I.prod I'` on `(E × E', model_prod H H')`. This appears in particular for the manifold structure on the tangent bundle to a manifold modelled on `(E, H)`: it will be modelled on `(E × E, H × E)`. See note [Manifold type tags] for explanation about `model_prod H H'` vs `H × H'`. -/ @[simps (lemmas_only)] def model_with_corners.prod {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H] (I : model_with_corners 𝕜 E H) {E' : Type v'} [normed_group E'] [normed_space 𝕜 E'] {H' : Type w'} [topological_space H'] (I' : model_with_corners 𝕜 E' H') : model_with_corners 𝕜 (E × E') (model_prod H H') := { to_fun := λ x, (I x.1, I' x.2), inv_fun := λ x, (I.symm x.1, I'.symm x.2), source := {x | x.1 ∈ I.source ∧ x.2 ∈ I'.source}, source_eq := by simp only [set_of_true] with mfld_simps, unique_diff' := I.unique_diff'.prod I'.unique_diff', continuous_to_fun := I.continuous_to_fun.prod_map I'.continuous_to_fun, continuous_inv_fun := I.continuous_inv_fun.prod_map I'.continuous_inv_fun, .. I.to_local_equiv.prod I'.to_local_equiv } /-- Given a finite family of `model_with_corners` `I i` on `(E i, H i)`, we define the model with corners `pi I` on `(Π i, E i, model_pi H)`. See note [Manifold type tags] for explanation about `model_pi H`. -/ def model_with_corners.pi {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {ι : Type v} [fintype ι] {E : ι → Type w} [Π i, normed_group (E i)] [Π i, normed_space 𝕜 (E i)] {H : ι → Type u'} [Π i, topological_space (H i)] (I : Π i, model_with_corners 𝕜 (E i) (H i)) : model_with_corners 𝕜 (Π i, E i) (model_pi H) := { to_local_equiv := local_equiv.pi (λ i, (I i).to_local_equiv), source_eq := by simp only [set.pi_univ] with mfld_simps, unique_diff' := unique_diff_on.pi ι E _ _ (λ i _, (I i).unique_diff'), continuous_to_fun := continuous_pi $ λ i, (I i).continuous.comp (continuous_apply i), continuous_inv_fun := continuous_pi $ λ i, (I i).continuous_symm.comp (continuous_apply i) } /-- Special case of product model with corners, which is trivial on the second factor. This shows up as the model to tangent bundles. -/ @[reducible] def model_with_corners.tangent {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H] (I : model_with_corners 𝕜 E H) : model_with_corners 𝕜 (E × E) (model_prod H E) := I.prod (𝓘(𝕜, E)) variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {F : Type*} [normed_group F] [normed_space 𝕜 F] {F' : Type*} [normed_group F'] [normed_space 𝕜 F'] {H : Type*} [topological_space H] {H' : Type*} [topological_space H'] {G : Type*} [topological_space G] {G' : Type*} [topological_space G'] {I : model_with_corners 𝕜 E H} {J : model_with_corners 𝕜 F G} @[simp, mfld_simps] lemma model_with_corners_prod_to_local_equiv : (I.prod J).to_local_equiv = I.to_local_equiv.prod (J.to_local_equiv) := rfl @[simp, mfld_simps] lemma model_with_corners_prod_coe (I : model_with_corners 𝕜 E H) (I' : model_with_corners 𝕜 E' H') : (I.prod I' : _ × _ → _ × _) = prod.map I I' := rfl @[simp, mfld_simps] lemma model_with_corners_prod_coe_symm (I : model_with_corners 𝕜 E H) (I' : model_with_corners 𝕜 E' H') : ((I.prod I').symm : _ × _ → _ × _) = prod.map I.symm I'.symm := rfl end model_with_corners_prod section boundaryless /-- Property ensuring that the model with corners `I` defines manifolds without boundary. -/ class model_with_corners.boundaryless {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) : Prop := (range_eq_univ : range I = univ) /-- The trivial model with corners has no boundary -/ instance model_with_corners_self_boundaryless (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] : (model_with_corners_self 𝕜 E).boundaryless := ⟨by simp⟩ /-- If two model with corners are boundaryless, their product also is -/ instance model_with_corners.range_eq_univ_prod {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H] (I : model_with_corners 𝕜 E H) [I.boundaryless] {E' : Type v'} [normed_group E'] [normed_space 𝕜 E'] {H' : Type w'} [topological_space H'] (I' : model_with_corners 𝕜 E' H') [I'.boundaryless] : (I.prod I').boundaryless := begin split, dsimp [model_with_corners.prod, model_prod], rw [← prod_range_range_eq, model_with_corners.boundaryless.range_eq_univ, model_with_corners.boundaryless.range_eq_univ, univ_prod_univ] end end boundaryless section cont_diff_groupoid /-! ### Smooth functions on models with corners -/ variables {m n : with_top ℕ} {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type*} [topological_space M] variable (n) /-- Given a model with corners `(E, H)`, we define the groupoid of `C^n` transformations of `H` as the maps that are `C^n` when read in `E` through `I`. -/ def cont_diff_groupoid : structure_groupoid H := pregroupoid.groupoid { property := λf s, cont_diff_on 𝕜 n (I ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I), comp := λf g u v hf hg hu hv huv, begin have : I ∘ (g ∘ f) ∘ I.symm = (I ∘ g ∘ I.symm) ∘ (I ∘ f ∘ I.symm), by { ext x, simp }, rw this, apply cont_diff_on.comp hg _, { rintros x ⟨hx1, hx2⟩, simp only with mfld_simps at ⊢ hx1, exact hx1.2 }, { refine hf.mono _, rintros x ⟨hx1, hx2⟩, exact ⟨hx1.1, hx2⟩ } end, id_mem := begin apply cont_diff_on.congr (cont_diff_id.cont_diff_on), rintros x ⟨hx1, hx2⟩, rcases mem_range.1 hx2 with ⟨y, hy⟩, rw ← hy, simp only with mfld_simps, end, locality := λf u hu H, begin apply cont_diff_on_of_locally_cont_diff_on, rintros y ⟨hy1, hy2⟩, rcases mem_range.1 hy2 with ⟨x, hx⟩, rw ← hx at ⊢ hy1, simp only with mfld_simps at ⊢ hy1, rcases H x hy1 with ⟨v, v_open, xv, hv⟩, have : ((I.symm ⁻¹' (u ∩ v)) ∩ (range I)) = ((I.symm ⁻¹' u) ∩ (range I) ∩ I.symm ⁻¹' v), { rw [preimage_inter, inter_assoc, inter_assoc], congr' 1, rw inter_comm }, rw this at hv, exact ⟨I.symm ⁻¹' v, v_open.preimage I.continuous_symm, by simpa, hv⟩ end, congr := λf g u hu fg hf, begin apply hf.congr, rintros y ⟨hy1, hy2⟩, rcases mem_range.1 hy2 with ⟨x, hx⟩, rw ← hx at ⊢ hy1, simp only with mfld_simps at ⊢ hy1, rw fg _ hy1 end } variable {n} /-- Inclusion of the groupoid of `C^n` local diffeos in the groupoid of `C^m` local diffeos when `m ≤ n` -/ lemma cont_diff_groupoid_le (h : m ≤ n) : cont_diff_groupoid n I ≤ cont_diff_groupoid m I := begin rw [cont_diff_groupoid, cont_diff_groupoid], apply groupoid_of_pregroupoid_le, assume f s hfs, exact cont_diff_on.of_le hfs h end /-- The groupoid of `0`-times continuously differentiable maps is just the groupoid of all local homeomorphisms -/ lemma cont_diff_groupoid_zero_eq : cont_diff_groupoid 0 I = continuous_groupoid H := begin apply le_antisymm le_top, assume u hu, -- we have to check that every local homeomorphism belongs to `cont_diff_groupoid 0 I`, -- by unfolding its definition change u ∈ cont_diff_groupoid 0 I, rw [cont_diff_groupoid, mem_groupoid_of_pregroupoid], simp only [cont_diff_on_zero], split, { refine I.continuous.comp_continuous_on (u.continuous_on.comp I.continuous_on_symm _), exact (maps_to_preimage _ _).mono_left (inter_subset_left _ _) }, { refine I.continuous.comp_continuous_on (u.symm.continuous_on.comp I.continuous_on_symm _), exact (maps_to_preimage _ _).mono_left (inter_subset_left _ _) }, end variable (n) /-- An identity local homeomorphism belongs to the `C^n` groupoid. -/ lemma of_set_mem_cont_diff_groupoid {s : set H} (hs : is_open s) : local_homeomorph.of_set s hs ∈ cont_diff_groupoid n I := begin rw [cont_diff_groupoid, mem_groupoid_of_pregroupoid], suffices h : cont_diff_on 𝕜 n (I ∘ I.symm) (I.symm ⁻¹' s ∩ range I), by simp [h], have : cont_diff_on 𝕜 n id (univ : set E) := cont_diff_id.cont_diff_on, exact this.congr_mono (λ x hx, by simp [hx.2]) (subset_univ _) end /-- The composition of a local homeomorphism from `H` to `M` and its inverse belongs to the `C^n` groupoid. -/ lemma symm_trans_mem_cont_diff_groupoid (e : local_homeomorph M H) : e.symm.trans e ∈ cont_diff_groupoid n I := begin have : e.symm.trans e ≈ local_homeomorph.of_set e.target e.open_target := local_homeomorph.trans_symm_self _, exact structure_groupoid.eq_on_source _ (of_set_mem_cont_diff_groupoid n I e.open_target) this end variables {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {H' : Type*} [topological_space H'] /-- The product of two smooth local homeomorphisms is smooth. -/ lemma cont_diff_groupoid_prod {I : model_with_corners 𝕜 E H} {I' : model_with_corners 𝕜 E' H'} {e : local_homeomorph H H} {e' : local_homeomorph H' H'} (he : e ∈ cont_diff_groupoid ⊤ I) (he' : e' ∈ cont_diff_groupoid ⊤ I') : e.prod e' ∈ cont_diff_groupoid ⊤ (I.prod I') := begin cases he with he he_symm, cases he' with he' he'_symm, simp only at he he_symm he' he'_symm, split; simp only [local_equiv.prod_source, local_homeomorph.prod_to_local_equiv], { have h3 := cont_diff_on.prod_map he he', rw [← I.image_eq, ← I'.image_eq, set.prod_image_image_eq] at h3, rw ← (I.prod I').image_eq, exact h3, }, { have h3 := cont_diff_on.prod_map he_symm he'_symm, rw [← I.image_eq, ← I'.image_eq, set.prod_image_image_eq] at h3, rw ← (I.prod I').image_eq, exact h3, } end /-- The `C^n` groupoid is closed under restriction. -/ instance : closed_under_restriction (cont_diff_groupoid n I) := (closed_under_restriction_iff_id_le _).mpr begin apply structure_groupoid.le_iff.mpr, rintros e ⟨s, hs, hes⟩, apply (cont_diff_groupoid n I).eq_on_source' _ _ _ hes, exact of_set_mem_cont_diff_groupoid n I hs, end end cont_diff_groupoid end model_with_corners section smooth_manifold_with_corners /-! ### Smooth manifolds with corners -/ /-- Typeclass defining smooth manifolds with corners with respect to a model with corners, over a field `𝕜` and with infinite smoothness to simplify typeclass search and statements later on. -/ @[ancestor has_groupoid] class smooth_manifold_with_corners {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) (M : Type*) [topological_space M] [charted_space H M] extends has_groupoid M (cont_diff_groupoid ∞ I) : Prop lemma smooth_manifold_with_corners.mk' {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) (M : Type*) [topological_space M] [charted_space H M] [gr : has_groupoid M (cont_diff_groupoid ∞ I)] : smooth_manifold_with_corners I M := { ..gr } lemma smooth_manifold_with_corners_of_cont_diff_on {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) (M : Type*) [topological_space M] [charted_space H M] (h : ∀ (e e' : local_homeomorph M H), e ∈ atlas H M → e' ∈ atlas H M → cont_diff_on 𝕜 ⊤ (I ∘ (e.symm ≫ₕ e') ∘ I.symm) (I.symm ⁻¹' (e.symm ≫ₕ e').source ∩ range I)) : smooth_manifold_with_corners I M := { compatible := begin haveI : has_groupoid M (cont_diff_groupoid ∞ I) := has_groupoid_of_pregroupoid _ h, apply structure_groupoid.compatible, end } /-- For any model with corners, the model space is a smooth manifold -/ instance model_space_smooth {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] {I : model_with_corners 𝕜 E H} : smooth_manifold_with_corners I H := { .. has_groupoid_model_space _ _ } end smooth_manifold_with_corners namespace smooth_manifold_with_corners /- We restate in the namespace `smooth_manifolds_with_corners` some lemmas that hold for general charted space with a structure groupoid, avoiding the need to specify the groupoid `cont_diff_groupoid ∞ I` explicitly. -/ variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) (M : Type*) [topological_space M] [charted_space H M] /-- The maximal atlas of `M` for the smooth manifold with corners structure corresponding to the model with corners `I`. -/ def maximal_atlas := (cont_diff_groupoid ∞ I).maximal_atlas M variable {M} lemma mem_maximal_atlas_of_mem_atlas [smooth_manifold_with_corners I M] {e : local_homeomorph M H} (he : e ∈ atlas H M) : e ∈ maximal_atlas I M := structure_groupoid.mem_maximal_atlas_of_mem_atlas _ he lemma chart_mem_maximal_atlas [smooth_manifold_with_corners I M] (x : M) : chart_at H x ∈ maximal_atlas I M := structure_groupoid.chart_mem_maximal_atlas _ x variable {I} lemma compatible_of_mem_maximal_atlas {e e' : local_homeomorph M H} (he : e ∈ maximal_atlas I M) (he' : e' ∈ maximal_atlas I M) : e.symm.trans e' ∈ cont_diff_groupoid ∞ I := structure_groupoid.compatible_of_mem_maximal_atlas he he' /-- The product of two smooth manifolds with corners is naturally a smooth manifold with corners. -/ instance prod {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {H : Type*} [topological_space H] {I : model_with_corners 𝕜 E H} {H' : Type*} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} (M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] (M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] : smooth_manifold_with_corners (I.prod I') (M×M') := { compatible := begin rintros f g ⟨f1, f2, hf1, hf2, rfl⟩ ⟨g1, g2, hg1, hg2, rfl⟩, rw [local_homeomorph.prod_symm, local_homeomorph.prod_trans], have h1 := has_groupoid.compatible (cont_diff_groupoid ⊤ I) hf1 hg1, have h2 := has_groupoid.compatible (cont_diff_groupoid ⊤ I') hf2 hg2, exact cont_diff_groupoid_prod h1 h2, end } end smooth_manifold_with_corners lemma local_homeomorph.singleton_smooth_manifold_with_corners {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type*} [topological_space M] (e : local_homeomorph M H) (h : e.source = set.univ) : @smooth_manifold_with_corners 𝕜 _ E _ _ H _ I M _ (e.singleton_charted_space h) := @smooth_manifold_with_corners.mk' _ _ _ _ _ _ _ _ _ _ (id _) $ e.singleton_has_groupoid h (cont_diff_groupoid ∞ I) lemma open_embedding.singleton_smooth_manifold_with_corners {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type*} [topological_space M] [nonempty M] {f : M → H} (h : open_embedding f) : @smooth_manifold_with_corners 𝕜 _ E _ _ H _ I M _ h.singleton_charted_space := (h.to_local_homeomorph f).singleton_smooth_manifold_with_corners I (by simp) namespace topological_space.opens open topological_space variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type*} [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] (s : opens M) instance : smooth_manifold_with_corners I s := { ..s.has_groupoid (cont_diff_groupoid ∞ I) } end topological_space.opens section extended_charts open_locale topological_space variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type*} [topological_space M] [charted_space H M] (x : M) {s t : set M} /-! ### Extended charts In a smooth manifold with corners, the model space is the space `H`. However, we will also need to use extended charts taking values in the model vector space `E`. These extended charts are not `local_homeomorph` as the target is not open in `E` in general, but we can still register them as `local_equiv`. -/ /-- The preferred extended chart on a manifold with corners around a point `x`, from a neighborhood of `x` to the model vector space. -/ @[simp, mfld_simps] def ext_chart_at (x : M) : local_equiv M E := (chart_at H x).to_local_equiv.trans I.to_local_equiv lemma ext_chart_at_coe : ⇑(ext_chart_at I x) = I ∘ chart_at H x := rfl lemma ext_chart_at_coe_symm : ⇑(ext_chart_at I x).symm = (chart_at H x).symm ∘ I.symm := rfl lemma ext_chart_at_source : (ext_chart_at I x).source = (chart_at H x).source := by rw [ext_chart_at, local_equiv.trans_source, I.source_eq, preimage_univ, inter_univ] lemma ext_chart_at_open_source : is_open (ext_chart_at I x).source := by { rw ext_chart_at_source, exact (chart_at H x).open_source } lemma mem_ext_chart_source : x ∈ (ext_chart_at I x).source := by simp only [ext_chart_at_source, mem_chart_source] lemma ext_chart_at_to_inv : (ext_chart_at I x).symm ((ext_chart_at I x) x) = x := (ext_chart_at I x).left_inv (mem_ext_chart_source I x) lemma ext_chart_at_source_mem_nhds' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : (ext_chart_at I x).source ∈ 𝓝 x' := is_open.mem_nhds (ext_chart_at_open_source I x) h lemma ext_chart_at_source_mem_nhds : (ext_chart_at I x).source ∈ 𝓝 x := ext_chart_at_source_mem_nhds' I x (mem_ext_chart_source I x) lemma ext_chart_at_source_mem_nhds_within' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : (ext_chart_at I x).source ∈ 𝓝[s] x' := mem_nhds_within_of_mem_nhds (ext_chart_at_source_mem_nhds' I x h) lemma ext_chart_at_source_mem_nhds_within : (ext_chart_at I x).source ∈ 𝓝[s] x := mem_nhds_within_of_mem_nhds (ext_chart_at_source_mem_nhds I x) lemma ext_chart_at_continuous_on : continuous_on (ext_chart_at I x) (ext_chart_at I x).source := begin refine I.continuous.comp_continuous_on _, rw ext_chart_at_source, exact (chart_at H x).continuous_on end lemma ext_chart_at_continuous_at' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : continuous_at (ext_chart_at I x) x' := (ext_chart_at_continuous_on I x).continuous_at $ ext_chart_at_source_mem_nhds' I x h lemma ext_chart_at_continuous_at : continuous_at (ext_chart_at I x) x := ext_chart_at_continuous_at' _ _ (mem_ext_chart_source I x) lemma ext_chart_at_continuous_on_symm : continuous_on (ext_chart_at I x).symm (ext_chart_at I x).target := (chart_at H x).continuous_on_symm.comp I.continuous_on_symm $ (maps_to_preimage _ _).mono_left (inter_subset_right _ _) lemma ext_chart_at_map_nhds' {x y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x) (𝓝 y) = 𝓝[range I] (ext_chart_at I x y) := begin rw [ext_chart_at_coe, (∘), ← I.map_nhds_eq, ← (chart_at H x).map_nhds_eq, map_map], rwa ext_chart_at_source at hy end lemma ext_chart_at_map_nhds : map (ext_chart_at I x) (𝓝 x) = 𝓝[range I] (ext_chart_at I x x) := ext_chart_at_map_nhds' I $ mem_ext_chart_source I x lemma ext_chart_at_target_mem_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) : (ext_chart_at I x).target ∈ 𝓝[range I] (ext_chart_at I x y) := begin rw [← local_equiv.image_source_eq_target, ← ext_chart_at_map_nhds' I hy], exact image_mem_map (ext_chart_at_source_mem_nhds' _ _ hy) end lemma ext_chart_at_target_mem_nhds_within : (ext_chart_at I x).target ∈ 𝓝[range I] (ext_chart_at I x x) := ext_chart_at_target_mem_nhds_within' I x (mem_ext_chart_source I x) lemma ext_chart_at_target_subset_range : (ext_chart_at I x).target ⊆ range I := by simp only with mfld_simps lemma nhds_within_ext_chart_target_eq' {y : M} (hy : y ∈ (ext_chart_at I x).source) : 𝓝[(ext_chart_at I x).target] (ext_chart_at I x y) = 𝓝[range I] (ext_chart_at I x y) := (nhds_within_mono _ (ext_chart_at_target_subset_range _ _)).antisymm $ nhds_within_le_of_mem (ext_chart_at_target_mem_nhds_within' _ _ hy) lemma nhds_within_ext_chart_target_eq : 𝓝[(ext_chart_at I x).target] ((ext_chart_at I x) x) = 𝓝[range I] ((ext_chart_at I x) x) := nhds_within_ext_chart_target_eq' I x (mem_ext_chart_source I x) lemma ext_chart_continuous_at_symm'' {y : E} (h : y ∈ (ext_chart_at I x).target) : continuous_at (ext_chart_at I x).symm y := continuous_at.comp ((chart_at H x).continuous_at_symm h.2) (I.continuous_symm.continuous_at) lemma ext_chart_continuous_at_symm' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : continuous_at (ext_chart_at I x).symm (ext_chart_at I x x') := ext_chart_continuous_at_symm'' I _ $ (ext_chart_at I x).map_source h lemma ext_chart_continuous_at_symm : continuous_at (ext_chart_at I x).symm ((ext_chart_at I x) x) := ext_chart_continuous_at_symm' I x (mem_ext_chart_source I x) lemma ext_chart_continuous_on_symm : continuous_on (ext_chart_at I x).symm (ext_chart_at I x).target := λ y hy, (ext_chart_continuous_at_symm'' _ _ hy).continuous_within_at lemma ext_chart_preimage_open_of_open' {s : set E} (hs : is_open s) : is_open ((ext_chart_at I x).source ∩ ext_chart_at I x ⁻¹' s) := (ext_chart_at_continuous_on I x).preimage_open_of_open (ext_chart_at_open_source _ _) hs lemma ext_chart_preimage_open_of_open {s : set E} (hs : is_open s) : is_open ((chart_at H x).source ∩ ext_chart_at I x ⁻¹' s) := by { rw ← ext_chart_at_source I, exact ext_chart_preimage_open_of_open' I x hs } lemma ext_chart_at_map_nhds_within_eq_image' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x) (𝓝[s] y) = 𝓝[ext_chart_at I x '' ((ext_chart_at I x).source ∩ s)] (ext_chart_at I x y) := by set e := ext_chart_at I x; calc map e (𝓝[s] y) = map e (𝓝[e.source ∩ s] y) : congr_arg (map e) (nhds_within_inter_of_mem (ext_chart_at_source_mem_nhds_within' I x hy)).symm ... = 𝓝[e '' (e.source ∩ s)] (e y) : ((ext_chart_at I x).left_inv_on.mono $ inter_subset_left _ _).map_nhds_within_eq ((ext_chart_at I x).left_inv hy) (ext_chart_continuous_at_symm' I x hy).continuous_within_at (ext_chart_at_continuous_at' I x hy).continuous_within_at lemma ext_chart_at_map_nhds_within_eq_image : map (ext_chart_at I x) (𝓝[s] x) = 𝓝[ext_chart_at I x '' ((ext_chart_at I x).source ∩ s)] (ext_chart_at I x x) := ext_chart_at_map_nhds_within_eq_image' I x (mem_ext_chart_source I x) lemma ext_chart_at_map_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x) (𝓝[s] y) = 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x y) := by rw [ext_chart_at_map_nhds_within_eq_image' I x hy, nhds_within_inter, ← nhds_within_ext_chart_target_eq' _ _ hy, ← nhds_within_inter, (ext_chart_at I x).image_source_inter_eq', inter_comm] lemma ext_chart_at_map_nhds_within : map (ext_chart_at I x) (𝓝[s] x) = 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x x) := ext_chart_at_map_nhds_within' I x (mem_ext_chart_source I x) lemma ext_chart_at_symm_map_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x).symm (𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x y)) = 𝓝[s] y := begin rw [← ext_chart_at_map_nhds_within' I x hy, map_map, map_congr, map_id], exact (ext_chart_at I x).left_inv_on.eq_on.eventually_eq_of_mem (ext_chart_at_source_mem_nhds_within' _ _ hy) end lemma ext_chart_at_symm_map_nhds_within_range' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x).symm (𝓝[range I] (ext_chart_at I x y)) = 𝓝 y := by rw [← nhds_within_univ, ← ext_chart_at_symm_map_nhds_within' I x hy, preimage_univ, univ_inter] lemma ext_chart_at_symm_map_nhds_within : map (ext_chart_at I x).symm (𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x x)) = 𝓝[s] x := ext_chart_at_symm_map_nhds_within' I x (mem_ext_chart_source I x) lemma ext_chart_at_symm_map_nhds_within_range : map (ext_chart_at I x).symm (𝓝[range I] (ext_chart_at I x x)) = 𝓝 x := ext_chart_at_symm_map_nhds_within_range' I x (mem_ext_chart_source I x) /-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point in the source is a neighborhood of the preimage, within a set. -/ lemma ext_chart_preimage_mem_nhds_within' {x' : M} (h : x' ∈ (ext_chart_at I x).source) (ht : t ∈ 𝓝[s] x') : (ext_chart_at I x).symm ⁻¹' t ∈ 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] ((ext_chart_at I x) x') := by rwa [← ext_chart_at_symm_map_nhds_within' I x h, mem_map] at ht /-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of the base point is a neighborhood of the preimage, within a set. -/ lemma ext_chart_preimage_mem_nhds_within (ht : t ∈ 𝓝[s] x) : (ext_chart_at I x).symm ⁻¹' t ∈ 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] ((ext_chart_at I x) x) := ext_chart_preimage_mem_nhds_within' I x (mem_ext_chart_source I x) ht /-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point is a neighborhood of the preimage. -/ lemma ext_chart_preimage_mem_nhds (ht : t ∈ 𝓝 x) : (ext_chart_at I x).symm ⁻¹' t ∈ 𝓝 ((ext_chart_at I x) x) := begin apply (ext_chart_continuous_at_symm I x).preimage_mem_nhds, rwa (ext_chart_at I x).left_inv (mem_ext_chart_source _ _) end /-- Technical lemma to rewrite suitably the preimage of an intersection under an extended chart, to bring it into a convenient form to apply derivative lemmas. -/ lemma ext_chart_preimage_inter_eq : ((ext_chart_at I x).symm ⁻¹' (s ∩ t) ∩ range I) = ((ext_chart_at I x).symm ⁻¹' s ∩ range I) ∩ ((ext_chart_at I x).symm ⁻¹' t) := by mfld_set_tac end extended_charts /-- In the case of the manifold structure on a vector space, the extended charts are just the identity.-/ lemma ext_chart_model_space_eq_id (𝕜 : Type*) [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] (x : E) : ext_chart_at (model_with_corners_self 𝕜 E) x = local_equiv.refl E := by simp only with mfld_simps
5a3bbcbe8361d2c068cd7c444d338be98e017b3b
ad0c7d243dc1bd563419e2767ed42fb323d7beea
/data/nat/gcd.lean
d982fcfb84d1441eaaddb0df4a0d4a34b9ae69db
[ "Apache-2.0" ]
permissive
sebzim4500/mathlib
e0b5a63b1655f910dee30badf09bd7e191d3cf30
6997cafbd3a7325af5cb318561768c316ceb7757
refs/heads/master
1,585,549,958,618
1,538,221,723,000
1,538,221,723,000
150,869,076
0
0
Apache-2.0
1,538,229,323,000
1,538,229,323,000
null
UTF-8
Lean
false
false
11,431
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura Definitions and properties of gcd, lcm, and coprime. -/ import data.nat.basic namespace nat /- gcd -/ theorem gcd_dvd (m n : ℕ) : (gcd m n ∣ m) ∧ (gcd m n ∣ n) := gcd.induction m n (λn, by rw gcd_zero_left; exact ⟨dvd_zero n, dvd_refl n⟩) (λm n npos, by rw ←gcd_rec; exact λ ⟨IH₁, IH₂⟩, ⟨IH₂, (dvd_mod_iff IH₂).1 IH₁⟩) theorem gcd_dvd_left (m n : ℕ) : gcd m n ∣ m := (gcd_dvd m n).left theorem gcd_dvd_right (m n : ℕ) : gcd m n ∣ n := (gcd_dvd m n).right theorem dvd_gcd {m n k : ℕ} : k ∣ m → k ∣ n → k ∣ gcd m n := gcd.induction m n (λn _ kn, by rw gcd_zero_left; exact kn) (λn m mpos IH H1 H2, by rw gcd_rec; exact IH ((dvd_mod_iff H1).2 H2) H1) theorem gcd_comm (m n : ℕ) : gcd m n = gcd n m := dvd_antisymm (dvd_gcd (gcd_dvd_right m n) (gcd_dvd_left m n)) (dvd_gcd (gcd_dvd_right n m) (gcd_dvd_left n m)) theorem gcd_assoc (m n k : ℕ) : gcd (gcd m n) k = gcd m (gcd n k) := dvd_antisymm (dvd_gcd (dvd.trans (gcd_dvd_left (gcd m n) k) (gcd_dvd_left m n)) (dvd_gcd (dvd.trans (gcd_dvd_left (gcd m n) k) (gcd_dvd_right m n)) (gcd_dvd_right (gcd m n) k))) (dvd_gcd (dvd_gcd (gcd_dvd_left m (gcd n k)) (dvd.trans (gcd_dvd_right m (gcd n k)) (gcd_dvd_left n k))) (dvd.trans (gcd_dvd_right m (gcd n k)) (gcd_dvd_right n k))) @[simp] theorem gcd_one_right (n : ℕ) : gcd n 1 = 1 := eq.trans (gcd_comm n 1) $ gcd_one_left n theorem gcd_mul_left (m n k : ℕ) : gcd (m * n) (m * k) = m * gcd n k := gcd.induction n k (λk, by repeat {rw mul_zero <|> rw gcd_zero_left}) (λk n H IH, by rwa [←mul_mod_mul_left, ←gcd_rec, ←gcd_rec] at IH) theorem gcd_mul_right (m n k : ℕ) : gcd (m * n) (k * n) = gcd m k * n := by rw [mul_comm m n, mul_comm k n, mul_comm (gcd m k) n, gcd_mul_left] theorem gcd_pos_of_pos_left {m : ℕ} (n : ℕ) (mpos : m > 0) : gcd m n > 0 := pos_of_dvd_of_pos (gcd_dvd_left m n) mpos theorem gcd_pos_of_pos_right (m : ℕ) {n : ℕ} (npos : n > 0) : gcd m n > 0 := pos_of_dvd_of_pos (gcd_dvd_right m n) npos theorem eq_zero_of_gcd_eq_zero_left {m n : ℕ} (H : gcd m n = 0) : m = 0 := or.elim (eq_zero_or_pos m) id (assume H1 : m > 0, absurd (eq.symm H) (ne_of_lt (gcd_pos_of_pos_left _ H1))) theorem eq_zero_of_gcd_eq_zero_right {m n : ℕ} (H : gcd m n = 0) : n = 0 := by rw gcd_comm at H; exact eq_zero_of_gcd_eq_zero_left H theorem gcd_div {m n k : ℕ} (H1 : k ∣ m) (H2 : k ∣ n) : gcd (m / k) (n / k) = gcd m n / k := or.elim (eq_zero_or_pos k) (λk0, by rw [k0, nat.div_zero, nat.div_zero, nat.div_zero, gcd_zero_right]) (λH3, nat.eq_of_mul_eq_mul_right H3 $ by rw [ nat.div_mul_cancel (dvd_gcd H1 H2), ←gcd_mul_right, nat.div_mul_cancel H1, nat.div_mul_cancel H2]) theorem gcd_dvd_gcd_of_dvd_left {m k : ℕ} (n : ℕ) (H : m ∣ k) : gcd m n ∣ gcd k n := dvd_gcd (dvd.trans (gcd_dvd_left m n) H) (gcd_dvd_right m n) theorem gcd_dvd_gcd_of_dvd_right {m k : ℕ} (n : ℕ) (H : m ∣ k) : gcd n m ∣ gcd n k := dvd_gcd (gcd_dvd_left n m) (dvd.trans (gcd_dvd_right n m) H) theorem gcd_dvd_gcd_mul_left (m n k : ℕ) : gcd m n ∣ gcd (k * m) n := gcd_dvd_gcd_of_dvd_left _ (dvd_mul_left _ _) theorem gcd_dvd_gcd_mul_right (m n k : ℕ) : gcd m n ∣ gcd (m * k) n := gcd_dvd_gcd_of_dvd_left _ (dvd_mul_right _ _) theorem gcd_dvd_gcd_mul_left_right (m n k : ℕ) : gcd m n ∣ gcd m (k * n) := gcd_dvd_gcd_of_dvd_right _ (dvd_mul_left _ _) theorem gcd_dvd_gcd_mul_right_right (m n k : ℕ) : gcd m n ∣ gcd m (n * k) := gcd_dvd_gcd_of_dvd_right _ (dvd_mul_right _ _) theorem gcd_eq_left {m n : ℕ} (H : m ∣ n) : gcd m n = m := dvd_antisymm (gcd_dvd_left _ _) (dvd_gcd (dvd_refl _) H) theorem gcd_eq_right {m n : ℕ} (H : n ∣ m) : gcd m n = n := by rw [gcd_comm, gcd_eq_left H] /- lcm -/ theorem lcm_comm (m n : ℕ) : lcm m n = lcm n m := by delta lcm; rw [mul_comm, gcd_comm] theorem lcm_zero_left (m : ℕ) : lcm 0 m = 0 := by delta lcm; rw [zero_mul, nat.zero_div] theorem lcm_zero_right (m : ℕ) : lcm m 0 = 0 := lcm_comm 0 m ▸ lcm_zero_left m theorem lcm_one_left (m : ℕ) : lcm 1 m = m := by delta lcm; rw [one_mul, gcd_one_left, nat.div_one] theorem lcm_one_right (m : ℕ) : lcm m 1 = m := lcm_comm 1 m ▸ lcm_one_left m theorem lcm_self (m : ℕ) : lcm m m = m := or.elim (eq_zero_or_pos m) (λh, by rw [h, lcm_zero_left]) (λh, by delta lcm; rw [gcd_self, nat.mul_div_cancel _ h]) theorem dvd_lcm_left (m n : ℕ) : m ∣ lcm m n := dvd.intro (n / gcd m n) (nat.mul_div_assoc _ $ gcd_dvd_right m n).symm theorem dvd_lcm_right (m n : ℕ) : n ∣ lcm m n := lcm_comm n m ▸ dvd_lcm_left n m theorem gcd_mul_lcm (m n : ℕ) : gcd m n * lcm m n = m * n := by delta lcm; rw [nat.mul_div_cancel' (dvd.trans (gcd_dvd_left m n) (dvd_mul_right m n))] theorem lcm_dvd {m n k : ℕ} (H1 : m ∣ k) (H2 : n ∣ k) : lcm m n ∣ k := or.elim (eq_zero_or_pos k) (λh, by rw h; exact dvd_zero _) (λkpos, dvd_of_mul_dvd_mul_left (gcd_pos_of_pos_left n (pos_of_dvd_of_pos H1 kpos)) $ by rw [gcd_mul_lcm, ←gcd_mul_right, mul_comm n k]; exact dvd_gcd (mul_dvd_mul_left _ H2) (mul_dvd_mul_right H1 _)) theorem lcm_assoc (m n k : ℕ) : lcm (lcm m n) k = lcm m (lcm n k) := dvd_antisymm (lcm_dvd (lcm_dvd (dvd_lcm_left m (lcm n k)) (dvd.trans (dvd_lcm_left n k) (dvd_lcm_right m (lcm n k)))) (dvd.trans (dvd_lcm_right n k) (dvd_lcm_right m (lcm n k)))) (lcm_dvd (dvd.trans (dvd_lcm_left m n) (dvd_lcm_left (lcm m n) k)) (lcm_dvd (dvd.trans (dvd_lcm_right m n) (dvd_lcm_left (lcm m n) k)) (dvd_lcm_right (lcm m n) k))) /- coprime -/ instance (m n : ℕ) : decidable (coprime m n) := by unfold coprime; apply_instance theorem coprime.gcd_eq_one {m n : ℕ} : coprime m n → gcd m n = 1 := id theorem coprime.symm {m n : ℕ} : coprime n m → coprime m n := (gcd_comm m n).trans theorem coprime_of_dvd {m n : ℕ} (H : ∀ k > 1, k ∣ m → ¬ k ∣ n) : coprime m n := or.elim (eq_zero_or_pos (gcd m n)) (λg0, by rw [eq_zero_of_gcd_eq_zero_left g0, eq_zero_of_gcd_eq_zero_right g0] at H; exact false.elim (H 2 dec_trivial (dvd_zero _) (dvd_zero _))) (λ(g1 : 1 ≤ _), eq.symm $ (lt_or_eq_of_le g1).resolve_left $ λg2, H _ g2 (gcd_dvd_left _ _) (gcd_dvd_right _ _)) theorem coprime_of_dvd' {m n : ℕ} (H : ∀ k, k ∣ m → k ∣ n → k ∣ 1) : coprime m n := coprime_of_dvd $ λk kl km kn, not_le_of_gt kl $ le_of_dvd zero_lt_one (H k km kn) theorem coprime.dvd_of_dvd_mul_right {m n k : ℕ} (H1 : coprime k n) (H2 : k ∣ m * n) : k ∣ m := let t := dvd_gcd (dvd_mul_left k m) H2 in by rwa [gcd_mul_left, H1.gcd_eq_one, mul_one] at t theorem coprime.dvd_of_dvd_mul_left {m n k : ℕ} (H1 : coprime k m) (H2 : k ∣ m * n) : k ∣ n := by rw mul_comm at H2; exact H1.dvd_of_dvd_mul_right H2 theorem coprime.gcd_mul_left_cancel {k : ℕ} (m : ℕ) {n : ℕ} (H : coprime k n) : gcd (k * m) n = gcd m n := have H1 : coprime (gcd (k * m) n) k, by rw [coprime, gcd_assoc, H.symm.gcd_eq_one, gcd_one_right], dvd_antisymm (dvd_gcd (H1.dvd_of_dvd_mul_left (gcd_dvd_left _ _)) (gcd_dvd_right _ _)) (gcd_dvd_gcd_mul_left _ _ _) theorem coprime.gcd_mul_right_cancel (m : ℕ) {k n : ℕ} (H : coprime k n) : gcd (m * k) n = gcd m n := by rw [mul_comm m k, H.gcd_mul_left_cancel m] theorem coprime.gcd_mul_left_cancel_right {k m : ℕ} (n : ℕ) (H : coprime k m) : gcd m (k * n) = gcd m n := by rw [gcd_comm m n, gcd_comm m (k * n), H.gcd_mul_left_cancel n] theorem coprime.gcd_mul_right_cancel_right {k m : ℕ} (n : ℕ) (H : coprime k m) : gcd m (n * k) = gcd m n := by rw [mul_comm n k, H.gcd_mul_left_cancel_right n] theorem coprime_div_gcd_div_gcd {m n : ℕ} (H : gcd m n > 0) : coprime (m / gcd m n) (n / gcd m n) := by delta coprime; rw [gcd_div (gcd_dvd_left m n) (gcd_dvd_right m n), nat.div_self H] theorem not_coprime_of_dvd_of_dvd {m n d : ℕ} (dgt1 : d > 1) (Hm : d ∣ m) (Hn : d ∣ n) : ¬ coprime m n := λ (co : gcd m n = 1), not_lt_of_ge (le_of_dvd zero_lt_one $ by rw ←co; exact dvd_gcd Hm Hn) dgt1 theorem exists_coprime {m n : ℕ} (H : gcd m n > 0) : ∃ m' n', coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n := ⟨_, _, coprime_div_gcd_div_gcd H, (nat.div_mul_cancel (gcd_dvd_left m n)).symm, (nat.div_mul_cancel (gcd_dvd_right m n)).symm⟩ theorem exists_coprime' {m n : ℕ} (H : gcd m n > 0) : ∃ g m' n', 0 < g ∧ coprime m' n' ∧ m = m' * g ∧ n = n' * g := let ⟨m', n', h⟩ := exists_coprime H in ⟨_, m', n', H, h⟩ theorem coprime.mul {m n k : ℕ} (H1 : coprime m k) (H2 : coprime n k) : coprime (m * n) k := (H1.gcd_mul_left_cancel n).trans H2 theorem coprime.mul_right {k m n : ℕ} (H1 : coprime k m) (H2 : coprime k n) : coprime k (m * n) := (H1.symm.mul H2.symm).symm theorem coprime.coprime_dvd_left {m k n : ℕ} (H1 : m ∣ k) (H2 : coprime k n) : coprime m n := eq_one_of_dvd_one (by delta coprime at H2; rw ← H2; exact gcd_dvd_gcd_of_dvd_left _ H1) theorem coprime.coprime_dvd_right {m k n : ℕ} (H1 : n ∣ m) (H2 : coprime k m) : coprime k n := (H2.symm.coprime_dvd_left H1).symm theorem coprime.coprime_mul_left {k m n : ℕ} (H : coprime (k * m) n) : coprime m n := H.coprime_dvd_left (dvd_mul_left _ _) theorem coprime.coprime_mul_right {k m n : ℕ} (H : coprime (m * k) n) : coprime m n := H.coprime_dvd_left (dvd_mul_right _ _) theorem coprime.coprime_mul_left_right {k m n : ℕ} (H : coprime m (k * n)) : coprime m n := H.coprime_dvd_right (dvd_mul_left _ _) theorem coprime.coprime_mul_right_right {k m n : ℕ} (H : coprime m (n * k)) : coprime m n := H.coprime_dvd_right (dvd_mul_right _ _) theorem coprime_one_left : ∀ n, coprime 1 n := gcd_one_left theorem coprime_one_right : ∀ n, coprime n 1 := gcd_one_right theorem coprime.pow_left {m k : ℕ} (n : ℕ) (H1 : coprime m k) : coprime (m ^ n) k := nat.rec_on n (coprime_one_left _) (λn IH, IH.mul H1) theorem coprime.pow_right {m k : ℕ} (n : ℕ) (H1 : coprime k m) : coprime k (m ^ n) := (H1.symm.pow_left n).symm theorem coprime.pow {k l : ℕ} (m n : ℕ) (H1 : coprime k l) : coprime (k ^ m) (l ^ n) := (H1.pow_left _).pow_right _ theorem coprime.eq_one_of_dvd {k m : ℕ} (H : coprime k m) (d : k ∣ m) : k = 1 := by rw [← H.gcd_eq_one, gcd_eq_left d] theorem exists_eq_prod_and_dvd_and_dvd {m n k : ℕ} (H : k ∣ m * n) : ∃ m' n', k = m' * n' ∧ m' ∣ m ∧ n' ∣ n := or.elim (eq_zero_or_pos (gcd k m)) (λg0, ⟨0, n, by rw [zero_mul, eq_zero_of_gcd_eq_zero_left g0], by rw [eq_zero_of_gcd_eq_zero_right g0]; apply dvd_zero, dvd_refl _⟩) (λgpos, let hd := (nat.mul_div_cancel' (gcd_dvd_left k m)).symm in ⟨_, _, hd, gcd_dvd_right _ _, dvd_of_mul_dvd_mul_left gpos $ by rw [←hd, ←gcd_mul_right]; exact dvd_gcd (dvd_mul_right _ _) H⟩) theorem pow_dvd_pow_iff {a b n : ℕ} (n0 : 0 < n) : a ^ n ∣ b ^ n ↔ a ∣ b := begin refine ⟨λ h, _, λ h, pow_dvd_pow_of_dvd h _⟩, cases eq_zero_or_pos (gcd a b) with g0 g0, { simp [eq_zero_of_gcd_eq_zero_right g0] }, rcases exists_coprime' g0 with ⟨g, a', b', g0', co, rfl, rfl⟩, rw [mul_pow, mul_pow] at h, replace h := dvd_of_mul_dvd_mul_right (pos_pow_of_pos _ g0') h, have := pow_dvd_pow a' n0, rw [pow_one, (co.pow n n).eq_one_of_dvd h] at this, simp [eq_one_of_dvd_one this] end end nat
9771c8396a66a58b88acde4de747fe27e7e54c4c
66a6486e19b71391cc438afee5f081a4257564ec
/choice.hlean
79c6f9fa8d5c819ba979188dcdbecda8e75a0cfe
[ "Apache-2.0" ]
permissive
spiceghello/Spectral
c8ccd1e32d4b6a9132ccee20fcba44b477cd0331
20023aa3de27c22ab9f9b4a177f5a1efdec2b19f
refs/heads/master
1,611,263,374,078
1,523,349,717,000
1,523,349,717,000
92,312,239
0
0
null
1,495,642,470,000
1,495,642,470,000
null
UTF-8
Lean
false
false
3,389
hlean
import types.trunc types.sum types.lift types.unit open pi prod sum unit bool trunc is_trunc is_equiv eq equiv lift pointed namespace choice -- the following brilliant name is from Agda definition unchoose [unfold 4] (n : ℕ₋₂) {X : Type} (A : X → Type) : trunc n (Πx, A x) → Πx, trunc n (A x) := trunc.elim (λf x, tr (f x)) definition has_choice.{u} [class] (n : ℕ₋₂) (X : Type.{u}) : Type.{u+1} := Π(A : X → Type.{u}), is_equiv (unchoose n A) definition choice_equiv.{u} [constructor] {n : ℕ₋₂} {X : Type.{u}} [H : has_choice n X] (A : X → Type.{u}) : trunc n (Πx, A x) ≃ (Πx, trunc n (A x)) := equiv.mk _ (H A) definition has_choice_of_succ (X : Type) (H : Πk, has_choice (k.+1) X) (n : ℕ₋₂) : has_choice n X := begin cases n with n, { intro A, apply is_equiv_of_is_contr }, { exact H n } end definition has_choice_empty [instance] (n : ℕ₋₂) : has_choice n empty := begin intro A, fapply adjointify, { intro f, apply tr, intro x, induction x }, { intro f, apply eq_of_homotopy, intro x, induction x }, { intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro x, induction x } end definition has_choice_unit [instance] : Πn, has_choice n unit := begin intro n A, fapply adjointify, { intro f, induction f ⋆ with a, apply tr, intro u, induction u, exact a }, { intro f, apply eq_of_homotopy, intro u, induction u, esimp, generalize f ⋆, intro a, induction a, reflexivity }, { intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro u, induction u, reflexivity } end definition has_choice_sum.{u} [instance] (n : ℕ₋₂) (A B : Type.{u}) [has_choice n A] [has_choice n B] : has_choice n (A ⊎ B) := begin intro P, fapply is_equiv_of_equiv_of_homotopy, { exact calc trunc n (Πx, P x) ≃ trunc n ((Πa, P (inl a)) × Πb, P (inr b)) : trunc_equiv_trunc n !equiv_sum_rec⁻¹ᵉ ... ≃ trunc n (Πa, P (inl a)) × trunc n (Πb, P (inr b)) : trunc_prod_equiv ... ≃ (Πa, trunc n (P (inl a))) × Πb, trunc n (P (inr b)) : by exact prod_equiv_prod (choice_equiv _) (choice_equiv _) ... ≃ Πx, trunc n (P x) : equiv_sum_rec }, { intro f, induction f, apply eq_of_homotopy, intro x, esimp, induction x with a b: reflexivity } end /- currently we prove it using univalence, which means we cannot apply it to lift. TODO: change -/ definition has_choice_equiv_closed.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A ≃ B) (hA : has_choice n B) : has_choice n A := begin induction f using rec_on_ua_idp, assumption end definition has_choice_bool [instance] (n : ℕ₋₂) : has_choice n bool := has_choice_equiv_closed n bool_equiv_unit_sum_unit _ definition has_choice_lift.{u v} [instance] (n : ℕ₋₂) (A : Type) [has_choice n A] : has_choice n (lift.{u v} A) := sorry --has_choice_equiv_closed n !equiv_lift⁻¹ᵉ _ definition has_choice_punit [instance] (n : ℕ₋₂) : has_choice n punit := has_choice_unit n definition has_choice_pbool [instance] (n : ℕ₋₂) : has_choice n pbool := has_choice_bool n definition has_choice_plift [instance] (n : ℕ₋₂) (A : Type*) [has_choice n A] : has_choice n (plift A) := has_choice_lift n A definition has_choice_psum [instance] (n : ℕ₋₂) (A B : Type*) [has_choice n A] [has_choice n B] : has_choice n (psum A B) := has_choice_sum n A B end choice
682c0488a169b11f8688041469ad6c6e8024f477
47181b4ef986292573c77e09fcb116584d37ea8a
/src/for_mathlib/padic_norm.lean
7d26ae902fea94448757b04b3d584da531eeade7
[ "MIT" ]
permissive
RaitoBezarius/berkovich-spaces
87662a2bdb0ac0beed26e3338b221e3f12107b78
0a49f75a599bcb20333ec86b301f84411f04f7cf
refs/heads/main
1,690,520,666,912
1,629,328,012,000
1,629,328,012,000
332,238,095
4
0
MIT
1,629,312,085,000
1,611,414,506,000
Lean
UTF-8
Lean
false
false
384
lean
import data.nat.basic import data.nat.prime import number_theory.padics.padic_norm theorem padic_norm_primes {p q: ℕ} [p_prime: fact (nat.prime p)] [q_prime: fact (nat.prime q)] (neq: p ≠ q): padic_norm p q = 1 := begin have p: padic_val_rat p q = 0, exact_mod_cast @padic_val_nat_primes p q p_prime q_prime neq, simp [padic_norm, p, q_prime.1, nat.prime.ne_zero _], end
9268e0730248a9b63225a448d16663db91c47514
c777c32c8e484e195053731103c5e52af26a25d1
/src/order/upper_lower/basic.lean
d95fe66e45e026b611033d0d92f90fcbd5259023
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
44,392
lean
/- Copyright (c) 2022 Yaël Dillies, Sara Rousta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies, Sara Rousta -/ import data.set_like.basic import data.set.intervals.ord_connected import data.set.intervals.order_iso /-! # Up-sets and down-sets > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines upper and lower sets in an order. ## Main declarations * `is_upper_set`: Predicate for a set to be an upper set. This means every element greater than a member of the set is in the set itself. * `is_lower_set`: Predicate for a set to be a lower set. This means every element less than a member of the set is in the set itself. * `upper_set`: The type of upper sets. * `lower_set`: The type of lower sets. * `upper_closure`: The greatest upper set containing a set. * `lower_closure`: The least lower set containing a set. * `upper_set.Ici`: Principal upper set. `set.Ici` as an upper set. * `upper_set.Ioi`: Strict principal upper set. `set.Ioi` as an upper set. * `lower_set.Iic`: Principal lower set. `set.Iic` as an lower set. * `lower_set.Iio`: Strict principal lower set. `set.Iio` as an lower set. ## Notation `×ˢ` is notation for `upper_set.prod`/`lower_set.prod`. ## Notes Upper sets are ordered by **reverse** inclusion. This convention is motivated by the fact that this makes them order-isomorphic to lower sets and antichains, and matches the convention on `filter`. ## TODO Lattice structure on antichains. Order equivalence between upper/lower sets and antichains. -/ open order_dual set variables {α β γ : Type*} {ι : Sort*} {κ : ι → Sort*} /-! ### Unbundled upper/lower sets -/ section has_le variables [has_le α] [has_le β] {s t : set α} /-- An upper set in an order `α` is a set such that any element greater than one of its members is also a member. Also called up-set, upward-closed set. -/ def is_upper_set (s : set α) : Prop := ∀ ⦃a b : α⦄, a ≤ b → a ∈ s → b ∈ s /-- A lower set in an order `α` is a set such that any element less than one of its members is also a member. Also called down-set, downward-closed set. -/ def is_lower_set (s : set α) : Prop := ∀ ⦃a b : α⦄, b ≤ a → a ∈ s → b ∈ s lemma is_upper_set_empty : is_upper_set (∅ : set α) := λ _ _ _, id lemma is_lower_set_empty : is_lower_set (∅ : set α) := λ _ _ _, id lemma is_upper_set_univ : is_upper_set (univ : set α) := λ _ _ _, id lemma is_lower_set_univ : is_lower_set (univ : set α) := λ _ _ _, id lemma is_upper_set.compl (hs : is_upper_set s) : is_lower_set sᶜ := λ a b h hb ha, hb $ hs h ha lemma is_lower_set.compl (hs : is_lower_set s) : is_upper_set sᶜ := λ a b h hb ha, hb $ hs h ha @[simp] lemma is_upper_set_compl : is_upper_set sᶜ ↔ is_lower_set s := ⟨λ h, by { convert h.compl, rw compl_compl }, is_lower_set.compl⟩ @[simp] lemma is_lower_set_compl : is_lower_set sᶜ ↔ is_upper_set s := ⟨λ h, by { convert h.compl, rw compl_compl }, is_upper_set.compl⟩ lemma is_upper_set.union (hs : is_upper_set s) (ht : is_upper_set t) : is_upper_set (s ∪ t) := λ a b h, or.imp (hs h) (ht h) lemma is_lower_set.union (hs : is_lower_set s) (ht : is_lower_set t) : is_lower_set (s ∪ t) := λ a b h, or.imp (hs h) (ht h) lemma is_upper_set.inter (hs : is_upper_set s) (ht : is_upper_set t) : is_upper_set (s ∩ t) := λ a b h, and.imp (hs h) (ht h) lemma is_lower_set.inter (hs : is_lower_set s) (ht : is_lower_set t) : is_lower_set (s ∩ t) := λ a b h, and.imp (hs h) (ht h) lemma is_upper_set_Union {f : ι → set α} (hf : ∀ i, is_upper_set (f i)) : is_upper_set (⋃ i, f i) := λ a b h, Exists₂.imp $ forall_range_iff.2 $ λ i, hf i h lemma is_lower_set_Union {f : ι → set α} (hf : ∀ i, is_lower_set (f i)) : is_lower_set (⋃ i, f i) := λ a b h, Exists₂.imp $ forall_range_iff.2 $ λ i, hf i h lemma is_upper_set_Union₂ {f : Π i, κ i → set α} (hf : ∀ i j, is_upper_set (f i j)) : is_upper_set (⋃ i j, f i j) := is_upper_set_Union $ λ i, is_upper_set_Union $ hf i lemma is_lower_set_Union₂ {f : Π i, κ i → set α} (hf : ∀ i j, is_lower_set (f i j)) : is_lower_set (⋃ i j, f i j) := is_lower_set_Union $ λ i, is_lower_set_Union $ hf i lemma is_upper_set_sUnion {S : set (set α)} (hf : ∀ s ∈ S, is_upper_set s) : is_upper_set (⋃₀ S) := λ a b h, Exists₂.imp $ λ s hs, hf s hs h lemma is_lower_set_sUnion {S : set (set α)} (hf : ∀ s ∈ S, is_lower_set s) : is_lower_set (⋃₀ S) := λ a b h, Exists₂.imp $ λ s hs, hf s hs h lemma is_upper_set_Inter {f : ι → set α} (hf : ∀ i, is_upper_set (f i)) : is_upper_set (⋂ i, f i) := λ a b h, forall₂_imp $ forall_range_iff.2 $ λ i, hf i h lemma is_lower_set_Inter {f : ι → set α} (hf : ∀ i, is_lower_set (f i)) : is_lower_set (⋂ i, f i) := λ a b h, forall₂_imp $ forall_range_iff.2 $ λ i, hf i h lemma is_upper_set_Inter₂ {f : Π i, κ i → set α} (hf : ∀ i j, is_upper_set (f i j)) : is_upper_set (⋂ i j, f i j) := is_upper_set_Inter $ λ i, is_upper_set_Inter $ hf i lemma is_lower_set_Inter₂ {f : Π i, κ i → set α} (hf : ∀ i j, is_lower_set (f i j)) : is_lower_set (⋂ i j, f i j) := is_lower_set_Inter $ λ i, is_lower_set_Inter $ hf i lemma is_upper_set_sInter {S : set (set α)} (hf : ∀ s ∈ S, is_upper_set s) : is_upper_set (⋂₀ S) := λ a b h, forall₂_imp $ λ s hs, hf s hs h lemma is_lower_set_sInter {S : set (set α)} (hf : ∀ s ∈ S, is_lower_set s) : is_lower_set (⋂₀ S) := λ a b h, forall₂_imp $ λ s hs, hf s hs h @[simp] lemma is_lower_set_preimage_of_dual_iff : is_lower_set (of_dual ⁻¹' s) ↔ is_upper_set s := iff.rfl @[simp] lemma is_upper_set_preimage_of_dual_iff : is_upper_set (of_dual ⁻¹' s) ↔ is_lower_set s := iff.rfl @[simp] lemma is_lower_set_preimage_to_dual_iff {s : set αᵒᵈ} : is_lower_set (to_dual ⁻¹' s) ↔ is_upper_set s := iff.rfl @[simp] lemma is_upper_set_preimage_to_dual_iff {s : set αᵒᵈ} : is_upper_set (to_dual ⁻¹' s) ↔ is_lower_set s := iff.rfl alias is_lower_set_preimage_of_dual_iff ↔ _ is_upper_set.of_dual alias is_upper_set_preimage_of_dual_iff ↔ _ is_lower_set.of_dual alias is_lower_set_preimage_to_dual_iff ↔ _ is_upper_set.to_dual alias is_upper_set_preimage_to_dual_iff ↔ _ is_lower_set.to_dual end has_le section preorder variables [preorder α] [preorder β] {s : set α} {p : α → Prop} (a : α) lemma is_upper_set_Ici : is_upper_set (Ici a) := λ _ _, ge_trans lemma is_lower_set_Iic : is_lower_set (Iic a) := λ _ _, le_trans lemma is_upper_set_Ioi : is_upper_set (Ioi a) := λ _ _, flip lt_of_lt_of_le lemma is_lower_set_Iio : is_lower_set (Iio a) := λ _ _, lt_of_le_of_lt lemma is_upper_set_iff_Ici_subset : is_upper_set s ↔ ∀ ⦃a⦄, a ∈ s → Ici a ⊆ s := by simp [is_upper_set, subset_def, @forall_swap (_ ∈ s)] lemma is_lower_set_iff_Iic_subset : is_lower_set s ↔ ∀ ⦃a⦄, a ∈ s → Iic a ⊆ s := by simp [is_lower_set, subset_def, @forall_swap (_ ∈ s)] alias is_upper_set_iff_Ici_subset ↔ is_upper_set.Ici_subset _ alias is_lower_set_iff_Iic_subset ↔ is_lower_set.Iic_subset _ lemma is_upper_set.ord_connected (h : is_upper_set s) : s.ord_connected := ⟨λ a ha b _, Icc_subset_Ici_self.trans $ h.Ici_subset ha⟩ lemma is_lower_set.ord_connected (h : is_lower_set s) : s.ord_connected := ⟨λ a _ b hb, Icc_subset_Iic_self.trans $ h.Iic_subset hb⟩ lemma is_upper_set.preimage (hs : is_upper_set s) {f : β → α} (hf : monotone f) : is_upper_set (f ⁻¹' s : set β) := λ x y hxy, hs $ hf hxy lemma is_lower_set.preimage (hs : is_lower_set s) {f : β → α} (hf : monotone f) : is_lower_set (f ⁻¹' s : set β) := λ x y hxy, hs $ hf hxy lemma is_upper_set.image (hs : is_upper_set s) (f : α ≃o β) : is_upper_set (f '' s : set β) := by { change is_upper_set ((f : α ≃ β) '' s), rw set.image_equiv_eq_preimage_symm, exact hs.preimage f.symm.monotone } lemma is_lower_set.image (hs : is_lower_set s) (f : α ≃o β) : is_lower_set (f '' s : set β) := by { change is_lower_set ((f : α ≃ β) '' s), rw set.image_equiv_eq_preimage_symm, exact hs.preimage f.symm.monotone } @[simp] lemma set.monotone_mem : monotone (∈ s) ↔ is_upper_set s := iff.rfl @[simp] lemma set.antitone_mem : antitone (∈ s) ↔ is_lower_set s := forall_swap @[simp] lemma is_upper_set_set_of : is_upper_set {a | p a} ↔ monotone p := iff.rfl @[simp] lemma is_lower_set_set_of : is_lower_set {a | p a} ↔ antitone p := forall_swap section order_top variables [order_top α] lemma is_lower_set.top_mem (hs : is_lower_set s) : ⊤ ∈ s ↔ s = univ := ⟨λ h, eq_univ_of_forall $ λ a, hs le_top h, λ h, h.symm ▸ mem_univ _⟩ lemma is_upper_set.top_mem (hs : is_upper_set s) : ⊤ ∈ s ↔ s.nonempty := ⟨λ h, ⟨_, h⟩, λ ⟨a, ha⟩, hs le_top ha⟩ lemma is_upper_set.not_top_mem (hs : is_upper_set s) : ⊤ ∉ s ↔ s = ∅ := hs.top_mem.not.trans not_nonempty_iff_eq_empty end order_top section order_bot variables [order_bot α] lemma is_upper_set.bot_mem (hs : is_upper_set s) : ⊥ ∈ s ↔ s = univ := ⟨λ h, eq_univ_of_forall $ λ a, hs bot_le h, λ h, h.symm ▸ mem_univ _⟩ lemma is_lower_set.bot_mem (hs : is_lower_set s) : ⊥ ∈ s ↔ s.nonempty := ⟨λ h, ⟨_, h⟩, λ ⟨a, ha⟩, hs bot_le ha⟩ lemma is_lower_set.not_bot_mem (hs : is_lower_set s) : ⊥ ∉ s ↔ s = ∅ := hs.bot_mem.not.trans not_nonempty_iff_eq_empty end order_bot section no_max_order variables [no_max_order α] (a) lemma is_upper_set.not_bdd_above (hs : is_upper_set s) : s.nonempty → ¬ bdd_above s := begin rintro ⟨a, ha⟩ ⟨b, hb⟩, obtain ⟨c, hc⟩ := exists_gt b, exact hc.not_le (hb $ hs ((hb ha).trans hc.le) ha), end lemma not_bdd_above_Ici : ¬ bdd_above (Ici a) := (is_upper_set_Ici _).not_bdd_above nonempty_Ici lemma not_bdd_above_Ioi : ¬ bdd_above (Ioi a) := (is_upper_set_Ioi _).not_bdd_above nonempty_Ioi end no_max_order section no_min_order variables [no_min_order α] (a) lemma is_lower_set.not_bdd_below (hs : is_lower_set s) : s.nonempty → ¬ bdd_below s := begin rintro ⟨a, ha⟩ ⟨b, hb⟩, obtain ⟨c, hc⟩ := exists_lt b, exact hc.not_le (hb $ hs (hc.le.trans $ hb ha) ha), end lemma not_bdd_below_Iic : ¬ bdd_below (Iic a) := (is_lower_set_Iic _).not_bdd_below nonempty_Iic lemma not_bdd_below_Iio : ¬ bdd_below (Iio a) := (is_lower_set_Iio _).not_bdd_below nonempty_Iio end no_min_order end preorder section partial_order variables [partial_order α] {s : set α} lemma is_upper_set_iff_forall_lt : is_upper_set s ↔ ∀ ⦃a b : α⦄, a < b → a ∈ s → b ∈ s := forall_congr $ λ a, by simp [le_iff_eq_or_lt, or_imp_distrib, forall_and_distrib] lemma is_lower_set_iff_forall_lt : is_lower_set s ↔ ∀ ⦃a b : α⦄, b < a → a ∈ s → b ∈ s := forall_congr $ λ a, by simp [le_iff_eq_or_lt, or_imp_distrib, forall_and_distrib] lemma is_upper_set_iff_Ioi_subset : is_upper_set s ↔ ∀ ⦃a⦄, a ∈ s → Ioi a ⊆ s := by simp [is_upper_set_iff_forall_lt, subset_def, @forall_swap (_ ∈ s)] lemma is_lower_set_iff_Iio_subset : is_lower_set s ↔ ∀ ⦃a⦄, a ∈ s → Iio a ⊆ s := by simp [is_lower_set_iff_forall_lt, subset_def, @forall_swap (_ ∈ s)] alias is_upper_set_iff_Ioi_subset ↔ is_upper_set.Ioi_subset _ alias is_lower_set_iff_Iio_subset ↔ is_lower_set.Iio_subset _ end partial_order /-! ### Bundled upper/lower sets -/ section has_le variables [has_le α] /-- The type of upper sets of an order. -/ structure upper_set (α : Type*) [has_le α] := (carrier : set α) (upper' : is_upper_set carrier) /-- The type of lower sets of an order. -/ structure lower_set (α : Type*) [has_le α] := (carrier : set α) (lower' : is_lower_set carrier) namespace upper_set instance : set_like (upper_set α) α := { coe := upper_set.carrier, coe_injective' := λ s t h, by { cases s, cases t, congr' } } @[ext] lemma ext {s t : upper_set α} : (s : set α) = t → s = t := set_like.ext' @[simp] lemma carrier_eq_coe (s : upper_set α) : s.carrier = s := rfl protected lemma upper (s : upper_set α) : is_upper_set (s : set α) := s.upper' @[simp] lemma mem_mk (carrier : set α) (upper') {a : α} : a ∈ mk carrier upper' ↔ a ∈ carrier := iff.rfl end upper_set namespace lower_set instance : set_like (lower_set α) α := { coe := lower_set.carrier, coe_injective' := λ s t h, by { cases s, cases t, congr' } } @[ext] lemma ext {s t : lower_set α} : (s : set α) = t → s = t := set_like.ext' @[simp] lemma carrier_eq_coe (s : lower_set α) : s.carrier = s := rfl protected lemma lower (s : lower_set α) : is_lower_set (s : set α) := s.lower' @[simp] lemma mem_mk (carrier : set α) (lower') {a : α} : a ∈ mk carrier lower' ↔ a ∈ carrier := iff.rfl end lower_set /-! #### Order -/ namespace upper_set variables {S : set (upper_set α)} {s t : upper_set α} {a : α} instance : has_sup (upper_set α) := ⟨λ s t, ⟨s ∩ t, s.upper.inter t.upper⟩⟩ instance : has_inf (upper_set α) := ⟨λ s t, ⟨s ∪ t, s.upper.union t.upper⟩⟩ instance : has_top (upper_set α) := ⟨⟨∅, is_upper_set_empty⟩⟩ instance : has_bot (upper_set α) := ⟨⟨univ, is_upper_set_univ⟩⟩ instance : has_Sup (upper_set α) := ⟨λ S, ⟨⋂ s ∈ S, ↑s, is_upper_set_Inter₂ $ λ s _, s.upper⟩⟩ instance : has_Inf (upper_set α) := ⟨λ S, ⟨⋃ s ∈ S, ↑s, is_upper_set_Union₂ $ λ s _, s.upper⟩⟩ instance : complete_distrib_lattice (upper_set α) := (to_dual.injective.comp $ set_like.coe_injective).complete_distrib_lattice _ (λ _ _, rfl) (λ _ _, rfl) (λ _, rfl) (λ _, rfl) rfl rfl instance : inhabited (upper_set α) := ⟨⊥⟩ @[simp, norm_cast] lemma coe_subset_coe : (s : set α) ⊆ t ↔ t ≤ s := iff.rfl @[simp, norm_cast] lemma coe_top : ((⊤ : upper_set α) : set α) = ∅ := rfl @[simp, norm_cast] lemma coe_bot : ((⊥ : upper_set α) : set α) = univ := rfl @[simp, norm_cast] lemma coe_eq_univ : (s : set α) = univ ↔ s = ⊥ := by simp [set_like.ext'_iff] @[simp, norm_cast] lemma coe_eq_empty : (s : set α) = ∅ ↔ s = ⊤ := by simp [set_like.ext'_iff] @[simp, norm_cast] lemma coe_sup (s t : upper_set α) : (↑(s ⊔ t) : set α) = s ∩ t := rfl @[simp, norm_cast] lemma coe_inf (s t : upper_set α) : (↑(s ⊓ t) : set α) = s ∪ t := rfl @[simp, norm_cast] lemma coe_Sup (S : set (upper_set α)) : (↑(Sup S) : set α) = ⋂ s ∈ S, ↑s := rfl @[simp, norm_cast] lemma coe_Inf (S : set (upper_set α)) : (↑(Inf S) : set α) = ⋃ s ∈ S, ↑s := rfl @[simp, norm_cast] lemma coe_supr (f : ι → upper_set α) : (↑(⨆ i, f i) : set α) = ⋂ i, f i := by simp [supr] @[simp, norm_cast] lemma coe_infi (f : ι → upper_set α) : (↑(⨅ i, f i) : set α) = ⋃ i, f i := by simp [infi] @[simp, norm_cast] lemma coe_supr₂ (f : Π i, κ i → upper_set α) : (↑(⨆ i j, f i j) : set α) = ⋂ i j, f i j := by simp_rw coe_supr @[simp, norm_cast] lemma coe_infi₂ (f : Π i, κ i → upper_set α) : (↑(⨅ i j, f i j) : set α) = ⋃ i j, f i j := by simp_rw coe_infi @[simp] lemma not_mem_top : a ∉ (⊤ : upper_set α) := id @[simp] lemma mem_bot : a ∈ (⊥ : upper_set α) := trivial @[simp] lemma mem_sup_iff : a ∈ s ⊔ t ↔ a ∈ s ∧ a ∈ t := iff.rfl @[simp] lemma mem_inf_iff : a ∈ s ⊓ t ↔ a ∈ s ∨ a ∈ t := iff.rfl @[simp] lemma mem_Sup_iff : a ∈ Sup S ↔ ∀ s ∈ S, a ∈ s := mem_Inter₂ @[simp] lemma mem_Inf_iff : a ∈ Inf S ↔ ∃ s ∈ S, a ∈ s := mem_Union₂ @[simp] lemma mem_supr_iff {f : ι → upper_set α} : a ∈ (⨆ i, f i) ↔ ∀ i, a ∈ f i := by { rw [←set_like.mem_coe, coe_supr], exact mem_Inter } @[simp] lemma mem_infi_iff {f : ι → upper_set α} : a ∈ (⨅ i, f i) ↔ ∃ i, a ∈ f i := by { rw [←set_like.mem_coe, coe_infi], exact mem_Union } @[simp] lemma mem_supr₂_iff {f : Π i, κ i → upper_set α} : a ∈ (⨆ i j, f i j) ↔ ∀ i j, a ∈ f i j := by simp_rw mem_supr_iff @[simp] lemma mem_infi₂_iff {f : Π i, κ i → upper_set α} : a ∈ (⨅ i j, f i j) ↔ ∃ i j, a ∈ f i j := by simp_rw mem_infi_iff @[simp, norm_cast] lemma codisjoint_coe : codisjoint (s : set α) t ↔ disjoint s t := by simp [disjoint_iff, codisjoint_iff, set_like.ext'_iff] end upper_set namespace lower_set variables {S : set (lower_set α)} {s t : lower_set α} {a : α} instance : has_sup (lower_set α) := ⟨λ s t, ⟨s ∪ t, λ a b h, or.imp (s.lower h) (t.lower h)⟩⟩ instance : has_inf (lower_set α) := ⟨λ s t, ⟨s ∩ t, λ a b h, and.imp (s.lower h) (t.lower h)⟩⟩ instance : has_top (lower_set α) := ⟨⟨univ, λ a b h, id⟩⟩ instance : has_bot (lower_set α) := ⟨⟨∅, λ a b h, id⟩⟩ instance : has_Sup (lower_set α) := ⟨λ S, ⟨⋃ s ∈ S, ↑s, is_lower_set_Union₂ $ λ s _, s.lower⟩⟩ instance : has_Inf (lower_set α) := ⟨λ S, ⟨⋂ s ∈ S, ↑s, is_lower_set_Inter₂ $ λ s _, s.lower⟩⟩ instance : complete_distrib_lattice (lower_set α) := set_like.coe_injective.complete_distrib_lattice _ (λ _ _, rfl) (λ _ _, rfl) (λ _, rfl) (λ _, rfl) rfl rfl instance : inhabited (lower_set α) := ⟨⊥⟩ @[simp, norm_cast] lemma coe_subset_coe : (s : set α) ⊆ t ↔ s ≤ t := iff.rfl @[simp, norm_cast] lemma coe_top : ((⊤ : lower_set α) : set α) = univ := rfl @[simp, norm_cast] lemma coe_bot : ((⊥ : lower_set α) : set α) = ∅ := rfl @[simp, norm_cast] lemma coe_eq_univ : (s : set α) = univ ↔ s = ⊤ := by simp [set_like.ext'_iff] @[simp, norm_cast] lemma coe_eq_empty : (s : set α) = ∅ ↔ s = ⊥ := by simp [set_like.ext'_iff] @[simp, norm_cast] lemma coe_sup (s t : lower_set α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp, norm_cast] lemma coe_inf (s t : lower_set α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp, norm_cast] lemma coe_Sup (S : set (lower_set α)) : (↑(Sup S) : set α) = ⋃ s ∈ S, ↑s := rfl @[simp, norm_cast] lemma coe_Inf (S : set (lower_set α)) : (↑(Inf S) : set α) = ⋂ s ∈ S, ↑s := rfl @[simp, norm_cast] lemma coe_supr (f : ι → lower_set α) : (↑(⨆ i, f i) : set α) = ⋃ i, f i := by simp_rw [supr, coe_Sup, mem_range, Union_exists, Union_Union_eq'] @[simp, norm_cast] lemma coe_infi (f : ι → lower_set α) : (↑(⨅ i, f i) : set α) = ⋂ i, f i := by simp_rw [infi, coe_Inf, mem_range, Inter_exists, Inter_Inter_eq'] @[simp, norm_cast] lemma coe_supr₂ (f : Π i, κ i → lower_set α) : (↑(⨆ i j, f i j) : set α) = ⋃ i j, f i j := by simp_rw coe_supr @[simp, norm_cast] lemma coe_infi₂ (f : Π i, κ i → lower_set α) : (↑(⨅ i j, f i j) : set α) = ⋂ i j, f i j := by simp_rw coe_infi @[simp] lemma mem_top : a ∈ (⊤ : lower_set α) := trivial @[simp] lemma not_mem_bot : a ∉ (⊥ : lower_set α) := id @[simp] lemma mem_sup_iff : a ∈ s ⊔ t ↔ a ∈ s ∨ a ∈ t := iff.rfl @[simp] lemma mem_inf_iff : a ∈ s ⊓ t ↔ a ∈ s ∧ a ∈ t := iff.rfl @[simp] lemma mem_Sup_iff : a ∈ Sup S ↔ ∃ s ∈ S, a ∈ s := mem_Union₂ @[simp] lemma mem_Inf_iff : a ∈ Inf S ↔ ∀ s ∈ S, a ∈ s := mem_Inter₂ @[simp] lemma mem_supr_iff {f : ι → lower_set α} : a ∈ (⨆ i, f i) ↔ ∃ i, a ∈ f i := by { rw [←set_like.mem_coe, coe_supr], exact mem_Union } @[simp] lemma mem_infi_iff {f : ι → lower_set α} : a ∈ (⨅ i, f i) ↔ ∀ i, a ∈ f i := by { rw [←set_like.mem_coe, coe_infi], exact mem_Inter } @[simp] lemma mem_supr₂_iff {f : Π i, κ i → lower_set α} : a ∈ (⨆ i j, f i j) ↔ ∃ i j, a ∈ f i j := by simp_rw mem_supr_iff @[simp] lemma mem_infi₂_iff {f : Π i, κ i → lower_set α} : a ∈ (⨅ i j, f i j) ↔ ∀ i j, a ∈ f i j := by simp_rw mem_infi_iff @[simp, norm_cast] lemma disjoint_coe : disjoint (s : set α) t ↔ disjoint s t := by simp [disjoint_iff, set_like.ext'_iff] end lower_set /-! #### Complement -/ /-- The complement of a lower set as an upper set. -/ def upper_set.compl (s : upper_set α) : lower_set α := ⟨sᶜ, s.upper.compl⟩ /-- The complement of a lower set as an upper set. -/ def lower_set.compl (s : lower_set α) : upper_set α := ⟨sᶜ, s.lower.compl⟩ namespace upper_set variables {s t : upper_set α} {a : α} @[simp] lemma coe_compl (s : upper_set α) : (s.compl : set α) = sᶜ := rfl @[simp] lemma mem_compl_iff : a ∈ s.compl ↔ a ∉ s := iff.rfl @[simp] lemma compl_compl (s : upper_set α) : s.compl.compl = s := upper_set.ext $ compl_compl _ @[simp] lemma compl_le_compl : s.compl ≤ t.compl ↔ s ≤ t := compl_subset_compl @[simp] protected lemma compl_sup (s t : upper_set α) : (s ⊔ t).compl = s.compl ⊔ t.compl := lower_set.ext compl_inf @[simp] protected lemma compl_inf (s t : upper_set α) : (s ⊓ t).compl = s.compl ⊓ t.compl := lower_set.ext compl_sup @[simp] protected lemma compl_top : (⊤ : upper_set α).compl = ⊤ := lower_set.ext compl_empty @[simp] protected lemma compl_bot : (⊥ : upper_set α).compl = ⊥ := lower_set.ext compl_univ @[simp] protected lemma compl_Sup (S : set (upper_set α)) : (Sup S).compl = ⨆ s ∈ S, upper_set.compl s := lower_set.ext $ by simp only [coe_compl, coe_Sup, compl_Inter₂, lower_set.coe_supr₂] @[simp] protected lemma compl_Inf (S : set (upper_set α)) : (Inf S).compl = ⨅ s ∈ S, upper_set.compl s := lower_set.ext $ by simp only [coe_compl, coe_Inf, compl_Union₂, lower_set.coe_infi₂] @[simp] protected lemma compl_supr (f : ι → upper_set α) : (⨆ i, f i).compl = ⨆ i, (f i).compl := lower_set.ext $ by simp only [coe_compl, coe_supr, compl_Inter, lower_set.coe_supr] @[simp] protected lemma compl_infi (f : ι → upper_set α) : (⨅ i, f i).compl = ⨅ i, (f i).compl := lower_set.ext $ by simp only [coe_compl, coe_infi, compl_Union, lower_set.coe_infi] @[simp] lemma compl_supr₂ (f : Π i, κ i → upper_set α) : (⨆ i j, f i j).compl = ⨆ i j, (f i j).compl := by simp_rw upper_set.compl_supr @[simp] lemma compl_infi₂ (f : Π i, κ i → upper_set α) : (⨅ i j, f i j).compl = ⨅ i j, (f i j).compl := by simp_rw upper_set.compl_infi end upper_set namespace lower_set variables {s t : lower_set α} {a : α} @[simp] lemma coe_compl (s : lower_set α) : (s.compl : set α) = sᶜ := rfl @[simp] lemma mem_compl_iff : a ∈ s.compl ↔ a ∉ s := iff.rfl @[simp] lemma compl_compl (s : lower_set α) : s.compl.compl = s := lower_set.ext $ compl_compl _ @[simp] lemma compl_le_compl : s.compl ≤ t.compl ↔ s ≤ t := compl_subset_compl protected lemma compl_sup (s t : lower_set α) : (s ⊔ t).compl = s.compl ⊔ t.compl := upper_set.ext compl_sup protected lemma compl_inf (s t : lower_set α) : (s ⊓ t).compl = s.compl ⊓ t.compl := upper_set.ext compl_inf protected lemma compl_top : (⊤ : lower_set α).compl = ⊤ := upper_set.ext compl_univ protected lemma compl_bot : (⊥ : lower_set α).compl = ⊥ := upper_set.ext compl_empty protected lemma compl_Sup (S : set (lower_set α)) : (Sup S).compl = ⨆ s ∈ S, lower_set.compl s := upper_set.ext $ by simp only [coe_compl, coe_Sup, compl_Union₂, upper_set.coe_supr₂] protected lemma compl_Inf (S : set (lower_set α)) : (Inf S).compl = ⨅ s ∈ S, lower_set.compl s := upper_set.ext $ by simp only [coe_compl, coe_Inf, compl_Inter₂, upper_set.coe_infi₂] protected lemma compl_supr (f : ι → lower_set α) : (⨆ i, f i).compl = ⨆ i, (f i).compl := upper_set.ext $ by simp only [coe_compl, coe_supr, compl_Union, upper_set.coe_supr] protected lemma compl_infi (f : ι → lower_set α) : (⨅ i, f i).compl = ⨅ i, (f i).compl := upper_set.ext $ by simp only [coe_compl, coe_infi, compl_Inter, upper_set.coe_infi] @[simp] lemma compl_supr₂ (f : Π i, κ i → lower_set α) : (⨆ i j, f i j).compl = ⨆ i j, (f i j).compl := by simp_rw lower_set.compl_supr @[simp] lemma compl_infi₂ (f : Π i, κ i → lower_set α) : (⨅ i j, f i j).compl = ⨅ i j, (f i j).compl := by simp_rw lower_set.compl_infi end lower_set /-- Upper sets are order-isomorphic to lower sets under complementation. -/ @[simps] def upper_set_iso_lower_set : upper_set α ≃o lower_set α := { to_fun := upper_set.compl, inv_fun := lower_set.compl, left_inv := upper_set.compl_compl, right_inv := lower_set.compl_compl, map_rel_iff' := λ _ _, upper_set.compl_le_compl } end has_le /-! #### Map -/ section variables [preorder α] [preorder β] [preorder γ] namespace upper_set variables {f : α ≃o β} {s t : upper_set α} {a : α} {b : β} /-- An order isomorphism of preorders induces an order isomorphism of their upper sets. -/ def map (f : α ≃o β) : upper_set α ≃o upper_set β := { to_fun := λ s, ⟨f '' s, s.upper.image f⟩, inv_fun := λ t, ⟨f ⁻¹' t, t.upper.preimage f.monotone⟩, left_inv := λ _, ext $ f.preimage_image _, right_inv := λ _, ext $ f.image_preimage _, map_rel_iff' := λ s t, image_subset_image_iff f.injective } @[simp] lemma symm_map (f : α ≃o β) : (map f).symm = map f.symm := fun_like.ext _ _ $ λ s, ext $ set.preimage_equiv_eq_image_symm _ _ @[simp] lemma mem_map : b ∈ map f s ↔ f.symm b ∈ s := by { rw [←f.symm_symm, ←symm_map, f.symm_symm], refl } @[simp] lemma map_refl : map (order_iso.refl α) = order_iso.refl _ := by { ext, simp } @[simp] lemma map_map (g : β ≃o γ) (f : α ≃o β) : map g (map f s) = map (f.trans g) s := by { ext, simp } variables (f s t) @[simp, norm_cast] lemma coe_map : (map f s : set β) = f '' s := rfl end upper_set namespace lower_set variables {f : α ≃o β} {s t : lower_set α} {a : α} {b : β} /-- An order isomorphism of preorders induces an order isomorphism of their lower sets. -/ def map (f : α ≃o β) : lower_set α ≃o lower_set β := { to_fun := λ s, ⟨f '' s, s.lower.image f⟩, inv_fun := λ t, ⟨f ⁻¹' t, t.lower.preimage f.monotone⟩, left_inv := λ _, set_like.coe_injective $ f.preimage_image _, right_inv := λ _, set_like.coe_injective $ f.image_preimage _, map_rel_iff' := λ s t, image_subset_image_iff f.injective } @[simp] lemma symm_map (f : α ≃o β) : (map f).symm = map f.symm := fun_like.ext _ _ $ λ s, set_like.coe_injective $ set.preimage_equiv_eq_image_symm _ _ @[simp] lemma mem_map {f : α ≃o β} {b : β} : b ∈ map f s ↔ f.symm b ∈ s := by { rw [←f.symm_symm, ←symm_map, f.symm_symm], refl } @[simp] lemma map_refl : map (order_iso.refl α) = order_iso.refl _ := by { ext, simp } @[simp] lemma map_map (g : β ≃o γ) (f : α ≃o β) : map g (map f s) = map (f.trans g) s := by { ext, simp } variables (f s t) @[simp, norm_cast] lemma coe_map : (map f s : set β) = f '' s := rfl end lower_set namespace upper_set @[simp] lemma compl_map (f : α ≃o β) (s : upper_set α) : (map f s).compl = lower_set.map f s.compl := set_like.coe_injective (set.image_compl_eq f.bijective).symm end upper_set namespace lower_set @[simp] lemma compl_map (f : α ≃o β) (s : lower_set α) : (map f s).compl = upper_set.map f s.compl := set_like.coe_injective (set.image_compl_eq f.bijective).symm end lower_set end /-! #### Principal sets -/ namespace upper_set section preorder variables [preorder α] [preorder β] {s : upper_set α} {a b : α} /-- The smallest upper set containing a given element. -/ def Ici (a : α) : upper_set α := ⟨Ici a, is_upper_set_Ici a⟩ /-- The smallest upper set containing a given element. -/ def Ioi (a : α) : upper_set α := ⟨Ioi a, is_upper_set_Ioi a⟩ @[simp] lemma coe_Ici (a : α) : ↑(Ici a) = set.Ici a := rfl @[simp] lemma coe_Ioi (a : α) : ↑(Ioi a) = set.Ioi a := rfl @[simp] lemma mem_Ici_iff : b ∈ Ici a ↔ a ≤ b := iff.rfl @[simp] lemma mem_Ioi_iff : b ∈ Ioi a ↔ a < b := iff.rfl @[simp] lemma map_Ici (f : α ≃o β) (a : α) : map f (Ici a) = Ici (f a) := by { ext, simp } @[simp] lemma map_Ioi (f : α ≃o β) (a : α) : map f (Ioi a) = Ioi (f a) := by { ext, simp } lemma Ici_le_Ioi (a : α) : Ici a ≤ Ioi a := Ioi_subset_Ici_self @[simp] lemma Ioi_top [order_top α] : Ioi (⊤ : α) = ⊤ := set_like.coe_injective Ioi_top @[simp] lemma Ici_bot [order_bot α] : Ici (⊥ : α) = ⊥ := set_like.coe_injective Ici_bot end preorder @[simp] lemma Ici_sup [semilattice_sup α] (a b : α) : Ici (a ⊔ b) = Ici a ⊔ Ici b := ext Ici_inter_Ici.symm section complete_lattice variables [complete_lattice α] @[simp] lemma Ici_Sup (S : set α) : Ici (Sup S) = ⨆ a ∈ S, Ici a := set_like.ext $ λ c, by simp only [mem_Ici_iff, mem_supr_iff, Sup_le_iff] @[simp] lemma Ici_supr (f : ι → α) : Ici (⨆ i, f i) = ⨆ i, Ici (f i) := set_like.ext $ λ c, by simp only [mem_Ici_iff, mem_supr_iff, supr_le_iff] @[simp] lemma Ici_supr₂ (f : Π i, κ i → α) : Ici (⨆ i j, f i j) = ⨆ i j, Ici (f i j) := by simp_rw Ici_supr end complete_lattice end upper_set namespace lower_set section preorder variables [preorder α] [preorder β] {s : lower_set α} {a b : α} /-- Principal lower set. `set.Iic` as a lower set. The smallest lower set containing a given element. -/ def Iic (a : α) : lower_set α := ⟨Iic a, is_lower_set_Iic a⟩ /-- Strict principal lower set. `set.Iio` as a lower set. -/ def Iio (a : α) : lower_set α := ⟨Iio a, is_lower_set_Iio a⟩ @[simp] lemma coe_Iic (a : α) : ↑(Iic a) = set.Iic a := rfl @[simp] lemma coe_Iio (a : α) : ↑(Iio a) = set.Iio a := rfl @[simp] lemma mem_Iic_iff : b ∈ Iic a ↔ b ≤ a := iff.rfl @[simp] lemma mem_Iio_iff : b ∈ Iio a ↔ b < a := iff.rfl @[simp] lemma map_Iic (f : α ≃o β) (a : α) : map f (Iic a) = Iic (f a) := by { ext, simp } @[simp] lemma map_Iio (f : α ≃o β) (a : α) : map f (Iio a) = Iio (f a) := by { ext, simp } lemma Ioi_le_Ici (a : α) : Ioi a ≤ Ici a := Ioi_subset_Ici_self @[simp] lemma Iic_top [order_top α] : Iic (⊤ : α) = ⊤ := set_like.coe_injective Iic_top @[simp] lemma Iio_bot [order_bot α] : Iio (⊥ : α) = ⊥ := set_like.coe_injective Iio_bot end preorder @[simp] lemma Iic_inf [semilattice_inf α] (a b : α) : Iic (a ⊓ b) = Iic a ⊓ Iic b := set_like.coe_injective Iic_inter_Iic.symm section complete_lattice variables [complete_lattice α] @[simp] lemma Iic_Inf (S : set α) : Iic (Inf S) = ⨅ a ∈ S, Iic a := set_like.ext $ λ c, by simp only [mem_Iic_iff, mem_infi₂_iff, le_Inf_iff] @[simp] lemma Iic_infi (f : ι → α) : Iic (⨅ i, f i) = ⨅ i, Iic (f i) := set_like.ext $ λ c, by simp only [mem_Iic_iff, mem_infi_iff, le_infi_iff] @[simp] lemma Iic_infi₂ (f : Π i, κ i → α) : Iic (⨅ i j, f i j) = ⨅ i j, Iic (f i j) := by simp_rw Iic_infi end complete_lattice end lower_set section closure variables [preorder α] [preorder β] {s t : set α} {x : α} /-- The greatest upper set containing a given set. -/ def upper_closure (s : set α) : upper_set α := ⟨{x | ∃ a ∈ s, a ≤ x}, λ x y h, Exists₂.imp $ λ a _, h.trans'⟩ /-- The least lower set containing a given set. -/ def lower_closure (s : set α) : lower_set α := ⟨{x | ∃ a ∈ s, x ≤ a}, λ x y h, Exists₂.imp $ λ a _, h.trans⟩ @[simp] lemma mem_upper_closure : x ∈ upper_closure s ↔ ∃ a ∈ s, a ≤ x := iff.rfl @[simp] lemma mem_lower_closure : x ∈ lower_closure s ↔ ∃ a ∈ s, x ≤ a := iff.rfl -- We do not tag those two as `simp` to respect the abstraction. @[norm_cast] lemma coe_upper_closure (s : set α) : ↑(upper_closure s) = ⋃ a ∈ s, Ici a := by { ext, simp } @[norm_cast] lemma coe_lower_closure (s : set α) : ↑(lower_closure s) = ⋃ a ∈ s, Iic a := by { ext, simp } lemma subset_upper_closure : s ⊆ upper_closure s := λ x hx, ⟨x, hx, le_rfl⟩ lemma subset_lower_closure : s ⊆ lower_closure s := λ x hx, ⟨x, hx, le_rfl⟩ lemma upper_closure_min (h : s ⊆ t) (ht : is_upper_set t) : ↑(upper_closure s) ⊆ t := λ a ⟨b, hb, hba⟩, ht hba $ h hb lemma lower_closure_min (h : s ⊆ t) (ht : is_lower_set t) : ↑(lower_closure s) ⊆ t := λ a ⟨b, hb, hab⟩, ht hab $ h hb protected lemma is_upper_set.upper_closure (hs : is_upper_set s) : ↑(upper_closure s) = s := (upper_closure_min subset.rfl hs).antisymm subset_upper_closure protected lemma is_lower_set.lower_closure (hs : is_lower_set s) : ↑(lower_closure s) = s := (lower_closure_min subset.rfl hs).antisymm subset_lower_closure @[simp] protected lemma upper_set.upper_closure (s : upper_set α) : upper_closure (s : set α) = s := set_like.coe_injective s.2.upper_closure @[simp] protected lemma lower_set.lower_closure (s : lower_set α) : lower_closure (s : set α) = s := set_like.coe_injective s.2.lower_closure @[simp] lemma upper_closure_image (f : α ≃o β) : upper_closure (f '' s) = upper_set.map f (upper_closure s) := begin rw [←f.symm_symm, ←upper_set.symm_map, f.symm_symm], ext, simp [-upper_set.symm_map, upper_set.map, order_iso.symm, ←f.le_symm_apply], end @[simp] lemma lower_closure_image (f : α ≃o β) : lower_closure (f '' s) = lower_set.map f (lower_closure s) := begin rw [←f.symm_symm, ←lower_set.symm_map, f.symm_symm], ext, simp [-lower_set.symm_map, lower_set.map, order_iso.symm, ←f.symm_apply_le], end @[simp] lemma upper_set.infi_Ici (s : set α) : (⨅ a ∈ s, upper_set.Ici a) = upper_closure s := by { ext, simp } @[simp] lemma lower_set.supr_Iic (s : set α) : (⨆ a ∈ s, lower_set.Iic a) = lower_closure s := by { ext, simp } lemma gc_upper_closure_coe : galois_connection (to_dual ∘ upper_closure : set α → (upper_set α)ᵒᵈ) (coe ∘ of_dual) := λ s t, ⟨λ h, subset_upper_closure.trans $ upper_set.coe_subset_coe.2 h, λ h, upper_closure_min h t.upper⟩ lemma gc_lower_closure_coe : galois_connection (lower_closure : set α → lower_set α) coe := λ s t, ⟨λ h, subset_lower_closure.trans $ lower_set.coe_subset_coe.2 h, λ h, lower_closure_min h t.lower⟩ /-- `upper_closure` forms a reversed Galois insertion with the coercion from upper sets to sets. -/ def gi_upper_closure_coe : galois_insertion (to_dual ∘ upper_closure : set α → (upper_set α)ᵒᵈ) (coe ∘ of_dual) := { choice := λ s hs, to_dual (⟨s, λ a b hab ha, hs ⟨a, ha, hab⟩⟩ : upper_set α), gc := gc_upper_closure_coe, le_l_u := λ _, subset_upper_closure, choice_eq := λ s hs, of_dual.injective $ set_like.coe_injective $ subset_upper_closure.antisymm hs } /-- `lower_closure` forms a Galois insertion with the coercion from lower sets to sets. -/ def gi_lower_closure_coe : galois_insertion (lower_closure : set α → lower_set α) coe := { choice := λ s hs, ⟨s, λ a b hba ha, hs ⟨a, ha, hba⟩⟩, gc := gc_lower_closure_coe, le_l_u := λ _, subset_lower_closure, choice_eq := λ s hs, set_like.coe_injective $ subset_lower_closure.antisymm hs } lemma upper_closure_anti : antitone (upper_closure : set α → upper_set α) := gc_upper_closure_coe.monotone_l lemma lower_closure_mono : monotone (lower_closure : set α → lower_set α) := gc_lower_closure_coe.monotone_l @[simp] lemma upper_closure_empty : upper_closure (∅ : set α) = ⊤ := by { ext, simp } @[simp] lemma lower_closure_empty : lower_closure (∅ : set α) = ⊥ := by { ext, simp } @[simp] lemma upper_closure_singleton (a : α) : upper_closure ({a} : set α) = upper_set.Ici a := by { ext, simp } @[simp] lemma lower_closure_singleton (a : α) : lower_closure ({a} : set α) = lower_set.Iic a := by { ext, simp } @[simp] lemma upper_closure_univ : upper_closure (univ : set α) = ⊥ := le_bot_iff.1 subset_upper_closure @[simp] lemma lower_closure_univ : lower_closure (univ : set α) = ⊤ := top_le_iff.1 subset_lower_closure @[simp] lemma upper_closure_eq_top_iff : upper_closure s = ⊤ ↔ s = ∅ := ⟨λ h, subset_empty_iff.1 $ subset_upper_closure.trans (congr_arg coe h).subset, by { rintro rfl, exact upper_closure_empty }⟩ @[simp] lemma lower_closure_eq_bot_iff : lower_closure s = ⊥ ↔ s = ∅ := ⟨λ h, subset_empty_iff.1 $ subset_lower_closure.trans (congr_arg coe h).subset, by { rintro rfl, exact lower_closure_empty }⟩ @[simp] lemma upper_closure_union (s t : set α) : upper_closure (s ∪ t) = upper_closure s ⊓ upper_closure t := by { ext, simp [or_and_distrib_right, exists_or_distrib] } @[simp] lemma lower_closure_union (s t : set α) : lower_closure (s ∪ t) = lower_closure s ⊔ lower_closure t := by { ext, simp [or_and_distrib_right, exists_or_distrib] } @[simp] lemma upper_closure_Union (f : ι → set α) : upper_closure (⋃ i, f i) = ⨅ i, upper_closure (f i) := by { ext, simp [←exists_and_distrib_right, @exists_comm α] } @[simp] lemma lower_closure_Union (f : ι → set α) : lower_closure (⋃ i, f i) = ⨆ i, lower_closure (f i) := by { ext, simp [←exists_and_distrib_right, @exists_comm α] } @[simp] lemma upper_closure_sUnion (S : set (set α)) : upper_closure (⋃₀ S) = ⨅ s ∈ S, upper_closure s := by simp_rw [sUnion_eq_bUnion, upper_closure_Union] @[simp] lemma lower_closure_sUnion (S : set (set α)) : lower_closure (⋃₀ S) = ⨆ s ∈ S, lower_closure s := by simp_rw [sUnion_eq_bUnion, lower_closure_Union] lemma set.ord_connected.upper_closure_inter_lower_closure (h : s.ord_connected) : ↑(upper_closure s) ∩ ↑(lower_closure s) = s := (subset_inter subset_upper_closure subset_lower_closure).antisymm' $ λ a ⟨⟨b, hb, hba⟩, c, hc, hac⟩, h.out hb hc ⟨hba, hac⟩ lemma ord_connected_iff_upper_closure_inter_lower_closure : s.ord_connected ↔ ↑(upper_closure s) ∩ ↑(lower_closure s) = s := begin refine ⟨set.ord_connected.upper_closure_inter_lower_closure, λ h, _⟩, rw ←h, exact (upper_set.upper _).ord_connected.inter (lower_set.lower _).ord_connected, end @[simp] lemma upper_bounds_lower_closure : upper_bounds (lower_closure s : set α) = upper_bounds s := (upper_bounds_mono_set subset_lower_closure).antisymm $ λ a ha b ⟨c, hc, hcb⟩, hcb.trans $ ha hc @[simp] lemma lower_bounds_upper_closure : lower_bounds (upper_closure s : set α) = lower_bounds s := (lower_bounds_mono_set subset_upper_closure).antisymm $ λ a ha b ⟨c, hc, hcb⟩, (ha hc).trans hcb @[simp] lemma bdd_above_lower_closure : bdd_above (lower_closure s : set α) ↔ bdd_above s := by simp_rw [bdd_above, upper_bounds_lower_closure] @[simp] lemma bdd_below_upper_closure : bdd_below (upper_closure s : set α) ↔ bdd_below s := by simp_rw [bdd_below, lower_bounds_upper_closure] alias bdd_above_lower_closure ↔ bdd_above.of_lower_closure bdd_above.lower_closure alias bdd_below_upper_closure ↔ bdd_below.of_upper_closure bdd_below.upper_closure attribute [protected] bdd_above.lower_closure bdd_below.upper_closure end closure /-! ### Product -/ section preorder variables [preorder α] [preorder β] section variables {s : set α} {t : set β} {x : α × β} lemma is_upper_set.prod (hs : is_upper_set s) (ht : is_upper_set t) : is_upper_set (s ×ˢ t) := λ a b h ha, ⟨hs h.1 ha.1, ht h.2 ha.2⟩ lemma is_lower_set.prod (hs : is_lower_set s) (ht : is_lower_set t) : is_lower_set (s ×ˢ t) := λ a b h ha, ⟨hs h.1 ha.1, ht h.2 ha.2⟩ end namespace upper_set variables (s s₁ s₂ : upper_set α) (t t₁ t₂ : upper_set β) {x : α × β} /-- The product of two upper sets as an upper set. -/ def prod : upper_set (α × β) := ⟨s ×ˢ t, s.2.prod t.2⟩ infixr (name := upper_set.prod) ` ×ˢ `:82 := prod @[simp, norm_cast] lemma coe_prod : (↑(s ×ˢ t) : set (α × β)) = s ×ˢ t := rfl @[simp] lemma mem_prod {s : upper_set α} {t : upper_set β} : x ∈ s ×ˢ t ↔ x.1 ∈ s ∧ x.2 ∈ t := iff.rfl lemma Ici_prod (x : α × β) : Ici x = Ici x.1 ×ˢ Ici x.2 := rfl @[simp] lemma Ici_prod_Ici (a : α) (b : β) : Ici a ×ˢ Ici b = Ici (a, b) := rfl @[simp] lemma prod_top : s ×ˢ (⊤ : upper_set β) = ⊤ := ext prod_empty @[simp] lemma top_prod : (⊤ : upper_set α) ×ˢ t = ⊤ := ext empty_prod @[simp] lemma bot_prod_bot : (⊥ : upper_set α) ×ˢ (⊥ : upper_set β) = ⊥ := ext univ_prod_univ @[simp] lemma sup_prod : (s₁ ⊔ s₂) ×ˢ t = s₁ ×ˢ t ⊔ s₂ ×ˢ t := ext inter_prod @[simp] lemma prod_sup : s ×ˢ (t₁ ⊔ t₂) = s ×ˢ t₁ ⊔ s ×ˢ t₂ := ext prod_inter @[simp] lemma inf_prod : (s₁ ⊓ s₂) ×ˢ t = s₁ ×ˢ t ⊓ s₂ ×ˢ t := ext union_prod @[simp] lemma prod_inf : s ×ˢ (t₁ ⊓ t₂) = s ×ˢ t₁ ⊓ s ×ˢ t₂ := ext prod_union lemma prod_sup_prod : s₁ ×ˢ t₁ ⊔ s₂ ×ˢ t₂ = (s₁ ⊔ s₂) ×ˢ (t₁ ⊔ t₂) := ext prod_inter_prod variables {s s₁ s₂ t t₁ t₂} lemma prod_mono : s₁ ≤ s₂ → t₁ ≤ t₂ → s₁ ×ˢ t₁ ≤ s₂ ×ˢ t₂ := prod_mono lemma prod_mono_left : s₁ ≤ s₂ → s₁ ×ˢ t ≤ s₂ ×ˢ t := prod_mono_left lemma prod_mono_right : t₁ ≤ t₂ → s ×ˢ t₁ ≤ s ×ˢ t₂ := prod_mono_right @[simp] lemma prod_self_le_prod_self : s₁ ×ˢ s₁ ≤ s₂ ×ˢ s₂ ↔ s₁ ≤ s₂ := prod_self_subset_prod_self @[simp] lemma prod_self_lt_prod_self : s₁ ×ˢ s₁ < s₂ ×ˢ s₂ ↔ s₁ < s₂ := prod_self_ssubset_prod_self lemma prod_le_prod_iff : s₁ ×ˢ t₁ ≤ s₂ ×ˢ t₂ ↔ s₁ ≤ s₂ ∧ t₁ ≤ t₂ ∨ s₂ = ⊤ ∨ t₂ = ⊤ := prod_subset_prod_iff.trans $ by simp @[simp] lemma prod_eq_top : s ×ˢ t = ⊤ ↔ s = ⊤ ∨ t = ⊤ := by { simp_rw set_like.ext'_iff, exact prod_eq_empty_iff } @[simp] lemma codisjoint_prod : codisjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂) ↔ codisjoint s₁ s₂ ∨ codisjoint t₁ t₂ := by simp_rw [codisjoint_iff, prod_sup_prod, prod_eq_top] end upper_set namespace lower_set variables (s s₁ s₂ : lower_set α) (t t₁ t₂ : lower_set β) {x : α × β} /-- The product of two lower sets as a lower set. -/ def prod : lower_set (α × β) := ⟨s ×ˢ t, s.2.prod t.2⟩ infixr (name := lower_set.prod) ` ×ˢ `:82 := lower_set.prod @[simp, norm_cast] lemma coe_prod : (↑(s ×ˢ t) : set (α × β)) = s ×ˢ t := rfl @[simp] lemma mem_prod {s : lower_set α} {t : lower_set β} : x ∈ s ×ˢ t ↔ x.1 ∈ s ∧ x.2 ∈ t := iff.rfl lemma Iic_prod (x : α × β) : Iic x = Iic x.1 ×ˢ Iic x.2 := rfl @[simp] lemma Ici_prod_Ici (a : α) (b : β) : Iic a ×ˢ Iic b = Iic (a, b) := rfl @[simp] lemma prod_bot : s ×ˢ (⊥ : lower_set β) = ⊥ := ext prod_empty @[simp] lemma bot_prod : (⊥ : lower_set α) ×ˢ t = ⊥ := ext empty_prod @[simp] lemma top_prod_top : (⊤ : lower_set α) ×ˢ (⊤ : lower_set β) = ⊤ := ext univ_prod_univ @[simp] lemma inf_prod : (s₁ ⊓ s₂) ×ˢ t = s₁ ×ˢ t ⊓ s₂ ×ˢ t := ext inter_prod @[simp] lemma prod_inf : s ×ˢ (t₁ ⊓ t₂) = s ×ˢ t₁ ⊓ s ×ˢ t₂ := ext prod_inter @[simp] lemma sup_prod : (s₁ ⊔ s₂) ×ˢ t = s₁ ×ˢ t ⊔ s₂ ×ˢ t := ext union_prod @[simp] lemma prod_sup : s ×ˢ (t₁ ⊔ t₂) = s ×ˢ t₁ ⊔ s ×ˢ t₂ := ext prod_union lemma prod_inf_prod : s₁ ×ˢ t₁ ⊓ s₂ ×ˢ t₂ = (s₁ ⊓ s₂) ×ˢ (t₁ ⊓ t₂) := ext prod_inter_prod variables {s s₁ s₂ t t₁ t₂} lemma prod_mono : s₁ ≤ s₂ → t₁ ≤ t₂ → s₁ ×ˢ t₁ ≤ s₂ ×ˢ t₂ := prod_mono lemma prod_mono_left : s₁ ≤ s₂ → s₁ ×ˢ t ≤ s₂ ×ˢ t := prod_mono_left lemma prod_mono_right : t₁ ≤ t₂ → s ×ˢ t₁ ≤ s ×ˢ t₂ := prod_mono_right @[simp] lemma prod_self_le_prod_self : s₁ ×ˢ s₁ ≤ s₂ ×ˢ s₂ ↔ s₁ ≤ s₂ := prod_self_subset_prod_self @[simp] lemma prod_self_lt_prod_self : s₁ ×ˢ s₁ < s₂ ×ˢ s₂ ↔ s₁ < s₂ := prod_self_ssubset_prod_self lemma prod_le_prod_iff : s₁ ×ˢ t₁ ≤ s₂ ×ˢ t₂ ↔ s₁ ≤ s₂ ∧ t₁ ≤ t₂ ∨ s₁ = ⊥ ∨ t₁ = ⊥ := prod_subset_prod_iff.trans $ by simp @[simp] lemma prod_eq_bot : s ×ˢ t = ⊥ ↔ s = ⊥ ∨ t = ⊥ := by { simp_rw set_like.ext'_iff, exact prod_eq_empty_iff } @[simp] lemma disjoint_prod : disjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂) ↔ disjoint s₁ s₂ ∨ disjoint t₁ t₂ := by simp_rw [disjoint_iff, prod_inf_prod, prod_eq_bot] end lower_set @[simp] lemma upper_closure_prod (s : set α) (t : set β) : upper_closure (s ×ˢ t) = upper_closure s ×ˢ upper_closure t := by { ext, simp [prod.le_def, and_and_and_comm _ (_ ∈ t)] } @[simp] lemma lower_closure_prod (s : set α) (t : set β) : lower_closure (s ×ˢ t) = lower_closure s ×ˢ lower_closure t := by { ext, simp [prod.le_def, and_and_and_comm _ (_ ∈ t)] } end preorder
ef5d906e5f03e7f54518393536ec1d1abd90b15b
f70b31f6396d12f83817534a1579ad4102d34497
/checker.lean
097315193ff4fd367ba8973ad8e8493397c2e1ec
[]
no_license
asi1024/topprover-lean-example
cf3eeb017ebfc5547c56d41f490b471d54783171
3507da918fe235599776f6367e2603c0375e00e0
refs/heads/master
1,609,053,679,942
1,580,697,001,000
1,580,697,001,000
237,811,882
0
0
null
null
null
null
UTF-8
Lean
false
false
90
lean
import .problem import .solution theorem checker: prob := begin exact solution end
46fb8c8d430f81f60c6ec17304f5059b5ce881a4
3dd1b66af77106badae6edb1c4dea91a146ead30
/tests/lean/run/tactic1.lean
c7d76b4727bdd91bb04a62123512dd2a9f08d99f
[ "Apache-2.0" ]
permissive
silky/lean
79c20c15c93feef47bb659a2cc139b26f3614642
df8b88dca2f8da1a422cb618cd476ef5be730546
refs/heads/master
1,610,737,587,697
1,406,574,534,000
1,406,574,534,000
22,362,176
1
0
null
null
null
null
UTF-8
Lean
false
false
94
lean
import standard using tactic theorem tst {A B : Prop} (H1 : A) (H2 : B) : A := by assumption
9c2f6505453285940b5ca671b928cb605f74b370
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
/src/data/nat/upto.lean
279afbbaafd135eac0d71de77a4e4f149cc8d48d
[ "Apache-2.0" ]
permissive
waynemunro/mathlib
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
065a70810b5480d584033f7bbf8e0409480c2118
refs/heads/master
1,693,417,182,397
1,634,644,781,000
1,634,644,781,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,378
lean
/- Copyright (c) 2020 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import data.nat.basic /-! # `nat.upto` `nat.upto p`, with `p` a predicate on `ℕ`, is a subtype of elements `n : ℕ` such that no value (strictly) below `n` satisfies `p`. This type has the property that `>` is well-founded when `∃ i, p i`, which allows us to implement searches on `ℕ`, starting at `0` and with an unknown upper-bound. It is similar to the well founded relation constructed to define `nat.find` with the difference that, in `nat.upto p`, `p` does not need to be decidable. In fact, `nat.find` could be slightly altered to factor decidability out of its well founded relation and would then fulfill the same purpose as this file. -/ namespace nat /-- The subtype of natural numbers `i` which have the property that no `j` less than `i` satisfies `p`. This is an initial segment of the natural numbers, up to and including the first value satisfying `p`. We will be particularly interested in the case where there exists a value satisfying `p`, because in this case the `>` relation is well-founded. -/ @[reducible] def upto (p : ℕ → Prop) : Type := {i : ℕ // ∀ j < i, ¬ p j} namespace upto variable {p : ℕ → Prop} /-- Lift the "greater than" relation on natural numbers to `nat.upto`. -/ protected def gt (p) (x y : upto p) : Prop := x.1 > y.1 instance : has_lt (upto p) := ⟨λ x y, x.1 < y.1⟩ /-- The "greater than" relation on `upto p` is well founded if (and only if) there exists a value satisfying `p`. -/ protected lemma wf : (∃ x, p x) → well_founded (upto.gt p) | ⟨x, h⟩ := begin suffices : upto.gt p = measure (λ y : nat.upto p, x - y.val), { rw this, apply measure_wf }, ext ⟨a, ha⟩ ⟨b, _⟩, dsimp [measure, inv_image, upto.gt], rw sub_lt_sub_iff_left_of_le, exact le_of_not_lt (λ h', ha _ h' h), end /-- Zero is always a member of `nat.upto p` because it has no predecessors. -/ def zero : nat.upto p := ⟨0, λ j h, false.elim (nat.not_lt_zero _ h)⟩ /-- The successor of `n` is in `nat.upto p` provided that `n` doesn't satisfy `p`. -/ def succ (x : nat.upto p) (h : ¬ p x.val) : nat.upto p := ⟨x.val.succ, λ j h', begin rcases nat.lt_succ_iff_lt_or_eq.1 h' with h' | rfl; [exact x.2 _ h', exact h] end⟩ end upto end nat
64abe02ec558d6846334d57408fe10134748b156
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/group_theory/perm/sign.lean
56ab7238c087f5e357bebb9101dac8771c081dd8
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
31,114
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import data.fintype.basic import data.finset.sort import data.nat.parity import group_theory.perm.support import group_theory.order_of_element import tactic.norm_swap import group_theory.quotient_group /-! # Sign of a permutation The main definition of this file is `equiv.perm.sign`, associating a `units ℤ` sign with a permutation. This file also contains miscellaneous lemmas about `equiv.perm` and `equiv.swap`, building on top of those in `data/equiv/basic` and other files in `group_theory/perm/*`. -/ universes u v open equiv function fintype finset open_locale big_operators variables {α : Type u} {β : Type v} namespace equiv.perm /-- `mod_swap i j` contains permutations up to swapping `i` and `j`. We use this to partition permutations in `matrix.det_zero_of_row_eq`, such that each partition sums up to `0`. -/ def mod_swap [decidable_eq α] (i j : α) : setoid (perm α) := ⟨λ σ τ, σ = τ ∨ σ = swap i j * τ, λ σ, or.inl (refl σ), λ σ τ h, or.cases_on h (λ h, or.inl h.symm) (λ h, or.inr (by rw [h, swap_mul_self_mul])), λ σ τ υ hστ hτυ, by cases hστ; cases hτυ; try {rw [hστ, hτυ, swap_mul_self_mul]}; finish⟩ instance {α : Type*} [fintype α] [decidable_eq α] (i j : α) : decidable_rel (mod_swap i j).r := λ σ τ, or.decidable lemma perm_inv_on_of_perm_on_finset {s : finset α} {f : perm α} (h : ∀ x ∈ s, f x ∈ s) {y : α} (hy : y ∈ s) : f⁻¹ y ∈ s := begin have h0 : ∀ y ∈ s, ∃ x (hx : x ∈ s), y = (λ i (hi : i ∈ s), f i) x hx := finset.surj_on_of_inj_on_of_card_le (λ x hx, (λ i hi, f i) x hx) (λ a ha, h a ha) (λ a₁ a₂ ha₁ ha₂ heq, (equiv.apply_eq_iff_eq f).mp heq) rfl.ge, obtain ⟨y2, hy2, heq⟩ := h0 y hy, convert hy2, rw heq, simp only [inv_apply_self] end lemma perm_inv_maps_to_of_maps_to (f : perm α) {s : set α} [fintype s] (h : set.maps_to f s s) : set.maps_to (f⁻¹ : _) s s := λ x hx, set.mem_to_finset.mp $ perm_inv_on_of_perm_on_finset (λ a ha, set.mem_to_finset.mpr (h (set.mem_to_finset.mp ha))) (set.mem_to_finset.mpr hx) @[simp] lemma perm_inv_maps_to_iff_maps_to {f : perm α} {s : set α} [fintype s] : set.maps_to (f⁻¹ : _) s s ↔ set.maps_to f s s := ⟨perm_inv_maps_to_of_maps_to f⁻¹, perm_inv_maps_to_of_maps_to f⟩ lemma perm_inv_on_of_perm_on_fintype {f : perm α} {p : α → Prop} [fintype {x // p x}] (h : ∀ x, p x → p (f x)) {x : α} (hx : p x) : p (f⁻¹ x) := begin letI : fintype ↥(show set α, from p) := ‹fintype {x // p x}›, exact perm_inv_maps_to_of_maps_to f h hx end /-- If the permutation `f` maps `{x // p x}` into itself, then this returns the permutation on `{x // p x}` induced by `f`. Note that the `h` hypothesis is weaker than for `equiv.perm.subtype_perm`. -/ abbreviation subtype_perm_of_fintype (f : perm α) {p : α → Prop} [fintype {x // p x}] (h : ∀ x, p x → p (f x)) : perm {x // p x} := f.subtype_perm (λ x, ⟨h x, λ h₂, f.inv_apply_self x ▸ perm_inv_on_of_perm_on_fintype h h₂⟩) @[simp] lemma subtype_perm_of_fintype_apply (f : perm α) {p : α → Prop} [fintype {x // p x}] (h : ∀ x, p x → p (f x)) (x : {x // p x}) : subtype_perm_of_fintype f h x = ⟨f x, h x x.2⟩ := rfl @[simp] lemma subtype_perm_of_fintype_one (p : α → Prop) [fintype {x // p x}] (h : ∀ x, p x → p ((1 : perm α) x)) : @subtype_perm_of_fintype α 1 p _ h = 1 := equiv.ext $ λ ⟨_, _⟩, rfl lemma perm_maps_to_inl_iff_maps_to_inr {m n : Type*} [fintype m] [fintype n] (σ : equiv.perm (m ⊕ n)) : set.maps_to σ (set.range sum.inl) (set.range sum.inl) ↔ set.maps_to σ (set.range sum.inr) (set.range sum.inr) := begin split; id { intros h, classical, rw ←perm_inv_maps_to_iff_maps_to at h, intro x, cases hx : σ x with l r, }, { rintros ⟨a, rfl⟩, obtain ⟨y, hy⟩ := h ⟨l, rfl⟩, rw [←hx, σ.inv_apply_self] at hy, exact absurd hy sum.inl_ne_inr}, { rintros ⟨a, ha⟩, exact ⟨r, rfl⟩, }, { rintros ⟨a, ha⟩, exact ⟨l, rfl⟩, }, { rintros ⟨a, rfl⟩, obtain ⟨y, hy⟩ := h ⟨r, rfl⟩, rw [←hx, σ.inv_apply_self] at hy, exact absurd hy sum.inr_ne_inl}, end lemma mem_sum_congr_hom_range_of_perm_maps_to_inl {m n : Type*} [fintype m] [fintype n] {σ : perm (m ⊕ n)} (h : set.maps_to σ (set.range sum.inl) (set.range sum.inl)) : σ ∈ (sum_congr_hom m n).range := begin classical, have h1 : ∀ (x : m ⊕ n), (∃ (a : m), sum.inl a = x) → (∃ (a : m), sum.inl a = σ x), { rintros x ⟨a, ha⟩, apply h, rw ← ha, exact ⟨a, rfl⟩ }, have h3 : ∀ (x : m ⊕ n), (∃ (b : n), sum.inr b = x) → (∃ (b : n), sum.inr b = σ x), { rintros x ⟨b, hb⟩, apply (perm_maps_to_inl_iff_maps_to_inr σ).mp h, rw ← hb, exact ⟨b, rfl⟩ }, let σ₁' := subtype_perm_of_fintype σ h1, let σ₂' := subtype_perm_of_fintype σ h3, let σ₁ := perm_congr (equiv.of_injective (@sum.inl m n) sum.inl_injective).symm σ₁', let σ₂ := perm_congr (equiv.of_injective (@sum.inr m n) sum.inr_injective).symm σ₂', rw [monoid_hom.mem_range, prod.exists], use [σ₁, σ₂], rw [perm.sum_congr_hom_apply], ext, cases x with a b, { rw [equiv.sum_congr_apply, sum.map_inl, perm_congr_apply, equiv.symm_symm, apply_of_injective_symm (@sum.inl m n)], erw subtype_perm_apply, rw [of_injective_apply, subtype.coe_mk, subtype.coe_mk] }, { rw [equiv.sum_congr_apply, sum.map_inr, perm_congr_apply, equiv.symm_symm, apply_of_injective_symm (@sum.inr m n)], erw subtype_perm_apply, rw [of_injective_apply, subtype.coe_mk, subtype.coe_mk] } end lemma disjoint.order_of {σ τ : perm α} (hστ : disjoint σ τ) : order_of (σ * τ) = nat.lcm (order_of σ) (order_of τ) := begin have h : ∀ n : ℕ, (σ * τ) ^ n = 1 ↔ σ ^ n = 1 ∧ τ ^ n = 1 := λ n, by rw [hστ.commute.mul_pow, disjoint.mul_eq_one_iff (hστ.pow_disjoint_pow n n)], exact nat.dvd_antisymm hστ.commute.order_of_mul_dvd_lcm (nat.lcm_dvd (order_of_dvd_of_pow_eq_one ((h (order_of (σ * τ))).mp (pow_order_of_eq_one (σ * τ))).1) (order_of_dvd_of_pow_eq_one ((h (order_of (σ * τ))).mp (pow_order_of_eq_one (σ * τ))).2)), end lemma disjoint.extend_domain {α : Type*} {p : β → Prop} [decidable_pred p] (f : α ≃ subtype p) {σ τ : perm α} (h : disjoint σ τ) : disjoint (σ.extend_domain f) (τ.extend_domain f) := begin intro b, by_cases pb : p b, { refine (h (f.symm ⟨b, pb⟩)).imp _ _; { intro h, rw [extend_domain_apply_subtype _ _ pb, h, apply_symm_apply, subtype.coe_mk] } }, { left, rw [extend_domain_apply_not_subtype _ _ pb] } end variable [decidable_eq α] section fintype variable [fintype α] lemma support_pow_coprime {σ : perm α} {n : ℕ} (h : nat.coprime n (order_of σ)) : (σ ^ n).support = σ.support := begin obtain ⟨m, hm⟩ := exists_pow_eq_self_of_coprime h, exact le_antisymm (support_pow_le σ n) (le_trans (ge_of_eq (congr_arg support hm)) (support_pow_le (σ ^ n) m)), end end fintype /-- Given a list `l : list α` and a permutation `f : perm α` such that the nonfixed points of `f` are in `l`, recursively factors `f` as a product of transpositions. -/ def swap_factors_aux : Π (l : list α) (f : perm α), (∀ {x}, f x ≠ x → x ∈ l) → {l : list (perm α) // l.prod = f ∧ ∀ g ∈ l, is_swap g} | [] := λ f h, ⟨[], equiv.ext $ λ x, by { rw [list.prod_nil], exact (not_not.1 (mt h (list.not_mem_nil _))).symm }, by simp⟩ | (x :: l) := λ f h, if hfx : x = f x then swap_factors_aux l f (λ y hy, list.mem_of_ne_of_mem (λ h : y = x, by simpa [h, hfx.symm] using hy) (h hy)) else let m := swap_factors_aux l (swap x (f x) * f) (λ y hy, have f y ≠ y ∧ y ≠ x, from ne_and_ne_of_swap_mul_apply_ne_self hy, list.mem_of_ne_of_mem this.2 (h this.1)) in ⟨swap x (f x) :: m.1, by rw [list.prod_cons, m.2.1, ← mul_assoc, mul_def (swap x (f x)), swap_swap, ← one_def, one_mul], λ g hg, ((list.mem_cons_iff _ _ _).1 hg).elim (λ h, ⟨x, f x, hfx, h⟩) (m.2.2 _)⟩ /-- `swap_factors` represents a permutation as a product of a list of transpositions. The representation is non unique and depends on the linear order structure. For types without linear order `trunc_swap_factors` can be used. -/ def swap_factors [fintype α] [linear_order α] (f : perm α) : {l : list (perm α) // l.prod = f ∧ ∀ g ∈ l, is_swap g} := swap_factors_aux ((@univ α _).sort (≤)) f (λ _ _, (mem_sort _).2 (mem_univ _)) /-- This computably represents the fact that any permutation can be represented as the product of a list of transpositions. -/ def trunc_swap_factors [fintype α] (f : perm α) : trunc {l : list (perm α) // l.prod = f ∧ ∀ g ∈ l, is_swap g} := quotient.rec_on_subsingleton (@univ α _).1 (λ l h, trunc.mk (swap_factors_aux l f h)) (show ∀ x, f x ≠ x → x ∈ (@univ α _).1, from λ _ _, mem_univ _) /-- An induction principle for permutations. If `P` holds for the identity permutation, and is preserved under composition with a non-trivial swap, then `P` holds for all permutations. -/ @[elab_as_eliminator] lemma swap_induction_on [fintype α] {P : perm α → Prop} (f : perm α) : P 1 → (∀ f x y, x ≠ y → P f → P (swap x y * f)) → P f := begin cases (trunc_swap_factors f).out with l hl, induction l with g l ih generalizing f, { simp only [hl.left.symm, list.prod_nil, forall_true_iff] {contextual := tt} }, { assume h1 hmul_swap, rcases hl.2 g (by simp) with ⟨x, y, hxy⟩, rw [← hl.1, list.prod_cons, hxy.2], exact hmul_swap _ _ _ hxy.1 (ih _ ⟨rfl, λ v hv, hl.2 _ (list.mem_cons_of_mem _ hv)⟩ h1 hmul_swap) } end lemma closure_is_swap [fintype α] : subgroup.closure {σ : perm α | is_swap σ} = ⊤ := begin refine eq_top_iff.mpr (λ x hx, _), obtain ⟨h1, h2⟩ := subtype.mem (trunc_swap_factors x).out, rw ← h1, exact subgroup.list_prod_mem _ (λ y hy, subgroup.subset_closure (h2 y hy)), end /-- Like `swap_induction_on`, but with the composition on the right of `f`. An induction principle for permutations. If `P` holds for the identity permutation, and is preserved under composition with a non-trivial swap, then `P` holds for all permutations. -/ @[elab_as_eliminator] lemma swap_induction_on' [fintype α] {P : perm α → Prop} (f : perm α) : P 1 → (∀ f x y, x ≠ y → P f → P (f * swap x y)) → P f := λ h1 IH, inv_inv f ▸ swap_induction_on f⁻¹ h1 (λ f, IH f⁻¹) lemma is_conj_swap {w x y z : α} (hwx : w ≠ x) (hyz : y ≠ z) : is_conj (swap w x) (swap y z) := is_conj_iff.2 (have h : ∀ {y z : α}, y ≠ z → w ≠ z → (swap w y * swap x z) * swap w x * (swap w y * swap x z)⁻¹ = swap y z := λ y z hyz hwz, by rw [mul_inv_rev, swap_inv, swap_inv, mul_assoc (swap w y), mul_assoc (swap w y), ← mul_assoc _ (swap x z), swap_mul_swap_mul_swap hwx hwz, ← mul_assoc, swap_mul_swap_mul_swap hwz.symm hyz.symm], if hwz : w = z then have hwy : w ≠ y, by cc, ⟨swap w z * swap x y, by rw [swap_comm y z, h hyz.symm hwy]⟩ else ⟨swap w y * swap x z, h hyz hwz⟩) /-- set of all pairs (⟨a, b⟩ : Σ a : fin n, fin n) such that b < a -/ def fin_pairs_lt (n : ℕ) : finset (Σ a : fin n, fin n) := (univ : finset (fin n)).sigma (λ a, (range a).attach_fin (λ m hm, (mem_range.1 hm).trans a.2)) lemma mem_fin_pairs_lt {n : ℕ} {a : Σ a : fin n, fin n} : a ∈ fin_pairs_lt n ↔ a.2 < a.1 := by simp only [fin_pairs_lt, fin.lt_iff_coe_lt_coe, true_and, mem_attach_fin, mem_range, mem_univ, mem_sigma] /-- `sign_aux σ` is the sign of a permutation on `fin n`, defined as the parity of the number of pairs `(x₁, x₂)` such that `x₂ < x₁` but `σ x₁ ≤ σ x₂` -/ def sign_aux {n : ℕ} (a : perm (fin n)) : units ℤ := ∏ x in fin_pairs_lt n, if a x.1 ≤ a x.2 then -1 else 1 @[simp] lemma sign_aux_one (n : ℕ) : sign_aux (1 : perm (fin n)) = 1 := begin unfold sign_aux, conv { to_rhs, rw ← @finset.prod_const_one (units ℤ) _ (fin_pairs_lt n) }, exact finset.prod_congr rfl (λ a ha, if_neg (mem_fin_pairs_lt.1 ha).not_le) end /-- `sign_bij_aux f ⟨a, b⟩` returns the pair consisting of `f a` and `f b` in decreasing order. -/ def sign_bij_aux {n : ℕ} (f : perm (fin n)) (a : Σ a : fin n, fin n) : Σ a : fin n, fin n := if hxa : f a.2 < f a.1 then ⟨f a.1, f a.2⟩ else ⟨f a.2, f a.1⟩ lemma sign_bij_aux_inj {n : ℕ} {f : perm (fin n)} : ∀ a b : Σ a : fin n, fin n, a ∈ fin_pairs_lt n → b ∈ fin_pairs_lt n → sign_bij_aux f a = sign_bij_aux f b → a = b := λ ⟨a₁, a₂⟩ ⟨b₁, b₂⟩ ha hb h, begin unfold sign_bij_aux at h, rw mem_fin_pairs_lt at *, have : ¬b₁ < b₂ := hb.le.not_lt, split_ifs at h; simp only [*, (equiv.injective f).eq_iff, eq_self_iff_true, and_self, heq_iff_eq] at *, end lemma sign_bij_aux_surj {n : ℕ} {f : perm (fin n)} : ∀ a ∈ fin_pairs_lt n, ∃ b ∈ fin_pairs_lt n, a = sign_bij_aux f b := λ ⟨a₁, a₂⟩ ha, if hxa : f⁻¹ a₂ < f⁻¹ a₁ then ⟨⟨f⁻¹ a₁, f⁻¹ a₂⟩, mem_fin_pairs_lt.2 hxa, by { dsimp [sign_bij_aux], rw [apply_inv_self, apply_inv_self, if_pos (mem_fin_pairs_lt.1 ha)] }⟩ else ⟨⟨f⁻¹ a₂, f⁻¹ a₁⟩, mem_fin_pairs_lt.2 $ (le_of_not_gt hxa).lt_of_ne $ λ h, by simpa [mem_fin_pairs_lt, (f⁻¹).injective h, lt_irrefl] using ha, by { dsimp [sign_bij_aux], rw [apply_inv_self, apply_inv_self, if_neg (mem_fin_pairs_lt.1 ha).le.not_lt] }⟩ lemma sign_bij_aux_mem {n : ℕ} {f : perm (fin n)} : ∀ a : Σ a : fin n, fin n, a ∈ fin_pairs_lt n → sign_bij_aux f a ∈ fin_pairs_lt n := λ ⟨a₁, a₂⟩ ha, begin unfold sign_bij_aux, split_ifs with h, { exact mem_fin_pairs_lt.2 h }, { exact mem_fin_pairs_lt.2 ((le_of_not_gt h).lt_of_ne (λ h, (mem_fin_pairs_lt.1 ha).ne (f.injective h.symm))) } end @[simp] lemma sign_aux_inv {n : ℕ} (f : perm (fin n)) : sign_aux f⁻¹ = sign_aux f := prod_bij (λ a ha, sign_bij_aux f⁻¹ a) sign_bij_aux_mem (λ ⟨a, b⟩ hab, if h : f⁻¹ b < f⁻¹ a then by rw [sign_bij_aux, dif_pos h, if_neg h.not_le, apply_inv_self, apply_inv_self, if_neg (mem_fin_pairs_lt.1 hab).not_le] else by rw [sign_bij_aux, if_pos (le_of_not_gt h), dif_neg h, apply_inv_self, apply_inv_self, if_pos (mem_fin_pairs_lt.1 hab).le]) sign_bij_aux_inj sign_bij_aux_surj lemma sign_aux_mul {n : ℕ} (f g : perm (fin n)) : sign_aux (f * g) = sign_aux f * sign_aux g := begin rw ← sign_aux_inv g, unfold sign_aux, rw ← prod_mul_distrib, refine prod_bij (λ a ha, sign_bij_aux g a) sign_bij_aux_mem _ sign_bij_aux_inj sign_bij_aux_surj, rintros ⟨a, b⟩ hab, rw [sign_bij_aux, mul_apply, mul_apply], rw mem_fin_pairs_lt at hab, by_cases h : g b < g a, { rw dif_pos h, simp only [not_le_of_gt hab, mul_one, perm.inv_apply_self, if_false] }, { rw [dif_neg h, inv_apply_self, inv_apply_self, if_pos hab.le], by_cases h₁ : f (g b) ≤ f (g a), { have : f (g b) ≠ f (g a), { rw [ne.def, f.injective.eq_iff, g.injective.eq_iff], exact ne_of_lt hab }, rw [if_pos h₁, if_neg (h₁.lt_of_ne this).not_le], refl }, { rw [if_neg h₁, if_pos (lt_of_not_ge h₁).le], refl } } end private lemma sign_aux_swap_zero_one' (n : ℕ) : sign_aux (swap (0 : fin (n + 2)) 1) = -1 := show _ = ∏ x : Σ a : fin (n + 2), fin (n + 2) in {(⟨1, 0⟩ : Σ a : fin (n + 2), fin (n + 2))}, if (equiv.swap 0 1) x.1 ≤ swap 0 1 x.2 then (-1 : units ℤ) else 1, begin refine eq.symm (prod_subset (λ ⟨x₁, x₂⟩, by simp [mem_fin_pairs_lt, fin.one_pos] {contextual := tt}) (λ a ha₁ ha₂, _)), rcases a with ⟨a₁, a₂⟩, replace ha₁ : a₂ < a₁ := mem_fin_pairs_lt.1 ha₁, dsimp only, rcases a₁.zero_le.eq_or_lt with rfl|H, { exact absurd a₂.zero_le ha₁.not_le }, rcases a₂.zero_le.eq_or_lt with rfl|H', { simp only [and_true, eq_self_iff_true, heq_iff_eq, mem_singleton] at ha₂, have : 1 < a₁ := lt_of_le_of_ne (nat.succ_le_of_lt ha₁) (ne.symm ha₂), norm_num [swap_apply_of_ne_of_ne (ne_of_gt H) ha₂, this.not_le] }, { have le : 1 ≤ a₂ := nat.succ_le_of_lt H', have lt : 1 < a₁ := le.trans_lt ha₁, rcases le.eq_or_lt with rfl|lt', { norm_num [swap_apply_of_ne_of_ne (ne_of_gt H) (ne_of_gt lt), H.not_le] }, { norm_num [swap_apply_of_ne_of_ne (ne_of_gt H) (ne_of_gt lt), swap_apply_of_ne_of_ne (ne_of_gt H') (ne_of_gt lt'), ha₁.not_le] } } end private lemma sign_aux_swap_zero_one {n : ℕ} (hn : 2 ≤ n) : sign_aux (swap (⟨0, lt_of_lt_of_le dec_trivial hn⟩ : fin n) ⟨1, lt_of_lt_of_le dec_trivial hn⟩) = -1 := begin rcases n with _|_|n, { norm_num at hn }, { norm_num at hn }, { exact sign_aux_swap_zero_one' n } end lemma sign_aux_swap : ∀ {n : ℕ} {x y : fin n} (hxy : x ≠ y), sign_aux (swap x y) = -1 | 0 := dec_trivial | 1 := dec_trivial | (n+2) := λ x y hxy, have h2n : 2 ≤ n + 2 := dec_trivial, by { rw [← is_conj_iff_eq, ← sign_aux_swap_zero_one h2n], exact (monoid_hom.mk' sign_aux sign_aux_mul).map_is_conj (is_conj_swap hxy dec_trivial) } /-- When the list `l : list α` contains all nonfixed points of the permutation `f : perm α`, `sign_aux2 l f` recursively calculates the sign of `f`. -/ def sign_aux2 : list α → perm α → units ℤ | [] f := 1 | (x::l) f := if x = f x then sign_aux2 l f else -sign_aux2 l (swap x (f x) * f) lemma sign_aux_eq_sign_aux2 {n : ℕ} : ∀ (l : list α) (f : perm α) (e : α ≃ fin n) (h : ∀ x, f x ≠ x → x ∈ l), sign_aux ((e.symm.trans f).trans e) = sign_aux2 l f | [] f e h := have f = 1, from equiv.ext $ λ y, not_not.1 (mt (h y) (list.not_mem_nil _)), by rw [this, one_def, equiv.trans_refl, equiv.symm_trans, ← one_def, sign_aux_one, sign_aux2] | (x::l) f e h := begin rw sign_aux2, by_cases hfx : x = f x, { rw if_pos hfx, exact sign_aux_eq_sign_aux2 l f _ (λ y (hy : f y ≠ y), list.mem_of_ne_of_mem (λ h : y = x, by simpa [h, hfx.symm] using hy) (h y hy) ) }, { have hy : ∀ y : α, (swap x (f x) * f) y ≠ y → y ∈ l, from λ y hy, have f y ≠ y ∧ y ≠ x, from ne_and_ne_of_swap_mul_apply_ne_self hy, list.mem_of_ne_of_mem this.2 (h _ this.1), have : (e.symm.trans (swap x (f x) * f)).trans e = (swap (e x) (e (f x))) * (e.symm.trans f).trans e, by ext; simp [← equiv.symm_trans_swap_trans, mul_def], have hefx : e x ≠ e (f x), from mt e.injective.eq_iff.1 hfx, rw [if_neg hfx, ← sign_aux_eq_sign_aux2 _ _ e hy, this, sign_aux_mul, sign_aux_swap hefx], simp only [units.neg_neg, one_mul, units.neg_mul]} end /-- When the multiset `s : multiset α` contains all nonfixed points of the permutation `f : perm α`, `sign_aux2 f _` recursively calculates the sign of `f`. -/ def sign_aux3 [fintype α] (f : perm α) {s : multiset α} : (∀ x, x ∈ s) → units ℤ := quotient.hrec_on s (λ l h, sign_aux2 l f) (trunc.induction_on (fintype.trunc_equiv_fin α) (λ e l₁ l₂ h, function.hfunext (show (∀ x, x ∈ l₁) = ∀ x, x ∈ l₂, by simp only [h.mem_iff]) (λ h₁ h₂ _, by rw [← sign_aux_eq_sign_aux2 _ _ e (λ _ _, h₁ _), ← sign_aux_eq_sign_aux2 _ _ e (λ _ _, h₂ _)]))) lemma sign_aux3_mul_and_swap [fintype α] (f g : perm α) (s : multiset α) (hs : ∀ x, x ∈ s) : sign_aux3 (f * g) hs = sign_aux3 f hs * sign_aux3 g hs ∧ ∀ x y, x ≠ y → sign_aux3 (swap x y) hs = -1 := let ⟨l, hl⟩ := quotient.exists_rep s in let e := equiv_fin α in begin clear _let_match, subst hl, show sign_aux2 l (f * g) = sign_aux2 l f * sign_aux2 l g ∧ ∀ x y, x ≠ y → sign_aux2 l (swap x y) = -1, have hfg : (e.symm.trans (f * g)).trans e = (e.symm.trans f).trans e * (e.symm.trans g).trans e, from equiv.ext (λ h, by simp [mul_apply]), split, { rw [← sign_aux_eq_sign_aux2 _ _ e (λ _ _, hs _), ← sign_aux_eq_sign_aux2 _ _ e (λ _ _, hs _), ← sign_aux_eq_sign_aux2 _ _ e (λ _ _, hs _), hfg, sign_aux_mul] }, { assume x y hxy, have hexy : e x ≠ e y, from mt e.injective.eq_iff.1 hxy, rw [← sign_aux_eq_sign_aux2 _ _ e (λ _ _, hs _), symm_trans_swap_trans, sign_aux_swap hexy] } end /-- `sign` of a permutation returns the signature or parity of a permutation, `1` for even permutations, `-1` for odd permutations. It is the unique surjective group homomorphism from `perm α` to the group with two elements.-/ def sign [fintype α] : perm α →* units ℤ := monoid_hom.mk' (λ f, sign_aux3 f mem_univ) (λ f g, (sign_aux3_mul_and_swap f g _ mem_univ).1) section sign variable [fintype α] @[simp] lemma sign_mul (f g : perm α) : sign (f * g) = sign f * sign g := monoid_hom.map_mul sign f g @[simp] lemma sign_trans (f g : perm α) : sign (f.trans g) = sign g * sign f := by rw [←mul_def, sign_mul] @[simp] lemma sign_one : (sign (1 : perm α)) = 1 := monoid_hom.map_one sign @[simp] lemma sign_refl : sign (equiv.refl α) = 1 := monoid_hom.map_one sign @[simp] lemma sign_inv (f : perm α) : sign f⁻¹ = sign f := by rw [monoid_hom.map_inv sign f, int.units_inv_eq_self] @[simp] lemma sign_symm (e : perm α) : sign e.symm = sign e := sign_inv e lemma sign_swap {x y : α} (h : x ≠ y) : sign (swap x y) = -1 := (sign_aux3_mul_and_swap 1 1 _ mem_univ).2 x y h @[simp] lemma sign_swap' {x y : α} : (swap x y).sign = if x = y then 1 else -1 := if H : x = y then by simp [H, swap_self] else by simp [sign_swap H, H] lemma is_swap.sign_eq {f : perm α} (h : f.is_swap) : sign f = -1 := let ⟨x, y, hxy⟩ := h in hxy.2.symm ▸ sign_swap hxy.1 lemma sign_aux3_symm_trans_trans [decidable_eq β] [fintype β] (f : perm α) (e : α ≃ β) {s : multiset α} {t : multiset β} (hs : ∀ x, x ∈ s) (ht : ∀ x, x ∈ t) : sign_aux3 ((e.symm.trans f).trans e) ht = sign_aux3 f hs := quotient.induction_on₂ t s (λ l₁ l₂ h₁ h₂, show sign_aux2 _ _ = sign_aux2 _ _, from let n := equiv_fin β in by { rw [← sign_aux_eq_sign_aux2 _ _ n (λ _ _, h₁ _), ← sign_aux_eq_sign_aux2 _ _ (e.trans n) (λ _ _, h₂ _)], exact congr_arg sign_aux (equiv.ext (λ x, by simp only [equiv.coe_trans, apply_eq_iff_eq, symm_trans_apply])) }) ht hs @[simp] lemma sign_symm_trans_trans [decidable_eq β] [fintype β] (f : perm α) (e : α ≃ β) : sign ((e.symm.trans f).trans e) = sign f := sign_aux3_symm_trans_trans f e mem_univ mem_univ @[simp] lemma sign_trans_trans_symm [decidable_eq β] [fintype β] (f : perm β) (e : α ≃ β) : sign ((e.trans f).trans e.symm) = sign f := sign_symm_trans_trans f e.symm lemma sign_prod_list_swap {l : list (perm α)} (hl : ∀ g ∈ l, is_swap g) : sign l.prod = (-1) ^ l.length := have h₁ : l.map sign = list.repeat (-1) l.length := list.eq_repeat.2 ⟨by simp, λ u hu, let ⟨g, hg⟩ := list.mem_map.1 hu in hg.2 ▸ (hl _ hg.1).sign_eq⟩, by rw [← list.prod_repeat, ← h₁, list.prod_hom _ (@sign α _ _)] variable (α) lemma sign_surjective [nontrivial α] : function.surjective (sign : perm α → units ℤ) := λ a, (int.units_eq_one_or a).elim (λ h, ⟨1, by simp [h]⟩) (λ h, let ⟨x, y, hxy⟩ := exists_pair_ne α in ⟨swap x y, by rw [sign_swap hxy, h]⟩ ) variable {α} lemma eq_sign_of_surjective_hom {s : perm α →* units ℤ} (hs : surjective s) : s = sign := have ∀ {f}, is_swap f → s f = -1 := λ f ⟨x, y, hxy, hxy'⟩, hxy'.symm ▸ by_contradiction (λ h, have ∀ f, is_swap f → s f = 1 := λ f ⟨a, b, hab, hab'⟩, by { rw [← is_conj_iff_eq, ← or.resolve_right (int.units_eq_one_or _) h, hab'], exact (monoid_hom.of s).map_is_conj (is_conj_swap hab hxy) }, let ⟨g, hg⟩ := hs (-1) in let ⟨l, hl⟩ := (trunc_swap_factors g).out in have ∀ a ∈ l.map s, a = (1 : units ℤ) := λ a ha, let ⟨g, hg⟩ := list.mem_map.1 ha in hg.2 ▸ this _ (hl.2 _ hg.1), have s l.prod = 1, by rw [← l.prod_hom s, list.eq_repeat'.2 this, list.prod_repeat, one_pow], by { rw [hl.1, hg] at this, exact absurd this dec_trivial }), monoid_hom.ext $ λ f, let ⟨l, hl₁, hl₂⟩ := (trunc_swap_factors f).out in have hsl : ∀ a ∈ l.map s, a = (-1 : units ℤ) := λ a ha, let ⟨g, hg⟩ := list.mem_map.1 ha in hg.2 ▸ this (hl₂ _ hg.1), by rw [← hl₁, ← l.prod_hom s, list.eq_repeat'.2 hsl, list.length_map, list.prod_repeat, sign_prod_list_swap hl₂] lemma sign_subtype_perm (f : perm α) {p : α → Prop} [decidable_pred p] (h₁ : ∀ x, p x ↔ p (f x)) (h₂ : ∀ x, f x ≠ x → p x) : sign (subtype_perm f h₁) = sign f := let l := (trunc_swap_factors (subtype_perm f h₁)).out in have hl' : ∀ g' ∈ l.1.map of_subtype, is_swap g' := λ g' hg', let ⟨g, hg⟩ := list.mem_map.1 hg' in hg.2 ▸ (l.2.2 _ hg.1).of_subtype_is_swap, have hl'₂ : (l.1.map of_subtype).prod = f, by rw [l.1.prod_hom of_subtype, l.2.1, of_subtype_subtype_perm _ h₂], by { conv { congr, rw ← l.2.1, skip, rw ← hl'₂ }, rw [sign_prod_list_swap l.2.2, sign_prod_list_swap hl', list.length_map] } @[simp] lemma sign_of_subtype {p : α → Prop} [decidable_pred p] (f : perm (subtype p)) : sign (of_subtype f) = sign f := have ∀ x, of_subtype f x ≠ x → p x, from λ x, not_imp_comm.1 (of_subtype_apply_of_not_mem f), by conv {to_rhs, rw [← subtype_perm_of_subtype f, sign_subtype_perm _ _ this]} lemma sign_eq_sign_of_equiv [decidable_eq β] [fintype β] (f : perm α) (g : perm β) (e : α ≃ β) (h : ∀ x, e (f x) = g (e x)) : sign f = sign g := have hg : g = (e.symm.trans f).trans e, from equiv.ext $ by simp [h], by rw [hg, sign_symm_trans_trans] lemma sign_bij [decidable_eq β] [fintype β] {f : perm α} {g : perm β} (i : Π x : α, f x ≠ x → β) (h : ∀ x hx hx', i (f x) hx' = g (i x hx)) (hi : ∀ x₁ x₂ hx₁ hx₂, i x₁ hx₁ = i x₂ hx₂ → x₁ = x₂) (hg : ∀ y, g y ≠ y → ∃ x hx, i x hx = y) : sign f = sign g := calc sign f = sign (@subtype_perm _ f (λ x, f x ≠ x) (by simp)) : (sign_subtype_perm _ _ (λ _, id)).symm ... = sign (@subtype_perm _ g (λ x, g x ≠ x) (by simp)) : sign_eq_sign_of_equiv _ _ (equiv.of_bijective (λ x : {x // f x ≠ x}, (⟨i x.1 x.2, have f (f x) ≠ f x, from mt (λ h, f.injective h) x.2, by { rw [← h _ x.2 this], exact mt (hi _ _ this x.2) x.2 }⟩ : {y // g y ≠ y})) ⟨λ ⟨x, hx⟩ ⟨y, hy⟩ h, subtype.eq (hi _ _ _ _ (subtype.mk.inj h)), λ ⟨y, hy⟩, let ⟨x, hfx, hx⟩ := hg y hy in ⟨⟨x, hfx⟩, subtype.eq hx⟩⟩) (λ ⟨x, _⟩, subtype.eq (h x _ _)) ... = sign g : sign_subtype_perm _ _ (λ _, id) /-- If we apply `prod_extend_right a (σ a)` for all `a : α` in turn, we get `prod_congr_right σ`. -/ lemma prod_prod_extend_right {α : Type*} [decidable_eq α] (σ : α → perm β) {l : list α} (hl : l.nodup) (mem_l : ∀ a, a ∈ l) : (l.map (λ a, prod_extend_right a (σ a))).prod = prod_congr_right σ := begin ext ⟨a, b⟩ : 1, -- We'll use induction on the list of elements, -- but we have to keep track of whether we already passed `a` in the list. suffices : (a ∈ l ∧ (l.map (λ a, prod_extend_right a (σ a))).prod (a, b) = (a, σ a b)) ∨ (a ∉ l ∧ (l.map (λ a, prod_extend_right a (σ a))).prod (a, b) = (a, b)), { obtain ⟨_, prod_eq⟩ := or.resolve_right this (not_and.mpr (λ h _, h (mem_l a))), rw [prod_eq, prod_congr_right_apply] }, clear mem_l, induction l with a' l ih, { refine or.inr ⟨list.not_mem_nil _, _⟩, rw [list.map_nil, list.prod_nil, one_apply] }, rw [list.map_cons, list.prod_cons, mul_apply], rcases ih (list.nodup_cons.mp hl).2 with ⟨mem_l, prod_eq⟩ | ⟨not_mem_l, prod_eq⟩; rw prod_eq, { refine or.inl ⟨list.mem_cons_of_mem _ mem_l, _⟩, rw prod_extend_right_apply_ne _ (λ (h : a = a'), (list.nodup_cons.mp hl).1 (h ▸ mem_l)) }, by_cases ha' : a = a', { rw ← ha' at *, refine or.inl ⟨l.mem_cons_self a, _⟩, rw prod_extend_right_apply_eq }, { refine or.inr ⟨λ h, not_or ha' not_mem_l ((list.mem_cons_iff _ _ _).mp h), _⟩, rw prod_extend_right_apply_ne _ ha' }, end section congr variables [decidable_eq β] [fintype β] @[simp] lemma sign_prod_extend_right (a : α) (σ : perm β) : (prod_extend_right a σ).sign = σ.sign := sign_bij (λ (ab : α × β) _, ab.snd) (λ ⟨a', b⟩ hab hab', by simp [eq_of_prod_extend_right_ne hab]) (λ ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ hab₁ hab₂ h, by simpa [eq_of_prod_extend_right_ne hab₁, eq_of_prod_extend_right_ne hab₂] using h) (λ y hy, ⟨(a, y), by simpa, by simp⟩) lemma sign_prod_congr_right (σ : α → perm β) : sign (prod_congr_right σ) = ∏ k, (σ k).sign := begin obtain ⟨l, hl, mem_l⟩ := fintype.exists_univ_list α, have l_to_finset : l.to_finset = finset.univ, { apply eq_top_iff.mpr, intros b _, exact list.mem_to_finset.mpr (mem_l b) }, rw [← prod_prod_extend_right σ hl mem_l, sign.map_list_prod, list.map_map, ← l_to_finset, list.prod_to_finset _ hl], simp_rw ← λ a, sign_prod_extend_right a (σ a) end lemma sign_prod_congr_left (σ : α → perm β) : sign (prod_congr_left σ) = ∏ k, (σ k).sign := begin refine (sign_eq_sign_of_equiv _ _ (prod_comm β α) _).trans (sign_prod_congr_right σ), rintro ⟨b, α⟩, refl end @[simp] lemma sign_perm_congr (e : α ≃ β) (p : perm α) : (e.perm_congr p).sign = p.sign := sign_eq_sign_of_equiv _ _ e.symm (by simp) @[simp] lemma sign_sum_congr (σa : perm α) (σb : perm β) : (sum_congr σa σb).sign = σa.sign * σb.sign := begin suffices : (sum_congr σa (1 : perm β)).sign = σa.sign ∧ (sum_congr (1 : perm α) σb).sign = σb.sign, { rw [←this.1, ←this.2, ←sign_mul, sum_congr_mul, one_mul, mul_one], }, split, { apply σa.swap_induction_on _ (λ σa' a₁ a₂ ha ih, _), { simp }, { rw [←one_mul (1 : perm β), ←sum_congr_mul, sign_mul, sign_mul, ih, sum_congr_swap_one, sign_swap ha, sign_swap (sum.inl_injective.ne_iff.mpr ha)], }, }, { apply σb.swap_induction_on _ (λ σb' b₁ b₂ hb ih, _), { simp }, { rw [←one_mul (1 : perm α), ←sum_congr_mul, sign_mul, sign_mul, ih, sum_congr_one_swap, sign_swap hb, sign_swap (sum.inr_injective.ne_iff.mpr hb)], }, } end @[simp] lemma sign_subtype_congr {p : α → Prop} [decidable_pred p] (ep : perm {a // p a}) (en : perm {a // ¬ p a}) : (ep.subtype_congr en).sign = ep.sign * en.sign := by simp [subtype_congr] @[simp] lemma sign_extend_domain (e : perm α) {p : β → Prop} [decidable_pred p] (f : α ≃ subtype p) : equiv.perm.sign (e.extend_domain f) = equiv.perm.sign e := by simp [equiv.perm.extend_domain] end congr end sign end equiv.perm
dad8177800f4b20e6f68ff4082c7a6ffd502622c
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/data/subtype.lean
ac204394899cf60c78f22abfc83e19ac79f769e9
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
8,254
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import logic.function.basic import tactic.ext import tactic.simps /-! # Subtypes > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > https://github.com/leanprover-community/mathlib4/pull/546 > Any changes to this file require a corresponding PR to mathlib4. This file provides basic API for subtypes, which are defined in core. A subtype is a type made from restricting another type, say `α`, to its elements that satisfy some predicate, say `p : α → Prop`. Specifically, it is the type of pairs `⟨val, property⟩` where `val : α` and `property : p val`. It is denoted `subtype p` and notation `{val : α // p val}` is available. A subtype has a natural coercion to the parent type, by coercing `⟨val, property⟩` to `val`. As such, subtypes can be thought of as bundled sets, the difference being that elements of a set are still of type `α` while elements of a subtype aren't. -/ open function namespace subtype variables {α β γ : Sort*} {p q : α → Prop} /-- See Note [custom simps projection] -/ def simps.coe (x : subtype p) : α := x initialize_simps_projections subtype (val → coe) /-- A version of `x.property` or `x.2` where `p` is syntactically applied to the coercion of `x` instead of `x.1`. A similar result is `subtype.mem` in `data.set.basic`. -/ lemma prop (x : subtype p) : p x := x.2 @[simp] lemma val_eq_coe {x : subtype p} : x.1 = ↑x := rfl @[simp] protected theorem «forall» {q : {a // p a} → Prop} : (∀ x, q x) ↔ (∀ a b, q ⟨a, b⟩) := ⟨assume h a b, h ⟨a, b⟩, assume h ⟨a, b⟩, h a b⟩ /-- An alternative version of `subtype.forall`. This one is useful if Lean cannot figure out `q` when using `subtype.forall` from right to left. -/ protected theorem forall' {q : ∀ x, p x → Prop} : (∀ x h, q x h) ↔ (∀ x : {a // p a}, q x x.2) := (@subtype.forall _ _ (λ x, q x.1 x.2)).symm @[simp] protected theorem «exists» {q : {a // p a} → Prop} : (∃ x, q x) ↔ (∃ a b, q ⟨a, b⟩) := ⟨assume ⟨⟨a, b⟩, h⟩, ⟨a, b, h⟩, assume ⟨a, b, h⟩, ⟨⟨a, b⟩, h⟩⟩ /-- An alternative version of `subtype.exists`. This one is useful if Lean cannot figure out `q` when using `subtype.exists` from right to left. -/ protected theorem exists' {q : ∀x, p x → Prop} : (∃ x h, q x h) ↔ (∃ x : {a // p a}, q x x.2) := (@subtype.exists _ _ (λ x, q x.1 x.2)).symm @[ext] protected lemma ext : ∀ {a1 a2 : {x // p x}}, (a1 : α) = (a2 : α) → a1 = a2 | ⟨x, h1⟩ ⟨.(x), h2⟩ rfl := rfl lemma ext_iff {a1 a2 : {x // p x}} : a1 = a2 ↔ (a1 : α) = (a2 : α) := ⟨congr_arg _, subtype.ext⟩ lemma heq_iff_coe_eq (h : ∀ x, p x ↔ q x) {a1 : {x // p x}} {a2 : {x // q x}} : a1 == a2 ↔ (a1 : α) = (a2 : α) := eq.rec (λ a2', heq_iff_eq.trans ext_iff) (funext $ λ x, propext (h x)) a2 lemma heq_iff_coe_heq {α β : Sort*} {p : α → Prop} {q : β → Prop} {a : {x // p x}} {b : {y // q y}} (h : α = β) (h' : p == q) : a == b ↔ (a : α) == (b : β) := by { subst h, subst h', rw [heq_iff_eq, heq_iff_eq, ext_iff] } lemma ext_val {a1 a2 : {x // p x}} : a1.1 = a2.1 → a1 = a2 := subtype.ext lemma ext_iff_val {a1 a2 : {x // p x}} : a1 = a2 ↔ a1.1 = a2.1 := ext_iff @[simp] theorem coe_eta (a : {a // p a}) (h : p a) : mk ↑a h = a := subtype.ext rfl @[simp] theorem coe_mk (a h) : (@mk α p a h : α) = a := rfl @[simp, nolint simp_nf] -- built-in reduction doesn't always work theorem mk_eq_mk {a h a' h'} : @mk α p a h = @mk α p a' h' ↔ a = a' := ext_iff lemma coe_eq_of_eq_mk {a : {a // p a}} {b : α} (h : ↑a = b) : a = ⟨b, h ▸ a.2⟩ := subtype.ext h theorem coe_eq_iff {a : {a // p a}} {b : α} : ↑a = b ↔ ∃ h, a = ⟨b, h⟩ := ⟨λ h, h ▸ ⟨a.2, (coe_eta _ _).symm⟩, λ ⟨hb, ha⟩, ha.symm ▸ rfl⟩ lemma coe_injective : injective (coe : subtype p → α) := λ a b, subtype.ext lemma val_injective : injective (@val _ p) := coe_injective lemma coe_inj {a b : subtype p} : (a : α) = b ↔ a = b := coe_injective.eq_iff lemma val_inj {a b : subtype p} : a.val = b.val ↔ a = b := coe_inj @[simp] lemma _root_.exists_eq_subtype_mk_iff {a : subtype p} {b : α} : (∃ h : p b, a = subtype.mk b h) ↔ ↑a = b := coe_eq_iff.symm @[simp] lemma _root_.exists_subtype_mk_eq_iff {a : subtype p} {b : α} : (∃ h : p b, subtype.mk b h = a) ↔ b = a := by simp only [@eq_comm _ b, exists_eq_subtype_mk_iff, @eq_comm _ _ a] /-- Restrict a (dependent) function to a subtype -/ def restrict {α} {β : α → Type*} (p : α → Prop) (f : Π x, β x) (x : subtype p) : β x.1 := f x lemma restrict_apply {α} {β : α → Type*} (f : Π x, β x) (p : α → Prop) (x : subtype p) : restrict p f x = f x.1 := by refl lemma restrict_def {α β} (f : α → β) (p : α → Prop) : restrict p f = f ∘ coe := by refl lemma restrict_injective {α β} {f : α → β} (p : α → Prop) (h : injective f) : injective (restrict p f) := h.comp coe_injective lemma surjective_restrict {α} {β : α → Type*} [ne : Π a, nonempty (β a)] (p : α → Prop) : surjective (λ f : Π x, β x, restrict p f) := begin letI := classical.dec_pred p, refine λ f, ⟨λ x, if h : p x then f ⟨x, h⟩ else nonempty.some (ne x), funext $ _⟩, rintro ⟨x, hx⟩, exact dif_pos hx end /-- Defining a map into a subtype, this can be seen as an "coinduction principle" of `subtype`-/ @[simps] def coind {α β} (f : α → β) {p : β → Prop} (h : ∀ a, p (f a)) : α → subtype p := λ a, ⟨f a, h a⟩ theorem coind_injective {α β} {f : α → β} {p : β → Prop} (h : ∀ a, p (f a)) (hf : injective f) : injective (coind f h) := λ x y hxy, hf $ by apply congr_arg subtype.val hxy theorem coind_surjective {α β} {f : α → β} {p : β → Prop} (h : ∀ a, p (f a)) (hf : surjective f) : surjective (coind f h) := λ x, let ⟨a, ha⟩ := hf x in ⟨a, coe_injective ha⟩ theorem coind_bijective {α β} {f : α → β} {p : β → Prop} (h : ∀ a, p (f a)) (hf : bijective f) : bijective (coind f h) := ⟨coind_injective h hf.1, coind_surjective h hf.2⟩ /-- Restriction of a function to a function on subtypes. -/ @[simps] def map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀ a, p a → q (f a)) : subtype p → subtype q := λ x, ⟨f x, h x x.prop⟩ theorem map_comp {p : α → Prop} {q : β → Prop} {r : γ → Prop} {x : subtype p} (f : α → β) (h : ∀ a, p a → q (f a)) (g : β → γ) (l : ∀ a, q a → r (g a)) : map g l (map f h x) = map (g ∘ f) (assume a ha, l (f a) $ h a ha) x := rfl theorem map_id {p : α → Prop} {h : ∀ a, p a → p (id a)} : map (@id α) h = id := funext $ assume ⟨v, h⟩, rfl lemma map_injective {p : α → Prop} {q : β → Prop} {f : α → β} (h : ∀ a, p a → q (f a)) (hf : injective f) : injective (map f h) := coind_injective _ $ hf.comp coe_injective lemma map_involutive {p : α → Prop} {f : α → α} (h : ∀ a, p a → p (f a)) (hf : involutive f) : involutive (map f h) := λ x, subtype.ext (hf x) instance [has_equiv α] (p : α → Prop) : has_equiv (subtype p) := ⟨λ s t, (s : α) ≈ (t : α)⟩ theorem equiv_iff [has_equiv α] {p : α → Prop} {s t : subtype p} : s ≈ t ↔ (s : α) ≈ (t : α) := iff.rfl variables [setoid α] protected theorem refl (s : subtype p) : s ≈ s := setoid.refl ↑s protected theorem symm {s t : subtype p} (h : s ≈ t) : t ≈ s := setoid.symm h protected theorem trans {s t u : subtype p} (h₁ : s ≈ t) (h₂ : t ≈ u) : s ≈ u := setoid.trans h₁ h₂ theorem equivalence (p : α → Prop) : equivalence (@has_equiv.equiv (subtype p) _) := mk_equivalence _ subtype.refl (@subtype.symm _ p _) (@subtype.trans _ p _) instance (p : α → Prop) : setoid (subtype p) := setoid.mk (≈) (equivalence p) end subtype namespace subtype /-! Some facts about sets, which require that `α` is a type. -/ variables {α β γ : Type*} {p : α → Prop} @[simp] lemma coe_prop {S : set α} (a : {a // a ∈ S}) : ↑a ∈ S := a.prop lemma val_prop {S : set α} (a : {a // a ∈ S}) : a.val ∈ S := a.property end subtype
b096148cf8c0bc57a9c57bf8624bcdea253a562a
df7bb3acd9623e489e95e85d0bc55590ab0bc393
/lean/love01_definitions_and_statements_homework_sheet.lean
ee33c4e7ce40dc75472349497e84dd7915896359
[]
no_license
MaschavanderMarel/logical_verification_2020
a41c210b9237c56cb35f6cd399e3ac2fe42e775d
7d562ef174cc6578ca6013f74db336480470b708
refs/heads/master
1,692,144,223,196
1,634,661,675,000
1,634,661,675,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
3,706
lean
import .love01_definitions_and_statements_demo /- # LoVe Homework 1: Definitions and Statements Homework must be done individually. Replace the placeholders (e.g., `:= sorry`) with your solutions. -/ set_option pp.beta true set_option pp.generalized_field_notation false namespace LoVe /- ## Question 1 (1 point): Fibonacci Numbers 1.1 (1 point). Define the function `fib` that computes the Fibonacci numbers. -/ def fib : ℕ → ℕ := sorry /- 1.2 (0 points). Check that your function works as expected. -/ #eval fib 0 -- expected: 0 #eval fib 1 -- expected: 1 #eval fib 2 -- expected: 1 #eval fib 3 -- expected: 2 #eval fib 4 -- expected: 3 #eval fib 5 -- expected: 5 #eval fib 6 -- expected: 8 #eval fib 7 -- expected: 13 #eval fib 8 -- expected: 21 /- ## Question 2 (3 points): Lists Consider the type `list` described in the lecture and the `append₂` and `reverse` functions from the lecture's demo. The `list` type is part of Lean's core libraries. You will find the definition of `append₂` and `reverse` in `love01_definitions_and_statements_demo.lean`. One way to find them quickly is to 1. hold the Control (on Linux and Windows) or Command (on macOS) key pressed; 2. move the cursor to the identifier `list`, `append₂`, or `reverse`; 3. click the identifier. -/ #print list #check append₂ #check reverse /- 2.1 (1 point). Test that `reverse` behaves as expected on a few examples. In the first example, the type annotation `: list ℕ` is needed to guide Lean's type inference. -/ #eval reverse ([] : list ℕ) -- expected: [] #eval reverse [1, 3, 5] -- expected: [5, 3, 1] -- invoke `#eval` here /- 2.2 (2 points). State (without proving them) the following properties of `append₂` and `reverse`. Schematically: `append₂ (append₂ xs ys) zs = append₂ xs (append₂ ys zs)` `reverse (append₂ xs ys) = append₂ (reverse ys) (reverse xs)` for all lists `xs`, `ys`, `zs`. Try to give meaningful names to your lemmas. If you wonder how to enter the symbol `₂`, have a look at the table at the end of the preface in the Hitchhiker's Guide. Hint: Take a look at `reverse_reverse` from the demonstration file. -/ #check sorry_lemmas.reverse_reverse -- enter your lemma statements here /- ## Question 3 (5 points): λ-Terms 3.1 (2 points). Complete the following definitions, by replacing the `sorry` placeholders by terms of the expected type. Please use reasonable names for the bound variables, e.g., `a : α`, `b : β`, `c : γ`. Hint: A procedure for doing so systematically is described in Section 1.1.4 of the Hitchhiker's Guide. As explained there, you can use `_` as a placeholder while constructing a term. By hovering over `_`, you will see the current logical context. -/ def B : (α → β) → (γ → α) → γ → β := sorry def S : (α → β → γ) → (α → β) → α → γ := sorry def more_nonsense : (γ → (α → β) → α) → γ → β → α := sorry def even_more_nonsense : (α → α → β) → (β → γ) → α → β → γ := sorry /- 3.2 (1 point). Complete the following definition. This one looks more difficult, but it should be fairly straightforward if you follow the procedure described in the Hitchhiker's Guide. Note: Peirce is pronounced like the English word "purse". -/ def weak_peirce : ((((α → β) → α) → α) → β) → β := sorry /- 3.3 (2 points). Show the typing derivation for your definition of `S` above, using ASCII or Unicode art. You might find the characters `–` (to draw horizontal bars) and `⊢` useful. Feel free to introduce abbreviations to avoid repeating large contexts `C`. -/ -- write your solution here end LoVe
d2dd1323d712ff52d66dff11597398e237556edd
fef48cac17c73db8662678da38fd75888db97560
/src/fib_mod.lean
33dc3e2a8827408df21250b2e905a52c91d8845c
[]
no_license
kbuzzard/lean-squares-in-fibonacci
6c0d924f799d6751e19798bb2530ee602ec7087e
8cea20e5ce88ab7d17b020932d84d316532a84a8
refs/heads/master
1,584,524,504,815
1,582,387,156,000
1,582,387,156,000
134,576,655
3
1
null
1,541,538,497,000
1,527,083,406,000
Lean
UTF-8
Lean
false
false
3,906
lean
import definitions import data.list.basic definition fib_mod (m : ℕ) : ℕ → ℕ | 0 := 0 % m | 1 := 1 % m | (n + 2) := ( (fib_mod n) + (fib_mod (n + 1)) ) % m def luc_mod (m : ℕ) : ℕ → ℕ | 0 := 2 % m | 1 := 1 % m | (n + 2) := ( (luc_mod n) + (luc_mod (n + 1)) ) % m theorem luc_mod_is_luc (m : ℕ) : ∀ r : ℕ, luc_mod m r = (luc r) % m | 0 := rfl | 1 := rfl | (n + 2) := begin have Hn := luc_mod_is_luc n, have Hnp1 := luc_mod_is_luc (n + 1), unfold luc_mod, unfold luc, rw Hn, rw Hnp1, show (luc n % m + luc (n + 1) % m) % m = (luc n + luc (n + 1)) % m, apply nat.mod_add, end theorem fib_mod_eq (m n : ℕ) : (fib_mod m) n = (fib n) % m := nat.rec_on_two n (rfl) (rfl) (begin intros d Hd Hdplus1, unfold fib, unfold fib_mod, rw Hd, rw Hdplus1, exact nat.mod_add _ _ _ end) theorem luc_mod_eq (m n : ℕ) : (luc_mod m) n = (luc n) % m := nat.rec_on_two n (rfl) (rfl) (begin intros d Hd Hdplus1, unfold luc, unfold luc_mod, rw Hd, rw Hdplus1, exact nat.mod_add _ _ _ end) theorem fib_mod_16_aux (n : ℕ) : (fib_mod 16) (n + 24) = (fib_mod 16) n := nat.rec_on_two n (rfl) (rfl) (begin intros d Hd Hdplus1, show (fib_mod 16 (d + 24) + fib_mod 16 (nat.succ d + 24)) % 16 = (fib_mod 16 d + fib_mod 16 (nat.succ d)) % 16, rw Hd,rw Hdplus1, end) theorem fib_mod_16 (n : ℕ) : (fib_mod 16) n = (fib_mod 16) (n % 24) := begin have H : ∀ n k, fib_mod 16 (n + 24 * k) = (fib_mod 16) n, { intros n k, induction k with d Hd, -- base case { refl}, -- inductive step { show fib_mod 16 (n + 24 * (d + 1)) = fib_mod 16 n, rwa [mul_add,←add_assoc,mul_one,fib_mod_16_aux], }, }, conv begin to_lhs, rw ←nat.mod_add_div n 24, end, rw H (n % 24) (n / 24) end theorem luc_mod_8_aux (n : ℕ) : (luc_mod 8) (n + 12) = (luc_mod 8) n := nat.rec_on_two n (rfl) (rfl) (begin intros d Hd Hdplus1, show (luc_mod 8 (d + 12) + luc_mod 8 (nat.succ d + 12)) % 8 = (luc_mod 8 d + luc_mod 8 (nat.succ d)) % 8, rw Hd,rw Hdplus1, end) theorem luc_mod_8 (n : ℕ) : (luc_mod 8) n = (luc_mod 8) (n % 12) := begin have H : ∀ n k, luc_mod 8 (n + 12 * k) = (luc_mod 8) n, { intros n k, induction k with d Hd, -- base case { refl}, -- inductive step { show luc_mod 8 (n + 12 * (d + 1)) = luc_mod 8 n, rwa [mul_add,←add_assoc,mul_one,luc_mod_8_aux], }, }, conv begin to_lhs, rw ←nat.mod_add_div n 12, end, rw H (n % 12) (n / 12) end theorem luc_mod_3_aux (n : ℕ) : (luc_mod 3) (n + 8) = (luc_mod 3) n := nat.rec_on_two n (rfl) (rfl) (begin intros d Hd Hdplus1, show (luc_mod 3 (d + 8) + luc_mod 3 (nat.succ d + 8)) % 3 = (luc_mod 3 d + luc_mod 3 (nat.succ d)) % 3, rw Hd,rw Hdplus1, end) theorem luc_mod_3 (n : ℕ) : (luc_mod 3) n = (luc_mod 3) (n % 8) := begin have H : ∀ n k, luc_mod 3 (n + 8 * k) = (luc_mod 3) n, { intros n k, induction k with d Hd, -- base case { refl}, -- inductive step { show luc_mod 3 (n + 8 * (d + 1)) = luc_mod 3 n, rwa [mul_add,←add_assoc,mul_one,luc_mod_3_aux], }, }, conv begin to_lhs, rw ←nat.mod_add_div n 8, end, rw H (n % 8) (n / 8) end theorem luc_mod_2_aux (n : ℕ) : (luc_mod 2) (n + 3) = (luc_mod 2) n := nat.rec_on_two n (rfl) (rfl) (begin intros d Hd Hdplus1, show (luc_mod 2 (d + 3) + luc_mod 2 (nat.succ d + 3)) % 2 = (luc_mod 2 d + luc_mod 2 (nat.succ d)) % 2, rw Hd,rw Hdplus1, end) theorem luc_mod_2 (n : ℕ) : (luc_mod 2) n = (luc_mod 2) (n % 3) := begin have H : ∀ n k, luc_mod 2 (n + 3 * k) = (luc_mod 2) n, { intros n k, induction k with d Hd, -- base case { refl}, -- inductive step { show luc_mod 2 (n + 3 * (d + 1)) = luc_mod 2 n, rwa [mul_add,←add_assoc,mul_one,luc_mod_2_aux], }, }, conv begin to_lhs, rw ←nat.mod_add_div n 3, end, rw H (n % 3) (n / 3) end
cd43cdf6d6adfea9b42c1cea6aa4300566576b09
432d948a4d3d242fdfb44b81c9e1b1baacd58617
/src/measure_theory/measurable_space.lean
837e73c7995e6cf4706c32e6eb11f5219c743b0d
[ "Apache-2.0" ]
permissive
JLimperg/aesop3
306cc6570c556568897ed2e508c8869667252e8a
a4a116f650cc7403428e72bd2e2c4cda300fe03f
refs/heads/master
1,682,884,916,368
1,620,320,033,000
1,620,320,033,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
53,741
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import data.set.disjointed import data.set.countable import data.indicator_function import data.equiv.encodable.lattice import data.tprod import order.filter.lift /-! # Measurable spaces and measurable functions This file defines measurable spaces and the functions and isomorphisms between them. A measurable space is a set equipped with a σ-algebra, a collection of subsets closed under complementation and countable union. A function between measurable spaces is measurable if the preimage of each measurable subset is measurable. σ-algebras on a fixed set `α` form a complete lattice. Here we order σ-algebras by writing `m₁ ≤ m₂` if every set which is `m₁`-measurable is also `m₂`-measurable (that is, `m₁` is a subset of `m₂`). In particular, any collection of subsets of `α` generates a smallest σ-algebra which contains all of them. A function `f : α → β` induces a Galois connection between the lattices of σ-algebras on `α` and `β`. A measurable equivalence between measurable spaces is an equivalence which respects the σ-algebras, that is, for which both directions of the equivalence are measurable functions. We say that a filter `f` is measurably generated if every set `s ∈ f` includes a measurable set `t ∈ f`. This property is useful, e.g., to extract a measurable witness of `filter.eventually`. ## Notation * We write `α ≃ᵐ β` for measurable equivalences between the measurable spaces `α` and `β`. This should not be confused with `≃ₘ` which is used for diffeomorphisms between manifolds. ## Implementation notes Measurability of a function `f : α → β` between measurable spaces is defined in terms of the Galois connection induced by f. ## References * <https://en.wikipedia.org/wiki/Measurable_space> * <https://en.wikipedia.org/wiki/Sigma-algebra> * <https://en.wikipedia.org/wiki/Dynkin_system> ## Tags measurable space, σ-algebra, measurable function, measurable equivalence, dynkin system, π-λ theorem, π-system -/ open set encodable function equiv open_locale classical filter variables {α β γ δ δ' : Type*} {ι : Sort*} {s t u : set α} /-- A measurable space is a space equipped with a σ-algebra. -/ structure measurable_space (α : Type*) := (measurable_set' : set α → Prop) (measurable_set_empty : measurable_set' ∅) (measurable_set_compl : ∀ s, measurable_set' s → measurable_set' sᶜ) (measurable_set_Union : ∀ f : ℕ → set α, (∀ i, measurable_set' (f i)) → measurable_set' (⋃ i, f i)) attribute [class] measurable_space instance [h : measurable_space α] : measurable_space (order_dual α) := h section variable [measurable_space α] /-- `measurable_set s` means that `s` is measurable (in the ambient measure space on `α`) -/ def measurable_set : set α → Prop := ‹measurable_space α›.measurable_set' @[simp] lemma measurable_set.empty : measurable_set (∅ : set α) := ‹measurable_space α›.measurable_set_empty lemma measurable_set.compl : measurable_set s → measurable_set sᶜ := ‹measurable_space α›.measurable_set_compl s lemma measurable_set.of_compl (h : measurable_set sᶜ) : measurable_set s := compl_compl s ▸ h.compl @[simp] lemma measurable_set.compl_iff : measurable_set sᶜ ↔ measurable_set s := ⟨measurable_set.of_compl, measurable_set.compl⟩ @[simp] lemma measurable_set.univ : measurable_set (univ : set α) := by simpa using (@measurable_set.empty α _).compl @[nontriviality] lemma subsingleton.measurable_set [subsingleton α] {s : set α} : measurable_set s := subsingleton.set_cases measurable_set.empty measurable_set.univ s lemma measurable_set.congr {s t : set α} (hs : measurable_set s) (h : s = t) : measurable_set t := by rwa ← h lemma measurable_set.bUnion_decode2 [encodable β] ⦃f : β → set α⦄ (h : ∀ b, measurable_set (f b)) (n : ℕ) : measurable_set (⋃ b ∈ decode2 β n, f b) := encodable.Union_decode2_cases measurable_set.empty h lemma measurable_set.Union [encodable β] ⦃f : β → set α⦄ (h : ∀ b, measurable_set (f b)) : measurable_set (⋃ b, f b) := begin rw ← encodable.Union_decode2, exact ‹measurable_space α›.measurable_set_Union _ (measurable_set.bUnion_decode2 h) end lemma measurable_set.bUnion {f : β → set α} {s : set β} (hs : countable s) (h : ∀ b ∈ s, measurable_set (f b)) : measurable_set (⋃ b ∈ s, f b) := begin rw bUnion_eq_Union, haveI := hs.to_encodable, exact measurable_set.Union (by simpa using h) end lemma set.finite.measurable_set_bUnion {f : β → set α} {s : set β} (hs : finite s) (h : ∀ b ∈ s, measurable_set (f b)) : measurable_set (⋃ b ∈ s, f b) := measurable_set.bUnion hs.countable h lemma finset.measurable_set_bUnion {f : β → set α} (s : finset β) (h : ∀ b ∈ s, measurable_set (f b)) : measurable_set (⋃ b ∈ s, f b) := s.finite_to_set.measurable_set_bUnion h lemma measurable_set.sUnion {s : set (set α)} (hs : countable s) (h : ∀ t ∈ s, measurable_set t) : measurable_set (⋃₀ s) := by { rw sUnion_eq_bUnion, exact measurable_set.bUnion hs h } lemma set.finite.measurable_set_sUnion {s : set (set α)} (hs : finite s) (h : ∀ t ∈ s, measurable_set t) : measurable_set (⋃₀ s) := measurable_set.sUnion hs.countable h lemma measurable_set.Union_Prop {p : Prop} {f : p → set α} (hf : ∀ b, measurable_set (f b)) : measurable_set (⋃ b, f b) := by { by_cases p; simp [h, hf, measurable_set.empty] } lemma measurable_set.Inter [encodable β] {f : β → set α} (h : ∀ b, measurable_set (f b)) : measurable_set (⋂ b, f b) := measurable_set.compl_iff.1 $ by { rw compl_Inter, exact measurable_set.Union (λ b, (h b).compl) } section fintype local attribute [instance] fintype.encodable lemma measurable_set.Union_fintype [fintype β] {f : β → set α} (h : ∀ b, measurable_set (f b)) : measurable_set (⋃ b, f b) := measurable_set.Union h lemma measurable_set.Inter_fintype [fintype β] {f : β → set α} (h : ∀ b, measurable_set (f b)) : measurable_set (⋂ b, f b) := measurable_set.Inter h end fintype lemma measurable_set.bInter {f : β → set α} {s : set β} (hs : countable s) (h : ∀ b ∈ s, measurable_set (f b)) : measurable_set (⋂ b ∈ s, f b) := measurable_set.compl_iff.1 $ by { rw compl_bInter, exact measurable_set.bUnion hs (λ b hb, (h b hb).compl) } lemma set.finite.measurable_set_bInter {f : β → set α} {s : set β} (hs : finite s) (h : ∀ b ∈ s, measurable_set (f b)) : measurable_set (⋂ b ∈ s, f b) := measurable_set.bInter hs.countable h lemma finset.measurable_set_bInter {f : β → set α} (s : finset β) (h : ∀ b ∈ s, measurable_set (f b)) : measurable_set (⋂ b ∈ s, f b) := s.finite_to_set.measurable_set_bInter h lemma measurable_set.sInter {s : set (set α)} (hs : countable s) (h : ∀ t ∈ s, measurable_set t) : measurable_set (⋂₀ s) := by { rw sInter_eq_bInter, exact measurable_set.bInter hs h } lemma set.finite.measurable_set_sInter {s : set (set α)} (hs : finite s) (h : ∀ t ∈ s, measurable_set t) : measurable_set (⋂₀ s) := measurable_set.sInter hs.countable h lemma measurable_set.Inter_Prop {p : Prop} {f : p → set α} (hf : ∀ b, measurable_set (f b)) : measurable_set (⋂ b, f b) := by { by_cases p; simp [h, hf, measurable_set.univ] } @[simp] lemma measurable_set.union {s₁ s₂ : set α} (h₁ : measurable_set s₁) (h₂ : measurable_set s₂) : measurable_set (s₁ ∪ s₂) := by { rw union_eq_Union, exact measurable_set.Union (bool.forall_bool.2 ⟨h₂, h₁⟩) } @[simp] lemma measurable_set.inter {s₁ s₂ : set α} (h₁ : measurable_set s₁) (h₂ : measurable_set s₂) : measurable_set (s₁ ∩ s₂) := by { rw inter_eq_compl_compl_union_compl, exact (h₁.compl.union h₂.compl).compl } @[simp] lemma measurable_set.diff {s₁ s₂ : set α} (h₁ : measurable_set s₁) (h₂ : measurable_set s₂) : measurable_set (s₁ \ s₂) := h₁.inter h₂.compl @[simp] lemma measurable_set.ite {t s₁ s₂ : set α} (ht : measurable_set t) (h₁ : measurable_set s₁) (h₂ : measurable_set s₂) : measurable_set (t.ite s₁ s₂) := (h₁.inter ht).union (h₂.diff ht) @[simp] lemma measurable_set.disjointed {f : ℕ → set α} (h : ∀ i, measurable_set (f i)) (n) : measurable_set (disjointed f n) := disjointed_induct (h n) (assume t i ht, measurable_set.diff ht $ h _) @[simp] lemma measurable_set.const (p : Prop) : measurable_set {a : α | p} := by { by_cases p; simp [h, measurable_set.empty]; apply measurable_set.univ } /-- Every set has a measurable superset. Declare this as local instance as needed. -/ lemma nonempty_measurable_superset (s : set α) : nonempty { t // s ⊆ t ∧ measurable_set t} := ⟨⟨univ, subset_univ s, measurable_set.univ⟩⟩ end @[ext] lemma measurable_space.ext : ∀ {m₁ m₂ : measurable_space α}, (∀ s : set α, m₁.measurable_set' s ↔ m₂.measurable_set' s) → m₁ = m₂ | ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h := have s₁ = s₂, from funext $ assume x, propext $ h x, by subst this @[ext] lemma measurable_space.ext_iff {m₁ m₂ : measurable_space α} : m₁ = m₂ ↔ (∀ s : set α, m₁.measurable_set' s ↔ m₂.measurable_set' s) := ⟨by { unfreezingI {rintro rfl}, intro s, refl }, measurable_space.ext⟩ /-- A typeclass mixin for `measurable_space`s such that each singleton is measurable. -/ class measurable_singleton_class (α : Type*) [measurable_space α] : Prop := (measurable_set_singleton : ∀ x, measurable_set ({x} : set α)) export measurable_singleton_class (measurable_set_singleton) attribute [simp] measurable_set_singleton section measurable_singleton_class variables [measurable_space α] [measurable_singleton_class α] lemma measurable_set_eq {a : α} : measurable_set {x | x = a} := measurable_set_singleton a lemma measurable_set.insert {s : set α} (hs : measurable_set s) (a : α) : measurable_set (insert a s) := (measurable_set_singleton a).union hs @[simp] lemma measurable_set_insert {a : α} {s : set α} : measurable_set (insert a s) ↔ measurable_set s := ⟨λ h, if ha : a ∈ s then by rwa ← insert_eq_of_mem ha else insert_diff_self_of_not_mem ha ▸ h.diff (measurable_set_singleton _), λ h, h.insert a⟩ lemma set.finite.measurable_set {s : set α} (hs : finite s) : measurable_set s := finite.induction_on hs measurable_set.empty $ λ a s ha hsf hsm, hsm.insert _ protected lemma finset.measurable_set (s : finset α) : measurable_set (↑s : set α) := s.finite_to_set.measurable_set end measurable_singleton_class namespace measurable_space section complete_lattice instance : partial_order (measurable_space α) := { le := λ m₁ m₂, m₁.measurable_set' ≤ m₂.measurable_set', le_refl := assume a b, le_refl _, le_trans := assume a b c, le_trans, le_antisymm := assume a b h₁ h₂, measurable_space.ext $ assume s, ⟨h₁ s, h₂ s⟩ } /-- The smallest σ-algebra containing a collection `s` of basic sets -/ inductive generate_measurable (s : set (set α)) : set α → Prop | basic : ∀ u ∈ s, generate_measurable u | empty : generate_measurable ∅ | compl : ∀ s, generate_measurable s → generate_measurable sᶜ | union : ∀ f : ℕ → set α, (∀ n, generate_measurable (f n)) → generate_measurable (⋃ i, f i) /-- Construct the smallest measure space containing a collection of basic sets -/ def generate_from (s : set (set α)) : measurable_space α := { measurable_set' := generate_measurable s, measurable_set_empty := generate_measurable.empty, measurable_set_compl := generate_measurable.compl, measurable_set_Union := generate_measurable.union } lemma measurable_set_generate_from {s : set (set α)} {t : set α} (ht : t ∈ s) : (generate_from s).measurable_set' t := generate_measurable.basic t ht lemma generate_from_le {s : set (set α)} {m : measurable_space α} (h : ∀ t ∈ s, m.measurable_set' t) : generate_from s ≤ m := assume t (ht : generate_measurable s t), ht.rec_on h (measurable_set_empty m) (assume s _ hs, measurable_set_compl m s hs) (assume f _ hf, measurable_set_Union m f hf) lemma generate_from_le_iff {s : set (set α)} (m : measurable_space α) : generate_from s ≤ m ↔ s ⊆ {t | m.measurable_set' t} := iff.intro (assume h u hu, h _ $ measurable_set_generate_from hu) (assume h, generate_from_le h) @[simp] lemma generate_from_measurable_set [measurable_space α] : generate_from {s : set α | measurable_set s} = ‹_› := le_antisymm (generate_from_le $ λ _, id) $ λ s, measurable_set_generate_from /-- If `g` is a collection of subsets of `α` such that the `σ`-algebra generated from `g` contains the same sets as `g`, then `g` was already a `σ`-algebra. -/ protected def mk_of_closure (g : set (set α)) (hg : {t | (generate_from g).measurable_set' t} = g) : measurable_space α := { measurable_set' := λ s, s ∈ g, measurable_set_empty := hg ▸ measurable_set_empty _, measurable_set_compl := hg ▸ measurable_set_compl _, measurable_set_Union := hg ▸ measurable_set_Union _ } lemma mk_of_closure_sets {s : set (set α)} {hs : {t | (generate_from s).measurable_set' t} = s} : measurable_space.mk_of_closure s hs = generate_from s := measurable_space.ext $ assume t, show t ∈ s ↔ _, by { conv_lhs { rw [← hs] }, refl } /-- We get a Galois insertion between `σ`-algebras on `α` and `set (set α)` by using `generate_from` on one side and the collection of measurable sets on the other side. -/ def gi_generate_from : galois_insertion (@generate_from α) (λ m, {t | @measurable_set α m t}) := { gc := assume s, generate_from_le_iff, le_l_u := assume m s, measurable_set_generate_from, choice := λ g hg, measurable_space.mk_of_closure g $ le_antisymm hg $ (generate_from_le_iff _).1 le_rfl, choice_eq := assume g hg, mk_of_closure_sets } instance : complete_lattice (measurable_space α) := gi_generate_from.lift_complete_lattice instance : inhabited (measurable_space α) := ⟨⊤⟩ lemma measurable_set_bot_iff {s : set α} : @measurable_set α ⊥ s ↔ (s = ∅ ∨ s = univ) := let b : measurable_space α := { measurable_set' := λ s, s = ∅ ∨ s = univ, measurable_set_empty := or.inl rfl, measurable_set_compl := by simp [or_imp_distrib] {contextual := tt}, measurable_set_Union := assume f hf, classical.by_cases (assume h : ∃i, f i = univ, let ⟨i, hi⟩ := h in or.inr $ eq_univ_of_univ_subset $ hi ▸ le_supr f i) (assume h : ¬ ∃i, f i = univ, or.inl $ eq_empty_of_subset_empty $ Union_subset $ assume i, (hf i).elim (by simp {contextual := tt}) (assume hi, false.elim $ h ⟨i, hi⟩)) } in have b = ⊥, from bot_unique $ assume s hs, hs.elim (λ s, s.symm ▸ @measurable_set_empty _ ⊥) (λ s, s.symm ▸ @measurable_set.univ _ ⊥), this ▸ iff.rfl @[simp] theorem measurable_set_top {s : set α} : @measurable_set _ ⊤ s := trivial @[simp] theorem measurable_set_inf {m₁ m₂ : measurable_space α} {s : set α} : @measurable_set _ (m₁ ⊓ m₂) s ↔ @measurable_set _ m₁ s ∧ @measurable_set _ m₂ s := iff.rfl @[simp] theorem measurable_set_Inf {ms : set (measurable_space α)} {s : set α} : @measurable_set _ (Inf ms) s ↔ ∀ m ∈ ms, @measurable_set _ m s := show s ∈ (⋂ m ∈ ms, {t | @measurable_set _ m t }) ↔ _, by simp @[simp] theorem measurable_set_infi {ι} {m : ι → measurable_space α} {s : set α} : @measurable_set _ (infi m) s ↔ ∀ i, @measurable_set _ (m i) s := show s ∈ (λ m, {s | @measurable_set _ m s }) (infi m) ↔ _, by { rw (@gi_generate_from α).gc.u_infi, simp } theorem measurable_set_sup {m₁ m₂ : measurable_space α} {s : set α} : @measurable_set _ (m₁ ⊔ m₂) s ↔ generate_measurable (m₁.measurable_set' ∪ m₂.measurable_set') s := iff.refl _ theorem measurable_set_Sup {ms : set (measurable_space α)} {s : set α} : @measurable_set _ (Sup ms) s ↔ generate_measurable {s : set α | ∃ m ∈ ms, @measurable_set _ m s} s := begin change @measurable_set' _ (generate_from $ ⋃ m ∈ ms, _) _ ↔ _, simp [generate_from, ← set_of_exists] end theorem measurable_set_supr {ι} {m : ι → measurable_space α} {s : set α} : @measurable_set _ (supr m) s ↔ generate_measurable {s : set α | ∃ i, @measurable_set _ (m i) s} s := begin convert @measurable_set_Sup _ (range m) s, simp, end end complete_lattice section functors variables {m m₁ m₂ : measurable_space α} {m' : measurable_space β} {f : α → β} {g : β → α} /-- The forward image of a measure space under a function. `map f m` contains the sets `s : set β` whose preimage under `f` is measurable. -/ protected def map (f : α → β) (m : measurable_space α) : measurable_space β := { measurable_set' := λ s, m.measurable_set' $ f ⁻¹' s, measurable_set_empty := m.measurable_set_empty, measurable_set_compl := assume s hs, m.measurable_set_compl _ hs, measurable_set_Union := assume f hf, by { rw preimage_Union, exact m.measurable_set_Union _ hf }} @[simp] lemma map_id : m.map id = m := measurable_space.ext $ assume s, iff.rfl @[simp] lemma map_comp {f : α → β} {g : β → γ} : (m.map f).map g = m.map (g ∘ f) := measurable_space.ext $ assume s, iff.rfl /-- The reverse image of a measure space under a function. `comap f m` contains the sets `s : set α` such that `s` is the `f`-preimage of a measurable set in `β`. -/ protected def comap (f : α → β) (m : measurable_space β) : measurable_space α := { measurable_set' := λ s, ∃s', m.measurable_set' s' ∧ f ⁻¹' s' = s, measurable_set_empty := ⟨∅, m.measurable_set_empty, rfl⟩, measurable_set_compl := assume s ⟨s', h₁, h₂⟩, ⟨s'ᶜ, m.measurable_set_compl _ h₁, h₂ ▸ rfl⟩, measurable_set_Union := assume s hs, let ⟨s', hs'⟩ := classical.axiom_of_choice hs in ⟨⋃ i, s' i, m.measurable_set_Union _ (λ i, (hs' i).left), by simp [hs'] ⟩ } @[simp] lemma comap_id : m.comap id = m := measurable_space.ext $ assume s, ⟨assume ⟨s', hs', h⟩, h ▸ hs', assume h, ⟨s, h, rfl⟩⟩ @[simp] lemma comap_comp {f : β → α} {g : γ → β} : (m.comap f).comap g = m.comap (f ∘ g) := measurable_space.ext $ assume s, ⟨assume ⟨t, ⟨u, h, hu⟩, ht⟩, ⟨u, h, ht ▸ hu ▸ rfl⟩, assume ⟨t, h, ht⟩, ⟨f ⁻¹' t, ⟨_, h, rfl⟩, ht⟩⟩ lemma comap_le_iff_le_map {f : α → β} : m'.comap f ≤ m ↔ m' ≤ m.map f := ⟨assume h s hs, h _ ⟨_, hs, rfl⟩, assume h s ⟨t, ht, heq⟩, heq ▸ h _ ht⟩ lemma gc_comap_map (f : α → β) : galois_connection (measurable_space.comap f) (measurable_space.map f) := assume f g, comap_le_iff_le_map lemma map_mono (h : m₁ ≤ m₂) : m₁.map f ≤ m₂.map f := (gc_comap_map f).monotone_u h lemma monotone_map : monotone (measurable_space.map f) := assume a b h, map_mono h lemma comap_mono (h : m₁ ≤ m₂) : m₁.comap g ≤ m₂.comap g := (gc_comap_map g).monotone_l h lemma monotone_comap : monotone (measurable_space.comap g) := assume a b h, comap_mono h @[simp] lemma comap_bot : (⊥ : measurable_space α).comap g = ⊥ := (gc_comap_map g).l_bot @[simp] lemma comap_sup : (m₁ ⊔ m₂).comap g = m₁.comap g ⊔ m₂.comap g := (gc_comap_map g).l_sup @[simp] lemma comap_supr {m : ι → measurable_space α} : (⨆i, m i).comap g = (⨆i, (m i).comap g) := (gc_comap_map g).l_supr @[simp] lemma map_top : (⊤ : measurable_space α).map f = ⊤ := (gc_comap_map f).u_top @[simp] lemma map_inf : (m₁ ⊓ m₂).map f = m₁.map f ⊓ m₂.map f := (gc_comap_map f).u_inf @[simp] lemma map_infi {m : ι → measurable_space α} : (⨅i, m i).map f = (⨅i, (m i).map f) := (gc_comap_map f).u_infi lemma comap_map_le : (m.map f).comap f ≤ m := (gc_comap_map f).l_u_le _ lemma le_map_comap : m ≤ (m.comap g).map g := (gc_comap_map g).le_u_l _ end functors lemma generate_from_le_generate_from {s t : set (set α)} (h : s ⊆ t) : generate_from s ≤ generate_from t := gi_generate_from.gc.monotone_l h lemma generate_from_sup_generate_from {s t : set (set α)} : generate_from s ⊔ generate_from t = generate_from (s ∪ t) := (@gi_generate_from α).gc.l_sup.symm lemma comap_generate_from {f : α → β} {s : set (set β)} : (generate_from s).comap f = generate_from (preimage f '' s) := le_antisymm (comap_le_iff_le_map.2 $ generate_from_le $ assume t hts, generate_measurable.basic _ $ mem_image_of_mem _ $ hts) (generate_from_le $ assume t ⟨u, hu, eq⟩, eq ▸ ⟨u, generate_measurable.basic _ hu, rfl⟩) end measurable_space section measurable_functions open measurable_space /-- A function `f` between measurable spaces is measurable if the preimage of every measurable set is measurable. -/ def measurable [measurable_space α] [measurable_space β] (f : α → β) : Prop := ∀ ⦃t : set β⦄, measurable_set t → measurable_set (f ⁻¹' t) lemma measurable_iff_le_map {m₁ : measurable_space α} {m₂ : measurable_space β} {f : α → β} : measurable f ↔ m₂ ≤ m₁.map f := iff.rfl alias measurable_iff_le_map ↔ measurable.le_map measurable.of_le_map lemma measurable_iff_comap_le {m₁ : measurable_space α} {m₂ : measurable_space β} {f : α → β} : measurable f ↔ m₂.comap f ≤ m₁ := comap_le_iff_le_map.symm alias measurable_iff_comap_le ↔ measurable.comap_le measurable.of_comap_le lemma measurable.mono {ma ma' : measurable_space α} {mb mb' : measurable_space β} {f : α → β} (hf : @measurable α β ma mb f) (ha : ma ≤ ma') (hb : mb' ≤ mb) : @measurable α β ma' mb' f := λ t ht, ha _ $ hf $ hb _ ht lemma measurable_from_top [measurable_space β] {f : α → β} : @measurable _ _ ⊤ _ f := λ s hs, trivial lemma measurable_generate_from [measurable_space α] {s : set (set β)} {f : α → β} (h : ∀ t ∈ s, measurable_set (f ⁻¹' t)) : @measurable _ _ _ (generate_from s) f := measurable.of_le_map $ generate_from_le h variables [measurable_space α] [measurable_space β] [measurable_space γ] lemma measurable_id : measurable (@id α) := λ t, id lemma measurable.comp {g : β → γ} {f : α → β} (hg : measurable g) (hf : measurable f) : measurable (g ∘ f) := λ t ht, hf (hg ht) lemma measurable.iterate {f : α → α} (hf : measurable f) : ∀ n, measurable (f^[n]) | 0 := measurable_id | (n+1) := (measurable.iterate n).comp hf @[nontriviality] lemma subsingleton.measurable [subsingleton α] {f : α → β} : measurable f := λ s hs, @subsingleton.measurable_set α _ _ _ lemma measurable.piecewise {s : set α} {_ : decidable_pred s} {f g : α → β} (hs : measurable_set s) (hf : measurable f) (hg : measurable g) : measurable (piecewise s f g) := begin intros t ht, rw piecewise_preimage, exact hs.ite (hf ht) (hg ht) end /-- this is slightly different from `measurable.piecewise`. It can be used to show `measurable (ite (x=0) 0 1)` by `exact measurable.ite (measurable_set_singleton 0) measurable_const measurable_const`, but replacing `measurable.ite` by `measurable.piecewise` in that example proof does not work. -/ lemma measurable.ite {p : α → Prop} {_ : decidable_pred p} {f g : α → β} (hp : measurable_set {a : α | p a}) (hf : measurable f) (hg : measurable g) : measurable (λ x, ite (p x) (f x) (g x)) := measurable.piecewise hp hf hg @[simp] lemma measurable_const {a : α} : measurable (λ b : β, a) := assume s hs, measurable_set.const (a ∈ s) lemma measurable.indicator [has_zero β] {s : set α} {f : α → β} (hf : measurable f) (hs : measurable_set s) : measurable (s.indicator f) := hf.piecewise hs measurable_const @[to_additive] lemma measurable_one [has_one α] : measurable (1 : β → α) := @measurable_const _ _ _ _ 1 lemma measurable_of_not_nonempty (h : ¬ nonempty α) (f : α → β) : measurable f := begin assume s hs, convert measurable_set.empty, exact eq_empty_of_not_nonempty h _, end @[to_additive] lemma measurable_set_mul_support [has_one β] [measurable_singleton_class β] {f : α → β} (hf : measurable f) : measurable_set (mul_support f) := hf (measurable_set_singleton 1).compl end measurable_functions section constructions variables [measurable_space α] [measurable_space β] [measurable_space γ] instance : measurable_space empty := ⊤ instance : measurable_space punit := ⊤ -- this also works for `unit` instance : measurable_space bool := ⊤ instance : measurable_space ℕ := ⊤ instance : measurable_space ℤ := ⊤ instance : measurable_space ℚ := ⊤ lemma measurable_to_encodable [encodable α] {f : β → α} (h : ∀ y, measurable_set (f ⁻¹' {f y})) : measurable f := begin assume s hs, rw [← bUnion_preimage_singleton], refine measurable_set.Union (λ y, measurable_set.Union_Prop $ λ hy, _), by_cases hyf : y ∈ range f, { rcases hyf with ⟨y, rfl⟩, apply h }, { simp only [preimage_singleton_eq_empty.2 hyf, measurable_set.empty] } end lemma measurable_unit (f : unit → α) : measurable f := measurable_from_top section nat lemma measurable_from_nat {f : ℕ → α} : measurable f := measurable_from_top lemma measurable_to_nat {f : α → ℕ} : (∀ y, measurable_set (f ⁻¹' {f y})) → measurable f := measurable_to_encodable lemma measurable_find_greatest' {p : α → ℕ → Prop} {N} (hN : ∀ k ≤ N, measurable_set {x | nat.find_greatest (p x) N = k}) : measurable (λ x, nat.find_greatest (p x) N) := measurable_to_nat $ λ x, hN _ nat.find_greatest_le lemma measurable_find_greatest {p : α → ℕ → Prop} {N} (hN : ∀ k ≤ N, measurable_set {x | p x k}) : measurable (λ x, nat.find_greatest (p x) N) := begin refine measurable_find_greatest' (λ k hk, _), simp only [nat.find_greatest_eq_iff, set_of_and, set_of_forall, ← compl_set_of], repeat { apply_rules [measurable_set.inter, measurable_set.const, measurable_set.Inter, measurable_set.Inter_Prop, measurable_set.compl, hN]; try { intros } } end lemma measurable_find {p : α → ℕ → Prop} (hp : ∀ x, ∃ N, p x N) (hm : ∀ k, measurable_set {x | p x k}) : measurable (λ x, nat.find (hp x)) := begin refine measurable_to_nat (λ x, _), simp only [set.preimage, mem_singleton_iff, nat.find_eq_iff, set_of_and, set_of_forall, ← compl_set_of], repeat { apply_rules [measurable_set.inter, hm, measurable_set.Inter, measurable_set.Inter_Prop, measurable_set.compl]; try { intros } } end end nat section subtype instance {α} {p : α → Prop} [m : measurable_space α] : measurable_space (subtype p) := m.comap (coe : _ → α) lemma measurable_subtype_coe {p : α → Prop} : measurable (coe : subtype p → α) := measurable_space.le_map_comap lemma measurable.subtype_coe {p : β → Prop} {f : α → subtype p} (hf : measurable f) : measurable (λ a : α, (f a : β)) := measurable_subtype_coe.comp hf lemma measurable.subtype_mk {p : β → Prop} {f : α → β} (hf : measurable f) {h : ∀ x, p (f x)} : measurable (λ x, (⟨f x, h x⟩ : subtype p)) := λ t ⟨s, hs⟩, hs.2 ▸ by simp only [← preimage_comp, (∘), subtype.coe_mk, hf hs.1] lemma measurable_set.subtype_image {s : set α} {t : set s} (hs : measurable_set s) : measurable_set t → measurable_set ((coe : s → α) '' t) | ⟨u, (hu : measurable_set u), (eq : coe ⁻¹' u = t)⟩ := begin rw [← eq, subtype.image_preimage_coe], exact hu.inter hs end lemma measurable_of_measurable_union_cover {f : α → β} (s t : set α) (hs : measurable_set s) (ht : measurable_set t) (h : univ ⊆ s ∪ t) (hc : measurable (λ a : s, f a)) (hd : measurable (λ a : t, f a)) : measurable f := begin intros u hu, convert (hs.subtype_image (hc hu)).union (ht.subtype_image (hd hu)), change f ⁻¹' u = coe '' (coe ⁻¹' (f ⁻¹' u) : set s) ∪ coe '' (coe ⁻¹' (f ⁻¹' u) : set t), rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, subtype.range_coe, subtype.range_coe, ← inter_distrib_left, univ_subset_iff.1 h, inter_univ], end lemma measurable_of_measurable_on_compl_singleton [measurable_singleton_class α] {f : α → β} (a : α) (hf : measurable (set.restrict f {x | x ≠ a})) : measurable f := measurable_of_measurable_union_cover _ _ measurable_set_eq measurable_set_eq.compl (λ x hx, classical.em _) (@subsingleton.measurable {x | x = a} _ _ _ ⟨λ x y, subtype.eq $ x.2.trans y.2.symm⟩ _) hf end subtype section prod instance {α β} [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α × β) := m₁.comap prod.fst ⊔ m₂.comap prod.snd lemma measurable_fst : measurable (prod.fst : α × β → α) := measurable.of_comap_le le_sup_left lemma measurable.fst {f : α → β × γ} (hf : measurable f) : measurable (λ a : α, (f a).1) := measurable_fst.comp hf lemma measurable_snd : measurable (prod.snd : α × β → β) := measurable.of_comap_le le_sup_right lemma measurable.snd {f : α → β × γ} (hf : measurable f) : measurable (λ a : α, (f a).2) := measurable_snd.comp hf lemma measurable.prod {f : α → β × γ} (hf₁ : measurable (λ a, (f a).1)) (hf₂ : measurable (λ a, (f a).2)) : measurable f := measurable.of_le_map $ sup_le (by { rw [measurable_space.comap_le_iff_le_map, measurable_space.map_comp], exact hf₁ }) (by { rw [measurable_space.comap_le_iff_le_map, measurable_space.map_comp], exact hf₂ }) lemma measurable_prod {f : α → β × γ} : measurable f ↔ measurable (λ a, (f a).1) ∧ measurable (λ a, (f a).2) := ⟨λ hf, ⟨measurable_fst.comp hf, measurable_snd.comp hf⟩, λ h, measurable.prod h.1 h.2⟩ lemma measurable.prod_mk {f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) : measurable (λ a : α, (f a, g a)) := measurable.prod hf hg lemma measurable_prod_mk_left {x : α} : measurable (@prod.mk _ β x) := measurable_const.prod_mk measurable_id lemma measurable_prod_mk_right {y : β} : measurable (λ x : α, (x, y)) := measurable_id.prod_mk measurable_const lemma measurable.prod_map [measurable_space δ] {f : α → β} {g : γ → δ} (hf : measurable f) (hg : measurable g) : measurable (prod.map f g) := (hf.comp measurable_fst).prod_mk (hg.comp measurable_snd) lemma measurable.of_uncurry_left {f : α → β → γ} (hf : measurable (uncurry f)) {x : α} : measurable (f x) := hf.comp measurable_prod_mk_left lemma measurable.of_uncurry_right {f : α → β → γ} (hf : measurable (uncurry f)) {y : β} : measurable (λ x, f x y) := hf.comp measurable_prod_mk_right lemma measurable_swap : measurable (prod.swap : α × β → β × α) := measurable.prod measurable_snd measurable_fst lemma measurable_swap_iff {f : α × β → γ} : measurable (f ∘ prod.swap) ↔ measurable f := ⟨λ hf, by { convert hf.comp measurable_swap, ext ⟨x, y⟩, refl }, λ hf, hf.comp measurable_swap⟩ lemma measurable_set.prod {s : set α} {t : set β} (hs : measurable_set s) (ht : measurable_set t) : measurable_set (s.prod t) := measurable_set.inter (measurable_fst hs) (measurable_snd ht) lemma measurable_set_prod_of_nonempty {s : set α} {t : set β} (h : (s.prod t).nonempty) : measurable_set (s.prod t) ↔ measurable_set s ∧ measurable_set t := begin rcases h with ⟨⟨x, y⟩, hx, hy⟩, refine ⟨λ hst, _, λ h, h.1.prod h.2⟩, have : measurable_set ((λ x, (x, y)) ⁻¹' s.prod t) := measurable_id.prod_mk measurable_const hst, have : measurable_set (prod.mk x ⁻¹' s.prod t) := measurable_const.prod_mk measurable_id hst, simp * at * end lemma measurable_set_prod {s : set α} {t : set β} : measurable_set (s.prod t) ↔ (measurable_set s ∧ measurable_set t) ∨ s = ∅ ∨ t = ∅ := begin cases (s.prod t).eq_empty_or_nonempty with h h, { simp [h, prod_eq_empty_iff.mp h] }, { simp [←not_nonempty_iff_eq_empty, prod_nonempty_iff.mp h, measurable_set_prod_of_nonempty h] } end lemma measurable_set_swap_iff {s : set (α × β)} : measurable_set (prod.swap ⁻¹' s) ↔ measurable_set s := ⟨λ hs, by { convert measurable_swap hs, ext ⟨x, y⟩, refl }, λ hs, measurable_swap hs⟩ lemma measurable_from_prod_encodable [encodable β] [measurable_singleton_class β] {f : α × β → γ} (hf : ∀ y, measurable (λ x, f (x, y))) : measurable f := begin intros s hs, have : f ⁻¹' s = ⋃ y, ((λ x, f (x, y)) ⁻¹' s).prod {y}, { ext1 ⟨x, y⟩, simp [and_assoc, and.left_comm] }, rw this, exact measurable_set.Union (λ y, (hf y hs).prod (measurable_set_singleton y)) end end prod section pi variables {π : δ → Type*} instance measurable_space.pi [m : Π a, measurable_space (π a)] : measurable_space (Π a, π a) := ⨆ a, (m a).comap (λ b, b a) variables [Π a, measurable_space (π a)] [measurable_space γ] lemma measurable_pi_iff {g : α → Π a, π a} : measurable g ↔ ∀ a, measurable (λ x, g x a) := by simp_rw [measurable_iff_comap_le, measurable_space.pi, measurable_space.comap_supr, measurable_space.comap_comp, function.comp, supr_le_iff] lemma measurable_pi_apply (a : δ) : measurable (λ f : Π a, π a, f a) := measurable.of_comap_le $ le_supr _ a lemma measurable.eval {a : δ} {g : α → Π a, π a} (hg : measurable g) : measurable (λ x, g x a) := (measurable_pi_apply a).comp hg lemma measurable_pi_lambda (f : α → Π a, π a) (hf : ∀ a, measurable (λ c, f c a)) : measurable f := measurable_pi_iff.mpr hf /-- The function `update f a : π a → Π a, π a` is always measurable. This doesn't require `f` to be measurable. This should not be confused with the statement that `update f a x` is measurable. -/ lemma measurable_update (f : Π (a : δ), π a) {a : δ} : measurable (update f a) := begin apply measurable_pi_lambda, intro x, by_cases hx : x = a, { cases hx, convert measurable_id, ext, simp }, simp_rw [update_noteq hx], apply measurable_const, end /- Even though we cannot use projection notation, we still keep a dot to be consistent with similar lemmas, like `measurable_set.prod`. -/ lemma measurable_set.pi {s : set δ} {t : Π i : δ, set (π i)} (hs : countable s) (ht : ∀ i ∈ s, measurable_set (t i)) : measurable_set (s.pi t) := by { rw [pi_def], exact measurable_set.bInter hs (λ i hi, measurable_pi_apply _ (ht i hi)) } lemma measurable_set.univ_pi [encodable δ] {t : Π i : δ, set (π i)} (ht : ∀ i, measurable_set (t i)) : measurable_set (pi univ t) := measurable_set.pi (countable_encodable _) (λ i _, ht i) lemma measurable_set_pi_of_nonempty {s : set δ} {t : Π i, set (π i)} (hs : countable s) (h : (pi s t).nonempty) : measurable_set (pi s t) ↔ ∀ i ∈ s, measurable_set (t i) := begin rcases h with ⟨f, hf⟩, refine ⟨λ hst i hi, _, measurable_set.pi hs⟩, convert measurable_update f hst, rw [update_preimage_pi hi], exact λ j hj _, hf j hj end lemma measurable_set_pi {s : set δ} {t : Π i, set (π i)} (hs : countable s) : measurable_set (pi s t) ↔ (∀ i ∈ s, measurable_set (t i)) ∨ pi s t = ∅ := begin cases (pi s t).eq_empty_or_nonempty with h h, { simp [h] }, { simp [measurable_set_pi_of_nonempty hs, h, ← not_nonempty_iff_eq_empty] } end section fintype local attribute [instance] fintype.encodable lemma measurable_set.pi_fintype [fintype δ] {s : set δ} {t : Π i, set (π i)} (ht : ∀ i ∈ s, measurable_set (t i)) : measurable_set (pi s t) := measurable_set.pi (countable_encodable _) ht lemma measurable_set.univ_pi_fintype [fintype δ] {t : Π i, set (π i)} (ht : ∀ i, measurable_set (t i)) : measurable_set (pi univ t) := measurable_set.pi_fintype (λ i _, ht i) end fintype end pi instance tprod.measurable_space (π : δ → Type*) [∀ x, measurable_space (π x)] : ∀ (l : list δ), measurable_space (list.tprod π l) | [] := punit.measurable_space | (i :: is) := @prod.measurable_space _ _ _ (tprod.measurable_space is) section tprod open list variables {π : δ → Type*} [∀ x, measurable_space (π x)] lemma measurable_tprod_mk (l : list δ) : measurable (@tprod.mk δ π l) := begin induction l with i l ih, { exact measurable_const }, { exact (measurable_pi_apply i).prod_mk ih } end lemma measurable_tprod_elim : ∀ {l : list δ} {i : δ} (hi : i ∈ l), measurable (λ (v : tprod π l), v.elim hi) | (i :: is) j hj := begin by_cases hji : j = i, { subst hji, simp [measurable_fst] }, { rw [funext $ tprod.elim_of_ne _ hji], exact (measurable_tprod_elim (hj.resolve_left hji)).comp measurable_snd } end lemma measurable_tprod_elim' {l : list δ} (h : ∀ i, i ∈ l) : measurable (tprod.elim' h : tprod π l → Π i, π i) := measurable_pi_lambda _ (λ i, measurable_tprod_elim (h i)) lemma measurable_set.tprod (l : list δ) {s : ∀ i, set (π i)} (hs : ∀ i, measurable_set (s i)) : measurable_set (set.tprod l s) := by { induction l with i l ih, exact measurable_set.univ, exact (hs i).prod ih } end tprod instance {α β} [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α ⊕ β) := m₁.map sum.inl ⊓ m₂.map sum.inr section sum lemma measurable_inl : measurable (@sum.inl α β) := measurable.of_le_map inf_le_left lemma measurable_inr : measurable (@sum.inr α β) := measurable.of_le_map inf_le_right lemma measurable_sum {f : α ⊕ β → γ} (hl : measurable (f ∘ sum.inl)) (hr : measurable (f ∘ sum.inr)) : measurable f := measurable.of_comap_le $ le_inf (measurable_space.comap_le_iff_le_map.2 $ hl) (measurable_space.comap_le_iff_le_map.2 $ hr) lemma measurable.sum_elim {f : α → γ} {g : β → γ} (hf : measurable f) (hg : measurable g) : measurable (sum.elim f g) := measurable_sum hf hg lemma measurable_set.inl_image {s : set α} (hs : measurable_set s) : measurable_set (sum.inl '' s : set (α ⊕ β)) := ⟨show measurable_set (sum.inl ⁻¹' _), by { rwa [preimage_image_eq], exact (λ a b, sum.inl.inj) }, have sum.inr ⁻¹' (sum.inl '' s : set (α ⊕ β)) = ∅ := eq_empty_of_subset_empty $ assume x ⟨y, hy, eq⟩, by contradiction, show measurable_set (sum.inr ⁻¹' _), by { rw [this], exact measurable_set.empty }⟩ lemma measurable_set_range_inl : measurable_set (range sum.inl : set (α ⊕ β)) := by { rw [← image_univ], exact measurable_set.univ.inl_image } lemma measurable_set_inr_image {s : set β} (hs : measurable_set s) : measurable_set (sum.inr '' s : set (α ⊕ β)) := ⟨ have sum.inl ⁻¹' (sum.inr '' s : set (α ⊕ β)) = ∅ := eq_empty_of_subset_empty $ assume x ⟨y, hy, eq⟩, by contradiction, show measurable_set (sum.inl ⁻¹' _), by { rw [this], exact measurable_set.empty }, show measurable_set (sum.inr ⁻¹' _), by { rwa [preimage_image_eq], exact λ a b, sum.inr.inj }⟩ lemma measurable_set_range_inr : measurable_set (range sum.inr : set (α ⊕ β)) := by { rw [← image_univ], exact measurable_set_inr_image measurable_set.univ } end sum instance {α} {β : α → Type*} [m : Πa, measurable_space (β a)] : measurable_space (sigma β) := ⨅a, (m a).map (sigma.mk a) end constructions /-- Equivalences between measurable spaces. Main application is the simplification of measurability statements along measurable equivalences. -/ structure measurable_equiv (α β : Type*) [measurable_space α] [measurable_space β] extends α ≃ β := (measurable_to_fun : measurable to_fun) (measurable_inv_fun : measurable inv_fun) infix ` ≃ᵐ `:25 := measurable_equiv namespace measurable_equiv variables (α β) [measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ] instance : has_coe_to_fun (α ≃ᵐ β) := ⟨λ _, α → β, λ e, e.to_equiv⟩ variables {α β} lemma coe_eq (e : α ≃ᵐ β) : (e : α → β) = e.to_equiv := rfl protected lemma measurable (e : α ≃ᵐ β) : measurable (e : α → β) := e.measurable_to_fun @[simp] lemma coe_mk (e : α ≃ β) (h1 : measurable e) (h2 : measurable e.symm) : ((⟨e, h1, h2⟩ : α ≃ᵐ β) : α → β) = e := rfl /-- Any measurable space is equivalent to itself. -/ def refl (α : Type*) [measurable_space α] : α ≃ᵐ α := { to_equiv := equiv.refl α, measurable_to_fun := measurable_id, measurable_inv_fun := measurable_id } instance : inhabited (α ≃ᵐ α) := ⟨refl α⟩ /-- The composition of equivalences between measurable spaces. -/ @[simps] def trans (ab : α ≃ᵐ β) (bc : β ≃ᵐ γ) : α ≃ᵐ γ := { to_equiv := ab.to_equiv.trans bc.to_equiv, measurable_to_fun := bc.measurable_to_fun.comp ab.measurable_to_fun, measurable_inv_fun := ab.measurable_inv_fun.comp bc.measurable_inv_fun } /-- The inverse of an equivalence between measurable spaces. -/ @[simps] def symm (ab : α ≃ᵐ β) : β ≃ᵐ α := { to_equiv := ab.to_equiv.symm, measurable_to_fun := ab.measurable_inv_fun, measurable_inv_fun := ab.measurable_to_fun } @[simp] lemma coe_symm_mk (e : α ≃ β) (h1 : measurable e) (h2 : measurable e.symm) : ((⟨e, h1, h2⟩ : α ≃ᵐ β).symm : β → α) = e.symm := rfl @[simp] theorem symm_comp_self (e : α ≃ᵐ β) : e.symm ∘ e = id := funext e.left_inv @[simp] theorem self_comp_symm (e : α ≃ᵐ β) : e ∘ e.symm = id := funext e.right_inv /-- Equal measurable spaces are equivalent. -/ protected def cast {α β} [i₁ : measurable_space α] [i₂ : measurable_space β] (h : α = β) (hi : i₁ == i₂) : α ≃ᵐ β := { to_equiv := equiv.cast h, measurable_to_fun := by { substI h, substI hi, exact measurable_id }, measurable_inv_fun := by { substI h, substI hi, exact measurable_id }} protected lemma measurable_coe_iff {f : β → γ} (e : α ≃ᵐ β) : measurable (f ∘ e) ↔ measurable f := iff.intro (assume hfe, have measurable (f ∘ (e.symm.trans e).to_equiv) := hfe.comp e.symm.measurable, by rwa [trans_to_equiv, symm_to_equiv, equiv.symm_trans] at this) (λ h, h.comp e.measurable) /-- Products of equivalent measurable spaces are equivalent. -/ def prod_congr (ab : α ≃ᵐ β) (cd : γ ≃ᵐ δ) : α × γ ≃ᵐ β × δ := { to_equiv := prod_congr ab.to_equiv cd.to_equiv, measurable_to_fun := (ab.measurable_to_fun.comp measurable_id.fst).prod_mk (cd.measurable_to_fun.comp measurable_id.snd), measurable_inv_fun := (ab.measurable_inv_fun.comp measurable_id.fst).prod_mk (cd.measurable_inv_fun.comp measurable_id.snd) } /-- Products of measurable spaces are symmetric. -/ def prod_comm : α × β ≃ᵐ β × α := { to_equiv := prod_comm α β, measurable_to_fun := measurable_id.snd.prod_mk measurable_id.fst, measurable_inv_fun := measurable_id.snd.prod_mk measurable_id.fst } /-- Products of measurable spaces are associative. -/ def prod_assoc : (α × β) × γ ≃ᵐ α × (β × γ) := { to_equiv := prod_assoc α β γ, measurable_to_fun := measurable_fst.fst.prod_mk $ measurable_fst.snd.prod_mk measurable_snd, measurable_inv_fun := (measurable_fst.prod_mk measurable_snd.fst).prod_mk measurable_snd.snd } /-- Sums of measurable spaces are symmetric. -/ def sum_congr (ab : α ≃ᵐ β) (cd : γ ≃ᵐ δ) : α ⊕ γ ≃ᵐ β ⊕ δ := { to_equiv := sum_congr ab.to_equiv cd.to_equiv, measurable_to_fun := begin cases ab with ab' abm, cases ab', cases cd with cd' cdm, cases cd', refine measurable_sum (measurable_inl.comp abm) (measurable_inr.comp cdm) end, measurable_inv_fun := begin cases ab with ab' _ abm, cases ab', cases cd with cd' _ cdm, cases cd', refine measurable_sum (measurable_inl.comp abm) (measurable_inr.comp cdm) end } /-- `set.prod s t ≃ (s × t)` as measurable spaces. -/ def set.prod (s : set α) (t : set β) : s.prod t ≃ᵐ s × t := { to_equiv := equiv.set.prod s t, measurable_to_fun := measurable_id.subtype_coe.fst.subtype_mk.prod_mk measurable_id.subtype_coe.snd.subtype_mk, measurable_inv_fun := measurable.subtype_mk $ measurable_id.fst.subtype_coe.prod_mk measurable_id.snd.subtype_coe } /-- `univ α ≃ α` as measurable spaces. -/ def set.univ (α : Type*) [measurable_space α] : (univ : set α) ≃ᵐ α := { to_equiv := equiv.set.univ α, measurable_to_fun := measurable_id.subtype_coe, measurable_inv_fun := measurable_id.subtype_mk } /-- `{a} ≃ unit` as measurable spaces. -/ def set.singleton (a : α) : ({a} : set α) ≃ᵐ unit := { to_equiv := equiv.set.singleton a, measurable_to_fun := measurable_const, measurable_inv_fun := measurable_const } /-- A set is equivalent to its image under a function `f` as measurable spaces, if `f` is an injective measurable function that sends measurable sets to measurable sets. -/ noncomputable def set.image (f : α → β) (s : set α) (hf : injective f) (hfm : measurable f) (hfi : ∀ s, measurable_set s → measurable_set (f '' s)) : s ≃ᵐ (f '' s) := { to_equiv := equiv.set.image f s hf, measurable_to_fun := (hfm.comp measurable_id.subtype_coe).subtype_mk, measurable_inv_fun := begin rintro t ⟨u, hu, rfl⟩, simp [preimage_preimage, set.image_symm_preimage hf], exact measurable_subtype_coe (hfi u hu) end } /-- The domain of `f` is equivalent to its range as measurable spaces, if `f` is an injective measurable function that sends measurable sets to measurable sets. -/ noncomputable def set.range (f : α → β) (hf : injective f) (hfm : measurable f) (hfi : ∀ s, measurable_set s → measurable_set (f '' s)) : α ≃ᵐ (range f) := (measurable_equiv.set.univ _).symm.trans $ (measurable_equiv.set.image f univ hf hfm hfi).trans $ measurable_equiv.cast (by rw image_univ) (by rw image_univ) /-- `α` is equivalent to its image in `α ⊕ β` as measurable spaces. -/ def set.range_inl : (range sum.inl : set (α ⊕ β)) ≃ᵐ α := { to_fun := λ ab, match ab with | ⟨sum.inl a, _⟩ := a | ⟨sum.inr b, p⟩ := have false, by { cases p, contradiction }, this.elim end, inv_fun := λ a, ⟨sum.inl a, a, rfl⟩, left_inv := by { rintro ⟨ab, a, rfl⟩, refl }, right_inv := assume a, rfl, measurable_to_fun := assume s (hs : measurable_set s), begin refine ⟨_, hs.inl_image, set.ext _⟩, rintros ⟨ab, a, rfl⟩, simp [set.range_inl._match_1] end, measurable_inv_fun := measurable.subtype_mk measurable_inl } /-- `β` is equivalent to its image in `α ⊕ β` as measurable spaces. -/ def set.range_inr : (range sum.inr : set (α ⊕ β)) ≃ᵐ β := { to_fun := λ ab, match ab with | ⟨sum.inr b, _⟩ := b | ⟨sum.inl a, p⟩ := have false, by { cases p, contradiction }, this.elim end, inv_fun := λ b, ⟨sum.inr b, b, rfl⟩, left_inv := by { rintro ⟨ab, b, rfl⟩, refl }, right_inv := assume b, rfl, measurable_to_fun := assume s (hs : measurable_set s), begin refine ⟨_, measurable_set_inr_image hs, set.ext _⟩, rintros ⟨ab, b, rfl⟩, simp [set.range_inr._match_1] end, measurable_inv_fun := measurable.subtype_mk measurable_inr } /-- Products distribute over sums (on the right) as measurable spaces. -/ def sum_prod_distrib (α β γ) [measurable_space α] [measurable_space β] [measurable_space γ] : (α ⊕ β) × γ ≃ᵐ (α × γ) ⊕ (β × γ) := { to_equiv := sum_prod_distrib α β γ, measurable_to_fun := begin refine measurable_of_measurable_union_cover ((range sum.inl).prod univ) ((range sum.inr).prod univ) (measurable_set_range_inl.prod measurable_set.univ) (measurable_set_range_inr.prod measurable_set.univ) (by { rintro ⟨a|b, c⟩; simp [set.prod_eq] }) _ _, { refine (set.prod (range sum.inl) univ).symm.measurable_coe_iff.1 _, refine (prod_congr set.range_inl (set.univ _)).symm.measurable_coe_iff.1 _, dsimp [(∘)], convert measurable_inl, ext ⟨a, c⟩, refl }, { refine (set.prod (range sum.inr) univ).symm.measurable_coe_iff.1 _, refine (prod_congr set.range_inr (set.univ _)).symm.measurable_coe_iff.1 _, dsimp [(∘)], convert measurable_inr, ext ⟨b, c⟩, refl } end, measurable_inv_fun := measurable_sum ((measurable_inl.comp measurable_fst).prod_mk measurable_snd) ((measurable_inr.comp measurable_fst).prod_mk measurable_snd) } /-- Products distribute over sums (on the left) as measurable spaces. -/ def prod_sum_distrib (α β γ) [measurable_space α] [measurable_space β] [measurable_space γ] : α × (β ⊕ γ) ≃ᵐ (α × β) ⊕ (α × γ) := prod_comm.trans $ (sum_prod_distrib _ _ _).trans $ sum_congr prod_comm prod_comm /-- Products distribute over sums as measurable spaces. -/ def sum_prod_sum (α β γ δ) [measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ] : (α ⊕ β) × (γ ⊕ δ) ≃ᵐ ((α × γ) ⊕ (α × δ)) ⊕ ((β × γ) ⊕ (β × δ)) := (sum_prod_distrib _ _ _).trans $ sum_congr (prod_sum_distrib _ _ _) (prod_sum_distrib _ _ _) variables {π π' : δ' → Type*} [∀ x, measurable_space (π x)] [∀ x, measurable_space (π' x)] /-- A family of measurable equivalences `Π a, β₁ a ≃ᵐ β₂ a` generates a measurable equivalence between `Π a, β₁ a` and `Π a, β₂ a`. -/ def Pi_congr_right (e : Π a, π a ≃ᵐ π' a) : (Π a, π a) ≃ᵐ (Π a, π' a) := { to_equiv := Pi_congr_right (λ a, (e a).to_equiv), measurable_to_fun := measurable_pi_lambda _ (λ i, (e i).measurable_to_fun.comp (measurable_pi_apply i)), measurable_inv_fun := measurable_pi_lambda _ (λ i, (e i).measurable_inv_fun.comp (measurable_pi_apply i)) } /-- Pi-types are measurably equivalent to iterated products. -/ noncomputable def pi_measurable_equiv_tprod {l : list δ'} (hnd : l.nodup) (h : ∀ i, i ∈ l) : (Π i, π i) ≃ᵐ list.tprod π l := { to_equiv := list.tprod.pi_equiv_tprod hnd h, measurable_to_fun := measurable_tprod_mk l, measurable_inv_fun := measurable_tprod_elim' h } end measurable_equiv namespace filter variables [measurable_space α] /-- A filter `f` is measurably generates if each `s ∈ f` includes a measurable `t ∈ f`. -/ class is_measurably_generated (f : filter α) : Prop := (exists_measurable_subset : ∀ ⦃s⦄, s ∈ f → ∃ t ∈ f, measurable_set t ∧ t ⊆ s) instance is_measurably_generated_bot : is_measurably_generated (⊥ : filter α) := ⟨λ _ _, ⟨∅, mem_bot_sets, measurable_set.empty, empty_subset _⟩⟩ instance is_measurably_generated_top : is_measurably_generated (⊤ : filter α) := ⟨λ s hs, ⟨univ, univ_mem_sets, measurable_set.univ, λ x _, hs x⟩⟩ lemma eventually.exists_measurable_mem {f : filter α} [is_measurably_generated f] {p : α → Prop} (h : ∀ᶠ x in f, p x) : ∃ s ∈ f, measurable_set s ∧ ∀ x ∈ s, p x := is_measurably_generated.exists_measurable_subset h lemma eventually.exists_measurable_mem_of_lift' {f : filter α} [is_measurably_generated f] {p : set α → Prop} (h : ∀ᶠ s in f.lift' powerset, p s) : ∃ s ∈ f, measurable_set s ∧ p s := let ⟨s, hsf, hs⟩ := eventually_lift'_powerset.1 h, ⟨t, htf, htm, hts⟩ := is_measurably_generated.exists_measurable_subset hsf in ⟨t, htf, htm, hs t hts⟩ instance inf_is_measurably_generated (f g : filter α) [is_measurably_generated f] [is_measurably_generated g] : is_measurably_generated (f ⊓ g) := begin refine ⟨_⟩, rintros t ⟨sf, hsf, sg, hsg, ht⟩, rcases is_measurably_generated.exists_measurable_subset hsf with ⟨s'f, hs'f, hmf, hs'sf⟩, rcases is_measurably_generated.exists_measurable_subset hsg with ⟨s'g, hs'g, hmg, hs'sg⟩, refine ⟨s'f ∩ s'g, inter_mem_inf_sets hs'f hs'g, hmf.inter hmg, _⟩, exact subset.trans (inter_subset_inter hs'sf hs'sg) ht end lemma principal_is_measurably_generated_iff {s : set α} : is_measurably_generated (𝓟 s) ↔ measurable_set s := begin refine ⟨_, λ hs, ⟨λ t ht, ⟨s, mem_principal_self s, hs, ht⟩⟩⟩, rintros ⟨hs⟩, rcases hs (mem_principal_self s) with ⟨t, ht, htm, hts⟩, have : t = s := subset.antisymm hts ht, rwa ← this end alias principal_is_measurably_generated_iff ↔ _ measurable_set.principal_is_measurably_generated instance infi_is_measurably_generated {f : ι → filter α} [∀ i, is_measurably_generated (f i)] : is_measurably_generated (⨅ i, f i) := begin refine ⟨λ s hs, _⟩, rw [← equiv.plift.surjective.infi_comp, mem_infi_iff] at hs, rcases hs with ⟨t, ht, ⟨V, hVf, hVs⟩⟩, choose U hUf hU using λ i, is_measurably_generated.exists_measurable_subset (hVf i), refine ⟨⋂ i : t, U i, _, _, _⟩, { rw [← equiv.plift.surjective.infi_comp, mem_infi_iff], refine ⟨t, ht, U, hUf, subset.refl _⟩ }, { haveI := ht.countable.to_encodable, refine measurable_set.Inter (λ i, (hU i).1) }, { exact subset.trans (Inter_subset_Inter $ λ i, (hU i).2) hVs } end end filter /-- We say that a collection of sets is countably spanning if a countable subset spans the whole type. This is a useful condition in various parts of measure theory. For example, it is a needed condition to show that the product of two collections generate the product sigma algebra, see `generate_from_prod_eq`. -/ def is_countably_spanning (C : set (set α)) : Prop := ∃ (s : ℕ → set α), (∀ n, s n ∈ C) ∧ (⋃ n, s n) = univ lemma is_countably_spanning_measurable_set [measurable_space α] : is_countably_spanning {s : set α | measurable_set s} := ⟨λ _, univ, λ _, measurable_set.univ, Union_const _⟩
332ecd82572d5bb652402450504f10975a03e08a
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/bad_structures.lean
fe86c887c83f1c1cca96f5cf5976b280a1c127ca
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
357
lean
prelude namespace foo structure prod.{l} (A : Type.{l}) (B : Type.{l}) := (pr1 : A) (pr2 : B) structure prod.{l} (A : Type.{l}) (B : Type.{l}) : Type := (pr1 : A) (pr2 : B) structure prod.{l} (A : Type.{l}) (B : Type.{l}) : Type.{l} := (pr1 : A) (pr2 : B) structure prod2.{l} (A : Type.{l}) (B : Type.{l}) : Type.{max 1 l} := (pr1 : A) (pr2 : B) end foo
5120aafb304c3655231612d2073c5220b457c236
df7bb3acd9623e489e95e85d0bc55590ab0bc393
/lean/lovelib.lean
eadde76649c501e2bbfe7e5ffc3dfe11e6de96ed
[]
no_license
MaschavanderMarel/logical_verification_2020
a41c210b9237c56cb35f6cd399e3ac2fe42e775d
7d562ef174cc6578ca6013f74db336480470b708
refs/heads/master
1,692,144,223,196
1,634,661,675,000
1,634,661,675,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,782
lean
import algebra import data.real.basic import data.vector import tactic.explode import tactic.find import tactic.induction import tactic.linarith import tactic.rcases import tactic.rewrite import tactic.ring_exp import tactic.tidy import tactic.where /- # LoVe Library This files contains a few extensions on top of Lean's core libraries and `mathlib`. -/ namespace LoVe /- ## Structured Proofs -/ notation `fix ` binders `, ` r:(scoped f, f) := r /- ## Logical Connectives -/ attribute [pattern] or.intro_left or.intro_right meta def tactic.dec_trivial := `[exact dec_trivial] lemma not_def (a : Prop) : ¬ a ↔ a → false := by refl @[simp] lemma not_not_iff (a : Prop) [decidable a] : ¬¬ a ↔ a := by by_cases a; simp [h] @[simp] lemma and_imp_distrib (a b c : Prop) : (a ∧ b → c) ↔ (a → b → c) := iff.intro (assume h ha hb, h ⟨ha, hb⟩) (assume h ⟨ha, hb⟩, h ha hb) @[simp] lemma or_imp_distrib {a b c : Prop} : a ∨ b → c ↔ (a → c) ∧ (b → c) := iff.intro (assume h, ⟨assume ha, h (or.intro_left _ ha), assume hb, h (or.intro_right _ hb)⟩) (assume ⟨ha, hb⟩ h, match h with or.inl h := ha h | or.inr h := hb h end) @[simp] lemma exists_imp_distrib {α : Sort*} {p : α → Prop} {a : Prop} : ((∃x, p x) → a) ↔ (∀x, p x → a) := iff.intro (assume h hp ha, h ⟨hp, ha⟩) (assume h ⟨hp, ha⟩, h hp ha) lemma and_exists {α : Sort*} {p : α → Prop} {a : Prop} : (a ∧ (∃x, p x)) ↔ (∃x, a ∧ p x) := iff.intro (assume ⟨ha, x, hp⟩, ⟨x, ha, hp⟩) (assume ⟨x, ha, hp⟩, ⟨ha, x, hp⟩) @[simp] lemma exists_false {α : Sort*} : (∃x : α, false) ↔ false := iff.intro (assume ⟨a, f⟩, f) (assume h, h.elim) /- ## Natural Numbers -/ attribute [simp] nat.add /- ## Integers -/ @[simp] lemma int.neg_comp_neg : int.neg ∘ int.neg = id := begin apply funext, apply neg_neg end /- ## Reflexive Transitive Closure -/ namespace rtc inductive star {α : Sort*} (r : α → α → Prop) (a : α) : α → Prop | refl {} : star a | tail {b c} : star b → r b c → star c attribute [refl] star.refl namespace star variables {α : Sort*} {r : α → α → Prop} {a b c d : α} @[trans] lemma trans (hab : star r a b) (hbc : star r b c) : star r a c := begin induction' hbc, case refl { assumption }, case tail : c d hbc hcd hac { exact (tail (hac hab)) hcd } end lemma single (hab : r a b) : star r a b := refl.tail hab lemma head (hab : r a b) (hbc : star r b c) : star r a c := begin induction' hbc, case refl { exact (tail refl) hab }, case tail : c d hbc hcd hac { exact (tail (hac hab)) hcd } end lemma head_induction_on {α : Sort*} {r : α → α → Prop} {b : α} {P : ∀a : α, star r a b → Prop} {a : α} (h : star r a b) (refl : P b refl) (head : ∀{a c} (h' : r a c) (h : star r c b), P c h → P a (h.head h')) : P a h := begin induction' h, case refl { exact refl }, case tail : b c hab hbc ih { apply ih, show P b _, from head hbc _ refl, show ∀a a', r a a' → star r a' b → P a' _ → P a _, from assume a a' hab hbc, head hab _ } end lemma trans_induction_on {α : Sort*} {r : α → α → Prop} {p : ∀{a b : α}, star r a b → Prop} {a b : α} (h : star r a b) (ih₁ : ∀a, @p a a refl) (ih₂ : ∀{a b} (h : r a b), p (single h)) (ih₃ : ∀{a b c} (h₁ : star r a b) (h₂ : star r b c), p h₁ → p h₂ → p (h₁.trans h₂)) : p h := begin induction' h, case refl { exact ih₁ a }, case tail : b c hab hbc ih { exact ih₃ hab (single hbc) (ih ih₁ @ih₂ @ih₃) (ih₂ hbc) } end lemma lift {β : Sort*} {s : β → β → Prop} (f : α → β) (h : ∀a b, r a b → s (f a) (f b)) (hab : star r a b) : star s (f a) (f b) := hab.trans_induction_on (assume a, refl) (assume a b, single ∘ h _ _) (assume a b c _ _, trans) lemma mono {p : α → α → Prop} : (∀a b, r a b → p a b) → star r a b → star p a b := lift id lemma star_star_eq : star (star r) = star r := funext (assume a, funext (assume b, propext (iff.intro (assume h, begin induction' h, { refl }, { transitivity; assumption } end) (star.mono (assume a b, single))))) end star end rtc export rtc /- ## States -/ def state := string → ℕ def state.update (name : string) (val : ℕ) (s : state) : state := λname', if name' = name then val else s name' notation s `{` name ` ↦ ` val `}` := state.update name val s instance : has_emptyc state := { emptyc := λ_, 0 } @[simp] lemma update_apply (name : string) (val : ℕ) (s : state) : s{name ↦ val} name = val := if_pos rfl @[simp] lemma update_apply_ne (name name' : string) (val : ℕ) (s : state) (h : name' ≠ name . tactic.dec_trivial) : s{name ↦ val} name' = s name' := if_neg h @[simp] lemma update_override (name : string) (val₁ val₂ : ℕ) (s : state) : s{name ↦ val₂}{name ↦ val₁} = s{name ↦ val₁} := begin apply funext, intro name', by_cases name' = name; simp [h] end @[simp] lemma update_swap (name₁ name₂ : string) (val₁ val₂ : ℕ) (s : state) (h : name₁ ≠ name₂ . tactic.dec_trivial) : s{name₂ ↦ val₂}{name₁ ↦ val₁} = s{name₁ ↦ val₁}{name₂ ↦ val₂} := begin apply funext, intro name', by_cases name' = name₁; by_cases name' = name₂; simp * at * end @[simp] lemma update_id (name : string) (s : state) : s{name ↦ s name} = s := begin apply funext, intro name', by_cases name' = name; simp * at * end example (s : state) : s{"a" ↦ 0}{"a" ↦ 2} = s{"a" ↦ 2} := by simp example (s : state) : s{"a" ↦ 0}{"b" ↦ 2} = s{"b" ↦ 2}{"a" ↦ 0} := by simp example (s : state) : s{"a" ↦ s "a"}{"b" ↦ 0} = s{"b" ↦ 0} := by simp /- ## Relations -/ def Id {α : Type} : set (α × α) := {ab | prod.snd ab = prod.fst ab} @[simp] lemma mem_Id {α : Type} (a b : α) : (a, b) ∈ @Id α ↔ b = a := by refl def comp {α : Type} (r₁ r₂ : set (α × α)) : set (α × α) := {ac | ∃b, (prod.fst ac, b) ∈ r₁ ∧ (b, prod.snd ac) ∈ r₂} infixl ` ◯ ` : 90 := comp @[simp] lemma mem_comp {α : Type} (r₁ r₂ : set (α × α)) (a b : α) : (a, b) ∈ r₁ ◯ r₂ ↔ (∃c, (a, c) ∈ r₁ ∧ (c, b) ∈ r₂) := by refl def restrict {α : Type} (r : set (α × α)) (p : α → Prop) : set (α × α) := {ab | p (prod.fst ab) ∧ ab ∈ r} infixl ` ⇃ ` : 90 := restrict @[simp] lemma mem_restrict {α : Type} (r : set (α × α)) (p : α → Prop) (a b : α) : (a, b) ∈ r ⇃ p ↔ p a ∧ (a, b) ∈ r := by refl end LoVe
73ca8fb7a1541801f468a67f9b76017356f1dd3b
8d65764a9e5f0923a67fc435eb1a5a1d02fd80e3
/src/field_theory/polynomial_galois_group.lean
e1e4775ecccbbe6b03116f142bb0160e4e2f475c
[ "Apache-2.0" ]
permissive
troyjlee/mathlib
e18d4b8026e32062ab9e89bc3b003a5d1cfec3f5
45e7eb8447555247246e3fe91c87066506c14875
refs/heads/master
1,689,248,035,046
1,629,470,528,000
1,629,470,528,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
21,450
lean
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import analysis.complex.polynomial import field_theory.galois import group_theory.perm.cycle_type import ring_theory.eisenstein_criterion /-! # Galois Groups of Polynomials In this file, we introduce the Galois group of a polynomial `p` over a field `F`, defined as the automorphism group of its splitting field. We also provide some results about some extension `E` above `p.splitting_field`, and some specific results about the Galois groups of ℚ-polynomials with specific numbers of non-real roots. ## Main definitions - `polynomial.gal p`: the Galois group of a polynomial p. - `polynomial.gal.restrict p E`: the restriction homomorphism `(E ≃ₐ[F] E) → gal p`. - `polynomial.gal.gal_action p E`: the action of `gal p` on the roots of `p` in `E`. ## Main results - `polynomial.gal.restrict_smul`: `restrict p E` is compatible with `gal_action p E`. - `polynomial.gal.gal_action_hom_injective`: `gal p` acting on the roots of `p` in `E` is faithful. - `polynomial.gal.restrict_prod_injective`: `gal (p * q)` embeds as a subgroup of `gal p × gal q`. - `polynomial.gal.card_of_separable`: For a separable polynomial, its Galois group has cardinality equal to the dimension of its splitting field over `F`. - `polynomial.gal.gal_action_hom_bijective_of_prime_degree`: An irreducible polynomial of prime degree with two non-real roots has full Galois group. ## Other results - `polynomial.gal.card_complex_roots_eq_card_real_add_card_not_gal_inv`: The number of complex roots equals the number of real roots plus the number of roots not fixed by complex conjugation (i.e. with some imaginary component). -/ noncomputable theory open_locale classical open finite_dimensional namespace polynomial variables {F : Type*} [field F] (p q : polynomial F) (E : Type*) [field E] [algebra F E] /-- The Galois group of a polynomial. -/ @[derive [has_coe_to_fun, group, fintype]] def gal := p.splitting_field ≃ₐ[F] p.splitting_field namespace gal @[ext] lemma ext {σ τ : p.gal} (h : ∀ x ∈ p.root_set p.splitting_field, σ x = τ x) : σ = τ := begin refine alg_equiv.ext (λ x, (alg_hom.mem_equalizer σ.to_alg_hom τ.to_alg_hom x).mp ((set_like.ext_iff.mp _ x).mpr algebra.mem_top)), rwa [eq_top_iff, ←splitting_field.adjoin_roots, algebra.adjoin_le_iff], end /-- If `p` splits in `F` then the `p.gal` is trivial. -/ def unique_gal_of_splits (h : p.splits (ring_hom.id F)) : unique p.gal := { default := 1, uniq := λ f, alg_equiv.ext (λ x, by { obtain ⟨y, rfl⟩ := algebra.mem_bot.mp ((set_like.ext_iff.mp ((is_splitting_field.splits_iff _ p).mp h) x).mp algebra.mem_top), rw [alg_equiv.commutes, alg_equiv.commutes] }) } instance [h : fact (p.splits (ring_hom.id F))] : unique p.gal := unique_gal_of_splits _ (h.1) instance unique_gal_zero : unique (0 : polynomial F).gal := unique_gal_of_splits _ (splits_zero _) instance unique_gal_one : unique (1 : polynomial F).gal := unique_gal_of_splits _ (splits_one _) instance unique_gal_C (x : F) : unique (C x).gal := unique_gal_of_splits _ (splits_C _ _) instance unique_gal_X : unique (X : polynomial F).gal := unique_gal_of_splits _ (splits_X _) instance unique_gal_X_sub_C (x : F) : unique (X - C x).gal := unique_gal_of_splits _ (splits_X_sub_C _) instance unique_gal_X_pow (n : ℕ) : unique (X ^ n : polynomial F).gal := unique_gal_of_splits _ (splits_X_pow _ _) instance [h : fact (p.splits (algebra_map F E))] : algebra p.splitting_field E := (is_splitting_field.lift p.splitting_field p h.1).to_ring_hom.to_algebra instance [h : fact (p.splits (algebra_map F E))] : is_scalar_tower F p.splitting_field E := is_scalar_tower.of_algebra_map_eq (λ x, ((is_splitting_field.lift p.splitting_field p h.1).commutes x).symm) /-- Restrict from a superfield automorphism into a member of `gal p`. -/ def restrict [fact (p.splits (algebra_map F E))] : (E ≃ₐ[F] E) →* p.gal := alg_equiv.restrict_normal_hom p.splitting_field lemma restrict_surjective [fact (p.splits (algebra_map F E))] [normal F E] : function.surjective (restrict p E) := alg_equiv.restrict_normal_hom_surjective E section roots_action /-- The function taking `roots p p.splitting_field` to `roots p E`. This is actually a bijection, see `polynomial.gal.map_roots_bijective`. -/ def map_roots [fact (p.splits (algebra_map F E))] : root_set p p.splitting_field → root_set p E := λ x, ⟨is_scalar_tower.to_alg_hom F p.splitting_field E x, begin have key := subtype.mem x, by_cases p = 0, { simp only [h, root_set_zero] at key, exact false.rec _ key }, { rw [mem_root_set h, aeval_alg_hom_apply, (mem_root_set h).mp key, alg_hom.map_zero] } end⟩ lemma map_roots_bijective [h : fact (p.splits (algebra_map F E))] : function.bijective (map_roots p E) := begin split, { exact λ _ _ h, subtype.ext (ring_hom.injective _ (subtype.ext_iff.mp h)) }, { intro y, -- this is just an equality of two different ways to write the roots of `p` as an `E`-polynomial have key := roots_map (is_scalar_tower.to_alg_hom F p.splitting_field E : p.splitting_field →+* E) ((splits_id_iff_splits _).mpr (is_splitting_field.splits p.splitting_field p)), rw [map_map, alg_hom.comp_algebra_map] at key, have hy := subtype.mem y, simp only [root_set, finset.mem_coe, multiset.mem_to_finset, key, multiset.mem_map] at hy, rcases hy with ⟨x, hx1, hx2⟩, exact ⟨⟨x, multiset.mem_to_finset.mpr hx1⟩, subtype.ext hx2⟩ } end /-- The bijection between `root_set p p.splitting_field` and `root_set p E`. -/ def roots_equiv_roots [fact (p.splits (algebra_map F E))] : (root_set p p.splitting_field) ≃ (root_set p E) := equiv.of_bijective (map_roots p E) (map_roots_bijective p E) instance gal_action_aux : mul_action p.gal (root_set p p.splitting_field) := { smul := λ ϕ x, ⟨ϕ x, begin have key := subtype.mem x, --simp only [root_set, finset.mem_coe, multiset.mem_to_finset] at *, by_cases p = 0, { simp only [h, root_set_zero] at key, exact false.rec _ key }, { rw mem_root_set h, change aeval (ϕ.to_alg_hom x) p = 0, rw [aeval_alg_hom_apply, (mem_root_set h).mp key, alg_hom.map_zero] } end⟩, one_smul := λ _, by { ext, refl }, mul_smul := λ _ _ _, by { ext, refl } } /-- The action of `gal p` on the roots of `p` in `E`. -/ instance gal_action [fact (p.splits (algebra_map F E))] : mul_action p.gal (root_set p E) := { smul := λ ϕ x, roots_equiv_roots p E (ϕ • ((roots_equiv_roots p E).symm x)), one_smul := λ _, by simp only [equiv.apply_symm_apply, one_smul], mul_smul := λ _ _ _, by simp only [equiv.apply_symm_apply, equiv.symm_apply_apply, mul_smul] } variables {p E} /-- `polynomial.gal.restrict p E` is compatible with `polynomial.gal.gal_action p E`. -/ @[simp] lemma restrict_smul [fact (p.splits (algebra_map F E))] (ϕ : E ≃ₐ[F] E) (x : root_set p E) : ↑((restrict p E ϕ) • x) = ϕ x := begin let ψ := alg_equiv.of_injective_field (is_scalar_tower.to_alg_hom F p.splitting_field E), change ↑(ψ (ψ.symm _)) = ϕ x, rw alg_equiv.apply_symm_apply ψ, change ϕ (roots_equiv_roots p E ((roots_equiv_roots p E).symm x)) = ϕ x, rw equiv.apply_symm_apply (roots_equiv_roots p E), end variables (p E) /-- `polynomial.gal.gal_action` as a permutation representation -/ def gal_action_hom [fact (p.splits (algebra_map F E))] : p.gal →* equiv.perm (root_set p E) := { to_fun := λ ϕ, equiv.mk (λ x, ϕ • x) (λ x, ϕ⁻¹ • x) (λ x, inv_smul_smul ϕ x) (λ x, smul_inv_smul ϕ x), map_one' := by { ext1 x, exact mul_action.one_smul x }, map_mul' := λ x y, by { ext1 z, exact mul_action.mul_smul x y z } } lemma gal_action_hom_restrict [fact (p.splits (algebra_map F E))] (ϕ : E ≃ₐ[F] E) (x : root_set p E) : ↑(gal_action_hom p E (restrict p E ϕ) x) = ϕ x := restrict_smul ϕ x /-- `gal p` embeds as a subgroup of permutations of the roots of `p` in `E`. -/ lemma gal_action_hom_injective [fact (p.splits (algebra_map F E))] : function.injective (gal_action_hom p E) := begin rw monoid_hom.injective_iff, intros ϕ hϕ, ext x hx, have key := equiv.perm.ext_iff.mp hϕ (roots_equiv_roots p E ⟨x, hx⟩), change roots_equiv_roots p E (ϕ • (roots_equiv_roots p E).symm (roots_equiv_roots p E ⟨x, hx⟩)) = roots_equiv_roots p E ⟨x, hx⟩ at key, rw equiv.symm_apply_apply at key, exact subtype.ext_iff.mp (equiv.injective (roots_equiv_roots p E) key), end end roots_action variables {p q} /-- `polynomial.gal.restrict`, when both fields are splitting fields of polynomials. -/ def restrict_dvd (hpq : p ∣ q) : q.gal →* p.gal := if hq : q = 0 then 1 else @restrict F _ p _ _ _ ⟨splits_of_splits_of_dvd (algebra_map F q.splitting_field) hq (splitting_field.splits q) hpq⟩ lemma restrict_dvd_surjective (hpq : p ∣ q) (hq : q ≠ 0) : function.surjective (restrict_dvd hpq) := by simp only [restrict_dvd, dif_neg hq, restrict_surjective] variables (p q) /-- The Galois group of a product maps into the product of the Galois groups. -/ def restrict_prod : (p * q).gal →* p.gal × q.gal := monoid_hom.prod (restrict_dvd (dvd_mul_right p q)) (restrict_dvd (dvd_mul_left q p)) /-- `polynomial.gal.restrict_prod` is actually a subgroup embedding. -/ lemma restrict_prod_injective : function.injective (restrict_prod p q) := begin by_cases hpq : (p * q) = 0, { haveI : unique (p * q).gal, { rw hpq, apply_instance }, exact λ f g h, eq.trans (unique.eq_default f) (unique.eq_default g).symm }, intros f g hfg, dsimp only [restrict_prod, restrict_dvd] at hfg, simp only [dif_neg hpq, monoid_hom.prod_apply, prod.mk.inj_iff] at hfg, ext x hx, rw [root_set, map_mul, polynomial.roots_mul] at hx, cases multiset.mem_add.mp (multiset.mem_to_finset.mp hx) with h h, { haveI : fact (p.splits (algebra_map F (p * q).splitting_field)) := ⟨splits_of_splits_of_dvd _ hpq (splitting_field.splits (p * q)) (dvd_mul_right p q)⟩, have key : x = algebra_map (p.splitting_field) (p * q).splitting_field ((roots_equiv_roots p _).inv_fun ⟨x, multiset.mem_to_finset.mpr h⟩) := subtype.ext_iff.mp (equiv.apply_symm_apply (roots_equiv_roots p _) ⟨x, _⟩).symm, rw [key, ←alg_equiv.restrict_normal_commutes, ←alg_equiv.restrict_normal_commutes], exact congr_arg _ (alg_equiv.ext_iff.mp hfg.1 _) }, { haveI : fact (q.splits (algebra_map F (p * q).splitting_field)) := ⟨splits_of_splits_of_dvd _ hpq (splitting_field.splits (p * q)) (dvd_mul_left q p)⟩, have key : x = algebra_map (q.splitting_field) (p * q).splitting_field ((roots_equiv_roots q _).inv_fun ⟨x, multiset.mem_to_finset.mpr h⟩) := subtype.ext_iff.mp (equiv.apply_symm_apply (roots_equiv_roots q _) ⟨x, _⟩).symm, rw [key, ←alg_equiv.restrict_normal_commutes, ←alg_equiv.restrict_normal_commutes], exact congr_arg _ (alg_equiv.ext_iff.mp hfg.2 _) }, { rwa [ne.def, mul_eq_zero, map_eq_zero, map_eq_zero, ←mul_eq_zero] } end lemma mul_splits_in_splitting_field_of_mul {p₁ q₁ p₂ q₂ : polynomial F} (hq₁ : q₁ ≠ 0) (hq₂ : q₂ ≠ 0) (h₁ : p₁.splits (algebra_map F q₁.splitting_field)) (h₂ : p₂.splits (algebra_map F q₂.splitting_field)) : (p₁ * p₂).splits (algebra_map F (q₁ * q₂).splitting_field) := begin apply splits_mul, { rw ← (splitting_field.lift q₁ (splits_of_splits_of_dvd _ (mul_ne_zero hq₁ hq₂) (splitting_field.splits _) (dvd_mul_right q₁ q₂))).comp_algebra_map, exact splits_comp_of_splits _ _ h₁, }, { rw ← (splitting_field.lift q₂ (splits_of_splits_of_dvd _ (mul_ne_zero hq₁ hq₂) (splitting_field.splits _) (dvd_mul_left q₂ q₁))).comp_algebra_map, exact splits_comp_of_splits _ _ h₂, }, end /-- `p` splits in the splitting field of `p ∘ q`, for `q` non-constant. -/ lemma splits_in_splitting_field_of_comp (hq : q.nat_degree ≠ 0) : p.splits (algebra_map F (p.comp q).splitting_field) := begin let P : polynomial F → Prop := λ r, r.splits (algebra_map F (r.comp q).splitting_field), have key1 : ∀ {r : polynomial F}, irreducible r → P r, { intros r hr, by_cases hr' : nat_degree r = 0, { exact splits_of_nat_degree_le_one _ (le_trans (le_of_eq hr') zero_le_one) }, obtain ⟨x, hx⟩ := exists_root_of_splits _ (splitting_field.splits (r.comp q)) (λ h, hr' ((mul_eq_zero.mp (nat_degree_comp.symm.trans (nat_degree_eq_of_degree_eq_some h))).resolve_right hq)), rw [←aeval_def, aeval_comp] at hx, have h_normal : normal F (r.comp q).splitting_field := splitting_field.normal (r.comp q), have qx_int := normal.is_integral h_normal (aeval x q), exact splits_of_splits_of_dvd _ (minpoly.ne_zero qx_int) (normal.splits h_normal _) ((minpoly.irreducible qx_int).dvd_symm hr (minpoly.dvd F _ hx)) }, have key2 : ∀ {p₁ p₂ : polynomial F}, P p₁ → P p₂ → P (p₁ * p₂), { intros p₁ p₂ hp₁ hp₂, by_cases h₁ : p₁.comp q = 0, { cases comp_eq_zero_iff.mp h₁ with h h, { rw [h, zero_mul], exact splits_zero _ }, { exact false.rec _ (hq (by rw [h.2, nat_degree_C])) } }, by_cases h₂ : p₂.comp q = 0, { cases comp_eq_zero_iff.mp h₂ with h h, { rw [h, mul_zero], exact splits_zero _ }, { exact false.rec _ (hq (by rw [h.2, nat_degree_C])) } }, have key := mul_splits_in_splitting_field_of_mul h₁ h₂ hp₁ hp₂, rwa ← mul_comp at key }, exact wf_dvd_monoid.induction_on_irreducible p (splits_zero _) (λ _, splits_of_is_unit _) (λ _ _ _ h, key2 (key1 h)), end /-- `polynomial.gal.restrict` for the composition of polynomials. -/ def restrict_comp (hq : q.nat_degree ≠ 0) : (p.comp q).gal →* p.gal := @restrict F _ p _ _ _ ⟨splits_in_splitting_field_of_comp p q hq⟩ lemma restrict_comp_surjective (hq : q.nat_degree ≠ 0) : function.surjective (restrict_comp p q hq) := by simp only [restrict_comp, restrict_surjective] variables {p q} /-- For a separable polynomial, its Galois group has cardinality equal to the dimension of its splitting field over `F`. -/ lemma card_of_separable (hp : p.separable) : fintype.card p.gal = finrank F p.splitting_field := begin haveI : is_galois F p.splitting_field := is_galois.of_separable_splitting_field hp, exact is_galois.card_aut_eq_finrank F p.splitting_field, end lemma prime_degree_dvd_card [char_zero F] (p_irr : irreducible p) (p_deg : p.nat_degree.prime) : p.nat_degree ∣ fintype.card p.gal := begin rw gal.card_of_separable p_irr.separable, have hp : p.degree ≠ 0 := λ h, nat.prime.ne_zero p_deg (nat_degree_eq_zero_iff_degree_le_zero.mpr (le_of_eq h)), let α : p.splitting_field := root_of_splits (algebra_map F p.splitting_field) (splitting_field.splits p) hp, have hα : is_integral F α := (is_algebraic_iff_is_integral F).mp (algebra.is_algebraic_of_finite α), use finite_dimensional.finrank F⟮α⟯ p.splitting_field, suffices : (minpoly F α).nat_degree = p.nat_degree, { rw [←finite_dimensional.finrank_mul_finrank F F⟮α⟯ p.splitting_field, intermediate_field.adjoin.finrank hα, this] }, suffices : minpoly F α ∣ p, { have key := (minpoly.irreducible hα).dvd_symm p_irr this, apply le_antisymm, { exact nat_degree_le_of_dvd this p_irr.ne_zero }, { exact nat_degree_le_of_dvd key (minpoly.ne_zero hα) } }, apply minpoly.dvd F α, rw [aeval_def, map_root_of_splits _ (splitting_field.splits p) hp], end section rationals lemma splits_ℚ_ℂ {p : polynomial ℚ} : fact (p.splits (algebra_map ℚ ℂ)) := ⟨is_alg_closed.splits_codomain p⟩ local attribute [instance] splits_ℚ_ℂ /-- The number of complex roots equals the number of real roots plus the number of roots not fixed by complex conjugation (i.e. with some imaginary component). -/ lemma card_complex_roots_eq_card_real_add_card_not_gal_inv (p : polynomial ℚ) : (p.root_set ℂ).to_finset.card = (p.root_set ℝ).to_finset.card + (gal_action_hom p ℂ (restrict p ℂ (complex.conj_ae.restrict_scalars ℚ))).support.card := begin by_cases hp : p = 0, { simp_rw [hp, root_set_zero, set.to_finset_eq_empty_iff.mpr rfl, finset.card_empty, zero_add], refine eq.symm (nat.le_zero_iff.mp ((finset.card_le_univ _).trans (le_of_eq _))), simp_rw [hp, root_set_zero, fintype.card_eq_zero_iff], apply_instance }, have inj : function.injective (is_scalar_tower.to_alg_hom ℚ ℝ ℂ) := (algebra_map ℝ ℂ).injective, rw [←finset.card_image_of_injective _ subtype.coe_injective, ←finset.card_image_of_injective _ inj], let a : finset ℂ := _, let b : finset ℂ := _, let c : finset ℂ := _, change a.card = b.card + c.card, have ha : ∀ z : ℂ, z ∈ a ↔ aeval z p = 0 := λ z, by rw [set.mem_to_finset, mem_root_set hp], have hb : ∀ z : ℂ, z ∈ b ↔ aeval z p = 0 ∧ z.im = 0, { intro z, simp_rw [finset.mem_image, exists_prop, set.mem_to_finset, mem_root_set hp], split, { rintros ⟨w, hw, rfl⟩, exact ⟨by rw [aeval_alg_hom_apply, hw, alg_hom.map_zero], rfl⟩ }, { rintros ⟨hz1, hz2⟩, have key : is_scalar_tower.to_alg_hom ℚ ℝ ℂ z.re = z := by { ext, refl, rw hz2, refl }, exact ⟨z.re, inj (by rwa [←aeval_alg_hom_apply, key, alg_hom.map_zero]), key⟩ } }, have hc0 : ∀ w : p.root_set ℂ, gal_action_hom p ℂ (restrict p ℂ (complex.conj_ae.restrict_scalars ℚ)) w = w ↔ w.val.im = 0, { intro w, rw [subtype.ext_iff, gal_action_hom_restrict], exact complex.eq_conj_iff_im }, have hc : ∀ z : ℂ, z ∈ c ↔ aeval z p = 0 ∧ z.im ≠ 0, { intro z, simp_rw [finset.mem_image, exists_prop], split, { rintros ⟨w, hw, rfl⟩, exact ⟨(mem_root_set hp).mp w.2, mt (hc0 w).mpr (equiv.perm.mem_support.mp hw)⟩ }, { rintros ⟨hz1, hz2⟩, exact ⟨⟨z, (mem_root_set hp).mpr hz1⟩, equiv.perm.mem_support.mpr (mt (hc0 _).mp hz2), rfl⟩ } }, rw ← finset.card_disjoint_union, { apply congr_arg finset.card, simp_rw [finset.ext_iff, finset.mem_union, ha, hb, hc], tauto }, { intro z, rw [finset.inf_eq_inter, finset.mem_inter, hb, hc], tauto }, { apply_instance }, end /-- An irreducible polynomial of prime degree with two non-real roots has full Galois group. -/ lemma gal_action_hom_bijective_of_prime_degree {p : polynomial ℚ} (p_irr : irreducible p) (p_deg : p.nat_degree.prime) (p_roots : fintype.card (p.root_set ℂ) = fintype.card (p.root_set ℝ) + 2) : function.bijective (gal_action_hom p ℂ) := begin have h1 : fintype.card (p.root_set ℂ) = p.nat_degree, { simp_rw [root_set_def, finset.coe_sort_coe, fintype.card_coe], rw [multiset.to_finset_card_of_nodup, ←nat_degree_eq_card_roots], { exact is_alg_closed.splits_codomain p }, { exact nodup_roots ((separable_map (algebra_map ℚ ℂ)).mpr p_irr.separable) } }, have h2 : fintype.card p.gal = fintype.card (gal_action_hom p ℂ).range := fintype.card_congr (monoid_hom.of_injective (gal_action_hom_injective p ℂ)).to_equiv, let conj := restrict p ℂ (complex.conj_ae.restrict_scalars ℚ), refine ⟨gal_action_hom_injective p ℂ, λ x, (congr_arg (has_mem.mem x) (show (gal_action_hom p ℂ).range = ⊤, from _)).mpr (subgroup.mem_top x)⟩, apply equiv.perm.subgroup_eq_top_of_swap_mem, { rwa h1 }, { rw h1, convert prime_degree_dvd_card p_irr p_deg using 1, convert h2.symm }, { exact ⟨conj, rfl⟩ }, { rw ← equiv.perm.card_support_eq_two, apply nat.add_left_cancel, rw [←p_roots, ←set.to_finset_card (root_set p ℝ), ←set.to_finset_card (root_set p ℂ)], exact (card_complex_roots_eq_card_real_add_card_not_gal_inv p).symm }, end /-- An irreducible polynomial of prime degree with 1-3 non-real roots has full Galois group. -/ lemma gal_action_hom_bijective_of_prime_degree' {p : polynomial ℚ} (p_irr : irreducible p) (p_deg : p.nat_degree.prime) (p_roots1 : fintype.card (p.root_set ℝ) + 1 ≤ fintype.card (p.root_set ℂ)) (p_roots2 : fintype.card (p.root_set ℂ) ≤ fintype.card (p.root_set ℝ) + 3) : function.bijective (gal_action_hom p ℂ) := begin apply gal_action_hom_bijective_of_prime_degree p_irr p_deg, let n := (gal_action_hom p ℂ (restrict p ℂ (complex.conj_ae.restrict_scalars ℚ))).support.card, have hn : 2 ∣ n := equiv.perm.two_dvd_card_support (by rw [←monoid_hom.map_pow, ←monoid_hom.map_pow, show alg_equiv.restrict_scalars ℚ complex.conj_ae ^ 2 = 1, from alg_equiv.ext complex.conj_conj, monoid_hom.map_one, monoid_hom.map_one]), have key := card_complex_roots_eq_card_real_add_card_not_gal_inv p, simp_rw [set.to_finset_card] at key, rw [key, add_le_add_iff_left] at p_roots1 p_roots2, rw [key, add_right_inj], suffices : ∀ m : ℕ, 2 ∣ m → 1 ≤ m → m ≤ 3 → m = 2, { exact this n hn p_roots1 p_roots2 }, rintros m ⟨k, rfl⟩ h2 h3, exact le_antisymm (nat.lt_succ_iff.mp (lt_of_le_of_ne h3 (show 2 * k ≠ 2 * 1 + 1, from nat.two_mul_ne_two_mul_add_one))) (nat.succ_le_iff.mpr (lt_of_le_of_ne h2 (show 2 * 0 + 1 ≠ 2 * k, from nat.two_mul_ne_two_mul_add_one.symm))), end end rationals end gal end polynomial
c06411c3f38c052d0b3454c7c16e7b71ef7baa2b
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/tests/lean/run/def1.lean
5f089f6c50afe7ba885db9105f87fac38a742b88
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
367
lean
namespace tst variable {A : Type} attribute [reducible] definition foo₁ (a b c : A) (H₁ : a = b) (H₂ : c = b) : a = c := eq.trans H₁ (eq.symm H₂) lemma foo₂ (f : A → A → A) (a b c : A) (H₁ : a = b) (H₂ : c = b) : f a = f c := eq.symm H₂ ▸ H₁ ▸ rfl check foo₁ check foo₂ end tst check tst.foo₁ check tst.foo₂ print tst.foo₁
b8c0e0230f3d7933e21bc0e8f47082c10fcf7b3e
7cef822f3b952965621309e88eadf618da0c8ae9
/src/tactic/interactive.lean
17b0c8cd45c5c19d00dca57a88a6310a1b396853
[ "Apache-2.0" ]
permissive
rmitta/mathlib
8d90aee30b4db2b013e01f62c33f297d7e64a43d
883d974b608845bad30ae19e27e33c285200bf84
refs/heads/master
1,585,776,832,544
1,576,874,096,000
1,576,874,096,000
153,663,165
0
2
Apache-2.0
1,544,806,490,000
1,539,884,365,000
Lean
UTF-8
Lean
false
false
30,241
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Simon Hudon, Sebastien Gouezel, Scott Morrison -/ import tactic.lint open lean open lean.parser local postfix `?`:9001 := optional local postfix *:9001 := many namespace tactic namespace interactive open interactive interactive.types expr /-- Similar to `constructor`, but does not reorder goals. -/ meta def fconstructor : tactic unit := concat_tags tactic.fconstructor /-- `try_for n { tac }` executes `tac` for `n` ticks, otherwise uses `sorry` to close the goal. Never fails. Useful for debugging. -/ meta def try_for (max : parse parser.pexpr) (tac : itactic) : tactic unit := do max ← i_to_expr_strict max >>= tactic.eval_expr nat, λ s, match _root_.try_for max (tac s) with | some r := r | none := (tactic.trace "try_for timeout, using sorry" >> admit) s end /-- Multiple subst. `substs x y z` is the same as `subst x, subst y, subst z`. -/ meta def substs (l : parse ident*) : tactic unit := l.mmap' (λ h, get_local h >>= tactic.subst) >> try (tactic.reflexivity reducible) /-- Unfold coercion-related definitions -/ meta def unfold_coes (loc : parse location) : tactic unit := unfold [ ``coe, ``coe_t, ``has_coe_t.coe, ``coe_b,``has_coe.coe, ``lift, ``has_lift.lift, ``lift_t, ``has_lift_t.lift, ``coe_fn, ``has_coe_to_fun.coe, ``coe_sort, ``has_coe_to_sort.coe] loc /-- Unfold auxiliary definitions associated with the current declaration. -/ meta def unfold_aux : tactic unit := do tgt ← target, name ← decl_name, let to_unfold := (tgt.list_names_with_prefix name), guard (¬ to_unfold.empty), -- should we be using simp_lemmas.mk_default? simp_lemmas.mk.dsimplify to_unfold.to_list tgt >>= tactic.change /-- For debugging only. This tactic checks the current state for any missing dropped goals and restores them. Useful when there are no goals to solve but "result contains meta-variables". -/ meta def recover : tactic unit := metavariables >>= tactic.set_goals /-- Like `try { tac }`, but in the case of failure it continues from the failure state instead of reverting to the original state. -/ meta def continue (tac : itactic) : tactic unit := λ s, result.cases_on (tac s) (λ a, result.success ()) (λ e ref, result.success ()) /-- Move goal `n` to the front. -/ meta def swap (n := 2) : tactic unit := do gs ← get_goals, match gs.nth (n-1) with | (some g) := set_goals (g :: gs.remove_nth (n-1)) | _ := skip end /-- `rotate n` cyclically shifts the goals `n` times. `rotate` defaults to `rotate 1`. -/ meta def rotate (n := 1) : tactic unit := tactic.rotate n /-- Clear all hypotheses starting with `_`, like `_match` and `_let_match`. -/ meta def clear_ : tactic unit := tactic.repeat $ do l ← local_context, l.reverse.mfirst $ λ h, do name.mk_string s p ← return $ local_pp_name h, guard (s.front = '_'), cl ← infer_type h >>= is_class, guard (¬ cl), tactic.clear h meta def apply_iff_congr_core : tactic unit := applyc ``iff_of_eq meta def congr_core' : tactic unit := do tgt ← target, apply_eq_congr_core tgt <|> apply_heq_congr_core <|> apply_iff_congr_core <|> fail "congr tactic failed" /-- Same as the `congr` tactic, but takes an optional argument which gives the depth of recursive applications. This is useful when `congr` is too aggressive in breaking down the goal. For example, given `⊢ f (g (x + y)) = f (g (y + x))`, `congr'` produces the goals `⊢ x = y` and `⊢ y = x`, while `congr' 2` produces the intended `⊢ x + y = y + x`. -/ meta def congr' : parse (with_desc "n" small_nat)? → tactic unit | (some 0) := failed | o := focus1 (assumption <|> (congr_core' >> all_goals (reflexivity <|> `[apply proof_irrel_heq] <|> `[apply proof_irrel] <|> try (congr' (nat.pred <$> o))))) /-- Acts like `have`, but removes a hypothesis with the same name as this one. For example if the state is `h : p ⊢ goal` and `f : p → q`, then after `replace h := f h` the goal will be `h : q ⊢ goal`, where `have h := f h` would result in the state `h : p, h : q ⊢ goal`. This can be used to simulate the `specialize` and `apply at` tactics of Coq. -/ meta def replace (h : parse ident?) (q₁ : parse (tk ":" *> texpr)?) (q₂ : parse $ (tk ":=" *> texpr)?) : tactic unit := do let h := h.get_or_else `this, old ← try_core (get_local h), «have» h q₁ q₂, match old, q₂ with | none, _ := skip | some o, some _ := tactic.clear o | some o, none := swap >> tactic.clear o >> swap end /-- Make every propositions in the context decidable -/ meta def classical := tactic.classical private meta def generalize_arg_p_aux : pexpr → parser (pexpr × name) | (app (app (macro _ [const `eq _ ]) h) (local_const x _ _ _)) := pure (h, x) | _ := fail "parse error" private meta def generalize_arg_p : parser (pexpr × name) := with_desc "expr = id" $ parser.pexpr 0 >>= generalize_arg_p_aux @[nolint] lemma {u} generalize_a_aux {α : Sort u} (h : ∀ x : Sort u, (α → x) → x) : α := h α id /-- Like `generalize` but also considers assumptions specified by the user. The user can also specify to omit the goal. -/ meta def generalize_hyp (h : parse ident?) (_ : parse $ tk ":") (p : parse generalize_arg_p) (l : parse location) : tactic unit := do h' ← get_unused_name `h, x' ← get_unused_name `x, g ← if ¬ l.include_goal then do refine ``(generalize_a_aux _), some <$> (prod.mk <$> tactic.intro x' <*> tactic.intro h') else pure none, n ← l.get_locals >>= tactic.revert_lst, generalize h () p, intron n, match g with | some (x',h') := do tactic.apply h', tactic.clear h', tactic.clear x' | none := return () end /-- Similar to `refine` but generates equality proof obligations for every discrepancy between the goal and the type of the rule. `convert e using n` (with `n : ℕ`) bounds the depth of the search for discrepancies, analogous to `congr' n`. -/ meta def convert (sym : parse (with_desc "←" (tk "<-")?)) (r : parse texpr) (n : parse (tk "using" *> small_nat)?) : tactic unit := do v ← mk_mvar, if sym.is_some then refine ``(eq.mp %%v %%r) else refine ``(eq.mpr %%v %%r), gs ← get_goals, set_goals [v], try (congr' n), gs' ← get_goals, set_goals $ gs' ++ gs meta def compact_decl_aux : list name → binder_info → expr → list expr → tactic (list (list name × binder_info × expr)) | ns bi t [] := pure [(ns.reverse, bi, t)] | ns bi t (v'@(local_const n pp bi' t') :: xs) := do t' ← infer_type v', if bi = bi' ∧ t = t' then compact_decl_aux (pp :: ns) bi t xs else do vs ← compact_decl_aux [pp] bi' t' xs, pure $ (ns.reverse, bi, t) :: vs | ns bi t (_ :: xs) := compact_decl_aux ns bi t xs meta def compact_decl : list expr → tactic (list (list name × binder_info × expr)) | [] := pure [] | (v@(local_const n pp bi t) :: xs) := do t ← infer_type v, compact_decl_aux [pp] bi t xs | (_ :: xs) := compact_decl xs meta def clean_ids : list name := [``id, ``id_rhs, ``id_delta, ``hidden] /-- Remove identity functions from a term. These are normally automatically generated with terms like `show t, from p` or `(p : t)` which translate to some variant on `@id t p` in order to retain the type. -/ meta def clean (q : parse texpr) : tactic unit := do tgt : expr ← target, e ← i_to_expr_strict ``(%%q : %%tgt), tactic.exact $ e.replace (λ e n, match e with | (app (app (const n _) _) e') := if n ∈ clean_ids then some e' else none | (app (lam _ _ _ (var 0)) e') := some e' | _ := none end) meta def source_fields (missing : list name) (e : pexpr) : tactic (list (name × pexpr)) := do e ← to_expr e, t ← infer_type e, let struct_n : name := t.get_app_fn.const_name, fields ← expanded_field_list struct_n, let exp_fields := fields.filter (λ x, x.2 ∈ missing), exp_fields.mmap $ λ ⟨p,n⟩, (prod.mk n ∘ to_pexpr) <$> mk_mapp (n.update_prefix p) [none,some e] meta def collect_struct' : pexpr → state_t (list $ expr×structure_instance_info) tactic pexpr | e := do some str ← pure (e.get_structure_instance_info) | e.traverse collect_struct', v ← monad_lift mk_mvar, modify (list.cons (v,str)), pure $ to_pexpr v meta def collect_struct (e : pexpr) : tactic $ pexpr × list (expr×structure_instance_info) := prod.map id list.reverse <$> (collect_struct' e).run [] meta def refine_one (str : structure_instance_info) : tactic $ list (expr×structure_instance_info) := do tgt ← target, let struct_n : name := tgt.get_app_fn.const_name, exp_fields ← expanded_field_list struct_n, let missing_f := exp_fields.filter (λ f, (f.2 : name) ∉ str.field_names), (src_field_names,src_field_vals) ← (@list.unzip name _ ∘ list.join) <$> str.sources.mmap (source_fields $ missing_f.map prod.snd), let provided := exp_fields.filter (λ f, (f.2 : name) ∈ str.field_names), let missing_f' := missing_f.filter (λ x, x.2 ∉ src_field_names), vs ← mk_mvar_list missing_f'.length, (field_values,new_goals) ← list.unzip <$> (str.field_values.mmap collect_struct : tactic _), e' ← to_expr $ pexpr.mk_structure_instance { struct := some struct_n , field_names := str.field_names ++ missing_f'.map prod.snd ++ src_field_names , field_values := field_values ++ vs.map to_pexpr ++ src_field_vals }, tactic.exact e', gs ← with_enable_tags ( mzip_with (λ (n : name × name) v, do set_goals [v], try (interactive.unfold (provided.map $ λ ⟨s,f⟩, f.update_prefix s) (loc.ns [none])), apply_auto_param <|> apply_opt_param <|> (set_main_tag [`_field,n.2,n.1]), get_goals) missing_f' vs), set_goals gs.join, return new_goals.join meta def refine_recursively : expr × structure_instance_info → tactic (list expr) | (e,str) := do set_goals [e], rs ← refine_one str, gs ← get_goals, gs' ← rs.mmap refine_recursively, return $ gs'.join ++ gs /-- `refine_struct { .. }` acts like `refine` but works only with structure instance literals. It creates a goal for each missing field and tags it with the name of the field so that `have_field` can be used to generically refer to the field currently being refined. As an example, we can use `refine_struct` to automate the construction semigroup instances: ``` refine_struct ( { .. } : semigroup α ), -- case semigroup, mul -- α : Type u, -- ⊢ α → α → α -- case semigroup, mul_assoc -- α : Type u, -- ⊢ ∀ (a b c : α), a * b * c = a * (b * c) ``` -/ meta def refine_struct : parse texpr → tactic unit | e := do (x,xs) ← collect_struct e, refine x, gs ← get_goals, xs' ← xs.mmap refine_recursively, set_goals (xs'.join ++ gs) /-- `guard_hyp h := t` fails if the hypothesis `h` does not have type `t`. We use this tactic for writing tests. Fixes `guard_hyp` by instantiating meta variables -/ meta def guard_hyp' (n : parse ident) (p : parse $ tk ":=" *> texpr) : tactic unit := do h ← get_local n >>= infer_type >>= instantiate_mvars, guard_expr_eq h p /-- `guard_expr_strict t := e` fails if the expr `t` is not equal to `e`. By contrast to `guard_expr`, this tests strict (syntactic) equality. We use this tactic for writing tests. -/ meta def guard_expr_strict (t : expr) (p : parse $ tk ":=" *> texpr) : tactic unit := do e ← to_expr p, guard (t = e) /-- `guard_target_strict t` fails if the target of the main goal is not syntactically `t`. We use this tactic for writing tests. -/ meta def guard_target_strict (p : parse texpr) : tactic unit := do t ← target, guard_expr_strict t p /-- `guard_hyp_strict h := t` fails if the hypothesis `h` does not have type syntactically equal to `t`. We use this tactic for writing tests. -/ meta def guard_hyp_strict (n : parse ident) (p : parse $ tk ":=" *> texpr) : tactic unit := do h ← get_local n >>= infer_type >>= instantiate_mvars, guard_expr_strict h p meta def guard_hyp_nums (n : ℕ) : tactic unit := do k ← local_context, guard (n = k.length) <|> fail format!"{k.length} hypotheses found" meta def guard_tags (tags : parse ident*) : tactic unit := do (t : list name) ← get_main_tag, guard (t = tags) /-- `success_if_fail_with_msg { tac } msg` succeeds if the interactive tactic `tac` fails with error message `msg` (for test writing purposes). -/ meta def success_if_fail_with_msg (tac : tactic.interactive.itactic) := tactic.success_if_fail_with_msg tac meta def get_current_field : tactic name := do [_,field,str] ← get_main_tag, expr.const_name <$> resolve_name (field.update_prefix str) meta def field (n : parse ident) (tac : itactic) : tactic unit := do gs ← get_goals, ts ← gs.mmap get_tag, ([g],gs') ← pure $ (list.zip gs ts).partition (λ x, x.snd.nth 1 = some n), set_goals [g.1], tac, done, set_goals $ gs'.map prod.fst /-- `have_field`, used after `refine_struct _` poses `field` as a local constant with the type of the field of the current goal: ``` refine_struct ({ .. } : semigroup α), { have_field, ... }, { have_field, ... }, ``` behaves like ``` refine_struct ({ .. } : semigroup α), { have field := @semigroup.mul, ... }, { have field := @semigroup.mul_assoc, ... }, ``` -/ meta def have_field : tactic unit := propagate_tags $ get_current_field >>= mk_const >>= note `field none >> return () /-- `apply_field` functions as `have_field, apply field, clear field` -/ meta def apply_field : tactic unit := propagate_tags $ get_current_field >>= applyc /--`apply_rules hs n`: apply the list of rules `hs` (given as pexpr) and `assumption` on the first goal and the resulting subgoals, iteratively, at most `n` times. `n` is 50 by default. `hs` can contain user attributes: in this case all theorems with this attribute are added to the list of rules. example, with or without user attribute: ``` @[user_attribute] meta def mono_rules : user_attribute := { name := `mono_rules, descr := "lemmas usable to prove monotonicity" } attribute [mono_rules] add_le_add mul_le_mul_of_nonneg_right lemma my_test {a b c d e : real} (h1 : a ≤ b) (h2 : c ≤ d) (h3 : 0 ≤ e) : a + c * e + a + c + 0 ≤ b + d * e + b + d + e := by apply_rules mono_rules -- any of the following lines would also work: -- add_le_add (add_le_add (add_le_add (add_le_add h1 (mul_le_mul_of_nonneg_right h2 h3)) h1 ) h2) h3 -- by apply_rules [add_le_add, mul_le_mul_of_nonneg_right] -- by apply_rules [mono_rules] ``` -/ meta def apply_rules (hs : parse pexpr_list_or_texpr) (n : nat := 50) : tactic unit := tactic.apply_rules hs n meta def return_cast (f : option expr) (t : option (expr × expr)) (es : list (expr × expr × expr)) (e x x' eq_h : expr) : tactic (option (expr × expr) × list (expr × expr × expr)) := (do guard (¬ e.has_var), unify x x', u ← mk_meta_univ, f ← f <|> mk_mapp ``_root_.id [(expr.sort u : expr)], t' ← infer_type e, some (f',t) ← pure t | return (some (f,t'), (e,x',eq_h) :: es), infer_type e >>= is_def_eq t, unify f f', return (some (f,t), (e,x',eq_h) :: es)) <|> return (t, es) meta def list_cast_of_aux (x : expr) (t : option (expr × expr)) (es : list (expr × expr × expr)) : expr → tactic (option (expr × expr) × list (expr × expr × expr)) | e@`(cast %%eq_h %%x') := return_cast none t es e x x' eq_h | e@`(eq.mp %%eq_h %%x') := return_cast none t es e x x' eq_h | e@`(eq.mpr %%eq_h %%x') := mk_eq_symm eq_h >>= return_cast none t es e x x' | e@`(@eq.subst %%α %%p %%a %%b %%eq_h %%x') := return_cast p t es e x x' eq_h | e@`(@eq.substr %%α %%p %%a %%b %%eq_h %%x') := mk_eq_symm eq_h >>= return_cast p t es e x x' | e@`(@eq.rec %%α %%a %%f %%x' _ %%eq_h) := return_cast f t es e x x' eq_h | e@`(@eq.rec_on %%α %%a %%f %%b %%eq_h %%x') := return_cast f t es e x x' eq_h | e := return (t,es) meta def list_cast_of (x tgt : expr) : tactic (list (expr × expr × expr)) := (list.reverse ∘ prod.snd) <$> tgt.mfold (none, []) (λ e i es, list_cast_of_aux x es.1 es.2 e) private meta def h_generalize_arg_p_aux : pexpr → parser (pexpr × name) | (app (app (macro _ [const `heq _ ]) h) (local_const x _ _ _)) := pure (h, x) | _ := fail "parse error" private meta def h_generalize_arg_p : parser (pexpr × name) := with_desc "expr == id" $ parser.pexpr 0 >>= h_generalize_arg_p_aux /-- `h_generalize Hx : e == x` matches on `cast _ e` in the goal and replaces it with `x`. It also adds `Hx : e == x` as an assumption. If `cast _ e` appears multiple times (not necessarily with the same proof), they are all replaced by `x`. `cast` `eq.mp`, `eq.mpr`, `eq.subst`, `eq.substr`, `eq.rec` and `eq.rec_on` are all treated as casts. `h_generalize Hx : e == x with h` adds hypothesis `α = β` with `e : α, x : β`. `h_generalize Hx : e == x with _` chooses automatically chooses the name of assumption `α = β`. `h_generalize! Hx : e == x` reverts `Hx`. when `Hx` is omitted, assumption `Hx : e == x` is not added. -/ meta def h_generalize (rev : parse (tk "!")?) (h : parse ident_?) (_ : parse (tk ":")) (arg : parse h_generalize_arg_p) (eqs_h : parse ( (tk "with" >> pure <$> ident_) <|> pure [])) : tactic unit := do let (e,n) := arg, let h' := if h = `_ then none else h, h' ← (h' : tactic name) <|> get_unused_name ("h" ++ n.to_string : string), e ← to_expr e, tgt ← target, ((e,x,eq_h)::es) ← list_cast_of e tgt | fail "no cast found", interactive.generalize h' () (to_pexpr e, n), asm ← get_local h', v ← get_local n, hs ← es.mmap (λ ⟨e,_⟩, mk_app `eq [e,v]), (eqs_h.zip [e]).mmap' (λ ⟨h,e⟩, do h ← if h ≠ `_ then pure h else get_unused_name `h, () <$ note h none eq_h ), hs.mmap' (λ h, do h' ← assert `h h, tactic.exact asm, try (rewrite_target h'), tactic.clear h' ), when h.is_some (do (to_expr ``(heq_of_eq_rec_left %%eq_h %%asm) <|> to_expr ``(heq_of_eq_mp %%eq_h %%asm)) >>= note h' none >> pure ()), tactic.clear asm, when rev.is_some (interactive.revert [n]) /-- `choose a b h using hyp` takes an hypothesis `hyp` of the form `∀ (x : X) (y : Y), ∃ (a : A) (b : B), P x y a b` for some `P : X → Y → A → B → Prop` and outputs into context a function `a : X → Y → A`, `b : X → Y → B` and a proposition `h` stating `∀ (x : X) (y : Y), P x y (a x y) (b x y)`. It presumably also works with dependent versions. Example: ```lean example (h : ∀n m : ℕ, ∃i j, m = n + i ∨ m + j = n) : true := begin choose i j h using h, guard_hyp i := ℕ → ℕ → ℕ, guard_hyp j := ℕ → ℕ → ℕ, guard_hyp h := ∀ (n m : ℕ), m = n + i n m ∨ m + j n m = n, trivial end ``` -/ meta def choose (first : parse ident) (names : parse ident*) (tgt : parse (tk "using" *> texpr)?) : tactic unit := do tgt ← match tgt with | none := get_local `this | some e := tactic.i_to_expr_strict e end, tactic.choose tgt (first :: names), try (interactive.simp none tt [simp_arg_type.expr ``(exists_prop)] [] (loc.ns $ some <$> names)), try (tactic.clear tgt) /-- The goal of `field_simp` is to reduce an expression in a field to an expression of the form `n / d` where neither `n` nor `d` contains any division symbol, just using the simplifier (with a carefully crafted simpset named `field_simps`) to reduce the number of division symbols whenever possible by iterating the following steps: - write an inverse as a division - in any product, move the division to the right - if there are several divisions in a product, group them together at the end and write them as a single division - reduce a sum to a common denominator If the goal is an equality, this simpset will also clear the denominators, so that the proof can normally be concluded by an application of `ring` or `ring_exp`. `field_simp [hx, hy]` is a short form for `simp [-one_div_eq_inv, hx, hy] with field_simps` Note that this naive algorithm will not try to detect common factors in denominators to reduce the complexity of the resulting expression. Instead, it relies on the ability of `ring` to handle complicated expressions in the next step. As always with the simplifier, reduction steps will only be applied if the preconditions of the lemmas can be checked. This means that proofs that denominators are nonzero should be included. The fact that a product is nonzero when all factors are, and that a power of a nonzero number is nonzero, are included in the simpset, but more complicated assertions (especially dealing with sums) should be given explicitly. If your expression is not completely reduced by the simplifier invocation, check the denominators of the resulting expression and provide proofs that they are nonzero to enable further progress. The invocation of `field_simp` removes the lemma `one_div_eq_inv` (which is marked as a simp lemma in core) from the simpset, as this lemma works against the algorithm explained above. For example, ```lean example (a b c d x y : ℂ) (hx : x ≠ 0) (hy : y ≠ 0) : a + b / x + c / x^2 + d / x^3 = a + x⁻¹ * (y * b / y + (d / x + c) / x) := begin field_simp [hx, hy], ring end ``` -/ meta def field_simp (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (locat : parse location) (cfg : simp_config_ext := {}) : tactic unit := let attr_names := `field_simps :: attr_names, hs := simp_arg_type.except `one_div_eq_inv :: hs in propagate_tags (simp_core cfg.to_simp_config cfg.discharger no_dflt hs attr_names locat) meta def guard_expr_eq' (t : expr) (p : parse $ tk ":=" *> texpr) : tactic unit := do e ← to_expr p, is_def_eq t e /-- `guard_target t` fails if the target of the main goal is not `t`. We use this tactic for writing tests. -/ meta def guard_target' (p : parse texpr) : tactic unit := do t ← target, guard_expr_eq' t p /-- a weaker version of `trivial` that tries to solve the goal by reflexivity or by reducing it to true, unfolding only `reducible` constants. -/ meta def triv : tactic unit := tactic.triv' <|> tactic.reflexivity reducible <|> tactic.contradiction <|> fail "triv tactic failed" /-- Similar to `existsi`. `use x` will instantiate the first term of an `∃` or `Σ` goal with `x`. Unlike `existsi`, `x` is elaborated with respect to the expected type. `use` will alternatively take a list of terms `[x0, ..., xn]`. `use` will work with constructors of arbitrary inductive types. Examples: example (α : Type) : ∃ S : set α, S = S := by use ∅ example : ∃ x : ℤ, x = x := by use 42 example : ∃ a b c : ℤ, a + b + c = 6 := by use [1, 2, 3] example : ∃ p : ℤ × ℤ, p.1 = 1 := by use ⟨1, 42⟩ example : Σ x y : ℤ, (ℤ × ℤ) × ℤ := by use [1, 2, 3, 4, 5] inductive foo | mk : ℕ → bool × ℕ → ℕ → foo example : foo := by use [100, tt, 4, 3] -/ meta def use (l : parse pexpr_list_or_texpr) : tactic unit := tactic.use l >> try triv /-- `clear_aux_decl` clears every `aux_decl` in the local context for the current goal. This includes the induction hypothesis when using the equation compiler and `_let_match` and `_fun_match`. It is useful when using a tactic such as `finish`, `simp *` or `subst` that may use these auxiliary declarations, and produce an error saying the recursion is not well founded. -/ meta def clear_aux_decl : tactic unit := tactic.clear_aux_decl meta def loc.get_local_pp_names : loc → tactic (list name) | loc.wildcard := list.map expr.local_pp_name <$> local_context | (loc.ns l) := return l.reduce_option meta def loc.get_local_uniq_names (l : loc) : tactic (list name) := list.map expr.local_uniq_name <$> l.get_locals /-- The logic of `change x with y at l` fails when there are dependencies. `change'` mimics the behavior of `change`, except in the case of `change x with y at l`. In this case, it will correctly replace occurences of `x` with `y` at all possible hypotheses in `l`. As long as `x` and `y` are defeq, it should never fail. -/ meta def change' (q : parse texpr) : parse (tk "with" *> texpr)? → parse location → tactic unit | none (loc.ns [none]) := do e ← i_to_expr q, change_core e none | none (loc.ns [some h]) := do eq ← i_to_expr q, eh ← get_local h, change_core eq (some eh) | none _ := fail "change-at does not support multiple locations" | (some w) l := do l' ← loc.get_local_pp_names l, l'.mmap' (λ e, try (change_with_at q w e)), when l.include_goal $ change q w (loc.ns [none]) meta def convert_to_core (r : pexpr) : tactic unit := do tgt ← target, h ← to_expr ``(_ : %%tgt = %%r), rewrite_target h, swap /-- `convert_to g using n` attempts to change the current goal to `g`, using `congr' n` to resolve discrepancies. `convert_to g` defaults to using `congr' 1`. -/ meta def convert_to (r : parse texpr) (n : parse (tk "using" *> small_nat)?) : tactic unit := match n with | none := convert_to_core r >> `[congr' 1] | (some 0) := convert_to_core r | (some o) := convert_to_core r >> congr' o end /-- `ac_change g using n` is `convert_to g using n; try {ac_refl}` -/ meta def ac_change (r : parse texpr) (n : parse (tk "using" *> small_nat)?) : tactic unit := convert_to r n; try ac_refl private meta def opt_dir_with : parser (option (bool × name)) := (do tk "with", arrow ← (tk "<-")?, h ← ident, return (arrow.is_some, h)) <|> return none /-- `set a := t with h` is a variant of `let a := t`. It adds the hypothesis `h : a = t` to the local context and replaces `t` with `a` everywhere it can. `set a := t with ←h` will add `h : t = a` instead. `set! a := t with h` does not do any replacing. -/ meta def set (h_simp : parse (tk "!")?) (a : parse ident) (tp : parse ((tk ":") >> texpr)?) (_ : parse (tk ":=")) (pv : parse texpr) (rev_name : parse opt_dir_with) := do let vt := match tp with | some t := t | none := pexpr.mk_placeholder end, let pv := ``(%%pv : %%vt), v ← to_expr pv, tp ← infer_type v, definev a tp v, when h_simp.is_none $ change' pv (some (expr.const a [])) loc.wildcard, match rev_name with | some (flip, id) := do nv ← get_local a, pf ← to_expr (cond flip ``(%%pv = %%nv) ``(%%nv = %%pv)) >>= assert id, reflexivity | none := skip end /-- `clear_except h₀ h₁` deletes all the assumptions it can except for `h₀` and `h₁`. -/ meta def clear_except (xs : parse ident *) : tactic unit := do let ns := name_set.of_list xs, local_context >>= mmap' (λ h : expr, when (¬ ns.contains h.local_pp_name) $ try $ tactic.clear h) ∘ list.reverse meta def format_names (ns : list name) : format := format.join $ list.intersperse " " (ns.map to_fmt) private meta def format_binders : list name × binder_info × expr → tactic format | (ns, binder_info.default, t) := pformat!"({format_names ns} : {t})" | (ns, binder_info.implicit, t) := pformat!"{{{format_names ns} : {t}}" | (ns, binder_info.strict_implicit, t) := pformat!"⦃{format_names ns} : {t}⦄" | ([n], binder_info.inst_implicit, t) := if "_".is_prefix_of n.to_string then pformat!"[{t}]" else pformat!"[{format_names [n]} : {t}]" | (ns, binder_info.inst_implicit, t) := pformat!"[{format_names ns} : {t}]" | (ns, binder_info.aux_decl, t) := pformat!"({format_names ns} : {t})" meta def mk_paragraph_aux (right_margin : ℕ) : format → format → ℕ → list format → format | par ln len [] := par ++ format.line ++ ln | par ln len (x :: xs) := let len' := x.to_string.length in if len + len' ≤ right_margin then mk_paragraph_aux par (ln ++ x ++ " ") (len + len' + 1) xs else mk_paragraph_aux (par ++ format.line ++ ln) (" " ++ x ++ " ") len' xs /-- `mk_paragraph right_margin ls` packs `ls` into a paragraph where the lines have length at most `right_margin` -/ meta def mk_paragraph (right_margin : ℕ) : list format → format := mk_paragraph_aux right_margin "" "" 0 /-- Format the current goal as a stand-alone example. Useful for testing tactic. * `extract_goal`: formats the statement as an `example` declaration * `extract_goal my_decl`: formats the statement as a `lemma` or `def` declaration called `my_decl` * `extract_goal with i j k:` only use local constants `i`, `j`, `k` in the declaration Examples: ```lean example (i j k : ℕ) (h₀ : i ≤ j) (h₁ : j ≤ k) : i ≤ k := begin extract_goal, -- prints: -- example {i j k : ℕ} (h₀ : i ≤ j) (h₁ : j ≤ k) : i ≤ k := -- begin -- end extract_goal my_lemma -- lemma my_lemma {i j k : ℕ} (h₀ : i ≤ j) (h₁ : j ≤ k) : i ≤ k := -- begin -- end end example {i j k x y z w p q r m n : ℕ} (h₀ : i ≤ j) (h₁ : j ≤ k) (h₁ : k ≤ p) (h₁ : p ≤ q) : i ≤ k := begin extract_goal my_lemma, -- prints: -- lemma my_lemma {i j k x y z w p q r m n : ℕ} (h₀ : i ≤ j) (h₁ : j ≤ k) -- (h₁ : k ≤ p) (h₁ : p ≤ q) : i ≤ k := -- begin -- end extract_goal my_lemma with i j k -- prints: -- lemma my_lemma {i j k : ℕ} : i ≤ k := -- begin -- end end ``` -/ meta def extract_goal (n : parse ident?) (vs : parse with_ident_list) : tactic unit := do (cxt,_) ← solve_aux `(true) $ when (¬ vs.empty) (clear_except vs) >> local_context, tgt ← target, is_prop ← is_prop tgt, let title := match n, is_prop with | none, _ := to_fmt "example" | (some n), tt := format!"lemma {n}" | (some n), ff := format!"def {n}" end, cxt ← compact_decl cxt, cxt' ← cxt.init.mmap format_binders, cxt'' ← cxt.last'.traverse $ λ x, pformat!"{format_binders x} :", stmt ← pformat!"{tgt} :=", let fmt := mk_paragraph 80 $ title :: cxt' ++ [cxt''.get_or_else ":", stmt], trace fmt, trace!"begin\n \nend" end interactive end tactic
92ea823555ada10268db138aa690618c3199d07c
12dabd587ce2621d9a4eff9f16e354d02e206c8e
/world02/level06.lean
aa971556194ccfac8010370ed8452d3a1580badf
[]
no_license
abdelq/natural-number-game
a1b5b8f1d52625a7addcefc97c966d3f06a48263
bbddadc6d2e78ece2e9acd40fa7702ecc2db75c2
refs/heads/master
1,668,606,478,691
1,594,175,058,000
1,594,175,058,000
278,673,209
0
1
null
null
null
null
UTF-8
Lean
false
false
123
lean
lemma add_right_comm (a b c : mynat) : a + b + c = a + c + b := begin rw add_assoc, rw add_assoc, rw add_comm b, refl, end
3def084a6add64646b2be5f8efc491c9ffc12bb5
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/linear_algebra/contraction.lean
cbaa519592cdfd80d2ae4b3ea5d37e5833f1befa
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
12,321
lean
/- Copyright (c) 2020 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash, Antoine Labelle -/ import linear_algebra.dual import linear_algebra.matrix.to_lin /-! # Contractions > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. Given modules $M, N$ over a commutative ring $R$, this file defines the natural linear maps: $M^* \otimes M \to R$, $M \otimes M^* \to R$, and $M^* \otimes N → Hom(M, N)$, as well as proving some basic properties of these maps. ## Tags contraction, dual module, tensor product -/ variables {ι : Type*} (R M N P Q : Type*) local attribute [ext] tensor_product.ext section contraction open tensor_product linear_map matrix module open_locale tensor_product big_operators section comm_semiring variables [comm_semiring R] variables [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P] [add_comm_monoid Q] variables [module R M] [module R N] [module R P] [module R Q] variables [decidable_eq ι] [fintype ι] (b : basis ι R M) /-- The natural left-handed pairing between a module and its dual. -/ def contract_left : (module.dual R M) ⊗ M →ₗ[R] R := (uncurry _ _ _ _).to_fun linear_map.id /-- The natural right-handed pairing between a module and its dual. -/ def contract_right : M ⊗ (module.dual R M) →ₗ[R] R := (uncurry _ _ _ _).to_fun (linear_map.flip linear_map.id) /-- The natural map associating a linear map to the tensor product of two modules. -/ def dual_tensor_hom : (module.dual R M) ⊗ N →ₗ[R] M →ₗ[R] N := let M' := module.dual R M in (uncurry R M' N (M →ₗ[R] N) : _ → M' ⊗ N →ₗ[R] M →ₗ[R] N) linear_map.smul_rightₗ variables {R M N P Q} @[simp] lemma contract_left_apply (f : module.dual R M) (m : M) : contract_left R M (f ⊗ₜ m) = f m := rfl @[simp] lemma contract_right_apply (f : module.dual R M) (m : M) : contract_right R M (m ⊗ₜ f) = f m := rfl @[simp] lemma dual_tensor_hom_apply (f : module.dual R M) (m : M) (n : N) : dual_tensor_hom R M N (f ⊗ₜ n) m = (f m) • n := rfl @[simp] lemma transpose_dual_tensor_hom (f : module.dual R M) (m : M) : dual.transpose (dual_tensor_hom R M M (f ⊗ₜ m)) = dual_tensor_hom R _ _ (dual.eval R M m ⊗ₜ f) := by { ext f' m', simp only [dual.transpose_apply, coe_comp, function.comp_app, dual_tensor_hom_apply, linear_map.map_smulₛₗ, ring_hom.id_apply, algebra.id.smul_eq_mul, dual.eval_apply, smul_apply], exact mul_comm _ _ } @[simp] lemma dual_tensor_hom_prod_map_zero (f : module.dual R M) (p : P) : ((dual_tensor_hom R M P) (f ⊗ₜ[R] p)).prod_map (0 : N →ₗ[R] Q) = dual_tensor_hom R (M × N) (P × Q) ((f ∘ₗ fst R M N) ⊗ₜ inl R P Q p) := by {ext; simp only [coe_comp, coe_inl, function.comp_app, prod_map_apply, dual_tensor_hom_apply, fst_apply, prod.smul_mk, zero_apply, smul_zero]} @[simp] lemma zero_prod_map_dual_tensor_hom (g : module.dual R N) (q : Q) : (0 : M →ₗ[R] P).prod_map ((dual_tensor_hom R N Q) (g ⊗ₜ[R] q)) = dual_tensor_hom R (M × N) (P × Q) ((g ∘ₗ snd R M N) ⊗ₜ inr R P Q q) := by {ext; simp only [coe_comp, coe_inr, function.comp_app, prod_map_apply, dual_tensor_hom_apply, snd_apply, prod.smul_mk, zero_apply, smul_zero]} lemma map_dual_tensor_hom (f : module.dual R M) (p : P) (g : module.dual R N) (q : Q) : tensor_product.map (dual_tensor_hom R M P (f ⊗ₜ[R] p)) (dual_tensor_hom R N Q (g ⊗ₜ[R] q)) = dual_tensor_hom R (M ⊗[R] N) (P ⊗[R] Q) (dual_distrib R M N (f ⊗ₜ g) ⊗ₜ[R] (p ⊗ₜ[R] q)) := begin ext m n, simp only [compr₂_apply, mk_apply, map_tmul, dual_tensor_hom_apply, dual_distrib_apply, ←smul_tmul_smul], end @[simp] lemma comp_dual_tensor_hom (f : module.dual R M) (n : N) (g : module.dual R N) (p : P) : (dual_tensor_hom R N P (g ⊗ₜ[R] p)) ∘ₗ (dual_tensor_hom R M N (f ⊗ₜ[R] n)) = g n • dual_tensor_hom R M P (f ⊗ₜ p) := begin ext m, simp only [coe_comp, function.comp_app, dual_tensor_hom_apply, linear_map.map_smul, ring_hom.id_apply, smul_apply], rw smul_comm, end /-- As a matrix, `dual_tensor_hom` evaluated on a basis element of `M* ⊗ N` is a matrix with a single one and zeros elsewhere -/ theorem to_matrix_dual_tensor_hom {m : Type*} {n : Type*} [fintype m] [fintype n] [decidable_eq m] [decidable_eq n] (bM : basis m R M) (bN : basis n R N) (j : m) (i : n) : to_matrix bM bN (dual_tensor_hom R M N (bM.coord j ⊗ₜ bN i)) = std_basis_matrix i j 1 := begin ext i' j', by_cases hij : (i = i' ∧ j = j'); simp [linear_map.to_matrix_apply, finsupp.single_eq_pi_single, hij], rw [and_iff_not_or_not, not_not] at hij, cases hij; simp [hij], end end comm_semiring section comm_ring variables [comm_ring R] variables [add_comm_group M] [add_comm_group N] [add_comm_group P] [add_comm_group Q] variables [module R M] [module R N] [module R P] [module R Q] variables [decidable_eq ι] [fintype ι] (b : basis ι R M) variables {R M N P Q} /-- If `M` is free, the natural linear map $M^* ⊗ N → Hom(M, N)$ is an equivalence. This function provides this equivalence in return for a basis of `M`. -/ @[simps apply] noncomputable def dual_tensor_hom_equiv_of_basis : (module.dual R M) ⊗[R] N ≃ₗ[R] M →ₗ[R] N := linear_equiv.of_linear (dual_tensor_hom R M N) (∑ i, (tensor_product.mk R _ N (b.dual_basis i)) ∘ₗ linear_map.applyₗ (b i)) (begin ext f m, simp only [applyₗ_apply_apply, coe_fn_sum, dual_tensor_hom_apply, mk_apply, id_coe, id.def, fintype.sum_apply, function.comp_app, basis.coe_dual_basis, coe_comp, basis.coord_apply, ← f.map_smul, (dual_tensor_hom R M N).map_sum, ← f.map_sum, b.sum_repr], end) (begin ext f m, simp only [applyₗ_apply_apply, coe_fn_sum, dual_tensor_hom_apply, mk_apply, id_coe, id.def, fintype.sum_apply, function.comp_app, basis.coe_dual_basis, coe_comp, compr₂_apply, tmul_smul, smul_tmul', ← sum_tmul, basis.sum_dual_apply_smul_coord], end) @[simp] lemma dual_tensor_hom_equiv_of_basis_to_linear_map : (dual_tensor_hom_equiv_of_basis b : (module.dual R M) ⊗[R] N ≃ₗ[R] M →ₗ[R] N).to_linear_map = dual_tensor_hom R M N := rfl @[simp] lemma dual_tensor_hom_equiv_of_basis_symm_cancel_left (x : (module.dual R M) ⊗[R] N) : (dual_tensor_hom_equiv_of_basis b).symm (dual_tensor_hom R M N x) = x := by rw [←dual_tensor_hom_equiv_of_basis_apply b, linear_equiv.symm_apply_apply] @[simp] lemma dual_tensor_hom_equiv_of_basis_symm_cancel_right (x : M →ₗ[R] N) : dual_tensor_hom R M N ((dual_tensor_hom_equiv_of_basis b).symm x) = x := by rw [←dual_tensor_hom_equiv_of_basis_apply b, linear_equiv.apply_symm_apply] variables (R M N P Q) variables [module.free R M] [module.finite R M] [nontrivial R] open_locale classical /-- If `M` is finite free, the natural map $M^* ⊗ N → Hom(M, N)$ is an equivalence. -/ @[simp] noncomputable def dual_tensor_hom_equiv : (module.dual R M) ⊗[R] N ≃ₗ[R] M →ₗ[R] N := dual_tensor_hom_equiv_of_basis (module.free.choose_basis R M) end comm_ring end contraction section hom_tensor_hom open_locale tensor_product open module tensor_product linear_map section comm_ring variables [comm_ring R] variables [add_comm_group M] [add_comm_group N] [add_comm_group P] [add_comm_group Q] variables [module R M] [module R N] [module R P] [module R Q] variables [free R M] [finite R M] [free R N] [finite R N] [nontrivial R] /-- When `M` is a finite free module, the map `ltensor_hom_to_hom_ltensor` is an equivalence. Note that `ltensor_hom_equiv_hom_ltensor` is not defined directly in terms of `ltensor_hom_to_hom_ltensor`, but the equivalence between the two is given by `ltensor_hom_equiv_hom_ltensor_to_linear_map` and `ltensor_hom_equiv_hom_ltensor_apply`. -/ noncomputable def ltensor_hom_equiv_hom_ltensor : P ⊗[R] (M →ₗ[R] Q) ≃ₗ[R] (M →ₗ[R] P ⊗[R] Q) := congr (linear_equiv.refl R P) (dual_tensor_hom_equiv R M Q).symm ≪≫ₗ tensor_product.left_comm R P _ Q ≪≫ₗ dual_tensor_hom_equiv R M _ /-- When `M` is a finite free module, the map `rtensor_hom_to_hom_rtensor` is an equivalence. Note that `rtensor_hom_equiv_hom_rtensor` is not defined directly in terms of `rtensor_hom_to_hom_rtensor`, but the equivalence between the two is given by `rtensor_hom_equiv_hom_rtensor_to_linear_map` and `rtensor_hom_equiv_hom_rtensor_apply`. -/ noncomputable def rtensor_hom_equiv_hom_rtensor : (M →ₗ[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P ⊗[R] Q) := congr (dual_tensor_hom_equiv R M P).symm (linear_equiv.refl R Q) ≪≫ₗ tensor_product.assoc R _ P Q ≪≫ₗ dual_tensor_hom_equiv R M _ @[simp] lemma ltensor_hom_equiv_hom_ltensor_to_linear_map : (ltensor_hom_equiv_hom_ltensor R M P Q).to_linear_map = ltensor_hom_to_hom_ltensor R M P Q := begin let e := congr (linear_equiv.refl R P) (dual_tensor_hom_equiv R M Q), have h : function.surjective e.to_linear_map := e.surjective, refine (cancel_right h).1 _, ext p f q m, dsimp [ltensor_hom_equiv_hom_ltensor], simp only [ltensor_hom_equiv_hom_ltensor, dual_tensor_hom_equiv, compr₂_apply, mk_apply, coe_comp, linear_equiv.coe_to_linear_map, function.comp_app, map_tmul, linear_equiv.coe_coe, dual_tensor_hom_equiv_of_basis_apply, linear_equiv.trans_apply, congr_tmul, linear_equiv.refl_apply, dual_tensor_hom_equiv_of_basis_symm_cancel_left, left_comm_tmul, dual_tensor_hom_apply, ltensor_hom_to_hom_ltensor_apply, tmul_smul], end @[simp] lemma rtensor_hom_equiv_hom_rtensor_to_linear_map : (rtensor_hom_equiv_hom_rtensor R M P Q).to_linear_map = rtensor_hom_to_hom_rtensor R M P Q := begin let e := congr (dual_tensor_hom_equiv R M P) (linear_equiv.refl R Q), have h : function.surjective e.to_linear_map := e.surjective, refine (cancel_right h).1 _, ext f p q m, simp only [rtensor_hom_equiv_hom_rtensor, dual_tensor_hom_equiv, compr₂_apply, mk_apply, coe_comp, linear_equiv.coe_to_linear_map, function.comp_app, map_tmul, linear_equiv.coe_coe, dual_tensor_hom_equiv_of_basis_apply, linear_equiv.trans_apply, congr_tmul, dual_tensor_hom_equiv_of_basis_symm_cancel_left, linear_equiv.refl_apply, assoc_tmul, dual_tensor_hom_apply, rtensor_hom_to_hom_rtensor_apply, smul_tmul'], end variables {R M N P Q} @[simp] lemma ltensor_hom_equiv_hom_ltensor_apply (x : P ⊗[R] (M →ₗ[R] Q)) : ltensor_hom_equiv_hom_ltensor R M P Q x = ltensor_hom_to_hom_ltensor R M P Q x := by rw [←linear_equiv.coe_to_linear_map, ltensor_hom_equiv_hom_ltensor_to_linear_map] @[simp] lemma rtensor_hom_equiv_hom_rtensor_apply (x : (M →ₗ[R] P) ⊗[R] Q) : rtensor_hom_equiv_hom_rtensor R M P Q x = rtensor_hom_to_hom_rtensor R M P Q x := by rw [←linear_equiv.coe_to_linear_map, rtensor_hom_equiv_hom_rtensor_to_linear_map] variables (R M N P Q) /-- When `M` and `N` are free `R` modules, the map `hom_tensor_hom_map` is an equivalence. Note that `hom_tensor_hom_equiv` is not defined directly in terms of `hom_tensor_hom_map`, but the equivalence between the two is given by `hom_tensor_hom_equiv_to_linear_map` and `hom_tensor_hom_equiv_apply`. -/ noncomputable def hom_tensor_hom_equiv : (M →ₗ[R] P) ⊗[R] (N →ₗ[R] Q) ≃ₗ[R] (M ⊗[R] N →ₗ[R] P ⊗[R] Q) := rtensor_hom_equiv_hom_rtensor R M P _ ≪≫ₗ (linear_equiv.refl R M).arrow_congr (ltensor_hom_equiv_hom_ltensor R N _ Q) ≪≫ₗ lift.equiv R M N _ @[simp] lemma hom_tensor_hom_equiv_to_linear_map : (hom_tensor_hom_equiv R M N P Q).to_linear_map = hom_tensor_hom_map R M N P Q := begin ext f g m n, simp only [hom_tensor_hom_equiv, compr₂_apply, mk_apply, linear_equiv.coe_to_linear_map, linear_equiv.trans_apply, lift.equiv_apply, linear_equiv.arrow_congr_apply, linear_equiv.refl_symm, linear_equiv.refl_apply, rtensor_hom_equiv_hom_rtensor_apply, ltensor_hom_equiv_hom_ltensor_apply, ltensor_hom_to_hom_ltensor_apply, rtensor_hom_to_hom_rtensor_apply, hom_tensor_hom_map_apply, map_tmul], end variables {R M N P Q} @[simp] lemma hom_tensor_hom_equiv_apply (x : (M →ₗ[R] P) ⊗[R] (N →ₗ[R] Q)) : hom_tensor_hom_equiv R M N P Q x = hom_tensor_hom_map R M N P Q x := by rw [←linear_equiv.coe_to_linear_map, hom_tensor_hom_equiv_to_linear_map] end comm_ring end hom_tensor_hom
654de50b80145af7df1eefa843e3474e949289f6
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
/library/tools/super/misc_preprocessing.lean
8689a3275838ba548a7c23ddd1a6d76a17f6da6e
[ "Apache-2.0" ]
permissive
bre7k30/lean
de893411bcfa7b3c5572e61b9e1c52951b310aa4
5a924699d076dab1bd5af23a8f910b433e598d7a
refs/heads/master
1,610,900,145,817
1,488,006,845,000
1,488,006,845,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,156
lean
/- Copyright (c) 2016 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner -/ import .clause .prover_state open expr list monad namespace super meta def is_taut (c : clause) : tactic bool := do qf ← c^.open_constn c^.num_quants, return $ list.bor $ do l1 ← qf^.1^.get_lits, guard l1^.is_neg, l2 ← qf^.1^.get_lits, guard l2^.is_pos, [decidable.to_bool $ l1^.formula = l2^.formula] meta def tautology_removal_pre : prover unit := preprocessing_rule $ λnew, filter (λc, lift bnot $ is_taut c^.c) new meta def remove_duplicates : list derived_clause → list derived_clause | [] := [] | (c :: cs) := let (same_type, other_type) := partition (λc' : derived_clause, c'^.c^.type = c^.c^.type) cs in { c with sc := foldl score.min c^.sc (same_type^.for $ λc, c^.sc) } :: remove_duplicates other_type meta def remove_duplicates_pre : prover unit := preprocessing_rule $ λnew, return $ remove_duplicates new meta def clause_normalize_pre : prover unit := preprocessing_rule $ λnew, for new $ λdc, do c' ← dc^.c^.normalize, return { dc with c := c' } end super
78648d45c76f3dd2aed3e93a289e787c1928a410
592ee40978ac7604005a4e0d35bbc4b467389241
/Library/generated/mathscheme-lean/ComplementSig.lean
998e2ec617634d168e00bf804ec7e74eef7dadc7
[]
no_license
ysharoda/Deriving-Definitions
3e149e6641fae440badd35ac110a0bd705a49ad2
dfecb27572022de3d4aa702cae8db19957523a59
refs/heads/master
1,679,127,857,700
1,615,939,007,000
1,615,939,007,000
229,785,731
4
0
null
null
null
null
UTF-8
Lean
false
false
5,379
lean
import init.data.nat.basic import init.data.fin.basic import data.vector import .Prelude open Staged open nat open fin open vector section ComplementSig structure ComplementSig (A : Type) : Type := (compl : (A → A)) open ComplementSig structure Sig (AS : Type) : Type := (complS : (AS → AS)) structure Product (A : Type) : Type := (complP : ((Prod A A) → (Prod A A))) structure Hom {A1 : Type} {A2 : Type} (Co1 : (ComplementSig A1)) (Co2 : (ComplementSig A2)) : Type := (hom : (A1 → A2)) (pres_compl : (∀ {x1 : A1} , (hom ((compl Co1) x1)) = ((compl Co2) (hom x1)))) structure RelInterp {A1 : Type} {A2 : Type} (Co1 : (ComplementSig A1)) (Co2 : (ComplementSig A2)) : Type 1 := (interp : (A1 → (A2 → Type))) (interp_compl : (∀ {x1 : A1} {y1 : A2} , ((interp x1 y1) → (interp ((compl Co1) x1) ((compl Co2) y1))))) inductive ComplementSigTerm : Type | complL : (ComplementSigTerm → ComplementSigTerm) open ComplementSigTerm inductive ClComplementSigTerm (A : Type) : Type | sing : (A → ClComplementSigTerm) | complCl : (ClComplementSigTerm → ClComplementSigTerm) open ClComplementSigTerm inductive OpComplementSigTerm (n : ℕ) : Type | v : ((fin n) → OpComplementSigTerm) | complOL : (OpComplementSigTerm → OpComplementSigTerm) open OpComplementSigTerm inductive OpComplementSigTerm2 (n : ℕ) (A : Type) : Type | v2 : ((fin n) → OpComplementSigTerm2) | sing2 : (A → OpComplementSigTerm2) | complOL2 : (OpComplementSigTerm2 → OpComplementSigTerm2) open OpComplementSigTerm2 def simplifyCl {A : Type} : ((ClComplementSigTerm A) → (ClComplementSigTerm A)) | (complCl x1) := (complCl (simplifyCl x1)) | (sing x1) := (sing x1) def simplifyOpB {n : ℕ} : ((OpComplementSigTerm n) → (OpComplementSigTerm n)) | (complOL x1) := (complOL (simplifyOpB x1)) | (v x1) := (v x1) def simplifyOp {n : ℕ} {A : Type} : ((OpComplementSigTerm2 n A) → (OpComplementSigTerm2 n A)) | (complOL2 x1) := (complOL2 (simplifyOp x1)) | (v2 x1) := (v2 x1) | (sing2 x1) := (sing2 x1) def evalB {A : Type} : ((ComplementSig A) → (ComplementSigTerm → A)) | Co (complL x1) := ((compl Co) (evalB Co x1)) def evalCl {A : Type} : ((ComplementSig A) → ((ClComplementSigTerm A) → A)) | Co (sing x1) := x1 | Co (complCl x1) := ((compl Co) (evalCl Co x1)) def evalOpB {A : Type} {n : ℕ} : ((ComplementSig A) → ((vector A n) → ((OpComplementSigTerm n) → A))) | Co vars (v x1) := (nth vars x1) | Co vars (complOL x1) := ((compl Co) (evalOpB Co vars x1)) def evalOp {A : Type} {n : ℕ} : ((ComplementSig A) → ((vector A n) → ((OpComplementSigTerm2 n A) → A))) | Co vars (v2 x1) := (nth vars x1) | Co vars (sing2 x1) := x1 | Co vars (complOL2 x1) := ((compl Co) (evalOp Co vars x1)) def inductionB {P : (ComplementSigTerm → Type)} : ((∀ (x1 : ComplementSigTerm) , ((P x1) → (P (complL x1)))) → (∀ (x : ComplementSigTerm) , (P x))) | pcompll (complL x1) := (pcompll _ (inductionB pcompll x1)) def inductionCl {A : Type} {P : ((ClComplementSigTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 : (ClComplementSigTerm A)) , ((P x1) → (P (complCl x1)))) → (∀ (x : (ClComplementSigTerm A)) , (P x)))) | psing pcomplcl (sing x1) := (psing x1) | psing pcomplcl (complCl x1) := (pcomplcl _ (inductionCl psing pcomplcl x1)) def inductionOpB {n : ℕ} {P : ((OpComplementSigTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 : (OpComplementSigTerm n)) , ((P x1) → (P (complOL x1)))) → (∀ (x : (OpComplementSigTerm n)) , (P x)))) | pv pcomplol (v x1) := (pv x1) | pv pcomplol (complOL x1) := (pcomplol _ (inductionOpB pv pcomplol x1)) def inductionOp {n : ℕ} {A : Type} {P : ((OpComplementSigTerm2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 : (OpComplementSigTerm2 n A)) , ((P x1) → (P (complOL2 x1)))) → (∀ (x : (OpComplementSigTerm2 n A)) , (P x))))) | pv2 psing2 pcomplol2 (v2 x1) := (pv2 x1) | pv2 psing2 pcomplol2 (sing2 x1) := (psing2 x1) | pv2 psing2 pcomplol2 (complOL2 x1) := (pcomplol2 _ (inductionOp pv2 psing2 pcomplol2 x1)) def stageB : (ComplementSigTerm → (Staged ComplementSigTerm)) | (complL x1) := (stage1 complL (codeLift1 complL) (stageB x1)) def stageCl {A : Type} : ((ClComplementSigTerm A) → (Staged (ClComplementSigTerm A))) | (sing x1) := (Now (sing x1)) | (complCl x1) := (stage1 complCl (codeLift1 complCl) (stageCl x1)) def stageOpB {n : ℕ} : ((OpComplementSigTerm n) → (Staged (OpComplementSigTerm n))) | (v x1) := (const (code (v x1))) | (complOL x1) := (stage1 complOL (codeLift1 complOL) (stageOpB x1)) def stageOp {n : ℕ} {A : Type} : ((OpComplementSigTerm2 n A) → (Staged (OpComplementSigTerm2 n A))) | (sing2 x1) := (Now (sing2 x1)) | (v2 x1) := (const (code (v2 x1))) | (complOL2 x1) := (stage1 complOL2 (codeLift1 complOL2) (stageOp x1)) structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type := (complT : ((Repr A) → (Repr A))) end ComplementSig
2c68ed153fa6d46680fbadb978dafe746e1905c1
8e2026ac8a0660b5a490dfb895599fb445bb77a0
/library/init/meta/expr.lean
525871af5fb8273c3dc31de8b96e9997190d6f2d
[ "Apache-2.0" ]
permissive
pcmoritz/lean
6a8575115a724af933678d829b4f791a0cb55beb
35eba0107e4cc8a52778259bb5392300267bfc29
refs/heads/master
1,607,896,326,092
1,490,752,175,000
1,490,752,175,000
86,612,290
0
0
null
1,490,809,641,000
1,490,809,641,000
null
UTF-8
Lean
false
false
11,271
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.level init.category.monad structure pos := (line : nat) (column : nat) instance : decidable_eq pos | ⟨l₁, c₁⟩ ⟨l₂, c₂⟩ := if h₁ : l₁ = l₂ then if h₂ : c₁ = c₂ then is_true (eq.rec_on h₁ (eq.rec_on h₂ rfl)) else is_false (λ contra, pos.no_confusion contra (λ e₁ e₂, absurd e₂ h₂)) else is_false (λ contra, pos.no_confusion contra (λ e₁ e₂, absurd e₁ h₁)) meta instance : has_to_format pos := ⟨λ ⟨l, c⟩, "⟨" ++ l ++ ", " ++ c ++ "⟩"⟩ inductive binder_info | default | implicit | strict_implicit | inst_implicit | other instance : has_to_string binder_info := ⟨λ bi, match bi with | binder_info.default := "default" | binder_info.implicit := "implicit" | binder_info.strict_implicit := "strict_implicit" | binder_info.inst_implicit := "inst_implicit" | binder_info.other := "other" end⟩ meta constant macro_def : Type /- Reflect a C++ expr object. The VM replaces it with the C++ implementation. -/ meta inductive expr | var : nat → expr | sort : level → expr | const : name → list level → expr | mvar : name → expr → expr | local_const : name → name → binder_info → expr → expr | app : expr → expr → expr | lam : name → binder_info → expr → expr → expr | pi : name → binder_info → expr → expr → expr | elet : name → expr → expr → expr → expr | macro : macro_def → ∀ n, (fin n → expr) → expr meta instance : inhabited expr := ⟨expr.sort level.zero⟩ meta constant expr.mk_macro (d : macro_def) : list expr → expr meta constant expr.macro_def_name (d : macro_def) : name meta def expr.mk_var (n : nat) : expr := expr.var n /- Choice macros are used to implement overloading. TODO(Leo): should we change it to pexpr? -/ meta constant expr.is_choice_macro : expr → bool /- Expressions can be annotated using the annotation macro. -/ meta constant expr.is_annotation : expr → option (name × expr) meta def expr.erase_annotations : expr → expr | e := match e.is_annotation with | some (_, a) := expr.erase_annotations a | none := e end -- Compares expressions, including binder names. meta constant expr.has_decidable_eq : decidable_eq expr attribute [instance] expr.has_decidable_eq -- Compares expressions while ignoring binder names. meta constant expr.alpha_eqv : expr → expr → bool notation a ` =ₐ `:50 b:50 := expr.alpha_eqv a b = bool.tt protected meta constant expr.to_string : expr → string meta instance : has_to_string expr := has_to_string.mk expr.to_string /- Coercion for letting users write (f a) instead of (expr.app f a) -/ meta instance : has_coe_to_fun expr := { F := λ e, expr → expr, coe := λ e, expr.app e } meta constant expr.hash : expr → nat -- Compares expressions, ignoring binder names, and sorting by hash. meta constant expr.lt : expr → expr → bool -- Compares expressions, ignoring binder names. meta constant expr.lex_lt : expr → expr → bool -- Compares expressions, ignoring binder names, and sorting by hash. meta def expr.cmp (a b : expr) : ordering := if expr.lt a b then ordering.lt else if a =ₐ b then ordering.eq else ordering.gt meta constant expr.fold {α : Type} : expr → α → (expr → nat → α → α) → α meta constant expr.replace : expr → (expr → nat → option expr) → expr meta constant expr.abstract_local : expr → name → expr meta constant expr.abstract_locals : expr → list name → expr meta def expr.abstract : expr → expr → expr | e (expr.local_const n m bi t) := e.abstract_local n | e _ := e meta constant expr.instantiate_univ_params : expr → list (name × level) → expr meta constant expr.instantiate_var : expr → expr → expr meta constant expr.instantiate_vars : expr → list expr → expr meta constant expr.subst : expr → expr → expr meta constant expr.has_var : expr → bool meta constant expr.has_var_idx : expr → nat → bool meta constant expr.has_local : expr → bool meta constant expr.has_meta_var : expr → bool meta constant expr.lift_vars : expr → nat → nat → expr meta constant expr.lower_vars : expr → nat → nat → expr /- (copy_pos_info src tgt) copy position information from src to tgt. -/ meta constant expr.copy_pos_info : expr → expr → expr meta constant expr.is_internal_cnstr : expr → option unsigned meta constant expr.get_nat_value : expr → option nat meta constant expr.collect_univ_params : expr → list name /-- `occurs e t` returns `tt` iff `e` occurs in `t` -/ meta constant expr.occurs : expr → expr → bool namespace expr open decidable -- Compares expressions, ignoring binder names, and sorting by hash. meta instance : has_ordering expr := ⟨ expr.cmp ⟩ meta def mk_true : expr := const `true [] meta def mk_false : expr := const `false [] /-- Returns the sorry macro with the given type. -/ meta constant mk_sorry (type : expr) : expr /-- Checks whether e is sorry, and returns its type. -/ meta constant is_sorry (e : expr) : option expr meta def instantiate_local (n : name) (s : expr) (e : expr) : expr := instantiate_var (abstract_local e n) s meta def instantiate_locals (s : list (name × expr)) (e : expr) : expr := instantiate_vars (abstract_locals e (list.reverse (list.map prod.fst s))) (list.map prod.snd s) meta def is_var : expr → bool | (var _) := tt | _ := ff meta def app_of_list : expr → list expr → expr | f [] := f | f (p::ps) := app_of_list (f p) ps meta def is_app : expr → bool | (app f a) := tt | e := ff meta def app_fn : expr → expr | (app f a) := f | a := a meta def app_arg : expr → expr | (app f a) := a | a := a meta def get_app_fn : expr → expr | (app f a) := get_app_fn f | a := a meta def get_app_num_args : expr → nat | (app f a) := get_app_num_args f + 1 | e := 0 meta def get_app_args_aux : list expr → expr → list expr | r (app f a) := get_app_args_aux (a::r) f | r e := r meta def get_app_args : expr → list expr := get_app_args_aux [] meta def mk_app : expr → list expr → expr | e [] := e | e (x::xs) := mk_app (e x) xs meta def ith_arg_aux : expr → nat → expr | (app f a) 0 := a | (app f a) (n+1) := ith_arg_aux f n | e _ := e meta def ith_arg (e : expr) (i : nat) : expr := ith_arg_aux e (get_app_num_args e - i - 1) meta def const_name : expr → name | (const n ls) := n | e := name.anonymous meta def is_constant : expr → bool | (const n ls) := tt | e := ff meta def is_local_constant : expr → bool | (local_const n m bi t) := tt | e := ff meta def local_uniq_name : expr → name | (local_const n m bi t) := n | e := name.anonymous meta def local_pp_name : expr → name | (local_const x n bi t) := n | e := name.anonymous meta def local_type : expr → expr | (local_const _ _ _ t) := t | e := e meta def is_constant_of : expr → name → bool | (const n₁ ls) n₂ := n₁ = n₂ | e n := ff meta def is_app_of (e : expr) (n : name) : bool := is_constant_of (get_app_fn e) n meta def is_napp_of (e : expr) (c : name) (n : nat) : bool := is_app_of e c ∧ get_app_num_args e = n meta def is_false : expr → bool | ```(false) := tt | _ := ff meta def is_not : expr → option expr | ```(not %%a) := some a | ```(%%a → false) := some a | e := none meta def is_and : expr → option (expr × expr) | ```(and %%α %%β) := some (α, β) | _ := none meta def is_or : expr → option (expr × expr) | ```(or %%α %%β) := some (α, β) | _ := none meta def is_eq : expr → option (expr × expr) | ```((%%a : %%_) = %%b) := some (a, b) | _ := none meta def is_ne : expr → option (expr × expr) | ```((%%a : %%_) ≠ %%b) := some (a, b) | _ := none meta def is_bin_arith_app (e : expr) (op : name) : option (expr × expr) := if is_napp_of e op 4 then some (app_arg (app_fn e), app_arg e) else none meta def is_lt (e : expr) : option (expr × expr) := is_bin_arith_app e `lt meta def is_gt (e : expr) : option (expr × expr) := is_bin_arith_app e `gt meta def is_le (e : expr) : option (expr × expr) := is_bin_arith_app e `le meta def is_ge (e : expr) : option (expr × expr) := is_bin_arith_app e `ge meta def is_heq : expr → option (expr × expr × expr × expr) | ```(@heq %%α %%a %%β %%b) := some (α, a, β, b) | _ := none meta def is_pi : expr → bool | (pi _ _ _ _) := tt | e := ff meta def is_arrow : expr → bool | (pi _ _ _ b) := bnot (has_var b) | e := ff meta def is_let : expr → bool | (elet _ _ _ _) := tt | e := ff meta def binding_name : expr → name | (pi n _ _ _) := n | (lam n _ _ _) := n | e := name.anonymous meta def binding_info : expr → binder_info | (pi _ bi _ _) := bi | (lam _ bi _ _) := bi | e := binder_info.default meta def binding_domain : expr → expr | (pi _ _ d _) := d | (lam _ _ d _) := d | e := e meta def binding_body : expr → expr | (pi _ _ _ b) := b | (lam _ _ _ b) := b | e := e meta def imp (a b : expr) : expr := ```(%%a → %%b) meta def lambdas : list expr → expr → expr | (local_const uniq pp info t :: es) f := lam pp info t (abstract_local (lambdas es f) uniq) | _ f := f meta def pis : list expr → expr → expr | (local_const uniq pp info t :: es) f := pi pp info t (abstract_local (pis es f) uniq) | _ f := f open format private meta def p := λ xs, paren (format.join (list.intersperse " " xs)) private meta def macro_args_to_list_aux (n : nat) (args : fin n → expr) : Π (i : nat), i ≤ n → list expr | 0 _ := [] | (i+1) h := args ⟨i, h⟩ :: macro_args_to_list_aux i (nat.le_trans (nat.le_succ _) h) meta def macro_args_to_list (n : nat) (args : fin n → expr) : list expr := macro_args_to_list_aux n args n (nat.le_refl _) meta def to_raw_fmt : expr → format | (var n) := p ["var", to_fmt n] | (sort l) := p ["sort", to_fmt l] | (const n ls) := p ["const", to_fmt n, to_fmt ls] | (mvar n t) := p ["mvar", to_fmt n, to_raw_fmt t] | (local_const n m bi t) := p ["local_const", to_fmt n, to_fmt m, to_raw_fmt t] | (app e f) := p ["app", to_raw_fmt e, to_raw_fmt f] | (lam n bi e t) := p ["lam", to_fmt n, to_string bi, to_raw_fmt e, to_raw_fmt t] | (pi n bi e t) := p ["pi", to_fmt n, to_string bi, to_raw_fmt e, to_raw_fmt t] | (elet n g e f) := p ["elet", to_fmt n, to_raw_fmt g, to_raw_fmt e, to_raw_fmt f] | (macro d n args) := sbracket (format.join (list.intersperse " " ("macro" :: to_fmt (macro_def_name d) :: list.map to_raw_fmt (macro_args_to_list n args)))) meta def mfold {α : Type} {m : Type → Type} [monad m] (e : expr) (a : α) (fn : expr → nat → α → m α) : m α := fold e (return a) (λ e n a, a >>= fn e n) end expr
8d0bc85affea63d3c531a63dcbaf19b9674fc99f
ce4db867008cc96ee6ea6a34d39c2fa7c6ccb536
/src/On.lean
5409373c3a8cea4559727104efc3f67befc6487a
[]
no_license
PatrickMassot/lean-bavard
ab0ceedd6bab43dc0444903a80b911c5fbfb23c3
92a1a8c7ff322e4f575ec709b8c5348990d64f18
refs/heads/master
1,679,565,084,665
1,616,158,570,000
1,616,158,570,000
348,144,867
1
1
null
null
null
null
UTF-8
Lean
false
false
13,104
lean
import tactic import topology.instances.real import .tokens import .compute import .commun namespace tactic setup_tactic_parser @[derive has_reflect] meta inductive On_args | exct_aply : pexpr → list pexpr → On_args -- On conclut par ... (appliqué à ...) | aply : pexpr → On_args -- On applique ... | aply_at : pexpr → list pexpr → On_args -- On applique ... à ... | rwrite : interactive.rw_rules_t → option name → option pexpr → On_args -- On remplace ... (dans ... (qui devient ...)) | rwrite_all : interactive.rw_rules_t → On_args -- On remplace ... partout | compute : On_args -- On calcule | compute_at : name → On_args -- On calcule dans ... | linar : list pexpr → On_args -- On combine ... | contrap (push : bool) : On_args -- On contrapose (simplement) | push_negation (hyp : option name) (new : option pexpr) : On_args -- On pousse la négation (dans ... (qui devient ...)) | discussion : pexpr → On_args -- On discute en utilisant ... [cases] | discussion_hyp : pexpr → On_args -- On discute selon que ... [by_cases] | deplie : list name → On_args -- On déplie ... | deplie_at : list name → loc → option pexpr → On_args -- On déplie ... dans ... (qui devient ...) | rname : name → name → option loc → option pexpr → On_args -- On renomme ... en ... (dans ... (qui devient ...)) | oubli : list name → On_args -- pour clear | reforml : name → pexpr → On_args -- pour change at open On_args meta def qui_devient_parser : lean.parser (option pexpr) := (tk "qui" *> tk "devient" *> texpr)? /-- Syntax for on parser-/ meta def On_parser : lean.parser On_args := with_desc "conclut par ... (appliqué à ...) / On applique ... (à ...) / On calcule (dans ...) / On remplace ... (dans ... (qui devient ...)) / On combine ... / On contrapose / On discute selon ... / On discute selon que ... / On déplie ... (dans ... (qui devient ...)) / On renomme ... en ... (dans ... (qui devient ...)) / On oublie ... / On reformule ... en ... / On pousse la négation (dans ... (qui devient ...))" $ (exct_aply <$> (tk "conclut" *> tk "par" *> texpr) <*> applique_a_parser) <|> (do { e ← tk "applique" *> texpr, aply_at e <$> (tk "à" *> pexpr_list_or_texpr) <|> pure (aply e)}) <|> (tk "calcule" *> (compute_at <$> (tk "dans" *> ident) <|> pure compute)) <|> (linar <$> (tk "combine" *> pexpr_list_or_texpr)) <|> do { rules ← tk "remplace" *> interactive.rw_rules, rwrite_all rules <$ tk "partout" <|> rwrite rules <$> (tk "dans" *> ident)? <*> qui_devient_parser } <|> do { tk "contrapose", (contrap ff <$ tk "simplement") <|> pure (contrap tt) } <|> push_negation <$> (tk "pousse" *> tk "la" *> tk "négation" *> (tk "dans" *> ident)?) <*> qui_devient_parser <|> do { tk "discute", discussion_hyp <$> (tk "selon" *> tk "que" *> texpr) <|> discussion <$> (tk "en" *> tk "utilisant" *> texpr) } <|> do { ids ← tk "déplie" *> ident*, do { place ← tk "dans" *> ident, deplie_at ids (loc.ns [place]) <$> qui_devient_parser } <|> pure (deplie ids) } <|> do { old ← tk "renomme" *> ident <* tk "en", new ← ident, do { place ← tk "dans" *> ident, rname old new (loc.ns [place]) <$> qui_devient_parser } <|> pure (rname old new none none) } <|> reforml <$> (tk "reformule" *> ident <* tk "en") <*> texpr <|> oubli <$> (tk "oublie" *> ident*) /-- Action de démonstration -/ @[interactive] meta def On : parse On_parser → tactic unit | (exct_aply pe l) := conclure pe l | (aply pe) := focus1 (do to_expr pe >>= apply, all_goals (do try assumption, nettoyage), skip) | (aply_at pe pl) := do l ← pl.mmap to_expr, l.mmap' (apply_arrow_to_hyp pe) <|> interactive.specialize (pexpr_mk_app pe pl) | (rwrite pe l new) := do interactive.rewrite pe (loc.ns [l]), match (l, new) with | (some hyp, some newhyp) := do ne ← get_local hyp, enewhyp ← to_expr newhyp, infer_type ne >>= unify enewhyp | (_, some n) := fail "On ne peut pas utiliser « qui devient » lorsqu'on remplace dans plusieurs endroits." | (_, none) := skip end | (rwrite_all pe) := interactive.rewrite pe loc.wildcard | compute := interactive.compute_at_goal' | (compute_at h) := interactive.compute_at_hyp' h | (linar le) := do le' ← le.mmap to_expr >>= split_ands, linarith ff tt le' <|> fail "Combiner ces faits ce suffit pas." | (contrap push) := do `(%%P → %%Q) ← target | fail "On ne peut pas contraposer, le but n'est pas une implication", cp ← mk_mapp ``imp_of_not_imp_not [P, Q] <|> fail "On ne peut pas contraposer, le but n'est pas une implication", apply cp, if push then try (tactic.interactive.push_neg (loc.ns [none])) else skip | (discussion pe) := focus1 (do e ← to_expr pe, `(%%P ∨ %%Q) ← infer_type e <|> fail "Cette expression n'est pas une disjonction.", tgt ← target, `[refine (or.elim %%e _ _)], all_goals (try (clear e)) >> skip) | (discussion_hyp pe) := do e ← to_expr pe, `[refine (or.elim (classical.em %%e) _ _)] | (deplie le) := interactive.unfold le (loc.ns [none]) | (deplie_at le loca new) := do interactive.unfold le loca, match (loca, new) with | (loc.ns [some hyp], some newhyp) := do ne ← get_local hyp, enewhyp ← to_expr newhyp, infer_type ne >>= unify enewhyp | (_, some n) := fail "On ne peut pas utiliser « qui devient » lorsqu'on déplie dans plusieurs endroits." | (_, none) := skip end | (rname old new loca newhyp) := match (loca, newhyp) with | (some (loc.ns [some n]), some truc) := do e ← get_local n, rename_var_at_hyp old new e, interactive.guard_hyp_strict n truc <|> fail "Ce n'est pas l'expression obtenue." | (some (loc.ns [some n]), none) := do e ← get_local n, rename_var_at_hyp old new e | _ := rename_var_at_goal old new end | (oubli l) := clear_lst l | (reforml n pe) := do h ← get_local n, e ← to_expr pe, change_core e (some h) | (push_negation n new) := do interactive.push_neg (loc.ns [n]), match (n, new) with | (some hyp, some stuff) := do e ← get_local hyp, enewhyp ← to_expr stuff, infer_type e >>= unify enewhyp | (none, some stuff) := fail "On ne peut pas indiquer « qui devient » quand on pousse la négation dans le but." | _ := skip end end tactic example (P Q R : Prop) (hRP : R → P) (hR : R) (hQ : Q) : P := begin fail_if_success { On conclut par hRP appliqué à hQ }, On conclut par hRP appliqué à hR, end example (P : ℕ → Prop) (h : ∀ n, P n) : P 0 := begin On conclut par h appliqué à _, end example (P : ℕ → Prop) (h : ∀ n, P n) : P 0 := begin On conclut par h, end example {a b : ℕ}: a + b = b + a := begin On calcule, end example {a b : ℕ} (h : a + b - a = 0) : b = 0 := begin On calcule dans h, On conclut par h, end variables k : nat example (h : true) : true := begin On conclut par h, end example (h : ∀ n : ℕ, true) : true := begin On conclut par h appliqué à 0, end example (h : true → true) : true := begin On applique h, trivial, end example (h : ∀ n k : ℕ, true) : true := begin On conclut par h appliqué à [0, 1], end example (a b : ℕ) (h : a < b) : a ≤ b := begin On conclut par h, end example (a b c : ℕ) (h : a < b ∧ a < c) : a ≤ b := begin On conclut par h, end example (a b c : ℕ) (h : a ≤ b) (h' : b ≤ c) : a ≤ c := begin On combine [h, h'], end example (a b c : ℤ) (h : a = b + c) (h' : b - a = c) : c = 0 := begin On combine [h, h'], end example (a b c : ℕ) (h : a ≤ b) (h' : b ≤ c ∧ a+b ≤ a+c) : a ≤ c := begin On combine [h, h'], end example (a b c : ℕ) (h : a = b) (h' : a = c) : b = c := begin On remplace ← h, On conclut par h', end example (a b c : ℕ) (h : a = b) (h' : a = c) : b = c := begin On remplace h dans h', On conclut par h', end example (f : ℕ → ℕ) (n : ℕ) (h : n > 0 → f n = 0) (hn : n > 0): f n = 0 := begin On remplace h, exact hn end example (f : ℕ → ℕ) (n : ℕ) (h : ∀ n > 0, f n = 0) : f 1 = 0 := begin On remplace h, norm_num end example (a b c : ℕ) (h : a = b) (h' : a = c) : b = c := begin success_if_fail { On remplace h dans h' qui devient a = c }, On remplace h dans h' qui devient b = c, On conclut par h', end example (a b c : ℕ) (h : a = b) (h' : a = c) : a = c := begin On remplace h partout, On conclut par h', end example (P Q R : Prop) (h : P → Q) (h' : P) : Q := begin On applique h à h', On conclut par h', end example (P Q R : Prop) (h : P → Q → R) (hP : P) (hQ : Q) : R := begin On conclut par h appliqué à [hP, hQ], end example (f : ℕ → ℕ) (a b : ℕ) (h : a = b) : f a = f b := begin On applique f à h, On conclut par h, end example (P : ℕ → Prop) (h : ∀ n, P n) : P 0 := begin On applique h à 0, On conclut par h end example (x : ℝ) : (∀ ε > 0, x ≤ ε) → x ≤ 0 := begin On contrapose, intro h, use x/2, split, On conclut par h, -- linarith On conclut par h, -- linarith end example (ε : ℝ) (h : ε > 0) : ε ≥ 0 := by On conclut par h example (ε : ℝ) (h : ε > 0) : ε/2 > 0 := by On conclut par h example (ε : ℝ) (h : ε > 0) : ε ≥ -1 := by On conclut par h example (ε : ℝ) (h : ε > 0) : ε/2 ≥ -3 := by On conclut par h example (x : ℝ) (h : x = 3) : 2*x = 6 := by On conclut par h example (x : ℝ) : (∀ ε > 0, x ≤ ε) → x ≤ 0 := begin On contrapose simplement, intro h, On pousse la négation, On pousse la négation dans h, use x/2, split, On conclut par h, -- linarith On conclut par h, -- linarith end example (x : ℝ) : (∀ ε > 0, x ≤ ε) → x ≤ 0 := begin On contrapose simplement, intro h, success_if_fail { On pousse la négation qui devient 0 < x }, On pousse la négation, success_if_fail { On pousse la négation dans h qui devient ∃ (ε : ℝ), ε > 0 ∧ ε < x }, On pousse la négation dans h qui devient 0 < x, use x/2, split, On conclut par h, -- linarith On conclut par h, -- linarith end example : (∀ n : ℕ, false) → 0 = 1 := begin On contrapose, On calcule, end example (P Q : Prop) (h : P ∨ Q) : true := begin On discute en utilisant h, all_goals { intro, trivial } end example (P : Prop) (hP₁ : P → true) (hP₂ : ¬ P → true): true := begin On discute selon que P, intro h, exact hP₁ h, intro h, exact hP₂ h, end def f (n : ℕ) := 2*n example : f 2 = 4 := begin On déplie f, refl, end example (h : f 2 = 4) : true → true := begin On déplie f dans h, guard_hyp_strict h : 2*2 = 4, exact id end example (h : f 2 = 4) : true → true := begin success_if_fail { On déplie f dans h qui devient 2*2 = 5 }, On déplie f dans h qui devient 2*2 = 4, exact id end example (P : ℕ → ℕ → Prop) (h : ∀ n : ℕ, ∃ k, P n k) : true := begin On renomme n en p dans h, On renomme k en l dans h, guard_hyp_strict h : ∀ p, ∃ l, P p l, trivial end example (P : ℕ → ℕ → Prop) (h : ∀ n : ℕ, ∃ k, P n k) : true := begin On renomme n en p dans h qui devient ∀ p, ∃ k, P p k, success_if_fail { On renomme k en l dans h qui devient ∀ p, ∃ j, P p j }, On renomme k en l dans h qui devient ∀ p, ∃ l, P p l, trivial end example (P : ℕ → ℕ → Prop) : (∀ n : ℕ, ∃ k, P n k) ∨ true := begin On renomme n en p, On renomme k en l, guard_target_strict (∀ p, ∃ l, P p l) ∨ true, right, trivial end example (a b c : ℕ) : true := begin On oublie a, On oublie b c, trivial end example (h : 1 + 1 = 2) : true := begin success_if_fail { On reformule h en 2 = 3 }, On reformule h en 2 = 2, trivial, end
8c04169175c8a8e4f9e3fc0c8787a2ab30eb4e58
35677d2df3f081738fa6b08138e03ee36bc33cad
/src/tactic/where.lean
e47ee13d957eb84e24b43afd68f1351b6a01ce18
[ "Apache-2.0" ]
permissive
gebner/mathlib
eab0150cc4f79ec45d2016a8c21750244a2e7ff0
cc6a6edc397c55118df62831e23bfbd6e6c6b4ab
refs/heads/master
1,625,574,853,976
1,586,712,827,000
1,586,712,827,000
99,101,412
1
0
Apache-2.0
1,586,716,389,000
1,501,667,958,000
Lean
UTF-8
Lean
false
false
8,760
lean
/- Copyright (c) 2019 Keeley Hoek. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Keeley Hoek -/ import data.list.defs tactic.core /-! # The `where` command When working in a Lean file with namespaces, parameters, and variables, it can be confusing to identify what the current "parser context" is. The command `#where` tries to identify and print information about the current location, including the active namespace, open namespaces, and declared variables. This information is not "officially" accessible in the metaprogramming environment; `#where` retrieves it via a number of hacks that are not always reliable. While it is very useful as a quick reference, users should not assume its output is correct. -/ open lean.parser tactic namespace where meta def mk_flag (let_var : option name := none) : lean.parser (name × ℕ) := do n ← mk_user_fresh_name, emit_code_here $ match let_var with | none := sformat!"def {n} := ()" | some v := sformat!"def {n} := let {v} := {v} in ()" end, nfull ← resolve_constant n, return (nfull, n.components.length) meta def get_namespace_core : name × ℕ → name | (nfull, l) := nfull.get_nth_prefix l meta def resolve_var : list name → ℕ → expr | [] _ := default expr | (n :: rest) 0 := expr.const n [] | (v :: rest) (n + 1) := resolve_var rest n meta def resolve_vars_aux : list name → expr → expr | head (expr.var n) := resolve_var head n | head (expr.app f a) := expr.app (resolve_vars_aux head f) (resolve_vars_aux head a) | head (expr.macro m e) := expr.macro m $ e.map (resolve_vars_aux head) | head (expr.mvar n m e) := expr.mvar n m $ resolve_vars_aux head e | head (expr.pi n bi t v) := expr.pi n bi (resolve_vars_aux head t) (resolve_vars_aux (n :: head) v) | head (expr.lam n bi t v) := expr.lam n bi (resolve_vars_aux head t) (resolve_vars_aux (n :: head) v) | head e := e meta def resolve_vars : expr → expr := resolve_vars_aux [] meta def strip_pi_binders_aux : expr → list (name × binder_info × expr) | (expr.pi n bi t b) := (n, bi, t) :: strip_pi_binders_aux b | _ := [] meta def strip_pi_binders : expr → list (name × binder_info × expr) := strip_pi_binders_aux ∘ resolve_vars meta def get_def_variables (n : name) : tactic (list (name × binder_info × expr)) := (strip_pi_binders ∘ declaration.type) <$> get_decl n meta def get_includes_core (flag : name) : tactic (list (name × binder_info × expr)) := get_def_variables flag meta def binder_priority : binder_info → ℕ | binder_info.implicit := 1 | binder_info.strict_implicit := 2 | binder_info.default := 3 | binder_info.inst_implicit := 4 | binder_info.aux_decl := 5 meta def binder_less_important (u v : binder_info) : bool := (binder_priority u) < (binder_priority v) meta def is_in_namespace_nonsynthetic (ns n : name) : bool := ns.is_prefix_of n ∧ ¬(ns.append `user__).is_prefix_of n meta def get_all_in_namespace (ns : name) : tactic (list name) := do e ← get_env, return $ e.fold [] $ λ d l, if is_in_namespace_nonsynthetic ns d.to_name then d.to_name :: l else l meta def fetch_potential_variable_names (ns : name) : tactic (list name) := do l ← get_all_in_namespace ns, l ← l.mmap get_def_variables, return $ list.erase_dup $ l.join.map prod.fst meta def find_var (n' : name) : list (name × binder_info × expr) → option (name × binder_info × expr) | [] := none | ((n, bi, e) :: rest) := if n = n' then some (n, bi, e) else find_var rest meta def is_variable_name (n : name) : lean.parser (option (name × binder_info × expr)) := do { (f, _) ← mk_flag n, l ← get_def_variables f, return $ l.find $ λ v, n = v.1 } <|> return none meta def get_variables_core (ns : name) : lean.parser (list (name × binder_info × expr)) := do l ← fetch_potential_variable_names ns, list.filter_map id <$> l.mmap is_variable_name def select_for_which {α β γ : Type} (p : α → β × γ) [decidable_eq β] (b' : β) : list α → list γ × list α | [] := ([], []) | (a :: rest) := let (cs, others) := select_for_which rest, (b, c) := p a in if b = b' then (c :: cs, others) else (cs, a :: others) meta def collect_by_aux {α β γ : Type} (p : α → β × γ) [decidable_eq β] : list β → list α → list (β × list γ) | [] [] := [] | [] _ := undefined_core "didn't find every key entry!" | (b :: rest) as := let (cs, as) := select_for_which p b as in (b, cs) :: collect_by_aux rest as meta def collect_by {α β γ : Type} (l : list α) (p : α → β × γ) [decidable_eq β] : list (β × list γ) := collect_by_aux p (l.map $ prod.fst ∘ p).erase_dup l def inflate {α β γ : Type} : list (α × list (β × γ)) → list (α × β × γ) | [] := [] | ((a, l) :: rest) := (l.map $ λ e, (a, e.1, e.2)) ++ inflate rest meta def sort_variable_list (l : list (name × binder_info × expr)) : list (expr × binder_info × list name) := let l := collect_by l $ λ v, (v.2.2, (v.1, v.2.1)) in let l := l.map $ λ el, (el.1, collect_by el.2 $ λ v, (v.2, v.1)) in (inflate l).qsort (λ v u, binder_less_important v.2.1 u.2.1) meta def collect_implicit_names : list name → list string × list string | [] := ([], []) | (n :: ns) := let n := to_string n, (ns, ins) := collect_implicit_names ns in if n.front = '_' then (ns, n :: ins) else (n :: ns, ins) meta def format_variable : expr × binder_info × list name → tactic string | (e, bi, ns) := do let (l, r) := bi.brackets, e ← pp e, let (ns, ins) := collect_implicit_names ns, let ns := " ".intercalate $ ns.map to_string, let ns := if ns.length = 0 then [] else [sformat!"{l}{ns} : {e}{r}"], let ins := ins.map $ λ _, sformat!"{l}{e}{r}", return $ " ".intercalate $ ns ++ ins meta def compile_variable_list (l : list (name × binder_info × expr)) : tactic string := " ".intercalate <$> (sort_variable_list l).mmap format_variable meta def trace_namespace (ns : name) : lean.parser unit := do let str := match ns with | name.anonymous := "[root namespace]" | ns := to_string ns end, trace format!"namespace {str}" meta def strip_namespace (ns n : name) : name := n.replace_prefix ns name.anonymous meta def get_opens (ns : name) : tactic (list name) := do opens ← list.erase_dup <$> open_namespaces, return $ (opens.erase ns).map $ strip_namespace ns meta def trace_opens (ns : name) : tactic unit := do l ← get_opens ns, let str := " ".intercalate $ l.map to_string, if l.empty then skip else trace format!"open {str}" meta def trace_variables (ns : name) : lean.parser unit := do l ← get_variables_core ns, str ← compile_variable_list l, if l.empty then skip else trace format!"variables {str}" meta def trace_includes (f : name) : tactic unit := do l ← get_includes_core f, let str := " ".intercalate $ l.map $ λ n, to_string n.1, if l.empty then skip else trace format!"include {str}" meta def trace_nl : ℕ → tactic unit | 0 := skip | (n + 1) := trace "" >> trace_nl n meta def trace_end (ns : name) : tactic unit := trace format!"end {ns}" meta def trace_where : lean.parser unit := do (f, n) ← mk_flag, let ns := get_namespace_core (f, n), trace_namespace ns, trace_nl 1, trace_opens ns, trace_variables ns, trace_includes f, trace_nl 3, trace_end ns open interactive reserve prefix `#where`:max /-- When working in a Lean file with namespaces, parameters, and variables, it can be confusing to identify what the current "parser context" is. The command `#where` tries to identify and print information about the current location, including the active namespace, open namespaces, and declared variables. This information is not "officially" accessible in the metaprogramming environment; `#where` retrieves it via a number of hacks that are not always reliable. While it is very useful as a quick reference, users should not assume its output is correct. -/ @[user_command] meta def where_cmd (_ : decl_meta_info) (_ : parse $ tk "#where") : lean.parser unit := trace_where add_tactic_doc { name := "#where", category := doc_category.cmd, decl_names := [`where.where_cmd], tags := ["environment"] } end where namespace lean.parser open where meta def get_namespace : lean.parser name := get_namespace_core <$> mk_flag meta def get_includes : lean.parser (list (name × binder_info × expr)) := do (f, _) ← mk_flag, get_includes_core f meta def get_variables : lean.parser (list (name × binder_info × expr)) := do (f, _) ← mk_flag, get_variables_core f end lean.parser
f2f9b966cf28fc1a234facf8802e5cc330a3a26d
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/has_sizeof_indices.lean
e9d987a55bf44ecbffe604cfeac376b3ff54b533
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
456
lean
universes u inductive foo : nat → Type | baz (n : nat) : foo n → foo (nat.succ n) def foo.size (α β : Type u) (n a : ℕ) : has_sizeof (foo a) := by tactic.mk_has_sizeof_instance inductive bla : nat → bool → Type | mk : bla 0 ff | baz (n : nat) : bla n ff → bla (nat.succ n) tt | boo (n : nat) : bla n tt → bla (nat.succ n) ff def bla.size (α β : Type u) (a : ℕ) (t : bool) : has_sizeof (bla a t) := by tactic.mk_has_sizeof_instance
07b13f3a5396d97a1777f0f434663dadf0a17f2f
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
/tests/lean/induction1.lean
7b32970ee35af59e70ca24116b8716d7c1d8dc81
[ "Apache-2.0" ]
permissive
codyroux/lean0.1
1ce92751d664aacff0529e139083304a7bbc8a71
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
refs/heads/master
1,610,830,535,062
1,402,150,480,000
1,402,150,480,000
19,588,851
2
0
null
null
null
null
UTF-8
Lean
false
false
1,249
lean
import macros -- loads the λ, λ, obtain macros using Nat -- using the Nat namespace (it allows us to suppress the Nat:: prefix) axiom Induction : ∀ P : Nat → Bool, P 0 → (∀ n, P n → P (n + 1)) → ∀ n, P n. -- induction on n theorem Comm1 : ∀ n m, n + m = m + n := Induction _ -- I use a placeholder because I do not want to write the P (λ m, -- Base case calc 0 + m = m : add_zerol m ... = m + 0 : symm (add_zeror m)) (λ n, -- Inductive case λ (iH : ∀ m, n + m = m + n), λ m, calc n + 1 + m = (n + m) + 1 : add_succl n m ... = (m + n) + 1 : { iH m } ... = m + (n + 1) : symm (add_succr m n)) -- indunction on m theorem Comm2 : ∀ n m, n + m = m + n := λ n, Induction _ (calc n + 0 = n : add_zeror n ... = 0 + n : symm (add_zerol n)) (λ m, λ (iH : n + m = m + n), calc n + (m + 1) = (n + m) + 1 : add_succr n m ... = (m + n) + 1 : { iH } ... = (m + 1) + n : symm (add_succl m n)) print environment 1