blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
809909d1061d6c5ed91d24afd2b97f7a6704d48d
ca1ad81c8733787aba30f7a8d63f418508e12812
/clfrags/src/hilbert/wr/proofs/pt_neg.lean
7c8668651b20c9f786be85f8cbbe07e33f6e8145
[]
no_license
greati/hilbert-classical-fragments
5cdbe07851e979c8a03c621a5efd4d24bbfa333a
18a21ac6b2e890060eb4ae65752fc0245394d226
refs/heads/master
1,591,973,117,184
1,573,822,710,000
1,573,822,710,000
194,334,439
2
0
null
null
null
null
UTF-8
Lean
false
false
6,492
lean
import hilbert.wr.pt_neg namespace clfrags namespace hilbert namespace wr namespace pt_neg theorem pt₂_neg {a b c : Prop} (h₁ : neg (pt a b c)) : neg (pt b a c) := have h₂ : pt (neg a) b c, from ptn₁ h₁, have h₃ : pt a (neg b) c, from ptn₃ h₂, have h₄ : pt (neg b) a c, from pt.pt₂ h₃, show neg (pt b a c), from ptn₂ h₄ theorem pt₃_neg {a b c : Prop} (h₁ : neg (pt a b c)) : neg (pt a c b) := have h₂ : pt (neg a) b c, from ptn₁ h₁, have h₃ : pt (neg a) c b, from pt.pt₃ h₂, show neg (pt a c b), from ptn₂ h₃ theorem pt₄_neg {a b : Prop} (h₁ : neg a) : neg (pt a b b) := have h₂ : pt (neg a) b b, from pt.pt₄ h₁, show neg (pt a b b), from ptn₂ h₂ theorem pt₅_neg {a b : Prop} (h₁ : neg (pt a b b)) : neg a := have h₂ : pt (neg a) b b, from ptn₁ h₁, show neg a, from pt.pt₅ h₂ theorem pt₆_neg {a b c d e : Prop} (h₁ : neg (pt a b (pt c d e))) : neg (pt (pt a b c) d e) := have h₂ : pt (neg a) b (pt c d e), from ptn₁ h₁, have h₃ : pt (pt (neg a) b c) d e, from pt.pt₆ h₂, have h₄ : pt d e (pt (neg a) b c), from pt.pt₃ (pt.pt₂ h₃), have h₅ : pt (pt d e (neg a)) b c, from pt.pt₆ h₄, have h₆ : pt b c (pt d e (neg a)), from pt.pt₃ (pt.pt₂ h₅), have h₇ : pt b c (pt (neg a) d e), from pt.pt₂_pt (pt.pt₃_pt h₆), have h₈ : pt (pt (neg a) d e) b c, from pt.pt₂ (pt.pt₃ h₇), have h₉ : pt (neg a) d (pt e b c), from pt.pt₇ h₈, have h₁₀ : neg (pt a d (pt e b c)), from ptn₂ h₉, have h₁₁ : neg (pt d a (pt e b c)), from pt₂_neg h₁₀, have h₁₂ : pt (neg d) a (pt e b c), from ptn₁ h₁₁, have h₁₃ : pt (pt (neg d) a e) b c, from pt.pt₆ h₁₂, have h₁₄ : pt b c (pt (neg d) a e), from pt.pt₃ (pt.pt₂ h₁₃), have h₁₅ : pt b c (pt a (neg d) e), from pt.pt₂_pt h₁₄, have h₁₆ : pt (pt b c a) (neg d) e, from pt.pt₆ h₁₅, have h₁₇ : pt (neg d) e (pt b c a), from pt.pt₃ (pt.pt₂ h₁₆), have h₁₈ : pt (neg d) e (pt a b c), from pt.pt₂_pt (pt.pt₃_pt h₁₇), have h₁₉ : neg (pt d e (pt a b c)), from ptn₂ h₁₈, show neg (pt (pt a b c) d e), from pt₂_neg (pt₃_neg h₁₉) theorem pt₇_neg {a b c d e : Prop} (h₁ : neg (pt (pt a b c) d e)) : neg (pt a b (pt c d e)) := have h₂ : neg (pt d (pt a b c) e), from pt₂_neg h₁, have h₃ : neg (pt d e (pt a b c)), from pt₃_neg h₂, have h₄ : neg (pt (pt d e a) b c), from pt₆_neg h₃, have h₅ : neg (pt b (pt d e a) c), from pt₂_neg h₄, have h₆ : neg (pt b c (pt d e a)), from pt₃_neg h₅, have h₇ : neg (pt (pt b c d) e a), from pt₆_neg h₆, have h₈ : neg (pt e (pt b c d) a), from pt₂_neg h₇, have h₉ : neg (pt e a (pt b c d)), from pt₃_neg h₈, have h₁₀ : neg (pt (pt e a b) c d), from pt₆_neg h₉, have h₁₁ : neg (pt c (pt e a b) d), from pt₂_neg h₁₀, have h₁₂ : neg (pt c d (pt e a b)), from pt₃_neg h₁₁, have h₁₃ : neg (pt (pt c d e) a b), from pt₆_neg h₁₂, have h₁₄ : neg (pt a (pt c d e) b), from pt₂_neg h₁₃, show neg (pt a b (pt c d e)), from pt₃_neg h₁₄ theorem n₁_pt {a b c d : Prop} (h₁ : pt c d a) (h₂ : pt c d (neg a)) : pt c d b := have h₃ : pt a c d, from pt.pt₂ (pt.pt₃ h₁), have h₄ : pt (neg a) c d, from pt.pt₂ (pt.pt₃ h₂), have h₅ : neg (pt a c d), from ptn₂ h₄, show pt c d b, from n₁ h₃ h₅ theorem ptn₁_pt {a b c d e : Prop} (h₁ : pt d e (neg (pt a b c))) : pt d e (pt (neg a) b c) := have h₂ : pt (neg (pt a b c)) d e, from pt.pt₂ (pt.pt₃ h₁), have h₃ : neg (pt (pt a b c) d e), from ptn₂ h₂, have h₄ : neg (pt a b (pt c d e)), from pt₇_neg h₃, have h₅ : pt (neg a) b (pt c d e), from ptn₁ h₄, have h₆ : pt (pt (neg a) b c) d e, from pt.pt₆ h₅, show pt d e (pt (neg a) b c), from pt.pt₃ (pt.pt₂ h₆) theorem ptn₂_pt {a b c d e : Prop} (h₁ : pt d e (pt (neg a) b c)) : pt d e (neg (pt a b c)) := have h₂ : pt (pt (neg a) b c) d e, from pt.pt₂ (pt.pt₃ h₁), have h₃ : pt (neg a) b (pt c d e), from pt.pt₇ h₂, have h₄ : neg (pt a b (pt c d e)), from ptn₂ h₃, have h₅ : neg (pt (pt a b c) d e), from pt₆_neg h₄, have h₆ : pt (neg (pt a b c)) d e, from ptn₁ h₅, show pt d e (neg (pt a b c)), from pt.pt₃ (pt.pt₂ h₆) theorem ptn₃_pt {a b c d e : Prop} (h₁ : pt d e (neg (pt a b c))) : pt d e (pt a (neg b) c) := have h₂ : pt (neg (pt a b c)) d e, from pt.pt₂ (pt.pt₃ h₁), have h₃ : neg (pt (pt a b c) d e), from ptn₂ h₂, have h₄ : neg (pt a b (pt c d e)), from pt₇_neg h₃, have h₅ : neg (pt b a (pt c d e)), from pt₂_neg h₄, have h₆ : pt (neg b) a (pt c d e), from ptn₁ h₅, have h₇ : pt a (neg b) (pt c d e), from pt.pt₂ h₆, have h₈ : pt (pt a (neg b) c) d e, from pt.pt₆ h₇, show pt d e (pt a (neg b) c), from pt.pt₃ (pt.pt₂ h₈) end pt_neg end wr end hilbert end clfrags
3665f9dbd238d02dc8ddf81b4e71914449df4be8
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
/src/algebra/free_monoid.lean
d6d45edf173c2ef72a9276d93ee622223e9f9ebf
[ "Apache-2.0" ]
permissive
keeferrowan/mathlib
f2818da875dbc7780830d09bd4c526b0764a4e50
aad2dfc40e8e6a7e258287a7c1580318e865817e
refs/heads/master
1,661,736,426,952
1,590,438,032,000
1,590,438,032,000
266,892,663
0
0
Apache-2.0
1,590,445,835,000
1,590,445,835,000
null
UTF-8
Lean
false
false
4,444
lean
/- Copyright (c) 2019 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Yury Kudryashov -/ import data.equiv.basic import data.list.basic /-! # Free monoid over a given alphabet ## Main definitions * `free_monoid α`: free monoid over alphabet `α`; defined as a synonym for `list α` with multiplication given by `(++)`. * `free_monoid.of`: embedding `α → free_monoid α` sending each element `x` to `[x]`; * `free_monoid.lift α M`: natural equivalence between `α → M` and `free_monoid α →* M`; for technical reasons `α` and `M` are explicit arguments; * `free_monoid.map`: embedding of `α → β` into `free_monoid α →* free_monoid β` given by `list.map`. -/ variables {α : Type*} {β : Type*} {γ : Type*} {M : Type*} [monoid M] {N : Type*} [monoid N] /-- Free monoid over a given alphabet. -/ @[to_additive free_add_monoid "Free nonabelian additive monoid over a given alphabet"] def free_monoid (α) := list α namespace free_monoid @[to_additive] instance : monoid (free_monoid α) := { one := [], mul := λ x y, (x ++ y : list α), mul_one := by intros; apply list.append_nil, one_mul := by intros; refl, mul_assoc := by intros; apply list.append_assoc } @[to_additive] instance : inhabited (free_monoid α) := ⟨1⟩ @[to_additive] lemma one_def : (1 : free_monoid α) = [] := rfl @[to_additive] lemma mul_def (xs ys : list α) : (xs * ys : free_monoid α) = (xs ++ ys : list α) := rfl /-- Embeds an element of `α` into `free_monoid α` as a singleton list. -/ @[to_additive "Embeds an element of `α` into `free_add_monoid α` as a singleton list." ] def of (x : α) : free_monoid α := [x] @[to_additive] lemma of_def (x : α) : of x = [x] := rfl /-- Recursor for `free_monoid` using `1` and `of x * xs` instead of `[]` and `x :: xs`. -/ @[to_additive "Recursor for `free_add_monoid` using `0` and `of x + xs` instead of `[]` and `x :: xs`."] def rec_on {C : free_monoid α → Sort*} (xs : free_monoid α) (h0 : C 1) (ih : Π x xs, C xs → C (of x * xs)) : C xs := list.rec_on xs h0 ih attribute [elab_as_eliminator] rec_on free_add_monoid.rec_on @[to_additive] lemma hom_eq ⦃f g : free_monoid α →* M⦄ (h : ∀ x, f (of x) = g (of x)) : f = g := monoid_hom.ext $ λ l, rec_on l (f.map_one.trans g.map_one.symm) $ λ x xs hxs, by simp only [h, hxs, monoid_hom.map_mul] attribute [ext, priority 1500] hom_eq free_add_monoid.hom_eq section -- TODO[Lean 4] : make these arguments implicit variables (α M) /-- Equivalence between maps `α → M` and monoid homomorphisms `free_monoid α →* M`. -/ @[to_additive "Equivalence between maps `α → A` and additive monoid homomorphisms `free_add_monoid α →+ A`."] def lift : (α → M) ≃ (free_monoid α →* M) := { to_fun := λ f, ⟨λ l, (l.map f).prod, rfl, λ l₁ l₂, by simp only [mul_def, list.map_append, list.prod_append]⟩, inv_fun := λ f x, f (of x), left_inv := λ f, funext $ λ x, one_mul (f x), right_inv := λ f, hom_eq $ λ x, one_mul (f (of x)) } end @[to_additive] lemma lift_apply (f : α → M) (l : list α) : lift α M f l = (l.map f).prod := rfl @[to_additive] lemma lift_comp_of (f : α → M) : (lift α M f) ∘ of = f := (lift α M).symm_apply_apply f @[simp, to_additive] lemma lift_eval_of (f : α → M) (x : α) : lift α M f (of x) = f x := congr_fun (lift_comp_of f) x @[simp, to_additive] lemma lift_restrict (f : free_monoid α →* M) : lift α M (f ∘ of) = f := (lift α M).apply_symm_apply f lemma comp_lift (g : M →* N) (f : α → M) : g.comp (lift α M f) = lift α N (g ∘ f) := by { ext, simp } /-- The unique monoid homomorphism `free_monoid α →* free_monoid β` that sends each `of x` to `of (f x)`. -/ @[to_additive "The unique additive monoid homomorphism `free_add_monoid α →+ free_add_monoid β` that sends each `of x` to `of (f x)`."] def map (f : α → β) : free_monoid α →* free_monoid β := { to_fun := list.map f, map_one' := rfl, map_mul' := λ l₁ l₂, list.map_append _ _ _ } @[simp, to_additive] lemma map_of (f : α → β) (x : α) : map f (of x) = of (f x) := rfl @[to_additive] lemma lift_of_comp_eq_map (f : α → β) : lift α (free_monoid β) (λ x, of (f x)) = map f := hom_eq $ λ x, rfl @[to_additive] lemma map_comp (g : β → γ) (f : α → β) : map (g ∘ f) = (map g).comp (map f) := hom_eq $ λ x, rfl end free_monoid
efec7e6a8b2f875b7a9ff98200d4734be2095e49
618003631150032a5676f229d13a079ac875ff77
/src/data/matrix/notation.lean
b50d25b9b944688f43f8364b4e457a5533313908
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
11,018
lean
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen Notation for vectors and matrices -/ import data.fintype.card import data.matrix.basic import tactic.fin_cases /-! # Matrix and vector notation This file defines notation for vectors and matrices. Given `a b c d : α`, the notation allows us to write `![a, b, c, d] : fin 4 → α`. Nesting vectors gives a matrix, so `![![a, b], ![c, d]] : matrix (fin 2) (fin 2) α`. This file includes `simp` lemmas for applying operations in `data.matrix.basic` to values built out of this notation. ## Main definitions * `vec_empty` is the empty vector (or `0` by `n` matrix) `![]` * `vec_cons` prepends an entry to a vector, so `![a, b]` is `vec_cons a (vec_cons b vec_empty)` ## Implementation notes The `simp` lemmas require that one of the arguments is of the form `vec_cons _ _`. This ensures `simp` works with entries only when (some) entries are already given. In other words, this notation will only appear in the output of `simp` if it already appears in the input. ## Notations The main new notation is `![a, b]`, which gets expanded to `vec_cons a (vec_cons b vec_empty)`. -/ namespace matrix universe u variables {α : Type u} open_locale matrix section matrix_notation /-- `![]` is the vector with no entries. -/ def vec_empty : fin 0 → α := fin_zero_elim /-- `vec_cons h t` prepends an entry `h` to a vector `t`. The inverse functions are `vec_head` and `vec_tail`. The notation `![a, b, ...]` expands to `vec_cons a (vec_cons b ...)`. -/ def vec_cons {n : ℕ} (h : α) (t : fin n → α) : fin n.succ → α := fin.cons h t notation `![` l:(foldr `, ` (h t, vec_cons h t) vec_empty `]`) := l /-- `vec_head v` gives the first entry of the vector `v` -/ def vec_head {n : ℕ} (v : fin n.succ → α) : α := v 0 /-- `vec_tail v` gives a vector consisting of all entries of `v` except the first -/ def vec_tail {n : ℕ} (v : fin n.succ → α) : fin n → α := v ∘ fin.succ end matrix_notation variables {m n o : ℕ} {m' n' o' : Type} [fintype m'] [fintype n'] [fintype o'] lemma empty_eq (v : fin 0 → α) : v = ![] := by { ext i, fin_cases i } section val @[simp] lemma cons_val_zero (x : α) (u : fin m → α) : vec_cons x u 0 = x := rfl @[simp] lemma cons_val_zero' (h : 0 < m.succ) (x : α) (u : fin m → α) : vec_cons x u ⟨0, h⟩ = x := rfl @[simp] lemma cons_val_succ (x : α) (u : fin m → α) (i : fin m) : vec_cons x u i.succ = u i := by simp [vec_cons] @[simp] lemma cons_val_succ' {i : ℕ} (h : i.succ < m.succ) (x : α) (u : fin m → α) : vec_cons x u ⟨i.succ, h⟩ = u ⟨i, nat.lt_of_succ_lt_succ h⟩ := by simp [vec_cons, fin.cons, fin.cases] @[simp] lemma head_cons (x : α) (u : fin m → α) : vec_head (vec_cons x u) = x := rfl @[simp] lemma tail_cons (x : α) (u : fin m → α) : vec_tail (vec_cons x u) = u := by { ext, simp [vec_tail] } @[simp] lemma empty_val' {n' : Type} (j : n') : (λ i, (![] : fin 0 → n' → α) i j) = ![] := empty_eq _ @[simp] lemma cons_val' (v : n' → α) (B : matrix (fin m) n' α) (i j) : vec_cons v B i j = vec_cons (v j) (λ i, B i j) i := by { refine fin.cases _ _ i; simp } @[simp] lemma head_val' (B : matrix (fin m.succ) n' α) (j : n') : vec_head (λ i, B i j) = vec_head B j := rfl @[simp] lemma tail_val' (B : matrix (fin m.succ) n' α) (j : n') : vec_tail (λ i, B i j) = λ i, vec_tail B i j := by { ext, simp [vec_tail] } @[simp] lemma cons_head_tail (u : fin m.succ → α) : vec_cons (vec_head u) (vec_tail u) = u := by { ext i, refine fin.cases _ _ i; simp [vec_head, vec_tail] } /-- `![a, b, ...] 1` is equal to `b`. The simplifier needs a special lemma for length `≥ 2`, in addition to `cons_val_succ`, because `1 : fin 1 = 0 : fin 1`. -/ @[simp] lemma cons_val_one (x : α) (u : fin m.succ → α) : vec_cons x u 1 = vec_head u := cons_val_succ x u 0 @[simp] lemma cons_val_fin_one (x : α) (u : fin 0 → α) (i : fin 1) : vec_cons x u i = x := by { fin_cases i, refl } end val section dot_product variables [add_comm_monoid α] [has_mul α] @[simp] lemma dot_product_empty (v w : fin 0 → α) : dot_product v w = 0 := finset.sum_empty @[simp] lemma cons_dot_product (x : α) (v : fin n → α) (w : fin n.succ → α) : dot_product (vec_cons x v) w = x * vec_head w + dot_product v (vec_tail w) := by simp [dot_product, fin.sum_univ_succ, vec_head, vec_tail] @[simp] lemma dot_product_cons (v : fin n.succ → α) (x : α) (w : fin n → α) : dot_product v (vec_cons x w) = vec_head v * x + dot_product (vec_tail v) w := by simp [dot_product, fin.sum_univ_succ, vec_head, vec_tail] end dot_product section col_row @[simp] lemma col_empty (v : fin 0 → α) : col v = vec_empty := empty_eq _ @[simp] lemma col_cons (x : α) (u : fin m → α) : col (vec_cons x u) = vec_cons (λ _, x) (col u) := by { ext i j, refine fin.cases _ _ i; simp [vec_head, vec_tail] } @[simp] lemma row_empty : row (vec_empty : fin 0 → α) = λ _, vec_empty := by { ext, refl } @[simp] lemma row_cons (x : α) (u : fin m → α) : row (vec_cons x u) = λ _, vec_cons x u := by { ext, refl } end col_row section transpose @[simp] lemma transpose_empty_rows (A : matrix m' (fin 0) α) : Aᵀ = ![] := empty_eq _ @[simp] lemma transpose_empty_cols : (![] : matrix (fin 0) m' α)ᵀ = λ i, ![] := funext (λ i, empty_eq _) @[simp] lemma cons_transpose (v : n' → α) (A : matrix (fin m) n' α) : (vec_cons v A)ᵀ = λ i, vec_cons (v i) (Aᵀ i) := by { ext i j, refine fin.cases _ _ j; simp } @[simp] lemma head_transpose (A : matrix m' (fin n.succ) α) : vec_head (Aᵀ) = vec_head ∘ A := rfl @[simp] lemma tail_transpose (A : matrix m' (fin n.succ) α) : vec_tail (Aᵀ) = (vec_tail ∘ A)ᵀ := by { ext i j, refl } end transpose section mul variables [semiring α] @[simp] lemma empty_mul (A : matrix (fin 0) n' α) (B : matrix n' o' α) : A ⬝ B = ![] := empty_eq _ @[simp] lemma empty_mul_empty (A : matrix m' (fin 0) α) (B : matrix (fin 0) o' α) : A ⬝ B = 0 := rfl @[simp] lemma mul_empty (A : matrix m' n' α) (B : matrix n' (fin 0) α) : A ⬝ B = λ _, ![] := funext (λ _, empty_eq _) lemma mul_val_succ (A : matrix (fin m.succ) n' α) (B : matrix n' o' α) (i : fin m) (j : o') : (A ⬝ B) i.succ j = (vec_tail A ⬝ B) i j := rfl @[simp] lemma cons_mul (v : n' → α) (A : matrix (fin m) n' α) (B : matrix n' o' α) : vec_cons v A ⬝ B = vec_cons (vec_mul v B) (A ⬝ B) := by { ext i j, refine fin.cases _ _ i, { refl }, simp [mul_val_succ] } end mul section vec_mul variables [semiring α] @[simp] lemma empty_vec_mul (v : fin 0 → α) (B : matrix (fin 0) o' α) : vec_mul v B = 0 := rfl @[simp] lemma vec_mul_empty (v : n' → α) (B : matrix n' (fin 0) α) : vec_mul v B = ![] := empty_eq _ @[simp] lemma cons_vec_mul (x : α) (v : fin n → α) (B : matrix (fin n.succ) o' α) : vec_mul (vec_cons x v) B = x • (vec_head B) + vec_mul v (vec_tail B) := by { ext i, simp [vec_mul] } @[simp] lemma vec_mul_cons (v : fin n.succ → α) (w : o' → α) (B : matrix (fin n) o' α) : vec_mul v (vec_cons w B) = vec_head v • w + vec_mul (vec_tail v) B := by { ext i, simp [vec_mul] } end vec_mul section mul_vec variables [semiring α] @[simp] lemma empty_mul_vec (A : matrix (fin 0) n' α) (v : n' → α) : mul_vec A v = ![] := empty_eq _ @[simp] lemma mul_vec_empty (A : matrix m' (fin 0) α) (v : fin 0 → α) : mul_vec A v = 0 := rfl @[simp] lemma cons_mul_vec (v : n' → α) (A : fin m → n' → α) (w : n' → α) : mul_vec (vec_cons v A) w = vec_cons (dot_product v w) (mul_vec A w) := by { ext i, refine fin.cases _ _ i; simp [mul_vec] } @[simp] lemma mul_vec_cons {α} [comm_semiring α] (A : m' → (fin n.succ) → α) (x : α) (v : fin n → α) : mul_vec A (vec_cons x v) = (x • vec_head ∘ A) + mul_vec (vec_tail ∘ A) v := by { ext i, simp [mul_vec, mul_comm] } end mul_vec section vec_mul_vec variables [semiring α] @[simp] lemma empty_vec_mul_vec (v : fin 0 → α) (w : n' → α) : vec_mul_vec v w = ![] := empty_eq _ @[simp] lemma vec_mul_vec_empty (v : m' → α) (w : fin 0 → α) : vec_mul_vec v w = λ _, ![] := funext (λ i, empty_eq _) @[simp] lemma cons_vec_mul_vec (x : α) (v : fin m → α) (w : n' → α) : vec_mul_vec (vec_cons x v) w = vec_cons (x • w) (vec_mul_vec v w) := by { ext i, refine fin.cases _ _ i; simp [vec_mul_vec] } @[simp] lemma vec_mul_vec_cons (v : m' → α) (x : α) (w : fin n → α) : vec_mul_vec v (vec_cons x w) = λ i, v i • vec_cons x w := by { ext i j, simp [vec_mul_vec]} end vec_mul_vec section smul variables [semiring α] @[simp] lemma smul_empty (x : α) (v : fin 0 → α) : x • v = ![] := empty_eq _ @[simp] lemma smul_cons (x y : α) (v : fin n → α) : x • vec_cons y v = vec_cons (x * y) (x • v) := by { ext i, refine fin.cases _ _ i; simp } end smul section add variables [has_add α] @[simp] lemma empty_add_empty (v w : fin 0 → α) : v + w = ![] := empty_eq _ @[simp] lemma cons_add (x : α) (v : fin n → α) (w : fin n.succ → α) : vec_cons x v + w = vec_cons (x + vec_head w) (v + vec_tail w) := by { ext i, refine fin.cases _ _ i; simp [vec_head, vec_tail] } @[simp] lemma add_cons (v : fin n.succ → α) (y : α) (w : fin n → α) : v + vec_cons y w = vec_cons (vec_head v + y) (vec_tail v + w) := by { ext i, refine fin.cases _ _ i; simp [vec_head, vec_tail] } end add section zero variables [has_zero α] @[simp] lemma zero_empty : (0 : fin 0 → α) = ![] := empty_eq _ @[simp] lemma cons_zero_zero : vec_cons (0 : α) (0 : fin n → α) = 0 := by { ext i j, refine fin.cases _ _ i, { refl }, simp } @[simp] lemma head_zero : vec_head (0 : fin n.succ → α) = 0 := rfl @[simp] lemma tail_zero : vec_tail (0 : fin n.succ → α) = 0 := rfl @[simp] lemma cons_eq_zero_iff {v : fin n → α} {x : α} : vec_cons x v = 0 ↔ x = 0 ∧ v = 0 := ⟨ λ h, ⟨ congr_fun h 0, by { convert congr_arg vec_tail h, simp } ⟩, λ ⟨hx, hv⟩, by simp [hx, hv] ⟩ open_locale classical lemma cons_nonzero_iff {v : fin n → α} {x : α} : vec_cons x v ≠ 0 ↔ (x ≠ 0 ∨ v ≠ 0) := ⟨ λ h, not_and_distrib.mp (h ∘ cons_eq_zero_iff.mpr), λ h, mt cons_eq_zero_iff.mp (not_and_distrib.mpr h) ⟩ end zero section neg variables [has_neg α] @[simp] lemma neg_empty (v : fin 0 → α) : -v = ![] := empty_eq _ @[simp] lemma neg_cons (x : α) (v : fin n → α) : -(vec_cons x v) = vec_cons (-x) (-v) := by { ext i, refine fin.cases _ _ i; simp } end neg section minor @[simp] lemma minor_empty (A : matrix m' n' α) (row : fin 0 → m') (col : o' → n') : minor A row col = ![] := empty_eq _ @[simp] lemma minor_cons_row (A : matrix m' n' α) (i : m') (row : fin m → m') (col : o' → n') : minor A (vec_cons i row) col = vec_cons (λ j, A i (col j)) (minor A row col) := by { ext i j, refine fin.cases _ _ i; simp [minor] } end minor end matrix
0700b1f3b5a20248a8fa555f22fcc5ea31dc73ee
ec5e5a9dbe7f60fa5784d15211d8bf24ada0825c
/src/Alignment.lean
6337f78b752eb7eae21b1014f675e8538656d494
[]
no_license
pnwamk/lean-llvm
fcd9a828e52e80eb197f7d9032b3846f2e09ef74
ebc3bca9a57a6aef29529d46394f560398fb5c9c
refs/heads/master
1,668,418,078,706
1,593,548,643,000
1,593,548,643,000
258,617,753
0
0
null
1,587,760,298,000
1,587,760,298,000
null
UTF-8
Lean
false
false
3,174
lean
import Init.Data.RBMap namespace RBNode universes u v variables {α : Type u} {β : α → Type v} section variable (lt : α → α → Bool) @[specialize] def upperBound : RBNode α β → α → Option (Sigma β) → Option (Sigma β) | leaf, x, ub => ub | node _ a ky vy b, x, ub => if lt x ky then upperBound a x (some ⟨ky, vy⟩) else if lt ky x then upperBound b x ub else some ⟨ky, vy⟩ end end RBNode namespace RBMap universes u v variables {α : Type u} {β : Type v} {lt : α → α → Bool} /- (upperBound k) retrieves the kv pair of the smallest key larger than or equal to `k`, if it exists -/ @[inline] def upperBound : RBMap α β lt → α → Option (Sigma (fun (k : α) => β)) | ⟨t, _⟩, x => t.upperBound lt x none end RBMap namespace LLVM -- An alignment represents a number of bytes that must be a power of 2, -- and is represented via its exponent structure Alignment := (exponent : Nat) -- 1-byte alignment, which is the minimum possible def unaligned : Alignment := ⟨0⟩ -- 2-byte alignment def align2 : Alignment := ⟨1⟩ -- 4-byte alignment def align4 : Alignment := ⟨2⟩ -- 8-byte alignment def align8 : Alignment := ⟨3⟩ -- 16-byte alignment def align16 : Alignment := ⟨4⟩ def maxAlignment (x y: Alignment) : Alignment := ⟨Nat.max x.exponent y.exponent⟩ instance alignment.inh : Inhabited Alignment := ⟨unaligned⟩ partial def lg2aux : Nat → Nat → Nat | r, 0 => r | r, n => lg2aux (r+1) (n/2) def toAlignment (x:Nat) : Option Alignment := let l := lg2aux 0 (x/2); if 2^l = x then some ⟨l⟩ else none -- @padToAlignment x a@ returns the smallest value aligned with @a@ not less than @x@. def padToAlignment (x:Nat) (a:Alignment) := let m : Nat := 2^a.exponent; (x + m - 1)/m * m -- @padDownToAlignment x a@ returns the largest value aligned with @a@ that is not larger than @x@. def padDownToAlignment (x:Nat) (a:Alignment) : Nat := let m : Nat := 2^a.exponent; x/m * m def AlignInfo := RBMap Nat Alignment (λx y => decide (x < y)) -- Get alignment for the integer type of the specified bitwidth, -- using LLVM's rules for integer types: "If no match is found, and -- the type sought is an integer type, then the smallest integer type -- that is larger than the bitwidth of the sought type is used. If -- none of the specifications are larger than the bitwidth then the -- largest integer type is used." -- <http://llvm.org/docs/LangRef.html#langref-datalayout> def computeIntegerAlignment (ai:AlignInfo) (k:Nat) : Alignment := match ai.upperBound k with | some ⟨_, a⟩ => a | none => match ai.max with | some ⟨_, a⟩ => a | none => unaligned -- | Get alignment for a vector type of the specified bitwidth, using -- LLVM's rules for vector types: "If no match is found, and the type -- sought is a vector type, then the largest vector type that is -- smaller than the sought vector type will be used as a fall back." -- <http://llvm.org/docs/LangRef.html#langref-datalayout> def computeVectorAlignment (ai:AlignInfo) (k:Nat) : Alignment := match ai.lowerBound k with | some ⟨_, a⟩ => a | none => unaligned end LLVM
d6788c1d00764a2609ae152ffe4bcdc1f24a46f3
9dc8cecdf3c4634764a18254e94d43da07142918
/src/dynamics/omega_limit.lean
ccdbced232442a8ff42cb461be4bf241a55be254
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
16,642
lean
/- Copyright (c) 2020 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo -/ import dynamics.flow /-! # ω-limits For a function `ϕ : τ → α → β` where `β` is a topological space, we define the ω-limit under `ϕ` of a set `s` in `α` with respect to filter `f` on `τ`: an element `y : β` is in the ω-limit of `s` if the forward images of `s` intersect arbitrarily small neighbourhoods of `y` frequently "in the direction of `f`". In practice `ϕ` is often a continuous monoid-act, but the definition requires only that `ϕ` has a coercion to the appropriate function type. In the case where `τ` is `ℕ` or `ℝ` and `f` is `at_top`, we recover the usual definition of the ω-limit set as the set of all `y` such that there exist sequences `(tₙ)`, `(xₙ)` such that `ϕ tₙ xₙ ⟶ y` as `n ⟶ ∞`. ## Notations The `omega_limit` locale provides the localised notation `ω` for `omega_limit`, as well as `ω⁺` and `ω⁻` for `omega_limit at_top` and `omega_limit at_bot` respectively for when the acting monoid is endowed with an order. -/ open set function filter open_locale topological_space /-! ### Definition and notation -/ section omega_limit variables {τ : Type*} {α : Type*} {β : Type*} {ι : Type*} /-- The ω-limit of a set `s` under `ϕ` with respect to a filter `f` is ⋂ u ∈ f, cl (ϕ u s). -/ def omega_limit [topological_space β] (f : filter τ) (ϕ : τ → α → β) (s : set α) : set β := ⋂ u ∈ f, closure (image2 ϕ u s) localized "notation (name := omega_limit) `ω` := omega_limit" in omega_limit localized "notation (name := omega_limit.at_top) `ω⁺` := omega_limit filter.at_top" in omega_limit localized "notation (name := omega_limit.at_bot) `ω⁻` := omega_limit filter.at_bot" in omega_limit variables [topological_space β] variables (f : filter τ) (ϕ : τ → α → β) (s s₁ s₂: set α) /-! ### Elementary properties -/ lemma omega_limit_def : ω f ϕ s = ⋂ u ∈ f, closure (image2 ϕ u s) := rfl lemma omega_limit_subset_of_tendsto {m : τ → τ} {f₁ f₂ : filter τ} (hf : tendsto m f₁ f₂) : ω f₁ (λ t x, ϕ (m t) x) s ⊆ ω f₂ ϕ s := begin refine Inter₂_mono' (λ u hu, ⟨m ⁻¹' u, tendsto_def.mp hf _ hu, _⟩), rw ←image2_image_left, exact closure_mono (image2_subset (image_preimage_subset _ _) subset.rfl), end lemma omega_limit_mono_left {f₁ f₂ : filter τ} (hf : f₁ ≤ f₂) : ω f₁ ϕ s ⊆ ω f₂ ϕ s := omega_limit_subset_of_tendsto ϕ s (tendsto_id'.2 hf) lemma omega_limit_mono_right {s₁ s₂ : set α} (hs : s₁ ⊆ s₂) : ω f ϕ s₁ ⊆ ω f ϕ s₂ := Inter₂_mono $ λ u hu, closure_mono (image2_subset subset.rfl hs) lemma is_closed_omega_limit : is_closed (ω f ϕ s) := is_closed_Inter $ λ u, is_closed_Inter $ λ hu, is_closed_closure lemma maps_to_omega_limit' {α' β' : Type*} [topological_space β'] {f : filter τ} {ϕ : τ → α → β} {ϕ' : τ → α' → β'} {ga : α → α'} {s' : set α'} (hs : maps_to ga s s') {gb : β → β'} (hg : ∀ᶠ t in f, eq_on (gb ∘ (ϕ t)) (ϕ' t ∘ ga) s) (hgc : continuous gb) : maps_to gb (ω f ϕ s) (ω f ϕ' s') := begin simp only [omega_limit_def, mem_Inter, maps_to], intros y hy u hu, refine map_mem_closure hgc (hy _ (inter_mem hu hg)) (forall_image2_iff.2 $ λ t ht x hx, _), calc gb (ϕ t x) = ϕ' t (ga x) : ht.2 hx ... ∈ image2 ϕ' u s' : mem_image2_of_mem ht.1 (hs hx) end lemma maps_to_omega_limit {α' β' : Type*} [topological_space β'] {f : filter τ} {ϕ : τ → α → β} {ϕ' : τ → α' → β'} {ga : α → α'} {s' : set α'} (hs : maps_to ga s s') {gb : β → β'} (hg : ∀ t x, gb (ϕ t x) = ϕ' t (ga x)) (hgc : continuous gb) : maps_to gb (ω f ϕ s) (ω f ϕ' s') := maps_to_omega_limit' _ hs (eventually_of_forall $ λ t x hx, hg t x) hgc lemma omega_limit_image_eq {α' : Type*} (ϕ : τ → α' → β) (f : filter τ) (g : α → α') : ω f ϕ (g '' s) = ω f (λ t x, ϕ t (g x)) s := by simp only [omega_limit, image2_image_right] lemma omega_limit_preimage_subset {α' : Type*} (ϕ : τ → α' → β) (s : set α') (f : filter τ) (g : α → α') : ω f (λ t x, ϕ t (g x)) (g ⁻¹' s) ⊆ ω f ϕ s := maps_to_omega_limit _ (maps_to_preimage _ _) (λ t x, rfl) continuous_id /-! ### Equivalent definitions of the omega limit The next few lemmas are various versions of the property characterising ω-limits: -/ /-- An element `y` is in the ω-limit set of `s` w.r.t. `f` if the preimages of an arbitrary neighbourhood of `y` frequently (w.r.t. `f`) intersects of `s`. -/ lemma mem_omega_limit_iff_frequently (y : β) : y ∈ ω f ϕ s ↔ ∀ n ∈ 𝓝 y, ∃ᶠ t in f, (s ∩ ϕ t ⁻¹' n).nonempty := begin simp_rw [frequently_iff, omega_limit_def, mem_Inter, mem_closure_iff_nhds], split, { intros h _ hn _ hu, rcases h _ hu _ hn with ⟨_, _, _, _, ht, hx, hϕtx⟩, exact ⟨_, ht, _, hx, by rwa [mem_preimage, hϕtx]⟩, }, { intros h _ hu _ hn, rcases h _ hn hu with ⟨_, ht, _, hx, hϕtx⟩, exact ⟨_, hϕtx, _, _, ht, hx, rfl⟩ } end /-- An element `y` is in the ω-limit set of `s` w.r.t. `f` if the forward images of `s` frequently (w.r.t. `f`) intersect arbitrary neighbourhoods of `y`. -/ lemma mem_omega_limit_iff_frequently₂ (y : β) : y ∈ ω f ϕ s ↔ ∀ n ∈ 𝓝 y, ∃ᶠ t in f, (ϕ t '' s ∩ n).nonempty := by simp_rw [mem_omega_limit_iff_frequently, image_inter_nonempty_iff] /-- An element `y` is in the ω-limit of `x` w.r.t. `f` if the forward images of `x` frequently (w.r.t. `f`) falls within an arbitrary neighbourhood of `y`. -/ lemma mem_omega_limit_singleton_iff_map_cluster_point (x : α) (y : β) : y ∈ ω f ϕ {x} ↔ map_cluster_pt y f (λ t, ϕ t x) := by simp_rw [mem_omega_limit_iff_frequently, map_cluster_pt_iff, singleton_inter_nonempty, mem_preimage] /-! ### Set operations and omega limits -/ lemma omega_limit_inter : ω f ϕ (s₁ ∩ s₂) ⊆ ω f ϕ s₁ ∩ ω f ϕ s₂ := subset_inter (omega_limit_mono_right _ _ (inter_subset_left _ _)) (omega_limit_mono_right _ _(inter_subset_right _ _)) lemma omega_limit_Inter (p : ι → set α) : ω f ϕ (⋂ i, p i) ⊆ ⋂ i, ω f ϕ (p i) := subset_Inter $ λ i, omega_limit_mono_right _ _ (Inter_subset _ _) lemma omega_limit_union : ω f ϕ (s₁ ∪ s₂) = ω f ϕ s₁ ∪ ω f ϕ s₂ := begin ext y, split, { simp only [mem_union, mem_omega_limit_iff_frequently, union_inter_distrib_right, union_nonempty, frequently_or_distrib], contrapose!, simp only [not_frequently, not_nonempty_iff_eq_empty, ← subset_empty_iff], rintro ⟨⟨n₁, hn₁, h₁⟩, ⟨n₂, hn₂, h₂⟩⟩, refine ⟨n₁ ∩ n₂, inter_mem hn₁ hn₂, h₁.mono $ λ t, _, h₂.mono $ λ t, _⟩, exacts [subset.trans $ inter_subset_inter_right _ $ preimage_mono $ inter_subset_left _ _, subset.trans $ inter_subset_inter_right _ $ preimage_mono $ inter_subset_right _ _] }, { rintros (hy|hy), exacts [omega_limit_mono_right _ _ (subset_union_left _ _) hy, omega_limit_mono_right _ _ (subset_union_right _ _) hy] }, end lemma omega_limit_Union (p : ι → set α) : (⋃ i, ω f ϕ (p i)) ⊆ ω f ϕ ⋃ i, p i := by { rw Union_subset_iff, exact λ i, omega_limit_mono_right _ _ (subset_Union _ _)} /-! Different expressions for omega limits, useful for rewrites. In particular, one may restrict the intersection to sets in `f` which are subsets of some set `v` also in `f`. -/ lemma omega_limit_eq_Inter : ω f ϕ s = ⋂ u : ↥f.sets, closure (image2 ϕ u s) := bInter_eq_Inter _ _ lemma omega_limit_eq_bInter_inter {v : set τ} (hv : v ∈ f) : ω f ϕ s = ⋂ u ∈ f, closure (image2 ϕ (u ∩ v) s) := subset.antisymm (Inter₂_mono' $ λ u hu, ⟨u ∩ v, inter_mem hu hv, subset.rfl⟩) (Inter₂_mono $ λ u hu, closure_mono $ image2_subset (inter_subset_left _ _) subset.rfl) lemma omega_limit_eq_Inter_inter {v : set τ} (hv : v ∈ f) : ω f ϕ s = ⋂ (u : ↥f.sets), closure (image2 ϕ (u ∩ v) s) := by { rw omega_limit_eq_bInter_inter _ _ _ hv, apply bInter_eq_Inter } lemma omega_limit_subset_closure_fw_image {u : set τ} (hu : u ∈ f) : ω f ϕ s ⊆ closure (image2 ϕ u s) := begin rw omega_limit_eq_Inter, intros _ hx, rw mem_Inter at hx, exact hx ⟨u, hu⟩, end /-! ### `ω-limits and compactness -/ /-- A set is eventually carried into any open neighbourhood of its ω-limit: if `c` is a compact set such that `closure {ϕ t x | t ∈ v, x ∈ s} ⊆ c` for some `v ∈ f` and `n` is an open neighbourhood of `ω f ϕ s`, then for some `u ∈ f` we have `closure {ϕ t x | t ∈ u, x ∈ s} ⊆ n`. -/ lemma eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset' {c : set β} (hc₁ : is_compact c) (hc₂ : ∃ v ∈ f, closure (image2 ϕ v s) ⊆ c) {n : set β} (hn₁ : is_open n) (hn₂ : ω f ϕ s ⊆ n) : ∃ u ∈ f, closure (image2 ϕ u s) ⊆ n := begin rcases hc₂ with ⟨v, hv₁, hv₂⟩, let k := closure (image2 ϕ v s), have hk : is_compact (k \ n) := is_compact.diff (compact_of_is_closed_subset hc₁ is_closed_closure hv₂) hn₁, let j := λ u, (closure (image2 ϕ (u ∩ v) s))ᶜ, have hj₁ : ∀ u ∈ f, is_open (j u), from λ _ _, (is_open_compl_iff.mpr is_closed_closure), have hj₂ : k \ n ⊆ ⋃ u ∈ f, j u, begin have : (⋃ u ∈ f, j u) = ⋃ (u : ↥f.sets), j u, from bUnion_eq_Union _ _, rw [this, diff_subset_comm, diff_Union], rw omega_limit_eq_Inter_inter _ _ _ hv₁ at hn₂, simp_rw diff_compl, rw ←inter_Inter, exact subset.trans (inter_subset_right _ _) hn₂, end, rcases hk.elim_finite_subcover_image hj₁ hj₂ with ⟨g, hg₁ : ∀ u ∈ g, u ∈ f, hg₂, hg₃⟩, let w := (⋂ u ∈ g, u) ∩ v, have hw₂ : w ∈ f, by simpa *, have hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ, from calc k \ n ⊆ ⋃ u ∈ g, j u : hg₃ ... ⊆ (closure (image2 ϕ w s))ᶜ : begin simp only [Union_subset_iff, compl_subset_compl], intros u hu, mono* using [w], exact Inter_subset_of_subset u (Inter_subset_of_subset hu subset.rfl), end, have hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ, begin rw compl_subset_compl, calc closure (image2 ϕ w s) ⊆ _ : closure_mono (image2_subset (inter_subset_right _ _) subset.rfl) end, have hnc : nᶜ ⊆ (k \ n) ∪ kᶜ, by rw [union_comm, ←inter_subset, diff_eq, inter_comm], have hw : closure (image2 ϕ w s) ⊆ n, from compl_subset_compl.mp (subset.trans hnc (union_subset hw₃ hw₄)), exact ⟨_, hw₂, hw⟩ end /-- A set is eventually carried into any open neighbourhood of its ω-limit: if `c` is a compact set such that `closure {ϕ t x | t ∈ v, x ∈ s} ⊆ c` for some `v ∈ f` and `n` is an open neighbourhood of `ω f ϕ s`, then for some `u ∈ f` we have `closure {ϕ t x | t ∈ u, x ∈ s} ⊆ n`. -/ lemma eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset [t2_space β] {c : set β} (hc₁ : is_compact c) (hc₂ : ∀ᶠ t in f, maps_to (ϕ t) s c) {n : set β} (hn₁ : is_open n) (hn₂ : ω f ϕ s ⊆ n) : ∃ u ∈ f, closure (image2 ϕ u s) ⊆ n := eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset' f ϕ _ hc₁ ⟨_, hc₂, closure_minimal (image2_subset_iff.2 (λ t, id)) hc₁.is_closed⟩ hn₁ hn₂ lemma eventually_maps_to_of_is_compact_absorbing_of_is_open_of_omega_limit_subset [t2_space β] {c : set β} (hc₁ : is_compact c) (hc₂ : ∀ᶠ t in f, maps_to (ϕ t) s c) {n : set β} (hn₁ : is_open n) (hn₂ : ω f ϕ s ⊆ n) : ∀ᶠ t in f, maps_to (ϕ t) s n := begin rcases eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset f ϕ s hc₁ hc₂ hn₁ hn₂ with ⟨u, hu_mem, hu⟩, refine mem_of_superset hu_mem (λ t ht x hx, _), exact hu (subset_closure $ mem_image2_of_mem ht hx) end lemma eventually_closure_subset_of_is_open_of_omega_limit_subset [compact_space β] {v : set β} (hv₁ : is_open v) (hv₂ : ω f ϕ s ⊆ v) : ∃ u ∈ f, closure (image2 ϕ u s) ⊆ v := eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset' _ _ _ compact_univ ⟨univ, univ_mem, subset_univ _⟩ hv₁ hv₂ lemma eventually_maps_to_of_is_open_of_omega_limit_subset [compact_space β] {v : set β} (hv₁ : is_open v) (hv₂ : ω f ϕ s ⊆ v) : ∀ᶠ t in f, maps_to (ϕ t) s v := begin rcases eventually_closure_subset_of_is_open_of_omega_limit_subset f ϕ s hv₁ hv₂ with ⟨u, hu_mem, hu⟩, refine mem_of_superset hu_mem (λ t ht x hx, _), exact hu (subset_closure $ mem_image2_of_mem ht hx) end /-- The ω-limit of a nonempty set w.r.t. a nontrivial filter is nonempty. -/ lemma nonempty_omega_limit_of_is_compact_absorbing [ne_bot f] {c : set β} (hc₁ : is_compact c) (hc₂ : ∃ v ∈ f, closure (image2 ϕ v s) ⊆ c) (hs : s.nonempty) : (ω f ϕ s).nonempty := begin rcases hc₂ with ⟨v, hv₁, hv₂⟩, rw omega_limit_eq_Inter_inter _ _ _ hv₁, apply is_compact.nonempty_Inter_of_directed_nonempty_compact_closed, { rintro ⟨u₁, hu₁⟩ ⟨u₂, hu₂⟩, use ⟨u₁ ∩ u₂, inter_mem hu₁ hu₂⟩, split, all_goals { exact closure_mono (image2_subset (inter_subset_inter_left _ (by simp)) subset.rfl) }}, { intro u, have hn : (image2 ϕ (u ∩ v) s).nonempty, from nonempty.image2 (nonempty_of_mem (inter_mem u.prop hv₁)) hs, exact hn.mono subset_closure }, { intro _, apply compact_of_is_closed_subset hc₁ is_closed_closure, calc _ ⊆ closure (image2 ϕ v s) : closure_mono (image2_subset (inter_subset_right _ _) subset.rfl) ... ⊆ c : hv₂ }, { exact λ _, is_closed_closure }, end lemma nonempty_omega_limit [compact_space β] [ne_bot f] (hs : s.nonempty) : (ω f ϕ s).nonempty := nonempty_omega_limit_of_is_compact_absorbing _ _ _ compact_univ ⟨univ, univ_mem, subset_univ _⟩ hs end omega_limit /-! ### ω-limits of Flows by a Monoid -/ namespace flow variables {τ : Type*} [topological_space τ] [add_monoid τ] [has_continuous_add τ] {α : Type*} [topological_space α] (f : filter τ) (ϕ : flow τ α) (s : set α) open_locale omega_limit lemma is_invariant_omega_limit (hf : ∀ t, tendsto ((+) t) f f) : is_invariant ϕ (ω f ϕ s) := begin refine λ t, maps_to.mono_right _ (omega_limit_subset_of_tendsto ϕ s (hf t)), exact maps_to_omega_limit _ (maps_to_id _) (λ t' x, (ϕ.map_add _ _ _).symm) (continuous_const.flow ϕ continuous_id) end lemma omega_limit_image_subset (t : τ) (ht : tendsto (+ t) f f) : ω f ϕ (ϕ t '' s) ⊆ ω f ϕ s := begin simp only [omega_limit_image_eq, ← map_add], exact omega_limit_subset_of_tendsto ϕ s ht end end flow /-! ### ω-limits of Flows by a Group -/ namespace flow variables {τ : Type*} [topological_space τ] [add_comm_group τ] [topological_add_group τ] {α : Type*} [topological_space α] (f : filter τ) (ϕ : flow τ α) (s : set α) open_locale omega_limit /-- the ω-limit of a forward image of `s` is the same as the ω-limit of `s`. -/ @[simp] lemma omega_limit_image_eq (hf : ∀ t, tendsto (+ t) f f) (t : τ) : ω f ϕ (ϕ t '' s) = ω f ϕ s := subset.antisymm (omega_limit_image_subset _ _ _ _ (hf t)) $ calc ω f ϕ s = ω f ϕ (ϕ (-t) '' (ϕ t '' s)) : by simp [image_image, ← map_add] ... ⊆ ω f ϕ (ϕ t '' s) : omega_limit_image_subset _ _ _ _ (hf _) lemma omega_limit_omega_limit (hf : ∀ t, tendsto ((+) t) f f) : ω f ϕ (ω f ϕ s) ⊆ ω f ϕ s := begin simp only [subset_def, mem_omega_limit_iff_frequently₂, frequently_iff], intros _ h, rintro n hn u hu, rcases mem_nhds_iff.mp hn with ⟨o, ho₁, ho₂, ho₃⟩, rcases h o (is_open.mem_nhds ho₂ ho₃) hu with ⟨t, ht₁, ht₂⟩, have l₁ : (ω f ϕ s ∩ o).nonempty, from ht₂.mono (inter_subset_inter_left _ ((is_invariant_iff_image _ _).mp (is_invariant_omega_limit _ _ _ hf) _)), have l₂ : ((closure (image2 ϕ u s)) ∩ o).nonempty := l₁.mono (λ b hb, ⟨omega_limit_subset_closure_fw_image _ _ _ hu hb.1, hb.2⟩), have l₃ : (o ∩ image2 ϕ u s).nonempty, begin rcases l₂ with ⟨b, hb₁, hb₂⟩, exact mem_closure_iff_nhds.mp hb₁ o (is_open.mem_nhds ho₂ hb₂) end, rcases l₃ with ⟨ϕra, ho, ⟨_, _, hr, ha, hϕra⟩⟩, exact ⟨_, hr, ϕra, ⟨_, ha, hϕra⟩, ho₁ ho⟩, end end flow
3afefa6c700ec6b0592daa46cf34de654ad3803c
ae1e94c332e17c7dc7051ce976d5a9eebe7ab8a5
/stage0/src/Init/Data/UInt.lean
e6bf545e2aa1671551bfb1e0423242d26d5564cd
[ "Apache-2.0" ]
permissive
dupuisf/lean4
d082d13b01243e1de29ae680eefb476961221eef
6a39c65bd28eb0e28c3870188f348c8914502718
refs/heads/master
1,676,948,755,391
1,610,665,114,000
1,610,665,114,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
11,812
lean
/- Copyright (c) 2018 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Data.Fin.Basic import Init.System.Platform open Nat @[extern "lean_uint8_of_nat"] def UInt8.ofNat (n : @& Nat) : UInt8 := ⟨Fin.ofNat n⟩ abbrev Nat.toUInt8 := UInt8.ofNat @[extern "lean_uint8_to_nat"] def UInt8.toNat (n : UInt8) : Nat := n.val.val @[extern c inline "#1 + #2"] def UInt8.add (a b : UInt8) : UInt8 := ⟨a.val + b.val⟩ @[extern c inline "#1 - #2"] def UInt8.sub (a b : UInt8) : UInt8 := ⟨a.val - b.val⟩ @[extern c inline "#1 * #2"] def UInt8.mul (a b : UInt8) : UInt8 := ⟨a.val * b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 / #2"] def UInt8.div (a b : UInt8) : UInt8 := ⟨a.val / b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 % #2"] def UInt8.mod (a b : UInt8) : UInt8 := ⟨a.val % b.val⟩ @[extern "lean_uint8_modn"] def UInt8.modn (a : UInt8) (n : @& Nat) : UInt8 := ⟨a.val % n⟩ @[extern c inline "#1 & #2"] def UInt8.land (a b : UInt8) : UInt8 := ⟨Fin.land a.val b.val⟩ @[extern c inline "#1 | #2"] def UInt8.lor (a b : UInt8) : UInt8 := ⟨Fin.lor a.val b.val⟩ def UInt8.lt (a b : UInt8) : Prop := a.val < b.val def UInt8.le (a b : UInt8) : Prop := a.val ≤ b.val instance : OfNat UInt8 n := ⟨UInt8.ofNat n⟩ instance : Add UInt8 := ⟨UInt8.add⟩ instance : Sub UInt8 := ⟨UInt8.sub⟩ instance : Mul UInt8 := ⟨UInt8.mul⟩ instance : Mod UInt8 := ⟨UInt8.mod⟩ instance : HMod UInt8 Nat UInt8 := ⟨UInt8.modn⟩ instance : Div UInt8 := ⟨UInt8.div⟩ instance : HasLess UInt8 := ⟨UInt8.lt⟩ instance : HasLessEq UInt8 := ⟨UInt8.le⟩ set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 < #2"] def UInt8.decLt (a b : UInt8) : Decidable (a < b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m)) set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 <= #2"] def UInt8.decLe (a b : UInt8) : Decidable (a ≤ b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m)) instance (a b : UInt8) : Decidable (a < b) := UInt8.decLt a b instance (a b : UInt8) : Decidable (a ≤ b) := UInt8.decLe a b @[extern "lean_uint16_of_nat"] def UInt16.ofNat (n : @& Nat) : UInt16 := ⟨Fin.ofNat n⟩ abbrev Nat.toUInt16 := UInt16.ofNat @[extern "lean_uint16_to_nat"] def UInt16.toNat (n : UInt16) : Nat := n.val.val @[extern c inline "#1 + #2"] def UInt16.add (a b : UInt16) : UInt16 := ⟨a.val + b.val⟩ @[extern c inline "#1 - #2"] def UInt16.sub (a b : UInt16) : UInt16 := ⟨a.val - b.val⟩ @[extern c inline "#1 * #2"] def UInt16.mul (a b : UInt16) : UInt16 := ⟨a.val * b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 / #2"] def UInt16.div (a b : UInt16) : UInt16 := ⟨a.val / b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 % #2"] def UInt16.mod (a b : UInt16) : UInt16 := ⟨a.val % b.val⟩ @[extern "lean_uint16_modn"] def UInt16.modn (a : UInt16) (n : @& Nat) : UInt16 := ⟨a.val % n⟩ @[extern c inline "#1 & #2"] def UInt16.land (a b : UInt16) : UInt16 := ⟨Fin.land a.val b.val⟩ @[extern c inline "#1 | #2"] def UInt16.lor (a b : UInt16) : UInt16 := ⟨Fin.lor a.val b.val⟩ def UInt16.lt (a b : UInt16) : Prop := a.val < b.val def UInt16.le (a b : UInt16) : Prop := a.val ≤ b.val instance : OfNat UInt16 n := ⟨UInt16.ofNat n⟩ instance : Add UInt16 := ⟨UInt16.add⟩ instance : Sub UInt16 := ⟨UInt16.sub⟩ instance : Mul UInt16 := ⟨UInt16.mul⟩ instance : Mod UInt16 := ⟨UInt16.mod⟩ instance : HMod UInt16 Nat UInt16 := ⟨UInt16.modn⟩ instance : Div UInt16 := ⟨UInt16.div⟩ instance : HasLess UInt16 := ⟨UInt16.lt⟩ instance : HasLessEq UInt16 := ⟨UInt16.le⟩ set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 < #2"] def UInt16.decLt (a b : UInt16) : Decidable (a < b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m)) set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 <= #2"] def UInt16.decLe (a b : UInt16) : Decidable (a ≤ b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m)) instance (a b : UInt16) : Decidable (a < b) := UInt16.decLt a b instance (a b : UInt16) : Decidable (a ≤ b) := UInt16.decLe a b @[extern "lean_uint32_of_nat"] def UInt32.ofNat (n : @& Nat) : UInt32 := ⟨Fin.ofNat n⟩ @[extern "lean_uint32_of_nat"] def UInt32.ofNat' (n : Nat) (h : n < UInt32.size) : UInt32 := ⟨⟨n, h⟩⟩ abbrev Nat.toUInt32 := UInt32.ofNat @[extern c inline "#1 + #2"] def UInt32.add (a b : UInt32) : UInt32 := ⟨a.val + b.val⟩ @[extern c inline "#1 - #2"] def UInt32.sub (a b : UInt32) : UInt32 := ⟨a.val - b.val⟩ @[extern c inline "#1 * #2"] def UInt32.mul (a b : UInt32) : UInt32 := ⟨a.val * b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 / #2"] def UInt32.div (a b : UInt32) : UInt32 := ⟨a.val / b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 % #2"] def UInt32.mod (a b : UInt32) : UInt32 := ⟨a.val % b.val⟩ @[extern "lean_uint32_modn"] def UInt32.modn (a : UInt32) (n : @& Nat) : UInt32 := ⟨a.val % n⟩ @[extern c inline "#1 & #2"] def UInt32.land (a b : UInt32) : UInt32 := ⟨Fin.land a.val b.val⟩ @[extern c inline "#1 | #2"] def UInt32.lor (a b : UInt32) : UInt32 := ⟨Fin.lor a.val b.val⟩ @[extern c inline "((uint8_t)#1)"] def UInt32.toUInt8 (a : UInt32) : UInt8 := a.toNat.toUInt8 @[extern c inline "((uint16_t)#1)"] def UInt32.toUInt16 (a : UInt32) : UInt16 := a.toNat.toUInt16 @[extern c inline "((uint32_t)#1)"] def UInt8.toUInt32 (a : UInt8) : UInt32 := a.toNat.toUInt32 instance : OfNat UInt32 n := ⟨UInt32.ofNat n⟩ instance : Add UInt32 := ⟨UInt32.add⟩ instance : Sub UInt32 := ⟨UInt32.sub⟩ instance : Mul UInt32 := ⟨UInt32.mul⟩ instance : Mod UInt32 := ⟨UInt32.mod⟩ instance : HMod UInt32 Nat UInt32 := ⟨UInt32.modn⟩ instance : Div UInt32 := ⟨UInt32.div⟩ @[extern c inline "#1 << #2"] constant UInt32.shiftLeft (a b : UInt32) : UInt32 @[extern c inline "#1 >> #2"] constant UInt32.shiftRight (a b : UInt32) : UInt32 @[extern "lean_uint64_of_nat"] def UInt64.ofNat (n : @& Nat) : UInt64 := ⟨Fin.ofNat n⟩ abbrev Nat.toUInt64 := UInt64.ofNat @[extern "lean_uint64_to_nat"] def UInt64.toNat (n : UInt64) : Nat := n.val.val @[extern c inline "#1 + #2"] def UInt64.add (a b : UInt64) : UInt64 := ⟨a.val + b.val⟩ @[extern c inline "#1 - #2"] def UInt64.sub (a b : UInt64) : UInt64 := ⟨a.val - b.val⟩ @[extern c inline "#1 * #2"] def UInt64.mul (a b : UInt64) : UInt64 := ⟨a.val * b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 / #2"] def UInt64.div (a b : UInt64) : UInt64 := ⟨a.val / b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 % #2"] def UInt64.mod (a b : UInt64) : UInt64 := ⟨a.val % b.val⟩ @[extern "lean_uint64_modn"] def UInt64.modn (a : UInt64) (n : @& Nat) : UInt64 := ⟨a.val % n⟩ @[extern c inline "#1 & #2"] def UInt64.land (a b : UInt64) : UInt64 := ⟨Fin.land a.val b.val⟩ @[extern c inline "#1 | #2"] def UInt64.lor (a b : UInt64) : UInt64 := ⟨Fin.lor a.val b.val⟩ def UInt64.lt (a b : UInt64) : Prop := a.val < b.val def UInt64.le (a b : UInt64) : Prop := a.val ≤ b.val @[extern c inline "((uint8_t)#1)"] def UInt64.toUInt8 (a : UInt64) : UInt8 := a.toNat.toUInt8 @[extern c inline "((uint16_t)#1)"] def UInt64.toUInt16 (a : UInt64) : UInt16 := a.toNat.toUInt16 @[extern c inline "((uint32_t)#1)"] def UInt64.toUInt32 (a : UInt64) : UInt32 := a.toNat.toUInt32 @[extern c inline "((uint64_t)#1)"] def UInt32.toUInt64 (a : UInt32) : UInt64 := a.toNat.toUInt64 -- TODO(Leo): give reference implementation for shiftLeft and shiftRight, and define them for other UInt types @[extern c inline "#1 << #2"] constant UInt64.shiftLeft (a b : UInt64) : UInt64 @[extern c inline "#1 >> #2"] constant UInt64.shiftRight (a b : UInt64) : UInt64 instance : OfNat UInt64 n := ⟨UInt64.ofNat n⟩ instance : Add UInt64 := ⟨UInt64.add⟩ instance : Sub UInt64 := ⟨UInt64.sub⟩ instance : Mul UInt64 := ⟨UInt64.mul⟩ instance : Mod UInt64 := ⟨UInt64.mod⟩ instance : HMod UInt64 Nat UInt64 := ⟨UInt64.modn⟩ instance : Div UInt64 := ⟨UInt64.div⟩ instance : HasLess UInt64 := ⟨UInt64.lt⟩ instance : HasLessEq UInt64 := ⟨UInt64.le⟩ @[extern c inline "(uint64_t)#1"] def Bool.toUInt64 (b : Bool) : UInt64 := if b then 1 else 0 set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 < #2"] def UInt64.decLt (a b : UInt64) : Decidable (a < b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m)) set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 <= #2"] def UInt64.decLe (a b : UInt64) : Decidable (a ≤ b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m)) instance (a b : UInt64) : Decidable (a < b) := UInt64.decLt a b instance (a b : UInt64) : Decidable (a ≤ b) := UInt64.decLe a b theorem usizeSzGt0 : USize.size > 0 := Nat.posPowOfPos System.Platform.numBits (Nat.zeroLtSucc _) @[extern "lean_usize_of_nat"] def USize.ofNat (n : @& Nat) : USize := ⟨Fin.ofNat' n usizeSzGt0⟩ abbrev Nat.toUSize := USize.ofNat @[extern "lean_usize_to_nat"] def USize.toNat (n : USize) : Nat := n.val.val @[extern c inline "#1 + #2"] def USize.add (a b : USize) : USize := ⟨a.val + b.val⟩ @[extern c inline "#1 - #2"] def USize.sub (a b : USize) : USize := ⟨a.val - b.val⟩ @[extern c inline "#1 * #2"] def USize.mul (a b : USize) : USize := ⟨a.val * b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 / #2"] def USize.div (a b : USize) : USize := ⟨a.val / b.val⟩ @[extern c inline "#2 == 0 ? 0 : #1 % #2"] def USize.mod (a b : USize) : USize := ⟨a.val % b.val⟩ @[extern "lean_usize_modn"] def USize.modn (a : USize) (n : @& Nat) : USize := ⟨a.val % n⟩ @[extern c inline "#1 & #2"] def USize.land (a b : USize) : USize := ⟨Fin.land a.val b.val⟩ @[extern c inline "#1 | #2"] def USize.lor (a b : USize) : USize := ⟨Fin.lor a.val b.val⟩ @[extern c inline "#1"] def UInt32.toUSize (a : UInt32) : USize := a.toNat.toUSize @[extern c inline "((size_t)#1)"] def UInt64.toUSize (a : UInt64) : USize := a.toNat.toUSize @[extern c inline "(uint32_t)#1"] def USize.toUInt32 (a : USize) : UInt32 := a.toNat.toUInt32 -- TODO(Leo): give reference implementation for shiftLeft and shiftRight, and define them for other UInt types @[extern c inline "#1 << #2"] constant USize.shiftLeft (a b : USize) : USize @[extern c inline "#1 >> #2"] constant USize.shiftRight (a b : USize) : USize def USize.lt (a b : USize) : Prop := a.val < b.val def USize.le (a b : USize) : Prop := a.val ≤ b.val instance : OfNat USize n := ⟨USize.ofNat n⟩ instance : Add USize := ⟨USize.add⟩ instance : Sub USize := ⟨USize.sub⟩ instance : Mul USize := ⟨USize.mul⟩ instance : Mod USize := ⟨USize.mod⟩ instance : HMod USize Nat USize := ⟨USize.modn⟩ instance : Div USize := ⟨USize.div⟩ instance : HasLess USize := ⟨USize.lt⟩ instance : HasLessEq USize := ⟨USize.le⟩ set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 < #2"] def USize.decLt (a b : USize) : Decidable (a < b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m)) set_option bootstrap.gen_matcher_code false in @[extern c inline "#1 <= #2"] def USize.decLe (a b : USize) : Decidable (a ≤ b) := match a, b with | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m)) instance (a b : USize) : Decidable (a < b) := USize.decLt a b instance (a b : USize) : Decidable (a ≤ b) := USize.decLe a b theorem USize.modnLt {m : Nat} : ∀ (u : USize), m > 0 → USize.toNat (u % m) < m | ⟨u⟩, h => Fin.modnLt u h
09d6166a357efbaccb3234134a2583eb8f9826c2
4727251e0cd73359b15b664c3170e5d754078599
/archive/imo/imo2008_q3.lean
ce940546064a30a6679198216961bf74850c038d
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
3,833
lean
/- Copyright (c) 2021 Manuel Candales. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Manuel Candales -/ import data.real.basic import data.real.sqrt import data.nat.prime import number_theory.primes_congruent_one import number_theory.legendre_symbol.quadratic_reciprocity import tactic.linear_combination /-! # IMO 2008 Q3 Prove that there exist infinitely many positive integers `n` such that `n^2 + 1` has a prime divisor which is greater than `2n + √(2n)`. # Solution We first prove the following lemma: for every prime `p > 20`, satisfying `p ≡ 1 [MOD 4]`, there exists `n ∈ ℕ` such that `p ∣ n^2 + 1` and `p > 2n + √(2n)`. Then the statement of the problem follows from the fact that there exist infinitely many primes `p ≡ 1 [MOD 4]`. To prove the lemma, notice that `p ≡ 1 [MOD 4]` implies `∃ n ∈ ℕ` such that `n^2 ≡ -1 [MOD p]` and we can take this `n` such that `n ≤ p/2`. Let `k = p - 2n ≥ 0`. Then we have: `k^2 + 4 = (p - 2n)^2 + 4 ≣ 4n^2 + 4 ≡ 0 [MOD p]`. Then `k^2 + 4 ≥ p` and so `k ≥ √(p - 4) > 4`. Then `p = 2n + k ≥ 2n + √(p - 4) = 2n + √(2n + k - 4) > √(2n)` and we are done. -/ open real lemma p_lemma (p : ℕ) (hpp : nat.prime p) (hp_mod_4_eq_1 : p ≡ 1 [MOD 4]) (hp_gt_20 : p > 20) : ∃ n : ℕ, p ∣ n ^ 2 + 1 ∧ (p : ℝ) > 2 * n + sqrt(2 * n) := begin haveI := fact.mk hpp, have hp_mod_4_ne_3 : p % 4 ≠ 3, { linarith [(show p % 4 = 1, by exact hp_mod_4_eq_1)] }, obtain ⟨y, hy⟩ := (zmod.exists_sq_eq_neg_one_iff p).mpr hp_mod_4_ne_3, let m := zmod.val_min_abs y, let n := int.nat_abs m, have hnat₁ : p ∣ n ^ 2 + 1, { refine int.coe_nat_dvd.mp _, simp only [int.nat_abs_sq, int.coe_nat_pow, int.coe_nat_succ, int.coe_nat_dvd.mp], refine (zmod.int_coe_zmod_eq_zero_iff_dvd (m ^ 2 + 1) p).mp _, simp only [int.cast_pow, int.cast_add, int.cast_one, zmod.coe_val_min_abs], rw [pow_two, ← hy], exact add_left_neg 1 }, have hnat₂ : n ≤ p / 2 := zmod.nat_abs_val_min_abs_le y, have hnat₃ : p ≥ 2 * n, { linarith [nat.div_mul_le_self p 2] }, set k : ℕ := p - 2 * n with hnat₄, have hnat₅ : p ∣ k ^ 2 + 4, { cases hnat₁ with x hx, have : (p:ℤ) ∣ k ^ 2 + 4, { use (p:ℤ) - 4 * n + 4 * x, have hcast₁ : (k:ℤ) = p - 2 * n, { assumption_mod_cast }, have hcast₂ : (n:ℤ) ^ 2 + 1 = p * x, { assumption_mod_cast }, linear_combination (hcast₁, (k:ℤ) + p - 2 * n) (hcast₂, 4) }, assumption_mod_cast }, have hnat₆ : k ^ 2 + 4 ≥ p := nat.le_of_dvd (k ^ 2 + 3).succ_pos hnat₅, have hreal₁ : (k:ℝ) = p - 2 * n, { assumption_mod_cast }, have hreal₂ : (p:ℝ) > 20, { assumption_mod_cast }, have hreal₃ : (k:ℝ) ^ 2 + 4 ≥ p, { assumption_mod_cast }, have hreal₅ : (k:ℝ) > 4, { apply lt_of_pow_lt_pow 2 k.cast_nonneg, linarith only [hreal₂, hreal₃] }, have hreal₆ : (k:ℝ) > sqrt (2 * n), { apply lt_of_pow_lt_pow 2 k.cast_nonneg, rw sq_sqrt (mul_nonneg zero_le_two n.cast_nonneg), linarith only [hreal₁, hreal₃, hreal₅] }, exact ⟨n, hnat₁, by linarith only [hreal₆, hreal₁]⟩, end theorem imo2008_q3 : ∀ N : ℕ, ∃ n : ℕ, n ≥ N ∧ ∃ p : ℕ, nat.prime p ∧ p ∣ n ^ 2 + 1 ∧ (p : ℝ) > 2 * n + sqrt(2 * n) := begin intro N, obtain ⟨p, hpp, hineq₁, hpmod4⟩ := nat.exists_prime_ge_modeq_one (N ^ 2 + 21) zero_lt_four, obtain ⟨n, hnat, hreal⟩ := p_lemma p hpp hpmod4 (by linarith [hineq₁, nat.zero_le (N ^ 2)]), have hineq₂ : n ^ 2 + 1 ≥ p := nat.le_of_dvd (n ^ 2).succ_pos hnat, have hineq₃ : n * n ≥ N * N, { linarith [hineq₁, hineq₂] }, have hn_ge_N : n ≥ N := nat.mul_self_le_mul_self_iff.mpr hineq₃, exact ⟨n, hn_ge_N, p, hpp, hnat, hreal⟩, end
409e3447947dacdf35b4c469bda831c6c7e834f7
4ad6af7525e674c3cdc623c1495472954f3ce34c
/src/02_three_languages.lean
7bdedf6d12ac37786604c335723e44532c2c4362
[]
no_license
alcides/lean3_tutorial
4bf48026f7cfa5ae80e9a75f46ca23364d455810
7a871e00c4fd5cb000929a59e1bd804a626ef277
refs/heads/master
1,663,719,613,974
1,591,141,389,000
1,591,141,389,000
268,600,781
5
0
null
null
null
null
UTF-8
Lean
false
false
1,947
lean
import system.io open io /- One of the good things about Lean is that you can see it as three different languages. While all the languages are actually the same, this purely artificial distinction is quite helpful for learners. The next function is a typical function-programming style hello world using monads. If one were to write a similar hello world in ML or Haskell, the solution would be quite similar. Run this function from within the main repo folder: lean --run src/02_three_languages.lean 1 -/ def main : io unit := do args <- cmdline_args, io.print_ln ("hello" ++ (option.get_or_else (list.nth args 0) "a")), io.print_ln "world" /- plus_one is a pure function that adds one to its input. Both main and plus_one belong to the first language: the language where you define programs that execute. -/ def plus_one : nat -> nat | n := 1 + n /- Lean provides some helpers to eval and typecheck these expressions: -/ #check 1 #reduce 1 + 1 #check tt /- tt is the computable version of bool -/ /- The second language is that of proofs. Everything that starts with theorem, lemma, example and axiom belongs to this language. You write proofs using tactics. Due to propositions as types, this is actually the same language as the first (you could achieve the same using def), but I believe this view of Lean is useful for practicioners. -/ axiom easy_mode : 0 = 1 example : 1 + 1 = 1 + 0 := begin rw easy_mode, end #check true /- true is the version of Prop that represents truth in the second language -/ /- The third language is that in which you define new tactics. This language operates on the meta-structure of programs, like a hygienic macro. This third language is the most different from the first two, and it is not the focus of this tutorial. Everything that has meta belongs to this language. -/ open tactic meta def my_repeat (t : tactic unit) : tactic unit := do repeat t
727c9af4984a4cd9264da522d0737ae5ee7e8472
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/1813.lean
c1e82c60469b80c2166f2ab42c8242cfa8942b09
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
160
lean
example [Add α] [Neg α] [Mul α] [∀ n, OfNat α n] {a b : α} := calc 4 + 5 * b = -6 + 5 * (b + 2) := sorry _ = -6 + 5 * 3 := sorry
3df3d99ae9614436dfdea264f752986acd5904c9
302c785c90d40ad3d6be43d33bc6a558354cc2cf
/src/data/fintype/card.lean
015cc06d268abaa0f9b114ba4d6389a4a25d70f2
[ "Apache-2.0" ]
permissive
ilitzroth/mathlib
ea647e67f1fdfd19a0f7bdc5504e8acec6180011
5254ef14e3465f6504306132fe3ba9cec9ffff16
refs/heads/master
1,680,086,661,182
1,617,715,647,000
1,617,715,647,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
17,263
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.fintype.basic import algebra.big_operators.ring /-! Results about "big operations" over a `fintype`, and consequent results about cardinalities of certain types. ## Implementation note This content had previously been in `data.fintype.basic`, but was moved here to avoid requiring `algebra.big_operators` (and hence many other imports) as a dependency of `fintype`. However many of the results here really belong in `algebra.big_operators.basic` and should be moved at some point. -/ universes u v variables {α : Type*} {β : Type*} {γ : Type*} open_locale big_operators namespace fintype @[to_additive] lemma prod_bool [comm_monoid α] (f : bool → α) : ∏ b, f b = f tt * f ff := by simp lemma card_eq_sum_ones {α} [fintype α] : fintype.card α = ∑ a : α, 1 := finset.card_eq_sum_ones _ section open finset variables {ι : Type*} [decidable_eq ι] [fintype ι] @[to_additive] lemma prod_extend_by_one [comm_monoid α] (s : finset ι) (f : ι → α) : ∏ i, (if i ∈ s then f i else 1) = ∏ i in s, f i := by rw [← prod_filter, filter_mem_eq_inter, univ_inter] end section variables {M : Type*} [fintype α] [comm_monoid M] @[to_additive] lemma prod_eq_one (f : α → M) (h : ∀ a, f a = 1) : (∏ a, f a) = 1 := finset.prod_eq_one $ λ a ha, h a @[to_additive] lemma prod_congr (f g : α → M) (h : ∀ a, f a = g a) : (∏ a, f a) = ∏ a, g a := finset.prod_congr rfl $ λ a ha, h a @[to_additive] lemma prod_eq_single {f : α → M} (a : α) (h : ∀ x ≠ a, f x = 1) : (∏ x, f x) = f a := finset.prod_eq_single a (λ x _ hx, h x hx) $ λ ha, (ha (finset.mem_univ a)).elim @[to_additive] lemma prod_eq_mul {f : α → M} (a b : α) (h₁ : a ≠ b) (h₂ : ∀ x, x ≠ a ∧ x ≠ b → f x = 1) : (∏ x, f x) = (f a) * (f b) := begin apply finset.prod_eq_mul a b h₁ (λ x _ hx, h₂ x hx); exact λ hc, (hc (finset.mem_univ _)).elim end @[to_additive] lemma prod_unique [unique β] (f : β → M) : (∏ x, f x) = f (default β) := by simp only [finset.prod_singleton, univ_unique] /-- If a product of a `finset` of a subsingleton type has a given value, so do the terms in that product. -/ @[to_additive "If a sum of a `finset` of a subsingleton type has a given value, so do the terms in that sum."] lemma eq_of_subsingleton_of_prod_eq {ι : Type*} [subsingleton ι] {s : finset ι} {f : ι → M} {b : M} (h : ∏ i in s, f i = b) : ∀ i ∈ s, f i = b := finset.eq_of_card_le_one_of_prod_eq (finset.card_le_one_of_subsingleton s) h end end fintype open finset section variables {M : Type*} [fintype α] [comm_monoid M] @[simp, to_additive] lemma fintype.prod_option (f : option α → M) : ∏ i, f i = f none * ∏ i, f (some i) := show ((finset.insert_none _).1.map f).prod = _, by simp only [finset.prod, finset.insert_none, multiset.map_cons, multiset.prod_cons, multiset.map_map] end @[to_additive] theorem fin.prod_univ_def [comm_monoid β] {n : ℕ} (f : fin n → β) : ∏ i, f i = ((list.fin_range n).map f).prod := by simp [fin.univ_def, finset.fin_range] @[to_additive] theorem fin.prod_of_fn [comm_monoid β] {n : ℕ} (f : fin n → β) : (list.of_fn f).prod = ∏ i, f i := by rw [list.of_fn_eq_map, fin.prod_univ_def] /-- A product of a function `f : fin 0 → β` is `1` because `fin 0` is empty -/ @[simp, to_additive "A sum of a function `f : fin 0 → β` is `0` because `fin 0` is empty"] theorem fin.prod_univ_zero [comm_monoid β] (f : fin 0 → β) : ∏ i, f i = 1 := rfl /-- A product of a function `f : fin (n + 1) → β` over all `fin (n + 1)` is the product of `f x`, for some `x : fin (n + 1)` times the remaining product -/ theorem fin.prod_univ_succ_above [comm_monoid β] {n : ℕ} (f : fin (n + 1) → β) (x : fin (n + 1)) : ∏ i, f i = f x * ∏ i : fin n, f (x.succ_above i) := begin rw [fin.univ_succ_above, finset.prod_insert, finset.prod_image], { intros x _ y _ hxy, exact fin.succ_above_right_inj.mp hxy }, { simp [fin.succ_above_ne] } end /-- A sum of a function `f : fin (n + 1) → β` over all `fin (n + 1)` is the sum of `f x`, for some `x : fin (n + 1)` plus the remaining product -/ theorem fin.sum_univ_succ_above [add_comm_monoid β] {n : ℕ} (f : fin (n + 1) → β) (x : fin (n + 1)) : ∑ i, f i = f x + ∑ i : fin n, f (x.succ_above i) := by apply @fin.prod_univ_succ_above (multiplicative β) attribute [to_additive] fin.prod_univ_succ_above /-- A product of a function `f : fin (n + 1) → β` over all `fin (n + 1)` is the product of `f 0` plus the remaining product -/ theorem fin.prod_univ_succ [comm_monoid β] {n : ℕ} (f : fin (n + 1) → β) : ∏ i, f i = f 0 * ∏ i : fin n, f i.succ := fin.prod_univ_succ_above f 0 /-- A sum of a function `f : fin (n + 1) → β` over all `fin (n + 1)` is the sum of `f 0` plus the remaining product -/ theorem fin.sum_univ_succ [add_comm_monoid β] {n : ℕ} (f : fin (n + 1) → β) : ∑ i, f i = f 0 + ∑ i : fin n, f i.succ := fin.sum_univ_succ_above f 0 attribute [to_additive] fin.prod_univ_succ /-- A product of a function `f : fin (n + 1) → β` over all `fin (n + 1)` is the product of `f (fin.last n)` plus the remaining product -/ theorem fin.prod_univ_cast_succ [comm_monoid β] {n : ℕ} (f : fin (n + 1) → β) : ∏ i, f i = (∏ i : fin n, f i.cast_succ) * f (fin.last n) := by simpa [mul_comm] using fin.prod_univ_succ_above f (fin.last n) /-- A sum of a function `f : fin (n + 1) → β` over all `fin (n + 1)` is the sum of `f (fin.last n)` plus the remaining sum -/ theorem fin.sum_univ_cast_succ [add_comm_monoid β] {n : ℕ} (f : fin (n + 1) → β) : ∑ i, f i = ∑ i : fin n, f i.cast_succ + f (fin.last n) := by apply @fin.prod_univ_cast_succ (multiplicative β) attribute [to_additive] fin.prod_univ_cast_succ open finset @[simp] theorem fintype.card_sigma {α : Type*} (β : α → Type*) [fintype α] [∀ a, fintype (β a)] : fintype.card (sigma β) = ∑ a, fintype.card (β a) := card_sigma _ _ -- FIXME ouch, this should be in the main file. @[simp] theorem fintype.card_sum (α β : Type*) [fintype α] [fintype β] : fintype.card (α ⊕ β) = fintype.card α + fintype.card β := by simp [sum.fintype, fintype.of_equiv_card] @[simp] lemma finset.card_pi [decidable_eq α] {δ : α → Type*} (s : finset α) (t : Π a, finset (δ a)) : (s.pi t).card = ∏ a in s, card (t a) := multiset.card_pi _ _ @[simp] lemma fintype.card_pi_finset [decidable_eq α] [fintype α] {δ : α → Type*} (t : Π a, finset (δ a)) : (fintype.pi_finset t).card = ∏ a, card (t a) := by simp [fintype.pi_finset, card_map] @[simp] lemma fintype.card_pi {β : α → Type*} [decidable_eq α] [fintype α] [f : Π a, fintype (β a)] : fintype.card (Π a, β a) = ∏ a, fintype.card (β a) := fintype.card_pi_finset _ -- FIXME ouch, this should be in the main file. @[simp] lemma fintype.card_fun [decidable_eq α] [fintype α] [fintype β] : fintype.card (α → β) = fintype.card β ^ fintype.card α := by rw [fintype.card_pi, finset.prod_const]; refl @[simp] lemma card_vector [fintype α] (n : ℕ) : fintype.card (vector α n) = fintype.card α ^ n := by rw fintype.of_equiv_card; simp @[simp, to_additive] lemma finset.prod_attach_univ [fintype α] [comm_monoid β] (f : {a : α // a ∈ @univ α _} → β) : ∏ x in univ.attach, f x = ∏ x, f ⟨x, (mem_univ _)⟩ := prod_bij (λ x _, x.1) (λ _ _, mem_univ _) (λ _ _ , by simp) (by simp) (λ b _, ⟨⟨b, mem_univ _⟩, by simp⟩) /-- Taking a product over `univ.pi t` is the same as taking the product over `fintype.pi_finset t`. `univ.pi t` and `fintype.pi_finset t` are essentially the same `finset`, but differ in the type of their element, `univ.pi t` is a `finset (Π a ∈ univ, t a)` and `fintype.pi_finset t` is a `finset (Π a, t a)`. -/ @[to_additive "Taking a sum over `univ.pi t` is the same as taking the sum over `fintype.pi_finset t`. `univ.pi t` and `fintype.pi_finset t` are essentially the same `finset`, but differ in the type of their element, `univ.pi t` is a `finset (Π a ∈ univ, t a)` and `fintype.pi_finset t` is a `finset (Π a, t a)`."] lemma finset.prod_univ_pi [decidable_eq α] [fintype α] [comm_monoid β] {δ : α → Type*} {t : Π (a : α), finset (δ a)} (f : (Π (a : α), a ∈ (univ : finset α) → δ a) → β) : ∏ x in univ.pi t, f x = ∏ x in fintype.pi_finset t, f (λ a _, x a) := prod_bij (λ x _ a, x a (mem_univ _)) (by simp) (by simp) (by simp [function.funext_iff] {contextual := tt}) (λ x hx, ⟨λ a _, x a, by simp * at *⟩) /-- The product over `univ` of a sum can be written as a sum over the product of sets, `fintype.pi_finset`. `finset.prod_sum` is an alternative statement when the product is not over `univ` -/ lemma finset.prod_univ_sum [decidable_eq α] [fintype α] [comm_semiring β] {δ : α → Type u_1} [Π (a : α), decidable_eq (δ a)] {t : Π (a : α), finset (δ a)} {f : Π (a : α), δ a → β} : ∏ a, ∑ b in t a, f a b = ∑ p in fintype.pi_finset t, ∏ x, f x (p x) := by simp only [finset.prod_attach_univ, prod_sum, finset.sum_univ_pi] /-- Summing `a^s.card * b^(n-s.card)` over all finite subsets `s` of a fintype of cardinality `n` gives `(a + b)^n`. The "good" proof involves expanding along all coordinates using the fact that `x^n` is multilinear, but multilinear maps are only available now over rings, so we give instead a proof reducing to the usual binomial theorem to have a result over semirings. -/ lemma fintype.sum_pow_mul_eq_add_pow (α : Type*) [fintype α] {R : Type*} [comm_semiring R] (a b : R) : ∑ s : finset α, a ^ s.card * b ^ (fintype.card α - s.card) = (a + b) ^ (fintype.card α) := finset.sum_pow_mul_eq_add_pow _ _ _ lemma fin.sum_pow_mul_eq_add_pow {n : ℕ} {R : Type*} [comm_semiring R] (a b : R) : ∑ s : finset (fin n), a ^ s.card * b ^ (n - s.card) = (a + b) ^ n := by simpa using fintype.sum_pow_mul_eq_add_pow (fin n) a b @[to_additive] lemma function.bijective.prod_comp [fintype α] [fintype β] [comm_monoid γ] {f : α → β} (hf : function.bijective f) (g : β → γ) : ∏ i, g (f i) = ∏ i, g i := prod_bij (λ i hi, f i) (λ i hi, mem_univ _) (λ i hi, rfl) (λ i j _ _ h, hf.1 h) $ λ i hi, (hf.2 i).imp $ λ j hj, ⟨mem_univ _, hj.symm⟩ @[to_additive] lemma equiv.prod_comp [fintype α] [fintype β] [comm_monoid γ] (e : α ≃ β) (f : β → γ) : ∏ i, f (e i) = ∏ i, f i := e.bijective.prod_comp f /-- It is equivalent to sum a function over `fin n` or `finset.range n`. -/ @[to_additive] lemma fin.prod_univ_eq_prod_range [comm_monoid α] (f : ℕ → α) (n : ℕ) : ∏ i : fin n, f i = ∏ i in range n, f i := calc (∏ i : fin n, f i) = ∏ i : {x // x ∈ range n}, f i : ((equiv.fin_equiv_subtype n).trans (equiv.subtype_equiv_right (λ _, mem_range.symm))).prod_comp (f ∘ coe) ... = ∏ i in range n, f i : by rw [← attach_eq_univ, prod_attach] @[to_additive] lemma finset.prod_fin_eq_prod_range [comm_monoid β] {n : ℕ} (c : fin n → β) : ∏ i, c i = ∏ i in finset.range n, if h : i < n then c ⟨i, h⟩ else 1 := begin rw [← fin.prod_univ_eq_prod_range, finset.prod_congr rfl], rintros ⟨i, hi⟩ _, simp only [fin.coe_eq_val, hi, dif_pos] end @[to_additive] lemma finset.prod_subtype {M : Type*} [comm_monoid M] {p : α → Prop} {F : fintype (subtype p)} (s : finset α) (h : ∀ x, x ∈ s ↔ p x) (f : α → M) : ∏ a in s, f a = ∏ a : subtype p, f a := have (∈ s) = p, from set.ext h, begin rw [← prod_attach, attach_eq_univ], substI p, congr end @[to_additive] lemma finset.prod_to_finset_eq_subtype {M : Type*} [comm_monoid M] [fintype α] (p : α → Prop) [decidable_pred p] (f : α → M) : ∏ a in {x | p x}.to_finset, f a = ∏ a : subtype p, f a := by { rw ← finset.prod_subtype, simp } @[to_additive] lemma finset.prod_fiberwise [decidable_eq β] [fintype β] [comm_monoid γ] (s : finset α) (f : α → β) (g : α → γ) : ∏ b : β, ∏ a in s.filter (λ a, f a = b), g a = ∏ a in s, g a := finset.prod_fiberwise_of_maps_to (λ x _, mem_univ _) _ @[to_additive] lemma fintype.prod_fiberwise [fintype α] [decidable_eq β] [fintype β] [comm_monoid γ] (f : α → β) (g : α → γ) : (∏ b : β, ∏ a : {a // f a = b}, g (a : α)) = ∏ a, g a := begin rw [← (equiv.sigma_preimage_equiv f).prod_comp, ← univ_sigma_univ, prod_sigma], refl end lemma fintype.prod_dite [fintype α] {p : α → Prop} [decidable_pred p] [comm_monoid β] (f : Π (a : α) (ha : p a), β) (g : Π (a : α) (ha : ¬p a), β) : (∏ a, dite (p a) (f a) (g a)) = (∏ a : {a // p a}, f a a.2) * (∏ a : {a // ¬p a}, g a a.2) := begin simp only [prod_dite, attach_eq_univ], congr' 1, { convert (equiv.subtype_equiv_right _).prod_comp (λ x : {x // p x}, f x x.2), simp }, { convert (equiv.subtype_equiv_right _).prod_comp (λ x : {x // ¬p x}, g x x.2), simp } end section open finset variables {α₁ : Type*} {α₂ : Type*} {M : Type*} [fintype α₁] [fintype α₂] [comm_monoid M] @[to_additive] lemma fintype.prod_sum_elim (f : α₁ → M) (g : α₂ → M) : (∏ x, sum.elim f g x) = (∏ a₁, f a₁) * (∏ a₂, g a₂) := by { classical, rw [univ_sum_type, prod_sum_elim] } @[to_additive] lemma fintype.prod_sum_type (f : α₁ ⊕ α₂ → M) : (∏ x, f x) = (∏ a₁, f (sum.inl a₁)) * (∏ a₂, f (sum.inr a₂)) := by simp only [← fintype.prod_sum_elim, sum.elim_comp_inl_inr] end namespace list lemma prod_take_of_fn [comm_monoid α] {n : ℕ} (f : fin n → α) (i : ℕ) : ((of_fn f).take i).prod = ∏ j in finset.univ.filter (λ (j : fin n), j.val < i), f j := begin have A : ∀ (j : fin n), ¬ ((j : ℕ) < 0) := λ j, not_lt_bot, induction i with i IH, { simp [A] }, by_cases h : i < n, { have : i < length (of_fn f), by rwa [length_of_fn f], rw prod_take_succ _ _ this, have A : ((finset.univ : finset (fin n)).filter (λ j, j.val < i + 1)) = ((finset.univ : finset (fin n)).filter (λ j, j.val < i)) ∪ {(⟨i, h⟩ : fin n)}, by { ext j, simp [nat.lt_succ_iff_lt_or_eq, fin.ext_iff, - add_comm] }, have B : _root_.disjoint (finset.filter (λ (j : fin n), j.val < i) finset.univ) (singleton (⟨i, h⟩ : fin n)), by simp, rw [A, finset.prod_union B, IH], simp }, { have A : (of_fn f).take i = (of_fn f).take i.succ, { rw ← length_of_fn f at h, have : length (of_fn f) ≤ i := not_lt.mp h, rw [take_all_of_le this, take_all_of_le (le_trans this (nat.le_succ _))] }, have B : ∀ (j : fin n), ((j : ℕ) < i.succ) = ((j : ℕ) < i), { assume j, have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h), simp [this, lt_trans this (nat.lt_succ_self _)] }, simp [← A, B, IH] } end -- `to_additive` does not work on `prod_take_of_fn` because of `0 : ℕ` in the proof. -- Use `multiplicative` instead. lemma sum_take_of_fn [add_comm_monoid α] {n : ℕ} (f : fin n → α) (i : ℕ) : ((of_fn f).take i).sum = ∑ j in finset.univ.filter (λ (j : fin n), j.val < i), f j := @prod_take_of_fn (multiplicative α) _ n f i attribute [to_additive] prod_take_of_fn @[to_additive] lemma prod_of_fn [comm_monoid α] {n : ℕ} {f : fin n → α} : (of_fn f).prod = ∏ i, f i := begin convert prod_take_of_fn f n, { rw [take_all_of_le (le_of_eq (length_of_fn f))] }, { have : ∀ (j : fin n), (j : ℕ) < n := λ j, j.is_lt, simp [this] } end lemma alternating_sum_eq_finset_sum {G : Type*} [add_comm_group G] : ∀ (L : list G), alternating_sum L = ∑ i : fin L.length, (-1 : ℤ) ^ (i : ℕ) •ℤ L.nth_le i i.is_lt | [] := by { rw [alternating_sum, finset.sum_eq_zero], rintro ⟨i, ⟨⟩⟩ } | (g :: []) := begin show g = ∑ i : fin 1, (-1 : ℤ) ^ (i : ℕ) •ℤ [g].nth_le i i.2, rw [fin.sum_univ_succ], simp, end | (g :: h :: L) := calc g + -h + L.alternating_sum = g + -h + ∑ i : fin L.length, (-1 : ℤ) ^ (i : ℕ) •ℤ L.nth_le i i.2 : congr_arg _ (alternating_sum_eq_finset_sum _) ... = ∑ i : fin (L.length + 2), (-1 : ℤ) ^ (i : ℕ) •ℤ list.nth_le (g :: h :: L) i _ : begin rw [fin.sum_univ_succ, fin.sum_univ_succ, add_assoc], unfold_coes, simp [nat.succ_eq_add_one, pow_add], refl, end @[to_additive] lemma alternating_prod_eq_finset_prod {G : Type*} [comm_group G] : ∀ (L : list G), alternating_prod L = ∏ i : fin L.length, (L.nth_le i i.2) ^ ((-1 : ℤ) ^ (i : ℕ)) | [] := by { rw [alternating_prod, finset.prod_eq_one], rintro ⟨i, ⟨⟩⟩ } | (g :: []) := begin show g = ∏ i : fin 1, [g].nth_le i i.2 ^ (-1 : ℤ) ^ (i : ℕ), rw [fin.prod_univ_succ], simp, end | (g :: h :: L) := calc g * h⁻¹ * L.alternating_prod = g * h⁻¹ * ∏ i : fin L.length, L.nth_le i i.2 ^ (-1 : ℤ) ^ (i : ℕ) : congr_arg _ (alternating_prod_eq_finset_prod _) ... = ∏ i : fin (L.length + 2), list.nth_le (g :: h :: L) i _ ^ (-1 : ℤ) ^ (i : ℕ) : begin rw [fin.prod_univ_succ, fin.prod_univ_succ, mul_assoc], unfold_coes, simp [nat.succ_eq_add_one, pow_add], refl, end end list
86e672156cde8af932c71bd23d0fbe5dcb72e588
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/data/set/intervals/pi.lean
44062039f587c9a9331e4e3a1ce34fd535d2ce8e
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
6,387
lean
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Yury Kudryashov -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.set.intervals.basic import Mathlib.data.set.lattice import Mathlib.PostPort universes u_1 u_2 namespace Mathlib /-! # Intervals in `pi`-space In this we prove various simple lemmas about intervals in `Π i, α i`. Closed intervals (`Ici x`, `Iic x`, `Icc x y`) are equal to products of their projections to `α i`, while (semi-)open intervals usually include the corresponding products as proper subsets. -/ namespace set @[simp] theorem pi_univ_Ici {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) : (pi univ fun (i : ι) => Ici (x i)) = Ici x := sorry @[simp] theorem pi_univ_Iic {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) : (pi univ fun (i : ι) => Iic (x i)) = Iic x := sorry @[simp] theorem pi_univ_Icc {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) (y : (i : ι) → α i) : (pi univ fun (i : ι) => Icc (x i) (y i)) = Icc x y := sorry theorem pi_univ_Ioi_subset {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) [Nonempty ι] : (pi univ fun (i : ι) => Ioi (x i)) ⊆ Ioi x := sorry theorem pi_univ_Iio_subset {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) [Nonempty ι] : (pi univ fun (i : ι) => Iio (x i)) ⊆ Iio x := pi_univ_Ioi_subset x theorem pi_univ_Ioo_subset {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) (y : (i : ι) → α i) [Nonempty ι] : (pi univ fun (i : ι) => Ioo (x i) (y i)) ⊆ Ioo x y := fun (x_1 : (i : ι) → α i) (hx : x_1 ∈ pi univ fun (i : ι) => Ioo (x i) (y i)) => { left := pi_univ_Ioi_subset (fun (i : ι) => x i) fun (i : ι) (hi : i ∈ univ) => and.left (hx i hi), right := pi_univ_Iio_subset (fun (i : ι) => y i) fun (i : ι) (hi : i ∈ univ) => and.right (hx i hi) } theorem pi_univ_Ioc_subset {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) (y : (i : ι) → α i) [Nonempty ι] : (pi univ fun (i : ι) => Ioc (x i) (y i)) ⊆ Ioc x y := fun (x_1 : (i : ι) → α i) (hx : x_1 ∈ pi univ fun (i : ι) => Ioc (x i) (y i)) => { left := pi_univ_Ioi_subset (fun (i : ι) => x i) fun (i : ι) (hi : i ∈ univ) => and.left (hx i hi), right := fun (i : ι) => and.right (hx i trivial) } theorem pi_univ_Ico_subset {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] (x : (i : ι) → α i) (y : (i : ι) → α i) [Nonempty ι] : (pi univ fun (i : ι) => Ico (x i) (y i)) ⊆ Ico x y := fun (x_1 : (i : ι) → α i) (hx : x_1 ∈ pi univ fun (i : ι) => Ico (x i) (y i)) => { left := fun (i : ι) => and.left (hx i trivial), right := pi_univ_Iio_subset (fun (i : ι) => y i) fun (i : ι) (hi : i ∈ univ) => and.right (hx i hi) } theorem pi_univ_Ioc_update_left {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] [DecidableEq ι] {x : (i : ι) → α i} {y : (i : ι) → α i} {i₀ : ι} {m : α i₀} (hm : x i₀ ≤ m) : (pi univ fun (i : ι) => Ioc (function.update x i₀ m i) (y i)) = (set_of fun (z : (i : ι) → α i) => m < z i₀) ∩ pi univ fun (i : ι) => Ioc (x i) (y i) := sorry theorem pi_univ_Ioc_update_right {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] [DecidableEq ι] {x : (i : ι) → α i} {y : (i : ι) → α i} {i₀ : ι} {m : α i₀} (hm : m ≤ y i₀) : (pi univ fun (i : ι) => Ioc (x i) (function.update y i₀ m i)) = (set_of fun (z : (i : ι) → α i) => z i₀ ≤ m) ∩ pi univ fun (i : ι) => Ioc (x i) (y i) := sorry theorem disjoint_pi_univ_Ioc_update_left_right {ι : Type u_1} {α : ι → Type u_2} [(i : ι) → preorder (α i)] [DecidableEq ι] {x : (i : ι) → α i} {y : (i : ι) → α i} {i₀ : ι} {m : α i₀} : disjoint (pi univ fun (i : ι) => Ioc (x i) (function.update y i₀ m i)) (pi univ fun (i : ι) => Ioc (function.update x i₀ m i) (y i)) := sorry theorem pi_univ_Ioc_update_union {ι : Type u_1} {α : ι → Type u_2} [DecidableEq ι] [(i : ι) → linear_order (α i)] (x : (i : ι) → α i) (y : (i : ι) → α i) (i₀ : ι) (m : α i₀) (hm : m ∈ Icc (x i₀) (y i₀)) : ((pi univ fun (i : ι) => Ioc (x i) (function.update y i₀ m i)) ∪ pi univ fun (i : ι) => Ioc (function.update x i₀ m i) (y i)) = pi univ fun (i : ι) => Ioc (x i) (y i) := sorry /-- If `x`, `y`, `x'`, and `y'` are functions `Π i : ι, α i`, then the set difference between the box `[x, y]` and the product of the open intervals `(x' i, y' i)` is covered by the union of the following boxes: for each `i : ι`, we take `[x, update y i (x' i)]` and `[update x i (y' i), y]`. E.g., if `x' = x` and `y' = y`, then this lemma states that the difference between a closed box `[x, y]` and the corresponding open box `{z | ∀ i, x i < z i < y i}` is covered by the union of the faces of `[x, y]`. -/ theorem Icc_diff_pi_univ_Ioo_subset {ι : Type u_1} {α : ι → Type u_2} [DecidableEq ι] [(i : ι) → linear_order (α i)] (x : (i : ι) → α i) (y : (i : ι) → α i) (x' : (i : ι) → α i) (y' : (i : ι) → α i) : (Icc x y \ pi univ fun (i : ι) => Ioo (x' i) (y' i)) ⊆ (Union fun (i : ι) => Icc x (function.update y i (x' i))) ∪ Union fun (i : ι) => Icc (function.update x i (y' i)) y := sorry /-- If `x`, `y`, `z` are functions `Π i : ι, α i`, then the set difference between the box `[x, z]` and the product of the intervals `(y i, z i]` is covered by the union of the boxes `[x, update z i (y i)]`. E.g., if `x = y`, then this lemma states that the difference between a closed box `[x, y]` and the product of half-open intervals `{z | ∀ i, x i < z i ≤ y i}` is covered by the union of the faces of `[x, y]` adjacent to `x`. -/ theorem Icc_diff_pi_univ_Ioc_subset {ι : Type u_1} {α : ι → Type u_2} [DecidableEq ι] [(i : ι) → linear_order (α i)] (x : (i : ι) → α i) (y : (i : ι) → α i) (z : (i : ι) → α i) : (Icc x z \ pi univ fun (i : ι) => Ioc (y i) (z i)) ⊆ Union fun (i : ι) => Icc x (function.update z i (y i)) := sorry
915acd194a4804dbfca081498575554beed7a876
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/number_theory/lucas_primality.lean
8e565130d18e06a1ff21003ef2c192d4b1d4e2ac
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
2,698
lean
/- Copyright (c) 2020 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey -/ import data.fintype.basic import group_theory.order_of_element import tactic.zify import data.nat.totient /-! # The Lucas test for primes. This file implements the Lucas test for primes (not to be confused with the Lucas-Lehmer test for Mersenne primes). A number `a` witnesses that `n` is prime if `a` has order `n-1` in the multiplicative group of integers mod `n`. This is checked by verifying that `a^(n-1) = 1 (mod n)` and `a^d ≠ 1 (mod n)` for any divisor `d | n - 1`. This test is the basis of the Pratt primality certificate. ## TODO - Bonus: Show the reverse implication i.e. if a number is prime then it has a Lucas witness. Use `units.is_cyclic` from `ring_theory/integral_domain` to show the group is cyclic. - Write a tactic that uses this theorem to generate Pratt primality certificates - Integrate Pratt primality certificates into the norm_num primality verifier ## Implementation notes Note that the proof for `lucas_primality` relies on analyzing the multiplicative group modulo `p`. Despite this, the theorem still holds vacuously for `p = 0` and `p = 1`: In these cases, we can take `q` to be any prime and see that `hd` does not hold, since `a^((p-1)/q)` reduces to `1`. -/ /-- If `a^(p-1) = 1 mod p`, but `a^((p-1)/q) ≠ 1 mod p` for all prime factors `q` of `p-1`, then `p` is prime. This is true because `a` has order `p-1` in the multiplicative group mod `p`, so this group must itself have order `p-1`, which only happens when `p` is prime. -/ theorem lucas_primality (p : ℕ) (a : zmod p) (ha : a^(p-1) = 1) (hd : ∀ q : ℕ, q.prime → q ∣ (p-1) → a^((p-1)/q) ≠ 1) : p.prime := begin have h0 : p ≠ 0, { rintro ⟨⟩, exact hd 2 nat.prime_two (dvd_zero _) (pow_zero _) }, have h1 : p ≠ 1, { rintro ⟨⟩, exact hd 2 nat.prime_two (dvd_zero _) (pow_zero _) }, have hp1 : 1 < p := lt_of_le_of_ne h0.bot_lt h1.symm, have order_of_a : order_of a = p-1, { apply order_of_eq_of_pow_and_pow_div_prime _ ha hd, exact tsub_pos_of_lt hp1, }, haveI : ne_zero p := ⟨h0⟩, rw nat.prime_iff_card_units, -- Prove cardinality of `units` of `zmod p` is both `≤ p-1` and `≥ p-1` refine le_antisymm (nat.card_units_zmod_lt_sub_one hp1) _, have hp' : p - 2 + 1 = p - 1 := tsub_add_eq_add_tsub hp1, let a' : (zmod p)ˣ := units.mk_of_mul_eq_one a (a ^ (p-2)) (by rw [←pow_succ, hp', ha]), calc p - 1 = order_of a : order_of_a.symm ... = order_of a' : order_of_injective (units.coe_hom (zmod p)) units.ext a' ... ≤ fintype.card (zmod p)ˣ : order_of_le_card_univ, end
c163c054703dbf06b0cbcbafebcf04c4c4aa0605
e0b0b1648286e442507eb62344760d5cd8d13f2d
/tests/lean/interactive/goalIssue.lean
b46c5591633170f47c8341490455279ca30eb81b
[ "Apache-2.0" ]
permissive
MULXCODE/lean4
743ed389e05e26e09c6a11d24607ad5a697db39b
4675817a9e89824eca37192364cd47a4027c6437
refs/heads/master
1,682,231,879,857
1,620,423,501,000
1,620,423,501,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
261
lean
theorem foo1 (x : Nat) : 0 + x = x := by first | skip; have x + x = x + x from rfl; done --^ $/lean/plainGoal | simp theorem foo2 (x : Nat) : 0 + x = x := by induction x with | zero => done --^ $/lean/plainGoal | succ => done
c34cac387425dd995eab357525398fc088856690
1dd482be3f611941db7801003235dc84147ec60a
/src/data/set/function.lean
6ae7247495b1b1d304c4c8f55e01e254dc7277dd
[ "Apache-2.0" ]
permissive
sanderdahmen/mathlib
479039302bd66434bb5672c2a4cecf8d69981458
8f0eae75cd2d8b7a083cf935666fcce4565df076
refs/heads/master
1,587,491,322,775
1,549,672,060,000
1,549,672,060,000
169,748,224
0
0
Apache-2.0
1,549,636,694,000
1,549,636,694,000
null
UTF-8
Lean
false
false
10,790
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Andrew Zipperer, Haitao Zhang, Minchao Wu Functions over sets. -/ import data.set.basic logic.function open function namespace set universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} /- maps to -/ /-- `maps_to f a b` means that the image of `a` is contained in `b`. -/ @[reducible] def maps_to (f : α → β) (a : set α) (b : set β) : Prop := a ⊆ f ⁻¹' b theorem maps_to' (f : α → β) (a : set α) (b : set β) : maps_to f a b ↔ f '' a ⊆ b := image_subset_iff.symm theorem maps_to_of_eq_on {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : eq_on f1 f2 a) (h₂ : maps_to f1 a b) : maps_to f2 a b := λ x h, by rw [mem_preimage_eq, ← h₁ _ h]; exact h₂ h theorem maps_to_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} {c : set γ} (h₁ : maps_to g b c) (h₂ : maps_to f a b) : maps_to (g ∘ f) a c := λ x h, h₁ (h₂ h) theorem maps_to_univ (f : α → β) (a) : maps_to f a univ := λ x h, trivial theorem maps_to_image (f : α → β) (a : set α) : maps_to f a (f '' a) := by rw maps_to' theorem maps_to_range (f : α → β) (a : set α) : maps_to f a (range f) := by rw [← image_univ, maps_to']; exact image_subset _ (subset_univ _) theorem image_subset_of_maps_to_of_subset {f : α → β} {a c : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : c ⊆ a) : f '' c ⊆ b := λ y hy, let ⟨x, hx, heq⟩ := hy in by rw [←heq]; apply h₁; apply h₂; assumption theorem image_subset_of_maps_to {f : α → β} {a : set α} {b : set β} (h : maps_to f a b) : f '' a ⊆ b := image_subset_of_maps_to_of_subset h (subset.refl _) /- injectivity -/ /-- `f` is injective on `a` if the restriction of `f` to `a` is injective. -/ @[reducible] def inj_on (f : α → β) (a : set α) : Prop := ∀⦃x1 x2 : α⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2 theorem inj_on_empty (f : α → β) : inj_on f ∅ := λ _ _ h₁ _ _, false.elim h₁ theorem inj_on_of_eq_on {f1 f2 : α → β} {a : set α} (h₁ : eq_on f1 f2 a) (h₂ : inj_on f1 a) : inj_on f2 a := λ _ _ h₁' h₂' heq, by apply h₂ h₁' h₂'; rw [h₁, heq, ←h₁]; repeat {assumption} theorem inj_on_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : inj_on g b) (h₃: inj_on f a) : inj_on (g ∘ f) a := λ _ _ h₁' h₂' heq, by apply h₃ h₁' h₂'; apply h₂; repeat {apply h₁, assumption}; assumption theorem inj_on_of_inj_on_of_subset {f : α → β} {a b : set α} (h₁ : inj_on f b) (h₂ : a ⊆ b) : inj_on f a := λ _ _ h₁' h₂' heq, h₁ (h₂ h₁') (h₂ h₂') heq lemma injective_iff_inj_on_univ {f : α → β} : injective f ↔ inj_on f univ := iff.intro (λ h _ _ _ _ heq, h heq) (λ h _ _ heq, h trivial trivial heq) lemma inj_on_iff_injective {f : α → β} {s : set α} : inj_on f s ↔ injective (λ x:s, f x.1) := ⟨λ H a b h, subtype.eq $ H a.2 b.2 h, λ H a b as bs h, congr_arg subtype.val $ @H ⟨a, as⟩ ⟨b, bs⟩ h⟩ lemma inv_fun_on_image [inhabited α] {β : Type v} {s t : set α} {f : α → β} (h : inj_on f s) (ht : t ⊆ s) : (inv_fun_on f s) '' (f '' t) = t := begin have A : ∀z, z ∈ t → ((inv_fun_on f s) ∘ f) z = z := λz hz, inv_fun_on_eq' h (ht hz), rw ← image_comp, ext, simp [A] {contextual := tt} end /- surjectivity -/ /-- `f` is surjective from `a` to `b` if `b` is contained in the image of `a`. -/ @[reducible] def surj_on (f : α → β) (a : set α) (b : set β) : Prop := b ⊆ f '' a theorem surj_on_of_eq_on {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : eq_on f1 f2 a) (h₂ : surj_on f1 a b) : surj_on f2 a b := λ _ h, let ⟨x, hx⟩ := h₂ h in ⟨x, hx.left, by rw [←h₁ _ hx.left]; exact hx.right⟩ theorem surj_on_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} {c : set γ} (h₁ : surj_on g b c) (h₂ : surj_on f a b) : surj_on (g ∘ f) a c := λ z h, let ⟨y, hy⟩ := h₁ h, ⟨x, hx⟩ := h₂ hy.left in ⟨x, hx.left, calc g (f x) = g y : by rw [hx.right] ... = z : hy.right⟩ lemma surjective_iff_surj_on_univ {f : α → β} : surjective f ↔ surj_on f univ univ := by simp [surjective, surj_on, subset_def] lemma surj_on_iff_surjective {f : α → β} {s : set α} : surj_on f s univ ↔ surjective (λ x:s, f x.1) := ⟨λ H b, let ⟨a, as, e⟩ := @H b trivial in ⟨⟨a, as⟩, e⟩, λ H b _, let ⟨⟨a, as⟩, e⟩ := H b in ⟨a, as, e⟩⟩ lemma image_eq_of_maps_to_of_surj_on {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : surj_on f a b) : f '' a = b := eq_of_subset_of_subset (image_subset_of_maps_to h₁) h₂ /- bijectivity -/ /-- `f` is bijective from `a` to `b` if `f` is injective on `a` and `f '' a = b`. -/ @[reducible] def bij_on (f : α → β) (a : set α) (b : set β) : Prop := maps_to f a b ∧ inj_on f a ∧ surj_on f a b lemma maps_to_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : maps_to f a b := h.left lemma inj_on_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : inj_on f a := h.right.left lemma surj_on_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : surj_on f a b := h.right.right lemma bij_on.mk {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : inj_on f a) (h₃ : surj_on f a b) : bij_on f a b := ⟨h₁, h₂, h₃⟩ theorem bij_on_of_eq_on {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : eq_on f1 f2 a) (h₂ : bij_on f1 a b) : bij_on f2 a b := let ⟨map, inj, surj⟩ := h₂ in ⟨maps_to_of_eq_on h₁ map, inj_on_of_eq_on h₁ inj, surj_on_of_eq_on h₁ surj⟩ lemma image_eq_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : f '' a = b := image_eq_of_maps_to_of_surj_on h.left h.right.right theorem bij_on_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} {c : set γ} (h₁ : bij_on g b c) (h₂: bij_on f a b) : bij_on (g ∘ f) a c := let ⟨gmap, ginj, gsurj⟩ := h₁, ⟨fmap, finj, fsurj⟩ := h₂ in ⟨maps_to_comp gmap fmap, inj_on_comp fmap ginj finj, surj_on_comp gsurj fsurj⟩ lemma bijective_iff_bij_on_univ {f : α → β} : bijective f ↔ bij_on f univ univ := iff.intro (λ h, let ⟨inj, surj⟩ := h in ⟨maps_to_univ f _, iff.mp injective_iff_inj_on_univ inj, iff.mp surjective_iff_surj_on_univ surj⟩) (λ h, let ⟨map, inj, surj⟩ := h in ⟨iff.mpr injective_iff_inj_on_univ inj, iff.mpr surjective_iff_surj_on_univ surj⟩) /- left inverse -/ /-- `g` is a left inverse to `f` on `a` means that `g (f x) = x` for all `x ∈ a`. -/ @[reducible] def left_inv_on (g : β → α) (f : α → β) (a : set α) : Prop := ∀ x ∈ a, g (f x) = x theorem left_inv_on_of_eq_on_left {g1 g2 : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : eq_on g1 g2 b) (h₃ : left_inv_on g1 f a) : left_inv_on g2 f a := λ x h, calc g2 (f x) = g1 (f x) : eq.symm $ h₂ _ (h₁ h) ... = x : h₃ _ h theorem left_inv_on_of_eq_on_right {g : β → α} {f1 f2 : α → β} {a : set α} (h₁ : eq_on f1 f2 a) (h₂ : left_inv_on g f1 a) : left_inv_on g f2 a := λ x h, calc g (f2 x) = g (f1 x) : congr_arg g (h₁ _ h).symm ... = x : h₂ _ h theorem inj_on_of_left_inv_on {g : β → α} {f : α → β} {a : set α} (h : left_inv_on g f a) : inj_on f a := λ x₁ x₂ h₁ h₂ heq, calc x₁ = g (f x₁) : eq.symm $ h _ h₁ ... = g (f x₂) : congr_arg g heq ... = x₂ : h _ h₂ theorem left_inv_on_comp {f' : β → α} {g' : γ → β} {g : β → γ} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : left_inv_on f' f a) (h₃ : left_inv_on g' g b) : left_inv_on (f' ∘ g') (g ∘ f) a := λ x h, calc (f' ∘ g') ((g ∘ f) x) = f' (f x) : congr_arg f' (h₃ _ (h₁ h)) ... = x : h₂ _ h /- right inverse -/ /-- `g` is a right inverse to `f` on `b` if `f (g x) = x` for all `x ∈ b`. -/ @[reducible] def right_inv_on (g : β → α) (f : α → β) (b : set β) : Prop := left_inv_on f g b theorem right_inv_on_of_eq_on_left {g1 g2 : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : eq_on g1 g2 b) (h₂ : right_inv_on g1 f b) : right_inv_on g2 f b := left_inv_on_of_eq_on_right h₁ h₂ theorem right_inv_on_of_eq_on_right {g : β → α} {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : maps_to g b a) (h₂ : eq_on f1 f2 a) (h₃ : right_inv_on g f1 b) : right_inv_on g f2 b := left_inv_on_of_eq_on_left h₁ h₂ h₃ theorem surj_on_of_right_inv_on {g : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to g b a) (h₂ : right_inv_on g f b) : surj_on f a b := λ y h, ⟨g y, h₁ h, h₂ _ h⟩ theorem right_inv_on_comp {f' : β → α} {g' : γ → β} {g : β → γ} {f : α → β} {c : set γ} {b : set β} (g'cb : maps_to g' c b) (h₁ : right_inv_on f' f b) (h₂ : right_inv_on g' g c) : right_inv_on (f' ∘ g') (g ∘ f) c := left_inv_on_comp g'cb h₂ h₁ theorem right_inv_on_of_inj_on_of_left_inv_on {f : α → β} {g : β → α} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : maps_to g b a) (h₃ : inj_on f a) (h₄ : left_inv_on f g b) : right_inv_on f g a := λ x h, h₃ (h₂ $ h₁ h) h (h₄ _ (h₁ h)) theorem eq_on_of_left_inv_of_right_inv {g₁ g₂ : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to g₂ b a) (h₂ : left_inv_on g₁ f a) (h₃ : right_inv_on g₂ f b) : eq_on g₁ g₂ b := λ y h, calc g₁ y = (g₁ ∘ f ∘ g₂) y : congr_arg g₁ (h₃ _ h).symm ... = g₂ y : h₂ _ (h₁ h) theorem left_inv_on_of_surj_on_right_inv_on {f : α → β} {g : β → α} {a : set α} {b : set β} (h₁ : surj_on f a b) (h₂ : right_inv_on f g a) : left_inv_on f g b := λ y h, let ⟨x, hx, heq⟩ := h₁ h in calc (f ∘ g) y = (f ∘ g ∘ f) x : congr_arg (f ∘ g) heq.symm ... = f x : congr_arg f (h₂ _ hx) ... = y : heq /- inverses -/ /-- `g` is an inverse to `f` viewed as a map from `a` to `b` -/ @[reducible] def inv_on (g : β → α) (f : α → β) (a : set α) (b : set β) : Prop := left_inv_on g f a ∧ right_inv_on g f b theorem bij_on_of_inv_on {g : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : maps_to g b a) (h₃ : inv_on g f a b) : bij_on f a b := ⟨h₁, inj_on_of_left_inv_on h₃.left, surj_on_of_right_inv_on h₂ h₃.right⟩ end set
abf2063de1e1ac7a9131994ba52715b5a60c7f8b
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
/08_Building_Theories_and_Proofs.org.11.lean
bd79dd9252c794f87fd428760d76bcacf9331407
[]
no_license
cjmazey/lean-tutorial
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
refs/heads/master
1,610,286,098,832
1,447,124,923,000
1,447,124,923,000
43,082,433
0
0
null
null
null
null
UTF-8
Lean
false
false
312
lean
import standard import data.nat.order open nat -- BEGIN check @add_lt_add_right definition foo (n m k : ℕ) (H : n < m) : n + k < m + k := !(add_lt_add_right H) example {n m k l : ℕ} (H : n < m) (K : m + l < k + l) : n < k + l := calc n ≤ n + l : !le_add_right ... < m + l : !foo H ... < k + l : K -- END
f1cb725661641505af7779f24349eeac13c8de1e
2a70b774d16dbdf5a533432ee0ebab6838df0948
/_target/deps/mathlib/src/category_theory/adjunction/mates.lean
f660fab2d236f10d295e2c2fc34420fa1568ff64
[ "Apache-2.0" ]
permissive
hjvromen/lewis
40b035973df7c77ebf927afab7878c76d05ff758
105b675f73630f028ad5d890897a51b3c1146fb0
refs/heads/master
1,677,944,636,343
1,676,555,301,000
1,676,555,301,000
327,553,599
0
0
null
null
null
null
UTF-8
Lean
false
false
10,531
lean
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Bhavik Mehta -/ import category_theory.adjunction.basic import category_theory.conj import category_theory.yoneda /-! # Mate of natural transformations This file establishes the bijection between the 2-cells L₁ R₁ C --→ D C ←-- D G ↓ ↗ ↓ H G ↓ ↘ ↓ H E --→ F E ←-- F L₂ R₂ where `L₁ ⊣ R₁` and `L₂ ⊣ R₂`, and shows that in the special case where `G,H` are identity then the bijection preserves and reflects isomorphisms (i.e. we have bijections `(L₂ ⟶ L₁) ≃ (R₁ ⟶ R₂)`, and if either side is an iso then the other side is as well). On its own, this bijection is not particularly useful but it includes a number of interesting cases as specializations. For instance, this generalises the fact that adjunctions are unique (since if `L₁ ≅ L₂` then we deduce `R₁ ≅ R₂`). Another example arises from considering the square representing that a functor `H` preserves products, in particular the morphism `HA ⨯ H- ⟶ H(A ⨯ -)`. Then provided `(A ⨯ -)` and `HA ⨯ -` have left adjoints (for instance if the relevant categories are cartesian closed), the transferred natural transformation is the exponential comparison morphism: `H(A ^ -) ⟶ HA ^ H-`. Furthermore if `H` has a left adjoint `L`, this morphism is an isomorphism iff its mate `L(HA ⨯ -) ⟶ A ⨯ L-` is an isomorphism, see https://ncatlab.org/nlab/show/Frobenius+reciprocity#InCategoryTheory. This also relates to Grothendieck's yoga of six operations, though this is not spelled out in mathlib: https://ncatlab.org/nlab/show/six+operations. -/ universes v₁ v₂ v₃ v₄ u₁ u₂ u₃ u₄ namespace category_theory open category variables {C : Type u₁} {D : Type u₂} [category.{v₁} C] [category.{v₂} D] section square variables {E : Type u₃} {F : Type u₄} [category.{v₃} E] [category.{v₄} F] variables {G : C ⥤ E} {H : D ⥤ F} {L₁ : C ⥤ D} {R₁ : D ⥤ C} {L₂ : E ⥤ F} {R₂ : F ⥤ E} variables (adj₁ : L₁ ⊣ R₁) (adj₂ : L₂ ⊣ R₂) include adj₁ adj₂ /-- Suppose we have a square of functors (where the top and bottom are adjunctions `L₁ ⊣ R₁` and `L₂ ⊣ R₂` respectively). C ↔ D G ↓ ↓ H E ↔ F Then we have a bijection between natural transformations `G ⋙ L₂ ⟶ L₁ ⋙ H` and `R₁ ⋙ G ⟶ H ⋙ R₂`. This can be seen as a bijection of the 2-cells: L₁ R₁ C --→ D C ←-- D G ↓ ↗ ↓ H G ↓ ↘ ↓ H E --→ F E ←-- F L₂ R₂ Note that if one of the transformations is an iso, it does not imply the other is an iso. -/ def transfer_nat_trans : (G ⋙ L₂ ⟶ L₁ ⋙ H) ≃ (R₁ ⋙ G ⟶ H ⋙ R₂) := { to_fun := λ h, { app := λ X, adj₂.unit.app _ ≫ R₂.map (h.app _ ≫ H.map (adj₁.counit.app _)), naturality' := λ X Y f, begin dsimp, rw [assoc, ← R₂.map_comp, assoc, ← H.map_comp, ← adj₁.counit_naturality, H.map_comp, ←functor.comp_map L₁, ←h.naturality_assoc], simp, end }, inv_fun := λ h, { app := λ X, L₂.map (G.map (adj₁.unit.app _) ≫ h.app _) ≫ adj₂.counit.app _, naturality' := λ X Y f, begin dsimp, rw [← L₂.map_comp_assoc, ← G.map_comp_assoc, ← adj₁.unit_naturality, G.map_comp_assoc, ← functor.comp_map, h.naturality], simp, end }, left_inv := λ h, begin ext X, dsimp, simp only [L₂.map_comp, assoc, adj₂.counit_naturality, adj₂.left_triangle_components_assoc, ←functor.comp_map G L₂, h.naturality_assoc, functor.comp_map L₁, ←H.map_comp, adj₁.left_triangle_components], dsimp, simp, -- See library note [dsimp, simp]. end, right_inv := λ h, begin ext X, dsimp, simp [-functor.comp_map, ←functor.comp_map H, functor.comp_map R₁, -nat_trans.naturality, ←h.naturality, -functor.map_comp, ←functor.map_comp_assoc G, R₂.map_comp], end } lemma transfer_nat_trans_counit (f : G ⋙ L₂ ⟶ L₁ ⋙ H) (Y : D) : L₂.map ((transfer_nat_trans adj₁ adj₂ f).app _) ≫ adj₂.counit.app _ = f.app _ ≫ H.map (adj₁.counit.app Y) := by simp [transfer_nat_trans] lemma unit_transfer_nat_trans (f : G ⋙ L₂ ⟶ L₁ ⋙ H) (X : C) : G.map (adj₁.unit.app X) ≫ (transfer_nat_trans adj₁ adj₂ f).app _ = adj₂.unit.app _ ≫ R₂.map (f.app _) := begin dsimp [transfer_nat_trans], rw [←adj₂.unit_naturality_assoc, ←R₂.map_comp, ← functor.comp_map G L₂, f.naturality_assoc, functor.comp_map, ← H.map_comp], dsimp, simp, -- See library note [dsimp, simp] end end square section self variables {L₁ L₂ L₃ : C ⥤ D} {R₁ R₂ R₃ : D ⥤ C} variables (adj₁ : L₁ ⊣ R₁) (adj₂ : L₂ ⊣ R₂) (adj₃ : L₃ ⊣ R₃) /-- Given two adjunctions `L₁ ⊣ R₁` and `L₂ ⊣ R₂` both between categories `C`, `D`, there is a bijection between natural transformations `L₂ ⟶ L₁` and natural transformations `R₁ ⟶ R₂`. This is defined as a special case of `transfer_nat_trans`, where the two "vertical" functors are identity. TODO: Generalise to when the two vertical functors are equivalences rather than being exactly `𝟭`. Furthermore, this bijection preserves (and reflects) isomorphisms, i.e. a transformation is an iso iff its image under the bijection is an iso, see eg `category_theory.transfer_nat_trans_self_iso`. This is in contrast to the general case `transfer_nat_trans` which does not in general have this property. -/ def transfer_nat_trans_self : (L₂ ⟶ L₁) ≃ (R₁ ⟶ R₂) := calc (L₂ ⟶ L₁) ≃ _ : (iso.hom_congr L₂.left_unitor L₁.right_unitor).symm ... ≃ _ : transfer_nat_trans adj₁ adj₂ ... ≃ (R₁ ⟶ R₂) : R₁.right_unitor.hom_congr R₂.left_unitor lemma transfer_nat_trans_self_counit (f : L₂ ⟶ L₁) (X) : L₂.map ((transfer_nat_trans_self adj₁ adj₂ f).app _) ≫ adj₂.counit.app X = f.app _ ≫ adj₁.counit.app X := begin dsimp [transfer_nat_trans_self], rw [id_comp, comp_id], have := transfer_nat_trans_counit adj₁ adj₂ (L₂.left_unitor.hom ≫ f ≫ L₁.right_unitor.inv) X, dsimp at this, rw this, simp, end lemma unit_transfer_nat_trans_self (f : L₂ ⟶ L₁) (X) : adj₁.unit.app _ ≫ (transfer_nat_trans_self adj₁ adj₂ f).app _ = adj₂.unit.app X ≫ functor.map _ (f.app _) := begin dsimp [transfer_nat_trans_self], rw [id_comp, comp_id], have := unit_transfer_nat_trans adj₁ adj₂ (L₂.left_unitor.hom ≫ f ≫ L₁.right_unitor.inv) X, dsimp at this, rw this, simp end @[simp] lemma transfer_nat_trans_self_id : transfer_nat_trans_self adj₁ adj₁ (𝟙 _) = 𝟙 _ := by { ext, dsimp [transfer_nat_trans_self, transfer_nat_trans], simp } -- See library note [dsimp, simp] @[simp] lemma transfer_nat_trans_self_symm_id : (transfer_nat_trans_self adj₁ adj₁).symm (𝟙 _) = 𝟙 _ := by { rw equiv.symm_apply_eq, simp } lemma transfer_nat_trans_self_comp (f g) : transfer_nat_trans_self adj₁ adj₂ f ≫ transfer_nat_trans_self adj₂ adj₃ g = transfer_nat_trans_self adj₁ adj₃ (g ≫ f) := begin ext, dsimp [transfer_nat_trans_self, transfer_nat_trans], simp only [id_comp, comp_id], rw [←adj₃.unit_naturality_assoc, ←R₃.map_comp, g.naturality_assoc, L₂.map_comp, assoc, adj₂.counit_naturality, adj₂.left_triangle_components_assoc, assoc], end lemma transfer_nat_trans_self_symm_comp (f g) : (transfer_nat_trans_self adj₂ adj₁).symm f ≫ (transfer_nat_trans_self adj₃ adj₂).symm g = (transfer_nat_trans_self adj₃ adj₁).symm (g ≫ f) := by { rw [equiv.eq_symm_apply, ← transfer_nat_trans_self_comp _ adj₂], simp } lemma transfer_nat_trans_self_comm {f g} (gf : g ≫ f = 𝟙 _) : transfer_nat_trans_self adj₁ adj₂ f ≫ transfer_nat_trans_self adj₂ adj₁ g = 𝟙 _ := by rw [transfer_nat_trans_self_comp, gf, transfer_nat_trans_self_id] lemma transfer_nat_trans_self_symm_comm {f g} (gf : g ≫ f = 𝟙 _) : (transfer_nat_trans_self adj₁ adj₂).symm f ≫ (transfer_nat_trans_self adj₂ adj₁).symm g = 𝟙 _ := by rw [transfer_nat_trans_self_symm_comp, gf, transfer_nat_trans_self_symm_id] /-- If `f` is an isomorphism, then the transferred natural transformation is an isomorphism. The converse is given in `transfer_nat_trans_self_of_iso`. -/ instance transfer_nat_trans_self_iso (f : L₂ ⟶ L₁) [is_iso f] : is_iso (transfer_nat_trans_self adj₁ adj₂ f) := { inv := transfer_nat_trans_self adj₂ adj₁ (inv f), hom_inv_id' := transfer_nat_trans_self_comm _ _ (by simp), inv_hom_id' := transfer_nat_trans_self_comm _ _ (by simp) } /-- If `f` is an isomorphism, then the un-transferred natural transformation is an isomorphism. The converse is given in `transfer_nat_trans_self_symm_of_iso`. -/ instance transfer_nat_trans_self_symm_iso (f : R₁ ⟶ R₂) [is_iso f] : is_iso ((transfer_nat_trans_self adj₁ adj₂).symm f) := { inv := (transfer_nat_trans_self adj₂ adj₁).symm (inv f), hom_inv_id' := transfer_nat_trans_self_symm_comm _ _ (by simp), inv_hom_id' := transfer_nat_trans_self_symm_comm _ _ (by simp) } /-- If `f` is a natural transformation whose transferred natural transformation is an isomorphism, then `f` is an isomorphism. The converse is given in `transfer_nat_trans_self_iso`. -/ def transfer_nat_trans_self_of_iso (f : L₂ ⟶ L₁) [is_iso (transfer_nat_trans_self adj₁ adj₂ f)] : is_iso f := begin suffices : is_iso ((transfer_nat_trans_self adj₁ adj₂).symm (transfer_nat_trans_self adj₁ adj₂ f)), { simpa using this }, apply_instance, end /-- If `f` is a natural transformation whose un-transferred natural transformation is an isomorphism, then `f` is an isomorphism. The converse is given in `transfer_nat_trans_self_symm_iso`. -/ def transfer_nat_trans_self_symm_of_iso (f : R₁ ⟶ R₂) [is_iso ((transfer_nat_trans_self adj₁ adj₂).symm f)] : is_iso f := begin suffices : is_iso ((transfer_nat_trans_self adj₁ adj₂) ((transfer_nat_trans_self adj₁ adj₂).symm f)), { simpa using this }, apply_instance, end end self end category_theory
97524822491fd7c30b9fdfb68cb8816376a400ad
36c7a18fd72e5b57229bd8ba36493daf536a19ce
/tests/lean/run/blast_cc12.lean
6640000d2f6f93773dbe0080140330c1af50a33b
[ "Apache-2.0" ]
permissive
YHVHvx/lean
732bf0fb7a298cd7fe0f15d82f8e248c11db49e9
038369533e0136dd395dc252084d3c1853accbf2
refs/heads/master
1,610,701,080,210
1,449,128,595,000
1,449,128,595,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
388
lean
set_option blast.subst false set_option blast.simp false set_option pp.all true definition foo1 (a b : nat) (p : Prop) : a = b → (b = a → p) → p := by blast print foo1 definition foo2 (a b c : nat) (p : Prop) : a = b → b = c → (c = a → p) → p := by blast print foo2 definition foo3 (a b c d : nat) (p : Prop) : a ≠ d → (d ≠ a → p) → p := by blast print foo3
5ed159dde8876230b799a6d61368b97580ef8388
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
/11_Tactic-Style_Proofs.org.6.lean
b3ff88c69d126492f221eeb03b88e414d065e9da
[]
no_license
cjmazey/lean-tutorial
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
refs/heads/master
1,610,286,098,832
1,447,124,923,000
1,447,124,923,000
43,082,433
0
0
null
null
null
null
UTF-8
Lean
false
false
135
lean
import standard theorem test (p q : Prop) (Hp : p) (Hq : q) : p ∧ q ∧ p := begin apply (and.intro Hp); exact (and.intro Hq Hp) end
452813bafbbc768f69ebaa65b51d973cb38b775f
f3849be5d845a1cb97680f0bbbe03b85518312f0
/library/tools/super/defs.lean
5363b9f3a10a636805b66cdae53c9f54de28097d
[ "Apache-2.0" ]
permissive
bjoeris/lean
0ed95125d762b17bfcb54dad1f9721f953f92eeb
4e496b78d5e73545fa4f9a807155113d8e6b0561
refs/heads/master
1,611,251,218,281
1,495,337,658,000
1,495,337,658,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,095
lean
/- Copyright (c) 2016 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner -/ import .clause_ops .prover_state open tactic expr monad namespace super meta def try_unfold_one_def (type : expr) : tactic expr := dunfold_expr_core transparency.all type meta def try_unfold_def_left (c : clause) (i : ℕ) : tactic (list clause) := on_left_at c i $ λt, do t' ← try_unfold_one_def t, ht' ← mk_local_def `h t', return [([ht'], ht')] meta def try_unfold_def_right (c : clause) (i : ℕ) : tactic (list clause) := on_right_at c i $ λh, do t' ← try_unfold_one_def h.local_type, hnt' ← mk_local_def `h (imp t' c.local_false), return [([hnt'], app hnt' h)] @[super.inf] meta def unfold_def_inf : inf_decl := inf_decl.mk 40 $ take given, sequence' $ do r ← [try_unfold_def_right, try_unfold_def_left], -- NOTE: we cannot restrict to selected literals here -- as this might prevent factoring, e.g. _n>0_ ∨ is_pos(0) i ← list.range given.c.num_lits, [inf_if_successful 3 given (r given.c i)] end super
8488ef336a6287e0aff9cfdf861e891ccac59510
957a80ea22c5abb4f4670b250d55534d9db99108
/library/init/meta/rb_map.lean
8dde0c19cad0098029cf9f31376d35dace7c7418
[ "Apache-2.0" ]
permissive
GaloisInc/lean
aa1e64d604051e602fcf4610061314b9a37ab8cd
f1ec117a24459b59c6ff9e56a1d09d9e9e60a6c0
refs/heads/master
1,592,202,909,807
1,504,624,387,000
1,504,624,387,000
75,319,626
2
1
Apache-2.0
1,539,290,164,000
1,480,616,104,000
C++
UTF-8
Lean
false
false
7,563
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad -/ prelude import init.data.ordering init.function init.meta.name init.meta.format init.category.monad meta constant {u₁ u₂} rb_map : Type u₁ → Type u₂ → Type (max u₁ u₂) namespace rb_map meta constant mk_core {key : Type} (data : Type) : (key → key → ordering) → rb_map key data meta constant size {key : Type} {data : Type} : rb_map key data → nat meta constant empty {key : Type} {data : Type} : rb_map key data → bool meta constant insert {key : Type} {data : Type} : rb_map key data → key → data → rb_map key data meta constant erase {key : Type} {data : Type} : rb_map key data → key → rb_map key data meta constant contains {key : Type} {data : Type} : rb_map key data → key → bool meta constant find {key : Type} {data : Type} : rb_map key data → key → option data meta constant min {key : Type} {data : Type} : rb_map key data → option data meta constant max {key : Type} {data : Type} : rb_map key data → option data meta constant fold {key : Type} {data : Type} {α :Type} : rb_map key data → α → (key → data → α → α) → α attribute [inline] meta def mk (key : Type) [has_ordering key] (data : Type) : rb_map key data := mk_core data has_ordering.cmp open list meta def of_list {key : Type} {data : Type} [has_ordering key] : list (key × data) → rb_map key data | [] := mk key data | ((k, v)::ls) := insert (of_list ls) k v meta def keys {key : Type} {data : Type} (m : rb_map key data) : list key := fold m [] (λk v ks, k :: ks) meta def values {key : Type} {data : Type} (m : rb_map key data) : list data := fold m [] (λk v vs, v :: vs) meta def to_list {key : Type} {data : Type} (m : rb_map key data) : list (key × data) := fold m [] (λk v res, (k, v) :: res) meta def set_of_list {A} [has_ordering A] : list A → rb_map A unit | [] := mk _ _ | (x::xs) := insert (set_of_list xs) x () meta def map {A B C} [has_ordering A] (f : B → C) (m : rb_map A B) : rb_map A C := fold m (mk _ _) (λk v res, insert res k (f v)) meta def for {A B C} [has_ordering A] (m : rb_map A B) (f : B → C) : rb_map A C := map f m meta def filter {A B} [has_ordering A] (m : rb_map A B) (f : B → Prop) [decidable_pred f] := fold m (mk _ _) $ λa b m', if f b then insert m' a b else m' meta def mfold {key data α :Type} {m : Type → Type} [monad m] (mp : rb_map key data) (a : α) (fn : key → data → α → m α) : m α := mp.fold (return a) (λ k d act, act >>= fn k d) end rb_map meta def mk_rb_map {key data : Type} [has_ordering key] : rb_map key data := rb_map.mk key data @[reducible] meta def nat_map (data : Type) := rb_map nat data namespace nat_map export rb_map (hiding mk) meta def mk (data : Type) : nat_map data := rb_map.mk nat data end nat_map meta def mk_nat_map {data : Type} : nat_map data := nat_map.mk data @[reducible] meta def name_map (data : Type) := rb_map name data namespace name_map export rb_map (hiding mk) meta def mk (data : Type) : name_map data := rb_map.mk name data end name_map meta def mk_name_map {data : Type} : name_map data := name_map.mk data open rb_map prod section open format variables {key : Type} {data : Type} [has_to_format key] [has_to_format data] private meta def format_key_data (k : key) (d : data) (first : bool) : format := (if first then to_fmt "" else to_fmt "," ++ line) ++ to_fmt k ++ space ++ to_fmt "←" ++ space ++ to_fmt d meta instance : has_to_format (rb_map key data) := ⟨λ m, group $ to_fmt "⟨" ++ nest 1 (fst (fold m (to_fmt "", tt) (λ k d p, (fst p ++ format_key_data k d (snd p), ff)))) ++ to_fmt "⟩"⟩ end section variables {key : Type} {data : Type} [has_to_string key] [has_to_string data] private meta def key_data_to_string (k : key) (d : data) (first : bool) : string := (if first then "" else ", ") ++ to_string k ++ " ← " ++ to_string d meta instance : has_to_string (rb_map key data) := ⟨λ m, "⟨" ++ (fst (fold m ("", tt) (λ k d p, (fst p ++ key_data_to_string k d (snd p), ff)))) ++ "⟩"⟩ end /-- a variant of rb_maps that stores a list of elements for each key. `find` returns the list of elements in the opposite order that they were inserted. -/ meta def rb_lmap (key : Type) (data : Type) : Type := rb_map key (list data) namespace rb_lmap protected meta def mk (key : Type) [has_ordering key] (data : Type) : rb_lmap key data := rb_map.mk key (list data) meta def insert {key : Type} {data : Type} (rbl : rb_lmap key data) (k : key) (d : data) : rb_lmap key data := match (rb_map.find rbl k) with | none := rb_map.insert rbl k [d] | (some l) := rb_map.insert (rb_map.erase rbl k) k (d :: l) end meta def erase {key : Type} {data : Type} (rbl : rb_lmap key data) (k : key) : rb_lmap key data := rb_map.erase rbl k meta def contains {key : Type} {data : Type} (rbl : rb_lmap key data) (k : key) : bool := rb_map.contains rbl k meta def find {key : Type} {data : Type} (rbl : rb_lmap key data) (k : key) : list data := match (rb_map.find rbl k) with | none := [] | (some l) := l end end rb_lmap meta def rb_set (key) := rb_map key unit meta def mk_rb_set {key} [has_ordering key] : rb_set key := mk_rb_map open format private meta def format_key {key} [has_to_format key] (k : key) (first : bool) : format := (if first then to_fmt "" else to_fmt "," ++ line) ++ to_fmt k namespace rb_set meta def insert {key} (s : rb_set key) (k : key) : rb_set key := rb_map.insert s k () meta def erase {key} (s : rb_set key) (k : key) : rb_set key := rb_map.erase s k meta def contains {key} (s : rb_set key) (k : key) : bool := rb_map.contains s k meta def size {key} (s : rb_set key) : nat := rb_map.size s meta def empty {key : Type} (s : rb_set key) : bool := rb_map.empty s meta def fold {key α : Type} (s : rb_set key) (a : α) (fn : key → α → α) : α := rb_map.fold s a (λ k _ a, fn k a) meta def mfold {key α :Type} {m : Type → Type} [monad m] (s : rb_set key) (a : α) (fn : key → α → m α) : m α := s.fold (return a) (λ k act, act >>= fn k) meta def to_list {key : Type} (s : rb_set key) : list key := s.fold [] list.cons meta instance {key} [has_to_format key] : has_to_format (rb_set key) := ⟨λ m, group $ to_fmt "{" ++ nest 1 (fst (fold m (to_fmt "", tt) (λ k p, (fst p ++ format_key k (snd p), ff)))) ++ to_fmt "}"⟩ end rb_set meta constant name_set : Type meta constant mk_name_set : name_set namespace name_set meta constant insert : name_set → name → name_set meta constant erase : name_set → name → name_set meta constant contains : name_set → name → bool meta constant size : name_set → nat meta constant empty : name_set → bool meta constant fold {α :Type} : name_set → α → (name → α → α) → α meta def to_list (s : name_set) : list name := s.fold [] list.cons meta instance : has_to_format name_set := ⟨λ m, group $ to_fmt "{" ++ nest 1 (fst (fold m (to_fmt "", tt) (λ k p, (fst p ++ format_key k (snd p), ff)))) ++ to_fmt "}"⟩ meta def of_list (l : list name) : name_set := list.foldl name_set.insert mk_name_set l meta def mfold {α :Type} {m : Type → Type} [monad m] (ns : name_set) (a : α) (fn : name → α → m α) : m α := ns.fold (return a) (λ k act, act >>= fn k) end name_set
eb4b0d5787e76bc7d989ab253335c4f2954df8c5
ea5678cc400c34ff95b661fa26d15024e27ea8cd
/transpostions.lean
7c6dcd9e304183b49841db43dd7103ed30bd33c4
[]
no_license
ChrisHughes24/leanstuff
dca0b5349c3ed893e8792ffbd98cbcadaff20411
9efa85f72efaccd1d540385952a6acc18fce8687
refs/heads/master
1,654,883,241,759
1,652,873,885,000
1,652,873,885,000
134,599,537
1
0
null
null
null
null
UTF-8
Lean
false
false
1,487
lean
import group_theory.subgroup data.equiv.basic data.fintype algebra.big_operators open equiv variables {α : Type*} def is_transposition (f : perm α) : Prop := ∃ x y, f x = y ∧ f y = x ∧ ∀ a, a ≠ x → a ≠ y → f a = a lemma is_transposition_inv {f : perm α} : is_transposition f → is_transposition (f⁻¹) := λ ⟨x, y, h⟩, ⟨x, y, h.2.1 ▸ equiv.left_inv _ _, h.1 ▸ equiv.left_inv _ _, λ a hax hay, by conv {to_lhs, rw ← h.2.2 a hax hay}; exact equiv.left_inv _ _⟩ variable [fintype α] lemma product_of_transpositions (f : perm α) : ∃ s : list (perm α), f = s.prod ∧ ∀ g ∈ s, is_transposition g := sorry lemma sign_well_defined_aux : ∀ (n : ℕ) (f : perm α) (m l : list (perm α)), (∀ g ∈ l, is_transposition g) → l.prod = f → l.length = n → (∀ g ∈ m, is_transposition g) → m.prod = f → l.length % 2 = m.length % 2 | 0 := λ f m, match m with | [] := by simp {contextual := tt} | (k :: m) := λ l hl hlf hl0, begin end end lemma sign_well_defined (f : perm α) : (∀ l : list (perm α), (∀ g ∈ l, is_transposition g) → l.prod = f → l.length % 2 = 0) ∨ (∀ l : list (perm α), (∀ g ∈ l, is_transposition g) → l.prod = f → l.length % 2 = 0) := have ∀ n : ℕ, ∀ l m : list (perm α), (∀ g ∈ l, is_transposition g) → l.prod = f → l.length = n (∀ g ∈ m, is_transposition g) → m.prod = f → l.length % 2 = m.length % 2 | 0 := begin end
4a8173b19c561496d490b7d6293b9effb76ce4b9
26bff4ed296b8373c92b6b025f5d60cdf02104b9
/tests/lean/run/revert_tac.lean
e873457e1c3a09ed51d0da89395c12788310399b
[ "Apache-2.0" ]
permissive
guiquanz/lean
b8a878ea24f237b84b0e6f6be2f300e8bf028229
242f8ba0486860e53e257c443e965a82ee342db3
refs/heads/master
1,526,680,092,098
1,427,492,833,000
1,427,493,281,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
516
lean
import logic theorem tst {a b c : Prop} : a → b → c → a ∧ b := begin intros (Ha, Hb, Hc), revert Ha, intro Ha2, apply (and.intro Ha2 Hb), end theorem foo1 {A : Type} (a b c : A) (P : A → Prop) : P a → a = b → P b := begin intros (Hp, Heq), revert Hp, apply (eq.rec_on Heq), intro Hpa, apply Hpa end theorem foo2 {A : Type} (a b c : A) (P : A → Prop) : P a → a = b → P b := begin intros (Hp, Heq), apply (eq.rec_on Heq Hp) end print definition foo1 print definition foo2
4bc92b91386eb027311675203ef9b32caac8da9c
a45212b1526d532e6e83c44ddca6a05795113ddc
/src/field_theory/perfect_closure.lean
5a292ad4b7e00fc1d9aa2bdf437ec151d4de660c
[ "Apache-2.0" ]
permissive
fpvandoorn/mathlib
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
refs/heads/master
1,624,791,089,608
1,556,715,231,000
1,556,715,231,000
165,722,980
5
0
Apache-2.0
1,552,657,455,000
1,547,494,646,000
Lean
UTF-8
Lean
false
false
17,184
lean
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Kenny Lau The perfect closure of a field. -/ import algebra.char_p universes u v /-- A perfect field is a field of characteristic p that has p-th root. -/ class perfect_field (α : Type u) [field α] (p : ℕ) [char_p α p] : Type u := (pth_root : α → α) (frobenius_pth_root : ∀ x, frobenius α p (pth_root x) = x) theorem frobenius_pth_root (α : Type u) [field α] (p : ℕ) [char_p α p] [perfect_field α p] (x : α) : frobenius α p (perfect_field.pth_root p x) = x := perfect_field.frobenius_pth_root p x theorem pth_root_frobenius (α : Type u) [field α] (p : ℕ) [nat.prime p] [char_p α p] [perfect_field α p] (x : α) : perfect_field.pth_root p (frobenius α p x) = x := frobenius_inj α p _ _ (by rw frobenius_pth_root) instance pth_root.is_ring_hom (α : Type u) [field α] (p : ℕ) [nat.prime p] [char_p α p] [perfect_field α p] : is_ring_hom (@perfect_field.pth_root α _ p _ _) := { map_one := frobenius_inj α p _ _ (by rw [frobenius_pth_root, frobenius_one]), map_mul := λ x y, frobenius_inj α p _ _ (by simp only [frobenius_pth_root, frobenius_mul]), map_add := λ x y, frobenius_inj α p _ _ (by simp only [frobenius_pth_root, frobenius_add]) } theorem is_ring_hom.pth_root {α : Type u} [field α] (p : ℕ) [nat.prime p] [char_p α p] [perfect_field α p] {β : Type v} [field β] [char_p β p] [perfect_field β p] (f : α → β) [is_ring_hom f] {x : α} : f (perfect_field.pth_root p x) = perfect_field.pth_root p (f x) := frobenius_inj β p _ _ (by rw [← is_monoid_hom.map_frobenius f, frobenius_pth_root, frobenius_pth_root]) inductive perfect_closure.r (α : Type u) [monoid α] (p : ℕ) : (ℕ × α) → (ℕ × α) → Prop | intro : ∀ n x, perfect_closure.r (n, x) (n+1, frobenius α p x) run_cmd tactic.mk_iff_of_inductive_prop `perfect_closure.r `perfect_closure.r_iff /-- The perfect closure is the smallest extension that makes frobenius surjective. -/ def perfect_closure (α : Type u) [monoid α] (p : ℕ) : Type u := quot (perfect_closure.r α p) namespace perfect_closure variables (α : Type u) private lemma mul_aux_left [comm_monoid α] (p : ℕ) (x1 x2 y : ℕ × α) (H : r α p x1 x2) : quot.mk (r α p) (x1.1 + y.1, ((frobenius α p)^[y.1] x1.2) * ((frobenius α p)^[x1.1] y.2)) = quot.mk (r α p) (x2.1 + y.1, ((frobenius α p)^[y.1] x2.2) * ((frobenius α p)^[x2.1] y.2)) := match x1, x2, H with | _, _, r.intro _ n x := quot.sound $ by rw [← nat.iterate_succ, nat.iterate_succ', nat.iterate_succ', ← frobenius_mul, nat.succ_add]; apply r.intro end private lemma mul_aux_right [comm_monoid α] (p : ℕ) (x y1 y2 : ℕ × α) (H : r α p y1 y2) : quot.mk (r α p) (x.1 + y1.1, ((frobenius α p)^[y1.1] x.2) * ((frobenius α p)^[x.1] y1.2)) = quot.mk (r α p) (x.1 + y2.1, ((frobenius α p)^[y2.1] x.2) * ((frobenius α p)^[x.1] y2.2)) := match y1, y2, H with | _, _, r.intro _ n y := quot.sound $ by rw [← nat.iterate_succ, nat.iterate_succ', nat.iterate_succ', ← frobenius_mul]; apply r.intro end instance [comm_monoid α] (p : ℕ) : has_mul (perfect_closure α p) := ⟨quot.lift (λ x:ℕ×α, quot.lift (λ y:ℕ×α, quot.mk (r α p) (x.1 + y.1, ((frobenius α p)^[y.1] x.2) * ((frobenius α p)^[x.1] y.2))) (mul_aux_right α p x)) (λ x1 x2 (H : r α p x1 x2), funext $ λ e, quot.induction_on e $ λ y, mul_aux_left α p x1 x2 y H)⟩ instance [comm_monoid α] (p : ℕ) : comm_monoid (perfect_closure α p) := { mul_assoc := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, quot.induction_on g $ λ ⟨s, z⟩, congr_arg (quot.mk _) $ by simp only [add_assoc, mul_assoc, nat.iterate₂ (frobenius_mul _ _), (nat.iterate_add _ _ _ _).symm, add_comm, add_left_comm], one := quot.mk _ (0, 1), one_mul := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ by simp only [nat.iterate₀ (frobenius_one _ _), nat.iterate_zero, one_mul, zero_add]), mul_one := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ by simp only [nat.iterate₀ (frobenius_one _ _), nat.iterate_zero, mul_one, add_zero]), mul_comm := λ e f, quot.induction_on e (λ ⟨m, x⟩, quot.induction_on f (λ ⟨n, y⟩, congr_arg (quot.mk _) $ by simp only [add_comm, mul_comm])), .. (infer_instance : has_mul (perfect_closure α p)) } private lemma add_aux_left [comm_ring α] (p : ℕ) (hp : nat.prime p) [char_p α p] (x1 x2 y : ℕ × α) (H : r α p x1 x2) : quot.mk (r α p) (x1.1 + y.1, ((frobenius α p)^[y.1] x1.2) + ((frobenius α p)^[x1.1] y.2)) = quot.mk (r α p) (x2.1 + y.1, ((frobenius α p)^[y.1] x2.2) + ((frobenius α p)^[x2.1] y.2)) := match x1, x2, H with | _, _, r.intro _ n x := quot.sound $ by rw [← nat.iterate_succ, nat.iterate_succ', nat.iterate_succ', ← frobenius_add, nat.succ_add]; apply r.intro end private lemma add_aux_right [comm_ring α] (p : ℕ) (hp : nat.prime p) [char_p α p] (x y1 y2 : ℕ × α) (H : r α p y1 y2) : quot.mk (r α p) (x.1 + y1.1, ((frobenius α p)^[y1.1] x.2) + ((frobenius α p)^[x.1] y1.2)) = quot.mk (r α p) (x.1 + y2.1, ((frobenius α p)^[y2.1] x.2) + ((frobenius α p)^[x.1] y2.2)) := match y1, y2, H with | _, _, r.intro _ n y := quot.sound $ by rw [← nat.iterate_succ, nat.iterate_succ', nat.iterate_succ', ← frobenius_add]; apply r.intro end instance [comm_ring α] (p : ℕ) [hp : nat.prime p] [char_p α p] : has_add (perfect_closure α p) := ⟨quot.lift (λ x:ℕ×α, quot.lift (λ y:ℕ×α, quot.mk (r α p) (x.1 + y.1, ((frobenius α p)^[y.1] x.2) + ((frobenius α p)^[x.1] y.2))) (add_aux_right α p hp x)) (λ x1 x2 (H : r α p x1 x2), funext $ λ e, quot.induction_on e $ λ y, add_aux_left α p hp x1 x2 y H)⟩ instance [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] : has_neg (perfect_closure α p) := ⟨quot.lift (λ x:ℕ×α, quot.mk (r α p) (x.1, -x.2)) (λ x y (H : r α p x y), match x, y, H with | _, _, r.intro _ n x := quot.sound $ by rw ← frobenius_neg; apply r.intro end)⟩ theorem mk_zero [comm_ring α] (p : ℕ) [nat.prime p] (n : ℕ) : quot.mk (r α p) (n, 0) = quot.mk (r α p) (0, 0) := by induction n with n ih; [refl, rw ← ih]; symmetry; apply quot.sound; have := r.intro p n (0:α); rwa [frobenius_zero α p] at this theorem r.sound [monoid α] (p m n : ℕ) (x y : α) (H : frobenius α p^[m] x = y) : quot.mk (r α p) (n, x) = quot.mk (r α p) (m + n, y) := by subst H; induction m with m ih; [simp only [zero_add, nat.iterate_zero], rw [ih, nat.succ_add, nat.iterate_succ']]; apply quot.sound; apply r.intro instance [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] : comm_ring (perfect_closure α p) := { add_assoc := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, quot.induction_on g $ λ ⟨s, z⟩, congr_arg (quot.mk _) $ by simp only [add_assoc, nat.iterate₂ (frobenius_add α p), (nat.iterate_add _ _ _ _).symm, add_comm, add_left_comm], zero := quot.mk _ (0, 0), zero_add := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ by simp only [nat.iterate₀ (frobenius_zero α p), nat.iterate_zero, zero_add]), add_zero := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ by simp only [nat.iterate₀ (frobenius_zero α p), nat.iterate_zero, add_zero]), add_left_neg := λ e, quot.induction_on e (λ ⟨n, x⟩, show quot.mk _ _ = _, by simp only [nat.iterate₁ (frobenius_neg α p), add_left_neg, mk_zero]; refl), add_comm := λ e f, quot.induction_on e (λ ⟨m, x⟩, quot.induction_on f (λ ⟨n, y⟩, congr_arg (quot.mk _) $ by simp only [add_comm])), left_distrib := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, quot.induction_on g $ λ ⟨s, z⟩, show quot.mk _ _ = quot.mk _ _, by simp only [add_assoc, add_comm, add_left_comm]; apply r.sound; simp only [nat.iterate₂ (frobenius_mul α p), nat.iterate₂ (frobenius_add α p), (nat.iterate_add _ _ _ _).symm, mul_add, add_comm, add_left_comm], right_distrib := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, quot.induction_on g $ λ ⟨s, z⟩, show quot.mk _ _ = quot.mk _ _, by simp only [add_assoc, add_comm _ s, add_left_comm _ s]; apply r.sound; simp only [nat.iterate₂ (frobenius_mul α p), nat.iterate₂ (frobenius_add α p), (nat.iterate_add _ _ _ _).symm, add_mul, add_comm, add_left_comm], .. (infer_instance : has_add (perfect_closure α p)), .. (infer_instance : has_neg (perfect_closure α p)), .. (infer_instance : comm_monoid (perfect_closure α p)) } instance [discrete_field α] (p : ℕ) [nat.prime p] [char_p α p] : has_inv (perfect_closure α p) := ⟨quot.lift (λ x:ℕ×α, quot.mk (r α p) (x.1, x.2⁻¹)) (λ x y (H : r α p x y), match x, y, H with | _, _, r.intro _ n x := quot.sound $ by simp only [frobenius]; rw inv_pow'; apply r.intro end)⟩ theorem eq_iff' [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] (x y : ℕ × α) : quot.mk (r α p) x = quot.mk (r α p) y ↔ ∃ z, (frobenius α p^[y.1 + z] x.2) = (frobenius α p^[x.1 + z] y.2) := begin split, { intro H, replace H := quot.exact _ H, induction H, case eqv_gen.rel : x y H { cases H with n x, exact ⟨0, rfl⟩ }, case eqv_gen.refl : H { exact ⟨0, rfl⟩ }, case eqv_gen.symm : x y H ih { cases ih with w ih, exact ⟨w, ih.symm⟩ }, case eqv_gen.trans : x y z H1 H2 ih1 ih2 { cases ih1 with z1 ih1, cases ih2 with z2 ih2, existsi z2+(y.1+z1), rw [← add_assoc, nat.iterate_add, ih1], rw [← nat.iterate_add, add_comm, nat.iterate_add, ih2], rw [← nat.iterate_add], simp only [add_comm, add_left_comm] } }, intro H, cases x with m x, cases y with n y, cases H with z H, dsimp only at H, rw [r.sound α p (n+z) m x _ rfl, r.sound α p (m+z) n y _ rfl, H], rw [add_assoc, add_comm, add_comm z] end theorem eq_iff [integral_domain α] (p : ℕ) [nat.prime p] [char_p α p] (x y : ℕ × α) : quot.mk (r α p) x = quot.mk (r α p) y ↔ (frobenius α p^[y.1] x.2) = (frobenius α p^[x.1] y.2) := (eq_iff' α p x y).trans ⟨λ ⟨z, H⟩, nat.iterate_inj (frobenius_inj α p) z _ _ $ by simpa only [add_comm, nat.iterate_add] using H, λ H, ⟨0, H⟩⟩ instance [discrete_field α] (p : ℕ) [nat.prime p] [char_p α p] : discrete_field (perfect_closure α p) := { zero_ne_one := λ H, zero_ne_one ((eq_iff _ _ _ _).1 H), mul_inv_cancel := λ e, quot.induction_on e $ λ ⟨m, x⟩ H, have _ := mt (eq_iff _ _ _ _).2 H, (eq_iff _ _ _ _).2 (by simp only [nat.iterate₀ (frobenius_one _ _), nat.iterate₀ (frobenius_zero α p), nat.iterate_zero, (nat.iterate₂ (frobenius_mul α p)).symm] at this ⊢; rw [mul_inv_cancel this, nat.iterate₀ (frobenius_one _ _)]), inv_mul_cancel := λ e, quot.induction_on e $ λ ⟨m, x⟩ H, have _ := mt (eq_iff _ _ _ _).2 H, (eq_iff _ _ _ _).2 (by simp only [nat.iterate₀ (frobenius_one _ _), nat.iterate₀ (frobenius_zero α p), nat.iterate_zero, (nat.iterate₂ (frobenius_mul α p)).symm] at this ⊢; rw [inv_mul_cancel this, nat.iterate₀ (frobenius_one _ _)]), has_decidable_eq := λ e f, quot.rec_on_subsingleton e $ λ ⟨m, x⟩, quot.rec_on_subsingleton f $ λ ⟨n, y⟩, decidable_of_iff' _ (eq_iff α p _ _), inv_zero := congr_arg (quot.mk (r α p)) (by rw [inv_zero]), .. (infer_instance : has_inv (perfect_closure α p)), .. (infer_instance : comm_ring (perfect_closure α p)) } theorem frobenius_mk [comm_monoid α] (p : ℕ) (x : ℕ × α) : frobenius (perfect_closure α p) p (quot.mk (r α p) x) = quot.mk _ (x.1, x.2^p) := begin unfold frobenius, cases x with n x, dsimp only, suffices : ∀ p':ℕ, (quot.mk (r α p) (n, x) ^ p' : perfect_closure α p) = quot.mk (r α p) (n, x ^ p'), { apply this }, intro p, induction p with p ih, case nat.zero { apply r.sound, rw [nat.iterate₀ (frobenius_one _ _), pow_zero] }, case nat.succ { rw [pow_succ, ih], symmetry, apply r.sound, simp only [pow_succ, nat.iterate₂ (frobenius_mul _ _)] } end def frobenius_equiv [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] : perfect_closure α p ≃ perfect_closure α p := { to_fun := frobenius (perfect_closure α p) p, inv_fun := λ e, quot.lift_on e (λ x, quot.mk (r α p) (x.1 + 1, x.2)) (λ x y H, match x, y, H with | _, _, r.intro _ n x := quot.sound (r.intro _ _ _) end), left_inv := λ e, quot.induction_on e (λ ⟨m, x⟩, by rw frobenius_mk; symmetry; apply quot.sound; apply r.intro), right_inv := λ e, quot.induction_on e (λ ⟨m, x⟩, by rw frobenius_mk; symmetry; apply quot.sound; apply r.intro) } theorem frobenius_equiv_apply [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] {x : perfect_closure α p} : frobenius_equiv α p x = frobenius _ p x := rfl theorem nat_cast [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] (n x : ℕ) : (x : perfect_closure α p) = quot.mk (r α p) (n, x) := begin induction n with n ih, { induction x with x ih, {refl}, rw [nat.cast_succ, nat.cast_succ, ih], refl }, rw ih, apply quot.sound, conv {congr, skip, skip, rw ← frobenius_nat_cast α p x}, apply r.intro end theorem int_cast [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] (x : ℤ) : (x : perfect_closure α p) = quot.mk (r α p) (0, x) := by induction x; simp only [int.cast_of_nat, int.cast_neg_succ_of_nat, nat_cast α p 0]; refl theorem nat_cast_eq_iff [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] (x y : ℕ) : (x : perfect_closure α p) = y ↔ (x : α) = y := begin split; intro H, { rw [nat_cast α p 0, nat_cast α p 0, eq_iff'] at H, cases H with z H, simpa only [zero_add, nat.iterate₀ (frobenius_nat_cast α p _)] using H }, rw [nat_cast α p 0, nat_cast α p 0, H] end instance [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] : char_p (perfect_closure α p) p := begin constructor, intro x, rw ← char_p.cast_eq_zero_iff α, rw [← nat.cast_zero, nat_cast_eq_iff, nat.cast_zero] end instance [discrete_field α] (p : ℕ) [nat.prime p] [char_p α p] : perfect_field (perfect_closure α p) p := { pth_root := (frobenius_equiv α p).symm, frobenius_pth_root := (frobenius_equiv α p).apply_symm_apply } def of [monoid α] (p : ℕ) (x : α) : perfect_closure α p := quot.mk _ (0, x) instance [comm_ring α] (p : ℕ) [nat.prime p] [char_p α p] : is_ring_hom (of α p) := { map_one := rfl, map_mul := λ x y, rfl, map_add := λ x y, rfl } theorem eq_pth_root [discrete_field α] (p : ℕ) [nat.prime p] [char_p α p] (m : ℕ) (x : α) : quot.mk (r α p) (m, x) = (perfect_field.pth_root p^[m] (of α p x) : perfect_closure α p) := begin unfold of, induction m with m ih, {refl}, rw [nat.iterate_succ', ← ih]; refl end def UMP [discrete_field α] (p : ℕ) [nat.prime p] [char_p α p] (β : Type v) [discrete_field β] [char_p β p] [perfect_field β p] : { f : α → β // is_ring_hom f } ≃ { f : perfect_closure α p → β // is_ring_hom f } := { to_fun := λ f, ⟨λ e, quot.lift_on e (λ x, perfect_field.pth_root p^[x.1] (f.1 x.2)) (λ x y H, match x, y, H with | _, _, r.intro _ n x := by letI := f.2; simp only [is_monoid_hom.map_frobenius f.1, nat.iterate_succ, pth_root_frobenius] end), show f.1 1 = 1, from f.2.1, λ j k, quot.induction_on j $ λ ⟨m, x⟩, quot.induction_on k $ λ ⟨n, y⟩, show (perfect_field.pth_root p^[_] _) = (perfect_field.pth_root p^[_] _) * (perfect_field.pth_root p^[_] _), by letI := f.2; simp only [is_ring_hom.map_mul f.1, (nat.iterate₁ (λ x, (is_monoid_hom.map_frobenius f.1 p x).symm)).symm, @nat.iterate₂ β _ (*) (λ x y, is_ring_hom.map_mul (perfect_field.pth_root p))]; rw [nat.iterate_add, nat.iterate_cancel (pth_root_frobenius β p), add_comm, nat.iterate_add, nat.iterate_cancel (pth_root_frobenius β p)], λ j k, quot.induction_on j $ λ ⟨m, x⟩, quot.induction_on k $ λ ⟨n, y⟩, show (perfect_field.pth_root p^[_] _) = (perfect_field.pth_root p^[_] _) + (perfect_field.pth_root p^[_] _), by letI := f.2; simp only [is_ring_hom.map_add f.1, (nat.iterate₁ (λ x, (is_monoid_hom.map_frobenius f.1 p x).symm)).symm, @nat.iterate₂ β _ (+) (λ x y, is_ring_hom.map_add (perfect_field.pth_root p))]; rw [nat.iterate_add, nat.iterate_cancel (pth_root_frobenius β p), add_comm m, nat.iterate_add, nat.iterate_cancel (pth_root_frobenius β p)]⟩, inv_fun := λ f, ⟨f.1 ∘ of α p, @@is_ring_hom.comp _ _ _ _ _ _ f.2⟩, left_inv := λ ⟨f, hf⟩, subtype.eq rfl, right_inv := λ ⟨f, hf⟩, subtype.eq $ funext $ λ i, quot.induction_on i $ λ ⟨m, x⟩, show perfect_field.pth_root p^[m] (f _) = f _, by resetI; rw [eq_pth_root, @nat.iterate₁ _ _ _ _ f (λ x:perfect_closure α p, (is_ring_hom.pth_root p f).symm)] } end perfect_closure
63db26c87bd04e1c9f27f4fef2082deb4959209b
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/topology/partition_of_unity.lean
d848c9618af08ab3d205f450fabbf6724d417e1c
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
20,410
lean
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import algebra.big_operators.finprod import topology.urysohns_lemma import topology.paracompact import topology.shrinking_lemma import topology.continuous_function.algebra import set_theory.ordinal /-! # Continuous partition of unity In this file we define `partition_of_unity (ι X : Type*) [topological_space X] (s : set X := univ)` to be a continuous partition of unity on `s` indexed by `ι`. More precisely, `f : partition_of_unity ι X s` is a collection of continuous functions `f i : C(X, ℝ)`, `i : ι`, such that * the supports of `f i` form a locally finite family of sets; * each `f i` is nonnegative; * `∑ᶠ i, f i x = 1` for all `x ∈ s`; * `∑ᶠ i, f i x ≤ 1` for all `x : X`. In the case `s = univ` the last assumption follows from the previous one but it is convenient to have this assumption in the case `s ≠ univ`. We also define a bump function covering, `bump_covering (ι X : Type*) [topological_space X] (s : set X := univ)`, to be a collection of functions `f i : C(X, ℝ)`, `i : ι`, such that * the supports of `f i` form a locally finite family of sets; * each `f i` is nonnegative; * for each `x ∈ s` there exists `i : ι` such that `f i y = 1` in a neighborhood of `x`. The term is motivated by the smooth case. If `f` is a bump function covering indexed by a linearly ordered type, then `g i x = f i x * ∏ᶠ j < i, (1 - f j x)` is a partition of unity, see `bump_covering.to_partition_of_unity`. Note that only finitely many terms `1 - f j x` are not equal to one, so this product is well-defined. Note that `g i x = ∏ᶠ j ≤ i, (1 - f j x) - ∏ᶠ j < i, (1 - f j x)`, so most terms in the sum `∑ᶠ i, g i x` cancel, and we get `∑ᶠ i, g i x = 1 - ∏ᶠ i, (1 - f i x)`, and the latter product equals zero because one of `f i x` is equal to one. We say that a partition of unity or a bump function covering `f` is *subordinate* to a family of sets `U i`, `i : ι`, if the closure of the support of each `f i` is included in `U i`. We use Urysohn's Lemma to prove that a locally finite open covering of a normal topological space admits a subordinate bump function covering (hence, a subordinate partition of unity), see `bump_covering.exists_is_subordinate_of_locally_finite`. If `X` is a paracompact space, then any open covering admits a locally finite refinement, hence it admits a subordinate bump function covering and a subordinate partition of unity, see `bump_covering.exists_is_subordinate`. We also provide two slightly more general versions of these lemmas, `bump_covering.exists_is_subordinate_of_locally_finite_of_prop` and `bump_covering.exists_is_subordinate_of_prop`, to be used later in the construction of a smooth partition of unity. ## Implementation notes Most (if not all) books only define a partition of unity of the whole space. However, quite a few proofs only deal with `f i` such that `closure (support (f i))` meets a specific closed subset, and it is easier to formalize these proofs if we don't have other functions right away. We use `well_ordering_rel j i` instead of `j < i` in the definition of `bump_covering.to_partition_of_unity` to avoid a `[linear_order ι]` assumption. While `well_ordering_rel j i` is a well order, not only a strict linear order, we never use this property. ## Tags partition of unity, bump function, Urysohn's lemma, normal space, paracompact space -/ universes u v open function set filter open_locale big_operators topological_space classical noncomputable theory /-- A continuous partition of unity on a set `s : set X` is a collection of continuous functions `f i` such that * the supports of `f i` form a locally finite family of sets, i.e., for every point `x : X` there exists a neighborhood `U ∋ x` such that all but finitely many functions `f i` are zero on `U`; * the functions `f i` are nonnegative; * the sum `∑ᶠ i, f i x` is equal to one for every `x ∈ s` and is less than or equal to one otherwise. If `X` is a normal paracompact space, then `partition_of_unity.exists_is_subordinate` guarantees that for every open covering `U : set (set X)` of `s` there exists a partition of unity that is subordinate to `U`. -/ structure partition_of_unity (ι X : Type*) [topological_space X] (s : set X := univ) := (to_fun : ι → C(X, ℝ)) (locally_finite' : locally_finite (λ i, support (to_fun i))) (nonneg' : 0 ≤ to_fun) (sum_eq_one' : ∀ x ∈ s, ∑ᶠ i, to_fun i x = 1) (sum_le_one' : ∀ x, ∑ᶠ i, to_fun i x ≤ 1) /-- A `bump_covering ι X s` is an indexed family of functions `f i`, `i : ι`, such that * the supports of `f i` form a locally finite family of sets, i.e., for every point `x : X` there exists a neighborhood `U ∋ x` such that all but finitely many functions `f i` are zero on `U`; * for all `i`, `x` we have `0 ≤ f i x ≤ 1`; * each point `x ∈ s` belongs to the interior of `{x | f i x = 1}` for some `i`. One of the main use cases for a `bump_covering` is to define a `partition_of_unity`, see `bump_covering.to_partition_of_unity`, but some proofs can directly use a `bump_covering` instead of a `partition_of_unity`. If `X` is a normal paracompact space, then `bump_covering.exists_is_subordinate` guarantees that for every open covering `U : set (set X)` of `s` there exists a `bump_covering` of `s` that is subordinate to `U`. -/ structure bump_covering (ι X : Type*) [topological_space X] (s : set X := univ) := (to_fun : ι → C(X, ℝ)) (locally_finite' : locally_finite (λ i, support (to_fun i))) (nonneg' : 0 ≤ to_fun) (le_one' : to_fun ≤ 1) (eventually_eq_one' : ∀ x ∈ s, ∃ i, to_fun i =ᶠ[𝓝 x] 1) variables {ι : Type u} {X : Type v} [topological_space X] namespace partition_of_unity variables {s : set X} (f : partition_of_unity ι X s) instance : has_coe_to_fun (partition_of_unity ι X s) (λ _, ι → C(X, ℝ)) := ⟨to_fun⟩ protected lemma locally_finite : locally_finite (λ i, support (f i)) := f.locally_finite' lemma nonneg (i : ι) (x : X) : 0 ≤ f i x := f.nonneg' i x lemma sum_eq_one {x : X} (hx : x ∈ s) : ∑ᶠ i, f i x = 1 := f.sum_eq_one' x hx lemma sum_le_one (x : X) : ∑ᶠ i, f i x ≤ 1 := f.sum_le_one' x lemma sum_nonneg (x : X) : 0 ≤ ∑ᶠ i, f i x := finsum_nonneg $ λ i, f.nonneg i x lemma le_one (i : ι) (x : X) : f i x ≤ 1 := (single_le_finsum i (f.locally_finite.point_finite x) (λ j, f.nonneg j x)).trans (f.sum_le_one x) /-- A partition of unity `f i` is subordinate to a family of sets `U i` indexed by the same type if for each `i` the closure of the support of `f i` is a subset of `U i`. -/ def is_subordinate (f : partition_of_unity ι X s) (U : ι → set X) : Prop := ∀ i, closure (support (f i)) ⊆ U i end partition_of_unity namespace bump_covering variables {s : set X} (f : bump_covering ι X s) instance : has_coe_to_fun (bump_covering ι X s) (λ _, ι → C(X, ℝ)) := ⟨to_fun⟩ protected lemma locally_finite : locally_finite (λ i, support (f i)) := f.locally_finite' protected lemma point_finite (x : X) : finite {i | f i x ≠ 0} := f.locally_finite.point_finite x lemma nonneg (i : ι) (x : X) : 0 ≤ f i x := f.nonneg' i x lemma le_one (i : ι) (x : X) : f i x ≤ 1 := f.le_one' i x /-- A `bump_covering` that consists of a single function, uniformly equal to one, defined as an example for `inhabited` instance. -/ protected def single (i : ι) (s : set X) : bump_covering ι X s := { to_fun := pi.single i 1, locally_finite' := λ x, begin refine ⟨univ, univ_mem, (finite_singleton i).subset _⟩, rintro j ⟨x, hx, -⟩, contrapose! hx, rw [mem_singleton_iff] at hx, simp [hx] end, nonneg' := le_update_iff.2 ⟨λ x, zero_le_one, λ _ _, le_rfl⟩, le_one' := update_le_iff.2 ⟨le_rfl, λ _ _ _, zero_le_one⟩, eventually_eq_one' := λ x _, ⟨i, by simp⟩ } @[simp] lemma coe_single (i : ι) (s : set X) : ⇑(bump_covering.single i s) = pi.single i 1 := rfl instance [inhabited ι] : inhabited (bump_covering ι X s) := ⟨bump_covering.single (default ι) s⟩ /-- A collection of bump functions `f i` is subordinate to a family of sets `U i` indexed by the same type if for each `i` the closure of the support of `f i` is a subset of `U i`. -/ def is_subordinate (f : bump_covering ι X s) (U : ι → set X) : Prop := ∀ i, closure (support (f i)) ⊆ U i lemma is_subordinate.mono {f : bump_covering ι X s} {U V : ι → set X} (hU : f.is_subordinate U) (hV : ∀ i, U i ⊆ V i) : f.is_subordinate V := λ i, subset.trans (hU i) (hV i) /-- If `X` is a normal topological space and `U i`, `i : ι`, is a locally finite open covering of a closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. If `X` is a paracompact space, then the assumption `hf : locally_finite U` can be omitted, see `bump_covering.exists_is_subordinate`. This version assumes that `p : (X → ℝ) → Prop` is a predicate that satisfies Urysohn's lemma, and provides a `bump_covering` such that each function of the covering satisfies `p`. -/ lemma exists_is_subordinate_of_locally_finite_of_prop [normal_space X] (p : (X → ℝ) → Prop) (h01 : ∀ s t, is_closed s → is_closed t → disjoint s t → ∃ f : C(X, ℝ), p f ∧ eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1) (hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U) (hU : s ⊆ ⋃ i, U i) : ∃ f : bump_covering ι X s, (∀ i, p (f i)) ∧ f.is_subordinate U := begin rcases exists_subset_Union_closure_subset hs ho (λ x _, hf.point_finite x) hU with ⟨V, hsV, hVo, hVU⟩, have hVU' : ∀ i, V i ⊆ U i, from λ i, subset.trans subset_closure (hVU i), rcases exists_subset_Union_closure_subset hs hVo (λ x _, (hf.subset hVU').point_finite x) hsV with ⟨W, hsW, hWo, hWV⟩, choose f hfp hf0 hf1 hf01 using λ i, h01 _ _ (is_closed_compl_iff.2 $ hVo i) is_closed_closure (disjoint_right.2 $ λ x hx, not_not.2 (hWV i hx)), have hsupp : ∀ i, support (f i) ⊆ V i, from λ i, support_subset_iff'.2 (hf0 i), refine ⟨⟨f, hf.subset (λ i, subset.trans (hsupp i) (hVU' i)), λ i x, (hf01 i x).1, λ i x, (hf01 i x).2, λ x hx, _⟩, hfp, λ i, subset.trans (closure_mono (hsupp i)) (hVU i)⟩, rcases mem_Union.1 (hsW hx) with ⟨i, hi⟩, exact ⟨i, ((hf1 i).mono subset_closure).eventually_eq_of_mem ((hWo i).mem_nhds hi)⟩ end /-- If `X` is a normal topological space and `U i`, `i : ι`, is a locally finite open covering of a closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. If `X` is a paracompact space, then the assumption `hf : locally_finite U` can be omitted, see `bump_covering.exists_is_subordinate`. -/ lemma exists_is_subordinate_of_locally_finite [normal_space X] (hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U) (hU : s ⊆ ⋃ i, U i) : ∃ f : bump_covering ι X s, f.is_subordinate U := let ⟨f, _, hfU⟩ := exists_is_subordinate_of_locally_finite_of_prop (λ _, true) (λ s t hs ht hd, (exists_continuous_zero_one_of_closed hs ht hd).imp $ λ f hf, ⟨trivial, hf⟩) hs U ho hf hU in ⟨f, hfU⟩ /-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. This version assumes that `p : (X → ℝ) → Prop` is a predicate that satisfies Urysohn's lemma, and provides a `bump_covering` such that each function of the covering satisfies `p`. -/ lemma exists_is_subordinate_of_prop [normal_space X] [paracompact_space X] (p : (X → ℝ) → Prop) (h01 : ∀ s t, is_closed s → is_closed t → disjoint s t → ∃ f : C(X, ℝ), p f ∧ eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1) (hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) : ∃ f : bump_covering ι X s, (∀ i, p (f i)) ∧ f.is_subordinate U := begin rcases precise_refinement_set hs _ ho hU with ⟨V, hVo, hsV, hVf, hVU⟩, rcases exists_is_subordinate_of_locally_finite_of_prop p h01 hs V hVo hVf hsV with ⟨f, hfp, hf⟩, exact ⟨f, hfp, hf.mono hVU⟩ end /-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. -/ lemma exists_is_subordinate [normal_space X] [paracompact_space X] (hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) : ∃ f : bump_covering ι X s, f.is_subordinate U := begin rcases precise_refinement_set hs _ ho hU with ⟨V, hVo, hsV, hVf, hVU⟩, rcases exists_is_subordinate_of_locally_finite hs V hVo hVf hsV with ⟨f, hf⟩, exact ⟨f, hf.mono hVU⟩ end /-- Index of a bump function such that `fs i =ᶠ[𝓝 x] 1`. -/ def ind (x : X) (hx : x ∈ s) : ι := (f.eventually_eq_one' x hx).some lemma eventually_eq_one (x : X) (hx : x ∈ s) : f (f.ind x hx) =ᶠ[𝓝 x] 1 := (f.eventually_eq_one' x hx).some_spec lemma ind_apply (x : X) (hx : x ∈ s) : f (f.ind x hx) x = 1 := (f.eventually_eq_one x hx).eq_of_nhds /-- Partition of unity defined by a `bump_covering`. We use this auxiliary definition to prove some properties of the new family of functions before bundling it into a `partition_of_unity`. Do not use this definition, use `bump_function.to_partition_of_unity` instead. The partition of unity is given by the formula `g i x = f i x * ∏ᶠ j < i, (1 - f j x)`. In other words, `g i x = ∏ᶠ j < i, (1 - f j x) - ∏ᶠ j ≤ i, (1 - f j x)`, so `∑ᶠ i, g i x = 1 - ∏ᶠ j, (1 - f j x)`. If `x ∈ s`, then one of `f j x` equals one, hence the product of `1 - f j x` vanishes, and `∑ᶠ i, g i x = 1`. In order to avoid an assumption `linear_order ι`, we use `well_ordering_rel` instead of `(<)`. -/ def to_pou_fun (i : ι) (x : X) : ℝ := f i x * ∏ᶠ j (hj : well_ordering_rel j i), (1 - f j x) lemma to_pou_fun_zero_of_zero {i : ι} {x : X} (h : f i x = 0) : f.to_pou_fun i x = 0 := by rw [to_pou_fun, h, zero_mul] lemma support_to_pou_fun_subset (i : ι) : support (f.to_pou_fun i) ⊆ support (f i) := λ x, mt $ f.to_pou_fun_zero_of_zero lemma to_pou_fun_eq_mul_prod (i : ι) (x : X) (t : finset ι) (ht : ∀ j, well_ordering_rel j i → f j x ≠ 0 → j ∈ t) : f.to_pou_fun i x = f i x * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j x) := begin refine congr_arg _ (finprod_cond_eq_prod_of_cond_iff _ (λ j hj, _)), rw [ne.def, sub_eq_self] at hj, rw [finset.mem_filter, iff.comm, and_iff_right_iff_imp], exact flip (ht j) hj end lemma sum_to_pou_fun_eq (x : X) : ∑ᶠ i, f.to_pou_fun i x = 1 - ∏ᶠ i, (1 - f i x) := begin set s := (f.point_finite x).to_finset, have hs : (s : set ι) = {i | f i x ≠ 0} := finite.coe_to_finset _, have A : support (λ i, to_pou_fun f i x) ⊆ s, { rw hs, exact λ i hi, f.support_to_pou_fun_subset i hi }, have B : mul_support (λ i, 1 - f i x) ⊆ s, { rw [hs, mul_support_one_sub], exact λ i, id }, letI : linear_order ι := linear_order_of_STO' well_ordering_rel, rw [finsum_eq_sum_of_support_subset _ A, finprod_eq_prod_of_mul_support_subset _ B, finset.prod_one_sub_ordered, sub_sub_cancel], refine finset.sum_congr rfl (λ i hi, _), convert f.to_pou_fun_eq_mul_prod _ _ _ (λ j hji hj, _), rwa finite.mem_to_finset end lemma exists_finset_to_pou_fun_eventually_eq (i : ι) (x : X) : ∃ t : finset ι, f.to_pou_fun i =ᶠ[𝓝 x] f i * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j) := begin rcases f.locally_finite x with ⟨U, hU, hf⟩, use hf.to_finset, filter_upwards [hU], intros y hyU, simp only [pi.mul_apply, finset.prod_apply], apply to_pou_fun_eq_mul_prod, intros j hji hj, exact hf.mem_to_finset.2 ⟨y, ⟨hj, hyU⟩⟩ end lemma continuous_to_pou_fun (i : ι) : continuous (f.to_pou_fun i) := begin refine ((f i).continuous.mul $ continuous_finprod_cond (λ j _, continuous_const.sub (f j).continuous) _), simp only [mul_support_one_sub], exact f.locally_finite end /-- The partition of unity defined by a `bump_covering`. The partition of unity is given by the formula `g i x = f i x * ∏ᶠ j < i, (1 - f j x)`. In other words, `g i x = ∏ᶠ j < i, (1 - f j x) - ∏ᶠ j ≤ i, (1 - f j x)`, so `∑ᶠ i, g i x = 1 - ∏ᶠ j, (1 - f j x)`. If `x ∈ s`, then one of `f j x` equals one, hence the product of `1 - f j x` vanishes, and `∑ᶠ i, g i x = 1`. In order to avoid an assumption `linear_order ι`, we use `well_ordering_rel` instead of `(<)`. -/ def to_partition_of_unity : partition_of_unity ι X s := { to_fun := λ i, ⟨f.to_pou_fun i, f.continuous_to_pou_fun i⟩, locally_finite' := f.locally_finite.subset f.support_to_pou_fun_subset, nonneg' := λ i x, mul_nonneg (f.nonneg i x) (finprod_cond_nonneg $ λ j hj, sub_nonneg.2 $ f.le_one j x), sum_eq_one' := λ x hx, begin simp only [continuous_map.coe_mk, sum_to_pou_fun_eq, sub_eq_self], apply finprod_eq_zero (λ i, 1 - f i x) (f.ind x hx), { simp only [f.ind_apply x hx, sub_self] }, { rw mul_support_one_sub, exact f.point_finite x } end, sum_le_one' := λ x, begin simp only [continuous_map.coe_mk, sum_to_pou_fun_eq, sub_le_self_iff], exact finprod_nonneg (λ i, sub_nonneg.2 $ f.le_one i x) end } lemma to_partition_of_unity_apply (i : ι) (x : X) : f.to_partition_of_unity i x = f i x * ∏ᶠ j (hj : well_ordering_rel j i), (1 - f j x) := rfl lemma to_partition_of_unity_eq_mul_prod (i : ι) (x : X) (t : finset ι) (ht : ∀ j, well_ordering_rel j i → f j x ≠ 0 → j ∈ t) : f.to_partition_of_unity i x = f i x * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j x) := f.to_pou_fun_eq_mul_prod i x t ht lemma exists_finset_to_partition_of_unity_eventually_eq (i : ι) (x : X) : ∃ t : finset ι, f.to_partition_of_unity i =ᶠ[𝓝 x] f i * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j) := f.exists_finset_to_pou_fun_eventually_eq i x lemma to_partition_of_unity_zero_of_zero {i : ι} {x : X} (h : f i x = 0) : f.to_partition_of_unity i x = 0 := f.to_pou_fun_zero_of_zero h lemma support_to_partition_of_unity_subset (i : ι) : support (f.to_partition_of_unity i) ⊆ support (f i) := f.support_to_pou_fun_subset i lemma sum_to_partition_of_unity_eq (x : X) : ∑ᶠ i, f.to_partition_of_unity i x = 1 - ∏ᶠ i, (1 - f i x) := f.sum_to_pou_fun_eq x lemma is_subordinate.to_partition_of_unity {f : bump_covering ι X s} {U : ι → set X} (h : f.is_subordinate U) : f.to_partition_of_unity.is_subordinate U := λ i, subset.trans (closure_mono $ f.support_to_partition_of_unity_subset i) (h i) end bump_covering namespace partition_of_unity variables {s : set X} instance [inhabited ι] : inhabited (partition_of_unity ι X s) := ⟨(default (bump_covering ι X s)).to_partition_of_unity⟩ /-- If `X` is a normal topological space and `U` is a locally finite open covering of a closed set `s`, then there exists a `partition_of_unity ι X s` that is subordinate to `U`. If `X` is a paracompact space, then the assumption `hf : locally_finite U` can be omitted, see `bump_covering.exists_is_subordinate`. -/ lemma exists_is_subordinate_of_locally_finite [normal_space X] (hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U) (hU : s ⊆ ⋃ i, U i) : ∃ f : partition_of_unity ι X s, f.is_subordinate U := let ⟨f, hf⟩ := bump_covering.exists_is_subordinate_of_locally_finite hs U ho hf hU in ⟨f.to_partition_of_unity, hf.to_partition_of_unity⟩ /-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set `s`, then there exists a `partition_of_unity ι X s` that is subordinate to `U`. -/ lemma exists_is_subordinate [normal_space X] [paracompact_space X] (hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) : ∃ f : partition_of_unity ι X s, f.is_subordinate U := let ⟨f, hf⟩ := bump_covering.exists_is_subordinate hs U ho hU in ⟨f.to_partition_of_unity, hf.to_partition_of_unity⟩ end partition_of_unity
59ef5ef579c2b995547367ef1a06fd2b12f3f588
94e33a31faa76775069b071adea97e86e218a8ee
/src/linear_algebra/tensor_algebra/basic.lean
a4bb65422be10a1d621998b1b9bb2fcd8c4b9900
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
10,070
lean
/- Copyright (c) 2020 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Adam Topaz -/ import algebra.free_algebra import algebra.ring_quot import algebra.triv_sq_zero_ext import algebra.algebra.operations import linear_algebra.multilinear.basic /-! # Tensor Algebras Given a commutative semiring `R`, and an `R`-module `M`, we construct the tensor algebra of `M`. This is the free `R`-algebra generated (`R`-linearly) by the module `M`. ## Notation 1. `tensor_algebra R M` is the tensor algebra itself. It is endowed with an R-algebra structure. 2. `tensor_algebra.ι R` is the canonical R-linear map `M → tensor_algebra R M`. 3. Given a linear map `f : M → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an `R`-algebra morphism `tensor_algebra R M → A`. ## Theorems 1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`. 2. `lift_unique` states that whenever an R-algebra morphism `g : tensor_algebra R M → A` is given whose composition with `ι R` is `f`, then one has `g = lift R f`. 3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem. 4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift of the composition of an algebra morphism with `ι` is the algebra morphism itself. ## Implementation details As noted above, the tensor algebra of `M` is constructed as the free `R`-algebra generated by `M`, modulo the additional relations making the inclusion of `M` into an `R`-linear map. -/ variables (R : Type*) [comm_semiring R] variables (M : Type*) [add_comm_monoid M] [module R M] namespace tensor_algebra /-- An inductively defined relation on `pre R M` used to force the initial algebra structure on the associated quotient. -/ inductive rel : free_algebra R M → free_algebra R M → Prop -- force `ι` to be linear | add {a b : M} : rel (free_algebra.ι R (a+b)) (free_algebra.ι R a + free_algebra.ι R b) | smul {r : R} {a : M} : rel (free_algebra.ι R (r • a)) (algebra_map R (free_algebra R M) r * free_algebra.ι R a) end tensor_algebra /-- The tensor algebra of the module `M` over the commutative semiring `R`. -/ @[derive [inhabited, semiring, algebra R]] def tensor_algebra := ring_quot (tensor_algebra.rel R M) namespace tensor_algebra instance {S : Type*} [comm_ring S] [module S M] : ring (tensor_algebra S M) := ring_quot.ring (rel S M) variables {M} /-- The canonical linear map `M →ₗ[R] tensor_algebra R M`. -/ def ι : M →ₗ[R] (tensor_algebra R M) := { to_fun := λ m, (ring_quot.mk_alg_hom R _ (free_algebra.ι R m)), map_add' := λ x y, by { rw [←alg_hom.map_add], exact ring_quot.mk_alg_hom_rel R rel.add, }, map_smul' := λ r x, by { rw [←alg_hom.map_smul], exact ring_quot.mk_alg_hom_rel R rel.smul, } } lemma ring_quot_mk_alg_hom_free_algebra_ι_eq_ι (m : M) : ring_quot.mk_alg_hom R (rel R M) (free_algebra.ι R m) = ι R m := rfl /-- Given a linear map `f : M → A` where `A` is an `R`-algebra, `lift R f` is the unique lift of `f` to a morphism of `R`-algebras `tensor_algebra R M → A`. -/ @[simps symm_apply] def lift {A : Type*} [semiring A] [algebra R A] : (M →ₗ[R] A) ≃ (tensor_algebra R M →ₐ[R] A) := { to_fun := ring_quot.lift_alg_hom R ∘ λ f, ⟨free_algebra.lift R ⇑f, λ x y (h : rel R M x y), by induction h; simp [algebra.smul_def]⟩, inv_fun := λ F, F.to_linear_map.comp (ι R), left_inv := λ f, linear_map.ext $ λ x, (ring_quot.lift_alg_hom_mk_alg_hom_apply _ _ _ _).trans (free_algebra.lift_ι_apply f x), right_inv := λ F, ring_quot.ring_quot_ext' _ _ _ $ free_algebra.hom_ext $ funext $ λ x, (ring_quot.lift_alg_hom_mk_alg_hom_apply _ _ _ _).trans (free_algebra.lift_ι_apply _ _) } variables {R} @[simp] theorem ι_comp_lift {A : Type*} [semiring A] [algebra R A] (f : M →ₗ[R] A) : (lift R f).to_linear_map.comp (ι R) = f := (lift R).symm_apply_apply f @[simp] theorem lift_ι_apply {A : Type*} [semiring A] [algebra R A] (f : M →ₗ[R] A) (x) : lift R f (ι R x) = f x := by { dsimp [lift, ι], refl, } @[simp] theorem lift_unique {A : Type*} [semiring A] [algebra R A] (f : M →ₗ[R] A) (g : tensor_algebra R M →ₐ[R] A) : g.to_linear_map.comp (ι R) = f ↔ g = lift R f := (lift R).symm_apply_eq -- Marking `tensor_algebra` irreducible makes `ring` instances inaccessible on quotients. -- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241 -- For now, we avoid this by not marking it irreducible. attribute [irreducible] ι lift @[simp] theorem lift_comp_ι {A : Type*} [semiring A] [algebra R A] (g : tensor_algebra R M →ₐ[R] A) : lift R (g.to_linear_map.comp (ι R)) = g := by { rw ←lift_symm_apply, exact (lift R).apply_symm_apply g } /-- See note [partially-applied ext lemmas]. -/ @[ext] theorem hom_ext {A : Type*} [semiring A] [algebra R A] {f g : tensor_algebra R M →ₐ[R] A} (w : f.to_linear_map.comp (ι R) = g.to_linear_map.comp (ι R)) : f = g := begin rw [←lift_symm_apply, ←lift_symm_apply] at w, exact (lift R).symm.injective w, end /-- If `C` holds for the `algebra_map` of `r : R` into `tensor_algebra R M`, the `ι` of `x : M`, and is preserved under addition and muliplication, then it holds for all of `tensor_algebra R M`. -/ -- This proof closely follows `free_algebra.induction` @[elab_as_eliminator] lemma induction {C : tensor_algebra R M → Prop} (h_grade0 : ∀ r, C (algebra_map R (tensor_algebra R M) r)) (h_grade1 : ∀ x, C (ι R x)) (h_mul : ∀ a b, C a → C b → C (a * b)) (h_add : ∀ a b, C a → C b → C (a + b)) (a : tensor_algebra R M) : C a := begin -- the arguments are enough to construct a subalgebra, and a mapping into it from M let s : subalgebra R (tensor_algebra R M) := { carrier := C, mul_mem' := h_mul, add_mem' := h_add, algebra_map_mem' := h_grade0, }, let of : M →ₗ[R] s := (ι R).cod_restrict s.to_submodule h_grade1, -- the mapping through the subalgebra is the identity have of_id : alg_hom.id R (tensor_algebra R M) = s.val.comp (lift R of), { ext, simp [of], }, -- finding a proof is finding an element of the subalgebra convert subtype.prop (lift R of a), exact alg_hom.congr_fun of_id a, end /-- The left-inverse of `algebra_map`. -/ def algebra_map_inv : tensor_algebra R M →ₐ[R] R := lift R (0 : M →ₗ[R] R) variables (M) lemma algebra_map_left_inverse : function.left_inverse algebra_map_inv (algebra_map R $ tensor_algebra R M) := λ x, by simp [algebra_map_inv] @[simp] lemma algebra_map_inj (x y : R) : algebra_map R (tensor_algebra R M) x = algebra_map R (tensor_algebra R M) y ↔ x = y := (algebra_map_left_inverse M).injective.eq_iff @[simp] lemma algebra_map_eq_zero_iff (x : R) : algebra_map R (tensor_algebra R M) x = 0 ↔ x = 0 := map_eq_zero_iff (algebra_map _ _) (algebra_map_left_inverse _).injective @[simp] lemma algebra_map_eq_one_iff (x : R) : algebra_map R (tensor_algebra R M) x = 1 ↔ x = 1 := map_eq_one_iff (algebra_map _ _) (algebra_map_left_inverse _).injective variables {M} /-- The canonical map from `tensor_algebra R M` into `triv_sq_zero_ext R M` that sends `tensor_algebra.ι` to `triv_sq_zero_ext.inr`. -/ def to_triv_sq_zero_ext : tensor_algebra R M →ₐ[R] triv_sq_zero_ext R M := lift R (triv_sq_zero_ext.inr_hom R M) @[simp] lemma to_triv_sq_zero_ext_ι (x : M) : to_triv_sq_zero_ext (ι R x) = triv_sq_zero_ext.inr x := lift_ι_apply _ _ /-- The left-inverse of `ι`. As an implementation detail, we implement this using `triv_sq_zero_ext` which has a suitable algebra structure. -/ def ι_inv : tensor_algebra R M →ₗ[R] M := (triv_sq_zero_ext.snd_hom R M).comp to_triv_sq_zero_ext.to_linear_map lemma ι_left_inverse : function.left_inverse ι_inv (ι R : M → tensor_algebra R M) := λ x, by simp [ι_inv] variables (R) @[simp] lemma ι_inj (x y : M) : ι R x = ι R y ↔ x = y := ι_left_inverse.injective.eq_iff @[simp] lemma ι_eq_zero_iff (x : M) : ι R x = 0 ↔ x = 0 := by rw [←ι_inj R x 0, linear_map.map_zero] variables {R} @[simp] lemma ι_eq_algebra_map_iff (x : M) (r : R) : ι R x = algebra_map R _ r ↔ x = 0 ∧ r = 0 := begin refine ⟨λ h, _, _⟩, { have hf0 : to_triv_sq_zero_ext (ι R x) = (0, x), from lift_ι_apply _ _, rw [h, alg_hom.commutes] at hf0, have : r = 0 ∧ 0 = x := prod.ext_iff.1 hf0, exact this.symm.imp_left eq.symm, }, { rintro ⟨rfl, rfl⟩, rw [linear_map.map_zero, ring_hom.map_zero] } end @[simp] lemma ι_ne_one [nontrivial R] (x : M) : ι R x ≠ 1 := begin rw [←(algebra_map R (tensor_algebra R M)).map_one, ne.def, ι_eq_algebra_map_iff], exact one_ne_zero ∘ and.right, end /-- The generators of the tensor algebra are disjoint from its scalars. -/ lemma ι_range_disjoint_one : disjoint (ι R).range (1 : submodule R (tensor_algebra R M)) := begin rw submodule.disjoint_def, rintros _ ⟨x, hx⟩ ⟨r, (rfl : algebra_map _ _ _ = _)⟩, rw ι_eq_algebra_map_iff x at hx, rw [hx.2, ring_hom.map_zero] end variables (R M) /-- Construct a product of `n` elements of the module within the tensor algebra. See also `pi_tensor_product.tprod`. -/ def tprod (n : ℕ) : multilinear_map R (λ i : fin n, M) (tensor_algebra R M) := (multilinear_map.mk_pi_algebra_fin R n (tensor_algebra R M)).comp_linear_map $ λ _, ι R @[simp] lemma tprod_apply {n : ℕ} (x : fin n → M) : tprod R M n x = (list.of_fn (λ i, ι R (x i))).prod := rfl variables {R M} end tensor_algebra namespace free_algebra variables {R M} /-- The canonical image of the `free_algebra` in the `tensor_algebra`, which maps `free_algebra.ι R x` to `tensor_algebra.ι R x`. -/ def to_tensor : free_algebra R M →ₐ[R] tensor_algebra R M := free_algebra.lift R (tensor_algebra.ι R) @[simp] lemma to_tensor_ι (m : M) : (free_algebra.ι R m).to_tensor = tensor_algebra.ι R m := by simp [to_tensor] end free_algebra
802b9ec18d091238bcb6130e7ae4be5a6a9c845a
88fb7558b0636ec6b181f2a548ac11ad3919f8a5
/tests/lean/run/meta_expr1.lean
4e59086b40c6b0274a512b3a450f65fca09d6e9e
[ "Apache-2.0" ]
permissive
moritayasuaki/lean
9f666c323cb6fa1f31ac597d777914aed41e3b7a
ae96ebf6ee953088c235ff7ae0e8c95066ba8001
refs/heads/master
1,611,135,440,814
1,493,852,869,000
1,493,852,869,000
90,269,903
0
0
null
1,493,906,291,000
1,493,906,291,000
null
UTF-8
Lean
false
false
1,772
lean
open unsigned list meta definition e1 := expr.app (expr.app (expr.const `f []) (expr.mk_var 1)) (expr.const `a []) meta definition e1' := expr.app (expr.app (expr.const `f []) (expr.mk_var 1)) (expr.const `a []) meta definition tst : e1 = e1' := rfl #eval e1 #eval expr.fold e1 (0:nat) (λ e d n, n+1) meta definition l1 := expr.lam `a binder_info.default (expr.sort level.zero) (expr.mk_var 0) meta definition l2 := expr.lam `b binder_info.default (expr.sort level.zero) (expr.mk_var 0) meta definition l3 := expr.lam `a binder_info.default (expr.const `nat []) (expr.mk_var 0) #eval l1 #eval l2 #eval l3 #eval decidable.to_bool (l1 = l2) #eval decidable.to_bool (l1 =ₐ l2) #eval expr.lex_lt (expr.const `a []) (expr.const `b []) #eval expr.lt (expr.const `a []) (expr.const `b []) meta definition v1 := expr.app (expr.app (expr.const `f []) (expr.mk_var 0)) (expr.mk_var 1) #eval v1 #eval expr.instantiate_var v1 (expr.const `a []) #eval expr.instantiate_vars v1 [expr.const `a [], expr.const `b []] meta definition fv1 := expr.app (expr.app (expr.const `f []) (expr.local_const `a `a binder_info.default (expr.sort level.zero))) (expr.local_const `b `b binder_info.default (expr.sort level.zero)) #eval fv1 #eval expr.abstract_local (expr.abstract_local fv1 `a) `b #eval expr.abstract_locals fv1 [`a, `b] #eval expr.abstract_locals fv1 [`b, `a] #eval expr.lift_vars (expr.abstract_locals fv1 [`b, `a]) 1 1 #eval expr.has_local fv1 #eval expr.has_var fv1 #eval expr.has_var (expr.abstract_locals fv1 [`b, `a]) meta definition foo : nat → expr | 0 := expr.const `aa [level.zero, level.succ level.zero] | (n+1) := foo n /- #eval match foo 10 with | expr.const n ls := list.head (list.tail ls) | _ := level.zero end -/
a1dda8bcc406e8fc1a2c33b193eade1a9640a910
31f556cdeb9239ffc2fad8f905e33987ff4feab9
/src/Lean/Elab/Notation.lean
072628dcfbedba85174b3e63a4afb3fc8b277b64
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
tobiasgrosser/lean4
ce0fd9cca0feba1100656679bf41f0bffdbabb71
ebdbdc10436a4d9d6b66acf78aae7a23f5bd073f
refs/heads/master
1,673,103,412,948
1,664,930,501,000
1,664,930,501,000
186,870,185
0
0
Apache-2.0
1,665,129,237,000
1,557,939,901,000
Lean
UTF-8
Lean
false
false
7,466
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Elab.Syntax import Lean.Elab.AuxDef import Lean.Elab.BuiltinNotation namespace Lean.Elab.Command open Lean.Syntax open Lean.Parser.Term hiding macroArg open Lean.Parser.Command /-- Wrap all occurrences of the given `ident` nodes in antiquotations -/ private partial def antiquote (vars : Array Syntax) : Syntax → Syntax | stx => match stx with | `($id:ident) => if (vars.findIdx? (fun var => var.getId == id.getId)).isSome then mkAntiquotNode id (kind := `term) (isPseudoKind := true) else stx | _ => match stx with | Syntax.node i k args => Syntax.node i k (args.map (antiquote vars)) | stx => stx def addInheritDocDefault (rhs : Term) (attrs? : Option (TSepArray ``attrInstance ",")) : Option (TSepArray ``attrInstance ",") := attrs?.map fun attrs => match rhs with | `($f:ident $_args*) | `($f:ident) => attrs.getElems.map fun stx => Unhygienic.run do if let `(attrInstance| $attr:ident) := stx then if attr.getId.eraseMacroScopes == `inheritDoc then return ← `(attrInstance| $attr:ident $f:ident) pure ⟨stx⟩ | _ => attrs /-- Convert `notation` command lhs item into a `syntax` command item -/ def expandNotationItemIntoSyntaxItem : TSyntax ``notationItem → MacroM (TSyntax `stx) | `(notationItem| $_:ident$[:$prec?]?) => `(stx| term $[:$prec?]?) | `(notationItem| $s:str) => `(stx| $s:str) | _ => Macro.throwUnsupported /-- Convert `notation` command lhs item into a pattern element -/ def expandNotationItemIntoPattern (stx : Syntax) : MacroM Syntax := let k := stx.getKind if k == `Lean.Parser.Command.identPrec then return mkAntiquotNode stx[0] (kind := `term) (isPseudoKind := true) else if k == strLitKind then strLitToPattern stx else Macro.throwUnsupported def removeParenthesesAux (parens body : Syntax) : Syntax := match parens.getHeadInfo, body.getHeadInfo, body.getTailInfo, parens.getTailInfo with | .original lead _ _ _, .original _ pos trail pos', .original endLead endPos _ endPos', .original _ _ endTrail _ => body.setHeadInfo (.original lead pos trail pos') |>.setTailInfo (.original endLead endPos endTrail endPos') | _, _, _, _ => body partial def removeParentheses (stx : Syntax) : MacroM Syntax := do match stx with | `(($e)) => pure $ removeParenthesesAux stx (←removeParentheses $ (←Term.expandCDot? e).getD e) | _ => match stx with | .node info kind args => pure $ .node info kind (←args.mapM removeParentheses) | _ => pure stx partial def hasDuplicateAntiquot (stxs : Array Syntax) : Bool := Id.run do let mut seen := NameSet.empty for stx in stxs do for node in Syntax.topDown stx true do if node.isAntiquot then let ident := node.getAntiquotTerm.getId if seen.contains ident then return true else seen := seen.insert ident pure false /-- Try to derive a `SimpleDelab` from a notation. The notation must be of the form `notation ... => c body` where `c` is a declaration in the current scope and `body` any syntax that contains each variable from the LHS at most once. -/ def mkSimpleDelab (attrKind : TSyntax ``attrKind) (pat qrhs : Term) : OptionT MacroM Syntax := do let (c, args) ← match qrhs with | `($c:ident $args*) => pure (c, args) | `($c:ident) => pure (c, #[]) | _ => failure let [(c, [])] ← Macro.resolveGlobalName c.getId | failure /- Try to remove all non semantic parenthesis. Since the parenthesizer runs after appUnexpanders we should not match on parenthesis that the user syntax inserted here for example the right hand side of: notation "{" x "|" p "}" => setOf (fun x => p) Should be matched as: setOf fun x => p -/ let args ← liftM <| args.mapM removeParentheses /- The user could mention the same antiquotation from the lhs multiple times on the rhs, this heuristic does not support this. -/ guard !hasDuplicateAntiquot args -- replace head constant with antiquotation so we're not dependent on the exact pretty printing of the head -- The reference is attached to the syntactic representation of the called function itself, not the entire function application let lhs ← `($$f:ident) let lhs := Syntax.mkApp lhs (.mk args) `(@[$attrKind appUnexpander $(mkIdent c)] aux_def unexpand $(mkIdent c) : Lean.PrettyPrinter.Unexpander := fun | `($lhs) => withRef f `($pat) -- must be a separate case as the LHS and RHS above might not be `app` nodes | `($lhs $$moreArgs*) => withRef f `($pat $$moreArgs*) | _ => throw ()) private def isLocalAttrKind (attrKind : Syntax) : Bool := match attrKind with | `(Parser.Term.attrKind| local) => true | _ => false private def expandNotationAux (ref : Syntax) (currNamespace : Name) (doc? : Option (TSyntax ``docComment)) (attrs? : Option (TSepArray ``attrInstance ",")) (attrKind : TSyntax ``attrKind) (prec? : Option Prec) (name? : Option Ident) (prio? : Option Prio) (items : Array (TSyntax ``notationItem)) (rhs : Term) : MacroM Syntax := do let prio ← evalOptPrio prio? -- build parser let syntaxParts ← items.mapM expandNotationItemIntoSyntaxItem let cat := mkIdentFrom ref `term let name ← match name? with | some name => pure name.getId | none => mkNameFromParserSyntax `term (mkNullNode syntaxParts) -- build macro rules let vars := items.filter fun item => item.raw.getKind == ``identPrec let vars := vars.map fun var => var.raw[0] let qrhs := ⟨antiquote vars rhs⟩ let attrs? := addInheritDocDefault rhs attrs? let patArgs ← items.mapM expandNotationItemIntoPattern /- The command `syntax [<kind>] ...` adds the current namespace to the syntax node kind. So, we must include current namespace when we create a pattern for the following `macro_rules` commands. -/ let fullName := currNamespace ++ name let pat : Term := ⟨mkNode fullName patArgs⟩ let stxDecl ← `($[$doc?:docComment]? $[@[$attrs?,*]]? $attrKind:attrKind syntax $[: $prec?]? (name := $(name?.getD (mkIdent name))) (priority := $(quote prio)) $[$syntaxParts]* : $cat) let macroDecl ← `(macro_rules | `($pat) => ``($qrhs)) let macroDecls ← if isLocalAttrKind attrKind then -- Make sure the quotation pre-checker takes section variables into account for local notation. `(section set_option quotPrecheck.allowSectionVars true $macroDecl end) else pure ⟨mkNullNode #[macroDecl]⟩ match (← mkSimpleDelab attrKind pat qrhs |>.run) with | some delabDecl => return mkNullNode #[stxDecl, macroDecls, delabDecl] | none => return mkNullNode #[stxDecl, macroDecls] @[builtinMacro Lean.Parser.Command.notation] def expandNotation : Macro | stx@`($[$doc?:docComment]? $[@[$attrs?,*]]? $attrKind:attrKind notation $[: $prec?]? $[(name := $name?)]? $[(priority := $prio?)]? $items* => $rhs) => do -- trigger scoped checks early and only once let _ ← toAttributeKind attrKind expandNotationAux stx (← Macro.getCurrNamespace) doc? attrs? attrKind prec? name? prio? items rhs | _ => Macro.throwUnsupported end Lean.Elab.Command
d659f90e6c955213de86e4b0fb656ea08715a4b1
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/category_theory/natural_isomorphism.lean
20414563146b5101bfded5df637e1cdf70c6fc8d
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
7,372
lean
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Tim Baumann, Stephen Morgan, Scott Morrison, Floris van Doorn -/ import category_theory.functor_category import category_theory.isomorphism /-! # Natural isomorphisms For the most part, natural isomorphisms are just another sort of isomorphism. We provide some special support for extracting components: * if `α : F ≅ G`, then `a.app X : F.obj X ≅ G.obj X`, and building natural isomorphisms from components: * ``` nat_iso.of_components (app : ∀ X : C, F.obj X ≅ G.obj X) (naturality : ∀ {X Y : C} (f : X ⟶ Y), F.map f ≫ (app Y).hom = (app X).hom ≫ G.map f) : F ≅ G ``` only needing to check naturality in one direction. ## Implementation Note that `nat_iso` is a namespace without a corresponding definition; we put some declarations that are specifically about natural isomorphisms in the `iso` namespace so that they are available using dot notation. -/ open category_theory -- declare the `v`'s first; see `category_theory.category` for an explanation universes v₁ v₂ v₃ v₄ u₁ u₂ u₃ u₄ namespace category_theory open nat_trans variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D] {E : Type u₃} [category.{v₃} E] namespace iso /-- The application of a natural isomorphism to an object. We put this definition in a different namespace, so that we can use `α.app` -/ @[simps] def app {F G : C ⥤ D} (α : F ≅ G) (X : C) : F.obj X ≅ G.obj X := { hom := α.hom.app X, inv := α.inv.app X, hom_inv_id' := begin rw [← comp_app, iso.hom_inv_id], refl end, inv_hom_id' := begin rw [← comp_app, iso.inv_hom_id], refl end } @[simp, reassoc] lemma hom_inv_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.hom.app X ≫ α.inv.app X = 𝟙 (F.obj X) := congr_fun (congr_arg nat_trans.app α.hom_inv_id) X @[simp, reassoc] lemma inv_hom_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.inv.app X ≫ α.hom.app X = 𝟙 (G.obj X) := congr_fun (congr_arg nat_trans.app α.inv_hom_id) X end iso namespace nat_iso open category_theory.category category_theory.functor @[simp] lemma trans_app {F G H : C ⥤ D} (α : F ≅ G) (β : G ≅ H) (X : C) : (α ≪≫ β).app X = α.app X ≪≫ β.app X := rfl lemma app_hom {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).hom = α.hom.app X := rfl lemma app_inv {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).inv = α.inv.app X := rfl variables {F G : C ⥤ D} instance hom_app_is_iso (α : F ≅ G) (X : C) : is_iso (α.hom.app X) := ⟨⟨α.inv.app X, ⟨by rw [←comp_app, iso.hom_inv_id, ←id_app], by rw [←comp_app, iso.inv_hom_id, ←id_app]⟩⟩⟩ instance inv_app_is_iso (α : F ≅ G) (X : C) : is_iso (α.inv.app X) := ⟨⟨α.hom.app X, ⟨by rw [←comp_app, iso.inv_hom_id, ←id_app], by rw [←comp_app, iso.hom_inv_id, ←id_app]⟩⟩⟩ section /-! Unfortunately we need a separate set of cancellation lemmas for components of natural isomorphisms, because the `simp` normal form is `α.hom.app X`, rather than `α.app.hom X`. (With the later, the morphism would be visibly part of an isomorphism, so general lemmas about isomorphisms would apply.) In the future, we should consider a redesign that changes this simp norm form, but for now it breaks too many proofs. -/ variables (α : F ≅ G) @[simp] lemma cancel_nat_iso_hom_left {X : C} {Z : D} (g g' : G.obj X ⟶ Z) : α.hom.app X ≫ g = α.hom.app X ≫ g' ↔ g = g' := by simp only [cancel_epi] @[simp] lemma cancel_nat_iso_inv_left {X : C} {Z : D} (g g' : F.obj X ⟶ Z) : α.inv.app X ≫ g = α.inv.app X ≫ g' ↔ g = g' := by simp only [cancel_epi] @[simp] lemma cancel_nat_iso_hom_right {X : D} {Y : C} (f f' : X ⟶ F.obj Y) : f ≫ α.hom.app Y = f' ≫ α.hom.app Y ↔ f = f' := by simp only [cancel_mono] @[simp] lemma cancel_nat_iso_inv_right {X : D} {Y : C} (f f' : X ⟶ G.obj Y) : f ≫ α.inv.app Y = f' ≫ α.inv.app Y ↔ f = f' := by simp only [cancel_mono] @[simp] lemma cancel_nat_iso_hom_right_assoc {W X X' : D} {Y : C} (f : W ⟶ X) (g : X ⟶ F.obj Y) (f' : W ⟶ X') (g' : X' ⟶ F.obj Y) : f ≫ g ≫ α.hom.app Y = f' ≫ g' ≫ α.hom.app Y ↔ f ≫ g = f' ≫ g' := by simp only [←category.assoc, cancel_mono] @[simp] lemma cancel_nat_iso_inv_right_assoc {W X X' : D} {Y : C} (f : W ⟶ X) (g : X ⟶ G.obj Y) (f' : W ⟶ X') (g' : X' ⟶ G.obj Y) : f ≫ g ≫ α.inv.app Y = f' ≫ g' ≫ α.inv.app Y ↔ f ≫ g = f' ≫ g' := by simp only [←category.assoc, cancel_mono] end variables {X Y : C} lemma naturality_1 (α : F ≅ G) (f : X ⟶ Y) : (α.inv.app X) ≫ (F.map f) ≫ (α.hom.app Y) = G.map f := by rw [naturality, ←category.assoc, ←nat_trans.comp_app, α.inv_hom_id, id_app, category.id_comp] lemma naturality_2 (α : F ≅ G) (f : X ⟶ Y) : (α.hom.app X) ≫ (G.map f) ≫ (α.inv.app Y) = F.map f := by rw [naturality, ←category.assoc, ←nat_trans.comp_app, α.hom_inv_id, id_app, category.id_comp] /-- The components of a natural isomorphism are isomorphisms. -/ instance is_iso_app_of_is_iso (α : F ⟶ G) [is_iso α] (X) : is_iso (α.app X) := ⟨⟨(inv α).app X, ⟨congr_fun (congr_arg nat_trans.app (is_iso.hom_inv_id α)) X, congr_fun (congr_arg nat_trans.app (is_iso.inv_hom_id α)) X⟩⟩⟩ @[simp] lemma is_iso_inv_app (α : F ⟶ G) [is_iso α] (X) : (inv α).app X = inv (α.app X) := by { ext, rw ←nat_trans.comp_app, simp, } /-- Construct a natural isomorphism between functors by giving object level isomorphisms, and checking naturality only in the forward direction. -/ def of_components (app : ∀ X : C, F.obj X ≅ G.obj X) (naturality : ∀ {X Y : C} (f : X ⟶ Y), F.map f ≫ (app Y).hom = (app X).hom ≫ G.map f) : F ≅ G := { hom := { app := λ X, (app X).hom }, inv := { app := λ X, (app X).inv, naturality' := λ X Y f, begin have h := congr_arg (λ f, (app X).inv ≫ (f ≫ (app Y).inv)) (naturality f).symm, simp only [iso.inv_hom_id_assoc, iso.hom_inv_id, assoc, comp_id, cancel_mono] at h, exact h end }, } @[simp] lemma of_components.app (app' : ∀ X : C, F.obj X ≅ G.obj X) (naturality) (X) : (of_components app' naturality).app X = app' X := by tidy @[simp] lemma of_components.hom_app (app : ∀ X : C, F.obj X ≅ G.obj X) (naturality) (X) : (of_components app naturality).hom.app X = (app X).hom := rfl @[simp] lemma of_components.inv_app (app : ∀ X : C, F.obj X ≅ G.obj X) (naturality) (X) : (of_components app naturality).inv.app X = (app X).inv := by simp [of_components] /-- A natural transformation is an isomorphism if all its components are isomorphisms. -/ -- Making this an instance would cause a typeclass inference loop with `is_iso_app_of_is_iso`. lemma is_iso_of_is_iso_app (α : F ⟶ G) [∀ X : C, is_iso (α.app X)] : is_iso α := ⟨(is_iso.of_iso (of_components (λ X, as_iso (α.app X)) (by tidy))).1⟩ /-- Horizontal composition of natural isomorphisms. -/ def hcomp {F G : C ⥤ D} {H I : D ⥤ E} (α : F ≅ G) (β : H ≅ I) : F ⋙ H ≅ G ⋙ I := begin refine ⟨α.hom ◫ β.hom, α.inv ◫ β.inv, _, _⟩, { ext, rw [←nat_trans.exchange], simp, refl }, ext, rw [←nat_trans.exchange], simp, refl end end nat_iso end category_theory
4a5b8fda05f58f91810c9fd55e6741801bac975a
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/Lean3Lib/init/data/ordering/basic_auto.lean
abe38c5ebbf483e2850c2a4809f0a6488a4b15e7
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
1,268
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.data.repr import Mathlib.Lean3Lib.init.data.prod import Mathlib.Lean3Lib.init.data.sum.basic universes l u namespace Mathlib inductive ordering where | lt : ordering | eq : ordering | gt : ordering protected instance ordering.has_repr : has_repr ordering := has_repr.mk fun (s : ordering) => sorry namespace ordering def swap : ordering → ordering := sorry def or_else : ordering → ordering → ordering := sorry theorem swap_swap (o : ordering) : swap (swap o) = o := ordering.cases_on o (idRhs (swap (swap lt) = swap (swap lt)) rfl) (idRhs (swap (swap eq) = swap (swap eq)) rfl) (idRhs (swap (swap gt) = swap (swap gt)) rfl) end ordering def cmp_using {α : Type u} (lt : α → α → Prop) [DecidableRel lt] (a : α) (b : α) : ordering := ite (lt a b) ordering.lt (ite (lt b a) ordering.gt ordering.eq) def cmp {α : Type u} [HasLess α] [DecidableRel Less] (a : α) (b : α) : ordering := cmp_using Less a b protected instance ordering.decidable_eq : DecidableEq ordering := fun (a b : ordering) => sorry end Mathlib
161cd1dec019ac71c936d09dba03dd2f3dee4d89
31f556cdeb9239ffc2fad8f905e33987ff4feab9
/stage0/src/Lean/Compiler/LCNF/Bind.lean
06a4b7ecf540bb7d573dc50539d213f9fa4374f9
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
tobiasgrosser/lean4
ce0fd9cca0feba1100656679bf41f0bffdbabb71
ebdbdc10436a4d9d6b66acf78aae7a23f5bd073f
refs/heads/master
1,673,103,412,948
1,664,930,501,000
1,664,930,501,000
186,870,185
0
0
Apache-2.0
1,665,129,237,000
1,557,939,901,000
Lean
UTF-8
Lean
false
false
4,981
lean
/- Copyright (c) 2022 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Compiler.LCNF.InferType namespace Lean.Compiler.LCNF /-- Helper class for lifting `CompilerM.codeBind` -/ class MonadCodeBind (m : Type → Type) where codeBind : (c : Code) → (f : FVarId → m Code) → m Code /-- Return code that is equivalent to `c >>= f`. That is, executes `c`, and then `f x`, where `x` is a variable that contains the result of `c`'s computation. If `c` contains a jump to a join point `jp_i` not declared in `c`, we throw an exception because an invalid block would be generated. It would be invalid because `f` would not be applied to `jp_i`. Note that, we could have decided to create a copy of `jp_i` where we apply `f` to it, by we decided to not do it to avoid code duplication. -/ abbrev Code.bind [MonadCodeBind m] (c : Code) (f : FVarId → m Code) : m Code := MonadCodeBind.codeBind c f partial def CompilerM.codeBind (c : Code) (f : FVarId → CompilerM Code) : CompilerM Code := do go c |>.run {} where go (c : Code) : ReaderT FVarIdSet CompilerM Code := do match c with | .let decl k => return .let decl (← go k) | .fun decl k => return .fun decl (← go k) | .jp decl k => let value ← go decl.value let type ← value.inferParamType decl.params let decl ← decl.update' type value withReader (fun s => s.insert decl.fvarId) do return .jp decl (← go k) | .cases c => let alts ← c.alts.mapM fun | .alt ctorName params k => return .alt ctorName params (← go k) | .default k => return .default (← go k) if alts.isEmpty then throwError "`Code.bind` failed, empty `cases` found" let resultType ← mkCasesResultType alts return .cases { c with alts, resultType } | .return fvarId => f fvarId | .jmp fvarId .. => unless (← read).contains fvarId do throwError "`Code.bind` failed, it contains a out of scope join point" return c | .unreach type => /- Create an auxiliary parameter `aux : type` to compute the resulting type of `f aux`. This code is not very efficient, we could ask caller to provide the type of `c >>= f`, but this is more convenient, and this case is seldom reached. -/ let auxParam ← mkAuxParam type let k ← f auxParam.fvarId let typeNew ← k.inferType eraseCode k eraseParam auxParam return .unreach typeNew instance : MonadCodeBind CompilerM where codeBind := CompilerM.codeBind instance [MonadCodeBind m] : MonadCodeBind (ReaderT ρ m) where codeBind c f ctx := c.bind fun fvarId => f fvarId ctx instance [STWorld ω m] [MonadCodeBind m] : MonadCodeBind (StateRefT' ω σ m) where codeBind c f sref := c.bind fun fvarId => f fvarId sref /-- Create new parameters for the given arrow type. Example: if `type` is `Nat → Bool → Int`, the result is an array containing two new parameters with types `Nat` and `Bool`. -/ partial def mkNewParams (type : Expr) : CompilerM (Array Param) := go type #[] #[] where go (type : Expr) (xs : Array Expr) (ps : Array Param) : CompilerM (Array Param) := do match type with | .forallE _ d b _ => let d := d.instantiateRev xs let p ← mkAuxParam d go b (xs.push (.fvar p.fvarId)) (ps.push p) | _ => let type := type.instantiateRev xs let type' := type.headBeta if type' != type then go type' #[] ps else return ps def isEtaExpandCandidateCore (type : Expr) (params : Array Param) : Bool := let typeArity := getArrowArity type let valueArity := params.size typeArity > valueArity abbrev FunDeclCore.isEtaExpandCandidate (decl : FunDecl) : Bool := isEtaExpandCandidateCore decl.type decl.params def etaExpandCore (type : Expr) (params : Array Param) (value : Code) : CompilerM (Array Param × Code) := do let valueType ← instantiateForall type params let psNew ← mkNewParams valueType let params := params ++ psNew let xs := psNew.map fun p => Expr.fvar p.fvarId let value ← value.bind fun fvarId => do let auxDecl ← mkAuxLetDecl (mkAppN (.fvar fvarId) xs) return .let auxDecl (.return auxDecl.fvarId) return (params, value) def etaExpandCore? (type : Expr) (params : Array Param) (value : Code) : CompilerM (Option (Array Param × Code)) := do if isEtaExpandCandidateCore type params then etaExpandCore type params value else return none def FunDeclCore.etaExpand (decl : FunDecl) : CompilerM FunDecl := do let some (params, value) ← etaExpandCore? decl.type decl.params decl.value | return decl decl.update decl.type params value def Decl.etaExpand (decl : Decl) : CompilerM Decl := do let some (params, value) ← etaExpandCore? decl.type decl.params decl.value | return decl return { decl with params, value } end Lean.Compiler.LCNF
b67aa4c1676e911ab329404d93d243fb99665e91
35677d2df3f081738fa6b08138e03ee36bc33cad
/src/measure_theory/l1_space.lean
9e563aa543fe8dbfdbcbb837dc73371d01a28028
[ "Apache-2.0" ]
permissive
gebner/mathlib
eab0150cc4f79ec45d2016a8c21750244a2e7ff0
cc6a6edc397c55118df62831e23bfbd6e6c6b4ab
refs/heads/master
1,625,574,853,976
1,586,712,827,000
1,586,712,827,000
99,101,412
1
0
Apache-2.0
1,586,716,389,000
1,501,667,958,000
Lean
UTF-8
Lean
false
false
28,744
lean
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import measure_theory.ae_eq_fun /-! # Integrable functions and `L¹` space In the first part of this file, the predicate `integrable` is defined and basic properties of integrable functions are proved. In the second part, the space `L¹` of equivalence classes of integrable functions under the relation of being almost everywhere equal is defined as a subspace of the space `L⁰`. See the file `src/measure_theory/ae_eq_fun.lean` for information on `L⁰` space. ## Notation * `α →₁ β` is the type of `L¹` space, where `α` is a `measure_space` and `β` is a `normed_group` with a `second_countable_topology`. `f : α →ₘ β` is a "function" in `L¹`. In comments, `[f]` is also used to denote an `L¹` function. `₁` can be typed as `\1`. ## Main definitions * Let `f : α → β` be a function, where `α` is a `measure_space` and `β` a `normed_group`. Then `f` is called `integrable` if `(∫⁻ a, nnnorm (f a)) < ⊤` holds. * The space `L¹` is defined as a subspace of `L⁰` : An `ae_eq_fun` `[f] : α →ₘ β` is in the space `L¹` if `edist [f] 0 < ⊤`, which means `(∫⁻ a, edist (f a) 0) < ⊤` if we expand the definition of `edist` in `L⁰`. ## Main statements `L¹`, as a subspace, inherits most of the structures of `L⁰`. ## Implementation notes Maybe `integrable f` should be mean `(∫⁻ a, edist (f a) 0) < ⊤`, so that `integrable` and `ae_eq_fun.integrable` are more aligned. But in the end one can use the lemma `lintegral_nnnorm_eq_lintegral_edist : (∫⁻ a, nnnorm (f a)) = (∫⁻ a, edist (f a) 0)` to switch the two forms. ## Tags integrable, function space, l1 -/ noncomputable theory open_locale classical topological_space set_option class.instance_max_depth 100 namespace measure_theory open set filter topological_space ennreal emetric universes u v w variables {α : Type u} [measure_space α] variables {β : Type v} [normed_group β] {γ : Type w} [normed_group γ] /-- A function is `integrable` if the integral of its pointwise norm is less than infinity. -/ def integrable (f : α → β) : Prop := (∫⁻ a, nnnorm (f a)) < ⊤ lemma integrable_iff_norm (f : α → β) : integrable f ↔ (∫⁻ a, ennreal.of_real ∥f a∥) < ⊤ := by simp only [integrable, of_real_norm_eq_coe_nnnorm] lemma integrable_iff_edist (f : α → β) : integrable f ↔ (∫⁻ a, edist (f a) 0) < ⊤ := have eq : (λa, edist (f a) 0) = (λa, (nnnorm(f a) : ennreal)), by { funext, rw edist_eq_coe_nnnorm }, iff.intro (by { rw eq, exact λh, h }) $ by { rw eq, exact λh, h } lemma integrable_iff_of_real {f : α → ℝ} (h : ∀ₘ a, 0 ≤ f a) : integrable f ↔ (∫⁻ a, ennreal.of_real (f a)) < ⊤ := have lintegral_eq : (∫⁻ a, ennreal.of_real ∥f a∥) = (∫⁻ a, ennreal.of_real (f a)) := begin apply lintegral_congr_ae, filter_upwards [h], simp only [mem_set_of_eq], assume a h, rw [real.norm_eq_abs, abs_of_nonneg], exact h end, by rw [integrable_iff_norm, lintegral_eq] lemma integrable_of_ae_eq {f g : α → β} (hf : integrable f) (h : ∀ₘ a, f a = g a) : integrable g := begin simp only [integrable] at *, have : (∫⁻ (a : α), ↑(nnnorm (f a))) = (∫⁻ (a : α), ↑(nnnorm (g a))), { apply lintegral_congr_ae, filter_upwards [h], assume a, simp only [mem_set_of_eq], assume h, rw h }, rwa ← this end lemma integrable_congr_ae {f g : α → β} (h : ∀ₘ a, f a = g a) : integrable f ↔ integrable g := iff.intro (λhf, integrable_of_ae_eq hf h) (λhg, integrable_of_ae_eq hg (all_ae_eq_symm h)) lemma integrable_of_le_ae {f : α → β} {g : α → γ} (h : ∀ₘ a, ∥f a∥ ≤ ∥g a∥) (hg : integrable g) : integrable f := begin simp only [integrable_iff_norm] at *, calc (∫⁻ a, ennreal.of_real ∥f a∥) ≤ (∫⁻ (a : α), ennreal.of_real ∥g a∥) : lintegral_le_lintegral_ae (by { filter_upwards [h], assume a h, exact of_real_le_of_real h }) ... < ⊤ : hg end lemma integrable_of_le {f : α → β} {g : α → γ} (h : ∀a, ∥f a∥ ≤ ∥g a∥) (hg : integrable g) : integrable f := integrable_of_le_ae (all_ae_of_all h) hg lemma lintegral_nnnorm_eq_lintegral_edist (f : α → β) : (∫⁻ a, nnnorm (f a)) = ∫⁻ a, edist (f a) 0 := by simp only [edist_eq_coe_nnnorm] lemma lintegral_norm_eq_lintegral_edist (f : α → β) : (∫⁻ a, ennreal.of_real ∥f a∥) = ∫⁻ a, edist (f a) 0 := by simp only [of_real_norm_eq_coe_nnnorm, edist_eq_coe_nnnorm] lemma lintegral_edist_triangle [second_countable_topology β] [measurable_space β] [opens_measurable_space β] {f g h : α → β} (hf : measurable f) (hg : measurable g) (hh : measurable h) : (∫⁻ a, edist (f a) (g a)) ≤ (∫⁻ a, edist (f a) (h a)) + ∫⁻ a, edist (g a) (h a) := begin rw ← lintegral_add (hf.edist hh) (hg.edist hh), apply lintegral_mono, assume a, have := edist_triangle (f a) (h a) (g a), convert this, rw edist_comm (h a) (g a), end lemma lintegral_edist_lt_top [second_countable_topology β] [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f) (hgm : measurable g) (hgi : integrable g) : (∫⁻ a, edist (f a) (g a)) < ⊤ := lt_of_le_of_lt (lintegral_edist_triangle hfm hgm (measurable_const : measurable (λa, (0 : β)))) (ennreal.add_lt_top.2 $ by { split; rw ← integrable_iff_edist; assumption }) lemma lintegral_nnnorm_zero : (∫⁻ a : α, nnnorm (0 : β)) = 0 := by simp variables (α β) @[simp] lemma integrable_zero : integrable (λa:α, (0:β)) := by simp [integrable] variables {α β} lemma lintegral_nnnorm_add [measurable_space β] [opens_measurable_space β] [measurable_space γ] [opens_measurable_space γ] {f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) : (∫⁻ a, nnnorm (f a) + nnnorm (g a)) = (∫⁻ a, nnnorm (f a)) + ∫⁻ a, nnnorm (g a) := lintegral_add hf.ennnorm hg.ennnorm lemma integrable.add [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f) (hgm : measurable g) (hgi : integrable g) : integrable (λa, f a + g a) := calc (∫⁻ (a : α), ↑(nnnorm ((f + g) a))) ≤ ∫⁻ (a : α), ↑(nnnorm (f a)) + ↑(nnnorm (g a)) : lintegral_mono (assume a, by { simp only [← coe_add, coe_le_coe], exact nnnorm_add_le _ _ }) ... = _ : lintegral_nnnorm_add hfm hgm ... < ⊤ : add_lt_top.2 ⟨hfi, hgi⟩ lemma integrable_finset_sum {ι} [measurable_space β] [borel_space β] [second_countable_topology β] (s : finset ι) {f : ι → α → β} (hfm : ∀ i, measurable (f i)) (hfi : ∀ i, integrable (f i)) : integrable (λ a, s.sum (λ i, f i a)) := begin refine finset.induction_on s _ _, { simp only [finset.sum_empty, integrable_zero] }, { assume i s his ih, simp only [his, finset.sum_insert, not_false_iff], refine (hfi _).add (hfm _) (s.measurable_sum hfm) ih } end lemma lintegral_nnnorm_neg {f : α → β} : (∫⁻ (a : α), ↑(nnnorm ((-f) a))) = ∫⁻ (a : α), ↑(nnnorm ((f) a)) := by simp only [pi.neg_apply, nnnorm_neg] lemma integrable.neg {f : α → β} : integrable f → integrable (λa, -f a) := assume hfi, calc _ = _ : lintegral_nnnorm_neg ... < ⊤ : hfi @[simp] lemma integrable_neg_iff (f : α → β) : integrable (λa, -f a) ↔ integrable f := begin split, { assume h, simpa only [_root_.neg_neg] using h.neg }, exact integrable.neg end lemma integrable.sub [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f) (hgm : measurable g) (hgi : integrable g) : integrable (λa, f a - g a) := calc (∫⁻ (a : α), ↑(nnnorm ((f - g) a))) ≤ ∫⁻ (a : α), ↑(nnnorm (f a)) + ↑(nnnorm (-g a)) : lintegral_mono (assume a, by { simp only [← coe_add, coe_le_coe], exact nnnorm_add_le _ _ }) ... = _ : by { simp only [nnnorm_neg], exact lintegral_nnnorm_add hfm hgm } ... < ⊤ : add_lt_top.2 ⟨hfi, hgi⟩ lemma integrable.norm {f : α → β} (hfi : integrable f) : integrable (λa, ∥f a∥) := have eq : (λa, (nnnorm ∥f a∥ : ennreal)) = λa, (nnnorm (f a) : ennreal), by { funext, rw nnnorm_norm }, by { rwa [integrable, eq] } lemma integrable_norm_iff (f : α → β) : integrable (λa, ∥f a∥) ↔ integrable f := have eq : (λa, (nnnorm ∥f a∥ : ennreal)) = λa, (nnnorm (f a) : ennreal), by { funext, rw nnnorm_norm }, by { rw [integrable, integrable, eq] } lemma integrable_of_integrable_bound {f : α → β} {bound : α → ℝ} (h : integrable bound) (h_bound : ∀ₘ a, ∥f a∥ ≤ bound a) : integrable f := have h₁ : ∀ₘ a, (nnnorm (f a) : ennreal) ≤ ennreal.of_real (bound a), begin filter_upwards [h_bound], simp only [mem_set_of_eq], assume a h, calc (nnnorm (f a) : ennreal) = ennreal.of_real (∥f a∥) : by rw of_real_norm_eq_coe_nnnorm ... ≤ ennreal.of_real (bound a) : ennreal.of_real_le_of_real h end, calc (∫⁻ a, nnnorm (f a)) ≤ (∫⁻ a, ennreal.of_real (bound a)) : by { apply lintegral_le_lintegral_ae, exact h₁ } ... ≤ (∫⁻ a, ennreal.of_real ∥bound a∥) : lintegral_mono $ by { assume a, apply ennreal.of_real_le_of_real, exact le_max_left (bound a) (-bound a) } ... < ⊤ : by { rwa [integrable_iff_norm] at h } section dominated_convergence variables {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} lemma all_ae_of_real_F_le_bound (h : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) : ∀ n, ∀ₘ a, ennreal.of_real ∥F n a∥ ≤ ennreal.of_real (bound a) := λn, by filter_upwards [h n] λ a h, ennreal.of_real_le_of_real h lemma all_ae_tendsto_of_real_norm (h : ∀ₘ a, tendsto (λ n, F n a) at_top $ 𝓝 $ f a) : ∀ₘ a, tendsto (λn, ennreal.of_real ∥F n a∥) at_top $ 𝓝 $ ennreal.of_real ∥f a∥ := by filter_upwards [h] λ a h, tendsto_of_real $ tendsto.comp (continuous.tendsto continuous_norm _) h lemma all_ae_of_real_f_le_bound (h_bound : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) (h_lim : ∀ₘ a, tendsto (λ n, F n a) at_top (𝓝 (f a))) : ∀ₘ a, ennreal.of_real ∥f a∥ ≤ ennreal.of_real (bound a) := begin have F_le_bound := all_ae_of_real_F_le_bound h_bound, rw ← all_ae_all_iff at F_le_bound, apply F_le_bound.mp ((all_ae_tendsto_of_real_norm h_lim).mono _), assume a tendsto_norm F_le_bound, exact le_of_tendsto' at_top_ne_bot tendsto_norm (F_le_bound) end lemma integrable_of_dominated_convergence {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (bound_integrable : integrable bound) (h_bound : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) (h_lim : ∀ₘ a, tendsto (λ n, F n a) at_top (𝓝 (f a))) : integrable f := /- `∥F n a∥ ≤ bound a` and `∥F n a∥ --> ∥f a∥` implies `∥f a∥ ≤ bound a`, and so `∫ ∥f∥ ≤ ∫ bound < ⊤` since `bound` is integrable -/ begin rw integrable_iff_norm, calc (∫⁻ a, (ennreal.of_real ∥f a∥)) ≤ ∫⁻ a, ennreal.of_real (bound a) : lintegral_le_lintegral_ae $ all_ae_of_real_f_le_bound h_bound h_lim ... < ⊤ : begin rw ← integrable_iff_of_real, { exact bound_integrable }, filter_upwards [h_bound 0] λ a h, le_trans (norm_nonneg _) h, end end lemma tendsto_lintegral_norm_of_dominated_convergence [measurable_space β] [borel_space β] [second_countable_topology β] {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (F_measurable : ∀ n, measurable (F n)) (f_measurable : measurable f) (bound_integrable : integrable bound) (h_bound : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) (h_lim : ∀ₘ a, tendsto (λ n, F n a) at_top (𝓝 (f a))) : tendsto (λn, ∫⁻ a, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 0) := let b := λa, 2 * ennreal.of_real (bound a) in /- `∥F n a∥ ≤ bound a` and `F n a --> f a` implies `∥f a∥ ≤ bound a`, and thus by the triangle inequality, have `∥F n a - f a∥ ≤ 2 * (bound a). -/ have hb : ∀ n, ∀ₘ a, ennreal.of_real ∥F n a - f a∥ ≤ b a, begin assume n, filter_upwards [all_ae_of_real_F_le_bound h_bound n, all_ae_of_real_f_le_bound h_bound h_lim], assume a h₁ h₂, calc ennreal.of_real ∥F n a - f a∥ ≤ (ennreal.of_real ∥F n a∥) + (ennreal.of_real ∥f a∥) : begin rw [← ennreal.of_real_add], apply of_real_le_of_real, { apply norm_sub_le }, { exact norm_nonneg _ }, { exact norm_nonneg _ } end ... ≤ (ennreal.of_real (bound a)) + (ennreal.of_real (bound a)) : add_le_add' h₁ h₂ ... = b a : by rw ← two_mul end, /- On the other hand, `F n a --> f a` implies that `∥F n a - f a∥ --> 0` -/ have h : ∀ₘ a, tendsto (λ n, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 0), begin suffices h : ∀ₘ a, tendsto (λ n, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 $ ennreal.of_real 0), { rwa ennreal.of_real_zero at h }, filter_upwards [h_lim], assume a h, refine tendsto.comp (continuous.tendsto continuous_of_real _) _, rw ← tendsto_iff_norm_tendsto_zero, exact h end, /- Therefore, by the dominated convergence theorem for nonnegative integration, have ` ∫ ∥f a - F n a∥ --> 0 ` -/ begin suffices h : tendsto (λn, ∫⁻ a, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 (∫⁻ (a:α), 0)), { rwa lintegral_zero at h }, -- Using the dominated convergence theorem. refine tendsto_lintegral_of_dominated_convergence _ _ hb _ _, -- Show `λa, ∥f a - F n a∥` is measurable for all `n` { exact λn, measurable_of_real.comp ((F_measurable n).sub f_measurable).norm }, -- Show `2 * bound` is integrable { rw integrable_iff_of_real at bound_integrable, { calc (∫⁻ a, b a) = 2 * (∫⁻ a, ennreal.of_real (bound a)) : by { rw lintegral_const_mul', exact coe_ne_top } ... < ⊤ : mul_lt_top (coe_lt_top) bound_integrable }, filter_upwards [h_bound 0] λ a h, le_trans (norm_nonneg _) h }, -- Show `∥f a - F n a∥ --> 0` { exact h } end end dominated_convergence section pos_part /-! Lemmas used for defining the positive part of a `L¹` function -/ lemma integrable.max_zero {f : α → ℝ} (hf : integrable f) : integrable (λa, max (f a) 0) := begin simp only [integrable_iff_norm] at *, calc (∫⁻ a, ennreal.of_real ∥max (f a) 0∥) ≤ (∫⁻ (a : α), ennreal.of_real ∥f a∥) : lintegral_mono begin assume a, apply of_real_le_of_real, simp only [real.norm_eq_abs], calc abs (max (f a) 0) = max (f a) 0 : by { rw abs_of_nonneg, apply le_max_right } ... ≤ abs (f a) : max_le (le_abs_self _) (abs_nonneg _) end ... < ⊤ : hf end lemma integrable.min_zero {f : α → ℝ} (hf : integrable f) : integrable (λa, min (f a) 0) := begin have : (λa, min (f a) 0) = (λa, - max (-f a) 0), { funext, rw [min_eq_neg_max_neg_neg, neg_zero] }, rw this, exact (integrable.max_zero hf.neg).neg, end end pos_part section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul (c : 𝕜) {f : α → β} : integrable f → integrable (λa, c • f a) := begin simp only [integrable], assume hfi, calc (∫⁻ (a : α), nnnorm ((c • f) a)) = (∫⁻ (a : α), (nnnorm c) * nnnorm (f a)) : begin apply lintegral_congr_ae, filter_upwards [], assume a, simp only [nnnorm_smul, set.mem_set_of_eq, pi.smul_apply, ennreal.coe_mul] end ... < ⊤ : begin rw lintegral_const_mul', apply mul_lt_top, { exact coe_lt_top }, { exact hfi }, { simp only [ennreal.coe_ne_top, ne.def, not_false_iff] } end end lemma integrable_smul_iff {c : 𝕜} (hc : c ≠ 0) (f : α → β) : integrable (λa, c • f a) ↔ integrable f := begin split, { assume h, simpa only [smul_smul, inv_mul_cancel hc, one_smul] using h.smul c⁻¹ }, exact integrable.smul _ end end normed_space variables [second_countable_topology β] namespace ae_eq_fun variable [measurable_space β] section variable [opens_measurable_space β] /-- An almost everywhere equal function is `integrable` if it has a finite distance to the origin. Should mean the same thing as the predicate `integrable` over functions. -/ def integrable (f : α →ₘ β) : Prop := f ∈ ball (0 : α →ₘ β) ⊤ lemma integrable_mk {f : α → β} (hf : measurable f) : (integrable (mk f hf)) ↔ measure_theory.integrable f := by simp [integrable, zero_def, edist_mk_mk', measure_theory.integrable, nndist_eq_nnnorm] lemma integrable_to_fun (f : α →ₘ β) : integrable f ↔ (measure_theory.integrable f.to_fun) := by conv_lhs { rw [self_eq_mk f, integrable_mk] } local attribute [simp] integrable_mk lemma integrable_zero : integrable (0 : α →ₘ β) := mem_ball_self coe_lt_top end section variable [borel_space β] lemma integrable.add : ∀ {f g : α →ₘ β}, integrable f → integrable g → integrable (f + g) := begin rintros ⟨f, hf⟩ ⟨g, hg⟩, simp only [mem_ball, zero_def, mk_add_mk, integrable_mk, quot_mk_eq_mk], assume hfi hgi, exact hfi.add hf hg hgi end lemma integrable.neg : ∀ {f : α →ₘ β}, integrable f → integrable (-f) := begin rintros ⟨f, hfm⟩ hfi, exact (integrable_mk _).2 ((integrable_mk hfm).1 hfi).neg end lemma integrable.sub : ∀ {f g : α →ₘ β}, integrable f → integrable g → integrable (f - g) := begin rintros ⟨f, hfm⟩ ⟨g, hgm⟩, simp only [quot_mk_eq_mk, integrable_mk, mk_sub_mk], exact λ hfi hgi, hfi.sub hfm hgm hgi end protected lemma is_add_subgroup : is_add_subgroup (ball (0 : α →ₘ β) ⊤) := { zero_mem := integrable_zero, add_mem := λ _ _, integrable.add, neg_mem := λ _, integrable.neg } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul : ∀ {c : 𝕜} {f : α →ₘ β}, integrable f → integrable (c • f) := begin rintros c ⟨f, hfm⟩, simp only [quot_mk_eq_mk, integrable_mk, smul_mk], exact λ hfi, hfi.smul c end end normed_space end end ae_eq_fun section variables (α β) [measurable_space β] [opens_measurable_space β] /-- The space of equivalence classes of integrable (and measurable) functions, where two integrable functions are equivalent if they agree almost everywhere, i.e., they differ on a set of measure `0`. -/ def l1 : Type (max u v) := subtype (@ae_eq_fun.integrable α _ β _ _ _ _) infixr ` →₁ `:25 := l1 end namespace l1 open ae_eq_fun local attribute [instance] ae_eq_fun.is_add_subgroup variables [measurable_space β] section variable [opens_measurable_space β] instance : has_coe (α →₁ β) (α →ₘ β) := ⟨subtype.val⟩ protected lemma eq {f g : α →₁ β} : (f : α →ₘ β) = (g : α →ₘ β) → f = g := subtype.eq @[elim_cast] protected lemma eq_iff {f g : α →₁ β} : (f : α →ₘ β) = (g : α →ₘ β) ↔ f = g := iff.intro (l1.eq) (congr_arg coe) /- TODO : order structure of l1-/ /-- `L¹` space forms a `emetric_space`, with the emetric being inherited from almost everywhere functions, i.e., `edist f g = ∫⁻ a, edist (f a) (g a)`. -/ instance : emetric_space (α →₁ β) := subtype.emetric_space /-- `L¹` space forms a `metric_space`, with the metric being inherited from almost everywhere functions, i.e., `edist f g = ennreal.to_real (∫⁻ a, edist (f a) (g a))`. -/ instance : metric_space (α →₁ β) := metric_space_emetric_ball 0 ⊤ end variable [borel_space β] instance : add_comm_group (α →₁ β) := subtype.add_comm_group instance : inhabited (α →₁ β) := ⟨0⟩ @[simp, elim_cast] lemma coe_zero : ((0 : α →₁ β) : α →ₘ β) = 0 := rfl @[simp, move_cast] lemma coe_add (f g : α →₁ β) : ((f + g : α →₁ β) : α →ₘ β) = f + g := rfl @[simp, move_cast] lemma coe_neg (f : α →₁ β) : ((-f : α →₁ β) : α →ₘ β) = -f := rfl @[simp, move_cast] lemma coe_sub (f g : α →₁ β) : ((f - g : α →₁ β) : α →ₘ β) = f - g := rfl @[simp] lemma edist_eq (f g : α →₁ β) : edist f g = edist (f : α →ₘ β) (g : α →ₘ β) := rfl lemma dist_eq (f g : α →₁ β) : dist f g = ennreal.to_real (edist (f : α →ₘ β) (g : α →ₘ β)) := rfl /-- The norm on `L¹` space is defined to be `∥f∥ = ∫⁻ a, edist (f a) 0`. -/ instance : has_norm (α →₁ β) := ⟨λ f, dist f 0⟩ lemma norm_eq (f : α →₁ β) : ∥f∥ = ennreal.to_real (edist (f : α →ₘ β) 0) := rfl instance : normed_group (α →₁ β) := normed_group.of_add_dist (λ x, rfl) $ by { intros, simp only [dist_eq, coe_add], rw edist_eq_add_add } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] instance : has_scalar 𝕜 (α →₁ β) := ⟨λ x f, ⟨x • (f : α →ₘ β), ae_eq_fun.integrable.smul f.2⟩⟩ @[simp, move_cast] lemma coe_smul (c : 𝕜) (f : α →₁ β) : ((c • f : α →₁ β) : α →ₘ β) = c • (f : α →ₘ β) := rfl instance : semimodule 𝕜 (α →₁ β) := { one_smul := λf, l1.eq (by { simp only [coe_smul], exact one_smul _ _ }), mul_smul := λx y f, l1.eq (by { simp only [coe_smul], exact mul_smul _ _ _ }), smul_add := λx f g, l1.eq (by { simp only [coe_smul, coe_add], exact smul_add _ _ _ }), smul_zero := λx, l1.eq (by { simp only [coe_zero, coe_smul], exact smul_zero _ }), add_smul := λx y f, l1.eq (by { simp only [coe_smul], exact add_smul _ _ _ }), zero_smul := λf, l1.eq (by { simp only [coe_smul], exact zero_smul _ _ }) } instance : module 𝕜 (α →₁ β) := { .. l1.semimodule } instance : vector_space 𝕜 (α →₁ β) := { .. l1.semimodule } instance : normed_space 𝕜 (α →₁ β) := ⟨ begin rintros x ⟨f, hf⟩, show ennreal.to_real (edist (x • f) 0) = ∥x∥ * ennreal.to_real (edist f 0), rw [edist_smul, to_real_of_real_mul], exact norm_nonneg _ end ⟩ end normed_space section of_fun /-- Construct the equivalence class `[f]` of a measurable and integrable function `f`. -/ def of_fun (f : α → β) (hfm : measurable f) (hfi : integrable f) : (α →₁ β) := ⟨mk f hfm, by { rw integrable_mk, exact hfi }⟩ lemma of_fun_eq_mk (f : α → β) (hfm hfi) : (of_fun f hfm hfi : α →ₘ β) = mk f hfm := rfl lemma of_fun_eq_of_fun (f g : α → β) (hfm hfi hgm hgi) : of_fun f hfm hfi = of_fun g hgm hgi ↔ ∀ₘ a, f a = g a := by { rw ← l1.eq_iff, simp only [of_fun_eq_mk, mk_eq_mk] } lemma of_fun_zero : of_fun (λa:α, (0:β)) (@measurable_const _ _ _ _ (0:β)) (integrable_zero α β) = 0 := rfl lemma of_fun_add (f g : α → β) (hfm hfi hgm hgi) : of_fun (λa, f a + g a) (measurable.add hfm hgm) (integrable.add hfm hfi hgm hgi) = of_fun f hfm hfi + of_fun g hgm hgi := rfl lemma of_fun_neg (f : α → β) (hfm hfi) : of_fun (λa, - f a) (measurable.neg hfm) (integrable.neg hfi) = - of_fun f hfm hfi := rfl lemma of_fun_sub (f g : α → β) (hfm hfi hgm hgi) : of_fun (λa, f a - g a) (measurable.sub hfm hgm) (integrable.sub hfm hfi hgm hgi) = of_fun f hfm hfi - of_fun g hgm hgi := rfl lemma norm_of_fun (f : α → β) (hfm hfi) : ∥of_fun f hfm hfi∥ = ennreal.to_real (∫⁻ a, edist (f a) 0) := rfl lemma norm_of_fun_eq_lintegral_norm (f : α → β) (hfm hfi) : ∥of_fun f hfm hfi∥ = ennreal.to_real (∫⁻ a, ennreal.of_real ∥f a∥) := by { rw [norm_of_fun, lintegral_norm_eq_lintegral_edist] } variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma of_fun_smul (f : α → β) (hfm : measurable f) (hfi : integrable f) (k : 𝕜) : of_fun (λa, k • f a) (hfm.const_smul _) (hfi.smul _) = k • of_fun f hfm hfi := rfl end of_fun section to_fun /-- Find a representative of an `L¹` function [f] -/ @[reducible] protected def to_fun (f : α →₁ β) : α → β := (f : α →ₘ β).to_fun protected lemma measurable (f : α →₁ β) : measurable f.to_fun := f.1.measurable protected lemma integrable (f : α →₁ β) : integrable f.to_fun := by { rw [l1.to_fun, ← integrable_to_fun], exact f.2 } lemma of_fun_to_fun (f : α →₁ β) : of_fun (f.to_fun) f.measurable f.integrable = f := begin rcases f with ⟨f, hfi⟩, rw [of_fun, subtype.mk_eq_mk], exact (self_eq_mk f).symm end lemma mk_to_fun (f : α →₁ β) : mk (f.to_fun) f.measurable = f := by { rw ← of_fun_eq_mk, rw l1.eq_iff, exact of_fun_to_fun f } lemma to_fun_of_fun (f : α → β) (hfm hfi) : ∀ₘ a, (of_fun f hfm hfi).to_fun a = f a := (all_ae_mk_to_fun f hfm).mono $ assume a, id variables (α β) lemma zero_to_fun : ∀ₘ a, (0 : α →₁ β).to_fun a = 0 := ae_eq_fun.zero_to_fun variables {α β} lemma add_to_fun (f g : α →₁ β) : ∀ₘ a, (f + g).to_fun a = f.to_fun a + g.to_fun a := ae_eq_fun.add_to_fun _ _ lemma neg_to_fun (f : α →₁ β) : ∀ₘ a, (-f).to_fun a = -f.to_fun a := ae_eq_fun.neg_to_fun _ lemma sub_to_fun (f g : α →₁ β) : ∀ₘ a, (f - g).to_fun a = f.to_fun a - g.to_fun a := ae_eq_fun.sub_to_fun _ _ lemma dist_to_fun (f g : α →₁ β) : dist f g = ennreal.to_real (∫⁻ x, edist (f.to_fun x) (g.to_fun x)) := by { simp only [dist_eq, edist_to_fun] } lemma norm_eq_nnnorm_to_fun (f : α →₁ β) : ∥f∥ = ennreal.to_real (∫⁻ a, nnnorm (f.to_fun a)) := by { rw [lintegral_nnnorm_eq_lintegral_edist, ← edist_zero_to_fun], refl } lemma norm_eq_norm_to_fun (f : α →₁ β) : ∥f∥ = ennreal.to_real (∫⁻ a, ennreal.of_real ∥f.to_fun a∥) := by { rw norm_eq_nnnorm_to_fun, congr, funext, rw of_real_norm_eq_coe_nnnorm } lemma lintegral_edist_to_fun_lt_top (f g : α →₁ β) : (∫⁻ a, edist (f.to_fun a) (g.to_fun a)) < ⊤ := begin apply lintegral_edist_lt_top, exact f.measurable, exact f.integrable, exact g.measurable, exact g.integrable end variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma smul_to_fun (c : 𝕜) (f : α →₁ β) : ∀ₘ a, (c • f).to_fun a = c • f.to_fun a := ae_eq_fun.smul_to_fun _ _ end to_fun section pos_part /-- Positive part of a function in `L¹` space. -/ def pos_part (f : α →₁ ℝ) : α →₁ ℝ := ⟨ ae_eq_fun.pos_part f, begin rw [ae_eq_fun.integrable_to_fun, integrable_congr_ae (pos_part_to_fun _)], exact integrable.max_zero f.integrable end ⟩ /-- Negative part of a function in `L¹` space. -/ def neg_part (f : α →₁ ℝ) : α →₁ ℝ := pos_part (-f) @[move_cast] lemma coe_pos_part (f : α →₁ ℝ) : (f.pos_part : α →ₘ ℝ) = (f : α →ₘ ℝ).pos_part := rfl lemma pos_part_to_fun (f : α →₁ ℝ) : ∀ₘ a, (pos_part f).to_fun a = max (f.to_fun a) 0 := ae_eq_fun.pos_part_to_fun _ lemma neg_part_to_fun_eq_max (f : α →₁ ℝ) : ∀ₘ a, (neg_part f).to_fun a = max (- f.to_fun a) 0 := begin rw neg_part, filter_upwards [pos_part_to_fun (-f), neg_to_fun f], simp only [mem_set_of_eq], assume a h₁ h₂, rw [h₁, h₂] end lemma neg_part_to_fun_eq_min (f : α →₁ ℝ) : ∀ₘ a, (neg_part f).to_fun a = - min (f.to_fun a) 0 := begin filter_upwards [neg_part_to_fun_eq_max f], simp only [mem_set_of_eq], assume a h, rw [h, min_eq_neg_max_neg_neg, _root_.neg_neg, neg_zero], end lemma norm_le_norm_of_ae_le {f g : α →₁ β} (h : ∀ₘ a, ∥f.to_fun a∥ ≤ ∥g.to_fun a∥) : ∥f∥ ≤ ∥g∥ := begin simp only [l1.norm_eq_norm_to_fun], rw to_real_le_to_real, { apply lintegral_le_lintegral_ae, filter_upwards [h], simp only [mem_set_of_eq], assume a h, exact of_real_le_of_real h }, { rw [← lt_top_iff_ne_top, ← integrable_iff_norm], exact f.integrable }, { rw [← lt_top_iff_ne_top, ← integrable_iff_norm], exact g.integrable } end lemma continuous_pos_part : continuous $ λf : α →₁ ℝ, pos_part f := begin simp only [metric.continuous_iff], assume g ε hε, use ε, use hε, simp only [dist_eq_norm], assume f hfg, refine lt_of_le_of_lt (norm_le_norm_of_ae_le _) hfg, filter_upwards [l1.sub_to_fun f g, l1.sub_to_fun (pos_part f) (pos_part g), pos_part_to_fun f, pos_part_to_fun g], simp only [mem_set_of_eq], assume a h₁ h₂ h₃ h₄, simp only [real.norm_eq_abs, h₁, h₂, h₃, h₄], exact abs_max_sub_max_le_abs _ _ _ end lemma continuous_neg_part : continuous $ λf : α →₁ ℝ, neg_part f := have eq : (λf : α →₁ ℝ, neg_part f) = (λf : α →₁ ℝ, pos_part (-f)) := rfl, by { rw eq, exact continuous_pos_part.comp continuous_neg } end pos_part /- TODO: l1 is a complete space -/ end l1 end measure_theory
4e4e525361cf9e013c6f985e20d5216481204c5d
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/imp3.lean
b82d21cf3c5a9303936b179e3032c4f4ad8dcf06
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
235
lean
structure is_equiv [class] {A B : Type} (f : A → B) := (inv : B → A) check @is_equiv.inv namespace is_equiv section parameters A B : Type parameter f : A → B parameter c : is_equiv f check inv f end end is_equiv
fd4342f01f8a6a2b9a4c31e055c60af24ceff37b
4727251e0cd73359b15b664c3170e5d754078599
/src/measure_theory/function/continuous_map_dense.lean
949035b8da651c50e14e897f777e5741fc4f2407
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
10,160
lean
/- Copyright (c) 2021 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import measure_theory.measure.regular import measure_theory.function.simple_func_dense_lp import topology.urysohns_lemma import measure_theory.function.l1_space /-! # Approximation in Lᵖ by continuous functions This file proves that bounded continuous functions are dense in `Lp E p μ`, for `1 ≤ p < ∞`, if the domain `α` of the functions is a normal topological space and the measure `μ` is weakly regular. The result is presented in several versions: * `measure_theory.Lp.bounded_continuous_function_dense`: The subgroup `measure_theory.Lp.bounded_continuous_function` of `Lp E p μ`, the additive subgroup of `Lp E p μ` consisting of equivalence classes containing a continuous representative, is dense in `Lp E p μ`. * `bounded_continuous_function.to_Lp_dense_range`: For finite-measure `μ`, the continuous linear map `bounded_continuous_function.to_Lp p μ 𝕜` from `α →ᵇ E` to `Lp E p μ` has dense range. * `continuous_map.to_Lp_dense_range`: For compact `α` and finite-measure `μ`, the continuous linear map `continuous_map.to_Lp p μ 𝕜` from `C(α, E)` to `Lp E p μ` has dense range. Note that for `p = ∞` this result is not true: the characteristic function of the set `[0, ∞)` in `ℝ` cannot be continuously approximated in `L∞`. The proof is in three steps. First, since simple functions are dense in `Lp`, it suffices to prove the result for a scalar multiple of a characteristic function of a measurable set `s`. Secondly, since the measure `μ` is weakly regular, the set `s` can be approximated above by an open set and below by a closed set. Finally, since the domain `α` is normal, we use Urysohn's lemma to find a continuous function interpolating between these two sets. ## Related results Are you looking for a result on "directional" approximation (above or below with respect to an order) of functions whose codomain is `ℝ≥0∞` or `ℝ`, by semicontinuous functions? See the Vitali-Carathéodory theorem, in the file `measure_theory.vitali_caratheodory`. -/ open_locale ennreal nnreal topological_space bounded_continuous_function open measure_theory topological_space continuous_map variables {α : Type*} [measurable_space α] [topological_space α] [normal_space α] [borel_space α] variables (E : Type*) [normed_group E] [second_countable_topology_either α E] variables {p : ℝ≥0∞} [_i : fact (1 ≤ p)] (hp : p ≠ ∞) (μ : measure α) include _i hp namespace measure_theory.Lp variables [normed_space ℝ E] /-- A function in `Lp` can be approximated in `Lp` by continuous functions. -/ lemma bounded_continuous_function_dense [μ.weakly_regular] : (bounded_continuous_function E p μ).topological_closure = ⊤ := begin have hp₀ : 0 < p := lt_of_lt_of_le ennreal.zero_lt_one _i.elim, have hp₀' : 0 ≤ 1 / p.to_real := div_nonneg zero_le_one ennreal.to_real_nonneg, have hp₀'' : 0 < p.to_real, { simpa [← ennreal.to_real_lt_to_real ennreal.zero_ne_top hp] using hp₀ }, -- It suffices to prove that scalar multiples of the indicator function of a finite-measure -- measurable set can be approximated by continuous functions suffices : ∀ (c : E) {s : set α} (hs : measurable_set s) (hμs : μ s < ⊤), (Lp.simple_func.indicator_const p hs hμs.ne c : Lp E p μ) ∈ (bounded_continuous_function E p μ).topological_closure, { rw add_subgroup.eq_top_iff', refine Lp.induction hp _ _ _ _, { exact this }, { exact λ f g hf hg hfg', add_subgroup.add_mem _ }, { exact add_subgroup.is_closed_topological_closure _ } }, -- Let `s` be a finite-measure measurable set, let's approximate `c` times its indicator function intros c s hs hsμ, refine mem_closure_iff_frequently.mpr _, rw metric.nhds_basis_closed_ball.frequently_iff, intros ε hε, -- A little bit of pre-emptive work, to find `η : ℝ≥0` which will be a margin small enough for -- our purposes obtain ⟨η, hη_pos, hη_le⟩ : ∃ η, 0 < η ∧ (↑(∥bit0 (∥c∥)∥₊ * (2 * η) ^ (1 / p.to_real)) : ℝ) ≤ ε, { have : filter.tendsto (λ x : ℝ≥0, ∥bit0 (∥c∥)∥₊ * (2 * x) ^ (1 / p.to_real)) (𝓝 0) (𝓝 0), { have : filter.tendsto (λ x : ℝ≥0, 2 * x) (𝓝 0) (𝓝 (2 * 0)) := filter.tendsto_id.const_mul 2, convert ((nnreal.continuous_at_rpow_const (or.inr hp₀')).tendsto.comp this).const_mul _, simp [hp₀''.ne'] }, let ε' : ℝ≥0 := ⟨ε, hε.le⟩, have hε' : 0 < ε' := by exact_mod_cast hε, obtain ⟨δ, hδ, hδε'⟩ := nnreal.nhds_zero_basis.eventually_iff.mp (eventually_le_of_tendsto_lt hε' this), obtain ⟨η, hη, hηδ⟩ := exists_between hδ, refine ⟨η, hη, _⟩, exact_mod_cast hδε' hηδ }, have hη_pos' : (0 : ℝ≥0∞) < η := ennreal.coe_pos.2 hη_pos, -- Use the regularity of the measure to `η`-approximate `s` by an open superset and a closed -- subset obtain ⟨u, su, u_open, μu⟩ : ∃ u ⊇ s, is_open u ∧ μ u < μ s + ↑η, { refine s.exists_is_open_lt_of_lt _ _, simpa using ennreal.add_lt_add_left hsμ.ne hη_pos' }, obtain ⟨F, Fs, F_closed, μF⟩ : ∃ F ⊆ s, is_closed F ∧ μ s < μ F + ↑η := hs.exists_is_closed_lt_add hsμ.ne hη_pos'.ne', have : disjoint uᶜ F, { rw [set.disjoint_iff_inter_eq_empty, set.inter_comm, ← set.subset_compl_iff_disjoint], simpa using Fs.trans su }, have h_μ_sdiff : μ (u \ F) ≤ 2 * η, { have hFμ : μ F < ⊤ := (measure_mono Fs).trans_lt hsμ, refine ennreal.le_of_add_le_add_left hFμ.ne _, have : μ u < μ F + ↑η + ↑η, from μu.trans (ennreal.add_lt_add_right ennreal.coe_ne_top μF), convert this.le using 1, { rw [add_comm, ← measure_union, set.diff_union_of_subset (Fs.trans su)], exacts [disjoint_sdiff_self_left, F_closed.measurable_set] }, have : (2:ℝ≥0∞) * η = η + η := by simpa using add_mul (1:ℝ≥0∞) 1 η, rw this, abel }, -- Apply Urysohn's lemma to get a continuous approximation to the characteristic function of -- the set `s` obtain ⟨g, hgu, hgF, hg_range⟩ := exists_continuous_zero_one_of_closed u_open.is_closed_compl F_closed this, -- Multiply this by `c` to get a continuous approximation to the function `f`; the key point is -- that this is pointwise bounded by the indicator of the set `u \ F` have g_norm : ∀ x, ∥g x∥ = g x := λ x, by rw [real.norm_eq_abs, abs_of_nonneg (hg_range x).1], have gc_bd : ∀ x, ∥g x • c - s.indicator (λ x, c) x∥ ≤ ∥(u \ F).indicator (λ x, bit0 ∥c∥) x∥, { intros x, by_cases hu : x ∈ u, { rw ← set.diff_union_of_subset (Fs.trans su) at hu, cases hu with hFu hF, { refine (norm_sub_le _ _).trans _, refine (add_le_add_left (norm_indicator_le_norm_self (λ x, c) x) _).trans _, have h₀ : g x * ∥c∥ + ∥c∥ ≤ 2 * ∥c∥, { nlinarith [(hg_range x).1, (hg_range x).2, norm_nonneg c] }, have h₁ : (2:ℝ) * ∥c∥ = bit0 (∥c∥) := by simpa using add_mul (1:ℝ) 1 (∥c∥), simp [hFu, norm_smul, h₀, ← h₁, g_norm x] }, { simp [hgF hF, Fs hF] } }, { have : x ∉ s := λ h, hu (su h), simp [hgu hu, this] } }, -- The rest is basically just `ennreal`-arithmetic have gc_snorm : snorm ((λ x, g x • c) - s.indicator (λ x, c)) p μ ≤ (↑(∥bit0 (∥c∥)∥₊ * (2 * η) ^ (1 / p.to_real)) : ℝ≥0∞), { refine (snorm_mono_ae (filter.eventually_of_forall gc_bd)).trans _, rw snorm_indicator_const (u_open.sdiff F_closed).measurable_set hp₀.ne' hp, push_cast [← ennreal.coe_rpow_of_nonneg _ hp₀'], exact ennreal.mul_left_mono (ennreal.monotone_rpow_of_nonneg hp₀' h_μ_sdiff) }, have gc_cont : continuous (λ x, g x • c) := g.continuous.smul continuous_const, have gc_mem_ℒp : mem_ℒp (λ x, g x • c) p μ, { have : mem_ℒp ((λ x, g x • c) - s.indicator (λ x, c)) p μ := ⟨gc_cont.ae_strongly_measurable.sub (strongly_measurable_const.indicator hs) .ae_strongly_measurable, gc_snorm.trans_lt ennreal.coe_lt_top⟩, simpa using this.add (mem_ℒp_indicator_const p hs c (or.inr hsμ.ne)) }, refine ⟨gc_mem_ℒp.to_Lp _, _, _⟩, { rw mem_closed_ball_iff_norm, refine le_trans _ hη_le, rw [simple_func.coe_indicator_const, indicator_const_Lp, ← mem_ℒp.to_Lp_sub, Lp.norm_to_Lp], exact ennreal.to_real_le_coe_of_le_coe gc_snorm }, { rw [set_like.mem_coe, mem_bounded_continuous_function_iff], refine ⟨bounded_continuous_function.of_normed_group _ gc_cont (∥c∥) _, rfl⟩, intros x, have h₀ : g x * ∥c∥ ≤ ∥c∥, { nlinarith [(hg_range x).1, (hg_range x).2, norm_nonneg c] }, simp [norm_smul, g_norm x, h₀] }, end end measure_theory.Lp variables (𝕜 : Type*) [normed_field 𝕜] [normed_algebra ℝ 𝕜] [normed_space 𝕜 E] namespace bounded_continuous_function lemma to_Lp_dense_range [μ.weakly_regular] [is_finite_measure μ] : dense_range ⇑(to_Lp p μ 𝕜 : (α →ᵇ E) →L[𝕜] Lp E p μ) := begin haveI : normed_space ℝ E := restrict_scalars.normed_space ℝ 𝕜 E, rw dense_range_iff_closure_range, suffices : (to_Lp p μ 𝕜 : _ →L[𝕜] Lp E p μ).range.to_add_subgroup.topological_closure = ⊤, { exact congr_arg coe this }, simp [range_to_Lp p μ, measure_theory.Lp.bounded_continuous_function_dense E hp], end end bounded_continuous_function namespace continuous_map lemma to_Lp_dense_range [compact_space α] [μ.weakly_regular] [is_finite_measure μ] : dense_range ⇑(to_Lp p μ 𝕜 : C(α, E) →L[𝕜] Lp E p μ) := begin haveI : normed_space ℝ E := restrict_scalars.normed_space ℝ 𝕜 E, rw dense_range_iff_closure_range, suffices : (to_Lp p μ 𝕜 : _ →L[𝕜] Lp E p μ).range.to_add_subgroup.topological_closure = ⊤, { exact congr_arg coe this }, simp [range_to_Lp p μ, measure_theory.Lp.bounded_continuous_function_dense E hp] end end continuous_map
2155ec1e85b3ee9878fbbfc882f341f881ac6262
97f752b44fd85ec3f635078a2dd125ddae7a82b6
/library/theories/analysis/inner_product.lean
c294d8bd3b1ebee894f4bf393c4adeb51b78d493
[ "Apache-2.0" ]
permissive
tectronics/lean
ab977ba6be0fcd46047ddbb3c8e16e7c26710701
f38af35e0616f89c6e9d7e3eb1d48e47ee666efe
refs/heads/master
1,532,358,526,384
1,456,276,623,000
1,456,276,623,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,685
lean
/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Real inner product spaces. Note: We can enter ⟨v, w⟩ as \<v, w\>. This file overwrites the notation for dependent pairs. -/ import theories.analysis.normed_space theories.analysis.sqrt open nat real classical noncomputable theory structure inner_product_space [class] (V : Type) extends real_vector_space V := (inner : V → V → ℝ) (inner_add_left : ∀ u v w, inner (add u v) w = inner u w + inner v w) (inner_smul_left : ∀ r v w, inner (smul r v) w = r * inner v w) (inner_comm : ∀ v w, inner v w = inner w v) (inner_self_nonneg : ∀ v, inner v v ≥ 0) (eq_zero_of_inner_self_eq_zero : ∀ {v}, inner v v = 0 → v = zero) namespace analysis variables {V : Type} [inner_product_space V] definition inner (v w : V) : ℝ := inner_product_space.inner v w notation `⟨` v `, ` w `⟩` := inner v w proposition inner_comm (v w : V) : ⟨v, w⟩ = ⟨w, v⟩ := inner_product_space.inner_comm v w proposition inner_add_left (u v w : V) : ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩ := inner_product_space.inner_add_left u v w proposition inner_add_right (u v w : V) : ⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u, w⟩ := by rewrite [inner_comm, inner_add_left, inner_comm, inner_comm w] proposition inner_smul_left (r : ℝ) (v w : V) : ⟨r • v, w⟩ = r * ⟨v, w⟩ := inner_product_space.inner_smul_left r v w proposition inner_smul_right (r : ℝ) (v w : V) : ⟨v, r • w⟩ = r * ⟨v, w⟩ := by rewrite [inner_comm, inner_smul_left, inner_comm] proposition inner_self_nonneg (v : V) : ⟨v, v⟩ ≥ 0 := inner_product_space.inner_self_nonneg v proposition eq_zero_of_inner_self_eq_zero {v : V} (H : ⟨v, v⟩ = 0) : v = 0 := inner_product_space.eq_zero_of_inner_self_eq_zero H proposition inner_neg_left (u v : V) : ⟨-u, v⟩ = -⟨u, v⟩ := by rewrite [-neg_one_smul_real, inner_smul_left, -neg_eq_neg_one_mul] proposition inner_neg_right (u v : V) : ⟨u, -v⟩ = -⟨u, v⟩ := by rewrite [inner_comm, inner_neg_left, inner_comm] proposition inner_sub_left (u v w : V) : ⟨u - v, w⟩ = ⟨u, w⟩ - ⟨v, w⟩ := by rewrite [*sub_eq_add_neg, inner_add_left, inner_neg_left] proposition inner_sub_right (u v w : V) : ⟨u, v - w⟩ = ⟨u, v⟩ - ⟨u, w⟩ := by rewrite [*sub_eq_add_neg, inner_add_right, inner_neg_right] proposition inner_zero_left (v : V) : ⟨0, v⟩ = 0 := have (0 : ℝ) • v = 0, from zero_smul v, using this, by rewrite [-this, inner_smul_left, zero_mul] proposition inner_zero_right (v : V) : ⟨v, 0⟩ = 0 := by rewrite [inner_comm, inner_zero_left] definition orthogonal (u v : V) : Prop := ⟨u, v⟩ = 0 infix ` ⊥ `:50 := orthogonal proposition orthogonal_comm {u v : V} (H : u ⊥ v) : v ⊥ u := by unfold orthogonal at *; rewrite [inner_comm, H] /- first, we define norm internally, to show that an inner product space is a normed space -/ private definition ip_norm (v : V) : ℝ := sqrt ⟨v, v⟩ private proposition ip_norm_zero : ip_norm (0 : V) = 0 := by rewrite [↑ip_norm, inner_zero_left, sqrt_zero] private proposition ip_norm_squared (v : V) : (ip_norm v)^2 = ⟨v, v⟩ := sqrt_squared (inner_self_nonneg v) private proposition ip_norm_nonneg (v : V) : ip_norm v ≥ 0 := !sqrt_nonneg private proposition eq_zero_of_ip_norm_eq_zero {v : V} (H : ip_norm v = 0) : v = 0 := have ⟨v, v⟩ = 0, by rewrite [-ip_norm_squared, H, pow_two, zero_mul], eq_zero_of_inner_self_eq_zero this private proposition ip_norm_smul (r : ℝ) (v : V) : ip_norm (r • v) = abs r * ip_norm v := begin rewrite [↑ip_norm, inner_smul_left, inner_smul_right, -mul.assoc], rewrite [sqrt_mul (mul_self_nonneg r) (inner_self_nonneg v), -pow_two, sqrt_squared'] end private proposition ip_norm_pythagorean {u v : V} (ortho : u ⊥ v) : (ip_norm (u + v))^2 = (ip_norm u)^2 + (ip_norm v)^2 := by rewrite [↑orthogonal at ortho, *ip_norm_squared, inner_add_right, *inner_add_left, inner_comm v u, *ortho, zero_add, add_zero] private definition ip_proj_on (u : V) {v : V} (H : v ≠ 0) : V := (⟨u, v⟩ / (ip_norm v)^2) • v private proposition ip_proj_on_orthogonal (u : V) {v : V} (H : v ≠ 0) : ip_proj_on u H ⊥ (u - ip_proj_on u H) := begin rewrite [↑ip_proj_on, ↑orthogonal, inner_sub_right, +inner_smul_left, inner_smul_right], rewrite [ip_norm_squared at {3}], rewrite [div_mul_cancel _ (assume H', H (eq_zero_of_inner_self_eq_zero H'))], rewrite [inner_comm v u, sub_self] end private proposition ip_norm_proj_on_eq (u : V) {v : V} (H : v ≠ 0) : ip_norm (ip_proj_on u H) = abs ⟨u, v⟩ / ip_norm v := have H1 : ip_norm v ≠ 0, from assume H', H (eq_zero_of_ip_norm_eq_zero H'), begin+ rewrite [↑ip_proj_on, ip_norm_smul, abs_div, abs_of_nonneg (squared_nonneg (ip_norm v)), pow_two], rewrite [div_mul_eq_mul_div, -div_mul_div, div_self H1, mul_one] end private proposition ip_norm_squared_pythagorean (u : V) {v : V} (H : v ≠ 0) : (ip_norm u)^2 = (ip_norm (u - ip_proj_on u H))^2 + (ip_norm (ip_proj_on u H))^2 := calc (ip_norm u)^2 = (ip_norm (u - ip_proj_on u H + ip_proj_on u H))^2 : sub_add_cancel ... = (ip_norm (u - ip_proj_on u H))^2 + (ip_norm (ip_proj_on u H))^2 : ip_norm_pythagorean (orthogonal_comm (ip_proj_on_orthogonal u H)) private proposition ip_norm_proj_on_le (u : V) {v : V} (H : v ≠ 0) : ip_norm (ip_proj_on u H) ≤ ip_norm u := have (ip_norm u)^2 ≥ (ip_norm (ip_proj_on u H))^2, begin rewrite [ip_norm_squared_pythagorean u H], apply le_add_of_nonneg_left (squared_nonneg (ip_norm (u - ip_proj_on u H))) end, le_of_squared_le_squared !ip_norm_nonneg this private proposition ip_cauchy_schwartz (u v : V) : abs ⟨u, v⟩ ≤ ip_norm u * ip_norm v := by_cases (suppose v = (0 : V), begin rewrite [this, inner_zero_right, abs_zero, ip_norm_zero, mul_zero], exact le.refl (0 : ℝ) end) (assume vnz : v ≠ 0, have ip_norm v ≠ 0, from assume H, vnz (eq_zero_of_ip_norm_eq_zero H), have ip_norm v > 0, from lt_of_le_of_ne !sqrt_nonneg (ne.symm this), using this, begin note H := ip_norm_proj_on_le u vnz, rewrite [ip_norm_proj_on_eq u vnz at H], exact le_mul_of_div_le this H end) private proposition ip_cauchy_schwartz' (u v : V) : ⟨u, v⟩ ≤ ip_norm u * ip_norm v := le.trans !le_abs_self !ip_cauchy_schwartz private proposition ip_norm_triangle (u v : V) : ip_norm (u + v) ≤ ip_norm u + ip_norm v := have H : ⟨u, v⟩ ≤ ip_norm u * ip_norm v, from ip_cauchy_schwartz' u v, have (ip_norm (u + v))^2 ≤ (ip_norm u + ip_norm v)^2, from calc (ip_norm (u + v))^2 = (ip_norm u)^2 + (ip_norm v)^2 + ⟨u, v⟩ + ⟨u, v⟩ : by rewrite [↑ip_norm, *sqrt_squared !inner_self_nonneg, inner_add_left, *inner_add_right, *inner_comm v u, -add.assoc, -*add.right_comm _ _ ⟨v, v⟩] ... ≤ (ip_norm u)^2 + (ip_norm v)^2 + ip_norm u * ip_norm v + ⟨u, v⟩ : add_le_add_right (add_le_add_left H _) _ ... ≤ (ip_norm u)^2 + (ip_norm v)^2 + ip_norm u * ip_norm v + ip_norm u * ip_norm v : add_le_add_left H _ ... = (ip_norm u + ip_norm v)^2 : by rewrite [*pow_two, right_distrib, *left_distrib, -add.assoc, *add.right_comm _ (ip_norm v * ip_norm v), mul.comm (ip_norm v) (ip_norm u)], le_of_squared_le_squared (add_nonneg !ip_norm_nonneg !ip_norm_nonneg) this definition inner_product_space.to_normed_space [trans_instance] [reducible] : normed_vector_space V := ⦃ normed_vector_space, _inst_1, norm := ip_norm, norm_zero := ip_norm_zero, eq_zero_of_norm_eq_zero := @eq_zero_of_ip_norm_eq_zero V _, norm_triangle := ip_norm_triangle, norm_smul := ip_norm_smul ⦄ /- now we restate the new theorems using the norm notation -/ proposition norm_squared (v : V) : ∥ v ∥^2 = ⟨v, v⟩ := ip_norm_squared v proposition norm_pythagorean {u v : V} (ortho : u ⊥ v) : ∥ u + v ∥^2 = ∥ u ∥^2 + ∥ v ∥^2 := ip_norm_pythagorean ortho definition proj_on (u : V) {v : V} (H : v ≠ 0) : V := (⟨u, v⟩ / ∥ v ∥^2) • v proposition proj_on_orthogonal (u : V) {v : V} (H : v ≠ 0) : proj_on u H ⊥ (u - proj_on u H) := ip_proj_on_orthogonal u H proposition norm_proj_on_eq (u : V) {v : V} (H : v ≠ 0) : ∥ proj_on u H ∥ = abs ⟨u, v⟩ / ∥ v ∥ := ip_norm_proj_on_eq u H proposition norm_squared_pythagorean (u : V) {v : V} (H : v ≠ 0) : ∥ u ∥^2 = ∥ u - proj_on u H ∥^2 + ∥ proj_on u H ∥^2 := ip_norm_squared_pythagorean u H proposition norm_proj_on_le (u : V) {v : V} (H : v ≠ 0) : ∥ proj_on u H ∥ ≤ ∥ u ∥ := ip_norm_proj_on_le u H theorem cauchy_schwartz (u v : V) : abs ⟨u, v⟩ ≤ ∥ u ∥ * ∥ v ∥ := ip_cauchy_schwartz u v theorem cauchy_schwartz' (u v : V) : ⟨u, v⟩ ≤ ∥ u ∥ * ∥ v ∥ := ip_cauchy_schwartz' u v theorem eq_proj_on_cauchy_schwartz {u v : V} (H : v ≠ 0) (H₁ : abs ⟨u, v⟩ = ∥ u ∥ * ∥ v ∥) : u = proj_on u H := assert ∥ v ∥ ≠ 0, from assume H', H (eq_zero_of_norm_eq_zero H'), assert ∥ u ∥ = ∥ proj_on u H ∥, by rewrite [norm_proj_on_eq, H₁, mul_div_cancel _ this], have ∥ u - proj_on u H ∥^2 + ∥ u ∥^2 = 0 + ∥ u ∥^2, by rewrite [zero_add, norm_squared_pythagorean u H at {2}, this], have ∥ u - proj_on u H ∥^2 = 0, from eq_of_add_eq_add_right this, show u = proj_on u H, from eq_of_sub_eq_zero (eq_zero_of_norm_eq_zero (eq_zero_of_squared_eq_zero this)) end analysis
4d1b1de54a644d2866ddccf13a4c7e4f0fa05944
31f556cdeb9239ffc2fad8f905e33987ff4feab9
/src/Lean/Server/InfoUtils.lean
4a6f9050c9fae3c1e169c004af0dc1d9546a14d1
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
tobiasgrosser/lean4
ce0fd9cca0feba1100656679bf41f0bffdbabb71
ebdbdc10436a4d9d6b66acf78aae7a23f5bd073f
refs/heads/master
1,673,103,412,948
1,664,930,501,000
1,664,930,501,000
186,870,185
0
0
Apache-2.0
1,665,129,237,000
1,557,939,901,000
Lean
UTF-8
Lean
false
false
13,911
lean
/- Copyright (c) 2021 Wojciech Nawrocki. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Wojciech Nawrocki -/ import Lean.PrettyPrinter namespace Lean.Elab /-- Visit nodes, passing in a surrounding context (the innermost one) and accumulating results on the way back up. -/ partial def InfoTree.visitM [Monad m] (preNode : ContextInfo → Info → (children : PersistentArray InfoTree) → m Unit := fun _ _ _ => pure ()) (postNode : ContextInfo → Info → (children : PersistentArray InfoTree) → List (Option α) → m α) : InfoTree → m (Option α) := go none where go | _, context ctx t => go ctx t | some ctx, node i cs => do preNode ctx i cs let as ← cs.toList.mapM (go <| i.updateContext? ctx) postNode ctx i cs as | none, node .. => panic! "unexpected context-free info tree node" | _, hole .. => pure none /-- `InfoTree.visitM` specialized to `Unit` return type -/ def InfoTree.visitM' [Monad m] (preNode : ContextInfo → Info → (children : PersistentArray InfoTree) → m Unit := fun _ _ _ => pure ()) (postNode : ContextInfo → Info → (children : PersistentArray InfoTree) → m Unit := fun _ _ _ => pure ()) (t : InfoTree) : m Unit := t.visitM preNode (fun ci i cs _ => postNode ci i cs) |> discard /-- Visit nodes bottom-up, passing in a surrounding context (the innermost one) and the union of nested results (empty at leaves). -/ def InfoTree.collectNodesBottomUp (p : ContextInfo → Info → PersistentArray InfoTree → List α → List α) (i : InfoTree) : List α := i.visitM (m := Id) (postNode := fun ci i cs as => p ci i cs (as.filterMap id).join) |>.getD [] /-- For every branch of the `InfoTree`, find the deepest node in that branch for which `p` returns `some _` and return the union of all such nodes. The visitor `p` is given a node together with its innermost surrounding `ContextInfo`. -/ partial def InfoTree.deepestNodes (p : ContextInfo → Info → PersistentArray InfoTree → Option α) (infoTree : InfoTree) : List α := infoTree.collectNodesBottomUp fun ctx i cs rs => if rs.isEmpty then match p ctx i cs with | some r => [r] | none => [] else rs partial def InfoTree.foldInfo (f : ContextInfo → Info → α → α) (init : α) : InfoTree → α := go none init where go ctx? a | context ctx t => go ctx a t | node i ts => let a := match ctx? with | none => a | some ctx => f ctx i a ts.foldl (init := a) (go <| i.updateContext? ctx?) | _ => a def Info.isTerm : Info → Bool | ofTermInfo _ => true | _ => false def Info.isCompletion : Info → Bool | ofCompletionInfo .. => true | _ => false def InfoTree.getCompletionInfos (infoTree : InfoTree) : Array (ContextInfo × CompletionInfo) := infoTree.foldInfo (init := #[]) fun ctx info result => match info with | Info.ofCompletionInfo info => result.push (ctx, info) | _ => result def Info.stx : Info → Syntax | ofTacticInfo i => i.stx | ofTermInfo i => i.stx | ofCommandInfo i => i.stx | ofMacroExpansionInfo i => i.stx | ofFieldInfo i => i.stx | ofCompletionInfo i => i.stx | ofCustomInfo i => i.stx | ofUserWidgetInfo i => i.stx | ofFVarAliasInfo _ => .missing | ofFieldRedeclInfo i => i.stx def Info.lctx : Info → LocalContext | Info.ofTermInfo i => i.lctx | Info.ofFieldInfo i => i.lctx | _ => LocalContext.empty def Info.pos? (i : Info) : Option String.Pos := i.stx.getPos? (canonicalOnly := true) def Info.tailPos? (i : Info) : Option String.Pos := i.stx.getTailPos? (canonicalOnly := true) def Info.range? (i : Info) : Option String.Range := i.stx.getRange? (canonicalOnly := true) def Info.contains (i : Info) (pos : String.Pos) (includeStop := false) : Bool := i.range?.any (·.contains pos includeStop) def Info.size? (i : Info) : Option String.Pos := do let pos ← i.pos? let tailPos ← i.tailPos? return tailPos - pos -- `Info` without position information are considered to have "infinite" size def Info.isSmaller (i₁ i₂ : Info) : Bool := match i₁.size?, i₂.pos? with | some sz₁, some sz₂ => sz₁ < sz₂ | some _, none => true | _, _ => false def Info.occursBefore? (i : Info) (hoverPos : String.Pos) : Option String.Pos := do let tailPos ← i.tailPos? guard (tailPos ≤ hoverPos) return hoverPos - tailPos def Info.occursInside? (i : Info) (hoverPos : String.Pos) : Option String.Pos := do let headPos ← i.pos? let tailPos ← i.tailPos? guard (headPos ≤ hoverPos && hoverPos < tailPos) return hoverPos - headPos def InfoTree.smallestInfo? (p : Info → Bool) (t : InfoTree) : Option (ContextInfo × Info) := let ts := t.deepestNodes fun ctx i _ => if p i then some (ctx, i) else none let infos := ts.map fun (ci, i) => let diff := i.tailPos?.get! - i.pos?.get! (diff, ci, i) infos.toArray.getMax? (fun a b => a.1 > b.1) |>.map fun (_, ci, i) => (ci, i) /-- Find an info node, if any, which should be shown on hover/cursor at position `hoverPos`. -/ partial def InfoTree.hoverableInfoAt? (t : InfoTree) (hoverPos : String.Pos) (includeStop := false) (omitAppFns := false) : Option (ContextInfo × Info) := Id.run do let results := t.visitM (m := Id) (postNode := fun ctx info _ results => do let mut results := results.bind (·.getD []) if omitAppFns && info.stx.isOfKind ``Parser.Term.app && info.stx[0].isIdent then results := results.filter (·.2.2.stx != info.stx[0]) unless results.isEmpty do return results -- prefer innermost results /- Remark: we skip `info` nodes associated with the `nullKind` and `withAnnotateState` because they are used by tactics (e.g., `rewrite`) to control which goal is displayed in the info views. See issue #1403 -/ if info.stx.isOfKind nullKind || info.toElabInfo?.any (·.elaborator == `Lean.Elab.Tactic.evalWithAnnotateState) then return results unless (info matches Info.ofFieldInfo _ || info.toElabInfo?.isSome) && info.contains hoverPos includeStop do return results let r := info.range?.get! let priority := if r.stop == hoverPos then 0 -- prefer results directly *after* the hover position (only matters for `includeStop = true`; see #767) else if info matches .ofTermInfo { expr := .fvar .., .. } then 0 -- prefer results for constants over variables (which overlap at declaration names) else 1 [(priority, ctx, info)]) |>.getD [] let maxPrio? := results.map (·.1) |>.maximum? let res? := results.find? (·.1 == maxPrio?) |>.map (·.2) if let some (_, i) := res? then if let .ofTermInfo ti := i then if ti.expr.isSyntheticSorry then return none return res? def Info.type? (i : Info) : MetaM (Option Expr) := match i with | Info.ofTermInfo ti => Meta.inferType ti.expr | Info.ofFieldInfo fi => Meta.inferType fi.val | _ => return none def Info.docString? (i : Info) : MetaM (Option String) := do let env ← getEnv if let Info.ofTermInfo ti := i then if let some n := ti.expr.constName? then return ← findDocString? env n if let Info.ofFieldInfo fi := i then return ← findDocString? env fi.projName if let some ei := i.toElabInfo? then return ← findDocString? env ei.stx.getKind <||> findDocString? env ei.elaborator return none /-- Construct a hover popup, if any, from an info node in a context.-/ def Info.fmtHover? (ci : ContextInfo) (i : Info) : IO (Option Format) := do ci.runMetaM i.lctx do let mut fmts := #[] let modFmt ← try let (termFmt, modFmt) ← fmtTermAndModule? if let some f := termFmt then fmts := fmts.push f pure modFmt catch _ => pure none if let some m ← i.docString? then fmts := fmts.push m if let some f := modFmt then fmts := fmts.push f if fmts.isEmpty then return none else return f!"\n***\n".joinSep fmts.toList where fmtModule? (decl : Name) : MetaM (Option Format) := do let some mod ← findModuleOf? decl | return none return some f!"*import {mod}*" fmtTermAndModule? : MetaM (Option Format × Option Format) := do match i with | Info.ofTermInfo ti => let e ← instantiateMVars ti.expr if e.isSort then -- Types of sorts are funny to look at in widgets, but ultimately not very helpful return (none, none) let tp ← instantiateMVars (← Meta.inferType e) let tpFmt ← Meta.ppExpr tp if e.isConst then -- Recall that `ppExpr` adds a `@` if the constant has implicit arguments, and it is quite distracting let eFmt ← withOptions (pp.fullNames.set · true |> (pp.universes.set · true)) <| PrettyPrinter.ppConst e return (some f!"```lean\n{eFmt} : {tpFmt}\n```", ← fmtModule? e.constName!) else let eFmt ← Meta.ppExpr e -- Try not to show too scary internals let showTerm := if let .fvar _ := e then if let some ldecl := (← getLCtx).findFVar? e then !ldecl.userName.hasMacroScopes else false else isAtomicFormat eFmt let fmt := if showTerm then f!"{eFmt} : {tpFmt}" else tpFmt return (some f!"```lean\n{fmt}\n```", none) | Info.ofFieldInfo fi => let tp ← Meta.inferType fi.val let tpFmt ← Meta.ppExpr tp return (some f!"```lean\n{fi.fieldName} : {tpFmt}\n```", none) | _ => return (none, none) isAtomicFormat : Format → Bool | Std.Format.text _ => true | Std.Format.group f _ => isAtomicFormat f | Std.Format.nest _ f => isAtomicFormat f | Std.Format.tag _ f => isAtomicFormat f | _ => false structure GoalsAtResult where ctxInfo : ContextInfo tacticInfo : TacticInfo useAfter : Bool /-- Whether the tactic info is further indented than the hover position. -/ indented : Bool -- for overlapping goals, only keep those of the highest reported priority priority : Nat /-- Try to retrieve `TacticInfo` for `hoverPos`. We retrieve all `TacticInfo` nodes s.t. `hoverPos` is inside the node's range plus trailing whitespace. We usually prefer the innermost such nodes so that for composite tactics such as `induction`, we show the nested proofs' states. However, if `hoverPos` is after the tactic, we prefer nodes that are not indented relative to it, meaning that e.g. at `|` in ```lean have := by exact foo | ``` we show the (final, see below) state of `have`, not `exact`. Moreover, we instruct the LSP server to use the state after tactic execution if - the hover position is after the info's start position *and* - there is no nested tactic info after the hover position (tactic combinators should decide for themselves where to show intermediate states by calling `withTacticInfoContext`) -/ partial def InfoTree.goalsAt? (text : FileMap) (t : InfoTree) (hoverPos : String.Pos) : List GoalsAtResult := let gs := t.collectNodesBottomUp fun ctx i cs gs => Id.run do if let Info.ofTacticInfo ti := i then if let (some pos, some tailPos) := (i.pos?, i.tailPos?) then let trailSize := i.stx.getTrailingSize -- show info at EOF even if strictly outside token + trail let atEOF := tailPos.byteIdx + trailSize == text.source.endPos.byteIdx -- include at least one trailing character (see also `priority` below) if pos ≤ hoverPos ∧ (hoverPos.byteIdx < tailPos.byteIdx + max 1 trailSize || atEOF) then -- overwrite bottom-up results according to "innermost" heuristics documented above if gs.isEmpty || hoverPos ≥ tailPos && gs.all (·.indented) then return [{ ctxInfo := ctx tacticInfo := ti useAfter := hoverPos > pos && !cs.any (hasNestedTactic pos tailPos) indented := (text.toPosition pos).column > (text.toPosition hoverPos).column -- use goals just before cursor as fall-back only -- thus for `(by foo)`, placing the cursor after `foo` shows its state as long -- as there is no state on `)` priority := if hoverPos.byteIdx == tailPos.byteIdx + trailSize then 0 else 1 }] return gs let maxPrio? := gs.map (·.priority) |>.maximum? gs.filter (some ·.priority == maxPrio?) where hasNestedTactic (pos tailPos) : InfoTree → Bool | InfoTree.node i@(Info.ofTacticInfo _) cs => Id.run do if let `(by $_) := i.stx then return false -- ignore term-nested proofs such as in `simp [show p by ...]` if let (some pos', some tailPos') := (i.pos?, i.tailPos?) then -- ignore preceding nested infos -- ignore nested infos of the same tactic, e.g. from expansion if tailPos' > hoverPos && (pos', tailPos') != (pos, tailPos) then return true cs.any (hasNestedTactic pos tailPos) | InfoTree.node (Info.ofMacroExpansionInfo _) cs => cs.any (hasNestedTactic pos tailPos) | _ => false partial def InfoTree.termGoalAt? (t : InfoTree) (hoverPos : String.Pos) : Option (ContextInfo × Info) := -- In the case `f a b`, where `f` is an identifier, the term goal at `f` should be the goal for the full application `f a b`. hoverableInfoAt? t hoverPos (includeStop := true) (omitAppFns := true) partial def InfoTree.hasSorry : InfoTree → IO Bool := go none where go ci? | .context ci t => go ci t | .node i cs => if let (some ci, .ofTermInfo ti) := (ci?, i) then do let expr ← ti.runMetaM ci (instantiateMVars ti.expr) return expr.hasSorry -- we assume that `cs` are subterms of `ti.expr` and -- thus do not have to be checked as well else cs.anyM (go ci?) | _ => return false end Lean.Elab
dee76aa743f842b4e68d96c3e3cd310f0f3560f4
8e6cad62ec62c6c348e5faaa3c3f2079012bdd69
/src/geometry/manifold/smooth_manifold_with_corners.lean
d6dcffecaffa90938f8bfe0a15deb74a80636355
[ "Apache-2.0" ]
permissive
benjamindavidson/mathlib
8cc81c865aa8e7cf4462245f58d35ae9a56b150d
fad44b9f670670d87c8e25ff9cdf63af87ad731e
refs/heads/master
1,679,545,578,362
1,615,343,014,000
1,615,343,014,000
312,926,983
0
0
Apache-2.0
1,615,360,301,000
1,605,399,418,000
Lean
UTF-8
Lean
false
false
38,627
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.calculus.times_cont_diff import geometry.manifold.charted_space /-! # Smooth manifolds (possibly with boundary or corners) A smooth manifold is a manifold modelled on a normed vector space, or a subset like a half-space (to get manifolds with boundaries) for which the changes of coordinates are smooth maps. We define a model with corners as a map `I : H → E` embedding nicely the topological space `H` in the vector space `E` (or more precisely as a structure containing all the relevant properties). Given such a model with corners `I` on `(E, H)`, we define the groupoid of local homeomorphisms of `H` which are smooth when read in `E` (for any regularity `n : with_top ℕ`). With this groupoid at hand and the general machinery of charted spaces, we thus get the notion of `C^n` manifold with respect to any model with corners `I` on `(E, H)`. We also introduce a specific type class for `C^∞` manifolds as these are the most commonly used. ## Main definitions * `model_with_corners 𝕜 E H` : a structure containing informations on the way a space `H` embeds in a model vector space E over the field `𝕜`. This is all that is needed to define a smooth manifold with model space `H`, and model vector space `E`. * `model_with_corners_self 𝕜 E` : trivial model with corners structure on the space `E` embedded in itself by the identity. * `times_cont_diff_groupoid n I` : when `I` is a model with corners on `(𝕜, E, H)`, this is the groupoid of local homeos of `H` which are of class `C^n` over the normed field `𝕜`, when read in `E`. * `smooth_manifold_with_corners I M` : a type class saying that the charted space `M`, modelled on the space `H`, has `C^∞` changes of coordinates with respect to the model with corners `I` on `(𝕜, E, H)`. This type class is just a shortcut for `has_groupoid M (times_cont_diff_groupoid ∞ I)`. * `ext_chart_at I x`: in a smooth manifold with corners with the model `I` on `(E, H)`, the charts take values in `H`, but often we may want to use their `E`-valued version, obtained by composing the charts with `I`. Since the target is in general not open, we can not register them as local homeomorphisms, but we register them as local equivs. `ext_chart_at I x` is the canonical such local equiv around `x`. As specific examples of models with corners, we define (in the file `real_instances.lean`) * `model_with_corners_self ℝ (euclidean_space (fin n))` for the model space used to define `n`-dimensional real manifolds without boundary (with notation `𝓡 n` in the locale `manifold`) * `model_with_corners ℝ (euclidean_space (fin n)) (euclidean_half_space n)` for the model space used to define `n`-dimensional real manifolds with boundary (with notation `𝓡∂ n` in the locale `manifold`) * `model_with_corners ℝ (euclidean_space (fin n)) (euclidean_quadrant n)` for the model space used to define `n`-dimensional real manifolds with corners With these definitions at hand, to invoke an `n`-dimensional real manifold without boundary, one could use `variables {n : ℕ} {M : Type*} [topological_space M] [charted_space (euclidean_space (fin n)) M] [smooth_manifold_with_corners (𝓡 n) M]`. However, this is not the recommended way: a theorem proved using this assumption would not apply for instance to the tangent space of such a manifold, which is modelled on `(euclidean_space (fin n)) × (euclidean_space (fin n))` and not on `euclidean_space (fin (2 * n))`! In the same way, it would not apply to product manifolds, modelled on `(euclidean_space (fin n)) × (euclidean_space (fin m))`. The right invocation does not focus on one specific construction, but on all constructions sharing the right properties, like `variables {E : Type*} [normed_group E] [normed_space ℝ E] [finite_dimensional ℝ E] {I : model_with_corners ℝ E E} [I.boundaryless] {M : Type*} [topological_space M] [charted_space E M] [smooth_manifold_with_corners I M]` Here, `I.boundaryless` is a typeclass property ensuring that there is no boundary (this is for instance the case for `model_with_corners_self`, or products of these). Note that one could consider as a natural assumption to only use the trivial model with corners `model_with_corners_self ℝ E`, but again in product manifolds the natural model with corners will not be this one but the product one (and they are not defeq as `(λp : E × F, (p.1, p.2))` is not defeq to the identity). So, it is important to use the above incantation to maximize the applicability of theorems. ## Implementation notes We want to talk about manifolds modelled on a vector space, but also on manifolds with boundary, modelled on a half space (or even manifolds with corners). For the latter examples, we still want to define smooth functions, tangent bundles, and so on. As smooth functions are well defined on vector spaces or subsets of these, one could take for model space a subtype of a vector space. With the drawback that the whole vector space itself (which is the most basic example) is not directly a subtype of itself: the inclusion of `univ : set E` in `set E` would show up in the definition, instead of `id`. A good abstraction covering both cases it to have a vector space `E` (with basic example the Euclidean space), a model space `H` (with basic example the upper half space), and an embedding of `H` into `E` (which can be the identity for `H = E`, or `subtype.val` for manifolds with corners). We say that the pair `(E, H)` with their embedding is a model with corners, and we encompass all the relevant properties (in particular the fact that the image of `H` in `E` should have unique differentials) in the definition of `model_with_corners`. We concentrate on `C^∞` manifolds: all the definitions work equally well for `C^n` manifolds, but later on it is a pain to carry all over the smoothness parameter, especially when one wants to deal with `C^k` functions as there would be additional conditions `k ≤ n` everywhere. Since one deals almost all the time with `C^∞` (or analytic) manifolds, this seems to be a reasonable choice that one could revisit later if needed. `C^k` manifolds are still available, but they should be called using `has_groupoid M (times_cont_diff_groupoid k I)` where `I` is the model with corners. I have considered using the model with corners `I` as a typeclass argument, possibly `out_param`, to get lighter notations later on, but it did not turn out right, as on `E × F` there are two natural model with corners, the trivial (identity) one, and the product one, and they are not defeq and one needs to indicate to Lean which one we want to use. This means that when talking on objects on manifolds one will most often need to specify the model with corners one is using. For instance, the tangent bundle will be `tangent_bundle I M` and the derivative will be `mfderiv I I' f`, instead of the more natural notations `tangent_bundle 𝕜 M` and `mfderiv 𝕜 f` (the field has to be explicit anyway, as some manifolds could be considered both as real and complex manifolds). -/ noncomputable theory universes u v w u' v' w' open set filter open_locale manifold filter topological_space localized "notation `∞` := (⊤ : with_top ℕ)" in manifold section model_with_corners /-! ### Models with corners. -/ /-- A structure containing informations on the way a space `H` embeds in a model vector space `E` over the field `𝕜`. This is all what is needed to define a smooth manifold with model space `H`, and model vector space `E`. -/ @[nolint has_inhabited_instance] structure model_with_corners (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] (H : Type*) [topological_space H] extends local_equiv H E := (source_eq : source = univ) (unique_diff' : unique_diff_on 𝕜 (range to_fun)) (continuous_to_fun : continuous to_fun . tactic.interactive.continuity') (continuous_inv_fun : continuous inv_fun . tactic.interactive.continuity') attribute [simp, mfld_simps] model_with_corners.source_eq /-- A vector space is a model with corners. -/ def model_with_corners_self (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] : model_with_corners 𝕜 E E := { to_fun := id, inv_fun := id, source := univ, target := univ, source_eq := rfl, map_source' := λ_ _, mem_univ _, map_target' := λ_ _, mem_univ _, left_inv' := λ_ _, rfl, right_inv' := λ_ _, rfl, unique_diff' := by { rw range_id, exact unique_diff_on_univ }, continuous_to_fun := continuous_id, continuous_inv_fun := continuous_id } localized "notation `𝓘(` 𝕜 `, ` E `)` := model_with_corners_self 𝕜 E" in manifold localized "notation `𝓘(` 𝕜 `)` := model_with_corners_self 𝕜 𝕜" in manifold section variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) namespace model_with_corners instance : has_coe_to_fun (model_with_corners 𝕜 E H) := ⟨_, λ e, e.to_fun⟩ /-- The inverse to a model with corners, only registered as a local equiv. -/ protected def symm : local_equiv E H := I.to_local_equiv.symm /- Register a few lemmas to make sure that `simp` puts expressions in normal form -/ @[simp, mfld_simps] lemma to_local_equiv_coe : (I.to_local_equiv : H → E) = I := rfl @[simp, mfld_simps] lemma mk_coe (e : local_equiv H E) (a b c d) : ((model_with_corners.mk e a b c d : model_with_corners 𝕜 E H) : H → E) = (e : H → E) := rfl @[simp, mfld_simps] lemma to_local_equiv_coe_symm : (I.to_local_equiv.symm : E → H) = I.symm := rfl @[simp, mfld_simps] lemma mk_symm (e : local_equiv H E) (a b c d) : (model_with_corners.mk e a b c d : model_with_corners 𝕜 E H).symm = e.symm := rfl protected lemma unique_diff : unique_diff_on 𝕜 (range I) := I.unique_diff' @[continuity] protected lemma continuous : continuous I := I.continuous_to_fun @[continuity] lemma continuous_symm : continuous I.symm := I.continuous_inv_fun @[simp, mfld_simps] lemma target_eq : I.target = range (I : H → E) := by { rw [← image_univ, ← I.source_eq], exact (I.to_local_equiv.image_source_eq_target).symm } @[simp, mfld_simps] protected lemma left_inv (x : H) : I.symm (I x) = x := by { refine I.left_inv' _, simp } protected lemma left_inverse : function.left_inverse I.symm I := I.left_inv @[simp, mfld_simps] lemma symm_comp_self : I.symm ∘ I = id := I.left_inverse.comp_eq_id protected lemma right_inv_on : right_inv_on I.symm I (range I) := I.left_inverse.right_inv_on_range @[simp, mfld_simps] protected lemma right_inv {x : E} (hx : x ∈ range I) : I (I.symm x) = x := I.right_inv_on hx protected lemma image_eq (s : set H) : I '' s = I.symm ⁻¹' s ∩ range I := begin refine (I.to_local_equiv.image_eq_target_inter_inv_preimage _).trans _, { rw I.source_eq, exact subset_univ _ }, { rw [inter_comm, I.target_eq, I.to_local_equiv_coe_symm] } end protected lemma closed_embedding : closed_embedding I := I.left_inverse.closed_embedding I.continuous_symm I.continuous lemma closed_range : is_closed (range I) := I.closed_embedding.closed_range lemma map_nhds_eq (x : H) : map I (𝓝 x) = 𝓝[range I] (I x) := I.closed_embedding.to_embedding.map_nhds_eq x lemma image_mem_nhds_within {x : H} {s : set H} (hs : s ∈ 𝓝 x) : I '' s ∈ 𝓝[range I] (I x) := I.map_nhds_eq x ▸ image_mem_map hs lemma symm_map_nhds_within_range (x : H) : map I.symm (𝓝[range I] (I x)) = 𝓝 x := by rw [← I.map_nhds_eq, map_map, I.symm_comp_self, map_id] lemma unique_diff_preimage {s : set H} (hs : is_open s) : unique_diff_on 𝕜 (I.symm ⁻¹' s ∩ range I) := by { rw inter_comm, exact I.unique_diff.inter (hs.preimage I.continuous_inv_fun) } lemma unique_diff_preimage_source {β : Type*} [topological_space β] {e : local_homeomorph H β} : unique_diff_on 𝕜 (I.symm ⁻¹' (e.source) ∩ range I) := I.unique_diff_preimage e.open_source lemma unique_diff_at_image {x : H} : unique_diff_within_at 𝕜 (range I) (I x) := I.unique_diff _ (mem_range_self _) protected lemma locally_compact [locally_compact_space E] (I : model_with_corners 𝕜 E H) : locally_compact_space H := begin have : ∀ (x : H), (𝓝 x).has_basis (λ s, s ∈ 𝓝 (I x) ∧ is_compact s) (λ s, I.symm '' (s ∩ range ⇑I)), { intro x, rw ← I.symm_map_nhds_within_range, exact ((compact_basis_nhds (I x)).inf_principal _).map _ }, refine locally_compact_space_of_has_basis this _, rintro x s ⟨-, hsc⟩, exact (hsc.inter_right I.closed_range).image I.continuous_symm end end model_with_corners section variables (𝕜 E) /-- In the trivial model with corners, the associated local equiv is the identity. -/ @[simp, mfld_simps] lemma model_with_corners_self_local_equiv : (model_with_corners_self 𝕜 E).to_local_equiv = local_equiv.refl E := rfl @[simp, mfld_simps] lemma model_with_corners_self_coe : (model_with_corners_self 𝕜 E : E → E) = id := rfl @[simp, mfld_simps] lemma model_with_corners_self_coe_symm : ((model_with_corners_self 𝕜 E).symm : E → E) = id := rfl end end section model_with_corners_prod /-- Given two model_with_corners `I` on `(E, H)` and `I'` on `(E', H')`, we define the model with corners `I.prod I'` on `(E × E', H × H')`. This appears in particular for the manifold structure on the tangent bundle to a manifold modelled on `(E, H)`: it will be modelled on `(E × E, H × E)`. -/ def model_with_corners.prod {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H] (I : model_with_corners 𝕜 E H) {E' : Type v'} [normed_group E'] [normed_space 𝕜 E'] {H' : Type w'} [topological_space H'] (I' : model_with_corners 𝕜 E' H') : model_with_corners 𝕜 (E × E') (model_prod H H') := { to_fun := λ p, (I p.1, I' p.2), inv_fun := λ p, (I.symm p.1, I'.symm p.2), source := (univ : set (H × H')), target := set.prod (range I) (range I'), map_source' := λ ⟨x, x'⟩ _, by simp [-mem_range, mem_range_self], map_target' := λ ⟨x, x'⟩ _, mem_univ _, left_inv' := λ ⟨x, x'⟩ _, by simp, right_inv' := λ ⟨x, x'⟩ ⟨hx, hx'⟩, by simp [hx, hx'], source_eq := rfl, unique_diff' := begin have : range (λ(p : model_prod H H'), (I p.1, I' p.2)) = set.prod (range I) (range I'), by { dsimp [model_prod], rw ← prod_range_range_eq }, rw this, exact unique_diff_on.prod I.unique_diff I'.unique_diff, end, continuous_to_fun := (continuous.comp I.continuous_to_fun continuous_fst).prod_mk (continuous.comp I'.continuous_to_fun continuous_snd), continuous_inv_fun := (continuous.comp I.continuous_inv_fun continuous_fst).prod_mk (continuous.comp I'.continuous_inv_fun continuous_snd) } /-- Special case of product model with corners, which is trivial on the second factor. This shows up as the model to tangent bundles. -/ @[reducible] def model_with_corners.tangent {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H] (I : model_with_corners 𝕜 E H) : model_with_corners 𝕜 (E × E) (model_prod H E) := I.prod (model_with_corners_self 𝕜 E) variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {F : Type*} [normed_group F] [normed_space 𝕜 F] {F' : Type*} [normed_group F'] [normed_space 𝕜 F'] {H : Type*} [topological_space H] {H' : Type*} [topological_space H'] {G : Type*} [topological_space G] {G' : Type*} [topological_space G'] {I : model_with_corners 𝕜 E H} {J : model_with_corners 𝕜 F G} @[simp, mfld_simps] lemma model_with_corners_prod_to_local_equiv : (I.prod J).to_local_equiv = (I.to_local_equiv).prod (J.to_local_equiv) := begin ext1 x, { refl, }, { intro x, refl, }, { simp only [set.univ_prod_univ, model_with_corners.source_eq, local_equiv.prod_source], } end @[simp, mfld_simps] lemma model_with_corners_prod_coe (I : model_with_corners 𝕜 E H) (I' : model_with_corners 𝕜 E' H') : (I.prod I' : _ × _ → _ × _) = prod.map I I' := rfl @[simp, mfld_simps] lemma model_with_corners_prod_coe_symm (I : model_with_corners 𝕜 E H) (I' : model_with_corners 𝕜 E' H') : ((I.prod I').symm : _ × _ → _ × _) = prod.map I.symm I'.symm := rfl end model_with_corners_prod section boundaryless /-- Property ensuring that the model with corners `I` defines manifolds without boundary. -/ class model_with_corners.boundaryless {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) : Prop := (range_eq_univ : range I = univ) /-- The trivial model with corners has no boundary -/ instance model_with_corners_self_boundaryless (𝕜 : Type*) [nondiscrete_normed_field 𝕜] (E : Type*) [normed_group E] [normed_space 𝕜 E] : (model_with_corners_self 𝕜 E).boundaryless := ⟨by simp⟩ /-- If two model with corners are boundaryless, their product also is -/ instance model_with_corners.range_eq_univ_prod {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H] (I : model_with_corners 𝕜 E H) [I.boundaryless] {E' : Type v'} [normed_group E'] [normed_space 𝕜 E'] {H' : Type w'} [topological_space H'] (I' : model_with_corners 𝕜 E' H') [I'.boundaryless] : (I.prod I').boundaryless := begin split, dsimp [model_with_corners.prod, model_prod], rw [← prod_range_range_eq, model_with_corners.boundaryless.range_eq_univ, model_with_corners.boundaryless.range_eq_univ, univ_prod_univ] end end boundaryless section times_cont_diff_groupoid /-! ### Smooth functions on models with corners -/ variables {m n : with_top ℕ} {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type*} [topological_space M] variable (n) /-- Given a model with corners `(E, H)`, we define the groupoid of `C^n` transformations of `H` as the maps that are `C^n` when read in `E` through `I`. -/ def times_cont_diff_groupoid : structure_groupoid H := pregroupoid.groupoid { property := λf s, times_cont_diff_on 𝕜 n (I ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I), comp := λf g u v hf hg hu hv huv, begin have : I ∘ (g ∘ f) ∘ I.symm = (I ∘ g ∘ I.symm) ∘ (I ∘ f ∘ I.symm), by { ext x, simp }, rw this, apply times_cont_diff_on.comp hg _, { rintros x ⟨hx1, hx2⟩, simp only with mfld_simps at ⊢ hx1, exact hx1.2 }, { refine hf.mono _, rintros x ⟨hx1, hx2⟩, exact ⟨hx1.1, hx2⟩ } end, id_mem := begin apply times_cont_diff_on.congr (times_cont_diff_id.times_cont_diff_on), rintros x ⟨hx1, hx2⟩, rcases mem_range.1 hx2 with ⟨y, hy⟩, rw ← hy, simp only with mfld_simps, end, locality := λf u hu H, begin apply times_cont_diff_on_of_locally_times_cont_diff_on, rintros y ⟨hy1, hy2⟩, rcases mem_range.1 hy2 with ⟨x, hx⟩, rw ← hx at ⊢ hy1, simp only with mfld_simps at ⊢ hy1, rcases H x hy1 with ⟨v, v_open, xv, hv⟩, have : ((I.symm ⁻¹' (u ∩ v)) ∩ (range I)) = ((I.symm ⁻¹' u) ∩ (range I) ∩ I.symm ⁻¹' v), { rw [preimage_inter, inter_assoc, inter_assoc], congr' 1, rw inter_comm }, rw this at hv, exact ⟨I.symm ⁻¹' v, v_open.preimage I.continuous_symm, by simpa, hv⟩ end, congr := λf g u hu fg hf, begin apply hf.congr, rintros y ⟨hy1, hy2⟩, rcases mem_range.1 hy2 with ⟨x, hx⟩, rw ← hx at ⊢ hy1, simp only with mfld_simps at ⊢ hy1, rw fg _ hy1 end } variable {n} /-- Inclusion of the groupoid of `C^n` local diffeos in the groupoid of `C^m` local diffeos when `m ≤ n` -/ lemma times_cont_diff_groupoid_le (h : m ≤ n) : times_cont_diff_groupoid n I ≤ times_cont_diff_groupoid m I := begin rw [times_cont_diff_groupoid, times_cont_diff_groupoid], apply groupoid_of_pregroupoid_le, assume f s hfs, exact times_cont_diff_on.of_le hfs h end /-- The groupoid of `0`-times continuously differentiable maps is just the groupoid of all local homeomorphisms -/ lemma times_cont_diff_groupoid_zero_eq : times_cont_diff_groupoid 0 I = continuous_groupoid H := begin apply le_antisymm le_top, assume u hu, -- we have to check that every local homeomorphism belongs to `times_cont_diff_groupoid 0 I`, -- by unfolding its definition change u ∈ times_cont_diff_groupoid 0 I, rw [times_cont_diff_groupoid, mem_groupoid_of_pregroupoid], simp only [times_cont_diff_on_zero], split, { apply continuous_on.comp (@continuous.continuous_on _ _ _ _ _ univ I.continuous) _ (subset_univ _), apply continuous_on.comp u.continuous_to_fun I.continuous_symm.continuous_on (inter_subset_left _ _) }, { apply continuous_on.comp (@continuous.continuous_on _ _ _ _ _ univ I.continuous) _ (subset_univ _), apply continuous_on.comp u.continuous_inv_fun I.continuous_inv_fun.continuous_on (inter_subset_left _ _) }, end variable (n) /-- An identity local homeomorphism belongs to the `C^n` groupoid. -/ lemma of_set_mem_times_cont_diff_groupoid {s : set H} (hs : is_open s) : local_homeomorph.of_set s hs ∈ times_cont_diff_groupoid n I := begin rw [times_cont_diff_groupoid, mem_groupoid_of_pregroupoid], suffices h : times_cont_diff_on 𝕜 n (I ∘ I.symm) (I.symm ⁻¹' s ∩ range I), by simp [h], have : times_cont_diff_on 𝕜 n id (univ : set E) := times_cont_diff_id.times_cont_diff_on, exact this.congr_mono (λ x hx, by simp [hx.2]) (subset_univ _) end /-- The composition of a local homeomorphism from `H` to `M` and its inverse belongs to the `C^n` groupoid. -/ lemma symm_trans_mem_times_cont_diff_groupoid (e : local_homeomorph M H) : e.symm.trans e ∈ times_cont_diff_groupoid n I := begin have : e.symm.trans e ≈ local_homeomorph.of_set e.target e.open_target := local_homeomorph.trans_symm_self _, exact structure_groupoid.eq_on_source _ (of_set_mem_times_cont_diff_groupoid n I e.open_target) this end variables {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {H' : Type*} [topological_space H'] /-- The product of two smooth local homeomorphisms is smooth. -/ lemma times_cont_diff_groupoid_prod {I : model_with_corners 𝕜 E H} {I' : model_with_corners 𝕜 E' H'} {e : local_homeomorph H H} {e' : local_homeomorph H' H'} (he : e ∈ times_cont_diff_groupoid ⊤ I) (he' : e' ∈ times_cont_diff_groupoid ⊤ I') : e.prod e' ∈ times_cont_diff_groupoid ⊤ (I.prod I') := begin cases he with he he_symm, cases he' with he' he'_symm, simp only at he he_symm he' he'_symm, split; simp only [local_equiv.prod_source, local_homeomorph.prod_to_local_equiv], { have h3 := times_cont_diff_on.prod_map he he', rw [← I.image_eq, ← I'.image_eq, set.prod_image_image_eq] at h3, rw ← (I.prod I').image_eq, exact h3, }, { have h3 := times_cont_diff_on.prod_map he_symm he'_symm, rw [← I.image_eq, ← I'.image_eq, set.prod_image_image_eq] at h3, rw ← (I.prod I').image_eq, exact h3, } end /-- The `C^n` groupoid is closed under restriction. -/ instance : closed_under_restriction (times_cont_diff_groupoid n I) := (closed_under_restriction_iff_id_le _).mpr begin apply structure_groupoid.le_iff.mpr, rintros e ⟨s, hs, hes⟩, apply (times_cont_diff_groupoid n I).eq_on_source' _ _ _ hes, exact of_set_mem_times_cont_diff_groupoid n I hs, end end times_cont_diff_groupoid end model_with_corners section smooth_manifold_with_corners /-! ### Smooth manifolds with corners -/ set_option old_structure_cmd true /-- Typeclass defining smooth manifolds with corners with respect to a model with corners, over a field `𝕜` and with infinite smoothness to simplify typeclass search and statements later on. -/ @[ancestor has_groupoid] class smooth_manifold_with_corners {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) (M : Type*) [topological_space M] [charted_space H M] extends has_groupoid M (times_cont_diff_groupoid ∞ I) : Prop lemma smooth_manifold_with_corners_of_times_cont_diff_on {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) (M : Type*) [topological_space M] [charted_space H M] (h : ∀ (e e' : local_homeomorph M H), e ∈ atlas H M → e' ∈ atlas H M → times_cont_diff_on 𝕜 ⊤ (I ∘ (e.symm ≫ₕ e') ∘ I.symm) (I.symm ⁻¹' (e.symm ≫ₕ e').source ∩ range I)) : smooth_manifold_with_corners I M := { compatible := begin haveI : has_groupoid M (times_cont_diff_groupoid ∞ I) := has_groupoid_of_pregroupoid _ h, apply structure_groupoid.compatible, end } /-- For any model with corners, the model space is a smooth manifold -/ instance model_space_smooth {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] {I : model_with_corners 𝕜 E H} : smooth_manifold_with_corners I H := { .. has_groupoid_model_space _ _ } end smooth_manifold_with_corners namespace smooth_manifold_with_corners /- We restate in the namespace `smooth_manifolds_with_corners` some lemmas that hold for general charted space with a structure groupoid, avoiding the need to specify the groupoid `times_cont_diff_groupoid ∞ I` explicitly. -/ variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) (M : Type*) [topological_space M] [charted_space H M] /-- The maximal atlas of `M` for the smooth manifold with corners structure corresponding to the model with corners `I`. -/ def maximal_atlas := (times_cont_diff_groupoid ∞ I).maximal_atlas M variable {M} lemma mem_maximal_atlas_of_mem_atlas [smooth_manifold_with_corners I M] {e : local_homeomorph M H} (he : e ∈ atlas H M) : e ∈ maximal_atlas I M := structure_groupoid.mem_maximal_atlas_of_mem_atlas _ he lemma chart_mem_maximal_atlas [smooth_manifold_with_corners I M] (x : M) : chart_at H x ∈ maximal_atlas I M := structure_groupoid.chart_mem_maximal_atlas _ x variable {I} lemma compatible_of_mem_maximal_atlas {e e' : local_homeomorph M H} (he : e ∈ maximal_atlas I M) (he' : e' ∈ maximal_atlas I M) : e.symm.trans e' ∈ times_cont_diff_groupoid ∞ I := structure_groupoid.compatible_of_mem_maximal_atlas he he' /-- The product of two smooth manifolds with corners is naturally a smooth manifold with corners. -/ instance prod {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {H : Type*} [topological_space H] {I : model_with_corners 𝕜 E H} {H' : Type*} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} (M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] (M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] : smooth_manifold_with_corners (I.prod I') (M×M') := { compatible := begin rintros f g ⟨f1, hf1, f2, hf2, hf⟩ ⟨g1, hg1, g2, hg2, hg⟩, rw [hf, hg, local_homeomorph.prod_symm, local_homeomorph.prod_trans], have h1 := has_groupoid.compatible (times_cont_diff_groupoid ⊤ I) hf1 hg1, have h2 := has_groupoid.compatible (times_cont_diff_groupoid ⊤ I') hf2 hg2, exact times_cont_diff_groupoid_prod h1 h2, end } end smooth_manifold_with_corners section extended_charts open_locale topological_space variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type*} [topological_space M] [charted_space H M] (x : M) {s t : set M} /-! ### Extended charts In a smooth manifold with corners, the model space is the space `H`. However, we will also need to use extended charts taking values in the model vector space `E`. These extended charts are not `local_homeomorph` as the target is not open in `E` in general, but we can still register them as `local_equiv`. -/ /-- The preferred extended chart on a manifold with corners around a point `x`, from a neighborhood of `x` to the model vector space. -/ @[simp, mfld_simps] def ext_chart_at (x : M) : local_equiv M E := (chart_at H x).to_local_equiv.trans I.to_local_equiv lemma ext_chart_at_coe : ⇑(ext_chart_at I x) = I ∘ chart_at H x := rfl lemma ext_chart_at_coe_symm : ⇑(ext_chart_at I x).symm = (chart_at H x).symm ∘ I.symm := rfl lemma ext_chart_at_source : (ext_chart_at I x).source = (chart_at H x).source := by rw [ext_chart_at, local_equiv.trans_source, I.source_eq, preimage_univ, inter_univ] lemma ext_chart_at_open_source : is_open (ext_chart_at I x).source := by { rw ext_chart_at_source, exact (chart_at H x).open_source } lemma mem_ext_chart_source : x ∈ (ext_chart_at I x).source := by simp only [ext_chart_at_source, mem_chart_source] lemma ext_chart_at_to_inv : (ext_chart_at I x).symm ((ext_chart_at I x) x) = x := (ext_chart_at I x).left_inv (mem_ext_chart_source I x) lemma ext_chart_at_source_mem_nhds' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : (ext_chart_at I x).source ∈ 𝓝 x' := mem_nhds_sets (ext_chart_at_open_source I x) h lemma ext_chart_at_source_mem_nhds : (ext_chart_at I x).source ∈ 𝓝 x := ext_chart_at_source_mem_nhds' I x (mem_ext_chart_source I x) lemma ext_chart_at_source_mem_nhds_within' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : (ext_chart_at I x).source ∈ 𝓝[s] x' := mem_nhds_within_of_mem_nhds (ext_chart_at_source_mem_nhds' I x h) lemma ext_chart_at_source_mem_nhds_within : (ext_chart_at I x).source ∈ 𝓝[s] x := mem_nhds_within_of_mem_nhds (ext_chart_at_source_mem_nhds I x) lemma ext_chart_at_continuous_on : continuous_on (ext_chart_at I x) (ext_chart_at I x).source := begin refine I.continuous.comp_continuous_on _, rw ext_chart_at_source, exact (chart_at H x).continuous_on end lemma ext_chart_at_continuous_at' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : continuous_at (ext_chart_at I x) x' := (ext_chart_at_continuous_on I x).continuous_at $ ext_chart_at_source_mem_nhds' I x h lemma ext_chart_at_continuous_at : continuous_at (ext_chart_at I x) x := ext_chart_at_continuous_at' _ _ (mem_ext_chart_source I x) lemma ext_chart_at_continuous_on_symm : continuous_on (ext_chart_at I x).symm (ext_chart_at I x).target := begin apply continuous_on.comp (chart_at H x).continuous_on_symm I.continuous_symm.continuous_on, simp [ext_chart_at, local_equiv.trans_target] end lemma ext_chart_at_map_nhds' {x y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x) (𝓝 y) = 𝓝[range I] (ext_chart_at I x y) := begin rw [ext_chart_at_coe, (∘), ← I.map_nhds_eq, ← (chart_at H x).map_nhds_eq, map_map], rwa ext_chart_at_source at hy end lemma ext_chart_at_map_nhds : map (ext_chart_at I x) (𝓝 x) = 𝓝[range I] (ext_chart_at I x x) := ext_chart_at_map_nhds' I $ mem_ext_chart_source I x lemma ext_chart_at_target_mem_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) : (ext_chart_at I x).target ∈ 𝓝[range I] (ext_chart_at I x y) := begin rw [← local_equiv.image_source_eq_target, ← ext_chart_at_map_nhds' I hy], exact image_mem_map (ext_chart_at_source_mem_nhds' _ _ hy) end lemma ext_chart_at_target_mem_nhds_within : (ext_chart_at I x).target ∈ 𝓝[range I] (ext_chart_at I x x) := ext_chart_at_target_mem_nhds_within' I x (mem_ext_chart_source I x) lemma ext_chart_at_target_subset_range : (ext_chart_at I x).target ⊆ range I := by simp only with mfld_simps lemma nhds_within_ext_chart_target_eq' {y : M} (hy : y ∈ (ext_chart_at I x).source) : 𝓝[(ext_chart_at I x).target] (ext_chart_at I x y) = 𝓝[range I] (ext_chart_at I x y) := (nhds_within_mono _ (ext_chart_at_target_subset_range _ _)).antisymm $ nhds_within_le_of_mem (ext_chart_at_target_mem_nhds_within' _ _ hy) lemma nhds_within_ext_chart_target_eq : 𝓝[(ext_chart_at I x).target] ((ext_chart_at I x) x) = 𝓝[range I] ((ext_chart_at I x) x) := nhds_within_ext_chart_target_eq' I x (mem_ext_chart_source I x) lemma ext_chart_continuous_at_symm'' {y : E} (h : y ∈ (ext_chart_at I x).target) : continuous_at (ext_chart_at I x).symm y := continuous_at.comp ((chart_at H x).continuous_at_symm h.2) (I.continuous_symm.continuous_at) lemma ext_chart_continuous_at_symm' {x' : M} (h : x' ∈ (ext_chart_at I x).source) : continuous_at (ext_chart_at I x).symm (ext_chart_at I x x') := ext_chart_continuous_at_symm'' I _ $ (ext_chart_at I x).map_source h lemma ext_chart_continuous_at_symm : continuous_at (ext_chart_at I x).symm ((ext_chart_at I x) x) := ext_chart_continuous_at_symm' I x (mem_ext_chart_source I x) lemma ext_chart_continuous_on_symm : continuous_on (ext_chart_at I x).symm (ext_chart_at I x).target := λ y hy, (ext_chart_continuous_at_symm'' _ _ hy).continuous_within_at lemma ext_chart_at_map_nhds_within_eq_image' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x) (𝓝[s] y) = 𝓝[ext_chart_at I x '' ((ext_chart_at I x).source ∩ s)] (ext_chart_at I x y) := by set e := ext_chart_at I x; calc map e (𝓝[s] y) = map e (𝓝[e.source ∩ s] y) : congr_arg (map e) (nhds_within_inter_of_mem (ext_chart_at_source_mem_nhds_within' I x hy)).symm ... = 𝓝[e '' (e.source ∩ s)] (e y) : ((ext_chart_at I x).left_inv_on.mono $ inter_subset_left _ _).map_nhds_within_eq ((ext_chart_at I x).left_inv hy) (ext_chart_continuous_at_symm' I x hy).continuous_within_at (ext_chart_at_continuous_at' I x hy).continuous_within_at lemma ext_chart_at_map_nhds_within_eq_image : map (ext_chart_at I x) (𝓝[s] x) = 𝓝[ext_chart_at I x '' ((ext_chart_at I x).source ∩ s)] (ext_chart_at I x x) := ext_chart_at_map_nhds_within_eq_image' I x (mem_ext_chart_source I x) lemma ext_chart_at_map_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x) (𝓝[s] y) = 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x y) := by rw [ext_chart_at_map_nhds_within_eq_image' I x hy, nhds_within_inter, ← nhds_within_ext_chart_target_eq' _ _ hy, ← nhds_within_inter, (ext_chart_at I x).image_source_inter_eq', inter_comm] lemma ext_chart_at_map_nhds_within : map (ext_chart_at I x) (𝓝[s] x) = 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x x) := ext_chart_at_map_nhds_within' I x (mem_ext_chart_source I x) lemma ext_chart_at_symm_map_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x).symm (𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x y)) = 𝓝[s] y := begin rw [← ext_chart_at_map_nhds_within' I x hy, map_map, map_congr, map_id], exact (ext_chart_at I x).left_inv_on.eq_on.eventually_eq_of_mem (ext_chart_at_source_mem_nhds_within' _ _ hy) end lemma ext_chart_at_symm_map_nhds_within_range' {y : M} (hy : y ∈ (ext_chart_at I x).source) : map (ext_chart_at I x).symm (𝓝[range I] (ext_chart_at I x y)) = 𝓝 y := by rw [← nhds_within_univ, ← ext_chart_at_symm_map_nhds_within' I x hy, preimage_univ, univ_inter] lemma ext_chart_at_symm_map_nhds_within : map (ext_chart_at I x).symm (𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x x)) = 𝓝[s] x := ext_chart_at_symm_map_nhds_within' I x (mem_ext_chart_source I x) lemma ext_chart_at_symm_map_nhds_within_range : map (ext_chart_at I x).symm (𝓝[range I] (ext_chart_at I x x)) = 𝓝 x := ext_chart_at_symm_map_nhds_within_range' I x (mem_ext_chart_source I x) /-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point in the source is a neighborhood of the preimage, within a set. -/ lemma ext_chart_preimage_mem_nhds_within' {x' : M} (h : x' ∈ (ext_chart_at I x).source) (ht : t ∈ 𝓝[s] x') : (ext_chart_at I x).symm ⁻¹' t ∈ 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] ((ext_chart_at I x) x') := by rwa [← ext_chart_at_symm_map_nhds_within' I x h, mem_map] at ht /-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of the base point is a neighborhood of the preimage, within a set. -/ lemma ext_chart_preimage_mem_nhds_within (ht : t ∈ 𝓝[s] x) : (ext_chart_at I x).symm ⁻¹' t ∈ 𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] ((ext_chart_at I x) x) := ext_chart_preimage_mem_nhds_within' I x (mem_ext_chart_source I x) ht /-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point is a neighborhood of the preimage. -/ lemma ext_chart_preimage_mem_nhds (ht : t ∈ 𝓝 x) : (ext_chart_at I x).symm ⁻¹' t ∈ 𝓝 ((ext_chart_at I x) x) := begin apply (ext_chart_continuous_at_symm I x).preimage_mem_nhds, rwa (ext_chart_at I x).left_inv (mem_ext_chart_source _ _) end /-- Technical lemma to rewrite suitably the preimage of an intersection under an extended chart, to bring it into a convenient form to apply derivative lemmas. -/ lemma ext_chart_preimage_inter_eq : ((ext_chart_at I x).symm ⁻¹' (s ∩ t) ∩ range I) = ((ext_chart_at I x).symm ⁻¹' s ∩ range I) ∩ ((ext_chart_at I x).symm ⁻¹' t) := by mfld_set_tac end extended_charts /-- In the case of the manifold structure on a vector space, the extended charts are just the identity.-/ lemma ext_chart_model_space_eq_id (𝕜 : Type*) [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] (x : E) : ext_chart_at (model_with_corners_self 𝕜 E) x = local_equiv.refl E := by simp only with mfld_simps
ecfd0f8b453647e6058256613a4cd51e1f6b9502
9028d228ac200bbefe3a711342514dd4e4458bff
/src/algebra/invertible.lean
a72964b00257f478134a77018126873901ed4c3c
[ "Apache-2.0" ]
permissive
mcncm/mathlib
8d25099344d9d2bee62822cb9ed43aa3e09fa05e
fde3d78cadeec5ef827b16ae55664ef115e66f57
refs/heads/master
1,672,743,316,277
1,602,618,514,000
1,602,618,514,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,097
lean
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Anne Baanen A typeclass for the two-sided multiplicative inverse. -/ import algebra.char_zero import algebra.char_p /-! # Invertible elements This file defines a typeclass `invertible a` for elements `a` with a multiplicative inverse. The intent of the typeclass is to provide a way to write e.g. `⅟2` in a ring like `ℤ[1/2]` where some inverses exist but there is no general `⁻¹` operator; or to specify that a field has characteristic `≠ 2`. It is the `Type`-valued analogue to the `Prop`-valued `is_unit`. This file also includes some instances of `invertible` for specific numbers in characteristic zero. Some more cases are given as a `def`, to be included only when needed. To construct instances for concrete numbers, `invertible_of_nonzero` is a useful definition. ## Notation * `⅟a` is `invertible.inv_of a`, the inverse of `a` ## Implementation notes The `invertible` class lives in `Type`, not `Prop`, to make computation easier. If multiplication is associative, `invertible` is a subsingleton anyway. The `simp` normal form tries to normalize `⅟a` to `a ⁻¹`. Otherwise, it pushes `⅟` inside the expression as much as possible. ## Tags invertible, inverse element, inv_of, a half, one half, a third, one third, ½, ⅓ -/ universes u variables {α : Type u} /-- `invertible a` gives a two-sided multiplicative inverse of `a`. -/ class invertible [has_mul α] [has_one α] (a : α) : Type u := (inv_of : α) (inv_of_mul_self : inv_of * a = 1) (mul_inv_of_self : a * inv_of = 1) -- This notation has the same precedence as `has_inv.inv`. notation `⅟`:1034 := invertible.inv_of @[simp] lemma inv_of_mul_self [has_mul α] [has_one α] (a : α) [invertible a] : ⅟a * a = 1 := invertible.inv_of_mul_self @[simp] lemma mul_inv_of_self [has_mul α] [has_one α] (a : α) [invertible a] : a * ⅟a = 1 := invertible.mul_inv_of_self @[simp] lemma mul_inv_of_mul_self_cancel [monoid α] (a b : α) [invertible b] : a * ⅟b * b = a := by simp [mul_assoc] @[simp] lemma mul_mul_inv_of_self_cancel [monoid α] (a b : α) [invertible b] : a * b * ⅟b = a := by simp [mul_assoc] lemma inv_of_eq_right_inv [monoid α] {a b : α} [invertible a] (hac : a * b = 1) : ⅟a = b := left_inv_eq_right_inv (inv_of_mul_self _) hac lemma invertible_unique {α : Type u} [monoid α] (a b : α) (h : a = b) [invertible a] [invertible b] : ⅟a = ⅟b := by { apply inv_of_eq_right_inv, rw [h, mul_inv_of_self], } instance [monoid α] (a : α) : subsingleton (invertible a) := ⟨ λ ⟨b, hba, hab⟩ ⟨c, hca, hac⟩, by { congr, exact left_inv_eq_right_inv hba hac } ⟩ /-- An `invertible` element is a unit. -/ def unit_of_invertible [monoid α] (a : α) [invertible a] : units α := { val := a, inv := ⅟a, val_inv := by simp, inv_val := by simp, } @[simp] lemma unit_of_invertible_val [monoid α] (a : α) [invertible a] : (unit_of_invertible a : α) = a := rfl @[simp] lemma unit_of_invertible_inv [monoid α] (a : α) [invertible a] : (↑(unit_of_invertible a)⁻¹ : α) = ⅟a := rfl lemma is_unit_of_invertible [monoid α] (a : α) [invertible a] : is_unit a := ⟨unit_of_invertible a, rfl⟩ /-- Each element of a group is invertible. -/ def invertible_of_group [group α] (a : α) : invertible a := ⟨a⁻¹, inv_mul_self a, mul_inv_self a⟩ @[simp] lemma inv_of_eq_group_inv [group α] (a : α) [invertible a] : ⅟a = a⁻¹ := inv_of_eq_right_inv (mul_inv_self a) /-- `1` is the inverse of itself -/ def invertible_one [monoid α] : invertible (1 : α) := ⟨ 1, mul_one _, one_mul _ ⟩ @[simp] lemma inv_of_one [monoid α] [invertible (1 : α)] : ⅟(1 : α) = 1 := inv_of_eq_right_inv (mul_one _) /-- `-⅟a` is the inverse of `-a` -/ def invertible_neg [ring α] (a : α) [invertible a] : invertible (-a) := ⟨ -⅟a, by simp, by simp ⟩ @[simp] lemma inv_of_neg [ring α] (a : α) [invertible a] [invertible (-a)] : ⅟(-a) = -⅟a := inv_of_eq_right_inv (by simp) /-- `a` is the inverse of `⅟a`. -/ instance invertible_inv_of [has_one α] [has_mul α] {a : α} [invertible a] : invertible (⅟a) := ⟨ a, mul_inv_of_self a, inv_of_mul_self a ⟩ @[simp] lemma inv_of_inv_of [monoid α] {a : α} [invertible a] [invertible (⅟a)] : ⅟(⅟a) = a := inv_of_eq_right_inv (inv_of_mul_self _) /-- `⅟b * ⅟a` is the inverse of `a * b` -/ def invertible_mul [monoid α] (a b : α) [invertible a] [invertible b] : invertible (a * b) := ⟨ ⅟b * ⅟a, by simp [←mul_assoc], by simp [←mul_assoc] ⟩ @[simp] lemma inv_of_mul [monoid α] (a b : α) [invertible a] [invertible b] [invertible (a * b)] : ⅟(a * b) = ⅟b * ⅟a := inv_of_eq_right_inv (by simp [←mul_assoc]) /-- If `r` is invertible and `s = r`, then `s` is invertible. -/ def invertible.copy [monoid α] {r : α} (hr : invertible r) (s : α) (hs : s = r) : invertible s := { inv_of := ⅟r, inv_of_mul_self := by rw [hs, inv_of_mul_self], mul_inv_of_self := by rw [hs, mul_inv_of_self] } lemma commute_inv_of {M : Type*} [has_one M] [has_mul M] (m : M) [invertible m] : commute m (⅟m) := calc m * ⅟m = 1 : mul_inv_of_self m ... = ⅟ m * m : (inv_of_mul_self m).symm instance invertible_pow {M : Type*} [monoid M] (m : M) [invertible m] (n : ℕ) : invertible (m ^ n) := { inv_of := ⅟ m ^ n, inv_of_mul_self := by rw [← (commute_inv_of m).symm.mul_pow, inv_of_mul_self, one_pow], mul_inv_of_self := by rw [← (commute_inv_of m).mul_pow, mul_inv_of_self, one_pow] } section group_with_zero variable [group_with_zero α] lemma nonzero_of_invertible (a : α) [invertible a] : a ≠ 0 := λ ha, zero_ne_one $ calc 0 = ⅟a * a : by simp [ha] ... = 1 : inv_of_mul_self a /-- `a⁻¹` is an inverse of `a` if `a ≠ 0` -/ def invertible_of_nonzero {a : α} (h : a ≠ 0) : invertible a := ⟨ a⁻¹, inv_mul_cancel h, mul_inv_cancel h ⟩ @[simp] lemma inv_of_eq_inv (a : α) [invertible a] : ⅟a = a⁻¹ := inv_of_eq_right_inv (mul_inv_cancel (nonzero_of_invertible a)) @[simp] lemma inv_mul_cancel_of_invertible (a : α) [invertible a] : a⁻¹ * a = 1 := inv_mul_cancel (nonzero_of_invertible a) @[simp] lemma mul_inv_cancel_of_invertible (a : α) [invertible a] : a * a⁻¹ = 1 := mul_inv_cancel (nonzero_of_invertible a) @[simp] lemma div_mul_cancel_of_invertible (a b : α) [invertible b] : a / b * b = a := div_mul_cancel a (nonzero_of_invertible b) @[simp] lemma mul_div_cancel_of_invertible (a b : α) [invertible b] : a * b / b = a := mul_div_cancel a (nonzero_of_invertible b) @[simp] lemma div_self_of_invertible (a : α) [invertible a] : a / a = 1 := div_self (nonzero_of_invertible a) /-- `b / a` is the inverse of `a / b` -/ def invertible_div (a b : α) [invertible a] [invertible b] : invertible (a / b) := ⟨b / a, by simp [←mul_div_assoc], by simp [←mul_div_assoc]⟩ @[simp] lemma inv_of_div (a b : α) [invertible a] [invertible b] [invertible (a / b)] : ⅟(a / b) = b / a := inv_of_eq_right_inv (by simp [←mul_div_assoc]) /-- `a` is the inverse of `a⁻¹` -/ def invertible_inv {a : α} [invertible a] : invertible (a⁻¹) := ⟨ a, by simp, by simp ⟩ end group_with_zero /-- Monoid homs preserve invertibility. -/ def invertible.map {R : Type*} {S : Type*} [monoid R] [monoid S] (f : R →* S) (r : R) [invertible r] : invertible (f r) := { inv_of := f (⅟r), inv_of_mul_self := by rw [← f.map_mul, inv_of_mul_self, f.map_one], mul_inv_of_self := by rw [← f.map_mul, mul_inv_of_self, f.map_one] } section ring_char /-- A natural number `t` is invertible in a field `K` if the charactistic of `K` does not divide `t`. -/ def invertible_of_ring_char_not_dvd {K : Type*} [field K] {t : ℕ} (not_dvd : ¬(ring_char K ∣ t)) : invertible (t : K) := invertible_of_nonzero (λ h, not_dvd ((ring_char.spec K t).mp h)) end ring_char section char_p /-- A natural number `t` is invertible in a field `K` of charactistic `p` if `p` does not divide `t`. -/ def invertible_of_char_p_not_dvd {K : Type*} [field K] {p : ℕ} [char_p K p] {t : ℕ} (not_dvd : ¬(p ∣ t)) : invertible (t : K) := invertible_of_nonzero (λ h, not_dvd ((char_p.cast_eq_zero_iff K p t).mp h)) instance invertible_of_pos {K : Type*} [field K] [char_zero K] (n : ℕ) [h : fact (0 < n)] : invertible (n : K) := invertible_of_nonzero $ by simpa [nat.pos_iff_ne_zero] using h end char_p section division_ring variable [division_ring α] instance invertible_succ [char_zero α] (n : ℕ) : invertible (n.succ : α) := invertible_of_nonzero (nat.cast_ne_zero.mpr (nat.succ_ne_zero _)) /-! A few `invertible n` instances for small numerals `n`. Feel free to add your own number when you need its inverse. -/ instance invertible_two [char_zero α] : invertible (2 : α) := invertible_of_nonzero (by exact_mod_cast (dec_trivial : 2 ≠ 0)) instance invertible_three [char_zero α] : invertible (3 : α) := invertible_of_nonzero (by exact_mod_cast (dec_trivial : 3 ≠ 0)) end division_ring
3dd99a06cc05826e6afaf7cca187dc51539bd99a
159fed64bfae88f3b6a6166836d6278f953bcbf9
/Structure/Generic/Instances/Categories.lean
6d4040066755677afdd081cd35d6967ebc1b6eba
[ "MIT" ]
permissive
SReichelt/lean4-experiments
3e56830c8b2fbe3814eda071c48e3c8810d254a8
ff55357a01a34a91bf670d712637480089085ee4
refs/heads/main
1,683,977,454,907
1,622,991,121,000
1,622,991,121,000
340,765,677
2
0
null
null
null
null
UTF-8
Lean
false
false
5,211
lean
#exit import Structure.Generic.Axioms import Structure.Generic.Instances.Basic import Structure.Generic.Instances.Bundled import Structure.Generic.Functors open GeneralizedRelation set_option autoBoundImplicitLocal false set_option pp.universes true universes u u' v v' w w' section BundledCategories variable (M : Universe.{v}) [HasInternalFunctors M] [HasInstanceArrows.{v, w} M] namespace IsCategory @[reducible] def Category := Bundled (IsCategory.{(max u v w) + 1} M) @[reducible] def category : Universe.{(max u v w) + 1} := simpleBundledUniverse.{max u v w} (IsCategory.{(max u v w) + 1} M) instance (S : category.{u} M) : IsCategory M ⌈S⌉ := simpleBundledInstance.{max u v w} (IsCategory.{(max u v w) + 1} M) S end IsCategory namespace IsGroupoid @[reducible] def Groupoid := Bundled (IsGroupoid.{(max u v w) + 1} M) @[reducible] def groupoid : Universe.{(max u v w) + 1} := simpleBundledUniverse.{max u v w} (IsGroupoid.{(max u v w) + 1} M) instance (S : groupoid.{u} M) : IsGroupoid M ⌈S⌉ := simpleBundledInstance.{max u v w} (IsGroupoid.{(max u v w) + 1} M) S end IsGroupoid end BundledCategories section ExternalFunctors variable (M : Universe.{v}) [HasInternalFunctors M] [HasInstanceArrows.{v, w} M] (N : Universe.{v'}) [HasInternalFunctors N] [HasInstanceArrows.{v', w'} N] [HasExternalFunctors M N] namespace IsCategory instance hasFunctoriality : Bundled.HasFunctoriality.{max u v w, max u' v' w'} (IsCategory M) (IsCategory N) := ⟨λ {S T} => IsArrowFunctor.{(max u' v' w') + 1} M N (hα := S.inst.toHasArrows) (hβ := T.inst.toHasArrows)⟩ instance hasExternalFunctors : HasExternalFunctors (category.{u} M) (category.{u'} N) := Bundled.hasExternalFunctors.{max u v w, max u' v' w'} (IsCategory M) (IsCategory N) (h := hasFunctoriality.{u, u'} M N) instance {S : category.{u} M} {T : category.{u'} N} (F : S ⟶' T) : IsArrowFunctor M N F.f := F.isFun end IsCategory namespace IsGroupoid instance hasFunctoriality : Bundled.HasFunctoriality.{max u v w, max u' v' w'} (IsGroupoid M) (IsGroupoid N) := ⟨λ {S T} => IsEquivFunctor.{(max u' v' w') + 1} M N (hα := S.inst.toHasEquivalences) (hβ := T.inst.toHasEquivalences)⟩ instance hasExternalFunctors : HasExternalFunctors (groupoid.{u} M) (groupoid.{u'} N) := Bundled.hasExternalFunctors.{max u v w, max u' v' w'} (IsGroupoid M) (IsGroupoid N) (h := hasFunctoriality.{u, u'} M N) instance {S : groupoid.{u} M} {T : groupoid.{u'} N} (F : S ⟶' T) : IsEquivFunctor M N F.f := F.isFun end IsGroupoid end ExternalFunctors section InternalFunctors variable (M : Universe.{v}) [HasInternalFunctors M] [HasInstanceEquivalences.{v, w} M] [hNat : HasNaturalQuantification typeUniverse.{max u v w} typeUniverse.{max u v w} M M] namespace IsCategory -- TODO end IsCategory namespace IsGroupoid def Equiv {S T : groupoid.{u} M} (F G : S ⟶' T) := NaturalEquivalence M M F.f G.f def EquivRel (S T : groupoid.{u} M) : GeneralizedRelation (S ⟶' T) M := λ F G => (hNat.hasNat S.inst.Equiv T.inst.Equiv (h := T.inst.isEquiv.toHasTrans) (mF := HasInternalFunctors.toBundled F.f) (mG := HasInternalFunctors.toBundled G.f) F.isFun.mapEquiv G.isFun.mapEquiv).Nat (h := T.inst.isEquiv.toHasTrans) instance functorGroupoid (S T : groupoid.{u} M) : IsGroupoid.{(max u v w) + 1} M (S ⟶' T) := { Equiv := EquivRel M S T, isEquiv := sorry, isIso := sorry } -- TODO: Check if we can remove the "'" after filling the sorries. instance hasFunctorInstances : Bundled.HasFunctorInstances'.{max u v w} (IsGroupoid M) (h := hasFunctoriality.{u, u} M M) := ⟨functorGroupoid.{u} M⟩ instance hasInternalFunctors : HasInternalFunctors (groupoid.{u} M) := Bundled.hasInternalFunctors'.{max u v w} (IsGroupoid M) (h := hasFunctoriality.{u, u} M M) end IsGroupoid end InternalFunctors section ExternalFunctorOperations section idFun variable (M : Universe.{v}) [HasInternalFunctors M] [HasInstanceArrows.{v, w} M] [HasIdFun M] instance IsCategory.hasIdFun : HasIdFun (category.{u} M) := ⟨λ _ => idFun.isArrowFunctor M⟩ instance IsGroupoid.hasIdFun : HasIdFun (groupoid.{u} M) := ⟨λ _ => idFun.isEquivFunctor M⟩ end idFun -- TODO: constFun, compFun end ExternalFunctorOperations -- TODO: Show that: -- * the universes of categories and groupoids have nice properties -- (-> bundled functors -> natural transformation as equivalence -> internal functors, also instance arrows/equivalences), and -- * universes with certain properties are actually categories/groupoids -- (-> category of categories, groupoid of groupoids). -- TODO: At some point, we will add the assumption that the `Equiv` relation of a universe has isomorphisms. -- So all instances are groupoids. How does that fit into this scheme?
0b15bd8c48b2dc6fd67924ce4659c1e7fbb572c7
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/src/data/real/ennreal.lean
9c26fc425b833aeb7a6dcdb25e8f0c02763095c1
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
66,892
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Yury Kudryashov -/ import data.real.nnreal import data.set.intervals /-! # Extended non-negative reals We define `ennreal = ℝ≥0∞ := with_no ℝ≥0` to be the type of extended nonnegative real numbers, i.e., the interval `[0, +∞]`. This type is used as the codomain of a `measure_theory.measure`, and of the extended distance `edist` in a `emetric_space`. In this file we define some algebraic operations and a linear order on `ℝ≥0∞` and prove basic properties of these operations, order, and conversions to/from `ℝ`, `ℝ≥0`, and `ℕ`. ## Main definitions * `ℝ≥0∞`: the extended nonnegative real numbers `[0, ∞]`; defined as `with_top ℝ≥0`; it is equipped with the following structures: - coercion from `ℝ≥0` defined in the natural way; - the natural structure of a complete dense linear order: `↑p ≤ ↑q ↔ p ≤ q` and `∀ a, a ≤ ∞`; - `a + b` is defined so that `↑p + ↑q = ↑(p + q)` for `(p q : ℝ≥0)` and `a + ∞ = ∞ + a = ∞`; - `a * b` is defined so that `↑p * ↑q = ↑(p * q)` for `(p q : ℝ≥0)`, `0 * ∞ = ∞ * 0 = 0`, and `a * ∞ = ∞ * a = ∞` for `a ≠ 0`; - `a - b` is defined as the minimal `d` such that `a ≤ d + b`; this way we have `↑p - ↑q = ↑(p - q)`, `∞ - ↑p = ∞`, `↑p - ∞ = ∞ - ∞ = 0`; note that there is no negation, only subtraction; - `a⁻¹` is defined as `Inf {b | 1 ≤ a * b}`. This way we have `(↑p)⁻¹ = ↑(p⁻¹)` for `p : ℝ≥0`, `p ≠ 0`, `0⁻¹ = ∞`, and `∞⁻¹ = 0`. - `a / b` is defined as `a * b⁻¹`. The addition and multiplication defined this way together with `0 = ↑0` and `1 = ↑1` turn `ℝ≥0∞` into a canonically ordered commutative semiring of characteristic zero. * Coercions to/from other types: - coercion `ℝ≥0 → ℝ≥0∞` is defined as `has_coe`, so one can use `(p : ℝ≥0)` in a context that expects `a : ℝ≥0∞`, and Lean will apply `coe` automatically; - `ennreal.to_nnreal` sends `↑p` to `p` and `∞` to `0`; - `ennreal.to_real := coe ∘ ennreal.to_nnreal` sends `↑p`, `p : ℝ≥0` to `(↑p : ℝ)` and `∞` to `0`; - `ennreal.of_real := coe ∘ real.to_nnreal` sends `x : ℝ` to `↑⟨max x 0, _⟩` - `ennreal.ne_top_equiv_nnreal` is an equivalence between `{a : ℝ≥0∞ // a ≠ 0}` and `ℝ≥0`. ## Implementation notes We define a `can_lift ℝ≥0∞ ℝ≥0` instance, so one of the ways to prove theorems about an `ℝ≥0∞` number `a` is to consider the cases `a = ∞` and `a ≠ ∞`, and use the tactic `lift a to ℝ≥0 using ha` in the second case. This instance is even more useful if one already has `ha : a ≠ ∞` in the context, or if we have `(f : α → ℝ≥0∞) (hf : ∀ x, f x ≠ ∞)`. ## Notations * `ℝ≥0∞`: the type of the extended nonnegative real numbers; * `ℝ≥0`: the type of nonnegative real numbers `[0, ∞)`; defined in `data.real.nnreal`; * `∞`: a localized notation in `ℝ≥0∞` for `⊤ : ℝ≥0∞`. -/ noncomputable theory open classical set open_locale classical big_operators nnreal variables {α : Type*} {β : Type*} /-- The extended nonnegative real numbers. This is usually denoted [0, ∞], and is relevant as the codomain of a measure. -/ @[derive canonically_ordered_comm_semiring, derive complete_linear_order, derive densely_ordered, derive nontrivial] def ennreal := with_top ℝ≥0 localized "notation `ℝ≥0∞` := ennreal" in ennreal localized "notation `∞` := (⊤ : ennreal)" in ennreal instance : linear_ordered_add_comm_monoid ℝ≥0∞ := { .. ennreal.canonically_ordered_comm_semiring, .. ennreal.complete_linear_order } namespace ennreal variables {a b c d : ℝ≥0∞} {r p q : ℝ≥0} instance : inhabited ℝ≥0∞ := ⟨0⟩ instance : has_coe ℝ≥0 ℝ≥0∞ := ⟨ option.some ⟩ instance : can_lift ℝ≥0∞ ℝ≥0 := { coe := coe, cond := λ r, r ≠ ∞, prf := λ x hx, ⟨option.get $ option.ne_none_iff_is_some.1 hx, option.some_get _⟩ } @[simp] lemma none_eq_top : (none : ℝ≥0∞) = ∞ := rfl @[simp] lemma some_eq_coe (a : ℝ≥0) : (some a : ℝ≥0∞) = (↑a : ℝ≥0∞) := rfl /-- `to_nnreal x` returns `x` if it is real, otherwise 0. -/ protected def to_nnreal : ℝ≥0∞ → ℝ≥0 | (some r) := r | none := 0 /-- `to_real x` returns `x` if it is real, `0` otherwise. -/ protected def to_real (a : ℝ≥0∞) : real := coe (a.to_nnreal) /-- `of_real x` returns `x` if it is nonnegative, `0` otherwise. -/ protected def of_real (r : real) : ℝ≥0∞ := coe (real.to_nnreal r) @[simp, norm_cast] lemma to_nnreal_coe : (r : ℝ≥0∞).to_nnreal = r := rfl @[simp] lemma coe_to_nnreal : ∀{a:ℝ≥0∞}, a ≠ ∞ → ↑(a.to_nnreal) = a | (some r) h := rfl | none h := (h rfl).elim @[simp] lemma of_real_to_real {a : ℝ≥0∞} (h : a ≠ ∞) : ennreal.of_real (a.to_real) = a := by simp [ennreal.to_real, ennreal.of_real, h] @[simp] lemma to_real_of_real {r : ℝ} (h : 0 ≤ r) : ennreal.to_real (ennreal.of_real r) = r := by simp [ennreal.to_real, ennreal.of_real, real.coe_to_nnreal _ h] lemma to_real_of_real' {r : ℝ} : ennreal.to_real (ennreal.of_real r) = max r 0 := rfl lemma coe_to_nnreal_le_self : ∀{a:ℝ≥0∞}, ↑(a.to_nnreal) ≤ a | (some r) := by rw [some_eq_coe, to_nnreal_coe]; exact le_refl _ | none := le_top lemma coe_nnreal_eq (r : ℝ≥0) : (r : ℝ≥0∞) = ennreal.of_real r := by { rw [ennreal.of_real, real.to_nnreal], cases r with r h, congr, dsimp, rw max_eq_left h } lemma of_real_eq_coe_nnreal {x : ℝ} (h : 0 ≤ x) : ennreal.of_real x = @coe ℝ≥0 ℝ≥0∞ _ (⟨x, h⟩ : ℝ≥0) := by { rw [coe_nnreal_eq], refl } @[simp] lemma of_real_coe_nnreal : ennreal.of_real p = p := (coe_nnreal_eq p).symm @[simp, norm_cast] lemma coe_zero : ↑(0 : ℝ≥0) = (0 : ℝ≥0∞) := rfl @[simp, norm_cast] lemma coe_one : ↑(1 : ℝ≥0) = (1 : ℝ≥0∞) := rfl @[simp] lemma to_real_nonneg {a : ℝ≥0∞} : 0 ≤ a.to_real := by simp [ennreal.to_real] @[simp] lemma top_to_nnreal : ∞.to_nnreal = 0 := rfl @[simp] lemma top_to_real : ∞.to_real = 0 := rfl @[simp] lemma one_to_real : (1 : ℝ≥0∞).to_real = 1 := rfl @[simp] lemma one_to_nnreal : (1 : ℝ≥0∞).to_nnreal = 1 := rfl @[simp] lemma coe_to_real (r : ℝ≥0) : (r : ℝ≥0∞).to_real = r := rfl @[simp] lemma zero_to_nnreal : (0 : ℝ≥0∞).to_nnreal = 0 := rfl @[simp] lemma zero_to_real : (0 : ℝ≥0∞).to_real = 0 := rfl @[simp] lemma of_real_zero : ennreal.of_real (0 : ℝ) = 0 := by simp [ennreal.of_real]; refl @[simp] lemma of_real_one : ennreal.of_real (1 : ℝ) = (1 : ℝ≥0∞) := by simp [ennreal.of_real] lemma of_real_to_real_le {a : ℝ≥0∞} : ennreal.of_real (a.to_real) ≤ a := if ha : a = ∞ then ha.symm ▸ le_top else le_of_eq (of_real_to_real ha) lemma forall_ennreal {p : ℝ≥0∞ → Prop} : (∀a, p a) ↔ (∀r:ℝ≥0, p r) ∧ p ∞ := ⟨assume h, ⟨assume r, h _, h _⟩, assume ⟨h₁, h₂⟩ a, match a with some r := h₁ _ | none := h₂ end⟩ lemma forall_ne_top {p : ℝ≥0∞ → Prop} : (∀ a ≠ ∞, p a) ↔ ∀ r : ℝ≥0, p r := option.ball_ne_none lemma exists_ne_top {p : ℝ≥0∞ → Prop} : (∃ a ≠ ∞, p a) ↔ ∃ r : ℝ≥0, p r := option.bex_ne_none lemma to_nnreal_eq_zero_iff (x : ℝ≥0∞) : x.to_nnreal = 0 ↔ x = 0 ∨ x = ∞ := ⟨begin cases x, { simp [none_eq_top] }, { have A : some (0:ℝ≥0) = (0:ℝ≥0∞) := rfl, simp [ennreal.to_nnreal, A] {contextual := tt} } end, by intro h; cases h; simp [h]⟩ lemma to_real_eq_zero_iff (x : ℝ≥0∞) : x.to_real = 0 ↔ x = 0 ∨ x = ∞ := by simp [ennreal.to_real, to_nnreal_eq_zero_iff] @[simp] lemma coe_ne_top : (r : ℝ≥0∞) ≠ ∞ := with_top.coe_ne_top @[simp] lemma top_ne_coe : ∞ ≠ (r : ℝ≥0∞) := with_top.top_ne_coe @[simp] lemma of_real_ne_top {r : ℝ} : ennreal.of_real r ≠ ∞ := by simp [ennreal.of_real] @[simp] lemma of_real_lt_top {r : ℝ} : ennreal.of_real r < ∞ := lt_top_iff_ne_top.2 of_real_ne_top @[simp] lemma top_ne_of_real {r : ℝ} : ∞ ≠ ennreal.of_real r := by simp [ennreal.of_real] @[simp] lemma zero_ne_top : 0 ≠ ∞ := coe_ne_top @[simp] lemma top_ne_zero : ∞ ≠ 0 := top_ne_coe @[simp] lemma one_ne_top : 1 ≠ ∞ := coe_ne_top @[simp] lemma top_ne_one : ∞ ≠ 1 := top_ne_coe @[simp, norm_cast] lemma coe_eq_coe : (↑r : ℝ≥0∞) = ↑q ↔ r = q := with_top.coe_eq_coe @[simp, norm_cast] lemma coe_le_coe : (↑r : ℝ≥0∞) ≤ ↑q ↔ r ≤ q := with_top.coe_le_coe @[simp, norm_cast] lemma coe_lt_coe : (↑r : ℝ≥0∞) < ↑q ↔ r < q := with_top.coe_lt_coe lemma coe_mono : monotone (coe : ℝ≥0 → ℝ≥0∞) := λ _ _, coe_le_coe.2 @[simp, norm_cast] lemma coe_eq_zero : (↑r : ℝ≥0∞) = 0 ↔ r = 0 := coe_eq_coe @[simp, norm_cast] lemma zero_eq_coe : 0 = (↑r : ℝ≥0∞) ↔ 0 = r := coe_eq_coe @[simp, norm_cast] lemma coe_eq_one : (↑r : ℝ≥0∞) = 1 ↔ r = 1 := coe_eq_coe @[simp, norm_cast] lemma one_eq_coe : 1 = (↑r : ℝ≥0∞) ↔ 1 = r := coe_eq_coe @[simp, norm_cast] lemma coe_nonneg : 0 ≤ (↑r : ℝ≥0∞) ↔ 0 ≤ r := coe_le_coe @[simp, norm_cast] lemma coe_pos : 0 < (↑r : ℝ≥0∞) ↔ 0 < r := coe_lt_coe @[simp, norm_cast] lemma coe_add : ↑(r + p) = (r + p : ℝ≥0∞) := with_top.coe_add @[simp, norm_cast] lemma coe_mul : ↑(r * p) = (r * p : ℝ≥0∞) := with_top.coe_mul @[simp, norm_cast] lemma coe_bit0 : (↑(bit0 r) : ℝ≥0∞) = bit0 r := coe_add @[simp, norm_cast] lemma coe_bit1 : (↑(bit1 r) : ℝ≥0∞) = bit1 r := by simp [bit1] lemma coe_two : ((2:ℝ≥0) : ℝ≥0∞) = 2 := by norm_cast protected lemma zero_lt_one : 0 < (1 : ℝ≥0∞) := canonically_ordered_comm_semiring.zero_lt_one @[simp] lemma one_lt_two : (1 : ℝ≥0∞) < 2 := coe_one ▸ coe_two ▸ by exact_mod_cast (@one_lt_two ℕ _ _) @[simp] lemma zero_lt_two : (0:ℝ≥0∞) < 2 := lt_trans ennreal.zero_lt_one one_lt_two lemma two_ne_zero : (2:ℝ≥0∞) ≠ 0 := (ne_of_lt zero_lt_two).symm lemma two_ne_top : (2:ℝ≥0∞) ≠ ∞ := coe_two ▸ coe_ne_top /-- The set of numbers in `ℝ≥0∞` that are not equal to `∞` is equivalent to `ℝ≥0`. -/ def ne_top_equiv_nnreal : {a | a ≠ ∞} ≃ ℝ≥0 := { to_fun := λ x, ennreal.to_nnreal x, inv_fun := λ x, ⟨x, coe_ne_top⟩, left_inv := λ ⟨x, hx⟩, subtype.eq $ coe_to_nnreal hx, right_inv := λ x, to_nnreal_coe } lemma cinfi_ne_top [has_Inf α] (f : ℝ≥0∞ → α) : (⨅ x : {x // x ≠ ∞}, f x) = ⨅ x : ℝ≥0, f x := eq.symm $ infi_congr _ ne_top_equiv_nnreal.symm.surjective $ λ x, rfl lemma infi_ne_top [complete_lattice α] (f : ℝ≥0∞ → α) : (⨅ x ≠ ∞, f x) = ⨅ x : ℝ≥0, f x := by rw [infi_subtype', cinfi_ne_top] lemma csupr_ne_top [has_Sup α] (f : ℝ≥0∞ → α) : (⨆ x : {x // x ≠ ∞}, f x) = ⨆ x : ℝ≥0, f x := @cinfi_ne_top (order_dual α) _ _ lemma supr_ne_top [complete_lattice α] (f : ℝ≥0∞ → α) : (⨆ x ≠ ∞, f x) = ⨆ x : ℝ≥0, f x := @infi_ne_top (order_dual α) _ _ lemma infi_ennreal {α : Type*} [complete_lattice α] {f : ℝ≥0∞ → α} : (⨅ n, f n) = (⨅ n : ℝ≥0, f n) ⊓ f ∞ := le_antisymm (le_inf (le_infi $ assume i, infi_le _ _) (infi_le _ _)) (le_infi $ forall_ennreal.2 ⟨λ r, inf_le_of_left_le $ infi_le _ _, inf_le_right⟩) lemma supr_ennreal {α : Type*} [complete_lattice α] {f : ℝ≥0∞ → α} : (⨆ n, f n) = (⨆ n : ℝ≥0, f n) ⊔ f ∞ := @infi_ennreal (order_dual α) _ _ @[simp] lemma add_top : a + ∞ = ∞ := with_top.add_top @[simp] lemma top_add : ∞ + a = ∞ := with_top.top_add /-- Coercion `ℝ≥0 → ℝ≥0∞` as a `ring_hom`. -/ def of_nnreal_hom : ℝ≥0 →+* ℝ≥0∞ := ⟨coe, coe_one, λ _ _, coe_mul, coe_zero, λ _ _, coe_add⟩ @[simp] lemma coe_of_nnreal_hom : ⇑of_nnreal_hom = coe := rfl section actions /-- A `mul_action` over `ℝ≥0∞` restricts to a `mul_action` over `ℝ≥0`. -/ instance {M : Type*} [mul_action ℝ≥0∞ M] : mul_action ℝ≥0 M := mul_action.comp_hom M of_nnreal_hom.to_monoid_hom lemma smul_def {M : Type*} [mul_action ℝ≥0∞ M] (c : ℝ≥0) (x : M) : c • x = (c : ℝ≥0∞) • x := rfl instance {M N : Type*} [mul_action ℝ≥0∞ M] [mul_action ℝ≥0∞ N] [has_scalar M N] [is_scalar_tower ℝ≥0∞ M N] : is_scalar_tower ℝ≥0 M N := { smul_assoc := λ r, (smul_assoc (r : ℝ≥0∞) : _)} instance smul_comm_class_left {M N : Type*} [mul_action ℝ≥0∞ N] [has_scalar M N] [smul_comm_class ℝ≥0∞ M N] : smul_comm_class ℝ≥0 M N := { smul_comm := λ r, (smul_comm (r : ℝ≥0∞) : _)} instance smul_comm_class_right {M N : Type*} [mul_action ℝ≥0∞ N] [has_scalar M N] [smul_comm_class M ℝ≥0∞ N] : smul_comm_class M ℝ≥0 N := { smul_comm := λ m r, (smul_comm m (r : ℝ≥0∞) : _)} /-- A `distrib_mul_action` over `ℝ≥0∞` restricts to a `distrib_mul_action` over `ℝ≥0`. -/ instance {M : Type*} [add_monoid M] [distrib_mul_action ℝ≥0∞ M] : distrib_mul_action ℝ≥0 M := distrib_mul_action.comp_hom M of_nnreal_hom.to_monoid_hom /-- A `module` over `ℝ≥0∞` restricts to a `module` over `ℝ≥0`. -/ instance {M : Type*} [add_comm_monoid M] [module ℝ≥0∞ M] : module ℝ≥0 M := module.comp_hom M of_nnreal_hom /-- An `algebra` over `ℝ≥0∞` restricts to an `algebra` over `ℝ≥0`. -/ instance {A : Type*} [semiring A] [algebra ℝ≥0∞ A] : algebra ℝ≥0 A := { smul := (•), commutes' := λ r x, by simp [algebra.commutes], smul_def' := λ r x, by simp [←algebra.smul_def (r : ℝ≥0∞) x, smul_def], to_ring_hom := ((algebra_map ℝ≥0∞ A).comp (of_nnreal_hom : ℝ≥0 →+* ℝ≥0∞)) } -- verify that the above produces instances we might care about example : algebra ℝ≥0 ℝ≥0∞ := by apply_instance example : distrib_mul_action (units ℝ≥0) ℝ≥0∞ := by apply_instance lemma coe_smul {R} [monoid R] (r : R) (s : ℝ≥0) [mul_action R ℝ≥0] [has_scalar R ℝ≥0∞] [is_scalar_tower R ℝ≥0 ℝ≥0] [is_scalar_tower R ℝ≥0 ℝ≥0∞] : (↑(r • s) : ℝ≥0∞) = r • ↑s := begin rw ←smul_one_smul ℝ≥0 r (s: ℝ≥0∞), change ↑(r • s) = ↑(r • (1 : ℝ≥0)) * ↑s, rw [←ennreal.coe_mul, smul_mul_assoc, one_mul], end end actions @[simp, norm_cast] lemma coe_indicator {α} (s : set α) (f : α → ℝ≥0) (a : α) : ((s.indicator f a : ℝ≥0) : ℝ≥0∞) = s.indicator (λ x, f x) a := (of_nnreal_hom : ℝ≥0 →+ ℝ≥0∞).map_indicator _ _ _ @[simp, norm_cast] lemma coe_pow (n : ℕ) : (↑(r^n) : ℝ≥0∞) = r^n := of_nnreal_hom.map_pow r n @[simp] lemma add_eq_top : a + b = ∞ ↔ a = ∞ ∨ b = ∞ := with_top.add_eq_top @[simp] lemma add_lt_top : a + b < ∞ ↔ a < ∞ ∧ b < ∞ := with_top.add_lt_top lemma to_nnreal_add {r₁ r₂ : ℝ≥0∞} (h₁ : r₁ < ∞) (h₂ : r₂ < ∞) : (r₁ + r₂).to_nnreal = r₁.to_nnreal + r₂.to_nnreal := begin rw [← coe_eq_coe, coe_add, coe_to_nnreal, coe_to_nnreal, coe_to_nnreal]; apply @ne_top_of_lt ℝ≥0∞ _ _ ∞, exact h₂, exact h₁, exact add_lt_top.2 ⟨h₁, h₂⟩ end /- rw has trouble with the generic lt_top_iff_ne_top and bot_lt_iff_ne_bot (contrary to erw). This is solved with the next lemmas -/ protected lemma lt_top_iff_ne_top : a < ∞ ↔ a ≠ ∞ := lt_top_iff_ne_top protected lemma bot_lt_iff_ne_bot : 0 < a ↔ a ≠ 0 := bot_lt_iff_ne_bot lemma not_lt_top {x : ℝ≥0∞} : ¬ x < ∞ ↔ x = ∞ := by rw [lt_top_iff_ne_top, not_not] lemma add_ne_top : a + b ≠ ∞ ↔ a ≠ ∞ ∧ b ≠ ∞ := by simpa only [lt_top_iff_ne_top] using add_lt_top lemma mul_top : a * ∞ = (if a = 0 then 0 else ∞) := begin split_ifs, { simp [h] }, { exact with_top.mul_top h } end lemma top_mul : ∞ * a = (if a = 0 then 0 else ∞) := begin split_ifs, { simp [h] }, { exact with_top.top_mul h } end @[simp] lemma top_mul_top : ∞ * ∞ = ∞ := with_top.top_mul_top lemma top_pow {n:ℕ} (h : 0 < n) : ∞^n = ∞ := nat.le_induction (pow_one _) (λ m hm hm', by rw [pow_succ, hm', top_mul_top]) _ (nat.succ_le_of_lt h) lemma mul_eq_top : a * b = ∞ ↔ (a ≠ 0 ∧ b = ∞) ∨ (a = ∞ ∧ b ≠ 0) := with_top.mul_eq_top_iff lemma mul_lt_top : a < ∞ → b < ∞ → a * b < ∞ := with_top.mul_lt_top lemma mul_ne_top : a ≠ ∞ → b ≠ ∞ → a * b ≠ ∞ := by simpa only [lt_top_iff_ne_top] using mul_lt_top lemma ne_top_of_mul_ne_top_left (h : a * b ≠ ∞) (hb : b ≠ 0) : a ≠ ∞ := by { simp [mul_eq_top, hb, not_or_distrib] at h ⊢, exact h.2 } lemma ne_top_of_mul_ne_top_right (h : a * b ≠ ∞) (ha : a ≠ 0) : b ≠ ∞ := ne_top_of_mul_ne_top_left (by rwa [mul_comm]) ha lemma lt_top_of_mul_lt_top_left (h : a * b < ∞) (hb : b ≠ 0) : a < ∞ := by { rw [ennreal.lt_top_iff_ne_top] at h ⊢, exact ne_top_of_mul_ne_top_left h hb } lemma lt_top_of_mul_lt_top_right (h : a * b < ∞) (ha : a ≠ 0) : b < ∞ := lt_top_of_mul_lt_top_left (by rwa [mul_comm]) ha lemma mul_lt_top_iff {a b : ℝ≥0∞} : a * b < ∞ ↔ (a < ∞ ∧ b < ∞) ∨ a = 0 ∨ b = 0 := begin split, { intro h, rw [← or_assoc, or_iff_not_imp_right, or_iff_not_imp_right], intros hb ha, exact ⟨lt_top_of_mul_lt_top_left h hb, lt_top_of_mul_lt_top_right h ha⟩ }, { rintro (⟨ha, hb⟩|rfl|rfl); [exact mul_lt_top ha hb, simp, simp] } end lemma mul_self_lt_top_iff {a : ℝ≥0∞} : a * a < ⊤ ↔ a < ⊤ := by { rw [ennreal.mul_lt_top_iff, and_self, or_self, or_iff_left_iff_imp], rintro rfl, norm_num } @[simp] lemma mul_pos : 0 < a * b ↔ 0 < a ∧ 0 < b := by simp only [pos_iff_ne_zero, ne.def, mul_eq_zero, not_or_distrib] lemma pow_eq_top : ∀ n:ℕ, a^n=∞ → a=∞ | 0 := by simp | (n+1) := λ o, by { rw pow_succ at o, exact (mul_eq_top.1 o).elim (λ h, pow_eq_top n h.2) and.left } lemma pow_ne_top (h : a ≠ ∞) {n:ℕ} : a^n ≠ ∞ := mt (pow_eq_top n) h lemma pow_lt_top : a < ∞ → ∀ n:ℕ, a^n < ∞ := by simpa only [lt_top_iff_ne_top] using pow_ne_top @[simp, norm_cast] lemma coe_finset_sum {s : finset α} {f : α → ℝ≥0} : ↑(∑ a in s, f a) = (∑ a in s, f a : ℝ≥0∞) := of_nnreal_hom.map_sum f s @[simp, norm_cast] lemma coe_finset_prod {s : finset α} {f : α → ℝ≥0} : ↑(∏ a in s, f a) = ((∏ a in s, f a) : ℝ≥0∞) := of_nnreal_hom.map_prod f s section order @[simp] lemma bot_eq_zero : (⊥ : ℝ≥0∞) = 0 := rfl @[simp] lemma coe_lt_top : coe r < ∞ := with_top.coe_lt_top r @[simp] lemma not_top_le_coe : ¬ ∞ ≤ ↑r := with_top.not_top_le_coe r lemma zero_lt_coe_iff : 0 < (↑p : ℝ≥0∞) ↔ 0 < p := coe_lt_coe @[simp, norm_cast] lemma one_le_coe_iff : (1:ℝ≥0∞) ≤ ↑r ↔ 1 ≤ r := coe_le_coe @[simp, norm_cast] lemma coe_le_one_iff : ↑r ≤ (1:ℝ≥0∞) ↔ r ≤ 1 := coe_le_coe @[simp, norm_cast] lemma coe_lt_one_iff : (↑p : ℝ≥0∞) < 1 ↔ p < 1 := coe_lt_coe @[simp, norm_cast] lemma one_lt_coe_iff : 1 < (↑p : ℝ≥0∞) ↔ 1 < p := coe_lt_coe @[simp, norm_cast] lemma coe_nat (n : ℕ) : ((n : ℝ≥0) : ℝ≥0∞) = n := with_top.coe_nat n @[simp] lemma of_real_coe_nat (n : ℕ) : ennreal.of_real n = n := by simp [ennreal.of_real] @[simp] lemma nat_ne_top (n : ℕ) : (n : ℝ≥0∞) ≠ ∞ := with_top.nat_ne_top n @[simp] lemma top_ne_nat (n : ℕ) : ∞ ≠ n := with_top.top_ne_nat n @[simp] lemma one_lt_top : 1 < ∞ := coe_lt_top lemma le_coe_iff : a ≤ ↑r ↔ (∃p:ℝ≥0, a = p ∧ p ≤ r) := with_top.le_coe_iff lemma coe_le_iff : ↑r ≤ a ↔ (∀p:ℝ≥0, a = p → r ≤ p) := with_top.coe_le_iff lemma lt_iff_exists_coe : a < b ↔ (∃p:ℝ≥0, a = p ∧ ↑p < b) := with_top.lt_iff_exists_coe lemma to_real_le_coe_of_le_coe {a : ℝ≥0∞} {b : ℝ≥0} (h : a ≤ b) : a.to_real ≤ b := show ↑a.to_nnreal ≤ ↑b, begin have : ↑a.to_nnreal = a := ennreal.coe_to_nnreal (lt_of_le_of_lt h coe_lt_top).ne, rw ← this at h, exact_mod_cast h end @[simp, norm_cast] lemma coe_finset_sup {s : finset α} {f : α → ℝ≥0} : ↑(s.sup f) = s.sup (λ x, (f x : ℝ≥0∞)) := finset.comp_sup_eq_sup_comp_of_is_total _ coe_mono rfl lemma pow_le_pow {n m : ℕ} (ha : 1 ≤ a) (h : n ≤ m) : a ^ n ≤ a ^ m := begin cases a, { cases m, { rw eq_bot_iff.mpr h, exact le_refl _ }, { rw [none_eq_top, top_pow (nat.succ_pos m)], exact le_top } }, { rw [some_eq_coe, ← coe_pow, ← coe_pow, coe_le_coe], exact pow_le_pow (by simpa using ha) h } end @[simp] lemma max_eq_zero_iff : max a b = 0 ↔ a = 0 ∧ b = 0 := by simp only [nonpos_iff_eq_zero.symm, max_le_iff] @[simp] lemma max_zero_left : max 0 a = a := max_eq_right (zero_le a) @[simp] lemma max_zero_right : max a 0 = a := max_eq_left (zero_le a) -- TODO: why this is not a `rfl`? There is some hidden diamond here. @[simp] lemma sup_eq_max : a ⊔ b = max a b := eq_of_forall_ge_iff $ λ c, sup_le_iff.trans max_le_iff.symm protected lemma pow_pos : 0 < a → ∀ n : ℕ, 0 < a^n := canonically_ordered_comm_semiring.pow_pos protected lemma pow_ne_zero : a ≠ 0 → ∀ n : ℕ, a^n ≠ 0 := by simpa only [pos_iff_ne_zero] using ennreal.pow_pos @[simp] lemma not_lt_zero : ¬ a < 0 := by simp lemma add_lt_add_iff_left (ha : a ≠ ∞) : a + c < a + b ↔ c < b := with_top.add_lt_add_iff_left ha lemma add_lt_add_iff_right (ha : a ≠ ∞) : c + a < b + a ↔ c < b := with_top.add_lt_add_iff_right ha instance contravariant_class_add_lt : contravariant_class ℝ≥0∞ ℝ≥0∞ (+) (<) := with_top.contravariant_class_add_lt lemma lt_add_right (ha : a ≠ ∞) (hb : 0 < b) : a < a + b := by rwa [← add_lt_add_iff_left ha, add_zero] at hb lemma le_of_forall_pos_le_add : ∀{a b : ℝ≥0∞}, (∀ε:ℝ≥0, 0 < ε → b < ∞ → a ≤ b + ε) → a ≤ b | a none h := le_top | none (some a) h := have ∞ ≤ ↑a + ↑(1:ℝ≥0), from h 1 zero_lt_one coe_lt_top, by rw [← coe_add] at this; exact (not_top_le_coe this).elim | (some a) (some b) h := by simp only [none_eq_top, some_eq_coe, coe_add.symm, coe_le_coe, coe_lt_top, true_implies_iff] at *; exact nnreal.le_of_forall_pos_le_add h lemma lt_iff_exists_rat_btwn : a < b ↔ (∃q:ℚ, 0 ≤ q ∧ a < real.to_nnreal q ∧ (real.to_nnreal q:ℝ≥0∞) < b) := ⟨λ h, begin rcases lt_iff_exists_coe.1 h with ⟨p, rfl, _⟩, rcases exists_between h with ⟨c, pc, cb⟩, rcases lt_iff_exists_coe.1 cb with ⟨r, rfl, _⟩, rcases (nnreal.lt_iff_exists_rat_btwn _ _).1 (coe_lt_coe.1 pc) with ⟨q, hq0, pq, qr⟩, exact ⟨q, hq0, coe_lt_coe.2 pq, lt_trans (coe_lt_coe.2 qr) cb⟩ end, λ ⟨q, q0, qa, qb⟩, lt_trans qa qb⟩ lemma lt_iff_exists_real_btwn : a < b ↔ (∃r:ℝ, 0 ≤ r ∧ a < ennreal.of_real r ∧ (ennreal.of_real r:ℝ≥0∞) < b) := ⟨λ h, let ⟨q, q0, aq, qb⟩ := ennreal.lt_iff_exists_rat_btwn.1 h in ⟨q, rat.cast_nonneg.2 q0, aq, qb⟩, λ ⟨q, q0, qa, qb⟩, lt_trans qa qb⟩ lemma lt_iff_exists_nnreal_btwn : a < b ↔ (∃r:ℝ≥0, a < r ∧ (r : ℝ≥0∞) < b) := with_top.lt_iff_exists_coe_btwn lemma lt_iff_exists_add_pos_lt : a < b ↔ (∃ r : ℝ≥0, 0 < r ∧ a + r < b) := begin refine ⟨λ hab, _, λ ⟨r, rpos, hr⟩, lt_of_le_of_lt (le_self_add) hr⟩, cases a, { simpa using hab }, rcases lt_iff_exists_real_btwn.1 hab with ⟨c, c_nonneg, ac, cb⟩, let d : ℝ≥0 := ⟨c, c_nonneg⟩, have ad : a < d, { rw of_real_eq_coe_nnreal c_nonneg at ac, exact coe_lt_coe.1 ac }, refine ⟨d-a, nnreal.sub_pos.2 ad, _⟩, rw [some_eq_coe, ← coe_add], convert cb, have : real.to_nnreal c = d, by { rw [← nnreal.coe_eq, real.coe_to_nnreal _ c_nonneg], refl }, rw [add_comm, this], exact nnreal.sub_add_cancel_of_le (le_of_lt ad) end lemma coe_nat_lt_coe {n : ℕ} : (n : ℝ≥0∞) < r ↔ ↑n < r := ennreal.coe_nat n ▸ coe_lt_coe lemma coe_lt_coe_nat {n : ℕ} : (r : ℝ≥0∞) < n ↔ r < n := ennreal.coe_nat n ▸ coe_lt_coe @[simp, norm_cast] lemma coe_nat_lt_coe_nat {m n : ℕ} : (m : ℝ≥0∞) < n ↔ m < n := ennreal.coe_nat n ▸ coe_nat_lt_coe.trans nat.cast_lt lemma coe_nat_ne_top {n : ℕ} : (n : ℝ≥0∞) ≠ ∞ := ennreal.coe_nat n ▸ coe_ne_top lemma coe_nat_mono : strict_mono (coe : ℕ → ℝ≥0∞) := λ _ _, coe_nat_lt_coe_nat.2 @[simp, norm_cast] lemma coe_nat_le_coe_nat {m n : ℕ} : (m : ℝ≥0∞) ≤ n ↔ m ≤ n := coe_nat_mono.le_iff_le instance : char_zero ℝ≥0∞ := ⟨coe_nat_mono.injective⟩ protected lemma exists_nat_gt {r : ℝ≥0∞} (h : r ≠ ∞) : ∃n:ℕ, r < n := begin lift r to ℝ≥0 using h, rcases exists_nat_gt r with ⟨n, hn⟩, exact ⟨n, coe_lt_coe_nat.2 hn⟩, end lemma add_lt_add (ac : a < c) (bd : b < d) : a + b < c + d := begin lift a to ℝ≥0 using ne_top_of_lt ac, lift b to ℝ≥0 using ne_top_of_lt bd, cases c, { simp }, cases d, { simp }, simp only [← coe_add, some_eq_coe, coe_lt_coe] at *, exact add_lt_add ac bd end @[norm_cast] lemma coe_min : ((min r p:ℝ≥0):ℝ≥0∞) = min r p := coe_mono.map_min @[norm_cast] lemma coe_max : ((max r p:ℝ≥0):ℝ≥0∞) = max r p := coe_mono.map_max lemma le_of_top_imp_top_of_to_nnreal_le {a b : ℝ≥0∞} (h : a = ⊤ → b = ⊤) (h_nnreal : a ≠ ⊤ → b ≠ ⊤ → a.to_nnreal ≤ b.to_nnreal) : a ≤ b := begin by_cases ha : a = ⊤, { rw h ha, exact le_top, }, by_cases hb : b = ⊤, { rw hb, exact le_top, }, rw [←coe_to_nnreal hb, ←coe_to_nnreal ha, coe_le_coe], exact h_nnreal ha hb, end end order section complete_lattice lemma coe_Sup {s : set ℝ≥0} : bdd_above s → (↑(Sup s) : ℝ≥0∞) = (⨆a∈s, ↑a) := with_top.coe_Sup lemma coe_Inf {s : set ℝ≥0} : s.nonempty → (↑(Inf s) : ℝ≥0∞) = (⨅a∈s, ↑a) := with_top.coe_Inf @[simp] lemma top_mem_upper_bounds {s : set ℝ≥0∞} : ∞ ∈ upper_bounds s := assume x hx, le_top lemma coe_mem_upper_bounds {s : set ℝ≥0} : ↑r ∈ upper_bounds ((coe : ℝ≥0 → ℝ≥0∞) '' s) ↔ r ∈ upper_bounds s := by simp [upper_bounds, ball_image_iff, -mem_image, *] {contextual := tt} end complete_lattice section mul @[mono] lemma mul_le_mul : a ≤ b → c ≤ d → a * c ≤ b * d := mul_le_mul' @[mono] lemma mul_lt_mul (ac : a < c) (bd : b < d) : a * b < c * d := begin rcases lt_iff_exists_nnreal_btwn.1 ac with ⟨a', aa', a'c⟩, lift a to ℝ≥0 using ne_top_of_lt aa', rcases lt_iff_exists_nnreal_btwn.1 bd with ⟨b', bb', b'd⟩, lift b to ℝ≥0 using ne_top_of_lt bb', norm_cast at *, calc ↑(a * b) < ↑(a' * b') : coe_lt_coe.2 (mul_lt_mul' aa'.le bb' (zero_le _) ((zero_le a).trans_lt aa')) ... = ↑a' * ↑b' : coe_mul ... ≤ c * d : mul_le_mul a'c.le b'd.le end lemma mul_left_mono : monotone ((*) a) := λ b c, mul_le_mul (le_refl a) lemma mul_right_mono : monotone (λ x, x * a) := λ b c h, mul_le_mul h (le_refl a) lemma max_mul : max a b * c = max (a * c) (b * c) := mul_right_mono.map_max lemma mul_max : a * max b c = max (a * b) (a * c) := mul_left_mono.map_max lemma mul_eq_mul_left : a ≠ 0 → a ≠ ∞ → (a * b = a * c ↔ b = c) := begin cases a; cases b; cases c; simp [none_eq_top, some_eq_coe, mul_top, top_mul, -coe_mul, coe_mul.symm, nnreal.mul_eq_mul_left] {contextual := tt}, end lemma mul_eq_mul_right : c ≠ 0 → c ≠ ∞ → (a * c = b * c ↔ a = b) := mul_comm c a ▸ mul_comm c b ▸ mul_eq_mul_left lemma mul_le_mul_left : a ≠ 0 → a ≠ ∞ → (a * b ≤ a * c ↔ b ≤ c) := begin cases a; cases b; cases c; simp [none_eq_top, some_eq_coe, mul_top, top_mul, -coe_mul, coe_mul.symm] {contextual := tt}, assume h, exact mul_le_mul_left (pos_iff_ne_zero.2 h) end lemma mul_le_mul_right : c ≠ 0 → c ≠ ∞ → (a * c ≤ b * c ↔ a ≤ b) := mul_comm c a ▸ mul_comm c b ▸ mul_le_mul_left lemma mul_lt_mul_left : a ≠ 0 → a ≠ ∞ → (a * b < a * c ↔ b < c) := λ h0 ht, by simp only [mul_le_mul_left h0 ht, lt_iff_le_not_le] lemma mul_lt_mul_right : c ≠ 0 → c ≠ ∞ → (a * c < b * c ↔ a < b) := mul_comm c a ▸ mul_comm c b ▸ mul_lt_mul_left end mul section sub instance : has_sub ℝ≥0∞ := ⟨λa b, Inf {d | a ≤ d + b}⟩ @[norm_cast] lemma coe_sub : ↑(p - r) = (↑p:ℝ≥0∞) - r := le_antisymm (le_Inf $ assume b (hb : ↑p ≤ b + r), coe_le_iff.2 $ by rintros d rfl; rwa [← coe_add, coe_le_coe, ← nnreal.sub_le_iff_le_add] at hb) (Inf_le $ show (↑p : ℝ≥0∞) ≤ ↑(p - r) + ↑r, by rw [← coe_add, coe_le_coe, ← nnreal.sub_le_iff_le_add]) @[simp] lemma top_sub_coe : ∞ - ↑r = ∞ := top_unique $ le_Inf $ by simp [add_eq_top] @[simp] lemma sub_eq_zero_of_le (h : a ≤ b) : a - b = 0 := le_antisymm (Inf_le $ le_add_left h) (zero_le _) @[simp] lemma sub_self : a - a = 0 := sub_eq_zero_of_le $ le_refl _ @[simp] lemma zero_sub : 0 - a = 0 := le_antisymm (Inf_le $ zero_le $ 0 + a) (zero_le _) @[simp] lemma sub_top : a - ∞ = 0 := le_antisymm (Inf_le $ by simp) (zero_le _) lemma sub_le_sub (h₁ : a ≤ b) (h₂ : d ≤ c) : a - c ≤ b - d := Inf_le_Inf $ assume e (h : b ≤ e + d), calc a ≤ b : h₁ ... ≤ e + d : h ... ≤ e + c : add_le_add (le_refl _) h₂ @[simp] lemma add_sub_self : ∀{a b : ℝ≥0∞}, b < ∞ → (a + b) - b = a | a none := by simp [none_eq_top] | none (some b) := by simp [none_eq_top, some_eq_coe] | (some a) (some b) := by simp [some_eq_coe]; rw [← coe_add, ← coe_sub, coe_eq_coe, nnreal.add_sub_cancel] @[simp] lemma add_sub_self' (h : a < ∞) : (a + b) - a = b := by rw [add_comm, add_sub_self h] lemma add_right_inj (h : a < ∞) : a + b = a + c ↔ b = c := ⟨λ e, by simpa [h] using congr_arg (λ x, x - a) e, congr_arg _⟩ lemma add_left_inj (h : a < ∞) : b + a = c + a ↔ b = c := by rw [add_comm, add_comm c, add_right_inj h] @[simp] lemma sub_add_cancel_of_le : ∀{a b : ℝ≥0∞}, b ≤ a → (a - b) + b = a := begin simp [forall_ennreal, le_coe_iff, -add_comm] {contextual := tt}, rintros r p x rfl h, rw [← coe_sub, ← coe_add, nnreal.sub_add_cancel_of_le h] end @[simp] lemma add_sub_cancel_of_le (h : b ≤ a) : b + (a - b) = a := by rwa [add_comm, sub_add_cancel_of_le] lemma sub_add_self_eq_max : (a - b) + b = max a b := match le_total a b with | or.inl h := by simp [h, max_eq_right] | or.inr h := by simp [h, max_eq_left] end lemma le_sub_add_self : a ≤ (a - b) + b := by { rw sub_add_self_eq_max, exact le_max_left a b } @[simp] protected lemma sub_le_iff_le_add : a - b ≤ c ↔ a ≤ c + b := iff.intro (assume h : a - b ≤ c, calc a ≤ (a - b) + b : le_sub_add_self ... ≤ c + b : add_le_add_right h _) (assume h : a ≤ c + b, Inf_le h) protected lemma sub_le_iff_le_add' : a - b ≤ c ↔ a ≤ b + c := add_comm c b ▸ ennreal.sub_le_iff_le_add lemma sub_eq_of_add_eq : b ≠ ∞ → a + b = c → c - b = a := λ hb hc, hc ▸ add_sub_self (lt_top_iff_ne_top.2 hb) protected lemma sub_le_of_sub_le (h : a - b ≤ c) : a - c ≤ b := ennreal.sub_le_iff_le_add.2 $ by { rw add_comm, exact ennreal.sub_le_iff_le_add.1 h } protected lemma sub_lt_self : a ≠ ∞ → a ≠ 0 → 0 < b → a - b < a := match a, b with | none, _ := by { have := none_eq_top, assume h, contradiction } | (some a), none := by {intros, simp only [none_eq_top, sub_top, pos_iff_ne_zero], assumption} | (some a), (some b) := begin simp only [some_eq_coe, coe_sub.symm, coe_pos, coe_eq_zero, coe_lt_coe, ne.def], assume h₁ h₂, apply nnreal.sub_lt_self, exact pos_iff_ne_zero.2 h₂ end end @[simp] protected lemma sub_eq_zero_iff_le : a - b = 0 ↔ a ≤ b := by simpa [-ennreal.sub_le_iff_le_add] using @ennreal.sub_le_iff_le_add a b 0 @[simp] lemma zero_lt_sub_iff_lt : 0 < a - b ↔ b < a := by simpa [ennreal.bot_lt_iff_ne_bot, -ennreal.sub_eq_zero_iff_le] using not_iff_not.2 (@ennreal.sub_eq_zero_iff_le a b) lemma lt_sub_iff_add_lt : a < b - c ↔ a + c < b := begin cases a, { simp }, cases c, { simp }, cases b, { simp only [true_iff, coe_lt_top, some_eq_coe, top_sub_coe, none_eq_top, ← coe_add] }, simp only [some_eq_coe], rw [← coe_add, ← coe_sub, coe_lt_coe, coe_lt_coe, nnreal.lt_sub_iff_add_lt], end lemma sub_le_self (a b : ℝ≥0∞) : a - b ≤ a := ennreal.sub_le_iff_le_add.2 $ le_self_add @[simp] lemma sub_zero : a - 0 = a := eq.trans (add_zero (a - 0)).symm $ by simp /-- A version of triangle inequality for difference as a "distance". -/ lemma sub_le_sub_add_sub : a - c ≤ a - b + (b - c) := ennreal.sub_le_iff_le_add.2 $ calc a ≤ a - b + b : le_sub_add_self ... ≤ a - b + ((b - c) + c) : add_le_add_left le_sub_add_self _ ... = a - b + (b - c) + c : (add_assoc _ _ _).symm lemma sub_sub_cancel (h : a < ∞) (h2 : b ≤ a) : a - (a - b) = b := by rw [← add_left_inj (lt_of_le_of_lt (sub_le_self _ _) h), sub_add_cancel_of_le (sub_le_self _ _), add_sub_cancel_of_le h2] lemma sub_right_inj {a b c : ℝ≥0∞} (ha : a < ∞) (hb : b ≤ a) (hc : c ≤ a) : a - b = a - c ↔ b = c := iff.intro begin assume h, have : a - (a - b) = a - (a - c), rw h, rw [sub_sub_cancel ha hb, sub_sub_cancel ha hc] at this, exact this end (λ h, by rw h) lemma sub_mul (h : 0 < b → b < a → c ≠ ∞) : (a - b) * c = a * c - b * c := begin cases le_or_lt a b with hab hab, { simp [hab, mul_right_mono hab] }, symmetry, cases eq_or_lt_of_le (zero_le b) with hb hb, { subst b, simp }, apply sub_eq_of_add_eq, { exact mul_ne_top (ne_top_of_lt hab) (h hb hab) }, rw [← add_mul, sub_add_cancel_of_le (le_of_lt hab)] end lemma mul_sub (h : 0 < c → c < b → a ≠ ∞) : a * (b - c) = a * b - a * c := by { simp only [mul_comm a], exact sub_mul h } lemma sub_mul_ge : a * c - b * c ≤ (a - b) * c := begin -- with `0 < b → b < a → c ≠ ∞` Lean names the first variable `a` by_cases h : ∀ (hb : 0 < b), b < a → c ≠ ∞, { rw [sub_mul h], exact le_refl _ }, { push_neg at h, rcases h with ⟨hb, hba, hc⟩, subst c, simp only [mul_top, if_neg (ne_of_gt hb), if_neg (ne_of_gt $ lt_trans hb hba), sub_self, zero_le] } end end sub section sum open finset /-- A product of finite numbers is still finite -/ lemma prod_lt_top {s : finset α} {f : α → ℝ≥0∞} (h : ∀a∈s, f a < ∞) : (∏ a in s, f a) < ∞ := with_top.prod_lt_top h /-- A sum of finite numbers is still finite -/ lemma sum_lt_top {s : finset α} {f : α → ℝ≥0∞} : (∀a∈s, f a < ∞) → ∑ a in s, f a < ∞ := with_top.sum_lt_top /-- A sum of finite numbers is still finite -/ lemma sum_lt_top_iff {s : finset α} {f : α → ℝ≥0∞} : ∑ a in s, f a < ∞ ↔ (∀a∈s, f a < ∞) := with_top.sum_lt_top_iff /-- A sum of numbers is infinite iff one of them is infinite -/ lemma sum_eq_top_iff {s : finset α} {f : α → ℝ≥0∞} : (∑ x in s, f x) = ∞ ↔ (∃a∈s, f a = ∞) := with_top.sum_eq_top_iff /-- seeing `ℝ≥0∞` as `ℝ≥0` does not change their sum, unless one of the `ℝ≥0∞` is infinity -/ lemma to_nnreal_sum {s : finset α} {f : α → ℝ≥0∞} (hf : ∀a∈s, f a < ∞) : ennreal.to_nnreal (∑ a in s, f a) = ∑ a in s, ennreal.to_nnreal (f a) := begin rw [← coe_eq_coe, coe_to_nnreal, coe_finset_sum, sum_congr], { refl }, { intros x hx, exact (coe_to_nnreal (hf x hx).ne).symm }, { exact (sum_lt_top hf).ne } end /-- seeing `ℝ≥0∞` as `real` does not change their sum, unless one of the `ℝ≥0∞` is infinity -/ lemma to_real_sum {s : finset α} {f : α → ℝ≥0∞} (hf : ∀a∈s, f a < ∞) : ennreal.to_real (∑ a in s, f a) = ∑ a in s, ennreal.to_real (f a) := by { rw [ennreal.to_real, to_nnreal_sum hf, nnreal.coe_sum], refl } lemma of_real_sum_of_nonneg {s : finset α} {f : α → ℝ} (hf : ∀ i, i ∈ s → 0 ≤ f i) : ennreal.of_real (∑ i in s, f i) = ∑ i in s, ennreal.of_real (f i) := begin simp_rw [ennreal.of_real, ←coe_finset_sum, coe_eq_coe], exact real.to_nnreal_sum_of_nonneg hf, end end sum section interval variables {x y z : ℝ≥0∞} {ε ε₁ ε₂ : ℝ≥0∞} {s : set ℝ≥0∞} protected lemma Ico_eq_Iio : (Ico 0 y) = (Iio y) := ext $ assume a, iff.intro (assume ⟨_, hx⟩, hx) (assume hx, ⟨zero_le _, hx⟩) lemma mem_Iio_self_add : x ≠ ∞ → 0 < ε → x ∈ Iio (x + ε) := assume xt ε0, lt_add_right xt ε0 lemma not_mem_Ioo_self_sub : x = 0 → x ∉ Ioo (x - ε) y := assume x0, by simp [x0] lemma mem_Ioo_self_sub_add : x ≠ ∞ → x ≠ 0 → 0 < ε₁ → 0 < ε₂ → x ∈ Ioo (x - ε₁) (x + ε₂) := assume xt x0 ε0 ε0', ⟨ennreal.sub_lt_self xt x0 ε0, lt_add_right xt ε0'⟩ end interval section bit @[simp] lemma bit0_inj : bit0 a = bit0 b ↔ a = b := ⟨λh, begin rcases (lt_trichotomy a b) with h₁| h₂| h₃, { exact (absurd h (ne_of_lt (add_lt_add h₁ h₁))) }, { exact h₂ }, { exact (absurd h.symm (ne_of_lt (add_lt_add h₃ h₃))) } end, λh, congr_arg _ h⟩ @[simp] lemma bit0_eq_zero_iff : bit0 a = 0 ↔ a = 0 := by simpa only [bit0_zero] using @bit0_inj a 0 @[simp] lemma bit0_eq_top_iff : bit0 a = ∞ ↔ a = ∞ := by rw [bit0, add_eq_top, or_self] @[simp] lemma bit1_inj : bit1 a = bit1 b ↔ a = b := ⟨λh, begin unfold bit1 at h, rwa [add_left_inj, bit0_inj] at h, simp [lt_top_iff_ne_top] end, λh, congr_arg _ h⟩ @[simp] lemma bit1_ne_zero : bit1 a ≠ 0 := by unfold bit1; simp @[simp] lemma bit1_eq_one_iff : bit1 a = 1 ↔ a = 0 := by simpa only [bit1_zero] using @bit1_inj a 0 @[simp] lemma bit1_eq_top_iff : bit1 a = ∞ ↔ a = ∞ := by unfold bit1; rw add_eq_top; simp end bit section inv instance : has_inv ℝ≥0∞ := ⟨λa, Inf {b | 1 ≤ a * b}⟩ instance : div_inv_monoid ℝ≥0∞ := { inv := has_inv.inv, .. (infer_instance : monoid ℝ≥0∞) } @[simp] lemma inv_zero : (0 : ℝ≥0∞)⁻¹ = ∞ := show Inf {b : ℝ≥0∞ | 1 ≤ 0 * b} = ∞, by simp; refl @[simp] lemma inv_top : ∞⁻¹ = 0 := bot_unique $ le_of_forall_le_of_dense $ λ a (h : a > 0), Inf_le $ by simp [*, ne_of_gt h, top_mul] @[simp, norm_cast] lemma coe_inv (hr : r ≠ 0) : (↑r⁻¹ : ℝ≥0∞) = (↑r)⁻¹ := le_antisymm (le_Inf $ assume b (hb : 1 ≤ ↑r * b), coe_le_iff.2 $ by rintros b rfl; rwa [← coe_mul, ← coe_one, coe_le_coe, ← nnreal.inv_le hr] at hb) (Inf_le $ by simp; rw [← coe_mul, mul_inv_cancel hr]; exact le_refl 1) lemma coe_inv_le : (↑r⁻¹ : ℝ≥0∞) ≤ (↑r)⁻¹ := if hr : r = 0 then by simp only [hr, inv_zero, coe_zero, le_top] else by simp only [coe_inv hr, le_refl] @[norm_cast] lemma coe_inv_two : ((2⁻¹:ℝ≥0):ℝ≥0∞) = 2⁻¹ := by rw [coe_inv (ne_of_gt _root_.zero_lt_two), coe_two] @[simp, norm_cast] lemma coe_div (hr : r ≠ 0) : (↑(p / r) : ℝ≥0∞) = p / r := by rw [div_eq_mul_inv, div_eq_mul_inv, coe_mul, coe_inv hr] @[simp] lemma inv_one : (1:ℝ≥0∞)⁻¹ = 1 := by simpa only [coe_inv one_ne_zero, coe_one] using coe_eq_coe.2 inv_one @[simp] lemma div_one {a : ℝ≥0∞} : a / 1 = a := by rw [div_eq_mul_inv, inv_one, mul_one] protected lemma inv_pow {n : ℕ} : (a^n)⁻¹ = (a⁻¹)^n := begin by_cases a = 0; cases a; cases n; simp [*, none_eq_top, some_eq_coe, zero_pow, top_pow, nat.zero_lt_succ] at *, rw [← coe_inv h, ← coe_pow, ← coe_inv (pow_ne_zero _ h), ← inv_pow', coe_pow] end @[simp] lemma inv_inv : (a⁻¹)⁻¹ = a := by by_cases a = 0; cases a; simp [*, none_eq_top, some_eq_coe, -coe_inv, (coe_inv _).symm] at * lemma inv_involutive : function.involutive (λ a:ℝ≥0∞, a⁻¹) := λ a, ennreal.inv_inv lemma inv_bijective : function.bijective (λ a:ℝ≥0∞, a⁻¹) := ennreal.inv_involutive.bijective @[simp] lemma inv_eq_inv : a⁻¹ = b⁻¹ ↔ a = b := inv_bijective.1.eq_iff @[simp] lemma inv_eq_top : a⁻¹ = ∞ ↔ a = 0 := inv_zero ▸ inv_eq_inv lemma inv_ne_top : a⁻¹ ≠ ∞ ↔ a ≠ 0 := by simp @[simp] lemma inv_lt_top {x : ℝ≥0∞} : x⁻¹ < ∞ ↔ 0 < x := by { simp only [lt_top_iff_ne_top, inv_ne_top, pos_iff_ne_zero] } lemma div_lt_top {x y : ℝ≥0∞} (h1 : x < ∞) (h2 : 0 < y) : x / y < ∞ := mul_lt_top h1 (inv_lt_top.mpr h2) @[simp] lemma inv_eq_zero : a⁻¹ = 0 ↔ a = ∞ := inv_top ▸ inv_eq_inv lemma inv_ne_zero : a⁻¹ ≠ 0 ↔ a ≠ ∞ := by simp @[simp] lemma inv_pos : 0 < a⁻¹ ↔ a ≠ ∞ := pos_iff_ne_zero.trans inv_ne_zero @[simp] lemma inv_lt_inv : a⁻¹ < b⁻¹ ↔ b < a := begin cases a; cases b; simp only [some_eq_coe, none_eq_top, inv_top], { simp only [lt_irrefl] }, { exact inv_pos.trans lt_top_iff_ne_top.symm }, { simp only [not_lt_zero, not_top_lt] }, { cases eq_or_lt_of_le (zero_le a) with ha ha; cases eq_or_lt_of_le (zero_le b) with hb hb, { subst a, subst b, simp }, { subst a, simp }, { subst b, simp [pos_iff_ne_zero, lt_top_iff_ne_top, inv_ne_top] }, { rw [← coe_inv (ne_of_gt ha), ← coe_inv (ne_of_gt hb), coe_lt_coe, coe_lt_coe], simp only [nnreal.coe_lt_coe.symm] at *, exact inv_lt_inv ha hb } } end lemma inv_lt_iff_inv_lt : a⁻¹ < b ↔ b⁻¹ < a := by simpa only [inv_inv] using @inv_lt_inv a b⁻¹ lemma lt_inv_iff_lt_inv : a < b⁻¹ ↔ b < a⁻¹ := by simpa only [inv_inv] using @inv_lt_inv a⁻¹ b @[simp, priority 1100] -- higher than le_inv_iff_mul_le lemma inv_le_inv : a⁻¹ ≤ b⁻¹ ↔ b ≤ a := by simp only [le_iff_lt_or_eq, inv_lt_inv, inv_eq_inv, eq_comm] lemma inv_le_iff_inv_le : a⁻¹ ≤ b ↔ b⁻¹ ≤ a := by simpa only [inv_inv] using @inv_le_inv a b⁻¹ lemma le_inv_iff_le_inv : a ≤ b⁻¹ ↔ b ≤ a⁻¹ := by simpa only [inv_inv] using @inv_le_inv a⁻¹ b @[simp] lemma inv_le_one : a⁻¹ ≤ 1 ↔ 1 ≤ a := inv_le_iff_inv_le.trans $ by rw inv_one lemma one_le_inv : 1 ≤ a⁻¹ ↔ a ≤ 1 := le_inv_iff_le_inv.trans $ by rw inv_one @[simp] lemma inv_lt_one : a⁻¹ < 1 ↔ 1 < a := inv_lt_iff_inv_lt.trans $ by rw [inv_one] lemma pow_le_pow_of_le_one {n m : ℕ} (ha : a ≤ 1) (h : n ≤ m) : a ^ m ≤ a ^ n := begin rw [← @inv_inv a, ← ennreal.inv_pow, ← @ennreal.inv_pow a⁻¹, inv_le_inv], exact pow_le_pow (one_le_inv.2 ha) h end @[simp] lemma div_top : a / ∞ = 0 := by rw [div_eq_mul_inv, inv_top, mul_zero] @[simp] lemma top_div_coe : ∞ / p = ∞ := by simp [div_eq_mul_inv, top_mul] lemma top_div_of_ne_top (h : a ≠ ∞) : ∞ / a = ∞ := by { lift a to ℝ≥0 using h, exact top_div_coe } lemma top_div_of_lt_top (h : a < ∞) : ∞ / a = ∞ := top_div_of_ne_top h.ne lemma top_div : ∞ / a = if a = ∞ then 0 else ∞ := by by_cases a = ∞; simp [top_div_of_ne_top, *] @[simp] lemma zero_div : 0 / a = 0 := zero_mul a⁻¹ lemma div_eq_top : a / b = ∞ ↔ (a ≠ 0 ∧ b = 0) ∨ (a = ∞ ∧ b ≠ ∞) := by simp [div_eq_mul_inv, ennreal.mul_eq_top] lemma le_div_iff_mul_le (h0 : b ≠ 0 ∨ c ≠ 0) (ht : b ≠ ∞ ∨ c ≠ ∞) : a ≤ c / b ↔ a * b ≤ c := begin cases b, { simp at ht, split, { assume ha, simp at ha, simp [ha] }, { contrapose, assume ha, simp at ha, have : a * ∞ = ∞, by simp [ennreal.mul_eq_top, ha], simp [this, ht] } }, by_cases hb : b ≠ 0, { have : (b : ℝ≥0∞) ≠ 0, by simp [hb], rw [← ennreal.mul_le_mul_left this coe_ne_top], suffices : ↑b * a ≤ (↑b * ↑b⁻¹) * c ↔ a * ↑b ≤ c, { simpa [some_eq_coe, div_eq_mul_inv, hb, mul_left_comm, mul_comm, mul_assoc] }, rw [← coe_mul, mul_inv_cancel hb, coe_one, one_mul, mul_comm] }, { simp at hb, simp [hb] at h0, have : c / 0 = ∞, by simp [div_eq_top, h0], simp [hb, this] } end lemma div_le_iff_le_mul (hb0 : b ≠ 0 ∨ c ≠ ∞) (hbt : b ≠ ∞ ∨ c ≠ 0) : a / b ≤ c ↔ a ≤ c * b := begin suffices : a * b⁻¹ ≤ c ↔ a ≤ c / b⁻¹, by simpa [div_eq_mul_inv], refine (le_div_iff_mul_le _ _).symm; simpa end lemma div_le_of_le_mul (h : a ≤ b * c) : a / c ≤ b := begin by_cases h0 : c = 0, { have : a = 0, by simpa [h0] using h, simp [*] }, by_cases hinf : c = ∞, by simp [hinf], exact (div_le_iff_le_mul (or.inl h0) (or.inl hinf)).2 h end lemma div_le_of_le_mul' (h : a ≤ b * c) : a / b ≤ c := div_le_of_le_mul $ mul_comm b c ▸ h lemma mul_le_of_le_div (h : a ≤ b / c) : a * c ≤ b := begin rcases _root_.em (c = 0 ∧ b = 0 ∨ c = ∞ ∧ b = ∞) with (⟨rfl, rfl⟩|⟨rfl, rfl⟩)|H, { rw [mul_zero], exact le_rfl }, { exact le_top }, { simp only [not_or_distrib, not_and_distrib] at H, rwa ← le_div_iff_mul_le H.1 H.2 } end lemma mul_le_of_le_div' (h : a ≤ b / c) : c * a ≤ b := mul_comm a c ▸ mul_le_of_le_div h protected lemma div_lt_iff (h0 : b ≠ 0 ∨ c ≠ 0) (ht : b ≠ ∞ ∨ c ≠ ∞) : c / b < a ↔ c < a * b := lt_iff_lt_of_le_iff_le $ le_div_iff_mul_le h0 ht lemma mul_lt_of_lt_div (h : a < b / c) : a * c < b := by { contrapose! h, exact ennreal.div_le_of_le_mul h } lemma inv_le_iff_le_mul : (b = ∞ → a ≠ 0) → (a = ∞ → b ≠ 0) → (a⁻¹ ≤ b ↔ 1 ≤ a * b) := begin cases a; cases b; simp [none_eq_top, some_eq_coe, mul_top, top_mul] {contextual := tt}, by_cases a = 0; simp [*, -coe_mul, coe_mul.symm, -coe_inv, (coe_inv _).symm, nnreal.inv_le] end @[simp] lemma le_inv_iff_mul_le : a ≤ b⁻¹ ↔ a * b ≤ 1 := begin cases b, { by_cases a = 0; simp [*, none_eq_top, mul_top] }, by_cases b = 0; simp [*, some_eq_coe, le_div_iff_mul_le], suffices : a ≤ 1 / b ↔ a * b ≤ 1, { simpa [div_eq_mul_inv, h] }, exact le_div_iff_mul_le (or.inl (mt coe_eq_coe.1 h)) (or.inl coe_ne_top) end lemma mul_inv_cancel (h0 : a ≠ 0) (ht : a ≠ ∞) : a * a⁻¹ = 1 := begin lift a to ℝ≥0 using ht, norm_cast at *, exact mul_inv_cancel h0 end lemma inv_mul_cancel (h0 : a ≠ 0) (ht : a ≠ ∞) : a⁻¹ * a = 1 := mul_comm a a⁻¹ ▸ mul_inv_cancel h0 ht lemma eq_inv_of_mul_eq_one (h : a * b = 1) : a = b⁻¹ := begin rcases eq_or_ne b ∞ with rfl|hb, { have : false, by simpa [left_ne_zero_of_mul_eq_one h] using h, exact this.elim }, { rw [← mul_one a, ← mul_inv_cancel (right_ne_zero_of_mul_eq_one h) hb, ← mul_assoc, h, one_mul] } end lemma mul_le_iff_le_inv {a b r : ℝ≥0∞} (hr₀ : r ≠ 0) (hr₁ : r ≠ ∞) : (r * a ≤ b ↔ a ≤ r⁻¹ * b) := by rw [← @ennreal.mul_le_mul_left _ a _ hr₀ hr₁, ← mul_assoc, mul_inv_cancel hr₀ hr₁, one_mul] lemma le_of_forall_nnreal_lt {x y : ℝ≥0∞} (h : ∀ r : ℝ≥0, ↑r < x → ↑r ≤ y) : x ≤ y := begin refine le_of_forall_ge_of_dense (λ r hr, _), lift r to ℝ≥0 using ne_top_of_lt hr, exact h r hr end lemma le_of_forall_pos_nnreal_lt {x y : ℝ≥0∞} (h : ∀ r : ℝ≥0, 0 < r → ↑r < x → ↑r ≤ y) : x ≤ y := le_of_forall_nnreal_lt $ λ r hr, (zero_le r).eq_or_lt.elim (λ h, h ▸ zero_le _) (λ h0, h r h0 hr) lemma eq_top_of_forall_nnreal_le {x : ℝ≥0∞} (h : ∀ r : ℝ≥0, ↑r ≤ x) : x = ∞ := top_unique $ le_of_forall_nnreal_lt $ λ r hr, h r lemma div_add_div_same {a b c : ℝ≥0∞} : a / c + b / c = (a + b) / c := eq.symm $ right_distrib a b (c⁻¹) lemma div_self (h0 : a ≠ 0) (hI : a ≠ ∞) : a / a = 1 := mul_inv_cancel h0 hI lemma mul_div_cancel (h0 : a ≠ 0) (hI : a ≠ ∞) : (b / a) * a = b := by rw [div_eq_mul_inv, mul_assoc, inv_mul_cancel h0 hI, mul_one] lemma mul_div_cancel' (h0 : a ≠ 0) (hI : a ≠ ∞) : a * (b / a) = b := by rw [mul_comm, mul_div_cancel h0 hI] lemma mul_div_le : a * (b / a) ≤ b := begin by_cases h0 : a = 0, { simp [h0] }, by_cases hI : a = ∞, { simp [hI] }, rw mul_div_cancel' h0 hI, exact le_refl b end lemma inv_two_add_inv_two : (2:ℝ≥0∞)⁻¹ + 2⁻¹ = 1 := by rw [← two_mul, ← div_eq_mul_inv, div_self two_ne_zero two_ne_top] lemma add_halves (a : ℝ≥0∞) : a / 2 + a / 2 = a := by rw [div_eq_mul_inv, ← mul_add, inv_two_add_inv_two, mul_one] @[simp] lemma div_zero_iff : a / b = 0 ↔ a = 0 ∨ b = ∞ := by simp [div_eq_mul_inv] @[simp] lemma div_pos_iff : 0 < a / b ↔ a ≠ 0 ∧ b ≠ ∞ := by simp [pos_iff_ne_zero, not_or_distrib] lemma half_pos {a : ℝ≥0∞} (h : 0 < a) : 0 < a / 2 := by simp [ne_of_gt h] lemma one_half_lt_one : (2⁻¹:ℝ≥0∞) < 1 := inv_lt_one.2 $ one_lt_two lemma half_lt_self {a : ℝ≥0∞} (hz : a ≠ 0) (ht : a ≠ ∞) : a / 2 < a := begin lift a to ℝ≥0 using ht, have h : (2 : ℝ≥0∞) = ((2 : ℝ≥0) : ℝ≥0∞), from rfl, have h' : (2 : ℝ≥0) ≠ 0, from _root_.two_ne_zero', rw [h, ← coe_div h', coe_lt_coe], -- `norm_cast` fails to apply `coe_div` norm_cast at hz, exact nnreal.half_lt_self hz end lemma sub_half (h : a ≠ ∞) : a - a / 2 = a / 2 := begin lift a to ℝ≥0 using h, exact sub_eq_of_add_eq (mul_ne_top coe_ne_top $ by simp) (add_halves a) end @[simp] lemma one_sub_inv_two : (1:ℝ≥0∞) - 2⁻¹ = 2⁻¹ := by simpa only [div_eq_mul_inv, one_mul] using sub_half one_ne_top lemma exists_inv_nat_lt {a : ℝ≥0∞} (h : a ≠ 0) : ∃n:ℕ, (n:ℝ≥0∞)⁻¹ < a := @inv_inv a ▸ by simp only [inv_lt_inv, ennreal.exists_nat_gt (inv_ne_top.2 h)] lemma exists_nat_pos_mul_gt (ha : a ≠ 0) (hb : b ≠ ∞) : ∃ n > 0, b < (n : ℕ) * a := begin have : b / a ≠ ∞, from mul_ne_top hb (inv_ne_top.2 ha), refine (ennreal.exists_nat_gt this).imp (λ n hn, _), have : 0 < (n : ℝ≥0∞), from (zero_le _).trans_lt hn, refine ⟨coe_nat_lt_coe_nat.1 this, _⟩, rwa [← ennreal.div_lt_iff (or.inl ha) (or.inr hb)] end lemma exists_nat_mul_gt (ha : a ≠ 0) (hb : b ≠ ∞) : ∃ n : ℕ, b < n * a := (exists_nat_pos_mul_gt ha hb).imp $ λ n, Exists.snd lemma exists_nat_pos_inv_mul_lt (ha : a ≠ ∞) (hb : b ≠ 0) : ∃ n > 0, ((n : ℕ) : ℝ≥0∞)⁻¹ * a < b := begin rcases exists_nat_pos_mul_gt hb ha with ⟨n, npos, hn⟩, have : (n : ℝ≥0∞) ≠ 0 := nat.cast_ne_zero.2 npos.lt.ne', use [n, npos], rwa [← one_mul b, ← inv_mul_cancel this coe_nat_ne_top, mul_assoc, mul_lt_mul_left (inv_ne_zero.2 coe_nat_ne_top) (inv_ne_top.2 this)] end lemma exists_nnreal_pos_mul_lt (ha : a ≠ ∞) (hb : b ≠ 0) : ∃ n > 0, ↑(n : ℝ≥0) * a < b := begin rcases exists_nat_pos_inv_mul_lt ha hb with ⟨n, npos : 0 < n, hn⟩, use (n : ℝ≥0)⁻¹, simp [*, npos.ne', zero_lt_one] end lemma exists_inv_two_pow_lt (ha : a ≠ 0) : ∃ n : ℕ, 2⁻¹ ^ n < a := begin rcases exists_inv_nat_lt ha with ⟨n, hn⟩, simp only [← ennreal.inv_pow], refine ⟨n, lt_trans (inv_lt_inv.2 _) hn⟩, norm_cast, exact n.lt_two_pow end end inv section real lemma to_real_add (ha : a ≠ ∞) (hb : b ≠ ∞) : (a+b).to_real = a.to_real + b.to_real := begin lift a to ℝ≥0 using ha, lift b to ℝ≥0 using hb, refl end lemma to_real_sub_of_le {a b : ℝ≥0∞} (h : b ≤ a) (ha : a ≠ ∞): (a - b).to_real = a.to_real - b.to_real := begin lift b to ℝ≥0 using ne_top_of_le_ne_top ha h, lift a to ℝ≥0 using ha, simp only [← ennreal.coe_sub, ennreal.coe_to_real, nnreal.coe_sub (ennreal.coe_le_coe.mp h)], end lemma to_real_add_le : (a+b).to_real ≤ a.to_real + b.to_real := if ha : a = ∞ then by simp only [ha, top_add, top_to_real, zero_add, to_real_nonneg] else if hb : b = ∞ then by simp only [hb, add_top, top_to_real, add_zero, to_real_nonneg] else le_of_eq (to_real_add ha hb) lemma of_real_add {p q : ℝ} (hp : 0 ≤ p) (hq : 0 ≤ q) : ennreal.of_real (p + q) = ennreal.of_real p + ennreal.of_real q := by rw [ennreal.of_real, ennreal.of_real, ennreal.of_real, ← coe_add, coe_eq_coe, real.to_nnreal_add hp hq] lemma of_real_add_le {p q : ℝ} : ennreal.of_real (p + q) ≤ ennreal.of_real p + ennreal.of_real q := coe_le_coe.2 real.to_nnreal_add_le @[simp] lemma to_real_le_to_real (ha : a ≠ ∞) (hb : b ≠ ∞) : a.to_real ≤ b.to_real ↔ a ≤ b := begin lift a to ℝ≥0 using ha, lift b to ℝ≥0 using hb, norm_cast end lemma to_real_mono (hb : b ≠ ∞) (h : a ≤ b) : a.to_real ≤ b.to_real := (to_real_le_to_real (h.trans_lt (lt_top_iff_ne_top.2 hb)).ne hb).2 h @[simp] lemma to_real_lt_to_real (ha : a ≠ ∞) (hb : b ≠ ∞) : a.to_real < b.to_real ↔ a < b := begin lift a to ℝ≥0 using ha, lift b to ℝ≥0 using hb, norm_cast end lemma to_real_strict_mono (hb : b ≠ ∞) (h : a < b) : a.to_real < b.to_real := (to_real_lt_to_real (h.trans (lt_top_iff_ne_top.2 hb)).ne hb).2 h lemma to_real_max (hr : a ≠ ∞) (hp : b ≠ ∞) : ennreal.to_real (max a b) = max (ennreal.to_real a) (ennreal.to_real b) := (le_total a b).elim (λ h, by simp only [h, (ennreal.to_real_le_to_real hr hp).2 h, max_eq_right]) (λ h, by simp only [h, (ennreal.to_real_le_to_real hp hr).2 h, max_eq_left]) lemma to_nnreal_pos_iff : 0 < a.to_nnreal ↔ (0 < a ∧ a ≠ ∞) := begin cases a, { simp [none_eq_top] }, { simp [some_eq_coe] } end lemma to_real_pos_iff : 0 < a.to_real ↔ (0 < a ∧ a ≠ ∞):= (nnreal.coe_pos).trans to_nnreal_pos_iff lemma of_real_le_of_real {p q : ℝ} (h : p ≤ q) : ennreal.of_real p ≤ ennreal.of_real q := by simp [ennreal.of_real, real.to_nnreal_le_to_nnreal h] lemma of_real_le_of_le_to_real {a : ℝ} {b : ℝ≥0∞} (h : a ≤ ennreal.to_real b) : ennreal.of_real a ≤ b := (of_real_le_of_real h).trans of_real_to_real_le @[simp] lemma of_real_le_of_real_iff {p q : ℝ} (h : 0 ≤ q) : ennreal.of_real p ≤ ennreal.of_real q ↔ p ≤ q := by rw [ennreal.of_real, ennreal.of_real, coe_le_coe, real.to_nnreal_le_to_nnreal_iff h] @[simp] lemma of_real_lt_of_real_iff {p q : ℝ} (h : 0 < q) : ennreal.of_real p < ennreal.of_real q ↔ p < q := by rw [ennreal.of_real, ennreal.of_real, coe_lt_coe, real.to_nnreal_lt_to_nnreal_iff h] lemma of_real_lt_of_real_iff_of_nonneg {p q : ℝ} (hp : 0 ≤ p) : ennreal.of_real p < ennreal.of_real q ↔ p < q := by rw [ennreal.of_real, ennreal.of_real, coe_lt_coe, real.to_nnreal_lt_to_nnreal_iff_of_nonneg hp] @[simp] lemma of_real_pos {p : ℝ} : 0 < ennreal.of_real p ↔ 0 < p := by simp [ennreal.of_real] @[simp] lemma of_real_eq_zero {p : ℝ} : ennreal.of_real p = 0 ↔ p ≤ 0 := by simp [ennreal.of_real] @[simp] lemma zero_eq_of_real {p : ℝ} : 0 = ennreal.of_real p ↔ p ≤ 0 := eq_comm.trans of_real_eq_zero lemma of_real_le_iff_le_to_real {a : ℝ} {b : ℝ≥0∞} (hb : b ≠ ∞) : ennreal.of_real a ≤ b ↔ a ≤ ennreal.to_real b := begin lift b to ℝ≥0 using hb, simpa [ennreal.of_real, ennreal.to_real] using real.to_nnreal_le_iff_le_coe end lemma of_real_lt_iff_lt_to_real {a : ℝ} {b : ℝ≥0∞} (ha : 0 ≤ a) (hb : b ≠ ∞) : ennreal.of_real a < b ↔ a < ennreal.to_real b := begin lift b to ℝ≥0 using hb, simpa [ennreal.of_real, ennreal.to_real] using real.to_nnreal_lt_iff_lt_coe ha end lemma le_of_real_iff_to_real_le {a : ℝ≥0∞} {b : ℝ} (ha : a ≠ ∞) (hb : 0 ≤ b) : a ≤ ennreal.of_real b ↔ ennreal.to_real a ≤ b := begin lift a to ℝ≥0 using ha, simpa [ennreal.of_real, ennreal.to_real] using real.le_to_nnreal_iff_coe_le hb end lemma to_real_le_of_le_of_real {a : ℝ≥0∞} {b : ℝ} (hb : 0 ≤ b) (h : a ≤ ennreal.of_real b) : ennreal.to_real a ≤ b := have ha : a ≠ ∞, from ne_top_of_le_ne_top of_real_ne_top h, (le_of_real_iff_to_real_le ha hb).1 h lemma lt_of_real_iff_to_real_lt {a : ℝ≥0∞} {b : ℝ} (ha : a ≠ ∞) : a < ennreal.of_real b ↔ ennreal.to_real a < b := begin lift a to ℝ≥0 using ha, simpa [ennreal.of_real, ennreal.to_real] using real.lt_to_nnreal_iff_coe_lt end lemma of_real_mul {p q : ℝ} (hp : 0 ≤ p) : ennreal.of_real (p * q) = (ennreal.of_real p) * (ennreal.of_real q) := by { simp only [ennreal.of_real, coe_mul.symm, coe_eq_coe], exact real.to_nnreal_mul hp } lemma of_real_pow {p : ℝ} (hp : 0 ≤ p) (n : ℕ) : ennreal.of_real (p ^ n) = ennreal.of_real p ^ n := by rw [of_real_eq_coe_nnreal hp, ← coe_pow, ← of_real_coe_nnreal, nnreal.coe_pow, nnreal.coe_mk] lemma of_real_inv_of_pos {x : ℝ} (hx : 0 < x) : (ennreal.of_real x)⁻¹ = ennreal.of_real x⁻¹ := by rw [ennreal.of_real, ennreal.of_real, ←@coe_inv (real.to_nnreal x) (by simp [hx]), coe_eq_coe, real.to_nnreal_inv.symm] lemma of_real_div_of_pos {x y : ℝ} (hy : 0 < y) : ennreal.of_real (x / y) = ennreal.of_real x / ennreal.of_real y := by rw [div_eq_inv_mul, div_eq_mul_inv, of_real_mul (inv_nonneg.2 hy.le), of_real_inv_of_pos hy, mul_comm] lemma to_real_of_real_mul (c : ℝ) (a : ℝ≥0∞) (h : 0 ≤ c) : ennreal.to_real ((ennreal.of_real c) * a) = c * ennreal.to_real a := begin cases a, { simp only [none_eq_top, ennreal.to_real, top_to_nnreal, nnreal.coe_zero, mul_zero, mul_top], by_cases h' : c ≤ 0, { rw [if_pos], { simp }, { convert of_real_zero, exact le_antisymm h' h } }, { rw [if_neg], refl, rw [of_real_eq_zero], assumption } }, { simp only [ennreal.to_real, ennreal.to_nnreal], simp only [some_eq_coe, ennreal.of_real, coe_mul.symm, to_nnreal_coe, nnreal.coe_mul], congr, apply real.coe_to_nnreal, exact h } end @[simp] lemma to_nnreal_mul_top (a : ℝ≥0∞) : ennreal.to_nnreal (a * ∞) = 0 := begin by_cases h : a = 0, { rw [h, zero_mul, zero_to_nnreal] }, { rw [mul_top, if_neg h, top_to_nnreal] } end @[simp] lemma to_nnreal_top_mul (a : ℝ≥0∞) : ennreal.to_nnreal (∞ * a) = 0 := by rw [mul_comm, to_nnreal_mul_top] @[simp] lemma to_real_mul_top (a : ℝ≥0∞) : ennreal.to_real (a * ∞) = 0 := by rw [ennreal.to_real, to_nnreal_mul_top, nnreal.coe_zero] @[simp] lemma to_real_top_mul (a : ℝ≥0∞) : ennreal.to_real (∞ * a) = 0 := by { rw mul_comm, exact to_real_mul_top _ } lemma to_real_eq_to_real (ha : a < ∞) (hb : b < ∞) : ennreal.to_real a = ennreal.to_real b ↔ a = b := begin lift a to ℝ≥0 using ha.ne, lift b to ℝ≥0 using hb.ne, simp only [coe_eq_coe, nnreal.coe_eq, coe_to_real], end lemma to_real_smul (r : ℝ≥0) (s : ℝ≥0∞) : (r • s).to_real = r • s.to_real := begin induction s using with_top.rec_top_coe, { rw [show r • ∞ = (r : ℝ≥0∞) * ∞, by refl], simp only [ennreal.to_real_mul_top, ennreal.top_to_real, smul_zero] }, { rw [← coe_smul, ennreal.coe_to_real, ennreal.coe_to_real], refl } end /-- `ennreal.to_nnreal` as a `monoid_hom`. -/ def to_nnreal_hom : ℝ≥0∞ →* ℝ≥0 := { to_fun := ennreal.to_nnreal, map_one' := to_nnreal_coe, map_mul' := by rintro (_|x) (_|y); simp only [← coe_mul, none_eq_top, some_eq_coe, to_nnreal_top_mul, to_nnreal_mul_top, top_to_nnreal, mul_zero, zero_mul, to_nnreal_coe] } lemma to_nnreal_mul {a b : ℝ≥0∞}: (a * b).to_nnreal = a.to_nnreal * b.to_nnreal := to_nnreal_hom.map_mul a b lemma to_nnreal_pow (a : ℝ≥0∞) (n : ℕ) : (a ^ n).to_nnreal = a.to_nnreal ^ n := to_nnreal_hom.map_pow a n lemma to_nnreal_prod {ι : Type*} {s : finset ι} {f : ι → ℝ≥0∞} : (∏ i in s, f i).to_nnreal = ∏ i in s, (f i).to_nnreal := to_nnreal_hom.map_prod _ _ lemma to_nnreal_inv (a : ℝ≥0∞) : (a⁻¹).to_nnreal = (a.to_nnreal)⁻¹ := begin by_cases ha_zero : a = 0, { simp [ha_zero], }, by_cases ha_top : a = ∞, { simp [ha_top], }, have ha_eq : a = a.to_nnreal, from (coe_to_nnreal ha_top).symm, nth_rewrite 0 ha_eq, rw ← coe_inv, { norm_cast, }, { rw [ne.def, to_nnreal_eq_zero_iff], push_neg, exact ⟨ha_zero, ha_top⟩, }, end lemma to_nnreal_div (a b : ℝ≥0∞) : (a / b).to_nnreal = a.to_nnreal / b.to_nnreal := by rw [div_eq_mul_inv, to_nnreal_mul, to_nnreal_inv, div_eq_mul_inv] /-- `ennreal.to_real` as a `monoid_hom`. -/ def to_real_hom : ℝ≥0∞ →* ℝ := (nnreal.to_real_hom : ℝ≥0 →* ℝ).comp to_nnreal_hom lemma to_real_mul : (a * b).to_real = a.to_real * b.to_real := to_real_hom.map_mul a b lemma to_real_pow (a : ℝ≥0∞) (n : ℕ) : (a ^ n).to_real = a.to_real ^ n := to_real_hom.map_pow a n lemma to_real_prod {ι : Type*} {s : finset ι} {f : ι → ℝ≥0∞} : (∏ i in s, f i).to_real = ∏ i in s, (f i).to_real := to_real_hom.map_prod _ _ lemma to_real_inv (a : ℝ≥0∞) : (a⁻¹).to_real = (a.to_real)⁻¹ := by { simp_rw ennreal.to_real, norm_cast, exact to_nnreal_inv a, } lemma to_real_div (a b : ℝ≥0∞) : (a / b).to_real = a.to_real / b.to_real := by rw [div_eq_mul_inv, to_real_mul, to_real_inv, div_eq_mul_inv] lemma of_real_prod_of_nonneg {s : finset α} {f : α → ℝ} (hf : ∀ i, i ∈ s → 0 ≤ f i) : ennreal.of_real (∏ i in s, f i) = ∏ i in s, ennreal.of_real (f i) := begin simp_rw [ennreal.of_real, ←coe_finset_prod, coe_eq_coe], exact real.to_nnreal_prod_of_nonneg hf, end @[simp] lemma to_nnreal_bit0 {x : ℝ≥0∞} : (bit0 x).to_nnreal = bit0 (x.to_nnreal) := begin by_cases hx_top : x = ∞, { simp [hx_top, bit0_eq_top_iff.mpr rfl], }, exact to_nnreal_add (lt_top_iff_ne_top.mpr hx_top) (lt_top_iff_ne_top.mpr hx_top), end @[simp] lemma to_nnreal_bit1 {x : ℝ≥0∞} (hx_top : x ≠ ∞) : (bit1 x).to_nnreal = bit1 (x.to_nnreal) := by simp [bit1, bit1, to_nnreal_add (lt_top_iff_ne_top.mpr (by rwa [ne.def, bit0_eq_top_iff])) ennreal.one_lt_top] @[simp] lemma to_real_bit0 {x : ℝ≥0∞} : (bit0 x).to_real = bit0 (x.to_real) := by simp [ennreal.to_real] @[simp] lemma to_real_bit1 {x : ℝ≥0∞} (hx_top : x ≠ ∞) : (bit1 x).to_real = bit1 (x.to_real) := by simp [ennreal.to_real, hx_top] @[simp] lemma of_real_bit0 {r : ℝ} (hr : 0 ≤ r) : ennreal.of_real (bit0 r) = bit0 (ennreal.of_real r) := of_real_add hr hr @[simp] lemma of_real_bit1 {r : ℝ} (hr : 0 ≤ r) : ennreal.of_real (bit1 r) = bit1 (ennreal.of_real r) := (of_real_add (by simp [hr]) zero_le_one).trans (by simp [real.to_nnreal_one, bit1, hr]) end real section infi variables {ι : Sort*} {f g : ι → ℝ≥0∞} lemma infi_add : infi f + a = ⨅i, f i + a := le_antisymm (le_infi $ assume i, add_le_add (infi_le _ _) $ le_refl _) (ennreal.sub_le_iff_le_add.1 $ le_infi $ assume i, ennreal.sub_le_iff_le_add.2 $ infi_le _ _) lemma supr_sub : (⨆i, f i) - a = (⨆i, f i - a) := le_antisymm (ennreal.sub_le_iff_le_add.2 $ supr_le $ assume i, ennreal.sub_le_iff_le_add.1 $ le_supr _ i) (supr_le $ assume i, ennreal.sub_le_sub (le_supr _ _) (le_refl a)) lemma sub_infi : a - (⨅i, f i) = (⨆i, a - f i) := begin refine (eq_of_forall_ge_iff $ λ c, _), rw [ennreal.sub_le_iff_le_add, add_comm, infi_add], simp [ennreal.sub_le_iff_le_add, sub_eq_add_neg, add_comm], end lemma Inf_add {s : set ℝ≥0∞} : Inf s + a = ⨅b∈s, b + a := by simp [Inf_eq_infi, infi_add] lemma add_infi {a : ℝ≥0∞} : a + infi f = ⨅b, a + f b := by rw [add_comm, infi_add]; simp [add_comm] lemma infi_add_infi (h : ∀i j, ∃k, f k + g k ≤ f i + g j) : infi f + infi g = (⨅a, f a + g a) := suffices (⨅a, f a + g a) ≤ infi f + infi g, from le_antisymm (le_infi $ assume a, add_le_add (infi_le _ _) (infi_le _ _)) this, calc (⨅a, f a + g a) ≤ (⨅ a a', f a + g a') : le_infi $ assume a, le_infi $ assume a', let ⟨k, h⟩ := h a a' in infi_le_of_le k h ... ≤ infi f + infi g : by simp [add_infi, infi_add, -add_comm, -le_infi_iff]; exact le_refl _ lemma infi_sum {f : ι → α → ℝ≥0∞} {s : finset α} [nonempty ι] (h : ∀(t : finset α) (i j : ι), ∃k, ∀a∈t, f k a ≤ f i a ∧ f k a ≤ f j a) : (⨅i, ∑ a in s, f i a) = ∑ a in s, ⨅i, f i a := finset.induction_on s (by simp) $ assume a s ha ih, have ∀ (i j : ι), ∃ (k : ι), f k a + ∑ b in s, f k b ≤ f i a + ∑ b in s, f j b, from assume i j, let ⟨k, hk⟩ := h (insert a s) i j in ⟨k, add_le_add (hk a (finset.mem_insert_self _ _)).left $ finset.sum_le_sum $ assume a ha, (hk _ $ finset.mem_insert_of_mem ha).right⟩, by simp [ha, ih.symm, infi_add_infi this] /-- If `x ≠ 0` and `x ≠ ∞`, then right multiplication by `x` maps infimum to infimum. See also `ennreal.infi_mul` that assumes `[nonempty ι]` but does not require `x ≠ 0`. -/ lemma infi_mul_of_ne {ι} {f : ι → ℝ≥0∞} {x : ℝ≥0∞} (h0 : x ≠ 0) (h : x ≠ ∞) : infi f * x = ⨅ i, f i * x := le_antisymm mul_right_mono.map_infi_le ((div_le_iff_le_mul (or.inl h0) $ or.inl h).mp $ le_infi $ λ i, (div_le_iff_le_mul (or.inl h0) $ or.inl h).mpr $ infi_le _ _) /-- If `x ≠ ∞`, then right multiplication by `x` maps infimum over a nonempty type to infimum. See also `ennreal.infi_mul_of_ne` that assumes `x ≠ 0` but does not require `[nonempty ι]`. -/ lemma infi_mul {ι} [nonempty ι] {f : ι → ℝ≥0∞} {x : ℝ≥0∞} (h : x ≠ ∞) : infi f * x = ⨅ i, f i * x := begin by_cases h0 : x = 0, { simp only [h0, mul_zero, infi_const] }, { exact infi_mul_of_ne h0 h } end /-- If `x ≠ ∞`, then left multiplication by `x` maps infimum over a nonempty type to infimum. See also `ennreal.mul_infi_of_ne` that assumes `x ≠ 0` but does not require `[nonempty ι]`. -/ lemma mul_infi {ι} [nonempty ι] {f : ι → ℝ≥0∞} {x : ℝ≥0∞} (h : x ≠ ∞) : x * infi f = ⨅ i, x * f i := by simpa only [mul_comm] using infi_mul h /-- If `x ≠ 0` and `x ≠ ∞`, then left multiplication by `x` maps infimum to infimum. See also `ennreal.mul_infi` that assumes `[nonempty ι]` but does not require `x ≠ 0`. -/ lemma mul_infi_of_ne {ι} {f : ι → ℝ≥0∞} {x : ℝ≥0∞} (h0 : x ≠ 0) (h : x ≠ ∞) : x * infi f = ⨅ i, x * f i := by simpa only [mul_comm] using infi_mul_of_ne h0 h /-! `supr_mul`, `mul_supr` and variants are in `topology.instances.ennreal`. -/ end infi section supr @[simp] lemma supr_eq_zero {ι : Sort*} {f : ι → ℝ≥0∞} : (⨆ i, f i) = 0 ↔ ∀ i, f i = 0 := supr_eq_bot @[simp] lemma supr_zero_eq_zero {ι : Sort*} : (⨆ i : ι, (0 : ℝ≥0∞)) = 0 := by simp lemma sup_eq_zero {a b : ℝ≥0∞} : a ⊔ b = 0 ↔ a = 0 ∧ b = 0 := sup_eq_bot_iff lemma supr_coe_nat : (⨆n:ℕ, (n : ℝ≥0∞)) = ∞ := (supr_eq_top _).2 $ assume b hb, ennreal.exists_nat_gt (lt_top_iff_ne_top.1 hb) end supr /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`, but it holds in `ℝ≥0∞` with the additional assumption that `a < ∞`. -/ lemma le_of_add_le_add_left {a b c : ℝ≥0∞} : a < ∞ → a + b ≤ a + c → b ≤ c := by cases a; cases b; cases c; simp [← ennreal.coe_add, ennreal.coe_le_coe] /-- `le_of_add_le_add_right` is normally applicable to `ordered_cancel_add_comm_monoid`, but it holds in `ℝ≥0∞` with the additional assumption that `a < ∞`. -/ lemma le_of_add_le_add_right {a b c : ℝ≥0∞} : a < ∞ → b + a ≤ c + a → b ≤ c := by simpa only [add_comm _ a] using le_of_add_le_add_left end ennreal
a306ef4a1aae5324a8dabd3578ccbaeb6d2ea856
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/group_theory/specific_groups/dihedral.lean
889f538502344b686af5586d53e071094c014cd7
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
5,915
lean
/- Copyright (c) 2020 Shing Tak Lam. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Shing Tak Lam -/ import data.zmod.basic import group_theory.exponent /-! # Dihedral Groups > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We define the dihedral groups `dihedral_group n`, with elements `r i` and `sr i` for `i : zmod n`. For `n ≠ 0`, `dihedral_group n` represents the symmetry group of the regular `n`-gon. `r i` represents the rotations of the `n`-gon by `2πi/n`, and `sr i` represents the reflections of the `n`-gon. `dihedral_group 0` corresponds to the infinite dihedral group. -/ /-- For `n ≠ 0`, `dihedral_group n` represents the symmetry group of the regular `n`-gon. `r i` represents the rotations of the `n`-gon by `2πi/n`, and `sr i` represents the reflections of the `n`-gon. `dihedral_group 0` corresponds to the infinite dihedral group. -/ @[derive decidable_eq] inductive dihedral_group (n : ℕ) : Type | r : zmod n → dihedral_group | sr : zmod n → dihedral_group namespace dihedral_group variables {n : ℕ} /-- Multiplication of the dihedral group. -/ private def mul : dihedral_group n → dihedral_group n → dihedral_group n | (r i) (r j) := r (i + j) | (r i) (sr j) := sr (j - i) | (sr i) (r j) := sr (i + j) | (sr i) (sr j) := r (j - i) /-- The identity `1` is the rotation by `0`. -/ private def one : dihedral_group n := r 0 instance : inhabited (dihedral_group n) := ⟨one⟩ /-- The inverse of a an element of the dihedral group. -/ private def inv : dihedral_group n → dihedral_group n | (r i) := r (-i) | (sr i) := sr i /-- The group structure on `dihedral_group n`. -/ instance : group (dihedral_group n) := { mul := mul, mul_assoc := begin rintros (a | a) (b | b) (c | c); simp only [mul]; ring, end, one := one, one_mul := begin rintros (a | a), exact congr_arg r (zero_add a), exact congr_arg sr (sub_zero a), end, mul_one := begin rintros (a | a), exact congr_arg r (add_zero a), exact congr_arg sr (add_zero a), end, inv := inv, mul_left_inv := begin rintros (a | a), exact congr_arg r (neg_add_self a), exact congr_arg r (sub_self a), end } @[simp] lemma r_mul_r (i j : zmod n) : r i * r j = r (i + j) := rfl @[simp] lemma r_mul_sr (i j : zmod n) : r i * sr j = sr (j - i) := rfl @[simp] lemma sr_mul_r (i j : zmod n) : sr i * r j = sr (i + j) := rfl @[simp] lemma sr_mul_sr (i j : zmod n) : sr i * sr j = r (j - i) := rfl lemma one_def : (1 : dihedral_group n) = r 0 := rfl private def fintype_helper : (zmod n ⊕ zmod n) ≃ dihedral_group n := { inv_fun := λ i, match i with | (r j) := sum.inl j | (sr j) := sum.inr j end, to_fun := λ i, match i with | (sum.inl j) := r j | (sum.inr j) := sr j end, left_inv := by rintro (x | x); refl, right_inv := by rintro (x | x); refl } /-- If `0 < n`, then `dihedral_group n` is a finite group. -/ instance [ne_zero n] : fintype (dihedral_group n) := fintype.of_equiv _ fintype_helper instance : nontrivial (dihedral_group n) := ⟨⟨r 0, sr 0, dec_trivial⟩⟩ /-- If `0 < n`, then `dihedral_group n` has `2n` elements. -/ lemma card [ne_zero n] : fintype.card (dihedral_group n) = 2 * n := by rw [← fintype.card_eq.mpr ⟨fintype_helper⟩, fintype.card_sum, zmod.card, two_mul] @[simp] lemma r_one_pow (k : ℕ) : (r 1 : dihedral_group n) ^ k = r k := begin induction k with k IH, { rw nat.cast_zero, refl }, { rw [pow_succ, IH, r_mul_r], congr' 1, norm_cast, rw nat.one_add } end @[simp] lemma r_one_pow_n : (r (1 : zmod n))^n = 1 := begin rw [r_one_pow, one_def], congr' 1, exact zmod.nat_cast_self _, end @[simp] lemma sr_mul_self (i : zmod n) : sr i * sr i = 1 := by rw [sr_mul_sr, sub_self, one_def] /-- If `0 < n`, then `sr i` has order 2. -/ @[simp] lemma order_of_sr (i : zmod n) : order_of (sr i) = 2 := begin rw order_of_eq_prime _ _, { exact ⟨nat.prime_two⟩ }, rw [sq, sr_mul_self], dec_trivial, end /-- If `0 < n`, then `r 1` has order `n`. -/ @[simp] lemma order_of_r_one : order_of (r 1 : dihedral_group n) = n := begin rcases eq_zero_or_ne_zero n with rfl | hn, { rw order_of_eq_zero_iff', intros n hn, rw [r_one_pow, one_def], apply mt r.inj, simpa using hn.ne' }, { resetI, apply (nat.le_of_dvd (ne_zero.pos n) $ order_of_dvd_of_pow_eq_one $ @r_one_pow_n n) .lt_or_eq.resolve_left, intro h, have h1 : (r 1 : dihedral_group n)^(order_of (r 1)) = 1, { exact pow_order_of_eq_one _ }, rw r_one_pow at h1, injection h1 with h2, rw [← zmod.val_eq_zero, zmod.val_nat_cast, nat.mod_eq_of_lt h] at h2, exact absurd h2.symm (order_of_pos _).ne }, end /-- If `0 < n`, then `i : zmod n` has order `n / gcd n i`. -/ lemma order_of_r [ne_zero n] (i : zmod n) : order_of (r i) = n / nat.gcd n i.val := begin conv_lhs { rw ←zmod.nat_cast_zmod_val i }, rw [←r_one_pow, order_of_pow, order_of_r_one] end lemma exponent : monoid.exponent (dihedral_group n) = lcm n 2 := begin rcases eq_zero_or_ne_zero n with rfl | hn, { exact monoid.exponent_eq_zero_of_order_zero order_of_r_one }, resetI, apply nat.dvd_antisymm, { apply monoid.exponent_dvd_of_forall_pow_eq_one, rintro (m | m), { rw [←order_of_dvd_iff_pow_eq_one, order_of_r], refine nat.dvd_trans ⟨gcd n m.val, _⟩ (dvd_lcm_left n 2), { exact (nat.div_mul_cancel (nat.gcd_dvd_left n m.val)).symm } }, { rw [←order_of_dvd_iff_pow_eq_one, order_of_sr], exact dvd_lcm_right n 2 } }, { apply lcm_dvd, { convert monoid.order_dvd_exponent (r 1), exact order_of_r_one.symm }, { convert monoid.order_dvd_exponent (sr 0), exact (order_of_sr 0).symm } } end end dihedral_group
502f9c71d48e255d10fe7f9759b7dc5b3a6000d0
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/tests/lean/unfold_crash.lean
c46021fcb3e6c0749a599489b77ef7066c66ce69
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
198
lean
-- open nat tactic example (a b : nat) : a = succ b → a = b + 1 := by do H ← intro `H, try (unfold_at [`nat.succ] H), unfold [`add], dsimp, unfold [`nat.add], trace_state, assumption
446112a9d70f5ee528e50e3c74bafc85fad23a38
5883d9218e6f144e20eee6ca1dab8529fa1a97c0
/src/vrel/map.lean
6a6eadff2c9298abc3c6c9bf3b540d83f0408102
[]
no_license
spl/alpha-conversion-is-easy
0d035bc570e52a6345d4890e4d0c9e3f9b8126c1
ed937fe85d8495daffd9412a5524c77b9fcda094
refs/heads/master
1,607,649,280,020
1,517,380,240,000
1,517,380,240,000
52,174,747
4
0
null
1,456,052,226,000
1,456,001,163,000
Lean
UTF-8
Lean
false
false
2,718
lean
/- This file contains declarations for mapping one `vrel` to another. -/ import .update namespace acie ----------------------------------------------------------------- namespace vrel ----------------------------------------------------------------- variables {V : Type} [decidable_eq V] -- Type of variable names variables {vs : Type → Type} [vset vs V] -- Type of variable name sets variables {X X₁ X₂ Y Y₁ Y₂ : vs V} -- Variable name sets -- The type of a function that maps over the sets of a `vrel`. @[reducible] protected def map (R : X₁ ×ν Y₁) (S : X₂ ×ν Y₂) := ∀ (x : ν∈ X₁) (y : ν∈ Y₁), ⟪x, y⟫ ∈ν R → ∃ (px : x.1 ∈ X₂) (py : y.1 ∈ Y₂) , ⟪vname.map_of_mem x px, vname.map_of_mem y py⟫ ∈ν S -- Notation for `map`. infixr ` ⇒ν `:30 := vrel.map namespace map ------------------------------------------------------------------ section ------------------------------------------------------------------------ variables {R : X₁ ×ν Y₁} {S : X₂ ×ν Y₂} -- Variable name set relations -- Lift a `map` over `vrel.update`. protected theorem update (a b : V) : R ⇒ν S → R ⩁ (a, b) ⇒ν S ⩁ (a, b) := begin intros F x y x_update_R_y, cases x_update_R_y with H H, begin cases H with x_eq_a y_eq_b, existsi vset.prop_insert_self_if_eq X₂ x_eq_a, existsi vset.prop_insert_self_if_eq Y₂ y_eq_b, left, split, exact x_eq_a, exact y_eq_b end, begin cases H with x_ne_a H, cases H with y_ne_b x_R_y, cases F (vname.erase x x_ne_a) (vname.erase y y_ne_b) x_R_y with px H, cases H with py x_S_y, existsi vset.prop_insert a px, existsi vset.prop_insert b py, right, existsi x_ne_a, existsi y_ne_b, exact x_S_y end end end /- section -/ -------------------------------------------------------------- section ------------------------------------------------------------------------ variables {R S : X ×ν Y} -- Variable name set relations -- Lift a simpler function on `vrel` membership to a `map`. protected theorem simple : (∀ (x : ν∈ X) (y : ν∈ Y), ⟪x, y⟫ ∈ν R → ⟪x, y⟫ ∈ν S) → R ⇒ν S := begin intros F x y x_R_y, cases x with x px, cases y with y py, existsi px, existsi py, exact F (vname.map_of_mem ⟨x, px⟩ px) (vname.map_of_mem ⟨y, py⟩ py) x_R_y end end /- section -/ -------------------------------------------------------------- end /- namespace -/ map -------------------------------------------------------- end /- namespace -/ vrel ------------------------------------------------------- end /- namespace -/ acie -------------------------------------------------------
8674289d9c1234c10a6705e2c4fe36920d353c5d
968e2f50b755d3048175f176376eff7139e9df70
/examples/prop_logic_theory/unnamed_1320.lean
27d947c174fca413b670954f440d3357c04af4a4
[]
no_license
gihanmarasingha/mth1001_sphinx
190a003269ba5e54717b448302a27ca26e31d491
05126586cbf5786e521be1ea2ef5b4ba3c44e74a
refs/heads/master
1,672,913,933,677
1,604,516,583,000
1,604,516,583,000
309,245,750
1
0
null
null
null
null
UTF-8
Lean
false
false
713
lean
variables p q r : Prop theorem imp_trans1 : (p → q) → (q → r) → (p → r) := λ h₁ h₂ h₃, h₂ (h₁ h₃) -- BEGIN example (h₁ : p ↔ q) (h₂ : q ↔ r) : p ↔ r := begin split, -- By iff intro., it suffices to prove `p → r` and `r → p`. { show p → r, apply imp_trans1, -- We show `p → r`. By transitivity of `→`, it suffices to prove `p → ?` and `? → r`. { show p → q, from h₁.1, }, -- We show `p → q` by left iff elimination on `h₁`. { show q → r, from h₂.1, }, }, -- We show `q → r` by left iff elimination on `h₂`. { show r → p, sorry }, -- The proof of `r → p` is left to the reader. end -- END
2362ac1ba9043028d7ca31430186534129c416d8
947b78d97130d56365ae2ec264df196ce769371a
/tests/lean/run/finally.lean
3e6999276ecfc733a3ce42de3d9fb972ef574bf3
[ "Apache-2.0" ]
permissive
shyamalschandra/lean4
27044812be8698f0c79147615b1d5090b9f4b037
6e7a883b21eaf62831e8111b251dc9b18f40e604
refs/heads/master
1,671,417,126,371
1,601,859,995,000
1,601,860,020,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,855
lean
new_frontend def checkM (b : IO Bool) : IO Unit := unlessM b (throw $ IO.userError "failed") abbrev M := ExceptT String $ StateRefT Nat $ IO def f1 : M Nat := throw "error 1" def f2 : M Nat := throwThe IO.Error $ IO.userError "error 2" def tst1 : M Nat := «catch» («finally» f1 (do set 100; IO.println "finisher executed")) (fun _ => get) def checkE {α ε : Type} [HasBeq α] (x : IO (Except ε α)) (expected : α) : IO Unit := do let r ← x; (match r with | Except.ok a => «unless» (a == expected) $ throw $ IO.userError "unexpected result" | Except.error _ => throw $ IO.userError "unexpected error") #eval (tst1.run).run' 0 #eval checkE ((tst1.run).run' 0) 100 def tst2 : M Nat := catchThe IO.Error («finally» f2 (do set 100; IO.println "finisher executed")) (fun _ => get) #eval (tst2.run).run' 0 #eval checkE ((tst2.run).run' 0) 100 def tst3 : M Nat := catchThe IO.Error («finally» («finally» f1 (do set 100; IO.println "inner finisher executed"; f2; pure ())) (do modify Nat.succ; IO.println "outer finisher executed")) (fun _ => get) #eval (tst3.run).run' 0 #eval checkE ((tst3.run).run' 0) 101 def tst4 : M Nat := do let a ← «finally» («finally» (pure 42) (do set 100; IO.println "inner finisher executed"; pure ())) (do modify Nat.succ; IO.println "outer finisher executed"); let s ← get; pure (a + s) #eval (tst4.run).run' 0 #eval checkE ((tst4.run).run' 0) 143 def tst5 : M Nat := do let (a, _) ← finally' (pure 42) (fun a? => do IO.println ("finalizer received: " ++ toString a?)); pure a #eval (tst5.run).run' 0 def tst6 : M Nat := do let (a, _) ← finally' f2 (fun a? => do IO.println ("finalizer received: " ++ toString a?)); pure a def tst7 : IO Unit := catchThe IO.Error (do (tst6.run).run' 0; pure ()) (fun _ => IO.println "failed as expected") #eval tst7
9cb163526820740fc0020309f338ca3cf12f9de1
94e33a31faa76775069b071adea97e86e218a8ee
/src/group_theory/group_action/basic.lean
e264febc6ba9c1ee4b5e12b7b391b479c77848cd
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
12,669
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import algebra.hom.group_action import group_theory.group_action.defs import group_theory.group_action.group import data.setoid.basic import data.fintype.card /-! # Basic properties of group actions This file primarily concerns itself with orbits, stabilizers, and other objects defined in terms of actions. Despite this file being called `basic`, low-level helper lemmas for algebraic manipulation of `•` belong elsewhere. ## Main definitions * `mul_action.orbit` * `mul_action.fixed_points` * `mul_action.fixed_by` * `mul_action.stabilizer` -/ universes u v w variables {α : Type u} {β : Type v} {γ : Type w} open_locale big_operators pointwise open function namespace mul_action variables (α) [monoid α] [mul_action α β] /-- The orbit of an element under an action. -/ @[to_additive "The orbit of an element under an action."] def orbit (b : β) := set.range (λ x : α, x • b) variable {α} @[to_additive] lemma mem_orbit_iff {b₁ b₂ : β} : b₂ ∈ orbit α b₁ ↔ ∃ x : α, x • b₁ = b₂ := iff.rfl @[simp, to_additive] lemma mem_orbit (b : β) (x : α) : x • b ∈ orbit α b := ⟨x, rfl⟩ @[simp, to_additive] lemma mem_orbit_self (b : β) : b ∈ orbit α b := ⟨1, by simp [mul_action.one_smul]⟩ @[to_additive] lemma orbit_nonempty (b : β) : set.nonempty (orbit α b) := set.range_nonempty _ @[to_additive] lemma maps_to_smul_orbit (a : α) (b : β) : set.maps_to ((•) a) (orbit α b) (orbit α b) := set.range_subset_iff.2 $ λ a', ⟨a * a', mul_smul _ _ _⟩ @[to_additive] lemma smul_orbit_subset (a : α) (b : β) : a • orbit α b ⊆ orbit α b := (maps_to_smul_orbit a b).image_subset @[to_additive] lemma orbit_smul_subset (a : α) (b : β) : orbit α (a • b) ⊆ orbit α b := set.range_subset_iff.2 $ λ a', mul_smul a' a b ▸ mem_orbit _ _ @[to_additive] instance {b : β} : mul_action α (orbit α b) := { smul := λ a, (maps_to_smul_orbit a b).restrict _ _ _, one_smul := λ a, subtype.ext (one_smul α a), mul_smul := λ a a' b', subtype.ext (mul_smul a a' b') } @[simp, to_additive] lemma orbit.coe_smul {b : β} {a : α} {b' : orbit α b} : ↑(a • b') = a • (b' : β) := rfl variables (α) (β) /-- The set of elements fixed under the whole action. -/ @[to_additive "The set of elements fixed under the whole action."] def fixed_points : set β := {b : β | ∀ x : α, x • b = b} /-- `fixed_by g` is the subfield of elements fixed by `g`. -/ @[to_additive "`fixed_by g` is the subfield of elements fixed by `g`."] def fixed_by (g : α) : set β := { x | g • x = x } @[to_additive] theorem fixed_eq_Inter_fixed_by : fixed_points α β = ⋂ g : α, fixed_by α β g := set.ext $ λ x, ⟨λ hx, set.mem_Inter.2 $ λ g, hx g, λ hx g, by exact (set.mem_Inter.1 hx g : _)⟩ variables {α} (β) @[simp, to_additive] lemma mem_fixed_points {b : β} : b ∈ fixed_points α β ↔ ∀ x : α, x • b = b := iff.rfl @[simp, to_additive] lemma mem_fixed_by {g : α} {b : β} : b ∈ fixed_by α β g ↔ g • b = b := iff.rfl @[to_additive] lemma mem_fixed_points' {b : β} : b ∈ fixed_points α β ↔ (∀ b', b' ∈ orbit α b → b' = b) := ⟨λ h b h₁, let ⟨x, hx⟩ := mem_orbit_iff.1 h₁ in hx ▸ h x, λ h b, h _ (mem_orbit _ _)⟩ variables (α) {β} /-- The stabilizer of a point `b` as a submonoid of `α`. -/ @[to_additive "The stabilizer of a point `b` as an additive submonoid of `α`."] def stabilizer.submonoid (b : β) : submonoid α := { carrier := { a | a • b = b }, one_mem' := one_smul _ b, mul_mem' := λ a a' (ha : a • b = b) (hb : a' • b = b), show (a * a') • b = b, by rw [←smul_smul, hb, ha] } @[simp, to_additive] lemma mem_stabilizer_submonoid_iff {b : β} {a : α} : a ∈ stabilizer.submonoid α b ↔ a • b = b := iff.rfl @[to_additive] lemma orbit_eq_univ [is_pretransitive α β] (x : β) : orbit α x = set.univ := (surjective_smul α x).range_eq variables {α} {β} @[to_additive] lemma mem_fixed_points_iff_card_orbit_eq_one {a : β} [fintype (orbit α a)] : a ∈ fixed_points α β ↔ fintype.card (orbit α a) = 1 := begin rw [fintype.card_eq_one_iff, mem_fixed_points], split, { exact λ h, ⟨⟨a, mem_orbit_self _⟩, λ ⟨b, ⟨x, hx⟩⟩, subtype.eq $ by simp [h x, hx.symm]⟩ }, { assume h x, rcases h with ⟨⟨z, hz⟩, hz₁⟩, calc x • a = z : subtype.mk.inj (hz₁ ⟨x • a, mem_orbit _ _⟩) ... = a : (subtype.mk.inj (hz₁ ⟨a, mem_orbit_self _⟩)).symm } end end mul_action namespace mul_action variable (α) variables [group α] [mul_action α β] /-- The stabilizer of an element under an action, i.e. what sends the element to itself. A subgroup. -/ @[to_additive "The stabilizer of an element under an action, i.e. what sends the element to itself. An additive subgroup."] def stabilizer (b : β) : subgroup α := { inv_mem' := λ a (ha : a • b = b), show a⁻¹ • b = b, by rw [inv_smul_eq_iff, ha] ..stabilizer.submonoid α b } variables {α} {β} @[simp, to_additive] lemma mem_stabilizer_iff {b : β} {a : α} : a ∈ stabilizer α b ↔ a • b = b := iff.rfl @[simp, to_additive] lemma smul_orbit (a : α) (b : β) : a • orbit α b = orbit α b := (smul_orbit_subset a b).antisymm $ calc orbit α b = a • a⁻¹ • orbit α b : (smul_inv_smul _ _).symm ... ⊆ a • orbit α b : set.image_subset _ (smul_orbit_subset _ _) @[simp, to_additive] lemma orbit_smul (a : α) (b : β) : orbit α (a • b) = orbit α b := (orbit_smul_subset a b).antisymm $ calc orbit α b = orbit α (a⁻¹ • a • b) : by rw inv_smul_smul ... ⊆ orbit α (a • b) : orbit_smul_subset _ _ /-- The action of a group on an orbit is transitive. -/ @[to_additive "The action of an additive group on an orbit is transitive."] instance (x : β) : is_pretransitive α (orbit α x) := ⟨by { rintro ⟨_, a, rfl⟩ ⟨_, b, rfl⟩, use b * a⁻¹, ext1, simp [mul_smul] }⟩ @[to_additive] lemma orbit_eq_iff {a b : β} : orbit α a = orbit α b ↔ a ∈ orbit α b:= ⟨λ h, h ▸ mem_orbit_self _, λ ⟨c, hc⟩, hc ▸ orbit_smul _ _⟩ variables (α) {β} @[to_additive] lemma mem_orbit_smul (g : α) (a : β) : a ∈ orbit α (g • a) := by simp only [orbit_smul, mem_orbit_self] @[to_additive] lemma smul_mem_orbit_smul (g h : α) (a : β) : g • a ∈ orbit α (h • a) := by simp only [orbit_smul, mem_orbit] variables (α) (β) /-- The relation 'in the same orbit'. -/ @[to_additive "The relation 'in the same orbit'."] def orbit_rel : setoid β := { r := λ a b, a ∈ orbit α b, iseqv := ⟨mem_orbit_self, λ a b, by simp [orbit_eq_iff.symm, eq_comm], λ a b, by simp [orbit_eq_iff.symm, eq_comm] {contextual := tt}⟩ } local attribute [instance] orbit_rel variables {α} {β} /-- When you take a set `U` in `β`, push it down to the quotient, and pull back, you get the union of the orbit of `U` under `α`. -/ @[to_additive] lemma quotient_preimage_image_eq_union_mul (U : set β) : quotient.mk ⁻¹' (quotient.mk '' U) = ⋃ a : α, ((•) a) '' U := begin set f : β → quotient (mul_action.orbit_rel α β) := quotient.mk, ext, split, { rintros ⟨y , hy, hxy⟩, obtain ⟨a, rfl⟩ := quotient.exact hxy, rw set.mem_Union, exact ⟨a⁻¹, a • x, hy, inv_smul_smul a x⟩ }, { intros hx, rw set.mem_Union at hx, obtain ⟨a, u, hu₁, hu₂⟩ := hx, rw [set.mem_preimage, set.mem_image_iff_bex], refine ⟨a⁻¹ • x, _, by simp only [quotient.eq]; use a⁻¹⟩, rw ← hu₂, convert hu₁, simp only [inv_smul_smul], }, end @[to_additive] lemma disjoint_image_image_iff {U V : set β} : disjoint (quotient.mk '' U) (quotient.mk '' V) ↔ ∀ x ∈ U, ∀ a : α, a • x ∉ V := begin set f : β → quotient (mul_action.orbit_rel α β) := quotient.mk, refine ⟨λ h x x_in_U a a_in_V, h ⟨⟨x, x_in_U, quotient.sound ⟨a⁻¹, _⟩⟩, ⟨a • x, a_in_V, rfl⟩⟩, _⟩, { simp }, { rintro h x ⟨⟨y, hy₁, hy₂⟩, ⟨z, hz₁, hz₂⟩⟩, obtain ⟨a, rfl⟩ := quotient.exact (hz₂.trans hy₂.symm), exact h y hy₁ a hz₁ } end @[to_additive] lemma image_inter_image_iff (U V : set β) : (quotient.mk '' U) ∩ (quotient.mk '' V) = ∅ ↔ ∀ x ∈ U, ∀ a : α, a • x ∉ V := set.disjoint_iff_inter_eq_empty.symm.trans disjoint_image_image_iff variables (α) (β) local notation `Ω` := (quotient $ orbit_rel α β) /-- Decomposition of a type `X` as a disjoint union of its orbits under a group action. This version works with any right inverse to `quotient.mk'` in order to stay computable. In most cases you'll want to use `quotient.out'`, so we provide `mul_action.self_equiv_sigma_orbits` as a special case. -/ @[to_additive "Decomposition of a type `X` as a disjoint union of its orbits under an additive group action. This version works with any right inverse to `quotient.mk'` in order to stay computable. In most cases you'll want to use `quotient.out'`, so we provide `add_action.self_equiv_sigma_orbits` as a special case."] def self_equiv_sigma_orbits' {φ : Ω → β} (hφ : right_inverse φ quotient.mk') : β ≃ Σ (ω : Ω), orbit α (φ ω) := calc β ≃ Σ (ω : Ω), {b // quotient.mk' b = ω} : (equiv.sigma_fiber_equiv quotient.mk').symm ... ≃ Σ (ω : Ω), orbit α (φ ω) : equiv.sigma_congr_right (λ ω, equiv.subtype_equiv_right $ λ x, by {rw [← hφ ω, quotient.eq', hφ ω], refl }) /-- Decomposition of a type `X` as a disjoint union of its orbits under a group action. -/ @[to_additive "Decomposition of a type `X` as a disjoint union of its orbits under an additive group action."] noncomputable def self_equiv_sigma_orbits : β ≃ Σ (ω : Ω), orbit α ω.out' := self_equiv_sigma_orbits' α β quotient.out_eq' variables {α β} /-- If the stabilizer of `x` is `S`, then the stabilizer of `g • x` is `gSg⁻¹`. -/ lemma stabilizer_smul_eq_stabilizer_map_conj (g : α) (x : β) : (stabilizer α (g • x) = (stabilizer α x).map (mul_aut.conj g).to_monoid_hom) := begin ext h, rw [mem_stabilizer_iff, ← smul_left_cancel_iff g⁻¹, smul_smul, smul_smul, smul_smul, mul_left_inv, one_smul, ← mem_stabilizer_iff, subgroup.mem_map_equiv, mul_aut.conj_symm_apply] end /-- A bijection between the stabilizers of two elements in the same orbit. -/ noncomputable def stabilizer_equiv_stabilizer_of_orbit_rel {x y : β} (h : (orbit_rel α β).rel x y) : stabilizer α x ≃* stabilizer α y := let g : α := classical.some h in have hg : g • y = x := classical.some_spec h, have this : stabilizer α x = (stabilizer α y).map (mul_aut.conj g).to_monoid_hom, by rw [← hg, stabilizer_smul_eq_stabilizer_map_conj], (mul_equiv.subgroup_congr this).trans ((mul_aut.conj g).subgroup_map $ stabilizer α y).symm end mul_action namespace add_action variables [add_group α] [add_action α β] /-- If the stabilizer of `x` is `S`, then the stabilizer of `g +ᵥ x` is `g + S + (-g)`. -/ lemma stabilizer_vadd_eq_stabilizer_map_conj (g : α) (x : β) : (stabilizer α (g +ᵥ x) = (stabilizer α x).map (add_aut.conj g).to_add_monoid_hom) := begin ext h, rw [mem_stabilizer_iff, ← vadd_left_cancel_iff (-g) , vadd_vadd, vadd_vadd, vadd_vadd, add_left_neg, zero_vadd, ← mem_stabilizer_iff, add_subgroup.mem_map_equiv, add_aut.conj_symm_apply] end /-- A bijection between the stabilizers of two elements in the same orbit. -/ noncomputable def stabilizer_equiv_stabilizer_of_orbit_rel {x y : β} (h : (orbit_rel α β).rel x y) : stabilizer α x ≃+ stabilizer α y := let g : α := classical.some h in have hg : g +ᵥ y = x := classical.some_spec h, have this : stabilizer α x = (stabilizer α y).map (add_aut.conj g).to_add_monoid_hom, by rw [← hg, stabilizer_vadd_eq_stabilizer_map_conj], (add_equiv.add_subgroup_congr this).trans ((add_aut.conj g).add_subgroup_map $ stabilizer α y).symm end add_action /-- `smul` by a `k : M` over a ring is injective, if `k` is not a zero divisor. The general theory of such `k` is elaborated by `is_smul_regular`. The typeclass that restricts all terms of `M` to have this property is `no_zero_smul_divisors`. -/ lemma smul_cancel_of_non_zero_divisor {M R : Type*} [monoid M] [non_unital_non_assoc_ring R] [distrib_mul_action M R] (k : M) (h : ∀ (x : R), k • x = 0 → x = 0) {a b : R} (h' : k • a = k • b) : a = b := begin rw ←sub_eq_zero, refine h _ _, rw [smul_sub, h', sub_self] end
c782a1429c1d969cf182e5375fb7ad787d2f5d77
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/topology/homotopy/basic.lean
7deeee09350bc9769f4801ddac1beccdff91701f
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
20,466
lean
/- Copyright (c) 2021 Shing Tak Lam. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Shing Tak Lam -/ import topology.algebra.order.proj_Icc import topology.continuous_function.ordered import topology.compact_open import topology.unit_interval /-! # Homotopy between functions In this file, we define a homotopy between two functions `f₀` and `f₁`. First we define `continuous_map.homotopy` between the two functions, with no restrictions on the intermediate maps. Then, as in the formalisation in HOL-Analysis, we define `continuous_map.homotopy_with f₀ f₁ P`, for homotopies between `f₀` and `f₁`, where the intermediate maps satisfy the predicate `P`. Finally, we define `continuous_map.homotopy_rel f₀ f₁ S`, for homotopies between `f₀` and `f₁` which are fixed on `S`. ## Definitions * `continuous_map.homotopy f₀ f₁` is the type of homotopies between `f₀` and `f₁`. * `continuous_map.homotopy_with f₀ f₁ P` is the type of homotopies between `f₀` and `f₁`, where the intermediate maps satisfy the predicate `P`. * `continuous_map.homotopy_rel f₀ f₁ S` is the type of homotopies between `f₀` and `f₁` which are fixed on `S`. For each of the above, we have * `refl f`, which is the constant homotopy from `f` to `f`. * `symm F`, which reverses the homotopy `F`. For example, if `F : continuous_map.homotopy f₀ f₁`, then `F.symm : continuous_map.homotopy f₁ f₀`. * `trans F G`, which concatenates the homotopies `F` and `G`. For example, if `F : continuous_map.homotopy f₀ f₁` and `G : continuous_map.homotopy f₁ f₂`, then `F.trans G : continuous_map.homotopy f₀ f₂`. We also define the relations * `continuous_map.homotopic f₀ f₁` is defined to be `nonempty (continuous_map.homotopy f₀ f₁)` * `continuous_map.homotopic_with f₀ f₁ P` is defined to be `nonempty (continuous_map.homotopy_with f₀ f₁ P)` * `continuous_map.homotopic_rel f₀ f₁ P` is defined to be `nonempty (continuous_map.homotopy_rel f₀ f₁ P)` and for `continuous_map.homotopic` and `continuous_map.homotopic_rel`, we also define the `setoid` and `quotient` in `C(X, Y)` by these relations. ## References - [HOL-Analysis formalisation](https://isabelle.in.tum.de/library/HOL/HOL-Analysis/Homotopy.html) -/ noncomputable theory universes u v w variables {F : Type*} {X : Type u} {Y : Type v} {Z : Type w} variables [topological_space X] [topological_space Y] [topological_space Z] open_locale unit_interval namespace continuous_map /-- `continuous_map.homotopy f₀ f₁` is the type of homotopies from `f₀` to `f₁`. When possible, instead of parametrizing results over `(f : homotopy f₀ f₁)`, you should parametrize over `{F : Type*} [homotopy_like F f₀ f₁] (f : F)`. When you extend this structure, make sure to extend `continuous_map.homotopy_like`. -/ structure homotopy (f₀ f₁ : C(X, Y)) extends C(I × X, Y) := (map_zero_left' : ∀ x, to_fun (0, x) = f₀ x) (map_one_left' : ∀ x, to_fun (1, x) = f₁ x) section set_option old_structure_cmd true /-- `continuous_map.homotopy_like F f₀ f₁` states that `F` is a type of homotopies between `f₀` and `f₁`. You should extend this class when you extend `continuous_map.homotopy`. -/ class homotopy_like (F : Type*) (f₀ f₁ : out_param $ C(X, Y)) extends continuous_map_class F (I × X) Y := (map_zero_left (f : F) : ∀ x, f (0, x) = f₀ x) (map_one_left (f : F) : ∀ x, f (1, x) = f₁ x) end -- `f₀` and `f₁` are `out_param` so this is not dangerous attribute [nolint dangerous_instance] homotopy_like.to_continuous_map_class namespace homotopy section variables {f₀ f₁ : C(X, Y)} instance : homotopy_like (homotopy f₀ f₁) f₀ f₁ := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' }, map_continuous := λ f, f.continuous_to_fun, map_zero_left := λ f, f.map_zero_left', map_one_left := λ f, f.map_one_left' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` directly. -/ instance : has_coe_to_fun (homotopy f₀ f₁) (λ _, I × X → Y) := fun_like.has_coe_to_fun @[ext] lemma ext {F G : homotopy f₀ f₁} (h : ∀ x, F x = G x) : F = G := fun_like.ext _ _ h /-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections. -/ def simps.apply (F : homotopy f₀ f₁) : I × X → Y := F initialize_simps_projections homotopy (to_continuous_map_to_fun -> apply, -to_continuous_map) /-- Deprecated. Use `map_continuous` instead. -/ protected lemma continuous (F : homotopy f₀ f₁) : continuous F := F.continuous_to_fun @[simp] lemma apply_zero (F : homotopy f₀ f₁) (x : X) : F (0, x) = f₀ x := F.map_zero_left' x @[simp] lemma apply_one (F : homotopy f₀ f₁) (x : X) : F (1, x) = f₁ x := F.map_one_left' x @[simp] lemma coe_to_continuous_map (F : homotopy f₀ f₁) : ⇑F.to_continuous_map = F := rfl /-- Currying a homotopy to a continuous function fron `I` to `C(X, Y)`. -/ def curry (F : homotopy f₀ f₁) : C(I, C(X, Y)) := F.to_continuous_map.curry @[simp] lemma curry_apply (F : homotopy f₀ f₁) (t : I) (x : X) : F.curry t x = F (t, x) := rfl /-- Continuously extending a curried homotopy to a function from `ℝ` to `C(X, Y)`. -/ def extend (F : homotopy f₀ f₁) : C(ℝ, C(X, Y)) := F.curry.Icc_extend zero_le_one lemma extend_apply_of_le_zero (F : homotopy f₀ f₁) {t : ℝ} (ht : t ≤ 0) (x : X) : F.extend t x = f₀ x := begin rw [←F.apply_zero], exact continuous_map.congr_fun (set.Icc_extend_of_le_left (zero_le_one' ℝ) F.curry ht) x, end lemma extend_apply_of_one_le (F : homotopy f₀ f₁) {t : ℝ} (ht : 1 ≤ t) (x : X) : F.extend t x = f₁ x := begin rw [←F.apply_one], exact continuous_map.congr_fun (set.Icc_extend_of_right_le (zero_le_one' ℝ) F.curry ht) x, end @[simp] lemma extend_apply_coe (F : homotopy f₀ f₁) (t : I) (x : X) : F.extend t x = F (t, x) := continuous_map.congr_fun (set.Icc_extend_coe (zero_le_one' ℝ) F.curry t) x @[simp] lemma extend_apply_of_mem_I (F : homotopy f₀ f₁) {t : ℝ} (ht : t ∈ I) (x : X) : F.extend t x = F (⟨t, ht⟩, x) := continuous_map.congr_fun (set.Icc_extend_of_mem (zero_le_one' ℝ) F.curry ht) x lemma congr_fun {F G : homotopy f₀ f₁} (h : F = G) (x : I × X) : F x = G x := continuous_map.congr_fun (congr_arg _ h) x lemma congr_arg (F : homotopy f₀ f₁) {x y : I × X} (h : x = y) : F x = F y := F.to_continuous_map.congr_arg h end /-- Given a continuous function `f`, we can define a `homotopy f f` by `F (t, x) = f x` -/ @[simps] def refl (f : C(X, Y)) : homotopy f f := { to_fun := λ x, f x.2, map_zero_left' := λ _, rfl, map_one_left' := λ _, rfl } instance : inhabited (homotopy (continuous_map.id X) (continuous_map.id X)) := ⟨homotopy.refl _⟩ /-- Given a `homotopy f₀ f₁`, we can define a `homotopy f₁ f₀` by reversing the homotopy. -/ @[simps] def symm {f₀ f₁ : C(X, Y)} (F : homotopy f₀ f₁) : homotopy f₁ f₀ := { to_fun := λ x, F (σ x.1, x.2), map_zero_left' := by norm_num, map_one_left' := by norm_num } @[simp] lemma symm_symm {f₀ f₁ : C(X, Y)} (F : homotopy f₀ f₁) : F.symm.symm = F := by { ext, simp } /-- Given `homotopy f₀ f₁` and `homotopy f₁ f₂`, we can define a `homotopy f₀ f₂` by putting the first homotopy on `[0, 1/2]` and the second on `[1/2, 1]`. -/ def trans {f₀ f₁ f₂ : C(X, Y)} (F : homotopy f₀ f₁) (G : homotopy f₁ f₂) : homotopy f₀ f₂ := { to_fun := λ x, if (x.1 : ℝ) ≤ 1/2 then F.extend (2 * x.1) x.2 else G.extend (2 * x.1 - 1) x.2, continuous_to_fun := begin refine continuous_if_le (continuous_induced_dom.comp continuous_fst) continuous_const (F.continuous.comp (by continuity)).continuous_on (G.continuous.comp (by continuity)).continuous_on _, rintros x hx, norm_num [hx], end, map_zero_left' := λ x, by norm_num, map_one_left' := λ x, by norm_num } lemma trans_apply {f₀ f₁ f₂ : C(X, Y)} (F : homotopy f₀ f₁) (G : homotopy f₁ f₂) (x : I × X) : (F.trans G) x = if h : (x.1 : ℝ) ≤ 1/2 then F (⟨2 * x.1, (unit_interval.mul_pos_mem_iff zero_lt_two).2 ⟨x.1.2.1, h⟩⟩, x.2) else G (⟨2 * x.1 - 1, unit_interval.two_mul_sub_one_mem_iff.2 ⟨(not_le.1 h).le, x.1.2.2⟩⟩, x.2) := show ite _ _ _ = _, by split_ifs; { rw [extend, continuous_map.coe_Icc_extend, set.Icc_extend_of_mem], refl } lemma symm_trans {f₀ f₁ f₂ : C(X, Y)} (F : homotopy f₀ f₁) (G : homotopy f₁ f₂) : (F.trans G).symm = G.symm.trans F.symm := begin ext x, simp only [symm_apply, trans_apply], split_ifs with h₁ h₂, { change (x.1 : ℝ) ≤ _ at h₂, change (1 : ℝ) - x.1 ≤ _ at h₁, have ht : (x.1 : ℝ) = 1/2, { linarith }, norm_num [ht] }, { congr' 2, apply subtype.ext, simp only [unit_interval.coe_symm_eq, subtype.coe_mk], linarith }, { congr' 2, apply subtype.ext, simp only [unit_interval.coe_symm_eq, subtype.coe_mk], linarith }, { change ¬ (x.1 : ℝ) ≤ _ at h, change ¬ (1 : ℝ) - x.1 ≤ _ at h₁, exfalso, linarith } end /-- Casting a `homotopy f₀ f₁` to a `homotopy g₀ g₁` where `f₀ = g₀` and `f₁ = g₁`. -/ @[simps] def cast {f₀ f₁ g₀ g₁ : C(X, Y)} (F : homotopy f₀ f₁) (h₀ : f₀ = g₀) (h₁ : f₁ = g₁) : homotopy g₀ g₁ := { to_fun := F, map_zero_left' := by simp [←h₀], map_one_left' := by simp [←h₁] } /-- If we have a `homotopy f₀ f₁` and a `homotopy g₀ g₁`, then we can compose them and get a `homotopy (g₀.comp f₀) (g₁.comp f₁)`. -/ @[simps] def hcomp {f₀ f₁ : C(X, Y)} {g₀ g₁ : C(Y, Z)} (F : homotopy f₀ f₁) (G : homotopy g₀ g₁) : homotopy (g₀.comp f₀) (g₁.comp f₁) := { to_fun := λ x, G (x.1, F x), map_zero_left' := by simp, map_one_left' := by simp } end homotopy /-- Given continuous maps `f₀` and `f₁`, we say `f₀` and `f₁` are homotopic if there exists a `homotopy f₀ f₁`. -/ def homotopic (f₀ f₁ : C(X, Y)) : Prop := nonempty (homotopy f₀ f₁) namespace homotopic @[refl] lemma refl (f : C(X, Y)) : homotopic f f := ⟨homotopy.refl f⟩ @[symm] lemma symm ⦃f g : C(X, Y)⦄ (h : homotopic f g) : homotopic g f := h.map homotopy.symm @[trans] lemma trans ⦃f g h : C(X, Y)⦄ (h₀ : homotopic f g) (h₁ : homotopic g h) : homotopic f h := h₀.map2 homotopy.trans h₁ lemma hcomp {f₀ f₁ : C(X, Y)} {g₀ g₁ : C(Y, Z)} (h₀ : homotopic f₀ f₁) (h₁ : homotopic g₀ g₁) : homotopic (g₀.comp f₀) (g₁.comp f₁) := h₀.map2 homotopy.hcomp h₁ lemma equivalence : equivalence (@homotopic X Y _ _) := ⟨refl, symm, trans⟩ end homotopic /-- The type of homotopies between `f₀ f₁ : C(X, Y)`, where the intermediate maps satisfy the predicate `P : C(X, Y) → Prop` -/ structure homotopy_with (f₀ f₁ : C(X, Y)) (P : C(X, Y) → Prop) extends homotopy f₀ f₁ := (prop' : ∀ t, P ⟨λ x, to_fun (t, x), continuous.comp continuous_to_fun (continuous_const.prod_mk continuous_id')⟩) namespace homotopy_with section variables {f₀ f₁ : C(X, Y)} {P : C(X, Y) → Prop} instance : has_coe_to_fun (homotopy_with f₀ f₁ P) (λ _, I × X → Y) := ⟨λ F, F.to_fun⟩ lemma coe_fn_injective : @function.injective (homotopy_with f₀ f₁ P) (I × X → Y) coe_fn := begin rintros ⟨⟨⟨F, _⟩, _⟩, _⟩ ⟨⟨⟨G, _⟩, _⟩, _⟩ h, congr' 3, end @[ext] lemma ext {F G : homotopy_with f₀ f₁ P} (h : ∀ x, F x = G x) : F = G := coe_fn_injective $ funext h /-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections. -/ def simps.apply (F : homotopy_with f₀ f₁ P) : I × X → Y := F initialize_simps_projections homotopy_with (to_homotopy_to_continuous_map_to_fun -> apply, -to_homotopy_to_continuous_map) @[continuity] protected lemma continuous (F : homotopy_with f₀ f₁ P) : continuous F := F.continuous_to_fun @[simp] lemma apply_zero (F : homotopy_with f₀ f₁ P) (x : X) : F (0, x) = f₀ x := F.map_zero_left' x @[simp] lemma apply_one (F : homotopy_with f₀ f₁ P) (x : X) : F (1, x) = f₁ x := F.map_one_left' x @[simp] lemma coe_to_continuous_map (F : homotopy_with f₀ f₁ P) : ⇑F.to_continuous_map = F := rfl @[simp] lemma coe_to_homotopy (F : homotopy_with f₀ f₁ P) : ⇑F.to_homotopy = F := rfl lemma prop (F : homotopy_with f₀ f₁ P) (t : I) : P (F.to_homotopy.curry t) := F.prop' t lemma extend_prop (F : homotopy_with f₀ f₁ P) (t : ℝ) : P (F.to_homotopy.extend t) := begin by_cases ht₀ : 0 ≤ t, { by_cases ht₁ : t ≤ 1, { convert F.prop ⟨t, ht₀, ht₁⟩, ext, rw [F.to_homotopy.extend_apply_of_mem_I ⟨ht₀, ht₁⟩, F.to_homotopy.curry_apply] }, { convert F.prop 1, ext, rw [F.to_homotopy.extend_apply_of_one_le (le_of_not_le ht₁), F.to_homotopy.curry_apply, F.to_homotopy.apply_one] } }, { convert F.prop 0, ext, rw [F.to_homotopy.extend_apply_of_le_zero (le_of_not_le ht₀), F.to_homotopy.curry_apply, F.to_homotopy.apply_zero] } end end variable {P : C(X, Y) → Prop} /-- Given a continuous function `f`, and a proof `h : P f`, we can define a `homotopy_with f f P` by `F (t, x) = f x` -/ @[simps] def refl (f : C(X, Y)) (hf : P f) : homotopy_with f f P := { prop' := λ t, by { convert hf, cases f, refl }, ..homotopy.refl f } instance : inhabited (homotopy_with (continuous_map.id X) (continuous_map.id X) (λ f, true)) := ⟨homotopy_with.refl _ trivial⟩ /-- Given a `homotopy_with f₀ f₁ P`, we can define a `homotopy_with f₁ f₀ P` by reversing the homotopy. -/ @[simps] def symm {f₀ f₁ : C(X, Y)} (F : homotopy_with f₀ f₁ P) : homotopy_with f₁ f₀ P := { prop' := λ t, by simpa using F.prop (σ t), ..F.to_homotopy.symm } @[simp] lemma symm_symm {f₀ f₁ : C(X, Y)} (F : homotopy_with f₀ f₁ P) : F.symm.symm = F := ext $ homotopy.congr_fun $ homotopy.symm_symm _ /-- Given `homotopy_with f₀ f₁ P` and `homotopy_with f₁ f₂ P`, we can define a `homotopy_with f₀ f₂ P` by putting the first homotopy on `[0, 1/2]` and the second on `[1/2, 1]`. -/ def trans {f₀ f₁ f₂ : C(X, Y)} (F : homotopy_with f₀ f₁ P) (G : homotopy_with f₁ f₂ P) : homotopy_with f₀ f₂ P := { prop' := λ t, begin simp only [homotopy.trans], change P ⟨λ _, ite ((t : ℝ) ≤ _) _ _, _⟩, split_ifs, { exact F.extend_prop _ }, { exact G.extend_prop _ } end, ..F.to_homotopy.trans G.to_homotopy } lemma trans_apply {f₀ f₁ f₂ : C(X, Y)} (F : homotopy_with f₀ f₁ P) (G : homotopy_with f₁ f₂ P) (x : I × X) : (F.trans G) x = if h : (x.1 : ℝ) ≤ 1/2 then F (⟨2 * x.1, (unit_interval.mul_pos_mem_iff zero_lt_two).2 ⟨x.1.2.1, h⟩⟩, x.2) else G (⟨2 * x.1 - 1, unit_interval.two_mul_sub_one_mem_iff.2 ⟨(not_le.1 h).le, x.1.2.2⟩⟩, x.2) := homotopy.trans_apply _ _ _ lemma symm_trans {f₀ f₁ f₂ : C(X, Y)} (F : homotopy_with f₀ f₁ P) (G : homotopy_with f₁ f₂ P) : (F.trans G).symm = G.symm.trans F.symm := ext $ homotopy.congr_fun $ homotopy.symm_trans _ _ /-- Casting a `homotopy_with f₀ f₁ P` to a `homotopy_with g₀ g₁ P` where `f₀ = g₀` and `f₁ = g₁`. -/ @[simps] def cast {f₀ f₁ g₀ g₁ : C(X, Y)} (F : homotopy_with f₀ f₁ P) (h₀ : f₀ = g₀) (h₁ : f₁ = g₁) : homotopy_with g₀ g₁ P := { prop' := F.prop, ..F.to_homotopy.cast h₀ h₁ } end homotopy_with /-- Given continuous maps `f₀` and `f₁`, we say `f₀` and `f₁` are homotopic with respect to the predicate `P` if there exists a `homotopy_with f₀ f₁ P`. -/ def homotopic_with (f₀ f₁ : C(X, Y)) (P : C(X, Y) → Prop) : Prop := nonempty (homotopy_with f₀ f₁ P) namespace homotopic_with variable {P : C(X, Y) → Prop} @[refl] lemma refl (f : C(X, Y)) (hf : P f) : homotopic_with f f P := ⟨homotopy_with.refl f hf⟩ @[symm] lemma symm ⦃f g : C(X, Y)⦄ (h : homotopic_with f g P) : homotopic_with g f P := ⟨h.some.symm⟩ @[trans] lemma trans ⦃f g h : C(X, Y)⦄ (h₀ : homotopic_with f g P) (h₁ : homotopic_with g h P) : homotopic_with f h P := ⟨h₀.some.trans h₁.some⟩ end homotopic_with /-- A `homotopy_rel f₀ f₁ S` is a homotopy between `f₀` and `f₁` which is fixed on the points in `S`. -/ abbreviation homotopy_rel (f₀ f₁ : C(X, Y)) (S : set X) := homotopy_with f₀ f₁ (λ f, ∀ x ∈ S, f x = f₀ x ∧ f x = f₁ x) namespace homotopy_rel section variables {f₀ f₁ : C(X, Y)} {S : set X} lemma eq_fst (F : homotopy_rel f₀ f₁ S) (t : I) {x : X} (hx : x ∈ S) : F (t, x) = f₀ x := (F.prop t x hx).1 lemma eq_snd (F : homotopy_rel f₀ f₁ S) (t : I) {x : X} (hx : x ∈ S) : F (t, x) = f₁ x := (F.prop t x hx).2 lemma fst_eq_snd (F : homotopy_rel f₀ f₁ S) {x : X} (hx : x ∈ S) : f₀ x = f₁ x := F.eq_fst 0 hx ▸ F.eq_snd 0 hx end variables {f₀ f₁ f₂ : C(X, Y)} {S : set X} /-- Given a map `f : C(X, Y)` and a set `S`, we can define a `homotopy_rel f f S` by setting `F (t, x) = f x` for all `t`. This is defined using `homotopy_with.refl`, but with the proof filled in. -/ @[simps] def refl (f : C(X, Y)) (S : set X) : homotopy_rel f f S := homotopy_with.refl f (λ x hx, ⟨rfl, rfl⟩) /-- Given a `homotopy_rel f₀ f₁ S`, we can define a `homotopy_rel f₁ f₀ S` by reversing the homotopy. -/ @[simps] def symm (F : homotopy_rel f₀ f₁ S) : homotopy_rel f₁ f₀ S := { prop' := λ t x hx, by simp [F.eq_snd _ hx, F.fst_eq_snd hx], ..homotopy_with.symm F } @[simp] lemma symm_symm (F : homotopy_rel f₀ f₁ S) : F.symm.symm = F := homotopy_with.symm_symm F /-- Given `homotopy_rel f₀ f₁ S` and `homotopy_rel f₁ f₂ S`, we can define a `homotopy_rel f₀ f₂ S` by putting the first homotopy on `[0, 1/2]` and the second on `[1/2, 1]`. -/ def trans (F : homotopy_rel f₀ f₁ S) (G : homotopy_rel f₁ f₂ S) : homotopy_rel f₀ f₂ S := { prop' := λ t, begin intros x hx, simp only [homotopy.trans], change (⟨λ _, ite ((t : ℝ) ≤ _) _ _, _⟩ : C(X, Y)) _ = _ ∧ _ = _, split_ifs, { simp [(homotopy_with.extend_prop F (2 * t) x hx).1, F.fst_eq_snd hx, G.fst_eq_snd hx] }, { simp [(homotopy_with.extend_prop G (2 * t - 1) x hx).1, F.fst_eq_snd hx, G.fst_eq_snd hx] }, end, ..homotopy.trans F.to_homotopy G.to_homotopy } lemma trans_apply (F : homotopy_rel f₀ f₁ S) (G : homotopy_rel f₁ f₂ S) (x : I × X) : (F.trans G) x = if h : (x.1 : ℝ) ≤ 1/2 then F (⟨2 * x.1, (unit_interval.mul_pos_mem_iff zero_lt_two).2 ⟨x.1.2.1, h⟩⟩, x.2) else G (⟨2 * x.1 - 1, unit_interval.two_mul_sub_one_mem_iff.2 ⟨(not_le.1 h).le, x.1.2.2⟩⟩, x.2) := homotopy.trans_apply _ _ _ lemma symm_trans (F : homotopy_rel f₀ f₁ S) (G : homotopy_rel f₁ f₂ S) : (F.trans G).symm = G.symm.trans F.symm := homotopy_with.ext $ homotopy.congr_fun $ homotopy.symm_trans _ _ /-- Casting a `homotopy_rel f₀ f₁ S` to a `homotopy_rel g₀ g₁ S` where `f₀ = g₀` and `f₁ = g₁`. -/ @[simps] def cast {f₀ f₁ g₀ g₁ : C(X, Y)} (F : homotopy_rel f₀ f₁ S) (h₀ : f₀ = g₀) (h₁ : f₁ = g₁) : homotopy_rel g₀ g₁ S := { prop' := λ t x hx, by { simpa [←h₀, ←h₁] using F.prop t x hx }, ..homotopy.cast F.to_homotopy h₀ h₁ } end homotopy_rel /-- Given continuous maps `f₀` and `f₁`, we say `f₀` and `f₁` are homotopic relative to a set `S` if there exists a `homotopy_rel f₀ f₁ S`. -/ def homotopic_rel (f₀ f₁ : C(X, Y)) (S : set X) : Prop := nonempty (homotopy_rel f₀ f₁ S) namespace homotopic_rel variable {S : set X} @[refl] lemma refl (f : C(X, Y)) : homotopic_rel f f S := ⟨homotopy_rel.refl f S⟩ @[symm] lemma symm ⦃f g : C(X, Y)⦄ (h : homotopic_rel f g S) : homotopic_rel g f S := h.map homotopy_rel.symm @[trans] lemma trans ⦃f g h : C(X, Y)⦄ (h₀ : homotopic_rel f g S) (h₁ : homotopic_rel g h S) : homotopic_rel f h S := h₀.map2 homotopy_rel.trans h₁ lemma equivalence : equivalence (λ f g : C(X, Y), homotopic_rel f g S) := ⟨refl, symm, trans⟩ end homotopic_rel end continuous_map
d78499f02df9db938c886364356b17d2844dad19
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/585c.lean
bb0cbaa27cc246be177d6ff4925f2f6b990ac6eb
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
723
lean
namespace list inductive perm {α} : list α → list α → Prop | nil : perm [] [] | cons : Π (x : α) {l₁ l₂ : list α}, perm l₁ l₂ → perm (x::l₁) (x::l₂) | swap : Π (x y : α) (l : list α), perm (y::x::l) (x::y::l) | trans : Π {l₁ l₂ l₃ : list α}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃ infix ` ~ `:50 := perm @[refl] protected axiom perm.refl {α} : ∀ (l : list α), l ~ l @[symm] protected axiom perm.symm {α} {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₂ ~ l₁ attribute [trans] perm.trans end list example (α) (l : list α) (a b : α) : a :: b :: l ~ b :: a :: l := begin success_if_fail { simp [← list.perm.cons] }, -- 💣 apply list.perm.swap end
4f9e404fe5637a4c39125dc64933d58c15650f0a
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/data/list/range.lean
d1337de1c598025053590b25657934c8a140b7c7
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
8,416
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kenny Lau, Scott Morrison -/ import data.list.chain import data.list.nodup import data.list.of_fn open nat namespace list /- iota and range(') -/ universe u variables {α : Type u} @[simp] theorem length_range' : ∀ (s n : ℕ), length (range' s n) = n | s 0 := rfl | s (n+1) := congr_arg succ (length_range' _ _) @[simp] theorem mem_range' {m : ℕ} : ∀ {s n : ℕ}, m ∈ range' s n ↔ s ≤ m ∧ m < s + n | s 0 := (false_iff _).2 $ λ ⟨H1, H2⟩, not_le_of_lt H2 H1 | s (succ n) := have m = s → m < s + n + 1, from λ e, e ▸ lt_succ_of_le (le_add_right _ _), have l : m = s ∨ s + 1 ≤ m ↔ s ≤ m, by simpa only [eq_comm] using (@le_iff_eq_or_lt _ _ s m).symm, (mem_cons_iff _ _ _).trans $ by simp only [mem_range', or_and_distrib_left, or_iff_right_of_imp this, l, add_right_comm]; refl theorem map_add_range' (a) : ∀ s n : ℕ, map ((+) a) (range' s n) = range' (a + s) n | s 0 := rfl | s (n+1) := congr_arg (cons _) (map_add_range' (s+1) n) theorem map_sub_range' (a) : ∀ (s n : ℕ) (h : a ≤ s), map (λ x, x - a) (range' s n) = range' (s - a) n | s 0 _ := rfl | s (n+1) h := begin convert congr_arg (cons (s-a)) (map_sub_range' (s+1) n (nat.le_succ_of_le h)), rw nat.succ_sub h, refl, end theorem chain_succ_range' : ∀ s n : ℕ, chain (λ a b, b = succ a) s (range' (s+1) n) | s 0 := chain.nil | s (n+1) := (chain_succ_range' (s+1) n).cons rfl theorem chain_lt_range' (s n : ℕ) : chain (<) s (range' (s+1) n) := (chain_succ_range' s n).imp (λ a b e, e.symm ▸ lt_succ_self _) theorem pairwise_lt_range' : ∀ s n : ℕ, pairwise (<) (range' s n) | s 0 := pairwise.nil | s (n+1) := (chain_iff_pairwise (by exact λ a b c, lt_trans)).1 (chain_lt_range' s n) theorem nodup_range' (s n : ℕ) : nodup (range' s n) := (pairwise_lt_range' s n).imp (λ a b, ne_of_lt) @[simp] theorem range'_append : ∀ s m n : ℕ, range' s m ++ range' (s+m) n = range' s (n+m) | s 0 n := rfl | s (m+1) n := show s :: (range' (s+1) m ++ range' (s+m+1) n) = s :: range' (s+1) (n+m), by rw [add_right_comm, range'_append] theorem range'_sublist_right {s m n : ℕ} : range' s m <+ range' s n ↔ m ≤ n := ⟨λ h, by simpa only [length_range'] using length_le_of_sublist h, λ h, by rw [← nat.sub_add_cancel h, ← range'_append]; apply sublist_append_left⟩ theorem range'_subset_right {s m n : ℕ} : range' s m ⊆ range' s n ↔ m ≤ n := ⟨λ h, le_of_not_lt $ λ hn, lt_irrefl (s+n) $ (mem_range'.1 $ h $ mem_range'.2 ⟨le_add_right _ _, nat.add_lt_add_left hn s⟩).2, λ h, (range'_sublist_right.2 h).subset⟩ theorem nth_range' : ∀ s {m n : ℕ}, m < n → nth (range' s n) m = some (s + m) | s 0 (n+1) _ := rfl | s (m+1) (n+1) h := (nth_range' (s+1) (lt_of_add_lt_add_right h)).trans $ by rw add_right_comm; refl theorem range'_concat (s n : ℕ) : range' s (n + 1) = range' s n ++ [s+n] := by rw add_comm n 1; exact (range'_append s n 1).symm theorem range_core_range' : ∀ s n : ℕ, range_core s (range' s n) = range' 0 (n + s) | 0 n := rfl | (s+1) n := by rw [show n+(s+1) = n+1+s, from add_right_comm n s 1]; exact range_core_range' s (n+1) theorem range_eq_range' (n : ℕ) : range n = range' 0 n := (range_core_range' n 0).trans $ by rw zero_add theorem range_succ_eq_map (n : ℕ) : range (n + 1) = 0 :: map succ (range n) := by rw [range_eq_range', range_eq_range', range', add_comm, ← map_add_range']; congr; exact funext one_add theorem range'_eq_map_range (s n : ℕ) : range' s n = map ((+) s) (range n) := by rw [range_eq_range', map_add_range']; refl @[simp] theorem length_range (n : ℕ) : length (range n) = n := by simp only [range_eq_range', length_range'] theorem pairwise_lt_range (n : ℕ) : pairwise (<) (range n) := by simp only [range_eq_range', pairwise_lt_range'] theorem nodup_range (n : ℕ) : nodup (range n) := by simp only [range_eq_range', nodup_range'] theorem range_sublist {m n : ℕ} : range m <+ range n ↔ m ≤ n := by simp only [range_eq_range', range'_sublist_right] theorem range_subset {m n : ℕ} : range m ⊆ range n ↔ m ≤ n := by simp only [range_eq_range', range'_subset_right] @[simp] theorem mem_range {m n : ℕ} : m ∈ range n ↔ m < n := by simp only [range_eq_range', mem_range', nat.zero_le, true_and, zero_add] @[simp] theorem not_mem_range_self {n : ℕ} : n ∉ range n := mt mem_range.1 $ lt_irrefl _ @[simp] theorem self_mem_range_succ (n : ℕ) : n ∈ range (n + 1) := by simp only [succ_pos', lt_add_iff_pos_right, mem_range] theorem nth_range {m n : ℕ} (h : m < n) : nth (range n) m = some m := by simp only [range_eq_range', nth_range' _ h, zero_add] theorem range_concat (n : ℕ) : range (succ n) = range n ++ [n] := by simp only [range_eq_range', range'_concat, zero_add] theorem iota_eq_reverse_range' : ∀ n : ℕ, iota n = reverse (range' 1 n) | 0 := rfl | (n+1) := by simp only [iota, range'_concat, iota_eq_reverse_range' n, reverse_append, add_comm]; refl @[simp] theorem length_iota (n : ℕ) : length (iota n) = n := by simp only [iota_eq_reverse_range', length_reverse, length_range'] theorem pairwise_gt_iota (n : ℕ) : pairwise (>) (iota n) := by simp only [iota_eq_reverse_range', pairwise_reverse, pairwise_lt_range'] theorem nodup_iota (n : ℕ) : nodup (iota n) := by simp only [iota_eq_reverse_range', nodup_reverse, nodup_range'] theorem mem_iota {m n : ℕ} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n := by simp only [iota_eq_reverse_range', mem_reverse, mem_range', add_comm, lt_succ_iff] theorem reverse_range' : ∀ s n : ℕ, reverse (range' s n) = map (λ i, s + n - 1 - i) (range n) | s 0 := rfl | s (n+1) := by rw [range'_concat, reverse_append, range_succ_eq_map]; simpa only [show s + (n + 1) - 1 = s + n, from rfl, (∘), λ a i, show a - 1 - i = a - succ i, from pred_sub _ _, reverse_singleton, map_cons, nat.sub_zero, cons_append, nil_append, eq_self_iff_true, true_and, map_map] using reverse_range' s n /-- All elements of `fin n`, from `0` to `n-1`. -/ def fin_range (n : ℕ) : list (fin n) := (range n).pmap fin.mk (λ _, list.mem_range.1) @[simp] lemma mem_fin_range {n : ℕ} (a : fin n) : a ∈ fin_range n := mem_pmap.2 ⟨a.1, mem_range.2 a.2, fin.eta _ _⟩ lemma nodup_fin_range (n : ℕ) : (fin_range n).nodup := nodup_pmap (λ _ _ _ _, fin.veq_of_eq) (nodup_range _) @[simp] lemma length_fin_range (n : ℕ) : (fin_range n).length = n := by rw [fin_range, length_pmap, length_range] @[to_additive] theorem prod_range_succ {α : Type u} [monoid α] (f : ℕ → α) (n : ℕ) : ((range n.succ).map f).prod = ((range n).map f).prod * f n := by rw [range_concat, map_append, map_singleton, prod_append, prod_cons, prod_nil, mul_one] /-- A variant of `prod_range_succ` which pulls off the first term in the product rather than the last.-/ @[to_additive "A variant of `sum_range_succ` which pulls off the first term in the sum rather than the last."] theorem prod_range_succ' {α : Type u} [monoid α] (f : ℕ → α) (n : ℕ) : ((range n.succ).map f).prod = f 0 * ((range n).map (λ i, f (succ i))).prod := nat.rec_on n (show 1 * f 0 = f 0 * 1, by rw [one_mul, mul_one]) (λ _ hd, by rw [list.prod_range_succ, hd, mul_assoc, ←list.prod_range_succ]) @[simp] theorem enum_from_map_fst : ∀ n (l : list α), map prod.fst (enum_from n l) = range' n l.length | n [] := rfl | n (a :: l) := congr_arg (cons _) (enum_from_map_fst _ _) @[simp] theorem enum_map_fst (l : list α) : map prod.fst (enum l) = range l.length := by simp only [enum, enum_from_map_fst, range_eq_range'] @[simp] lemma nth_le_range {n} (i) (H : i < (range n).length) : nth_le (range n) i H = i := option.some.inj $ by rw [← nth_le_nth _, nth_range (by simpa using H)] theorem of_fn_eq_pmap {α n} {f : fin n → α} : of_fn f = pmap (λ i hi, f ⟨i, hi⟩) (range n) (λ _, mem_range.1) := by rw [pmap_eq_map_attach]; from ext_le (by simp) (λ i hi1 hi2, by { simp at hi1, simp [nth_le_of_fn f ⟨i, hi1⟩, -subtype.val_eq_coe] }) theorem nodup_of_fn {α n} {f : fin n → α} (hf : function.injective f) : nodup (of_fn f) := by rw of_fn_eq_pmap; from nodup_pmap (λ _ _ _ _ H, fin.veq_of_eq $ hf H) (nodup_range n) end list
29a76e212f917bfa6403659f8216f639ec0991f5
2cf781335f4a6706b7452ab07ce323201e2e101f
/lean/imap.lean
63984fd9d9bcf1cb8777718032695d2b93af1148
[ "Apache-2.0" ]
permissive
simonjwinwood/reopt-vcg
697cdd5e68366b5aa3298845eebc34fc97ccfbe2
6aca24e759bff4f2230bb58270bac6746c13665e
refs/heads/master
1,586,353,878,347
1,549,667,148,000
1,549,667,148,000
159,409,828
0
0
null
1,543,358,444,000
1,543,358,444,000
null
UTF-8
Lean
false
false
931
lean
/- A simple interval map -/ structure {u v} data.imap.imap_entry (k : Type u) (val : Type v) : Type (max u v) := (start : k) (extent : k) (value : val) def {u v} data.imap (k : Type u) (val : Type v) (lt : k -> k -> Prop) := list (data.imap.imap_entry k val) namespace data.imap section universes u v parameters {k : Type u} {val : Type v} {lt : k -> k -> Prop} [has_add k] [decidable_rel lt] def in_entry (key : k) (e : imap_entry k val) : bool := not (lt key e.start) ∧ lt key (e.start + e.extent) def lookup (key : k) : data.imap k val lt -> option (k × val) | [] := none | (e :: m) := if in_entry key e then some (e.start, e.value) else lookup m -- FIXME: add overlap check def insert (start : k) (extent : k) (value : val) : data.imap k val lt -> data.imap k val lt := λm, { start := start, extent := extent, value := value } :: m end end data.imap
db25385559076be225d8a2ba56e5792c8f7c6ce6
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/test/rat.lean
737f416d316fa57d9704965219d4904c1f3e1f34
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
308
lean
import data.rat.meta_defs run_cmd let q : ℚ := 3/15 in guard $ (reflect q : expr) = `((1/5 : ℚ)) constants (α : Type) (h : field α) attribute [instance] h run_cmd guard $ expr.eval_rat `(1/3 - 100/6 : α) = some (-49/3) run_cmd guard $ (expr.eval_rat ∘ rat.reflect) (-(5/3) : ℚ) = some (-5/3)
df48dd099343efda091cc6e7b289fa2b35c243d4
2fbe653e4bc441efde5e5d250566e65538709888
/src/data/set/finite.lean
fe1f840cba7a7bfac187c274abd7276b25588c04
[ "Apache-2.0" ]
permissive
aceg00/mathlib
5e15e79a8af87ff7eb8c17e2629c442ef24e746b
8786ea6d6d46d6969ac9a869eb818bf100802882
refs/heads/master
1,649,202,698,930
1,580,924,783,000
1,580,924,783,000
149,197,272
0
0
Apache-2.0
1,537,224,208,000
1,537,224,207,000
null
UTF-8
Lean
false
false
22,874
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro Finite sets. -/ import logic.function import data.nat.basic data.fintype data.set.lattice data.set.function open set lattice function universes u v w x variables {α : Type u} {β : Type v} {ι : Sort w} {γ : Type x} namespace set /-- A set is finite if the subtype is a fintype, i.e. there is a list that enumerates its members. -/ def finite (s : set α) : Prop := nonempty (fintype s) /-- A set is infinite if it is not finite. -/ def infinite (s : set α) : Prop := ¬ finite s /-- The subtype corresponding to a finite set is a finite type. Note that because `finite` isn't a typeclass, this will not fire if it is made into an instance -/ noncomputable def finite.fintype {s : set α} (h : finite s) : fintype s := classical.choice h /-- Get a finset from a finite set -/ noncomputable def finite.to_finset {s : set α} (h : finite s) : finset α := @set.to_finset _ _ (finite.fintype h) @[simp] theorem finite.mem_to_finset {s : set α} {h : finite s} {a : α} : a ∈ h.to_finset ↔ a ∈ s := @mem_to_finset _ _ (finite.fintype h) _ lemma finite.coe_to_finset {α} {s : set α} (h : finite s) : ↑h.to_finset = s := by { ext, apply mem_to_finset } theorem finite.exists_finset {s : set α} : finite s → ∃ s' : finset α, ∀ a : α, a ∈ s' ↔ a ∈ s | ⟨h⟩ := by exactI ⟨to_finset s, λ _, mem_to_finset⟩ theorem finite.exists_finset_coe {s : set α} (hs : finite s) : ∃ s' : finset α, ↑s' = s := ⟨hs.to_finset, hs.coe_to_finset⟩ /-- Finite sets can be lifted to finsets. -/ instance : can_lift (set α) (finset α) := { coe := coe, cond := finite, prf := λ s hs, hs.exists_finset_coe } theorem finite_mem_finset (s : finset α) : finite {a | a ∈ s} := ⟨fintype.of_finset s (λ _, iff.rfl)⟩ theorem finite.of_fintype [fintype α] (s : set α) : finite s := by classical; exact ⟨set_fintype s⟩ /-- Membership of a subset of a finite type is decidable. Using this as an instance leads to potential loops with `subtype.fintype` under certain decidability assumptions, so it should only be declared a local instance. -/ def decidable_mem_of_fintype [decidable_eq α] (s : set α) [fintype s] (a) : decidable (a ∈ s) := decidable_of_iff _ mem_to_finset instance fintype_empty : fintype (∅ : set α) := fintype.of_finset ∅ $ by simp theorem empty_card : fintype.card (∅ : set α) = 0 := rfl @[simp] theorem empty_card' {h : fintype.{u} (∅ : set α)} : @fintype.card (∅ : set α) h = 0 := eq.trans (by congr) empty_card @[simp] theorem finite_empty : @finite α ∅ := ⟨set.fintype_empty⟩ def fintype_insert' {a : α} (s : set α) [fintype s] (h : a ∉ s) : fintype (insert a s : set α) := fintype.of_finset ⟨a :: s.to_finset.1, multiset.nodup_cons_of_nodup (by simp [h]) s.to_finset.2⟩ $ by simp theorem card_fintype_insert' {a : α} (s : set α) [fintype s] (h : a ∉ s) : @fintype.card _ (fintype_insert' s h) = fintype.card s + 1 := by rw [fintype_insert', fintype.card_of_finset]; simp [finset.card, to_finset]; refl @[simp] theorem card_insert {a : α} (s : set α) [fintype s] (h : a ∉ s) {d : fintype.{u} (insert a s : set α)} : @fintype.card _ d = fintype.card s + 1 := by rw ← card_fintype_insert' s h; congr lemma card_image_of_inj_on {s : set α} [fintype s] {f : α → β} [fintype (f '' s)] (H : ∀x∈s, ∀y∈s, f x = f y → x = y) : fintype.card (f '' s) = fintype.card s := by haveI := classical.prop_decidable; exact calc fintype.card (f '' s) = (s.to_finset.image f).card : fintype.card_of_finset' _ (by simp) ... = s.to_finset.card : finset.card_image_of_inj_on (λ x hx y hy hxy, H x (mem_to_finset.1 hx) y (mem_to_finset.1 hy) hxy) ... = fintype.card s : (fintype.card_of_finset' _ (λ a, mem_to_finset)).symm lemma card_image_of_injective (s : set α) [fintype s] {f : α → β} [fintype (f '' s)] (H : function.injective f) : fintype.card (f '' s) = fintype.card s := card_image_of_inj_on $ λ _ _ _ _ h, H h section local attribute [instance] decidable_mem_of_fintype instance fintype_insert [decidable_eq α] (a : α) (s : set α) [fintype s] : fintype (insert a s : set α) := if h : a ∈ s then by rwa [insert_eq, union_eq_self_of_subset_left (singleton_subset_iff.2 h)] else fintype_insert' _ h end @[simp] theorem finite_insert (a : α) {s : set α} : finite s → finite (insert a s) | ⟨h⟩ := ⟨@set.fintype_insert _ (classical.dec_eq α) _ _ h⟩ lemma to_finset_insert [decidable_eq α] {a : α} {s : set α} (hs : finite s) : (finite_insert a hs).to_finset = insert a hs.to_finset := finset.ext.mpr $ by simp @[elab_as_eliminator] theorem finite.induction_on {C : set α → Prop} {s : set α} (h : finite s) (H0 : C ∅) (H1 : ∀ {a s}, a ∉ s → finite s → C s → C (insert a s)) : C s := let ⟨t⟩ := h in by exactI match s.to_finset, @mem_to_finset _ s _ with | ⟨l, nd⟩, al := begin change ∀ a, a ∈ l ↔ a ∈ s at al, clear _let_match _match t h, revert s nd al, refine multiset.induction_on l _ (λ a l IH, _); intros s nd al, { rw show s = ∅, from eq_empty_iff_forall_not_mem.2 (by simpa using al), exact H0 }, { rw ← show insert a {x | x ∈ l} = s, from set.ext (by simpa using al), cases multiset.nodup_cons.1 nd with m nd', refine H1 _ ⟨finset.subtype.fintype ⟨l, nd'⟩⟩ (IH nd' (λ _, iff.rfl)), exact m } end end @[elab_as_eliminator] theorem finite.dinduction_on {C : ∀s:set α, finite s → Prop} {s : set α} (h : finite s) (H0 : C ∅ finite_empty) (H1 : ∀ {a s}, a ∉ s → ∀h:finite s, C s h → C (insert a s) (finite_insert a h)) : C s h := have ∀h:finite s, C s h, from finite.induction_on h (assume h, H0) (assume a s has hs ih h, H1 has hs (ih _)), this h instance fintype_singleton (a : α) : fintype ({a} : set α) := fintype_insert' _ (not_mem_empty _) @[simp] theorem card_singleton (a : α) : fintype.card ({a} : set α) = 1 := by rw [show fintype.card ({a} : set α) = _, from card_fintype_insert' ∅ (not_mem_empty a)]; refl @[simp] theorem finite_singleton (a : α) : finite ({a} : set α) := ⟨set.fintype_singleton _⟩ instance fintype_pure : ∀ a : α, fintype (pure a : set α) := set.fintype_singleton theorem finite_pure (a : α) : finite (pure a : set α) := ⟨set.fintype_pure a⟩ instance fintype_univ [fintype α] : fintype (@univ α) := fintype.of_equiv α $ (equiv.set.univ α).symm theorem finite_univ [fintype α] : finite (@univ α) := ⟨set.fintype_univ⟩ theorem infinite_univ_iff : (@univ α).infinite ↔ _root_.infinite α := ⟨λ h₁, ⟨λ h₂, h₁ $ @finite_univ α h₂⟩, λ ⟨h₁⟩ ⟨h₂⟩, h₁ $ @fintype.of_equiv _ _ h₂ $ equiv.set.univ _⟩ theorem infinite_univ [h : _root_.infinite α] : infinite (@univ α) := infinite_univ_iff.2 h instance fintype_union [decidable_eq α] (s t : set α) [fintype s] [fintype t] : fintype (s ∪ t : set α) := fintype.of_finset (s.to_finset ∪ t.to_finset) $ by simp theorem finite_union {s t : set α} : finite s → finite t → finite (s ∪ t) | ⟨hs⟩ ⟨ht⟩ := ⟨@set.fintype_union _ (classical.dec_eq α) _ _ hs ht⟩ instance fintype_sep (s : set α) (p : α → Prop) [fintype s] [decidable_pred p] : fintype ({a ∈ s | p a} : set α) := fintype.of_finset (s.to_finset.filter p) $ by simp instance fintype_inter (s t : set α) [fintype s] [decidable_pred t] : fintype (s ∩ t : set α) := set.fintype_sep s t def fintype_subset (s : set α) {t : set α} [fintype s] [decidable_pred t] (h : t ⊆ s) : fintype t := by rw ← inter_eq_self_of_subset_right h; apply_instance theorem finite_subset {s : set α} : finite s → ∀ {t : set α}, t ⊆ s → finite t | ⟨hs⟩ t h := ⟨@set.fintype_subset _ _ _ hs (classical.dec_pred t) h⟩ instance fintype_image [decidable_eq β] (s : set α) (f : α → β) [fintype s] : fintype (f '' s) := fintype.of_finset (s.to_finset.image f) $ by simp instance fintype_range [decidable_eq β] (f : α → β) [fintype α] : fintype (range f) := fintype.of_finset (finset.univ.image f) $ by simp [range] theorem finite_range (f : α → β) [fintype α] : finite (range f) := by haveI := classical.dec_eq β; exact ⟨by apply_instance⟩ theorem finite_image {s : set α} (f : α → β) : finite s → finite (f '' s) | ⟨h⟩ := ⟨@set.fintype_image _ _ (classical.dec_eq β) _ _ h⟩ instance fintype_map {α β} [decidable_eq β] : ∀ (s : set α) (f : α → β) [fintype s], fintype (f <$> s) := set.fintype_image theorem finite_map {α β} {s : set α} : ∀ (f : α → β), finite s → finite (f <$> s) := finite_image def fintype_of_fintype_image (s : set α) {f : α → β} {g} (I : is_partial_inv f g) [fintype (f '' s)] : fintype s := fintype.of_finset ⟨_, @multiset.nodup_filter_map β α g _ (@injective_of_partial_inv_right _ _ f g I) (f '' s).to_finset.2⟩ $ λ a, begin suffices : (∃ b x, f x = b ∧ g b = some a ∧ x ∈ s) ↔ a ∈ s, by simpa [exists_and_distrib_left.symm, and.comm, and.left_comm, and.assoc], rw exists_swap, suffices : (∃ x, x ∈ s ∧ g (f x) = some a) ↔ a ∈ s, {simpa [and.comm, and.left_comm, and.assoc]}, simp [I _, (injective_of_partial_inv I).eq_iff] end theorem finite_of_finite_image_on {s : set α} {f : α → β} (hi : set.inj_on f s) : finite (f '' s) → finite s | ⟨h⟩ := ⟨@fintype.of_injective _ _ h (λa:s, ⟨f a.1, mem_image_of_mem f a.2⟩) $ assume a b eq, subtype.eq $ hi a.2 b.2 $ subtype.ext.1 eq⟩ theorem finite_image_iff_on {s : set α} {f : α → β} (hi : inj_on f s) : finite (f '' s) ↔ finite s := ⟨finite_of_finite_image_on hi, finite_image _⟩ theorem finite_of_finite_image {s : set α} {f : α → β} (I : set.inj_on f s) : finite (f '' s) → finite s := finite_of_finite_image_on I theorem finite_preimage {s : set β} {f : α → β} (I : set.inj_on f (f⁻¹' s)) (h : finite s) : finite (f ⁻¹' s) := finite_of_finite_image I (finite_subset h (image_preimage_subset f s)) instance fintype_Union [decidable_eq α] {ι : Type*} [fintype ι] (f : ι → set α) [∀ i, fintype (f i)] : fintype (⋃ i, f i) := fintype.of_finset (finset.univ.bind (λ i, (f i).to_finset)) $ by simp theorem finite_Union {ι : Type*} [fintype ι] {f : ι → set α} (H : ∀i, finite (f i)) : finite (⋃ i, f i) := ⟨@set.fintype_Union _ (classical.dec_eq α) _ _ _ (λ i, finite.fintype (H i))⟩ def fintype_bUnion [decidable_eq α] {ι : Type*} {s : set ι} [fintype s] (f : ι → set α) (H : ∀ i ∈ s, fintype (f i)) : fintype (⋃ i ∈ s, f i) := by rw bUnion_eq_Union; exact @set.fintype_Union _ _ _ _ _ (by rintro ⟨i, hi⟩; exact H i hi) instance fintype_bUnion' [decidable_eq α] {ι : Type*} {s : set ι} [fintype s] (f : ι → set α) [H : ∀ i, fintype (f i)] : fintype (⋃ i ∈ s, f i) := fintype_bUnion _ (λ i _, H i) theorem finite_sUnion {s : set (set α)} (h : finite s) (H : ∀t∈s, finite t) : finite (⋃₀ s) := by rw sUnion_eq_Union; haveI := finite.fintype h; apply finite_Union; simpa using H theorem finite_bUnion {α} {ι : Type*} {s : set ι} {f : ι → set α} : finite s → (∀i, finite (f i)) → finite (⋃ i∈s, f i) | ⟨hs⟩ h := by rw [bUnion_eq_Union]; exactI finite_Union (λ i, h _) theorem finite_bUnion' {α} {ι : Type*} {s : set ι} (f : ι → set α) : finite s → (∀i ∈ s, finite (f i)) → finite (⋃ i∈s, f i) | ⟨hs⟩ h := by { rw [bUnion_eq_Union], exactI finite_Union (λ i, h i.1 i.2) } instance fintype_lt_nat (n : ℕ) : fintype {i | i < n} := fintype.of_finset (finset.range n) $ by simp instance fintype_le_nat (n : ℕ) : fintype {i | i ≤ n} := by simpa [nat.lt_succ_iff] using set.fintype_lt_nat (n+1) lemma finite_le_nat (n : ℕ) : finite {i | i ≤ n} := ⟨set.fintype_le_nat _⟩ lemma finite_lt_nat (n : ℕ) : finite {i | i < n} := ⟨set.fintype_lt_nat _⟩ instance fintype_prod (s : set α) (t : set β) [fintype s] [fintype t] : fintype (set.prod s t) := fintype.of_finset (s.to_finset.product t.to_finset) $ by simp lemma finite_prod {s : set α} {t : set β} : finite s → finite t → finite (set.prod s t) | ⟨hs⟩ ⟨ht⟩ := by exactI ⟨set.fintype_prod s t⟩ def fintype_bind {α β} [decidable_eq β] (s : set α) [fintype s] (f : α → set β) (H : ∀ a ∈ s, fintype (f a)) : fintype (s >>= f) := set.fintype_bUnion _ H instance fintype_bind' {α β} [decidable_eq β] (s : set α) [fintype s] (f : α → set β) [H : ∀ a, fintype (f a)] : fintype (s >>= f) := fintype_bind _ _ (λ i _, H i) theorem finite_bind {α β} {s : set α} {f : α → set β} : finite s → (∀ a ∈ s, finite (f a)) → finite (s >>= f) | ⟨hs⟩ H := ⟨@fintype_bind _ _ (classical.dec_eq β) _ hs _ (λ a ha, (H a ha).fintype)⟩ instance fintype_seq {α β : Type u} [decidable_eq β] (f : set (α → β)) (s : set α) [fintype f] [fintype s] : fintype (f <*> s) := by rw seq_eq_bind_map; apply set.fintype_bind' theorem finite_seq {α β : Type u} {f : set (α → β)} {s : set α} : finite f → finite s → finite (f <*> s) | ⟨hf⟩ ⟨hs⟩ := by { haveI := classical.dec_eq β, exactI ⟨set.fintype_seq _ _⟩ } /-- There are finitely many subsets of a given finite set -/ lemma finite_subsets_of_finite {α : Type u} {a : set α} (h : finite a) : finite {b | b ⊆ a} := begin -- we just need to translate the result, already known for finsets, -- to the language of finite sets let s := coe '' ((finset.powerset (finite.to_finset h)).to_set), have : finite s := finite_image _ (finite_mem_finset _), have : {b | b ⊆ a} ⊆ s := begin assume b hb, rw [set.mem_image], rw [set.mem_set_of_eq] at hb, let b' : finset α := finite.to_finset (finite_subset h hb), have : b' ∈ (finset.powerset (finite.to_finset h)).to_set := show b' ∈ (finset.powerset (finite.to_finset h)), by simp [b', finset.subset_iff]; exact hb, have : coe b' = b := by ext; simp, exact ⟨b', by assumption, by assumption⟩ end, exact finite_subset ‹finite s› this end lemma exists_min [decidable_linear_order β] (s : set α) (f : α → β) (h1 : finite s) : s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f a ≤ f b | ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset] using (finite.to_finset h1).exists_min f ⟨x, finite.mem_to_finset.2 hx⟩ end set namespace finset variables [decidable_eq β] variables {s t u : finset α} {f : α → β} {a : α} lemma finite_to_set (s : finset α) : set.finite (↑s : set α) := set.finite_mem_finset s @[simp] lemma coe_bind {f : α → finset β} : ↑(s.bind f) = (⋃x ∈ (↑s : set α), ↑(f x) : set β) := by simp [set.ext_iff] @[simp] lemma coe_to_finset {s : set α} {hs : set.finite s} : ↑(hs.to_finset) = s := by simp [set.ext_iff] @[simp] lemma coe_to_finset' (s : set α) [fintype s] : (↑s.to_finset : set α) = s := by ext; simp end finset namespace set lemma finite_subset_Union {s : set α} (hs : finite s) {ι} {t : ι → set α} (h : s ⊆ ⋃ i, t i) : ∃ I : set ι, finite I ∧ s ⊆ ⋃ i ∈ I, t i := begin unfreezeI, cases hs, choose f hf using show ∀ x : s, ∃ i, x.1 ∈ t i, {simpa [subset_def] using h}, refine ⟨range f, finite_range f, _⟩, rintro x hx, simp, exact ⟨_, ⟨_, hx, rfl⟩, hf ⟨x, hx⟩⟩ end lemma finite_range_ite {p : α → Prop} [decidable_pred p] {f g : α → β} (hf : finite (range f)) (hg : finite (range g)) : finite (range (λ x, if p x then f x else g x)) := finite_subset (finite_union hf hg) range_ite_subset lemma finite_range_const {c : β} : finite (range (λ x : α, c)) := finite_subset (finite_singleton c) range_const_subset lemma range_find_greatest_subset {P : α → ℕ → Prop} [∀ x, decidable_pred (P x)] {b : ℕ}: range (λ x, nat.find_greatest (P x) b) ⊆ ↑(finset.range (b + 1)) := by { rw range_subset_iff, assume x, simp [nat.lt_succ_iff, nat.find_greatest_le] } lemma finite_range_find_greatest {P : α → ℕ → Prop} [∀ x, decidable_pred (P x)] {b : ℕ} : finite (range (λ x, nat.find_greatest (P x) b)) := finite_subset (finset.finite_to_set $ finset.range (b + 1)) range_find_greatest_subset lemma card_lt_card {s t : set α} [fintype s] [fintype t] (h : s ⊂ t) : fintype.card s < fintype.card t := begin haveI := classical.prop_decidable, rw [← finset.coe_to_finset' s, ← finset.coe_to_finset' t, finset.coe_ssubset] at h, rw [fintype.card_of_finset' _ (λ x, mem_to_finset), fintype.card_of_finset' _ (λ x, mem_to_finset)], exact finset.card_lt_card h, end lemma card_le_of_subset {s t : set α} [fintype s] [fintype t] (hsub : s ⊆ t) : fintype.card s ≤ fintype.card t := calc fintype.card s = s.to_finset.card : fintype.card_of_finset' _ (by simp) ... ≤ t.to_finset.card : finset.card_le_of_subset (λ x hx, by simp [set.subset_def, *] at *) ... = fintype.card t : eq.symm (fintype.card_of_finset' _ (by simp)) lemma eq_of_subset_of_card_le {s t : set α} [fintype s] [fintype t] (hsub : s ⊆ t) (hcard : fintype.card t ≤ fintype.card s) : s = t := (eq_or_ssubset_of_subset hsub).elim id (λ h, absurd hcard $ not_le_of_lt $ card_lt_card h) lemma card_range_of_injective [fintype α] {f : α → β} (hf : injective f) [fintype (range f)] : fintype.card (range f) = fintype.card α := eq.symm $ fintype.card_congr (@equiv.of_bijective _ _ (λ a : α, show range f, from ⟨f a, a, rfl⟩) ⟨λ x y h, hf $ subtype.mk.inj h, λ b, let ⟨a, ha⟩ := b.2 in ⟨a, by simp *⟩⟩) lemma finite.exists_maximal_wrt [partial_order β] (f : α → β) (s : set α) (h : set.finite s) : s.nonempty → ∃a∈s, ∀a'∈s, f a ≤ f a' → f a = f a' := begin classical, refine h.induction_on _ _, { assume h, exact absurd h empty_not_nonempty }, assume a s his _ ih _, cases s.eq_empty_or_nonempty with h h, { use a, simp [h] }, rcases ih h with ⟨b, hb, ih⟩, by_cases f b ≤ f a, { refine ⟨a, set.mem_insert _ _, assume c hc hac, le_antisymm hac _⟩, rcases set.mem_insert_iff.1 hc with rfl | hcs, { refl }, { rwa [← ih c hcs (le_trans h hac)] } }, { refine ⟨b, set.mem_insert_of_mem _ hb, assume c hc hbc, _⟩, rcases set.mem_insert_iff.1 hc with rfl | hcs, { exact (h hbc).elim }, { exact ih c hcs hbc } } end section local attribute [instance, priority 1] classical.prop_decidable lemma to_finset_card {α : Type*} [fintype α] (H : set α) : H.to_finset.card = fintype.card H := multiset.card_map subtype.val finset.univ.val lemma to_finset_inter {α : Type*} [fintype α] (s t : set α) [decidable_eq α] : (s ∩ t).to_finset = s.to_finset ∩ t.to_finset := by ext; simp end section variables [semilattice_sup α] [nonempty α] {s : set α} /--A finite set is bounded above.-/ lemma bdd_above_finite (hs : finite s) : bdd_above s := finite.induction_on hs bdd_above_empty $ λ a s _ _, bdd_above_insert.2 /--A finite union of sets which are all bounded above is still bounded above.-/ lemma bdd_above_finite_union {I : set β} {S : β → set α} (H : finite I) : (bdd_above (⋃i∈I, S i)) ↔ (∀i ∈ I, bdd_above (S i)) := ⟨λ (bdd : bdd_above (⋃i∈I, S i)) i (hi : i ∈ I), bdd_above_subset (subset_bUnion_of_mem hi) bdd, show (∀i ∈ I, bdd_above (S i)) → (bdd_above (⋃i∈I, S i)), from finite.induction_on H (λ _, by rw bUnion_empty; exact bdd_above_empty) (λ x s hn hf IH h, by simp only [ set.mem_insert_iff, or_imp_distrib, forall_and_distrib, forall_eq] at h; rw [set.bUnion_insert, bdd_above_union]; exact ⟨h.1, IH h.2⟩)⟩ end section variables [semilattice_inf α] [nonempty α] {s : set α} /--A finite set is bounded below.-/ lemma bdd_below_finite (hs : finite s) : bdd_below s := finite.induction_on hs bdd_below_empty $ λ a s _ _, bdd_below_insert.2 /--A finite union of sets which are all bounded below is still bounded below.-/ lemma bdd_below_finite_union {I : set β} {S : β → set α} (H : finite I) : (bdd_below (⋃i∈I, S i)) ↔ (∀i ∈ I, bdd_below (S i)) := ⟨λ (bdd : bdd_below (⋃i∈I, S i)) i (hi : i ∈ I), bdd_below_subset (subset_bUnion_of_mem hi) bdd, show (∀i ∈ I, bdd_below (S i)) → (bdd_below (⋃i∈I, S i)), from finite.induction_on H (λ _, by rw bUnion_empty; exact bdd_below_empty) (λ x s hn hf IH h, by simp only [ set.mem_insert_iff, or_imp_distrib, forall_and_distrib, forall_eq] at h; rw [set.bUnion_insert, bdd_below_union]; exact ⟨h.1, IH h.2⟩)⟩ end end set namespace finset section preimage noncomputable def preimage {f : α → β} (s : finset β) (hf : set.inj_on f (f ⁻¹' ↑s)) : finset α := set.finite.to_finset (set.finite_preimage hf (set.finite_mem_finset s)) @[simp] lemma mem_preimage {f : α → β} {s : finset β} {hf : set.inj_on f (f ⁻¹' ↑s)} {x : α} : x ∈ preimage s hf ↔ f x ∈ s := by simp [preimage] @[simp] lemma coe_preimage {f : α → β} (s : finset β) (hf : set.inj_on f (f ⁻¹' ↑s)) : (↑(preimage s hf) : set α) = f ⁻¹' ↑s := by simp [set.ext_iff] lemma image_preimage [decidable_eq β] (f : α → β) (s : finset β) (hf : set.bij_on f (f ⁻¹' s.to_set) s.to_set) : image f (preimage s (set.inj_on_of_bij_on hf)) = s := finset.coe_inj.1 $ suffices f '' (f ⁻¹' ↑s) = ↑s, by simpa, (set.subset.antisymm (image_preimage_subset _ _) hf.2.2) end preimage @[to_additive] lemma prod_preimage [comm_monoid β] (f : α → γ) (s : finset γ) (hf : set.bij_on f (f ⁻¹' ↑s) ↑s) (g : γ → β) : (preimage s (set.inj_on_of_bij_on hf)).prod (g ∘ f) = s.prod g := by classical; calc (preimage s (set.inj_on_of_bij_on hf)).prod (g ∘ f) = (image f (preimage s (set.inj_on_of_bij_on hf))).prod g : begin rw prod_image, intros x hx y hy hxy, apply set.inj_on_of_bij_on hf, repeat { try { rw mem_preimage at hx hy, rw [set.mem_preimage, mem_coe] }, assumption }, end ... = s.prod g : by rw image_preimage end finset lemma fintype.exists_max [fintype α] [nonempty α] {β : Type*} [decidable_linear_order β] (f : α → β) : ∃ x₀ : α, ∀ x, f x ≤ f x₀ := begin obtain ⟨y, hy⟩ : ∃ y, y ∈ (set.range f).to_finset, { haveI := classical.inhabited_of_nonempty ‹nonempty α›, exact ⟨f (default α), set.mem_to_finset.mpr $ set.mem_range_self _⟩ }, rcases finset.max_of_mem hy with ⟨y₀, h⟩, rcases set.mem_to_finset.1 (finset.mem_of_max h) with ⟨x₀, rfl⟩, use x₀, intro x, apply finset.le_max_of_mem (set.mem_to_finset.mpr $ set.mem_range_self x) h end
64aa29205f74b7b2864ab03598fdc93183cf8905
9028d228ac200bbefe3a711342514dd4e4458bff
/src/linear_algebra/finsupp.lean
1de22e5e4219c643f4adcf126aeb490812869ba1
[ "Apache-2.0" ]
permissive
mcncm/mathlib
8d25099344d9d2bee62822cb9ed43aa3e09fa05e
fde3d78cadeec5ef827b16ae55664ef115e66f57
refs/heads/master
1,672,743,316,277
1,602,618,514,000
1,602,618,514,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
20,882
lean
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Linear structures on function with finite support `α →₀ M`. -/ import algebra.monoid_algebra noncomputable theory open set linear_map submodule open_locale classical big_operators namespace finsupp variables {α : Type*} {M : Type*} {N : Type*} {R : Type*} variables [semiring R] [add_comm_monoid M] [semimodule R M] [add_comm_monoid N] [semimodule R N] /-- Interpret `finsupp.single a` as a linear map. -/ def lsingle (a : α) : M →ₗ[R] (α →₀ M) := { map_smul' := assume a b, (smul_single _ _ _).symm, ..finsupp.single_add_hom a } /-- Interpret `λ (f : α →₀ M), f a` as a linear map. -/ def lapply (a : α) : (α →₀ M) →ₗ[R] M := { map_smul' := assume a b, rfl, ..finsupp.eval_add_hom a } section lsubtype_domain variables (s : set α) /-- Interpret `finsupp.subtype_domain s` as a linear map. -/ def lsubtype_domain : (α →₀ M) →ₗ[R] (s →₀ M) := ⟨subtype_domain (λx, x ∈ s), assume a b, subtype_domain_add, assume c a, ext $ assume a, rfl⟩ lemma lsubtype_domain_apply (f : α →₀ M) : (lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)) f = subtype_domain (λx, x ∈ s) f := rfl end lsubtype_domain @[simp] lemma lsingle_apply (a : α) (b : M) : (lsingle a : M →ₗ[R] (α →₀ M)) b = single a b := rfl @[simp] lemma lapply_apply (a : α) (f : α →₀ M) : (lapply a : (α →₀ M) →ₗ[R] M) f = f a := rfl @[simp] lemma ker_lsingle (a : α) : (lsingle a : M →ₗ[R] (α →₀ M)).ker = ⊥ := ker_eq_bot_of_injective (single_injective a) lemma lsingle_range_le_ker_lapply (s t : set α) (h : disjoint s t) : (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) ≤ (⨅a∈t, ker (lapply a)) := begin refine supr_le (assume a₁, supr_le $ assume h₁, range_le_iff_comap.2 _), simp only [(ker_comp _ _).symm, eq_top_iff, le_def', mem_ker, comap_infi, mem_infi], assume b hb a₂ h₂, have : a₁ ≠ a₂ := assume eq, h ⟨h₁, eq.symm ▸ h₂⟩, exact single_eq_of_ne this end lemma infi_ker_lapply_le_bot : (⨅a, ker (lapply a : (α →₀ M) →ₗ[R] M)) ≤ ⊥ := begin simp only [le_def', mem_infi, mem_ker, mem_bot, lapply_apply], exact assume a h, finsupp.ext h end lemma supr_lsingle_range : (⨆a, (lsingle a : M →ₗ[R] (α →₀ M)).range) = ⊤ := begin refine (eq_top_iff.2 $ le_def'.2 $ assume f _, _), rw [← sum_single f], refine sum_mem _ (assume a ha, submodule.mem_supr_of_mem a $ set.mem_image_of_mem _ trivial) end lemma disjoint_lsingle_lsingle (s t : set α) (hs : disjoint s t) : disjoint (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) (⨆a∈t, (lsingle a).range) := begin refine disjoint.mono (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right s) (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right t) (le_trans (le_infi $ assume i, _) infi_ker_lapply_le_bot), classical, by_cases his : i ∈ s, { by_cases hit : i ∈ t, { exact (hs ⟨his, hit⟩).elim }, exact inf_le_right_of_le (infi_le_of_le i $ infi_le _ hit) }, exact inf_le_left_of_le (infi_le_of_le i $ infi_le _ his) end lemma span_single_image (s : set M) (a : α) : submodule.span R (single a '' s) = (submodule.span R s).map (lsingle a) := by rw ← span_image; refl variables (M R) /-- `finsupp.supported M R s` is the `R`-submodule of all `p : α →₀ M` such that `p.support ⊆ s`. -/ def supported (s : set α) : submodule R (α →₀ M) := begin refine ⟨ {p | ↑p.support ⊆ s }, _, _, _ ⟩, { simp only [subset_def, finset.mem_coe, set.mem_set_of_eq, mem_support_iff, zero_apply], assume h ha, exact (ha rfl).elim }, { assume p q hp hq, refine subset.trans (subset.trans (finset.coe_subset.2 support_add) _) (union_subset hp hq), rw [finset.coe_union] }, { assume a p hp, refine subset.trans (finset.coe_subset.2 support_smul) hp } end variables {M} lemma mem_supported {s : set α} (p : α →₀ M) : p ∈ (supported M R s) ↔ ↑p.support ⊆ s := iff.rfl lemma mem_supported' {s : set α} (p : α →₀ M) : p ∈ supported M R s ↔ ∀ x ∉ s, p x = 0 := by haveI := classical.dec_pred (λ (x : α), x ∈ s); simp [mem_supported, set.subset_def, not_imp_comm] lemma single_mem_supported {s : set α} {a : α} (b : M) (h : a ∈ s) : single a b ∈ supported M R s := set.subset.trans support_single_subset (finset.singleton_subset_set_iff.2 h) lemma supported_eq_span_single (s : set α) : supported R R s = span R ((λ i, single i 1) '' s) := begin refine (span_eq_of_le _ _ (le_def'.2 $ λ l hl, _)).symm, { rintro _ ⟨_, hp, rfl ⟩ , exact single_mem_supported R 1 hp }, { rw ← l.sum_single, refine sum_mem _ (λ i il, _), convert @smul_mem R (α →₀ R) _ _ _ _ (single i 1) (l i) _, { simp }, apply subset_span, apply set.mem_image_of_mem _ (hl il) } end variables (M R) /-- Interpret `finsupp.filter s` as a linear map from `α →₀ M` to `supported M R s`. -/ def restrict_dom (s : set α) : (α →₀ M) →ₗ supported M R s := linear_map.cod_restrict _ { to_fun := filter (∈ s), map_add' := λ l₁ l₂, filter_add, map_smul' := λ a l, filter_smul } (λ l, (mem_supported' _ _).2 $ λ x, filter_apply_neg (∈ s) l) variables {M R} section @[simp] theorem restrict_dom_apply (s : set α) (l : α →₀ M) : ((restrict_dom M R s : (α →₀ M) →ₗ supported M R s) l : α →₀ M) = finsupp.filter (∈ s) l := rfl end theorem restrict_dom_comp_subtype (s : set α) : (restrict_dom M R s).comp (submodule.subtype _) = linear_map.id := begin ext l a, by_cases a ∈ s; simp [h], exact ((mem_supported' R l.1).1 l.2 a h).symm end theorem range_restrict_dom (s : set α) : (restrict_dom M R s).range = ⊤ := begin have := linear_map.range_comp (submodule.subtype _) (restrict_dom M R s), rw [restrict_dom_comp_subtype, linear_map.range_id] at this, exact eq_top_mono (submodule.map_mono le_top) this.symm end theorem supported_mono {s t : set α} (st : s ⊆ t) : supported M R s ≤ supported M R t := λ l h, set.subset.trans h st @[simp] theorem supported_empty : supported M R (∅ : set α) = ⊥ := eq_bot_iff.2 $ λ l h, (submodule.mem_bot R).2 $ by ext; simp [*, mem_supported'] at * @[simp] theorem supported_univ : supported M R (set.univ : set α) = ⊤ := eq_top_iff.2 $ λ l _, set.subset_univ _ theorem supported_Union {δ : Type*} (s : δ → set α) : supported M R (⋃ i, s i) = ⨆ i, supported M R (s i) := begin refine le_antisymm _ (supr_le $ λ i, supported_mono $ set.subset_Union _ _), haveI := classical.dec_pred (λ x, x ∈ (⋃ i, s i)), suffices : ((submodule.subtype _).comp (restrict_dom M R (⋃ i, s i))).range ≤ ⨆ i, supported M R (s i), { rwa [linear_map.range_comp, range_restrict_dom, map_top, range_subtype] at this }, rw [range_le_iff_comap, eq_top_iff], rintro l ⟨⟩, apply finsupp.induction l, {exact zero_mem _}, refine λ x a l hl a0, add_mem _ _, by_cases (∃ i, x ∈ s i); simp [h], { cases h with i hi, exact le_supr (λ i, supported M R (s i)) i (single_mem_supported R _ hi) } end theorem supported_union (s t : set α) : supported M R (s ∪ t) = supported M R s ⊔ supported M R t := by erw [set.union_eq_Union, supported_Union, supr_bool_eq]; refl theorem supported_Inter {ι : Type*} (s : ι → set α) : supported M R (⋂ i, s i) = ⨅ i, supported M R (s i) := begin refine le_antisymm (le_infi $ λ i, supported_mono $ set.Inter_subset _ _) _, simp [le_def, infi_coe, set.subset_def], exact λ l, set.subset_Inter end /-- Interpret `finsupp.restrict_support_equiv` as a linear equivalence between `supported M R s` and `s →₀ M`. -/ def supported_equiv_finsupp (s : set α) : (supported M R s) ≃ₗ[R] (s →₀ M) := begin let F : (supported M R s) ≃ (s →₀ M) := restrict_support_equiv s M, refine F.to_linear_equiv _, have : (F : (supported M R s) → (↥s →₀ M)) = ((lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)).comp (submodule.subtype (supported M R s))) := rfl, rw this, exact linear_map.is_linear _ end /-- `finsupp.sum` as a linear map. -/ def lsum (f : α → M →ₗ[R] N) : (α →₀ M) →ₗ[R] N := ⟨λ d, d.sum (λ i, f i), assume d₁ d₂, by simp [sum_add_index], assume a d, by simp [sum_smul_index', smul_sum]⟩ @[simp] lemma coe_lsum (f : α → M →ₗ[R] N) : (lsum f : (α →₀ M) → N) = λ d, d.sum (λ i, f i) := rfl theorem lsum_apply (f : α → M →ₗ[R] N) (l : α →₀ M) : finsupp.lsum f l = l.sum (λ b, f b) := rfl theorem lsum_single (f : α → M →ₗ[R] N) (i : α) (m : M) : finsupp.lsum f (finsupp.single i m) = f i m := finsupp.sum_single_index (f i).map_zero section lmap_domain variables {α' : Type*} {α'' : Type*} (M R) /-- Interpret `finsupp.lmap_domain` as a linear map. -/ def lmap_domain (f : α → α') : (α →₀ M) →ₗ[R] (α' →₀ M) := ⟨map_domain f, assume a b, map_domain_add, map_domain_smul⟩ @[simp] theorem lmap_domain_apply (f : α → α') (l : α →₀ M) : (lmap_domain M R f : (α →₀ M) →ₗ[R] (α' →₀ M)) l = map_domain f l := rfl @[simp] theorem lmap_domain_id : (lmap_domain M R id : (α →₀ M) →ₗ[R] α →₀ M) = linear_map.id := linear_map.ext $ λ l, map_domain_id theorem lmap_domain_comp (f : α → α') (g : α' → α'') : lmap_domain M R (g ∘ f) = (lmap_domain M R g).comp (lmap_domain M R f) := linear_map.ext $ λ l, map_domain_comp theorem supported_comap_lmap_domain (f : α → α') (s : set α') : supported M R (f ⁻¹' s) ≤ (supported M R s).comap (lmap_domain M R f) := λ l (hl : ↑l.support ⊆ f ⁻¹' s), show ↑(map_domain f l).support ⊆ s, begin rw [← set.image_subset_iff, ← finset.coe_image] at hl, exact set.subset.trans map_domain_support hl end theorem lmap_domain_supported [nonempty α] (f : α → α') (s : set α) : (supported M R s).map (lmap_domain M R f) = supported M R (f '' s) := begin inhabit α, refine le_antisymm (map_le_iff_le_comap.2 $ le_trans (supported_mono $ set.subset_preimage_image _ _) (supported_comap_lmap_domain _ _ _ _)) _, intros l hl, refine ⟨(lmap_domain M R (function.inv_fun_on f s) : (α' →₀ M) →ₗ α →₀ M) l, λ x hx, _, _⟩, { rcases finset.mem_image.1 (map_domain_support hx) with ⟨c, hc, rfl⟩, exact function.inv_fun_on_mem (by simpa using hl hc) }, { rw [← linear_map.comp_apply, ← lmap_domain_comp], refine (map_domain_congr $ λ c hc, _).trans map_domain_id, exact function.inv_fun_on_eq (by simpa using hl hc) } end theorem lmap_domain_disjoint_ker (f : α → α') {s : set α} (H : ∀ a b ∈ s, f a = f b → a = b) : disjoint (supported M R s) (lmap_domain M R f).ker := begin rintro l ⟨h₁, h₂⟩, rw [mem_coe, mem_ker, lmap_domain_apply, map_domain] at h₂, simp, ext x, haveI := classical.dec_pred (λ x, x ∈ s), by_cases xs : x ∈ s, { have : finsupp.sum l (λ a, finsupp.single (f a)) (f x) = 0, {rw h₂, refl}, rw [finsupp.sum_apply, finsupp.sum, finset.sum_eq_single x] at this, { simpa [finsupp.single_apply] }, { intros y hy xy, simp [mt (H _ _ (h₁ hy) xs) xy] }, { simp {contextual := tt} } }, { by_contra h, exact xs (h₁ $ finsupp.mem_support_iff.2 h) } end end lmap_domain section total variables (α) {α' : Type*} (M) {M' : Type*} (R) [add_comm_monoid M'] [semimodule R M'] (v : α → M) {v' : α' → M'} /-- Interprets (l : α →₀ R) as linear combination of the elements in the family (v : α → M) and evaluates this linear combination. -/ protected def total : (α →₀ R) →ₗ M := finsupp.lsum (λ i, linear_map.id.smul_right (v i)) variables {α M v} theorem total_apply (l : α →₀ R) : finsupp.total α M R v l = l.sum (λ i a, a • v i) := rfl theorem total_apply_of_mem_supported {l : α →₀ R} {s : finset α} (hs : l ∈ supported R R (↑s : set α)) : finsupp.total α M R v l = s.sum (λ i, l i • v i) := finset.sum_subset hs $ λ x _ hxg, show l x • v x = 0, by rw [not_mem_support_iff.1 hxg, zero_smul] @[simp] theorem total_single (c : R) (a : α) : finsupp.total α M R v (single a c) = c • (v a) := by simp [total_apply, sum_single_index] theorem total_range (h : function.surjective v) : (finsupp.total α M R v).range = ⊤ := begin apply range_eq_top.2, intros x, apply exists.elim (h x), exact λ i hi, ⟨single i 1, by simp [hi]⟩ end lemma range_total : (finsupp.total α M R v).range = span R (range v) := begin ext x, split, { intros hx, rw [linear_map.mem_range] at hx, rcases hx with ⟨l, hl⟩, rw ← hl, rw finsupp.total_apply, unfold finsupp.sum, apply sum_mem (span R (range v)), exact λ i hi, submodule.smul_mem _ _ (subset_span (mem_range_self i)) }, { apply span_le.2, intros x hx, rcases hx with ⟨i, hi⟩, rw [mem_coe, linear_map.mem_range], use finsupp.single i 1, simp [hi] } end theorem lmap_domain_total (f : α → α') (g : M →ₗ[R] M') (h : ∀ i, g (v i) = v' (f i)) : (finsupp.total α' M' R v').comp (lmap_domain R R f) = g.comp (finsupp.total α M R v) := by ext l; simp [total_apply, finsupp.sum_map_domain_index, add_smul, h] theorem total_emb_domain (f : α ↪ α') (l : α →₀ R) : (finsupp.total α' M' R v') (emb_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := by simp [total_apply, finsupp.sum, support_emb_domain, emb_domain_apply] theorem total_map_domain (f : α → α') (hf : function.injective f) (l : α →₀ R) : (finsupp.total α' M' R v') (map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := begin have : map_domain f l = emb_domain ⟨f, hf⟩ l, { rw emb_domain_eq_map_domain ⟨f, hf⟩, refl }, rw this, apply total_emb_domain R ⟨f, hf⟩ l end theorem span_eq_map_total (s : set α): span R (v '' s) = submodule.map (finsupp.total α M R v) (supported R R s) := begin apply span_eq_of_le, { intros x hx, rw set.mem_image at hx, apply exists.elim hx, intros i hi, exact ⟨_, finsupp.single_mem_supported R 1 hi.1, by simp [hi.2]⟩ }, { refine map_le_iff_le_comap.2 (λ z hz, _), have : ∀i, z i • v i ∈ span R (v '' s), { intro c, haveI := classical.dec_pred (λ x, x ∈ s), by_cases c ∈ s, { exact smul_mem _ _ (subset_span (set.mem_image_of_mem _ h)) }, { simp [(finsupp.mem_supported' R _).1 hz _ h] } }, refine sum_mem _ _, simp [this] } end theorem mem_span_iff_total {s : set α} {x : M} : x ∈ span R (v '' s) ↔ ∃ l ∈ supported R R s, finsupp.total α M R v l = x := by rw span_eq_map_total; simp variables (α) (M) (v) /-- `finsupp.total_on M v s` interprets `p : α →₀ R` as a linear combination of a subset of the vectors in `v`, mapping it to the span of those vectors. The subset is indicated by a set `s : set α` of indices. -/ protected def total_on (s : set α) : supported R R s →ₗ[R] span R (v '' s) := linear_map.cod_restrict _ ((finsupp.total _ _ _ v).comp (submodule.subtype (supported R R s))) $ λ ⟨l, hl⟩, (mem_span_iff_total _).2 ⟨l, hl, rfl⟩ variables {α} {M} {v} theorem total_on_range (s : set α) : (finsupp.total_on α M R v s).range = ⊤ := by rw [finsupp.total_on, linear_map.range, linear_map.map_cod_restrict, ← linear_map.range_le_iff_comap, range_subtype, map_top, linear_map.range_comp, range_subtype]; exact le_of_eq (span_eq_map_total _ _) theorem total_comp (f : α' → α) : (finsupp.total α' M R (v ∘ f)) = (finsupp.total α M R v).comp (lmap_domain R R f) := begin ext l, simp [total_apply], rw sum_map_domain_index; simp [add_smul], end lemma total_comap_domain (f : α → α') (l : α' →₀ R) (hf : set.inj_on f (f ⁻¹' ↑l.support)) : finsupp.total α M R v (finsupp.comap_domain f l hf) = (l.support.preimage f hf).sum (λ i, (l (f i)) • (v i)) := by rw finsupp.total_apply; refl lemma total_on_finset {s : finset α} {f : α → R} (g : α → M) (hf : ∀ a, f a ≠ 0 → a ∈ s): finsupp.total α M R g (finsupp.on_finset s f hf) = finset.sum s (λ (x : α), f x • g x) := begin simp only [finsupp.total_apply, finsupp.sum, finsupp.on_finset_apply, finsupp.support_on_finset], rw finset.sum_filter_of_ne, intros x hx h, contrapose! h, simp [h], end end total /-- An equivalence of domains induces a linear equivalence of finitely supported functions. -/ protected def dom_lcongr {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) : (α₁ →₀ M) ≃ₗ[R] (α₂ →₀ M) := (@finsupp.dom_congr M _ _ _ e).to_linear_equiv (lmap_domain M R e).map_smul @[simp] theorem dom_lcongr_single {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (i : α₁) (m : M) : (finsupp.dom_lcongr e : _ ≃ₗ[R] _) (finsupp.single i m) = finsupp.single (e i) m := by simp [finsupp.dom_lcongr, finsupp.dom_congr, map_domain_single] /-- An equivalence of sets induces a linear equivalence of `finsupp`s supported on those sets. -/ noncomputable def congr {α' : Type*} (s : set α) (t : set α') (e : s ≃ t) : supported M R s ≃ₗ[R] supported M R t := begin haveI := classical.dec_pred (λ x, x ∈ s), haveI := classical.dec_pred (λ x, x ∈ t), refine linear_equiv.trans (finsupp.supported_equiv_finsupp s) (linear_equiv.trans _ (finsupp.supported_equiv_finsupp t).symm), exact finsupp.dom_lcongr e end /-- An equivalence of domain and a linear equivalence of codomain induce a linear equivalence of the corresponding finitely supported functions. -/ def lcongr {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) : (ι →₀ M) ≃ₗ[R] (κ →₀ N) := (finsupp.dom_lcongr e₁).trans { to_fun := map_range e₂ e₂.map_zero, inv_fun := map_range e₂.symm e₂.symm.map_zero, left_inv := λ f, finsupp.induction f (by simp_rw map_range_zero) $ λ a b f ha hb ih, by rw [map_range_add e₂.map_add, map_range_add e₂.symm.map_add, map_range_single, map_range_single, e₂.symm_apply_apply, ih], right_inv := λ f, finsupp.induction f (by simp_rw map_range_zero) $ λ a b f ha hb ih, by rw [map_range_add e₂.symm.map_add, map_range_add e₂.map_add, map_range_single, map_range_single, e₂.apply_symm_apply, ih], map_add' := map_range_add e₂.map_add, map_smul' := λ c f, finsupp.induction f (by rw [smul_zero, map_range_zero, smul_zero]) $ λ a b f ha hb ih, by rw [smul_add, smul_single, map_range_add e₂.map_add, map_range_single, e₂.map_smul, ih, map_range_add e₂.map_add, smul_add, map_range_single, smul_single] } @[simp] theorem lcongr_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (i : ι) (m : M) : lcongr e₁ e₂ (finsupp.single i m) = finsupp.single (e₁ i) (e₂ m) := by simp [lcongr] end finsupp variables {R : Type*} {M : Type*} {N : Type*} variables [semiring R] [add_comm_monoid M] [semimodule R M] [add_comm_monoid N] [semimodule R N] lemma linear_map.map_finsupp_total (f : M →ₗ[R] N) {ι : Type*} {g : ι → M} (l : ι →₀ R) : f (finsupp.total ι M R g l) = finsupp.total ι N R (f ∘ g) l := by simp only [finsupp.total_apply, finsupp.total_apply, finsupp.sum, f.map_sum, f.map_smul] lemma submodule.exists_finset_of_mem_supr {ι : Sort*} (p : ι → submodule R M) {m : M} (hm : m ∈ ⨆ i, p i) : ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i := begin obtain ⟨f, hf, rfl⟩ : ∃ f ∈ finsupp.supported R R (⋃ i, ↑(p i)), finsupp.total M M R id f = m, { have aux : (id : M → M) '' (⋃ (i : ι), ↑(p i)) = (⋃ (i : ι), ↑(p i)) := set.image_id _, rwa [supr_eq_span, ← aux, finsupp.mem_span_iff_total R] at hm }, let t : finset M := f.support, have ht : ∀ x : {x // x ∈ t}, ∃ i, ↑x ∈ p i, { intros x, rw finsupp.mem_supported at hf, specialize hf x.2, rwa set.mem_Union at hf }, choose g hg using ht, let s : finset ι := finset.univ.image g, use s, simp only [mem_supr, supr_le_iff], assume N hN, rw [finsupp.total_apply, finsupp.sum, ← submodule.mem_coe], apply N.sum_mem, assume x hx, apply submodule.smul_mem, let i : ι := g ⟨x, hx⟩, have hi : i ∈ s, { rw finset.mem_image, exact ⟨⟨x, hx⟩, finset.mem_univ _, rfl⟩ }, exact hN i hi (hg _), end lemma mem_span_finset {s : finset M} {x : M} : x ∈ span R (↑s : set M) ↔ ∃ f : M → R, ∑ i in s, f i • i = x := ⟨λ hx, let ⟨v, hvs, hvx⟩ := (finsupp.mem_span_iff_total _).1 (show x ∈ span R (id '' (↑s : set M)), by rwa set.image_id) in ⟨v, hvx ▸ (finsupp.total_apply_of_mem_supported _ hvs).symm⟩, λ ⟨f, hf⟩, hf ▸ sum_mem _ (λ i hi, smul_mem _ _ $ subset_span hi)⟩
94ce39cad58d9467a8bbdafe0d021ee51b7d6fc8
1abd1ed12aa68b375cdef28959f39531c6e95b84
/src/linear_algebra/matrix/nonsingular_inverse.lean
3d4c3178cd707f0074846d6442527051faed69ce
[ "Apache-2.0" ]
permissive
jumpy4/mathlib
d3829e75173012833e9f15ac16e481e17596de0f
af36f1a35f279f0e5b3c2a77647c6bf2cfd51a13
refs/heads/master
1,693,508,842,818
1,636,203,271,000
1,636,203,271,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
13,587
lean
/- Copyright (c) 2019 Tim Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Tim Baanen, Lu-Ming Zhang -/ import algebra.regular.smul import data.matrix.notation import linear_algebra.matrix.polynomial import linear_algebra.matrix.adjugate /-! # Nonsingular inverses In this file, we define an inverse for square matrices of invertible determinant. For matrices that are not square or not of full rank, there is a more general notion of pseudoinverses which we do not consider here. The definition of inverse used in this file is the adjugate divided by the determinant. We show that dividing the adjugate by `det A` (if possible), giving a matrix `A⁻¹` (`nonsing_inv`), will result in a multiplicative inverse to `A`. ## References * https://en.wikipedia.org/wiki/Cramer's_rule#Finding_inverse_matrix ## Tags matrix inverse, cramer, cramer's rule, adjugate -/ namespace matrix universes u v variables {n : Type u} [decidable_eq n] [fintype n] {α : Type v} [comm_ring α] open_locale matrix big_operators open equiv equiv.perm finset variables (A : matrix n n α) (B : matrix n n α) open_locale classical lemma is_unit_det_transpose (h : is_unit A.det) : is_unit Aᵀ.det := by { rw det_transpose, exact h, } /-- The inverse of a square matrix, when it is invertible (and zero otherwise).-/ noncomputable instance : has_inv (matrix n n α) := ⟨λ A, ring.inverse A.det • A.adjugate⟩ lemma inv_def (A : matrix n n α) : A⁻¹ = ring.inverse A.det • A.adjugate := rfl lemma nonsing_inv_apply_not_is_unit (h : ¬ is_unit A.det) : A⁻¹ = 0 := by rw [inv_def, ring.inverse_non_unit _ h, zero_smul] lemma nonsing_inv_apply (h : is_unit A.det) : A⁻¹ = (↑h.unit⁻¹ : α) • A.adjugate := begin rw [inv_def, ←ring.inverse_unit h.unit], refl, end lemma transpose_nonsing_inv : (A⁻¹)ᵀ = (Aᵀ)⁻¹ := by rw [inv_def, inv_def, transpose_smul, det_transpose, adjugate_transpose] lemma conj_transpose_nonsing_inv [star_ring α] : (A⁻¹)ᴴ = (Aᴴ)⁻¹ := by rw [inv_def, inv_def, conj_transpose_smul, det_conj_transpose, adjugate_conj_transpose, ring.inverse_star] /-- The `nonsing_inv` of `A` is a right inverse. -/ @[simp] lemma mul_nonsing_inv (h : is_unit A.det) : A ⬝ A⁻¹ = 1 := by rw [A.nonsing_inv_apply h, mul_smul, mul_adjugate, smul_smul, units.inv_mul_of_eq h.unit_spec, one_smul] /-- The `nonsing_inv` of `A` is a left inverse. -/ @[simp] lemma nonsing_inv_mul (h : is_unit A.det) : A⁻¹ ⬝ A = 1 := calc A⁻¹ ⬝ A = (Aᵀ ⬝ (Aᵀ)⁻¹)ᵀ : by { rw [transpose_mul, Aᵀ.transpose_nonsing_inv, transpose_transpose], } ... = 1ᵀ : by { rw Aᵀ.mul_nonsing_inv, exact A.is_unit_det_transpose h, } ... = 1 : transpose_one lemma nonsing_inv_cancel_or_zero : (A⁻¹ ⬝ A = 1 ∧ A ⬝ A⁻¹ = 1) ∨ A⁻¹ = 0 := begin by_cases h : is_unit A.det, { exact or.inl ⟨nonsing_inv_mul _ h, mul_nonsing_inv _ h⟩ }, { exact or.inr (nonsing_inv_apply_not_is_unit _ h) } end lemma det_nonsing_inv_mul_det (h : is_unit A.det) : A⁻¹.det * A.det = 1 := by rw [←det_mul, A.nonsing_inv_mul h, det_one] @[simp] lemma det_nonsing_inv : A⁻¹.det = ring.inverse A.det := begin rw [inv_def, det_smul, det_adjugate], casesI is_empty_or_nonempty n, { rw [fintype.card_eq_zero, zero_tsub, pow_zero, det_is_empty, pow_zero, ring.inverse_one, one_mul] }, have hc_pos : 0 < fintype.card n := fintype.card_pos, by_cases h : is_unit A.det, { obtain ⟨u, hu⟩ := h, rw [←hu, ring.inverse_unit, ←units.coe_pow, ←units.coe_pow, ←units.coe_mul, inv_pow, ←inv_pow_sub _ tsub_le_self, tsub_tsub_cancel_of_le hc_pos.nat_succ_le, pow_one], }, { rw [ring.inverse_non_unit _ h, zero_pow hc_pos, zero_mul], }, end lemma is_unit_nonsing_inv_det (h : is_unit A.det) : is_unit A⁻¹.det := is_unit_of_mul_eq_one _ _ (A.det_nonsing_inv_mul_det h) @[simp] lemma nonsing_inv_nonsing_inv (h : is_unit A.det) : (A⁻¹)⁻¹ = A := calc (A⁻¹)⁻¹ = 1 ⬝ (A⁻¹)⁻¹ : by rw matrix.one_mul ... = A ⬝ A⁻¹ ⬝ (A⁻¹)⁻¹ : by rw A.mul_nonsing_inv h ... = A : by { rw [matrix.mul_assoc, (A⁻¹).mul_nonsing_inv (A.is_unit_nonsing_inv_det h), matrix.mul_one], } lemma is_unit_nonsing_inv_det_iff {A : matrix n n α} : is_unit A⁻¹.det ↔ is_unit A.det := by rw [matrix.det_nonsing_inv, is_unit_ring_inverse] /-- If `A.det` has a constructive inverse, produce one for `A`. -/ def invertible_of_det_invertible [invertible A.det] : invertible A := { inv_of := ⅟A.det • A.adjugate, mul_inv_of_self := by rw [mul_smul_comm, matrix.mul_eq_mul, mul_adjugate, smul_smul, inv_of_mul_self, one_smul], inv_of_mul_self := by rw [smul_mul_assoc, matrix.mul_eq_mul, adjugate_mul, smul_smul, inv_of_mul_self, one_smul] } /-- `A.det` is invertible if `A` has a left inverse. -/ def det_invertible_of_left_inverse (h : B ⬝ A = 1) : invertible A.det := { inv_of := B.det, mul_inv_of_self := by rw [mul_comm, ← det_mul, h, det_one], inv_of_mul_self := by rw [← det_mul, h, det_one] } /-- `A.det` is invertible if `A` has a right inverse. -/ def det_invertible_of_right_inverse (h : A ⬝ B = 1) : invertible A.det := { inv_of := B.det, mul_inv_of_self := by rw [← det_mul, h, det_one], inv_of_mul_self := by rw [mul_comm, ← det_mul, h, det_one] } /-- If `A` has a constructive inverse, produce one for `A.det`. -/ def det_invertible_of_invertible [invertible A] : invertible A.det := det_invertible_of_left_inverse A (⅟A) (inv_of_mul_self _) /-- Given a proof that `A.det` has a constructive inverse, lift `A` to `units (matrix n n α)`-/ def unit_of_det_invertible [invertible A.det] : units (matrix n n α) := @unit_of_invertible _ _ A (invertible_of_det_invertible A) /-- A matrix whose determinant is a unit is itself a unit. This is a noncomputable version of `matrix.units_of_det_invertible`, with the inverse defeq to `matrix.nonsing_inv`. -/ noncomputable def nonsing_inv_unit (h : is_unit A.det) : units (matrix n n α) := { val := A, inv := A⁻¹, val_inv := by { rw matrix.mul_eq_mul, apply A.mul_nonsing_inv h, }, inv_val := by { rw matrix.mul_eq_mul, apply A.nonsing_inv_mul h, } } lemma unit_of_det_invertible_eq_nonsing_inv_unit [invertible A.det] : unit_of_det_invertible A = nonsing_inv_unit A (is_unit_of_invertible _) := by { ext, refl } /-- When lowered to a prop, `matrix.det_invertible_of_invertible` and `matrix.invertible_of_det_invertible` form an `iff`. -/ lemma is_unit_iff_is_unit_det : is_unit A ↔ is_unit A.det := begin split; rintros ⟨x, hx⟩; refine @is_unit_of_invertible _ _ _ (id _), { haveI : invertible A := hx.rec x.invertible, apply det_invertible_of_invertible, }, { haveI : invertible A.det := hx.rec x.invertible, apply invertible_of_det_invertible, }, end /-- The nonsingular inverse is the same as the general `ring.inverse`. -/ lemma nonsing_inv_eq_ring_inverse : A⁻¹ = ring.inverse A := begin by_cases h_det : is_unit A.det, { change ↑(nonsing_inv_unit A h_det)⁻¹ = _, obtain ⟨u, rfl⟩ := (is_unit_iff_is_unit_det _).mpr h_det, rw [ring.inverse_unit _, units.inv_unique], refl }, { have h := mt (is_unit_iff_is_unit_det _).mp h_det, rw [ring.inverse_non_unit _ h, nonsing_inv_apply_not_is_unit A h_det], }, end /- `is_unit_of_invertible A` converts the "stronger" condition `invertible A` to proposition `is_unit A`. -/ /-- `matrix.is_unit_det_of_invertible` converts `invertible A` to `is_unit A.det`. -/ lemma is_unit_det_of_invertible [invertible A] : is_unit A.det := @is_unit_of_invertible _ _ _(det_invertible_of_invertible A) @[simp] lemma inv_eq_nonsing_inv_of_invertible [invertible A] : ⅟ A = A⁻¹ := begin suffices : is_unit A, { rw [←this.mul_left_inj, inv_of_mul_self, matrix.mul_eq_mul, nonsing_inv_mul], rwa ←is_unit_iff_is_unit_det }, exact is_unit_of_invertible _ end variables {A} {B} /- `is_unit.invertible` lifts the proposition `is_unit A` to a constructive inverse of `A`. -/ /-- "Lift" the proposition `is_unit A.det` to a constructive inverse of `A`. -/ noncomputable def invertible_of_is_unit_det (h : is_unit A.det) : invertible A := ⟨A⁻¹, nonsing_inv_mul A h, mul_nonsing_inv A h⟩ lemma is_unit_det_of_left_inverse (h : B ⬝ A = 1) : is_unit A.det := @is_unit_of_invertible _ _ _ (det_invertible_of_left_inverse _ _ h) lemma is_unit_det_of_right_inverse (h : A ⬝ B = 1) : is_unit A.det := @is_unit_of_invertible _ _ _ (det_invertible_of_right_inverse _ _ h) lemma det_ne_zero_of_left_inverse [nontrivial α] (h : B ⬝ A = 1) : A.det ≠ 0 := is_unit.ne_zero (matrix.is_unit_det_of_left_inverse h) lemma det_ne_zero_of_right_inverse [nontrivial α] (h : A ⬝ B = 1) : A.det ≠ 0 := is_unit.ne_zero (matrix.is_unit_det_of_right_inverse h) lemma nonsing_inv_left_right (h : A ⬝ B = 1) : B ⬝ A = 1 := begin have h' : is_unit B.det := is_unit_det_of_left_inverse h, calc B ⬝ A = (B ⬝ A) ⬝ (B ⬝ B⁻¹) : by simp only [h', matrix.mul_one, mul_nonsing_inv] ... = B ⬝ ((A ⬝ B) ⬝ B⁻¹) : by simp only [matrix.mul_assoc] ... = B ⬝ B⁻¹ : by simp only [h, matrix.one_mul] ... = 1 : mul_nonsing_inv B h', end lemma nonsing_inv_right_left (h : B ⬝ A = 1) : A ⬝ B = 1 := nonsing_inv_left_right h /-- If matrix A is left invertible, then its inverse equals its left inverse. -/ lemma inv_eq_left_inv (h : B ⬝ A = 1) : A⁻¹ = B := begin have h1 := (is_unit_det_of_left_inverse h), have h2 := matrix.invertible_of_is_unit_det h1, have := @inv_of_eq_left_inv (matrix n n α) (infer_instance) A B h2 h, simp* at *, end /-- If matrix A is right invertible, then its inverse equals its right inverse. -/ lemma inv_eq_right_inv (h : A ⬝ B = 1) : A⁻¹ = B := begin have h1 := (is_unit_det_of_right_inverse h), have h2 := matrix.invertible_of_is_unit_det h1, have := @inv_of_eq_right_inv (matrix n n α) (infer_instance) A B h2 h, simp* at *, end /-- We can construct an instance of invertible A if A has a left inverse. -/ def invertible_of_left_inverse (h: B ⬝ A = 1) : invertible A := ⟨B, h, nonsing_inv_right_left h⟩ /-- We can construct an instance of invertible A if A has a right inverse. -/ def invertible_of_right_inverse (h: A ⬝ B = 1) : invertible A := ⟨B, nonsing_inv_left_right h, h⟩ section inv_eq_inv variables {C : matrix n n α} /-- The left inverse of matrix A is unique when existing. -/ lemma left_inv_eq_left_inv (h: B ⬝ A = 1) (g: C ⬝ A = 1) : B = C := by rw [←(inv_eq_left_inv h), ←(inv_eq_left_inv g)] /-- The right inverse of matrix A is unique when existing. -/ lemma right_inv_eq_right_inv (h: A ⬝ B = 1) (g: A ⬝ C = 1) : B = C := by rw [←(inv_eq_right_inv h), ←(inv_eq_right_inv g)] /-- The right inverse of matrix A equals the left inverse of A when they exist. -/ lemma right_inv_eq_left_inv (h: A ⬝ B = 1) (g: C ⬝ A = 1) : B = C := by rw [←(inv_eq_right_inv h), ←(inv_eq_left_inv g)] lemma inv_inj (h : A⁻¹ = B⁻¹) (h' : is_unit A.det) : A = B := begin refine left_inv_eq_left_inv (mul_nonsing_inv _ h') _, rw h, refine mul_nonsing_inv _ _, rwa [←is_unit_nonsing_inv_det_iff, ←h, is_unit_nonsing_inv_det_iff] end end inv_eq_inv variable (A) @[simp] lemma mul_inv_of_invertible [invertible A] : A ⬝ A⁻¹ = 1 := mul_nonsing_inv A (is_unit_det_of_invertible A) @[simp] lemma inv_mul_of_invertible [invertible A] : A⁻¹ ⬝ A = 1 := nonsing_inv_mul A (is_unit_det_of_invertible A) @[simp] lemma inv_zero : (0 : matrix n n α)⁻¹ = 0 := begin casesI (subsingleton_or_nontrivial α) with ht ht, { simp }, cases (fintype.card n).zero_le.eq_or_lt with hc hc, { rw [eq_comm, fintype.card_eq_zero_iff] at hc, haveI := hc, ext i, exact (is_empty.false i).elim }, { have hn : nonempty n := fintype.card_pos_iff.mp hc, refine nonsing_inv_apply_not_is_unit _ _, simp [hn] }, end @[simp] lemma inv_one : (1 : matrix n n α)⁻¹ = 1 := inv_eq_left_inv (by simp) lemma inv_smul (k : α) [invertible k] (h : is_unit A.det) : (k • A)⁻¹ = ⅟k • A⁻¹ := inv_eq_left_inv (by simp [h, smul_smul]) lemma inv_smul' (k : units α) (h : is_unit A.det) : (k • A)⁻¹ = k⁻¹ • A⁻¹ := inv_eq_left_inv (by simp [h, smul_smul]) lemma inv_adjugate (A : matrix n n α) (h : is_unit A.det) : (adjugate A)⁻¹ = h.unit⁻¹ • A := begin refine inv_eq_left_inv _, rw [smul_mul, mul_adjugate, units.smul_def, smul_smul, h.coe_inv_mul, one_smul] end @[simp] lemma inv_inv_inv (A : matrix n n α) : A⁻¹⁻¹⁻¹ = A⁻¹ := begin by_cases h : is_unit A.det, { rw [nonsing_inv_nonsing_inv _ h] }, { simp [nonsing_inv_apply_not_is_unit _ h] } end lemma mul_inv_rev (A B : matrix n n α) : (A ⬝ B)⁻¹ = B⁻¹ ⬝ A⁻¹ := begin simp only [inv_def], rw [matrix.smul_mul, matrix.mul_smul, smul_smul, det_mul, adjugate_mul_distrib, ring.mul_inverse_rev], end /-- One form of **Cramer's rule**. See `matrix.mul_vec_cramer` for a stronger form. -/ @[simp] lemma det_smul_inv_mul_vec_eq_cramer (A : matrix n n α) (b : n → α) (h : is_unit A.det) : A.det • A⁻¹.mul_vec b = cramer A b := begin rw [cramer_eq_adjugate_mul_vec, A.nonsing_inv_apply h, ← smul_mul_vec_assoc, smul_smul, h.mul_coe_inv, one_smul] end end matrix
2e82cad3cb6c0e0c98f70ceb1c51009d335f73fd
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/algebra/homology/additive.lean
072555a1eabcea49b3cb4a96da9e07ad69d9aa4a
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
11,209
lean
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.homology.homology import algebra.homology.single import category_theory.preadditive.additive_functor /-! # Homology is an additive functor When `V` is preadditive, `homological_complex V c` is also preadditive, and `homology_functor` is additive. TODO: similarly for `R`-linear. -/ universes v u open_locale classical noncomputable theory open category_theory category_theory.category category_theory.limits homological_complex variables {ι : Type*} variables {V : Type u} [category.{v} V] [preadditive V] variables {c : complex_shape ι} {C D E : homological_complex V c} variables (f g : C ⟶ D) (h k : D ⟶ E) (i : ι) namespace homological_complex instance : has_zero (C ⟶ D) := ⟨{ f := λ i, 0 }⟩ instance : has_add (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i + g.f i, }⟩ instance : has_neg (C ⟶ D) := ⟨λ f, { f := λ i, -(f.f i) }⟩ instance : has_sub (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i - g.f i, }⟩ instance has_nat_scalar : has_smul ℕ (C ⟶ D) := ⟨λ n f, { f := λ i, n • f.f i, comm' := λ i j h, by simp [preadditive.nsmul_comp, preadditive.comp_nsmul] }⟩ instance has_int_scalar : has_smul ℤ (C ⟶ D) := ⟨λ n f, { f := λ i, n • f.f i, comm' := λ i j h, by simp [preadditive.zsmul_comp, preadditive.comp_zsmul] }⟩ @[simp] lemma zero_f_apply (i : ι) : (0 : C ⟶ D).f i = 0 := rfl @[simp] lemma add_f_apply (f g : C ⟶ D) (i : ι) : (f + g).f i = f.f i + g.f i := rfl @[simp] lemma neg_f_apply (f : C ⟶ D) (i : ι) : (-f).f i = -(f.f i) := rfl @[simp] lemma sub_f_apply (f g : C ⟶ D) (i : ι) : (f - g).f i = f.f i - g.f i := rfl @[simp] lemma nsmul_f_apply (n : ℕ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl @[simp] lemma zsmul_f_apply (n : ℤ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl instance : add_comm_group (C ⟶ D) := function.injective.add_comm_group hom.f homological_complex.hom_f_injective (by tidy) (by tidy) (by tidy) (by tidy) (by tidy) (by tidy) instance : preadditive (homological_complex V c) := {} /-- The `i`-th component of a chain map, as an additive map from chain maps to morphisms. -/ @[simps] def hom.f_add_monoid_hom {C₁ C₂ : homological_complex V c} (i : ι) : (C₁ ⟶ C₂) →+ (C₁.X i ⟶ C₂.X i) := add_monoid_hom.mk' (λ f, hom.f f i) (λ _ _, rfl) end homological_complex namespace homological_complex instance eval_additive (i : ι) : (eval V c i).additive := {} instance cycles_additive [has_equalizers V] : (cycles_functor V c i).additive := {} variables [has_images V] [has_image_maps V] instance boundaries_additive : (boundaries_functor V c i).additive := {} variables [has_equalizers V] [has_cokernels V] instance homology_additive : (homology_functor V c i).additive := { map_add' := λ C D f g, begin dsimp [homology_functor], ext, simp only [homology.π_map, preadditive.comp_add, ←preadditive.add_comp], congr, ext, simp, end } end homological_complex namespace category_theory variables {W : Type*} [category W] [preadditive W] /-- An additive functor induces a functor between homological complexes. This is sometimes called the "prolongation". -/ @[simps] def functor.map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) : homological_complex V c ⥤ homological_complex W c := { obj := λ C, { X := λ i, F.obj (C.X i), d := λ i j, F.map (C.d i j), shape' := λ i j w, by rw [C.shape _ _ w, F.map_zero], d_comp_d' := λ i j k _ _, by rw [←F.map_comp, C.d_comp_d, F.map_zero], }, map := λ C D f, { f := λ i, F.map (f.f i), comm' := λ i j h, by { dsimp, rw [←F.map_comp, ←F.map_comp, f.comm], }, }, }. instance functor.map_homogical_complex_additive (F : V ⥤ W) [F.additive] (c : complex_shape ι) : (F.map_homological_complex c).additive := {} /-- A natural transformation between functors induces a natural transformation between those functors applied to homological complexes. -/ @[simps] def nat_trans.map_homological_complex {F G : V ⥤ W} [F.additive] [G.additive] (α : F ⟶ G) (c : complex_shape ι) : F.map_homological_complex c ⟶ G.map_homological_complex c := { app := λ C, { f := λ i, α.app _, }, } @[simp] lemma nat_trans.map_homological_complex_id (c : complex_shape ι) (F : V ⥤ W) [F.additive] : nat_trans.map_homological_complex (𝟙 F) c = 𝟙 (F.map_homological_complex c) := by tidy @[simp] lemma nat_trans.map_homological_complex_comp (c : complex_shape ι) {F G H : V ⥤ W} [F.additive] [G.additive] [H.additive] (α : F ⟶ G) (β : G ⟶ H): nat_trans.map_homological_complex (α ≫ β) c = nat_trans.map_homological_complex α c ≫ nat_trans.map_homological_complex β c := by tidy @[simp, reassoc] lemma nat_trans.map_homological_complex_naturality {c : complex_shape ι} {F G : V ⥤ W} [F.additive] [G.additive] (α : F ⟶ G) {C D : homological_complex V c} (f : C ⟶ D) : (F.map_homological_complex c).map f ≫ (nat_trans.map_homological_complex α c).app D = (nat_trans.map_homological_complex α c).app C ≫ (G.map_homological_complex c).map f := by tidy end category_theory namespace chain_complex variables {W : Type*} [category W] [preadditive W] variables {α : Type*} [add_right_cancel_semigroup α] [has_one α] [decidable_eq α] lemma map_chain_complex_of (F : V ⥤ W) [F.additive] (X : α → V) (d : Π n, X (n+1) ⟶ X n) (sq : ∀ n, d (n+1) ≫ d n = 0) : (F.map_homological_complex _).obj (chain_complex.of X d sq) = chain_complex.of (λ n, F.obj (X n)) (λ n, F.map (d n)) (λ n, by rw [ ← F.map_comp, sq n, functor.map_zero]) := begin refine homological_complex.ext rfl _, rintro i j (rfl : j + 1 = i), simp only [category_theory.functor.map_homological_complex_obj_d, of_d, eq_to_hom_refl, comp_id, id_comp], end end chain_complex variables [has_zero_object V] {W : Type*} [category W] [preadditive W] [has_zero_object W] namespace homological_complex local attribute [simp] eq_to_hom_map /-- Turning an object into a complex supported at `j` then applying a functor is the same as applying the functor then forming the complex. -/ def single_map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) (j : ι): single V c j ⋙ F.map_homological_complex _ ≅ F ⋙ single W c j := nat_iso.of_components (λ X, { hom := { f := λ i, if h : i = j then eq_to_hom (by simp [h]) else 0, }, inv := { f := λ i, if h : i = j then eq_to_hom (by simp [h]) else 0, }, hom_inv_id' := begin ext i, dsimp, split_ifs with h, { simp [h] }, { rw [zero_comp, if_neg h], exact (zero_of_source_iso_zero _ F.map_zero_object).symm, }, end, inv_hom_id' := begin ext i, dsimp, split_ifs with h, { simp [h] }, { rw [zero_comp, if_neg h], simp, }, end, }) (λ X Y f, begin ext i, dsimp, split_ifs with h; simp [h], end). variables (F : V ⥤ W) [functor.additive F] (c) @[simp] lemma single_map_homological_complex_hom_app_self (j : ι) (X : V) : ((single_map_homological_complex F c j).hom.app X).f j = eq_to_hom (by simp) := by simp [single_map_homological_complex] @[simp] lemma single_map_homological_complex_hom_app_ne {i j : ι} (h : i ≠ j) (X : V) : ((single_map_homological_complex F c j).hom.app X).f i = 0 := by simp [single_map_homological_complex, h] @[simp] lemma single_map_homological_complex_inv_app_self (j : ι) (X : V) : ((single_map_homological_complex F c j).inv.app X).f j = eq_to_hom (by simp) := by simp [single_map_homological_complex] @[simp] lemma single_map_homological_complex_inv_app_ne {i j : ι} (h : i ≠ j) (X : V): ((single_map_homological_complex F c j).inv.app X).f i = 0 := by simp [single_map_homological_complex, h] end homological_complex namespace chain_complex /-- Turning an object into a chain complex supported at zero then applying a functor is the same as applying the functor then forming the complex. -/ def single₀_map_homological_complex (F : V ⥤ W) [F.additive] : single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W := nat_iso.of_components (λ X, { hom := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.hom end, }, inv := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.inv end, }, hom_inv_id' := begin ext (_|i), { unfold_aux, simp, }, { unfold_aux, dsimp, simp only [comp_f, id_f, zero_comp], exact (zero_of_source_iso_zero _ F.map_zero_object).symm, } end, inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, }) (λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }). @[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_hom_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl @[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_inv_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl end chain_complex namespace cochain_complex /-- Turning an object into a cochain complex supported at zero then applying a functor is the same as applying the functor then forming the cochain complex. -/ def single₀_map_homological_complex (F : V ⥤ W) [F.additive] : single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W := nat_iso.of_components (λ X, { hom := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.hom end, }, inv := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.inv end, }, hom_inv_id' := begin ext (_|i), { unfold_aux, simp, }, { unfold_aux, dsimp, simp only [comp_f, id_f, zero_comp], exact (zero_of_source_iso_zero _ F.map_zero_object).symm, } end, inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, }) (λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }). @[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_hom_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl @[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_inv_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl end cochain_complex
9352b6e7f95b67d8661d63bcf7330fe297c3ba20
9dc8cecdf3c4634764a18254e94d43da07142918
/src/analysis/inner_product_space/l2_space.lean
518ff11a4b9a9155bdb409b6101e00204bcc723e
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
24,802
lean
/- Copyright (c) 2022 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import analysis.inner_product_space.projection import analysis.normed_space.lp_space import analysis.inner_product_space.pi_L2 /-! # Hilbert sum of a family of inner product spaces Given a family `(G : ι → Type*) [Π i, inner_product_space 𝕜 (G i)]` of inner product spaces, this file equips `lp G 2` with an inner product space structure, where `lp G 2` consists of those dependent functions `f : Π i, G i` for which `∑' i, ∥f i∥ ^ 2`, the sum of the norms-squared, is summable. This construction is sometimes called the *Hilbert sum* of the family `G`. By choosing `G` to be `ι → 𝕜`, the Hilbert space `ℓ²(ι, 𝕜)` may be seen as a special case of this construction. We also define a *predicate* `is_hilbert_sum 𝕜 E V`, where `V : Π i, G i →ₗᵢ[𝕜] E`, expressing that `V` is an `orthogonal_family` and that the associated map `lp G 2 →ₗᵢ[𝕜] E` is surjective. ## Main definitions * `orthogonal_family.linear_isometry`: Given a Hilbert space `E`, a family `G` of inner product spaces and a family `V : Π i, G i →ₗᵢ[𝕜] E` of isometric embeddings of the `G i` into `E` with mutually-orthogonal images, there is an induced isometric embedding of the Hilbert sum of `G` into `E`. * `is_hilbert_sum`: Given a Hilbert space `E`, a family `G` of inner product spaces and a family `V : Π i, G i →ₗᵢ[𝕜] E` of isometric embeddings of the `G i` into `E`, `is_hilbert_sum 𝕜 E V` means that `V` is an `orthogonal_family` and that the above linear isometry is surjective. * `is_hilbert_sum.linear_isometry_equiv`: If a Hilbert space `E` is a Hilbert sum of the inner product spaces `G i` with respect to the family `V : Π i, G i →ₗᵢ[𝕜] E`, then the corresponding `orthogonal_family.linear_isometry` can be upgraded to a `linear_isometry_equiv`. * `hilbert_basis`: We define a *Hilbert basis* of a Hilbert space `E` to be a structure whose single field `hilbert_basis.repr` is an isometric isomorphism of `E` with `ℓ²(ι, 𝕜)` (i.e., the Hilbert sum of `ι` copies of `𝕜`). This parallels the definition of `basis`, in `linear_algebra.basis`, as an isomorphism of an `R`-module with `ι →₀ R`. * `hilbert_basis.has_coe_to_fun`: More conventionally a Hilbert basis is thought of as a family `ι → E` of vectors in `E` satisfying certain properties (orthonormality, completeness). We obtain this interpretation of a Hilbert basis `b` by defining `⇑b`, of type `ι → E`, to be the image under `b.repr` of `lp.single 2 i (1:𝕜)`. This parallels the definition `basis.has_coe_to_fun` in `linear_algebra.basis`. * `hilbert_basis.mk`: Make a Hilbert basis of `E` from an orthonormal family `v : ι → E` of vectors in `E` whose span is dense. This parallels the definition `basis.mk` in `linear_algebra.basis`. * `hilbert_basis.mk_of_orthogonal_eq_bot`: Make a Hilbert basis of `E` from an orthonormal family `v : ι → E` of vectors in `E` whose span has trivial orthogonal complement. ## Main results * `lp.inner_product_space`: Construction of the inner product space instance on the Hilbert sum `lp G 2`. Note that from the file `analysis.normed_space.lp_space`, the space `lp G 2` already held a normed space instance (`lp.normed_space`), and if each `G i` is a Hilbert space (i.e., complete), then `lp G 2` was already known to be complete (`lp.complete_space`). So the work here is to define the inner product and show it is compatible. * `orthogonal_family.range_linear_isometry`: Given a family `G` of inner product spaces and a family `V : Π i, G i →ₗᵢ[𝕜] E` of isometric embeddings of the `G i` into `E` with mutually-orthogonal images, the image of the embedding `orthogonal_family.linear_isometry` of the Hilbert sum of `G` into `E` is the closure of the span of the images of the `G i`. * `hilbert_basis.repr_apply_apply`: Given a Hilbert basis `b` of `E`, the entry `b.repr x i` of `x`'s representation in `ℓ²(ι, 𝕜)` is the inner product `⟪b i, x⟫`. * `hilbert_basis.has_sum_repr`: Given a Hilbert basis `b` of `E`, a vector `x` in `E` can be expressed as the "infinite linear combination" `∑' i, b.repr x i • b i` of the basis vectors `b i`, with coefficients given by the entries `b.repr x i` of `x`'s representation in `ℓ²(ι, 𝕜)`. * `exists_hilbert_basis`: A Hilbert space admits a Hilbert basis. ## Keywords Hilbert space, Hilbert sum, l2, Hilbert basis, unitary equivalence, isometric isomorphism -/ open is_R_or_C submodule filter open_locale big_operators nnreal ennreal classical complex_conjugate noncomputable theory variables {ι : Type*} variables {𝕜 : Type*} [is_R_or_C 𝕜] {E : Type*} [inner_product_space 𝕜 E] [cplt : complete_space E] variables {G : ι → Type*} [Π i, inner_product_space 𝕜 (G i)] local notation `⟪`x`, `y`⟫` := @inner 𝕜 _ _ x y notation `ℓ²(`ι`, `𝕜`)` := lp (λ i : ι, 𝕜) 2 /-! ### Inner product space structure on `lp G 2` -/ namespace lp lemma summable_inner (f g : lp G 2) : summable (λ i, ⟪f i, g i⟫) := begin -- Apply the Direct Comparison Test, comparing with ∑' i, ∥f i∥ * ∥g i∥ (summable by Hölder) refine summable_of_norm_bounded (λ i, ∥f i∥ * ∥g i∥) (lp.summable_mul _ f g) _, { rw real.is_conjugate_exponent_iff; norm_num }, intros i, -- Then apply Cauchy-Schwarz pointwise exact norm_inner_le_norm _ _, end instance : inner_product_space 𝕜 (lp G 2) := { inner := λ f g, ∑' i, ⟪f i, g i⟫, norm_sq_eq_inner := λ f, begin calc ∥f∥ ^ 2 = ∥f∥ ^ (2:ℝ≥0∞).to_real : by norm_cast ... = ∑' i, ∥f i∥ ^ (2:ℝ≥0∞).to_real : lp.norm_rpow_eq_tsum _ f ... = ∑' i, ∥f i∥ ^ 2 : by norm_cast ... = ∑' i, re ⟪f i, f i⟫ : by simp only [norm_sq_eq_inner] ... = re (∑' i, ⟪f i, f i⟫) : (is_R_or_C.re_clm.map_tsum _).symm ... = _ : by congr, { norm_num }, { exact summable_inner f f }, end, conj_sym := λ f g, begin calc conj _ = conj ∑' i, ⟪g i, f i⟫ : by congr ... = ∑' i, conj ⟪g i, f i⟫ : is_R_or_C.conj_cle.map_tsum ... = ∑' i, ⟪f i, g i⟫ : by simp only [inner_conj_sym] ... = _ : by congr, end, add_left := λ f₁ f₂ g, begin calc _ = ∑' i, ⟪(f₁ + f₂) i, g i⟫ : _ ... = ∑' i, (⟪f₁ i, g i⟫ + ⟪f₂ i, g i⟫) : by simp only [inner_add_left, pi.add_apply, coe_fn_add] ... = (∑' i, ⟪f₁ i, g i⟫) + ∑' i, ⟪f₂ i, g i⟫ : tsum_add _ _ ... = _ : by congr, { congr, }, { exact summable_inner f₁ g }, { exact summable_inner f₂ g } end, smul_left := λ f g c, begin calc _ = ∑' i, ⟪c • f i, g i⟫ : _ ... = ∑' i, conj c * ⟪f i, g i⟫ : by simp only [inner_smul_left] ... = conj c * ∑' i, ⟪f i, g i⟫ : tsum_mul_left ... = _ : _, { simp only [coe_fn_smul, pi.smul_apply] }, { congr }, end, .. lp.normed_space } lemma inner_eq_tsum (f g : lp G 2) : ⟪f, g⟫ = ∑' i, ⟪f i, g i⟫ := rfl lemma has_sum_inner (f g : lp G 2) : has_sum (λ i, ⟪f i, g i⟫) ⟪f, g⟫ := (summable_inner f g).has_sum lemma inner_single_left (i : ι) (a : G i) (f : lp G 2) : ⟪lp.single 2 i a, f⟫ = ⟪a, f i⟫ := begin refine (has_sum_inner (lp.single 2 i a) f).unique _, convert has_sum_ite_eq i ⟪a, f i⟫, ext j, rw lp.single_apply, split_ifs, { subst h }, { simp } end lemma inner_single_right (i : ι) (a : G i) (f : lp G 2) : ⟪f, lp.single 2 i a⟫ = ⟪f i, a⟫ := by simpa [inner_conj_sym] using congr_arg conj (inner_single_left i a f) end lp /-! ### Identification of a general Hilbert space `E` with a Hilbert sum -/ namespace orthogonal_family variables {V : Π i, G i →ₗᵢ[𝕜] E} (hV : orthogonal_family 𝕜 V) include cplt hV protected lemma summable_of_lp (f : lp G 2) : summable (λ i, V i (f i)) := begin rw hV.summable_iff_norm_sq_summable, convert (lp.mem_ℓp f).summable _, { norm_cast }, { norm_num } end /-- A mutually orthogonal family of subspaces of `E` induce a linear isometry from `lp 2` of the subspaces into `E`. -/ protected def linear_isometry : lp G 2 →ₗᵢ[𝕜] E := { to_fun := λ f, ∑' i, V i (f i), map_add' := λ f g, by simp only [tsum_add (hV.summable_of_lp f) (hV.summable_of_lp g), lp.coe_fn_add, pi.add_apply, linear_isometry.map_add], map_smul' := λ c f, by simpa only [linear_isometry.map_smul, pi.smul_apply, lp.coe_fn_smul] using tsum_const_smul (hV.summable_of_lp f), norm_map' := λ f, begin classical, -- needed for lattice instance on `finset ι`, for `filter.at_top_ne_bot` have H : 0 < (2:ℝ≥0∞).to_real := by norm_num, suffices : ∥∑' (i : ι), V i (f i)∥ ^ ((2:ℝ≥0∞).to_real) = ∥f∥ ^ ((2:ℝ≥0∞).to_real), { exact real.rpow_left_inj_on H.ne' (norm_nonneg _) (norm_nonneg _) this }, refine tendsto_nhds_unique _ (lp.has_sum_norm H f), convert (hV.summable_of_lp f).has_sum.norm.rpow_const (or.inr H.le), ext s, exact_mod_cast (hV.norm_sum f s).symm, end } protected lemma linear_isometry_apply (f : lp G 2) : hV.linear_isometry f = ∑' i, V i (f i) := rfl protected lemma has_sum_linear_isometry (f : lp G 2) : has_sum (λ i, V i (f i)) (hV.linear_isometry f) := (hV.summable_of_lp f).has_sum @[simp] protected lemma linear_isometry_apply_single {i : ι} (x : G i) : hV.linear_isometry (lp.single 2 i x) = V i x := begin rw [hV.linear_isometry_apply, ← tsum_ite_eq i (V i x)], congr, ext j, rw [lp.single_apply], split_ifs, { subst h }, { simp } end @[simp] protected lemma linear_isometry_apply_dfinsupp_sum_single (W₀ : Π₀ (i : ι), G i) : hV.linear_isometry (W₀.sum (lp.single 2)) = W₀.sum (λ i, V i) := begin have : hV.linear_isometry (∑ i in W₀.support, lp.single 2 i (W₀ i)) = ∑ i in W₀.support, hV.linear_isometry (lp.single 2 i (W₀ i)), { exact hV.linear_isometry.to_linear_map.map_sum }, simp [dfinsupp.sum, this] {contextual := tt}, end /-- The canonical linear isometry from the `lp 2` of a mutually orthogonal family of subspaces of `E` into E, has range the closure of the span of the subspaces. -/ protected lemma range_linear_isometry [Π i, complete_space (G i)] : hV.linear_isometry.to_linear_map.range = (⨆ i, (V i).to_linear_map.range).topological_closure := begin refine le_antisymm _ _, { rintros x ⟨f, rfl⟩, refine mem_closure_of_tendsto (hV.has_sum_linear_isometry f) (eventually_of_forall _), intros s, rw set_like.mem_coe, refine sum_mem _, intros i hi, refine mem_supr_of_mem i _, exact linear_map.mem_range_self _ (f i) }, { apply topological_closure_minimal, { refine supr_le _, rintros i x ⟨x, rfl⟩, use lp.single 2 i x, exact hV.linear_isometry_apply_single x }, exact hV.linear_isometry.isometry.uniform_inducing.is_complete_range.is_closed } end end orthogonal_family section is_hilbert_sum variables (𝕜 E) (V : Π i, G i →ₗᵢ[𝕜] E) (F : ι → submodule 𝕜 E) include cplt /-- Given a family of Hilbert spaces `G : ι → Type*`, a Hilbert sum of `G` consists of a Hilbert space `E` and an orthogonal family `V : Π i, G i →ₗᵢ[𝕜] E` such that the induced isometry `Φ : lp G 2 → E` is surjective. Keeping in mind that `lp G 2` is "the" external Hilbert sum of `G : ι → Type*`, this is analogous to `direct_sum.is_internal`, except that we don't express it in terms of actual submodules. -/ @[protect_proj] structure is_hilbert_sum : Prop := of_surjective :: (orthogonal_family : orthogonal_family 𝕜 V) (surjective_isometry : function.surjective (orthogonal_family.linear_isometry)) variables {𝕜 E V} /-- If `V : Π i, G i →ₗᵢ[𝕜] E` is an orthogonal family such that the supremum of the ranges of `V i` is dense, then `(E, V)` is a Hilbert sum of `G`. -/ lemma is_hilbert_sum.mk [Π i, complete_space $ G i] (hVortho : orthogonal_family 𝕜 V) (hVtotal : ⊤ ≤ (⨆ i, (V i).to_linear_map.range).topological_closure) : is_hilbert_sum 𝕜 E V := { orthogonal_family := hVortho, surjective_isometry := begin rw [←linear_isometry.coe_to_linear_map], exact linear_map.range_eq_top.mp (eq_top_iff.mpr $ hVtotal.trans_eq hVortho.range_linear_isometry.symm) end } /-- This is `orthogonal_family.is_hilbert_sum` in the case of actual inclusions from subspaces. -/ lemma is_hilbert_sum.mk_internal [Π i, complete_space $ F i] (hFortho : @orthogonal_family 𝕜 E _ _ _ (λ i, F i) _ (λ i, (F i).subtypeₗᵢ)) (hFtotal : ⊤ ≤ (⨆ i, (F i)).topological_closure) : @is_hilbert_sum _ 𝕜 _ E _ _ (λ i, F i) _ (λ i, (F i).subtypeₗᵢ) := is_hilbert_sum.mk hFortho (by simpa [subtypeₗᵢ_to_linear_map, range_subtype] using hFtotal) /-- *A* Hilbert sum `(E, V)` of `G` is canonically isomorphic to *the* Hilbert sum of `G`, i.e `lp G 2`. Note that this goes in the opposite direction from `orthogonal_family.linear_isometry`. -/ noncomputable def is_hilbert_sum.linear_isometry_equiv (hV : is_hilbert_sum 𝕜 E V) : E ≃ₗᵢ[𝕜] lp G 2 := linear_isometry_equiv.symm $ linear_isometry_equiv.of_surjective hV.orthogonal_family.linear_isometry hV.surjective_isometry /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G` and `lp G 2`, a vector `w : lp G 2` is the image of the infinite sum of the associated elements in `E`. -/ protected lemma is_hilbert_sum.linear_isometry_equiv_symm_apply (hV : is_hilbert_sum 𝕜 E V) (w : lp G 2) : hV.linear_isometry_equiv.symm w = ∑' i, V i (w i) := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.linear_isometry_apply] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G` and `lp G 2`, a vector `w : lp G 2` is the image of the infinite sum of the associated elements in `E`, and this sum indeed converges. -/ protected lemma is_hilbert_sum.has_sum_linear_isometry_equiv_symm (hV : is_hilbert_sum 𝕜 E V) (w : lp G 2) : has_sum (λ i, V i (w i)) (hV.linear_isometry_equiv.symm w) := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.has_sum_linear_isometry] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G : ι → Type*` and `lp G 2`, an "elementary basis vector" in `lp G 2` supported at `i : ι` is the image of the associated element in `E`. -/ @[simp] protected lemma is_hilbert_sum.linear_isometry_equiv_symm_apply_single (hV : is_hilbert_sum 𝕜 E V) {i : ι} (x : G i) : hV.linear_isometry_equiv.symm (lp.single 2 i x) = V i x := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.linear_isometry_apply_single] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G : ι → Type*` and `lp G 2`, a finitely-supported vector in `lp G 2` is the image of the associated finite sum of elements of `E`. -/ @[simp] protected lemma is_hilbert_sum.linear_isometry_equiv_symm_apply_dfinsupp_sum_single (hV : is_hilbert_sum 𝕜 E V) (W₀ : Π₀ (i : ι), G i) : hV.linear_isometry_equiv.symm (W₀.sum (lp.single 2)) = (W₀.sum (λ i, V i)) := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.linear_isometry_apply_dfinsupp_sum_single] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G : ι → Type*` and `lp G 2`, a finitely-supported vector in `lp G 2` is the image of the associated finite sum of elements of `E`. -/ @[simp] protected lemma is_hilbert_sum.linear_isometry_equiv_apply_dfinsupp_sum_single (hV : is_hilbert_sum 𝕜 E V) (W₀ : Π₀ (i : ι), G i) : (hV.linear_isometry_equiv (W₀.sum (λ i, V i)) : Π i, G i) = W₀ := begin rw ← hV.linear_isometry_equiv_symm_apply_dfinsupp_sum_single, rw linear_isometry_equiv.apply_symm_apply, ext i, simp [dfinsupp.sum, lp.single_apply] {contextual := tt}, end /-- Given a total orthonormal family `v : ι → E`, `E` is a Hilbert sum of `λ i : ι, 𝕜` relative to the family of linear isometries `λ i, λ k, k • v i`. -/ lemma orthonormal.is_hilbert_sum {v : ι → E} (hv : orthonormal 𝕜 v) (hsp : ⊤ ≤ (span 𝕜 (set.range v)).topological_closure) : @is_hilbert_sum _ 𝕜 _ _ _ _ (λ i : ι, 𝕜) _ (λ i, linear_isometry.to_span_singleton 𝕜 E (hv.1 i)) := is_hilbert_sum.mk hv.orthogonal_family begin convert hsp, simp [← linear_map.span_singleton_eq_range, ← submodule.span_Union], end lemma submodule.is_hilbert_sum_orthogonal (K : submodule 𝕜 E) [hK : complete_space K] : @is_hilbert_sum _ 𝕜 _ E _ _ (λ b, ((cond b K Kᗮ : submodule 𝕜 E) : Type*)) _ (λ b, (cond b K Kᗮ).subtypeₗᵢ) := begin haveI : Π b, complete_space ((cond b K Kᗮ : submodule 𝕜 E) : Type*), { intro b, cases b; exact orthogonal.complete_space K <|> assumption }, refine is_hilbert_sum.mk_internal _ K.orthogonal_family_self _, refine le_trans _ (submodule.submodule_topological_closure _), rw supr_bool_eq, exact submodule.is_compl_orthogonal_of_complete_space.2 end end is_hilbert_sum /-! ### Hilbert bases -/ section variables (ι) (𝕜) (E) /-- A Hilbert basis on `ι` for an inner product space `E` is an identification of `E` with the `lp` space `ℓ²(ι, 𝕜)`. -/ structure hilbert_basis := of_repr :: (repr : E ≃ₗᵢ[𝕜] ℓ²(ι, 𝕜)) end namespace hilbert_basis instance {ι : Type*} : inhabited (hilbert_basis ι 𝕜 ℓ²(ι, 𝕜)) := ⟨of_repr (linear_isometry_equiv.refl 𝕜 _)⟩ /-- `b i` is the `i`th basis vector. -/ instance : has_coe_to_fun (hilbert_basis ι 𝕜 E) (λ _, ι → E) := { coe := λ b i, b.repr.symm (lp.single 2 i (1:𝕜)) } @[simp] protected lemma repr_symm_single (b : hilbert_basis ι 𝕜 E) (i : ι) : b.repr.symm (lp.single 2 i (1:𝕜)) = b i := rfl @[simp] protected lemma repr_self (b : hilbert_basis ι 𝕜 E) (i : ι) : b.repr (b i) = lp.single 2 i (1:𝕜) := by rw [← b.repr_symm_single, linear_isometry_equiv.apply_symm_apply] protected lemma repr_apply_apply (b : hilbert_basis ι 𝕜 E) (v : E) (i : ι) : b.repr v i = ⟪b i, v⟫ := begin rw [← b.repr.inner_map_map (b i) v, b.repr_self, lp.inner_single_left], simp, end @[simp] protected lemma orthonormal (b : hilbert_basis ι 𝕜 E) : orthonormal 𝕜 b := begin rw orthonormal_iff_ite, intros i j, rw [← b.repr.inner_map_map (b i) (b j), b.repr_self, b.repr_self, lp.inner_single_left, lp.single_apply], simp, end protected lemma has_sum_repr_symm (b : hilbert_basis ι 𝕜 E) (f : ℓ²(ι, 𝕜)) : has_sum (λ i, f i • b i) (b.repr.symm f) := begin suffices H : (λ (i : ι), f i • b i) = (λ (b_1 : ι), (b.repr.symm.to_continuous_linear_equiv) ((λ (i : ι), lp.single 2 i (f i)) b_1)), { rw H, have : has_sum (λ (i : ι), lp.single 2 i (f i)) f := lp.has_sum_single ennreal.two_ne_top f, exact (↑(b.repr.symm.to_continuous_linear_equiv) : ℓ²(ι, 𝕜) →L[𝕜] E).has_sum this }, ext i, apply b.repr.injective, have : lp.single 2 i (f i * 1) = f i • lp.single 2 i 1 := lp.single_smul 2 i (1:𝕜) (f i), rw mul_one at this, rw [linear_isometry_equiv.map_smul, b.repr_self, ← this, linear_isometry_equiv.coe_to_continuous_linear_equiv], exact (b.repr.apply_symm_apply (lp.single 2 i (f i))).symm, end protected lemma has_sum_repr (b : hilbert_basis ι 𝕜 E) (x : E) : has_sum (λ i, b.repr x i • b i) x := by simpa using b.has_sum_repr_symm (b.repr x) @[simp] protected lemma dense_span (b : hilbert_basis ι 𝕜 E) : (span 𝕜 (set.range b)).topological_closure = ⊤ := begin classical, rw eq_top_iff, rintros x -, refine mem_closure_of_tendsto (b.has_sum_repr x) (eventually_of_forall _), intros s, simp only [set_like.mem_coe], refine sum_mem _, rintros i -, refine smul_mem _ _ _, exact subset_span ⟨i, rfl⟩ end protected lemma has_sum_inner_mul_inner (b : hilbert_basis ι 𝕜 E) (x y : E) : has_sum (λ i, ⟪x, b i⟫ * ⟪b i, y⟫) ⟪x, y⟫ := begin convert (b.has_sum_repr y).mapL (innerSL x), ext i, rw [innerSL_apply, b.repr_apply_apply, inner_smul_right, mul_comm] end protected lemma summable_inner_mul_inner (b : hilbert_basis ι 𝕜 E) (x y : E) : summable (λ i, ⟪x, b i⟫ * ⟪b i, y⟫) := (b.has_sum_inner_mul_inner x y).summable protected lemma tsum_inner_mul_inner (b : hilbert_basis ι 𝕜 E) (x y : E) : ∑' i, ⟪x, b i⟫ * ⟪b i, y⟫ = ⟪x, y⟫ := (b.has_sum_inner_mul_inner x y).tsum_eq -- Note : this should be `b.repr` composed with an identification of `lp (λ i : ι, 𝕜) p` with -- `pi_Lp p (λ i : ι, 𝕜)` (in this case with `p = 2`), but we don't have this yet (July 2022). /-- A finite Hilbert basis is an orthonormal basis. -/ protected def to_orthonormal_basis [fintype ι] (b : hilbert_basis ι 𝕜 E) : orthonormal_basis ι 𝕜 E := orthonormal_basis.mk b.orthonormal begin refine eq.ge _, have := (span 𝕜 (finset.univ.image b : set E)).closed_of_finite_dimensional, simpa only [finset.coe_image, finset.coe_univ, set.image_univ, hilbert_basis.dense_span] using this.submodule_topological_closure_eq.symm end @[simp] lemma coe_to_orthonormal_basis [fintype ι] (b : hilbert_basis ι 𝕜 E) : (b.to_orthonormal_basis : ι → E) = b := orthonormal_basis.coe_mk _ _ lemma finite_spans_dense (b : hilbert_basis ι 𝕜 E) : (⨆ J : finset ι, span 𝕜 (J.image b : set E)).topological_closure = ⊤ := eq_top_iff.mpr $ b.dense_span.ge.trans begin simp_rw [← submodule.span_Union], exact topological_closure_mono (span_mono $ set.range_subset_iff.mpr $ λ i, set.mem_Union_of_mem {i} $ finset.mem_coe.mpr $ finset.mem_image_of_mem _ $ finset.mem_singleton_self i) end variables {v : ι → E} (hv : orthonormal 𝕜 v) include hv cplt /-- An orthonormal family of vectors whose span is dense in the whole module is a Hilbert basis. -/ protected def mk (hsp : ⊤ ≤ (span 𝕜 (set.range v)).topological_closure) : hilbert_basis ι 𝕜 E := hilbert_basis.of_repr $ (hv.is_hilbert_sum hsp).linear_isometry_equiv lemma _root_.orthonormal.linear_isometry_equiv_symm_apply_single_one (h i) : (hv.is_hilbert_sum h).linear_isometry_equiv.symm (lp.single 2 i 1) = v i := by rw [is_hilbert_sum.linear_isometry_equiv_symm_apply_single, linear_isometry.to_span_singleton_apply, one_smul] @[simp] protected lemma coe_mk (hsp : ⊤ ≤ (span 𝕜 (set.range v)).topological_closure) : ⇑(hilbert_basis.mk hv hsp) = v := by apply (funext $ orthonormal.linear_isometry_equiv_symm_apply_single_one hv hsp) /-- An orthonormal family of vectors whose span has trivial orthogonal complement is a Hilbert basis. -/ protected def mk_of_orthogonal_eq_bot (hsp : (span 𝕜 (set.range v))ᗮ = ⊥) : hilbert_basis ι 𝕜 E := hilbert_basis.mk hv (by rw [← orthogonal_orthogonal_eq_closure, ← eq_top_iff, orthogonal_eq_top_iff, hsp]) @[simp] protected lemma coe_of_orthogonal_eq_bot_mk (hsp : (span 𝕜 (set.range v))ᗮ = ⊥) : ⇑(hilbert_basis.mk_of_orthogonal_eq_bot hv hsp) = v := hilbert_basis.coe_mk hv _ omit hv -- Note : this should be `b.repr` composed with an identification of `lp (λ i : ι, 𝕜) p` with -- `pi_Lp p (λ i : ι, 𝕜)` (in this case with `p = 2`), but we don't have this yet (July 2022). /-- An orthonormal basis is an Hilbert basis. -/ protected def _root_.orthonormal_basis.to_hilbert_basis [fintype ι] (b : orthonormal_basis ι 𝕜 E) : hilbert_basis ι 𝕜 E := hilbert_basis.mk b.orthonormal $ by simpa only [← orthonormal_basis.coe_to_basis, b.to_basis.span_eq, eq_top_iff] using @subset_closure E _ _ @[simp] lemma _root_.orthonormal_basis.coe_to_hilbert_basis [fintype ι] (b : orthonormal_basis ι 𝕜 E) : (b.to_hilbert_basis : ι → E) = b := hilbert_basis.coe_mk _ _ /-- A Hilbert space admits a Hilbert basis extending a given orthonormal subset. -/ lemma _root_.orthonormal.exists_hilbert_basis_extension {s : set E} (hs : orthonormal 𝕜 (coe : s → E)) : ∃ (w : set E) (b : hilbert_basis w 𝕜 E), s ⊆ w ∧ ⇑b = (coe : w → E) := let ⟨w, hws, hw_ortho, hw_max⟩ := exists_maximal_orthonormal hs in ⟨ w, hilbert_basis.mk_of_orthogonal_eq_bot hw_ortho (by simpa [maximal_orthonormal_iff_orthogonal_complement_eq_bot hw_ortho] using hw_max), hws, hilbert_basis.coe_of_orthogonal_eq_bot_mk _ _ ⟩ variables (𝕜 E) /-- A Hilbert space admits a Hilbert basis. -/ lemma _root_.exists_hilbert_basis : ∃ (w : set E) (b : hilbert_basis w 𝕜 E), ⇑b = (coe : w → E) := let ⟨w, hw, hw', hw''⟩ := (orthonormal_empty 𝕜 E).exists_hilbert_basis_extension in ⟨w, hw, hw''⟩ end hilbert_basis
f82c3cda4e7ae765a8f34bff63accadc33198f95
9dc8cecdf3c4634764a18254e94d43da07142918
/src/algebraic_geometry/AffineScheme.lean
114556cb2195b4ae9598e0e50c2ebf2b700355a5
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
32,380
lean
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import algebraic_geometry.Gamma_Spec_adjunction import algebraic_geometry.open_immersion import category_theory.limits.opposites import ring_theory.localization.inv_submonoid /-! # Affine schemes We define the category of `AffineScheme`s as the essential image of `Spec`. We also define predicates about affine schemes and affine open sets. ## Main definitions * `algebraic_geometry.AffineScheme`: The category of affine schemes. * `algebraic_geometry.is_affine`: A scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an isomorphism. * `algebraic_geometry.Scheme.iso_Spec`: The canonical isomorphism `X ≅ Spec Γ(X)` for an affine scheme. * `algebraic_geometry.AffineScheme.equiv_CommRing`: The equivalence of categories `AffineScheme ≌ CommRingᵒᵖ` given by `AffineScheme.Spec : CommRingᵒᵖ ⥤ AffineScheme` and `AffineScheme.Γ : AffineSchemeᵒᵖ ⥤ CommRing`. * `algebraic_geometry.is_affine_open`: An open subset of a scheme is affine if the open subscheme is affine. * `algebraic_geometry.is_affine_open.from_Spec`: The immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`. -/ noncomputable theory open category_theory category_theory.limits opposite topological_space universe u namespace algebraic_geometry open Spec (structure_sheaf) /-- The category of affine schemes -/ @[derive category, nolint has_nonempty_instance] def AffineScheme := Scheme.Spec.ess_image_subcategory /-- A Scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an isomorphism. -/ class is_affine (X : Scheme) : Prop := (affine : is_iso (Γ_Spec.adjunction.unit.app X)) attribute [instance] is_affine.affine /-- The canonical isomorphism `X ≅ Spec Γ(X)` for an affine scheme. -/ def Scheme.iso_Spec (X : Scheme) [is_affine X] : X ≅ Scheme.Spec.obj (op $ Scheme.Γ.obj $ op X) := as_iso (Γ_Spec.adjunction.unit.app X) /-- Construct an affine scheme from a scheme and the information that it is affine. Also see `AffineScheme.of` for a typclass version. -/ @[simps] def AffineScheme.mk (X : Scheme) (h : is_affine X) : AffineScheme := ⟨X, @@mem_ess_image_of_unit_is_iso _ _ _ _ h.1⟩ /-- Construct an affine scheme from a scheme. Also see `AffineScheme.mk` for a non-typeclass version. -/ def AffineScheme.of (X : Scheme) [h : is_affine X] : AffineScheme := AffineScheme.mk X h /-- Type check a morphism of schemes as a morphism in `AffineScheme`. -/ def AffineScheme.of_hom {X Y : Scheme} [is_affine X] [is_affine Y] (f : X ⟶ Y) : AffineScheme.of X ⟶ AffineScheme.of Y := f lemma mem_Spec_ess_image (X : Scheme) : X ∈ Scheme.Spec.ess_image ↔ is_affine X := ⟨λ h, ⟨functor.ess_image.unit_is_iso h⟩, λ h, @@mem_ess_image_of_unit_is_iso _ _ _ X h.1⟩ instance is_affine_AffineScheme (X : AffineScheme.{u}) : is_affine X.obj := ⟨functor.ess_image.unit_is_iso X.property⟩ instance Spec_is_affine (R : CommRingᵒᵖ) : is_affine (Scheme.Spec.obj R) := algebraic_geometry.is_affine_AffineScheme ⟨_, Scheme.Spec.obj_mem_ess_image R⟩ lemma is_affine_of_iso {X Y : Scheme} (f : X ⟶ Y) [is_iso f] [h : is_affine Y] : is_affine X := by { rw [← mem_Spec_ess_image] at h ⊢, exact functor.ess_image.of_iso (as_iso f).symm h } namespace AffineScheme /-- The `Spec` functor into the category of affine schemes. -/ @[derive [full, faithful, ess_surj]] def Spec : CommRingᵒᵖ ⥤ AffineScheme := Scheme.Spec.to_ess_image /-- The forgetful functor `AffineScheme ⥤ Scheme`. -/ @[derive [full, faithful], simps] def forget_to_Scheme : AffineScheme ⥤ Scheme := Scheme.Spec.ess_image_inclusion /-- The global section functor of an affine scheme. -/ def Γ : AffineSchemeᵒᵖ ⥤ CommRing := forget_to_Scheme.op ⋙ Scheme.Γ /-- The category of affine schemes is equivalent to the category of commutative rings. -/ def equiv_CommRing : AffineScheme ≌ CommRingᵒᵖ := equiv_ess_image_of_reflective.symm instance Γ_is_equiv : is_equivalence Γ.{u} := begin haveI : is_equivalence Γ.{u}.right_op.op := is_equivalence.of_equivalence equiv_CommRing.op, exact (functor.is_equivalence_trans Γ.{u}.right_op.op (op_op_equivalence _).functor : _), end instance : has_colimits AffineScheme.{u} := begin haveI := adjunction.has_limits_of_equivalence.{u} Γ.{u}, exactI adjunction.has_colimits_of_equivalence.{u} (op_op_equivalence AffineScheme.{u}).inverse end instance : has_limits AffineScheme.{u} := begin haveI := adjunction.has_colimits_of_equivalence Γ.{u}, haveI : has_limits AffineScheme.{u} ᵒᵖᵒᵖ := limits.has_limits_op_of_has_colimits, exactI adjunction.has_limits_of_equivalence (op_op_equivalence AffineScheme.{u}).inverse end noncomputable instance : preserves_limits Γ.{u}.right_op := @@adjunction.is_equivalence_preserves_limits _ _ Γ.right_op (is_equivalence.of_equivalence equiv_CommRing) noncomputable instance : preserves_limits forget_to_Scheme := begin apply_with (@@preserves_limits_of_nat_iso _ _ (iso_whisker_right equiv_CommRing.unit_iso forget_to_Scheme).symm) { instances := ff }, change preserves_limits (equiv_CommRing.functor ⋙ Scheme.Spec), apply_instance, end end AffineScheme /-- An open subset of a scheme is affine if the open subscheme is affine. -/ def is_affine_open {X : Scheme} (U : opens X.carrier) : Prop := is_affine (X.restrict U.open_embedding) /-- The set of affine opens as a subset of `opens X.carrier`. -/ def Scheme.affine_opens (X : Scheme) : set (opens X.carrier) := { U : opens X.carrier | is_affine_open U } lemma range_is_affine_open_of_open_immersion {X Y : Scheme} [is_affine X] (f : X ⟶ Y) [H : is_open_immersion f] : is_affine_open f.opens_range := begin refine is_affine_of_iso (is_open_immersion.iso_of_range_eq f (Y.of_restrict _) _).inv, exact subtype.range_coe.symm, apply_instance end lemma top_is_affine_open (X : Scheme) [is_affine X] : is_affine_open (⊤ : opens X.carrier) := begin convert range_is_affine_open_of_open_immersion (𝟙 X), ext1, exact set.range_id.symm end instance Scheme.affine_cover_is_affine (X : Scheme) (i : X.affine_cover.J) : is_affine (X.affine_cover.obj i) := algebraic_geometry.Spec_is_affine _ instance Scheme.affine_basis_cover_is_affine (X : Scheme) (i : X.affine_basis_cover.J) : is_affine (X.affine_basis_cover.obj i) := algebraic_geometry.Spec_is_affine _ lemma is_basis_affine_open (X : Scheme) : opens.is_basis X.affine_opens := begin rw opens.is_basis_iff_nbhd, rintros U x (hU : x ∈ (U : set X.carrier)), obtain ⟨S, hS, hxS, hSU⟩ := X.affine_basis_cover_is_basis.exists_subset_of_mem_open hU U.prop, refine ⟨⟨S, X.affine_basis_cover_is_basis.is_open hS⟩, _, hxS, hSU⟩, rcases hS with ⟨i, rfl⟩, exact range_is_affine_open_of_open_immersion _, end /-- The open immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`. -/ def is_affine_open.from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : Scheme.Spec.obj (op $ X.presheaf.obj $ op U) ⟶ X := begin haveI : is_affine (X.restrict U.open_embedding) := hU, have : U.open_embedding.is_open_map.functor.obj ⊤ = U, { ext1, exact set.image_univ.trans subtype.range_coe }, exact Scheme.Spec.map (X.presheaf.map (eq_to_hom this.symm).op).op ≫ (X.restrict U.open_embedding).iso_Spec.inv ≫ X.of_restrict _ end instance is_affine_open.is_open_immersion_from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : is_open_immersion hU.from_Spec := by { delta is_affine_open.from_Spec, apply_instance } lemma is_affine_open.from_Spec_range {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : set.range hU.from_Spec.1.base = (U : set X.carrier) := begin delta is_affine_open.from_Spec, erw [← category.assoc, Scheme.comp_val_base], rw [coe_comp, set.range_comp, set.range_iff_surjective.mpr, set.image_univ], exact subtype.range_coe, rw ← Top.epi_iff_surjective, apply_instance end lemma is_affine_open.from_Spec_image_top {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : hU.is_open_immersion_from_Spec.base_open.is_open_map.functor.obj ⊤ = U := by { ext1, exact set.image_univ.trans hU.from_Spec_range } lemma is_affine_open.is_compact {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : is_compact (U : set X.carrier) := begin convert @is_compact.image _ _ _ _ set.univ hU.from_Spec.1.base prime_spectrum.compact_space.1 (by continuity), convert hU.from_Spec_range.symm, exact set.image_univ end lemma is_affine_open.image_is_open_immersion {X Y : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X ⟶ Y) [H : is_open_immersion f] : is_affine_open (f.opens_functor.obj U) := begin haveI : is_affine _ := hU, convert range_is_affine_open_of_open_immersion (X.of_restrict U.open_embedding ≫ f), ext1, change f.1.base '' U.1 = set.range (f.1.base ∘ coe), rw [set.range_comp, subtype.range_coe], end lemma is_affine_open_iff_of_is_open_immersion {X Y : Scheme} (f : X ⟶ Y) [H : is_open_immersion f] (U : opens X.carrier) : is_affine_open (H.open_functor.obj U) ↔ is_affine_open U := begin refine ⟨λ hU, @@is_affine_of_iso _ _ hU, λ hU, hU.image_is_open_immersion f⟩, refine (is_open_immersion.iso_of_range_eq (X.of_restrict _ ≫ f) (Y.of_restrict _) _).hom, { rw [Scheme.comp_val_base, coe_comp, set.range_comp], dsimp [opens.inclusion], rw [subtype.range_coe, subtype.range_coe], refl }, { apply_instance } end instance Scheme.quasi_compact_of_affine (X : Scheme) [is_affine X] : compact_space X.carrier := ⟨(top_is_affine_open X).is_compact⟩ lemma is_affine_open.from_Spec_base_preimage {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : (opens.map hU.from_Spec.val.base).obj U = ⊤ := begin ext1, change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ, rw [← hU.from_Spec_range, ← set.image_univ], exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj end lemma Scheme.Spec_map_presheaf_map_eq_to_hom {X : Scheme} {U V : opens X.carrier} (h : U = V) (W) : (Scheme.Spec.map (X.presheaf.map (eq_to_hom h).op).op).val.c.app W = eq_to_hom (by { cases h, dsimp, induction W using opposite.rec, congr, ext1, simpa }) := begin have : Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 _, { rw [X.presheaf.map_id, op_id, Scheme.Spec.map_id] }, cases h, refine (Scheme.congr_app this _).trans _, erw category.id_comp, simpa [eq_to_hom_map], end lemma is_affine_open.Spec_Γ_identity_hom_app_from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : (Spec_Γ_identity.hom.app (X.presheaf.obj $ op U)) ≫ hU.from_Spec.1.c.app (op U) = (Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op := begin haveI : is_affine _ := hU, have e₁ := Spec_Γ_identity.hom.naturality (X.presheaf.map (eq_to_hom U.open_embedding_obj_top).op), rw ← is_iso.comp_inv_eq at e₁, have e₂ := Γ_Spec.adjunction_unit_app_app_top (X.restrict U.open_embedding), erw ← e₂ at e₁, simp only [functor.id_map, quiver.hom.unop_op, functor.comp_map, ← functor.map_inv, ← op_inv, LocallyRingedSpace.Γ_map, category.assoc, functor.right_op_map, inv_eq_to_hom] at e₁, delta is_affine_open.from_Spec Scheme.iso_Spec, rw [Scheme.comp_val_c_app, Scheme.comp_val_c_app, ← e₁], simp_rw category.assoc, erw ← X.presheaf.map_comp_assoc, rw ← op_comp, have e₃ : U.open_embedding.is_open_map.adjunction.counit.app U ≫ eq_to_hom U.open_embedding_obj_top.symm = U.open_embedding.is_open_map.functor.map (eq_to_hom U.inclusion_map_eq_top) := subsingleton.elim _ _, have e₄ : X.presheaf.map _ ≫ _ = _ := (as_iso (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))) .inv.1.c.naturality_assoc (eq_to_hom U.inclusion_map_eq_top).op _, erw [e₃, e₄, ← Scheme.comp_val_c_app_assoc, iso.inv_hom_id], simp only [eq_to_hom_map, eq_to_hom_op, Scheme.Spec_map_presheaf_map_eq_to_hom], erw [Scheme.Spec_map_presheaf_map_eq_to_hom, category.id_comp], simpa only [eq_to_hom_trans] end @[elementwise] lemma is_affine_open.from_Spec_app_eq {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : hU.from_Spec.1.c.app (op U) = Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) ≫ (Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op := by rw [← hU.Spec_Γ_identity_hom_app_from_Spec, iso.inv_hom_id_app_assoc] lemma is_affine_open.basic_open_is_affine {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_affine_open (X.basic_open f) := begin convert range_is_affine_open_of_open_immersion (Scheme.Spec.map (CommRing.of_hom (algebra_map (X.presheaf.obj (op U)) (localization.away f))).op ≫ hU.from_Spec), ext1, have : hU.from_Spec.val.base '' (hU.from_Spec.val.base ⁻¹' (X.basic_open f : set X.carrier)) = (X.basic_open f : set X.carrier), { rw [set.image_preimage_eq_inter_range, set.inter_eq_left_iff_subset, hU.from_Spec_range], exact Scheme.basic_open_subset _ _ }, rw [Scheme.hom.opens_range_coe, Scheme.comp_val_base, ← this, coe_comp, set.range_comp], congr' 1, refine (congr_arg coe $ Scheme.preimage_basic_open hU.from_Spec f).trans _, refine eq.trans _ (prime_spectrum.localization_away_comap_range (localization.away f) f).symm, congr' 1, have : (opens.map hU.from_Spec.val.base).obj U = ⊤, { ext1, change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ, rw [← hU.from_Spec_range, ← set.image_univ], exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj }, refine eq.trans _ (basic_open_eq_of_affine f), have lm : ∀ s, (opens.map hU.from_Spec.val.base).obj U ⊓ s = s := λ s, this.symm ▸ top_inf_eq, refine eq.trans _ (lm _), refine eq.trans _ ((Scheme.Spec.obj $ op $ X.presheaf.obj $ op U).basic_open_res _ (eq_to_hom this).op), rw ← comp_apply, congr' 2, rw iso.eq_inv_comp, erw hU.Spec_Γ_identity_hom_app_from_Spec, end lemma is_affine_open.map_restrict_basic_open {X : Scheme} (r : X.presheaf.obj (op ⊤)) {U : opens X.carrier} (hU : is_affine_open U) : is_affine_open ((opens.map (X.of_restrict (X.basic_open r).open_embedding).1.base).obj U) := begin apply (is_affine_open_iff_of_is_open_immersion (X.of_restrict (X.basic_open r).open_embedding) _).mp, delta PresheafedSpace.is_open_immersion.open_functor, dsimp, rw [opens.functor_obj_map_obj, opens.open_embedding_obj_top, inf_comm, ← opens.inter_eq, ← Scheme.basic_open_res _ _ (hom_of_le le_top).op], exact hU.basic_open_is_affine _, end lemma Scheme.map_prime_spectrum_basic_open_of_affine (X : Scheme) [is_affine X] (f : Scheme.Γ.obj (op X)) : (opens.map X.iso_Spec.hom.1.base).obj (prime_spectrum.basic_open f) = X.basic_open f := begin rw ← basic_open_eq_of_affine, transitivity (opens.map X.iso_Spec.hom.1.base).obj ((Scheme.Spec.obj (op (Scheme.Γ.obj (op X)))).basic_open ((inv (X.iso_Spec.hom.1.c.app (op ((opens.map (inv X.iso_Spec.hom).val.base).obj ⊤)))) ((X.presheaf.map (eq_to_hom _)) f))), congr, { rw [← is_iso.inv_eq_inv, is_iso.inv_inv, is_iso.iso.inv_inv, nat_iso.app_hom], erw ← Γ_Spec.adjunction_unit_app_app_top, refl }, { rw eq_to_hom_map, refl }, { dsimp, congr }, { refine (Scheme.preimage_basic_open _ _).trans _, rw [is_iso.inv_hom_id_apply, Scheme.basic_open_res_eq] } end lemma is_basis_basic_open (X : Scheme) [is_affine X] : opens.is_basis (set.range (X.basic_open : X.presheaf.obj (op ⊤) → opens X.carrier)) := begin delta opens.is_basis, convert prime_spectrum.is_basis_basic_opens.inducing (Top.homeo_of_iso (Scheme.forget_to_Top.map_iso X.iso_Spec)).inducing using 1, ext, simp only [set.mem_image, exists_exists_eq_and], split, { rintro ⟨_, ⟨x, rfl⟩, rfl⟩, refine ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, _⟩, exact congr_arg subtype.val (X.map_prime_spectrum_basic_open_of_affine x) }, { rintro ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, rfl⟩, refine ⟨_, ⟨x, rfl⟩, _⟩, exact congr_arg subtype.val (X.map_prime_spectrum_basic_open_of_affine x).symm } end lemma is_affine_open.exists_basic_open_subset {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) {V : opens X.carrier} (x : V) (h : ↑x ∈ U) : ∃ f : X.presheaf.obj (op U), X.basic_open f ⊆ V ∧ ↑x ∈ X.basic_open f := begin haveI : is_affine _ := hU, obtain ⟨_, ⟨_, ⟨r, rfl⟩, rfl⟩, h₁, h₂⟩ := (is_basis_basic_open (X.restrict U.open_embedding)) .exists_subset_of_mem_open _ ((opens.map U.inclusion).obj V).prop, swap, exact ⟨x, h⟩, have : U.open_embedding.is_open_map.functor.obj ((X.restrict U.open_embedding).basic_open r) = X.basic_open (X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r), { refine (Scheme.image_basic_open (X.of_restrict U.open_embedding) r).trans _, erw ← Scheme.basic_open_res_eq _ _ (eq_to_hom U.open_embedding_obj_top).op, rw [← comp_apply, ← category_theory.functor.map_comp, ← op_comp, eq_to_hom_trans, eq_to_hom_refl, op_id, category_theory.functor.map_id], erw PresheafedSpace.is_open_immersion.of_restrict_inv_app, congr }, use X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r, rw ← this, exact ⟨set.image_subset_iff.mpr h₂, set.mem_image_of_mem _ h₁⟩, exact x.prop, end instance {X : Scheme} {U : opens X.carrier} (f : X.presheaf.obj (op U)) : algebra (X.presheaf.obj (op U)) (X.presheaf.obj (op $ X.basic_open f)) := (X.presheaf.map (hom_of_le $ RingedSpace.basic_open_subset _ f : _ ⟶ U).op).to_algebra lemma is_affine_open.opens_map_from_Spec_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : (opens.map hU.from_Spec.val.base).obj (X.basic_open f) = RingedSpace.basic_open _ (Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) f) := begin erw LocallyRingedSpace.preimage_basic_open, refine eq.trans _ (RingedSpace.basic_open_res_eq (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)) .to_LocallyRingedSpace.to_RingedSpace (eq_to_hom hU.from_Spec_base_preimage).op _), congr, rw ← comp_apply, congr, erw ← hU.Spec_Γ_identity_hom_app_from_Spec, rw iso.inv_hom_id_app_assoc, end /-- The canonical map `Γ(𝒪ₓ, D(f)) ⟶ Γ(Spec 𝒪ₓ(U), D(Spec_Γ_identity.inv f))` This is an isomorphism, as witnessed by an `is_iso` instance. -/ def basic_open_sections_to_affine {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : X.presheaf.obj (op $ X.basic_open f) ⟶ (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)).presheaf.obj (op $ Scheme.basic_open _ $ Spec_Γ_identity.inv.app (X.presheaf.obj (op U)) f) := hU.from_Spec.1.c.app (op $ X.basic_open f) ≫ (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)) .presheaf.map (eq_to_hom $ (hU.opens_map_from_Spec_basic_open f).symm).op instance {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_iso (basic_open_sections_to_affine hU f) := begin delta basic_open_sections_to_affine, apply_with is_iso.comp_is_iso { instances := ff }, { apply PresheafedSpace.is_open_immersion.is_iso_of_subset, rw hU.from_Spec_range, exact RingedSpace.basic_open_subset _ _ }, apply_instance end . lemma is_localization_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_localization.away f (X.presheaf.obj (op $ X.basic_open f)) := begin apply (is_localization.is_localization_iff_of_ring_equiv (submonoid.powers f) (as_iso $ basic_open_sections_to_affine hU f ≫ (Scheme.Spec.obj _).presheaf.map (eq_to_hom (basic_open_eq_of_affine _).symm).op).CommRing_iso_to_ring_equiv).mpr, convert structure_sheaf.is_localization.to_basic_open _ f, change _ ≫ (basic_open_sections_to_affine hU f ≫ _) = _, delta basic_open_sections_to_affine, erw ring_hom.algebra_map_to_algebra, simp only [Scheme.comp_val_c_app, category.assoc], erw hU.from_Spec.val.c.naturality_assoc, rw hU.from_Spec_app_eq, dsimp, simp only [category.assoc, ← functor.map_comp, ← op_comp], apply structure_sheaf.to_open_res, end instance {X : Scheme} [is_affine X] (r : X.presheaf.obj (op ⊤)) : is_localization.away r (X.presheaf.obj (op $ X.basic_open r)) := is_localization_basic_open (top_is_affine_open X) r lemma is_localization_of_eq_basic_open {X : Scheme} {U V : opens X.carrier} (i : V ⟶ U) (hU : is_affine_open U) (r : X.presheaf.obj (op U)) (e : V = X.basic_open r) : @@is_localization.away _ r (X.presheaf.obj (op V)) _ (X.presheaf.map i.op).to_algebra := by { subst e, convert is_localization_basic_open hU r using 3 } instance Γ_restrict_algebra {X : Scheme} {Y : Top} {f : Y ⟶ X.carrier} (hf : open_embedding f) : algebra (Scheme.Γ.obj (op X)) (Scheme.Γ.obj (op $ X.restrict hf)) := (Scheme.Γ.map (X.of_restrict hf).op).to_algebra instance Γ_restrict_is_localization (X : Scheme.{u}) [is_affine X] (r : Scheme.Γ.obj (op X)) : is_localization.away r (Scheme.Γ.obj (op $ X.restrict (X.basic_open r).open_embedding)) := is_localization_of_eq_basic_open _ (top_is_affine_open X) r (opens.open_embedding_obj_top _) lemma basic_open_basic_open_is_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) (g : X.presheaf.obj (op $ X.basic_open f)) : ∃ f' : X.presheaf.obj (op U), X.basic_open f' = X.basic_open g := begin haveI := is_localization_basic_open hU f, obtain ⟨x, ⟨_, n, rfl⟩, rfl⟩ := is_localization.surj' (submonoid.powers f) g, use f * x, rw [algebra.smul_def, Scheme.basic_open_mul, Scheme.basic_open_mul], erw Scheme.basic_open_res, refine (inf_eq_left.mpr _).symm, convert inf_le_left using 1, apply Scheme.basic_open_of_is_unit, apply submonoid.left_inv_le_is_unit _ (is_localization.to_inv_submonoid (submonoid.powers f) (X.presheaf.obj (op $ X.basic_open f)) _).prop end lemma exists_basic_open_subset_affine_inter {X : Scheme} {U V : opens X.carrier} (hU : is_affine_open U) (hV : is_affine_open V) (x : X.carrier) (hx : x ∈ U ∩ V) : ∃ (f : X.presheaf.obj $ op U) (g : X.presheaf.obj $ op V), X.basic_open f = X.basic_open g ∧ x ∈ X.basic_open f := begin obtain ⟨f, hf₁, hf₂⟩ := hU.exists_basic_open_subset ⟨x, hx.2⟩ hx.1, obtain ⟨g, hg₁, hg₂⟩ := hV.exists_basic_open_subset ⟨x, hf₂⟩ hx.2, obtain ⟨f', hf'⟩ := basic_open_basic_open_is_basic_open hU f (X.presheaf.map (hom_of_le hf₁ : _ ⟶ V).op g), replace hf' := (hf'.trans (RingedSpace.basic_open_res _ _ _)).trans (inf_eq_right.mpr hg₁), exact ⟨f', g, hf', hf'.symm ▸ hg₂⟩ end /-- The prime ideal of `𝒪ₓ(U)` corresponding to a point `x : U`. -/ noncomputable def is_affine_open.prime_ideal_of {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (x : U) : prime_spectrum (X.presheaf.obj $ op U) := ((Scheme.Spec.map (X.presheaf.map (eq_to_hom $ show U.open_embedding.is_open_map.functor.obj ⊤ = U, from opens.ext (set.image_univ.trans subtype.range_coe)).op).op).1.base ((@@Scheme.iso_Spec (X.restrict U.open_embedding) hU).hom.1.base x)) lemma is_affine_open.from_Spec_prime_ideal_of {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (x : U) : hU.from_Spec.val.base (hU.prime_ideal_of x) = x.1 := begin dsimp only [is_affine_open.from_Spec, subtype.coe_mk], erw [← Scheme.comp_val_base_apply, ← Scheme.comp_val_base_apply], simpa only [← functor.map_comp_assoc, ← functor.map_comp, ← op_comp, eq_to_hom_trans, op_id, eq_to_hom_refl, category_theory.functor.map_id, category.id_comp, iso.hom_inv_id_assoc] end lemma is_affine_open.is_localization_stalk_aux {X : Scheme} (U : opens X.carrier) [is_affine (X.restrict U.open_embedding)] : (inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.c.app (op ((opens.map U.inclusion).obj U)) = X.presheaf.map (eq_to_hom $ by rw opens.inclusion_map_eq_top : U.open_embedding.is_open_map.functor.obj ⊤ ⟶ (U.open_embedding.is_open_map.functor.obj ((opens.map U.inclusion).obj U))).op ≫ to_Spec_Γ (X.presheaf.obj $ op (U.open_embedding.is_open_map.functor.obj ⊤)) ≫ (Scheme.Spec.obj $ op $ X.presheaf.obj $ _).presheaf.map (eq_to_hom (by { rw [opens.inclusion_map_eq_top], refl }) : unop _ ⟶ ⊤).op := begin have e : (opens.map (inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.base).obj ((opens.map U.inclusion).obj U) = ⊤, by { rw [opens.inclusion_map_eq_top], refl }, rw [Scheme.inv_val_c_app, is_iso.comp_inv_eq, Scheme.app_eq _ e, Γ_Spec.adjunction_unit_app_app_top], simp only [category.assoc, eq_to_hom_op], erw ← functor.map_comp_assoc, rw [eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id, category.id_comp], erw Spec_Γ_identity.inv_hom_id_app_assoc, simp only [eq_to_hom_map, eq_to_hom_trans], end lemma is_affine_open.is_localization_stalk {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (x : U) : is_localization.at_prime (X.presheaf.stalk x) (hU.prime_ideal_of x).as_ideal := begin haveI : is_affine _ := hU, haveI : nonempty U := ⟨x⟩, rcases x with ⟨x, hx⟩, let y := hU.prime_ideal_of ⟨x, hx⟩, have : hU.from_Spec.val.base y = x := hU.from_Spec_prime_ideal_of ⟨x, hx⟩, change is_localization y.as_ideal.prime_compl _, clear_value y, subst this, apply (is_localization.is_localization_iff_of_ring_equiv _ (as_iso $ PresheafedSpace.stalk_map hU.from_Spec.1 y).CommRing_iso_to_ring_equiv).mpr, convert structure_sheaf.is_localization.to_stalk _ _ using 1, delta structure_sheaf.stalk_algebra, congr' 1, rw ring_hom.algebra_map_to_algebra, refine (PresheafedSpace.stalk_map_germ hU.from_Spec.1 _ ⟨_, _⟩).trans _, delta is_affine_open.from_Spec Scheme.iso_Spec structure_sheaf.to_stalk, simp only [Scheme.comp_val_c_app, category.assoc], dsimp only [functor.op, as_iso_inv, unop_op], erw is_affine_open.is_localization_stalk_aux, simp only [category.assoc], conv_lhs { rw ← category.assoc }, erw [← X.presheaf.map_comp, Spec_Γ_naturality_assoc], congr' 1, simp only [← category.assoc], transitivity _ ≫ (structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ ⟨_, _⟩, { refl }, convert ((structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ_res (hom_of_le le_top) ⟨_, _⟩) using 2, rw category.assoc, erw nat_trans.naturality, rw [← LocallyRingedSpace.Γ_map_op, ← LocallyRingedSpace.Γ.map_comp_assoc, ← op_comp], erw ← Scheme.Spec.map_comp, rw [← op_comp, ← X.presheaf.map_comp], transitivity LocallyRingedSpace.Γ.map (quiver.hom.op $ Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op) ≫ _, { congr }, simp only [category_theory.functor.map_id, op_id], erw category_theory.functor.map_id, rw category.id_comp, refl end /-- The basic open set of a section `f` on an an affine open as an `X.affine_opens`. -/ @[simps] def Scheme.affine_basic_open (X : Scheme) {U : X.affine_opens} (f : X.presheaf.obj $ op U) : X.affine_opens := ⟨X.basic_open f, U.prop.basic_open_is_affine f⟩ @[simp] lemma is_affine_open.basic_open_from_Spec_app {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : @Scheme.basic_open (Scheme.Spec.obj $ op (X.presheaf.obj $ op U)) ((opens.map hU.from_Spec.1.base).obj U) (hU.from_Spec.1.c.app (op U) f) = prime_spectrum.basic_open f := begin rw [← Scheme.basic_open_res_eq _ _ (eq_to_hom hU.from_Spec_base_preimage.symm).op, basic_open_eq_of_affine', is_affine_open.from_Spec_app_eq], congr, rw [← comp_apply, ← comp_apply, category.assoc, ← functor.map_comp_assoc, eq_to_hom_op, eq_to_hom_op, eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id, category.id_comp, ← iso.app_inv, iso.inv_hom_id], refl end lemma is_affine_open.from_Spec_map_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : (opens.map hU.from_Spec.val.base).obj (X.basic_open f) = prime_spectrum.basic_open f := by simp lemma is_affine_open.basic_open_union_eq_self_iff {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) : (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) = U ↔ ideal.span s = ⊤ := begin transitivity (⋃ (i : s), (prime_spectrum.basic_open i.1).1) = set.univ, transitivity hU.from_Spec.1.base ⁻¹' (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)).1 = hU.from_Spec.1.base ⁻¹' U.1, { refine ⟨λ h, by rw h, _⟩, intro h, apply_fun set.image hU.from_Spec.1.base at h, rw [set.image_preimage_eq_inter_range, set.image_preimage_eq_inter_range, hU.from_Spec_range] at h, simp only [set.inter_self, subtype.val_eq_coe, set.inter_eq_right_iff_subset] at h, ext1, refine le_antisymm _ h, simp only [set.Union_subset_iff, set_coe.forall, opens.supr_def, set.le_eq_subset, subtype.coe_mk], intros x hx, exact X.basic_open_subset x }, { simp only [opens.supr_def, subtype.coe_mk, set.preimage_Union, subtype.val_eq_coe], congr' 3, { ext1 x, exact congr_arg subtype.val (hU.from_Spec_map_basic_open _) }, { exact congr_arg subtype.val hU.from_Spec_base_preimage } }, { simp only [subtype.val_eq_coe, prime_spectrum.basic_open_eq_zero_locus_compl], rw [← set.compl_Inter, set.compl_univ_iff, ← prime_spectrum.zero_locus_Union, ← prime_spectrum.zero_locus_empty_iff_eq_top, prime_spectrum.zero_locus_span], simp only [set.Union_singleton_eq_range, subtype.range_coe_subtype, set.set_of_mem_eq] } end lemma is_affine_open.self_le_basic_open_union_iff {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) : U ≤ (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) ↔ ideal.span s = ⊤ := begin rw [← hU.basic_open_union_eq_self_iff, @comm _ eq], refine ⟨λ h, le_antisymm h _, le_of_eq⟩, simp only [supr_le_iff, set_coe.forall], intros x hx, exact X.basic_open_subset x end /-- Let `P` be a predicate on the affine open sets of `X` satisfying 1. If `P` holds on `U`, then `P` holds on the basic open set of every section on `U`. 2. If `P` holds for a family of basic open sets covering `U`, then `P` holds for `U`. 3. There exists an affine open cover of `X` each satisfying `P`. Then `P` holds for every affine open of `X`. This is also known as the **Affine communication lemma** in Vakil's "The rising sea". -/ @[elab_as_eliminator] lemma of_affine_open_cover {X : Scheme} (V : X.affine_opens) (S : set X.affine_opens) {P : X.affine_opens → Prop} (hP₁ : ∀ (U : X.affine_opens) (f : X.presheaf.obj $ op U.1), P U → P (X.affine_basic_open f)) (hP₂ : ∀ (U : X.affine_opens) (s : finset (X.presheaf.obj $ op U)) (hs : ideal.span (s : set (X.presheaf.obj $ op U)) = ⊤), (∀ (f : s), P (X.affine_basic_open f.1)) → P U) (hS : (⋃ (i : S), i : set X.carrier) = set.univ) (hS' : ∀ (U : S), P U) : P V := begin classical, have : ∀ (x : V), ∃ (f : X.presheaf.obj $ op V.1), ↑x ∈ (X.basic_open f) ∧ P (X.affine_basic_open f), { intro x, have : ↑x ∈ (set.univ : set X.carrier) := trivial, rw ← hS at this, obtain ⟨W, hW⟩ := set.mem_Union.mp this, obtain ⟨f, g, e, hf⟩ := exists_basic_open_subset_affine_inter V.prop W.1.prop x ⟨x.prop, hW⟩, refine ⟨f, hf, _⟩, convert hP₁ _ g (hS' W) using 1, ext1, exact e }, choose f hf₁ hf₂ using this, suffices : ideal.span (set.range f) = ⊤, { obtain ⟨t, ht₁, ht₂⟩ := (ideal.span_eq_top_iff_finite _).mp this, apply hP₂ V t ht₂, rintro ⟨i, hi⟩, obtain ⟨x, rfl⟩ := ht₁ hi, exact hf₂ x }, rw ← V.prop.self_le_basic_open_union_iff, intros x hx, simp only [exists_prop, set.mem_Union, set.mem_range, set_coe.exists, opens.supr_def, exists_exists_eq_and, opens.mem_coe, subtype.coe_mk], refine ⟨_, hf₁ ⟨x, hx⟩⟩, end end algebraic_geometry
4e5b358e83f814f50b66a9586593f3e3cd2a4110
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/simpperf/simp1000.lean
9db027639bbb4fa228783ac5a2dd33aa20f8fdec
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
84,599
lean
axiom f (x : Prop) : Prop axiom g0 (x : Prop) : Prop axiom g1 (x : Prop) : Prop axiom g2 (x : Prop) : Prop axiom g3 (x : Prop) : Prop axiom g4 (x : Prop) : Prop axiom g5 (x : Prop) : Prop axiom g6 (x : Prop) : Prop axiom g7 (x : Prop) : Prop axiom g8 (x : Prop) : Prop axiom g9 (x : Prop) : Prop axiom g10 (x : Prop) : Prop axiom g11 (x : Prop) : Prop axiom g12 (x : Prop) : Prop axiom g13 (x : Prop) : Prop axiom g14 (x : Prop) : Prop axiom g15 (x : Prop) : Prop axiom g16 (x : Prop) : Prop axiom g17 (x : Prop) : Prop axiom g18 (x : Prop) : Prop axiom g19 (x : Prop) : Prop axiom g20 (x : Prop) : Prop axiom g21 (x : Prop) : Prop axiom g22 (x : Prop) : Prop axiom g23 (x : Prop) : Prop axiom g24 (x : Prop) : Prop axiom g25 (x : Prop) : Prop axiom g26 (x : Prop) : Prop axiom g27 (x : Prop) : Prop axiom g28 (x : Prop) : Prop axiom g29 (x : Prop) : Prop axiom g30 (x : Prop) : Prop axiom g31 (x : Prop) : Prop axiom g32 (x : Prop) : Prop axiom g33 (x : Prop) : Prop axiom g34 (x : Prop) : Prop axiom g35 (x : Prop) : Prop axiom g36 (x : Prop) : Prop axiom g37 (x : Prop) : Prop axiom g38 (x : Prop) : Prop axiom g39 (x : Prop) : Prop axiom g40 (x : Prop) : Prop axiom g41 (x : Prop) : Prop axiom g42 (x : Prop) : Prop axiom g43 (x : Prop) : Prop axiom g44 (x : Prop) : Prop axiom g45 (x : Prop) : Prop axiom g46 (x : Prop) : Prop axiom g47 (x : Prop) : Prop axiom g48 (x : Prop) : Prop axiom g49 (x : Prop) : Prop axiom g50 (x : Prop) : Prop axiom g51 (x : Prop) : Prop axiom g52 (x : Prop) : Prop axiom g53 (x : Prop) : Prop axiom g54 (x : Prop) : Prop axiom g55 (x : Prop) : Prop axiom g56 (x : Prop) : Prop axiom g57 (x : Prop) : Prop axiom g58 (x : Prop) : Prop axiom g59 (x : Prop) : Prop axiom g60 (x : Prop) : Prop axiom g61 (x : Prop) : Prop axiom g62 (x : Prop) : Prop axiom g63 (x : Prop) : Prop axiom g64 (x : Prop) : Prop axiom g65 (x : Prop) : Prop axiom g66 (x : Prop) : Prop axiom g67 (x : Prop) : Prop axiom g68 (x : Prop) : Prop axiom g69 (x : Prop) : Prop axiom g70 (x : Prop) : Prop axiom g71 (x : Prop) : Prop axiom g72 (x : Prop) : Prop axiom g73 (x : Prop) : Prop axiom g74 (x : Prop) : Prop axiom g75 (x : Prop) : Prop axiom g76 (x : Prop) : Prop axiom g77 (x : Prop) : Prop axiom g78 (x : Prop) : Prop axiom g79 (x : Prop) : Prop axiom g80 (x : Prop) : Prop axiom g81 (x : Prop) : Prop axiom g82 (x : Prop) : Prop axiom g83 (x : Prop) : Prop axiom g84 (x : Prop) : Prop axiom g85 (x : Prop) : Prop axiom g86 (x : Prop) : Prop axiom g87 (x : Prop) : Prop axiom g88 (x : Prop) : Prop axiom g89 (x : Prop) : Prop axiom g90 (x : Prop) : Prop axiom g91 (x : Prop) : Prop axiom g92 (x : Prop) : Prop axiom g93 (x : Prop) : Prop axiom g94 (x : Prop) : Prop axiom g95 (x : Prop) : Prop axiom g96 (x : Prop) : Prop axiom g97 (x : Prop) : Prop axiom g98 (x : Prop) : Prop axiom g99 (x : Prop) : Prop axiom g100 (x : Prop) : Prop axiom g101 (x : Prop) : Prop axiom g102 (x : Prop) : Prop axiom g103 (x : Prop) : Prop axiom g104 (x : Prop) : Prop axiom g105 (x : Prop) : Prop axiom g106 (x : Prop) : Prop axiom g107 (x : Prop) : Prop axiom g108 (x : Prop) : Prop axiom g109 (x : Prop) : Prop axiom g110 (x : Prop) : Prop axiom g111 (x : Prop) : Prop axiom g112 (x : Prop) : Prop axiom g113 (x : Prop) : Prop axiom g114 (x : Prop) : Prop axiom g115 (x : Prop) : Prop axiom g116 (x : Prop) : Prop axiom g117 (x : Prop) : Prop axiom g118 (x : Prop) : Prop axiom g119 (x : Prop) : Prop axiom g120 (x : Prop) : Prop axiom g121 (x : Prop) : Prop axiom g122 (x : Prop) : Prop axiom g123 (x : Prop) : Prop axiom g124 (x : Prop) : Prop axiom g125 (x : Prop) : Prop axiom g126 (x : Prop) : Prop axiom g127 (x : Prop) : Prop axiom g128 (x : Prop) : Prop axiom g129 (x : Prop) : Prop axiom g130 (x : Prop) : Prop axiom g131 (x : Prop) : Prop axiom g132 (x : Prop) : Prop axiom g133 (x : Prop) : Prop axiom g134 (x : Prop) : Prop axiom g135 (x : Prop) : Prop axiom g136 (x : Prop) : Prop axiom g137 (x : Prop) : Prop axiom g138 (x : Prop) : Prop axiom g139 (x : Prop) : Prop axiom g140 (x : Prop) : Prop axiom g141 (x : Prop) : Prop axiom g142 (x : Prop) : Prop axiom g143 (x : Prop) : Prop axiom g144 (x : Prop) : Prop axiom g145 (x : Prop) : Prop axiom g146 (x : Prop) : Prop axiom g147 (x : Prop) : Prop axiom g148 (x : Prop) : Prop axiom g149 (x : Prop) : Prop axiom g150 (x : Prop) : Prop axiom g151 (x : Prop) : Prop axiom g152 (x : Prop) : Prop axiom g153 (x : Prop) : Prop axiom g154 (x : Prop) : Prop axiom g155 (x : Prop) : Prop axiom g156 (x : Prop) : Prop axiom g157 (x : Prop) : Prop axiom g158 (x : Prop) : Prop axiom g159 (x : Prop) : Prop axiom g160 (x : Prop) : Prop axiom g161 (x : Prop) : Prop axiom g162 (x : Prop) : Prop axiom g163 (x : Prop) : Prop axiom g164 (x : Prop) : Prop axiom g165 (x : Prop) : Prop axiom g166 (x : Prop) : Prop axiom g167 (x : Prop) : Prop axiom g168 (x : Prop) : Prop axiom g169 (x : Prop) : Prop axiom g170 (x : Prop) : Prop axiom g171 (x : Prop) : Prop axiom g172 (x : Prop) : Prop axiom g173 (x : Prop) : Prop axiom g174 (x : Prop) : Prop axiom g175 (x : Prop) : Prop axiom g176 (x : Prop) : Prop axiom g177 (x : Prop) : Prop axiom g178 (x : Prop) : Prop axiom g179 (x : Prop) : Prop axiom g180 (x : Prop) : Prop axiom g181 (x : Prop) : Prop axiom g182 (x : Prop) : Prop axiom g183 (x : Prop) : Prop axiom g184 (x : Prop) : Prop axiom g185 (x : Prop) : Prop axiom g186 (x : Prop) : Prop axiom g187 (x : Prop) : Prop axiom g188 (x : Prop) : Prop axiom g189 (x : Prop) : Prop axiom g190 (x : Prop) : Prop axiom g191 (x : Prop) : Prop axiom g192 (x : Prop) : Prop axiom g193 (x : Prop) : Prop axiom g194 (x : Prop) : Prop axiom g195 (x : Prop) : Prop axiom g196 (x : Prop) : Prop axiom g197 (x : Prop) : Prop axiom g198 (x : Prop) : Prop axiom g199 (x : Prop) : Prop axiom g200 (x : Prop) : Prop axiom g201 (x : Prop) : Prop axiom g202 (x : Prop) : Prop axiom g203 (x : Prop) : Prop axiom g204 (x : Prop) : Prop axiom g205 (x : Prop) : Prop axiom g206 (x : Prop) : Prop axiom g207 (x : Prop) : Prop axiom g208 (x : Prop) : Prop axiom g209 (x : Prop) : Prop axiom g210 (x : Prop) : Prop axiom g211 (x : Prop) : Prop axiom g212 (x : Prop) : Prop axiom g213 (x : Prop) : Prop axiom g214 (x : Prop) : Prop axiom g215 (x : Prop) : Prop axiom g216 (x : Prop) : Prop axiom g217 (x : Prop) : Prop axiom g218 (x : Prop) : Prop axiom g219 (x : Prop) : Prop axiom g220 (x : Prop) : Prop axiom g221 (x : Prop) : Prop axiom g222 (x : Prop) : Prop axiom g223 (x : Prop) : Prop axiom g224 (x : Prop) : Prop axiom g225 (x : Prop) : Prop axiom g226 (x : Prop) : Prop axiom g227 (x : Prop) : Prop axiom g228 (x : Prop) : Prop axiom g229 (x : Prop) : Prop axiom g230 (x : Prop) : Prop axiom g231 (x : Prop) : Prop axiom g232 (x : Prop) : Prop axiom g233 (x : Prop) : Prop axiom g234 (x : Prop) : Prop axiom g235 (x : Prop) : Prop axiom g236 (x : Prop) : Prop axiom g237 (x : Prop) : Prop axiom g238 (x : Prop) : Prop axiom g239 (x : Prop) : Prop axiom g240 (x : Prop) : Prop axiom g241 (x : Prop) : Prop axiom g242 (x : Prop) : Prop axiom g243 (x : Prop) : Prop axiom g244 (x : Prop) : Prop axiom g245 (x : Prop) : Prop axiom g246 (x : Prop) : Prop axiom g247 (x : Prop) : Prop axiom g248 (x : Prop) : Prop axiom g249 (x : Prop) : Prop axiom g250 (x : Prop) : Prop axiom g251 (x : Prop) : Prop axiom g252 (x : Prop) : Prop axiom g253 (x : Prop) : Prop axiom g254 (x : Prop) : Prop axiom g255 (x : Prop) : Prop axiom g256 (x : Prop) : Prop axiom g257 (x : Prop) : Prop axiom g258 (x : Prop) : Prop axiom g259 (x : Prop) : Prop axiom g260 (x : Prop) : Prop axiom g261 (x : Prop) : Prop axiom g262 (x : Prop) : Prop axiom g263 (x : Prop) : Prop axiom g264 (x : Prop) : Prop axiom g265 (x : Prop) : Prop axiom g266 (x : Prop) : Prop axiom g267 (x : Prop) : Prop axiom g268 (x : Prop) : Prop axiom g269 (x : Prop) : Prop axiom g270 (x : Prop) : Prop axiom g271 (x : Prop) : Prop axiom g272 (x : Prop) : Prop axiom g273 (x : Prop) : Prop axiom g274 (x : Prop) : Prop axiom g275 (x : Prop) : Prop axiom g276 (x : Prop) : Prop axiom g277 (x : Prop) : Prop axiom g278 (x : Prop) : Prop axiom g279 (x : Prop) : Prop axiom g280 (x : Prop) : Prop axiom g281 (x : Prop) : Prop axiom g282 (x : Prop) : Prop axiom g283 (x : Prop) : Prop axiom g284 (x : Prop) : Prop axiom g285 (x : Prop) : Prop axiom g286 (x : Prop) : Prop axiom g287 (x : Prop) : Prop axiom g288 (x : Prop) : Prop axiom g289 (x : Prop) : Prop axiom g290 (x : Prop) : Prop axiom g291 (x : Prop) : Prop axiom g292 (x : Prop) : Prop axiom g293 (x : Prop) : Prop axiom g294 (x : Prop) : Prop axiom g295 (x : Prop) : Prop axiom g296 (x : Prop) : Prop axiom g297 (x : Prop) : Prop axiom g298 (x : Prop) : Prop axiom g299 (x : Prop) : Prop axiom g300 (x : Prop) : Prop axiom g301 (x : Prop) : Prop axiom g302 (x : Prop) : Prop axiom g303 (x : Prop) : Prop axiom g304 (x : Prop) : Prop axiom g305 (x : Prop) : Prop axiom g306 (x : Prop) : Prop axiom g307 (x : Prop) : Prop axiom g308 (x : Prop) : Prop axiom g309 (x : Prop) : Prop axiom g310 (x : Prop) : Prop axiom g311 (x : Prop) : Prop axiom g312 (x : Prop) : Prop axiom g313 (x : Prop) : Prop axiom g314 (x : Prop) : Prop axiom g315 (x : Prop) : Prop axiom g316 (x : Prop) : Prop axiom g317 (x : Prop) : Prop axiom g318 (x : Prop) : Prop axiom g319 (x : Prop) : Prop axiom g320 (x : Prop) : Prop axiom g321 (x : Prop) : Prop axiom g322 (x : Prop) : Prop axiom g323 (x : Prop) : Prop axiom g324 (x : Prop) : Prop axiom g325 (x : Prop) : Prop axiom g326 (x : Prop) : Prop axiom g327 (x : Prop) : Prop axiom g328 (x : Prop) : Prop axiom g329 (x : Prop) : Prop axiom g330 (x : Prop) : Prop axiom g331 (x : Prop) : Prop axiom g332 (x : Prop) : Prop axiom g333 (x : Prop) : Prop axiom g334 (x : Prop) : Prop axiom g335 (x : Prop) : Prop axiom g336 (x : Prop) : Prop axiom g337 (x : Prop) : Prop axiom g338 (x : Prop) : Prop axiom g339 (x : Prop) : Prop axiom g340 (x : Prop) : Prop axiom g341 (x : Prop) : Prop axiom g342 (x : Prop) : Prop axiom g343 (x : Prop) : Prop axiom g344 (x : Prop) : Prop axiom g345 (x : Prop) : Prop axiom g346 (x : Prop) : Prop axiom g347 (x : Prop) : Prop axiom g348 (x : Prop) : Prop axiom g349 (x : Prop) : Prop axiom g350 (x : Prop) : Prop axiom g351 (x : Prop) : Prop axiom g352 (x : Prop) : Prop axiom g353 (x : Prop) : Prop axiom g354 (x : Prop) : Prop axiom g355 (x : Prop) : Prop axiom g356 (x : Prop) : Prop axiom g357 (x : Prop) : Prop axiom g358 (x : Prop) : Prop axiom g359 (x : Prop) : Prop axiom g360 (x : Prop) : Prop axiom g361 (x : Prop) : Prop axiom g362 (x : Prop) : Prop axiom g363 (x : Prop) : Prop axiom g364 (x : Prop) : Prop axiom g365 (x : Prop) : Prop axiom g366 (x : Prop) : Prop axiom g367 (x : Prop) : Prop axiom g368 (x : Prop) : Prop axiom g369 (x : Prop) : Prop axiom g370 (x : Prop) : Prop axiom g371 (x : Prop) : Prop axiom g372 (x : Prop) : Prop axiom g373 (x : Prop) : Prop axiom g374 (x : Prop) : Prop axiom g375 (x : Prop) : Prop axiom g376 (x : Prop) : Prop axiom g377 (x : Prop) : Prop axiom g378 (x : Prop) : Prop axiom g379 (x : Prop) : Prop axiom g380 (x : Prop) : Prop axiom g381 (x : Prop) : Prop axiom g382 (x : Prop) : Prop axiom g383 (x : Prop) : Prop axiom g384 (x : Prop) : Prop axiom g385 (x : Prop) : Prop axiom g386 (x : Prop) : Prop axiom g387 (x : Prop) : Prop axiom g388 (x : Prop) : Prop axiom g389 (x : Prop) : Prop axiom g390 (x : Prop) : Prop axiom g391 (x : Prop) : Prop axiom g392 (x : Prop) : Prop axiom g393 (x : Prop) : Prop axiom g394 (x : Prop) : Prop axiom g395 (x : Prop) : Prop axiom g396 (x : Prop) : Prop axiom g397 (x : Prop) : Prop axiom g398 (x : Prop) : Prop axiom g399 (x : Prop) : Prop axiom g400 (x : Prop) : Prop axiom g401 (x : Prop) : Prop axiom g402 (x : Prop) : Prop axiom g403 (x : Prop) : Prop axiom g404 (x : Prop) : Prop axiom g405 (x : Prop) : Prop axiom g406 (x : Prop) : Prop axiom g407 (x : Prop) : Prop axiom g408 (x : Prop) : Prop axiom g409 (x : Prop) : Prop axiom g410 (x : Prop) : Prop axiom g411 (x : Prop) : Prop axiom g412 (x : Prop) : Prop axiom g413 (x : Prop) : Prop axiom g414 (x : Prop) : Prop axiom g415 (x : Prop) : Prop axiom g416 (x : Prop) : Prop axiom g417 (x : Prop) : Prop axiom g418 (x : Prop) : Prop axiom g419 (x : Prop) : Prop axiom g420 (x : Prop) : Prop axiom g421 (x : Prop) : Prop axiom g422 (x : Prop) : Prop axiom g423 (x : Prop) : Prop axiom g424 (x : Prop) : Prop axiom g425 (x : Prop) : Prop axiom g426 (x : Prop) : Prop axiom g427 (x : Prop) : Prop axiom g428 (x : Prop) : Prop axiom g429 (x : Prop) : Prop axiom g430 (x : Prop) : Prop axiom g431 (x : Prop) : Prop axiom g432 (x : Prop) : Prop axiom g433 (x : Prop) : Prop axiom g434 (x : Prop) : Prop axiom g435 (x : Prop) : Prop axiom g436 (x : Prop) : Prop axiom g437 (x : Prop) : Prop axiom g438 (x : Prop) : Prop axiom g439 (x : Prop) : Prop axiom g440 (x : Prop) : Prop axiom g441 (x : Prop) : Prop axiom g442 (x : Prop) : Prop axiom g443 (x : Prop) : Prop axiom g444 (x : Prop) : Prop axiom g445 (x : Prop) : Prop axiom g446 (x : Prop) : Prop axiom g447 (x : Prop) : Prop axiom g448 (x : Prop) : Prop axiom g449 (x : Prop) : Prop axiom g450 (x : Prop) : Prop axiom g451 (x : Prop) : Prop axiom g452 (x : Prop) : Prop axiom g453 (x : Prop) : Prop axiom g454 (x : Prop) : Prop axiom g455 (x : Prop) : Prop axiom g456 (x : Prop) : Prop axiom g457 (x : Prop) : Prop axiom g458 (x : Prop) : Prop axiom g459 (x : Prop) : Prop axiom g460 (x : Prop) : Prop axiom g461 (x : Prop) : Prop axiom g462 (x : Prop) : Prop axiom g463 (x : Prop) : Prop axiom g464 (x : Prop) : Prop axiom g465 (x : Prop) : Prop axiom g466 (x : Prop) : Prop axiom g467 (x : Prop) : Prop axiom g468 (x : Prop) : Prop axiom g469 (x : Prop) : Prop axiom g470 (x : Prop) : Prop axiom g471 (x : Prop) : Prop axiom g472 (x : Prop) : Prop axiom g473 (x : Prop) : Prop axiom g474 (x : Prop) : Prop axiom g475 (x : Prop) : Prop axiom g476 (x : Prop) : Prop axiom g477 (x : Prop) : Prop axiom g478 (x : Prop) : Prop axiom g479 (x : Prop) : Prop axiom g480 (x : Prop) : Prop axiom g481 (x : Prop) : Prop axiom g482 (x : Prop) : Prop axiom g483 (x : Prop) : Prop axiom g484 (x : Prop) : Prop axiom g485 (x : Prop) : Prop axiom g486 (x : Prop) : Prop axiom g487 (x : Prop) : Prop axiom g488 (x : Prop) : Prop axiom g489 (x : Prop) : Prop axiom g490 (x : Prop) : Prop axiom g491 (x : Prop) : Prop axiom g492 (x : Prop) : Prop axiom g493 (x : Prop) : Prop axiom g494 (x : Prop) : Prop axiom g495 (x : Prop) : Prop axiom g496 (x : Prop) : Prop axiom g497 (x : Prop) : Prop axiom g498 (x : Prop) : Prop axiom g499 (x : Prop) : Prop axiom g500 (x : Prop) : Prop axiom g501 (x : Prop) : Prop axiom g502 (x : Prop) : Prop axiom g503 (x : Prop) : Prop axiom g504 (x : Prop) : Prop axiom g505 (x : Prop) : Prop axiom g506 (x : Prop) : Prop axiom g507 (x : Prop) : Prop axiom g508 (x : Prop) : Prop axiom g509 (x : Prop) : Prop axiom g510 (x : Prop) : Prop axiom g511 (x : Prop) : Prop axiom g512 (x : Prop) : Prop axiom g513 (x : Prop) : Prop axiom g514 (x : Prop) : Prop axiom g515 (x : Prop) : Prop axiom g516 (x : Prop) : Prop axiom g517 (x : Prop) : Prop axiom g518 (x : Prop) : Prop axiom g519 (x : Prop) : Prop axiom g520 (x : Prop) : Prop axiom g521 (x : Prop) : Prop axiom g522 (x : Prop) : Prop axiom g523 (x : Prop) : Prop axiom g524 (x : Prop) : Prop axiom g525 (x : Prop) : Prop axiom g526 (x : Prop) : Prop axiom g527 (x : Prop) : Prop axiom g528 (x : Prop) : Prop axiom g529 (x : Prop) : Prop axiom g530 (x : Prop) : Prop axiom g531 (x : Prop) : Prop axiom g532 (x : Prop) : Prop axiom g533 (x : Prop) : Prop axiom g534 (x : Prop) : Prop axiom g535 (x : Prop) : Prop axiom g536 (x : Prop) : Prop axiom g537 (x : Prop) : Prop axiom g538 (x : Prop) : Prop axiom g539 (x : Prop) : Prop axiom g540 (x : Prop) : Prop axiom g541 (x : Prop) : Prop axiom g542 (x : Prop) : Prop axiom g543 (x : Prop) : Prop axiom g544 (x : Prop) : Prop axiom g545 (x : Prop) : Prop axiom g546 (x : Prop) : Prop axiom g547 (x : Prop) : Prop axiom g548 (x : Prop) : Prop axiom g549 (x : Prop) : Prop axiom g550 (x : Prop) : Prop axiom g551 (x : Prop) : Prop axiom g552 (x : Prop) : Prop axiom g553 (x : Prop) : Prop axiom g554 (x : Prop) : Prop axiom g555 (x : Prop) : Prop axiom g556 (x : Prop) : Prop axiom g557 (x : Prop) : Prop axiom g558 (x : Prop) : Prop axiom g559 (x : Prop) : Prop axiom g560 (x : Prop) : Prop axiom g561 (x : Prop) : Prop axiom g562 (x : Prop) : Prop axiom g563 (x : Prop) : Prop axiom g564 (x : Prop) : Prop axiom g565 (x : Prop) : Prop axiom g566 (x : Prop) : Prop axiom g567 (x : Prop) : Prop axiom g568 (x : Prop) : Prop axiom g569 (x : Prop) : Prop axiom g570 (x : Prop) : Prop axiom g571 (x : Prop) : Prop axiom g572 (x : Prop) : Prop axiom g573 (x : Prop) : Prop axiom g574 (x : Prop) : Prop axiom g575 (x : Prop) : Prop axiom g576 (x : Prop) : Prop axiom g577 (x : Prop) : Prop axiom g578 (x : Prop) : Prop axiom g579 (x : Prop) : Prop axiom g580 (x : Prop) : Prop axiom g581 (x : Prop) : Prop axiom g582 (x : Prop) : Prop axiom g583 (x : Prop) : Prop axiom g584 (x : Prop) : Prop axiom g585 (x : Prop) : Prop axiom g586 (x : Prop) : Prop axiom g587 (x : Prop) : Prop axiom g588 (x : Prop) : Prop axiom g589 (x : Prop) : Prop axiom g590 (x : Prop) : Prop axiom g591 (x : Prop) : Prop axiom g592 (x : Prop) : Prop axiom g593 (x : Prop) : Prop axiom g594 (x : Prop) : Prop axiom g595 (x : Prop) : Prop axiom g596 (x : Prop) : Prop axiom g597 (x : Prop) : Prop axiom g598 (x : Prop) : Prop axiom g599 (x : Prop) : Prop axiom g600 (x : Prop) : Prop axiom g601 (x : Prop) : Prop axiom g602 (x : Prop) : Prop axiom g603 (x : Prop) : Prop axiom g604 (x : Prop) : Prop axiom g605 (x : Prop) : Prop axiom g606 (x : Prop) : Prop axiom g607 (x : Prop) : Prop axiom g608 (x : Prop) : Prop axiom g609 (x : Prop) : Prop axiom g610 (x : Prop) : Prop axiom g611 (x : Prop) : Prop axiom g612 (x : Prop) : Prop axiom g613 (x : Prop) : Prop axiom g614 (x : Prop) : Prop axiom g615 (x : Prop) : Prop axiom g616 (x : Prop) : Prop axiom g617 (x : Prop) : Prop axiom g618 (x : Prop) : Prop axiom g619 (x : Prop) : Prop axiom g620 (x : Prop) : Prop axiom g621 (x : Prop) : Prop axiom g622 (x : Prop) : Prop axiom g623 (x : Prop) : Prop axiom g624 (x : Prop) : Prop axiom g625 (x : Prop) : Prop axiom g626 (x : Prop) : Prop axiom g627 (x : Prop) : Prop axiom g628 (x : Prop) : Prop axiom g629 (x : Prop) : Prop axiom g630 (x : Prop) : Prop axiom g631 (x : Prop) : Prop axiom g632 (x : Prop) : Prop axiom g633 (x : Prop) : Prop axiom g634 (x : Prop) : Prop axiom g635 (x : Prop) : Prop axiom g636 (x : Prop) : Prop axiom g637 (x : Prop) : Prop axiom g638 (x : Prop) : Prop axiom g639 (x : Prop) : Prop axiom g640 (x : Prop) : Prop axiom g641 (x : Prop) : Prop axiom g642 (x : Prop) : Prop axiom g643 (x : Prop) : Prop axiom g644 (x : Prop) : Prop axiom g645 (x : Prop) : Prop axiom g646 (x : Prop) : Prop axiom g647 (x : Prop) : Prop axiom g648 (x : Prop) : Prop axiom g649 (x : Prop) : Prop axiom g650 (x : Prop) : Prop axiom g651 (x : Prop) : Prop axiom g652 (x : Prop) : Prop axiom g653 (x : Prop) : Prop axiom g654 (x : Prop) : Prop axiom g655 (x : Prop) : Prop axiom g656 (x : Prop) : Prop axiom g657 (x : Prop) : Prop axiom g658 (x : Prop) : Prop axiom g659 (x : Prop) : Prop axiom g660 (x : Prop) : Prop axiom g661 (x : Prop) : Prop axiom g662 (x : Prop) : Prop axiom g663 (x : Prop) : Prop axiom g664 (x : Prop) : Prop axiom g665 (x : Prop) : Prop axiom g666 (x : Prop) : Prop axiom g667 (x : Prop) : Prop axiom g668 (x : Prop) : Prop axiom g669 (x : Prop) : Prop axiom g670 (x : Prop) : Prop axiom g671 (x : Prop) : Prop axiom g672 (x : Prop) : Prop axiom g673 (x : Prop) : Prop axiom g674 (x : Prop) : Prop axiom g675 (x : Prop) : Prop axiom g676 (x : Prop) : Prop axiom g677 (x : Prop) : Prop axiom g678 (x : Prop) : Prop axiom g679 (x : Prop) : Prop axiom g680 (x : Prop) : Prop axiom g681 (x : Prop) : Prop axiom g682 (x : Prop) : Prop axiom g683 (x : Prop) : Prop axiom g684 (x : Prop) : Prop axiom g685 (x : Prop) : Prop axiom g686 (x : Prop) : Prop axiom g687 (x : Prop) : Prop axiom g688 (x : Prop) : Prop axiom g689 (x : Prop) : Prop axiom g690 (x : Prop) : Prop axiom g691 (x : Prop) : Prop axiom g692 (x : Prop) : Prop axiom g693 (x : Prop) : Prop axiom g694 (x : Prop) : Prop axiom g695 (x : Prop) : Prop axiom g696 (x : Prop) : Prop axiom g697 (x : Prop) : Prop axiom g698 (x : Prop) : Prop axiom g699 (x : Prop) : Prop axiom g700 (x : Prop) : Prop axiom g701 (x : Prop) : Prop axiom g702 (x : Prop) : Prop axiom g703 (x : Prop) : Prop axiom g704 (x : Prop) : Prop axiom g705 (x : Prop) : Prop axiom g706 (x : Prop) : Prop axiom g707 (x : Prop) : Prop axiom g708 (x : Prop) : Prop axiom g709 (x : Prop) : Prop axiom g710 (x : Prop) : Prop axiom g711 (x : Prop) : Prop axiom g712 (x : Prop) : Prop axiom g713 (x : Prop) : Prop axiom g714 (x : Prop) : Prop axiom g715 (x : Prop) : Prop axiom g716 (x : Prop) : Prop axiom g717 (x : Prop) : Prop axiom g718 (x : Prop) : Prop axiom g719 (x : Prop) : Prop axiom g720 (x : Prop) : Prop axiom g721 (x : Prop) : Prop axiom g722 (x : Prop) : Prop axiom g723 (x : Prop) : Prop axiom g724 (x : Prop) : Prop axiom g725 (x : Prop) : Prop axiom g726 (x : Prop) : Prop axiom g727 (x : Prop) : Prop axiom g728 (x : Prop) : Prop axiom g729 (x : Prop) : Prop axiom g730 (x : Prop) : Prop axiom g731 (x : Prop) : Prop axiom g732 (x : Prop) : Prop axiom g733 (x : Prop) : Prop axiom g734 (x : Prop) : Prop axiom g735 (x : Prop) : Prop axiom g736 (x : Prop) : Prop axiom g737 (x : Prop) : Prop axiom g738 (x : Prop) : Prop axiom g739 (x : Prop) : Prop axiom g740 (x : Prop) : Prop axiom g741 (x : Prop) : Prop axiom g742 (x : Prop) : Prop axiom g743 (x : Prop) : Prop axiom g744 (x : Prop) : Prop axiom g745 (x : Prop) : Prop axiom g746 (x : Prop) : Prop axiom g747 (x : Prop) : Prop axiom g748 (x : Prop) : Prop axiom g749 (x : Prop) : Prop axiom g750 (x : Prop) : Prop axiom g751 (x : Prop) : Prop axiom g752 (x : Prop) : Prop axiom g753 (x : Prop) : Prop axiom g754 (x : Prop) : Prop axiom g755 (x : Prop) : Prop axiom g756 (x : Prop) : Prop axiom g757 (x : Prop) : Prop axiom g758 (x : Prop) : Prop axiom g759 (x : Prop) : Prop axiom g760 (x : Prop) : Prop axiom g761 (x : Prop) : Prop axiom g762 (x : Prop) : Prop axiom g763 (x : Prop) : Prop axiom g764 (x : Prop) : Prop axiom g765 (x : Prop) : Prop axiom g766 (x : Prop) : Prop axiom g767 (x : Prop) : Prop axiom g768 (x : Prop) : Prop axiom g769 (x : Prop) : Prop axiom g770 (x : Prop) : Prop axiom g771 (x : Prop) : Prop axiom g772 (x : Prop) : Prop axiom g773 (x : Prop) : Prop axiom g774 (x : Prop) : Prop axiom g775 (x : Prop) : Prop axiom g776 (x : Prop) : Prop axiom g777 (x : Prop) : Prop axiom g778 (x : Prop) : Prop axiom g779 (x : Prop) : Prop axiom g780 (x : Prop) : Prop axiom g781 (x : Prop) : Prop axiom g782 (x : Prop) : Prop axiom g783 (x : Prop) : Prop axiom g784 (x : Prop) : Prop axiom g785 (x : Prop) : Prop axiom g786 (x : Prop) : Prop axiom g787 (x : Prop) : Prop axiom g788 (x : Prop) : Prop axiom g789 (x : Prop) : Prop axiom g790 (x : Prop) : Prop axiom g791 (x : Prop) : Prop axiom g792 (x : Prop) : Prop axiom g793 (x : Prop) : Prop axiom g794 (x : Prop) : Prop axiom g795 (x : Prop) : Prop axiom g796 (x : Prop) : Prop axiom g797 (x : Prop) : Prop axiom g798 (x : Prop) : Prop axiom g799 (x : Prop) : Prop axiom g800 (x : Prop) : Prop axiom g801 (x : Prop) : Prop axiom g802 (x : Prop) : Prop axiom g803 (x : Prop) : Prop axiom g804 (x : Prop) : Prop axiom g805 (x : Prop) : Prop axiom g806 (x : Prop) : Prop axiom g807 (x : Prop) : Prop axiom g808 (x : Prop) : Prop axiom g809 (x : Prop) : Prop axiom g810 (x : Prop) : Prop axiom g811 (x : Prop) : Prop axiom g812 (x : Prop) : Prop axiom g813 (x : Prop) : Prop axiom g814 (x : Prop) : Prop axiom g815 (x : Prop) : Prop axiom g816 (x : Prop) : Prop axiom g817 (x : Prop) : Prop axiom g818 (x : Prop) : Prop axiom g819 (x : Prop) : Prop axiom g820 (x : Prop) : Prop axiom g821 (x : Prop) : Prop axiom g822 (x : Prop) : Prop axiom g823 (x : Prop) : Prop axiom g824 (x : Prop) : Prop axiom g825 (x : Prop) : Prop axiom g826 (x : Prop) : Prop axiom g827 (x : Prop) : Prop axiom g828 (x : Prop) : Prop axiom g829 (x : Prop) : Prop axiom g830 (x : Prop) : Prop axiom g831 (x : Prop) : Prop axiom g832 (x : Prop) : Prop axiom g833 (x : Prop) : Prop axiom g834 (x : Prop) : Prop axiom g835 (x : Prop) : Prop axiom g836 (x : Prop) : Prop axiom g837 (x : Prop) : Prop axiom g838 (x : Prop) : Prop axiom g839 (x : Prop) : Prop axiom g840 (x : Prop) : Prop axiom g841 (x : Prop) : Prop axiom g842 (x : Prop) : Prop axiom g843 (x : Prop) : Prop axiom g844 (x : Prop) : Prop axiom g845 (x : Prop) : Prop axiom g846 (x : Prop) : Prop axiom g847 (x : Prop) : Prop axiom g848 (x : Prop) : Prop axiom g849 (x : Prop) : Prop axiom g850 (x : Prop) : Prop axiom g851 (x : Prop) : Prop axiom g852 (x : Prop) : Prop axiom g853 (x : Prop) : Prop axiom g854 (x : Prop) : Prop axiom g855 (x : Prop) : Prop axiom g856 (x : Prop) : Prop axiom g857 (x : Prop) : Prop axiom g858 (x : Prop) : Prop axiom g859 (x : Prop) : Prop axiom g860 (x : Prop) : Prop axiom g861 (x : Prop) : Prop axiom g862 (x : Prop) : Prop axiom g863 (x : Prop) : Prop axiom g864 (x : Prop) : Prop axiom g865 (x : Prop) : Prop axiom g866 (x : Prop) : Prop axiom g867 (x : Prop) : Prop axiom g868 (x : Prop) : Prop axiom g869 (x : Prop) : Prop axiom g870 (x : Prop) : Prop axiom g871 (x : Prop) : Prop axiom g872 (x : Prop) : Prop axiom g873 (x : Prop) : Prop axiom g874 (x : Prop) : Prop axiom g875 (x : Prop) : Prop axiom g876 (x : Prop) : Prop axiom g877 (x : Prop) : Prop axiom g878 (x : Prop) : Prop axiom g879 (x : Prop) : Prop axiom g880 (x : Prop) : Prop axiom g881 (x : Prop) : Prop axiom g882 (x : Prop) : Prop axiom g883 (x : Prop) : Prop axiom g884 (x : Prop) : Prop axiom g885 (x : Prop) : Prop axiom g886 (x : Prop) : Prop axiom g887 (x : Prop) : Prop axiom g888 (x : Prop) : Prop axiom g889 (x : Prop) : Prop axiom g890 (x : Prop) : Prop axiom g891 (x : Prop) : Prop axiom g892 (x : Prop) : Prop axiom g893 (x : Prop) : Prop axiom g894 (x : Prop) : Prop axiom g895 (x : Prop) : Prop axiom g896 (x : Prop) : Prop axiom g897 (x : Prop) : Prop axiom g898 (x : Prop) : Prop axiom g899 (x : Prop) : Prop axiom g900 (x : Prop) : Prop axiom g901 (x : Prop) : Prop axiom g902 (x : Prop) : Prop axiom g903 (x : Prop) : Prop axiom g904 (x : Prop) : Prop axiom g905 (x : Prop) : Prop axiom g906 (x : Prop) : Prop axiom g907 (x : Prop) : Prop axiom g908 (x : Prop) : Prop axiom g909 (x : Prop) : Prop axiom g910 (x : Prop) : Prop axiom g911 (x : Prop) : Prop axiom g912 (x : Prop) : Prop axiom g913 (x : Prop) : Prop axiom g914 (x : Prop) : Prop axiom g915 (x : Prop) : Prop axiom g916 (x : Prop) : Prop axiom g917 (x : Prop) : Prop axiom g918 (x : Prop) : Prop axiom g919 (x : Prop) : Prop axiom g920 (x : Prop) : Prop axiom g921 (x : Prop) : Prop axiom g922 (x : Prop) : Prop axiom g923 (x : Prop) : Prop axiom g924 (x : Prop) : Prop axiom g925 (x : Prop) : Prop axiom g926 (x : Prop) : Prop axiom g927 (x : Prop) : Prop axiom g928 (x : Prop) : Prop axiom g929 (x : Prop) : Prop axiom g930 (x : Prop) : Prop axiom g931 (x : Prop) : Prop axiom g932 (x : Prop) : Prop axiom g933 (x : Prop) : Prop axiom g934 (x : Prop) : Prop axiom g935 (x : Prop) : Prop axiom g936 (x : Prop) : Prop axiom g937 (x : Prop) : Prop axiom g938 (x : Prop) : Prop axiom g939 (x : Prop) : Prop axiom g940 (x : Prop) : Prop axiom g941 (x : Prop) : Prop axiom g942 (x : Prop) : Prop axiom g943 (x : Prop) : Prop axiom g944 (x : Prop) : Prop axiom g945 (x : Prop) : Prop axiom g946 (x : Prop) : Prop axiom g947 (x : Prop) : Prop axiom g948 (x : Prop) : Prop axiom g949 (x : Prop) : Prop axiom g950 (x : Prop) : Prop axiom g951 (x : Prop) : Prop axiom g952 (x : Prop) : Prop axiom g953 (x : Prop) : Prop axiom g954 (x : Prop) : Prop axiom g955 (x : Prop) : Prop axiom g956 (x : Prop) : Prop axiom g957 (x : Prop) : Prop axiom g958 (x : Prop) : Prop axiom g959 (x : Prop) : Prop axiom g960 (x : Prop) : Prop axiom g961 (x : Prop) : Prop axiom g962 (x : Prop) : Prop axiom g963 (x : Prop) : Prop axiom g964 (x : Prop) : Prop axiom g965 (x : Prop) : Prop axiom g966 (x : Prop) : Prop axiom g967 (x : Prop) : Prop axiom g968 (x : Prop) : Prop axiom g969 (x : Prop) : Prop axiom g970 (x : Prop) : Prop axiom g971 (x : Prop) : Prop axiom g972 (x : Prop) : Prop axiom g973 (x : Prop) : Prop axiom g974 (x : Prop) : Prop axiom g975 (x : Prop) : Prop axiom g976 (x : Prop) : Prop axiom g977 (x : Prop) : Prop axiom g978 (x : Prop) : Prop axiom g979 (x : Prop) : Prop axiom g980 (x : Prop) : Prop axiom g981 (x : Prop) : Prop axiom g982 (x : Prop) : Prop axiom g983 (x : Prop) : Prop axiom g984 (x : Prop) : Prop axiom g985 (x : Prop) : Prop axiom g986 (x : Prop) : Prop axiom g987 (x : Prop) : Prop axiom g988 (x : Prop) : Prop axiom g989 (x : Prop) : Prop axiom g990 (x : Prop) : Prop axiom g991 (x : Prop) : Prop axiom g992 (x : Prop) : Prop axiom g993 (x : Prop) : Prop axiom g994 (x : Prop) : Prop axiom g995 (x : Prop) : Prop axiom g996 (x : Prop) : Prop axiom g997 (x : Prop) : Prop axiom g998 (x : Prop) : Prop axiom g999 (x : Prop) : Prop @[simp] axiom s0 (x : Prop) : f (g1 x) = f (g0 x) @[simp] axiom s1 (x : Prop) : f (g2 x) = f (g1 x) @[simp] axiom s2 (x : Prop) : f (g3 x) = f (g2 x) @[simp] axiom s3 (x : Prop) : f (g4 x) = f (g3 x) @[simp] axiom s4 (x : Prop) : f (g5 x) = f (g4 x) @[simp] axiom s5 (x : Prop) : f (g6 x) = f (g5 x) @[simp] axiom s6 (x : Prop) : f (g7 x) = f (g6 x) @[simp] axiom s7 (x : Prop) : f (g8 x) = f (g7 x) @[simp] axiom s8 (x : Prop) : f (g9 x) = f (g8 x) @[simp] axiom s9 (x : Prop) : f (g10 x) = f (g9 x) @[simp] axiom s10 (x : Prop) : f (g11 x) = f (g10 x) @[simp] axiom s11 (x : Prop) : f (g12 x) = f (g11 x) @[simp] axiom s12 (x : Prop) : f (g13 x) = f (g12 x) @[simp] axiom s13 (x : Prop) : f (g14 x) = f (g13 x) @[simp] axiom s14 (x : Prop) : f (g15 x) = f (g14 x) @[simp] axiom s15 (x : Prop) : f (g16 x) = f (g15 x) @[simp] axiom s16 (x : Prop) : f (g17 x) = f (g16 x) @[simp] axiom s17 (x : Prop) : f (g18 x) = f (g17 x) @[simp] axiom s18 (x : Prop) : f (g19 x) = f (g18 x) @[simp] axiom s19 (x : Prop) : f (g20 x) = f (g19 x) @[simp] axiom s20 (x : Prop) : f (g21 x) = f (g20 x) @[simp] axiom s21 (x : Prop) : f (g22 x) = f (g21 x) @[simp] axiom s22 (x : Prop) : f (g23 x) = f (g22 x) @[simp] axiom s23 (x : Prop) : f (g24 x) = f (g23 x) @[simp] axiom s24 (x : Prop) : f (g25 x) = f (g24 x) @[simp] axiom s25 (x : Prop) : f (g26 x) = f (g25 x) @[simp] axiom s26 (x : Prop) : f (g27 x) = f (g26 x) @[simp] axiom s27 (x : Prop) : f (g28 x) = f (g27 x) @[simp] axiom s28 (x : Prop) : f (g29 x) = f (g28 x) @[simp] axiom s29 (x : Prop) : f (g30 x) = f (g29 x) @[simp] axiom s30 (x : Prop) : f (g31 x) = f (g30 x) @[simp] axiom s31 (x : Prop) : f (g32 x) = f (g31 x) @[simp] axiom s32 (x : Prop) : f (g33 x) = f (g32 x) @[simp] axiom s33 (x : Prop) : f (g34 x) = f (g33 x) @[simp] axiom s34 (x : Prop) : f (g35 x) = f (g34 x) @[simp] axiom s35 (x : Prop) : f (g36 x) = f (g35 x) @[simp] axiom s36 (x : Prop) : f (g37 x) = f (g36 x) @[simp] axiom s37 (x : Prop) : f (g38 x) = f (g37 x) @[simp] axiom s38 (x : Prop) : f (g39 x) = f (g38 x) @[simp] axiom s39 (x : Prop) : f (g40 x) = f (g39 x) @[simp] axiom s40 (x : Prop) : f (g41 x) = f (g40 x) @[simp] axiom s41 (x : Prop) : f (g42 x) = f (g41 x) @[simp] axiom s42 (x : Prop) : f (g43 x) = f (g42 x) @[simp] axiom s43 (x : Prop) : f (g44 x) = f (g43 x) @[simp] axiom s44 (x : Prop) : f (g45 x) = f (g44 x) @[simp] axiom s45 (x : Prop) : f (g46 x) = f (g45 x) @[simp] axiom s46 (x : Prop) : f (g47 x) = f (g46 x) @[simp] axiom s47 (x : Prop) : f (g48 x) = f (g47 x) @[simp] axiom s48 (x : Prop) : f (g49 x) = f (g48 x) @[simp] axiom s49 (x : Prop) : f (g50 x) = f (g49 x) @[simp] axiom s50 (x : Prop) : f (g51 x) = f (g50 x) @[simp] axiom s51 (x : Prop) : f (g52 x) = f (g51 x) @[simp] axiom s52 (x : Prop) : f (g53 x) = f (g52 x) @[simp] axiom s53 (x : Prop) : f (g54 x) = f (g53 x) @[simp] axiom s54 (x : Prop) : f (g55 x) = f (g54 x) @[simp] axiom s55 (x : Prop) : f (g56 x) = f (g55 x) @[simp] axiom s56 (x : Prop) : f (g57 x) = f (g56 x) @[simp] axiom s57 (x : Prop) : f (g58 x) = f (g57 x) @[simp] axiom s58 (x : Prop) : f (g59 x) = f (g58 x) @[simp] axiom s59 (x : Prop) : f (g60 x) = f (g59 x) @[simp] axiom s60 (x : Prop) : f (g61 x) = f (g60 x) @[simp] axiom s61 (x : Prop) : f (g62 x) = f (g61 x) @[simp] axiom s62 (x : Prop) : f (g63 x) = f (g62 x) @[simp] axiom s63 (x : Prop) : f (g64 x) = f (g63 x) @[simp] axiom s64 (x : Prop) : f (g65 x) = f (g64 x) @[simp] axiom s65 (x : Prop) : f (g66 x) = f (g65 x) @[simp] axiom s66 (x : Prop) : f (g67 x) = f (g66 x) @[simp] axiom s67 (x : Prop) : f (g68 x) = f (g67 x) @[simp] axiom s68 (x : Prop) : f (g69 x) = f (g68 x) @[simp] axiom s69 (x : Prop) : f (g70 x) = f (g69 x) @[simp] axiom s70 (x : Prop) : f (g71 x) = f (g70 x) @[simp] axiom s71 (x : Prop) : f (g72 x) = f (g71 x) @[simp] axiom s72 (x : Prop) : f (g73 x) = f (g72 x) @[simp] axiom s73 (x : Prop) : f (g74 x) = f (g73 x) @[simp] axiom s74 (x : Prop) : f (g75 x) = f (g74 x) @[simp] axiom s75 (x : Prop) : f (g76 x) = f (g75 x) @[simp] axiom s76 (x : Prop) : f (g77 x) = f (g76 x) @[simp] axiom s77 (x : Prop) : f (g78 x) = f (g77 x) @[simp] axiom s78 (x : Prop) : f (g79 x) = f (g78 x) @[simp] axiom s79 (x : Prop) : f (g80 x) = f (g79 x) @[simp] axiom s80 (x : Prop) : f (g81 x) = f (g80 x) @[simp] axiom s81 (x : Prop) : f (g82 x) = f (g81 x) @[simp] axiom s82 (x : Prop) : f (g83 x) = f (g82 x) @[simp] axiom s83 (x : Prop) : f (g84 x) = f (g83 x) @[simp] axiom s84 (x : Prop) : f (g85 x) = f (g84 x) @[simp] axiom s85 (x : Prop) : f (g86 x) = f (g85 x) @[simp] axiom s86 (x : Prop) : f (g87 x) = f (g86 x) @[simp] axiom s87 (x : Prop) : f (g88 x) = f (g87 x) @[simp] axiom s88 (x : Prop) : f (g89 x) = f (g88 x) @[simp] axiom s89 (x : Prop) : f (g90 x) = f (g89 x) @[simp] axiom s90 (x : Prop) : f (g91 x) = f (g90 x) @[simp] axiom s91 (x : Prop) : f (g92 x) = f (g91 x) @[simp] axiom s92 (x : Prop) : f (g93 x) = f (g92 x) @[simp] axiom s93 (x : Prop) : f (g94 x) = f (g93 x) @[simp] axiom s94 (x : Prop) : f (g95 x) = f (g94 x) @[simp] axiom s95 (x : Prop) : f (g96 x) = f (g95 x) @[simp] axiom s96 (x : Prop) : f (g97 x) = f (g96 x) @[simp] axiom s97 (x : Prop) : f (g98 x) = f (g97 x) @[simp] axiom s98 (x : Prop) : f (g99 x) = f (g98 x) @[simp] axiom s99 (x : Prop) : f (g100 x) = f (g99 x) @[simp] axiom s100 (x : Prop) : f (g101 x) = f (g100 x) @[simp] axiom s101 (x : Prop) : f (g102 x) = f (g101 x) @[simp] axiom s102 (x : Prop) : f (g103 x) = f (g102 x) @[simp] axiom s103 (x : Prop) : f (g104 x) = f (g103 x) @[simp] axiom s104 (x : Prop) : f (g105 x) = f (g104 x) @[simp] axiom s105 (x : Prop) : f (g106 x) = f (g105 x) @[simp] axiom s106 (x : Prop) : f (g107 x) = f (g106 x) @[simp] axiom s107 (x : Prop) : f (g108 x) = f (g107 x) @[simp] axiom s108 (x : Prop) : f (g109 x) = f (g108 x) @[simp] axiom s109 (x : Prop) : f (g110 x) = f (g109 x) @[simp] axiom s110 (x : Prop) : f (g111 x) = f (g110 x) @[simp] axiom s111 (x : Prop) : f (g112 x) = f (g111 x) @[simp] axiom s112 (x : Prop) : f (g113 x) = f (g112 x) @[simp] axiom s113 (x : Prop) : f (g114 x) = f (g113 x) @[simp] axiom s114 (x : Prop) : f (g115 x) = f (g114 x) @[simp] axiom s115 (x : Prop) : f (g116 x) = f (g115 x) @[simp] axiom s116 (x : Prop) : f (g117 x) = f (g116 x) @[simp] axiom s117 (x : Prop) : f (g118 x) = f (g117 x) @[simp] axiom s118 (x : Prop) : f (g119 x) = f (g118 x) @[simp] axiom s119 (x : Prop) : f (g120 x) = f (g119 x) @[simp] axiom s120 (x : Prop) : f (g121 x) = f (g120 x) @[simp] axiom s121 (x : Prop) : f (g122 x) = f (g121 x) @[simp] axiom s122 (x : Prop) : f (g123 x) = f (g122 x) @[simp] axiom s123 (x : Prop) : f (g124 x) = f (g123 x) @[simp] axiom s124 (x : Prop) : f (g125 x) = f (g124 x) @[simp] axiom s125 (x : Prop) : f (g126 x) = f (g125 x) @[simp] axiom s126 (x : Prop) : f (g127 x) = f (g126 x) @[simp] axiom s127 (x : Prop) : f (g128 x) = f (g127 x) @[simp] axiom s128 (x : Prop) : f (g129 x) = f (g128 x) @[simp] axiom s129 (x : Prop) : f (g130 x) = f (g129 x) @[simp] axiom s130 (x : Prop) : f (g131 x) = f (g130 x) @[simp] axiom s131 (x : Prop) : f (g132 x) = f (g131 x) @[simp] axiom s132 (x : Prop) : f (g133 x) = f (g132 x) @[simp] axiom s133 (x : Prop) : f (g134 x) = f (g133 x) @[simp] axiom s134 (x : Prop) : f (g135 x) = f (g134 x) @[simp] axiom s135 (x : Prop) : f (g136 x) = f (g135 x) @[simp] axiom s136 (x : Prop) : f (g137 x) = f (g136 x) @[simp] axiom s137 (x : Prop) : f (g138 x) = f (g137 x) @[simp] axiom s138 (x : Prop) : f (g139 x) = f (g138 x) @[simp] axiom s139 (x : Prop) : f (g140 x) = f (g139 x) @[simp] axiom s140 (x : Prop) : f (g141 x) = f (g140 x) @[simp] axiom s141 (x : Prop) : f (g142 x) = f (g141 x) @[simp] axiom s142 (x : Prop) : f (g143 x) = f (g142 x) @[simp] axiom s143 (x : Prop) : f (g144 x) = f (g143 x) @[simp] axiom s144 (x : Prop) : f (g145 x) = f (g144 x) @[simp] axiom s145 (x : Prop) : f (g146 x) = f (g145 x) @[simp] axiom s146 (x : Prop) : f (g147 x) = f (g146 x) @[simp] axiom s147 (x : Prop) : f (g148 x) = f (g147 x) @[simp] axiom s148 (x : Prop) : f (g149 x) = f (g148 x) @[simp] axiom s149 (x : Prop) : f (g150 x) = f (g149 x) @[simp] axiom s150 (x : Prop) : f (g151 x) = f (g150 x) @[simp] axiom s151 (x : Prop) : f (g152 x) = f (g151 x) @[simp] axiom s152 (x : Prop) : f (g153 x) = f (g152 x) @[simp] axiom s153 (x : Prop) : f (g154 x) = f (g153 x) @[simp] axiom s154 (x : Prop) : f (g155 x) = f (g154 x) @[simp] axiom s155 (x : Prop) : f (g156 x) = f (g155 x) @[simp] axiom s156 (x : Prop) : f (g157 x) = f (g156 x) @[simp] axiom s157 (x : Prop) : f (g158 x) = f (g157 x) @[simp] axiom s158 (x : Prop) : f (g159 x) = f (g158 x) @[simp] axiom s159 (x : Prop) : f (g160 x) = f (g159 x) @[simp] axiom s160 (x : Prop) : f (g161 x) = f (g160 x) @[simp] axiom s161 (x : Prop) : f (g162 x) = f (g161 x) @[simp] axiom s162 (x : Prop) : f (g163 x) = f (g162 x) @[simp] axiom s163 (x : Prop) : f (g164 x) = f (g163 x) @[simp] axiom s164 (x : Prop) : f (g165 x) = f (g164 x) @[simp] axiom s165 (x : Prop) : f (g166 x) = f (g165 x) @[simp] axiom s166 (x : Prop) : f (g167 x) = f (g166 x) @[simp] axiom s167 (x : Prop) : f (g168 x) = f (g167 x) @[simp] axiom s168 (x : Prop) : f (g169 x) = f (g168 x) @[simp] axiom s169 (x : Prop) : f (g170 x) = f (g169 x) @[simp] axiom s170 (x : Prop) : f (g171 x) = f (g170 x) @[simp] axiom s171 (x : Prop) : f (g172 x) = f (g171 x) @[simp] axiom s172 (x : Prop) : f (g173 x) = f (g172 x) @[simp] axiom s173 (x : Prop) : f (g174 x) = f (g173 x) @[simp] axiom s174 (x : Prop) : f (g175 x) = f (g174 x) @[simp] axiom s175 (x : Prop) : f (g176 x) = f (g175 x) @[simp] axiom s176 (x : Prop) : f (g177 x) = f (g176 x) @[simp] axiom s177 (x : Prop) : f (g178 x) = f (g177 x) @[simp] axiom s178 (x : Prop) : f (g179 x) = f (g178 x) @[simp] axiom s179 (x : Prop) : f (g180 x) = f (g179 x) @[simp] axiom s180 (x : Prop) : f (g181 x) = f (g180 x) @[simp] axiom s181 (x : Prop) : f (g182 x) = f (g181 x) @[simp] axiom s182 (x : Prop) : f (g183 x) = f (g182 x) @[simp] axiom s183 (x : Prop) : f (g184 x) = f (g183 x) @[simp] axiom s184 (x : Prop) : f (g185 x) = f (g184 x) @[simp] axiom s185 (x : Prop) : f (g186 x) = f (g185 x) @[simp] axiom s186 (x : Prop) : f (g187 x) = f (g186 x) @[simp] axiom s187 (x : Prop) : f (g188 x) = f (g187 x) @[simp] axiom s188 (x : Prop) : f (g189 x) = f (g188 x) @[simp] axiom s189 (x : Prop) : f (g190 x) = f (g189 x) @[simp] axiom s190 (x : Prop) : f (g191 x) = f (g190 x) @[simp] axiom s191 (x : Prop) : f (g192 x) = f (g191 x) @[simp] axiom s192 (x : Prop) : f (g193 x) = f (g192 x) @[simp] axiom s193 (x : Prop) : f (g194 x) = f (g193 x) @[simp] axiom s194 (x : Prop) : f (g195 x) = f (g194 x) @[simp] axiom s195 (x : Prop) : f (g196 x) = f (g195 x) @[simp] axiom s196 (x : Prop) : f (g197 x) = f (g196 x) @[simp] axiom s197 (x : Prop) : f (g198 x) = f (g197 x) @[simp] axiom s198 (x : Prop) : f (g199 x) = f (g198 x) @[simp] axiom s199 (x : Prop) : f (g200 x) = f (g199 x) @[simp] axiom s200 (x : Prop) : f (g201 x) = f (g200 x) @[simp] axiom s201 (x : Prop) : f (g202 x) = f (g201 x) @[simp] axiom s202 (x : Prop) : f (g203 x) = f (g202 x) @[simp] axiom s203 (x : Prop) : f (g204 x) = f (g203 x) @[simp] axiom s204 (x : Prop) : f (g205 x) = f (g204 x) @[simp] axiom s205 (x : Prop) : f (g206 x) = f (g205 x) @[simp] axiom s206 (x : Prop) : f (g207 x) = f (g206 x) @[simp] axiom s207 (x : Prop) : f (g208 x) = f (g207 x) @[simp] axiom s208 (x : Prop) : f (g209 x) = f (g208 x) @[simp] axiom s209 (x : Prop) : f (g210 x) = f (g209 x) @[simp] axiom s210 (x : Prop) : f (g211 x) = f (g210 x) @[simp] axiom s211 (x : Prop) : f (g212 x) = f (g211 x) @[simp] axiom s212 (x : Prop) : f (g213 x) = f (g212 x) @[simp] axiom s213 (x : Prop) : f (g214 x) = f (g213 x) @[simp] axiom s214 (x : Prop) : f (g215 x) = f (g214 x) @[simp] axiom s215 (x : Prop) : f (g216 x) = f (g215 x) @[simp] axiom s216 (x : Prop) : f (g217 x) = f (g216 x) @[simp] axiom s217 (x : Prop) : f (g218 x) = f (g217 x) @[simp] axiom s218 (x : Prop) : f (g219 x) = f (g218 x) @[simp] axiom s219 (x : Prop) : f (g220 x) = f (g219 x) @[simp] axiom s220 (x : Prop) : f (g221 x) = f (g220 x) @[simp] axiom s221 (x : Prop) : f (g222 x) = f (g221 x) @[simp] axiom s222 (x : Prop) : f (g223 x) = f (g222 x) @[simp] axiom s223 (x : Prop) : f (g224 x) = f (g223 x) @[simp] axiom s224 (x : Prop) : f (g225 x) = f (g224 x) @[simp] axiom s225 (x : Prop) : f (g226 x) = f (g225 x) @[simp] axiom s226 (x : Prop) : f (g227 x) = f (g226 x) @[simp] axiom s227 (x : Prop) : f (g228 x) = f (g227 x) @[simp] axiom s228 (x : Prop) : f (g229 x) = f (g228 x) @[simp] axiom s229 (x : Prop) : f (g230 x) = f (g229 x) @[simp] axiom s230 (x : Prop) : f (g231 x) = f (g230 x) @[simp] axiom s231 (x : Prop) : f (g232 x) = f (g231 x) @[simp] axiom s232 (x : Prop) : f (g233 x) = f (g232 x) @[simp] axiom s233 (x : Prop) : f (g234 x) = f (g233 x) @[simp] axiom s234 (x : Prop) : f (g235 x) = f (g234 x) @[simp] axiom s235 (x : Prop) : f (g236 x) = f (g235 x) @[simp] axiom s236 (x : Prop) : f (g237 x) = f (g236 x) @[simp] axiom s237 (x : Prop) : f (g238 x) = f (g237 x) @[simp] axiom s238 (x : Prop) : f (g239 x) = f (g238 x) @[simp] axiom s239 (x : Prop) : f (g240 x) = f (g239 x) @[simp] axiom s240 (x : Prop) : f (g241 x) = f (g240 x) @[simp] axiom s241 (x : Prop) : f (g242 x) = f (g241 x) @[simp] axiom s242 (x : Prop) : f (g243 x) = f (g242 x) @[simp] axiom s243 (x : Prop) : f (g244 x) = f (g243 x) @[simp] axiom s244 (x : Prop) : f (g245 x) = f (g244 x) @[simp] axiom s245 (x : Prop) : f (g246 x) = f (g245 x) @[simp] axiom s246 (x : Prop) : f (g247 x) = f (g246 x) @[simp] axiom s247 (x : Prop) : f (g248 x) = f (g247 x) @[simp] axiom s248 (x : Prop) : f (g249 x) = f (g248 x) @[simp] axiom s249 (x : Prop) : f (g250 x) = f (g249 x) @[simp] axiom s250 (x : Prop) : f (g251 x) = f (g250 x) @[simp] axiom s251 (x : Prop) : f (g252 x) = f (g251 x) @[simp] axiom s252 (x : Prop) : f (g253 x) = f (g252 x) @[simp] axiom s253 (x : Prop) : f (g254 x) = f (g253 x) @[simp] axiom s254 (x : Prop) : f (g255 x) = f (g254 x) @[simp] axiom s255 (x : Prop) : f (g256 x) = f (g255 x) @[simp] axiom s256 (x : Prop) : f (g257 x) = f (g256 x) @[simp] axiom s257 (x : Prop) : f (g258 x) = f (g257 x) @[simp] axiom s258 (x : Prop) : f (g259 x) = f (g258 x) @[simp] axiom s259 (x : Prop) : f (g260 x) = f (g259 x) @[simp] axiom s260 (x : Prop) : f (g261 x) = f (g260 x) @[simp] axiom s261 (x : Prop) : f (g262 x) = f (g261 x) @[simp] axiom s262 (x : Prop) : f (g263 x) = f (g262 x) @[simp] axiom s263 (x : Prop) : f (g264 x) = f (g263 x) @[simp] axiom s264 (x : Prop) : f (g265 x) = f (g264 x) @[simp] axiom s265 (x : Prop) : f (g266 x) = f (g265 x) @[simp] axiom s266 (x : Prop) : f (g267 x) = f (g266 x) @[simp] axiom s267 (x : Prop) : f (g268 x) = f (g267 x) @[simp] axiom s268 (x : Prop) : f (g269 x) = f (g268 x) @[simp] axiom s269 (x : Prop) : f (g270 x) = f (g269 x) @[simp] axiom s270 (x : Prop) : f (g271 x) = f (g270 x) @[simp] axiom s271 (x : Prop) : f (g272 x) = f (g271 x) @[simp] axiom s272 (x : Prop) : f (g273 x) = f (g272 x) @[simp] axiom s273 (x : Prop) : f (g274 x) = f (g273 x) @[simp] axiom s274 (x : Prop) : f (g275 x) = f (g274 x) @[simp] axiom s275 (x : Prop) : f (g276 x) = f (g275 x) @[simp] axiom s276 (x : Prop) : f (g277 x) = f (g276 x) @[simp] axiom s277 (x : Prop) : f (g278 x) = f (g277 x) @[simp] axiom s278 (x : Prop) : f (g279 x) = f (g278 x) @[simp] axiom s279 (x : Prop) : f (g280 x) = f (g279 x) @[simp] axiom s280 (x : Prop) : f (g281 x) = f (g280 x) @[simp] axiom s281 (x : Prop) : f (g282 x) = f (g281 x) @[simp] axiom s282 (x : Prop) : f (g283 x) = f (g282 x) @[simp] axiom s283 (x : Prop) : f (g284 x) = f (g283 x) @[simp] axiom s284 (x : Prop) : f (g285 x) = f (g284 x) @[simp] axiom s285 (x : Prop) : f (g286 x) = f (g285 x) @[simp] axiom s286 (x : Prop) : f (g287 x) = f (g286 x) @[simp] axiom s287 (x : Prop) : f (g288 x) = f (g287 x) @[simp] axiom s288 (x : Prop) : f (g289 x) = f (g288 x) @[simp] axiom s289 (x : Prop) : f (g290 x) = f (g289 x) @[simp] axiom s290 (x : Prop) : f (g291 x) = f (g290 x) @[simp] axiom s291 (x : Prop) : f (g292 x) = f (g291 x) @[simp] axiom s292 (x : Prop) : f (g293 x) = f (g292 x) @[simp] axiom s293 (x : Prop) : f (g294 x) = f (g293 x) @[simp] axiom s294 (x : Prop) : f (g295 x) = f (g294 x) @[simp] axiom s295 (x : Prop) : f (g296 x) = f (g295 x) @[simp] axiom s296 (x : Prop) : f (g297 x) = f (g296 x) @[simp] axiom s297 (x : Prop) : f (g298 x) = f (g297 x) @[simp] axiom s298 (x : Prop) : f (g299 x) = f (g298 x) @[simp] axiom s299 (x : Prop) : f (g300 x) = f (g299 x) @[simp] axiom s300 (x : Prop) : f (g301 x) = f (g300 x) @[simp] axiom s301 (x : Prop) : f (g302 x) = f (g301 x) @[simp] axiom s302 (x : Prop) : f (g303 x) = f (g302 x) @[simp] axiom s303 (x : Prop) : f (g304 x) = f (g303 x) @[simp] axiom s304 (x : Prop) : f (g305 x) = f (g304 x) @[simp] axiom s305 (x : Prop) : f (g306 x) = f (g305 x) @[simp] axiom s306 (x : Prop) : f (g307 x) = f (g306 x) @[simp] axiom s307 (x : Prop) : f (g308 x) = f (g307 x) @[simp] axiom s308 (x : Prop) : f (g309 x) = f (g308 x) @[simp] axiom s309 (x : Prop) : f (g310 x) = f (g309 x) @[simp] axiom s310 (x : Prop) : f (g311 x) = f (g310 x) @[simp] axiom s311 (x : Prop) : f (g312 x) = f (g311 x) @[simp] axiom s312 (x : Prop) : f (g313 x) = f (g312 x) @[simp] axiom s313 (x : Prop) : f (g314 x) = f (g313 x) @[simp] axiom s314 (x : Prop) : f (g315 x) = f (g314 x) @[simp] axiom s315 (x : Prop) : f (g316 x) = f (g315 x) @[simp] axiom s316 (x : Prop) : f (g317 x) = f (g316 x) @[simp] axiom s317 (x : Prop) : f (g318 x) = f (g317 x) @[simp] axiom s318 (x : Prop) : f (g319 x) = f (g318 x) @[simp] axiom s319 (x : Prop) : f (g320 x) = f (g319 x) @[simp] axiom s320 (x : Prop) : f (g321 x) = f (g320 x) @[simp] axiom s321 (x : Prop) : f (g322 x) = f (g321 x) @[simp] axiom s322 (x : Prop) : f (g323 x) = f (g322 x) @[simp] axiom s323 (x : Prop) : f (g324 x) = f (g323 x) @[simp] axiom s324 (x : Prop) : f (g325 x) = f (g324 x) @[simp] axiom s325 (x : Prop) : f (g326 x) = f (g325 x) @[simp] axiom s326 (x : Prop) : f (g327 x) = f (g326 x) @[simp] axiom s327 (x : Prop) : f (g328 x) = f (g327 x) @[simp] axiom s328 (x : Prop) : f (g329 x) = f (g328 x) @[simp] axiom s329 (x : Prop) : f (g330 x) = f (g329 x) @[simp] axiom s330 (x : Prop) : f (g331 x) = f (g330 x) @[simp] axiom s331 (x : Prop) : f (g332 x) = f (g331 x) @[simp] axiom s332 (x : Prop) : f (g333 x) = f (g332 x) @[simp] axiom s333 (x : Prop) : f (g334 x) = f (g333 x) @[simp] axiom s334 (x : Prop) : f (g335 x) = f (g334 x) @[simp] axiom s335 (x : Prop) : f (g336 x) = f (g335 x) @[simp] axiom s336 (x : Prop) : f (g337 x) = f (g336 x) @[simp] axiom s337 (x : Prop) : f (g338 x) = f (g337 x) @[simp] axiom s338 (x : Prop) : f (g339 x) = f (g338 x) @[simp] axiom s339 (x : Prop) : f (g340 x) = f (g339 x) @[simp] axiom s340 (x : Prop) : f (g341 x) = f (g340 x) @[simp] axiom s341 (x : Prop) : f (g342 x) = f (g341 x) @[simp] axiom s342 (x : Prop) : f (g343 x) = f (g342 x) @[simp] axiom s343 (x : Prop) : f (g344 x) = f (g343 x) @[simp] axiom s344 (x : Prop) : f (g345 x) = f (g344 x) @[simp] axiom s345 (x : Prop) : f (g346 x) = f (g345 x) @[simp] axiom s346 (x : Prop) : f (g347 x) = f (g346 x) @[simp] axiom s347 (x : Prop) : f (g348 x) = f (g347 x) @[simp] axiom s348 (x : Prop) : f (g349 x) = f (g348 x) @[simp] axiom s349 (x : Prop) : f (g350 x) = f (g349 x) @[simp] axiom s350 (x : Prop) : f (g351 x) = f (g350 x) @[simp] axiom s351 (x : Prop) : f (g352 x) = f (g351 x) @[simp] axiom s352 (x : Prop) : f (g353 x) = f (g352 x) @[simp] axiom s353 (x : Prop) : f (g354 x) = f (g353 x) @[simp] axiom s354 (x : Prop) : f (g355 x) = f (g354 x) @[simp] axiom s355 (x : Prop) : f (g356 x) = f (g355 x) @[simp] axiom s356 (x : Prop) : f (g357 x) = f (g356 x) @[simp] axiom s357 (x : Prop) : f (g358 x) = f (g357 x) @[simp] axiom s358 (x : Prop) : f (g359 x) = f (g358 x) @[simp] axiom s359 (x : Prop) : f (g360 x) = f (g359 x) @[simp] axiom s360 (x : Prop) : f (g361 x) = f (g360 x) @[simp] axiom s361 (x : Prop) : f (g362 x) = f (g361 x) @[simp] axiom s362 (x : Prop) : f (g363 x) = f (g362 x) @[simp] axiom s363 (x : Prop) : f (g364 x) = f (g363 x) @[simp] axiom s364 (x : Prop) : f (g365 x) = f (g364 x) @[simp] axiom s365 (x : Prop) : f (g366 x) = f (g365 x) @[simp] axiom s366 (x : Prop) : f (g367 x) = f (g366 x) @[simp] axiom s367 (x : Prop) : f (g368 x) = f (g367 x) @[simp] axiom s368 (x : Prop) : f (g369 x) = f (g368 x) @[simp] axiom s369 (x : Prop) : f (g370 x) = f (g369 x) @[simp] axiom s370 (x : Prop) : f (g371 x) = f (g370 x) @[simp] axiom s371 (x : Prop) : f (g372 x) = f (g371 x) @[simp] axiom s372 (x : Prop) : f (g373 x) = f (g372 x) @[simp] axiom s373 (x : Prop) : f (g374 x) = f (g373 x) @[simp] axiom s374 (x : Prop) : f (g375 x) = f (g374 x) @[simp] axiom s375 (x : Prop) : f (g376 x) = f (g375 x) @[simp] axiom s376 (x : Prop) : f (g377 x) = f (g376 x) @[simp] axiom s377 (x : Prop) : f (g378 x) = f (g377 x) @[simp] axiom s378 (x : Prop) : f (g379 x) = f (g378 x) @[simp] axiom s379 (x : Prop) : f (g380 x) = f (g379 x) @[simp] axiom s380 (x : Prop) : f (g381 x) = f (g380 x) @[simp] axiom s381 (x : Prop) : f (g382 x) = f (g381 x) @[simp] axiom s382 (x : Prop) : f (g383 x) = f (g382 x) @[simp] axiom s383 (x : Prop) : f (g384 x) = f (g383 x) @[simp] axiom s384 (x : Prop) : f (g385 x) = f (g384 x) @[simp] axiom s385 (x : Prop) : f (g386 x) = f (g385 x) @[simp] axiom s386 (x : Prop) : f (g387 x) = f (g386 x) @[simp] axiom s387 (x : Prop) : f (g388 x) = f (g387 x) @[simp] axiom s388 (x : Prop) : f (g389 x) = f (g388 x) @[simp] axiom s389 (x : Prop) : f (g390 x) = f (g389 x) @[simp] axiom s390 (x : Prop) : f (g391 x) = f (g390 x) @[simp] axiom s391 (x : Prop) : f (g392 x) = f (g391 x) @[simp] axiom s392 (x : Prop) : f (g393 x) = f (g392 x) @[simp] axiom s393 (x : Prop) : f (g394 x) = f (g393 x) @[simp] axiom s394 (x : Prop) : f (g395 x) = f (g394 x) @[simp] axiom s395 (x : Prop) : f (g396 x) = f (g395 x) @[simp] axiom s396 (x : Prop) : f (g397 x) = f (g396 x) @[simp] axiom s397 (x : Prop) : f (g398 x) = f (g397 x) @[simp] axiom s398 (x : Prop) : f (g399 x) = f (g398 x) @[simp] axiom s399 (x : Prop) : f (g400 x) = f (g399 x) @[simp] axiom s400 (x : Prop) : f (g401 x) = f (g400 x) @[simp] axiom s401 (x : Prop) : f (g402 x) = f (g401 x) @[simp] axiom s402 (x : Prop) : f (g403 x) = f (g402 x) @[simp] axiom s403 (x : Prop) : f (g404 x) = f (g403 x) @[simp] axiom s404 (x : Prop) : f (g405 x) = f (g404 x) @[simp] axiom s405 (x : Prop) : f (g406 x) = f (g405 x) @[simp] axiom s406 (x : Prop) : f (g407 x) = f (g406 x) @[simp] axiom s407 (x : Prop) : f (g408 x) = f (g407 x) @[simp] axiom s408 (x : Prop) : f (g409 x) = f (g408 x) @[simp] axiom s409 (x : Prop) : f (g410 x) = f (g409 x) @[simp] axiom s410 (x : Prop) : f (g411 x) = f (g410 x) @[simp] axiom s411 (x : Prop) : f (g412 x) = f (g411 x) @[simp] axiom s412 (x : Prop) : f (g413 x) = f (g412 x) @[simp] axiom s413 (x : Prop) : f (g414 x) = f (g413 x) @[simp] axiom s414 (x : Prop) : f (g415 x) = f (g414 x) @[simp] axiom s415 (x : Prop) : f (g416 x) = f (g415 x) @[simp] axiom s416 (x : Prop) : f (g417 x) = f (g416 x) @[simp] axiom s417 (x : Prop) : f (g418 x) = f (g417 x) @[simp] axiom s418 (x : Prop) : f (g419 x) = f (g418 x) @[simp] axiom s419 (x : Prop) : f (g420 x) = f (g419 x) @[simp] axiom s420 (x : Prop) : f (g421 x) = f (g420 x) @[simp] axiom s421 (x : Prop) : f (g422 x) = f (g421 x) @[simp] axiom s422 (x : Prop) : f (g423 x) = f (g422 x) @[simp] axiom s423 (x : Prop) : f (g424 x) = f (g423 x) @[simp] axiom s424 (x : Prop) : f (g425 x) = f (g424 x) @[simp] axiom s425 (x : Prop) : f (g426 x) = f (g425 x) @[simp] axiom s426 (x : Prop) : f (g427 x) = f (g426 x) @[simp] axiom s427 (x : Prop) : f (g428 x) = f (g427 x) @[simp] axiom s428 (x : Prop) : f (g429 x) = f (g428 x) @[simp] axiom s429 (x : Prop) : f (g430 x) = f (g429 x) @[simp] axiom s430 (x : Prop) : f (g431 x) = f (g430 x) @[simp] axiom s431 (x : Prop) : f (g432 x) = f (g431 x) @[simp] axiom s432 (x : Prop) : f (g433 x) = f (g432 x) @[simp] axiom s433 (x : Prop) : f (g434 x) = f (g433 x) @[simp] axiom s434 (x : Prop) : f (g435 x) = f (g434 x) @[simp] axiom s435 (x : Prop) : f (g436 x) = f (g435 x) @[simp] axiom s436 (x : Prop) : f (g437 x) = f (g436 x) @[simp] axiom s437 (x : Prop) : f (g438 x) = f (g437 x) @[simp] axiom s438 (x : Prop) : f (g439 x) = f (g438 x) @[simp] axiom s439 (x : Prop) : f (g440 x) = f (g439 x) @[simp] axiom s440 (x : Prop) : f (g441 x) = f (g440 x) @[simp] axiom s441 (x : Prop) : f (g442 x) = f (g441 x) @[simp] axiom s442 (x : Prop) : f (g443 x) = f (g442 x) @[simp] axiom s443 (x : Prop) : f (g444 x) = f (g443 x) @[simp] axiom s444 (x : Prop) : f (g445 x) = f (g444 x) @[simp] axiom s445 (x : Prop) : f (g446 x) = f (g445 x) @[simp] axiom s446 (x : Prop) : f (g447 x) = f (g446 x) @[simp] axiom s447 (x : Prop) : f (g448 x) = f (g447 x) @[simp] axiom s448 (x : Prop) : f (g449 x) = f (g448 x) @[simp] axiom s449 (x : Prop) : f (g450 x) = f (g449 x) @[simp] axiom s450 (x : Prop) : f (g451 x) = f (g450 x) @[simp] axiom s451 (x : Prop) : f (g452 x) = f (g451 x) @[simp] axiom s452 (x : Prop) : f (g453 x) = f (g452 x) @[simp] axiom s453 (x : Prop) : f (g454 x) = f (g453 x) @[simp] axiom s454 (x : Prop) : f (g455 x) = f (g454 x) @[simp] axiom s455 (x : Prop) : f (g456 x) = f (g455 x) @[simp] axiom s456 (x : Prop) : f (g457 x) = f (g456 x) @[simp] axiom s457 (x : Prop) : f (g458 x) = f (g457 x) @[simp] axiom s458 (x : Prop) : f (g459 x) = f (g458 x) @[simp] axiom s459 (x : Prop) : f (g460 x) = f (g459 x) @[simp] axiom s460 (x : Prop) : f (g461 x) = f (g460 x) @[simp] axiom s461 (x : Prop) : f (g462 x) = f (g461 x) @[simp] axiom s462 (x : Prop) : f (g463 x) = f (g462 x) @[simp] axiom s463 (x : Prop) : f (g464 x) = f (g463 x) @[simp] axiom s464 (x : Prop) : f (g465 x) = f (g464 x) @[simp] axiom s465 (x : Prop) : f (g466 x) = f (g465 x) @[simp] axiom s466 (x : Prop) : f (g467 x) = f (g466 x) @[simp] axiom s467 (x : Prop) : f (g468 x) = f (g467 x) @[simp] axiom s468 (x : Prop) : f (g469 x) = f (g468 x) @[simp] axiom s469 (x : Prop) : f (g470 x) = f (g469 x) @[simp] axiom s470 (x : Prop) : f (g471 x) = f (g470 x) @[simp] axiom s471 (x : Prop) : f (g472 x) = f (g471 x) @[simp] axiom s472 (x : Prop) : f (g473 x) = f (g472 x) @[simp] axiom s473 (x : Prop) : f (g474 x) = f (g473 x) @[simp] axiom s474 (x : Prop) : f (g475 x) = f (g474 x) @[simp] axiom s475 (x : Prop) : f (g476 x) = f (g475 x) @[simp] axiom s476 (x : Prop) : f (g477 x) = f (g476 x) @[simp] axiom s477 (x : Prop) : f (g478 x) = f (g477 x) @[simp] axiom s478 (x : Prop) : f (g479 x) = f (g478 x) @[simp] axiom s479 (x : Prop) : f (g480 x) = f (g479 x) @[simp] axiom s480 (x : Prop) : f (g481 x) = f (g480 x) @[simp] axiom s481 (x : Prop) : f (g482 x) = f (g481 x) @[simp] axiom s482 (x : Prop) : f (g483 x) = f (g482 x) @[simp] axiom s483 (x : Prop) : f (g484 x) = f (g483 x) @[simp] axiom s484 (x : Prop) : f (g485 x) = f (g484 x) @[simp] axiom s485 (x : Prop) : f (g486 x) = f (g485 x) @[simp] axiom s486 (x : Prop) : f (g487 x) = f (g486 x) @[simp] axiom s487 (x : Prop) : f (g488 x) = f (g487 x) @[simp] axiom s488 (x : Prop) : f (g489 x) = f (g488 x) @[simp] axiom s489 (x : Prop) : f (g490 x) = f (g489 x) @[simp] axiom s490 (x : Prop) : f (g491 x) = f (g490 x) @[simp] axiom s491 (x : Prop) : f (g492 x) = f (g491 x) @[simp] axiom s492 (x : Prop) : f (g493 x) = f (g492 x) @[simp] axiom s493 (x : Prop) : f (g494 x) = f (g493 x) @[simp] axiom s494 (x : Prop) : f (g495 x) = f (g494 x) @[simp] axiom s495 (x : Prop) : f (g496 x) = f (g495 x) @[simp] axiom s496 (x : Prop) : f (g497 x) = f (g496 x) @[simp] axiom s497 (x : Prop) : f (g498 x) = f (g497 x) @[simp] axiom s498 (x : Prop) : f (g499 x) = f (g498 x) @[simp] axiom s499 (x : Prop) : f (g500 x) = f (g499 x) @[simp] axiom s500 (x : Prop) : f (g501 x) = f (g500 x) @[simp] axiom s501 (x : Prop) : f (g502 x) = f (g501 x) @[simp] axiom s502 (x : Prop) : f (g503 x) = f (g502 x) @[simp] axiom s503 (x : Prop) : f (g504 x) = f (g503 x) @[simp] axiom s504 (x : Prop) : f (g505 x) = f (g504 x) @[simp] axiom s505 (x : Prop) : f (g506 x) = f (g505 x) @[simp] axiom s506 (x : Prop) : f (g507 x) = f (g506 x) @[simp] axiom s507 (x : Prop) : f (g508 x) = f (g507 x) @[simp] axiom s508 (x : Prop) : f (g509 x) = f (g508 x) @[simp] axiom s509 (x : Prop) : f (g510 x) = f (g509 x) @[simp] axiom s510 (x : Prop) : f (g511 x) = f (g510 x) @[simp] axiom s511 (x : Prop) : f (g512 x) = f (g511 x) @[simp] axiom s512 (x : Prop) : f (g513 x) = f (g512 x) @[simp] axiom s513 (x : Prop) : f (g514 x) = f (g513 x) @[simp] axiom s514 (x : Prop) : f (g515 x) = f (g514 x) @[simp] axiom s515 (x : Prop) : f (g516 x) = f (g515 x) @[simp] axiom s516 (x : Prop) : f (g517 x) = f (g516 x) @[simp] axiom s517 (x : Prop) : f (g518 x) = f (g517 x) @[simp] axiom s518 (x : Prop) : f (g519 x) = f (g518 x) @[simp] axiom s519 (x : Prop) : f (g520 x) = f (g519 x) @[simp] axiom s520 (x : Prop) : f (g521 x) = f (g520 x) @[simp] axiom s521 (x : Prop) : f (g522 x) = f (g521 x) @[simp] axiom s522 (x : Prop) : f (g523 x) = f (g522 x) @[simp] axiom s523 (x : Prop) : f (g524 x) = f (g523 x) @[simp] axiom s524 (x : Prop) : f (g525 x) = f (g524 x) @[simp] axiom s525 (x : Prop) : f (g526 x) = f (g525 x) @[simp] axiom s526 (x : Prop) : f (g527 x) = f (g526 x) @[simp] axiom s527 (x : Prop) : f (g528 x) = f (g527 x) @[simp] axiom s528 (x : Prop) : f (g529 x) = f (g528 x) @[simp] axiom s529 (x : Prop) : f (g530 x) = f (g529 x) @[simp] axiom s530 (x : Prop) : f (g531 x) = f (g530 x) @[simp] axiom s531 (x : Prop) : f (g532 x) = f (g531 x) @[simp] axiom s532 (x : Prop) : f (g533 x) = f (g532 x) @[simp] axiom s533 (x : Prop) : f (g534 x) = f (g533 x) @[simp] axiom s534 (x : Prop) : f (g535 x) = f (g534 x) @[simp] axiom s535 (x : Prop) : f (g536 x) = f (g535 x) @[simp] axiom s536 (x : Prop) : f (g537 x) = f (g536 x) @[simp] axiom s537 (x : Prop) : f (g538 x) = f (g537 x) @[simp] axiom s538 (x : Prop) : f (g539 x) = f (g538 x) @[simp] axiom s539 (x : Prop) : f (g540 x) = f (g539 x) @[simp] axiom s540 (x : Prop) : f (g541 x) = f (g540 x) @[simp] axiom s541 (x : Prop) : f (g542 x) = f (g541 x) @[simp] axiom s542 (x : Prop) : f (g543 x) = f (g542 x) @[simp] axiom s543 (x : Prop) : f (g544 x) = f (g543 x) @[simp] axiom s544 (x : Prop) : f (g545 x) = f (g544 x) @[simp] axiom s545 (x : Prop) : f (g546 x) = f (g545 x) @[simp] axiom s546 (x : Prop) : f (g547 x) = f (g546 x) @[simp] axiom s547 (x : Prop) : f (g548 x) = f (g547 x) @[simp] axiom s548 (x : Prop) : f (g549 x) = f (g548 x) @[simp] axiom s549 (x : Prop) : f (g550 x) = f (g549 x) @[simp] axiom s550 (x : Prop) : f (g551 x) = f (g550 x) @[simp] axiom s551 (x : Prop) : f (g552 x) = f (g551 x) @[simp] axiom s552 (x : Prop) : f (g553 x) = f (g552 x) @[simp] axiom s553 (x : Prop) : f (g554 x) = f (g553 x) @[simp] axiom s554 (x : Prop) : f (g555 x) = f (g554 x) @[simp] axiom s555 (x : Prop) : f (g556 x) = f (g555 x) @[simp] axiom s556 (x : Prop) : f (g557 x) = f (g556 x) @[simp] axiom s557 (x : Prop) : f (g558 x) = f (g557 x) @[simp] axiom s558 (x : Prop) : f (g559 x) = f (g558 x) @[simp] axiom s559 (x : Prop) : f (g560 x) = f (g559 x) @[simp] axiom s560 (x : Prop) : f (g561 x) = f (g560 x) @[simp] axiom s561 (x : Prop) : f (g562 x) = f (g561 x) @[simp] axiom s562 (x : Prop) : f (g563 x) = f (g562 x) @[simp] axiom s563 (x : Prop) : f (g564 x) = f (g563 x) @[simp] axiom s564 (x : Prop) : f (g565 x) = f (g564 x) @[simp] axiom s565 (x : Prop) : f (g566 x) = f (g565 x) @[simp] axiom s566 (x : Prop) : f (g567 x) = f (g566 x) @[simp] axiom s567 (x : Prop) : f (g568 x) = f (g567 x) @[simp] axiom s568 (x : Prop) : f (g569 x) = f (g568 x) @[simp] axiom s569 (x : Prop) : f (g570 x) = f (g569 x) @[simp] axiom s570 (x : Prop) : f (g571 x) = f (g570 x) @[simp] axiom s571 (x : Prop) : f (g572 x) = f (g571 x) @[simp] axiom s572 (x : Prop) : f (g573 x) = f (g572 x) @[simp] axiom s573 (x : Prop) : f (g574 x) = f (g573 x) @[simp] axiom s574 (x : Prop) : f (g575 x) = f (g574 x) @[simp] axiom s575 (x : Prop) : f (g576 x) = f (g575 x) @[simp] axiom s576 (x : Prop) : f (g577 x) = f (g576 x) @[simp] axiom s577 (x : Prop) : f (g578 x) = f (g577 x) @[simp] axiom s578 (x : Prop) : f (g579 x) = f (g578 x) @[simp] axiom s579 (x : Prop) : f (g580 x) = f (g579 x) @[simp] axiom s580 (x : Prop) : f (g581 x) = f (g580 x) @[simp] axiom s581 (x : Prop) : f (g582 x) = f (g581 x) @[simp] axiom s582 (x : Prop) : f (g583 x) = f (g582 x) @[simp] axiom s583 (x : Prop) : f (g584 x) = f (g583 x) @[simp] axiom s584 (x : Prop) : f (g585 x) = f (g584 x) @[simp] axiom s585 (x : Prop) : f (g586 x) = f (g585 x) @[simp] axiom s586 (x : Prop) : f (g587 x) = f (g586 x) @[simp] axiom s587 (x : Prop) : f (g588 x) = f (g587 x) @[simp] axiom s588 (x : Prop) : f (g589 x) = f (g588 x) @[simp] axiom s589 (x : Prop) : f (g590 x) = f (g589 x) @[simp] axiom s590 (x : Prop) : f (g591 x) = f (g590 x) @[simp] axiom s591 (x : Prop) : f (g592 x) = f (g591 x) @[simp] axiom s592 (x : Prop) : f (g593 x) = f (g592 x) @[simp] axiom s593 (x : Prop) : f (g594 x) = f (g593 x) @[simp] axiom s594 (x : Prop) : f (g595 x) = f (g594 x) @[simp] axiom s595 (x : Prop) : f (g596 x) = f (g595 x) @[simp] axiom s596 (x : Prop) : f (g597 x) = f (g596 x) @[simp] axiom s597 (x : Prop) : f (g598 x) = f (g597 x) @[simp] axiom s598 (x : Prop) : f (g599 x) = f (g598 x) @[simp] axiom s599 (x : Prop) : f (g600 x) = f (g599 x) @[simp] axiom s600 (x : Prop) : f (g601 x) = f (g600 x) @[simp] axiom s601 (x : Prop) : f (g602 x) = f (g601 x) @[simp] axiom s602 (x : Prop) : f (g603 x) = f (g602 x) @[simp] axiom s603 (x : Prop) : f (g604 x) = f (g603 x) @[simp] axiom s604 (x : Prop) : f (g605 x) = f (g604 x) @[simp] axiom s605 (x : Prop) : f (g606 x) = f (g605 x) @[simp] axiom s606 (x : Prop) : f (g607 x) = f (g606 x) @[simp] axiom s607 (x : Prop) : f (g608 x) = f (g607 x) @[simp] axiom s608 (x : Prop) : f (g609 x) = f (g608 x) @[simp] axiom s609 (x : Prop) : f (g610 x) = f (g609 x) @[simp] axiom s610 (x : Prop) : f (g611 x) = f (g610 x) @[simp] axiom s611 (x : Prop) : f (g612 x) = f (g611 x) @[simp] axiom s612 (x : Prop) : f (g613 x) = f (g612 x) @[simp] axiom s613 (x : Prop) : f (g614 x) = f (g613 x) @[simp] axiom s614 (x : Prop) : f (g615 x) = f (g614 x) @[simp] axiom s615 (x : Prop) : f (g616 x) = f (g615 x) @[simp] axiom s616 (x : Prop) : f (g617 x) = f (g616 x) @[simp] axiom s617 (x : Prop) : f (g618 x) = f (g617 x) @[simp] axiom s618 (x : Prop) : f (g619 x) = f (g618 x) @[simp] axiom s619 (x : Prop) : f (g620 x) = f (g619 x) @[simp] axiom s620 (x : Prop) : f (g621 x) = f (g620 x) @[simp] axiom s621 (x : Prop) : f (g622 x) = f (g621 x) @[simp] axiom s622 (x : Prop) : f (g623 x) = f (g622 x) @[simp] axiom s623 (x : Prop) : f (g624 x) = f (g623 x) @[simp] axiom s624 (x : Prop) : f (g625 x) = f (g624 x) @[simp] axiom s625 (x : Prop) : f (g626 x) = f (g625 x) @[simp] axiom s626 (x : Prop) : f (g627 x) = f (g626 x) @[simp] axiom s627 (x : Prop) : f (g628 x) = f (g627 x) @[simp] axiom s628 (x : Prop) : f (g629 x) = f (g628 x) @[simp] axiom s629 (x : Prop) : f (g630 x) = f (g629 x) @[simp] axiom s630 (x : Prop) : f (g631 x) = f (g630 x) @[simp] axiom s631 (x : Prop) : f (g632 x) = f (g631 x) @[simp] axiom s632 (x : Prop) : f (g633 x) = f (g632 x) @[simp] axiom s633 (x : Prop) : f (g634 x) = f (g633 x) @[simp] axiom s634 (x : Prop) : f (g635 x) = f (g634 x) @[simp] axiom s635 (x : Prop) : f (g636 x) = f (g635 x) @[simp] axiom s636 (x : Prop) : f (g637 x) = f (g636 x) @[simp] axiom s637 (x : Prop) : f (g638 x) = f (g637 x) @[simp] axiom s638 (x : Prop) : f (g639 x) = f (g638 x) @[simp] axiom s639 (x : Prop) : f (g640 x) = f (g639 x) @[simp] axiom s640 (x : Prop) : f (g641 x) = f (g640 x) @[simp] axiom s641 (x : Prop) : f (g642 x) = f (g641 x) @[simp] axiom s642 (x : Prop) : f (g643 x) = f (g642 x) @[simp] axiom s643 (x : Prop) : f (g644 x) = f (g643 x) @[simp] axiom s644 (x : Prop) : f (g645 x) = f (g644 x) @[simp] axiom s645 (x : Prop) : f (g646 x) = f (g645 x) @[simp] axiom s646 (x : Prop) : f (g647 x) = f (g646 x) @[simp] axiom s647 (x : Prop) : f (g648 x) = f (g647 x) @[simp] axiom s648 (x : Prop) : f (g649 x) = f (g648 x) @[simp] axiom s649 (x : Prop) : f (g650 x) = f (g649 x) @[simp] axiom s650 (x : Prop) : f (g651 x) = f (g650 x) @[simp] axiom s651 (x : Prop) : f (g652 x) = f (g651 x) @[simp] axiom s652 (x : Prop) : f (g653 x) = f (g652 x) @[simp] axiom s653 (x : Prop) : f (g654 x) = f (g653 x) @[simp] axiom s654 (x : Prop) : f (g655 x) = f (g654 x) @[simp] axiom s655 (x : Prop) : f (g656 x) = f (g655 x) @[simp] axiom s656 (x : Prop) : f (g657 x) = f (g656 x) @[simp] axiom s657 (x : Prop) : f (g658 x) = f (g657 x) @[simp] axiom s658 (x : Prop) : f (g659 x) = f (g658 x) @[simp] axiom s659 (x : Prop) : f (g660 x) = f (g659 x) @[simp] axiom s660 (x : Prop) : f (g661 x) = f (g660 x) @[simp] axiom s661 (x : Prop) : f (g662 x) = f (g661 x) @[simp] axiom s662 (x : Prop) : f (g663 x) = f (g662 x) @[simp] axiom s663 (x : Prop) : f (g664 x) = f (g663 x) @[simp] axiom s664 (x : Prop) : f (g665 x) = f (g664 x) @[simp] axiom s665 (x : Prop) : f (g666 x) = f (g665 x) @[simp] axiom s666 (x : Prop) : f (g667 x) = f (g666 x) @[simp] axiom s667 (x : Prop) : f (g668 x) = f (g667 x) @[simp] axiom s668 (x : Prop) : f (g669 x) = f (g668 x) @[simp] axiom s669 (x : Prop) : f (g670 x) = f (g669 x) @[simp] axiom s670 (x : Prop) : f (g671 x) = f (g670 x) @[simp] axiom s671 (x : Prop) : f (g672 x) = f (g671 x) @[simp] axiom s672 (x : Prop) : f (g673 x) = f (g672 x) @[simp] axiom s673 (x : Prop) : f (g674 x) = f (g673 x) @[simp] axiom s674 (x : Prop) : f (g675 x) = f (g674 x) @[simp] axiom s675 (x : Prop) : f (g676 x) = f (g675 x) @[simp] axiom s676 (x : Prop) : f (g677 x) = f (g676 x) @[simp] axiom s677 (x : Prop) : f (g678 x) = f (g677 x) @[simp] axiom s678 (x : Prop) : f (g679 x) = f (g678 x) @[simp] axiom s679 (x : Prop) : f (g680 x) = f (g679 x) @[simp] axiom s680 (x : Prop) : f (g681 x) = f (g680 x) @[simp] axiom s681 (x : Prop) : f (g682 x) = f (g681 x) @[simp] axiom s682 (x : Prop) : f (g683 x) = f (g682 x) @[simp] axiom s683 (x : Prop) : f (g684 x) = f (g683 x) @[simp] axiom s684 (x : Prop) : f (g685 x) = f (g684 x) @[simp] axiom s685 (x : Prop) : f (g686 x) = f (g685 x) @[simp] axiom s686 (x : Prop) : f (g687 x) = f (g686 x) @[simp] axiom s687 (x : Prop) : f (g688 x) = f (g687 x) @[simp] axiom s688 (x : Prop) : f (g689 x) = f (g688 x) @[simp] axiom s689 (x : Prop) : f (g690 x) = f (g689 x) @[simp] axiom s690 (x : Prop) : f (g691 x) = f (g690 x) @[simp] axiom s691 (x : Prop) : f (g692 x) = f (g691 x) @[simp] axiom s692 (x : Prop) : f (g693 x) = f (g692 x) @[simp] axiom s693 (x : Prop) : f (g694 x) = f (g693 x) @[simp] axiom s694 (x : Prop) : f (g695 x) = f (g694 x) @[simp] axiom s695 (x : Prop) : f (g696 x) = f (g695 x) @[simp] axiom s696 (x : Prop) : f (g697 x) = f (g696 x) @[simp] axiom s697 (x : Prop) : f (g698 x) = f (g697 x) @[simp] axiom s698 (x : Prop) : f (g699 x) = f (g698 x) @[simp] axiom s699 (x : Prop) : f (g700 x) = f (g699 x) @[simp] axiom s700 (x : Prop) : f (g701 x) = f (g700 x) @[simp] axiom s701 (x : Prop) : f (g702 x) = f (g701 x) @[simp] axiom s702 (x : Prop) : f (g703 x) = f (g702 x) @[simp] axiom s703 (x : Prop) : f (g704 x) = f (g703 x) @[simp] axiom s704 (x : Prop) : f (g705 x) = f (g704 x) @[simp] axiom s705 (x : Prop) : f (g706 x) = f (g705 x) @[simp] axiom s706 (x : Prop) : f (g707 x) = f (g706 x) @[simp] axiom s707 (x : Prop) : f (g708 x) = f (g707 x) @[simp] axiom s708 (x : Prop) : f (g709 x) = f (g708 x) @[simp] axiom s709 (x : Prop) : f (g710 x) = f (g709 x) @[simp] axiom s710 (x : Prop) : f (g711 x) = f (g710 x) @[simp] axiom s711 (x : Prop) : f (g712 x) = f (g711 x) @[simp] axiom s712 (x : Prop) : f (g713 x) = f (g712 x) @[simp] axiom s713 (x : Prop) : f (g714 x) = f (g713 x) @[simp] axiom s714 (x : Prop) : f (g715 x) = f (g714 x) @[simp] axiom s715 (x : Prop) : f (g716 x) = f (g715 x) @[simp] axiom s716 (x : Prop) : f (g717 x) = f (g716 x) @[simp] axiom s717 (x : Prop) : f (g718 x) = f (g717 x) @[simp] axiom s718 (x : Prop) : f (g719 x) = f (g718 x) @[simp] axiom s719 (x : Prop) : f (g720 x) = f (g719 x) @[simp] axiom s720 (x : Prop) : f (g721 x) = f (g720 x) @[simp] axiom s721 (x : Prop) : f (g722 x) = f (g721 x) @[simp] axiom s722 (x : Prop) : f (g723 x) = f (g722 x) @[simp] axiom s723 (x : Prop) : f (g724 x) = f (g723 x) @[simp] axiom s724 (x : Prop) : f (g725 x) = f (g724 x) @[simp] axiom s725 (x : Prop) : f (g726 x) = f (g725 x) @[simp] axiom s726 (x : Prop) : f (g727 x) = f (g726 x) @[simp] axiom s727 (x : Prop) : f (g728 x) = f (g727 x) @[simp] axiom s728 (x : Prop) : f (g729 x) = f (g728 x) @[simp] axiom s729 (x : Prop) : f (g730 x) = f (g729 x) @[simp] axiom s730 (x : Prop) : f (g731 x) = f (g730 x) @[simp] axiom s731 (x : Prop) : f (g732 x) = f (g731 x) @[simp] axiom s732 (x : Prop) : f (g733 x) = f (g732 x) @[simp] axiom s733 (x : Prop) : f (g734 x) = f (g733 x) @[simp] axiom s734 (x : Prop) : f (g735 x) = f (g734 x) @[simp] axiom s735 (x : Prop) : f (g736 x) = f (g735 x) @[simp] axiom s736 (x : Prop) : f (g737 x) = f (g736 x) @[simp] axiom s737 (x : Prop) : f (g738 x) = f (g737 x) @[simp] axiom s738 (x : Prop) : f (g739 x) = f (g738 x) @[simp] axiom s739 (x : Prop) : f (g740 x) = f (g739 x) @[simp] axiom s740 (x : Prop) : f (g741 x) = f (g740 x) @[simp] axiom s741 (x : Prop) : f (g742 x) = f (g741 x) @[simp] axiom s742 (x : Prop) : f (g743 x) = f (g742 x) @[simp] axiom s743 (x : Prop) : f (g744 x) = f (g743 x) @[simp] axiom s744 (x : Prop) : f (g745 x) = f (g744 x) @[simp] axiom s745 (x : Prop) : f (g746 x) = f (g745 x) @[simp] axiom s746 (x : Prop) : f (g747 x) = f (g746 x) @[simp] axiom s747 (x : Prop) : f (g748 x) = f (g747 x) @[simp] axiom s748 (x : Prop) : f (g749 x) = f (g748 x) @[simp] axiom s749 (x : Prop) : f (g750 x) = f (g749 x) @[simp] axiom s750 (x : Prop) : f (g751 x) = f (g750 x) @[simp] axiom s751 (x : Prop) : f (g752 x) = f (g751 x) @[simp] axiom s752 (x : Prop) : f (g753 x) = f (g752 x) @[simp] axiom s753 (x : Prop) : f (g754 x) = f (g753 x) @[simp] axiom s754 (x : Prop) : f (g755 x) = f (g754 x) @[simp] axiom s755 (x : Prop) : f (g756 x) = f (g755 x) @[simp] axiom s756 (x : Prop) : f (g757 x) = f (g756 x) @[simp] axiom s757 (x : Prop) : f (g758 x) = f (g757 x) @[simp] axiom s758 (x : Prop) : f (g759 x) = f (g758 x) @[simp] axiom s759 (x : Prop) : f (g760 x) = f (g759 x) @[simp] axiom s760 (x : Prop) : f (g761 x) = f (g760 x) @[simp] axiom s761 (x : Prop) : f (g762 x) = f (g761 x) @[simp] axiom s762 (x : Prop) : f (g763 x) = f (g762 x) @[simp] axiom s763 (x : Prop) : f (g764 x) = f (g763 x) @[simp] axiom s764 (x : Prop) : f (g765 x) = f (g764 x) @[simp] axiom s765 (x : Prop) : f (g766 x) = f (g765 x) @[simp] axiom s766 (x : Prop) : f (g767 x) = f (g766 x) @[simp] axiom s767 (x : Prop) : f (g768 x) = f (g767 x) @[simp] axiom s768 (x : Prop) : f (g769 x) = f (g768 x) @[simp] axiom s769 (x : Prop) : f (g770 x) = f (g769 x) @[simp] axiom s770 (x : Prop) : f (g771 x) = f (g770 x) @[simp] axiom s771 (x : Prop) : f (g772 x) = f (g771 x) @[simp] axiom s772 (x : Prop) : f (g773 x) = f (g772 x) @[simp] axiom s773 (x : Prop) : f (g774 x) = f (g773 x) @[simp] axiom s774 (x : Prop) : f (g775 x) = f (g774 x) @[simp] axiom s775 (x : Prop) : f (g776 x) = f (g775 x) @[simp] axiom s776 (x : Prop) : f (g777 x) = f (g776 x) @[simp] axiom s777 (x : Prop) : f (g778 x) = f (g777 x) @[simp] axiom s778 (x : Prop) : f (g779 x) = f (g778 x) @[simp] axiom s779 (x : Prop) : f (g780 x) = f (g779 x) @[simp] axiom s780 (x : Prop) : f (g781 x) = f (g780 x) @[simp] axiom s781 (x : Prop) : f (g782 x) = f (g781 x) @[simp] axiom s782 (x : Prop) : f (g783 x) = f (g782 x) @[simp] axiom s783 (x : Prop) : f (g784 x) = f (g783 x) @[simp] axiom s784 (x : Prop) : f (g785 x) = f (g784 x) @[simp] axiom s785 (x : Prop) : f (g786 x) = f (g785 x) @[simp] axiom s786 (x : Prop) : f (g787 x) = f (g786 x) @[simp] axiom s787 (x : Prop) : f (g788 x) = f (g787 x) @[simp] axiom s788 (x : Prop) : f (g789 x) = f (g788 x) @[simp] axiom s789 (x : Prop) : f (g790 x) = f (g789 x) @[simp] axiom s790 (x : Prop) : f (g791 x) = f (g790 x) @[simp] axiom s791 (x : Prop) : f (g792 x) = f (g791 x) @[simp] axiom s792 (x : Prop) : f (g793 x) = f (g792 x) @[simp] axiom s793 (x : Prop) : f (g794 x) = f (g793 x) @[simp] axiom s794 (x : Prop) : f (g795 x) = f (g794 x) @[simp] axiom s795 (x : Prop) : f (g796 x) = f (g795 x) @[simp] axiom s796 (x : Prop) : f (g797 x) = f (g796 x) @[simp] axiom s797 (x : Prop) : f (g798 x) = f (g797 x) @[simp] axiom s798 (x : Prop) : f (g799 x) = f (g798 x) @[simp] axiom s799 (x : Prop) : f (g800 x) = f (g799 x) @[simp] axiom s800 (x : Prop) : f (g801 x) = f (g800 x) @[simp] axiom s801 (x : Prop) : f (g802 x) = f (g801 x) @[simp] axiom s802 (x : Prop) : f (g803 x) = f (g802 x) @[simp] axiom s803 (x : Prop) : f (g804 x) = f (g803 x) @[simp] axiom s804 (x : Prop) : f (g805 x) = f (g804 x) @[simp] axiom s805 (x : Prop) : f (g806 x) = f (g805 x) @[simp] axiom s806 (x : Prop) : f (g807 x) = f (g806 x) @[simp] axiom s807 (x : Prop) : f (g808 x) = f (g807 x) @[simp] axiom s808 (x : Prop) : f (g809 x) = f (g808 x) @[simp] axiom s809 (x : Prop) : f (g810 x) = f (g809 x) @[simp] axiom s810 (x : Prop) : f (g811 x) = f (g810 x) @[simp] axiom s811 (x : Prop) : f (g812 x) = f (g811 x) @[simp] axiom s812 (x : Prop) : f (g813 x) = f (g812 x) @[simp] axiom s813 (x : Prop) : f (g814 x) = f (g813 x) @[simp] axiom s814 (x : Prop) : f (g815 x) = f (g814 x) @[simp] axiom s815 (x : Prop) : f (g816 x) = f (g815 x) @[simp] axiom s816 (x : Prop) : f (g817 x) = f (g816 x) @[simp] axiom s817 (x : Prop) : f (g818 x) = f (g817 x) @[simp] axiom s818 (x : Prop) : f (g819 x) = f (g818 x) @[simp] axiom s819 (x : Prop) : f (g820 x) = f (g819 x) @[simp] axiom s820 (x : Prop) : f (g821 x) = f (g820 x) @[simp] axiom s821 (x : Prop) : f (g822 x) = f (g821 x) @[simp] axiom s822 (x : Prop) : f (g823 x) = f (g822 x) @[simp] axiom s823 (x : Prop) : f (g824 x) = f (g823 x) @[simp] axiom s824 (x : Prop) : f (g825 x) = f (g824 x) @[simp] axiom s825 (x : Prop) : f (g826 x) = f (g825 x) @[simp] axiom s826 (x : Prop) : f (g827 x) = f (g826 x) @[simp] axiom s827 (x : Prop) : f (g828 x) = f (g827 x) @[simp] axiom s828 (x : Prop) : f (g829 x) = f (g828 x) @[simp] axiom s829 (x : Prop) : f (g830 x) = f (g829 x) @[simp] axiom s830 (x : Prop) : f (g831 x) = f (g830 x) @[simp] axiom s831 (x : Prop) : f (g832 x) = f (g831 x) @[simp] axiom s832 (x : Prop) : f (g833 x) = f (g832 x) @[simp] axiom s833 (x : Prop) : f (g834 x) = f (g833 x) @[simp] axiom s834 (x : Prop) : f (g835 x) = f (g834 x) @[simp] axiom s835 (x : Prop) : f (g836 x) = f (g835 x) @[simp] axiom s836 (x : Prop) : f (g837 x) = f (g836 x) @[simp] axiom s837 (x : Prop) : f (g838 x) = f (g837 x) @[simp] axiom s838 (x : Prop) : f (g839 x) = f (g838 x) @[simp] axiom s839 (x : Prop) : f (g840 x) = f (g839 x) @[simp] axiom s840 (x : Prop) : f (g841 x) = f (g840 x) @[simp] axiom s841 (x : Prop) : f (g842 x) = f (g841 x) @[simp] axiom s842 (x : Prop) : f (g843 x) = f (g842 x) @[simp] axiom s843 (x : Prop) : f (g844 x) = f (g843 x) @[simp] axiom s844 (x : Prop) : f (g845 x) = f (g844 x) @[simp] axiom s845 (x : Prop) : f (g846 x) = f (g845 x) @[simp] axiom s846 (x : Prop) : f (g847 x) = f (g846 x) @[simp] axiom s847 (x : Prop) : f (g848 x) = f (g847 x) @[simp] axiom s848 (x : Prop) : f (g849 x) = f (g848 x) @[simp] axiom s849 (x : Prop) : f (g850 x) = f (g849 x) @[simp] axiom s850 (x : Prop) : f (g851 x) = f (g850 x) @[simp] axiom s851 (x : Prop) : f (g852 x) = f (g851 x) @[simp] axiom s852 (x : Prop) : f (g853 x) = f (g852 x) @[simp] axiom s853 (x : Prop) : f (g854 x) = f (g853 x) @[simp] axiom s854 (x : Prop) : f (g855 x) = f (g854 x) @[simp] axiom s855 (x : Prop) : f (g856 x) = f (g855 x) @[simp] axiom s856 (x : Prop) : f (g857 x) = f (g856 x) @[simp] axiom s857 (x : Prop) : f (g858 x) = f (g857 x) @[simp] axiom s858 (x : Prop) : f (g859 x) = f (g858 x) @[simp] axiom s859 (x : Prop) : f (g860 x) = f (g859 x) @[simp] axiom s860 (x : Prop) : f (g861 x) = f (g860 x) @[simp] axiom s861 (x : Prop) : f (g862 x) = f (g861 x) @[simp] axiom s862 (x : Prop) : f (g863 x) = f (g862 x) @[simp] axiom s863 (x : Prop) : f (g864 x) = f (g863 x) @[simp] axiom s864 (x : Prop) : f (g865 x) = f (g864 x) @[simp] axiom s865 (x : Prop) : f (g866 x) = f (g865 x) @[simp] axiom s866 (x : Prop) : f (g867 x) = f (g866 x) @[simp] axiom s867 (x : Prop) : f (g868 x) = f (g867 x) @[simp] axiom s868 (x : Prop) : f (g869 x) = f (g868 x) @[simp] axiom s869 (x : Prop) : f (g870 x) = f (g869 x) @[simp] axiom s870 (x : Prop) : f (g871 x) = f (g870 x) @[simp] axiom s871 (x : Prop) : f (g872 x) = f (g871 x) @[simp] axiom s872 (x : Prop) : f (g873 x) = f (g872 x) @[simp] axiom s873 (x : Prop) : f (g874 x) = f (g873 x) @[simp] axiom s874 (x : Prop) : f (g875 x) = f (g874 x) @[simp] axiom s875 (x : Prop) : f (g876 x) = f (g875 x) @[simp] axiom s876 (x : Prop) : f (g877 x) = f (g876 x) @[simp] axiom s877 (x : Prop) : f (g878 x) = f (g877 x) @[simp] axiom s878 (x : Prop) : f (g879 x) = f (g878 x) @[simp] axiom s879 (x : Prop) : f (g880 x) = f (g879 x) @[simp] axiom s880 (x : Prop) : f (g881 x) = f (g880 x) @[simp] axiom s881 (x : Prop) : f (g882 x) = f (g881 x) @[simp] axiom s882 (x : Prop) : f (g883 x) = f (g882 x) @[simp] axiom s883 (x : Prop) : f (g884 x) = f (g883 x) @[simp] axiom s884 (x : Prop) : f (g885 x) = f (g884 x) @[simp] axiom s885 (x : Prop) : f (g886 x) = f (g885 x) @[simp] axiom s886 (x : Prop) : f (g887 x) = f (g886 x) @[simp] axiom s887 (x : Prop) : f (g888 x) = f (g887 x) @[simp] axiom s888 (x : Prop) : f (g889 x) = f (g888 x) @[simp] axiom s889 (x : Prop) : f (g890 x) = f (g889 x) @[simp] axiom s890 (x : Prop) : f (g891 x) = f (g890 x) @[simp] axiom s891 (x : Prop) : f (g892 x) = f (g891 x) @[simp] axiom s892 (x : Prop) : f (g893 x) = f (g892 x) @[simp] axiom s893 (x : Prop) : f (g894 x) = f (g893 x) @[simp] axiom s894 (x : Prop) : f (g895 x) = f (g894 x) @[simp] axiom s895 (x : Prop) : f (g896 x) = f (g895 x) @[simp] axiom s896 (x : Prop) : f (g897 x) = f (g896 x) @[simp] axiom s897 (x : Prop) : f (g898 x) = f (g897 x) @[simp] axiom s898 (x : Prop) : f (g899 x) = f (g898 x) @[simp] axiom s899 (x : Prop) : f (g900 x) = f (g899 x) @[simp] axiom s900 (x : Prop) : f (g901 x) = f (g900 x) @[simp] axiom s901 (x : Prop) : f (g902 x) = f (g901 x) @[simp] axiom s902 (x : Prop) : f (g903 x) = f (g902 x) @[simp] axiom s903 (x : Prop) : f (g904 x) = f (g903 x) @[simp] axiom s904 (x : Prop) : f (g905 x) = f (g904 x) @[simp] axiom s905 (x : Prop) : f (g906 x) = f (g905 x) @[simp] axiom s906 (x : Prop) : f (g907 x) = f (g906 x) @[simp] axiom s907 (x : Prop) : f (g908 x) = f (g907 x) @[simp] axiom s908 (x : Prop) : f (g909 x) = f (g908 x) @[simp] axiom s909 (x : Prop) : f (g910 x) = f (g909 x) @[simp] axiom s910 (x : Prop) : f (g911 x) = f (g910 x) @[simp] axiom s911 (x : Prop) : f (g912 x) = f (g911 x) @[simp] axiom s912 (x : Prop) : f (g913 x) = f (g912 x) @[simp] axiom s913 (x : Prop) : f (g914 x) = f (g913 x) @[simp] axiom s914 (x : Prop) : f (g915 x) = f (g914 x) @[simp] axiom s915 (x : Prop) : f (g916 x) = f (g915 x) @[simp] axiom s916 (x : Prop) : f (g917 x) = f (g916 x) @[simp] axiom s917 (x : Prop) : f (g918 x) = f (g917 x) @[simp] axiom s918 (x : Prop) : f (g919 x) = f (g918 x) @[simp] axiom s919 (x : Prop) : f (g920 x) = f (g919 x) @[simp] axiom s920 (x : Prop) : f (g921 x) = f (g920 x) @[simp] axiom s921 (x : Prop) : f (g922 x) = f (g921 x) @[simp] axiom s922 (x : Prop) : f (g923 x) = f (g922 x) @[simp] axiom s923 (x : Prop) : f (g924 x) = f (g923 x) @[simp] axiom s924 (x : Prop) : f (g925 x) = f (g924 x) @[simp] axiom s925 (x : Prop) : f (g926 x) = f (g925 x) @[simp] axiom s926 (x : Prop) : f (g927 x) = f (g926 x) @[simp] axiom s927 (x : Prop) : f (g928 x) = f (g927 x) @[simp] axiom s928 (x : Prop) : f (g929 x) = f (g928 x) @[simp] axiom s929 (x : Prop) : f (g930 x) = f (g929 x) @[simp] axiom s930 (x : Prop) : f (g931 x) = f (g930 x) @[simp] axiom s931 (x : Prop) : f (g932 x) = f (g931 x) @[simp] axiom s932 (x : Prop) : f (g933 x) = f (g932 x) @[simp] axiom s933 (x : Prop) : f (g934 x) = f (g933 x) @[simp] axiom s934 (x : Prop) : f (g935 x) = f (g934 x) @[simp] axiom s935 (x : Prop) : f (g936 x) = f (g935 x) @[simp] axiom s936 (x : Prop) : f (g937 x) = f (g936 x) @[simp] axiom s937 (x : Prop) : f (g938 x) = f (g937 x) @[simp] axiom s938 (x : Prop) : f (g939 x) = f (g938 x) @[simp] axiom s939 (x : Prop) : f (g940 x) = f (g939 x) @[simp] axiom s940 (x : Prop) : f (g941 x) = f (g940 x) @[simp] axiom s941 (x : Prop) : f (g942 x) = f (g941 x) @[simp] axiom s942 (x : Prop) : f (g943 x) = f (g942 x) @[simp] axiom s943 (x : Prop) : f (g944 x) = f (g943 x) @[simp] axiom s944 (x : Prop) : f (g945 x) = f (g944 x) @[simp] axiom s945 (x : Prop) : f (g946 x) = f (g945 x) @[simp] axiom s946 (x : Prop) : f (g947 x) = f (g946 x) @[simp] axiom s947 (x : Prop) : f (g948 x) = f (g947 x) @[simp] axiom s948 (x : Prop) : f (g949 x) = f (g948 x) @[simp] axiom s949 (x : Prop) : f (g950 x) = f (g949 x) @[simp] axiom s950 (x : Prop) : f (g951 x) = f (g950 x) @[simp] axiom s951 (x : Prop) : f (g952 x) = f (g951 x) @[simp] axiom s952 (x : Prop) : f (g953 x) = f (g952 x) @[simp] axiom s953 (x : Prop) : f (g954 x) = f (g953 x) @[simp] axiom s954 (x : Prop) : f (g955 x) = f (g954 x) @[simp] axiom s955 (x : Prop) : f (g956 x) = f (g955 x) @[simp] axiom s956 (x : Prop) : f (g957 x) = f (g956 x) @[simp] axiom s957 (x : Prop) : f (g958 x) = f (g957 x) @[simp] axiom s958 (x : Prop) : f (g959 x) = f (g958 x) @[simp] axiom s959 (x : Prop) : f (g960 x) = f (g959 x) @[simp] axiom s960 (x : Prop) : f (g961 x) = f (g960 x) @[simp] axiom s961 (x : Prop) : f (g962 x) = f (g961 x) @[simp] axiom s962 (x : Prop) : f (g963 x) = f (g962 x) @[simp] axiom s963 (x : Prop) : f (g964 x) = f (g963 x) @[simp] axiom s964 (x : Prop) : f (g965 x) = f (g964 x) @[simp] axiom s965 (x : Prop) : f (g966 x) = f (g965 x) @[simp] axiom s966 (x : Prop) : f (g967 x) = f (g966 x) @[simp] axiom s967 (x : Prop) : f (g968 x) = f (g967 x) @[simp] axiom s968 (x : Prop) : f (g969 x) = f (g968 x) @[simp] axiom s969 (x : Prop) : f (g970 x) = f (g969 x) @[simp] axiom s970 (x : Prop) : f (g971 x) = f (g970 x) @[simp] axiom s971 (x : Prop) : f (g972 x) = f (g971 x) @[simp] axiom s972 (x : Prop) : f (g973 x) = f (g972 x) @[simp] axiom s973 (x : Prop) : f (g974 x) = f (g973 x) @[simp] axiom s974 (x : Prop) : f (g975 x) = f (g974 x) @[simp] axiom s975 (x : Prop) : f (g976 x) = f (g975 x) @[simp] axiom s976 (x : Prop) : f (g977 x) = f (g976 x) @[simp] axiom s977 (x : Prop) : f (g978 x) = f (g977 x) @[simp] axiom s978 (x : Prop) : f (g979 x) = f (g978 x) @[simp] axiom s979 (x : Prop) : f (g980 x) = f (g979 x) @[simp] axiom s980 (x : Prop) : f (g981 x) = f (g980 x) @[simp] axiom s981 (x : Prop) : f (g982 x) = f (g981 x) @[simp] axiom s982 (x : Prop) : f (g983 x) = f (g982 x) @[simp] axiom s983 (x : Prop) : f (g984 x) = f (g983 x) @[simp] axiom s984 (x : Prop) : f (g985 x) = f (g984 x) @[simp] axiom s985 (x : Prop) : f (g986 x) = f (g985 x) @[simp] axiom s986 (x : Prop) : f (g987 x) = f (g986 x) @[simp] axiom s987 (x : Prop) : f (g988 x) = f (g987 x) @[simp] axiom s988 (x : Prop) : f (g989 x) = f (g988 x) @[simp] axiom s989 (x : Prop) : f (g990 x) = f (g989 x) @[simp] axiom s990 (x : Prop) : f (g991 x) = f (g990 x) @[simp] axiom s991 (x : Prop) : f (g992 x) = f (g991 x) @[simp] axiom s992 (x : Prop) : f (g993 x) = f (g992 x) @[simp] axiom s993 (x : Prop) : f (g994 x) = f (g993 x) @[simp] axiom s994 (x : Prop) : f (g995 x) = f (g994 x) @[simp] axiom s995 (x : Prop) : f (g996 x) = f (g995 x) @[simp] axiom s996 (x : Prop) : f (g997 x) = f (g996 x) @[simp] axiom s997 (x : Prop) : f (g998 x) = f (g997 x) @[simp] axiom s998 (x : Prop) : f (g999 x) = f (g998 x) def test (x : Prop) : f (g0 x) = f (g999 x) := by simp #check test
d1e4463925d02e27a7473c6f07a6772f9f2324dd
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
/src/analysis/normed_space/multilinear.lean
f18235c17b4c359826fe0b333dec52e88133c0b6
[ "Apache-2.0" ]
permissive
waynemunro/mathlib
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
065a70810b5480d584033f7bbf8e0409480c2118
refs/heads/master
1,693,417,182,397
1,634,644,781,000
1,634,644,781,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
73,325
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.normed_space.operator_norm import topology.algebra.multilinear /-! # Operator norm on the space of continuous multilinear maps When `f` is a continuous multilinear map in finitely many variables, we define its norm `∥f∥` as the smallest number such that `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥` for all `m`. We show that it is indeed a norm, and prove its basic properties. ## Main results Let `f` be a multilinear map in finitely many variables. * `exists_bound_of_continuous` asserts that, if `f` is continuous, then there exists `C > 0` with `∥f m∥ ≤ C * ∏ i, ∥m i∥` for all `m`. * `continuous_of_bound`, conversely, asserts that this bound implies continuity. * `mk_continuous` constructs the associated continuous multilinear map. Let `f` be a continuous multilinear map in finitely many variables. * `∥f∥` is its norm, i.e., the smallest number such that `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥` for all `m`. * `le_op_norm f m` asserts the fundamental inequality `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥`. * `norm_image_sub_le f m₁ m₂` gives a control of the difference `f m₁ - f m₂` in terms of `∥f∥` and `∥m₁ - m₂∥`. We also register isomorphisms corresponding to currying or uncurrying variables, transforming a continuous multilinear function `f` in `n+1` variables into a continuous linear function taking values in continuous multilinear functions in `n` variables, and also into a continuous multilinear function in `n` variables taking values in continuous linear functions. These operations are called `f.curry_left` and `f.curry_right` respectively (with inverses `f.uncurry_left` and `f.uncurry_right`). They induce continuous linear equivalences between spaces of continuous multilinear functions in `n+1` variables and spaces of continuous linear functions into continuous multilinear functions in `n` variables (resp. continuous multilinear functions in `n` variables taking values in continuous linear functions), called respectively `continuous_multilinear_curry_left_equiv` and `continuous_multilinear_curry_right_equiv`. ## Implementation notes We mostly follow the API (and the proofs) of `operator_norm.lean`, with the additional complexity that we should deal with multilinear maps in several variables. The currying/uncurrying constructions are based on those in `multilinear.lean`. From the mathematical point of view, all the results follow from the results on operator norm in one variable, by applying them to one variable after the other through currying. However, this is only well defined when there is an order on the variables (for instance on `fin n`) although the final result is independent of the order. While everything could be done following this approach, it turns out that direct proofs are easier and more efficient. -/ noncomputable theory open_locale classical big_operators nnreal open finset metric local attribute [instance, priority 1001] add_comm_group.to_add_comm_monoid normed_group.to_add_comm_group normed_space.to_module -- hack to speed up simp when dealing with complicated types local attribute [-instance] unique.subsingleton pi.subsingleton /-! ### Type variables We use the following type variables in this file: * `𝕜` : a `nondiscrete_normed_field`; * `ι`, `ι'` : finite index types with decidable equality; * `E`, `E₁` : families of normed vector spaces over `𝕜` indexed by `i : ι`; * `E'` : a family of normed vector spaces over `𝕜` indexed by `i' : ι'`; * `Ei` : a family of normed vector spaces over `𝕜` indexed by `i : fin (nat.succ n)`; * `G`, `G'` : normed vector spaces over `𝕜`. -/ universes u v v' wE wE₁ wE' wEi wG wG' variables {𝕜 : Type u} {ι : Type v} {ι' : Type v'} {n : ℕ} {E : ι → Type wE} {E₁ : ι → Type wE₁} {E' : ι' → Type wE'} {Ei : fin n.succ → Type wEi} {G : Type wG} {G' : Type wG'} [decidable_eq ι] [fintype ι] [decidable_eq ι'] [fintype ι'] [nondiscrete_normed_field 𝕜] [Π i, normed_group (E i)] [Π i, normed_space 𝕜 (E i)] [Π i, normed_group (E₁ i)] [Π i, normed_space 𝕜 (E₁ i)] [Π i, normed_group (E' i)] [Π i, normed_space 𝕜 (E' i)] [Π i, normed_group (Ei i)] [Π i, normed_space 𝕜 (Ei i)] [normed_group G] [normed_space 𝕜 G] [normed_group G'] [normed_space 𝕜 G'] /-! ### Continuity properties of multilinear maps We relate continuity of multilinear maps to the inequality `∥f m∥ ≤ C * ∏ i, ∥m i∥`, in both directions. Along the way, we prove useful bounds on the difference `∥f m₁ - f m₂∥`. -/ namespace multilinear_map variable (f : multilinear_map 𝕜 E G) /-- If a multilinear map in finitely many variables on normed spaces satisfies the inequality `∥f m∥ ≤ C * ∏ i, ∥m i∥` on a shell `ε i / ∥c i∥ < ∥m i∥ < ε i` for some positive numbers `ε i` and elements `c i : 𝕜`, `1 < ∥c i∥`, then it satisfies this inequality for all `m`. -/ lemma bound_of_shell {ε : ι → ℝ} {C : ℝ} (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ∥c i∥) (hf : ∀ m : Π i, E i, (∀ i, ε i / ∥c i∥ ≤ ∥m i∥) → (∀ i, ∥m i∥ < ε i) → ∥f m∥ ≤ C * ∏ i, ∥m i∥) (m : Π i, E i) : ∥f m∥ ≤ C * ∏ i, ∥m i∥ := begin rcases em (∃ i, m i = 0) with ⟨i, hi⟩|hm; [skip, push_neg at hm], { simp [f.map_coord_zero i hi, prod_eq_zero (mem_univ i), hi] }, choose δ hδ0 hδm_lt hle_δm hδinv using λ i, rescale_to_shell (hc i) (hε i) (hm i), have hδ0 : 0 < ∏ i, ∥δ i∥, from prod_pos (λ i _, norm_pos_iff.2 (hδ0 i)), simpa [map_smul_univ, norm_smul, prod_mul_distrib, mul_left_comm C, mul_le_mul_left hδ0] using hf (λ i, δ i • m i) hle_δm hδm_lt, end /-- If a multilinear map in finitely many variables on normed spaces is continuous, then it satisfies the inequality `∥f m∥ ≤ C * ∏ i, ∥m i∥`, for some `C` which can be chosen to be positive. -/ theorem exists_bound_of_continuous (hf : continuous f) : ∃ (C : ℝ), 0 < C ∧ (∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) := begin casesI is_empty_or_nonempty ι, { refine ⟨∥f 0∥ + 1, add_pos_of_nonneg_of_pos (norm_nonneg _) zero_lt_one, λ m, _⟩, obtain rfl : m = 0, from funext (is_empty.elim ‹_›), simp [univ_eq_empty, zero_le_one] }, obtain ⟨ε : ℝ, ε0 : 0 < ε, hε : ∀ m : Π i, E i, ∥m - 0∥ < ε → ∥f m - f 0∥ < 1⟩ := normed_group.tendsto_nhds_nhds.1 (hf.tendsto 0) 1 zero_lt_one, simp only [sub_zero, f.map_zero] at hε, rcases normed_field.exists_one_lt_norm 𝕜 with ⟨c, hc⟩, have : 0 < (∥c∥ / ε) ^ fintype.card ι, from pow_pos (div_pos (zero_lt_one.trans hc) ε0) _, refine ⟨_, this, _⟩, refine f.bound_of_shell (λ _, ε0) (λ _, hc) (λ m hcm hm, _), refine (hε m ((pi_norm_lt_iff ε0).2 hm)).le.trans _, rw [← div_le_iff' this, one_div, ← inv_pow₀, inv_div, fintype.card, ← prod_const], exact prod_le_prod (λ _ _, div_nonneg ε0.le (norm_nonneg _)) (λ i _, hcm i) end /-- If `f` satisfies a boundedness property around `0`, one can deduce a bound on `f m₁ - f m₂` using the multilinearity. Here, we give a precise but hard to use version. See `norm_image_sub_le_of_bound` for a less precise but more usable version. The bound reads `∥f m - f m'∥ ≤ C * ∥m 1 - m' 1∥ * max ∥m 2∥ ∥m' 2∥ * max ∥m 3∥ ∥m' 3∥ * ... * max ∥m n∥ ∥m' n∥ + ...`, where the other terms in the sum are the same products where `1` is replaced by any `i`. -/ lemma norm_image_sub_le_of_bound' {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) (m₁ m₂ : Πi, E i) : ∥f m₁ - f m₂∥ ≤ C * ∑ i, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ := begin have A : ∀(s : finset ι), ∥f m₁ - f (s.piecewise m₂ m₁)∥ ≤ C * ∑ i in s, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥, { refine finset.induction (by simp) _, assume i s his Hrec, have I : ∥f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)∥ ≤ C * ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥, { have A : ((insert i s).piecewise m₂ m₁) = function.update (s.piecewise m₂ m₁) i (m₂ i) := s.piecewise_insert _ _ _, have B : s.piecewise m₂ m₁ = function.update (s.piecewise m₂ m₁) i (m₁ i), { ext j, by_cases h : j = i, { rw h, simp [his] }, { simp [h] } }, rw [B, A, ← f.map_sub], apply le_trans (H _) (mul_le_mul_of_nonneg_left _ hC), refine prod_le_prod (λj hj, norm_nonneg _) (λj hj, _), by_cases h : j = i, { rw h, simp }, { by_cases h' : j ∈ s; simp [h', h, le_refl] } }, calc ∥f m₁ - f ((insert i s).piecewise m₂ m₁)∥ ≤ ∥f m₁ - f (s.piecewise m₂ m₁)∥ + ∥f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)∥ : by { rw [← dist_eq_norm, ← dist_eq_norm, ← dist_eq_norm], exact dist_triangle _ _ _ } ... ≤ (C * ∑ i in s, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥) + C * ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ : add_le_add Hrec I ... = C * ∑ i in insert i s, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ : by simp [his, add_comm, left_distrib] }, convert A univ, simp end /-- If `f` satisfies a boundedness property around `0`, one can deduce a bound on `f m₁ - f m₂` using the multilinearity. Here, we give a usable but not very precise version. See `norm_image_sub_le_of_bound'` for a more precise but less usable version. The bound is `∥f m - f m'∥ ≤ C * card ι * ∥m - m'∥ * (max ∥m∥ ∥m'∥) ^ (card ι - 1)`. -/ lemma norm_image_sub_le_of_bound {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) (m₁ m₂ : Πi, E i) : ∥f m₁ - f m₂∥ ≤ C * (fintype.card ι) * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) * ∥m₁ - m₂∥ := begin have A : ∀ (i : ι), ∏ j, (if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥) ≤ ∥m₁ - m₂∥ * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1), { assume i, calc ∏ j, (if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥) ≤ ∏ j : ι, function.update (λ j, max ∥m₁∥ ∥m₂∥) i (∥m₁ - m₂∥) j : begin apply prod_le_prod, { assume j hj, by_cases h : j = i; simp [h, norm_nonneg] }, { assume j hj, by_cases h : j = i, { rw h, simp, exact norm_le_pi_norm (m₁ - m₂) i }, { simp [h, max_le_max, norm_le_pi_norm] } } end ... = ∥m₁ - m₂∥ * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) : by { rw prod_update_of_mem (finset.mem_univ _), simp [card_univ_diff] } }, calc ∥f m₁ - f m₂∥ ≤ C * ∑ i, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ : f.norm_image_sub_le_of_bound' hC H m₁ m₂ ... ≤ C * ∑ i, ∥m₁ - m₂∥ * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) : mul_le_mul_of_nonneg_left (sum_le_sum (λi hi, A i)) hC ... = C * (fintype.card ι) * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) * ∥m₁ - m₂∥ : by { rw [sum_const, card_univ, nsmul_eq_mul], ring } end /-- If a multilinear map satisfies an inequality `∥f m∥ ≤ C * ∏ i, ∥m i∥`, then it is continuous. -/ theorem continuous_of_bound (C : ℝ) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : continuous f := begin let D := max C 1, have D_pos : 0 ≤ D := le_trans zero_le_one (le_max_right _ _), replace H : ∀ m, ∥f m∥ ≤ D * ∏ i, ∥m i∥, { assume m, apply le_trans (H m) (mul_le_mul_of_nonneg_right (le_max_left _ _) _), exact prod_nonneg (λ(i : ι) hi, norm_nonneg (m i)) }, refine continuous_iff_continuous_at.2 (λm, _), refine continuous_at_of_locally_lipschitz zero_lt_one (D * (fintype.card ι) * (∥m∥ + 1) ^ (fintype.card ι - 1)) (λm' h', _), rw [dist_eq_norm, dist_eq_norm], have : 0 ≤ (max ∥m'∥ ∥m∥), by simp, have : (max ∥m'∥ ∥m∥) ≤ ∥m∥ + 1, by simp [zero_le_one, norm_le_of_mem_closed_ball (le_of_lt h'), -add_comm], calc ∥f m' - f m∥ ≤ D * (fintype.card ι) * (max ∥m'∥ ∥m∥) ^ (fintype.card ι - 1) * ∥m' - m∥ : f.norm_image_sub_le_of_bound D_pos H m' m ... ≤ D * (fintype.card ι) * (∥m∥ + 1) ^ (fintype.card ι - 1) * ∥m' - m∥ : by apply_rules [mul_le_mul_of_nonneg_right, mul_le_mul_of_nonneg_left, mul_nonneg, norm_nonneg, nat.cast_nonneg, pow_le_pow_of_le_left] end /-- Constructing a continuous multilinear map from a multilinear map satisfying a boundedness condition. -/ def mk_continuous (C : ℝ) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : continuous_multilinear_map 𝕜 E G := { cont := f.continuous_of_bound C H, ..f } @[simp] lemma coe_mk_continuous (C : ℝ) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : ⇑(f.mk_continuous C H) = f := rfl /-- Given a multilinear map in `n` variables, if one restricts it to `k` variables putting `z` on the other coordinates, then the resulting restricted function satisfies an inequality `∥f.restr v∥ ≤ C * ∥z∥^(n-k) * Π ∥v i∥` if the original function satisfies `∥f v∥ ≤ C * Π ∥v i∥`. -/ lemma restr_norm_le {k n : ℕ} (f : (multilinear_map 𝕜 (λ i : fin n, G) G' : _)) (s : finset (fin n)) (hk : s.card = k) (z : G) {C : ℝ} (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) (v : fin k → G) : ∥f.restr s hk z v∥ ≤ C * ∥z∥ ^ (n - k) * ∏ i, ∥v i∥ := begin rw [mul_right_comm, mul_assoc], convert H _ using 2, simp only [apply_dite norm, fintype.prod_dite, prod_const (∥z∥), finset.card_univ, fintype.card_of_subtype sᶜ (λ x, mem_compl), card_compl, fintype.card_fin, hk, mk_coe, ← (s.order_iso_of_fin hk).symm.bijective.prod_comp (λ x, ∥v x∥)], refl end end multilinear_map /-! ### Continuous multilinear maps We define the norm `∥f∥` of a continuous multilinear map `f` in finitely many variables as the smallest number such that `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥` for all `m`. We show that this defines a normed space structure on `continuous_multilinear_map 𝕜 E G`. -/ namespace continuous_multilinear_map variables (c : 𝕜) (f g : continuous_multilinear_map 𝕜 E G) (m : Πi, E i) theorem bound : ∃ (C : ℝ), 0 < C ∧ (∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) := f.to_multilinear_map.exists_bound_of_continuous f.2 open real /-- The operator norm of a continuous multilinear map is the inf of all its bounds. -/ def op_norm := Inf {c | 0 ≤ (c : ℝ) ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} instance has_op_norm : has_norm (continuous_multilinear_map 𝕜 E G) := ⟨op_norm⟩ lemma norm_def : ∥f∥ = Inf {c | 0 ≤ (c : ℝ) ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} := rfl -- So that invocations of `le_cInf` make sense: we show that the set of -- bounds is nonempty and bounded below. lemma bounds_nonempty {f : continuous_multilinear_map 𝕜 E G} : ∃ c, c ∈ {c | 0 ≤ c ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} := let ⟨M, hMp, hMb⟩ := f.bound in ⟨M, le_of_lt hMp, hMb⟩ lemma bounds_bdd_below {f : continuous_multilinear_map 𝕜 E G} : bdd_below {c | 0 ≤ c ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} := ⟨0, λ _ ⟨hn, _⟩, hn⟩ lemma op_norm_nonneg : 0 ≤ ∥f∥ := le_cInf bounds_nonempty (λ _ ⟨hx, _⟩, hx) /-- The fundamental property of the operator norm of a continuous multilinear map: `∥f m∥` is bounded by `∥f∥` times the product of the `∥m i∥`. -/ theorem le_op_norm : ∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥ := begin have A : 0 ≤ ∏ i, ∥m i∥ := prod_nonneg (λj hj, norm_nonneg _), cases A.eq_or_lt with h hlt, { rcases prod_eq_zero_iff.1 h.symm with ⟨i, _, hi⟩, rw norm_eq_zero at hi, have : f m = 0 := f.map_coord_zero i hi, rw [this, norm_zero], exact mul_nonneg (op_norm_nonneg f) A }, { rw [← div_le_iff hlt], apply le_cInf bounds_nonempty, rintro c ⟨_, hc⟩, rw [div_le_iff hlt], apply hc } end theorem le_of_op_norm_le {C : ℝ} (h : ∥f∥ ≤ C) : ∥f m∥ ≤ C * ∏ i, ∥m i∥ := (f.le_op_norm m).trans $ mul_le_mul_of_nonneg_right h (prod_nonneg $ λ i _, norm_nonneg (m i)) lemma ratio_le_op_norm : ∥f m∥ / ∏ i, ∥m i∥ ≤ ∥f∥ := div_le_of_nonneg_of_le_mul (prod_nonneg $ λ i _, norm_nonneg _) (op_norm_nonneg _) (f.le_op_norm m) /-- The image of the unit ball under a continuous multilinear map is bounded. -/ lemma unit_le_op_norm (h : ∥m∥ ≤ 1) : ∥f m∥ ≤ ∥f∥ := calc ∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥ : f.le_op_norm m ... ≤ ∥f∥ * ∏ i : ι, 1 : mul_le_mul_of_nonneg_left (prod_le_prod (λi hi, norm_nonneg _) (λi hi, le_trans (norm_le_pi_norm _ _) h)) (op_norm_nonneg f) ... = ∥f∥ : by simp /-- If one controls the norm of every `f x`, then one controls the norm of `f`. -/ lemma op_norm_le_bound {M : ℝ} (hMp: 0 ≤ M) (hM : ∀ m, ∥f m∥ ≤ M * ∏ i, ∥m i∥) : ∥f∥ ≤ M := cInf_le bounds_bdd_below ⟨hMp, hM⟩ /-- The operator norm satisfies the triangle inequality. -/ theorem op_norm_add_le : ∥f + g∥ ≤ ∥f∥ + ∥g∥ := cInf_le bounds_bdd_below ⟨add_nonneg (op_norm_nonneg _) (op_norm_nonneg _), λ x, by { rw add_mul, exact norm_add_le_of_le (le_op_norm _ _) (le_op_norm _ _) }⟩ /-- A continuous linear map is zero iff its norm vanishes. -/ theorem op_norm_zero_iff : ∥f∥ = 0 ↔ f = 0 := begin split, { assume h, ext m, simpa [h] using f.le_op_norm m }, { rintro rfl, apply le_antisymm (op_norm_le_bound 0 le_rfl (λm, _)) (op_norm_nonneg _), simp } end variables {𝕜' : Type*} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜' 𝕜] [normed_space 𝕜' G] [is_scalar_tower 𝕜' 𝕜 G] lemma op_norm_smul_le (c : 𝕜') : ∥c • f∥ ≤ ∥c∥ * ∥f∥ := (c • f).op_norm_le_bound (mul_nonneg (norm_nonneg _) (op_norm_nonneg _)) begin intro m, erw [norm_smul, mul_assoc], exact mul_le_mul_of_nonneg_left (le_op_norm _ _) (norm_nonneg _) end lemma op_norm_neg : ∥-f∥ = ∥f∥ := by { rw norm_def, apply congr_arg, ext, simp } /-- Continuous multilinear maps themselves form a normed space with respect to the operator norm. -/ instance to_normed_group : normed_group (continuous_multilinear_map 𝕜 E G) := normed_group.of_core _ ⟨op_norm_zero_iff, op_norm_add_le, op_norm_neg⟩ instance to_normed_space : normed_space 𝕜' (continuous_multilinear_map 𝕜 E G) := ⟨λ c f, f.op_norm_smul_le c⟩ theorem le_op_norm_mul_prod_of_le {b : ι → ℝ} (hm : ∀ i, ∥m i∥ ≤ b i) : ∥f m∥ ≤ ∥f∥ * ∏ i, b i := (f.le_op_norm m).trans $ mul_le_mul_of_nonneg_left (prod_le_prod (λ _ _, norm_nonneg _) (λ i _, hm i)) (norm_nonneg f) theorem le_op_norm_mul_pow_card_of_le {b : ℝ} (hm : ∀ i, ∥m i∥ ≤ b) : ∥f m∥ ≤ ∥f∥ * b ^ fintype.card ι := by simpa only [prod_const] using f.le_op_norm_mul_prod_of_le m hm theorem le_op_norm_mul_pow_of_le {Ei : fin n → Type*} [Π i, normed_group (Ei i)] [Π i, normed_space 𝕜 (Ei i)] (f : continuous_multilinear_map 𝕜 Ei G) (m : Π i, Ei i) {b : ℝ} (hm : ∥m∥ ≤ b) : ∥f m∥ ≤ ∥f∥ * b ^ n := by simpa only [fintype.card_fin] using f.le_op_norm_mul_pow_card_of_le m (λ i, (norm_le_pi_norm m i).trans hm) /-- The fundamental property of the operator norm of a continuous multilinear map: `∥f m∥` is bounded by `∥f∥` times the product of the `∥m i∥`, `nnnorm` version. -/ theorem le_op_nnnorm : nnnorm (f m) ≤ nnnorm f * ∏ i, nnnorm (m i) := nnreal.coe_le_coe.1 $ by { push_cast, exact f.le_op_norm m } theorem le_of_op_nnnorm_le {C : ℝ≥0} (h : nnnorm f ≤ C) : nnnorm (f m) ≤ C * ∏ i, nnnorm (m i) := (f.le_op_nnnorm m).trans $ mul_le_mul' h le_rfl lemma op_norm_prod (f : continuous_multilinear_map 𝕜 E G) (g : continuous_multilinear_map 𝕜 E G') : ∥f.prod g∥ = max (∥f∥) (∥g∥) := le_antisymm (op_norm_le_bound _ (norm_nonneg (f, g)) (λ m, have H : 0 ≤ ∏ i, ∥m i∥, from prod_nonneg $ λ _ _, norm_nonneg _, by simpa only [prod_apply, prod.norm_def, max_mul_of_nonneg, H] using max_le_max (f.le_op_norm m) (g.le_op_norm m))) $ max_le (f.op_norm_le_bound (norm_nonneg _) $ λ m, (le_max_left _ _).trans ((f.prod g).le_op_norm _)) (g.op_norm_le_bound (norm_nonneg _) $ λ m, (le_max_right _ _).trans ((f.prod g).le_op_norm _)) lemma norm_pi {ι' : Type v'} [fintype ι'] {E' : ι' → Type wE'} [Π i', normed_group (E' i')] [Π i', normed_space 𝕜 (E' i')] (f : Π i', continuous_multilinear_map 𝕜 E (E' i')) : ∥pi f∥ = ∥f∥ := begin apply le_antisymm, { refine (op_norm_le_bound _ (norm_nonneg f) (λ m, _)), dsimp, rw pi_norm_le_iff, exacts [λ i, (f i).le_of_op_norm_le m (norm_le_pi_norm f i), mul_nonneg (norm_nonneg f) (prod_nonneg $ λ _ _, norm_nonneg _)] }, { refine (pi_norm_le_iff (norm_nonneg _)).2 (λ i, _), refine (op_norm_le_bound _ (norm_nonneg _) (λ m, _)), refine le_trans _ ((pi f).le_op_norm m), convert norm_le_pi_norm (λ j, f j m) i } end section variables (𝕜 E E' G G') /-- `continuous_multilinear_map.prod` as a `linear_isometry_equiv`. -/ def prodL : (continuous_multilinear_map 𝕜 E G) × (continuous_multilinear_map 𝕜 E G') ≃ₗᵢ[𝕜] continuous_multilinear_map 𝕜 E (G × G') := { to_fun := λ f, f.1.prod f.2, inv_fun := λ f, ((continuous_linear_map.fst 𝕜 G G').comp_continuous_multilinear_map f, (continuous_linear_map.snd 𝕜 G G').comp_continuous_multilinear_map f), map_add' := λ f g, rfl, map_smul' := λ c f, rfl, left_inv := λ f, by ext; refl, right_inv := λ f, by ext; refl, norm_map' := λ f, op_norm_prod f.1 f.2 } /-- `continuous_multilinear_map.pi` as a `linear_isometry_equiv`. -/ def piₗᵢ {ι' : Type v'} [fintype ι'] {E' : ι' → Type wE'} [Π i', normed_group (E' i')] [Π i', normed_space 𝕜 (E' i')] : @linear_isometry_equiv 𝕜 𝕜 _ _ (ring_hom.id 𝕜) _ _ _ (Π i', continuous_multilinear_map 𝕜 E (E' i')) (continuous_multilinear_map 𝕜 E (Π i, E' i)) _ _ (@pi.module ι' _ 𝕜 _ _ (λ i', infer_instance)) _ := { to_linear_equiv := -- note: `pi_linear_equiv` does not unify correctly here, presumably due to issues with dependent -- typeclass arguments. { map_add' := λ f g, rfl, map_smul' := λ c f, rfl, .. pi_equiv, }, norm_map' := norm_pi } end section restrict_scalars variables [Π i, normed_space 𝕜' (E i)] [∀ i, is_scalar_tower 𝕜' 𝕜 (E i)] @[simp] lemma norm_restrict_scalars : ∥f.restrict_scalars 𝕜'∥ = ∥f∥ := by simp only [norm_def, coe_restrict_scalars] variable (𝕜') /-- `continuous_multilinear_map.restrict_scalars` as a `continuous_multilinear_map`. -/ def restrict_scalars_linear : continuous_multilinear_map 𝕜 E G →L[𝕜'] continuous_multilinear_map 𝕜' E G := linear_map.mk_continuous { to_fun := restrict_scalars 𝕜', map_add' := λ m₁ m₂, rfl, map_smul' := λ c m, rfl } 1 $ λ f, by simp variable {𝕜'} lemma continuous_restrict_scalars : continuous (restrict_scalars 𝕜' : continuous_multilinear_map 𝕜 E G → continuous_multilinear_map 𝕜' E G) := (restrict_scalars_linear 𝕜').continuous end restrict_scalars /-- The difference `f m₁ - f m₂` is controlled in terms of `∥f∥` and `∥m₁ - m₂∥`, precise version. For a less precise but more usable version, see `norm_image_sub_le`. The bound reads `∥f m - f m'∥ ≤ ∥f∥ * ∥m 1 - m' 1∥ * max ∥m 2∥ ∥m' 2∥ * max ∥m 3∥ ∥m' 3∥ * ... * max ∥m n∥ ∥m' n∥ + ...`, where the other terms in the sum are the same products where `1` is replaced by any `i`.-/ lemma norm_image_sub_le' (m₁ m₂ : Πi, E i) : ∥f m₁ - f m₂∥ ≤ ∥f∥ * ∑ i, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ := f.to_multilinear_map.norm_image_sub_le_of_bound' (norm_nonneg _) f.le_op_norm _ _ /-- The difference `f m₁ - f m₂` is controlled in terms of `∥f∥` and `∥m₁ - m₂∥`, less precise version. For a more precise but less usable version, see `norm_image_sub_le'`. The bound is `∥f m - f m'∥ ≤ ∥f∥ * card ι * ∥m - m'∥ * (max ∥m∥ ∥m'∥) ^ (card ι - 1)`.-/ lemma norm_image_sub_le (m₁ m₂ : Πi, E i) : ∥f m₁ - f m₂∥ ≤ ∥f∥ * (fintype.card ι) * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) * ∥m₁ - m₂∥ := f.to_multilinear_map.norm_image_sub_le_of_bound (norm_nonneg _) f.le_op_norm _ _ /-- Applying a multilinear map to a vector is continuous in both coordinates. -/ lemma continuous_eval : continuous (λ p : continuous_multilinear_map 𝕜 E G × Π i, E i, p.1 p.2) := begin apply continuous_iff_continuous_at.2 (λp, _), apply continuous_at_of_locally_lipschitz zero_lt_one ((∥p∥ + 1) * (fintype.card ι) * (∥p∥ + 1) ^ (fintype.card ι - 1) + ∏ i, ∥p.2 i∥) (λq hq, _), have : 0 ≤ (max ∥q.2∥ ∥p.2∥), by simp, have : 0 ≤ ∥p∥ + 1, by simp [le_trans zero_le_one], have A : ∥q∥ ≤ ∥p∥ + 1 := norm_le_of_mem_closed_ball (le_of_lt hq), have : (max ∥q.2∥ ∥p.2∥) ≤ ∥p∥ + 1 := le_trans (max_le_max (norm_snd_le q) (norm_snd_le p)) (by simp [A, -add_comm, zero_le_one]), have : ∀ (i : ι), i ∈ univ → 0 ≤ ∥p.2 i∥ := λ i hi, norm_nonneg _, calc dist (q.1 q.2) (p.1 p.2) ≤ dist (q.1 q.2) (q.1 p.2) + dist (q.1 p.2) (p.1 p.2) : dist_triangle _ _ _ ... = ∥q.1 q.2 - q.1 p.2∥ + ∥q.1 p.2 - p.1 p.2∥ : by rw [dist_eq_norm, dist_eq_norm] ... ≤ ∥q.1∥ * (fintype.card ι) * (max ∥q.2∥ ∥p.2∥) ^ (fintype.card ι - 1) * ∥q.2 - p.2∥ + ∥q.1 - p.1∥ * ∏ i, ∥p.2 i∥ : add_le_add (norm_image_sub_le _ _ _) ((q.1 - p.1).le_op_norm p.2) ... ≤ (∥p∥ + 1) * (fintype.card ι) * (∥p∥ + 1) ^ (fintype.card ι - 1) * ∥q - p∥ + ∥q - p∥ * ∏ i, ∥p.2 i∥ : by apply_rules [add_le_add, mul_le_mul, le_refl, le_trans (norm_fst_le q) A, nat.cast_nonneg, mul_nonneg, pow_le_pow_of_le_left, pow_nonneg, norm_snd_le (q - p), norm_nonneg, norm_fst_le (q - p), prod_nonneg] ... = ((∥p∥ + 1) * (fintype.card ι) * (∥p∥ + 1) ^ (fintype.card ι - 1) + (∏ i, ∥p.2 i∥)) * dist q p : by { rw dist_eq_norm, ring } end lemma continuous_eval_left (m : Π i, E i) : continuous (λ p : continuous_multilinear_map 𝕜 E G, p m) := continuous_eval.comp (continuous_id.prod_mk continuous_const) lemma has_sum_eval {α : Type*} {p : α → continuous_multilinear_map 𝕜 E G} {q : continuous_multilinear_map 𝕜 E G} (h : has_sum p q) (m : Π i, E i) : has_sum (λ a, p a m) (q m) := begin dsimp [has_sum] at h ⊢, convert ((continuous_eval_left m).tendsto _).comp h, ext s, simp end lemma tsum_eval {α : Type*} {p : α → continuous_multilinear_map 𝕜 E G} (hp : summable p) (m : Π i, E i) : (∑' a, p a) m = ∑' a, p a m := (has_sum_eval hp.has_sum m).tsum_eq.symm open_locale topological_space open filter /-- If the target space is complete, the space of continuous multilinear maps with its norm is also complete. The proof is essentially the same as for the space of continuous linear maps (modulo the addition of `finset.prod` where needed. The duplication could be avoided by deducing the linear case from the multilinear case via a currying isomorphism. However, this would mess up imports, and it is more satisfactory to have the simplest case as a standalone proof. -/ instance [complete_space G] : complete_space (continuous_multilinear_map 𝕜 E G) := begin have nonneg : ∀ (v : Π i, E i), 0 ≤ ∏ i, ∥v i∥ := λ v, finset.prod_nonneg (λ i hi, norm_nonneg _), -- We show that every Cauchy sequence converges. refine metric.complete_of_cauchy_seq_tendsto (λ f hf, _), -- We now expand out the definition of a Cauchy sequence, rcases cauchy_seq_iff_le_tendsto_0.1 hf with ⟨b, b0, b_bound, b_lim⟩, -- and establish that the evaluation at any point `v : Π i, E i` is Cauchy. have cau : ∀ v, cauchy_seq (λ n, f n v), { assume v, apply cauchy_seq_iff_le_tendsto_0.2 ⟨λ n, b n * ∏ i, ∥v i∥, λ n, _, _, _⟩, { exact mul_nonneg (b0 n) (nonneg v) }, { assume n m N hn hm, rw dist_eq_norm, apply le_trans ((f n - f m).le_op_norm v) _, exact mul_le_mul_of_nonneg_right (b_bound n m N hn hm) (nonneg v) }, { simpa using b_lim.mul tendsto_const_nhds } }, -- We assemble the limits points of those Cauchy sequences -- (which exist as `G` is complete) -- into a function which we call `F`. choose F hF using λv, cauchy_seq_tendsto_of_complete (cau v), -- Next, we show that this `F` is multilinear, let Fmult : multilinear_map 𝕜 E G := { to_fun := F, map_add' := λ v i x y, begin have A := hF (function.update v i (x + y)), have B := (hF (function.update v i x)).add (hF (function.update v i y)), simp at A B, exact tendsto_nhds_unique A B end, map_smul' := λ v i c x, begin have A := hF (function.update v i (c • x)), have B := filter.tendsto.smul (@tendsto_const_nhds _ ℕ _ c _) (hF (function.update v i x)), simp at A B, exact tendsto_nhds_unique A B end }, -- and that `F` has norm at most `(b 0 + ∥f 0∥)`. have Fnorm : ∀ v, ∥F v∥ ≤ (b 0 + ∥f 0∥) * ∏ i, ∥v i∥, { assume v, have A : ∀ n, ∥f n v∥ ≤ (b 0 + ∥f 0∥) * ∏ i, ∥v i∥, { assume n, apply le_trans ((f n).le_op_norm _) _, apply mul_le_mul_of_nonneg_right _ (nonneg v), calc ∥f n∥ = ∥(f n - f 0) + f 0∥ : by { congr' 1, abel } ... ≤ ∥f n - f 0∥ + ∥f 0∥ : norm_add_le _ _ ... ≤ b 0 + ∥f 0∥ : begin apply add_le_add_right, simpa [dist_eq_norm] using b_bound n 0 0 (zero_le _) (zero_le _) end }, exact le_of_tendsto (hF v).norm (eventually_of_forall A) }, -- Thus `F` is continuous, and we propose that as the limit point of our original Cauchy sequence. let Fcont := Fmult.mk_continuous _ Fnorm, use Fcont, -- Our last task is to establish convergence to `F` in norm. have : ∀ n, ∥f n - Fcont∥ ≤ b n, { assume n, apply op_norm_le_bound _ (b0 n) (λ v, _), have A : ∀ᶠ m in at_top, ∥(f n - f m) v∥ ≤ b n * ∏ i, ∥v i∥, { refine eventually_at_top.2 ⟨n, λ m hm, _⟩, apply le_trans ((f n - f m).le_op_norm _) _, exact mul_le_mul_of_nonneg_right (b_bound n m n (le_refl _) hm) (nonneg v) }, have B : tendsto (λ m, ∥(f n - f m) v∥) at_top (𝓝 (∥(f n - Fcont) v∥)) := tendsto.norm (tendsto_const_nhds.sub (hF v)), exact le_of_tendsto B A }, erw tendsto_iff_norm_tendsto_zero, exact squeeze_zero (λ n, norm_nonneg _) this b_lim, end end continuous_multilinear_map /-- If a continuous multilinear map is constructed from a multilinear map via the constructor `mk_continuous`, then its norm is bounded by the bound given to the constructor if it is nonnegative. -/ lemma multilinear_map.mk_continuous_norm_le (f : multilinear_map 𝕜 E G) {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : ∥f.mk_continuous C H∥ ≤ C := continuous_multilinear_map.op_norm_le_bound _ hC (λm, H m) /-- If a continuous multilinear map is constructed from a multilinear map via the constructor `mk_continuous`, then its norm is bounded by the bound given to the constructor if it is nonnegative. -/ lemma multilinear_map.mk_continuous_norm_le' (f : multilinear_map 𝕜 E G) {C : ℝ} (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : ∥f.mk_continuous C H∥ ≤ max C 0 := continuous_multilinear_map.op_norm_le_bound _ (le_max_right _ _) $ λ m, (H m).trans $ mul_le_mul_of_nonneg_right (le_max_left _ _) (prod_nonneg $ λ _ _, norm_nonneg _) namespace continuous_multilinear_map /-- Given a continuous multilinear map `f` on `n` variables (parameterized by `fin n`) and a subset `s` of `k` of these variables, one gets a new continuous multilinear map on `fin k` by varying these variables, and fixing the other ones equal to a given value `z`. It is denoted by `f.restr s hk z`, where `hk` is a proof that the cardinality of `s` is `k`. The implicit identification between `fin k` and `s` that we use is the canonical (increasing) bijection. -/ def restr {k n : ℕ} (f : (G [×n]→L[𝕜] G' : _)) (s : finset (fin n)) (hk : s.card = k) (z : G) : G [×k]→L[𝕜] G' := (f.to_multilinear_map.restr s hk z).mk_continuous (∥f∥ * ∥z∥^(n-k)) $ λ v, multilinear_map.restr_norm_le _ _ _ _ f.le_op_norm _ lemma norm_restr {k n : ℕ} (f : G [×n]→L[𝕜] G') (s : finset (fin n)) (hk : s.card = k) (z : G) : ∥f.restr s hk z∥ ≤ ∥f∥ * ∥z∥ ^ (n - k) := begin apply multilinear_map.mk_continuous_norm_le, exact mul_nonneg (norm_nonneg _) (pow_nonneg (norm_nonneg _) _) end section variables (𝕜 ι) (A : Type*) [normed_comm_ring A] [normed_algebra 𝕜 A] /-- The continuous multilinear map on `A^ι`, where `A` is a normed commutative algebra over `𝕜`, associating to `m` the product of all the `m i`. See also `continuous_multilinear_map.mk_pi_algebra_fin`. -/ protected def mk_pi_algebra : continuous_multilinear_map 𝕜 (λ i : ι, A) A := multilinear_map.mk_continuous (multilinear_map.mk_pi_algebra 𝕜 ι A) (if nonempty ι then 1 else ∥(1 : A)∥) $ begin intro m, casesI is_empty_or_nonempty ι with hι hι, { simp [eq_empty_of_is_empty univ, not_nonempty_iff.2 hι] }, { simp [norm_prod_le' univ univ_nonempty, hι] } end variables {A 𝕜 ι} @[simp] lemma mk_pi_algebra_apply (m : ι → A) : continuous_multilinear_map.mk_pi_algebra 𝕜 ι A m = ∏ i, m i := rfl lemma norm_mk_pi_algebra_le [nonempty ι] : ∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ ≤ 1 := calc ∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ ≤ if nonempty ι then 1 else ∥(1 : A)∥ : multilinear_map.mk_continuous_norm_le _ (by split_ifs; simp [zero_le_one]) _ ... = _ : if_pos ‹_› lemma norm_mk_pi_algebra_of_empty [is_empty ι] : ∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ = ∥(1 : A)∥ := begin apply le_antisymm, calc ∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ ≤ if nonempty ι then 1 else ∥(1 : A)∥ : multilinear_map.mk_continuous_norm_le _ (by split_ifs; simp [zero_le_one]) _ ... = ∥(1 : A)∥ : if_neg (not_nonempty_iff.mpr ‹_›), convert ratio_le_op_norm _ (λ _, (1 : A)), simp [eq_empty_of_is_empty (univ : finset ι)], end @[simp] lemma norm_mk_pi_algebra [norm_one_class A] : ∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ = 1 := begin casesI is_empty_or_nonempty ι, { simp [norm_mk_pi_algebra_of_empty] }, { refine le_antisymm norm_mk_pi_algebra_le _, convert ratio_le_op_norm _ (λ _, 1); [skip, apply_instance], simp }, end end section variables (𝕜 n) (A : Type*) [normed_ring A] [normed_algebra 𝕜 A] /-- The continuous multilinear map on `A^n`, where `A` is a normed algebra over `𝕜`, associating to `m` the product of all the `m i`. See also: `multilinear_map.mk_pi_algebra`. -/ protected def mk_pi_algebra_fin : continuous_multilinear_map 𝕜 (λ i : fin n, A) A := multilinear_map.mk_continuous (multilinear_map.mk_pi_algebra_fin 𝕜 n A) (nat.cases_on n ∥(1 : A)∥ (λ _, 1)) $ begin intro m, cases n, { simp }, { have : @list.of_fn A n.succ m ≠ [] := by simp, simpa [← fin.prod_of_fn] using list.norm_prod_le' this } end variables {A 𝕜 n} @[simp] lemma mk_pi_algebra_fin_apply (m : fin n → A) : continuous_multilinear_map.mk_pi_algebra_fin 𝕜 n A m = (list.of_fn m).prod := rfl lemma norm_mk_pi_algebra_fin_succ_le : ∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 n.succ A∥ ≤ 1 := multilinear_map.mk_continuous_norm_le _ zero_le_one _ lemma norm_mk_pi_algebra_fin_le_of_pos (hn : 0 < n) : ∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 n A∥ ≤ 1 := by cases n; [exact hn.false.elim, exact norm_mk_pi_algebra_fin_succ_le] lemma norm_mk_pi_algebra_fin_zero : ∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 0 A∥ = ∥(1 : A)∥ := begin refine le_antisymm (multilinear_map.mk_continuous_norm_le _ (norm_nonneg _) _) _, convert ratio_le_op_norm _ (λ _, 1); [simp, apply_instance] end @[simp] lemma norm_mk_pi_algebra_fin [norm_one_class A] : ∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 n A∥ = 1 := begin cases n, { simp [norm_mk_pi_algebra_fin_zero] }, { refine le_antisymm norm_mk_pi_algebra_fin_succ_le _, convert ratio_le_op_norm _ (λ _, 1); [skip, apply_instance], simp } end end variables (𝕜 ι) /-- The canonical continuous multilinear map on `𝕜^ι`, associating to `m` the product of all the `m i` (multiplied by a fixed reference element `z` in the target module) -/ protected def mk_pi_field (z : G) : continuous_multilinear_map 𝕜 (λ(i : ι), 𝕜) G := multilinear_map.mk_continuous (multilinear_map.mk_pi_ring 𝕜 ι z) (∥z∥) (λ m, by simp only [multilinear_map.mk_pi_ring_apply, norm_smul, normed_field.norm_prod, mul_comm]) variables {𝕜 ι} @[simp] lemma mk_pi_field_apply (z : G) (m : ι → 𝕜) : (continuous_multilinear_map.mk_pi_field 𝕜 ι z : (ι → 𝕜) → G) m = (∏ i, m i) • z := rfl lemma mk_pi_field_apply_one_eq_self (f : continuous_multilinear_map 𝕜 (λ(i : ι), 𝕜) G) : continuous_multilinear_map.mk_pi_field 𝕜 ι (f (λi, 1)) = f := to_multilinear_map_inj f.to_multilinear_map.mk_pi_ring_apply_one_eq_self variables (𝕜 ι G) /-- Continuous multilinear maps on `𝕜^n` with values in `G` are in bijection with `G`, as such a continuous multilinear map is completely determined by its value on the constant vector made of ones. We register this bijection as a linear equivalence in `continuous_multilinear_map.pi_field_equiv_aux`. The continuous linear equivalence is `continuous_multilinear_map.pi_field_equiv`. -/ protected def pi_field_equiv_aux : G ≃ₗ[𝕜] (continuous_multilinear_map 𝕜 (λ(i : ι), 𝕜) G) := { to_fun := λ z, continuous_multilinear_map.mk_pi_field 𝕜 ι z, inv_fun := λ f, f (λi, 1), map_add' := λ z z', by { ext m, simp [smul_add] }, map_smul' := λ c z, by { ext m, simp [smul_smul, mul_comm] }, left_inv := λ z, by simp, right_inv := λ f, f.mk_pi_field_apply_one_eq_self } /-- Continuous multilinear maps on `𝕜^n` with values in `G` are in bijection with `G`, as such a continuous multilinear map is completely determined by its value on the constant vector made of ones. We register this bijection as a continuous linear equivalence in `continuous_multilinear_map.pi_field_equiv`. -/ protected def pi_field_equiv : G ≃L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : ι), 𝕜) G) := { continuous_to_fun := begin refine (continuous_multilinear_map.pi_field_equiv_aux 𝕜 ι G).to_linear_map.continuous_of_bound (1 : ℝ) (λz, _), rw one_mul, change ∥continuous_multilinear_map.mk_pi_field 𝕜 ι z∥ ≤ ∥z∥, exact multilinear_map.mk_continuous_norm_le _ (norm_nonneg _) _ end, continuous_inv_fun := begin refine (continuous_multilinear_map.pi_field_equiv_aux 𝕜 ι G).symm.to_linear_map.continuous_of_bound (1 : ℝ) (λf, _), rw one_mul, change ∥f (λi, 1)∥ ≤ ∥f∥, apply @continuous_multilinear_map.unit_le_op_norm 𝕜 ι (λ (i : ι), 𝕜) G _ _ _ _ _ _ _ f, simp [pi_norm_le_iff zero_le_one, le_refl] end, .. continuous_multilinear_map.pi_field_equiv_aux 𝕜 ι G } end continuous_multilinear_map namespace continuous_linear_map lemma norm_comp_continuous_multilinear_map_le (g : G →L[𝕜] G') (f : continuous_multilinear_map 𝕜 E G) : ∥g.comp_continuous_multilinear_map f∥ ≤ ∥g∥ * ∥f∥ := continuous_multilinear_map.op_norm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) $ λ m, calc ∥g (f m)∥ ≤ ∥g∥ * (∥f∥ * ∏ i, ∥m i∥) : g.le_op_norm_of_le $ f.le_op_norm _ ... = _ : (mul_assoc _ _ _).symm /-- `continuous_linear_map.comp_continuous_multilinear_map` as a bundled continuous bilinear map. -/ def comp_continuous_multilinear_mapL : (G →L[𝕜] G') →L[𝕜] continuous_multilinear_map 𝕜 E G →L[𝕜] continuous_multilinear_map 𝕜 E G' := linear_map.mk_continuous₂ (linear_map.mk₂ 𝕜 comp_continuous_multilinear_map (λ f₁ f₂ g, rfl) (λ c f g, rfl) (λ f g₁ g₂, by { ext1, apply f.map_add }) (λ c f g, by { ext1, simp })) 1 $ λ f g, by { rw one_mul, exact f.norm_comp_continuous_multilinear_map_le g } /-- Flip arguments in `f : G →L[𝕜] continuous_multilinear_map 𝕜 E G'` to get `continuous_multilinear_map 𝕜 E (G →L[𝕜] G')` -/ def flip_multilinear (f : G →L[𝕜] continuous_multilinear_map 𝕜 E G') : continuous_multilinear_map 𝕜 E (G →L[𝕜] G') := multilinear_map.mk_continuous { to_fun := λ m, linear_map.mk_continuous { to_fun := λ x, f x m, map_add' := λ x y, by simp only [map_add, continuous_multilinear_map.add_apply], map_smul' := λ c x, by simp only [continuous_multilinear_map.smul_apply, map_smul, ring_hom.id_apply] } (∥f∥ * ∏ i, ∥m i∥) $ λ x, by { rw mul_right_comm, exact (f x).le_of_op_norm_le _ (f.le_op_norm x) }, map_add' := λ m i x y, by { ext1, simp only [add_apply, continuous_multilinear_map.map_add, linear_map.coe_mk, linear_map.mk_continuous_apply]}, map_smul' := λ m i c x, by { ext1, simp only [coe_smul', continuous_multilinear_map.map_smul, linear_map.coe_mk, linear_map.mk_continuous_apply, pi.smul_apply]} } ∥f∥ $ λ m, linear_map.mk_continuous_norm_le _ (mul_nonneg (norm_nonneg f) (prod_nonneg $ λ i hi, norm_nonneg (m i))) _ end continuous_linear_map open continuous_multilinear_map namespace multilinear_map /-- Given a map `f : G →ₗ[𝕜] multilinear_map 𝕜 E G'` and an estimate `H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥`, construct a continuous linear map from `G` to `continuous_multilinear_map 𝕜 E G'`. In order to lift, e.g., a map `f : (multilinear_map 𝕜 E G) →ₗ[𝕜] multilinear_map 𝕜 E' G'` to a map `(continuous_multilinear_map 𝕜 E G) →L[𝕜] continuous_multilinear_map 𝕜 E' G'`, one can apply this construction to `f.comp continuous_multilinear_map.to_multilinear_map_linear` which is a linear map from `continuous_multilinear_map 𝕜 E G` to `multilinear_map 𝕜 E' G'`. -/ def mk_continuous_linear (f : G →ₗ[𝕜] multilinear_map 𝕜 E G') (C : ℝ) (H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥) : G →L[𝕜] continuous_multilinear_map 𝕜 E G' := linear_map.mk_continuous { to_fun := λ x, (f x).mk_continuous (C * ∥x∥) $ H x, map_add' := λ x y, by { ext1, simp }, map_smul' := λ c x, by { ext1, simp } } (max C 0) $ λ x, ((f x).mk_continuous_norm_le' _).trans_eq $ by rw [max_mul_of_nonneg _ _ (norm_nonneg x), zero_mul] lemma mk_continuous_linear_norm_le' (f : G →ₗ[𝕜] multilinear_map 𝕜 E G') (C : ℝ) (H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥) : ∥mk_continuous_linear f C H∥ ≤ max C 0 := begin dunfold mk_continuous_linear, exact linear_map.mk_continuous_norm_le _ (le_max_right _ _) _ end lemma mk_continuous_linear_norm_le (f : G →ₗ[𝕜] multilinear_map 𝕜 E G') {C : ℝ} (hC : 0 ≤ C) (H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥) : ∥mk_continuous_linear f C H∥ ≤ C := (mk_continuous_linear_norm_le' f C H).trans_eq (max_eq_left hC) /-- Given a map `f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)` and an estimate `H : ∀ m m', ∥f m m'∥ ≤ C * ∏ i, ∥m i∥ * ∏ i, ∥m' i∥`, upgrade all `multilinear_map`s in the type to `continuous_multilinear_map`s. -/ def mk_continuous_multilinear (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) (C : ℝ) (H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) : continuous_multilinear_map 𝕜 E (continuous_multilinear_map 𝕜 E' G) := mk_continuous { to_fun := λ m, mk_continuous (f m) (C * ∏ i, ∥m i∥) $ H m, map_add' := λ m i x y, by { ext1, simp }, map_smul' := λ m i c x, by { ext1, simp } } (max C 0) $ λ m, ((f m).mk_continuous_norm_le' _).trans_eq $ by { rw [max_mul_of_nonneg, zero_mul], exact prod_nonneg (λ _ _, norm_nonneg _) } @[simp] lemma mk_continuous_multilinear_apply (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) {C : ℝ} (H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) (m : Π i, E i) : ⇑(mk_continuous_multilinear f C H m) = f m := rfl lemma mk_continuous_multilinear_norm_le' (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) (C : ℝ) (H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) : ∥mk_continuous_multilinear f C H∥ ≤ max C 0 := begin dunfold mk_continuous_multilinear, exact mk_continuous_norm_le _ (le_max_right _ _) _ end lemma mk_continuous_multilinear_norm_le (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) {C : ℝ} (hC : 0 ≤ C) (H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) : ∥mk_continuous_multilinear f C H∥ ≤ C := (mk_continuous_multilinear_norm_le' f C H).trans_eq (max_eq_left hC) end multilinear_map namespace continuous_multilinear_map lemma norm_comp_continuous_linear_le (g : continuous_multilinear_map 𝕜 E₁ G) (f : Π i, E i →L[𝕜] E₁ i) : ∥g.comp_continuous_linear_map f∥ ≤ ∥g∥ * ∏ i, ∥f i∥ := op_norm_le_bound _ (mul_nonneg (norm_nonneg _) $ prod_nonneg $ λ i hi, norm_nonneg _) $ λ m, calc ∥g (λ i, f i (m i))∥ ≤ ∥g∥ * ∏ i, ∥f i (m i)∥ : g.le_op_norm _ ... ≤ ∥g∥ * ∏ i, (∥f i∥ * ∥m i∥) : mul_le_mul_of_nonneg_left (prod_le_prod (λ _ _, norm_nonneg _) (λ i hi, (f i).le_op_norm (m i))) (norm_nonneg g) ... = (∥g∥ * ∏ i, ∥f i∥) * ∏ i, ∥m i∥ : by rw [prod_mul_distrib, mul_assoc] /-- `continuous_multilinear_map.comp_continuous_linear_map` as a bundled continuous linear map. This implementation fixes `f : Π i, E i →L[𝕜] E₁ i`. TODO: Actually, the map is multilinear in `f` but an attempt to formalize this failed because of issues with class instances. -/ def comp_continuous_linear_mapL (f : Π i, E i →L[𝕜] E₁ i) : continuous_multilinear_map 𝕜 E₁ G →L[𝕜] continuous_multilinear_map 𝕜 E G := linear_map.mk_continuous { to_fun := λ g, g.comp_continuous_linear_map f, map_add' := λ g₁ g₂, rfl, map_smul' := λ c g, rfl } (∏ i, ∥f i∥) $ λ g, (norm_comp_continuous_linear_le _ _).trans_eq (mul_comm _ _) @[simp] lemma comp_continuous_linear_mapL_apply (g : continuous_multilinear_map 𝕜 E₁ G) (f : Π i, E i →L[𝕜] E₁ i) : comp_continuous_linear_mapL f g = g.comp_continuous_linear_map f := rfl lemma norm_comp_continuous_linear_mapL_le (f : Π i, E i →L[𝕜] E₁ i) : ∥@comp_continuous_linear_mapL 𝕜 ι E E₁ G _ _ _ _ _ _ _ _ _ f∥ ≤ (∏ i, ∥f i∥) := linear_map.mk_continuous_norm_le _ (prod_nonneg $ λ i _, norm_nonneg _) _ end continuous_multilinear_map section currying /-! ### Currying We associate to a continuous multilinear map in `n+1` variables (i.e., based on `fin n.succ`) two curried functions, named `f.curry_left` (which is a continuous linear map on `E 0` taking values in continuous multilinear maps in `n` variables) and `f.curry_right` (which is a continuous multilinear map in `n` variables taking values in continuous linear maps on `E (last n)`). The inverse operations are called `uncurry_left` and `uncurry_right`. We also register continuous linear equiv versions of these correspondences, in `continuous_multilinear_curry_left_equiv` and `continuous_multilinear_curry_right_equiv`. -/ open fin function lemma continuous_linear_map.norm_map_tail_le (f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) (m : Πi, Ei i) : ∥f (m 0) (tail m)∥ ≤ ∥f∥ * ∏ i, ∥m i∥ := calc ∥f (m 0) (tail m)∥ ≤ ∥f (m 0)∥ * ∏ i, ∥(tail m) i∥ : (f (m 0)).le_op_norm _ ... ≤ (∥f∥ * ∥m 0∥) * ∏ i, ∥(tail m) i∥ : mul_le_mul_of_nonneg_right (f.le_op_norm _) (prod_nonneg (λi hi, norm_nonneg _)) ... = ∥f∥ * (∥m 0∥ * ∏ i, ∥(tail m) i∥) : by ring ... = ∥f∥ * ∏ i, ∥m i∥ : by { rw prod_univ_succ, refl } lemma continuous_multilinear_map.norm_map_init_le (f : continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) (m : Πi, Ei i) : ∥f (init m) (m (last n))∥ ≤ ∥f∥ * ∏ i, ∥m i∥ := calc ∥f (init m) (m (last n))∥ ≤ ∥f (init m)∥ * ∥m (last n)∥ : (f (init m)).le_op_norm _ ... ≤ (∥f∥ * (∏ i, ∥(init m) i∥)) * ∥m (last n)∥ : mul_le_mul_of_nonneg_right (f.le_op_norm _) (norm_nonneg _) ... = ∥f∥ * ((∏ i, ∥(init m) i∥) * ∥m (last n)∥) : mul_assoc _ _ _ ... = ∥f∥ * ∏ i, ∥m i∥ : by { rw prod_univ_cast_succ, refl } lemma continuous_multilinear_map.norm_map_cons_le (f : continuous_multilinear_map 𝕜 Ei G) (x : Ei 0) (m : Π(i : fin n), Ei i.succ) : ∥f (cons x m)∥ ≤ ∥f∥ * ∥x∥ * ∏ i, ∥m i∥ := calc ∥f (cons x m)∥ ≤ ∥f∥ * ∏ i, ∥cons x m i∥ : f.le_op_norm _ ... = (∥f∥ * ∥x∥) * ∏ i, ∥m i∥ : by { rw prod_univ_succ, simp [mul_assoc] } lemma continuous_multilinear_map.norm_map_snoc_le (f : continuous_multilinear_map 𝕜 Ei G) (m : Π(i : fin n), Ei i.cast_succ) (x : Ei (last n)) : ∥f (snoc m x)∥ ≤ ∥f∥ * (∏ i, ∥m i∥) * ∥x∥ := calc ∥f (snoc m x)∥ ≤ ∥f∥ * ∏ i, ∥snoc m x i∥ : f.le_op_norm _ ... = ∥f∥ * (∏ i, ∥m i∥) * ∥x∥ : by { rw prod_univ_cast_succ, simp [mul_assoc] } /-! #### Left currying -/ /-- Given a continuous linear map `f` from `E 0` to continuous multilinear maps on `n` variables, construct the corresponding continuous multilinear map on `n+1` variables obtained by concatenating the variables, given by `m ↦ f (m 0) (tail m)`-/ def continuous_linear_map.uncurry_left (f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) : continuous_multilinear_map 𝕜 Ei G := (@linear_map.uncurry_left 𝕜 n Ei G _ _ _ _ _ (continuous_multilinear_map.to_multilinear_map_linear.comp f.to_linear_map)).mk_continuous (∥f∥) (λm, continuous_linear_map.norm_map_tail_le f m) @[simp] lemma continuous_linear_map.uncurry_left_apply (f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) (m : Πi, Ei i) : f.uncurry_left m = f (m 0) (tail m) := rfl /-- Given a continuous multilinear map `f` in `n+1` variables, split the first variable to obtain a continuous linear map into continuous multilinear maps in `n` variables, given by `x ↦ (m ↦ f (cons x m))`. -/ def continuous_multilinear_map.curry_left (f : continuous_multilinear_map 𝕜 Ei G) : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G) := linear_map.mk_continuous { -- define a linear map into `n` continuous multilinear maps from an `n+1` continuous multilinear -- map to_fun := λx, (f.to_multilinear_map.curry_left x).mk_continuous (∥f∥ * ∥x∥) (f.norm_map_cons_le x), map_add' := λx y, by { ext m, exact f.cons_add m x y }, map_smul' := λc x, by { ext m, exact f.cons_smul m c x } } -- then register its continuity thanks to its boundedness properties. (∥f∥) (λx, multilinear_map.mk_continuous_norm_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _) @[simp] lemma continuous_multilinear_map.curry_left_apply (f : continuous_multilinear_map 𝕜 Ei G) (x : Ei 0) (m : Π(i : fin n), Ei i.succ) : f.curry_left x m = f (cons x m) := rfl @[simp] lemma continuous_linear_map.curry_uncurry_left (f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) : f.uncurry_left.curry_left = f := begin ext m x, simp only [tail_cons, continuous_linear_map.uncurry_left_apply, continuous_multilinear_map.curry_left_apply], rw cons_zero end @[simp] lemma continuous_multilinear_map.uncurry_curry_left (f : continuous_multilinear_map 𝕜 Ei G) : f.curry_left.uncurry_left = f := continuous_multilinear_map.to_multilinear_map_inj $ f.to_multilinear_map.uncurry_curry_left variables (𝕜 Ei G) /-- The space of continuous multilinear maps on `Π(i : fin (n+1)), E i` is canonically isomorphic to the space of continuous linear maps from `E 0` to the space of continuous multilinear maps on `Π(i : fin n), E i.succ `, by separating the first variable. We register this isomorphism in `continuous_multilinear_curry_left_equiv 𝕜 E E₂`. The algebraic version (without topology) is given in `multilinear_curry_left_equiv 𝕜 E E₂`. The direct and inverse maps are given by `f.uncurry_left` and `f.curry_left`. Use these unless you need the full framework of linear isometric equivs. -/ def continuous_multilinear_curry_left_equiv : (Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) ≃ₗᵢ[𝕜] (continuous_multilinear_map 𝕜 Ei G) := linear_isometry_equiv.of_bounds { to_fun := continuous_linear_map.uncurry_left, map_add' := λf₁ f₂, by { ext m, refl }, map_smul' := λc f, by { ext m, refl }, inv_fun := continuous_multilinear_map.curry_left, left_inv := continuous_linear_map.curry_uncurry_left, right_inv := continuous_multilinear_map.uncurry_curry_left } (λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) (λ f, linear_map.mk_continuous_norm_le _ (norm_nonneg f) _) variables {𝕜 Ei G} @[simp] lemma continuous_multilinear_curry_left_equiv_apply (f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.succ) G)) (v : Π i, Ei i) : continuous_multilinear_curry_left_equiv 𝕜 Ei G f v = f (v 0) (tail v) := rfl @[simp] lemma continuous_multilinear_curry_left_equiv_symm_apply (f : continuous_multilinear_map 𝕜 Ei G) (x : Ei 0) (v : Π i : fin n, Ei i.succ) : (continuous_multilinear_curry_left_equiv 𝕜 Ei G).symm f x v = f (cons x v) := rfl @[simp] lemma continuous_multilinear_map.curry_left_norm (f : continuous_multilinear_map 𝕜 Ei G) : ∥f.curry_left∥ = ∥f∥ := (continuous_multilinear_curry_left_equiv 𝕜 Ei G).symm.norm_map f @[simp] lemma continuous_linear_map.uncurry_left_norm (f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) : ∥f.uncurry_left∥ = ∥f∥ := (continuous_multilinear_curry_left_equiv 𝕜 Ei G).norm_map f /-! #### Right currying -/ /-- Given a continuous linear map `f` from continuous multilinear maps on `n` variables to continuous linear maps on `E 0`, construct the corresponding continuous multilinear map on `n+1` variables obtained by concatenating the variables, given by `m ↦ f (init m) (m (last n))`. -/ def continuous_multilinear_map.uncurry_right (f : continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) : continuous_multilinear_map 𝕜 Ei G := let f' : multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →ₗ[𝕜] G) := { to_fun := λ m, (f m).to_linear_map, map_add' := λ m i x y, by simp, map_smul' := λ m i c x, by simp } in (@multilinear_map.uncurry_right 𝕜 n Ei G _ _ _ _ _ f').mk_continuous (∥f∥) (λm, f.norm_map_init_le m) @[simp] lemma continuous_multilinear_map.uncurry_right_apply (f : continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) (m : Πi, Ei i) : f.uncurry_right m = f (init m) (m (last n)) := rfl /-- Given a continuous multilinear map `f` in `n+1` variables, split the last variable to obtain a continuous multilinear map in `n` variables into continuous linear maps, given by `m ↦ (x ↦ f (snoc m x))`. -/ def continuous_multilinear_map.curry_right (f : continuous_multilinear_map 𝕜 Ei G) : continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G) := let f' : multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G) := { to_fun := λm, (f.to_multilinear_map.curry_right m).mk_continuous (∥f∥ * ∏ i, ∥m i∥) $ λx, f.norm_map_snoc_le m x, map_add' := λ m i x y, by { simp, refl }, map_smul' := λ m i c x, by { simp, refl } } in f'.mk_continuous (∥f∥) (λm, linear_map.mk_continuous_norm_le _ (mul_nonneg (norm_nonneg _) (prod_nonneg (λj hj, norm_nonneg _))) _) @[simp] lemma continuous_multilinear_map.curry_right_apply (f : continuous_multilinear_map 𝕜 Ei G) (m : Π i : fin n, Ei i.cast_succ) (x : Ei (last n)) : f.curry_right m x = f (snoc m x) := rfl @[simp] lemma continuous_multilinear_map.curry_uncurry_right (f : continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) : f.uncurry_right.curry_right = f := begin ext m x, simp only [snoc_last, continuous_multilinear_map.curry_right_apply, continuous_multilinear_map.uncurry_right_apply], rw init_snoc end @[simp] lemma continuous_multilinear_map.uncurry_curry_right (f : continuous_multilinear_map 𝕜 Ei G) : f.curry_right.uncurry_right = f := by { ext m, simp } variables (𝕜 Ei G) /-- The space of continuous multilinear maps on `Π(i : fin (n+1)), Ei i` is canonically isomorphic to the space of continuous multilinear maps on `Π(i : fin n), Ei i.cast_succ` with values in the space of continuous linear maps on `Ei (last n)`, by separating the last variable. We register this isomorphism as a continuous linear equiv in `continuous_multilinear_curry_right_equiv 𝕜 Ei G`. The algebraic version (without topology) is given in `multilinear_curry_right_equiv 𝕜 Ei G`. The direct and inverse maps are given by `f.uncurry_right` and `f.curry_right`. Use these unless you need the full framework of linear isometric equivs. -/ def continuous_multilinear_curry_right_equiv : (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) ≃ₗᵢ[𝕜] (continuous_multilinear_map 𝕜 Ei G) := linear_isometry_equiv.of_bounds { to_fun := continuous_multilinear_map.uncurry_right, map_add' := λf₁ f₂, by { ext m, refl }, map_smul' := λc f, by { ext m, refl }, inv_fun := continuous_multilinear_map.curry_right, left_inv := continuous_multilinear_map.curry_uncurry_right, right_inv := continuous_multilinear_map.uncurry_curry_right } (λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) (λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) variables (n G') /-- The space of continuous multilinear maps on `Π(i : fin (n+1)), G` is canonically isomorphic to the space of continuous multilinear maps on `Π(i : fin n), G` with values in the space of continuous linear maps on `G`, by separating the last variable. We register this isomorphism as a continuous linear equiv in `continuous_multilinear_curry_right_equiv' 𝕜 n G G'`. For a version allowing dependent types, see `continuous_multilinear_curry_right_equiv`. When there are no dependent types, use the primed version as it helps Lean a lot for unification. The direct and inverse maps are given by `f.uncurry_right` and `f.curry_right`. Use these unless you need the full framework of linear isometric equivs. -/ def continuous_multilinear_curry_right_equiv' : (G [×n]→L[𝕜] (G →L[𝕜] G')) ≃ₗᵢ[𝕜] (G [×n.succ]→L[𝕜] G') := continuous_multilinear_curry_right_equiv 𝕜 (λ (i : fin n.succ), G) G' variables {n 𝕜 G Ei G'} @[simp] lemma continuous_multilinear_curry_right_equiv_apply (f : (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G))) (v : Π i, Ei i) : (continuous_multilinear_curry_right_equiv 𝕜 Ei G) f v = f (init v) (v (last n)) := rfl @[simp] lemma continuous_multilinear_curry_right_equiv_symm_apply (f : continuous_multilinear_map 𝕜 Ei G) (v : Π (i : fin n), Ei i.cast_succ) (x : Ei (last n)) : (continuous_multilinear_curry_right_equiv 𝕜 Ei G).symm f v x = f (snoc v x) := rfl @[simp] lemma continuous_multilinear_curry_right_equiv_apply' (f : G [×n]→L[𝕜] (G →L[𝕜] G')) (v : Π (i : fin n.succ), G) : continuous_multilinear_curry_right_equiv' 𝕜 n G G' f v = f (init v) (v (last n)) := rfl @[simp] lemma continuous_multilinear_curry_right_equiv_symm_apply' (f : G [×n.succ]→L[𝕜] G') (v : Π (i : fin n), G) (x : G) : (continuous_multilinear_curry_right_equiv' 𝕜 n G G').symm f v x = f (snoc v x) := rfl @[simp] lemma continuous_multilinear_map.curry_right_norm (f : continuous_multilinear_map 𝕜 Ei G) : ∥f.curry_right∥ = ∥f∥ := (continuous_multilinear_curry_right_equiv 𝕜 Ei G).symm.norm_map f @[simp] lemma continuous_multilinear_map.uncurry_right_norm (f : continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) : ∥f.uncurry_right∥ = ∥f∥ := (continuous_multilinear_curry_right_equiv 𝕜 Ei G).norm_map f /-! #### Currying with `0` variables The space of multilinear maps with `0` variables is trivial: such a multilinear map is just an arbitrary constant (note that multilinear maps in `0` variables need not map `0` to `0`!). Therefore, the space of continuous multilinear maps on `(fin 0) → G` with values in `E₂` is isomorphic (and even isometric) to `E₂`. As this is the zeroth step in the construction of iterated derivatives, we register this isomorphism. -/ section local attribute [instance] unique.subsingleton variables {𝕜 G G'} /-- Associating to a continuous multilinear map in `0` variables the unique value it takes. -/ def continuous_multilinear_map.uncurry0 (f : continuous_multilinear_map 𝕜 (λ (i : fin 0), G) G') : G' := f 0 variables (𝕜 G) /-- Associating to an element `x` of a vector space `E₂` the continuous multilinear map in `0` variables taking the (unique) value `x` -/ def continuous_multilinear_map.curry0 (x : G') : G [×0]→L[𝕜] G' := { to_fun := λm, x, map_add' := λ m i, fin.elim0 i, map_smul' := λ m i, fin.elim0 i, cont := continuous_const } variable {G} @[simp] lemma continuous_multilinear_map.curry0_apply (x : G') (m : (fin 0) → G) : continuous_multilinear_map.curry0 𝕜 G x m = x := rfl variable {𝕜} @[simp] lemma continuous_multilinear_map.uncurry0_apply (f : G [×0]→L[𝕜] G') : f.uncurry0 = f 0 := rfl @[simp] lemma continuous_multilinear_map.apply_zero_curry0 (f : G [×0]→L[𝕜] G') {x : fin 0 → G} : continuous_multilinear_map.curry0 𝕜 G (f x) = f := by { ext m, simp [(subsingleton.elim _ _ : x = m)] } lemma continuous_multilinear_map.uncurry0_curry0 (f : G [×0]→L[𝕜] G') : continuous_multilinear_map.curry0 𝕜 G (f.uncurry0) = f := by simp variables (𝕜 G) @[simp] lemma continuous_multilinear_map.curry0_uncurry0 (x : G') : (continuous_multilinear_map.curry0 𝕜 G x).uncurry0 = x := rfl @[simp] lemma continuous_multilinear_map.curry0_norm (x : G') : ∥continuous_multilinear_map.curry0 𝕜 G x∥ = ∥x∥ := begin apply le_antisymm, { exact continuous_multilinear_map.op_norm_le_bound _ (norm_nonneg _) (λm, by simp) }, { simpa using (continuous_multilinear_map.curry0 𝕜 G x).le_op_norm 0 } end variables {𝕜 G} @[simp] lemma continuous_multilinear_map.fin0_apply_norm (f : G [×0]→L[𝕜] G') {x : fin 0 → G} : ∥f x∥ = ∥f∥ := begin have : x = 0 := subsingleton.elim _ _, subst this, refine le_antisymm (by simpa using f.le_op_norm 0) _, have : ∥continuous_multilinear_map.curry0 𝕜 G (f.uncurry0)∥ ≤ ∥f.uncurry0∥ := continuous_multilinear_map.op_norm_le_bound _ (norm_nonneg _) (λm, by simp [-continuous_multilinear_map.apply_zero_curry0]), simpa end lemma continuous_multilinear_map.uncurry0_norm (f : G [×0]→L[𝕜] G') : ∥f.uncurry0∥ = ∥f∥ := by simp variables (𝕜 G G') /-- The continuous linear isomorphism between elements of a normed space, and continuous multilinear maps in `0` variables with values in this normed space. The direct and inverse maps are `uncurry0` and `curry0`. Use these unless you need the full framework of linear isometric equivs. -/ def continuous_multilinear_curry_fin0 : (G [×0]→L[𝕜] G') ≃ₗᵢ[𝕜] G' := { to_fun := λf, continuous_multilinear_map.uncurry0 f, inv_fun := λf, continuous_multilinear_map.curry0 𝕜 G f, map_add' := λf g, rfl, map_smul' := λc f, rfl, left_inv := continuous_multilinear_map.uncurry0_curry0, right_inv := continuous_multilinear_map.curry0_uncurry0 𝕜 G, norm_map' := continuous_multilinear_map.uncurry0_norm } variables {𝕜 G G'} @[simp] lemma continuous_multilinear_curry_fin0_apply (f : G [×0]→L[𝕜] G') : continuous_multilinear_curry_fin0 𝕜 G G' f = f 0 := rfl @[simp] lemma continuous_multilinear_curry_fin0_symm_apply (x : G') (v : (fin 0) → G) : (continuous_multilinear_curry_fin0 𝕜 G G').symm x v = x := rfl end /-! #### With 1 variable -/ variables (𝕜 G G') /-- Continuous multilinear maps from `G^1` to `G'` are isomorphic with continuous linear maps from `G` to `G'`. -/ def continuous_multilinear_curry_fin1 : (G [×1]→L[𝕜] G') ≃ₗᵢ[𝕜] (G →L[𝕜] G') := (continuous_multilinear_curry_right_equiv 𝕜 (λ (i : fin 1), G) G').symm.trans (continuous_multilinear_curry_fin0 𝕜 G (G →L[𝕜] G')) variables {𝕜 G G'} @[simp] lemma continuous_multilinear_curry_fin1_apply (f : G [×1]→L[𝕜] G') (x : G) : continuous_multilinear_curry_fin1 𝕜 G G' f x = f (fin.snoc 0 x) := rfl @[simp] lemma continuous_multilinear_curry_fin1_symm_apply (f : G →L[𝕜] G') (v : (fin 1) → G) : (continuous_multilinear_curry_fin1 𝕜 G G').symm f v = f (v 0) := rfl namespace continuous_multilinear_map variables (𝕜 G G') /-- An equivalence of the index set defines a linear isometric equivalence between the spaces of multilinear maps. -/ def dom_dom_congr (σ : ι ≃ ι') : continuous_multilinear_map 𝕜 (λ _ : ι, G) G' ≃ₗᵢ[𝕜] continuous_multilinear_map 𝕜 (λ _ : ι', G) G' := linear_isometry_equiv.of_bounds { to_fun := λ f, (multilinear_map.dom_dom_congr σ f.to_multilinear_map).mk_continuous ∥f∥ $ λ m, (f.le_op_norm (λ i, m (σ i))).trans_eq $ by rw [← σ.prod_comp], inv_fun := λ f, (multilinear_map.dom_dom_congr σ.symm f.to_multilinear_map).mk_continuous ∥f∥ $ λ m, (f.le_op_norm (λ i, m (σ.symm i))).trans_eq $ by rw [← σ.symm.prod_comp], left_inv := λ f, ext $ λ m, congr_arg f $ by simp only [σ.symm_apply_apply], right_inv := λ f, ext $ λ m, congr_arg f $ by simp only [σ.apply_symm_apply], map_add' := λ f g, rfl, map_smul' := λ c f, rfl } (λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) (λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) variables {𝕜 G G'} section variable [decidable_eq (ι ⊕ ι')] /-- A continuous multilinear map with variables indexed by `ι ⊕ ι'` defines a continuous multilinear map with variables indexed by `ι` taking values in the space of continuous multilinear maps with variables indexed by `ι'`. -/ def curry_sum (f : continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G') : continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G') := multilinear_map.mk_continuous_multilinear (multilinear_map.curry_sum f.to_multilinear_map) (∥f∥) $ λ m m', by simpa [fintype.prod_sum_type, mul_assoc] using f.le_op_norm (sum.elim m m') @[simp] lemma curry_sum_apply (f : continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G') (m : ι → G) (m' : ι' → G) : f.curry_sum m m' = f (sum.elim m m') := rfl /-- A continuous multilinear map with variables indexed by `ι` taking values in the space of continuous multilinear maps with variables indexed by `ι'` defines a continuous multilinear map with variables indexed by `ι ⊕ ι'`. -/ def uncurry_sum (f : continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G')) : continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G' := multilinear_map.mk_continuous (to_multilinear_map_linear.comp_multilinear_map f.to_multilinear_map).uncurry_sum (∥f∥) $ λ m, by simpa [fintype.prod_sum_type, mul_assoc] using (f (m ∘ sum.inl)).le_of_op_norm_le (m ∘ sum.inr) (f.le_op_norm _) @[simp] lemma uncurry_sum_apply (f : continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G')) (m : ι ⊕ ι' → G) : f.uncurry_sum m = f (m ∘ sum.inl) (m ∘ sum.inr) := rfl variables (𝕜 ι ι' G G') /-- Linear isometric equivalence between the space of continuous multilinear maps with variables indexed by `ι ⊕ ι'` and the space of continuous multilinear maps with variables indexed by `ι` taking values in the space of continuous multilinear maps with variables indexed by `ι'`. The forward and inverse functions are `continuous_multilinear_map.curry_sum` and `continuous_multilinear_map.uncurry_sum`. Use this definition only if you need some properties of `linear_isometry_equiv`. -/ def curry_sum_equiv : continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G' ≃ₗᵢ[𝕜] continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G') := linear_isometry_equiv.of_bounds { to_fun := curry_sum, inv_fun := uncurry_sum, map_add' := λ f g, by { ext, refl }, map_smul' := λ c f, by { ext, refl }, left_inv := λ f, by { ext m, exact congr_arg f (sum.elim_comp_inl_inr m) }, right_inv := λ f, by { ext m₁ m₂, change f _ _ = f _ _, rw [sum.elim_comp_inl, sum.elim_comp_inr] } } (λ f, multilinear_map.mk_continuous_multilinear_norm_le _ (norm_nonneg f) _) (λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) end section variables (𝕜 G G') {k l : ℕ} {s : finset (fin n)} /-- If `s : finset (fin n)` is a finite set of cardinality `k` and its complement has cardinality `l`, then the space of continuous multilinear maps `G [×n]→L[𝕜] G'` of `n` variables is isomorphic to the space of continuous multilinear maps `G [×k]→L[𝕜] G [×l]→L[𝕜] G'` of `k` variables taking values in the space of continuous multilinear maps of `l` variables. -/ def curry_fin_finset {k l n : ℕ} {s : finset (fin n)} (hk : s.card = k) (hl : sᶜ.card = l) : (G [×n]→L[𝕜] G') ≃ₗᵢ[𝕜] (G [×k]→L[𝕜] G [×l]→L[𝕜] G') := (dom_dom_congr 𝕜 G G' (fin_sum_equiv_of_finset hk hl).symm).trans (curry_sum_equiv 𝕜 (fin k) (fin l) G G') variables {𝕜 G G'} @[simp] lemma curry_fin_finset_apply (hk : s.card = k) (hl : sᶜ.card = l) (f : G [×n]→L[𝕜] G') (mk : fin k → G) (ml : fin l → G) : curry_fin_finset 𝕜 G G' hk hl f mk ml = f (λ i, sum.elim mk ml ((fin_sum_equiv_of_finset hk hl).symm i)) := rfl @[simp] lemma curry_fin_finset_symm_apply (hk : s.card = k) (hl : sᶜ.card = l) (f : G [×k]→L[𝕜] G [×l]→L[𝕜] G') (m : fin n → G) : (curry_fin_finset 𝕜 G G' hk hl).symm f m = f (λ i, m $ fin_sum_equiv_of_finset hk hl (sum.inl i)) (λ i, m $ fin_sum_equiv_of_finset hk hl (sum.inr i)) := rfl @[simp] lemma curry_fin_finset_symm_apply_piecewise_const (hk : s.card = k) (hl : sᶜ.card = l) (f : G [×k]→L[𝕜] G [×l]→L[𝕜] G') (x y : G) : (curry_fin_finset 𝕜 G G' hk hl).symm f (s.piecewise (λ _, x) (λ _, y)) = f (λ _, x) (λ _, y) := multilinear_map.curry_fin_finset_symm_apply_piecewise_const hk hl _ x y @[simp] lemma curry_fin_finset_symm_apply_const (hk : s.card = k) (hl : sᶜ.card = l) (f : G [×k]→L[𝕜] G [×l]→L[𝕜] G') (x : G) : (curry_fin_finset 𝕜 G G' hk hl).symm f (λ _, x) = f (λ _, x) (λ _, x) := rfl @[simp] lemma curry_fin_finset_apply_const (hk : s.card = k) (hl : sᶜ.card = l) (f : G [×n]→L[𝕜] G') (x y : G) : curry_fin_finset 𝕜 G G' hk hl f (λ _, x) (λ _, y) = f (s.piecewise (λ _, x) (λ _, y)) := begin refine (curry_fin_finset_symm_apply_piecewise_const hk hl _ _ _).symm.trans _, -- `rw` fails rw linear_isometry_equiv.symm_apply_apply end end end continuous_multilinear_map end currying
b81116cb2e417842f335bad7680b0bd114b1da5e
2eab05920d6eeb06665e1a6df77b3157354316ad
/src/deprecated/subfield.lean
12239b30ba1742a87f9d26362487fa609bb55cf0
[ "Apache-2.0" ]
permissive
ayush1801/mathlib
78949b9f789f488148142221606bf15c02b960d2
ce164e28f262acbb3de6281b3b03660a9f744e3c
refs/heads/master
1,692,886,907,941
1,635,270,866,000
1,635,270,866,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,829
lean
/- Copyright (c) 2018 Andreas Swerdlow. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andreas Swerdlow -/ import deprecated.subring import algebra.group_with_zero.power /- # Unbundled subfields This file introduces the predicate `is_subfield` on `S : set F` where `F` is a field. This is *not* the preferred way to do subfields in Lean 3: in general `S : subfield F` works more smoothly. ## Main definitions `is_subfield (S : set F)` : the predicate that `S` is the underlying set of a subfield of the field `F`. Note that the bundled variant `subfield F` is preferred to this approach. ## Tags is_subfield -/ variables {F : Type*} [field F] (S : set F) structure is_subfield extends is_subring S : Prop := (inv_mem : ∀ {x : F}, x ∈ S → x⁻¹ ∈ S) lemma is_subfield.div_mem {S : set F} (hS : is_subfield S) {x y : F} (hx : x ∈ S) (hy : y ∈ S) : x / y ∈ S := by { rw div_eq_mul_inv, exact hS.to_is_subring.to_is_submonoid.mul_mem hx (hS.inv_mem hy) } lemma is_subfield.pow_mem {a : F} {n : ℤ} {s : set F} (hs : is_subfield s) (h : a ∈ s) : a ^ n ∈ s := begin cases n, { rw gpow_of_nat, exact hs.to_is_subring.to_is_submonoid.pow_mem h }, { rw gpow_neg_succ_of_nat, exact hs.inv_mem (hs.to_is_subring.to_is_submonoid.pow_mem h) }, end lemma univ.is_subfield : is_subfield (@set.univ F) := { inv_mem := by intros; trivial, ..univ.is_submonoid, ..is_add_subgroup.univ_add_subgroup } lemma preimage.is_subfield {K : Type*} [field K] (f : F →+* K) {s : set K} (hs : is_subfield s) : is_subfield (f ⁻¹' s) := { inv_mem := λ a (ha : f a ∈ s), show f a⁻¹ ∈ s, by { rw [f.map_inv], exact hs.inv_mem ha }, ..f.is_subring_preimage hs.to_is_subring } lemma image.is_subfield {K : Type*} [field K] (f : F →+* K) {s : set F} (hs : is_subfield s) : is_subfield (f '' s) := { inv_mem := λ a ⟨x, xmem, ha⟩, ⟨x⁻¹, hs.inv_mem xmem, ha ▸ f.map_inv _⟩, ..f.is_subring_image hs.to_is_subring } lemma range.is_subfield {K : Type*} [field K] (f : F →+* K) : is_subfield (set.range f) := by { rw ← set.image_univ, apply image.is_subfield _ univ.is_subfield } namespace field /-- `field.closure s` is the minimal subfield that includes `s`. -/ def closure : set F := { x | ∃ y ∈ ring.closure S, ∃ z ∈ ring.closure S, y / z = x } variables {S} theorem ring_closure_subset : ring.closure S ⊆ closure S := λ x hx, ⟨x, hx, 1, ring.closure.is_subring.to_is_submonoid.one_mem, div_one x⟩ lemma closure.is_submonoid : is_submonoid (closure S) := { mul_mem := by rintros _ _ ⟨p, hp, q, hq, hq0, rfl⟩ ⟨r, hr, s, hs, hs0, rfl⟩; exact ⟨p * r, is_submonoid.mul_mem ring.closure.is_subring.to_is_submonoid hp hr, q * s, is_submonoid.mul_mem ring.closure.is_subring.to_is_submonoid hq hs, (div_mul_div _ _ _ _).symm⟩, one_mem := ring_closure_subset $ is_submonoid.one_mem ring.closure.is_subring.to_is_submonoid } lemma closure.is_subfield : is_subfield (closure S) := have h0 : (0:F) ∈ closure S, from ring_closure_subset $ ring.closure.is_subring.to_is_add_subgroup.to_is_add_submonoid.zero_mem, { add_mem := begin intros a b ha hb, rcases (id ha) with ⟨p, hp, q, hq, rfl⟩, rcases (id hb) with ⟨r, hr, s, hs, rfl⟩, classical, by_cases hq0 : q = 0, by simp [hb, hq0], by_cases hs0 : s = 0, by simp [ha, hs0], exact ⟨p * s + q * r, is_add_submonoid.add_mem ring.closure.is_subring.to_is_add_subgroup.to_is_add_submonoid (ring.closure.is_subring.to_is_submonoid.mul_mem hp hs) (ring.closure.is_subring.to_is_submonoid.mul_mem hq hr), q * s, ring.closure.is_subring.to_is_submonoid.mul_mem hq hs, (div_add_div p r hq0 hs0).symm⟩ end, zero_mem := h0, neg_mem := begin rintros _ ⟨p, hp, q, hq, rfl⟩, exact ⟨-p, ring.closure.is_subring.to_is_add_subgroup.neg_mem hp, q, hq, neg_div q p⟩ end, inv_mem := begin rintros _ ⟨p, hp, q, hq, rfl⟩, classical, by_cases hp0 : p = 0, by simp [hp0, h0], exact ⟨q, hq, p, hp, inv_div.symm⟩ end, ..closure.is_submonoid } theorem mem_closure {a : F} (ha : a ∈ S) : a ∈ closure S := ring_closure_subset $ ring.mem_closure ha theorem subset_closure : S ⊆ closure S := λ _, mem_closure theorem closure_subset {T : set F} (hT : is_subfield T) (H : S ⊆ T) : closure S ⊆ T := by rintros _ ⟨p, hp, q, hq, hq0, rfl⟩; exact hT.div_mem (ring.closure_subset hT.to_is_subring H hp) (ring.closure_subset hT.to_is_subring H hq) theorem closure_subset_iff {s t : set F} (ht : is_subfield t) : closure s ⊆ t ↔ s ⊆ t := ⟨set.subset.trans subset_closure, closure_subset ht⟩ theorem closure_mono {s t : set F} (H : s ⊆ t) : closure s ⊆ closure t := closure_subset closure.is_subfield $ set.subset.trans H subset_closure end field lemma is_subfield_Union_of_directed {ι : Type*} [hι : nonempty ι] {s : ι → set F} (hs : ∀ i, is_subfield (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) : is_subfield (⋃i, s i) := { inv_mem := λ x hx, let ⟨i, hi⟩ := set.mem_Union.1 hx in set.mem_Union.2 ⟨i, (hs i).inv_mem hi⟩, to_is_subring := is_subring_Union_of_directed (λ i, (hs i).to_is_subring) directed } lemma is_subfield.inter {S₁ S₂ : set F} (hS₁ : is_subfield S₁) (hS₂ : is_subfield S₂) : is_subfield (S₁ ∩ S₂) := { inv_mem := λ x hx, ⟨hS₁.inv_mem hx.1, hS₂.inv_mem hx.2⟩, ..is_subring.inter hS₁.to_is_subring hS₂.to_is_subring } lemma is_subfield.Inter {ι : Sort*} {S : ι → set F} (h : ∀ y : ι, is_subfield (S y)) : is_subfield (set.Inter S) := { inv_mem := λ x hx, set.mem_Inter.2 $ λ y, (h y).inv_mem $ set.mem_Inter.1 hx y, ..is_subring.Inter (λ y, (h y).to_is_subring) }
86fd14c7ec8c89c24983c6697ef3199e4e2a2028
63abd62053d479eae5abf4951554e1064a4c45b4
/src/data/finsupp/basic.lean
b33c567e7b050a05d0dbcff23b3a91288f7874fe
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
79,236
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Scott Morrison -/ import algebra.group.pi import algebra.big_operators.order import algebra.module.linear_map import data.fintype.card import data.finset.preimage import data.multiset.antidiagonal /-! # Type of functions with finite support For any type `α` and a type `M` with zero, we define the type `finsupp α M` (notation: `α →₀ M`) of finitely supported functions from `α` to `M`, i.e. the functions which are zero everywhere on `α` except on a finite set. Functions with finite support are used (at least) in the following parts of the library: * `monoid_algebra R M` and `add_monoid_algebra R M` are defined as `M →₀ R`; * polynomials and multivariate polynomials are defined as `add_monoid_algebra`s, hence they use `finsupp` under the hood; * the linear combination of a family of vectors `v i` with coefficients `f i` (as used, e.g., to define linearly independent family `linear_independent`) is defined as a map `finsupp.total : (ι → M) → (ι →₀ R) →ₗ[R] M`. Some other constructions are naturally equivalent to `α →₀ M` with some `α` and `M` but are defined in a different way in the library: * `multiset α ≃+ α →₀ ℕ`; * `free_abelian_group α ≃+ α →₀ ℤ`. Most of the theory assumes that the range is a commutative additive monoid. This gives us the big sum operator as a powerful way to construct `finsupp` elements. Many constructions based on `α →₀ M` use `semireducible` type tags to avoid reusing unwanted type instances. E.g., `monoid_algebra`, `add_monoid_algebra`, and types based on these two have non-pointwise multiplication. ## Notations This file adds `α →₀ M` as a global notation for `finsupp α M`. We also use the following convention for `Type*` variables in this file * `α`, `β`, `γ`: types with no additional structure that appear as the first argument to `finsupp` somewhere in the statement; * `ι` : an auxiliary index type; * `M`, `M'`, `N`, `P`: types with `has_zero` or `(add_)(comm_)monoid` structure; `M` is also used for a (semi)module over a (semi)ring. * `G`, `H`: groups (commutative or not, multiplicative or additive); * `R`, `S`: (semi)rings. ## TODO * This file is currently ~2K lines long, so possibly it should be splitted into smaller chunks; * Add the list of definitions and important lemmas to the module docstring. ## Implementation notes This file is a `noncomputable theory` and uses classical logic throughout. ## Notation This file defines `α →₀ β` as notation for `finsupp α β`. -/ noncomputable theory open_locale classical big_operators open finset variables {α β γ ι M M' N P G H R S : Type*} /-- `finsupp α M`, denoted `α →₀ M`, is the type of functions `f : α → M` such that `f x = 0` for all but finitely many `x`. -/ structure finsupp (α : Type*) (M : Type*) [has_zero M] := (support : finset α) (to_fun : α → M) (mem_support_to_fun : ∀a, a ∈ support ↔ to_fun a ≠ 0) infixr ` →₀ `:25 := finsupp namespace finsupp /-! ### Basic declarations about `finsupp` -/ section basic variable [has_zero M] instance : has_coe_to_fun (α →₀ M) := ⟨λ _, α → M, to_fun⟩ @[simp] lemma coe_mk (f : α → M) (s : finset α) (h : ∀ a, a ∈ s ↔ f a ≠ 0) : ⇑(⟨s, f, h⟩ : α →₀ M) = f := rfl instance : has_zero (α →₀ M) := ⟨⟨∅, (λ _, 0), λ _, ⟨false.elim, λ H, H rfl⟩⟩⟩ @[simp] lemma coe_zero : ⇑(0 : α →₀ M) = (λ _, (0:M)) := rfl lemma zero_apply {a : α} : (0 : α →₀ M) a = 0 := rfl @[simp] lemma support_zero : (0 : α →₀ M).support = ∅ := rfl instance : inhabited (α →₀ M) := ⟨0⟩ @[simp] lemma mem_support_iff {f : α →₀ M} : ∀{a:α}, a ∈ f.support ↔ f a ≠ 0 := f.mem_support_to_fun lemma not_mem_support_iff {f : α →₀ M} {a} : a ∉ f.support ↔ f a = 0 := not_iff_comm.1 mem_support_iff.symm lemma injective_coe_fn : function.injective (show (α →₀ M) → α → M, from coe_fn) | ⟨s, f, hf⟩ ⟨t, g, hg⟩ h := begin change f = g at h, subst h, have : s = t, { ext a, exact (hf a).trans (hg a).symm }, subst this end @[ext] lemma ext {f g : α →₀ M} (h : ∀a, f a = g a) : f = g := injective_coe_fn (funext h) lemma ext_iff {f g : α →₀ M} : f = g ↔ (∀a:α, f a = g a) := ⟨by rintros rfl a; refl, ext⟩ lemma ext_iff' {f g : α →₀ M} : f = g ↔ f.support = g.support ∧ ∀ x ∈ f.support, f x = g x := ⟨λ h, h ▸ ⟨rfl, λ _ _, rfl⟩, λ ⟨h₁, h₂⟩, ext $ λ a, if h : a ∈ f.support then h₂ a h else have hf : f a = 0, from not_mem_support_iff.1 h, have hg : g a = 0, by rwa [h₁, not_mem_support_iff] at h, by rw [hf, hg]⟩ @[simp] lemma support_eq_empty {f : α →₀ M} : f.support = ∅ ↔ f = 0 := ⟨assume h, ext $ assume a, by_contradiction $ λ H, (finset.ext_iff.1 h a).1 $ mem_support_iff.2 H, by rintro rfl; refl⟩ lemma card_support_eq_zero {f : α →₀ M} : card f.support = 0 ↔ f = 0 := by simp instance finsupp.decidable_eq [decidable_eq α] [decidable_eq M] : decidable_eq (α →₀ M) := assume f g, decidable_of_iff (f.support = g.support ∧ (∀a∈f.support, f a = g a)) ext_iff'.symm lemma finite_supp (f : α →₀ M) : set.finite {a | f a ≠ 0} := ⟨fintype.of_finset f.support (λ _, mem_support_iff)⟩ lemma support_subset_iff {s : set α} {f : α →₀ M} : ↑f.support ⊆ s ↔ (∀a∉s, f a = 0) := by simp only [set.subset_def, mem_coe, mem_support_iff]; exact forall_congr (assume a, not_imp_comm) /-- Given `fintype α`, `equiv_fun_on_fintype` is the `equiv` between `α →₀ β` and `α → β`. (All functions on a finite type are finitely supported.) -/ def equiv_fun_on_fintype [fintype α] : (α →₀ M) ≃ (α → M) := ⟨λf a, f a, λf, mk (finset.univ.filter $ λa, f a ≠ 0) f (by simp only [true_and, finset.mem_univ, iff_self, finset.mem_filter, finset.filter_congr_decidable, forall_true_iff]), begin intro f, ext a, refl end, begin intro f, ext a, refl end⟩ end basic /-! ### Declarations about `single` -/ section single variables [has_zero M] {a a' : α} {b : M} /-- `single a b` is the finitely supported function which has value `b` at `a` and zero otherwise. -/ def single (a : α) (b : M) : α →₀ M := ⟨if b = 0 then ∅ else {a}, λ a', if a = a' then b else 0, λ a', begin by_cases hb : b = 0; by_cases a = a'; simp only [hb, h, if_pos, if_false, mem_singleton], { exact ⟨false.elim, λ H, H rfl⟩ }, { exact ⟨false.elim, λ H, H rfl⟩ }, { exact ⟨λ _, hb, λ _, rfl⟩ }, { exact ⟨λ H _, h H.symm, λ H, (H rfl).elim⟩ } end⟩ lemma single_apply : (single a b : α →₀ M) a' = if a = a' then b else 0 := rfl @[simp] lemma single_eq_same : (single a b : α →₀ M) a = b := if_pos rfl @[simp] lemma single_eq_of_ne (h : a ≠ a') : (single a b : α →₀ M) a' = 0 := if_neg h @[simp] lemma single_zero : (single a 0 : α →₀ M) = 0 := ext $ assume a', begin by_cases h : a = a', { rw [h, single_eq_same, zero_apply] }, { rw [single_eq_of_ne h, zero_apply] } end lemma support_single_ne_zero (hb : b ≠ 0) : (single a b).support = {a} := if_neg hb lemma support_single_subset : (single a b).support ⊆ {a} := show ite _ _ _ ⊆ _, by split_ifs; [exact empty_subset _, exact subset.refl _] lemma single_injective (a : α) : function.injective (single a : M → α →₀ M) := assume b₁ b₂ eq, have (single a b₁ : α →₀ M) a = (single a b₂ : α →₀ M) a, by rw eq, by rwa [single_eq_same, single_eq_same] at this lemma mem_support_single (a a' : α) (b : M) : a ∈ (single a' b).support ↔ a = a' ∧ b ≠ 0 := ⟨λ H : (a ∈ ite _ _ _), if h : b = 0 then by rw if_pos h at H; exact H.elim else ⟨by rw if_neg h at H; exact mem_singleton.1 H, h⟩, λ ⟨h1, h2⟩, show a ∈ ite _ _ _, by rw [if_neg h2]; exact mem_singleton.2 h1⟩ lemma eq_single_iff {f : α →₀ M} {a b} : f = single a b ↔ f.support ⊆ {a} ∧ f a = b := begin refine ⟨λ h, h.symm ▸ ⟨support_single_subset, single_eq_same⟩, _⟩, rintro ⟨h, rfl⟩, ext x, by_cases hx : a = x; simp only [hx, single_eq_same, single_eq_of_ne, ne.def, not_false_iff], exact not_mem_support_iff.1 (mt (λ hx, (mem_singleton.1 (h hx)).symm) hx) end lemma single_eq_single_iff (a₁ a₂ : α) (b₁ b₂ : M) : single a₁ b₁ = single a₂ b₂ ↔ ((a₁ = a₂ ∧ b₁ = b₂) ∨ (b₁ = 0 ∧ b₂ = 0)) := begin split, { assume eq, by_cases a₁ = a₂, { refine or.inl ⟨h, _⟩, rwa [h, (single_injective a₂).eq_iff] at eq }, { rw [ext_iff] at eq, have h₁ := eq a₁, have h₂ := eq a₂, simp only [single_eq_same, single_eq_of_ne h, single_eq_of_ne (ne.symm h)] at h₁ h₂, exact or.inr ⟨h₁, h₂.symm⟩ } }, { rintros (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩), { refl }, { rw [single_zero, single_zero] } } end lemma single_left_inj (h : b ≠ 0) : single a b = single a' b ↔ a = a' := ⟨λ H, by simpa only [h, single_eq_single_iff, and_false, or_false, eq_self_iff_true, and_true] using H, λ H, by rw [H]⟩ lemma single_eq_zero : single a b = 0 ↔ b = 0 := ⟨λ h, by { rw ext_iff at h, simpa only [single_eq_same, zero_apply] using h a }, λ h, by rw [h, single_zero]⟩ lemma single_swap (a₁ a₂ : α) (b : M) : single a₁ b a₂ = single a₂ b a₁ := by simp only [single_apply]; ac_refl instance [nonempty α] [nontrivial M] : nontrivial (α →₀ M) := begin inhabit α, rcases exists_ne (0 : M) with ⟨x, hx⟩, exact nontrivial_of_ne (single (default α) x) 0 (mt single_eq_zero.1 hx) end lemma unique_single [unique α] (x : α →₀ M) : x = single (default α) (x (default α)) := ext $ unique.forall_iff.2 single_eq_same.symm lemma unique_ext [unique α] {f g : α →₀ M} (h : f (default α) = g (default α)) : f = g := ext $ λ a, by rwa [unique.eq_default a] lemma unique_ext_iff [unique α] {f g : α →₀ M} : f = g ↔ f (default α) = g (default α) := ⟨λ h, h ▸ rfl, unique_ext⟩ @[simp] lemma unique_single_eq_iff [unique α] {b' : M} : single a b = single a' b' ↔ b = b' := by rw [unique_ext_iff, unique.eq_default a, unique.eq_default a', single_eq_same, single_eq_same] lemma support_eq_singleton {f : α →₀ M} {a : α} : f.support = {a} ↔ f a ≠ 0 ∧ f = single a (f a) := ⟨λ h, ⟨mem_support_iff.1 $ h.symm ▸ finset.mem_singleton_self a, eq_single_iff.2 ⟨subset_of_eq h, rfl⟩⟩, λ h, h.2.symm ▸ support_single_ne_zero h.1⟩ lemma support_eq_singleton' {f : α →₀ M} {a : α} : f.support = {a} ↔ ∃ b ≠ 0, f = single a b := ⟨λ h, let h := support_eq_singleton.1 h in ⟨_, h.1, h.2⟩, λ ⟨b, hb, hf⟩, hf.symm ▸ support_single_ne_zero hb⟩ lemma card_support_eq_one {f : α →₀ M} : card f.support = 1 ↔ ∃ a, f a ≠ 0 ∧ f = single a (f a) := by simp only [card_eq_one, support_eq_singleton] lemma card_support_eq_one' {f : α →₀ M} : card f.support = 1 ↔ ∃ a (b ≠ 0), f = single a b := by simp only [card_eq_one, support_eq_singleton'] end single /-! ### Declarations about `on_finset` -/ section on_finset variables [has_zero M] /-- `on_finset s f hf` is the finsupp function representing `f` restricted to the finset `s`. The function needs to be `0` outside of `s`. Use this when the set needs to be filtered anyways, otherwise a better set representation is often available. -/ def on_finset (s : finset α) (f : α → M) (hf : ∀a, f a ≠ 0 → a ∈ s) : α →₀ M := ⟨s.filter (λa, f a ≠ 0), f, by simpa⟩ @[simp] lemma on_finset_apply {s : finset α} {f : α → M} {hf a} : (on_finset s f hf : α →₀ M) a = f a := rfl @[simp] lemma support_on_finset_subset {s : finset α} {f : α → M} {hf} : (on_finset s f hf).support ⊆ s := filter_subset _ @[simp] lemma mem_support_on_finset {s : finset α} {f : α → M} (hf : ∀ (a : α), f a ≠ 0 → a ∈ s) {a : α} : a ∈ (finsupp.on_finset s f hf).support ↔ f a ≠ 0 := by rw [finsupp.mem_support_iff, finsupp.on_finset_apply] lemma support_on_finset {s : finset α} {f : α → M} (hf : ∀ (a : α), f a ≠ 0 → a ∈ s) : (finsupp.on_finset s f hf).support = s.filter (λ a, f a ≠ 0) := rfl end on_finset /-! ### Declarations about `map_range` -/ section map_range variables [has_zero M] [has_zero N] /-- The composition of `f : M → N` and `g : α →₀ M` is `map_range f hf g : α →₀ N`, well-defined when `f 0 = 0`. -/ def map_range (f : M → N) (hf : f 0 = 0) (g : α →₀ M) : α →₀ N := on_finset g.support (f ∘ g) $ assume a, by rw [mem_support_iff, not_imp_not]; exact λ H, (congr_arg f H).trans hf @[simp] lemma map_range_apply {f : M → N} {hf : f 0 = 0} {g : α →₀ M} {a : α} : map_range f hf g a = f (g a) := rfl @[simp] lemma map_range_zero {f : M → N} {hf : f 0 = 0} : map_range f hf (0 : α →₀ M) = 0 := ext $ λ a, by simp only [hf, zero_apply, map_range_apply] lemma support_map_range {f : M → N} {hf : f 0 = 0} {g : α →₀ M} : (map_range f hf g).support ⊆ g.support := support_on_finset_subset @[simp] lemma map_range_single {f : M → N} {hf : f 0 = 0} {a : α} {b : M} : map_range f hf (single a b) = single a (f b) := ext $ λ a', show f (ite _ _ _) = ite _ _ _, by split_ifs; [refl, exact hf] end map_range /-! ### Declarations about `emb_domain` -/ section emb_domain variables [has_zero M] [has_zero N] /-- Given `f : α ↪ β` and `v : α →₀ M`, `emb_domain f v : β →₀ M` is the finitely supported function whose value at `f a : β` is `v a`. For a `b : β` outside the range of `f`, it is zero. -/ def emb_domain (f : α ↪ β) (v : α →₀ M) : β →₀ M := begin refine ⟨v.support.map f, λa₂, if h : a₂ ∈ v.support.map f then v (v.support.choose (λa₁, f a₁ = a₂) _) else 0, _⟩, { rcases finset.mem_map.1 h with ⟨a, ha, rfl⟩, exact exists_unique.intro a ⟨ha, rfl⟩ (assume b ⟨_, hb⟩, f.injective hb) }, { assume a₂, split_ifs, { simp only [h, true_iff, ne.def], rw [← not_mem_support_iff, not_not], apply finset.choose_mem }, { simp only [h, ne.def, ne_self_iff_false] } } end @[simp] lemma support_emb_domain (f : α ↪ β) (v : α →₀ M) : (emb_domain f v).support = v.support.map f := rfl @[simp] lemma emb_domain_zero (f : α ↪ β) : (emb_domain f 0 : β →₀ M) = 0 := rfl @[simp] lemma emb_domain_apply (f : α ↪ β) (v : α →₀ M) (a : α) : emb_domain f v (f a) = v a := begin change dite _ _ _ = _, split_ifs; rw [finset.mem_map' f] at h, { refine congr_arg (v : α → M) (f.inj' _), exact finset.choose_property (λa₁, f a₁ = f a) _ _ }, { exact (not_mem_support_iff.1 h).symm } end lemma emb_domain_notin_range (f : α ↪ β) (v : α →₀ M) (a : β) (h : a ∉ set.range f) : emb_domain f v a = 0 := begin refine dif_neg (mt (assume h, _) h), rcases finset.mem_map.1 h with ⟨a, h, rfl⟩, exact set.mem_range_self a end lemma emb_domain_injective (f : α ↪ β) : function.injective (emb_domain f : (α →₀ M) → (β →₀ M)) := λ l₁ l₂ h, ext $ λ a, by simpa only [emb_domain_apply] using ext_iff.1 h (f a) @[simp] lemma emb_domain_inj {f : α ↪ β} {l₁ l₂ : α →₀ M} : emb_domain f l₁ = emb_domain f l₂ ↔ l₁ = l₂ := (emb_domain_injective f).eq_iff @[simp] lemma emb_domain_eq_zero {f : α ↪ β} {l : α →₀ M} : emb_domain f l = 0 ↔ l = 0 := (emb_domain_injective f).eq_iff' $ emb_domain_zero f lemma emb_domain_map_range (f : α ↪ β) (g : M → N) (p : α →₀ M) (hg : g 0 = 0) : emb_domain f (map_range g hg p) = map_range g hg (emb_domain f p) := begin ext a, by_cases a ∈ set.range f, { rcases h with ⟨a', rfl⟩, rw [map_range_apply, emb_domain_apply, emb_domain_apply, map_range_apply] }, { rw [map_range_apply, emb_domain_notin_range, emb_domain_notin_range, ← hg]; assumption } end lemma single_of_emb_domain_single (l : α →₀ M) (f : α ↪ β) (a : β) (b : M) (hb : b ≠ 0) (h : l.emb_domain f = single a b) : ∃ x, l = single x b ∧ f x = a := begin have h_map_support : finset.map f (l.support) = {a}, by rw [←support_emb_domain, h, support_single_ne_zero hb]; refl, have ha : a ∈ finset.map f (l.support), by simp only [h_map_support, finset.mem_singleton], rcases finset.mem_map.1 ha with ⟨c, hc₁, hc₂⟩, use c, split, { ext d, rw [← emb_domain_apply f l, h], by_cases h_cases : c = d, { simp only [eq.symm h_cases, hc₂, single_eq_same] }, { rw [single_apply, single_apply, if_neg, if_neg h_cases], by_contra hfd, exact h_cases (f.injective (hc₂.trans hfd)) } }, { exact hc₂ } end end emb_domain /-! ### Declarations about `zip_with` -/ section zip_with variables [has_zero M] [has_zero N] [has_zero P] /-- `zip_with f hf g₁ g₂` is the finitely supported function satisfying `zip_with f hf g₁ g₂ a = f (g₁ a) (g₂ a)`, and it is well-defined when `f 0 0 = 0`. -/ def zip_with (f : M → N → P) (hf : f 0 0 = 0) (g₁ : α →₀ M) (g₂ : α →₀ N) : (α →₀ P) := on_finset (g₁.support ∪ g₂.support) (λa, f (g₁ a) (g₂ a)) $ λ a H, begin simp only [mem_union, mem_support_iff, ne], rw [← not_and_distrib], rintro ⟨h₁, h₂⟩, rw [h₁, h₂] at H, exact H hf end @[simp] lemma zip_with_apply {f : M → N → P} {hf : f 0 0 = 0} {g₁ : α →₀ M} {g₂ : α →₀ N} {a : α} : zip_with f hf g₁ g₂ a = f (g₁ a) (g₂ a) := rfl lemma support_zip_with {f : M → N → P} {hf : f 0 0 = 0} {g₁ : α →₀ M} {g₂ : α →₀ N} : (zip_with f hf g₁ g₂).support ⊆ g₁.support ∪ g₂.support := support_on_finset_subset end zip_with /-! ### Declarations about `erase` -/ section erase variables [has_zero M] /-- `erase a f` is the finitely supported function equal to `f` except at `a` where it is equal to `0`. -/ def erase (a : α) (f : α →₀ M) : α →₀ M := ⟨f.support.erase a, (λa', if a' = a then 0 else f a'), assume a', by rw [mem_erase, mem_support_iff]; split_ifs; [exact ⟨λ H _, H.1 h, λ H, (H rfl).elim⟩, exact and_iff_right h]⟩ @[simp] lemma support_erase {a : α} {f : α →₀ M} : (f.erase a).support = f.support.erase a := rfl @[simp] lemma erase_same {a : α} {f : α →₀ M} : (f.erase a) a = 0 := if_pos rfl @[simp] lemma erase_ne {a a' : α} {f : α →₀ M} (h : a' ≠ a) : (f.erase a) a' = f a' := if_neg h @[simp] lemma erase_single {a : α} {b : M} : (erase a (single a b)) = 0 := begin ext s, by_cases hs : s = a, { rw [hs, erase_same], refl }, { rw [erase_ne hs], exact single_eq_of_ne (ne.symm hs) } end lemma erase_single_ne {a a' : α} {b : M} (h : a ≠ a') : (erase a (single a' b)) = single a' b := begin ext s, by_cases hs : s = a, { rw [hs, erase_same, single_eq_of_ne (h.symm)] }, { rw [erase_ne hs] } end @[simp] lemma erase_zero (a : α) : erase a (0 : α →₀ M) = 0 := by rw [← support_eq_empty, support_erase, support_zero, erase_empty] end erase /-! ### Declarations about `sum` and `prod` In most of this section, the domain `β` is assumed to be an `add_monoid`. -/ section sum_prod -- [to_additive sum] for finsupp.prod doesn't work, the equation lemmas are not generated /-- `sum f g` is the sum of `g a (f a)` over the support of `f`. -/ def sum [has_zero M] [add_comm_monoid N] (f : α →₀ M) (g : α → M → N) : N := ∑ a in f.support, g a (f a) /-- `prod f g` is the product of `g a (f a)` over the support of `f`. -/ @[to_additive] def prod [has_zero M] [comm_monoid N] (f : α →₀ M) (g : α → M → N) : N := ∏ a in f.support, g a (f a) variables [has_zero M] [has_zero M'] [comm_monoid N] @[to_additive] lemma prod_of_support_subset (f : α →₀ M) {s : finset α} (hs : f.support ⊆ s) (g : α → M → N) (h : ∀ i ∈ s, g i 0 = 1) : f.prod g = ∏ x in s, g x (f x) := finset.prod_subset hs $ λ x hxs hx, h x hxs ▸ congr_arg (g x) $ not_mem_support_iff.1 hx @[to_additive] lemma prod_fintype [fintype α] (f : α →₀ M) (g : α → M → N) (h : ∀ i, g i 0 = 1) : f.prod g = ∏ i, g i (f i) := f.prod_of_support_subset (subset_univ _) g (λ x _, h x) @[simp, to_additive] lemma prod_single_index {a : α} {b : M} {h : α → M → N} (h_zero : h a 0 = 1) : (single a b).prod h = h a b := calc (single a b).prod h = ∏ x in {a}, h x (single a b x) : prod_of_support_subset _ support_single_subset h $ λ x hx, (mem_singleton.1 hx).symm ▸ h_zero ... = h a b : by simp @[to_additive] lemma prod_map_range_index {f : M → M'} {hf : f 0 = 0} {g : α →₀ M} {h : α → M' → N} (h0 : ∀a, h a 0 = 1) : (map_range f hf g).prod h = g.prod (λa b, h a (f b)) := finset.prod_subset support_map_range $ λ _ _ H, by rw [not_mem_support_iff.1 H, h0] @[simp, to_additive] lemma prod_zero_index {h : α → M → N} : (0 : α →₀ M).prod h = 1 := rfl @[to_additive] lemma prod_comm (f : α →₀ M) (g : β →₀ M') (h : α → M → β → M' → N) : f.prod (λ x v, g.prod (λ x' v', h x v x' v')) = g.prod (λ x' v', f.prod (λ x v, h x v x' v')) := finset.prod_comm @[simp, to_additive] lemma prod_ite_eq (f : α →₀ M) (a : α) (b : α → M → N) : f.prod (λ x v, ite (a = x) (b x v) 1) = ite (a ∈ f.support) (b a (f a)) 1 := by { dsimp [finsupp.prod], rw f.support.prod_ite_eq, } /-- A restatement of `prod_ite_eq` with the equality test reversed. -/ @[simp, to_additive "A restatement of `sum_ite_eq` with the equality test reversed."] lemma prod_ite_eq' (f : α →₀ M) (a : α) (b : α → M → N) : f.prod (λ x v, ite (x = a) (b x v) 1) = ite (a ∈ f.support) (b a (f a)) 1 := by { dsimp [finsupp.prod], rw f.support.prod_ite_eq', } @[simp] lemma prod_pow [fintype α] (f : α →₀ ℕ) (g : α → N) : f.prod (λ a b, g a ^ b) = ∏ a, g a ^ (f a) := f.prod_fintype _ $ λ a, pow_zero _ /-- If `g` maps a second argument of 0 to 1, then multiplying it over the result of `on_finset` is the same as multiplying it over the original `finset`. -/ @[to_additive "If `g` maps a second argument of 0 to 0, summing it over the result of `on_finset` is the same as summing it over the original `finset`."] lemma on_finset_prod {s : finset α} {f : α → M} {g : α → M → N} (hf : ∀a, f a ≠ 0 → a ∈ s) (hg : ∀ a, g a 0 = 1) : (on_finset s f hf).prod g = ∏ a in s, g a (f a) := finset.prod_subset support_on_finset_subset $ by simp [*] { contextual := tt } end sum_prod /-! ### Additive monoid structure on `α →₀ M` -/ section add_monoid variables [add_monoid M] instance : has_add (α →₀ M) := ⟨zip_with (+) (add_zero 0)⟩ @[simp] lemma add_apply {g₁ g₂ : α →₀ M} {a : α} : (g₁ + g₂) a = g₁ a + g₂ a := rfl lemma support_add {g₁ g₂ : α →₀ M} : (g₁ + g₂).support ⊆ g₁.support ∪ g₂.support := support_zip_with lemma support_add_eq {g₁ g₂ : α →₀ M} (h : disjoint g₁.support g₂.support) : (g₁ + g₂).support = g₁.support ∪ g₂.support := le_antisymm support_zip_with $ assume a ha, (finset.mem_union.1 ha).elim (assume ha, have a ∉ g₂.support, from disjoint_left.1 h ha, by simp only [mem_support_iff, not_not] at *; simpa only [add_apply, this, add_zero]) (assume ha, have a ∉ g₁.support, from disjoint_right.1 h ha, by simp only [mem_support_iff, not_not] at *; simpa only [add_apply, this, zero_add]) @[simp] lemma single_add {a : α} {b₁ b₂ : M} : single a (b₁ + b₂) = single a b₁ + single a b₂ := ext $ assume a', begin by_cases h : a = a', { rw [h, add_apply, single_eq_same, single_eq_same, single_eq_same] }, { rw [add_apply, single_eq_of_ne h, single_eq_of_ne h, single_eq_of_ne h, zero_add] } end instance : add_monoid (α →₀ M) := { add_monoid . zero := 0, add := (+), add_assoc := assume ⟨s, f, hf⟩ ⟨t, g, hg⟩ ⟨u, h, hh⟩, ext $ assume a, add_assoc _ _ _, zero_add := assume ⟨s, f, hf⟩, ext $ assume a, zero_add _, add_zero := assume ⟨s, f, hf⟩, ext $ assume a, add_zero _ } /-- `finsupp.single` as an `add_monoid_hom`. -/ @[simps] def single_add_hom (a : α) : M →+ α →₀ M := ⟨single a, single_zero, λ _ _, single_add⟩ /-- Evaluation of a function `f : α →₀ M` at a point as an additive monoid homomorphism. -/ def eval_add_hom (a : α) : (α →₀ M) →+ M := ⟨λ g, g a, zero_apply, λ _ _, add_apply⟩ @[simp] lemma eval_add_hom_apply (a : α) (g : α →₀ M) : eval_add_hom a g = g a := rfl lemma single_add_erase (a : α) (f : α →₀ M) : single a (f a) + f.erase a = f := ext $ λ a', if h : a = a' then by subst h; simp only [add_apply, single_eq_same, erase_same, add_zero] else by simp only [add_apply, single_eq_of_ne h, zero_add, erase_ne (ne.symm h)] lemma erase_add_single (a : α) (f : α →₀ M) : f.erase a + single a (f a) = f := ext $ λ a', if h : a = a' then by subst h; simp only [add_apply, single_eq_same, erase_same, zero_add] else by simp only [add_apply, single_eq_of_ne h, add_zero, erase_ne (ne.symm h)] @[simp] lemma erase_add (a : α) (f f' : α →₀ M) : erase a (f + f') = erase a f + erase a f' := begin ext s, by_cases hs : s = a, { rw [hs, add_apply, erase_same, erase_same, erase_same, add_zero] }, rw [add_apply, erase_ne hs, erase_ne hs, erase_ne hs, add_apply], end @[elab_as_eliminator] protected theorem induction {p : (α →₀ M) → Prop} (f : α →₀ M) (h0 : p 0) (ha : ∀a b (f : α →₀ M), a ∉ f.support → b ≠ 0 → p f → p (single a b + f)) : p f := suffices ∀s (f : α →₀ M), f.support = s → p f, from this _ _ rfl, assume s, finset.induction_on s (λ f hf, by rwa [support_eq_empty.1 hf]) $ assume a s has ih f hf, suffices p (single a (f a) + f.erase a), by rwa [single_add_erase] at this, begin apply ha, { rw [support_erase, mem_erase], exact λ H, H.1 rfl }, { rw [← mem_support_iff, hf], exact mem_insert_self _ _ }, { apply ih _ _, rw [support_erase, hf, finset.erase_insert has] } end lemma induction₂ {p : (α →₀ M) → Prop} (f : α →₀ M) (h0 : p 0) (ha : ∀a b (f : α →₀ M), a ∉ f.support → b ≠ 0 → p f → p (f + single a b)) : p f := suffices ∀s (f : α →₀ M), f.support = s → p f, from this _ _ rfl, assume s, finset.induction_on s (λ f hf, by rwa [support_eq_empty.1 hf]) $ assume a s has ih f hf, suffices p (f.erase a + single a (f a)), by rwa [erase_add_single] at this, begin apply ha, { rw [support_erase, mem_erase], exact λ H, H.1 rfl }, { rw [← mem_support_iff, hf], exact mem_insert_self _ _ }, { apply ih _ _, rw [support_erase, hf, finset.erase_insert has] } end @[simp] lemma add_closure_Union_range_single : add_submonoid.closure (⋃ a : α, set.range (single a : M → α →₀ M)) = ⊤ := top_unique $ λ x hx, finsupp.induction x (add_submonoid.zero_mem _) $ λ a b f ha hb hf, add_submonoid.add_mem _ (add_submonoid.subset_closure $ set.mem_Union.2 ⟨a, set.mem_range_self _⟩) hf /-- If two additive homomorphisms from `α →₀ M` are equal on each `single a b`, then they are equal. -/ lemma add_hom_ext [add_monoid N] ⦃f g : (α →₀ M) →+ N⦄ (H : ∀ x y, f (single x y) = g (single x y)) : f = g := begin refine add_monoid_hom.eq_of_eq_on_mdense add_closure_Union_range_single (λ f hf, _), simp only [set.mem_Union, set.mem_range] at hf, rcases hf with ⟨x, y, rfl⟩, apply H end /-- If two additive homomorphisms from `α →₀ M` are equal on each `single a b`, then they are equal. We formulate this using equality of `add_monoid_hom`s so that `ext` tactic can apply a type-specific extensionality lemma after this one. E.g., if the fiber `M` is `ℕ` or `ℤ`, then it suffices to verify `f (single a 1) = g (single a 1)`. -/ @[ext] lemma add_hom_ext' [add_monoid N] ⦃f g : (α →₀ M) →+ N⦄ (H : ∀ x, f.comp (single_add_hom x) = g.comp (single_add_hom x)) : f = g := add_hom_ext $ λ x, add_monoid_hom.congr_fun (H x) lemma mul_hom_ext [monoid N] ⦃f g : multiplicative (α →₀ M) →* N⦄ (H : ∀ x y, f (multiplicative.of_add $ single x y) = g (multiplicative.of_add $ single x y)) : f = g := monoid_hom.ext $ add_monoid_hom.congr_fun $ @add_hom_ext α M (additive N) _ _ f.to_additive'' g.to_additive'' H @[ext] lemma mul_hom_ext' [monoid N] {f g : multiplicative (α →₀ M) →* N} (H : ∀ x, f.comp (single_add_hom x).to_multiplicative = g.comp (single_add_hom x).to_multiplicative) : f = g := mul_hom_ext $ λ x, monoid_hom.congr_fun (H x) lemma map_range_add [add_monoid N] {f : M → N} {hf : f 0 = 0} (hf' : ∀ x y, f (x + y) = f x + f y) (v₁ v₂ : α →₀ M) : map_range f hf (v₁ + v₂) = map_range f hf v₁ + map_range f hf v₂ := ext $ λ a, by simp only [hf', add_apply, map_range_apply] end add_monoid section nat_sub instance nat_sub : has_sub (α →₀ ℕ) := ⟨zip_with (λ m n, m - n) (nat.sub_zero 0)⟩ @[simp] lemma nat_sub_apply {g₁ g₂ : α →₀ ℕ} {a : α} : (g₁ - g₂) a = g₁ a - g₂ a := rfl @[simp] lemma single_sub {a : α} {n₁ n₂ : ℕ} : single a (n₁ - n₂) = single a n₁ - single a n₂ := begin ext f, by_cases h : (a = f), { rw [h, nat_sub_apply, single_eq_same, single_eq_same, single_eq_same] }, rw [nat_sub_apply, single_eq_of_ne h, single_eq_of_ne h, single_eq_of_ne h] end -- These next two lemmas are used in developing -- the partial derivative on `mv_polynomial`. lemma sub_single_one_add {a : α} {u u' : α →₀ ℕ} (h : u a ≠ 0) : u - single a 1 + u' = u + u' - single a 1 := begin ext b, rw [add_apply, nat_sub_apply, nat_sub_apply, add_apply], by_cases h : a = b, { rw [←h, single_eq_same], cases (u a), { contradiction }, { simp }, }, { simp [h], } end lemma add_sub_single_one {a : α} {u u' : α →₀ ℕ} (h : u' a ≠ 0) : u + (u' - single a 1) = u + u' - single a 1 := begin ext b, rw [add_apply, nat_sub_apply, nat_sub_apply, add_apply], by_cases h : a = b, { rw [←h, single_eq_same], cases (u' a), { contradiction }, { simp }, }, { simp [h], } end end nat_sub instance [add_comm_monoid M] : add_comm_monoid (α →₀ M) := { add_comm := assume ⟨s, f, _⟩ ⟨t, g, _⟩, ext $ assume a, add_comm _ _, .. finsupp.add_monoid } instance [add_group G] : add_group (α →₀ G) := { neg := map_range (has_neg.neg) neg_zero, add_left_neg := assume ⟨s, f, _⟩, ext $ assume x, add_left_neg _, .. finsupp.add_monoid } instance [add_comm_group G] : add_comm_group (α →₀ G) := { add_comm := add_comm, ..finsupp.add_group } lemma single_multiset_sum [add_comm_monoid M] (s : multiset M) (a : α) : single a s.sum = (s.map (single a)).sum := multiset.induction_on s single_zero $ λ a s ih, by rw [multiset.sum_cons, single_add, ih, multiset.map_cons, multiset.sum_cons] lemma single_finset_sum [add_comm_monoid M] (s : finset ι) (f : ι → M) (a : α) : single a (∑ b in s, f b) = ∑ b in s, single a (f b) := begin transitivity, apply single_multiset_sum, rw [multiset.map_map], refl end lemma single_sum [has_zero M] [add_comm_monoid N] (s : ι →₀ M) (f : ι → M → N) (a : α) : single a (s.sum f) = s.sum (λd c, single a (f d c)) := single_finset_sum _ _ _ @[to_additive] lemma prod_neg_index [add_group G] [comm_monoid M] {g : α →₀ G} {h : α → G → M} (h0 : ∀a, h a 0 = 1) : (-g).prod h = g.prod (λa b, h a (- b)) := prod_map_range_index h0 @[simp] lemma neg_apply [add_group G] {g : α →₀ G} {a : α} : (- g) a = - g a := rfl @[simp] lemma sub_apply [add_group G] {g₁ g₂ : α →₀ G} {a : α} : (g₁ - g₂) a = g₁ a - g₂ a := rfl @[simp] lemma support_neg [add_group G] {f : α →₀ G} : support (-f) = support f := finset.subset.antisymm support_map_range (calc support f = support (- (- f)) : congr_arg support (neg_neg _).symm ... ⊆ support (- f) : support_map_range) @[simp] lemma sum_apply [has_zero M] [add_comm_monoid N] {f : α →₀ M} {g : α → M → β →₀ N} {a₂ : β} : (f.sum g) a₂ = f.sum (λa₁ b, g a₁ b a₂) := (eval_add_hom a₂ : (β →₀ N) →+ _).map_sum _ _ lemma support_sum [has_zero M] [add_comm_monoid N] {f : α →₀ M} {g : α → M → (β →₀ N)} : (f.sum g).support ⊆ f.support.bind (λa, (g a (f a)).support) := have ∀ c, f.sum (λ a b, g a b c) ≠ 0 → (∃ a, f a ≠ 0 ∧ ¬ (g a (f a)) c = 0), from assume a₁ h, let ⟨a, ha, ne⟩ := finset.exists_ne_zero_of_sum_ne_zero h in ⟨a, mem_support_iff.mp ha, ne⟩, by simpa only [finset.subset_iff, mem_support_iff, finset.mem_bind, sum_apply, exists_prop] @[simp] lemma sum_zero [has_zero M] [add_comm_monoid N] {f : α →₀ M} : f.sum (λa b, (0 : N)) = 0 := finset.sum_const_zero @[simp, to_additive] lemma prod_mul [has_zero M] [comm_monoid N] {f : α →₀ M} {h₁ h₂ : α → M → N} : f.prod (λa b, h₁ a b * h₂ a b) = f.prod h₁ * f.prod h₂ := finset.prod_mul_distrib @[simp, to_additive] lemma prod_inv [has_zero M] [comm_group G] {f : α →₀ M} {h : α → M → G} : f.prod (λa b, (h a b)⁻¹) = (f.prod h)⁻¹ := (((monoid_hom.id G)⁻¹).map_prod _ _).symm @[simp] lemma sum_sub [has_zero M] [add_comm_group G] {f : α →₀ M} {h₁ h₂ : α → M → G} : f.sum (λa b, h₁ a b - h₂ a b) = f.sum h₁ - f.sum h₂ := finset.sum_sub_distrib @[to_additive] lemma prod_add_index [add_comm_monoid M] [comm_monoid N] {f g : α →₀ M} {h : α → M → N} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (f + g).prod h = f.prod h * g.prod h := have hf : f.prod h = ∏ a in f.support ∪ g.support, h a (f a), from f.prod_of_support_subset (subset_union_left _ _) _ $ λ a ha, h_zero a, have hg : g.prod h = ∏ a in f.support ∪ g.support, h a (g a), from g.prod_of_support_subset (subset_union_right _ _) _ $ λ a ha, h_zero a, have hfg : (f + g).prod h = ∏ a in f.support ∪ g.support, h a ((f + g) a), from (f + g).prod_of_support_subset support_add _ $ λ a ha, h_zero a, by simp only [*, add_apply, prod_mul_distrib] @[simp] lemma sum_add_index' [add_comm_monoid M] [add_comm_monoid N] {f g : α →₀ M} (h : α → M →+ N) : (f + g).sum (λ x, h x) = f.sum (λ x, h x) + g.sum (λ x, h x) := sum_add_index (λ a, (h a).map_zero) (λ a, (h a).map_add) @[simp] lemma prod_add_index' [add_comm_monoid M] [comm_monoid N] {f g : α →₀ M} (h : α → multiplicative M →* N) : (f + g).prod (λ a b, h a (multiplicative.of_add b)) = f.prod (λ a b, h a (multiplicative.of_add b)) * g.prod (λ a b, h a (multiplicative.of_add b)) := prod_add_index (λ a, (h a).map_one) (λ a, (h a).map_mul) /-- The canonical isomorphism between families of additive monoid homomorphisms `α → (M →+ N)` and monoid homomorphisms `(α →₀ M) →+ N`. -/ def lift_add_hom [add_comm_monoid M] [add_comm_monoid N] : (α → M →+ N) ≃+ ((α →₀ M) →+ N) := { to_fun := λ F, { to_fun := λ f, f.sum (λ x, F x), map_zero' := finset.sum_empty, map_add' := λ _ _, sum_add_index (λ x, (F x).map_zero) (λ x, (F x).map_add) }, inv_fun := λ F x, F.comp $ single_add_hom x, left_inv := λ F, by { ext, simp }, right_inv := λ F, by { ext, simp }, map_add' := λ F G, by { ext, simp } } @[simp] lemma lift_add_hom_apply [add_comm_monoid M] [add_comm_monoid N] (F : α → M →+ N) (f : α →₀ M) : lift_add_hom F f = f.sum (λ x, F x) := rfl @[simp] lemma lift_add_hom_symm_apply [add_comm_monoid M] [add_comm_monoid N] (F : (α →₀ M) →+ N) (x : α) : lift_add_hom.symm F x = F.comp (single_add_hom x) := rfl lemma lift_add_hom_symm_apply_apply [add_comm_monoid M] [add_comm_monoid N] (F : (α →₀ M) →+ N) (x : α) (y : M) : lift_add_hom.symm F x y = F (single x y) := rfl @[simp] lemma lift_add_hom_single_add_hom [add_comm_monoid M] : lift_add_hom (single_add_hom : α → M →+ α →₀ M) = add_monoid_hom.id _ := lift_add_hom.to_equiv.apply_eq_iff_eq_symm_apply.2 rfl @[simp] lemma sum_single [add_comm_monoid M] (f : α →₀ M) : f.sum single = f := add_monoid_hom.congr_fun lift_add_hom_single_add_hom f @[simp] lemma lift_add_hom_apply_single [add_comm_monoid M] [add_comm_monoid N] (f : α → M →+ N) (a : α) (b : M) : lift_add_hom f (single a b) = f a b := sum_single_index (f a).map_zero @[simp] lemma lift_add_hom_comp_single [add_comm_monoid M] [add_comm_monoid N] (f : α → M →+ N) (a : α) : (lift_add_hom f).comp (single_add_hom a) = f a := add_monoid_hom.ext $ λ b, lift_add_hom_apply_single f a b lemma comp_lift_add_hom [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P] (g : N →+ P) (f : α → M →+ N) : g.comp (lift_add_hom f) = lift_add_hom (λ a, g.comp (f a)) := lift_add_hom.symm_apply_eq.1 $ funext $ λ a, by rw [lift_add_hom_symm_apply, add_monoid_hom.comp_assoc, lift_add_hom_comp_single] lemma sum_sub_index [add_comm_group β] [add_comm_group γ] {f g : α →₀ β} {h : α → β → γ} (h_sub : ∀a b₁ b₂, h a (b₁ - b₂) = h a b₁ - h a b₂) : (f - g).sum h = f.sum h - g.sum h := (lift_add_hom (λ a, add_monoid_hom.of_map_sub (h a) (h_sub a))).map_sub f g @[to_additive] lemma prod_emb_domain [has_zero M] [comm_monoid N] {v : α →₀ M} {f : α ↪ β} {g : β → M → N} : (v.emb_domain f).prod g = v.prod (λ a b, g (f a) b) := begin rw [prod, prod, support_emb_domain, finset.prod_map], simp_rw emb_domain_apply, end @[to_additive] lemma prod_finset_sum_index [add_comm_monoid M] [comm_monoid N] {s : finset ι} {g : ι → α →₀ M} {h : α → M → N} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : ∏ i in s, (g i).prod h = (∑ i in s, g i).prod h := finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih, sum_insert has, prod_add_index h_zero h_add] @[to_additive] lemma prod_sum_index [add_comm_monoid M] [add_comm_monoid N] [comm_monoid P] {f : α →₀ M} {g : α → M → β →₀ N} {h : β → N → P} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (f.sum g).prod h = f.prod (λa b, (g a b).prod h) := (prod_finset_sum_index h_zero h_add).symm lemma multiset_sum_sum_index [add_comm_monoid M] [add_comm_monoid N] (f : multiset (α →₀ M)) (h : α → M → N) (h₀ : ∀a, h a 0 = 0) (h₁ : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ + h a b₂) : (f.sum.sum h) = (f.map $ λg:α →₀ M, g.sum h).sum := multiset.induction_on f rfl $ assume a s ih, by rw [multiset.sum_cons, multiset.map_cons, multiset.sum_cons, sum_add_index h₀ h₁, ih] lemma multiset_map_sum [has_zero M] {f : α →₀ M} {m : β → γ} {h : α → M → multiset β} : multiset.map m (f.sum h) = f.sum (λa b, (h a b).map m) := (f.support.sum_hom _).symm lemma multiset_sum_sum [has_zero M] [add_comm_monoid N] {f : α →₀ M} {h : α → M → multiset N} : multiset.sum (f.sum h) = f.sum (λa b, multiset.sum (h a b)) := (f.support.sum_hom multiset.sum).symm section map_range variables [add_comm_monoid M] [add_comm_monoid N] (f : M →+ N) /-- Composition with a fixed additive homomorphism is itself an additive homomorphism on functions. -/ def map_range.add_monoid_hom : (α →₀ M) →+ (α →₀ N) := { to_fun := (map_range f f.map_zero : (α →₀ M) → (α →₀ N)), map_zero' := map_range_zero, map_add' := λ a b, map_range_add f.map_add _ _ } lemma map_range_multiset_sum (m : multiset (α →₀ M)) : map_range f f.map_zero m.sum = (m.map $ λx, map_range f f.map_zero x).sum := (m.sum_hom (map_range.add_monoid_hom f)).symm lemma map_range_finset_sum (s : finset ι) (g : ι → (α →₀ M)) : map_range f f.map_zero (∑ x in s, g x) = ∑ x in s, map_range f f.map_zero (g x) := by rw [finset.sum.equations._eqn_1, map_range_multiset_sum, multiset.map_map]; refl end map_range /-! ### Declarations about `map_domain` -/ section map_domain variables [add_comm_monoid M] {v v₁ v₂ : α →₀ M} /-- Given `f : α → β` and `v : α →₀ M`, `map_domain f v : β →₀ M` is the finitely supported function whose value at `a : β` is the sum of `v x` over all `x` such that `f x = a`. -/ def map_domain (f : α → β) (v : α →₀ M) : β →₀ M := v.sum $ λa, single (f a) lemma map_domain_apply {f : α → β} (hf : function.injective f) (x : α →₀ M) (a : α) : map_domain f x (f a) = x a := begin rw [map_domain, sum_apply, sum, finset.sum_eq_single a, single_eq_same], { assume b _ hba, exact single_eq_of_ne (hf.ne hba) }, { assume h, rw [not_mem_support_iff.1 h, single_zero, zero_apply] } end lemma map_domain_notin_range {f : α → β} (x : α →₀ M) (a : β) (h : a ∉ set.range f) : map_domain f x a = 0 := begin rw [map_domain, sum_apply, sum], exact finset.sum_eq_zero (assume a' h', single_eq_of_ne $ assume eq, h $ eq ▸ set.mem_range_self _) end lemma map_domain_id : map_domain id v = v := sum_single _ lemma map_domain_comp {f : α → β} {g : β → γ} : map_domain (g ∘ f) v = map_domain g (map_domain f v) := begin refine ((sum_sum_index _ _).trans _).symm, { intros, exact single_zero }, { intros, exact single_add }, refine sum_congr rfl (λ _ _, sum_single_index _), { exact single_zero } end lemma map_domain_single {f : α → β} {a : α} {b : M} : map_domain f (single a b) = single (f a) b := sum_single_index single_zero @[simp] lemma map_domain_zero {f : α → β} : map_domain f (0 : α →₀ M) = (0 : β →₀ M) := sum_zero_index lemma map_domain_congr {f g : α → β} (h : ∀x∈v.support, f x = g x) : v.map_domain f = v.map_domain g := finset.sum_congr rfl $ λ _ H, by simp only [h _ H] lemma map_domain_add {f : α → β} : map_domain f (v₁ + v₂) = map_domain f v₁ + map_domain f v₂ := sum_add_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_finset_sum {f : α → β} {s : finset ι} {v : ι → α →₀ M} : map_domain f (∑ i in s, v i) = ∑ i in s, map_domain f (v i) := eq.symm $ sum_finset_sum_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_sum [has_zero N] {f : α → β} {s : α →₀ N} {v : α → N → α →₀ M} : map_domain f (s.sum v) = s.sum (λa b, map_domain f (v a b)) := eq.symm $ sum_finset_sum_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_support {f : α → β} {s : α →₀ M} : (s.map_domain f).support ⊆ s.support.image f := finset.subset.trans support_sum $ finset.subset.trans (finset.bind_mono $ assume a ha, support_single_subset) $ by rw [finset.bind_singleton]; exact subset.refl _ @[to_additive] lemma prod_map_domain_index [comm_monoid N] {f : α → β} {s : α →₀ M} {h : β → M → N} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (map_domain f s).prod h = s.prod (λa b, h (f a) b) := (prod_sum_index h_zero h_add).trans $ prod_congr rfl $ λ _ _, prod_single_index (h_zero _) lemma emb_domain_eq_map_domain (f : α ↪ β) (v : α →₀ M) : emb_domain f v = map_domain f v := begin ext a, by_cases a ∈ set.range f, { rcases h with ⟨a, rfl⟩, rw [map_domain_apply f.injective, emb_domain_apply] }, { rw [map_domain_notin_range, emb_domain_notin_range]; assumption } end @[to_additive] lemma prod_map_domain_index_inj [comm_monoid N] {f : α → β} {s : α →₀ M} {h : β → M → N} (hf : function.injective f) : (s.map_domain f).prod h = s.prod (λa b, h (f a) b) := by rw [←function.embedding.coe_fn_mk f hf, ←emb_domain_eq_map_domain, prod_emb_domain] lemma map_domain_injective {f : α → β} (hf : function.injective f) : function.injective (map_domain f : (α →₀ M) → (β →₀ M)) := begin assume v₁ v₂ eq, ext a, have : map_domain f v₁ (f a) = map_domain f v₂ (f a), { rw eq }, rwa [map_domain_apply hf, map_domain_apply hf] at this, end end map_domain /-! ### Declarations about `comap_domain` -/ section comap_domain /-- Given `f : α → β`, `l : β →₀ M` and a proof `hf` that `f` is injective on the preimage of `l.support`, `comap_domain f l hf` is the finitely supported function from `α` to `M` given by composing `l` with `f`. -/ def comap_domain [has_zero M] (f : α → β) (l : β →₀ M) (hf : set.inj_on f (f ⁻¹' ↑l.support)) : α →₀ M := { support := l.support.preimage f hf, to_fun := (λ a, l (f a)), mem_support_to_fun := begin intros a, simp only [finset.mem_def.symm, finset.mem_preimage], exact l.mem_support_to_fun (f a), end } @[simp] lemma comap_domain_apply [has_zero M] (f : α → β) (l : β →₀ M) (hf : set.inj_on f (f ⁻¹' ↑l.support)) (a : α) : comap_domain f l hf a = l (f a) := rfl lemma sum_comap_domain [has_zero M] [add_comm_monoid N] (f : α → β) (l : β →₀ M) (g : β → M → N) (hf : set.bij_on f (f ⁻¹' ↑l.support) ↑l.support) : (comap_domain f l hf.inj_on).sum (g ∘ f) = l.sum g := begin simp only [sum, comap_domain_apply, (∘)], simp [comap_domain, finset.sum_preimage_of_bij f _ _ (λ x, g x (l x))], end lemma eq_zero_of_comap_domain_eq_zero [add_comm_monoid M] (f : α → β) (l : β →₀ M) (hf : set.bij_on f (f ⁻¹' ↑l.support) ↑l.support) : comap_domain f l hf.inj_on = 0 → l = 0 := begin rw [← support_eq_empty, ← support_eq_empty, comap_domain], simp only [finset.ext_iff, finset.not_mem_empty, iff_false, mem_preimage], assume h a ha, cases hf.2.2 ha with b hb, exact h b (hb.2.symm ▸ ha) end lemma map_domain_comap_domain [add_comm_monoid M] (f : α → β) (l : β →₀ M) (hf : function.injective f) (hl : ↑l.support ⊆ set.range f): map_domain f (comap_domain f l (hf.inj_on _)) = l := begin ext a, by_cases h_cases: a ∈ set.range f, { rcases set.mem_range.1 h_cases with ⟨b, hb⟩, rw [hb.symm, map_domain_apply hf, comap_domain_apply] }, { rw map_domain_notin_range _ _ h_cases, by_contra h_contr, apply h_cases (hl $ finset.mem_coe.2 $ mem_support_iff.2 $ λ h, h_contr h.symm) } end end comap_domain /-! ### Declarations about `filter` -/ section filter section has_zero variables [has_zero M] (p : α → Prop) (f : α →₀ M) /-- `filter p f` is the function which is `f a` if `p a` is true and 0 otherwise. -/ def filter (p : α → Prop) (f : α →₀ M) : α →₀ M := on_finset f.support (λa, if p a then f a else 0) $ λ a H, mem_support_iff.2 $ λ h, by rw [h, if_t_t] at H; exact H rfl @[simp] lemma filter_apply_pos {a : α} (h : p a) : f.filter p a = f a := if_pos h @[simp] lemma filter_apply_neg {a : α} (h : ¬ p a) : f.filter p a = 0 := if_neg h @[simp] lemma support_filter : (f.filter p).support = f.support.filter p := finset.ext $ assume a, if H : p a then by simp only [mem_support_iff, filter_apply_pos _ _ H, mem_filter, H, and_true] else by simp only [mem_support_iff, filter_apply_neg _ _ H, mem_filter, H, and_false, ne.def, ne_self_iff_false] lemma filter_zero : (0 : α →₀ M).filter p = 0 := by rw [← support_eq_empty, support_filter, support_zero, finset.filter_empty] @[simp] lemma filter_single_of_pos {a : α} {b : M} (h : p a) : (single a b).filter p = single a b := ext $ λ x, begin by_cases h' : p x, { simp only [h', filter_apply_pos] }, { simp only [h', filter_apply_neg, not_false_iff], rw single_eq_of_ne, rintro rfl, exact h' h } end @[simp] lemma filter_single_of_neg {a : α} {b : M} (h : ¬ p a) : (single a b).filter p = 0 := ext $ λ x, begin by_cases h' : p x, { simp only [h', filter_apply_pos, zero_apply], rw single_eq_of_ne, rintro rfl, exact h h' }, { simp only [h', finsupp.zero_apply, not_false_iff, filter_apply_neg] } end end has_zero lemma filter_pos_add_filter_neg [add_monoid M] (f : α →₀ M) (p : α → Prop) : f.filter p + f.filter (λa, ¬ p a) = f := ext $ assume a, if H : p a then by simp only [add_apply, filter_apply_pos, filter_apply_neg, H, not_not, add_zero] else by simp only [add_apply, filter_apply_pos, filter_apply_neg, H, not_false_iff, zero_add] end filter /-! ### Declarations about `frange` -/ section frange variables [has_zero M] /-- `frange f` is the image of `f` on the support of `f`. -/ def frange (f : α →₀ M) : finset M := finset.image f f.support theorem mem_frange {f : α →₀ M} {y : M} : y ∈ f.frange ↔ y ≠ 0 ∧ ∃ x, f x = y := finset.mem_image.trans ⟨λ ⟨x, hx1, hx2⟩, ⟨hx2 ▸ mem_support_iff.1 hx1, x, hx2⟩, λ ⟨hy, x, hx⟩, ⟨x, mem_support_iff.2 (hx.symm ▸ hy), hx⟩⟩ theorem zero_not_mem_frange {f : α →₀ M} : (0:M) ∉ f.frange := λ H, (mem_frange.1 H).1 rfl theorem frange_single {x : α} {y : M} : frange (single x y) ⊆ {y} := λ r hr, let ⟨t, ht1, ht2⟩ := mem_frange.1 hr in ht2 ▸ (by rw single_apply at ht2 ⊢; split_ifs at ht2 ⊢; [exact finset.mem_singleton_self _, cc]) end frange /-! ### Declarations about `subtype_domain` -/ section subtype_domain section zero variables [has_zero M] {p : α → Prop} /-- `subtype_domain p f` is the restriction of the finitely supported function `f` to the subtype `p`. -/ def subtype_domain (p : α → Prop) (f : α →₀ M) : (subtype p →₀ M) := ⟨f.support.subtype p, f ∘ coe, λ a, by simp only [mem_subtype, mem_support_iff]⟩ @[simp] lemma support_subtype_domain {f : α →₀ M} : (subtype_domain p f).support = f.support.subtype p := rfl @[simp] lemma subtype_domain_apply {a : subtype p} {v : α →₀ M} : (subtype_domain p v) a = v (a.val) := rfl @[simp] lemma subtype_domain_zero : subtype_domain p (0 : α →₀ M) = 0 := rfl lemma subtype_domain_eq_zero_iff' {f : α →₀ M} : f.subtype_domain p = 0 ↔ ∀ x, p x → f x = 0 := by simp_rw [← support_eq_empty, support_subtype_domain, subtype_eq_empty, not_mem_support_iff] lemma subtype_domain_eq_zero_iff {f : α →₀ M} (hf : ∀ x ∈ f.support , p x) : f.subtype_domain p = 0 ↔ f = 0 := subtype_domain_eq_zero_iff'.trans ⟨λ H, ext $ λ x, if hx : p x then H x hx else not_mem_support_iff.1 $ mt (hf x) hx, λ H x _, by simp [H]⟩ @[to_additive] lemma prod_subtype_domain_index [comm_monoid N] {v : α →₀ M} {h : α → M → N} (hp : ∀x∈v.support, p x) : (v.subtype_domain p).prod (λa b, h a b) = v.prod h := prod_bij (λp _, p.val) (λ _, mem_subtype.1) (λ _ _, rfl) (λ _ _ _ _, subtype.eq) (λ b hb, ⟨⟨b, hp b hb⟩, mem_subtype.2 hb, rfl⟩) end zero section monoid variables [add_monoid M] {p : α → Prop} {v v' : α →₀ M} @[simp] lemma subtype_domain_add {v v' : α →₀ M} : (v + v').subtype_domain p = v.subtype_domain p + v'.subtype_domain p := ext $ λ _, rfl instance subtype_domain.is_add_monoid_hom : is_add_monoid_hom (subtype_domain p : (α →₀ M) → subtype p →₀ M) := { map_add := λ _ _, subtype_domain_add, map_zero := subtype_domain_zero } @[simp] lemma filter_add {v v' : α →₀ M} : (v + v').filter p = v.filter p + v'.filter p := ext $ λ a, begin by_cases p a, { simp only [h, filter_apply_pos, add_apply] }, { simp only [h, add_zero, add_apply, not_false_iff, filter_apply_neg] } end instance filter.is_add_monoid_hom (p : α → Prop) : is_add_monoid_hom (filter p : (α →₀ M) → (α →₀ M)) := { map_zero := filter_zero p, map_add := λ x y, filter_add } end monoid section comm_monoid variables [add_comm_monoid M] {p : α → Prop} lemma subtype_domain_sum {s : finset ι} {h : ι → α →₀ M} : (∑ c in s, h c).subtype_domain p = ∑ c in s, (h c).subtype_domain p := eq.symm (s.sum_hom _) lemma subtype_domain_finsupp_sum [has_zero N] {s : β →₀ N} {h : β → N → α →₀ M} : (s.sum h).subtype_domain p = s.sum (λc d, (h c d).subtype_domain p) := subtype_domain_sum lemma filter_sum (s : finset ι) (f : ι → α →₀ M) : (∑ a in s, f a).filter p = ∑ a in s, filter p (f a) := (s.sum_hom (filter p)).symm end comm_monoid section group variables [add_group G] {p : α → Prop} {v v' : α →₀ G} @[simp] lemma subtype_domain_neg : (- v).subtype_domain p = - v.subtype_domain p := ext $ λ _, rfl @[simp] lemma subtype_domain_sub : (v - v').subtype_domain p = v.subtype_domain p - v'.subtype_domain p := ext $ λ _, rfl end group end subtype_domain /-! ### Declarations relating `finsupp` to `multiset` -/ section multiset /-- Given `f : α →₀ ℕ`, `f.to_multiset` is the multiset with multiplicities given by the values of `f` on the elements of `α`. -/ def to_multiset (f : α →₀ ℕ) : multiset α := f.sum (λa n, n •ℕ {a}) lemma to_multiset_zero : (0 : α →₀ ℕ).to_multiset = 0 := rfl lemma to_multiset_add (m n : α →₀ ℕ) : (m + n).to_multiset = m.to_multiset + n.to_multiset := sum_add_index (assume a, zero_nsmul _) (assume a b₁ b₂, add_nsmul _ _ _) lemma to_multiset_single (a : α) (n : ℕ) : to_multiset (single a n) = n •ℕ {a} := by rw [to_multiset, sum_single_index]; apply zero_nsmul instance is_add_monoid_hom.to_multiset : is_add_monoid_hom (to_multiset : _ → multiset α) := { map_zero := to_multiset_zero, map_add := to_multiset_add } lemma card_to_multiset (f : α →₀ ℕ) : f.to_multiset.card = f.sum (λa, id) := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.card_zero, sum_zero_index] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.card_add, ih, sum_add_index, to_multiset_single, sum_single_index, multiset.card_smul, multiset.singleton_eq_singleton, multiset.card_singleton, mul_one]; intros; refl } end lemma to_multiset_map (f : α →₀ ℕ) (g : α → β) : f.to_multiset.map g = (f.map_domain g).to_multiset := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.map_zero, map_domain_zero, to_multiset_zero] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.map_add, ih, map_domain_add, map_domain_single, to_multiset_single, to_multiset_add, to_multiset_single, is_add_monoid_hom.map_nsmul (multiset.map g)], refl } end lemma prod_to_multiset [comm_monoid M] (f : M →₀ ℕ) : f.to_multiset.prod = f.prod (λa n, a ^ n) := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.prod_zero, finsupp.prod_zero_index] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.prod_add, ih, to_multiset_single, finsupp.prod_add_index, finsupp.prod_single_index, multiset.prod_smul, multiset.singleton_eq_singleton, multiset.prod_singleton], { exact pow_zero a }, { exact pow_zero }, { exact pow_add } } end lemma to_finset_to_multiset (f : α →₀ ℕ) : f.to_multiset.to_finset = f.support := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.to_finset_zero, support_zero] }, { assume a n f ha hn ih, rw [to_multiset_add, multiset.to_finset_add, ih, to_multiset_single, support_add_eq, support_single_ne_zero hn, multiset.to_finset_nsmul _ _ hn, multiset.singleton_eq_singleton, multiset.to_finset_cons, multiset.to_finset_zero], refl, refine disjoint.mono_left support_single_subset _, rwa [finset.singleton_disjoint] } end @[simp] lemma count_to_multiset (f : α →₀ ℕ) (a : α) : f.to_multiset.count a = f a := calc f.to_multiset.count a = f.sum (λx n, (n •ℕ {x} : multiset α).count a) : (f.support.sum_hom $ multiset.count a).symm ... = f.sum (λx n, n * ({x} : multiset α).count a) : by simp only [multiset.count_smul] ... = f.sum (λx n, n * (x ::ₘ 0 : multiset α).count a) : rfl ... = f a * (a ::ₘ 0 : multiset α).count a : sum_eq_single _ (λ a' _ H, by simp only [multiset.count_cons_of_ne (ne.symm H), multiset.count_zero, mul_zero]) (λ H, by simp only [not_mem_support_iff.1 H, zero_mul]) ... = f a : by simp only [multiset.count_singleton, mul_one] /-- Given `m : multiset α`, `of_multiset m` is the finitely supported function from `α` to `ℕ` given by the multiplicities of the elements of `α` in `m`. -/ def of_multiset (m : multiset α) : α →₀ ℕ := on_finset m.to_finset (λa, m.count a) $ λ a H, multiset.mem_to_finset.2 $ by_contradiction (mt multiset.count_eq_zero.2 H) @[simp] lemma of_multiset_apply (m : multiset α) (a : α) : of_multiset m a = m.count a := rfl /-- `equiv_multiset` defines an `equiv` between finitely supported functions from `α` to `ℕ` and multisets on `α`. -/ def equiv_multiset : (α →₀ ℕ) ≃ (multiset α) := ⟨ to_multiset, of_multiset, assume f, finsupp.ext $ λ a, by rw [of_multiset_apply, count_to_multiset], assume m, multiset.ext.2 $ λ a, by rw [count_to_multiset, of_multiset_apply] ⟩ lemma mem_support_multiset_sum [add_comm_monoid M] {s : multiset (α →₀ M)} (a : α) : a ∈ s.sum.support → ∃f∈s, a ∈ (f : α →₀ M).support := multiset.induction_on s false.elim begin assume f s ih ha, by_cases a ∈ f.support, { exact ⟨f, multiset.mem_cons_self _ _, h⟩ }, { simp only [multiset.sum_cons, mem_support_iff, add_apply, not_mem_support_iff.1 h, zero_add] at ha, rcases ih (mem_support_iff.2 ha) with ⟨f', h₀, h₁⟩, exact ⟨f', multiset.mem_cons_of_mem h₀, h₁⟩ } end lemma mem_support_finset_sum [add_comm_monoid M] {s : finset ι} {h : ι → α →₀ M} (a : α) (ha : a ∈ (∑ c in s, h c).support) : ∃ c ∈ s, a ∈ (h c).support := let ⟨f, hf, hfa⟩ := mem_support_multiset_sum a ha in let ⟨c, hc, eq⟩ := multiset.mem_map.1 hf in ⟨c, hc, eq.symm ▸ hfa⟩ @[simp] lemma mem_to_multiset (f : α →₀ ℕ) (i : α) : i ∈ f.to_multiset ↔ i ∈ f.support := by rw [← multiset.count_ne_zero, finsupp.count_to_multiset, finsupp.mem_support_iff] end multiset /-! ### Declarations about `curry` and `uncurry` -/ section curry_uncurry variables [add_comm_monoid M] [add_comm_monoid N] /-- Given a finitely supported function `f` from a product type `α × β` to `γ`, `curry f` is the "curried" finitely supported function from `α` to the type of finitely supported functions from `β` to `γ`. -/ protected def curry (f : (α × β) →₀ M) : α →₀ (β →₀ M) := f.sum $ λp c, single p.1 (single p.2 c) lemma sum_curry_index (f : (α × β) →₀ M) (g : α → β → M → N) (hg₀ : ∀ a b, g a b 0 = 0) (hg₁ : ∀a b c₀ c₁, g a b (c₀ + c₁) = g a b c₀ + g a b c₁) : f.curry.sum (λa f, f.sum (g a)) = f.sum (λp c, g p.1 p.2 c) := begin rw [finsupp.curry], transitivity, { exact sum_sum_index (assume a, sum_zero_index) (assume a b₀ b₁, sum_add_index (assume a, hg₀ _ _) (assume c d₀ d₁, hg₁ _ _ _ _)) }, congr, funext p c, transitivity, { exact sum_single_index sum_zero_index }, exact sum_single_index (hg₀ _ _) end /-- Given a finitely supported function `f` from `α` to the type of finitely supported functions from `β` to `M`, `uncurry f` is the "uncurried" finitely supported function from `α × β` to `M`. -/ protected def uncurry (f : α →₀ (β →₀ M)) : (α × β) →₀ M := f.sum $ λa g, g.sum $ λb c, single (a, b) c /-- `finsupp_prod_equiv` defines the `equiv` between `((α × β) →₀ M)` and `(α →₀ (β →₀ M))` given by currying and uncurrying. -/ def finsupp_prod_equiv : ((α × β) →₀ M) ≃ (α →₀ (β →₀ M)) := by refine ⟨finsupp.curry, finsupp.uncurry, λ f, _, λ f, _⟩; simp only [ finsupp.curry, finsupp.uncurry, sum_sum_index, sum_zero_index, sum_add_index, sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, prod.mk.eta, (single_sum _ _ _).symm, sum_single] lemma filter_curry (f : α × β →₀ M) (p : α → Prop) : (f.filter (λa:α×β, p a.1)).curry = f.curry.filter p := begin rw [finsupp.curry, finsupp.curry, finsupp.sum, finsupp.sum, filter_sum, support_filter, sum_filter], refine finset.sum_congr rfl _, rintros ⟨a₁, a₂⟩ ha, dsimp only, split_ifs, { rw [filter_apply_pos, filter_single_of_pos]; exact h }, { rwa [filter_single_of_neg] } end lemma support_curry (f : α × β →₀ M) : f.curry.support ⊆ f.support.image prod.fst := begin rw ← finset.bind_singleton, refine finset.subset.trans support_sum _, refine finset.bind_mono (assume a _, support_single_subset) end end curry_uncurry section variables [group G] [mul_action G α] [add_comm_monoid M] /-- Scalar multiplication by a group element g, given by precomposition with the action of g⁻¹ on the domain. -/ def comap_has_scalar : has_scalar G (α →₀ M) := { smul := λ g f, f.comap_domain (λ a, g⁻¹ • a) (λ a a' m m' h, by simpa [←mul_smul] using (congr_arg (λ a, g • a) h)) } local attribute [instance] comap_has_scalar /-- Scalar multiplication by a group element, given by precomposition with the action of g⁻¹ on the domain, is multiplicative in g. -/ def comap_mul_action : mul_action G (α →₀ M) := { one_smul := λ f, by { ext, dsimp [(•)], simp, }, mul_smul := λ g g' f, by { ext, dsimp [(•)], simp [mul_smul], }, } local attribute [instance] comap_mul_action /-- Scalar multiplication by a group element, given by precomposition with the action of g⁻¹ on the domain, is additive in the second argument. -/ def comap_distrib_mul_action : distrib_mul_action G (α →₀ M) := { smul_zero := λ g, by { ext, dsimp [(•)], simp, }, smul_add := λ g f f', by { ext, dsimp [(•)], simp, }, } /-- Scalar multiplication by a group element on finitely supported functions on a group, given by precomposition with the action of g⁻¹. -/ def comap_distrib_mul_action_self : distrib_mul_action G (G →₀ M) := @finsupp.comap_distrib_mul_action G M G _ (mul_action.regular G) _ @[simp] lemma comap_smul_single (g : G) (a : α) (b : M) : g • single a b = single (g • a) b := begin ext a', dsimp [(•)], by_cases h : g • a = a', { subst h, simp [←mul_smul], }, { simp [single_eq_of_ne h], rw [single_eq_of_ne], rintro rfl, simpa [←mul_smul] using h, } end @[simp] lemma comap_smul_apply (g : G) (f : α →₀ M) (a : α) : (g • f) a = f (g⁻¹ • a) := rfl end section instance [semiring R] [add_comm_monoid M] [semimodule R M] : has_scalar R (α →₀ M) := ⟨λa v, v.map_range ((•) a) (smul_zero _)⟩ variables (α M) @[simp] lemma smul_apply' {_:semiring R} [add_comm_monoid M] [semimodule R M] {a : α} {b : R} {v : α →₀ M} : (b • v) a = b • (v a) := rfl instance [semiring R] [add_comm_monoid M] [semimodule R M] : semimodule R (α →₀ M) := { smul := (•), smul_add := λ a x y, ext $ λ _, smul_add _ _ _, add_smul := λ a x y, ext $ λ _, add_smul _ _ _, one_smul := λ x, ext $ λ _, one_smul _ _, mul_smul := λ r s x, ext $ λ _, mul_smul _ _ _, zero_smul := λ x, ext $ λ _, zero_smul _ _, smul_zero := λ x, ext $ λ _, smul_zero _ } variables {α M} (R) /-- Evaluation at point as a linear map. This version assumes that the codomain is a semimodule over some semiring. See also `leval`. -/ def leval' [semiring R] [add_comm_monoid M] [semimodule R M] (a : α) : (α →₀ M) →ₗ[R] M := ⟨λ g, g a, λ _ _, add_apply, λ _ _, rfl⟩ @[simp] lemma coe_leval' [semiring R] [add_comm_monoid M] [semimodule R M] (a : α) (g : α →₀ M) : leval' R a g = g a := rfl variable {R} /-- Evaluation at point as a linear map. This version assumes that the codomain is a semiring. -/ def leval [semiring R] (a : α) : (α →₀ R) →ₗ[R] R := leval' R a @[simp] lemma coe_leval [semiring R] (a : α) (g : α →₀ R) : leval a g = g a := rfl lemma support_smul {_ : semiring R} [add_comm_monoid M] [semimodule R M] {b : R} {g : α →₀ M} : (b • g).support ⊆ g.support := λ a, by simp only [smul_apply', mem_support_iff, ne.def]; exact mt (λ h, h.symm ▸ smul_zero _) section variables {p : α → Prop} @[simp] lemma filter_smul {_ : semiring R} [add_comm_monoid M] [semimodule R M] {b : R} {v : α →₀ M} : (b • v).filter p = b • v.filter p := ext $ λ a, begin by_cases p a, { simp only [h, smul_apply', filter_apply_pos] }, { simp only [h, smul_apply', not_false_iff, filter_apply_neg, smul_zero] } end end lemma map_domain_smul {_ : semiring R} [add_comm_monoid M] [semimodule R M] {f : α → β} (b : R) (v : α →₀ M) : map_domain f (b • v) = b • map_domain f v := begin change map_domain f (map_range _ _ _) = map_range _ _ _, apply finsupp.induction v, { simp only [map_domain_zero, map_range_zero] }, intros a b v' hv₁ hv₂ IH, rw [map_range_add, map_domain_add, IH, map_domain_add, map_range_add, map_range_single, map_domain_single, map_domain_single, map_range_single]; apply smul_add end @[simp] lemma smul_single {_ : semiring R} [add_comm_monoid M] [semimodule R M] (c : R) (a : α) (b : M) : c • finsupp.single a b = finsupp.single a (c • b) := ext $ λ a', by by_cases a = a'; [{ subst h, simp only [smul_apply', single_eq_same] }, simp only [h, smul_apply', ne.def, not_false_iff, single_eq_of_ne, smul_zero]] @[simp] lemma smul_single' {_ : semiring R} (c : R) (a : α) (b : R) : c • finsupp.single a b = finsupp.single a (c * b) := smul_single _ _ _ lemma smul_single_one [semiring R] (a : α) (b : R) : b • single a 1 = single a b := by rw [smul_single, smul_eq_mul, mul_one] end @[simp] lemma smul_apply [semiring R] {a : α} {b : R} {v : α →₀ R} : (b • v) a = b • (v a) := rfl lemma sum_smul_index [semiring R] [add_comm_monoid M] {g : α →₀ R} {b : R} {h : α → R → M} (h0 : ∀i, h i 0 = 0) : (b • g).sum h = g.sum (λi a, h i (b * a)) := finsupp.sum_map_range_index h0 lemma sum_smul_index' [semiring R] [add_comm_monoid M] [semimodule R M] [add_comm_monoid N] {g : α →₀ M} {b : R} {h : α → M → N} (h0 : ∀i, h i 0 = 0) : (b • g).sum h = g.sum (λi c, h i (b • c)) := finsupp.sum_map_range_index h0 section variables [semiring R] [semiring S] lemma sum_mul (b : S) (s : α →₀ R) {f : α → R → S} : (s.sum f) * b = s.sum (λ a c, (f a c) * b) := by simp only [finsupp.sum, finset.sum_mul] lemma mul_sum (b : S) (s : α →₀ R) {f : α → R → S} : b * (s.sum f) = s.sum (λ a c, b * (f a c)) := by simp only [finsupp.sum, finset.mul_sum] instance unique_of_right [subsingleton R] : unique (α →₀ R) := { uniq := λ l, ext $ λ i, subsingleton.elim _ _, .. finsupp.inhabited } end /-- Given an `add_comm_monoid M` and `s : set α`, `restrict_support_equiv s M` is the `equiv` between the subtype of finitely supported functions with support contained in `s` and the type of finitely supported functions from `s`. -/ def restrict_support_equiv (s : set α) (M : Type*) [add_comm_monoid M] : {f : α →₀ M // ↑f.support ⊆ s } ≃ (s →₀ M):= begin refine ⟨λf, subtype_domain (λx, x ∈ s) f.1, λ f, ⟨f.map_domain subtype.val, _⟩, _, _⟩, { refine set.subset.trans (finset.coe_subset.2 map_domain_support) _, rw [finset.coe_image, set.image_subset_iff], exact assume x hx, x.2 }, { rintros ⟨f, hf⟩, apply subtype.eq, ext a, dsimp only, refine classical.by_cases (assume h : a ∈ set.range (subtype.val : s → α), _) (assume h, _), { rcases h with ⟨x, rfl⟩, rw [map_domain_apply subtype.val_injective, subtype_domain_apply] }, { convert map_domain_notin_range _ _ h, rw [← not_mem_support_iff], refine mt _ h, exact assume ha, ⟨⟨a, hf ha⟩, rfl⟩ } }, { assume f, ext ⟨a, ha⟩, dsimp only, rw [subtype_domain_apply, map_domain_apply subtype.val_injective] } end /-- Given `add_comm_monoid M` and `e : α ≃ β`, `dom_congr e` is the corresponding `equiv` between `α →₀ M` and `β →₀ M`. -/ protected def dom_congr [add_comm_monoid M] (e : α ≃ β) : (α →₀ M) ≃+ (β →₀ M) := { to_fun := map_domain e, inv_fun := map_domain e.symm, left_inv := begin assume v, simp only [map_domain_comp.symm, (∘), equiv.symm_apply_apply], exact map_domain_id end, right_inv := begin assume v, simp only [map_domain_comp.symm, (∘), equiv.apply_symm_apply], exact map_domain_id end, map_add' := λ a b, map_domain_add, } end finsupp @[to_additive] lemma mul_equiv.map_finsupp_prod [has_zero M] [comm_monoid N] [comm_monoid P] (h : N ≃* P) (f : α →₀ M) (g : α → M → N) : h (f.prod g) = f.prod (λ a b, h (g a b)) := h.map_prod _ _ @[to_additive] lemma monoid_hom.map_finsupp_prod [has_zero M] [comm_monoid N] [comm_monoid P] (h : N →* P) (f : α →₀ M) (g : α → M → N) : h (f.prod g) = f.prod (λ a b, h (g a b)) := h.map_prod _ _ lemma ring_hom.map_finsupp_sum [has_zero M] [semiring R] [semiring S] (h : R →+* S) (f : α →₀ M) (g : α → M → R) : h (f.sum g) = f.sum (λ a b, h (g a b)) := h.map_sum _ _ lemma ring_hom.map_finsupp_prod [has_zero M] [comm_semiring R] [comm_semiring S] (h : R →+* S) (f : α →₀ M) (g : α → M → R) : h (f.prod g) = f.prod (λ a b, h (g a b)) := h.map_prod _ _ namespace finsupp /-! ### Declarations about sigma types -/ section sigma variables {αs : ι → Type*} [has_zero M] (l : (Σ i, αs i) →₀ M) /-- Given `l`, a finitely supported function from the sigma type `Σ (i : ι), αs i` to `M` and an index element `i : ι`, `split l i` is the `i`th component of `l`, a finitely supported function from `as i` to `M`. -/ def split (i : ι) : αs i →₀ M := l.comap_domain (sigma.mk i) (λ x1 x2 _ _ hx, heq_iff_eq.1 (sigma.mk.inj hx).2) lemma split_apply (i : ι) (x : αs i) : split l i x = l ⟨i, x⟩ := begin dunfold split, rw comap_domain_apply end /-- Given `l`, a finitely supported function from the sigma type `Σ (i : ι), αs i` to `β`, `split_support l` is the finset of indices in `ι` that appear in the support of `l`. -/ def split_support : finset ι := l.support.image sigma.fst lemma mem_split_support_iff_nonzero (i : ι) : i ∈ split_support l ↔ split l i ≠ 0 := begin rw [split_support, mem_image, ne.def, ← support_eq_empty, ← ne.def, ← finset.nonempty_iff_ne_empty, split, comap_domain, finset.nonempty], simp only [exists_prop, finset.mem_preimage, exists_and_distrib_right, exists_eq_right, mem_support_iff, sigma.exists, ne.def] end /-- Given `l`, a finitely supported function from the sigma type `Σ i, αs i` to `β` and an `ι`-indexed family `g` of functions from `(αs i →₀ β)` to `γ`, `split_comp` defines a finitely supported function from the index type `ι` to `γ` given by composing `g i` with `split l i`. -/ def split_comp [has_zero N] (g : Π i, (αs i →₀ M) → N) (hg : ∀ i x, x = 0 ↔ g i x = 0) : ι →₀ N := { support := split_support l, to_fun := λ i, g i (split l i), mem_support_to_fun := begin intros i, rw [mem_split_support_iff_nonzero, not_iff_not, hg], end } lemma sigma_support : l.support = l.split_support.sigma (λ i, (l.split i).support) := by simp only [finset.ext_iff, split_support, split, comap_domain, mem_image, mem_preimage, sigma.forall, mem_sigma]; tauto lemma sigma_sum [add_comm_monoid N] (f : (Σ (i : ι), αs i) → M → N) : l.sum f = ∑ i in split_support l, (split l i).sum (λ (a : αs i) b, f ⟨i, a⟩ b) := by simp only [sum, sigma_support, sum_sigma, split_apply] end sigma end finsupp /-! ### Declarations relating `multiset` to `finsupp` -/ namespace multiset /-- Given a multiset `s`, `s.to_finsupp` returns the finitely supported function on `ℕ` given by the multiplicities of the elements of `s`. -/ def to_finsupp (s : multiset α) : α →₀ ℕ := { support := s.to_finset, to_fun := λ a, s.count a, mem_support_to_fun := λ a, begin rw mem_to_finset, convert not_iff_not_of_iff (count_eq_zero.symm), rw not_not end } @[simp] lemma to_finsupp_support (s : multiset α) : s.to_finsupp.support = s.to_finset := rfl @[simp] lemma to_finsupp_apply (s : multiset α) (a : α) : s.to_finsupp a = s.count a := rfl @[simp] lemma to_finsupp_zero : to_finsupp (0 : multiset α) = 0 := finsupp.ext $ λ a, count_zero a @[simp] lemma to_finsupp_add (s t : multiset α) : to_finsupp (s + t) = to_finsupp s + to_finsupp t := finsupp.ext $ λ a, count_add a s t lemma to_finsupp_singleton (a : α) : to_finsupp {a} = finsupp.single a 1 := finsupp.ext $ λ b, if h : a = b then by rw [to_finsupp_apply, finsupp.single_apply, h, if_pos rfl, singleton_eq_singleton, count_singleton] else begin rw [to_finsupp_apply, finsupp.single_apply, if_neg h, count_eq_zero, singleton_eq_singleton, mem_singleton], rintro rfl, exact h rfl end namespace to_finsupp instance : is_add_monoid_hom (to_finsupp : multiset α → α →₀ ℕ) := { map_zero := to_finsupp_zero, map_add := to_finsupp_add } end to_finsupp @[simp] lemma to_finsupp_to_multiset (s : multiset α) : s.to_finsupp.to_multiset = s := ext.2 $ λ a, by rw [finsupp.count_to_multiset, to_finsupp_apply] end multiset /-! ### Declarations about order(ed) instances on `finsupp` -/ namespace finsupp instance [preorder M] [has_zero M] : preorder (α →₀ M) := { le := λ f g, ∀ s, f s ≤ g s, le_refl := λ f s, le_refl _, le_trans := λ f g h Hfg Hgh s, le_trans (Hfg s) (Hgh s) } instance [partial_order M] [has_zero M] : partial_order (α →₀ M) := { le_antisymm := λ f g hfg hgf, ext $ λ s, le_antisymm (hfg s) (hgf s), .. finsupp.preorder } instance [ordered_cancel_add_comm_monoid M] : add_left_cancel_semigroup (α →₀ M) := { add_left_cancel := λ a b c h, ext $ λ s, by { rw ext_iff at h, exact add_left_cancel (h s) }, .. finsupp.add_monoid } instance [ordered_cancel_add_comm_monoid M] : add_right_cancel_semigroup (α →₀ M) := { add_right_cancel := λ a b c h, ext $ λ s, by { rw ext_iff at h, exact add_right_cancel (h s) }, .. finsupp.add_monoid } instance [ordered_cancel_add_comm_monoid M] : ordered_cancel_add_comm_monoid (α →₀ M) := { add_le_add_left := λ a b h c s, add_le_add_left (h s) (c s), le_of_add_le_add_left := λ a b c h s, le_of_add_le_add_left (h s), .. finsupp.add_comm_monoid, .. finsupp.partial_order, .. finsupp.add_left_cancel_semigroup, .. finsupp.add_right_cancel_semigroup } lemma le_iff [canonically_ordered_add_monoid M] (f g : α →₀ M) : f ≤ g ↔ ∀ s ∈ f.support, f s ≤ g s := ⟨λ h s hs, h s, λ h s, if H : s ∈ f.support then h s H else (not_mem_support_iff.1 H).symm ▸ zero_le (g s)⟩ @[simp] lemma add_eq_zero_iff [canonically_ordered_add_monoid M] (f g : α →₀ M) : f + g = 0 ↔ f = 0 ∧ g = 0 := begin split, { assume h, split, all_goals { ext s, suffices H : f s + g s = 0, { rw add_eq_zero_iff at H, cases H, assumption }, show (f + g) s = 0, rw h, refl } }, { rintro ⟨rfl, rfl⟩, rw add_zero } end attribute [simp] to_multiset_zero to_multiset_add @[simp] lemma to_multiset_to_finsupp (f : α →₀ ℕ) : f.to_multiset.to_finsupp = f := ext $ λ s, by rw [multiset.to_finsupp_apply, count_to_multiset] lemma to_multiset_strict_mono : strict_mono (@to_multiset α) := λ m n h, begin rw lt_iff_le_and_ne at h ⊢, cases h with h₁ h₂, split, { rw multiset.le_iff_count, intro s, erw [count_to_multiset m s, count_to_multiset], exact h₁ s }, { intro H, apply h₂, replace H := congr_arg multiset.to_finsupp H, simpa only [to_multiset_to_finsupp] using H } end lemma sum_id_lt_of_lt (m n : α →₀ ℕ) (h : m < n) : m.sum (λ _, id) < n.sum (λ _, id) := begin rw [← card_to_multiset, ← card_to_multiset], apply multiset.card_lt_of_lt, exact to_multiset_strict_mono h end variable (α) /-- The order on `σ →₀ ℕ` is well-founded.-/ lemma lt_wf : well_founded (@has_lt.lt (α →₀ ℕ) _) := subrelation.wf (sum_id_lt_of_lt) $ inv_image.wf _ nat.lt_wf instance decidable_le : decidable_rel (@has_le.le (α →₀ ℕ) _) := λ m n, by rw le_iff; apply_instance variable {α} /-- The `finsupp` counterpart of `multiset.antidiagonal`: the antidiagonal of `s : α →₀ ℕ` consists of all pairs `(t₁, t₂) : (α →₀ ℕ) × (α →₀ ℕ)` such that `t₁ + t₂ = s`. The finitely supported function `antidiagonal s` is equal to the multiplicities of these pairs. -/ def antidiagonal (f : α →₀ ℕ) : ((α →₀ ℕ) × (α →₀ ℕ)) →₀ ℕ := (f.to_multiset.antidiagonal.map (prod.map multiset.to_finsupp multiset.to_finsupp)).to_finsupp lemma mem_antidiagonal_support {f : α →₀ ℕ} {p : (α →₀ ℕ) × (α →₀ ℕ)} : p ∈ (antidiagonal f).support ↔ p.1 + p.2 = f := begin erw [multiset.mem_to_finset, multiset.mem_map], split, { rintros ⟨⟨a, b⟩, h, rfl⟩, rw multiset.mem_antidiagonal at h, simpa only [to_multiset_to_finsupp, multiset.to_finsupp_add] using congr_arg multiset.to_finsupp h}, { intro h, refine ⟨⟨p.1.to_multiset, p.2.to_multiset⟩, _, _⟩, { simpa only [multiset.mem_antidiagonal, to_multiset_add] using congr_arg to_multiset h}, { rw [prod.map, to_multiset_to_finsupp, to_multiset_to_finsupp, prod.mk.eta] } } end @[simp] lemma antidiagonal_zero : antidiagonal (0 : α →₀ ℕ) = single (0,0) 1 := by rw [← multiset.to_finsupp_singleton]; refl lemma swap_mem_antidiagonal_support {n : α →₀ ℕ} {f} (hf : f ∈ (antidiagonal n).support) : f.swap ∈ (antidiagonal n).support := by simpa only [mem_antidiagonal_support, add_comm, prod.swap] using hf /-- Let `n : α →₀ ℕ` be a finitely supported function. The set of `m : α →₀ ℕ` that are coordinatewise less than or equal to `n`, is a finite set. -/ lemma finite_le_nat (n : α →₀ ℕ) : set.finite {m | m ≤ n} := begin let I := {i // i ∈ n.support}, let k : ℕ := ∑ i in n.support, n i, let f : (α →₀ ℕ) → (I → fin (k + 1)) := λ m i, m i, have hf : ∀ m ≤ n, ∀ i, (f m i : ℕ) = m i, { intros m hm i, apply fin.coe_coe_of_lt, calc m i ≤ n i : hm i ... < k + 1 : nat.lt_succ_iff.mpr (single_le_sum (λ _ _, nat.zero_le _) i.2) }, have f_im : set.finite (f '' {m | m ≤ n}) := set.finite.of_fintype _, suffices f_inj : set.inj_on f {m | m ≤ n}, { exact set.finite_of_finite_image f_inj f_im }, intros m₁ h₁ m₂ h₂ h, ext i, by_cases hi : i ∈ n.support, { replace h := congr_fun h ⟨i, hi⟩, rwa [fin.ext_iff, hf m₁ h₁, hf m₂ h₂] at h }, { rw not_mem_support_iff at hi, specialize h₁ i, specialize h₂ i, rw [hi, nat.le_zero_iff] at h₁ h₂, rw [h₁, h₂] } end /-- Let `n : α →₀ ℕ` be a finitely supported function. The set of `m : α →₀ ℕ` that are coordinatewise less than or equal to `n`, but not equal to `n` everywhere, is a finite set. -/ lemma finite_lt_nat (n : α →₀ ℕ) : set.finite {m | m < n} := (finite_le_nat n).subset $ λ m, le_of_lt end finsupp
6c2824823df2b2f8d22ccce9d64ddcb61b3df977
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/combinatorics/simple_graph/strongly_regular.lean
05fb2fda4ad5c66e6812266f9b66c6d45ae23491
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
7,145
lean
/- Copyright (c) 2021 Alena Gusakov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Alena Gusakov -/ import combinatorics.simple_graph.basic import data.set.finite /-! # Strongly regular graphs > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. ## Main definitions * `G.is_SRG_with n k ℓ μ` (see `simple_graph.is_SRG_with`) is a structure for a `simple_graph` satisfying the following conditions: * The cardinality of the vertex set is `n` * `G` is a regular graph with degree `k` * The number of common neighbors between any two adjacent vertices in `G` is `ℓ` * The number of common neighbors between any two nonadjacent vertices in `G` is `μ` ## TODO - Prove that the parameters of a strongly regular graph obey the relation `(n - k - 1) * μ = k * (k - ℓ - 1)` - Prove that if `I` is the identity matrix and `J` is the all-one matrix, then the adj matrix `A` of SRG obeys relation `A^2 = kI + ℓA + μ(J - I - A)` -/ open finset universes u namespace simple_graph variables {V : Type u} variables [fintype V] [decidable_eq V] variables (G : simple_graph V) [decidable_rel G.adj] /-- A graph is strongly regular with parameters `n k ℓ μ` if * its vertex set has cardinality `n` * it is regular with degree `k` * every pair of adjacent vertices has `ℓ` common neighbors * every pair of nonadjacent vertices has `μ` common neighbors -/ structure is_SRG_with (n k ℓ μ : ℕ) : Prop := (card : fintype.card V = n) (regular : G.is_regular_of_degree k) (of_adj : ∀ (v w : V), G.adj v w → fintype.card (G.common_neighbors v w) = ℓ) (of_not_adj : ∀ (v w : V), v ≠ w → ¬G.adj v w → fintype.card (G.common_neighbors v w) = μ) variables {G} {n k ℓ μ : ℕ} /-- Empty graphs are strongly regular. Note that `ℓ` can take any value for empty graphs, since there are no pairs of adjacent vertices. -/ lemma bot_strongly_regular : (⊥ : simple_graph V).is_SRG_with (fintype.card V) 0 ℓ 0 := { card := rfl, regular := bot_degree, of_adj := λ v w h, h.elim, of_not_adj := λ v w h, begin simp only [card_eq_zero, filter_congr_decidable, fintype.card_of_finset, forall_true_left, not_false_iff, bot_adj], ext, simp [mem_common_neighbors], end } /-- Complete graphs are strongly regular. Note that `μ` can take any value for complete graphs, since there are no distinct pairs of non-adjacent vertices. -/ lemma is_SRG_with.top : (⊤ : simple_graph V).is_SRG_with (fintype.card V) (fintype.card V - 1) (fintype.card V - 2) μ := { card := rfl, regular := is_regular_of_degree.top, of_adj := λ v w h, begin rw card_common_neighbors_top, exact h, end, of_not_adj := λ v w h h', false.elim $ by simpa using h } lemma is_SRG_with.card_neighbor_finset_union_eq {v w : V} (h : G.is_SRG_with n k ℓ μ) : (G.neighbor_finset v ∪ G.neighbor_finset w).card = 2 * k - fintype.card (G.common_neighbors v w) := begin apply @nat.add_right_cancel _ (fintype.card (G.common_neighbors v w)), rw [nat.sub_add_cancel, ← set.to_finset_card], { simp [neighbor_finset, common_neighbors, set.to_finset_inter, finset.card_union_add_card_inter, h.regular.degree_eq, two_mul], }, { apply le_trans (card_common_neighbors_le_degree_left _ _ _), simp [h.regular.degree_eq, two_mul], }, end /-- Assuming `G` is strongly regular, `2*(k + 1) - m` in `G` is the number of vertices that are adjacent to either `v` or `w` when `¬G.adj v w`. So it's the cardinality of `G.neighbor_set v ∪ G.neighbor_set w`. -/ lemma is_SRG_with.card_neighbor_finset_union_of_not_adj {v w : V} (h : G.is_SRG_with n k ℓ μ) (hne : v ≠ w) (ha : ¬G.adj v w) : (G.neighbor_finset v ∪ G.neighbor_finset w).card = 2 * k - μ := begin rw ← h.of_not_adj v w hne ha, apply h.card_neighbor_finset_union_eq, end lemma is_SRG_with.card_neighbor_finset_union_of_adj {v w : V} (h : G.is_SRG_with n k ℓ μ) (ha : G.adj v w) : (G.neighbor_finset v ∪ G.neighbor_finset w).card = 2 * k - ℓ := begin rw ← h.of_adj v w ha, apply h.card_neighbor_finset_union_eq, end lemma compl_neighbor_finset_sdiff_inter_eq {v w : V} : (G.neighbor_finset v)ᶜ \ {v} ∩ ((G.neighbor_finset w)ᶜ \ {w}) = (G.neighbor_finset v)ᶜ ∩ (G.neighbor_finset w)ᶜ \ ({w} ∪ {v}) := by { ext, rw ← not_iff_not, simp [imp_iff_not_or, or_assoc, or_comm, or.left_comm], } lemma sdiff_compl_neighbor_finset_inter_eq {v w : V} (h : G.adj v w) : (G.neighbor_finset v)ᶜ ∩ (G.neighbor_finset w)ᶜ \ ({w} ∪ {v}) = (G.neighbor_finset v)ᶜ ∩ (G.neighbor_finset w)ᶜ := begin ext, simp only [and_imp, mem_union, mem_sdiff, mem_compl, and_iff_left_iff_imp, mem_neighbor_finset, mem_inter, mem_singleton], rintros hnv hnw (rfl|rfl), { exact hnv h, }, { apply hnw, rwa adj_comm, }, end lemma is_SRG_with.compl_is_regular (h : G.is_SRG_with n k ℓ μ) : Gᶜ.is_regular_of_degree (n - k - 1) := begin rw [← h.card, nat.sub_sub, add_comm, ←nat.sub_sub], exact h.regular.compl, end lemma is_SRG_with.card_common_neighbors_eq_of_adj_compl (h : G.is_SRG_with n k ℓ μ) {v w : V} (ha : Gᶜ.adj v w) : fintype.card ↥(Gᶜ.common_neighbors v w) = n - (2 * k - μ) - 2 := begin simp only [←set.to_finset_card, common_neighbors, set.to_finset_inter, neighbor_set_compl, set.to_finset_diff, set.to_finset_singleton, set.to_finset_compl, ←neighbor_finset_def], simp_rw compl_neighbor_finset_sdiff_inter_eq, have hne : v ≠ w := ne_of_adj _ ha, rw compl_adj at ha, rw [card_sdiff, ← insert_eq, card_insert_of_not_mem, card_singleton, ← finset.compl_union], { change (1 + 1) with 2, rw [card_compl, h.card_neighbor_finset_union_of_not_adj hne ha.2, ← h.card], }, { simp only [hne.symm, not_false_iff, mem_singleton], }, { intro u, simp only [mem_union, mem_compl, mem_neighbor_finset, mem_inter, mem_singleton], rintro (rfl|rfl); simpa [adj_comm] using ha.2, }, end lemma is_SRG_with.card_common_neighbors_eq_of_not_adj_compl (h : G.is_SRG_with n k ℓ μ) {v w : V} (hn : v ≠ w) (hna : ¬Gᶜ.adj v w) : fintype.card ↥(Gᶜ.common_neighbors v w) = n - (2 * k - ℓ) := begin simp only [←set.to_finset_card, common_neighbors, set.to_finset_inter, neighbor_set_compl, set.to_finset_diff, set.to_finset_singleton, set.to_finset_compl, ←neighbor_finset_def], simp only [not_and, not_not, compl_adj] at hna, have h2' := hna hn, simp_rw [compl_neighbor_finset_sdiff_inter_eq, sdiff_compl_neighbor_finset_inter_eq h2'], rwa [← finset.compl_union, card_compl, h.card_neighbor_finset_union_of_adj, ← h.card], end /-- The complement of a strongly regular graph is strongly regular. -/ lemma is_SRG_with.compl (h : G.is_SRG_with n k ℓ μ) : Gᶜ.is_SRG_with n (n - k - 1) (n - (2 * k - μ) - 2) (n - (2 * k - ℓ)) := { card := h.card, regular := h.compl_is_regular, of_adj := λ v w ha, h.card_common_neighbors_eq_of_adj_compl ha, of_not_adj := λ v w hn hna, h.card_common_neighbors_eq_of_not_adj_compl hn hna, } end simple_graph
c2628ac34ac0f7fa2486ebcd940eb1eac8c159eb
a45212b1526d532e6e83c44ddca6a05795113ddc
/src/data/mllist.lean
6be6c5ef6d7f931c6d988e5090f8783c162cd736
[ "Apache-2.0" ]
permissive
fpvandoorn/mathlib
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
refs/heads/master
1,624,791,089,608
1,556,715,231,000
1,556,715,231,000
165,722,980
5
0
Apache-2.0
1,552,657,455,000
1,547,494,646,000
Lean
UTF-8
Lean
false
false
4,762
lean
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carnerio, Keeley Hoek, Simon Hudon, Scott Morrison Monadic lazy lists. The inductive construction is not allowed outside of meta (indeed, we can build infinite objects). This isn't so bad, as the typical use is with the tactic monad, in any case. As we're in meta anyway, we don't bother with proofs about these constructions. -/ import data.option.basic universes u v namespace tactic -- We hide this away in the tactic namespace, just because it's all meta. meta inductive mllist (m : Type u → Type u) (α : Type u) : Type u | nil {} : mllist | cons : m (option α × mllist) → mllist namespace mllist variables {m : Type u → Type u} meta def fix {m : Type u → Type u} [alternative m] {α} (f : α → m α) : α → mllist m α | x := cons $ (λ a, (some x, fix a)) <$> f x <|> pure (some x, nil) variables [monad m] meta def uncons {α : Type u} : mllist m α → m (option (α × mllist m α)) | nil := pure none | (cons l) := do (x,xs) ← l, some x ← return x | uncons xs, return (x,xs) meta def empty {α : Type u} (xs : mllist m α) : m (ulift bool) := (ulift.up ∘ option.is_some) <$> uncons xs meta def of_list {α : Type u} : list α → mllist m α | [] := nil | (h :: t) := cons (pure (h, of_list t)) meta def m_of_list {α : Type u} : list (m α) → mllist m α | [] := nil | (h :: t) := cons ((λ x, (x, m_of_list t)) <$> some <$> h) meta def force {α} : mllist m α → m (list α) | nil := pure [] | (cons l) := do (x,xs) ← l, some x ← pure x | force xs, (::) x <$> (force xs) meta def take {α} : mllist m α → ℕ → m (list α) | nil _ := pure [] | _ 0 := pure [] | (cons l) (n+1) := do (x,xs) ← l, some x ← pure x | take xs n, (::) x <$> (take xs n) meta def map {α β : Type u} (f : α → β) : mllist m α → mllist m β | nil := nil | (cons l) := cons $ do (x,xs) ← l, pure (f <$> x, map xs) meta def mmap {α β : Type u} (f : α → m β) : mllist m α → mllist m β | nil := nil | (cons l) := cons $ do (x,xs) ← l, b ← x.traverse f, return (b, mmap xs) meta def filter {α : Type u} (p : α → Prop) [decidable_pred p] : mllist m α → mllist m α | nil := nil | (cons l) := cons $ do (a,r) ← l , some a ← return a | return (none, filter r), return (if p a then some a else none, filter r) meta def mfilter [alternative m] {α β : Type u} (p : α → m β) : mllist m α → mllist m α | nil := nil | (cons l) := cons $ do (a,r) ← l, some a ← return a | return (none, mfilter r), (p a >> return (a, mfilter r)) <|> return (none , mfilter r) meta def filter_map {α β : Type u} (f : α → option β) : mllist m α → mllist m β | nil := nil | (cons l) := cons $ do (a,r) ← l, some a ← return a | return (none, filter_map r), match f a with | (some b) := return (some b, filter_map r) | none := return (none, filter_map r) end meta def mfilter_map [alternative m] {α β : Type u} (f : α → m β) : mllist m α → mllist m β | nil := nil | (cons l) := cons $ do (a,r) ← l, some a ← return a | return (none, mfilter_map r), (f a >>= (λ b, return (some b, mfilter_map r))) <|> return (none, mfilter_map r) meta def append {α : Type u} : mllist m α → mllist m α → mllist m α | nil ys := ys | (cons xs) ys := cons $ do (x,xs) ← xs, return (x, append xs ys) meta def join {α : Type u} : mllist m (mllist m α) → mllist m α | nil := nil | (cons l) := cons $ do (xs,r) ← l, some xs ← return xs | return (none, join r), match xs with | nil := return (none, join r) | cons m := do (a,n) ← m, return (a, join (cons $ return (n, r))) end meta def enum_from {α : Type u} : ℕ → mllist m α → mllist m (ℕ × α) | _ nil := nil | n (cons l) := cons $ do (a,r) ← l, some a ← return a | return (none, enum_from n r), return ((n, a), (enum_from (n + 1) r)) meta def enum {α : Type u} : mllist m α → mllist m (ℕ × α) := enum_from 0 meta def concat {α : Type u} : mllist m α → α → mllist m α | L a := (mllist.of_list [L, mllist.of_list [a]]).join meta def bind_ {α β : Type u} : mllist m α → (α → mllist m β) → mllist m β | nil f := nil | (cons ll) f := cons $ do (x,xs) ← ll, some x ← return x | return (none, bind_ xs f), return (none, append (f x) (bind_ xs f)) meta def monad_lift {α} (x : m α) : mllist m α := cons $ (flip prod.mk nil ∘ some) <$> x end mllist end tactic
b97002ff47fe5e8215fd66207c85fa632f3f4043
c777c32c8e484e195053731103c5e52af26a25d1
/src/topology/continuous_function/compact.lean
7b83f26c73a942af39e2775fd2bb60f979ff541d
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
18,817
lean
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import topology.continuous_function.bounded import topology.uniform_space.compact import topology.compact_open import topology.sets.compacts /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `bounded_continuous_function.equiv_continuous_map_of_compact` to move functions back and forth. -/ noncomputable theory open_locale topology classical nnreal bounded_continuous_function big_operators open set filter metric open bounded_continuous_function namespace continuous_map variables {α β E : Type*} [topological_space α] [compact_space α] [metric_space β] [normed_add_comm_group E] section variables (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps { fully_applied := ff }] def equiv_bounded_of_compact : C(α, β) ≃ (α →ᵇ β) := ⟨mk_of_compact, bounded_continuous_function.to_continuous_map, λ f, by { ext, refl, }, λ f, by { ext, refl, }⟩ lemma uniform_inducing_equiv_bounded_of_compact : uniform_inducing (equiv_bounded_of_compact α β) := uniform_inducing.mk' begin simp only [has_basis_compact_convergence_uniformity.mem_iff, uniformity_basis_dist_le.mem_iff], exact λ s, ⟨λ ⟨⟨a, b⟩, ⟨ha, ⟨ε, hε, hb⟩⟩, hs⟩, ⟨{p | ∀ x, (p.1 x, p.2 x) ∈ b}, ⟨ε, hε, λ _ h x, hb (by exact (dist_le hε.le).mp h x)⟩, λ f g h, hs (by exact λ x hx, h x)⟩, λ ⟨t, ⟨ε, hε, ht⟩, hs⟩, ⟨⟨set.univ, {p | dist p.1 p.2 ≤ ε}⟩, ⟨is_compact_univ, ⟨ε, hε, λ _ h, h⟩⟩, λ ⟨f, g⟩ h, hs _ _ (ht (by exact (dist_le hε.le).mpr (λ x, h x (mem_univ x))))⟩⟩, end lemma uniform_embedding_equiv_bounded_of_compact : uniform_embedding (equiv_bounded_of_compact α β) := { inj := (equiv_bounded_of_compact α β).injective, .. uniform_inducing_equiv_bounded_of_compact α β } /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ @[simps apply symm_apply { fully_applied := ff }] def add_equiv_bounded_of_compact [add_monoid β] [has_lipschitz_add β] : C(α, β) ≃+ (α →ᵇ β) := ({ .. to_continuous_map_add_hom α β, .. (equiv_bounded_of_compact α β).symm, } : (α →ᵇ β) ≃+ C(α, β)).symm instance : metric_space C(α, β) := (uniform_embedding_equiv_bounded_of_compact α β).comap_metric_space _ /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps to_equiv apply symm_apply { fully_applied := ff }] def isometry_equiv_bounded_of_compact : C(α, β) ≃ᵢ (α →ᵇ β) := { isometry_to_fun := λ x y, rfl, to_equiv := equiv_bounded_of_compact α β } end @[simp] lemma _root_.bounded_continuous_function.dist_mk_of_compact (f g : C(α, β)) : dist (mk_of_compact f) (mk_of_compact g) = dist f g := rfl @[simp] lemma _root_.bounded_continuous_function.dist_to_continuous_map (f g : α →ᵇ β) : dist (f.to_continuous_map) (g.to_continuous_map) = dist f g := rfl open bounded_continuous_function section variables {α β} {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ lemma dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mk_of_compact, dist_coe_le_dist, ← mk_of_compact_apply] /-- The distance between two functions is controlled by the supremum of the pointwise distances -/ lemma dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀x:α, dist (f x) (g x) ≤ C := by simp only [← dist_mk_of_compact, dist_le C0, mk_of_compact_apply] lemma dist_le_iff_of_nonempty [nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mk_of_compact, dist_le_iff_of_nonempty, mk_of_compact_apply] lemma dist_lt_iff_of_nonempty [nonempty α] : dist f g < C ↔ ∀x:α, dist (f x) (g x) < C := by simp only [← dist_mk_of_compact, dist_lt_iff_of_nonempty_compact, mk_of_compact_apply] lemma dist_lt_of_nonempty [nonempty α] (w : ∀x:α, dist (f x) (g x) < C) : dist f g < C := (dist_lt_iff_of_nonempty).2 w lemma dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀x:α, dist (f x) (g x) < C := by simp only [← dist_mk_of_compact, dist_lt_iff_of_compact C0, mk_of_compact_apply] end instance [complete_space β] : complete_space (C(α, β)) := (isometry_equiv_bounded_of_compact α β).complete_space /-- See also `continuous_map.continuous_eval'` -/ @[continuity] lemma continuous_eval : continuous (λ p : C(α, β) × α, p.1 p.2) := continuous_eval.comp ((isometry_equiv_bounded_of_compact α β).continuous.prod_map continuous_id) /-- See also `continuous_map.continuous_eval_const` -/ @[continuity] lemma continuous_eval_const (x : α) : continuous (λ f : C(α, β), f x) := continuous_eval.comp (continuous_id.prod_mk continuous_const) /-- See also `continuous_map.continuous_coe'` -/ lemma continuous_coe : @continuous (C(α, β)) (α → β) _ _ coe_fn := continuous_pi continuous_eval_const -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : has_norm C(α, E) := { norm := λ x, dist x 0 } @[simp] lemma _root_.bounded_continuous_function.norm_mk_of_compact (f : C(α, E)) : ‖mk_of_compact f‖ = ‖f‖ := rfl @[simp] lemma _root_.bounded_continuous_function.norm_to_continuous_map_eq (f : α →ᵇ E) : ‖f.to_continuous_map‖ = ‖f‖ := rfl open bounded_continuous_function instance : normed_add_comm_group C(α, E) := { dist_eq := λ x y, by rw [← norm_mk_of_compact, ← dist_mk_of_compact, dist_eq_norm, mk_of_compact_sub], dist := dist, norm := norm, .. continuous_map.metric_space _ _, .. continuous_map.add_comm_group } instance [nonempty α] [has_one E] [norm_one_class E] : norm_one_class C(α, E) := { norm_one := by simp only [←norm_mk_of_compact, mk_of_compact_one, norm_one] } section variables (f : C(α, E)) -- The corresponding lemmas for `bounded_continuous_function` are stated with `{f}`, -- and so can not be used in dot notation. lemma norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mk_of_compact f).norm_coe_le_norm x /-- Distance between the images of any two points is at most twice the norm of the function. -/ lemma dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mk_of_compact f).dist_le_two_norm x y /-- The norm of a function is controlled by the supremum of the pointwise norms -/ lemma norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀x:α, ‖f x‖ ≤ C := @bounded_continuous_function.norm_le _ _ _ _ (mk_of_compact f) _ C0 lemma norm_le_of_nonempty [nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @bounded_continuous_function.norm_le_of_nonempty _ _ _ _ _ (mk_of_compact f) _ lemma norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @bounded_continuous_function.norm_lt_iff_of_compact _ _ _ _ _ (mk_of_compact f) _ M0 theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ (x : α), ‖f x‖₊ < M := f.norm_lt_iff M0 lemma norm_lt_iff_of_nonempty [nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @bounded_continuous_function.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mk_of_compact f) _ lemma nnnorm_lt_iff_of_nonempty [nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty lemma apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) lemma neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) lemma norm_eq_supr_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mk_of_compact f).norm_eq_supr_norm lemma norm_restrict_mono_set {X : Type*} [topological_space X] (f : C(X, E)) {K L : topological_space.compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr (λ x, norm_coe_le_norm (f.restrict L) $ set.inclusion hKL x) end section variables {R : Type*} [normed_ring R] instance : normed_ring C(α,R) := { norm_mul := λ f g, norm_mul_le (mk_of_compact f) (mk_of_compact g), ..(infer_instance : normed_add_comm_group C(α,R)), .. continuous_map.ring } end section variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 E] instance : normed_space 𝕜 C(α,E) := { norm_smul_le := λ c f, (norm_smul_le c (mk_of_compact f) : _) } section variables (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linear_isometry_bounded_of_compact : C(α, E) ≃ₗᵢ[𝕜] (α →ᵇ E) := { map_smul' := λ c f, by { ext, simp, }, norm_map' := λ f, rfl, .. add_equiv_bounded_of_compact α E } variables {α E} -- to match bounded_continuous_function.eval_clm /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def eval_clm (x : α) : C(α, E) →L[𝕜] E := (eval_clm 𝕜 x).comp ((linear_isometry_bounded_of_compact α E 𝕜).to_linear_isometry).to_continuous_linear_map end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equiv_bounded_of_compact`, `add_equiv_bounded_of_compact` @[simp] lemma linear_isometry_bounded_of_compact_symm_apply (f : α →ᵇ E) : (linear_isometry_bounded_of_compact α E 𝕜).symm f = f.to_continuous_map := rfl @[simp] lemma linear_isometry_bounded_of_compact_apply_apply (f : C(α, E)) (a : α) : (linear_isometry_bounded_of_compact α E 𝕜 f) a = f a := rfl @[simp] lemma linear_isometry_bounded_of_compact_to_isometry_equiv : (linear_isometry_bounded_of_compact α E 𝕜).to_isometry_equiv = (isometry_equiv_bounded_of_compact α E) := rfl @[simp] lemma linear_isometry_bounded_of_compact_to_add_equiv : (linear_isometry_bounded_of_compact α E 𝕜).to_linear_equiv.to_add_equiv = (add_equiv_bounded_of_compact α E) := rfl @[simp] lemma linear_isometry_bounded_of_compact_of_compact_to_equiv : (linear_isometry_bounded_of_compact α E 𝕜).to_linear_equiv.to_equiv = (equiv_bounded_of_compact α E) := rfl end section variables {𝕜 : Type*} {γ : Type*} [normed_field 𝕜] [normed_ring γ] [normed_algebra 𝕜 γ] instance : normed_algebra 𝕜 C(α, γ) := { ..continuous_map.normed_space } end end continuous_map namespace continuous_map section uniform_continuity variables {α β : Type*} variables [metric_space α] [compact_space α] [metric_space β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ lemma uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := metric.uniform_continuous_iff.mp (compact_space.uniform_continuous_of_continuous f.continuous) ε h /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := classical.some (uniform_continuity f ε h) lemma modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (classical.some_spec (uniform_continuity f ε h)).fst lemma dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (classical.some_spec (uniform_continuity f ε h)).snd w end uniform_continuity end continuous_map section comp_left variables (X : Type*) {𝕜 β γ : Type*} [topological_space X] [compact_space X] [nontrivially_normed_field 𝕜] variables [normed_add_comm_group β] [normed_space 𝕜 β] [normed_add_comm_group γ] [normed_space 𝕜 γ] open continuous_map /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `continuous_linear_map.comp_left_continuous_bounded`, upgraded version of `continuous_linear_map.comp_left_continuous`, similar to `linear_map.comp_left`. -/ protected def continuous_linear_map.comp_left_continuous_compact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linear_isometry_bounded_of_compact X γ 𝕜).symm.to_linear_isometry.to_continuous_linear_map.comp $ (g.comp_left_continuous_bounded X).comp $ (linear_isometry_bounded_of_compact X β 𝕜).to_linear_isometry.to_continuous_linear_map @[simp] lemma continuous_linear_map.to_linear_comp_left_continuous_compact (g : β →L[𝕜] γ) : (g.comp_left_continuous_compact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.comp_left_continuous 𝕜 X := by { ext f, refl } @[simp] lemma continuous_linear_map.comp_left_continuous_compact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.comp_left_continuous_compact X f x = g (f x) := rfl end comp_left namespace continuous_map /-! We now setup variations on `comp_right_* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `comp_right_continuous_map`, the bundled continuous map (for this we need `X Y` compact). * `comp_right_homeomorph`, when we precompose by a homeomorphism. * `comp_right_alg_hom`, when `T = R` is a topological ring. -/ section comp_right /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def comp_right_continuous_map {X Y : Type*} (T : Type*) [topological_space X] [compact_space X] [topological_space Y] [compact_space Y] [metric_space T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) := { to_fun := λ g, g.comp f, continuous_to_fun := begin refine metric.continuous_iff.mpr _, intros g ε ε_pos, refine ⟨ε, ε_pos, λ g' h, _⟩, rw continuous_map.dist_lt_iff ε_pos at h ⊢, { exact λ x, h (f x), }, end } @[simp] lemma comp_right_continuous_map_apply {X Y : Type*} (T : Type*) [topological_space X] [compact_space X] [topological_space Y] [compact_space Y] [metric_space T] (f : C(X, Y)) (g : C(Y, T)) : (comp_right_continuous_map T f) g = g.comp f := rfl /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def comp_right_homeomorph {X Y : Type*} (T : Type*) [topological_space X] [compact_space X] [topological_space Y] [compact_space Y] [metric_space T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) := { to_fun := comp_right_continuous_map T f.to_continuous_map, inv_fun := comp_right_continuous_map T f.symm.to_continuous_map, left_inv := λ g, ext $ λ _, congr_arg g (f.apply_symm_apply _), right_inv := λ g, ext $ λ _, congr_arg g (f.symm_apply_apply _) } lemma comp_right_alg_hom_continuous {X Y : Type*} (R A : Type*) [topological_space X] [compact_space X] [topological_space Y] [compact_space Y] [comm_semiring R] [semiring A] [metric_space A] [topological_semiring A] [algebra R A] (f : C(X, Y)) : continuous (comp_right_alg_hom R A f) := map_continuous (comp_right_continuous_map A f) end comp_right section local_normal_convergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open topological_space variables {X : Type*} [topological_space X] [t2_space X] [locally_compact_space X] variables {E : Type*} [normed_add_comm_group E] [complete_space E] lemma summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : compacts X, summable (λ i, ‖(F i).restrict K‖)) : summable F := begin refine (continuous_map.exists_tendsto_compact_open_iff_forall _).2 (λ K hK, _), lift K to compacts X using hK, have A : ∀ s : finset ι, restrict ↑K (∑ i in s, F i) = ∑ i in s, restrict K (F i), { intro s, ext1 x, simp }, simpa only [has_sum, A] using summable_of_summable_norm (hF K) end end local_normal_convergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section normed_space variables {α : Type*} {β : Type*} variables [topological_space α] [normed_add_comm_group β] [star_add_monoid β] [normed_star_group β] lemma _root_.bounded_continuous_function.mk_of_compact_star [compact_space α] (f : C(α, β)) : mk_of_compact (star f) = star (mk_of_compact f) := rfl instance [compact_space α] : normed_star_group C(α, β) := { norm_star := λ f, by rw [←bounded_continuous_function.norm_mk_of_compact, bounded_continuous_function.mk_of_compact_star, norm_star, bounded_continuous_function.norm_mk_of_compact] } end normed_space section cstar_ring variables {α : Type*} {β : Type*} variables [topological_space α] [normed_ring β] [star_ring β] instance [compact_space α] [cstar_ring β] : cstar_ring C(α, β) := { norm_star_mul_self := begin intros f, refine le_antisymm _ _, { rw [←sq, continuous_map.norm_le _ (sq_nonneg _)], intro x, simp only [continuous_map.coe_mul, coe_star, pi.mul_apply, pi.star_apply, cstar_ring.norm_star_mul_self, ←sq], refine sq_le_sq' _ _, { linarith [norm_nonneg (f x), norm_nonneg f] }, { exact continuous_map.norm_coe_le_norm f x }, }, { rw [←sq, ←real.le_sqrt (norm_nonneg _) (norm_nonneg _), continuous_map.norm_le _ (real.sqrt_nonneg _)], intro x, rw [real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ←cstar_ring.norm_star_mul_self], exact continuous_map.norm_coe_le_norm (star f * f) x }, end } end cstar_ring end continuous_map
9aa638c289f6a0ffbdbcf47619e573afe0f6cea4
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/src/analysis/normed_space/conformal_linear_map.lean
2ca1d2a0a6c12621c195e66f484a88b0dc0be9a0
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,017
lean
/- Copyright (c) 2021 Yourong Zang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yourong Zang -/ import analysis.normed_space.inner_product /-! # Conformal Linear Maps A continuous linear map between `R`-normed spaces `X` and `Y` `is_conformal_map` if it is a nonzero multiple of a linear isometry. ## Main definitions * `is_conformal_map`: the main definition of conformal linear maps ## Main results * The conformality of the composition of two conformal linear maps, the identity map and multiplications by nonzero constants as continuous linear maps * `is_conformal_map_iff`: an equivalent definition of the conformality * `is_conformal_map_of_subsingleton`: all continuous linear maps on singleton spaces are conformal * `is_conformal_map.preserves_angle`: if a continuous linear map is conformal, then it preserves all angles in the normed space ## Tags conformal ## Warning The definition of conformality in this file does NOT require the maps to be orientation-preserving. -/ noncomputable theory open linear_isometry continuous_linear_map open_locale real_inner_product_space /-- A continuous linear map `f'` is said to be conformal if it's a nonzero multiple of a linear isometry. -/ def is_conformal_map {R : Type*} {X Y : Type*} [nondiscrete_normed_field R] [normed_group X] [normed_group Y] [normed_space R X] [normed_space R Y] (f' : X →L[R] Y) := ∃ (c : R) (hc : c ≠ 0) (li : X →ₗᵢ[R] Y), (f' : X → Y) = c • li variables {E F : Type*} [inner_product_space ℝ E] [inner_product_space ℝ F] {X Y Z : Type*} [normed_group X] [normed_group Y] [normed_group Z] [normed_space ℝ X] [normed_space ℝ Y] [normed_space ℝ Z] {R M N G : Type*} [nondiscrete_normed_field R] [normed_group M] [normed_group N] [normed_group G] [normed_space R M] [normed_space R N] [normed_space R G] lemma is_conformal_map_id : is_conformal_map (id R M) := ⟨1, one_ne_zero, id, by ext; simp⟩ lemma is_conformal_map_const_smul {c : R} (hc : c ≠ 0) : is_conformal_map (c • (id R M)) := ⟨c, hc, id, by ext; simp⟩ lemma linear_isometry.is_conformal_map (f' : E →ₗᵢ[ℝ] F) : is_conformal_map f'.to_continuous_linear_map := ⟨1, one_ne_zero, f', by ext; simp⟩ lemma is_conformal_map_iff (f' : E →L[ℝ] F) : is_conformal_map f' ↔ ∃ (c : ℝ), 0 < c ∧ ∀ (u v : E), ⟪f' u, f' v⟫ = (c : ℝ) * ⟪u, v⟫ := begin split, { rintros ⟨c₁, hc₁, li, h⟩, refine ⟨c₁ * c₁, mul_self_pos hc₁, λ u v, _⟩, simp only [h, pi.smul_apply, inner_map_map, real_inner_smul_left, real_inner_smul_right, mul_assoc], }, { rintros ⟨c₁, hc₁, huv⟩, let c := real.sqrt c₁⁻¹, have hc : c ≠ 0 := λ w, by {simp only [c] at w; exact (real.sqrt_ne_zero'.mpr $ inv_pos.mpr hc₁) w}, let f₁ := c • f', have minor : (f₁ : E → F) = c • f' := rfl, have minor' : (f' : E → F) = c⁻¹ • f₁ := by ext; simp_rw [minor, pi.smul_apply]; rw [smul_smul, inv_mul_cancel hc, one_smul], refine ⟨c⁻¹, inv_ne_zero hc, f₁.to_linear_map.isometry_of_inner (λ u v, _), minor'⟩, simp_rw [to_linear_map_eq_coe, continuous_linear_map.coe_coe, minor, pi.smul_apply], rw [real_inner_smul_left, real_inner_smul_right, huv u v, ← mul_assoc, ← mul_assoc, real.mul_self_sqrt $ le_of_lt $ inv_pos.mpr hc₁, inv_mul_cancel $ ne_of_gt hc₁, one_mul], }, end lemma is_conformal_map_of_subsingleton [h : subsingleton M] (f' : M →L[R] N) : is_conformal_map f' := begin rw subsingleton_iff at h, have minor : (f' : M → N) = function.const M 0 := by ext x'; rw h x' 0; exact f'.map_zero, have key : ∀ (x' : M), ∥(0 : M →ₗ[R] N) x'∥ = ∥x'∥ := λ x', by rw [linear_map.zero_apply, h x' 0]; repeat { rw norm_zero }, exact ⟨(1 : R), one_ne_zero, ⟨0, key⟩, by rw pi.smul_def; ext p; rw [one_smul, minor]; refl⟩, end namespace is_conformal_map lemma comp {f' : M →L[R] N} {g' : N →L[R] G} (hg' : is_conformal_map g') (hf' : is_conformal_map f') : is_conformal_map (g'.comp f') := begin rcases hf' with ⟨cf, hcf, lif, hlif⟩, rcases hg' with ⟨cg, hcg, lig, hlig⟩, refine ⟨cg * cf, mul_ne_zero hcg hcf, lig.comp lif, funext (λ x, _)⟩, simp only [coe_comp', linear_isometry.coe_comp, hlif, hlig, pi.smul_apply, function.comp_app, linear_isometry.map_smul, smul_smul], end lemma injective {f' : M →L[R] N} (h : is_conformal_map f') : function.injective f' := let ⟨c, hc, li, hf'⟩ := h in by simp only [hf', pi.smul_def]; exact (smul_right_injective _ hc).comp li.injective lemma ne_zero [nontrivial M] {f' : M →L[R] N} (hf' : is_conformal_map f') : f' ≠ 0 := begin intros w, rcases exists_ne (0 : M) with ⟨a, ha⟩, have : f' a = f' 0, { simp_rw [w, continuous_linear_map.zero_apply], }, exact ha (hf'.injective this), end end is_conformal_map
c7b6b3fd8feefee926fd61a5d35dd21f9c6ba56d
4a092885406df4e441e9bb9065d9405dacb94cd8
/src/for_mathlib/finset.lean
4b65aa362f8471a42e575a23ade1f3bfca9fba85
[ "Apache-2.0" ]
permissive
semorrison/lean-perfectoid-spaces
78c1572cedbfae9c3e460d8aaf91de38616904d8
bb4311dff45791170bcb1b6a983e2591bee88a19
refs/heads/master
1,588,841,765,494
1,554,805,620,000
1,554,805,620,000
180,353,546
0
1
null
1,554,809,880,000
1,554,809,880,000
null
UTF-8
Lean
false
false
1,800
lean
import data.finset local attribute [instance] classical.prop_decidable namespace finset open function variables {α : Type*} {β : Type*} (t : finset β) (f : α → β) set_option pp.proofs true lemma exists_finset_of_surjective (h : surjective f) : ∃ (s : finset α), s.image f = t := ⟨t.bind $ λ b, singleton $ classical.some $ h b, begin ext b, simp only [bind_image, mem_bind, mem_image], split; intro H, { rcases H with ⟨b', hb', a, ha, H⟩, erw [mem_singleton] at ha, subst ha, subst H, rwa classical.some_spec (h b') }, { use [b, H], refine ⟨_, mem_singleton_self _, _⟩, rw classical.some_spec (h b) } end⟩ lemma exists_finset_of_subset_range (h : (↑t : set β) ⊆ set.range f) : ∃ (s : finset α), s.image f = t := begin let f' := set.range_factorization f, let t' : finset (set.range f) := finset.subtype _ t, cases exists_finset_of_surjective t' f' (set.surjective_onto_range) with s hs, use s, convert congr_arg (image subtype.val) hs, { erw [image_image, set.range_factorization_eq] }, { ext b, erw mem_image, split; intro H, { refine ⟨⟨b, h H⟩, mem_subtype.mpr H, rfl⟩ }, { rcases H with ⟨_, _, rfl⟩, exact mem_subtype.mp ‹_› } } end lemma exists_finset_of_subset_image (s : set α) (h : (↑t : set β) ⊆ f '' s) : ∃ (s' : finset α), s'.image f = t ∧ (↑s' : set α) ⊆ s := begin have H : ↑t ⊆ set.range (f ∘ (subtype.val : s → α)) := by rw [set.range_comp, set.subtype.val_range]; exact h, cases exists_finset_of_subset_range t (f ∘ (subtype.val : s → α)) H with s' hs', refine ⟨(s'.image (subtype.val : s → α)), _, _⟩, { erw image_image, exact hs' }, { erw coe_image, apply subtype.val_image_subset } end end finset
ba34b5deabebf512775d4936706db7751c3fec53
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/binopIssues.lean
200dd92bc34e6be8a1c85ab203789c1eb559cd14
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
245
lean
axiom Int.add_comm (i j : Int) : i + j = j + i example (n : Nat) (i : Int) : n + i = i + n := by rw [Int.add_comm] def f1 (a : Int) (b c : Nat) : Int := a + (b - c) def f2 (a : Int) (b c : Nat) : Int := (b - c) + a #print f1 #print f2
ee7da79439187358953aa4c2dc56d6df125cef57
a721fe7446524f18ba361625fc01033d9c8b7a78
/elaborate/mul_cancel_induction.lean
bf2a14fd5f00c87b23b3355f56c2f99a17888cd0
[]
no_license
Sterrs/leaning
8fd80d1f0a6117a220bb2e57ece639b9a63deadc
3901cc953694b33adda86cb88ca30ba99594db31
refs/heads/master
1,627,023,822,744
1,616,515,221,000
1,616,515,221,000
245,512,190
2
0
null
1,616,429,050,000
1,583,527,118,000
Lean
UTF-8
Lean
false
false
88,091
lean
mynat.rec (λ {m k : mynat} (hmn0 : m = zero → false) (hmk0 : zero = mul m k), eq.rec (eq.refl k) (mynat.rec (eq.rec true.intro (eq.rec (eq.refl ((m = zero → false) → zero = zero → zero = zero)) (eq.rec (propext {mp := λ (hab : (m = zero → false) → zero = zero → zero = zero) (hc : m = zero → false), (eq.rec {mp := λ (h : zero = zero → zero = zero), h, mpr := λ (h : zero = zero → zero = zero), h} (eq.rec (propext {mp := λ (hab : zero = zero → zero = zero) (hc : true), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mp (hab ((eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mpr hc)), mpr := λ (hcd : true → true) (ha : zero = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mpr (hcd ((eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mp ha))}) (propext {mp := λ (h : true → true), h true.intro, mpr := λ (h h' : true), h}))).mp (hab hc), mpr := λ (hcd : (m = zero → false) → true) (ha : m = zero → false), (eq.rec {mp := λ (h : zero = zero → zero = zero), h, mpr := λ (h : zero = zero → zero = zero), h} (eq.rec (propext {mp := λ (hab : zero = zero → zero = zero) (hc : true), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mp (hab ((eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mpr hc)), mpr := λ (hcd : true → true) (ha : zero = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mpr (hcd ((eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mp ha))}) (propext {mp := λ (h : true → true), h true.intro, mpr := λ (h h' : true), h}))).mpr (hcd ha)}) (propext {mp := λ (h : (m = zero → false) → true), true.intro, mpr := λ (ha : true) (h : m = zero → false), true.intro})))) (λ (n : mynat) (ih : (m = zero → false) → mul m n = zero → n = zero) (hmne0 : m = zero → false) (hmn0 : add m (mul m n) = zero), false.rec (succ n = zero) (hmne0 (mynat.rec (eq.rec true.intro (eq.rec (eq.refl (add zero (mul m n) = zero → zero = zero)) (eq.rec (propext {mp := λ (hab : add zero (mul m n) = zero → zero = zero) (hc : mul m n = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mp (hab ((eq.rec {mp := λ (h : add zero (mul m n) = zero), h, mpr := λ (h : add zero (mul m n) = zero), h} (eq.rec (eq.refl (add zero (mul m n) = zero)) (eq.rec (eq.refl (eq (add zero (mul m n)))) (eq.rec (eq.refl (add zero (mul m n))) ((mynat.rec ⟨λ (m : mynat), eq.rec (eq.refl m) (eq.rec (eq.refl (m = add zero m)) (eq.rec (eq.refl (m = add zero m)) ((mynat.rec ⟨eq.refl zero, punit.star⟩ (λ (n : mynat) (ih : pprod (add zero n = n) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (add zero n = n) ih) punit) n)), ⟨eq.rec (eq.refl (succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (ih.fst))), ⟨ih, punit.star⟩⟩) m).fst))), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add m n = add n m) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add m n = add n m) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.rec (eq.refl (succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (ih.fst m)))) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (ih.fst m))), ⟨ih, punit.star⟩⟩) m).fst n))), ⟨ih, punit.star⟩⟩) (mul m n)).fst zero))))).mpr hc)), mpr := λ (hcd : mul m n = zero → true) (ha : add zero (mul m n) = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mpr (hcd ((eq.rec {mp := λ (h : add zero (mul m n) = zero), h, mpr := λ (h : add zero (mul m n) = zero), h} (eq.rec (eq.refl (add zero (mul m n) = zero)) (eq.rec (eq.refl (eq (add zero (mul m n)))) (eq.rec (eq.refl (add zero (mul m n))) ((mynat.rec ⟨λ (m : mynat), eq.rec (eq.refl m) (eq.rec (eq.refl (m = add zero m)) (eq.rec (eq.refl (m = add zero m)) ((mynat.rec ⟨eq.refl zero, punit.star⟩ (λ (n : mynat) (ih : pprod (add zero n = n) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (add zero n = n) ih) punit) n)), ⟨eq.rec (eq.refl (succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (ih.fst))), ⟨ih, punit.star⟩⟩) m).fst))), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add m n = add n m) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add m n = add n m) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.rec (eq.refl (succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (ih.fst m)))) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (ih.fst m))), ⟨ih, punit.star⟩⟩) m).fst n))), ⟨ih, punit.star⟩⟩) (mul m n)).fst zero))))).mp ha))}) (propext {mp := λ (h : mul m n = zero → true), true.intro, mpr := λ (ha : true) (h : mul m n = zero), true.intro})))) (λ (n_1 : mynat) (ih : add n_1 (mul m n) = zero → n_1 = zero), eq.rec (λ (h : succ (add n_1 (mul m n)) = zero), false.rec (succ n_1 = zero) (eq.rec (λ («_» : succ (add n_1 (mul m n)) = succ (add n_1 (mul m n))) (a : zero = succ (add n_1 (mul m n))), eq.rec (λ (h11 : zero = zero) (a : h == eq.refl (succ (add n_1 (mul m n))) → false), a) a a) h h (eq.refl zero) (heq.refl h))) (eq.rec (eq.refl (add (succ n_1) (mul m n) = zero → succ n_1 = zero)) (eq.rec (eq.refl (add (succ n_1) (mul m n) = zero → succ n_1 = zero)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (ih.fst m))), ⟨ih, punit.star⟩⟩) (mul m n)).fst n_1)))) m hmn0))) k hmn0 (eq.rec (eq.refl zero) hmk0))) (λ (n : mynat) (hn : ∀ {m k : mynat}, (m = zero → false) → mul m n = mul m k → n = k) {m k : mynat} (hmn0 : m = zero → false) (heq_1 : add m (mul m n) = mul m k), mynat.rec (λ (heq_1 : add m (mul m n) = zero), false.rec (succ n = zero) (eq.rec (λ («_» : succ n = succ n) (a : zero = succ n), eq.rec (λ (h11 : zero = zero) (a : false.rec (succ n = zero) (hmn0 (mynat.rec (eq.rec true.intro (eq.rec (eq.refl (add zero (mul m n) = zero → zero = zero)) (eq.rec (propext {mp := λ (hab : add zero (mul m n) = zero → zero = zero) (hc : mul m n = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mp (hab ((eq.rec {mp := λ (h : add zero (mul m n) = zero), h, mpr := λ (h : add zero (mul m n) = zero), h} (eq.rec (eq.refl (add zero (mul m n) = zero)) (eq.rec (eq.refl (eq (add zero (mul m n)))) (eq.rec (eq.refl (add zero (mul m n))) ((mynat.rec ⟨λ (m : mynat), eq.rec (eq.refl m) (eq.rec (eq.refl (m = add zero m)) (eq.rec (eq.refl (m = add zero m)) ((mynat.rec ⟨eq.refl zero, punit.star⟩ (λ (n : mynat) (ih : pprod (add zero n = n) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod … ih) punit) n)), ⟨eq.rec (eq.refl (succ n)) (eq.rec (eq.refl (succ (… n) = succ n)) (eq.rec (eq.refl (succ … = succ n)) (ih.fst))), ⟨ih, punit.star⟩⟩) m).fst))), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add m n = add n m) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add m n = add n m) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.rec (eq.refl (succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (ih.fst m)))) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (… ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ …))) (eq.rec (eq.refl (… = …)) (eq.rec (eq.refl …) (ih.fst m))), ⟨ih, punit.star⟩⟩) m).fst n))), ⟨ih, punit.star⟩⟩) (mul m n)).fst zero))))).mpr hc)), mpr := λ (hcd : mul m n = zero → true) (ha : add zero (mul m n) = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mpr (hcd ((eq.rec {mp := λ (h : add zero (mul m n) = zero), h, mpr := λ (h : add zero (mul m n) = zero), h} (eq.rec (eq.refl (add zero (mul m n) = zero)) (eq.rec (eq.refl (eq (add zero (mul m n)))) (eq.rec (eq.refl (add zero (mul m n))) ((mynat.rec ⟨λ (m : mynat), eq.rec (eq.refl m) (eq.rec (eq.refl (m = add zero m)) (eq.rec (eq.refl (m = add zero m)) ((mynat.rec ⟨eq.refl zero, punit.star⟩ (λ (n : mynat) (ih : pprod (add zero n = n) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod … ih) punit) n)), ⟨eq.rec (eq.refl (succ n)) (eq.rec (eq.refl (succ (… n) = succ n)) (eq.rec (eq.refl (succ … = succ n)) (ih.fst))), ⟨ih, punit.star⟩⟩) m).fst))), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add m n = add n m) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add m n = add n m) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.rec (eq.refl (succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (ih.fst m)))) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (… ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ …))) (eq.rec (eq.refl (… = …)) (eq.rec (eq.refl …) (ih.fst m))), ⟨ih, punit.star⟩⟩) m).fst n))), ⟨ih, punit.star⟩⟩) (mul m n)).fst zero))))).mp ha))}) (propext {mp := λ (h : mul m n = zero → true), true.intro, mpr := λ (ha : true) (h : mul m n = zero), true.intro})))) (λ (n_1 : mynat) (ih : add n_1 (mul m n) = zero → n_1 = zero), eq.rec (λ (h : succ (add n_1 (mul m n)) = zero), false.rec (succ n_1 = zero) (eq.rec (λ («_» : succ (add n_1 (mul m n)) = succ (add n_1 (mul m n))) (a : zero = succ (add n_1 (mul m n))), eq.rec (λ (h11 : zero = zero) (a : h == eq.refl (succ (add n_1 (mul m n))) → false), a) a a) h h (eq.refl zero) (heq.refl h))) (eq.rec (eq.refl (add (succ n_1) (mul m n) = zero → succ n_1 = zero)) (eq.rec (eq.refl (add (succ n_1) (mul m n) = zero → succ n_1 = zero)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (ih.fst m))), ⟨ih, punit.star⟩⟩) (mul m n)).fst n_1)))) m heq_1)) == eq.refl (succ n) → false), a) a a) (false.rec (succ n = zero) (hmn0 (mynat.rec (eq.rec true.intro (eq.rec (eq.refl (add zero (mul m n) = zero → zero = zero)) (eq.rec (propext {mp := λ (hab : add zero (mul m n) = zero → zero = zero) (hc : mul m n = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mp (hab ((eq.rec {mp := λ (h : add zero (mul m n) = zero), h, mpr := λ (h : add zero (mul m n) = zero), h} (eq.rec (eq.refl (add zero (mul m n) = zero)) (eq.rec (eq.refl (eq (add zero (mul m n)))) (eq.rec (eq.refl (add zero (mul m n))) ((mynat.rec ⟨λ (m : mynat), eq.rec (eq.refl m) (eq.rec (eq.refl (m = add zero m)) (eq.rec (eq.refl (m = add zero m)) ((mynat.rec ⟨eq.refl zero, punit.star⟩ (λ (n : mynat) (ih : pprod (add zero n = n) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (add zero n = n) ih) punit) n)), ⟨eq.rec (eq.refl (succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (ih.fst))), ⟨ih, punit.star⟩⟩) m).fst))), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add m n = add n m) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add m n = add n m) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.rec (eq.refl (succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (ih.fst m)))) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (ih.fst m))), ⟨ih, punit.star⟩⟩) m).fst n))), ⟨ih, punit.star⟩⟩) (mul m n)).fst zero))))).mpr hc)), mpr := λ (hcd : mul m n = zero → true) (ha : add zero (mul m n) = zero), (eq.rec {mp := λ (h : zero = zero), h, mpr := λ (h : zero = zero), h} (eq.rec (eq.refl (zero = zero)) (propext {mp := λ (hl : zero = zero), true.intro, mpr := λ (hr : true), eq.refl zero}))).mpr (hcd ((eq.rec {mp := λ (h : add zero (mul m n) = zero), h, mpr := λ (h : add zero (mul m n) = zero), h} (eq.rec (eq.refl (add zero (mul m n) = zero)) (eq.rec (eq.refl (eq (add zero (mul m n)))) (eq.rec (eq.refl (add zero (mul m n))) ((mynat.rec ⟨λ (m : mynat), eq.rec (eq.refl m) (eq.rec (eq.refl (m = add zero m)) (eq.rec (eq.refl (m = add zero m)) ((mynat.rec ⟨eq.refl zero, punit.star⟩ (λ (n : mynat) (ih : pprod (add zero n = n) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (add zero n = n) ih) punit) n)), ⟨eq.rec (eq.refl (succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (eq.rec (eq.refl (succ (add zero n) = succ n)) (ih.fst))), ⟨ih, punit.star⟩⟩) m).fst))), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add m n = add n m) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add m n = add n m) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.rec (eq.refl (succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (eq.rec (eq.refl (succ (add m n) = succ (add n m))) (ih.fst m)))) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) (eq.rec (eq.refl (succ (add m n) = add (succ n) m)) ((mynat.rec ⟨λ (m : mynat), eq.refl (succ m), punit.star⟩ (λ (n : mynat) (ih : pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) (mynat.rec punit (λ (n : mynat) (ih : Type), pprod (pprod (∀ (m : mynat), add (succ m) n = succ (add m n)) ih) punit) n)), ⟨λ (m : mynat), eq.rec (eq.refl (succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (eq.rec (eq.refl (succ (add (succ m) n) = succ (succ (add m n)))) (ih.fst m))), ⟨ih, punit.star⟩⟩) m).fst n))), ⟨ih, punit.star⟩⟩) (mul m n)).fst zero))))).mp ha))}) (propext {mp := λ (h : mul m n = zero → true), true.intro, mpr := λ (ha : true) (h : mul m n = zero), true.intro})))) (λ (n_1 : mynat) (ih : add n_1 (mul m n) = zero → n_1 = zero), eq.rec (λ (h : succ (add n_1 (mul m n)) = zero), false.rec (succ n_1 = zero) (eq.rec (λ («_» : succ (add n_1 (mul m n)) = succ (add n_1 (mul m n))) (a : zero = succ (add n_1 (mul m n))), eq.rec (λ (h11 : zero = zero) (a : h == eq.refl (succ (add n_1 (mul m n))) → false), a) a a) h h (eq.refl zero) (heq.refl h))) (eq.rec (eq.refl (add (succ n_1) (mul m n) = zero → succ n_1 = zero)) (eq.rec (eq.refl …) …))) m heq_1))) … … …)) … k heq_1) ?M_1
f4cb476657fd5600f7d5d369433fa6e0078da927
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/category_theory/limits/shapes/biproducts_auto.lean
386f2c6d371f14d17ae8b10fb430c34a2c97e089
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
44,424
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.category_theory.limits.shapes.finite_products import Mathlib.category_theory.limits.shapes.binary_products import Mathlib.category_theory.preadditive.default import Mathlib.PostPort universes v u l namespace Mathlib /-! # Biproducts and binary biproducts We introduce the notion of (finite) biproducts and binary biproducts. These are slightly unusual relative to the other shapes in the library, as they are simultaneously limits and colimits. (Zero objects are similar; they are "biterminal".) We treat first the case of a general category with zero morphisms, and subsequently the case of a preadditive category. In a category with zero morphisms, we model the (binary) biproduct of `P Q : C` using a `binary_bicone`, which has a cone point `X`, and morphisms `fst : X ⟶ P`, `snd : X ⟶ Q`, `inl : P ⟶ X` and `inr : X ⟶ Q`, such that `inl ≫ fst = 𝟙 P`, `inl ≫ snd = 0`, `inr ≫ fst = 0`, and `inr ≫ snd = 𝟙 Q`. Such a `binary_bicone` is a biproduct if the cone is a limit cone, and the cocone is a colimit cocone. In a preadditive category, * any `binary_biproduct` satisfies `total : fst ≫ inl + snd ≫ inr = 𝟙 X` * any `binary_product` is a `binary_biproduct` * any `binary_coproduct` is a `binary_biproduct` For biproducts indexed by a `fintype J`, a `bicone` again consists of a cone point `X` and morphisms `π j : X ⟶ F j` and `ι j : F j ⟶ X` for each `j`, such that `ι j ≫ π j'` is the identity when `j = j'` and zero otherwise. In a preadditive category, * any `biproduct` satisfies `total : ∑ j : J, biproduct.π f j ≫ biproduct.ι f j = 𝟙 (⨁ f)` * any `product` is a `biproduct` * any `coproduct` is a `biproduct` ## Notation As `⊕` is already taken for the sum of types, we introduce the notation `X ⊞ Y` for a binary biproduct. We introduce `⨁ f` for the indexed biproduct. -/ namespace category_theory.limits /-- A `c : bicone F` is: * an object `c.X` and * morphisms `π j : X ⟶ F j` and `ι j : F j ⟶ X` for each `j`, * such that `ι j ≫ π j'` is the identity when `j = j'` and zero otherwise. -/ structure bicone {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) where X : C π : (j : J) → X ⟶ F j ι : (j : J) → F j ⟶ X ι_π : ∀ (j j' : J), ι j ≫ π j' = dite (j = j') (fun (h : j = j') => eq_to_hom (congr_arg F h)) fun (h : ¬j = j') => 0 @[simp] theorem bicone_ι_π_self {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {F : J → C} (B : bicone F) (j : J) : bicone.ι B j ≫ bicone.π B j = 𝟙 := sorry @[simp] theorem bicone_ι_π_ne {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {F : J → C} (B : bicone F) {j : J} {j' : J} (h : j ≠ j') : bicone.ι B j ≫ bicone.π B j' = 0 := sorry namespace bicone /-- Extract the cone from a bicone. -/ def to_cone {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {F : J → C} (B : bicone F) : cone (discrete.functor F) := cone.mk (X B) (nat_trans.mk fun (j : discrete J) => π B j) /-- Extract the cocone from a bicone. -/ def to_cocone {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {F : J → C} (B : bicone F) : cocone (discrete.functor F) := cocone.mk (X B) (nat_trans.mk fun (j : discrete J) => ι B j) end bicone /-- A bicone over `F : J → C`, which is both a limit cone and a colimit cocone. -/ structure limit_bicone {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) where bicone : bicone F is_limit : is_limit (bicone.to_cone bicone) is_colimit : is_colimit (bicone.to_cocone bicone) /-- `has_biproduct F` expresses the mere existence of a bicone which is simultaneously a limit and a colimit of the diagram `F`. -/ class has_biproduct {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) where mk' :: (exists_biproduct : Nonempty (limit_bicone F)) theorem has_biproduct.mk {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {F : J → C} (d : limit_bicone F) : has_biproduct F := has_biproduct.mk' (Nonempty.intro d) /-- Use the axiom of choice to extract explicit `biproduct_data F` from `has_biproduct F`. -/ def get_biproduct_data {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) [has_biproduct F] : limit_bicone F := Classical.choice sorry /-- A bicone for `F` which is both a limit cone and a colimit cocone. -/ def biproduct.bicone {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) [has_biproduct F] : bicone F := limit_bicone.bicone (get_biproduct_data F) /-- `biproduct.bicone F` is a limit cone. -/ def biproduct.is_limit {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) [has_biproduct F] : is_limit (bicone.to_cone (biproduct.bicone F)) := limit_bicone.is_limit (get_biproduct_data F) /-- `biproduct.bicone F` is a colimit cocone. -/ def biproduct.is_colimit {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) [has_biproduct F] : is_colimit (bicone.to_cocone (biproduct.bicone F)) := limit_bicone.is_colimit (get_biproduct_data F) protected instance has_product_of_has_biproduct {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {F : J → C} [has_biproduct F] : has_limit (discrete.functor F) := has_limit.mk (limit_cone.mk (bicone.to_cone (biproduct.bicone F)) (biproduct.is_limit F)) protected instance has_coproduct_of_has_biproduct {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {F : J → C} [has_biproduct F] : has_colimit (discrete.functor F) := has_colimit.mk (colimit_cocone.mk (bicone.to_cocone (biproduct.bicone F)) (biproduct.is_colimit F)) /-- `C` has biproducts of shape `J` if we have a limit and a colimit, with the same cone points, of every function `F : J → C`. -/ class has_biproducts_of_shape (J : Type v) [DecidableEq J] (C : Type u) [category C] [has_zero_morphisms C] where has_biproduct : ∀ (F : J → C), has_biproduct F /-- `has_finite_biproducts C` represents a choice of biproduct for every family of objects in `C` indexed by a finite type with decidable equality. -/ class has_finite_biproducts (C : Type u) [category C] [has_zero_morphisms C] where has_biproducts_of_shape : ∀ (J : Type v) [_inst_4 : DecidableEq J] [_inst_5 : fintype J], has_biproducts_of_shape J C protected instance has_finite_products_of_has_finite_biproducts (C : Type u) [category C] [has_zero_morphisms C] [has_finite_biproducts C] : has_finite_products C := fun (J : Type v) (_x : DecidableEq J) (_x_1 : fintype J) => has_limits_of_shape.mk fun (F : discrete J ⥤ C) => has_limit_of_iso (iso.symm discrete.nat_iso_functor) protected instance has_finite_coproducts_of_has_finite_biproducts (C : Type u) [category C] [has_zero_morphisms C] [has_finite_biproducts C] : has_finite_coproducts C := fun (J : Type v) (_x : DecidableEq J) (_x_1 : fintype J) => has_colimits_of_shape.mk fun (F : discrete J ⥤ C) => has_colimit_of_iso discrete.nat_iso_functor /-- The isomorphism between the specified limit and the specified colimit for a functor with a bilimit. -/ def biproduct_iso {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (F : J → C) [has_biproduct F] : ∏ F ≅ ∐ F := is_limit.cone_point_unique_up_to_iso (limit.is_limit (discrete.functor F)) (biproduct.is_limit F) ≪≫ is_colimit.cocone_point_unique_up_to_iso (biproduct.is_colimit F) (colimit.is_colimit (discrete.functor F)) end category_theory.limits namespace category_theory.limits /-- `biproduct f` computes the biproduct of a family of elements `f`. (It is defined as an abbreviation for `limit (discrete.functor f)`, so for most facts about `biproduct f`, you will just use general facts about limits and colimits.) -/ def biproduct {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] : C := bicone.X sorry prefix:20 "⨁ " => Mathlib.category_theory.limits.biproduct /-- The projection onto a summand of a biproduct. -/ def biproduct.π {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (b : J) : ⨁ f ⟶ f b := bicone.π (biproduct.bicone f) b @[simp] theorem biproduct.bicone_π {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (b : J) : bicone.π (biproduct.bicone f) b = biproduct.π f b := rfl /-- The inclusion into a summand of a biproduct. -/ def biproduct.ι {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (b : J) : f b ⟶ ⨁ f := bicone.ι (biproduct.bicone f) b @[simp] theorem biproduct.bicone_ι {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (b : J) : bicone.ι (biproduct.bicone f) b = biproduct.ι f b := rfl theorem biproduct.ι_π {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (j : J) (j' : J) : biproduct.ι f j ≫ biproduct.π f j' = dite (j = j') (fun (h : j = j') => eq_to_hom (congr_arg f h)) fun (h : ¬j = j') => 0 := bicone.ι_π (biproduct.bicone f) j j' @[simp] theorem biproduct.ι_π_self {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (j : J) : biproduct.ι f j ≫ biproduct.π f j = 𝟙 := sorry @[simp] theorem biproduct.ι_π_ne {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] {j : J} {j' : J} (h : j ≠ j') : biproduct.ι f j ≫ biproduct.π f j' = 0 := sorry /-- Given a collection of maps into the summands, we obtain a map into the biproduct. -/ def biproduct.lift {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {f : J → C} [has_biproduct f] {P : C} (p : (b : J) → P ⟶ f b) : P ⟶ ⨁ f := is_limit.lift (biproduct.is_limit f) (fan.mk P p) /-- Given a collection of maps out of the summands, we obtain a map out of the biproduct. -/ def biproduct.desc {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {f : J → C} [has_biproduct f] {P : C} (p : (b : J) → f b ⟶ P) : ⨁ f ⟶ P := is_colimit.desc (biproduct.is_colimit f) (cofan.mk P p) @[simp] theorem biproduct.lift_π {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {f : J → C} [has_biproduct f] {P : C} (p : (b : J) → P ⟶ f b) (j : J) : biproduct.lift p ≫ biproduct.π f j = p j := is_limit.fac (biproduct.is_limit f) (fan.mk P p) j @[simp] theorem biproduct.ι_desc_assoc {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {f : J → C} [has_biproduct f] {P : C} (p : (b : J) → f b ⟶ P) (j : J) {X' : C} (f' : P ⟶ X') : biproduct.ι f j ≫ biproduct.desc p ≫ f' = p j ≫ f' := sorry /-- Given a collection of maps between corresponding summands of a pair of biproducts indexed by the same type, we obtain a map between the biproducts. -/ def biproduct.map {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] [fintype J] {f : J → C} {g : J → C} [has_finite_biproducts C] (p : (b : J) → f b ⟶ g b) : ⨁ f ⟶ ⨁ g := is_limit.map (bicone.to_cone (biproduct.bicone f)) (biproduct.is_limit g) (discrete.nat_trans p) /-- An alternative to `biproduct.map` constructed via colimits. This construction only exists in order to show it is equal to `biproduct.map`. -/ def biproduct.map' {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] [fintype J] {f : J → C} {g : J → C} [has_finite_biproducts C] (p : (b : J) → f b ⟶ g b) : ⨁ f ⟶ ⨁ g := is_colimit.map (biproduct.is_colimit f) (bicone.to_cocone (biproduct.bicone g)) (discrete.nat_trans p) theorem biproduct.hom_ext {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {f : J → C} [has_biproduct f] {Z : C} (g : Z ⟶ ⨁ f) (h : Z ⟶ ⨁ f) (w : ∀ (j : J), g ≫ biproduct.π f j = h ≫ biproduct.π f j) : g = h := is_limit.hom_ext (biproduct.is_limit f) w theorem biproduct.hom_ext' {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] {f : J → C} [has_biproduct f] {Z : C} (g : ⨁ f ⟶ Z) (h : ⨁ f ⟶ Z) (w : ∀ (j : J), biproduct.ι f j ≫ g = biproduct.ι f j ≫ h) : g = h := is_colimit.hom_ext (biproduct.is_colimit f) w theorem biproduct.map_eq_map' {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] [fintype J] {f : J → C} {g : J → C} [has_finite_biproducts C] (p : (b : J) → f b ⟶ g b) : biproduct.map p = biproduct.map' p := sorry protected instance biproduct.ι_mono {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (b : J) : split_mono (biproduct.ι f b) := split_mono.mk (biproduct.desc fun (b' : J) => dite (b' = b) (fun (h : b' = b) => eq_to_hom (congr_arg f h)) fun (h : ¬b' = b) => biproduct.ι f b' ≫ biproduct.π f b) protected instance biproduct.π_epi {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] (f : J → C) [has_biproduct f] (b : J) : split_epi (biproduct.π f b) := split_epi.mk (biproduct.lift fun (b' : J) => dite (b = b') (fun (h : b = b') => eq_to_hom (congr_arg f h)) fun (h : ¬b = b') => biproduct.ι f b ≫ biproduct.π f b') @[simp] theorem biproduct.map_π_assoc {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] [fintype J] {f : J → C} {g : J → C} [has_finite_biproducts C] (p : (j : J) → f j ⟶ g j) (j : J) {X' : C} (f' : g j ⟶ X') : biproduct.map p ≫ biproduct.π g j ≫ f' = biproduct.π f j ≫ p j ≫ f' := sorry @[simp] theorem biproduct.ι_map {J : Type v} [DecidableEq J] {C : Type u} [category C] [has_zero_morphisms C] [fintype J] {f : J → C} {g : J → C} [has_finite_biproducts C] (p : (j : J) → f j ⟶ g j) (j : J) : biproduct.ι f j ≫ biproduct.map p = p j ≫ biproduct.ι g j := sorry /-- A binary bicone for a pair of objects `P Q : C` consists of the cone point `X`, maps from `X` to both `P` and `Q`, and maps from both `P` and `Q` to `X`, so that `inl ≫ fst = 𝟙 P`, `inl ≫ snd = 0`, `inr ≫ fst = 0`, and `inr ≫ snd = 𝟙 Q` -/ structure binary_bicone {C : Type u} [category C] [has_zero_morphisms C] (P : C) (Q : C) where X : C fst : X ⟶ P snd : X ⟶ Q inl : P ⟶ X inr : Q ⟶ X inl_fst' : autoParam (inl ≫ fst = 𝟙) (Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously") (Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") []) inl_snd' : autoParam (inl ≫ snd = 0) (Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously") (Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") []) inr_fst' : autoParam (inr ≫ fst = 0) (Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously") (Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") []) inr_snd' : autoParam (inr ≫ snd = 𝟙) (Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously") (Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") []) @[simp] theorem binary_bicone.inl_fst {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : binary_bicone.inl c ≫ binary_bicone.fst c = 𝟙 := sorry @[simp] theorem binary_bicone.inl_snd {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : binary_bicone.inl c ≫ binary_bicone.snd c = 0 := sorry @[simp] theorem binary_bicone.inr_fst {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : binary_bicone.inr c ≫ binary_bicone.fst c = 0 := sorry @[simp] theorem binary_bicone.inr_snd {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : binary_bicone.inr c ≫ binary_bicone.snd c = 𝟙 := sorry @[simp] theorem binary_bicone.inr_fst_assoc {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) {X' : C} (f' : P ⟶ X') : binary_bicone.inr c ≫ binary_bicone.fst c ≫ f' = 0 ≫ f' := sorry namespace binary_bicone /-- Extract the cone from a binary bicone. -/ def to_cone {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : cone (pair P Q) := binary_fan.mk (fst c) (snd c) @[simp] theorem to_cone_X {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : cone.X (to_cone c) = X c := rfl @[simp] theorem to_cone_π_app_left {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : nat_trans.app (cone.π (to_cone c)) walking_pair.left = fst c := rfl @[simp] theorem to_cone_π_app_right {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : nat_trans.app (cone.π (to_cone c)) walking_pair.right = snd c := rfl /-- Extract the cocone from a binary bicone. -/ def to_cocone {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : cocone (pair P Q) := binary_cofan.mk (inl c) (inr c) @[simp] theorem to_cocone_X {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : cocone.X (to_cocone c) = X c := rfl @[simp] theorem to_cocone_ι_app_left {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : nat_trans.app (cocone.ι (to_cocone c)) walking_pair.left = inl c := rfl @[simp] theorem to_cocone_ι_app_right {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (c : binary_bicone P Q) : nat_trans.app (cocone.ι (to_cocone c)) walking_pair.right = inr c := rfl end binary_bicone namespace bicone /-- Convert a `bicone` over a function on `walking_pair` to a binary_bicone. -/ @[simp] theorem to_binary_bicone_snd {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} (b : bicone (functor.obj (pair X Y))) : binary_bicone.snd (to_binary_bicone b) = π b walking_pair.right := Eq.refl (binary_bicone.snd (to_binary_bicone b)) /-- If the cone obtained from a bicone over `pair X Y` is a limit cone, so is the cone obtained by converting that bicone to a binary_bicone, then to a cone. -/ def to_binary_bicone_is_limit {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {b : bicone (functor.obj (pair X Y))} (c : is_limit (to_cone b)) : is_limit (binary_bicone.to_cone (to_binary_bicone b)) := is_limit.mk fun (s : cone (pair X Y)) => is_limit.lift c s /-- If the cocone obtained from a bicone over `pair X Y` is a colimit cocone, so is the cocone obtained by converting that bicone to a binary_bicone, then to a cocone. -/ def to_binary_bicone_is_colimit {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {b : bicone (functor.obj (pair X Y))} (c : is_colimit (to_cocone b)) : is_colimit (binary_bicone.to_cocone (to_binary_bicone b)) := is_colimit.mk fun (s : cocone (pair X Y)) => is_colimit.desc c s end bicone /-- A bicone over `P Q : C`, which is both a limit cone and a colimit cocone. -/ structure binary_biproduct_data {C : Type u} [category C] [has_zero_morphisms C] (P : C) (Q : C) where bicone : binary_bicone P Q is_limit : is_limit (binary_bicone.to_cone bicone) is_colimit : is_colimit (binary_bicone.to_cocone bicone) /-- `has_binary_biproduct P Q` expresses the mere existence of a bicone which is simultaneously a limit and a colimit of the diagram `pair P Q`. -/ class has_binary_biproduct {C : Type u} [category C] [has_zero_morphisms C] (P : C) (Q : C) where mk' :: (exists_binary_biproduct : Nonempty (binary_biproduct_data P Q)) theorem has_binary_biproduct.mk {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} (d : binary_biproduct_data P Q) : has_binary_biproduct P Q := has_binary_biproduct.mk' (Nonempty.intro d) /-- Use the axiom of choice to extract explicit `binary_biproduct_data F` from `has_binary_biproduct F`. -/ def get_binary_biproduct_data {C : Type u} [category C] [has_zero_morphisms C] (P : C) (Q : C) [has_binary_biproduct P Q] : binary_biproduct_data P Q := Classical.choice has_binary_biproduct.exists_binary_biproduct /-- A bicone for `P Q ` which is both a limit cone and a colimit cocone. -/ def binary_biproduct.bicone {C : Type u} [category C] [has_zero_morphisms C] (P : C) (Q : C) [has_binary_biproduct P Q] : binary_bicone P Q := binary_biproduct_data.bicone (get_binary_biproduct_data P Q) /-- `binary_biproduct.bicone P Q` is a limit cone. -/ def binary_biproduct.is_limit {C : Type u} [category C] [has_zero_morphisms C] (P : C) (Q : C) [has_binary_biproduct P Q] : is_limit (binary_bicone.to_cone (binary_biproduct.bicone P Q)) := binary_biproduct_data.is_limit (get_binary_biproduct_data P Q) /-- `binary_biproduct.bicone P Q` is a colimit cocone. -/ def binary_biproduct.is_colimit {C : Type u} [category C] [has_zero_morphisms C] (P : C) (Q : C) [has_binary_biproduct P Q] : is_colimit (binary_bicone.to_cocone (binary_biproduct.bicone P Q)) := binary_biproduct_data.is_colimit (get_binary_biproduct_data P Q) /-- `has_binary_biproducts C` represents the existence of a bicone which is simultaneously a limit and a colimit of the diagram `pair P Q`, for every `P Q : C`. -/ class has_binary_biproducts (C : Type u) [category C] [has_zero_morphisms C] where has_binary_biproduct : ∀ (P Q : C), has_binary_biproduct P Q /-- A category with finite biproducts has binary biproducts. This is not an instance as typically in concrete categories there will be an alternative construction with nicer definitional properties. -/ theorem has_binary_biproducts_of_finite_biproducts (C : Type u) [category C] [has_zero_morphisms C] [has_finite_biproducts C] : has_binary_biproducts C := sorry protected instance has_binary_biproduct.has_limit_pair {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} [has_binary_biproduct P Q] : has_limit (pair P Q) := has_limit.mk (limit_cone.mk (binary_bicone.to_cone (binary_biproduct.bicone P Q)) (binary_biproduct.is_limit P Q)) protected instance has_binary_biproduct.has_colimit_pair {C : Type u} [category C] [has_zero_morphisms C] {P : C} {Q : C} [has_binary_biproduct P Q] : has_colimit (pair P Q) := has_colimit.mk (colimit_cocone.mk (binary_bicone.to_cocone (binary_biproduct.bicone P Q)) (binary_biproduct.is_colimit P Q)) protected instance has_binary_products_of_has_binary_biproducts {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] : has_binary_products C := has_limits_of_shape.mk fun (F : discrete walking_pair ⥤ C) => has_limit_of_iso (iso.symm (diagram_iso_pair F)) protected instance has_binary_coproducts_of_has_binary_biproducts {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] : has_binary_coproducts C := has_colimits_of_shape.mk fun (F : discrete walking_pair ⥤ C) => has_colimit_of_iso (diagram_iso_pair F) /-- The isomorphism between the specified binary product and the specified binary coproduct for a pair for a binary biproduct. -/ def biprod_iso {C : Type u} [category C] [has_zero_morphisms C] (X : C) (Y : C) [has_binary_biproduct X Y] : X ⨯ Y ≅ X ⨿ Y := is_limit.cone_point_unique_up_to_iso (limit.is_limit (pair X Y)) (binary_biproduct.is_limit X Y) ≪≫ is_colimit.cocone_point_unique_up_to_iso (binary_biproduct.is_colimit X Y) (colimit.is_colimit (pair X Y)) /-- An arbitrary choice of biproduct of a pair of objects. -/ def biprod {C : Type u} [category C] [has_zero_morphisms C] (X : C) (Y : C) [has_binary_biproduct X Y] : C := binary_bicone.X (binary_biproduct.bicone X Y) infixl:20 " ⊞ " => Mathlib.category_theory.limits.biprod /-- The projection onto the first summand of a binary biproduct. -/ def biprod.fst {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : X ⊞ Y ⟶ X := binary_bicone.fst (binary_biproduct.bicone X Y) /-- The projection onto the second summand of a binary biproduct. -/ def biprod.snd {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : X ⊞ Y ⟶ Y := binary_bicone.snd (binary_biproduct.bicone X Y) /-- The inclusion into the first summand of a binary biproduct. -/ def biprod.inl {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : X ⟶ X ⊞ Y := binary_bicone.inl (binary_biproduct.bicone X Y) /-- The inclusion into the second summand of a binary biproduct. -/ def biprod.inr {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : Y ⟶ X ⊞ Y := binary_bicone.inr (binary_biproduct.bicone X Y) @[simp] theorem binary_biproduct.bicone_fst {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : binary_bicone.fst (binary_biproduct.bicone X Y) = biprod.fst := rfl @[simp] theorem binary_biproduct.bicone_snd {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : binary_bicone.snd (binary_biproduct.bicone X Y) = biprod.snd := rfl @[simp] theorem binary_biproduct.bicone_inl {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : binary_bicone.inl (binary_biproduct.bicone X Y) = biprod.inl := rfl @[simp] theorem binary_biproduct.bicone_inr {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : binary_bicone.inr (binary_biproduct.bicone X Y) = biprod.inr := rfl @[simp] theorem biprod.inl_fst {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : biprod.inl ≫ biprod.fst = 𝟙 := binary_bicone.inl_fst (binary_biproduct.bicone X Y) @[simp] theorem biprod.inl_snd {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : biprod.inl ≫ biprod.snd = 0 := binary_bicone.inl_snd (binary_biproduct.bicone X Y) @[simp] theorem biprod.inr_fst_assoc {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] {X' : C} (f' : X ⟶ X') : biprod.inr ≫ biprod.fst ≫ f' = 0 ≫ f' := sorry @[simp] theorem biprod.inr_snd_assoc {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] {X' : C} (f' : Y ⟶ X') : biprod.inr ≫ biprod.snd ≫ f' = f' := sorry /-- Given a pair of maps into the summands of a binary biproduct, we obtain a map into the binary biproduct. -/ def biprod.lift {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : W ⟶ X) (g : W ⟶ Y) : W ⟶ X ⊞ Y := is_limit.lift (binary_biproduct.is_limit X Y) (binary_fan.mk f g) /-- Given a pair of maps out of the summands of a binary biproduct, we obtain a map out of the binary biproduct. -/ def biprod.desc {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : X ⟶ W) (g : Y ⟶ W) : X ⊞ Y ⟶ W := is_colimit.desc (binary_biproduct.is_colimit X Y) (binary_cofan.mk f g) @[simp] theorem biprod.lift_fst_assoc {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : W ⟶ X) (g : W ⟶ Y) {X' : C} (f' : X ⟶ X') : biprod.lift f g ≫ biprod.fst ≫ f' = f ≫ f' := sorry @[simp] theorem biprod.lift_snd_assoc {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : W ⟶ X) (g : W ⟶ Y) {X' : C} (f' : Y ⟶ X') : biprod.lift f g ≫ biprod.snd ≫ f' = g ≫ f' := sorry @[simp] theorem biprod.inl_desc_assoc {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : X ⟶ W) (g : Y ⟶ W) {X' : C} (f' : W ⟶ X') : biprod.inl ≫ biprod.desc f g ≫ f' = f ≫ f' := sorry @[simp] theorem biprod.inr_desc_assoc {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : X ⟶ W) (g : Y ⟶ W) {X' : C} (f' : W ⟶ X') : biprod.inr ≫ biprod.desc f g ≫ f' = g ≫ f' := sorry protected instance biprod.mono_lift_of_mono_left {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : W ⟶ X) (g : W ⟶ Y) [mono f] : mono (biprod.lift f g) := mono_of_mono_fac (biprod.lift_fst f g) protected instance biprod.mono_lift_of_mono_right {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : W ⟶ X) (g : W ⟶ Y) [mono g] : mono (biprod.lift f g) := mono_of_mono_fac (biprod.lift_snd f g) protected instance biprod.epi_desc_of_epi_left {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : X ⟶ W) (g : Y ⟶ W) [epi f] : epi (biprod.desc f g) := epi_of_epi_fac (biprod.inl_desc f g) protected instance biprod.epi_desc_of_epi_right {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} [has_binary_biproduct X Y] (f : X ⟶ W) (g : Y ⟶ W) [epi g] : epi (biprod.desc f g) := epi_of_epi_fac (biprod.inr_desc f g) /-- Given a pair of maps between the summands of a pair of binary biproducts, we obtain a map between the binary biproducts. -/ def biprod.map {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : W ⊞ X ⟶ Y ⊞ Z := is_limit.map (binary_bicone.to_cone (binary_biproduct.bicone W X)) (binary_biproduct.is_limit Y Z) (map_pair f g) /-- An alternative to `biprod.map` constructed via colimits. This construction only exists in order to show it is equal to `biprod.map`. -/ def biprod.map' {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : W ⊞ X ⟶ Y ⊞ Z := is_colimit.map (binary_biproduct.is_colimit W X) (binary_bicone.to_cocone (binary_biproduct.bicone Y Z)) (map_pair f g) theorem biprod.hom_ext {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {Z : C} [has_binary_biproduct X Y] (f : Z ⟶ X ⊞ Y) (g : Z ⟶ X ⊞ Y) (h₀ : f ≫ biprod.fst = g ≫ biprod.fst) (h₁ : f ≫ biprod.snd = g ≫ biprod.snd) : f = g := binary_fan.is_limit.hom_ext (binary_biproduct.is_limit X Y) h₀ h₁ theorem biprod.hom_ext' {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} {Z : C} [has_binary_biproduct X Y] (f : X ⊞ Y ⟶ Z) (g : X ⊞ Y ⟶ Z) (h₀ : biprod.inl ≫ f = biprod.inl ≫ g) (h₁ : biprod.inr ≫ f = biprod.inr ≫ g) : f = g := binary_cofan.is_colimit.hom_ext (binary_biproduct.is_colimit X Y) h₀ h₁ theorem biprod.map_eq_map' {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : biprod.map f g = biprod.map' f g := sorry protected instance biprod.inl_mono {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : split_mono biprod.inl := split_mono.mk (biprod.desc 𝟙 (biprod.inr ≫ biprod.fst)) protected instance biprod.inr_mono {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : split_mono biprod.inr := split_mono.mk (biprod.desc (biprod.inl ≫ biprod.snd) 𝟙) protected instance biprod.fst_epi {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : split_epi biprod.fst := split_epi.mk (biprod.lift 𝟙 (biprod.inl ≫ biprod.snd)) protected instance biprod.snd_epi {C : Type u} [category C] [has_zero_morphisms C] {X : C} {Y : C} [has_binary_biproduct X Y] : split_epi biprod.snd := split_epi.mk (biprod.lift (biprod.inr ≫ biprod.fst) 𝟙) @[simp] theorem biprod.map_fst {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : biprod.map f g ≫ biprod.fst = biprod.fst ≫ f := is_limit.map_π (binary_bicone.to_cone (binary_biproduct.bicone W X)) (binary_biproduct.is_limit Y Z) (map_pair f g) walking_pair.left @[simp] theorem biprod.map_snd_assoc {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) {X' : C} (f' : Z ⟶ X') : biprod.map f g ≫ biprod.snd ≫ f' = biprod.snd ≫ g ≫ f' := sorry -- Because `biprod.map` is defined in terms of `lim` rather than `colim`, -- we need to provide additional `simp` lemmas. @[simp] theorem biprod.inl_map_assoc {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) {X' : C} (f' : Y ⊞ Z ⟶ X') : biprod.inl ≫ biprod.map f g ≫ f' = f ≫ biprod.inl ≫ f' := sorry @[simp] theorem biprod.inr_map {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : biprod.inr ≫ biprod.map f g = g ≫ biprod.inr := eq.mpr (id (Eq._oldrec (Eq.refl (biprod.inr ≫ biprod.map f g = g ≫ biprod.inr)) (biprod.map_eq_map' f g))) (is_colimit.ι_map (binary_biproduct.is_colimit W X) (binary_bicone.to_cocone (binary_biproduct.bicone Y Z)) (map_pair f g) walking_pair.right) /-- Given a pair of isomorphisms between the summands of a pair of binary biproducts, we obtain an isomorphism between the binary biproducts. -/ @[simp] theorem biprod.map_iso_hom {C : Type u} [category C] [has_zero_morphisms C] {W : C} {X : C} {Y : C} {Z : C} [has_binary_biproduct W X] [has_binary_biproduct Y Z] (f : W ≅ Y) (g : X ≅ Z) : iso.hom (biprod.map_iso f g) = biprod.map (iso.hom f) (iso.hom g) := Eq.refl (iso.hom (biprod.map_iso f g)) /-- The braiding isomorphism which swaps a binary biproduct. -/ @[simp] theorem biprod.braiding_hom {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] (P : C) (Q : C) : iso.hom (biprod.braiding P Q) = biprod.lift biprod.snd biprod.fst := Eq.refl (iso.hom (biprod.braiding P Q)) /-- An alternative formula for the braiding isomorphism which swaps a binary biproduct, using the fact that the biproduct is a coproduct. -/ def biprod.braiding' {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] (P : C) (Q : C) : P ⊞ Q ≅ Q ⊞ P := iso.mk (biprod.desc biprod.inr biprod.inl) (biprod.desc biprod.inr biprod.inl) theorem biprod.braiding'_eq_braiding {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] {P : C} {Q : C} : biprod.braiding' P Q = biprod.braiding P Q := sorry /-- The braiding isomorphism can be passed through a map by swapping the order. -/ theorem biprod.braid_natural_assoc {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] {W : C} {X : C} {Y : C} {Z : C} (f : X ⟶ Y) (g : Z ⟶ W) {X' : C} (f' : W ⊞ Y ⟶ X') : biprod.map f g ≫ iso.hom (biprod.braiding Y W) ≫ f' = iso.hom (biprod.braiding X Z) ≫ biprod.map g f ≫ f' := sorry theorem biprod.braiding_map_braiding {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] {W : C} {X : C} {Y : C} {Z : C} (f : W ⟶ Y) (g : X ⟶ Z) : iso.hom (biprod.braiding X W) ≫ biprod.map f g ≫ iso.hom (biprod.braiding Y Z) = biprod.map g f := sorry @[simp] theorem biprod.symmetry'_assoc {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] (P : C) (Q : C) {X' : C} (f' : P ⊞ Q ⟶ X') : biprod.lift biprod.snd biprod.fst ≫ biprod.lift biprod.snd biprod.fst ≫ f' = f' := sorry /-- The braiding isomorphism is symmetric. -/ theorem biprod.symmetry_assoc {C : Type u} [category C] [has_zero_morphisms C] [has_binary_biproducts C] (P : C) (Q : C) {X' : C} (f' : P ⊞ Q ⟶ X') : iso.hom (biprod.braiding P Q) ≫ iso.hom (biprod.braiding Q P) ≫ f' = f' := sorry -- TODO: -- If someone is interested, they could provide the constructions: -- has_binary_biproducts ↔ has_finite_biproducts end category_theory.limits namespace category_theory.limits /-- In a preadditive category, we can construct a biproduct for `f : J → C` from any bicone `b` for `f` satisfying `total : ∑ j : J, b.π j ≫ b.ι j = 𝟙 b.X`. (That is, such a bicone is a limit cone and a colimit cocone.) -/ theorem has_biproduct_of_total {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] {f : J → C} (b : bicone f) (total : (finset.sum finset.univ fun (j : J) => bicone.π b j ≫ bicone.ι b j) = 𝟙) : has_biproduct f := sorry /-- In a preadditive category, if the product over `f : J → C` exists, then the biproduct over `f` exists. -/ theorem has_biproduct.of_has_product {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] (f : J → C) [has_product f] : has_biproduct f := sorry /-- In a preadditive category, if the coproduct over `f : J → C` exists, then the biproduct over `f` exists. -/ theorem has_biproduct.of_has_coproduct {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] (f : J → C) [has_coproduct f] : has_biproduct f := sorry /-- A preadditive category with finite products has finite biproducts. -/ theorem has_finite_biproducts.of_has_finite_products {C : Type u} [category C] [preadditive C] [has_finite_products C] : has_finite_biproducts C := has_finite_biproducts.mk fun (J : Type v) (_x : DecidableEq J) (_x_1 : fintype J) => has_biproducts_of_shape.mk fun (F : J → C) => has_biproduct.of_has_product F /-- A preadditive category with finite coproducts has finite biproducts. -/ theorem has_finite_biproducts.of_has_finite_coproducts {C : Type u} [category C] [preadditive C] [has_finite_coproducts C] : has_finite_biproducts C := has_finite_biproducts.mk fun (J : Type v) (_x : DecidableEq J) (_x_1 : fintype J) => has_biproducts_of_shape.mk fun (F : J → C) => has_biproduct.of_has_coproduct F /-- In any preadditive category, any biproduct satsifies `∑ j : J, biproduct.π f j ≫ biproduct.ι f j = 𝟙 (⨁ f)` -/ @[simp] theorem biproduct.total {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] {f : J → C} [has_biproduct f] : (finset.sum finset.univ fun (j : J) => biproduct.π f j ≫ biproduct.ι f j) = 𝟙 := sorry theorem biproduct.lift_eq {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] {f : J → C} [has_biproduct f] {T : C} {g : (j : J) → T ⟶ f j} : biproduct.lift g = finset.sum finset.univ fun (j : J) => g j ≫ biproduct.ι f j := sorry theorem biproduct.desc_eq {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] {f : J → C} [has_biproduct f] {T : C} {g : (j : J) → f j ⟶ T} : biproduct.desc g = finset.sum finset.univ fun (j : J) => biproduct.π f j ≫ g j := sorry @[simp] theorem biproduct.lift_desc {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] {f : J → C} [has_biproduct f] {T : C} {U : C} {g : (j : J) → T ⟶ f j} {h : (j : J) → f j ⟶ U} : biproduct.lift g ≫ biproduct.desc h = finset.sum finset.univ fun (j : J) => g j ≫ h j := sorry theorem biproduct.map_eq {C : Type u} [category C] [preadditive C] {J : Type v} [DecidableEq J] [fintype J] [has_finite_biproducts C] {f : J → C} {g : J → C} {h : (j : J) → f j ⟶ g j} : biproduct.map h = finset.sum finset.univ fun (j : J) => biproduct.π f j ≫ h j ≫ biproduct.ι g j := sorry /-- In a preadditive category, we can construct a binary biproduct for `X Y : C` from any binary bicone `b` satisfying `total : b.fst ≫ b.inl + b.snd ≫ b.inr = 𝟙 b.X`. (That is, such a bicone is a limit cone and a colimit cocone.) -/ theorem has_binary_biproduct_of_total {C : Type u} [category C] [preadditive C] {X : C} {Y : C} (b : binary_bicone X Y) (total : binary_bicone.fst b ≫ binary_bicone.inl b + binary_bicone.snd b ≫ binary_bicone.inr b = 𝟙) : has_binary_biproduct X Y := sorry /-- In a preadditive category, if the product of `X` and `Y` exists, then the binary biproduct of `X` and `Y` exists. -/ theorem has_binary_biproduct.of_has_binary_product {C : Type u} [category C] [preadditive C] (X : C) (Y : C) [has_binary_product X Y] : has_binary_biproduct X Y := sorry /-- In a preadditive category, if all binary products exist, then all binary biproducts exist. -/ theorem has_binary_biproducts.of_has_binary_products {C : Type u} [category C] [preadditive C] [has_binary_products C] : has_binary_biproducts C := has_binary_biproducts.mk fun (X Y : C) => has_binary_biproduct.of_has_binary_product X Y /-- In a preadditive category, if the coproduct of `X` and `Y` exists, then the binary biproduct of `X` and `Y` exists. -/ theorem has_binary_biproduct.of_has_binary_coproduct {C : Type u} [category C] [preadditive C] (X : C) (Y : C) [has_binary_coproduct X Y] : has_binary_biproduct X Y := sorry /-- In a preadditive category, if all binary coproducts exist, then all binary biproducts exist. -/ theorem has_binary_biproducts.of_has_binary_coproducts {C : Type u} [category C] [preadditive C] [has_binary_coproducts C] : has_binary_biproducts C := has_binary_biproducts.mk fun (X Y : C) => has_binary_biproduct.of_has_binary_coproduct X Y /-- In any preadditive category, any binary biproduct satsifies `biprod.fst ≫ biprod.inl + biprod.snd ≫ biprod.inr = 𝟙 (X ⊞ Y)`. -/ @[simp] theorem biprod.total {C : Type u} [category C] [preadditive C] {X : C} {Y : C} [has_binary_biproduct X Y] : biprod.fst ≫ biprod.inl + biprod.snd ≫ biprod.inr = 𝟙 := sorry theorem biprod.lift_eq {C : Type u} [category C] [preadditive C] {X : C} {Y : C} [has_binary_biproduct X Y] {T : C} {f : T ⟶ X} {g : T ⟶ Y} : biprod.lift f g = f ≫ biprod.inl + g ≫ biprod.inr := sorry theorem biprod.desc_eq {C : Type u} [category C] [preadditive C] {X : C} {Y : C} [has_binary_biproduct X Y] {T : C} {f : X ⟶ T} {g : Y ⟶ T} : biprod.desc f g = biprod.fst ≫ f + biprod.snd ≫ g := sorry @[simp] theorem biprod.lift_desc {C : Type u} [category C] [preadditive C] {X : C} {Y : C} [has_binary_biproduct X Y] {T : C} {U : C} {f : T ⟶ X} {g : T ⟶ Y} {h : X ⟶ U} {i : Y ⟶ U} : biprod.lift f g ≫ biprod.desc h i = f ≫ h + g ≫ i := sorry theorem biprod.map_eq {C : Type u} [category C] [preadditive C] [has_binary_biproducts C] {W : C} {X : C} {Y : C} {Z : C} {f : W ⟶ Y} {g : X ⟶ Z} : biprod.map f g = biprod.fst ≫ f ≫ biprod.inl + biprod.snd ≫ g ≫ biprod.inr := sorry end Mathlib
bbe3f899071bf18f062ee782ef08f73a6a8b1d65
69d4931b605e11ca61881fc4f66db50a0a875e39
/src/category_theory/abelian/projective.lean
2f399ba62b6bb7ca65708f0962d61fb579d40530
[ "Apache-2.0" ]
permissive
abentkamp/mathlib
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
5360e476391508e092b5a1e5210bd0ed22dc0755
refs/heads/master
1,682,382,954,948
1,622,106,077,000
1,622,106,077,000
149,285,665
0
0
null
null
null
null
UTF-8
Lean
false
false
898
lean
/- Copyright (c) 2020 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel, Scott Morrison -/ import category_theory.abelian.exact import category_theory.preadditive.projective /-! # Abelian categories with enough projectives have projective resolutions When `C` is abelian `projective.d f` and `f` are exact. -/ noncomputable theory open category_theory open category_theory.limits universes v u namespace category_theory open category_theory.projective variables {C : Type u} [category.{v} C] section variables [enough_projectives C] [abelian C] /-- When `C` is abelian, `projective.d f` and `f` are exact. -/ lemma exact_d_f {X Y : C} (f : X ⟶ Y) : exact (d f) f := (abelian.exact_iff _ _).2 $ ⟨by simp, zero_of_epi_comp (π _) $ by rw [←category.assoc, cokernel.condition]⟩ end end category_theory
7aed4db8932243e1d521e930591c6954734800b1
ac076ebc286fa9b7a67171f6cd11eb98b263d6ef
/src/SES.lean
5149d17a638a40766326f5c5eb2c1fd34829fc1c
[]
no_license
Shamrock-Frost/jordan-holder
e891e489d00f8ff9e29c47b3083f22cac7804efb
bab3daccd70a4f3c5b25731b899a2cd72d7b8376
refs/heads/master
1,594,962,465,041
1,576,197,432,000
1,576,197,432,000
205,951,913
1
0
null
null
null
null
UTF-8
Lean
false
false
24,776
lean
import group_theory.subgroup import group_theory.quotient_group import group_theory.category import .category_theory open category_theory universe u structure SES (A B C : Group.{u}) := (f : A ⟶ B) (g : B ⟶ C) (f_inj : function.injective f) (g_surj : function.surjective g) (im_f_eq_ker_g : set.range f = is_group_hom.ker g) lemma SES.is_cc {A B C : Group} (S : SES A B C) : ∀ x : A, S.g (S.f x) = 1 := by { intro x, apply iff.mp (is_group_hom.mem_ker S.g), rw ← SES.im_f_eq_ker_g, existsi x, refl } lemma is_group_hom.im_trivial {G H : Group} (φ : G → H) [is_group_hom φ] : φ '' is_subgroup.trivial G = is_subgroup.trivial H := begin simp [set.image, set_of], rw is_group_hom.map_one φ, simp [is_subgroup.trivial], funext, apply propext, constructor; intro h, { rw h, apply or.inl, refl }, { symmetry, apply or.resolve_right h, exact not_false } end lemma SES.inj_of_left_triv {A B C : Group} [subsingleton A] (S : SES A B C) : function.injective S.g := begin apply iff.mpr (is_group_hom.inj_iff_trivial_ker S.g), rw ← S.im_f_eq_ker_g, transitivity S.f '' is_subgroup.trivial A, rw ← set.image_univ, congr, ext, simp, apply subsingleton.elim, apply is_group_hom.im_trivial end noncomputable def SES.iso_of_left_triv {A B C : Group} [subsingleton A] (S : SES A B C) : B ≅ C := Group.iso_of_bijective S.g ⟨S.inj_of_left_triv, S.g_surj⟩ lemma SES.surj_of_right_triv {A B C : Group} [subsingleton C] (S : SES A B C) : function.surjective S.f := begin rw [← set.range_iff_surjective, S.im_f_eq_ker_g], ext, rw is_group_hom.mem_ker, simp, apply subsingleton.elim, end noncomputable def SES.iso_of_right_triv {A B C : Group} [subsingleton C] (S : SES A B C) : A ≅ B := Group.iso_of_bijective S.f ⟨S.f_inj, S.surj_of_right_triv⟩ def SES.transport_iso_mid {A B B' C : Group} (S : SES A B C) (iso : B ≅ B') : SES A B' C := { f := S.f ≫ iso.hom, g := iso.inv ≫ S.g, f_inj := function.injective_comp (Group.iso_inj iso) S.f_inj, g_surj := function.surjective_comp S.g_surj (Group.iso_surj iso.symm), im_f_eq_ker_g := by { unfold_coes, simp, rw set.range_comp, have := Group.ker_of_comp_inj S.g iso.inv (Group.iso_inj iso.symm), unfold_coes at this, simp at this, rw this, have := S.im_f_eq_ker_g, unfold_coes at this, rw this, apply congr_fun, apply set.image_eq_preimage_of_inverse, apply Group.iso_left_inverse, apply Group.iso_right_inverse } } def SES.transport_iso_right {A B C C' : Group} (S : SES A B C) (iso : C ≅ C') : SES A B C' := { f := S.f, g := S.g ≫ iso.hom, f_inj := S.f_inj, g_surj := function.surjective_comp (Group.iso_surj iso) S.g_surj, im_f_eq_ker_g := by { unfold_coes, simp, transitivity is_group_hom.ker S.g, exact S.im_f_eq_ker_g, transitivity is_group_hom.ker (@category_struct.comp Group _ _ _ _ S.g iso.hom), symmetry, apply Group.ker_of_inj_comp, apply Group.iso_inj, refl } } def SES.self_right (G : Group) : SES 1 G G := { f := ⟨λ x, 1, is_group_hom.mk' (λ x y, eq.symm $ mul_one 1)⟩, g := 𝟙 G, f_inj := by { intros x y _, apply subsingleton.elim }, g_surj := λ x, ⟨x, rfl⟩, im_f_eq_ker_g := by { transitivity is_subgroup.trivial G, ext, unfold_coes, simp, constructor; intro h; exact h.symm, symmetry, apply iff.mpr (is_group_hom.trivial_ker_iff_eq_one _), intros x hx, exact hx } } def SES.normal_quotient {G : Group} (H : set G) [normal_subgroup H] : SES (Group.of H) G (Group.of (quotient_group.quotient H)) := { f := subtype_val.group_hom, g := ⟨quotient_group.mk, quotient_group.is_group_hom _⟩, f_inj := subtype.val_injective, g_surj := @quotient.exists_rep _ (quotient_group.left_rel _), im_f_eq_ker_g := by { unfold_coes, transitivity set.range subtype.val, refl, rw [quotient_group.ker_mk, subtype.val_range], refl } } def is_group_hom.coim {G H : Group} (φ : G → H) [is_group_hom φ] := quotient_group.quotient (is_group_hom.ker φ) instance coim_is_group {G H : Group} {φ : G → H} [is_group_hom φ] : group (is_group_hom.coim φ) := quotient_group.group (is_group_hom.ker φ) def SES.ker_coim {G H : Group} (φ : G → H) [is_group_hom φ] : SES (Group.of (is_group_hom.ker φ)) G (Group.of (is_group_hom.coim φ)) := SES.normal_quotient (is_group_hom.ker φ) def SES.ker_im {G H : Group} (φ : G → H) [is_group_hom φ] : SES (Group.of (is_group_hom.ker φ)) G (Group.of (set.range φ)) := { f := subtype_val.group_hom, g := ⟨set.range_factorization φ, by apply_instance⟩, f_inj := subtype.val_injective, g_surj := set.surjective_onto_range, im_f_eq_ker_g := by { unfold_coes, transitivity set.range subtype.val, refl, transitivity is_group_hom.ker φ, rw subtype.range_val, funext, funext, simp [set.range_factorization], transitivity φ x = 1, rw ← is_group_hom.mem_ker φ, refl, rw ← @set.mem_def _ _ (is_group_hom.ker _), rw is_group_hom.mem_ker, rw subtype.ext, refl } } lemma SES.left_normal {A B C : Group} (S : SES A B C) : normal_subgroup (set.range S.f) := by rw SES.im_f_eq_ker_g; apply is_group_hom.normal_subgroup_ker noncomputable def SES.f_rev {A B C : Group} (S : SES A B C) : set.range S.f → A := λ y, classical.some y.property lemma SES.f_rev_spec_r {A B C : Group} (S : SES A B C) : ∀ y, S.f (S.f_rev y) = y := λ y, classical.some_spec y.property lemma SES.f_rev_spec_l {A B C : Group} (S : SES A B C) : ∀ x, S.f_rev ⟨S.f x, x, rfl⟩ = x := λ x, S.f_inj (S.f_rev_spec_r ⟨S.f x, x, rfl⟩) instance SES.f_rev_hom {A B C} {S : SES A B C} : is_group_hom (SES.f_rev S) := @is_group_hom.mk _ _ _ _ (SES.f_rev S) $ by { constructor, intros, cases x with x hx, cases y with y hy, cases hx with a ha, cases hy with b hb, subst ha, subst hb, transitivity SES.f_rev S ⟨S.f (a * b), a*b, rfl⟩, congr, apply subtype.eq, simp, rw (is_group_hom.to_is_monoid_hom S.f).map_mul, apply subtype_val.is_monoid_hom.map_mul, repeat { rw SES.f_rev_spec_l } } noncomputable def SES.left_iso_range {A B C : Group} (S : SES A B C) : A ≅ Group.of (set.range S.f) := { hom := ⟨λ x, ⟨S.f x, set.mem_range_self x⟩, is_group_hom.mk' $ λ x y, by { apply subtype.eq, rw is_monoid_hom.map_mul subtype.val, apply is_monoid_hom.map_mul S.f, exact subtype_val.is_monoid_hom }⟩, inv := ⟨S.f_rev, by apply_instance⟩, hom_inv_id' := subtype.eq (funext S.f_rev_spec_l), inv_hom_id' := subtype.eq (funext $ λ x, subtype.eq $ S.f_rev_spec_r x) } noncomputable def SES.pullback {H G K A B : Group} (S : SES H G K) (S' : SES A K B) : SES H (Group.of ((S.g) ⁻¹' set.range (S'.f))) A := { f := ⟨λ x, subtype.mk (S.f x) $ by { rw set.mem_preimage, have : S.f x ∈ is_group_hom.ker S.g, { rw ← SES.im_f_eq_ker_g, existsi x, refl }, rw this.resolve_right not_false, have : is_subgroup (set.range S'.f) := is_group_hom.range_subgroup S'.f, apply is_submonoid.one_mem }, @is_group_hom.mk _ _ _ _ _ $ by { constructor, intros, apply subtype.eq, unfold_coes, simp, transitivity S.f x * S.f y, apply is_monoid_hom.map_mul, refl }⟩, f_inj := by { intros x y h, apply S.f_inj, unfold_coes at h, simp at h, exact h }, g := ⟨λ x, S'.f_rev ⟨S.g x.val, x.property⟩, @is_group_hom.mk _ _ _ _ _ $ by { constructor, intros, rw ← is_monoid_hom.map_mul S'.f_rev, congr, rw is_monoid_hom.map_mul subtype.val, unfold_coes, simp, apply is_monoid_hom.map_mul, apply is_group_hom.to_is_monoid_hom, }⟩, g_surj := λ y, by { unfold_coes, simp, cases S.g_surj (S'.f y) with x hx, refine exists.intro (subtype.mk x _) _, apply set.mem_preimage.mpr, existsi y, exact hx.symm, simp, transitivity S'.f_rev ⟨S'.f y, y, rfl⟩, congr, assumption, apply SES.f_rev_spec_l }, im_f_eq_ker_g := by { ext, cases x with x hx, transitivity x ∈ set.range S.f, { constructor; intro h; cases h with a ha, { existsi a, unfold_coes at ha, simp at ha, assumption }, { have h := hx, rw ← ha at h, rw (_ : subtype.mk x hx = subtype.mk (S.f a) h), existsi a, refl, apply subtype.eq, exact ha.symm, } }, rw [SES.im_f_eq_ker_g, is_group_hom.mem_ker, is_group_hom.mem_ker], unfold_coes, simp, constructor; intro h, { transitivity S'.f_rev ⟨1, is_submonoid.one_mem _⟩, congr, assumption, apply is_group_hom.map_one S'.f_rev, }, { have := congr_arg S'.f h, rw SES.f_rev_spec_r at this, unfold_coes at this, simp at this, rw this, apply is_group_hom.map_one, } } }. lemma ker_comp {A B C : Group} (f : A ⟶ B) (g : B ⟶ C) : is_group_hom.ker (g ∘ f) = f⁻¹' (is_group_hom.ker g) := by ext; rw [is_group_hom.mem_ker, set.mem_preimage, is_group_hom.mem_ker] def third_iso {H G K A B : Group} (S : SES H G K) (S' : SES A K B) : SES (Group.of (S.g ⁻¹' set.range S'.f)) G B := { f := subtype_val.group_hom, g := S.g ≫ S'.g, f_inj := λ _ _ h, subtype.eq h, g_surj := function.surjective_comp S'.g_surj S.g_surj, im_f_eq_ker_g := by { unfold_coes, transitivity is_group_hom.ker (S'.g ∘ S.g), rw ker_comp, rw ← S'.im_f_eq_ker_g, transitivity set.range subtype.val, refl, simp, refl, refl } } local attribute [instance] classical.prop_decidable lemma SES.simple {G : Group} : simple_group G ↔ (∀ {H K : Group}, nonempty (SES H G K) → subsingleton H ∨ subsingleton K) := begin constructor; intro h, { intros H K S, cases S with S, cases h, cases h (is_group_hom.ker S.g) with h h, { apply or.inl, rw [← S.im_f_eq_ker_g, is_subgroup.eq_trivial_iff] at h, constructor, intros, apply S.f_inj, transitivity (1 : G), apply h, existsi a, refl, symmetry, apply h, existsi b, refl }, { apply or.inr, constructor, intros, cases (S.g_surj a) with a ha, subst ha, cases (S.g_surj b) with b hb, subst hb, have ha : a ∈ set.univ := set.mem_univ _, have hb : b ∈ set.univ := set.mem_univ _, rw [← h, is_group_hom.mem_ker] at ha hb, transitivity (1 : K), assumption, symmetry, assumption } }, { constructor, intros, cases h ⟨@SES.normal_quotient G N _inst_1⟩ with h h, { apply or.inl, rw @is_subgroup.eq_trivial_iff _ _ N _inst_1.to_is_subgroup, intros, apply @subtype.mk.inj _ N, apply @subsingleton.elim _ h, assumption, apply @is_submonoid.one_mem _ _ _ _inst_1.to_is_submonoid }, { apply or.inr, apply set.eq_univ_of_forall, suffices : ∀ x : G, 1⁻¹ * x ∈ N, { intro, specialize this x, rw [one_inv, one_mul] at this, exact this }, cases h with h, intro x, specialize h (@quotient_group.mk _ _ N _inst_1.to_is_subgroup 1), specialize h (@quotient_group.mk _ _ N _inst_1.to_is_subgroup x), dsimp [quotient_group.mk] at h, rw quotient.eq' at h_1, assumption, } } end def partial_second_iso {H H' G G' K K' : Group.{u}} (iso : G ≅ G') (hK' : simple_group K') (S : SES H G K) (S' : SES H' G' K') (x : H) (x_not_in_H' : ¬ (S'.g (iso.hom (S.f x)) = 1)) : SES (Group.of $ pullback (S.f ≫ iso.hom) S'.f) H K' := { f := @subtype_val.group_hom (Group.of $ H × H') _ _ ≫ @Group.fst H H', g := S.f ≫ iso.hom ≫ S'.g, f_inj := by { intros x y h, cases x with x hx, cases x with x₁ x₂, cases y with y hy, cases y with y₁ y₂, replace h : x₁ = y₁ := h, apply subtype.eq, simp, apply and.intro h, apply S'.f_inj, exact eq.trans (eq.symm hx) (eq.trans (congr_arg _ h) hy) }, g_surj := by { intro y, cases S'.g_surj y with a ha, destruct hK', intro hK', replace hK' := λ inst, @hK' (S'.g '' (iso.hom '' set.range S.f)) inst, suffices : normal_subgroup (S'.g '' (iso.hom '' set.range S.f)), have : S'.g '' (iso.hom '' set.range S.f) = set.univ, { apply or.resolve_left (hK' this), intro h, apply x_not_in_H', rw [← is_subgroup.mem_trivial, ← h], apply set.mem_image_of_mem, apply set.mem_image_of_mem, apply set.mem_range_self }, rw set.eq_univ_iff_forall at this, simp, cases this y with a ha, cases ha with ha' ha, cases ha' with a ha, cases ha with ha' ha, subst ha, subst ha, cases ha' with a ha', existsi a, rw ha', rw SES.im_f_eq_ker_g, rw ← set.image_comp, apply @surj_im_normal G K' (iso.hom ≫ S'.g), apply function.surjective_comp, exact S'.g_surj, apply Group.iso_surj }, im_f_eq_ker_g := by { unfold_coes, simp, transitivity is_group_hom.ker (@category_struct.comp Group _ _ _ _ S.f (@category_struct.comp Group _ _ _ _ iso.hom S'.g)), rw Group.ker_of_comp_inj _ _ S.f_inj, dsimp [subtype_val.group_hom, Group.fst], rw [set.range_comp, subtype.range_val], rw [Group.ker_of_comp_inj _ _ (Group.iso_inj iso), ← S'.im_f_eq_ker_g], ext x, rw set.mem_preimage, constructor; intro h; cases h with k hk, { existsi k.snd, symmetry, rw ← hk.right, exact hk.left }, { existsi (x, k), constructor, exact hk.symm, refl }, refl } } structure SES.equiv {H H' G G' K K' : Group} (iso : G ≅ G') (S : SES H G K) (S' : SES H' G' K') := (α : H ≅ H') (β : K ≅ K') (l_comm : S.f ≫ iso.hom = α.hom ≫ S'.f) (r_comm : S.g ≫ β.hom = iso.hom ≫ S'.g) def SES.equiv_symm {H H' G G' K K' : Group} (iso : G ≅ G') (S : SES H G K) (S' : SES H' G' K') (eqv : SES.equiv iso S S') : SES.equiv iso.symm S' S := { α := eqv.α.symm, β := eqv.β.symm, l_comm := by { refine (_ : @category_struct.comp Group _ _ _ _ S'.f iso.inv = @category_struct.comp Group _ _ _ _ eqv.α.inv S.f), rw [iso.comp_inv_eq, category.assoc, eqv.l_comm, ← category.assoc, eqv.α.inv_hom_id, category.id_comp] }, r_comm := by { refine (_ : @category_struct.comp Group _ _ _ _ S'.g eqv.β.inv = @category_struct.comp Group _ _ _ _ iso.inv S.g), symmetry, rw [iso.inv_comp_eq, ← category.assoc, ← eqv.r_comm, category.assoc, eqv.β.hom_inv_id, category.comp_id] } } noncomputable def SES.map_out_right {H G G' K : Group} (S : SES H G K) (φ : G ⟶ G') (hker : ∀ x : H, φ (S.f x) = 1) : K ⟶ G' := { val := λ k, φ (function.inv_fun S.g k), property := is_group_hom.mk' $ by { intros, rw [← is_monoid_hom.map_mul φ, is_group_hom.one_iff_ker_inv φ], suffices : function.inv_fun S.g (x * y) * (function.inv_fun S.g x * function.inv_fun ⇑(S.g) y)⁻¹ ∈ set.range S.f, { cases this with a ha, rw ← ha, apply_assumption }, rw [SES.im_f_eq_ker_g, is_group_hom.mem_ker, ← is_group_hom.one_iff_ker_inv], rw is_monoid_hom.map_mul S.g, repeat { rw @function.inv_fun_eq _ _ _ S.g _ (S.g_surj _) } } } lemma SES.map_out_right_comm {H G G' K : Group} (S : SES H G K) (φ : G ⟶ G') (hker : ∀ x : H, φ (S.f x) = 1) : ∀ x : G, SES.map_out_right S φ hker (S.g x) = φ x := begin intros, apply iff.mpr (is_group_hom.one_iff_ker_inv φ (function.inv_fun S.g $ S.g x) x), suffices : function.inv_fun S.g (S.g x) * x⁻¹ ∈ set.range S.f, { cases this with a ha, rw ← ha, apply_assumption }, rw [SES.im_f_eq_ker_g, is_group_hom.mem_ker, ← is_group_hom.one_iff_ker_inv], apply function.right_inverse_inv_fun, exact S.g_surj end noncomputable def SES.equiv_of_left {H H' G G' K K' : Group} (iso : G ≅ G') (S : SES H G K) (S' : SES H' G' K') (α : H ≅ H') (l_comm : S.f ≫ iso.hom = α.hom ≫ S'.f) : SES.equiv iso S S' := have h1 : ∀ x, (iso.hom ≫ S'.g) (S.f x) = 1, by { intro, rw ← iso.eq_comp_inv at l_comm, rw l_comm, suffices : S'.g ((iso.hom.val ∘ iso.inv.val) (S'.f (α.hom x))) = 1, exact this, have := iso.inv_hom_id, simp [(≫), category_struct.id] at this, rw this, simp, apply S'.is_cc }, have h2 : ∀ x, (iso.inv ≫ S.g) (S'.f x) = 1, by by { intro, replace l_comm := l_comm.symm, rw ← α.eq_inv_comp at l_comm, rw l_comm, suffices : S.g ((iso.inv.val ∘ iso.hom.val) (S.f (α.inv x))) = 1, exact this, have := iso.hom_inv_id, simp [(≫), category_struct.id] at this, rw this, simp, apply S.is_cc }, { α := α, l_comm := l_comm, β := { hom := SES.map_out_right S (iso.hom ≫ S'.g) h1, inv := SES.map_out_right S' (iso.inv ≫ S.g) h2, hom_inv_id' := by { ext, cases S.g_surj x with x h, subst h, unfold_coes, simp, have := SES.map_out_right_comm S (iso.hom ≫ S'.g) h1 x, unfold_coes at this, simp [(≫)] at this, rw this, clear this, have := SES.map_out_right_comm S' (iso.inv ≫ S.g) h2 (iso.hom.val x), unfold_coes at this, simp [(≫)] at this, rw this, clear this, congr, transitivity (iso.inv.val ∘ iso.hom.val) x, refl, transitivity id x, apply congr_fun, exact subtype.mk.inj iso.hom_inv_id, refl, }, inv_hom_id' := by { ext, cases S'.g_surj x with x h, subst h, unfold_coes, simp, have := SES.map_out_right_comm S' (iso.inv ≫ S.g) h2 x, unfold_coes at this, simp [(≫)] at this, rw this, clear this, have := SES.map_out_right_comm S (iso.hom ≫ S'.g) h1 (iso.inv.val x), unfold_coes at this, simp [(≫)] at this, rw this, clear this, congr, transitivity (iso.hom.val ∘ iso.inv.val) x, refl, transitivity id x, apply congr_fun, exact subtype.mk.inj iso.inv_hom_id, refl, } }, r_comm := by { unfold_coes, simp, ext, transitivity SES.map_out_right S (iso.hom ≫ S'.g) h1 (S.g x), refl, apply SES.map_out_right_comm, } }. noncomputable def SES.equiv_of_ker_im_match {H H' G G' K K' : Group} (iso : G ≅ G') (S : SES H G K) (S' : SES H' G' K') (h_l : ∀ x : H, S'.g (iso.hom (S.f x)) = 1) (h_r : ∀ x : H', S.g (iso.inv (S'.f x)) = 1) : SES.equiv iso S S' := have h1 : iso.hom '' set.range S.f ⊆ is_group_hom.ker S'.g ∧ iso.inv '' set.range S'.f ⊆ is_group_hom.ker S.g, from by { constructor; intros x hx; cases hx with x hx; cases hx with hx hx; subst hx; cases hx with x hx; subst hx; rw is_group_hom.mem_ker; apply_assumption }, have h2 : iso.hom '' set.range S.f = set.range S'.f, by { rw [← S.im_f_eq_ker_g, ← S'.im_f_eq_ker_g] at h1, cases h1 with h h', rw set.image_subset_iff at h', rw ← set.image_eq_preimage_of_inverse at h', exact funext (λ x, propext ⟨@h x, @h' x⟩), apply Group.iso_left_inverse, apply Group.iso_right_inverse }, have h3 : Group.of ↥(⇑(iso.hom) '' set.range ⇑(S.f)) = Group.of ↥(set.range ⇑(S'.f)), by { rw Group.subgroup_eq_of_eq h2, }, have h4 : ∀ {A B : Group} (h : A = B) (t : A), t == (eq.rec (category_theory.iso.refl A) h : A ≅ B).hom.val t, by { intros, cases h, refl }, begin refine SES.equiv_of_left iso S S' _ _, transitivity, exact (S.left_iso_range ≪≫ Group.iso_restrict iso _), transitivity, tactic.swap, apply S'.left_iso_range.symm, exact eq.rec (category_theory.iso.refl (Group.of ↥(⇑(iso.hom) '' set.range ⇑(S.f)))) h3, rw category_theory.iso.trans_assoc, ext, dsimp [(≪≫)], dsimp [SES.left_iso_range], dsimp [Group.iso_restrict], unfold_coes, dsimp [subtype.val], rw (_ : S'.f.val = ⇑(S'.f)), tactic.swap, refl, rw S'.f_rev_spec_r, unfold_coes, clear h1, clear h_l, clear h_r, generalize h : subtype.mk ((iso.hom).val ((S.f).val x)) _ = t, transitivity t.val, { subst h }, congr, ext, rw h2, apply h4 h3 end lemma Group.normal_subgroup_card_lt_of_nontriv_quot {H G K : Group} [fintype G] (S : SES H G K) (hK : ¬ subsingleton K) : @fintype.card H (fintype.of_injective S.f S.f_inj) < fintype.card G := begin have : ∃ k : K, k ≠ 1, { by_contradiction h, rw not_exists_not at h, apply hK, constructor, intros, transitivity (1 : K), apply h, symmetry, apply h }, cases this with k hk, cases S.g_surj k with x hx, subst hx, replace hk := mt (iff.mp (is_group_hom.mem_ker S.g)) hk, rw [← S.im_f_eq_ker_g] at hk, apply @nat.lt_of_le_of_lt _ (@finset.card _ (finset.erase finset.univ x)), have h1 : ∀ (y : G), y ∈ finset.erase finset.univ x ↔ y ≠ x, { intro, rw [finset.mem_erase, (_ : y ∈ finset.univ ↔ true)], apply and_true, rw iff_true, apply finset.mem_univ }, have h2 : fintype { y : G // y ≠ x } := fintype.subtype _ h1, rw ← @fintype.subtype_card _ (λ y, y ≠ x) _ h1, apply @nat.le_trans _ (@fintype.card { y : G // y ≠ x } h2), apply @fintype.card_le_of_injective H _ (fintype.of_injective S.f S.f_inj) h2 (λ y, ⟨S.f y, λ h, hk ⟨y, h⟩⟩) (λ _ _ hab, S.f_inj (subtype.mk.inj hab)), apply nat.le_of_eq, congr, rw finset.card_erase_of_mem, dsimp [fintype.card], apply nat.pred_lt, refine (_ : ¬ (fintype.card G = 0)), rw fintype.card_eq_zero_iff, exact λ h, h 1, apply finset.mem_univ end def SES.not_contains_of_simple_quot_and_proper {H H' G G' K K' : Group} (iso : G ≅ G') (S : SES H G K) (S' : SES H' G' K') (hK : simple_group K) (hK' : ¬ subsingleton K') (hnoteqv : SES.equiv iso S S' → false) : ∃ x, S'.g (iso.hom (S.f x)) ≠ 1 := begin have h1 : ¬ ((∀ x, S'.g (iso.hom (S.f x)) = 1) ∧ (∀ x, S.g (iso.inv (S'.f x)) = 1)), { intro h, apply hnoteqv, cases h, apply SES.equiv_of_ker_im_match; assumption }, rw classical.not_and_distrib at h1, cases h1, rw ← classical.not_forall, assumption, rw ← classical.not_forall, intro h2, apply h1, suffices : iso.inv '' set.range S'.f ⊆ is_group_hom.ker S.g, { intro, rw ← is_group_hom.mem_ker S.g, exact this ⟨S'.f x, set.mem_range_self x, rfl⟩ }, destruct hK, intro, have : iso.hom '' set.range S.f ⊆ is_group_hom.ker S'.g, { intros x hx, cases hx with x' hx, rw ← hx.right, cases hx.left with x hx, rw ← hx, rw is_group_hom.mem_ker, apply h2 }, cases @simple (S.g '' (iso.inv '' is_group_hom.ker S'.g)) (@surj_im_normal _ _ S.g S.g_surj _ (surj_im_normal iso.inv (Group.iso_surj iso.symm) _)), rw [set.image_subset_iff, ← set.image_eq_preimage_of_inverse (Group.iso_right_inverse _) (Group.iso_left_inverse _)] at this, transitivity S.g ⁻¹' (S.g '' (iso.inv '' is_group_hom.ker S'.g)), rw S'.im_f_eq_ker_g, apply set.subset_preimage_image S.g, rw h, refl, exfalso, apply hK', have : ∀ x : K', x = 1, { have h3 := Group.eq_of_im_eq_and_contain_ker _ h _, intro x, cases S'.g_surj x with x hx, subst hx, rw ← is_group_hom.mem_ker S'.g, have h4 : iso.inv x ∈ set.univ := set.mem_univ _, rw [← h3, set.mem_image_iff_of_inverse (Group.iso_right_inverse _) (Group.iso_left_inverse _), Group.iso_right_inverse _] at h4, assumption, rw [← S.im_f_eq_ker_g, set.image_eq_preimage_of_inverse (Group.iso_right_inverse _) (Group.iso_left_inverse _)], rw ← set.image_subset_iff, assumption }, constructor, intros, transitivity (1 : K'), apply_assumption, symmetry, apply_assumption, end noncomputable def SES.partial_second_iso' {H H' G G' K K' : Group} (iso : G ≅ G') (S : SES H G K) (S' : SES H' G' K') (hK₁ : simple_group K) (hK₂ : ¬ subsingleton K) (hK'₁ : simple_group K') (hK'₂ : ¬ subsingleton K') (hnoteqv : SES.equiv iso S S' → false) : SES (Group.of (pullback (S.f ≫ iso.hom) S'.f)) H K' := begin cases classical.subtype_of_exists (SES.not_contains_of_simple_quot_and_proper iso S S' hK₁ hK'₂ hnoteqv), apply @partial_second_iso H H' G G' K K' iso hK'₁ S S', assumption, end
c46105f03b040949f8da53880e4ff949f75e8ef6
a047a4718edfa935d17231e9e6ecec8c7b701e05
/src/tactic/core.lean
d10b500fa363454d5262f5435550aa5967a6efae
[ "Apache-2.0" ]
permissive
utensil-contrib/mathlib
bae0c9fafe5e2bdb516efc89d6f8c1502ecc9767
b91909e77e219098a2f8cc031f89d595fe274bd2
refs/heads/master
1,668,048,976,965
1,592,442,701,000
1,592,442,701,000
273,197,855
0
0
null
1,592,472,812,000
1,592,472,811,000
null
UTF-8
Lean
false
false
84,275
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Simon Hudon, Scott Morrison, Keeley Hoek -/ import data.dlist.basic import control.basic import meta.expr import meta.rb_map import data.bool import tactic.lean_core_docs universe variable u instance : has_lt pos := { lt := λ x y, (x.line, x.column) < (y.line, y.column) } namespace expr open tactic /-- Given an expr `α` representing a type with numeral structure, `of_nat α n` creates the `α`-valued numeral expression corresponding to `n`. -/ protected meta def of_nat (α : expr) : ℕ → tactic expr := nat.binary_rec (tactic.mk_mapp ``has_zero.zero [some α, none]) (λ b n tac, if n = 0 then mk_mapp ``has_one.one [some α, none] else do e ← tac, tactic.mk_app (cond b ``bit1 ``bit0) [e]) /-- Given an expr `α` representing a type with numeral structure, `of_int α n` creates the `α`-valued numeral expression corresponding to `n`. The output is either a numeral or the negation of a numeral. -/ protected meta def of_int (α : expr) : ℤ → tactic expr | (n : ℕ) := expr.of_nat α n | -[1+ n] := do e ← expr.of_nat α (n+1), tactic.mk_app ``has_neg.neg [e] /-- Generates an expression of the form `∃(args), inner`. `args` is assumed to be a list of local constants. When possible, `p ∧ q` is used instead of `∃(_ : p), q`. -/ meta def mk_exists_lst (args : list expr) (inner : expr) : tactic expr := args.mfoldr (λarg i:expr, do t ← infer_type arg, sort l ← infer_type t, return $ if arg.occurs i ∨ l ≠ level.zero then (const `Exists [l] : expr) t (i.lambdas [arg]) else (const `and [] : expr) t i) inner /-- `traverse f e` applies the monadic function `f` to the direct descendants of `e`. -/ meta def traverse {m : Type → Type u} [applicative m] {elab elab' : bool} (f : expr elab → m (expr elab')) : expr elab → m (expr elab') | (var v) := pure $ var v | (sort l) := pure $ sort l | (const n ls) := pure $ const n ls | (mvar n n' e) := mvar n n' <$> f e | (local_const n n' bi e) := local_const n n' bi <$> f e | (app e₀ e₁) := app <$> f e₀ <*> f e₁ | (lam n bi e₀ e₁) := lam n bi <$> f e₀ <*> f e₁ | (pi n bi e₀ e₁) := pi n bi <$> f e₀ <*> f e₁ | (elet n e₀ e₁ e₂) := elet n <$> f e₀ <*> f e₁ <*> f e₂ | (macro mac es) := macro mac <$> list.traverse f es /-- `mfoldl f a e` folds the monadic function `f` over the subterms of the expression `e`, with initial value `a`. -/ meta def mfoldl {α : Type} {m} [monad m] (f : α → expr → m α) : α → expr → m α | x e := prod.snd <$> (state_t.run (e.traverse $ λ e', (get >>= monad_lift ∘ flip f e' >>= put) $> e') x : m _) /-- `kreplace e old new` replaces all occurrences of the expression `old` in `e` with `new`. The occurrences of `old` in `e` are determined using keyed matching with transparency `md`; see `kabstract` for details. If `unify` is true, we may assign metavariables in `e` as we match subterms of `e` against `old`. -/ meta def kreplace (e old new : expr) (md := semireducible) (unify := tt) : tactic expr := do e ← kabstract e old md unify, pure $ e.instantiate_var new end expr namespace interaction_monad open result variables {σ : Type} {α : Type u} /-- `get_state` returns the underlying state inside an interaction monad, from within that monad. -/ -- Note that this is a generalization of `tactic.read` in core. meta def get_state : interaction_monad σ σ := λ state, success state state /-- `set_state` sets the underlying state inside an interaction monad, from within that monad. -/ -- Note that this is a generalization of `tactic.write` in core. meta def set_state (state : σ) : interaction_monad σ unit := λ _, success () state /-- `run_with_state state tac` applies `tac` to the given state `state` and returns the result, subsequently restoring the original state. If `tac` fails, then `run_with_state` does too. -/ meta def run_with_state (state : σ) (tac : interaction_monad σ α) : interaction_monad σ α := λ s, match tac state with | success val _ := success val s | exception fn pos _ := exception fn pos s end end interaction_monad namespace format /-- `join' [a,b,c]` produces the format object `abc`. It differs from `format.join` by using `format.nil` instead of `""` for the empty list. -/ meta def join' (xs : list format) : format := xs.foldl compose nil /-- `intercalate x [a, b, c]` produces the format object `a.x.b.x.c`, where `.` represents `format.join`. -/ meta def intercalate (x : format) : list format → format := join' ∘ list.intersperse x /-- `soft_break` is similar to `line`. Whereas in `group (x ++ line ++ y ++ line ++ z)` the result either fits on one line or in three, `x ++ soft_break ++ y ++ soft_break ++ z` each line break is decided independently -/ meta def soft_break : format := group line end format section format open format /-- format a `list` by separating elements with `soft_break` instead of `line` -/ meta def list.to_line_wrap_format {α : Type u} [has_to_format α] : list α → format | [] := to_fmt "[]" | xs := to_fmt "[" ++ group (nest 1 $ intercalate ("," ++ soft_break) $ xs.map to_fmt) ++ to_fmt "]" end format namespace tactic open function /-- Private work function for `add_local_consts_as_local_hyps`: given `mappings : list (expr × expr)` corresponding to pairs `(var, hyp)` of variables and the local hypothesis created as a result and `(var :: rest) : list expr` of more local variables we examine `var` to see if it contains any other variables in `rest`. If it does, we put it to the back of the queue and recurse. If it does not, then we perform replacements inside the type of `var` using the `mappings`, create a new associate local hypothesis, add this to the list of mappings, and recurse. We are done once all local hypotheses have been processed. If the list of passed local constants have types which depend on one another (which can only happen by hand-crafting the `expr`s manually), this function will loop forever. -/ private meta def add_local_consts_as_local_hyps_aux : list (expr × expr) → list expr → tactic (list (expr × expr)) | mappings [] := return mappings | mappings (var :: rest) := do /- Determine if `var` contains any local variables in the lift `rest`. -/ let is_dependent := var.local_type.fold ff $ λ e n b, if b then b else e ∈ rest, /- If so, then skip it---add it to the end of the variable queue. -/ if is_dependent then add_local_consts_as_local_hyps_aux mappings (rest ++ [var]) else do /- Otherwise, replace all of the local constants referenced by the type of `var` with the respective new corresponding local hypotheses as recorded in the list `mappings`. -/ let new_type := var.local_type.replace_subexprs mappings, /- Introduce a new local new local hypothesis `hyp` for `var`, with the correct type. -/ hyp ← assertv var.local_pp_name new_type (var.local_const_set_type new_type), /- Process the next variable in the queue, with the mapping list updated to include the local hypothesis which we just created. -/ add_local_consts_as_local_hyps_aux ((var, hyp) :: mappings) rest /-- `add_local_consts_as_local_hyps vars` add the given list `vars` of `expr.local_const`s to the tactic state. This is harder than it sounds, since the list of local constants which we have been passed can have dependencies between their types. For example, suppose we have two local constants `n : ℕ` and `h : n = 3`. Then we cannot blindly add `h` as a local hypothesis, since we need the `n` to which it refers to be the `n` created as a new local hypothesis, not the old local constant `n` with the same name. Of course, these dependencies can be nested arbitrarily deep. If the list of passed local constants have types which depend on one another (which can only happen by hand-crafting the `expr`s manually), this function will loop forever. -/ meta def add_local_consts_as_local_hyps (vars : list expr) : tactic (list (expr × expr)) := /- The `list.reverse` below is a performance optimisation since the list of available variables reported by the system is often mostly the reverse of the order in which they are dependent. -/ add_local_consts_as_local_hyps_aux [] vars.reverse.erase_dup /-- `mk_local_pisn e n` instantiates the first `n` variables of a pi expression `e`, and returns the new local constants along with the instantiated expression. Fails if `e` does not begin with at least `n` pi binders. -/ meta def mk_local_pisn : expr → nat → tactic (list expr × expr) | (expr.pi n bi d b) (c + 1) := do p ← mk_local' n bi d, (ps, r) ← mk_local_pisn (b.instantiate_var p) c, return ((p :: ps), r) | e 0 := return ([], e) | _ _ := failed -- TODO: move to `declaration` namespace in `meta/expr.lean` /-- `mk_theorem n ls t e` creates a theorem declaration with name `n`, universe parameters named `ls`, type `t`, and body `e`. -/ meta def mk_theorem (n : name) (ls : list name) (t : expr) (e : expr) : declaration := declaration.thm n ls t (task.pure e) /-- `add_theorem_by n ls type tac` uses `tac` to synthesize a term with type `type`, and adds this to the environment as a theorem with name `n` and universe parameters `ls`. -/ meta def add_theorem_by (n : name) (ls : list name) (type : expr) (tac : tactic unit) : tactic expr := do ((), body) ← solve_aux type tac, body ← instantiate_mvars body, add_decl $ mk_theorem n ls type body, return $ expr.const n $ ls.map level.param /-- `eval_expr' α e` attempts to evaluate the expression `e` in the type `α`. This is a variant of `eval_expr` in core. Due to unexplained behavior in the VM, in rare situations the latter will fail but the former will succeed. -/ meta def eval_expr' (α : Type*) [_inst_1 : reflected α] (e : expr) : tactic α := mk_app ``id [e] >>= eval_expr α /-- `mk_fresh_name` returns identifiers starting with underscores, which are not legal when emitted by tactic programs. `mk_user_fresh_name` turns the useful source of random names provided by `mk_fresh_name` into names which are usable by tactic programs. The returned name has four components which are all strings. -/ meta def mk_user_fresh_name : tactic name := do nm ← mk_fresh_name, return $ `user__ ++ nm.pop_prefix.sanitize_name ++ `user__ /-- `has_attribute' attr_name decl_name` checks whether `decl_name` exists and has attribute `attr_name`. -/ meta def has_attribute' (attr_name decl_name : name) : tactic bool := succeeds (has_attribute attr_name decl_name) /-- Checks whether the name is a simp lemma -/ meta def is_simp_lemma : name → tactic bool := has_attribute' `simp /-- Checks whether the name is an instance. -/ meta def is_instance : name → tactic bool := has_attribute' `instance /-- `local_decls` returns a dictionary mapping names to their corresponding declarations. Covers all declarations from the current file. -/ meta def local_decls : tactic (name_map declaration) := do e ← tactic.get_env, let xs := e.fold native.mk_rb_map (λ d s, if environment.in_current_file' e d.to_name then s.insert d.to_name d else s), pure xs /-- If `{nm}_{n}` doesn't exist in the environment, returns that, otherwise tries `{nm}_{n+1}` -/ meta def get_unused_decl_name_aux (e : environment) (nm : name) : ℕ → tactic name | n := let nm' := nm.append_suffix ("_" ++ to_string n) in if e.contains nm' then get_unused_decl_name_aux (n+1) else return nm' /-- Return a name which doesn't already exist in the environment. If `nm` doesn't exist, it returns that, otherwise it tries `nm_2`, `nm_3`, ... -/ meta def get_unused_decl_name (nm : name) : tactic name := get_env >>= λ e, if e.contains nm then get_unused_decl_name_aux e nm 2 else return nm /-- Returns a pair `(e, t)`, where `e ← mk_const d.to_name`, and `t = d.type` but with universe params updated to match the fresh universe metavariables in `e`. This should have the same effect as just ```lean do e ← mk_const d.to_name, t ← infer_type e, return (e, t) ``` but is hopefully faster. -/ meta def decl_mk_const (d : declaration) : tactic (expr × expr) := do subst ← d.univ_params.mmap $ λ u, prod.mk u <$> mk_meta_univ, let e : expr := expr.const d.to_name (prod.snd <$> subst), return (e, d.type.instantiate_univ_params subst) /-- Replace every universe metavariable in an expression with a universe parameter. (This is useful when making new declarations.) -/ meta def replace_univ_metas_with_univ_params (e : expr) : tactic expr := do e.list_univ_meta_vars.enum.mmap (λ n, do let n' := (`u).append_suffix ("_" ++ to_string (n.1+1)), unify (expr.sort (level.mvar n.2)) (expr.sort (level.param n'))), instantiate_mvars e /-- `mk_local n` creates a dummy local variable with name `n`. The type of this local constant is a constant with name `n`, so it is very unlikely to be a meaningful expression. -/ meta def mk_local (n : name) : expr := expr.local_const n n binder_info.default (expr.const n []) /-- `pis loc_consts f` is used to create a pi expression whose body is `f`. `loc_consts` should be a list of local constants. The function will abstract these local constants from `f` and bind them with pi binders. For example, if `a, b` are local constants with types `Ta, Tb`, ``pis [a, b] `(f a b)`` will return the expression `Π (a : Ta) (b : Tb), f a b`. -/ meta def pis : list expr → expr → tactic expr | (e@(expr.local_const uniq pp info _) :: es) f := do t ← infer_type e, f' ← pis es f, pure $ expr.pi pp info t (expr.abstract_local f' uniq) | _ f := pure f /-- `lambdas loc_consts f` is used to create a lambda expression whose body is `f`. `loc_consts` should be a list of local constants. The function will abstract these local constants from `f` and bind them with lambda binders. For example, if `a, b` are local constants with types `Ta, Tb`, ``lambdas [a, b] `(f a b)`` will return the expression `λ (a : Ta) (b : Tb), f a b`. -/ meta def lambdas : list expr → expr → tactic expr | (e@(expr.local_const uniq pp info _) :: es) f := do t ← infer_type e, f' ← lambdas es f, pure $ expr.lam pp info t (expr.abstract_local f' uniq) | _ f := pure f /-- `mk_psigma [x,y,z]`, with `[x,y,z]` list of local constants of types `x : tx`, `y : ty x` and `z : tz x y`, creates an expression of sigma type: `⟨x,y,z⟩ : Σ' (x : tx) (y : ty x), tz x y`. -/ meta def mk_psigma : list expr → tactic expr | [] := mk_const ``punit | [x@(expr.local_const _ _ _ _)] := pure x | (x@(expr.local_const _ _ _ _) :: xs) := do y ← mk_psigma xs, α ← infer_type x, β ← infer_type y, t ← lambdas [x] β >>= instantiate_mvars, r ← mk_mapp ``psigma.mk [α,t], pure $ r x y | _ := fail "mk_psigma expects a list of local constants" /-- `elim_gen_prod n e _ ns` with `e` an expression of type `psigma _`, applies `cases` on `e` `n` times and uses `ns` to name the resulting variables. Returns a triple: list of new variables, remaining term and unused variable names. -/ meta def elim_gen_prod : nat → expr → list expr → list name → tactic (list expr × expr × list name) | 0 e hs ns := return (hs.reverse, e, ns) | (n + 1) e hs ns := do t ← infer_type e, if t.is_app_of `eq then return (hs.reverse, e, ns) else do [(_, [h, h'], _)] ← cases_core e (ns.take 1), elim_gen_prod n h' (h :: hs) (ns.drop 1) private meta def elim_gen_sum_aux : nat → expr → list expr → tactic (list expr × expr) | 0 e hs := return (hs, e) | (n + 1) e hs := do [(_, [h], _), (_, [h'], _)] ← induction e [], swap, elim_gen_sum_aux n h' (h::hs) /-- `elim_gen_sum n e` applies cases on `e` `n` times. `e` is assumed to be a local constant whose type is a (nested) sum `⊕`. Returns the list of local constants representing the components of `e`. -/ meta def elim_gen_sum (n : nat) (e : expr) : tactic (list expr) := do (hs, h') ← elim_gen_sum_aux n e [], gs ← get_goals, set_goals $ (gs.take (n+1)).reverse ++ gs.drop (n+1), return $ hs.reverse ++ [h'] /-- Given `elab_def`, a tactic to solve the current goal, `extract_def n trusted elab_def` will create an auxiliary definition named `n` and use it to close the goal. If `trusted` is false, it will be a meta definition. -/ meta def extract_def (n : name) (trusted : bool) (elab_def : tactic unit) : tactic unit := do cxt ← list.map expr.to_implicit_local_const <$> local_context, t ← target, (eqns,d) ← solve_aux t elab_def, d ← instantiate_mvars d, t' ← pis cxt t, d' ← lambdas cxt d, let univ := t'.collect_univ_params, add_decl $ declaration.defn n univ t' d' (reducibility_hints.regular 1 tt) trusted, applyc n /-- Attempts to close the goal with `dec_trivial`. -/ meta def exact_dec_trivial : tactic unit := `[exact dec_trivial] /-- Runs a tactic for a result, reverting the state after completion. -/ meta def retrieve {α} (tac : tactic α) : tactic α := λ s, result.cases_on (tac s) (λ a s', result.success a s) result.exception /-- Repeat a tactic at least once, calling it recursively on all subgoals, until it fails. This tactic fails if the first invocation fails. -/ meta def repeat1 (t : tactic unit) : tactic unit := t; repeat t /-- `iterate_range m n t`: Repeat the given tactic at least `m` times and at most `n` times or until `t` fails. Fails if `t` does not run at least `m` times. -/ meta def iterate_range : ℕ → ℕ → tactic unit → tactic unit | 0 0 t := skip | 0 (n+1) t := try (t >> iterate_range 0 n t) | (m+1) n t := t >> iterate_range m (n-1) t /-- Given a tactic `tac` that takes an expression and returns a new expression and a proof of equality, use that tactic to change the type of the hypotheses listed in `hs`, as well as the goal if `tgt = tt`. Returns `tt` if any types were successfully changed. -/ meta def replace_at (tac : expr → tactic (expr × expr)) (hs : list expr) (tgt : bool) : tactic bool := do to_remove ← hs.mfilter $ λ h, do { h_type ← infer_type h, succeeds $ do (new_h_type, pr) ← tac h_type, assert h.local_pp_name new_h_type, mk_eq_mp pr h >>= tactic.exact }, goal_simplified ← succeeds $ do { guard tgt, (new_t, pr) ← target >>= tac, replace_target new_t pr }, to_remove.mmap' (λ h, try (clear h)), return (¬ to_remove.empty ∨ goal_simplified) /-- `revert_after e` reverts all local constants after local constant `e`. -/ meta def revert_after (e : expr) : tactic ℕ := do l ← local_context, [pos] ← return $ l.indexes_of e | pp e >>= λ s, fail format!"No such local constant {s}", let l := l.drop pos.succ, -- all local hypotheses after `e` revert_lst l /-- `generalize' e n` generalizes the target with respect to `e`. It creates a new local constant with name `n` of the same type as `e` and replaces all occurrences of `e` by `n`. `generalize'` is similar to `generalize` but also succeeds when `e` does not occur in the goal, in which case it just calls `assert`. In contrast to `generalize` it already introduces the generalized variable. -/ meta def generalize' (e : expr) (n : name) : tactic expr := (generalize e n >> intro1) <|> note n none e /-! ### Various tactics related to local definitions (local constants of the form `x : α := t`) We call `t` the value of `x`. -/ /-- `local_def_value e` returns the value of the expression `e`, assuming that `e` has been defined locally using a `let` expression. Otherwise it fails. -/ meta def local_def_value (e : expr) : tactic expr := pp e >>= λ s, -- running `pp` here, because we cannot access it in the `type_context` monad. tactic.unsafe.type_context.run $ do lctx <- tactic.unsafe.type_context.get_local_context, some ldecl <- return $ lctx.get_local_decl e.local_uniq_name | tactic.unsafe.type_context.fail format!"No such hypothesis {s}.", some let_val <- return ldecl.value | tactic.unsafe.type_context.fail format!"Variable {e} is not a local definition.", return let_val /-- `revert_deps e` reverts all the hypotheses that depend on one of the local constants `e`, including the local definitions that have `e` in their definition. This fixes a bug in `revert_kdeps` that does not revert local definitions for which `e` only appears in the definition. -/ /- We cannot implement it as `revert e >> intro1`, because that would change the local constant in the context. -/ meta def revert_deps (e : expr) : tactic ℕ := do n ← revert_kdeps e, l ← local_context, [pos] ← return $ l.indexes_of e, let l := l.drop pos.succ, -- local hypotheses after `e` ls ← l.mfilter $ λ e', try_core (local_def_value e') >>= λ o, return $ o.elim ff $ λ e'', e''.has_local_constant e, n' ← revert_lst ls, return $ n + n' /-- `is_local_def e` succeeds when `e` is a local definition (a local constant of the form `e : α := t`) and otherwise fails. -/ meta def is_local_def (e : expr) : tactic unit := retrieve $ do revert e, expr.elet _ _ _ _ ← target, skip /-- `clear_value e` clears the body of the local definition `e`, changing it into a regular hypothesis. A hypothesis `e : α := t` is changed to `e : α`. This tactic is called `clearbody` in Coq. -/ meta def clear_value (e : expr) : tactic unit := do n ← revert_after e, is_local_def e <|> pp e >>= λ s, fail format!"Cannot clear the body of {s}. It is not a local definition.", let nm := e.local_pp_name, (generalize' e nm >> clear e) <|> fail format!"Cannot clear the body of {nm}. The resulting goal is not type correct.", intron n /-- A variant of `simplify_bottom_up`. Given a tactic `post` for rewriting subexpressions, `simp_bottom_up post e` tries to rewrite `e` starting at the leaf nodes. Returns the resulting expression and a proof of equality. -/ meta def simp_bottom_up' (post : expr → tactic (expr × expr)) (e : expr) (cfg : simp_config := {}) : tactic (expr × expr) := prod.snd <$> simplify_bottom_up () (λ _, (<$>) (prod.mk ()) ∘ post) e cfg /-- Caches unary type classes on a type `α : Type.{univ}`. -/ meta structure instance_cache := (α : expr) (univ : level) (inst : name_map expr) /-- Creates an `instance_cache` for the type `α`. -/ meta def mk_instance_cache (α : expr) : tactic instance_cache := do u ← mk_meta_univ, infer_type α >>= unify (expr.sort (level.succ u)), u ← get_univ_assignment u, return ⟨α, u, mk_name_map⟩ namespace instance_cache /-- If `n` is the name of a type class with one parameter, `get c n` tries to find an instance of `n c.α` by checking the cache `c`. If there is no entry in the cache, it tries to find the instance via type class resolution, and updates the cache. -/ meta def get (c : instance_cache) (n : name) : tactic (instance_cache × expr) := match c.inst.find n with | some i := return (c, i) | none := do e ← mk_app n [c.α] >>= mk_instance, return (⟨c.α, c.univ, c.inst.insert n e⟩, e) end open expr /-- If `e` is a `pi` expression that binds an instance-implicit variable of type `n`, `append_typeclasses e c l` searches `c` for an instance `p` of type `n` and returns `p :: l`. -/ meta def append_typeclasses : expr → instance_cache → list expr → tactic (instance_cache × list expr) | (pi _ binder_info.inst_implicit (app (const n _) (var _)) body) c l := do (c, p) ← c.get n, return (c, p :: l) | _ c l := return (c, l) /-- Creates the application `n c.α p l`, where `p` is a type class instance found in the cache `c`. -/ meta def mk_app (c : instance_cache) (n : name) (l : list expr) : tactic (instance_cache × expr) := do d ← get_decl n, (c, l) ← append_typeclasses d.type.binding_body c l, return (c, (expr.const n [c.univ]).mk_app (c.α :: l)) /-- `c.of_nat n` creates the `c.α`-valued numeral expression corresponding to `n`. -/ protected meta def of_nat (c : instance_cache) (n : ℕ) : tactic (instance_cache × expr) := if n = 0 then c.mk_app ``has_zero.zero [] else do (c, ai) ← c.get ``has_add, (c, oi) ← c.get ``has_one, (c, one) ← c.mk_app ``has_one.one [], return (c, n.binary_rec one $ λ b n e, if n = 0 then one else cond b ((expr.const ``bit1 [c.univ]).mk_app [c.α, oi, ai, e]) ((expr.const ``bit0 [c.univ]).mk_app [c.α, ai, e])) /-- `c.of_int n` creates the `c.α`-valued numeral expression corresponding to `n`. The output is either a numeral or the negation of a numeral. -/ protected meta def of_int (c : instance_cache) : ℤ → tactic (instance_cache × expr) | (n : ℕ) := c.of_nat n | -[1+ n] := do (c, e) ← c.of_nat (n+1), c.mk_app ``has_neg.neg [e] end instance_cache private meta def get_expl_pi_arity_aux : expr → tactic nat | (expr.pi n bi d b) := do m ← mk_fresh_name, let l := expr.local_const m n bi d, new_b ← whnf (expr.instantiate_var b l), r ← get_expl_pi_arity_aux new_b, if bi = binder_info.default then return (r + 1) else return r | e := return 0 /-- Compute the arity of explicit arguments of the given (Pi-)type. -/ meta def get_expl_pi_arity (type : expr) : tactic nat := whnf type >>= get_expl_pi_arity_aux /-- Compute the arity of explicit arguments of the given function. -/ meta def get_expl_arity (fn : expr) : tactic nat := infer_type fn >>= get_expl_pi_arity /-- Auxilliary defintion for `get_pi_binders`. -/ meta def get_pi_binders_aux : list binder → expr → tactic (list binder × expr) | es (expr.pi n bi d b) := do m ← mk_fresh_name, let l := expr.local_const m n bi d, let new_b := expr.instantiate_var b l, get_pi_binders_aux (⟨n, bi, d⟩::es) new_b | es e := return (es, e) /-- Get the binders and target of a pi-type. Instantiates bound variables by local constants. Cf. `pi_binders` in `meta.expr` (which produces open terms). See also `mk_local_pis` in `init.core.tactic` which does almost the same. -/ meta def get_pi_binders : expr → tactic (list binder × expr) | e := do (es, e) ← get_pi_binders_aux [] e, return (es.reverse, e) /-- Auxilliary definition for `get_pi_binders_dep`. -/ meta def get_pi_binders_dep_aux : ℕ → expr → tactic (list (ℕ × binder) × expr) | n (expr.pi nm bi d b) := do l ← mk_local' nm bi d, (ls, r) ← get_pi_binders_dep_aux (n+1) (expr.instantiate_var b l), return (if b.has_var then ls else (n, ⟨nm, bi, d⟩)::ls, r) | n e := return ([], e) /-- A variant of `get_pi_binders` that only returns the binders that do not occur in later arguments or in the target. Also returns the argument position of each returned binder. -/ meta def get_pi_binders_dep : expr → tactic (list (ℕ × binder) × expr) := get_pi_binders_dep_aux 0 /-- A variation on `assert` where a (possibly incomplete) proof of the assertion is provided as a parameter. ``(h,gs) ← local_proof `h p tac`` creates a local `h : p` and use `tac` to (partially) construct a proof for it. `gs` is the list of remaining goals in the proof of `h`. The benefits over assert are: - unlike with ``h ← assert `h p, tac`` , `h` cannot be used by `tac`; - when `tac` does not complete the proof of `h`, returning the list of goals allows one to write a tactic using `h` and with the confidence that a proof will not boil over to goals left over from the proof of `h`, unlike what would be the case when using `tactic.swap`. -/ meta def local_proof (h : name) (p : expr) (tac₀ : tactic unit) : tactic (expr × list expr) := focus1 $ do h' ← assert h p, [g₀,g₁] ← get_goals, set_goals [g₀], tac₀, gs ← get_goals, set_goals [g₁], return (h', gs) /-- `var_names e` returns a list of the unique names of the initial pi bindings in `e`. -/ meta def var_names : expr → list name | (expr.pi n _ _ b) := n :: var_names b | _ := [] /-- When `struct_n` is the name of a structure type, `subobject_names struct_n` returns two lists of names `(instances, fields)`. The names in `instances` are the projections from `struct_n` to the structures that it extends (assuming it was defined with `old_structure_cmd false`). The names in `fields` are the standard fields of `struct_n`. -/ meta def subobject_names (struct_n : name) : tactic (list name × list name) := do env ← get_env, [c] ← pure $ env.constructors_of struct_n | fail "too many constructors", vs ← var_names <$> (mk_const c >>= infer_type), fields ← env.structure_fields struct_n, return $ fields.partition (λ fn, ↑("_" ++ fn.to_string) ∈ vs) private meta def expanded_field_list' : name → tactic (dlist $ name × name) | struct_n := do (so,fs) ← subobject_names struct_n, ts ← so.mmap (λ n, do (_, e) ← mk_const (n.update_prefix struct_n) >>= infer_type >>= mk_local_pis, expanded_field_list' $ e.get_app_fn.const_name), return $ dlist.join ts ++ dlist.of_list (fs.map $ prod.mk struct_n) open functor function /-- `expanded_field_list struct_n` produces a list of the names of the fields of the structure named `struct_n`. These are returned as pairs of names `(prefix, name)`, where the full name of the projection is `prefix.name`. -/ meta def expanded_field_list (struct_n : name) : tactic (list $ name × name) := dlist.to_list <$> expanded_field_list' struct_n /-- Return a list of all type classes which can be instantiated for the given expression. -/ meta def get_classes (e : expr) : tactic (list name) := attribute.get_instances `class >>= list.mfilter (λ n, succeeds $ mk_app n [e] >>= mk_instance) open nat /-- Create a list of `n` fresh metavariables. -/ meta def mk_mvar_list : ℕ → tactic (list expr) | 0 := pure [] | (succ n) := (::) <$> mk_mvar <*> mk_mvar_list n /-- Returns the only goal, or fails if there isn't just one goal. -/ meta def get_goal : tactic expr := do gs ← get_goals, match gs with | [a] := return a | [] := fail "there are no goals" | _ := fail "there are too many goals" end /-- `iterate_at_most_on_all_goals n t`: repeat the given tactic at most `n` times on all goals, or until it fails. Always succeeds. -/ meta def iterate_at_most_on_all_goals : nat → tactic unit → tactic unit | 0 tac := trace "maximal iterations reached" | (succ n) tac := tactic.all_goals' $ (do tac, iterate_at_most_on_all_goals n tac) <|> skip /-- `iterate_at_most_on_subgoals n t`: repeat the tactic `t` at most `n` times on the first goal and on all subgoals thus produced, or until it fails. Fails iff `t` fails on current goal. -/ meta def iterate_at_most_on_subgoals : nat → tactic unit → tactic unit | 0 tac := trace "maximal iterations reached" | (succ n) tac := focus1 (do tac, iterate_at_most_on_all_goals n tac) /-- `apply_list l`: try to apply the tactics in the list `l` on the first goal, and fail if none succeeds -/ meta def apply_list_expr : list expr → tactic unit | [] := fail "no matching rule" | (h::t) := do interactive.concat_tags (apply h) <|> apply_list_expr t /-- constructs a list of expressions given a list of p-expressions, as follows: - if the p-expression is the name of a theorem, use `i_to_expr_for_apply` on it - if the p-expression is a user attribute, add all the theorems with this attribute to the list.-/ meta def build_list_expr_for_apply : list pexpr → tactic (list expr) | [] := return [] | (h::t) := do tail ← build_list_expr_for_apply t, a ← i_to_expr_for_apply h, (do l ← attribute.get_instances (expr.const_name a), m ← list.mmap mk_const l, return (m.append tail)) <|> return (a::tail) /--`apply_rules hs n`: apply the list of rules `hs` (given as pexpr) and `assumption` on the first goal and the resulting subgoals, iteratively, at most `n` times. Unlike `solve_by_elim`, `apply_rules` does not do any backtracking, and just greedily applies a lemma from the list until it can't. -/ meta def apply_rules (hs : list pexpr) (n : nat) : tactic unit := do l ← build_list_expr_for_apply hs, iterate_at_most_on_subgoals n (assumption <|> apply_list_expr l) /-- `replace h p` elaborates the pexpr `p`, clears the existing hypothesis named `h` from the local context, and adds a new hypothesis named `h`. The type of this hypothesis is the type of `p`. Fails if there is nothing named `h` in the local context. -/ meta def replace (h : name) (p : pexpr) : tactic unit := do h' ← get_local h, p ← to_expr p, note h none p, clear h' /-- Auxiliary function for `iff_mp` and `iff_mpr`. Takes a name, which should be either `` `iff.mp`` or `` `iff.mpr``. If the passed expression is an iterated function type eventually producing an `iff`, returns an expression with the `iff` converted to either the forwards or backwards implication, as requested. -/ meta def mk_iff_mp_app (iffmp : name) : expr → (nat → expr) → option expr | (expr.pi n bi e t) f := expr.lam n bi e <$> mk_iff_mp_app t (λ n, f (n+1) (expr.var n)) | `(%%a ↔ %%b) f := some $ @expr.const tt iffmp [] a b (f 0) | _ f := none /-- `iff_mp_core e ty` assumes that `ty` is the type of `e`. If `ty` has the shape `Π ..., A ↔ B`, returns an expression whose type is `Π ..., A → B`. -/ meta def iff_mp_core (e ty: expr) : option expr := mk_iff_mp_app `iff.mp ty (λ_, e) /-- `iff_mpr_core e ty` assumes that `ty` is the type of `e`. If `ty` has the shape `Π ..., A ↔ B`, returns an expression whose type is `Π ..., B → A`. -/ meta def iff_mpr_core (e ty: expr) : option expr := mk_iff_mp_app `iff.mpr ty (λ_, e) /-- Given an expression whose type is (a possibly iterated function producing) an `iff`, create the expression which is the forward implication. -/ meta def iff_mp (e : expr) : tactic expr := do t ← infer_type e, iff_mp_core e t <|> fail "Target theorem must have the form `Π x y z, a ↔ b`" /-- Given an expression whose type is (a possibly iterated function producing) an `iff`, create the expression which is the reverse implication. -/ meta def iff_mpr (e : expr) : tactic expr := do t ← infer_type e, iff_mpr_core e t <|> fail "Target theorem must have the form `Π x y z, a ↔ b`" /-- Attempts to apply `e`, and if that fails, if `e` is an `iff`, try applying both directions separately. -/ meta def apply_iff (e : expr) : tactic (list (name × expr)) := let ap e := tactic.apply e {new_goals := new_goals.non_dep_only} in ap e <|> (iff_mp e >>= ap) <|> (iff_mpr e >>= ap) /-- Configuration options for `apply_any`: * `use_symmetry`: if `apply_any` fails to apply any lemma, call `symmetry` and try again. * `use_exfalso`: if `apply_any` fails to apply any lemma, call `exfalso` and try again. * `apply`: specify an alternative to `tactic.apply`; usually `apply := tactic.eapply`. -/ meta structure apply_any_opt := (use_symmetry : bool := tt) (use_exfalso : bool := tt) (apply : expr → tactic (list (name × expr)) := tactic.apply) /-- This is a version of `apply_any` that takes a list of `tactic expr`s instead of `expr`s, and evaluates these as thunks before trying to apply them. We need to do this to avoid metavariables getting stuck during subsequent rounds of `apply`. -/ meta def apply_any_thunk (lemmas : list (tactic expr)) (opt : apply_any_opt := {}) (tac : tactic unit := skip) : tactic unit := do let modes := [skip] ++ (if opt.use_symmetry then [symmetry] else []) ++ (if opt.use_exfalso then [exfalso] else []), modes.any_of (λ m, do m, lemmas.any_of (λ H, H >>= opt.apply >> tac)) <|> fail "apply_any tactic failed; no lemma could be applied" /-- `apply_any lemmas` tries to apply one of the list `lemmas` to the current goal. `apply_any lemmas opt` allows control over how lemmas are applied. `opt` has fields: * `use_symmetry`: if no lemma applies, call `symmetry` and try again. (Defaults to `tt`.) * `use_exfalso`: if no lemma applies, call `exfalso` and try again. (Defaults to `tt`.) * `apply`: use a tactic other than `tactic.apply` (e.g. `tactic.fapply` or `tactic.eapply`). `apply_any lemmas tac` calls the tactic `tac` after a successful application. Defaults to `skip`. This is used, for example, by `solve_by_elim` to arrange recursive invocations of `apply_any`. -/ meta def apply_any (lemmas : list expr) (opt : apply_any_opt := {}) (tac : tactic unit := skip) : tactic unit := apply_any_thunk (lemmas.map pure) opt tac /-- Try to apply a hypothesis from the local context to the goal. -/ meta def apply_assumption : tactic unit := local_context >>= apply_any /-- `change_core e none` is equivalent to `change e`. It tries to change the goal to `e` and fails if this is not a definitional equality. `change_core e (some h)` assumes `h` is a local constant, and tries to change the type of `h` to `e` by reverting `h`, changing the goal, and reintroducing hypotheses. -/ meta def change_core (e : expr) : option expr → tactic unit | none := tactic.change e | (some h) := do num_reverted : ℕ ← revert h, expr.pi n bi d b ← target, tactic.change $ expr.pi n bi e b, intron num_reverted /-- `change_with_at olde newe hyp` replaces occurences of `olde` with `newe` at hypothesis `hyp`, assuming `olde` and `newe` are defeq when elaborated. -/ meta def change_with_at (olde newe : pexpr) (hyp : name) : tactic unit := do h ← get_local hyp, tp ← infer_type h, olde ← to_expr olde, newe ← to_expr newe, let repl_tp := tp.replace (λ a n, if a = olde then some newe else none), change_core repl_tp (some h) /-- Returns a list of all metavariables in the current partial proof. This can differ from the list of goals, since the goals can be manually edited. -/ meta def metavariables : tactic (list expr) := expr.list_meta_vars <$> result /-- Fail if the target contains a metavariable. -/ meta def no_mvars_in_target : tactic unit := expr.has_meta_var <$> target >>= guardb ∘ bnot /-- Succeeds only if the current goal is a proposition. -/ meta def propositional_goal : tactic unit := do g :: _ ← get_goals, is_proof g >>= guardb /-- Succeeds only if we can construct an instance showing the current goal is a subsingleton type. -/ meta def subsingleton_goal : tactic unit := do g :: _ ← get_goals, ty ← infer_type g >>= instantiate_mvars, to_expr ``(subsingleton %%ty) >>= mk_instance >> skip /-- Succeeds only if the current goal is "terminal", in the sense that no other goals depend on it (except possibly through shared metavariables; see `independent_goal`). -/ meta def terminal_goal : tactic unit := propositional_goal <|> subsingleton_goal <|> do g₀ :: _ ← get_goals, mvars ← (λ L, list.erase L g₀) <$> metavariables, mvars.mmap' $ λ g, do t ← infer_type g >>= instantiate_mvars, d ← kdepends_on t g₀, monad.whenb d $ pp t >>= λ s, fail ("The current goal is not terminal: " ++ s.to_string ++ " depends on it.") /-- Succeeds only if the current goal is "independent", in the sense that no other goals depend on it, even through shared meta-variables. -/ meta def independent_goal : tactic unit := no_mvars_in_target >> terminal_goal /-- `triv'` tries to close the first goal with the proof `trivial : true`. Unlike `triv`, it only unfolds reducible definitions, so it sometimes fails faster. -/ meta def triv' : tactic unit := do c ← mk_const `trivial, exact c reducible variable {α : Type} /-- Apply a tactic as many times as possible, collecting the results in a list. Fail if the tactic does not succeed at least once. -/ meta def iterate1 (t : tactic α) : tactic (list α) := do r ← decorate_ex "iterate1 failed: tactic did not succeed" t, L ← iterate t, return (r :: L) /-- Introduces one or more variables and returns the new local constants. Fails if `intro` cannot be applied. -/ meta def intros1 : tactic (list expr) := iterate1 intro1 /-- Run a tactic "under binders", by running `intros` before, and `revert` afterwards. -/ meta def under_binders {α : Type} (t : tactic α) : tactic α := do v ← intros, r ← t, revert_lst v, return r namespace interactive /-- Run a tactic "under binders", by running `intros` before, and `revert` afterwards. -/ meta def under_binders (i : itactic) : itactic := tactic.under_binders i end interactive /-- `successes` invokes each tactic in turn, returning the list of successful results. -/ meta def successes (tactics : list (tactic α)) : tactic (list α) := list.filter_map id <$> monad.sequence (tactics.map (λ t, try_core t)) /-- Try all the tactics in a list, each time starting at the original `tactic_state`, returning the list of successful results, and reverting to the original `tactic_state`. -/ -- Note this is not the same as `successes`, which keeps track of the evolving `tactic_state`. meta def try_all {α : Type} (tactics : list (tactic α)) : tactic (list α) := λ s, result.success (tactics.map $ λ t : tactic α, match t s with | result.success a s' := [a] | _ := [] end).join s /-- Try all the tactics in a list, each time starting at the original `tactic_state`, returning the list of successful results sorted by the value produced by a subsequent execution of the `sort_by` tactic, and reverting to the original `tactic_state`. -/ meta def try_all_sorted {α : Type} (tactics : list (tactic α)) (sort_by : tactic ℕ := num_goals) : tactic (list (α × ℕ)) := λ s, result.success ((tactics.map $ λ t : tactic α, match (do a ← t, n ← sort_by, return (a, n)) s with | result.success a s' := [a] | _ := [] end).join.qsort (λ p q : α × ℕ, p.2 < q.2)) s /-- Return target after instantiating metavars and whnf. -/ private meta def target' : tactic expr := target >>= instantiate_mvars >>= whnf /-- Just like `split`, `fsplit` applies the constructor when the type of the target is an inductive data type with one constructor. However it does not reorder goals or invoke `auto_param` tactics. -/ -- FIXME check if we can remove `auto_param := ff` meta def fsplit : tactic unit := do [c] ← target' >>= get_constructors_for | fail "fsplit tactic failed, target is not an inductive datatype with only one constructor", mk_const c >>= λ e, apply e {new_goals := new_goals.all, auto_param := ff} >> skip run_cmd add_interactive [`fsplit] add_tactic_doc { name := "fsplit", category := doc_category.tactic, decl_names := [`tactic.interactive.fsplit], tags := ["logic", "goal management"] } /-- Calls `injection` on each hypothesis, and then, for each hypothesis on which `injection` succeeds, clears the old hypothesis. -/ meta def injections_and_clear : tactic unit := do l ← local_context, results ← successes $ l.map $ λ e, injection e >> clear e, when (results.empty) (fail "could not use `injection` then `clear` on any hypothesis") run_cmd add_interactive [`injections_and_clear] add_tactic_doc { name := "injections_and_clear", category := doc_category.tactic, decl_names := [`tactic.interactive.injections_and_clear], tags := ["context management"] } /-- Calls `cases` on every local hypothesis, succeeding if it succeeds on at least one hypothesis. -/ meta def case_bash : tactic unit := do l ← local_context, r ← successes (l.reverse.map (λ h, cases h >> skip)), when (r.empty) failed /-- `note_anon t v`, given a proof `v : t`, adds `h : t` to the current context, where the name `h` is fresh. `note_anon none v` will infer the type `t` from `v`. -/ -- While `note` provides a default value for `t`, it doesn't seem this could ever be used. meta def note_anon (t : option expr) (v : expr) : tactic expr := do h ← get_unused_name `h none, note h t v /-- `find_local t` returns a local constant with type t, or fails if none exists. -/ meta def find_local (t : pexpr) : tactic expr := do t' ← to_expr t, (prod.snd <$> solve_aux t' assumption >>= instantiate_mvars) <|> fail format!"No hypothesis found of the form: {t'}" /-- `dependent_pose_core l`: introduce dependent hypotheses, where the proofs depend on the values of the previous local constants. `l` is a list of local constants and their values. -/ meta def dependent_pose_core (l : list (expr × expr)) : tactic unit := do let lc := l.map prod.fst, let lm := l.map (λ⟨l, v⟩, (l.local_uniq_name, v)), t ← target, new_goal ← mk_meta_var (t.pis lc), old::other_goals ← get_goals, set_goals (old :: new_goal :: other_goals), exact ((new_goal.mk_app lc).instantiate_locals lm), return () /-- Like `mk_local_pis` but translating into weak head normal form before checking if it is a `Π`. -/ meta def mk_local_pis_whnf : expr → tactic (list expr × expr) | e := do (expr.pi n bi d b) ← whnf e | return ([], e), p ← mk_local' n bi d, (ps, r) ← mk_local_pis (expr.instantiate_var b p), return ((p :: ps), r) /-- Changes `(h : ∀xs, ∃a:α, p a) ⊢ g` to `(d : ∀xs, a) (s : ∀xs, p (d xs) ⊢ g`. -/ meta def choose1 (h : expr) (data : name) (spec : name) : tactic expr := do t ← infer_type h, (ctxt, t) ← mk_local_pis_whnf t, `(@Exists %%α %%p) ← whnf t transparency.all | fail "expected a term of the shape ∀xs, ∃a, p xs a", α_t ← infer_type α, expr.sort u ← whnf α_t transparency.all, value ← mk_local_def data (α.pis ctxt), t' ← head_beta (p.app (value.mk_app ctxt)), spec ← mk_local_def spec (t'.pis ctxt), dependent_pose_core [ (value, ((((expr.const `classical.some [u]).app α).app p).app (h.mk_app ctxt)).lambdas ctxt), (spec, ((((expr.const `classical.some_spec [u]).app α).app p).app (h.mk_app ctxt)).lambdas ctxt)], try (tactic.clear h), intro1, intro1 /-- Changes `(h : ∀xs, ∃as, p as) ⊢ g` to a list of functions `as`, and a final hypothesis on `p as`. -/ meta def choose : expr → list name → tactic unit | h [] := fail "expect list of variables" | h [n] := do cnt ← revert h, intro n, intron (cnt - 1), return () | h (n::ns) := do v ← get_unused_name >>= choose1 h n, choose v ns /-- Instantiates metavariables that appear in the current goal. -/ meta def instantiate_mvars_in_target : tactic unit := target >>= instantiate_mvars >>= change /-- Instantiates metavariables in all goals. -/ meta def instantiate_mvars_in_goals : tactic unit := all_goals' $ instantiate_mvars_in_target /-- This makes sure that the execution of the tactic does not change the tactic state. This can be helpful while using rewrite, apply, or expr munging. Remember to instantiate your metavariables before you're done! -/ meta def lock_tactic_state {α} (t : tactic α) : tactic α | s := match t s with | result.success a s' := result.success a s | result.exception msg pos s' := result.exception msg pos s end /-- Similar to `mk_local_pis` but make meta variables instead of local constants. -/ meta def mk_meta_pis : expr → tactic (list expr × expr) | (expr.pi n bi d b) := do p ← mk_meta_var d, (ps, r) ← mk_meta_pis (expr.instantiate_var b p), return ((p :: ps), r) | e := return ([], e) /-- Protect the declaration `n` -/ meta def mk_protected (n : name) : tactic unit := do env ← get_env, set_env (env.mk_protected n) end tactic namespace lean.parser open tactic interaction_monad /-- `emit_command_here str` behaves as if the string `str` were placed as a user command at the current line. -/ meta def emit_command_here (str : string) : lean.parser string := do (_, left) ← with_input command_like str, return left /-- `emit_code_here str` behaves as if the string `str` were placed at the current location in source code. -/ meta def emit_code_here : string → lean.parser unit | str := do left ← emit_command_here str, if left.length = 0 then return () else emit_code_here left /-- `get_current_namespace` returns the current namespace (it could be `name.anonymous`). This function deserves a C++ implementation in core lean, and will fail if it is not called from the body of a command (i.e. anywhere else that the `lean.parser` monad can be invoked). -/ meta def get_current_namespace : lean.parser name := do n ← tactic.mk_user_fresh_name, emit_code_here $ sformat!"def {n} := ()", nfull ← tactic.resolve_constant n, return $ nfull.get_nth_prefix n.components.length /-- `get_variables` returns a list of existing variable names, along with their types and binder info. -/ meta def get_variables : lean.parser (list (name × binder_info × expr)) := list.map expr.get_local_const_kind <$> list_available_include_vars /-- `get_included_variables` returns those variables `v` returned by `get_variables` which have been "included" by an `include v` statement and are not (yet) `omit`ed. -/ meta def get_included_variables : lean.parser (list (name × binder_info × expr)) := do ns ← list_include_var_names, list.filter (λ v, v.1 ∈ ns) <$> get_variables /-- From the `lean.parser` monad, synthesize a `tactic_state` which includes all of the local variables referenced in `es : list pexpr`, and those variables which have been `include`ed in the local context---precisely those variables which would be ambiently accessible if we were in a tactic-mode block where the goals had types `es.mmap to_expr`, for example. Returns a new `ts : tactic_state` with these local variables added, and `mappings : list (expr × expr)`, for which pairs `(var, hyp)` correspond to an existing variable `var` and the local hypothesis `hyp` which was added to the tactic state `ts` as a result. -/ meta def synthesize_tactic_state_with_variables_as_hyps (es : list pexpr) : lean.parser (tactic_state × list (expr × expr)) := do /- First, in order to get `to_expr e` to resolve declared `variables`, we add all of the declared variables to a fake `tactic_state`, and perform the resolution. At the end, `to_expr e` has done the work of determining which variables were actually referenced, which we then obtain from `fe` via `expr.list_local_consts` (which, importantly, is not defined for `pexpr`s). -/ vars ← list_available_include_vars, fake_es ← lean.parser.of_tactic $ lock_tactic_state $ do { /- Note that `add_local_consts_as_local_hyps` returns the mappings it generated, but we discard them on this first pass. (We return the mappings generated by our second invocation of this function below.) -/ add_local_consts_as_local_hyps vars, es.mmap to_expr }, /- Now calculate lists of a) the explicitly `include`ed variables and b) the variables which were referenced in `e` when it was resolved to `fake_e`. It is important that we include variables of the kind a) because we want `simp` to have access to declared local instances, and it is important that we only restrict to variables of kind a) and b) together since we do not to recognise a hypothesis which is posited as a `variable` in the environment but not referenced in the `pexpr` we were passed. One use case for this behaviour is running `simp` on the passed `pexpr`, since we do not want simp to use arbitrary hypotheses which were declared as `variables` in the local environment but not referenced in the expression to simplify (as one would be expect generally in tactic mode). -/ included_vars ← list_include_var_names, let referenced_vars := list.join $ fake_es.map $ λ e, e.list_local_consts.map expr.local_pp_name, /- Look up the explicit `included_vars` and the `referenced_vars` (which have appeared in the `pexpr` list which we were passed.) -/ let directly_included_vars := vars.filter $ λ var, (var.local_pp_name ∈ included_vars) ∨ (var.local_pp_name ∈ referenced_vars), /- Inflate the list `directly_included_vars` to include those variables which are "implicitly included" by virtue of reference to one or multiple others. For example, given `variables (n : ℕ) [prime n] [ih : even n]`, a reference to `n` implies that the typeclass instance `prime n` should be included, but `ih : even n` should not. -/ let all_implicitly_included_vars := expr.all_implicitly_included_variables vars directly_included_vars, /- Capture a tactic state where both of these kinds of variables have been added as local hypotheses, and resolve `e` against this state with `to_expr`, this time for real. -/ lean.parser.of_tactic $ do { mappings ← add_local_consts_as_local_hyps all_implicitly_included_vars, ts ← get_state, return (ts, mappings) } end lean.parser namespace tactic variables {α : Type} /-- Hole command used to fill in a structure's field when specifying an instance. In the following: ```lean instance : monad id := {! !} ``` invoking the hole command "Instance Stub" ("Generate a skeleton for the structure under construction.") produces: ```lean instance : monad id := { map := _, map_const := _, pure := _, seq := _, seq_left := _, seq_right := _, bind := _ } ``` -/ @[hole_command] meta def instance_stub : hole_command := { name := "Instance Stub", descr := "Generate a skeleton for the structure under construction.", action := λ _, do tgt ← target >>= whnf, let cl := tgt.get_app_fn.const_name, env ← get_env, fs ← expanded_field_list cl, let fs := fs.map prod.snd, let fs := format.intercalate (",\n " : format) $ fs.map (λ fn, format!"{fn} := _"), let out := format.to_string format!"{{ {fs} }", return [(out,"")] } add_tactic_doc { name := "instance_stub", category := doc_category.hole_cmd, decl_names := [`tactic.instance_stub], tags := ["instances"] } /-- Like `resolve_name` except when the list of goals is empty. In that situation `resolve_name` fails whereas `resolve_name'` simply proceeds on a dummy goal -/ meta def resolve_name' (n : name) : tactic pexpr := do [] ← get_goals | resolve_name n, g ← mk_mvar, set_goals [g], resolve_name n <* set_goals [] private meta def strip_prefix' (n : name) : list string → name → tactic name | s name.anonymous := pure $ s.foldl (flip name.mk_string) name.anonymous | s (name.mk_string a p) := do let n' := s.foldl (flip name.mk_string) name.anonymous, do { n'' ← tactic.resolve_constant n', if n'' = n then pure n' else strip_prefix' (a :: s) p } <|> strip_prefix' (a :: s) p | s n@(name.mk_numeral a p) := pure $ s.foldl (flip name.mk_string) n /-- Strips unnecessary prefixes from a name, e.g. if a namespace is open. -/ meta def strip_prefix : name → tactic name | n@(name.mk_string a a_1) := if (`_private).is_prefix_of n then let n' := n.update_prefix name.anonymous in n' <$ resolve_name' n' <|> pure n else strip_prefix' n [a] a_1 | n := pure n /-- Used to format return strings for the hole commands `match_stub` and `eqn_stub`. -/ meta def mk_patterns (t : expr) : tactic (list format) := do let cl := t.get_app_fn.const_name, env ← get_env, let fs := env.constructors_of cl, fs.mmap $ λ f, do { (vs,_) ← mk_const f >>= infer_type >>= mk_local_pis, let vs := vs.filter (λ v, v.is_default_local), vs ← vs.mmap (λ v, do v' ← get_unused_name v.local_pp_name, pose v' none `(()), pure v' ), vs.mmap' $ λ v, get_local v >>= clear, let args := list.intersperse (" " : format) $ vs.map to_fmt, f ← strip_prefix f, if args.empty then pure $ format!"| {f} := _\n" else pure format!"| ({f} {format.join args}) := _\n" } /-- Hole command used to generate a `match` expression. In the following: ```lean meta def foo (e : expr) : tactic unit := {! e !} ``` invoking hole command "Match Stub" ("Generate a list of equations for a `match` expression") produces: ```lean meta def foo (e : expr) : tactic unit := match e with | (expr.var a) := _ | (expr.sort a) := _ | (expr.const a a_1) := _ | (expr.mvar a a_1 a_2) := _ | (expr.local_const a a_1 a_2 a_3) := _ | (expr.app a a_1) := _ | (expr.lam a a_1 a_2 a_3) := _ | (expr.pi a a_1 a_2 a_3) := _ | (expr.elet a a_1 a_2 a_3) := _ | (expr.macro a a_1) := _ end ``` -/ @[hole_command] meta def match_stub : hole_command := { name := "Match Stub", descr := "Generate a list of equations for a `match` expression.", action := λ es, do [e] ← pure es | fail "expecting one expression", e ← to_expr e, t ← infer_type e >>= whnf, fs ← mk_patterns t, e ← pp e, let out := format.to_string format!"match {e} with\n{format.join fs}end\n", return [(out,"")] } add_tactic_doc { name := "Match Stub", category := doc_category.hole_cmd, decl_names := [`tactic.match_stub], tags := ["pattern matching"] } /-- Invoking hole command "Equations Stub" ("Generate a list of equations for a recursive definition") in the following: ```lean meta def foo : {! expr → tactic unit !} -- `:=` is omitted ``` produces: ```lean meta def foo : expr → tactic unit | (expr.var a) := _ | (expr.sort a) := _ | (expr.const a a_1) := _ | (expr.mvar a a_1 a_2) := _ | (expr.local_const a a_1 a_2 a_3) := _ | (expr.app a a_1) := _ | (expr.lam a a_1 a_2 a_3) := _ | (expr.pi a a_1 a_2 a_3) := _ | (expr.elet a a_1 a_2 a_3) := _ | (expr.macro a a_1) := _ ``` A similar result can be obtained by invoking "Equations Stub" on the following: ```lean meta def foo : expr → tactic unit := -- do not forget to write `:=`!! {! !} ``` ```lean meta def foo : expr → tactic unit := -- don't forget to erase `:=`!! | (expr.var a) := _ | (expr.sort a) := _ | (expr.const a a_1) := _ | (expr.mvar a a_1 a_2) := _ | (expr.local_const a a_1 a_2 a_3) := _ | (expr.app a a_1) := _ | (expr.lam a a_1 a_2 a_3) := _ | (expr.pi a a_1 a_2 a_3) := _ | (expr.elet a a_1 a_2 a_3) := _ | (expr.macro a a_1) := _ ``` -/ @[hole_command] meta def eqn_stub : hole_command := { name := "Equations Stub", descr := "Generate a list of equations for a recursive definition.", action := λ es, do t ← match es with | [t] := to_expr t | [] := target | _ := fail "expecting one type" end, e ← whnf t, (v :: _,_) ← mk_local_pis e | fail "expecting a Pi-type", t' ← infer_type v, fs ← mk_patterns t', t ← pp t, let out := if es.empty then format.to_string format!"-- do not forget to erase `:=`!!\n{format.join fs}" else format.to_string format!"{t}\n{format.join fs}", return [(out,"")] } add_tactic_doc { name := "Equations Stub", category := doc_category.hole_cmd, decl_names := [`tactic.eqn_stub], tags := ["pattern matching"] } /-- This command lists the constructors that can be used to satisfy the expected type. Invoking "List Constructors" ("Show the list of constructors of the expected type") in the following hole: ```lean def foo : ℤ ⊕ ℕ := {! !} ``` produces: ```lean def foo : ℤ ⊕ ℕ := {! sum.inl, sum.inr !} ``` and will display: ```lean sum.inl : ℤ → ℤ ⊕ ℕ sum.inr : ℕ → ℤ ⊕ ℕ ``` -/ @[hole_command] meta def list_constructors_hole : hole_command := { name := "List Constructors", descr := "Show the list of constructors of the expected type.", action := λ es, do t ← target >>= whnf, (_,t) ← mk_local_pis t, let cl := t.get_app_fn.const_name, let args := t.get_app_args, env ← get_env, let cs := env.constructors_of cl, ts ← cs.mmap $ λ c, do { e ← mk_const c, t ← infer_type (e.mk_app args) >>= pp, c ← strip_prefix c, pure format!"\n{c} : {t}\n" }, fs ← format.intercalate ", " <$> cs.mmap (strip_prefix >=> pure ∘ to_fmt), let out := format.to_string format!"{{! {fs} !}", trace (format.join ts).to_string, return [(out,"")] } add_tactic_doc { name := "List Constructors", category := doc_category.hole_cmd, decl_names := [`tactic.list_constructors_hole], tags := ["goal information"] } /-- Makes the declaration `classical.prop_decidable` available to type class inference. This asserts that all propositions are decidable, but does not have computational content. -/ meta def classical : tactic unit := do h ← get_unused_name `_inst, mk_const `classical.prop_decidable >>= note h none, reset_instance_cache open expr /-- `mk_comp v e` checks whether `e` is a sequence of nested applications `f (g (h v))`, and if so, returns the expression `f ∘ g ∘ h`. -/ meta def mk_comp (v : expr) : expr → tactic expr | (app f e) := if e = v then pure f else do guard (¬ v.occurs f) <|> fail "bad guard", e' ← mk_comp e >>= instantiate_mvars, f ← instantiate_mvars f, mk_mapp ``function.comp [none,none,none,f,e'] | e := do guard (e = v), t ← infer_type e, mk_mapp ``id [t] /-- From a lemma of the shape `∀ x, f (g x) = h x` derive an auxiliary lemma of the form `f ∘ g = h` for reasoning about higher-order functions. -/ meta def mk_higher_order_type : expr → tactic expr | (pi n bi d b@(pi _ _ _ _)) := do v ← mk_local_def n d, let b' := (b.instantiate_var v), (pi n bi d ∘ flip abstract_local v.local_uniq_name) <$> mk_higher_order_type b' | (pi n bi d b) := do v ← mk_local_def n d, let b' := (b.instantiate_var v), (l,r) ← match_eq b' <|> fail format!"not an equality {b'}", l' ← mk_comp v l, r' ← mk_comp v r, mk_app ``eq [l',r'] | e := failed open lean.parser interactive.types /-- A user attribute that applies to lemmas of the shape `∀ x, f (g x) = h x`. It derives an auxiliary lemma of the form `f ∘ g = h` for reasoning about higher-order functions. -/ @[user_attribute] meta def higher_order_attr : user_attribute unit (option name) := { name := `higher_order, parser := optional ident, descr := "From a lemma of the shape `∀ x, f (g x) = h x` derive an auxiliary lemma of the form `f ∘ g = h` for reasoning about higher-order functions.", after_set := some $ λ lmm _ _, do env ← get_env, decl ← env.get lmm, let num := decl.univ_params.length, let lvls := (list.iota num).map (`l).append_after, let l : expr := expr.const lmm $ lvls.map level.param, t ← infer_type l >>= instantiate_mvars, t' ← mk_higher_order_type t, (_,pr) ← solve_aux t' $ do { intros, applyc ``_root_.funext, intro1, applyc lmm; assumption }, pr ← instantiate_mvars pr, lmm' ← higher_order_attr.get_param lmm, lmm' ← (flip name.update_prefix lmm.get_prefix <$> lmm') <|> pure lmm.add_prime, add_decl $ declaration.thm lmm' lvls t' (pure pr), copy_attribute `simp lmm lmm', copy_attribute `functor_norm lmm lmm' } add_tactic_doc { name := "higher_order", category := doc_category.attr, decl_names := [`tactic.higher_order_attr], tags := ["lemma derivation"] } attribute [higher_order map_comp_pure] map_pure /-- Use `refine` to partially discharge the goal, or call `fconstructor` and try again. -/ private meta def use_aux (h : pexpr) : tactic unit := (focus1 (refine h >> done)) <|> (fconstructor >> use_aux) /-- Similar to `existsi`, `use l` will use entries in `l` to instantiate existential obligations at the beginning of a target. Unlike `existsi`, the pexprs in `l` are elaborated with respect to the expected type. ```lean example : ∃ x : ℤ, x = x := by tactic.use ``(42) ``` See the doc string for `tactic.interactive.use` for more information. -/ protected meta def use (l : list pexpr) : tactic unit := focus1 $ seq' (l.mmap' $ λ h, use_aux h <|> fail format!"failed to instantiate goal with {h}") instantiate_mvars_in_target /-- `clear_aux_decl_aux l` clears all expressions in `l` that represent aux decls from the local context. -/ meta def clear_aux_decl_aux : list expr → tactic unit | [] := skip | (e::l) := do cond e.is_aux_decl (tactic.clear e) skip, clear_aux_decl_aux l /-- `clear_aux_decl` clears all expressions from the local context that represent aux decls. -/ meta def clear_aux_decl : tactic unit := local_context >>= clear_aux_decl_aux /-- `apply_at_aux e et [] h ht` (with `et` the type of `e` and `ht` the type of `h`) finds a list of expressions `vs` and returns `(e.mk_args (vs ++ [h]), vs)`. -/ meta def apply_at_aux (arg t : expr) : list expr → expr → expr → tactic (expr × list expr) | vs e (pi n bi d b) := do { v ← mk_meta_var d, apply_at_aux (v :: vs) (e v) (b.instantiate_var v) } <|> (e arg, vs) <$ unify d t | vs e _ := failed /-- `apply_at e h` applies implication `e` on hypothesis `h` and replaces `h` with the result. -/ meta def apply_at (e h : expr) : tactic unit := do ht ← infer_type h, et ← infer_type e, (h', gs') ← apply_at_aux h ht [] e et, note h.local_pp_name none h', clear h, gs' ← gs'.mfilter is_assigned, (g :: gs) ← get_goals, set_goals (g :: gs' ++ gs) /-- `symmetry_hyp h` applies `symmetry` on hypothesis `h`. -/ meta def symmetry_hyp (h : expr) (md := semireducible) : tactic unit := do tgt ← infer_type h, env ← get_env, let r := get_app_fn tgt, match env.symm_for (const_name r) with | (some symm) := do s ← mk_const symm, apply_at s h | none := fail "symmetry tactic failed, target is not a relation application with the expected property." end precedence `setup_tactic_parser`:0 /-- `setup_tactic_parser` is a user command that opens the namespaces used in writing interactive tactics, and declares the local postfix notation `?` for `optional` and `*` for `many`. It does *not* use the `namespace` command, so it will typically be used after `namespace tactic.interactive`. -/ @[user_command] meta def setup_tactic_parser_cmd (_ : interactive.parse $ tk "setup_tactic_parser") : lean.parser unit := emit_code_here " open lean open lean.parser open interactive interactive.types local postfix `?`:9001 := optional local postfix *:9001 := many . " /-- `finally tac finalizer` runs `tac` first, then runs `finalizer` even if `tac` fails. `finally tac finalizer` fails if either `tac` or `finalizer` fails. -/ meta def finally {β} (tac : tactic α) (finalizer : tactic β) : tactic α := λ s, match tac s with | (result.success r s') := (finalizer >> pure r) s' | (result.exception msg p s') := (finalizer >> result.exception msg p) s' end /-- `on_exception handler tac` runs `tac` first, and then runs `handler` only if `tac` failed. -/ meta def on_exception {β} (handler : tactic β) (tac : tactic α) : tactic α | s := match tac s with | result.exception msg p s' := (handler *> result.exception msg p) s' | ok := ok end /-- `decorate_error add_msg tac` prepends `add_msg` to an exception produced by `tac` -/ meta def decorate_error (add_msg : string) (tac : tactic α) : tactic α | s := match tac s with | result.exception msg p s := let msg (_ : unit) : format := match msg with | some msg := add_msg ++ format.line ++ msg () | none := add_msg end in result.exception msg p s | ok := ok end /-- Applies tactic `t`. If it succeeds, revert the state, and return the value. If it fails, returns the error message. -/ meta def retrieve_or_report_error {α : Type u} (t : tactic α) : tactic (α ⊕ string) := λ s, match t s with | (interaction_monad.result.success a s') := result.success (sum.inl a) s | (interaction_monad.result.exception msg' _ s') := result.success (sum.inr (msg'.iget ()).to_string) s end /-- This tactic succeeds if `t` succeeds or fails with message `msg` such that `p msg` is `tt`. -/ meta def succeeds_or_fails_with_msg {α : Type} (t : tactic α) (p : string → bool) : tactic unit := do x ← retrieve_or_report_error t, match x with | (sum.inl _) := skip | (sum.inr msg) := if p msg then skip else fail msg end add_tactic_doc { name := "setup_tactic_parser", category := doc_category.cmd, decl_names := [`tactic.setup_tactic_parser_cmd], tags := ["parsing", "notation"] } /-- `trace_error msg t` executes the tactic `t`. If `t` fails, traces `msg` and the failure message of `t`. -/ meta def trace_error (msg : string) (t : tactic α) : tactic α | s := match t s with | (result.success r s') := result.success r s' | (result.exception (some msg') p s') := (trace msg >> trace (msg' ()) >> result.exception (some msg') p) s' | (result.exception none p s') := result.exception none p s' end /-- ``trace_if_enabled `n msg`` traces the message `msg` only if tracing is enabled for the name `n`. Create new names registered for tracing with `declare_trace n`. Then use `set_option trace.n true/false` to enable or disable tracing for `n`. -/ meta def trace_if_enabled (n : name) {α : Type u} [has_to_tactic_format α] (msg : α) : tactic unit := when_tracing n (trace msg) /-- ``trace_state_if_enabled `n msg`` prints the tactic state, preceded by the optional string `msg`, only if tracing is enabled for the name `n`. -/ meta def trace_state_if_enabled (n : name) (msg : string := "") : tactic unit := when_tracing n ((if msg = "" then skip else trace msg) >> trace_state) /-- This combinator is for testing purposes. It succeeds if `t` fails with message `msg`, and fails otherwise. -/ meta def success_if_fail_with_msg {α : Type u} (t : tactic α) (msg : string) : tactic unit := λ s, match t s with | (interaction_monad.result.exception msg' _ s') := let expected_msg := (msg'.iget ()).to_string in if msg = expected_msg then result.success () s else mk_exception format!"failure messages didn't match. Expected:\n{expected_msg}" none s | (interaction_monad.result.success a s) := mk_exception "success_if_fail_with_msg combinator failed, given tactic succeeded" none s end /-- `with_local_goals gs tac` runs `tac` on the goals `gs` and then restores the initial goals and returns the goals `tac` ended on. -/ meta def with_local_goals {α} (gs : list expr) (tac : tactic α) : tactic (α × list expr) := do gs' ← get_goals, set_goals gs, finally (prod.mk <$> tac <*> get_goals) (set_goals gs') /-- like `with_local_goals` but discards the resulting goals -/ meta def with_local_goals' {α} (gs : list expr) (tac : tactic α) : tactic α := prod.fst <$> with_local_goals gs tac /-- Representation of a proof goal that lends itself to comparison. The following goal: ```lean l₀ : T, l₁ : T ⊢ ∀ v : T, foo ``` is represented as ``` (2, ∀ l₀ l₁ v : T, foo) ``` The number 2 indicates that first the two bound variables of the `∀` are actually local constant. Comparing two such goals with `=` rather than `=ₐ` or `is_def_eq` tells us that proof script should not see the difference between the two. -/ meta def packaged_goal := ℕ × expr /-- proof state made of multiple `goal` meant for comparing the result of running different tactics -/ meta def proof_state := list packaged_goal meta instance goal.inhabited : inhabited packaged_goal := ⟨(0,var 0)⟩ meta instance proof_state.inhabited : inhabited proof_state := (infer_instance : inhabited (list packaged_goal)) /-- create a `packaged_goal` corresponding to the current goal -/ meta def get_packaged_goal : tactic packaged_goal := do ls ← local_context, tgt ← target >>= instantiate_mvars, tgt ← pis ls tgt, pure (ls.length, tgt) /-- `goal_of_mvar g`, with `g` a meta variable, creates a `packaged_goal` corresponding to `g` interpretted as a proof goal -/ meta def goal_of_mvar (g : expr) : tactic packaged_goal := with_local_goals' [g] get_packaged_goal /-- `get_proof_state` lists the user visible goal for each goal of the current state and for each goal, abstracts all of the meta variables of the other gaols. This produces a list of goals in the form of `ℕ × expr` where the `expr` encodes the following proof state: ```lean 2 goals l₁ : t₁, l₂ : t₂, l₃ : t₃ ⊢ tgt₁ ⊢ tgt₂ ``` as ```lean [ (3, ∀ (mv : tgt₁) (mv : tgt₂) (l₁ : t₁) (l₂ : t₂) (l₃ : t₃), tgt₁), (0, ∀ (mv : tgt₁) (mv : tgt₂), tgt₂) ] ``` with 2 goals, the first 2 bound variables encode the meta variable of all the goals, the next 3 (in the first goal) and 0 (in the second goal) are the local constants. This representation allows us to compare goals and proof states while ignoring information like the unique name of local constants and the equality or difference of meta variables that encode the same goal. -/ meta def get_proof_state : tactic proof_state := do gs ← get_goals, gs.mmap $ λ g, do ⟨n,g⟩ ← goal_of_mvar g, g ← gs.mfoldl (λ g v, do g ← kabstract g v reducible ff, pure $ pi `goal binder_info.default `(true) g ) g, pure (n,g) /-- Run `tac` in a disposable proof state and return the state. See `proof_state`, `goal` and `get_proof_state`. -/ meta def get_proof_state_after (tac : tactic unit) : tactic (option proof_state) := try_core $ retrieve $ tac >> get_proof_state open lean interactive /-- A type alias for `tactic format`, standing for "pretty print format". -/ meta def pformat := tactic format /-- `mk` lifts `fmt : format` to the tactic monad (`pformat`). -/ meta def pformat.mk (fmt : format) : pformat := pure fmt /-- an alias for `pp`. -/ meta def to_pfmt {α} [has_to_tactic_format α] (x : α) : pformat := pp x meta instance pformat.has_to_tactic_format : has_to_tactic_format pformat := ⟨ id ⟩ meta instance : has_append pformat := ⟨ λ x y, (++) <$> x <*> y ⟩ meta instance tactic.has_to_tactic_format [has_to_tactic_format α] : has_to_tactic_format (tactic α) := ⟨ λ x, x >>= to_pfmt ⟩ private meta def parse_pformat : string → list char → parser pexpr | acc [] := pure ``(to_pfmt %%(reflect acc)) | acc ('\n'::s) := do f ← parse_pformat "" s, pure ``(to_pfmt %%(reflect acc) ++ pformat.mk format.line ++ %%f) | acc ('{'::'{'::s) := parse_pformat (acc ++ "{") s | acc ('{'::s) := do (e, s) ← with_input (lean.parser.pexpr 0) s.as_string, '}'::s ← return s.to_list | fail "'}' expected", f ← parse_pformat "" s, pure ``(to_pfmt %%(reflect acc) ++ to_pfmt %%e ++ %%f) | acc (c::s) := parse_pformat (acc.str c) s reserve prefix `pformat! `:100 /-- See `format!` in `init/meta/interactive_base.lean`. The main differences are that `pp` is called instead of `to_fmt` and that we can use arguments of type `tactic α` in the quotations. Now, consider the following: ```lean e ← to_expr ``(3 + 7), trace format!"{e}" -- outputs `has_add.add.{0} nat nat.has_add (bit1.{0} nat nat.has_one nat.has_add (has_one.one.{0} nat nat.has_one)) ...` trace pformat!"{e}" -- outputs `3 + 7` ``` The difference is significant. And now, the following is expressible: ```lean e ← to_expr ``(3 + 7), trace pformat!"{e} : {infer_type e}" -- outputs `3 + 7 : ℕ` ``` See also: `trace!` and `fail!` -/ @[user_notation] meta def pformat_macro (_ : parse $ tk "pformat!") (s : string) : parser pexpr := do e ← parse_pformat "" s.to_list, return ``(%%e : pformat) reserve prefix `fail! `:100 /-- The combination of `pformat` and `fail`. -/ @[user_notation] meta def fail_macro (_ : parse $ tk "fail!") (s : string) : parser pexpr := do e ← pformat_macro () s, pure ``((%%e : pformat) >>= fail) reserve prefix `trace! `:100 /-- The combination of `pformat` and `fail`. -/ @[user_notation] meta def trace_macro (_ : parse $ tk "trace!") (s : string) : parser pexpr := do e ← pformat_macro () s, pure ``((%%e : pformat) >>= trace) /-- A hackish way to get the `src` directory of mathlib. -/ meta def get_mathlib_dir : tactic string := do e ← get_env, s ← e.decl_olean `tactic.reset_instance_cache, return $ s.popn_back 17 /-- Checks whether a declaration with the given name is declared in mathlib. If you want to run this tactic many times, you should use `environment.is_prefix_of_file` instead, since it is expensive to execute `get_mathlib_dir` many times. -/ meta def is_in_mathlib (n : name) : tactic bool := do ml ← get_mathlib_dir, e ← get_env, return $ e.is_prefix_of_file ml n /-- Runs a tactic by name. If it is a `tactic string`, return whatever string it returns. If it is a `tactic unit`, return the name. (This is mostly used in invoking "self-reporting tactics", e.g. by `tidy` and `hint`.) -/ meta def name_to_tactic (n : name) : tactic string := do d ← get_decl n, e ← mk_const n, let t := d.type, if (t =ₐ `(tactic unit)) then (eval_expr (tactic unit) e) >>= (λ t, t >> (name.to_string <$> strip_prefix n)) else if (t =ₐ `(tactic string)) then (eval_expr (tactic string) e) >>= (λ t, t) else fail!"name_to_tactic cannot take `{n} as input: its type must be `tactic string` or `tactic unit`" /-- auxiliary function for `apply_under_n_pis` -/ private meta def apply_under_n_pis_aux (func arg : pexpr) : ℕ → ℕ → expr → pexpr | n 0 _ := let vars := ((list.range n).reverse.map (@expr.var ff)), bd := vars.foldl expr.app arg.mk_explicit in func bd | n (k+1) (expr.pi nm bi tp bd) := expr.pi nm bi (pexpr.of_expr tp) (apply_under_n_pis_aux (n+1) k bd) | n (k+1) t := apply_under_n_pis_aux n 0 t /-- Assumes `pi_expr` is of the form `Π x1 ... xn xn+1..., _`. Creates a pexpr of the form `Π x1 ... xn, func (arg x1 ... xn)`. All arguments (implicit and explicit) to `arg` should be supplied. -/ meta def apply_under_n_pis (func arg : pexpr) (pi_expr : expr) (n : ℕ) : pexpr := apply_under_n_pis_aux func arg 0 n pi_expr /-- Assumes `pi_expr` is of the form `Π x1 ... xn, _`. Creates a pexpr of the form `Π x1 ... xn, func (arg x1 ... xn)`. All arguments (implicit and explicit) to `arg` should be supplied. -/ meta def apply_under_pis (func arg : pexpr) (pi_expr : expr) : pexpr := apply_under_n_pis func arg pi_expr pi_expr.pi_arity /-- If `func` is a `pexpr` representing a function that takes an argument `a`, `get_pexpr_arg_arity_with_tgt func tgt` returns the arity of `a`. When `tgt` is a `pi` expr, `func` is elaborated in a context with the domain of `tgt`. Examples: * ```get_pexpr_arg_arity ``(ring) `(true)``` returns 0, since `ring` takes one non-function argument. * ```get_pexpr_arg_arity_with_tgt ``(monad) `(true)``` returns 1, since `monad` takes one argument of type `α → α`. * ```get_pexpr_arg_arity_with_tgt ``(module R) `(Π (R : Type), comm_ring R → true)``` returns 0 -/ private meta def get_pexpr_arg_arity_with_tgt (func : pexpr) (tgt : expr) : tactic ℕ := lock_tactic_state $ do mv ← mk_mvar, solve_aux tgt $ intros >> to_expr ``(%%func %%mv), expr.pi_arity <$> (instantiate_mvars mv >>= infer_type) /-- Tries to derive instances by unfolding the newly introduced type and applying type class resolution. For example, ```lean @[derive ring] def new_int : Type := ℤ ``` adds an instance `ring new_int`, defined to be the instance of `ring ℤ` found by `apply_instance`. Multiple instances can be added with `@[derive [ring, module ℝ]]`. This derive handler applies only to declarations made using `def`, and will fail on such a declaration if it is unable to derive an instance. It is run with higher priority than the built-in handlers, which will fail on `def`s. -/ @[derive_handler, priority 2000] meta def delta_instance : derive_handler := λ cls new_decl_name, do env ← get_env, if env.is_inductive new_decl_name then return ff else do new_decl ← get_decl new_decl_name, new_decl_pexpr ← resolve_name new_decl_name, arity ← get_pexpr_arg_arity_with_tgt cls new_decl.type, tgt ← to_expr $ apply_under_n_pis cls new_decl_pexpr new_decl.type (new_decl.type.pi_arity - arity), (_, inst) ← solve_aux tgt (intros >> reset_instance_cache >> delta_target [new_decl_name] >> apply_instance >> done), inst ← instantiate_mvars inst, inst ← replace_univ_metas_with_univ_params inst, tgt ← instantiate_mvars tgt, nm ← get_unused_decl_name $ new_decl_name <.> match cls with | (expr.const nm _) := nm.last | _ := "inst" end, add_protected_decl $ declaration.defn nm inst.collect_univ_params tgt inst new_decl.reducibility_hints new_decl.is_trusted, set_basic_attribute `instance nm tt, return tt /-- `find_private_decl n none` finds a private declaration named `n` in any of the imported files. `find_private_decl n (some m)` finds a private declaration named `n` in the same file where a declaration named `m` can be found. -/ meta def find_private_decl (n : name) (fr : option name) : tactic name := do env ← get_env, fn ← option_t.run (do fr ← option_t.mk (return fr), d ← monad_lift $ get_decl fr, option_t.mk (return $ env.decl_olean d.to_name) ), let p : string → bool := match fn with | (some fn) := λ x, fn = x | none := λ _, tt end, let xs := env.decl_filter_map (λ d, do fn ← env.decl_olean d.to_name, guard ((`_private).is_prefix_of d.to_name ∧ p fn ∧ d.to_name.update_prefix name.anonymous = n), pure d.to_name), match xs with | [n] := pure n | [] := fail "no such private found" | _ := fail "many matches found" end open lean.parser interactive /-- `import_private foo from bar` finds a private declaration `foo` in the same file as `bar` and creates a local notation to refer to it. `import_private foo` looks for `foo` in all imported files. When possible, make `foo` non-private rather than using this feature. -/ @[user_command] meta def import_private_cmd (_ : parse $ tk "import_private") : lean.parser unit := do n ← ident, fr ← optional (tk "from" *> ident), n ← find_private_decl n fr, c ← resolve_constant n, d ← get_decl n, let c := @expr.const tt c d.univ_levels, new_n ← new_aux_decl_name, add_decl $ declaration.defn new_n d.univ_params d.type c reducibility_hints.abbrev d.is_trusted, let new_not := sformat!"local notation `{n.update_prefix name.anonymous}` := {new_n}", emit_command_here $ new_not, skip . add_tactic_doc { name := "import_private", category := doc_category.cmd, decl_names := [`tactic.import_private_cmd], tags := ["renaming"] } /-- The command `mk_simp_attribute simp_name "description"` creates a simp set with name `simp_name`. Lemmas tagged with `@[simp_name]` will be included when `simp with simp_name` is called. `mk_simp_attribute simp_name none` will use a default description. Appending the command with `with attr1 attr2 ...` will include all declarations tagged with `attr1`, `attr2`, ... in the new simp set. This command is preferred to using ``run_cmd mk_simp_attr `simp_name`` since it adds a doc string to the attribute that is defined. If you need to create a simp set in a file where this command is not available, you should use ```lean run_cmd mk_simp_attr `simp_name run_cmd add_doc_string `simp_attr.simp_name "Description of the simp set here" ``` -/ @[user_command] meta def mk_simp_attribute_cmd (_ : parse $ tk "mk_simp_attribute") : lean.parser unit := do n ← ident, d ← parser.pexpr, d ← to_expr ``(%%d : option string), descr ← eval_expr (option string) d, with_list ← types.with_ident_list <|> return [], mk_simp_attr n with_list, add_doc_string (name.append `simp_attr n) $ descr.get_or_else $ "simp set for " ++ to_string n add_tactic_doc { name := "mk_simp_attribute", category := doc_category.cmd, decl_names := [`tactic.mk_simp_attribute_cmd], tags := ["simplification"] } end tactic
d869a9a6fe9ccd54f8ac56d7e3ccece65ebc0a89
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/category_theory/limits/functor_category.lean
c867cc0cd9ef5455405679717acdf02e32da56df
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
18,309
lean
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.limits.preserves.limits /-! # (Co)limits in functor categories. > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We show that if `D` has limits, then the functor category `C ⥤ D` also has limits (`category_theory.limits.functor_category_has_limits`), and the evaluation functors preserve limits (`category_theory.limits.evaluation_preserves_limits`) (and similarly for colimits). We also show that `F : D ⥤ K ⥤ C` preserves (co)limits if it does so for each `k : K` (`category_theory.limits.preserves_limits_of_evaluation` and `category_theory.limits.preserves_colimits_of_evaluation`). -/ open category_theory category_theory.category category_theory.functor -- morphism levels before object levels. See note [category_theory universes]. universes w' w v₁ v₂ u₁ u₂ v v' u u' namespace category_theory.limits variables {C : Type u} [category.{v} C] {D : Type u'} [category.{v'} D] variables {J : Type u₁} [category.{v₁} J] {K : Type u₂} [category.{v₂} K] @[simp, reassoc] lemma limit.lift_π_app (H : J ⥤ K ⥤ C) [has_limit H] (c : cone H) (j : J) (k : K) : (limit.lift H c).app k ≫ (limit.π H j).app k = (c.π.app j).app k := congr_app (limit.lift_π c j) k @[simp, reassoc] lemma colimit.ι_desc_app (H : J ⥤ K ⥤ C) [has_colimit H] (c : cocone H) (j : J) (k : K) : (colimit.ι H j).app k ≫ (colimit.desc H c).app k = (c.ι.app j).app k := congr_app (colimit.ι_desc c j) k /-- The evaluation functors jointly reflect limits: that is, to show a cone is a limit of `F` it suffices to show that each evaluation cone is a limit. In other words, to prove a cone is limiting you can show it's pointwise limiting. -/ def evaluation_jointly_reflects_limits {F : J ⥤ K ⥤ C} (c : cone F) (t : Π (k : K), is_limit (((evaluation K C).obj k).map_cone c)) : is_limit c := { lift := λ s, { app := λ k, (t k).lift ⟨s.X.obj k, whisker_right s.π ((evaluation K C).obj k)⟩, naturality' := λ X Y f, (t Y).hom_ext $ λ j, begin rw [assoc, (t Y).fac _ j], simpa using ((t X).fac_assoc ⟨s.X.obj X, whisker_right s.π ((evaluation K C).obj X)⟩ j _).symm, end }, fac' := λ s j, nat_trans.ext _ _ $ funext $ λ k, (t k).fac _ j, uniq' := λ s m w, nat_trans.ext _ _ $ funext $ λ x, (t x).hom_ext $ λ j, (congr_app (w j) x).trans ((t x).fac ⟨s.X.obj _, whisker_right s.π ((evaluation K C).obj _)⟩ j).symm } /-- Given a functor `F` and a collection of limit cones for each diagram `X ↦ F X k`, we can stitch them together to give a cone for the diagram `F`. `combined_is_limit` shows that the new cone is limiting, and `eval_combined` shows it is (essentially) made up of the original cones. -/ @[simps] def combine_cones (F : J ⥤ K ⥤ C) (c : Π (k : K), limit_cone (F.flip.obj k)) : cone F := { X := { obj := λ k, (c k).cone.X, map := λ k₁ k₂ f, (c k₂).is_limit.lift ⟨_, (c k₁).cone.π ≫ F.flip.map f⟩, map_id' := λ k, (c k).is_limit.hom_ext (λ j, by { dsimp, simp }), map_comp' := λ k₁ k₂ k₃ f₁ f₂, (c k₃).is_limit.hom_ext (λ j, by simp) }, π := { app := λ j, { app := λ k, (c k).cone.π.app j }, naturality' := λ j₁ j₂ g, nat_trans.ext _ _ $ funext $ λ k, (c k).cone.π.naturality g } } /-- The stitched together cones each project down to the original given cones (up to iso). -/ def evaluate_combined_cones (F : J ⥤ K ⥤ C) (c : Π (k : K), limit_cone (F.flip.obj k)) (k : K) : ((evaluation K C).obj k).map_cone (combine_cones F c) ≅ (c k).cone := cones.ext (iso.refl _) (by tidy) /-- Stitching together limiting cones gives a limiting cone. -/ def combined_is_limit (F : J ⥤ K ⥤ C) (c : Π (k : K), limit_cone (F.flip.obj k)) : is_limit (combine_cones F c) := evaluation_jointly_reflects_limits _ (λ k, (c k).is_limit.of_iso_limit (evaluate_combined_cones F c k).symm) /-- The evaluation functors jointly reflect colimits: that is, to show a cocone is a colimit of `F` it suffices to show that each evaluation cocone is a colimit. In other words, to prove a cocone is colimiting you can show it's pointwise colimiting. -/ def evaluation_jointly_reflects_colimits {F : J ⥤ K ⥤ C} (c : cocone F) (t : Π (k : K), is_colimit (((evaluation K C).obj k).map_cocone c)) : is_colimit c := { desc := λ s, { app := λ k, (t k).desc ⟨s.X.obj k, whisker_right s.ι ((evaluation K C).obj k)⟩, naturality' := λ X Y f, (t X).hom_ext $ λ j, begin rw [(t X).fac_assoc _ j], erw ← (c.ι.app j).naturality_assoc f, erw (t Y).fac ⟨s.X.obj _, whisker_right s.ι _⟩ j, dsimp, simp, end }, fac' := λ s j, nat_trans.ext _ _ $ funext $ λ k, (t k).fac _ j, uniq' := λ s m w, nat_trans.ext _ _ $ funext $ λ x, (t x).hom_ext $ λ j, (congr_app (w j) x).trans ((t x).fac ⟨s.X.obj _, whisker_right s.ι ((evaluation K C).obj _)⟩ j).symm } /-- Given a functor `F` and a collection of colimit cocones for each diagram `X ↦ F X k`, we can stitch them together to give a cocone for the diagram `F`. `combined_is_colimit` shows that the new cocone is colimiting, and `eval_combined` shows it is (essentially) made up of the original cocones. -/ @[simps] def combine_cocones (F : J ⥤ K ⥤ C) (c : Π (k : K), colimit_cocone (F.flip.obj k)) : cocone F := { X := { obj := λ k, (c k).cocone.X, map := λ k₁ k₂ f, (c k₁).is_colimit.desc ⟨_, F.flip.map f ≫ (c k₂).cocone.ι⟩, map_id' := λ k, (c k).is_colimit.hom_ext (λ j, by { dsimp, simp }), map_comp' := λ k₁ k₂ k₃ f₁ f₂, (c k₁).is_colimit.hom_ext (λ j, by simp) }, ι := { app := λ j, { app := λ k, (c k).cocone.ι.app j }, naturality' := λ j₁ j₂ g, nat_trans.ext _ _ $ funext $ λ k, (c k).cocone.ι.naturality g } } /-- The stitched together cocones each project down to the original given cocones (up to iso). -/ def evaluate_combined_cocones (F : J ⥤ K ⥤ C) (c : Π (k : K), colimit_cocone (F.flip.obj k)) (k : K) : ((evaluation K C).obj k).map_cocone (combine_cocones F c) ≅ (c k).cocone := cocones.ext (iso.refl _) (by tidy) /-- Stitching together colimiting cocones gives a colimiting cocone. -/ def combined_is_colimit (F : J ⥤ K ⥤ C) (c : Π (k : K), colimit_cocone (F.flip.obj k)) : is_colimit (combine_cocones F c) := evaluation_jointly_reflects_colimits _ (λ k, (c k).is_colimit.of_iso_colimit (evaluate_combined_cocones F c k).symm) noncomputable theory instance functor_category_has_limits_of_shape [has_limits_of_shape J C] : has_limits_of_shape J (K ⥤ C) := { has_limit := λ F, has_limit.mk { cone := combine_cones F (λ k, get_limit_cone _), is_limit := combined_is_limit _ _ } } instance functor_category_has_colimits_of_shape [has_colimits_of_shape J C] : has_colimits_of_shape J (K ⥤ C) := { has_colimit := λ F, has_colimit.mk { cocone := combine_cocones _ (λ k, get_colimit_cocone _), is_colimit := combined_is_colimit _ _ } } instance functor_category_has_limits_of_size [has_limits_of_size.{v₁ u₁} C] : has_limits_of_size.{v₁ u₁} (K ⥤ C) := ⟨infer_instance⟩ instance functor_category_has_colimits_of_size [has_colimits_of_size.{v₁ u₁} C] : has_colimits_of_size.{v₁ u₁} (K ⥤ C) := ⟨infer_instance⟩ instance evaluation_preserves_limits_of_shape [has_limits_of_shape J C] (k : K) : preserves_limits_of_shape J ((evaluation K C).obj k) := { preserves_limit := λ F, preserves_limit_of_preserves_limit_cone (combined_is_limit _ _) $ is_limit.of_iso_limit (limit.is_limit _) (evaluate_combined_cones F _ k).symm } /-- If `F : J ⥤ K ⥤ C` is a functor into a functor category which has a limit, then the evaluation of that limit at `k` is the limit of the evaluations of `F.obj j` at `k`. -/ def limit_obj_iso_limit_comp_evaluation [has_limits_of_shape J C] (F : J ⥤ K ⥤ C) (k : K) : (limit F).obj k ≅ limit (F ⋙ ((evaluation K C).obj k)) := preserves_limit_iso ((evaluation K C).obj k) F @[simp, reassoc] lemma limit_obj_iso_limit_comp_evaluation_hom_π [has_limits_of_shape J C] (F : J ⥤ (K ⥤ C)) (j : J) (k : K) : (limit_obj_iso_limit_comp_evaluation F k).hom ≫ limit.π (F ⋙ ((evaluation K C).obj k)) j = (limit.π F j).app k := begin dsimp [limit_obj_iso_limit_comp_evaluation], simp, end @[simp, reassoc] lemma limit_obj_iso_limit_comp_evaluation_inv_π_app [has_limits_of_shape J C] (F : J ⥤ (K ⥤ C)) (j : J) (k : K): (limit_obj_iso_limit_comp_evaluation F k).inv ≫ (limit.π F j).app k = limit.π (F ⋙ ((evaluation K C).obj k)) j := begin dsimp [limit_obj_iso_limit_comp_evaluation], rw iso.inv_comp_eq, simp, end @[simp, reassoc] lemma limit_map_limit_obj_iso_limit_comp_evaluation_hom [has_limits_of_shape J C] {i j : K} (F : J ⥤ K ⥤ C) (f : i ⟶ j) : (limit F).map f ≫ (limit_obj_iso_limit_comp_evaluation _ _).hom = (limit_obj_iso_limit_comp_evaluation _ _).hom ≫ lim_map (whisker_left _ ((evaluation _ _).map f)) := by { ext, dsimp, simp } @[simp, reassoc] lemma limit_obj_iso_limit_comp_evaluation_inv_limit_map [has_limits_of_shape J C] {i j : K} (F : J ⥤ K ⥤ C) (f : i ⟶ j) : (limit_obj_iso_limit_comp_evaluation _ _).inv ≫ (limit F).map f = lim_map (whisker_left _ ((evaluation _ _).map f)) ≫ (limit_obj_iso_limit_comp_evaluation _ _).inv := by rw [iso.inv_comp_eq, ← category.assoc, iso.eq_comp_inv, limit_map_limit_obj_iso_limit_comp_evaluation_hom] @[ext] lemma limit_obj_ext {H : J ⥤ K ⥤ C} [has_limits_of_shape J C] {k : K} {W : C} {f g : W ⟶ (limit H).obj k} (w : ∀ j, f ≫ (limits.limit.π H j).app k = g ≫ (limits.limit.π H j).app k) : f = g := begin apply (cancel_mono (limit_obj_iso_limit_comp_evaluation H k).hom).1, ext, simpa using w j, end instance evaluation_preserves_colimits_of_shape [has_colimits_of_shape J C] (k : K) : preserves_colimits_of_shape J ((evaluation K C).obj k) := { preserves_colimit := λ F, preserves_colimit_of_preserves_colimit_cocone (combined_is_colimit _ _) $ is_colimit.of_iso_colimit (colimit.is_colimit _) (evaluate_combined_cocones F _ k).symm } /-- If `F : J ⥤ K ⥤ C` is a functor into a functor category which has a colimit, then the evaluation of that colimit at `k` is the colimit of the evaluations of `F.obj j` at `k`. -/ def colimit_obj_iso_colimit_comp_evaluation [has_colimits_of_shape J C] (F : J ⥤ K ⥤ C) (k : K) : (colimit F).obj k ≅ colimit (F ⋙ ((evaluation K C).obj k)) := preserves_colimit_iso ((evaluation K C).obj k) F @[simp, reassoc] lemma colimit_obj_iso_colimit_comp_evaluation_ι_inv [has_colimits_of_shape J C] (F : J ⥤ (K ⥤ C)) (j : J) (k : K) : colimit.ι (F ⋙ ((evaluation K C).obj k)) j ≫ (colimit_obj_iso_colimit_comp_evaluation F k).inv = (colimit.ι F j).app k := begin dsimp [colimit_obj_iso_colimit_comp_evaluation], simp, end @[simp, reassoc] lemma colimit_obj_iso_colimit_comp_evaluation_ι_app_hom [has_colimits_of_shape J C] (F : J ⥤ (K ⥤ C)) (j : J) (k : K) : (colimit.ι F j).app k ≫ (colimit_obj_iso_colimit_comp_evaluation F k).hom = colimit.ι (F ⋙ ((evaluation K C).obj k)) j := begin dsimp [colimit_obj_iso_colimit_comp_evaluation], rw ←iso.eq_comp_inv, simp, end @[simp, reassoc] lemma colimit_obj_iso_colimit_comp_evaluation_inv_colimit_map [has_colimits_of_shape J C] (F : J ⥤ K ⥤ C) {i j : K} (f : i ⟶ j) : (colimit_obj_iso_colimit_comp_evaluation _ _).inv ≫ (colimit F).map f = colim_map (whisker_left _ ((evaluation _ _).map f)) ≫ (colimit_obj_iso_colimit_comp_evaluation _ _).inv := by { ext, dsimp, simp } @[simp, reassoc] lemma colimit_map_colimit_obj_iso_colimit_comp_evaluation_hom [has_colimits_of_shape J C] (F : J ⥤ K ⥤ C) {i j : K} (f : i ⟶ j) : (colimit F).map f ≫ (colimit_obj_iso_colimit_comp_evaluation _ _).hom = (colimit_obj_iso_colimit_comp_evaluation _ _).hom ≫ colim_map (whisker_left _ ((evaluation _ _).map f)) := by rw [← iso.inv_comp_eq, ← category.assoc, ← iso.eq_comp_inv, colimit_obj_iso_colimit_comp_evaluation_inv_colimit_map] @[ext] lemma colimit_obj_ext {H : J ⥤ K ⥤ C} [has_colimits_of_shape J C] {k : K} {W : C} {f g : (colimit H).obj k ⟶ W} (w : ∀ j, (colimit.ι H j).app k ≫ f = (colimit.ι H j).app k ≫ g) : f = g := begin apply (cancel_epi (colimit_obj_iso_colimit_comp_evaluation H k).inv).1, ext, simpa using w j, end instance evaluation_preserves_limits [has_limits C] (k : K) : preserves_limits ((evaluation K C).obj k) := { preserves_limits_of_shape := λ J 𝒥, by resetI; apply_instance } /-- `F : D ⥤ K ⥤ C` preserves the limit of some `G : J ⥤ D` if it does for each `k : K`. -/ def preserves_limit_of_evaluation (F : D ⥤ K ⥤ C) (G : J ⥤ D) (H : Π (k : K), preserves_limit G (F ⋙ (evaluation K C).obj k : D ⥤ C)) : preserves_limit G F := ⟨λ c hc, begin apply evaluation_jointly_reflects_limits, intro X, haveI := H X, change is_limit ((F ⋙ (evaluation K C).obj X).map_cone c), exact preserves_limit.preserves hc, end⟩ /-- `F : D ⥤ K ⥤ C` preserves limits of shape `J` if it does for each `k : K`. -/ def preserves_limits_of_shape_of_evaluation (F : D ⥤ K ⥤ C) (J : Type*) [category J] (H : Π (k : K), preserves_limits_of_shape J (F ⋙ (evaluation K C).obj k)) : preserves_limits_of_shape J F := ⟨λ G, preserves_limit_of_evaluation F G (λ k, preserves_limits_of_shape.preserves_limit)⟩ /-- `F : D ⥤ K ⥤ C` preserves all limits if it does for each `k : K`. -/ def preserves_limits_of_evaluation (F : D ⥤ K ⥤ C) (H : Π (k : K), preserves_limits_of_size.{w' w} (F ⋙ (evaluation K C).obj k)) : preserves_limits_of_size.{w' w} F := ⟨λ L hL, by exactI preserves_limits_of_shape_of_evaluation F L (λ k, preserves_limits_of_size.preserves_limits_of_shape)⟩ /-- The constant functor `C ⥤ (D ⥤ C)` preserves limits. -/ instance preserves_limits_const : preserves_limits_of_size.{w' w} (const D : C ⥤ _) := preserves_limits_of_evaluation _ $ λ X, preserves_limits_of_nat_iso $ iso.symm $ const_comp_evaluation_obj _ _ instance evaluation_preserves_colimits [has_colimits C] (k : K) : preserves_colimits ((evaluation K C).obj k) := { preserves_colimits_of_shape := λ J 𝒥, by resetI; apply_instance } /-- `F : D ⥤ K ⥤ C` preserves the colimit of some `G : J ⥤ D` if it does for each `k : K`. -/ def preserves_colimit_of_evaluation (F : D ⥤ K ⥤ C) (G : J ⥤ D) (H : Π (k), preserves_colimit G (F ⋙ (evaluation K C).obj k)) : preserves_colimit G F := ⟨λ c hc, begin apply evaluation_jointly_reflects_colimits, intro X, haveI := H X, change is_colimit ((F ⋙ (evaluation K C).obj X).map_cocone c), exact preserves_colimit.preserves hc, end⟩ /-- `F : D ⥤ K ⥤ C` preserves all colimits of shape `J` if it does for each `k : K`. -/ def preserves_colimits_of_shape_of_evaluation (F : D ⥤ K ⥤ C) (J : Type*) [category J] (H : Π (k : K), preserves_colimits_of_shape J (F ⋙ (evaluation K C).obj k)) : preserves_colimits_of_shape J F := ⟨λ G, preserves_colimit_of_evaluation F G (λ k, preserves_colimits_of_shape.preserves_colimit)⟩ /-- `F : D ⥤ K ⥤ C` preserves all colimits if it does for each `k : K`. -/ def preserves_colimits_of_evaluation (F : D ⥤ K ⥤ C) (H : Π (k : K), preserves_colimits_of_size.{w' w} (F ⋙ (evaluation K C).obj k)) : preserves_colimits_of_size.{w' w} F := ⟨λ L hL, by exactI preserves_colimits_of_shape_of_evaluation F L (λ k, preserves_colimits_of_size.preserves_colimits_of_shape)⟩ /-- The constant functor `C ⥤ (D ⥤ C)` preserves colimits. -/ instance preserves_colimits_const : preserves_colimits_of_size.{w' w} (const D : C ⥤ _) := preserves_colimits_of_evaluation _ $ λ X, preserves_colimits_of_nat_iso $ iso.symm $ const_comp_evaluation_obj _ _ open category_theory.prod /-- The limit of a diagram `F : J ⥤ K ⥤ C` is isomorphic to the functor given by the individual limits on objects. -/ @[simps] def limit_iso_flip_comp_lim [has_limits_of_shape J C] (F : J ⥤ K ⥤ C) : limit F ≅ F.flip ⋙ lim := nat_iso.of_components (limit_obj_iso_limit_comp_evaluation F) $ by tidy /-- A variant of `limit_iso_flip_comp_lim` where the arguemnts of `F` are flipped. -/ @[simps] def limit_flip_iso_comp_lim [has_limits_of_shape J C] (F : K ⥤ J ⥤ C) : limit F.flip ≅ F ⋙ lim := nat_iso.of_components (λ k, limit_obj_iso_limit_comp_evaluation F.flip k ≪≫ has_limit.iso_of_nat_iso (flip_comp_evaluation _ _)) $ by tidy /-- For a functor `G : J ⥤ K ⥤ C`, its limit `K ⥤ C` is given by `(G' : K ⥤ J ⥤ C) ⋙ lim`. Note that this does not require `K` to be small. -/ @[simps] def limit_iso_swap_comp_lim [has_limits_of_shape J C] (G : J ⥤ K ⥤ C) : limit G ≅ curry.obj (swap K J ⋙ uncurry.obj G) ⋙ lim := limit_iso_flip_comp_lim G ≪≫ iso_whisker_right (flip_iso_curry_swap_uncurry _) _ /-- The colimit of a diagram `F : J ⥤ K ⥤ C` is isomorphic to the functor given by the individual colimits on objects. -/ @[simps] def colimit_iso_flip_comp_colim [has_colimits_of_shape J C] (F : J ⥤ K ⥤ C) : colimit F ≅ F.flip ⋙ colim := nat_iso.of_components (colimit_obj_iso_colimit_comp_evaluation F) $ by tidy /-- A variant of `colimit_iso_flip_comp_colim` where the arguemnts of `F` are flipped. -/ @[simps] def colimit_flip_iso_comp_colim [has_colimits_of_shape J C] (F : K ⥤ J ⥤ C) : colimit F.flip ≅ F ⋙ colim := nat_iso.of_components (λ k, colimit_obj_iso_colimit_comp_evaluation _ _ ≪≫ has_colimit.iso_of_nat_iso (flip_comp_evaluation _ _)) $ by tidy /-- For a functor `G : J ⥤ K ⥤ C`, its colimit `K ⥤ C` is given by `(G' : K ⥤ J ⥤ C) ⋙ colim`. Note that this does not require `K` to be small. -/ @[simps] def colimit_iso_swap_comp_colim [has_colimits_of_shape J C] (G : J ⥤ K ⥤ C) : colimit G ≅ curry.obj (swap K J ⋙ uncurry.obj G) ⋙ colim := colimit_iso_flip_comp_colim G ≪≫ iso_whisker_right (flip_iso_curry_swap_uncurry _) _ end category_theory.limits
1e46de45316e0c08f4370884f856e3a36137947d
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/stage0/src/Lean/Elab/Term.lean
3e2120893da5596e7d78f748bc2bfbd1aabeb3e0
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
79,774
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Sebastian Ullrich -/ import Lean.ResolveName import Lean.Log import Lean.Deprecated import Lean.Util.Sorry import Lean.Util.ReplaceExpr import Lean.Structure import Lean.Meta.AppBuilder import Lean.Meta.CollectMVars import Lean.Meta.Coe import Lean.Hygiene import Lean.Util.RecDepth import Lean.Elab.Config import Lean.Elab.Level import Lean.Elab.Attributes import Lean.Elab.AutoBound import Lean.Elab.InfoTree import Lean.Elab.Open import Lean.Elab.SetOption import Lean.Elab.DeclModifiers namespace Lean.Elab namespace Term /-- Saved context for postponed terms and tactics to be executed. -/ structure SavedContext where declName? : Option Name options : Options openDecls : List OpenDecl macroStack : MacroStack errToSorry : Bool levelNames : List Name /-- We use synthetic metavariables as placeholders for pending elaboration steps. -/ inductive SyntheticMVarKind where | /-- Use typeclass resolution to synthesize value for metavariable. -/ typeClass | /-- Similar to `typeClass`, but error messages are different. if `f?` is `some f`, we produce an application type mismatch error message. Otherwise, if `header?` is `some header`, we generate the error `(header ++ "has type" ++ eType ++ "but it is expected to have type" ++ expectedType)` Otherwise, we generate the error `("type mismatch" ++ e ++ "has type" ++ eType ++ "but it is expected to have type" ++ expectedType)` -/ coe (header? : Option String) (eNew : Expr) (expectedType : Expr) (eType : Expr) (e : Expr) (f? : Option Expr) | /-- Use tactic to synthesize value for metavariable. -/ tactic (tacticCode : Syntax) (ctx : SavedContext) | /-- Metavariable represents a hole whose elaboration has been postponed. -/ postponed (ctx : SavedContext) deriving Inhabited instance : ToString SyntheticMVarKind where toString | .typeClass => "typeclass" | .coe .. => "coe" | .tactic .. => "tactic" | .postponed .. => "postponed" structure SyntheticMVarDecl where stx : Syntax kind : SyntheticMVarKind deriving Inhabited /-- We can optionally associate an error context with a metavariable (see `MVarErrorInfo`). We have three different kinds of error context. -/ inductive MVarErrorKind where | /-- Metavariable for implicit arguments. `ctx` is the parent application. -/ implicitArg (ctx : Expr) | /-- Metavariable for explicit holes provided by the user (e.g., `_` and `?m`) -/ hole | /-- "Custom", `msgData` stores the additional error messages. -/ custom (msgData : MessageData) deriving Inhabited instance : ToString MVarErrorKind where toString | .implicitArg _ => "implicitArg" | .hole => "hole" | .custom _ => "custom" /-- We can optionally associate an error context with metavariables. -/ structure MVarErrorInfo where mvarId : MVarId ref : Syntax kind : MVarErrorKind argName? : Option Name := none deriving Inhabited /-- Nested `let rec` expressions are eagerly lifted by the elaborator. We store the information necessary for performing the lifting here. -/ structure LetRecToLift where ref : Syntax fvarId : FVarId attrs : Array Attribute shortDeclName : Name declName : Name lctx : LocalContext localInstances : LocalInstances type : Expr val : Expr mvarId : MVarId deriving Inhabited /-- State of the `TermElabM` monad. -/ structure State where levelNames : List Name := [] syntheticMVars : MVarIdMap SyntheticMVarDecl := {} pendingMVars : List MVarId := {} mvarErrorInfos : MVarIdMap MVarErrorInfo := {} letRecsToLift : List LetRecToLift := [] deriving Inhabited end Term namespace Tactic /-- State of the `TacticM` monad. -/ structure State where goals : List MVarId deriving Inhabited /-- Snapshots are used to implement the `save` tactic. This tactic caches the state of the system, and allows us to "replay" expensive proofs efficiently. This is only relevant implementing the LSP server. -/ structure Snapshot where core : Core.State meta : Meta.State term : Term.State tactic : Tactic.State stx : Syntax deriving Inhabited /-- Key for the cache used to implement the `save` tactic. -/ structure CacheKey where mvarId : MVarId -- TODO: should include all goals pos : String.Pos deriving BEq, Hashable, Inhabited /-- Cache for the `save` tactic. -/ structure Cache where pre : Std.PHashMap CacheKey Snapshot := {} post : Std.PHashMap CacheKey Snapshot := {} deriving Inhabited end Tactic namespace Term structure Context where declName? : Option Name := none /-- Map `.auxDecl` local declarations used to encode recursive declarations to their full-names. -/ auxDeclToFullName : FVarIdMap Name := {} macroStack : MacroStack := [] /-- When `mayPostpone == true`, an elaboration function may interrupt its execution by throwing `Exception.postpone`. The function `elabTerm` catches this exception and creates fresh synthetic metavariable `?m`, stores `?m` in the list of pending synthetic metavariables, and returns `?m`. -/ mayPostpone : Bool := true /-- When `errToSorry` is set to true, the method `elabTerm` catches exceptions and converts them into synthetic `sorry`s. The implementation of choice nodes and overloaded symbols rely on the fact that when `errToSorry` is set to false for an elaboration function `F`, then `errToSorry` remains `false` for all elaboration functions invoked by `F`. That is, it is safe to transition `errToSorry` from `true` to `false`, but we must not set `errToSorry` to `true` when it is currently set to `false`. -/ errToSorry : Bool := true /-- When `autoBoundImplicit` is set to true, instead of producing an "unknown identifier" error for unbound variables, we generate an internal exception. This exception is caught at `elabBinders` and `elabTypeWithUnboldImplicit`. Both methods add implicit declarations for the unbound variable and try again. -/ autoBoundImplicit : Bool := false autoBoundImplicits : Std.PArray Expr := {} /-- A name `n` is only eligible to be an auto implicit name if `autoBoundImplicitForbidden n = false`. We use this predicate to disallow `f` to be considered an auto implicit name in a definition such as ``` def f : f → Bool := fun _ => true ``` -/ autoBoundImplicitForbidden : Name → Bool := fun _ => false /-- Map from user name to internal unique name -/ sectionVars : NameMap Name := {} /-- Map from internal name to fvar -/ sectionFVars : NameMap Expr := {} /-- Enable/disable implicit lambdas feature. -/ implicitLambda : Bool := true /-- Noncomputable sections automatically add the `noncomputable` modifier to any declaration we cannot generate code for -/ isNoncomputableSection : Bool := false /-- When `true` we skip TC failures. We use this option when processing patterns -/ ignoreTCFailures : Bool := false /-- `true` when elaborating patterns. It affects how we elaborate named holes. -/ inPattern : Bool := false /-- Cache for the `save` tactic. It is only `some` in the LSP server. -/ tacticCache? : Option (IO.Ref Tactic.Cache) := none /-- If `true`, we store in the `Expr` the `Syntax` for recursive applications (i.e., applications of free variables tagged with `isAuxDecl`). We store the `Syntax` using `mkRecAppWithSyntax`. We use the `Syntax` object to produce better error messages at `Structural.lean` and `WF.lean`. -/ saveRecAppSyntax : Bool := true abbrev TermElabM := ReaderT Context $ StateRefT State MetaM abbrev TermElab := Syntax → Option Expr → TermElabM Expr -- Make the compiler generate specialized `pure`/`bind` so we do not have to optimize through the -- whole monad stack at every use site. May eventually be covered by `deriving`. instance : Monad TermElabM := let i := inferInstanceAs (Monad TermElabM); { pure := i.pure, bind := i.bind } open Meta instance : Inhabited (TermElabM α) where default := throw default /-- Backtrackable state for the `TermElabM` monad. -/ structure SavedState where meta : Meta.SavedState «elab» : State deriving Inhabited protected def saveState : TermElabM SavedState := return { meta := (← Meta.saveState), «elab» := (← get) } def SavedState.restore (s : SavedState) (restoreInfo : Bool := false) : TermElabM Unit := do let traceState ← getTraceState -- We never backtrack trace message let infoState ← getInfoState -- We also do not backtrack the info nodes when `restoreInfo == false` s.meta.restore set s.elab setTraceState traceState unless restoreInfo do setInfoState infoState instance : MonadBacktrack SavedState TermElabM where saveState := Term.saveState restoreState b := b.restore abbrev TermElabResult (α : Type) := EStateM.Result Exception SavedState α instance [Inhabited α] : Inhabited (TermElabResult α) where default := EStateM.Result.ok default default /-- Execute `x`, save resulting expression and new state. We remove any `Info` created by `x`. The info nodes are committed when we execute `applyResult`. We use `observing` to implement overloaded notation and decls. We want to save `Info` nodes for the chosen alternative. -/ def observing (x : TermElabM α) : TermElabM (TermElabResult α) := do let s ← saveState try let e ← x let sNew ← saveState s.restore (restoreInfo := true) return EStateM.Result.ok e sNew catch | ex@(.error ..) => let sNew ← saveState s.restore (restoreInfo := true) return .error ex sNew | ex@(.internal id _) => if id == postponeExceptionId then s.restore (restoreInfo := true) throw ex /-- Apply the result/exception and state captured with `observing`. We use this method to implement overloaded notation and symbols. -/ def applyResult (result : TermElabResult α) : TermElabM α := do match result with | .ok a r => r.restore (restoreInfo := true); return a | .error ex r => r.restore (restoreInfo := true); throw ex /-- Execute `x`, but keep state modifications only if `x` did not postpone. This method is useful to implement elaboration functions that cannot decide whether they need to postpone or not without updating the state. -/ def commitIfDidNotPostpone (x : TermElabM α) : TermElabM α := do -- We just reuse the implementation of `observing` and `applyResult`. let r ← observing x applyResult r /-- Return the universe level names explicitly provided by the user. -/ def getLevelNames : TermElabM (List Name) := return (← get).levelNames /-- Given a free variable `fvar`, return its declaration. This function panics if `fvar` is not a free variable. -/ def getFVarLocalDecl! (fvar : Expr) : TermElabM LocalDecl := do match (← getLCtx).find? fvar.fvarId! with | some d => pure d | none => unreachable! instance : AddErrorMessageContext TermElabM where add ref msg := do let ctx ← read let ref := getBetterRef ref ctx.macroStack let msg ← addMessageContext msg let msg ← addMacroStack msg ctx.macroStack pure (ref, msg) /-- Execute `x` but discard changes performed at `Term.State` and `Meta.State`. Recall that the `Environment` and `InfoState` are at `Core.State`. Thus, any updates to it will be preserved. This method is useful for performing computations where all metavariable must be resolved or discarded. The `InfoTree`s are not discarded, however, and wrapped in `InfoTree.Context` to store their metavariable context. -/ def withoutModifyingElabMetaStateWithInfo (x : TermElabM α) : TermElabM α := do let s ← get let sMeta ← getThe Meta.State try withSaveInfoContext x finally set s set sMeta /-- Execute `x` bud discard changes performed to the state. However, the info trees and messages are not discarded. -/ private def withoutModifyingStateWithInfoAndMessagesImpl (x : TermElabM α) : TermElabM α := do let saved ← saveState try withSaveInfoContext x finally let saved := { saved with meta.core.infoState := (← getInfoState), meta.core.messages := (← getThe Core.State).messages } restoreState saved /-- Execute `x` without storing `Syntax` for recursive applications. See `saveRecAppSyntax` field at `Context`. -/ def withoutSavingRecAppSyntax (x : TermElabM α) : TermElabM α := withReader (fun ctx => { ctx with saveRecAppSyntax := false }) x unsafe def mkTermElabAttributeUnsafe : IO (KeyedDeclsAttribute TermElab) := mkElabAttribute TermElab `Lean.Elab.Term.termElabAttribute `builtinTermElab `termElab `Lean.Parser.Term `Lean.Elab.Term.TermElab "term" @[implementedBy mkTermElabAttributeUnsafe] opaque mkTermElabAttribute : IO (KeyedDeclsAttribute TermElab) builtin_initialize termElabAttribute : KeyedDeclsAttribute TermElab ← mkTermElabAttribute /-- Auxiliary datatatype for presenting a Lean lvalue modifier. We represent a unelaborated lvalue as a `Syntax` (or `Expr`) and `List LVal`. Example: `a.foo.1` is represented as the `Syntax` `a` and the list `[LVal.fieldName "foo", LVal.fieldIdx 1]`. -/ inductive LVal where | fieldIdx (ref : Syntax) (i : Nat) | /-- Field `suffix?` is for producing better error messages because `x.y` may be a field access or a hierachical/composite name. `ref` is the syntax object representing the field. `targetStx` is the target object being accessed. -/ fieldName (ref : Syntax) (name : String) (suffix? : Option Name) (targetStx : Syntax) def LVal.getRef : LVal → Syntax | .fieldIdx ref _ => ref | .fieldName ref .. => ref def LVal.isFieldName : LVal → Bool | .fieldName .. => true | _ => false instance : ToString LVal where toString | .fieldIdx _ i => toString i | .fieldName _ n .. => n /-- Return the name of the declaration being elaborated if available. -/ def getDeclName? : TermElabM (Option Name) := return (← read).declName? /-- Return the list of nested `let rec` declarations that need to be lifted. -/ def getLetRecsToLift : TermElabM (List LetRecToLift) := return (← get).letRecsToLift /-- Return the declaration of the given metavariable -/ def getMVarDecl (mvarId : MVarId) : TermElabM MetavarDecl := return (← getMCtx).getDecl mvarId /-- Execute `x` with `declName? := name`. See `getDeclName? -/ def withDeclName (name : Name) (x : TermElabM α) : TermElabM α := withReader (fun ctx => { ctx with declName? := name }) x /-- Update the universe level parameter names. -/ def setLevelNames (levelNames : List Name) : TermElabM Unit := modify fun s => { s with levelNames := levelNames } /-- Execute `x` using `levelNames` as the universe level parameter names. See `getLevelNames`. -/ def withLevelNames (levelNames : List Name) (x : TermElabM α) : TermElabM α := do let levelNamesSaved ← getLevelNames setLevelNames levelNames try x finally setLevelNames levelNamesSaved /-- Declare an auxiliary local declaration `shortDeclName : type` for elaborating recursive declaration `declName`, update the mapping `auxDeclToFullName`, and then execute `k`. -/ def withAuxDecl (shortDeclName : Name) (type : Expr) (declName : Name) (k : Expr → TermElabM α) : TermElabM α := withLocalDecl shortDeclName BinderInfo.auxDecl type fun x => withReader (fun ctx => { ctx with auxDeclToFullName := ctx.auxDeclToFullName.insert x.fvarId! declName }) do k x def withoutErrToSorryImp (x : TermElabM α) : TermElabM α := withReader (fun ctx => { ctx with errToSorry := false }) x /-- Execute `x` without converting errors (i.e., exceptions) to `sorry` applications. Recall that when `errToSorry = true`, the method `elabTerm` catches exceptions and convert them into `sorry` applications. -/ def withoutErrToSorry [MonadFunctorT TermElabM m] : m α → m α := monadMap (m := TermElabM) withoutErrToSorryImp /-- For testing `TermElabM` methods. The #eval command will sign the error. -/ def throwErrorIfErrors : TermElabM Unit := do if (← MonadLog.hasErrors) then throwError "Error(s)" def traceAtCmdPos (cls : Name) (msg : Unit → MessageData) : TermElabM Unit := withRef Syntax.missing <| trace cls msg def ppGoal (mvarId : MVarId) : TermElabM Format := Meta.ppGoal mvarId open Level (LevelElabM) def liftLevelM (x : LevelElabM α) : TermElabM α := do let ctx ← read let mctx ← getMCtx let ngen ← getNGen let lvlCtx : Level.Context := { options := (← getOptions), ref := (← getRef), autoBoundImplicit := ctx.autoBoundImplicit } match (x lvlCtx).run { ngen := ngen, mctx := mctx, levelNames := (← getLevelNames) } with | .ok a newS => setMCtx newS.mctx; setNGen newS.ngen; setLevelNames newS.levelNames; pure a | .error ex _ => throw ex def elabLevel (stx : Syntax) : TermElabM Level := liftLevelM <| Level.elabLevel stx /-- Elaborate `x` with `stx` on the macro stack -/ def withMacroExpansion (beforeStx afterStx : Syntax) (x : TermElabM α) : TermElabM α := withMacroExpansionInfo beforeStx afterStx do withReader (fun ctx => { ctx with macroStack := { before := beforeStx, after := afterStx } :: ctx.macroStack }) x /-- Add the given metavariable to the list of pending synthetic metavariables. The method `synthesizeSyntheticMVars` is used to process the metavariables on this list. -/ def registerSyntheticMVar (stx : Syntax) (mvarId : MVarId) (kind : SyntheticMVarKind) : TermElabM Unit := do modify fun s => { s with syntheticMVars := s.syntheticMVars.insert mvarId { stx, kind }, pendingMVars := mvarId :: s.pendingMVars } def registerSyntheticMVarWithCurrRef (mvarId : MVarId) (kind : SyntheticMVarKind) : TermElabM Unit := do registerSyntheticMVar (← getRef) mvarId kind def registerMVarErrorInfo (mvarErrorInfo : MVarErrorInfo) : TermElabM Unit := modify fun s => { s with mvarErrorInfos := s.mvarErrorInfos.insert mvarErrorInfo.mvarId mvarErrorInfo } def registerMVarErrorHoleInfo (mvarId : MVarId) (ref : Syntax) : TermElabM Unit := registerMVarErrorInfo { mvarId, ref, kind := .hole } def registerMVarErrorImplicitArgInfo (mvarId : MVarId) (ref : Syntax) (app : Expr) : TermElabM Unit := do registerMVarErrorInfo { mvarId, ref, kind := .implicitArg app } def registerMVarErrorCustomInfo (mvarId : MVarId) (ref : Syntax) (msgData : MessageData) : TermElabM Unit := do registerMVarErrorInfo { mvarId, ref, kind := .custom msgData } def getMVarErrorInfo? (mvarId : MVarId) : TermElabM (Option MVarErrorInfo) := do return (← get).mvarErrorInfos.find? mvarId def registerCustomErrorIfMVar (e : Expr) (ref : Syntax) (msgData : MessageData) : TermElabM Unit := match e.getAppFn with | Expr.mvar mvarId => registerMVarErrorCustomInfo mvarId ref msgData | _ => pure () /-- Auxiliary method for reporting errors of the form "... contains metavariables ...". This kind of error is thrown, for example, at `Match.lean` where elaboration cannot continue if there are metavariables in patterns. We only want to log it if we haven't logged any error so far. -/ def throwMVarError (m : MessageData) : TermElabM α := do if (← MonadLog.hasErrors) then throwAbortTerm else throwError m def MVarErrorInfo.logError (mvarErrorInfo : MVarErrorInfo) (extraMsg? : Option MessageData) : TermElabM Unit := do match mvarErrorInfo.kind with | MVarErrorKind.implicitArg app => do let app ← instantiateMVars app let msg := addArgName "don't know how to synthesize implicit argument" let msg := msg ++ m!"{indentExpr app.setAppPPExplicitForExposingMVars}" ++ Format.line ++ "context:" ++ Format.line ++ MessageData.ofGoal mvarErrorInfo.mvarId logErrorAt mvarErrorInfo.ref (appendExtra msg) | MVarErrorKind.hole => do let msg := addArgName "don't know how to synthesize placeholder" " for argument" let msg := msg ++ Format.line ++ "context:" ++ Format.line ++ MessageData.ofGoal mvarErrorInfo.mvarId logErrorAt mvarErrorInfo.ref (MessageData.tagged `Elab.synthPlaceholder <| appendExtra msg) | MVarErrorKind.custom msg => logErrorAt mvarErrorInfo.ref (appendExtra msg) where /-- Append `mvarErrorInfo` argument name (if available) to the message. Remark: if the argument name contains macro scopes we do not append it. -/ addArgName (msg : MessageData) (extra : String := "") : MessageData := match mvarErrorInfo.argName? with | none => msg | some argName => if argName.hasMacroScopes then msg else msg ++ extra ++ m!" '{argName}'" appendExtra (msg : MessageData) : MessageData := match extraMsg? with | none => msg | some extraMsg => msg ++ extraMsg /-- Try to log errors for the unassigned metavariables `pendingMVarIds`. Return `true` if there were "unfilled holes", and we should "abort" declaration. TODO: try to fill "all" holes using synthetic "sorry's" Remark: We only log the "unfilled holes" as new errors if no error has been logged so far. -/ def logUnassignedUsingErrorInfos (pendingMVarIds : Array MVarId) (extraMsg? : Option MessageData := none) : TermElabM Bool := do if pendingMVarIds.isEmpty then return false else let hasOtherErrors ← MonadLog.hasErrors let mut hasNewErrors := false let mut alreadyVisited : MVarIdSet := {} let mut errors : Array MVarErrorInfo := #[] for (_, mvarErrorInfo) in (← get).mvarErrorInfos do let mvarId := mvarErrorInfo.mvarId unless alreadyVisited.contains mvarId do alreadyVisited := alreadyVisited.insert mvarId /- The metavariable `mvarErrorInfo.mvarId` may have been assigned or delayed assigned to another metavariable that is unassigned. -/ let mvarDeps ← getMVars (mkMVar mvarId) if mvarDeps.any pendingMVarIds.contains then do unless hasOtherErrors do errors := errors.push mvarErrorInfo hasNewErrors := true -- To sort the errors by position use -- let sortedErrors := errors.qsort fun e₁ e₂ => e₁.ref.getPos?.getD 0 < e₂.ref.getPos?.getD 0 for error in errors do error.mvarId.withContext do error.logError extraMsg? return hasNewErrors /-- Ensure metavariables registered using `registerMVarErrorInfos` (and used in the given declaration) have been assigned. -/ def ensureNoUnassignedMVars (decl : Declaration) : TermElabM Unit := do let pendingMVarIds ← getMVarsAtDecl decl if (← logUnassignedUsingErrorInfos pendingMVarIds) then throwAbortCommand /-- Execute `x` without allowing it to postpone elaboration tasks. That is, `tryPostpone` is a noop. -/ def withoutPostponing (x : TermElabM α) : TermElabM α := withReader (fun ctx => { ctx with mayPostpone := false }) x /-- Creates syntax for `(` <ident> `:` <type> `)` -/ def mkExplicitBinder (ident : Syntax) (type : Syntax) : Syntax := mkNode ``Lean.Parser.Term.explicitBinder #[mkAtom "(", mkNullNode #[ident], mkNullNode #[mkAtom ":", type], mkNullNode, mkAtom ")"] /-- Convert unassigned universe level metavariables into parameters. The new parameter names are of the form `u_i` where `i >= nextParamIdx`. The method returns the updated expression and new `nextParamIdx`. Remark: we make sure the generated parameter names do not clash with the universe at `ctx.levelNames`. -/ def levelMVarToParam (e : Expr) (nextParamIdx : Nat := 1) (except : LMVarId → Bool := fun _ => false) : TermElabM (Expr × Nat) := do let levelNames ← getLevelNames let r := (← getMCtx).levelMVarToParam (fun n => levelNames.elem n) except e `u nextParamIdx setMCtx r.mctx return (r.expr, r.nextParamIdx) /-- Variant of `levelMVarToParam` where `nextParamIdx` is stored in a state monad. -/ def levelMVarToParam' (e : Expr) (except : LMVarId → Bool := fun _ => false) : StateRefT Nat TermElabM Expr := do let nextParamIdx ← get let (e, nextParamIdx) ← levelMVarToParam e nextParamIdx except set nextParamIdx return e /-- Auxiliary method for creating fresh binder names. Do not confuse with the method for creating fresh free/meta variable ids. -/ def mkFreshBinderName [Monad m] [MonadQuotation m] : m Name := withFreshMacroScope <| MonadQuotation.addMacroScope `x /-- Auxiliary method for creating a `Syntax.ident` containing a fresh name. This method is intended for creating fresh binder names. It is just a thin layer on top of `mkFreshUserName`. -/ def mkFreshIdent [Monad m] [MonadQuotation m] (ref : Syntax) : m Syntax := return mkIdentFrom ref (← mkFreshBinderName) private def applyAttributesCore (declName : Name) (attrs : Array Attribute) (applicationTime? : Option AttributeApplicationTime) : TermElabM Unit := for attr in attrs do withRef attr.stx do withLogging do let env ← getEnv match getAttributeImpl env attr.name with | Except.error errMsg => throwError errMsg | Except.ok attrImpl => match applicationTime? with | none => attrImpl.add declName attr.stx attr.kind | some applicationTime => if applicationTime == attrImpl.applicationTime then attrImpl.add declName attr.stx attr.kind /-- Apply given attributes **at** a given application time -/ def applyAttributesAt (declName : Name) (attrs : Array Attribute) (applicationTime : AttributeApplicationTime) : TermElabM Unit := applyAttributesCore declName attrs applicationTime def applyAttributes (declName : Name) (attrs : Array Attribute) : TermElabM Unit := applyAttributesCore declName attrs none def mkTypeMismatchError (header? : Option String) (e : Expr) (eType : Expr) (expectedType : Expr) : TermElabM MessageData := do let header : MessageData := match header? with | some header => m!"{header} " | none => m!"type mismatch{indentExpr e}\n" return m!"{header}{← mkHasTypeButIsExpectedMsg eType expectedType}" def throwTypeMismatchError (header? : Option String) (expectedType : Expr) (eType : Expr) (e : Expr) (f? : Option Expr := none) (extraMsg? : Option MessageData := none) : TermElabM α := do /- We ignore `extraMsg?` for now. In all our tests, it contained no useful information. It was always of the form: ``` failed to synthesize instance CoeT <eType> <e> <expectedType> ``` We should revisit this decision in the future and decide whether it may contain useful information or not. -/ let extraMsg := Format.nil /- let extraMsg : MessageData := match extraMsg? with | none => Format.nil | some extraMsg => Format.line ++ extraMsg; -/ match f? with | none => throwError "{← mkTypeMismatchError header? e eType expectedType}{extraMsg}" | some f => Meta.throwAppTypeMismatch f e def withoutMacroStackAtErr (x : TermElabM α) : TermElabM α := withTheReader Core.Context (fun (ctx : Core.Context) => { ctx with options := pp.macroStack.set ctx.options false }) x namespace ContainsPendingMVar abbrev M := MonadCacheT Expr Unit (OptionT TermElabM) /-- See `containsPostponedTerm` -/ partial def visit (e : Expr) : M Unit := do checkCache e fun _ => do match e with | .forallE _ d b _ => visit d; visit b | .lam _ d b _ => visit d; visit b | .letE _ t v b _ => visit t; visit v; visit b | .app f a => visit f; visit a | .mdata _ b => visit b | .proj _ _ b => visit b | .fvar fvarId .. => match (← fvarId.getDecl) with | .cdecl .. => return () | .ldecl (value := v) .. => visit v | .mvar mvarId .. => let e' ← instantiateMVars e if e' != e then visit e' else match (← getDelayedMVarAssignment? mvarId) with | some d => visit (mkMVar d.mvarIdPending) | none => failure | _ => return () end ContainsPendingMVar /-- Return `true` if `e` contains a pending metavariable. Remark: it also visits let-declarations. -/ def containsPendingMVar (e : Expr) : TermElabM Bool := do match (← ContainsPendingMVar.visit e |>.run.run) with | some _ => return false | none => return true /-- Try to synthesize metavariable using type class resolution. This method assumes the local context and local instances of `instMVar` coincide with the current local context and local instances. Return `true` if the instance was synthesized successfully, and `false` if the instance contains unassigned metavariables that are blocking the type class resolution procedure. Throw an exception if resolution or assignment irrevocably fails. -/ def synthesizeInstMVarCore (instMVar : MVarId) (maxResultSize? : Option Nat := none) : TermElabM Bool := do let instMVarDecl ← getMVarDecl instMVar let type := instMVarDecl.type let type ← instantiateMVars type let result ← trySynthInstance type maxResultSize? match result with | LOption.some val => if (← instMVar.isAssigned) then let oldVal ← instantiateMVars (mkMVar instMVar) unless (← isDefEq oldVal val) do if (← containsPendingMVar oldVal <||> containsPendingMVar val) then /- If `val` or `oldVal` contains metavariables directly or indirectly (e.g., in a let-declaration), we return `false` to indicate we should try again later. This is very course grain since the metavariable may not be responsible for the failure. We should refine the test in the future if needed. This check has been added to address dependencies between postponed metavariables. The following example demonstrates the issue fixed by this test. ``` structure Point where x : Nat y : Nat def Point.compute (p : Point) : Point := let p := { p with x := 1 } let p := { p with y := 0 } if (p.x - p.y) > p.x then p else p ``` The `isDefEq` test above fails for `Decidable (p.x - p.y ≤ p.x)` when the structure instance assigned to `p` has not been elaborated yet. -/ return false -- we will try again later let oldValType ← inferType oldVal let valType ← inferType val unless (← isDefEq oldValType valType) do throwError "synthesized type class instance type is not definitionally equal to expected type, synthesized{indentExpr val}\nhas type{indentExpr valType}\nexpected{indentExpr oldValType}" throwError "synthesized type class instance is not definitionally equal to expression inferred by typing rules, synthesized{indentExpr val}\ninferred{indentExpr oldVal}" else unless (← isDefEq (mkMVar instMVar) val) do throwError "failed to assign synthesized type class instance{indentExpr val}" return true | .undef => return false -- we will try later | .none => if (← read).ignoreTCFailures then return false else throwError "failed to synthesize instance{indentExpr type}" register_builtin_option autoLift : Bool := { defValue := true descr := "insert monadic lifts (i.e., `liftM` and coercions) when needed" } register_builtin_option maxCoeSize : Nat := { defValue := 16 descr := "maximum number of instances used to construct an automatic coercion" } def synthesizeCoeInstMVarCore (instMVar : MVarId) : TermElabM Bool := do synthesizeInstMVarCore instMVar (some (maxCoeSize.get (← getOptions))) /-- The coercion from `α` to `Thunk α` cannot be implemented using an instance because it would eagerly evaluate `e` -/ def tryCoeThunk? (expectedType : Expr) (eType : Expr) (e : Expr) : TermElabM (Option Expr) := do match expectedType with | .app (.const ``Thunk u) arg => if (← isDefEq eType arg) then return some (mkApp2 (mkConst ``Thunk.mk u) arg (mkSimpleThunk e)) else return none | _ => return none def mkCoe (expectedType : Expr) (eType : Expr) (e : Expr) (f? : Option Expr := none) (errorMsgHeader? : Option String := none) : TermElabM Expr := do let u ← getLevel eType let v ← getLevel expectedType let coeTInstType := mkAppN (mkConst ``CoeT [u, v]) #[eType, e, expectedType] let mvar ← mkFreshExprMVar coeTInstType MetavarKind.synthetic let eNew := mkAppN (mkConst ``CoeT.coe [u, v]) #[eType, e, expectedType, mvar] let mvarId := mvar.mvarId! try withoutMacroStackAtErr do if (← synthesizeCoeInstMVarCore mvarId) then expandCoe eNew else -- We create an auxiliary metavariable to represent the result, because we need to execute `expandCoe` -- after we syntheze `mvar` let mvarAux ← mkFreshExprMVar expectedType MetavarKind.syntheticOpaque registerSyntheticMVarWithCurrRef mvarAux.mvarId! (SyntheticMVarKind.coe errorMsgHeader? eNew expectedType eType e f?) return mvarAux catch | .error _ msg => throwTypeMismatchError errorMsgHeader? expectedType eType e f? msg | _ => throwTypeMismatchError errorMsgHeader? expectedType eType e f? /-- Try to apply coercion to make sure `e` has type `expectedType`. Relevant definitions: ``` class CoeT (α : Sort u) (a : α) (β : Sort v) abbrev coe {α : Sort u} {β : Sort v} (a : α) [CoeT α a β] : β ``` -/ private def tryCoe (errorMsgHeader? : Option String) (expectedType : Expr) (eType : Expr) (e : Expr) (f? : Option Expr) : TermElabM Expr := do if (← isDefEq expectedType eType) then return e else match (← tryCoeThunk? expectedType eType e) with | some r => return r | none => trace[Elab.coe] "adding coercion for {e} : {eType} =?= {expectedType}"; mkCoe expectedType eType e f? errorMsgHeader? /-- Return `some (m, α)` if `type` can be reduced to an application of the form `m α` using `[reducible]` transparency. -/ def isTypeApp? (type : Expr) : TermElabM (Option (Expr × Expr)) := do let type ← withReducible <| whnf type match type with | .app m α => return some ((← instantiateMVars m), (← instantiateMVars α)) | _ => return none /-- Helper method used to implement auto-lift and coercions -/ private def synthesizeInst (type : Expr) : TermElabM Expr := do let type ← instantiateMVars type match (← trySynthInstance type) with | .some val => return val -- Note that `ignoreTCFailures` is not checked here since it must return a result. | .undef => throwError "failed to synthesize instance{indentExpr type}" | .none => throwError "failed to synthesize instance{indentExpr type}" /-- Return `true` if `type` is of the form `m α` where `m` is a `Monad`. Note that we reduce `type` using transparency `[reducible]`. -/ def isMonadApp (type : Expr) : TermElabM Bool := do let some (m, _) ← isTypeApp? type | return false return (← isMonad? m) |>.isSome /-- Try coercions and monad lifts to make sure `e` has type `expectedType`. If `expectedType` is of the form `n β`, we try monad lifts and other extensions. Otherwise, we just use the basic `tryCoe`. Extensions for monads. 1. Try to unify `n` and `m`. If it succeeds, then we use ``` coeM {m : Type u → Type v} {α β : Type u} [∀ a, CoeT α a β] [Monad m] (x : m α) : m β ``` `n` must be a `Monad` to use this one. 2. If there is monad lift from `m` to `n` and we can unify `α` and `β`, we use ``` liftM : ∀ {m : Type u_1 → Type u_2} {n : Type u_1 → Type u_3} [self : MonadLiftT m n] {α : Type u_1}, m α → n α ``` Note that `n` may not be a `Monad` in this case. This happens quite a bit in code such as ``` def g (x : Nat) : IO Nat := do IO.println x pure x def f {m} [MonadLiftT IO m] : m Nat := g 10 ``` 3. If there is a monad lift from `m` to `n` and a coercion from `α` to `β`, we use ``` liftCoeM {m : Type u → Type v} {n : Type u → Type w} {α β : Type u} [MonadLiftT m n] [∀ a, CoeT α a β] [Monad n] (x : m α) : n β ``` Note that approach 3 does not subsume 1 because it is only applicable if there is a coercion from `α` to `β` for all values in `α`. This is not the case for example for `pure $ x > 0` when the expected type is `IO Bool`. The given type is `IO Prop`, and we only have a coercion from decidable propositions. Approach 1 works because it constructs the coercion `CoeT (m Prop) (pure $ x > 0) (m Bool)` using the instance `pureCoeDepProp`. Note that, approach 2 is more powerful than `tryCoe`. Recall that type class resolution never assigns metavariables created by other modules. Now, consider the following scenario ```lean def g (x : Nat) : IO Nat := ... deg h (x : Nat) : StateT Nat IO Nat := do v ← g x; IO.Println v; ... ``` Let's assume there is no other occurrence of `v` in `h`. Thus, we have that the expected of `g x` is `StateT Nat IO ?α`, and the given type is `IO Nat`. So, even if we add a coercion. ``` instance {α m n} [MonadLiftT m n] {α} : Coe (m α) (n α) := ... ``` It is not applicable because TC would have to assign `?α := Nat`. On the other hand, TC can easily solve `[MonadLiftT IO (StateT Nat IO)]` since this goal does not contain any metavariables. And then, we convert `g x` into `liftM $ g x`. -/ private def tryLiftAndCoe (errorMsgHeader? : Option String) (expectedType : Expr) (eType : Expr) (e : Expr) (f? : Option Expr) : TermElabM Expr := do let expectedType ← instantiateMVars expectedType let eType ← instantiateMVars eType let throwMismatch {α} : TermElabM α := throwTypeMismatchError errorMsgHeader? expectedType eType e f? let tryCoeSimple : TermElabM Expr := tryCoe errorMsgHeader? expectedType eType e f? let some (n, β) ← isTypeApp? expectedType | tryCoeSimple let some (m, α) ← isTypeApp? eType | tryCoeSimple if (← isDefEq m n) then let some monadInst ← isMonad? n | tryCoeSimple try expandCoe (← mkAppOptM ``Lean.Internal.coeM #[m, α, β, none, monadInst, e]) catch _ => throwMismatch else if autoLift.get (← getOptions) then try -- Construct lift from `m` to `n` let monadLiftType ← mkAppM ``MonadLiftT #[m, n] let monadLiftVal ← synthesizeInst monadLiftType let u_1 ← getDecLevel α let u_2 ← getDecLevel eType let u_3 ← getDecLevel expectedType let eNew := mkAppN (Lean.mkConst ``liftM [u_1, u_2, u_3]) #[m, n, monadLiftVal, α, e] let eNewType ← inferType eNew if (← isDefEq expectedType eNewType) then return eNew -- approach 2 worked else let some monadInst ← isMonad? n | tryCoeSimple let u ← getLevel α let v ← getLevel β let coeTInstType := Lean.mkForall `a BinderInfo.default α <| mkAppN (mkConst ``CoeT [u, v]) #[α, mkBVar 0, β] let coeTInstVal ← synthesizeInst coeTInstType let eNew ← expandCoe (mkAppN (Lean.mkConst ``Lean.Internal.liftCoeM [u_1, u_2, u_3]) #[m, n, α, β, monadLiftVal, coeTInstVal, monadInst, e]) let eNewType ← inferType eNew unless (← isDefEq expectedType eNewType) do throwMismatch return eNew -- approach 3 worked catch _ => /- If `m` is not a monad, then we try to use `tryCoe?`. -/ tryCoeSimple else tryCoeSimple /-- If `expectedType?` is `some t`, then ensure `t` and `eType` are definitionally equal. If they are not, then try coercions. Argument `f?` is used only for generating error messages. -/ def ensureHasTypeAux (expectedType? : Option Expr) (eType : Expr) (e : Expr) (f? : Option Expr := none) (errorMsgHeader? : Option String := none) : TermElabM Expr := do match expectedType? with | none => return e | some expectedType => if (← isDefEq eType expectedType) then return e else tryLiftAndCoe errorMsgHeader? expectedType eType e f? /-- If `expectedType?` is `some t`, then ensure `t` and type of `e` are definitionally equal. If they are not, then try coercions. -/ def ensureHasType (expectedType? : Option Expr) (e : Expr) (errorMsgHeader? : Option String := none) : TermElabM Expr := match expectedType? with | none => return e | _ => do let eType ← inferType e ensureHasTypeAux expectedType? eType e none errorMsgHeader? /-- Create a synthetic sorry for the given expected type. If `expectedType? = none`, then a fresh metavariable is created to represent the type. -/ private def mkSyntheticSorryFor (expectedType? : Option Expr) : TermElabM Expr := do let expectedType ← match expectedType? with | none => mkFreshTypeMVar | some expectedType => pure expectedType mkSyntheticSorry expectedType /-- Log the given exception, and create an synthetic sorry for representing the failed elaboration step with exception `ex`. -/ def exceptionToSorry (ex : Exception) (expectedType? : Option Expr) : TermElabM Expr := do let syntheticSorry ← mkSyntheticSorryFor expectedType? logException ex pure syntheticSorry /-- If `mayPostpone == true`, throw `Expection.postpone`. -/ def tryPostpone : TermElabM Unit := do if (← read).mayPostpone then throwPostpone /-- Return `true` if `e` reduces (by unfolding only `[reducible]` declarations) to `?m ...` -/ def isMVarApp (e : Expr) : TermElabM Bool := return (← whnfR e).getAppFn.isMVar /-- If `mayPostpone == true` and `e`'s head is a metavariable, throw `Exception.postpone`. -/ def tryPostponeIfMVar (e : Expr) : TermElabM Unit := do if (← isMVarApp e) then tryPostpone /-- If `e? = some e`, then `tryPostponeIfMVar e`, otherwise it is just `tryPostpone`. -/ def tryPostponeIfNoneOrMVar (e? : Option Expr) : TermElabM Unit := match e? with | some e => tryPostponeIfMVar e | none => tryPostpone /-- Throws `Exception.postpone`, if `expectedType?` contains unassigned metavariables. It is a noop if `mayPostpone == false`. -/ def tryPostponeIfHasMVars? (expectedType? : Option Expr) : TermElabM (Option Expr) := do tryPostponeIfNoneOrMVar expectedType? let some expectedType := expectedType? | return none let expectedType ← instantiateMVars expectedType if expectedType.hasExprMVar then tryPostpone return none return some expectedType /-- Throws `Exception.postpone`, if `expectedType?` contains unassigned metavariables. If `mayPostpone == false`, it throws error `msg`. -/ def tryPostponeIfHasMVars (expectedType? : Option Expr) (msg : String) : TermElabM Expr := do let some expectedType ← tryPostponeIfHasMVars? expectedType? | throwError "{msg}, expected type contains metavariables{indentD expectedType?}" return expectedType /-- Save relevant context for term elaboration postponement. -/ def saveContext : TermElabM SavedContext := return { macroStack := (← read).macroStack declName? := (← read).declName? options := (← getOptions) openDecls := (← getOpenDecls) errToSorry := (← read).errToSorry levelNames := (← get).levelNames } /-- Execute `x` with the context saved using `saveContext`. -/ def withSavedContext (savedCtx : SavedContext) (x : TermElabM α) : TermElabM α := do withReader (fun ctx => { ctx with declName? := savedCtx.declName?, macroStack := savedCtx.macroStack, errToSorry := savedCtx.errToSorry }) <| withTheReader Core.Context (fun ctx => { ctx with options := savedCtx.options, openDecls := savedCtx.openDecls }) <| withLevelNames savedCtx.levelNames x /-- Delay the elaboration of `stx`, and return a fresh metavariable that works a placeholder. Remark: the caller is responsible for making sure the info tree is properly updated. This method is used only at `elabUsingElabFnsAux`. -/ private def postponeElabTermCore (stx : Syntax) (expectedType? : Option Expr) : TermElabM Expr := do trace[Elab.postpone] "{stx} : {expectedType?}" let mvar ← mkFreshExprMVar expectedType? MetavarKind.syntheticOpaque registerSyntheticMVar stx mvar.mvarId! (SyntheticMVarKind.postponed (← saveContext)) return mvar def getSyntheticMVarDecl? (mvarId : MVarId) : TermElabM (Option SyntheticMVarDecl) := return (← get).syntheticMVars.find? mvarId /-- Create an auxiliary annotation to make sure we create a `Info` even if `e` is a metavariable. See `mkTermInfo`. We use this functions because some elaboration functions elaborate subterms that may not be immediately part of the resulting term. Example: ``` let_mvar% ?m := b; wait_if_type_mvar% ?m; body ``` If the type of `b` is not known, then `wait_if_type_mvar% ?m; body` is postponed and just return a fresh metavariable `?n`. The elaborator for ``` let_mvar% ?m := b; wait_if_type_mvar% ?m; body ``` returns `mkSaveInfoAnnotation ?n` to make sure the info nodes created when elaborating `b` are "saved". This is a bit hackish, but elaborators like `let_mvar%` are rare. -/ def mkSaveInfoAnnotation (e : Expr) : Expr := if e.isMVar then mkAnnotation `save_info e else e def isSaveInfoAnnotation? (e : Expr) : Option Expr := annotation? `save_info e partial def removeSaveInfoAnnotation (e : Expr) : Expr := match isSaveInfoAnnotation? e with | some e => removeSaveInfoAnnotation e | _ => e /-- Return `some mvarId` if `e` corresponds to a hole that is going to be filled "later" by executing a tactic or resuming elaboration. We do not save `ofTermInfo` for this kind of node in the `InfoTree`. -/ def isTacticOrPostponedHole? (e : Expr) : TermElabM (Option MVarId) := do match e with | Expr.mvar mvarId => match (← getSyntheticMVarDecl? mvarId) with | some { kind := .tactic .., .. } => return mvarId | some { kind := .postponed .., .. } => return mvarId | _ => return none | _ => pure none def mkTermInfo (elaborator : Name) (stx : Syntax) (e : Expr) (expectedType? : Option Expr := none) (lctx? : Option LocalContext := none) (isBinder := false) : TermElabM (Sum Info MVarId) := do match (← isTacticOrPostponedHole? e) with | some mvarId => return Sum.inr mvarId | none => let e := removeSaveInfoAnnotation e return Sum.inl <| Info.ofTermInfo { elaborator, lctx := lctx?.getD (← getLCtx), expr := e, stx, expectedType?, isBinder } def addTermInfo (stx : Syntax) (e : Expr) (expectedType? : Option Expr := none) (lctx? : Option LocalContext := none) (elaborator := Name.anonymous) (isBinder := false) : TermElabM Expr := do if (← read).inPattern then return mkPatternWithRef e stx else withInfoContext' (pure ()) (fun _ => mkTermInfo elaborator stx e expectedType? lctx? isBinder) |> discard return e def addTermInfo' (stx : Syntax) (e : Expr) (expectedType? : Option Expr := none) (lctx? : Option LocalContext := none) (elaborator := Name.anonymous) (isBinder := false) : TermElabM Unit := discard <| addTermInfo stx e expectedType? lctx? elaborator isBinder def withInfoContext' (stx : Syntax) (x : TermElabM Expr) (mkInfo : Expr → TermElabM (Sum Info MVarId)) : TermElabM Expr := do if (← read).inPattern then let e ← x return mkPatternWithRef e stx else Elab.withInfoContext' x mkInfo /-- Postpone the elaboration of `stx`, return a metavariable that acts as a placeholder, and ensures the info tree is updated and a hole id is introduced. When `stx` is elaborated, new info nodes are created and attached to the new hole id in the info tree. -/ def postponeElabTerm (stx : Syntax) (expectedType? : Option Expr) : TermElabM Expr := do withInfoContext' stx (mkInfo := mkTermInfo .anonymous (expectedType? := expectedType?) stx) do postponeElabTermCore stx expectedType? /-- Helper function for `elabTerm` is tries the registered elaboration functions for `stxNode` kind until it finds one that supports the syntax or an error is found. -/ private def elabUsingElabFnsAux (s : SavedState) (stx : Syntax) (expectedType? : Option Expr) (catchExPostpone : Bool) : List (KeyedDeclsAttribute.AttributeEntry TermElab) → TermElabM Expr | [] => do throwError "unexpected syntax{indentD stx}" | (elabFn::elabFns) => try -- record elaborator in info tree, but only when not backtracking to other elaborators (outer `try`) withInfoContext' stx (mkInfo := mkTermInfo elabFn.declName (expectedType? := expectedType?) stx) (try elabFn.value stx expectedType? catch ex => match ex with | .error .. => if (← read).errToSorry then exceptionToSorry ex expectedType? else throw ex | .internal id _ => if (← read).errToSorry && id == abortTermExceptionId then exceptionToSorry ex expectedType? else if id == unsupportedSyntaxExceptionId then throw ex -- to outer try else if catchExPostpone && id == postponeExceptionId then /- If `elab` threw `Exception.postpone`, we reset any state modifications. For example, we want to make sure pending synthetic metavariables created by `elab` before it threw `Exception.postpone` are discarded. Note that we are also discarding the messages created by `elab`. For example, consider the expression. `((f.x a1).x a2).x a3` Now, suppose the elaboration of `f.x a1` produces an `Exception.postpone`. Then, a new metavariable `?m` is created. Then, `?m.x a2` also throws `Exception.postpone` because the type of `?m` is not yet known. Then another, metavariable `?n` is created, and finally `?n.x a3` also throws `Exception.postpone`. If we did not restore the state, we would keep "dead" metavariables `?m` and `?n` on the pending synthetic metavariable list. This is wasteful because when we resume the elaboration of `((f.x a1).x a2).x a3`, we start it from scratch and new metavariables are created for the nested functions. -/ s.restore postponeElabTermCore stx expectedType? else throw ex) catch ex => match ex with | .internal id _ => if id == unsupportedSyntaxExceptionId then s.restore -- also removes the info tree created above elabUsingElabFnsAux s stx expectedType? catchExPostpone elabFns else throw ex | _ => throw ex private def elabUsingElabFns (stx : Syntax) (expectedType? : Option Expr) (catchExPostpone : Bool) : TermElabM Expr := do let s ← saveState let k := stx.getKind match termElabAttribute.getEntries (← getEnv) k with | [] => throwError "elaboration function for '{k}' has not been implemented{indentD stx}" | elabFns => elabUsingElabFnsAux s stx expectedType? catchExPostpone elabFns instance : MonadMacroAdapter TermElabM where getCurrMacroScope := getCurrMacroScope getNextMacroScope := return (← getThe Core.State).nextMacroScope setNextMacroScope next := modifyThe Core.State fun s => { s with nextMacroScope := next } private def isExplicit (stx : Syntax) : Bool := match stx with | `(@$_) => true | _ => false private def isExplicitApp (stx : Syntax) : Bool := stx.getKind == ``Lean.Parser.Term.app && isExplicit stx[0] /-- Return true if `stx` if a lambda abstraction containing a `{}` or `[]` binder annotation. Example: `fun {α} (a : α) => a` -/ private def isLambdaWithImplicit (stx : Syntax) : Bool := match stx with | `(fun $binders* => $_) => binders.raw.any fun b => b.isOfKind ``Lean.Parser.Term.implicitBinder || b.isOfKind `Lean.Parser.Term.instBinder | _ => false private partial def dropTermParens : Syntax → Syntax := fun stx => match stx with | `(($stx)) => dropTermParens stx | _ => stx private def isHole (stx : Syntax) : Bool := match stx with | `(_) => true | `(? _) => true | `(? $_:ident) => true | _ => false private def isTacticBlock (stx : Syntax) : Bool := match stx with | `(by $_:tacticSeq) => true | _ => false private def isNoImplicitLambda (stx : Syntax) : Bool := match stx with | `(no_implicit_lambda% $_:term) => true | _ => false private def isTypeAscription (stx : Syntax) : Bool := match stx with | `(($_ : $_)) => true | _ => false def hasNoImplicitLambdaAnnotation (type : Expr) : Bool := annotation? `noImplicitLambda type |>.isSome def mkNoImplicitLambdaAnnotation (type : Expr) : Expr := if hasNoImplicitLambdaAnnotation type then type else mkAnnotation `noImplicitLambda type /-- Block usage of implicit lambdas if `stx` is `@f` or `@f arg1 ...` or `fun` with an implicit binder annotation. -/ def blockImplicitLambda (stx : Syntax) : Bool := let stx := dropTermParens stx -- TODO: make it extensible isExplicit stx || isExplicitApp stx || isLambdaWithImplicit stx || isHole stx || isTacticBlock stx || isNoImplicitLambda stx || isTypeAscription stx /-- Return normalized expected type if it is of the form `{a : α} → β` or `[a : α] → β` and `blockImplicitLambda stx` is not true, else return `none`. Remark: implicit lambdas are not triggered by the strict implicit binder annotation `{{a : α}} → β` -/ private def useImplicitLambda? (stx : Syntax) (expectedType? : Option Expr) : TermElabM (Option Expr) := if blockImplicitLambda stx then return none else match expectedType? with | some expectedType => do if hasNoImplicitLambdaAnnotation expectedType then return none else let expectedType ← whnfForall expectedType match expectedType with | .forallE _ _ _ c => if c.isImplicit || c.isInstImplicit then return some expectedType else return none | _ => return none | _ => return none private def decorateErrorMessageWithLambdaImplicitVars (ex : Exception) (impFVars : Array Expr) : TermElabM Exception := do match ex with | .error ref msg => if impFVars.isEmpty then return Exception.error ref msg else let mut msg := m!"{msg}\nthe following variables have been introduced by the implicit lambda feature" for impFVar in impFVars do let auxMsg := m!"{impFVar} : {← inferType impFVar}" let auxMsg ← addMessageContext auxMsg msg := m!"{msg}{indentD auxMsg}" msg := m!"{msg}\nyou can disable implict lambdas using `@` or writing a lambda expression with `\{}` or `[]` binder annotations." return Exception.error ref msg | _ => return ex private def elabImplicitLambdaAux (stx : Syntax) (catchExPostpone : Bool) (expectedType : Expr) (impFVars : Array Expr) : TermElabM Expr := do let body ← elabUsingElabFns stx expectedType catchExPostpone try let body ← ensureHasType expectedType body let r ← mkLambdaFVars impFVars body trace[Elab.implicitForall] r return r catch ex => throw (← decorateErrorMessageWithLambdaImplicitVars ex impFVars) private partial def elabImplicitLambda (stx : Syntax) (catchExPostpone : Bool) (type : Expr) : TermElabM Expr := loop type #[] where loop | type@(.forallE n d b c), fvars => if c.isExplicit then elabImplicitLambdaAux stx catchExPostpone type fvars else withFreshMacroScope do let n ← MonadQuotation.addMacroScope n withLocalDecl n c d fun fvar => do let type ← whnfForall (b.instantiate1 fvar) loop type (fvars.push fvar) | type, fvars => elabImplicitLambdaAux stx catchExPostpone type fvars /-- Main loop for `elabTerm` -/ private partial def elabTermAux (expectedType? : Option Expr) (catchExPostpone : Bool) (implicitLambda : Bool) : Syntax → TermElabM Expr | .missing => mkSyntheticSorryFor expectedType? | stx => withFreshMacroScope <| withIncRecDepth do trace[Elab.step] "expected type: {expectedType?}, term\n{stx}" checkMaxHeartbeats "elaborator" withNestedTraces do let env ← getEnv match (← liftMacroM (expandMacroImpl? env stx)) with | some (decl, stxNew?) => let stxNew ← liftMacroM <| liftExcept stxNew? withInfoContext' stx (mkInfo := mkTermInfo decl (expectedType? := expectedType?) stx) <| withMacroExpansion stx stxNew <| withRef stxNew <| elabTermAux expectedType? catchExPostpone implicitLambda stxNew | _ => let implicit? ← if implicitLambda && (← read).implicitLambda then useImplicitLambda? stx expectedType? else pure none match implicit? with | some expectedType => elabImplicitLambda stx catchExPostpone expectedType | none => elabUsingElabFns stx expectedType? catchExPostpone /-- Store in the `InfoTree` that `e` is a "dot"-completion target. -/ def addDotCompletionInfo (stx : Syntax) (e : Expr) (expectedType? : Option Expr) (field? : Option Syntax := none) : TermElabM Unit := do addCompletionInfo <| CompletionInfo.dot { expr := e, stx, lctx := (← getLCtx), elaborator := .anonymous, expectedType? } (field? := field?) (expectedType? := expectedType?) /-- Main function for elaborating terms. It extracts the elaboration methods from the environment using the node kind. Recall that the environment has a mapping from `SyntaxNodeKind` to `TermElab` methods. It creates a fresh macro scope for executing the elaboration method. All unlogged trace messages produced by the elaboration method are logged using the position information at `stx`. If the elaboration method throws an `Exception.error` and `errToSorry == true`, the error is logged and a synthetic sorry expression is returned. If the elaboration throws `Exception.postpone` and `catchExPostpone == true`, a new synthetic metavariable of kind `SyntheticMVarKind.postponed` is created, registered, and returned. The option `catchExPostpone == false` is used to implement `resumeElabTerm` to prevent the creation of another synthetic metavariable when resuming the elaboration. If `implicitLambda == true`, then disable implicit lambdas feature for the given syntax, but not for its subterms. We use this flag to implement, for example, the `@` modifier. If `Context.implicitLambda == false`, then this parameter has no effect. -/ def elabTerm (stx : Syntax) (expectedType? : Option Expr) (catchExPostpone := true) (implicitLambda := true) : TermElabM Expr := withRef stx <| elabTermAux expectedType? catchExPostpone implicitLambda stx def elabTermEnsuringType (stx : Syntax) (expectedType? : Option Expr) (catchExPostpone := true) (implicitLambda := true) (errorMsgHeader? : Option String := none) : TermElabM Expr := do let e ← elabTerm stx expectedType? catchExPostpone implicitLambda withRef stx <| ensureHasType expectedType? e errorMsgHeader? /-- Execute `x` and return `some` if no new errors were recorded or exceptions was thrown. Otherwise, return `none` -/ def commitIfNoErrors? (x : TermElabM α) : TermElabM (Option α) := do let saved ← saveState Core.resetMessageLog try let a ← x if (← MonadLog.hasErrors) then restoreState saved return none else Core.setMessageLog (saved.meta.core.messages ++ (← Core.getMessageLog)) return a catch _ => restoreState saved return none /-- Adapt a syntax transformation to a regular, term-producing elaborator. -/ def adaptExpander (exp : Syntax → TermElabM Syntax) : TermElab := fun stx expectedType? => do let stx' ← exp stx withMacroExpansion stx stx' <| elabTerm stx' expectedType? /-- Create a new metavariable with the given type, and try to synthesize it. It type class resolution cannot be executed (e.g., it is stuck because of metavariables in `type`), register metavariable as a pending one. -/ def mkInstMVar (type : Expr) : TermElabM Expr := do let mvar ← mkFreshExprMVar type MetavarKind.synthetic let mvarId := mvar.mvarId! unless (← synthesizeInstMVarCore mvarId) do registerSyntheticMVarWithCurrRef mvarId SyntheticMVarKind.typeClass return mvar /-- Relevant definitions: ``` class CoeSort (α : Sort u) (β : outParam (Sort v)) ``` -/ private def tryCoeSort (α : Expr) (a : Expr) : TermElabM Expr := do let β ← mkFreshTypeMVar let u ← getLevel α let v ← getLevel β let coeSortInstType := mkAppN (Lean.mkConst ``CoeSort [u, v]) #[α, β] let mvar ← mkFreshExprMVar coeSortInstType .synthetic let mvarId := mvar.mvarId! try withoutMacroStackAtErr do if (← synthesizeCoeInstMVarCore mvarId) then let result ← expandCoe <| mkAppN (Lean.mkConst ``CoeSort.coe [u, v]) #[α, β, mvar, a] unless (← isType result) do throwError "failed to coerce{indentExpr a}\nto a type, after applying `CoeSort.coe`, result is still not a type{indentExpr result}\nthis is often due to incorrect `CoeSort` instances, the synthesized value for{indentExpr coeSortInstType}\nwas{indentExpr mvar}" return result else throwError "type expected" catch | .error _ msg => throwError "type expected\n{msg}" | _ => throwError "type expected" /-- Make sure `e` is a type by inferring its type and making sure it is a `Expr.sort` or is unifiable with `Expr.sort`, or can be coerced into one. -/ def ensureType (e : Expr) : TermElabM Expr := do if (← isType e) then return e else let eType ← inferType e let u ← mkFreshLevelMVar if (← isDefEq eType (mkSort u)) then return e else tryCoeSort eType e /-- Elaborate `stx` and ensure result is a type. -/ def elabType (stx : Syntax) : TermElabM Expr := do let u ← mkFreshLevelMVar let type ← elabTerm stx (mkSort u) withRef stx <| ensureType type /-- Enable auto-bound implicits, and execute `k` while catching auto bound implicit exceptions. When an exception is caught, a new local declaration is created, registered, and `k` is tried to be executed again. -/ partial def withAutoBoundImplicit (k : TermElabM α) : TermElabM α := do let flag := autoImplicit.get (← getOptions) if flag then withReader (fun ctx => { ctx with autoBoundImplicit := flag, autoBoundImplicits := {} }) do let rec loop (s : SavedState) : TermElabM α := do try k catch | ex => match isAutoBoundImplicitLocalException? ex with | some n => -- Restore state, declare `n`, and try again s.restore withLocalDecl n .implicit (← mkFreshTypeMVar) fun x => withReader (fun ctx => { ctx with autoBoundImplicits := ctx.autoBoundImplicits.push x } ) do loop (← saveState) | none => throw ex loop (← saveState) else k def withoutAutoBoundImplicit (k : TermElabM α) : TermElabM α := do withReader (fun ctx => { ctx with autoBoundImplicit := false, autoBoundImplicits := {} }) k partial def withAutoBoundImplicitForbiddenPred (p : Name → Bool) (x : TermElabM α) : TermElabM α := do withReader (fun ctx => { ctx with autoBoundImplicitForbidden := fun n => p n || ctx.autoBoundImplicitForbidden n }) x /-- Collect unassigned metavariables in `type` that are not already in `init` and not satisfying `except`. -/ partial def collectUnassignedMVars (type : Expr) (init : Array Expr := #[]) (except : MVarId → Bool := fun _ => false) : TermElabM (Array Expr) := do let mvarIds ← getMVars type if mvarIds.isEmpty then return init else go mvarIds.toList init where go (mvarIds : List MVarId) (result : Array Expr) : TermElabM (Array Expr) := do match mvarIds with | [] => return result | mvarId :: mvarIds => do if (← mvarId.isAssigned) then go mvarIds result else if result.contains (mkMVar mvarId) || except mvarId then go mvarIds result else let mvarType := (← getMVarDecl mvarId).type let mvarIdsNew ← getMVars mvarType let mvarIdsNew := mvarIdsNew.filter fun mvarId => !result.contains (mkMVar mvarId) if mvarIdsNew.isEmpty then go mvarIds (result.push (mkMVar mvarId)) else go (mvarIdsNew.toList ++ mvarId :: mvarIds) result /-- Return `autoBoundImplicits ++ xs` This methoid throws an error if a variable in `autoBoundImplicits` depends on some `x` in `xs`. The `autoBoundImplicits` may contain free variables created by the auto-implicit feature, and unassigned free variables. It avoids the hack used at `autoBoundImplicitsOld`. Remark: we cannot simply replace every occurrence of `addAutoBoundImplicitsOld` with this one because a particular use-case may not be able to handle the metavariables in the array being given to `k`. -/ def addAutoBoundImplicits (xs : Array Expr) : TermElabM (Array Expr) := do let autos := (← read).autoBoundImplicits go autos.toList #[] where go (todo : List Expr) (autos : Array Expr) : TermElabM (Array Expr) := do match todo with | [] => for auto in autos do if auto.isFVar then let localDecl ← auto.fvarId!.getDecl for x in xs do if (← localDeclDependsOn localDecl x.fvarId!) then throwError "invalid auto implicit argument '{auto}', it depends on explicitly provided argument '{x}'" return autos ++ xs | auto :: todo => let autos ← collectUnassignedMVars (← inferType auto) autos go todo (autos.push auto) /-- Similar to `autoBoundImplicits`, but immediately if the resulting array of expressions contains metavariables, it immediately use `mkForallFVars` + `forallBoundedTelescope` to convert them into free variables. The type `type` is modified during the process if type depends on `xs`. We use this method to simplify the conversion of code using `autoBoundImplicitsOld` to `autoBoundImplicits` -/ def addAutoBoundImplicits' (xs : Array Expr) (type : Expr) (k : Array Expr → Expr → TermElabM α) : TermElabM α := do let xs ← addAutoBoundImplicits xs if xs.all (·.isFVar) then k xs type else forallBoundedTelescope (← mkForallFVars xs type) xs.size fun xs type => k xs type def mkAuxName (suffix : Name) : TermElabM Name := do match (← read).declName? with | none => throwError "auxiliary declaration cannot be created when declaration name is not available" | some declName => Lean.mkAuxName (declName ++ suffix) 1 builtin_initialize registerTraceClass `Elab.letrec /-- Return true if mvarId is an auxiliary metavariable created for compiling `let rec` or it is delayed assigned to one. -/ def isLetRecAuxMVar (mvarId : MVarId) : TermElabM Bool := do trace[Elab.letrec] "mvarId: {mkMVar mvarId} letrecMVars: {(← get).letRecsToLift.map (mkMVar $ ·.mvarId)}" let mvarId ← getDelayedMVarRoot mvarId trace[Elab.letrec] "mvarId root: {mkMVar mvarId}" return (← get).letRecsToLift.any (·.mvarId == mvarId) def resolveLocalName (n : Name) : TermElabM (Option (Expr × List String)) := do let lctx ← getLCtx let auxDeclToFullName := (← read).auxDeclToFullName let currNamespace ← getCurrNamespace let view := extractMacroScopes n /- Simple case. "Match" function for regular local declarations. -/ let matchLocaDecl? (localDecl : LocalDecl) (givenName : Name) : Option LocalDecl := do guard (localDecl.userName == givenName) return localDecl /- "Match" function for auxiliary declarations that correspond to recursive definitions being defined. This function is used in the first-pass. Note that we do not check for `localDecl.userName == giveName` in this pass as we do for regular local declarations. Reason: consider the following example ``` mutual inductive Foo | somefoo : Foo | bar : Bar → Foo → Foo inductive Bar | somebar : Bar| foobar : Foo → Bar → Bar end mutual private def Foo.toString : Foo → String | Foo.somefoo => go 2 ++ toString.go 2 ++ Foo.toString.go 2 | Foo.bar b f => toString f ++ Bar.toString b where go (x : Nat) := s!"foo {x}" private def _root_.Ex2.Bar.toString : Bar → String | Bar.somebar => "bar" | Bar.foobar f b => Foo.toString f ++ Bar.toString b end ``` In the example above, we have two local declarations named `toString` in the local context, and we want the `toString f` to be resolved to `Foo.toString f` -/ let matchAuxRecDecl? (localDecl : LocalDecl) (fullDeclName : Name) (givenNameView : MacroScopesView) : Option LocalDecl := do let fullDeclView := extractMacroScopes fullDeclName /- First cleanup private name annotations -/ let fullDeclView := { fullDeclView with name := (privateToUserName? fullDeclView.name).getD fullDeclView.name } let fullDeclName := fullDeclView.review let localDeclNameView := extractMacroScopes localDecl.userName /- If the current namespace is a prefix of the full declaration name, we use a relaxed matching test where we must satisfy the following conditions - The local declaration is a suffix of the given name. - The given name is a suffix of the full declaration. Recall the `let rec`/`where` declaration naming convention. For example, suppose we have ``` def Foo.Bla.f ... := ... go ... where go ... := ... ``` The current namespace is `Foo.Bla`, and the full name for `go` is `Foo.Bla.f.g`, but we want to refer to it using just `go`. It is also accepted to refer to it using `f.go`, `Bla.f.go`, etc. -/ if currNamespace.isPrefixOf fullDeclName then /- Relaxed mode that allows us to access `let rec` declarations using shorter names -/ guard (localDeclNameView.isSuffixOf givenNameView) guard (givenNameView.isSuffixOf fullDeclView) return localDecl else /- It is the standard algorithm we using at `resolveGlobalName` for processing namespaces. The current solution also has a limitation when using `def _root_` in a mutual block. The non `def _root_` declarations may update the namespace. See the following example: ``` mutual def Foo.f ... := ... def _root_.g ... := ... let rec h := ... ... end ``` `def Foo.f` updates the namespace. Then, even when processing `def _root_.g ...` the condition `currNamespace.isPrefixOf fullDeclName` does not hold. This is not a big problem because we are planning to modify how we handle the mutual block in the future. Note that we don't check for `localDecl.userName == givenName` here. -/ let rec go (ns : Name) : Option LocalDecl := do if { givenNameView with name := ns ++ givenNameView.name }.review == fullDeclName then return localDecl match ns with | .str pre .. => go pre | _ => failure return (← go currNamespace) /- Traverse the local context backwards looking for match `givenNameView`. If `skipAuxDecl` we ignore `auxDecl` local declarations. -/ let findLocalDecl? (givenNameView : MacroScopesView) (skipAuxDecl : Bool) : Option LocalDecl := let givenName := givenNameView.review let localDecl? := lctx.decls.findSomeRev? fun localDecl? => do let localDecl ← localDecl? if localDecl.binderInfo == .auxDecl then guard (not skipAuxDecl) if let some fullDeclName := auxDeclToFullName.find? localDecl.fvarId then matchAuxRecDecl? localDecl fullDeclName givenNameView else matchLocaDecl? localDecl givenName else matchLocaDecl? localDecl givenName if localDecl?.isSome || skipAuxDecl then localDecl? else -- Search auxDecls again trying an exact match of the given name lctx.decls.findSomeRev? fun localDecl? => do let localDecl ← localDecl? guard (localDecl.binderInfo == .auxDecl) matchLocaDecl? localDecl givenName let rec loop (n : Name) (projs : List String) := let givenNameView := { view with name := n } /- We do not consider dot notation for local decls corresponding to recursive functions being defined. The following example would not be elaborated correctly without this case. ``` def foo.aux := 1 def foo : Nat → Nat | n => foo.aux -- should not be interpreted as `(foo).bar` ``` -/ match findLocalDecl? givenNameView (skipAuxDecl := not projs.isEmpty) with | some decl => some (decl.toExpr, projs) | none => match n with | .str pre s => loop pre (s::projs) | _ => none return loop view.name [] /-- Return true iff `stx` is a `Syntax.ident`, and it is a local variable. -/ def isLocalIdent? (stx : Syntax) : TermElabM (Option Expr) := match stx with | Syntax.ident _ _ val _ => do let r? ← resolveLocalName val match r? with | some (fvar, []) => return some fvar | _ => return none | _ => return none /-- Create an `Expr.const` using the given name and explicit levels. Remark: fresh universe metavariables are created if the constant has more universe parameters than `explicitLevels`. -/ def mkConst (constName : Name) (explicitLevels : List Level := []) : TermElabM Expr := do let cinfo ← getConstInfo constName if explicitLevels.length > cinfo.levelParams.length then throwError "too many explicit universe levels for '{constName}'" else let numMissingLevels := cinfo.levelParams.length - explicitLevels.length let us ← mkFreshLevelMVars numMissingLevels return Lean.mkConst constName (explicitLevels ++ us) private def mkConsts (candidates : List (Name × List String)) (explicitLevels : List Level) : TermElabM (List (Expr × List String)) := do candidates.foldlM (init := []) fun result (declName, projs) => do -- TODO: better suppor for `mkConst` failure. We may want to cache the failures, and report them if all candidates fail. checkDeprecated declName -- TODO: check is occurring too early if there are multiple alternatives. Fix if it is not ok in practice let const ← mkConst declName explicitLevels return (const, projs) :: result def resolveName (stx : Syntax) (n : Name) (preresolved : List (Name × List String)) (explicitLevels : List Level) (expectedType? : Option Expr := none) : TermElabM (List (Expr × List String)) := do addCompletionInfo <| CompletionInfo.id stx stx.getId (danglingDot := false) (← getLCtx) expectedType? if let some (e, projs) ← resolveLocalName n then unless explicitLevels.isEmpty do throwError "invalid use of explicit universe parameters, '{e}' is a local" return [(e, projs)] -- check for section variable capture by a quotation let ctx ← read if let some (e, projs) := preresolved.findSome? fun (n, projs) => ctx.sectionFVars.find? n |>.map (·, projs) then return [(e, projs)] -- section variables should shadow global decls if preresolved.isEmpty then process (← resolveGlobalName n) else process preresolved where process (candidates : List (Name × List String)) : TermElabM (List (Expr × List String)) := do if candidates.isEmpty then if (← read).autoBoundImplicit && !(← read).autoBoundImplicitForbidden n && isValidAutoBoundImplicitName n (relaxedAutoImplicit.get (← getOptions)) then throwAutoBoundImplicitLocal n else throwError "unknown identifier '{Lean.mkConst n}'" mkConsts candidates explicitLevels /-- Similar to `resolveName`, but creates identifiers for the main part and each projection with position information derived from `ident`. Example: Assume resolveName `v.head.bla.boo` produces `(v.head, ["bla", "boo"])`, then this method produces `(v.head, id, [f₁, f₂])` where `id` is an identifier for `v.head`, and `f₁` and `f₂` are identifiers for fields `"bla"` and `"boo"`. -/ def resolveName' (ident : Syntax) (explicitLevels : List Level) (expectedType? : Option Expr := none) : TermElabM (List (Expr × Syntax × List Syntax)) := do match ident with | .ident _ _ n preresolved => let r ← resolveName ident n preresolved explicitLevels expectedType? r.mapM fun (c, fields) => do let ids := ident.identComponents (nFields? := fields.length) return (c, ids.head!, ids.tail!) | _ => throwError "identifier expected" def resolveId? (stx : Syntax) (kind := "term") (withInfo := false) : TermElabM (Option Expr) := match stx with | .ident _ _ val preresolved => do let rs ← try resolveName stx val preresolved [] catch _ => pure [] let rs := rs.filter fun ⟨_, projs⟩ => projs.isEmpty let fs := rs.map fun (f, _) => f match fs with | [] => return none | [f] => let f ← if withInfo then addTermInfo stx f else pure f return some f | _ => throwError "ambiguous {kind}, use fully qualified name, possible interpretations {fs}" | _ => throwError "identifier expected" def TermElabM.run (x : TermElabM α) (ctx : Context := {}) (s : State := {}) : MetaM (α × State) := withConfig setElabConfig (x ctx |>.run s) @[inline] def TermElabM.run' (x : TermElabM α) (ctx : Context := {}) (s : State := {}) : MetaM α := (·.1) <$> x.run ctx s def TermElabM.toIO (x : TermElabM α) (ctxCore : Core.Context) (sCore : Core.State) (ctxMeta : Meta.Context) (sMeta : Meta.State) (ctx : Context) (s : State) : IO (α × Core.State × Meta.State × State) := do let ((a, s), sCore, sMeta) ← (x.run ctx s).toIO ctxCore sCore ctxMeta sMeta return (a, sCore, sMeta, s) instance [MetaEval α] : MetaEval (TermElabM α) where eval env opts x _ := do let x : TermElabM α := do try x finally (← Core.getMessageLog).forM fun msg => do IO.println (← msg.toString) MetaEval.eval env opts (hideUnit := true) <| x.run' {} /-- Execute `x` and then tries to solve pending universe constraints. Note that, stuck constraints will not be discarded. -/ def universeConstraintsCheckpoint (x : TermElabM α) : TermElabM α := do let a ← x discard <| processPostponed (mayPostpone := true) (exceptionOnFailure := true) return a def expandDeclId (currNamespace : Name) (currLevelNames : List Name) (declId : Syntax) (modifiers : Modifiers) : TermElabM ExpandDeclIdResult := do let r ← Elab.expandDeclId currNamespace currLevelNames declId modifiers if (← read).sectionVars.contains r.shortName then throwError "invalid declaration name '{r.shortName}', there is a section variable with the same name" return r /-- Helper function for "embedding" an `Expr` in `Syntax`. It creates a named hole `?m` and immediately assigns `e` to it. Examples: ```lean let e := mkConst ``Nat.zero `(Nat.succ $(← exprToSyntax e)) ``` -/ def exprToSyntax (e : Expr) : TermElabM Term := withFreshMacroScope do let result ← `(?m) let eType ← inferType e let mvar ← elabTerm result eType mvar.mvarId!.assign e return result end Term open Term in def withoutModifyingStateWithInfoAndMessages [MonadControlT TermElabM m] [Monad m] (x : m α) : m α := do controlAt TermElabM fun runInBase => withoutModifyingStateWithInfoAndMessagesImpl <| runInBase x builtin_initialize registerTraceClass `Elab.postpone registerTraceClass `Elab.coe registerTraceClass `Elab.debug export Term (TermElabM) end Lean.Elab
ea7f7c64a95c37594fb3e6d160dbb8a46e1e010d
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/tactic/lint/misc.lean
3aefc3d101946f7bc0d8de04b8fa5bb4e64a216d
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
21,178
lean
/- Copyright (c) 2020 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Robert Y. Lewis -/ import data.bool.basic import meta.rb_map import tactic.lint.basic /-! # Various linters This file defines several small linters: - `ge_or_gt` checks that `>` and `≥` do not occur in the statement of theorems. - `dup_namespace` checks that no declaration has a duplicated namespace such as `list.list.monad`. - `unused_arguments` checks that definitions and theorems do not have unused arguments. - `doc_blame` checks that every definition has a documentation string. - `doc_blame_thm` checks that every theorem has a documentation string (not enabled by default). - `def_lemma` checks that a declaration is a lemma iff its type is a proposition. - `check_type` checks that the statement of a declaration is well-typed. - `check_univs` checks that there are no bad `max u v` universe levels. - `syn_taut` checks that declarations are not syntactic tautologies. - `unused_haves_suffices` checks that declarations produced via term mode do not have ineffectual `have` or `suffices` statements -/ open tactic expr /-! ## Linter against use of `>`/`≥` -/ /-- The names of `≥` and `>`, mostly disallowed in lemma statements -/ private meta def illegal_ge_gt : list name := [`gt, `ge] set_option eqn_compiler.max_steps 20000 /-- Checks whether `≥` and `>` occurs in an illegal way in the expression. The main ways we legally use these orderings are: - `f (≥)` - `∃ x ≥ t, b`. This corresponds to the expression `@Exists α (fun (x : α), (@Exists (x > t) (λ (H : x > t), b)))` This function returns `tt` when it finds `ge`/`gt`, except in the following patterns (which are the same for `gt`): - `f (@ge _ _)` - `f (&0 ≥ y) (λ x : t, b)` - `λ H : &0 ≥ t, b` Here `&0` is the 0-th de Bruijn variable. -/ private meta def contains_illegal_ge_gt : expr → bool | (const nm us) := if nm ∈ illegal_ge_gt then tt else ff | (app f e@(app (app (const nm us) tp) tc)) := contains_illegal_ge_gt f || if nm ∈ illegal_ge_gt then ff else contains_illegal_ge_gt e | (app (app custom_binder (app (app (app (app (const nm us) tp) tc) (var 0)) t)) e@(lam var_name bi var_type body)) := contains_illegal_ge_gt e || if nm ∈ illegal_ge_gt then ff else contains_illegal_ge_gt e | (app f x) := contains_illegal_ge_gt f || contains_illegal_ge_gt x | (lam `H bi type@(app (app (app (app (const nm us) tp) tc) (var 0)) t) body) := contains_illegal_ge_gt body || if nm ∈ illegal_ge_gt then ff else contains_illegal_ge_gt type | (lam var_name bi var_type body) := contains_illegal_ge_gt var_type || contains_illegal_ge_gt body | (pi `H bi type@(app (app (app (app (const nm us) tp) tc) (var 0)) t) body) := contains_illegal_ge_gt body || if nm ∈ illegal_ge_gt then ff else contains_illegal_ge_gt type | (pi var_name bi var_type body) := contains_illegal_ge_gt var_type || contains_illegal_ge_gt body | (elet var_name type assignment body) := contains_illegal_ge_gt type || contains_illegal_ge_gt assignment || contains_illegal_ge_gt body | _ := ff /-- Checks whether a `>`/`≥` is used in the statement of `d`. It first does a quick check to see if there is any `≥` or `>` in the statement, and then does a slower check whether the occurrences of `≥` and `>` are allowed. Currently it checks only the conclusion of the declaration, to eliminate false positive from binders such as `∀ ε > 0, ...` -/ private meta def ge_or_gt_in_statement (d : declaration) : tactic (option string) := return $ if d.type.contains_constant (λ n, n ∈ illegal_ge_gt) && contains_illegal_ge_gt d.type then some "the type contains ≥/>. Use ≤/< instead." else none -- TODO: the commented out code also checks for classicality in statements, but needs fixing -- TODO: this probably needs to also check whether the argument is a variable or @eq <var> _ _ -- meta def illegal_constants_in_statement (d : declaration) : tactic (option string) := -- return $ if d.type.contains_constant (λ n, (n.get_prefix = `classical ∧ -- n.last ∈ ["prop_decidable", "dec", "dec_rel", "dec_eq"]) ∨ n ∈ [`gt, `ge]) -- then -- let illegal1 := [`classical.prop_decidable, `classical.dec, `classical.dec_rel, -- `classical.dec_eq], -- illegal2 := [`gt, `ge], -- occur1 := illegal1.filter (λ n, d.type.contains_constant (eq n)), -- occur2 := illegal2.filter (λ n, d.type.contains_constant (eq n)) in -- some $ sformat!"the type contains the following declarations: {occur1 ++ occur2}." ++ -- (if occur1 = [] then "" else " Add decidability type-class arguments instead.") ++ -- (if occur2 = [] then "" else " Use ≤/< instead.") -- else none /-- A linter for checking whether illegal constants (≥, >) appear in a declaration's type. -/ @[linter] meta def linter.ge_or_gt : linter := { test := ge_or_gt_in_statement, auto_decls := ff, no_errors_found := "Not using ≥/> in declarations.", errors_found := "The following declarations use ≥/>, probably in a way where we would prefer to use ≤/< instead. See note [nolint_ge] for more information.", is_fast := ff } /-- Currently, the linter forbids the use of `>` and `≥` in definitions and statements, as they cause problems in rewrites. They are still allowed in statements such as `bounded (≥)` or `∀ ε > 0` or `⨆ n ≥ m`, and the linter allows that. If you write a pattern where you bind two or more variables, like `∃ n m > 0`, the linter will flag this as illegal, but it is also allowed. In this case, add the line ``` @[nolint ge_or_gt] -- see Note [nolint_ge] ``` -/ library_note "nolint_ge" /-! ## Linter for duplicate namespaces -/ /-- Checks whether a declaration has a namespace twice consecutively in its name -/ private meta def dup_namespace (d : declaration) : tactic (option string) := is_instance d.to_name >>= λ is_inst, return $ let nm := d.to_name.components in if nm.chain' (≠) ∨ is_inst then none else let s := (nm.find $ λ n, nm.count n ≥ 2).iget.to_string in some $ "The namespace `" ++ s ++ "` is duplicated in the name" /-- A linter for checking whether a declaration has a namespace twice consecutively in its name. -/ @[linter] meta def linter.dup_namespace : linter := { test := dup_namespace, auto_decls := ff, no_errors_found := "No declarations have a duplicate namespace.", errors_found := "DUPLICATED NAMESPACES IN NAME:" } attribute [nolint dup_namespace] iff.iff /-! ## Linter for unused arguments -/ /-- Auxiliary definition for `check_unused_arguments` -/ private meta def check_unused_arguments_aux : list ℕ → ℕ → ℕ → expr → list ℕ | l n n_max e := if n > n_max then l else if ¬ is_lambda e ∧ ¬ is_pi e then l else let b := e.binding_body in let l' := if b.has_var_idx 0 then l else n :: l in check_unused_arguments_aux l' (n+1) n_max b /-- Check which arguments of a declaration are not used. Prints a list of natural numbers corresponding to which arguments are not used (e.g. this outputs [1, 4] if the first and fourth arguments are unused). Checks both the type and the value of `d` for whether the argument is used (in rare cases an argument is used in the type but not in the value). We return [] if the declaration was automatically generated. We print arguments that are larger than the arity of the type of the declaration (without unfolding definitions). -/ meta def check_unused_arguments (d : declaration) : option (list ℕ) := let l := check_unused_arguments_aux [] 1 d.type.pi_arity d.value in if l = [] then none else let l2 := check_unused_arguments_aux [] 1 d.type.pi_arity d.type in (l.filter $ λ n, n ∈ l2).reverse /-- Check for unused arguments, and print them with their position, variable name, type and whether the argument is a duplicate. See also `check_unused_arguments`. This tactic additionally filters out all unused arguments of type `parse _`. We skip all declarations that contain `sorry` in their value. -/ private meta def unused_arguments (d : declaration) : tactic (option string) := do ff ← d.to_name.contains_sorry | return none, let ns := check_unused_arguments d, tt ← return ns.is_some | return none, let ns := ns.iget, (ds, _) ← get_pi_binders d.type, let ns := ns.map (λ n, (n, (ds.nth $ n - 1).iget)), let ns := ns.filter (λ x, x.2.type.get_app_fn ≠ const `interactive.parse []), ff ← return ns.empty | return none, ds' ← ds.mmap pp, ns ← ns.mmap (λ ⟨n, b⟩, (λ s, to_fmt "argument " ++ to_fmt n ++ ": " ++ s ++ (if ds.countp (λ b', b.type = b'.type) ≥ 2 then " (duplicate)" else "")) <$> pp b), return $ some $ ns.to_string_aux tt /-- A linter object for checking for unused arguments. This is in the default linter set. -/ @[linter] meta def linter.unused_arguments : linter := { test := unused_arguments, auto_decls := ff, no_errors_found := "No unused arguments.", errors_found := "UNUSED ARGUMENTS." } attribute [nolint unused_arguments] imp_intro /-! ## Linter for documentation strings -/ /-- Reports definitions and constants that are missing doc strings -/ private meta def doc_blame_report_defn : declaration → tactic (option string) | (declaration.defn n _ _ _ _ _) := doc_string n >> return none <|> return "def missing doc string" | (declaration.cnst n _ _ _) := doc_string n >> return none <|> return "constant missing doc string" | _ := return none /-- Reports definitions and constants that are missing doc strings -/ private meta def doc_blame_report_thm : declaration → tactic (option string) | (declaration.thm n _ _ _) := doc_string n >> return none <|> return "theorem missing doc string" | _ := return none /-- A linter for checking definition doc strings -/ @[linter] meta def linter.doc_blame : linter := { test := λ d, mcond (bnot <$> has_attribute' `instance d.to_name) (doc_blame_report_defn d) (return none), auto_decls := ff, no_errors_found := "No definitions are missing documentation.", errors_found := "DEFINITIONS ARE MISSING DOCUMENTATION STRINGS:" } /-- A linter for checking theorem doc strings. This is not in the default linter set. -/ meta def linter.doc_blame_thm : linter := { test := doc_blame_report_thm, auto_decls := ff, no_errors_found := "No theorems are missing documentation.", errors_found := "THEOREMS ARE MISSING DOCUMENTATION STRINGS:", is_fast := ff } /-! ## Linter for correct usage of `lemma`/`def` -/ /-- Checks whether the correct declaration constructor (definition or theorem) by comparing it to its sort. Instances will not be printed. This test is not very quick: maybe we can speed-up testing that something is a proposition? This takes almost all of the execution time. -/ private meta def incorrect_def_lemma (d : declaration) : tactic (option string) := if d.is_constant ∨ d.is_axiom then return none else do is_instance_d ← is_instance d.to_name, if is_instance_d then return none else do -- the following seems to be a little quicker than `is_prop d.type`. expr.sort n ← infer_type d.type, is_pattern ← has_attribute' `pattern d.to_name, return $ if d.is_theorem ↔ n = level.zero then none else if d.is_theorem then "is a lemma/theorem, should be a def" else if is_pattern then none -- declarations with `@[pattern]` are allowed to be a `def`. else "is a def, should be a lemma/theorem" /-- A linter for checking whether the correct declaration constructor (definition or theorem) has been used. -/ @[linter] meta def linter.def_lemma : linter := { test := incorrect_def_lemma, auto_decls := ff, no_errors_found := "All declarations correctly marked as def/lemma.", errors_found := "INCORRECT DEF/LEMMA:" } /-! ## Linter that checks whether declarations are well-typed -/ /-- Checks whether the statement of a declaration is well-typed. -/ meta def check_type (d : declaration) : tactic (option string) := (type_check d.type >> return none) <|> return "The statement doesn't type-check" /-- A linter for missing checking whether statements of declarations are well-typed. -/ @[linter] meta def linter.check_type : linter := { test := check_type, auto_decls := ff, no_errors_found := "The statements of all declarations type-check with default reducibility settings.", errors_found := "THE STATEMENTS OF THE FOLLOWING DECLARATIONS DO NOT TYPE-CHECK. Some definitions in the statement are marked `@[irreducible]`, which means that the statement " ++ "is now ill-formed. It is likely that these definitions were locally marked as `@[reducible]` " ++ "or `@[semireducible]`. This can especially cause problems with type class inference or " ++ "`@[simps]`.", is_fast := tt } /-! ## Linter for universe parameters -/ open native /-- `univ_params_grouped e` computes for each `level` `u` of `e` the parameters that occur in `u`, and returns the corresponding set of lists of parameters. In pseudo-mathematical form, this returns `{ { p : parameter | p ∈ u } | (u : level) ∈ e }` We use `list name` instead of `name_set`, since `name_set` does not have an order. It will ignore `nm₀._proof_i` declarations. -/ meta def expr.univ_params_grouped (e : expr) (nm₀ : name) : rb_set (list name) := e.fold mk_rb_set $ λ e n l, match e with | e@(sort u) := l.insert u.params.to_list | e@(const nm us) := if nm.get_prefix = nm₀ ∧ nm.last.starts_with "_proof_" then l else l.union $ rb_set.of_list $ us.map $ λ u : level, u.params.to_list | _ := l end /-- The good parameters are the parameters that occur somewhere in the `rb_set` as a singleton or (recursively) with only other good parameters. All other parameters in the `rb_set` are bad. -/ meta def bad_params : rb_set (list name) → list name | l := let good_levels : name_set := l.fold mk_name_set $ λ us prev, if us.length = 1 then prev.insert us.head else prev in if good_levels.empty then l.fold [] list.union else bad_params $ rb_set.of_list $ l.to_list.map $ λ us, us.filter $ λ nm, !good_levels.contains nm /-- Checks whether all universe levels `u` in the type of `d` are "good". This means that `u` either occurs in a `level` of `d` by itself, or (recursively) with only other good levels. When this fails, usually this means that there is a level `max u v`, where neither `u` nor `v` occur by themselves in a level. It is ok if *one* of `u` or `v` never occurs alone. For example, `(α : Type u) (β : Type (max u v))` is a occasionally useful method of saying that `β` lives in a higher universe level than `α`. -/ meta def check_univs (d : declaration) : tactic (option string) := do let l := d.type.univ_params_grouped d.to_name, let bad := bad_params l, if bad.empty then return none else return $ some $ "universes " ++ to_string bad ++ " only occur together." /-- A linter for checking that there are no bad `max u v` universe levels. -/ @[linter] meta def linter.check_univs : linter := { test := check_univs, auto_decls := ff, no_errors_found := "All declarations have good universe levels.", errors_found := "THE STATEMENTS OF THE FOLLOWING DECLARATIONS HAVE BAD UNIVERSE LEVELS. " ++ "This usually means that there is a `max u v` in the type where neither `u` nor `v` " ++ "occur by themselves. Solution: Find the type (or type bundled with data) that has this " ++ "universe argument and provide the universe level explicitly. If this happens in an implicit " ++ "argument of the declaration, a better solution is to move this argument to a `variables` " ++ "command (then it's not necessary to provide the universe level). It is possible that this linter gives a false positive on definitions where the value of the " ++ "definition has the universes occur separately, and the definition will usually be used with " ++ "explicit universe arguments. In this case, feel free to add `@[nolint check_univs]`.", is_fast := tt } /-! ## Linter for syntactic tautologies -/ /-- Checks whether a lemma is a declaration of the form `∀ a b ... z, e₁ = e₂` where `e₁` and `e₂` are identical exprs. We call declarations of this form syntactic tautologies. Such lemmas are (mostly) useless and sometimes introduced unintentionally when proving basic facts with rfl when elaboration results in a different term than the user intended. -/ meta def syn_taut (d : declaration) : tactic (option string) := (do (el, er) ← d.type.pi_codomain.is_eq, guardb (el =ₐ er), return $ some "LHS equals RHS syntactically") <|> return none /-- A linter for checking that declarations aren't syntactic tautologies. -/ @[linter] meta def linter.syn_taut : linter := { test := syn_taut, auto_decls := ff, -- many false positives with this enabled no_errors_found := "No declarations are syntactic tautologies.", errors_found := "THE FOLLOWING DECLARATIONS ARE SYNTACTIC TAUTOLOGIES. " ++ "This usually means that they are of the form `∀ a b ... z, e₁ = e₂` where `e₁` and `e₂` are " ++ "identical expressions. We call declarations of this form syntactic tautologies. " ++ "Such lemmas are (mostly) useless and sometimes introduced unintentionally when proving " ++ "basic facts using `rfl`, when elaboration results in a different term than the user intended. " ++ "You should check that the declaration really says what you think it does.", is_fast := tt } attribute [nolint syn_taut] rfl /-! ## Linters for ineffectual have and suffices statements in term mode -/ /-- Check if an expression contains `var 0` by folding over the expression and matching the binder depth -/ meta def expr.has_zero_var (e : expr) : bool := e.fold ff $ λ e' d res, res || match e' with | var k := k = d | _ := ff end /-- Return a list of unused have and suffices terms in an expression -/ meta def find_unused_have_suffices_macros : expr → tactic (list string) | (app a b) := (++) <$> find_unused_have_suffices_macros a <*> find_unused_have_suffices_macros b | (lam var_name bi var_type body) := find_unused_have_suffices_macros body | (pi var_name bi var_type body) := find_unused_have_suffices_macros body | (elet var_name type assignment body) := (++) <$> find_unused_have_suffices_macros assignment <*> find_unused_have_suffices_macros body | m@(macro md [l@(lam ppnm bi vt bd)]) := do -- term mode have statements are tagged with a macro -- if the macro annotation is `have then this lambda came from a term mode have statement (++) (if m.is_annotation.iget.fst = `have ∧ ¬bd.has_zero_var then ["unnecessary have " ++ ppnm.to_string ++ " : " ++ vt.to_string] else []) <$> find_unused_have_suffices_macros l | m@(macro md [app l@(lam ppnm bi vt bd) arg]) := do -- term mode suffices statements are tagged with a macro -- if the macro annotation is `suffices then this lambda came from a term mode suffices statement (++) (if m.is_annotation.iget.fst = `suffices ∧ ¬bd.has_zero_var then ["unnecessary suffices " ++ ppnm.to_string ++ " : " ++ vt.to_string] else []) <$> ((++) <$> find_unused_have_suffices_macros l <*> find_unused_have_suffices_macros arg) | (macro md l) := list.join <$> l.mmap find_unused_have_suffices_macros | _ := return [] /-- Return a list of unused have and suffices terms in a declaration -/ meta def unused_have_of_decl : declaration → tactic (list string) | (declaration.defn _ _ _ bd _ _) := find_unused_have_suffices_macros bd | (declaration.thm _ _ _ bd) := find_unused_have_suffices_macros bd.get | _ := return [] /-- Checks whether a declaration contains term mode have statements that have no effect on the resulting term. -/ meta def has_unused_haves_suffices (d : declaration) : tactic (option string) := do ns ← unused_have_of_decl d, if ns.length = 0 then return none else return (", ".intercalate (ns.map to_string)) /-- A linter for checking that declarations don't have unused term mode have statements. We do not tag this as `@[linter]` so that it is not in the default linter set as it is slow and an uncommon problem. -/ meta def linter.unused_haves_suffices : linter := { test := has_unused_haves_suffices, auto_decls := ff, no_errors_found := "No declarations have unused term mode have statements.", errors_found := "THE FOLLOWING DECLARATIONS HAVE INEFFECTUAL TERM MODE HAVE/SUFFICES BLOCKS. " ++ "In the case of `have` this is a term of the form `have h := foo, bar` where `bar` does not " ++ "refer to `foo`. Such statements have no effect on the generated proof, and can just be " ++ "replaced by `bar`, in addition to being ineffectual, they may make unnecessary assumptions " ++ "in proofs appear as if they are used. " ++ "For `suffices` this is a term of the form `suffices h : foo, proof_of_goal, proof_of_foo` where" ++ " `proof_of_goal` does not refer to `foo`. " ++ "Such statements have no effect on the generated proof, and can just be replaced by " ++ "`proof_of_goal`, in addition to being ineffectual, they may make unnecessary assumptions in " ++ "proofs appear as if they are used. ", is_fast := ff }
8f7a897bb62e7c82e8b0d8ff5fe69760e42b6173
f3849be5d845a1cb97680f0bbbe03b85518312f0
/library/init/data/option_t.lean
3f572a02c8e1311a1efdf82fff054126847d021e
[ "Apache-2.0" ]
permissive
bjoeris/lean
0ed95125d762b17bfcb54dad1f9721f953f92eeb
4e496b78d5e73545fa4f9a807155113d8e6b0561
refs/heads/master
1,611,251,218,281
1,495,337,658,000
1,495,337,658,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,092
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.interactive universes u v def option_t (m : Type u → Type v) [monad m] (α : Type u) : Type v := m (option α) @[inline] def option_t_bind {m : Type u → Type v} [monad m] {α β : Type u} (a : option_t m α) (b : α → option_t m β) : option_t m β := show m (option β), from do o ← a, match o with | none := return none | (some a) := b a end @[inline] def option_t_return {m : Type u → Type v} [monad m] {α : Type u} (a : α) : option_t m α := show m (option α), from return (some a) instance {m : Type u → Type v} [monad m] : monad (option_t m) := {pure := @option_t_return m _, bind := @option_t_bind m _, id_map := begin intros, simp [option_t_bind, function.comp], assert h : option_t_bind._match_1 option_t_return = @pure m _ (option α), { apply funext, intro s, cases s, refl, refl }, { simp [h], apply @monad.bind_pure _ (option α) m }, end, pure_bind := begin intros, simp [option_t_bind, option_t_return, monad.pure_bind] end, bind_assoc := begin intros, simp [option_t_bind, option_t_return, monad.bind_assoc], apply congr_arg, apply funext, intro x, cases x, { simp [option_t_bind, monad.pure_bind] }, { refl } end} def option_t_orelse {m : Type u → Type v} [monad m] {α : Type u} (a : option_t m α) (b : option_t m α) : option_t m α := show m (option α), from do o ← a, match o with | none := b | (some v) := return (some v) end def option_t_fail {m : Type u → Type v} [monad m] {α : Type u} : option_t m α := show m (option α), from return none instance {m : Type u → Type v} [monad m] : alternative (option_t m) := { @option_t.monad m _ with failure := @option_t_fail m _, orelse := @option_t_orelse m _ } def option_t.lift {m : Type u → Type v} [monad m] {α : Type u} (a : m α) : option_t m α := (some <$> a : m (option α))
f0ba3e321100cada7ba48a031e540c2032722140
46125763b4dbf50619e8846a1371029346f4c3db
/src/data/finsupp.lean
260c88bd60c15f16b79dca8887856465b584300e
[ "Apache-2.0" ]
permissive
thjread/mathlib
a9d97612cedc2c3101060737233df15abcdb9eb1
7cffe2520a5518bba19227a107078d83fa725ddc
refs/heads/master
1,615,637,696,376
1,583,953,063,000
1,583,953,063,000
246,680,271
0
0
Apache-2.0
1,583,960,875,000
1,583,960,875,000
null
UTF-8
Lean
false
false
67,805
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import data.finset data.set.finite algebra.big_operators algebra.module /-! # Type of functions with finite support For any type `α` and a type `β` with zero, we define the type `finsupp α β` of finitely supported functions from `α` to `β`, i.e. the functions which are zero everywhere on `α` except on a finite set. We write this in infix notation as `α →₀ β`. Functions with finite support provide the basis for the following concrete instances: * `ℕ →₀ α`: Polynomials (where `α` is a ring) * `(σ →₀ ℕ) →₀ α`: Multivariate Polynomials (again `α` is a ring, and `σ` are variable names) * `α →₀ ℕ`: Multisets * `α →₀ ℤ`: Abelian groups freely generated by `α` * `β →₀ α`: Linear combinations over `β` where `α` is the scalar ring Most of the theory assumes that the range is a commutative monoid. This gives us the big sum operator as a powerful way to construct `finsupp` elements. A general piece of advice is to not use `α →₀ β` directly, as the type class setup might not be a good fit. Defining a copy and selecting the instances that are best suited for the application works better. ## Implementation notes This file is a `noncomputable theory` and uses classical logic throughout. ## Notation This file defines `α →₀ β` as notation for `finsupp α β`. -/ noncomputable theory open_locale classical open finset variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {ι : Type*} {α₁ : Type*} {α₂ : Type*} {β₁ : Type*} {β₂ : Type*} /-- `finsupp α β`, denoted `α →₀ β`, is the type of functions `f : α → β` such that `f x = 0` for all but finitely many `x`. -/ structure finsupp (α : Type*) (β : Type*) [has_zero β] := (support : finset α) (to_fun : α → β) (mem_support_to_fun : ∀a, a ∈ support ↔ to_fun a ≠ 0) infixr ` →₀ `:25 := finsupp namespace finsupp /-! ### Basic declarations about `finsupp` -/ section basic variable [has_zero β] instance : has_coe_to_fun (α →₀ β) := ⟨λ_, α → β, to_fun⟩ instance : has_zero (α →₀ β) := ⟨⟨∅, (λ_, 0), λ _, ⟨false.elim, λ H, H rfl⟩⟩⟩ @[simp] lemma zero_apply {a : α} : (0 : α →₀ β) a = 0 := rfl @[simp] lemma support_zero : (0 : α →₀ β).support = ∅ := rfl instance : inhabited (α →₀ β) := ⟨0⟩ @[simp] lemma mem_support_iff {f : α →₀ β} : ∀{a:α}, a ∈ f.support ↔ f a ≠ 0 := f.mem_support_to_fun lemma not_mem_support_iff {f : α →₀ β} {a} : a ∉ f.support ↔ f a = 0 := not_iff_comm.1 mem_support_iff.symm @[ext] lemma ext : ∀{f g : α →₀ β}, (∀a, f a = g a) → f = g | ⟨s, f, hf⟩ ⟨t, g, hg⟩ h := begin have : f = g, { funext a, exact h a }, subst this, have : s = t, { ext a, exact (hf a).trans (hg a).symm }, subst this end lemma ext_iff {f g : α →₀ β} : f = g ↔ (∀a:α, f a = g a) := ⟨by rintros rfl a; refl, ext⟩ @[simp] lemma support_eq_empty {f : α →₀ β} : f.support = ∅ ↔ f = 0 := ⟨assume h, ext $ assume a, by_contradiction $ λ H, (finset.ext.1 h a).1 $ mem_support_iff.2 H, by rintro rfl; refl⟩ instance finsupp.decidable_eq [decidable_eq α] [decidable_eq β] : decidable_eq (α →₀ β) := assume f g, decidable_of_iff (f.support = g.support ∧ (∀a∈f.support, f a = g a)) ⟨assume ⟨h₁, h₂⟩, ext $ assume a, if h : a ∈ f.support then h₂ a h else have hf : f a = 0, by rwa [mem_support_iff, not_not] at h, have hg : g a = 0, by rwa [h₁, mem_support_iff, not_not] at h, by rw [hf, hg], by rintro rfl; exact ⟨rfl, λ _ _, rfl⟩⟩ lemma finite_supp (f : α →₀ β) : set.finite {a | f a ≠ 0} := ⟨fintype.of_finset f.support (λ _, mem_support_iff)⟩ lemma support_subset_iff {s : set α} {f : α →₀ β} : ↑f.support ⊆ s ↔ (∀a∉s, f a = 0) := by simp only [set.subset_def, mem_coe, mem_support_iff]; exact forall_congr (assume a, @not_imp_comm _ _ (classical.dec _) (classical.dec _)) /-- Given `fintype α`, `equiv_fun_on_fintype` is the `equiv` between `α →₀ β` and `α → β`. (All functions on a finite type are finitely supported.) -/ def equiv_fun_on_fintype [fintype α] : (α →₀ β) ≃ (α → β) := ⟨λf a, f a, λf, mk (finset.univ.filter $ λa, f a ≠ 0) f (by simp only [true_and, finset.mem_univ, iff_self, finset.mem_filter, finset.filter_congr_decidable, forall_true_iff]), begin intro f, ext a, refl end, begin intro f, ext a, refl end⟩ end basic /-! ### Declarations about `single` -/ section single variables [has_zero β] {a a' : α} {b : β} /-- `single a b` is the finitely supported function which has value `b` at `a` and zero otherwise. -/ def single (a : α) (b : β) : α →₀ β := ⟨if b = 0 then ∅ else finset.singleton a, λ a', if a = a' then b else 0, λ a', begin by_cases hb : b = 0; by_cases a = a'; simp only [hb, h, if_pos, if_false, mem_singleton], { exact ⟨false.elim, λ H, H rfl⟩ }, { exact ⟨false.elim, λ H, H rfl⟩ }, { exact ⟨λ _, hb, λ _, rfl⟩ }, { exact ⟨λ H _, h H.symm, λ H, (H rfl).elim⟩ } end⟩ lemma single_apply : (single a b : α →₀ β) a' = if a = a' then b else 0 := rfl @[simp] lemma single_eq_same : (single a b : α →₀ β) a = b := if_pos rfl @[simp] lemma single_eq_of_ne (h : a ≠ a') : (single a b : α →₀ β) a' = 0 := if_neg h @[simp] lemma single_zero : (single a 0 : α →₀ β) = 0 := ext $ assume a', begin by_cases h : a = a', { rw [h, single_eq_same, zero_apply] }, { rw [single_eq_of_ne h, zero_apply] } end lemma support_single_ne_zero (hb : b ≠ 0) : (single a b).support = {a} := if_neg hb lemma support_single_subset : (single a b).support ⊆ {a} := show ite _ _ _ ⊆ _, by split_ifs; [exact empty_subset _, exact subset.refl _] lemma injective_single (a : α) : function.injective (single a : β → α →₀ β) := assume b₁ b₂ eq, have (single a b₁ : α →₀ β) a = (single a b₂ : α →₀ β) a, by rw eq, by rwa [single_eq_same, single_eq_same] at this lemma single_eq_single_iff (a₁ a₂ : α) (b₁ b₂ : β) : single a₁ b₁ = single a₂ b₂ ↔ ((a₁ = a₂ ∧ b₁ = b₂) ∨ (b₁ = 0 ∧ b₂ = 0)) := begin split, { assume eq, by_cases a₁ = a₂, { refine or.inl ⟨h, _⟩, rwa [h, (injective_single a₂).eq_iff] at eq }, { rw [ext_iff] at eq, have h₁ := eq a₁, have h₂ := eq a₂, simp only [single_eq_same, single_eq_of_ne h, single_eq_of_ne (ne.symm h)] at h₁ h₂, exact or.inr ⟨h₁, h₂.symm⟩ } }, { rintros (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩), { refl }, { rw [single_zero, single_zero] } } end lemma single_right_inj (h : b ≠ 0) : single a b = single a' b ↔ a = a' := ⟨λ H, by simpa only [h, single_eq_single_iff, and_false, or_false, eq_self_iff_true, and_true] using H, λ H, by rw [H]⟩ lemma single_eq_zero : single a b = 0 ↔ b = 0 := ⟨λ h, by { rw ext_iff at h, simpa only [single_eq_same, zero_apply] using h a }, λ h, by rw [h, single_zero]⟩ lemma single_swap {α β : Type*} [has_zero β] (a₁ a₂ : α) (b : β) : (single a₁ b : α → β) a₂ = (single a₂ b : α → β) a₁ := by simp only [single_apply]; ac_refl lemma unique_single [unique α] (x : α →₀ β) : x = single (default α) (x (default α)) := by ext i; simp only [unique.eq_default i, single_eq_same] @[simp] lemma unique_single_eq_iff [unique α] {b' : β} : single a b = single a' b' ↔ b = b' := begin rw [single_eq_single_iff], split, { rintros (⟨_, rfl⟩ | ⟨rfl, rfl⟩); refl }, { intro h, left, exact ⟨subsingleton.elim _ _, h⟩ } end end single /-! ### Declarations about `on_finset` -/ section on_finset variables [has_zero β] /-- `on_finset s f hf` is the finsupp function representing `f` restricted to the finset `s`. The function needs to be `0` outside of `s`. Use this when the set needs to be filtered anyways, otherwise a better set representation is often available. -/ def on_finset (s : finset α) (f : α → β) (hf : ∀a, f a ≠ 0 → a ∈ s) : α →₀ β := ⟨s.filter (λa, f a ≠ 0), f, assume a, classical.by_cases (assume h : f a = 0, by rw mem_filter; exact ⟨and.right, λ H, (H h).elim⟩) (assume h : f a ≠ 0, by rw mem_filter; simp only [iff_true_intro h, hf a h, true_and])⟩ @[simp] lemma on_finset_apply {s : finset α} {f : α → β} {hf a} : (on_finset s f hf : α →₀ β) a = f a := rfl @[simp] lemma support_on_finset_subset {s : finset α} {f : α → β} {hf} : (on_finset s f hf).support ⊆ s := filter_subset _ end on_finset /-! ### Declarations about `map_range` -/ section map_range variables [has_zero β₁] [has_zero β₂] /-- The composition of `f : β₁ → β₂` and `g : α →₀ β₁` is `map_range f hf g : α →₀ β₂`, well-defined when `f 0 = 0`. -/ def map_range (f : β₁ → β₂) (hf : f 0 = 0) (g : α →₀ β₁) : α →₀ β₂ := on_finset g.support (f ∘ g) $ assume a, by rw [mem_support_iff, not_imp_not]; exact λ H, (congr_arg f H).trans hf @[simp] lemma map_range_apply {f : β₁ → β₂} {hf : f 0 = 0} {g : α →₀ β₁} {a : α} : map_range f hf g a = f (g a) := rfl @[simp] lemma map_range_zero {f : β₁ → β₂} {hf : f 0 = 0} : map_range f hf (0 : α →₀ β₁) = 0 := ext $ λ a, by simp only [hf, zero_apply, map_range_apply] lemma support_map_range {f : β₁ → β₂} {hf : f 0 = 0} {g : α →₀ β₁} : (map_range f hf g).support ⊆ g.support := support_on_finset_subset @[simp] lemma map_range_single {f : β₁ → β₂} {hf : f 0 = 0} {a : α} {b : β₁} : map_range f hf (single a b) = single a (f b) := ext $ λ a', show f (ite _ _ _) = ite _ _ _, by split_ifs; [refl, exact hf] end map_range /-! ### Declarations about `emb_domain` -/ section emb_domain variables [has_zero β] /-- Given `f : α₁ ↪ α₂` and `v : α₁ →₀ β`, `emb_domain f v : α₂ →₀ β` is the finitely supported function whose value at `f a : α₂` is `v a`. For a `b : α₂` outside the range of `f`, it is zero. -/ def emb_domain (f : α₁ ↪ α₂) (v : α₁ →₀ β) : α₂ →₀ β := begin refine ⟨v.support.map f, λa₂, if h : a₂ ∈ v.support.map f then v (v.support.choose (λa₁, f a₁ = a₂) _) else 0, _⟩, { rcases finset.mem_map.1 h with ⟨a, ha, rfl⟩, exact exists_unique.intro a ⟨ha, rfl⟩ (assume b ⟨_, hb⟩, f.inj hb) }, { assume a₂, split_ifs, { simp only [h, true_iff, ne.def], rw [← not_mem_support_iff, not_not], apply finset.choose_mem }, { simp only [h, ne.def, ne_self_iff_false] } } end lemma support_emb_domain (f : α₁ ↪ α₂) (v : α₁ →₀ β) : (emb_domain f v).support = v.support.map f := rfl lemma emb_domain_zero (f : α₁ ↪ α₂) : (emb_domain f 0 : α₂ →₀ β) = 0 := rfl lemma emb_domain_apply (f : α₁ ↪ α₂) (v : α₁ →₀ β) (a : α₁) : emb_domain f v (f a) = v a := begin change dite _ _ _ = _, split_ifs; rw [finset.mem_map' f] at h, { refine congr_arg (v : α₁ → β) (f.inj' _), exact finset.choose_property (λa₁, f a₁ = f a) _ _ }, { exact (not_mem_support_iff.1 h).symm } end lemma emb_domain_notin_range (f : α₁ ↪ α₂) (v : α₁ →₀ β) (a : α₂) (h : a ∉ set.range f) : emb_domain f v a = 0 := begin refine dif_neg (mt (assume h, _) h), rcases finset.mem_map.1 h with ⟨a, h, rfl⟩, exact set.mem_range_self a end lemma emb_domain_inj {f : α₁ ↪ α₂} {l₁ l₂ : α₁ →₀ β} : emb_domain f l₁ = emb_domain f l₂ ↔ l₁ = l₂ := ⟨λ h, ext $ λ a, by simpa only [emb_domain_apply] using ext_iff.1 h (f a), λ h, by rw h⟩ lemma emb_domain_map_range {β₁ β₂ : Type*} [has_zero β₁] [has_zero β₂] (f : α₁ ↪ α₂) (g : β₁ → β₂) (p : α₁ →₀ β₁) (hg : g 0 = 0) : emb_domain f (map_range g hg p) = map_range g hg (emb_domain f p) := begin ext a, by_cases a ∈ set.range f, { rcases h with ⟨a', rfl⟩, rw [map_range_apply, emb_domain_apply, emb_domain_apply, map_range_apply] }, { rw [map_range_apply, emb_domain_notin_range, emb_domain_notin_range, ← hg]; assumption } end lemma single_of_emb_domain_single (l : α₁ →₀ β) (f : α₁ ↪ α₂) (a : α₂) (b : β) (hb : b ≠ 0) (h : l.emb_domain f = single a b) : ∃ x, l = single x b ∧ f x = a := begin have h_map_support : finset.map f (l.support) = finset.singleton a, by rw [←support_emb_domain, h, support_single_ne_zero hb]; refl, have ha : a ∈ finset.map f (l.support), by simp only [h_map_support, finset.mem_singleton], rcases finset.mem_map.1 ha with ⟨c, hc₁, hc₂⟩, use c, split, { ext d, rw [← emb_domain_apply f l, h], by_cases h_cases : c = d, { simp only [eq.symm h_cases, hc₂, single_eq_same] }, { rw [single_apply, single_apply, if_neg, if_neg h_cases], by_contra hfd, exact h_cases (f.inj (hc₂.trans hfd)) } }, { exact hc₂ } end end emb_domain /-! ### Declarations about `zip_with` -/ section zip_with variables [has_zero β] [has_zero β₁] [has_zero β₂] /-- `zip_with f hf g₁ g₂` is the finitely supported function satisfying `zip_with f hf g₁ g₂ a = f (g₁ a) (g₂ a)`, and it is well-defined when `f 0 0 = 0`. -/ def zip_with (f : β₁ → β₂ → β) (hf : f 0 0 = 0) (g₁ : α →₀ β₁) (g₂ : α →₀ β₂) : (α →₀ β) := on_finset (g₁.support ∪ g₂.support) (λa, f (g₁ a) (g₂ a)) $ λ a H, begin simp only [mem_union, mem_support_iff, ne], rw [← not_and_distrib], rintro ⟨h₁, h₂⟩, rw [h₁, h₂] at H, exact H hf end @[simp] lemma zip_with_apply {f : β₁ → β₂ → β} {hf : f 0 0 = 0} {g₁ : α →₀ β₁} {g₂ : α →₀ β₂} {a : α} : zip_with f hf g₁ g₂ a = f (g₁ a) (g₂ a) := rfl lemma support_zip_with {f : β₁ → β₂ → β} {hf : f 0 0 = 0} {g₁ : α →₀ β₁} {g₂ : α →₀ β₂} : (zip_with f hf g₁ g₂).support ⊆ g₁.support ∪ g₂.support := support_on_finset_subset end zip_with /-! ### Declarations about `erase` -/ section erase /-- `erase a f` is the finitely supported function equal to `f` except at `a` where it is equal to `0`. -/ def erase [has_zero β] (a : α) (f : α →₀ β) : α →₀ β := ⟨f.support.erase a, (λa', if a' = a then 0 else f a'), assume a', by rw [mem_erase, mem_support_iff]; split_ifs; [exact ⟨λ H _, H.1 h, λ H, (H rfl).elim⟩, exact and_iff_right h]⟩ @[simp] lemma support_erase [has_zero β] {a : α} {f : α →₀ β} : (f.erase a).support = f.support.erase a := rfl @[simp] lemma erase_same [has_zero β] {a : α} {f : α →₀ β} : (f.erase a) a = 0 := if_pos rfl @[simp] lemma erase_ne [has_zero β] {a a' : α} {f : α →₀ β} (h : a' ≠ a) : (f.erase a) a' = f a' := if_neg h end erase /-! ### Declarations about `sum` and `prod` In most of this section, the domain `β` is assumed to be an `add_monoid`. -/ -- [to_additive sum] for finsupp.prod doesn't work, the equation lemmas are not generated /-- `sum f g` is the sum of `g a (f a)` over the support of `f`. -/ def sum [has_zero β] [add_comm_monoid γ] (f : α →₀ β) (g : α → β → γ) : γ := f.support.sum (λa, g a (f a)) /-- `prod f g` is the product of `g a (f a)` over the support of `f`. -/ @[to_additive] def prod [has_zero β] [comm_monoid γ] (f : α →₀ β) (g : α → β → γ) : γ := f.support.prod (λa, g a (f a)) @[to_additive] lemma prod_map_range_index [has_zero β₁] [has_zero β₂] [comm_monoid γ] {f : β₁ → β₂} {hf : f 0 = 0} {g : α →₀ β₁} {h : α → β₂ → γ} (h0 : ∀a, h a 0 = 1) : (map_range f hf g).prod h = g.prod (λa b, h a (f b)) := finset.prod_subset support_map_range $ λ _ _ H, by rw [not_mem_support_iff.1 H, h0] @[to_additive] lemma prod_zero_index [add_comm_monoid β] [comm_monoid γ] {h : α → β → γ} : (0 : α →₀ β).prod h = 1 := rfl section nat_sub instance nat_sub : has_sub (α →₀ ℕ) := ⟨zip_with (λ m n, m - n) (nat.sub_zero 0)⟩ @[simp] lemma nat_sub_apply {g₁ g₂ : α →₀ ℕ} {a : α} : (g₁ - g₂) a = g₁ a - g₂ a := rfl end nat_sub section add_monoid variables [add_monoid β] @[to_additive] lemma prod_single_index [comm_monoid γ] {a : α} {b : β} {h : α → β → γ} (h_zero : h a 0 = 1) : (single a b).prod h = h a b := begin by_cases h : b = 0, { simp only [h, h_zero, single_zero]; refl }, { simp only [finsupp.prod, support_single_ne_zero h, insert_empty_eq_singleton, prod_singleton, single_eq_same] } end instance : has_add (α →₀ β) := ⟨zip_with (+) (add_zero 0)⟩ @[simp] lemma add_apply {g₁ g₂ : α →₀ β} {a : α} : (g₁ + g₂) a = g₁ a + g₂ a := rfl lemma support_add {g₁ g₂ : α →₀ β} : (g₁ + g₂).support ⊆ g₁.support ∪ g₂.support := support_zip_with lemma support_add_eq {g₁ g₂ : α →₀ β} (h : disjoint g₁.support g₂.support) : (g₁ + g₂).support = g₁.support ∪ g₂.support := le_antisymm support_zip_with $ assume a ha, (finset.mem_union.1 ha).elim (assume ha, have a ∉ g₂.support, from disjoint_left.1 h ha, by simp only [mem_support_iff, not_not] at *; simpa only [add_apply, this, add_zero]) (assume ha, have a ∉ g₁.support, from disjoint_right.1 h ha, by simp only [mem_support_iff, not_not] at *; simpa only [add_apply, this, zero_add]) @[simp] lemma single_add {a : α} {b₁ b₂ : β} : single a (b₁ + b₂) = single a b₁ + single a b₂ := ext $ assume a', begin by_cases h : a = a', { rw [h, add_apply, single_eq_same, single_eq_same, single_eq_same] }, { rw [add_apply, single_eq_of_ne h, single_eq_of_ne h, single_eq_of_ne h, zero_add] } end instance : add_monoid (α →₀ β) := { add_monoid . zero := 0, add := (+), add_assoc := assume ⟨s, f, hf⟩ ⟨t, g, hg⟩ ⟨u, h, hh⟩, ext $ assume a, add_assoc _ _ _, zero_add := assume ⟨s, f, hf⟩, ext $ assume a, zero_add _, add_zero := assume ⟨s, f, hf⟩, ext $ assume a, add_zero _ } instance (a : α) : is_add_monoid_hom (λ g : α →₀ β, g a) := { map_add := λ _ _, add_apply, map_zero := zero_apply } lemma single_add_erase {a : α} {f : α →₀ β} : single a (f a) + f.erase a = f := ext $ λ a', if h : a = a' then by subst h; simp only [add_apply, single_eq_same, erase_same, add_zero] else by simp only [add_apply, single_eq_of_ne h, zero_add, erase_ne (ne.symm h)] lemma erase_add_single {a : α} {f : α →₀ β} : f.erase a + single a (f a) = f := ext $ λ a', if h : a = a' then by subst h; simp only [add_apply, single_eq_same, erase_same, zero_add] else by simp only [add_apply, single_eq_of_ne h, add_zero, erase_ne (ne.symm h)] @[elab_as_eliminator] protected theorem induction {p : (α →₀ β) → Prop} (f : α →₀ β) (h0 : p 0) (ha : ∀a b (f : α →₀ β), a ∉ f.support → b ≠ 0 → p f → p (single a b + f)) : p f := suffices ∀s (f : α →₀ β), f.support = s → p f, from this _ _ rfl, assume s, finset.induction_on s (λ f hf, by rwa [support_eq_empty.1 hf]) $ assume a s has ih f hf, suffices p (single a (f a) + f.erase a), by rwa [single_add_erase] at this, begin apply ha, { rw [support_erase, mem_erase], exact λ H, H.1 rfl }, { rw [← mem_support_iff, hf], exact mem_insert_self _ _ }, { apply ih _ _, rw [support_erase, hf, finset.erase_insert has] } end lemma induction₂ {p : (α →₀ β) → Prop} (f : α →₀ β) (h0 : p 0) (ha : ∀a b (f : α →₀ β), a ∉ f.support → b ≠ 0 → p f → p (f + single a b)) : p f := suffices ∀s (f : α →₀ β), f.support = s → p f, from this _ _ rfl, assume s, finset.induction_on s (λ f hf, by rwa [support_eq_empty.1 hf]) $ assume a s has ih f hf, suffices p (f.erase a + single a (f a)), by rwa [erase_add_single] at this, begin apply ha, { rw [support_erase, mem_erase], exact λ H, H.1 rfl }, { rw [← mem_support_iff, hf], exact mem_insert_self _ _ }, { apply ih _ _, rw [support_erase, hf, finset.erase_insert has] } end lemma map_range_add [add_monoid β₁] [add_monoid β₂] {f : β₁ → β₂} {hf : f 0 = 0} (hf' : ∀ x y, f (x + y) = f x + f y) (v₁ v₂ : α →₀ β₁) : map_range f hf (v₁ + v₂) = map_range f hf v₁ + map_range f hf v₂ := ext $ λ a, by simp only [hf', add_apply, map_range_apply] end add_monoid instance [add_comm_monoid β] : add_comm_monoid (α →₀ β) := { add_comm := assume ⟨s, f, _⟩ ⟨t, g, _⟩, ext $ assume a, add_comm _ _, .. finsupp.add_monoid } instance [add_group β] : add_group (α →₀ β) := { neg := map_range (has_neg.neg) neg_zero, add_left_neg := assume ⟨s, f, _⟩, ext $ assume x, add_left_neg _, .. finsupp.add_monoid } lemma single_multiset_sum [add_comm_monoid β] (s : multiset β) (a : α) : single a s.sum = (s.map (single a)).sum := multiset.induction_on s single_zero $ λ a s ih, by rw [multiset.sum_cons, single_add, ih, multiset.map_cons, multiset.sum_cons] lemma single_finset_sum [add_comm_monoid β] (s : finset γ) (f : γ → β) (a : α) : single a (s.sum f) = s.sum (λb, single a (f b)) := begin transitivity, apply single_multiset_sum, rw [multiset.map_map], refl end lemma single_sum [has_zero γ] [add_comm_monoid β] (s : δ →₀ γ) (f : δ → γ → β) (a : α) : single a (s.sum f) = s.sum (λd c, single a (f d c)) := single_finset_sum _ _ _ @[to_additive] lemma prod_neg_index [add_group β] [comm_monoid γ] {g : α →₀ β} {h : α → β → γ} (h0 : ∀a, h a 0 = 1) : (-g).prod h = g.prod (λa b, h a (- b)) := prod_map_range_index h0 @[simp] lemma neg_apply [add_group β] {g : α →₀ β} {a : α} : (- g) a = - g a := rfl @[simp] lemma sub_apply [add_group β] {g₁ g₂ : α →₀ β} {a : α} : (g₁ - g₂) a = g₁ a - g₂ a := rfl @[simp] lemma support_neg [add_group β] {f : α →₀ β} : support (-f) = support f := finset.subset.antisymm support_map_range (calc support f = support (- (- f)) : congr_arg support (neg_neg _).symm ... ⊆ support (- f) : support_map_range) instance [add_comm_group β] : add_comm_group (α →₀ β) := { add_comm := add_comm, ..finsupp.add_group } @[simp] lemma sum_apply [has_zero β₁] [add_comm_monoid β] {f : α₁ →₀ β₁} {g : α₁ → β₁ → α →₀ β} {a₂ : α} : (f.sum g) a₂ = f.sum (λa₁ b, g a₁ b a₂) := (f.support.sum_hom (λf : α →₀ β, f a₂)).symm lemma support_sum [has_zero β₁] [add_comm_monoid β] {f : α₁ →₀ β₁} {g : α₁ → β₁ → (α →₀ β)} : (f.sum g).support ⊆ f.support.bind (λa, (g a (f a)).support) := have ∀a₁ : α, f.sum (λ (a : α₁) (b : β₁), (g a b) a₁) ≠ 0 → (∃ (a : α₁), f a ≠ 0 ∧ ¬ (g a (f a)) a₁ = 0), from assume a₁ h, let ⟨a, ha, ne⟩ := finset.exists_ne_zero_of_sum_ne_zero h in ⟨a, mem_support_iff.mp ha, ne⟩, by simpa only [finset.subset_iff, mem_support_iff, finset.mem_bind, sum_apply, exists_prop] using this @[simp] lemma sum_zero [add_comm_monoid β] [add_comm_monoid γ] {f : α →₀ β} : f.sum (λa b, (0 : γ)) = 0 := finset.sum_const_zero @[simp] lemma sum_add [add_comm_monoid β] [add_comm_monoid γ] {f : α →₀ β} {h₁ h₂ : α → β → γ} : f.sum (λa b, h₁ a b + h₂ a b) = f.sum h₁ + f.sum h₂ := finset.sum_add_distrib @[simp] lemma sum_neg [add_comm_monoid β] [add_comm_group γ] {f : α →₀ β} {h : α → β → γ} : f.sum (λa b, - h a b) = - f.sum h := f.support.sum_hom (@has_neg.neg γ _) @[simp] lemma sum_sub [add_comm_monoid β] [add_comm_group γ] {f : α →₀ β} {h₁ h₂ : α → β → γ} : f.sum (λa b, h₁ a b - h₂ a b) = f.sum h₁ - f.sum h₂ := by rw [sub_eq_add_neg, ←sum_neg, ←sum_add]; refl @[simp] lemma sum_single [add_comm_monoid β] (f : α →₀ β) : f.sum single = f := have ∀a:α, f.sum (λa' b, ite (a' = a) b 0) = ({a} : finset α).sum (λa', ite (a' = a) (f a') 0), begin intro a, by_cases h : a ∈ f.support, { have : (finset.singleton a : finset α) ⊆ f.support, { simpa only [finset.subset_iff, mem_singleton, forall_eq] }, refine (finset.sum_subset this (λ _ _ H, _)).symm, exact if_neg (mt mem_singleton.2 H) }, { transitivity (f.support.sum (λa, (0 : β))), { refine (finset.sum_congr rfl $ λ a' ha', if_neg _), rintro rfl, exact h ha' }, { rw [sum_const_zero, insert_empty_eq_singleton, sum_singleton, if_pos rfl, not_mem_support_iff.1 h] } } end, ext $ assume a, by simp only [sum_apply, single_apply, this, insert_empty_eq_singleton, sum_singleton, if_pos] @[to_additive] lemma prod_add_index [add_comm_monoid β] [comm_monoid γ] {f g : α →₀ β} {h : α → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (f + g).prod h = f.prod h * g.prod h := have f_eq : (f.support ∪ g.support).prod (λa, h a (f a)) = f.prod h, from (finset.prod_subset (finset.subset_union_left _ _) $ by intros _ _ H; rw [not_mem_support_iff.1 H, h_zero]).symm, have g_eq : (f.support ∪ g.support).prod (λa, h a (g a)) = g.prod h, from (finset.prod_subset (finset.subset_union_right _ _) $ by intros _ _ H; rw [not_mem_support_iff.1 H, h_zero]).symm, calc (f + g).support.prod (λa, h a ((f + g) a)) = (f.support ∪ g.support).prod (λa, h a ((f + g) a)) : finset.prod_subset support_add $ by intros _ _ H; rw [not_mem_support_iff.1 H, h_zero] ... = (f.support ∪ g.support).prod (λa, h a (f a)) * (f.support ∪ g.support).prod (λa, h a (g a)) : by simp only [add_apply, h_add, finset.prod_mul_distrib] ... = _ : by rw [f_eq, g_eq] lemma sum_sub_index [add_comm_group β] [add_comm_group γ] {f g : α →₀ β} {h : α → β → γ} (h_sub : ∀a b₁ b₂, h a (b₁ - b₂) = h a b₁ - h a b₂) : (f - g).sum h = f.sum h - g.sum h := have h_zero : ∀a, h a 0 = 0, from assume a, have h a (0 - 0) = h a 0 - h a 0, from h_sub a 0 0, by simpa only [sub_self] using this, have h_neg : ∀a b, h a (- b) = - h a b, from assume a b, have h a (0 - b) = h a 0 - h a b, from h_sub a 0 b, by simpa only [h_zero, zero_sub] using this, have h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ + h a b₂, from assume a b₁ b₂, have h a (b₁ - (- b₂)) = h a b₁ - h a (- b₂), from h_sub a b₁ (-b₂), by simpa only [h_neg, sub_neg_eq_add] using this, calc (f - g).sum h = (f + - g).sum h : rfl ... = f.sum h + - g.sum h : by simp only [sum_add_index h_zero h_add, sum_neg_index h_zero, h_neg, sum_neg] ... = f.sum h - g.sum h : rfl @[to_additive] lemma prod_finset_sum_index [add_comm_monoid β] [comm_monoid γ] {s : finset ι} {g : ι → α →₀ β} {h : α → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : s.prod (λi, (g i).prod h) = (s.sum g).prod h := finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih, sum_insert has, prod_add_index h_zero h_add] @[to_additive] lemma prod_sum_index [add_comm_monoid β₁] [add_comm_monoid β] [comm_monoid γ] {f : α₁ →₀ β₁} {g : α₁ → β₁ → α →₀ β} {h : α → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (f.sum g).prod h = f.prod (λa b, (g a b).prod h) := (prod_finset_sum_index h_zero h_add).symm lemma multiset_sum_sum_index [add_comm_monoid β] [add_comm_monoid γ] (f : multiset (α →₀ β)) (h : α → β → γ) (h₀ : ∀a, h a 0 = 0) (h₁ : ∀ (a : α) (b₁ b₂ : β), h a (b₁ + b₂) = h a b₁ + h a b₂) : (f.sum.sum h) = (f.map $ λg:α →₀ β, g.sum h).sum := multiset.induction_on f rfl $ assume a s ih, by rw [multiset.sum_cons, multiset.map_cons, multiset.sum_cons, sum_add_index h₀ h₁, ih] lemma multiset_map_sum [has_zero β] {f : α →₀ β} {m : γ → δ} {h : α → β → multiset γ} : multiset.map m (f.sum h) = f.sum (λa b, (h a b).map m) := (f.support.sum_hom _).symm lemma multiset_sum_sum [has_zero β] [add_comm_monoid γ] {f : α →₀ β} {h : α → β → multiset γ} : multiset.sum (f.sum h) = f.sum (λa b, multiset.sum (h a b)) := (f.support.sum_hom multiset.sum).symm section map_range variables [add_comm_monoid β₁] [add_comm_monoid β₂] (f : β₁ → β₂) [hf : is_add_monoid_hom f] instance is_add_monoid_hom_map_range : is_add_monoid_hom (map_range f hf.map_zero : (α →₀ β₁) → (α →₀ β₂)) := { map_zero := map_range_zero, map_add := λ a b, map_range_add hf.map_add _ _ } lemma map_range_multiset_sum (m : multiset (α →₀ β₁)) : map_range f hf.map_zero m.sum = (m.map $ λx, map_range f hf.map_zero x).sum := (m.sum_hom (map_range f hf.map_zero)).symm lemma map_range_finset_sum {ι : Type*} (s : finset ι) (g : ι → (α →₀ β₁)) : map_range f hf.map_zero (s.sum g) = s.sum (λx, map_range f hf.map_zero (g x)) := by rw [finset.sum.equations._eqn_1, map_range_multiset_sum, multiset.map_map]; refl end map_range /-! ### Declarations about `map_domain` -/ section map_domain variables [add_comm_monoid β] {v v₁ v₂ : α →₀ β} /-- Given `f : α₁ → α₂` and `v : α₁ →₀ β`, `map_domain f v : α₂ →₀ β` is the finitely supported function whose value at `a : α₂` is the sum of `v x` over all `x` such that `f x = a`. -/ def map_domain (f : α₁ → α₂) (v : α₁ →₀ β) : α₂ →₀ β := v.sum $ λa, single (f a) lemma map_domain_apply {f : α₁ → α₂} (hf : function.injective f) (x : α₁ →₀ β) (a : α₁) : map_domain f x (f a) = x a := begin rw [map_domain, sum_apply, sum, finset.sum_eq_single a, single_eq_same], { assume b _ hba, exact single_eq_of_ne (hf.ne hba) }, { simp only [(∉), (≠), not_not, mem_support_iff], assume h, rw [h, single_zero], refl } end lemma map_domain_notin_range {f : α₁ → α₂} (x : α₁ →₀ β) (a : α₂) (h : a ∉ set.range f) : map_domain f x a = 0 := begin rw [map_domain, sum_apply, sum], exact finset.sum_eq_zero (assume a' h', single_eq_of_ne $ assume eq, h $ eq ▸ set.mem_range_self _) end lemma map_domain_id : map_domain id v = v := sum_single _ lemma map_domain_comp {f : α → α₁} {g : α₁ → α₂} : map_domain (g ∘ f) v = map_domain g (map_domain f v) := begin refine ((sum_sum_index _ _).trans _).symm, { intros, exact single_zero }, { intros, exact single_add }, refine sum_congr rfl (λ _ _, sum_single_index _), { exact single_zero } end lemma map_domain_single {f : α → α₁} {a : α} {b : β} : map_domain f (single a b) = single (f a) b := sum_single_index single_zero @[simp] lemma map_domain_zero {f : α → α₂} : map_domain f 0 = (0 : α₂ →₀ β) := sum_zero_index lemma map_domain_congr {f g : α → α₂} (h : ∀x∈v.support, f x = g x) : v.map_domain f = v.map_domain g := finset.sum_congr rfl $ λ _ H, by simp only [h _ H] lemma map_domain_add {f : α → α₂} : map_domain f (v₁ + v₂) = map_domain f v₁ + map_domain f v₂ := sum_add_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_finset_sum {f : α → α₂} {s : finset ι} {v : ι → α →₀ β} : map_domain f (s.sum v) = s.sum (λi, map_domain f (v i)) := eq.symm $ sum_finset_sum_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_sum [has_zero β₁] {f : α → α₂} {s : α →₀ β₁} {v : α → β₁ → α →₀ β} : map_domain f (s.sum v) = s.sum (λa b, map_domain f (v a b)) := eq.symm $ sum_finset_sum_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_support {f : α → α₂} {s : α →₀ β} : (s.map_domain f).support ⊆ s.support.image f := finset.subset.trans support_sum $ finset.subset.trans (finset.bind_mono $ assume a ha, support_single_subset) $ by rw [finset.bind_singleton]; exact subset.refl _ @[to_additive] lemma prod_map_domain_index [comm_monoid γ] {f : α → α₂} {s : α →₀ β} {h : α₂ → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (s.map_domain f).prod h = s.prod (λa b, h (f a) b) := (prod_sum_index h_zero h_add).trans $ prod_congr rfl $ λ _ _, prod_single_index (h_zero _) lemma emb_domain_eq_map_domain (f : α₁ ↪ α₂) (v : α₁ →₀ β) : emb_domain f v = map_domain f v := begin ext a, by_cases a ∈ set.range f, { rcases h with ⟨a, rfl⟩, rw [map_domain_apply (function.embedding.inj' _), emb_domain_apply] }, { rw [map_domain_notin_range, emb_domain_notin_range]; assumption } end lemma injective_map_domain {f : α₁ → α₂} (hf : function.injective f) : function.injective (map_domain f : (α₁ →₀ β) → (α₂ →₀ β)) := begin assume v₁ v₂ eq, ext a, have : map_domain f v₁ (f a) = map_domain f v₂ (f a), { rw eq }, rwa [map_domain_apply hf, map_domain_apply hf] at this, end end map_domain /-! ### Declarations about `comap_domain` -/ section comap_domain /-- Given `f : α₁ → α₂`, `l : α₂ →₀ γ` and a proof `hf` that `f` is injective on the preimage of `l.support`, `comap_domain f l hf` is the finitely supported function from `α₁` to `γ` given by composing `l` with `f`. -/ def comap_domain {α₁ α₂ γ : Type*} [has_zero γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : set.inj_on f (f ⁻¹' l.support.to_set)) : α₁ →₀ γ := { support := l.support.preimage hf, to_fun := (λ a, l (f a)), mem_support_to_fun := begin intros a, simp only [finset.mem_def.symm, finset.mem_preimage], exact l.mem_support_to_fun (f a), end } lemma comap_domain_apply {α₁ α₂ γ : Type*} [has_zero γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : set.inj_on f (f ⁻¹' l.support.to_set)) (a : α₁) : comap_domain f l hf a = l (f a) := rfl lemma sum_comap_domain {α₁ α₂ β γ : Type*} [has_zero β] [add_comm_monoid γ] (f : α₁ → α₂) (l : α₂ →₀ β) (g : α₂ → β → γ) (hf : set.bij_on f (f ⁻¹' l.support.to_set) l.support.to_set) : (comap_domain f l hf.inj_on).sum (g ∘ f) = l.sum g := begin unfold sum, simp only [comap_domain, comap_domain_apply, finset.sum_preimage f _ _ (λ (x : α₂), g x (l x))], end lemma eq_zero_of_comap_domain_eq_zero {α₁ α₂ γ : Type*} [add_comm_monoid γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : set.bij_on f (f ⁻¹' l.support.to_set) l.support.to_set) : comap_domain f l hf.inj_on = 0 → l = 0 := begin rw [← support_eq_empty, ← support_eq_empty, comap_domain], simp only [finset.ext, finset.not_mem_empty, iff_false, mem_preimage], assume h a ha, cases hf.2.2 ha with b hb, exact h b (hb.2.symm ▸ ha) end lemma map_domain_comap_domain {α₁ α₂ γ : Type*} [add_comm_monoid γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : function.injective f) (hl : ↑l.support ⊆ set.range f): map_domain f (comap_domain f l (hf.inj_on _)) = l := begin ext a, by_cases h_cases: a ∈ set.range f, { rcases set.mem_range.1 h_cases with ⟨b, hb⟩, rw [hb.symm, map_domain_apply hf, comap_domain_apply] }, { rw map_domain_notin_range _ _ h_cases, by_contra h_contr, apply h_cases (hl $ finset.mem_coe.2 $ mem_support_iff.2 $ λ h, h_contr h.symm) } end end comap_domain /-! ### Declarations about the product of `finsupp`s -/ /-- The product of `f g : α →₀ β` is the finitely supported function whose value at `a` is the sum of `f x * g y` over all pairs `x, y` such that `x + y = a`. (Think of the product of multivariate polynomials where `α` is the monoid of monomial exponents.) -/ instance [has_add α] [semiring β] : has_mul (α →₀ β) := ⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)⟩ lemma mul_def [has_add α] [semiring β] {f g : α →₀ β} : f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)) := rfl lemma support_mul [has_add α] [semiring β] (a b : α →₀ β) : (a * b).support ⊆ a.support.bind (λa₁, b.support.bind $ λa₂, {a₁ + a₂}) := subset.trans support_sum $ bind_mono $ assume a₁ _, subset.trans support_sum $ bind_mono $ assume a₂ _, support_single_subset /-- The unit of the multiplication is `single 0 1`, i.e. the function that is `1` at `0` and zero elsewhere. -/ instance [has_zero α] [has_zero β] [has_one β] : has_one (α →₀ β) := ⟨single 0 1⟩ lemma one_def [has_zero α] [has_zero β] [has_one β] : 1 = (single 0 1 : α →₀ β) := rfl /-! ### Declarations about `filter` -/ section filter section has_zero variables [has_zero β] (p : α → Prop) (f : α →₀ β) /-- `filter p f` is the function which is `f a` if `p a` is true and 0 otherwise. -/ def filter (p : α → Prop) (f : α →₀ β) : α →₀ β := on_finset f.support (λa, if p a then f a else 0) $ λ a H, mem_support_iff.2 $ λ h, by rw [h, if_t_t] at H; exact H rfl @[simp] lemma filter_apply_pos {a : α} (h : p a) : f.filter p a = f a := if_pos h @[simp] lemma filter_apply_neg {a : α} (h : ¬ p a) : f.filter p a = 0 := if_neg h @[simp] lemma support_filter : (f.filter p).support = f.support.filter p := finset.ext.mpr $ assume a, if H : p a then by simp only [mem_support_iff, filter_apply_pos _ _ H, mem_filter, H, and_true] else by simp only [mem_support_iff, filter_apply_neg _ _ H, mem_filter, H, and_false, ne.def, ne_self_iff_false] lemma filter_zero : (0 : α →₀ β).filter p = 0 := by rw [← support_eq_empty, support_filter, support_zero, finset.filter_empty] @[simp] lemma filter_single_of_pos {a : α} {b : β} (h : p a) : (single a b).filter p = single a b := ext $ λ x, begin by_cases h' : p x, { simp only [h', filter_apply_pos] }, { simp only [h', filter_apply_neg, not_false_iff], rw single_eq_of_ne, rintro rfl, exact h' h } end @[simp] lemma filter_single_of_neg {a : α} {b : β} (h : ¬ p a) : (single a b).filter p = 0 := ext $ λ x, begin by_cases h' : p x, { simp only [h', filter_apply_pos, zero_apply], rw single_eq_of_ne, rintro rfl, exact h h' }, { simp only [h', finsupp.zero_apply, not_false_iff, filter_apply_neg] } end end has_zero lemma filter_pos_add_filter_neg [add_monoid β] (f : α →₀ β) (p : α → Prop) : f.filter p + f.filter (λa, ¬ p a) = f := ext $ assume a, if H : p a then by simp only [add_apply, filter_apply_pos, filter_apply_neg, H, not_not, add_zero] else by simp only [add_apply, filter_apply_pos, filter_apply_neg, H, not_false_iff, zero_add] end filter /-! ### Declarations about `frange` -/ section frange variables [has_zero β] /-- `frange f` is the image of `f` on the support of `f`. -/ def frange (f : α →₀ β) : finset β := finset.image f f.support theorem mem_frange {f : α →₀ β} {y : β} : y ∈ f.frange ↔ y ≠ 0 ∧ ∃ x, f x = y := finset.mem_image.trans ⟨λ ⟨x, hx1, hx2⟩, ⟨hx2 ▸ mem_support_iff.1 hx1, x, hx2⟩, λ ⟨hy, x, hx⟩, ⟨x, mem_support_iff.2 (hx.symm ▸ hy), hx⟩⟩ theorem zero_not_mem_frange {f : α →₀ β} : (0:β) ∉ f.frange := λ H, (mem_frange.1 H).1 rfl theorem frange_single {x : α} {y : β} : frange (single x y) ⊆ {y} := λ r hr, let ⟨t, ht1, ht2⟩ := mem_frange.1 hr in ht2 ▸ (by rw single_apply at ht2 ⊢; split_ifs at ht2 ⊢; [exact finset.mem_singleton_self _, cc]) end frange /-! ### Declarations about `subtype_domain` -/ section subtype_domain variables {α' : Type*} [has_zero δ] {p : α → Prop} section zero variables [has_zero β] {v v' : α' →₀ β} /-- `subtype_domain p f` is the restriction of the finitely supported function `f` to the subtype `p`. -/ def subtype_domain (p : α → Prop) (f : α →₀ β) : (subtype p →₀ β) := ⟨f.support.subtype p, f ∘ subtype.val, λ a, by simp only [mem_subtype, mem_support_iff]⟩ @[simp] lemma support_subtype_domain {f : α →₀ β} : (subtype_domain p f).support = f.support.subtype p := rfl @[simp] lemma subtype_domain_apply {a : subtype p} {v : α →₀ β} : (subtype_domain p v) a = v (a.val) := rfl @[simp] lemma subtype_domain_zero : subtype_domain p (0 : α →₀ β) = 0 := rfl @[to_additive] lemma prod_subtype_domain_index [comm_monoid γ] {v : α →₀ β} {h : α → β → γ} (hp : ∀x∈v.support, p x) : (v.subtype_domain p).prod (λa b, h a.1 b) = v.prod h := prod_bij (λp _, p.val) (λ _, mem_subtype.1) (λ _ _, rfl) (λ _ _ _ _, subtype.eq) (λ b hb, ⟨⟨b, hp b hb⟩, mem_subtype.2 hb, rfl⟩) end zero section monoid variables [add_monoid β] {v v' : α' →₀ β} @[simp] lemma subtype_domain_add {v v' : α →₀ β} : (v + v').subtype_domain p = v.subtype_domain p + v'.subtype_domain p := ext $ λ _, rfl instance subtype_domain.is_add_monoid_hom : is_add_monoid_hom (subtype_domain p : (α →₀ β) → subtype p →₀ β) := { map_add := λ _ _, subtype_domain_add, map_zero := subtype_domain_zero } @[simp] lemma filter_add {v v' : α →₀ β} : (v + v').filter p = v.filter p + v'.filter p := ext $ λ a, begin by_cases p a, { simp only [h, filter_apply_pos, add_apply] }, { simp only [h, add_zero, add_apply, not_false_iff, filter_apply_neg] } end instance filter.is_add_monoid_hom (p : α → Prop) : is_add_monoid_hom (filter p : (α →₀ β) → (α →₀ β)) := { map_zero := filter_zero p, map_add := λ x y, filter_add } end monoid section comm_monoid variables [add_comm_monoid β] lemma subtype_domain_sum {s : finset γ} {h : γ → α →₀ β} : (s.sum h).subtype_domain p = s.sum (λc, (h c).subtype_domain p) := eq.symm (s.sum_hom _) lemma subtype_domain_finsupp_sum {s : γ →₀ δ} {h : γ → δ → α →₀ β} : (s.sum h).subtype_domain p = s.sum (λc d, (h c d).subtype_domain p) := subtype_domain_sum lemma filter_sum (s : finset γ) (f : γ → α →₀ β) : (s.sum f).filter p = s.sum (λa, filter p (f a)) := (s.sum_hom (filter p)).symm end comm_monoid section group variables [add_group β] {v v' : α' →₀ β} @[simp] lemma subtype_domain_neg {v : α →₀ β} : (- v).subtype_domain p = - v.subtype_domain p := ext $ λ _, rfl @[simp] lemma subtype_domain_sub {v v' : α →₀ β} : (v - v').subtype_domain p = v.subtype_domain p - v'.subtype_domain p := ext $ λ _, rfl end group end subtype_domain /-! ### Declarations relating `finsupp` to `multiset` -/ section multiset /-- Given `f : α →₀ ℕ`, `f.to_multiset` is the multiset with multiplicities given by the values of `f` on the elements of `α`. -/ def to_multiset (f : α →₀ ℕ) : multiset α := f.sum (λa n, add_monoid.smul n {a}) lemma to_multiset_zero : (0 : α →₀ ℕ).to_multiset = 0 := rfl lemma to_multiset_add (m n : α →₀ ℕ) : (m + n).to_multiset = m.to_multiset + n.to_multiset := sum_add_index (assume a, add_monoid.zero_smul _) (assume a b₁ b₂, add_monoid.add_smul _ _ _) lemma to_multiset_single (a : α) (n : ℕ) : to_multiset (single a n) = add_monoid.smul n {a} := by rw [to_multiset, sum_single_index]; apply add_monoid.zero_smul instance is_add_monoid_hom.to_multiset : is_add_monoid_hom (to_multiset : _ → multiset α) := { map_zero := to_multiset_zero, map_add := to_multiset_add } lemma card_to_multiset (f : α →₀ ℕ) : f.to_multiset.card = f.sum (λa, id) := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.card_zero, sum_zero_index] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.card_add, ih, sum_add_index, to_multiset_single, sum_single_index, multiset.card_smul, multiset.singleton_eq_singleton, multiset.card_singleton, mul_one]; intros; refl } end lemma to_multiset_map (f : α →₀ ℕ) (g : α → β) : f.to_multiset.map g = (f.map_domain g).to_multiset := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.map_zero, map_domain_zero, to_multiset_zero] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.map_add, ih, map_domain_add, map_domain_single, to_multiset_single, to_multiset_add, to_multiset_single, is_add_monoid_hom.map_smul (multiset.map g)], refl } end lemma prod_to_multiset [comm_monoid α] (f : α →₀ ℕ) : f.to_multiset.prod = f.prod (λa n, a ^ n) := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.prod_zero, finsupp.prod_zero_index] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.prod_add, ih, to_multiset_single, finsupp.prod_add_index, finsupp.prod_single_index, multiset.prod_smul, multiset.singleton_eq_singleton, multiset.prod_singleton], { exact pow_zero a }, { exact pow_zero }, { exact pow_add } } end lemma to_finset_to_multiset (f : α →₀ ℕ) : f.to_multiset.to_finset = f.support := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.to_finset_zero, support_zero] }, { assume a n f ha hn ih, rw [to_multiset_add, multiset.to_finset_add, ih, to_multiset_single, support_add_eq, support_single_ne_zero hn, multiset.to_finset_smul _ _ hn, multiset.singleton_eq_singleton, multiset.to_finset_cons, multiset.to_finset_zero], refl, refine disjoint_mono support_single_subset (subset.refl _) _, rwa [finset.singleton_eq_singleton, finset.singleton_disjoint] } end @[simp] lemma count_to_multiset (f : α →₀ ℕ) (a : α) : f.to_multiset.count a = f a := calc f.to_multiset.count a = f.sum (λx n, (add_monoid.smul n {x} : multiset α).count a) : (f.support.sum_hom $ multiset.count a).symm ... = f.sum (λx n, n * ({x} : multiset α).count a) : by simp only [multiset.count_smul] ... = f.sum (λx n, n * (x :: 0 : multiset α).count a) : rfl ... = f a * (a :: 0 : multiset α).count a : sum_eq_single _ (λ a' _ H, by simp only [multiset.count_cons_of_ne (ne.symm H), multiset.count_zero, mul_zero]) (λ H, by simp only [not_mem_support_iff.1 H, zero_mul]) ... = f a : by simp only [multiset.count_singleton, mul_one] /-- Given `m : multiset α`, `of_multiset m` is the finitely supported function from `α` to `ℕ` given by the multiplicities of the elements of `α` in `m`. -/ def of_multiset (m : multiset α) : α →₀ ℕ := on_finset m.to_finset (λa, m.count a) $ λ a H, multiset.mem_to_finset.2 $ by_contradiction (mt multiset.count_eq_zero.2 H) @[simp] lemma of_multiset_apply (m : multiset α) (a : α) : of_multiset m a = m.count a := rfl /-- `equiv_multiset` defines an `equiv` between finitely supported functions from `α` to `ℕ` and multisets on `α`. -/ def equiv_multiset : (α →₀ ℕ) ≃ (multiset α) := ⟨ to_multiset, of_multiset, assume f, finsupp.ext $ λ a, by rw [of_multiset_apply, count_to_multiset], assume m, multiset.ext.2 $ λ a, by rw [count_to_multiset, of_multiset_apply] ⟩ lemma mem_support_multiset_sum [add_comm_monoid β] {s : multiset (α →₀ β)} (a : α) : a ∈ s.sum.support → ∃f∈s, a ∈ (f : α →₀ β).support := multiset.induction_on s false.elim begin assume f s ih ha, by_cases a ∈ f.support, { exact ⟨f, multiset.mem_cons_self _ _, h⟩ }, { simp only [multiset.sum_cons, mem_support_iff, add_apply, not_mem_support_iff.1 h, zero_add] at ha, rcases ih (mem_support_iff.2 ha) with ⟨f', h₀, h₁⟩, exact ⟨f', multiset.mem_cons_of_mem h₀, h₁⟩ } end lemma mem_support_finset_sum [add_comm_monoid β] {s : finset γ} {h : γ → α →₀ β} (a : α) (ha : a ∈ (s.sum h).support) : ∃c∈s, a ∈ (h c).support := let ⟨f, hf, hfa⟩ := mem_support_multiset_sum a ha in let ⟨c, hc, eq⟩ := multiset.mem_map.1 hf in ⟨c, hc, eq.symm ▸ hfa⟩ lemma mem_support_single [has_zero β] (a a' : α) (b : β) : a ∈ (single a' b).support ↔ a = a' ∧ b ≠ 0 := ⟨λ H : (a ∈ ite _ _ _), if h : b = 0 then by rw if_pos h at H; exact H.elim else ⟨by rw if_neg h at H; exact mem_singleton.1 H, h⟩, λ ⟨h1, h2⟩, show a ∈ ite _ _ _, by rw [if_neg h2]; exact mem_singleton.2 h1⟩ end multiset /-! ### Declarations about `curry` and `uncurry` -/ section curry_uncurry /-- Given a finitely supported function `f` from a product type `α × β` to `γ`, `curry f` is the "curried" finitely supported function from `α` to the type of finitely supported functions from `β` to `γ`. -/ protected def curry [add_comm_monoid γ] (f : (α × β) →₀ γ) : α →₀ (β →₀ γ) := f.sum $ λp c, single p.1 (single p.2 c) lemma sum_curry_index [add_comm_monoid γ] [add_comm_monoid δ] (f : (α × β) →₀ γ) (g : α → β → γ → δ) (hg₀ : ∀ a b, g a b 0 = 0) (hg₁ : ∀a b c₀ c₁, g a b (c₀ + c₁) = g a b c₀ + g a b c₁) : f.curry.sum (λa f, f.sum (g a)) = f.sum (λp c, g p.1 p.2 c) := begin rw [finsupp.curry], transitivity, { exact sum_sum_index (assume a, sum_zero_index) (assume a b₀ b₁, sum_add_index (assume a, hg₀ _ _) (assume c d₀ d₁, hg₁ _ _ _ _)) }, congr, funext p c, transitivity, { exact sum_single_index sum_zero_index }, exact sum_single_index (hg₀ _ _) end /-- Given a finitely supported function `f` from `α` to the type of finitely supported functions from `β` to `γ`, `uncurry f` is the "uncurried" finitely supported function from `α × β` to `γ`. -/ protected def uncurry [add_comm_monoid γ] (f : α →₀ (β →₀ γ)) : (α × β) →₀ γ := f.sum $ λa g, g.sum $ λb c, single (a, b) c /-- `finsupp_prod_equiv` defines the `equiv` between `((α × β) →₀ γ)` and `(α →₀ (β →₀ γ))` given by currying and uncurrying. -/ def finsupp_prod_equiv [add_comm_monoid γ] : ((α × β) →₀ γ) ≃ (α →₀ (β →₀ γ)) := by refine ⟨finsupp.curry, finsupp.uncurry, λ f, _, λ f, _⟩; simp only [ finsupp.curry, finsupp.uncurry, sum_sum_index, sum_zero_index, sum_add_index, sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, prod.mk.eta, (single_sum _ _ _).symm, sum_single] lemma filter_curry [add_comm_monoid β] (f : α₁ × α₂ →₀ β) (p : α₁ → Prop) : (f.filter (λa:α₁×α₂, p a.1)).curry = f.curry.filter p := begin rw [finsupp.curry, finsupp.curry, finsupp.sum, finsupp.sum, @filter_sum _ (α₂ →₀ β) _ p _ f.support _], rw [support_filter, sum_filter], refine finset.sum_congr rfl _, rintros ⟨a₁, a₂⟩ ha, dsimp only, split_ifs, { rw [filter_apply_pos, filter_single_of_pos]; exact h }, { rwa [filter_single_of_neg] } end lemma support_curry [add_comm_monoid β] (f : α₁ × α₂ →₀ β) : f.curry.support ⊆ f.support.image prod.fst := begin rw ← finset.bind_singleton, refine finset.subset.trans support_sum _, refine finset.bind_mono (assume a _, support_single_subset) end end curry_uncurry /-! ### Declarations related to semirings When `α` is an `add_monoid` and `β` is a `semiring`, there is a `semiring` instance on `α →₀ β`. -/ section variables [add_monoid α] [semiring β] -- TODO: the simplifier unfolds 0 in the instance proof! private lemma zero_mul (f : α →₀ β) : 0 * f = 0 := by simp only [mul_def, sum_zero_index] private lemma mul_zero (f : α →₀ β) : f * 0 = 0 := by simp only [mul_def, sum_zero_index, sum_zero] private lemma left_distrib (a b c : α →₀ β) : a * (b + c) = a * b + a * c := by simp only [mul_def, sum_add_index, mul_add, _root_.mul_zero, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add] private lemma right_distrib (a b c : α →₀ β) : (a + b) * c = a * c + b * c := by simp only [mul_def, sum_add_index, add_mul, _root_.mul_zero, _root_.zero_mul, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero, sum_add] instance : semiring (α →₀ β) := { one := 1, mul := (*), one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, _root_.zero_mul, single_zero, sum_zero, zero_add, one_mul, sum_single], mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, _root_.mul_zero, single_zero, sum_zero, add_zero, mul_one, sum_single], zero_mul := zero_mul, mul_zero := mul_zero, mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index, sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, add_mul, mul_add, add_assoc, mul_assoc, _root_.zero_mul, _root_.mul_zero, sum_zero, sum_add], left_distrib := left_distrib, right_distrib := right_distrib, .. finsupp.add_comm_monoid } end instance [add_comm_monoid α] [comm_semiring β] : comm_semiring (α →₀ β) := { mul_comm := assume f g, begin simp only [mul_def, finsupp.sum, mul_comm], rw [finset.sum_comm], simp only [add_comm] end, .. finsupp.semiring } instance [add_monoid α] [ring β] : ring (α →₀ β) := { neg := has_neg.neg, add_left_neg := add_left_neg, .. finsupp.semiring } instance [add_comm_monoid α] [comm_ring β] : comm_ring (α →₀ β) := { mul_comm := mul_comm, .. finsupp.ring} lemma single_mul_single [has_add α] [semiring β] {a₁ a₂ : α} {b₁ b₂ : β}: single a₁ b₁ * single a₂ b₂ = single (a₁ + a₂) (b₁ * b₂) := (sum_single_index (by simp only [_root_.zero_mul, single_zero, sum_zero])).trans (sum_single_index (by rw [_root_.mul_zero, single_zero])) lemma prod_single [add_comm_monoid α] [comm_semiring β] {s : finset ι} {a : ι → α} {b : ι → β} : s.prod (λi, single (a i) (b i)) = single (s.sum a) (s.prod b) := finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih, single_mul_single, sum_insert has, prod_insert has] section instance [semiring γ] [add_comm_monoid β] [semimodule γ β] : has_scalar γ (α →₀ β) := ⟨λa v, v.map_range ((•) a) (smul_zero _)⟩ variables (α β) @[simp] lemma smul_apply' {R:semiring γ} [add_comm_monoid β] [semimodule γ β] {a : α} {b : γ} {v : α →₀ β} : (b • v) a = b • (v a) := rfl instance [semiring γ] [add_comm_monoid β] [semimodule γ β] : semimodule γ (α →₀ β) := { smul := (•), smul_add := λ a x y, ext $ λ _, smul_add _ _ _, add_smul := λ a x y, ext $ λ _, add_smul _ _ _, one_smul := λ x, ext $ λ _, one_smul _ _, mul_smul := λ r s x, ext $ λ _, mul_smul _ _ _, zero_smul := λ x, ext $ λ _, zero_smul _ _, smul_zero := λ x, ext $ λ _, smul_zero _ } instance [ring γ] [add_comm_group β] [module γ β] : module γ (α →₀ β) := { ..finsupp.semimodule α β } instance [field γ] [add_comm_group β] [vector_space γ β] : vector_space γ (α →₀ β) := { ..finsupp.module α β } variables {α β} lemma support_smul {R:semiring γ} [add_comm_monoid β] [semimodule γ β] {b : γ} {g : α →₀ β} : (b • g).support ⊆ g.support := λ a, by simp only [smul_apply', mem_support_iff, ne.def]; exact mt (λ h, h.symm ▸ smul_zero _) section variables {α' : Type*} [has_zero δ] {p : α → Prop} @[simp] lemma filter_smul {R : semiring γ} [add_comm_monoid β] [semimodule γ β] {b : γ} {v : α →₀ β} : (b • v).filter p = b • v.filter p := ext $ λ a, begin by_cases p a, { simp only [h, smul_apply', filter_apply_pos] }, { simp only [h, smul_apply', not_false_iff, filter_apply_neg, smul_zero] } end end lemma map_domain_smul {α'} {R : semiring γ} [add_comm_monoid β] [semimodule γ β] {f : α → α'} (b : γ) (v : α →₀ β) : map_domain f (b • v) = b • map_domain f v := begin change map_domain f (map_range _ _ _) = map_range _ _ _, apply finsupp.induction v, { simp only [map_domain_zero, map_range_zero] }, intros a b v' hv₁ hv₂ IH, rw [map_range_add, map_domain_add, IH, map_domain_add, map_range_add, map_range_single, map_domain_single, map_domain_single, map_range_single]; apply smul_add end @[simp] lemma smul_single {R : semiring γ} [add_comm_monoid β] [semimodule γ β] (c : γ) (a : α) (b : β) : c • finsupp.single a b = finsupp.single a (c • b) := ext $ λ a', by by_cases a = a'; [{ subst h, simp only [smul_apply', single_eq_same] }, simp only [h, smul_apply', ne.def, not_false_iff, single_eq_of_ne, smul_zero]] end @[simp] lemma smul_apply [ring β] {a : α} {b : β} {v : α →₀ β} : (b • v) a = b • (v a) := rfl lemma sum_smul_index [ring β] [add_comm_monoid γ] {g : α →₀ β} {b : β} {h : α → β → γ} (h0 : ∀i, h i 0 = 0) : (b • g).sum h = g.sum (λi a, h i (b * a)) := finsupp.sum_map_range_index h0 section variables [semiring β] [semiring γ] lemma sum_mul (b : γ) (s : α →₀ β) {f : α → β → γ} : (s.sum f) * b = s.sum (λ a c, (f a (s a)) * b) := by simp only [finsupp.sum, finset.sum_mul] lemma mul_sum (b : γ) (s : α →₀ β) {f : α → β → γ} : b * (s.sum f) = s.sum (λ a c, b * (f a (s a))) := by simp only [finsupp.sum, finset.mul_sum] protected lemma eq_zero_of_zero_eq_one (zero_eq_one : (0 : β) = 1) (l : α →₀ β) : l = 0 := by ext i; simp only [eq_zero_of_zero_eq_one β zero_eq_one (l i), finsupp.zero_apply] end /-- Given an `add_comm_monoid β` and `s : set α`, `restrict_support_equiv` is the `equiv` between the subtype of finitely supported functions with support contained in `s` and the type of finitely supported functions from `s`. -/ def restrict_support_equiv [add_comm_monoid β] (s : set α) : {f : α →₀ β // ↑f.support ⊆ s } ≃ (s →₀ β):= begin refine ⟨λf, subtype_domain (λx, x ∈ s) f.1, λ f, ⟨f.map_domain subtype.val, _⟩, _, _⟩, { refine set.subset.trans (finset.coe_subset.2 map_domain_support) _, rw [finset.coe_image, set.image_subset_iff], exact assume x hx, x.2 }, { rintros ⟨f, hf⟩, apply subtype.eq, ext a, dsimp only, refine classical.by_cases (assume h : a ∈ set.range (subtype.val : s → α), _) (assume h, _), { rcases h with ⟨x, rfl⟩, rw [map_domain_apply subtype.val_injective, subtype_domain_apply] }, { convert map_domain_notin_range _ _ h, rw [← not_mem_support_iff], refine mt _ h, exact assume ha, ⟨⟨a, hf ha⟩, rfl⟩ } }, { assume f, ext ⟨a, ha⟩, dsimp only, rw [subtype_domain_apply, map_domain_apply subtype.val_injective] } end /-- Given `add_comm_monoid β` and `e : α₁ ≃ α₂`, `dom_congr e` is the corresponding `equiv` between `α₁ →₀ β` and `α₂ →₀ β`. -/ protected def dom_congr [add_comm_monoid β] (e : α₁ ≃ α₂) : (α₁ →₀ β) ≃ (α₂ →₀ β) := ⟨map_domain e, map_domain e.symm, begin assume v, simp only [map_domain_comp.symm, (∘), equiv.symm_apply_apply], exact map_domain_id end, begin assume v, simp only [map_domain_comp.symm, (∘), equiv.apply_symm_apply], exact map_domain_id end⟩ /-! ### Declarations about sigma types -/ section sigma variables {αs : ι → Type*} [has_zero β] (l : (Σ i, αs i) →₀ β) /-- Given `l`, a finitely supported function from the sigma type `Σ (i : ι), αs i` to `β` and an index element `i : ι`, `split l i` is the `i`th component of `l`, a finitely supported function from `as i` to `β`. -/ def split (i : ι) : αs i →₀ β := l.comap_domain (sigma.mk i) (λ x1 x2 _ _ hx, heq_iff_eq.1 (sigma.mk.inj hx).2) lemma split_apply (i : ι) (x : αs i) : split l i x = l ⟨i, x⟩ := begin dunfold split, rw comap_domain_apply end /-- Given `l`, a finitely supported function from the sigma type `Σ (i : ι), αs i` to `β`, `split_support l` is the finset of indices in `ι` that appear in the support of `l`. -/ def split_support : finset ι := l.support.image sigma.fst lemma mem_split_support_iff_nonzero (i : ι) : i ∈ split_support l ↔ split l i ≠ 0 := begin rw [split_support, mem_image, ne.def, ← support_eq_empty, ← ne.def, ← finset.nonempty_iff_ne_empty, split, comap_domain, finset.nonempty], simp only [exists_prop, finset.mem_preimage, exists_and_distrib_right, exists_eq_right, mem_support_iff, sigma.exists, ne.def] end /-- Given `l`, a finitely supported function from the sigma type `Σ i, αs i` to `β` and an `ι`-indexed family `g` of functions from `(αs i →₀ β)` to `γ`, `split_comp` defines a finitely supported function from the index type `ι` to `γ` given by composing `g i` with `split l i`. -/ def split_comp [has_zero γ] (g : Π i, (αs i →₀ β) → γ) (hg : ∀ i x, x = 0 ↔ g i x = 0) : ι →₀ γ := { support := split_support l, to_fun := λ i, g i (split l i), mem_support_to_fun := begin intros i, rw [mem_split_support_iff_nonzero, not_iff_not, hg], end } lemma sigma_support : l.support = l.split_support.sigma (λ i, (l.split i).support) := by simp only [finset.ext, split_support, split, comap_domain, mem_image, mem_preimage, sigma.forall, mem_sigma]; tauto lemma sigma_sum [add_comm_monoid γ] (f : (Σ (i : ι), αs i) → β → γ) : l.sum f = (split_support l).sum (λ (i : ι), (split l i).sum (λ (a : αs i) b, f ⟨i, a⟩ b)) := by simp only [sum, sigma_support, sum_sigma, split_apply] end sigma end finsupp /-! ### Declarations relating `multiset` to `finsupp` -/ namespace multiset /-- Given a multiset `s`, `s.to_finsupp` returns the finitely supported function on `ℕ` given by the multiplicities of the elements of `s`. -/ def to_finsupp (s : multiset α) : α →₀ ℕ := { support := s.to_finset, to_fun := λ a, s.count a, mem_support_to_fun := λ a, begin rw mem_to_finset, convert not_iff_not_of_iff (count_eq_zero.symm), rw not_not end } @[simp] lemma to_finsupp_support (s : multiset α) : s.to_finsupp.support = s.to_finset := rfl @[simp] lemma to_finsupp_apply (s : multiset α) (a : α) : s.to_finsupp a = s.count a := rfl @[simp] lemma to_finsupp_zero : to_finsupp (0 : multiset α) = 0 := finsupp.ext $ λ a, count_zero a @[simp] lemma to_finsupp_add (s t : multiset α) : to_finsupp (s + t) = to_finsupp s + to_finsupp t := finsupp.ext $ λ a, count_add a s t lemma to_finsupp_singleton (a : α) : to_finsupp {a} = finsupp.single a 1 := finsupp.ext $ λ b, if h : a = b then by rw [to_finsupp_apply, finsupp.single_apply, h, if_pos rfl, singleton_eq_singleton, count_singleton] else begin rw [to_finsupp_apply, finsupp.single_apply, if_neg h, count_eq_zero, singleton_eq_singleton, mem_singleton], rintro rfl, exact h rfl end namespace to_finsupp instance : is_add_monoid_hom (to_finsupp : multiset α → α →₀ ℕ) := { map_zero := to_finsupp_zero, map_add := to_finsupp_add } end to_finsupp @[simp] lemma to_finsupp_to_multiset (s : multiset α) : s.to_finsupp.to_multiset = s := ext.2 $ λ a, by rw [finsupp.count_to_multiset, to_finsupp_apply] end multiset /-! ### Declarations about order(ed) instances on `finsupp` -/ namespace finsupp variables {σ : Type*} instance [preorder α] [has_zero α] : preorder (σ →₀ α) := { le := λ f g, ∀ s, f s ≤ g s, le_refl := λ f s, le_refl _, le_trans := λ f g h Hfg Hgh s, le_trans (Hfg s) (Hgh s) } instance [partial_order α] [has_zero α] : partial_order (σ →₀ α) := { le_antisymm := λ f g hfg hgf, ext $ λ s, le_antisymm (hfg s) (hgf s), .. finsupp.preorder } instance [ordered_cancel_comm_monoid α] : add_left_cancel_semigroup (σ →₀ α) := { add_left_cancel := λ a b c h, ext $ λ s, by { rw ext_iff at h, exact add_left_cancel (h s) }, .. finsupp.add_monoid } instance [ordered_cancel_comm_monoid α] : add_right_cancel_semigroup (σ →₀ α) := { add_right_cancel := λ a b c h, ext $ λ s, by { rw ext_iff at h, exact add_right_cancel (h s) }, .. finsupp.add_monoid } instance [ordered_cancel_comm_monoid α] : ordered_cancel_comm_monoid (σ →₀ α) := { add_le_add_left := λ a b h c s, add_le_add_left (h s) (c s), le_of_add_le_add_left := λ a b c h s, le_of_add_le_add_left (h s), .. finsupp.add_comm_monoid, .. finsupp.partial_order, .. finsupp.add_left_cancel_semigroup, .. finsupp.add_right_cancel_semigroup } lemma le_iff [canonically_ordered_monoid α] (f g : σ →₀ α) : f ≤ g ↔ ∀ s ∈ f.support, f s ≤ g s := ⟨λ h s hs, h s, λ h s, if H : s ∈ f.support then h s H else (not_mem_support_iff.1 H).symm ▸ zero_le (g s)⟩ @[simp] lemma add_eq_zero_iff [canonically_ordered_monoid α] (f g : σ →₀ α) : f + g = 0 ↔ f = 0 ∧ g = 0 := begin split, { assume h, split, all_goals { ext s, suffices H : f s + g s = 0, { rw add_eq_zero_iff at H, cases H, assumption }, show (f + g) s = 0, rw h, refl } }, { rintro ⟨rfl, rfl⟩, rw add_zero } end attribute [simp] to_multiset_zero to_multiset_add @[simp] lemma to_multiset_to_finsupp (f : σ →₀ ℕ) : f.to_multiset.to_finsupp = f := ext $ λ s, by rw [multiset.to_finsupp_apply, count_to_multiset] lemma to_multiset_strict_mono : strict_mono (@to_multiset σ) := λ m n h, begin rw lt_iff_le_and_ne at h ⊢, cases h with h₁ h₂, split, { rw multiset.le_iff_count, intro s, erw [count_to_multiset m s, count_to_multiset], exact h₁ s }, { intro H, apply h₂, replace H := congr_arg multiset.to_finsupp H, simpa only [to_multiset_to_finsupp] using H } end lemma sum_id_lt_of_lt (m n : σ →₀ ℕ) (h : m < n) : m.sum (λ _, id) < n.sum (λ _, id) := begin rw [← card_to_multiset, ← card_to_multiset], apply multiset.card_lt_of_lt, exact to_multiset_strict_mono h end variable (σ) /-- The order on `σ →₀ ℕ` is well-founded.-/ lemma lt_wf : well_founded (@has_lt.lt (σ →₀ ℕ) _) := subrelation.wf (sum_id_lt_of_lt) $ inv_image.wf _ nat.lt_wf instance decidable_le : decidable_rel (@has_le.le (σ →₀ ℕ) _) := λ m n, by rw le_iff; apply_instance variable {σ} /-- The `finsupp` counterpart of `multiset.antidiagonal`: the antidiagonal of `s : σ →₀ ℕ` consists of all pairs `(t₁, t₂) : (σ →₀ ℕ) × (σ →₀ ℕ)` such that `t₁ + t₂ = s`. The finitely supported function `antidiagonal s` is equal to the multiplicities of these pairs. -/ def antidiagonal (f : σ →₀ ℕ) : ((σ →₀ ℕ) × (σ →₀ ℕ)) →₀ ℕ := (f.to_multiset.antidiagonal.map (prod.map multiset.to_finsupp multiset.to_finsupp)).to_finsupp lemma mem_antidiagonal_support {f : σ →₀ ℕ} {p : (σ →₀ ℕ) × (σ →₀ ℕ)} : p ∈ (antidiagonal f).support ↔ p.1 + p.2 = f := begin erw [multiset.mem_to_finset, multiset.mem_map], split, { rintros ⟨⟨a, b⟩, h, rfl⟩, rw multiset.mem_antidiagonal at h, simpa only [to_multiset_to_finsupp, multiset.to_finsupp_add] using congr_arg multiset.to_finsupp h}, { intro h, refine ⟨⟨p.1.to_multiset, p.2.to_multiset⟩, _, _⟩, { simpa only [multiset.mem_antidiagonal, to_multiset_add] using congr_arg to_multiset h}, { rw [prod.map, to_multiset_to_finsupp, to_multiset_to_finsupp, prod.mk.eta] } } end @[simp] lemma antidiagonal_zero : antidiagonal (0 : σ →₀ ℕ) = single (0,0) 1 := by rw [← multiset.to_finsupp_singleton]; refl lemma swap_mem_antidiagonal_support {n : σ →₀ ℕ} {f} (hf : f ∈ (antidiagonal n).support) : f.swap ∈ (antidiagonal n).support := by simpa only [mem_antidiagonal_support, add_comm, prod.swap] using hf end finsupp
11c71b0e00f88124fa657903e5a591f5daeede6e
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
/src/geometry/manifold/charted_space.lean
3ab18e6f002da536422a3e19903f5e5b1bb1756d
[ "Apache-2.0" ]
permissive
DanielFabian/mathlib
efc3a50b5dde303c59eeb6353ef4c35a345d7112
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
refs/heads/master
1,668,739,922,971
1,595,201,756,000
1,595,201,756,000
279,469,476
0
0
null
1,594,696,604,000
1,594,696,604,000
null
UTF-8
Lean
false
false
41,874
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import topology.local_homeomorph /-! # Charted spaces A smooth manifold is a topological space `M` locally modelled on a euclidean space (or a euclidean half-space for manifolds with boundaries, or an infinite dimensional vector space for more general notions of manifolds), i.e., the manifold is covered by open subsets on which there are local homeomorphisms (the charts) going to a model space `H`, and the changes of charts should be smooth maps. In this file, we introduce a general framework describing these notions, where the model space is an arbitrary topological space. We avoid the word *manifold*, which should be reserved for the situation where the model space is a (subset of a) vector space, and use the terminology *charted space* instead. If the changes of charts satisfy some additional property (for instance if they are smooth), then `M` inherits additional structure (it makes sense to talk about smooth manifolds). There are therefore two different ingredients in a charted space: * the set of charts, which is data * the fact that changes of charts belong to some group (in fact groupoid), which is additional Prop. We separate these two parts in the definition: the charted space structure is just the set of charts, and then the different smoothness requirements (smooth manifold, orientable manifold, contact manifold, and so on) are additional properties of these charts. These properties are formalized through the notion of structure groupoid, i.e., a set of local homeomorphisms stable under composition and inverse, to which the change of coordinates should belong. ## Main definitions * `structure_groupoid H` : a subset of local homeomorphisms of `H` stable under composition, inverse and restriction (ex: local diffeos). * `continuous_groupoid H` : the groupoid of all local homeomorphisms of `H` * `charted_space H M` : charted space structure on `M` modelled on `H`, given by an atlas of local homeomorphisms from `M` to `H` whose sources cover `M`. This is a type class. * `has_groupoid M G` : when `G` is a structure groupoid on `H` and `M` is a charted space modelled on `H`, require that all coordinate changes belong to `G`. This is a type class. * `atlas H M` : when `M` is a charted space modelled on `H`, the atlas of this charted space structure, i.e., the set of charts. * `G.maximal_atlas M` : when `M` is a charted space modelled on `H` and admitting `G` as a structure groupoid, one can consider all the local homeomorphisms from `M` to `H` such that changing coordinate from any chart to them belongs to `G`. This is a larger atlas, called the maximal atlas (for the groupoid `G`). * `structomorph G M M'` : the type of diffeomorphisms between the charted spaces `M` and `M'` for the groupoid `G`. We avoid the word diffeomorphism, keeping it for the smooth category. As a basic example, we give the instance `instance charted_space_model_space (H : Type*) [topological_space H] : charted_space H H` saying that a topological space is a charted space over itself, with the identity as unique chart. This charted space structure is compatible with any groupoid. Additional useful definitions: * `pregroupoid H` : a subset of local mas of `H` stable under composition and restriction, but not inverse (ex: smooth maps) * `groupoid_of_pregroupoid` : construct a groupoid from a pregroupoid, by requiring that a map and its inverse both belong to the pregroupoid (ex: construct diffeos from smooth maps) * `chart_at H x` is a preferred chart at `x : M` when `M` has a charted space structure modelled on `H`. * `G.compatible he he'` states that, for any two charts `e` and `e'` in the atlas, the composition of `e.symm` and `e'` belongs to the groupoid `G` when `M` admits `G` as a structure groupoid. * `G.compatible_of_mem_maximal_atlas he he'` states that, for any two charts `e` and `e'` in the maximal atlas associated to the groupoid `G`, the composition of `e.symm` and `e'` belongs to the `G` if `M` admits `G` as a structure groupoid. * `charted_space_core.to_charted_space`: consider a space without a topology, but endowed with a set of charts (which are local equivs) for which the change of coordinates are local homeos. Then one can construct a topology on the space for which the charts become local homeos, defining a genuine charted space structure. ## Implementation notes The atlas in a charted space is *not* a maximal atlas in general: the notion of maximality depends on the groupoid one considers, and changing groupoids changes the maximal atlas. With the current formalization, it makes sense first to choose the atlas, and then to ask whether this precise atlas defines a smooth manifold, an orientable manifold, and so on. A consequence is that structomorphisms between `M` and `M'` do *not* induce a bijection between the atlases of `M` and `M'`: the definition is only that, read in charts, the structomorphism locally belongs to the groupoid under consideration. (This is equivalent to inducing a bijection between elements of the maximal atlas). A consequence is that the invariance under structomorphisms of properties defined in terms of the atlas is not obvious in general, and could require some work in theory (amounting to the fact that these properties only depend on the maximal atlas, for instance). In practice, this does not create any real difficulty. We use the letter `H` for the model space thinking of the case of manifolds with boundary, where the model space is a half space. Manifolds are sometimes defined as topological spaces with an atlas of local diffeomorphisms, and sometimes as spaces with an atlas from which a topology is deduced. We use the former approach: otherwise, there would be an instance from manifolds to topological spaces, which means that any instance search for topological spaces would try to find manifold structures involving a yet unknown model space, leading to problems. However, we also introduce the latter approach, through a structure `charted_space_core` making it possible to construct a topology out of a set of local equivs with compatibility conditions (but we do not register it as an instance). In the definition of a charted space, the model space is written as an explicit parameter as there can be several model spaces for a given topological space. For instance, a complex manifold (modelled over `ℂ^n`) will also be seen sometimes as a real manifold modelled over `ℝ^(2n)`. ## Notations In the locale `manifold`, we denote the composition of local homeomorphisms with `≫ₕ`, and the composition of local equivs with `≫`. -/ -- register in the simpset `mfld_simps` several lemmas that are often useful attribute [mfld_simps] id.def function.comp.left_id set.mem_set_of_eq set.image_eq_empty set.univ_inter set.preimage_univ set.prod_mk_mem_set_prod_eq and_true set.mem_univ set.mem_image_of_mem true_and set.mem_inter_eq set.mem_preimage function.comp_app set.inter_subset_left set.mem_prod set.range_id and_self set.mem_range_self eq_self_iff_true forall_const forall_true_iff set.inter_univ set.preimage_id function.comp.right_id not_false_iff and_imp noncomputable theory open_locale classical universes u variables {H : Type u} {H' : Type*} {M : Type*} {M' : Type*} {M'' : Type*} /- Notational shortcut for the composition of local homeomorphisms and local equivs, i.e., `local_homeomorph.trans` and `local_equiv.trans`. Note that, as is usual for equivs, the composition is from left to right, hence the direction of the arrow. -/ localized "infixr ` ≫ₕ `:100 := local_homeomorph.trans" in manifold localized "infixr ` ≫ `:100 := local_equiv.trans" in manifold open set local_homeomorph /-! ### Structure groupoids-/ section groupoid /-! One could add to the definition of a structure groupoid the fact that the restriction of an element of the groupoid to any open set still belongs to the groupoid. (This is in Kobayashi-Nomizu.) I am not sure I want this, for instance on `H × E` where `E` is a vector space, and the groupoid is made of functions respecting the fibers and linear in the fibers (so that a charted space over this groupoid is naturally a vector bundle) I prefer that the members of the groupoid are always defined on sets of the form `s × E`. There is a typeclass `closed_under_restriction` for groupoids which have the restriction property. The only nontrivial requirement is locality: if a local homeomorphism belongs to the groupoid around each point in its domain of definition, then it belongs to the groupoid. Without this requirement, the composition of structomorphisms does not have to be a structomorphism. Note that this implies that a local homeomorphism with empty source belongs to any structure groupoid, as it trivially satisfies this condition. There is also a technical point, related to the fact that a local homeomorphism is by definition a global map which is a homeomorphism when restricted to its source subset (and its values outside of the source are not relevant). Therefore, we also require that being a member of the groupoid only depends on the values on the source. We use primes in the structure names as we will reformulate them below (without primes) using a `has_mem` instance, writing `e ∈ G` instead of `e ∈ G.members`. -/ /-- A structure groupoid is a set of local homeomorphisms of a topological space stable under composition and inverse. They appear in the definition of the smoothness class of a manifold. -/ structure structure_groupoid (H : Type u) [topological_space H] := (members : set (local_homeomorph H H)) (trans' : ∀e e' : local_homeomorph H H, e ∈ members → e' ∈ members → e ≫ₕ e' ∈ members) (symm' : ∀e : local_homeomorph H H, e ∈ members → e.symm ∈ members) (id_mem' : local_homeomorph.refl H ∈ members) (locality' : ∀e : local_homeomorph H H, (∀x ∈ e.source, ∃s, is_open s ∧ x ∈ s ∧ e.restr s ∈ members) → e ∈ members) (eq_on_source' : ∀ e e' : local_homeomorph H H, e ∈ members → e' ≈ e → e' ∈ members) variable [topological_space H] instance : has_mem (local_homeomorph H H) (structure_groupoid H) := ⟨λ(e : local_homeomorph H H) (G : structure_groupoid H), e ∈ G.members⟩ lemma structure_groupoid.trans (G : structure_groupoid H) {e e' : local_homeomorph H H} (he : e ∈ G) (he' : e' ∈ G) : e ≫ₕ e' ∈ G := G.trans' e e' he he' lemma structure_groupoid.symm (G : structure_groupoid H) {e : local_homeomorph H H} (he : e ∈ G) : e.symm ∈ G := G.symm' e he lemma structure_groupoid.id_mem (G : structure_groupoid H) : local_homeomorph.refl H ∈ G := G.id_mem' lemma structure_groupoid.locality (G : structure_groupoid H) {e : local_homeomorph H H} (h : ∀x ∈ e.source, ∃s, is_open s ∧ x ∈ s ∧ e.restr s ∈ G) : e ∈ G := G.locality' e h lemma structure_groupoid.eq_on_source (G : structure_groupoid H) {e e' : local_homeomorph H H} (he : e ∈ G) (h : e' ≈ e) : e' ∈ G := G.eq_on_source' e e' he h /-- Partial order on the set of groupoids, given by inclusion of the members of the groupoid -/ instance structure_groupoid.partial_order : partial_order (structure_groupoid H) := partial_order.lift structure_groupoid.members (λa b h, by { cases a, cases b, dsimp at h, induction h, refl }) lemma structure_groupoid.le_iff {G₁ G₂ : structure_groupoid H} : G₁ ≤ G₂ ↔ ∀ e, e ∈ G₁ → e ∈ G₂ := iff.rfl /-- The trivial groupoid, containing only the identity (and maps with empty source, as this is necessary from the definition) -/ def id_groupoid (H : Type u) [topological_space H] : structure_groupoid H := { members := {local_homeomorph.refl H} ∪ {e : local_homeomorph H H | e.source = ∅}, trans' := λe e' he he', begin cases he; simp at he he', { simpa only [he, refl_trans]}, { have : (e ≫ₕ e').source ⊆ e.source := sep_subset _ _, rw he at this, have : (e ≫ₕ e') ∈ {e : local_homeomorph H H | e.source = ∅} := disjoint_iff.1 this, exact (mem_union _ _ _).2 (or.inr this) }, end, symm' := λe he, begin cases (mem_union _ _ _).1 he with E E, { finish }, { right, simpa only [e.to_local_equiv.image_source_eq_target.symm] with mfld_simps using E}, end, id_mem' := mem_union_left _ rfl, locality' := λe he, begin cases e.source.eq_empty_or_nonempty with h h, { right, exact h }, { left, rcases h with ⟨x, hx⟩, rcases he x hx with ⟨s, open_s, xs, hs⟩, have x's : x ∈ (e.restr s).source, { rw [restr_source, interior_eq_of_open open_s], exact ⟨hx, xs⟩ }, cases hs, { replace hs : local_homeomorph.restr e s = local_homeomorph.refl H, by simpa using hs, have : (e.restr s).source = univ, by { rw hs, simp }, change (e.to_local_equiv).source ∩ interior s = univ at this, have : univ ⊆ interior s, by { rw ← this, exact inter_subset_right _ _ }, have : s = univ, by rwa [interior_eq_of_open open_s, univ_subset_iff] at this, simpa [this, restr_univ] using hs }, { exfalso, rw mem_set_of_eq at hs, rwa hs at x's } }, end, eq_on_source' := λe e' he he'e, begin cases he, { left, have : e = e', { refine eq_of_eq_on_source_univ (setoid.symm he'e) _ _; rw set.mem_singleton_iff.1 he ; refl }, rwa ← this }, { right, change (e.to_local_equiv).source = ∅ at he, rwa [set.mem_set_of_eq, he'e.source_eq] } end } /-- Every structure groupoid contains the identity groupoid -/ instance : order_bot (structure_groupoid H) := { bot := id_groupoid H, bot_le := begin assume u f hf, change f ∈ {local_homeomorph.refl H} ∪ {e : local_homeomorph H H | e.source = ∅} at hf, simp only [singleton_union, mem_set_of_eq, mem_insert_iff] at hf, cases hf, { rw hf, apply u.id_mem }, { apply u.locality, assume x hx, rw [hf, mem_empty_eq] at hx, exact hx.elim } end, ..structure_groupoid.partial_order } instance (H : Type u) [topological_space H] : inhabited (structure_groupoid H) := ⟨id_groupoid H⟩ /-- To construct a groupoid, one may consider classes of local homeos such that both the function and its inverse have some property. If this property is stable under composition, one gets a groupoid. `pregroupoid` bundles the properties needed for this construction, with the groupoid of smooth functions with smooth inverses as an application. -/ structure pregroupoid (H : Type*) [topological_space H] := (property : (H → H) → (set H) → Prop) (comp : ∀{f g u v}, property f u → property g v → is_open u → is_open v → is_open (u ∩ f ⁻¹' v) → property (g ∘ f) (u ∩ f ⁻¹' v)) (id_mem : property id univ) (locality : ∀{f u}, is_open u → (∀x∈u, ∃v, is_open v ∧ x ∈ v ∧ property f (u ∩ v)) → property f u) (congr : ∀{f g : H → H} {u}, is_open u → (∀x∈u, g x = f x) → property f u → property g u) /-- Construct a groupoid of local homeos for which the map and its inverse have some property, from a pregroupoid asserting that this property is stable under composition. -/ def pregroupoid.groupoid (PG : pregroupoid H) : structure_groupoid H := { members := {e : local_homeomorph H H | PG.property e e.source ∧ PG.property e.symm e.target}, trans' := λe e' he he', begin split, { apply PG.comp he.1 he'.1 e.open_source e'.open_source, apply e.continuous_to_fun.preimage_open_of_open e.open_source e'.open_source }, { apply PG.comp he'.2 he.2 e'.open_target e.open_target, apply e'.continuous_inv_fun.preimage_open_of_open e'.open_target e.open_target } end, symm' := λe he, ⟨he.2, he.1⟩, id_mem' := ⟨PG.id_mem, PG.id_mem⟩, locality' := λe he, begin split, { apply PG.locality e.open_source (λx xu, _), rcases he x xu with ⟨s, s_open, xs, hs⟩, refine ⟨s, s_open, xs, _⟩, convert hs.1, exact (interior_eq_of_open s_open).symm }, { apply PG.locality e.open_target (λx xu, _), rcases he (e.symm x) (e.map_target xu) with ⟨s, s_open, xs, hs⟩, refine ⟨e.target ∩ e.symm ⁻¹' s, _, ⟨xu, xs⟩, _⟩, { exact continuous_on.preimage_open_of_open e.continuous_inv_fun e.open_target s_open }, { rw [← inter_assoc, inter_self], convert hs.2, exact (interior_eq_of_open s_open).symm } }, end, eq_on_source' := λe e' he ee', begin split, { apply PG.congr e'.open_source ee'.2, simp only [ee'.1, he.1] }, { have A := ee'.symm', apply PG.congr e'.symm.open_source A.2, convert he.2, rw A.1, refl } end } lemma mem_groupoid_of_pregroupoid (PG : pregroupoid H) (e : local_homeomorph H H) : e ∈ PG.groupoid ↔ PG.property e e.source ∧ PG.property e.symm e.target := iff.rfl lemma groupoid_of_pregroupoid_le (PG₁ PG₂ : pregroupoid H) (h : ∀f s, PG₁.property f s → PG₂.property f s) : PG₁.groupoid ≤ PG₂.groupoid := begin refine structure_groupoid.le_iff.2 (λ e he, _), rw mem_groupoid_of_pregroupoid at he ⊢, exact ⟨h _ _ he.1, h _ _ he.2⟩ end lemma mem_pregroupoid_of_eq_on_source (PG : pregroupoid H) {e e' : local_homeomorph H H} (he' : e ≈ e') (he : PG.property e e.source) : PG.property e' e'.source := begin rw ← he'.1, exact PG.congr e.open_source he'.eq_on.symm he, end /-- The pregroupoid of all local maps on a topological space `H` -/ @[reducible] def continuous_pregroupoid (H : Type*) [topological_space H] : pregroupoid H := { property := λf s, true, comp := λf g u v hf hg hu hv huv, trivial, id_mem := trivial, locality := λf u u_open h, trivial, congr := λf g u u_open hcongr hf, trivial } instance (H : Type*) [topological_space H] : inhabited (pregroupoid H) := ⟨continuous_pregroupoid H⟩ /-- The groupoid of all local homeomorphisms on a topological space `H` -/ def continuous_groupoid (H : Type*) [topological_space H] : structure_groupoid H := pregroupoid.groupoid (continuous_pregroupoid H) /-- Every structure groupoid is contained in the groupoid of all local homeomorphisms -/ instance : order_top (structure_groupoid H) := { top := continuous_groupoid H, le_top := λ u f hf, by { split; exact dec_trivial }, ..structure_groupoid.partial_order } /-- A groupoid is closed under restriction if it contains all restrictions of its element local homeomorphisms to open subsets of the source. -/ class closed_under_restriction (G : structure_groupoid H) : Prop := (closed_under_restriction : ∀ {e : local_homeomorph H H}, e ∈ G → ∀ (s : set H), is_open s → (e : local_homeomorph H H).restr s ∈ G) /-- The trivial restriction-closed groupoid, containing only local homeomorphisms equivalent to the restriction of the identity to the various open subsets. -/ def id_restr_groupoid : structure_groupoid H := { members := {e | ∃ {s : set H} (h : is_open s), e ≈ local_homeomorph.of_set s h}, trans' := begin rintros e e' ⟨s, hs, hse⟩ ⟨s', hs', hse'⟩, refine ⟨s ∩ s', is_open_inter hs hs', _⟩, have := local_homeomorph.eq_on_source.trans' hse hse', rwa local_homeomorph.of_set_trans_of_set at this, end, symm' := begin rintros e ⟨s, hs, hse⟩, refine ⟨s, hs, _⟩, rw [← of_set_symm], exact local_homeomorph.eq_on_source.symm' hse, end, id_mem' := ⟨univ, is_open_univ, by simp only with mfld_simps⟩, locality' := begin intros e h, refine ⟨e.source, e.open_source, by simp only with mfld_simps, _⟩, intros x hx, rcases h x hx with ⟨s, hs, hxs, s', hs', hes'⟩, have hes : x ∈ (e.restr s).source, { rw e.restr_source, refine ⟨hx, _⟩, rw interior_eq_of_open hs, exact hxs }, simpa only with mfld_simps using local_homeomorph.eq_on_source.eq_on hes' hes, end, eq_on_source' := begin rintros e e' ⟨s, hs, hse⟩ hee', exact ⟨s, hs, setoid.trans hee' hse⟩, end } lemma id_restr_groupoid_mem {s : set H} (hs : is_open s) : of_set s hs ∈ (@id_restr_groupoid H _).members := ⟨s, hs, by refl⟩ /-- The trivial restriction-closed groupoid is indeed `closed_under_restriction`. -/ instance closed_under_restriction_id_restr_groupoid : closed_under_restriction (@id_restr_groupoid H _) := ⟨ begin rintros e ⟨s', hs', he⟩ s hs, use [s' ∩ s, is_open_inter hs' hs], refine setoid.trans (local_homeomorph.eq_on_source.restr he s) _, exact ⟨by simp only [interior_eq_of_open hs] with mfld_simps, by simp only with mfld_simps⟩, end ⟩ /-- A groupoid is closed under restriction if and only if it contains the trivial restriction-closed groupoid. -/ lemma closed_under_restriction_iff_id_le (G : structure_groupoid H) : closed_under_restriction G ↔ id_restr_groupoid ≤ G := begin split, { intros _i, apply structure_groupoid.le_iff.mpr, rintros e ⟨s, hs, hes⟩, refine G.eq_on_source _ hes, have h := _i.closed_under_restriction, convert h G.id_mem s hs, rw interior_eq_of_open hs, simp only with mfld_simps }, { intros h, split, intros e he s hs, rw ← of_set_trans (e : local_homeomorph H H) hs, refine G.trans _ he, apply structure_groupoid.le_iff.mp h, exact id_restr_groupoid_mem hs }, end /-- The groupoid of all local homeomorphisms on a topological space `H` is closed under restriction. -/ instance : closed_under_restriction (continuous_groupoid H) := (closed_under_restriction_iff_id_le _).mpr (by convert le_top) end groupoid /-! ### Charted spaces -/ /-- A charted space is a topological space endowed with an atlas, i.e., a set of local homeomorphisms taking value in a model space `H`, called charts, such that the domains of the charts cover the whole space. We express the covering property by chosing for each `x` a member `chart_at H x` of the atlas containing `x` in its source: in the smooth case, this is convenient to construct the tangent bundle in an efficient way. The model space is written as an explicit parameter as there can be several model spaces for a given topological space. For instance, a complex manifold (modelled over `ℂ^n`) will also be seen sometimes as a real manifold over `ℝ^(2n)`. -/ class charted_space (H : Type*) [topological_space H] (M : Type*) [topological_space M] := (atlas [] : set (local_homeomorph M H)) (chart_at [] : M → local_homeomorph M H) (mem_chart_source [] : ∀x, x ∈ (chart_at x).source) (chart_mem_atlas [] : ∀x, chart_at x ∈ atlas) export charted_space attribute [simp, mfld_simps] mem_chart_source chart_mem_atlas section charted_space /-- Any space is a charted_space modelled over itself, by just using the identity chart -/ instance manifold_model_space (H : Type*) [topological_space H] : charted_space H H := { atlas := {local_homeomorph.refl H}, chart_at := λx, local_homeomorph.refl H, mem_chart_source := λx, mem_univ x, chart_mem_atlas := λx, mem_singleton _ } /-- In the trivial charted_space structure of a space modelled over itself through the identity, the atlas members are just the identity -/ @[simp, mfld_simps] lemma model_space_atlas {H : Type*} [topological_space H] {e : local_homeomorph H H} : e ∈ atlas H H ↔ e = local_homeomorph.refl H := by simp [atlas, charted_space.atlas] /-- In the model space, chart_at is always the identity -/ @[simp, mfld_simps] lemma chart_at_model_space_eq {H : Type*} [topological_space H] {x : H} : chart_at H x = local_homeomorph.refl H := by simpa using chart_mem_atlas H x /-- Same thing as `H × H'`. We introduce it for technical reasons: a charted space `M` with model `H` is a set of local charts from `M` to `H` covering the space. Every space is registered as a charted space over itself, using the only chart `id`, in `manifold_model_space`. You can also define a product of charted space `M` and `M'` (with model space `H × H'`) by taking the products of the charts. Now, on `H × H'`, there are two charted space structures with model space `H × H'` itself, the one coming from `manifold_model_space`, and the one coming from the product of the two `manifold_model_space` on each component. They are equal, but not defeq (because the product of `id` and `id` is not defeq to `id`), which is bad as we know. This expedient of renaming `H × H'` solves this problem. -/ def model_prod (H : Type*) (H' : Type*) := H × H' section local attribute [reducible] model_prod instance model_prod_inhabited {α β : Type*} [inhabited α] [inhabited β] : inhabited (model_prod α β) := ⟨(default α, default β)⟩ instance (H : Type*) [topological_space H] (H' : Type*) [topological_space H'] : topological_space (model_prod H H') := by apply_instance /- Next lemma shows up often when dealing with derivatives, register it as simp. -/ @[simp, mfld_simps] lemma model_prod_range_prod_id {H : Type*} {H' : Type*} {α : Type*} (f : H → α) : range (λ (p : model_prod H H'), (f p.1, p.2)) = set.prod (range f) univ := by rw prod_range_univ_eq end /-- The product of two charted spaces is naturally a charted space, with the canonical construction of the atlas of product maps. -/ instance prod_charted_space (H : Type*) [topological_space H] (M : Type*) [topological_space M] [charted_space H M] (H' : Type*) [topological_space H'] (M' : Type*) [topological_space M'] [charted_space H' M'] : charted_space (model_prod H H') (M × M') := { atlas := {f : (local_homeomorph (M×M') (model_prod H H')) | ∃ g ∈ charted_space.atlas H M, ∃ h ∈ (charted_space.atlas H' M'), f = local_homeomorph.prod g h}, chart_at := λ x: (M × M'), (charted_space.chart_at H x.1).prod (charted_space.chart_at H' x.2), mem_chart_source := begin intro x, simp only with mfld_simps, end, chart_mem_atlas := begin intro x, use (charted_space.chart_at H x.1), split, { apply chart_mem_atlas _, }, { use (charted_space.chart_at H' x.2), simp only [chart_mem_atlas, eq_self_iff_true, and_self], } end } section prod_charted_space variables [topological_space H] [topological_space M] [charted_space H M] [topological_space H'] [topological_space M'] [charted_space H' M'] {x : M×M'} @[simp, mfld_simps] lemma prod_charted_space_chart_at : (chart_at (model_prod H H') x) = (chart_at H x.fst).prod (chart_at H' x.snd) := rfl end prod_charted_space end charted_space /-! ### Constructing a topology from an atlas -/ /-- Sometimes, one may want to construct a charted space structure on a space which does not yet have a topological structure, where the topology would come from the charts. For this, one needs charts that are only local equivs, and continuity properties for their composition. This is formalised in `charted_space_core`. -/ @[nolint has_inhabited_instance] structure charted_space_core (H : Type*) [topological_space H] (M : Type*) := (atlas : set (local_equiv M H)) (chart_at : M → local_equiv M H) (mem_chart_source : ∀x, x ∈ (chart_at x).source) (chart_mem_atlas : ∀x, chart_at x ∈ atlas) (open_source : ∀e e' : local_equiv M H, e ∈ atlas → e' ∈ atlas → is_open (e.symm.trans e').source) (continuous_to_fun : ∀e e' : local_equiv M H, e ∈ atlas → e' ∈ atlas → continuous_on (e.symm.trans e') (e.symm.trans e').source) namespace charted_space_core variables [topological_space H] (c : charted_space_core H M) {e : local_equiv M H} /-- Topology generated by a set of charts on a Type. -/ protected def to_topological_space : topological_space M := topological_space.generate_from $ ⋃ (e : local_equiv M H) (he : e ∈ c.atlas) (s : set H) (s_open : is_open s), {e ⁻¹' s ∩ e.source} lemma open_source' (he : e ∈ c.atlas) : @is_open M c.to_topological_space e.source := begin apply topological_space.generate_open.basic, simp only [exists_prop, mem_Union, mem_singleton_iff], refine ⟨e, he, univ, is_open_univ, _⟩, simp only [set.univ_inter, set.preimage_univ] end lemma open_target (he : e ∈ c.atlas) : is_open e.target := begin have E : e.target ∩ e.symm ⁻¹' e.source = e.target := subset.antisymm (inter_subset_left _ _) (λx hx, ⟨hx, local_equiv.target_subset_preimage_source _ hx⟩), simpa [local_equiv.trans_source, E] using c.open_source e e he he end /-- An element of the atlas in a charted space without topology becomes a local homeomorphism for the topology constructed from this atlas. The `local_homeomorph` version is given in this definition. -/ def local_homeomorph (e : local_equiv M H) (he : e ∈ c.atlas) : @local_homeomorph M H c.to_topological_space _ := { open_source := by convert c.open_source' he, open_target := by convert c.open_target he, continuous_to_fun := begin letI : topological_space M := c.to_topological_space, rw continuous_on_open_iff (c.open_source' he), assume s s_open, rw inter_comm, apply topological_space.generate_open.basic, simp only [exists_prop, mem_Union, mem_singleton_iff], exact ⟨e, he, ⟨s, s_open, rfl⟩⟩ end, continuous_inv_fun := begin letI : topological_space M := c.to_topological_space, apply continuous_on_open_of_generate_from (c.open_target he), assume t ht, simp only [exists_prop, mem_Union, mem_singleton_iff] at ht, rcases ht with ⟨e', e'_atlas, s, s_open, ts⟩, rw ts, let f := e.symm.trans e', have : is_open (f ⁻¹' s ∩ f.source), by simpa [inter_comm] using (continuous_on_open_iff (c.open_source e e' he e'_atlas)).1 (c.continuous_to_fun e e' he e'_atlas) s s_open, have A : e' ∘ e.symm ⁻¹' s ∩ (e.target ∩ e.symm ⁻¹' e'.source) = e.target ∩ (e' ∘ e.symm ⁻¹' s ∩ e.symm ⁻¹' e'.source), by { rw [← inter_assoc, ← inter_assoc], congr' 1, exact inter_comm _ _ }, simpa [local_equiv.trans_source, preimage_inter, preimage_comp.symm, A] using this end, ..e } /-- Given a charted space without topology, endow it with a genuine charted space structure with respect to the topology constructed from the atlas. -/ def to_charted_space : @charted_space H _ M c.to_topological_space := { atlas := ⋃ (e : local_equiv M H) (he : e ∈ c.atlas), {c.local_homeomorph e he}, chart_at := λx, c.local_homeomorph (c.chart_at x) (c.chart_mem_atlas x), mem_chart_source := λx, c.mem_chart_source x, chart_mem_atlas := λx, begin simp only [mem_Union, mem_singleton_iff], exact ⟨c.chart_at x, c.chart_mem_atlas x, rfl⟩, end } end charted_space_core /-! ### Charted space with a given structure groupoid -/ section has_groupoid variables [topological_space H] [topological_space M] [charted_space H M] /-- A charted space has an atlas in a groupoid `G` if the change of coordinates belong to the groupoid -/ class has_groupoid {H : Type*} [topological_space H] (M : Type*) [topological_space M] [charted_space H M] (G : structure_groupoid H) : Prop := (compatible [] : ∀{e e' : local_homeomorph M H}, e ∈ atlas H M → e' ∈ atlas H M → e.symm ≫ₕ e' ∈ G) /-- Reformulate in the `structure_groupoid` namespace the compatibility condition of charts in a charted space admitting a structure groupoid, to make it more easily accessible with dot notation. -/ lemma structure_groupoid.compatible {H : Type*} [topological_space H] (G : structure_groupoid H) {M : Type*} [topological_space M] [charted_space H M] [has_groupoid M G] {e e' : local_homeomorph M H} (he : e ∈ atlas H M) (he' : e' ∈ atlas H M) : e.symm ≫ₕ e' ∈ G := has_groupoid.compatible G he he' lemma has_groupoid_of_le {G₁ G₂ : structure_groupoid H} (h : has_groupoid M G₁) (hle : G₁ ≤ G₂) : has_groupoid M G₂ := ⟨ λ e e' he he', hle ((h.compatible : _) he he') ⟩ lemma has_groupoid_of_pregroupoid (PG : pregroupoid H) (h : ∀{e e' : local_homeomorph M H}, e ∈ atlas H M → e' ∈ atlas H M → PG.property (e.symm ≫ₕ e') (e.symm ≫ₕ e').source) : has_groupoid M (PG.groupoid) := ⟨assume e e' he he', (mem_groupoid_of_pregroupoid PG _).mpr ⟨h he he', h he' he⟩⟩ /-- The trivial charted space structure on the model space is compatible with any groupoid -/ instance has_groupoid_model_space (H : Type*) [topological_space H] (G : structure_groupoid H) : has_groupoid H G := { compatible := λe e' he he', begin replace he : e ∈ atlas H H := he, replace he' : e' ∈ atlas H H := he', rw model_space_atlas at he he', simp [he, he', structure_groupoid.id_mem] end } /-- Any charted space structure is compatible with the groupoid of all local homeomorphisms -/ instance has_groupoid_continuous_groupoid : has_groupoid M (continuous_groupoid H) := ⟨begin assume e e' he he', rw [continuous_groupoid, mem_groupoid_of_pregroupoid], simp only [and_self] end⟩ section maximal_atlas variables (M) (G : structure_groupoid H) /-- Given a charted space admitting a structure groupoid, the maximal atlas associated to this structure groupoid is the set of all local charts that are compatible with the atlas, i.e., such that changing coordinates with an atlas member gives an element of the groupoid. -/ def structure_groupoid.maximal_atlas : set (local_homeomorph M H) := {e | ∀ e' ∈ atlas H M, e.symm ≫ₕ e' ∈ G ∧ e'.symm ≫ₕ e ∈ G} variable {M} /-- The elements of the atlas belong to the maximal atlas for any structure groupoid -/ lemma structure_groupoid.mem_maximal_atlas_of_mem_atlas [has_groupoid M G] {e : local_homeomorph M H} (he : e ∈ atlas H M) : e ∈ G.maximal_atlas M := λ e' he', ⟨G.compatible he he', G.compatible he' he⟩ lemma structure_groupoid.chart_mem_maximal_atlas [has_groupoid M G] (x : M) : chart_at H x ∈ G.maximal_atlas M := G.mem_maximal_atlas_of_mem_atlas (chart_mem_atlas H x) variable {G} lemma mem_maximal_atlas_iff {e : local_homeomorph M H} : e ∈ G.maximal_atlas M ↔ ∀ e' ∈ atlas H M, e.symm ≫ₕ e' ∈ G ∧ e'.symm ≫ₕ e ∈ G := iff.rfl /-- Changing coordinates between two elements of the maximal atlas gives rise to an element of the structure groupoid. -/ lemma structure_groupoid.compatible_of_mem_maximal_atlas {e e' : local_homeomorph M H} (he : e ∈ G.maximal_atlas M) (he' : e' ∈ G.maximal_atlas M) : e.symm ≫ₕ e' ∈ G := begin apply G.locality (λ x hx, _), set f := chart_at H (e.symm x) with hf, let s := e.target ∩ (e.symm ⁻¹' f.source), have hs : is_open s, { apply e.symm.continuous_to_fun.preimage_open_of_open; apply open_source }, have xs : x ∈ s, by { dsimp at hx, simp [s, hx] }, refine ⟨s, hs, xs, _⟩, have A : e.symm ≫ₕ f ∈ G := (mem_maximal_atlas_iff.1 he f (chart_mem_atlas _ _)).1, have B : f.symm ≫ₕ e' ∈ G := (mem_maximal_atlas_iff.1 he' f (chart_mem_atlas _ _)).2, have C : (e.symm ≫ₕ f) ≫ₕ (f.symm ≫ₕ e') ∈ G := G.trans A B, have D : (e.symm ≫ₕ f) ≫ₕ (f.symm ≫ₕ e') ≈ (e.symm ≫ₕ e').restr s := calc (e.symm ≫ₕ f) ≫ₕ (f.symm ≫ₕ e') = e.symm ≫ₕ (f ≫ₕ f.symm) ≫ₕ e' : by simp [trans_assoc] ... ≈ e.symm ≫ₕ (of_set f.source f.open_source) ≫ₕ e' : by simp [eq_on_source.trans', trans_self_symm] ... ≈ (e.symm ≫ₕ (of_set f.source f.open_source)) ≫ₕ e' : by simp [trans_assoc] ... ≈ (e.symm.restr s) ≫ₕ e' : by simp [s, trans_of_set'] ... ≈ (e.symm ≫ₕ e').restr s : by simp [restr_trans], exact G.eq_on_source C (setoid.symm D), end end maximal_atlas section singleton variables {α : Type*} [topological_space α] variables (e : local_homeomorph α H) /-- If a single local homeomorphism `e` from a space `α` into `H` has source covering the whole space `α`, then that local homeomorphism induces an `H`-charted space structure on `α`. (This condition is equivalent to `e` being an open embedding of `α` into `H`.) -/ def singleton_charted_space (h : e.source = set.univ) : charted_space H α := { atlas := {e}, chart_at := λ _, e, mem_chart_source := λ _, by simp only [h] with mfld_simps, chart_mem_atlas := λ _, by tauto } lemma singleton_charted_space_one_chart (h : e.source = set.univ) (e' : local_homeomorph α H) (h' : e' ∈ (singleton_charted_space e h).atlas) : e' = e := h' /-- Given a local homeomorphism `e` from a space `α` into `H`, if its source covers the whole space `α`, then the induced charted space structure on `α` is `has_groupoid G` for any structure groupoid `G` which is closed under restrictions. -/ lemma singleton_has_groupoid (h : e.source = set.univ) (G : structure_groupoid H) [closed_under_restriction G] : @has_groupoid _ _ _ _ (singleton_charted_space e h) G := { compatible := begin intros e' e'' he' he'', rw singleton_charted_space_one_chart e h e' he', rw singleton_charted_space_one_chart e h e'' he'', refine G.eq_on_source _ e.trans_symm_self, have hle : id_restr_groupoid ≤ G := (closed_under_restriction_iff_id_le G).mp (by assumption), exact structure_groupoid.le_iff.mp hle _ (id_restr_groupoid_mem _), end } end singleton /-! ### Structomorphisms -/ /-- A `G`-diffeomorphism between two charted spaces is a homeomorphism which, when read in the charts, belongs to `G`. We avoid the word diffeomorph as it is too related to the smooth category, and use structomorph instead. -/ @[nolint has_inhabited_instance] structure structomorph (G : structure_groupoid H) (M : Type*) (M' : Type*) [topological_space M] [topological_space M'] [charted_space H M] [charted_space H M'] extends homeomorph M M' := (mem_groupoid : ∀c : local_homeomorph M H, ∀c' : local_homeomorph M' H, c ∈ atlas H M → c' ∈ atlas H M' → c.symm ≫ₕ to_homeomorph.to_local_homeomorph ≫ₕ c' ∈ G) variables [topological_space M'] [topological_space M''] {G : structure_groupoid H} [charted_space H M'] [charted_space H M''] /-- The identity is a diffeomorphism of any charted space, for any groupoid. -/ def structomorph.refl (M : Type*) [topological_space M] [charted_space H M] [has_groupoid M G] : structomorph G M M := { mem_groupoid := λc c' hc hc', begin change (local_homeomorph.symm c) ≫ₕ (local_homeomorph.refl M) ≫ₕ c' ∈ G, rw local_homeomorph.refl_trans, exact has_groupoid.compatible G hc hc' end, ..homeomorph.refl M } /-- The inverse of a structomorphism is a structomorphism -/ def structomorph.symm (e : structomorph G M M') : structomorph G M' M := { mem_groupoid := begin assume c c' hc hc', have : (c'.symm ≫ₕ e.to_homeomorph.to_local_homeomorph ≫ₕ c).symm ∈ G := G.symm (e.mem_groupoid c' c hc' hc), rwa [trans_symm_eq_symm_trans_symm, trans_symm_eq_symm_trans_symm, symm_symm, trans_assoc] at this, end, ..e.to_homeomorph.symm} /-- The composition of structomorphisms is a structomorphism -/ def structomorph.trans (e : structomorph G M M') (e' : structomorph G M' M'') : structomorph G M M'' := { mem_groupoid := begin /- Let c and c' be two charts in M and M''. We want to show that e' ∘ e is smooth in these charts, around any point x. For this, let y = e (c⁻¹ x), and consider a chart g around y. Then g ∘ e ∘ c⁻¹ and c' ∘ e' ∘ g⁻¹ are both smooth as e and e' are structomorphisms, so their composition is smooth, and it coincides with c' ∘ e' ∘ e ∘ c⁻¹ around x. -/ assume c c' hc hc', refine G.locality (λx hx, _), let f₁ := e.to_homeomorph.to_local_homeomorph, let f₂ := e'.to_homeomorph.to_local_homeomorph, let f := (e.to_homeomorph.trans e'.to_homeomorph).to_local_homeomorph, have feq : f = f₁ ≫ₕ f₂ := homeomorph.trans_to_local_homeomorph _ _, -- define the atlas g around y let y := (c.symm ≫ₕ f₁) x, let g := chart_at H y, have hg₁ := chart_mem_atlas H y, have hg₂ := mem_chart_source H y, let s := (c.symm ≫ₕ f₁).source ∩ (c.symm ≫ₕ f₁) ⁻¹' g.source, have open_s : is_open s, by apply (c.symm ≫ₕ f₁).continuous_to_fun.preimage_open_of_open; apply open_source, have : x ∈ s, { split, { simp only [trans_source, preimage_univ, inter_univ, homeomorph.to_local_homeomorph_source], rw trans_source at hx, exact hx.1 }, { exact hg₂ } }, refine ⟨s, open_s, this, _⟩, let F₁ := (c.symm ≫ₕ f₁ ≫ₕ g) ≫ₕ (g.symm ≫ₕ f₂ ≫ₕ c'), have A : F₁ ∈ G := G.trans (e.mem_groupoid c g hc hg₁) (e'.mem_groupoid g c' hg₁ hc'), let F₂ := (c.symm ≫ₕ f ≫ₕ c').restr s, have : F₁ ≈ F₂ := calc F₁ ≈ c.symm ≫ₕ f₁ ≫ₕ (g ≫ₕ g.symm) ≫ₕ f₂ ≫ₕ c' : by simp [F₁, trans_assoc] ... ≈ c.symm ≫ₕ f₁ ≫ₕ (of_set g.source g.open_source) ≫ₕ f₂ ≫ₕ c' : by simp [eq_on_source.trans', trans_self_symm g] ... ≈ ((c.symm ≫ₕ f₁) ≫ₕ (of_set g.source g.open_source)) ≫ₕ (f₂ ≫ₕ c') : by simp [trans_assoc] ... ≈ ((c.symm ≫ₕ f₁).restr s) ≫ₕ (f₂ ≫ₕ c') : by simp [s, trans_of_set'] ... ≈ ((c.symm ≫ₕ f₁) ≫ₕ (f₂ ≫ₕ c')).restr s : by simp [restr_trans] ... ≈ (c.symm ≫ₕ (f₁ ≫ₕ f₂) ≫ₕ c').restr s : by simp [eq_on_source.restr, trans_assoc] ... ≈ F₂ : by simp [F₂, feq], have : F₂ ∈ G := G.eq_on_source A (setoid.symm this), exact this end, ..homeomorph.trans e.to_homeomorph e'.to_homeomorph } end has_groupoid
dc25223ee19852e72fd20ca41568b7bf4652a4e8
9ad8d18fbe5f120c22b5e035bc240f711d2cbd7e
/src/data/enumeration.lean
527c2d601b93ee3d6c888f37d6f440928308b86f
[]
no_license
agusakov/lean_lib
c0e9cc29fc7d2518004e224376adeb5e69b5cc1a
f88d162da2f990b87c4d34f5f46bbca2bbc5948e
refs/heads/master
1,642,141,461,087
1,557,395,798,000
1,557,395,798,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,318
lean
/- Copyright (c) 2019 Neil Strickland. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Neil Strickland This file defines a typeclass for types α with an ordered enumeration of the elements (as opposed to a `fintype` instance, which is an unordered enumeration). This is intended to allow for explicit calculation in a wider range of cases. -/ -- TODO: -- instances for (co) products etc import data.finset data.fintype data.list.basic universes u v variables {α : Type*} {β : Type*} {γ : Type*} class enumeration (α : Type*) := (elems : list α) (nodup : list.nodup elems) (complete : ∀ x : α, x ∈ elems) instance enumeration_fintype [e : enumeration α] : fintype α := begin let elems : finset α := ⟨e.elems,e.nodup⟩, let complete : ∀ a : α, a ∈ elems := e.complete, exact ⟨elems,complete⟩, end namespace enumeration variable (α) variable [enumeration α] def univ_list : list α := (@enumeration.elems α _) def univ_nodup : list.nodup (univ_list α) := (@enumeration.nodup α _) def univ_complete := (@enumeration.complete α _) lemma enum_card : fintype.card α = (@enumeration.elems α _).length := begin dsimp[fintype.card,finset.univ,fintype.elems,finset.card],refl, end def of_equiv (f : α ≃ β) : enumeration β := { elems := (univ_list α).map f.to_fun, nodup := list.nodup_map (function.injective_of_left_inverse f.left_inv) (univ_nodup α), complete := begin intro b, rw[← f.right_inv b], exact list.mem_map_of_mem f.to_fun (univ_complete α (f.inv_fun b)), end } variable [decidable_eq α] def fin_equiv {n : ℕ} (h : (univ_list α).length = n) : α ≃ (fin n) := begin let els := univ_list α, let inv_fun : (fin n) → α := λ i, els.nth_le i.val (@eq.subst ℕ (nat.lt i.val) _ _ h.symm i.is_lt), let to_fun_aux : α → {i : fin n // inv_fun i = a} := begin intro a, let i_val := els.index_of a, let i_lt_l := list.index_of_lt_length.mpr (enumeration.complete a), let i_lt_n : i_val < n := @eq.subst ℕ (nat.lt i_val) _ _ h i_lt_l, let i : fin n := ⟨i_val,i_lt_n⟩, have : inv_fun i = a := begin cases h,exact list.index_of_nth_le i_lt_l, end, exact ⟨i,this⟩ end, let to_fun : α → (fin n) := λ a, (to_fun_aux a).val, let left_inv : ∀ a : α, inv_fun (to_fun a) = a := λ a, (to_fun_aux a).property, let right_inv : ∀ i : (fin n), to_fun (inv_fun i) = i := begin intro i,cases i, apply fin.eq_of_veq, let i_lt_l : i_val < els.length := @eq.subst ℕ (nat.lt i_val) _ _ h.symm i_is_lt, exact list.nth_le_index_of (univ_nodup α) i_val i_lt_l, end, exact ⟨to_fun,inv_fun,left_inv,right_inv⟩ end instance : encodable α := begin let els := univ_list α, let f := fin_equiv α rfl, let encode : α → ℕ := λ a,(f.to_fun a).val, let decode : ℕ → option α := begin intro i, by_cases h : i < els.length, {exact some (f.inv_fun ⟨i,h⟩),}, {exact none,} end, let encodek : ∀ a, decode (encode a) = some a := begin intro a, dsimp[decode,encode], simp[(f.to_fun a).is_lt,f.left_inv a], end, exact ⟨encode,decode,encodek⟩ end def subtype_enumeration {p : α → Prop} (l : list α) (l_nodup : list.nodup l) (l_mem : ∀ x : α, x ∈ l ↔ p x) : enumeration {x // p x} := begin let α1 := {x // p x}, let elems1 : list α1 := @list.pmap α α1 p subtype.mk l (λ x, (l_mem x).mp), let nodup : elems1.nodup := @list.nodup_pmap α α1 p subtype.mk l (λ x, (l_mem x).mp) (λ a _ b _,congr_arg subtype.val) l_nodup, let complete : ∀ a1 : α1, a1 ∈ elems1 := begin intro a1, cases a1, let h0 := ((@list.mem_pmap α α1 p subtype.mk l (λ x, (l_mem x).mp)) ⟨a1_val,a1_property⟩).mpr, have h1 : a1_val ∈ l := (l_mem a1_val).mpr a1_property, exact h0 ⟨a1_val,h1,rfl⟩, end, exact ⟨elems1,nodup,complete⟩ end instance (p : α → Prop) [decidable_pred p] : enumeration {a // p a} := begin let l := (univ_list α).filter p, let l_nodup : l.nodup := list.nodup_filter p (univ_nodup α), let l_mem : ∀ x : α, x ∈ l ↔ p x := begin intro x, let h0 : x ∈ univ_list α := (univ_complete α) x, simp[list.mem_filter,h0], end, exact subtype_enumeration α l l_nodup l_mem, end end enumeration
7c98e72b4c193953410cb945ed199f0abe809f50
fecda8e6b848337561d6467a1e30cf23176d6ad0
/src/measure_theory/l1_space.lean
f3ed92d6f942fffe5aecccc74528a2c16957d82b
[ "Apache-2.0" ]
permissive
spolu/mathlib
bacf18c3d2a561d00ecdc9413187729dd1f705ed
480c92cdfe1cf3c2d083abded87e82162e8814f4
refs/heads/master
1,671,684,094,325
1,600,736,045,000
1,600,736,045,000
297,564,749
1
0
null
1,600,758,368,000
1,600,758,367,000
null
UTF-8
Lean
false
false
29,960
lean
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import measure_theory.ae_eq_fun /-! # Integrable functions and `L¹` space In the first part of this file, the predicate `integrable` is defined and basic properties of integrable functions are proved. In the second part, the space `L¹` of equivalence classes of integrable functions under the relation of being almost everywhere equal is defined as a subspace of the space `L⁰`. See the file `src/measure_theory/ae_eq_fun.lean` for information on `L⁰` space. ## Notation * `α →₁ β` is the type of `L¹` space, where `α` is a `measure_space` and `β` is a `normed_group` with a `second_countable_topology`. `f : α →ₘ β` is a "function" in `L¹`. In comments, `[f]` is also used to denote an `L¹` function. `₁` can be typed as `\1`. ## Main definitions * Let `f : α → β` be a function, where `α` is a `measure_space` and `β` a `normed_group`. Then `f` is called `integrable` if `(∫⁻ a, nnnorm (f a)) < ⊤` holds. * The space `L¹` is defined as a subspace of `L⁰` : An `ae_eq_fun` `[f] : α →ₘ β` is in the space `L¹` if `edist [f] 0 < ⊤`, which means `(∫⁻ a, edist (f a) 0) < ⊤` if we expand the definition of `edist` in `L⁰`. ## Main statements `L¹`, as a subspace, inherits most of the structures of `L⁰`. ## Implementation notes Maybe `integrable f` should be mean `(∫⁻ a, edist (f a) 0) < ⊤`, so that `integrable` and `ae_eq_fun.integrable` are more aligned. But in the end one can use the lemma `lintegral_nnnorm_eq_lintegral_edist : (∫⁻ a, nnnorm (f a)) = (∫⁻ a, edist (f a) 0)` to switch the two forms. To prove something for an arbitrary integrable + measurable function, a useful theorem is `integrable.induction` in the file `set_integral`. ## Tags integrable, function space, l1 -/ noncomputable theory open_locale classical topological_space namespace measure_theory open set filter topological_space ennreal emetric open_locale big_operators universes u v w variables {α : Type u} [measurable_space α] {μ ν : measure α} variables {β : Type v} [normed_group β] {γ : Type w} [normed_group γ] /-- `integrable f μ` means that the integral `∫⁻ a, ∥f a∥ ∂μ` is finite; `integrable f` means `integrable f volume`. -/ def integrable (f : α → β) (μ : measure α . volume_tac) : Prop := ∫⁻ a, nnnorm (f a) ∂μ < ⊤ lemma integrable_iff_norm (f : α → β) : integrable f μ ↔ ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ < ⊤ := by simp only [integrable, of_real_norm_eq_coe_nnnorm] lemma integrable_iff_edist (f : α → β) : integrable f μ ↔ ∫⁻ a, edist (f a) 0 ∂μ < ⊤ := by simp only [integrable_iff_norm, edist_dist, dist_zero_right] lemma integrable_iff_of_real {f : α → ℝ} (h : 0 ≤ᵐ[μ] f) : integrable f μ ↔ ∫⁻ a, ennreal.of_real (f a) ∂μ < ⊤ := have lintegral_eq : ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ = ∫⁻ a, ennreal.of_real (f a) ∂μ := begin refine lintegral_congr_ae (h.mono $ λ a h, _), rwa [real.norm_eq_abs, abs_of_nonneg] end, by rw [integrable_iff_norm, lintegral_eq] lemma integrable.mono {f : α → β} {g : α → γ} (hg : integrable g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) : integrable f μ := begin simp only [integrable_iff_norm] at *, calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ (a : α), (ennreal.of_real ∥g a∥) ∂μ : lintegral_mono_ae (h.mono $ assume a h, of_real_le_of_real h) ... < ⊤ : hg end lemma integrable.mono' {f : α → β} {g : α → ℝ} (hg : integrable g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ g a) : integrable f μ := hg.mono $ h.mono $ λ x hx, le_trans hx (le_abs_self _) lemma integrable.congr' {f : α → β} {g : α → γ} (hf : integrable f μ) (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : integrable g μ := hf.mono $ eventually_eq.le $ eventually_eq.symm h lemma integrable_congr' {f : α → β} {g : α → γ} (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : integrable f μ ↔ integrable g μ := ⟨λ hf, hf.congr' h, λ hg, hg.congr' $ eventually_eq.symm h⟩ lemma integrable.congr {f g : α → β} (hf : integrable f μ) (h : f =ᵐ[μ] g) : integrable g μ := hf.congr' $ h.fun_comp norm lemma integrable_congr {f g : α → β} (h : f =ᵐ[μ] g) : integrable f μ ↔ integrable g μ := integrable_congr' $ h.fun_comp norm lemma integrable_const_iff {c : β} : integrable (λ x : α, c) μ ↔ c = 0 ∨ μ univ < ⊤ := begin simp only [integrable, lintegral_const], by_cases hc : c = 0, { simp [hc] }, { simp only [hc, false_or], refine ⟨λ h, _, λ h, mul_lt_top coe_lt_top h⟩, replace h := mul_lt_top (@coe_lt_top $ (nnnorm c)⁻¹) h, rwa [← mul_assoc, ← coe_mul, _root_.inv_mul_cancel, coe_one, one_mul] at h, rwa [ne.def, nnnorm_eq_zero] } end lemma integrable_const [finite_measure μ] (c : β) : integrable (λ x : α, c) μ := integrable_const_iff.2 (or.inr $ measure_lt_top _ _) lemma integrable_of_bounded [finite_measure μ] {f : α → β} {C : ℝ} (hC : ∀ᵐ a ∂μ, ∥f a∥ ≤ C) : integrable f μ := (integrable_const C).mono' hC lemma integrable.mono_measure {f : α → β} (h : integrable f ν) (hμ : μ ≤ ν) : integrable f μ := lt_of_le_of_lt (lintegral_mono' hμ (le_refl _)) h lemma integrable.add_measure {f : α → β} (hμ : integrable f μ) (hν : integrable f ν) : integrable f (μ + ν) := begin simp only [integrable, lintegral_add_measure] at *, exact add_lt_top.2 ⟨hμ, hν⟩ end lemma integrable.left_of_add_measure {f : α → β} (h : integrable f (μ + ν)) : integrable f μ := h.mono_measure $ measure.le_add_right $ le_refl _ lemma integrable.right_of_add_measure {f : α → β} (h : integrable f (μ + ν)) : integrable f ν := h.mono_measure $ measure.le_add_left $ le_refl _ @[simp] lemma integrable_add_measure {f : α → β} : integrable f (μ + ν) ↔ integrable f μ ∧ integrable f ν := ⟨λ h, ⟨h.left_of_add_measure, h.right_of_add_measure⟩, λ h, h.1.add_measure h.2⟩ lemma integrable.smul_measure {f : α → β} (h : integrable f μ) {c : ennreal} (hc : c < ⊤) : integrable f (c • μ) := begin simp only [integrable, lintegral_smul_measure] at *, exact mul_lt_top hc h end @[simp] lemma integrable_zero_measure (f : α → β) : integrable f 0 := by simp only [integrable, lintegral_zero_measure, with_top.zero_lt_top] lemma integrable_map_measure {δ} [measurable_space δ] [measurable_space β] [opens_measurable_space β] {f : α → δ} {g : δ → β} (hf : measurable f) (hg : measurable g) : integrable g (measure.map f μ) ↔ integrable (g ∘ f) μ := by simp only [integrable, lintegral_map hg.ennnorm hf] lemma lintegral_nnnorm_eq_lintegral_edist (f : α → β) : ∫⁻ a, nnnorm (f a) ∂μ = ∫⁻ a, edist (f a) 0 ∂μ := by simp only [edist_eq_coe_nnnorm] lemma lintegral_norm_eq_lintegral_edist (f : α → β) : ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ = ∫⁻ a, edist (f a) 0 ∂μ := by simp only [of_real_norm_eq_coe_nnnorm, edist_eq_coe_nnnorm] lemma lintegral_edist_triangle [second_countable_topology β] [measurable_space β] [opens_measurable_space β] {f g h : α → β} (hf : measurable f) (hg : measurable g) (hh : measurable h) : ∫⁻ a, edist (f a) (g a) ∂μ ≤ ∫⁻ a, edist (f a) (h a) ∂μ + ∫⁻ a, edist (g a) (h a) ∂μ := begin rw ← lintegral_add (hf.edist hh) (hg.edist hh), refine lintegral_mono (λ a, _), apply edist_triangle_right end lemma lintegral_edist_lt_top [second_countable_topology β] [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f μ) (hgm : measurable g) (hgi : integrable g μ) : ∫⁻ a, edist (f a) (g a) ∂μ < ⊤ := lt_of_le_of_lt (lintegral_edist_triangle hfm hgm (measurable_const : measurable (λa, (0 : β)))) (ennreal.add_lt_top.2 $ by { split; rw ← integrable_iff_edist; assumption }) lemma lintegral_nnnorm_zero : ∫⁻ a : α, nnnorm (0 : β) ∂μ = 0 := by simp variables (α β μ) @[simp] lemma integrable_zero : integrable (λa:α, (0:β)) μ := by simp [integrable] variables {α β μ} lemma lintegral_nnnorm_add [measurable_space β] [opens_measurable_space β] [measurable_space γ] [opens_measurable_space γ] {f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) : ∫⁻ a, nnnorm (f a) + nnnorm (g a) ∂μ = ∫⁻ a, nnnorm (f a) ∂μ + ∫⁻ a, nnnorm (g a) ∂μ := lintegral_add hf.ennnorm hg.ennnorm lemma integrable.add [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f μ) (hgm : measurable g) (hgi : integrable g μ) : integrable (f + g) μ := calc ∫⁻ a, nnnorm (f a + g a) ∂μ ≤ ∫⁻ a, nnnorm (f a) + nnnorm (g a) ∂μ : lintegral_mono (assume a, by { simp only [← coe_add, coe_le_coe], exact nnnorm_add_le _ _ }) ... = _ : lintegral_nnnorm_add hfm hgm ... < ⊤ : add_lt_top.2 ⟨hfi, hgi⟩ lemma integrable_finset_sum {ι} [measurable_space β] [borel_space β] [second_countable_topology β] (s : finset ι) {f : ι → α → β} (hfm : ∀ i, measurable (f i)) (hfi : ∀ i, integrable (f i) μ) : integrable (λ a, ∑ i in s, f i a) μ := begin refine finset.induction_on s _ _, { simp only [finset.sum_empty, integrable_zero] }, { assume i s his ih, simp only [his, finset.sum_insert, not_false_iff], refine (hfi _).add (hfm _) (s.measurable_sum hfm) ih } end lemma lintegral_nnnorm_neg {f : α → β} : ∫⁻ a, nnnorm ((-f) a) ∂μ = ∫⁻ a, nnnorm (f a) ∂μ := by simp only [pi.neg_apply, nnnorm_neg] lemma integrable.neg {f : α → β} (hfi : integrable f μ) : integrable (-f) μ := calc _ = _ : lintegral_nnnorm_neg ... < ⊤ : hfi @[simp] lemma integrable_neg_iff {f : α → β} : integrable (-f) μ ↔ integrable f μ := ⟨λ h, neg_neg f ▸ h.neg, integrable.neg⟩ lemma integrable.sub [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f μ) (hgm : measurable g) (hgi : integrable g μ) : integrable (f - g) μ := calc ∫⁻ a, nnnorm (f a - g a) ∂μ ≤ ∫⁻ a, nnnorm (f a) + nnnorm (-g a) ∂μ : lintegral_mono (assume a, by exact_mod_cast nnnorm_add_le _ _ ) ... = _ : by { simp only [nnnorm_neg], exact lintegral_nnnorm_add hfm hgm } ... < ⊤ : add_lt_top.2 ⟨hfi, hgi⟩ lemma integrable.norm {f : α → β} (hfi : integrable f μ) : integrable (λa, ∥f a∥) μ := have eq : (λa, (nnnorm ∥f a∥ : ennreal)) = λa, (nnnorm (f a) : ennreal), by { funext, rw nnnorm_norm }, by { rwa [integrable, eq] } lemma integrable_norm_iff (f : α → β) : integrable (λa, ∥f a∥) μ ↔ integrable f μ := integrable_congr' $ eventually_of_forall $ λ x, norm_norm (f x) section dominated_convergence variables {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} lemma all_ae_of_real_F_le_bound (h : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) : ∀ n, ∀ᵐ a ∂μ, ennreal.of_real ∥F n a∥ ≤ ennreal.of_real (bound a) := λn, (h n).mono $ λ a h, ennreal.of_real_le_of_real h lemma all_ae_tendsto_of_real_norm (h : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top $ 𝓝 $ f a) : ∀ᵐ a ∂μ, tendsto (λn, ennreal.of_real ∥F n a∥) at_top $ 𝓝 $ ennreal.of_real ∥f a∥ := h.mono $ λ a h, tendsto_of_real $ tendsto.comp (continuous.tendsto continuous_norm _) h lemma all_ae_of_real_f_le_bound (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : ∀ᵐ a ∂μ, ennreal.of_real ∥f a∥ ≤ ennreal.of_real (bound a) := begin have F_le_bound := all_ae_of_real_F_le_bound h_bound, rw ← ae_all_iff at F_le_bound, apply F_le_bound.mp ((all_ae_tendsto_of_real_norm h_lim).mono _), assume a tendsto_norm F_le_bound, exact le_of_tendsto' tendsto_norm (F_le_bound) end lemma integrable_of_dominated_convergence {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (bound_integrable : integrable bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : integrable f μ := /- `∥F n a∥ ≤ bound a` and `∥F n a∥ --> ∥f a∥` implies `∥f a∥ ≤ bound a`, and so `∫ ∥f∥ ≤ ∫ bound < ⊤` since `bound` is integrable -/ begin rw integrable_iff_norm, calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ a, ennreal.of_real (bound a) ∂μ : lintegral_mono_ae $ all_ae_of_real_f_le_bound h_bound h_lim ... < ⊤ : begin rw ← integrable_iff_of_real, { exact bound_integrable }, exact (h_bound 0).mono (λ a h, le_trans (norm_nonneg _) h) end end lemma tendsto_lintegral_norm_of_dominated_convergence [measurable_space β] [borel_space β] [second_countable_topology β] {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (F_measurable : ∀ n, measurable (F n)) (f_measurable : measurable f) (bound_integrable : integrable bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : tendsto (λn, ∫⁻ a, (ennreal.of_real ∥F n a - f a∥) ∂μ) at_top (𝓝 0) := let b := λa, 2 * ennreal.of_real (bound a) in /- `∥F n a∥ ≤ bound a` and `F n a --> f a` implies `∥f a∥ ≤ bound a`, and thus by the triangle inequality, have `∥F n a - f a∥ ≤ 2 * (bound a). -/ have hb : ∀ n, ∀ᵐ a ∂μ, ennreal.of_real ∥F n a - f a∥ ≤ b a, begin assume n, filter_upwards [all_ae_of_real_F_le_bound h_bound n, all_ae_of_real_f_le_bound h_bound h_lim], assume a h₁ h₂, calc ennreal.of_real ∥F n a - f a∥ ≤ (ennreal.of_real ∥F n a∥) + (ennreal.of_real ∥f a∥) : begin rw [← ennreal.of_real_add], apply of_real_le_of_real, { apply norm_sub_le }, { exact norm_nonneg _ }, { exact norm_nonneg _ } end ... ≤ (ennreal.of_real (bound a)) + (ennreal.of_real (bound a)) : add_le_add h₁ h₂ ... = b a : by rw ← two_mul end, /- On the other hand, `F n a --> f a` implies that `∥F n a - f a∥ --> 0` -/ have h : ∀ᵐ a ∂μ, tendsto (λ n, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 0), begin rw ← ennreal.of_real_zero, refine h_lim.mono (λ a h, (continuous_of_real.tendsto _).comp _), rwa ← tendsto_iff_norm_tendsto_zero end, /- Therefore, by the dominated convergence theorem for nonnegative integration, have ` ∫ ∥f a - F n a∥ --> 0 ` -/ begin suffices h : tendsto (λn, ∫⁻ a, (ennreal.of_real ∥F n a - f a∥) ∂μ) at_top (𝓝 (∫⁻ (a:α), 0 ∂μ)), { rwa lintegral_zero at h }, -- Using the dominated convergence theorem. refine tendsto_lintegral_of_dominated_convergence _ _ hb _ _, -- Show `λa, ∥f a - F n a∥` is measurable for all `n` { exact λn, measurable_of_real.comp ((F_measurable n).sub f_measurable).norm }, -- Show `2 * bound` is integrable { rw integrable_iff_of_real at bound_integrable, { calc ∫⁻ a, b a ∂μ = 2 * ∫⁻ a, ennreal.of_real (bound a) ∂μ : by { rw lintegral_const_mul', exact coe_ne_top } ... < ⊤ : mul_lt_top (coe_lt_top) bound_integrable }, filter_upwards [h_bound 0] λ a h, le_trans (norm_nonneg _) h }, -- Show `∥f a - F n a∥ --> 0` { exact h } end end dominated_convergence section pos_part /-! Lemmas used for defining the positive part of a `L¹` function -/ lemma integrable.max_zero {f : α → ℝ} (hf : integrable f μ) : integrable (λa, max (f a) 0) μ := hf.mono $ eventually_of_forall $ λ x, by simp [real.norm_eq_abs, abs_le, abs_nonneg, le_abs_self] lemma integrable.min_zero {f : α → ℝ} (hf : integrable f μ) : integrable (λa, min (f a) 0) μ := hf.mono $ eventually_of_forall $ λ x, by simp [real.norm_eq_abs, abs_le, abs_nonneg, neg_le, neg_le_abs_self] end pos_part section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul (c : 𝕜) {f : α → β} : integrable f μ → integrable (c • f) μ := begin simp only [integrable], assume hfi, calc ∫⁻ (a : α), nnnorm (c • f a) ∂μ = ∫⁻ (a : α), (nnnorm c) * nnnorm (f a) ∂μ : by simp only [nnnorm_smul, ennreal.coe_mul] ... < ⊤ : begin rw lintegral_const_mul', exacts [mul_lt_top coe_lt_top hfi, coe_ne_top] end end lemma integrable_smul_iff {c : 𝕜} (hc : c ≠ 0) (f : α → β) : integrable (c • f) μ ↔ integrable f μ := begin split, { assume h, simpa only [smul_smul, inv_mul_cancel hc, one_smul] using h.smul c⁻¹ }, exact integrable.smul _ end lemma integrable.const_mul {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (λ x, c * f x) μ := (integrable.smul c h : _) lemma integrable.mul_const {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (λ x, f x * c) μ := by simp_rw [mul_comm, h.const_mul _] end normed_space variables [second_countable_topology β] namespace ae_eq_fun variable [measurable_space β] section variable [opens_measurable_space β] /-- An almost everywhere equal function is `integrable` if it has a finite distance to the origin. Should mean the same thing as the predicate `integrable` over functions. -/ def integrable (f : α →ₘ[μ] β) : Prop := f ∈ ball (0 : α →ₘ[μ] β) ⊤ lemma integrable_mk {f : α → β} (hf : measurable f) : (integrable (mk f hf : α →ₘ[μ] β)) ↔ measure_theory.integrable f μ := by simp [integrable, zero_def, edist_mk_mk', measure_theory.integrable, nndist_eq_nnnorm] lemma integrable_coe_fn {f : α →ₘ[μ] β} : (measure_theory.integrable f μ) ↔ integrable f := by rw [← integrable_mk, mk_coe_fn] local attribute [simp] integrable_mk lemma integrable_zero : integrable (0 : α →ₘ[μ] β) := mem_ball_self coe_lt_top end section variable [borel_space β] lemma integrable.add {f g : α →ₘ[μ] β} : integrable f → integrable g → integrable (f + g) := begin refine induction_on₂ f g (λ f hf g hg, _), simp only [integrable_mk, mk_add_mk], exact λ hfi hgi, hfi.add hf hg hgi end lemma integrable.neg {f : α →ₘ[μ] β} : integrable f → integrable (-f) := induction_on f $ λ f hfm hfi, (integrable_mk _).2 ((integrable_mk hfm).1 hfi).neg lemma integrable.sub {f g : α →ₘ[μ] β} (hf : integrable f) (hg : integrable g) : integrable (f - g) := hf.add hg.neg protected lemma is_add_subgroup : is_add_subgroup (ball (0 : α →ₘ[μ] β) ⊤) := { zero_mem := integrable_zero, add_mem := λ _ _, integrable.add, neg_mem := λ _, integrable.neg } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul {c : 𝕜} {f : α →ₘ[μ] β} : integrable f → integrable (c • f) := induction_on f $ λ f hfm hfi, (integrable_mk _).2 $ ((integrable_mk hfm).1 hfi).smul _ end normed_space end end ae_eq_fun variables (α β) /-- The space of equivalence classes of integrable (and measurable) functions, where two integrable functions are equivalent if they agree almost everywhere, i.e., they differ on a set of measure `0`. -/ def l1 [measurable_space β] [opens_measurable_space β] (μ : measure α) : Type (max u v) := {f : α →ₘ[μ] β // f.integrable} notation α ` →₁[`:25 μ `] ` β := l1 α β μ variables {α β} namespace l1 open ae_eq_fun local attribute [instance] ae_eq_fun.is_add_subgroup variables [measurable_space β] section variable [opens_measurable_space β] instance : has_coe (α →₁[μ] β) (α →ₘ[μ] β) := coe_subtype instance : has_coe_to_fun (α →₁[μ] β) := ⟨λ f, α → β, λ f, ⇑(f : α →ₘ[μ] β)⟩ @[simp, norm_cast] lemma coe_coe (f : α →₁[μ] β) : ⇑(f : α →ₘ[μ] β) = f := rfl protected lemma eq {f g : α →₁[μ] β} : (f : α →ₘ[μ] β) = (g : α →ₘ[μ] β) → f = g := subtype.eq @[norm_cast] protected lemma eq_iff {f g : α →₁[μ] β} : (f : α →ₘ[μ] β) = (g : α →ₘ[μ] β) ↔ f = g := iff.intro (l1.eq) (congr_arg coe) /- TODO : order structure of l1-/ /-- `L¹` space forms a `emetric_space`, with the emetric being inherited from almost everywhere functions, i.e., `edist f g = ∫⁻ a, edist (f a) (g a)`. -/ instance : emetric_space (α →₁[μ] β) := subtype.emetric_space /-- `L¹` space forms a `metric_space`, with the metric being inherited from almost everywhere functions, i.e., `edist f g = ennreal.to_real (∫⁻ a, edist (f a) (g a))`. -/ instance : metric_space (α →₁[μ] β) := metric_space_emetric_ball 0 ⊤ end variable [borel_space β] instance : add_comm_group (α →₁[μ] β) := subtype.add_comm_group instance : inhabited (α →₁[μ] β) := ⟨0⟩ @[simp, norm_cast] lemma coe_zero : ((0 : α →₁[μ] β) : α →ₘ[μ] β) = 0 := rfl @[simp, norm_cast] lemma coe_add (f g : α →₁[μ] β) : ((f + g : α →₁[μ] β) : α →ₘ[μ] β) = f + g := rfl @[simp, norm_cast] lemma coe_neg (f : α →₁[μ] β) : ((-f : α →₁[μ] β) : α →ₘ[μ] β) = -f := rfl @[simp, norm_cast] lemma coe_sub (f g : α →₁[μ] β) : ((f - g : α →₁[μ] β) : α →ₘ[μ] β) = f - g := rfl @[simp] lemma edist_eq (f g : α →₁[μ] β) : edist f g = edist (f : α →ₘ[μ] β) (g : α →ₘ[μ] β) := rfl lemma dist_eq (f g : α →₁[μ] β) : dist f g = ennreal.to_real (edist (f : α →ₘ[μ] β) (g : α →ₘ[μ] β)) := rfl /-- The norm on `L¹` space is defined to be `∥f∥ = ∫⁻ a, edist (f a) 0`. -/ instance : has_norm (α →₁[μ] β) := ⟨λ f, dist f 0⟩ lemma norm_eq (f : α →₁[μ] β) : ∥f∥ = ennreal.to_real (edist (f : α →ₘ[μ] β) 0) := rfl instance : normed_group (α →₁[μ] β) := normed_group.of_add_dist (λ x, rfl) $ by { intros, simp only [dist_eq, coe_add], rw edist_add_right } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] instance : has_scalar 𝕜 (α →₁[μ] β) := ⟨λ x f, ⟨x • (f : α →ₘ[μ] β), ae_eq_fun.integrable.smul f.2⟩⟩ @[simp, norm_cast] lemma coe_smul (c : 𝕜) (f : α →₁[μ] β) : ((c • f : α →₁[μ] β) : α →ₘ[μ] β) = c • (f : α →ₘ[μ] β) := rfl instance : semimodule 𝕜 (α →₁[μ] β) := { one_smul := λf, l1.eq (by { simp only [coe_smul], exact one_smul _ _ }), mul_smul := λx y f, l1.eq (by { simp only [coe_smul], exact mul_smul _ _ _ }), smul_add := λx f g, l1.eq (by { simp only [coe_smul, coe_add], exact smul_add _ _ _ }), smul_zero := λx, l1.eq (by { simp only [coe_zero, coe_smul], exact smul_zero _ }), add_smul := λx y f, l1.eq (by { simp only [coe_smul], exact add_smul _ _ _ }), zero_smul := λf, l1.eq (by { simp only [coe_smul], exact zero_smul _ _ }) } instance : normed_space 𝕜 (α →₁[μ] β) := ⟨ begin rintros x ⟨f, hf⟩, show ennreal.to_real (edist (x • f) 0) ≤ ∥x∥ * ennreal.to_real (edist f 0), rw [edist_smul, to_real_of_real_mul], exact norm_nonneg _ end ⟩ end normed_space section of_fun /-- Construct the equivalence class `[f]` of a measurable and integrable function `f`. -/ def of_fun (f : α → β) (hfm : measurable f) (hfi : integrable f μ) : (α →₁[μ] β) := ⟨mk f hfm, by { rw integrable_mk, exact hfi }⟩ @[simp] lemma of_fun_eq_mk (f : α → β) (hfm hfi) : ((of_fun f hfm hfi : α →₁[μ] β) : α →ₘ[μ] β) = mk f hfm := rfl lemma of_fun_eq_of_fun (f g : α → β) (hfm hfi hgm hgi) : (of_fun f hfm hfi : α →₁[μ] β) = of_fun g hgm hgi ↔ f =ᵐ[μ] g := by { rw ← l1.eq_iff, simp only [of_fun_eq_mk, mk_eq_mk] } lemma of_fun_zero : (of_fun (λ _, 0) measurable_zero (integrable_zero α μ β) : α →₁[μ] β) = 0 := rfl lemma of_fun_add (f g : α → β) (hfm hfi hgm hgi) : (of_fun (f + g) (measurable.add hfm hgm) (integrable.add hfm hfi hgm hgi) : α →₁[μ] β) = of_fun f hfm hfi + of_fun g hgm hgi := rfl lemma of_fun_neg (f : α → β) (hfm hfi) : (of_fun (- f) (measurable.neg hfm) (integrable.neg hfi) : α →₁[μ] β) = - of_fun f hfm hfi := rfl lemma of_fun_sub (f g : α → β) (hfm hfi hgm hgi) : (of_fun (f - g) (measurable.sub hfm hgm) (integrable.sub hfm hfi hgm hgi) : α →₁[μ] β) = of_fun f hfm hfi - of_fun g hgm hgi := rfl lemma norm_of_fun (f : α → β) (hfm hfi) : ∥(of_fun f hfm hfi : α →₁[μ] β)∥ = ennreal.to_real (∫⁻ a, edist (f a) 0 ∂μ) := rfl lemma norm_of_fun_eq_lintegral_norm (f : α → β) (hfm hfi) : ∥(of_fun f hfm hfi : α →₁[μ] β)∥ = ennreal.to_real (∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ) := by { rw [norm_of_fun, lintegral_norm_eq_lintegral_edist] } variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma of_fun_smul (f : α → β) (hfm : measurable f) (hfi : integrable f μ) (k : 𝕜) : of_fun (λa, k • f a) (hfm.const_smul _) (hfi.smul _) = k • of_fun f hfm hfi := rfl end of_fun section to_fun protected lemma measurable (f : α →₁[μ] β) : measurable f := f.1.measurable lemma measurable_norm (f : α →₁[μ] β) : measurable (λ a, ∥f a∥) := f.measurable.norm protected lemma integrable (f : α →₁[μ] β) : integrable ⇑f μ := integrable_coe_fn.2 f.2 lemma integrable_norm (f : α →₁[μ] β) : integrable (λ a, ∥f a∥) μ := (integrable_norm_iff _).mpr f.integrable lemma of_fun_to_fun (f : α →₁[μ] β) : of_fun f f.measurable f.integrable = f := subtype.ext (f : α →ₘ[μ] β).mk_coe_fn lemma mk_to_fun (f : α →₁[μ] β) : (mk f f.measurable : α →ₘ[μ] β) = f := by { rw ← of_fun_eq_mk, rw l1.eq_iff, exact of_fun_to_fun f } lemma to_fun_of_fun (f : α → β) (hfm hfi) : ⇑(of_fun f hfm hfi : α →₁[μ] β) =ᵐ[μ] f := coe_fn_mk f hfm variables (α β) lemma zero_to_fun : ⇑(0 : α →₁[μ] β) =ᵐ[μ] 0 := ae_eq_fun.coe_fn_zero variables {α β} lemma add_to_fun (f g : α →₁[μ] β) : ⇑(f + g) =ᵐ[μ] f + g := ae_eq_fun.coe_fn_add _ _ lemma neg_to_fun (f : α →₁[μ] β) : ⇑(-f) =ᵐ[μ] -⇑f := ae_eq_fun.coe_fn_neg _ lemma sub_to_fun (f g : α →₁[μ] β) : ⇑(f - g) =ᵐ[μ] ⇑f - ⇑g := ae_eq_fun.coe_fn_sub _ _ lemma dist_to_fun (f g : α →₁[μ] β) : dist f g = ennreal.to_real (∫⁻ x, edist (f x) (g x) ∂μ) := by { simp only [← coe_coe, dist_eq, edist_eq_coe] } lemma norm_eq_nnnorm_to_fun (f : α →₁[μ] β) : ∥f∥ = ennreal.to_real (∫⁻ a, nnnorm (f a) ∂μ) := by { rw [← coe_coe, lintegral_nnnorm_eq_lintegral_edist, ← edist_zero_eq_coe], refl } lemma norm_eq_norm_to_fun (f : α →₁[μ] β) : ∥f∥ = ennreal.to_real (∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ) := by { rw norm_eq_nnnorm_to_fun, congr, funext, rw of_real_norm_eq_coe_nnnorm } lemma lintegral_edist_to_fun_lt_top (f g : α →₁[μ] β) : (∫⁻ a, edist (f a) (g a) ∂μ) < ⊤ := begin apply lintegral_edist_lt_top, exact f.measurable, exact f.integrable, exact g.measurable, exact g.integrable end variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma smul_to_fun (c : 𝕜) (f : α →₁[μ] β) : ⇑(c • f) =ᵐ[μ] c • f := ae_eq_fun.coe_fn_smul _ _ end to_fun section pos_part /-- Positive part of a function in `L¹` space. -/ def pos_part (f : α →₁[μ] ℝ) : α →₁[μ] ℝ := ⟨ae_eq_fun.pos_part f, begin rw [← ae_eq_fun.integrable_coe_fn, integrable_congr (coe_fn_pos_part _)], exact integrable.max_zero f.integrable end ⟩ /-- Negative part of a function in `L¹` space. -/ def neg_part (f : α →₁[μ] ℝ) : α →₁[μ] ℝ := pos_part (-f) @[norm_cast] lemma coe_pos_part (f : α →₁[μ] ℝ) : (f.pos_part : α →ₘ[μ] ℝ) = (f : α →ₘ[μ] ℝ).pos_part := rfl lemma pos_part_to_fun (f : α →₁[μ] ℝ) : ⇑(pos_part f) =ᵐ[μ] λ a, max (f a) 0 := ae_eq_fun.coe_fn_pos_part _ lemma neg_part_to_fun_eq_max (f : α →₁[μ] ℝ) : ∀ᵐ a ∂μ, neg_part f a = max (- f a) 0 := begin rw neg_part, filter_upwards [pos_part_to_fun (-f), neg_to_fun f], simp only [mem_set_of_eq], assume a h₁ h₂, rw [h₁, h₂, pi.neg_apply] end lemma neg_part_to_fun_eq_min (f : α →₁[μ] ℝ) : ∀ᵐ a ∂μ, neg_part f a = - min (f a) 0 := (neg_part_to_fun_eq_max f).mono $ assume a h, by rw [h, min_eq_neg_max_neg_neg, _root_.neg_neg, neg_zero] lemma norm_le_norm_of_ae_le {f g : α →₁[μ] β} (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) : ∥f∥ ≤ ∥g∥ := begin simp only [l1.norm_eq_norm_to_fun], rw to_real_le_to_real, { apply lintegral_mono_ae, exact h.mono (λ a h, of_real_le_of_real h) }, { rw [← lt_top_iff_ne_top, ← integrable_iff_norm], exact f.integrable }, { rw [← lt_top_iff_ne_top, ← integrable_iff_norm], exact g.integrable } end lemma continuous_pos_part : continuous $ λf : α →₁[μ] ℝ, pos_part f := begin simp only [metric.continuous_iff], assume g ε hε, use ε, use hε, simp only [dist_eq_norm], assume f hfg, refine lt_of_le_of_lt (norm_le_norm_of_ae_le _) hfg, filter_upwards [l1.sub_to_fun f g, l1.sub_to_fun (pos_part f) (pos_part g), pos_part_to_fun f, pos_part_to_fun g], simp only [mem_set_of_eq], assume a h₁ h₂ h₃ h₄, simp only [real.norm_eq_abs, h₁, h₂, h₃, h₄, pi.sub_apply], exact abs_max_sub_max_le_abs _ _ _ end lemma continuous_neg_part : continuous $ λf : α →₁[μ] ℝ, neg_part f := have eq : (λf : α →₁[μ] ℝ, neg_part f) = (λf : α →₁[μ] ℝ, pos_part (-f)) := rfl, by { rw eq, exact continuous_pos_part.comp continuous_neg } end pos_part /- TODO: l1 is a complete space -/ end l1 end measure_theory
1c4efcf330acfcdd50a16830a055e574fff2ed10
63abd62053d479eae5abf4951554e1064a4c45b4
/src/category_theory/abelian/non_preadditive.lean
c9013e51d9e808aa7a057f6f18260c7a270cd77c
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
32,457
lean
/- Copyright (c) 2020 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import category_theory.limits.shapes.finite_products import category_theory.limits.shapes.kernels import category_theory.limits.shapes.pullbacks import category_theory.limits.shapes.regular_mono import category_theory.preadditive /-! # Every non_preadditive_abelian category is preadditive In mathlib, we define an abelian category as a preadditive category with a zero object, kernels and cokernels, products and coproducts and in which every monomorphism and epimorphis is normal. While virtually every interesting abelian category has a natural preadditive structure (which is why it is included in the definition), preadditivity is not actually needed: Every category that has all of the other properties appearing in the definition of an abelian category admits a preadditive structure. This is the construction we carry out in this file. The proof proceeds in roughly five steps: 1. Prove some results (for example that all equalizers exist) that would be trivial if we already had the preadditive structure but are a bit of work without it. 2. Develop images and coimages to show that every monomorphism is the kernel of its cokernel. The results of the first two steps are also useful for the "normal" development of abelian categories, and will be used there. 3. For every object `A`, define a "subtraction" morphism `σ : A ⨯ A ⟶ A` and use it to define subtraction on morphisms as `f - g := prod.lift f g ≫ σ`. 4. Prove a small number of identities about this subtraction from the definition of `σ`. 5. From these identities, prove a large number of other identities that imply that defining `f + g := f - (0 - g)` indeed gives an abelian group structure on morphisms such that composition is bilinear. The construction is non-trivial and it is quite remarkable that this abelian group structure can be constructed purely from the existence of a few limits and colimits. What's even more impressive is that all additive structures on a category are in some sense isomorphic, so for abelian categories with a natural preadditive structure, this construction manages to "almost" reconstruct this natural structure. However, we have not formalized this isomorphism. ## References * [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2] -/ noncomputable theory open category_theory open category_theory.limits namespace category_theory section universes v u variables (C : Type u) [category.{v} C] /-- We call a category `non_preadditive_abelian` if it has a zero object, kernels, cokernels, binary products and coproducts, and every monomorphism and every epimorphism is normal. -/ class non_preadditive_abelian := [has_zero_object : has_zero_object C] [has_zero_morphisms : has_zero_morphisms C] [has_kernels : has_kernels C] [has_cokernels : has_cokernels C] [has_finite_products : has_finite_products C] [has_finite_coproducts : has_finite_coproducts C] (normal_mono : Π {X Y : C} (f : X ⟶ Y) [mono f], normal_mono f) (normal_epi : Π {X Y : C} (f : X ⟶ Y) [epi f], normal_epi f) set_option default_priority 100 attribute [instance] non_preadditive_abelian.has_zero_object attribute [instance] non_preadditive_abelian.has_zero_morphisms attribute [instance] non_preadditive_abelian.has_kernels attribute [instance] non_preadditive_abelian.has_cokernels attribute [instance] non_preadditive_abelian.has_finite_products attribute [instance] non_preadditive_abelian.has_finite_coproducts end end category_theory open category_theory namespace category_theory.non_preadditive_abelian universes v u variables {C : Type u} [category.{v} C] section variables [non_preadditive_abelian C] section strong local attribute [instance] non_preadditive_abelian.normal_epi /-- In a `non_preadditive_abelian` category, every epimorphism is strong. -/ lemma strong_epi_of_epi {P Q : C} (f : P ⟶ Q) [epi f] : strong_epi f := by apply_instance end strong section mono_epi_iso variables {X Y : C} (f : X ⟶ Y) local attribute [instance] strong_epi_of_epi /-- In a `non_preadditive_abelian` category, a monomorphism which is also an epimorphism is an isomorphism. -/ def is_iso_of_mono_of_epi [mono f] [epi f] : is_iso f := is_iso_of_mono_of_strong_epi _ end mono_epi_iso /-- The pullback of two monomorphisms exists. -/ @[irreducible] lemma pullback_of_mono {X Y Z : C} (a : X ⟶ Z) (b : Y ⟶ Z) [mono a] [mono b] : has_limit (cospan a b) := let ⟨P, f, haf, i⟩ := non_preadditive_abelian.normal_mono a in let ⟨Q, g, hbg, i'⟩ := non_preadditive_abelian.normal_mono b in let ⟨a', ha'⟩ := kernel_fork.is_limit.lift' i (kernel.ι (prod.lift f g)) $ calc kernel.ι (prod.lift f g) ≫ f = kernel.ι (prod.lift f g) ≫ prod.lift f g ≫ limits.prod.fst : by rw prod.lift_fst ... = (0 : kernel (prod.lift f g) ⟶ P ⨯ Q) ≫ limits.prod.fst : by rw kernel.condition_assoc ... = 0 : zero_comp in let ⟨b', hb'⟩ := kernel_fork.is_limit.lift' i' (kernel.ι (prod.lift f g)) $ calc kernel.ι (prod.lift f g) ≫ g = kernel.ι (prod.lift f g) ≫ (prod.lift f g) ≫ limits.prod.snd : by rw prod.lift_snd ... = (0 : kernel (prod.lift f g) ⟶ P ⨯ Q) ≫ limits.prod.snd : by rw kernel.condition_assoc ... = 0 : zero_comp in has_limit.mk { cone := pullback_cone.mk a' b' $ by { simp at ha' hb', rw [ha', hb'] }, is_limit := pullback_cone.is_limit.mk _ _ _ (λ s, kernel.lift (prod.lift f g) (pullback_cone.snd s ≫ b) $ prod.hom_ext (calc ((pullback_cone.snd s ≫ b) ≫ prod.lift f g) ≫ limits.prod.fst = pullback_cone.snd s ≫ b ≫ f : by simp only [prod.lift_fst, category.assoc] ... = pullback_cone.fst s ≫ a ≫ f : by rw pullback_cone.condition_assoc ... = pullback_cone.fst s ≫ 0 : by rw haf ... = 0 ≫ limits.prod.fst : by rw [comp_zero, zero_comp]) (calc ((pullback_cone.snd s ≫ b) ≫ prod.lift f g) ≫ limits.prod.snd = pullback_cone.snd s ≫ b ≫ g : by simp only [prod.lift_snd, category.assoc] ... = pullback_cone.snd s ≫ 0 : by rw hbg ... = 0 ≫ limits.prod.snd : by rw [comp_zero, zero_comp])) (λ s, (cancel_mono a).1 $ by { rw kernel_fork.ι_of_ι at ha', simp [ha', pullback_cone.condition s] }) (λ s, (cancel_mono b).1 $ by { rw kernel_fork.ι_of_ι at hb', simp [hb'] }) (λ s m h₁ h₂, (cancel_mono (kernel.ι (prod.lift f g))).1 $ calc m ≫ kernel.ι (prod.lift f g) = m ≫ a' ≫ a : by { congr, exact ha'.symm } ... = pullback_cone.fst s ≫ a : by rw [←category.assoc, h₁] ... = pullback_cone.snd s ≫ b : pullback_cone.condition s ... = kernel.lift (prod.lift f g) (pullback_cone.snd s ≫ b) _ ≫ kernel.ι (prod.lift f g) : by rw kernel.lift_ι) } /-- The pushout of two epimorphisms exists. -/ @[irreducible] lemma pushout_of_epi {X Y Z : C} (a : X ⟶ Y) (b : X ⟶ Z) [epi a] [epi b] : has_colimit (span a b) := let ⟨P, f, hfa, i⟩ := non_preadditive_abelian.normal_epi a in let ⟨Q, g, hgb, i'⟩ := non_preadditive_abelian.normal_epi b in let ⟨a', ha'⟩ := cokernel_cofork.is_colimit.desc' i (cokernel.π (coprod.desc f g)) $ calc f ≫ cokernel.π (coprod.desc f g) = coprod.inl ≫ coprod.desc f g ≫ cokernel.π (coprod.desc f g) : by rw coprod.inl_desc_assoc ... = coprod.inl ≫ (0 : P ⨿ Q ⟶ cokernel (coprod.desc f g)) : by rw cokernel.condition ... = 0 : has_zero_morphisms.comp_zero _ _ in let ⟨b', hb'⟩ := cokernel_cofork.is_colimit.desc' i' (cokernel.π (coprod.desc f g)) $ calc g ≫ cokernel.π (coprod.desc f g) = coprod.inr ≫ coprod.desc f g ≫ cokernel.π (coprod.desc f g) : by rw coprod.inr_desc_assoc ... = coprod.inr ≫ (0 : P ⨿ Q ⟶ cokernel (coprod.desc f g)) : by rw cokernel.condition ... = 0 : has_zero_morphisms.comp_zero _ _ in has_colimit.mk { cocone := pushout_cocone.mk a' b' $ by { simp only [cofork.π_of_π] at ha' hb', rw [ha', hb'] }, is_colimit := pushout_cocone.is_colimit.mk _ _ _ (λ s, cokernel.desc (coprod.desc f g) (b ≫ pushout_cocone.inr s) $ coprod.hom_ext (calc coprod.inl ≫ coprod.desc f g ≫ b ≫ pushout_cocone.inr s = f ≫ b ≫ pushout_cocone.inr s : by rw coprod.inl_desc_assoc ... = f ≫ a ≫ pushout_cocone.inl s : by rw pushout_cocone.condition ... = 0 ≫ pushout_cocone.inl s : by rw reassoc_of hfa ... = coprod.inl ≫ 0 : by rw [comp_zero, zero_comp]) (calc coprod.inr ≫ coprod.desc f g ≫ b ≫ pushout_cocone.inr s = g ≫ b ≫ pushout_cocone.inr s : by rw coprod.inr_desc_assoc ... = 0 ≫ pushout_cocone.inr s : by rw reassoc_of hgb ... = coprod.inr ≫ 0 : by rw [comp_zero, zero_comp])) (λ s, (cancel_epi a).1 $ by { rw cokernel_cofork.π_of_π at ha', simp [reassoc_of ha', pushout_cocone.condition s] }) (λ s, (cancel_epi b).1 $ by { rw cokernel_cofork.π_of_π at hb', simp [reassoc_of hb'] }) (λ s m h₁ h₂, (cancel_epi (cokernel.π (coprod.desc f g))).1 $ calc cokernel.π (coprod.desc f g) ≫ m = (a ≫ a') ≫ m : by { congr, exact ha'.symm } ... = a ≫ pushout_cocone.inl s : by rw [category.assoc, h₁] ... = b ≫ pushout_cocone.inr s : pushout_cocone.condition s ... = cokernel.π (coprod.desc f g) ≫ cokernel.desc (coprod.desc f g) (b ≫ pushout_cocone.inr s) _ : by rw cokernel.π_desc) } section local attribute [instance] pullback_of_mono /-- The pullback of `(𝟙 X, f)` and `(𝟙 X, g)` -/ private abbreviation P {X Y : C} (f g : X ⟶ Y) [mono (prod.lift (𝟙 X) f)] [mono (prod.lift (𝟙 X) g)] : C := pullback (prod.lift (𝟙 X) f) (prod.lift (𝟙 X) g) /-- The equalizer of `f` and `g` exists. -/ @[irreducible] lemma has_limit_parallel_pair {X Y : C} (f g : X ⟶ Y) : has_limit (parallel_pair f g) := have h1f : mono (prod.lift (𝟙 X) f), from mono_of_mono_fac $ prod.lift_fst (𝟙 X) f, have h1g : mono (prod.lift (𝟙 X) g), from mono_of_mono_fac $ prod.lift_fst (𝟙 X) g, have huv : (pullback.fst : P f g ⟶ X) = pullback.snd, from calc (pullback.fst : P f g ⟶ X) = pullback.fst ≫ 𝟙 _ : eq.symm $ category.comp_id _ ... = pullback.fst ≫ prod.lift (𝟙 X) f ≫ limits.prod.fst : by rw prod.lift_fst ... = pullback.snd ≫ prod.lift (𝟙 X) g ≫ limits.prod.fst : by rw pullback.condition_assoc ... = pullback.snd : by rw [prod.lift_fst, category.comp_id], have hvu : (pullback.fst : P f g ⟶ X) ≫ f = pullback.snd ≫ g, from calc (pullback.fst : P f g ⟶ X) ≫ f = pullback.fst ≫ prod.lift (𝟙 X) f ≫ limits.prod.snd : by rw prod.lift_snd ... = pullback.snd ≫ prod.lift (𝟙 X) g ≫ limits.prod.snd : by rw pullback.condition_assoc ... = pullback.snd ≫ g : by rw prod.lift_snd, have huu : (pullback.fst : P f g ⟶ X) ≫ f = pullback.fst ≫ g, by rw [hvu, ←huv], has_limit.mk { cone := fork.of_ι pullback.fst huu, is_limit := fork.is_limit.mk _ (λ s, pullback.lift (fork.ι s) (fork.ι s) $ prod.hom_ext (by simp only [prod.lift_fst, category.assoc]) (by simp only [fork.app_zero_right, fork.app_zero_left, prod.lift_snd, category.assoc])) (λ s, by simp only [fork.ι_of_ι, pullback.lift_fst]) (λ s m h, pullback.hom_ext (by simpa only [pullback.lift_fst] using h walking_parallel_pair.zero) (by simpa only [huv.symm, pullback.lift_fst] using h walking_parallel_pair.zero)) } end section local attribute [instance] pushout_of_epi /-- The pushout of `(𝟙 Y, f)` and `(𝟙 Y, g)`. -/ private abbreviation Q {X Y : C} (f g : X ⟶ Y) [epi (coprod.desc (𝟙 Y) f)] [epi (coprod.desc (𝟙 Y) g)] : C := pushout (coprod.desc (𝟙 Y) f) (coprod.desc (𝟙 Y) g) /-- The coequalizer of `f` and `g` exists. -/ @[irreducible] lemma has_colimit_parallel_pair {X Y : C} (f g : X ⟶ Y) : has_colimit (parallel_pair f g) := have h1f : epi (coprod.desc (𝟙 Y) f), from epi_of_epi_fac $ coprod.inl_desc _ _, have h1g : epi (coprod.desc (𝟙 Y) g), from epi_of_epi_fac $ coprod.inl_desc _ _, have huv : (pushout.inl : Y ⟶ Q f g) = pushout.inr, from calc (pushout.inl : Y ⟶ Q f g) = 𝟙 _ ≫ pushout.inl : eq.symm $ category.id_comp _ ... = (coprod.inl ≫ coprod.desc (𝟙 Y) f) ≫ pushout.inl : by rw coprod.inl_desc ... = (coprod.inl ≫ coprod.desc (𝟙 Y) g) ≫ pushout.inr : by simp only [category.assoc, pushout.condition] ... = pushout.inr : by rw [coprod.inl_desc, category.id_comp], have hvu : f ≫ (pushout.inl : Y ⟶ Q f g) = g ≫ pushout.inr, from calc f ≫ (pushout.inl : Y ⟶ Q f g) = (coprod.inr ≫ coprod.desc (𝟙 Y) f) ≫ pushout.inl : by rw coprod.inr_desc ... = (coprod.inr ≫ coprod.desc (𝟙 Y) g) ≫ pushout.inr : by simp only [category.assoc, pushout.condition] ... = g ≫ pushout.inr : by rw coprod.inr_desc, have huu : f ≫ (pushout.inl : Y ⟶ Q f g) = g ≫ pushout.inl, by rw [hvu, huv], has_colimit.mk { cocone := cofork.of_π pushout.inl huu, is_colimit := cofork.is_colimit.mk _ (λ s, pushout.desc (cofork.π s) (cofork.π s) $ coprod.hom_ext (by simp only [coprod.inl_desc_assoc]) (by simp only [cofork.right_app_one, coprod.inr_desc_assoc, cofork.left_app_one])) (λ s, by simp only [pushout.inl_desc, cofork.π_of_π]) (λ s m h, pushout.hom_ext (by simpa only [pushout.inl_desc] using h walking_parallel_pair.one) (by simpa only [huv.symm, pushout.inl_desc] using h walking_parallel_pair.one)) } end section local attribute [instance] has_limit_parallel_pair /-- A `non_preadditive_abelian` category has all equalizers. -/ @[priority 100] instance has_equalizers : has_equalizers C := has_equalizers_of_has_limit_parallel_pair _ end section local attribute [instance] has_colimit_parallel_pair /-- A `non_preadditive_abelian` category has all coequalizers. -/ @[priority 100] instance has_coequalizers : has_coequalizers C := has_coequalizers_of_has_colimit_parallel_pair _ end section /-- If a zero morphism is a kernel of `f`, then `f` is a monomorphism. -/ lemma mono_of_zero_kernel {X Y : C} (f : X ⟶ Y) (Z : C) (l : is_limit (kernel_fork.of_ι (0 : Z ⟶ X) (show 0 ≫ f = 0, by simp))) : mono f := ⟨λ P u v huv, begin obtain ⟨W, w, hw, hl⟩ := non_preadditive_abelian.normal_epi (coequalizer.π u v), obtain ⟨m, hm⟩ := coequalizer.desc' f huv, have hwf : w ≫ f = 0, { rw [←hm, reassoc_of hw, zero_comp] }, obtain ⟨n, hn⟩ := kernel_fork.is_limit.lift' l _ hwf, rw [fork.ι_of_ι, has_zero_morphisms.comp_zero] at hn, haveI : is_iso (coequalizer.π u v) := by apply is_iso_colimit_cocone_parallel_pair_of_eq hn.symm hl, apply (cancel_mono (coequalizer.π u v)).1, exact coequalizer.condition _ _ end⟩ /-- If a zero morphism is a cokernel of `f`, then `f` is an epimorphism. -/ lemma epi_of_zero_cokernel {X Y : C} (f : X ⟶ Y) (Z : C) (l : is_colimit (cokernel_cofork.of_π (0 : Y ⟶ Z) (show f ≫ 0 = 0, by simp))) : epi f := ⟨λ P u v huv, begin obtain ⟨W, w, hw, hl⟩ := non_preadditive_abelian.normal_mono (equalizer.ι u v), obtain ⟨m, hm⟩ := equalizer.lift' f huv, have hwf : f ≫ w = 0, { rw [←hm, category.assoc, hw, comp_zero] }, obtain ⟨n, hn⟩ := cokernel_cofork.is_colimit.desc' l _ hwf, rw [cofork.π_of_π, zero_comp] at hn, haveI : is_iso (equalizer.ι u v) := by apply is_iso_limit_cone_parallel_pair_of_eq hn.symm hl, apply (cancel_epi (equalizer.ι u v)).1, exact equalizer.condition _ _ end⟩ local attribute [instance] has_zero_object.has_zero /-- If `g ≫ f = 0` implies `g = 0` for all `g`, then `0 : 0 ⟶ X` is a kernel of `f`. -/ def zero_kernel_of_cancel_zero {X Y : C} (f : X ⟶ Y) (hf : ∀ (Z : C) (g : Z ⟶ X) (hgf : g ≫ f = 0), g = 0) : is_limit (kernel_fork.of_ι (0 : 0 ⟶ X) (show 0 ≫ f = 0, by simp)) := fork.is_limit.mk _ (λ s, 0) (λ s, by rw [hf _ _ (kernel_fork.condition s), zero_comp]) (λ s m h, by ext) /-- If `f ≫ g = 0` implies `g = 0` for all `g`, then `0 : Y ⟶ 0` is a cokernel of `f`. -/ def zero_cokernel_of_zero_cancel {X Y : C} (f : X ⟶ Y) (hf : ∀ (Z : C) (g : Y ⟶ Z) (hgf : f ≫ g = 0), g = 0) : is_colimit (cokernel_cofork.of_π (0 : Y ⟶ 0) (show f ≫ 0 = 0, by simp)) := cofork.is_colimit.mk _ (λ s, 0) (λ s, by rw [hf _ _ (cokernel_cofork.condition s), comp_zero]) (λ s m h, by ext) /-- If `g ≫ f = 0` implies `g = 0` for all `g`, then `f` is a monomorphism. -/ lemma mono_of_cancel_zero {X Y : C} (f : X ⟶ Y) (hf : ∀ (Z : C) (g : Z ⟶ X) (hgf : g ≫ f = 0), g = 0) : mono f := mono_of_zero_kernel f 0 $ zero_kernel_of_cancel_zero f hf /-- If `f ≫ g = 0` implies `g = 0` for all `g`, then `g` is a monomorphism. -/ lemma epi_of_zero_cancel {X Y : C} (f : X ⟶ Y) (hf : ∀ (Z : C) (g : Y ⟶ Z) (hgf : f ≫ g = 0), g = 0) : epi f := epi_of_zero_cokernel f 0 $ zero_cokernel_of_zero_cancel f hf end section factor variables {P Q : C} (f : P ⟶ Q) /-- The kernel of the cokernel of `f` is called the image of `f`. -/ protected abbreviation image : C := kernel (cokernel.π f) /-- The inclusion of the image into the codomain. -/ protected abbreviation image.ι : non_preadditive_abelian.image f ⟶ Q := kernel.ι (cokernel.π f) /-- There is a canonical epimorphism `p : P ⟶ image f` for every `f`. -/ protected abbreviation factor_thru_image : P ⟶ non_preadditive_abelian.image f := kernel.lift (cokernel.π f) f $ cokernel.condition f /-- `f` factors through its image via the canonical morphism `p`. -/ @[simp, reassoc] protected lemma image.fac : non_preadditive_abelian.factor_thru_image f ≫ image.ι f = f := kernel.lift_ι _ _ _ /-- The map `p : P ⟶ image f` is an epimorphism -/ instance : epi (non_preadditive_abelian.factor_thru_image f) := let I := non_preadditive_abelian.image f, p := non_preadditive_abelian.factor_thru_image f, i := kernel.ι (cokernel.π f) in -- It will suffice to consider some g : I ⟶ R such that p ≫ g = 0 and show that g = 0. epi_of_zero_cancel _ $ λ R (g : I ⟶ R) (hpg : p ≫ g = 0), begin -- Since C is abelian, u := ker g ≫ i is the kernel of some morphism h. let u := kernel.ι g ≫ i, haveI : mono u := mono_comp _ _, haveI hu := non_preadditive_abelian.normal_mono u, let h := hu.g, -- By hypothesis, p factors through the kernel of g via some t. obtain ⟨t, ht⟩ := kernel.lift' g p hpg, have fh : f ≫ h = 0, calc f ≫ h = (p ≫ i) ≫ h : (image.fac f).symm ▸ rfl ... = ((t ≫ kernel.ι g) ≫ i) ≫ h : ht ▸ rfl ... = t ≫ u ≫ h : by simp only [category.assoc]; conv_lhs { congr, skip, rw ←category.assoc } ... = t ≫ 0 : hu.w ▸ rfl ... = 0 : has_zero_morphisms.comp_zero _ _, -- h factors through the cokernel of f via some l. obtain ⟨l, hl⟩ := cokernel.desc' f h fh, have hih : i ≫ h = 0, calc i ≫ h = i ≫ cokernel.π f ≫ l : hl ▸ rfl ... = 0 ≫ l : by rw [←category.assoc, kernel.condition] ... = 0 : zero_comp, -- i factors through u = ker h via some s. obtain ⟨s, hs⟩ := normal_mono.lift' u i hih, have hs' : (s ≫ kernel.ι g) ≫ i = 𝟙 I ≫ i, by rw [category.assoc, hs, category.id_comp], haveI : epi (kernel.ι g) := epi_of_epi_fac ((cancel_mono _).1 hs'), -- ker g is an epimorphism, but ker g ≫ g = 0 = ker g ≫ 0, so g = 0 as required. exact zero_of_epi_comp _ (kernel.condition g) end instance mono_factor_thru_image [mono f] : mono (non_preadditive_abelian.factor_thru_image f) := mono_of_mono_fac $ image.fac f instance is_iso_factor_thru_image [mono f] : is_iso (non_preadditive_abelian.factor_thru_image f) := is_iso_of_mono_of_epi _ /-- The cokernel of the kernel of `f` is called the coimage of `f`. -/ protected abbreviation coimage : C := cokernel (kernel.ι f) /-- The projection onto the coimage. -/ protected abbreviation coimage.π : P ⟶ non_preadditive_abelian.coimage f := cokernel.π (kernel.ι f) /-- There is a canonical monomorphism `i : coimage f ⟶ Q`. -/ protected abbreviation factor_thru_coimage : non_preadditive_abelian.coimage f ⟶ Q := cokernel.desc (kernel.ι f) f $ kernel.condition f /-- `f` factors through its coimage via the canonical morphism `p`. -/ protected lemma coimage.fac : coimage.π f ≫ non_preadditive_abelian.factor_thru_coimage f = f := cokernel.π_desc _ _ _ /-- The canonical morphism `i : coimage f ⟶ Q` is a monomorphism -/ instance : mono (non_preadditive_abelian.factor_thru_coimage f) := let I := non_preadditive_abelian.coimage f, i := non_preadditive_abelian.factor_thru_coimage f, p := cokernel.π (kernel.ι f) in mono_of_cancel_zero _ $ λ R (g : R ⟶ I) (hgi : g ≫ i = 0), begin -- Since C is abelian, u := p ≫ coker g is the cokernel of some morphism h. let u := p ≫ cokernel.π g, haveI : epi u := epi_comp _ _, haveI hu := non_preadditive_abelian.normal_epi u, let h := hu.g, -- By hypothesis, i factors through the cokernel of g via some t. obtain ⟨t, ht⟩ := cokernel.desc' g i hgi, have hf : h ≫ f = 0, calc h ≫ f = h ≫ (p ≫ i) : (coimage.fac f).symm ▸ rfl ... = h ≫ (p ≫ (cokernel.π g ≫ t)) : ht ▸ rfl ... = h ≫ u ≫ t : by simp only [category.assoc]; conv_lhs { congr, skip, rw ←category.assoc } ... = 0 ≫ t : by rw [←category.assoc, hu.w] ... = 0 : zero_comp, -- h factors through the kernel of f via some l. obtain ⟨l, hl⟩ := kernel.lift' f h hf, have hhp : h ≫ p = 0, calc h ≫ p = (l ≫ kernel.ι f) ≫ p : hl ▸ rfl ... = l ≫ 0 : by rw [category.assoc, cokernel.condition] ... = 0 : comp_zero, -- p factors through u = coker h via some s. obtain ⟨s, hs⟩ := normal_epi.desc' u p hhp, have hs' : p ≫ cokernel.π g ≫ s = p ≫ 𝟙 I, by rw [←category.assoc, hs, category.comp_id], haveI : mono (cokernel.π g) := mono_of_mono_fac ((cancel_epi _).1 hs'), -- coker g is a monomorphism, but g ≫ coker g = 0 = 0 ≫ coker g, so g = 0 as required. exact zero_of_comp_mono _ (cokernel.condition g) end instance epi_factor_thru_coimage [epi f] : epi (non_preadditive_abelian.factor_thru_coimage f) := epi_of_epi_fac $ coimage.fac f instance is_iso_factor_thru_coimage [epi f] : is_iso (non_preadditive_abelian.factor_thru_coimage f) := is_iso_of_mono_of_epi _ end factor section cokernel_of_kernel variables {X Y : C} {f : X ⟶ Y} /-- In a `non_preadditive_abelian` category, an epi is the cokernel of its kernel. More precisely: If `f` is an epimorphism and `s` is some limit kernel cone on `f`, then `f` is a cokernel of `fork.ι s`. -/ def epi_is_cokernel_of_kernel [epi f] (s : fork f 0) (h : is_limit s) : is_colimit (cokernel_cofork.of_π f (kernel_fork.condition s)) := is_cokernel.cokernel_iso _ _ (cokernel.of_iso_comp _ _ (limits.is_limit.cone_point_unique_up_to_iso (limit.is_limit _) h) (cone_morphism.w (limits.is_limit.unique_up_to_iso (limit.is_limit _) h).hom _)) (as_iso $ non_preadditive_abelian.factor_thru_coimage f) (coimage.fac f) /-- In a `non_preadditive_abelian` category, a mono is the kernel of its cokernel. More precisely: If `f` is a monomorphism and `s` is some colimit cokernel cocone on `f`, then `f` is a kernel of `cofork.π s`. -/ def mono_is_kernel_of_cokernel [mono f] (s : cofork f 0) (h : is_colimit s) : is_limit (kernel_fork.of_ι f (cokernel_cofork.condition s)) := is_kernel.iso_kernel _ _ (kernel.of_comp_iso _ _ (limits.is_colimit.cocone_point_unique_up_to_iso h (colimit.is_colimit _)) (cocone_morphism.w (limits.is_colimit.unique_up_to_iso h $ colimit.is_colimit _).hom _)) (as_iso $ non_preadditive_abelian.factor_thru_image f) (image.fac f) end cokernel_of_kernel section /-- The composite `A ⟶ A ⨯ A ⟶ cokernel (Δ A)`, where the first map is `(𝟙 A, 0)` and the second map is the canonical projection into the cokernel. -/ abbreviation r (A : C) : A ⟶ cokernel (diag A) := prod.lift (𝟙 A) 0 ≫ cokernel.π (diag A) instance mono_Δ {A : C} : mono (diag A) := mono_of_mono_fac $ prod.lift_fst _ _ instance mono_r {A : C} : mono (r A) := begin let hl : is_limit (kernel_fork.of_ι (diag A) (cokernel.condition (diag A))), { exact mono_is_kernel_of_cokernel _ (colimit.is_colimit _) }, apply mono_of_cancel_zero, intros Z x hx, have hxx : (x ≫ prod.lift (𝟙 A) (0 : A ⟶ A)) ≫ cokernel.π (diag A) = 0, { rw [category.assoc, hx] }, obtain ⟨y, hy⟩ := kernel_fork.is_limit.lift' hl _ hxx, rw kernel_fork.ι_of_ι at hy, have hyy : y = 0, { erw [←category.comp_id y, ←limits.prod.lift_snd (𝟙 A) (𝟙 A), ←category.assoc, hy, category.assoc, prod.lift_snd, has_zero_morphisms.comp_zero] }, haveI : mono (prod.lift (𝟙 A) (0 : A ⟶ A)) := mono_of_mono_fac (prod.lift_fst _ _), apply (cancel_mono (prod.lift (𝟙 A) (0 : A ⟶ A))).1, rw [←hy, hyy, zero_comp, zero_comp] end instance epi_r {A : C} : epi (r A) := begin have hlp : prod.lift (𝟙 A) (0 : A ⟶ A) ≫ limits.prod.snd = 0 := prod.lift_snd _ _, let hp1 : is_limit (kernel_fork.of_ι (prod.lift (𝟙 A) (0 : A ⟶ A)) hlp), { refine fork.is_limit.mk _ (λ s, fork.ι s ≫ limits.prod.fst) _ _, { intro s, ext; simp, erw category.comp_id }, { intros s m h, haveI : mono (prod.lift (𝟙 A) (0 : A ⟶ A)) := mono_of_mono_fac (prod.lift_fst _ _), apply (cancel_mono (prod.lift (𝟙 A) (0 : A ⟶ A))).1, convert h walking_parallel_pair.zero, ext; simp } }, let hp2 : is_colimit (cokernel_cofork.of_π (limits.prod.snd : A ⨯ A ⟶ A) hlp), { exact epi_is_cokernel_of_kernel _ hp1 }, apply epi_of_zero_cancel, intros Z z hz, have h : prod.lift (𝟙 A) (0 : A ⟶ A) ≫ cokernel.π (diag A) ≫ z = 0, { rw [←category.assoc, hz] }, obtain ⟨t, ht⟩ := cokernel_cofork.is_colimit.desc' hp2 _ h, rw cokernel_cofork.π_of_π at ht, have htt : t = 0, { rw [←category.id_comp t], change 𝟙 A ≫ t = 0, rw [←limits.prod.lift_snd (𝟙 A) (𝟙 A), category.assoc, ht, ←category.assoc, cokernel.condition, zero_comp] }, apply (cancel_epi (cokernel.π (diag A))).1, rw [←ht, htt, comp_zero, comp_zero] end instance is_iso_r {A : C} : is_iso (r A) := is_iso_of_mono_of_epi _ /-- The composite `A ⨯ A ⟶ cokernel (diag A) ⟶ A` given by the natural projection into the cokernel followed by the inverse of `r`. In the category of modules, using the normal kernels and cokernels, this map is equal to the map `(a, b) ↦ a - b`, hence the name `σ` for "subtraction". -/ abbreviation σ {A : C} : A ⨯ A ⟶ A := cokernel.π (diag A) ≫ is_iso.inv (r A) end @[simp, reassoc] lemma diag_σ {X : C} : diag X ≫ σ = 0 := by rw [cokernel.condition_assoc, zero_comp] @[simp, reassoc] lemma lift_σ {X : C} : prod.lift (𝟙 X) 0 ≫ σ = 𝟙 X := by rw [←category.assoc, is_iso.hom_inv_id] @[reassoc] lemma lift_map {X Y : C} (f : X ⟶ Y) : prod.lift (𝟙 X) 0 ≫ limits.prod.map f f = f ≫ prod.lift (𝟙 Y) 0 := by simp /-- σ is a cokernel of Δ X. -/ def is_colimit_σ {X : C} : is_colimit (cokernel_cofork.of_π σ diag_σ) := cokernel.cokernel_iso _ σ (as_iso (r X)).symm (by rw [iso.symm_hom, as_iso_inv]) /-- This is the key identity satisfied by `σ`. -/ lemma σ_comp {X Y : C} (f : X ⟶ Y) : σ ≫ f = limits.prod.map f f ≫ σ := begin obtain ⟨g, hg⟩ := cokernel_cofork.is_colimit.desc' is_colimit_σ (limits.prod.map f f ≫ σ) (by simp), suffices hfg : f = g, { rw [←hg, cofork.π_of_π, hfg] }, calc f = f ≫ prod.lift (𝟙 Y) 0 ≫ σ : by rw [lift_σ, category.comp_id] ... = prod.lift (𝟙 X) 0 ≫ limits.prod.map f f ≫ σ : by rw lift_map_assoc ... = prod.lift (𝟙 X) 0 ≫ σ ≫ g : by rw [←hg, cokernel_cofork.π_of_π] ... = g : by rw [←category.assoc, lift_σ, category.id_comp] end section /- We write `f - g` for `prod.lift f g ≫ σ`. -/ /-- Subtraction of morphisms in a `non_preadditive_abelian` category. -/ def has_sub {X Y : C} : has_sub (X ⟶ Y) := ⟨λ f g, prod.lift f g ≫ σ⟩ local attribute [instance] has_sub /- We write `-f` for `0 - f`. -/ /-- Negation of morphisms in a `non_preadditive_abelian` category. -/ def has_neg {X Y : C} : has_neg (X ⟶ Y) := ⟨λ f, 0 - f⟩ local attribute [instance] has_neg /- We write `f + g` for `f - (-g)`. -/ /-- Addition of morphisms in a `non_preadditive_abelian` category. -/ def has_add {X Y : C} : has_add (X ⟶ Y) := ⟨λ f g, f - (-g)⟩ local attribute [instance] has_add lemma sub_def {X Y : C} (a b : X ⟶ Y) : a - b = prod.lift a b ≫ σ := rfl lemma add_def {X Y : C} (a b : X ⟶ Y) : a + b = a - (-b) := rfl lemma neg_def {X Y : C} (a : X ⟶ Y) : -a = 0 - a := rfl lemma sub_zero {X Y : C} (a : X ⟶ Y) : a - 0 = a := begin rw sub_def, conv_lhs { congr, congr, rw ←category.comp_id a, skip, rw (show 0 = a ≫ (0 : Y ⟶ Y), by simp)}, rw [← prod.comp_lift, category.assoc, lift_σ, category.comp_id] end lemma sub_self {X Y : C} (a : X ⟶ Y) : a - a = 0 := by rw [sub_def, ←category.comp_id a, ← prod.comp_lift, category.assoc, diag_σ, comp_zero] lemma lift_sub_lift {X Y : C} (a b c d : X ⟶ Y) : prod.lift a b - prod.lift c d = prod.lift (a - c) (b - d) := begin simp only [sub_def], ext, { rw [category.assoc, σ_comp, prod.lift_map_assoc, prod.lift_fst, prod.lift_fst, prod.lift_fst] }, { rw [category.assoc, σ_comp, prod.lift_map_assoc, prod.lift_snd, prod.lift_snd, prod.lift_snd] } end lemma sub_sub_sub {X Y : C} (a b c d : X ⟶ Y) : (a - c) - (b - d) = (a - b) - (c - d) := begin rw [sub_def, ←lift_sub_lift, sub_def, category.assoc, σ_comp, prod.lift_map_assoc], refl end lemma neg_sub {X Y : C} (a b : X ⟶ Y) : (-a) - b = (-b) - a := by conv_lhs { rw [neg_def, ←sub_zero b, sub_sub_sub, sub_zero, ←neg_def] } lemma neg_neg {X Y : C} (a : X ⟶ Y) : -(-a) = a := begin rw [neg_def, neg_def], conv_lhs { congr, rw ←sub_self a }, rw [sub_sub_sub, sub_zero, sub_self, sub_zero] end lemma add_comm {X Y : C} (a b : X ⟶ Y) : a + b = b + a := begin rw [add_def], conv_lhs { rw ←neg_neg a }, rw [neg_def, neg_def, neg_def, sub_sub_sub], conv_lhs {congr, skip, rw [←neg_def, neg_sub] }, rw [sub_sub_sub, add_def, ←neg_def, neg_neg b, neg_def] end lemma add_neg {X Y : C} (a b : X ⟶ Y) : a + (-b) = a - b := by rw [add_def, neg_neg] lemma add_neg_self {X Y : C} (a : X ⟶ Y) : a + (-a) = 0 := by rw [add_neg, sub_self] lemma neg_add_self {X Y : C} (a : X ⟶ Y) : (-a) + a = 0 := by rw [add_comm, add_neg_self] lemma neg_sub' {X Y : C} (a b : X ⟶ Y) : -(a - b) = (-a) + b := begin rw [neg_def, neg_def], conv_lhs { rw ←sub_self (0 : X ⟶ Y) }, rw [sub_sub_sub, add_def, neg_def] end lemma neg_add {X Y : C} (a b : X ⟶ Y) : -(a + b) = (-a) - b := by rw [add_def, neg_sub', add_neg] lemma sub_add {X Y : C} (a b c : X ⟶ Y) : (a - b) + c = a - (b - c) := by rw [add_def, neg_def, sub_sub_sub, sub_zero] lemma add_assoc {X Y : C} (a b c : X ⟶ Y) : (a + b) + c = a + (b + c) := begin conv_lhs { congr, rw add_def }, rw [sub_add, ←add_neg, neg_sub', neg_neg] end lemma add_zero {X Y : C} (a : X ⟶ Y) : a + 0 = a := by rw [add_def, neg_def, sub_self, sub_zero] lemma comp_sub {X Y Z : C} (f : X ⟶ Y) (g h : Y ⟶ Z) : f ≫ (g - h) = f ≫ g - f ≫ h := by rw [sub_def, ←category.assoc, prod.comp_lift, sub_def] lemma sub_comp {X Y Z : C} (f g : X ⟶ Y) (h : Y ⟶ Z) : (f - g) ≫ h = f ≫ h - g ≫ h := by rw [sub_def, category.assoc, σ_comp, ←category.assoc, prod.lift_map, sub_def] lemma comp_add (X Y Z : C) (f : X ⟶ Y) (g h : Y ⟶ Z) : f ≫ (g + h) = f ≫ g + f ≫ h := by rw [add_def, comp_sub, neg_def, comp_sub, comp_zero, add_def, neg_def] lemma add_comp (X Y Z : C) (f g : X ⟶ Y) (h : Y ⟶ Z) : (f + g) ≫ h = f ≫ h + g ≫ h := by rw [add_def, sub_comp, neg_def, sub_comp, zero_comp, add_def, neg_def] /-- Every `non_preadditive_abelian` category is preadditive. -/ def preadditive : preadditive C := { hom_group := λ X Y, { add := (+), add_assoc := add_assoc, zero := 0, zero_add := neg_neg, add_zero := add_zero, neg := λ f, -f, add_left_neg := neg_add_self, add_comm := add_comm }, add_comp' := add_comp, comp_add' := comp_add } end end end category_theory.non_preadditive_abelian
f6c1ac3bd612262589af88751ca403f220727845
6fca17f8d5025f89be1b2d9d15c9e0c4b4900cbf
/src/game/world4/level5.lean
e6ef0305a06cdac1ee1208e4701cbebc9063f767
[ "Apache-2.0" ]
permissive
arolihas/natural_number_game
4f0c93feefec93b8824b2b96adff8b702b8b43ce
8e4f7b4b42888a3b77429f90cce16292bd288138
refs/heads/master
1,621,872,426,808
1,586,270,467,000
1,586,270,467,000
253,648,466
0
0
null
1,586,219,694,000
1,586,219,694,000
null
UTF-8
Lean
false
false
296
lean
import game.world4.level4 -- hide namespace mynat -- hide /- # Power World ## Level 5: `pow_add` -/ /- Lemma For all naturals $a$, $m$, $n$, we have $a^{m + n} = a ^ m a ^ n$. -/ lemma pow_add (a m n : mynat) : a ^ (m + n) = a ^ m * a ^ n := begin [nat_num_game] end end mynat -- hide
c703024cd048483dee4fbcfe94b51fccb958585a
9dc8cecdf3c4634764a18254e94d43da07142918
/src/algebra/hom/group.lean
c67dbb5c7e05c25bfd112398ec54e27ad13b7cc7
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
52,916
lean
/- Copyright (c) 2018 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot, Kevin Buzzard, Scott Morrison, Johan Commelin, Chris Hughes, Johannes Hölzl, Yury Kudryashov -/ import algebra.group.commute import algebra.group_with_zero.defs import data.fun_like.basic /-! # Monoid and group homomorphisms This file defines the bundled structures for monoid and group homomorphisms. Namely, we define `monoid_hom` (resp., `add_monoid_hom`) to be bundled homomorphisms between multiplicative (resp., additive) monoids or groups. We also define coercion to a function, and usual operations: composition, identity homomorphism, pointwise multiplication and pointwise inversion. This file also defines the lesser-used (and notation-less) homomorphism types which are used as building blocks for other homomorphisms: * `zero_hom` * `one_hom` * `add_hom` * `mul_hom` * `monoid_with_zero_hom` ## Notations * `→+`: Bundled `add_monoid` homs. Also use for `add_group` homs. * `→*`: Bundled `monoid` homs. Also use for `group` homs. * `→*₀`: Bundled `monoid_with_zero` homs. Also use for `group_with_zero` homs. * `→ₙ*`: Bundled `semigroup` homs. ## Implementation notes There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. There is no `group_hom` -- the idea is that `monoid_hom` is used. The constructor for `monoid_hom` needs a proof of `map_one` as well as `map_mul`; a separate constructor `monoid_hom.mk'` will construct group homs (i.e. monoid homs between groups) given only a proof that multiplication is preserved, Implicit `{}` brackets are often used instead of type class `[]` brackets. This is done when the instances can be inferred because they are implicit arguments to the type `monoid_hom`. When they can be inferred from the type it is faster to use this method than to use type class inference. Historically this file also included definitions of unbundled homomorphism classes; they were deprecated and moved to `deprecated/group`. ## Tags monoid_hom, add_monoid_hom -/ variables {α β M N P : Type*} -- monoids variables {G : Type*} {H : Type*} -- groups variables {F : Type*} -- homs -- for easy multiple inheritance set_option old_structure_cmd true section zero /-- `zero_hom M N` is the type of functions `M → N` that preserve zero. When possible, instead of parametrizing results over `(f : zero_hom M N)`, you should parametrize over `(F : Type*) [zero_hom_class F M N] (f : F)`. When you extend this structure, make sure to also extend `zero_hom_class`. -/ structure zero_hom (M : Type*) (N : Type*) [has_zero M] [has_zero N] := (to_fun : M → N) (map_zero' : to_fun 0 = 0) /-- `zero_hom_class F M N` states that `F` is a type of zero-preserving homomorphisms. You should extend this typeclass when you extend `zero_hom`. -/ class zero_hom_class (F : Type*) (M N : out_param $ Type*) [has_zero M] [has_zero N] extends fun_like F M (λ _, N) := (map_zero : ∀ (f : F), f 0 = 0) -- Instances and lemmas are defined below through `@[to_additive]`. end zero section add /-- `add_hom M N` is the type of functions `M → N` that preserve addition. When possible, instead of parametrizing results over `(f : add_hom M N)`, you should parametrize over `(F : Type*) [add_hom_class F M N] (f : F)`. When you extend this structure, make sure to extend `add_hom_class`. -/ structure add_hom (M : Type*) (N : Type*) [has_add M] [has_add N] := (to_fun : M → N) (map_add' : ∀ x y, to_fun (x + y) = to_fun x + to_fun y) /-- `add_hom_class F M N` states that `F` is a type of addition-preserving homomorphisms. You should declare an instance of this typeclass when you extend `add_hom`. -/ class add_hom_class (F : Type*) (M N : out_param $ Type*) [has_add M] [has_add N] extends fun_like F M (λ _, N) := (map_add : ∀ (f : F) (x y : M), f (x + y) = f x + f y) -- Instances and lemmas are defined below through `@[to_additive]`. end add section add_zero /-- `M →+ N` is the type of functions `M → N` that preserve the `add_zero_class` structure. `add_monoid_hom` is also used for group homomorphisms. When possible, instead of parametrizing results over `(f : M →+ N)`, you should parametrize over `(F : Type*) [add_monoid_hom_class F M N] (f : F)`. When you extend this structure, make sure to extend `add_monoid_hom_class`. -/ @[ancestor zero_hom add_hom] structure add_monoid_hom (M : Type*) (N : Type*) [add_zero_class M] [add_zero_class N] extends zero_hom M N, add_hom M N attribute [nolint doc_blame] add_monoid_hom.to_add_hom attribute [nolint doc_blame] add_monoid_hom.to_zero_hom infixr ` →+ `:25 := add_monoid_hom /-- `add_monoid_hom_class F M N` states that `F` is a type of `add_zero_class`-preserving homomorphisms. You should also extend this typeclass when you extend `add_monoid_hom`. -/ @[ancestor add_hom_class zero_hom_class] class add_monoid_hom_class (F : Type*) (M N : out_param $ Type*) [add_zero_class M] [add_zero_class N] extends add_hom_class F M N, zero_hom_class F M N -- Instances and lemmas are defined below through `@[to_additive]`. end add_zero section one variables [has_one M] [has_one N] /-- `one_hom M N` is the type of functions `M → N` that preserve one. When possible, instead of parametrizing results over `(f : one_hom M N)`, you should parametrize over `(F : Type*) [one_hom_class F M N] (f : F)`. When you extend this structure, make sure to also extend `one_hom_class`. -/ @[to_additive] structure one_hom (M : Type*) (N : Type*) [has_one M] [has_one N] := (to_fun : M → N) (map_one' : to_fun 1 = 1) /-- `one_hom_class F M N` states that `F` is a type of one-preserving homomorphisms. You should extend this typeclass when you extend `one_hom`. -/ @[to_additive] class one_hom_class (F : Type*) (M N : out_param $ Type*) [has_one M] [has_one N] extends fun_like F M (λ _, N) := (map_one : ∀ (f : F), f 1 = 1) @[to_additive] instance one_hom.one_hom_class : one_hom_class (one_hom M N) M N := { coe := one_hom.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_one := one_hom.map_one' } @[simp, to_additive] lemma map_one [one_hom_class F M N] (f : F) : f 1 = 1 := one_hom_class.map_one f @[to_additive] lemma map_eq_one_iff [one_hom_class F M N] (f : F) (hf : function.injective f) {x : M} : f x = 1 ↔ x = 1 := hf.eq_iff' (map_one f) @[to_additive] lemma map_ne_one_iff {R S F : Type*} [has_one R] [has_one S] [one_hom_class F R S] (f : F) (hf : function.injective f) {x : R} : f x ≠ 1 ↔ x ≠ 1 := (map_eq_one_iff f hf).not @[to_additive] lemma ne_one_of_map {R S F : Type*} [has_one R] [has_one S] [one_hom_class F R S] {f : F} {x : R} (hx : f x ≠ 1) : x ≠ 1 := ne_of_apply_ne f $ ne_of_ne_of_eq hx (map_one f).symm @[to_additive] instance [one_hom_class F M N] : has_coe_t F (one_hom M N) := ⟨λ f, { to_fun := f, map_one' := map_one f }⟩ end one section mul variables [has_mul M] [has_mul N] /-- `M →ₙ* N` is the type of functions `M → N` that preserve multiplication. The `ₙ` in the notation stands for "non-unital" because it is intended to match the notation for `non_unital_alg_hom` and `non_unital_ring_hom`, so a `mul_hom` is a non-unital monoid hom. When possible, instead of parametrizing results over `(f : M →ₙ* N)`, you should parametrize over `(F : Type*) [mul_hom_class F M N] (f : F)`. When you extend this structure, make sure to extend `mul_hom_class`. -/ @[to_additive] structure mul_hom (M : Type*) (N : Type*) [has_mul M] [has_mul N] := (to_fun : M → N) (map_mul' : ∀ x y, to_fun (x * y) = to_fun x * to_fun y) infixr ` →ₙ* `:25 := mul_hom /-- `mul_hom_class F M N` states that `F` is a type of multiplication-preserving homomorphisms. You should declare an instance of this typeclass when you extend `mul_hom`. -/ @[to_additive] class mul_hom_class (F : Type*) (M N : out_param $ Type*) [has_mul M] [has_mul N] extends fun_like F M (λ _, N) := (map_mul : ∀ (f : F) (x y : M), f (x * y) = f x * f y) @[to_additive] instance mul_hom.mul_hom_class : mul_hom_class (M →ₙ* N) M N := { coe := mul_hom.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_mul := mul_hom.map_mul' } @[simp, to_additive] lemma map_mul [mul_hom_class F M N] (f : F) (x y : M) : f (x * y) = f x * f y := mul_hom_class.map_mul f x y @[to_additive] instance [mul_hom_class F M N] : has_coe_t F (M →ₙ* N) := ⟨λ f, { to_fun := f, map_mul' := map_mul f }⟩ end mul section mul_one variables [mul_one_class M] [mul_one_class N] /-- `M →* N` is the type of functions `M → N` that preserve the `monoid` structure. `monoid_hom` is also used for group homomorphisms. When possible, instead of parametrizing results over `(f : M →+ N)`, you should parametrize over `(F : Type*) [monoid_hom_class F M N] (f : F)`. When you extend this structure, make sure to extend `monoid_hom_class`. -/ @[ancestor one_hom mul_hom, to_additive] structure monoid_hom (M : Type*) (N : Type*) [mul_one_class M] [mul_one_class N] extends one_hom M N, M →ₙ* N attribute [nolint doc_blame] monoid_hom.to_mul_hom attribute [nolint doc_blame] monoid_hom.to_one_hom infixr ` →* `:25 := monoid_hom /-- `monoid_hom_class F M N` states that `F` is a type of `monoid`-preserving homomorphisms. You should also extend this typeclass when you extend `monoid_hom`. -/ @[ancestor mul_hom_class one_hom_class, to_additive "`add_monoid_hom_class F M N` states that `F` is a type of `add_monoid`-preserving homomorphisms. You should also extend this typeclass when you extend `add_monoid_hom`."] class monoid_hom_class (F : Type*) (M N : out_param $ Type*) [mul_one_class M] [mul_one_class N] extends mul_hom_class F M N, one_hom_class F M N @[to_additive] instance monoid_hom.monoid_hom_class : monoid_hom_class (M →* N) M N := { coe := monoid_hom.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_mul := monoid_hom.map_mul', map_one := monoid_hom.map_one' } @[to_additive] instance [monoid_hom_class F M N] : has_coe_t F (M →* N) := ⟨λ f, { to_fun := f, map_one' := map_one f, map_mul' := map_mul f }⟩ @[to_additive] lemma map_mul_eq_one [monoid_hom_class F M N] (f : F) {a b : M} (h : a * b = 1) : f a * f b = 1 := by rw [← map_mul, h, map_one] @[to_additive] lemma map_div' [div_inv_monoid G] [div_inv_monoid H] [monoid_hom_class F G H] (f : F) (hf : ∀ a, f a⁻¹ = (f a)⁻¹) (a b : G) : f (a / b) = f a / f b := by rw [div_eq_mul_inv, div_eq_mul_inv, map_mul, hf] /-- Group homomorphisms preserve inverse. -/ @[simp, to_additive "Additive group homomorphisms preserve negation."] lemma map_inv [group G] [division_monoid H] [monoid_hom_class F G H] (f : F) (a : G) : f a⁻¹ = (f a)⁻¹ := eq_inv_of_mul_eq_one_left $ map_mul_eq_one f $ inv_mul_self _ /-- Group homomorphisms preserve division. -/ @[simp, to_additive "Additive group homomorphisms preserve subtraction."] lemma map_mul_inv [group G] [division_monoid H] [monoid_hom_class F G H] (f : F) (a b : G) : f (a * b⁻¹) = f a * (f b)⁻¹ := by rw [map_mul, map_inv] /-- Group homomorphisms preserve division. -/ @[simp, to_additive "Additive group homomorphisms preserve subtraction."] lemma map_div [group G] [division_monoid H] [monoid_hom_class F G H] (f : F) : ∀ a b, f (a / b) = f a / f b := map_div' _ $ map_inv f -- to_additive puts the arguments in the wrong order, so generate an auxiliary lemma, then -- swap its arguments. @[to_additive map_nsmul.aux, simp] theorem map_pow [monoid G] [monoid H] [monoid_hom_class F G H] (f : F) (a : G) : ∀ (n : ℕ), f (a ^ n) = (f a) ^ n | 0 := by rw [pow_zero, pow_zero, map_one] | (n+1) := by rw [pow_succ, pow_succ, map_mul, map_pow] @[simp] theorem map_nsmul [add_monoid G] [add_monoid H] [add_monoid_hom_class F G H] (f : F) (n : ℕ) (a : G) : f (n • a) = n • (f a) := map_nsmul.aux f a n attribute [to_additive_reorder 8, to_additive] map_pow @[to_additive] theorem map_zpow' [div_inv_monoid G] [div_inv_monoid H] [monoid_hom_class F G H] (f : F) (hf : ∀ (x : G), f (x⁻¹) = (f x)⁻¹) (a : G) : ∀ n : ℤ, f (a ^ n) = (f a) ^ n | (n : ℕ) := by rw [zpow_coe_nat, map_pow, zpow_coe_nat] | -[1+n] := by rw [zpow_neg_succ_of_nat, hf, map_pow, ← zpow_neg_succ_of_nat] -- to_additive puts the arguments in the wrong order, so generate an auxiliary lemma, then -- swap its arguments. /-- Group homomorphisms preserve integer power. -/ @[to_additive map_zsmul.aux, simp] theorem map_zpow [group G] [division_monoid H] [monoid_hom_class F G H] (f : F) (g : G) (n : ℤ) : f (g ^ n) = (f g) ^ n := map_zpow' f (map_inv f) g n /-- Additive group homomorphisms preserve integer scaling. -/ theorem map_zsmul [add_group G] [subtraction_monoid H] [add_monoid_hom_class F G H] (f : F) (n : ℤ) (g : G) : f (n • g) = n • f g := map_zsmul.aux f g n attribute [to_additive_reorder 8, to_additive] map_zpow end mul_one @[to_additive] lemma group.is_unit [group G] (g : G) : is_unit g := ⟨⟨g, g⁻¹, mul_inv_self g, inv_mul_self g⟩, rfl⟩ section mul_zero_one variables [mul_zero_one_class M] [mul_zero_one_class N] /-- `M →*₀ N` is the type of functions `M → N` that preserve the `monoid_with_zero` structure. `monoid_with_zero_hom` is also used for group homomorphisms. When possible, instead of parametrizing results over `(f : M →*₀ N)`, you should parametrize over `(F : Type*) [monoid_with_zero_hom_class F M N] (f : F)`. When you extend this structure, make sure to extend `monoid_with_zero_hom_class`. -/ @[ancestor zero_hom monoid_hom] structure monoid_with_zero_hom (M : Type*) (N : Type*) [mul_zero_one_class M] [mul_zero_one_class N] extends zero_hom M N, monoid_hom M N attribute [nolint doc_blame] monoid_with_zero_hom.to_monoid_hom attribute [nolint doc_blame] monoid_with_zero_hom.to_zero_hom infixr ` →*₀ `:25 := monoid_with_zero_hom /-- `monoid_with_zero_hom_class F M N` states that `F` is a type of `monoid_with_zero`-preserving homomorphisms. You should also extend this typeclass when you extend `monoid_with_zero_hom`. -/ class monoid_with_zero_hom_class (F : Type*) (M N : out_param $ Type*) [mul_zero_one_class M] [mul_zero_one_class N] extends monoid_hom_class F M N, zero_hom_class F M N instance monoid_with_zero_hom.monoid_with_zero_hom_class : monoid_with_zero_hom_class (M →*₀ N) M N := { coe := monoid_with_zero_hom.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_mul := monoid_with_zero_hom.map_mul', map_one := monoid_with_zero_hom.map_one', map_zero := monoid_with_zero_hom.map_zero' } instance [monoid_with_zero_hom_class F M N] : has_coe_t F (M →*₀ N) := ⟨λ f, { to_fun := f, map_one' := map_one f, map_zero' := map_zero f, map_mul' := map_mul f }⟩ end mul_zero_one -- completely uninteresting lemmas about coercion to function, that all homs need section coes /-! Bundled morphisms can be down-cast to weaker bundlings -/ @[to_additive] instance monoid_hom.has_coe_to_one_hom {mM : mul_one_class M} {mN : mul_one_class N} : has_coe (M →* N) (one_hom M N) := ⟨monoid_hom.to_one_hom⟩ @[to_additive] instance monoid_hom.has_coe_to_mul_hom {mM : mul_one_class M} {mN : mul_one_class N} : has_coe (M →* N) (M →ₙ* N) := ⟨monoid_hom.to_mul_hom⟩ instance monoid_with_zero_hom.has_coe_to_monoid_hom {mM : mul_zero_one_class M} {mN : mul_zero_one_class N} : has_coe (M →*₀ N) (M →* N) := ⟨monoid_with_zero_hom.to_monoid_hom⟩ instance monoid_with_zero_hom.has_coe_to_zero_hom {mM : mul_zero_one_class M} {mN : mul_zero_one_class N} : has_coe (M →*₀ N) (zero_hom M N) := ⟨monoid_with_zero_hom.to_zero_hom⟩ /-! The simp-normal form of morphism coercion is `f.to_..._hom`. This choice is primarily because this is the way things were before the above coercions were introduced. Bundled morphisms defined elsewhere in Mathlib may choose `↑f` as their simp-normal form instead. -/ @[simp, to_additive] lemma monoid_hom.coe_eq_to_one_hom {mM : mul_one_class M} {mN : mul_one_class N} (f : M →* N) : (f : one_hom M N) = f.to_one_hom := rfl @[simp, to_additive] lemma monoid_hom.coe_eq_to_mul_hom {mM : mul_one_class M} {mN : mul_one_class N} (f : M →* N) : (f : M →ₙ* N) = f.to_mul_hom := rfl @[simp] lemma monoid_with_zero_hom.coe_eq_to_monoid_hom {mM : mul_zero_one_class M} {mN : mul_zero_one_class N} (f : M →*₀ N) : (f : M →* N) = f.to_monoid_hom := rfl @[simp] lemma monoid_with_zero_hom.coe_eq_to_zero_hom {mM : mul_zero_one_class M} {mN : mul_zero_one_class N} (f : M →*₀ N) : (f : zero_hom M N) = f.to_zero_hom := rfl -- Fallback `has_coe_to_fun` instances to help the elaborator @[to_additive] instance {mM : has_one M} {mN : has_one N} : has_coe_to_fun (one_hom M N) (λ _, M → N) := ⟨one_hom.to_fun⟩ @[to_additive] instance {mM : has_mul M} {mN : has_mul N} : has_coe_to_fun (M →ₙ* N) (λ _, M → N) := ⟨mul_hom.to_fun⟩ @[to_additive] instance {mM : mul_one_class M} {mN : mul_one_class N} : has_coe_to_fun (M →* N) (λ _, M → N) := ⟨monoid_hom.to_fun⟩ instance {mM : mul_zero_one_class M} {mN : mul_zero_one_class N} : has_coe_to_fun (M →*₀ N) (λ _, M → N) := ⟨monoid_with_zero_hom.to_fun⟩ -- these must come after the coe_to_fun definitions initialize_simps_projections zero_hom (to_fun → apply) initialize_simps_projections add_hom (to_fun → apply) initialize_simps_projections add_monoid_hom (to_fun → apply) initialize_simps_projections one_hom (to_fun → apply) initialize_simps_projections mul_hom (to_fun → apply) initialize_simps_projections monoid_hom (to_fun → apply) initialize_simps_projections monoid_with_zero_hom (to_fun → apply) @[simp, to_additive] lemma one_hom.to_fun_eq_coe [has_one M] [has_one N] (f : one_hom M N) : f.to_fun = f := rfl @[simp, to_additive] lemma mul_hom.to_fun_eq_coe [has_mul M] [has_mul N] (f : M →ₙ* N) : f.to_fun = f := rfl @[simp, to_additive] lemma monoid_hom.to_fun_eq_coe [mul_one_class M] [mul_one_class N] (f : M →* N) : f.to_fun = f := rfl @[simp] lemma monoid_with_zero_hom.to_fun_eq_coe [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) : f.to_fun = f := rfl @[simp, to_additive] lemma one_hom.coe_mk [has_one M] [has_one N] (f : M → N) (h1) : (one_hom.mk f h1 : M → N) = f := rfl @[simp, to_additive] lemma mul_hom.coe_mk [has_mul M] [has_mul N] (f : M → N) (hmul) : (mul_hom.mk f hmul : M → N) = f := rfl @[simp, to_additive] lemma monoid_hom.coe_mk [mul_one_class M] [mul_one_class N] (f : M → N) (h1 hmul) : (monoid_hom.mk f h1 hmul : M → N) = f := rfl @[simp] lemma monoid_with_zero_hom.coe_mk [mul_zero_one_class M] [mul_zero_one_class N] (f : M → N) (h0 h1 hmul) : (monoid_with_zero_hom.mk f h0 h1 hmul : M → N) = f := rfl @[simp, to_additive] lemma monoid_hom.to_one_hom_coe [mul_one_class M] [mul_one_class N] (f : M →* N) : (f.to_one_hom : M → N) = f := rfl @[simp, to_additive] lemma monoid_hom.to_mul_hom_coe [mul_one_class M] [mul_one_class N] (f : M →* N) : (f.to_mul_hom : M → N) = f := rfl @[simp] lemma monoid_with_zero_hom.to_zero_hom_coe [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) : (f.to_zero_hom : M → N) = f := rfl @[simp] lemma monoid_with_zero_hom.to_monoid_hom_coe [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) : (f.to_monoid_hom : M → N) = f := rfl @[ext, to_additive] lemma one_hom.ext [has_one M] [has_one N] ⦃f g : one_hom M N⦄ (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h @[ext, to_additive] lemma mul_hom.ext [has_mul M] [has_mul N] ⦃f g : M →ₙ* N⦄ (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h @[ext, to_additive] lemma monoid_hom.ext [mul_one_class M] [mul_one_class N] ⦃f g : M →* N⦄ (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h @[ext] lemma monoid_with_zero_hom.ext [mul_zero_one_class M] [mul_zero_one_class N] ⦃f g : M →*₀ N⦄ (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h section deprecated /-- Deprecated: use `fun_like.congr_fun` instead. -/ @[to_additive "Deprecated: use `fun_like.congr_fun` instead."] theorem one_hom.congr_fun [has_one M] [has_one N] {f g : one_hom M N} (h : f = g) (x : M) : f x = g x := fun_like.congr_fun h x /-- Deprecated: use `fun_like.congr_fun` instead. -/ @[to_additive "Deprecated: use `fun_like.congr_fun` instead."] theorem mul_hom.congr_fun [has_mul M] [has_mul N] {f g : M →ₙ* N} (h : f = g) (x : M) : f x = g x := fun_like.congr_fun h x /-- Deprecated: use `fun_like.congr_fun` instead. -/ @[to_additive "Deprecated: use `fun_like.congr_fun` instead."] theorem monoid_hom.congr_fun [mul_one_class M] [mul_one_class N] {f g : M →* N} (h : f = g) (x : M) : f x = g x := fun_like.congr_fun h x /-- Deprecated: use `fun_like.congr_fun` instead. -/ theorem monoid_with_zero_hom.congr_fun [mul_zero_one_class M] [mul_zero_one_class N] {f g : M →*₀ N} (h : f = g) (x : M) : f x = g x := fun_like.congr_fun h x /-- Deprecated: use `fun_like.congr_arg` instead. -/ @[to_additive "Deprecated: use `fun_like.congr_arg` instead."] theorem one_hom.congr_arg [has_one M] [has_one N] (f : one_hom M N) {x y : M} (h : x = y) : f x = f y := fun_like.congr_arg f h /-- Deprecated: use `fun_like.congr_arg` instead. -/ @[to_additive "Deprecated: use `fun_like.congr_arg` instead."] theorem mul_hom.congr_arg [has_mul M] [has_mul N] (f : M →ₙ* N) {x y : M} (h : x = y) : f x = f y := fun_like.congr_arg f h /-- Deprecated: use `fun_like.congr_arg` instead. -/ @[to_additive "Deprecated: use `fun_like.congr_arg` instead."] theorem monoid_hom.congr_arg [mul_one_class M] [mul_one_class N] (f : M →* N) {x y : M} (h : x = y) : f x = f y := fun_like.congr_arg f h /-- Deprecated: use `fun_like.congr_arg` instead. -/ theorem monoid_with_zero_hom.congr_arg [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) {x y : M} (h : x = y) : f x = f y := fun_like.congr_arg f h /-- Deprecated: use `fun_like.coe_injective` instead. -/ @[to_additive "Deprecated: use `fun_like.coe_injective` instead."] lemma one_hom.coe_inj [has_one M] [has_one N] ⦃f g : one_hom M N⦄ (h : (f : M → N) = g) : f = g := fun_like.coe_injective h /-- Deprecated: use `fun_like.coe_injective` instead. -/ @[to_additive "Deprecated: use `fun_like.coe_injective` instead."] lemma mul_hom.coe_inj [has_mul M] [has_mul N] ⦃f g : M →ₙ* N⦄ (h : (f : M → N) = g) : f = g := fun_like.coe_injective h /-- Deprecated: use `fun_like.coe_injective` instead. -/ @[to_additive "Deprecated: use `fun_like.coe_injective` instead."] lemma monoid_hom.coe_inj [mul_one_class M] [mul_one_class N] ⦃f g : M →* N⦄ (h : (f : M → N) = g) : f = g := fun_like.coe_injective h /-- Deprecated: use `fun_like.coe_injective` instead. -/ lemma monoid_with_zero_hom.coe_inj [mul_zero_one_class M] [mul_zero_one_class N] ⦃f g : M →*₀ N⦄ (h : (f : M → N) = g) : f = g := fun_like.coe_injective h /-- Deprecated: use `fun_like.ext_iff` instead. -/ @[to_additive "Deprecated: use `fun_like.ext_iff` instead."] lemma one_hom.ext_iff [has_one M] [has_one N] {f g : one_hom M N} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff /-- Deprecated: use `fun_like.ext_iff` instead. -/ @[to_additive] lemma mul_hom.ext_iff [has_mul M] [has_mul N] {f g : M →ₙ* N} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff /-- Deprecated: use `fun_like.ext_iff` instead. -/ @[to_additive] lemma monoid_hom.ext_iff [mul_one_class M] [mul_one_class N] {f g : M →* N} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff /-- Deprecated: use `fun_like.ext_iff` instead. -/ lemma monoid_with_zero_hom.ext_iff [mul_zero_one_class M] [mul_zero_one_class N] {f g : M →*₀ N} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff end deprecated @[simp, to_additive] lemma one_hom.mk_coe [has_one M] [has_one N] (f : one_hom M N) (h1) : one_hom.mk f h1 = f := one_hom.ext $ λ _, rfl @[simp, to_additive] lemma mul_hom.mk_coe [has_mul M] [has_mul N] (f : M →ₙ* N) (hmul) : mul_hom.mk f hmul = f := mul_hom.ext $ λ _, rfl @[simp, to_additive] lemma monoid_hom.mk_coe [mul_one_class M] [mul_one_class N] (f : M →* N) (h1 hmul) : monoid_hom.mk f h1 hmul = f := monoid_hom.ext $ λ _, rfl @[simp] lemma monoid_with_zero_hom.mk_coe [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) (h0 h1 hmul) : monoid_with_zero_hom.mk f h0 h1 hmul = f := monoid_with_zero_hom.ext $ λ _, rfl end coes /-- Copy of a `one_hom` with a new `to_fun` equal to the old one. Useful to fix definitional equalities. -/ @[to_additive "Copy of a `zero_hom` with a new `to_fun` equal to the old one. Useful to fix definitional equalities."] protected def one_hom.copy {hM : has_one M} {hN : has_one N} (f : one_hom M N) (f' : M → N) (h : f' = f) : one_hom M N := { to_fun := f', map_one' := h.symm ▸ f.map_one' } /-- Copy of a `mul_hom` with a new `to_fun` equal to the old one. Useful to fix definitional equalities. -/ @[to_additive "Copy of an `add_hom` with a new `to_fun` equal to the old one. Useful to fix definitional equalities."] protected def mul_hom.copy {hM : has_mul M} {hN : has_mul N} (f : M →ₙ* N) (f' : M → N) (h : f' = f) : M →ₙ* N := { to_fun := f', map_mul' := h.symm ▸ f.map_mul' } /-- Copy of a `monoid_hom` with a new `to_fun` equal to the old one. Useful to fix definitional equalities. -/ @[to_additive "Copy of an `add_monoid_hom` with a new `to_fun` equal to the old one. Useful to fix definitional equalities."] protected def monoid_hom.copy {hM : mul_one_class M} {hN : mul_one_class N} (f : M →* N) (f' : M → N) (h : f' = f) : M →* N := { ..f.to_one_hom.copy f' h, ..f.to_mul_hom.copy f' h } /-- Copy of a `monoid_hom` with a new `to_fun` equal to the old one. Useful to fix definitional equalities. -/ protected def monoid_with_zero_hom.copy {hM : mul_zero_one_class M} {hN : mul_zero_one_class N} (f : M →*₀ N) (f' : M → N) (h : f' = f) : M →* N := { ..f.to_zero_hom.copy f' h, ..f.to_monoid_hom.copy f' h } @[to_additive] protected lemma one_hom.map_one [has_one M] [has_one N] (f : one_hom M N) : f 1 = 1 := f.map_one' /-- If `f` is a monoid homomorphism then `f 1 = 1`. -/ @[to_additive] protected lemma monoid_hom.map_one [mul_one_class M] [mul_one_class N] (f : M →* N) : f 1 = 1 := f.map_one' protected lemma monoid_with_zero_hom.map_one [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) : f 1 = 1 := f.map_one' /-- If `f` is an additive monoid homomorphism then `f 0 = 0`. -/ add_decl_doc add_monoid_hom.map_zero protected lemma monoid_with_zero_hom.map_zero [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) : f 0 = 0 := f.map_zero' @[to_additive] protected lemma mul_hom.map_mul [has_mul M] [has_mul N] (f : M →ₙ* N) (a b : M) : f (a * b) = f a * f b := f.map_mul' a b /-- If `f` is a monoid homomorphism then `f (a * b) = f a * f b`. -/ @[to_additive] protected lemma monoid_hom.map_mul [mul_one_class M] [mul_one_class N] (f : M →* N) (a b : M) : f (a * b) = f a * f b := f.map_mul' a b protected lemma monoid_with_zero_hom.map_mul [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) (a b : M) : f (a * b) = f a * f b := f.map_mul' a b /-- If `f` is an additive monoid homomorphism then `f (a + b) = f a + f b`. -/ add_decl_doc add_monoid_hom.map_add namespace monoid_hom variables {mM : mul_one_class M} {mN : mul_one_class N} [monoid_hom_class F M N] include mM mN /-- Given a monoid homomorphism `f : M →* N` and an element `x : M`, if `x` has a right inverse, then `f x` has a right inverse too. For elements invertible on both sides see `is_unit.map`. -/ @[to_additive "Given an add_monoid homomorphism `f : M →+ N` and an element `x : M`, if `x` has a right inverse, then `f x` has a right inverse too."] lemma map_exists_right_inv (f : F) {x : M} (hx : ∃ y, x * y = 1) : ∃ y, f x * y = 1 := let ⟨y, hy⟩ := hx in ⟨f y, map_mul_eq_one f hy⟩ /-- Given a monoid homomorphism `f : M →* N` and an element `x : M`, if `x` has a left inverse, then `f x` has a left inverse too. For elements invertible on both sides see `is_unit.map`. -/ @[to_additive "Given an add_monoid homomorphism `f : M →+ N` and an element `x : M`, if `x` has a left inverse, then `f x` has a left inverse too. For elements invertible on both sides see `is_add_unit.map`."] lemma map_exists_left_inv (f : F) {x : M} (hx : ∃ y, y * x = 1) : ∃ y, y * f x = 1 := let ⟨y, hy⟩ := hx in ⟨f y, map_mul_eq_one f hy⟩ end monoid_hom section division_comm_monoid variables [division_comm_monoid α] /-- Inversion on a commutative group, considered as a monoid homomorphism. -/ @[to_additive "Negation on a commutative additive group, considered as an additive monoid homomorphism."] def inv_monoid_hom : α →* α := { to_fun := has_inv.inv, map_one' := inv_one, map_mul' := mul_inv } @[simp] lemma coe_inv_monoid_hom : (inv_monoid_hom : α → α) = has_inv.inv := rfl @[simp] lemma inv_monoid_hom_apply (a : α) : inv_monoid_hom a = a⁻¹ := rfl end division_comm_monoid /-- The identity map from a type with 1 to itself. -/ @[to_additive, simps] def one_hom.id (M : Type*) [has_one M] : one_hom M M := { to_fun := λ x, x, map_one' := rfl, } /-- The identity map from a type with multiplication to itself. -/ @[to_additive, simps] def mul_hom.id (M : Type*) [has_mul M] : M →ₙ* M := { to_fun := λ x, x, map_mul' := λ _ _, rfl, } /-- The identity map from a monoid to itself. -/ @[to_additive, simps] def monoid_hom.id (M : Type*) [mul_one_class M] : M →* M := { to_fun := λ x, x, map_one' := rfl, map_mul' := λ _ _, rfl, } /-- The identity map from a monoid_with_zero to itself. -/ @[simps] def monoid_with_zero_hom.id (M : Type*) [mul_zero_one_class M] : M →*₀ M := { to_fun := λ x, x, map_zero' := rfl, map_one' := rfl, map_mul' := λ _ _, rfl, } /-- The identity map from an type with zero to itself. -/ add_decl_doc zero_hom.id /-- The identity map from an type with addition to itself. -/ add_decl_doc add_hom.id /-- The identity map from an additive monoid to itself. -/ add_decl_doc add_monoid_hom.id /-- Composition of `one_hom`s as a `one_hom`. -/ @[to_additive] def one_hom.comp [has_one M] [has_one N] [has_one P] (hnp : one_hom N P) (hmn : one_hom M N) : one_hom M P := { to_fun := hnp ∘ hmn, map_one' := by simp, } /-- Composition of `mul_hom`s as a `mul_hom`. -/ @[to_additive] def mul_hom.comp [has_mul M] [has_mul N] [has_mul P] (hnp : N →ₙ* P) (hmn : M →ₙ* N) : M →ₙ* P := { to_fun := hnp ∘ hmn, map_mul' := by simp, } /-- Composition of monoid morphisms as a monoid morphism. -/ @[to_additive] def monoid_hom.comp [mul_one_class M] [mul_one_class N] [mul_one_class P] (hnp : N →* P) (hmn : M →* N) : M →* P := { to_fun := hnp ∘ hmn, map_one' := by simp, map_mul' := by simp, } /-- Composition of `monoid_with_zero_hom`s as a `monoid_with_zero_hom`. -/ def monoid_with_zero_hom.comp [mul_zero_one_class M] [mul_zero_one_class N] [mul_zero_one_class P] (hnp : N →*₀ P) (hmn : M →*₀ N) : M →*₀ P := { to_fun := hnp ∘ hmn, map_zero' := by simp, map_one' := by simp, map_mul' := by simp, } /-- Composition of `zero_hom`s as a `zero_hom`. -/ add_decl_doc zero_hom.comp /-- Composition of `add_hom`s as a `add_hom`. -/ add_decl_doc add_hom.comp /-- Composition of additive monoid morphisms as an additive monoid morphism. -/ add_decl_doc add_monoid_hom.comp @[simp, to_additive] lemma one_hom.coe_comp [has_one M] [has_one N] [has_one P] (g : one_hom N P) (f : one_hom M N) : ⇑(g.comp f) = g ∘ f := rfl @[simp, to_additive] lemma mul_hom.coe_comp [has_mul M] [has_mul N] [has_mul P] (g : N →ₙ* P) (f : M →ₙ* N) : ⇑(g.comp f) = g ∘ f := rfl @[simp, to_additive] lemma monoid_hom.coe_comp [mul_one_class M] [mul_one_class N] [mul_one_class P] (g : N →* P) (f : M →* N) : ⇑(g.comp f) = g ∘ f := rfl @[simp] lemma monoid_with_zero_hom.coe_comp [mul_zero_one_class M] [mul_zero_one_class N] [mul_zero_one_class P] (g : N →*₀ P) (f : M →*₀ N) : ⇑(g.comp f) = g ∘ f := rfl @[to_additive] lemma one_hom.comp_apply [has_one M] [has_one N] [has_one P] (g : one_hom N P) (f : one_hom M N) (x : M) : g.comp f x = g (f x) := rfl @[to_additive] lemma mul_hom.comp_apply [has_mul M] [has_mul N] [has_mul P] (g : N →ₙ* P) (f : M →ₙ* N) (x : M) : g.comp f x = g (f x) := rfl @[to_additive] lemma monoid_hom.comp_apply [mul_one_class M] [mul_one_class N] [mul_one_class P] (g : N →* P) (f : M →* N) (x : M) : g.comp f x = g (f x) := rfl lemma monoid_with_zero_hom.comp_apply [mul_zero_one_class M] [mul_zero_one_class N] [mul_zero_one_class P] (g : N →*₀ P) (f : M →*₀ N) (x : M) : g.comp f x = g (f x) := rfl /-- Composition of monoid homomorphisms is associative. -/ @[to_additive] lemma one_hom.comp_assoc {Q : Type*} [has_one M] [has_one N] [has_one P] [has_one Q] (f : one_hom M N) (g : one_hom N P) (h : one_hom P Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[to_additive] lemma mul_hom.comp_assoc {Q : Type*} [has_mul M] [has_mul N] [has_mul P] [has_mul Q] (f : M →ₙ* N) (g : N →ₙ* P) (h : P →ₙ* Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[to_additive] lemma monoid_hom.comp_assoc {Q : Type*} [mul_one_class M] [mul_one_class N] [mul_one_class P] [mul_one_class Q] (f : M →* N) (g : N →* P) (h : P →* Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl lemma monoid_with_zero_hom.comp_assoc {Q : Type*} [mul_zero_one_class M] [mul_zero_one_class N] [mul_zero_one_class P] [mul_zero_one_class Q] (f : M →*₀ N) (g : N →*₀ P) (h : P →*₀ Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[to_additive] lemma one_hom.cancel_right [has_one M] [has_one N] [has_one P] {g₁ g₂ : one_hom N P} {f : one_hom M N} (hf : function.surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨λ h, one_hom.ext $ hf.forall.2 (one_hom.ext_iff.1 h), λ h, h ▸ rfl⟩ @[to_additive] lemma mul_hom.cancel_right [has_mul M] [has_mul N] [has_mul P] {g₁ g₂ : N →ₙ* P} {f : M →ₙ* N} (hf : function.surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨λ h, mul_hom.ext $ hf.forall.2 (mul_hom.ext_iff.1 h), λ h, h ▸ rfl⟩ @[to_additive] lemma monoid_hom.cancel_right [mul_one_class M] [mul_one_class N] [mul_one_class P] {g₁ g₂ : N →* P} {f : M →* N} (hf : function.surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨λ h, monoid_hom.ext $ hf.forall.2 (monoid_hom.ext_iff.1 h), λ h, h ▸ rfl⟩ lemma monoid_with_zero_hom.cancel_right [mul_zero_one_class M] [mul_zero_one_class N] [mul_zero_one_class P] {g₁ g₂ : N →*₀ P} {f : M →*₀ N} (hf : function.surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨λ h, monoid_with_zero_hom.ext $ hf.forall.2 (monoid_with_zero_hom.ext_iff.1 h), λ h, h ▸ rfl⟩ @[to_additive] lemma one_hom.cancel_left [has_one M] [has_one N] [has_one P] {g : one_hom N P} {f₁ f₂ : one_hom M N} (hg : function.injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨λ h, one_hom.ext $ λ x, hg $ by rw [← one_hom.comp_apply, h, one_hom.comp_apply], λ h, h ▸ rfl⟩ @[to_additive] lemma mul_hom.cancel_left [has_mul M] [has_mul N] [has_mul P] {g : N →ₙ* P} {f₁ f₂ : M →ₙ* N} (hg : function.injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨λ h, mul_hom.ext $ λ x, hg $ by rw [← mul_hom.comp_apply, h, mul_hom.comp_apply], λ h, h ▸ rfl⟩ @[to_additive] lemma monoid_hom.cancel_left [mul_one_class M] [mul_one_class N] [mul_one_class P] {g : N →* P} {f₁ f₂ : M →* N} (hg : function.injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨λ h, monoid_hom.ext $ λ x, hg $ by rw [← monoid_hom.comp_apply, h, monoid_hom.comp_apply], λ h, h ▸ rfl⟩ lemma monoid_with_zero_hom.cancel_left [mul_zero_one_class M] [mul_zero_one_class N] [mul_zero_one_class P] {g : N →*₀ P} {f₁ f₂ : M →*₀ N} (hg : function.injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨λ h, monoid_with_zero_hom.ext $ λ x, hg $ by rw [ ← monoid_with_zero_hom.comp_apply, h, monoid_with_zero_hom.comp_apply], λ h, h ▸ rfl⟩ @[to_additive] lemma monoid_hom.to_one_hom_injective [mul_one_class M] [mul_one_class N] : function.injective (monoid_hom.to_one_hom : (M →* N) → one_hom M N) := λ f g h, monoid_hom.ext $ one_hom.ext_iff.mp h @[to_additive] lemma monoid_hom.to_mul_hom_injective [mul_one_class M] [mul_one_class N] : function.injective (monoid_hom.to_mul_hom : (M →* N) → M →ₙ* N) := λ f g h, monoid_hom.ext $ mul_hom.ext_iff.mp h lemma monoid_with_zero_hom.to_monoid_hom_injective [mul_zero_one_class M] [mul_zero_one_class N] : function.injective (monoid_with_zero_hom.to_monoid_hom : (M →*₀ N) → M →* N) := λ f g h, monoid_with_zero_hom.ext $ monoid_hom.ext_iff.mp h lemma monoid_with_zero_hom.to_zero_hom_injective [mul_zero_one_class M] [mul_zero_one_class N] : function.injective (monoid_with_zero_hom.to_zero_hom : (M →*₀ N) → zero_hom M N) := λ f g h, monoid_with_zero_hom.ext $ zero_hom.ext_iff.mp h @[simp, to_additive] lemma one_hom.comp_id [has_one M] [has_one N] (f : one_hom M N) : f.comp (one_hom.id M) = f := one_hom.ext $ λ x, rfl @[simp, to_additive] lemma mul_hom.comp_id [has_mul M] [has_mul N] (f : M →ₙ* N) : f.comp (mul_hom.id M) = f := mul_hom.ext $ λ x, rfl @[simp, to_additive] lemma monoid_hom.comp_id [mul_one_class M] [mul_one_class N] (f : M →* N) : f.comp (monoid_hom.id M) = f := monoid_hom.ext $ λ x, rfl @[simp] lemma monoid_with_zero_hom.comp_id [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) : f.comp (monoid_with_zero_hom.id M) = f := monoid_with_zero_hom.ext $ λ x, rfl @[simp, to_additive] lemma one_hom.id_comp [has_one M] [has_one N] (f : one_hom M N) : (one_hom.id N).comp f = f := one_hom.ext $ λ x, rfl @[simp, to_additive] lemma mul_hom.id_comp [has_mul M] [has_mul N] (f : M →ₙ* N) : (mul_hom.id N).comp f = f := mul_hom.ext $ λ x, rfl @[simp, to_additive] lemma monoid_hom.id_comp [mul_one_class M] [mul_one_class N] (f : M →* N) : (monoid_hom.id N).comp f = f := monoid_hom.ext $ λ x, rfl @[simp] lemma monoid_with_zero_hom.id_comp [mul_zero_one_class M] [mul_zero_one_class N] (f : M →*₀ N) : (monoid_with_zero_hom.id N).comp f = f := monoid_with_zero_hom.ext $ λ x, rfl @[to_additive add_monoid_hom.map_nsmul] protected theorem monoid_hom.map_pow [monoid M] [monoid N] (f : M →* N) (a : M) (n : ℕ) : f (a ^ n) = (f a) ^ n := map_pow f a n @[to_additive] protected theorem monoid_hom.map_zpow' [div_inv_monoid M] [div_inv_monoid N] (f : M →* N) (hf : ∀ x, f (x⁻¹) = (f x)⁻¹) (a : M) (n : ℤ) : f (a ^ n) = (f a) ^ n := map_zpow' f hf a n section End namespace monoid variables (M) [mul_one_class M] /-- The monoid of endomorphisms. -/ protected def End := M →* M namespace End instance : monoid (monoid.End M) := { mul := monoid_hom.comp, one := monoid_hom.id M, mul_assoc := λ _ _ _, monoid_hom.comp_assoc _ _ _, mul_one := monoid_hom.comp_id, one_mul := monoid_hom.id_comp } instance : inhabited (monoid.End M) := ⟨1⟩ instance : monoid_hom_class (monoid.End M) M M := monoid_hom.monoid_hom_class end End @[simp] lemma coe_one : ((1 : monoid.End M) : M → M) = id := rfl @[simp] lemma coe_mul (f g) : ((f * g : monoid.End M) : M → M) = f ∘ g := rfl end monoid namespace add_monoid variables (A : Type*) [add_zero_class A] /-- The monoid of endomorphisms. -/ protected def End := A →+ A namespace End instance : monoid (add_monoid.End A) := { mul := add_monoid_hom.comp, one := add_monoid_hom.id A, mul_assoc := λ _ _ _, add_monoid_hom.comp_assoc _ _ _, mul_one := add_monoid_hom.comp_id, one_mul := add_monoid_hom.id_comp } instance : inhabited (add_monoid.End A) := ⟨1⟩ instance : add_monoid_hom_class (add_monoid.End A) A A := add_monoid_hom.add_monoid_hom_class end End @[simp] lemma coe_one : ((1 : add_monoid.End A) : A → A) = id := rfl @[simp] lemma coe_mul (f g) : ((f * g : add_monoid.End A) : A → A) = f ∘ g := rfl end add_monoid end End /-- `1` is the homomorphism sending all elements to `1`. -/ @[to_additive] instance [has_one M] [has_one N] : has_one (one_hom M N) := ⟨⟨λ _, 1, rfl⟩⟩ /-- `1` is the multiplicative homomorphism sending all elements to `1`. -/ @[to_additive] instance [has_mul M] [mul_one_class N] : has_one (M →ₙ* N) := ⟨⟨λ _, 1, λ _ _, (one_mul 1).symm⟩⟩ /-- `1` is the monoid homomorphism sending all elements to `1`. -/ @[to_additive] instance [mul_one_class M] [mul_one_class N] : has_one (M →* N) := ⟨⟨λ _, 1, rfl, λ _ _, (one_mul 1).symm⟩⟩ /-- `0` is the homomorphism sending all elements to `0`. -/ add_decl_doc zero_hom.has_zero /-- `0` is the additive homomorphism sending all elements to `0`. -/ add_decl_doc add_hom.has_zero /-- `0` is the additive monoid homomorphism sending all elements to `0`. -/ add_decl_doc add_monoid_hom.has_zero @[simp, to_additive] lemma one_hom.one_apply [has_one M] [has_one N] (x : M) : (1 : one_hom M N) x = 1 := rfl @[simp, to_additive] lemma monoid_hom.one_apply [mul_one_class M] [mul_one_class N] (x : M) : (1 : M →* N) x = 1 := rfl @[simp, to_additive] lemma one_hom.one_comp [has_one M] [has_one N] [has_one P] (f : one_hom M N) : (1 : one_hom N P).comp f = 1 := rfl @[simp, to_additive] lemma one_hom.comp_one [has_one M] [has_one N] [has_one P] (f : one_hom N P) : f.comp (1 : one_hom M N) = 1 := by { ext, simp only [one_hom.map_one, one_hom.coe_comp, function.comp_app, one_hom.one_apply] } @[to_additive] instance [has_one M] [has_one N] : inhabited (one_hom M N) := ⟨1⟩ @[to_additive] instance [has_mul M] [mul_one_class N] : inhabited (M →ₙ* N) := ⟨1⟩ @[to_additive] instance [mul_one_class M] [mul_one_class N] : inhabited (M →* N) := ⟨1⟩ -- unlike the other homs, `monoid_with_zero_hom` does not have a `1` or `0` instance [mul_zero_one_class M] : inhabited (M →*₀ M) := ⟨monoid_with_zero_hom.id M⟩ namespace mul_hom /-- Given two mul morphisms `f`, `g` to a commutative semigroup, `f * g` is the mul morphism sending `x` to `f x * g x`. -/ @[to_additive] instance [has_mul M] [comm_semigroup N] : has_mul (M →ₙ* N) := ⟨λ f g, { to_fun := λ m, f m * g m, map_mul' := begin intros, show f (x * y) * g (x * y) = f x * g x * (f y * g y), rw [f.map_mul, g.map_mul, ←mul_assoc, ←mul_assoc, mul_right_comm (f x)], end }⟩ /-- Given two additive morphisms `f`, `g` to an additive commutative semigroup, `f + g` is the additive morphism sending `x` to `f x + g x`. -/ add_decl_doc add_hom.has_add @[simp, to_additive] lemma mul_apply {M N} {mM : has_mul M} {mN : comm_semigroup N} (f g : M →ₙ* N) (x : M) : (f * g) x = f x * g x := rfl @[to_additive] lemma mul_comp [has_mul M] [has_mul N] [comm_semigroup P] (g₁ g₂ : N →ₙ* P) (f : M →ₙ* N) : (g₁ * g₂).comp f = g₁.comp f * g₂.comp f := rfl @[to_additive] lemma comp_mul [has_mul M] [comm_semigroup N] [comm_semigroup P] (g : N →ₙ* P) (f₁ f₂ : M →ₙ* N) : g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂ := by { ext, simp only [mul_apply, function.comp_app, map_mul, coe_comp] } end mul_hom namespace monoid_hom variables [mM : mul_one_class M] [mN : mul_one_class N] [mP : mul_one_class P] variables [group G] [comm_group H] /-- Given two monoid morphisms `f`, `g` to a commutative monoid, `f * g` is the monoid morphism sending `x` to `f x * g x`. -/ @[to_additive] instance {M N} {mM : mul_one_class M} [comm_monoid N] : has_mul (M →* N) := ⟨λ f g, { to_fun := λ m, f m * g m, map_one' := show f 1 * g 1 = 1, by simp, map_mul' := begin intros, show f (x * y) * g (x * y) = f x * g x * (f y * g y), rw [f.map_mul, g.map_mul, ←mul_assoc, ←mul_assoc, mul_right_comm (f x)], end }⟩ /-- Given two additive monoid morphisms `f`, `g` to an additive commutative monoid, `f + g` is the additive monoid morphism sending `x` to `f x + g x`. -/ add_decl_doc add_monoid_hom.has_add @[simp, to_additive] lemma mul_apply {M N} {mM : mul_one_class M} {mN : comm_monoid N} (f g : M →* N) (x : M) : (f * g) x = f x * g x := rfl @[simp, to_additive] lemma one_comp [mul_one_class M] [mul_one_class N] [mul_one_class P] (f : M →* N) : (1 : N →* P).comp f = 1 := rfl @[simp, to_additive] lemma comp_one [mul_one_class M] [mul_one_class N] [mul_one_class P] (f : N →* P) : f.comp (1 : M →* N) = 1 := by { ext, simp only [map_one, coe_comp, function.comp_app, one_apply] } @[to_additive] lemma mul_comp [mul_one_class M] [mul_one_class N] [comm_monoid P] (g₁ g₂ : N →* P) (f : M →* N) : (g₁ * g₂).comp f = g₁.comp f * g₂.comp f := rfl @[to_additive] lemma comp_mul [mul_one_class M] [comm_monoid N] [comm_monoid P] (g : N →* P) (f₁ f₂ : M →* N) : g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂ := by { ext, simp only [mul_apply, function.comp_app, map_mul, coe_comp] } /-- If two homomorphisms from a division monoid to a monoid are equal at a unit `x`, then they are equal at `x⁻¹`. -/ @[to_additive "If two homomorphisms from a subtraction monoid to an additive monoid are equal at an additive unit `x`, then they are equal at `-x`."] lemma _root_.is_unit.eq_on_inv {G N} [division_monoid G] [monoid N] [monoid_hom_class F G N] {x : G} (hx : is_unit x) (f g : F) (h : f x = g x) : f x⁻¹ = g x⁻¹ := left_inv_eq_right_inv (map_mul_eq_one f hx.inv_mul_cancel) $ h.symm ▸ map_mul_eq_one g $ hx.mul_inv_cancel /-- If two homomorphism from a group to a monoid are equal at `x`, then they are equal at `x⁻¹`. -/ @[to_additive "If two homomorphism from an additive group to an additive monoid are equal at `x`, then they are equal at `-x`." ] lemma _root_.eq_on_inv {G} [group G] [monoid M] [monoid_hom_class F G M] (f g : F) {x : G} (h : f x = g x) : f x⁻¹ = g x⁻¹ := (group.is_unit x).eq_on_inv f g h /-- Group homomorphisms preserve inverse. -/ @[to_additive "Additive group homomorphisms preserve negation."] protected lemma map_inv [group α] [division_monoid β] (f : α →* β) (a : α) : f a⁻¹ = (f a)⁻¹ := map_inv f _ /-- Group homomorphisms preserve integer power. -/ @[to_additive "Additive group homomorphisms preserve integer scaling."] protected theorem map_zpow [group α] [division_monoid β] (f : α →* β) (g : α) (n : ℤ) : f (g ^ n) = (f g) ^ n := map_zpow f g n /-- Group homomorphisms preserve division. -/ @[to_additive "Additive group homomorphisms preserve subtraction."] protected theorem map_div [group α] [division_monoid β] (f : α →* β) (g h : α) : f (g / h) = f g / f h := map_div f g h /-- Group homomorphisms preserve division. -/ @[to_additive "Additive group homomorphisms preserve subtraction."] protected theorem map_mul_inv [group α] [division_monoid β] (f : α →* β) (g h : α) : f (g * h⁻¹) = (f g) * (f h)⁻¹ := map_mul_inv f g h /-- A homomorphism from a group to a monoid is injective iff its kernel is trivial. For the iff statement on the triviality of the kernel, see `injective_iff_map_eq_one'`. -/ @[to_additive "A homomorphism from an additive group to an additive monoid is injective iff its kernel is trivial. For the iff statement on the triviality of the kernel, see `injective_iff_map_eq_zero'`."] lemma _root_.injective_iff_map_eq_one {G H} [group G] [mul_one_class H] [monoid_hom_class F G H] (f : F) : function.injective f ↔ (∀ a, f a = 1 → a = 1) := ⟨λ h x, (map_eq_one_iff f h).mp, λ h x y hxy, mul_inv_eq_one.1 $ h _ $ by rw [map_mul, hxy, ← map_mul, mul_inv_self, map_one]⟩ /-- A homomorphism from a group to a monoid is injective iff its kernel is trivial, stated as an iff on the triviality of the kernel. For the implication, see `injective_iff_map_eq_one`. -/ @[to_additive "A homomorphism from an additive group to an additive monoid is injective iff its kernel is trivial, stated as an iff on the triviality of the kernel. For the implication, see `injective_iff_map_eq_zero`."] lemma _root_.injective_iff_map_eq_one' {G H} [group G] [mul_one_class H] [monoid_hom_class F G H] (f : F) : function.injective f ↔ (∀ a, f a = 1 ↔ a = 1) := (injective_iff_map_eq_one f).trans $ forall_congr $ λ a, ⟨λ h, ⟨h, λ H, H.symm ▸ map_one f⟩, iff.mp⟩ include mM /-- Makes a group homomorphism from a proof that the map preserves multiplication. -/ @[to_additive "Makes an additive group homomorphism from a proof that the map preserves addition.", simps {fully_applied := ff}] def mk' (f : M → G) (map_mul : ∀ a b : M, f (a * b) = f a * f b) : M →* G := { to_fun := f, map_mul' := map_mul, map_one' := mul_left_eq_self.1 $ by rw [←map_mul, mul_one] } omit mM /-- Makes a group homomorphism from a proof that the map preserves right division `λ x y, x * y⁻¹`. See also `monoid_hom.of_map_div` for a version using `λ x y, x / y`. -/ @[to_additive "Makes an additive group homomorphism from a proof that the map preserves the operation `λ a b, a + -b`. See also `add_monoid_hom.of_map_sub` for a version using `λ a b, a - b`."] def of_map_mul_inv {H : Type*} [group H] (f : G → H) (map_div : ∀ a b : G, f (a * b⁻¹) = f a * (f b)⁻¹) : G →* H := mk' f $ λ x y, calc f (x * y) = f x * (f $ 1 * 1⁻¹ * y⁻¹)⁻¹ : by simp only [one_mul, inv_one, ← map_div, inv_inv] ... = f x * f y : by { simp only [map_div], simp only [mul_right_inv, one_mul, inv_inv] } @[simp, to_additive] lemma coe_of_map_mul_inv {H : Type*} [group H] (f : G → H) (map_div : ∀ a b : G, f (a * b⁻¹) = f a * (f b)⁻¹) : ⇑(of_map_mul_inv f map_div) = f := rfl /-- Define a morphism of additive groups given a map which respects ratios. -/ @[to_additive /-"Define a morphism of additive groups given a map which respects difference."-/] def of_map_div {H : Type*} [group H] (f : G → H) (hf : ∀ x y, f (x / y) = f x / f y) : G →* H := of_map_mul_inv f (by simpa only [div_eq_mul_inv] using hf) @[simp, to_additive] lemma coe_of_map_div {H : Type*} [group H] (f : G → H) (hf : ∀ x y, f (x / y) = f x / f y) : ⇑(of_map_div f hf) = f := rfl /-- If `f` is a monoid homomorphism to a commutative group, then `f⁻¹` is the homomorphism sending `x` to `(f x)⁻¹`. -/ @[to_additive] instance {M G} [mul_one_class M] [comm_group G] : has_inv (M →* G) := ⟨λ f, mk' (λ g, (f g)⁻¹) $ λ a b, by rw [←mul_inv, f.map_mul]⟩ /-- If `f` is an additive monoid homomorphism to an additive commutative group, then `-f` is the homomorphism sending `x` to `-(f x)`. -/ add_decl_doc add_monoid_hom.has_neg @[simp, to_additive] lemma inv_apply {M G} {mM : mul_one_class M} {gG : comm_group G} (f : M →* G) (x : M) : f⁻¹ x = (f x)⁻¹ := rfl @[simp, to_additive] lemma inv_comp {M N A} {mM : mul_one_class M} {gN : mul_one_class N} {gA : comm_group A} (φ : N →* A) (ψ : M →* N) : φ⁻¹.comp ψ = (φ.comp ψ)⁻¹ := by { ext, simp only [function.comp_app, inv_apply, coe_comp] } @[simp, to_additive] lemma comp_inv {M A B} {mM : mul_one_class M} {mA : comm_group A} {mB : comm_group B} (φ : A →* B) (ψ : M →* A) : φ.comp ψ⁻¹ = (φ.comp ψ)⁻¹ := by { ext, simp only [function.comp_app, inv_apply, map_inv, coe_comp] } /-- If `f` and `g` are monoid homomorphisms to a commutative group, then `f / g` is the homomorphism sending `x` to `(f x) / (g x)`. -/ @[to_additive] instance {M G} [mul_one_class M] [comm_group G] : has_div (M →* G) := ⟨λ f g, mk' (λ x, f x / g x) $ λ a b, by simp [div_eq_mul_inv, mul_assoc, mul_left_comm, mul_comm]⟩ /-- If `f` and `g` are monoid homomorphisms to an additive commutative group, then `f - g` is the homomorphism sending `x` to `(f x) - (g x)`. -/ add_decl_doc add_monoid_hom.has_sub @[simp, to_additive] lemma div_apply {M G} {mM : mul_one_class M} {gG : comm_group G} (f g : M →* G) (x : M) : (f / g) x = f x / g x := rfl end monoid_hom /-- Given two monoid with zero morphisms `f`, `g` to a commutative monoid, `f * g` is the monoid with zero morphism sending `x` to `f x * g x`. -/ instance {M N} {hM : mul_zero_one_class M} [comm_monoid_with_zero N] : has_mul (M →*₀ N) := ⟨λ f g, { to_fun := λ a, f a * g a, map_zero' := by rw [map_zero, zero_mul], ..(f * g : M →* N) }⟩ section commute variables [has_mul M] [has_mul N] {a x y : M} @[simp, to_additive] protected lemma semiconj_by.map [mul_hom_class F M N] (h : semiconj_by a x y) (f : F) : semiconj_by (f a) (f x) (f y) := by simpa only [semiconj_by, map_mul] using congr_arg f h @[simp, to_additive] protected lemma commute.map [mul_hom_class F M N] (h : commute x y) (f : F) : commute (f x) (f y) := h.map f end commute
215e4817b411c49f9c93ed683fb7ea42be3be089
9dc8cecdf3c4634764a18254e94d43da07142918
/src/algebra/module/ulift.lean
9d4bb1bfc1239a306108ffd77bd1cfa70609cea0
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
4,307
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.ring.ulift import algebra.module.equiv /-! # `ulift` instances for module and multiplicative actions This file defines instances for module, mul_action and related structures on `ulift` types. (Recall `ulift α` is just a "copy" of a type `α` in a higher universe.) We also provide `ulift.module_equiv : ulift M ≃ₗ[R] M`. -/ namespace ulift universes u v w variable {R : Type u} variable {M : Type v} variable {N : Type w} @[to_additive] instance has_smul_left [has_smul R M] : has_smul (ulift R) M := ⟨λ s x, s.down • x⟩ @[simp, to_additive] lemma smul_def [has_smul R M] (s : ulift R) (x : M) : s • x = s.down • x := rfl instance is_scalar_tower [has_smul R M] [has_smul M N] [has_smul R N] [is_scalar_tower R M N] : is_scalar_tower (ulift R) M N := ⟨λ x y z, show (x.down • y) • z = x.down • y • z, from smul_assoc _ _ _⟩ instance is_scalar_tower' [has_smul R M] [has_smul M N] [has_smul R N] [is_scalar_tower R M N] : is_scalar_tower R (ulift M) N := ⟨λ x y z, show (x • y.down) • z = x • y.down • z, from smul_assoc _ _ _⟩ instance is_scalar_tower'' [has_smul R M] [has_smul M N] [has_smul R N] [is_scalar_tower R M N] : is_scalar_tower R M (ulift N) := ⟨λ x y z, show up ((x • y) • z.down) = ⟨x • y • z.down⟩, by rw smul_assoc⟩ instance [has_smul R M] [has_smul Rᵐᵒᵖ M] [is_central_scalar R M] : is_central_scalar R (ulift M) := ⟨λ r m, congr_arg up $ op_smul_eq_smul r m.down⟩ @[to_additive] instance mul_action [monoid R] [mul_action R M] : mul_action (ulift R) M := { smul := (•), mul_smul := λ _ _, mul_smul _ _, one_smul := one_smul _ } @[to_additive] instance mul_action' [monoid R] [mul_action R M] : mul_action R (ulift M) := { smul := (•), mul_smul := λ r s ⟨f⟩, ext _ _ $ mul_smul _ _ _, one_smul := λ ⟨f⟩, ext _ _ $ one_smul _ _, ..ulift.has_smul_left } instance distrib_mul_action [monoid R] [add_monoid M] [distrib_mul_action R M] : distrib_mul_action (ulift R) M := { smul_zero := λ _, smul_zero _, smul_add := λ _, smul_add _ } instance distrib_mul_action' [monoid R] [add_monoid M] [distrib_mul_action R M] : distrib_mul_action R (ulift M) := { smul_zero := λ c, by { ext, simp [smul_zero], }, smul_add := λ c f g, by { ext, simp [smul_add], }, ..ulift.mul_action' } instance mul_distrib_mul_action [monoid R] [monoid M] [mul_distrib_mul_action R M] : mul_distrib_mul_action (ulift R) M := { smul_one := λ _, smul_one _, smul_mul := λ _, smul_mul' _ } instance mul_distrib_mul_action' [monoid R] [monoid M] [mul_distrib_mul_action R M] : mul_distrib_mul_action R (ulift M) := { smul_one := λ _, by { ext, simp [smul_one], }, smul_mul := λ c f g, by { ext, simp [smul_mul'], }, ..ulift.mul_action' } instance smul_with_zero [has_zero R] [has_zero M] [smul_with_zero R M] : smul_with_zero (ulift R) M := { smul_zero := λ _, smul_zero' _ _, zero_smul := zero_smul _, ..ulift.has_smul_left } instance smul_with_zero' [has_zero R] [has_zero M] [smul_with_zero R M] : smul_with_zero R (ulift M) := { smul_zero := λ _, ulift.ext _ _ $ smul_zero' _ _, zero_smul := λ _, ulift.ext _ _ $ zero_smul _ _ } instance mul_action_with_zero [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : mul_action_with_zero (ulift R) M := { ..ulift.smul_with_zero } instance mul_action_with_zero' [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : mul_action_with_zero R (ulift M) := { ..ulift.smul_with_zero' } instance module [semiring R] [add_comm_monoid M] [module R M] : module (ulift R) M := { add_smul := λ _ _, add_smul _ _, ..ulift.smul_with_zero } instance module' [semiring R] [add_comm_monoid M] [module R M] : module R (ulift M) := { add_smul := λ _ _ _, ulift.ext _ _ $ add_smul _ _ _, ..ulift.smul_with_zero' } /-- The `R`-linear equivalence between `ulift M` and `M`. -/ def module_equiv [semiring R] [add_comm_monoid M] [module R M] : ulift M ≃ₗ[R] M := { to_fun := ulift.down, inv_fun := ulift.up, map_smul' := λ r x, rfl, map_add' := λ x y, rfl, left_inv := by tidy, right_inv := by tidy, } end ulift
6d6b2698ad8c24484f742c2fafcc101a7db0f309
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/unnecessaryUnfolding.lean
b18a1575e969c3b2e6ce46cf4e9b2475e3e83c1d
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
145
lean
import Lean open Lean abbrev M := StateRefT Nat IO def M.run (x : M α) (s := 0) : IO α := x.run' s variable (x : M Unit) #check id x.run
9dd42a3ac643d64e8855c6dd907f986a80ff05de
57aec6ee746bc7e3a3dd5e767e53bd95beb82f6d
/src/Lean/Meta/Instances.lean
59aeb54f07d3dedab69a3e42398740f8999561b4
[ "Apache-2.0" ]
permissive
collares/lean4
861a9269c4592bce49b71059e232ff0bfe4594cc
52a4f535d853a2c7c7eea5fee8a4fa04c682c1ee
refs/heads/master
1,691,419,031,324
1,618,678,138,000
1,618,678,138,000
358,989,750
0
0
Apache-2.0
1,618,696,333,000
1,618,696,333,000
null
UTF-8
Lean
false
false
4,922
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.ScopedEnvExtension import Lean.Meta.DiscrTree namespace Lean.Meta structure InstanceEntry where keys : Array DiscrTree.Key val : Expr priority : Nat globalName? : Option Name := none deriving Inhabited instance : BEq InstanceEntry where beq e₁ e₂ := e₁.val == e₂.val instance : ToFormat InstanceEntry where format e := match e.globalName? with | some n => fmt n | _ => "<local>" structure Instances where discrTree : DiscrTree InstanceEntry := DiscrTree.empty globalInstances : NameSet := {} deriving Inhabited def addInstanceEntry (d : Instances) (e : InstanceEntry) : Instances := { d with discrTree := d.discrTree.insertCore e.keys e globalInstances := match e.globalName? with | some n => d.globalInstances.insert n | none => d.globalInstances } builtin_initialize instanceExtension : SimpleScopedEnvExtension InstanceEntry Instances ← registerSimpleScopedEnvExtension { name := `instanceExt initial := {} addEntry := addInstanceEntry } private def mkInstanceKey (e : Expr) : MetaM (Array DiscrTree.Key) := do let type ← inferType e withNewMCtxDepth do let (_, _, type) ← forallMetaTelescopeReducing type DiscrTree.mkPath type def addInstance (declName : Name) (attrKind : AttributeKind) (prio : Nat) : MetaM Unit := do let c ← mkConstWithLevelParams declName let keys ← mkInstanceKey c instanceExtension.add { keys := keys, val := c, priority := prio, globalName? := declName } attrKind builtin_initialize registerBuiltinAttribute { name := `instance descr := "type class instance" add := fun declName stx attrKind => do let prio ← getAttrParamOptPrio stx[1] discard <| addInstance declName attrKind prio |>.run {} {} } @[export lean_is_instance] def isGlobalInstance (env : Environment) (declName : Name) : Bool := Meta.instanceExtension.getState env |>.globalInstances.contains declName def getGlobalInstancesIndex : MetaM (DiscrTree InstanceEntry) := return Meta.instanceExtension.getState (← getEnv) |>.discrTree /- Default instance support -/ structure DefaultInstanceEntry where className : Name instanceName : Name priority : Nat abbrev PrioritySet := Std.RBTree Nat (.>.) structure DefaultInstances where defaultInstances : NameMap (List (Name × Nat)) := {} priorities : PrioritySet := {} deriving Inhabited def addDefaultInstanceEntry (d : DefaultInstances) (e : DefaultInstanceEntry) : DefaultInstances := let d := { d with priorities := d.priorities.insert e.priority } match d.defaultInstances.find? e.className with | some insts => { d with defaultInstances := d.defaultInstances.insert e.className <| (e.instanceName, e.priority) :: insts } | none => { d with defaultInstances := d.defaultInstances.insert e.className [(e.instanceName, e.priority)] } builtin_initialize defaultInstanceExtension : SimplePersistentEnvExtension DefaultInstanceEntry DefaultInstances ← registerSimplePersistentEnvExtension { name := `defaultInstanceExt addEntryFn := addDefaultInstanceEntry addImportedFn := fun es => (mkStateFromImportedEntries addDefaultInstanceEntry {} es) } def addDefaultInstance (declName : Name) (prio : Nat := 0) : MetaM Unit := do match (← getEnv).find? declName with | none => throwError "unknown constant '{declName}'" | some info => forallTelescopeReducing info.type fun _ type => do match type.getAppFn with | Expr.const className _ _ => unless isClass (← getEnv) className do throwError "invalid default instance '{declName}', it has type '({className} ...)', but {className}' is not a type class" setEnv <| defaultInstanceExtension.addEntry (← getEnv) { className := className, instanceName := declName, priority := prio } | _ => throwError "invalid default instance '{declName}', type must be of the form '(C ...)' where 'C' is a type class" builtin_initialize registerBuiltinAttribute { name := `defaultInstance descr := "type class default instance" add := fun declName stx kind => do let prio ← getAttrParamOptPrio stx[1] unless kind == AttributeKind.global do throwError "invalid attribute 'defaultInstance', must be global" discard <| addDefaultInstance declName prio |>.run {} {} } def getDefaultInstancesPriorities [Monad m] [MonadEnv m] : m PrioritySet := return defaultInstanceExtension.getState (← getEnv) |>.priorities def getDefaultInstances [Monad m] [MonadEnv m] (className : Name) : m (List (Name × Nat)) := return defaultInstanceExtension.getState (← getEnv) |>.defaultInstances.find? className |>.getD [] end Lean.Meta
f638820ef86eb5ac0fea6b0fed62404f9cc1626c
02fbe05a45fda5abde7583464416db4366eedfbf
/library/init/meta/environment.lean
86f0c600e85025480e7848f2e6ccbd2fa4891982
[ "Apache-2.0" ]
permissive
jasonrute/lean
cc12807e11f9ac6b01b8951a8bfb9c2eb35a0154
4be962c167ca442a0ec5e84472d7ff9f5302788f
refs/heads/master
1,672,036,664,637
1,601,642,826,000
1,601,642,826,000
260,777,966
0
0
Apache-2.0
1,588,454,819,000
1,588,454,818,000
null
UTF-8
Lean
false
false
10,699
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.declaration init.meta.exceptional init.data.option.basic import init.meta.rb_map /-- An __environment__ contains all of the declarations and notation that have been defined so far. -/ meta constant environment : Type namespace environment /-- Consider a type `ψ` which is an inductive datatype using a single constructor `mk (a : α) (b : β) : ψ`. Lean will automatically make two projection functions `a : ψ → α`, `b : ψ → β`. Lean tags these declarations as __projections__. This helps the simplifier / rewriter not have to expand projectors. Eg `a (mk x y)` will automatically reduce to `x`. If you `extend` a structure, all of the projections on the parent will also be created for the child. Projections are also treated differently in the VM for efficiency. Note that projections have nothing to do with the dot `mylist.map` syntax. You can find out if a declaration is a projection using `environment.is_projection` which returns `projection_info`. Data for a projection declaration: - `cname` is the name of the constructor associated with the projection. - `nparams` is the number of constructor parameters. Eg `and.intro` has two type parameters. - `idx` is the parameter being projected by this projection. - `is_class` is tt iff this is a typeclass projection. ### Examples: - `and.right` is a projection with ``{cname := `and.intro, nparams := 2, idx := 1, is_class := ff}`` - `ordered_ring.neg` is a projection with ``{cname := `ordered_ring.mk, nparams := 1, idx := 5, is_class := tt}``. -/ structure projection_info := (cname : name) (nparams : nat) (idx : nat) (is_class : bool) /-- A marking on the binders of structures and inductives indicating how this constructor should mark its parameters. inductive foo | one {} : foo -> foo -- relaxed_implicit | two ( ) : foo -> foo -- explicit | two [] : foo -> foo -- implicit | three : foo -> foo -- relaxed implicit (default) -/ inductive implicit_infer_kind | implicit | relaxed_implicit | none instance implicit_infer_kind.inhabited : inhabited implicit_infer_kind := ⟨implicit_infer_kind.implicit⟩ /-- One introduction rule in an inductive declaration -/ meta structure intro_rule := (constr : name) (type : expr) (infer : implicit_infer_kind := implicit_infer_kind.implicit) /-- Create a standard environment using the given trust level -/ meta constant mk_std : nat → environment /-- Return the trust level of the given environment -/ meta constant trust_lvl : environment → nat /-- Add a new declaration to the environment -/ meta constant add : environment → declaration → exceptional environment /-- make declaration `n` protected -/ meta constant mk_protected : environment → name → environment /-- add declaration `d` and make it protected -/ meta def add_protected (env : environment) (d : declaration) : exceptional environment := do env ← env.add d, pure $ env.mk_protected d.to_name /-- check if `n` is the name of a protected declaration -/ meta constant is_protected : environment → name → bool /-- Retrieve a declaration from the environment -/ meta constant get : environment → name → exceptional declaration meta def contains (env : environment) (d : name) : bool := match env.get d with | exceptional.success _ := tt | exceptional.exception _ := ff end meta constant add_defn_eqns (env : environment) (opt : options) (lp_params : list name) (params : list expr) (sig : expr) (eqns : list (list (expr ff) × expr)) (is_meta : bool) : exceptional environment /-- Register the given name as a namespace, making it available to the `open` command -/ meta constant add_namespace : environment → name → environment /-- Return tt iff the given name is a namespace -/ meta constant is_namespace : environment → name → bool /-- Add a new inductive datatype to the environment name, universe parameters, number of parameters, type, constructors (name and type), is_meta -/ meta constant add_inductive (env : environment) (n : name) (levels : list name) (num_params : nat) (type : expr) (intros : list (name × expr)) (is_meta : bool) : exceptional environment /-- Add a new general inductive declaration to the environment. This has the same effect as a `inductive` in the file, including generating all the auxiliary definitions, as well as triggering mutual/nested inductive compilation, by contrast to `environment.add_inductive` which only adds the core axioms supported by the kernel. The `inds` argument should be a list of inductives in the mutual family. The first argument is a pair of the name of the type being constructed and the type of this inductive family (not including the params). The second argument is a list of intro rules, specified by a name, an `implicit_infer_kind` giving the implicitness of the params for this constructor, and an expression with the type of the constructor (not including the params). -/ meta constant add_ginductive (env : environment) (opt : options) (levels : list name) (params : list expr) (inds : list ((name × expr) × list intro_rule)) (is_meta : bool) : exceptional environment /-- Return tt iff the given name is an inductive datatype -/ meta constant is_inductive : environment → name → bool /-- Return tt iff the given name is a constructor -/ meta constant is_constructor : environment → name → bool /-- Return tt iff the given name is a recursor -/ meta constant is_recursor : environment → name → bool /-- Return tt iff the given name is a recursive inductive datatype -/ meta constant is_recursive : environment → name → bool /-- Return the name of the inductive datatype of the given constructor. -/ meta constant inductive_type_of : environment → name → option name /-- Return the constructors of the inductive datatype with the given name -/ meta constant constructors_of : environment → name → list name /-- Return the recursor of the given inductive datatype -/ meta constant recursor_of : environment → name → option name /-- Return the number of parameters of the inductive datatype -/ meta constant inductive_num_params : environment → name → nat /-- Return the number of indices of the inductive datatype -/ meta constant inductive_num_indices : environment → name → nat /-- Return tt iff the inductive datatype recursor supports dependent elimination -/ meta constant inductive_dep_elim : environment → name → bool /-- Functionally equivalent to `is_inductive`. Technically, this works by checking if the name is in the ginductive environment extension which is outside the kernel, whereas `is_inductive` works by looking at the kernel extension. But there are no `is_inductive`s which are not `is_ginductive`. -/ meta constant is_ginductive : environment → name → bool /-- See the docstring for `projection_info`. -/ meta constant is_projection : environment → name → option projection_info /-- Fold over declarations in the environment. -/ meta constant fold {α :Type} : environment → α → (declaration → α → α) → α /-- `relation_info env n` returns some value if n is marked as a relation in the given environment. the tuple contains: total number of arguments of the relation, lhs position and rhs position. -/ meta constant relation_info : environment → name → option (nat × nat × nat) /-- `refl_for env R` returns the name of the reflexivity theorem for the relation R -/ meta constant refl_for : environment → name → option name /-- `symm_for env R` returns the name of the symmetry theorem for the relation R -/ meta constant symm_for : environment → name → option name /-- `trans_for env R` returns the name of the transitivity theorem for the relation R -/ meta constant trans_for : environment → name → option name /-- `decl_olean env d` returns the name of the .olean file where d was defined. The result is none if d was not defined in an imported file. -/ meta constant decl_olean : environment → name → option string /-- `decl_pos env d` returns the source location of d if available. -/ meta constant decl_pos : environment → name → option pos /-- Return the fields of the structure with the given name, or `none` if it is not a structure -/ meta constant structure_fields : environment → name → option (list name) /-- `get_class_attribute_symbols env attr_name` return symbols occurring in instances of type classes tagged with the attribute `attr_name`. Example: [algebra] -/ meta constant get_class_attribute_symbols : environment → name → name_set /-- The fingerprint of the environment is a hash formed from all of the declarations in the environment. -/ meta constant fingerprint : environment → nat /-- Gets the equation lemmas for the declaration `n`. -/ meta constant get_eqn_lemmas_for (env : environment) (n : name) : list name /-- Gets the equation lemmas for the declaration `n`, including lemmas for match statements, etc. -/ meta constant get_ext_eqn_lemmas_for (env : environment) (n : name) : list name /-- Adds the equation lemma `n`. It is added for the declaration `t.pi_codomain.get_app_fn.const_name` where `t` is the type of the equation lemma. -/ meta constant add_eqn_lemma (env : environment) (n : name) : environment open expr meta constant unfold_untrusted_macros : environment → expr → expr meta constant unfold_all_macros : environment → expr → expr meta def is_constructor_app (env : environment) (e : expr) : bool := is_constant (get_app_fn e) && is_constructor env (const_name (get_app_fn e)) meta def is_refl_app (env : environment) (e : expr) : option (name × expr × expr) := match (refl_for env (const_name (get_app_fn e))) with | (some n) := if get_app_num_args e ≥ 2 then some (n, app_arg (app_fn e), app_arg e) else none | none := none end /-- Return true if 'n' has been declared in the current file -/ meta def in_current_file (env : environment) (n : name) : bool := (env.decl_olean n).is_none && env.contains n && (n ∉ [``quot, ``quot.mk, ``quot.lift, ``quot.ind]) meta def is_definition (env : environment) (n : name) : bool := match env.get n with | exceptional.success (declaration.defn _ _ _ _ _ _) := tt | _ := ff end end environment meta instance : has_repr environment := ⟨λ e, "[environment]"⟩ meta instance : inhabited environment := ⟨environment.mk_std 0⟩
47a272028a70962f5dc82a43266148587d1c211c
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/sharecommon.lean
c4db313573c83b99e528ceb938fc66a32de8104f
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
3,948
lean
import Lean.Util.ShareCommon open Lean.ShareCommon def check (b : Bool) : ShareCommonT IO Unit := do unless b do throw $ IO.userError "check failed" unsafe def tst1 : ShareCommonT IO Unit := do let x := [1] let y := [0].map (fun x => x + 1) check $ ptrAddrUnsafe x != ptrAddrUnsafe y let x ← shareCommonM x let y ← shareCommonM y check $ ptrAddrUnsafe x == ptrAddrUnsafe y let z ← shareCommonM [2] let x ← shareCommonM x check $ ptrAddrUnsafe x == ptrAddrUnsafe y check $ ptrAddrUnsafe x != ptrAddrUnsafe z IO.println x IO.println y IO.println z #eval tst1.run unsafe def tst2 : ShareCommonT IO Unit := do let x := [1, 2] let y := [0, 1].map (fun x => x + 1) check $ ptrAddrUnsafe x != ptrAddrUnsafe y let x ← shareCommonM x let y ← shareCommonM y check $ ptrAddrUnsafe x == ptrAddrUnsafe y let z ← shareCommonM [2] let x ← shareCommonM x check $ ptrAddrUnsafe x == ptrAddrUnsafe y check $ ptrAddrUnsafe x != ptrAddrUnsafe z IO.println x IO.println y IO.println z #eval tst2.run structure Foo := (x : Nat) (y : Bool) (z : Bool) @[noinline] def mkFoo1 (x : Nat) (z : Bool) : Foo := { x := x, y := true, z := z } @[noinline] def mkFoo2 (x : Nat) (z : Bool) : Foo := { x := x, y := true, z := z } unsafe def tst3 : ShareCommonT IO Unit := do let o1 := mkFoo1 10 true let o2 := mkFoo2 10 true let o3 := mkFoo2 10 false check $ ptrAddrUnsafe o1 != ptrAddrUnsafe o2 check $ ptrAddrUnsafe o1 != ptrAddrUnsafe o3 let o1 ← shareCommonM o1 let o2 ← shareCommonM o2 let o3 ← shareCommonM o3 check $ o1.x == 10 && o1.y == true && o1.z == true && o3.z == false && ptrAddrUnsafe o1 == ptrAddrUnsafe o2 && ptrAddrUnsafe o1 != ptrAddrUnsafe o3 IO.println o1.x pure () #eval tst3.run unsafe def tst4 : ShareCommonT IO Unit := do let x := ["hello"] let y := ["ello"].map (fun x => "h" ++ x) check $ ptrAddrUnsafe x != ptrAddrUnsafe y let x ← shareCommonM x let y ← shareCommonM y check $ ptrAddrUnsafe x == ptrAddrUnsafe y let z ← shareCommonM ["world"] let x ← shareCommonM x check $ ptrAddrUnsafe x == ptrAddrUnsafe y && ptrAddrUnsafe x != ptrAddrUnsafe z IO.println x IO.println y IO.println z #eval tst4.run @[noinline] def mkList1 (x : Nat) : List Nat := List.replicate x x @[noinline] def mkList2 (x : Nat) : List Nat := List.replicate x x @[noinline] def mkArray1 (x : Nat) : Array (List Nat) := #[ mkList1 x, mkList2 x, mkList2 (x+1) ] @[noinline] def mkArray2 (x : Nat) : Array (List Nat) := mkArray1 x unsafe def tst5 : ShareCommonT IO Unit := do let a := mkArray1 3 let b := mkArray2 3 let c := mkArray2 4 IO.println a IO.println b IO.println c check $ ptrAddrUnsafe a != ptrAddrUnsafe b && ptrAddrUnsafe a != ptrAddrUnsafe c && ptrAddrUnsafe a[0]! != ptrAddrUnsafe a[1]! && ptrAddrUnsafe a[0]! != ptrAddrUnsafe a[2]! && ptrAddrUnsafe b[0]! != ptrAddrUnsafe b[1]! && ptrAddrUnsafe c[0]! != ptrAddrUnsafe c[1]! let a ← shareCommonM a let b ← shareCommonM b let c ← shareCommonM c check $ ptrAddrUnsafe a == ptrAddrUnsafe b && ptrAddrUnsafe a != ptrAddrUnsafe c && ptrAddrUnsafe a[0]! == ptrAddrUnsafe a[1]! && ptrAddrUnsafe a[0]! != ptrAddrUnsafe a[2]! && ptrAddrUnsafe b[0]! == ptrAddrUnsafe b[1]! && ptrAddrUnsafe c[0]! == ptrAddrUnsafe c[1]! pure () #eval tst5.run @[noinline] def mkByteArray1 (x : Nat) : ByteArray := let r := ByteArray.empty let r := r.push x.toUInt8 let r := r.push (x+(1:Nat)).toUInt8 let r := r.push (x+(2:Nat)).toUInt8 r @[noinline] def mkByteArray2 (x : Nat) : ByteArray := mkByteArray1 x unsafe def tst6 (x : Nat) : ShareCommonT IO Unit := do let a := [mkByteArray1 x] let b := [mkByteArray2 x] let c := [mkByteArray2 (x+1)] IO.println a IO.println b IO.println c check $ ptrAddrUnsafe a != ptrAddrUnsafe b check $ ptrAddrUnsafe a != ptrAddrUnsafe c let a ← shareCommonM a let b ← shareCommonM b let c ← shareCommonM c check $ ptrAddrUnsafe a == ptrAddrUnsafe b check $ ptrAddrUnsafe a != ptrAddrUnsafe c pure () #eval (tst6 2).run
e33502d97be40c8a6e8cdbbc1ada11c2dca4e8b3
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/tut_104.lean
86e521155148ecd3eb1a24709ed6ea584c0e3099
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
1,190
lean
import data.set namespace function section open set variables {A B : Type} set_option pp.beta false lemma injective_eq_inj_on_univ₁ (f : A → B) : injective f = inj_on f univ := begin esimp [injective, inj_on, univ, mem], apply propext, apply iff.intro, intro Pl a1 a2, rewrite *true_imp, exact @Pl a1 a2, intro Pr a1 a2, exact Pr trivial trivial end lemma injective_eq_inj_on_univ₂ (f : A → B) : injective f = inj_on f univ := begin esimp [injective, inj_on, univ, mem], apply propext, apply iff.intro, intro Pl a1 a2, rewrite *(propext !true_imp), exact @Pl a1 a2, intro Pr a1 a2, exact Pr trivial trivial end lemma injective_eq_inj_on_univ₃ (f : A → B) : injective f = inj_on f univ := begin esimp [injective, inj_on, univ, mem], apply propext, repeat (apply forall_congr; intros), rewrite *(propext !true_imp) end lemma injective_eq_inj_on_univ₄ (f : A → B) : injective f = inj_on f univ := begin esimp [injective, inj_on, univ, mem], apply propext, repeat (apply forall_congr; intros), rewrite *true_imp end end end function
f5b6b197c7f3d7bf47e8c16a7bca7289e84d4253
e6b8240a90527fd55d42d0ec6649253d5d0bd414
/src/meta/expr.lean
2498ba2ac2993f2b7ea7a97d96df1c843d633975
[ "Apache-2.0" ]
permissive
mattearnshaw/mathlib
ac90f9fb8168aa642223bea3ffd0286b0cfde44f
d8dc1445cf8a8c74f8df60b9f7a1f5cf10946666
refs/heads/master
1,606,308,351,137
1,576,594,130,000
1,576,594,130,000
228,666,195
0
0
Apache-2.0
1,576,603,094,000
1,576,603,093,000
null
UTF-8
Lean
false
false
25,494
lean
/- Copyright (c) 2019 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Simon Hudon, Scott Morrison, Keeley Hoek, Robert Y. Lewis -/ import data.string.defs /-! # Additional operations on expr and related types This file defines basic operations on the types expr, name, declaration, level, environment. This file is mostly for non-tactics. Tactics should generally be placed in `tactic.core`. ## Tags expr, name, declaration, level, environment, meta, metaprogramming, tactic -/ namespace binder_info /-! ### Declarations about `binder_info` -/ instance : inhabited binder_info := ⟨ binder_info.default ⟩ /-- The brackets corresponding to a given binder_info. -/ def brackets : binder_info → string × string | binder_info.implicit := ("{", "}") | binder_info.strict_implicit := ("{{", "}}") | binder_info.inst_implicit := ("[", "]") | _ := ("(", ")") end binder_info namespace name /-! ### Declarations about `name` -/ /-- Find the largest prefix `n` of a `name` such that `f n ≠ none`, then replace this prefix with the value of `f n`. -/ def map_prefix (f : name → option name) : name → name | anonymous := anonymous | (mk_string s n') := (f (mk_string s n')).get_or_else (mk_string s $ map_prefix n') | (mk_numeral d n') := (f (mk_numeral d n')).get_or_else (mk_numeral d $ map_prefix n') /-- If `nm` is a simple name (having only one string component) starting with `_`, then `deinternalize_field nm` removes the underscore. Otherwise, it does nothing. -/ meta def deinternalize_field : name → name | (mk_string s name.anonymous) := let i := s.mk_iterator in if i.curr = '_' then i.next.next_to_string else s | n := n /-- `get_nth_prefix nm n` removes the last `n` components from `nm` -/ meta def get_nth_prefix : name → ℕ → name | nm 0 := nm | nm (n + 1) := get_nth_prefix nm.get_prefix n /-- Auxilliary definition for `pop_nth_prefix` -/ private meta def pop_nth_prefix_aux : name → ℕ → name × ℕ | anonymous n := (anonymous, 1) | nm n := let (pfx, height) := pop_nth_prefix_aux nm.get_prefix n in if height ≤ n then (anonymous, height + 1) else (nm.update_prefix pfx, height + 1) /-- Pops the top `n` prefixes from the given name. -/ meta def pop_nth_prefix (nm : name) (n : ℕ) : name := prod.fst $ pop_nth_prefix_aux nm n /-- Pop the prefix of a name -/ meta def pop_prefix (n : name) : name := pop_nth_prefix n 1 /-- Auxilliary definition for `from_components` -/ private def from_components_aux : name → list string → name | n [] := n | n (s :: rest) := from_components_aux (name.mk_string s n) rest /-- Build a name from components. For example `from_components ["foo","bar"]` becomes ``` `foo.bar``` -/ def from_components : list string → name := from_components_aux name.anonymous /-- `name`s can contain numeral pieces, which are not legal names when typed/passed directly to the parser. We turn an arbitrary name into a legal identifier name by turning the numbers to strings. -/ meta def sanitize_name : name → name | name.anonymous := name.anonymous | (name.mk_string s p) := name.mk_string s $ sanitize_name p | (name.mk_numeral s p) := name.mk_string sformat!"n{s}" $ sanitize_name p /-- Append a string to the last component of a name -/ def append_suffix : name → string → name | (mk_string s n) s' := mk_string (s ++ s') n | n _ := n /-- The first component of a name, turning a number to a string -/ meta def head : name → string | (mk_string s anonymous) := s | (mk_string s p) := head p | (mk_numeral n p) := head p | anonymous := "[anonymous]" /-- Tests whether the first component of a name is `"_private"` -/ meta def is_private (n : name) : bool := n.head = "_private" /-- Get the last component of a name, and convert it to a string. -/ meta def last : name → string | (mk_string s _) := s | (mk_numeral n _) := repr n | anonymous := "[anonymous]" /-- Returns the number of characters used to print all the string components of a name, including periods between name segments. Ignores numerical parts of a name. -/ meta def length : name → ℕ | (mk_string s anonymous) := s.length | (mk_string s p) := s.length + 1 + p.length | (mk_numeral n p) := p.length | anonymous := "[anonymous]".length /-- Checks whether `nm` has a prefix (including itself) such that P is true -/ def has_prefix (P : name → bool) : name → bool | anonymous := ff | (mk_string s nm) := P (mk_string s nm) ∨ has_prefix nm | (mk_numeral s nm) := P (mk_numeral s nm) ∨ has_prefix nm /-- Appends `'` to the end of a name. -/ meta def add_prime : name → name | (name.mk_string s p) := name.mk_string (s ++ "'") p | n := (name.mk_string "x'" n) def last_string : name → string | anonymous := "[anonymous]" | (mk_string s _) := s | (mk_numeral _ n) := last_string n end name namespace level /-! ### Declarations about `level` -/ /-- Tests whether a universe level is non-zero for all assignments of its variables -/ meta def nonzero : level → bool | (succ _) := tt | (max l₁ l₂) := l₁.nonzero || l₂.nonzero | (imax _ l₂) := l₂.nonzero | _ := ff end level /-! ### Declarations about `binder` -/ /-- The type of binders containing a name, the binding info and the binding type -/ @[derive decidable_eq] meta structure binder := (name : name) (info : binder_info) (type : expr) namespace binder /-- Turn a binder into a string. Uses expr.to_string for the type. -/ protected meta def to_string (b : binder) : string := let (l, r) := b.info.brackets in l ++ b.name.to_string ++ " : " ++ b.type.to_string ++ r open tactic meta instance : inhabited binder := ⟨⟨default _, default _, default _⟩⟩ meta instance : has_to_string binder := ⟨ binder.to_string ⟩ meta instance : has_to_format binder := ⟨ λ b, b.to_string ⟩ meta instance : has_to_tactic_format binder := ⟨ λ b, let (l, r) := b.info.brackets in (λ e, l ++ b.name.to_string ++ " : " ++ e ++ r) <$> pp b.type ⟩ end binder /-! ### Converting between expressions and numerals There are a number of ways to convert between expressions and numerals, depending on the input and output types and whether you want to infer the necessary type classes. See also the tactics `expr.of_nat`, `expr.of_int`, `expr.of_rat`. -/ /-- `nat.mk_numeral n` embeds `n` as a numeral expression inside a type with 0, 1, and +. `type`: an expression representing the target type. This must live in Type 0. `has_zero`, `has_one`, `has_add`: expressions of the type `has_zero %%type`, etc. -/ meta def nat.mk_numeral (type has_zero has_one has_add : expr) : ℕ → expr := let z : expr := `(@has_zero.zero.{0} %%type %%has_zero), o : expr := `(@has_one.one.{0} %%type %%has_one) in nat.binary_rec z (λ b n e, if n = 0 then o else if b then `(@bit1.{0} %%type %%has_one %%has_add %%e) else `(@bit0.{0} %%type %%has_add %%e)) /-- `int.mk_numeral z` embeds `z` as a numeral expression inside a type with 0, 1, +, and -. `type`: an expression representing the target type. This must live in Type 0. `has_zero`, `has_one`, `has_add`, `has_neg`: expressions of the type `has_zero %%type`, etc. -/ meta def int.mk_numeral (type has_zero has_one has_add has_neg : expr) : ℤ → expr | (int.of_nat n) := n.mk_numeral type has_zero has_one has_add | -[1+n] := let ne := (n+1).mk_numeral type has_zero has_one has_add in `(@has_neg.neg.{0} %%type %%has_neg %%ne) namespace expr /-- Turns an expression into a positive natural number, assuming it is only built up from `has_one.one`, `bit0` and `bit1`. -/ protected meta def to_pos_nat : expr → option ℕ | `(has_one.one _) := some 1 | `(bit0 %%e) := bit0 <$> e.to_pos_nat | `(bit1 %%e) := bit1 <$> e.to_pos_nat | _ := none /-- Turns an expression into a natural number, assuming it is only built up from `has_one.one`, `bit0`, `bit1` and `has_zero.zero`. -/ protected meta def to_nat : expr → option ℕ | `(has_zero.zero _) := some 0 | e := e.to_pos_nat /-- Turns an expression into a integer, assuming it is only built up from `has_one.one`, `bit0`, `bit1`, `has_zero.zero` and a optionally a single `has_neg.neg` as head. -/ protected meta def to_int : expr → option ℤ | `(has_neg.neg %%e) := do n ← e.to_nat, some (-n) | e := coe <$> e.to_nat /-- is_num_eq n1 n2 returns true if n1 and n2 are both numerals with the same numeral structure, ignoring differences in type and type class arguments. -/ meta def is_num_eq : expr → expr → bool | `(@has_zero.zero _ _) `(@has_zero.zero _ _) := tt | `(@has_one.one _ _) `(@has_one.one _ _) := tt | `(bit0 %%a) `(bit0 %%b) := a.is_num_eq b | `(bit1 %%a) `(bit1 %%b) := a.is_num_eq b | `(-%%a) `(-%%b) := a.is_num_eq b | `(%%a/%%a') `(%%b/%%b') := a.is_num_eq b | _ _ := ff end expr /-! ### Declarations about `expr` -/ namespace expr open tactic /-- `replace_with e s s'` replaces ocurrences of `s` with `s'` in `e`. -/ meta def replace_with (e : expr) (s : expr) (s' : expr) : expr := e.replace $ λc d, if c = s then some (s'.lift_vars 0 d) else none /-- Apply a function to each constant (inductive type, defined function etc) in an expression. -/ protected meta def apply_replacement_fun (f : name → name) (e : expr) : expr := e.replace $ λ e d, match e with | expr.const n ls := some $ expr.const (f n) ls | _ := none end /-- Tests whether an expression is a meta-variable. -/ meta def is_mvar : expr → bool | (mvar _ _ _) := tt | _ := ff /-- Tests whether an expression is a sort. -/ meta def is_sort : expr → bool | (sort _) := tt | e := ff /-- If `e` is a local constant, `to_implicit_local_const e` changes the binder info of `e` to `implicit`. See also `to_implicit_binder`, which also changes lambdas and pis. -/ meta def to_implicit_local_const : expr → expr | (expr.local_const uniq n bi t) := expr.local_const uniq n binder_info.implicit t | e := e /-- If `e` is a local constant, lamda, or pi expression, `to_implicit_binder e` changes the binder info of `e` to `implicit`. See also `to_implicit_local_const`, which only changes local constants. -/ meta def to_implicit_binder : expr → expr | (local_const n₁ n₂ _ d) := local_const n₁ n₂ binder_info.implicit d | (lam n _ d b) := lam n binder_info.implicit d b | (pi n _ d b) := pi n binder_info.implicit d b | e := e /-- Returns a list of all local constants in an expression (without duplicates). -/ meta def list_local_consts (e : expr) : list expr := e.fold [] (λ e' _ es, if e'.is_local_constant then insert e' es else es) /-- Returns a name_set of all constants in an expression. -/ meta def list_constant (e : expr) : name_set := e.fold mk_name_set (λ e' _ es, if e'.is_constant then es.insert e'.const_name else es) /-- Returns a list of all meta-variables in an expression (without duplicates). -/ meta def list_meta_vars (e : expr) : list expr := e.fold [] (λ e' _ es, if e'.is_mvar then insert e' es else es) /-- Returns a name_set of all constants in an expression starting with a certain prefix. -/ meta def list_names_with_prefix (pre : name) (e : expr) : name_set := e.fold mk_name_set $ λ e' _ l, match e' with | expr.const n _ := if n.get_prefix = pre then l.insert n else l | _ := l end /-- Returns true if `e` contains a name `n` where `p n` is true. Returns `true` if `p name.anonymous` is true -/ meta def contains_constant (e : expr) (p : name → Prop) [decidable_pred p] : bool := e.fold ff (λ e' _ b, if p (e'.const_name) then tt else b) /-- Simplifies the expression `t` with the specified options. The result is `(new_e, pr)` with the new expression `new_e` and a proof `pr : e = new_e`. -/ meta def simp (t : expr) (cfg : simp_config := {}) (discharger : tactic unit := failed) (no_defaults := ff) (attr_names : list name := []) (hs : list simp_arg_type := []) : tactic (expr × expr) := do (s, to_unfold) ← mk_simp_set no_defaults attr_names hs, simplify s to_unfold t cfg `eq discharger /-- Definitionally simplifies the expression `t` with the specified options. The result is the simplified expression. -/ meta def dsimp (t : expr) (cfg : dsimp_config := {}) (no_defaults := ff) (attr_names : list name := []) (hs : list simp_arg_type := []) : tactic expr := do (s, to_unfold) ← mk_simp_set no_defaults attr_names hs, s.dsimplify to_unfold t cfg /-- Auxilliary definition for `expr.pi_arity` -/ meta def pi_arity_aux : ℕ → expr → ℕ | n (pi _ _ _ b) := pi_arity_aux (n + 1) b | n e := n /-- The arity of a pi-type. Does not perform any reduction of the expression. In one application this was ~30 times quicker than `tactic.get_pi_arity`. -/ meta def pi_arity : expr → ℕ := pi_arity_aux 0 /-- Get the names of the bound variables by a sequence of pis or lambdas. -/ meta def binding_names : expr → list name | (pi n _ _ e) := n :: e.binding_names | (lam n _ _ e) := n :: e.binding_names | e := [] /-- head-reduce a single let expression -/ meta def reduce_let : expr → expr | (elet _ _ v b) := b.instantiate_var v | e := e /-- head-reduce all let expressions -/ meta def reduce_lets : expr → expr | (elet _ _ v b) := reduce_lets $ b.instantiate_var v | e := e /-- Instantiate lambdas in the second argument by expressions from the first. -/ meta def instantiate_lambdas : list expr → expr → expr | (e'::es) (lam n bi t e) := instantiate_lambdas es (e.instantiate_var e') | _ e := e /-- `instantiate_lambdas_or_apps es e` instantiates lambdas in `e` by expressions from `es`. If the length of `es` is larger than the number of lambdas in `e`, then the term is applied to the remaining terms. Also reduces head let-expressions in `e`, including those after instantiating all lambdas. -/ meta def instantiate_lambdas_or_apps : list expr → expr → expr | (v::es) (lam n bi t b) := instantiate_lambdas_or_apps es $ b.instantiate_var v | es (elet _ _ v b) := instantiate_lambdas_or_apps es $ b.instantiate_var v | es e := mk_app e es /- Note [open expressions]: Some declarations work with open expressions, i.e. an expr that has free variables. Terms will free variables are not well-typed, and one should not use them in tactics like `infer_type` or `unify`. You can still do syntactic analysis/manipulation on them. The reason for working with open types is for performance: instantiating variables requires iterating through the expression. In one performance test `pi_binders` was more than 6x quicker than `mk_local_pis` (when applied to the type of all imported declarations 100x). -/ /-- Get the codomain/target of a pi-type. This definition doesn't instantiate bound variables, and therefore produces a term that is open.-/ meta def pi_codomain : expr → expr -- see note [open expressions] | (pi n bi d b) := pi_codomain b | e := e /-- Auxilliary defintion for `pi_binders`. -/ -- see note [open expressions] meta def pi_binders_aux : list binder → expr → list binder × expr | es (pi n bi d b) := pi_binders_aux (⟨n, bi, d⟩::es) b | es e := (es, e) /-- Get the binders and codomain of a pi-type. This definition doesn't instantiate bound variables, and therefore produces a term that is open. The.tactic `get_pi_binders` in `tactic.core` does the same, but also instantiates the free variables -/ meta def pi_binders (e : expr) : list binder × expr := -- see note [open expressions] let (es, e) := pi_binders_aux [] e in (es.reverse, e) /-- Auxilliary defintion for `get_app_fn_args`. -/ meta def get_app_fn_args_aux : list expr → expr → expr × list expr | r (app f a) := get_app_fn_args_aux (a::r) f | r e := (e, r) /-- A combination of `get_app_fn` and `get_app_args`: lists both the function and its arguments of an application -/ meta def get_app_fn_args : expr → expr × list expr := get_app_fn_args_aux [] /-- `drop_pis es e` instantiates the pis in `e` with the expressions from `es`. -/ meta def drop_pis : list expr → expr → tactic expr | (list.cons v vs) (pi n bi d b) := do t ← infer_type v, guard (t =ₐ d), drop_pis vs (b.instantiate_var v) | [] e := return e | _ _ := failed /-- `mk_op_lst op empty [x1, x2, ...]` is defined as `op x1 (op x2 ...)`. Returns `empty` if the list is empty. -/ meta def mk_op_lst (op : expr) (empty : expr) : list expr → expr | [] := empty | [e] := e | (e :: es) := op e $ mk_op_lst es /-- `mk_and_lst [x1, x2, ...]` is defined as `x1 ∧ (x2 ∧ ...)`, or `true` if the list is empty. -/ meta def mk_and_lst : list expr → expr := mk_op_lst `(and) `(true) /-- `mk_or_lst [x1, x2, ...]` is defined as `x1 ∨ (x2 ∨ ...)`, or `false` if the list is empty. -/ meta def mk_or_lst : list expr → expr := mk_op_lst `(or) `(false) /-- `local_binding_info e` returns the binding info of `e` if `e` is a local constant. Otherwise returns `binder_info.default`. -/ meta def local_binding_info : expr → binder_info | (expr.local_const _ _ bi _) := bi | _ := binder_info.default /-- `is_default_local e` tests whether `e` is a local constant with binder info `binder_info.default` -/ meta def is_default_local : expr → bool | (expr.local_const _ _ binder_info.default _) := tt | _ := ff end expr /-! ### Declarations about `environment` -/ namespace environment /-- Tests whether a name is declared in the current file. Fixes an error in `in_current_file` which returns `tt` for the four names `quot, quot.mk, quot.lift, quot.ind` -/ meta def in_current_file' (env : environment) (n : name) : bool := env.in_current_file n && (n ∉ [``quot, ``quot.mk, ``quot.lift, ``quot.ind]) /-- Tests whether `n` is a structure. -/ meta def is_structure (env : environment) (n : name) : bool := (env.structure_fields n).is_some /-- Get the full names of all projections of the structure `n`. Returns `none` if `n` is not a structure. -/ meta def structure_fields_full (env : environment) (n : name) : option (list name) := (env.structure_fields n).map (list.map $ λ n', n ++ n') /-- Tests whether `nm` is a generalized inductive type that is not a normal inductive type. Note that `is_ginductive` returns `tt` even on regular inductive types. This returns `tt` if `nm` is (part of a) mutually defined inductive type or a nested inductive type. -/ meta def is_ginductive' (e : environment) (nm : name) : bool := e.is_ginductive nm ∧ ¬ e.is_inductive nm /-- For all declarations `d` where `f d = some x` this adds `x` to the returned list. -/ meta def decl_filter_map {α : Type} (e : environment) (f : declaration → option α) : list α := e.fold [] $ λ d l, match f d with | some r := r :: l | none := l end /-- Maps `f` to all declarations in the environment. -/ meta def decl_map {α : Type} (e : environment) (f : declaration → α) : list α := e.decl_filter_map $ λ d, some (f d) /-- Lists all declarations in the environment -/ meta def get_decls (e : environment) : list declaration := e.decl_map id /-- Lists all trusted (non-meta) declarations in the environment -/ meta def get_trusted_decls (e : environment) : list declaration := e.decl_filter_map (λ d, if d.is_trusted then some d else none) /-- Lists the name of all declarations in the environment -/ meta def get_decl_names (e : environment) : list name := e.decl_map declaration.to_name /-- Fold a monad over all declarations in the environment. -/ meta def mfold {α : Type} {m : Type → Type} [monad m] (e : environment) (x : α) (fn : declaration → α → m α) : m α := e.fold (return x) (λ d t, t >>= fn d) /-- Filters all declarations in the environment. -/ meta def mfilter (e : environment) (test : declaration → tactic bool) : tactic (list declaration) := e.mfold [] $ λ d ds, do b ← test d, return $ if b then d::ds else ds /-- Checks whether `s` is a prefix of the file where `n` is declared. This is used to check whether `n` is declared in mathlib, where `s` is the mathlib directory. -/ meta def is_prefix_of_file (e : environment) (s : string) (n : name) : bool := s.is_prefix_of $ (e.decl_olean n).get_or_else "" end environment /-! ### `is_eta_expansion` In this section we define the tactic `is_eta_expansion` which checks whether an expression is an eta-expansion of a structure. (not to be confused with eta-expanion for `λ`). -/ namespace expr open tactic /-- `is_eta_expansion_of args univs l` checks whether for all elements `(nm, pr)` in `l` we have `pr = nm.{univs} args`. Used in `is_eta_expansion`, where `l` consists of the projections and the fields of the value we want to eta-reduce. -/ meta def is_eta_expansion_of (args : list expr) (univs : list level) (l : list (name × expr)) : bool := l.all $ λ⟨proj, val⟩, val = (const proj univs).mk_app args /-- `is_eta_expansion_test l` checks whether there is a list of expresions `args` such that for all elements `(nm, pr)` in `l` we have `pr = nm args`. If so, returns the last element of `args`. Used in `is_eta_expansion`, where `l` consists of the projections and the fields of the value we want to eta-reduce. -/ meta def is_eta_expansion_test : list (name × expr) → option expr | [] := none | (⟨proj, val⟩::l) := match val.get_app_fn with | (const nm univs : expr) := if nm = proj then let args := val.get_app_args in let e := args.ilast in if is_eta_expansion_of args univs l then some e else none else none | _ := none end /-- `is_eta_expansion_aux val l` checks whether `val` can be eta-reduced to an expression `e`. Here `l` is intended to consists of the projections and the fields of `val`. This tactic calls `is_eta_expansion_test l`, but first removes all proofs from the list `l` and afterward checks whether the retulting expression `e` unifies with `val`. This last check is necessary, because `val` and `e` might have different types. -/ meta def is_eta_expansion_aux (val : expr) (l : list (name × expr)) : tactic (option expr) := do l' ← l.mfilter (λ⟨proj, val⟩, bnot <$> is_proof val), match is_eta_expansion_test l' with | some e := option.map (λ _, e) <$> try_core (unify e val) | none := return none end /-- `is_eta_expansion val` checks whether there is an expression `e` such that `val` is the eta-expansion of `e`. With eta-expansion we here mean the eta-expansion of a structure, not of a function. For example, the eta-expansion of `x : α × β` is `⟨x.1, x.2⟩`. This assumes that `val` is a fully-applied application of the constructor of a structure. This is useful to reduce expressions generated by the notation `{ field_1 := _, ..other_structure }` If `other_structure` is itself a field of the structure, then the elaborator will insert an eta-expanded version of `other_structure`. -/ meta def is_eta_expansion (val : expr) : tactic (option expr) := do e ← get_env, type ← infer_type val, projs ← e.structure_fields_full type.get_app_fn.const_name, let args := (val.get_app_args).drop type.get_app_args.length, is_eta_expansion_aux val (projs.zip args) end expr /-! ### Declarations about `declaration` -/ namespace declaration open tactic protected meta def update_with_fun (f : name → name) (tgt : name) (decl : declaration) : declaration := let decl := decl.update_name $ tgt in let decl := decl.update_type $ decl.type.apply_replacement_fun f in decl.update_value $ decl.value.apply_replacement_fun f /-- Checks whether the declaration is declared in the current file. This is a simple wrapper around `environment.in_current_file'` Use `environment.in_current_file'` instead if performance matters. -/ meta def in_current_file (d : declaration) : tactic bool := do e ← get_env, return $ e.in_current_file' d.to_name /-- Checks whether a declaration is a theorem -/ meta def is_theorem : declaration → bool | (thm _ _ _ _) := tt | _ := ff /-- Checks whether a declaration is a constant -/ meta def is_constant : declaration → bool | (cnst _ _ _ _) := tt | _ := ff /-- Checks whether a declaration is a axiom -/ meta def is_axiom : declaration → bool | (ax _ _ _) := tt | _ := ff /-- Checks whether a declaration is automatically generated in the environment. There is no cheap way to check whether a declaration in the namespace of a generalized inductive type is automatically generated, so for now we say that all of them are automatically generated. -/ meta def is_auto_generated (e : environment) (d : declaration) : bool := e.is_constructor d.to_name ∨ (e.is_projection d.to_name).is_some ∨ (e.is_constructor d.to_name.get_prefix ∧ d.to_name.last ∈ ["inj", "inj_eq", "sizeof_spec", "inj_arrow"]) ∨ (e.is_inductive d.to_name.get_prefix ∧ d.to_name.last ∈ ["below", "binduction_on", "brec_on", "cases_on", "dcases_on", "drec_on", "drec", "rec", "rec_on", "no_confusion", "no_confusion_type", "sizeof", "ibelow", "has_sizeof_inst"]) ∨ d.to_name.has_prefix (λ nm, e.is_ginductive' nm) /-- Returns the list of universe levels of a declaration. -/ meta def univ_levels (d : declaration) : list level := d.univ_params.map level.param end declaration
3816212b3f0cd28916849395a1aad563505d72fe
e00ea76a720126cf9f6d732ad6216b5b824d20a7
/src/tactic/solve_by_elim.lean
01156d5fff9a5cbf330e45dae2cb3c117ecf1894
[ "Apache-2.0" ]
permissive
vaibhavkarve/mathlib
a574aaf68c0a431a47fa82ce0637f0f769826bfe
17f8340912468f49bdc30acdb9a9fa02eeb0473a
refs/heads/master
1,621,263,802,637
1,585,399,588,000
1,585,399,588,000
250,833,447
0
0
Apache-2.0
1,585,410,341,000
1,585,410,341,000
null
UTF-8
Lean
false
false
6,812
lean
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Scott Morrison -/ import tactic.core namespace tactic /-- Builds a collection of lemmas for use in the backtracking search in `solve_by_elim`. * By default, it includes all local hypotheses, along with `rfl`, `trivial`, `congr_fun` and `congr_arg`. * The flag `no_dflt` removes these. * The argument `hs` is a list of `simp_arg_type`s, and can be used to add, or remove, lemmas or expressions from the set. * The argument `attr : list name` adds all lemmas tagged with one of a specified list of attributes. -/ meta def mk_assumption_set (no_dflt : bool) (hs : list simp_arg_type) (attr : list name) : tactic (list expr) := do (hs, gex, hex, all_hyps) ← decode_simp_arg_list hs, hs ← hs.mmap i_to_expr_for_apply, l ← attr.mmap $ λ a, attribute.get_instances a, let l := l.join, m ← list.mmap mk_const l, let hs := (hs ++ m).filter $ λ h, expr.const_name h ∉ gex, hs ← if no_dflt then return hs else do { rfl_const ← mk_const `rfl, trivial_const ← mk_const `trivial, congr_fun ← mk_const `congr_fun, congr_arg ← mk_const `congr_arg, return (rfl_const :: trivial_const :: congr_fun :: congr_arg :: hs) }, if ¬ no_dflt ∨ all_hyps then do ctx ← local_context, return $ hs.append (ctx.filter (λ h, h.local_uniq_name ∉ hex)) -- remove local exceptions else return hs /-- The internal implementation of `solve_by_elim`, with a limiting counter. -/ meta def solve_by_elim_aux (discharger : tactic unit) (lemmas : list expr) : ℕ → tactic unit | 0 := done | (n+1) := done <|> (apply_any lemmas $ solve_by_elim_aux n) <|> (discharger >> solve_by_elim_aux n) /-- Configuration options for `solve_by_elim`. * By default `solve_by_elim` operates only on the first goal, but with `backtrack_all_goals := true`, it operates on all goals at once, backtracking across goals as needed, and only succeeds if it discharges all goals. * `discharger` specifies an additional tactic to apply on subgoals for which no lemma applies. If that tactic succeeds, `solve_by_elim` will continue applying lemmas on resulting goals. * `assumptions` generates the list of lemmas to use in the backtracking search. * `max_steps` bounds the depth of the search. -/ meta structure by_elim_opt := (backtrack_all_goals : bool := ff) (discharger : tactic unit := done) (lemmas : option (list expr) := none) (max_steps : ℕ := 3) /-- If no lemmas have been specified, generate the default set (local hypotheses, along with `rfl`, `trivial`, `congr_arg`, and `congr_fun`). -/ meta def by_elim_opt.get_lemmas (opt : by_elim_opt) : tactic (list expr) := match opt.lemmas with | none := mk_assumption_set ff [] [] | some lemmas := return lemmas end /-- `solve_by_elim` repeatedly tries `apply`ing a lemma from the list of assumptions (passed via the `by_elim_opt` argument), recursively operating on any generated subgoals. It succeeds only if it discharges the first goal (or with `backtrack_all_goals := tt`, if it discharges all goals.) If passed an empty list of assumptions, `solve_by_elim` builds a default set as per the interactive tactic, using the `local_context` along with `rfl`, `trivial`, `congr_arg`, and `congr_fun`. -/ meta def solve_by_elim (opt : by_elim_opt := { }) : tactic unit := do tactic.fail_if_no_goals, lemmas ← opt.get_lemmas, (if opt.backtrack_all_goals then id else focus1) $ solve_by_elim_aux opt.discharger lemmas opt.max_steps open interactive lean.parser interactive.types local postfix `?`:9001 := optional namespace interactive /-- `apply_assumption` looks for an assumption of the form `... → ∀ _, ... → head` where `head` matches the current goal. If this fails, `apply_assumption` will call `symmetry` and try again. If this also fails, `apply_assumption` will call `exfalso` and try again, so that if there is an assumption of the form `P → ¬ Q`, the new tactic state will have two goals, `P` and `Q`. Optional arguments: - `lemmas`: a list of expressions to apply, instead of the local constants - `tac`: a tactic to run on each subgoal after applying an assumption; if this tactic fails, the corresponding assumption will be rejected and the next one will be attempted. -/ meta def apply_assumption (lemmas : option (list expr) := none) (tac : tactic unit := skip) : tactic unit := do lemmas ← match lemmas with | none := local_context | some lemmas := return lemmas end, tactic.apply_any lemmas tac add_tactic_doc { name := "apply_assumption", category := doc_category.tactic, decl_names := [`tactic.interactive.apply_assumption], tags := ["context management", "lemma application"] } /-- `solve_by_elim` calls `apply` on the main goal to find an assumption whose head matches and then repeatedly calls `apply` on the generated subgoals until no subgoals remain, performing at most `max_steps` recursive steps. `solve_by_elim` discharges the current goal or fails. `solve_by_elim` performs back-tracking if subgoals can not be solved. By default, the assumptions passed to `apply` are the local context, `rfl`, `trivial`, `congr_fun` and `congr_arg`. The assumptions can be modified with similar syntax as for `simp`: * `solve_by_elim [h₁, h₂, ..., hᵣ]` also applies the named lemmas. * `solve_by_elim with attr₁ ... attrᵣ` also applies all lemmas tagged with the specified attributes. * `solve_by_elim only [h₁, h₂, ..., hᵣ]` does not include the local context, `rfl`, `trivial`, `congr_fun`, or `congr_arg` unless they are explicitly included. * `solve_by_elim [-id_1, ... -id_n]` uses the default assumptions, removing the specified ones. `solve_by_elim*` tries to solve all goals together, using backtracking if a solution for one goal makes other goals impossible. optional arguments passed via a configuration argument: - discharger: a subsidiary tactic to try at each step when no lemmas apply (e.g. `cc` may be helpful) - max_steps: number of attempts at discharging generated sub-goals -/ meta def solve_by_elim (all_goals : parse $ (tk "*")?) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (opt : by_elim_opt := { }) : tactic unit := do lemmas ← mk_assumption_set no_dflt hs attr_names, tactic.solve_by_elim { backtrack_all_goals := all_goals.is_some ∨ opt.backtrack_all_goals, lemmas := lemmas, ..opt } add_tactic_doc { name := "solve_by_elim", category := doc_category.tactic, decl_names := [`tactic.interactive.solve_by_elim], tags := ["search"] } end interactive end tactic
d37b9176b3c69de8779e04e4f2e24175399a4c1a
32025d5c2d6e33ad3b6dd8a3c91e1e838066a7f7
/tests/lean/run/meta3.lean
30183b44d3caaa7bc8442727a533cc6b3bba538e
[ "Apache-2.0" ]
permissive
walterhu1015/lean4
b2c71b688975177402758924eaa513475ed6ce72
2214d81e84646a905d0b20b032c89caf89c737ad
refs/heads/master
1,671,342,096,906
1,599,695,985,000
1,599,695,985,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,782
lean
import Lean.Meta open Lean open Lean.Meta def dbgOpt : Options := let opt : Options := {}; let opt := opt.setBool `trace.Meta true; -- let opt := opt.setBool `trace.Meta.check false; opt def print (msg : MessageData) : MetaM Unit := trace! `Meta.debug msg def check (x : MetaM Bool) : MetaM Unit := unlessM x $ throwError "check failed" def getAssignment (m : Expr) : MetaM Expr := do v? ← getExprMVarAssignment? m.mvarId!; match v? with | some v => pure v | none => throwError "metavariable is not assigned" unsafe def run (mods : List Name) (x : MetaM Unit) (opts : Options := dbgOpt) : IO Unit := withImportModules (mods.map $ fun m => {module := m}) 0 fun env => do let x := do { x; printTraces }; _ ← x.toIO { options := opts } { env := env }; pure () def nat := mkConst `Nat def succ := mkConst `Nat.succ def add := mkAppN (mkConst `HasAdd.add [levelZero]) #[nat, mkConst `Nat.HasAdd] def tst1 : MetaM Unit := do let d : DiscrTree Nat := {}; mvar ← mkFreshExprMVar nat; d ← d.insert (mkAppN add #[mvar, mkNatLit 10]) 1; d ← d.insert (mkAppN add #[mkNatLit 0, mkNatLit 10]) 2; d ← d.insert (mkAppN (mkConst `Nat.add) #[mkNatLit 0, mkNatLit 20]) 3; d ← d.insert (mkAppN add #[mvar, mkNatLit 20]) 4; d ← d.insert mvar 5; print (format d); vs ← d.getMatch (mkAppN add #[mkNatLit 1, mkNatLit 10]); print (format vs); let t := mkAppN add #[mvar, mvar]; print t; vs ← d.getMatch t; print (format vs); vs ← d.getUnify t; print (format vs); vs ← d.getUnify mvar; print (format vs); vs ← d.getUnify $ mkAppN add #[mkNatLit 0, mvar]; print (format vs); vs ← d.getUnify $ mkAppN add #[mvar, mkNatLit 20]; print (format vs); pure () #eval run [`Init.Data.Nat] tst1
b57feac56e1371829a2f4e401b1fef896f0857c3
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/archive/100-theorems-list/83_friendship_graphs.lean
f0e9917d046d0cee4441459797f490d5b60ce360
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
13,773
lean
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson, Jalex Stark, Kyle Miller -/ import combinatorics.simple_graph.adj_matrix import linear_algebra.char_poly.coeff import data.int.modeq import data.zmod.basic import tactic.interval_cases /-! # The Friendship Theorem ## Definitions and Statement - A `friendship` graph is one in which any two distinct vertices have exactly one neighbor in common - A `politician`, at least in the context of this problem, is a vertex in a graph which is adjacent to every other vertex. - The friendship theorem (Erdős, Rényi, Sós 1966) states that every finite friendship graph has a politician. ## Proof outline The proof revolves around the theory of adjacency matrices, although some steps could equivalently be phrased in terms of counting walks. - Assume `G` is a finite friendship graph. - First we show that any two nonadjacent vertices have the same degree - Assume for contradiction that `G` does not have a politician. - Conclude from the last two points that `G` is `d`-regular for some `d : ℕ`. - Show that `G` has `d ^ 2 - d + 1` vertices. - By casework, show that if `d = 0, 1, 2`, then `G` has a politician. - If `3 ≤ d`, let `p` be a prime factor of `d - 1`. - If `A` is the adjacency matrix of `G` with entries in `ℤ/pℤ`, we show that `A ^ p` has trace `1`. - This gives a contradiction, as `A` has trace `0`, and thus `A ^ p` has trace `0`. ## References - [P. Erdős, A. Rényi, V. Sós, *On A Problem of Graph Theory*][erdosrenyisos] - [C. Huneke, *The Friendship Theorem*][huneke2002] -/ open_locale classical big_operators noncomputable theory open finset simple_graph matrix universes u v variables {V : Type u} {R : Type v} [semiring R] section friendship_def variables (G : simple_graph V) /-- This property of a graph is the hypothesis of the friendship theorem: every pair of nonadjacent vertices has exactly one common friend, a vertex to which both are adjacent. -/ def friendship [fintype V] : Prop := ∀ ⦃v w : V⦄, v ≠ w → fintype.card (G.common_neighbors v w) = 1 /-- A politician is a vertex that is adjacent to all other vertices. -/ def exists_politician : Prop := ∃ (v : V), ∀ (w : V), v ≠ w → G.adj v w end friendship_def variables [fintype V] {G : simple_graph V} {d : ℕ} (hG : friendship G) include hG namespace friendship variables (R) /-- One characterization of a friendship graph is that there is exactly one walk of length 2 between distinct vertices. These walks are counted in off-diagonal entries of the square of the adjacency matrix, so for a friendship graph, those entries are all 1. -/ theorem adj_matrix_sq_of_ne {v w : V} (hvw : v ≠ w) : ((G.adj_matrix R) ^ 2) v w = 1 := begin rw [sq, ← nat.cast_one, ← hG hvw], simp [common_neighbors, neighbor_finset_eq_filter, finset.filter_filter, finset.filter_inter, and_comm], end /-- This calculation amounts to counting the number of length 3 walks between nonadjacent vertices. We use it to show that nonadjacent vertices have equal degrees. -/ lemma adj_matrix_pow_three_of_not_adj {v w : V} (non_adj : ¬ G.adj v w) : ((G.adj_matrix R) ^ 3) v w = degree G v := begin rw [pow_succ, mul_eq_mul, adj_matrix_mul_apply, degree, card_eq_sum_ones, nat.cast_sum], apply sum_congr rfl, intros x hx, rw [adj_matrix_sq_of_ne _ hG, nat.cast_one], rintro ⟨rfl⟩, rw mem_neighbor_finset at hx, exact non_adj hx, end variable {R} /-- As `v` and `w` not being adjacent implies `degree G v = ((G.adj_matrix R) ^ 3) v w` and `degree G w = ((G.adj_matrix R) ^ 3) v w`, the degrees are equal if `((G.adj_matrix R) ^ 3) v w = ((G.adj_matrix R) ^ 3) w v` This is true as the adjacency matrix is symmetric. -/ lemma degree_eq_of_not_adj {v w : V} (hvw : ¬ G.adj v w) : degree G v = degree G w := begin rw [← nat.cast_id (G.degree v), ← nat.cast_id (G.degree w), ← adj_matrix_pow_three_of_not_adj ℕ hG hvw, ← adj_matrix_pow_three_of_not_adj ℕ hG (λ h, hvw (G.symm h))], conv_lhs {rw ← transpose_adj_matrix}, simp only [pow_succ, sq, mul_eq_mul, ← transpose_mul, transpose_apply], simp only [← mul_eq_mul, mul_assoc], end /-- Let `A` be the adjacency matrix of a graph `G`. If `G` is a friendship graph, then all of the off-diagonal entries of `A^2` are 1. If `G` is `d`-regular, then all of the diagonal entries of `A^2` are `d`. Putting these together determines `A^2` exactly for a `d`-regular friendship graph. -/ theorem adj_matrix_sq_of_regular (hd : G.is_regular_of_degree d) : ((G.adj_matrix R) ^ 2) = λ v w, if v = w then d else 1 := begin ext v w, by_cases h : v = w, { rw [h, sq, mul_eq_mul, adj_matrix_mul_self_apply_self, hd], simp, }, { rw [adj_matrix_sq_of_ne R hG h, if_neg h], }, end lemma adj_matrix_sq_mod_p_of_regular {p : ℕ} (dmod : (d : zmod p) = 1) (hd : G.is_regular_of_degree d) : (G.adj_matrix (zmod p)) ^ 2 = λ _ _, 1 := by simp [adj_matrix_sq_of_regular hG hd, dmod] section nonempty variable [nonempty V] /-- If `G` is a friendship graph without a politician (a vertex adjacent to all others), then it is regular. We have shown that nonadjacent vertices of a friendship graph have the same degree, and if there isn't a politician, we can show this for adjacent vertices by finding a vertex neither is adjacent to, and then using transitivity. -/ theorem is_regular_of_not_exists_politician (hG' : ¬exists_politician G) : ∃ (d : ℕ), G.is_regular_of_degree d := begin have v := classical.arbitrary V, use G.degree v, intro x, by_cases hvx : G.adj v x, swap, { exact (degree_eq_of_not_adj hG hvx).symm, }, dunfold exists_politician at hG', push_neg at hG', rcases hG' v with ⟨w, hvw', hvw⟩, rcases hG' x with ⟨y, hxy', hxy⟩, by_cases hxw : G.adj x w, swap, { rw degree_eq_of_not_adj hG hvw, exact degree_eq_of_not_adj hG hxw }, rw degree_eq_of_not_adj hG hxy, by_cases hvy : G.adj v y, swap, { exact (degree_eq_of_not_adj hG hvy).symm }, rw degree_eq_of_not_adj hG hvw, apply degree_eq_of_not_adj hG, intro hcontra, rcases finset.card_eq_one.mp (hG hvw') with ⟨⟨a, ha⟩, h⟩, have key : ∀ {x}, x ∈ G.common_neighbors v w → x = a, { intros x hx, have h' := mem_univ (subtype.mk x hx), rw [h, mem_singleton] at h', injection h', }, apply hxy', rw [key ((mem_common_neighbors G).mpr ⟨hvx, G.symm hxw⟩), key ((mem_common_neighbors G).mpr ⟨hvy, G.symm hcontra⟩)], end /-- Let `A` be the adjacency matrix of a `d`-regular friendship graph, and let `v` be a vector all of whose components are `1`. Then `v` is an eigenvector of `A ^ 2`, and we can compute the eigenvalue to be `d * d`, or as `d + (fintype.card V - 1)`, so those quantities must be equal. This essentially means that the graph has `d ^ 2 - d + 1` vertices. -/ lemma card_of_regular (hd : G.is_regular_of_degree d) : d + (fintype.card V - 1) = d * d := begin have v := classical.arbitrary V, transitivity ((G.adj_matrix ℕ) ^ 2).mul_vec (λ _, 1) v, { rw [adj_matrix_sq_of_regular hG hd, mul_vec, dot_product, ← insert_erase (mem_univ v)], simp only [sum_insert, mul_one, if_true, nat.cast_id, eq_self_iff_true, mem_erase, not_true, ne.def, not_false_iff, add_right_inj, false_and], rw [finset.sum_const_nat, card_erase_of_mem (mem_univ v), mul_one], { refl }, intros x hx, simp [(ne_of_mem_erase hx).symm], }, { rw [sq, mul_eq_mul, ← mul_vec_mul_vec], simp [adj_matrix_mul_vec_const_apply_of_regular hd, neighbor_finset, card_neighbor_set_eq_degree, hd v], } end /-- The size of a `d`-regular friendship graph is `1 mod (d-1)`, and thus `1 mod p` for a factor `p ∣ d-1`. -/ lemma card_mod_p_of_regular {p : ℕ} (dmod : (d : zmod p) = 1) (hd : G.is_regular_of_degree d) : (fintype.card V : zmod p) = 1 := begin have hpos : 0 < fintype.card V := fintype.card_pos_iff.mpr infer_instance, rw [← nat.succ_pred_eq_of_pos hpos, nat.succ_eq_add_one, nat.pred_eq_sub_one], simp only [add_left_eq_self, nat.cast_add, nat.cast_one], have h := congr_arg (λ n, (↑n : zmod p)) (card_of_regular hG hd), revert h, simp [dmod], end end nonempty omit hG lemma adj_matrix_sq_mul_const_one_of_regular (hd : G.is_regular_of_degree d) : (G.adj_matrix R) * (λ _ _, 1) = λ _ _, d := by { ext x, simp [← hd x, degree] } lemma adj_matrix_mul_const_one_mod_p_of_regular {p : ℕ} (dmod : (d : zmod p) = 1) (hd : G.is_regular_of_degree d) : (G.adj_matrix (zmod p)) * (λ _ _, 1) = λ _ _, 1 := by rw [adj_matrix_sq_mul_const_one_of_regular hd, dmod] include hG /-- Modulo a factor of `d-1`, the square and all higher powers of the adjacency matrix of a `d`-regular friendship graph reduce to the matrix whose entries are all 1. -/ lemma adj_matrix_pow_mod_p_of_regular {p : ℕ} (dmod : (d : zmod p) = 1) (hd : G.is_regular_of_degree d) {k : ℕ} (hk : 2 ≤ k) : (G.adj_matrix (zmod p)) ^ k = λ _ _, 1 := begin iterate 2 {cases k with k, { exfalso, linarith, }, }, induction k with k hind, { exact adj_matrix_sq_mod_p_of_regular hG dmod hd, }, rw [pow_succ, hind (nat.le_add_left 2 k)], exact adj_matrix_mul_const_one_mod_p_of_regular dmod hd, end variable [nonempty V] /-- This is the main proof. Assuming that `3 ≤ d`, we take `p` to be a prime factor of `d-1`. Then the `p`th power of the adjacency matrix of a `d`-regular friendship graph must have trace 1 mod `p`, but we can also show that the trace must be the `p`th power of the trace of the original adjacency matrix, which is 0, a contradiction. -/ lemma false_of_three_le_degree (hd : G.is_regular_of_degree d) (h : 3 ≤ d) : false := begin -- get a prime factor of d - 1 let p : ℕ := (d - 1).min_fac, have p_dvd_d_pred := (zmod.nat_coe_zmod_eq_zero_iff_dvd _ _).mpr (d - 1).min_fac_dvd, have dpos : 0 < d := by linarith, have d_cast : ↑(d - 1) = (d : ℤ) - 1 := by norm_cast, haveI : fact p.prime := ⟨nat.min_fac_prime (by linarith)⟩, have hp2 : 2 ≤ p := (fact.out p.prime).two_le, have dmod : (d : zmod p) = 1, { rw [← nat.succ_pred_eq_of_pos dpos, nat.succ_eq_add_one, nat.pred_eq_sub_one], simp only [add_left_eq_self, nat.cast_add, nat.cast_one], exact p_dvd_d_pred, }, have Vmod := card_mod_p_of_regular hG dmod hd, -- now we reduce to a trace calculation have := zmod.trace_pow_card (G.adj_matrix (zmod p)), contrapose! this, clear this, -- the trace is 0 mod p when computed one way rw [trace_adj_matrix, zero_pow (fact.out p.prime).pos], -- but the trace is 1 mod p when computed the other way rw adj_matrix_pow_mod_p_of_regular hG dmod hd hp2, dunfold fintype.card at Vmod, simp only [matrix.trace, diag_apply, mul_one, nsmul_eq_mul, linear_map.coe_mk, sum_const], rw [Vmod, ← nat.cast_one, zmod.nat_coe_zmod_eq_zero_iff_dvd, nat.dvd_one, nat.min_fac_eq_one_iff], linarith, end /-- If `d ≤ 1`, a `d`-regular friendship graph has at most one vertex, which is trivially a politician. -/ lemma exists_politician_of_degree_le_one (hd : G.is_regular_of_degree d) (hd1 : d ≤ 1) : exists_politician G := begin have sq : d * d = d := by { interval_cases d; norm_num }, have h := card_of_regular hG hd, rw sq at h, have : fintype.card V ≤ 1, { cases fintype.card V with n, { exact zero_le _, }, { have : n = 0, { rw [nat.succ_sub_succ_eq_sub, nat.sub_zero] at h, linarith }, subst n, } }, use classical.arbitrary V, intros w h, exfalso, apply h, apply fintype.card_le_one_iff.mp this, end /-- If `d = 2`, a `d`-regular friendship graph has 3 vertices, so it must be complete graph, and all the vertices are politicians. -/ lemma neighbor_finset_eq_of_degree_eq_two (hd : G.is_regular_of_degree 2) (v : V) : G.neighbor_finset v = finset.univ.erase v := begin apply finset.eq_of_subset_of_card_le, { rw finset.subset_iff, intro x, rw [mem_neighbor_finset, finset.mem_erase], exact λ h, ⟨(G.ne_of_adj h).symm, finset.mem_univ _⟩ }, convert_to 2 ≤ _, { convert_to _ = fintype.card V - 1, { have hfr:= card_of_regular hG hd, linarith }, { exact finset.card_erase_of_mem (finset.mem_univ _), }, }, { dsimp [is_regular_of_degree, degree] at hd, rw hd, } end lemma exists_politician_of_degree_eq_two (hd : G.is_regular_of_degree 2) : exists_politician G := begin have v := classical.arbitrary V, use v, intros w hvw, rw [← mem_neighbor_finset, neighbor_finset_eq_of_degree_eq_two hG hd v, finset.mem_erase], exact ⟨hvw.symm, finset.mem_univ _⟩, end lemma exists_politician_of_degree_le_two (hd : G.is_regular_of_degree d) (h : d ≤ 2) : exists_politician G := begin interval_cases d, iterate 2 { apply exists_politician_of_degree_le_one hG hd, norm_num }, { exact exists_politician_of_degree_eq_two hG hd }, end end friendship /-- **Friendship theorem**: We wish to show that a friendship graph has a politician (a vertex adjacent to all others). We proceed by contradiction, and assume the graph has no politician. We have already proven that a friendship graph with no politician is `d`-regular for some `d`, and now we do casework on `d`. If the degree is at most 2, we observe by casework that it has a politician anyway. If the degree is at least 3, the graph cannot exist. -/ theorem friendship_theorem [nonempty V] : exists_politician G := begin by_contradiction npG, rcases hG.is_regular_of_not_exists_politician npG with ⟨d, dreg⟩, cases lt_or_le d 3 with dle2 dge3, { exact npG (hG.exists_politician_of_degree_le_two dreg (nat.lt_succ_iff.mp dle2)) }, { exact hG.false_of_three_le_degree dreg dge3 }, end
6f69af34e1870caba64ac792a0eade3c392afc37
592ee40978ac7604005a4e0d35bbc4b467389241
/Library/generated/mathscheme-lean/MoufangLoop.lean
1e58d9b5d7c51f94f5885e8f8397bdceb3a6ff8b
[]
no_license
ysharoda/Deriving-Definitions
3e149e6641fae440badd35ac110a0bd705a49ad2
dfecb27572022de3d4aa702cae8db19957523a59
refs/heads/master
1,679,127,857,700
1,615,939,007,000
1,615,939,007,000
229,785,731
4
0
null
null
null
null
UTF-8
Lean
false
false
13,429
lean
import init.data.nat.basic import init.data.fin.basic import data.vector import .Prelude open Staged open nat open fin open vector section MoufangLoop structure MoufangLoop (A : Type) : Type := (op : (A → (A → A))) (e : A) (lunit_e : (∀ {x : A} , (op e x) = x)) (runit_e : (∀ {x : A} , (op x e) = x)) (linv : (A → (A → A))) (leftCancel : (∀ {x y : A} , (op x (linv x y)) = y)) (lefCancelOp : (∀ {x y : A} , (linv x (op x y)) = y)) (rinv : (A → (A → A))) (rightCancel : (∀ {x y : A} , (op (rinv y x) x) = y)) (rightCancelOp : (∀ {x y : A} , (rinv (op y x) x) = y)) (moufangId : (∀ {x y z : A} , (op (op z x) (op y z)) = (op (op z (op x y)) z))) open MoufangLoop structure Sig (AS : Type) : Type := (opS : (AS → (AS → AS))) (eS : AS) (linvS : (AS → (AS → AS))) (rinvS : (AS → (AS → AS))) structure Product (A : Type) : Type := (opP : ((Prod A A) → ((Prod A A) → (Prod A A)))) (eP : (Prod A A)) (linvP : ((Prod A A) → ((Prod A A) → (Prod A A)))) (rinvP : ((Prod A A) → ((Prod A A) → (Prod A A)))) (lunit_eP : (∀ {xP : (Prod A A)} , (opP eP xP) = xP)) (runit_eP : (∀ {xP : (Prod A A)} , (opP xP eP) = xP)) (leftCancelP : (∀ {xP yP : (Prod A A)} , (opP xP (linvP xP yP)) = yP)) (lefCancelOpP : (∀ {xP yP : (Prod A A)} , (linvP xP (opP xP yP)) = yP)) (rightCancelP : (∀ {xP yP : (Prod A A)} , (opP (rinvP yP xP) xP) = yP)) (rightCancelOpP : (∀ {xP yP : (Prod A A)} , (rinvP (opP yP xP) xP) = yP)) (moufangIdP : (∀ {xP yP zP : (Prod A A)} , (opP (opP zP xP) (opP yP zP)) = (opP (opP zP (opP xP yP)) zP))) structure Hom {A1 : Type} {A2 : Type} (Mo1 : (MoufangLoop A1)) (Mo2 : (MoufangLoop A2)) : Type := (hom : (A1 → A2)) (pres_op : (∀ {x1 x2 : A1} , (hom ((op Mo1) x1 x2)) = ((op Mo2) (hom x1) (hom x2)))) (pres_e : (hom (e Mo1)) = (e Mo2)) (pres_linv : (∀ {x1 x2 : A1} , (hom ((linv Mo1) x1 x2)) = ((linv Mo2) (hom x1) (hom x2)))) (pres_rinv : (∀ {x1 x2 : A1} , (hom ((rinv Mo1) x1 x2)) = ((rinv Mo2) (hom x1) (hom x2)))) structure RelInterp {A1 : Type} {A2 : Type} (Mo1 : (MoufangLoop A1)) (Mo2 : (MoufangLoop A2)) : Type 1 := (interp : (A1 → (A2 → Type))) (interp_op : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((op Mo1) x1 x2) ((op Mo2) y1 y2)))))) (interp_e : (interp (e Mo1) (e Mo2))) (interp_linv : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((linv Mo1) x1 x2) ((linv Mo2) y1 y2)))))) (interp_rinv : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((rinv Mo1) x1 x2) ((rinv Mo2) y1 y2)))))) inductive MoufangLoopLTerm : Type | opL : (MoufangLoopLTerm → (MoufangLoopLTerm → MoufangLoopLTerm)) | eL : MoufangLoopLTerm | linvL : (MoufangLoopLTerm → (MoufangLoopLTerm → MoufangLoopLTerm)) | rinvL : (MoufangLoopLTerm → (MoufangLoopLTerm → MoufangLoopLTerm)) open MoufangLoopLTerm inductive ClMoufangLoopClTerm (A : Type) : Type | sing : (A → ClMoufangLoopClTerm) | opCl : (ClMoufangLoopClTerm → (ClMoufangLoopClTerm → ClMoufangLoopClTerm)) | eCl : ClMoufangLoopClTerm | linvCl : (ClMoufangLoopClTerm → (ClMoufangLoopClTerm → ClMoufangLoopClTerm)) | rinvCl : (ClMoufangLoopClTerm → (ClMoufangLoopClTerm → ClMoufangLoopClTerm)) open ClMoufangLoopClTerm inductive OpMoufangLoopOLTerm (n : ℕ) : Type | v : ((fin n) → OpMoufangLoopOLTerm) | opOL : (OpMoufangLoopOLTerm → (OpMoufangLoopOLTerm → OpMoufangLoopOLTerm)) | eOL : OpMoufangLoopOLTerm | linvOL : (OpMoufangLoopOLTerm → (OpMoufangLoopOLTerm → OpMoufangLoopOLTerm)) | rinvOL : (OpMoufangLoopOLTerm → (OpMoufangLoopOLTerm → OpMoufangLoopOLTerm)) open OpMoufangLoopOLTerm inductive OpMoufangLoopOL2Term2 (n : ℕ) (A : Type) : Type | v2 : ((fin n) → OpMoufangLoopOL2Term2) | sing2 : (A → OpMoufangLoopOL2Term2) | opOL2 : (OpMoufangLoopOL2Term2 → (OpMoufangLoopOL2Term2 → OpMoufangLoopOL2Term2)) | eOL2 : OpMoufangLoopOL2Term2 | linvOL2 : (OpMoufangLoopOL2Term2 → (OpMoufangLoopOL2Term2 → OpMoufangLoopOL2Term2)) | rinvOL2 : (OpMoufangLoopOL2Term2 → (OpMoufangLoopOL2Term2 → OpMoufangLoopOL2Term2)) open OpMoufangLoopOL2Term2 def simplifyCl {A : Type} : ((ClMoufangLoopClTerm A) → (ClMoufangLoopClTerm A)) | (opCl eCl x) := x | (opCl x eCl) := x | (opCl x1 x2) := (opCl (simplifyCl x1) (simplifyCl x2)) | eCl := eCl | (linvCl x1 x2) := (linvCl (simplifyCl x1) (simplifyCl x2)) | (rinvCl x1 x2) := (rinvCl (simplifyCl x1) (simplifyCl x2)) | (sing x1) := (sing x1) def simplifyOpB {n : ℕ} : ((OpMoufangLoopOLTerm n) → (OpMoufangLoopOLTerm n)) | (opOL eOL x) := x | (opOL x eOL) := x | (opOL x1 x2) := (opOL (simplifyOpB x1) (simplifyOpB x2)) | eOL := eOL | (linvOL x1 x2) := (linvOL (simplifyOpB x1) (simplifyOpB x2)) | (rinvOL x1 x2) := (rinvOL (simplifyOpB x1) (simplifyOpB x2)) | (v x1) := (v x1) def simplifyOp {n : ℕ} {A : Type} : ((OpMoufangLoopOL2Term2 n A) → (OpMoufangLoopOL2Term2 n A)) | (opOL2 eOL2 x) := x | (opOL2 x eOL2) := x | (opOL2 x1 x2) := (opOL2 (simplifyOp x1) (simplifyOp x2)) | eOL2 := eOL2 | (linvOL2 x1 x2) := (linvOL2 (simplifyOp x1) (simplifyOp x2)) | (rinvOL2 x1 x2) := (rinvOL2 (simplifyOp x1) (simplifyOp x2)) | (v2 x1) := (v2 x1) | (sing2 x1) := (sing2 x1) def evalB {A : Type} : ((MoufangLoop A) → (MoufangLoopLTerm → A)) | Mo (opL x1 x2) := ((op Mo) (evalB Mo x1) (evalB Mo x2)) | Mo eL := (e Mo) | Mo (linvL x1 x2) := ((linv Mo) (evalB Mo x1) (evalB Mo x2)) | Mo (rinvL x1 x2) := ((rinv Mo) (evalB Mo x1) (evalB Mo x2)) def evalCl {A : Type} : ((MoufangLoop A) → ((ClMoufangLoopClTerm A) → A)) | Mo (sing x1) := x1 | Mo (opCl x1 x2) := ((op Mo) (evalCl Mo x1) (evalCl Mo x2)) | Mo eCl := (e Mo) | Mo (linvCl x1 x2) := ((linv Mo) (evalCl Mo x1) (evalCl Mo x2)) | Mo (rinvCl x1 x2) := ((rinv Mo) (evalCl Mo x1) (evalCl Mo x2)) def evalOpB {A : Type} {n : ℕ} : ((MoufangLoop A) → ((vector A n) → ((OpMoufangLoopOLTerm n) → A))) | Mo vars (v x1) := (nth vars x1) | Mo vars (opOL x1 x2) := ((op Mo) (evalOpB Mo vars x1) (evalOpB Mo vars x2)) | Mo vars eOL := (e Mo) | Mo vars (linvOL x1 x2) := ((linv Mo) (evalOpB Mo vars x1) (evalOpB Mo vars x2)) | Mo vars (rinvOL x1 x2) := ((rinv Mo) (evalOpB Mo vars x1) (evalOpB Mo vars x2)) def evalOp {A : Type} {n : ℕ} : ((MoufangLoop A) → ((vector A n) → ((OpMoufangLoopOL2Term2 n A) → A))) | Mo vars (v2 x1) := (nth vars x1) | Mo vars (sing2 x1) := x1 | Mo vars (opOL2 x1 x2) := ((op Mo) (evalOp Mo vars x1) (evalOp Mo vars x2)) | Mo vars eOL2 := (e Mo) | Mo vars (linvOL2 x1 x2) := ((linv Mo) (evalOp Mo vars x1) (evalOp Mo vars x2)) | Mo vars (rinvOL2 x1 x2) := ((rinv Mo) (evalOp Mo vars x1) (evalOp Mo vars x2)) def inductionB {P : (MoufangLoopLTerm → Type)} : ((∀ (x1 x2 : MoufangLoopLTerm) , ((P x1) → ((P x2) → (P (opL x1 x2))))) → ((P eL) → ((∀ (x1 x2 : MoufangLoopLTerm) , ((P x1) → ((P x2) → (P (linvL x1 x2))))) → ((∀ (x1 x2 : MoufangLoopLTerm) , ((P x1) → ((P x2) → (P (rinvL x1 x2))))) → (∀ (x : MoufangLoopLTerm) , (P x)))))) | popl pel plinvl prinvl (opL x1 x2) := (popl _ _ (inductionB popl pel plinvl prinvl x1) (inductionB popl pel plinvl prinvl x2)) | popl pel plinvl prinvl eL := pel | popl pel plinvl prinvl (linvL x1 x2) := (plinvl _ _ (inductionB popl pel plinvl prinvl x1) (inductionB popl pel plinvl prinvl x2)) | popl pel plinvl prinvl (rinvL x1 x2) := (prinvl _ _ (inductionB popl pel plinvl prinvl x1) (inductionB popl pel plinvl prinvl x2)) def inductionCl {A : Type} {P : ((ClMoufangLoopClTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 x2 : (ClMoufangLoopClTerm A)) , ((P x1) → ((P x2) → (P (opCl x1 x2))))) → ((P eCl) → ((∀ (x1 x2 : (ClMoufangLoopClTerm A)) , ((P x1) → ((P x2) → (P (linvCl x1 x2))))) → ((∀ (x1 x2 : (ClMoufangLoopClTerm A)) , ((P x1) → ((P x2) → (P (rinvCl x1 x2))))) → (∀ (x : (ClMoufangLoopClTerm A)) , (P x))))))) | psing popcl pecl plinvcl prinvcl (sing x1) := (psing x1) | psing popcl pecl plinvcl prinvcl (opCl x1 x2) := (popcl _ _ (inductionCl psing popcl pecl plinvcl prinvcl x1) (inductionCl psing popcl pecl plinvcl prinvcl x2)) | psing popcl pecl plinvcl prinvcl eCl := pecl | psing popcl pecl plinvcl prinvcl (linvCl x1 x2) := (plinvcl _ _ (inductionCl psing popcl pecl plinvcl prinvcl x1) (inductionCl psing popcl pecl plinvcl prinvcl x2)) | psing popcl pecl plinvcl prinvcl (rinvCl x1 x2) := (prinvcl _ _ (inductionCl psing popcl pecl plinvcl prinvcl x1) (inductionCl psing popcl pecl plinvcl prinvcl x2)) def inductionOpB {n : ℕ} {P : ((OpMoufangLoopOLTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 x2 : (OpMoufangLoopOLTerm n)) , ((P x1) → ((P x2) → (P (opOL x1 x2))))) → ((P eOL) → ((∀ (x1 x2 : (OpMoufangLoopOLTerm n)) , ((P x1) → ((P x2) → (P (linvOL x1 x2))))) → ((∀ (x1 x2 : (OpMoufangLoopOLTerm n)) , ((P x1) → ((P x2) → (P (rinvOL x1 x2))))) → (∀ (x : (OpMoufangLoopOLTerm n)) , (P x))))))) | pv popol peol plinvol prinvol (v x1) := (pv x1) | pv popol peol plinvol prinvol (opOL x1 x2) := (popol _ _ (inductionOpB pv popol peol plinvol prinvol x1) (inductionOpB pv popol peol plinvol prinvol x2)) | pv popol peol plinvol prinvol eOL := peol | pv popol peol plinvol prinvol (linvOL x1 x2) := (plinvol _ _ (inductionOpB pv popol peol plinvol prinvol x1) (inductionOpB pv popol peol plinvol prinvol x2)) | pv popol peol plinvol prinvol (rinvOL x1 x2) := (prinvol _ _ (inductionOpB pv popol peol plinvol prinvol x1) (inductionOpB pv popol peol plinvol prinvol x2)) def inductionOp {n : ℕ} {A : Type} {P : ((OpMoufangLoopOL2Term2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 x2 : (OpMoufangLoopOL2Term2 n A)) , ((P x1) → ((P x2) → (P (opOL2 x1 x2))))) → ((P eOL2) → ((∀ (x1 x2 : (OpMoufangLoopOL2Term2 n A)) , ((P x1) → ((P x2) → (P (linvOL2 x1 x2))))) → ((∀ (x1 x2 : (OpMoufangLoopOL2Term2 n A)) , ((P x1) → ((P x2) → (P (rinvOL2 x1 x2))))) → (∀ (x : (OpMoufangLoopOL2Term2 n A)) , (P x)))))))) | pv2 psing2 popol2 peol2 plinvol2 prinvol2 (v2 x1) := (pv2 x1) | pv2 psing2 popol2 peol2 plinvol2 prinvol2 (sing2 x1) := (psing2 x1) | pv2 psing2 popol2 peol2 plinvol2 prinvol2 (opOL2 x1 x2) := (popol2 _ _ (inductionOp pv2 psing2 popol2 peol2 plinvol2 prinvol2 x1) (inductionOp pv2 psing2 popol2 peol2 plinvol2 prinvol2 x2)) | pv2 psing2 popol2 peol2 plinvol2 prinvol2 eOL2 := peol2 | pv2 psing2 popol2 peol2 plinvol2 prinvol2 (linvOL2 x1 x2) := (plinvol2 _ _ (inductionOp pv2 psing2 popol2 peol2 plinvol2 prinvol2 x1) (inductionOp pv2 psing2 popol2 peol2 plinvol2 prinvol2 x2)) | pv2 psing2 popol2 peol2 plinvol2 prinvol2 (rinvOL2 x1 x2) := (prinvol2 _ _ (inductionOp pv2 psing2 popol2 peol2 plinvol2 prinvol2 x1) (inductionOp pv2 psing2 popol2 peol2 plinvol2 prinvol2 x2)) def stageB : (MoufangLoopLTerm → (Staged MoufangLoopLTerm)) | (opL x1 x2) := (stage2 opL (codeLift2 opL) (stageB x1) (stageB x2)) | eL := (Now eL) | (linvL x1 x2) := (stage2 linvL (codeLift2 linvL) (stageB x1) (stageB x2)) | (rinvL x1 x2) := (stage2 rinvL (codeLift2 rinvL) (stageB x1) (stageB x2)) def stageCl {A : Type} : ((ClMoufangLoopClTerm A) → (Staged (ClMoufangLoopClTerm A))) | (sing x1) := (Now (sing x1)) | (opCl x1 x2) := (stage2 opCl (codeLift2 opCl) (stageCl x1) (stageCl x2)) | eCl := (Now eCl) | (linvCl x1 x2) := (stage2 linvCl (codeLift2 linvCl) (stageCl x1) (stageCl x2)) | (rinvCl x1 x2) := (stage2 rinvCl (codeLift2 rinvCl) (stageCl x1) (stageCl x2)) def stageOpB {n : ℕ} : ((OpMoufangLoopOLTerm n) → (Staged (OpMoufangLoopOLTerm n))) | (v x1) := (const (code (v x1))) | (opOL x1 x2) := (stage2 opOL (codeLift2 opOL) (stageOpB x1) (stageOpB x2)) | eOL := (Now eOL) | (linvOL x1 x2) := (stage2 linvOL (codeLift2 linvOL) (stageOpB x1) (stageOpB x2)) | (rinvOL x1 x2) := (stage2 rinvOL (codeLift2 rinvOL) (stageOpB x1) (stageOpB x2)) def stageOp {n : ℕ} {A : Type} : ((OpMoufangLoopOL2Term2 n A) → (Staged (OpMoufangLoopOL2Term2 n A))) | (sing2 x1) := (Now (sing2 x1)) | (v2 x1) := (const (code (v2 x1))) | (opOL2 x1 x2) := (stage2 opOL2 (codeLift2 opOL2) (stageOp x1) (stageOp x2)) | eOL2 := (Now eOL2) | (linvOL2 x1 x2) := (stage2 linvOL2 (codeLift2 linvOL2) (stageOp x1) (stageOp x2)) | (rinvOL2 x1 x2) := (stage2 rinvOL2 (codeLift2 rinvOL2) (stageOp x1) (stageOp x2)) structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type := (opT : ((Repr A) → ((Repr A) → (Repr A)))) (eT : (Repr A)) (linvT : ((Repr A) → ((Repr A) → (Repr A)))) (rinvT : ((Repr A) → ((Repr A) → (Repr A)))) end MoufangLoop
c1c41306cdc6b4fb22ba80a948723603c51d8f65
02005f45e00c7ecf2c8ca5db60251bd1e9c860b5
/src/topology/metric_space/basic.lean
623643ba4c29e760365e483f7e74c70b39588ba3
[ "Apache-2.0" ]
permissive
anthony2698/mathlib
03cd69fe5c280b0916f6df2d07c614c8e1efe890
407615e05814e98b24b2ff322b14e8e3eb5e5d67
refs/heads/master
1,678,792,774,873
1,614,371,563,000
1,614,371,563,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
77,017
lean
/- Copyright (c) 2015, 2017 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Metric spaces. Authors: Jeremy Avigad, Robert Y. Lewis, Johannes Hölzl, Mario Carneiro, Sébastien Gouëzel Many definitions and theorems expected on metric spaces are already introduced on uniform spaces and topological spaces. For example: open and closed sets, compactness, completeness, continuity and uniform continuity -/ import topology.metric_space.emetric_space import topology.algebra.ordered import data.fintype.intervals open set filter classical topological_space noncomputable theory open_locale uniformity topological_space big_operators filter nnreal ennreal universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- Construct a uniform structure from a distance function and metric space axioms -/ def uniform_space_of_dist (dist : α → α → ℝ) (dist_self : ∀ x : α, dist x x = 0) (dist_comm : ∀ x y : α, dist x y = dist y x) (dist_triangle : ∀ x y z : α, dist x z ≤ dist x y + dist y z) : uniform_space α := uniform_space.of_core { uniformity := (⨅ ε>0, 𝓟 {p:α×α | dist p.1 p.2 < ε}), refl := le_infi $ assume ε, le_infi $ by simp [set.subset_def, id_rel, dist_self, (>)] {contextual := tt}, comp := le_infi $ assume ε, le_infi $ assume h, lift'_le (mem_infi_sets (ε / 2) $ mem_infi_sets (div_pos h zero_lt_two) (subset.refl _)) $ have ∀ (a b c : α), dist a c < ε / 2 → dist c b < ε / 2 → dist a b < ε, from assume a b c hac hcb, calc dist a b ≤ dist a c + dist c b : dist_triangle _ _ _ ... < ε / 2 + ε / 2 : add_lt_add hac hcb ... = ε : by rw [div_add_div_same, add_self_div_two], by simpa [comp_rel], symm := tendsto_infi.2 $ assume ε, tendsto_infi.2 $ assume h, tendsto_infi' ε $ tendsto_infi' h $ tendsto_principal_principal.2 $ by simp [dist_comm] } /-- The distance function (given an ambient metric space on `α`), which returns a nonnegative real number `dist x y` given `x y : α`. -/ class has_dist (α : Type*) := (dist : α → α → ℝ) export has_dist (dist) -- the uniform structure and the emetric space structure are embedded in the metric space structure -- to avoid instance diamond issues. See Note [forgetful inheritance]. /-- Metric space Each metric space induces a canonical `uniform_space` and hence a canonical `topological_space`. This is enforced in the type class definition, by extending the `uniform_space` structure. When instantiating a `metric_space` structure, the uniformity fields are not necessary, they will be filled in by default. In the same way, each metric space induces an emetric space structure. It is included in the structure, but filled in by default. -/ class metric_space (α : Type u) extends has_dist α : Type u := (dist_self : ∀ x : α, dist x x = 0) (eq_of_dist_eq_zero : ∀ {x y : α}, dist x y = 0 → x = y) (dist_comm : ∀ x y : α, dist x y = dist y x) (dist_triangle : ∀ x y z : α, dist x z ≤ dist x y + dist y z) (edist : α → α → ℝ≥0∞ := λx y, ennreal.of_real (dist x y)) (edist_dist : ∀ x y : α, edist x y = ennreal.of_real (dist x y) . control_laws_tac) (to_uniform_space : uniform_space α := uniform_space_of_dist dist dist_self dist_comm dist_triangle) (uniformity_dist : 𝓤 α = ⨅ ε>0, 𝓟 {p:α×α | dist p.1 p.2 < ε} . control_laws_tac) variables [metric_space α] @[priority 100] -- see Note [lower instance priority] instance metric_space.to_uniform_space' : uniform_space α := metric_space.to_uniform_space @[priority 200] -- see Note [lower instance priority] instance metric_space.to_has_edist : has_edist α := ⟨metric_space.edist⟩ @[simp] theorem dist_self (x : α) : dist x x = 0 := metric_space.dist_self x theorem eq_of_dist_eq_zero {x y : α} : dist x y = 0 → x = y := metric_space.eq_of_dist_eq_zero theorem dist_comm (x y : α) : dist x y = dist y x := metric_space.dist_comm x y theorem edist_dist (x y : α) : edist x y = ennreal.of_real (dist x y) := metric_space.edist_dist x y @[simp] theorem dist_eq_zero {x y : α} : dist x y = 0 ↔ x = y := iff.intro eq_of_dist_eq_zero (assume : x = y, this ▸ dist_self _) @[simp] theorem zero_eq_dist {x y : α} : 0 = dist x y ↔ x = y := by rw [eq_comm, dist_eq_zero] theorem dist_triangle (x y z : α) : dist x z ≤ dist x y + dist y z := metric_space.dist_triangle x y z theorem dist_triangle_left (x y z : α) : dist x y ≤ dist z x + dist z y := by rw dist_comm z; apply dist_triangle theorem dist_triangle_right (x y z : α) : dist x y ≤ dist x z + dist y z := by rw dist_comm y; apply dist_triangle lemma dist_triangle4 (x y z w : α) : dist x w ≤ dist x y + dist y z + dist z w := calc dist x w ≤ dist x z + dist z w : dist_triangle x z w ... ≤ (dist x y + dist y z) + dist z w : add_le_add_right (dist_triangle x y z) _ lemma dist_triangle4_left (x₁ y₁ x₂ y₂ : α) : dist x₂ y₂ ≤ dist x₁ y₁ + (dist x₁ x₂ + dist y₁ y₂) := by { rw [add_left_comm, dist_comm x₁, ← add_assoc], apply dist_triangle4 } lemma dist_triangle4_right (x₁ y₁ x₂ y₂ : α) : dist x₁ y₁ ≤ dist x₁ x₂ + dist y₁ y₂ + dist x₂ y₂ := by { rw [add_right_comm, dist_comm y₁], apply dist_triangle4 } /-- The triangle (polygon) inequality for sequences of points; `finset.Ico` version. -/ lemma dist_le_Ico_sum_dist (f : ℕ → α) {m n} (h : m ≤ n) : dist (f m) (f n) ≤ ∑ i in finset.Ico m n, dist (f i) (f (i + 1)) := begin revert n, apply nat.le_induction, { simp only [finset.sum_empty, finset.Ico.self_eq_empty, dist_self] }, { assume n hn hrec, calc dist (f m) (f (n+1)) ≤ dist (f m) (f n) + dist _ _ : dist_triangle _ _ _ ... ≤ ∑ i in finset.Ico m n, _ + _ : add_le_add hrec (le_refl _) ... = ∑ i in finset.Ico m (n+1), _ : by rw [finset.Ico.succ_top hn, finset.sum_insert, add_comm]; simp } end /-- The triangle (polygon) inequality for sequences of points; `finset.range` version. -/ lemma dist_le_range_sum_dist (f : ℕ → α) (n : ℕ) : dist (f 0) (f n) ≤ ∑ i in finset.range n, dist (f i) (f (i + 1)) := finset.Ico.zero_bot n ▸ dist_le_Ico_sum_dist f (nat.zero_le n) /-- A version of `dist_le_Ico_sum_dist` with each intermediate distance replaced with an upper estimate. -/ lemma dist_le_Ico_sum_of_dist_le {f : ℕ → α} {m n} (hmn : m ≤ n) {d : ℕ → ℝ} (hd : ∀ {k}, m ≤ k → k < n → dist (f k) (f (k + 1)) ≤ d k) : dist (f m) (f n) ≤ ∑ i in finset.Ico m n, d i := le_trans (dist_le_Ico_sum_dist f hmn) $ finset.sum_le_sum $ λ k hk, hd (finset.Ico.mem.1 hk).1 (finset.Ico.mem.1 hk).2 /-- A version of `dist_le_range_sum_dist` with each intermediate distance replaced with an upper estimate. -/ lemma dist_le_range_sum_of_dist_le {f : ℕ → α} (n : ℕ) {d : ℕ → ℝ} (hd : ∀ {k}, k < n → dist (f k) (f (k + 1)) ≤ d k) : dist (f 0) (f n) ≤ ∑ i in finset.range n, d i := finset.Ico.zero_bot n ▸ dist_le_Ico_sum_of_dist_le (zero_le n) (λ _ _, hd) theorem swap_dist : function.swap (@dist α _) = dist := by funext x y; exact dist_comm _ _ theorem abs_dist_sub_le (x y z : α) : abs (dist x z - dist y z) ≤ dist x y := abs_sub_le_iff.2 ⟨sub_le_iff_le_add.2 (dist_triangle _ _ _), sub_le_iff_le_add.2 (dist_triangle_left _ _ _)⟩ theorem dist_nonneg {x y : α} : 0 ≤ dist x y := have 2 * dist x y ≥ 0, from calc 2 * dist x y = dist x y + dist y x : by rw [dist_comm x y, two_mul] ... ≥ 0 : by rw ← dist_self x; apply dist_triangle, nonneg_of_mul_nonneg_left this zero_lt_two @[simp] theorem dist_le_zero {x y : α} : dist x y ≤ 0 ↔ x = y := by simpa [le_antisymm_iff, dist_nonneg] using @dist_eq_zero _ _ x y @[simp] theorem dist_pos {x y : α} : 0 < dist x y ↔ x ≠ y := by simpa only [not_le] using not_congr dist_le_zero @[simp] theorem abs_dist {a b : α} : abs (dist a b) = dist a b := abs_of_nonneg dist_nonneg theorem eq_of_forall_dist_le {x y : α} (h : ∀ ε > 0, dist x y ≤ ε) : x = y := eq_of_dist_eq_zero (eq_of_le_of_forall_le_of_dense dist_nonneg h) /-- Distance as a nonnegative real number. -/ def nndist (a b : α) : ℝ≥0 := ⟨dist a b, dist_nonneg⟩ /--Express `nndist` in terms of `edist`-/ lemma nndist_edist (x y : α) : nndist x y = (edist x y).to_nnreal := by simp [nndist, edist_dist, nnreal.of_real, max_eq_left dist_nonneg, ennreal.of_real] /--Express `edist` in terms of `nndist`-/ lemma edist_nndist (x y : α) : edist x y = ↑(nndist x y) := by { rw [edist_dist, nndist, ennreal.of_real_eq_coe_nnreal] } @[simp, norm_cast] lemma ennreal_coe_nndist (x y : α) : ↑(nndist x y) = edist x y := (edist_nndist x y).symm @[simp, norm_cast] lemma edist_lt_coe {x y : α} {c : ℝ≥0} : edist x y < c ↔ nndist x y < c := by rw [edist_nndist, ennreal.coe_lt_coe] @[simp, norm_cast] lemma edist_le_coe {x y : α} {c : ℝ≥0} : edist x y ≤ c ↔ nndist x y ≤ c := by rw [edist_nndist, ennreal.coe_le_coe] /--In a metric space, the extended distance is always finite-/ lemma edist_ne_top (x y : α) : edist x y ≠ ⊤ := by rw [edist_dist x y]; apply ennreal.coe_ne_top /--In a metric space, the extended distance is always finite-/ lemma edist_lt_top {α : Type*} [metric_space α] (x y : α) : edist x y < ⊤ := ennreal.lt_top_iff_ne_top.2 (edist_ne_top x y) /--`nndist x x` vanishes-/ @[simp] lemma nndist_self (a : α) : nndist a a = 0 := (nnreal.coe_eq_zero _).1 (dist_self a) /--Express `dist` in terms of `nndist`-/ lemma dist_nndist (x y : α) : dist x y = ↑(nndist x y) := rfl @[simp, norm_cast] lemma coe_nndist (x y : α) : ↑(nndist x y) = dist x y := (dist_nndist x y).symm @[simp, norm_cast] lemma dist_lt_coe {x y : α} {c : ℝ≥0} : dist x y < c ↔ nndist x y < c := iff.rfl @[simp, norm_cast] lemma dist_le_coe {x y : α} {c : ℝ≥0} : dist x y ≤ c ↔ nndist x y ≤ c := iff.rfl /--Express `nndist` in terms of `dist`-/ lemma nndist_dist (x y : α) : nndist x y = nnreal.of_real (dist x y) := by rw [dist_nndist, nnreal.of_real_coe] /--Deduce the equality of points with the vanishing of the nonnegative distance-/ theorem eq_of_nndist_eq_zero {x y : α} : nndist x y = 0 → x = y := by simp only [← nnreal.eq_iff, ← dist_nndist, imp_self, nnreal.coe_zero, dist_eq_zero] theorem nndist_comm (x y : α) : nndist x y = nndist y x := by simpa only [dist_nndist, nnreal.coe_eq] using dist_comm x y /--Characterize the equality of points with the vanishing of the nonnegative distance-/ @[simp] theorem nndist_eq_zero {x y : α} : nndist x y = 0 ↔ x = y := by simp only [← nnreal.eq_iff, ← dist_nndist, imp_self, nnreal.coe_zero, dist_eq_zero] @[simp] theorem zero_eq_nndist {x y : α} : 0 = nndist x y ↔ x = y := by simp only [← nnreal.eq_iff, ← dist_nndist, imp_self, nnreal.coe_zero, zero_eq_dist] /--Triangle inequality for the nonnegative distance-/ theorem nndist_triangle (x y z : α) : nndist x z ≤ nndist x y + nndist y z := dist_triangle _ _ _ theorem nndist_triangle_left (x y z : α) : nndist x y ≤ nndist z x + nndist z y := dist_triangle_left _ _ _ theorem nndist_triangle_right (x y z : α) : nndist x y ≤ nndist x z + nndist y z := dist_triangle_right _ _ _ /--Express `dist` in terms of `edist`-/ lemma dist_edist (x y : α) : dist x y = (edist x y).to_real := by rw [edist_dist, ennreal.to_real_of_real (dist_nonneg)] namespace metric /- instantiate metric space as a topology -/ variables {x y z : α} {ε ε₁ ε₂ : ℝ} {s : set α} /-- `ball x ε` is the set of all points `y` with `dist y x < ε` -/ def ball (x : α) (ε : ℝ) : set α := {y | dist y x < ε} @[simp] theorem mem_ball : y ∈ ball x ε ↔ dist y x < ε := iff.rfl theorem mem_ball' : y ∈ ball x ε ↔ dist x y < ε := by rw dist_comm; refl @[simp] lemma nonempty_ball (h : 0 < ε) : (ball x ε).nonempty := ⟨x, by simp [h]⟩ lemma ball_eq_ball (ε : ℝ) (x : α) : uniform_space.ball x {p | dist p.2 p.1 < ε} = metric.ball x ε := rfl lemma ball_eq_ball' (ε : ℝ) (x : α) : uniform_space.ball x {p | dist p.1 p.2 < ε} = metric.ball x ε := by { ext, simp [dist_comm, uniform_space.ball] } /-- `closed_ball x ε` is the set of all points `y` with `dist y x ≤ ε` -/ def closed_ball (x : α) (ε : ℝ) := {y | dist y x ≤ ε} @[simp] theorem mem_closed_ball : y ∈ closed_ball x ε ↔ dist y x ≤ ε := iff.rfl /-- `sphere x ε` is the set of all points `y` with `dist y x = ε` -/ def sphere (x : α) (ε : ℝ) := {y | dist y x = ε} @[simp] theorem mem_sphere : y ∈ sphere x ε ↔ dist y x = ε := iff.rfl theorem mem_closed_ball' : y ∈ closed_ball x ε ↔ dist x y ≤ ε := by { rw dist_comm, refl } lemma nonempty_closed_ball (h : 0 ≤ ε) : (closed_ball x ε).nonempty := ⟨x, by simp [h]⟩ theorem ball_subset_closed_ball : ball x ε ⊆ closed_ball x ε := assume y (hy : _ < _), le_of_lt hy theorem sphere_subset_closed_ball : sphere x ε ⊆ closed_ball x ε := λ y, le_of_eq theorem sphere_disjoint_ball : disjoint (sphere x ε) (ball x ε) := λ y ⟨hy₁, hy₂⟩, absurd hy₁ $ ne_of_lt hy₂ @[simp] theorem ball_union_sphere : ball x ε ∪ sphere x ε = closed_ball x ε := set.ext $ λ y, (@le_iff_lt_or_eq ℝ _ _ _).symm @[simp] theorem sphere_union_ball : sphere x ε ∪ ball x ε = closed_ball x ε := by rw [union_comm, ball_union_sphere] @[simp] theorem closed_ball_diff_sphere : closed_ball x ε \ sphere x ε = ball x ε := by rw [← ball_union_sphere, set.union_diff_cancel_right sphere_disjoint_ball.symm] @[simp] theorem closed_ball_diff_ball : closed_ball x ε \ ball x ε = sphere x ε := by rw [← ball_union_sphere, set.union_diff_cancel_left sphere_disjoint_ball.symm] theorem pos_of_mem_ball (hy : y ∈ ball x ε) : 0 < ε := lt_of_le_of_lt dist_nonneg hy theorem mem_ball_self (h : 0 < ε) : x ∈ ball x ε := show dist x x < ε, by rw dist_self; assumption theorem mem_closed_ball_self (h : 0 ≤ ε) : x ∈ closed_ball x ε := show dist x x ≤ ε, by rw dist_self; assumption theorem mem_ball_comm : x ∈ ball y ε ↔ y ∈ ball x ε := by simp [dist_comm] theorem ball_subset_ball (h : ε₁ ≤ ε₂) : ball x ε₁ ⊆ ball x ε₂ := λ y (yx : _ < ε₁), lt_of_lt_of_le yx h theorem closed_ball_subset_closed_ball (h : ε₁ ≤ ε₂) : closed_ball x ε₁ ⊆ closed_ball x ε₂ := λ y (yx : _ ≤ ε₁), le_trans yx h theorem ball_disjoint (h : ε₁ + ε₂ ≤ dist x y) : ball x ε₁ ∩ ball y ε₂ = ∅ := eq_empty_iff_forall_not_mem.2 $ λ z ⟨h₁, h₂⟩, not_lt_of_le (dist_triangle_left x y z) (lt_of_lt_of_le (add_lt_add h₁ h₂) h) theorem ball_disjoint_same (h : ε ≤ dist x y / 2) : ball x ε ∩ ball y ε = ∅ := ball_disjoint $ by rwa [← two_mul, ← le_div_iff' (@zero_lt_two ℝ _ _)] theorem ball_subset (h : dist x y ≤ ε₂ - ε₁) : ball x ε₁ ⊆ ball y ε₂ := λ z zx, by rw ← add_sub_cancel'_right ε₁ ε₂; exact lt_of_le_of_lt (dist_triangle z x y) (add_lt_add_of_lt_of_le zx h) theorem ball_half_subset (y) (h : y ∈ ball x (ε / 2)) : ball y (ε / 2) ⊆ ball x ε := ball_subset $ by rw sub_self_div_two; exact le_of_lt h theorem exists_ball_subset_ball (h : y ∈ ball x ε) : ∃ ε' > 0, ball y ε' ⊆ ball x ε := ⟨_, sub_pos.2 h, ball_subset $ by rw sub_sub_self⟩ @[simp] theorem ball_eq_empty_iff_nonpos : ball x ε = ∅ ↔ ε ≤ 0 := eq_empty_iff_forall_not_mem.trans ⟨λ h, le_of_not_gt $ λ ε0, h _ $ mem_ball_self ε0, λ ε0 y h, not_lt_of_le ε0 $ pos_of_mem_ball h⟩ @[simp] theorem closed_ball_eq_empty_iff_neg : closed_ball x ε = ∅ ↔ ε < 0 := eq_empty_iff_forall_not_mem.trans ⟨λ h, not_le.1 $ λ ε0, h x $ mem_closed_ball_self ε0, λ ε0 y h, not_lt_of_le (mem_closed_ball.1 h) (lt_of_lt_of_le ε0 dist_nonneg)⟩ @[simp] lemma ball_zero : ball x 0 = ∅ := by rw [ball_eq_empty_iff_nonpos] @[simp] lemma closed_ball_zero : closed_ball x 0 = {x} := set.ext $ λ y, dist_le_zero theorem uniformity_basis_dist : (𝓤 α).has_basis (λ ε : ℝ, 0 < ε) (λ ε, {p:α×α | dist p.1 p.2 < ε}) := begin rw ← metric_space.uniformity_dist.symm, refine has_basis_binfi_principal _ nonempty_Ioi, exact λ r (hr : 0 < r) p (hp : 0 < p), ⟨min r p, lt_min hr hp, λ x (hx : dist _ _ < _), lt_of_lt_of_le hx (min_le_left r p), λ x (hx : dist _ _ < _), lt_of_lt_of_le hx (min_le_right r p)⟩ end /-- Given `f : β → ℝ`, if `f` sends `{i | p i}` to a set of positive numbers accumulating to zero, then `f i`-neighborhoods of the diagonal form a basis of `𝓤 α`. For specific bases see `uniformity_basis_dist`, `uniformity_basis_dist_inv_nat_succ`, and `uniformity_basis_dist_inv_nat_pos`. -/ protected theorem mk_uniformity_basis {β : Type*} {p : β → Prop} {f : β → ℝ} (hf₀ : ∀ i, p i → 0 < f i) (hf : ∀ ⦃ε⦄, 0 < ε → ∃ i (hi : p i), f i ≤ ε) : (𝓤 α).has_basis p (λ i, {p:α×α | dist p.1 p.2 < f i}) := begin refine ⟨λ s, uniformity_basis_dist.mem_iff.trans _⟩, split, { rintros ⟨ε, ε₀, hε⟩, obtain ⟨i, hi, H⟩ : ∃ i (hi : p i), f i ≤ ε, from hf ε₀, exact ⟨i, hi, λ x (hx : _ < _), hε $ lt_of_lt_of_le hx H⟩ }, { exact λ ⟨i, hi, H⟩, ⟨f i, hf₀ i hi, H⟩ } end theorem uniformity_basis_dist_inv_nat_succ : (𝓤 α).has_basis (λ _, true) (λ n:ℕ, {p:α×α | dist p.1 p.2 < 1 / (↑n+1) }) := metric.mk_uniformity_basis (λ n _, div_pos zero_lt_one $ nat.cast_add_one_pos n) (λ ε ε0, (exists_nat_one_div_lt ε0).imp $ λ n hn, ⟨trivial, le_of_lt hn⟩) theorem uniformity_basis_dist_inv_nat_pos : (𝓤 α).has_basis (λ n:ℕ, 0<n) (λ n:ℕ, {p:α×α | dist p.1 p.2 < 1 / ↑n }) := metric.mk_uniformity_basis (λ n hn, div_pos zero_lt_one $ nat.cast_pos.2 hn) (λ ε ε0, let ⟨n, hn⟩ := exists_nat_one_div_lt ε0 in ⟨n+1, nat.succ_pos n, le_of_lt hn⟩) /-- Given `f : β → ℝ`, if `f` sends `{i | p i}` to a set of positive numbers accumulating to zero, then closed neighborhoods of the diagonal of sizes `{f i | p i}` form a basis of `𝓤 α`. Currently we have only one specific basis `uniformity_basis_dist_le` based on this constructor. More can be easily added if needed in the future. -/ protected theorem mk_uniformity_basis_le {β : Type*} {p : β → Prop} {f : β → ℝ} (hf₀ : ∀ x, p x → 0 < f x) (hf : ∀ ε, 0 < ε → ∃ x (hx : p x), f x ≤ ε) : (𝓤 α).has_basis p (λ x, {p:α×α | dist p.1 p.2 ≤ f x}) := begin refine ⟨λ s, uniformity_basis_dist.mem_iff.trans _⟩, split, { rintros ⟨ε, ε₀, hε⟩, rcases exists_between ε₀ with ⟨ε', hε'⟩, rcases hf ε' hε'.1 with ⟨i, hi, H⟩, exact ⟨i, hi, λ x (hx : _ ≤ _), hε $ lt_of_le_of_lt (le_trans hx H) hε'.2⟩ }, { exact λ ⟨i, hi, H⟩, ⟨f i, hf₀ i hi, λ x (hx : _ < _), H (le_of_lt hx)⟩ } end /-- Contant size closed neighborhoods of the diagonal form a basis of the uniformity filter. -/ theorem uniformity_basis_dist_le : (𝓤 α).has_basis (λ ε : ℝ, 0 < ε) (λ ε, {p:α×α | dist p.1 p.2 ≤ ε}) := metric.mk_uniformity_basis_le (λ _, id) (λ ε ε₀, ⟨ε, ε₀, le_refl ε⟩) theorem mem_uniformity_dist {s : set (α×α)} : s ∈ 𝓤 α ↔ (∃ε>0, ∀{a b:α}, dist a b < ε → (a, b) ∈ s) := uniformity_basis_dist.mem_uniformity_iff /-- A constant size neighborhood of the diagonal is an entourage. -/ theorem dist_mem_uniformity {ε:ℝ} (ε0 : 0 < ε) : {p:α×α | dist p.1 p.2 < ε} ∈ 𝓤 α := mem_uniformity_dist.2 ⟨ε, ε0, λ a b, id⟩ theorem uniform_continuous_iff [metric_space β] {f : α → β} : uniform_continuous f ↔ ∀ ε > 0, ∃ δ > 0, ∀{a b:α}, dist a b < δ → dist (f a) (f b) < ε := uniformity_basis_dist.uniform_continuous_iff uniformity_basis_dist lemma uniform_continuous_on_iff [metric_space β] {f : α → β} {s : set α} : uniform_continuous_on f s ↔ ∀ ε > 0, ∃ δ > 0, ∀ x y ∈ s, dist x y < δ → dist (f x) (f y) < ε := begin dsimp [uniform_continuous_on], rw (metric.uniformity_basis_dist.inf_principal (s.prod s)).tendsto_iff metric.uniformity_basis_dist, simp only [and_imp, exists_prop, prod.forall, mem_inter_eq, gt_iff_lt, mem_set_of_eq, mem_prod], finish, end theorem uniform_embedding_iff [metric_space β] {f : α → β} : uniform_embedding f ↔ function.injective f ∧ uniform_continuous f ∧ ∀ δ > 0, ∃ ε > 0, ∀ {a b : α}, dist (f a) (f b) < ε → dist a b < δ := uniform_embedding_def'.trans $ and_congr iff.rfl $ and_congr iff.rfl ⟨λ H δ δ0, let ⟨t, tu, ht⟩ := H _ (dist_mem_uniformity δ0), ⟨ε, ε0, hε⟩ := mem_uniformity_dist.1 tu in ⟨ε, ε0, λ a b h, ht _ _ (hε h)⟩, λ H s su, let ⟨δ, δ0, hδ⟩ := mem_uniformity_dist.1 su, ⟨ε, ε0, hε⟩ := H _ δ0 in ⟨_, dist_mem_uniformity ε0, λ a b h, hδ (hε h)⟩⟩ /-- A map between metric spaces is a uniform embedding if and only if the distance between `f x` and `f y` is controlled in terms of the distance between `x` and `y` and conversely. -/ theorem uniform_embedding_iff' [metric_space β] {f : α → β} : uniform_embedding f ↔ (∀ ε > 0, ∃ δ > 0, ∀ {a b : α}, dist a b < δ → dist (f a) (f b) < ε) ∧ (∀ δ > 0, ∃ ε > 0, ∀ {a b : α}, dist (f a) (f b) < ε → dist a b < δ) := begin split, { assume h, exact ⟨uniform_continuous_iff.1 (uniform_embedding_iff.1 h).2.1, (uniform_embedding_iff.1 h).2.2⟩ }, { rintros ⟨h₁, h₂⟩, refine uniform_embedding_iff.2 ⟨_, uniform_continuous_iff.2 h₁, h₂⟩, assume x y hxy, have : dist x y ≤ 0, { refine le_of_forall_lt' (λδ δpos, _), rcases h₂ δ δpos with ⟨ε, εpos, hε⟩, have : dist (f x) (f y) < ε, by simpa [hxy], exact hε this }, simpa using this } end theorem totally_bounded_iff {s : set α} : totally_bounded s ↔ ∀ ε > 0, ∃t : set α, finite t ∧ s ⊆ ⋃y∈t, ball y ε := ⟨λ H ε ε0, H _ (dist_mem_uniformity ε0), λ H r ru, let ⟨ε, ε0, hε⟩ := mem_uniformity_dist.1 ru, ⟨t, ft, h⟩ := H ε ε0 in ⟨t, ft, subset.trans h $ Union_subset_Union $ λ y, Union_subset_Union $ λ yt z, hε⟩⟩ /-- A metric space space is totally bounded if one can reconstruct up to any ε>0 any element of the space from finitely many data. -/ lemma totally_bounded_of_finite_discretization {s : set α} (H : ∀ε > (0 : ℝ), ∃ (β : Type u) [fintype β] (F : s → β), ∀x y, F x = F y → dist (x:α) y < ε) : totally_bounded s := begin cases s.eq_empty_or_nonempty with hs hs, { rw hs, exact totally_bounded_empty }, rcases hs with ⟨x0, hx0⟩, haveI : inhabited s := ⟨⟨x0, hx0⟩⟩, refine totally_bounded_iff.2 (λ ε ε0, _), rcases H ε ε0 with ⟨β, fβ, F, hF⟩, resetI, let Finv := function.inv_fun F, refine ⟨range (subtype.val ∘ Finv), finite_range _, λ x xs, _⟩, let x' := Finv (F ⟨x, xs⟩), have : F x' = F ⟨x, xs⟩ := function.inv_fun_eq ⟨⟨x, xs⟩, rfl⟩, simp only [set.mem_Union, set.mem_range], exact ⟨_, ⟨F ⟨x, xs⟩, rfl⟩, hF _ _ this.symm⟩ end theorem finite_approx_of_totally_bounded {s : set α} (hs : totally_bounded s) : ∀ ε > 0, ∃ t ⊆ s, finite t ∧ s ⊆ ⋃y∈t, ball y ε := begin intros ε ε_pos, rw totally_bounded_iff_subset at hs, exact hs _ (dist_mem_uniformity ε_pos), end /-- Expressing locally uniform convergence on a set using `dist`. -/ lemma tendsto_locally_uniformly_on_iff {ι : Type*} [topological_space β] {F : ι → β → α} {f : β → α} {p : filter ι} {s : set β} : tendsto_locally_uniformly_on F f p s ↔ ∀ ε > 0, ∀ x ∈ s, ∃ t ∈ 𝓝[s] x, ∀ᶠ n in p, ∀ y ∈ t, dist (f y) (F n y) < ε := begin refine ⟨λ H ε hε, H _ (dist_mem_uniformity hε), λ H u hu x hx, _⟩, rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩, rcases H ε εpos x hx with ⟨t, ht, Ht⟩, exact ⟨t, ht, Ht.mono (λ n hs x hx, hε (hs x hx))⟩ end /-- Expressing uniform convergence on a set using `dist`. -/ lemma tendsto_uniformly_on_iff {ι : Type*} {F : ι → β → α} {f : β → α} {p : filter ι} {s : set β} : tendsto_uniformly_on F f p s ↔ ∀ ε > 0, ∀ᶠ n in p, ∀ x ∈ s, dist (f x) (F n x) < ε := begin refine ⟨λ H ε hε, H _ (dist_mem_uniformity hε), λ H u hu, _⟩, rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩, exact (H ε εpos).mono (λ n hs x hx, hε (hs x hx)) end /-- Expressing locally uniform convergence using `dist`. -/ lemma tendsto_locally_uniformly_iff {ι : Type*} [topological_space β] {F : ι → β → α} {f : β → α} {p : filter ι} : tendsto_locally_uniformly F f p ↔ ∀ ε > 0, ∀ (x : β), ∃ t ∈ 𝓝 x, ∀ᶠ n in p, ∀ y ∈ t, dist (f y) (F n y) < ε := by simp only [← tendsto_locally_uniformly_on_univ, tendsto_locally_uniformly_on_iff, nhds_within_univ, mem_univ, forall_const, exists_prop] /-- Expressing uniform convergence using `dist`. -/ lemma tendsto_uniformly_iff {ι : Type*} {F : ι → β → α} {f : β → α} {p : filter ι} : tendsto_uniformly F f p ↔ ∀ ε > 0, ∀ᶠ n in p, ∀ x, dist (f x) (F n x) < ε := by { rw [← tendsto_uniformly_on_univ, tendsto_uniformly_on_iff], simp } protected lemma cauchy_iff {f : filter α} : cauchy f ↔ ne_bot f ∧ ∀ ε > 0, ∃ t ∈ f, ∀ x y ∈ t, dist x y < ε := uniformity_basis_dist.cauchy_iff theorem nhds_basis_ball : (𝓝 x).has_basis (λ ε:ℝ, 0 < ε) (ball x) := nhds_basis_uniformity uniformity_basis_dist theorem mem_nhds_iff : s ∈ 𝓝 x ↔ ∃ε>0, ball x ε ⊆ s := nhds_basis_ball.mem_iff theorem eventually_nhds_iff {p : α → Prop} : (∀ᶠ y in 𝓝 x, p y) ↔ ∃ε>0, ∀ ⦃y⦄, dist y x < ε → p y := mem_nhds_iff lemma eventually_nhds_iff_ball {p : α → Prop} : (∀ᶠ y in 𝓝 x, p y) ↔ ∃ ε>0, ∀ y ∈ ball x ε, p y := mem_nhds_iff theorem nhds_basis_closed_ball : (𝓝 x).has_basis (λ ε:ℝ, 0 < ε) (closed_ball x) := nhds_basis_uniformity uniformity_basis_dist_le theorem nhds_basis_ball_inv_nat_succ : (𝓝 x).has_basis (λ _, true) (λ n:ℕ, ball x (1 / (↑n+1))) := nhds_basis_uniformity uniformity_basis_dist_inv_nat_succ theorem nhds_basis_ball_inv_nat_pos : (𝓝 x).has_basis (λ n, 0<n) (λ n:ℕ, ball x (1 / ↑n)) := nhds_basis_uniformity uniformity_basis_dist_inv_nat_pos theorem is_open_iff : is_open s ↔ ∀x∈s, ∃ε>0, ball x ε ⊆ s := by simp only [is_open_iff_mem_nhds, mem_nhds_iff] theorem is_open_ball : is_open (ball x ε) := is_open_iff.2 $ λ y, exists_ball_subset_ball theorem ball_mem_nhds (x : α) {ε : ℝ} (ε0 : 0 < ε) : ball x ε ∈ 𝓝 x := mem_nhds_sets is_open_ball (mem_ball_self ε0) theorem closed_ball_mem_nhds (x : α) {ε : ℝ} (ε0 : 0 < ε) : closed_ball x ε ∈ 𝓝 x := mem_sets_of_superset (ball_mem_nhds x ε0) ball_subset_closed_ball theorem nhds_within_basis_ball {s : set α} : (𝓝[s] x).has_basis (λ ε:ℝ, 0 < ε) (λ ε, ball x ε ∩ s) := nhds_within_has_basis nhds_basis_ball s theorem mem_nhds_within_iff {t : set α} : s ∈ 𝓝[t] x ↔ ∃ε>0, ball x ε ∩ t ⊆ s := nhds_within_basis_ball.mem_iff theorem tendsto_nhds_within_nhds_within [metric_space β] {t : set β} {f : α → β} {a b} : tendsto f (𝓝[s] a) (𝓝[t] b) ↔ ∀ ε > 0, ∃ δ > 0, ∀{x:α}, x ∈ s → dist x a < δ → f x ∈ t ∧ dist (f x) b < ε := (nhds_within_basis_ball.tendsto_iff nhds_within_basis_ball).trans $ by simp only [inter_comm, mem_inter_iff, and_imp, mem_ball] theorem tendsto_nhds_within_nhds [metric_space β] {f : α → β} {a b} : tendsto f (𝓝[s] a) (𝓝 b) ↔ ∀ ε > 0, ∃ δ > 0, ∀{x:α}, x ∈ s → dist x a < δ → dist (f x) b < ε := by { rw [← nhds_within_univ b, tendsto_nhds_within_nhds_within], simp only [mem_univ, true_and] } theorem tendsto_nhds_nhds [metric_space β] {f : α → β} {a b} : tendsto f (𝓝 a) (𝓝 b) ↔ ∀ ε > 0, ∃ δ > 0, ∀{x:α}, dist x a < δ → dist (f x) b < ε := nhds_basis_ball.tendsto_iff nhds_basis_ball theorem continuous_at_iff [metric_space β] {f : α → β} {a : α} : continuous_at f a ↔ ∀ ε > 0, ∃ δ > 0, ∀{x:α}, dist x a < δ → dist (f x) (f a) < ε := by rw [continuous_at, tendsto_nhds_nhds] theorem continuous_within_at_iff [metric_space β] {f : α → β} {a : α} {s : set α} : continuous_within_at f s a ↔ ∀ ε > 0, ∃ δ > 0, ∀{x:α}, x ∈ s → dist x a < δ → dist (f x) (f a) < ε := by rw [continuous_within_at, tendsto_nhds_within_nhds] theorem continuous_on_iff [metric_space β] {f : α → β} {s : set α} : continuous_on f s ↔ ∀ (b ∈ s) (ε > 0), ∃ δ > 0, ∀a ∈ s, dist a b < δ → dist (f a) (f b) < ε := by simp [continuous_on, continuous_within_at_iff] theorem continuous_iff [metric_space β] {f : α → β} : continuous f ↔ ∀b (ε > 0), ∃ δ > 0, ∀a, dist a b < δ → dist (f a) (f b) < ε := continuous_iff_continuous_at.trans $ forall_congr $ λ b, tendsto_nhds_nhds theorem tendsto_nhds {f : filter β} {u : β → α} {a : α} : tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, dist (u x) a < ε := nhds_basis_ball.tendsto_right_iff theorem continuous_at_iff' [topological_space β] {f : β → α} {b : β} : continuous_at f b ↔ ∀ ε > 0, ∀ᶠ x in 𝓝 b, dist (f x) (f b) < ε := by rw [continuous_at, tendsto_nhds] theorem continuous_within_at_iff' [topological_space β] {f : β → α} {b : β} {s : set β} : continuous_within_at f s b ↔ ∀ ε > 0, ∀ᶠ x in 𝓝[s] b, dist (f x) (f b) < ε := by rw [continuous_within_at, tendsto_nhds] theorem continuous_on_iff' [topological_space β] {f : β → α} {s : set β} : continuous_on f s ↔ ∀ (b ∈ s) (ε > 0), ∀ᶠ x in 𝓝[s] b, dist (f x) (f b) < ε := by simp [continuous_on, continuous_within_at_iff'] theorem continuous_iff' [topological_space β] {f : β → α} : continuous f ↔ ∀a (ε > 0), ∀ᶠ x in 𝓝 a, dist (f x) (f a) < ε := continuous_iff_continuous_at.trans $ forall_congr $ λ b, tendsto_nhds theorem tendsto_at_top [nonempty β] [semilattice_sup β] {u : β → α} {a : α} : tendsto u at_top (𝓝 a) ↔ ∀ε>0, ∃N, ∀n≥N, dist (u n) a < ε := (at_top_basis.tendsto_iff nhds_basis_ball).trans $ by { simp only [exists_prop, true_and], refl } lemma is_open_singleton_iff {X : Type*} [metric_space X] {x : X} : is_open ({x} : set X) ↔ ∃ ε > 0, ∀ y, dist y x < ε → y = x := by simp [is_open_iff, subset_singleton_iff, mem_ball] /-- Given a point `x` in a discrete subset `s` of a metric space, there is an open ball centered at `x` and intersecting `s` only at `x`. -/ lemma exists_ball_inter_eq_singleton_of_mem_discrete [discrete_topology s] {x : α} (hx : x ∈ s) : ∃ ε > 0, metric.ball x ε ∩ s = {x} := nhds_basis_ball.exists_inter_eq_singleton_of_mem_discrete hx /-- Given a point `x` in a discrete subset `s` of a metric space, there is a closed ball of positive radius centered at `x` and intersecting `s` only at `x`. -/ lemma exists_closed_ball_inter_eq_singleton_of_discrete [discrete_topology s] {x : α} (hx : x ∈ s) : ∃ ε > 0, metric.closed_ball x ε ∩ s = {x} := nhds_basis_closed_ball.exists_inter_eq_singleton_of_mem_discrete hx end metric open metric @[priority 100] -- see Note [lower instance priority] instance metric_space.to_separated : separated_space α := separated_def.2 $ λ x y h, eq_of_forall_dist_le $ λ ε ε0, le_of_lt (h _ (dist_mem_uniformity ε0)) /-Instantiate a metric space as an emetric space. Before we can state the instance, we need to show that the uniform structure coming from the edistance and the distance coincide. -/ /-- Expressing the uniformity in terms of `edist` -/ protected lemma metric.uniformity_basis_edist : (𝓤 α).has_basis (λ ε:ℝ≥0∞, 0 < ε) (λ ε, {p | edist p.1 p.2 < ε}) := ⟨begin intro t, refine mem_uniformity_dist.trans ⟨_, _⟩; rintro ⟨ε, ε0, Hε⟩, { use [ennreal.of_real ε, ennreal.of_real_pos.2 ε0], rintros ⟨a, b⟩, simp only [edist_dist, ennreal.of_real_lt_of_real_iff ε0], exact Hε }, { rcases ennreal.lt_iff_exists_real_btwn.1 ε0 with ⟨ε', _, ε0', hε⟩, rw [ennreal.of_real_pos] at ε0', refine ⟨ε', ε0', λ a b h, Hε (lt_trans _ hε)⟩, rwa [edist_dist, ennreal.of_real_lt_of_real_iff ε0'] } end⟩ theorem metric.uniformity_edist : 𝓤 α = (⨅ ε>0, 𝓟 {p:α×α | edist p.1 p.2 < ε}) := metric.uniformity_basis_edist.eq_binfi /-- A metric space induces an emetric space -/ @[priority 100] -- see Note [lower instance priority] instance metric_space.to_emetric_space : emetric_space α := { edist := edist, edist_self := by simp [edist_dist], eq_of_edist_eq_zero := assume x y h, by simpa [edist_dist] using h, edist_comm := by simp only [edist_dist, dist_comm]; simp, edist_triangle := assume x y z, begin simp only [edist_dist, ← ennreal.of_real_add, dist_nonneg], rw ennreal.of_real_le_of_real_iff _, { exact dist_triangle _ _ _ }, { simpa using add_le_add (dist_nonneg : 0 ≤ dist x y) dist_nonneg } end, uniformity_edist := metric.uniformity_edist, ..‹metric_space α› } /-- Balls defined using the distance or the edistance coincide -/ lemma metric.emetric_ball {x : α} {ε : ℝ} : emetric.ball x (ennreal.of_real ε) = ball x ε := begin ext y, simp only [emetric.mem_ball, mem_ball, edist_dist], exact ennreal.of_real_lt_of_real_iff_of_nonneg dist_nonneg end /-- Balls defined using the distance or the edistance coincide -/ lemma metric.emetric_ball_nnreal {x : α} {ε : ℝ≥0} : emetric.ball x ε = ball x ε := by { convert metric.emetric_ball, simp } /-- Closed balls defined using the distance or the edistance coincide -/ lemma metric.emetric_closed_ball {x : α} {ε : ℝ} (h : 0 ≤ ε) : emetric.closed_ball x (ennreal.of_real ε) = closed_ball x ε := by ext y; simp [edist_dist]; rw ennreal.of_real_le_of_real_iff h /-- Closed balls defined using the distance or the edistance coincide -/ lemma metric.emetric_closed_ball_nnreal {x : α} {ε : ℝ≥0} : emetric.closed_ball x ε = closed_ball x ε := by { convert metric.emetric_closed_ball ε.2, simp } /-- Build a new metric space from an old one where the bundled uniform structure is provably (but typically non-definitionaly) equal to some given uniform structure. See Note [forgetful inheritance]. -/ def metric_space.replace_uniformity {α} [U : uniform_space α] (m : metric_space α) (H : @uniformity _ U = @uniformity _ emetric_space.to_uniform_space') : metric_space α := { dist := @dist _ m.to_has_dist, dist_self := dist_self, eq_of_dist_eq_zero := @eq_of_dist_eq_zero _ _, dist_comm := dist_comm, dist_triangle := dist_triangle, edist := edist, edist_dist := edist_dist, to_uniform_space := U, uniformity_dist := H.trans metric_space.uniformity_dist } /-- One gets a metric space from an emetric space if the edistance is everywhere finite, by pushing the edistance to reals. We set it up so that the edist and the uniformity are defeq in the metric space and the emetric space. In this definition, the distance is given separately, to be able to prescribe some expression which is not defeq to the push-forward of the edistance to reals. -/ def emetric_space.to_metric_space_of_dist {α : Type u} [e : emetric_space α] (dist : α → α → ℝ) (edist_ne_top : ∀x y: α, edist x y ≠ ⊤) (h : ∀x y, dist x y = ennreal.to_real (edist x y)) : metric_space α := let m : metric_space α := { dist := dist, eq_of_dist_eq_zero := λx y hxy, by simpa [h, ennreal.to_real_eq_zero_iff, edist_ne_top x y] using hxy, dist_self := λx, by simp [h], dist_comm := λx y, by simp [h, emetric_space.edist_comm], dist_triangle := λx y z, begin simp only [h], rw [← ennreal.to_real_add (edist_ne_top _ _) (edist_ne_top _ _), ennreal.to_real_le_to_real (edist_ne_top _ _)], { exact edist_triangle _ _ _ }, { simp [ennreal.add_eq_top, edist_ne_top] } end, edist := λx y, edist x y, edist_dist := λx y, by simp [h, ennreal.of_real_to_real, edist_ne_top] } in m.replace_uniformity $ by { rw [uniformity_edist, metric.uniformity_edist], refl } /-- One gets a metric space from an emetric space if the edistance is everywhere finite, by pushing the edistance to reals. We set it up so that the edist and the uniformity are defeq in the metric space and the emetric space. -/ def emetric_space.to_metric_space {α : Type u} [e : emetric_space α] (h : ∀x y: α, edist x y ≠ ⊤) : metric_space α := emetric_space.to_metric_space_of_dist (λx y, ennreal.to_real (edist x y)) h (λx y, rfl) /-- A very useful criterion to show that a space is complete is to show that all sequences which satisfy a bound of the form `dist (u n) (u m) < B N` for all `n m ≥ N` are converging. This is often applied for `B N = 2^{-N}`, i.e., with a very fast convergence to `0`, which makes it possible to use arguments of converging series, while this is impossible to do in general for arbitrary Cauchy sequences. -/ theorem metric.complete_of_convergent_controlled_sequences (B : ℕ → real) (hB : ∀n, 0 < B n) (H : ∀u : ℕ → α, (∀N n m : ℕ, N ≤ n → N ≤ m → dist (u n) (u m) < B N) → ∃x, tendsto u at_top (𝓝 x)) : complete_space α := begin -- this follows from the same criterion in emetric spaces. We just need to translate -- the convergence assumption from `dist` to `edist` apply emetric.complete_of_convergent_controlled_sequences (λn, ennreal.of_real (B n)), { simp [hB] }, { assume u Hu, apply H, assume N n m hn hm, rw [← ennreal.of_real_lt_of_real_iff (hB N), ← edist_dist], exact Hu N n m hn hm } end theorem metric.complete_of_cauchy_seq_tendsto : (∀ u : ℕ → α, cauchy_seq u → ∃a, tendsto u at_top (𝓝 a)) → complete_space α := emetric.complete_of_cauchy_seq_tendsto section real /-- Instantiate the reals as a metric space. -/ instance real.metric_space : metric_space ℝ := { dist := λx y, abs (x - y), dist_self := by simp [abs_zero], eq_of_dist_eq_zero := by simp [sub_eq_zero], dist_comm := assume x y, abs_sub _ _, dist_triangle := assume x y z, abs_sub_le _ _ _ } theorem real.dist_eq (x y : ℝ) : dist x y = abs (x - y) := rfl theorem real.dist_0_eq_abs (x : ℝ) : dist x 0 = abs x := by simp [real.dist_eq] instance : order_topology ℝ := order_topology_of_nhds_abs $ λ x, begin simp only [show ∀ r, {b : ℝ | abs (x - b) < r} = ball x r, by simp [abs_sub, ball, real.dist_eq]], apply le_antisymm, { simp [le_infi_iff], exact λ ε ε0, mem_nhds_sets (is_open_ball) (mem_ball_self ε0) }, { intros s h, rcases mem_nhds_iff.1 h with ⟨ε, ε0, ss⟩, exact mem_infi_sets _ (mem_infi_sets ε0 (mem_principal_sets.2 ss)) }, end lemma closed_ball_Icc {x r : ℝ} : closed_ball x r = Icc (x-r) (x+r) := by ext y; rw [mem_closed_ball, dist_comm, real.dist_eq, abs_sub_le_iff, mem_Icc, ← sub_le_iff_le_add', sub_le] /-- Special case of the sandwich theorem; see `tendsto_of_tendsto_of_tendsto_of_le_of_le'` for the general case. -/ lemma squeeze_zero' {α} {f g : α → ℝ} {t₀ : filter α} (hf : ∀ᶠ t in t₀, 0 ≤ f t) (hft : ∀ᶠ t in t₀, f t ≤ g t) (g0 : tendsto g t₀ (nhds 0)) : tendsto f t₀ (𝓝 0) := tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds g0 hf hft /-- Special case of the sandwich theorem; see `tendsto_of_tendsto_of_tendsto_of_le_of_le` and `tendsto_of_tendsto_of_tendsto_of_le_of_le'` for the general case. -/ lemma squeeze_zero {α} {f g : α → ℝ} {t₀ : filter α} (hf : ∀t, 0 ≤ f t) (hft : ∀t, f t ≤ g t) (g0 : tendsto g t₀ (𝓝 0)) : tendsto f t₀ (𝓝 0) := squeeze_zero' (eventually_of_forall hf) (eventually_of_forall hft) g0 theorem metric.uniformity_eq_comap_nhds_zero : 𝓤 α = comap (λp:α×α, dist p.1 p.2) (𝓝 (0 : ℝ)) := by { ext s, simp [mem_uniformity_dist, (nhds_basis_ball.comap _).mem_iff, subset_def, real.dist_0_eq_abs] } lemma cauchy_seq_iff_tendsto_dist_at_top_0 [nonempty β] [semilattice_sup β] {u : β → α} : cauchy_seq u ↔ tendsto (λ (n : β × β), dist (u n.1) (u n.2)) at_top (𝓝 0) := by rw [cauchy_seq_iff_tendsto, metric.uniformity_eq_comap_nhds_zero, tendsto_comap_iff, prod.map_def] lemma tendsto_uniformity_iff_dist_tendsto_zero {ι : Type*} {f : ι → α × α} {p : filter ι} : tendsto f p (𝓤 α) ↔ tendsto (λ x, dist (f x).1 (f x).2) p (𝓝 0) := by rw [metric.uniformity_eq_comap_nhds_zero, tendsto_comap_iff] lemma filter.tendsto.congr_dist {ι : Type*} {f₁ f₂ : ι → α} {p : filter ι} {a : α} (h₁ : tendsto f₁ p (𝓝 a)) (h : tendsto (λ x, dist (f₁ x) (f₂ x)) p (𝓝 0)) : tendsto f₂ p (𝓝 a) := h₁.congr_uniformity $ tendsto_uniformity_iff_dist_tendsto_zero.2 h alias filter.tendsto.congr_dist ← tendsto_of_tendsto_of_dist lemma tendsto_iff_of_dist {ι : Type*} {f₁ f₂ : ι → α} {p : filter ι} {a : α} (h : tendsto (λ x, dist (f₁ x) (f₂ x)) p (𝓝 0)) : tendsto f₁ p (𝓝 a) ↔ tendsto f₂ p (𝓝 a) := uniform.tendsto_congr $ tendsto_uniformity_iff_dist_tendsto_zero.2 h end real section cauchy_seq variables [nonempty β] [semilattice_sup β] /-- In a metric space, Cauchy sequences are characterized by the fact that, eventually, the distance between its elements is arbitrarily small -/ @[nolint ge_or_gt] -- see Note [nolint_ge] theorem metric.cauchy_seq_iff {u : β → α} : cauchy_seq u ↔ ∀ε>0, ∃N, ∀m n≥N, dist (u m) (u n) < ε := uniformity_basis_dist.cauchy_seq_iff /-- A variation around the metric characterization of Cauchy sequences -/ theorem metric.cauchy_seq_iff' {u : β → α} : cauchy_seq u ↔ ∀ε>0, ∃N, ∀n≥N, dist (u n) (u N) < ε := uniformity_basis_dist.cauchy_seq_iff' /-- If the distance between `s n` and `s m`, `n, m ≥ N` is bounded above by `b N` and `b` converges to zero, then `s` is a Cauchy sequence. -/ lemma cauchy_seq_of_le_tendsto_0 {s : β → α} (b : β → ℝ) (h : ∀ n m N : β, N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) (h₀ : tendsto b at_top (nhds 0)) : cauchy_seq s := metric.cauchy_seq_iff.2 $ λ ε ε0, (metric.tendsto_at_top.1 h₀ ε ε0).imp $ λ N hN m n hm hn, calc dist (s m) (s n) ≤ b N : h m n N hm hn ... ≤ abs (b N) : le_abs_self _ ... = dist (b N) 0 : by rw real.dist_0_eq_abs; refl ... < ε : (hN _ (le_refl N)) /-- A Cauchy sequence on the natural numbers is bounded. -/ theorem cauchy_seq_bdd {u : ℕ → α} (hu : cauchy_seq u) : ∃ R > 0, ∀ m n, dist (u m) (u n) < R := begin rcases metric.cauchy_seq_iff'.1 hu 1 zero_lt_one with ⟨N, hN⟩, suffices : ∃ R > 0, ∀ n, dist (u n) (u N) < R, { rcases this with ⟨R, R0, H⟩, exact ⟨_, add_pos R0 R0, λ m n, lt_of_le_of_lt (dist_triangle_right _ _ _) (add_lt_add (H m) (H n))⟩ }, let R := finset.sup (finset.range N) (λ n, nndist (u n) (u N)), refine ⟨↑R + 1, add_pos_of_nonneg_of_pos R.2 zero_lt_one, λ n, _⟩, cases le_or_lt N n, { exact lt_of_lt_of_le (hN _ h) (le_add_of_nonneg_left R.2) }, { have : _ ≤ R := finset.le_sup (finset.mem_range.2 h), exact lt_of_le_of_lt this (lt_add_of_pos_right _ zero_lt_one) } end /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the most efficient. -/ lemma cauchy_seq_iff_le_tendsto_0 {s : ℕ → α} : cauchy_seq s ↔ ∃ b : ℕ → ℝ, (∀ n, 0 ≤ b n) ∧ (∀ n m N : ℕ, N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) ∧ tendsto b at_top (𝓝 0) := ⟨λ hs, begin /- `s` is a Cauchy sequence. The sequence `b` will be constructed by taking the supremum of the distances between `s n` and `s m` for `n m ≥ N`. First, we prove that all these distances are bounded, as otherwise the Sup would not make sense. -/ let S := λ N, (λ(p : ℕ × ℕ), dist (s p.1) (s p.2)) '' {p | p.1 ≥ N ∧ p.2 ≥ N}, have hS : ∀ N, ∃ x, ∀ y ∈ S N, y ≤ x, { rcases cauchy_seq_bdd hs with ⟨R, R0, hR⟩, refine λ N, ⟨R, _⟩, rintro _ ⟨⟨m, n⟩, _, rfl⟩, exact le_of_lt (hR m n) }, have bdd : bdd_above (range (λ(p : ℕ × ℕ), dist (s p.1) (s p.2))), { rcases cauchy_seq_bdd hs with ⟨R, R0, hR⟩, use R, rintro _ ⟨⟨m, n⟩, rfl⟩, exact le_of_lt (hR m n) }, -- Prove that it bounds the distances of points in the Cauchy sequence have ub : ∀ m n N, N ≤ m → N ≤ n → dist (s m) (s n) ≤ Sup (S N) := λ m n N hm hn, real.le_Sup _ (hS N) ⟨⟨_, _⟩, ⟨hm, hn⟩, rfl⟩, have S0m : ∀ n, (0:ℝ) ∈ S n := λ n, ⟨⟨n, n⟩, ⟨le_refl _, le_refl _⟩, dist_self _⟩, have S0 := λ n, real.le_Sup _ (hS n) (S0m n), -- Prove that it tends to `0`, by using the Cauchy property of `s` refine ⟨λ N, Sup (S N), S0, ub, metric.tendsto_at_top.2 (λ ε ε0, _)⟩, refine (metric.cauchy_seq_iff.1 hs (ε/2) (half_pos ε0)).imp (λ N hN n hn, _), rw [real.dist_0_eq_abs, abs_of_nonneg (S0 n)], refine lt_of_le_of_lt (real.Sup_le_ub _ ⟨_, S0m _⟩ _) (half_lt_self ε0), rintro _ ⟨⟨m', n'⟩, ⟨hm', hn'⟩, rfl⟩, exact le_of_lt (hN _ _ (le_trans hn hm') (le_trans hn hn')) end, λ ⟨b, _, b_bound, b_lim⟩, cauchy_seq_of_le_tendsto_0 b b_bound b_lim⟩ end cauchy_seq /-- Metric space structure pulled back by an injective function. Injectivity is necessary to ensure that `dist x y = 0` only if `x = y`. -/ def metric_space.induced {α β} (f : α → β) (hf : function.injective f) (m : metric_space β) : metric_space α := { dist := λ x y, dist (f x) (f y), dist_self := λ x, dist_self _, eq_of_dist_eq_zero := λ x y h, hf (dist_eq_zero.1 h), dist_comm := λ x y, dist_comm _ _, dist_triangle := λ x y z, dist_triangle _ _ _, edist := λ x y, edist (f x) (f y), edist_dist := λ x y, edist_dist _ _, to_uniform_space := uniform_space.comap f m.to_uniform_space, uniformity_dist := begin apply @uniformity_dist_of_mem_uniformity _ _ _ _ _ (λ x y, dist (f x) (f y)), refine λ s, mem_comap_sets.trans _, split; intro H, { rcases H with ⟨r, ru, rs⟩, rcases mem_uniformity_dist.1 ru with ⟨ε, ε0, hε⟩, refine ⟨ε, ε0, λ a b h, rs (hε _)⟩, exact h }, { rcases H with ⟨ε, ε0, hε⟩, exact ⟨_, dist_mem_uniformity ε0, λ ⟨a, b⟩, hε⟩ } end } instance subtype.metric_space {α : Type*} {p : α → Prop} [t : metric_space α] : metric_space (subtype p) := metric_space.induced coe (λ x y, subtype.ext) t theorem subtype.dist_eq {p : α → Prop} (x y : subtype p) : dist x y = dist (x : α) y := rfl section nnreal instance : metric_space ℝ≥0 := by unfold nnreal; apply_instance lemma nnreal.dist_eq (a b : ℝ≥0) : dist a b = abs ((a:ℝ) - b) := rfl lemma nnreal.nndist_eq (a b : ℝ≥0) : nndist a b = max (a - b) (b - a) := begin wlog h : a ≤ b, { apply nnreal.coe_eq.1, rw [nnreal.sub_eq_zero h, max_eq_right (zero_le $ b - a), ← dist_nndist, nnreal.dist_eq, nnreal.coe_sub h, abs, neg_sub], apply max_eq_right, linarith [nnreal.coe_le_coe.2 h] }, rwa [nndist_comm, max_comm] end end nnreal section prod instance prod.metric_space_max [metric_space β] : metric_space (α × β) := { dist := λ x y, max (dist x.1 y.1) (dist x.2 y.2), dist_self := λ x, by simp, eq_of_dist_eq_zero := λ x y h, begin cases max_le_iff.1 (le_of_eq h) with h₁ h₂, exact prod.ext_iff.2 ⟨dist_le_zero.1 h₁, dist_le_zero.1 h₂⟩ end, dist_comm := λ x y, by simp [dist_comm], dist_triangle := λ x y z, max_le (le_trans (dist_triangle _ _ _) (add_le_add (le_max_left _ _) (le_max_left _ _))) (le_trans (dist_triangle _ _ _) (add_le_add (le_max_right _ _) (le_max_right _ _))), edist := λ x y, max (edist x.1 y.1) (edist x.2 y.2), edist_dist := assume x y, begin have : monotone ennreal.of_real := assume x y h, ennreal.of_real_le_of_real h, rw [edist_dist, edist_dist, ← this.map_max] end, uniformity_dist := begin refine uniformity_prod.trans _, simp only [uniformity_basis_dist.eq_binfi, comap_infi], rw ← infi_inf_eq, congr, funext, rw ← infi_inf_eq, congr, funext, simp [inf_principal, ext_iff, max_lt_iff] end, to_uniform_space := prod.uniform_space } lemma prod.dist_eq [metric_space β] {x y : α × β} : dist x y = max (dist x.1 y.1) (dist x.2 y.2) := rfl theorem ball_prod_same [metric_space β] (x : α) (y : β) (r : ℝ) : (ball x r).prod (ball y r) = ball (x, y) r := ext $ λ z, by simp [prod.dist_eq] theorem closed_ball_prod_same [metric_space β] (x : α) (y : β) (r : ℝ) : (closed_ball x r).prod (closed_ball y r) = closed_ball (x, y) r := ext $ λ z, by simp [prod.dist_eq] end prod theorem uniform_continuous_dist : uniform_continuous (λp:α×α, dist p.1 p.2) := metric.uniform_continuous_iff.2 (λ ε ε0, ⟨ε/2, half_pos ε0, begin suffices, { intros p q h, cases p with p₁ p₂, cases q with q₁ q₂, cases max_lt_iff.1 h with h₁ h₂, clear h, dsimp at h₁ h₂ ⊢, rw real.dist_eq, refine abs_sub_lt_iff.2 ⟨_, _⟩, { revert p₁ p₂ q₁ q₂ h₁ h₂, exact this }, { apply this; rwa dist_comm } }, intros p₁ p₂ q₁ q₂ h₁ h₂, have := add_lt_add (abs_sub_lt_iff.1 (lt_of_le_of_lt (abs_dist_sub_le p₁ q₁ p₂) h₁)).1 (abs_sub_lt_iff.1 (lt_of_le_of_lt (abs_dist_sub_le p₂ q₂ q₁) h₂)).1, rwa [add_halves, dist_comm p₂, sub_add_sub_cancel, dist_comm q₂] at this end⟩) theorem uniform_continuous.dist [uniform_space β] {f g : β → α} (hf : uniform_continuous f) (hg : uniform_continuous g) : uniform_continuous (λb, dist (f b) (g b)) := uniform_continuous_dist.comp (hf.prod_mk hg) theorem continuous_dist : continuous (λp:α×α, dist p.1 p.2) := uniform_continuous_dist.continuous theorem continuous.dist [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : continuous (λb, dist (f b) (g b)) := continuous_dist.comp (hf.prod_mk hg : _) theorem filter.tendsto.dist {f g : β → α} {x : filter β} {a b : α} (hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) : tendsto (λx, dist (f x) (g x)) x (𝓝 (dist a b)) := (continuous_dist.tendsto (a, b)).comp (hf.prod_mk_nhds hg) lemma nhds_comap_dist (a : α) : (𝓝 (0 : ℝ)).comap (λa', dist a' a) = 𝓝 a := by simp only [@nhds_eq_comap_uniformity α, metric.uniformity_eq_comap_nhds_zero, comap_comap, (∘), dist_comm] lemma tendsto_iff_dist_tendsto_zero {f : β → α} {x : filter β} {a : α} : (tendsto f x (𝓝 a)) ↔ (tendsto (λb, dist (f b) a) x (𝓝 0)) := by rw [← nhds_comap_dist a, tendsto_comap_iff] lemma uniform_continuous_nndist : uniform_continuous (λp:α×α, nndist p.1 p.2) := uniform_continuous_subtype_mk uniform_continuous_dist _ lemma uniform_continuous.nndist [uniform_space β] {f g : β → α} (hf : uniform_continuous f) (hg : uniform_continuous g) : uniform_continuous (λ b, nndist (f b) (g b)) := uniform_continuous_nndist.comp (hf.prod_mk hg) lemma continuous_nndist : continuous (λp:α×α, nndist p.1 p.2) := uniform_continuous_nndist.continuous lemma continuous.nndist [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : continuous (λb, nndist (f b) (g b)) := continuous_nndist.comp (hf.prod_mk hg : _) theorem filter.tendsto.nndist {f g : β → α} {x : filter β} {a b : α} (hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) : tendsto (λx, nndist (f x) (g x)) x (𝓝 (nndist a b)) := (continuous_nndist.tendsto (a, b)).comp (hf.prod_mk_nhds hg) namespace metric variables {x y z : α} {ε ε₁ ε₂ : ℝ} {s : set α} theorem is_closed_ball : is_closed (closed_ball x ε) := is_closed_le (continuous_id.dist continuous_const) continuous_const lemma is_closed_sphere : is_closed (sphere x ε) := is_closed_eq (continuous_id.dist continuous_const) continuous_const @[simp] theorem closure_closed_ball : closure (closed_ball x ε) = closed_ball x ε := is_closed_ball.closure_eq theorem closure_ball_subset_closed_ball : closure (ball x ε) ⊆ closed_ball x ε := closure_minimal ball_subset_closed_ball is_closed_ball theorem frontier_ball_subset_sphere : frontier (ball x ε) ⊆ sphere x ε := frontier_lt_subset_eq (continuous_id.dist continuous_const) continuous_const theorem frontier_closed_ball_subset_sphere : frontier (closed_ball x ε) ⊆ sphere x ε := frontier_le_subset_eq (continuous_id.dist continuous_const) continuous_const theorem ball_subset_interior_closed_ball : ball x ε ⊆ interior (closed_ball x ε) := interior_maximal ball_subset_closed_ball is_open_ball /-- ε-characterization of the closure in metric spaces-/ theorem mem_closure_iff {α : Type u} [metric_space α] {s : set α} {a : α} : a ∈ closure s ↔ ∀ε>0, ∃b ∈ s, dist a b < ε := (mem_closure_iff_nhds_basis nhds_basis_ball).trans $ by simp only [mem_ball, dist_comm] lemma mem_closure_range_iff {α : Type u} [metric_space α] {e : β → α} {a : α} : a ∈ closure (range e) ↔ ∀ε>0, ∃ k : β, dist a (e k) < ε := by simp only [mem_closure_iff, exists_range_iff] lemma mem_closure_range_iff_nat {α : Type u} [metric_space α] {e : β → α} {a : α} : a ∈ closure (range e) ↔ ∀n : ℕ, ∃ k : β, dist a (e k) < 1 / ((n : ℝ) + 1) := (mem_closure_iff_nhds_basis nhds_basis_ball_inv_nat_succ).trans $ by simp only [mem_ball, dist_comm, exists_range_iff, forall_const] theorem mem_of_closed' {α : Type u} [metric_space α] {s : set α} (hs : is_closed s) {a : α} : a ∈ s ↔ ∀ε>0, ∃b ∈ s, dist a b < ε := by simpa only [hs.closure_eq] using @mem_closure_iff _ _ s a end metric section pi open finset variables {π : β → Type*} [fintype β] [∀b, metric_space (π b)] /-- A finite product of metric spaces is a metric space, with the sup distance. -/ instance metric_space_pi : metric_space (Πb, π b) := begin /- we construct the instance from the emetric space instance to avoid checking again that the uniformity is the same as the product uniformity, but we register nevertheless a nice formula for the distance -/ refine emetric_space.to_metric_space_of_dist (λf g, ((sup univ (λb, nndist (f b) (g b)) : ℝ≥0) : ℝ)) _ _, show ∀ (x y : Π (b : β), π b), edist x y ≠ ⊤, { assume x y, rw ← lt_top_iff_ne_top, have : (⊥ : ℝ≥0∞) < ⊤ := ennreal.coe_lt_top, simp [edist_pi_def, finset.sup_lt_iff this, edist_lt_top] }, show ∀ (x y : Π (b : β), π b), ↑(sup univ (λ (b : β), nndist (x b) (y b))) = ennreal.to_real (sup univ (λ (b : β), edist (x b) (y b))), { assume x y, simp only [edist_nndist], norm_cast } end lemma nndist_pi_def (f g : Πb, π b) : nndist f g = sup univ (λb, nndist (f b) (g b)) := subtype.eta _ _ lemma dist_pi_def (f g : Πb, π b) : dist f g = (sup univ (λb, nndist (f b) (g b)) : ℝ≥0) := rfl @[simp] lemma dist_pi_const [nonempty β] (a b : α) : dist (λ x : β, a) (λ _, b) = dist a b := by simpa only [dist_edist] using congr_arg ennreal.to_real (edist_pi_const a b) @[simp] lemma nndist_pi_const [nonempty β] (a b : α) : nndist (λ x : β, a) (λ _, b) = nndist a b := nnreal.eq $ dist_pi_const a b lemma dist_pi_lt_iff {f g : Πb, π b} {r : ℝ} (hr : 0 < r) : dist f g < r ↔ ∀b, dist (f b) (g b) < r := begin lift r to ℝ≥0 using hr.le, simp [dist_pi_def, finset.sup_lt_iff (show ⊥ < r, from hr)], end lemma dist_pi_le_iff {f g : Πb, π b} {r : ℝ} (hr : 0 ≤ r) : dist f g ≤ r ↔ ∀b, dist (f b) (g b) ≤ r := begin lift r to ℝ≥0 using hr, simp [nndist_pi_def] end lemma nndist_le_pi_nndist (f g : Πb, π b) (b : β) : nndist (f b) (g b) ≤ nndist f g := by { rw [nndist_pi_def], exact finset.le_sup (finset.mem_univ b) } lemma dist_le_pi_dist (f g : Πb, π b) (b : β) : dist (f b) (g b) ≤ dist f g := by simp only [dist_nndist, nnreal.coe_le_coe, nndist_le_pi_nndist f g b] /-- An open ball in a product space is a product of open balls. The assumption `0 < r` is necessary for the case of the empty product. -/ lemma ball_pi (x : Πb, π b) {r : ℝ} (hr : 0 < r) : ball x r = { y | ∀b, y b ∈ ball (x b) r } := by { ext p, simp [dist_pi_lt_iff hr] } /-- A closed ball in a product space is a product of closed balls. The assumption `0 ≤ r` is necessary for the case of the empty product. -/ lemma closed_ball_pi (x : Πb, π b) {r : ℝ} (hr : 0 ≤ r) : closed_ball x r = { y | ∀b, y b ∈ closed_ball (x b) r } := by { ext p, simp [dist_pi_le_iff hr] } end pi section compact /-- Any compact set in a metric space can be covered by finitely many balls of a given positive radius -/ lemma finite_cover_balls_of_compact {α : Type u} [metric_space α] {s : set α} (hs : is_compact s) {e : ℝ} (he : 0 < e) : ∃t ⊆ s, finite t ∧ s ⊆ ⋃x∈t, ball x e := begin apply hs.elim_finite_subcover_image, { simp [is_open_ball] }, { intros x xs, simp, exact ⟨x, ⟨xs, by simpa⟩⟩ } end alias finite_cover_balls_of_compact ← is_compact.finite_cover_balls end compact section proper_space open metric /-- A metric space is proper if all closed balls are compact. -/ class proper_space (α : Type u) [metric_space α] : Prop := (compact_ball : ∀x:α, ∀r, is_compact (closed_ball x r)) lemma tendsto_dist_right_cocompact_at_top [proper_space α] (x : α) : tendsto (λ y, dist y x) (cocompact α) at_top := (has_basis_cocompact.tendsto_iff at_top_basis).2 $ λ r hr, ⟨closed_ball x r, proper_space.compact_ball x r, λ y hy, (not_le.1 $ mt mem_closed_ball.2 hy).le⟩ lemma tendsto_dist_left_cocompact_at_top [proper_space α] (x : α) : tendsto (dist x) (cocompact α) at_top := by simpa only [dist_comm] using tendsto_dist_right_cocompact_at_top x /-- If all closed balls of large enough radius are compact, then the space is proper. Especially useful when the lower bound for the radius is 0. -/ lemma proper_space_of_compact_closed_ball_of_le (R : ℝ) (h : ∀x:α, ∀r, R ≤ r → is_compact (closed_ball x r)) : proper_space α := ⟨begin assume x r, by_cases hr : R ≤ r, { exact h x r hr }, { have : closed_ball x r = closed_ball x R ∩ closed_ball x r, { symmetry, apply inter_eq_self_of_subset_right, exact closed_ball_subset_closed_ball (le_of_lt (not_le.1 hr)) }, rw this, exact (h x R (le_refl _)).inter_right is_closed_ball } end⟩ /- A compact metric space is proper -/ @[priority 100] -- see Note [lower instance priority] instance proper_of_compact [compact_space α] : proper_space α := ⟨assume x r, is_closed_ball.compact⟩ /-- A proper space is locally compact -/ @[priority 100] -- see Note [lower instance priority] instance locally_compact_of_proper [proper_space α] : locally_compact_space α := locally_compact_space_of_has_basis (λ x, nhds_basis_closed_ball) $ λ x ε ε0, proper_space.compact_ball _ _ /-- A proper space is complete -/ @[priority 100] -- see Note [lower instance priority] instance complete_of_proper [proper_space α] : complete_space α := ⟨begin intros f hf, /- We want to show that the Cauchy filter `f` is converging. It suffices to find a closed ball (therefore compact by properness) where it is nontrivial. -/ have A : ∃ t ∈ f, ∀ x y ∈ t, dist x y < 1 := (metric.cauchy_iff.1 hf).2 1 zero_lt_one, rcases A with ⟨t, ⟨t_fset, ht⟩⟩, rcases hf.1.nonempty_of_mem t_fset with ⟨x, xt⟩, have : t ⊆ closed_ball x 1 := by intros y yt; simp [dist_comm]; apply le_of_lt (ht x y xt yt), have : closed_ball x 1 ∈ f := f.sets_of_superset t_fset this, rcases (compact_iff_totally_bounded_complete.1 (proper_space.compact_ball x 1)).2 f hf (le_principal_iff.2 this) with ⟨y, _, hy⟩, exact ⟨y, hy⟩ end⟩ /-- A proper metric space is separable, and therefore second countable. Indeed, any ball is compact, and therefore admits a countable dense subset. Taking a countable union over the balls centered at a fixed point and with integer radius, one obtains a countable set which is dense in the whole space. -/ @[priority 100] -- see Note [lower instance priority] instance second_countable_of_proper [proper_space α] : second_countable_topology α := begin /- It suffices to show that `α` admits a countable dense subset. -/ suffices : separable_space α, { resetI, apply emetric.second_countable_of_separable }, constructor, /- We show that the space admits a countable dense subset. The case where the space is empty is special, and trivial. -/ rcases _root_.em (nonempty α) with (⟨⟨x⟩⟩|hα), swap, { exact ⟨∅, countable_empty, λ x, (hα ⟨x⟩).elim⟩ }, /- When the space is not empty, we take a point `x` in the space, and then a countable set `T r` which is dense in the closed ball `closed_ball x r` for each `r`. Then the set `t = ⋃ T n` (where the union is over all integers `n`) is countable, as a countable union of countable sets, and dense in the space by construction. -/ choose T T_sub T_count T_closure using show ∀ (r:ℝ), ∃ t ⊆ closed_ball x r, (countable (t : set α) ∧ closed_ball x r = closure t), from assume r, emetric.countable_closure_of_compact (proper_space.compact_ball _ _), use [⋃n:ℕ, T (n : ℝ), countable_Union (λ n, T_count n)], intro y, rcases exists_nat_gt (dist y x) with ⟨n, n_large⟩, have h : y ∈ closed_ball x (n : ℝ) := n_large.le, rw [T_closure] at h, exact closure_mono (subset_Union _ _) h end /-- A finite product of proper spaces is proper. -/ instance pi_proper_space {π : β → Type*} [fintype β] [∀b, metric_space (π b)] [h : ∀b, proper_space (π b)] : proper_space (Πb, π b) := begin refine proper_space_of_compact_closed_ball_of_le 0 (λx r hr, _), rw closed_ball_pi _ hr, apply compact_pi_infinite (λb, _), apply (h b).compact_ball end end proper_space namespace metric section second_countable open topological_space /-- A metric space is second countable if, for every `ε > 0`, there is a countable set which is `ε`-dense. -/ lemma second_countable_of_almost_dense_set (H : ∀ε > (0 : ℝ), ∃ s : set α, countable s ∧ (∀x, ∃y ∈ s, dist x y ≤ ε)) : second_countable_topology α := begin choose T T_dense using H, have I1 : ∀n:ℕ, (n:ℝ) + 1 > 0 := λn, lt_of_lt_of_le zero_lt_one (le_add_of_nonneg_left (nat.cast_nonneg _)), have I : ∀n:ℕ, (n+1 : ℝ)⁻¹ > 0 := λn, inv_pos.2 (I1 n), let t := ⋃n:ℕ, T (n+1)⁻¹ (I n), have count_t : countable t := by finish [countable_Union], have dense_t : dense t, { refine (λx, mem_closure_iff.2 (λε εpos, _)), rcases exists_nat_gt ε⁻¹ with ⟨n, hn⟩, have : ε⁻¹ < n + 1 := lt_of_lt_of_le hn (le_add_of_nonneg_right zero_le_one), have nε : ((n:ℝ)+1)⁻¹ < ε := (inv_lt (I1 n) εpos).2 this, rcases (T_dense (n+1)⁻¹ (I n)).2 x with ⟨y, yT, Dxy⟩, have : y ∈ t := mem_of_mem_of_subset yT (by apply subset_Union (λ (n:ℕ), T (n+1)⁻¹ (I n))), exact ⟨y, this, lt_of_le_of_lt Dxy nε⟩ }, haveI : separable_space α := ⟨⟨t, ⟨count_t, dense_t⟩⟩⟩, exact emetric.second_countable_of_separable α end /-- A metric space space is second countable if one can reconstruct up to any `ε>0` any element of the space from countably many data. -/ lemma second_countable_of_countable_discretization {α : Type u} [metric_space α] (H : ∀ε > (0 : ℝ), ∃ (β : Type*) [encodable β] (F : α → β), ∀x y, F x = F y → dist x y ≤ ε) : second_countable_topology α := begin cases (univ : set α).eq_empty_or_nonempty with hs hs, { haveI : compact_space α := ⟨by rw hs; exact compact_empty⟩, by apply_instance }, rcases hs with ⟨x0, hx0⟩, letI : inhabited α := ⟨x0⟩, refine second_countable_of_almost_dense_set (λε ε0, _), rcases H ε ε0 with ⟨β, fβ, F, hF⟩, resetI, let Finv := function.inv_fun F, refine ⟨range Finv, ⟨countable_range _, λx, _⟩⟩, let x' := Finv (F x), have : F x' = F x := function.inv_fun_eq ⟨x, rfl⟩, exact ⟨x', mem_range_self _, hF _ _ this.symm⟩ end end second_countable end metric lemma lebesgue_number_lemma_of_metric {s : set α} {ι} {c : ι → set α} (hs : is_compact s) (hc₁ : ∀ i, is_open (c i)) (hc₂ : s ⊆ ⋃ i, c i) : ∃ δ > 0, ∀ x ∈ s, ∃ i, ball x δ ⊆ c i := let ⟨n, en, hn⟩ := lebesgue_number_lemma hs hc₁ hc₂, ⟨δ, δ0, hδ⟩ := mem_uniformity_dist.1 en in ⟨δ, δ0, assume x hx, let ⟨i, hi⟩ := hn x hx in ⟨i, assume y hy, hi (hδ (mem_ball'.mp hy))⟩⟩ lemma lebesgue_number_lemma_of_metric_sUnion {s : set α} {c : set (set α)} (hs : is_compact s) (hc₁ : ∀ t ∈ c, is_open t) (hc₂ : s ⊆ ⋃₀ c) : ∃ δ > 0, ∀ x ∈ s, ∃ t ∈ c, ball x δ ⊆ t := by rw sUnion_eq_Union at hc₂; simpa using lebesgue_number_lemma_of_metric hs (by simpa) hc₂ namespace metric /-- Boundedness of a subset of a metric space. We formulate the definition to work even in the empty space. -/ def bounded (s : set α) : Prop := ∃C, ∀x y ∈ s, dist x y ≤ C section bounded variables {x : α} {s t : set α} {r : ℝ} @[simp] lemma bounded_empty : bounded (∅ : set α) := ⟨0, by simp⟩ lemma bounded_iff_mem_bounded : bounded s ↔ ∀ x ∈ s, bounded s := ⟨λ h _ _, h, λ H, s.eq_empty_or_nonempty.elim (λ hs, hs.symm ▸ bounded_empty) (λ ⟨x, hx⟩, H x hx)⟩ /-- Subsets of a bounded set are also bounded -/ lemma bounded.subset (incl : s ⊆ t) : bounded t → bounded s := Exists.imp $ λ C hC x y hx hy, hC x y (incl hx) (incl hy) /-- Closed balls are bounded -/ lemma bounded_closed_ball : bounded (closed_ball x r) := ⟨r + r, λ y z hy hz, begin simp only [mem_closed_ball] at *, calc dist y z ≤ dist y x + dist z x : dist_triangle_right _ _ _ ... ≤ r + r : add_le_add hy hz end⟩ /-- Open balls are bounded -/ lemma bounded_ball : bounded (ball x r) := bounded_closed_ball.subset ball_subset_closed_ball /-- Given a point, a bounded subset is included in some ball around this point -/ lemma bounded_iff_subset_ball (c : α) : bounded s ↔ ∃r, s ⊆ closed_ball c r := begin split; rintro ⟨C, hC⟩, { cases s.eq_empty_or_nonempty with h h, { subst s, exact ⟨0, by simp⟩ }, { rcases h with ⟨x, hx⟩, exact ⟨C + dist x c, λ y hy, calc dist y c ≤ dist y x + dist x c : dist_triangle _ _ _ ... ≤ C + dist x c : add_le_add_right (hC y x hy hx) _⟩ } }, { exact bounded_closed_ball.subset hC } end lemma bounded_closure_of_bounded (h : bounded s) : bounded (closure s) := begin cases h with C h, replace h : ∀ p : α × α, p ∈ set.prod s s → dist p.1 p.2 ∈ { d | d ≤ C }, { rintros ⟨x, y⟩ ⟨x_in, y_in⟩, exact h x y x_in y_in }, use C, suffices : ∀ p : α × α, p ∈ closure (set.prod s s) → dist p.1 p.2 ∈ { d | d ≤ C }, { rw closure_prod_eq at this, intros x y x_in y_in, exact this (x, y) (mk_mem_prod x_in y_in) }, intros p p_in, have := map_mem_closure continuous_dist p_in h, rwa (is_closed_le' C).closure_eq at this end alias bounded_closure_of_bounded ← bounded.closure /-- The union of two bounded sets is bounded iff each of the sets is bounded -/ @[simp] lemma bounded_union : bounded (s ∪ t) ↔ bounded s ∧ bounded t := ⟨λh, ⟨h.subset (by simp), h.subset (by simp)⟩, begin rintro ⟨hs, ht⟩, refine bounded_iff_mem_bounded.2 (λ x _, _), rw bounded_iff_subset_ball x at hs ht ⊢, rcases hs with ⟨Cs, hCs⟩, rcases ht with ⟨Ct, hCt⟩, exact ⟨max Cs Ct, union_subset (subset.trans hCs $ closed_ball_subset_closed_ball $ le_max_left _ _) (subset.trans hCt $ closed_ball_subset_closed_ball $ le_max_right _ _)⟩, end⟩ /-- A finite union of bounded sets is bounded -/ lemma bounded_bUnion {I : set β} {s : β → set α} (H : finite I) : bounded (⋃i∈I, s i) ↔ ∀i ∈ I, bounded (s i) := finite.induction_on H (by simp) $ λ x I _ _ IH, by simp [or_imp_distrib, forall_and_distrib, IH] /-- A compact set is bounded -/ lemma bounded_of_compact {s : set α} (h : is_compact s) : bounded s := -- We cover the compact set by finitely many balls of radius 1, -- and then argue that a finite union of bounded sets is bounded let ⟨t, ht, fint, subs⟩ := finite_cover_balls_of_compact h zero_lt_one in bounded.subset subs $ (bounded_bUnion fint).2 $ λ i hi, bounded_ball alias bounded_of_compact ← is_compact.bounded /-- A finite set is bounded -/ lemma bounded_of_finite {s : set α} (h : finite s) : bounded s := h.is_compact.bounded /-- A singleton is bounded -/ lemma bounded_singleton {x : α} : bounded ({x} : set α) := bounded_of_finite $ finite_singleton _ /-- Characterization of the boundedness of the range of a function -/ lemma bounded_range_iff {f : β → α} : bounded (range f) ↔ ∃C, ∀x y, dist (f x) (f y) ≤ C := exists_congr $ λ C, ⟨ λ H x y, H _ _ ⟨x, rfl⟩ ⟨y, rfl⟩, by rintro H _ _ ⟨x, rfl⟩ ⟨y, rfl⟩; exact H x y⟩ /-- In a compact space, all sets are bounded -/ lemma bounded_of_compact_space [compact_space α] : bounded s := compact_univ.bounded.subset (subset_univ _) /-- The Heine–Borel theorem: In a proper space, a set is compact if and only if it is closed and bounded -/ lemma compact_iff_closed_bounded [proper_space α] : is_compact s ↔ is_closed s ∧ bounded s := ⟨λ h, ⟨h.is_closed, h.bounded⟩, begin rintro ⟨hc, hb⟩, cases s.eq_empty_or_nonempty with h h, {simp [h, compact_empty]}, rcases h with ⟨x, hx⟩, rcases (bounded_iff_subset_ball x).1 hb with ⟨r, hr⟩, exact compact_of_is_closed_subset (proper_space.compact_ball x r) hc hr end⟩ end bounded section diam variables {s : set α} {x y z : α} /-- The diameter of a set in a metric space. To get controllable behavior even when the diameter should be infinite, we express it in terms of the emetric.diameter -/ def diam (s : set α) : ℝ := ennreal.to_real (emetric.diam s) /-- The diameter of a set is always nonnegative -/ lemma diam_nonneg : 0 ≤ diam s := ennreal.to_real_nonneg lemma diam_subsingleton (hs : s.subsingleton) : diam s = 0 := by simp only [diam, emetric.diam_subsingleton hs, ennreal.zero_to_real] /-- The empty set has zero diameter -/ @[simp] lemma diam_empty : diam (∅ : set α) = 0 := diam_subsingleton subsingleton_empty /-- A singleton has zero diameter -/ @[simp] lemma diam_singleton : diam ({x} : set α) = 0 := diam_subsingleton subsingleton_singleton -- Does not work as a simp-lemma, since {x, y} reduces to (insert y {x}) lemma diam_pair : diam ({x, y} : set α) = dist x y := by simp only [diam, emetric.diam_pair, dist_edist] -- Does not work as a simp-lemma, since {x, y, z} reduces to (insert z (insert y {x})) lemma diam_triple : metric.diam ({x, y, z} : set α) = max (max (dist x y) (dist x z)) (dist y z) := begin simp only [metric.diam, emetric.diam_triple, dist_edist], rw [ennreal.to_real_max, ennreal.to_real_max]; apply_rules [ne_of_lt, edist_lt_top, max_lt] end /-- If the distance between any two points in a set is bounded by some constant `C`, then `ennreal.of_real C` bounds the emetric diameter of this set. -/ lemma ediam_le_of_forall_dist_le {C : ℝ} (h : ∀ (x ∈ s) (y ∈ s), dist x y ≤ C) : emetric.diam s ≤ ennreal.of_real C := emetric.diam_le_of_forall_edist_le $ λ x hx y hy, (edist_dist x y).symm ▸ ennreal.of_real_le_of_real (h x hx y hy) /-- If the distance between any two points in a set is bounded by some non-negative constant, this constant bounds the diameter. -/ lemma diam_le_of_forall_dist_le {C : ℝ} (h₀ : 0 ≤ C) (h : ∀ (x ∈ s) (y ∈ s), dist x y ≤ C) : diam s ≤ C := ennreal.to_real_le_of_le_of_real h₀ (ediam_le_of_forall_dist_le h) /-- If the distance between any two points in a nonempty set is bounded by some constant, this constant bounds the diameter. -/ lemma diam_le_of_forall_dist_le_of_nonempty (hs : s.nonempty) {C : ℝ} (h : ∀ (x ∈ s) (y ∈ s), dist x y ≤ C) : diam s ≤ C := have h₀ : 0 ≤ C, from let ⟨x, hx⟩ := hs in le_trans dist_nonneg (h x hx x hx), diam_le_of_forall_dist_le h₀ h /-- The distance between two points in a set is controlled by the diameter of the set. -/ lemma dist_le_diam_of_mem' (h : emetric.diam s ≠ ⊤) (hx : x ∈ s) (hy : y ∈ s) : dist x y ≤ diam s := begin rw [diam, dist_edist], rw ennreal.to_real_le_to_real (edist_ne_top _ _) h, exact emetric.edist_le_diam_of_mem hx hy end /-- Characterize the boundedness of a set in terms of the finiteness of its emetric.diameter. -/ lemma bounded_iff_ediam_ne_top : bounded s ↔ emetric.diam s ≠ ⊤ := iff.intro (λ ⟨C, hC⟩, ne_top_of_le_ne_top ennreal.of_real_ne_top (ediam_le_of_forall_dist_le $ λ x hx y hy, hC x y hx hy)) (λ h, ⟨diam s, λ x y hx hy, dist_le_diam_of_mem' h hx hy⟩) lemma bounded.ediam_ne_top (h : bounded s) : emetric.diam s ≠ ⊤ := bounded_iff_ediam_ne_top.1 h /-- The distance between two points in a set is controlled by the diameter of the set. -/ lemma dist_le_diam_of_mem (h : bounded s) (hx : x ∈ s) (hy : y ∈ s) : dist x y ≤ diam s := dist_le_diam_of_mem' h.ediam_ne_top hx hy /-- An unbounded set has zero diameter. If you would prefer to get the value ∞, use `emetric.diam`. This lemma makes it possible to avoid side conditions in some situations -/ lemma diam_eq_zero_of_unbounded (h : ¬(bounded s)) : diam s = 0 := begin simp only [bounded_iff_ediam_ne_top, not_not, ne.def] at h, simp [diam, h] end /-- If `s ⊆ t`, then the diameter of `s` is bounded by that of `t`, provided `t` is bounded. -/ lemma diam_mono {s t : set α} (h : s ⊆ t) (ht : bounded t) : diam s ≤ diam t := begin unfold diam, rw ennreal.to_real_le_to_real (bounded.subset h ht).ediam_ne_top ht.ediam_ne_top, exact emetric.diam_mono h end /-- The diameter of a union is controlled by the sum of the diameters, and the distance between any two points in each of the sets. This lemma is true without any side condition, since it is obviously true if `s ∪ t` is unbounded. -/ lemma diam_union {t : set α} (xs : x ∈ s) (yt : y ∈ t) : diam (s ∪ t) ≤ diam s + dist x y + diam t := begin classical, by_cases H : bounded (s ∪ t), { have hs : bounded s, from H.subset (subset_union_left _ _), have ht : bounded t, from H.subset (subset_union_right _ _), rw [bounded_iff_ediam_ne_top] at H hs ht, rw [dist_edist, diam, diam, diam, ← ennreal.to_real_add, ← ennreal.to_real_add, ennreal.to_real_le_to_real]; repeat { apply ennreal.add_ne_top.2; split }; try { assumption }; try { apply edist_ne_top }, exact emetric.diam_union xs yt }, { rw [diam_eq_zero_of_unbounded H], apply_rules [add_nonneg, diam_nonneg, dist_nonneg] } end /-- If two sets intersect, the diameter of the union is bounded by the sum of the diameters. -/ lemma diam_union' {t : set α} (h : (s ∩ t).nonempty) : diam (s ∪ t) ≤ diam s + diam t := begin rcases h with ⟨x, ⟨xs, xt⟩⟩, simpa using diam_union xs xt end /-- The diameter of a closed ball of radius `r` is at most `2 r`. -/ lemma diam_closed_ball {r : ℝ} (h : 0 ≤ r) : diam (closed_ball x r) ≤ 2 * r := diam_le_of_forall_dist_le (mul_nonneg (le_of_lt zero_lt_two) h) $ λa ha b hb, calc dist a b ≤ dist a x + dist b x : dist_triangle_right _ _ _ ... ≤ r + r : add_le_add ha hb ... = 2 * r : by simp [mul_two, mul_comm] /-- The diameter of a ball of radius `r` is at most `2 r`. -/ lemma diam_ball {r : ℝ} (h : 0 ≤ r) : diam (ball x r) ≤ 2 * r := le_trans (diam_mono ball_subset_closed_ball bounded_closed_ball) (diam_closed_ball h) end diam end metric namespace int open metric /-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/ lemma tendsto_coe_cofinite : tendsto (coe : ℤ → ℝ) cofinite (cocompact ℝ) := begin simp only [filter.has_basis_cocompact.tendsto_right_iff, eventually_iff_exists_mem], intros s hs, obtain ⟨r, hr⟩ : ∃ r, s ⊆ closed_ball (0:ℝ) r, { rw ← bounded_iff_subset_ball, exact hs.bounded }, refine ⟨(coe ⁻¹' closed_ball (0:ℝ) r)ᶜ, _, _⟩, { simp [mem_cofinite, closed_ball_Icc, set.Icc_ℤ_finite] }, { rw ← compl_subset_compl at hr, intros y hy, exact hr hy } end end int
8c58ed744848756fc5e5f3e6734a0dd45fe0ac7e
82e44445c70db0f03e30d7be725775f122d72f3e
/src/geometry/manifold/instances/real.lean
495f61c15ec32275a12d668e0c440fb9aca279bf
[ "Apache-2.0" ]
permissive
stjordanis/mathlib
51e286d19140e3788ef2c470bc7b953e4991f0c9
2568d41bca08f5d6bf39d915434c8447e21f42ee
refs/heads/master
1,631,748,053,501
1,627,938,886,000
1,627,938,886,000
228,728,358
0
0
Apache-2.0
1,576,630,588,000
1,576,630,587,000
null
UTF-8
Lean
false
false
13,574
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import geometry.manifold.algebra.smooth_functions import linear_algebra.finite_dimensional import analysis.normed_space.pi_Lp /-! # Constructing examples of manifolds over ℝ We introduce the necessary bits to be able to define manifolds modelled over `ℝ^n`, boundaryless or with boundary or with corners. As a concrete example, we construct explicitly the manifold with boundary structure on the real interval `[x, y]`. More specifically, we introduce * `model_with_corners ℝ (euclidean_space ℝ (fin n)) (euclidean_half_space n)` for the model space used to define `n`-dimensional real manifolds with boundary * `model_with_corners ℝ (euclidean_space ℝ (fin n)) (euclidean_quadrant n)` for the model space used to define `n`-dimensional real manifolds with corners ## Notations In the locale `manifold`, we introduce the notations * `𝓡 n` for the identity model with corners on `euclidean_space ℝ (fin n)` * `𝓡∂ n` for `model_with_corners ℝ (euclidean_space ℝ (fin n)) (euclidean_half_space n)`. For instance, if a manifold `M` is boundaryless, smooth and modelled on `euclidean_space ℝ (fin m)`, and `N` is smooth with boundary modelled on `euclidean_half_space n`, and `f : M → N` is a smooth map, then the derivative of `f` can be written simply as `mfderiv (𝓡 m) (𝓡∂ n) f` (as to why the model with corners can not be implicit, see the discussion in `smooth_manifold_with_corners.lean`). ## Implementation notes The manifold structure on the interval `[x, y] = Icc x y` requires the assumption `x < y` as a typeclass. We provide it as `[fact (x < y)]`. -/ noncomputable theory open set function open_locale manifold /-- The half-space in `ℝ^n`, used to model manifolds with boundary. We only define it when `1 ≤ n`, as the definition only makes sense in this case. -/ def euclidean_half_space (n : ℕ) [has_zero (fin n)] : Type := {x : euclidean_space ℝ (fin n) // 0 ≤ x 0} /-- The quadrant in `ℝ^n`, used to model manifolds with corners, made of all vectors with nonnegative coordinates. -/ def euclidean_quadrant (n : ℕ) : Type := {x : euclidean_space ℝ (fin n) // ∀i:fin n, 0 ≤ x i} section /- Register class instances for euclidean half-space and quadrant, that can not be noticed without the following reducibility attribute (which is only set in this section). -/ local attribute [reducible] euclidean_half_space euclidean_quadrant variable {n : ℕ} instance [has_zero (fin n)] : topological_space (euclidean_half_space n) := by apply_instance instance : topological_space (euclidean_quadrant n) := by apply_instance instance [has_zero (fin n)] : inhabited (euclidean_half_space n) := ⟨⟨0, le_refl _⟩⟩ instance : inhabited (euclidean_quadrant n) := ⟨⟨0, λ i, le_refl _⟩⟩ lemma range_half_space (n : ℕ) [has_zero (fin n)] : range (λx : euclidean_half_space n, x.val) = {y | 0 ≤ y 0} := by simp lemma range_quadrant (n : ℕ) : range (λx : euclidean_quadrant n, x.val) = {y | ∀i:fin n, 0 ≤ y i} := by simp end /-- Definition of the model with corners `(euclidean_space ℝ (fin n), euclidean_half_space n)`, used as a model for manifolds with boundary. In the locale `manifold`, use the shortcut `𝓡∂ n`. -/ def model_with_corners_euclidean_half_space (n : ℕ) [has_zero (fin n)] : model_with_corners ℝ (euclidean_space ℝ (fin n)) (euclidean_half_space n) := { to_fun := subtype.val, inv_fun := λx, ⟨update x 0 (max (x 0) 0), by simp [le_refl]⟩, source := univ, target := {x | 0 ≤ x 0}, map_source' := λx hx, x.property, map_target' := λx hx, mem_univ _, left_inv' := λ ⟨xval, xprop⟩ hx, begin rw [subtype.mk_eq_mk, update_eq_iff], exact ⟨max_eq_left xprop, λ i _, rfl⟩ end, right_inv' := λx hx, update_eq_iff.2 ⟨max_eq_left hx, λ i _, rfl⟩, source_eq := rfl, unique_diff' := have this : unique_diff_on ℝ _ := unique_diff_on.pi (fin n) (λ _, ℝ) _ _ (λ i ∈ ({0} : set (fin n)), unique_diff_on_Ici 0), by simpa only [singleton_pi] using this, continuous_to_fun := continuous_subtype_val, continuous_inv_fun := continuous_subtype_mk _ $ continuous_id.update 0 $ (continuous_apply 0).max continuous_const } /-- Definition of the model with corners `(euclidean_space ℝ (fin n), euclidean_quadrant n)`, used as a model for manifolds with corners -/ def model_with_corners_euclidean_quadrant (n : ℕ) : model_with_corners ℝ (euclidean_space ℝ (fin n)) (euclidean_quadrant n) := { to_fun := subtype.val, inv_fun := λx, ⟨λi, max (x i) 0, λi, by simp only [le_refl, or_true, le_max_iff]⟩, source := univ, target := {x | ∀ i, 0 ≤ x i}, map_source' := λx hx, by simpa only [subtype.range_val] using x.property, map_target' := λx hx, mem_univ _, left_inv' := λ ⟨xval, xprop⟩ hx, by { ext i, simp only [subtype.coe_mk, xprop i, max_eq_left] }, right_inv' := λ x hx, by { ext1 i, simp only [hx i, max_eq_left] }, source_eq := rfl, unique_diff' := have this : unique_diff_on ℝ _ := unique_diff_on.univ_pi (fin n) (λ _, ℝ) _ (λ i, unique_diff_on_Ici 0), by simpa only [pi_univ_Ici] using this, continuous_to_fun := continuous_subtype_val, continuous_inv_fun := continuous_subtype_mk _ $ continuous_pi $ λ i, (continuous_id.max continuous_const).comp (continuous_apply i) } localized "notation `𝓡 `n := model_with_corners_self ℝ (euclidean_space ℝ (fin n))" in manifold localized "notation `𝓡∂ `n := model_with_corners_euclidean_half_space n" in manifold /-- The left chart for the topological space `[x, y]`, defined on `[x,y)` and sending `x` to `0` in `euclidean_half_space 1`. -/ def Icc_left_chart (x y : ℝ) [fact (x < y)] : local_homeomorph (Icc x y) (euclidean_half_space 1) := { source := {z : Icc x y | z.val < y}, target := {z : euclidean_half_space 1 | z.val 0 < y - x}, to_fun := λ(z : Icc x y), ⟨λi, z.val - x, sub_nonneg.mpr z.property.1⟩, inv_fun := λz, ⟨min (z.val 0 + x) y, by simp [le_refl, z.prop, le_of_lt (fact.out (x < y))]⟩, map_source' := by simp only [imp_self, sub_lt_sub_iff_right, mem_set_of_eq, forall_true_iff], map_target' := by { simp only [min_lt_iff, mem_set_of_eq], assume z hz, left, dsimp [-subtype.val_eq_coe] at hz, linarith }, left_inv' := begin rintros ⟨z, hz⟩ h'z, simp only [mem_set_of_eq, mem_Icc] at hz h'z, simp only [hz, min_eq_left, sub_add_cancel] end, right_inv' := begin rintros ⟨z, hz⟩ h'z, rw subtype.mk_eq_mk, funext, dsimp at hz h'z, have A : x + z 0 ≤ y, by linarith, rw subsingleton.elim i 0, simp only [A, add_comm, add_sub_cancel', min_eq_left], end, open_source := begin have : is_open {z : ℝ | z < y} := is_open_Iio, exact this.preimage continuous_subtype_val end, open_target := begin have : is_open {z : ℝ | z < y - x} := is_open_Iio, have : is_open {z : euclidean_space ℝ (fin 1) | z 0 < y - x} := this.preimage (@continuous_apply (fin 1) (λ _, ℝ) _ 0), exact this.preimage continuous_subtype_val end, continuous_to_fun := begin apply continuous.continuous_on, apply continuous_subtype_mk, have : continuous (λ (z : ℝ) (i : fin 1), z - x) := continuous.sub (continuous_pi $ λi, continuous_id) continuous_const, exact this.comp continuous_subtype_val, end, continuous_inv_fun := begin apply continuous.continuous_on, apply continuous_subtype_mk, have A : continuous (λ z : ℝ, min (z + x) y) := (continuous_id.add continuous_const).min continuous_const, have B : continuous (λz : euclidean_space ℝ (fin 1), z 0) := continuous_apply 0, exact (A.comp B).comp continuous_subtype_val end } /-- The right chart for the topological space `[x, y]`, defined on `(x,y]` and sending `y` to `0` in `euclidean_half_space 1`. -/ def Icc_right_chart (x y : ℝ) [fact (x < y)] : local_homeomorph (Icc x y) (euclidean_half_space 1) := { source := {z : Icc x y | x < z.val}, target := {z : euclidean_half_space 1 | z.val 0 < y - x}, to_fun := λ(z : Icc x y), ⟨λi, y - z.val, sub_nonneg.mpr z.property.2⟩, inv_fun := λz, ⟨max (y - z.val 0) x, by simp [le_refl, z.prop, le_of_lt (fact.out (x < y)), sub_eq_add_neg]⟩, map_source' := by simp only [imp_self, mem_set_of_eq, sub_lt_sub_iff_left, forall_true_iff], map_target' := by { simp only [lt_max_iff, mem_set_of_eq], assume z hz, left, dsimp [-subtype.val_eq_coe] at hz, linarith }, left_inv' := begin rintros ⟨z, hz⟩ h'z, simp only [mem_set_of_eq, mem_Icc] at hz h'z, simp only [hz, sub_eq_add_neg, max_eq_left, add_add_neg_cancel'_right, neg_add_rev, neg_neg] end, right_inv' := begin rintros ⟨z, hz⟩ h'z, rw subtype.mk_eq_mk, funext, dsimp at hz h'z, have A : x ≤ y - z 0, by linarith, rw subsingleton.elim i 0, simp only [A, sub_sub_cancel, max_eq_left], end, open_source := begin have : is_open {z : ℝ | x < z} := is_open_Ioi, exact this.preimage continuous_subtype_val end, open_target := begin have : is_open {z : ℝ | z < y - x} := is_open_Iio, have : is_open {z : euclidean_space ℝ (fin 1) | z 0 < y - x} := this.preimage (@continuous_apply (fin 1) (λ _, ℝ) _ 0), exact this.preimage continuous_subtype_val end, continuous_to_fun := begin apply continuous.continuous_on, apply continuous_subtype_mk, have : continuous (λ (z : ℝ) (i : fin 1), y - z) := continuous_const.sub (continuous_pi (λi, continuous_id)), exact this.comp continuous_subtype_val, end, continuous_inv_fun := begin apply continuous.continuous_on, apply continuous_subtype_mk, have A : continuous (λ z : ℝ, max (y - z) x) := (continuous_const.sub continuous_id).max continuous_const, have B : continuous (λz : euclidean_space ℝ (fin 1), z 0) := continuous_apply 0, exact (A.comp B).comp continuous_subtype_val end } /-- Charted space structure on `[x, y]`, using only two charts taking values in `euclidean_half_space 1`. -/ instance Icc_manifold (x y : ℝ) [fact (x < y)] : charted_space (euclidean_half_space 1) (Icc x y) := { atlas := {Icc_left_chart x y, Icc_right_chart x y}, chart_at := λz, if z.val < y then Icc_left_chart x y else Icc_right_chart x y, mem_chart_source := λz, begin by_cases h' : z.val < y, { simp only [h', if_true], exact h' }, { simp only [h', if_false], apply lt_of_lt_of_le (fact.out (x < y)), simpa only [not_lt] using h'} end, chart_mem_atlas := λz, by { by_cases h' : z.val < y; simp [h'] } } /-- The manifold structure on `[x, y]` is smooth. -/ instance Icc_smooth_manifold (x y : ℝ) [fact (x < y)] : smooth_manifold_with_corners (𝓡∂ 1) (Icc x y) := begin have M : times_cont_diff_on ℝ ∞ (λz : euclidean_space ℝ (fin 1), - z + (λi, y - x)) univ, { rw times_cont_diff_on_univ, exact times_cont_diff_id.neg.add times_cont_diff_const }, apply smooth_manifold_with_corners_of_times_cont_diff_on, assume e e' he he', simp only [atlas, mem_singleton_iff, mem_insert_iff] at he he', /- We need to check that any composition of two charts gives a `C^∞` function. Each chart can be either the left chart or the right chart, leaving 4 possibilities that we handle successively. -/ rcases he with rfl | rfl; rcases he' with rfl | rfl, { -- `e = left chart`, `e' = left chart` exact (mem_groupoid_of_pregroupoid.mpr (symm_trans_mem_times_cont_diff_groupoid _ _ _)).1 }, { -- `e = left chart`, `e' = right chart` apply M.congr_mono _ (subset_univ _), rintro _ ⟨⟨hz₁, hz₂⟩, ⟨⟨z, hz₀⟩, rfl⟩⟩, simp only [model_with_corners_euclidean_half_space, Icc_left_chart, Icc_right_chart, update_same, max_eq_left, hz₀, lt_sub_iff_add_lt] with mfld_simps at hz₁ hz₂, rw [min_eq_left hz₁.le, lt_add_iff_pos_left] at hz₂, ext i, rw subsingleton.elim i 0, simp only [model_with_corners_euclidean_half_space, Icc_left_chart, Icc_right_chart, *, pi_Lp.add_apply, pi_Lp.neg_apply, max_eq_left, min_eq_left hz₁.le, update_same] with mfld_simps, abel }, { -- `e = right chart`, `e' = left chart` apply M.congr_mono _ (subset_univ _), rintro _ ⟨⟨hz₁, hz₂⟩, ⟨z, hz₀⟩, rfl⟩, simp only [model_with_corners_euclidean_half_space, Icc_left_chart, Icc_right_chart, max_lt_iff, update_same, max_eq_left hz₀] with mfld_simps at hz₁ hz₂, rw lt_sub at hz₁, ext i, rw subsingleton.elim i 0, simp only [model_with_corners_euclidean_half_space, Icc_left_chart, Icc_right_chart, pi_Lp.add_apply, pi_Lp.neg_apply, update_same, max_eq_left, hz₀, hz₁.le] with mfld_simps, abel }, { -- `e = right chart`, `e' = right chart` exact (mem_groupoid_of_pregroupoid.mpr (symm_trans_mem_times_cont_diff_groupoid _ _ _)).1 } end /-! Register the manifold structure on `Icc 0 1`, and also its zero and one. -/ section lemma fact_zero_lt_one : fact ((0 : ℝ) < 1) := ⟨zero_lt_one⟩ local attribute [instance] fact_zero_lt_one instance : charted_space (euclidean_half_space 1) (Icc (0 : ℝ) 1) := by apply_instance instance : smooth_manifold_with_corners (𝓡∂ 1) (Icc (0 : ℝ) 1) := by apply_instance end
e3362bd98ed362215d57f948c84a8a6c16213976
aa3f8992ef7806974bc1ffd468baa0c79f4d6643
/library/data/unit/basic.lean
df303f48e074fb0297db6e17bc5e6458e7d5a28a
[ "Apache-2.0" ]
permissive
codyroux/lean
7f8dff750722c5382bdd0a9a9275dc4bb2c58dd3
0cca265db19f7296531e339192e9b9bae4a31f8b
refs/heads/master
1,610,909,964,159
1,407,084,399,000
1,416,857,075,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
213
lean
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura inductive unit.{l} : Type.{l} := star : unit
ac3fcec63c59be4cab4224e939bd59456676587b
1d335ec6ac4181a0a762b12797936770cc9fcef9
/eval/geometryEval.lean
ec3bfdbef6ba7637588c7ff8f84109605595435a
[]
no_license
rohanrajnair/lang
dbadcc3997e44245ca84d48dc1733cf09a2605a6
3beb4e29d8faa692983a55fa18acb6eb947134e8
refs/heads/master
1,672,640,379,424
1,597,948,771,000
1,597,948,771,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
260
lean
import ..imperative_DSL.environment open lang.classicalGeometry def classicalGeometryEval : lang.classicalGeometry.expr → environment.env → classicalGeometry | (lang.classicalGeometry.expr.lit s) i := s | (lang.classicalGeometry.expr.var v) i := i.g v
d8a20dbc47ffffa683ed9118bb502f584770d95a
63abd62053d479eae5abf4951554e1064a4c45b4
/src/ring_theory/tensor_product.lean
dcb86fa9955b31827e60669fa320045355db90ae
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
16,587
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import linear_algebra.tensor_product import algebra.algebra.basic universes u v₁ v₂ v₃ v₄ /-! The tensor product of R-algebras. We construct the R-algebra structure on `A ⊗[R] B`, when `A` and `B` are both `R`-algebras, and provide the structure isomorphisms * `R ⊗[R] A ≃ₐ[R] A` * `A ⊗[R] R ≃ₐ[R] A` * `A ⊗[R] B ≃ₐ[R] B ⊗[R] A` The code for * `((A ⊗[R] B) ⊗[R] C) ≃ₐ[R] (A ⊗[R] (B ⊗[R] C))` is written and compiles, but takes longer than the `-T100000` time limit, so is currently commented out. -/ namespace algebra open_locale tensor_product open tensor_product namespace tensor_product section semiring variables {R : Type u} [comm_semiring R] variables {A : Type v₁} [semiring A] [algebra R A] variables {B : Type v₂} [semiring B] [algebra R B] /-- (Implementation detail) The multiplication map on `A ⊗[R] B`, for a fixed pure tensor in the first argument, as an `R`-linear map. -/ def mul_aux (a₁ : A) (b₁ : B) : (A ⊗[R] B) →ₗ[R] (A ⊗[R] B) := begin -- Why doesn't `apply tensor_product.lift` work? apply @tensor_product.lift R _ A B (A ⊗[R] B) _ _ _ _ _ _ _, fsplit, intro a₂, fsplit, intro b₂, exact (a₁ * a₂) ⊗ₜ[R] (b₁ * b₂), { intros b₂ b₂', simp [mul_add, tmul_add], }, { intros c b₂, simp [mul_smul, tmul_smul], }, { intros a₂ a₂', ext b₂, simp [mul_add, add_tmul], }, { intros c a₂, ext b₂, simp [mul_smul, smul_tmul], } end @[simp] lemma mul_aux_apply (a₁ a₂ : A) (b₁ b₂ : B) : (mul_aux a₁ b₁) (a₂ ⊗ₜ[R] b₂) = (a₁ * a₂) ⊗ₜ[R] (b₁ * b₂) := rfl /-- (Implementation detail) The multiplication map on `A ⊗[R] B`, as an `R`-bilinear map. -/ def mul : (A ⊗[R] B) →ₗ[R] (A ⊗[R] B) →ₗ[R] (A ⊗[R] B) := begin apply @tensor_product.lift R _ A B ((A ⊗[R] B) →ₗ[R] (A ⊗[R] B)) _ _ _ _ _ _ _, fsplit, intro a₁, fsplit, intro b₁, exact mul_aux a₁ b₁, { intros b₁ b₁', -- Why doesn't just `apply tensor_product.ext`, or indeed `ext` work?! apply @tensor_product.ext R _ A B (A ⊗[R] B) _ _ _ _ _ _, intros a₂ b₂, simp [add_mul, tmul_add], }, { intros c b₁, apply @tensor_product.ext R _ A B (A ⊗[R] B) _ _ _ _ _ _, intros a₂ b₂, simp, }, { intros a₁ a₁', ext1 b₁, apply @tensor_product.ext R _ A B (A ⊗[R] B) _ _ _ _ _ _, intros a₂ b₂, simp [add_mul, add_tmul], }, { intros c a₁, ext1 b₁, apply @tensor_product.ext R _ A B (A ⊗[R] B) _ _ _ _ _ _, intros a₂ b₂, simp [smul_tmul], }, end @[simp] lemma mul_apply (a₁ a₂ : A) (b₁ b₂ : B) : mul (a₁ ⊗ₜ[R] b₁) (a₂ ⊗ₜ[R] b₂) = (a₁ * a₂) ⊗ₜ[R] (b₁ * b₂) := rfl lemma mul_assoc' (mul : (A ⊗[R] B) →ₗ[R] (A ⊗[R] B) →ₗ[R] (A ⊗[R] B)) (h : ∀ (a₁ a₂ a₃ : A) (b₁ b₂ b₃ : B), mul (mul (a₁ ⊗ₜ[R] b₁) (a₂ ⊗ₜ[R] b₂)) (a₃ ⊗ₜ[R] b₃) = mul (a₁ ⊗ₜ[R] b₁) (mul (a₂ ⊗ₜ[R] b₂) (a₃ ⊗ₜ[R] b₃))) : ∀ (x y z : A ⊗[R] B), mul (mul x y) z = mul x (mul y z) := begin intros, apply tensor_product.induction_on x, { simp, }, apply tensor_product.induction_on y, { simp, }, apply tensor_product.induction_on z, { simp, }, { intros, simp [h], }, { intros, simp [linear_map.map_add, *], }, { intros, simp [linear_map.map_add, *], }, { intros, simp [linear_map.map_add, *], }, end lemma mul_assoc (x y z : A ⊗[R] B) : mul (mul x y) z = mul x (mul y z) := mul_assoc' mul (by { intros, simp only [mul_apply, mul_assoc], }) x y z lemma one_mul (x : A ⊗[R] B) : mul (1 ⊗ₜ 1) x = x := begin apply tensor_product.induction_on x; simp {contextual := tt}, end lemma mul_one (x : A ⊗[R] B) : mul x (1 ⊗ₜ 1) = x := begin apply tensor_product.induction_on x; simp {contextual := tt}, end instance : semiring (A ⊗[R] B) := { zero := 0, add := (+), one := 1 ⊗ₜ 1, mul := λ a b, mul a b, one_mul := one_mul, mul_one := mul_one, mul_assoc := mul_assoc, zero_mul := by simp, mul_zero := by simp, left_distrib := by simp, right_distrib := by simp, .. (by apply_instance : add_comm_monoid (A ⊗[R] B)) }. lemma one_def : (1 : A ⊗[R] B) = (1 : A) ⊗ₜ (1 : B) := rfl @[simp] lemma tmul_mul_tmul (a₁ a₂ : A) (b₁ b₂ : B) : (a₁ ⊗ₜ[R] b₁) * (a₂ ⊗ₜ[R] b₂) = (a₁ * a₂) ⊗ₜ[R] (b₁ * b₂) := rfl @[simp] lemma tmul_pow (a : A) (b : B) (k : ℕ) : (a ⊗ₜ[R] b)^k = (a^k) ⊗ₜ[R] (b^k) := begin induction k with k ih, { simp [one_def], }, { simp [pow_succ, ih], } end /-- The algebra map `R →+* (A ⊗[R] B)` giving `A ⊗[R] B` the structure of an `R`-algebra. -/ def tensor_algebra_map : R →+* (A ⊗[R] B) := { to_fun := λ r, algebra_map R A r ⊗ₜ[R] 1, map_one' := by { simp, refl }, map_mul' := by simp, map_zero' := by simp [zero_tmul], map_add' := by simp [add_tmul], } instance : algebra R (A ⊗[R] B) := { commutes' := λ r x, begin apply tensor_product.induction_on x, { simp, }, { intros a b, simp [tensor_algebra_map, algebra.commutes], }, { intros y y' h h', simp at h h', simp [mul_add, add_mul, h, h'], }, end, smul_def' := λ r x, begin apply tensor_product.induction_on x, { simp [smul_zero], }, { intros a b, rw [tensor_algebra_map, ←tmul_smul, ←smul_tmul, algebra.smul_def r a], simp, }, { intros, dsimp, simp [smul_add, mul_add, *], }, end, .. tensor_algebra_map, .. (by apply_instance : semimodule R (A ⊗[R] B)) }. @[simp] lemma algebra_map_apply (r : R) : (algebra_map R (A ⊗[R] B)) r = ((algebra_map R A) r) ⊗ₜ[R] 1 := rfl variables {C : Type v₃} [semiring C] [algebra R C] @[ext] theorem ext {g h : (A ⊗[R] B) →ₐ[R] C} (H : ∀ a b, g (a ⊗ₜ b) = h (a ⊗ₜ b)) : g = h := begin apply @alg_hom.to_linear_map_inj R (A ⊗[R] B) C _ _ _ _ _ _ _ _, ext, simp [H], end /-- The algebra morphism `A →ₐ[R] A ⊗[R] B` sending `a` to `a ⊗ₜ 1`. -/ def include_left : A →ₐ[R] A ⊗[R] B := { to_fun := λ a, a ⊗ₜ 1, map_zero' := by simp, map_add' := by simp [add_tmul], map_one' := rfl, map_mul' := by simp, commutes' := by simp, } @[simp] lemma include_left_apply (a : A) : (include_left : A →ₐ[R] A ⊗[R] B) a = a ⊗ₜ 1 := rfl /-- The algebra morphism `B →ₐ[R] A ⊗[R] B` sending `b` to `1 ⊗ₜ b`. -/ def include_right : B →ₐ[R] A ⊗[R] B := { to_fun := λ b, 1 ⊗ₜ b, map_zero' := by simp, map_add' := by simp [tmul_add], map_one' := rfl, map_mul' := by simp, commutes' := λ r, begin simp only [algebra_map_apply], transitivity r • ((1 : A) ⊗ₜ[R] (1 : B)), { rw [←tmul_smul, algebra.smul_def], simp, }, { simp [algebra.smul_def], }, end, } @[simp] lemma include_right_apply (b : B) : (include_right : B →ₐ[R] A ⊗[R] B) b = 1 ⊗ₜ b := rfl end semiring section ring variables {R : Type u} [comm_ring R] variables {A : Type v₁} [ring A] [algebra R A] variables {B : Type v₂} [ring B] [algebra R B] instance : ring (A ⊗[R] B) := { .. (by apply_instance : add_comm_group (A ⊗[R] B)), .. (by apply_instance : semiring (A ⊗[R] B)) }. end ring section comm_ring variables {R : Type u} [comm_ring R] variables {A : Type v₁} [comm_ring A] [algebra R A] variables {B : Type v₂} [comm_ring B] [algebra R B] instance : comm_ring (A ⊗[R] B) := { mul_comm := λ x y, begin apply tensor_product.induction_on x, { simp, }, { intros a₁ b₁, apply tensor_product.induction_on y, { simp, }, { intros a₂ b₂, simp [mul_comm], }, { intros a₂ b₂ ha hb, simp [mul_add, add_mul, ha, hb], }, }, { intros x₁ x₂ h₁ h₂, simp [mul_add, add_mul, h₁, h₂], }, end .. (by apply_instance : ring (A ⊗[R] B)) }. end comm_ring /-- Verify that typeclass search finds the ring structure on `A ⊗[ℤ] B` when `A` and `B` are merely rings, by treating both as `ℤ`-algebras. -/ example {A : Type v₁} [ring A] {B : Type v₂} [ring B] : ring (A ⊗[ℤ] B) := by apply_instance /-- Verify that typeclass search finds the comm_ring structure on `A ⊗[ℤ] B` when `A` and `B` are merely comm_rings, by treating both as `ℤ`-algebras. -/ example {A : Type v₁} [comm_ring A] {B : Type v₂} [comm_ring B] : comm_ring (A ⊗[ℤ] B) := by apply_instance /-! We now build the structure maps for the symmetric monoidal category of `R`-algebras. -/ section monoidal section variables {R : Type u} [comm_semiring R] variables {A : Type v₁} [semiring A] [algebra R A] variables {B : Type v₂} [semiring B] [algebra R B] variables {C : Type v₃} [semiring C] [algebra R C] variables {D : Type v₄} [semiring D] [algebra R D] /-- Build an algebra morphism from a linear map out of a tensor product, and evidence of multiplicativity on pure tensors. -/ def alg_hom_of_linear_map_tensor_product (f : A ⊗[R] B →ₗ[R] C) (w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), f ((a₁ * a₂) ⊗ₜ (b₁ * b₂)) = f (a₁ ⊗ₜ b₁) * f (a₂ ⊗ₜ b₂)) (w₂ : ∀ r, f ((algebra_map R A) r ⊗ₜ[R] 1) = (algebra_map R C) r): A ⊗[R] B →ₐ[R] C := { map_one' := by simpa using w₂ 1, map_zero' := by simp, map_mul' := λ x y, begin apply tensor_product.induction_on x, { simp, }, { intros a₁ b₁, apply tensor_product.induction_on y, { simp, }, { intros a₂ b₂, simp [w₁], }, { intros x₁ x₂ h₁ h₂, simp at h₁, simp at h₂, simp [mul_add, add_mul, h₁, h₂], }, }, { intros x₁ x₂ h₁ h₂, simp at h₁, simp at h₂, simp [mul_add, add_mul, h₁, h₂], } end, commutes' := λ r, by simp [w₂], .. f } @[simp] lemma alg_hom_of_linear_map_tensor_product_apply (f w₁ w₂ x) : (alg_hom_of_linear_map_tensor_product f w₁ w₂ : A ⊗[R] B →ₐ[R] C) x = f x := rfl /-- Build an algebra equivalence from a linear equivalence out of a tensor product, and evidence of multiplicativity on pure tensors. -/ def alg_equiv_of_linear_equiv_tensor_product (f : A ⊗[R] B ≃ₗ[R] C) (w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), f ((a₁ * a₂) ⊗ₜ (b₁ * b₂)) = f (a₁ ⊗ₜ b₁) * f (a₂ ⊗ₜ b₂)) (w₂ : ∀ r, f ((algebra_map R A) r ⊗ₜ[R] 1) = (algebra_map R C) r): A ⊗[R] B ≃ₐ[R] C := { .. alg_hom_of_linear_map_tensor_product (f : A ⊗[R] B →ₗ[R] C) w₁ w₂, .. f } @[simp] lemma alg_equiv_of_linear_equiv_tensor_product_apply (f w₁ w₂ x) : (alg_equiv_of_linear_equiv_tensor_product f w₁ w₂ : A ⊗[R] B ≃ₐ[R] C) x = f x := rfl /-- Build an algebra equivalence from a linear equivalence out of a triple tensor product, and evidence of multiplicativity on pure tensors. -/ def alg_equiv_of_linear_equiv_triple_tensor_product (f : ((A ⊗[R] B) ⊗[R] C) ≃ₗ[R] D) (w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), f ((a₁ * a₂) ⊗ₜ (b₁ * b₂) ⊗ₜ (c₁ * c₂)) = f (a₁ ⊗ₜ b₁ ⊗ₜ c₁) * f (a₂ ⊗ₜ b₂ ⊗ₜ c₂)) (w₂ : ∀ r, f (((algebra_map R A) r ⊗ₜ[R] (1 : B)) ⊗ₜ[R] (1 : C)) = (algebra_map R D) r) : (A ⊗[R] B) ⊗[R] C ≃ₐ[R] D := { map_mul' := λ x y, begin apply tensor_product.induction_on x, { simp, }, { intros ab₁ c₁, apply tensor_product.induction_on y, { simp, }, { intros ab₂ c₂, apply tensor_product.induction_on ab₁, { simp, }, { intros a₁ b₁, apply tensor_product.induction_on ab₂, { simp, }, { simp [w₁], }, { intros x₁ x₂ h₁ h₂, simp at h₁, simp at h₂, simp [mul_add, add_tmul, h₁, h₂], }, }, { intros x₁ x₂ h₁ h₂, simp at h₁, simp at h₂, simp [add_mul, add_tmul, h₁, h₂], }, }, { intros x₁ x₂ h₁ h₂, simp at h₁, simp at h₂, simp [mul_add, add_mul, h₁, h₂], }, }, { intros x₁ x₂ h₁ h₂, simp at h₁, simp at h₂, simp [mul_add, add_mul, h₁, h₂], } end, commutes' := λ r, by simp [w₂], .. f } @[simp] lemma alg_equiv_of_linear_equiv_triple_tensor_product_apply (f w₁ w₂ x) : (alg_equiv_of_linear_equiv_triple_tensor_product f w₁ w₂ : (A ⊗[R] B) ⊗[R] C ≃ₐ[R] D) x = f x := rfl end variables {R : Type u} [comm_semiring R] variables {A : Type v₁} [semiring A] [algebra R A] variables {B : Type v₂} [semiring B] [algebra R B] variables {C : Type v₃} [semiring C] [algebra R C] variables {D : Type v₄} [semiring D] [algebra R D] section variables (R A) /-- The base ring is a left identity for the tensor product of algebra, up to algebra isomorphism. -/ protected def lid : R ⊗[R] A ≃ₐ[R] A := alg_equiv_of_linear_equiv_tensor_product (tensor_product.lid R A) (by simp [mul_smul]) (by simp [algebra.smul_def]) @[simp] theorem lid_tmul (r : R) (a : A) : (tensor_product.lid R A : (R ⊗ A → A)) (r ⊗ₜ a) = r • a := by simp [tensor_product.lid] /-- The base ring is a right identity for the tensor product of algebra, up to algebra isomorphism. -/ protected def rid : A ⊗[R] R ≃ₐ[R] A := alg_equiv_of_linear_equiv_tensor_product (tensor_product.rid R A) (by simp [mul_smul]) (by simp [algebra.smul_def]) @[simp] theorem rid_tmul (r : R) (a : A) : (tensor_product.rid R A : (A ⊗ R → A)) (a ⊗ₜ r) = r • a := by simp [tensor_product.rid] section variables (R A B) /-- The tensor product of R-algebras is commutative, up to algebra isomorphism. -/ protected def comm : A ⊗[R] B ≃ₐ[R] B ⊗[R] A := alg_equiv_of_linear_equiv_tensor_product (tensor_product.comm R A B) (by simp) (λ r, begin transitivity r • ((1 : B) ⊗ₜ[R] (1 : A)), { rw [←tmul_smul, algebra.smul_def], simp, }, { simp [algebra.smul_def], }, end) @[simp] theorem comm_tmul (a : A) (b : B) : (tensor_product.comm R A B : (A ⊗[R] B → B ⊗[R] A)) (a ⊗ₜ b) = (b ⊗ₜ a) := by simp [tensor_product.comm] end section variables {R A B C} lemma assoc_aux_1 (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C) : (tensor_product.assoc R A B C) (((a₁ * a₂) ⊗ₜ[R] b₁ * b₂) ⊗ₜ[R] c₁ * c₂) = (tensor_product.assoc R A B C) ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * (tensor_product.assoc R A B C) ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) := rfl lemma assoc_aux_2 (r : R) : (tensor_product.assoc R A B C) (((algebra_map R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = (algebra_map R (A ⊗ (B ⊗ C))) r := rfl -- variables (R A B C) -- -- local attribute [elab_simple] alg_equiv_of_linear_equiv_triple_tensor_product -- /-- The associator for tensor product of R-algebras, as an algebra isomorphism. -/ -- -- FIXME This is _really_ slow to compile. :-( -- protected def assoc : ((A ⊗[R] B) ⊗[R] C) ≃ₐ[R] (A ⊗[R] (B ⊗[R] C)) := -- alg_equiv_of_linear_equiv_triple_tensor_product -- (tensor_product.assoc R A B C) -- assoc_aux_1 assoc_aux_2 -- variables {R A B C} -- @[simp] theorem assoc_tmul (a : A) (b : B) (c : C) : -- ((tensor_product.assoc R A B C) : (A ⊗[R] B) ⊗[R] C → A ⊗[R] (B ⊗[R] C)) ((a ⊗ₜ b) ⊗ₜ c) = a ⊗ₜ (b ⊗ₜ c) := -- rfl end variables {R A B C D} /-- The tensor product of a pair of algebra morphisms. -/ def map (f : A →ₐ[R] B) (g : C →ₐ[R] D) : A ⊗[R] C →ₐ[R] B ⊗[R] D := alg_hom_of_linear_map_tensor_product (tensor_product.map f.to_linear_map g.to_linear_map) (by simp) (by simp [alg_hom.commutes]) @[simp] theorem map_tmul (f : A →ₐ[R] B) (g : C →ₐ[R] D) (a : A) (c : C) : map f g (a ⊗ₜ c) = f a ⊗ₜ g c := rfl /-- Construct an isomorphism between tensor products of R-algebras from isomorphisms between the tensor factors. -/ def congr (f : A ≃ₐ[R] B) (g : C ≃ₐ[R] D) : A ⊗[R] C ≃ₐ[R] B ⊗[R] D := alg_equiv.of_alg_hom (map f g) (map f.symm g.symm) (ext $ λ b d, by simp) (ext $ λ a c, by simp) @[simp] lemma congr_apply (f : A ≃ₐ[R] B) (g : C ≃ₐ[R] D) (x) : congr f g x = (map (f : A →ₐ[R] B) (g : C →ₐ[R] D)) x := rfl @[simp] lemma congr_symm_apply (f : A ≃ₐ[R] B) (g : C ≃ₐ[R] D) (x) : (congr f g).symm x = (map (f.symm : B →ₐ[R] A) (g.symm : D →ₐ[R] C)) x := rfl end end monoidal end tensor_product end algebra
c691ed4df0de8d41904d3e742556f89b1c772e23
4950bf76e5ae40ba9f8491647d0b6f228ddce173
/src/data/matrix/basic.lean
a98d8ce39f26f0e78bdfe1913f1312bc4de0058a
[ "Apache-2.0" ]
permissive
ntzwq/mathlib
ca50b21079b0a7c6781c34b62199a396dd00cee2
36eec1a98f22df82eaccd354a758ef8576af2a7f
refs/heads/master
1,675,193,391,478
1,607,822,996,000
1,607,822,996,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
42,236
lean
/- Copyright (c) 2018 Ellen Arlt. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ellen Arlt, Blair Shi, Sean Leather, Mario Carneiro, Johan Commelin -/ import algebra.big_operators.pi import algebra.module.pi import algebra.module.linear_map import algebra.big_operators.ring import algebra.star.basic import data.equiv.ring import data.fintype.card /-! # Matrices -/ universes u u' v w open_locale big_operators /-- `matrix m n` is the type of matrices whose rows are indexed by the fintype `m` and whose columns are indexed by the fintype `n`. -/ @[nolint unused_arguments] def matrix (m : Type u) (n : Type u') [fintype m] [fintype n] (α : Type v) : Type (max u u' v) := m → n → α variables {l m n o : Type*} [fintype l] [fintype m] [fintype n] [fintype o] variables {α : Type v} namespace matrix section ext variables {M N : matrix m n α} theorem ext_iff : (∀ i j, M i j = N i j) ↔ M = N := ⟨λ h, funext $ λ i, funext $ h i, λ h, by simp [h]⟩ @[ext] theorem ext : (∀ i j, M i j = N i j) → M = N := ext_iff.mp end ext /-- `M.map f` is the matrix obtained by applying `f` to each entry of the matrix `M`. -/ def map (M : matrix m n α) {β : Type w} (f : α → β) : matrix m n β := λ i j, f (M i j) @[simp] lemma map_apply {M : matrix m n α} {β : Type w} {f : α → β} {i : m} {j : n} : M.map f i j = f (M i j) := rfl @[simp] lemma map_map {M : matrix m n α} {β γ : Type*} {f : α → β} {g : β → γ} : (M.map f).map g = M.map (g ∘ f) := by { ext, simp, } /-- The transpose of a matrix. -/ def transpose (M : matrix m n α) : matrix n m α | x y := M y x localized "postfix `ᵀ`:1500 := matrix.transpose" in matrix /-- `matrix.col u` is the column matrix whose entries are given by `u`. -/ def col (w : m → α) : matrix m unit α | x y := w x /-- `matrix.row u` is the row matrix whose entries are given by `u`. -/ def row (v : n → α) : matrix unit n α | x y := v y instance [inhabited α] : inhabited (matrix m n α) := pi.inhabited _ instance [has_add α] : has_add (matrix m n α) := pi.has_add instance [add_semigroup α] : add_semigroup (matrix m n α) := pi.add_semigroup instance [add_comm_semigroup α] : add_comm_semigroup (matrix m n α) := pi.add_comm_semigroup instance [has_zero α] : has_zero (matrix m n α) := pi.has_zero instance [add_monoid α] : add_monoid (matrix m n α) := pi.add_monoid instance [add_comm_monoid α] : add_comm_monoid (matrix m n α) := pi.add_comm_monoid instance [has_neg α] : has_neg (matrix m n α) := pi.has_neg instance [add_group α] : add_group (matrix m n α) := pi.add_group instance [add_comm_group α] : add_comm_group (matrix m n α) := pi.add_comm_group @[simp] theorem zero_apply [has_zero α] (i j) : (0 : matrix m n α) i j = 0 := rfl @[simp] theorem neg_apply [has_neg α] (M : matrix m n α) (i j) : (- M) i j = - M i j := rfl @[simp] theorem add_apply [has_add α] (M N : matrix m n α) (i j) : (M + N) i j = M i j + N i j := rfl -- TODO: this should assume `has_sub α` when we fix the `add_group -> has_sub` diamond issue @[simp] theorem sub_apply [add_group α] (M N : matrix m n α) (i j) : (M - N) i j = M i j - N i j := rfl @[simp] lemma map_zero [has_zero α] {β : Type w} [has_zero β] {f : α → β} (h : f 0 = 0) : (0 : matrix m n α).map f = 0 := by { ext, simp [h], } lemma map_add [add_monoid α] {β : Type w} [add_monoid β] (f : α →+ β) (M N : matrix m n α) : (M + N).map f = M.map f + N.map f := by { ext, simp, } lemma map_sub [add_group α] {β : Type w} [add_group β] (f : α →+ β) (M N : matrix m n α) : (M - N).map f = M.map f - N.map f := by { ext, simp } lemma subsingleton_of_empty_left (hm : ¬ nonempty m) : subsingleton (matrix m n α) := ⟨λ M N, by { ext, contrapose! hm, use i }⟩ lemma subsingleton_of_empty_right (hn : ¬ nonempty n) : subsingleton (matrix m n α) := ⟨λ M N, by { ext, contrapose! hn, use j }⟩ end matrix /-- The `add_monoid_hom` between spaces of matrices induced by an `add_monoid_hom` between their coefficients. -/ def add_monoid_hom.map_matrix [add_monoid α] {β : Type w} [add_monoid β] (f : α →+ β) : matrix m n α →+ matrix m n β := { to_fun := λ M, M.map f, map_zero' := by simp, map_add' := matrix.map_add f, } @[simp] lemma add_monoid_hom.map_matrix_apply [add_monoid α] {β : Type w} [add_monoid β] (f : α →+ β) (M : matrix m n α) : f.map_matrix M = M.map f := rfl open_locale matrix namespace matrix section diagonal variables [decidable_eq n] /-- `diagonal d` is the square matrix such that `(diagonal d) i i = d i` and `(diagonal d) i j = 0` if `i ≠ j`. -/ def diagonal [has_zero α] (d : n → α) : matrix n n α := λ i j, if i = j then d i else 0 @[simp] theorem diagonal_apply_eq [has_zero α] {d : n → α} (i : n) : (diagonal d) i i = d i := by simp [diagonal] @[simp] theorem diagonal_apply_ne [has_zero α] {d : n → α} {i j : n} (h : i ≠ j) : (diagonal d) i j = 0 := by simp [diagonal, h] theorem diagonal_apply_ne' [has_zero α] {d : n → α} {i j : n} (h : j ≠ i) : (diagonal d) i j = 0 := diagonal_apply_ne h.symm @[simp] theorem diagonal_zero [has_zero α] : (diagonal (λ _, 0) : matrix n n α) = 0 := by simp [diagonal]; refl @[simp] lemma diagonal_transpose [has_zero α] (v : n → α) : (diagonal v)ᵀ = diagonal v := begin ext i j, by_cases h : i = j, { simp [h, transpose] }, { simp [h, transpose, diagonal_apply_ne' h] } end @[simp] theorem diagonal_add [add_monoid α] (d₁ d₂ : n → α) : diagonal d₁ + diagonal d₂ = diagonal (λ i, d₁ i + d₂ i) := by ext i j; by_cases h : i = j; simp [h] @[simp] lemma diagonal_map {β : Type w} [has_zero α] [has_zero β] {f : α → β} (h : f 0 = 0) {d : n → α} : (diagonal d).map f = diagonal (λ m, f (d m)) := by { ext, simp only [diagonal, map_apply], split_ifs; simp [h], } section one variables [has_zero α] [has_one α] instance : has_one (matrix n n α) := ⟨diagonal (λ _, 1)⟩ @[simp] theorem diagonal_one : (diagonal (λ _, 1) : matrix n n α) = 1 := rfl theorem one_apply {i j} : (1 : matrix n n α) i j = if i = j then 1 else 0 := rfl @[simp] theorem one_apply_eq (i) : (1 : matrix n n α) i i = 1 := diagonal_apply_eq i @[simp] theorem one_apply_ne {i j} : i ≠ j → (1 : matrix n n α) i j = 0 := diagonal_apply_ne theorem one_apply_ne' {i j} : j ≠ i → (1 : matrix n n α) i j = 0 := diagonal_apply_ne' @[simp] lemma one_map {β : Type w} [has_zero β] [has_one β] {f : α → β} (h₀ : f 0 = 0) (h₁ : f 1 = 1) : (1 : matrix n n α).map f = (1 : matrix n n β) := by { ext, simp only [one_apply, map_apply], split_ifs; simp [h₀, h₁], } end one section numeral @[simp] lemma bit0_apply [has_add α] (M : matrix m m α) (i : m) (j : m) : (bit0 M) i j = bit0 (M i j) := rfl variables [add_monoid α] [has_one α] lemma bit1_apply (M : matrix n n α) (i : n) (j : n) : (bit1 M) i j = if i = j then bit1 (M i j) else bit0 (M i j) := by dsimp [bit1]; by_cases h : i = j; simp [h] @[simp] lemma bit1_apply_eq (M : matrix n n α) (i : n) : (bit1 M) i i = bit1 (M i i) := by simp [bit1_apply] @[simp] lemma bit1_apply_ne (M : matrix n n α) {i j : n} (h : i ≠ j) : (bit1 M) i j = bit0 (M i j) := by simp [bit1_apply, h] end numeral end diagonal section dot_product /-- `dot_product v w` is the sum of the entrywise products `v i * w i` -/ def dot_product [has_mul α] [add_comm_monoid α] (v w : m → α) : α := ∑ i, v i * w i lemma dot_product_assoc [semiring α] (u : m → α) (v : m → n → α) (w : n → α) : dot_product (λ j, dot_product u (λ i, v i j)) w = dot_product u (λ i, dot_product (v i) w) := by simpa [dot_product, finset.mul_sum, finset.sum_mul, mul_assoc] using finset.sum_comm lemma dot_product_comm [comm_semiring α] (v w : m → α) : dot_product v w = dot_product w v := by simp_rw [dot_product, mul_comm] @[simp] lemma dot_product_punit [add_comm_monoid α] [has_mul α] (v w : punit → α) : dot_product v w = v ⟨⟩ * w ⟨⟩ := by simp [dot_product] @[simp] lemma dot_product_zero [semiring α] (v : m → α) : dot_product v 0 = 0 := by simp [dot_product] @[simp] lemma dot_product_zero' [semiring α] (v : m → α) : dot_product v (λ _, 0) = 0 := dot_product_zero v @[simp] lemma zero_dot_product [semiring α] (v : m → α) : dot_product 0 v = 0 := by simp [dot_product] @[simp] lemma zero_dot_product' [semiring α] (v : m → α) : dot_product (λ _, (0 : α)) v = 0 := zero_dot_product v @[simp] lemma add_dot_product [semiring α] (u v w : m → α) : dot_product (u + v) w = dot_product u w + dot_product v w := by simp [dot_product, add_mul, finset.sum_add_distrib] @[simp] lemma dot_product_add [semiring α] (u v w : m → α) : dot_product u (v + w) = dot_product u v + dot_product u w := by simp [dot_product, mul_add, finset.sum_add_distrib] @[simp] lemma diagonal_dot_product [decidable_eq m] [semiring α] (v w : m → α) (i : m) : dot_product (diagonal v i) w = v i * w i := have ∀ j ≠ i, diagonal v i j * w j = 0 := λ j hij, by simp [diagonal_apply_ne' hij], by convert finset.sum_eq_single i (λ j _, this j) _; simp @[simp] lemma dot_product_diagonal [decidable_eq m] [semiring α] (v w : m → α) (i : m) : dot_product v (diagonal w i) = v i * w i := have ∀ j ≠ i, v j * diagonal w i j = 0 := λ j hij, by simp [diagonal_apply_ne' hij], by convert finset.sum_eq_single i (λ j _, this j) _; simp @[simp] lemma dot_product_diagonal' [decidable_eq m] [semiring α] (v w : m → α) (i : m) : dot_product v (λ j, diagonal w j i) = v i * w i := have ∀ j ≠ i, v j * diagonal w j i = 0 := λ j hij, by simp [diagonal_apply_ne hij], by convert finset.sum_eq_single i (λ j _, this j) _; simp @[simp] lemma neg_dot_product [ring α] (v w : m → α) : dot_product (-v) w = - dot_product v w := by simp [dot_product] @[simp] lemma dot_product_neg [ring α] (v w : m → α) : dot_product v (-w) = - dot_product v w := by simp [dot_product] @[simp] lemma smul_dot_product [semiring α] (x : α) (v w : m → α) : dot_product (x • v) w = x * dot_product v w := by simp [dot_product, finset.mul_sum, mul_assoc] @[simp] lemma dot_product_smul [comm_semiring α] (x : α) (v w : m → α) : dot_product v (x • w) = x * dot_product v w := by simp [dot_product, finset.mul_sum, mul_assoc, mul_comm, mul_left_comm] end dot_product /-- `M ⬝ N` is the usual product of matrices `M` and `N`, i.e. we have that `(M ⬝ N) i k` is the dot product of the `i`-th row of `M` by the `k`-th column of `Ǹ`. -/ protected def mul [has_mul α] [add_comm_monoid α] (M : matrix l m α) (N : matrix m n α) : matrix l n α := λ i k, dot_product (λ j, M i j) (λ j, N j k) localized "infixl ` ⬝ `:75 := matrix.mul" in matrix theorem mul_apply [has_mul α] [add_comm_monoid α] {M : matrix l m α} {N : matrix m n α} {i k} : (M ⬝ N) i k = ∑ j, M i j * N j k := rfl instance [has_mul α] [add_comm_monoid α] : has_mul (matrix n n α) := ⟨matrix.mul⟩ @[simp] theorem mul_eq_mul [has_mul α] [add_comm_monoid α] (M N : matrix n n α) : M * N = M ⬝ N := rfl theorem mul_apply' [has_mul α] [add_comm_monoid α] {M N : matrix n n α} {i k} : (M ⬝ N) i k = dot_product (λ j, M i j) (λ j, N j k) := rfl section semigroup variables [semiring α] protected theorem mul_assoc (L : matrix l m α) (M : matrix m n α) (N : matrix n o α) : (L ⬝ M) ⬝ N = L ⬝ (M ⬝ N) := by { ext, apply dot_product_assoc } instance : semigroup (matrix n n α) := { mul_assoc := matrix.mul_assoc, ..matrix.has_mul } end semigroup @[simp] theorem diagonal_neg [decidable_eq n] [add_group α] (d : n → α) : -diagonal d = diagonal (λ i, -d i) := by ext i j; by_cases i = j; simp [h] section semiring variables [semiring α] @[simp] protected theorem mul_zero (M : matrix m n α) : M ⬝ (0 : matrix n o α) = 0 := by { ext i j, apply dot_product_zero } @[simp] protected theorem zero_mul (M : matrix m n α) : (0 : matrix l m α) ⬝ M = 0 := by { ext i j, apply zero_dot_product } protected theorem mul_add (L : matrix m n α) (M N : matrix n o α) : L ⬝ (M + N) = L ⬝ M + L ⬝ N := by { ext i j, apply dot_product_add } protected theorem add_mul (L M : matrix l m α) (N : matrix m n α) : (L + M) ⬝ N = L ⬝ N + M ⬝ N := by { ext i j, apply add_dot_product } @[simp] theorem diagonal_mul [decidable_eq m] (d : m → α) (M : matrix m n α) (i j) : (diagonal d).mul M i j = d i * M i j := diagonal_dot_product _ _ _ @[simp] theorem mul_diagonal [decidable_eq n] (d : n → α) (M : matrix m n α) (i j) : (M ⬝ diagonal d) i j = M i j * d j := by { rw ← diagonal_transpose, apply dot_product_diagonal } @[simp] protected theorem one_mul [decidable_eq m] (M : matrix m n α) : (1 : matrix m m α) ⬝ M = M := by ext i j; rw [← diagonal_one, diagonal_mul, one_mul] @[simp] protected theorem mul_one [decidable_eq n] (M : matrix m n α) : M ⬝ (1 : matrix n n α) = M := by ext i j; rw [← diagonal_one, mul_diagonal, mul_one] instance [decidable_eq n] : monoid (matrix n n α) := { one_mul := matrix.one_mul, mul_one := matrix.mul_one, ..matrix.has_one, ..matrix.semigroup } instance [decidable_eq n] : semiring (matrix n n α) := { mul_zero := matrix.mul_zero, zero_mul := matrix.zero_mul, left_distrib := matrix.mul_add, right_distrib := matrix.add_mul, ..matrix.add_comm_monoid, ..matrix.monoid } @[simp] theorem diagonal_mul_diagonal [decidable_eq n] (d₁ d₂ : n → α) : (diagonal d₁) ⬝ (diagonal d₂) = diagonal (λ i, d₁ i * d₂ i) := by ext i j; by_cases i = j; simp [h] theorem diagonal_mul_diagonal' [decidable_eq n] (d₁ d₂ : n → α) : diagonal d₁ * diagonal d₂ = diagonal (λ i, d₁ i * d₂ i) := diagonal_mul_diagonal _ _ @[simp] lemma map_mul {L : matrix m n α} {M : matrix n o α} {β : Type w} [semiring β] {f : α →+* β} : (L ⬝ M).map f = L.map f ⬝ M.map f := by { ext, simp [mul_apply, ring_hom.map_sum], } -- TODO: there should be a way to avoid restating these for each `foo_hom`. /-- A version of `one_map` where `f` is a ring hom. -/ @[simp] lemma ring_hom_map_one [decidable_eq n] {β : Type w} [semiring β] (f : α →+* β) : (1 : matrix n n α).map f = 1 := one_map f.map_zero f.map_one /-- A version of `one_map` where `f` is a `ring_equiv`. -/ @[simp] lemma ring_equiv_map_one [decidable_eq n] {β : Type w} [semiring β] (f : α ≃+* β) : (1 : matrix n n α).map f = 1 := one_map f.map_zero f.map_one /-- A version of `map_zero` where `f` is a `zero_hom`. -/ @[simp] lemma zero_hom_map_zero {β : Type w} [has_zero β] (f : zero_hom α β) : (0 : matrix n n α).map f = 0 := map_zero f.map_zero /-- A version of `map_zero` where `f` is a `add_monoid_hom`. -/ @[simp] lemma add_monoid_hom_map_zero {β : Type w} [add_monoid β] (f : α →+ β) : (0 : matrix n n α).map f = 0 := map_zero f.map_zero /-- A version of `map_zero` where `f` is a `add_equiv`. -/ @[simp] lemma add_equiv_map_zero {β : Type w} [add_monoid β] (f : α ≃+ β) : (0 : matrix n n α).map f = 0 := map_zero f.map_zero /-- A version of `map_zero` where `f` is a `linear_map`. -/ @[simp] lemma linear_map_map_zero {R : Type*} [semiring R] {β : Type w} [add_comm_monoid β] [semimodule R α] [semimodule R β] (f : α →ₗ[R] β) : (0 : matrix n n α).map f = 0 := map_zero f.map_zero /-- A version of `map_zero` where `f` is a `linear_equiv`. -/ @[simp] lemma linear_equiv_map_zero {R : Type*} [semiring R] {β : Type w} [add_comm_monoid β] [semimodule R α] [semimodule R β] (f : α ≃ₗ[R] β) : (0 : matrix n n α).map f = 0 := map_zero f.map_zero /-- A version of `map_zero` where `f` is a `ring_hom`. -/ @[simp] lemma ring_hom_map_zero {β : Type w} [semiring β] (f : α →+* β) : (0 : matrix n n α).map f = 0 := map_zero f.map_zero /-- A version of `map_zero` where `f` is a `ring_equiv`. -/ @[simp] lemma ring_equiv_map_zero {β : Type w} [semiring β] (f : α ≃+* β) : (0 : matrix n n α).map f = 0 := map_zero f.map_zero lemma is_add_monoid_hom_mul_left (M : matrix l m α) : is_add_monoid_hom (λ x : matrix m n α, M ⬝ x) := { to_is_add_hom := ⟨matrix.mul_add _⟩, map_zero := matrix.mul_zero _ } lemma is_add_monoid_hom_mul_right (M : matrix m n α) : is_add_monoid_hom (λ x : matrix l m α, x ⬝ M) := { to_is_add_hom := ⟨λ _ _, matrix.add_mul _ _ _⟩, map_zero := matrix.zero_mul _ } protected lemma sum_mul {β : Type*} (s : finset β) (f : β → matrix l m α) (M : matrix m n α) : (∑ a in s, f a) ⬝ M = ∑ a in s, f a ⬝ M := (@finset.sum_hom _ _ _ _ _ s f (λ x, x ⬝ M) /- This line does not type-check without `id` and `: _`. Lean did not recognize that two different `add_monoid` instances were def-eq -/ (id (@is_add_monoid_hom_mul_right l _ _ _ _ _ _ _ M) : _)).symm protected lemma mul_sum {β : Type*} (s : finset β) (f : β → matrix m n α) (M : matrix l m α) : M ⬝ ∑ a in s, f a = ∑ a in s, M ⬝ f a := (@finset.sum_hom _ _ _ _ _ s f (λ x, M ⬝ x) /- This line does not type-check without `id` and `: _`. Lean did not recognize that two different `add_monoid` instances were def-eq -/ (id (@is_add_monoid_hom_mul_left _ _ n _ _ _ _ _ M) : _)).symm @[simp] lemma row_mul_col_apply (v w : m → α) (i j) : (row v ⬝ col w) i j = dot_product v w := rfl end semiring end matrix /-- The `ring_hom` between spaces of square matrices induced by a `ring_hom` between their coefficients. -/ def ring_hom.map_matrix [decidable_eq m] [semiring α] {β : Type w} [semiring β] (f : α →+* β) : matrix m m α →+* matrix m m β := { to_fun := λ M, M.map f, map_one' := by simp, map_mul' := λ L M, matrix.map_mul, ..(f.to_add_monoid_hom).map_matrix } @[simp] lemma ring_hom.map_matrix_apply [decidable_eq m] [semiring α] {β : Type w} [semiring β] (f : α →+* β) (M : matrix m m α) : f.map_matrix M = M.map f := rfl open_locale matrix namespace matrix section ring variables [ring α] @[simp] theorem neg_mul (M : matrix m n α) (N : matrix n o α) : (-M) ⬝ N = -(M ⬝ N) := by { ext, apply neg_dot_product } @[simp] theorem mul_neg (M : matrix m n α) (N : matrix n o α) : M ⬝ (-N) = -(M ⬝ N) := by { ext, apply dot_product_neg } protected theorem sub_mul (M M' : matrix m n α) (N : matrix n o α) : (M - M') ⬝ N = M ⬝ N - M' ⬝ N := by rw [sub_eq_add_neg, matrix.add_mul, neg_mul, sub_eq_add_neg] protected theorem mul_sub (M : matrix m n α) (N N' : matrix n o α) : M ⬝ (N - N') = M ⬝ N - M ⬝ N' := by rw [sub_eq_add_neg, matrix.mul_add, mul_neg, sub_eq_add_neg] end ring instance [decidable_eq n] [ring α] : ring (matrix n n α) := { ..matrix.semiring, ..matrix.add_comm_group } instance [semiring α] : has_scalar α (matrix m n α) := pi.has_scalar instance {β : Type w} [semiring α] [add_comm_monoid β] [semimodule α β] : semimodule α (matrix m n β) := pi.semimodule _ _ _ @[simp] lemma smul_apply [semiring α] (a : α) (A : matrix m n α) (i : m) (j : n) : (a • A) i j = a * A i j := rfl section semiring variables [semiring α] lemma smul_eq_diagonal_mul [decidable_eq m] (M : matrix m n α) (a : α) : a • M = diagonal (λ _, a) ⬝ M := by { ext, simp } @[simp] lemma smul_mul (M : matrix m n α) (a : α) (N : matrix n l α) : (a • M) ⬝ N = a • M ⬝ N := by { ext, apply smul_dot_product } @[simp] lemma mul_mul_left (M : matrix m n α) (N : matrix n o α) (a : α) : (λ i j, a * M i j) ⬝ N = a • (M ⬝ N) := begin simp only [←smul_apply], simp, end /-- The ring homomorphism `α →+* matrix n n α` sending `a` to the diagonal matrix with `a` on the diagonal. -/ def scalar (n : Type u) [decidable_eq n] [fintype n] : α →+* matrix n n α := { to_fun := λ a, a • 1, map_zero' := by simp, map_add' := by { intros, ext, simp [add_mul], }, map_one' := by simp, map_mul' := by { intros, ext, simp [mul_assoc], }, } section scalar variable [decidable_eq n] @[simp] lemma coe_scalar : (scalar n : α → matrix n n α) = λ a, a • 1 := rfl lemma scalar_apply_eq (a : α) (i : n) : scalar n a i i = a := by simp only [coe_scalar, mul_one, one_apply_eq, smul_apply] lemma scalar_apply_ne (a : α) (i j : n) (h : i ≠ j) : scalar n a i j = 0 := by simp only [h, coe_scalar, one_apply_ne, ne.def, not_false_iff, smul_apply, mul_zero] lemma scalar_inj [nonempty n] {r s : α} : scalar n r = scalar n s ↔ r = s := begin split, { intro h, inhabit n, rw [← scalar_apply_eq r (arbitrary n), ← scalar_apply_eq s (arbitrary n), h] }, { rintro rfl, refl } end end scalar end semiring section comm_semiring variables [comm_semiring α] lemma smul_eq_mul_diagonal [decidable_eq n] (M : matrix m n α) (a : α) : a • M = M ⬝ diagonal (λ _, a) := by { ext, simp [mul_comm] } @[simp] lemma mul_smul (M : matrix m n α) (a : α) (N : matrix n l α) : M ⬝ (a • N) = a • M ⬝ N := by { ext, apply dot_product_smul } @[simp] lemma mul_mul_right (M : matrix m n α) (N : matrix n o α) (a : α) : M ⬝ (λ i j, a * N i j) = a • (M ⬝ N) := begin simp only [←smul_apply], simp, end lemma scalar.commute [decidable_eq n] (r : α) (M : matrix n n α) : commute (scalar n r) M := by simp [commute, semiconj_by] end comm_semiring section semiring variables [semiring α] /-- For two vectors `w` and `v`, `vec_mul_vec w v i j` is defined to be `w i * v j`. Put another way, `vec_mul_vec w v` is exactly `col w ⬝ row v`. -/ def vec_mul_vec (w : m → α) (v : n → α) : matrix m n α | x y := w x * v y /-- `mul_vec M v` is the matrix-vector product of `M` and `v`, where `v` is seen as a column matrix. Put another way, `mul_vec M v` is the vector whose entries are those of `M ⬝ col v` (see `col_mul_vec`). -/ def mul_vec (M : matrix m n α) (v : n → α) : m → α | i := dot_product (λ j, M i j) v /-- `vec_mul v M` is the vector-matrix product of `v` and `M`, where `v` is seen as a row matrix. Put another way, `vec_mul v M` is the vector whose entries are those of `row v ⬝ M` (see `row_vec_mul`). -/ def vec_mul (v : m → α) (M : matrix m n α) : n → α | j := dot_product v (λ i, M i j) instance mul_vec.is_add_monoid_hom_left (v : n → α) : is_add_monoid_hom (λM:matrix m n α, mul_vec M v) := { map_zero := by ext; simp [mul_vec]; refl, map_add := begin intros x y, ext m, apply add_dot_product end } lemma mul_vec_diagonal [decidable_eq m] (v w : m → α) (x : m) : mul_vec (diagonal v) w x = v x * w x := diagonal_dot_product v w x lemma vec_mul_diagonal [decidable_eq m] (v w : m → α) (x : m) : vec_mul v (diagonal w) x = v x * w x := dot_product_diagonal' v w x @[simp] lemma mul_vec_one [decidable_eq m] (v : m → α) : mul_vec 1 v = v := by { ext, rw [←diagonal_one, mul_vec_diagonal, one_mul] } @[simp] lemma vec_mul_one [decidable_eq m] (v : m → α) : vec_mul v 1 = v := by { ext, rw [←diagonal_one, vec_mul_diagonal, mul_one] } @[simp] lemma mul_vec_zero (A : matrix m n α) : mul_vec A 0 = 0 := by { ext, simp [mul_vec] } @[simp] lemma vec_mul_zero (A : matrix m n α) : vec_mul 0 A = 0 := by { ext, simp [vec_mul] } @[simp] lemma vec_mul_vec_mul (v : m → α) (M : matrix m n α) (N : matrix n o α) : vec_mul (vec_mul v M) N = vec_mul v (M ⬝ N) := by { ext, apply dot_product_assoc } @[simp] lemma mul_vec_mul_vec (v : o → α) (M : matrix m n α) (N : matrix n o α) : mul_vec M (mul_vec N v) = mul_vec (M ⬝ N) v := by { ext, symmetry, apply dot_product_assoc } lemma vec_mul_vec_eq (w : m → α) (v : n → α) : vec_mul_vec w v = (col w) ⬝ (row v) := by { ext i j, simp [vec_mul_vec, mul_apply], refl } variables [decidable_eq m] [decidable_eq n] /-- `std_basis_matrix i j a` is the matrix with `a` in the `i`-th row, `j`-th column, and zeroes elsewhere. -/ def std_basis_matrix (i : m) (j : n) (a : α) : matrix m n α := (λ i' j', if i' = i ∧ j' = j then a else 0) @[simp] lemma smul_std_basis_matrix (i : m) (j : n) (a b : α) : b • std_basis_matrix i j a = std_basis_matrix i j (b • a) := by { unfold std_basis_matrix, ext, simp } @[simp] lemma std_basis_matrix_zero (i : m) (j : n) : std_basis_matrix i j (0 : α) = 0 := by { unfold std_basis_matrix, ext, simp } lemma std_basis_matrix_add (i : m) (j : n) (a b : α) : std_basis_matrix i j (a + b) = std_basis_matrix i j a + std_basis_matrix i j b := begin unfold std_basis_matrix, ext, split_ifs with h; simp [h], end lemma matrix_eq_sum_std_basis (x : matrix n m α) : x = ∑ (i : n) (j : m), std_basis_matrix i j (x i j) := begin ext, symmetry, iterate 2 { rw finset.sum_apply }, convert fintype.sum_eq_single i _, { simp [std_basis_matrix] }, { intros j hj, simp [std_basis_matrix, hj.symm] } end -- TODO: tie this up with the `basis` machinery of linear algebra -- this is not completely trivial because we are indexing by two types, instead of one -- TODO: add `std_basis_vec` lemma std_basis_eq_basis_mul_basis (i : m) (j : n) : std_basis_matrix i j 1 = vec_mul_vec (λ i', ite (i = i') 1 0) (λ j', ite (j = j') 1 0) := begin ext, norm_num [std_basis_matrix, vec_mul_vec], split_ifs; tauto, end @[elab_as_eliminator] protected lemma induction_on' {X : Type*} [semiring X] {M : matrix n n X → Prop} (m : matrix n n X) (h_zero : M 0) (h_add : ∀p q, M p → M q → M (p + q)) (h_std_basis : ∀ i j x, M (std_basis_matrix i j x)) : M m := begin rw [matrix_eq_sum_std_basis m, ← finset.sum_product'], apply finset.sum_induction _ _ h_add h_zero, { intros, apply h_std_basis, } end @[elab_as_eliminator] protected lemma induction_on [nonempty n] {X : Type*} [semiring X] {M : matrix n n X → Prop} (m : matrix n n X) (h_add : ∀p q, M p → M q → M (p + q)) (h_std_basis : ∀ i j x, M (std_basis_matrix i j x)) : M m := matrix.induction_on' m begin have i : n := classical.choice (by assumption), simpa using h_std_basis i i 0, end h_add h_std_basis end semiring section ring variables [ring α] lemma neg_vec_mul (v : m → α) (A : matrix m n α) : vec_mul (-v) A = - vec_mul v A := by { ext, apply neg_dot_product } lemma vec_mul_neg (v : m → α) (A : matrix m n α) : vec_mul v (-A) = - vec_mul v A := by { ext, apply dot_product_neg } lemma neg_mul_vec (v : n → α) (A : matrix m n α) : mul_vec (-A) v = - mul_vec A v := by { ext, apply neg_dot_product } lemma mul_vec_neg (v : n → α) (A : matrix m n α) : mul_vec A (-v) = - mul_vec A v := by { ext, apply dot_product_neg } lemma smul_mul_vec_assoc (A : matrix n n α) (b : n → α) (a : α) : (a • A).mul_vec b = a • (A.mul_vec b) := begin ext i, change dot_product ((a • A) i) b = _, simp only [mul_vec, smul_eq_mul, pi.smul_apply, smul_dot_product], end end ring section transpose open_locale matrix /-- Tell `simp` what the entries are in a transposed matrix. Compare with `mul_apply`, `diagonal_apply_eq`, etc. -/ @[simp] lemma transpose_apply (M : matrix m n α) (i j) : M.transpose j i = M i j := rfl @[simp] lemma transpose_transpose (M : matrix m n α) : Mᵀᵀ = M := by ext; refl @[simp] lemma transpose_zero [has_zero α] : (0 : matrix m n α)ᵀ = 0 := by ext i j; refl @[simp] lemma transpose_one [decidable_eq n] [has_zero α] [has_one α] : (1 : matrix n n α)ᵀ = 1 := begin ext i j, unfold has_one.one transpose, by_cases i = j, { simp only [h, diagonal_apply_eq] }, { simp only [diagonal_apply_ne h, diagonal_apply_ne (λ p, h (symm p))] } end @[simp] lemma transpose_add [has_add α] (M : matrix m n α) (N : matrix m n α) : (M + N)ᵀ = Mᵀ + Nᵀ := by { ext i j, simp } @[simp] lemma transpose_sub [add_group α] (M : matrix m n α) (N : matrix m n α) : (M - N)ᵀ = Mᵀ - Nᵀ := by { ext i j, simp } @[simp] lemma transpose_mul [comm_semiring α] (M : matrix m n α) (N : matrix n l α) : (M ⬝ N)ᵀ = Nᵀ ⬝ Mᵀ := begin ext i j, apply dot_product_comm end @[simp] lemma transpose_smul [semiring α] (c : α) (M : matrix m n α) : (c • M)ᵀ = c • Mᵀ := by { ext i j, refl } @[simp] lemma transpose_neg [has_neg α] (M : matrix m n α) : (- M)ᵀ = - Mᵀ := by ext i j; refl lemma transpose_map {β : Type w} {f : α → β} {M : matrix m n α} : Mᵀ.map f = (M.map f)ᵀ := by { ext, refl } end transpose section star_ring variables [decidable_eq n] {R : Type*} [semiring R] [star_ring R] /-- When `R` is a *-(semi)ring, `matrix n n R` becomes a *-(semi)ring with the star operation given by taking the conjugate, and the star of each entry. -/ instance : star_ring (matrix n n R) := { star := λ M, M.transpose.map star, star_involutive := λ M, by { ext, simp, }, star_add := λ M N, by { ext, simp, }, star_mul := λ M N, by { ext, simp [mul_apply], }, } @[simp] lemma star_apply (M : matrix n n R) (i j) : star M i j = star (M j i) := rfl end star_ring /-- `M.minor row col` is the matrix obtained by reindexing the rows and the lines of `M`, such that `M.minor row col i j = M (row i) (col j)`. Note that the total number of row/colums doesn't have to be preserved. -/ def minor (A : matrix m n α) (row : l → m) (col : o → n) : matrix l o α := λ i j, A (row i) (col j) /-- The left `n × l` part of a `n × (l+r)` matrix. -/ @[reducible] def sub_left {m l r : nat} (A : matrix (fin m) (fin (l + r)) α) : matrix (fin m) (fin l) α := minor A id (fin.cast_add r) /-- The right `n × r` part of a `n × (l+r)` matrix. -/ @[reducible] def sub_right {m l r : nat} (A : matrix (fin m) (fin (l + r)) α) : matrix (fin m) (fin r) α := minor A id (fin.nat_add l) /-- The top `u × n` part of a `(u+d) × n` matrix. -/ @[reducible] def sub_up {d u n : nat} (A : matrix (fin (u + d)) (fin n) α) : matrix (fin u) (fin n) α := minor A (fin.cast_add d) id /-- The bottom `d × n` part of a `(u+d) × n` matrix. -/ @[reducible] def sub_down {d u n : nat} (A : matrix (fin (u + d)) (fin n) α) : matrix (fin d) (fin n) α := minor A (fin.nat_add u) id /-- The top-right `u × r` part of a `(u+d) × (l+r)` matrix. -/ @[reducible] def sub_up_right {d u l r : nat} (A: matrix (fin (u + d)) (fin (l + r)) α) : matrix (fin u) (fin r) α := sub_up (sub_right A) /-- The bottom-right `d × r` part of a `(u+d) × (l+r)` matrix. -/ @[reducible] def sub_down_right {d u l r : nat} (A : matrix (fin (u + d)) (fin (l + r)) α) : matrix (fin d) (fin r) α := sub_down (sub_right A) /-- The top-left `u × l` part of a `(u+d) × (l+r)` matrix. -/ @[reducible] def sub_up_left {d u l r : nat} (A : matrix (fin (u + d)) (fin (l + r)) α) : matrix (fin u) (fin (l)) α := sub_up (sub_left A) /-- The bottom-left `d × l` part of a `(u+d) × (l+r)` matrix. -/ @[reducible] def sub_down_left {d u l r : nat} (A: matrix (fin (u + d)) (fin (l + r)) α) : matrix (fin d) (fin (l)) α := sub_down (sub_left A) section row_col /-! ### `row_col` section Simplification lemmas for `matrix.row` and `matrix.col`. -/ open_locale matrix @[simp] lemma col_add [semiring α] (v w : m → α) : col (v + w) = col v + col w := by { ext, refl } @[simp] lemma col_smul [semiring α] (x : α) (v : m → α) : col (x • v) = x • col v := by { ext, refl } @[simp] lemma row_add [semiring α] (v w : m → α) : row (v + w) = row v + row w := by { ext, refl } @[simp] lemma row_smul [semiring α] (x : α) (v : m → α) : row (x • v) = x • row v := by { ext, refl } @[simp] lemma col_apply (v : m → α) (i j) : matrix.col v i j = v i := rfl @[simp] lemma row_apply (v : m → α) (i j) : matrix.row v i j = v j := rfl @[simp] lemma transpose_col (v : m → α) : (matrix.col v).transpose = matrix.row v := by {ext, refl} @[simp] lemma transpose_row (v : m → α) : (matrix.row v).transpose = matrix.col v := by {ext, refl} lemma row_vec_mul [semiring α] (M : matrix m n α) (v : m → α) : matrix.row (matrix.vec_mul v M) = matrix.row v ⬝ M := by {ext, refl} lemma col_vec_mul [semiring α] (M : matrix m n α) (v : m → α) : matrix.col (matrix.vec_mul v M) = (matrix.row v ⬝ M)ᵀ := by {ext, refl} lemma col_mul_vec [semiring α] (M : matrix m n α) (v : n → α) : matrix.col (matrix.mul_vec M v) = M ⬝ matrix.col v := by {ext, refl} lemma row_mul_vec [semiring α] (M : matrix m n α) (v : n → α) : matrix.row (matrix.mul_vec M v) = (M ⬝ matrix.col v)ᵀ := by {ext, refl} end row_col section update /-- Update, i.e. replace the `i`th row of matrix `A` with the values in `b`. -/ def update_row [decidable_eq n] (M : matrix n m α) (i : n) (b : m → α) : matrix n m α := function.update M i b /-- Update, i.e. replace the `j`th column of matrix `A` with the values in `b`. -/ def update_column [decidable_eq m] (M : matrix n m α) (j : m) (b : n → α) : matrix n m α := λ i, function.update (M i) j (b i) variables {M : matrix n m α} {i : n} {j : m} {b : m → α} {c : n → α} @[simp] lemma update_row_self [decidable_eq n] : update_row M i b i = b := function.update_same i b M @[simp] lemma update_column_self [decidable_eq m] : update_column M j c i j = c i := function.update_same j (c i) (M i) @[simp] lemma update_row_ne [decidable_eq n] {i' : n} (i_ne : i' ≠ i) : update_row M i b i' = M i' := function.update_noteq i_ne b M @[simp] lemma update_column_ne [decidable_eq m] {j' : m} (j_ne : j' ≠ j) : update_column M j c i j' = M i j' := function.update_noteq j_ne (c i) (M i) lemma update_row_apply [decidable_eq n] {i' : n} : update_row M i b i' j = if i' = i then b j else M i' j := begin by_cases i' = i, { rw [h, update_row_self, if_pos rfl] }, { rwa [update_row_ne h, if_neg h] } end lemma update_column_apply [decidable_eq m] {j' : m} : update_column M j c i j' = if j' = j then c i else M i j' := begin by_cases j' = j, { rw [h, update_column_self, if_pos rfl] }, { rwa [update_column_ne h, if_neg h] } end lemma update_row_transpose [decidable_eq m] : update_row Mᵀ j c = (update_column M j c)ᵀ := begin ext i' j, rw [transpose_apply, update_row_apply, update_column_apply], refl end lemma update_column_transpose [decidable_eq n] : update_column Mᵀ i b = (update_row M i b)ᵀ := begin ext i' j, rw [transpose_apply, update_row_apply, update_column_apply], refl end end update section block_matrices /-- We can form a single large matrix by flattening smaller 'block' matrices of compatible dimensions. -/ def from_blocks (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) : matrix (n ⊕ o) (l ⊕ m) α := sum.elim (λ i, sum.elim (A i) (B i)) (λ i, sum.elim (C i) (D i)) @[simp] lemma from_blocks_apply₁₁ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) (i : n) (j : l) : from_blocks A B C D (sum.inl i) (sum.inl j) = A i j := rfl @[simp] lemma from_blocks_apply₁₂ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) (i : n) (j : m) : from_blocks A B C D (sum.inl i) (sum.inr j) = B i j := rfl @[simp] lemma from_blocks_apply₂₁ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) (i : o) (j : l) : from_blocks A B C D (sum.inr i) (sum.inl j) = C i j := rfl @[simp] lemma from_blocks_apply₂₂ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) (i : o) (j : m) : from_blocks A B C D (sum.inr i) (sum.inr j) = D i j := rfl /-- Given a matrix whose row and column indexes are sum types, we can extract the correspnding "top left" submatrix. -/ def to_blocks₁₁ (M : matrix (n ⊕ o) (l ⊕ m) α) : matrix n l α := λ i j, M (sum.inl i) (sum.inl j) /-- Given a matrix whose row and column indexes are sum types, we can extract the correspnding "top right" submatrix. -/ def to_blocks₁₂ (M : matrix (n ⊕ o) (l ⊕ m) α) : matrix n m α := λ i j, M (sum.inl i) (sum.inr j) /-- Given a matrix whose row and column indexes are sum types, we can extract the correspnding "bottom left" submatrix. -/ def to_blocks₂₁ (M : matrix (n ⊕ o) (l ⊕ m) α) : matrix o l α := λ i j, M (sum.inr i) (sum.inl j) /-- Given a matrix whose row and column indexes are sum types, we can extract the correspnding "bottom right" submatrix. -/ def to_blocks₂₂ (M : matrix (n ⊕ o) (l ⊕ m) α) : matrix o m α := λ i j, M (sum.inr i) (sum.inr j) lemma from_blocks_to_blocks (M : matrix (n ⊕ o) (l ⊕ m) α) : from_blocks M.to_blocks₁₁ M.to_blocks₁₂ M.to_blocks₂₁ M.to_blocks₂₂ = M := begin ext i j, rcases i; rcases j; refl, end @[simp] lemma to_blocks_from_blocks₁₁ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) : (from_blocks A B C D).to_blocks₁₁ = A := rfl @[simp] lemma to_blocks_from_blocks₁₂ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) : (from_blocks A B C D).to_blocks₁₂ = B := rfl @[simp] lemma to_blocks_from_blocks₂₁ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) : (from_blocks A B C D).to_blocks₂₁ = C := rfl @[simp] lemma to_blocks_from_blocks₂₂ (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) : (from_blocks A B C D).to_blocks₂₂ = D := rfl lemma from_blocks_transpose (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) : (from_blocks A B C D)ᵀ = from_blocks Aᵀ Cᵀ Bᵀ Dᵀ := begin ext i j, rcases i; rcases j; simp [from_blocks], end variables [semiring α] lemma from_blocks_smul (x : α) (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) : x • (from_blocks A B C D) = from_blocks (x • A) (x • B) (x • C) (x • D) := begin ext i j, rcases i; rcases j; simp [from_blocks], end lemma from_blocks_add (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) (A' : matrix n l α) (B' : matrix n m α) (C' : matrix o l α) (D' : matrix o m α) : (from_blocks A B C D) + (from_blocks A' B' C' D') = from_blocks (A + A') (B + B') (C + C') (D + D') := begin ext i j, rcases i; rcases j; refl, end lemma from_blocks_multiply {p q : Type*} [fintype p] [fintype q] (A : matrix n l α) (B : matrix n m α) (C : matrix o l α) (D : matrix o m α) (A' : matrix l p α) (B' : matrix l q α) (C' : matrix m p α) (D' : matrix m q α) : (from_blocks A B C D) ⬝ (from_blocks A' B' C' D') = from_blocks (A ⬝ A' + B ⬝ C') (A ⬝ B' + B ⬝ D') (C ⬝ A' + D ⬝ C') (C ⬝ B' + D ⬝ D') := begin ext i j, rcases i; rcases j; simp only [from_blocks, mul_apply, fintype.sum_sum_type, sum.elim_inl, sum.elim_inr, pi.add_apply], end variables [decidable_eq l] [decidable_eq m] @[simp] lemma from_blocks_diagonal (d₁ : l → α) (d₂ : m → α) : from_blocks (diagonal d₁) 0 0 (diagonal d₂) = diagonal (sum.elim d₁ d₂) := begin ext i j, rcases i; rcases j; simp [diagonal], end @[simp] lemma from_blocks_one : from_blocks (1 : matrix l l α) 0 0 (1 : matrix m m α) = 1 := by { ext i j, rcases i; rcases j; simp [one_apply] } end block_matrices section block_diagonal variables (M N : o → matrix m n α) [decidable_eq o] section has_zero variables [has_zero α] /-- `matrix.block_diagonal M` turns `M : o → matrix m n α'` into a `m × o`-by`n × o` block matrix which has the entries of `M` along the diagonal and zero elsewhere. -/ def block_diagonal : matrix (m × o) (n × o) α | ⟨i, k⟩ ⟨j, k'⟩ := if k = k' then M k i j else 0 lemma block_diagonal_apply (ik jk) : block_diagonal M ik jk = if ik.2 = jk.2 then M ik.2 ik.1 jk.1 else 0 := by { cases ik, cases jk, refl } @[simp] lemma block_diagonal_apply_eq (i j k) : block_diagonal M (i, k) (j, k) = M k i j := if_pos rfl lemma block_diagonal_apply_ne (i j) {k k'} (h : k ≠ k') : block_diagonal M (i, k) (j, k') = 0 := if_neg h @[simp] lemma block_diagonal_transpose : (block_diagonal M)ᵀ = (block_diagonal (λ k, (M k)ᵀ)) := begin ext, simp only [transpose_apply, block_diagonal_apply, eq_comm], split_ifs with h, { rw h }, { refl } end @[simp] lemma block_diagonal_zero : block_diagonal (0 : o → matrix m n α) = 0 := by { ext, simp [block_diagonal_apply] } @[simp] lemma block_diagonal_diagonal [decidable_eq m] (d : o → m → α) : (block_diagonal (λ k, diagonal (d k))) = diagonal (λ ik, d ik.2 ik.1) := begin ext ⟨i, k⟩ ⟨j, k'⟩, simp only [block_diagonal_apply, diagonal], split_ifs; finish end @[simp] lemma block_diagonal_one [decidable_eq m] [has_one α] : (block_diagonal (1 : o → matrix m m α)) = 1 := show (block_diagonal (λ (_ : o), diagonal (λ (_ : m), (1 : α)))) = diagonal (λ _, 1), by rw [block_diagonal_diagonal] end has_zero @[simp] lemma block_diagonal_add [add_monoid α] : block_diagonal (M + N) = block_diagonal M + block_diagonal N := begin ext, simp only [block_diagonal_apply, add_apply], split_ifs; simp end @[simp] lemma block_diagonal_neg [add_group α] : block_diagonal (-M) = - block_diagonal M := begin ext, simp only [block_diagonal_apply, neg_apply], split_ifs; simp end @[simp] lemma block_diagonal_sub [add_group α] : block_diagonal (M - N) = block_diagonal M - block_diagonal N := by simp [sub_eq_add_neg] @[simp] lemma block_diagonal_mul {p : Type*} [fintype p] [semiring α] (N : o → matrix n p α) : block_diagonal (λ k, M k ⬝ N k) = block_diagonal M ⬝ block_diagonal N := begin ext ⟨i, k⟩ ⟨j, k'⟩, simp only [block_diagonal_apply, mul_apply, ← finset.univ_product_univ, finset.sum_product], split_ifs with h; simp [h] end @[simp] lemma block_diagonal_smul {R : Type*} [semiring R] [add_comm_monoid α] [semimodule R α] (x : R) : block_diagonal (x • M) = x • block_diagonal M := by { ext, simp only [block_diagonal_apply, pi.smul_apply, smul_apply], split_ifs; simp } end block_diagonal end matrix namespace ring_hom variables {β : Type*} [semiring α] [semiring β] lemma map_matrix_mul (M : matrix m n α) (N : matrix n o α) (i : m) (j : o) (f : α →+* β) : f (matrix.mul M N i j) = matrix.mul (λ i j, f (M i j)) (λ i j, f (N i j)) i j := by simp [matrix.mul_apply, ring_hom.map_sum] end ring_hom
cab2b25ff35483730c3ec9d7c9c84619e5088d53
8d65764a9e5f0923a67fc435eb1a5a1d02fd80e3
/src/ring_theory/polynomial/content.lean
cf6e2574c83f281151f4d3d2a0d916439b986405
[ "Apache-2.0" ]
permissive
troyjlee/mathlib
e18d4b8026e32062ab9e89bc3b003a5d1cfec3f5
45e7eb8447555247246e3fe91c87066506c14875
refs/heads/master
1,689,248,035,046
1,629,470,528,000
1,629,470,528,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
17,074
lean
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import algebra.gcd_monoid.finset import data.polynomial import data.polynomial.erase_lead import data.polynomial.cancel_leads /-! # GCD structures on polynomials Definitions and basic results about polynomials over GCD domains, particularly their contents and primitive polynomials. ## Main Definitions Let `p : polynomial R`. - `p.content` is the `gcd` of the coefficients of `p`. - `p.is_primitive` indicates that `p.content = 1`. ## Main Results - `polynomial.content_mul`: If `p q : polynomial R`, then `(p * q).content = p.content * q.content`. - `polynomial.gcd_monoid`: The polynomial ring of a GCD domain is itself a GCD domain. -/ namespace polynomial section primitive variables {R : Type*} [comm_semiring R] /-- A polynomial is primitive when the only constant polynomials dividing it are units -/ def is_primitive (p : polynomial R) : Prop := ∀ (r : R), C r ∣ p → is_unit r lemma is_primitive_iff_is_unit_of_C_dvd {p : polynomial R} : p.is_primitive ↔ ∀ (r : R), C r ∣ p → is_unit r := iff.rfl @[simp] lemma is_primitive_one : is_primitive (1 : polynomial R) := λ r h, is_unit_C.mp (is_unit_of_dvd_one (C r) h) lemma monic.is_primitive {p : polynomial R} (hp : p.monic) : p.is_primitive := begin rintros r ⟨q, h⟩, exact is_unit_of_mul_eq_one r (q.coeff p.nat_degree) (by rwa [←coeff_C_mul, ←h]), end lemma is_primitive.ne_zero [nontrivial R] {p : polynomial R} (hp : p.is_primitive) : p ≠ 0 := begin rintro rfl, exact (hp 0 (dvd_zero (C 0))).ne_zero rfl, end end primitive variables {R : Type*} [integral_domain R] section gcd_monoid variable [gcd_monoid R] /-- `p.content` is the `gcd` of the coefficients of `p`. -/ def content (p : polynomial R) : R := (p.support).gcd p.coeff lemma content_dvd_coeff {p : polynomial R} (n : ℕ) : p.content ∣ p.coeff n := begin by_cases h : n ∈ p.support, { apply finset.gcd_dvd h }, rw [mem_support_iff, not_not] at h, rw h, apply dvd_zero, end @[simp] lemma content_C {r : R} : (C r).content = normalize r := begin rw content, by_cases h0 : r = 0, { simp [h0] }, have h : (C r).support = {0} := support_monomial _ _ h0, simp [h], end @[simp] lemma content_zero : content (0 : polynomial R) = 0 := by rw [← C_0, content_C, normalize_zero] @[simp] lemma content_one : content (1 : polynomial R) = 1 := by rw [← C_1, content_C, normalize_one] lemma content_X_mul {p : polynomial R} : content (X * p) = content p := begin rw [content, content, finset.gcd_def, finset.gcd_def], refine congr rfl _, have h : (X * p).support = p.support.map ⟨nat.succ, nat.succ_injective⟩, { ext a, simp only [exists_prop, finset.mem_map, function.embedding.coe_fn_mk, ne.def, mem_support_iff], cases a, { simp [coeff_X_mul_zero, nat.succ_ne_zero] }, rw [mul_comm, coeff_mul_X], split, { intro h, use a, simp [h] }, { rintros ⟨b, ⟨h1, h2⟩⟩, rw ← nat.succ_injective h2, apply h1 } }, rw h, simp only [finset.map_val, function.comp_app, function.embedding.coe_fn_mk, multiset.map_map], refine congr (congr rfl _) rfl, ext a, rw mul_comm, simp [coeff_mul_X], end @[simp] lemma content_X_pow {k : ℕ} : content ((X : polynomial R) ^ k) = 1 := begin induction k with k hi, { simp }, rw [pow_succ, content_X_mul, hi] end @[simp] lemma content_X : content (X : polynomial R) = 1 := by { rw [← mul_one X, content_X_mul, content_one] } lemma content_C_mul (r : R) (p : polynomial R) : (C r * p).content = normalize r * p.content := begin by_cases h0 : r = 0, { simp [h0] }, rw content, rw content, rw ← finset.gcd_mul_left, refine congr (congr rfl _) _; ext; simp [h0, mem_support_iff] end @[simp] lemma content_monomial {r : R} {k : ℕ} : content (monomial k r) = normalize r := by { rw [monomial_eq_C_mul_X, content_C_mul, content_X_pow, mul_one] } lemma content_eq_zero_iff {p : polynomial R} : content p = 0 ↔ p = 0 := begin rw [content, finset.gcd_eq_zero_iff], split; intro h, { ext n, by_cases h0 : n ∈ p.support, { rw [h n h0, coeff_zero], }, { rw mem_support_iff at h0, push_neg at h0, simp [h0] } }, { intros x h0, simp [h] } end @[simp] lemma normalize_content {p : polynomial R} : normalize p.content = p.content := finset.normalize_gcd lemma content_eq_gcd_range_of_lt (p : polynomial R) (n : ℕ) (h : p.nat_degree < n) : p.content = (finset.range n).gcd p.coeff := begin apply dvd_antisymm_of_normalize_eq normalize_content finset.normalize_gcd, { rw finset.dvd_gcd_iff, intros i hi, apply content_dvd_coeff _ }, { apply finset.gcd_mono, intro i, simp only [nat.lt_succ_iff, mem_support_iff, ne.def, finset.mem_range], contrapose!, intro h1, apply coeff_eq_zero_of_nat_degree_lt (lt_of_lt_of_le h h1), } end lemma content_eq_gcd_range_succ (p : polynomial R) : p.content = (finset.range p.nat_degree.succ).gcd p.coeff := content_eq_gcd_range_of_lt _ _ (nat.lt_succ_self _) lemma content_eq_gcd_leading_coeff_content_erase_lead (p : polynomial R) : p.content = gcd_monoid.gcd p.leading_coeff (erase_lead p).content := begin by_cases h : p = 0, { simp [h] }, rw [← leading_coeff_eq_zero, leading_coeff, ← ne.def, ← mem_support_iff] at h, rw [content, ← finset.insert_erase h, finset.gcd_insert, leading_coeff, content, erase_lead_support], refine congr rfl (finset.gcd_congr rfl (λ i hi, _)), rw finset.mem_erase at hi, rw [erase_lead_coeff, if_neg hi.1], end lemma dvd_content_iff_C_dvd {p : polynomial R} {r : R} : r ∣ p.content ↔ C r ∣ p := begin rw C_dvd_iff_dvd_coeff, split, { intros h i, apply h.trans (content_dvd_coeff _) }, { intro h, rw [content, finset.dvd_gcd_iff], intros i hi, apply h i } end lemma C_content_dvd (p : polynomial R) : C p.content ∣ p := dvd_content_iff_C_dvd.1 (dvd_refl _) lemma is_primitive_iff_content_eq_one {p : polynomial R} : p.is_primitive ↔ p.content = 1 := begin rw [←normalize_content, normalize_eq_one, is_primitive], simp_rw [←dvd_content_iff_C_dvd], exact ⟨λ h, h p.content (dvd_refl p.content), λ h r hdvd, is_unit_of_dvd_unit hdvd h⟩, end lemma is_primitive.content_eq_one {p : polynomial R} (hp : p.is_primitive) : p.content = 1 := is_primitive_iff_content_eq_one.mp hp open_locale classical noncomputable theory section prim_part /-- The primitive part of a polynomial `p` is the primitive polynomial gained by dividing `p` by `p.content`. If `p = 0`, then `p.prim_part = 1`. -/ def prim_part (p : polynomial R) : polynomial R := if p = 0 then 1 else classical.some (C_content_dvd p) lemma eq_C_content_mul_prim_part (p : polynomial R) : p = C p.content * p.prim_part := begin by_cases h : p = 0, { simp [h] }, rw [prim_part, if_neg h, ← classical.some_spec (C_content_dvd p)], end @[simp] lemma prim_part_zero : prim_part (0 : polynomial R) = 1 := if_pos rfl lemma is_primitive_prim_part (p : polynomial R) : p.prim_part.is_primitive := begin by_cases h : p = 0, { simp [h] }, rw ← content_eq_zero_iff at h, rw is_primitive_iff_content_eq_one, apply mul_left_cancel' h, conv_rhs { rw [p.eq_C_content_mul_prim_part, mul_one, content_C_mul, normalize_content] } end lemma content_prim_part (p : polynomial R) : p.prim_part.content = 1 := p.is_primitive_prim_part.content_eq_one lemma prim_part_ne_zero (p : polynomial R) : p.prim_part ≠ 0 := p.is_primitive_prim_part.ne_zero lemma nat_degree_prim_part (p : polynomial R) : p.prim_part.nat_degree = p.nat_degree := begin by_cases h : C p.content = 0, { rw [C_eq_zero, content_eq_zero_iff] at h, simp [h] }, conv_rhs { rw [p.eq_C_content_mul_prim_part, nat_degree_mul h p.prim_part_ne_zero, nat_degree_C, zero_add] }, end @[simp] lemma is_primitive.prim_part_eq {p : polynomial R} (hp : p.is_primitive) : p.prim_part = p := by rw [← one_mul p.prim_part, ← C_1, ← hp.content_eq_one, ← p.eq_C_content_mul_prim_part] lemma is_unit_prim_part_C (r : R) : is_unit (C r).prim_part := begin by_cases h0 : r = 0, { simp [h0] }, unfold is_unit, refine ⟨⟨C ↑(norm_unit r)⁻¹, C ↑(norm_unit r), by rw [← ring_hom.map_mul, units.inv_mul, C_1], by rw [← ring_hom.map_mul, units.mul_inv, C_1]⟩, _⟩, rw [← normalize_eq_zero, ← C_eq_zero] at h0, apply mul_left_cancel' h0, conv_rhs { rw [← content_C, ← (C r).eq_C_content_mul_prim_part], }, simp only [units.coe_mk, normalize_apply, ring_hom.map_mul], rw [mul_assoc, ← ring_hom.map_mul, units.mul_inv, C_1, mul_one], end lemma prim_part_dvd (p : polynomial R) : p.prim_part ∣ p := dvd.intro_left (C p.content) p.eq_C_content_mul_prim_part.symm end prim_part lemma gcd_content_eq_of_dvd_sub {a : R} {p q : polynomial R} (h : C a ∣ p - q) : gcd_monoid.gcd a p.content = gcd_monoid.gcd a q.content := begin rw content_eq_gcd_range_of_lt p (max p.nat_degree q.nat_degree).succ (lt_of_le_of_lt (le_max_left _ _) (nat.lt_succ_self _)), rw content_eq_gcd_range_of_lt q (max p.nat_degree q.nat_degree).succ (lt_of_le_of_lt (le_max_right _ _) (nat.lt_succ_self _)), apply finset.gcd_eq_of_dvd_sub, intros x hx, cases h with w hw, use w.coeff x, rw [← coeff_sub, hw, coeff_C_mul] end lemma content_mul_aux {p q : polynomial R} : gcd_monoid.gcd (p * q).erase_lead.content p.leading_coeff = gcd_monoid.gcd (p.erase_lead * q).content p.leading_coeff := begin rw [gcd_comm (content _) _, gcd_comm (content _) _], apply gcd_content_eq_of_dvd_sub, rw [← self_sub_C_mul_X_pow, ← self_sub_C_mul_X_pow, sub_mul, sub_sub, add_comm, sub_add, sub_sub_cancel, leading_coeff_mul, ring_hom.map_mul, mul_assoc, mul_assoc], apply dvd_sub (dvd.intro _ rfl) (dvd.intro _ rfl), end @[simp] theorem content_mul {p q : polynomial R} : (p * q).content = p.content * q.content := begin classical, suffices h : ∀ (n : ℕ) (p q : polynomial R), ((p * q).degree < n) → (p * q).content = p.content * q.content, { apply h, apply (lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 (nat.lt_succ_self _))) }, intro n, induction n with n ih, { intros p q hpq, rw [with_bot.coe_zero, nat.with_bot.lt_zero_iff, degree_eq_bot, mul_eq_zero] at hpq, rcases hpq with rfl | rfl; simp }, intros p q hpq, by_cases p0 : p = 0, { simp [p0] }, by_cases q0 : q = 0, { simp [q0] }, rw [degree_eq_nat_degree (mul_ne_zero p0 q0), with_bot.coe_lt_coe, nat.lt_succ_iff_lt_or_eq, ← with_bot.coe_lt_coe, ← degree_eq_nat_degree (mul_ne_zero p0 q0), nat_degree_mul p0 q0] at hpq, rcases hpq with hlt | heq, { apply ih _ _ hlt }, rw [← p.nat_degree_prim_part, ← q.nat_degree_prim_part, ← with_bot.coe_eq_coe, with_bot.coe_add, ← degree_eq_nat_degree p.prim_part_ne_zero, ← degree_eq_nat_degree q.prim_part_ne_zero] at heq, rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part], suffices h : (q.prim_part * p.prim_part).content = 1, { rw [mul_assoc, content_C_mul, content_C_mul, mul_comm p.prim_part, mul_assoc, content_C_mul, content_C_mul, h, mul_one, content_prim_part, content_prim_part, mul_one, mul_one] }, rw [← normalize_content, normalize_eq_one, is_unit_iff_dvd_one, content_eq_gcd_leading_coeff_content_erase_lead, leading_coeff_mul, gcd_comm], apply (gcd_mul_dvd_mul_gcd _ _ _).trans, rw [content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ← content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part, one_mul, mul_comm q.prim_part, content_mul_aux, ih, content_prim_part, mul_one, gcd_comm, ← content_eq_gcd_leading_coeff_content_erase_lead, content_prim_part], { rw [← heq, degree_mul, with_bot.add_lt_add_iff_right], { apply degree_erase_lt p.prim_part_ne_zero }, { rw [bot_lt_iff_ne_bot, ne.def, degree_eq_bot], apply q.prim_part_ne_zero } }, { rw [mul_comm, ← heq, degree_mul, with_bot.add_lt_add_iff_left], { apply degree_erase_lt q.prim_part_ne_zero }, { rw [bot_lt_iff_ne_bot, ne.def, degree_eq_bot], apply p.prim_part_ne_zero } } end theorem is_primitive.mul {p q : polynomial R} (hp : p.is_primitive) (hq : q.is_primitive) : (p * q).is_primitive := by rw [is_primitive_iff_content_eq_one, content_mul, hp.content_eq_one, hq.content_eq_one, mul_one] @[simp] theorem prim_part_mul {p q : polynomial R} (h0 : p * q ≠ 0) : (p * q).prim_part = p.prim_part * q.prim_part := begin rw [ne.def, ← content_eq_zero_iff, ← C_eq_zero] at h0, apply mul_left_cancel' h0, conv_lhs { rw [← (p * q).eq_C_content_mul_prim_part, p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part] }, rw [content_mul, ring_hom.map_mul], ring, end lemma is_primitive.is_primitive_of_dvd {p q : polynomial R} (hp : p.is_primitive) (hdvd : q ∣ p) : q.is_primitive := begin rcases hdvd with ⟨r, rfl⟩, rw [is_primitive_iff_content_eq_one, ← normalize_content, normalize_eq_one, is_unit_iff_dvd_one], apply dvd.intro r.content, rwa [is_primitive_iff_content_eq_one, content_mul] at hp, end lemma is_primitive.dvd_prim_part_iff_dvd {p q : polynomial R} (hp : p.is_primitive) (hq : q ≠ 0) : p ∣ q.prim_part ↔ p ∣ q := begin refine ⟨λ h, h.trans (dvd.intro_left _ q.eq_C_content_mul_prim_part.symm), λ h, _⟩, rcases h with ⟨r, rfl⟩, apply dvd.intro _, rw [prim_part_mul hq, hp.prim_part_eq], end theorem exists_primitive_lcm_of_is_primitive {p q : polynomial R} (hp : p.is_primitive) (hq : q.is_primitive) : ∃ r : polynomial R, r.is_primitive ∧ (∀ s : polynomial R, p ∣ s ∧ q ∣ s ↔ r ∣ s) := begin classical, have h : ∃ (n : ℕ) (r : polynomial R), r.nat_degree = n ∧ r.is_primitive ∧ p ∣ r ∧ q ∣ r := ⟨(p * q).nat_degree, p * q, rfl, hp.mul hq, dvd_mul_right _ _, dvd_mul_left _ _⟩, rcases nat.find_spec h with ⟨r, rdeg, rprim, pr, qr⟩, refine ⟨r, rprim, λ s, ⟨_, λ rs, ⟨pr.trans rs, qr.trans rs⟩⟩⟩, suffices hs : ∀ (n : ℕ) (s : polynomial R), s.nat_degree = n → (p ∣ s ∧ q ∣ s → r ∣ s), { apply hs s.nat_degree s rfl }, clear s, by_contra con, push_neg at con, rcases nat.find_spec con with ⟨s, sdeg, ⟨ps, qs⟩, rs⟩, have s0 : s ≠ 0, { contrapose! rs, simp [rs] }, have hs := nat.find_min' h ⟨_, s.nat_degree_prim_part, s.is_primitive_prim_part, (hp.dvd_prim_part_iff_dvd s0).2 ps, (hq.dvd_prim_part_iff_dvd s0).2 qs⟩, rw ← rdeg at hs, by_cases sC : s.nat_degree ≤ 0, { rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), is_primitive_iff_content_eq_one, content_C, normalize_eq_one] at rprim, rw [eq_C_of_nat_degree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs, apply rs rprim.dvd }, have hcancel := nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree hs (lt_of_not_ge sC), rw sdeg at hcancel, apply nat.find_min con hcancel, refine ⟨_, rfl, ⟨dvd_cancel_leads_of_dvd_of_dvd pr ps, dvd_cancel_leads_of_dvd_of_dvd qr qs⟩, λ rcs, rs _⟩, rw ← rprim.dvd_prim_part_iff_dvd s0, rw [cancel_leads, nat.sub_eq_zero_of_le hs, pow_zero, mul_one] at rcs, have h := dvd_add rcs (dvd.intro_left _ rfl), have hC0 := rprim.ne_zero, rw [ne.def, ← leading_coeff_eq_zero, ← C_eq_zero] at hC0, rw [sub_add_cancel, ← rprim.dvd_prim_part_iff_dvd (mul_ne_zero hC0 s0)] at h, rcases is_unit_prim_part_C r.leading_coeff with ⟨u, hu⟩, apply h.trans (associated.symm ⟨u, _⟩).dvd, rw [prim_part_mul (mul_ne_zero hC0 s0), hu, mul_comm], end lemma dvd_iff_content_dvd_content_and_prim_part_dvd_prim_part {p q : polynomial R} (hq : q ≠ 0) : p ∣ q ↔ p.content ∣ q.content ∧ p.prim_part ∣ q.prim_part := begin split; intro h, { rcases h with ⟨r, rfl⟩, rw [content_mul, p.is_primitive_prim_part.dvd_prim_part_iff_dvd hq], exact ⟨dvd.intro _ rfl, p.prim_part_dvd.trans (dvd.intro _ rfl)⟩ }, { rw [p.eq_C_content_mul_prim_part, q.eq_C_content_mul_prim_part], exact mul_dvd_mul (ring_hom.map_dvd C h.1) h.2 } end @[priority 100] instance gcd_monoid : gcd_monoid (polynomial R) := gcd_monoid_of_exists_lcm $ λ p q, begin rcases exists_primitive_lcm_of_is_primitive p.is_primitive_prim_part q.is_primitive_prim_part with ⟨r, rprim, hr⟩, refine ⟨C (lcm p.content q.content) * r, λ s, _⟩, by_cases hs : s = 0, { simp [hs] }, by_cases hpq : C (lcm p.content q.content) = 0, { rw [C_eq_zero, lcm_eq_zero_iff, content_eq_zero_iff, content_eq_zero_iff] at hpq, rcases hpq with hpq | hpq; simp [hpq, hs] }, iterate 3 { rw dvd_iff_content_dvd_content_and_prim_part_dvd_prim_part hs }, rw [content_mul, rprim.content_eq_one, mul_one, content_C, normalize_lcm, lcm_dvd_iff, prim_part_mul (mul_ne_zero hpq rprim.ne_zero), rprim.prim_part_eq, is_unit.mul_left_dvd _ _ _ (is_unit_prim_part_C (lcm p.content q.content)), ← hr s.prim_part], tauto, end end gcd_monoid end polynomial