blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 7
139
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
16
| license_type
stringclasses 2
values | repo_name
stringlengths 7
55
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
int64 1,471B
1,694B
| revision_date
int64 1,378B
1,694B
| committer_date
int64 1,378B
1,694B
| github_id
float64 1.33M
604M
⌀ | star_events_count
int64 0
43.5k
| fork_events_count
int64 0
1.5k
| gha_license_id
stringclasses 6
values | gha_event_created_at
int64 1,402B
1,695B
⌀ | gha_created_at
int64 1,359B
1,637B
⌀ | gha_language
stringclasses 19
values | src_encoding
stringclasses 2
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 3
6.4M
| extension
stringclasses 4
values | content
stringlengths 3
6.12M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37418ccb3d70af8ff26c57bc3eb116186f2c8b0b
|
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
|
/tests/lean/apply_tac2.lean
|
0681a9c9d28d3fb34b97417ef9a9eac13045c4bc
|
[
"Apache-2.0"
] |
permissive
|
codyroux/lean0.1
|
1ce92751d664aacff0529e139083304a7bbc8a71
|
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
|
refs/heads/master
| 1,610,830,535,062
| 1,402,150,480,000
| 1,402,150,480,000
| 19,588,851
| 2
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 91
|
lean
|
(* import("tactic.lua") *)
theorem T (a b : Bool) : a → b → b → a.
exact.
done.
|
2398f4aa381e68152fc46884ab97e20f58950ed4
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/measure_theory/probability_mass_function/basic.lean
|
b772140c53ceaa2b8aa5198eec14efe7432138e4
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 9,270
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Devon Tuma
-/
import topology.instances.ennreal
import measure_theory.measure.measure_space
/-!
# Probability mass functions
This file is about probability mass functions or discrete probability measures:
a function `α → ℝ≥0` such that the values have (infinite) sum `1`.
Construction of monadic `pure` and `bind` is found in `probability_mass_function/monad.lean`,
other constructions of `pmf`s are found in `probability_mass_function/constructions.lean`.
Given `p : pmf α`, `pmf.to_outer_measure` constructs an `outer_measure` on `α`,
by assigning each set the sum of the probabilities of each of its elements.
Under this outer measure, every set is Carathéodory-measurable,
so we can further extend this to a `measure` on `α`, see `pmf.to_measure`.
`pmf.to_measure.is_probability_measure` shows this associated measure is a probability measure.
## Tags
probability mass function, discrete probability measure
-/
noncomputable theory
variables {α : Type*} {β : Type*} {γ : Type*}
open_locale classical big_operators nnreal ennreal
/-- A probability mass function, or discrete probability measures is a function `α → ℝ≥0` such that
the values have (infinite) sum `1`. -/
def {u} pmf (α : Type u) : Type u := { f : α → ℝ≥0 // has_sum f 1 }
namespace pmf
instance : has_coe_to_fun (pmf α) (λ p, α → ℝ≥0) := ⟨λ p a, p.1 a⟩
@[ext] protected lemma ext : ∀ {p q : pmf α}, (∀ a, p a = q a) → p = q
| ⟨f, hf⟩ ⟨g, hg⟩ eq := subtype.eq $ funext eq
lemma has_sum_coe_one (p : pmf α) : has_sum p 1 := p.2
lemma summable_coe (p : pmf α) : summable p := (p.has_sum_coe_one).summable
@[simp] lemma tsum_coe (p : pmf α) : ∑' a, p a = 1 := p.has_sum_coe_one.tsum_eq
/-- The support of a `pmf` is the set where it is nonzero. -/
def support (p : pmf α) : set α := function.support p
@[simp] lemma mem_support_iff (p : pmf α) (a : α) : a ∈ p.support ↔ p a ≠ 0 := iff.rfl
lemma apply_eq_zero_iff (p : pmf α) (a : α) : p a = 0 ↔ a ∉ p.support :=
by rw [mem_support_iff, not_not]
lemma coe_le_one (p : pmf α) (a : α) : p a ≤ 1 :=
has_sum_le (by { intro b, split_ifs; simp only [h, zero_le'] })
(has_sum_ite_eq a (p a)) (has_sum_coe_one p)
section outer_measure
open measure_theory measure_theory.outer_measure
/-- Construct an `outer_measure` from a `pmf`, by assigning measure to each set `s : set α` equal
to the sum of `p x` for for each `x ∈ α` -/
def to_outer_measure (p : pmf α) : outer_measure α :=
outer_measure.sum (λ (x : α), p x • dirac x)
variables (p : pmf α) (s t : set α)
lemma to_outer_measure_apply : p.to_outer_measure s = ∑' x, s.indicator (coe ∘ p) x :=
tsum_congr (λ x, smul_dirac_apply (p x) x s)
lemma to_outer_measure_apply' : p.to_outer_measure s = ↑(∑' (x : α), s.indicator p x) :=
by simp only [ennreal.coe_tsum (nnreal.indicator_summable (summable_coe p) s),
ennreal.coe_indicator, to_outer_measure_apply]
@[simp]
lemma to_outer_measure_apply_finset (s : finset α) : p.to_outer_measure s = ∑ x in s, ↑(p x) :=
begin
refine (to_outer_measure_apply p s).trans ((@tsum_eq_sum _ _ _ _ _ _ s _).trans _),
{ exact λ x hx, set.indicator_of_not_mem hx _ },
{ exact finset.sum_congr rfl (λ x hx, set.indicator_of_mem hx _) }
end
lemma to_outer_measure_apply_eq_zero_iff : p.to_outer_measure s = 0 ↔ disjoint p.support s :=
begin
rw [to_outer_measure_apply', ennreal.coe_eq_zero,
tsum_eq_zero_iff (nnreal.indicator_summable (summable_coe p) s)],
exact function.funext_iff.symm.trans set.indicator_eq_zero',
end
lemma to_outer_measure_apply_eq_one_iff : p.to_outer_measure s = 1 ↔ p.support ⊆ s :=
begin
rw [to_outer_measure_apply', ennreal.coe_eq_one],
refine ⟨λ h a ha, _, λ h, _⟩,
{ have hsp : ∀ x, s.indicator p x ≤ p x := λ _, set.indicator_apply_le (λ _, le_rfl),
have := λ hpa, ne_of_lt (nnreal.tsum_lt_tsum hsp hpa p.summable_coe) (h.trans p.tsum_coe.symm),
exact not_not.1 (λ has, ha $ set.indicator_apply_eq_self.1 (le_antisymm
(set.indicator_apply_le $ λ _, le_rfl) $ le_of_not_lt $ this) has) },
{ suffices : ∀ x, x ∉ s → p x = 0,
from trans (tsum_congr $ λ a, (set.indicator_apply s p a).trans
(ite_eq_left_iff.2 $ symm ∘ (this a))) p.tsum_coe,
exact λ a ha, (p.apply_eq_zero_iff a).2 $ set.not_mem_subset h ha }
end
@[simp]
lemma to_outer_measure_apply_inter_support :
p.to_outer_measure (s ∩ p.support) = p.to_outer_measure s :=
by simp only [to_outer_measure_apply', ennreal.coe_eq_coe,
pmf.support, set.indicator_inter_support]
/-- Slightly stronger than `outer_measure.mono` having an intersection with `p.support` -/
lemma to_outer_measure_mono {s t : set α} (h : s ∩ p.support ⊆ t) :
p.to_outer_measure s ≤ p.to_outer_measure t :=
le_trans (le_of_eq (to_outer_measure_apply_inter_support p s).symm) (p.to_outer_measure.mono h)
lemma to_outer_measure_apply_eq_of_inter_support_eq {s t : set α}
(h : s ∩ p.support = t ∩ p.support) : p.to_outer_measure s = p.to_outer_measure t :=
le_antisymm (p.to_outer_measure_mono (h.symm ▸ (set.inter_subset_left t p.support)))
(p.to_outer_measure_mono (h ▸ (set.inter_subset_left s p.support)))
@[simp]
lemma to_outer_measure_apply_fintype [fintype α] :
p.to_outer_measure s = ↑(∑ x, (s.indicator p x)) :=
(p.to_outer_measure_apply' s).trans
(ennreal.coe_eq_coe.2 $ tsum_eq_sum (λ x h, absurd (finset.mem_univ x) h))
@[simp]
lemma to_outer_measure_caratheodory (p : pmf α) :
(to_outer_measure p).caratheodory = ⊤ :=
begin
refine (eq_top_iff.2 $ le_trans (le_Inf $ λ x hx, _) (le_sum_caratheodory _)),
obtain ⟨y, hy⟩ := hx,
exact ((le_of_eq (dirac_caratheodory y).symm).trans
(le_smul_caratheodory _ _)).trans (le_of_eq hy),
end
end outer_measure
section measure
open measure_theory
/-- Since every set is Carathéodory-measurable under `pmf.to_outer_measure`,
we can further extend this `outer_measure` to a `measure` on `α` -/
def to_measure [measurable_space α] (p : pmf α) : measure α :=
p.to_outer_measure.to_measure ((to_outer_measure_caratheodory p).symm ▸ le_top)
variables [measurable_space α] (p : pmf α) (s t : set α)
lemma to_outer_measure_apply_le_to_measure_apply : p.to_outer_measure s ≤ p.to_measure s :=
le_to_measure_apply p.to_outer_measure _ s
lemma to_measure_apply_eq_to_outer_measure_apply (hs : measurable_set s) :
p.to_measure s = p.to_outer_measure s :=
to_measure_apply p.to_outer_measure _ hs
lemma to_measure_apply (hs : measurable_set s) : p.to_measure s = ∑' x, s.indicator (coe ∘ p) x :=
(p.to_measure_apply_eq_to_outer_measure_apply s hs).trans (p.to_outer_measure_apply s)
lemma to_measure_apply' (hs : measurable_set s) : p.to_measure s = ↑(∑' x, s.indicator p x) :=
(p.to_measure_apply_eq_to_outer_measure_apply s hs).trans (p.to_outer_measure_apply' s)
lemma to_measure_apply_eq_one_iff (hs : measurable_set s) : p.to_measure s = 1 ↔ p.support ⊆ s :=
(p.to_measure_apply_eq_to_outer_measure_apply s hs : p.to_measure s = p.to_outer_measure s).symm
▸ (p.to_outer_measure_apply_eq_one_iff s)
@[simp]
lemma to_measure_apply_inter_support (hs : measurable_set s) (hp : measurable_set p.support) :
p.to_measure (s ∩ p.support) = p.to_measure s :=
by simp [p.to_measure_apply_eq_to_outer_measure_apply s hs,
p.to_measure_apply_eq_to_outer_measure_apply _ (hs.inter hp)]
lemma to_measure_mono {s t : set α} (hs : measurable_set s) (ht : measurable_set t)
(h : s ∩ p.support ⊆ t) : p.to_measure s ≤ p.to_measure t :=
by simpa only [p.to_measure_apply_eq_to_outer_measure_apply, hs, ht]
using to_outer_measure_mono p h
lemma to_measure_apply_eq_of_inter_support_eq {s t : set α} (hs : measurable_set s)
(ht : measurable_set t) (h : s ∩ p.support = t ∩ p.support) : p.to_measure s = p.to_measure t :=
by simpa only [p.to_measure_apply_eq_to_outer_measure_apply, hs, ht]
using to_outer_measure_apply_eq_of_inter_support_eq p h
section measurable_singleton_class
variables [measurable_singleton_class α]
@[simp]
lemma to_measure_apply_finset (s : finset α) : p.to_measure s = ∑ x in s, (p x : ℝ≥0∞) :=
(p.to_measure_apply_eq_to_outer_measure_apply s s.measurable_set).trans
(p.to_outer_measure_apply_finset s)
lemma to_measure_apply_of_finite (hs : s.finite) :
p.to_measure s = ↑(∑' x, s.indicator p x) :=
(p.to_measure_apply_eq_to_outer_measure_apply s hs.measurable_set).trans
(p.to_outer_measure_apply' s)
@[simp]
lemma to_measure_apply_fintype [fintype α] :
p.to_measure s = ↑(∑ x, s.indicator p x) :=
(p.to_measure_apply_eq_to_outer_measure_apply s (set.finite.of_fintype s).measurable_set).trans
(p.to_outer_measure_apply_fintype s)
end measurable_singleton_class
/-- The measure associated to a `pmf` by `to_measure` is a probability measure -/
instance to_measure.is_probability_measure (p : pmf α) : is_probability_measure (p.to_measure) :=
⟨by simpa only [measurable_set.univ, to_measure_apply_eq_to_outer_measure_apply, set.indicator_univ,
to_outer_measure_apply', ennreal.coe_eq_one] using tsum_coe p⟩
end measure
end pmf
|
2ad350872cc640467c8059bc9f4cedab63ea3afe
|
9cb9db9d79fad57d80ca53543dc07efb7c4f3838
|
/src/pseudo_normed_group/FiltrationPow.lean
|
ad246fbf4bc2dcf68472def3dc692162369de90a
|
[] |
no_license
|
mr-infty/lean-liquid
|
3ff89d1f66244b434654c59bdbd6b77cb7de0109
|
a8db559073d2101173775ccbd85729d3a4f1ed4d
|
refs/heads/master
| 1,678,465,145,334
| 1,614,565,310,000
| 1,614,565,310,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,951
|
lean
|
import pseudo_normed_group.breen_deligne
import normed_group.NormedGroup
open_locale classical nnreal
noncomputable theory
local attribute [instance] type_pow
-- move this
def Profinite.of (X : Type*)
[topological_space X] [t2_space X] [totally_disconnected_space X] [compact_space X] :
Profinite :=
{ to_Top := Top.of X,
is_compact := ‹_›,
is_t2 := ‹_›,
is_totally_disconnected := ‹_› }
open NormedGroup opposite Profinite pseudo_normed_group category_theory breen_deligne
open profinitely_filtered_pseudo_normed_group
open profinitely_filtered_pseudo_normed_group_with_Tinv
universe variable u
variables (r' : ℝ≥0) {M M₁ M₂ M₃ : Type u}
variables [profinitely_filtered_pseudo_normed_group_with_Tinv r' M]
variables [profinitely_filtered_pseudo_normed_group_with_Tinv r' M₁]
variables [profinitely_filtered_pseudo_normed_group_with_Tinv r' M₂]
variables [profinitely_filtered_pseudo_normed_group_with_Tinv r' M₃]
variables (c c₁ c₂ c₃ c₄ : ℝ≥0) (l m n : ℕ) (ϕ : basic_universal_map m n)
variables (f : profinitely_filtered_pseudo_normed_group_with_Tinv_hom r' M₁ M₂)
variables (g : profinitely_filtered_pseudo_normed_group_with_Tinv_hom r' M₂ M₃)
/-- The "functor" that sends `M` and `c` to `(filtration M c)^n` -/
def FiltrationPow (r' : ℝ≥0) (M : Type*) (c : ℝ≥0) (n : ℕ) [profinitely_filtered_pseudo_normed_group_with_Tinv r' M] :
Profinite :=
of ((filtration M c : Type*)^n)
namespace FiltrationPow
@[simps]
def map : FiltrationPow r' M₁ c n ⟶ FiltrationPow r' M₂ c n :=
{ to_fun := λ x j, f.level c (x j),
continuous_to_fun :=
begin
-- factor this into a separate lemma `continuous.pi_map`?
apply continuous_pi,
intro j,
exact (f.level_continuous c).comp (continuous_apply j),
end }
variables (M)
@[simp] lemma map_id :
map r' c n (profinitely_filtered_pseudo_normed_group_with_Tinv_hom.id) =
𝟙 (FiltrationPow r' M c n) :=
by { ext, refl }
variables {M}
lemma map_comp : map r' c n (g.comp f) = map r' c n f ≫ map r' c n g :=
by { ext, refl }
@[simps]
def cast_le [fact (c₁ ≤ c₂)] : FiltrationPow r' M c₁ n ⟶ FiltrationPow r' M c₂ n :=
{ to_fun := λ x j, cast_le (x j),
continuous_to_fun :=
begin
-- factor this into a separate lemma `continuous.pi_map`?
apply continuous_pi,
intro j,
exact (embedding_cast_le c₁ c₂).continuous.comp (continuous_apply j),
end }
@[simp] lemma cast_le_refl : cast_le r' c c n = 𝟙 (FiltrationPow r' M c n) := by { ext, refl }
lemma cast_le_trans [fact (c₁ ≤ c₂)] [fact (c₂ ≤ c₃)] [fact (c₁ ≤ c₃)] :
cast_le r' c₁ c₂ n ≫ cast_le r' c₂ c₃ n = @cast_le r' M _ c₁ c₃ n _ :=
by { ext, refl }
lemma map_comp_cast_le [fact (c₁ ≤ c₂)] :
map r' c₁ n f ≫ cast_le r' c₁ c₂ n = cast_le r' c₁ c₂ n ≫ map r' c₂ n f :=
by { ext, refl }
@[simps]
def Tinv : FiltrationPow r' M c n ⟶ FiltrationPow r' M (r'⁻¹ * c) n :=
{ to_fun := λ x j, Tinv₀ c (x j),
continuous_to_fun :=
begin
-- factor this into a separate lemma `continuous.pi_map`?
apply continuous_pi,
intro j,
exact (Tinv₀_continuous c).comp (continuous_apply j),
end }
lemma map_comp_Tinv :
map r' c n f ≫ Tinv r' c n = Tinv r' c n ≫ map r' (r'⁻¹ * c) n f :=
by { ext x j, exact (f.map_Tinv (x j)).symm }
lemma cast_le_comp_Tinv [fact (c₁ ≤ c₂)] :
cast_le r' c₁ c₂ n ≫ (@Tinv r' M _ c₂ n) =
Tinv r' c₁ n ≫ cast_le r' (r'⁻¹ * c₁) (r'⁻¹ * c₂) n :=
by { ext, refl }
end FiltrationPow
namespace breen_deligne
namespace basic_universal_map
open FiltrationPow
variables (M) {l m n}
@[simps]
def eval_FP [ϕ.suitable c₁ c₂] : FiltrationPow r' M c₁ m ⟶ FiltrationPow r' M c₂ n :=
{ to_fun := ϕ.eval_png₀ M c₁ c₂,
continuous_to_fun := ϕ.eval_png₀_continuous M c₁ c₂ }
lemma eval_FP_comp (g : basic_universal_map m n) (f : basic_universal_map l m)
[hg : g.suitable c₂ c₃] [hf : f.suitable c₁ c₂] [(g.comp f).suitable c₁ c₃] :
(g.comp f).eval_FP r' M c₁ c₃ =
f.eval_FP r' M c₁ c₂ ≫ g.eval_FP r' M c₂ c₃ :=
begin
ext j s i,
dsimp,
simp only [eval_png₀, subtype.coe_mk],
rw eval_png_comp,
simp only [add_monoid_hom.coe_comp, function.comp_app],
refl,
end
lemma map_comp_eval_FP [ϕ.suitable c₁ c₂] :
map r' c₁ m f ≫ ϕ.eval_FP r' M₂ c₁ c₂ = ϕ.eval_FP r' M₁ c₁ c₂ ≫ map r' c₂ n f :=
begin
ext1 x,
show ϕ.eval_png₀ M₂ c₁ c₂ (map r' c₁ m f x) = map r' c₂ n f (ϕ.eval_png₀ M₁ c₁ c₂ x),
ext j,
dsimp only [basic_universal_map.eval_png₀],
simp only [basic_universal_map.eval_png_apply, f.map_sum, map_to_fun, subtype.coe_mk,
pow_incl_apply, f.level_coe],
apply fintype.sum_congr,
intro i,
simp only [← gsmul_eq_smul],
exact (f.to_add_monoid_hom.map_gsmul _ _).symm
end
lemma cast_le_comp_eval_FP
[fact (c₁ ≤ c₂)] [ϕ.suitable c₂ c₄] [ϕ.suitable c₁ c₃] [fact (c₃ ≤ c₄)] :
cast_le r' c₁ c₂ m ≫ ϕ.eval_FP r' M c₂ c₄ = ϕ.eval_FP r' M c₁ c₃ ≫ cast_le r' c₃ c₄ n :=
by { ext, refl }
open profinitely_filtered_pseudo_normed_group_with_Tinv
lemma Tinv_comp_eval_FP [ϕ.suitable c₁ c₂] :
Tinv r' c₁ m ≫ ϕ.eval_FP r' M (r'⁻¹ * c₁) (r'⁻¹ * c₂) =
ϕ.eval_FP r' M c₁ c₂ ≫ Tinv r' c₂ n :=
begin
ext1 x,
show ϕ.eval_png₀ M (r'⁻¹ * c₁) (r'⁻¹ * c₂) (Tinv r' c₁ m x) =
Tinv r' c₂ n (ϕ.eval_png₀ M c₁ c₂ x),
ext j,
dsimp only [eval_png₀],
simp only [eval_png_apply, map_to_fun, subtype.coe_mk, pow_incl_apply,
Tinv_to_fun, Tinv₀_coe, profinitely_filtered_pseudo_normed_group_hom.map_sum],
apply fintype.sum_congr,
intro i,
simp only [← gsmul_eq_smul],
exact ((profinitely_filtered_pseudo_normed_group_hom.to_add_monoid_hom _).map_gsmul _ _).symm
end
end basic_universal_map
end breen_deligne
open breen_deligne
|
255c73efa2913e14f6eeb412ed3c4bdf47d568b7
|
a7eef317ddec01b9fc6cfbb876fe7ac00f205ac7
|
/src/data/fintype/basic.lean
|
fae98a610ae9eab7512108f0f517b173123a4665
|
[
"Apache-2.0"
] |
permissive
|
kmill/mathlib
|
ea5a007b67ae4e9e18dd50d31d8aa60f650425ee
|
1a419a9fea7b959317eddd556e1bb9639f4dcc05
|
refs/heads/master
| 1,668,578,197,719
| 1,593,629,163,000
| 1,593,629,163,000
| 276,482,939
| 0
| 0
| null | 1,593,637,960,000
| 1,593,637,959,000
| null |
UTF-8
|
Lean
| false
| false
| 44,490
|
lean
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Mario Carneiro
Finite types.
-/
import data.finset.sort
import data.finset.powerset
import data.finset.pi
import data.array.lemmas
universes u v
variables {α : Type*} {β : Type*} {γ : Type*}
/-- `fintype α` means that `α` is finite, i.e. there are only
finitely many distinct elements of type `α`. The evidence of this
is a finset `elems` (a list up to permutation without duplicates),
together with a proof that everything of type `α` is in the list. -/
class fintype (α : Type*) :=
(elems [] : finset α)
(complete : ∀ x : α, x ∈ elems)
namespace finset
variable [fintype α]
/-- `univ` is the universal finite set of type `finset α` implied from
the assumption `fintype α`. -/
def univ : finset α := fintype.elems α
@[simp] theorem mem_univ (x : α) : x ∈ (univ : finset α) :=
fintype.complete x
@[simp] theorem mem_univ_val : ∀ x, x ∈ (univ : finset α).1 := mem_univ
@[simp] lemma coe_univ : ↑(univ : finset α) = (set.univ : set α) :=
by ext; simp
theorem subset_univ (s : finset α) : s ⊆ univ := λ a _, mem_univ a
theorem eq_univ_iff_forall {s : finset α} : s = univ ↔ ∀ x, x ∈ s :=
by simp [ext_iff]
@[simp] lemma univ_inter [decidable_eq α] (s : finset α) :
univ ∩ s = s := ext $ λ a, by simp
@[simp] lemma inter_univ [decidable_eq α] (s : finset α) :
s ∩ univ = s :=
by rw [inter_comm, univ_inter]
@[simp] lemma piecewise_univ [∀i : α, decidable (i ∈ (univ : finset α))]
{δ : α → Sort*} (f g : Πi, δ i) : univ.piecewise f g = f :=
by { ext i, simp [piecewise] }
lemma univ_map_equiv_to_embedding {α β : Type*} [fintype α] [fintype β] (e : α ≃ β) :
univ.map e.to_embedding = univ :=
begin
apply eq_univ_iff_forall.mpr,
intro b,
rw [mem_map],
use e.symm b,
simp,
end
end finset
open finset function
namespace fintype
instance decidable_pi_fintype {α} {β : α → Type*} [∀a, decidable_eq (β a)] [fintype α] :
decidable_eq (Πa, β a) :=
assume f g, decidable_of_iff (∀ a ∈ fintype.elems α, f a = g a)
(by simp [function.funext_iff, fintype.complete])
instance decidable_forall_fintype {p : α → Prop} [decidable_pred p] [fintype α] :
decidable (∀ a, p a) :=
decidable_of_iff (∀ a ∈ @univ α _, p a) (by simp)
instance decidable_exists_fintype {p : α → Prop} [decidable_pred p] [fintype α] :
decidable (∃ a, p a) :=
decidable_of_iff (∃ a ∈ @univ α _, p a) (by simp)
instance decidable_eq_equiv_fintype [decidable_eq β] [fintype α] :
decidable_eq (α ≃ β) :=
λ a b, decidable_of_iff (a.1 = b.1) ⟨λ h, equiv.ext (congr_fun h), congr_arg _⟩
instance decidable_injective_fintype [decidable_eq α] [decidable_eq β] [fintype α] :
decidable_pred (injective : (α → β) → Prop) := λ x, by unfold injective; apply_instance
instance decidable_surjective_fintype [decidable_eq β] [fintype α] [fintype β] :
decidable_pred (surjective : (α → β) → Prop) := λ x, by unfold surjective; apply_instance
instance decidable_bijective_fintype [decidable_eq α] [decidable_eq β] [fintype α] [fintype β] :
decidable_pred (bijective : (α → β) → Prop) := λ x, by unfold bijective; apply_instance
instance decidable_left_inverse_fintype [decidable_eq α] [fintype α] (f : α → β) (g : β → α) :
decidable (function.right_inverse f g) :=
show decidable (∀ x, g (f x) = x), by apply_instance
instance decidable_right_inverse_fintype [decidable_eq β] [fintype β] (f : α → β) (g : β → α) :
decidable (function.left_inverse f g) :=
show decidable (∀ x, f (g x) = x), by apply_instance
/-- Construct a proof of `fintype α` from a universal multiset -/
def of_multiset [decidable_eq α] (s : multiset α)
(H : ∀ x : α, x ∈ s) : fintype α :=
⟨s.to_finset, by simpa using H⟩
/-- Construct a proof of `fintype α` from a universal list -/
def of_list [decidable_eq α] (l : list α)
(H : ∀ x : α, x ∈ l) : fintype α :=
⟨l.to_finset, by simpa using H⟩
theorem exists_univ_list (α) [fintype α] :
∃ l : list α, l.nodup ∧ ∀ x : α, x ∈ l :=
let ⟨l, e⟩ := quotient.exists_rep (@univ α _).1 in
by have := and.intro univ.2 mem_univ_val;
exact ⟨_, by rwa ← e at this⟩
/-- `card α` is the number of elements in `α`, defined when `α` is a fintype. -/
def card (α) [fintype α] : ℕ := (@univ α _).card
/-- If `l` lists all the elements of `α` without duplicates, then `α ≃ fin (l.length)`. -/
def equiv_fin_of_forall_mem_list {α} [decidable_eq α]
{l : list α} (h : ∀ x:α, x ∈ l) (nd : l.nodup) : α ≃ fin (l.length) :=
⟨λ a, ⟨_, list.index_of_lt_length.2 (h a)⟩,
λ i, l.nth_le i.1 i.2,
λ a, by simp,
λ ⟨i, h⟩, fin.eq_of_veq $ list.nodup_iff_nth_le_inj.1 nd _ _
(list.index_of_lt_length.2 (list.nth_le_mem _ _ _)) h $ by simp⟩
/-- There is (computably) a bijection between `α` and `fin n` where
`n = card α`. Since it is not unique, and depends on which permutation
of the universe list is used, the bijection is wrapped in `trunc` to
preserve computability. -/
def equiv_fin (α) [fintype α] [decidable_eq α] : trunc (α ≃ fin (card α)) :=
by unfold card finset.card; exact
quot.rec_on_subsingleton (@univ α _).1
(λ l (h : ∀ x:α, x ∈ l) (nd : l.nodup), trunc.mk (equiv_fin_of_forall_mem_list h nd))
mem_univ_val univ.2
theorem exists_equiv_fin (α) [fintype α] : ∃ n, nonempty (α ≃ fin n) :=
by haveI := classical.dec_eq α; exact ⟨card α, nonempty_of_trunc (equiv_fin α)⟩
/-- Given a linearly ordered fintype `α` of cardinal `k`, the equiv `mono_equiv_of_fin α h`
is the increasing bijection between `fin k` and `α`. Here, `h` is a proof that
the cardinality of `s` is `k`. We use this instead of a map `fin s.card → α` to avoid
casting issues in further uses of this function. -/
noncomputable def mono_equiv_of_fin (α) [fintype α] [decidable_linear_order α] {k : ℕ}
(h : fintype.card α = k) : fin k ≃ α :=
equiv.of_bijective (mono_of_fin univ h) begin
apply set.bijective_iff_bij_on_univ.2,
rw ← @coe_univ α _,
exact mono_of_fin_bij_on (univ : finset α) h
end
instance (α : Type*) : subsingleton (fintype α) :=
⟨λ ⟨s₁, h₁⟩ ⟨s₂, h₂⟩, by congr; simp [finset.ext_iff, h₁, h₂]⟩
protected def subtype {p : α → Prop} (s : finset α)
(H : ∀ x : α, x ∈ s ↔ p x) : fintype {x // p x} :=
⟨⟨multiset.pmap subtype.mk s.1 (λ x, (H x).1),
multiset.nodup_pmap (λ a _ b _, congr_arg subtype.val) s.2⟩,
λ ⟨x, px⟩, multiset.mem_pmap.2 ⟨x, (H x).2 px, rfl⟩⟩
theorem subtype_card {p : α → Prop} (s : finset α)
(H : ∀ x : α, x ∈ s ↔ p x) :
@card {x // p x} (fintype.subtype s H) = s.card :=
multiset.card_pmap _ _ _
theorem card_of_subtype {p : α → Prop} (s : finset α)
(H : ∀ x : α, x ∈ s ↔ p x) [fintype {x // p x}] :
card {x // p x} = s.card :=
by rw ← subtype_card s H; congr
/-- Construct a fintype from a finset with the same elements. -/
def of_finset {p : set α} (s : finset α) (H : ∀ x, x ∈ s ↔ x ∈ p) : fintype p :=
fintype.subtype s H
@[simp] theorem card_of_finset {p : set α} (s : finset α) (H : ∀ x, x ∈ s ↔ x ∈ p) :
@fintype.card p (of_finset s H) = s.card :=
fintype.subtype_card s H
theorem card_of_finset' {p : set α} (s : finset α)
(H : ∀ x, x ∈ s ↔ x ∈ p) [fintype p] : fintype.card p = s.card :=
by rw ← card_of_finset s H; congr
/-- If `f : α → β` is a bijection and `α` is a fintype, then `β` is also a fintype. -/
def of_bijective [fintype α] (f : α → β) (H : function.bijective f) : fintype β :=
⟨univ.map ⟨f, H.1⟩,
λ b, let ⟨a, e⟩ := H.2 b in e ▸ mem_map_of_mem _ (mem_univ _)⟩
/-- If `f : α → β` is a surjection and `α` is a fintype, then `β` is also a fintype. -/
def of_surjective [fintype α] [decidable_eq β] (f : α → β) (H : function.surjective f) : fintype β :=
⟨univ.image f, λ b, let ⟨a, e⟩ := H b in e ▸ mem_image_of_mem _ (mem_univ _)⟩
noncomputable def of_injective [fintype β] (f : α → β) (H : function.injective f) : fintype α :=
by letI := classical.dec; exact
if hα : nonempty α then by letI := classical.inhabited_of_nonempty hα;
exact of_surjective (inv_fun f) (inv_fun_surjective H)
else ⟨∅, λ x, (hα ⟨x⟩).elim⟩
/-- If `f : α ≃ β` and `α` is a fintype, then `β` is also a fintype. -/
def of_equiv (α : Type*) [fintype α] (f : α ≃ β) : fintype β := of_bijective _ f.bijective
theorem of_equiv_card [fintype α] (f : α ≃ β) :
@card β (of_equiv α f) = card α :=
multiset.card_map _ _
theorem card_congr {α β} [fintype α] [fintype β] (f : α ≃ β) : card α = card β :=
by rw ← of_equiv_card f; congr
theorem card_eq {α β} [F : fintype α] [G : fintype β] : card α = card β ↔ nonempty (α ≃ β) :=
⟨λ h, ⟨by classical;
calc α ≃ fin (card α) : trunc.out (equiv_fin α)
... ≃ fin (card β) : by rw h
... ≃ β : (trunc.out (equiv_fin β)).symm⟩,
λ ⟨f⟩, card_congr f⟩
def of_subsingleton (a : α) [subsingleton α] : fintype α :=
⟨{a}, λ b, finset.mem_singleton.2 (subsingleton.elim _ _)⟩
@[simp] theorem univ_of_subsingleton (a : α) [subsingleton α] :
@univ _ (of_subsingleton a) = {a} := rfl
@[simp] theorem card_of_subsingleton (a : α) [subsingleton α] :
@fintype.card _ (of_subsingleton a) = 1 := rfl
end fintype
namespace set
/-- Construct a finset enumerating a set `s`, given a `fintype` instance. -/
def to_finset (s : set α) [fintype s] : finset α :=
⟨(@finset.univ s _).1.map subtype.val,
multiset.nodup_map (λ a b, subtype.eq) finset.univ.2⟩
@[simp] theorem mem_to_finset {s : set α} [fintype s] {a : α} : a ∈ s.to_finset ↔ a ∈ s :=
by simp [to_finset]
@[simp] theorem mem_to_finset_val {s : set α} [fintype s] {a : α} : a ∈ s.to_finset.1 ↔ a ∈ s :=
mem_to_finset
-- We use an arbitrary `[fintype s]` instance here,
-- not necessarily coming from a `[fintype α]`.
@[simp]
lemma to_finset_card {α : Type*} (s : set α) [fintype s] :
s.to_finset.card = fintype.card s :=
multiset.card_map subtype.val finset.univ.val
@[simp] theorem coe_to_finset (s : set α) [fintype s] : (↑s.to_finset : set α) = s :=
set.ext $ λ _, mem_to_finset
@[simp] theorem to_finset_inj {s t : set α} [fintype s] [fintype t] : s.to_finset = t.to_finset ↔ s = t :=
⟨λ h, by rw [← s.coe_to_finset, h, t.coe_to_finset], λ h, by simp [h]; congr⟩
end set
lemma finset.card_univ [fintype α] : (finset.univ : finset α).card = fintype.card α :=
rfl
lemma finset.card_univ_diff [fintype α] [decidable_eq α] (s : finset α) :
(finset.univ \ s).card = fintype.card α - s.card :=
finset.card_sdiff (subset_univ s)
instance (n : ℕ) : fintype (fin n) :=
⟨⟨list.fin_range n, list.nodup_fin_range n⟩, list.mem_fin_range⟩
@[simp] theorem fintype.card_fin (n : ℕ) : fintype.card (fin n) = n :=
list.length_fin_range n
@[simp] lemma finset.card_fin (n : ℕ) : finset.card (finset.univ : finset (fin n)) = n :=
by rw [finset.card_univ, fintype.card_fin]
lemma fin.univ_succ (n : ℕ) :
(univ : finset (fin $ n+1)) = insert 0 (univ.image fin.succ) :=
begin
ext m,
simp only [mem_univ, mem_insert, true_iff, mem_image, exists_prop],
exact fin.cases (or.inl rfl) (λ i, or.inr ⟨i, trivial, rfl⟩) m
end
lemma fin.univ_cast_succ (n : ℕ) :
(univ : finset (fin $ n+1)) = insert (fin.last n) (univ.image fin.cast_succ) :=
begin
ext m,
simp only [mem_univ, mem_insert, true_iff, mem_image, exists_prop, true_and],
by_cases h : m.val < n,
{ right,
use fin.cast_lt m h,
rw fin.cast_succ_cast_lt },
{ left,
exact fin.eq_last_of_not_lt h }
end
/-- Any increasing map between `fin k` and a finset of cardinality `k` has to coincide with
the increasing bijection `mono_of_fin s h`. -/
lemma finset.mono_of_fin_unique' [decidable_linear_order α] {s : finset α} {k : ℕ} (h : s.card = k)
{f : fin k → α} (fmap : set.maps_to f set.univ ↑s) (hmono : strict_mono f) :
f = s.mono_of_fin h :=
begin
have finj : set.inj_on f set.univ := hmono.injective.inj_on _,
apply mono_of_fin_unique h (set.bij_on.mk fmap finj (λ y hy, _)) hmono,
simp only [set.image_univ, set.mem_range],
rcases surj_on_of_inj_on_of_card_le (λ i (hi : i ∈ finset.univ), f i)
(λ i hi, fmap (set.mem_univ i)) (λ i j hi hj hij, finj (set.mem_univ i) (set.mem_univ j) hij)
(by simp [h]) y hy with ⟨x, _, hx⟩,
exact ⟨x, hx.symm⟩
end
@[instance, priority 10] def unique.fintype {α : Type*} [unique α] : fintype α :=
fintype.of_subsingleton (default α)
@[simp] lemma univ_unique {α : Type*} [unique α] [f : fintype α] : @finset.univ α _ = {default α} :=
by rw [subsingleton.elim f (@unique.fintype α _)]; refl
instance : fintype empty := ⟨∅, empty.rec _⟩
@[simp] theorem fintype.univ_empty : @univ empty _ = ∅ := rfl
@[simp] theorem fintype.card_empty : fintype.card empty = 0 := rfl
instance : fintype pempty := ⟨∅, pempty.rec _⟩
@[simp] theorem fintype.univ_pempty : @univ pempty _ = ∅ := rfl
@[simp] theorem fintype.card_pempty : fintype.card pempty = 0 := rfl
instance : fintype unit := fintype.of_subsingleton ()
theorem fintype.univ_unit : @univ unit _ = {()} := rfl
theorem fintype.card_unit : fintype.card unit = 1 := rfl
instance : fintype punit := fintype.of_subsingleton punit.star
@[simp] theorem fintype.univ_punit : @univ punit _ = {punit.star} := rfl
@[simp] theorem fintype.card_punit : fintype.card punit = 1 := rfl
instance : fintype bool := ⟨⟨tt::ff::0, by simp⟩, λ x, by cases x; simp⟩
@[simp] theorem fintype.univ_bool : @univ bool _ = {tt, ff} := rfl
instance units_int.fintype : fintype (units ℤ) :=
⟨{1, -1}, λ x, by cases int.units_eq_one_or x; simp *⟩
instance additive.fintype : Π [fintype α], fintype (additive α) := id
instance multiplicative.fintype : Π [fintype α], fintype (multiplicative α) := id
@[simp] theorem fintype.card_units_int : fintype.card (units ℤ) = 2 := rfl
noncomputable instance [monoid α] [fintype α] : fintype (units α) :=
by classical; exact fintype.of_injective units.val units.ext
@[simp] theorem fintype.card_bool : fintype.card bool = 2 := rfl
def finset.insert_none (s : finset α) : finset (option α) :=
⟨none :: s.1.map some, multiset.nodup_cons.2
⟨by simp, multiset.nodup_map (λ a b, option.some.inj) s.2⟩⟩
@[simp] theorem finset.mem_insert_none {s : finset α} : ∀ {o : option α},
o ∈ s.insert_none ↔ ∀ a ∈ o, a ∈ s
| none := iff_of_true (multiset.mem_cons_self _ _) (λ a h, by cases h)
| (some a) := multiset.mem_cons.trans $ by simp; refl
theorem finset.some_mem_insert_none {s : finset α} {a : α} :
some a ∈ s.insert_none ↔ a ∈ s := by simp
instance {α : Type*} [fintype α] : fintype (option α) :=
⟨univ.insert_none, λ a, by simp⟩
@[simp] theorem fintype.card_option {α : Type*} [fintype α] :
fintype.card (option α) = fintype.card α + 1 :=
(multiset.card_cons _ _).trans (by rw multiset.card_map; refl)
instance {α : Type*} (β : α → Type*)
[fintype α] [∀ a, fintype (β a)] : fintype (sigma β) :=
⟨univ.sigma (λ _, univ), λ ⟨a, b⟩, by simp⟩
@[simp] lemma finset.univ_sigma_univ {α : Type*} {β : α → Type*} [fintype α] [∀ a, fintype (β a)] :
(univ : finset α).sigma (λ a, (univ : finset (β a))) = univ := rfl
instance (α β : Type*) [fintype α] [fintype β] : fintype (α × β) :=
⟨univ.product univ, λ ⟨a, b⟩, by simp⟩
@[simp] theorem fintype.card_prod (α β : Type*) [fintype α] [fintype β] :
fintype.card (α × β) = fintype.card α * fintype.card β :=
card_product _ _
def fintype.fintype_prod_left {α β} [decidable_eq α] [fintype (α × β)] [nonempty β] : fintype α :=
⟨(fintype.elems (α × β)).image prod.fst,
assume a, let ⟨b⟩ := ‹nonempty β› in by simp; exact ⟨b, fintype.complete _⟩⟩
def fintype.fintype_prod_right {α β} [decidable_eq β] [fintype (α × β)] [nonempty α] : fintype β :=
⟨(fintype.elems (α × β)).image prod.snd,
assume b, let ⟨a⟩ := ‹nonempty α› in by simp; exact ⟨a, fintype.complete _⟩⟩
instance (α : Type*) [fintype α] : fintype (ulift α) :=
fintype.of_equiv _ equiv.ulift.symm
@[simp] theorem fintype.card_ulift (α : Type*) [fintype α] :
fintype.card (ulift α) = fintype.card α :=
fintype.of_equiv_card _
instance (α : Type u) (β : Type v) [fintype α] [fintype β] : fintype (α ⊕ β) :=
@fintype.of_equiv _ _ (@sigma.fintype _
(λ b, cond b (ulift α) (ulift.{(max u v) v} β)) _
(λ b, by cases b; apply ulift.fintype))
((equiv.sum_equiv_sigma_bool _ _).symm.trans
(equiv.sum_congr equiv.ulift equiv.ulift))
lemma fintype.card_le_of_injective [fintype α] [fintype β] (f : α → β)
(hf : function.injective f) : fintype.card α ≤ fintype.card β :=
by haveI := classical.prop_decidable; exact
finset.card_le_card_of_inj_on f (λ _ _, finset.mem_univ _) (λ _ _ _ _ h, hf h)
lemma fintype.card_eq_one_iff [fintype α] : fintype.card α = 1 ↔ (∃ x : α, ∀ y, y = x) :=
by rw [← fintype.card_unit, fintype.card_eq]; exact
⟨λ ⟨a⟩, ⟨a.symm (), λ y, a.injective (subsingleton.elim _ _)⟩,
λ ⟨x, hx⟩, ⟨⟨λ _, (), λ _, x, λ _, (hx _).trans (hx _).symm,
λ _, subsingleton.elim _ _⟩⟩⟩
lemma fintype.card_eq_zero_iff [fintype α] : fintype.card α = 0 ↔ (α → false) :=
⟨λ h a, have e : α ≃ empty := classical.choice (fintype.card_eq.1 (by simp [h])), (e a).elim,
λ h, have e : α ≃ empty := ⟨λ a, (h a).elim, λ a, a.elim, λ a, (h a).elim, λ a, a.elim⟩,
by simp [fintype.card_congr e]⟩
/-- A `fintype` with cardinality zero is (constructively) equivalent to `pempty`. -/
def fintype.card_eq_zero_equiv_equiv_pempty {α : Type v} [fintype α] :
fintype.card α = 0 ≃ (α ≃ pempty.{v+1}) :=
{ to_fun := λ h,
{ to_fun := λ a, false.elim (fintype.card_eq_zero_iff.1 h a),
inv_fun := λ a, pempty.elim a,
left_inv := λ a, false.elim (fintype.card_eq_zero_iff.1 h a),
right_inv := λ a, pempty.elim a, },
inv_fun := λ e,
by { simp only [←fintype.of_equiv_card e], convert fintype.card_pempty, },
left_inv := λ h, rfl,
right_inv := λ e, by { ext x, cases e x, } }
lemma fintype.card_pos_iff [fintype α] : 0 < fintype.card α ↔ nonempty α :=
⟨λ h, classical.by_contradiction (λ h₁,
have fintype.card α = 0 := fintype.card_eq_zero_iff.2 (λ a, h₁ ⟨a⟩),
lt_irrefl 0 $ by rwa this at h),
λ ⟨a⟩, nat.pos_of_ne_zero (mt fintype.card_eq_zero_iff.1 (λ h, h a))⟩
lemma fintype.card_le_one_iff [fintype α] : fintype.card α ≤ 1 ↔ (∀ a b : α, a = b) :=
let n := fintype.card α in
have hn : n = fintype.card α := rfl,
match n, hn with
| 0 := λ ha, ⟨λ h, λ a, (fintype.card_eq_zero_iff.1 ha.symm a).elim, λ _, ha ▸ nat.le_succ _⟩
| 1 := λ ha, ⟨λ h, λ a b, let ⟨x, hx⟩ := fintype.card_eq_one_iff.1 ha.symm in
by rw [hx a, hx b],
λ _, ha ▸ le_refl _⟩
| (n+2) := λ ha, ⟨λ h, by rw ← ha at h; exact absurd h dec_trivial,
(λ h, fintype.card_unit ▸ fintype.card_le_of_injective (λ _, ())
(λ _ _ _, h _ _))⟩
end
lemma fintype.exists_ne_of_one_lt_card [fintype α] (h : 1 < fintype.card α) (a : α) :
∃ b : α, b ≠ a :=
let ⟨b, hb⟩ := classical.not_forall.1 (mt fintype.card_le_one_iff.2 (not_le_of_gt h)) in
let ⟨c, hc⟩ := classical.not_forall.1 hb in
by haveI := classical.dec_eq α; exact
if hba : b = a then ⟨c, by cc⟩ else ⟨b, hba⟩
lemma fintype.exists_pair_of_one_lt_card [fintype α] (h : 1 < fintype.card α) :
∃ (a b : α), b ≠ a :=
begin
rcases fintype.card_pos_iff.1 (nat.lt_of_succ_lt h) with a,
exact ⟨a, fintype.exists_ne_of_one_lt_card h a⟩,
end
lemma fintype.injective_iff_surjective [fintype α] {f : α → α} : injective f ↔ surjective f :=
by haveI := classical.prop_decidable; exact
have ∀ {f : α → α}, injective f → surjective f,
from λ f hinj x,
have h₁ : image f univ = univ := eq_of_subset_of_card_le (subset_univ _)
((card_image_of_injective univ hinj).symm ▸ le_refl _),
have h₂ : x ∈ image f univ := h₁.symm ▸ mem_univ _,
exists_of_bex (mem_image.1 h₂),
⟨this,
λ hsurj, has_left_inverse.injective
⟨surj_inv hsurj, left_inverse_of_surjective_of_right_inverse
(this (injective_surj_inv _)) (right_inverse_surj_inv _)⟩⟩
lemma fintype.injective_iff_bijective [fintype α] {f : α → α} : injective f ↔ bijective f :=
by simp [bijective, fintype.injective_iff_surjective]
lemma fintype.surjective_iff_bijective [fintype α] {f : α → α} : surjective f ↔ bijective f :=
by simp [bijective, fintype.injective_iff_surjective]
lemma fintype.injective_iff_surjective_of_equiv [fintype α] {f : α → β} (e : α ≃ β) :
injective f ↔ surjective f :=
have injective (e.symm ∘ f) ↔ surjective (e.symm ∘ f), from fintype.injective_iff_surjective,
⟨λ hinj, by simpa [function.comp] using
e.surjective.comp (this.1 (e.symm.injective.comp hinj)),
λ hsurj, by simpa [function.comp] using
e.injective.comp (this.2 (e.symm.surjective.comp hsurj))⟩
lemma fintype.coe_image_univ [fintype α] [decidable_eq β] {f : α → β} :
↑(finset.image f finset.univ) = set.range f :=
by { ext x, simp }
instance list.subtype.fintype [decidable_eq α] (l : list α) : fintype {x // x ∈ l} :=
fintype.of_list l.attach l.mem_attach
instance multiset.subtype.fintype [decidable_eq α] (s : multiset α) : fintype {x // x ∈ s} :=
fintype.of_multiset s.attach s.mem_attach
instance finset.subtype.fintype (s : finset α) : fintype {x // x ∈ s} :=
⟨s.attach, s.mem_attach⟩
instance finset_coe.fintype (s : finset α) : fintype (↑s : set α) :=
finset.subtype.fintype s
@[simp] lemma fintype.card_coe (s : finset α) :
fintype.card (↑s : set α) = s.card := card_attach
lemma finset.attach_eq_univ {s : finset α} : s.attach = finset.univ := rfl
lemma finset.card_le_one_iff {s : finset α} :
s.card ≤ 1 ↔ ∀ {x y}, x ∈ s → y ∈ s → x = y :=
begin
let t : set α := ↑s,
letI : fintype t := finset_coe.fintype s,
have : fintype.card t = s.card := fintype.card_coe s,
rw [← this, fintype.card_le_one_iff],
split,
{ assume H x y hx hy,
exact subtype.mk.inj (H ⟨x, hx⟩ ⟨y, hy⟩) },
{ assume H x y,
exact subtype.eq (H x.2 y.2) }
end
/-- A `finset` of a subsingleton type has cardinality at most one. -/
lemma finset.card_le_one_of_subsingleton [subsingleton α] (s : finset α) : s.card ≤ 1 :=
finset.card_le_one_iff.2 $ λ _ _ _ _, subsingleton.elim _ _
lemma finset.one_lt_card_iff {s : finset α} :
1 < s.card ↔ ∃ x y, (x ∈ s) ∧ (y ∈ s) ∧ x ≠ y :=
begin
classical,
rw ← not_iff_not,
push_neg,
simpa [classical.or_iff_not_imp_left] using finset.card_le_one_iff
end
instance plift.fintype (p : Prop) [decidable p] : fintype (plift p) :=
⟨if h : p then {⟨h⟩} else ∅, λ ⟨h⟩, by simp [h]⟩
instance Prop.fintype : fintype Prop :=
⟨⟨true::false::0, by simp [true_ne_false]⟩,
classical.cases (by simp) (by simp)⟩
def set_fintype {α} [fintype α] (s : set α) [decidable_pred s] : fintype s :=
fintype.subtype (univ.filter (∈ s)) (by simp)
namespace function.embedding
/-- An embedding from a `fintype` to itself can be promoted to an equivalence. -/
noncomputable def equiv_of_fintype_self_embedding {α : Type*} [fintype α] (e : α ↪ α) : α ≃ α :=
equiv.of_bijective e (fintype.injective_iff_bijective.1 e.2)
@[simp]
lemma equiv_of_fintype_self_embedding_to_embedding {α : Type*} [fintype α] (e : α ↪ α) :
e.equiv_of_fintype_self_embedding.to_embedding = e :=
by { ext, refl, }
end function.embedding
@[simp]
lemma finset.univ_map_embedding {α : Type*} [fintype α] (e : α ↪ α) :
univ.map e = univ :=
by rw [← e.equiv_of_fintype_self_embedding_to_embedding, univ_map_equiv_to_embedding]
namespace fintype
variables [fintype α] [decidable_eq α] {δ : α → Type*}
/-- Given for all `a : α` a finset `t a` of `δ a`, then one can define the
finset `fintype.pi_finset t` of all functions taking values in `t a` for all `a`. This is the
analogue of `finset.pi` where the base finset is `univ` (but formally they are not the same, as
there is an additional condition `i ∈ finset.univ` in the `finset.pi` definition). -/
def pi_finset (t : Πa, finset (δ a)) : finset (Πa, δ a) :=
(finset.univ.pi t).map ⟨λ f a, f a (mem_univ a), λ _ _, by simp [function.funext_iff]⟩
@[simp] lemma mem_pi_finset {t : Πa, finset (δ a)} {f : Πa, δ a} :
f ∈ pi_finset t ↔ (∀a, f a ∈ t a) :=
begin
split,
{ simp only [pi_finset, mem_map, and_imp, forall_prop_of_true, exists_prop, mem_univ,
exists_imp_distrib, mem_pi],
assume g hg hgf a,
rw ← hgf,
exact hg a },
{ simp only [pi_finset, mem_map, forall_prop_of_true, exists_prop, mem_univ, mem_pi],
assume hf,
exact ⟨λ a ha, f a, hf, rfl⟩ }
end
lemma pi_finset_subset (t₁ t₂ : Πa, finset (δ a)) (h : ∀ a, t₁ a ⊆ t₂ a) :
pi_finset t₁ ⊆ pi_finset t₂ :=
λ g hg, mem_pi_finset.2 $ λ a, h a $ mem_pi_finset.1 hg a
lemma pi_finset_disjoint_of_disjoint [∀ a, decidable_eq (δ a)]
(t₁ t₂ : Πa, finset (δ a)) {a : α} (h : disjoint (t₁ a) (t₂ a)) :
disjoint (pi_finset t₁) (pi_finset t₂) :=
disjoint_iff_ne.2 $ λ f₁ hf₁ f₂ hf₂ eq₁₂,
disjoint_iff_ne.1 h (f₁ a) (mem_pi_finset.1 hf₁ a) (f₂ a) (mem_pi_finset.1 hf₂ a) (congr_fun eq₁₂ a)
end fintype
/-! ### pi -/
/-- A dependent product of fintypes, indexed by a fintype, is a fintype. -/
instance pi.fintype {α : Type*} {β : α → Type*}
[decidable_eq α] [fintype α] [∀a, fintype (β a)] : fintype (Πa, β a) :=
⟨fintype.pi_finset (λ _, univ), by simp⟩
@[simp] lemma fintype.pi_finset_univ {α : Type*} {β : α → Type*}
[decidable_eq α] [fintype α] [∀a, fintype (β a)] :
fintype.pi_finset (λ a : α, (finset.univ : finset (β a))) = (finset.univ : finset (Π a, β a)) :=
rfl
instance d_array.fintype {n : ℕ} {α : fin n → Type*}
[∀n, fintype (α n)] : fintype (d_array n α) :=
fintype.of_equiv _ (equiv.d_array_equiv_fin _).symm
instance array.fintype {n : ℕ} {α : Type*} [fintype α] : fintype (array n α) :=
d_array.fintype
instance vector.fintype {α : Type*} [fintype α] {n : ℕ} : fintype (vector α n) :=
fintype.of_equiv _ (equiv.vector_equiv_fin _ _).symm
instance quotient.fintype [fintype α] (s : setoid α)
[decidable_rel ((≈) : α → α → Prop)] : fintype (quotient s) :=
fintype.of_surjective quotient.mk (λ x, quotient.induction_on x (λ x, ⟨x, rfl⟩))
instance finset.fintype [fintype α] : fintype (finset α) :=
⟨univ.powerset, λ x, finset.mem_powerset.2 (finset.subset_univ _)⟩
@[simp] lemma fintype.card_finset [fintype α] :
fintype.card (finset α) = 2 ^ (fintype.card α) :=
finset.card_powerset finset.univ
instance subtype.fintype (p : α → Prop) [decidable_pred p] [fintype α] : fintype {x // p x} :=
set_fintype _
@[simp] lemma set.to_finset_univ [fintype α] :
(set.univ : set α).to_finset = finset.univ :=
by { ext, simp only [set.mem_univ, mem_univ, set.mem_to_finset] }
theorem fintype.card_subtype_le [fintype α] (p : α → Prop) [decidable_pred p] :
fintype.card {x // p x} ≤ fintype.card α :=
by rw fintype.subtype_card; exact card_le_of_subset (subset_univ _)
theorem fintype.card_subtype_lt [fintype α] {p : α → Prop} [decidable_pred p]
{x : α} (hx : ¬ p x) : fintype.card {x // p x} < fintype.card α :=
by rw [fintype.subtype_card]; exact finset.card_lt_card
⟨subset_univ _, classical.not_forall.2 ⟨x, by simp [*, set.mem_def]⟩⟩
instance psigma.fintype {α : Type*} {β : α → Type*} [fintype α] [∀ a, fintype (β a)] :
fintype (Σ' a, β a) :=
fintype.of_equiv _ (equiv.psigma_equiv_sigma _).symm
instance psigma.fintype_prop_left {α : Prop} {β : α → Type*} [decidable α] [∀ a, fintype (β a)] :
fintype (Σ' a, β a) :=
if h : α then fintype.of_equiv (β h) ⟨λ x, ⟨h, x⟩, psigma.snd, λ _, rfl, λ ⟨_, _⟩, rfl⟩
else ⟨∅, λ x, h x.1⟩
instance psigma.fintype_prop_right {α : Type*} {β : α → Prop} [∀ a, decidable (β a)] [fintype α] :
fintype (Σ' a, β a) :=
fintype.of_equiv {a // β a} ⟨λ ⟨x, y⟩, ⟨x, y⟩, λ ⟨x, y⟩, ⟨x, y⟩, λ ⟨x, y⟩, rfl, λ ⟨x, y⟩, rfl⟩
instance psigma.fintype_prop_prop {α : Prop} {β : α → Prop} [decidable α] [∀ a, decidable (β a)] :
fintype (Σ' a, β a) :=
if h : ∃ a, β a then ⟨{⟨h.fst, h.snd⟩}, λ ⟨_, _⟩, by simp⟩ else ⟨∅, λ ⟨x, y⟩, h ⟨x, y⟩⟩
instance set.fintype [fintype α] : fintype (set α) :=
⟨(@finset.univ α _).powerset.map ⟨coe, coe_injective⟩, λ s, begin
classical, refine mem_map.2 ⟨finset.univ.filter s, mem_powerset.2 (subset_univ _), _⟩,
apply (coe_filter _).trans, rw [coe_univ, set.sep_univ], refl
end⟩
instance pfun_fintype (p : Prop) [decidable p] (α : p → Type*)
[Π hp, fintype (α hp)] : fintype (Π hp : p, α hp) :=
if hp : p then fintype.of_equiv (α hp) ⟨λ a _, a, λ f, f hp, λ _, rfl, λ _, rfl⟩
else ⟨singleton (λ h, (hp h).elim), by simp [hp, function.funext_iff]⟩
lemma mem_image_univ_iff_mem_range
{α β : Type*} [fintype α] [decidable_eq β] {f : α → β} {b : β} :
b ∈ univ.image f ↔ b ∈ set.range f :=
by simp
lemma card_lt_card_of_injective_of_not_mem
{α β : Type*} [fintype α] [fintype β] (f : α → β) (h : function.injective f)
{b : β} (w : b ∉ set.range f) : fintype.card α < fintype.card β :=
begin
classical,
calc
fintype.card α = (univ : finset α).card : rfl
... = (image f univ).card : (card_image_of_injective univ h).symm
... < (insert b (image f univ)).card :
card_lt_card (ssubset_insert (mt mem_image_univ_iff_mem_range.mp w))
... ≤ (univ : finset β).card : card_le_of_subset (subset_univ _)
... = fintype.card β : rfl
end
def quotient.fin_choice_aux {ι : Type*} [decidable_eq ι]
{α : ι → Type*} [S : ∀ i, setoid (α i)] :
∀ (l : list ι), (∀ i ∈ l, quotient (S i)) → @quotient (Π i ∈ l, α i) (by apply_instance)
| [] f := ⟦λ i, false.elim⟧
| (i::l) f := begin
refine quotient.lift_on₂ (f i (list.mem_cons_self _ _))
(quotient.fin_choice_aux l (λ j h, f j (list.mem_cons_of_mem _ h)))
_ _,
exact λ a l, ⟦λ j h,
if e : j = i then by rw e; exact a else
l _ (h.resolve_left e)⟧,
refine λ a₁ l₁ a₂ l₂ h₁ h₂, quotient.sound (λ j h, _),
by_cases e : j = i; simp [e],
{ subst j, exact h₁ },
{ exact h₂ _ _ }
end
theorem quotient.fin_choice_aux_eq {ι : Type*} [decidable_eq ι]
{α : ι → Type*} [S : ∀ i, setoid (α i)] :
∀ (l : list ι) (f : ∀ i ∈ l, α i), quotient.fin_choice_aux l (λ i h, ⟦f i h⟧) = ⟦f⟧
| [] f := quotient.sound (λ i h, h.elim)
| (i::l) f := begin
simp [quotient.fin_choice_aux, quotient.fin_choice_aux_eq l],
refine quotient.sound (λ j h, _),
by_cases e : j = i; simp [e],
subst j, refl
end
def quotient.fin_choice {ι : Type*} [fintype ι] [decidable_eq ι]
{α : ι → Type*} [S : ∀ i, setoid (α i)]
(f : ∀ i, quotient (S i)) : @quotient (Π i, α i) (by apply_instance) :=
quotient.lift_on (@quotient.rec_on _ _ (λ l : multiset ι,
@quotient (Π i ∈ l, α i) (by apply_instance))
finset.univ.1
(λ l, quotient.fin_choice_aux l (λ i _, f i))
(λ a b h, begin
have := λ a, quotient.fin_choice_aux_eq a (λ i h, quotient.out (f i)),
simp [quotient.out_eq] at this,
simp [this],
let g := λ a:multiset ι, ⟦λ (i : ι) (h : i ∈ a), quotient.out (f i)⟧,
refine eq_of_heq ((eq_rec_heq _ _).trans (_ : g a == g b)),
congr' 1, exact quotient.sound h,
end))
(λ f, ⟦λ i, f i (finset.mem_univ _)⟧)
(λ a b h, quotient.sound $ λ i, h _ _)
theorem quotient.fin_choice_eq {ι : Type*} [fintype ι] [decidable_eq ι]
{α : ι → Type*} [∀ i, setoid (α i)]
(f : ∀ i, α i) : quotient.fin_choice (λ i, ⟦f i⟧) = ⟦f⟧ :=
begin
let q, swap, change quotient.lift_on q _ _ = _,
have : q = ⟦λ i h, f i⟧,
{ dsimp [q],
exact quotient.induction_on
(@finset.univ ι _).1 (λ l, quotient.fin_choice_aux_eq _ _) },
simp [this], exact setoid.refl _
end
section equiv
open list equiv equiv.perm
variables [decidable_eq α] [decidable_eq β]
def perms_of_list : list α → list (perm α)
| [] := [1]
| (a :: l) := perms_of_list l ++ l.bind (λ b, (perms_of_list l).map (λ f, swap a b * f))
lemma length_perms_of_list : ∀ l : list α, length (perms_of_list l) = l.length.fact
| [] := rfl
| (a :: l) :=
begin
rw [length_cons, nat.fact_succ],
simp [perms_of_list, length_bind, length_perms_of_list, function.comp, nat.succ_mul],
cc
end
lemma mem_perms_of_list_of_mem : ∀ {l : list α} {f : perm α} (h : ∀ x, f x ≠ x → x ∈ l), f ∈ perms_of_list l
| [] f h := list.mem_singleton.2 $ equiv.ext $ λ x, by simp [imp_false, *] at *
| (a::l) f h :=
if hfa : f a = a
then
mem_append_left _ $ mem_perms_of_list_of_mem
(λ x hx, mem_of_ne_of_mem (λ h, by rw h at hx; exact hx hfa) (h x hx))
else
have hfa' : f (f a) ≠ f a, from mt (λ h, f.injective h) hfa,
have ∀ (x : α), (swap a (f a) * f) x ≠ x → x ∈ l,
from λ x hx, have hxa : x ≠ a, from λ h, by simpa [h, mul_apply] using hx,
have hfxa : f x ≠ f a, from mt (λ h, f.injective h) hxa,
list.mem_of_ne_of_mem hxa
(h x (λ h, by simp [h, mul_apply, swap_apply_def] at hx; split_ifs at hx; cc)),
suffices f ∈ perms_of_list l ∨ ∃ (b : α), b ∈ l ∧ ∃ g : perm α, g ∈ perms_of_list l ∧ swap a b * g = f,
by simpa [perms_of_list],
(@or_iff_not_imp_left _ _ (classical.prop_decidable _)).2
(λ hfl, ⟨f a,
if hffa : f (f a) = a then mem_of_ne_of_mem hfa (h _ (mt (λ h, f.injective h) hfa))
else this _ $ by simp [mul_apply, swap_apply_def]; split_ifs; cc,
⟨swap a (f a) * f, mem_perms_of_list_of_mem this,
by rw [← mul_assoc, mul_def (swap a (f a)) (swap a (f a)), swap_swap, ← equiv.perm.one_def, one_mul]⟩⟩)
lemma mem_of_mem_perms_of_list : ∀ {l : list α} {f : perm α}, f ∈ perms_of_list l → ∀ {x}, f x ≠ x → x ∈ l
| [] f h := have f = 1 := by simpa [perms_of_list] using h, by rw this; simp
| (a::l) f h :=
(mem_append.1 h).elim
(λ h x hx, mem_cons_of_mem _ (mem_of_mem_perms_of_list h hx))
(λ h x hx,
let ⟨y, hy, hy'⟩ := list.mem_bind.1 h in
let ⟨g, hg₁, hg₂⟩ := list.mem_map.1 hy' in
if hxa : x = a then by simp [hxa]
else if hxy : x = y then mem_cons_of_mem _ $ by rwa hxy
else mem_cons_of_mem _ $
mem_of_mem_perms_of_list hg₁ $
by rw [eq_inv_mul_iff_mul_eq.2 hg₂, mul_apply, swap_inv, swap_apply_def];
split_ifs; cc)
lemma mem_perms_of_list_iff {l : list α} {f : perm α} : f ∈ perms_of_list l ↔ ∀ {x}, f x ≠ x → x ∈ l :=
⟨mem_of_mem_perms_of_list, mem_perms_of_list_of_mem⟩
lemma nodup_perms_of_list : ∀ {l : list α} (hl : l.nodup), (perms_of_list l).nodup
| [] hl := by simp [perms_of_list]
| (a::l) hl :=
have hl' : l.nodup, from nodup_of_nodup_cons hl,
have hln' : (perms_of_list l).nodup, from nodup_perms_of_list hl',
have hmeml : ∀ {f : perm α}, f ∈ perms_of_list l → f a = a,
from λ f hf, not_not.1 (mt (mem_of_mem_perms_of_list hf) (nodup_cons.1 hl).1),
by rw [perms_of_list, list.nodup_append, list.nodup_bind, pairwise_iff_nth_le]; exact
⟨hln', ⟨λ _ _, nodup_map (λ _ _, (mul_right_inj _).1) hln',
λ i j hj hij x hx₁ hx₂,
let ⟨f, hf⟩ := list.mem_map.1 hx₁ in
let ⟨g, hg⟩ := list.mem_map.1 hx₂ in
have hix : x a = nth_le l i (lt_trans hij hj),
by rw [← hf.2, mul_apply, hmeml hf.1, swap_apply_left],
have hiy : x a = nth_le l j hj,
by rw [← hg.2, mul_apply, hmeml hg.1, swap_apply_left],
absurd (hf.2.trans (hg.2.symm)) $
λ h, ne_of_lt hij $ nodup_iff_nth_le_inj.1 hl' i j (lt_trans hij hj) hj $
by rw [← hix, hiy]⟩,
λ f hf₁ hf₂,
let ⟨x, hx, hx'⟩ := list.mem_bind.1 hf₂ in
let ⟨g, hg⟩ := list.mem_map.1 hx' in
have hgxa : g⁻¹ x = a, from f.injective $
by rw [hmeml hf₁, ← hg.2]; simp,
have hxa : x ≠ a, from λ h, (list.nodup_cons.1 hl).1 (h ▸ hx),
(list.nodup_cons.1 hl).1 $
hgxa ▸ mem_of_mem_perms_of_list hg.1 (by rwa [apply_inv_self, hgxa])⟩
def perms_of_finset (s : finset α) : finset (perm α) :=
quotient.hrec_on s.1 (λ l hl, ⟨perms_of_list l, nodup_perms_of_list hl⟩)
(λ a b hab, hfunext (congr_arg _ (quotient.sound hab))
(λ ha hb _, heq_of_eq $ finset.ext $
by simp [mem_perms_of_list_iff, hab.mem_iff]))
s.2
lemma mem_perms_of_finset_iff : ∀ {s : finset α} {f : perm α},
f ∈ perms_of_finset s ↔ ∀ {x}, f x ≠ x → x ∈ s :=
by rintros ⟨⟨l⟩, hs⟩ f; exact mem_perms_of_list_iff
lemma card_perms_of_finset : ∀ (s : finset α),
(perms_of_finset s).card = s.card.fact :=
by rintros ⟨⟨l⟩, hs⟩; exact length_perms_of_list l
def fintype_perm [fintype α] : fintype (perm α) :=
⟨perms_of_finset (@finset.univ α _), by simp [mem_perms_of_finset_iff]⟩
instance [fintype α] [fintype β] : fintype (α ≃ β) :=
if h : fintype.card β = fintype.card α
then trunc.rec_on_subsingleton (fintype.equiv_fin α)
(λ eα, trunc.rec_on_subsingleton (fintype.equiv_fin β)
(λ eβ, @fintype.of_equiv _ (perm α) fintype_perm
(equiv_congr (equiv.refl α) (eα.trans (eq.rec_on h eβ.symm)) : (α ≃ α) ≃ (α ≃ β))))
else ⟨∅, λ x, false.elim (h (fintype.card_eq.2 ⟨x.symm⟩))⟩
lemma fintype.card_perm [fintype α] : fintype.card (perm α) = (fintype.card α).fact :=
subsingleton.elim (@fintype_perm α _ _) (@equiv.fintype α α _ _ _ _) ▸
card_perms_of_finset _
lemma fintype.card_equiv [fintype α] [fintype β] (e : α ≃ β) :
fintype.card (α ≃ β) = (fintype.card α).fact :=
fintype.card_congr (equiv_congr (equiv.refl α) e) ▸ fintype.card_perm
lemma univ_eq_singleton_of_card_one {α} [fintype α] (x : α) (h : fintype.card α = 1) :
(univ : finset α) = {x} :=
begin
apply symm,
apply eq_of_subset_of_card_le (subset_univ ({x})),
apply le_of_eq,
simp [h, finset.card_univ]
end
end equiv
namespace fintype
section choose
open fintype
open equiv
variables [fintype α] [decidable_eq α] (p : α → Prop) [decidable_pred p]
def choose_x (hp : ∃! a : α, p a) : {a // p a} :=
⟨finset.choose p univ (by simp; exact hp), finset.choose_property _ _ _⟩
def choose (hp : ∃! a, p a) : α := choose_x p hp
lemma choose_spec (hp : ∃! a, p a) : p (choose p hp) :=
(choose_x p hp).property
end choose
section bijection_inverse
open function
variables [fintype α] [decidable_eq α]
variables [fintype β] [decidable_eq β]
variables {f : α → β}
/-- `
`bij_inv f` is the unique inverse to a bijection `f`. This acts
as a computable alternative to `function.inv_fun`. -/
def bij_inv (f_bij : bijective f) (b : β) : α :=
fintype.choose (λ a, f a = b)
begin
rcases f_bij.right b with ⟨a', fa_eq_b⟩,
rw ← fa_eq_b,
exact ⟨a', ⟨rfl, (λ a h, f_bij.left h)⟩⟩
end
lemma left_inverse_bij_inv (f_bij : bijective f) : left_inverse (bij_inv f_bij) f :=
λ a, f_bij.left (choose_spec (λ a', f a' = f a) _)
lemma right_inverse_bij_inv (f_bij : bijective f) : right_inverse (bij_inv f_bij) f :=
λ b, choose_spec (λ a', f a' = b) _
lemma bijective_bij_inv (f_bij : bijective f) : bijective (bij_inv f_bij) :=
⟨(right_inverse_bij_inv _).injective, (left_inverse_bij_inv _).surjective⟩
end bijection_inverse
lemma well_founded_of_trans_of_irrefl [fintype α] (r : α → α → Prop)
[is_trans α r] [is_irrefl α r] : well_founded r :=
by classical; exact
have ∀ x y, r x y → (univ.filter (λ z, r z x)).card < (univ.filter (λ z, r z y)).card,
from λ x y hxy, finset.card_lt_card $
by simp only [finset.lt_iff_ssubset.symm, lt_iff_le_not_le,
finset.le_iff_subset, finset.subset_iff, mem_filter, true_and, mem_univ, hxy];
exact ⟨λ z hzx, trans hzx hxy, not_forall_of_exists_not ⟨x, not_imp.2 ⟨hxy, irrefl x⟩⟩⟩,
subrelation.wf this (measure_wf _)
lemma preorder.well_founded [fintype α] [preorder α] : well_founded ((<) : α → α → Prop) :=
well_founded_of_trans_of_irrefl _
@[instance, priority 10] lemma linear_order.is_well_order [fintype α] [linear_order α] :
is_well_order α (<) :=
{ wf := preorder.well_founded }
end fintype
class infinite (α : Type*) : Prop :=
(not_fintype : fintype α → false)
@[simp] lemma not_nonempty_fintype {α : Type*} : ¬nonempty (fintype α) ↔ infinite α :=
⟨λf, ⟨λ x, f ⟨x⟩⟩, λ⟨f⟩ ⟨x⟩, f x⟩
namespace infinite
lemma exists_not_mem_finset [infinite α] (s : finset α) : ∃ x, x ∉ s :=
classical.not_forall.1 $ λ h, not_fintype ⟨s, h⟩
@[priority 100] -- see Note [lower instance priority]
instance nonempty (α : Type*) [infinite α] : nonempty α :=
nonempty_of_exists (exists_not_mem_finset (∅ : finset α))
lemma of_injective [infinite β] (f : β → α) (hf : injective f) : infinite α :=
⟨λ I, by exactI not_fintype (fintype.of_injective f hf)⟩
lemma of_surjective [infinite β] (f : α → β) (hf : surjective f) : infinite α :=
⟨λ I, by classical; exactI not_fintype (fintype.of_surjective f hf)⟩
private noncomputable def nat_embedding_aux (α : Type*) [infinite α] : ℕ → α
| n := by letI := classical.dec_eq α; exact classical.some (exists_not_mem_finset
((multiset.range n).pmap (λ m (hm : m < n), nat_embedding_aux m)
(λ _, multiset.mem_range.1)).to_finset)
private lemma nat_embedding_aux_injective (α : Type*) [infinite α] :
function.injective (nat_embedding_aux α) :=
begin
assume m n h,
letI := classical.dec_eq α,
wlog hmlen : m ≤ n using m n,
by_contradiction hmn,
have hmn : m < n, from lt_of_le_of_ne hmlen hmn,
refine (classical.some_spec (exists_not_mem_finset
((multiset.range n).pmap (λ m (hm : m < n), nat_embedding_aux α m)
(λ _, multiset.mem_range.1)).to_finset)) _,
refine multiset.mem_to_finset.2 (multiset.mem_pmap.2
⟨m, multiset.mem_range.2 hmn, _⟩),
rw [h, nat_embedding_aux]
end
noncomputable def nat_embedding (α : Type*) [infinite α] : ℕ ↪ α :=
⟨_, nat_embedding_aux_injective α⟩
end infinite
lemma not_injective_infinite_fintype [infinite α] [fintype β] (f : α → β) :
¬ injective f :=
assume (hf : injective f),
have H : fintype α := fintype.of_injective f hf,
infinite.not_fintype H
lemma not_surjective_fintype_infinite [fintype α] [infinite β] (f : α → β) :
¬ surjective f :=
assume (hf : surjective f),
have H : infinite α := infinite.of_surjective f hf,
@infinite.not_fintype _ H infer_instance
instance nat.infinite : infinite ℕ :=
⟨λ ⟨s, hs⟩, finset.not_mem_range_self $ s.subset_range_sup_succ (hs _)⟩
instance int.infinite : infinite ℤ :=
infinite.of_injective int.of_nat (λ _ _, int.of_nat.inj)
section trunc
/--
For `s : multiset α`, we can lift the existential statement that `∃ x, x ∈ s` to a `trunc α`.
-/
def trunc_of_multiset_exists_mem {α} (s : multiset α) : (∃ x, x ∈ s) → trunc α :=
quotient.rec_on_subsingleton s $ λ l h,
match l, h with
| [], _ := false.elim (by tauto)
| (a :: _), _ := trunc.mk a
end
/--
A `nonempty` `fintype` constructively contains an element.
-/
def trunc_of_nonempty_fintype (α) [nonempty α] [fintype α] : trunc α :=
trunc_of_multiset_exists_mem finset.univ.val (by simp)
/--
A `fintype` with positive cardinality constructively contains an element.
-/
def trunc_of_card_pos {α} [fintype α] (h : 0 < fintype.card α) : trunc α :=
by { letI := (fintype.card_pos_iff.mp h), exact trunc_of_nonempty_fintype α }
/--
By iterating over the elements of a fintype, we can lift an existential statement `∃ a, P a`
to `trunc (Σ' a, P a)`, containing data.
-/
def trunc_sigma_of_exists {α} [fintype α] {P : α → Prop} [decidable_pred P] (h : ∃ a, P a) :
trunc (Σ' a, P a) :=
@trunc_of_nonempty_fintype (Σ' a, P a) (exists.elim h $ λ a ha, ⟨⟨a, ha⟩⟩) _
end trunc
|
8a4be5793a777e800dfd247bf02b7f2298ad3e36
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/control/bitraversable/lemmas.lean
|
b2f76e42b630a818b1432ec34ea8ba39a596364f
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,434
|
lean
|
/-
Copyright (c) 2019 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import control.bitraversable.basic
/-!
# Bitraversable Lemmas
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
## Main definitions
* tfst - traverse on first functor argument
* tsnd - traverse on second functor argument
## Lemmas
Combination of
* bitraverse
* tfst
* tsnd
with the applicatives `id` and `comp`
## References
* Hackage: <https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Bitraversable.html>
## Tags
traversable bitraversable functor bifunctor applicative
-/
universes u
variables {t : Type u → Type u → Type u} [bitraversable t]
variables {β : Type u}
namespace bitraversable
open functor is_lawful_applicative
variables {F G : Type u → Type u}
[applicative F] [applicative G]
/-- traverse on the first functor argument -/
@[reducible] def tfst {α α'} (f : α → F α') : t α β → F (t α' β) :=
bitraverse f pure
/-- traverse on the second functor argument -/
@[reducible] def tsnd {α α'} (f : α → F α') : t β α → F (t β α') :=
bitraverse pure f
variables [is_lawful_bitraversable t]
[is_lawful_applicative F]
[is_lawful_applicative G]
@[higher_order tfst_id]
lemma id_tfst : Π {α β} (x : t α β), tfst id.mk x = id.mk x :=
@id_bitraverse _ _ _
@[higher_order tsnd_id]
lemma id_tsnd : Π {α β} (x : t α β), tsnd id.mk x = id.mk x :=
@id_bitraverse _ _ _
@[higher_order tfst_comp_tfst]
lemma comp_tfst {α₀ α₁ α₂ β}
(f : α₀ → F α₁) (f' : α₁ → G α₂) (x : t α₀ β) :
comp.mk (tfst f' <$> tfst f x) = tfst (comp.mk ∘ map f' ∘ f) x :=
by rw ← comp_bitraverse; simp [tfst,map_comp_pure,has_pure.pure]
@[higher_order tfst_comp_tsnd]
lemma tfst_tsnd {α₀ α₁ β₀ β₁}
(f : α₀ → F α₁) (f' : β₀ → G β₁) (x : t α₀ β₀) :
comp.mk (tfst f <$> tsnd f' x) =
bitraverse (comp.mk ∘ pure ∘ f) (comp.mk ∘ map pure ∘ f') x :=
by rw ← comp_bitraverse; simp [tfst,tsnd]
@[higher_order tsnd_comp_tfst]
lemma tsnd_tfst {α₀ α₁ β₀ β₁}
(f : α₀ → F α₁) (f' : β₀ → G β₁) (x : t α₀ β₀) :
comp.mk (tsnd f' <$> tfst f x) =
bitraverse (comp.mk ∘ map pure ∘ f) (comp.mk ∘ pure ∘ f') x :=
by rw ← comp_bitraverse; simp [tfst,tsnd]
@[higher_order tsnd_comp_tsnd]
lemma comp_tsnd {α β₀ β₁ β₂}
(g : β₀ → F β₁) (g' : β₁ → G β₂) (x : t α β₀) :
comp.mk (tsnd g' <$> tsnd g x) = tsnd (comp.mk ∘ map g' ∘ g) x :=
by rw ← comp_bitraverse; simp [tsnd]; refl
open bifunctor
private lemma pure_eq_id_mk_comp_id {α} :
pure = id.mk ∘ @id α := rfl
open function
@[higher_order]
lemma tfst_eq_fst_id {α α' β} (f : α → α') (x : t α β) :
tfst (id.mk ∘ f) x = id.mk (fst f x) :=
by simp [tfst,fst,pure_eq_id_mk_comp_id,-comp.right_id,bitraverse_eq_bimap_id]
@[higher_order]
lemma tsnd_eq_snd_id {α β β'} (f : β → β') (x : t α β) :
tsnd (id.mk ∘ f) x = id.mk (snd f x) :=
by simp [tsnd,snd,pure_eq_id_mk_comp_id,-comp.right_id,bitraverse_eq_bimap_id]
attribute [functor_norm] comp_bitraverse comp_tsnd comp_tfst
tsnd_comp_tsnd tsnd_comp_tfst tfst_comp_tsnd tfst_comp_tfst
bitraverse_comp bitraverse_id_id tfst_id tsnd_id
end bitraversable
|
020ecf9712ad382751377f3747979d648afa72e1
|
e030b0259b777fedcdf73dd966f3f1556d392178
|
/library/init/meta/decl_cmds.lean
|
2f086fd7ec2f2e7c530eb16aa054e4f48d881911
|
[
"Apache-2.0"
] |
permissive
|
fgdorais/lean
|
17b46a095b70b21fa0790ce74876658dc5faca06
|
c3b7c54d7cca7aaa25328f0a5660b6b75fe26055
|
refs/heads/master
| 1,611,523,590,686
| 1,484,412,902,000
| 1,484,412,902,000
| 38,489,734
| 0
| 0
| null | 1,435,923,380,000
| 1,435,923,379,000
| null |
UTF-8
|
Lean
| false
| false
| 1,679
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.meta.tactic init.meta.rb_map
open tactic
/- Given a set of constant renamings `replacements` and a declaration name `src_decl_name`, create a new
declaration called `new_decl_name` s.t. its type is the type of `src_decl_name` after applying the
given constant replacement.
Remark: the new type must be definitionally equal to the type of `src_decl_name`.
Example:
Assume the environment contains
def f : nat -> nat := ...
def g : nat -> nat := f
lemma f_lemma : forall a, f a > 0 := ...
Moreover, assume we have a mapping M containing `f -> `g
Then, the command
run_command copy_decl_updating_type M `f_lemma `g_lemma
creates the declaration
lemma g_lemma : forall a, g a > 0 := ...
-/
meta def copy_decl_updating_type (replacements : name_map name) (src_decl_name : name) (new_decl_name : name) : command :=
do env ← get_env,
decl ← returnex $ env^.get src_decl_name,
new_type ← return $ decl^.type^.replace (λ e d,
match e with
| expr.const n ls :=
match replacements^.find n with
| some new_n := some (expr.const new_n ls)
| none := none
end
| _ := none
end),
new_value ← return $ expr.const src_decl_name (decl^.univ_params^.for level.param),
add_decl (((decl^.to_definition^.update_type new_type)^.update_name new_decl_name)^.update_value new_value),
return ()
|
b53d8503b6830d98b8d96dbdbda26683ed8975fd
|
7da5ceac20aaab989eeb795a4be9639982e7b35a
|
/src/category_theory/finite_limits.lean
|
da2ebc24b379b12344663e56ec8ffd77d687ef54
|
[
"MIT"
] |
permissive
|
formalabstracts/formalabstracts
|
46c2f1b3a172e62ca6ffeb46fbbdf1705718af49
|
b0173da1af45421239d44492eeecd54bf65ee0f6
|
refs/heads/master
| 1,606,896,370,374
| 1,572,988,776,000
| 1,572,988,776,000
| 96,763,004
| 165
| 28
| null | 1,555,709,319,000
| 1,499,680,948,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 9,823
|
lean
|
-- Copyright (c) 2018 Jesse Han. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jesse Han
import .limits.shapes.products basic data.dvector
.limits.shapes.equalizers
category_theory.limits.limits
universes v u
open category_theory
namespace category_theory.limits
@[derive decidable_eq] inductive two : Type u
| left | right
def two.map {C : Sort*} (X Y : C) : two → C
| two.left := X
| two.right := Y
def two.functor {C : Sort u} (X Y : C) [category.{v+1} C] : discrete two ⥤ C :=
functor.of_function (two.map X Y)
def empty.functor (C : Sort*) [category.{v+1} C] : discrete pempty ⥤ C :=
functor.of_function (λ x, by {cases x} : pempty → C)
def empty_cone {C : Sort u} [category.{v+1} C] (A : C) : limits.cone (empty.functor C) :=
{ X := A,
π := { app := λ x, by cases x,
naturality' := by tidy}}
def commutative_square {C : Sort u} [category.{v u} C] {A B A' B' : C}
(f_top : A ⟶ B) (d_left : A ⟶ A') (d_right : B ⟶ B') (f_bot : A' ⟶ B') :=
f_top ≫ d_right = d_left ≫ f_bot
variables {C : Type u} [𝒞 : category.{v+1} C]
include 𝒞
variable(C)
@[class] def has_binary_products := has_limits_of_shape (discrete two.{v}) C
@[class] def has_terminal_object : Sort* := has_limits_of_shape.{v} (discrete pempty) C
@[class] def has_binary_coproducts := has_colimits_of_shape (discrete two.{v}) C
@[class] def has_initial_object : Sort* := has_colimits_of_shape.{v} (discrete pempty) C
@[instance] def has_limit_two_of_has_binary_products [H : has_binary_products C] {X Y : C} :
has_limit $ two.functor X Y :=
@has_limits_of_shape.has_limit _ _ _ _ H (two.functor X Y)
@[instance] def has_limit_empty_of_has_terminal_object [H : has_terminal_object C] :
has_limit $ empty.functor C :=
@has_limits_of_shape.has_limit _ _ _ _ H (empty.functor C)
variable{C}
def has_terminal_object.mk (T : C) (h₁ : ∀(X : C), X ⟶ T)
(h₂ : ∀{{X : C}} (f g : X ⟶ T), f = g) : has_terminal_object C :=
⟨λ F, { cone := ⟨T, ⟨pempty.rec _, pempty.rec _⟩⟩,
is_limit :=
{ lift := λ s, h₁ s.X,
fac' := λ s, pempty.rec _,
uniq' := λ s m h, h₂ _ _ } }⟩
def has_binary_products.mk (m : C → C → C) (p1 : ∀{X Y : C}, m X Y ⟶ X)
(p2 : ∀{X Y : C}, m X Y ⟶ Y) (lft : ∀{{X Y Z : C}} (f : Z ⟶ X) (g : Z ⟶ Y), Z ⟶ m X Y)
(lft1 : ∀{{X Y Z : C}} (f : Z ⟶ X) (g : Z ⟶ Y), lft f g ≫ p1 = f)
(lft2 : ∀{{X Y Z : C}} (f : Z ⟶ X) (g : Z ⟶ Y), lft f g ≫ p2 = g)
(lft_unique : ∀{{X Y Z : C}} (f g : Z ⟶ m X Y) (h1 : f ≫ p1 = g ≫ p1) (h2 : f ≫ p2 = g ≫ p2),
f = g) : has_binary_products C :=
begin
constructor, intro F, fsplit,
{ use m (F.obj two.left) (F.obj two.right),
apply nat_trans.of_homs, refine two.rec _ _, exact p1, exact p2 },
refine limits.is_limit.mk _ _ _,
{ rintro ⟨X, f⟩, apply lft (f.app two.left), dsimp, exact f.app two.right },
{ rintro ⟨X, f⟩ (_|_), apply lft1, apply lft2 },
{ rintro ⟨X, f⟩ g h, dsimp, apply lft_unique,
rw [lft1], exact h two.left, rw [lft2], exact h two.right }
end
def has_initial_object.mk (I : C) (h₁ : ∀(X : C), I ⟶ X)
(h₂ : ∀{{X : C}} (f g : I ⟶ X), f = g) : has_initial_object C :=
⟨λ F, { cocone := ⟨I, ⟨pempty.rec _, pempty.rec _⟩⟩,
is_colimit :=
{ desc := λ s, h₁ s.X,
fac' := λ s, pempty.rec _,
uniq' := λ s m h, h₂ _ _ } }⟩
def has_binary_coproducts.mk (p : C → C → C) (i1 : ∀{X Y : C}, X ⟶ p X Y)
(i2 : ∀{X Y : C}, Y ⟶ p X Y) (dsc : ∀{{X Y Z : C}} (f : X ⟶ Z) (g : Y ⟶ Z), p X Y ⟶ Z)
(dsc1 : ∀{{X Y Z : C}} (f : X ⟶ Z) (g : Y ⟶ Z), i1 ≫ dsc f g = f)
(dsc2 : ∀{{X Y Z : C}} (f : X ⟶ Z) (g : Y ⟶ Z), i2 ≫ dsc f g = g)
(dsc_unique : ∀{{X Y Z : C}} (f g : p X Y ⟶ Z) (h1 : i1 ≫ f = i1 ≫ g) (h2 : i2 ≫ f = i2 ≫ g),
f = g) : has_binary_coproducts C :=
begin
constructor, intro F, fsplit,
{ use p (F.obj two.left) (F.obj two.right),
apply nat_trans.of_homs, refine two.rec _ _, exact i1, exact i2 },
refine limits.is_colimit.mk _ _ _,
{ rintro ⟨X, f⟩, apply dsc (f.app two.left), dsimp, exact f.app two.right },
{ rintro ⟨X, f⟩ (_|_), apply dsc1, apply dsc2 },
{ rintro ⟨X, f⟩ g h, dsimp, apply dsc_unique,
rw [dsc1], exact h two.left, rw [dsc2], exact h two.right }
end
/-- The binary product is the vertex of the limiting cone to the canonical functor two → 𝒞
associated to X and Y -/
def binary_product (X Y : C) [has_limit $ two.functor X Y] : C :=
limit (two.functor X Y)
namespace binary_product
local infix ` × `:60 := binary_product
def π₁ {X Y : C} [has_limit $ two.functor X Y] : X × Y ⟶ X := limit.π _ two.left
def π₂ {X Y : C} [has_limit $ two.functor X Y] : X × Y ⟶ Y := limit.π _ two.right
/-- An alternative version of `π₁` if type-class inference fails -/
def π₁' {X Y : C} {H : has_binary_products C} : X × Y ⟶ X := π₁
/-- An alternative version of `π₂` if type-class inference fails -/
def π₂' {X Y : C} {H : has_binary_products C} : X × Y ⟶ Y := π₂
def dfin.map {n : ℕ} : dvector C n → dfin n → C :=
λ v d, by {induction v, cases d, cases d, exact v_x, exact v_ih d_a}
example {X : C} [has_binary_products C] : X × X × X = (X × X) × X := by refl
def cone_of_two_maps {W A₁ A₂: C} (f₁ : W ⟶ A₁) (f₂ : W ⟶ A₂) : cone (two.functor A₁ A₂) :=
{ X := W,
π := { app := λ l, two.rec_on l f₁ f₂,
naturality' := by tidy}}
lemma cone_of_two_maps_object [has_binary_products C] {B₁ B₂ A₁ A₂: C} {f₁ : B₁ × B₂ ⟶ A₁}
{f₂ : B₁ × B₂ ⟶ A₂} : (cone_of_two_maps f₁ f₂).X = B₁ × B₂ := by refl
def map_to_product.mk {H : has_binary_products C} {W B₁ B₂ : C} (f₁ : W ⟶ B₁) (f₂ : W ⟶ B₂) :
W ⟶ B₁ × B₂ :=
is_limit.lift (limit.is_limit _) (cone_of_two_maps f₁ f₂)
def diag [H : has_binary_products C] {B : C} : B ⟶ B × B :=
map_to_product.mk (𝟙 B) (𝟙 B)
protected def map {H : has_binary_products C} {A A' B B' : C} (f : A ⟶ A') (g : B ⟶ B') :
A × B ⟶ A' × B' :=
map_to_product.mk (π₁ ≫ f) (π₂ ≫ g)
local infix ` ×.map `:90 := binary_product.map
protected def iso {H : has_binary_products C} {A A' B B' : C} (f : A ≅ A') (g : B ≅ B') :
A × B ≅ A' × B' :=
{ hom := f.hom ×.map g.hom,
inv := f.inv ×.map g.inv,
hom_inv_id' := omitted,
inv_hom_id' := omitted }
local infix ` ×.iso `:90 := binary_product.iso
def assoc_hom {H : has_binary_products C} {X Y Z : C} : (X × Y) × Z ⟶ X × (Y × Z) :=
by apply map_to_product.mk (π₁ ≫ π₁) (π₂ ×.map (𝟙 Z))
def assoc_inv {H : has_binary_products C} {X Y Z : C} : X × (Y × Z) ⟶ (X × Y) × Z :=
by apply map_to_product.mk (𝟙 X ×.map π₁) (π₂ ≫ π₂)
def product_assoc {H : has_binary_products C} {X Y Z : C} : (X × Y) × Z ≅ X × (Y × Z) :=
{ hom := assoc_hom,
inv := assoc_inv,
hom_inv_id' := omitted,
inv_hom_id' := omitted}
def product_comm {H : has_binary_products C} {X Y : C} : X × Y ≅ Y × X :=
{ hom := map_to_product.mk π₂ π₁,
inv := map_to_product.mk π₂ π₁,
hom_inv_id' := omitted,
inv_hom_id' := omitted}
def product_assoc4 {H : has_binary_products C} {X Y Z W : C} :
(X × Y) × (Z × W) ≅ (X × Z) × (Y × W) :=
product_assoc ≪≫
iso.refl X ×.iso (product_assoc.symm ≪≫ product_comm ×.iso iso.refl W ≪≫ product_assoc) ≪≫
product_assoc.symm
example :
commutative_square
/-unit-/ (𝟙 unit) /- unit -/
(𝟙 unit) (𝟙 unit)
/-unit-/ (𝟙 unit) /- unit -/
:= by tidy
end binary_product
open binary_product
section terminal_object
local infix ` × `:60 := binary_product
def terminal_object [has_terminal_object C] : C :=
limit (empty.functor C)
notation `term` := terminal_object
def terminal_map [has_terminal_object C] (A : C) : A ⟶ term :=
is_limit.lift (limit.is_limit (empty.functor C)) (empty_cone A)
lemma terminal_map_eq [has_terminal_object C] {A : C} (f g : A ⟶ term) : f = g :=
omitted
lemma mul_one [has_terminal_object C] [has_binary_products C] (G : C) :
nonempty $ term × G ≅ G := omitted
lemma one_mul [has_terminal_object C] [has_binary_products C] (G : C) :
nonempty $ G × term ≅ G := omitted
def mul_one_inv [has_terminal_object C] [has_binary_products C] {G : C} : G ⟶ G × term :=
by apply map_to_product.mk (𝟙 _) (terminal_map G)
def one_mul_inv [has_terminal_object C] [has_binary_products C] {G : C} : G ⟶ term × G :=
by apply map_to_product.mk (terminal_map G) (𝟙 _)
end terminal_object
section pow
local infix ` × `:60 := binary_product
/-- The n-fold product of an object with itself -/
def category.pow [has_binary_products C] [has_terminal_object C] (X : C) : ℕ → C
| 0 := term
| 1 := X
| (n+2) := X × category.pow (n+1)
end pow
namespace finite_limits
open binary_product
instance fintype_two : fintype two :=
{elems := { val := ⟦[two.left, two.right]⟧,
nodup := by tidy },
complete := λ x, by cases x; tidy}
example : fintype pempty := by apply_instance
section finite_products
variable (C)
@[class]def has_finite_products := Π α : Type*, fintype α → has_limits_of_shape.{v} (discrete α) C
@[class]def has_equalizers := has_limits_of_shape.{v} (walking_pair) C
@[instance] def has_binary_products_of_has_finite_products [H : has_finite_products C] :
has_binary_products C := H _ infer_instance
@[instance] def has_terminal_object_of_has_finite_products [H : has_finite_products C] :
has_limits_of_shape.{v} (discrete pempty) C := H _ infer_instance
@[class]def has_finite_limits := @has_finite_products C 𝒞 × @has_equalizers C 𝒞
end finite_products
end finite_limits
end category_theory.limits
|
7cd532e744dea0088dcda9d833c005c4e8605c30
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/1845.lean
|
1293657f94a786a9bc9feb7f0140d81597297a18
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 362
|
lean
|
import Lean.Hygiene
import Lean.Exception
open Lean
def bar : StateT Nat Unhygienic Syntax.Term := do modify (· + 1); `("hi")
def foo : StateT Nat Unhygienic Syntax.Term := do `(throwError $(← bar))
#eval Unhygienic.run (foo.run 0) |>.2
-- don't do this
syntax "←" term : term
def foo' : StateT Nat Unhygienic Syntax.Term := do `(throwError $(← bar))
|
3d2e43a06a7315932cc6c7df29e19f825d409ad6
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/analysis/convex/side.lean
|
b4f12bc9539d7f33951c065cfe4d044d6cd3fc41
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 39,397
|
lean
|
/-
Copyright (c) 2022 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers
-/
import analysis.convex.between
import analysis.convex.normed
import analysis.normed.group.add_torsor
/-!
# Sides of affine subspaces
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines notions of two points being on the same or opposite sides of an affine subspace.
## Main definitions
* `s.w_same_side x y`: The points `x` and `y` are weakly on the same side of the affine
subspace `s`.
* `s.s_same_side x y`: The points `x` and `y` are strictly on the same side of the affine
subspace `s`.
* `s.w_opp_side x y`: The points `x` and `y` are weakly on opposite sides of the affine
subspace `s`.
* `s.s_opp_side x y`: The points `x` and `y` are strictly on opposite sides of the affine
subspace `s`.
-/
variables {R V V' P P' : Type*}
open affine_equiv affine_map
namespace affine_subspace
section strict_ordered_comm_ring
variables [strict_ordered_comm_ring R] [add_comm_group V] [module R V] [add_torsor V P]
variables [add_comm_group V'] [module R V'] [add_torsor V' P']
include V
/-- The points `x` and `y` are weakly on the same side of `s`. -/
def w_same_side (s : affine_subspace R P) (x y : P) : Prop :=
∃ p₁ p₂ ∈ s, same_ray R (x -ᵥ p₁) (y -ᵥ p₂)
/-- The points `x` and `y` are strictly on the same side of `s`. -/
def s_same_side (s : affine_subspace R P) (x y : P) : Prop :=
s.w_same_side x y ∧ x ∉ s ∧ y ∉ s
/-- The points `x` and `y` are weakly on opposite sides of `s`. -/
def w_opp_side (s : affine_subspace R P) (x y : P) : Prop :=
∃ p₁ p₂ ∈ s, same_ray R (x -ᵥ p₁) (p₂ -ᵥ y)
/-- The points `x` and `y` are strictly on opposite sides of `s`. -/
def s_opp_side (s : affine_subspace R P) (x y : P) : Prop :=
s.w_opp_side x y ∧ x ∉ s ∧ y ∉ s
include V'
lemma w_same_side.map {s : affine_subspace R P} {x y : P} (h : s.w_same_side x y)
(f : P →ᵃ[R] P') : (s.map f).w_same_side (f x) (f y) :=
begin
rcases h with ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨f p₁, mem_map_of_mem f hp₁, f p₂, mem_map_of_mem f hp₂, _⟩,
simp_rw [←linear_map_vsub],
exact h.map f.linear
end
lemma _root_.function.injective.w_same_side_map_iff {s : affine_subspace R P} {x y : P}
{f : P →ᵃ[R] P'} (hf : function.injective f) :
(s.map f).w_same_side (f x) (f y) ↔ s.w_same_side x y :=
begin
refine ⟨λ h, _, λ h, h.map _⟩,
rcases h with ⟨fp₁, hfp₁, fp₂, hfp₂, h⟩,
rw mem_map at hfp₁ hfp₂,
rcases hfp₁ with ⟨p₁, hp₁, rfl⟩,
rcases hfp₂ with ⟨p₂, hp₂, rfl⟩,
refine ⟨p₁, hp₁, p₂, hp₂, _⟩,
simp_rw [←linear_map_vsub, (f.linear_injective_iff.2 hf).same_ray_map_iff] at h,
exact h
end
lemma _root_.function.injective.s_same_side_map_iff {s : affine_subspace R P} {x y : P}
{f : P →ᵃ[R] P'} (hf : function.injective f) :
(s.map f).s_same_side (f x) (f y) ↔ s.s_same_side x y :=
by simp_rw [s_same_side, hf.w_same_side_map_iff, mem_map_iff_mem_of_injective hf]
@[simp] lemma _root_.affine_equiv.w_same_side_map_iff {s : affine_subspace R P} {x y : P}
(f : P ≃ᵃ[R] P') : (s.map ↑f).w_same_side (f x) (f y) ↔ s.w_same_side x y :=
(show function.injective f.to_affine_map, from f.injective).w_same_side_map_iff
@[simp] lemma _root_.affine_equiv.s_same_side_map_iff {s : affine_subspace R P} {x y : P}
(f : P ≃ᵃ[R] P') : (s.map ↑f).s_same_side (f x) (f y) ↔ s.s_same_side x y :=
(show function.injective f.to_affine_map, from f.injective).s_same_side_map_iff
lemma w_opp_side.map {s : affine_subspace R P} {x y : P} (h : s.w_opp_side x y)
(f : P →ᵃ[R] P') : (s.map f).w_opp_side (f x) (f y) :=
begin
rcases h with ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨f p₁, mem_map_of_mem f hp₁, f p₂, mem_map_of_mem f hp₂, _⟩,
simp_rw [←linear_map_vsub],
exact h.map f.linear
end
lemma _root_.function.injective.w_opp_side_map_iff {s : affine_subspace R P} {x y : P}
{f : P →ᵃ[R] P'} (hf : function.injective f) :
(s.map f).w_opp_side (f x) (f y) ↔ s.w_opp_side x y :=
begin
refine ⟨λ h, _, λ h, h.map _⟩,
rcases h with ⟨fp₁, hfp₁, fp₂, hfp₂, h⟩,
rw mem_map at hfp₁ hfp₂,
rcases hfp₁ with ⟨p₁, hp₁, rfl⟩,
rcases hfp₂ with ⟨p₂, hp₂, rfl⟩,
refine ⟨p₁, hp₁, p₂, hp₂, _⟩,
simp_rw [←linear_map_vsub, (f.linear_injective_iff.2 hf).same_ray_map_iff] at h,
exact h
end
lemma _root_.function.injective.s_opp_side_map_iff {s : affine_subspace R P} {x y : P}
{f : P →ᵃ[R] P'} (hf : function.injective f) :
(s.map f).s_opp_side (f x) (f y) ↔ s.s_opp_side x y :=
by simp_rw [s_opp_side, hf.w_opp_side_map_iff, mem_map_iff_mem_of_injective hf]
@[simp] lemma _root_.affine_equiv.w_opp_side_map_iff {s : affine_subspace R P} {x y : P}
(f : P ≃ᵃ[R] P') : (s.map ↑f).w_opp_side (f x) (f y) ↔ s.w_opp_side x y :=
(show function.injective f.to_affine_map, from f.injective).w_opp_side_map_iff
@[simp] lemma _root_.affine_equiv.s_opp_side_map_iff {s : affine_subspace R P} {x y : P}
(f : P ≃ᵃ[R] P') : (s.map ↑f).s_opp_side (f x) (f y) ↔ s.s_opp_side x y :=
(show function.injective f.to_affine_map, from f.injective).s_opp_side_map_iff
omit V'
lemma w_same_side.nonempty {s : affine_subspace R P} {x y : P} (h : s.w_same_side x y) :
(s : set P).nonempty :=
⟨h.some, h.some_spec.some⟩
lemma s_same_side.nonempty {s : affine_subspace R P} {x y : P} (h : s.s_same_side x y) :
(s : set P).nonempty :=
⟨h.1.some, h.1.some_spec.some⟩
lemma w_opp_side.nonempty {s : affine_subspace R P} {x y : P} (h : s.w_opp_side x y) :
(s : set P).nonempty :=
⟨h.some, h.some_spec.some⟩
lemma s_opp_side.nonempty {s : affine_subspace R P} {x y : P} (h : s.s_opp_side x y) :
(s : set P).nonempty :=
⟨h.1.some, h.1.some_spec.some⟩
lemma s_same_side.w_same_side {s : affine_subspace R P} {x y : P} (h : s.s_same_side x y) :
s.w_same_side x y :=
h.1
lemma s_same_side.left_not_mem {s : affine_subspace R P} {x y : P} (h : s.s_same_side x y) :
x ∉ s :=
h.2.1
lemma s_same_side.right_not_mem {s : affine_subspace R P} {x y : P} (h : s.s_same_side x y) :
y ∉ s :=
h.2.2
lemma s_opp_side.w_opp_side {s : affine_subspace R P} {x y : P} (h : s.s_opp_side x y) :
s.w_opp_side x y :=
h.1
lemma s_opp_side.left_not_mem {s : affine_subspace R P} {x y : P} (h : s.s_opp_side x y) :
x ∉ s :=
h.2.1
lemma s_opp_side.right_not_mem {s : affine_subspace R P} {x y : P} (h : s.s_opp_side x y) :
y ∉ s :=
h.2.2
lemma w_same_side_comm {s : affine_subspace R P} {x y : P} :
s.w_same_side x y ↔ s.w_same_side y x :=
⟨λ ⟨p₁, hp₁, p₂, hp₂, h⟩, ⟨p₂, hp₂, p₁, hp₁, h.symm⟩,
λ ⟨p₁, hp₁, p₂, hp₂, h⟩, ⟨p₂, hp₂, p₁, hp₁, h.symm⟩⟩
alias w_same_side_comm ↔ w_same_side.symm _
lemma s_same_side_comm {s : affine_subspace R P} {x y : P} :
s.s_same_side x y ↔ s.s_same_side y x :=
by rw [s_same_side, s_same_side, w_same_side_comm, and_comm (x ∉ s)]
alias s_same_side_comm ↔ s_same_side.symm _
lemma w_opp_side_comm {s : affine_subspace R P} {x y : P} :
s.w_opp_side x y ↔ s.w_opp_side y x :=
begin
split,
{ rintro ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨p₂, hp₂, p₁, hp₁, _⟩,
rwa [same_ray_comm, ←same_ray_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] },
{ rintro ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨p₂, hp₂, p₁, hp₁, _⟩,
rwa [same_ray_comm, ←same_ray_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] }
end
alias w_opp_side_comm ↔ w_opp_side.symm _
lemma s_opp_side_comm {s : affine_subspace R P} {x y : P} :
s.s_opp_side x y ↔ s.s_opp_side y x :=
by rw [s_opp_side, s_opp_side, w_opp_side_comm, and_comm (x ∉ s)]
alias s_opp_side_comm ↔ s_opp_side.symm _
lemma not_w_same_side_bot (x y : P) : ¬ (⊥ : affine_subspace R P).w_same_side x y :=
by simp [w_same_side, not_mem_bot]
lemma not_s_same_side_bot (x y : P) : ¬ (⊥ : affine_subspace R P).s_same_side x y :=
λ h, not_w_same_side_bot x y h.w_same_side
lemma not_w_opp_side_bot (x y : P) : ¬ (⊥ : affine_subspace R P).w_opp_side x y :=
by simp [w_opp_side, not_mem_bot]
lemma not_s_opp_side_bot (x y : P) : ¬ (⊥ : affine_subspace R P).s_opp_side x y :=
λ h, not_w_opp_side_bot x y h.w_opp_side
@[simp] lemma w_same_side_self_iff {s : affine_subspace R P} {x : P} :
s.w_same_side x x ↔ (s : set P).nonempty :=
⟨λ h, h.nonempty, λ ⟨p, hp⟩, ⟨p, hp, p, hp, same_ray.rfl⟩⟩
lemma s_same_side_self_iff {s : affine_subspace R P} {x : P} :
s.s_same_side x x ↔ (s : set P).nonempty ∧ x ∉ s :=
⟨λ ⟨h, hx, _⟩, ⟨w_same_side_self_iff.1 h, hx⟩, λ ⟨h, hx⟩, ⟨w_same_side_self_iff.2 h, hx, hx⟩⟩
lemma w_same_side_of_left_mem {s : affine_subspace R P} {x : P} (y : P) (hx : x ∈ s) :
s.w_same_side x y :=
begin
refine ⟨x, hx, x, hx, _⟩,
simp
end
lemma w_same_side_of_right_mem {s : affine_subspace R P} (x : P) {y : P} (hy : y ∈ s) :
s.w_same_side x y :=
(w_same_side_of_left_mem x hy).symm
lemma w_opp_side_of_left_mem {s : affine_subspace R P} {x : P} (y : P) (hx : x ∈ s) :
s.w_opp_side x y :=
begin
refine ⟨x, hx, x, hx, _⟩,
simp
end
lemma w_opp_side_of_right_mem {s : affine_subspace R P} (x : P) {y : P} (hy : y ∈ s) :
s.w_opp_side x y :=
(w_opp_side_of_left_mem x hy).symm
lemma w_same_side_vadd_left_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.w_same_side (v +ᵥ x) y ↔ s.w_same_side x y :=
begin
split,
{ rintro ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨-v +ᵥ p₁,
affine_subspace.vadd_mem_of_mem_direction (submodule.neg_mem _ hv) hp₁, p₂, hp₂, _⟩,
rwa [vsub_vadd_eq_vsub_sub, sub_neg_eq_add, add_comm, ←vadd_vsub_assoc] },
{ rintro ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨v +ᵥ p₁,
affine_subspace.vadd_mem_of_mem_direction hv hp₁, p₂, hp₂, _⟩,
rwa vadd_vsub_vadd_cancel_left }
end
lemma w_same_side_vadd_right_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.w_same_side x (v +ᵥ y) ↔ s.w_same_side x y :=
by rw [w_same_side_comm, w_same_side_vadd_left_iff hv, w_same_side_comm]
lemma s_same_side_vadd_left_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.s_same_side (v +ᵥ x) y ↔ s.s_same_side x y :=
by rw [s_same_side, s_same_side, w_same_side_vadd_left_iff hv,
vadd_mem_iff_mem_of_mem_direction hv]
lemma s_same_side_vadd_right_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.s_same_side x (v +ᵥ y) ↔ s.s_same_side x y :=
by rw [s_same_side_comm, s_same_side_vadd_left_iff hv, s_same_side_comm]
lemma w_opp_side_vadd_left_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.w_opp_side (v +ᵥ x) y ↔ s.w_opp_side x y :=
begin
split,
{ rintro ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨-v +ᵥ p₁,
affine_subspace.vadd_mem_of_mem_direction (submodule.neg_mem _ hv) hp₁, p₂, hp₂, _⟩,
rwa [vsub_vadd_eq_vsub_sub, sub_neg_eq_add, add_comm, ←vadd_vsub_assoc] },
{ rintro ⟨p₁, hp₁, p₂, hp₂, h⟩,
refine ⟨v +ᵥ p₁,
affine_subspace.vadd_mem_of_mem_direction hv hp₁, p₂, hp₂, _⟩,
rwa vadd_vsub_vadd_cancel_left }
end
lemma w_opp_side_vadd_right_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.w_opp_side x (v +ᵥ y) ↔ s.w_opp_side x y :=
by rw [w_opp_side_comm, w_opp_side_vadd_left_iff hv, w_opp_side_comm]
lemma s_opp_side_vadd_left_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.s_opp_side (v +ᵥ x) y ↔ s.s_opp_side x y :=
by rw [s_opp_side, s_opp_side, w_opp_side_vadd_left_iff hv,
vadd_mem_iff_mem_of_mem_direction hv]
lemma s_opp_side_vadd_right_iff {s : affine_subspace R P} {x y : P} {v : V}
(hv : v ∈ s.direction) : s.s_opp_side x (v +ᵥ y) ↔ s.s_opp_side x y :=
by rw [s_opp_side_comm, s_opp_side_vadd_left_iff hv, s_opp_side_comm]
lemma w_same_side_smul_vsub_vadd_left {s : affine_subspace R P} {p₁ p₂ : P} (x : P)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : 0 ≤ t) : s.w_same_side (t • (x -ᵥ p₁) +ᵥ p₂) x :=
begin
refine ⟨p₂, hp₂, p₁, hp₁, _⟩,
rw vadd_vsub,
exact same_ray_nonneg_smul_left _ ht
end
lemma w_same_side_smul_vsub_vadd_right {s : affine_subspace R P} {p₁ p₂ : P} (x : P)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : 0 ≤ t) : s.w_same_side x (t • (x -ᵥ p₁) +ᵥ p₂) :=
(w_same_side_smul_vsub_vadd_left x hp₁ hp₂ ht).symm
lemma w_same_side_line_map_left {s : affine_subspace R P} {x : P} (y : P) (h : x ∈ s) {t : R}
(ht : 0 ≤ t) : s.w_same_side (line_map x y t) y :=
w_same_side_smul_vsub_vadd_left y h h ht
lemma w_same_side_line_map_right {s : affine_subspace R P} {x : P} (y : P) (h : x ∈ s) {t : R}
(ht : 0 ≤ t) : s.w_same_side y (line_map x y t) :=
(w_same_side_line_map_left y h ht).symm
lemma w_opp_side_smul_vsub_vadd_left {s : affine_subspace R P} {p₁ p₂ : P} (x : P)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : t ≤ 0) : s.w_opp_side (t • (x -ᵥ p₁) +ᵥ p₂) x :=
begin
refine ⟨p₂, hp₂, p₁, hp₁, _⟩,
rw [vadd_vsub, ←neg_neg t, neg_smul, ←smul_neg, neg_vsub_eq_vsub_rev],
exact same_ray_nonneg_smul_left _ (neg_nonneg.2 ht)
end
lemma w_opp_side_smul_vsub_vadd_right {s : affine_subspace R P} {p₁ p₂ : P} (x : P)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : t ≤ 0) : s.w_opp_side x (t • (x -ᵥ p₁) +ᵥ p₂) :=
(w_opp_side_smul_vsub_vadd_left x hp₁ hp₂ ht).symm
lemma w_opp_side_line_map_left {s : affine_subspace R P} {x : P} (y : P) (h : x ∈ s) {t : R}
(ht : t ≤ 0) : s.w_opp_side (line_map x y t) y :=
w_opp_side_smul_vsub_vadd_left y h h ht
lemma w_opp_side_line_map_right {s : affine_subspace R P} {x : P} (y : P) (h : x ∈ s) {t : R}
(ht : t ≤ 0) : s.w_opp_side y (line_map x y t) :=
(w_opp_side_line_map_left y h ht).symm
lemma _root_.wbtw.w_same_side₂₃ {s : affine_subspace R P} {x y z : P} (h : wbtw R x y z)
(hx : x ∈ s) : s.w_same_side y z :=
begin
rcases h with ⟨t, ⟨ht0, -⟩, rfl⟩,
exact w_same_side_line_map_left z hx ht0
end
lemma _root_.wbtw.w_same_side₃₂ {s : affine_subspace R P} {x y z : P} (h : wbtw R x y z)
(hx : x ∈ s) : s.w_same_side z y :=
(h.w_same_side₂₃ hx).symm
lemma _root_.wbtw.w_same_side₁₂ {s : affine_subspace R P} {x y z : P} (h : wbtw R x y z)
(hz : z ∈ s) : s.w_same_side x y :=
h.symm.w_same_side₃₂ hz
lemma _root_.wbtw.w_same_side₂₁ {s : affine_subspace R P} {x y z : P} (h : wbtw R x y z)
(hz : z ∈ s) : s.w_same_side y x :=
h.symm.w_same_side₂₃ hz
lemma _root_.wbtw.w_opp_side₁₃ {s : affine_subspace R P} {x y z : P} (h : wbtw R x y z)
(hy : y ∈ s) : s.w_opp_side x z :=
begin
rcases h with ⟨t, ⟨ht0, ht1⟩, rfl⟩,
refine ⟨_, hy, _, hy, _⟩,
rcases ht1.lt_or_eq with ht1' | rfl, swap, { simp },
rcases ht0.lt_or_eq with ht0' | rfl, swap, { simp },
refine or.inr (or.inr ⟨1 - t, t, sub_pos.2 ht1', ht0', _⟩),
simp_rw [line_map_apply, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub, ←neg_vsub_eq_vsub_rev z x,
vsub_self, zero_sub, ←neg_one_smul R (z -ᵥ x), ←add_smul, smul_neg, ←neg_smul,
smul_smul],
ring_nf
end
lemma _root_.wbtw.w_opp_side₃₁ {s : affine_subspace R P} {x y z : P} (h : wbtw R x y z)
(hy : y ∈ s) : s.w_opp_side z x :=
h.symm.w_opp_side₁₃ hy
end strict_ordered_comm_ring
section linear_ordered_field
variables [linear_ordered_field R] [add_comm_group V] [module R V] [add_torsor V P]
variables [add_comm_group V'] [module R V'] [add_torsor V' P']
include V
variables {R}
@[simp] lemma w_opp_side_self_iff {s : affine_subspace R P} {x : P} : s.w_opp_side x x ↔ x ∈ s :=
begin
split,
{ rintro ⟨p₁, hp₁, p₂, hp₂, h⟩,
obtain ⟨a, -, -, -, -, h₁, -⟩ := h.exists_eq_smul_add,
rw [add_comm, vsub_add_vsub_cancel, ←eq_vadd_iff_vsub_eq] at h₁,
rw h₁,
exact s.smul_vsub_vadd_mem a hp₂ hp₁ hp₁ },
{ exact λ h, ⟨x, h, x, h, same_ray.rfl⟩ }
end
lemma not_s_opp_side_self (s : affine_subspace R P) (x : P) : ¬s.s_opp_side x x :=
by simp [s_opp_side]
lemma w_same_side_iff_exists_left {s : affine_subspace R P} {x y p₁ : P} (h : p₁ ∈ s) :
s.w_same_side x y ↔ x ∈ s ∨ ∃ p₂ ∈ s, same_ray R (x -ᵥ p₁) (y -ᵥ p₂) :=
begin
split,
{ rintro ⟨p₁', hp₁', p₂', hp₂', h0 | h0 | ⟨r₁, r₂, hr₁, hr₂, hr⟩⟩,
{ rw vsub_eq_zero_iff_eq at h0,
rw h0,
exact or.inl hp₁' },
{ refine or.inr ⟨p₂', hp₂', _⟩,
rw h0,
exact same_ray.zero_right _ },
{ refine or.inr ⟨(r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂', s.smul_vsub_vadd_mem _ h hp₁' hp₂',
or.inr (or.inr ⟨r₁, r₂, hr₁, hr₂, _⟩)⟩,
rw [vsub_vadd_eq_vsub_sub, smul_sub, ←hr, smul_smul, mul_div_cancel' _ hr₂.ne.symm,
←smul_sub, vsub_sub_vsub_cancel_right] } },
{ rintro (h' | h'),
{ exact w_same_side_of_left_mem y h' },
{ exact ⟨p₁, h, h'⟩ } }
end
lemma w_same_side_iff_exists_right {s : affine_subspace R P} {x y p₂ : P} (h : p₂ ∈ s) :
s.w_same_side x y ↔ y ∈ s ∨ ∃ p₁ ∈ s, same_ray R (x -ᵥ p₁) (y -ᵥ p₂) :=
begin
rw [w_same_side_comm, w_same_side_iff_exists_left h],
simp_rw same_ray_comm
end
lemma s_same_side_iff_exists_left {s : affine_subspace R P} {x y p₁ : P} (h : p₁ ∈ s) :
s.s_same_side x y ↔ x ∉ s ∧ y ∉ s ∧ ∃ p₂ ∈ s, same_ray R (x -ᵥ p₁) (y -ᵥ p₂) :=
begin
rw [s_same_side, and_comm, w_same_side_iff_exists_left h, and_assoc, and.congr_right_iff],
intro hx,
rw or_iff_right hx
end
lemma s_same_side_iff_exists_right {s : affine_subspace R P} {x y p₂ : P} (h : p₂ ∈ s) :
s.s_same_side x y ↔ x ∉ s ∧ y ∉ s ∧ ∃ p₁ ∈ s, same_ray R (x -ᵥ p₁) (y -ᵥ p₂) :=
begin
rw [s_same_side_comm, s_same_side_iff_exists_left h, ←and_assoc, and_comm (y ∉ s), and_assoc],
simp_rw same_ray_comm
end
lemma w_opp_side_iff_exists_left {s : affine_subspace R P} {x y p₁ : P} (h : p₁ ∈ s) :
s.w_opp_side x y ↔ x ∈ s ∨ ∃ p₂ ∈ s, same_ray R (x -ᵥ p₁) (p₂ -ᵥ y) :=
begin
split,
{ rintro ⟨p₁', hp₁', p₂', hp₂', h0 | h0 | ⟨r₁, r₂, hr₁, hr₂, hr⟩⟩,
{ rw vsub_eq_zero_iff_eq at h0,
rw h0,
exact or.inl hp₁' },
{ refine or.inr ⟨p₂', hp₂', _⟩,
rw h0,
exact same_ray.zero_right _ },
{ refine or.inr ⟨(-r₁ / r₂) • (p₁ -ᵥ p₁') +ᵥ p₂', s.smul_vsub_vadd_mem _ h hp₁' hp₂',
or.inr (or.inr ⟨r₁, r₂, hr₁, hr₂, _⟩)⟩,
rw [vadd_vsub_assoc, smul_add, ←hr, smul_smul, neg_div, mul_neg,
mul_div_cancel' _ hr₂.ne.symm, neg_smul, neg_add_eq_sub, ←smul_sub,
vsub_sub_vsub_cancel_right] } },
{ rintro (h' | h'),
{ exact w_opp_side_of_left_mem y h' },
{ exact ⟨p₁, h, h'⟩ } }
end
lemma w_opp_side_iff_exists_right {s : affine_subspace R P} {x y p₂ : P} (h : p₂ ∈ s) :
s.w_opp_side x y ↔ y ∈ s ∨ ∃ p₁ ∈ s, same_ray R (x -ᵥ p₁) (p₂ -ᵥ y) :=
begin
rw [w_opp_side_comm, w_opp_side_iff_exists_left h],
split,
{ rintro (hy | ⟨p, hp, hr⟩), { exact or.inl hy },
refine or.inr ⟨p, hp, _⟩,
rwa [same_ray_comm, ←same_ray_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] },
{ rintro (hy | ⟨p, hp, hr⟩), { exact or.inl hy },
refine or.inr ⟨p, hp, _⟩,
rwa [same_ray_comm, ←same_ray_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] }
end
lemma s_opp_side_iff_exists_left {s : affine_subspace R P} {x y p₁ : P} (h : p₁ ∈ s) :
s.s_opp_side x y ↔ x ∉ s ∧ y ∉ s ∧ ∃ p₂ ∈ s, same_ray R (x -ᵥ p₁) (p₂ -ᵥ y) :=
begin
rw [s_opp_side, and_comm, w_opp_side_iff_exists_left h, and_assoc, and.congr_right_iff],
intro hx,
rw or_iff_right hx
end
lemma s_opp_side_iff_exists_right {s : affine_subspace R P} {x y p₂ : P} (h : p₂ ∈ s) :
s.s_opp_side x y ↔ x ∉ s ∧ y ∉ s ∧ ∃ p₁ ∈ s, same_ray R (x -ᵥ p₁) (p₂ -ᵥ y) :=
begin
rw [s_opp_side, and_comm, w_opp_side_iff_exists_right h, and_assoc, and.congr_right_iff,
and.congr_right_iff],
rintro hx hy,
rw or_iff_right hy
end
lemma w_same_side.trans {s : affine_subspace R P} {x y z : P} (hxy : s.w_same_side x y)
(hyz : s.w_same_side y z) (hy : y ∉ s) : s.w_same_side x z :=
begin
rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩,
rw [w_same_side_iff_exists_left hp₂, or_iff_right hy] at hyz,
rcases hyz with ⟨p₃, hp₃, hyz⟩,
refine ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩,
refine λ h, false.elim _,
rw vsub_eq_zero_iff_eq at h,
exact hy (h.symm ▸ hp₂)
end
lemma w_same_side.trans_s_same_side {s : affine_subspace R P} {x y z : P}
(hxy : s.w_same_side x y) (hyz : s.s_same_side y z) : s.w_same_side x z :=
hxy.trans hyz.1 hyz.2.1
lemma w_same_side.trans_w_opp_side {s : affine_subspace R P} {x y z : P} (hxy : s.w_same_side x y)
(hyz : s.w_opp_side y z) (hy : y ∉ s) : s.w_opp_side x z :=
begin
rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩,
rw [w_opp_side_iff_exists_left hp₂, or_iff_right hy] at hyz,
rcases hyz with ⟨p₃, hp₃, hyz⟩,
refine ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩,
refine λ h, false.elim _,
rw vsub_eq_zero_iff_eq at h,
exact hy (h.symm ▸ hp₂)
end
lemma w_same_side.trans_s_opp_side {s : affine_subspace R P} {x y z : P} (hxy : s.w_same_side x y)
(hyz : s.s_opp_side y z) : s.w_opp_side x z :=
hxy.trans_w_opp_side hyz.1 hyz.2.1
lemma s_same_side.trans_w_same_side {s : affine_subspace R P} {x y z : P}
(hxy : s.s_same_side x y) (hyz : s.w_same_side y z) : s.w_same_side x z :=
(hyz.symm.trans_s_same_side hxy.symm).symm
lemma s_same_side.trans {s : affine_subspace R P} {x y z : P} (hxy : s.s_same_side x y)
(hyz : s.s_same_side y z) : s.s_same_side x z :=
⟨hxy.w_same_side.trans_s_same_side hyz, hxy.2.1, hyz.2.2⟩
lemma s_same_side.trans_w_opp_side {s : affine_subspace R P} {x y z : P} (hxy : s.s_same_side x y)
(hyz : s.w_opp_side y z) : s.w_opp_side x z :=
hxy.w_same_side.trans_w_opp_side hyz hxy.2.2
lemma s_same_side.trans_s_opp_side {s : affine_subspace R P} {x y z : P} (hxy : s.s_same_side x y)
(hyz : s.s_opp_side y z) : s.s_opp_side x z :=
⟨hxy.trans_w_opp_side hyz.1, hxy.2.1, hyz.2.2⟩
lemma w_opp_side.trans_w_same_side {s : affine_subspace R P} {x y z : P} (hxy : s.w_opp_side x y)
(hyz : s.w_same_side y z) (hy : y ∉ s) : s.w_opp_side x z :=
(hyz.symm.trans_w_opp_side hxy.symm hy).symm
lemma w_opp_side.trans_s_same_side {s : affine_subspace R P} {x y z : P} (hxy : s.w_opp_side x y)
(hyz : s.s_same_side y z) : s.w_opp_side x z :=
hxy.trans_w_same_side hyz.1 hyz.2.1
lemma w_opp_side.trans {s : affine_subspace R P} {x y z : P} (hxy : s.w_opp_side x y)
(hyz : s.w_opp_side y z) (hy : y ∉ s) : s.w_same_side x z :=
begin
rcases hxy with ⟨p₁, hp₁, p₂, hp₂, hxy⟩,
rw [w_opp_side_iff_exists_left hp₂, or_iff_right hy] at hyz,
rcases hyz with ⟨p₃, hp₃, hyz⟩,
rw [←same_ray_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] at hyz,
refine ⟨p₁, hp₁, p₃, hp₃, hxy.trans hyz _⟩,
refine λ h, false.elim _,
rw vsub_eq_zero_iff_eq at h,
exact hy (h ▸ hp₂)
end
lemma w_opp_side.trans_s_opp_side {s : affine_subspace R P} {x y z : P} (hxy : s.w_opp_side x y)
(hyz : s.s_opp_side y z) : s.w_same_side x z :=
hxy.trans hyz.1 hyz.2.1
lemma s_opp_side.trans_w_same_side {s : affine_subspace R P} {x y z : P} (hxy : s.s_opp_side x y)
(hyz : s.w_same_side y z) : s.w_opp_side x z :=
(hyz.symm.trans_s_opp_side hxy.symm).symm
lemma s_opp_side.trans_s_same_side {s : affine_subspace R P} {x y z : P} (hxy : s.s_opp_side x y)
(hyz : s.s_same_side y z) : s.s_opp_side x z :=
(hyz.symm.trans_s_opp_side hxy.symm).symm
lemma s_opp_side.trans_w_opp_side {s : affine_subspace R P} {x y z : P} (hxy : s.s_opp_side x y)
(hyz : s.w_opp_side y z) : s.w_same_side x z :=
(hyz.symm.trans_s_opp_side hxy.symm).symm
lemma s_opp_side.trans {s : affine_subspace R P} {x y z : P} (hxy : s.s_opp_side x y)
(hyz : s.s_opp_side y z) : s.s_same_side x z :=
⟨hxy.trans_w_opp_side hyz.1, hxy.2.1, hyz.2.2⟩
lemma w_same_side_and_w_opp_side_iff {s : affine_subspace R P} {x y : P} :
(s.w_same_side x y ∧ s.w_opp_side x y) ↔ (x ∈ s ∨ y ∈ s) :=
begin
split,
{ rintro ⟨hs, ho⟩,
rw w_opp_side_comm at ho,
by_contra h,
rw not_or_distrib at h,
exact h.1 (w_opp_side_self_iff.1 (hs.trans_w_opp_side ho h.2)) },
{ rintro (h | h),
{ exact ⟨w_same_side_of_left_mem y h, w_opp_side_of_left_mem y h⟩ },
{ exact ⟨w_same_side_of_right_mem x h, w_opp_side_of_right_mem x h⟩ } }
end
lemma w_same_side.not_s_opp_side {s : affine_subspace R P} {x y : P} (h : s.w_same_side x y) :
¬s.s_opp_side x y :=
begin
intro ho,
have hxy := w_same_side_and_w_opp_side_iff.1 ⟨h, ho.1⟩,
rcases hxy with hx | hy,
{ exact ho.2.1 hx },
{ exact ho.2.2 hy }
end
lemma s_same_side.not_w_opp_side {s : affine_subspace R P} {x y : P} (h : s.s_same_side x y) :
¬s.w_opp_side x y :=
begin
intro ho,
have hxy := w_same_side_and_w_opp_side_iff.1 ⟨h.1, ho⟩,
rcases hxy with hx | hy,
{ exact h.2.1 hx },
{ exact h.2.2 hy }
end
lemma s_same_side.not_s_opp_side {s : affine_subspace R P} {x y : P} (h : s.s_same_side x y) :
¬s.s_opp_side x y :=
λ ho, h.not_w_opp_side ho.1
lemma w_opp_side.not_s_same_side {s : affine_subspace R P} {x y : P} (h : s.w_opp_side x y) :
¬s.s_same_side x y :=
λ hs, hs.not_w_opp_side h
lemma s_opp_side.not_w_same_side {s : affine_subspace R P} {x y : P} (h : s.s_opp_side x y) :
¬s.w_same_side x y :=
λ hs, hs.not_s_opp_side h
lemma s_opp_side.not_s_same_side {s : affine_subspace R P} {x y : P} (h : s.s_opp_side x y) :
¬s.s_same_side x y :=
λ hs, h.not_w_same_side hs.1
lemma w_opp_side_iff_exists_wbtw {s : affine_subspace R P} {x y : P} :
s.w_opp_side x y ↔ ∃ p ∈ s, wbtw R x p y :=
begin
refine ⟨λ h, _, λ ⟨p, hp, h⟩, h.w_opp_side₁₃ hp⟩,
rcases h with ⟨p₁, hp₁, p₂, hp₂, (h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩)⟩,
{ rw vsub_eq_zero_iff_eq at h,
rw h,
exact ⟨p₁, hp₁, wbtw_self_left _ _ _⟩ },
{ rw vsub_eq_zero_iff_eq at h,
rw ←h,
exact ⟨p₂, hp₂, wbtw_self_right _ _ _⟩ },
{ refine ⟨line_map x y (r₂ / (r₁ + r₂)), _, _⟩,
{ rw [line_map_apply, ←vsub_vadd x p₁, ←vsub_vadd y p₂, vsub_vadd_eq_vsub_sub,
vadd_vsub_assoc, ←vadd_assoc, vadd_eq_add],
convert s.smul_vsub_vadd_mem (r₂ / (r₁ + r₂)) hp₂ hp₁ hp₁,
rw [add_comm (y -ᵥ p₂), smul_sub, smul_add, add_sub_assoc, add_assoc, add_right_eq_self,
div_eq_inv_mul, ←neg_vsub_eq_vsub_rev, smul_neg, ←smul_smul, ←h, smul_smul,
←neg_smul, ←sub_smul, ←div_eq_inv_mul, ←div_eq_inv_mul, ←neg_div, ←sub_div,
sub_eq_add_neg, ←neg_add, neg_div, div_self (left.add_pos hr₁ hr₂).ne.symm,
neg_one_smul, neg_add_self] },
{ exact set.mem_image_of_mem _ ⟨div_nonneg hr₂.le (left.add_pos hr₁ hr₂).le,
div_le_one_of_le (le_add_of_nonneg_left hr₁.le)
(left.add_pos hr₁ hr₂).le⟩ } }
end
lemma s_opp_side.exists_sbtw {s : affine_subspace R P} {x y : P} (h : s.s_opp_side x y) :
∃ p ∈ s, sbtw R x p y :=
begin
obtain ⟨p, hp, hw⟩ := w_opp_side_iff_exists_wbtw.1 h.w_opp_side,
refine ⟨p, hp, hw, _, _⟩,
{ rintro rfl,
exact h.2.1 hp },
{ rintro rfl,
exact h.2.2 hp },
end
lemma _root_.sbtw.s_opp_side_of_not_mem_of_mem {s : affine_subspace R P} {x y z : P}
(h : sbtw R x y z) (hx : x ∉ s) (hy : y ∈ s) : s.s_opp_side x z :=
begin
refine ⟨h.wbtw.w_opp_side₁₃ hy, hx, λ hz, hx _⟩,
rcases h with ⟨⟨t, ⟨ht0, ht1⟩, rfl⟩, hyx, hyz⟩,
rw line_map_apply at hy,
have ht : t ≠ 1, { rintro rfl, simpa [line_map_apply] using hyz },
have hy' := vsub_mem_direction hy hz,
rw [vadd_vsub_assoc, ←neg_vsub_eq_vsub_rev z, ←neg_one_smul R (z -ᵥ x), ←add_smul,
←sub_eq_add_neg, s.direction.smul_mem_iff (sub_ne_zero_of_ne ht)] at hy',
rwa vadd_mem_iff_mem_of_mem_direction (submodule.smul_mem _ _ hy') at hy
end
lemma s_same_side_smul_vsub_vadd_left {s : affine_subspace R P} {x p₁ p₂ : P} (hx : x ∉ s)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : 0 < t) : s.s_same_side (t • (x -ᵥ p₁) +ᵥ p₂) x :=
begin
refine ⟨w_same_side_smul_vsub_vadd_left x hp₁ hp₂ ht.le, λ h, hx _, hx⟩,
rwa [vadd_mem_iff_mem_direction _ hp₂, s.direction.smul_mem_iff ht.ne.symm,
vsub_right_mem_direction_iff_mem hp₁] at h
end
lemma s_same_side_smul_vsub_vadd_right {s : affine_subspace R P} {x p₁ p₂ : P} (hx : x ∉ s)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : 0 < t) : s.s_same_side x (t • (x -ᵥ p₁) +ᵥ p₂) :=
(s_same_side_smul_vsub_vadd_left hx hp₁ hp₂ ht).symm
lemma s_same_side_line_map_left {s : affine_subspace R P} {x y : P} (hx : x ∈ s) (hy : y ∉ s)
{t : R} (ht : 0 < t) : s.s_same_side (line_map x y t) y :=
s_same_side_smul_vsub_vadd_left hy hx hx ht
lemma s_same_side_line_map_right {s : affine_subspace R P} {x y : P} (hx : x ∈ s) (hy : y ∉ s)
{t : R} (ht : 0 < t) : s.s_same_side y (line_map x y t) :=
(s_same_side_line_map_left hx hy ht).symm
lemma s_opp_side_smul_vsub_vadd_left {s : affine_subspace R P} {x p₁ p₂ : P} (hx : x ∉ s)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : t < 0) : s.s_opp_side (t • (x -ᵥ p₁) +ᵥ p₂) x :=
begin
refine ⟨w_opp_side_smul_vsub_vadd_left x hp₁ hp₂ ht.le, λ h, hx _, hx⟩,
rwa [vadd_mem_iff_mem_direction _ hp₂, s.direction.smul_mem_iff ht.ne,
vsub_right_mem_direction_iff_mem hp₁] at h
end
lemma s_opp_side_smul_vsub_vadd_right {s : affine_subspace R P} {x p₁ p₂ : P} (hx : x ∉ s)
(hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) {t : R} (ht : t < 0) : s.s_opp_side x (t • (x -ᵥ p₁) +ᵥ p₂) :=
(s_opp_side_smul_vsub_vadd_left hx hp₁ hp₂ ht).symm
lemma s_opp_side_line_map_left {s : affine_subspace R P} {x y : P} (hx : x ∈ s) (hy : y ∉ s)
{t : R} (ht : t < 0) : s.s_opp_side (line_map x y t) y :=
s_opp_side_smul_vsub_vadd_left hy hx hx ht
lemma s_opp_side_line_map_right {s : affine_subspace R P} {x y : P} (hx : x ∈ s) (hy : y ∉ s)
{t : R} (ht : t < 0) : s.s_opp_side y (line_map x y t) :=
(s_opp_side_line_map_left hx hy ht).symm
lemma set_of_w_same_side_eq_image2 {s : affine_subspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) :
{y | s.w_same_side x y} = set.image2 (λ (t : R) q, t • (x -ᵥ p) +ᵥ q) (set.Ici 0) s :=
begin
ext y,
simp_rw [set.mem_set_of, set.mem_image2, set.mem_Ici, mem_coe],
split,
{ rw [w_same_side_iff_exists_left hp, or_iff_right hx],
rintro ⟨p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩,
{ rw vsub_eq_zero_iff_eq at h,
exact false.elim (hx (h.symm ▸ hp)) },
{ rw vsub_eq_zero_iff_eq at h,
refine ⟨0, p₂, le_refl _, hp₂, _⟩,
simp [h] },
{ refine ⟨r₁ / r₂, p₂, (div_pos hr₁ hr₂).le, hp₂, _⟩,
rw [div_eq_inv_mul, ←smul_smul, h, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul,
vsub_vadd] } },
{ rintro ⟨t, p', ht, hp', rfl⟩,
exact w_same_side_smul_vsub_vadd_right x hp hp' ht }
end
lemma set_of_s_same_side_eq_image2 {s : affine_subspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) :
{y | s.s_same_side x y} = set.image2 (λ (t : R) q, t • (x -ᵥ p) +ᵥ q) (set.Ioi 0) s :=
begin
ext y,
simp_rw [set.mem_set_of, set.mem_image2, set.mem_Ioi, mem_coe],
split,
{ rw s_same_side_iff_exists_left hp,
rintro ⟨-, hy, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩,
{ rw vsub_eq_zero_iff_eq at h,
exact false.elim (hx (h.symm ▸ hp)) },
{ rw vsub_eq_zero_iff_eq at h,
exact false.elim (hy (h.symm ▸ hp₂)) },
{ refine ⟨r₁ / r₂, p₂, div_pos hr₁ hr₂, hp₂, _⟩,
rw [div_eq_inv_mul, ←smul_smul, h, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul,
vsub_vadd] } },
{ rintro ⟨t, p', ht, hp', rfl⟩,
exact s_same_side_smul_vsub_vadd_right hx hp hp' ht }
end
lemma set_of_w_opp_side_eq_image2 {s : affine_subspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) :
{y | s.w_opp_side x y} = set.image2 (λ (t : R) q, t • (x -ᵥ p) +ᵥ q) (set.Iic 0) s :=
begin
ext y,
simp_rw [set.mem_set_of, set.mem_image2, set.mem_Iic, mem_coe],
split,
{ rw [w_opp_side_iff_exists_left hp, or_iff_right hx],
rintro ⟨p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩,
{ rw vsub_eq_zero_iff_eq at h,
exact false.elim (hx (h.symm ▸ hp)) },
{ rw vsub_eq_zero_iff_eq at h,
refine ⟨0, p₂, le_refl _, hp₂, _⟩,
simp [h] },
{ refine ⟨-r₁ / r₂, p₂, (div_neg_of_neg_of_pos (left.neg_neg_iff.2 hr₁) hr₂).le, hp₂, _⟩,
rw [div_eq_inv_mul, ←smul_smul, neg_smul, h, smul_neg, smul_smul,
inv_mul_cancel hr₂.ne.symm, one_smul, neg_vsub_eq_vsub_rev, vsub_vadd] } },
{ rintro ⟨t, p', ht, hp', rfl⟩,
exact w_opp_side_smul_vsub_vadd_right x hp hp' ht }
end
lemma set_of_s_opp_side_eq_image2 {s : affine_subspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) :
{y | s.s_opp_side x y} = set.image2 (λ (t : R) q, t • (x -ᵥ p) +ᵥ q) (set.Iio 0) s :=
begin
ext y,
simp_rw [set.mem_set_of, set.mem_image2, set.mem_Iio, mem_coe],
split,
{ rw s_opp_side_iff_exists_left hp,
rintro ⟨-, hy, p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩,
{ rw vsub_eq_zero_iff_eq at h,
exact false.elim (hx (h.symm ▸ hp)) },
{ rw vsub_eq_zero_iff_eq at h,
exact false.elim (hy (h ▸ hp₂)) },
{ refine ⟨-r₁ / r₂, p₂, div_neg_of_neg_of_pos (left.neg_neg_iff.2 hr₁) hr₂, hp₂, _⟩,
rw [div_eq_inv_mul, ←smul_smul, neg_smul, h, smul_neg, smul_smul,
inv_mul_cancel hr₂.ne.symm, one_smul, neg_vsub_eq_vsub_rev, vsub_vadd] } },
{ rintro ⟨t, p', ht, hp', rfl⟩,
exact s_opp_side_smul_vsub_vadd_right hx hp hp' ht }
end
lemma w_opp_side_point_reflection {s : affine_subspace R P} {x : P} (y : P) (hx : x ∈ s) :
s.w_opp_side y (point_reflection R x y) :=
(wbtw_point_reflection R _ _).w_opp_side₁₃ hx
lemma s_opp_side_point_reflection {s : affine_subspace R P} {x y : P} (hx : x ∈ s) (hy : y ∉ s) :
s.s_opp_side y (point_reflection R x y) :=
begin
refine (sbtw_point_reflection_of_ne R (λ h, hy _)).s_opp_side_of_not_mem_of_mem hy hx,
rwa ←h
end
end linear_ordered_field
section normed
variables [seminormed_add_comm_group V] [normed_space ℝ V] [pseudo_metric_space P]
variables [normed_add_torsor V P]
include V
lemma is_connected_set_of_w_same_side {s : affine_subspace ℝ P} (x : P)
(h : (s : set P).nonempty) : is_connected {y | s.w_same_side x y} :=
begin
obtain ⟨p, hp⟩ := h,
haveI : nonempty s := ⟨⟨p, hp⟩⟩,
by_cases hx : x ∈ s,
{ convert is_connected_univ,
{ simp [w_same_side_of_left_mem, hx] },
{ exact add_torsor.connected_space V P } },
{ rw [set_of_w_same_side_eq_image2 hx hp, ←set.image_prod],
refine (is_connected_Ici.prod (is_connected_iff_connected_space.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuous_on,
convert add_torsor.connected_space s.direction s }
end
lemma is_preconnected_set_of_w_same_side (s : affine_subspace ℝ P) (x : P) :
is_preconnected {y | s.w_same_side x y} :=
begin
rcases set.eq_empty_or_nonempty (s : set P) with h | h,
{ convert is_preconnected_empty,
rw coe_eq_bot_iff at h,
simp only [h, not_w_same_side_bot],
refl },
{ exact (is_connected_set_of_w_same_side x h).is_preconnected }
end
lemma is_connected_set_of_s_same_side {s : affine_subspace ℝ P} {x : P} (hx : x ∉ s)
(h : (s : set P).nonempty) : is_connected {y | s.s_same_side x y} :=
begin
obtain ⟨p, hp⟩ := h,
haveI : nonempty s := ⟨⟨p, hp⟩⟩,
rw [set_of_s_same_side_eq_image2 hx hp, ←set.image_prod],
refine (is_connected_Ioi.prod (is_connected_iff_connected_space.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuous_on,
convert add_torsor.connected_space s.direction s
end
lemma is_preconnected_set_of_s_same_side (s : affine_subspace ℝ P) (x : P) :
is_preconnected {y | s.s_same_side x y} :=
begin
rcases set.eq_empty_or_nonempty (s : set P) with h | h,
{ convert is_preconnected_empty,
rw coe_eq_bot_iff at h,
simp only [h, not_s_same_side_bot],
refl },
{ by_cases hx : x ∈ s,
{ convert is_preconnected_empty,
simp only [hx, s_same_side, not_true, false_and, and_false],
refl },
{ exact (is_connected_set_of_s_same_side hx h).is_preconnected } }
end
lemma is_connected_set_of_w_opp_side {s : affine_subspace ℝ P} (x : P)
(h : (s : set P).nonempty) : is_connected {y | s.w_opp_side x y} :=
begin
obtain ⟨p, hp⟩ := h,
haveI : nonempty s := ⟨⟨p, hp⟩⟩,
by_cases hx : x ∈ s,
{ convert is_connected_univ,
{ simp [w_opp_side_of_left_mem, hx] },
{ exact add_torsor.connected_space V P } },
{ rw [set_of_w_opp_side_eq_image2 hx hp, ←set.image_prod],
refine (is_connected_Iic.prod (is_connected_iff_connected_space.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuous_on,
convert add_torsor.connected_space s.direction s }
end
lemma is_preconnected_set_of_w_opp_side (s : affine_subspace ℝ P) (x : P) :
is_preconnected {y | s.w_opp_side x y} :=
begin
rcases set.eq_empty_or_nonempty (s : set P) with h | h,
{ convert is_preconnected_empty,
rw coe_eq_bot_iff at h,
simp only [h, not_w_opp_side_bot],
refl },
{ exact (is_connected_set_of_w_opp_side x h).is_preconnected }
end
lemma is_connected_set_of_s_opp_side {s : affine_subspace ℝ P} {x : P} (hx : x ∉ s)
(h : (s : set P).nonempty) : is_connected {y | s.s_opp_side x y} :=
begin
obtain ⟨p, hp⟩ := h,
haveI : nonempty s := ⟨⟨p, hp⟩⟩,
rw [set_of_s_opp_side_eq_image2 hx hp, ←set.image_prod],
refine (is_connected_Iio.prod (is_connected_iff_connected_space.2 _)).image _
((continuous_fst.smul continuous_const).vadd continuous_snd).continuous_on,
convert add_torsor.connected_space s.direction s
end
lemma is_preconnected_set_of_s_opp_side (s : affine_subspace ℝ P) (x : P) :
is_preconnected {y | s.s_opp_side x y} :=
begin
rcases set.eq_empty_or_nonempty (s : set P) with h | h,
{ convert is_preconnected_empty,
rw coe_eq_bot_iff at h,
simp only [h, not_s_opp_side_bot],
refl },
{ by_cases hx : x ∈ s,
{ convert is_preconnected_empty,
simp only [hx, s_opp_side, not_true, false_and, and_false],
refl },
{ exact (is_connected_set_of_s_opp_side hx h).is_preconnected } }
end
end normed
end affine_subspace
|
04600ad456c5028ad4a66f84e4c4914efdc0dbb0
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/tactic/lint/default.lean
|
e9af66f3150b78a1e242a7050606c867e26c240a
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,115
|
lean
|
/-
Copyright (c) 2020 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Robert Y. Lewis, Gabriel Ebner
-/
import algebra.group.to_additive
import tactic.lint.frontend
import tactic.lint.misc
import tactic.lint.simp
import tactic.lint.type_classes
/-!
# Default linters
This file defines the list of linters that are run in mathlib CI. Not all linters are considered
"default" and run that way. A `linter` is marked as default if it is tagged with the `linter`
attribute.
-/
open tactic
/--
User commands to spot common mistakes in the code
* `#lint`: check all declarations in the current file
* `#lint_mathlib`: check all declarations in mathlib (so excluding core or other projects,
and also excluding the current file)
* `#lint_all`: check all declarations in the environment (the current file and all
imported files)
The following linters are run by default:
1. `unused_arguments` checks for unused arguments in declarations.
2. `def_lemma` checks whether a declaration is incorrectly marked as a def/lemma.
3. `dup_namespce` checks whether a namespace is duplicated in the name of a declaration.
4. `ge_or_gt` checks whether ≥/> is used in the declaration.
5. `instance_priority` checks that instances that always apply have priority below default.
6. `doc_blame` checks for missing doc strings on definitions and constants.
7. `has_nonempty_instance` checks whether every type has an associated `inhabited`, `unique`
or `nonempty` instance.
8. `impossible_instance` checks for instances that can never fire.
9. `incorrect_type_class_argument` checks for arguments in [square brackets] that are not classes.
10. `dangerous_instance` checks for instances that generate type-class problems with metavariables.
11. `fails_quickly` tests that type-class inference ends (relatively) quickly when applied to
variables.
12. `has_coe_variable` tests that there are no instances of type `has_coe α t` for a variable `α`.
13. `inhabited_nonempty` checks for `inhabited` instance arguments that should be changed to
`nonempty`.
14. `simp_nf` checks that the left-hand side of simp lemmas is in simp-normal form.
15. `simp_var_head` checks that there are no variables as head symbol of left-hand sides of
simp lemmas.
16. `simp_comm` checks that no commutativity lemmas (such as `add_comm`) are marked simp.
17. `decidable_classical` checks for `decidable` hypotheses that are used in the proof of a
proposition but not in the statement, and could be removed using `classical`.
Theorems in the `decidable` namespace are exempt.
18. `has_coe_to_fun` checks that every type that coerces to a function has a direct
`has_coe_to_fun` instance.
19. `check_type` checks that the statement of a declaration is well-typed.
20. `check_univs` checks that there are no bad `max u v` universe levels.
21. `syn_taut` checks that declarations are not syntactic tautologies.
22. `check_reducibility` checks whether non-instances with a class as type are reducible.
23. `unprintable_interactive` checks that interactive tactics have parser documentation.
24. `to_additive_doc` checks if additive versions of lemmas have documentation.
The following linters are not run by default:
1. `doc_blame_thm`, checks for missing doc strings on lemmas and theorems.
2. `explicit_vars_of_iff` checks if there are explicit variables used on both sides of an iff.
The command `#list_linters` prints a list of the names of all available linters.
You can append a `*` to any command (e.g. `#lint_mathlib*`) to omit the slow tests (4).
You can append a `-` to any command (e.g. `#lint_mathlib-`) to run a silent lint
that suppresses the output if all checks pass.
A silent lint will fail if any test fails.
You can append a `+` to any command (e.g. `#lint_mathlib+`) to run a verbose lint
that reports the result of each linter, including the successes.
You can append a sequence of linter names to any command to run extra tests, in addition to the
default ones. e.g. `#lint doc_blame_thm` will run all default tests and `doc_blame_thm`.
You can append `only name1 name2 ...` to any command to run a subset of linters, e.g.
`#lint only unused_arguments`
You can add custom linters by defining a term of type `linter` in the `linter` namespace.
A linter defined with the name `linter.my_new_check` can be run with `#lint my_new_check`
or `lint only my_new_check`.
If you add the attribute `@[linter]` to `linter.my_new_check` it will run by default.
Adding the attribute `@[nolint doc_blame unused_arguments]` to a declaration
omits it from only the specified linter checks.
-/
add_tactic_doc
{ name := "linting commands",
category := doc_category.cmd,
decl_names := [`lint_cmd, `lint_mathlib_cmd, `lint_all_cmd, `list_linters],
tags := ["linting"] }
/-- The default linters used in mathlib CI. -/
meta def mathlib_linters : list name := by do
ls ← get_checks tt [] ff,
let ls := ls.map (λ ⟨n, _⟩, `linter ++ n),
exact (reflect ls)
|
30bbbce55f43056bcd584790fd80f71929d73ded
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/analysis/calculus/mean_value.lean
|
bdc129e380f8d47ab6efbf0d750fce10969d392e
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 53,691
|
lean
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Yury Kudryashov
-/
import analysis.calculus.local_extr
import analysis.convex.topology
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x ≤ B x` or
`∥f x∥ ≤ B x` from upper estimates on `f'` or `∥f'∥`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `∥f x∥ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `ℝ`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `∥f x - f a∥ ≤ C * ∥x - a∥`; several versions deal with
right derivative and derivative within `[a, b]` (`has_deriv_within_at` or `deriv_within`).
* `convex.is_const_of_fderiv_within_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_has_deriv_at_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_has_deriv_at_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `convex.image_sub_lt_mul_sub_of_deriv_lt`, `convex.mul_sub_lt_image_sub_of_lt_deriv`,
`convex.image_sub_le_mul_sub_of_deriv_le`, `convex.mul_sub_le_image_sub_of_le_deriv`,
if `∀ x, C (</≤/>/≥) (f' x)`, then `C * (y - x) (</≤/>/≥) (f y - f x)` whenever `x < y`.
* `convex.mono_of_deriv_nonneg`, `convex.antimono_of_deriv_nonpos`,
`convex.strict_mono_of_deriv_pos`, `convex.strict_antimono_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/monotonically decreasing/strictly monotone/strictly monotonically
decreasing.
* `convex_on_of_deriv_mono`, `convex_on_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `strict_fderiv_of_cont_diff` : a C^1 function over the reals is strictly differentiable. (This
is a corollary of the mean value inequality.)
-/
variables {E : Type*} [normed_group E] [normed_space ℝ E]
{F : Type*} [normed_group F] [normed_space ℝ F]
open metric set asymptotics continuous_linear_map filter
open_locale classical topological_space nnreal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≤ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≤ B x` everywhere on `[a, b]`. -/
lemma image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : ℝ → ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
-- `hf'` actually says `liminf (z - x)⁻¹ * (f z - f x) ≤ f' x`
(hf' : ∀ x ∈ Ico a b, ∀ r, f' x < r →
∃ᶠ z in 𝓝[Ioi x] x, (z - x)⁻¹ * (f z - f x) < r)
{B B' : ℝ → ℝ} (ha : f a ≤ B a) (hB : continuous_on B (Icc a b))
(hB' : ∀ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ioi x) x)
(bound : ∀ x ∈ Ico a b, f x = B x → f' x < B' x) :
∀ ⦃x⦄, x ∈ Icc a b → f x ≤ B x :=
begin
change Icc a b ⊆ {x | f x ≤ B x},
set s := {x | f x ≤ B x} ∩ Icc a b,
have A : continuous_on (λ x, (f x, B x)) (Icc a b), from hf.prod hB,
have : is_closed s,
{ simp only [s, inter_comm],
exact A.preimage_closed_of_closed is_closed_Icc order_closed_topology.is_closed_le' },
apply this.Icc_subset_of_forall_exists_gt ha,
rintros x ⟨hxB, xab⟩ y hy,
change f x ≤ B x at hxB,
cases lt_or_eq_of_le hxB with hxB hxB,
{ -- If `f x < B x`, then all we need is continuity of both sides
apply @nonempty_of_mem_sets _ (𝓝[Ioi x] x),
refine inter_mem_sets _ (Ioc_mem_nhds_within_Ioi ⟨le_refl x, hy⟩),
have : ∀ᶠ x in 𝓝[Icc a b] x, f x < B x,
from A x (Ico_subset_Icc_self xab)
(mem_nhds_sets (is_open_lt continuous_fst continuous_snd) hxB),
have : ∀ᶠ x in 𝓝[Ioi x] x, f x < B x,
from nhds_within_le_of_mem (Icc_mem_nhds_within_Ioi xab) this,
refine mem_sets_of_superset this (set_of_subset_set_of.2 $ λ y, le_of_lt) },
{ rcases dense (bound x xab hxB) with ⟨r, hfr, hrB⟩,
specialize hf' x xab r hfr,
have HB : ∀ᶠ z in 𝓝[Ioi x] x, r < (z - x)⁻¹ * (B z - B x),
from (has_deriv_within_at_iff_tendsto_slope' $ lt_irrefl x).1 (hB' x xab)
(mem_nhds_sets is_open_Ioi hrB),
obtain ⟨z, ⟨hfz, hzB⟩, hz⟩ :
∃ z, ((z - x)⁻¹ * (f z - f x) < r ∧ r < (z - x)⁻¹ * (B z - B x)) ∧ z ∈ Ioc x y,
from ((hf'.and_eventually HB).and_eventually
(Ioc_mem_nhds_within_Ioi ⟨le_refl _, hy⟩)).exists,
have := le_of_lt (lt_trans hfz hzB),
refine ⟨z, _, hz⟩,
rw [mul_le_mul_left (inv_pos.2 $ sub_pos.2 hz.1), hxB, sub_le_sub_iff_right] at this,
exact this }
end
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≤ B a`;
* `B` has derivative `B'` everywhere on `ℝ`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≤ B x` everywhere on `[a, b]`. -/
lemma image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : ℝ → ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
-- `hf'` actually says `liminf (z - x)⁻¹ * (f z - f x) ≤ f' x`
(hf' : ∀ x ∈ Ico a b, ∀ r, f' x < r →
∃ᶠ z in 𝓝[Ioi x] x, (z - x)⁻¹ * (f z - f x) < r)
{B B' : ℝ → ℝ} (ha : f a ≤ B a) (hB : ∀ x, has_deriv_at B (B' x) x)
(bound : ∀ x ∈ Ico a b, f x = B x → f' x < B' x) :
∀ ⦃x⦄, x ∈ Icc a b → f x ≤ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(λ x hx, (hB x).continuous_at.continuous_within_at)
(λ x hx, (hB x).has_deriv_within_at) bound
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≤ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x ≤ B x` everywhere on `[a, b]`. -/
lemma image_le_of_liminf_slope_right_le_deriv_boundary {f : ℝ → ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
{B B' : ℝ → ℝ} (ha : f a ≤ B a) (hB : continuous_on B (Icc a b))
(hB' : ∀ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ioi x) x)
-- `bound` actually says `liminf (z - x)⁻¹ * (f z - f x) ≤ B' x`
(bound : ∀ x ∈ Ico a b, ∀ r, B' x < r →
∃ᶠ z in 𝓝[Ioi x] x, (z - x)⁻¹ * (f z - f x) < r) :
∀ ⦃x⦄, x ∈ Icc a b → f x ≤ B x :=
begin
have Hr : ∀ x ∈ Icc a b, ∀ r ∈ Ioi (0:ℝ), f x ≤ B x + r * (x - a),
{ intros x hx r hr,
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound,
{ rwa [sub_self, mul_zero, add_zero] },
{ exact hB.add (continuous_on_const.mul
(continuous_id.continuous_on.sub continuous_on_const)) },
{ assume x hx,
exact (hB' x hx).add (((has_deriv_within_at_id x (Ioi x)).sub_const a).const_mul r) },
{ assume x hx _,
rw [mul_one],
exact (lt_add_iff_pos_right _).2 hr },
exact hx },
assume x hx,
have : continuous_within_at (λ r, B x + r * (x - a)) (Ioi 0) 0,
from continuous_within_at_const.add (continuous_within_at_id.mul continuous_within_at_const),
convert continuous_within_at_const.closure_le _ this (Hr x hx); simp [closure_Ioi]
end
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≤ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≤ B x` everywhere on `[a, b]`. -/
lemma image_le_of_deriv_right_lt_deriv_boundary' {f f' : ℝ → ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
{B B' : ℝ → ℝ} (ha : f a ≤ B a) (hB : continuous_on B (Icc a b))
(hB' : ∀ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ioi x) x)
(bound : ∀ x ∈ Ico a b, f x = B x → f' x < B' x) :
∀ ⦃x⦄, x ∈ Icc a b → f x ≤ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(λ x hx r hr, (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≤ B a`;
* `B` has derivative `B'` everywhere on `ℝ`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≤ B x` everywhere on `[a, b]`. -/
lemma image_le_of_deriv_right_lt_deriv_boundary {f f' : ℝ → ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
{B B' : ℝ → ℝ} (ha : f a ≤ B a) (hB : ∀ x, has_deriv_at B (B' x) x)
(bound : ∀ x ∈ Ico a b, f x = B x → f' x < B' x) :
∀ ⦃x⦄, x ∈ Icc a b → f x ≤ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(λ x hx, (hB x).continuous_at.continuous_within_at)
(λ x hx, (hB x).has_deriv_within_at) bound
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≤ B a`;
* `B` has derivative `B'` everywhere on `ℝ`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x ≤ B' x` on `[a, b)`.
Then `f x ≤ B x` everywhere on `[a, b]`. -/
lemma image_le_of_deriv_right_le_deriv_boundary {f f' : ℝ → ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
{B B' : ℝ → ℝ} (ha : f a ≤ B a) (hB : continuous_on B (Icc a b))
(hB' : ∀ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ioi x) x)
(bound : ∀ x ∈ Ico a b, f' x ≤ B' x) :
∀ ⦃x⦄, x ∈ Icc a b → f x ≤ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' $
assume x hx r hr, (hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
/-! ### Vector-valued functions `f : ℝ → E` -/
section
variables {f : ℝ → E} {a b : ℝ}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `∥f a∥ ≤ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(∥f z∥ - ∥f x∥) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `∥f x∥ = B x`.
Then `∥f x∥ ≤ B x` everywhere on `[a, b]`. -/
lemma image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*} [normed_group E]
{f : ℝ → E} {f' : ℝ → ℝ} (hf : continuous_on f (Icc a b))
-- `hf'` actually says `liminf ∥z - x∥⁻¹ * (∥f z∥ - ∥f x∥) ≤ f' x`
(hf' : ∀ x ∈ Ico a b, ∀ r, f' x < r →
∃ᶠ z in 𝓝[Ioi x] x, (z - x)⁻¹ * (∥f z∥ - ∥f x∥) < r)
{B B' : ℝ → ℝ} (ha : ∥f a∥ ≤ B a) (hB : continuous_on B (Icc a b))
(hB' : ∀ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ioi x) x)
(bound : ∀ x ∈ Ico a b, ∥f x∥ = B x → f' x < B' x) :
∀ ⦃x⦄, x ∈ Icc a b → ∥f x∥ ≤ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuous_on hf) hf'
ha hB hB' bound
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `∥f a∥ ≤ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `∥f x∥ = B x`.
Then `∥f x∥ ≤ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : ℝ → E}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
{B B' : ℝ → ℝ} (ha : ∥f a∥ ≤ B a) (hB : continuous_on B (Icc a b))
(hB' : ∀ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ioi x) x)
(bound : ∀ x ∈ Ico a b, ∥f x∥ = B x → ∥f' x∥ < B' x) :
∀ ⦃x⦄, x ∈ Icc a b → ∥f x∥ ≤ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(λ x hx r hr, (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `∥f a∥ ≤ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `ℝ`;
* the norm of `f'` is strictly less than `B'` whenever `∥f x∥ = B x`.
Then `∥f x∥ ≤ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : ℝ → E}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
{B B' : ℝ → ℝ} (ha : ∥f a∥ ≤ B a) (hB : ∀ x, has_deriv_at B (B' x) x)
(bound : ∀ x ∈ Ico a b, ∥f x∥ = B x → ∥f' x∥ < B' x) :
∀ ⦃x⦄, x ∈ Icc a b → ∥f x∥ ≤ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(λ x hx, (hB x).continuous_at.continuous_within_at)
(λ x hx, (hB x).has_deriv_within_at) bound
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `∥f a∥ ≤ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `∥f' x∥ ≤ B x` everywhere on `[a, b)`.
Then `∥f x∥ ≤ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : ℝ → E}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
{B B' : ℝ → ℝ} (ha : ∥f a∥ ≤ B a) (hB : continuous_on B (Icc a b))
(hB' : ∀ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ioi x) x)
(bound : ∀ x ∈ Ico a b, ∥f' x∥ ≤ B' x) :
∀ ⦃x⦄, x ∈ Icc a b → ∥f x∥ ≤ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuous_on hf) ha hB hB' $
(λ x hx r hr, (hf' x hx).liminf_right_slope_norm_le (lt_of_le_of_lt (bound x hx) hr))
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `∥f a∥ ≤ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `ℝ`;
* we have `∥f' x∥ ≤ B x` everywhere on `[a, b)`.
Then `∥f x∥ ≤ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : ℝ → E}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
{B B' : ℝ → ℝ} (ha : ∥f a∥ ≤ B a) (hB : ∀ x, has_deriv_at B (B' x) x)
(bound : ∀ x ∈ Ico a b, ∥f' x∥ ≤ B' x) :
∀ ⦃x⦄, x ∈ Icc a b → ∥f x∥ ≤ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(λ x hx, (hB x).continuous_at.continuous_within_at)
(λ x hx, (hB x).has_deriv_within_at) bound
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `∥f x - f a∥ ≤ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : ℝ → E} {C : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : ∀ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ioi x) x)
(bound : ∀x ∈ Ico a b, ∥f' x∥ ≤ C) :
∀ x ∈ Icc a b, ∥f x - f a∥ ≤ C * (x - a) :=
begin
let g := λ x, f x - f a,
have hg : continuous_on g (Icc a b), from hf.sub continuous_on_const,
have hg' : ∀ x ∈ Ico a b, has_deriv_within_at g (f' x) (Ioi x) x,
{ assume x hx,
simpa using (hf' x hx).sub (has_deriv_within_at_const _ _ _) },
let B := λ x, C * (x - a),
have hB : ∀ x, has_deriv_at B C x,
{ assume x,
simpa using (has_deriv_at_const x C).mul ((has_deriv_at_id x).sub (has_deriv_at_const x a)) },
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound,
{ simp only [g, B] },
{ simp only [g, B], rw [sub_self, norm_zero, sub_self, mul_zero] }
end
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `∥f x - f a∥ ≤ C * (x - a)`, `has_deriv_within_at`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : ℝ → E} {C : ℝ}
(hf : ∀ x ∈ Icc a b, has_deriv_within_at f (f' x) (Icc a b) x)
(bound : ∀x ∈ Ico a b, ∥f' x∥ ≤ C) :
∀ x ∈ Icc a b, ∥f x - f a∥ ≤ C * (x - a) :=
begin
refine norm_image_sub_le_of_norm_deriv_right_le_segment
(λ x hx, (hf x hx).continuous_within_at) (λ x hx, _) bound,
apply (hf x $ Ico_subset_Icc_self hx).nhds_within,
exact Icc_mem_nhds_within_Ioi hx
end
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `∥f x - f a∥ ≤ C * (x - a)`, `deriv_within`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : ℝ} (hf : differentiable_on ℝ f (Icc a b))
(bound : ∀x ∈ Ico a b, ∥deriv_within f (Icc a b) x∥ ≤ C) :
∀ x ∈ Icc a b, ∥f x - f a∥ ≤ C * (x - a) :=
begin
refine norm_image_sub_le_of_norm_deriv_le_segment' _ bound,
exact λ x hx, (hf x hx).has_deriv_within_at
end
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `∥f 1 - f 0∥ ≤ C`, `has_deriv_within_at`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : ℝ → E} {C : ℝ}
(hf : ∀ x ∈ Icc (0:ℝ) 1, has_deriv_within_at f (f' x) (Icc (0:ℝ) 1) x)
(bound : ∀x ∈ Ico (0:ℝ) 1, ∥f' x∥ ≤ C) :
∥f 1 - f 0∥ ≤ C :=
by simpa only [sub_zero, mul_one]
using norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `∥f 1 - f 0∥ ≤ C`, `deriv_within` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : ℝ}
(hf : differentiable_on ℝ f (Icc (0:ℝ) 1))
(bound : ∀x ∈ Ico (0:ℝ) 1, ∥deriv_within f (Icc (0:ℝ) 1) x∥ ≤ C) :
∥f 1 - f 0∥ ≤ C :=
by simpa only [sub_zero, mul_one]
using norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
end
/-! ### Vector-valued functions `f : E → F` -/
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `has_fderiv_within`. -/
theorem convex.norm_image_sub_le_of_norm_has_fderiv_within_le
{f : E → F} {C : ℝ} {s : set E} {x y : E} {f' : E → (E →L[ℝ] F)}
(hf : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (bound : ∀x∈s, ∥f' x∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x∥ ≤ C * ∥y - x∥ :=
begin
/- By composition with `t ↦ x + t • (y-x)`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
have C0 : 0 ≤ C := le_trans (norm_nonneg _) (bound x xs),
set g : ℝ → E := λ t, x + t • (y - x),
have Dg : ∀ t, has_deriv_at g (y-x) t,
{ assume t,
simpa only [one_smul] using ((has_deriv_at_id t).smul_const (y - x)).const_add x },
have segm : Icc 0 1 ⊆ g ⁻¹' s,
{ rw [← image_subset_iff, ← segment_eq_image'],
apply hs.segment_subset xs ys },
have : f x = f (g 0), by { simp only [g], rw [zero_smul, add_zero] },
rw this,
have : f y = f (g 1), by { simp only [g], rw [one_smul, add_sub_cancel'_right] },
rw this,
have D2: ∀ t ∈ Icc (0:ℝ) 1, has_deriv_within_at (f ∘ g)
((f' (g t) : E → F) (y-x)) (Icc (0:ℝ) 1) t,
{ intros t ht,
exact (hf (g t) $ segm ht).comp_has_deriv_within_at _
(Dg t).has_deriv_within_at segm },
apply norm_image_sub_le_of_norm_deriv_le_segment_01' D2,
assume t ht,
refine le_trans (le_op_norm _ _) (mul_le_mul_of_nonneg_right _ (norm_nonneg _)),
exact bound (g t) (segm $ Ico_subset_Icc_self ht)
end
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on `s`,
then the function is `C`-Lipschitz on `s`. Version with `has_fderiv_within` and `lipschitz_on_with`. -/
theorem convex.lipschitz_on_with_of_norm_has_fderiv_within_le
{f : E → F} {C : ℝ} {s : set E} {f' : E → (E →L[ℝ] F)}
(hf : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (bound : ∀x∈s, ∥f' x∥ ≤ C)
(hs : convex s) : lipschitz_on_with (nnreal.of_real C) f s :=
begin
rw lipschitz_on_with_iff_norm_sub_le,
intros x x_in y y_in,
convert hs.norm_image_sub_le_of_norm_has_fderiv_within_le hf bound y_in x_in,
exact nnreal.coe_of_real C ((norm_nonneg $ f' x).trans $ bound x x_in)
end
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderiv_within`. -/
theorem convex.norm_image_sub_le_of_norm_fderiv_within_le {f : E → F} {C : ℝ} {s : set E} {x y : E}
(hf : differentiable_on ℝ f s) (bound : ∀x∈s, ∥fderiv_within ℝ f s x∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x∥ ≤ C * ∥y - x∥ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le (λ x hx, (hf x hx).has_fderiv_within_at)
bound xs ys
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on `s`,
then the function is `C`-Lipschitz on `s`. Version with `fderiv_within` and `lipschitz_on_with`. -/
theorem convex.lipschitz_on_with_of_norm_fderiv_within_le {f : E → F} {C : ℝ} {s : set E}
(hf : differentiable_on ℝ f s) (bound : ∀x∈s, ∥fderiv_within ℝ f s x∥ ≤ C)
(hs : convex s) : lipschitz_on_with (nnreal.of_real C) f s:=
hs.lipschitz_on_with_of_norm_has_fderiv_within_le (λ x hx, (hf x hx).has_fderiv_within_at) bound
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem convex.norm_image_sub_le_of_norm_fderiv_le {f : E → F} {C : ℝ} {s : set E} {x y : E}
(hf : ∀ x ∈ s, differentiable_at ℝ f x) (bound : ∀x∈s, ∥fderiv ℝ f x∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x∥ ≤ C * ∥y - x∥ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le
(λ x hx, (hf x hx).has_fderiv_at.has_fderiv_within_at) bound xs ys
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on `s`,
then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `lipschitz_on_with`. -/
theorem convex.lipschitz_on_with_of_norm_fderiv_le {f : E → F} {C : ℝ} {s : set E}
(hf : ∀ x ∈ s, differentiable_at ℝ f x) (bound : ∀x∈s, ∥fderiv ℝ f x∥ ≤ C)
(hs : convex s) : lipschitz_on_with (nnreal.of_real C) f s :=
hs.lipschitz_on_with_of_norm_has_fderiv_within_le
(λ x hx, (hf x hx).has_fderiv_at.has_fderiv_within_at) bound
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`has_fderiv_within`. -/
theorem convex.norm_image_sub_le_of_norm_has_fderiv_within_le'
{f : E → F} {C : ℝ} {s : set E} {x y : E} {f' : E → (E →L[ℝ] F)} {φ : E →L[ℝ] F}
(hf : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (bound : ∀x∈s, ∥f' x - φ∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x - φ (y - x)∥ ≤ C * ∥y - x∥ :=
begin
/- We subtract `φ` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `convex.norm_image_sub_le_of_norm_has_fderiv_within_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g := λy, f y - φ y,
have hg : ∀ x ∈ s, has_fderiv_within_at g (f' x - φ) s x :=
λ x xs, (hf x xs).sub φ.has_fderiv_within_at,
calc ∥f y - f x - φ (y - x)∥ = ∥f y - f x - (φ y - φ x)∥ : by simp
... = ∥(f y - φ y) - (f x - φ x)∥ : by abel
... = ∥g y - g x∥ : by simp
... ≤ C * ∥y - x∥ : convex.norm_image_sub_le_of_norm_has_fderiv_within_le hg bound hs xs ys,
end
/-- Variant of the mean value inequality on a convex set. Version with `fderiv_within`. -/
theorem convex.norm_image_sub_le_of_norm_fderiv_within_le' {f : E → F} {C : ℝ} {s : set E} {x y : E}
{φ : E →L[ℝ] F} (hf : differentiable_on ℝ f s) (bound : ∀x∈s, ∥fderiv_within ℝ f s x - φ∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x - φ (y - x)∥ ≤ C * ∥y - x∥ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le' (λ x hx, (hf x hx).has_fderiv_within_at)
bound xs ys
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem convex.norm_image_sub_le_of_norm_fderiv_le' {f : E → F} {C : ℝ} {s : set E} {x y : E}
{φ : E →L[ℝ] F} (hf : ∀ x ∈ s, differentiable_at ℝ f x) (bound : ∀x∈s, ∥fderiv ℝ f x - φ∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x - φ (y - x)∥ ≤ C * ∥y - x∥ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le'
(λ x hx, (hf x hx).has_fderiv_at.has_fderiv_within_at) bound xs ys
/-- If a function has zero Fréchet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem convex.is_const_of_fderiv_within_eq_zero {s : set E} (hs : convex s)
{f : E → F} (hf : differentiable_on ℝ f s) (hf' : ∀ x ∈ s, fderiv_within ℝ f s x = 0)
{x y : E} (hx : x ∈ s) (hy : y ∈ s) :
f x = f y :=
have bound : ∀ x ∈ s, ∥fderiv_within ℝ f s x∥ ≤ 0,
from λ x hx, by simp only [hf' x hx, norm_zero],
by simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm]
using hs.norm_image_sub_le_of_norm_fderiv_within_le hf bound hx hy
theorem is_const_of_fderiv_eq_zero {f : E → F} (hf : differentiable ℝ f)
(hf' : ∀ x, fderiv ℝ f x = 0) (x y : E) :
f x = f y :=
convex_univ.is_const_of_fderiv_within_eq_zero hf.differentiable_on
(λ x _, by rw fderiv_within_univ; exact hf' x) trivial trivial
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `has_deriv_within`. -/
theorem convex.norm_image_sub_le_of_norm_has_deriv_within_le
{f f' : ℝ → F} {C : ℝ} {s : set ℝ} {x y : ℝ}
(hf : ∀ x ∈ s, has_deriv_within_at f (f' x) s x) (bound : ∀x∈s, ∥f' x∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x∥ ≤ C * ∥y - x∥ :=
convex.norm_image_sub_le_of_norm_has_fderiv_within_le (λ x hx, (hf x hx).has_fderiv_within_at)
(λ x hx, le_trans (by simp) (bound x hx)) hs xs ys
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `has_deriv_within` and `lipschitz_on_with`. -/
theorem convex.lipschitz_on_with_of_norm_has_deriv_within_le
{f f' : ℝ → F} {C : ℝ} {s : set ℝ} (hs : convex s)
(hf : ∀ x ∈ s, has_deriv_within_at f (f' x) s x) (bound : ∀x∈s, ∥f' x∥ ≤ C) :
lipschitz_on_with (nnreal.of_real C) f s :=
convex.lipschitz_on_with_of_norm_has_fderiv_within_le (λ x hx, (hf x hx).has_fderiv_within_at)
(λ x hx, le_trans (by simp) (bound x hx)) hs
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv_within` -/
theorem convex.norm_image_sub_le_of_norm_deriv_within_le
{f : ℝ → F} {C : ℝ} {s : set ℝ} {x y : ℝ}
(hf : differentiable_on ℝ f s) (bound : ∀x∈s, ∥deriv_within f s x∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x∥ ≤ C * ∥y - x∥ :=
hs.norm_image_sub_le_of_norm_has_deriv_within_le (λ x hx, (hf x hx).has_deriv_within_at)
bound xs ys
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv_within` and `lipschitz_on_with`. -/
theorem convex.lipschitz_on_with_of_norm_deriv_within_le
{f : ℝ → F} {C : ℝ} {s : set ℝ} (hs : convex s)
(hf : differentiable_on ℝ f s) (bound : ∀x∈s, ∥deriv_within f s x∥ ≤ C) :
lipschitz_on_with (nnreal.of_real C) f s :=
hs.lipschitz_on_with_of_norm_has_deriv_within_le (λ x hx, (hf x hx).has_deriv_within_at) bound
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem convex.norm_image_sub_le_of_norm_deriv_le {f : ℝ → F} {C : ℝ} {s : set ℝ} {x y : ℝ}
(hf : ∀ x ∈ s, differentiable_at ℝ f x) (bound : ∀x∈s, ∥deriv f x∥ ≤ C)
(hs : convex s) (xs : x ∈ s) (ys : y ∈ s) : ∥f y - f x∥ ≤ C * ∥y - x∥ :=
hs.norm_image_sub_le_of_norm_has_deriv_within_le
(λ x hx, (hf x hx).has_deriv_at.has_deriv_within_at) bound xs ys
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `lipschitz_on_with`. -/
theorem convex.lipschitz_on_with_of_norm_deriv_le {f : ℝ → F} {C : ℝ} {s : set ℝ}
(hf : ∀ x ∈ s, differentiable_at ℝ f x) (bound : ∀x∈s, ∥deriv f x∥ ≤ C)
(hs : convex s) : lipschitz_on_with (nnreal.of_real C) f s :=
hs.lipschitz_on_with_of_norm_has_deriv_within_le
(λ x hx, (hf x hx).has_deriv_at.has_deriv_within_at) bound
/-! ### Functions `[a, b] → ℝ`. -/
section interval
-- Declare all variables here to make sure they come in a correct order
variables (f f' : ℝ → ℝ) {a b : ℝ} (hab : a < b) (hfc : continuous_on f (Icc a b))
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hfd : differentiable_on ℝ f (Ioo a b))
(g g' : ℝ → ℝ) (hgc : continuous_on g (Icc a b)) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hgd : differentiable_on ℝ g (Ioo a b))
include hab hfc hff' hgc hgg'
/-- Cauchy's Mean Value Theorem, `has_deriv_at` version. -/
lemma exists_ratio_has_deriv_at_eq_ratio_slope :
∃ c ∈ Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c :=
begin
let h := λ x, (g b - g a) * f x - (f b - f a) * g x,
have hI : h a = h b,
{ simp only [h], ring },
let h' := λ x, (g b - g a) * f' x - (f b - f a) * g' x,
have hhh' : ∀ x ∈ Ioo a b, has_deriv_at h (h' x) x,
from λ x hx, ((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a)),
have hhc : continuous_on h (Icc a b),
from (continuous_on_const.mul hfc).sub (continuous_on_const.mul hgc),
rcases exists_has_deriv_at_eq_zero h h' hab hhc hI hhh' with ⟨c, cmem, hc⟩,
exact ⟨c, cmem, sub_eq_zero.1 hc⟩
end
omit hfc hgc
/-- Cauchy's Mean Value Theorem, extended `has_deriv_at` version. -/
lemma exists_ratio_has_deriv_at_eq_ratio_slope' {lfa lga lfb lgb : ℝ}
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hfa : tendsto f (𝓝[Ioi a] a) (𝓝 lfa)) (hga : tendsto g (𝓝[Ioi a] a) (𝓝 lga))
(hfb : tendsto f (𝓝[Iio b] b) (𝓝 lfb)) (hgb : tendsto g (𝓝[Iio b] b) (𝓝 lgb)) :
∃ c ∈ Ioo a b, (lgb - lga) * (f' c) = (lfb - lfa) * (g' c) :=
begin
let h := λ x, (lgb - lga) * f x - (lfb - lfa) * g x,
have hha : tendsto h (𝓝[Ioi a] a) (𝓝 $ lgb * lfa - lfb * lga),
{ have : tendsto h (𝓝[Ioi a] a)(𝓝 $ (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga),
convert this using 2,
ring },
have hhb : tendsto h (𝓝[Iio b] b) (𝓝 $ lgb * lfa - lfb * lga),
{ have : tendsto h (𝓝[Iio b] b)(𝓝 $ (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb),
convert this using 2,
ring },
let h' := λ x, (lgb - lga) * f' x - (lfb - lfa) * g' x,
have hhh' : ∀ x ∈ Ioo a b, has_deriv_at h (h' x) x,
{ intros x hx,
exact ((hff' x hx).const_mul _ ).sub (((hgg' x hx)).const_mul _) },
rcases exists_has_deriv_at_eq_zero' hab hha hhb hhh' with ⟨c, cmem, hc⟩,
exact ⟨c, cmem, sub_eq_zero.1 hc⟩
end
include hfc
omit hgg'
/-- Lagrange's Mean Value Theorem, `has_deriv_at` version -/
lemma exists_has_deriv_at_eq_slope : ∃ c ∈ Ioo a b, f' c = (f b - f a) / (b - a) :=
begin
rcases exists_ratio_has_deriv_at_eq_ratio_slope f f' hab hfc hff'
id 1 continuous_id.continuous_on (λ x hx, has_deriv_at_id x) with ⟨c, cmem, hc⟩,
use [c, cmem],
simp only [_root_.id, pi.one_apply, mul_one] at hc,
rw [← hc, mul_div_cancel_left],
exact ne_of_gt (sub_pos.2 hab)
end
omit hff'
/-- Cauchy's Mean Value Theorem, `deriv` version. -/
lemma exists_ratio_deriv_eq_ratio_slope :
∃ c ∈ Ioo a b, (g b - g a) * (deriv f c) = (f b - f a) * (deriv g c) :=
exists_ratio_has_deriv_at_eq_ratio_slope f (deriv f) hab hfc
(λ x hx, ((hfd x hx).differentiable_at $ mem_nhds_sets is_open_Ioo hx).has_deriv_at)
g (deriv g) hgc (λ x hx, ((hgd x hx).differentiable_at $ mem_nhds_sets is_open_Ioo hx).has_deriv_at)
omit hfc
/-- Cauchy's Mean Value Theorem, extended `deriv` version. -/
lemma exists_ratio_deriv_eq_ratio_slope' {lfa lga lfb lgb : ℝ}
(hdf : differentiable_on ℝ f $ Ioo a b) (hdg : differentiable_on ℝ g $ Ioo a b)
(hfa : tendsto f (𝓝[Ioi a] a) (𝓝 lfa)) (hga : tendsto g (𝓝[Ioi a] a) (𝓝 lga))
(hfb : tendsto f (𝓝[Iio b] b) (𝓝 lfb)) (hgb : tendsto g (𝓝[Iio b] b) (𝓝 lgb)) :
∃ c ∈ Ioo a b, (lgb - lga) * (deriv f c) = (lfb - lfa) * (deriv g c) :=
exists_ratio_has_deriv_at_eq_ratio_slope' _ _ hab _ _
(λ x hx, ((hdf x hx).differentiable_at $ Ioo_mem_nhds hx.1 hx.2).has_deriv_at)
(λ x hx, ((hdg x hx).differentiable_at $ Ioo_mem_nhds hx.1 hx.2).has_deriv_at)
hfa hga hfb hgb
/-- Lagrange's Mean Value Theorem, `deriv` version. -/
lemma exists_deriv_eq_slope : ∃ c ∈ Ioo a b, deriv f c = (f b - f a) / (b - a) :=
exists_has_deriv_at_eq_slope f (deriv f) hab hfc
(λ x hx, ((hfd x hx).differentiable_at $ mem_nhds_sets is_open_Ioo hx).has_deriv_at)
end interval
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `C < f'`, then
`f` grows faster than `C * x` on `D`, i.e., `C * (y - x) < f y - f x` whenever `x, y ∈ D`,
`x < y`. -/
theorem convex.mul_sub_lt_image_sub_of_lt_deriv {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (hf'_gt : ∀ x ∈ interior D, C < deriv f x) :
∀ x y ∈ D, x < y → C * (y - x) < f y - f x :=
begin
assume x y hx hy hxy,
have hxyD : Icc x y ⊆ D, from hD.ord_connected hx hy,
have hxyD' : Ioo x y ⊆ interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hxyD⟩,
obtain ⟨a, a_mem, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy (hf.mono hxyD) (hf'.mono hxyD'),
have : C < (f y - f x) / (y - x), by { rw [← ha], exact hf'_gt _ (hxyD' a_mem) },
exact (lt_div_iff (sub_pos.2 hxy)).1 this
end
/-- Let `f : ℝ → ℝ` be a differentiable function. If `C < f'`, then `f` grows faster than
`C * x`, i.e., `C * (y - x) < f y - f x` whenever `x < y`. -/
theorem mul_sub_lt_image_sub_of_lt_deriv {f : ℝ → ℝ} (hf : differentiable ℝ f)
{C} (hf'_gt : ∀ x, C < deriv f x) ⦃x y⦄ (hxy : x < y) :
C * (y - x) < f y - f x :=
convex_univ.mul_sub_lt_image_sub_of_lt_deriv hf.continuous.continuous_on hf.differentiable_on
(λ x _, hf'_gt x) x y trivial trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `C ≤ f'`, then
`f` grows at least as fast as `C * x` on `D`, i.e., `C * (y - x) ≤ f y - f x` whenever `x, y ∈ D`,
`x ≤ y`. -/
theorem convex.mul_sub_le_image_sub_of_le_deriv {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (hf'_ge : ∀ x ∈ interior D, C ≤ deriv f x) :
∀ x y ∈ D, x ≤ y → C * (y - x) ≤ f y - f x :=
begin
assume x y hx hy hxy,
cases eq_or_lt_of_le hxy with hxy' hxy', by rw [hxy', sub_self, sub_self, mul_zero],
have hxyD : Icc x y ⊆ D, from hD.ord_connected hx hy,
have hxyD' : Ioo x y ⊆ interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hxyD⟩,
obtain ⟨a, a_mem, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy' (hf.mono hxyD) (hf'.mono hxyD'),
have : C ≤ (f y - f x) / (y - x), by { rw [← ha], exact hf'_ge _ (hxyD' a_mem) },
exact (le_div_iff (sub_pos.2 hxy')).1 this
end
/-- Let `f : ℝ → ℝ` be a differentiable function. If `C ≤ f'`, then `f` grows at least as fast
as `C * x`, i.e., `C * (y - x) ≤ f y - f x` whenever `x ≤ y`. -/
theorem mul_sub_le_image_sub_of_le_deriv {f : ℝ → ℝ} (hf : differentiable ℝ f)
{C} (hf'_ge : ∀ x, C ≤ deriv f x) ⦃x y⦄ (hxy : x ≤ y) :
C * (y - x) ≤ f y - f x :=
convex_univ.mul_sub_le_image_sub_of_le_deriv hf.continuous.continuous_on hf.differentiable_on
(λ x _, hf'_ge x) x y trivial trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f' < C`, then
`f` grows slower than `C * x` on `D`, i.e., `f y - f x < C * (y - x)` whenever `x, y ∈ D`,
`x < y`. -/
theorem convex.image_sub_lt_mul_sub_of_deriv_lt {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (lt_hf' : ∀ x ∈ interior D, deriv f x < C) :
∀ x y ∈ D, x < y → f y - f x < C * (y - x) :=
begin
assume x y hx hy hxy,
have hf'_gt : ∀ x ∈ interior D, -C < deriv (λ y, -f y) x,
{ assume x hx,
rw [deriv.neg, neg_lt_neg_iff],
exact lt_hf' x hx },
simpa [-neg_lt_neg_iff]
using neg_lt_neg (hD.mul_sub_lt_image_sub_of_lt_deriv hf.neg hf'.neg hf'_gt x y hx hy hxy)
end
/-- Let `f : ℝ → ℝ` be a differentiable function. If `f' < C`, then `f` grows slower than
`C * x` on `D`, i.e., `f y - f x < C * (y - x)` whenever `x < y`. -/
theorem image_sub_lt_mul_sub_of_deriv_lt {f : ℝ → ℝ} (hf : differentiable ℝ f)
{C} (lt_hf' : ∀ x, deriv f x < C) ⦃x y⦄ (hxy : x < y) :
f y - f x < C * (y - x) :=
convex_univ.image_sub_lt_mul_sub_of_deriv_lt hf.continuous.continuous_on hf.differentiable_on
(λ x _, lt_hf' x) x y trivial trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f' ≤ C`, then
`f` grows at most as fast as `C * x` on `D`, i.e., `f y - f x ≤ C * (y - x)` whenever `x, y ∈ D`,
`x ≤ y`. -/
theorem convex.image_sub_le_mul_sub_of_deriv_le {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (le_hf' : ∀ x ∈ interior D, deriv f x ≤ C) :
∀ x y ∈ D, x ≤ y → f y - f x ≤ C * (y - x) :=
begin
assume x y hx hy hxy,
have hf'_ge : ∀ x ∈ interior D, -C ≤ deriv (λ y, -f y) x,
{ assume x hx,
rw [deriv.neg, neg_le_neg_iff],
exact le_hf' x hx },
simpa [-neg_le_neg_iff]
using neg_le_neg (hD.mul_sub_le_image_sub_of_le_deriv hf.neg hf'.neg hf'_ge x y hx hy hxy)
end
/-- Let `f : ℝ → ℝ` be a differentiable function. If `f' ≤ C`, then `f` grows at most as fast
as `C * x`, i.e., `f y - f x ≤ C * (y - x)` whenever `x ≤ y`. -/
theorem image_sub_le_mul_sub_of_deriv_le {f : ℝ → ℝ} (hf : differentiable ℝ f)
{C} (le_hf' : ∀ x, deriv f x ≤ C) ⦃x y⦄ (hxy : x ≤ y) :
f y - f x ≤ C * (y - x) :=
convex_univ.image_sub_le_mul_sub_of_deriv_le hf.continuous.continuous_on hf.differentiable_on
(λ x _, le_hf' x) x y trivial trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is positive, then
`f` is a strictly monotonically increasing function on `D`. -/
theorem convex.strict_mono_of_deriv_pos {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_pos : ∀ x ∈ interior D, 0 < deriv f x) :
∀ x y ∈ D, x < y → f x < f y :=
by simpa only [zero_mul, sub_pos] using hD.mul_sub_lt_image_sub_of_lt_deriv hf hf' hf'_pos
/-- Let `f : ℝ → ℝ` be a differentiable function. If `f'` is positive, then
`f` is a strictly monotonically increasing function. -/
theorem strict_mono_of_deriv_pos {f : ℝ → ℝ} (hf : differentiable ℝ f)
(hf'_pos : ∀ x, 0 < deriv f x) :
strict_mono f :=
λ x y hxy, convex_univ.strict_mono_of_deriv_pos hf.continuous.continuous_on hf.differentiable_on
(λ x _, hf'_pos x) x y trivial trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is nonnegative, then
`f` is a monotonically increasing function on `D`. -/
theorem convex.mono_of_deriv_nonneg {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_nonneg : ∀ x ∈ interior D, 0 ≤ deriv f x) :
∀ x y ∈ D, x ≤ y → f x ≤ f y :=
by simpa only [zero_mul, sub_nonneg] using hD.mul_sub_le_image_sub_of_le_deriv hf hf' hf'_nonneg
/-- Let `f : ℝ → ℝ` be a differentiable function. If `f'` is nonnegative, then
`f` is a monotonically increasing function. -/
theorem mono_of_deriv_nonneg {f : ℝ → ℝ} (hf : differentiable ℝ f) (hf' : ∀ x, 0 ≤ deriv f x) :
monotone f :=
λ x y hxy, convex_univ.mono_of_deriv_nonneg hf.continuous.continuous_on hf.differentiable_on
(λ x _, hf' x) x y trivial trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is negative, then
`f` is a strictly monotonically decreasing function on `D`. -/
theorem convex.strict_antimono_of_deriv_neg {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_neg : ∀ x ∈ interior D, deriv f x < 0) :
∀ x y ∈ D, x < y → f y < f x :=
by simpa only [zero_mul, sub_lt_zero] using hD.image_sub_lt_mul_sub_of_deriv_lt hf hf' hf'_neg
/-- Let `f : ℝ → ℝ` be a differentiable function. If `f'` is negative, then
`f` is a strictly monotonically decreasing function. -/
theorem strict_antimono_of_deriv_neg {f : ℝ → ℝ} (hf : differentiable ℝ f)
(hf' : ∀ x, deriv f x < 0) :
∀ ⦃x y⦄, x < y → f y < f x :=
λ x y hxy, convex_univ.strict_antimono_of_deriv_neg hf.continuous.continuous_on hf.differentiable_on
(λ x _, hf' x) x y trivial trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is nonpositive, then
`f` is a monotonically decreasing function on `D`. -/
theorem convex.antimono_of_deriv_nonpos {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_nonpos : ∀ x ∈ interior D, deriv f x ≤ 0) :
∀ x y ∈ D, x ≤ y → f y ≤ f x :=
by simpa only [zero_mul, sub_nonpos] using hD.image_sub_le_mul_sub_of_deriv_le hf hf' hf'_nonpos
/-- Let `f : ℝ → ℝ` be a differentiable function. If `f'` is nonpositive, then
`f` is a monotonically decreasing function. -/
theorem antimono_of_deriv_nonpos {f : ℝ → ℝ} (hf : differentiable ℝ f) (hf' : ∀ x, deriv f x ≤ 0) :
∀ ⦃x y⦄, x ≤ y → f y ≤ f x :=
λ x y hxy, convex_univ.antimono_of_deriv_nonpos hf.continuous.continuous_on hf.differentiable_on
(λ x _, hf' x) x y trivial trivial hxy
/-- If a function `f` is continuous on a convex set `D ⊆ ℝ`, is differentiable on its interior,
and `f'` is monotone on the interior, then `f` is convex on `D`. -/
theorem convex_on_of_deriv_mono {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_mono : ∀ x y ∈ interior D, x ≤ y → deriv f x ≤ deriv f y) :
convex_on D f :=
convex_on_real_of_slope_mono_adjacent hD
begin
intros x y z hx hz hxy hyz,
-- First we prove some trivial inclusions
have hxzD : Icc x z ⊆ D, from hD.ord_connected hx hz,
have hxyD : Icc x y ⊆ D, from subset.trans (Icc_subset_Icc_right $ le_of_lt hyz) hxzD,
have hxyD' : Ioo x y ⊆ interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hxyD⟩,
have hyzD : Icc y z ⊆ D, from subset.trans (Icc_subset_Icc_left $ le_of_lt hxy) hxzD,
have hyzD' : Ioo y z ⊆ interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hyzD⟩,
-- Then we apply MVT to both `[x, y]` and `[y, z]`
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy (hf.mono hxyD) (hf'.mono hxyD'),
obtain ⟨b, ⟨hyb, hbz⟩, hb⟩ : ∃ b ∈ Ioo y z, deriv f b = (f z - f y) / (z - y),
from exists_deriv_eq_slope f hyz (hf.mono hyzD) (hf'.mono hyzD'),
rw [← ha, ← hb],
exact hf'_mono a b (hxyD' ⟨hxa, hay⟩) (hyzD' ⟨hyb, hbz⟩) (le_of_lt $ lt_trans hay hyb)
end
/-- If a function `f` is continuous on a convex set `D ⊆ ℝ`, is differentiable on its interior,
and `f'` is monotone on the interior, then `f` is convex on `ℝ`. -/
theorem convex_on_univ_of_deriv_mono {f : ℝ → ℝ} (hf : differentiable ℝ f)
(hf'_mono : monotone (deriv f)) : convex_on univ f :=
convex_on_of_deriv_mono convex_univ hf.continuous.continuous_on hf.differentiable_on
(λ x y _ _ h, hf'_mono h)
/-- If a function `f` is continuous on a convex set `D ⊆ ℝ`, is twice differentiable on its interior,
and `f''` is nonnegative on the interior, then `f` is convex on `D`. -/
theorem convex_on_of_deriv2_nonneg {D : set ℝ} (hD : convex D) {f : ℝ → ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'' : differentiable_on ℝ (deriv f) (interior D))
(hf''_nonneg : ∀ x ∈ interior D, 0 ≤ (deriv^[2] f x)) :
convex_on D f :=
convex_on_of_deriv_mono hD hf hf' $
assume x y hx hy hxy,
hD.interior.mono_of_deriv_nonneg hf''.continuous_on (by rwa [interior_interior])
(by rwa [interior_interior]) _ _ hx hy hxy
/-- If a function `f` is twice differentiable on `ℝ`, and `f''` is nonnegative on `ℝ`,
then `f` is convex on `ℝ`. -/
theorem convex_on_univ_of_deriv2_nonneg {f : ℝ → ℝ} (hf' : differentiable ℝ f)
(hf'' : differentiable ℝ (deriv f)) (hf''_nonneg : ∀ x, 0 ≤ (deriv^[2] f x)) :
convex_on univ f :=
convex_on_of_deriv2_nonneg convex_univ hf'.continuous.continuous_on hf'.differentiable_on
hf''.differentiable_on (λ x _, hf''_nonneg x)
/-! ### Functions `f : E → ℝ` -/
/-- Lagrange's Mean Value Theorem, applied to convex domains. -/
theorem domain_mvt
{f : E → ℝ} {s : set E} {x y : E} {f' : E → (E →L[ℝ] ℝ)}
(hf : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hs : convex s) (xs : x ∈ s) (ys : y ∈ s) :
∃ z ∈ segment x y, f y - f x = f' z (y - x) :=
begin
have hIccIoo := @Ioo_subset_Icc_self ℝ _ 0 1,
-- parametrize segment
set g : ℝ → E := λ t, x + t • (y - x),
have hseg : ∀ t ∈ Icc (0:ℝ) 1, g t ∈ segment x y,
{ rw segment_eq_image',
simp only [mem_image, and_imp, add_right_inj],
intros t ht, exact ⟨t, ht, rfl⟩ },
have hseg' : Icc 0 1 ⊆ g ⁻¹' s,
{ rw ← image_subset_iff, unfold image, change ∀ _, _,
intros z Hz, rw mem_set_of_eq at Hz, rcases Hz with ⟨t, Ht, hgt⟩,
rw ← hgt, exact hs.segment_subset xs ys (hseg t Ht) },
-- derivative of pullback of f under parametrization
have hfg: ∀ t ∈ Icc (0:ℝ) 1, has_deriv_within_at (f ∘ g)
((f' (g t) : E → ℝ) (y-x)) (Icc (0:ℝ) 1) t,
{ intros t Ht,
have hg : has_deriv_at g (y-x) t,
{ have := ((has_deriv_at_id t).smul_const (y - x)).const_add x,
rwa one_smul at this },
exact (hf (g t) $ hseg' Ht).comp_has_deriv_within_at _ hg.has_deriv_within_at hseg' },
-- apply 1-variable mean value theorem to pullback
have hMVT : ∃ (t ∈ Ioo (0:ℝ) 1), ((f' (g t) : E → ℝ) (y-x)) = (f (g 1) - f (g 0)) / (1 - 0),
{ refine exists_has_deriv_at_eq_slope (f ∘ g) _ (by norm_num) _ _,
{ unfold continuous_on,
exact λ t Ht, (hfg t Ht).continuous_within_at },
{ refine λ t Ht, (hfg t $ hIccIoo Ht).has_deriv_at _,
refine mem_nhds_sets_iff.mpr _,
use (Ioo (0:ℝ) 1),
refine ⟨hIccIoo, _, Ht⟩,
simp [real.Ioo_eq_ball, is_open_ball] } },
-- reinterpret on domain
rcases hMVT with ⟨t, Ht, hMVT'⟩,
use g t, refine ⟨hseg t $ hIccIoo Ht, _⟩,
simp [g, hMVT'],
end
/-! ### Vector-valued functions `f : E → F`. Strict differentiability. -/
/-- Over the reals, a continuously differentiable function is strictly differentiable. -/
lemma strict_fderiv_of_cont_diff
{f : E → F} {s : set E} {x : E} {f' : E → (E →L[ℝ] F)}
(hf : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hcont : continuous_on f' s) (hs : s ∈ 𝓝 x) :
has_strict_fderiv_at f (f' x) x :=
begin
-- turn little-o definition of strict_fderiv into an epsilon-delta statement
apply is_o_iff_forall_is_O_with.mpr,
intros c hc,
refine is_O_with.of_bound (eventually_iff.mpr (mem_nhds_iff.mpr _)),
-- the correct ε is the modulus of continuity of f', shrunk to be inside s
rcases (metric.continuous_on_iff.mp hcont x (mem_of_nhds hs) c hc) with ⟨ε₁, H₁, hcont'⟩,
rcases (mem_nhds_iff.mp hs) with ⟨ε₂, H₂, hε₂⟩,
refine ⟨min ε₁ ε₂, lt_min H₁ H₂, _⟩,
-- mess with ε construction
set t := ball x (min ε₁ ε₂),
have hts : t ⊆ s := λ _ hy, hε₂ (ball_subset_ball (min_le_right ε₁ ε₂) hy),
have Hf : ∀ y ∈ t, has_fderiv_within_at f (f' y) t y :=
λ y yt, has_fderiv_within_at.mono (hf y (hts yt)) hts,
have hconv := convex_ball x (min ε₁ ε₂),
-- simplify formulas involving the product E × E
rintros ⟨a, b⟩ h,
simp only [mem_set_of_eq, map_sub],
have hab : a ∈ t ∧ b ∈ t := by rwa [mem_ball, prod.dist_eq, max_lt_iff] at h,
-- exploit the choice of ε as the modulus of continuity of f'
have hf' : ∀ x' ∈ t, ∥f' x' - f' x∥ ≤ c,
{ intros x' H',
refine le_of_lt (hcont' x' (hts H') _),
exact ball_subset_ball (min_le_left ε₁ ε₂) H' },
-- apply mean value theorem
simpa using convex.norm_image_sub_le_of_norm_has_fderiv_within_le' Hf hf' hconv hab.2 hab.1,
end
|
2ac0127a06309ba2ea6067b48f5c03763540ac9e
|
88892181780ff536a81e794003fe058062f06758
|
/src/mod.lean
|
e4797e2f7bbe7a0140c940266bed63486a3c5da3
|
[] |
no_license
|
AtnNn/lean-sandbox
|
fe2c44280444e8bb8146ab8ac391c82b480c0a2e
|
8c68afbdc09213173aef1be195da7a9a86060a97
|
refs/heads/master
| 1,623,004,395,876
| 1,579,969,507,000
| 1,579,969,507,000
| 146,666,368
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,321
|
lean
|
import data.nat.basic
universe u
namespace sandbox
open nat
def mod : nat → nat → nat
| _ 0 := 0
| a (succ b) := if h : a ≥ succ b then
have a - succ b < a := sub_lt_of_pos_le _ _ succ_pos' h,
mod (a - succ b) (succ b)
else a
local infix % := mod
lemma mod_zero {a} : mod a 0 = 0 :=
begin
unfold mod
end
lemma mod_step {a b} (h : a ≥ b) : mod a b = mod (a - b) b :=
begin
cases b,
{ refl },
{ rw mod.equations._eqn_2,
rwa if_pos }
end
lemma mod_eq_of_lt {a b : nat} (h : a < b) : a % b = a :=
begin
cases b,
{ exfalso, exact not_succ_le_zero a h },
{ rw mod.equations._eqn_2,
rw if_neg,
exact not_le.mpr h }
end
lemma zero_mod {b} : 0 % b = 0 :=
begin
cases b,
{ exact mod_zero },
{ apply mod_eq_of_lt,
apply nat.zero_lt_succ }
end
lemma mod_lt {a b} (h : b ≠ 0) : mod a b < b :=
begin
cases b,
{ exfalso, exact h rfl },
{ induction a using nat.case_strong_induction_on with x ih,
{ rw zero_mod,
apply nat.zero_lt_succ },
{ apply nat.lt_ge_by_cases,
{ intro h, rw mod_eq_of_lt h, exact h },
{ intro h,
rw mod_step h,
apply ih,
replace h := le_of_succ_le_succ h,
rw nat.succ_sub_succ,
exact sub_le _ _ } } }
end
lemma mod_prop {a b} : ∃ k, mod a b * k = a :=
begin
sorry
end
end sandbox
|
d863792b8d5c4c00280adcccc51c7fae3c88e2b8
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/tests/lean/run/synth1.lean
|
74477ca9bf1d871df2213ba009b7778dccd3f9df
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,556
|
lean
|
import Lean.Meta
open Lean
open Lean.Meta
class HasCoerce (a b : Type) :=
(coerce : a → b)
def coerce {a b : Type} [HasCoerce a b] : a → b :=
@HasCoerce.coerce a b _
instance coerceTrans {a b c : Type} [HasCoerce b c] [HasCoerce a b] : HasCoerce a c :=
⟨fun x => coerce (coerce x : b)⟩
instance coerceBoolToProp : HasCoerce Bool Prop :=
⟨fun y => y = true⟩
instance coerceDecidableEq (x : Bool) : Decidable (coerce x) :=
inferInstanceAs (Decidable (x = true))
instance coerceNatToBool : HasCoerce Nat Bool :=
⟨fun x => x == 0⟩
instance coerceNatToInt : HasCoerce Nat Int :=
⟨fun x => Int.ofNat x⟩
def print {α} [ToString α] (a : α) : MetaM Unit := do
trace[Meta.synthInstance] (toString a)
def tst1 : MetaM Unit := do
let inst ← mkAppM `HasCoerce #[mkConst `Nat, mkSort levelZero]
let r ← synthInstance inst
print r
set_option trace.Meta.synthInstance true in
set_option trace.Meta.synthInstance.tryResolve false in
#eval tst1
def tst2 : MetaM Unit := do
let inst ← mkAppM `Bind #[mkConst `IO]
-- globalInstances ← getGlobalInstances
-- print (format globalInstances)
-- result ← globalInstances.getUnify inst
-- print result
let r ← synthInstance inst
print r
pure ()
set_option trace.Meta.synthInstance true in
set_option trace.Meta.synthInstance.tryResolve false in
#eval tst2
def tst3 : MetaM Unit := do
let inst ← mkAppM `BEq #[mkConst `Nat]
let r ← synthInstance inst
print r
pure ()
set_option trace.Meta.synthInstance true in
set_option trace.Meta.synthInstance.tryResolve false in
#eval tst3
|
030f885504349c6fe2d78e81deba17c4a285f0b1
|
a46d86797f98e604c71128429409acba8288c1f8
|
/algebra/lattice/flat.lean
|
9f9b430fde4492bc28bfcb39581898577b43393a
|
[] |
no_license
|
tizmd/lean-abstract-interpretation
|
655213d76e84e093910bb6378796cdb4e1ae3565
|
ad69622adc082e7009f12b17568662a599779260
|
refs/heads/master
| 1,610,518,429,734
| 1,498,128,216,000
| 1,498,128,216,000
| 94,891,623
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,490
|
lean
|
import algebra.lattice.dcpo
universe u
open lattice
namespace lattice
inductive flat (α : Type u) : Type u
| bot {} : flat
| top {} : flat
| elem : Π a : α, flat
instance {α : Type u} : has_bot (flat α) := ⟨ flat.bot ⟩
instance {α : Type u} : has_top (flat α) := ⟨ flat.top ⟩
namespace flat
variables {α : Type u}[decidable_eq α]
protected
def sup : flat α → flat α → flat α
| bot y := y
| x bot := x
| top _ := top
| _ top := top
| (elem a) (elem b) := if a = b then elem a else top
instance : has_sup (flat α) := ⟨ flat.sup ⟩
@[simp]
lemma sup_bot_left (x : flat α) : ⊥ ⊔ x = x := match x with
| bot := rfl
| top := rfl
| (elem _) := rfl
end
@[simp]
lemma sup_bot_right : Π (x : flat α), x ⊔ ⊥ = x
| bot := rfl
| top := rfl
| (elem _) := rfl
@[simp]
lemma sup_top_left : Π (x : flat α), ⊤ ⊔ x = ⊤
| bot := rfl
| top := rfl
| (elem _) := rfl
@[simp]
lemma sup_top_right : Π (x : flat α), x ⊔ ⊤ = ⊤
| bot := rfl
| top := rfl
| (elem _) := rfl
@[simp]
lemma sup_idem : Π (x : flat α), x ⊔ x = x
| bot := rfl
| top := rfl
| (elem _) := if_pos rfl
lemma sup_comm : Π {x y : flat α}, x ⊔ y = y ⊔ x
| bot _ := rfl
| top _ := rfl
| _ bot := rfl
| _ top := rfl
| (elem a) (elem b) := if H : a = b then
eq.rec_on H (eq.trans sup_idem sup_idem.symm)
else
begin
unfold has_sup.sup,
simp [flat.sup],
rw if_neg H,
rw if_neg (ne.symm H),
end
protected
def inf : flat α → flat α → flat α
| bot _ := bot
| _ bot := bot
| top y := y
| x top := x
| (elem a) (elem b) := if a = b then elem a else bot
instance : has_inf (flat α) := ⟨ flat.inf ⟩
protected
def le (x y : flat α) : Prop := y = x ⊔ y
instance : has_le (flat α) := ⟨flat.le⟩
protected
lemma bot_le {x : flat α} : ⊥ ≤ x := match x with
| bot := rfl
| top := rfl
| elem _ := rfl
end
lemma eq_of_le_bot {x : flat α} : x ≤ ⊥ → x = ⊥ :=
begin intro h, cases x, refl, contradiction, contradiction end
protected
lemma le_top {x : flat α} : x ≤ ⊤ := match x with
| bot := rfl
| top := rfl
| elem _ := rfl
end
lemma eq_of_top_le {x : flat α} : ⊤ ≤ x → x = ⊤ :=
begin intro h, cases x, contradiction, refl, contradiction end
@[refl]
protected lemma le_refl : ∀ x : flat α, x ≤ x := take x, sup_idem.symm
@[trans]
protected lemma le_trans : ∀ x y z : flat α, x ≤ y → y ≤ z → x ≤ z
| bot _ _ := assume hxy hyz, flat.bot_le
| top _ _ := assume hxy, eq.rec_on (eq_of_top_le hxy).symm
(assume hyz, eq.rec_on (eq_of_top_le hyz).symm (flat.le_refl _))
| _ bot _ := assume hxy hyz, eq.rec_on (eq_of_le_bot hxy).symm flat.bot_le
| _ top _ := assume hxy hyz, eq.rec_on (eq_of_top_le hyz).symm flat.le_top
| _ _ bot := begin intros hxy hyz, revert hxy, rw eq_of_le_bot hyz, intro hxy, rw eq_of_le_bot hxy, refl end
| _ _ top := assume hxy hyz, flat.le_top
| (elem a) (elem b) (elem c) := assume hxy hyz,
if Hab : a = b then eq.rec_on Hab.symm hyz
else begin
assert H : elem b = flat.sup (elem a) (elem b),
assumption,
assert eq : elem b = ⊤,
rw H,
simp [flat.sup],
rw if_neg Hab, refl,
contradiction
end
protected lemma le_antisymm (x y : flat α) : x ≤ y → y ≤ x → x = y
:= assume hxy hyx, eq.trans hyx (eq.trans sup_comm hxy.symm)
protected lemma le_sup_left (x y : flat α) : x ≤ x ⊔ y :=
end flat
end lattice
|
b19cec950e00012ac3e4196b2464512c73c477c3
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/src/Lean/Util/Recognizers.lean
|
fc074065fca8ee052f0daa5eb09d579dee3fb0d4
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,837
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Environment
namespace Lean
namespace Expr
@[inline] def const? (e : Expr) : Option (Name × List Level) :=
match e with
| Expr.const n us => some (n, us)
| _ => none
@[inline] def app1? (e : Expr) (fName : Name) : Option Expr :=
if e.isAppOfArity fName 1 then
some e.appArg!
else
none
@[inline] def app2? (e : Expr) (fName : Name) : Option (Expr × Expr) :=
if e.isAppOfArity fName 2 then
some (e.appFn!.appArg!, e.appArg!)
else
none
@[inline] def app3? (e : Expr) (fName : Name) : Option (Expr × Expr × Expr) :=
if e.isAppOfArity fName 3 then
some (e.appFn!.appFn!.appArg!, e.appFn!.appArg!, e.appArg!)
else
none
@[inline] def app4? (e : Expr) (fName : Name) : Option (Expr × Expr × Expr × Expr) :=
if e.isAppOfArity fName 4 then
some (e.appFn!.appFn!.appFn!.appArg!, e.appFn!.appFn!.appArg!, e.appFn!.appArg!, e.appArg!)
else
none
@[inline] def eq? (p : Expr) : Option (Expr × Expr × Expr) :=
p.app3? ``Eq
@[inline] def ne? (p : Expr) : Option (Expr × Expr × Expr) :=
p.app3? ``Ne
@[inline] def iff? (p : Expr) : Option (Expr × Expr) :=
p.app2? ``Iff
@[inline] def eqOrIff? (p : Expr) : Option (Expr × Expr) :=
if let some (_, lhs, rhs) := p.app3? ``Eq then
some (lhs, rhs)
else
p.iff?
@[inline] def not? (p : Expr) : Option Expr :=
p.app1? ``Not
@[inline] def notNot? (p : Expr) : Option Expr :=
match p.not? with
| some p => p.not?
| none => none
@[inline] def and? (p : Expr) : Option (Expr × Expr) :=
p.app2? ``And
@[inline] def heq? (p : Expr) : Option (Expr × Expr × Expr × Expr) :=
p.app4? ``HEq
def natAdd? (e : Expr) : Option (Expr × Expr) :=
e.app2? ``Nat.add
@[inline] def arrow? : Expr → Option (Expr × Expr)
| Expr.forallE _ α β _ => if β.hasLooseBVars then none else some (α, β)
| _ => none
def isEq (e : Expr) :=
e.isAppOfArity ``Eq 3
def isHEq (e : Expr) :=
e.isAppOfArity ``HEq 4
def isIte (e : Expr) :=
e.isAppOfArity ``ite 5
def isDIte (e : Expr) :=
e.isAppOfArity ``dite 5
partial def listLit? (e : Expr) : Option (Expr × List Expr) :=
let rec loop (e : Expr) (acc : List Expr) :=
if e.isAppOfArity' ``List.nil 1 then
some (e.appArg!', acc.reverse)
else if e.isAppOfArity' ``List.cons 3 then
loop e.appArg!' (e.appFn!'.appArg!' :: acc)
else
none
loop e []
def arrayLit? (e : Expr) : Option (Expr × List Expr) :=
if e.isAppOfArity' ``List.toArray 2 then
listLit? e.appArg!'
else
none
/-- Recognize `α × β` -/
def prod? (e : Expr) : Option (Expr × Expr) :=
e.app2? ``Prod
private def getConstructorVal? (env : Environment) (ctorName : Name) : Option ConstructorVal :=
match env.find? ctorName with
| some (ConstantInfo.ctorInfo v) => v
| _ => none
def isConstructorApp? (env : Environment) (e : Expr) : Option ConstructorVal :=
match e with
| Expr.lit (Literal.natVal n) => if n == 0 then getConstructorVal? env `Nat.zero else getConstructorVal? env `Nat.succ
| _ =>
match e.getAppFn with
| Expr.const n _ => match getConstructorVal? env n with
| some v => if v.numParams + v.numFields == e.getAppNumArgs then some v else none
| none => none
| _ => none
def isConstructorApp (env : Environment) (e : Expr) : Bool :=
e.isConstructorApp? env |>.isSome
/--
If `e` is a constructor application, return a pair containing the corresponding `ConstructorVal` and the constructor
application arguments.
This function treats numerals as constructors. For example, if `e` is the numeral `2`, the result pair
is `ConstructorVal` for `Nat.succ`, and the array `#[1]`. The parameter `useRaw` controls how the resulting
numeral is represented. If `useRaw := false`, then `mkNatLit` is used, otherwise `mkRawNatLit`.
Recall that `mkNatLit` uses the `OfNat.ofNat` application which is the canonical way of representing numerals
in the elaborator and tactic framework. We `useRaw := false` in the compiler (aka code generator).
-/
def constructorApp? (env : Environment) (e : Expr) (useRaw := false) : Option (ConstructorVal × Array Expr) := do
match e with
| Expr.lit (Literal.natVal n) =>
if n == 0 then do
let v ← getConstructorVal? env `Nat.zero
pure (v, #[])
else do
let v ← getConstructorVal? env `Nat.succ
pure (v, #[if useRaw then mkRawNatLit (n-1) else mkNatLit (n-1)])
| _ =>
match e.getAppFn with
| Expr.const n _ => do
let v ← getConstructorVal? env n
if v.numParams + v.numFields == e.getAppNumArgs then
pure (v, e.getAppArgs)
else
none
| _ => none
end Lean.Expr
|
d072ffa5df712e032ccdbccc978e99292f7436e0
|
01ae0d022f2e2fefdaaa898938c1ac1fbce3b3ab
|
/categories/util/hlist.lean
|
21a66fa572b599e26721889e89396e0cdb84e98c
|
[] |
no_license
|
PatrickMassot/lean-category-theory
|
0f56a83464396a253c28a42dece16c93baf8ad74
|
ef239978e91f2e1c3b8e88b6e9c64c155dc56c99
|
refs/heads/master
| 1,629,739,187,316
| 1,512,422,659,000
| 1,512,422,659,000
| 113,098,786
| 0
| 0
| null | 1,512,424,022,000
| 1,512,424,022,000
| null |
UTF-8
|
Lean
| false
| false
| 1,004
|
lean
|
-- Copyright (c) 2017 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Scott Morrison
namespace categories.util
inductive {u} hlist : list (Type u) → Type (u+1)
| nil : hlist []
| cons : Π {α : Type u} {l : list (Type u)}, α → hlist l → hlist (α::l)
notation a :: b := hlist.cons a b
notation `[` l:(foldr `, ` (h t, hlist.cons h t) hlist.nil `]`) := l
definition hlist.indexed_map { α : Type } { Z W : α → Type } ( f : Π { a : α } ( z : Z a ), W a ) : Π ( X : list α ), hlist (X.map Z) → hlist (X.map W)
| list.nil hlist.nil := hlist.nil
| (list.cons a X) (hlist.cons z H) := hlist.cons (f z) (hlist.indexed_map X H)
-- PROJECT perhaps someone has already done this?
-- definition {u} hlist.zip : Π { α β : list (Type u) } ( L : hlist α ) ( R: hlist β ), hlist ((α.zip β).map (λ p, p.1 × p.2))
-- | _ list.nil _ hlist.nil := hlist.nil
-- | list.nil _ hlist.nil _ := hlist.nil
end categories.util
|
78a82873f25315cc5f71f35942db563f98c64438
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/algebra/group_power/basic.lean
|
6448fec7ca7dc1e3aaaa1be2749ad1ceaa563eba
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 11,978
|
lean
|
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Robert Y. Lewis
-/
import algebra.divisibility
import algebra.group.commute
import data.nat.basic
/-!
# Power operations on monoids and groups
The power operation on monoids and groups.
We separate this from group, because it depends on `ℕ`,
which in turn depends on other parts of algebra.
This module contains lemmas about `a ^ n` and `n • a`, where `n : ℕ` or `n : ℤ`.
Further lemmas can be found in `algebra.group_power.lemmas`.
The analogous results for groups with zero can be found in `algebra.group_with_zero.power`.
## Notation
- `a ^ n` is used as notation for `has_pow.pow a n`; in this file `n : ℕ` or `n : ℤ`.
- `n • a` is used as notation for `has_smul.smul n a`; in this file `n : ℕ` or `n : ℤ`.
## Implementation details
We adopt the convention that `0^0 = 1`.
-/
universes u v w x y z u₁ u₂
variables {α : Type*} {M : Type u} {N : Type v} {G : Type w} {H : Type x} {A : Type y} {B : Type z}
{R : Type u₁} {S : Type u₂}
/-!
### Commutativity
First we prove some facts about `semiconj_by` and `commute`. They do not require any theory about
`pow` and/or `nsmul` and will be useful later in this file.
-/
section has_pow
variables [has_pow M ℕ]
@[simp] lemma pow_ite (P : Prop) [decidable P] (a : M) (b c : ℕ) :
a ^ (if P then b else c) = if P then a ^ b else a ^ c :=
by split_ifs; refl
@[simp] lemma ite_pow (P : Prop) [decidable P] (a b : M) (c : ℕ) :
(if P then a else b) ^ c = if P then a ^ c else b ^ c :=
by split_ifs; refl
end has_pow
section monoid
variables [monoid M] [monoid N] [add_monoid A] [add_monoid B]
@[simp, to_additive one_nsmul]
theorem pow_one (a : M) : a^1 = a :=
by rw [pow_succ, pow_zero, mul_one]
/-- Note that most of the lemmas about powers of two refer to it as `sq`. -/
@[to_additive two_nsmul, nolint to_additive_doc]
theorem pow_two (a : M) : a^2 = a * a :=
by rw [pow_succ, pow_one]
alias pow_two ← sq
@[to_additive]
theorem pow_mul_comm' (a : M) (n : ℕ) : a^n * a = a * a^n := commute.pow_self a n
@[to_additive add_nsmul]
theorem pow_add (a : M) (m n : ℕ) : a^(m + n) = a^m * a^n :=
by induction n with n ih; [rw [nat.add_zero, pow_zero, mul_one],
rw [pow_succ', ← mul_assoc, ← ih, ← pow_succ', nat.add_assoc]]
@[simp] lemma pow_boole (P : Prop) [decidable P] (a : M) :
a ^ (if P then 1 else 0) = if P then a else 1 :=
by simp
-- the attributes are intentionally out of order. `smul_zero` proves `nsmul_zero`.
@[to_additive nsmul_zero, simp] theorem one_pow (n : ℕ) : (1 : M)^n = 1 :=
by induction n with n ih; [exact pow_zero _, rw [pow_succ, ih, one_mul]]
@[to_additive mul_nsmul']
theorem pow_mul (a : M) (m n : ℕ) : a^(m * n) = (a^m)^n :=
begin
induction n with n ih,
{ rw [nat.mul_zero, pow_zero, pow_zero] },
{ rw [nat.mul_succ, pow_add, pow_succ', ih] }
end
@[to_additive nsmul_left_comm]
lemma pow_right_comm (a : M) (m n : ℕ) : (a^m)^n = (a^n)^m :=
by rw [←pow_mul, nat.mul_comm, pow_mul]
@[to_additive mul_nsmul]
theorem pow_mul' (a : M) (m n : ℕ) : a^(m * n) = (a^n)^m :=
by rw [nat.mul_comm, pow_mul]
@[to_additive nsmul_add_sub_nsmul]
theorem pow_mul_pow_sub (a : M) {m n : ℕ} (h : m ≤ n) : a ^ m * a ^ (n - m) = a ^ n :=
by rw [←pow_add, nat.add_comm, tsub_add_cancel_of_le h]
@[to_additive sub_nsmul_nsmul_add]
theorem pow_sub_mul_pow (a : M) {m n : ℕ} (h : m ≤ n) : a ^ (n - m) * a ^ m = a ^ n :=
by rw [←pow_add, tsub_add_cancel_of_le h]
/-- If `x ^ n = 1`, then `x ^ m` is the same as `x ^ (m % n)` -/
@[to_additive nsmul_eq_mod_nsmul "If `n • x = 0`, then `m • x` is the same as `(m % n) • x`"]
lemma pow_eq_pow_mod {M : Type*} [monoid M] {x : M} (m : ℕ) {n : ℕ} (h : x ^ n = 1) :
x ^ m = x ^ (m % n) :=
begin
have t := congr_arg (λ a, x ^ a) (nat.div_add_mod m n).symm,
dsimp at t,
rw [t, pow_add, pow_mul, h, one_pow, one_mul],
end
@[to_additive bit0_nsmul]
theorem pow_bit0 (a : M) (n : ℕ) : a ^ bit0 n = a^n * a^n := pow_add _ _ _
@[to_additive bit1_nsmul]
theorem pow_bit1 (a : M) (n : ℕ) : a ^ bit1 n = a^n * a^n * a :=
by rw [bit1, pow_succ', pow_bit0]
@[to_additive]
theorem pow_mul_comm (a : M) (m n : ℕ) : a^m * a^n = a^n * a^m :=
commute.pow_pow_self a m n
@[to_additive]
lemma commute.mul_pow {a b : M} (h : commute a b) (n : ℕ) : (a * b) ^ n = a ^ n * b ^ n :=
nat.rec_on n (by simp only [pow_zero, one_mul]) $ λ n ihn,
by simp only [pow_succ, ihn, ← mul_assoc, (h.pow_left n).right_comm]
@[to_additive bit0_nsmul']
theorem pow_bit0' (a : M) (n : ℕ) : a ^ bit0 n = (a * a) ^ n :=
by rw [pow_bit0, (commute.refl a).mul_pow]
@[to_additive bit1_nsmul']
theorem pow_bit1' (a : M) (n : ℕ) : a ^ bit1 n = (a * a) ^ n * a :=
by rw [bit1, pow_succ', pow_bit0']
@[to_additive]
lemma pow_mul_pow_eq_one {a b : M} (n : ℕ) (h : a * b = 1) :
a ^ n * b ^ n = 1 :=
begin
induction n with n hn,
{ simp },
{ calc a ^ n.succ * b ^ n.succ = a ^ n * a * (b * b ^ n) : by rw [pow_succ', pow_succ]
... = a ^ n * (a * b) * b ^ n : by simp only [mul_assoc]
... = 1 : by simp [h, hn] }
end
lemma dvd_pow {x y : M} (hxy : x ∣ y) :
∀ {n : ℕ} (hn : n ≠ 0), x ∣ y^n
| 0 hn := (hn rfl).elim
| (n + 1) hn := by { rw pow_succ, exact hxy.mul_right _ }
alias dvd_pow ← has_dvd.dvd.pow
lemma dvd_pow_self (a : M) {n : ℕ} (hn : n ≠ 0) : a ∣ a^n :=
dvd_rfl.pow hn
end monoid
/-!
### Commutative (additive) monoid
-/
section comm_monoid
variables [comm_monoid M] [add_comm_monoid A]
@[to_additive nsmul_add]
theorem mul_pow (a b : M) (n : ℕ) : (a * b)^n = a^n * b^n :=
(commute.all a b).mul_pow n
/-- The `n`th power map on a commutative monoid for a natural `n`, considered as a morphism of
monoids. -/
@[to_additive "Multiplication by a natural `n` on a commutative additive
monoid, considered as a morphism of additive monoids.", simps]
def pow_monoid_hom (n : ℕ) : M →* M :=
{ to_fun := (^ n),
map_one' := one_pow _,
map_mul' := λ a b, mul_pow a b n }
-- the below line causes the linter to complain :-/
-- attribute [simps] pow_monoid_hom nsmul_add_monoid_hom
end comm_monoid
section div_inv_monoid
variable [div_inv_monoid G]
open int
@[simp, to_additive one_zsmul]
theorem zpow_one (a : G) : a ^ (1:ℤ) = a :=
by { convert pow_one a using 1, exact zpow_coe_nat a 1 }
@[to_additive two_zsmul]
theorem zpow_two (a : G) : a ^ (2 : ℤ) = a * a :=
by { convert pow_two a using 1, exact zpow_coe_nat a 2 }
@[to_additive neg_one_zsmul]
theorem zpow_neg_one (x : G) : x ^ (-1:ℤ) = x⁻¹ :=
(zpow_neg_succ_of_nat x 0).trans $ congr_arg has_inv.inv (pow_one x)
@[to_additive]
theorem zpow_neg_coe_of_pos (a : G) : ∀ {n : ℕ}, 0 < n → a ^ -(n:ℤ) = (a ^ n)⁻¹
| (n+1) _ := zpow_neg_succ_of_nat _ _
end div_inv_monoid
section division_monoid
variables [division_monoid α] {a b : α}
@[simp, to_additive] lemma inv_pow (a : α) : ∀ n : ℕ, (a⁻¹) ^ n = (a ^ n)⁻¹
| 0 := by rw [pow_zero, pow_zero, inv_one]
| (n + 1) := by rw [pow_succ', pow_succ, inv_pow, mul_inv_rev]
-- the attributes are intentionally out of order. `smul_zero` proves `zsmul_zero`.
@[to_additive zsmul_zero, simp] lemma one_zpow : ∀ (n : ℤ), (1 : α) ^ n = 1
| (n : ℕ) := by rw [zpow_coe_nat, one_pow]
| -[1+ n] := by rw [zpow_neg_succ_of_nat, one_pow, inv_one]
@[simp, to_additive neg_zsmul] lemma zpow_neg (a : α) : ∀ (n : ℤ), a ^ -n = (a ^ n)⁻¹
| (n+1:ℕ) := div_inv_monoid.zpow_neg' _ _
| 0 := by { change a ^ (0 : ℤ) = (a ^ (0 : ℤ))⁻¹, simp }
| -[1+ n] := by { rw [zpow_neg_succ_of_nat, inv_inv, ← zpow_coe_nat], refl }
@[to_additive neg_one_zsmul_add]
lemma mul_zpow_neg_one (a b : α) : (a * b) ^ (-1 : ℤ) = b ^ (-1 : ℤ) * a ^ (-1 : ℤ) :=
by simp_rw [zpow_neg_one, mul_inv_rev]
@[to_additive zsmul_neg] lemma inv_zpow (a : α) : ∀ n : ℤ, a⁻¹ ^ n = (a ^ n)⁻¹
| (n : ℕ) := by rw [zpow_coe_nat, zpow_coe_nat, inv_pow]
| -[1+ n] := by rw [zpow_neg_succ_of_nat, zpow_neg_succ_of_nat, inv_pow]
@[simp, to_additive zsmul_neg']
lemma inv_zpow' (a : α) (n : ℤ) : a⁻¹ ^ n = a ^ (-n) := by rw [inv_zpow, zpow_neg]
@[to_additive nsmul_zero_sub]
lemma one_div_pow (a : α) (n : ℕ) : (1 / a) ^ n = 1 / a ^ n := by simp_rw [one_div, inv_pow]
@[to_additive zsmul_zero_sub]
lemma one_div_zpow (a : α) (n : ℤ) : (1 / a) ^ n = 1 / a ^ n := by simp_rw [one_div, inv_zpow]
@[to_additive add_commute.zsmul_add]
protected lemma commute.mul_zpow (h : commute a b) : ∀ (i : ℤ), (a * b) ^ i = a ^ i * b ^ i
| (n : ℕ) := by simp [h.mul_pow n]
| -[1+n] := by simp [h.mul_pow, (h.pow_pow _ _).eq, mul_inv_rev]
end division_monoid
section division_comm_monoid
variables [division_comm_monoid α]
@[to_additive zsmul_add] lemma mul_zpow (a b : α) : ∀ n : ℤ, (a * b) ^ n = a ^ n * b ^ n :=
(commute.all a b).mul_zpow
@[simp, to_additive nsmul_sub] lemma div_pow (a b : α) (n : ℕ) : (a / b) ^ n = a ^ n / b ^ n :=
by simp only [div_eq_mul_inv, mul_pow, inv_pow]
@[simp, to_additive zsmul_sub] lemma div_zpow (a b : α) (n : ℤ) : (a / b) ^ n = a ^ n / b ^ n :=
by simp only [div_eq_mul_inv, mul_zpow, inv_zpow]
/-- The `n`-th power map (for an integer `n`) on a commutative group, considered as a group
homomorphism. -/
@[to_additive "Multiplication by an integer `n` on a commutative additive group, considered as an
additive group homomorphism.", simps]
def zpow_group_hom (n : ℤ) : α →* α :=
{ to_fun := (^ n),
map_one' := one_zpow n,
map_mul' := λ a b, mul_zpow a b n }
end division_comm_monoid
section group
variables [group G] [group H] [add_group A] [add_group B]
@[to_additive sub_nsmul] lemma pow_sub (a : G) {m n : ℕ} (h : n ≤ m) : a^(m - n) = a^m * (a^n)⁻¹ :=
eq_mul_inv_of_mul_eq $ by rw [←pow_add, tsub_add_cancel_of_le h]
@[to_additive] lemma pow_inv_comm (a : G) (m n : ℕ) : (a⁻¹)^m * a^n = a^n * (a⁻¹)^m :=
(commute.refl a).inv_left.pow_pow _ _
@[to_additive sub_nsmul_neg]
lemma inv_pow_sub (a : G) {m n : ℕ} (h : n ≤ m) : a⁻¹^(m - n) = (a^m)⁻¹ * a^n :=
by rw [pow_sub a⁻¹ h, inv_pow, inv_pow, inv_inv]
end group
lemma pow_dvd_pow [monoid R] (a : R) {m n : ℕ} (h : m ≤ n) :
a ^ m ∣ a ^ n := ⟨a ^ (n - m), by rw [← pow_add, nat.add_comm, tsub_add_cancel_of_le h]⟩
theorem pow_dvd_pow_of_dvd [comm_monoid R] {a b : R} (h : a ∣ b) : ∀ n : ℕ, a ^ n ∣ b ^ n
| 0 := by rw [pow_zero, pow_zero]
| (n+1) := by { rw [pow_succ, pow_succ], exact mul_dvd_mul h (pow_dvd_pow_of_dvd n) }
lemma of_add_nsmul [add_monoid A] (x : A) (n : ℕ) :
multiplicative.of_add (n • x) = (multiplicative.of_add x)^n := rfl
lemma of_add_zsmul [sub_neg_monoid A] (x : A) (n : ℤ) :
multiplicative.of_add (n • x) = (multiplicative.of_add x)^n := rfl
lemma of_mul_pow [monoid A] (x : A) (n : ℕ) :
additive.of_mul (x ^ n) = n • (additive.of_mul x) := rfl
lemma of_mul_zpow [div_inv_monoid G] (x : G) (n : ℤ) :
additive.of_mul (x ^ n) = n • additive.of_mul x :=
rfl
@[simp, to_additive]
lemma semiconj_by.zpow_right [group G] {a x y : G} (h : semiconj_by a x y) :
∀ m : ℤ, semiconj_by a (x^m) (y^m)
| (n : ℕ) := by simp [zpow_coe_nat, h.pow_right n]
| -[1+n] := by simp [(h.pow_right n.succ).inv_right]
namespace commute
variables [group G] {a b : G}
@[simp, to_additive] lemma zpow_right (h : commute a b) (m : ℤ) : commute a (b^m) := h.zpow_right m
@[simp, to_additive] lemma zpow_left (h : commute a b) (m : ℤ) : commute (a^m) b :=
(h.symm.zpow_right m).symm
@[to_additive]
lemma zpow_zpow (h : commute a b) (m n : ℤ) : commute (a^m) (b^n) := (h.zpow_left m).zpow_right n
variables (a) (m n : ℤ)
@[simp, to_additive] lemma self_zpow : commute a (a ^ n) := (commute.refl a).zpow_right n
@[simp, to_additive] lemma zpow_self : commute (a ^ n) a := (commute.refl a).zpow_left n
@[simp, to_additive] lemma zpow_zpow_self : commute (a ^ m) (a ^ n) :=
(commute.refl a).zpow_zpow m n
end commute
|
75bf2f844f92511137acdc24389c6ca4c7ec4d51
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/group_theory/p_group.lean
|
e7114d7c0122554eb6d605659eaf27dd57580e6f
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 14,663
|
lean
|
/-
Copyright (c) 2018 . All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Thomas Browning
-/
import data.zmod.basic
import group_theory.index
import group_theory.group_action.conj_act
import group_theory.group_action.quotient
import group_theory.perm.cycle.type
import group_theory.specific_groups.cyclic
import tactic.interval_cases
/-!
# p-groups
This file contains a proof that if `G` is a `p`-group acting on a finite set `α`,
then the number of fixed points of the action is congruent mod `p` to the cardinality of `α`.
It also contains proofs of some corollaries of this lemma about existence of fixed points.
-/
open_locale big_operators
open fintype mul_action
variables (p : ℕ) (G : Type*) [group G]
/-- A p-group is a group in which every element has prime power order -/
def is_p_group : Prop := ∀ g : G, ∃ k : ℕ, g ^ (p ^ k) = 1
variables {p} {G}
namespace is_p_group
lemma iff_order_of [hp : fact p.prime] :
is_p_group p G ↔ ∀ g : G, ∃ k : ℕ, order_of g = p ^ k :=
forall_congr (λ g, ⟨λ ⟨k, hk⟩, exists_imp_exists (by exact λ j, Exists.snd)
((nat.dvd_prime_pow hp.out).mp (order_of_dvd_of_pow_eq_one hk)),
exists_imp_exists (λ k hk, by rw [←hk, pow_order_of_eq_one])⟩)
lemma of_card [fintype G] {n : ℕ} (hG : card G = p ^ n) : is_p_group p G :=
λ g, ⟨n, by rw [←hG, pow_card_eq_one]⟩
lemma of_bot : is_p_group p (⊥ : subgroup G) :=
of_card (subgroup.card_bot.trans (pow_zero p).symm)
lemma iff_card [fact p.prime] [fintype G] :
is_p_group p G ↔ ∃ n : ℕ, card G = p ^ n :=
begin
have hG : card G ≠ 0 := card_ne_zero,
refine ⟨λ h, _, λ ⟨n, hn⟩, of_card hn⟩,
suffices : ∀ q ∈ nat.factors (card G), q = p,
{ use (card G).factors.length,
rw [←list.prod_repeat, ←list.eq_repeat_of_mem this, nat.prod_factors hG] },
intros q hq,
obtain ⟨hq1, hq2⟩ := (nat.mem_factors hG).mp hq,
haveI : fact q.prime := ⟨hq1⟩,
obtain ⟨g, hg⟩ := exists_prime_order_of_dvd_card q hq2,
obtain ⟨k, hk⟩ := (iff_order_of.mp h) g,
exact (hq1.pow_eq_iff.mp (hg.symm.trans hk).symm).1.symm,
end
section G_is_p_group
variables (hG : is_p_group p G)
include hG
lemma of_injective {H : Type*} [group H] (ϕ : H →* G) (hϕ : function.injective ϕ) :
is_p_group p H :=
begin
simp_rw [is_p_group, ←hϕ.eq_iff, ϕ.map_pow, ϕ.map_one],
exact λ h, hG (ϕ h),
end
lemma to_subgroup (H : subgroup G) : is_p_group p H :=
hG.of_injective H.subtype subtype.coe_injective
lemma of_surjective {H : Type*} [group H] (ϕ : G →* H) (hϕ : function.surjective ϕ) :
is_p_group p H :=
begin
refine λ h, exists.elim (hϕ h) (λ g hg, exists_imp_exists (λ k hk, _) (hG g)),
rw [←hg, ←ϕ.map_pow, hk, ϕ.map_one],
end
lemma to_quotient (H : subgroup G) [H.normal] :
is_p_group p (G ⧸ H) :=
hG.of_surjective (quotient_group.mk' H) quotient.surjective_quotient_mk'
lemma of_equiv {H : Type*} [group H] (ϕ : G ≃* H) : is_p_group p H :=
hG.of_surjective ϕ.to_monoid_hom ϕ.surjective
variables [hp : fact p.prime]
include hp
lemma index (H : subgroup G) [finite (G ⧸ H)] :
∃ n : ℕ, H.index = p ^ n :=
begin
casesI nonempty_fintype (G ⧸ H),
obtain ⟨n, hn⟩ := iff_card.mp (hG.to_quotient H.normal_core),
obtain ⟨k, hk1, hk2⟩ := (nat.dvd_prime_pow hp.out).mp ((congr_arg _
(H.normal_core.index_eq_card.trans hn)).mp (subgroup.index_dvd_of_le H.normal_core_le)),
exact ⟨k, hk2⟩,
end
lemma nontrivial_iff_card [fintype G] : nontrivial G ↔ ∃ n > 0, card G = p ^ n :=
⟨λ hGnt, let ⟨k, hk⟩ := iff_card.1 hG in ⟨k, nat.pos_of_ne_zero $ λ hk0,
by rw [hk0, pow_zero] at hk; exactI fintype.one_lt_card.ne' hk, hk⟩,
λ ⟨k, hk0, hk⟩, one_lt_card_iff_nontrivial.1 $ hk.symm ▸
one_lt_pow (fact.out p.prime).one_lt (ne_of_gt hk0)⟩
variables {α : Type*} [mul_action G α]
lemma card_orbit (a : α) [fintype (orbit G a)] :
∃ n : ℕ, card (orbit G a) = p ^ n :=
begin
let ϕ := orbit_equiv_quotient_stabilizer G a,
haveI := fintype.of_equiv (orbit G a) ϕ,
rw [card_congr ϕ, ←subgroup.index_eq_card],
exact hG.index (stabilizer G a),
end
variables (α) [fintype α]
/-- If `G` is a `p`-group acting on a finite set `α`, then the number of fixed points
of the action is congruent mod `p` to the cardinality of `α` -/
lemma card_modeq_card_fixed_points [fintype (fixed_points G α)] :
card α ≡ card (fixed_points G α) [MOD p] :=
begin
classical,
calc card α = card (Σ y : quotient (orbit_rel G α), {x // quotient.mk' x = y}) :
card_congr (equiv.sigma_fiber_equiv (@quotient.mk' _ (orbit_rel G α))).symm
... = ∑ a : quotient (orbit_rel G α), card {x // quotient.mk' x = a} : card_sigma _
... ≡ ∑ a : fixed_points G α, 1 [MOD p] : _
... = _ : by simp; refl,
rw [←zmod.eq_iff_modeq_nat p, nat.cast_sum, nat.cast_sum],
have key : ∀ x, card {y // (quotient.mk' y : quotient (orbit_rel G α)) = quotient.mk' x} =
card (orbit G x) := λ x, by simp only [quotient.eq']; congr,
refine eq.symm (finset.sum_bij_ne_zero (λ a _ _, quotient.mk' a.1) (λ _ _ _, finset.mem_univ _)
(λ a₁ a₂ _ _ _ _ h, subtype.eq ((mem_fixed_points' α).mp a₂.2 a₁.1 (quotient.exact' h)))
(λ b, quotient.induction_on' b (λ b _ hb, _)) (λ a ha _, by
{ rw [key, mem_fixed_points_iff_card_orbit_eq_one.mp a.2] })),
obtain ⟨k, hk⟩ := hG.card_orbit b,
have : k = 0 := le_zero_iff.1 (nat.le_of_lt_succ (lt_of_not_ge (mt (pow_dvd_pow p)
(by rwa [pow_one, ←hk, ←nat.modeq_zero_iff_dvd, ←zmod.eq_iff_modeq_nat, ←key,
nat.cast_zero])))),
exact ⟨⟨b, mem_fixed_points_iff_card_orbit_eq_one.2 $ by rw [hk, this, pow_zero]⟩,
finset.mem_univ _, (ne_of_eq_of_ne nat.cast_one one_ne_zero), rfl⟩,
end
/-- If a p-group acts on `α` and the cardinality of `α` is not a multiple
of `p` then the action has a fixed point. -/
lemma nonempty_fixed_point_of_prime_not_dvd_card (hpα : ¬ p ∣ card α)
[finite (fixed_points G α)] :
(fixed_points G α).nonempty :=
@set.nonempty_of_nonempty_subtype _ _ begin
casesI nonempty_fintype (fixed_points G α),
rw [←card_pos_iff, pos_iff_ne_zero],
contrapose! hpα,
rw [←nat.modeq_zero_iff_dvd, ←hpα],
exact hG.card_modeq_card_fixed_points α,
end
/-- If a p-group acts on `α` and the cardinality of `α` is a multiple
of `p`, and the action has one fixed point, then it has another fixed point. -/
lemma exists_fixed_point_of_prime_dvd_card_of_fixed_point
(hpα : p ∣ card α) {a : α} (ha : a ∈ fixed_points G α) :
∃ b, b ∈ fixed_points G α ∧ a ≠ b :=
begin
casesI nonempty_fintype (fixed_points G α),
have hpf : p ∣ card (fixed_points G α) :=
nat.modeq_zero_iff_dvd.mp ((hG.card_modeq_card_fixed_points α).symm.trans hpα.modeq_zero_nat),
have hα : 1 < card (fixed_points G α) :=
(fact.out p.prime).one_lt.trans_le (nat.le_of_dvd (card_pos_iff.2 ⟨⟨a, ha⟩⟩) hpf),
exact let ⟨⟨b, hb⟩, hba⟩ := exists_ne_of_one_lt_card hα ⟨a, ha⟩ in
⟨b, hb, λ hab, hba (by simp_rw [hab])⟩
end
lemma center_nontrivial [nontrivial G] [finite G] : nontrivial (subgroup.center G) :=
begin
classical,
casesI nonempty_fintype G,
have := (hG.of_equiv conj_act.to_conj_act).exists_fixed_point_of_prime_dvd_card_of_fixed_point G,
rw conj_act.fixed_points_eq_center at this,
obtain ⟨g, hg⟩ := this _ (subgroup.center G).one_mem,
{ exact ⟨⟨1, ⟨g, hg.1⟩, mt subtype.ext_iff.mp hg.2⟩⟩ },
{ obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp infer_instance,
exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0) },
end
lemma bot_lt_center [nontrivial G] [finite G] : ⊥ < subgroup.center G :=
begin
haveI := center_nontrivial hG,
casesI nonempty_fintype G,
classical,
exact bot_lt_iff_ne_bot.mpr ((subgroup.center G).one_lt_card_iff_ne_bot.mp fintype.one_lt_card),
end
end G_is_p_group
lemma to_le {H K : subgroup G} (hK : is_p_group p K) (hHK : H ≤ K) : is_p_group p H :=
hK.of_injective (subgroup.inclusion hHK) (λ a b h, subtype.ext (show _, from subtype.ext_iff.mp h))
lemma to_inf_left {H K : subgroup G} (hH : is_p_group p H) : is_p_group p (H ⊓ K : subgroup G) :=
hH.to_le inf_le_left
lemma to_inf_right {H K : subgroup G} (hK : is_p_group p K) : is_p_group p (H ⊓ K : subgroup G) :=
hK.to_le inf_le_right
lemma map {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
(ϕ : G →* K) : is_p_group p (H.map ϕ) :=
begin
rw [←H.subtype_range, monoid_hom.map_range],
exact hH.of_surjective (ϕ.restrict H).range_restrict (ϕ.restrict H).range_restrict_surjective,
end
lemma comap_of_ker_is_p_group {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
(ϕ : K →* G) (hϕ : is_p_group p ϕ.ker) : is_p_group p (H.comap ϕ) :=
begin
intro g,
obtain ⟨j, hj⟩ := hH ⟨ϕ g.1, g.2⟩,
rw [subtype.ext_iff, H.coe_pow, subtype.coe_mk, ←ϕ.map_pow] at hj,
obtain ⟨k, hk⟩ := hϕ ⟨g.1 ^ p ^ j, hj⟩,
rwa [subtype.ext_iff, ϕ.ker.coe_pow, subtype.coe_mk, ←pow_mul, ←pow_add] at hk,
exact ⟨j + k, by rwa [subtype.ext_iff, (H.comap ϕ).coe_pow]⟩,
end
lemma ker_is_p_group_of_injective {K : Type*} [group K] {ϕ : K →* G} (hϕ : function.injective ϕ) :
is_p_group p ϕ.ker :=
(congr_arg (λ Q : subgroup K, is_p_group p Q) (ϕ.ker_eq_bot_iff.mpr hϕ)).mpr is_p_group.of_bot
lemma comap_of_injective {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
(ϕ : K →* G) (hϕ : function.injective ϕ) : is_p_group p (H.comap ϕ) :=
hH.comap_of_ker_is_p_group ϕ (ker_is_p_group_of_injective hϕ)
lemma comap_subtype {H : subgroup G} (hH : is_p_group p H) {K : subgroup G} :
is_p_group p (H.comap K.subtype) :=
hH.comap_of_injective K.subtype subtype.coe_injective
lemma to_sup_of_normal_right {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
[K.normal] : is_p_group p (H ⊔ K : subgroup G) :=
begin
rw [←quotient_group.ker_mk K, ←subgroup.comap_map_eq],
apply (hH.map (quotient_group.mk' K)).comap_of_ker_is_p_group,
rwa quotient_group.ker_mk,
end
lemma to_sup_of_normal_left {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
[H.normal] : is_p_group p (H ⊔ K : subgroup G) :=
(congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right hK hH)
lemma to_sup_of_normal_right' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
(hHK : H ≤ K.normalizer) : is_p_group p (H ⊔ K : subgroup G) :=
let hHK' := to_sup_of_normal_right (hH.of_equiv (subgroup.comap_subtype_equiv_of_le hHK).symm)
(hK.of_equiv (subgroup.comap_subtype_equiv_of_le subgroup.le_normalizer).symm) in
((congr_arg (λ H : subgroup K.normalizer, is_p_group p H)
(subgroup.sup_subgroup_of_eq hHK subgroup.le_normalizer)).mp hHK').of_equiv
(subgroup.comap_subtype_equiv_of_le (sup_le hHK subgroup.le_normalizer))
lemma to_sup_of_normal_left' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
(hHK : K ≤ H.normalizer) : is_p_group p (H ⊔ K : subgroup G) :=
(congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right' hK hH hHK)
/-- finite p-groups with different p have coprime orders -/
lemma coprime_card_of_ne {G₂ : Type*} [group G₂]
(p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂)
(H₁ : subgroup G) (H₂ : subgroup G₂) [fintype H₁] [fintype H₂]
(hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) :
nat.coprime (fintype.card H₁) (fintype.card H₂) :=
begin
obtain ⟨n₁, heq₁⟩ := iff_card.mp hH₁, rw heq₁, clear heq₁,
obtain ⟨n₂, heq₂⟩ := iff_card.mp hH₂, rw heq₂, clear heq₂,
exact nat.coprime_pow_primes _ _ (hp₁.elim) (hp₂.elim) hne,
end
/-- p-groups with different p are disjoint -/
lemma disjoint_of_ne (p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂)
(H₁ H₂ : subgroup G) (hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) :
disjoint H₁ H₂ :=
begin
rintro x ⟨hx₁, hx₂⟩,
rw subgroup.mem_bot,
obtain ⟨n₁, hn₁⟩ := iff_order_of.mp hH₁ ⟨x, hx₁⟩,
obtain ⟨n₂, hn₂⟩ := iff_order_of.mp hH₂ ⟨x, hx₂⟩,
rw [← order_of_subgroup, subgroup.coe_mk] at hn₁ hn₂,
have : p₁ ^ n₁ = p₂ ^ n₂, by rw [← hn₁, ← hn₂],
have : n₁ = 0,
{ contrapose! hne with h,
rw ← associated_iff_eq at this ⊢,
exact associated.of_pow_associated_of_prime
(nat.prime_iff.mp hp₁.elim) (nat.prime_iff.mp hp₂.elim) (ne.bot_lt h) this },
simpa [this] using hn₁,
end
section p2comm
variables [fintype G] [fact p.prime] {n : ℕ} (hGpn : card G = p ^ n)
include hGpn
open subgroup
/-- The cardinality of the `center` of a `p`-group is `p ^ k` where `k` is positive. -/
lemma card_center_eq_prime_pow (hn : 0 < n) [fintype (center G)] :
∃ k > 0, card (center G) = p ^ k :=
begin
have hcG := to_subgroup (of_card hGpn) (center G),
rcases iff_card.1 hcG with ⟨k, hk⟩,
haveI : nontrivial G := (nontrivial_iff_card $ of_card hGpn).2 ⟨n, hn, hGpn⟩,
exact (nontrivial_iff_card hcG).mp (center_nontrivial (of_card hGpn)),
end
omit hGpn
/-- The quotient by the center of a group of cardinality `p ^ 2` is cyclic. -/
lemma cyclic_center_quotient_of_card_eq_prime_sq (hG : card G = p ^ 2) :
is_cyclic (G ⧸ (center G)) :=
begin
classical,
rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩,
rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG,
have hk2 := (nat.pow_dvd_pow_iff_le_right (fact.out p.prime).one_lt).1 ⟨_, hG.symm⟩,
interval_cases k,
{ rw [sq, pow_one, nat.mul_right_inj (fact.out p.prime).pos] at hG,
exact is_cyclic_of_prime_card hG },
{ exact @is_cyclic_of_subsingleton _ _ ⟨fintype.card_le_one_iff.1 ((nat.mul_right_inj
(pow_pos (fact.out p.prime).pos 2)).1 (hG.trans (mul_one (p ^ 2)).symm)).le⟩ },
end
/-- A group of order `p ^ 2` is commutative. See also `is_p_group.commutative_of_card_eq_prime_sq`
for just the proof that `∀ a b, a * b = b * a` -/
def comm_group_of_card_eq_prime_sq (hG : card G = p ^ 2) : comm_group G :=
@comm_group_of_cycle_center_quotient _ _ _ _ (cyclic_center_quotient_of_card_eq_prime_sq hG) _
(quotient_group.ker_mk (center G)).le
/-- A group of order `p ^ 2` is commutative. See also `is_p_group.comm_group_of_card_eq_prime_sq`
for the `comm_group` instance. -/
lemma commutative_of_card_eq_prime_sq (hG : card G = p ^ 2) : ∀ a b : G, a * b = b * a :=
(comm_group_of_card_eq_prime_sq hG).mul_comm
end p2comm
end is_p_group
|
b8eab33c09aea486e02430ab9bfade3db9419131
|
9028d228ac200bbefe3a711342514dd4e4458bff
|
/src/data/padics/padic_integers.lean
|
2adc613e6fa8b6a4b3ceca0297fe6783976a39e1
|
[
"Apache-2.0"
] |
permissive
|
mcncm/mathlib
|
8d25099344d9d2bee62822cb9ed43aa3e09fa05e
|
fde3d78cadeec5ef827b16ae55664ef115e66f57
|
refs/heads/master
| 1,672,743,316,277
| 1,602,618,514,000
| 1,602,618,514,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 19,816
|
lean
|
/-
Copyright (c) 2018 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis, Mario Carneiro, Johan Commelin
-/
import data.int.modeq
import data.zmod.basic
import linear_algebra.adic_completion
import data.padics.padic_numbers
import ring_theory.discrete_valuation_ring
import topology.metric_space.cau_seq_filter
/-!
# p-adic integers
This file defines the p-adic integers `ℤ_p` as the subtype of `ℚ_p` with norm `≤ 1`.
We show that `ℤ_p`
* is complete
* is nonarchimedean
* is a normed ring
* is a local ring
* is a discrete valuation ring
The relation between `ℤ_[p]` and `zmod p` is established in another file.
## Important definitions
* `padic_int` : the type of p-adic numbers
## Notation
We introduce the notation `ℤ_[p]` for the p-adic integers.
## Implementation notes
Much, but not all, of this file assumes that `p` is prime. This assumption is inferred automatically
by taking `[fact (nat.prime p)] as a type class argument.
Coercions into `ℤ_p` are set up to work with the `norm_cast` tactic.
## References
* [F. Q. Gouêva, *p-adic numbers*][gouvea1997]
* [R. Y. Lewis, *A formal proof of Hensel's lemma over the p-adic integers*][lewis2019]
* <https://en.wikipedia.org/wiki/P-adic_number>
## Tags
p-adic, p adic, padic, p-adic integer
-/
open nat padic metric local_ring
noncomputable theory
open_locale classical
/-- The p-adic integers ℤ_p are the p-adic numbers with norm ≤ 1. -/
def padic_int (p : ℕ) [fact p.prime] := {x : ℚ_[p] // ∥x∥ ≤ 1}
notation `ℤ_[`p`]` := padic_int p
namespace padic_int
/-! ### Ring structure and coercion to `ℚ_[p]` -/
variables {p : ℕ} [fact p.prime]
instance : has_coe ℤ_[p] ℚ_[p] := ⟨subtype.val⟩
lemma ext {x y : ℤ_[p]} : (x : ℚ_[p]) = y → x = y := subtype.ext_iff_val.2
/-- Addition on ℤ_p is inherited from ℚ_p. -/
instance : has_add ℤ_[p] :=
⟨λ ⟨x, hx⟩ ⟨y, hy⟩, ⟨x+y,
le_trans (padic_norm_e.nonarchimedean _ _) (max_le_iff.2 ⟨hx,hy⟩)⟩⟩
/-- Multiplication on ℤ_p is inherited from ℚ_p. -/
instance : has_mul ℤ_[p] :=
⟨λ ⟨x, hx⟩ ⟨y, hy⟩, ⟨x*y,
begin rw padic_norm_e.mul, apply mul_le_one; {assumption <|> apply norm_nonneg} end⟩⟩
/-- Negation on ℤ_p is inherited from ℚ_p. -/
instance : has_neg ℤ_[p] :=
⟨λ ⟨x, hx⟩, ⟨-x, by simpa⟩⟩
/-- Zero on ℤ_p is inherited from ℚ_p. -/
instance : has_zero ℤ_[p] :=
⟨⟨0, by norm_num⟩⟩
instance : inhabited ℤ_[p] := ⟨0⟩
/-- One on ℤ_p is inherited from ℚ_p. -/
instance : has_one ℤ_[p] :=
⟨⟨1, by norm_num⟩⟩
@[simp] lemma mk_zero {h} : (⟨0, h⟩ : ℤ_[p]) = (0 : ℤ_[p]) := rfl
@[simp] lemma val_eq_coe (z : ℤ_[p]) : z.val = z := rfl
@[simp, norm_cast] lemma coe_add : ∀ (z1 z2 : ℤ_[p]), ((z1 + z2 : ℤ_[p]) : ℚ_[p]) = z1 + z2
| ⟨_, _⟩ ⟨_, _⟩ := rfl
@[simp, norm_cast] lemma coe_mul : ∀ (z1 z2 : ℤ_[p]), ((z1 * z2 : ℤ_[p]) : ℚ_[p]) = z1 * z2
| ⟨_, _⟩ ⟨_, _⟩ := rfl
@[simp, norm_cast] lemma coe_neg : ∀ (z1 : ℤ_[p]), ((-z1 : ℤ_[p]) : ℚ_[p]) = -z1
| ⟨_, _⟩ := rfl
@[simp, norm_cast] lemma coe_one : ((1 : ℤ_[p]) : ℚ_[p]) = 1 := rfl
@[simp, norm_cast] lemma coe_coe : ∀ n : ℕ, ((n : ℤ_[p]) : ℚ_[p]) = n
| 0 := rfl
| (k+1) := by simp [coe_coe]
@[simp, norm_cast] lemma coe_coe_int : ∀ (z : ℤ), ((z : ℤ_[p]) : ℚ_[p]) = z
| (int.of_nat n) := by simp
| -[1+n] := by simp
@[simp, norm_cast] lemma coe_zero : ((0 : ℤ_[p]) : ℚ_[p]) = 0 := rfl
instance : ring ℤ_[p] :=
begin
refine { add := (+),
mul := (*),
neg := has_neg.neg,
zero := 0,
one := 1,
.. };
intros; ext; simp; ring
end
/-- The coercion from ℤ[p] to ℚ[p] as a ring homomorphism. -/
def coe.ring_hom : ℤ_[p] →+* ℚ_[p] :=
{ to_fun := (coe : ℤ_[p] → ℚ_[p]),
map_zero' := rfl,
map_one' := rfl,
map_mul' := coe_mul,
map_add' := coe_add }
@[simp, norm_cast] lemma coe_sub : ∀ (z1 z2 : ℤ_[p]), (↑(z1 - z2) : ℚ_[p]) = ↑z1 - ↑z2 :=
coe.ring_hom.map_sub
@[simp, norm_cast] lemma coet_pow (x : ℤ_[p]) (n : ℕ) : (↑(x^n) : ℚ_[p]) = (↑x : ℚ_[p])^n :=
coe.ring_hom.map_pow x n
@[simp] lemma mk_coe : ∀ (k : ℤ_[p]), (⟨k, k.2⟩ : ℤ_[p]) = k
| ⟨_, _⟩ := rfl
/-- The inverse of a p-adic integer with norm equal to 1 is also a p-adic integer. Otherwise, the
inverse is defined to be 0. -/
def inv : ℤ_[p] → ℤ_[p]
| ⟨k, _⟩ := if h : ∥k∥ = 1 then ⟨1/k, by simp [h]⟩ else 0
instance : char_zero ℤ_[p] :=
{ cast_injective :=
λ m n h, cast_injective $
show (m:ℚ_[p]) = n, by { rw subtype.ext_iff at h, norm_cast at h, exact h } }
@[simp, norm_cast] lemma coe_int_eq (z1 z2 : ℤ) : (z1 : ℤ_[p]) = z2 ↔ z1 = z2 :=
suffices (z1 : ℚ_[p]) = z2 ↔ z1 = z2, from iff.trans (by norm_cast) this,
by norm_cast
/--
A sequence of integers that is Cauchy with respect to the `p`-adic norm
converges to a `p`-adic integer.
-/
def of_int_seq (seq : ℕ → ℤ) (h : is_cau_seq (padic_norm p) (λ n, seq n)) : ℤ_[p] :=
⟨⟦⟨_, h⟩⟧,
show ↑(padic_seq.norm _) ≤ (1 : ℝ), begin
rw padic_seq.norm,
split_ifs with hne; norm_cast,
{ exact zero_le_one },
{ apply padic_norm.of_int }
end ⟩
end padic_int
namespace padic_int
/-!
### Instances
We now show that `ℤ_[p]` is a
* complete metric space
* normed ring
* integral domain
-/
variables (p : ℕ) [fact p.prime]
instance : metric_space ℤ_[p] := subtype.metric_space
instance complete_space : complete_space ℤ_[p] :=
begin
delta padic_int,
rw [complete_space_iff_is_complete_range uniform_embedding_subtype_coe,
subtype.range_coe_subtype],
have : is_complete (closed_ball (0 : ℚ_[p]) 1) := is_closed_ball.is_complete,
simpa [closed_ball],
end
instance : has_norm ℤ_[p] := ⟨λ z, ∥(z : ℚ_[p])∥⟩
variables {p}
protected lemma mul_comm : ∀ z1 z2 : ℤ_[p], z1*z2 = z2*z1
| ⟨q1, h1⟩ ⟨q2, h2⟩ := show (⟨q1*q2, _⟩ : ℤ_[p]) = ⟨q2*q1, _⟩, by simp [_root_.mul_comm]
protected lemma zero_ne_one : (0 : ℤ_[p]) ≠ 1 :=
show (⟨(0 : ℚ_[p]), _⟩ : ℤ_[p]) ≠ ⟨(1 : ℚ_[p]), _⟩, from mt subtype.ext_iff_val.1 zero_ne_one
protected lemma eq_zero_or_eq_zero_of_mul_eq_zero :
∀ (a b : ℤ_[p]), a * b = 0 → a = 0 ∨ b = 0
| ⟨a, ha⟩ ⟨b, hb⟩ := λ h : (⟨a * b, _⟩ : ℤ_[p]) = ⟨0, _⟩,
have a * b = 0, from subtype.ext_iff_val.1 h,
(mul_eq_zero.1 this).elim
(λ h1, or.inl (by simp [h1]; refl))
(λ h2, or.inr (by simp [h2]; refl))
lemma norm_def {z : ℤ_[p]} : ∥z∥ = ∥(z : ℚ_[p])∥ := rfl
variables (p)
instance : normed_comm_ring ℤ_[p] :=
{ dist_eq := λ ⟨_, _⟩ ⟨_, _⟩, rfl,
norm_mul := λ ⟨_, _⟩ ⟨_, _⟩, norm_mul_le _ _,
mul_comm := padic_int.mul_comm }
instance : norm_one_class ℤ_[p] := ⟨norm_def.trans norm_one⟩
instance : is_absolute_value (λ z : ℤ_[p], ∥z∥) :=
{ abv_nonneg := norm_nonneg,
abv_eq_zero := λ ⟨_, _⟩, by simp [norm_eq_zero],
abv_add := λ ⟨_,_⟩ ⟨_, _⟩, norm_add_le _ _,
abv_mul := λ _ _, by simp only [norm_def, padic_norm_e.mul, padic_int.coe_mul]}
variables {p}
instance : integral_domain ℤ_[p] :=
{ eq_zero_or_eq_zero_of_mul_eq_zero := λ x y, padic_int.eq_zero_or_eq_zero_of_mul_eq_zero x y,
exists_pair_ne := ⟨0, 1, padic_int.zero_ne_one⟩,
.. padic_int.normed_comm_ring p }
end padic_int
namespace padic_int
/-! ### Norm -/
variables {p : ℕ} [fact p.prime]
lemma norm_le_one : ∀ z : ℤ_[p], ∥z∥ ≤ 1
| ⟨_, h⟩ := h
@[simp] lemma norm_mul (z1 z2 : ℤ_[p]) : ∥z1 * z2∥ = ∥z1∥ * ∥z2∥ :=
by simp [norm_def]
@[simp] lemma norm_pow (z : ℤ_[p]) : ∀ n : ℕ, ∥z^n∥ = ∥z∥^n
| 0 := by simp
| (k+1) := show ∥z*z^k∥ = ∥z∥*∥z∥^k, by {rw norm_mul, congr, apply norm_pow}
theorem nonarchimedean : ∀ (q r : ℤ_[p]), ∥q + r∥ ≤ max (∥q∥) (∥r∥)
| ⟨_, _⟩ ⟨_, _⟩ := padic_norm_e.nonarchimedean _ _
theorem norm_add_eq_max_of_ne : ∀ {q r : ℤ_[p]}, ∥q∥ ≠ ∥r∥ → ∥q+r∥ = max (∥q∥) (∥r∥)
| ⟨_, _⟩ ⟨_, _⟩ := padic_norm_e.add_eq_max_of_ne
lemma norm_eq_of_norm_add_lt_right {z1 z2 : ℤ_[p]}
(h : ∥z1 + z2∥ < ∥z2∥) : ∥z1∥ = ∥z2∥ :=
by_contradiction $ λ hne,
not_lt_of_ge (by rw norm_add_eq_max_of_ne hne; apply le_max_right) h
lemma norm_eq_of_norm_add_lt_left {z1 z2 : ℤ_[p]}
(h : ∥z1 + z2∥ < ∥z1∥) : ∥z1∥ = ∥z2∥ :=
by_contradiction $ λ hne,
not_lt_of_ge (by rw norm_add_eq_max_of_ne hne; apply le_max_left) h
@[simp] lemma padic_norm_e_of_padic_int (z : ℤ_[p]) : ∥(↑z : ℚ_[p])∥ = ∥z∥ :=
by simp [norm_def]
lemma norm_int_cast_eq_padic_norm (z : ℤ) : ∥(z : ℤ_[p])∥ = ∥(z : ℚ_[p])∥ :=
by simp [norm_def]
@[simp] lemma norm_eq_padic_norm {q : ℚ_[p]} (hq : ∥q∥ ≤ 1) :
@norm ℤ_[p] _ ⟨q, hq⟩ = ∥q∥ := rfl
@[simp] lemma norm_p : ∥(p : ℤ_[p])∥ = p⁻¹ :=
show ∥((p : ℤ_[p]) : ℚ_[p])∥ = p⁻¹, by exact_mod_cast padic_norm_e.norm_p
@[simp] lemma norm_p_pow (n : ℕ) : ∥(p : ℤ_[p])^n∥ = p^(-n:ℤ) :=
show ∥((p^n : ℤ_[p]) : ℚ_[p])∥ = p^(-n:ℤ),
by { convert padic_norm_e.norm_p_pow n, simp, }
private def cau_seq_to_rat_cau_seq (f : cau_seq ℤ_[p] norm) :
cau_seq ℚ_[p] (λ a, ∥a∥) :=
⟨ λ n, f n,
λ _ hε, by simpa [norm, norm_def] using f.cauchy hε ⟩
variables (p)
instance complete : cau_seq.is_complete ℤ_[p] norm :=
⟨ λ f,
have hqn : ∥cau_seq.lim (cau_seq_to_rat_cau_seq f)∥ ≤ 1,
from padic_norm_e_lim_le zero_lt_one (λ _, norm_le_one _),
⟨ ⟨_, hqn⟩,
λ ε, by simpa [norm, norm_def] using cau_seq.equiv_lim (cau_seq_to_rat_cau_seq f) ε⟩⟩
end padic_int
namespace padic_int
variables (p : ℕ) [hp_prime : fact p.prime]
include hp_prime
lemma exists_pow_neg_lt {ε : ℝ} (hε : 0 < ε) :
∃ (k : ℕ), ↑p ^ -((k : ℕ) : ℤ) < ε :=
begin
obtain ⟨k, hk⟩ := exists_nat_gt ε⁻¹,
use k,
rw ← inv_lt_inv hε (_root_.fpow_pos_of_pos _ _),
{ rw [fpow_neg, inv_inv', fpow_coe_nat],
apply lt_of_lt_of_le hk,
norm_cast,
apply le_of_lt,
convert nat.lt_pow_self _ _ using 1,
exact hp_prime.one_lt },
{ exact_mod_cast hp_prime.pos }
end
lemma exists_pow_neg_lt_rat {ε : ℚ} (hε : 0 < ε) :
∃ (k : ℕ), ↑p ^ -((k : ℕ) : ℤ) < ε :=
begin
obtain ⟨k, hk⟩ := @exists_pow_neg_lt p _ ε (by exact_mod_cast hε),
use k,
rw (show (p : ℝ) = (p : ℚ), by simp) at hk,
exact_mod_cast hk
end
variable {p}
lemma norm_int_lt_one_iff_dvd (k : ℤ) : ∥(k : ℤ_[p])∥ < 1 ↔ ↑p ∣ k :=
suffices ∥(k : ℚ_[p])∥ < 1 ↔ ↑p ∣ k, by rwa norm_int_cast_eq_padic_norm,
padic_norm_e.norm_int_lt_one_iff_dvd k
lemma norm_int_le_pow_iff_dvd {k : ℤ} {n : ℕ} : ∥(k : ℤ_[p])∥ ≤ ((↑p)^(-n : ℤ)) ↔ ↑p^n ∣ k :=
suffices ∥(k : ℚ_[p])∥ ≤ ((↑p)^(-n : ℤ)) ↔ ↑(p^n) ∣ k, by simpa [norm_int_cast_eq_padic_norm],
padic_norm_e.norm_int_le_pow_iff_dvd _ _
/-! ### Valuation on `ℤ_[p]` -/
/-- `padic_int.valuation` lifts the p-adic valuation on `ℚ` to `ℤ_[p]`. -/
def valuation (x : ℤ_[p]) := padic.valuation (x : ℚ_[p])
lemma norm_eq_pow_val {x : ℤ_[p]} (hx : x ≠ 0) :
∥x∥ = p^(-x.valuation) :=
begin
convert padic.norm_eq_pow_val _,
contrapose! hx,
exact subtype.val_injective hx
end
@[simp] lemma valuation_zero : valuation (0 : ℤ_[p]) = 0 :=
padic.valuation_zero
@[simp] lemma valuation_one : valuation (1 : ℤ_[p]) = 0 :=
padic.valuation_one
@[simp] lemma valuation_p : valuation (p : ℤ_[p]) = 1 :=
by simp [valuation, -cast_eq_of_rat_of_nat]
lemma valuation_nonneg (x : ℤ_[p]) : 0 ≤ x.valuation :=
begin
by_cases hx : x = 0,
{ simp [hx] },
have h : (1 : ℝ) < p := by exact_mod_cast hp_prime.one_lt,
rw [← neg_nonpos, ← (fpow_strict_mono h).le_iff_le],
show (p : ℝ) ^ -valuation x ≤ p ^ 0,
rw [← norm_eq_pow_val hx],
simpa using x.property,
end
@[simp] lemma valuation_p_pow_mul (n : ℕ) (c : ℤ_[p]) (hc : c ≠ 0) :
(↑p ^ n * c).valuation = n + c.valuation :=
begin
have : ∥↑p ^ n * c∥ = ∥(p ^ n : ℤ_[p])∥ * ∥c∥,
{ exact norm_mul _ _ },
have aux : ↑p ^ n * c ≠ 0,
{ contrapose! hc, rw mul_eq_zero at hc, cases hc,
{ refine (hp_prime.ne_zero _).elim,
exact_mod_cast (pow_eq_zero hc) },
{ exact hc } },
rwa [norm_eq_pow_val aux, norm_p_pow, norm_eq_pow_val hc,
← fpow_add, ← neg_add, fpow_inj, neg_inj] at this,
{ exact_mod_cast hp_prime.pos },
{ exact_mod_cast hp_prime.ne_one },
{ exact_mod_cast hp_prime.ne_zero },
end
section units
/-! ### Units of `ℤ_[p]` -/
local attribute [reducible] padic_int
lemma mul_inv : ∀ {z : ℤ_[p]}, ∥z∥ = 1 → z * z.inv = 1
| ⟨k, _⟩ h :=
begin
have hk : k ≠ 0, from λ h', @zero_ne_one ℚ_[p] _ _ (by simpa [h'] using h),
unfold padic_int.inv, split_ifs,
{ change (⟨k * (1/k), _⟩ : ℤ_[p]) = 1,
simp [hk], refl },
{ apply subtype.ext_iff_val.2, simp [mul_inv_cancel hk] }
end
lemma inv_mul {z : ℤ_[p]} (hz : ∥z∥ = 1) : z.inv * z = 1 :=
by rw [mul_comm, mul_inv hz]
lemma is_unit_iff {z : ℤ_[p]} : is_unit z ↔ ∥z∥ = 1 :=
⟨λ h, begin
rcases is_unit_iff_dvd_one.1 h with ⟨w, eq⟩,
refine le_antisymm (norm_le_one _) _,
have := mul_le_mul_of_nonneg_left (norm_le_one w) (norm_nonneg z),
rwa [mul_one, ← norm_mul, ← eq, norm_one] at this
end, λ h, ⟨⟨z, z.inv, mul_inv h, inv_mul h⟩, rfl⟩⟩
lemma norm_lt_one_add {z1 z2 : ℤ_[p]} (hz1 : ∥z1∥ < 1) (hz2 : ∥z2∥ < 1) : ∥z1 + z2∥ < 1 :=
lt_of_le_of_lt (nonarchimedean _ _) (max_lt hz1 hz2)
lemma norm_lt_one_mul {z1 z2 : ℤ_[p]} (hz2 : ∥z2∥ < 1) : ∥z1 * z2∥ < 1 :=
calc ∥z1 * z2∥ = ∥z1∥ * ∥z2∥ : by simp
... < 1 : mul_lt_one_of_nonneg_of_lt_one_right (norm_le_one _) (norm_nonneg _) hz2
@[simp] lemma mem_nonunits {z : ℤ_[p]} : z ∈ nonunits ℤ_[p] ↔ ∥z∥ < 1 :=
by rw lt_iff_le_and_ne; simp [norm_le_one z, nonunits, is_unit_iff]
/-- A `p`-adic number `u` with `∥u∥ = 1` is a unit of `ℤ_[p]`. -/
def mk_units {u : ℚ_[p]} (h : ∥u∥ = 1) : units ℤ_[p] :=
let z : ℤ_[p] := ⟨u, le_of_eq h⟩ in ⟨z, z.inv, mul_inv h, inv_mul h⟩
@[simp]
lemma mk_units_eq {u : ℚ_[p]} (h : ∥u∥ = 1) : ((mk_units h : ℤ_[p]) : ℚ_[p]) = u :=
rfl
@[simp] lemma norm_units (u : units ℤ_[p]) : ∥(u : ℤ_[p])∥ = 1 :=
is_unit_iff.mp $ by simp
/-- `unit_coeff hx` is the unit `u` in the unique representation `x = u * p ^ n`.
See `unit_coeff_spec`. -/
def unit_coeff {x : ℤ_[p]} (hx : x ≠ 0) : units ℤ_[p] :=
let u : ℚ_[p] := x*p^(-x.valuation) in
have hu : ∥u∥ = 1,
by simp [hx, nat.fpow_ne_zero_of_pos (by exact_mod_cast hp_prime.pos) x.valuation,
norm_eq_pow_val, fpow_neg, inv_mul_cancel, -cast_eq_of_rat_of_nat],
mk_units hu
@[simp] lemma unit_coeff_coe {x : ℤ_[p]} (hx : x ≠ 0) :
(unit_coeff hx : ℚ_[p]) = x * p ^ (-x.valuation) := rfl
lemma unit_coeff_spec {x : ℤ_[p]} (hx : x ≠ 0) :
x = (unit_coeff hx : ℤ_[p]) * p ^ int.nat_abs (valuation x) :=
begin
apply subtype.coe_injective,
push_cast,
have repr : (x : ℚ_[p]) = (unit_coeff hx) * p ^ x.valuation,
{ rw [unit_coeff_coe, mul_assoc, ← fpow_add],
{ simp },
{ exact_mod_cast hp_prime.ne_zero } },
convert repr using 2,
rw [← fpow_coe_nat, int.nat_abs_of_nonneg (valuation_nonneg x)],
end
end units
section norm_le_iff
/-! ### Various characterizations of open unit balls -/
lemma norm_le_pow_iff_le_valuation (x : ℤ_[p]) (hx : x ≠ 0) (n : ℕ) :
∥x∥ ≤ p ^ (-n : ℤ) ↔ ↑n ≤ x.valuation :=
begin
rw norm_eq_pow_val hx,
lift x.valuation to ℕ using x.valuation_nonneg with k hk,
simp only [int.coe_nat_le, fpow_neg, fpow_coe_nat],
have aux : ∀ n : ℕ, 0 < (p ^ n : ℝ),
{ apply pow_pos, exact_mod_cast nat.prime.pos ‹_› },
rw [inv_le_inv (aux _) (aux _)],
have : p ^ n ≤ p ^ k ↔ n ≤ k := (pow_right_strict_mono (nat.prime.two_le ‹_›)).le_iff_le,
rw [← this],
norm_cast,
end
lemma mem_span_pow_iff_le_valuation (x : ℤ_[p]) (hx : x ≠ 0) (n : ℕ) :
x ∈ (ideal.span {p ^ n} : ideal ℤ_[p]) ↔ ↑n ≤ x.valuation :=
begin
rw [ideal.mem_span_singleton],
split,
{ rintro ⟨c, rfl⟩,
suffices : c ≠ 0,
{ rw [valuation_p_pow_mul _ _ this, le_add_iff_nonneg_right], apply valuation_nonneg, },
contrapose! hx, rw [hx, mul_zero], },
{ rw [unit_coeff_spec hx] { occs := occurrences.pos [2] },
lift x.valuation to ℕ using x.valuation_nonneg with k hk,
simp only [int.nat_abs_of_nat, is_unit_unit, is_unit.dvd_mul_left, int.coe_nat_le],
intro H,
obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_le H,
simp only [pow_add, dvd_mul_right], }
end
lemma norm_le_pow_iff_mem_span_pow (x : ℤ_[p]) (n : ℕ) :
∥x∥ ≤ p ^ (-n : ℤ) ↔ x ∈ (ideal.span {p ^ n} : ideal ℤ_[p]) :=
begin
by_cases hx : x = 0,
{ subst hx,
simp only [norm_zero, fpow_neg, fpow_coe_nat, inv_nonneg, iff_true, submodule.zero_mem],
exact_mod_cast nat.zero_le _ },
rw [norm_le_pow_iff_le_valuation x hx, mem_span_pow_iff_le_valuation x hx],
end
lemma norm_le_pow_iff_norm_lt_pow_add_one (x : ℤ_[p]) (n : ℤ) :
∥x∥ ≤ p ^ n ↔ ∥x∥ < p ^ (n + 1) :=
begin
have aux : ∀ n : ℤ, 0 < (p ^ n : ℝ),
{ apply nat.fpow_pos_of_pos, exact nat.prime.pos ‹_› },
by_cases hx0 : x = 0, { simp [hx0, norm_zero, aux, le_of_lt (aux _)], },
rw norm_eq_pow_val hx0,
have h1p : 1 < (p : ℝ), { exact_mod_cast nat.prime.one_lt ‹_› },
have H := fpow_strict_mono h1p,
rw [H.le_iff_le, H.lt_iff_lt, int.lt_add_one_iff],
end
lemma norm_lt_pow_iff_norm_le_pow_sub_one (x : ℤ_[p]) (n : ℤ) :
∥x∥ < p ^ n ↔ ∥x∥ ≤ p ^ (n - 1) :=
by rw [norm_le_pow_iff_norm_lt_pow_add_one, sub_add_cancel]
lemma norm_lt_one_iff_dvd (x : ℤ_[p]) : ∥x∥ < 1 ↔ ↑p ∣ x :=
begin
have := norm_le_pow_iff_mem_span_pow x 1,
rw [ideal.mem_span_singleton, pow_one] at this,
rw [← this, norm_le_pow_iff_norm_lt_pow_add_one],
simp only [fpow_zero, int.coe_nat_zero, int.coe_nat_succ, add_left_neg, zero_add],
end
@[simp] lemma pow_p_dvd_int_iff (n : ℕ) (a : ℤ) : (p ^ n : ℤ_[p]) ∣ a ↔ ↑p ^ n ∣ a :=
by rw [← norm_int_le_pow_iff_dvd, norm_le_pow_iff_mem_span_pow, ideal.mem_span_singleton]
end norm_le_iff
section dvr
/-! ### Discrete valuation ring -/
instance : local_ring ℤ_[p] :=
local_of_nonunits_ideal zero_ne_one $ λ x y, by simp; exact norm_lt_one_add
lemma p_nonnunit : (p : ℤ_[p]) ∈ nonunits ℤ_[p] :=
have (p : ℝ)⁻¹ < 1, from inv_lt_one $ by exact_mod_cast hp_prime.one_lt,
by simp [this]
lemma maximal_ideal_eq_span_p : maximal_ideal ℤ_[p] = ideal.span {p} :=
begin
apply le_antisymm,
{ intros x hx,
rw ideal.mem_span_singleton,
simp only [local_ring.mem_maximal_ideal, mem_nonunits] at hx,
rwa ← norm_lt_one_iff_dvd, },
{ rw [ideal.span_le, set.singleton_subset_iff], exact p_nonnunit }
end
lemma prime_p : prime (p : ℤ_[p]) :=
begin
rw [← ideal.span_singleton_prime, ← maximal_ideal_eq_span_p],
{ apply_instance },
{ exact_mod_cast hp_prime.ne_zero }
end
lemma irreducible_p : irreducible (p : ℤ_[p]) :=
irreducible_of_prime prime_p
instance : discrete_valuation_ring ℤ_[p] :=
discrete_valuation_ring.of_has_unit_mul_pow_irreducible_factorization
⟨p, irreducible_p, λ x hx, ⟨x.valuation.nat_abs, unit_coeff hx,
by rw [mul_comm, ← unit_coeff_spec hx]⟩⟩
lemma ideal_eq_span_pow_p {s : ideal ℤ_[p]} (hs : s ≠ ⊥) :
∃ n : ℕ, s = ideal.span {p ^ n} :=
discrete_valuation_ring.ideal_eq_span_pow_irreducible hs irreducible_p
end dvr
end padic_int
|
43242b74d5fd2f4e3ec2c8ff78ac1b82897b1086
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/number_theory/number_field/basic.lean
|
537628af9ebf9f043e5fb14a7251e3de62bc7c59
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 7,370
|
lean
|
/-
Copyright (c) 2021 Ashvni Narayanan. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ashvni Narayanan, Anne Baanen
-/
import algebra.char_p.algebra
import ring_theory.dedekind_domain.integral_closure
/-!
# Number fields
This file defines a number field and the ring of integers corresponding to it.
## Main definitions
- `number_field` defines a number field as a field which has characteristic zero and is finite
dimensional over ℚ.
- `ring_of_integers` defines the ring of integers (or number ring) corresponding to a number field
as the integral closure of ℤ in the number field.
## Implementation notes
The definitions that involve a field of fractions choose a canonical field of fractions,
but are independent of that choice.
## References
* [D. Marcus, *Number Fields*][marcus1977number]
* [J.W.S. Cassels, A. Frölich, *Algebraic Number Theory*][cassels1967algebraic]
* [P. Samuel, *Algebraic Theory of Numbers*][samuel1970algebraic]
## Tags
number field, ring of integers
-/
/-- A number field is a field which has characteristic zero and is finite
dimensional over ℚ. -/
class number_field (K : Type*) [field K] : Prop :=
[to_char_zero : char_zero K]
[to_finite_dimensional : finite_dimensional ℚ K]
open function module
open_locale classical big_operators non_zero_divisors
/-- `ℤ` with its usual ring structure is not a field. -/
lemma int.not_is_field : ¬ is_field ℤ :=
λ h, int.not_even_one $ (h.mul_inv_cancel two_ne_zero).imp $ λ a, (by rw ← two_mul; exact eq.symm)
namespace number_field
variables (K L : Type*) [field K] [field L] [nf : number_field K]
include nf
-- See note [lower instance priority]
attribute [priority 100, instance] number_field.to_char_zero number_field.to_finite_dimensional
protected lemma is_algebraic : algebra.is_algebraic ℚ K := algebra.is_algebraic_of_finite _ _
omit nf
/-- The ring of integers (or number ring) corresponding to a number field
is the integral closure of ℤ in the number field. -/
def ring_of_integers := integral_closure ℤ K
localized "notation (name := ring_of_integers)
`𝓞` := number_field.ring_of_integers" in number_field
lemma mem_ring_of_integers (x : K) : x ∈ 𝓞 K ↔ is_integral ℤ x := iff.rfl
lemma is_integral_of_mem_ring_of_integers {K : Type*} [field K] {x : K} (hx : x ∈ 𝓞 K) :
is_integral ℤ (⟨x, hx⟩ : 𝓞 K) :=
begin
obtain ⟨P, hPm, hP⟩ := hx,
refine ⟨P, hPm, _⟩,
rw [← polynomial.aeval_def, ← subalgebra.coe_eq_zero, polynomial.aeval_subalgebra_coe,
polynomial.aeval_def, subtype.coe_mk, hP]
end
/-- Given an algebra between two fields, create an algebra between their two rings of integers.
For now, this is not an instance by default as it creates an equal-but-not-defeq diamond with
`algebra.id` when `K = L`. This is caused by `x = ⟨x, x.prop⟩` not being defeq on subtypes. This
will likely change in Lean 4. -/
def ring_of_integers_algebra [algebra K L] : algebra (𝓞 K) (𝓞 L) := ring_hom.to_algebra
{ to_fun := λ k, ⟨algebra_map K L k, is_integral.algebra_map k.2⟩,
map_zero' := subtype.ext $ by simp only [subtype.coe_mk, subalgebra.coe_zero, map_zero],
map_one' := subtype.ext $ by simp only [subtype.coe_mk, subalgebra.coe_one, map_one],
map_add' := λ x y, subtype.ext $ by simp only [map_add, subalgebra.coe_add, subtype.coe_mk],
map_mul' := λ x y, subtype.ext $ by simp only [subalgebra.coe_mul, map_mul, subtype.coe_mk] }
namespace ring_of_integers
variables {K}
instance [number_field K] : is_fraction_ring (𝓞 K) K :=
integral_closure.is_fraction_ring_of_finite_extension ℚ _
instance : is_integral_closure (𝓞 K) ℤ K :=
integral_closure.is_integral_closure _ _
instance [number_field K] : is_integrally_closed (𝓞 K) :=
integral_closure.is_integrally_closed_of_finite_extension ℚ
lemma is_integral_coe (x : 𝓞 K) : is_integral ℤ (x : K) :=
x.2
lemma map_mem {F L : Type*} [field L] [char_zero K] [char_zero L]
[alg_hom_class F ℚ K L] (f : F) (x : 𝓞 K) : f x ∈ 𝓞 L :=
(mem_ring_of_integers _ _).2 $ map_is_integral_int f $ ring_of_integers.is_integral_coe x
/-- The ring of integers of `K` are equivalent to any integral closure of `ℤ` in `K` -/
protected noncomputable def equiv (R : Type*) [comm_ring R] [algebra R K]
[is_integral_closure R ℤ K] : 𝓞 K ≃+* R :=
(is_integral_closure.equiv ℤ R K _).symm.to_ring_equiv
variable (K)
include nf
instance : char_zero (𝓞 K) := char_zero.of_module _ K
instance : is_noetherian ℤ (𝓞 K) := is_integral_closure.is_noetherian _ ℚ K _
/-- The ring of integers of a number field is not a field. -/
lemma not_is_field : ¬ is_field (𝓞 K) :=
begin
have h_inj : function.injective ⇑(algebra_map ℤ (𝓞 K)),
{ exact ring_hom.injective_int (algebra_map ℤ (𝓞 K)) },
intro hf,
exact int.not_is_field
(((is_integral_closure.is_integral_algebra ℤ K).is_field_iff_is_field h_inj).mpr hf)
end
instance : is_dedekind_domain (𝓞 K) :=
is_integral_closure.is_dedekind_domain ℤ ℚ K _
instance : free ℤ (𝓞 K) := is_integral_closure.module_free ℤ ℚ K (𝓞 K)
instance : is_localization (algebra.algebra_map_submonoid (𝓞 K) ℤ⁰) K :=
is_integral_closure.is_localization ℤ ℚ K (𝓞 K)
/-- A ℤ-basis of the ring of integers of `K`. -/
noncomputable def basis : basis (free.choose_basis_index ℤ (𝓞 K)) ℤ (𝓞 K) :=
free.choose_basis ℤ (𝓞 K)
end ring_of_integers
include nf
/-- A basis of `K` over `ℚ` that is also a basis of `𝓞 K` over `ℤ`. -/
noncomputable def integral_basis : basis (free.choose_basis_index ℤ (𝓞 K)) ℚ K :=
basis.localization_localization ℚ (non_zero_divisors ℤ) K (ring_of_integers.basis K)
@[simp]
lemma integral_basis_apply (i : free.choose_basis_index ℤ (𝓞 K)) :
integral_basis K i = algebra_map (𝓞 K) K (ring_of_integers.basis K i) :=
basis.localization_localization_apply ℚ (non_zero_divisors ℤ) K (ring_of_integers.basis K) i
lemma ring_of_integers.rank :
finite_dimensional.finrank ℤ (𝓞 K) = finite_dimensional.finrank ℚ K :=
is_integral_closure.rank ℤ ℚ K (𝓞 K)
end number_field
namespace rat
open number_field
instance number_field : number_field ℚ :=
{ to_char_zero := infer_instance,
to_finite_dimensional :=
-- The vector space structure of `ℚ` over itself can arise in multiple ways:
-- all fields are vector spaces over themselves (used in `rat.finite_dimensional`)
-- all char 0 fields have a canonical embedding of `ℚ` (used in `number_field`).
-- Show that these coincide:
by convert (infer_instance : finite_dimensional ℚ ℚ), }
/-- The ring of integers of `ℚ` as a number field is just `ℤ`. -/
noncomputable def ring_of_integers_equiv : ring_of_integers ℚ ≃+* ℤ :=
ring_of_integers.equiv ℤ
end rat
namespace adjoin_root
section
open_locale polynomial
local attribute [-instance] algebra_rat
/-- The quotient of `ℚ[X]` by the ideal generated by an irreducible polynomial of `ℚ[X]`
is a number field. -/
instance {f : ℚ[X]} [hf : fact (irreducible f)] : number_field (adjoin_root f) :=
{ to_char_zero := char_zero_of_injective_algebra_map (algebra_map ℚ _).injective,
to_finite_dimensional := by convert (adjoin_root.power_basis hf.out.ne_zero).finite_dimensional }
end
end adjoin_root
|
fd7dd43917f7763d7b62003a9d7defab29eaf444
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/category_theory/limits/colimit_limit.lean
|
ef17325dcf8b30e688e08a79477a8fdb53dfc16d
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,753
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.category_theory.limits.types
import Mathlib.category_theory.currying
import Mathlib.PostPort
universes v u
namespace Mathlib
/-!
# The morphism comparing a colimit of limits with the corresponding limit of colimits.
For `F : J × K ⥤ C` there is always a morphism $\colim_k \lim_j F(j,k) → \lim_j \colim_k F(j, k)$.
While it is not usually an isomorphism, with additional hypotheses on `J` and `K` it may be,
in which case we say that "colimits commute with limits".
The prototypical example, proved in `category_theory.limits.filtered_colimit_commutes_finite_limit`,
is that when `C = Type`, filtered colimits commute with finite limits.
## References
* Borceux, Handbook of categorical algebra 1, Section 2.13
* [Stacks: Filtered colimits](https://stacks.math.columbia.edu/tag/002W)
-/
namespace category_theory.limits
theorem map_id_left_eq_curry_map {J : Type v} {K : Type v} [small_category J] [small_category K] {C : Type u} [category C] (F : J × K ⥤ C) {j : J} {k : K} {k' : K} {f : k ⟶ k'} : functor.map F (𝟙, f) = functor.map (functor.obj (functor.obj curry F) j) f :=
rfl
theorem map_id_right_eq_curry_swap_map {J : Type v} {K : Type v} [small_category J] [small_category K] {C : Type u} [category C] (F : J × K ⥤ C) {j : J} {j' : J} {f : j ⟶ j'} {k : K} : functor.map F (f, 𝟙) = functor.map (functor.obj (functor.obj curry (prod.swap K J ⋙ F)) k) f :=
rfl
/--
The universal morphism
$\colim_k \lim_j F(j,k) → \lim_j \colim_k F(j, k)$.
-/
def colimit_limit_to_limit_colimit {J : Type v} {K : Type v} [small_category J] [small_category K] {C : Type u} [category C] (F : J × K ⥤ C) [has_limits_of_shape J C] [has_colimits_of_shape K C] : colimit (functor.obj curry (prod.swap K J ⋙ F) ⋙ lim) ⟶ limit (functor.obj curry F ⋙ colim) :=
limit.lift (functor.obj curry F ⋙ colim)
(cone.mk (cocone.X (colimit.cocone (functor.obj curry (prod.swap K J ⋙ F) ⋙ lim)))
(nat_trans.mk
fun (j : J) =>
colimit.desc (functor.obj curry (prod.swap K J ⋙ F) ⋙ lim)
(cocone.mk (cocone.X (colimit.cocone (functor.obj (functor.obj curry F) j)))
(nat_trans.mk
fun (k : K) =>
limit.π (functor.obj (functor.obj curry (prod.swap K J ⋙ F)) k) j ≫
colimit.ι (functor.obj (functor.obj curry F) j) k))))
/--
Since `colimit_limit_to_limit_colimit` is a morphism from a colimit to a limit,
this lemma characterises it.
-/
@[simp] theorem ι_colimit_limit_to_limit_colimit_π {J : Type v} {K : Type v} [small_category J] [small_category K] {C : Type u} [category C] (F : J × K ⥤ C) [has_limits_of_shape J C] [has_colimits_of_shape K C] (j : J) (k : K) : colimit.ι (functor.obj curry (prod.swap K J ⋙ F) ⋙ lim) k ≫
colimit_limit_to_limit_colimit F ≫ limit.π (functor.obj curry F ⋙ colim) j =
limit.π (functor.obj (functor.obj curry (prod.swap K J ⋙ F)) k) j ≫ colimit.ι (functor.obj (functor.obj curry F) j) k := sorry
@[simp] theorem ι_colimit_limit_to_limit_colimit_π_apply {J : Type v} {K : Type v} [small_category J] [small_category K] (F : J × K ⥤ Type v) (j : J) (k : K) (f : functor.obj (functor.obj curry (prod.swap K J ⋙ F) ⋙ lim) k) : limit.π (functor.obj curry F ⋙ colim) j
(colimit_limit_to_limit_colimit F (colimit.ι (functor.obj curry (prod.swap K J ⋙ F) ⋙ lim) k f)) =
colimit.ι (functor.obj (functor.obj curry F) j) k
(limit.π (functor.obj (functor.obj curry (prod.swap K J ⋙ F)) k) j f) := sorry
|
a7640a6f12389d830e44536ddec82db22878ad52
|
02005f45e00c7ecf2c8ca5db60251bd1e9c860b5
|
/src/analysis/convex/basic.lean
|
10c6da16a19b4557c147f04496fd07ed00bb9c69
|
[
"Apache-2.0"
] |
permissive
|
anthony2698/mathlib
|
03cd69fe5c280b0916f6df2d07c614c8e1efe890
|
407615e05814e98b24b2ff322b14e8e3eb5e5d67
|
refs/heads/master
| 1,678,792,774,873
| 1,614,371,563,000
| 1,614,371,563,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 58,182
|
lean
|
/-
Copyright (c) 2019 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp, Yury Kudriashov
-/
import data.set.intervals.ord_connected
import data.set.intervals.image_preimage
import data.complex.module
import linear_algebra.affine_space.affine_map
import algebra.module.ordered
/-!
# Convex sets and functions on real vector spaces
In a real vector space, we define the following objects and properties.
* `segment x y` is the closed segment joining `x` and `y`.
* A set `s` is `convex` if for any two points `x y ∈ s` it includes `segment x y`;
* A function `f : E → β` is `convex_on` a set `s` if `s` is itself a convex set, and for any two
points `x y ∈ s` the segment joining `(x, f x)` to `(y, f y)` is (non-strictly) above the graph
of `f`; equivalently, `convex_on f s` means that the epigraph
`{p : E × β | p.1 ∈ s ∧ f p.1 ≤ p.2}` is a convex set;
* Center mass of a finite set of points with prescribed weights.
* Convex hull of a set `s` is the minimal convex set that includes `s`.
* Standard simplex `std_simplex ι [fintype ι]` is the intersection of the positive quadrant with
the hyperplane `s.sum = 1` in the space `ι → ℝ`.
We also provide various equivalent versions of the definitions above, prove that some specific sets
are convex, and prove Jensen's inequality.
Note: To define convexity for functions `f : E → β`, we need `β` to be an ordered vector space,
defined using the instance `ordered_semimodule ℝ β`.
## Notations
We use the following local notations:
* `I = Icc (0:ℝ) 1`;
* `[x, y] = segment x y`.
They are defined using `local notation`, so they are not available outside of this file.
-/
universes u' u v v' w x
variables {E : Type u} {F : Type v} {ι : Type w} {ι' : Type x} {α : Type v'}
[add_comm_group E] [vector_space ℝ E] [add_comm_group F] [vector_space ℝ F]
[linear_ordered_field α]
{s : set E}
open set linear_map
open_locale classical big_operators
local notation `I` := (Icc 0 1 : set ℝ)
section sets
/-! ### Segment -/
/-- Segments in a vector space. -/
def segment (x y : E) : set E :=
{z : E | ∃ (a b : ℝ) (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1), a • x + b • y = z}
local notation `[`x `, ` y `]` := segment x y
lemma segment_symm (x y : E) : [x, y] = [y, x] :=
set.ext $ λ z,
⟨λ ⟨a, b, ha, hb, hab, H⟩, ⟨b, a, hb, ha, (add_comm _ _).trans hab, (add_comm _ _).trans H⟩,
λ ⟨a, b, ha, hb, hab, H⟩, ⟨b, a, hb, ha, (add_comm _ _).trans hab, (add_comm _ _).trans H⟩⟩
lemma left_mem_segment (x y : E) : x ∈ [x, y] :=
⟨1, 0, zero_le_one, le_refl 0, add_zero 1, by rw [zero_smul, one_smul, add_zero]⟩
lemma right_mem_segment (x y : E) : y ∈ [x, y] :=
segment_symm y x ▸ left_mem_segment y x
lemma segment_same (x : E) : [x, x] = {x} :=
set.ext $ λ z, ⟨λ ⟨a, b, ha, hb, hab, hz⟩,
by simpa only [(add_smul _ _ _).symm, mem_singleton_iff, hab, one_smul, eq_comm] using hz,
λ h, mem_singleton_iff.1 h ▸ left_mem_segment z z⟩
lemma segment_eq_image (x y : E) : segment x y = (λ (θ : ℝ), (1 - θ) • x + θ • y) '' I :=
set.ext $ λ z,
⟨λ ⟨a, b, ha, hb, hab, hz⟩,
⟨b, ⟨hb, hab ▸ le_add_of_nonneg_left ha⟩, hab ▸ hz ▸ by simp only [add_sub_cancel]⟩,
λ ⟨θ, ⟨hθ₀, hθ₁⟩, hz⟩, ⟨1-θ, θ, sub_nonneg.2 hθ₁, hθ₀, sub_add_cancel _ _, hz⟩⟩
lemma segment_eq_image' (x y : E) : segment x y = (λ (θ : ℝ), x + θ • (y - x)) '' I :=
by { convert segment_eq_image x y, ext θ, simp only [smul_sub, sub_smul, one_smul], abel }
lemma segment_eq_image₂ (x y : E) :
segment x y = (λ p:ℝ×ℝ, p.1 • x + p.2 • y) '' {p | 0 ≤ p.1 ∧ 0 ≤ p.2 ∧ p.1 + p.2 = 1} :=
by simp only [segment, image, prod.exists, mem_set_of_eq, exists_prop, and_assoc]
lemma segment_eq_Icc {a b : ℝ} (h : a ≤ b) : [a, b] = Icc a b :=
begin
rw [segment_eq_image'],
show (((+) a) ∘ (λ t, t * (b - a))) '' Icc 0 1 = Icc a b,
rw [image_comp, image_mul_right_Icc (@zero_le_one ℝ _) (sub_nonneg.2 h), image_const_add_Icc],
simp
end
lemma segment_eq_Icc' (a b : ℝ) : [a, b] = Icc (min a b) (max a b) :=
by cases le_total a b; [skip, rw segment_symm]; simp [segment_eq_Icc, *]
lemma segment_eq_interval (a b : ℝ) : segment a b = interval a b :=
segment_eq_Icc' _ _
lemma mem_segment_translate (a : E) {x b c} : a + x ∈ [a + b, a + c] ↔ x ∈ [b, c] :=
begin
rw [segment_eq_image', segment_eq_image'],
refine exists_congr (λ θ, and_congr iff.rfl _),
simp only [add_sub_add_left_eq_sub, add_assoc, add_right_inj]
end
lemma segment_translate_preimage (a b c : E) : (λ x, a + x) ⁻¹' [a + b, a + c] = [b, c] :=
set.ext $ λ x, mem_segment_translate a
lemma segment_translate_image (a b c: E) : (λx, a + x) '' [b, c] = [a + b, a + c] :=
segment_translate_preimage a b c ▸ image_preimage_eq _ $ add_left_surjective a
/-! ### Convexity of sets -/
/-- Convexity of sets. -/
def convex (s : set E) :=
∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 →
a • x + b • y ∈ s
lemma convex_iff_forall_pos :
convex s ↔ ∀ ⦃x y⦄, x ∈ s → y ∈ s → ∀ ⦃a b : ℝ⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s :=
begin
refine ⟨λ h x y hx hy a b ha hb hab, h hx hy (le_of_lt ha) (le_of_lt hb) hab, _⟩,
intros h x y hx hy a b ha hb hab,
cases eq_or_lt_of_le ha with ha ha,
{ subst a, rw [zero_add] at hab, simp [hab, hy] },
cases eq_or_lt_of_le hb with hb hb,
{ subst b, rw [add_zero] at hab, simp [hab, hx] },
exact h hx hy ha hb hab
end
lemma convex_iff_segment_subset : convex s ↔ ∀ ⦃x y⦄, x ∈ s → y ∈ s → [x, y] ⊆ s :=
by simp only [convex, segment_eq_image₂, subset_def, ball_image_iff, prod.forall,
mem_set_of_eq, and_imp]
lemma convex.segment_subset (h : convex s) {x y:E} (hx : x ∈ s) (hy : y ∈ s) : [x, y] ⊆ s :=
convex_iff_segment_subset.1 h hx hy
/-- Alternative definition of set convexity, in terms of pointwise set operations. -/
lemma convex_iff_pointwise_add_subset:
convex s ↔ ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • s + b • s ⊆ s :=
iff.intro
begin
rintros hA a b ha hb hab w ⟨au, bv, ⟨u, hu, rfl⟩, ⟨v, hv, rfl⟩, rfl⟩,
exact hA hu hv ha hb hab
end
(λ h x y hx hy a b ha hb hab,
(h ha hb hab) (set.add_mem_add ⟨_, hx, rfl⟩ ⟨_, hy, rfl⟩))
/-- Alternative definition of set convexity, using division. -/
lemma convex_iff_div:
convex s ↔ ∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : ℝ⦄,
0 ≤ a → 0 ≤ b → 0 < a + b → (a/(a+b)) • x + (b/(a+b)) • y ∈ s :=
⟨begin
assume h x y hx hy a b ha hb hab,
apply h hx hy,
have ha', from mul_le_mul_of_nonneg_left ha (le_of_lt (inv_pos.2 hab)),
rwa [mul_zero, ←div_eq_inv_mul] at ha',
have hb', from mul_le_mul_of_nonneg_left hb (le_of_lt (inv_pos.2 hab)),
rwa [mul_zero, ←div_eq_inv_mul] at hb',
rw [←add_div],
exact div_self (ne_of_lt hab).symm
end,
begin
assume h x y hx hy a b ha hb hab,
have h', from h hx hy ha hb,
rw [hab, div_one, div_one] at h',
exact h' zero_lt_one
end⟩
/-! ### Examples of convex sets -/
lemma convex_empty : convex (∅ : set E) := by finish
lemma convex_singleton (c : E) : convex ({c} : set E) :=
begin
intros x y hx hy a b ha hb hab,
rw [set.eq_of_mem_singleton hx, set.eq_of_mem_singleton hy, ←add_smul, hab, one_smul],
exact mem_singleton c
end
lemma convex_univ : convex (set.univ : set E) := λ _ _ _ _ _ _ _ _ _, trivial
lemma convex.inter {t : set E} (hs: convex s) (ht: convex t) : convex (s ∩ t) :=
λ x y (hx : x ∈ s ∩ t) (hy : y ∈ s ∩ t) a b (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1),
⟨hs hx.left hy.left ha hb hab, ht hx.right hy.right ha hb hab⟩
lemma convex_sInter {S : set (set E)} (h : ∀ s ∈ S, convex s) : convex (⋂₀ S) :=
assume x y hx hy a b ha hb hab s hs,
h s hs (hx s hs) (hy s hs) ha hb hab
lemma convex_Inter {ι : Sort*} {s: ι → set E} (h: ∀ i : ι, convex (s i)) : convex (⋂ i, s i) :=
(sInter_range s) ▸ convex_sInter $ forall_range_iff.2 h
lemma convex.prod {s : set E} {t : set F} (hs : convex s) (ht : convex t) :
convex (s.prod t) :=
begin
intros x y hx hy a b ha hb hab,
apply mem_prod.2,
exact ⟨hs (mem_prod.1 hx).1 (mem_prod.1 hy).1 ha hb hab,
ht (mem_prod.1 hx).2 (mem_prod.1 hy).2 ha hb hab⟩
end
lemma convex.combo_to_vadd {a b : ℝ} {x y : E} (h : a + b = 1) :
a • x + b • y = b • (y - x) + x :=
calc
a • x + b • y = (b • y - b • x) + (a • x + b • x) : by abel
... = b • (y - x) + (a + b) • x : by rw [smul_sub, add_smul]
... = b • (y - x) + (1 : ℝ) • x : by rw [h]
... = b • (y - x) + x : by rw [one_smul]
/--
Applying an affine map to an affine combination of two points yields
an affine combination of the images.
-/
lemma convex.combo_affine_apply {a b : ℝ} {x y : E} {f : E →ᵃ[ℝ] F} (h : a + b = 1) :
f (a • x + b • y) = a • f x + b • f y :=
begin
simp only [convex.combo_to_vadd h, ← vsub_eq_sub],
exact f.apply_line_map _ _ _,
end
/-- The preimage of a convex set under an affine map is convex. -/
lemma convex.affine_preimage (f : E →ᵃ[ℝ] F) {s : set F} (hs : convex s) :
convex (f ⁻¹' s) :=
begin
intros x y xs ys a b ha hb hab,
rw [mem_preimage, convex.combo_affine_apply hab],
exact hs xs ys ha hb hab,
end
/-- The image of a convex set under an affine map is convex. -/
lemma convex.affine_image (f : E →ᵃ[ℝ] F) {s : set E} (hs : convex s) :
convex (f '' s) :=
begin
rintros x y ⟨x', ⟨hx', hx'f⟩⟩ ⟨y', ⟨hy', hy'f⟩⟩ a b ha hb hab,
refine ⟨a • x' + b • y', ⟨hs hx' hy' ha hb hab, _⟩⟩,
rw [convex.combo_affine_apply hab, hx'f, hy'f]
end
lemma convex.linear_image (hs : convex s) (f : E →ₗ[ℝ] F) : convex (image f s) :=
hs.affine_image f.to_affine_map
lemma convex.is_linear_image (hs : convex s) {f : E → F} (hf : is_linear_map ℝ f) :
convex (f '' s) :=
hs.linear_image $ hf.mk' f
lemma convex.linear_preimage {s : set F} (hs : convex s) (f : E →ₗ[ℝ] F) :
convex (preimage f s) :=
hs.affine_preimage f.to_affine_map
lemma convex.is_linear_preimage {s : set F} (hs : convex s) {f : E → F} (hf : is_linear_map ℝ f) :
convex (preimage f s) :=
hs.linear_preimage $ hf.mk' f
lemma convex.neg (hs : convex s) : convex ((λ z, -z) '' s) :=
hs.is_linear_image is_linear_map.is_linear_map_neg
lemma convex.neg_preimage (hs : convex s) : convex ((λ z, -z) ⁻¹' s) :=
hs.is_linear_preimage is_linear_map.is_linear_map_neg
lemma convex.smul (c : ℝ) (hs : convex s) : convex (c • s) :=
hs.linear_image (linear_map.lsmul _ _ c)
lemma convex.smul_preimage (c : ℝ) (hs : convex s) : convex ((λ z, c • z) ⁻¹' s) :=
hs.linear_preimage (linear_map.lsmul _ _ c)
lemma convex.add {t : set E} (hs : convex s) (ht : convex t) : convex (s + t) :=
by { rw ← add_image_prod, exact (hs.prod ht).is_linear_image is_linear_map.is_linear_map_add }
lemma convex.sub {t : set E} (hs : convex s) (ht : convex t) :
convex ((λx : E × E, x.1 - x.2) '' (s.prod t)) :=
(hs.prod ht).is_linear_image is_linear_map.is_linear_map_sub
lemma convex.translate (hs : convex s) (z : E) : convex ((λx, z + x) '' s) :=
hs.affine_image $ affine_map.const ℝ E z +ᵥ affine_map.id ℝ E
/-- The translation of a convex set is also convex. -/
lemma convex.translate_preimage_right (hs : convex s) (a : E) : convex ((λ z, a + z) ⁻¹' s) :=
hs.affine_preimage $ affine_map.const ℝ E a +ᵥ affine_map.id ℝ E
/-- The translation of a convex set is also convex. -/
lemma convex.translate_preimage_left (hs : convex s) (a : E) : convex ((λ z, z + a) ⁻¹' s) :=
by simpa only [add_comm] using hs.translate_preimage_right a
lemma convex.affinity (hs : convex s) (z : E) (c : ℝ) : convex ((λx, z + c • x) '' s) :=
hs.affine_image $ affine_map.const ℝ E z +ᵥ c • affine_map.id ℝ E
lemma real.convex_iff_ord_connected {s : set ℝ} : convex s ↔ ord_connected s :=
begin
simp only [convex_iff_segment_subset, segment_eq_interval, ord_connected_iff_interval_subset],
exact forall_congr (λ x, forall_swap)
end
alias real.convex_iff_ord_connected ↔ convex.ord_connected set.ord_connected.convex
lemma convex_Iio (r : ℝ) : convex (Iio r) := ord_connected_Iio.convex
lemma convex_Ioi (r : ℝ) : convex (Ioi r) := ord_connected_Ioi.convex
lemma convex_Iic (r : ℝ) : convex (Iic r) := ord_connected_Iic.convex
lemma convex_Ici (r : ℝ) : convex (Ici r) := ord_connected_Ici.convex
lemma convex_Ioo (r s : ℝ) : convex (Ioo r s) := ord_connected_Ioo.convex
lemma convex_Ico (r s : ℝ) : convex (Ico r s) := ord_connected_Ico.convex
lemma convex_Ioc (r : ℝ) (s : ℝ) : convex (Ioc r s) := ord_connected_Ioc.convex
lemma convex_Icc (r : ℝ) (s : ℝ) : convex (Icc r s) := ord_connected_Icc.convex
lemma convex_interval (r : ℝ) (s : ℝ) : convex (interval r s) := ord_connected_interval.convex
lemma convex_segment (a b : E) : convex [a, b] :=
begin
have : (λ (t : ℝ), a + t • (b - a)) = (λz : E, a + z) ∘ (λt:ℝ, t • (b - a)) := rfl,
rw [segment_eq_image', this, image_comp],
refine ((convex_Icc _ _).is_linear_image _).translate _,
exact is_linear_map.is_linear_map_smul' _
end
lemma convex_halfspace_lt {f : E → ℝ} (h : is_linear_map ℝ f) (r : ℝ) :
convex {w | f w < r} :=
(convex_Iio r).is_linear_preimage h
lemma convex_halfspace_le {f : E → ℝ} (h : is_linear_map ℝ f) (r : ℝ) :
convex {w | f w ≤ r} :=
(convex_Iic r).is_linear_preimage h
lemma convex_halfspace_gt {f : E → ℝ} (h : is_linear_map ℝ f) (r : ℝ) :
convex {w | r < f w} :=
(convex_Ioi r).is_linear_preimage h
lemma convex_halfspace_ge {f : E → ℝ} (h : is_linear_map ℝ f) (r : ℝ) :
convex {w | r ≤ f w} :=
(convex_Ici r).is_linear_preimage h
lemma convex_hyperplane {f : E → ℝ} (h : is_linear_map ℝ f) (r : ℝ) :
convex {w | f w = r} :=
begin
show convex (f ⁻¹' {p | p = r}),
rw set_of_eq_eq_singleton,
exact (convex_singleton r).is_linear_preimage h
end
lemma convex_halfspace_re_lt (r : ℝ) : convex {c : ℂ | c.re < r} :=
convex_halfspace_lt (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_re_le (r : ℝ) : convex {c : ℂ | c.re ≤ r} :=
convex_halfspace_le (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_re_gt (r : ℝ) : convex {c : ℂ | r < c.re } :=
convex_halfspace_gt (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_re_lge (r : ℝ) : convex {c : ℂ | r ≤ c.re} :=
convex_halfspace_ge (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_im_lt (r : ℝ) : convex {c : ℂ | c.im < r} :=
convex_halfspace_lt (is_linear_map.mk complex.add_im complex.smul_im) _
lemma convex_halfspace_im_le (r : ℝ) : convex {c : ℂ | c.im ≤ r} :=
convex_halfspace_le (is_linear_map.mk complex.add_im complex.smul_im) _
lemma convex_halfspace_im_gt (r : ℝ) : convex {c : ℂ | r < c.im } :=
convex_halfspace_gt (is_linear_map.mk complex.add_im complex.smul_im) _
lemma convex_halfspace_im_lge (r : ℝ) : convex {c : ℂ | r ≤ c.im} :=
convex_halfspace_ge (is_linear_map.mk complex.add_im complex.smul_im) _
/-! ### Convex combinations in intervals -/
lemma convex.combo_self (a : α) {x y : α} (h : x + y = 1) : a = x * a + y * a :=
calc
a = 1 * a : by rw [one_mul]
... = (x + y) * a : by rw [h]
... = x * a + y * a : by rw [add_mul]
/--
If `x` is in an `Ioo`, it can be expressed as a convex combination of the endpoints.
-/
lemma convex.mem_Ioo {a b x : α} (h : a < b) :
x ∈ Ioo a b ↔ ∃ (x_a x_b : α), 0 < x_a ∧ 0 < x_b ∧ x_a + x_b = 1 ∧ x_a * a + x_b * b = x :=
begin
split,
{ rintros ⟨h_ax, h_bx⟩,
by_cases hab : ¬a < b,
{ exfalso; exact hab h },
{ refine ⟨(b-x) / (b-a), (x-a) / (b-a), _⟩,
refine ⟨div_pos (by linarith) (by linarith), div_pos (by linarith) (by linarith),_,_⟩;
{ field_simp [show b - a ≠ 0, by linarith], ring } } },
{ rw [mem_Ioo],
rintros ⟨xa, xb, ⟨hxa, hxb, hxaxb, h₂⟩⟩,
rw [←h₂],
exact ⟨by nlinarith [convex.combo_self a hxaxb], by nlinarith [convex.combo_self b hxaxb]⟩ }
end
/-- If `x` is in an `Ioc`, it can be expressed as a convex combination of the endpoints. -/
lemma convex.mem_Ioc {a b x : α} (h : a < b) :
x ∈ Ioc a b ↔ ∃ (x_a x_b : α), 0 ≤ x_a ∧ 0 < x_b ∧ x_a + x_b = 1 ∧ x_a * a + x_b * b = x :=
begin
split,
{ rintros ⟨h_ax, h_bx⟩,
by_cases h_x : x = b,
{ exact ⟨0, 1, by linarith, by linarith, by ring, by {rw [h_x], ring}⟩ },
{ rcases (convex.mem_Ioo h).mp ⟨h_ax, lt_of_le_of_ne h_bx h_x⟩ with ⟨x_a, x_b, Ioo_case⟩,
exact ⟨x_a, x_b, by linarith, Ioo_case.2⟩ } },
{ rw [mem_Ioc],
rintros ⟨xa, xb, ⟨hxa, hxb, hxaxb, h₂⟩⟩,
rw [←h₂],
exact ⟨by nlinarith [convex.combo_self a hxaxb], by nlinarith [convex.combo_self b hxaxb]⟩ }
end
/-- If `x` is in an `Ico`, it can be expressed as a convex combination of the endpoints. -/
lemma convex.mem_Ico {a b x : α} (h : a < b) :
x ∈ Ico a b ↔ ∃ (x_a x_b : α), 0 < x_a ∧ 0 ≤ x_b ∧ x_a + x_b = 1 ∧ x_a * a + x_b * b = x :=
begin
split,
{ rintros ⟨h_ax, h_bx⟩,
by_cases h_x : x = a,
{ exact ⟨1, 0, by linarith, by linarith, by ring, by {rw [h_x], ring}⟩ },
{ rcases (convex.mem_Ioo h).mp ⟨lt_of_le_of_ne h_ax (ne.symm h_x), h_bx⟩
with ⟨x_a, x_b, Ioo_case⟩,
exact ⟨x_a, x_b, Ioo_case.1, by linarith, (Ioo_case.2).2⟩ } },
{ rw [mem_Ico],
rintros ⟨xa, xb, ⟨hxa, hxb, hxaxb, h₂⟩⟩,
rw [←h₂],
exact ⟨by nlinarith [convex.combo_self a hxaxb], by nlinarith [convex.combo_self b hxaxb]⟩ }
end
/-- If `x` is in an `Icc`, it can be expressed as a convex combination of the endpoints. -/
lemma convex.mem_Icc {a b x : α} (h : a ≤ b) :
x ∈ Icc a b ↔ ∃ (x_a x_b : α), 0 ≤ x_a ∧ 0 ≤ x_b ∧ x_a + x_b = 1 ∧ x_a * a + x_b * b = x :=
begin
split,
{ intro x_in_I,
rw [Icc, mem_set_of_eq] at x_in_I,
rcases x_in_I with ⟨h_ax, h_bx⟩,
by_cases hab' : a = b,
{ exact ⟨0, 1, le_refl 0, by linarith, by ring, by linarith⟩ },
change a ≠ b at hab',
replace h : a < b, exact lt_of_le_of_ne h hab',
by_cases h_x : x = a,
{ exact ⟨1, 0, by linarith, by linarith, by ring, by {rw [h_x], ring}⟩ },
{ rcases (convex.mem_Ioc h).mp ⟨lt_of_le_of_ne h_ax (ne.symm h_x), h_bx⟩
with ⟨x_a, x_b, Ioo_case⟩,
exact ⟨x_a, x_b, Ioo_case.1, by linarith, (Ioo_case.2).2⟩ } },
{ rw [mem_Icc],
rintros ⟨xa, xb, ⟨hxa, hxb, hxaxb, h₂⟩⟩,
rw [←h₂],
exact ⟨by nlinarith [convex.combo_self a hxaxb], by nlinarith [convex.combo_self b hxaxb]⟩ }
end
section submodule
open submodule
lemma submodule.convex (K : submodule ℝ E) : convex (↑K : set E) :=
by { repeat {intro}, refine add_mem _ (smul_mem _ _ _) (smul_mem _ _ _); assumption }
lemma subspace.convex (K : subspace ℝ E) : convex (↑K : set E) := K.convex
end submodule
end sets
/-! ### Convex and concave functions -/
section functions
variables {β : Type*} [ordered_add_comm_monoid β] [semimodule ℝ β]
local notation `[`x `, ` y `]` := segment x y
/-- Convexity of functions -/
def convex_on (s : set E) (f : E → β) : Prop :=
convex s ∧
∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 →
f (a • x + b • y) ≤ a • f x + b • f y
/-- Concavity of functions -/
def concave_on (s : set E) (f : E → β) : Prop :=
convex s ∧
∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 →
a • f x + b • f y ≤ f (a • x + b • y)
section
variables [ordered_semimodule ℝ β]
/-- A function `f` is concave iff `-f` is convex. -/
@[simp] lemma neg_convex_on_iff {γ : Type*} [ordered_add_comm_group γ] [semimodule ℝ γ]
(s : set E) (f : E → γ) : convex_on s (-f) ↔ concave_on s f :=
begin
split,
{ rintros ⟨hconv, h⟩,
refine ⟨hconv, _⟩,
intros x y xs ys a b ha hb hab,
specialize h xs ys ha hb hab,
simp [neg_apply, neg_le, add_comm] at h,
exact h },
{ rintros ⟨hconv, h⟩,
refine ⟨hconv, _⟩,
intros x y xs ys a b ha hb hab,
specialize h xs ys ha hb hab,
simp [neg_apply, neg_le, add_comm, h] }
end
/-- A function `f` is concave iff `-f` is convex. -/
@[simp] lemma neg_concave_on_iff {γ : Type*} [ordered_add_comm_group γ] [semimodule ℝ γ]
(s : set E) (f : E → γ) : concave_on s (-f) ↔ convex_on s f:=
by rw [← neg_convex_on_iff s (-f), neg_neg f]
end
lemma convex_on_id {s : set ℝ} (hs : convex s) : convex_on s id := ⟨hs, by { intros, refl }⟩
lemma concave_on_id {s : set ℝ} (hs : convex s) : concave_on s id := ⟨hs, by { intros, refl }⟩
lemma convex_on_const (c : β) (hs : convex s) : convex_on s (λ x:E, c) :=
⟨hs, by { intros, simp only [← add_smul, *, one_smul] }⟩
lemma concave_on_const (c : β) (hs : convex s) : concave_on s (λ x:E, c) :=
@convex_on_const _ _ _ _ (order_dual β) _ _ c hs
variables {t : set E}
lemma convex_on_iff_div {f : E → β} :
convex_on s f ↔ convex s ∧ ∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → 0 < a + b →
f ((a/(a+b)) • x + (b/(a+b)) • y) ≤ (a/(a+b)) • f x + (b/(a+b)) • f y :=
and_congr iff.rfl
⟨begin
intros h x y hx hy a b ha hb hab,
apply h hx hy (div_nonneg ha $ le_of_lt hab) (div_nonneg hb $ le_of_lt hab),
rw [←add_div],
exact div_self (ne_of_gt hab)
end,
begin
intros h x y hx hy a b ha hb hab,
simpa [hab, zero_lt_one] using h hx hy ha hb,
end⟩
lemma concave_on_iff_div {f : E → β} :
concave_on s f ↔ convex s ∧ ∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → 0 < a + b →
(a/(a+b)) • f x + (b/(a+b)) • f y ≤ f ((a/(a+b)) • x + (b/(a+b)) • y) :=
@convex_on_iff_div _ _ _ _ (order_dual β) _ _ _
/-- For a function on a convex set in a linear ordered space, in order to prove that it is convex
it suffices to verify the inequality `f (a • x + b • y) ≤ a • f x + b • f y` only for `x < y`
and positive `a`, `b`. The main use case is `E = ℝ` however one can apply it, e.g., to `ℝ^n` with
lexicographic order. -/
lemma linear_order.convex_on_of_lt {f : E → β} [linear_order E] (hs : convex s)
(hf : ∀ ⦃x y : E⦄, x ∈ s → y ∈ s → x < y → ∀ ⦃a b : ℝ⦄, 0 < a → 0 < b → a + b = 1 →
f (a • x + b • y) ≤ a • f x + b • f y) : convex_on s f :=
begin
use hs,
intros x y hx hy a b ha hb hab,
wlog hxy : x<=y using [x y a b, y x b a],
{ exact le_total _ _ },
{ cases eq_or_lt_of_le hxy with hxy hxy,
by { subst y, rw [← add_smul, ← add_smul, hab, one_smul, one_smul] },
cases eq_or_lt_of_le ha with ha ha,
by { subst a, rw [zero_add] at hab, subst b, simp },
cases eq_or_lt_of_le hb with hb hb,
by { subst b, rw [add_zero] at hab, subst a, simp },
exact hf hx hy hxy ha hb hab }
end
/-- For a function on a convex set in a linear ordered space, in order to prove that it is concave
it suffices to verify the inequality `a • f x + b • f y ≤ f (a • x + b • y)` only for `x < y`
and positive `a`, `b`. The main use case is `E = ℝ` however one can apply it, e.g., to `ℝ^n` with
lexicographic order. -/
lemma linear_order.concave_on_of_lt {f : E → β} [linear_order E] (hs : convex s)
(hf : ∀ ⦃x y : E⦄, x ∈ s → y ∈ s → x < y → ∀ ⦃a b : ℝ⦄, 0 < a → 0 < b → a + b = 1 →
a • f x + b • f y ≤ f (a • x + b • y)) : concave_on s f :=
@linear_order.convex_on_of_lt _ _ _ _ (order_dual β) _ _ f _ hs hf
/-- For a function `f` defined on a convex subset `D` of `ℝ`, if for any three points `x<y<z`
the slope of the secant line of `f` on `[x, y]` is less than or equal to the slope
of the secant line of `f` on `[x, z]`, then `f` is convex on `D`. This way of proving convexity
of a function is used in the proof of convexity of a function with a monotone derivative. -/
lemma convex_on_real_of_slope_mono_adjacent {s : set ℝ} (hs : convex s) {f : ℝ → ℝ}
(hf : ∀ {x y z : ℝ}, x ∈ s → z ∈ s → x < y → y < z →
(f y - f x) / (y - x) ≤ (f z - f y) / (z - y)) :
convex_on s f :=
linear_order.convex_on_of_lt hs
begin
assume x z hx hz hxz a b ha hb hab,
let y := a * x + b * z,
have hxy : x < y,
{ rw [← one_mul x, ← hab, add_mul],
exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ },
have hyz : y < z,
{ rw [← one_mul z, ← hab, add_mul],
exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ },
have : (f y - f x) * (z - y) ≤ (f z - f y) * (y - x),
from (div_le_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz),
have A : z - y + (y - x) = z - x, by abel,
have B : 0 < z - x, from sub_pos.2 (lt_trans hxy hyz),
rw [sub_mul, sub_mul, sub_le_iff_le_add', ← add_sub_assoc, le_sub_iff_add_le, ← mul_add, A,
← le_div_iff B, add_div, mul_div_assoc, mul_div_assoc,
mul_comm (f x), mul_comm (f z)] at this,
rw [eq_comm, ← sub_eq_iff_eq_add] at hab; subst a,
convert this; symmetry; simp only [div_eq_iff (ne_of_gt B), y]; ring
end
/-- For a function `f` defined on a subset `D` of `ℝ`, if `f` is convex on `D`, then for any three
points `x<y<z`, the slope of the secant line of `f` on `[x, y]` is less than or equal to the slope
of the secant line of `f` on `[x, z]`. -/
lemma convex_on.slope_mono_adjacent {s : set ℝ} {f : ℝ → ℝ} (hf : convex_on s f)
{x y z : ℝ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) :
(f y - f x) / (y - x) ≤ (f z - f y) / (z - y) :=
begin
have h₁ : 0 < y - x := by linarith,
have h₂ : 0 < z - y := by linarith,
have h₃ : 0 < z - x := by linarith,
suffices : f y / (y - x) + f y / (z - y) ≤ f x / (y - x) + f z / (z - y),
by { ring at this ⊢, linarith },
set a := (z - y) / (z - x),
set b := (y - x) / (z - x),
have heqz : a • x + b • z = y, by { field_simp, rw div_eq_iff; [ring, linarith], },
have key, from
hf.2 hx hz
(show 0 ≤ a, by apply div_nonneg; linarith)
(show 0 ≤ b, by apply div_nonneg; linarith)
(show a + b = 1, by { field_simp, rw div_eq_iff; [ring, linarith], }),
rw heqz at key,
replace key := mul_le_mul_of_nonneg_left key (le_of_lt h₃),
field_simp [ne_of_gt h₁, ne_of_gt h₂, ne_of_gt h₃, mul_comm (z - x) _] at key ⊢,
rw div_le_div_right,
{ linarith, },
{ nlinarith, },
end
/-- For a function `f` defined on a convex subset `D` of `ℝ`, `f` is convex on `D` iff for any three
points `x<y<z` the slope of the secant line of `f` on `[x, y]` is less than or equal to the slope
of the secant line of `f` on `[x, z]`. -/
lemma convex_on_real_iff_slope_mono_adjacent {s : set ℝ} (hs : convex s) {f : ℝ → ℝ} :
convex_on s f ↔
(∀ {x y z : ℝ}, x ∈ s → z ∈ s → x < y → y < z →
(f y - f x) / (y - x) ≤ (f z - f y) / (z - y)) :=
⟨convex_on.slope_mono_adjacent, convex_on_real_of_slope_mono_adjacent hs⟩
/-- For a function `f` defined on a convex subset `D` of `ℝ`, if for any three points `x<y<z`
the slope of the secant line of `f` on `[x, y]` is greater than or equal to the slope
of the secant line of `f` on `[x, z]`, then `f` is concave on `D`. -/
lemma concave_on_real_of_slope_mono_adjacent {s : set ℝ} (hs : convex s) {f : ℝ → ℝ}
(hf : ∀ {x y z : ℝ}, x ∈ s → z ∈ s → x < y → y < z →
(f z - f y) / (z - y) ≤ (f y - f x) / (y - x)) : concave_on s f :=
begin
rw [←neg_convex_on_iff],
apply convex_on_real_of_slope_mono_adjacent hs,
intros x y z xs zs xy yz,
rw [←neg_le_neg_iff, ←neg_div, ←neg_div, neg_sub, neg_sub],
simp only [hf xs zs xy yz, neg_sub_neg, pi.neg_apply],
end
/-- For a function `f` defined on a subset `D` of `ℝ`, if `f` is concave on `D`, then for any three
points `x<y<z`, the slope of the secant line of `f` on `[x, y]` is greater than or equal to the
slope of the secant line of `f` on `[x, z]`. -/
lemma concave_on.slope_mono_adjacent {s : set ℝ} {f : ℝ → ℝ} (hf : concave_on s f)
{x y z : ℝ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) :
(f z - f y) / (z - y) ≤ (f y - f x) / (y - x) :=
begin
rw [←neg_le_neg_iff, ←neg_div, ←neg_div, neg_sub, neg_sub],
rw [←neg_sub_neg (f y), ←neg_sub_neg (f z)],
simp_rw [←pi.neg_apply],
rw [←neg_convex_on_iff] at hf,
apply convex_on.slope_mono_adjacent hf; assumption,
end
/-- For a function `f` defined on a convex subset `D` of `ℝ`, `f` is concave on `D` iff for any
three points `x<y<z` the slope of the secant line of `f` on `[x, y]` is greater than or equal to
the slope of the secant line of `f` on `[x, z]`. -/
lemma concave_on_real_iff_slope_mono_adjacent {s : set ℝ} (hs : convex s) {f : ℝ → ℝ} :
concave_on s f ↔
(∀ {x y z : ℝ}, x ∈ s → z ∈ s → x < y → y < z →
(f z - f y) / (z - y) ≤ (f y - f x) / (y - x)) :=
⟨concave_on.slope_mono_adjacent, concave_on_real_of_slope_mono_adjacent hs⟩
lemma convex_on.subset {f : E → β} (h_convex_on : convex_on t f)
(h_subset : s ⊆ t) (h_convex : convex s) : convex_on s f :=
begin
apply and.intro h_convex,
intros x y hx hy,
exact h_convex_on.2 (h_subset hx) (h_subset hy),
end
lemma concave_on.subset {f : E → β} (h_concave_on : concave_on t f)
(h_subset : s ⊆ t) (h_convex : convex s) : concave_on s f :=
@convex_on.subset _ _ _ _ (order_dual β) _ _ t f h_concave_on h_subset h_convex
lemma convex_on.add {f g : E → β} (hf : convex_on s f) (hg : convex_on s g) :
convex_on s (λx, f x + g x) :=
begin
apply and.intro hf.1,
intros x y hx hy a b ha hb hab,
calc
f (a • x + b • y) + g (a • x + b • y) ≤ (a • f x + b • f y) + (a • g x + b • g y)
: add_le_add (hf.2 hx hy ha hb hab) (hg.2 hx hy ha hb hab)
... = a • f x + a • g x + b • f y + b • g y : by abel
... = a • (f x + g x) + b • (f y + g y) : by simp [smul_add, add_assoc]
end
lemma concave_on.add {f g : E → β} (hf : concave_on s f) (hg : concave_on s g) :
concave_on s (λx, f x + g x) :=
@convex_on.add _ _ _ _ (order_dual β) _ _ f g hf hg
lemma convex_on.smul [ordered_semimodule ℝ β] {f : E → β} {c : ℝ} (hc : 0 ≤ c)
(hf : convex_on s f) : convex_on s (λx, c • f x) :=
begin
apply and.intro hf.1,
intros x y hx hy a b ha hb hab,
calc
c • f (a • x + b • y) ≤ c • (a • f x + b • f y)
: smul_le_smul_of_nonneg (hf.2 hx hy ha hb hab) hc
... = a • (c • f x) + b • (c • f y) : by simp only [smul_add, smul_comm c]
end
lemma concave_on.smul [ordered_semimodule ℝ β] {f : E → β} {c : ℝ} (hc : 0 ≤ c)
(hf : concave_on s f) : concave_on s (λx, c • f x) :=
@convex_on.smul _ _ _ _ (order_dual β) _ _ _ f c hc hf
/-- A convex function on a segment is upper-bounded by the max of its endpoints. -/
lemma convex_on.le_on_segment' {γ : Type*}
[linear_ordered_add_comm_group γ] [semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} {x y : E} {a b : ℝ}
(hf : convex_on s f) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) :
f (a • x + b • y) ≤ max (f x) (f y) :=
calc
f (a • x + b • y) ≤ a • f x + b • f y : hf.2 hx hy ha hb hab
... ≤ a • max (f x) (f y) + b • max (f x) (f y) :
add_le_add (smul_le_smul_of_nonneg (le_max_left _ _) ha)
(smul_le_smul_of_nonneg (le_max_right _ _) hb)
... ≤ max (f x) (f y) : by rw [←add_smul, hab, one_smul]
/-- A concave function on a segment is lower-bounded by the min of its endpoints. -/
lemma concave_on.le_on_segment' {γ : Type*}
[linear_ordered_add_comm_group γ] [semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} {x y : E} {a b : ℝ}
(hf : concave_on s f) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) :
min (f x) (f y) ≤ f (a • x + b • y) :=
@convex_on.le_on_segment' _ _ _ _ (order_dual γ) _ _ _ f x y a b hf hx hy ha hb hab
/-- A convex function on a segment is upper-bounded by the max of its endpoints. -/
lemma convex_on.le_on_segment {γ : Type*}
[linear_ordered_add_comm_group γ] [semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} (hf : convex_on s f) {x y z : E}
(hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ [x, y]) :
f z ≤ max (f x) (f y) :=
let ⟨a, b, ha, hb, hab, hz⟩ := hz in hz ▸ hf.le_on_segment' hx hy ha hb hab
/-- A concave function on a segment is lower-bounded by the min of its endpoints. -/
lemma concave_on.le_on_segment {γ : Type*}
[linear_ordered_add_comm_group γ] [semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} (hf : concave_on s f) {x y z : E}
(hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ [x, y]) :
min (f x) (f y) ≤ f z :=
@convex_on.le_on_segment _ _ _ _ (order_dual γ) _ _ _ f hf x y z hx hy hz
lemma convex_on.convex_le [ordered_semimodule ℝ β] {f : E → β} (hf : convex_on s f) (r : β) :
convex {x ∈ s | f x ≤ r} :=
convex_iff_segment_subset.2 $ λ x y hx hy z hz,
begin
refine ⟨hf.1.segment_subset hx.1 hy.1 hz,_⟩,
rcases hz with ⟨za,zb,hza,hzb,hzazb,H⟩,
rw ←H,
calc
f (za • x + zb • y) ≤ za • (f x) + zb • (f y) : hf.2 hx.1 hy.1 hza hzb hzazb
... ≤ za • r + zb • r : add_le_add (smul_le_smul_of_nonneg hx.2 hza)
(smul_le_smul_of_nonneg hy.2 hzb)
... ≤ r : by simp [←add_smul, hzazb]
end
lemma concave_on.concave_le [ordered_semimodule ℝ β] {f : E → β} (hf : concave_on s f) (r : β) :
convex {x ∈ s | r ≤ f x} :=
@convex_on.convex_le _ _ _ _ (order_dual β) _ _ _ f hf r
lemma convex_on.convex_lt {γ : Type*} [ordered_cancel_add_comm_monoid γ]
[semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} (hf : convex_on s f) (r : γ) : convex {x ∈ s | f x < r} :=
begin
intros a b as bs xa xb hxa hxb hxaxb,
refine ⟨hf.1 as.1 bs.1 hxa hxb hxaxb, _⟩,
dsimp,
by_cases H : xa = 0,
{ have H' : xb = 1 := by rwa [H, zero_add] at hxaxb,
rw [H, H', zero_smul, one_smul, zero_add],
exact bs.2 },
{ calc
f (xa • a + xb • b) ≤ xa • (f a) + xb • (f b) : hf.2 as.1 bs.1 hxa hxb hxaxb
... < xa • r + xb • (f b) : (add_lt_add_iff_right (xb • (f b))).mpr
(smul_lt_smul_of_pos as.2
(lt_of_le_of_ne hxa (ne.symm H)))
... ≤ xa • r + xb • r : (add_le_add_iff_left (xa • r)).mpr
(smul_le_smul_of_nonneg bs.2.le hxb)
... = r : by simp only [←add_smul, hxaxb, one_smul] }
end
lemma concave_on.convex_lt {γ : Type*} [ordered_cancel_add_comm_monoid γ]
[semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} (hf : concave_on s f) (r : γ) : convex {x ∈ s | r < f x} :=
@convex_on.convex_lt _ _ _ _ (order_dual γ) _ _ _ f hf r
lemma convex_on.convex_epigraph {γ : Type*} [ordered_add_comm_group γ]
[semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} (hf : convex_on s f) :
convex {p : E × γ | p.1 ∈ s ∧ f p.1 ≤ p.2} :=
begin
rintros ⟨x, r⟩ ⟨y, t⟩ ⟨hx, hr⟩ ⟨hy, ht⟩ a b ha hb hab,
refine ⟨hf.1 hx hy ha hb hab, _⟩,
calc f (a • x + b • y) ≤ a • f x + b • f y : hf.2 hx hy ha hb hab
... ≤ a • r + b • t : add_le_add (smul_le_smul_of_nonneg hr ha)
(smul_le_smul_of_nonneg ht hb)
end
lemma concave_on.convex_hypograph {γ : Type*} [ordered_add_comm_group γ]
[semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} (hf : concave_on s f) :
convex {p : E × γ | p.1 ∈ s ∧ p.2 ≤ f p.1} :=
@convex_on.convex_epigraph _ _ _ _ (order_dual γ) _ _ _ f hf
lemma convex_on_iff_convex_epigraph {γ : Type*} [ordered_add_comm_group γ]
[semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} :
convex_on s f ↔ convex {p : E × γ | p.1 ∈ s ∧ f p.1 ≤ p.2} :=
begin
refine ⟨convex_on.convex_epigraph, λ h, ⟨_, _⟩⟩,
{ assume x y hx hy a b ha hb hab,
exact (@h (x, f x) (y, f y) ⟨hx, le_refl _⟩ ⟨hy, le_refl _⟩ a b ha hb hab).1 },
{ assume x y hx hy a b ha hb hab,
exact (@h (x, f x) (y, f y) ⟨hx, le_refl _⟩ ⟨hy, le_refl _⟩ a b ha hb hab).2 }
end
lemma concave_on_iff_convex_hypograph {γ : Type*} [ordered_add_comm_group γ]
[semimodule ℝ γ] [ordered_semimodule ℝ γ]
{f : E → γ} :
concave_on s f ↔ convex {p : E × γ | p.1 ∈ s ∧ p.2 ≤ f p.1} :=
@convex_on_iff_convex_epigraph _ _ _ _ (order_dual γ) _ _ _ f
/-- If a function is convex on `s`, it remains convex when precomposed by an affine map. -/
lemma convex_on.comp_affine_map {f : F → β} (g : E →ᵃ[ℝ] F) {s : set F}
(hf : convex_on s f) : convex_on (g ⁻¹' s) (f ∘ g) :=
begin
refine ⟨hf.1.affine_preimage _,_⟩,
intros x y xs ys a b ha hb hab,
calc
(f ∘ g) (a • x + b • y) = f (g (a • x + b • y)) : rfl
... = f (a • (g x) + b • (g y)) : by rw [convex.combo_affine_apply hab]
... ≤ a • f (g x) + b • f (g y) : hf.2 xs ys ha hb hab
... = a • (f ∘ g) x + b • (f ∘ g) y : rfl
end
/-- If a function is concave on `s`, it remains concave when precomposed by an affine map. -/
lemma concave_on.comp_affine_map {f : F → β} (g : E →ᵃ[ℝ] F) {s : set F}
(hf : concave_on s f) : concave_on (g ⁻¹' s) (f ∘ g) :=
@convex_on.comp_affine_map _ _ _ _ _ _ (order_dual β) _ _ f g s hf
/-- If `g` is convex on `s`, so is `(g ∘ f)` on `f ⁻¹' s` for a linear `f`. -/
lemma convex_on.comp_linear_map {g : F → β} {s : set F} (hg : convex_on s g) (f : E →ₗ[ℝ] F) :
convex_on (f ⁻¹' s) (g ∘ f) :=
hg.comp_affine_map f.to_affine_map
/-- If `g` is concave on `s`, so is `(g ∘ f)` on `f ⁻¹' s` for a linear `f`. -/
lemma concave_on.comp_linear_map {g : F → β} {s : set F} (hg : concave_on s g) (f : E →ₗ[ℝ] F) :
concave_on (f ⁻¹' s) (g ∘ f) :=
hg.comp_affine_map f.to_affine_map
/-- If a function is convex on `s`, it remains convex after a translation. -/
lemma convex_on.translate_right {f : E → β} {s : set E} {a : E} (hf : convex_on s f) :
convex_on ((λ z, a + z) ⁻¹' s) (f ∘ (λ z, a + z)) :=
hf.comp_affine_map $ affine_map.const ℝ E a +ᵥ affine_map.id ℝ E
/-- If a function is concave on `s`, it remains concave after a translation. -/
lemma concave_on.translate_right {f : E → β} {s : set E} {a : E} (hf : concave_on s f) :
concave_on ((λ z, a + z) ⁻¹' s) (f ∘ (λ z, a + z)) :=
hf.comp_affine_map $ affine_map.const ℝ E a +ᵥ affine_map.id ℝ E
/-- If a function is convex on `s`, it remains convex after a translation. -/
lemma convex_on.translate_left {f : E → β} {s : set E} {a : E} (hf : convex_on s f) :
convex_on ((λ z, a + z) ⁻¹' s) (f ∘ (λ z, z + a)) :=
by simpa only [add_comm] using hf.translate_right
/-- If a function is concave on `s`, it remains concave after a translation. -/
lemma concave_on.translate_left {f : E → β} {s : set E} {a : E} (hf : concave_on s f) :
concave_on ((λ z, a + z) ⁻¹' s) (f ∘ (λ z, z + a)) :=
by simpa only [add_comm] using hf.translate_right
end functions
/-! ### Center of mass -/
section center_mass
/-- Center of mass of a finite collection of points with prescribed weights.
Note that we require neither `0 ≤ w i` nor `∑ w = 1`. -/
noncomputable def finset.center_mass (t : finset ι) (w : ι → ℝ) (z : ι → E) : E :=
(∑ i in t, w i)⁻¹ • (∑ i in t, w i • z i)
variables (i j : ι) (c : ℝ) (t : finset ι) (w : ι → ℝ) (z : ι → E)
open finset
lemma finset.center_mass_empty : (∅ : finset ι).center_mass w z = 0 :=
by simp only [center_mass, sum_empty, smul_zero]
lemma finset.center_mass_pair (hne : i ≠ j) :
({i, j} : finset ι).center_mass w z = (w i / (w i + w j)) • z i + (w j / (w i + w j)) • z j :=
by simp only [center_mass, sum_pair hne, smul_add, (mul_smul _ _ _).symm, div_eq_inv_mul]
variable {w}
lemma finset.center_mass_insert (ha : i ∉ t) (hw : ∑ j in t, w j ≠ 0) :
(insert i t).center_mass w z = (w i / (w i + ∑ j in t, w j)) • z i +
((∑ j in t, w j) / (w i + ∑ j in t, w j)) • t.center_mass w z :=
begin
simp only [center_mass, sum_insert ha, smul_add, (mul_smul _ _ _).symm, ← div_eq_inv_mul],
congr' 2,
rw [div_mul_eq_mul_div, mul_inv_cancel hw, one_div]
end
lemma finset.center_mass_singleton (hw : w i ≠ 0) : ({i} : finset ι).center_mass w z = z i :=
by rw [center_mass, sum_singleton, sum_singleton, ← mul_smul, inv_mul_cancel hw, one_smul]
lemma finset.center_mass_eq_of_sum_1 (hw : ∑ i in t, w i = 1) :
t.center_mass w z = ∑ i in t, w i • z i :=
by simp only [finset.center_mass, hw, inv_one, one_smul]
lemma finset.center_mass_smul : t.center_mass w (λ i, c • z i) = c • t.center_mass w z :=
by simp only [finset.center_mass, finset.smul_sum, (mul_smul _ _ _).symm, mul_comm c, mul_assoc]
/-- A convex combination of two centers of mass is a center of mass as well. This version
deals with two different index types. -/
lemma finset.center_mass_segment'
(s : finset ι) (t : finset ι') (ws : ι → ℝ) (zs : ι → E) (wt : ι' → ℝ) (zt : ι' → E)
(hws : ∑ i in s, ws i = 1) (hwt : ∑ i in t, wt i = 1) (a b : ℝ) (hab : a + b = 1) :
a • s.center_mass ws zs + b • t.center_mass wt zt =
(s.map function.embedding.inl ∪ t.map function.embedding.inr).center_mass
(sum.elim (λ i, a * ws i) (λ j, b * wt j))
(sum.elim zs zt) :=
begin
rw [s.center_mass_eq_of_sum_1 _ hws, t.center_mass_eq_of_sum_1 _ hwt,
smul_sum, smul_sum, ← finset.sum_sum_elim, finset.center_mass_eq_of_sum_1],
{ congr' with ⟨⟩; simp only [sum.elim_inl, sum.elim_inr, mul_smul] },
{ rw [sum_sum_elim, ← mul_sum, ← mul_sum, hws, hwt, mul_one, mul_one, hab] }
end
/-- A convex combination of two centers of mass is a center of mass as well. This version
works if two centers of mass share the set of original points. -/
lemma finset.center_mass_segment
(s : finset ι) (w₁ w₂ : ι → ℝ) (z : ι → E)
(hw₁ : ∑ i in s, w₁ i = 1) (hw₂ : ∑ i in s, w₂ i = 1) (a b : ℝ) (hab : a + b = 1) :
a • s.center_mass w₁ z + b • s.center_mass w₂ z =
s.center_mass (λ i, a * w₁ i + b * w₂ i) z :=
have hw : ∑ i in s, (a * w₁ i + b * w₂ i) = 1,
by simp only [mul_sum.symm, sum_add_distrib, mul_one, *],
by simp only [finset.center_mass_eq_of_sum_1, smul_sum, sum_add_distrib, add_smul, mul_smul, *]
lemma finset.center_mass_ite_eq (hi : i ∈ t) :
t.center_mass (λ j, if (i = j) then 1 else 0) z = z i :=
begin
rw [finset.center_mass_eq_of_sum_1],
transitivity ∑ j in t, if (i = j) then z i else 0,
{ congr' with i, split_ifs, exacts [h ▸ one_smul _ _, zero_smul _ _] },
{ rw [sum_ite_eq, if_pos hi] },
{ rw [sum_ite_eq, if_pos hi] }
end
variables {t w}
lemma finset.center_mass_subset {t' : finset ι} (ht : t ⊆ t')
(h : ∀ i ∈ t', i ∉ t → w i = 0) :
t.center_mass w z = t'.center_mass w z :=
begin
rw [center_mass, sum_subset ht h, smul_sum, center_mass, smul_sum],
apply sum_subset ht,
assume i hit' hit,
rw [h i hit' hit, zero_smul, smul_zero]
end
lemma finset.center_mass_filter_ne_zero :
(t.filter (λ i, w i ≠ 0)).center_mass w z = t.center_mass w z :=
finset.center_mass_subset z (filter_subset _ _) $ λ i hit hit',
by simpa only [hit, mem_filter, true_and, ne.def, not_not] using hit'
variable {z}
/-- The center of mass of a finite subset of a convex set belongs to the set
provided that all weights are non-negative, and the total weight is positive. -/
lemma convex.center_mass_mem (hs : convex s) :
(∀ i ∈ t, 0 ≤ w i) → (0 < ∑ i in t, w i) → (∀ i ∈ t, z i ∈ s) → t.center_mass w z ∈ s :=
begin
induction t using finset.induction with i t hi ht, { simp [lt_irrefl] },
intros h₀ hpos hmem,
have zi : z i ∈ s, from hmem _ (mem_insert_self _ _),
have hs₀ : ∀ j ∈ t, 0 ≤ w j, from λ j hj, h₀ j $ mem_insert_of_mem hj,
rw [sum_insert hi] at hpos,
by_cases hsum_t : ∑ j in t, w j = 0,
{ have ws : ∀ j ∈ t, w j = 0, from (sum_eq_zero_iff_of_nonneg hs₀).1 hsum_t,
have wz : ∑ j in t, w j • z j = 0, from sum_eq_zero (λ i hi, by simp [ws i hi]),
simp only [center_mass, sum_insert hi, wz, hsum_t, add_zero],
simp only [hsum_t, add_zero] at hpos,
rw [← mul_smul, inv_mul_cancel (ne_of_gt hpos), one_smul],
exact zi },
{ rw [finset.center_mass_insert _ _ _ hi hsum_t],
refine convex_iff_div.1 hs zi (ht hs₀ _ _) _ (sum_nonneg hs₀) hpos,
{ exact lt_of_le_of_ne (sum_nonneg hs₀) (ne.symm hsum_t) },
{ intros j hj, exact hmem j (mem_insert_of_mem hj) },
{ exact h₀ _ (mem_insert_self _ _) } }
end
lemma convex.sum_mem (hs : convex s) (h₀ : ∀ i ∈ t, 0 ≤ w i) (h₁ : ∑ i in t, w i = 1)
(hz : ∀ i ∈ t, z i ∈ s) :
∑ i in t, w i • z i ∈ s :=
by simpa only [h₁, center_mass, inv_one, one_smul] using
hs.center_mass_mem h₀ (h₁.symm ▸ zero_lt_one) hz
lemma convex_iff_sum_mem :
convex s ↔
(∀ (t : finset E) (w : E → ℝ),
(∀ i ∈ t, 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ x ∈ t, x ∈ s) → ∑ x in t, w x • x ∈ s ) :=
begin
refine ⟨λ hs t w hw₀ hw₁ hts, hs.sum_mem hw₀ hw₁ hts, _⟩,
intros h x y hx hy a b ha hb hab,
by_cases h_cases: x = y,
{ rw [h_cases, ←add_smul, hab, one_smul], exact hy },
{ convert h {x, y} (λ z, if z = y then b else a) _ _ _,
{ simp only [sum_pair h_cases, if_neg h_cases, if_pos rfl] },
{ simp_intros i hi,
cases hi; subst i; simp [ha, hb, if_neg h_cases] },
{ simp only [sum_pair h_cases, if_neg h_cases, if_pos rfl, hab] },
{ simp_intros i hi,
cases hi; subst i; simp [hx, hy, if_neg h_cases] } }
end
/-- Jensen's inequality, `finset.center_mass` version. -/
lemma convex_on.map_center_mass_le {f : E → ℝ} (hf : convex_on s f)
(h₀ : ∀ i ∈ t, 0 ≤ w i) (hpos : 0 < ∑ i in t, w i)
(hmem : ∀ i ∈ t, z i ∈ s) : f (t.center_mass w z) ≤ t.center_mass w (f ∘ z) :=
begin
have hmem' : ∀ i ∈ t, (z i, (f ∘ z) i) ∈ {p : E × ℝ | p.1 ∈ s ∧ f p.1 ≤ p.2},
from λ i hi, ⟨hmem i hi, le_refl _⟩,
convert (hf.convex_epigraph.center_mass_mem h₀ hpos hmem').2;
simp only [center_mass, function.comp, prod.smul_fst, prod.fst_sum, prod.smul_snd, prod.snd_sum]
end
/-- Jensen's inequality, `finset.sum` version. -/
lemma convex_on.map_sum_le {f : E → ℝ} (hf : convex_on s f)
(h₀ : ∀ i ∈ t, 0 ≤ w i) (h₁ : ∑ i in t, w i = 1)
(hmem : ∀ i ∈ t, z i ∈ s) : f (∑ i in t, w i • z i) ≤ ∑ i in t, w i * (f (z i)) :=
by simpa only [center_mass, h₁, inv_one, one_smul]
using hf.map_center_mass_le h₀ (h₁.symm ▸ zero_lt_one) hmem
/-- If a function `f` is convex on `s` takes value `y` at the center of mass of some points
`z i ∈ s`, then for some `i` we have `y ≤ f (z i)`. -/
lemma convex_on.exists_ge_of_center_mass {f : E → ℝ} (h : convex_on s f)
(hw₀ : ∀ i ∈ t, 0 ≤ w i) (hws : 0 < ∑ i in t, w i) (hz : ∀ i ∈ t, z i ∈ s) :
∃ i ∈ t, f (t.center_mass w z) ≤ f (z i) :=
begin
set y := t.center_mass w z,
have : f y ≤ t.center_mass w (f ∘ z) := h.map_center_mass_le hw₀ hws hz,
rw ← sum_filter_ne_zero at hws,
rw [← finset.center_mass_filter_ne_zero (f ∘ z), center_mass, smul_eq_mul,
← div_eq_inv_mul, le_div_iff hws, mul_sum] at this,
replace : ∃ i ∈ t.filter (λ i, w i ≠ 0), f y * w i ≤ w i • (f ∘ z) i :=
exists_le_of_sum_le (nonempty_of_sum_ne_zero (ne_of_gt hws)) this,
rcases this with ⟨i, hi, H⟩,
rw [mem_filter] at hi,
use [i, hi.1],
simp only [smul_eq_mul, mul_comm (w i)] at H,
refine (mul_le_mul_right _).1 H,
exact lt_of_le_of_ne (hw₀ i hi.1) hi.2.symm
end
end center_mass
/-! ### Convex hull -/
section convex_hull
variable {t : set E}
/-- The convex hull of a set `s` is the minimal convex set that includes `s`. -/
def convex_hull (s : set E) : set E :=
⋂ (t : set E) (hst : s ⊆ t) (ht : convex t), t
variable (s)
lemma subset_convex_hull : s ⊆ convex_hull s :=
set.subset_Inter $ λ t, set.subset_Inter $ λ hst, set.subset_Inter $ λ ht, hst
lemma convex_convex_hull : convex (convex_hull s) :=
convex_Inter $ λ t, convex_Inter $ λ ht, convex_Inter id
variable {s}
lemma convex_hull_min (hst : s ⊆ t) (ht : convex t) : convex_hull s ⊆ t :=
set.Inter_subset_of_subset t $ set.Inter_subset_of_subset hst $ set.Inter_subset _ ht
lemma convex_hull_mono (hst : s ⊆ t) : convex_hull s ⊆ convex_hull t :=
convex_hull_min (set.subset.trans hst $ subset_convex_hull t) (convex_convex_hull t)
lemma convex.convex_hull_eq {s : set E} (hs : convex s) : convex_hull s = s :=
set.subset.antisymm (convex_hull_min (set.subset.refl _) hs) (subset_convex_hull s)
@[simp]
lemma convex_hull_singleton {x : E} : convex_hull ({x} : set E) = {x} :=
(convex_singleton x).convex_hull_eq
lemma is_linear_map.image_convex_hull {f : E → F} (hf : is_linear_map ℝ f) :
f '' (convex_hull s) = convex_hull (f '' s) :=
begin
refine set.subset.antisymm _ _,
{ rw [set.image_subset_iff],
exact convex_hull_min (set.image_subset_iff.1 $ subset_convex_hull $ f '' s)
((convex_convex_hull (f '' s)).is_linear_preimage hf) },
{ exact convex_hull_min (set.image_subset _ $ subset_convex_hull s)
((convex_convex_hull s).is_linear_image hf) }
end
lemma linear_map.image_convex_hull (f : E →ₗ[ℝ] F) :
f '' (convex_hull s) = convex_hull (f '' s) :=
f.is_linear.image_convex_hull
lemma finset.center_mass_mem_convex_hull (t : finset ι) {w : ι → ℝ} (hw₀ : ∀ i ∈ t, 0 ≤ w i)
(hws : 0 < ∑ i in t, w i) {z : ι → E} (hz : ∀ i ∈ t, z i ∈ s) :
t.center_mass w z ∈ convex_hull s :=
(convex_convex_hull s).center_mass_mem hw₀ hws (λ i hi, subset_convex_hull s $ hz i hi)
-- TODO : Do we need other versions of the next lemma?
/-- Convex hull of `s` is equal to the set of all centers of masses of `finset`s `t`, `z '' t ⊆ s`.
This version allows finsets in any type in any universe. -/
lemma convex_hull_eq (s : set E) :
convex_hull s = {x : E | ∃ (ι : Type u') (t : finset ι) (w : ι → ℝ) (z : ι → E)
(hw₀ : ∀ i ∈ t, 0 ≤ w i) (hw₁ : ∑ i in t, w i = 1) (hz : ∀ i ∈ t, z i ∈ s),
t.center_mass w z = x} :=
begin
refine subset.antisymm (convex_hull_min _ _) _,
{ intros x hx,
use [punit, {punit.star}, λ _, 1, λ _, x, λ _ _, zero_le_one,
finset.sum_singleton, λ _ _, hx],
simp only [finset.center_mass, finset.sum_singleton, inv_one, one_smul] },
{ rintros x y ⟨ι, sx, wx, zx, hwx₀, hwx₁, hzx, rfl⟩ ⟨ι', sy, wy, zy, hwy₀, hwy₁, hzy, rfl⟩
a b ha hb hab,
rw [finset.center_mass_segment' _ _ _ _ _ _ hwx₁ hwy₁ _ _ hab],
refine ⟨_, _, _, _, _, _, _, rfl⟩,
{ rintros i hi,
rw [finset.mem_union, finset.mem_map, finset.mem_map] at hi,
rcases hi with ⟨j, hj, rfl⟩|⟨j, hj, rfl⟩;
simp only [sum.elim_inl, sum.elim_inr];
apply_rules [mul_nonneg, hwx₀, hwy₀] },
{ simp [finset.sum_sum_elim, finset.mul_sum.symm, *] },
{ intros i hi,
rw [finset.mem_union, finset.mem_map, finset.mem_map] at hi,
rcases hi with ⟨j, hj, rfl⟩|⟨j, hj, rfl⟩; apply_rules [hzx, hzy] } },
{ rintros _ ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩,
exact t.center_mass_mem_convex_hull hw₀ (hw₁.symm ▸ zero_lt_one) hz }
end
/-- Maximum principle for convex functions. If a function `f` is convex on the convex hull of `s`,
then `f` can't have a maximum on `convex_hull s` outside of `s`. -/
lemma convex_on.exists_ge_of_mem_convex_hull {f : E → ℝ} (hf : convex_on (convex_hull s) f)
{x} (hx : x ∈ convex_hull s) : ∃ y ∈ s, f x ≤ f y :=
begin
rw convex_hull_eq at hx,
rcases hx with ⟨α, t, w, z, hw₀, hw₁, hz, rfl⟩,
rcases hf.exists_ge_of_center_mass hw₀ (hw₁.symm ▸ zero_lt_one)
(λ i hi, subset_convex_hull s (hz i hi)) with ⟨i, hit, Hi⟩,
exact ⟨z i, hz i hit, Hi⟩
end
lemma finset.convex_hull_eq (s : finset E) :
convex_hull ↑s = {x : E | ∃ (w : E → ℝ) (hw₀ : ∀ y ∈ s, 0 ≤ w y) (hw₁ : ∑ y in s, w y = 1),
s.center_mass w id = x} :=
begin
refine subset.antisymm (convex_hull_min _ _) _,
{ intros x hx,
rw [finset.mem_coe] at hx,
refine ⟨_, _, _, finset.center_mass_ite_eq _ _ _ hx⟩,
{ intros, split_ifs, exacts [zero_le_one, le_refl 0] },
{ rw [finset.sum_ite_eq, if_pos hx] } },
{ rintros x y ⟨wx, hwx₀, hwx₁, rfl⟩ ⟨wy, hwy₀, hwy₁, rfl⟩
a b ha hb hab,
rw [finset.center_mass_segment _ _ _ _ hwx₁ hwy₁ _ _ hab],
refine ⟨_, _, _, rfl⟩,
{ rintros i hi,
apply_rules [add_nonneg, mul_nonneg, hwx₀, hwy₀], },
{ simp only [finset.sum_add_distrib, finset.mul_sum.symm, mul_one, *] } },
{ rintros _ ⟨w, hw₀, hw₁, rfl⟩,
exact s.center_mass_mem_convex_hull (λ x hx, hw₀ _ hx)
(hw₁.symm ▸ zero_lt_one) (λ x hx, hx) }
end
lemma set.finite.convex_hull_eq {s : set E} (hs : finite s) :
convex_hull s = {x : E | ∃ (w : E → ℝ) (hw₀ : ∀ y ∈ s, 0 ≤ w y)
(hw₁ : ∑ y in hs.to_finset, w y = 1), hs.to_finset.center_mass w id = x} :=
by simpa only [set.finite.coe_to_finset, set.finite.mem_to_finset, exists_prop]
using hs.to_finset.convex_hull_eq
lemma convex_hull_eq_union_convex_hull_finite_subsets (s : set E) :
convex_hull s = ⋃ (t : finset E) (w : ↑t ⊆ s), convex_hull ↑t :=
begin
refine subset.antisymm _ _,
{ rw [convex_hull_eq.{u}],
rintros x ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩,
simp only [mem_Union],
refine ⟨t.image z, _, _⟩,
{ rw [finset.coe_image, image_subset_iff],
exact hz },
{ apply t.center_mass_mem_convex_hull hw₀,
{ simp only [hw₁, zero_lt_one] },
{ exact λ i hi, finset.mem_coe.2 (finset.mem_image_of_mem _ hi) } } },
{ exact Union_subset (λ i, Union_subset convex_hull_mono), },
end
lemma is_linear_map.convex_hull_image {f : E → F} (hf : is_linear_map ℝ f) (s : set E) :
convex_hull (f '' s) = f '' convex_hull s :=
set.subset.antisymm (convex_hull_min (image_subset _ (subset_convex_hull s)) $
(convex_convex_hull s).is_linear_image hf)
(image_subset_iff.2 $ convex_hull_min
(image_subset_iff.1 $ subset_convex_hull _)
((convex_convex_hull _).is_linear_preimage hf))
lemma linear_map.convex_hull_image (f : E →ₗ[ℝ] F) (s : set E) :
convex_hull (f '' s) = f '' convex_hull s :=
f.is_linear.convex_hull_image s
end convex_hull
/-! ### Simplex -/
section simplex
variables (ι) [fintype ι] {f : ι → ℝ}
/-- The standard simplex in the space of functions `ι → ℝ` is the set
of vectors with non-negative coordinates with total sum `1`. -/
def std_simplex (ι : Type*) [fintype ι] : set (ι → ℝ) :=
{f | (∀ x, 0 ≤ f x) ∧ ∑ x, f x = 1}
lemma std_simplex_eq_inter :
std_simplex ι = (⋂ x, {f | 0 ≤ f x}) ∩ {f | ∑ x, f x = 1} :=
by { ext f, simp only [std_simplex, set.mem_inter_eq, set.mem_Inter, set.mem_set_of_eq] }
lemma convex_std_simplex : convex (std_simplex ι) :=
begin
refine λ f g hf hg a b ha hb hab, ⟨λ x, _, _⟩,
{ apply_rules [add_nonneg, mul_nonneg, hf.1, hg.1] },
{ erw [finset.sum_add_distrib, ← finset.smul_sum, ← finset.smul_sum, hf.2, hg.2,
smul_eq_mul, smul_eq_mul, mul_one, mul_one],
exact hab }
end
variable {ι}
lemma ite_eq_mem_std_simplex (i : ι) : (λ j, ite (i = j) (1:ℝ) 0) ∈ std_simplex ι :=
⟨λ j, by simp only; split_ifs; norm_num, by rw [finset.sum_ite_eq, if_pos (finset.mem_univ _)]⟩
/-- `std_simplex ι` is the convex hull of the canonical basis in `ι → ℝ`. -/
lemma convex_hull_basis_eq_std_simplex :
convex_hull (range $ λ(i j:ι), if i = j then (1:ℝ) else 0) = std_simplex ι :=
begin
refine subset.antisymm (convex_hull_min _ (convex_std_simplex ι)) _,
{ rintros _ ⟨i, rfl⟩,
exact ite_eq_mem_std_simplex i },
{ rintros w ⟨hw₀, hw₁⟩,
rw [pi_eq_sum_univ w, ← finset.univ.center_mass_eq_of_sum_1 _ hw₁],
exact finset.univ.center_mass_mem_convex_hull (λ i hi, hw₀ i)
(hw₁.symm ▸ zero_lt_one) (λ i hi, mem_range_self i) }
end
variable {ι}
/-- The convex hull of a finite set is the image of the standard simplex in `s → ℝ`
under the linear map sending each function `w` to `∑ x in s, w x • x`.
Since we have no sums over finite sets, we use sum over `@finset.univ _ hs.fintype`.
The map is defined in terms of operations on `(s → ℝ) →ₗ[ℝ] ℝ` so that later we will not need
to prove that this map is linear. -/
lemma set.finite.convex_hull_eq_image {s : set E} (hs : finite s) :
convex_hull s = by haveI := hs.fintype; exact
(⇑(∑ x : s, (@linear_map.proj ℝ s _ (λ i, ℝ) _ _ x).smul_right x.1)) '' (std_simplex s) :=
begin
rw [← convex_hull_basis_eq_std_simplex, ← linear_map.convex_hull_image, ← set.range_comp, (∘)],
apply congr_arg,
convert subtype.range_coe.symm,
ext x,
simp [linear_map.sum_apply, ite_smul, finset.filter_eq]
end
/-- All values of a function `f ∈ std_simplex ι` belong to `[0, 1]`. -/
lemma mem_Icc_of_mem_std_simplex (hf : f ∈ std_simplex ι) (x) :
f x ∈ I :=
⟨hf.1 x, hf.2 ▸ finset.single_le_sum (λ y hy, hf.1 y) (finset.mem_univ x)⟩
end simplex
|
7b2fcd280118165d609f99dfeb9a226c610e7dff
|
64874bd1010548c7f5a6e3e8902efa63baaff785
|
/tests/lean/slow/nat_wo_hints.lean
|
e4ea3f41348f5b5a33fe7aa8ab2736aae5ab8025
|
[
"Apache-2.0"
] |
permissive
|
tjiaqi/lean
|
4634d729795c164664d10d093f3545287c76628f
|
d0ce4cf62f4246b0600c07e074d86e51f2195e30
|
refs/heads/master
| 1,622,323,796,480
| 1,422,643,069,000
| 1,422,643,069,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 49,610
|
lean
|
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
----------------------------------------------------------------------------------------------------
import logic algebra.binary
open tactic binary eq.ops eq
open decidable
namespace experiment
inductive nat : Type :=
zero : nat,
succ : nat → nat
namespace nat
notation `ℕ`:max := nat
definition plus (x y : ℕ) : ℕ
:= nat.rec x (λ n r, succ r) y
definition to_nat [coercion] (n : num) : ℕ
:= num.rec zero (λ n, pos_num.rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n
namespace helper_tactics
definition apply_refl := apply @eq.refl
tactic_hint apply_refl
end helper_tactics
open helper_tactics
theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat.rec x f 0 = x
theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) : nat.rec x f (succ n) = f n (nat.rec x f n)
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
:= assume H : succ n = 0,
have H2 : true = false, from
let f := (nat.rec false (fun a b, true)) in
calc true = f (succ n) : _
... = f 0 : {H}
... = false : _,
absurd H2 true_ne_false
definition pred (n : ℕ) := nat.rec 0 (fun m x, m) n
theorem pred_zero : pred 0 = 0
theorem pred_succ (n : ℕ) : pred (succ n) = n
theorem zero_or_succ (n : ℕ) : n = 0 ∨ n = succ (pred n)
:= induction_on n
(or.intro_left _ (eq.refl 0))
(take m IH, or.intro_right _
(show succ m = succ (pred (succ m)), from congr_arg succ ((pred_succ m)⁻¹)))
theorem zero_or_succ2 (n : ℕ) : n = 0 ∨ ∃k, n = succ k
:= or_of_or_of_imp_of_imp (zero_or_succ n) (assume H, H) (assume H : n = succ (pred n), exists.intro (pred n) H)
theorem case {P : ℕ → Prop} (n : ℕ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n
:= induction_on n H1 (take m IH, H2 m)
theorem discriminate {B : Prop} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B
:= or.elim (zero_or_succ n)
(take H3 : n = 0, H1 H3)
(take H3 : n = succ (pred n), H2 (pred n) H3)
theorem succ_inj {n m : ℕ} (H : succ n = succ m) : n = m
:= calc
n = pred (succ n) : (pred_succ n)⁻¹
... = pred (succ m) : {H}
... = m : pred_succ m
theorem succ_ne_self (n : ℕ) : succ n ≠ n
:= induction_on n
(take H : 1 = 0,
have ne : 1 ≠ 0, from succ_ne_zero 0,
absurd H ne)
(take k IH H, IH (succ_inj H))
theorem decidable_eq [instance] (n m : ℕ) : decidable (n = m)
:= have general : ∀n, decidable (n = m), from
rec_on m
(take n,
rec_on n
(inl (eq.refl 0))
(λ m iH, inr (succ_ne_zero m)))
(λ (m' : ℕ) (iH1 : ∀n, decidable (n = m')),
take n, rec_on n
(inr (ne.symm (succ_ne_zero m')))
(λ (n' : ℕ) (iH2 : decidable (n' = succ m')),
have d1 : decidable (n' = m'), from iH1 n',
decidable.rec_on d1
(assume Heq : n' = m', inl (congr_arg succ Heq))
(assume Hne : n' ≠ m',
have H1 : succ n' ≠ succ m', from
assume Heq, absurd (succ_inj Heq) Hne,
inr H1))),
general n
theorem two_step_induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : P 1)
(H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a
:= have stronger : P a ∧ P (succ a), from
induction_on a
(and.intro H1 H2)
(take k IH,
have IH1 : P k, from and.elim_left IH,
have IH2 : P (succ k), from and.elim_right IH,
and.intro IH2 (H3 k IH1 IH2)),
and.elim_left stronger
theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m)
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m
:= have general : ∀m, P n m, from induction_on n
(take m : ℕ, H1 m)
(take k : ℕ,
assume IH : ∀m, P k m,
take m : ℕ,
discriminate
(assume Hm : m = 0,
Hm⁻¹ ▸ (H2 k))
(take l : ℕ,
assume Hm : m = succ l,
Hm⁻¹ ▸ (H3 k l (IH l)))),
general m
-------------------------------------------------- add
definition add (x y : ℕ) : ℕ := plus x y
infixl `+` := add
theorem add_zero (n : ℕ) : n + 0 = n
theorem add_succ (n m : ℕ) : n + succ m = succ (n + m)
---------- comm, assoc
theorem zero_add (n : ℕ) : 0 + n = n
:= induction_on n
(add_zero 0)
(take m IH, show 0 + succ m = succ m, from
calc
0 + succ m = succ (0 + m) : add_succ _ _
... = succ m : {IH})
theorem succ_add (n m : ℕ) : (succ n) + m = succ (n + m)
:= induction_on m
(calc
succ n + 0 = succ n : add_zero (succ n)
... = succ (n + 0) : {symm (add_zero n)})
(take k IH,
calc
succ n + succ k = succ (succ n + k) : add_succ _ _
... = succ (succ (n + k)) : {IH}
... = succ (n + succ k) : {symm (add_succ _ _)})
theorem add_comm (n m : ℕ) : n + m = m + n
:= induction_on m
(trans (add_zero _) (symm (zero_add _)))
(take k IH,
calc
n + succ k = succ (n+k) : add_succ _ _
... = succ (k + n) : {IH}
... = succ k + n : symm (succ_add _ _))
theorem succ_add_eq_add_succ (n m : ℕ) : succ n + m = n + succ m
:= calc
succ n + m = succ (n + m) : succ_add n m
... = n +succ m : symm (add_succ n m)
theorem add_comm_succ (n m : ℕ) : n + succ m = m + succ n
:= calc
n + succ m = succ n + m : symm (succ_add_eq_add_succ n m)
... = m + succ n : add_comm (succ n) m
theorem add_assoc (n m k : ℕ) : (n + m) + k = n + (m + k)
:= induction_on k
(calc
(n + m) + 0 = n + m : add_zero _
... = n + (m + 0) : {symm (add_zero m)})
(take l IH,
calc
(n + m) + succ l = succ ((n + m) + l) : add_succ _ _
... = succ (n + (m + l)) : {IH}
... = n + succ (m + l) : symm (add_succ _ _)
... = n + (m + succ l) : {symm (add_succ _ _)})
theorem add_left_comm (n m k : ℕ) : n + (m + k) = m + (n + k)
:= left_comm add_comm add_assoc n m k
theorem add_right_comm (n m k : ℕ) : n + m + k = n + k + m
:= right_comm add_comm add_assoc n m k
---------- inversion
theorem add_cancel_left {n m k : ℕ} : n + m = n + k → m = k
:=
induction_on n
(take H : 0 + m = 0 + k,
calc
m = 0 + m : symm (zero_add m)
... = 0 + k : H
... = k : zero_add k)
(take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have H2 : succ (n + m) = succ (n + k),
from calc
succ (n + m) = succ n + m : symm (succ_add n m)
... = succ n + k : H
... = succ (n + k) : succ_add n k,
have H3 : n + m = n + k, from succ_inj H2,
IH H3)
--rename to and_cancel_right
theorem add_cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k
:=
have H2 : m + n = m + k,
from calc
m + n = n + m : add_comm m n
... = k + m : H
... = m + k : add_comm k m,
add_cancel_left H2
theorem eq_zero_of_add_eq_zero_right {n m : ℕ} : n + m = 0 → n = 0
:=
induction_on n
(take (H : 0 + m = 0), eq.refl 0)
(take k IH,
assume (H : succ k + m = 0),
absurd
(show succ (k + m) = 0, from
calc
succ (k + m) = succ k + m : symm (succ_add k m)
... = 0 : H)
(succ_ne_zero (k + m)))
theorem add_eq_zero_right {n m : ℕ} (H : n + m = 0) : m = 0
:= eq_zero_of_add_eq_zero_right (trans (add_comm m n) H)
theorem add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0
:= and.intro (eq_zero_of_add_eq_zero_right H) (add_eq_zero_right H)
-- add_eq_self below
---------- misc
theorem add_one (n:ℕ) : n + 1 = succ n
:=
calc
n + 1 = succ (n + 0) : add_succ _ _
... = succ n : {add_zero _}
theorem add_one_left (n:ℕ) : 1 + n = succ n
:=
calc
1 + n = succ (0 + n) : succ_add _ _
... = succ n : {zero_add _}
--the following theorem has a terrible name, but since the name is not a substring or superstring of another name, it is at least easy to globally replace it
theorem induction_plus_one {P : ℕ → Prop} (a : ℕ) (H1 : P 0)
(H2 : ∀ (n : ℕ) (IH : P n), P (n + 1)) : P a
:= nat.rec H1 (take n IH, (add_one n) ▸ (H2 n IH)) a
-------------------------------------------------- mul
definition mul (n m : ℕ) := nat.rec 0 (fun m x, x + n) m
infixl `*` := mul
theorem mul_zero_right (n:ℕ) : n * 0 = 0
theorem mul_succ_right (n m:ℕ) : n * succ m = n * m + n
set_option unifier.max_steps 100000
---------- comm, distr, assoc, identity
theorem mul_zero_left (n:ℕ) : 0 * n = 0
:= induction_on n
(mul_zero_right 0)
(take m IH,
calc
0 * succ m = 0 * m + 0 : mul_succ_right _ _
... = 0 * m : add_zero _
... = 0 : IH)
theorem mul_succ_left (n m:ℕ) : (succ n) * m = (n * m) + m
:= induction_on m
(calc
succ n * 0 = 0 : mul_zero_right _
... = n * 0 : symm (mul_zero_right _)
... = n * 0 + 0 : symm (add_zero _))
(take k IH,
calc
succ n * succ k = (succ n * k) + succ n : mul_succ_right _ _
... = (n * k) + k + succ n : { IH }
... = (n * k) + (k + succ n) : add_assoc _ _ _
... = (n * k) + (n + succ k) : {add_comm_succ _ _}
... = (n * k) + n + succ k : symm (add_assoc _ _ _)
... = (n * succ k) + succ k : {symm (mul_succ_right n k)})
theorem mul_comm (n m:ℕ) : n * m = m * n
:= induction_on m
(trans (mul_zero_right _) (symm (mul_zero_left _)))
(take k IH,
calc
n * succ k = n * k + n : mul_succ_right _ _
... = k * n + n : {IH}
... = (succ k) * n : symm (mul_succ_left _ _))
theorem mul_add_distr_left (n m k : ℕ) : (n + m) * k = n * k + m * k
:= induction_on k
(calc
(n + m) * 0 = 0 : mul_zero_right _
... = 0 + 0 : symm (add_zero _)
... = n * 0 + 0 : eq.refl _
... = n * 0 + m * 0 : eq.refl _)
(take l IH, calc
(n + m) * succ l = (n + m) * l + (n + m) : mul_succ_right _ _
... = n * l + m * l + (n + m) : {IH}
... = n * l + m * l + n + m : symm (add_assoc _ _ _)
... = n * l + n + m * l + m : {add_right_comm _ _ _}
... = n * l + n + (m * l + m) : add_assoc _ _ _
... = n * succ l + (m * l + m) : {symm (mul_succ_right _ _)}
... = n * succ l + m * succ l : {symm (mul_succ_right _ _)})
theorem mul_add_distr_right (n m k : ℕ) : n * (m + k) = n * m + n * k
:= calc
n * (m + k) = (m + k) * n : mul_comm _ _
... = m * n + k * n : mul_add_distr_left _ _ _
... = n * m + k * n : {mul_comm _ _}
... = n * m + n * k : {mul_comm _ _}
theorem mul_assoc (n m k:ℕ) : (n * m) * k = n * (m * k)
:= induction_on k
(calc
(n * m) * 0 = 0 : mul_zero_right _
... = n * 0 : symm (mul_zero_right _)
... = n * (m * 0) : {symm (mul_zero_right _)})
(take l IH,
calc
(n * m) * succ l = (n * m) * l + n * m : mul_succ_right _ _
... = n * (m * l) + n * m : {IH}
... = n * (m * l + m) : symm (mul_add_distr_right _ _ _)
... = n * (m * succ l) : {symm (mul_succ_right _ _)})
theorem mul_comm_left (n m k : ℕ) : n * (m * k) = m * (n * k)
:= left_comm mul_comm mul_assoc n m k
theorem mul_comm_right (n m k : ℕ) : n * m * k = n * k * m
:= right_comm mul_comm mul_assoc n m k
theorem mul_one_right (n : ℕ) : n * 1 = n
:= calc
n * 1 = n * 0 + n : mul_succ_right n 0
... = 0 + n : {mul_zero_right n}
... = n : zero_add n
theorem mul_one_left (n : ℕ) : 1 * n = n
:= calc
1 * n = n * 1 : mul_comm _ _
... = n : mul_one_right n
---------- inversion
theorem mul_eq_zero {n m : ℕ} (H : n * m = 0) : n = 0 ∨ m = 0
:=
discriminate
(take Hn : n = 0, or.intro_left _ Hn)
(take (k : ℕ),
assume (Hk : n = succ k),
discriminate
(take (Hm : m = 0), or.intro_right _ Hm)
(take (l : ℕ),
assume (Hl : m = succ l),
have Heq : succ (k * succ l + l) = n * m, from
symm (calc
n * m = n * succ l : { Hl }
... = succ k * succ l : { Hk }
... = k * succ l + succ l : mul_succ_left _ _
... = succ (k * succ l + l) : add_succ _ _),
absurd (trans Heq H) (succ_ne_zero _)))
-- see more under "positivity" below
-------------------------------------------------- le
definition le (n m:ℕ) : Prop := ∃k, n + k = m
infix `<=` := le
infix `≤` := le
theorem le_intro {n m k : ℕ} (H : n + k = m) : n ≤ m
:= exists.intro k H
theorem le_elim {n m : ℕ} (H : n ≤ m) : ∃ k, n + k = m
:= H
---------- partial order (totality is part of lt)
theorem le_intro2 (n m : ℕ) : n ≤ n + m
:= le_intro (eq.refl (n + m))
theorem le_refl (n : ℕ) : n ≤ n
:= le_intro (add_zero n)
theorem zero_le (n : ℕ) : 0 ≤ n
:= le_intro (zero_add n)
theorem le_zero {n : ℕ} (H : n ≤ 0) : n = 0
:=
obtain (k : ℕ) (Hk : n + k = 0), from le_elim H,
eq_zero_of_add_eq_zero_right Hk
theorem not_succ_zero_le (n : ℕ) : ¬ succ n ≤ 0
:= assume H : succ n ≤ 0,
have H2 : succ n = 0, from le_zero H,
absurd H2 (succ_ne_zero n)
theorem le_zero_inv {n : ℕ} (H : n ≤ 0) : n = 0
:= obtain (k : ℕ) (Hk : n + k = 0), from le_elim H,
eq_zero_of_add_eq_zero_right Hk
theorem le_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k
:= obtain (l1 : ℕ) (Hl1 : n + l1 = m), from le_elim H1,
obtain (l2 : ℕ) (Hl2 : m + l2 = k), from le_elim H2,
le_intro
(calc
n + (l1 + l2) = n + l1 + l2 : symm (add_assoc n l1 l2)
... = m + l2 : { Hl1 }
... = k : Hl2)
theorem le_antisym {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m
:= obtain (k : ℕ) (Hk : n + k = m), from (le_elim H1),
obtain (l : ℕ) (Hl : m + l = n), from (le_elim H2),
have L1 : k + l = 0, from
add_cancel_left
(calc
n + (k + l) = n + k + l : { symm (add_assoc n k l) }
... = m + l : { Hk }
... = n : Hl
... = n + 0 : symm (add_zero n)),
have L2 : k = 0, from eq_zero_of_add_eq_zero_right L1,
calc
n = n + 0 : symm (add_zero n)
... = n + k : { symm L2 }
... = m : Hk
---------- interaction with add
theorem add_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m
:= obtain (l : ℕ) (Hl : n + l = m), from (le_elim H),
le_intro
(calc
k + n + l = k + (n + l) : add_assoc k n l
... = k + m : { Hl })
theorem add_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k
:= (add_comm k m) ▸ (add_comm k n) ▸ (add_le_left H k)
theorem add_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n + m ≤ k + l
:= le_trans (add_le_right H1 m) (add_le_left H2 k)
theorem add_le_left_inv {n m k : ℕ} (H : k + n ≤ k + m) : n ≤ m
:=
obtain (l : ℕ) (Hl : k + n + l = k + m), from (le_elim H),
le_intro (add_cancel_left
(calc
k + (n + l) = k + n + l : symm (add_assoc k n l)
... = k + m : Hl))
theorem add_le_right_inv {n m k : ℕ} (H : n + k ≤ m + k) : n ≤ m
:= add_le_left_inv (add_comm m k ▸ add_comm n k ▸ H)
---------- interaction with succ and pred
theorem succ_le {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m
:= add_one m ▸ add_one n ▸ add_le_right H 1
theorem succ_le_cancel {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m
:= add_le_right_inv ((add_one m)⁻¹ ▸ (add_one n)⁻¹ ▸ H)
theorem self_le_succ (n : ℕ) : n ≤ succ n
:= le_intro (add_one n)
theorem le_imp_le_succ {n m : ℕ} (H : n ≤ m) : n ≤ succ m
:= le_trans H (self_le_succ m)
theorem succ_le_left_or {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m
:= obtain (k : ℕ) (Hk : n + k = m), from (le_elim H),
discriminate
(assume H3 : k = 0,
have Heq : n = m,
from calc
n = n + 0 : (add_zero n)⁻¹
... = n + k : {H3⁻¹}
... = m : Hk,
or.intro_right _ Heq)
(take l:ℕ,
assume H3 : k = succ l,
have Hlt : succ n ≤ m, from
(le_intro
(calc
succ n + l = n + succ l : succ_add_eq_add_succ n l
... = n + k : {H3⁻¹}
... = m : Hk)),
or.intro_left _ Hlt)
theorem succ_le_left {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m
:= or_resolve_left (succ_le_left_or H1) H2
theorem succ_le_right_inv {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m
:= or_of_or_of_imp_of_imp (succ_le_left_or H)
(take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2)
(take H2 : n = succ m, H2)
theorem succ_le_left_inv {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
:= obtain (k : ℕ) (H2 : succ n + k = m), from (le_elim H),
and.intro
(have H3 : n + succ k = m,
from calc
n + succ k = succ n + k : symm (succ_add_eq_add_succ n k)
... = m : H2,
show n ≤ m, from le_intro H3)
(assume H3 : n = m,
have H4 : succ n ≤ n, from subst (symm H3) H,
have H5 : succ n = n, from le_antisym H4 (self_le_succ n),
show false, from absurd H5 (succ_ne_self n))
theorem le_pred_self (n : ℕ) : pred n ≤ n
:= case n
(subst (symm pred_zero) (le_refl 0))
(take k : ℕ, subst (symm (pred_succ k)) (self_le_succ k))
theorem pred_le {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m
:= discriminate
(take Hn : n = 0,
have H2 : pred n = 0,
from calc
pred n = pred 0 : {Hn}
... = 0 : pred_zero,
subst (symm H2) (zero_le (pred m)))
(take k : ℕ,
assume Hn : n = succ k,
obtain (l : ℕ) (Hl : n + l = m), from le_elim H,
have H2 : pred n + l = pred m,
from calc
pred n + l = pred (succ k) + l : {Hn}
... = k + l : {pred_succ k}
... = pred (succ (k + l)) : symm (pred_succ (k + l))
... = pred (succ k + l) : {symm (succ_add k l)}
... = pred (n + l) : {symm Hn}
... = pred m : {Hl},
le_intro H2)
theorem pred_le_left_inv {n m : ℕ} (H : pred n ≤ m) : n ≤ m ∨ n = succ m
:= discriminate
(take Hn : n = 0,
or.intro_left _ (subst (symm Hn) (zero_le m)))
(take k : ℕ,
assume Hn : n = succ k,
have H2 : pred n = k,
from calc
pred n = pred (succ k) : {Hn}
... = k : pred_succ k,
have H3 : k ≤ m, from subst H2 H,
have H4 : succ k ≤ m ∨ k = m, from succ_le_left_or H3,
show n ≤ m ∨ n = succ m, from
or_of_or_of_imp_of_imp H4
(take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5)
(take H5 : k = m, show n = succ m, from subst H5 Hn))
-- ### interaction with successor and predecessor
theorem le_imp_succ_le_or_eq {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m
:=
obtain (k : ℕ) (Hk : n + k = m), from (le_elim H),
discriminate
(assume H3 : k = 0,
have Heq : n = m,
from calc
n = n + 0 : symm (add_zero n)
... = n + k : {symm H3}
... = m : Hk,
or.intro_right _ Heq)
(take l : nat,
assume H3 : k = succ l,
have Hlt : succ n ≤ m, from
(le_intro
(calc
succ n + l = n + succ l : succ_add_eq_add_succ n l
... = n + k : {symm H3}
... = m : Hk)),
or.intro_left _ Hlt)
theorem le_ne_imp_succ_le {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m
:= or_resolve_left (le_imp_succ_le_or_eq H1) H2
theorem le_succ_imp_le_or_eq {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m
:= or_of_or_of_imp_left (le_imp_succ_le_or_eq H)
(take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2)
theorem succ_le_imp_le_and_ne {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
:=
and.intro
(le_trans (self_le_succ n) H)
(assume H2 : n = m,
have H3 : succ n ≤ n, from subst (symm H2) H,
have H4 : succ n = n, from le_antisym H3 (self_le_succ n),
show false, from absurd H4 (succ_ne_self n))
theorem pred_le_self (n : ℕ) : pred n ≤ n
:=
case n
(subst (symm pred_zero) (le_refl 0))
(take k : nat, subst (symm (pred_succ k)) (self_le_succ k))
theorem pred_le_imp_le_or_eq {n m : ℕ} (H : pred n ≤ m) : n ≤ m ∨ n = succ m
:=
discriminate
(take Hn : n = 0,
or.intro_left _ (subst (symm Hn) (zero_le m)))
(take k : nat,
assume Hn : n = succ k,
have H2 : pred n = k,
from calc
pred n = pred (succ k) : {Hn}
... = k : pred_succ k,
have H3 : k ≤ m, from subst H2 H,
have H4 : succ k ≤ m ∨ k = m, from le_imp_succ_le_or_eq H3,
show n ≤ m ∨ n = succ m, from
or_of_or_of_imp_of_imp H4
(take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5)
(take H5 : k = m, show n = succ m, from subst H5 Hn))
---------- interaction with mul
theorem mul_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k * n ≤ k * m
:=
obtain (l : ℕ) (Hl : n + l = m), from (le_elim H),
induction_on k
(have H2 : 0 * n = 0 * m,
from calc
0 * n = 0 : mul_zero_left n
... = 0 * m : symm (mul_zero_left m),
show 0 * n ≤ 0 * m, from subst H2 (le_refl (0 * n)))
(take (l : ℕ),
assume IH : l * n ≤ l * m,
have H2 : l * n + n ≤ l * m + m, from add_le IH H,
have H3 : succ l * n ≤ l * m + m, from subst (symm (mul_succ_left l n)) H2,
show succ l * n ≤ succ l * m, from subst (symm (mul_succ_left l m)) H3)
theorem mul_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n * k ≤ m * k
:= mul_comm k m ▸ mul_comm k n ▸ (mul_le_left H k)
theorem mul_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l
:= le_trans (mul_le_right H1 m) (mul_le_left H2 k)
-- mul_le_[left|right]_inv below
-------------------------------------------------- lt
definition lt (n m : ℕ) := succ n ≤ m
infix `<` := lt
theorem lt_intro {n m k : ℕ} (H : succ n + k = m) : n < m
:= le_intro H
theorem lt_elim {n m : ℕ} (H : n < m) : ∃ k, succ n + k = m
:= le_elim H
theorem lt_intro2 (n m : ℕ) : n < n + succ m
:= lt_intro (succ_add_eq_add_succ n m)
-------------------------------------------------- ge, gt
definition ge (n m : ℕ) := m ≤ n
infix `>=` := ge
infix `≥` := ge
definition gt (n m : ℕ) := m < n
infix `>` := gt
---------- basic facts
theorem lt_ne {n m : ℕ} (H : n < m) : n ≠ m
:= and.elim_right (succ_le_left_inv H)
theorem lt_irrefl (n : ℕ) : ¬ n < n
:= assume H : n < n, absurd (eq.refl n) (lt_ne H)
theorem lt_zero (n : ℕ) : 0 < succ n
:= succ_le (zero_le n)
theorem lt_zero_inv (n : ℕ) : ¬ n < 0
:= assume H : n < 0,
have H2 : succ n = 0, from le_zero_inv H,
absurd H2 (succ_ne_zero n)
theorem lt_positive {n m : ℕ} (H : n < m) : ∃k, m = succ k
:= discriminate
(take (Hm : m = 0), absurd (subst Hm H) (lt_zero_inv n))
(take (l : ℕ) (Hm : m = succ l), exists.intro l Hm)
---------- interaction with le
theorem lt_imp_le_succ {n m : ℕ} (H : n < m) : succ n ≤ m
:= H
theorem le_succ_imp_lt {n m : ℕ} (H : succ n ≤ m) : n < m
:= H
theorem self_lt_succ (n : ℕ) : n < succ n
:= le_refl (succ n)
theorem lt_imp_le {n m : ℕ} (H : n < m) : n ≤ m
:= and.elim_left (succ_le_imp_le_and_ne H)
theorem le_imp_lt_or_eq {n m : ℕ} (H : n ≤ m) : n < m ∨ n = m
:= le_imp_succ_le_or_eq H
theorem le_ne_imp_lt {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : n < m
:= le_ne_imp_succ_le H1 H2
theorem le_imp_lt_succ {n m : ℕ} (H : n ≤ m) : n < succ m
:= succ_le H
theorem lt_succ_imp_le {n m : ℕ} (H : n < succ m) : n ≤ m
:= succ_le_cancel H
---------- trans, antisym
theorem lt_le_trans {n m k : ℕ} (H1 : n < m) (H2 : m ≤ k) : n < k
:= le_trans H1 H2
theorem le_lt_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m < k) : n < k
:= le_trans (succ_le H1) H2
theorem lt_trans {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k
:= lt_le_trans H1 (lt_imp_le H2)
theorem le_imp_not_gt {n m : ℕ} (H : n ≤ m) : ¬ n > m
:= assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n)
theorem lt_imp_not_ge {n m : ℕ} (H : n < m) : ¬ n ≥ m
:= assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n)
theorem lt_antisym {n m : ℕ} (H : n < m) : ¬ m < n
:= le_imp_not_gt (lt_imp_le H)
---------- interaction with add
theorem add_lt_left {n m : ℕ} (H : n < m) (k : ℕ) : k + n < k + m
:= add_succ k n ▸ add_le_left H k
theorem add_lt_right {n m : ℕ} (H : n < m) (k : ℕ) : n + k < m + k
:= add_comm k m ▸ add_comm k n ▸ add_lt_left H k
theorem add_le_lt {n m k l : ℕ} (H1 : n ≤ k) (H2 : m < l) : n + m < k + l
:= le_lt_trans (add_le_right H1 m) (add_lt_left H2 k)
theorem add_lt_le {n m k l : ℕ} (H1 : n < k) (H2 : m ≤ l) : n + m < k + l
:= lt_le_trans (add_lt_right H1 m) (add_le_left H2 k)
theorem add_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n + m < k + l
:= add_lt_le H1 (lt_imp_le H2)
theorem add_lt_left_inv {n m k : ℕ} (H : k + n < k + m) : n < m
:= add_le_left_inv ((add_succ k n)⁻¹ ▸ H)
theorem add_lt_right_inv {n m k : ℕ} (H : n + k < m + k) : n < m
:= add_lt_left_inv (add_comm m k ▸ add_comm n k ▸ H)
---------- interaction with succ (see also the interaction with le)
theorem succ_lt {n m : ℕ} (H : n < m) : succ n < succ m
:= add_one m ▸ add_one n ▸ add_lt_right H 1
theorem succ_lt_inv {n m : ℕ} (H : succ n < succ m) : n < m
:= add_lt_right_inv ((add_one m)⁻¹ ▸ (add_one n)⁻¹ ▸ H)
theorem lt_self_succ (n : ℕ) : n < succ n
:= le_refl (succ n)
theorem succ_lt_right {n m : ℕ} (H : n < m) : n < succ m
:= lt_trans H (lt_self_succ m)
---------- totality of lt and le
theorem le_or_lt (n m : ℕ) : n ≤ m ∨ m < n
:= induction_on n
(or.intro_left _ (zero_le m))
(take (k : ℕ),
assume IH : k ≤ m ∨ m < k,
or.elim IH
(assume H : k ≤ m,
obtain (l : ℕ) (Hl : k + l = m), from le_elim H,
discriminate
(assume H2 : l = 0,
have H3 : m = k,
from calc
m = k + l : symm Hl
... = k + 0 : {H2}
... = k : add_zero k,
have H4 : m < succ k, from subst H3 (lt_self_succ m),
or.intro_right _ H4)
(take l2 : ℕ,
assume H2 : l = succ l2,
have H3 : succ k + l2 = m,
from calc
succ k + l2 = k + succ l2 : succ_add_eq_add_succ k l2
... = k + l : {symm H2}
... = m : Hl,
or.intro_left _ (le_intro H3)))
(assume H : m < k, or.intro_right _ (succ_lt_right H)))
theorem trichotomy_alt (n m : ℕ) : (n < m ∨ n = m) ∨ m < n
:= or_of_or_of_imp_of_imp (le_or_lt n m) (assume H : n ≤ m, le_imp_lt_or_eq H) (assume H : m < n, H)
theorem trichotomy (n m : ℕ) : n < m ∨ n = m ∨ m < n
:= iff.elim_left or.assoc (trichotomy_alt n m)
theorem le_total (n m : ℕ) : n ≤ m ∨ m ≤ n
:= or_of_or_of_imp_of_imp (le_or_lt n m) (assume H : n ≤ m, H) (assume H : m < n, lt_imp_le H)
-- interaction with mul under "positivity"
theorem strong_induction_on {P : ℕ → Prop} (n : ℕ) (IH : ∀n, (∀m, m < n → P m) → P n) : P n
:= have stronger : ∀k, k ≤ n → P k, from
induction_on n
(take (k : ℕ),
assume H : k ≤ 0,
have H2 : k = 0, from le_zero_inv H,
have H3 : ∀m, m < k → P m, from
(take m : ℕ,
assume H4 : m < k,
have H5 : m < 0, from subst H2 H4,
absurd H5 (lt_zero_inv m)),
show P k, from IH k H3)
(take l : ℕ,
assume IHl : ∀k, k ≤ l → P k,
take k : ℕ,
assume H : k ≤ succ l,
or.elim (succ_le_right_inv H)
(assume H2 : k ≤ l, show P k, from IHl k H2)
(assume H2 : k = succ l,
have H3 : ∀m, m < k → P m, from
(take m : ℕ,
assume H4 : m < k,
have H5 : m ≤ l, from lt_succ_imp_le (subst H2 H4),
show P m, from IHl m H5),
show P k, from IH k H3)),
stronger n (le_refl n)
theorem case_strong_induction_on {P : ℕ → Prop} (a : ℕ) (H0 : P 0) (Hind : ∀(n : ℕ), (∀m, m ≤ n → P m) → P (succ n)) : P a
:= strong_induction_on a
(take n, case n
(assume H : (∀m, m < 0 → P m), H0)
(take n, assume H : (∀m, m < succ n → P m),
Hind n (take m, assume H1 : m ≤ n, H m (le_imp_lt_succ H1))))
theorem add_eq_self {n m : ℕ} (H : n + m = n) : m = 0
:= discriminate
(take Hm : m = 0, Hm)
(take k : ℕ,
assume Hm : m = succ k,
have H2 : succ n + k = n,
from calc
succ n + k = n + succ k : succ_add_eq_add_succ n k
... = n + m : {symm Hm}
... = n : H,
have H3 : n < n, from lt_intro H2,
have H4 : n ≠ n, from lt_ne H3,
absurd (eq.refl n) H4)
-------------------------------------------------- positivity
-- we use " _ > 0" as canonical way of denoting that a number is positive
---------- basic
theorem zero_or_positive (n : ℕ) : n = 0 ∨ n > 0
:= or_of_or_of_imp_of_imp (or.swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H) (take H : n > 0, H)
theorem succ_positive {n m : ℕ} (H : n = succ m) : n > 0
:= subst (symm H) (lt_zero m)
theorem ne_zero_positive {n : ℕ} (H : n ≠ 0) : n > 0
:= or.elim (zero_or_positive n) (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2)
theorem pos_imp_eq_succ {n : ℕ} (H : n > 0) : ∃l, n = succ l
:= discriminate
(take H2, absurd (subst H2 H) (lt_irrefl 0))
(take l Hl, exists.intro l Hl)
theorem add_positive_right (n : ℕ) {k : ℕ} (H : k > 0) : n + k > n
:= obtain (l : ℕ) (Hl : k = succ l), from pos_imp_eq_succ H,
subst (symm Hl) (lt_intro2 n l)
theorem add_positive_left (n : ℕ) {k : ℕ} (H : k > 0) : k + n > n
:= subst (add_comm n k) (add_positive_right n H)
-- Positivity
-- ---------
--
-- Writing "t > 0" is the preferred way to assert that a natural number is positive.
-- ### basic
-- See also succ_pos.
theorem succ_pos (n : ℕ) : 0 < succ n
:= succ_le (zero_le n)
theorem case_zero_pos {P : ℕ → Prop} (y : ℕ) (H0 : P 0) (H1 : ∀y, y > 0 → P y) : P y
:= case y H0 (take y', H1 _ (succ_pos _))
theorem zero_or_pos (n : ℕ) : n = 0 ∨ n > 0
:= or_of_or_of_imp_left (or.swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H)
theorem succ_imp_pos {n m : ℕ} (H : n = succ m) : n > 0
:= subst (symm H) (succ_pos m)
theorem ne_zero_pos {n : ℕ} (H : n ≠ 0) : n > 0
:= or.elim (zero_or_pos n) (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2)
theorem add_pos_right (n : ℕ) {k : ℕ} (H : k > 0) : n + k > n
:= subst (add_zero n) (add_lt_left H n)
theorem add_pos_left (n : ℕ) {k : ℕ} (H : k > 0) : k + n > n
:= subst (add_comm n k) (add_pos_right n H)
---------- mul
theorem mul_positive {n m : ℕ} (Hn : n > 0) (Hm : m > 0) : n * m > 0
:= obtain (k : ℕ) (Hk : n = succ k), from pos_imp_eq_succ Hn,
obtain (l : ℕ) (Hl : m = succ l), from pos_imp_eq_succ Hm,
succ_positive (calc
n * m = succ k * m : {Hk}
... = succ k * succ l : {Hl}
... = succ k * l + succ k : mul_succ_right (succ k) l
... = succ (succ k * l + k) : add_succ _ _)
theorem mul_positive_inv_left {n m : ℕ} (H : n * m > 0) : n > 0
:= discriminate
(assume H2 : n = 0,
have H3 : n * m = 0,
from calc
n * m = 0 * m : {H2}
... = 0 : mul_zero_left m,
have H4 : 0 > 0, from subst H3 H,
absurd H4 (lt_irrefl 0))
(take l : ℕ,
assume Hl : n = succ l,
subst (symm Hl) (lt_zero l))
theorem mul_positive_inv_right {n m : ℕ} (H : n * m > 0) : m > 0
:= mul_positive_inv_left (subst (mul_comm n m) H)
theorem mul_left_inj {n m k : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k
:=
have general : ∀m, n * m = n * k → m = k, from
induction_on k
(take m:ℕ,
assume H : n * m = n * 0,
have H2 : n * m = 0,
from calc
n * m = n * 0 : H
... = 0 : mul_zero_right n,
have H3 : n = 0 ∨ m = 0, from mul_eq_zero H2,
or_resolve_right H3 (ne.symm (lt_ne Hn)))
(take (l : ℕ),
assume (IH : ∀ m, n * m = n * l → m = l),
take (m : ℕ),
assume (H : n * m = n * succ l),
have H2 : n * succ l > 0, from mul_positive Hn (lt_zero l),
have H3 : m > 0, from mul_positive_inv_right (subst (symm H) H2),
obtain (l2:ℕ) (Hm : m = succ l2), from pos_imp_eq_succ H3,
have H4 : n * l2 + n = n * l + n,
from calc
n * l2 + n = n * succ l2 : symm (mul_succ_right n l2)
... = n * m : {symm Hm}
... = n * succ l : H
... = n * l + n : mul_succ_right n l,
have H5 : n * l2 = n * l, from add_cancel_right H4,
calc
m = succ l2 : Hm
... = succ l : {IH l2 H5}),
general m H
theorem mul_right_inj {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k
:= mul_left_inj Hm (subst (mul_comm k m) (subst (mul_comm n m) H))
-- mul_eq_one below
---------- interaction of mul with le and lt
theorem mul_lt_left {n m k : ℕ} (Hk : k > 0) (H : n < m) : k * n < k * m
:=
have H2 : k * n < k * n + k, from add_positive_right (k * n) Hk,
have H3 : k * n + k ≤ k * m, from subst (mul_succ_right k n) (mul_le_left H k),
lt_le_trans H2 H3
theorem mul_lt_right {n m k : ℕ} (Hk : k > 0) (H : n < m) : n * k < m * k
:= subst (mul_comm k m) (subst (mul_comm k n) (mul_lt_left Hk H))
theorem mul_le_lt {n m k l : ℕ} (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) : n * m < k * l
:= le_lt_trans (mul_le_right H1 m) (mul_lt_left Hk H2)
theorem mul_lt_le {n m k l : ℕ} (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) : n * m < k * l
:= le_lt_trans (mul_le_left H2 n) (mul_lt_right Hl H1)
theorem mul_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n * m < k * l
:=
have H3 : n * m ≤ k * m, from mul_le_right (lt_imp_le H1) m,
have H4 : k * m < k * l, from mul_lt_left (le_lt_trans (zero_le n) H1) H2,
le_lt_trans H3 H4
theorem mul_lt_left_inv {n m k : ℕ} (H : k * n < k * m) : n < m
:=
have general : ∀ m, k * n < k * m → n < m, from
induction_on n
(take m : ℕ,
assume H2 : k * 0 < k * m,
have H3 : 0 < k * m, from mul_zero_right k ▸ H2,
show 0 < m, from mul_positive_inv_right H3)
(take l : ℕ,
assume IH : ∀ m, k * l < k * m → l < m,
take m : ℕ,
assume H2 : k * succ l < k * m,
have H3 : 0 < k * m, from le_lt_trans (zero_le _) H2,
have H4 : 0 < m, from mul_positive_inv_right H3,
obtain (l2 : ℕ) (Hl2 : m = succ l2), from pos_imp_eq_succ H4,
have H5 : k * l + k < k * m, from mul_succ_right k l ▸ H2,
have H6 : k * l + k < k * succ l2, from Hl2 ▸ H5,
have H7 : k * l + k < k * l2 + k, from mul_succ_right k l2 ▸ H6,
have H8 : k * l < k * l2, from add_lt_right_inv H7,
have H9 : l < l2, from IH l2 H8,
have H10 : succ l < succ l2, from succ_lt H9,
show succ l < m, from Hl2⁻¹ ▸ H10),
general m H
theorem mul_lt_right_inv {n m k : ℕ} (H : n * k < m * k) : n < m
:= mul_lt_left_inv (mul_comm m k ▸ mul_comm n k ▸ H)
theorem mul_le_left_inv {n m k : ℕ} (H : succ k * n ≤ succ k * m) : n ≤ m
:=
have H2 : succ k * n < succ k * m + succ k, from le_lt_trans H (lt_intro2 _ _),
have H3 : succ k * n < succ k * succ m, from subst (symm (mul_succ_right (succ k) m)) H2,
have H4 : n < succ m, from mul_lt_left_inv H3,
show n ≤ m, from lt_succ_imp_le H4
theorem mul_le_right_inv {n m k : ℕ} (H : n * succ m ≤ k * succ m) : n ≤ k
:= mul_le_left_inv (subst (mul_comm k (succ m)) (subst (mul_comm n (succ m)) H))
theorem mul_eq_one_left {n m : ℕ} (H : n * m = 1) : n = 1
:=
have H2 : n * m > 0, from subst (symm H) (lt_zero 0),
have H3 : n > 0, from mul_positive_inv_left H2,
have H4 : m > 0, from mul_positive_inv_right H2,
or.elim (le_or_lt n 1)
(assume H5 : n ≤ 1,
show n = 1, from le_antisym H5 H3)
(assume H5 : n > 1,
have H6 : n * m ≥ 2 * 1, from mul_le H5 H4,
have H7 : 1 ≥ 2, from subst (mul_one_right 2) (subst H H6),
absurd (self_lt_succ 1) (le_imp_not_gt H7))
theorem mul_eq_one_right {n m : ℕ} (H : n * m = 1) : m = 1
:= mul_eq_one_left (subst (mul_comm n m) H)
theorem mul_eq_one {n m : ℕ} (H : n * m = 1) : n = 1 ∧ m = 1
:= and.intro (mul_eq_one_left H) (mul_eq_one_right H)
-------------------------------------------------- sub
definition sub (n m : ℕ) : ℕ := nat.rec n (fun m x, pred x) m
infixl `-` := sub
theorem sub_zero_right (n : ℕ) : n - 0 = n
theorem sub_succ_right (n m : ℕ) : n - succ m = pred (n - m)
theorem sub_zero_left (n : ℕ) : 0 - n = 0
:= induction_on n (sub_zero_right 0)
(take k : ℕ,
assume IH : 0 - k = 0,
calc
0 - succ k = pred (0 - k) : sub_succ_right 0 k
... = pred 0 : {IH}
... = 0 : pred_zero)
theorem sub_succ_succ (n m : ℕ) : succ n - succ m = n - m
:= induction_on m
(calc
succ n - 1 = pred (succ n - 0) : sub_succ_right (succ n) 0
... = pred (succ n) : {sub_zero_right (succ n)}
... = n : pred_succ n
... = n - 0 : symm (sub_zero_right n))
(take k : ℕ,
assume IH : succ n - succ k = n - k,
calc
succ n - succ (succ k) = pred (succ n - succ k) : sub_succ_right (succ n) (succ k)
... = pred (n - k) : {IH}
... = n - succ k : symm (sub_succ_right n k))
theorem sub_one (n : ℕ) : n - 1 = pred n
:= calc
n - 1 = pred (n - 0) : sub_succ_right n 0
... = pred n : {sub_zero_right n}
theorem sub_self (n : ℕ) : n - n = 0
:= induction_on n (sub_zero_right 0) (take k IH, trans (sub_succ_succ k k) IH)
theorem sub_add_add_right (n m k : ℕ) : (n + k) - (m + k) = n - m
:= induction_on k
(calc
(n + 0) - (m + 0) = n - (m + 0) : {add_zero _}
... = n - m : {add_zero _})
(take l : ℕ,
assume IH : (n + l) - (m + l) = n - m,
calc
(n + succ l) - (m + succ l) = succ (n + l) - (m + succ l) : {add_succ _ _}
... = succ (n + l) - succ (m + l) : {add_succ _ _}
... = (n + l) - (m + l) : sub_succ_succ _ _
... = n - m : IH)
theorem sub_add_add_left (n m k : ℕ) : (k + n) - (k + m) = n - m
:= subst (add_comm m k) (subst (add_comm n k) (sub_add_add_right n m k))
theorem sub_add_left (n m : ℕ) : n + m - m = n
:= induction_on m
(subst (symm (add_zero n)) (sub_zero_right n))
(take k : ℕ,
assume IH : n + k - k = n,
calc
n + succ k - succ k = succ (n + k) - succ k : {add_succ n k}
... = n + k - k : sub_succ_succ _ _
... = n : IH)
theorem sub_sub (n m k : ℕ) : n - m - k = n - (m + k)
:= induction_on k
(calc
n - m - 0 = n - m : sub_zero_right _
... = n - (m + 0) : {symm (add_zero m)})
(take l : ℕ,
assume IH : n - m - l = n - (m + l),
calc
n - m - succ l = pred (n - m - l) : sub_succ_right (n - m) l
... = pred (n - (m + l)) : {IH}
... = n - succ (m + l) : symm (sub_succ_right n (m + l))
... = n - (m + succ l) : {symm (add_succ m l)})
theorem succ_sub_sub (n m k : ℕ) : succ n - m - succ k = n - m - k
:= calc
succ n - m - succ k = succ n - (m + succ k) : sub_sub _ _ _
... = succ n - succ (m + k) : {add_succ m k}
... = n - (m + k) : sub_succ_succ _ _
... = n - m - k : symm (sub_sub n m k)
theorem sub_add_right_eq_zero (n m : ℕ) : n - (n + m) = 0
:= calc
n - (n + m) = n - n - m : symm (sub_sub n n m)
... = 0 - m : {sub_self n}
... = 0 : sub_zero_left m
theorem sub_comm (m n k : ℕ) : m - n - k = m - k - n
:= calc
m - n - k = m - (n + k) : sub_sub m n k
... = m - (k + n) : {add_comm n k}
... = m - k - n : symm (sub_sub m k n)
theorem succ_sub_one (n : ℕ) : succ n - 1 = n
:= sub_succ_succ n 0 ⬝ sub_zero_right n
---------- mul
theorem mul_pred_left (n m : ℕ) : pred n * m = n * m - m
:= induction_on n
(calc
pred 0 * m = 0 * m : {pred_zero}
... = 0 : mul_zero_left _
... = 0 - m : symm (sub_zero_left m)
... = 0 * m - m : {symm (mul_zero_left m)})
(take k : ℕ,
assume IH : pred k * m = k * m - m,
calc
pred (succ k) * m = k * m : {pred_succ k}
... = k * m + m - m : symm (sub_add_left _ _)
... = succ k * m - m : {symm (mul_succ_left k m)})
theorem mul_pred_right (n m : ℕ) : n * pred m = n * m - n
:= calc n * pred m = pred m * n : mul_comm _ _
... = m * n - n : mul_pred_left m n
... = n * m - n : {mul_comm m n}
theorem mul_sub_distr_left (n m k : ℕ) : (n - m) * k = n * k - m * k
:= induction_on m
(calc
(n - 0) * k = n * k : {sub_zero_right n}
... = n * k - 0 : symm (sub_zero_right _)
... = n * k - 0 * k : {symm (mul_zero_left _)})
(take l : ℕ,
assume IH : (n - l) * k = n * k - l * k,
calc
(n - succ l) * k = pred (n - l) * k : {sub_succ_right n l}
... = (n - l) * k - k : mul_pred_left _ _
... = n * k - l * k - k : {IH}
... = n * k - (l * k + k) : sub_sub _ _ _
... = n * k - (succ l * k) : {symm (mul_succ_left l k)})
theorem mul_sub_distr_right (n m k : ℕ) : n * (m - k) = n * m - n * k
:= calc
n * (m - k) = (m - k) * n : mul_comm _ _
... = m * n - k * n : mul_sub_distr_left _ _ _
... = n * m - k * n : {mul_comm _ _}
... = n * m - n * k : {mul_comm _ _}
-------------------------------------------------- max, min, iteration, maybe: sub, div
theorem succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n)
:= sub_induction n m
(take k,
assume H : 0 ≤ k,
calc
succ k - 0 = succ k : sub_zero_right (succ k)
... = succ (k - 0) : {symm (sub_zero_right k)})
(take k,
assume H : succ k ≤ 0,
absurd H (not_succ_zero_le k))
(take k l,
assume IH : k ≤ l → succ l - k = succ (l - k),
take H : succ k ≤ succ l,
calc
succ (succ l) - succ k = succ l - k : sub_succ_succ (succ l) k
... = succ (l - k) : IH (succ_le_cancel H)
... = succ (succ l - succ k) : {symm (sub_succ_succ l k)})
theorem le_imp_sub_eq_zero {n m : ℕ} (H : n ≤ m) : n - m = 0
:= obtain (k : ℕ) (Hk : n + k = m), from le_elim H, subst Hk (sub_add_right_eq_zero n k)
theorem add_sub_le {n m : ℕ} : n ≤ m → n + (m - n) = m
:= sub_induction n m
(take k,
assume H : 0 ≤ k,
calc
0 + (k - 0) = k - 0 : zero_add (k - 0)
... = k : sub_zero_right k)
(take k, assume H : succ k ≤ 0, absurd H (not_succ_zero_le k))
(take k l,
assume IH : k ≤ l → k + (l - k) = l,
take H : succ k ≤ succ l,
calc
succ k + (succ l - succ k) = succ k + (l - k) : {sub_succ_succ l k}
... = succ (k + (l - k)) : succ_add k (l - k)
... = succ l : {IH (succ_le_cancel H)})
theorem add_sub_ge_left {n m : ℕ} : n ≥ m → n - m + m = n
:= subst (add_comm m (n - m)) add_sub_le
theorem add_sub_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n
:= calc
n + (m - n) = n + 0 : {le_imp_sub_eq_zero H}
... = n : add_zero n
theorem add_sub_le_left {n m : ℕ} : n ≤ m → n - m + m = m
:= subst (add_comm m (n - m)) add_sub_ge
theorem le_add_sub_left (n m : ℕ) : n ≤ n + (m - n)
:= or.elim (le_total n m)
(assume H : n ≤ m, subst (symm (add_sub_le H)) H)
(assume H : m ≤ n, subst (symm (add_sub_ge H)) (le_refl n))
theorem le_add_sub_right (n m : ℕ) : m ≤ n + (m - n)
:= or.elim (le_total n m)
(assume H : n ≤ m, subst (symm (add_sub_le H)) (le_refl m))
(assume H : m ≤ n, subst (symm (add_sub_ge H)) H)
theorem sub_split {P : ℕ → Prop} {n m : ℕ} (H1 : n ≤ m → P 0) (H2 : ∀k, m + k = n -> P k)
: P (n - m)
:= or.elim (le_total n m)
(assume H3 : n ≤ m, subst (symm (le_imp_sub_eq_zero H3)) (H1 H3))
(assume H3 : m ≤ n, H2 (n - m) (add_sub_le H3))
theorem sub_le_self (n m : ℕ) : n - m ≤ n
:=
sub_split
(assume H : n ≤ m, zero_le n)
(take k : ℕ, assume H : m + k = n, le_intro (subst (add_comm m k) H))
theorem le_elim_sub (n m : ℕ) (H : n ≤ m) : ∃k, m - k = n
:=
obtain (k : ℕ) (Hk : n + k = m), from le_elim H,
exists.intro k
(calc
m - k = n + k - k : {symm Hk}
... = n : sub_add_left n k)
theorem add_sub_assoc {m k : ℕ} (H : k ≤ m) (n : ℕ) : n + m - k = n + (m - k)
:= have l1 : k ≤ m → n + m - k = n + (m - k), from
sub_induction k m
(take m : ℕ,
assume H : 0 ≤ m,
calc
n + m - 0 = n + m : sub_zero_right (n + m)
... = n + (m - 0) : {symm (sub_zero_right m)})
(take k : ℕ, assume H : succ k ≤ 0, absurd H (not_succ_zero_le k))
(take k m,
assume IH : k ≤ m → n + m - k = n + (m - k),
take H : succ k ≤ succ m,
calc
n + succ m - succ k = succ (n + m) - succ k : {add_succ n m}
... = n + m - k : sub_succ_succ (n + m) k
... = n + (m - k) : IH (succ_le_cancel H)
... = n + (succ m - succ k) : {symm (sub_succ_succ m k)}),
l1 H
theorem sub_eq_zero_imp_le {n m : ℕ} : n - m = 0 → n ≤ m
:= sub_split
(assume H1 : n ≤ m, assume H2 : 0 = 0, H1)
(take k : ℕ,
assume H1 : m + k = n,
assume H2 : k = 0,
have H3 : n = m, from subst (add_zero m) (subst H2 (symm H1)),
subst H3 (le_refl n))
theorem sub_sub_split {P : ℕ → ℕ → Prop} {n m : ℕ} (H1 : ∀k, n = m + k -> P k 0)
(H2 : ∀k, m = n + k → P 0 k) : P (n - m) (m - n)
:= or.elim (le_total n m)
(assume H3 : n ≤ m,
(le_imp_sub_eq_zero H3)⁻¹ ▸ (H2 (m - n) ((add_sub_le H3)⁻¹)))
(assume H3 : m ≤ n,
(le_imp_sub_eq_zero H3)⁻¹ ▸ (H1 (n - m) ((add_sub_le H3)⁻¹)))
theorem sub_intro {n m k : ℕ} (H : n + m = k) : k - n = m
:= have H2 : k - n + n = m + n, from
calc
k - n + n = k : add_sub_ge_left (le_intro H)
... = n + m : symm H
... = m + n : add_comm n m,
add_cancel_right H2
theorem sub_lt {x y : ℕ} (xpos : x > 0) (ypos : y > 0) : x - y < x
:= obtain (x' : ℕ) (xeq : x = succ x'), from pos_imp_eq_succ xpos,
obtain (y' : ℕ) (yeq : y = succ y'), from pos_imp_eq_succ ypos,
have xsuby_eq : x - y = x' - y', from
calc
x - y = succ x' - y : {xeq}
... = succ x' - succ y' : {yeq}
... = x' - y' : sub_succ_succ _ _,
have H1 : x' - y' ≤ x', from sub_le_self _ _,
have H2 : x' < succ x', from self_lt_succ _,
show x - y < x, from xeq⁻¹ ▸ xsuby_eq⁻¹ ▸ le_lt_trans H1 H2
-- Max, min, iteration, and absolute difference
-- --------------------------------------------
definition max (n m : ℕ) : ℕ := n + (m - n)
definition min (n m : ℕ) : ℕ := m - (m - n)
theorem max_le {n m : ℕ} (H : n ≤ m) : n + (m - n) = m := add_sub_le H
theorem max_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n := add_sub_ge H
theorem left_le_max (n m : ℕ) : n ≤ n + (m - n) := le_add_sub_left n m
theorem right_le_max (n m : ℕ) : m ≤ max n m := le_add_sub_right n m
-- ### absolute difference
-- This section is still incomplete
definition dist (n m : ℕ) := (n - m) + (m - n)
theorem dist_comm (n m : ℕ) : dist n m = dist m n
:= add_comm (n - m) (m - n)
theorem dist_eq_zero {n m : ℕ} (H : dist n m = 0) : n = m
:=
have H2 : n - m = 0, from eq_zero_of_add_eq_zero_right H,
have H3 : n ≤ m, from sub_eq_zero_imp_le H2,
have H4 : m - n = 0, from add_eq_zero_right H,
have H5 : m ≤ n, from sub_eq_zero_imp_le H4,
le_antisym H3 H5
theorem dist_le {n m : ℕ} (H : n ≤ m) : dist n m = m - n
:= calc
dist n m = (n - m) + (m - n) : eq.refl _
... = 0 + (m - n) : {le_imp_sub_eq_zero H}
... = m - n : zero_add (m - n)
theorem dist_ge {n m : ℕ} (H : n ≥ m) : dist n m = n - m
:= subst (dist_comm m n) (dist_le H)
theorem dist_zero_right (n : ℕ) : dist n 0 = n
:= trans (dist_ge (zero_le n)) (sub_zero_right n)
theorem dist_zero_left (n : ℕ) : dist 0 n = n
:= trans (dist_le (zero_le n)) (sub_zero_right n)
theorem dist_intro {n m k : ℕ} (H : n + m = k) : dist k n = m
:= calc
dist k n = k - n : dist_ge (le_intro H)
... = m : sub_intro H
theorem dist_add_right (n k m : ℕ) : dist (n + k) (m + k) = dist n m
:=
calc
dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : eq.refl _
... = (n - m) + ((m + k) - (n + k)) : {sub_add_add_right _ _ _}
... = (n - m) + (m - n) : {sub_add_add_right _ _ _}
theorem dist_add_left (k n m : ℕ) : dist (k + n) (k + m) = dist n m
:= subst (add_comm m k) (subst (add_comm n k) (dist_add_right n k m))
theorem dist_ge_add_right {n m : ℕ} (H : n ≥ m) : dist n m + m = n
:= calc
dist n m + m = n - m + m : {dist_ge H}
... = n : add_sub_ge_left H
theorem dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m
:= calc
dist n k = dist (n + m) (k + m) : symm (dist_add_right n m k)
... = dist (k + l) (k + m) : {H}
... = dist l m : dist_add_left k l m
end nat
end experiment
|
7118c21eaf881a12585bb1d902fbcb51ece5863e
|
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
|
/tests/lean/run/int_eq_num.lean
|
60acc024961e98414b7d9392fb4edb1e876b5751
|
[
"Apache-2.0"
] |
permissive
|
bre7k30/lean
|
de893411bcfa7b3c5572e61b9e1c52951b310aa4
|
5a924699d076dab1bd5af23a8f910b433e598d7a
|
refs/heads/master
| 1,610,900,145,817
| 1,488,006,845,000
| 1,488,006,845,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 122
|
lean
|
def f : int → nat
| -100 := 0
| 0 := 1
| 3 := 2
| _ := 4
vm_eval f (-100)
vm_eval f 0
vm_eval f 3
vm_eval f 5
|
66130b875b9bb3737b6412f8b2412a850931317a
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/ring_theory/polynomial/quotient.lean
|
c476511b7c12261a79c3d97440e31bbd02c2edd9
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 10,665
|
lean
|
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, David Kurniadi Angdinata, Devon Tuma, Riccardo Brasca
-/
import data.polynomial.div
import ring_theory.polynomial.basic
import ring_theory.ideal.quotient_operations
/-!
# Quotients of polynomial rings
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
-/
open_locale polynomial
namespace polynomial
variables {R : Type*} [comm_ring R]
/-- For a commutative ring $R$, evaluating a polynomial at an element $x \in R$ induces an
isomorphism of $R$-algebras $R[X] / \langle X - x \rangle \cong R$. -/
noncomputable def quotient_span_X_sub_C_alg_equiv (x : R) :
(R[X] ⧸ ideal.span ({X - C x} : set R[X])) ≃ₐ[R] R :=
(ideal.quotient_equiv_alg_of_eq R
(by exact ker_eval_ring_hom x : ring_hom.ker (aeval x).to_ring_hom = _)).symm.trans $
ideal.quotient_ker_alg_equiv_of_right_inverse $ λ _, eval_C
@[simp] lemma quotient_span_X_sub_C_alg_equiv_mk (x : R) (p : R[X]) :
quotient_span_X_sub_C_alg_equiv x (ideal.quotient.mk _ p) = p.eval x :=
rfl
@[simp] lemma quotient_span_X_sub_C_alg_equiv_symm_apply (x : R) (y : R) :
(quotient_span_X_sub_C_alg_equiv x).symm y = algebra_map R _ y :=
rfl
/-- For a commutative ring $R$, evaluating a polynomial at an element $y \in R$ induces an
isomorphism of $R$-algebras $R[X] / \langle x, X - y \rangle \cong R / \langle x \rangle$. -/
noncomputable def quotient_span_C_X_sub_C_alg_equiv (x y : R) :
(R[X] ⧸ (ideal.span {C x, X - C y} : ideal R[X])) ≃ₐ[R] R ⧸ (ideal.span {x} : ideal R) :=
(ideal.quotient_equiv_alg_of_eq R $ by rw [ideal.span_insert, sup_comm]).trans $
(double_quot.quot_quot_equiv_quot_supₐ R _ _).symm.trans $
(ideal.quotient_equiv_alg _ _ (quotient_span_X_sub_C_alg_equiv y) rfl).trans $
ideal.quotient_equiv_alg_of_eq R $
by { simp only [ideal.map_span, set.image_singleton], congr' 2, exact eval_C }
end polynomial
namespace ideal
noncomputable theory
open polynomial
variables {R : Type*} [comm_ring R]
lemma quotient_map_C_eq_zero {I : ideal R} :
∀ a ∈ I, ((quotient.mk (map (C : R →+* R[X]) I : ideal R[X])).comp C) a = 0 :=
begin
intros a ha,
rw [ring_hom.comp_apply, quotient.eq_zero_iff_mem],
exact mem_map_of_mem _ ha,
end
lemma eval₂_C_mk_eq_zero {I : ideal R} :
∀ f ∈ (map (C : R →+* R[X]) I : ideal R[X]), eval₂_ring_hom (C.comp (quotient.mk I)) X f = 0 :=
begin
intros a ha,
rw ← sum_monomial_eq a,
dsimp,
rw eval₂_sum,
refine finset.sum_eq_zero (λ n hn, _),
dsimp,
rw eval₂_monomial (C.comp (quotient.mk I)) X,
refine mul_eq_zero_of_left (polynomial.ext (λ m, _)) (X ^ n),
erw coeff_C,
by_cases h : m = 0,
{ simpa [h] using quotient.eq_zero_iff_mem.2 ((mem_map_C_iff.1 ha) n) },
{ simp [h] }
end
/-- If `I` is an ideal of `R`, then the ring polynomials over the quotient ring `I.quotient` is
isomorphic to the quotient of `R[X]` by the ideal `map C I`,
where `map C I` contains exactly the polynomials whose coefficients all lie in `I` -/
def polynomial_quotient_equiv_quotient_polynomial (I : ideal R) :
(R ⧸ I)[X] ≃+* R[X] ⧸ (map C I : ideal R[X]) :=
{ to_fun := eval₂_ring_hom
(quotient.lift I ((quotient.mk (map C I : ideal R[X])).comp C) quotient_map_C_eq_zero)
((quotient.mk (map C I : ideal R[X]) X)),
inv_fun := quotient.lift (map C I : ideal R[X])
(eval₂_ring_hom (C.comp (quotient.mk I)) X) eval₂_C_mk_eq_zero,
map_mul' := λ f g, by simp only [coe_eval₂_ring_hom, eval₂_mul],
map_add' := λ f g, by simp only [eval₂_add, coe_eval₂_ring_hom],
left_inv := begin
intro f,
apply polynomial.induction_on' f,
{ intros p q hp hq,
simp only [coe_eval₂_ring_hom] at hp,
simp only [coe_eval₂_ring_hom] at hq,
simp only [coe_eval₂_ring_hom, hp, hq, ring_hom.map_add] },
{ rintros n ⟨x⟩,
simp only [← smul_X_eq_monomial, C_mul', quotient.lift_mk, submodule.quotient.quot_mk_eq_mk,
quotient.mk_eq_mk, eval₂_X_pow, eval₂_smul, coe_eval₂_ring_hom, ring_hom.map_pow,
eval₂_C, ring_hom.coe_comp, ring_hom.map_mul, eval₂_X] }
end,
right_inv := begin
rintro ⟨f⟩,
apply polynomial.induction_on' f,
{ simp_intros p q hp hq,
rw [hp, hq] },
{ intros n a,
simp only [← smul_X_eq_monomial, ← C_mul' a (X ^ n), quotient.lift_mk,
submodule.quotient.quot_mk_eq_mk, quotient.mk_eq_mk, eval₂_X_pow,
eval₂_smul, coe_eval₂_ring_hom, ring_hom.map_pow, eval₂_C, ring_hom.coe_comp,
ring_hom.map_mul, eval₂_X] },
end, }
@[simp]
lemma polynomial_quotient_equiv_quotient_polynomial_symm_mk (I : ideal R) (f : R[X]) :
I.polynomial_quotient_equiv_quotient_polynomial.symm (quotient.mk _ f) = f.map (quotient.mk I) :=
by rw [polynomial_quotient_equiv_quotient_polynomial, ring_equiv.symm_mk, ring_equiv.coe_mk,
ideal.quotient.lift_mk, coe_eval₂_ring_hom, eval₂_eq_eval_map, ←polynomial.map_map,
←eval₂_eq_eval_map, polynomial.eval₂_C_X]
@[simp]
lemma polynomial_quotient_equiv_quotient_polynomial_map_mk (I : ideal R) (f : R[X]) :
I.polynomial_quotient_equiv_quotient_polynomial (f.map I^.quotient.mk) = quotient.mk _ f :=
begin
apply (polynomial_quotient_equiv_quotient_polynomial I).symm.injective,
rw [ring_equiv.symm_apply_apply, polynomial_quotient_equiv_quotient_polynomial_symm_mk],
end
/-- If `P` is a prime ideal of `R`, then `R[x]/(P)` is an integral domain. -/
lemma is_domain_map_C_quotient {P : ideal R} (H : is_prime P) :
is_domain (R[X] ⧸ (map (C : R →+* R[X]) P : ideal R[X])) :=
ring_equiv.is_domain (polynomial (R ⧸ P))
(polynomial_quotient_equiv_quotient_polynomial P).symm
/-- Given any ring `R` and an ideal `I` of `R[X]`, we get a map `R → R[x] → R[x]/I`.
If we let `R` be the image of `R` in `R[x]/I` then we also have a map `R[x] → R'[x]`.
In particular we can map `I` across this map, to get `I'` and a new map `R' → R'[x] → R'[x]/I`.
This theorem shows `I'` will not contain any non-zero constant polynomials
-/
lemma eq_zero_of_polynomial_mem_map_range (I : ideal R[X])
(x : ((quotient.mk I).comp C).range)
(hx : C x ∈ (I.map (polynomial.map_ring_hom ((quotient.mk I).comp C).range_restrict))) :
x = 0 :=
begin
let i := ((quotient.mk I).comp C).range_restrict,
have hi' : (polynomial.map_ring_hom i).ker ≤ I,
{ refine λ f hf, polynomial_mem_ideal_of_coeff_mem_ideal I f (λ n, _),
rw [mem_comap, ← quotient.eq_zero_iff_mem, ← ring_hom.comp_apply],
rw [ring_hom.mem_ker, coe_map_ring_hom] at hf,
replace hf := congr_arg (λ (f : polynomial _), f.coeff n) hf,
simp only [coeff_map, coeff_zero] at hf,
rwa [subtype.ext_iff, ring_hom.coe_range_restrict] at hf },
obtain ⟨x, hx'⟩ := x,
obtain ⟨y, rfl⟩ := (ring_hom.mem_range).1 hx',
refine subtype.eq _,
simp only [ring_hom.comp_apply, quotient.eq_zero_iff_mem, zero_mem_class.coe_zero,
subtype.val_eq_coe],
suffices : C (i y) ∈ (I.map (polynomial.map_ring_hom i)),
{ obtain ⟨f, hf⟩ := mem_image_of_mem_map_of_surjective (polynomial.map_ring_hom i)
(polynomial.map_surjective _ (((quotient.mk I).comp C).range_restrict_surjective)) this,
refine sub_add_cancel (C y) f ▸ I.add_mem (hi' _ : (C y - f) ∈ I) hf.1,
rw [ring_hom.mem_ker, ring_hom.map_sub, hf.2, sub_eq_zero, coe_map_ring_hom, map_C] },
exact hx,
end
end ideal
namespace mv_polynomial
variables {R : Type*} {σ : Type*} [comm_ring R] {r : R}
lemma quotient_map_C_eq_zero {I : ideal R} {i : R} (hi : i ∈ I) :
(ideal.quotient.mk (ideal.map (C : R →+* mv_polynomial σ R) I :
ideal (mv_polynomial σ R))).comp C i = 0 :=
begin
simp only [function.comp_app, ring_hom.coe_comp, ideal.quotient.eq_zero_iff_mem],
exact ideal.mem_map_of_mem _ hi
end
lemma eval₂_C_mk_eq_zero {I : ideal R} {a : mv_polynomial σ R}
(ha : a ∈ (ideal.map (C : R →+* mv_polynomial σ R) I : ideal (mv_polynomial σ R))) :
eval₂_hom (C.comp (ideal.quotient.mk I)) X a = 0 :=
begin
rw as_sum a,
rw [coe_eval₂_hom, eval₂_sum],
refine finset.sum_eq_zero (λ n hn, _),
simp only [eval₂_monomial, function.comp_app, ring_hom.coe_comp],
refine mul_eq_zero_of_left _ _,
suffices : coeff n a ∈ I,
{ rw [← @ideal.mk_ker R _ I, ring_hom.mem_ker] at this,
simp only [this, C_0] },
exact mem_map_C_iff.1 ha n
end
/-- If `I` is an ideal of `R`, then the ring `mv_polynomial σ I.quotient` is isomorphic as an
`R`-algebra to the quotient of `mv_polynomial σ R` by the ideal generated by `I`. -/
def quotient_equiv_quotient_mv_polynomial (I : ideal R) :
mv_polynomial σ (R ⧸ I) ≃ₐ[R]
mv_polynomial σ R ⧸ (ideal.map C I : ideal (mv_polynomial σ R)) :=
{ to_fun := eval₂_hom (ideal.quotient.lift I ((ideal.quotient.mk (ideal.map C I : ideal
(mv_polynomial σ R))).comp C) (λ i hi, quotient_map_C_eq_zero hi))
(λ i, ideal.quotient.mk (ideal.map C I : ideal (mv_polynomial σ R)) (X i)),
inv_fun := ideal.quotient.lift (ideal.map C I : ideal (mv_polynomial σ R))
(eval₂_hom (C.comp (ideal.quotient.mk I)) X) (λ a ha, eval₂_C_mk_eq_zero ha),
map_mul' := ring_hom.map_mul _,
map_add' := ring_hom.map_add _,
left_inv := begin
intro f,
apply induction_on f,
{ rintro ⟨r⟩,
rw [coe_eval₂_hom, eval₂_C],
simp only [submodule.quotient.quot_mk_eq_mk, ideal.quotient.lift_mk,
mv_polynomial.eval₂_hom_C, function.comp_app, ideal.quotient.mk_eq_mk, mv_polynomial.C_inj,
ring_hom.coe_comp], },
{ simp_intros p q hp hq only [ring_hom.map_add, mv_polynomial.coe_eval₂_hom, coe_eval₂_hom,
mv_polynomial.eval₂_add],
rw [hp, hq] },
{ simp_intros p i hp only [coe_eval₂_hom],
simp only [hp, coe_eval₂_hom, ideal.quotient.lift_mk, eval₂_mul, ring_hom.map_mul, eval₂_X] }
end,
right_inv := begin
rintro ⟨f⟩,
apply induction_on f,
{ intros r,
simp only [submodule.quotient.quot_mk_eq_mk, ideal.quotient.lift_mk, ideal.quotient.mk_eq_mk,
ring_hom.coe_comp, eval₂_hom_C] },
{ simp_intros p q hp hq only [submodule.quotient.quot_mk_eq_mk, eval₂_add,
ring_hom.map_add, coe_eval₂_hom, ideal.quotient.lift_mk, ideal.quotient.mk_eq_mk],
rw [hp, hq] },
{ simp_intros p i hp only [submodule.quotient.quot_mk_eq_mk, coe_eval₂_hom,
ideal.quotient.lift_mk, ideal.quotient.mk_eq_mk, eval₂_mul, ring_hom.map_mul, eval₂_X],
simp only [hp] }
end,
commutes' := λ r, eval₂_hom_C _ _ (ideal.quotient.mk I r) }
end mv_polynomial
|
ccc63900b9fadb194aa934878aa4fd690cf8c05e
|
e0f9ba56b7fedc16ef8697f6caeef5898b435143
|
/src/geometry/manifold/manifold.lean
|
8215986d2fa0d5bccf09ecb4d701040ca9c13ed3
|
[
"Apache-2.0"
] |
permissive
|
anrddh/mathlib
|
6a374da53c7e3a35cb0298b0cd67824efef362b4
|
a4266a01d2dcb10de19369307c986d038c7bb6a6
|
refs/heads/master
| 1,656,710,827,909
| 1,589,560,456,000
| 1,589,560,456,000
| 264,271,800
| 0
| 0
|
Apache-2.0
| 1,589,568,062,000
| 1,589,568,061,000
| null |
UTF-8
|
Lean
| false
| false
| 27,206
|
lean
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import topology.local_homeomorph
/-!
# Manifolds
A manifold is a topological space M locally modelled on a model space H, i.e., the manifold is
covered by open subsets on which there are local homeomorphisms (the charts) going to H. If the
changes of charts satisfy some additional property (for instance if they are smooth), then M
inherits additional structure (it makes sense to talk about smooth manifolds). There are therefore
two different ingredients in a manifold:
* the set of charts, which is data
* the fact that changes of charts belong to some group (in fact groupoid), which is additional Prop.
We separate these two parts in the definition: the manifold structure is just the set of charts, and
then the different smoothness requirements (smooth manifold, orientable manifold, contact manifold,
and so on) are additional properties of these charts. These properties are formalized through the
notion of structure groupoid, i.e., a set of local homeomorphisms stable under composition and
inverse, to which the change of coordinates should belong.
## Main definitions
* `structure_groupoid H` : a subset of local homeomorphisms of `H` stable under composition, inverse
and restriction (ex: local diffeos)
* `pregroupoid H` : a subset of local homeomorphisms of `H` stable under composition and
restriction, but not inverse (ex: smooth maps)
* `groupoid_of_pregroupoid`: construct a groupoid from a pregroupoid, by requiring that a map and its
inverse both belong to the pregroupoid (ex: construct diffeos from smooth
maps)
* `continuous_groupoid H` : the groupoid of all local homeomorphisms of `H`
* `manifold H M` : manifold structure on `M` modelled on `H`, given by an atlas of local
homeomorphisms from `M` to `H` whose sources cover `M`. This is a type class.
* `has_groupoid M G` : when `G` is a structure groupoid on `H` and `M` is a manifold modelled on
`H`, require that all coordinate changes belong to `G`. This is a type
class
* `atlas H M` : when `M` is a manifold modelled on `H`, the atlas of this manifold
structure, i.e., the set of charts
* `structomorph G M M'` : the set of diffeomorphisms between the manifolds `M` and `M'` for the
groupoid `G`. We avoid the word diffeomorphisms, keeping it for the
smooth category.
As a basic example, we give the instance
`instance manifold_model_space (H : Type*) [topological_space H] : manifold H H`
saying that a topological space is a manifold over itself, with the identity as unique chart. This
manifold structure is compatible with any groupoid.
## Implementation notes
The atlas in a manifold is *not* a maximal atlas in general: the notion of maximality depends on the
groupoid one considers, and changing groupoids changes the maximal atlas. With the current
formalization, it makes sense first to choose the atlas, and then to ask whether this precise atlas
defines a smooth manifold, an orientable manifold, and so on. A consequence is that structomorphisms
between M and M' do *not* induce a bijection between the atlases of M and M': the definition is only
that, read in charts, the structomorphism locally belongs to the groupoid under consideration.
(This is equivalent to inducing a bijection between elements of the maximal atlas). A consequence
is that the invariance under structomorphisms of properties defined in terms of the atlas is not
obvious in general, and could require some work in theory (amounting to the fact that these
properties only depend on the maximal atlas, for instance). In practice, this does not create any
real difficulty.
We use the letter `H` for the model space thinking of the case of manifolds with boundary, where the
model space is a half space.
Manifolds are sometimes defined as topological spaces with an atlas of local diffeomorphisms, and
sometimes as spaces with an atlas from which a topology is deduced. We use the former approach:
otherwise, there would be an instance from manifolds to topological spaces, which means that any
instance search for topological spaces would try to find manifold structures involving a yet
unknown model space, leading to problems. However, we also introduce the latter approach,
through a structure `manifold_core` making it possible to construct a topology out of a set of local
equivs with compatibility conditions (but we do not register it as an instance).
In the definition of a manifold, the model space is written as an explicit parameter as there can be
several model spaces for a given topological space. For instance, a complex manifold (modelled over
ℂ^n) will also be seen sometimes as a real manifold modelled over ℝ^(2n).
-/
noncomputable theory
local attribute [instance, priority 0] classical.decidable_inhabited classical.prop_decidable
universes u
variables {H : Type u} {M : Type*} {M' : Type*} {M'' : Type*}
/- Notational shortcut for the composition of local homeomorphisms, i.e., `local_homeomorph.trans`.
Note that, as is usual for equivs, the composition is from left to right, hence the direction of
the arrow. -/
local infixr ` ≫ₕ `:100 := local_homeomorph.trans
open set local_homeomorph
section groupoid
/- One could add to the definition of a structure groupoid the fact that the restriction of an
element of the groupoid to any open set still belongs to the groupoid.
(This is in Kobayashi-Nomizu.)
I am not sure I want this, for instance on H × E where E is a vector space, and the groupoid is made
of functions respecting the fibers and linear in the fibers (so that a manifold over this groupoid
is naturally a vector bundle) I prefer that the members of the groupoid are always defined on
sets of the form s × E
The only nontrivial requirement is locality: if a local homeomorphism belongs to the groupoid
around each point in its domain of definition, then it belongs to the groupoid. Without this
requirement, the composition of diffeomorphisms does not have to be a diffeomorphism. Note that
this implies that a local homeomorphism with empty source belongs to any structure groupoid, as
it trivially satisfies this condition.
There is also a technical point, related to the fact that a local homeomorphism is by definition a
global map which is a homeomorphism when restricted to its source subset (and its values outside
of the source are not relevant). Therefore, we also require that being a member of the groupoid only
depends on the values on the source.
-/
/-- A structure groupoid is a set of local homeomorphisms of a topological space stable under
composition and inverse. They appear in the definition of the smoothness class of a manifold. -/
structure structure_groupoid (H : Type u) [topological_space H] :=
(members : set (local_homeomorph H H))
(comp : ∀e e' : local_homeomorph H H, e ∈ members → e' ∈ members → e ≫ₕ e' ∈ members)
(inv : ∀e : local_homeomorph H H, e ∈ members → e.symm ∈ members)
(id_mem : local_homeomorph.refl H ∈ members)
(locality : ∀e : local_homeomorph H H, (∀x ∈ e.source, ∃s, is_open s ∧
x ∈ s ∧ e.restr s ∈ members) → e ∈ members)
(eq_on_source : ∀ e e' : local_homeomorph H H, e ∈ members → e' ≈ e → e' ∈ members)
variable [topological_space H]
@[reducible] instance : has_mem (local_homeomorph H H) (structure_groupoid H) :=
⟨λ(e : local_homeomorph H H) (G : structure_groupoid H), e ∈ G.members⟩
/-- Partial order on the set of groupoids, given by inclusion of the members of the groupoid -/
instance structure_groupoid.partial_order : partial_order (structure_groupoid H) :=
partial_order.lift structure_groupoid.members
(λa b h, by { cases a, cases b, dsimp at h, induction h, refl }) (by apply_instance)
/-- The trivial groupoid, containing only the identity (and maps with empty source, as this is
necessary from the definition) -/
def id_groupoid (H : Type u) [topological_space H] : structure_groupoid H :=
{ members := {local_homeomorph.refl H} ∪ {e : local_homeomorph H H | e.source = ∅},
comp := λe e' he he', begin
cases he; simp at he he',
{ simpa [he] },
{ have : (e ≫ₕ e').source ⊆ e.source := sep_subset _ _,
rw he at this,
have : (e ≫ₕ e') ∈ {e : local_homeomorph H H | e.source = ∅} := disjoint_iff.1 this,
exact (mem_union _ _ _).2 (or.inr this) },
end,
inv := λe he, begin
cases (mem_union _ _ _).1 he with E E,
{ finish },
{ right,
simpa [e.to_local_equiv.image_source_eq_target.symm] using E },
end,
id_mem := mem_union_left _ (mem_insert _ ∅),
locality := λe he, begin
cases e.source.eq_empty_or_nonempty with h h,
{ right, exact h },
{ left,
rcases h with ⟨x, hx⟩,
rcases he x hx with ⟨s, open_s, xs, hs⟩,
have x's : x ∈ (e.restr s).source,
{ rw [restr_source, interior_eq_of_open open_s],
exact ⟨hx, xs⟩ },
cases hs,
{ replace hs : local_homeomorph.restr e s = local_homeomorph.refl H,
by simpa using hs,
have : (e.restr s).source = univ, by { rw hs, simp },
change (e.to_local_equiv).source ∩ interior s = univ at this,
have : univ ⊆ interior s, by { rw ← this, exact inter_subset_right _ _ },
have : s = univ, by rwa [interior_eq_of_open open_s, univ_subset_iff] at this,
simpa [this, restr_univ] using hs },
{ exfalso,
rw mem_set_of_eq at hs,
rwa hs at x's } },
end,
eq_on_source := λe e' he he'e, begin
cases he,
{ left,
have : e = e',
{ refine eq_of_eq_on_source_univ (setoid.symm he'e) _ _;
rw set.mem_singleton_iff.1 he ; refl },
rwa ← this },
{ right,
change (e.to_local_equiv).source = ∅ at he,
rwa [set.mem_set_of_eq, source_eq_of_eq_on_source he'e] }
end }
/-- Every structure groupoid contains the identity groupoid -/
instance : order_bot (structure_groupoid H) :=
{ bot := id_groupoid H,
bot_le := begin
assume u f hf,
change f ∈ {local_homeomorph.refl H} ∪ {e : local_homeomorph H H | e.source = ∅} at hf,
simp only [singleton_union, mem_set_of_eq, mem_insert_iff] at hf,
cases hf,
{ rw hf,
apply u.id_mem },
{ apply u.locality,
assume x hx,
rw [hf, mem_empty_eq] at hx,
exact hx.elim }
end,
..structure_groupoid.partial_order }
instance (H : Type u) [topological_space H] : inhabited (structure_groupoid H) :=
⟨id_groupoid H⟩
/-- To construct a groupoid, one may consider classes of local homeos such that both the function
and its inverse have some property. If this property is stable under composition,
one gets a groupoid. `pregroupoid` bundles the properties needed for this construction, with the
groupoid of smooth functions with smooth inverses as an application. -/
structure pregroupoid (H : Type*) [topological_space H] :=
(property : (H → H) → (set H) → Prop)
(comp : ∀{f g u v}, property f u → property g v → is_open u → is_open v → is_open (u ∩ f ⁻¹' v)
→ property (g ∘ f) (u ∩ f ⁻¹' v))
(id_mem : property id univ)
(locality : ∀{f u}, is_open u → (∀x∈u, ∃v, is_open v ∧ x ∈ v ∧ property f (u ∩ v)) → property f u)
(congr : ∀{f g : H → H} {u}, is_open u → (∀x∈u, g x = f x) → property f u → property g u)
/-- Construct a groupoid of local homeos for which the map and its inverse have some property,
from a pregroupoid asserting that this property is stable under composition. -/
def pregroupoid.groupoid (PG : pregroupoid H) : structure_groupoid H :=
{ members := {e : local_homeomorph H H | PG.property e e.source ∧ PG.property e.symm e.target},
comp := λe e' he he', begin
split,
{ apply PG.comp he.1 he'.1 e.open_source e'.open_source,
apply e.continuous_to_fun.preimage_open_of_open e.open_source e'.open_source },
{ apply PG.comp he'.2 he.2 e'.open_target e.open_target,
apply e'.continuous_inv_fun.preimage_open_of_open e'.open_target e.open_target }
end,
inv := λe he, ⟨he.2, he.1⟩,
id_mem := ⟨PG.id_mem, PG.id_mem⟩,
locality := λe he, begin
split,
{ apply PG.locality e.open_source (λx xu, _),
rcases he x xu with ⟨s, s_open, xs, hs⟩,
refine ⟨s, s_open, xs, _⟩,
convert hs.1,
exact (interior_eq_of_open s_open).symm },
{ apply PG.locality e.open_target (λx xu, _),
rcases he (e.symm x) (e.map_target xu) with ⟨s, s_open, xs, hs⟩,
refine ⟨e.target ∩ e.symm ⁻¹' s, _, ⟨xu, xs⟩, _⟩,
{ exact continuous_on.preimage_open_of_open e.continuous_inv_fun e.open_target s_open },
{ rw [← inter_assoc, inter_self],
convert hs.2,
exact (interior_eq_of_open s_open).symm } },
end,
eq_on_source := λe e' he ee', begin
split,
{ apply PG.congr e'.open_source ee'.2,
simp only [ee'.1, he.1] },
{ have A := eq_on_source_symm ee',
apply PG.congr e'.symm.open_source A.2,
convert he.2,
rw A.1,
refl }
end }
lemma mem_groupoid_of_pregroupoid (PG : pregroupoid H) (e : local_homeomorph H H) :
e ∈ PG.groupoid ↔ PG.property e e.source ∧ PG.property e.symm e.target :=
iff.rfl
lemma groupoid_of_pregroupoid_le (PG₁ PG₂ : pregroupoid H)
(h : ∀f s, PG₁.property f s → PG₂.property f s) :
PG₁.groupoid ≤ PG₂.groupoid :=
begin
assume e he,
rw mem_groupoid_of_pregroupoid at he ⊢,
exact ⟨h _ _ he.1, h _ _ he.2⟩
end
lemma mem_pregroupoid_of_eq_on_source (PG : pregroupoid H) {e e' : local_homeomorph H H}
(he' : e ≈ e') (he : PG.property e e.source) :
PG.property e' e'.source :=
begin
rw ← he'.1,
exact PG.congr e.open_source (λx hx, (he'.2 x hx).symm) he,
end
/-- The pregroupoid of all local maps on a topological space H -/
@[reducible] def continuous_pregroupoid (H : Type*) [topological_space H] : pregroupoid H :=
{ property := λf s, true,
comp := λf g u v hf hg hu hv huv, trivial,
id_mem := trivial,
locality := λf u u_open h, trivial,
congr := λf g u u_open hcongr hf, trivial }
instance (H : Type*) [topological_space H] : inhabited (pregroupoid H) :=
⟨continuous_pregroupoid H⟩
/-- The groupoid of all local homeomorphisms on a topological space H -/
def continuous_groupoid (H : Type*) [topological_space H] : structure_groupoid H :=
pregroupoid.groupoid (continuous_pregroupoid H)
/-- Every structure groupoid is contained in the groupoid of all local homeomorphisms -/
instance : order_top (structure_groupoid H) :=
{ top := continuous_groupoid H,
le_top := λ u f hf, by { split; exact dec_trivial },
..structure_groupoid.partial_order }
end groupoid
/-- A manifold is a topological space endowed with an atlas, i.e., a set of local homeomorphisms
taking value in a model space `H`, called charts, such that the domains of the charts cover the whole
space. We express the covering property by chosing for each x a member `chart_at x` of the atlas
containing `x` in its source: in the smooth case, this is convenient to construct the tangent bundle
in an efficient way.
The model space is written as an explicit parameter as there can be several model spaces for a
given topological space. For instance, a complex manifold (modelled over `ℂ^n`) will also be seen
sometimes as a real manifold over `ℝ^(2n)`.
-/
class manifold (H : Type*) [topological_space H] (M : Type*) [topological_space M] :=
(atlas [] : set (local_homeomorph M H))
(chart_at [] : M → local_homeomorph M H)
(mem_chart_source [] : ∀x, x ∈ (chart_at x).source)
(chart_mem_atlas [] : ∀x, chart_at x ∈ atlas)
export manifold
attribute [simp] mem_chart_source chart_mem_atlas
section manifold
/-- Any space is a manifold modelled over itself, by just using the identity chart -/
instance manifold_model_space (H : Type*) [topological_space H] : manifold H H :=
{ atlas := {local_homeomorph.refl H},
chart_at := λx, local_homeomorph.refl H,
mem_chart_source := λx, mem_univ x,
chart_mem_atlas := λx, mem_singleton _ }
/-- In the trivial manifold structure of a space modelled over itself through the identity, the
atlas members are just the identity -/
@[simp] lemma model_space_atlas {H : Type*} [topological_space H] {e : local_homeomorph H H} :
e ∈ atlas H H ↔ e = local_homeomorph.refl H :=
by simp [atlas, manifold.atlas]
/-- In the model space, chart_at is always the identity -/
@[simp] lemma chart_at_model_space_eq {H : Type*} [topological_space H] {x : H} :
chart_at H x = local_homeomorph.refl H :=
by simpa using chart_mem_atlas H x
end manifold
/-- Sometimes, one may want to construct a manifold structure on a space which does not yet have
a topological structure, where the topology would come from the charts. For this, one needs charts
that are only local equivs, and continuity properties for their composition.
This is formalised in `manifold_core`. -/
@[nolint has_inhabited_instance]
structure manifold_core (H : Type*) [topological_space H] (M : Type*) :=
(atlas : set (local_equiv M H))
(chart_at : M → local_equiv M H)
(mem_chart_source : ∀x, x ∈ (chart_at x).source)
(chart_mem_atlas : ∀x, chart_at x ∈ atlas)
(open_source : ∀e e' : local_equiv M H, e ∈ atlas → e' ∈ atlas → is_open (e.symm.trans e').source)
(continuous_to_fun : ∀e e' : local_equiv M H, e ∈ atlas → e' ∈ atlas →
continuous_on (e.symm.trans e') (e.symm.trans e').source)
namespace manifold_core
variables [topological_space H] (c : manifold_core H M) {e : local_equiv M H}
/-- Topology generated by a set of charts on a Type. -/
protected def to_topological_space : topological_space M :=
topological_space.generate_from $ ⋃ (e : local_equiv M H) (he : e ∈ c.atlas)
(s : set H) (s_open : is_open s), {e ⁻¹' s ∩ e.source}
lemma open_source' (he : e ∈ c.atlas) : @is_open M c.to_topological_space e.source :=
begin
apply topological_space.generate_open.basic,
simp only [exists_prop, mem_Union, mem_singleton_iff],
refine ⟨e, he, univ, is_open_univ, _⟩,
simp only [set.univ_inter, set.preimage_univ]
end
lemma open_target (he : e ∈ c.atlas) : is_open e.target :=
begin
have E : e.target ∩ e.symm ⁻¹' e.source = e.target :=
subset.antisymm (inter_subset_left _ _) (λx hx, ⟨hx,
local_equiv.target_subset_preimage_source _ hx⟩),
simpa [local_equiv.trans_source, E] using c.open_source e e he he
end
/-- An element of the atlas in a manifold without topology becomes a local homeomorphism for the
topology constructed from this atlas. The `local_homeomorph` version is given in this definition. -/
def local_homeomorph (e : local_equiv M H) (he : e ∈ c.atlas) :
@local_homeomorph M H c.to_topological_space _ :=
{ open_source := by convert c.open_source' he,
open_target := by convert c.open_target he,
continuous_to_fun := begin
letI : topological_space M := c.to_topological_space,
rw continuous_on_open_iff (c.open_source' he),
assume s s_open,
rw inter_comm,
apply topological_space.generate_open.basic,
simp only [exists_prop, mem_Union, mem_singleton_iff],
exact ⟨e, he, ⟨s, s_open, rfl⟩⟩
end,
continuous_inv_fun := begin
letI : topological_space M := c.to_topological_space,
apply continuous_on_open_of_generate_from (c.open_target he),
assume t ht,
simp only [exists_prop, mem_Union, mem_singleton_iff] at ht,
rcases ht with ⟨e', e'_atlas, s, s_open, ts⟩,
rw ts,
let f := e.symm.trans e',
have : is_open (f ⁻¹' s ∩ f.source),
by simpa [inter_comm] using (continuous_on_open_iff (c.open_source e e' he e'_atlas)).1
(c.continuous_to_fun e e' he e'_atlas) s s_open,
have A : e' ∘ e.symm ⁻¹' s ∩ (e.target ∩ e.symm ⁻¹' e'.source) =
e.target ∩ (e' ∘ e.symm ⁻¹' s ∩ e.symm ⁻¹' e'.source),
by { rw [← inter_assoc, ← inter_assoc], congr' 1, exact inter_comm _ _ },
simpa [local_equiv.trans_source, preimage_inter, preimage_comp.symm, A] using this
end,
..e }
/-- Given a manifold without topology, endow it with a genuine manifold structure with respect to
the topology constructed from the atlas. -/
def to_manifold : @manifold H _ M c.to_topological_space :=
{ atlas := ⋃ (e : local_equiv M H) (he : e ∈ c.atlas), {c.local_homeomorph e he},
chart_at := λx, c.local_homeomorph (c.chart_at x) (c.chart_mem_atlas x),
mem_chart_source := λx, c.mem_chart_source x,
chart_mem_atlas := λx, begin
simp only [mem_Union, mem_singleton_iff],
exact ⟨c.chart_at x, c.chart_mem_atlas x, rfl⟩,
end }
end manifold_core
section has_groupoid
variables [topological_space H] [topological_space M] [manifold H M]
/-- A manifold has an atlas in a groupoid G if the change of coordinates belong to the groupoid -/
class has_groupoid {H : Type*} [topological_space H] (M : Type*) [topological_space M]
[manifold H M] (G : structure_groupoid H) : Prop :=
(compatible [] : ∀{e e' : local_homeomorph M H}, e ∈ atlas H M → e' ∈ atlas H M → e.symm ≫ₕ e' ∈ G)
lemma has_groupoid_of_le {G₁ G₂ : structure_groupoid H} (h : has_groupoid M G₁) (hle : G₁ ≤ G₂) :
has_groupoid M G₂ :=
⟨ λ e e' he he', hle ((h.compatible : _) he he') ⟩
lemma has_groupoid_of_pregroupoid (PG : pregroupoid H)
(h : ∀{e e' : local_homeomorph M H}, e ∈ atlas H M → e' ∈ atlas H M
→ PG.property (e.symm ≫ₕ e') (e.symm ≫ₕ e').source) :
has_groupoid M (PG.groupoid) :=
⟨assume e e' he he', (mem_groupoid_of_pregroupoid PG _).mpr ⟨h he he', h he' he⟩⟩
/-- The trivial manifold structure on the model space is compatible with any groupoid -/
instance has_groupoid_model_space (H : Type*) [topological_space H] (G : structure_groupoid H) :
has_groupoid H G :=
{ compatible := λe e' he he', begin
replace he : e ∈ atlas H H := he,
replace he' : e' ∈ atlas H H := he',
rw model_space_atlas at he he',
simp [he, he', structure_groupoid.id_mem]
end }
/-- Any manifold structure is compatible with the groupoid of all local homeomorphisms -/
instance has_groupoid_continuous_groupoid : has_groupoid M (continuous_groupoid H) :=
⟨begin
assume e e' he he',
rw [continuous_groupoid, mem_groupoid_of_pregroupoid],
simp only [and_self]
end⟩
/-- A G-diffeomorphism between two manifolds is a homeomorphism which, when read in the charts,
belongs to G. We avoid the word diffeomorph as it is too related to the smooth category, and use
structomorph instead. -/
@[nolint has_inhabited_instance]
structure structomorph (G : structure_groupoid H) (M : Type*) (M' : Type*)
[topological_space M] [topological_space M'] [manifold H M] [manifold H M']
extends homeomorph M M' :=
(mem_groupoid : ∀c : local_homeomorph M H, ∀c' : local_homeomorph M' H,
c ∈ atlas H M → c' ∈ atlas H M' → c.symm ≫ₕ to_homeomorph.to_local_homeomorph ≫ₕ c' ∈ G)
variables [topological_space M'] [topological_space M'']
{G : structure_groupoid H} [manifold H M'] [manifold H M'']
/-- The identity is a diffeomorphism of any manifold, for any groupoid. -/
def structomorph.refl (M : Type*) [topological_space M] [manifold H M]
[has_groupoid M G] : structomorph G M M :=
{ mem_groupoid := λc c' hc hc', begin
change (local_homeomorph.symm c) ≫ₕ (local_homeomorph.refl M) ≫ₕ c' ∈ G,
rw local_homeomorph.refl_trans,
exact has_groupoid.compatible G hc hc'
end,
..homeomorph.refl M }
/-- The inverse of a structomorphism is a structomorphism -/
def structomorph.symm (e : structomorph G M M') : structomorph G M' M :=
{ mem_groupoid := begin
assume c c' hc hc',
have : (c'.symm ≫ₕ e.to_homeomorph.to_local_homeomorph ≫ₕ c).symm ∈ G :=
G.inv _ (e.mem_groupoid c' c hc' hc),
simp at this,
rwa [trans_symm_eq_symm_trans_symm, trans_symm_eq_symm_trans_symm, symm_symm, trans_assoc]
at this,
end,
..e.to_homeomorph.symm}
/-- The composition of structomorphisms is a structomorphism -/
def structomorph.trans (e : structomorph G M M') (e' : structomorph G M' M'') : structomorph G M M'' :=
{ mem_groupoid := begin
/- Let c and c' be two charts in M and M''. We want to show that e' ∘ e is smooth in these
charts, around any point x. For this, let y = e (c⁻¹ x), and consider a chart g around y.
Then g ∘ e ∘ c⁻¹ and c' ∘ e' ∘ g⁻¹ are both smooth as e and e' are structomorphisms, so
their composition is smooth, and it coincides with c' ∘ e' ∘ e ∘ c⁻¹ around x. -/
assume c c' hc hc',
refine G.locality _ (λx hx, _),
let f₁ := e.to_homeomorph.to_local_homeomorph,
let f₂ := e'.to_homeomorph.to_local_homeomorph,
let f := (e.to_homeomorph.trans e'.to_homeomorph).to_local_homeomorph,
have feq : f = f₁ ≫ₕ f₂ := homeomorph.trans_to_local_homeomorph _ _,
-- define the atlas g around y
let y := (c.symm ≫ₕ f₁) x,
let g := chart_at H y,
have hg₁ := chart_mem_atlas H y,
have hg₂ := mem_chart_source H y,
let s := (c.symm ≫ₕ f₁).source ∩ (c.symm ≫ₕ f₁) ⁻¹' g.source,
have open_s : is_open s,
by apply (c.symm ≫ₕ f₁).continuous_to_fun.preimage_open_of_open; apply open_source,
have : x ∈ s,
{ split,
{ simp only [trans_source, preimage_univ, inter_univ, homeomorph.to_local_homeomorph_source],
rw trans_source at hx,
exact hx.1 },
{ exact hg₂ } },
refine ⟨s, open_s, ⟨this, _⟩⟩,
let F₁ := (c.symm ≫ₕ f₁ ≫ₕ g) ≫ₕ (g.symm ≫ₕ f₂ ≫ₕ c'),
have A : F₁ ∈ G :=
G.comp _ _ (e.mem_groupoid c g hc hg₁) (e'.mem_groupoid g c' hg₁ hc'),
let F₂ := (c.symm ≫ₕ f ≫ₕ c').restr s,
have : F₁ ≈ F₂ := calc
F₁ ≈ c.symm ≫ₕ f₁ ≫ₕ (g ≫ₕ g.symm) ≫ₕ f₂ ≫ₕ c' : by simp [F₁, trans_assoc]
... ≈ c.symm ≫ₕ f₁ ≫ₕ (of_set g.source g.open_source) ≫ₕ f₂ ≫ₕ c' :
by simp [eq_on_source_trans, trans_self_symm g]
... ≈ ((c.symm ≫ₕ f₁) ≫ₕ (of_set g.source g.open_source)) ≫ₕ (f₂ ≫ₕ c') :
by simp [trans_assoc]
... ≈ ((c.symm ≫ₕ f₁).restr s) ≫ₕ (f₂ ≫ₕ c') : by simp [s, trans_of_set']
... ≈ ((c.symm ≫ₕ f₁) ≫ₕ (f₂ ≫ₕ c')).restr s : by simp [restr_trans]
... ≈ (c.symm ≫ₕ (f₁ ≫ₕ f₂) ≫ₕ c').restr s : by simp [eq_on_source_restr, trans_assoc]
... ≈ F₂ : by simp [F₂, feq],
have : F₂ ∈ G := G.eq_on_source F₁ F₂ A (setoid.symm this),
exact this
end,
..homeomorph.trans e.to_homeomorph e'.to_homeomorph }
end has_groupoid
|
b5c60eb1633121b0edb5c9021a5dbe02c02d1597
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/order/category/Preorder_auto.lean
|
c3ea43ca3b9bf855589b98b672f9ac10ea23a95d
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,269
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.order.preorder_hom
import Mathlib.category_theory.concrete_category.default
import Mathlib.algebra.punit_instances
import Mathlib.PostPort
universes u_1
namespace Mathlib
/-! # Category of preorders -/
/-- The category of preorders. -/
def Preorder := category_theory.bundled preorder
namespace Preorder
protected instance preorder_hom.category_theory.bundled_hom :
category_theory.bundled_hom preorder_hom :=
category_theory.bundled_hom.mk preorder_hom.to_fun preorder_hom.id preorder_hom.comp
protected instance concrete_category : category_theory.concrete_category Preorder :=
category_theory.bundled_hom.category_theory.bundled.category_theory.concrete_category preorder_hom
/-- Construct a bundled Preorder from the underlying type and typeclass. -/
def of (α : Type u_1) [preorder α] : Preorder := category_theory.bundled.of α
protected instance inhabited : Inhabited Preorder := { default := of PUnit }
protected instance preorder (α : Preorder) : preorder ↥α := category_theory.bundled.str α
end Mathlib
|
e0deabea20b9c182be4a47adb54d0e2f4f515e9a
|
206422fb9edabf63def0ed2aa3f489150fb09ccb
|
/src/topology/instances/nnreal.lean
|
20e4f7237f14871c985497763bf3abaac08ae39d
|
[
"Apache-2.0"
] |
permissive
|
hamdysalah1/mathlib
|
b915f86b2503feeae268de369f1b16932321f097
|
95454452f6b3569bf967d35aab8d852b1ddf8017
|
refs/heads/master
| 1,677,154,116,545
| 1,611,797,994,000
| 1,611,797,994,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,363
|
lean
|
/-
Copyright (c) 2018 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
Nonnegative real numbers.
-/
import topology.algebra.infinite_sum
import topology.algebra.group_with_zero
noncomputable theory
open set topological_space metric
open_locale topological_space
namespace nnreal
open_locale nnreal big_operators
instance : topological_space ℝ≥0 := infer_instance -- short-circuit type class inference
instance : topological_semiring ℝ≥0 :=
{ continuous_mul := continuous_subtype_mk _ $
(continuous_subtype_val.comp continuous_fst).mul (continuous_subtype_val.comp continuous_snd),
continuous_add := continuous_subtype_mk _ $
(continuous_subtype_val.comp continuous_fst).add (continuous_subtype_val.comp continuous_snd) }
instance : second_countable_topology ℝ≥0 :=
topological_space.subtype.second_countable_topology _ _
instance : order_topology ℝ≥0 := @order_topology_of_ord_connected _ _ _ _ (Ici 0) _
section coe
variable {α : Type*}
open filter finset
lemma continuous_of_real : continuous nnreal.of_real :=
continuous_subtype_mk _ $ continuous_id.max continuous_const
lemma continuous_coe : continuous (coe : ℝ≥0 → ℝ) :=
continuous_subtype_val
@[simp, norm_cast] lemma tendsto_coe {f : filter α} {m : α → ℝ≥0} {x : ℝ≥0} :
tendsto (λa, (m a : ℝ)) f (𝓝 (x : ℝ)) ↔ tendsto m f (𝓝 x) :=
tendsto_subtype_rng.symm
lemma tendsto_coe' {f : filter α} [ne_bot f] {m : α → ℝ≥0} {x : ℝ} :
tendsto (λ a, m a : α → ℝ) f (𝓝 x) ↔ ∃ hx : 0 ≤ x, tendsto m f (𝓝 ⟨x, hx⟩) :=
⟨λ h, ⟨ge_of_tendsto' h (λ c, (m c).2), tendsto_coe.1 h⟩, λ ⟨hx, hm⟩, tendsto_coe.2 hm⟩
@[simp] lemma map_coe_at_top : map (coe : ℝ≥0 → ℝ) at_top = at_top :=
map_coe_Ici_at_top 0
lemma comap_coe_at_top : comap (coe : ℝ≥0 → ℝ) at_top = at_top :=
(at_top_Ici_eq 0).symm
@[simp, norm_cast] lemma tendsto_coe_at_top {f : filter α} {m : α → ℝ≥0} :
tendsto (λ a, (m a : ℝ)) f at_top ↔ tendsto m f at_top :=
tendsto_Ici_at_top.symm
lemma tendsto_of_real {f : filter α} {m : α → ℝ} {x : ℝ} (h : tendsto m f (𝓝 x)) :
tendsto (λa, nnreal.of_real (m a)) f (𝓝 (nnreal.of_real x)) :=
(continuous_of_real.tendsto _).comp h
instance : has_continuous_sub ℝ≥0 :=
⟨continuous_subtype_mk _ $
((continuous_coe.comp continuous_fst).sub
(continuous_coe.comp continuous_snd)).max continuous_const⟩
instance : has_continuous_inv' ℝ≥0 :=
⟨λ x hx, tendsto_coe.1 $ (real.tendsto_inv $ nnreal.coe_ne_zero.2 hx).comp
continuous_coe.continuous_at⟩
@[norm_cast] lemma has_sum_coe {f : α → ℝ≥0} {r : ℝ≥0} :
has_sum (λa, (f a : ℝ)) (r : ℝ) ↔ has_sum f r :=
by simp only [has_sum, coe_sum.symm, tendsto_coe]
lemma has_sum_of_real_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : summable f) :
has_sum (λ n, nnreal.of_real (f n)) (nnreal.of_real (∑' n, f n)) :=
begin
have h_sum : (λ s, ∑ b in s, nnreal.of_real (f b)) = λ s, nnreal.of_real (∑ b in s, f b),
from funext (λ _, (of_real_sum_of_nonneg (λ n _, hf_nonneg n)).symm),
simp_rw [has_sum, h_sum],
exact tendsto_of_real hf.has_sum,
end
@[norm_cast] lemma summable_coe {f : α → ℝ≥0} : summable (λa, (f a : ℝ)) ↔ summable f :=
begin
split,
exact assume ⟨a, ha⟩, ⟨⟨a, has_sum_le (λa, (f a).2) has_sum_zero ha⟩, has_sum_coe.1 ha⟩,
exact assume ⟨a, ha⟩, ⟨a.1, has_sum_coe.2 ha⟩
end
open_locale classical
@[norm_cast] lemma coe_tsum {f : α → ℝ≥0} : ↑∑'a, f a = ∑'a, (f a : ℝ) :=
if hf : summable f
then (eq.symm $ (has_sum_coe.2 $ hf.has_sum).tsum_eq)
else by simp [tsum, hf, mt summable_coe.1 hf]
lemma tsum_mul_left (a : ℝ≥0) (f : α → ℝ≥0) : ∑' x, a * f x = a * ∑' x, f x :=
nnreal.eq $ by simp only [coe_tsum, nnreal.coe_mul, tsum_mul_left]
lemma tsum_mul_right (f : α → ℝ≥0) (a : ℝ≥0) : (∑' x, f x * a) = (∑' x, f x) * a :=
nnreal.eq $ by simp only [coe_tsum, nnreal.coe_mul, tsum_mul_right]
lemma summable_comp_injective {β : Type*} {f : α → ℝ≥0} (hf : summable f)
{i : β → α} (hi : function.injective i) :
summable (f ∘ i) :=
nnreal.summable_coe.1 $
show summable ((coe ∘ f) ∘ i), from (nnreal.summable_coe.2 hf).comp_injective hi
lemma summable_nat_add (f : ℕ → ℝ≥0) (hf : summable f) (k : ℕ) : summable (λ i, f (i + k)) :=
summable_comp_injective hf $ add_left_injective k
lemma summable_nat_add_iff {f : ℕ → ℝ≥0} (k : ℕ) : summable (λ i, f (i + k)) ↔ summable f :=
begin
rw [← summable_coe, ← summable_coe],
exact @summable_nat_add_iff ℝ _ _ _ (λ i, (f i : ℝ)) k,
end
lemma sum_add_tsum_nat_add {f : ℕ → ℝ≥0} (k : ℕ) (hf : summable f) :
∑' i, f i = (∑ i in range k, f i) + ∑' i, f (i + k) :=
by rw [←nnreal.coe_eq, coe_tsum, nnreal.coe_add, coe_sum, coe_tsum,
sum_add_tsum_nat_add k (nnreal.summable_coe.2 hf)]
lemma infi_real_pos_eq_infi_nnreal_pos [complete_lattice α] {f : ℝ → α} :
(⨅ (n : ℝ) (h : 0 < n), f n) = (⨅ (n : ℝ≥0) (h : 0 < n), f n) :=
le_antisymm
(infi_le_infi2 $ assume r, ⟨r, infi_le_infi $ assume hr, le_rfl⟩)
(le_infi $ assume r, le_infi $ assume hr, infi_le_of_le ⟨r, hr.le⟩ $ infi_le _ hr)
end coe
end nnreal
|
6a3ab6f5d873c4e52f75e2a001aa8eaeaa914508
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/group_theory/perm/fin.lean
|
e6f940f11e3281e61a00378baf66fa879879e010
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 10,755
|
lean
|
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import data.equiv.fin
import data.equiv.fintype
import group_theory.perm.option
import group_theory.perm.cycle_type
/-!
# Permutations of `fin n`
-/
open equiv
/-- Permutations of `fin (n + 1)` are equivalent to fixing a single
`fin (n + 1)` and permuting the remaining with a `perm (fin n)`.
The fixed `fin (n + 1)` is swapped with `0`. -/
def equiv.perm.decompose_fin {n : ℕ} :
perm (fin n.succ) ≃ fin n.succ × perm (fin n) :=
((equiv.perm_congr $ fin_succ_equiv n).trans equiv.perm.decompose_option).trans
(equiv.prod_congr (fin_succ_equiv n).symm (equiv.refl _))
@[simp] lemma equiv.perm.decompose_fin_symm_of_refl {n : ℕ} (p : fin (n + 1)) :
equiv.perm.decompose_fin.symm (p, equiv.refl _) = swap 0 p :=
by simp [equiv.perm.decompose_fin, equiv.perm_congr_def]
@[simp] lemma equiv.perm.decompose_fin_symm_of_one {n : ℕ} (p : fin (n + 1)) :
equiv.perm.decompose_fin.symm (p, 1) = swap 0 p :=
equiv.perm.decompose_fin_symm_of_refl p
@[simp] lemma equiv.perm.decompose_fin_symm_apply_zero {n : ℕ}
(p : fin (n + 1)) (e : perm (fin n)) :
equiv.perm.decompose_fin.symm (p, e) 0 = p :=
by simp [equiv.perm.decompose_fin]
@[simp] lemma equiv.perm.decompose_fin_symm_apply_succ {n : ℕ}
(e : perm (fin n)) (p : fin (n + 1)) (x : fin n) :
equiv.perm.decompose_fin.symm (p, e) x.succ = swap 0 p (e x).succ :=
begin
refine fin.cases _ _ p,
{ simp [equiv.perm.decompose_fin, equiv_functor.map] },
{ intros i,
by_cases h : i = e x,
{ simp [h, equiv.perm.decompose_fin, equiv_functor.map] },
{ have h' : some (e x) ≠ some i := λ H, h (option.some_injective _ H).symm,
have h'' : (e x).succ ≠ i.succ := λ H, h (fin.succ_injective _ H).symm,
simp [h, h'', fin.succ_ne_zero, equiv.perm.decompose_fin, equiv_functor.map,
swap_apply_of_ne_of_ne, swap_apply_of_ne_of_ne (option.some_ne_none (e x)) h'] } }
end
@[simp] lemma equiv.perm.decompose_fin_symm_apply_one {n : ℕ}
(e : perm (fin (n + 1))) (p : fin (n + 2)) :
equiv.perm.decompose_fin.symm (p, e) 1 = swap 0 p (e 0).succ :=
by rw [← fin.succ_zero_eq_one, equiv.perm.decompose_fin_symm_apply_succ e p 0]
@[simp] lemma equiv.perm.decompose_fin.symm_sign {n : ℕ} (p : fin (n + 1)) (e : perm (fin n)) :
perm.sign (equiv.perm.decompose_fin.symm (p, e)) = ite (p = 0) 1 (-1) * perm.sign e :=
by { refine fin.cases _ _ p; simp [equiv.perm.decompose_fin, fin.succ_ne_zero] }
/-- The set of all permutations of `fin (n + 1)` can be constructed by augmenting the set of
permutations of `fin n` by each element of `fin (n + 1)` in turn. -/
lemma finset.univ_perm_fin_succ {n : ℕ} :
@finset.univ (perm $ fin n.succ) _ = (finset.univ : finset $ fin n.succ × perm (fin n)).map
equiv.perm.decompose_fin.symm.to_embedding :=
(finset.univ_map_equiv_to_embedding _).symm
section cycle_range
/-! ### `cycle_range` section
Define the permutations `fin.cycle_range i`, the cycle `(0 1 2 ... i)`.
-/
open equiv.perm
lemma fin_rotate_succ {n : ℕ} :
fin_rotate n.succ = decompose_fin.symm (1, fin_rotate n) :=
begin
ext i,
cases n, { simp },
refine fin.cases _ (λ i, _) i,
{ simp },
rw [coe_fin_rotate, decompose_fin_symm_apply_succ, if_congr (i.succ_eq_last_succ) rfl rfl],
split_ifs with h,
{ simp [h] },
{ rw [fin.coe_succ, function.injective.map_swap fin.coe_injective, fin.coe_succ, coe_fin_rotate,
if_neg h, fin.coe_zero, fin.coe_one,
swap_apply_of_ne_of_ne (nat.succ_ne_zero _) (nat.succ_succ_ne_one _)] }
end
@[simp] lemma sign_fin_rotate (n : ℕ) : perm.sign (fin_rotate (n + 1)) = (-1) ^ n :=
begin
induction n with n ih,
{ simp },
{ rw fin_rotate_succ, simp [ih, pow_succ] },
end
@[simp] lemma support_fin_rotate {n : ℕ} : support (fin_rotate (n + 2)) = finset.univ :=
by { ext, simp }
lemma support_fin_rotate_of_le {n : ℕ} (h : 2 ≤ n) :
support (fin_rotate n) = finset.univ :=
begin
obtain ⟨m, rfl⟩ := exists_add_of_le h,
rw [add_comm, support_fin_rotate],
end
lemma is_cycle_fin_rotate {n : ℕ} : is_cycle (fin_rotate (n + 2)) :=
begin
refine ⟨0, dec_trivial, λ x hx', ⟨x, _⟩⟩,
clear hx',
cases x with x hx,
rw [coe_coe, zpow_coe_nat, fin.ext_iff, fin.coe_mk],
induction x with x ih, { refl },
rw [pow_succ, perm.mul_apply, coe_fin_rotate_of_ne_last, ih (lt_trans x.lt_succ_self hx)],
rw [ne.def, fin.ext_iff, ih (lt_trans x.lt_succ_self hx), fin.coe_last],
exact ne_of_lt (nat.lt_of_succ_lt_succ hx),
end
lemma is_cycle_fin_rotate_of_le {n : ℕ} (h : 2 ≤ n) :
is_cycle (fin_rotate n) :=
begin
obtain ⟨m, rfl⟩ := exists_add_of_le h,
rw [add_comm],
exact is_cycle_fin_rotate
end
@[simp] lemma cycle_type_fin_rotate {n : ℕ} : cycle_type (fin_rotate (n + 2)) = {n + 2} :=
begin
rw [is_cycle_fin_rotate.cycle_type, support_fin_rotate, ← fintype.card, fintype.card_fin],
refl,
end
lemma cycle_type_fin_rotate_of_le {n : ℕ} (h : 2 ≤ n) :
cycle_type (fin_rotate n) = {n} :=
begin
obtain ⟨m, rfl⟩ := exists_add_of_le h,
rw [add_comm, cycle_type_fin_rotate]
end
namespace fin
/-- `fin.cycle_range i` is the cycle `(0 1 2 ... i)` leaving `(i+1 ... (n-1))` unchanged. -/
def cycle_range {n : ℕ} (i : fin n) : perm (fin n) :=
(fin_rotate (i + 1))
.extend_domain (equiv.of_left_inverse' (fin.cast_le (nat.succ_le_of_lt i.is_lt)).to_embedding
coe (by { intros x, ext, simp }))
lemma cycle_range_of_gt {n : ℕ} {i j : fin n.succ} (h : i < j) :
cycle_range i j = j :=
begin
rw [cycle_range, of_left_inverse'_eq_of_injective,
←function.embedding.to_equiv_range_eq_of_injective,
←via_fintype_embedding, via_fintype_embedding_apply_not_mem_range],
simpa
end
lemma cycle_range_of_le {n : ℕ} {i j : fin n.succ} (h : j ≤ i) :
cycle_range i j = if j = i then 0 else j + 1 :=
begin
cases n,
{ simp },
have : j = (fin.cast_le (nat.succ_le_of_lt i.is_lt)).to_embedding
⟨j, lt_of_le_of_lt h (nat.lt_succ_self i)⟩,
{ simp },
ext,
rw [this, cycle_range, of_left_inverse'_eq_of_injective,
←function.embedding.to_equiv_range_eq_of_injective,
←via_fintype_embedding, via_fintype_embedding_apply_image, rel_embedding.coe_fn_to_embedding,
coe_cast_le, coe_fin_rotate],
simp only [fin.ext_iff, coe_last, coe_mk, coe_zero, fin.eta, apply_ite coe, cast_le_mk],
split_ifs with heq,
{ refl },
{ rw fin.coe_add_one_of_lt,
exact lt_of_lt_of_le (lt_of_le_of_ne h (mt (congr_arg coe) heq)) (le_last i) }
end
lemma coe_cycle_range_of_le {n : ℕ} {i j : fin n.succ} (h : j ≤ i) :
(cycle_range i j : ℕ) = if j = i then 0 else j + 1 :=
by { rw [cycle_range_of_le h],
split_ifs with h', { refl },
exact coe_add_one_of_lt (calc (j : ℕ) < i : fin.lt_iff_coe_lt_coe.mp (lt_of_le_of_ne h h')
... ≤ n : nat.lt_succ_iff.mp i.2) }
lemma cycle_range_of_lt {n : ℕ} {i j : fin n.succ} (h : j < i) :
cycle_range i j = j + 1 :=
by rw [cycle_range_of_le h.le, if_neg h.ne]
lemma coe_cycle_range_of_lt {n : ℕ} {i j : fin n.succ} (h : j < i) :
(cycle_range i j : ℕ) = j + 1 :=
by rw [coe_cycle_range_of_le h.le, if_neg h.ne]
lemma cycle_range_of_eq {n : ℕ} {i j : fin n.succ} (h : j = i) :
cycle_range i j = 0 :=
by rw [cycle_range_of_le h.le, if_pos h]
@[simp]
lemma cycle_range_self {n : ℕ} (i : fin n.succ) :
cycle_range i i = 0 :=
cycle_range_of_eq rfl
lemma cycle_range_apply {n : ℕ} (i j : fin n.succ) :
cycle_range i j = if j < i then j + 1 else if j = i then 0 else j :=
begin
split_ifs with h₁ h₂,
{ exact cycle_range_of_lt h₁ },
{ exact cycle_range_of_eq h₂ },
{ exact cycle_range_of_gt (lt_of_le_of_ne (le_of_not_gt h₁) (ne.symm h₂)) },
end
@[simp] lemma cycle_range_zero (n : ℕ) : cycle_range (0 : fin n.succ) = 1 :=
begin
ext j,
refine fin.cases _ (λ j, _) j,
{ simp },
{ rw [cycle_range_of_gt (fin.succ_pos j), one_apply] },
end
@[simp] lemma cycle_range_last (n : ℕ) : cycle_range (last n) = fin_rotate (n + 1) :=
by { ext i, rw [coe_cycle_range_of_le (le_last _), coe_fin_rotate] }
@[simp] lemma cycle_range_zero' {n : ℕ} (h : 0 < n) : cycle_range ⟨0, h⟩ = 1 :=
begin
cases n with n,
{ cases h },
exact cycle_range_zero n
end
@[simp] lemma sign_cycle_range {n : ℕ} (i : fin n) :
perm.sign (cycle_range i) = (-1) ^ (i : ℕ) :=
by simp [cycle_range]
@[simp] lemma succ_above_cycle_range {n : ℕ} (i j : fin n) :
i.succ.succ_above (i.cycle_range j) = swap 0 i.succ j.succ :=
begin
cases n,
{ rcases j with ⟨_, ⟨⟩⟩ },
rcases lt_trichotomy j i with hlt | heq | hgt,
{ have : (j + 1).cast_succ = j.succ,
{ ext, rw [coe_cast_succ, coe_succ, fin.coe_add_one_of_lt (lt_of_lt_of_le hlt i.le_last)] },
rw [fin.cycle_range_of_lt hlt, fin.succ_above_below, this, swap_apply_of_ne_of_ne],
{ apply fin.succ_ne_zero },
{ exact (fin.succ_injective _).ne hlt.ne },
{ rw fin.lt_iff_coe_lt_coe,
simpa [this] using hlt } },
{ rw [heq, fin.cycle_range_self, fin.succ_above_below, swap_apply_right, fin.cast_succ_zero],
{ rw fin.cast_succ_zero, apply fin.succ_pos } },
{ rw [fin.cycle_range_of_gt hgt, fin.succ_above_above, swap_apply_of_ne_of_ne],
{ apply fin.succ_ne_zero },
{ apply (fin.succ_injective _).ne hgt.ne.symm },
{ simpa [fin.le_iff_coe_le_coe] using hgt } },
end
@[simp] lemma cycle_range_succ_above {n : ℕ} (i : fin (n + 1)) (j : fin n) :
i.cycle_range (i.succ_above j) = j.succ :=
begin
cases lt_or_ge j.cast_succ i with h h,
{ rw [fin.succ_above_below _ _ h, fin.cycle_range_of_lt h, fin.coe_succ_eq_succ] },
{ rw [fin.succ_above_above _ _ h, fin.cycle_range_of_gt (fin.le_cast_succ_iff.mp h)] }
end
@[simp] lemma cycle_range_symm_zero {n : ℕ} (i : fin (n + 1)) :
i.cycle_range.symm 0 = i :=
i.cycle_range.injective (by simp)
@[simp] lemma cycle_range_symm_succ {n : ℕ} (i : fin (n + 1)) (j : fin n) :
i.cycle_range.symm j.succ = i.succ_above j :=
i.cycle_range.injective (by simp)
lemma is_cycle_cycle_range {n : ℕ} {i : fin (n + 1)} (h0 : i ≠ 0) : is_cycle (cycle_range i) :=
begin
cases i with i hi,
cases i,
{ exact (h0 rfl).elim },
exact is_cycle_fin_rotate.extend_domain _,
end
@[simp] lemma cycle_type_cycle_range {n : ℕ} {i : fin (n + 1)} (h0 : i ≠ 0) :
cycle_type (cycle_range i) = {i + 1} :=
begin
cases i with i hi,
cases i,
{ exact (h0 rfl).elim },
rw [cycle_range, cycle_type_extend_domain],
exact cycle_type_fin_rotate,
end
lemma is_three_cycle_cycle_range_two {n : ℕ} :
is_three_cycle (cycle_range 2 : perm (fin (n + 3))) :=
begin
rw [is_three_cycle, cycle_type_cycle_range];
dec_trivial
end
end fin
end cycle_range
|
dea2c4c5b1833240e5fcf5eeddc11876101a9931
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/number_theory/zsqrtd/gaussian_int.lean
|
6f8d254623e9f7186c29958a9c0df5ba8646e63d
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 12,568
|
lean
|
/-
Copyright (c) 2019 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import number_theory.zsqrtd.basic
import data.complex.basic
import ring_theory.principal_ideal_domain
import number_theory.legendre_symbol.quadratic_reciprocity
/-!
# Gaussian integers
The Gaussian integers are complex integer, complex numbers whose real and imaginary parts are both
integers.
## Main definitions
The Euclidean domain structure on `ℤ[i]` is defined in this file.
The homomorphism `to_complex` into the complex numbers is also defined in this file.
## Main statements
`prime_iff_mod_four_eq_three_of_nat_prime`
A prime natural number is prime in `ℤ[i]` if and only if it is `3` mod `4`
## Notations
This file uses the local notation `ℤ[i]` for `gaussian_int`
## Implementation notes
Gaussian integers are implemented using the more general definition `zsqrtd`, the type of integers
adjoined a square root of `d`, in this case `-1`. The definition is reducible, so that properties
and definitions about `zsqrtd` can easily be used.
-/
open zsqrtd complex
/-- The Gaussian integers, defined as `ℤ√(-1)`. -/
@[reducible] def gaussian_int : Type := zsqrtd (-1)
local notation `ℤ[i]` := gaussian_int
namespace gaussian_int
instance : has_repr ℤ[i] := ⟨λ x, "⟨" ++ repr x.re ++ ", " ++ repr x.im ++ "⟩"⟩
instance : comm_ring ℤ[i] := zsqrtd.comm_ring
section
local attribute [-instance] complex.field -- Avoid making things noncomputable unnecessarily.
/-- The embedding of the Gaussian integers into the complex numbers, as a ring homomorphism. -/
def to_complex : ℤ[i] →+* ℂ :=
zsqrtd.lift ⟨I, by simp⟩
end
instance : has_coe (ℤ[i]) ℂ := ⟨to_complex⟩
lemma to_complex_def (x : ℤ[i]) : (x : ℂ) = x.re + x.im * I := rfl
lemma to_complex_def' (x y : ℤ) : ((⟨x, y⟩ : ℤ[i]) : ℂ) = x + y * I := by simp [to_complex_def]
lemma to_complex_def₂ (x : ℤ[i]) : (x : ℂ) = ⟨x.re, x.im⟩ :=
by apply complex.ext; simp [to_complex_def]
@[simp] lemma to_real_re (x : ℤ[i]) : ((x.re : ℤ) : ℝ) = (x : ℂ).re := by simp [to_complex_def]
@[simp] lemma to_real_im (x : ℤ[i]) : ((x.im : ℤ) : ℝ) = (x : ℂ).im := by simp [to_complex_def]
@[simp] lemma to_complex_re (x y : ℤ) : ((⟨x, y⟩ : ℤ[i]) : ℂ).re = x := by simp [to_complex_def]
@[simp] lemma to_complex_im (x y : ℤ) : ((⟨x, y⟩ : ℤ[i]) : ℂ).im = y := by simp [to_complex_def]
@[simp] lemma to_complex_add (x y : ℤ[i]) : ((x + y : ℤ[i]) : ℂ) = x + y := to_complex.map_add _ _
@[simp] lemma to_complex_mul (x y : ℤ[i]) : ((x * y : ℤ[i]) : ℂ) = x * y := to_complex.map_mul _ _
@[simp] lemma to_complex_one : ((1 : ℤ[i]) : ℂ) = 1 := to_complex.map_one
@[simp] lemma to_complex_zero : ((0 : ℤ[i]) : ℂ) = 0 := to_complex.map_zero
@[simp] lemma to_complex_neg (x : ℤ[i]) : ((-x : ℤ[i]) : ℂ) = -x := to_complex.map_neg _
@[simp] lemma to_complex_sub (x y : ℤ[i]) : ((x - y : ℤ[i]) : ℂ) = x - y := to_complex.map_sub _ _
@[simp] lemma to_complex_inj {x y : ℤ[i]} : (x : ℂ) = y ↔ x = y :=
by cases x; cases y; simp [to_complex_def₂]
@[simp] lemma to_complex_eq_zero {x : ℤ[i]} : (x : ℂ) = 0 ↔ x = 0 :=
by rw [← to_complex_zero, to_complex_inj]
@[simp] lemma nat_cast_real_norm (x : ℤ[i]) : (x.norm : ℝ) = (x : ℂ).norm_sq :=
by rw [norm, norm_sq]; simp
@[simp] lemma nat_cast_complex_norm (x : ℤ[i]) : (x.norm : ℂ) = (x : ℂ).norm_sq :=
by cases x; rw [norm, norm_sq]; simp
lemma norm_nonneg (x : ℤ[i]) : 0 ≤ norm x := norm_nonneg (by norm_num) _
@[simp] lemma norm_eq_zero {x : ℤ[i]} : norm x = 0 ↔ x = 0 :=
by rw [← @int.cast_inj ℝ _ _ _]; simp
lemma norm_pos {x : ℤ[i]} : 0 < norm x ↔ x ≠ 0 :=
by rw [lt_iff_le_and_ne, ne.def, eq_comm, norm_eq_zero]; simp [norm_nonneg]
@[simp] lemma coe_nat_abs_norm (x : ℤ[i]) : (x.norm.nat_abs : ℤ) = x.norm :=
int.nat_abs_of_nonneg (norm_nonneg _)
@[simp] lemma nat_cast_nat_abs_norm {α : Type*} [ring α]
(x : ℤ[i]) : (x.norm.nat_abs : α) = x.norm :=
by rw [← int.cast_coe_nat, coe_nat_abs_norm]
lemma nat_abs_norm_eq (x : ℤ[i]) : x.norm.nat_abs =
x.re.nat_abs * x.re.nat_abs + x.im.nat_abs * x.im.nat_abs :=
int.coe_nat_inj $ begin simp, simp [norm] end
instance : has_div ℤ[i] :=
⟨λ x y, let n := (rat.of_int (norm y))⁻¹, c := y.conj in
⟨round (rat.of_int (x * c).re * n : ℚ), round (rat.of_int (x * c).im * n : ℚ)⟩⟩
lemma div_def (x y : ℤ[i]) : x / y = ⟨round ((x * conj y).re / norm y : ℚ),
round ((x * conj y).im / norm y : ℚ)⟩ :=
show zsqrtd.mk _ _ = _, by simp [rat.of_int_eq_mk, rat.mk_eq_div, div_eq_mul_inv]
lemma to_complex_div_re (x y : ℤ[i]) : ((x / y : ℤ[i]) : ℂ).re = round ((x / y : ℂ).re) :=
by rw [div_def, ← @rat.round_cast ℝ _ _];
simp [-rat.round_cast, mul_assoc, div_eq_mul_inv, mul_add, add_mul]
lemma to_complex_div_im (x y : ℤ[i]) : ((x / y : ℤ[i]) : ℂ).im = round ((x / y : ℂ).im) :=
by rw [div_def, ← @rat.round_cast ℝ _ _, ← @rat.round_cast ℝ _ _];
simp [-rat.round_cast, mul_assoc, div_eq_mul_inv, mul_add, add_mul]
lemma norm_sq_le_norm_sq_of_re_le_of_im_le {x y : ℂ} (hre : |x.re| ≤ |y.re|)
(him : |x.im| ≤ |y.im|) : x.norm_sq ≤ y.norm_sq :=
by rw [norm_sq_apply, norm_sq_apply, ← _root_.abs_mul_self, _root_.abs_mul,
← _root_.abs_mul_self y.re, _root_.abs_mul y.re,
← _root_.abs_mul_self x.im, _root_.abs_mul x.im,
← _root_.abs_mul_self y.im, _root_.abs_mul y.im]; exact
(add_le_add (mul_self_le_mul_self (abs_nonneg _) hre)
(mul_self_le_mul_self (abs_nonneg _) him))
lemma norm_sq_div_sub_div_lt_one (x y : ℤ[i]) :
((x / y : ℂ) - ((x / y : ℤ[i]) : ℂ)).norm_sq < 1 :=
calc ((x / y : ℂ) - ((x / y : ℤ[i]) : ℂ)).norm_sq =
((x / y : ℂ).re - ((x / y : ℤ[i]) : ℂ).re +
((x / y : ℂ).im - ((x / y : ℤ[i]) : ℂ).im) * I : ℂ).norm_sq :
congr_arg _ $ by apply complex.ext; simp
... ≤ (1 / 2 + 1 / 2 * I).norm_sq :
have |(2⁻¹ : ℝ)| = 2⁻¹, from _root_.abs_of_nonneg (by norm_num),
norm_sq_le_norm_sq_of_re_le_of_im_le
(by rw [to_complex_div_re]; simp [norm_sq, this];
simpa using abs_sub_round (x / y : ℂ).re)
(by rw [to_complex_div_im]; simp [norm_sq, this];
simpa using abs_sub_round (x / y : ℂ).im)
... < 1 : by simp [norm_sq]; norm_num
instance : has_mod ℤ[i] := ⟨λ x y, x - y * (x / y)⟩
lemma mod_def (x y : ℤ[i]) : x % y = x - y * (x / y) := rfl
lemma norm_mod_lt (x : ℤ[i]) {y : ℤ[i]} (hy : y ≠ 0) : (x % y).norm < y.norm :=
have (y : ℂ) ≠ 0, by rwa [ne.def, ← to_complex_zero, to_complex_inj],
(@int.cast_lt ℝ _ _ _ _).1 $
calc ↑(norm (x % y)) = (x - y * (x / y : ℤ[i]) : ℂ).norm_sq : by simp [mod_def]
... = (y : ℂ).norm_sq * (((x / y) - (x / y : ℤ[i])) : ℂ).norm_sq :
by rw [← norm_sq_mul, mul_sub, mul_div_cancel' _ this]
... < (y : ℂ).norm_sq * 1 : mul_lt_mul_of_pos_left (norm_sq_div_sub_div_lt_one _ _)
(norm_sq_pos.2 this)
... = norm y : by simp
lemma nat_abs_norm_mod_lt (x : ℤ[i]) {y : ℤ[i]} (hy : y ≠ 0) :
(x % y).norm.nat_abs < y.norm.nat_abs :=
int.coe_nat_lt.1 (by simp [-int.coe_nat_lt, norm_mod_lt x hy])
lemma norm_le_norm_mul_left (x : ℤ[i]) {y : ℤ[i]} (hy : y ≠ 0) :
(norm x).nat_abs ≤ (norm (x * y)).nat_abs :=
by rw [norm_mul, int.nat_abs_mul];
exact le_mul_of_one_le_right (nat.zero_le _)
(int.coe_nat_le.1 (by rw [coe_nat_abs_norm]; exact int.add_one_le_of_lt (norm_pos.2 hy)))
instance : nontrivial ℤ[i] :=
⟨⟨0, 1, dec_trivial⟩⟩
instance : euclidean_domain ℤ[i] :=
{ quotient := (/),
remainder := (%),
quotient_zero := by { simp [div_def], refl },
quotient_mul_add_remainder_eq := λ _ _, by simp [mod_def],
r := _,
r_well_founded := measure_wf (int.nat_abs ∘ norm),
remainder_lt := nat_abs_norm_mod_lt,
mul_left_not_lt := λ a b hb0, not_lt_of_ge $ norm_le_norm_mul_left a hb0,
.. gaussian_int.comm_ring,
.. gaussian_int.nontrivial }
open principal_ideal_ring
lemma mod_four_eq_three_of_nat_prime_of_prime (p : ℕ) [hp : fact p.prime] (hpi : prime (p : ℤ[i])) :
p % 4 = 3 :=
hp.1.eq_two_or_odd.elim
(λ hp2, absurd hpi (mt irreducible_iff_prime.2 $
λ ⟨hu, h⟩, begin
have := h ⟨1, 1⟩ ⟨1, -1⟩ (hp2.symm ▸ rfl),
rw [← norm_eq_one_iff, ← norm_eq_one_iff] at this,
exact absurd this dec_trivial
end))
(λ hp1, by_contradiction $ λ hp3 : p % 4 ≠ 3,
have hp41 : p % 4 = 1,
begin
rw [← nat.mod_mul_left_mod p 2 2, show 2 * 2 = 4, from rfl] at hp1,
have := nat.mod_lt p (show 0 < 4, from dec_trivial),
revert this hp3 hp1,
generalize : p % 4 = m, dec_trivial!,
end,
let ⟨k, hk⟩ := (zmod.exists_sq_eq_neg_one_iff p).2 $
by rw hp41; exact dec_trivial in
begin
obtain ⟨k, k_lt_p, rfl⟩ : ∃ (k' : ℕ) (h : k' < p), (k' : zmod p) = k,
{ refine ⟨k.val, k.val_lt, zmod.nat_cast_zmod_val k⟩ },
have hpk : p ∣ k ^ 2 + 1,
by { rw [pow_two, ← char_p.cast_eq_zero_iff (zmod p) p, nat.cast_add, nat.cast_mul,
nat.cast_one, ← hk, add_left_neg], },
have hkmul : (k ^ 2 + 1 : ℤ[i]) = ⟨k, 1⟩ * ⟨k, -1⟩ :=
by simp [sq, zsqrtd.ext],
have hpne1 : p ≠ 1 := ne_of_gt hp.1.one_lt,
have hkltp : 1 + k * k < p * p,
from calc 1 + k * k ≤ k + k * k :
add_le_add_right (nat.pos_of_ne_zero
(λ hk0, by clear_aux_decl; simp [*, pow_succ'] at *)) _
... = k * (k + 1) : by simp [add_comm, mul_add]
... < p * p : mul_lt_mul k_lt_p k_lt_p (nat.succ_pos _) (nat.zero_le _),
have hpk₁ : ¬ (p : ℤ[i]) ∣ ⟨k, -1⟩ :=
λ ⟨x, hx⟩, lt_irrefl (p * x : ℤ[i]).norm.nat_abs $
calc (norm (p * x : ℤ[i])).nat_abs = (norm ⟨k, -1⟩).nat_abs : by rw hx
... < (norm (p : ℤ[i])).nat_abs : by simpa [add_comm, norm] using hkltp
... ≤ (norm (p * x : ℤ[i])).nat_abs : norm_le_norm_mul_left _
(λ hx0, (show (-1 : ℤ) ≠ 0, from dec_trivial) $
by simpa [hx0] using congr_arg zsqrtd.im hx),
have hpk₂ : ¬ (p : ℤ[i]) ∣ ⟨k, 1⟩ :=
λ ⟨x, hx⟩, lt_irrefl (p * x : ℤ[i]).norm.nat_abs $
calc (norm (p * x : ℤ[i])).nat_abs = (norm ⟨k, 1⟩).nat_abs : by rw hx
... < (norm (p : ℤ[i])).nat_abs : by simpa [add_comm, norm] using hkltp
... ≤ (norm (p * x : ℤ[i])).nat_abs : norm_le_norm_mul_left _
(λ hx0, (show (1 : ℤ) ≠ 0, from dec_trivial) $
by simpa [hx0] using congr_arg zsqrtd.im hx),
have hpu : ¬ is_unit (p : ℤ[i]), from mt norm_eq_one_iff.2
(by rw [norm_nat_cast, int.nat_abs_mul, nat.mul_eq_one_iff];
exact λ h, (ne_of_lt hp.1.one_lt).symm h.1),
obtain ⟨y, hy⟩ := hpk,
have := hpi.2.2 ⟨k, 1⟩ ⟨k, -1⟩ ⟨y, by rw [← hkmul, ← nat.cast_mul p, ← hy]; simp⟩,
clear_aux_decl, tauto
end)
lemma sq_add_sq_of_nat_prime_of_not_irreducible (p : ℕ) [hp : fact p.prime]
(hpi : ¬irreducible (p : ℤ[i])) : ∃ a b, a^2 + b^2 = p :=
have hpu : ¬ is_unit (p : ℤ[i]), from mt norm_eq_one_iff.2 $
by rw [norm_nat_cast, int.nat_abs_mul, nat.mul_eq_one_iff];
exact λ h, (ne_of_lt hp.1.one_lt).symm h.1,
have hab : ∃ a b, (p : ℤ[i]) = a * b ∧ ¬ is_unit a ∧ ¬ is_unit b,
by simpa [irreducible_iff, hpu, not_forall, not_or_distrib] using hpi,
let ⟨a, b, hpab, hau, hbu⟩ := hab in
have hnap : (norm a).nat_abs = p, from ((hp.1.mul_eq_prime_sq_iff
(mt norm_eq_one_iff.1 hau) (mt norm_eq_one_iff.1 hbu)).1 $
by rw [← int.coe_nat_inj', int.coe_nat_pow, sq,
← @norm_nat_cast (-1), hpab];
simp).1,
⟨a.re.nat_abs, a.im.nat_abs, by simpa [nat_abs_norm_eq, sq] using hnap⟩
lemma prime_of_nat_prime_of_mod_four_eq_three (p : ℕ) [hp : fact p.prime] (hp3 : p % 4 = 3) :
prime (p : ℤ[i]) :=
irreducible_iff_prime.1 $ classical.by_contradiction $ λ hpi,
let ⟨a, b, hab⟩ := sq_add_sq_of_nat_prime_of_not_irreducible p hpi in
have ∀ a b : zmod 4, a^2 + b^2 ≠ p, by erw [← zmod.nat_cast_mod p 4, hp3]; exact dec_trivial,
this a b (hab ▸ by simp)
/-- A prime natural number is prime in `ℤ[i]` if and only if it is `3` mod `4` -/
lemma prime_iff_mod_four_eq_three_of_nat_prime (p : ℕ) [hp : fact p.prime] :
prime (p : ℤ[i]) ↔ p % 4 = 3 :=
⟨mod_four_eq_three_of_nat_prime_of_prime p, prime_of_nat_prime_of_mod_four_eq_three p⟩
end gaussian_int
|
875c309f3a4a17bfb5c639a9b4098e5fd415c56f
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/topology/continuous_function/ordered.lean
|
7bbf9121a9ebe159959f8959f7f9c06476f5937f
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,804
|
lean
|
/-
Copyright © 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-/
import topology.algebra.order.proj_Icc
import topology.algebra.order.group
import topology.continuous_function.basic
/-!
# Bundled continuous maps into orders, with order-compatible topology
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
-/
variables {α : Type*} {β : Type*} {γ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]
namespace continuous_map
section
variables [linear_ordered_add_comm_group β] [order_topology β]
/-- The pointwise absolute value of a continuous function as a continuous function. -/
def abs (f : C(α, β)) : C(α, β) :=
{ to_fun := λ x, |f x|, }
@[priority 100] -- see Note [lower instance priority]
instance : has_abs C(α, β) := ⟨λf, abs f⟩
@[simp] lemma abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
rfl
end
/-!
We now set up the partial order and lattice structure (given by pointwise min and max)
on continuous functions.
-/
section lattice
instance partial_order [partial_order β] :
partial_order C(α, β) :=
partial_order.lift (λ f, f.to_fun) (by tidy)
lemma le_def [partial_order β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
pi.le_def
lemma lt_def [partial_order β] {f g : C(α, β)} :
f < g ↔ (∀ a, f a ≤ g a) ∧ (∃ a, f a < g a) :=
pi.lt_def
instance has_sup [linear_order β] [order_closed_topology β] : has_sup C(α, β) :=
{ sup := λ f g, { to_fun := λ a, max (f a) (g a), } }
@[simp, norm_cast] lemma sup_coe [linear_order β] [order_closed_topology β] (f g : C(α, β)) :
((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
rfl
@[simp] lemma sup_apply [linear_order β] [order_closed_topology β] (f g : C(α, β)) (a : α) :
(f ⊔ g) a = max (f a) (g a) :=
rfl
instance [linear_order β] [order_closed_topology β] : semilattice_sup C(α, β) :=
{ le_sup_left := λ f g, le_def.mpr (by simp [le_refl]),
le_sup_right := λ f g, le_def.mpr (by simp [le_refl]),
sup_le := λ f₁ f₂ g w₁ w₂, le_def.mpr (λ a, by simp [le_def.mp w₁ a, le_def.mp w₂ a]),
..continuous_map.partial_order,
..continuous_map.has_sup, }
instance has_inf [linear_order β] [order_closed_topology β] : has_inf C(α, β) :=
{ inf := λ f g, { to_fun := λ a, min (f a) (g a), } }
@[simp, norm_cast] lemma inf_coe [linear_order β] [order_closed_topology β] (f g : C(α, β)) :
((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
rfl
@[simp] lemma inf_apply [linear_order β] [order_closed_topology β] (f g : C(α, β)) (a : α) :
(f ⊓ g) a = min (f a) (g a) :=
rfl
instance [linear_order β] [order_closed_topology β] : semilattice_inf C(α, β) :=
{ inf_le_left := λ f g, le_def.mpr (by simp [le_refl]),
inf_le_right := λ f g, le_def.mpr (by simp [le_refl]),
le_inf := λ f₁ f₂ g w₁ w₂, le_def.mpr (λ a, by simp [le_def.mp w₁ a, le_def.mp w₂ a]),
..continuous_map.partial_order,
..continuous_map.has_inf, }
instance [linear_order β] [order_closed_topology β] : lattice C(α, β) :=
{ ..continuous_map.semilattice_inf,
..continuous_map.semilattice_sup }
-- TODO transfer this lattice structure to `bounded_continuous_function`
section sup'
variables [linear_order γ] [order_closed_topology γ]
lemma sup'_apply {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) (b : β) :
s.sup' H f b = s.sup' H (λ a, f a b) :=
finset.comp_sup'_eq_sup'_comp H (λ f : C(β, γ), f b) (λ i j, rfl)
@[simp, norm_cast]
lemma sup'_coe {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) :
((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H (λ a, (f a : β → γ)) :=
by { ext, simp [sup'_apply], }
end sup'
section inf'
variables [linear_order γ] [order_closed_topology γ]
lemma inf'_apply {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) (b : β) :
s.inf' H f b = s.inf' H (λ a, f a b) :=
@sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
@[simp, norm_cast]
lemma inf'_coe {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) :
((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H (λ a, (f a : β → γ)) :=
@sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
end inf'
end lattice
section extend
variables [linear_order α] [order_topology α] {a b : α} (h : a ≤ b)
/--
Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
-/
def Icc_extend (f : C(set.Icc a b, β)) : C(α, β) := ⟨set.Icc_extend h f⟩
@[simp] lemma coe_Icc_extend (f : C(set.Icc a b, β)) :
((Icc_extend h f : C(α, β)) : α → β) = set.Icc_extend h f := rfl
end extend
end continuous_map
|
48f8deb4c3b578a78b18c92cddd947aaa20c77f6
|
5d166a16ae129621cb54ca9dde86c275d7d2b483
|
/leanpkg/leanpkg/toml.lean
|
73e5b86eec2ccf025185a60655d7337d66701646
|
[
"Apache-2.0"
] |
permissive
|
jcarlson23/lean
|
b00098763291397e0ac76b37a2dd96bc013bd247
|
8de88701247f54d325edd46c0eed57aeacb64baf
|
refs/heads/master
| 1,611,571,813,719
| 1,497,020,963,000
| 1,497,021,515,000
| 93,882,536
| 1
| 0
| null | 1,497,029,896,000
| 1,497,029,896,000
| null |
UTF-8
|
Lean
| false
| false
| 3,816
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Gabriel Ebner
-/
import data.buffer.parser
-- I'd like to contribute a new naming convention:
-- CamelCase for non-terminals.
def join (sep : string) : list string → string
| [x] := x
| [] := ""
| (x::xs) := x ++ sep ++ join xs
namespace toml
inductive value : Type
| str : string → value
| nat : ℕ → value
| bool : bool → value
| table : list (string × value) → value
namespace value
private def escapec : char → string
| '\"' := "\\\""
| '\t' := "\\t"
| '\n' := "\\n"
| '\\' := "\\\\"
| c := c.to_string
private def escape (s : string) : string :=
s.fold "" (λ s c, s ++ escapec c)
private mutual def to_string_core, to_string_pairs
with to_string_core : value → string
| (value.str s) := "\"" ++ escape s ++ "\""
| (value.nat n) := to_string n
| (value.bool tt) := "true"
| (value.bool ff) := "false"
| (value.table cs) := "{" ++ to_string_pairs cs ++ "}"
with to_string_pairs : list (string × value) → string
| [] := ""
| [(k, v)] := k ++ " = " ++ to_string_core v
| ((k, v)::kvs) := k ++ " = " ++ to_string_core v ++ ", " ++ to_string_pairs kvs
protected def to_string : ∀ (v : value), string
| (table cs) := join "\n" $ do (h, c) ← cs,
match c with
| table ds :=
["[" ++ h ++ "]\n" ++
join "" (do (k, v) ← ds,
[k ++ " = " ++ to_string_core v ++ "\n"])]
| _ := ["<error> " ++ to_string_core c]
end
| v := to_string_core v
instance : has_to_string value :=
⟨value.to_string⟩
def lookup : value → string → option value
| (value.table cs) k :=
match cs.filter (λ c : string × value, c.fst = k) with
| [] := none
| (k,v) ::_ := some v
end
| _ _ := none
end value
open parser
def Comment : parser unit :=
ch '#' >> many' (sat (≠ '#')) >> optional (ch '\n') >> eps
def Ws : parser unit :=
decorate_error "<whitespace>" $
many' $ one_of' " \t\n".to_list <|> Comment
def tok (s : string) := str s >> Ws
def StringChar : parser char :=
sat (λc, c ≠ '\"' ∧ c ≠ '\\' ∧ c.val > 0x1f)
<|> (do str "\\",
(str "t" >> return '\t') <|>
(str "n" >> return '\n') <|>
(str "\\" >> return '\\') <|>
(str "\"" >> return '\"'))
def BasicString : parser string :=
str "\"" *> (many_char StringChar) <* str "\"" <* Ws
def String := BasicString
def Nat : parser nat :=
do s ← many_char1 (one_of "0123456789".to_list),
Ws,
return s.to_nat
def Boolean : parser bool :=
(tok "true" >> return tt) <|>
(tok "false" >> return ff)
def BareKey : parser string := do
cs ← many_char1 $ sat $ λ c, c.is_alpha ∨ c.is_digit ∨ c = '_' ∨ c = '-',
Ws,
return cs
def Key := BareKey <|> BasicString
section
parameter Val : parser value
def KeyVal : parser (string × value) := do
k ← Key, tok "=", v ← Val,
return (k, v)
def StdTable : parser (string × value) := do
tok "[", n ← Key, tok "]",
cs ← many KeyVal,
return (n, value.table cs)
def Table : parser (string × value) := StdTable
def StrVal : parser value :=
value.str <$> String
def NatVal : parser value :=
value.nat <$> Nat
def BoolVal : parser value :=
value.bool <$> Boolean
def InlineTable : parser value :=
tok "{" *> (value.table <$> sep_by (tok ",") KeyVal) <* tok "}"
end
def Val : parser value :=
fix $ λ Val, StrVal <|> NatVal <|> BoolVal <|> InlineTable Val
def Expression := Table Val
def File : parser value :=
Ws *> (value.table <$> many Expression)
/-
#eval run_string File $
"[package]\n" ++
"name = \"sss\"\n" ++
"version = \"0.1\"\n" ++
"timeout = 10\n" ++
"\n" ++
"[dependencies]\n" ++
"library_dev = { git = \"https://github.com/leanprover/library_dev\", rev = \"master\" }"
-/
end toml
|
03b37a659f28cf41d7581218e895eea63cf14032
|
30b012bb72d640ec30c8fdd4c45fdfa67beb012c
|
/data/list/perm.lean
|
a475bfb16ece48eb6b6938885e65ec6fae4abfc3
|
[
"Apache-2.0"
] |
permissive
|
kckennylau/mathlib
|
21fb810b701b10d6606d9002a4004f7672262e83
|
47b3477e20ffb5a06588dd3abb01fe0fe3205646
|
refs/heads/master
| 1,634,976,409,281
| 1,542,042,832,000
| 1,542,319,733,000
| 109,560,458
| 0
| 0
|
Apache-2.0
| 1,542,369,208,000
| 1,509,867,494,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 38,751
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Mario Carneiro
List permutations.
-/
import data.list.basic
namespace list
universe variables uu vv
variables {α : Type uu} {β : Type vv}
/-- `perm l₁ l₂` or `l₁ ~ l₂` asserts that `l₁` and `l₂` are permutations
of each other. This is defined by induction using pairwise swaps. -/
inductive perm : list α → list α → Prop
| nil : perm [] []
| skip : Π (x : α) {l₁ l₂ : list α}, perm l₁ l₂ → perm (x::l₁) (x::l₂)
| swap : Π (x y : α) (l : list α), perm (y::x::l) (x::y::l)
| trans : Π {l₁ l₂ l₃ : list α}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃
open perm
infix ~ := perm
@[refl] protected theorem perm.refl : ∀ (l : list α), l ~ l
| [] := perm.nil
| (x::xs) := skip x (perm.refl xs)
@[symm] protected theorem perm.symm {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₂ ~ l₁ :=
perm.rec_on p
perm.nil
(λ x l₁ l₂ p₁ r₁, skip x r₁)
(λ x y l, swap y x l)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₂ r₁)
attribute [trans] perm.trans
theorem perm.eqv (α : Type) : equivalence (@perm α) :=
mk_equivalence (@perm α) (@perm.refl α) (@perm.symm α) (@perm.trans α)
instance is_setoid (α : Type) : setoid (list α) :=
setoid.mk (@perm α) (perm.eqv α)
theorem perm_subset {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₁ ⊆ l₂ :=
λ a, perm.rec_on p
(λ h, h)
(λ x l₁ l₂ p₁ r₁ i, or.elim i
(λ ax, by simp [ax])
(λ al₁, or.inr (r₁ al₁)))
(λ x y l ayxl, or.elim ayxl
(λ ay, by simp [ay])
(λ axl, or.elim axl
(λ ax, by simp [ax])
(λ al, or.inr (or.inr al))))
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
theorem mem_of_perm {a : α} {l₁ l₂ : list α} (h : l₁ ~ l₂) : a ∈ l₁ ↔ a ∈ l₂ :=
iff.intro (λ m, perm_subset h m) (λ m, perm_subset h.symm m)
theorem perm_app_left {l₁ l₂ : list α} (t₁ : list α) (p : l₁ ~ l₂) : l₁++t₁ ~ l₂++t₁ :=
perm.rec_on p
(perm.refl ([] ++ t₁))
(λ x l₁ l₂ p₁ r₁, skip x r₁)
(λ x y l, swap x y _)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
theorem perm_app_right {t₁ t₂ : list α} : ∀ (l : list α), t₁ ~ t₂ → l++t₁ ~ l++t₂
| [] p := p
| (x::xs) p := skip x (perm_app_right xs p)
theorem perm_app {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁++t₁ ~ l₂++t₂ :=
trans (perm_app_left t₁ p₁) (perm_app_right l₂ p₂)
theorem perm_app_cons (a : α) {h₁ h₂ t₁ t₂ : list α}
(p₁ : h₁ ~ h₂) (p₂ : t₁ ~ t₂) : h₁ ++ a::t₁ ~ h₂ ++ a::t₂ :=
perm_app p₁ (skip a p₂)
@[simp] theorem perm_middle {a : α} : ∀ {l₁ l₂ : list α}, l₁++a::l₂ ~ a::(l₁++l₂)
| [] l₂ := perm.refl _
| (b::l₁) l₂ := (skip b (@perm_middle l₁ l₂)).trans (swap a b _)
@[simp] theorem perm_cons_app (a : α) (l : list α) : l ++ [a] ~ a::l :=
by simpa using @perm_middle _ a l []
@[simp] theorem perm_app_comm : ∀ {l₁ l₂ : list α}, (l₁++l₂) ~ (l₂++l₁)
| [] l₂ := by simp
| (a::t) l₂ := (skip a perm_app_comm).trans perm_middle.symm
theorem concat_perm (l : list α) (a : α) : concat l a ~ a :: l :=
by simp
theorem perm_length {l₁ l₂ : list α} (p : l₁ ~ l₂) : length l₁ = length l₂ :=
perm.rec_on p
rfl
(λ x l₁ l₂ p r, by simp[r])
(λ x y l, by simp)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂)
theorem eq_nil_of_perm_nil {l₁ : list α} (p : [] ~ l₁) : l₁ = [] :=
eq_nil_of_length_eq_zero (perm_length p).symm
theorem perm_nil {l₁ : list α} : l₁ ~ [] ↔ l₁ = [] :=
⟨λ p, eq_nil_of_perm_nil p.symm, λ e, e ▸ perm.refl _⟩
theorem not_perm_nil_cons (x : α) (l : list α) : ¬ [] ~ x::l
| p := by injection eq_nil_of_perm_nil p
theorem eq_singleton_of_perm {a b : α} (p : [a] ~ [b]) : a = b :=
by simpa using perm_subset p (by simp)
theorem eq_singleton_of_perm_inv {a : α} {l : list α} (p : [a] ~ l) : l = [a] :=
match l, show 1 = _, from perm_length p, p with
| [a'], rfl, p := by rw [eq_singleton_of_perm p]
end
@[simp] theorem reverse_perm : ∀ (l : list α), reverse l ~ l
| [] := perm.nil
| (a::l) := by rw reverse_cons; exact
(perm_cons_app _ _).trans (skip a $ reverse_perm l)
theorem perm_cons_app_cons {l l₁ l₂ : list α} (a : α) (p : l ~ l₁++l₂) : a::l ~ l₁++(a::l₂) :=
trans (skip a p) perm_middle.symm
@[simp] theorem perm_repeat {a : α} {n : ℕ} {l : list α} : repeat a n ~ l ↔ repeat a n = l :=
⟨λ p, (eq_repeat.2 $ by exact
⟨by simpa using (perm_length p).symm,
λ b m, eq_of_mem_repeat $ perm_subset p.symm m⟩).symm,
λ h, h ▸ perm.refl _⟩
theorem perm_erase [decidable_eq α] {a : α} {l : list α} (h : a ∈ l) : l ~ a :: l.erase a :=
let ⟨l₁, l₂, _, e₁, e₂⟩ := exists_erase_eq h in
e₂.symm ▸ e₁.symm ▸ perm_middle
@[elab_as_eliminator] theorem perm_induction_on
{P : list α → list α → Prop} {l₁ l₂ : list α} (p : l₁ ~ l₂)
(h₁ : P [] [])
(h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂))
(h₃ : ∀ x y l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (y::x::l₁) (x::y::l₂))
(h₄ : ∀ l₁ l₂ l₃, l₁ ~ l₂ → l₂ ~ l₃ → P l₁ l₂ → P l₂ l₃ → P l₁ l₃) :
P l₁ l₂ :=
have P_refl : ∀ l, P l l, from
assume l,
list.rec_on l h₁ (λ x xs ih, h₂ x xs xs (perm.refl xs) ih),
perm.rec_on p h₁ h₂ (λ x y l, h₃ x y l l (perm.refl l) (P_refl l)) h₄
@[congr] theorem perm_filter_map (f : α → option β) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
filter_map f l₁ ~ filter_map f l₂ :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂,
{ simp },
{ simp [filter_map], cases f x with a; simp [filter_map, IH, skip] },
{ simp [filter_map], cases f x with a; cases f y with b; simp [filter_map, swap] },
{ exact IH₁.trans IH₂ }
end
@[congr] theorem perm_map (f : α → β) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
map f l₁ ~ map f l₂ :=
by rw ← filter_map_eq_map; apply perm_filter_map _ p
theorem perm_pmap {p : α → Prop} (f : Π a, p a → β)
{l₁ l₂ : list α} (p : l₁ ~ l₂) {H₁ H₂} : pmap f l₁ H₁ ~ pmap f l₂ H₂ :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂,
{ simp },
{ simp [IH, skip] },
{ simp [swap] },
{ refine IH₁.trans IH₂,
exact λ a m, H₂ a (perm_subset p₂ m) }
end
theorem perm_filter (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} (s : l₁ ~ l₂) : filter p l₁ ~ filter p l₂ :=
by rw ← filter_map_eq_filter; apply perm_filter_map _ s
theorem exists_perm_sublist {l₁ l₂ l₂' : list α}
(s : l₁ <+ l₂) (p : l₂ ~ l₂') : ∃ l₁' ~ l₁, l₁' <+ l₂' :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂ generalizing l₁ s,
{ exact ⟨[], eq_nil_of_sublist_nil s ▸ perm.refl _, nil_sublist _⟩ },
{ cases s with _ _ _ s l₁ _ _ s,
{ exact let ⟨l₁', p', s'⟩ := IH s in ⟨l₁', p', s'.cons _ _ _⟩ },
{ exact let ⟨l₁', p', s'⟩ := IH s in ⟨x::l₁', skip x p', s'.cons2 _ _ _⟩ } },
{ cases s with _ _ _ s l₁ _ _ s; cases s with _ _ _ s l₁ _ _ s,
{ exact ⟨l₁, perm.refl _, (s.cons _ _ _).cons _ _ _⟩ },
{ exact ⟨x::l₁, perm.refl _, (s.cons _ _ _).cons2 _ _ _⟩ },
{ exact ⟨y::l₁, perm.refl _, (s.cons2 _ _ _).cons _ _ _⟩ },
{ exact ⟨x::y::l₁, perm.swap _ _ _, (s.cons2 _ _ _).cons2 _ _ _⟩ } },
{ exact let ⟨m₁, pm, sm⟩ := IH₁ s, ⟨r₁, pr, sr⟩ := IH₂ sm in
⟨r₁, pr.trans pm, sr⟩ }
end
section rel
open relator
variables {γ : Type*} {δ : Type*} {r : α → β → Prop} {p : γ → δ → Prop}
local infixr ` ∘r ` : 80 := relation.comp
lemma perm_comp_perm : (perm ∘r perm : list α → list α → Prop) = perm :=
begin
funext a c, apply propext,
split,
{ exact assume ⟨b, hab, hba⟩, perm.trans hab hba },
{ exact assume h, ⟨a, perm.refl a, h⟩ }
end
lemma perm_comp_forall₂ {l u v} (hlu : perm l u) (huv : forall₂ r u v) : (forall₂ r ∘r perm) l v :=
begin
induction hlu generalizing v,
case perm.nil { cases huv, exact ⟨[], forall₂.nil, perm.nil⟩ },
case perm.skip : a l u hlu ih {
cases huv with _ b _ v hab huv',
rcases ih huv' with ⟨l₂, h₁₂, h₂₃⟩,
exact ⟨b::l₂, forall₂.cons hab h₁₂, perm.skip _ h₂₃⟩
},
case perm.swap : a₁ a₂ l₁ l₂ h₂₃ {
cases h₂₃ with _ b₁ _ l₂ h₁ hr_₂₃,
cases hr_₂₃ with _ b₂ _ l₂ h₂ h₁₂,
exact ⟨b₂::b₁::l₂, forall₂.cons h₂ (forall₂.cons h₁ h₁₂), perm.swap _ _ _⟩
},
case perm.trans : la₁ la₂ la₃ _ _ ih₁ ih₂ {
rcases ih₂ huv with ⟨lb₂, hab₂, h₂₃⟩,
rcases ih₁ hab₂ with ⟨lb₁, hab₁, h₁₂⟩,
exact ⟨lb₁, hab₁, perm.trans h₁₂ h₂₃⟩
}
end
lemma forall₂_comp_perm_eq_perm_comp_forall₂ : forall₂ r ∘r perm = perm ∘r forall₂ r :=
begin
funext l₁ l₃, apply propext,
split,
{ assume h, rcases h with ⟨l₂, h₁₂, h₂₃⟩,
have : forall₂ (flip r) l₂ l₁, from h₁₂.flip ,
rcases perm_comp_forall₂ h₂₃.symm this with ⟨l', h₁, h₂⟩,
exact ⟨l', h₂.symm, h₁.flip⟩ },
{ exact assume ⟨l₂, h₁₂, h₂₃⟩, perm_comp_forall₂ h₁₂ h₂₃ }
end
lemma rel_perm_imp (hr : right_unique r) : (forall₂ r ⇒ forall₂ r ⇒ implies) perm perm :=
assume a b h₁ c d h₂ h,
have (flip (forall₂ r) ∘r (perm ∘r forall₂ r)) b d, from ⟨a, h₁, c, h, h₂⟩,
have ((flip (forall₂ r) ∘r forall₂ r) ∘r perm) b d,
by rwa [← forall₂_comp_perm_eq_perm_comp_forall₂, ← relation.comp_assoc] at this,
let ⟨b', ⟨c', hbc, hcb⟩, hbd⟩ := this in
have b' = b, from right_unique_forall₂ @hr hcb hbc,
this ▸ hbd
lemma rel_perm (hr : bi_unique r) : (forall₂ r ⇒ forall₂ r ⇒ (↔)) perm perm :=
assume a b hab c d hcd, iff.intro
(rel_perm_imp hr.2 hab hcd)
(rel_perm_imp (assume a b c, left_unique_flip hr.1) hab.flip hcd.flip)
end rel
section subperm
/-- `subperm l₁ l₂`, denoted `l₁ <+~ l₂`, means that `l₁` is a sublist of
a permutation of `l₂`. This is an analogue of `l₁ ⊆ l₂` which respects
multiplicities of elements, and is used for the `≤` relation on multisets. -/
def subperm (l₁ l₂ : list α) : Prop := ∃ l ~ l₁, l <+ l₂
infix ` <+~ `:50 := subperm
theorem perm.subperm_left {l l₁ l₂ : list α} (p : l₁ ~ l₂) : l <+~ l₁ ↔ l <+~ l₂ :=
suffices ∀ {l₁ l₂ : list α}, l₁ ~ l₂ → l <+~ l₁ → l <+~ l₂,
from ⟨this p, this p.symm⟩,
λ l₁ l₂ p ⟨u, pu, su⟩,
let ⟨v, pv, sv⟩ := exists_perm_sublist su p in
⟨v, pv.trans pu, sv⟩
theorem perm.subperm_right {l₁ l₂ l : list α} (p : l₁ ~ l₂) : l₁ <+~ l ↔ l₂ <+~ l :=
⟨λ ⟨u, pu, su⟩, ⟨u, pu.trans p, su⟩,
λ ⟨u, pu, su⟩, ⟨u, pu.trans p.symm, su⟩⟩
theorem subperm_of_sublist {l₁ l₂ : list α} (s : l₁ <+ l₂) : l₁ <+~ l₂ :=
⟨l₁, perm.refl _, s⟩
theorem subperm_of_perm {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₁ <+~ l₂ :=
⟨l₂, p.symm, sublist.refl _⟩
theorem subperm.refl (l : list α) : l <+~ l := subperm_of_perm (perm.refl _)
theorem subperm.trans {l₁ l₂ l₃ : list α} : l₁ <+~ l₂ → l₂ <+~ l₃ → l₁ <+~ l₃
| s ⟨l₂', p₂, s₂⟩ :=
let ⟨l₁', p₁, s₁⟩ := p₂.subperm_left.2 s in ⟨l₁', p₁, s₁.trans s₂⟩
theorem length_le_of_subperm {l₁ l₂ : list α} : l₁ <+~ l₂ → length l₁ ≤ length l₂
| ⟨l, p, s⟩ := perm_length p ▸ length_le_of_sublist s
theorem subperm.perm_of_length_le {l₁ l₂ : list α} : l₁ <+~ l₂ → length l₂ ≤ length l₁ → l₁ ~ l₂
| ⟨l, p, s⟩ h :=
suffices l = l₂, from this ▸ p.symm,
eq_of_sublist_of_length_le s $ perm_length p.symm ▸ h
theorem subperm.antisymm {l₁ l₂ : list α} (h₁ : l₁ <+~ l₂) (h₂ : l₂ <+~ l₁) : l₁ ~ l₂ :=
h₁.perm_of_length_le (length_le_of_subperm h₂)
theorem subset_of_subperm {l₁ l₂ : list α} : l₁ <+~ l₂ → l₁ ⊆ l₂
| ⟨l, p, s⟩ := subset.trans (perm_subset p.symm) (subset_of_sublist s)
end subperm
theorem exists_perm_append_of_sublist : ∀ {l₁ l₂ : list α}, l₁ <+ l₂ → ∃ l, l₂ ~ l₁ ++ l
| ._ ._ sublist.slnil := ⟨nil, perm.refl _⟩
| ._ ._ (sublist.cons l₁ l₂ a s) :=
let ⟨l, p⟩ := exists_perm_append_of_sublist s in
⟨a::l, (skip a p).trans perm_middle.symm⟩
| ._ ._ (sublist.cons2 l₁ l₂ a s) :=
let ⟨l, p⟩ := exists_perm_append_of_sublist s in
⟨l, skip a p⟩
theorem perm_countp (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} (s : l₁ ~ l₂) : countp p l₁ = countp p l₂ :=
by rw [countp_eq_length_filter, countp_eq_length_filter];
exact perm_length (perm_filter _ s)
theorem countp_le_of_subperm (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} : l₁ <+~ l₂ → countp p l₁ ≤ countp p l₂
| ⟨l, p', s⟩ := perm_countp p p' ▸ countp_le_of_sublist s
theorem perm_count [decidable_eq α] {l₁ l₂ : list α}
(p : l₁ ~ l₂) (a) : count a l₁ = count a l₂ :=
perm_countp _ p
theorem count_le_of_subperm [decidable_eq α] {l₁ l₂ : list α}
(s : l₁ <+~ l₂) (a) : count a l₁ ≤ count a l₂ :=
countp_le_of_subperm _ s
theorem foldl_eq_of_perm {f : β → α → β} {l₁ l₂ : list α} (rcomm : right_commutative f) (p : l₁ ~ l₂) :
∀ b, foldl f b l₁ = foldl f b l₂ :=
perm_induction_on p
(λ b, rfl)
(λ x t₁ t₂ p r b, r (f b x))
(λ x y t₁ t₂ p r b, by simp; rw rcomm; exact r (f (f b x) y))
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ b, eq.trans (r₁ b) (r₂ b))
theorem foldr_eq_of_perm {f : α → β → β} {l₁ l₂ : list α} (lcomm : left_commutative f) (p : l₁ ~ l₂) :
∀ b, foldr f b l₁ = foldr f b l₂ :=
perm_induction_on p
(λ b, rfl)
(λ x t₁ t₂ p r b, by simp; rw [r b])
(λ x y t₁ t₂ p r b, by simp; rw [lcomm, r b])
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ a, eq.trans (r₁ a) (r₂ a))
lemma rec_heq_of_perm {β : list α → Sort*} {f : Πa l, β l → β (a::l)} {b : β []} {l l' : list α}
(hl : perm l l')
(f_congr : ∀{a l l' b b'}, perm l l' → b == b' → f a l b == f a l' b')
(f_swap : ∀{a a' l b}, f a (a'::l) (f a' l b) == f a' (a::l) (f a l b)) :
@list.rec α β b f l == @list.rec α β b f l' :=
begin
induction hl,
case list.perm.nil { refl },
case list.perm.skip : a l l' h ih { exact f_congr h ih },
case list.perm.swap : a a' l { exact f_swap },
case list.perm.trans : l₁ l₂ l₃ h₁ h₂ ih₁ ih₂ { exact heq.trans ih₁ ih₂ }
end
section
variables {op : α → α → α} [is_associative α op] [is_commutative α op]
local notation a * b := op a b
local notation l <*> a := foldl op a l
lemma fold_op_eq_of_perm {l₁ l₂ : list α} {a : α} (h : l₁ ~ l₂) : l₁ <*> a = l₂ <*> a :=
foldl_eq_of_perm (right_comm _ (is_commutative.comm _) (is_associative.assoc _)) h _
end
section comm_monoid
open list
variable [comm_monoid α]
@[to_additive list.sum_eq_of_perm]
lemma prod_eq_of_perm {l₁ l₂ : list α} (h : perm l₁ l₂) : prod l₁ = prod l₂ :=
by induction h; simp [*, mul_left_comm]
@[to_additive list.sum_reverse]
lemma prod_reverse (l : list α) : prod l.reverse = prod l :=
prod_eq_of_perm $ reverse_perm l
end comm_monoid
theorem perm_inv_core {a : α} {l₁ l₂ r₁ r₂ : list α} : l₁++a::r₁ ~ l₂++a::r₂ → l₁++r₁ ~ l₂++r₂ :=
begin
generalize e₁ : l₁++a::r₁ = s₁, generalize e₂ : l₂++a::r₂ = s₂,
intro p, revert l₁ l₂ r₁ r₂ e₁ e₂,
refine perm_induction_on p _ (λ x t₁ t₂ p IH, _) (λ x y t₁ t₂ p IH, _) (λ t₁ t₂ t₃ p₁ p₂ IH₁ IH₂, _);
intros l₁ l₂ r₁ r₂ e₁ e₂,
{ apply (not_mem_nil a).elim, rw ← e₁, simp },
{ cases l₁ with y l₁; cases l₂ with z l₂;
dsimp at e₁ e₂; injections; subst x,
{ substs t₁ t₂, exact p },
{ substs z t₁ t₂, exact p.trans perm_middle },
{ substs y t₁ t₂, exact perm_middle.symm.trans p },
{ substs z t₁ t₂, exact skip y (IH rfl rfl) } },
{ rcases l₁ with _|⟨y, _|⟨z, l₁⟩⟩; rcases l₂ with _|⟨u, _|⟨v, l₂⟩⟩;
dsimp at e₁ e₂; injections; substs x y,
{ substs r₁ r₂, exact skip a p },
{ substs r₁ r₂, exact skip u p },
{ substs r₁ v t₂, exact skip u (p.trans perm_middle) },
{ substs r₁ r₂, exact skip y p },
{ substs r₁ r₂ y u, exact skip a p },
{ substs r₁ u v t₂, exact (skip y $ p.trans perm_middle).trans (swap _ _ _) },
{ substs r₂ z t₁, exact skip y (perm_middle.symm.trans p) },
{ substs r₂ y z t₁, exact (swap _ _ _).trans (skip u $ perm_middle.symm.trans p) },
{ substs u v t₁ t₂, exact (swap _ _ _).trans (skip z $ skip y $ IH rfl rfl) } },
{ substs t₁ t₃,
have : a ∈ t₂ := perm_subset p₁ (by simp),
rcases mem_split this with ⟨l₂, r₂, e₂⟩,
subst t₂, exact (IH₁ rfl rfl).trans (IH₂ rfl rfl) }
end
theorem perm_cons_inv {a : α} {l₁ l₂ : list α} : a::l₁ ~ a::l₂ → l₁ ~ l₂ :=
@perm_inv_core _ _ [] [] _ _
theorem perm_cons (a : α) {l₁ l₂ : list α} : a::l₁ ~ a::l₂ ↔ l₁ ~ l₂ :=
⟨perm_cons_inv, skip a⟩
theorem perm_app_left_iff {l₁ l₂ : list α} : ∀ l, l++l₁ ~ l++l₂ ↔ l₁ ~ l₂
| [] := iff.rfl
| (a::l) := (perm_cons a).trans (perm_app_left_iff l)
theorem perm_app_right_iff {l₁ l₂ : list α} (l) : l₁++l ~ l₂++l ↔ l₁ ~ l₂ :=
⟨λ p, (perm_app_left_iff _).1 $ trans perm_app_comm $ trans p perm_app_comm,
perm_app_left _⟩
theorem subperm_cons (a : α) {l₁ l₂ : list α} : a::l₁ <+~ a::l₂ ↔ l₁ <+~ l₂ :=
⟨λ ⟨l, p, s⟩, begin
cases s with _ _ _ s' u _ _ s',
{ exact (p.subperm_left.2 $ subperm_of_sublist $ sublist_cons _ _).trans
(subperm_of_sublist s') },
{ exact ⟨u, perm_cons_inv p, s'⟩ }
end, λ ⟨l, p, s⟩, ⟨a::l, skip a p, s.cons2 _ _ _⟩⟩
theorem cons_subperm_of_mem {a : α} {l₁ l₂ : list α} (d₁ : nodup l₁) (h₁ : a ∉ l₁) (h₂ : a ∈ l₂)
(s : l₁ <+~ l₂) : a :: l₁ <+~ l₂ :=
begin
rcases s with ⟨l, p, s⟩,
induction s generalizing l₁,
case list.sublist.slnil { cases h₂ },
case list.sublist.cons : r₁ r₂ b s' ih {
simp at h₂,
cases h₂ with e m,
{ subst b, exact ⟨a::r₁, skip a p, s'.cons2 _ _ _⟩ },
{ rcases ih m d₁ h₁ p with ⟨t, p', s'⟩, exact ⟨t, p', s'.cons _ _ _⟩ } },
case list.sublist.cons2 : r₁ r₂ b s' ih {
have bm : b ∈ l₁ := (perm_subset p $ mem_cons_self _ _),
have am : a ∈ r₂ := h₂.resolve_left (λ e, h₁ $ e.symm ▸ bm),
rcases mem_split bm with ⟨t₁, t₂, rfl⟩,
have st : t₁ ++ t₂ <+ t₁ ++ b :: t₂ := by simp,
rcases ih am (nodup_of_sublist st d₁)
(mt (λ x, subset_of_sublist st x) h₁)
(perm_cons_inv $ p.trans perm_middle) with ⟨t, p', s'⟩,
exact ⟨b::t, (skip b p').trans $ (swap _ _ _).trans (skip a perm_middle.symm), s'.cons2 _ _ _⟩ }
end
theorem subperm_app_left {l₁ l₂ : list α} : ∀ l, l++l₁ <+~ l++l₂ ↔ l₁ <+~ l₂
| [] := iff.rfl
| (a::l) := (subperm_cons a).trans (subperm_app_left l)
theorem subperm_app_right {l₁ l₂ : list α} (l) : l₁++l <+~ l₂++l ↔ l₁ <+~ l₂ :=
(perm_app_comm.subperm_left.trans perm_app_comm.subperm_right).trans (subperm_app_left l)
theorem subperm.exists_of_length_lt {l₁ l₂ : list α} :
l₁ <+~ l₂ → length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂
| ⟨l, p, s⟩ h :=
suffices length l < length l₂ → ∃ (a : α), a :: l <+~ l₂, from
(this $ perm_length p.symm ▸ h).imp (λ a, (skip a p).subperm_right.1),
begin
clear subperm.exists_of_length_lt p h l₁, rename l₂ u,
induction s with l₁ l₂ a s IH _ _ b s IH; intro h,
{ cases h },
{ cases lt_or_eq_of_le (nat.le_of_lt_succ h : length l₁ ≤ length l₂) with h h,
{ exact (IH h).imp (λ a s, s.trans (subperm_of_sublist $ sublist_cons _ _)) },
{ exact ⟨a, eq_of_sublist_of_length_eq s h ▸ subperm.refl _⟩ } },
{ exact (IH $ nat.lt_of_succ_lt_succ h).imp
(λ a s, (swap _ _ _).subperm_right.1 $ (subperm_cons _).2 s) }
end
theorem subperm_of_subset_nodup
{l₁ l₂ : list α} (d : nodup l₁) (H : l₁ ⊆ l₂) : l₁ <+~ l₂ :=
begin
induction d with a l₁' h d IH,
{ exact ⟨nil, perm.nil, nil_sublist _⟩ },
{ cases forall_mem_cons.1 H with H₁ H₂,
simp at h,
exact cons_subperm_of_mem d h H₁ (IH H₂) }
end
theorem perm_ext {l₁ l₂ : list α} (d₁ : nodup l₁) (d₂ : nodup l₂) : l₁ ~ l₂ ↔ ∀a, a ∈ l₁ ↔ a ∈ l₂ :=
⟨λ p a, mem_of_perm p, λ H, subperm.antisymm
(subperm_of_subset_nodup d₁ (λ a, (H a).1))
(subperm_of_subset_nodup d₂ (λ a, (H a).2))⟩
theorem perm_ext_sublist_nodup {l₁ l₂ l : list α} (d : nodup l)
(s₁ : l₁ <+ l) (s₂ : l₂ <+ l) : l₁ ~ l₂ ↔ l₁ = l₂ :=
⟨λ h, begin
induction s₂ with l₂ l a s₂ IH l₂ l a s₂ IH generalizing l₁,
{ exact eq_nil_of_perm_nil h.symm },
{ simp at d,
cases s₁ with _ _ _ s₁ l₁ _ _ s₁,
{ exact IH d.2 s₁ h },
{ apply d.1.elim,
exact subset_of_subperm ⟨_, h.symm, s₂⟩ (mem_cons_self _ _) } },
{ simp at d,
cases s₁ with _ _ _ s₁ l₁ _ _ s₁,
{ apply d.1.elim,
exact subset_of_subperm ⟨_, h, s₁⟩ (mem_cons_self _ _) },
{ rw IH d.2 s₁ (perm_cons_inv h) } }
end, λ h, by rw h⟩
section
variable [decidable_eq α]
-- attribute [congr]
theorem erase_perm_erase (a : α) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
l₁.erase a ~ l₂.erase a :=
if h₁ : a ∈ l₁ then
have h₂ : a ∈ l₂, from perm_subset p h₁,
perm_cons_inv $ trans (perm_erase h₁).symm $ trans p (perm_erase h₂)
else
have h₂ : a ∉ l₂, from mt (mem_of_perm p).2 h₁,
by rw [erase_of_not_mem h₁, erase_of_not_mem h₂]; exact p
theorem erase_subperm (a : α) (l : list α) : l.erase a <+~ l :=
⟨l.erase a, perm.refl _, erase_sublist _ _⟩
theorem erase_subperm_erase {l₁ l₂ : list α} (a : α) (h : l₁ <+~ l₂) : l₁.erase a <+~ l₂.erase a :=
let ⟨l, hp, hs⟩ := h in ⟨l.erase a, erase_perm_erase _ hp, erase_sublist_erase _ hs⟩
theorem perm_diff_left {l₁ l₂ : list α} (t : list α) (h : l₁ ~ l₂) : l₁.diff t ~ l₂.diff t :=
by induction t generalizing l₁ l₂ h; simp [*, erase_perm_erase]
theorem perm_diff_right (l : list α) {t₁ t₂ : list α} (h : t₁ ~ t₂) : l.diff t₁ = l.diff t₂ :=
by induction h generalizing l; simp [*, erase_perm_erase, erase_comm]
<|> exact (ih_1 _).trans (ih_2 _)
theorem subperm_cons_diff {a : α} : ∀ {l₁ l₂ : list α}, (a :: l₁).diff l₂ <+~ a :: l₁.diff l₂
| l₁ [] := ⟨a::l₁, by simp⟩
| l₁ (b::l₂) :=
begin
repeat {rw diff_cons},
by_cases heq : a = b,
{ by_cases b ∈ l₁,
{ rw perm.subperm_right, apply subperm_cons_diff,
simp [perm_diff_left, heq, perm_erase h] },
{ simp [subperm_of_sublist, sublist.cons, h, heq] } },
{ simp [heq, subperm_cons_diff] }
end
theorem subset_cons_diff {a : α} {l₁ l₂ : list α} : (a :: l₁).diff l₂ ⊆ a :: l₁.diff l₂ :=
subset_of_subperm subperm_cons_diff
theorem perm_bag_inter_left {l₁ l₂ : list α} (t : list α) (h : l₁ ~ l₂) : l₁.bag_inter t ~ l₂.bag_inter t :=
begin
induction h with x _ _ _ _ x y _ _ _ _ _ _ ih_1 ih_2 generalizing t, {simp},
{ by_cases x ∈ t; simp [*, skip] },
{ by_cases x = y, {simp [h]},
by_cases xt : x ∈ t; by_cases yt : y ∈ t,
{ simp [xt, yt, mem_erase_of_ne h, mem_erase_of_ne (ne.symm h), erase_comm, swap] },
{ simp [xt, yt, mt mem_of_mem_erase, skip] },
{ simp [xt, yt, mt mem_of_mem_erase, skip] },
{ simp [xt, yt] } },
{ exact (ih_1 _).trans (ih_2 _) }
end
theorem perm_bag_inter_right (l : list α) {t₁ t₂ : list α} (p : t₁ ~ t₂) : l.bag_inter t₁ = l.bag_inter t₂ :=
begin
induction l with a l IH generalizing t₁ t₂ p, {simp},
by_cases a ∈ t₁,
{ simp [h, (mem_of_perm p).1 h, IH (erase_perm_erase _ p)] },
{ simp [h, mt (mem_of_perm p).2 h, IH p] }
end
theorem cons_perm_iff_perm_erase {a : α} {l₁ l₂ : list α} : a::l₁ ~ l₂ ↔ a ∈ l₂ ∧ l₁ ~ l₂.erase a :=
⟨λ h, have a ∈ l₂, from perm_subset h (mem_cons_self a l₁),
⟨this, perm_cons_inv $ h.trans $ perm_erase this⟩,
λ ⟨m, h⟩, trans (skip a h) (perm_erase m).symm⟩
theorem perm_iff_count {l₁ l₂ : list α} : l₁ ~ l₂ ↔ ∀ a, count a l₁ = count a l₂ :=
⟨perm_count, λ H, begin
induction l₁ with a l₁ IH generalizing l₂,
{ cases l₂ with b l₂, {refl},
specialize H b, simp at H, contradiction },
{ have : a ∈ l₂ := count_pos.1 (by rw ← H; simp; apply nat.succ_pos),
refine trans (skip a $ IH $ λ b, _) (perm_erase this).symm,
specialize H b,
rw perm_count (perm_erase this) at H,
by_cases b = a; simp [h] at H ⊢; assumption }
end⟩
instance decidable_perm : ∀ (l₁ l₂ : list α), decidable (l₁ ~ l₂)
| [] [] := is_true $ perm.refl _
| [] (b::l₂) := is_false $ λ h, by have := eq_nil_of_perm_nil h; contradiction
| (a::l₁) l₂ := by haveI := decidable_perm l₁ (l₂.erase a);
exact decidable_of_iff' _ cons_perm_iff_perm_erase
-- @[congr]
theorem perm_erase_dup_of_perm {l₁ l₂ : list α} (p : l₁ ~ l₂) :
erase_dup l₁ ~ erase_dup l₂ :=
perm_iff_count.2 $ λ a,
if h : a ∈ l₁
then by simp [nodup_erase_dup, h, perm_subset p h]
else by simp [h, mt (mem_of_perm p).2 h]
-- attribute [congr]
theorem perm_insert (a : α)
{l₁ l₂ : list α} (p : l₁ ~ l₂) : insert a l₁ ~ insert a l₂ :=
if h : a ∈ l₁
then by simpa [h, perm_subset p h] using p
else by simpa [h, mt (mem_of_perm p).2 h] using skip a p
theorem perm_insert_swap (x y : α) (l : list α) :
insert x (insert y l) ~ insert y (insert x l) :=
begin
by_cases xl : x ∈ l; by_cases yl : y ∈ l; simp [xl, yl],
by_cases xy : x = y, { simp [xy] },
simp [not_mem_cons_of_ne_of_not_mem xy xl,
not_mem_cons_of_ne_of_not_mem (ne.symm xy) yl],
constructor
end
theorem perm_union_left {l₁ l₂ : list α} (t₁ : list α) (h : l₁ ~ l₂) : l₁ ∪ t₁ ~ l₂ ∪ t₁ :=
begin
induction h with a _ _ _ ih _ _ _ _ _ _ _ _ ih_1 ih_2; try {simp},
{ exact perm_insert a ih },
{ apply perm_insert_swap },
{ exact ih_1.trans ih_2 }
end
theorem perm_union_right (l : list α) {t₁ t₂ : list α} (h : t₁ ~ t₂) : l ∪ t₁ ~ l ∪ t₂ :=
by induction l; simp [*, perm_insert]
-- @[congr]
theorem perm_union {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁ ∪ t₁ ~ l₂ ∪ t₂ :=
trans (perm_union_left t₁ p₁) (perm_union_right l₂ p₂)
theorem perm_inter_left {l₁ l₂ : list α} (t₁ : list α) : l₁ ~ l₂ → l₁ ∩ t₁ ~ l₂ ∩ t₁ :=
perm_filter _
theorem perm_inter_right (l : list α) {t₁ t₂ : list α} (p : t₁ ~ t₂) : l ∩ t₁ = l ∩ t₂ :=
by dsimp [(∩), list.inter]; congr; funext a; rw [mem_of_perm p]
-- @[congr]
theorem perm_inter {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁ ∩ t₁ ~ l₂ ∩ t₂ :=
perm_inter_right l₂ p₂ ▸ perm_inter_left t₁ p₁
end
theorem perm_pairwise {R : α → α → Prop} (S : symmetric R) :
∀ {l₁ l₂ : list α} (p : l₁ ~ l₂), pairwise R l₁ ↔ pairwise R l₂ :=
suffices ∀ {l₁ l₂}, l₁ ~ l₂ → pairwise R l₁ → pairwise R l₂, from λ l₁ l₂ p, ⟨this p, this p.symm⟩,
λ l₁ l₂ p d, begin
induction d with a l₁ h d IH generalizing l₂,
{ rw eq_nil_of_perm_nil p, constructor },
{ have : a ∈ l₂ := perm_subset p (mem_cons_self _ _),
rcases mem_split this with ⟨s₂, t₂, rfl⟩,
have p' := perm_cons_inv (p.trans perm_middle),
refine (pairwise_middle S).2 (pairwise_cons.2 ⟨λ b m, _, IH _ p'⟩),
exact h _ (perm_subset p'.symm m) }
end
theorem perm_nodup {l₁ l₂ : list α} : l₁ ~ l₂ → (nodup l₁ ↔ nodup l₂) :=
perm_pairwise $ @ne.symm α
theorem perm_bind_left {l₁ l₂ : list α} (f : α → list β) (p : l₁ ~ l₂) :
l₁.bind f ~ l₂.bind f :=
begin
induction p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ p₂ IH₁ IH₂, {simp},
{ simp, exact perm_app_right _ IH },
{ simp, rw [← append_assoc, ← append_assoc], exact perm_app_left _ perm_app_comm },
{ exact trans IH₁ IH₂ }
end
theorem perm_bind_right (l : list α) {f g : α → list β} (h : ∀ a, f a ~ g a) :
l.bind f ~ l.bind g :=
by induction l with a l IH; simp; exact perm_app (h a) IH
theorem perm_product_left {l₁ l₂ : list α} (t₁ : list β) (p : l₁ ~ l₂) : product l₁ t₁ ~ product l₂ t₁ :=
perm_bind_left _ p
theorem perm_product_right (l : list α) {t₁ t₂ : list β} (p : t₁ ~ t₂) : product l t₁ ~ product l t₂ :=
perm_bind_right _ $ λ a, perm_map _ p
@[congr] theorem perm_product {l₁ l₂ : list α} {t₁ t₂ : list β}
(p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : product l₁ t₁ ~ product l₂ t₂ :=
trans (perm_product_left t₁ p₁) (perm_product_right l₂ p₂)
theorem sublists_cons_perm_append (a : α) (l : list α) :
sublists (a :: l) ~ sublists l ++ map (cons a) (sublists l) :=
begin
simp [sublists, sublists_aux_cons_cons],
refine skip _ ((skip _ _).trans perm_middle.symm),
induction sublists_aux l cons with b l IH; simp,
exact skip b ((skip _ IH).trans perm_middle.symm)
end
theorem sublists_perm_sublists' : ∀ l : list α, sublists l ~ sublists' l
| [] := perm.refl _
| (a::l) := let IH := sublists_perm_sublists' l in
by rw sublists'_cons; exact
(sublists_cons_perm_append _ _).trans (perm_app IH (perm_map _ IH))
theorem revzip_sublists (l : list α) :
∀ l₁ l₂, (l₁, l₂) ∈ revzip l.sublists → l₁ ++ l₂ ~ l :=
begin
rw revzip,
apply list.reverse_rec_on l,
{ intros l₁ l₂ h, simp at h, simp [h] },
{ intros l a IH l₁ l₂ h,
rw [sublists_concat, reverse_append, zip_append, ← map_reverse,
zip_map_right, zip_map_left] at h; [simp at h, simp],
rcases h with ⟨l₁, l₂', h, rfl, rfl⟩ | ⟨l₁', l₂, h, rfl, rfl⟩,
{ rw ← append_assoc,
exact perm_app_left _ (IH _ _ h) },
{ rw append_assoc,
apply (perm_app_right _ perm_app_comm).trans,
rw ← append_assoc,
exact perm_app_left _ (IH _ _ h) } }
end
theorem revzip_sublists' (l : list α) :
∀ l₁ l₂, (l₁, l₂) ∈ revzip l.sublists' → l₁ ++ l₂ ~ l :=
begin
rw revzip,
induction l with a l IH; intros l₁ l₂ h,
{ simp at h, simp [h] },
{ rw [sublists'_cons, reverse_append, zip_append, ← map_reverse,
zip_map_right, zip_map_left] at h; [simp at h, simp],
rcases h with ⟨l₁, l₂', h, rfl, rfl⟩ | ⟨l₁', l₂, h, rfl, rfl⟩,
{ exact perm_middle.trans (skip _ (IH _ _ h)) },
{ exact skip _ (IH _ _ h) } }
end
/- enumerating permutations -/
section permutations
theorem permutations_aux2_fst (t : α) (ts : list α) (r : list β) : ∀ (ys : list α) (f : list α → β),
(permutations_aux2 t ts r ys f).1 = ys ++ ts
| [] f := rfl
| (y::ys) f := match _, permutations_aux2_fst ys _ : ∀ o : list α × list β, o.1 = ys ++ ts →
(permutations_aux2._match_1 t y f o).1 = y :: ys ++ ts with
| ⟨_, zs⟩, rfl := rfl
end
@[simp] theorem permutations_aux2_snd_nil (t : α) (ts : list α) (r : list β) (f : list α → β) :
(permutations_aux2 t ts r [] f).2 = r := rfl
@[simp] theorem permutations_aux2_snd_cons (t : α) (ts : list α) (r : list β) (y : α) (ys : list α) (f : list α → β) :
(permutations_aux2 t ts r (y::ys) f).2 = f (t :: y :: ys ++ ts) ::
(permutations_aux2 t ts r ys (λx : list α, f (y::x))).2 :=
match _, permutations_aux2_fst t ts r _ _ : ∀ o : list α × list β, o.1 = ys ++ ts →
(permutations_aux2._match_1 t y f o).2 = f (t :: y :: ys ++ ts) :: o.2 with
| ⟨_, zs⟩, rfl := rfl
end
theorem permutations_aux2_append (t : α) (ts : list α) (r : list β) (ys : list α) (f : list α → β) :
(permutations_aux2 t ts nil ys f).2 ++ r = (permutations_aux2 t ts r ys f).2 :=
by induction ys generalizing f; simp *
theorem mem_permutations_aux2 {t : α} {ts : list α} {ys : list α} {l l' : list α} :
l' ∈ (permutations_aux2 t ts [] ys (append l)).2 ↔
∃ l₁ l₂, l₂ ≠ [] ∧ ys = l₁ ++ l₂ ∧ l' = l ++ l₁ ++ t :: l₂ ++ ts :=
begin
induction ys with y ys ih generalizing l,
{ simp {contextual := tt} },
{ rw [permutations_aux2_snd_cons, show (λ (x : list α), l ++ y :: x) = append (l ++ [y]),
by funext; simp, mem_cons_iff, ih], split; intro h,
{ rcases h with e | ⟨l₁, l₂, l0, ye, _⟩,
{ subst l', exact ⟨[], y::ys, by simp⟩ },
{ substs l' ys, exact ⟨y::l₁, l₂, l0, by simp⟩ } },
{ rcases h with ⟨_ | ⟨y', l₁⟩, l₂, l0, ye, rfl⟩,
{ simp [ye] },
{ simp at ye, rcases ye with ⟨rfl, rfl⟩,
exact or.inr ⟨l₁, l₂, l0, by simp⟩ } } }
end
theorem mem_permutations_aux2' {t : α} {ts : list α} {ys : list α} {l : list α} :
l ∈ (permutations_aux2 t ts [] ys id).2 ↔
∃ l₁ l₂, l₂ ≠ [] ∧ ys = l₁ ++ l₂ ∧ l = l₁ ++ t :: l₂ ++ ts :=
by rw [show @id (list α) = append nil, by funext; refl]; apply mem_permutations_aux2
theorem length_permutations_aux2 (t : α) (ts : list α) (ys : list α) (f : list α → β) :
length (permutations_aux2 t ts [] ys f).2 = length ys :=
by induction ys generalizing f; simp *
theorem foldr_permutations_aux2 (t : α) (ts : list α) (r L : list (list α)) :
foldr (λy r, (permutations_aux2 t ts r y id).2) r L = L.bind (λ y, (permutations_aux2 t ts [] y id).2) ++ r :=
by induction L with l L ih; [refl, {simp [ih], rw ← permutations_aux2_append}]
theorem mem_foldr_permutations_aux2 {t : α} {ts : list α} {r L : list (list α)} {l' : list α} :
l' ∈ foldr (λy r, (permutations_aux2 t ts r y id).2) r L ↔ l' ∈ r ∨
∃ l₁ l₂, l₁ ++ l₂ ∈ L ∧ l₂ ≠ [] ∧ l' = l₁ ++ t :: l₂ ++ ts :=
have (∃ (a : list α), a ∈ L ∧
∃ (l₁ l₂ : list α), ¬l₂ = nil ∧ a = l₁ ++ l₂ ∧ l' = l₁ ++ t :: (l₂ ++ ts)) ↔
∃ (l₁ l₂ : list α), ¬l₂ = nil ∧ l₁ ++ l₂ ∈ L ∧ l' = l₁ ++ t :: (l₂ ++ ts),
from ⟨λ ⟨a, aL, l₁, l₂, l0, e, h⟩, ⟨l₁, l₂, l0, e ▸ aL, h⟩,
λ ⟨l₁, l₂, l0, aL, h⟩, ⟨_, aL, l₁, l₂, l0, rfl, h⟩⟩,
by rw foldr_permutations_aux2; simp [mem_permutations_aux2', this,
or.comm, or.left_comm, or.assoc, and.comm, and.left_comm, and.assoc]
theorem length_foldr_permutations_aux2 (t : α) (ts : list α) (r L : list (list α)) :
length (foldr (λy r, (permutations_aux2 t ts r y id).2) r L) = sum (map length L) + length r :=
by simp [foldr_permutations_aux2, (∘), length_permutations_aux2]
theorem length_foldr_permutations_aux2' (t : α) (ts : list α) (r L : list (list α))
(n) (H : ∀ l ∈ L, length l = n) :
length (foldr (λy r, (permutations_aux2 t ts r y id).2) r L) = n * length L + length r :=
begin
rw [length_foldr_permutations_aux2, (_ : sum (map length L) = n * length L)],
induction L with l L ih, {simp},
simp [ih (λ l m, H l (mem_cons_of_mem _ m)), H l (mem_cons_self _ _), mul_add]
end
theorem perm_of_mem_permutations_aux :
∀ {ts is l : list α}, l ∈ permutations_aux ts is → l ~ ts ++ is :=
begin
refine permutations_aux.rec (by simp) _,
introv IH1 IH2 m,
rw [permutations_aux_cons, permutations, mem_foldr_permutations_aux2] at m,
rcases m with m | ⟨l₁, l₂, m, _, e⟩,
{ exact (IH1 m).trans perm_middle },
{ subst e,
have p : l₁ ++ l₂ ~ is,
{ simp [permutations] at m,
cases m with e m, {simp [e]},
exact is.append_nil ▸ IH2 m },
exact (perm_app_left _ (perm_middle.trans (skip _ p))).trans (skip _ perm_app_comm) }
end
theorem perm_of_mem_permutations {l₁ l₂ : list α}
(h : l₁ ∈ permutations l₂) : l₁ ~ l₂ :=
(eq_or_mem_of_mem_cons h).elim (λ e, e ▸ perm.refl _)
(λ m, append_nil l₂ ▸ perm_of_mem_permutations_aux m)
theorem length_permutations_aux :
∀ ts is : list α, length (permutations_aux ts is) + is.length.fact = (length ts + length is).fact :=
begin
refine permutations_aux.rec (by simp) _,
intros t ts is IH1 IH2,
have IH2 : length (permutations_aux is nil) + 1 = is.length.fact,
{ simpa using IH2 },
simp [-add_comm, nat.fact, nat.add_succ, mul_comm] at IH1,
rw [permutations_aux_cons,
length_foldr_permutations_aux2' _ _ _ _ _
(λ l m, perm_length (perm_of_mem_permutations m)),
permutations, length, length, IH2,
nat.succ_add, nat.fact_succ, mul_comm (nat.succ _), ← IH1,
add_comm (_*_), add_assoc, nat.mul_succ, mul_comm]
end
theorem length_permutations (l : list α) : length (permutations l) = (length l).fact :=
length_permutations_aux l []
theorem mem_permutations_of_perm_lemma {is l : list α}
(H : l ~ [] ++ is → (∃ ts' ~ [], l = ts' ++ is) ∨ l ∈ permutations_aux is [])
: l ~ is → l ∈ permutations is :=
by simpa [permutations, perm_nil] using H
theorem mem_permutations_aux_of_perm :
∀ {ts is l : list α}, l ~ is ++ ts → (∃ is' ~ is, l = is' ++ ts) ∨ l ∈ permutations_aux ts is :=
begin
refine permutations_aux.rec (by simp) _,
intros t ts is IH1 IH2 l p,
rw [permutations_aux_cons, mem_foldr_permutations_aux2],
rcases IH1 (p.trans perm_middle) with ⟨is', p', e⟩ | m,
{ clear p, subst e,
rcases mem_split (perm_subset p'.symm (mem_cons_self _ _)) with ⟨l₁, l₂, e⟩,
subst is',
have p := perm_cons_inv (perm_middle.symm.trans p'),
cases l₂ with a l₂',
{ exact or.inl ⟨l₁, by simpa using p⟩ },
{ exact or.inr (or.inr ⟨l₁, a::l₂',
mem_permutations_of_perm_lemma IH2 p, by simp⟩) } },
{ exact or.inr (or.inl m) }
end
@[simp] theorem mem_permutations (s t : list α) : s ∈ permutations t ↔ s ~ t :=
⟨perm_of_mem_permutations, mem_permutations_of_perm_lemma mem_permutations_aux_of_perm⟩
end permutations
end list
|
34f853e542af15fd2db2ba973ae826ea08b16905
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/library/theories/finite_group_theory/action.lean
|
fe044a84a639dc701a37bb7992a0a5182ceb72ee
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 22,566
|
lean
|
/-
Copyright (c) 2015 Haitao Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Haitao Zhang
-/
import algebra.group data .hom .perm .finsubg
namespace group_theory
open finset function
local attribute perm.f [coercion]
private lemma and_left_true {a b : Prop} (Pa : a) : a ∧ b ↔ b :=
by rewrite [iff_true_intro Pa, true_and]
section def
variables {G S : Type} [group G] [fintype S]
definition is_fixed_point (hom : G → perm S) (H : finset G) (a : S) : Prop :=
∀ h, h ∈ H → hom h a = a
variables [decidable_eq S]
definition orbit (hom : G → perm S) (H : finset G) (a : S) : finset S :=
image (move_by a) (image hom H)
definition fixed_points [reducible] (hom : G → perm S) (H : finset G) : finset S :=
{a ∈ univ | orbit hom H a = '{a}}
variable [decidable_eq G] -- required by {x ∈ H |p x} filtering
definition moverset (hom : G → perm S) (H : finset G) (a b : S) : finset G :=
{f ∈ H | hom f a = b}
definition stab (hom : G → perm S) (H : finset G) (a : S) : finset G :=
{f ∈ H | hom f a = a}
end def
section orbit_stabilizer
variables {G S : Type} [group G] [decidable_eq G] [fintype S] [decidable_eq S]
section
variables {hom : G → perm S} {H : finset G} {a : S} [Hom : is_hom_class hom]
include Hom
lemma exists_of_orbit {b : S} : b ∈ orbit hom H a → ∃ h, h ∈ H ∧ hom h a = b :=
assume Pb,
obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Pb,
obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁,
have Phab : hom h a = b, from calc
hom h a = p a : Ph₂
... = b : Pp₂,
exists.intro h (and.intro Ph₁ Phab)
lemma orbit_of_exists {b : S} : (∃ h, h ∈ H ∧ hom h a = b) → b ∈ orbit hom H a :=
assume Pex, obtain h PinH Phab, from Pex,
mem_image (mem_image_of_mem hom PinH) Phab
lemma is_fixed_point_of_mem_fixed_points :
a ∈ fixed_points hom H → is_fixed_point hom H a :=
assume Pain, take h, assume Phin,
eq_of_mem_singleton
(of_mem_sep Pain ▸ orbit_of_exists (exists.intro h (and.intro Phin rfl)))
lemma mem_fixed_points_of_exists_of_is_fixed_point :
(∃ h, h ∈ H) → is_fixed_point hom H a → a ∈ fixed_points hom H :=
assume Pex Pfp, mem_sep_of_mem !mem_univ
(ext take x, iff.intro
(assume Porb, obtain h Phin Pha, from exists_of_orbit Porb,
by rewrite [mem_singleton_iff, -Pha, Pfp h Phin])
(obtain h Phin, from Pex,
by rewrite mem_singleton_iff;
intro Peq; rewrite Peq;
apply orbit_of_exists;
existsi h; apply and.intro Phin (Pfp h Phin)))
lemma is_fixed_point_iff_mem_fixed_points_of_exists :
(∃ h, h ∈ H) → (a ∈ fixed_points hom H ↔ is_fixed_point hom H a) :=
assume Pex, iff.intro is_fixed_point_of_mem_fixed_points (mem_fixed_points_of_exists_of_is_fixed_point Pex)
lemma is_fixed_point_iff_mem_fixed_points [finsubgH : is_finsubg H] :
a ∈ fixed_points hom H ↔ is_fixed_point hom H a :=
is_fixed_point_iff_mem_fixed_points_of_exists (exists.intro 1 !finsubg_has_one)
lemma is_fixed_point_of_one : is_fixed_point hom ('{1}) a :=
take h, assume Ph, by rewrite [eq_of_mem_singleton Ph, hom_map_one]
lemma fixed_points_of_one : fixed_points hom ('{1}) = univ :=
ext take s, iff.intro (assume Pl, mem_univ s)
(assume Pr, mem_fixed_points_of_exists_of_is_fixed_point
(exists.intro 1 !mem_singleton) is_fixed_point_of_one)
open fintype
lemma card_fixed_points_of_one : card (fixed_points hom ('{1})) = card S :=
by rewrite [fixed_points_of_one]
end
-- these are already specified by stab hom H a
variables {hom : G → perm S} {H : finset G} {a : S}
variable [Hom : is_hom_class hom]
include Hom
lemma perm_f_mul (f g : G): perm.f ((hom f) * (hom g)) a = ((hom f) ∘ (hom g)) a :=
rfl
lemma stab_lmul {f g : G} : g ∈ stab hom H a → hom (f*g) a = hom f a :=
assume Pgstab,
have hom g a = a, from of_mem_sep Pgstab, calc
hom (f*g) a = perm.f ((hom f) * (hom g)) a : is_hom hom
... = ((hom f) ∘ (hom g)) a : by rewrite perm_f_mul
... = (hom f) a : by unfold comp; rewrite this
lemma stab_subset : stab hom H a ⊆ H :=
begin
apply subset_of_forall, intro f Pfstab, apply mem_of_mem_sep Pfstab
end
lemma reverse_move {h g : G} : g ∈ moverset hom H a (hom h a) → hom (h⁻¹*g) a = a :=
assume Pg,
have hom g a = hom h a, from of_mem_sep Pg, calc
hom (h⁻¹*g) a = perm.f ((hom h⁻¹) * (hom g)) a : by rewrite (is_hom hom)
... = ((hom h⁻¹) ∘ hom g) a : by rewrite perm_f_mul
... = perm.f ((hom h)⁻¹ * hom h) a : by unfold comp; rewrite [this, perm_f_mul, hom_map_inv hom h]
... = perm.f (1 : perm S) a : by rewrite (mul.left_inv (hom h))
... = a : by esimp
lemma moverset_inj_on_orbit : set.inj_on (moverset hom H a) (ts (orbit hom H a)) :=
take b1 b2,
assume Pb1, obtain h1 Ph1₁ Ph1₂, from exists_of_orbit Pb1,
have Ph1b1 : h1 ∈ moverset hom H a b1,
from mem_sep_of_mem Ph1₁ Ph1₂,
assume Psetb2 Pmeq, begin
subst b1,
rewrite Pmeq at Ph1b1,
apply of_mem_sep Ph1b1
end
variable [finsubgH : is_finsubg H]
include finsubgH
lemma subg_stab_of_move {h g : G} :
h ∈ H → g ∈ moverset hom H a (hom h a) → h⁻¹*g ∈ stab hom H a :=
assume Ph Pg,
have Phinvg : h⁻¹*g ∈ H, from begin
apply finsubg_mul_closed H,
apply finsubg_has_inv H, assumption,
apply mem_of_mem_sep Pg
end,
mem_sep_of_mem Phinvg (reverse_move Pg)
lemma subg_stab_closed : finset_mul_closed_on (stab hom H a) :=
take f g, assume Pfstab, have Pf : hom f a = a, from of_mem_sep Pfstab,
assume Pgstab,
have Pfg : hom (f*g) a = a, from calc
hom (f*g) a = (hom f) a : stab_lmul Pgstab
... = a : Pf,
have PfginH : (f*g) ∈ H,
from finsubg_mul_closed H (mem_of_mem_sep Pfstab) (mem_of_mem_sep Pgstab),
mem_sep_of_mem PfginH Pfg
lemma subg_stab_has_one : 1 ∈ stab hom H a :=
have P : hom 1 a = a, from calc
hom 1 a = perm.f (1 : perm S) a : {hom_map_one hom}
... = a : rfl,
have PoneinH : 1 ∈ H, from finsubg_has_one H,
mem_sep_of_mem PoneinH P
lemma subg_stab_has_inv : finset_has_inv (stab hom H a) :=
take f, assume Pfstab, have Pf : hom f a = a, from of_mem_sep Pfstab,
have Pfinv : hom f⁻¹ a = a, from calc
hom f⁻¹ a = hom f⁻¹ ((hom f) a) : by rewrite Pf
... = perm.f ((hom f⁻¹) * (hom f)) a : by rewrite perm_f_mul
... = hom (f⁻¹ * f) a : by rewrite (is_hom hom)
... = hom 1 a : by rewrite mul.left_inv
... = perm.f (1 : perm S) a : by rewrite (hom_map_one hom),
have PfinvinH : f⁻¹ ∈ H, from finsubg_has_inv H (mem_of_mem_sep Pfstab),
mem_sep_of_mem PfinvinH Pfinv
definition subg_stab_is_finsubg [instance] :
is_finsubg (stab hom H a) :=
is_finsubg.mk subg_stab_has_one subg_stab_closed subg_stab_has_inv
lemma subg_lcoset_eq_moverset {h : G} :
h ∈ H → fin_lcoset (stab hom H a) h = moverset hom H a (hom h a) :=
assume Ph, ext (take g, iff.intro
(assume Pl, obtain f (Pf₁ : f ∈ stab hom H a) (Pf₂ : h*f = g), from exists_of_mem_image Pl,
have Pfstab : hom f a = a, from of_mem_sep Pf₁,
have PginH : g ∈ H, begin
subst Pf₂,
apply finsubg_mul_closed H,
assumption,
apply mem_of_mem_sep Pf₁
end,
have Pga : hom g a = hom h a, from calc
hom g a = hom (h*f) a : by subst g
... = hom h a : stab_lmul Pf₁,
mem_sep_of_mem PginH Pga)
(assume Pr, begin
rewrite [↑fin_lcoset, mem_image_iff],
existsi h⁻¹*g,
split,
exact subg_stab_of_move Ph Pr,
apply mul_inv_cancel_left
end))
lemma subg_moverset_of_orbit_is_lcoset_of_stab (b : S) :
b ∈ orbit hom H a → ∃ h, h ∈ H ∧ fin_lcoset (stab hom H a) h = moverset hom H a b :=
assume Porb,
obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Porb,
obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁,
have Phab : hom h a = b, from by subst p; assumption,
exists.intro h (and.intro Ph₁ (Phab ▸ subg_lcoset_eq_moverset Ph₁))
lemma subg_lcoset_of_stab_is_moverset_of_orbit (h : G) :
h ∈ H → ∃ b, b ∈ orbit hom H a ∧ moverset hom H a b = fin_lcoset (stab hom H a) h :=
assume Ph,
have Pha : (hom h a) ∈ orbit hom H a, by
apply mem_image_of_mem; apply mem_image_of_mem; exact Ph,
exists.intro (hom h a) (and.intro Pha (eq.symm (subg_lcoset_eq_moverset Ph)))
lemma subg_moversets_of_orbit_eq_stab_lcosets :
image (moverset hom H a) (orbit hom H a) = fin_lcosets (stab hom H a) H :=
ext (take s, iff.intro
(assume Pl, obtain b Pb₁ Pb₂, from exists_of_mem_image Pl,
obtain h Ph, from subg_moverset_of_orbit_is_lcoset_of_stab b Pb₁, begin
rewrite [↑fin_lcosets, mem_image_eq],
existsi h, subst Pb₂, assumption
end)
(assume Pr, obtain h Ph₁ Ph₂, from exists_of_mem_image Pr,
obtain b Pb, from @subg_lcoset_of_stab_is_moverset_of_orbit G S _ _ _ _ hom H a Hom _ h Ph₁, begin
rewrite [mem_image_eq],
existsi b, subst Ph₂, assumption
end))
open nat
theorem orbit_stabilizer_theorem : card H = card (orbit hom H a) * card (stab hom H a) :=
calc card H = card (fin_lcosets (stab hom H a) H) * card (stab hom H a) : lagrange_theorem stab_subset
... = card (image (moverset hom H a) (orbit hom H a)) * card (stab hom H a) : subg_moversets_of_orbit_eq_stab_lcosets
... = card (orbit hom H a) * card (stab hom H a) : card_image_eq_of_inj_on moverset_inj_on_orbit
end orbit_stabilizer
section orbit_partition
variables {G S : Type} [group G] [decidable_eq G] [fintype S] [decidable_eq S]
variables {hom : G → perm S} [Hom : is_hom_class hom] {H : finset G} [subgH : is_finsubg H]
include Hom subgH
lemma in_orbit_refl {a : S} : a ∈ orbit hom H a :=
mem_image (mem_image (finsubg_has_one H) (hom_map_one hom)) rfl
lemma in_orbit_trans {a b c : S} :
a ∈ orbit hom H b → b ∈ orbit hom H c → a ∈ orbit hom H c :=
assume Painb Pbinc,
obtain h PhinH Phba, from exists_of_orbit Painb,
obtain g PginH Pgcb, from exists_of_orbit Pbinc,
orbit_of_exists (exists.intro (h*g) (and.intro
(finsubg_mul_closed H PhinH PginH)
(calc hom (h*g) c = perm.f ((hom h) * (hom g)) c : is_hom hom
... = ((hom h) ∘ (hom g)) c : by rewrite perm_f_mul
... = (hom h) b : Pgcb
... = a : Phba)))
lemma in_orbit_symm {a b : S} : a ∈ orbit hom H b → b ∈ orbit hom H a :=
assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb,
have perm.f (hom h)⁻¹ a = b, by rewrite [-Phba, -perm_f_mul, mul.left_inv],
have (hom h⁻¹) a = b, by rewrite [hom_map_inv, this],
orbit_of_exists (exists.intro h⁻¹ (and.intro (finsubg_has_inv H PhinH) this))
lemma orbit_is_partition : is_partition (orbit hom H) :=
take a b, propext (iff.intro
(assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb,
ext take c, iff.intro
(assume Pcina, in_orbit_trans Pcina Painb)
(assume Pcinb, obtain g PginH Pgbc, from exists_of_orbit Pcinb,
in_orbit_trans Pcinb (in_orbit_symm Painb)))
(assume Peq, Peq ▸ in_orbit_refl))
variables (hom) (H)
open nat finset.partition fintype
definition orbit_partition : @partition S _ :=
mk univ (orbit hom H) orbit_is_partition
(restriction_imp_union (orbit hom H) orbit_is_partition (λ a Pa, !subset_univ))
definition orbits : finset (finset S) := equiv_classes (orbit_partition hom H)
definition fixed_point_orbits : finset (finset S) :=
{cls ∈ orbits hom H | card cls = 1}
variables {hom} {H}
lemma exists_iff_mem_orbits (orb : finset S) :
orb ∈ orbits hom H ↔ ∃ a : S, orbit hom H a = orb :=
begin
esimp [orbits, equiv_classes, orbit_partition],
rewrite [mem_image_iff],
apply iff.intro,
intro Pl,
cases Pl with a Pa,
rewrite (and_left_true !mem_univ) at Pa,
existsi a, exact Pa,
intro Pr,
cases Pr with a Pa,
rewrite -true_and at Pa, rewrite -(iff_true_intro (mem_univ a)) at Pa,
existsi a, exact Pa
end
lemma exists_of_mem_orbits {orb : finset S} :
orb ∈ orbits hom H → ∃ a : S, orbit hom H a = orb :=
iff.elim_left (exists_iff_mem_orbits orb)
lemma fixed_point_orbits_eq : fixed_point_orbits hom H = image (orbit hom H) (fixed_points hom H) :=
ext take s, iff.intro
(assume Pin,
obtain Psin Ps, from iff.elim_left !mem_sep_iff Pin,
obtain a Pa, from exists_of_mem_orbits Psin,
mem_image
(mem_sep_of_mem !mem_univ (eq.symm
(eq_of_card_eq_of_subset (by rewrite [Pa, Ps])
(subset_of_forall
take x, assume Pxin, eq_of_mem_singleton Pxin ▸ in_orbit_refl))))
Pa)
(assume Pin,
obtain a Pain Porba, from exists_of_mem_image Pin,
mem_sep_of_mem
(begin esimp [orbits, equiv_classes, orbit_partition], rewrite [mem_image_iff],
existsi a, exact and.intro !mem_univ Porba end)
(begin substvars, rewrite [of_mem_sep Pain] end))
lemma orbit_inj_on_fixed_points : set.inj_on (orbit hom H) (ts (fixed_points hom H)) :=
take a₁ a₂, begin
rewrite [-*mem_eq_mem_to_set, ↑fixed_points, *mem_sep_iff],
intro Pa₁ Pa₂,
rewrite [and.right Pa₁, and.right Pa₂],
exact eq_of_singleton_eq
end
lemma card_fixed_point_orbits_eq : card (fixed_point_orbits hom H) = card (fixed_points hom H) :=
by rewrite fixed_point_orbits_eq; apply card_image_eq_of_inj_on orbit_inj_on_fixed_points
lemma orbit_class_equation : card S = Sum (orbits hom H) card :=
class_equation (orbit_partition hom H)
lemma card_fixed_point_orbits : Sum (fixed_point_orbits hom H) card = card (fixed_point_orbits hom H) :=
calc Sum _ _ = Sum (fixed_point_orbits hom H) (λ x, 1) : Sum_ext (take c Pin, of_mem_sep Pin)
... = card (fixed_point_orbits hom H) * 1 : Sum_const_eq_card_mul
... = card (fixed_point_orbits hom H) : mul_one (card (fixed_point_orbits hom H))
local attribute nat.comm_semiring [instance]
lemma orbit_class_equation' : card S = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card :=
calc card S = Sum (orbits hom H) finset.card : orbit_class_equation
... = Sum (fixed_point_orbits hom H) finset.card + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : Sum_binary_union
... = card (fixed_point_orbits hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite -card_fixed_point_orbits
... = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite card_fixed_point_orbits_eq
end orbit_partition
section cayley
variables {G : Type} [group G] [fintype G]
definition action_by_lmul : G → perm G :=
take g, perm.mk (lmul_by g) (lmul_inj g)
variable [decidable_eq G]
lemma action_by_lmul_hom : homomorphic (@action_by_lmul G _ _) :=
take g₁ (g₂ : G), eq.symm (calc
action_by_lmul g₁ * action_by_lmul g₂
= perm.mk ((lmul_by g₁)∘(lmul_by g₂)) _ : rfl
... = perm.mk (lmul_by (g₁*g₂)) _ : by congruence; apply coset.lmul_compose)
lemma action_by_lmul_inj : injective (@action_by_lmul G _ _) :=
take g₁ g₂, assume Peq, perm.no_confusion Peq
(λ Pfeq Pqeq,
have Pappeq : g₁*1 = g₂*1, from congr_fun Pfeq _,
calc g₁ = g₁ * 1 : mul_one
... = g₂ * 1 : Pappeq
... = g₂ : mul_one)
definition action_by_lmul_is_iso [instance] : is_iso_class (@action_by_lmul G _ _) :=
is_iso_class.mk action_by_lmul_hom action_by_lmul_inj
end cayley
section lcosets
open fintype subtype
variables {G : Type} [group G] [fintype G] [decidable_eq G]
variables H : finset G
definition action_on_lcoset : G → perm (lcoset_type univ H) :=
take g, perm.mk (lcoset_lmul (mem_univ g)) lcoset_lmul_inj
private definition lcoset_of (g : G) : lcoset_type univ H :=
tag (fin_lcoset H g) (exists.intro g (and.intro !mem_univ rfl))
variable {H}
lemma action_on_lcoset_eq (g : G) (J : lcoset_type univ H)
: elt_of (action_on_lcoset H g J) = fin_lcoset (elt_of J) g := rfl
lemma action_on_lcoset_hom : homomorphic (action_on_lcoset H) :=
take g₁ g₂, eq_of_feq (funext take S, subtype.eq
(by rewrite [↑action_on_lcoset, ↑lcoset_lmul, -fin_lcoset_compose]))
definition action_on_lcoset_is_hom [instance] : is_hom_class (action_on_lcoset H) :=
is_hom_class.mk action_on_lcoset_hom
variable [finsubgH : is_finsubg H]
include finsubgH
lemma aol_fixed_point_subset_normalizer (J : lcoset_type univ H) :
is_fixed_point (action_on_lcoset H) H J → elt_of J ⊆ normalizer H :=
obtain j Pjin Pj, from exists_of_lcoset_type J,
assume Pfp,
have PH : ∀ {h}, h ∈ H → fin_lcoset (fin_lcoset H j) h = fin_lcoset H j,
from take h, assume Ph, by rewrite [Pj, -action_on_lcoset_eq, Pfp h Ph],
subset_of_forall take g, begin
rewrite [-Pj, fin_lcoset_same, -inv_inv at {2}],
intro Pg,
rewrite -Pg at PH,
apply finsubg_has_inv,
apply mem_sep_of_mem !mem_univ,
intro h Ph,
have Phg : fin_lcoset (fin_lcoset H g) h = fin_lcoset H g, from PH Ph,
revert Phg,
rewrite [↑conj_by, inv_inv, mul.assoc, fin_lcoset_compose, -fin_lcoset_same, ↑fin_lcoset, mem_image_iff, ↑lmul_by],
intro Pex, cases Pex with k Pand, cases Pand with Pkin Pk,
rewrite [-Pk, inv_mul_cancel_left], exact Pkin
end
lemma aol_fixed_point_of_mem_normalizer {g : G} :
g ∈ normalizer H → is_fixed_point (action_on_lcoset H) H (lcoset_of H g) :=
assume Pgin, take h, assume Phin, subtype.eq
(by rewrite [action_on_lcoset_eq, ↑lcoset_of, lrcoset_same_of_mem_normalizer Pgin, fin_lrcoset_comm, finsubg_lcoset_id Phin])
lemma aol_fixed_points_eq_normalizer :
Union (fixed_points (action_on_lcoset H) H) elt_of = normalizer H :=
ext take g, begin
rewrite [mem_Union_iff],
apply iff.intro,
intro Pl,
cases Pl with L PL, revert PL,
rewrite [is_fixed_point_iff_mem_fixed_points],
intro Pg,
apply mem_of_subset_of_mem,
apply aol_fixed_point_subset_normalizer L, exact and.left Pg,
exact and.right Pg,
intro Pr,
existsi (lcoset_of H g), apply and.intro,
rewrite [is_fixed_point_iff_mem_fixed_points],
exact aol_fixed_point_of_mem_normalizer Pr,
exact fin_mem_lcoset g
end
open nat
lemma card_aol_fixed_points_eq_card_cosets :
card (fixed_points (action_on_lcoset H) H) = card (lcoset_type (normalizer H) H) :=
have Peq : card (fixed_points (action_on_lcoset H) H) * card H = card (lcoset_type (normalizer H) H) * card H, from calc
card _ * card H = card (Union (fixed_points (action_on_lcoset H) H) elt_of) : card_Union_lcosets
... = card (normalizer H) : aol_fixed_points_eq_normalizer
... = card (lcoset_type (normalizer H) H) * card H : lagrange_theorem' subset_normalizer,
eq_of_mul_eq_mul_right (card_pos_of_mem !finsubg_has_one) Peq
end lcosets
section perm_fin
open fin nat eq.ops
variable {n : nat}
definition lift_perm (p : perm (fin n)) : perm (fin (succ n)) :=
perm.mk (lift_fun p) (lift_fun_of_inj (perm.inj p))
definition lower_perm (p : perm (fin (succ n))) (P : p maxi = maxi) : perm (fin n) :=
perm.mk (lower_inj p (perm.inj p) P)
(take i j, begin
rewrite [-eq_iff_veq, *lower_inj_apply, eq_iff_veq],
apply injective_comp (perm.inj p) lift_succ_inj
end)
lemma lift_lower_eq : ∀ {p : perm (fin (succ n))} (P : p maxi = maxi),
lift_perm (lower_perm p P) = p
| (perm.mk pf Pinj) := assume Pmax, begin
rewrite [↑lift_perm], congruence,
apply funext, intro i,
have Pfmax : pf maxi = maxi, by apply Pmax,
have Pd : decidable (i = maxi), from _,
cases Pd with Pe Pne,
rewrite [Pe, Pfmax], apply lift_fun_max,
rewrite [lift_fun_of_ne_max Pne, ↑lower_perm, ↑lift_succ],
rewrite [-eq_iff_veq, -val_lift, lower_inj_apply, eq_iff_veq],
congruence, rewrite [-eq_iff_veq]
end
lemma lift_perm_inj : injective (@lift_perm n) :=
take p1 p2, assume Peq, eq_of_feq (lift_fun_inj (feq_of_eq Peq))
lemma lift_perm_inj_on_univ : set.inj_on (@lift_perm n) (ts univ) :=
eq.symm to_set_univ ▸ iff.elim_left set.injective_iff_inj_on_univ lift_perm_inj
lemma lift_to_stab : image (@lift_perm n) univ = stab id univ maxi :=
ext (take (pp : perm (fin (succ n))), iff.intro
(assume Pimg, obtain p P_ Pp, from exists_of_mem_image Pimg,
have Ppp : pp maxi = maxi, from calc
pp maxi = lift_perm p maxi : {eq.symm Pp}
... = lift_fun p maxi : rfl
... = maxi : lift_fun_max,
mem_sep_of_mem !mem_univ Ppp)
(assume Pstab,
have Ppp : pp maxi = maxi, from of_mem_sep Pstab,
mem_image !mem_univ (lift_lower_eq Ppp)))
definition move_from_max_to (i : fin (succ n)) : perm (fin (succ n)) :=
perm.mk (madd (i - maxi)) madd_inj
lemma orbit_max : orbit (@id (perm (fin (succ n)))) univ maxi = univ :=
ext (take i, iff.intro
(assume P, !mem_univ)
(assume P, begin
apply mem_image,
apply mem_image,
apply mem_univ (move_from_max_to i), apply rfl,
apply sub_add_cancel
end))
lemma card_orbit_max : card (orbit (@id (perm (fin (succ n)))) univ maxi) = succ n :=
calc card (orbit (@id (perm (fin (succ n)))) univ maxi) = card univ : by rewrite orbit_max
... = succ n : card_fin (succ n)
open fintype
lemma card_lift_to_stab : card (stab (@id (perm (fin (succ n)))) univ maxi) = card (perm (fin n)) :=
calc finset.card (stab (@id (perm (fin (succ n)))) univ maxi)
= finset.card (image (@lift_perm n) univ) : by rewrite lift_to_stab
... = card univ : by rewrite (card_image_eq_of_inj_on lift_perm_inj_on_univ)
lemma card_perm_step : card (perm (fin (succ n))) = (succ n) * card (perm (fin n)) :=
calc card (perm (fin (succ n)))
= card (orbit id univ maxi) * card (stab id univ maxi) : orbit_stabilizer_theorem
... = (succ n) * card (stab id univ maxi) : {card_orbit_max}
... = (succ n) * card (perm (fin n)) : by rewrite -card_lift_to_stab
end perm_fin
end group_theory
|
ea02a0a4c0e85f3c3281144ef9cc81fa34a91109
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/category_theory/limits/preserves/shapes/biproducts.lean
|
d98231a3610dcea8b058a8f608b0f777eb87a510
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 15,241
|
lean
|
/-
Copyright (c) 2022 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import category_theory.limits.shapes.biproducts
import category_theory.limits.preserves.shapes.zero
/-!
# Preservation of biproducts
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
We define the image of a (binary) bicone under a functor that preserves zero morphisms and define
classes `preserves_biproduct` and `preserves_binary_biproduct`. We then
* show that a functor that preserves biproducts of a two-element type preserves binary biproducts,
* construct the comparison morphisms between the image of a biproduct and the biproduct of the
images and show that the biproduct is preserved if one of them is an isomorphism,
* give the canonical isomorphism between the image of a biproduct and the biproduct of the images
in case that the biproduct is preserved.
-/
universes w₁ w₂ v₁ v₂ u₁ u₂
noncomputable theory
open category_theory
open category_theory.limits
namespace category_theory
variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D]
section has_zero_morphisms
variables [has_zero_morphisms C] [has_zero_morphisms D]
namespace functor
section map
variables (F : C ⥤ D) [preserves_zero_morphisms F]
section bicone
variables {J : Type w₁}
/-- The image of a bicone under a functor. -/
@[simps]
def map_bicone {f : J → C} (b : bicone f) : bicone (F.obj ∘ f) :=
{ X := F.obj b.X,
π := λ j, F.map (b.π j),
ι := λ j, F.map (b.ι j),
ι_π := λ j j',
begin
rw ← F.map_comp,
split_ifs,
{ subst h,
simp only [bicone_ι_π_self, category_theory.functor.map_id, eq_to_hom_refl] },
{ rw [bicone_ι_π_ne _ h, F.map_zero] }
end }
lemma map_bicone_whisker {K : Type w₂} {g : K ≃ J} {f : J → C} (c : bicone f) :
F.map_bicone (c.whisker g) = (F.map_bicone c).whisker g := rfl
end bicone
/-- The image of a binary bicone under a functor. -/
@[simps]
def map_binary_bicone {X Y : C} (b : binary_bicone X Y) : binary_bicone (F.obj X) (F.obj Y) :=
{ X := F.obj b.X,
fst := F.map b.fst,
snd := F.map b.snd,
inl := F.map b.inl,
inr := F.map b.inr,
inl_fst' := by rw [← F.map_comp, b.inl_fst, F.map_id],
inl_snd' := by rw [← F.map_comp, b.inl_snd, F.map_zero],
inr_fst' := by rw [← F.map_comp, b.inr_fst, F.map_zero],
inr_snd' := by rw [← F.map_comp, b.inr_snd, F.map_id] }
end map
end functor
open category_theory.functor
namespace limits
section bicone
variables {J : Type w₁} {K : Type w₂}
/-- A functor `F` preserves biproducts of `f` if `F` maps every bilimit bicone over `f` to a
bilimit bicone over `F.obj ∘ f`. -/
class preserves_biproduct (f : J → C) (F : C ⥤ D) [preserves_zero_morphisms F] :=
(preserves : Π {b : bicone f}, b.is_bilimit → (F.map_bicone b).is_bilimit)
/-- A functor `F` preserves biproducts of `f` if `F` maps every bilimit bicone over `f` to a
bilimit bicone over `F.obj ∘ f`. -/
def is_bilimit_of_preserves {f : J → C} (F : C ⥤ D) [preserves_zero_morphisms F]
[preserves_biproduct f F] {b : bicone f} (hb : b.is_bilimit) : (F.map_bicone b).is_bilimit :=
preserves_biproduct.preserves hb
variables (J)
/-- A functor `F` preserves biproducts of shape `J` if it preserves biproducts of `f` for every
`f : J → C`. -/
class preserves_biproducts_of_shape (F : C ⥤ D) [preserves_zero_morphisms F] :=
(preserves : Π {f : J → C}, preserves_biproduct f F)
attribute [instance, priority 100] preserves_biproducts_of_shape.preserves
end bicone
/-- A functor `F` preserves finite biproducts if it preserves biproducts of shape `J` whenever
`J` is a fintype. -/
class preserves_finite_biproducts (F : C ⥤ D) [preserves_zero_morphisms F] :=
(preserves : Π {J : Type} [fintype J], preserves_biproducts_of_shape J F)
attribute [instance, priority 100] preserves_finite_biproducts.preserves
/-- A functor `F` preserves biproducts if it preserves biproducts of any shape `J` of size `w`.
The usual notion of preservation of biproducts is recovered by choosing `w` to be the universe
of the morphisms of `C`. -/
class preserves_biproducts (F : C ⥤ D) [preserves_zero_morphisms F] :=
(preserves : Π {J : Type w₁}, preserves_biproducts_of_shape J F)
attribute [instance, priority 100] preserves_biproducts.preserves
/-- Preserving biproducts at a bigger universe level implies preserving biproducts at a
smaller universe level. -/
def preserves_biproducts_shrink (F : C ⥤ D) [preserves_zero_morphisms F]
[hp : preserves_biproducts.{max w₁ w₂} F] : preserves_biproducts.{w₁} F :=
⟨λ J, ⟨λ f, ⟨λ b ib, ((F.map_bicone b).whisker_is_bilimit_iff _).to_fun
(is_bilimit_of_preserves F ((b.whisker_is_bilimit_iff equiv.ulift.{w₂}).inv_fun ib))⟩⟩⟩
@[priority 100]
instance preserves_finite_biproducts_of_preserves_biproducts (F : C ⥤ D)
[preserves_zero_morphisms F] [preserves_biproducts.{w₁} F] : preserves_finite_biproducts F :=
{ preserves := λ J _, by letI := preserves_biproducts_shrink.{0} F; apply_instance }
/-- A functor `F` preserves binary biproducts of `X` and `Y` if `F` maps every bilimit bicone over
`X` and `Y` to a bilimit bicone over `F.obj X` and `F.obj Y`. -/
class preserves_binary_biproduct (X Y : C) (F : C ⥤ D) [preserves_zero_morphisms F] :=
(preserves : Π {b : binary_bicone X Y}, b.is_bilimit → (F.map_binary_bicone b).is_bilimit)
/-- A functor `F` preserves binary biproducts of `X` and `Y` if `F` maps every bilimit bicone over
`X` and `Y` to a bilimit bicone over `F.obj X` and `F.obj Y`. -/
def is_binary_bilimit_of_preserves {X Y : C} (F : C ⥤ D) [preserves_zero_morphisms F]
[preserves_binary_biproduct X Y F] {b : binary_bicone X Y} (hb : b.is_bilimit) :
(F.map_binary_bicone b).is_bilimit :=
preserves_binary_biproduct.preserves hb
/-- A functor `F` preserves binary biproducts if it preserves the binary biproduct of `X` and `Y`
for all `X` and `Y`. -/
class preserves_binary_biproducts (F : C ⥤ D) [preserves_zero_morphisms F] :=
(preserves : Π {X Y : C}, preserves_binary_biproduct X Y F . tactic.apply_instance)
/-- A functor that preserves biproducts of a pair preserves binary biproducts. -/
def preserves_binary_biproduct_of_preserves_biproduct (F : C ⥤ D) [preserves_zero_morphisms F]
(X Y : C) [preserves_biproduct (pair_function X Y) F] : preserves_binary_biproduct X Y F :=
{ preserves := λ b hb,
{ is_limit := is_limit.of_iso_limit
((is_limit.postcompose_hom_equiv (by exact diagram_iso_pair _) _).symm
((is_bilimit_of_preserves F (b.to_bicone_is_bilimit.symm hb)).is_limit)) $
cones.ext (iso.refl _) (λ j, by { rcases j with ⟨⟨⟩⟩, tidy, }),
is_colimit := is_colimit.of_iso_colimit
((is_colimit.precompose_inv_equiv (by exact diagram_iso_pair _ ) _).symm
((is_bilimit_of_preserves F (b.to_bicone_is_bilimit.symm hb)).is_colimit)) $
cocones.ext (iso.refl _) (λ j, by { rcases j with ⟨⟨⟩⟩, tidy, }) } }
/-- A functor that preserves biproducts of a pair preserves binary biproducts. -/
def preserves_binary_biproducts_of_preserves_biproducts (F : C ⥤ D)
[preserves_zero_morphisms F] [preserves_biproducts_of_shape walking_pair F] :
preserves_binary_biproducts F :=
{ preserves := λ X Y, preserves_binary_biproduct_of_preserves_biproduct F X Y }
attribute [instance, priority 100] preserves_binary_biproducts.preserves
end limits
open category_theory.limits
namespace functor
section bicone
variables {J : Type w₁} (F : C ⥤ D) (f : J → C)
[has_biproduct f]
section
variables [has_biproduct (F.obj ∘ f)]
/-- As for products, any functor between categories with biproducts gives rise to a morphism
`F.obj (⨁ f) ⟶ ⨁ (F.obj ∘ f)`. -/
def biproduct_comparison : F.obj (⨁ f) ⟶ ⨁ (F.obj ∘ f) :=
biproduct.lift (λ j, F.map (biproduct.π f j))
@[simp, reassoc] lemma biproduct_comparison_π (j : J) :
biproduct_comparison F f ≫ biproduct.π _ j = F.map (biproduct.π f j) :=
biproduct.lift_π _ _
/-- As for coproducts, any functor between categories with biproducts gives rise to a morphism
`⨁ (F.obj ∘ f) ⟶ F.obj (⨁ f)` -/
def biproduct_comparison' : ⨁ (F.obj ∘ f) ⟶ F.obj (⨁ f) :=
biproduct.desc (λ j, F.map (biproduct.ι f j))
@[simp, reassoc] lemma ι_biproduct_comparison' (j : J) :
biproduct.ι _ j ≫ biproduct_comparison' F f = F.map (biproduct.ι f j) :=
biproduct.ι_desc _ _
variables [preserves_zero_morphisms F]
/-- The composition in the opposite direction is equal to the identity if and only if `F` preserves
the biproduct, see `preserves_biproduct_of_mono_biproduct_comparison`. -/
@[simp, reassoc] lemma biproduct_comparison'_comp_biproduct_comparison :
biproduct_comparison' F f ≫ biproduct_comparison F f = 𝟙 (⨁ (F.obj ∘ f)) :=
by { classical, ext, simp [biproduct.ι_π, ← functor.map_comp, eq_to_hom_map] }
/-- `biproduct_comparison F f` is a split epimorphism. -/
@[simps]
def split_epi_biproduct_comparison : split_epi (biproduct_comparison F f) :=
⟨biproduct_comparison' F f⟩
instance : is_split_epi (biproduct_comparison F f) :=
is_split_epi.mk' (split_epi_biproduct_comparison F f)
/-- `biproduct_comparison' F f` is a split monomorphism. -/
@[simps]
def split_mono_biproduct_comparison' : split_mono (biproduct_comparison' F f) :=
⟨biproduct_comparison F f⟩
instance : is_split_mono (biproduct_comparison' F f) :=
is_split_mono.mk' (split_mono_biproduct_comparison' F f)
end
variables [preserves_zero_morphisms F] [preserves_biproduct f F]
instance has_biproduct_of_preserves : has_biproduct (F.obj ∘ f) :=
has_biproduct.mk
{ bicone := F.map_bicone (biproduct.bicone f),
is_bilimit := preserves_biproduct.preserves (biproduct.is_bilimit _) }
/-- If `F` preserves a biproduct, we get a definitionally nice isomorphism
`F.obj (⨁ f) ≅ ⨁ (F.obj ∘ f)`. -/
@[simp]
def map_biproduct : F.obj (⨁ f) ≅ ⨁ (F.obj ∘ f) :=
biproduct.unique_up_to_iso _ (preserves_biproduct.preserves (biproduct.is_bilimit _))
lemma map_biproduct_hom : (map_biproduct F f).hom = biproduct.lift (λ j, F.map (biproduct.π f j)) :=
rfl
lemma map_biproduct_inv : (map_biproduct F f).inv = biproduct.desc (λ j, F.map (biproduct.ι f j)) :=
rfl
end bicone
variables (F : C ⥤ D) (X Y : C) [has_binary_biproduct X Y]
section
variables [has_binary_biproduct (F.obj X) (F.obj Y)]
/-- As for products, any functor between categories with binary biproducts gives rise to a
morphism `F.obj (X ⊞ Y) ⟶ F.obj X ⊞ F.obj Y`. -/
def biprod_comparison : F.obj (X ⊞ Y) ⟶ F.obj X ⊞ F.obj Y :=
biprod.lift (F.map biprod.fst) (F.map biprod.snd)
@[simp, reassoc] lemma biprod_comparison_fst :
biprod_comparison F X Y ≫ biprod.fst = F.map biprod.fst :=
biprod.lift_fst _ _
@[simp, reassoc] lemma biprod_comparison_snd :
biprod_comparison F X Y ≫ biprod.snd = F.map biprod.snd :=
biprod.lift_snd _ _
/-- As for coproducts, any functor between categories with binary biproducts gives rise to a
morphism `F.obj X ⊞ F.obj Y ⟶ F.obj (X ⊞ Y)`. -/
def biprod_comparison' : F.obj X ⊞ F.obj Y ⟶ F.obj (X ⊞ Y) :=
biprod.desc (F.map biprod.inl) (F.map biprod.inr)
@[simp, reassoc] lemma inl_biprod_comparison' :
biprod.inl ≫ biprod_comparison' F X Y = F.map biprod.inl :=
biprod.inl_desc _ _
@[simp, reassoc] lemma inr_biprod_comparison' :
biprod.inr ≫ biprod_comparison' F X Y = F.map biprod.inr :=
biprod.inr_desc _ _
variables [preserves_zero_morphisms F]
/-- The composition in the opposite direction is equal to the identity if and only if `F` preserves
the biproduct, see `preserves_binary_biproduct_of_mono_biprod_comparison`. -/
@[simp, reassoc] lemma biprod_comparison'_comp_biprod_comparison :
biprod_comparison' F X Y ≫ biprod_comparison F X Y = 𝟙 (F.obj X ⊞ F.obj Y) :=
by { ext; simp [← functor.map_comp] }
/-- `biprod_comparison F X Y` is a split epi. -/
@[simps]
def split_epi_biprod_comparison : split_epi (biprod_comparison F X Y) :=
⟨biprod_comparison' F X Y⟩
instance : is_split_epi (biprod_comparison F X Y) :=
is_split_epi.mk' (split_epi_biprod_comparison F X Y)
/-- `biprod_comparison' F X Y` is a split mono. -/
@[simps]
def split_mono_biprod_comparison' : split_mono (biprod_comparison' F X Y) :=
⟨biprod_comparison F X Y⟩
instance : is_split_mono (biprod_comparison' F X Y) :=
is_split_mono.mk' (split_mono_biprod_comparison' F X Y)
end
variables [preserves_zero_morphisms F] [preserves_binary_biproduct X Y F]
instance has_binary_biproduct_of_preserves : has_binary_biproduct (F.obj X) (F.obj Y) :=
has_binary_biproduct.mk
{ bicone := F.map_binary_bicone (binary_biproduct.bicone X Y),
is_bilimit := preserves_binary_biproduct.preserves (binary_biproduct.is_bilimit _ _) }
/-- If `F` preserves a binary biproduct, we get a definitionally nice isomorphism
`F.obj (X ⊞ Y) ≅ F.obj X ⊞ F.obj Y`. -/
@[simp]
def map_biprod : F.obj (X ⊞ Y) ≅ F.obj X ⊞ F.obj Y :=
biprod.unique_up_to_iso _ _
(preserves_binary_biproduct.preserves (binary_biproduct.is_bilimit _ _))
lemma map_biprod_hom : (map_biprod F X Y).hom = biprod.lift (F.map biprod.fst) (F.map biprod.snd) :=
rfl
lemma map_biprod_inv : (map_biprod F X Y).inv = biprod.desc (F.map biprod.inl) (F.map biprod.inr) :=
rfl
end functor
namespace limits
variables (F : C ⥤ D) [preserves_zero_morphisms F]
section bicone
variables {J : Type w₁} (f : J → C) [has_biproduct f] [preserves_biproduct f F]
{W : C}
lemma biproduct.map_lift_map_biprod (g : Π j, W ⟶ f j) :
F.map (biproduct.lift g) ≫ (F.map_biproduct f).hom = biproduct.lift (λ j, F.map (g j)) :=
by { ext, simp [← F.map_comp] }
lemma biproduct.map_biproduct_inv_map_desc (g : Π j, f j ⟶ W) :
(F.map_biproduct f).inv ≫ F.map (biproduct.desc g) = biproduct.desc (λ j, F.map (g j)) :=
by { ext, simp [← F.map_comp] }
lemma biproduct.map_biproduct_hom_desc (g : Π j, f j ⟶ W) :
(F.map_biproduct f).hom ≫ biproduct.desc (λ j, F.map (g j)) = F.map (biproduct.desc g) :=
by rw [← biproduct.map_biproduct_inv_map_desc, iso.hom_inv_id_assoc]
end bicone
section binary_bicone
variables (X Y : C) [has_binary_biproduct X Y] [preserves_binary_biproduct X Y F] {W : C}
lemma biprod.map_lift_map_biprod (f : W ⟶ X) (g : W ⟶ Y) :
F.map (biprod.lift f g) ≫ (F.map_biprod X Y).hom = biprod.lift (F.map f) (F.map g) :=
by ext; simp [← F.map_comp]
lemma biprod.lift_map_biprod (f : W ⟶ X) (g : W ⟶ Y) :
biprod.lift (F.map f) (F.map g) ≫ (F.map_biprod X Y).inv = F.map (biprod.lift f g) :=
by rw [← biprod.map_lift_map_biprod, category.assoc, iso.hom_inv_id, category.comp_id]
lemma biprod.map_biprod_inv_map_desc (f : X ⟶ W) (g : Y ⟶ W) :
(F.map_biprod X Y).inv ≫ F.map (biprod.desc f g) = biprod.desc (F.map f) (F.map g) :=
by ext; simp [← F.map_comp]
lemma biprod.map_biprod_hom_desc (f : X ⟶ W) (g : Y ⟶ W) :
(F.map_biprod X Y).hom ≫ biprod.desc (F.map f) (F.map g) = F.map (biprod.desc f g) :=
by rw [← biprod.map_biprod_inv_map_desc, iso.hom_inv_id_assoc]
end binary_bicone
end limits
end has_zero_morphisms
end category_theory
|
9ad0a059c6a7b602e3cb73477bc06bc455bc9462
|
6fca17f8d5025f89be1b2d9d15c9e0c4b4900cbf
|
/src/game/world5/level4.lean
|
bde858cd54118c08c53e7f4805cf71c5798575b9
|
[
"Apache-2.0"
] |
permissive
|
arolihas/natural_number_game
|
4f0c93feefec93b8824b2b96adff8b702b8b43ce
|
8e4f7b4b42888a3b77429f90cce16292bd288138
|
refs/heads/master
| 1,621,872,426,808
| 1,586,270,467,000
| 1,586,270,467,000
| 253,648,466
| 0
| 0
| null | 1,586,219,694,000
| 1,586,219,694,000
| null |
UTF-8
|
Lean
| false
| false
| 1,997
|
lean
|
/- Tactic : apply
## Summary
If `h : P → Q` is a hypothesis, and the goal is `⊢ Q` then
`apply h` changes the goal to `⊢ P`.
## Details
If you have a function `h : P → Q` and your goal is `⊢ Q`
then `apply h` changes the goal to `⊢ P`. The logic is
simple: if you are trying to create a term of type `Q`,
but `h` is a function which turns terms of type `P` into
terms of type `Q`, then it will suffice to construct a
term of type `P`. A mathematician might say: "we need
to construct an element of $Q$, but we have a function $h:P\to Q$
so it suffices to construct an element of $P$". Or alternatively
"we need to prove $Q$, but we have a proof $h$ that $P\implies Q$
so it suffices to prove $P$".
-/
/-
# Function world.
## Level 4: the `apply` tactic.
Let's do the same level again:

We are given $p \in P$ and our goal is to find an element of $U$, or
in other words to find a path through the maze that links $P$ to $U$.
In level 3 we solved this by using `have`s to move forward, from $P$
to $Q$ to $T$ to $U$. Using the `apply` tactic we can instead construct
the path backwards, moving from $U$ to $T$ to $Q$ to $P$.
Our goal is to construct an element of the set $U$. But $l:T\to U$ is
a function, so it would suffice to construct an element of $T$. Tell
Lean this by starting the proof below with
`apply l,`
and notice that our assumptions don't change but *the goal changes*
from `⊢ U` to `⊢ T`.
Keep `apply`ing functions until your goal is `P`, and try not
to get lost! Now solve this goal
with `exact p`. Note: you will need to learn the difference between
`exact p` (which works) and `exact P` (which doesn't, because $P$ is
not an element of $P$).
-/
/- Definition
Given an element of $P$ we can define an element of $U$.
-/
example (P Q R S T U: Type)
(p : P)
(h : P → Q)
(i : Q → R)
(j : Q → T)
(k : S → T)
(l : T → U)
: U :=
begin
end
|
f992cc3ff72450b6fae203a6d49cdb6f4b8e6731
|
5756a081670ba9c1d1d3fca7bd47cb4e31beae66
|
/Mathport/Binary/Apply.lean
|
8260a899b493873b7cef1d77f8d47c9f12ae76c5
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathport
|
2c9bdc8292168febf59799efdc5451dbf0450d4a
|
13051f68064f7638970d39a8fecaede68ffbf9e1
|
refs/heads/master
| 1,693,841,364,079
| 1,693,813,111,000
| 1,693,813,111,000
| 379,357,010
| 27
| 10
|
Apache-2.0
| 1,691,309,132,000
| 1,624,384,521,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 18,701
|
lean
|
/-
Copyright (c) 2021 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Daniel Selsam
-/
import Lean
import Mathport.Util.Misc
import Mathport.Bridge.Config
import Mathport.Binary.Basic
import Mathport.Binary.NDRec
import Mathport.Binary.EnvModification
import Mathport.Binary.TranslateName
import Mathport.Binary.TranslateExpr
namespace Mathport.Binary
open Lean Lean.Meta Lean.Elab Lean.Elab.Command
def inCurrentModule [Monad M] [MonadEnv M] (n : Name) : M Bool :=
return (← getEnv).getModuleIdxFor? n |>.isNone
def printIndType (lps : List Name) (indType : InductiveType) : BinportM Unit := do
println! "[inductive] {indType.name}.\{{lps}}. : {indType.type}"
for ctor in indType.ctors do
println! " {ctor.name} : {ctor.type}"
def printDeclDebug (decl : Declaration) : BinportM Unit := do
match decl with
| Declaration.thmDecl thm =>
println! "--- {thm.name} ---"
println! "[type] {thm.type}"
println! "[value] {thm.value}"
| _ => pure ()
def stubValue : Declaration → MetaM Declaration
| .thmDecl val => return .thmDecl { val with value := ← mkSorry val.type true }
| .defnDecl val => return .opaqueDecl { val with value := ← mkSorry val.type true, isUnsafe := false }
| .mutualDefnDecl defns => .mutualDefnDecl <$> defns.mapM fun defn =>
return { defn with value := ← mkSorry defn.type true }
| d => pure d
def stubType : Declaration → MetaM Declaration
| .axiomDecl val =>
return .axiomDecl { val with type := mkPUnit (← inferTypeD val.type) }
| .thmDecl val => do
stubValue (.thmDecl { val with type := mkPUnit (← inferTypeD val.type) })
| .defnDecl val => do
stubValue (.defnDecl { val with type := mkPUnit (← inferTypeD val.type) })
| .opaqueDecl val =>
return .opaqueDecl { val with type := mkPUnit (← inferTypeD val.type) }
| .mutualDefnDecl defns => do
stubValue <| .mutualDefnDecl <|← defns.mapM fun defn =>
return { defn with type := mkPUnit (← inferTypeD defn.type) }
| .inductDecl lp _ tys uns => (.inductDecl lp 0 · uns) <$> tys.mapM fun ty =>
return { ty with
type := ← try forallTelescopeReducing ty.type fun _ => pure
catch _ => pure (.sort (.succ .zero))
ctors := ← ty.ctors.mapM fun ctor =>
return { ctor with type := .const ty.name (lp.map .param) } }
| d => pure d
where
inferTypeD ty := try inferType ty catch _ => pure (.sort .zero)
mkPUnit tyty :=
let u := match tyty with
| .sort lvl => lvl
| _ => .zero
mkConst ``PUnit [u]
def addDecl (decl : Declaration) : CoreM Unit :=
withMaxHeartbeat (50000 * 1000) do
Lean.addDecl decl
def refineAddDecl (decl : Declaration) : BinportM (Declaration × ClashKind) := do
let path := (← read).path
println! "[addDecl] START REFINE {path.mod3} {decl.toName}"
let ⟨decl, clashKind⟩ ← refineLean4NamesAndUpdateMap decl
match clashKind with
| ClashKind.found "" =>
println! "[addDecl] FOUND DEF-EQ {path.mod3} {decl.toName}"
| ClashKind.found _ =>
println! "[addDecl] FOUND DUBIOUS {path.mod3} {decl.toName}"
| ClashKind.freshDecl =>
println! "[addDecl] START CHECK {path.mod3} {decl.toName}"
try
if (← read).config.error2warning && decl matches .thmDecl .. then
throwError "skipping proof of theorem"
liftCoreM do addDecl decl
catch ex =>
println! "[kernel] {← ex.toMessageData.toString}"
if (← read).config.error2warning then
-- printDeclDebug decl
try
println! "[addDecl] stubbing value of {decl.toName}"
let decl ← liftMetaM <| stubValue decl
liftCoreM do addDecl decl
catch _ =>
println! "[addDecl] stubbing type of {decl.toName}"
let decl ← liftMetaM <| stubType decl
try
liftCoreM do addDecl decl
catch ex =>
println! "[addDecl] failed to port {decl.toName}"
throw ex
else throw ex
modifyEnv fun env => binportTag.ext.addEntry env decl.toName
println! "[addDecl] END CHECK {path.mod3} {decl.toName}"
if shouldGenCodeFor decl then
println! "[compile] {decl.toName} START"
match (← getEnv).compileDecl {} decl with
| Except.ok env => println! "[compile] {decl.toName} SUCCESS!"
setEnv env
| Except.error err => let msg := err.toMessageData (← getOptions)
let msg ← msg.toString
println! "[compile] {decl.toName} {msg}"
pure (decl, clashKind)
where
shouldGenCodeFor (decl : Declaration) : Bool :=
-- TODO: sadly, noncomputable comes after the definition
-- (so if this isn't good enough, we will need to refactor)
match decl with
| Declaration.defnDecl _ => false -- https://github.com/leanprover-community/mathport/issues/172
| _ => false
def setAttr (attr : Attribute) (declName : Name) : BinportM Unit := do
let env ← getEnv
match getAttributeImpl env attr.name with
| Except.error errMsg => throwError errMsg
| Except.ok attrImpl => liftMetaM $ attrImpl.add declName attr.stx attr.kind
def equationFor? (n : Name) : Option Name :=
let n₁ : Name := n.getPrefix
if n₁.isStr && n₁.getString! == "equations" then some n₁.getPrefix
else none
def maybeRegisterEquation (eqn : Name) : BinportM Unit := do
-- example: list.nth.equations._eqn_1
match equationFor? eqn with
| some defn => modify λ s => { s with name2equations := s.name2equations.insertWith (· ++ ·) defn [eqn] }
| none => pure ()
def applyExport (d : ExportDecl) : BinportM Unit := do
-- we use the variable names of elabExport
if not d.exceptNames.isEmpty then
warnStr s!"export of {d.ns} with exceptions is ignored"
else if d.nsAs != Name.anonymous then
warnStr s!"export of {d.ns} with 'nsAs' is ignored"
else if ¬ d.hadExplicit then
warnStr s!"export of {d.ns} with no explicits is ignored"
else
let mut env ← getEnv
for (n1, n2) in d.renames do
-- TODO: naive name translation doesn't work for the alias
-- We should probably inspect the suffixes and modify/remove the prefixes
-- env := addAlias env (← lookupLean4Name n1) (← lookupLean4Name n2)
println! "[export] SKIP {n1} := {n2}"
continue
setEnv env
def applyMixfix (kind : MixfixKind) (n : Name) (prec : Nat) (tok : String) : BinportM Unit := do
try
let n ← lookupNameExt! n
-- For now, we avoid the `=` `=` clash by making all Mathlib notations
-- lower priority than the Lean4 ones.
let prio : Nat := (← liftMacroM <| evalOptPrio none).pred
let stxPrec : Syntax.Prec := Quote.quote prec
let stxName : Option Syntax.Ident := none
let stxPrio : Option Syntax.Prio := some (quote prio)
let stxOp : TSyntax strLitKind := Syntax.mkStrLit tok
let stxFun : Syntax.Term := mkIdent n
let stx ←
match kind with
| MixfixKind.infixl =>
`(infixl:$stxPrec $[(name := $stxName)]? $[(priority := $stxPrio)]? $stxOp => $stxFun)
| MixfixKind.infixr =>
`(infixr:$stxPrec $[(name := $stxName)]? $[(priority := $stxPrio)]? $stxOp => $stxFun)
| MixfixKind.prefix =>
`(prefix:$stxPrec $[(name := $stxName)]? $[(priority := $stxPrio)]? $stxOp => $stxFun)
| MixfixKind.postfix =>
`(postfix:$stxPrec $[(name := $stxName)]? $[(priority := $stxPrio)]? $stxOp => $stxFun)
| MixfixKind.singleton =>
let correctPrec : Option Syntax.Prec := some (quote Parser.maxPrec)
`(notation $[: $correctPrec]? $[(name := $stxName)]? $[(priority := $stxPrio)]? $stxOp:str => $stxFun)
let nextIdx : Nat := (← get).nNotations
modify λ s => { s with nNotations := nextIdx + 1 }
let ns : Syntax.Ident := mkIdent s!"{"__".intercalate ((← read).path.mod4.components.map Name.getString!)}_{nextIdx}"
let stx ← `(namespace $ns $stx end $ns)
elabCommand stx
catch ex => warn ex
def applySimpLemma (n : Name) (prio : Nat) : BinportM Unit := do
-- TODO: remove these once https://github.com/leanprover-community/mathlib/pull/8738 (+ friends) are merged
let badSimps := #[`set.eq_on_empty, `punit.eq_punit, `list.cons_injective, `list.length_injective, `list.reverse_injective]
if badSimps.contains n then return ()
tryAddSimpLemma (← lookupNameExt! n) prio
for eqn in (← get).name2equations.findD n [] do
tryAddSimpLemma (← lookupNameExt! eqn) prio
where
tryAddSimpLemma (n : Name) (prio : Nat) : BinportM Unit :=
try
liftMetaM $ addSimpTheorem (ext := simpExtension) (declName := n) (post := True) (inv := False) (attrKind := AttributeKind.global) (prio := prio)
println! "[simp] {n} {prio}"
catch ex => warn ex
def applyReducibility (n : Name) (status : ReducibilityStatus) : BinportM Unit := do
-- (note: this will fail/no-op if it declares reducible in a new module)
try setAttr { name := reducibilityToName status } (← lookupNameExt! n)
catch ex => warn ex
where
reducibilityToName (status : ReducibilityStatus) : Name :=
match status with
| ReducibilityStatus.reducible => `reducible
| ReducibilityStatus.semireducible => `semireducible
| ReducibilityStatus.irreducible => `irreducible
def applyProjection (proj : ProjectionInfo) : BinportM Unit := do
try
-- we lookup names inside `try`, because meta things may have been skipped
let projName ← lookupNameExt! proj.projName
let ctorName ← lookupNameExt! proj.ctorName
let structName := ctorName.getPrefix
unless ← inCurrentModule structName do return
setEnv $ addProjectionFnInfo (← getEnv) projName ctorName proj.nParams proj.index proj.fromClass
let descr := (← get).structures.findD structName ⟨structName, #[]⟩
match (← getEnv).find? ctorName with
| some (ConstantInfo.ctorInfo ctor) =>
let fieldInfo ← mkFieldInfo ctor.numParams ctor.type projName proj.projName
modify fun s => { s with structures := s.structures.insert structName ⟨descr.structName, descr.fields.push fieldInfo⟩ }
| _ => warnStr "projection for something other than constructor {projName}, {ctorName}"
catch ex => warn ex
where
mkFieldInfo (numParams : Nat) (ctorType : Expr) (projName projName3 : Name) : BinportM StructureFieldInfo := do
match projName, projName3 with
| Name.str _ fieldName .., Name.str _ fieldName3 .. =>
pure {
fieldName
projFn := projName
subobject? := getSubobject? numParams ctorType fieldName3
-- TODO: what to put here?
binderInfo := BinderInfo.default
}
| _, _ => throwError "unexpected projName with num field: {projName}"
getSubobject? (numParams : Nat) (type : Expr) (fieldName3 : String) : Option Name := Id.run do
-- Note: we do not translate binder names, so we need the *lean3* fieldName here
let candidateName := "_" ++ fieldName3
let mut type := type
let mut i := 0
while type.isForall do
if i ≥ numParams then
match type.bindingName! with
| Name.str Name.anonymous s .. =>
if s == candidateName then
return some type.bindingDomain!.getAppFn.constName!
| _ => pure ()
type := type.bindingBody!
i := i + 1
return none
def applyClass (n : Name) : BinportM Unit := do
-- (for meta classes, Lean4 won't know about the decl)
try
match addClass (← getEnv) (← lookupNameExt! n) with
| Except.error msg => warnStr msg
| Except.ok env => setEnv env
catch ex => warn ex
def applyInstance (_nc ni : Name) (prio : Nat) : BinportM Unit := do
-- (for meta instances, Lean4 won't know about the decl)
-- TODO: `prio.pred`?
if (← read).config.disabledInstances.contains ni then return ()
try
liftMetaM $ addInstance (← lookupNameExt! ni) AttributeKind.global prio
setAttr { name := `infer_tc_goals_rl } (← lookupNameExt! ni)
catch ex => warn ex
def applyAxiomVal (ax : AxiomVal) : BinportM Unit := do
let (decl, clashKind) ← refineAddDecl $ Declaration.axiomDecl { ax with
type := (← trExpr ax.type)
}
if clashKind == ClashKind.freshDecl then maybeRegisterEquation decl.toName
def applyTheoremVal (thm : TheoremVal) : BinportM Unit := do
let (decl, clashKind) ← refineAddDecl $ Declaration.thmDecl { thm with
type := (← trExpr thm.type),
value := (← trExpr thm.value)
}
if clashKind == ClashKind.freshDecl then maybeRegisterEquation decl.toName
def applyDefinitionVal (defn : DefinitionVal) : BinportM Unit := do
if ← isBadSUnfold3 defn.name then return ()
let mut hints := defn.hints
let mut forceAbbrev := false
if (← read).config.forceAbbrevs.contains defn.name then
hints := ReducibilityHints.abbrev
forceAbbrev := true
-- Only for definitions (really, instances) do we try to translate the coes
let type ← trExpr defn.type
let value ← trExpr defn.value
discard <| refineAddDecl $ Declaration.defnDecl { defn with
type := type
value := value
hints := hints
}
if forceAbbrev then applyReducibility defn.name ReducibilityStatus.reducible
where
isBadSUnfold3 (n3 : Name) : BinportM Bool := do
if !n3.isStr then return false
if n3.getString! != "_sunfold" then return false
let pfix4 ← lookupNameExt! n3.getPrefix
match (← getEnv).find? (pfix4 ++ `_main) with
| some cinfo =>
match cinfo.value? with
-- bad means the original function isn't actually recursive
| some v => pure $ Option.isNone $ v.find? fun e =>
e.isConst && e.constName!.isStr && e.constName!.getString! == "brec_on"
| _ => throwError "should have value"
| _ => return false /- this can happen when e.g. `nat.add._main -> Nat.add` (which may be needed due to eqn lemmas) -/
def applyInductiveDecl (lps : List Name) (nParams : Nat) (indType : InductiveType) (isUnsafe : Bool) : BinportM Unit := do
-- The `Module` inductive type includes `module` in its constructor types, which gets mapped to `Module`, causing confusion.
-- In the past, we worked around this by changing `module` -> `ModuleS`, but this is highly undesirable.
-- Now, we simple first change all the `Module` names to `_indSelf`, then change `_indSelf` later.
let indType := indType.replaceSelfWithPlaceholder
let ind? := some (indType.name, indType.type, lps)
let decl := Declaration.inductDecl lps nParams [{ indType with
type := (← trExpr indType.type),
ctors := (← indType.ctors.mapM fun ctor => do pure { ctor with type := (← trExpr ctor.type (ind? := ind?)) })
}] isUnsafe
let (decl, clashKind) ← refineAddDecl decl
if clashKind == ClashKind.freshDecl then mkAuxDecls decl.toName
match ← liftMetaM $ mkNDRec decl.toName (indType.name ++ `ndrec /- old name -/) with
| some ndRec => do
-- TODO: this will create a spurious alignment, and will *miss* the alignment `eq.rec` -> `Eq.ndrec`
-- For now, we just add the missing alignment manually
let (ndRecDecl, clashKind) ← refineAddDecl ndRec
addNameAlignment (indType.name ++ `rec) ndRecDecl.toName
if clashKind == ClashKind.freshDecl then setAttr { name := `reducible } ndRecDecl.toName
| none => pure ()
where
mkAuxDecls (name : Name) : BinportM Unit := do
try
-- these may fail for the invalid inductive types currently being accepted
-- by the temporary patch https://github.com/dselsam/lean4/commit/1bef1cb3498cf81f93095bda16ed8bc65af42535
mkRecOn name
mkCasesOn name
liftMetaM $ Lean.mkNoConfusion name
mkBelow name
mkIBelow name
mkBRecOn name
mkBInductionOn name
catch _ => pure ()
def applyPosition (n : Name) (line col : Nat) : BinportM Unit := do
let range := DeclarationRanges.mk
{ pos := { line := line, column := col },
charUtf16 := col,
endPos := { line := line, column := col },
endCharUtf16 := col }
{ pos := { line := line, column := col },
charUtf16 := col,
endPos := { line := line, column := col },
endCharUtf16 := col}
if let some n ← lookupNameExt n then
if ← inCurrentModule n then
Lean.addDeclarationRanges n range
def applyToAdditive (src tgt : Name) : BinportM Unit := do
let src4 ← lookupNameExt! src
let tgt4 ← match ← lookupNameExt tgt with
| some tgt => pure tgt
| none =>
let n4 ← mkCandidateLean4Name tgt ((← getEnv).find? src4).get!.type
addNameAlignment tgt n4 (synthetic := true)
pure n4
if let some tgt' := ToAdditive.findTranslation? (← getEnv) src4 then
if tgt' != tgt4 then
println! "[applyToAdditive] ignoring to_additive {src4} => {tgt4} incompatible with {tgt'}"
else
liftCoreM $ ToAdditive.insertTranslation src4 tgt4
def applyModification (mod : EnvModification) : BinportM Unit := withReader (fun ctx => { ctx with currDecl := mod.toName }) do
println! "[apply] {mod}"
match mod with
| EnvModification.mixfix .. -- synport handles notation
| EnvModification.private ..
| EnvModification.protected ..
| EnvModification.position .. => pure ()
| EnvModification.export d => applyExport d
| EnvModification.simp n prio => applySimpLemma n prio
| EnvModification.reducibility n kind => applyReducibility n kind
| EnvModification.projection proj => applyProjection proj
| EnvModification.class n => applyClass n
| EnvModification.instance nc ni prio => applyInstance nc ni prio
| EnvModification.toAdditive src tgt => applyToAdditive src tgt
| EnvModification.decl d =>
match d with
| Declaration.axiomDecl ax => applyAxiomVal ax
| Declaration.thmDecl thm => applyTheoremVal thm
| Declaration.defnDecl defn => applyDefinitionVal defn
| Declaration.inductDecl lps nps [ind] iu => applyInductiveDecl lps nps ind iu
| _ => throwError "unexpected declaration type"
def applyModificationPost (mod : EnvModification) : BinportM Unit := do
match mod with
| EnvModification.position n line col => applyPosition n line col
| _ => pure ()
def postprocessModule : BinportM Unit := do
registerStructures
where
registerStructures := do
for (structName, structDescr) in (← get).structures.toList do
modifyEnv fun env => registerStructure env structDescr
println! "[registerStructure] {structName}"
for { fieldName, projFn, subobject?, .. } in structDescr.fields do
println! "[registerStructure.field] {structName} {fieldName} {projFn} {subobject?}"
end Mathport.Binary
|
8c407f7832d22d9fe07db1ec32749255e3903af2
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/ACltBug.lean
|
50f9337833af5916cbcca1b403ea5a67df65a47d
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 454
|
lean
|
attribute [local simp] Nat.mul_comm Nat.mul_assoc Nat.mul_left_comm
attribute [local simp] Nat.add_assoc Nat.add_comm Nat.add_left_comm
example (w x y z : Nat) (p : Nat → Prop)
(h : p (x * y + z * w * x)) : p (x * w * z + y * x) := by
simp at *; assumption
example (x y z : Nat) (p : Nat → Prop)
(h₁ : p (1 * x + y)) (h₂ : p (x * z * 1))
: p (y + 0 + x) ∧ p (z * x) := by
simp at * <;> constructor <;> assumption
|
25b2475161bf9c6eaa58c93b6690c8dd9a8ecc8b
|
86f6f4f8d827a196a32bfc646234b73328aeb306
|
/examples/sets_functions_and_relations/unnamed_110.lean
|
ac521b06af9f89f8dea5262505ab4f7fcc520d1a
|
[] |
no_license
|
jamescheuk91/mathematics_in_lean
|
09f1f87d2b0dce53464ff0cbe592c568ff59cf5e
|
4452499264e2975bca2f42565c0925506ba5dda3
|
refs/heads/master
| 1,679,716,410,967
| 1,613,957,947,000
| 1,613,957,947,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 167
|
lean
|
variable {α : Type*}
variables (s t u : set α)
-- BEGIN
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
begin
intros x xsu,
exact ⟨h xsu.1, xsu.2⟩
end
-- END
|
81a5c6da59ec18a6a7434b9c5b950fb503c35578
|
ee8cdbabf07f77e7be63a449b8483ce308d37218
|
/lean/src/test/amc12a-2002-p13.lean
|
29fbe1b4c25e680e593d0cbc3d60a84e8159ba4f
|
[
"MIT",
"Apache-2.0"
] |
permissive
|
zeta1999/miniF2F
|
6d66c75d1c18152e224d07d5eed57624f731d4b7
|
c1ba9629559c5273c92ec226894baa0c1ce27861
|
refs/heads/main
| 1,681,897,460,642
| 1,620,646,361,000
| 1,620,646,361,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 350
|
lean
|
/-
Copyright (c) 2021 OpenAI. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kunhao Zheng
-/
import data.real.basic
import data.real.sqrt
example (a b : ℝ) (h₀ : 0 < a ∧ 0 < b) (h₁ : a ≠ b) (h₂ : abs (a - 1/a) = 1 ) (h₃ : abs (b - 1/b) = 1) : a + b = real.sqrt 5 :=
begin
sorry
end
|
15c6cd0df25d3c3fb934ad0e074555388ef49177
|
02005f45e00c7ecf2c8ca5db60251bd1e9c860b5
|
/src/group_theory/group_action/defs.lean
|
919f5becf0d84ff0727810235a72516200f0875e
|
[
"Apache-2.0"
] |
permissive
|
anthony2698/mathlib
|
03cd69fe5c280b0916f6df2d07c614c8e1efe890
|
407615e05814e98b24b2ff322b14e8e3eb5e5d67
|
refs/heads/master
| 1,678,792,774,873
| 1,614,371,563,000
| 1,614,371,563,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 9,195
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import data.equiv.basic
import algebra.group.defs
import algebra.group.hom
import logic.embedding
/-!
# Definitions of group actions
This file defines a hierarchy of group action type-classes:
* `has_scalar α β`
* `mul_action α β`
* `distrib_mul_action α β`
The hierarchy is extended further by `semimodule`, defined elsewhere.
Also provided are type-classes regarding the interaction of different group actions,
* `smul_comm_class M N α`
* `is_scalar_tower M N α`
## Notation
`a • b` is used as notation for `smul a b`.
## Implementation details
This file should avoid depending on other parts of `group_theory`, to avoid import cycles.
More sophisticated lemmas belong in `group_theory.group_action`.
-/
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
open function
/-- Typeclass for types with a scalar multiplication operation, denoted `•` (`\bu`) -/
class has_scalar (α : Type u) (γ : Type v) := (smul : α → γ → γ)
infixr ` • `:73 := has_scalar.smul
/-- Typeclass for multiplicative actions by monoids. This generalizes group actions. -/
@[protect_proj] class mul_action (α : Type u) (β : Type v) [monoid α] extends has_scalar α β :=
(one_smul : ∀ b : β, (1 : α) • b = b)
(mul_smul : ∀ (x y : α) (b : β), (x * y) • b = x • y • b)
/-- A typeclass mixin saying that two actions on the same space commute. -/
class smul_comm_class (M N α : Type*) [has_scalar M α] [has_scalar N α] : Prop :=
(smul_comm : ∀ (m : M) (n : N) (a : α), m • n • a = n • m • a)
export mul_action (mul_smul) smul_comm_class (smul_comm)
/--
Frequently, we find ourselves wanting to express a bilinear map `M →ₗ[R] N →ₗ[R] P` or an
equivalence between maps `(M →ₗ[R] N) ≃ₗ[R] (M' →ₗ[R] N')` where the maps have an associated ring
`R`. Unfortunately, using definitions like these requires that `R` satisfy `comm_semiring R`, and
not just `semiring R`. Using `M →ₗ[R] N →+ P` and `(M →ₗ[R] N) ≃+ (M' →ₗ[R] N')` avoids this
problem, but throws away structure that is useful for when we _do_ have a commutative (semi)ring.
To avoid making this compromise, we instead state these definitions as `M →ₗ[R] N →ₗ[S] P` or
`(M →ₗ[R] N) ≃ₗ[S] (M' →ₗ[R] N')` and require `smul_comm_class S R` on the appropriate modules. When
the caller has `comm_semiring R`, they can set `S = R` and `smul_comm_class_self` will populate the
instance. If the caller only has `semiring R` they can still set either `R = ℕ` or `S = ℕ`, and
`add_comm_monoid.nat_smul_comm_class` or `add_comm_monoid.nat_smul_comm_class'` will populate
the typeclass, which is still sufficient to recover a `≃+` or `→+` structure.
An example of where this is used is `linear_map.prod_equiv`.
-/
library_note "bundled maps over different rings"
/-- Commutativity of actions is a symmetric relation. This lemma can't be an instance because this
would cause a loop in the instance search graph. -/
lemma smul_comm_class.symm (M N α : Type*) [has_scalar M α] [has_scalar N α]
[smul_comm_class M N α] : smul_comm_class N M α :=
⟨λ a' a b, (smul_comm a a' b).symm⟩
instance smul_comm_class_self (M α : Type*) [comm_monoid M] [mul_action M α] :
smul_comm_class M M α :=
⟨λ a a' b, by rw [← mul_smul, mul_comm, mul_smul]⟩
/-- An instance of `is_scalar_tower M N α` states that the multiplicative
action of `M` on `α` is determined by the multiplicative actions of `M` on `N`
and `N` on `α`. -/
class is_scalar_tower (M N α : Type*) [has_scalar M N] [has_scalar N α] [has_scalar M α] : Prop :=
(smul_assoc : ∀ (x : M) (y : N) (z : α), (x • y) • z = x • (y • z))
@[simp] lemma smul_assoc {M N} [has_scalar M N] [has_scalar N α] [has_scalar M α]
[is_scalar_tower M N α] (x : M) (y : N) (z : α) :
(x • y) • z = x • y • z :=
is_scalar_tower.smul_assoc x y z
section
variables [monoid α] [mul_action α β]
lemma smul_smul (a₁ a₂ : α) (b : β) : a₁ • a₂ • b = (a₁ * a₂) • b := (mul_smul _ _ _).symm
variable (α)
@[simp] theorem one_smul (b : β) : (1 : α) • b = b := mul_action.one_smul _
variables {α}
/-- Pullback a multiplicative action along an injective map respecting `•`. -/
protected def function.injective.mul_action [has_scalar α γ] (f : γ → β)
(hf : injective f) (smul : ∀ (c : α) x, f (c • x) = c • f x) :
mul_action α γ :=
{ smul := (•),
one_smul := λ x, hf $ (smul _ _).trans $ one_smul _ (f x),
mul_smul := λ c₁ c₂ x, hf $ by simp only [smul, mul_smul] }
/-- Pushforward a multiplicative action along a surjective map respecting `•`. -/
protected def function.surjective.mul_action [has_scalar α γ] (f : β → γ) (hf : surjective f)
(smul : ∀ (c : α) x, f (c • x) = c • f x) :
mul_action α γ :=
{ smul := (•),
one_smul := λ y, by { rcases hf y with ⟨x, rfl⟩, rw [← smul, one_smul] },
mul_smul := λ c₁ c₂ y, by { rcases hf y with ⟨x, rfl⟩, simp only [← smul, mul_smul] } }
section ite
variables (p : Prop) [decidable p]
lemma ite_smul (a₁ a₂ : α) (b : β) : (ite p a₁ a₂) • b = ite p (a₁ • b) (a₂ • b) :=
by split_ifs; refl
lemma smul_ite (a : α) (b₁ b₂ : β) : a • (ite p b₁ b₂) = ite p (a • b₁) (a • b₂) :=
by split_ifs; refl
end ite
namespace mul_action
variables (α)
/-- The regular action of a monoid on itself by left multiplication. -/
def regular : mul_action α α :=
{ smul := λ a₁ a₂, a₁ * a₂,
one_smul := λ a, one_mul a,
mul_smul := λ a₁ a₂ a₃, mul_assoc _ _ _, }
section regular
local attribute [instance] regular
instance is_scalar_tower.left : is_scalar_tower α α β :=
⟨λ x y z, mul_smul x y z⟩
end regular
variables (α β)
/-- Embedding induced by action. -/
def to_fun : β ↪ (α → β) :=
⟨λ y x, x • y, λ y₁ y₂ H, one_smul α y₁ ▸ one_smul α y₂ ▸ by convert congr_fun H 1⟩
variables {α β}
@[simp] lemma to_fun_apply (x : α) (y : β) : mul_action.to_fun α β y x = x • y :=
rfl
variable (β)
/-- An action of `α` on `β` and a monoid homomorphism `γ → α` induce an action of `γ` on `β`. -/
def comp_hom [monoid γ] (g : γ →* α) :
mul_action γ β :=
{ smul := λ x b, (g x) • b,
one_smul := by simp [g.map_one, mul_action.one_smul],
mul_smul := by simp [g.map_mul, mul_action.mul_smul] }
end mul_action
end
section compatible_scalar
@[simp] lemma smul_one_smul {M} (N) [monoid N] [has_scalar M N] [mul_action N α] [has_scalar M α]
[is_scalar_tower M N α] (x : M) (y : α) :
(x • (1 : N)) • y = x • y :=
by rw [smul_assoc, one_smul]
end compatible_scalar
/-- Typeclass for multiplicative actions on additive structures. This generalizes group modules. -/
class distrib_mul_action (α : Type u) (β : Type v) [monoid α] [add_monoid β]
extends mul_action α β :=
(smul_add : ∀(r : α) (x y : β), r • (x + y) = r • x + r • y)
(smul_zero : ∀(r : α), r • (0 : β) = 0)
section
variables [monoid α] [add_monoid β] [distrib_mul_action α β]
theorem smul_add (a : α) (b₁ b₂ : β) : a • (b₁ + b₂) = a • b₁ + a • b₂ :=
distrib_mul_action.smul_add _ _ _
@[simp] theorem smul_zero (a : α) : a • (0 : β) = 0 :=
distrib_mul_action.smul_zero _
/-- Pullback a distributive multiplicative action along an injective additive monoid
homomorphism. -/
protected def function.injective.distrib_mul_action [add_monoid γ] [has_scalar α γ] (f : γ →+ β)
(hf : injective f) (smul : ∀ (c : α) x, f (c • x) = c • f x) :
distrib_mul_action α γ :=
{ smul := (•),
smul_add := λ c x y, hf $ by simp only [smul, f.map_add, smul_add],
smul_zero := λ c, hf $ by simp only [smul, f.map_zero, smul_zero],
.. hf.mul_action f smul }
/-- Pushforward a distributive multiplicative action along a surjective additive monoid
homomorphism.-/
protected def function.surjective.distrib_mul_action [add_monoid γ] [has_scalar α γ] (f : β →+ γ)
(hf : surjective f) (smul : ∀ (c : α) x, f (c • x) = c • f x) :
distrib_mul_action α γ :=
{ smul := (•),
smul_add := λ c x y, by { rcases hf x with ⟨x, rfl⟩, rcases hf y with ⟨y, rfl⟩,
simp only [smul_add, ← smul, ← f.map_add] },
smul_zero := λ c, by simp only [← f.map_zero, ← smul, smul_zero],
.. hf.mul_action f smul }
variable (β)
/-- Scalar multiplication by `r` as an `add_monoid_hom`. -/
def const_smul_hom (r : α) : β →+ β :=
{ to_fun := (•) r,
map_zero' := smul_zero r,
map_add' := smul_add r }
variable {β}
@[simp] lemma const_smul_hom_apply (r : α) (x : β) :
const_smul_hom β r x = r • x := rfl
end
section
variables [monoid α] [add_group β] [distrib_mul_action α β]
@[simp] theorem smul_neg (r : α) (x : β) : r • (-x) = -(r • x) :=
eq_neg_of_add_eq_zero $ by rw [← smul_add, neg_add_self, smul_zero]
theorem smul_sub (r : α) (x y : β) : r • (x - y) = r • x - r • y :=
by rw [sub_eq_add_neg, sub_eq_add_neg, smul_add, smul_neg]
end
|
b5d46221f90fa68172e763f8f20c4310ee3d283d
|
592ee40978ac7604005a4e0d35bbc4b467389241
|
/Library/generated/mathscheme-lean/NonassociativeRing.lean
|
86bfc22b915f6ef2416b8db75bccf53be6694f7c
|
[] |
no_license
|
ysharoda/Deriving-Definitions
|
3e149e6641fae440badd35ac110a0bd705a49ad2
|
dfecb27572022de3d4aa702cae8db19957523a59
|
refs/heads/master
| 1,679,127,857,700
| 1,615,939,007,000
| 1,615,939,007,000
| 229,785,731
| 4
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 13,993
|
lean
|
import init.data.nat.basic
import init.data.fin.basic
import data.vector
import .Prelude
open Staged
open nat
open fin
open vector
section NonassociativeRing
structure NonassociativeRing (A : Type) : Type :=
(times : (A → (A → A)))
(plus : (A → (A → A)))
(one : A)
(lunit_one : (∀ {x : A} , (times one x) = x))
(runit_one : (∀ {x : A} , (times x one) = x))
(associative_times : (∀ {x y z : A} , (times (times x y) z) = (times x (times y z))))
(inv : (A → A))
(leftInverse_inv_op_one : (∀ {x : A} , (times x (inv x)) = one))
(rightInverse_inv_op_one : (∀ {x : A} , (times (inv x) x) = one))
(commutative_times : (∀ {x y : A} , (times x y) = (times y x)))
(leftDistributive_times_plus : (∀ {x y z : A} , (times x (plus y z)) = (plus (times x y) (times x z))))
(rightDistributive_times_plus : (∀ {x y z : A} , (times (plus y z) x) = (plus (times y x) (times z x))))
open NonassociativeRing
structure Sig (AS : Type) : Type :=
(timesS : (AS → (AS → AS)))
(plusS : (AS → (AS → AS)))
(oneS : AS)
(invS : (AS → AS))
structure Product (A : Type) : Type :=
(timesP : ((Prod A A) → ((Prod A A) → (Prod A A))))
(plusP : ((Prod A A) → ((Prod A A) → (Prod A A))))
(oneP : (Prod A A))
(invP : ((Prod A A) → (Prod A A)))
(lunit_1P : (∀ {xP : (Prod A A)} , (timesP oneP xP) = xP))
(runit_1P : (∀ {xP : (Prod A A)} , (timesP xP oneP) = xP))
(associative_timesP : (∀ {xP yP zP : (Prod A A)} , (timesP (timesP xP yP) zP) = (timesP xP (timesP yP zP))))
(leftInverse_inv_op_1P : (∀ {xP : (Prod A A)} , (timesP xP (invP xP)) = oneP))
(rightInverse_inv_op_1P : (∀ {xP : (Prod A A)} , (timesP (invP xP) xP) = oneP))
(commutative_timesP : (∀ {xP yP : (Prod A A)} , (timesP xP yP) = (timesP yP xP)))
(leftDistributive_times_plusP : (∀ {xP yP zP : (Prod A A)} , (timesP xP (plusP yP zP)) = (plusP (timesP xP yP) (timesP xP zP))))
(rightDistributive_times_plusP : (∀ {xP yP zP : (Prod A A)} , (timesP (plusP yP zP) xP) = (plusP (timesP yP xP) (timesP zP xP))))
structure Hom {A1 : Type} {A2 : Type} (No1 : (NonassociativeRing A1)) (No2 : (NonassociativeRing A2)) : Type :=
(hom : (A1 → A2))
(pres_times : (∀ {x1 x2 : A1} , (hom ((times No1) x1 x2)) = ((times No2) (hom x1) (hom x2))))
(pres_plus : (∀ {x1 x2 : A1} , (hom ((plus No1) x1 x2)) = ((plus No2) (hom x1) (hom x2))))
(pres_one : (hom (one No1)) = (one No2))
(pres_inv : (∀ {x1 : A1} , (hom ((inv No1) x1)) = ((inv No2) (hom x1))))
structure RelInterp {A1 : Type} {A2 : Type} (No1 : (NonassociativeRing A1)) (No2 : (NonassociativeRing A2)) : Type 1 :=
(interp : (A1 → (A2 → Type)))
(interp_times : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((times No1) x1 x2) ((times No2) y1 y2))))))
(interp_plus : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((plus No1) x1 x2) ((plus No2) y1 y2))))))
(interp_one : (interp (one No1) (one No2)))
(interp_inv : (∀ {x1 : A1} {y1 : A2} , ((interp x1 y1) → (interp ((inv No1) x1) ((inv No2) y1)))))
inductive NonassociativeRingTerm : Type
| timesL : (NonassociativeRingTerm → (NonassociativeRingTerm → NonassociativeRingTerm))
| plusL : (NonassociativeRingTerm → (NonassociativeRingTerm → NonassociativeRingTerm))
| oneL : NonassociativeRingTerm
| invL : (NonassociativeRingTerm → NonassociativeRingTerm)
open NonassociativeRingTerm
inductive ClNonassociativeRingTerm (A : Type) : Type
| sing : (A → ClNonassociativeRingTerm)
| timesCl : (ClNonassociativeRingTerm → (ClNonassociativeRingTerm → ClNonassociativeRingTerm))
| plusCl : (ClNonassociativeRingTerm → (ClNonassociativeRingTerm → ClNonassociativeRingTerm))
| oneCl : ClNonassociativeRingTerm
| invCl : (ClNonassociativeRingTerm → ClNonassociativeRingTerm)
open ClNonassociativeRingTerm
inductive OpNonassociativeRingTerm (n : ℕ) : Type
| v : ((fin n) → OpNonassociativeRingTerm)
| timesOL : (OpNonassociativeRingTerm → (OpNonassociativeRingTerm → OpNonassociativeRingTerm))
| plusOL : (OpNonassociativeRingTerm → (OpNonassociativeRingTerm → OpNonassociativeRingTerm))
| oneOL : OpNonassociativeRingTerm
| invOL : (OpNonassociativeRingTerm → OpNonassociativeRingTerm)
open OpNonassociativeRingTerm
inductive OpNonassociativeRingTerm2 (n : ℕ) (A : Type) : Type
| v2 : ((fin n) → OpNonassociativeRingTerm2)
| sing2 : (A → OpNonassociativeRingTerm2)
| timesOL2 : (OpNonassociativeRingTerm2 → (OpNonassociativeRingTerm2 → OpNonassociativeRingTerm2))
| plusOL2 : (OpNonassociativeRingTerm2 → (OpNonassociativeRingTerm2 → OpNonassociativeRingTerm2))
| oneOL2 : OpNonassociativeRingTerm2
| invOL2 : (OpNonassociativeRingTerm2 → OpNonassociativeRingTerm2)
open OpNonassociativeRingTerm2
def simplifyCl {A : Type} : ((ClNonassociativeRingTerm A) → (ClNonassociativeRingTerm A))
| (timesCl oneCl x) := x
| (timesCl x oneCl) := x
| (timesCl x1 x2) := (timesCl (simplifyCl x1) (simplifyCl x2))
| (plusCl x1 x2) := (plusCl (simplifyCl x1) (simplifyCl x2))
| oneCl := oneCl
| (invCl x1) := (invCl (simplifyCl x1))
| (sing x1) := (sing x1)
def simplifyOpB {n : ℕ} : ((OpNonassociativeRingTerm n) → (OpNonassociativeRingTerm n))
| (timesOL oneOL x) := x
| (timesOL x oneOL) := x
| (timesOL x1 x2) := (timesOL (simplifyOpB x1) (simplifyOpB x2))
| (plusOL x1 x2) := (plusOL (simplifyOpB x1) (simplifyOpB x2))
| oneOL := oneOL
| (invOL x1) := (invOL (simplifyOpB x1))
| (v x1) := (v x1)
def simplifyOp {n : ℕ} {A : Type} : ((OpNonassociativeRingTerm2 n A) → (OpNonassociativeRingTerm2 n A))
| (timesOL2 oneOL2 x) := x
| (timesOL2 x oneOL2) := x
| (timesOL2 x1 x2) := (timesOL2 (simplifyOp x1) (simplifyOp x2))
| (plusOL2 x1 x2) := (plusOL2 (simplifyOp x1) (simplifyOp x2))
| oneOL2 := oneOL2
| (invOL2 x1) := (invOL2 (simplifyOp x1))
| (v2 x1) := (v2 x1)
| (sing2 x1) := (sing2 x1)
def evalB {A : Type} : ((NonassociativeRing A) → (NonassociativeRingTerm → A))
| No (timesL x1 x2) := ((times No) (evalB No x1) (evalB No x2))
| No (plusL x1 x2) := ((plus No) (evalB No x1) (evalB No x2))
| No oneL := (one No)
| No (invL x1) := ((inv No) (evalB No x1))
def evalCl {A : Type} : ((NonassociativeRing A) → ((ClNonassociativeRingTerm A) → A))
| No (sing x1) := x1
| No (timesCl x1 x2) := ((times No) (evalCl No x1) (evalCl No x2))
| No (plusCl x1 x2) := ((plus No) (evalCl No x1) (evalCl No x2))
| No oneCl := (one No)
| No (invCl x1) := ((inv No) (evalCl No x1))
def evalOpB {A : Type} {n : ℕ} : ((NonassociativeRing A) → ((vector A n) → ((OpNonassociativeRingTerm n) → A)))
| No vars (v x1) := (nth vars x1)
| No vars (timesOL x1 x2) := ((times No) (evalOpB No vars x1) (evalOpB No vars x2))
| No vars (plusOL x1 x2) := ((plus No) (evalOpB No vars x1) (evalOpB No vars x2))
| No vars oneOL := (one No)
| No vars (invOL x1) := ((inv No) (evalOpB No vars x1))
def evalOp {A : Type} {n : ℕ} : ((NonassociativeRing A) → ((vector A n) → ((OpNonassociativeRingTerm2 n A) → A)))
| No vars (v2 x1) := (nth vars x1)
| No vars (sing2 x1) := x1
| No vars (timesOL2 x1 x2) := ((times No) (evalOp No vars x1) (evalOp No vars x2))
| No vars (plusOL2 x1 x2) := ((plus No) (evalOp No vars x1) (evalOp No vars x2))
| No vars oneOL2 := (one No)
| No vars (invOL2 x1) := ((inv No) (evalOp No vars x1))
def inductionB {P : (NonassociativeRingTerm → Type)} : ((∀ (x1 x2 : NonassociativeRingTerm) , ((P x1) → ((P x2) → (P (timesL x1 x2))))) → ((∀ (x1 x2 : NonassociativeRingTerm) , ((P x1) → ((P x2) → (P (plusL x1 x2))))) → ((P oneL) → ((∀ (x1 : NonassociativeRingTerm) , ((P x1) → (P (invL x1)))) → (∀ (x : NonassociativeRingTerm) , (P x))))))
| ptimesl pplusl p1l pinvl (timesL x1 x2) := (ptimesl _ _ (inductionB ptimesl pplusl p1l pinvl x1) (inductionB ptimesl pplusl p1l pinvl x2))
| ptimesl pplusl p1l pinvl (plusL x1 x2) := (pplusl _ _ (inductionB ptimesl pplusl p1l pinvl x1) (inductionB ptimesl pplusl p1l pinvl x2))
| ptimesl pplusl p1l pinvl oneL := p1l
| ptimesl pplusl p1l pinvl (invL x1) := (pinvl _ (inductionB ptimesl pplusl p1l pinvl x1))
def inductionCl {A : Type} {P : ((ClNonassociativeRingTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 x2 : (ClNonassociativeRingTerm A)) , ((P x1) → ((P x2) → (P (timesCl x1 x2))))) → ((∀ (x1 x2 : (ClNonassociativeRingTerm A)) , ((P x1) → ((P x2) → (P (plusCl x1 x2))))) → ((P oneCl) → ((∀ (x1 : (ClNonassociativeRingTerm A)) , ((P x1) → (P (invCl x1)))) → (∀ (x : (ClNonassociativeRingTerm A)) , (P x)))))))
| psing ptimescl ppluscl p1cl pinvcl (sing x1) := (psing x1)
| psing ptimescl ppluscl p1cl pinvcl (timesCl x1 x2) := (ptimescl _ _ (inductionCl psing ptimescl ppluscl p1cl pinvcl x1) (inductionCl psing ptimescl ppluscl p1cl pinvcl x2))
| psing ptimescl ppluscl p1cl pinvcl (plusCl x1 x2) := (ppluscl _ _ (inductionCl psing ptimescl ppluscl p1cl pinvcl x1) (inductionCl psing ptimescl ppluscl p1cl pinvcl x2))
| psing ptimescl ppluscl p1cl pinvcl oneCl := p1cl
| psing ptimescl ppluscl p1cl pinvcl (invCl x1) := (pinvcl _ (inductionCl psing ptimescl ppluscl p1cl pinvcl x1))
def inductionOpB {n : ℕ} {P : ((OpNonassociativeRingTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 x2 : (OpNonassociativeRingTerm n)) , ((P x1) → ((P x2) → (P (timesOL x1 x2))))) → ((∀ (x1 x2 : (OpNonassociativeRingTerm n)) , ((P x1) → ((P x2) → (P (plusOL x1 x2))))) → ((P oneOL) → ((∀ (x1 : (OpNonassociativeRingTerm n)) , ((P x1) → (P (invOL x1)))) → (∀ (x : (OpNonassociativeRingTerm n)) , (P x)))))))
| pv ptimesol pplusol p1ol pinvol (v x1) := (pv x1)
| pv ptimesol pplusol p1ol pinvol (timesOL x1 x2) := (ptimesol _ _ (inductionOpB pv ptimesol pplusol p1ol pinvol x1) (inductionOpB pv ptimesol pplusol p1ol pinvol x2))
| pv ptimesol pplusol p1ol pinvol (plusOL x1 x2) := (pplusol _ _ (inductionOpB pv ptimesol pplusol p1ol pinvol x1) (inductionOpB pv ptimesol pplusol p1ol pinvol x2))
| pv ptimesol pplusol p1ol pinvol oneOL := p1ol
| pv ptimesol pplusol p1ol pinvol (invOL x1) := (pinvol _ (inductionOpB pv ptimesol pplusol p1ol pinvol x1))
def inductionOp {n : ℕ} {A : Type} {P : ((OpNonassociativeRingTerm2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 x2 : (OpNonassociativeRingTerm2 n A)) , ((P x1) → ((P x2) → (P (timesOL2 x1 x2))))) → ((∀ (x1 x2 : (OpNonassociativeRingTerm2 n A)) , ((P x1) → ((P x2) → (P (plusOL2 x1 x2))))) → ((P oneOL2) → ((∀ (x1 : (OpNonassociativeRingTerm2 n A)) , ((P x1) → (P (invOL2 x1)))) → (∀ (x : (OpNonassociativeRingTerm2 n A)) , (P x))))))))
| pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 (v2 x1) := (pv2 x1)
| pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 (sing2 x1) := (psing2 x1)
| pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 (timesOL2 x1 x2) := (ptimesol2 _ _ (inductionOp pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 x1) (inductionOp pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 x2))
| pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 (plusOL2 x1 x2) := (pplusol2 _ _ (inductionOp pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 x1) (inductionOp pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 x2))
| pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 oneOL2 := p1ol2
| pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 (invOL2 x1) := (pinvol2 _ (inductionOp pv2 psing2 ptimesol2 pplusol2 p1ol2 pinvol2 x1))
def stageB : (NonassociativeRingTerm → (Staged NonassociativeRingTerm))
| (timesL x1 x2) := (stage2 timesL (codeLift2 timesL) (stageB x1) (stageB x2))
| (plusL x1 x2) := (stage2 plusL (codeLift2 plusL) (stageB x1) (stageB x2))
| oneL := (Now oneL)
| (invL x1) := (stage1 invL (codeLift1 invL) (stageB x1))
def stageCl {A : Type} : ((ClNonassociativeRingTerm A) → (Staged (ClNonassociativeRingTerm A)))
| (sing x1) := (Now (sing x1))
| (timesCl x1 x2) := (stage2 timesCl (codeLift2 timesCl) (stageCl x1) (stageCl x2))
| (plusCl x1 x2) := (stage2 plusCl (codeLift2 plusCl) (stageCl x1) (stageCl x2))
| oneCl := (Now oneCl)
| (invCl x1) := (stage1 invCl (codeLift1 invCl) (stageCl x1))
def stageOpB {n : ℕ} : ((OpNonassociativeRingTerm n) → (Staged (OpNonassociativeRingTerm n)))
| (v x1) := (const (code (v x1)))
| (timesOL x1 x2) := (stage2 timesOL (codeLift2 timesOL) (stageOpB x1) (stageOpB x2))
| (plusOL x1 x2) := (stage2 plusOL (codeLift2 plusOL) (stageOpB x1) (stageOpB x2))
| oneOL := (Now oneOL)
| (invOL x1) := (stage1 invOL (codeLift1 invOL) (stageOpB x1))
def stageOp {n : ℕ} {A : Type} : ((OpNonassociativeRingTerm2 n A) → (Staged (OpNonassociativeRingTerm2 n A)))
| (sing2 x1) := (Now (sing2 x1))
| (v2 x1) := (const (code (v2 x1)))
| (timesOL2 x1 x2) := (stage2 timesOL2 (codeLift2 timesOL2) (stageOp x1) (stageOp x2))
| (plusOL2 x1 x2) := (stage2 plusOL2 (codeLift2 plusOL2) (stageOp x1) (stageOp x2))
| oneOL2 := (Now oneOL2)
| (invOL2 x1) := (stage1 invOL2 (codeLift1 invOL2) (stageOp x1))
structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type :=
(timesT : ((Repr A) → ((Repr A) → (Repr A))))
(plusT : ((Repr A) → ((Repr A) → (Repr A))))
(oneT : (Repr A))
(invT : ((Repr A) → (Repr A)))
end NonassociativeRing
|
b1de76406e0d37b81ee3f97f18a307f7257d3af9
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/run/assert_tac.lean
|
ad95c5112593da4a09fd156c24ef3ed61405e7a4
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 1,336
|
lean
|
import logic
variables {A : Type} {a a' : A}
definition to_eq₁ (H : a == a') : a = a' :=
begin
assert H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a,
intro Ht,
exact (eq.refl (eq.rec_on Ht a)),
show a = a', from
heq.rec_on H H₁ (eq.refl A)
end
definition to_eq₂ (H : a == a') : a = a' :=
begin
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a,
begin
intro Ht,
exact (eq.refl (eq.rec_on Ht a))
end,
show a = a', from
heq.rec_on H H₁ (eq.refl A)
end
definition to_eq₃ (H : a == a') : a = a' :=
begin
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a,
by intro Ht; exact (eq.refl (eq.rec_on Ht a)),
show a = a', from
heq.rec_on H H₁ (eq.refl A)
end
definition to_eq₄ (H : a == a') : a = a' :=
begin
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a,
from assume Ht, eq.refl (eq.rec_on Ht a),
show a = a', from
heq.rec_on H H₁ (eq.refl A)
end
definition to_eq₅ (H : a == a') : a = a' :=
begin
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a,
proof
λ Ht, eq.refl (eq.rec_on Ht a)
qed,
show a = a', from
heq.rec_on H H₁ (eq.refl A)
end
definition to_eq₆ (H : a == a') : a = a' :=
begin
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
assume Ht,
eq.refl (eq.rec_on Ht a),
show a = a', from
heq.rec_on H H₁ (eq.refl A)
end
|
c5b912ca1bad03ed5428f57e16c4379409abc695
|
ebfc36a919e0b75a83886ec635f471d7f2dca171
|
/archive/2021/AoC/Day1.lean
|
ca97ead0cb46b6d28d91eaca6f676d28994e0e8c
|
[] |
no_license
|
kaychaks/AoC
|
b933a125e2c55f632c7728eea841d827d1b5ef38
|
962cc536dda5156ac0b624f156146bf6d12ad8d2
|
refs/heads/master
| 1,671,715,037,914
| 1,671,632,408,000
| 1,671,632,408,000
| 160,005,656
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,954
|
lean
|
namespace Day1
open IO.FS
section Common
variable {α β γ ζ : Type u}
variable {a : Type u -> Type v}
def liftA3 [Applicative a] (f: α -> β -> γ -> ζ) (x: a α) (y: a β) (z: a γ) : a ζ := f <$> x <*> y <*> z
end Common
section Part1
open Prod
def measureLarge (x: Nat × String) (z: String) : Nat × String :=
if x.snd.toNat! < z.toNat! then (x.fst + 1, z) else (x.fst, z)
def measureLargeNat (x: Nat × Nat) (z: Nat) : Nat × Nat :=
if x.snd < z then (x.fst + 1, z) else (x.fst, z)
def totalIncr (s: Sum Nat String) (xs: Array String := #[]) (ys: Array Nat := #[]): Nat :=
match s with
| Sum.inr _ => Prod.fst <| Array.foldl measureLarge (0, Array.get! xs 0) xs
| _ => Prod.fst <| Array.foldl measureLargeNat (0, Array.get! ys 0) ys
end Part1
section Part2
def lookAheadSum? (xs: Array String) (idx: Nat) : OptionM Nat :=
let size := xs.size
if size = 0 then
Option.none
else
let x: OptionM Nat := String.toNat! <$> xs.get? idx
let y: OptionM Nat := String.toNat! <$> xs.get? (idx + 1)
let z: OptionM Nat := String.toNat! <$> xs.get? (idx + 2)
liftA3 (· + · + ·) x y z
def windowEndIndex (length: Nat): Nat := length - (length % 3)
/-
below code might look like imperative shit but Lean is smart enough
to convert the same via join points. So, everything gets converted
to functional code in the end
-/
def threeWindowSums (xs: Array String): Array Nat := do
let mut ys := #[]
for id in [:windowEndIndex xs.size] do
match (lookAheadSum? xs id) with
| some x => ys := ys.push x
| _ => ()
return ys
end Part2
def run : IO Unit := do
let day1 := "./data/day1.txt"
let readings <- lines day1
let part1Total := totalIncr (Sum.inr "") readings
let part2Total := totalIncr (Sum.inl 0) (ys := threeWindowSums readings)
IO.println (part1Total, part2Total)
end Day1
|
2ac281dc8f12b81b979943ff7d85e2d2f36d85df
|
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
|
/src/data/rat/basic.lean
|
b005167adf5abb18da0334c81635c23d0d02b75c
|
[
"Apache-2.0"
] |
permissive
|
keeferrowan/mathlib
|
f2818da875dbc7780830d09bd4c526b0764a4e50
|
aad2dfc40e8e6a7e258287a7c1580318e865817e
|
refs/heads/master
| 1,661,736,426,952
| 1,590,438,032,000
| 1,590,438,032,000
| 266,892,663
| 0
| 0
|
Apache-2.0
| 1,590,445,835,000
| 1,590,445,835,000
| null |
UTF-8
|
Lean
| false
| false
| 24,729
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import data.int.sqrt
import data.equiv.encodable
import algebra.group
import algebra.euclidean_domain
import algebra.ordered_field
/-!
# Basics for the Rational Numbers
## Summary
We define a rational number `q` as a structure `{ num, denom, pos, cop }`, where
- `num` is the numerator of `q`,
- `denom` is the denominator of `q`,
- `pos` is a proof that `denom > 0`, and
- `cop` is a proof `num` and `denom` are coprime.
We then define the expected (discrete) field structure on `ℚ` and prove basic lemmas about it.
Moreoever, we provide the expected casts from `ℕ` and `ℤ` into `ℚ`, i.e. `(↑n : ℚ) = n / 1`.
## Main Definitions
- `rat` is the structure encoding `ℚ`.
- `rat.mk n d` constructs a rational number `q = n / d` from `n d : ℤ`.
## Notations
- `/.` is infix notation for `rat.mk`.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom
-/
/-- `rat`, or `ℚ`, is the type of rational numbers. It is defined
as the set of pairs ⟨n, d⟩ of integers such that `d` is positive and `n` and
`d` are coprime. This representation is preferred to the quotient
because without periodic reduction, the numerator and denominator can grow
exponentially (for example, adding 1/2 to itself repeatedly). -/
structure rat := mk' ::
(num : ℤ)
(denom : ℕ)
(pos : 0 < denom)
(cop : num.nat_abs.coprime denom)
notation `ℚ` := rat
namespace rat
protected def repr : ℚ → string
| ⟨n, d, _, _⟩ := if d = 1 then _root_.repr n else
_root_.repr n ++ "/" ++ _root_.repr d
instance : has_repr ℚ := ⟨rat.repr⟩
instance : has_to_string ℚ := ⟨rat.repr⟩
meta instance : has_to_format ℚ := ⟨coe ∘ rat.repr⟩
instance : encodable ℚ := encodable.of_equiv (Σ n : ℤ, {d : ℕ // 0 < d ∧ n.nat_abs.coprime d})
⟨λ ⟨a, b, c, d⟩, ⟨a, b, c, d⟩, λ⟨a, b, c, d⟩, ⟨a, b, c, d⟩,
λ ⟨a, b, c, d⟩, rfl, λ⟨a, b, c, d⟩, rfl⟩
/-- Embed an integer as a rational number -/
def of_int (n : ℤ) : ℚ :=
⟨n, 1, nat.one_pos, nat.coprime_one_right _⟩
instance : has_zero ℚ := ⟨of_int 0⟩
instance : has_one ℚ := ⟨of_int 1⟩
instance : inhabited ℚ := ⟨0⟩
/-- Form the quotient `n / d` where `n:ℤ` and `d:ℕ+` (not necessarily coprime) -/
def mk_pnat (n : ℤ) : ℕ+ → ℚ | ⟨d, dpos⟩ :=
let n' := n.nat_abs, g := n'.gcd d in
⟨n / g, d / g, begin
apply (nat.le_div_iff_mul_le _ _ (nat.gcd_pos_of_pos_right _ dpos)).2,
simp, exact nat.le_of_dvd dpos (nat.gcd_dvd_right _ _)
end, begin
have : int.nat_abs (n / ↑g) = n' / g,
{ cases int.nat_abs_eq n with e e; rw e, { refl },
rw [int.neg_div_of_dvd, int.nat_abs_neg], { refl },
exact int.coe_nat_dvd.2 (nat.gcd_dvd_left _ _) },
rw this,
exact nat.coprime_div_gcd_div_gcd (nat.gcd_pos_of_pos_right _ dpos)
end⟩
/-- Form the quotient `n / d` where `n:ℤ` and `d:ℕ`. In the case `d = 0`, we
define `n / 0 = 0` by convention. -/
def mk_nat (n : ℤ) (d : ℕ) : ℚ :=
if d0 : d = 0 then 0 else mk_pnat n ⟨d, nat.pos_of_ne_zero d0⟩
/-- Form the quotient `n / d` where `n d : ℤ`. -/
def mk : ℤ → ℤ → ℚ
| n (d : ℕ) := mk_nat n d
| n -[1+ d] := mk_pnat (-n) d.succ_pnat
localized "infix ` /. `:70 := rat.mk" in rat
theorem mk_pnat_eq (n d h) : mk_pnat n ⟨d, h⟩ = n /. d :=
by change n /. d with dite _ _ _; simp [ne_of_gt h]
theorem mk_nat_eq (n d) : mk_nat n d = n /. d := rfl
@[simp] theorem mk_zero (n) : n /. 0 = 0 := rfl
@[simp] theorem zero_mk_pnat (n) : mk_pnat 0 n = 0 :=
by cases n; simp [mk_pnat]; change int.nat_abs 0 with 0; simp *; refl
@[simp] theorem zero_mk_nat (n) : mk_nat 0 n = 0 :=
by by_cases n = 0; simp [*, mk_nat]
@[simp] theorem zero_mk (n) : 0 /. n = 0 :=
by cases n; simp [mk]
private lemma gcd_abs_dvd_left {a b} : (nat.gcd (int.nat_abs a) b : ℤ) ∣ a :=
int.dvd_nat_abs.1 $ int.coe_nat_dvd.2 $ nat.gcd_dvd_left (int.nat_abs a) b
@[simp] theorem mk_eq_zero {a b : ℤ} (b0 : b ≠ 0) : a /. b = 0 ↔ a = 0 :=
begin
constructor; intro h; [skip, {subst a, simp}],
have : ∀ {a b}, mk_pnat a b = 0 → a = 0,
{ intros a b e, cases b with b h,
injection e with e,
apply int.eq_mul_of_div_eq_right gcd_abs_dvd_left e },
cases b with b; simp [mk, mk_nat] at h,
{ simp [mt (congr_arg int.of_nat) b0] at h,
exact this h },
{ apply neg_inj, simp [this h] }
end
theorem mk_eq : ∀ {a b c d : ℤ} (hb : b ≠ 0) (hd : d ≠ 0),
a /. b = c /. d ↔ a * d = c * b :=
suffices ∀ a b c d hb hd, mk_pnat a ⟨b, hb⟩ = mk_pnat c ⟨d, hd⟩ ↔ a * d = c * b,
begin
intros, cases b with b b; simp [mk, mk_nat, nat.succ_pnat],
simp [mt (congr_arg int.of_nat) hb],
all_goals {
cases d with d d; simp [mk, mk_nat, nat.succ_pnat],
simp [mt (congr_arg int.of_nat) hd],
all_goals { rw this, try {refl} } },
{ change a * ↑(d.succ) = -c * ↑b ↔ a * -(d.succ) = c * b,
constructor; intro h; apply neg_inj; simpa [left_distrib, neg_add_eq_iff_eq_add,
eq_neg_iff_add_eq_zero, neg_eq_iff_add_eq_zero] using h },
{ change -a * ↑d = c * b.succ ↔ a * d = c * -b.succ,
constructor; intro h; apply neg_inj; simpa [left_distrib, eq_comm] using h },
{ change -a * d.succ = -c * b.succ ↔ a * -d.succ = c * -b.succ,
simp [left_distrib, sub_eq_add_neg], cc }
end,
begin
intros, simp [mk_pnat], constructor; intro h,
{ cases h with ha hb,
have ha, {
have dv := @gcd_abs_dvd_left,
have := int.eq_mul_of_div_eq_right dv ha,
rw ← int.mul_div_assoc _ dv at this,
exact int.eq_mul_of_div_eq_left (dvd_mul_of_dvd_right dv _) this.symm },
have hb, {
have dv := λ {a b}, nat.gcd_dvd_right (int.nat_abs a) b,
have := nat.eq_mul_of_div_eq_right dv hb,
rw ← nat.mul_div_assoc _ dv at this,
exact nat.eq_mul_of_div_eq_left (dvd_mul_of_dvd_right dv _) this.symm },
have m0 : (a.nat_abs.gcd b * c.nat_abs.gcd d : ℤ) ≠ 0, {
refine int.coe_nat_ne_zero.2 (ne_of_gt _),
apply mul_pos; apply nat.gcd_pos_of_pos_right; assumption },
apply eq_of_mul_eq_mul_right m0,
simpa [mul_comm, mul_left_comm] using
congr (congr_arg (*) ha.symm) (congr_arg coe hb) },
{ suffices : ∀ a c, a * d = c * b →
a / a.gcd b = c / c.gcd d ∧ b / a.gcd b = d / c.gcd d,
{ cases this a.nat_abs c.nat_abs
(by simpa [int.nat_abs_mul] using congr_arg int.nat_abs h) with h₁ h₂,
have hs := congr_arg int.sign h,
simp [int.sign_eq_one_of_pos (int.coe_nat_lt.2 hb),
int.sign_eq_one_of_pos (int.coe_nat_lt.2 hd)] at hs,
conv in a { rw ← int.sign_mul_nat_abs a },
conv in c { rw ← int.sign_mul_nat_abs c },
rw [int.mul_div_assoc, int.mul_div_assoc],
exact ⟨congr (congr_arg (*) hs) (congr_arg coe h₁), h₂⟩,
all_goals { exact int.coe_nat_dvd.2 (nat.gcd_dvd_left _ _) } },
intros a c h,
suffices bd : b / a.gcd b = d / c.gcd d,
{ refine ⟨_, bd⟩,
apply nat.eq_of_mul_eq_mul_left hb,
rw [← nat.mul_div_assoc _ (nat.gcd_dvd_left _ _), mul_comm,
nat.mul_div_assoc _ (nat.gcd_dvd_right _ _), bd,
← nat.mul_div_assoc _ (nat.gcd_dvd_right _ _), h, mul_comm,
nat.mul_div_assoc _ (nat.gcd_dvd_left _ _)] },
suffices : ∀ {a c : ℕ} (b>0) (d>0),
a * d = c * b → b / a.gcd b ≤ d / c.gcd d,
{ exact le_antisymm (this _ hb _ hd h) (this _ hd _ hb h.symm) },
intros a c b hb d hd h,
have gb0 := nat.gcd_pos_of_pos_right a hb,
have gd0 := nat.gcd_pos_of_pos_right c hd,
apply nat.le_of_dvd,
apply (nat.le_div_iff_mul_le _ _ gd0).2,
simp, apply nat.le_of_dvd hd (nat.gcd_dvd_right _ _),
apply (nat.coprime_div_gcd_div_gcd gb0).symm.dvd_of_dvd_mul_left,
refine ⟨c / c.gcd d, _⟩,
rw [← nat.mul_div_assoc _ (nat.gcd_dvd_left _ _),
← nat.mul_div_assoc _ (nat.gcd_dvd_right _ _)],
apply congr_arg (/ c.gcd d),
rw [mul_comm, ← nat.mul_div_assoc _ (nat.gcd_dvd_left _ _),
mul_comm, h, nat.mul_div_assoc _ (nat.gcd_dvd_right _ _), mul_comm] }
end
@[simp] theorem div_mk_div_cancel_left {a b c : ℤ} (c0 : c ≠ 0) :
(a * c) /. (b * c) = a /. b :=
begin
by_cases b0 : b = 0, { subst b0, simp },
apply (mk_eq (mul_ne_zero b0 c0) b0).2, simp [mul_comm, mul_assoc]
end
@[simp] theorem num_denom : ∀ {a : ℚ}, a.num /. a.denom = a
| ⟨n, d, h, (c:_=1)⟩ := show mk_nat n d = _,
by simp [mk_nat, ne_of_gt h, mk_pnat, c]
theorem num_denom' {n d h c} : (⟨n, d, h, c⟩ : ℚ) = n /. d := num_denom.symm
theorem of_int_eq_mk (z : ℤ) : of_int z = z /. 1 := num_denom'
@[elab_as_eliminator] def {u} num_denom_cases_on {C : ℚ → Sort u}
: ∀ (a : ℚ) (H : ∀ n d, 0 < d → (int.nat_abs n).coprime d → C (n /. d)), C a
| ⟨n, d, h, c⟩ H := by rw num_denom'; exact H n d h c
@[elab_as_eliminator] def {u} num_denom_cases_on' {C : ℚ → Sort u}
(a : ℚ) (H : ∀ (n:ℤ) (d:ℕ), d ≠ 0 → C (n /. d)) : C a :=
num_denom_cases_on a $ λ n d h c,
H n d $ ne_of_gt h
theorem num_dvd (a) {b : ℤ} (b0 : b ≠ 0) : (a /. b).num ∣ a :=
begin
cases e : a /. b with n d h c,
rw [rat.num_denom', rat.mk_eq b0
(ne_of_gt (int.coe_nat_pos.2 h))] at e,
refine (int.nat_abs_dvd.1 $ int.dvd_nat_abs.1 $ int.coe_nat_dvd.2 $
c.dvd_of_dvd_mul_right _),
have := congr_arg int.nat_abs e,
simp [int.nat_abs_mul, int.nat_abs_of_nat] at this, simp [this]
end
theorem denom_dvd (a b : ℤ) : ((a /. b).denom : ℤ) ∣ b :=
begin
by_cases b0 : b = 0, {simp [b0]},
cases e : a /. b with n d h c,
rw [num_denom', mk_eq b0 (ne_of_gt (int.coe_nat_pos.2 h))] at e,
refine (int.dvd_nat_abs.1 $ int.coe_nat_dvd.2 $ c.symm.dvd_of_dvd_mul_left _),
rw [← int.nat_abs_mul, ← int.coe_nat_dvd, int.dvd_nat_abs, ← e], simp
end
protected def add : ℚ → ℚ → ℚ
| ⟨n₁, d₁, h₁, c₁⟩ ⟨n₂, d₂, h₂, c₂⟩ := mk_pnat (n₁ * d₂ + n₂ * d₁) ⟨d₁ * d₂, mul_pos h₁ h₂⟩
instance : has_add ℚ := ⟨rat.add⟩
theorem lift_binop_eq (f : ℚ → ℚ → ℚ) (f₁ : ℤ → ℤ → ℤ → ℤ → ℤ) (f₂ : ℤ → ℤ → ℤ → ℤ → ℤ)
(fv : ∀ {n₁ d₁ h₁ c₁ n₂ d₂ h₂ c₂},
f ⟨n₁, d₁, h₁, c₁⟩ ⟨n₂, d₂, h₂, c₂⟩ = f₁ n₁ d₁ n₂ d₂ /. f₂ n₁ d₁ n₂ d₂)
(f0 : ∀ {n₁ d₁ n₂ d₂} (d₁0 : d₁ ≠ 0) (d₂0 : d₂ ≠ 0), f₂ n₁ d₁ n₂ d₂ ≠ 0)
(a b c d : ℤ) (b0 : b ≠ 0) (d0 : d ≠ 0)
(H : ∀ {n₁ d₁ n₂ d₂} (h₁ : a * d₁ = n₁ * b) (h₂ : c * d₂ = n₂ * d),
f₁ n₁ d₁ n₂ d₂ * f₂ a b c d = f₁ a b c d * f₂ n₁ d₁ n₂ d₂) :
f (a /. b) (c /. d) = f₁ a b c d /. f₂ a b c d :=
begin
generalize ha : a /. b = x, cases x with n₁ d₁ h₁ c₁, rw num_denom' at ha,
generalize hc : c /. d = x, cases x with n₂ d₂ h₂ c₂, rw num_denom' at hc,
rw fv,
have d₁0 := ne_of_gt (int.coe_nat_lt.2 h₁),
have d₂0 := ne_of_gt (int.coe_nat_lt.2 h₂),
exact (mk_eq (f0 d₁0 d₂0) (f0 b0 d0)).2 (H ((mk_eq b0 d₁0).1 ha) ((mk_eq d0 d₂0).1 hc))
end
@[simp] theorem add_def {a b c d : ℤ} (b0 : b ≠ 0) (d0 : d ≠ 0) :
a /. b + c /. d = (a * d + c * b) /. (b * d) :=
begin
apply lift_binop_eq rat.add; intros; try {assumption},
{ apply mk_pnat_eq },
{ apply mul_ne_zero d₁0 d₂0 },
calc (n₁ * d₂ + n₂ * d₁) * (b * d) =
(n₁ * b) * d₂ * d + (n₂ * d) * (d₁ * b) : by simp [mul_add, mul_comm, mul_left_comm]
... = (a * d₁) * d₂ * d + (c * d₂) * (d₁ * b) : by rw [h₁, h₂]
... = (a * d + c * b) * (d₁ * d₂) : by simp [mul_add, mul_comm, mul_left_comm]
end
protected def neg : ℚ → ℚ
| ⟨n, d, h, c⟩ := ⟨-n, d, h, by simp [c]⟩
instance : has_neg ℚ := ⟨rat.neg⟩
@[simp] theorem neg_def {a b : ℤ} : -(a /. b) = -a /. b :=
begin
by_cases b0 : b = 0, { subst b0, simp, refl },
generalize ha : a /. b = x, cases x with n₁ d₁ h₁ c₁, rw num_denom' at ha,
show rat.mk' _ _ _ _ = _, rw num_denom',
have d0 := ne_of_gt (int.coe_nat_lt.2 h₁),
apply (mk_eq d0 b0).2, have h₁ := (mk_eq b0 d0).1 ha,
simp only [neg_mul_eq_neg_mul_symm, congr_arg has_neg.neg h₁]
end
protected def mul : ℚ → ℚ → ℚ
| ⟨n₁, d₁, h₁, c₁⟩ ⟨n₂, d₂, h₂, c₂⟩ := mk_pnat (n₁ * n₂) ⟨d₁ * d₂, mul_pos h₁ h₂⟩
instance : has_mul ℚ := ⟨rat.mul⟩
@[simp] theorem mul_def {a b c d : ℤ} (b0 : b ≠ 0) (d0 : d ≠ 0) :
(a /. b) * (c /. d) = (a * c) /. (b * d) :=
begin
apply lift_binop_eq rat.mul; intros; try {assumption},
{ apply mk_pnat_eq },
{ apply mul_ne_zero d₁0 d₂0 },
cc
end
protected def inv : ℚ → ℚ
| ⟨(n+1:ℕ), d, h, c⟩ := ⟨d, n+1, n.succ_pos, c.symm⟩
| ⟨0, d, h, c⟩ := 0
| ⟨-[1+ n], d, h, c⟩ := ⟨-d, n+1, n.succ_pos, nat.coprime.symm $ by simp; exact c⟩
instance : has_inv ℚ := ⟨rat.inv⟩
@[simp] theorem inv_def {a b : ℤ} : (a /. b)⁻¹ = b /. a :=
begin
by_cases a0 : a = 0, { subst a0, simp, refl },
by_cases b0 : b = 0, { subst b0, simp, refl },
generalize ha : a /. b = x, cases x with n d h c, rw num_denom' at ha,
refine eq.trans (_ : rat.inv ⟨n, d, h, c⟩ = d /. n) _,
{ cases n with n; [cases n with n, skip],
{ refl },
{ change int.of_nat n.succ with (n+1:ℕ),
unfold rat.inv, rw num_denom' },
{ unfold rat.inv, rw num_denom', refl } },
have n0 : n ≠ 0,
{ refine mt (λ (n0 : n = 0), _) a0,
subst n0, simp at ha,
exact (mk_eq_zero b0).1 ha },
have d0 := ne_of_gt (int.coe_nat_lt.2 h),
have ha := (mk_eq b0 d0).1 ha,
apply (mk_eq n0 a0).2,
cc
end
variables (a b c : ℚ)
protected theorem add_zero : a + 0 = a :=
num_denom_cases_on' a $ λ n d h,
by rw [← zero_mk d]; simp [h, -zero_mk]
protected theorem zero_add : 0 + a = a :=
num_denom_cases_on' a $ λ n d h,
by rw [← zero_mk d]; simp [h, -zero_mk]
protected theorem add_comm : a + b = b + a :=
num_denom_cases_on' a $ λ n₁ d₁ h₁,
num_denom_cases_on' b $ λ n₂ d₂ h₂,
by simp [h₁, h₂]; cc
protected theorem add_assoc : a + b + c = a + (b + c) :=
num_denom_cases_on' a $ λ n₁ d₁ h₁,
num_denom_cases_on' b $ λ n₂ d₂ h₂,
num_denom_cases_on' c $ λ n₃ d₃ h₃,
by simp [h₁, h₂, h₃, mul_ne_zero, mul_add, mul_comm, mul_left_comm, add_left_comm, add_assoc]
protected theorem add_left_neg : -a + a = 0 :=
num_denom_cases_on' a $ λ n d h,
by simp [h]
protected theorem mul_one : a * 1 = a :=
num_denom_cases_on' a $ λ n d h,
by change (1:ℚ) with 1 /. 1; simp [h]
protected theorem one_mul : 1 * a = a :=
num_denom_cases_on' a $ λ n d h,
by change (1:ℚ) with 1 /. 1; simp [h]
protected theorem mul_comm : a * b = b * a :=
num_denom_cases_on' a $ λ n₁ d₁ h₁,
num_denom_cases_on' b $ λ n₂ d₂ h₂,
by simp [h₁, h₂, mul_comm]
protected theorem mul_assoc : a * b * c = a * (b * c) :=
num_denom_cases_on' a $ λ n₁ d₁ h₁,
num_denom_cases_on' b $ λ n₂ d₂ h₂,
num_denom_cases_on' c $ λ n₃ d₃ h₃,
by simp [h₁, h₂, h₃, mul_ne_zero, mul_comm, mul_left_comm]
protected theorem add_mul : (a + b) * c = a * c + b * c :=
num_denom_cases_on' a $ λ n₁ d₁ h₁,
num_denom_cases_on' b $ λ n₂ d₂ h₂,
num_denom_cases_on' c $ λ n₃ d₃ h₃,
by simp [h₁, h₂, h₃, mul_ne_zero];
refine (div_mk_div_cancel_left (int.coe_nat_ne_zero.2 h₃)).symm.trans _;
simp [mul_add, mul_comm, mul_assoc, mul_left_comm]
protected theorem mul_add : a * (b + c) = a * b + a * c :=
by rw [rat.mul_comm, rat.add_mul, rat.mul_comm, rat.mul_comm c a]
protected theorem zero_ne_one : 0 ≠ (1:ℚ) :=
mt (λ (h : 0 = 1 /. 1), (mk_eq_zero one_ne_zero).1 h.symm) one_ne_zero
protected theorem mul_inv_cancel : a ≠ 0 → a * a⁻¹ = 1 :=
num_denom_cases_on' a $ λ n d h a0,
have n0 : n ≠ 0, from mt (by intro e; subst e; simp) a0,
by simp [h, n0, mul_comm]; exact
eq.trans (by simp) (@div_mk_div_cancel_left 1 1 _ n0)
protected theorem inv_mul_cancel (h : a ≠ 0) : a⁻¹ * a = 1 :=
eq.trans (rat.mul_comm _ _) (rat.mul_inv_cancel _ h)
instance : decidable_eq ℚ := by tactic.mk_dec_eq_instance
instance : field ℚ :=
{ zero := 0,
add := rat.add,
neg := rat.neg,
one := 1,
mul := rat.mul,
inv := rat.inv,
zero_add := rat.zero_add,
add_zero := rat.add_zero,
add_comm := rat.add_comm,
add_assoc := rat.add_assoc,
add_left_neg := rat.add_left_neg,
mul_one := rat.mul_one,
one_mul := rat.one_mul,
mul_comm := rat.mul_comm,
mul_assoc := rat.mul_assoc,
left_distrib := rat.mul_add,
right_distrib := rat.add_mul,
zero_ne_one := rat.zero_ne_one,
mul_inv_cancel := rat.mul_inv_cancel,
inv_zero := rfl }
/- Extra instances to short-circuit type class resolution -/
instance : division_ring ℚ := by apply_instance
instance : integral_domain ℚ := by apply_instance
-- TODO(Mario): this instance slows down data.real.basic
--instance : domain ℚ := by apply_instance
instance : nonzero_comm_ring ℚ := by apply_instance
instance : comm_ring ℚ := by apply_instance
--instance : ring ℚ := by apply_instance
instance : comm_semiring ℚ := by apply_instance
instance : semiring ℚ := by apply_instance
instance : add_comm_group ℚ := by apply_instance
instance : add_group ℚ := by apply_instance
instance : add_comm_monoid ℚ := by apply_instance
instance : add_monoid ℚ := by apply_instance
instance : add_left_cancel_semigroup ℚ := by apply_instance
instance : add_right_cancel_semigroup ℚ := by apply_instance
instance : add_comm_semigroup ℚ := by apply_instance
instance : add_semigroup ℚ := by apply_instance
instance : comm_monoid ℚ := by apply_instance
instance : monoid ℚ := by apply_instance
instance : comm_semigroup ℚ := by apply_instance
instance : semigroup ℚ := by apply_instance
theorem sub_def {a b c d : ℤ} (b0 : b ≠ 0) (d0 : d ≠ 0) :
a /. b - c /. d = (a * d - c * b) /. (b * d) :=
by simp [b0, d0, sub_eq_add_neg]
@[simp] lemma denom_neg_eq_denom : ∀ q : ℚ, (-q).denom = q.denom
| ⟨_, d, _, _⟩ := rfl
@[simp] lemma num_neg_eq_neg_num : ∀ q : ℚ, (-q).num = -(q.num)
| ⟨n, _, _, _⟩ := rfl
@[simp] lemma num_zero : rat.num 0 = 0 := rfl
lemma zero_of_num_zero {q : ℚ} (hq : q.num = 0) : q = 0 :=
have q = q.num /. q.denom, from num_denom.symm,
by simpa [hq]
lemma zero_iff_num_zero {q : ℚ} : q = 0 ↔ q.num = 0 :=
⟨λ _, by simp *, zero_of_num_zero⟩
lemma num_ne_zero_of_ne_zero {q : ℚ} (h : q ≠ 0) : q.num ≠ 0 :=
assume : q.num = 0,
h $ zero_of_num_zero this
@[simp] lemma num_one : (1 : ℚ).num = 1 := rfl
@[simp] lemma denom_one : (1 : ℚ).denom = 1 := rfl
lemma denom_ne_zero (q : ℚ) : q.denom ≠ 0 :=
ne_of_gt q.pos
lemma eq_iff_mul_eq_mul {p q : ℚ} : p = q ↔ p.num * q.denom = q.num * p.denom :=
begin
conv_lhs { rw [←(@num_denom p), ←(@num_denom q)] },
apply rat.mk_eq,
{ exact_mod_cast p.denom_ne_zero },
{ exact_mod_cast q.denom_ne_zero }
end
lemma mk_num_ne_zero_of_ne_zero {q : ℚ} {n d : ℤ} (hq : q ≠ 0) (hqnd : q = n /. d) : n ≠ 0 :=
assume : n = 0,
hq $ by simpa [this] using hqnd
lemma mk_denom_ne_zero_of_ne_zero {q : ℚ} {n d : ℤ} (hq : q ≠ 0) (hqnd : q = n /. d) : d ≠ 0 :=
assume : d = 0,
hq $ by simpa [this] using hqnd
lemma mk_ne_zero_of_ne_zero {n d : ℤ} (h : n ≠ 0) (hd : d ≠ 0) : n /. d ≠ 0 :=
assume : n /. d = 0,
h $ (mk_eq_zero hd).1 this
lemma mul_num_denom (q r : ℚ) : q * r = (q.num * r.num) /. ↑(q.denom * r.denom) :=
have hq' : (↑q.denom : ℤ) ≠ 0, by have := denom_ne_zero q; simpa,
have hr' : (↑r.denom : ℤ) ≠ 0, by have := denom_ne_zero r; simpa,
suffices (q.num /. ↑q.denom) * (r.num /. ↑r.denom) = (q.num * r.num) /. ↑(q.denom * r.denom),
by simpa using this,
by simp [mul_def hq' hr', -num_denom]
lemma div_num_denom (q r : ℚ) : q / r = (q.num * r.denom) /. (q.denom * r.num) :=
if hr : r.num = 0 then
have hr' : r = 0, from zero_of_num_zero hr,
by simp *
else calc q / r = q * r⁻¹ : div_eq_mul_inv
... = (q.num /. q.denom) * (r.num /. r.denom)⁻¹ : by simp
... = (q.num /. q.denom) * (r.denom /. r.num) : by rw inv_def
... = (q.num * r.denom) /. (q.denom * r.num) : mul_def (by simpa using denom_ne_zero q) hr
lemma num_denom_mk {q : ℚ} {n d : ℤ} (hn : n ≠ 0) (hd : d ≠ 0) (qdf : q = n /. d) :
∃ c : ℤ, n = c * q.num ∧ d = c * q.denom :=
have hq : q ≠ 0, from
assume : q = 0,
hn $ (rat.mk_eq_zero hd).1 (by cc),
have q.num /. q.denom = n /. d, by rwa [num_denom],
have q.num * d = n * ↑(q.denom), from (rat.mk_eq (by simp [rat.denom_ne_zero]) hd).1 this,
begin
existsi n / q.num,
have hqdn : q.num ∣ n, begin rw qdf, apply rat.num_dvd, assumption end,
split,
{ rw int.div_mul_cancel hqdn },
{ apply int.eq_mul_div_of_mul_eq_mul_of_dvd_left,
{ apply rat.num_ne_zero_of_ne_zero hq },
repeat { assumption } }
end
theorem mk_pnat_num (n : ℤ) (d : ℕ+) :
(mk_pnat n d).num = n / nat.gcd n.nat_abs d :=
by cases d; refl
theorem mk_pnat_denom (n : ℤ) (d : ℕ+) :
(mk_pnat n d).denom = d / nat.gcd n.nat_abs d :=
by cases d; refl
theorem mul_num (q₁ q₂ : ℚ) : (q₁ * q₂).num =
(q₁.num * q₂.num) / nat.gcd (q₁.num * q₂.num).nat_abs (q₁.denom * q₂.denom) :=
by cases q₁; cases q₂; refl
theorem mul_denom (q₁ q₂ : ℚ) : (q₁ * q₂).denom =
(q₁.denom * q₂.denom) / nat.gcd (q₁.num * q₂.num).nat_abs (q₁.denom * q₂.denom) :=
by cases q₁; cases q₂; refl
theorem mul_self_num (q : ℚ) : (q * q).num = q.num * q.num :=
by rw [mul_num, int.nat_abs_mul, nat.coprime.gcd_eq_one, int.coe_nat_one, int.div_one];
exact (q.cop.mul_right q.cop).mul (q.cop.mul_right q.cop)
theorem mul_self_denom (q : ℚ) : (q * q).denom = q.denom * q.denom :=
by rw [rat.mul_denom, int.nat_abs_mul, nat.coprime.gcd_eq_one, nat.div_one];
exact (q.cop.mul_right q.cop).mul (q.cop.mul_right q.cop)
lemma add_num_denom (q r : ℚ) : q + r =
((q.num * r.denom + q.denom * r.num : ℤ)) /. (↑q.denom * ↑r.denom : ℤ) :=
have hqd : (q.denom : ℤ) ≠ 0, from int.coe_nat_ne_zero_iff_pos.2 q.3,
have hrd : (r.denom : ℤ) ≠ 0, from int.coe_nat_ne_zero_iff_pos.2 r.3,
by conv_lhs { rw [←@num_denom q, ←@num_denom r, rat.add_def hqd hrd] };
simp [mul_comm]
section casts
theorem coe_int_eq_mk : ∀ (z : ℤ), ↑z = z /. 1
| (n : ℕ) := show (n:ℚ) = n /. 1,
by induction n with n IH n; simp [*, show (1:ℚ) = 1 /. 1, from rfl]
| -[1+ n] := show (-(n + 1) : ℚ) = -[1+ n] /. 1, begin
induction n with n IH, {refl},
show -(n + 1 + 1 : ℚ) = -[1+ n.succ] /. 1,
rw [neg_add, IH],
simpa [show -1 = (-1) /. 1, from rfl]
end
theorem mk_eq_div (n d : ℤ) : n /. d = ((n : ℚ) / d) :=
begin
by_cases d0 : d = 0, {simp [d0, div_zero]},
simp [division_def, coe_int_eq_mk, mul_def one_ne_zero d0]
end
theorem coe_int_eq_of_int (z : ℤ) : ↑z = of_int z :=
(coe_int_eq_mk z).trans (of_int_eq_mk z).symm
@[simp, norm_cast] theorem coe_int_num (n : ℤ) : (n : ℚ).num = n :=
by rw coe_int_eq_of_int; refl
@[simp, norm_cast] theorem coe_int_denom (n : ℤ) : (n : ℚ).denom = 1 :=
by rw coe_int_eq_of_int; refl
lemma coe_int_num_of_denom_eq_one {q : ℚ} (hq : q.denom = 1) : ↑(q.num) = q :=
by { conv_rhs { rw [←(@num_denom q), hq] }, rw [coe_int_eq_mk], refl }
instance : can_lift ℚ ℤ :=
⟨coe, λ q, q.denom = 1, λ q hq, ⟨q.num, coe_int_num_of_denom_eq_one hq⟩⟩
theorem coe_nat_eq_mk (n : ℕ) : ↑n = n /. 1 :=
by rw [← int.cast_coe_nat, coe_int_eq_mk]
@[simp, norm_cast] theorem coe_nat_num (n : ℕ) : (n : ℚ).num = n :=
by rw [← int.cast_coe_nat, coe_int_num]
@[simp, norm_cast] theorem coe_nat_denom (n : ℕ) : (n : ℚ).denom = 1 :=
by rw [← int.cast_coe_nat, coe_int_denom]
end casts
lemma inv_def' {q : ℚ} : q⁻¹ = (q.denom : ℚ) / q.num :=
by { conv_lhs { rw ←(@num_denom q) }, cases q, simp [div_num_denom] }
@[simp] lemma mul_own_denom_eq_num {q : ℚ} : q * q.denom = q.num :=
begin
suffices : mk (q.num) ↑(q.denom) * mk ↑(q.denom) 1 = mk (q.num) 1, by
{ conv { for q [1] { rw ←(@num_denom q) }}, rwa [coe_int_eq_mk, coe_nat_eq_mk] },
have : (q.denom : ℤ) ≠ 0, from ne_of_gt (by exact_mod_cast q.pos),
rw [(rat.mul_def this one_ne_zero), (mul_comm (q.denom : ℤ) 1), (div_mk_div_cancel_left this)]
end
end rat
|
96054b2658321112d44ce94962da1759be118ebe
|
82b86ba2ae0d5aed0f01f49c46db5afec0eb2bd7
|
/tests/lean/run/match1.lean
|
21c9a976ddff8833c2dd9062705aca0dfd85037a
|
[
"Apache-2.0"
] |
permissive
|
banksonian/lean4
|
3a2e6b0f1eb63aa56ff95b8d07b2f851072d54dc
|
78da6b3aa2840693eea354a41e89fc5b212a5011
|
refs/heads/master
| 1,673,703,624,165
| 1,605,123,551,000
| 1,605,123,551,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,356
|
lean
|
def f (xs : List Nat) : List Bool :=
xs.map fun
| 0 => true
| _ => false
#eval f [1, 2, 0, 2]
theorem ex1 : f [1, 0, 2] = [false, true, false] :=
rfl
#check f
def g (xs : List Nat) : List Bool :=
xs.map $ by {
intro
| 0 => exact true
| _ => exact false
}
theorem ex2 : g [1, 0, 2] = [false, true, false] :=
rfl
theorem ex3 {p q r : Prop} : p ∨ q → r → (q ∧ r) ∨ (p ∧ r) :=
by intro
| Or.inl hp, h => { apply Or.inr; apply And.intro; assumption; assumption }
| Or.inr hq, h => { apply Or.inl; exact ⟨hq, h⟩ }
inductive C
| mk₁ : Nat → C
| mk₂ : Nat → Nat → C
def C.x : C → Nat
| C.mk₁ x => x
| C.mk₂ x _ => x
def head : {α : Type} → List α → Option α
| _, a::as => some a
| _, _ => none
theorem ex4 : head [1, 2] = some 1 :=
rfl
def head2 : {α : Type} → List α → Option α :=
@fun
| _, a::as => some a
| _, _ => none
theorem ex5 : head2 [1, 2] = some 1 :=
rfl
def head3 {α : Type} (xs : List α) : Option α :=
let rec aux : {α : Type} → List α → Option α
| _, a::as => some a
| _, _ => none;
aux xs
theorem ex6 : head3 [1, 2] = some 1 :=
rfl
inductive Vec.{u} (α : Type u) : Nat → Type u
| nil : Vec α 0
| cons {n} (head : α) (tail : Vec α n) : Vec α (n+1)
def Vec.mapHead1 {α β δ} : {n : Nat} → Vec α n → Vec β n → (α → β → δ) → Option δ
| _, nil, nil, f => none
| _, cons a as, cons b bs, f => some (f a b)
def Vec.mapHead2 {α β δ} : {n : Nat} → Vec α n → Vec β n → (α → β → δ) → Option δ
| _, nil, nil, f => none
| _, @cons _ n a as, cons b bs, f => some (f a b)
def Vec.mapHead3 {α β δ} : {n : Nat} → Vec α n → Vec β n → (α → β → δ) → Option δ
| _, nil, nil, f => none
| _, cons (tail := as) (head := a), cons b bs, f => some (f a b)
inductive Foo
| mk₁ (x y z w : Nat)
| mk₂ (x y z w : Nat)
def Foo.z : Foo → Nat
| mk₁ (z := z) .. => z
| mk₂ (z := z) .. => z
#eval (Foo.mk₁ 10 20 30 40).z
theorem ex7 : (Foo.mk₁ 10 20 30 40).z = 30 :=
rfl
def Foo.addY? : Foo × Foo → Option Nat
| (mk₁ (y := y₁) .., mk₁ (y := y₂) ..) => some (y₁ + y₂)
| _ => none
#eval Foo.addY? (Foo.mk₁ 1 2 3 4, Foo.mk₁ 10 20 30 40)
theorem ex8 : Foo.addY? (Foo.mk₁ 1 2 3 4, Foo.mk₁ 10 20 30 40) = some 22 :=
rfl
instance {α} : Inhabited (Sigma fun m => Vec α m) :=
⟨⟨0, Vec.nil⟩⟩
partial def filter {α} (p : α → Bool) : {n : Nat} → Vec α n → Sigma fun m => Vec α m
| _, Vec.nil => ⟨0, Vec.nil⟩
| _, Vec.cons x xs => match p x, filter p xs with
| true, ⟨_, ys⟩ => ⟨_, Vec.cons x ys⟩
| false, ys => ys
inductive Bla
| ofNat (x : Nat)
| ofBool (x : Bool)
def Bla.optional? : Bla → Option Nat
| ofNat x => some x
| ofBool _ => none
def Bla.isNat? (b : Bla) : Option { x : Nat // optional? b = some x } :=
match b.optional? with
| some y => some ⟨y, rfl⟩
| none => none
def foo (b : Bla) : Option Nat := b.optional?
theorem fooEq (b : Bla) : foo b = b.optional? :=
rfl
def Bla.isNat2? (b : Bla) : Option { x : Nat // optional? b = some x } :=
match h:foo b with
| some y => some ⟨y, Eq.trans (fooEq b).symm h⟩
| none => none
def foo2 (x : Nat) : Nat :=
match x, rfl : (y : Nat) → x = y → Nat with
| 0, h => 0
| x+1, h => 1
|
e89c05ff03c7fe78d10a4c5fd31c9418c7000f4f
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/rwEqThms.lean
|
d320382b20a016af79cf9dd60bd99a89b695744e
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 791
|
lean
|
example {a : α} {as bs : List α} (h : bs = a::as) : as.length + 1 = bs.length := by
rw [← List.length]
trace_state -- lhs was folded
rw [h]
example {a : α} {as bs : List α} (h : as = bs) : (a::b::as).length = bs.length + 2 := by
rw [List.length, List.length]
trace_state -- lhs was unfolded
rw [h]
example {a : α} {as bs : List α} (h : as = bs) : (a::b::as).length = (b::bs).length + 1 := by
conv => lhs; rw [List.length, List.length]
trace_state -- lhs was unfolded
conv => rhs; rw [List.length]
trace_state -- rhs was unfolded
rw [h]
example {a : α} {as bs : List α} (h : as = bs) : id (id ((a::b::as).length)) = (b::bs).length + 1 := by
rw [id]
trace_state
rw [id]
trace_state
rw [List.length, List.length, List.length]
trace_state
rw [h]
|
f672df0f7e00096b7b94c80c52ab3636629662d0
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/algebra/free_auto.lean
|
013d7d6b7952eb4d63f94d8c91d5ae1ae413e96b
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 21,820
|
lean
|
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.equiv.basic
import Mathlib.control.applicative
import Mathlib.control.traversable.basic
import Mathlib.PostPort
universes u l v u_1
namespace Mathlib
/-!
# Free constructions
## Main definitions
* `free_magma α`: free magma (structure with binary operation without any axioms) over alphabet `α`,
defined inductively, with traversable instance and decidable equality.
* `magma.free_semigroup α`: free semigroup over magma `α`.
* `free_semigroup α`: free semigroup over alphabet `α`, defined as a synonym for `α × list α`
(i.e. nonempty lists), with traversable instance and decidable equality.
* `free_semigroup_free_magma α`: isomorphism between `magma.free_semigroup (free_magma α)` and
`free_semigroup α`.
-/
/-- Free magma over a given alphabet. -/
inductive free_magma (α : Type u) where
| of : α → free_magma α
| mul : free_magma α → free_magma α → free_magma α
/-- Free nonabelian additive magma over a given alphabet. -/
inductive free_add_magma (α : Type u) where
| of : α → free_add_magma α
| add : free_add_magma α → free_add_magma α → free_add_magma α
namespace free_magma
protected instance Mathlib.free_add_magma.inhabited {α : Type u} [Inhabited α] :
Inhabited (free_add_magma α) :=
{ default := free_add_magma.of Inhabited.default }
protected instance Mathlib.free_add_magma.has_add {α : Type u} : Add (free_add_magma α) :=
{ add := free_add_magma.add }
@[simp] theorem Mathlib.free_add_magma.add_eq {α : Type u} (x : free_add_magma α)
(y : free_add_magma α) : free_add_magma.add x y = x + y :=
rfl
/-- Recursor for `free_magma` using `x * y` instead of `free_magma.mul x y`. -/
def Mathlib.free_add_magma.rec_on' {α : Type u} {C : free_add_magma α → Sort l}
(x : free_add_magma α) (ih1 : (x : α) → C (free_add_magma.of x))
(ih2 : (x y : free_add_magma α) → C x → C y → C (x + y)) : C x :=
free_add_magma.rec_on x ih1 ih2
end free_magma
/-- Lifts a function `α → β` to a magma homomorphism `free_magma α → β` given a magma `β`. -/
def free_magma.lift {α : Type u} {β : Type v} [Mul β] (f : α → β) : free_magma α → β := sorry
/-- Lifts a function `α → β` to an additive magma homomorphism `free_add_magma α → β` given
an additive magma `β`. -/
def free_add_magma.lift {α : Type u} {β : Type v} [Add β] (f : α → β) : free_add_magma α → β :=
sorry
namespace free_magma
@[simp] theorem Mathlib.free_add_magma.lift_of {α : Type u} {β : Type v} [Add β] (f : α → β)
(x : α) : free_add_magma.lift f (free_add_magma.of x) = f x :=
rfl
@[simp] theorem lift_mul {α : Type u} {β : Type v} [Mul β] (f : α → β) (x : free_magma α)
(y : free_magma α) : lift f (x * y) = lift f x * lift f y :=
rfl
theorem lift_unique {α : Type u} {β : Type v} [Mul β] (f : free_magma α → β)
(hf : ∀ (x y : free_magma α), f (x * y) = f x * f y) : f = lift (f ∘ of) :=
sorry
end free_magma
/-- The unique magma homomorphism `free_magma α → free_magma β` that sends
each `of x` to `of (f x)`. -/
def free_magma.map {α : Type u} {β : Type v} (f : α → β) : free_magma α → free_magma β := sorry
/-- The unique additive magma homomorphism `free_add_magma α → free_add_magma β` that sends
each `of x` to `of (f x)`. -/
def free_add_magma.map {α : Type u} {β : Type v} (f : α → β) :
free_add_magma α → free_add_magma β :=
sorry
namespace free_magma
@[simp] theorem Mathlib.free_add_magma.map_of {α : Type u} {β : Type v} (f : α → β) (x : α) :
free_add_magma.map f (free_add_magma.of x) = free_add_magma.of (f x) :=
rfl
@[simp] theorem Mathlib.free_add_magma.map_add {α : Type u} {β : Type v} (f : α → β)
(x : free_add_magma α) (y : free_add_magma α) :
free_add_magma.map f (x + y) = free_add_magma.map f x + free_add_magma.map f y :=
rfl
protected instance Mathlib.free_add_magma.monad : Monad free_add_magma := sorry
/-- Recursor on `free_magma` using `pure` instead of `of`. -/
protected def Mathlib.free_add_magma.rec_on'' {α : Type u} {C : free_add_magma α → Sort l}
(x : free_add_magma α) (ih1 : (x : α) → C (pure x))
(ih2 : (x y : free_add_magma α) → C x → C y → C (x + y)) : C x :=
free_add_magma.rec_on' x ih1 ih2
@[simp] theorem Mathlib.free_add_magma.map_pure {α : Type u} {β : Type u} (f : α → β) (x : α) :
f <$> pure x = pure (f x) :=
rfl
@[simp] theorem Mathlib.free_add_magma.map_add' {α : Type u} {β : Type u} (f : α → β)
(x : free_add_magma α) (y : free_add_magma α) : f <$> (x + y) = f <$> x + f <$> y :=
rfl
@[simp] theorem Mathlib.free_add_magma.pure_bind {α : Type u} {β : Type u}
(f : α → free_add_magma β) (x : α) : pure x >>= f = f x :=
rfl
@[simp] theorem mul_bind {α : Type u} {β : Type u} (f : α → free_magma β) (x : free_magma α)
(y : free_magma α) : x * y >>= f = (x >>= f) * (y >>= f) :=
rfl
@[simp] theorem Mathlib.free_add_magma.pure_seq {α : Type u} {β : Type u} {f : α → β}
{x : free_add_magma α} : pure f <*> x = f <$> x :=
rfl
@[simp] theorem mul_seq {α : Type u} {β : Type u} {f : free_magma (α → β)} {g : free_magma (α → β)}
{x : free_magma α} : f * g <*> x = (f <*> x) * (g <*> x) :=
rfl
protected instance Mathlib.free_add_magma.is_lawful_monad : is_lawful_monad free_add_magma := sorry
end free_magma
/-- `free_magma` is traversable. -/
protected def free_magma.traverse {m : Type u → Type u} [Applicative m] {α : Type u} {β : Type u}
(F : α → m β) : free_magma α → m (free_magma β) :=
sorry
/-- `free_add_magma` is traversable. -/
protected def free_add_magma.traverse {m : Type u → Type u} [Applicative m] {α : Type u}
{β : Type u} (F : α → m β) : free_add_magma α → m (free_add_magma β) :=
sorry
namespace free_magma
protected instance Mathlib.free_add_magma.traversable : traversable free_add_magma :=
traversable.mk free_add_magma.traverse
@[simp] theorem Mathlib.free_add_magma.traverse_pure {α : Type u} {β : Type u} {m : Type u → Type u}
[Applicative m] (F : α → m β) (x : α) : traverse F (pure x) = pure <$> F x :=
rfl
@[simp] theorem Mathlib.free_add_magma.traverse_pure' {α : Type u} {β : Type u}
{m : Type u → Type u} [Applicative m] (F : α → m β) :
traverse F ∘ pure = fun (x : α) => pure <$> F x :=
rfl
@[simp] theorem Mathlib.free_add_magma.traverse_add {α : Type u} {β : Type u} {m : Type u → Type u}
[Applicative m] (F : α → m β) (x : free_add_magma α) (y : free_add_magma α) :
traverse F (x + y) = Add.add <$> traverse F x <*> traverse F y :=
rfl
@[simp] theorem Mathlib.free_add_magma.traverse_add' {α : Type u} {β : Type u} {m : Type u → Type u}
[Applicative m] (F : α → m β) :
function.comp (traverse F) ∘ Add.add =
fun (x y : free_add_magma α) => Add.add <$> traverse F x <*> traverse F y :=
rfl
@[simp] theorem Mathlib.free_add_magma.traverse_eq {α : Type u} {β : Type u} {m : Type u → Type u}
[Applicative m] (F : α → m β) (x : free_add_magma α) :
free_add_magma.traverse F x = traverse F x :=
rfl
@[simp] theorem mul_map_seq {α : Type u} (x : free_magma α) (y : free_magma α) :
Mul.mul <$> x <*> y = x * y :=
rfl
protected instance Mathlib.free_add_magma.is_lawful_traversable :
is_lawful_traversable free_add_magma :=
is_lawful_traversable.mk sorry sorry sorry sorry
end free_magma
/-- Representation of an element of a free magma. -/
protected def free_magma.repr {α : Type u} [has_repr α] : free_magma α → string := sorry
/-- Representation of an element of a free additive magma. -/
protected def free_add_magma.repr {α : Type u} [has_repr α] : free_add_magma α → string := sorry
protected instance free_add_magma.has_repr {α : Type u} [has_repr α] :
has_repr (free_add_magma α) :=
has_repr.mk free_add_magma.repr
/-- Length of an element of a free magma. -/
def free_magma.length {α : Type u} : free_magma α → ℕ := sorry
/-- Length of an element of a free additive magma. -/
def free_add_magma.length {α : Type u} : free_add_magma α → ℕ := sorry
/-- Associativity relations for a magma. -/
inductive magma.free_semigroup.r (α : Type u) [Mul α] : α → α → Prop where
| intro : ∀ (x y z : α), magma.free_semigroup.r α (x * y * z) (x * (y * z))
| left : ∀ (w x y z : α), magma.free_semigroup.r α (w * (x * y * z)) (w * (x * (y * z)))
/-- Associativity relations for an additive magma. -/
inductive add_magma.free_add_semigroup.r (α : Type u) [Add α] : α → α → Prop where
| intro : ∀ (x y z : α), add_magma.free_add_semigroup.r α (x + y + z) (x + (y + z))
| left : ∀ (w x y z : α), add_magma.free_add_semigroup.r α (w + (x + y + z)) (w + (x + (y + z)))
namespace magma
/-- Free semigroup over a magma. -/
def free_semigroup (α : Type u) [Mul α] := Quot sorry
namespace free_semigroup
/-- Embedding from magma to its free semigroup. -/
def Mathlib.add_magma.free_add_semigroup.of {α : Type u} [Add α] :
α → add_magma.free_add_semigroup α :=
Quot.mk (add_magma.free_add_semigroup.r α)
protected instance Mathlib.add_magma.free_add_semigroup.inhabited {α : Type u} [Add α]
[Inhabited α] : Inhabited (add_magma.free_add_semigroup α) :=
{ default := add_magma.free_add_semigroup.of Inhabited.default }
protected theorem Mathlib.add_magma.free_add_semigroup.induction_on {α : Type u} [Add α]
{C : add_magma.free_add_semigroup α → Prop} (x : add_magma.free_add_semigroup α)
(ih : ∀ (x : α), C (add_magma.free_add_semigroup.of x)) : C x :=
quot.induction_on x ih
theorem of_mul_assoc {α : Type u} [Mul α] (x : α) (y : α) (z : α) :
of (x * y * z) = of (x * (y * z)) :=
quot.sound (r.intro x y z)
theorem of_mul_assoc_left {α : Type u} [Mul α] (w : α) (x : α) (y : α) (z : α) :
of (w * (x * y * z)) = of (w * (x * (y * z))) :=
quot.sound (r.left w x y z)
theorem of_mul_assoc_right {α : Type u} [Mul α] (w : α) (x : α) (y : α) (z : α) :
of (w * x * y * z) = of (w * (x * y) * z) :=
sorry
protected instance semigroup {α : Type u} [Mul α] : semigroup (free_semigroup α) :=
semigroup.mk
(fun (x y : free_semigroup α) =>
quot.lift_on x (fun (p : α) => quot.lift_on y (fun (q : α) => Quot.mk (r α) (p * q)) sorry)
sorry)
sorry
theorem Mathlib.add_magma.free_add_semigroup.of_add {α : Type u} [Add α] (x : α) (y : α) :
add_magma.free_add_semigroup.of (x + y) =
add_magma.free_add_semigroup.of x + add_magma.free_add_semigroup.of y :=
rfl
/-- Lifts a magma homomorphism `α → β` to a semigroup homomorphism `magma.free_semigroup α → β`
given a semigroup `β`. -/
def lift {α : Type u} [Mul α] {β : Type v} [semigroup β] (f : α → β)
(hf : ∀ (x y : α), f (x * y) = f x * f y) : free_semigroup α → β :=
Quot.lift f sorry
@[simp] theorem lift_of {α : Type u} [Mul α] {β : Type v} [semigroup β] (f : α → β)
{hf : ∀ (x y : α), f (x * y) = f x * f y} (x : α) : lift f hf (of x) = f x :=
rfl
@[simp] theorem lift_mul {α : Type u} [Mul α] {β : Type v} [semigroup β] (f : α → β)
{hf : ∀ (x y : α), f (x * y) = f x * f y} (x : free_semigroup α) (y : free_semigroup α) :
lift f hf (x * y) = lift f hf x * lift f hf y :=
quot.induction_on x fun (p : α) => quot.induction_on y fun (q : α) => hf p q
theorem Mathlib.add_magma.free_add_semigroup.lift_unique {α : Type u} [Add α] {β : Type v}
[add_semigroup β] (f : add_magma.free_add_semigroup α → β)
(hf : ∀ (x y : add_magma.free_add_semigroup α), f (x + y) = f x + f y) :
f =
add_magma.free_add_semigroup.lift (f ∘ add_magma.free_add_semigroup.of)
fun (p q : α) =>
hf (add_magma.free_add_semigroup.of p) (add_magma.free_add_semigroup.of q) :=
funext fun (x : add_magma.free_add_semigroup α) => quot.induction_on x fun (p : α) => rfl
/-- From a magma homomorphism `α → β` to a semigroup homomorphism
`magma.free_semigroup α → magma.free_semigroup β`. -/
def Mathlib.add_magma.free_add_semigroup.map {α : Type u} [Add α] {β : Type v} [Add β] (f : α → β)
(hf : ∀ (x y : α), f (x + y) = f x + f y) :
add_magma.free_add_semigroup α → add_magma.free_add_semigroup β :=
add_magma.free_add_semigroup.lift (add_magma.free_add_semigroup.of ∘ f) sorry
@[simp] theorem Mathlib.add_magma.free_add_semigroup.map_of {α : Type u} [Add α] {β : Type v}
[Add β] (f : α → β) {hf : ∀ (x y : α), f (x + y) = f x + f y} (x : α) :
add_magma.free_add_semigroup.map f hf (add_magma.free_add_semigroup.of x) =
add_magma.free_add_semigroup.of (f x) :=
rfl
@[simp] theorem map_mul {α : Type u} [Mul α] {β : Type v} [Mul β] (f : α → β)
{hf : ∀ (x y : α), f (x * y) = f x * f y} (x : free_semigroup α) (y : free_semigroup α) :
map f hf (x * y) = map f hf x * map f hf y :=
lift_mul (of ∘ f) x y
end free_semigroup
end magma
/-- Free semigroup over a given alphabet.
(Note: In this definition, the free semigroup does not contain the empty word.) -/
def free_semigroup (α : Type u) := α × List α
namespace free_semigroup
protected instance semigroup {α : Type u} : semigroup (free_semigroup α) :=
semigroup.mk
(fun (L1 L2 : free_semigroup α) => (prod.fst L1, prod.snd L1 ++ prod.fst L2 :: prod.snd L2))
sorry
/-- The embedding `α → free_semigroup α`. -/
def Mathlib.free_add_semigroup.of {α : Type u} (x : α) : free_add_semigroup α := (x, [])
protected instance Mathlib.free_add_semigroup.inhabited {α : Type u} [Inhabited α] :
Inhabited (free_add_semigroup α) :=
{ default := free_add_semigroup.of Inhabited.default }
/-- Recursor for free semigroup using `of` and `*`. -/
protected def Mathlib.free_add_semigroup.rec_on {α : Type u} {C : free_add_semigroup α → Sort l}
(x : free_add_semigroup α) (ih1 : (x : α) → C (free_add_semigroup.of x))
(ih2 :
(x : α) →
(y : free_add_semigroup α) →
C (free_add_semigroup.of x) → C y → C (free_add_semigroup.of x + y)) :
C x :=
prod.rec_on x
fun (f : α) (s : List α) =>
list.rec_on s ih1
(fun (hd : α) (tl : List α) (ih : (_a : α) → C (_a, tl)) (f : α) =>
ih2 f (hd, tl) (ih1 f) (ih hd))
f
end free_semigroup
/-- Auxiliary function for `free_semigroup.lift`. -/
def free_semigroup.lift' {α : Type u} {β : Type v} [semigroup β] (f : α → β) : α → List α → β :=
sorry
/-- Auxiliary function for `free_semigroup.lift`. -/
def free_add_semigroup.lift' {α : Type u} {β : Type v} [add_semigroup β] (f : α → β) :
α → List α → β :=
sorry
namespace free_semigroup
/-- Lifts a function `α → β` to a semigroup homomorphism `free_semigroup α → β` given
a semigroup `β`. -/
def lift {α : Type u} {β : Type v} [semigroup β] (f : α → β) (x : free_semigroup α) : β :=
lift' f (prod.fst x) (prod.snd x)
@[simp] theorem lift_of {α : Type u} {β : Type v} [semigroup β] (f : α → β) (x : α) :
lift f (of x) = f x :=
rfl
theorem lift_of_mul {α : Type u} {β : Type v} [semigroup β] (f : α → β) (x : α)
(y : free_semigroup α) : lift f (of x * y) = f x * lift f y :=
rfl
@[simp] theorem Mathlib.free_add_semigroup.lift_add {α : Type u} {β : Type v} [add_semigroup β]
(f : α → β) (x : free_add_semigroup α) (y : free_add_semigroup α) :
free_add_semigroup.lift f (x + y) = free_add_semigroup.lift f x + free_add_semigroup.lift f y :=
sorry
theorem Mathlib.free_add_semigroup.lift_unique {α : Type u} {β : Type v} [add_semigroup β]
(f : free_add_semigroup α → β) (hf : ∀ (x y : free_add_semigroup α), f (x + y) = f x + f y) :
f = free_add_semigroup.lift (f ∘ free_add_semigroup.of) :=
sorry
/-- The unique semigroup homomorphism that sends `of x` to `of (f x)`. -/
def Mathlib.free_add_semigroup.map {α : Type u} {β : Type v} (f : α → β) :
free_add_semigroup α → free_add_semigroup β :=
free_add_semigroup.lift (free_add_semigroup.of ∘ f)
@[simp] theorem Mathlib.free_add_semigroup.map_of {α : Type u} {β : Type v} (f : α → β) (x : α) :
free_add_semigroup.map f (free_add_semigroup.of x) = free_add_semigroup.of (f x) :=
rfl
@[simp] theorem Mathlib.free_add_semigroup.map_add {α : Type u} {β : Type v} (f : α → β)
(x : free_add_semigroup α) (y : free_add_semigroup α) :
free_add_semigroup.map f (x + y) = free_add_semigroup.map f x + free_add_semigroup.map f y :=
free_add_semigroup.lift_add (free_add_semigroup.of ∘ f) x y
protected instance Mathlib.free_add_semigroup.monad : Monad free_add_semigroup := sorry
/-- Recursor that uses `pure` instead of `of`. -/
def rec_on' {α : Type u} {C : free_semigroup α → Sort l} (x : free_semigroup α)
(ih1 : (x : α) → C (pure x))
(ih2 : (x : α) → (y : free_semigroup α) → C (pure x) → C y → C (pure x * y)) : C x :=
free_semigroup.rec_on x ih1 ih2
@[simp] theorem map_pure {α : Type u} {β : Type u} (f : α → β) (x : α) :
f <$> pure x = pure (f x) :=
rfl
@[simp] theorem map_mul' {α : Type u} {β : Type u} (f : α → β) (x : free_semigroup α)
(y : free_semigroup α) : f <$> (x * y) = f <$> x * f <$> y :=
map_mul f x y
@[simp] theorem pure_bind {α : Type u} {β : Type u} (f : α → free_semigroup β) (x : α) :
pure x >>= f = f x :=
rfl
@[simp] theorem mul_bind {α : Type u} {β : Type u} (f : α → free_semigroup β) (x : free_semigroup α)
(y : free_semigroup α) : x * y >>= f = (x >>= f) * (y >>= f) :=
lift_mul f x y
@[simp] theorem Mathlib.free_add_semigroup.pure_seq {α : Type u} {β : Type u} {f : α → β}
{x : free_add_semigroup α} : pure f <*> x = f <$> x :=
rfl
@[simp] theorem mul_seq {α : Type u} {β : Type u} {f : free_semigroup (α → β)}
{g : free_semigroup (α → β)} {x : free_semigroup α} : f * g <*> x = (f <*> x) * (g <*> x) :=
mul_bind
(fun (_x : α → β) =>
(fun (α β : Type u) (f : α → β) (x : free_semigroup α) => lift (of ∘ f) x) α β _x x)
f g
protected instance Mathlib.free_add_semigroup.is_lawful_monad :
is_lawful_monad free_add_semigroup :=
sorry
/-- `free_semigroup` is traversable. -/
protected def Mathlib.free_add_semigroup.traverse {m : Type u → Type u} [Applicative m] {α : Type u}
{β : Type u} (F : α → m β) (x : free_add_semigroup α) : m (free_add_semigroup β) :=
free_add_semigroup.rec_on' x (fun (x : α) => pure <$> F x)
fun (x : α) (y : free_add_semigroup α) (ihx ihy : m (free_add_semigroup β)) =>
Add.add <$> ihx <*> ihy
protected instance Mathlib.free_add_semigroup.traversable : traversable free_add_semigroup :=
traversable.mk free_add_semigroup.traverse
@[simp] theorem traverse_pure {α : Type u} {β : Type u} {m : Type u → Type u} [Applicative m]
(F : α → m β) (x : α) : traverse F (pure x) = pure <$> F x :=
rfl
@[simp] theorem Mathlib.free_add_semigroup.traverse_pure' {α : Type u} {β : Type u}
{m : Type u → Type u} [Applicative m] (F : α → m β) :
traverse F ∘ pure = fun (x : α) => pure <$> F x :=
rfl
@[simp] theorem Mathlib.free_add_semigroup.traverse_add {α : Type u} {β : Type u}
{m : Type u → Type u} [Applicative m] (F : α → m β) [is_lawful_applicative m]
(x : free_add_semigroup α) (y : free_add_semigroup α) :
traverse F (x + y) = Add.add <$> traverse F x <*> traverse F y :=
sorry
@[simp] theorem Mathlib.free_add_semigroup.traverse_add' {α : Type u} {β : Type u}
{m : Type u → Type u} [Applicative m] (F : α → m β) [is_lawful_applicative m] :
function.comp (traverse F) ∘ Add.add =
fun (x y : free_add_semigroup α) => Add.add <$> traverse F x <*> traverse F y :=
funext
fun (x : free_add_semigroup α) =>
funext fun (y : free_add_semigroup α) => free_add_semigroup.traverse_add F x y
@[simp] theorem Mathlib.free_add_semigroup.traverse_eq {α : Type u} {β : Type u}
{m : Type u → Type u} [Applicative m] (F : α → m β) (x : free_add_semigroup α) :
free_add_semigroup.traverse F x = traverse F x :=
rfl
@[simp] theorem Mathlib.free_add_semigroup.add_map_seq {α : Type u} (x : free_add_semigroup α)
(y : free_add_semigroup α) : Add.add <$> x <*> y = x + y :=
rfl
protected instance Mathlib.free_add_semigroup.is_lawful_traversable :
is_lawful_traversable free_add_semigroup :=
is_lawful_traversable.mk sorry sorry sorry sorry
protected instance Mathlib.free_add_semigroup.decidable_eq {α : Type u} [DecidableEq α] :
DecidableEq (free_add_semigroup α) :=
prod.decidable_eq
end free_semigroup
/-- Isomorphism between `magma.free_semigroup (free_magma α)` and `free_semigroup α`. -/
def free_add_semigroup_free_add_magma (α : Type u) :
add_magma.free_add_semigroup (free_add_magma α) ≃ free_add_semigroup α :=
equiv.mk (add_magma.free_add_semigroup.lift (free_add_magma.lift free_add_semigroup.of) sorry)
(free_add_semigroup.lift (add_magma.free_add_semigroup.of ∘ free_add_magma.of)) sorry sorry
@[simp] theorem free_semigroup_free_magma_mul {α : Type u} (x : magma.free_semigroup (free_magma α))
(y : magma.free_semigroup (free_magma α)) :
coe_fn (free_semigroup_free_magma α) (x * y) =
coe_fn (free_semigroup_free_magma α) x * coe_fn (free_semigroup_free_magma α) y :=
magma.free_semigroup.lift_mul (free_magma.lift free_semigroup.of) x y
end Mathlib
|
db283a2d29265916775168ef3b6ee84f43932280
|
1a61aba1b67cddccce19532a9596efe44be4285f
|
/tests/lean/run/rewriter12.lean
|
e20076f20f7896763872a16f42b9e19da6fa38cc
|
[
"Apache-2.0"
] |
permissive
|
eigengrau/lean
|
07986a0f2548688c13ba36231f6cdbee82abf4c6
|
f8a773be1112015e2d232661ce616d23f12874d0
|
refs/heads/master
| 1,610,939,198,566
| 1,441,352,386,000
| 1,441,352,494,000
| 41,903,576
| 0
| 0
| null | 1,441,352,210,000
| 1,441,352,210,000
| null |
UTF-8
|
Lean
| false
| false
| 302
|
lean
|
import data.nat
open nat
constant f : nat → nat
example (x y : nat) (H1 : (λ z, z + 0) x = y) : f x = f y :=
by rewrite [▸* at H1, ^[add, nat.rec_on, of_num] at H1, H1]
example (x y : nat) (H1 : (λ z, z + 0) x = y) : f x = f y :=
by rewrite [▸* at H1, ↑[add, nat.rec_on, of_num] at H1, H1]
|
4353558909aaefddafd380abb54d5562bec5e1d8
|
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
|
/src/algebra/pointwise.lean
|
d57aaf48f22ec462705219faf042b97f1938ca70
|
[
"Apache-2.0"
] |
permissive
|
DanielFabian/mathlib
|
efc3a50b5dde303c59eeb6353ef4c35a345d7112
|
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
|
refs/heads/master
| 1,668,739,922,971
| 1,595,201,756,000
| 1,595,201,756,000
| 279,469,476
| 0
| 0
| null | 1,594,696,604,000
| 1,594,696,604,000
| null |
UTF-8
|
Lean
| false
| false
| 13,129
|
lean
|
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Floris van Doorn
-/
import algebra.module
/-!
# Pointwise addition, multiplication, and scalar multiplication of sets.
This file defines pointwise algebraic operations on sets.
* For a type `α` with multiplication, multiplication is defined on `set α` by taking
`s * t` to be the set of all `x * y` where `x ∈ s` and `y ∈ t`. Similarly for addition.
* For `α` a semigroup, `set α` is a semigroup.
* If `α` is a (commutative) monoid, we define an alias `set_semiring α` for `set α`, which then
becomes a (commutative) semiring with union as addition and pointwise multiplication as
multiplication.
* For a type `β` with scalar multiplication by another type `α`, this
file defines a scalar multiplication of `set β` by `set α` and a separate scalar
multiplication of `set β` by `α`.
Appropriate definitions and results are also transported to the additive theory via `to_additive`.
## Implementation notes
* The following expressions are considered in simp-normal form in a group:
`(λ h, h * g) ⁻¹' s`, `(λ h, g * h) ⁻¹' s`, `(λ h, h * g⁻¹) ⁻¹' s`, `(λ h, g⁻¹ * h) ⁻¹' s`,
`s * t`, `s⁻¹`, `(1 : set _)` (and similarly for additive variants).
Expressions equal to one of these will be simplified.
## Tags
set multiplication, set addition, pointwise addition, pointwise multiplication
-/
namespace set
open function
variables {α : Type*} {β : Type*} {s s₁ s₂ t t₁ t₂ u : set α} {a b : α} {x y : β}
/-! Properties about 1 -/
@[to_additive]
instance [has_one α] : has_one (set α) := ⟨{1}⟩
@[simp, to_additive]
lemma singleton_one [has_one α] : ({1} : set α) = 1 := rfl
@[simp, to_additive]
lemma mem_one [has_one α] : a ∈ (1 : set α) ↔ a = 1 := iff.rfl
@[to_additive]
lemma one_mem_one [has_one α] : (1 : α) ∈ (1 : set α) := eq.refl _
@[simp, to_additive]
theorem one_subset [has_one α] : 1 ⊆ s ↔ (1 : α) ∈ s := singleton_subset_iff
@[to_additive]
theorem one_nonempty [has_one α] : (1 : set α).nonempty := ⟨1, rfl⟩
@[simp, to_additive]
theorem image_one [has_one α] {f : α → β} : f '' 1 = {f 1} := image_singleton
/-! Properties about multiplication -/
@[to_additive]
instance [has_mul α] : has_mul (set α) := ⟨image2 has_mul.mul⟩
@[simp, to_additive]
lemma image2_mul [has_mul α] : image2 has_mul.mul s t = s * t := rfl
@[to_additive]
lemma mem_mul [has_mul α] : a ∈ s * t ↔ ∃ x y, x ∈ s ∧ y ∈ t ∧ x * y = a := iff.rfl
@[to_additive]
lemma mul_mem_mul [has_mul α] (ha : a ∈ s) (hb : b ∈ t) : a * b ∈ s * t := mem_image2_of_mem ha hb
@[to_additive add_image_prod]
lemma image_mul_prod [has_mul α] : (λ x : α × α, x.fst * x.snd) '' s.prod t = s * t := image_prod _
@[simp, to_additive]
lemma image_mul_left [group α] : (λ b, a * b) '' t = (λ b, a⁻¹ * b) ⁻¹' t :=
by { rw image_eq_preimage_of_inverse; intro c; simp }
@[simp, to_additive]
lemma image_mul_right [group α] : (λ a, a * b) '' t = (λ a, a * b⁻¹) ⁻¹' t :=
by { rw image_eq_preimage_of_inverse; intro c; simp }
@[to_additive]
lemma image_mul_left' [group α] : (λ b, a⁻¹ * b) '' t = (λ b, a * b) ⁻¹' t := by simp
@[to_additive]
lemma image_mul_right' [group α] : (λ a, a * b⁻¹) '' t = (λ a, a * b) ⁻¹' t := by simp
@[simp, to_additive]
lemma preimage_mul_left_one [group α] : (λ b, a * b) ⁻¹' 1 = {a⁻¹} :=
by rw [← image_mul_left', image_one, mul_one]
@[simp, to_additive]
lemma preimage_mul_right_one [group α] : (λ a, a * b) ⁻¹' 1 = {b⁻¹} :=
by rw [← image_mul_right', image_one, one_mul]
@[to_additive]
lemma preimage_mul_left_one' [group α] : (λ b, a⁻¹ * b) ⁻¹' 1 = {a} := by simp
@[to_additive]
lemma preimage_mul_right_one' [group α] : (λ a, a * b) ⁻¹' 1 = {b⁻¹} := by simp
@[simp, to_additive]
lemma mul_singleton [has_mul α] : s * {b} = (λ a, a * b) '' s := image2_singleton_right
@[simp, to_additive]
lemma singleton_mul [has_mul α] : {a} * t = (λ b, a * b) '' t := image2_singleton_left
@[simp, to_additive]
lemma singleton_mul_singleton [has_mul α] : ({a} : set α) * {b} = {a * b} := image2_singleton
@[to_additive set.add_semigroup]
instance [semigroup α] : semigroup (set α) :=
{ mul_assoc :=
by { intros, simp only [← image2_mul, image2_image2_left, image2_image2_right, mul_assoc] },
..set.has_mul }
@[to_additive set.add_monoid]
instance [monoid α] : monoid (set α) :=
{ mul_one := λ s, by { simp only [← singleton_one, mul_singleton, mul_one, image_id'] },
one_mul := λ s, by { simp only [← singleton_one, singleton_mul, one_mul, image_id'] },
..set.semigroup,
..set.has_one }
@[to_additive]
protected lemma mul_comm [comm_semigroup α] : s * t = t * s :=
by simp only [← image2_mul, image2_swap _ s, mul_comm]
@[to_additive set.add_comm_monoid]
instance [comm_monoid α] : comm_monoid (set α) :=
{ mul_comm := λ _ _, set.mul_comm, ..set.monoid }
@[to_additive]
lemma singleton.is_mul_hom [has_mul α] : is_mul_hom (singleton : α → set α) :=
{ map_mul := λ a b, singleton_mul_singleton.symm }
@[simp, to_additive]
lemma empty_mul [has_mul α] : ∅ * s = ∅ := image2_empty_left
@[simp, to_additive]
lemma mul_empty [has_mul α] : s * ∅ = ∅ := image2_empty_right
@[to_additive]
lemma mul_subset_mul [has_mul α] (h₁ : s₁ ⊆ t₁) (h₂ : s₂ ⊆ t₂) : s₁ * s₂ ⊆ t₁ * t₂ :=
image2_subset h₁ h₂
@[to_additive]
lemma union_mul [has_mul α] : (s ∪ t) * u = (s * u) ∪ (t * u) := image2_union_left
@[to_additive]
lemma mul_union [has_mul α] : s * (t ∪ u) = (s * t) ∪ (s * u) := image2_union_right
@[to_additive]
lemma Union_mul_left_image [has_mul α] : (⋃ a ∈ s, (λ x, a * x) '' t) = s * t :=
Union_image_left _
@[to_additive]
lemma Union_mul_right_image [has_mul α] : (⋃ a ∈ t, (λ x, x * a) '' s) = s * t :=
Union_image_right _
@[simp, to_additive]
lemma univ_mul_univ [monoid α] : (univ : set α) * univ = univ :=
begin
have : ∀x, ∃a b : α, a * b = x := λx, ⟨x, ⟨1, mul_one x⟩⟩,
simpa only [mem_mul, eq_univ_iff_forall, mem_univ, true_and]
end
/-- `singleton` is a monoid hom. -/
@[to_additive singleton_add_hom "singleton is an add monoid hom"]
def singleton_hom [monoid α] : α →* set α :=
{ to_fun := singleton, map_one' := rfl, map_mul' := λ a b, singleton_mul_singleton.symm }
@[to_additive]
lemma nonempty.mul [has_mul α] : s.nonempty → t.nonempty → (s * t).nonempty := nonempty.image2
@[to_additive]
lemma finite.mul [has_mul α] (hs : finite s) (ht : finite t) : finite (s * t) :=
hs.image2 _ ht
/-- multiplication preserves finiteness -/
@[to_additive "addition preserves finiteness"]
def fintype_mul [has_mul α] [decidable_eq α] (s t : set α) [hs : fintype s] [ht : fintype t] :
fintype (s * t : set α) :=
set.fintype_image2 _ s t
/-! Properties about inversion -/
@[to_additive set.has_neg'] -- todo: remove prime once name becomes available
instance [has_inv α] : has_inv (set α) :=
⟨preimage has_inv.inv⟩
@[simp, to_additive]
lemma mem_inv [has_inv α] : a ∈ s⁻¹ ↔ a⁻¹ ∈ s := iff.rfl
@[to_additive]
lemma inv_mem_inv [group α] : a⁻¹ ∈ s⁻¹ ↔ a ∈ s :=
by simp only [mem_inv, inv_inv]
@[simp, to_additive]
lemma inv_preimage [has_inv α] : has_inv.inv ⁻¹' s = s⁻¹ := rfl
@[simp, to_additive]
lemma image_inv [group α] : has_inv.inv '' s = s⁻¹ :=
by { simp only [← inv_preimage], rw [image_eq_preimage_of_inverse]; intro; simp only [inv_inv] }
@[simp, to_additive]
lemma inter_inv [has_inv α] : (s ∩ t)⁻¹ = s⁻¹ ∩ t⁻¹ := preimage_inter
@[simp, to_additive]
lemma union_inv [has_inv α] : (s ∪ t)⁻¹ = s⁻¹ ∪ t⁻¹ := preimage_union
@[simp, to_additive]
lemma compl_inv [has_inv α] : (sᶜ)⁻¹ = (s⁻¹)ᶜ := preimage_compl
@[simp, to_additive]
protected lemma inv_inv [group α] : s⁻¹⁻¹ = s :=
by { simp only [← inv_preimage, preimage_preimage, inv_inv, preimage_id'] }
@[simp, to_additive]
protected lemma univ_inv [group α] : (univ : set α)⁻¹ = univ := preimage_univ
/-! Properties about scalar multiplication -/
/-- Scaling a set: multiplying every element by a scalar. -/
instance has_scalar_set [has_scalar α β] : has_scalar α (set β) :=
⟨λ a, image (has_scalar.smul a)⟩
@[simp]
lemma image_smul [has_scalar α β] {t : set β} : (λ x, a • x) '' t = a • t := rfl
lemma mem_smul_set [has_scalar α β] {t : set β} : x ∈ a • t ↔ ∃ y, y ∈ t ∧ a • y = x := iff.rfl
lemma smul_mem_smul_set [has_scalar α β] {t : set β} (hy : y ∈ t) : a • y ∈ a • t :=
⟨y, hy, rfl⟩
lemma smul_set_union [has_scalar α β] {s t : set β} : a • (s ∪ t) = a • s ∪ a • t :=
by simp only [← image_smul, image_union]
@[simp]
lemma smul_set_empty [has_scalar α β] (a : α) : a • (∅ : set β) = ∅ :=
by rw [← image_smul, image_empty]
lemma smul_set_mono [has_scalar α β] {s t : set β} (h : s ⊆ t) : a • s ⊆ a • t :=
by { simp only [← image_smul, image_subset, h] }
/-- Pointwise scalar multiplication by a set of scalars. -/
instance [has_scalar α β] : has_scalar (set α) (set β) := ⟨image2 has_scalar.smul⟩
@[simp]
lemma image2_smul [has_scalar α β] {t : set β} : image2 has_scalar.smul s t = s • t := rfl
lemma mem_smul [has_scalar α β] {t : set β} : x ∈ s • t ↔ ∃ a y, a ∈ s ∧ y ∈ t ∧ a • y = x :=
iff.rfl
lemma image_smul_prod [has_scalar α β] {t : set β} :
(λ x : α × β, x.fst • x.snd) '' s.prod t = s • t :=
image_prod _
lemma singleton_smul [has_scalar α β] {t : set β} : ({a} : set α) • t = a • t :=
image2_singleton_left
section monoid
/-! `set α` as a `(∪,*)`-semiring -/
/-- An alias for `set α`, which has a semiring structure given by `∪` as "addition" and pointwise
multiplication `*` as "multiplication". -/
@[derive inhabited] def set_semiring (α : Type*) : Type* := set α
/-- The identitiy function `set α → set_semiring α`. -/
protected def up (s : set α) : set_semiring α := s
/-- The identitiy function `set_semiring α → set α`. -/
protected def set_semiring.down (s : set_semiring α) : set α := s
@[simp] protected lemma down_up {s : set α} : s.up.down = s := rfl
@[simp] protected lemma up_down {s : set_semiring α} : s.down.up = s := rfl
instance set_semiring.semiring [monoid α] : semiring (set_semiring α) :=
{ add := λ s t, (s ∪ t : set α),
zero := (∅ : set α),
add_assoc := union_assoc,
zero_add := empty_union,
add_zero := union_empty,
add_comm := union_comm,
zero_mul := λ s, empty_mul,
mul_zero := λ s, mul_empty,
left_distrib := λ _ _ _, mul_union,
right_distrib := λ _ _ _, union_mul,
..set.monoid }
instance set_semiring.comm_semiring [comm_monoid α] : comm_semiring (set_semiring α) :=
{ ..set.comm_monoid, ..set_semiring.semiring }
/-- A multiplicative action of a monoid on a type β gives also a
multiplicative action on the subsets of β. -/
instance mul_action_set [monoid α] [mul_action α β] : mul_action α (set β) :=
{ mul_smul := by { intros, simp only [← image_smul, image_image, ← mul_smul] },
one_smul := by { intros, simp only [← image_smul, image_eta, one_smul, image_id'] },
..set.has_scalar_set }
section is_mul_hom
open is_mul_hom
variables [has_mul α] [has_mul β] (m : α → β) [is_mul_hom m]
@[to_additive]
lemma image_mul : m '' (s * t) = m '' s * m '' t :=
by { simp only [← image2_mul, image_image2, image2_image_left, image2_image_right, map_mul m] }
@[to_additive]
lemma preimage_mul_preimage_subset {s t : set β} : m ⁻¹' s * m ⁻¹' t ⊆ m ⁻¹' (s * t) :=
by { rintros _ ⟨_, _, _, _, rfl⟩, exact ⟨_, _, ‹_›, ‹_›, (map_mul _ _ _).symm ⟩ }
end is_mul_hom
/-- The image of a set under function is a ring homomorphism
with respect to the pointwise operations on sets. -/
def image_hom [monoid α] [monoid β] (f : α →* β) : set_semiring α →+* set_semiring β :=
{ to_fun := image f,
map_zero' := image_empty _,
map_one' := by simp only [← singleton_one, image_singleton, is_monoid_hom.map_one f],
map_add' := image_union _,
map_mul' := λ _ _, image_mul _ }
end monoid
end set
section
open set
variables {α : Type*} {β : Type*}
/-- A nonempty set in a semimodule is scaled by zero to the singleton
containing 0 in the semimodule. -/
lemma zero_smul_set [semiring α] [add_comm_monoid β] [semimodule α β] {s : set β} (h : s.nonempty) :
(0 : α) • s = (0 : set β) :=
by simp only [← image_smul, image_eta, zero_smul, h.image_const, singleton_zero]
lemma mem_inv_smul_set_iff [field α] [mul_action α β] {a : α} (ha : a ≠ 0) (A : set β) (x : β) :
x ∈ a⁻¹ • A ↔ a • x ∈ A :=
by simp only [← image_smul, mem_image, inv_smul_eq_iff ha, exists_eq_right]
lemma mem_smul_set_iff_inv_smul_mem [field α] [mul_action α β] {a : α} (ha : a ≠ 0) (A : set β)
(x : β) : x ∈ a • A ↔ a⁻¹ • x ∈ A :=
by rw [← mem_inv_smul_set_iff $ inv_ne_zero ha, inv_inv']
end
|
29c1115187c57b8356c81ad79b5d92869876cfcc
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/combinatorics/set_family/harris_kleitman.lean
|
236ffca1e72bfc4165a084b848a5a8e25b2afb3f
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,256
|
lean
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import combinatorics.set_family.compression.down
import order.upper_lower.basic
import data.fintype.big_operators
/-!
# Harris-Kleitman inequality
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file proves the Harris-Kleitman inequality. This relates `𝒜.card * ℬ.card` and
`2 ^ card α * (𝒜 ∩ ℬ).card` where `𝒜` and `ℬ` are upward- or downcard-closed finite families of
finsets. This can be interpreted as saying that any two lower sets (resp. any two upper sets)
correlate in the uniform measure.
## Main declarations
* `is_lower_set.le_card_inter_finset`: One form of the Harris-Kleitman inequality.
## References
* [D. J. Kleitman, *Families of non-disjoint subsets*][kleitman1966]
-/
open finset
open_locale big_operators
variables {α : Type*} [decidable_eq α] {𝒜 ℬ : finset (finset α)} {s : finset α} {a : α}
lemma is_lower_set.non_member_subfamily (h : is_lower_set (𝒜 : set (finset α))) :
is_lower_set (𝒜.non_member_subfamily a : set (finset α)) :=
λ s t hts, by { simp_rw [mem_coe, mem_non_member_subfamily], exact and.imp (h hts) (mt $ @hts _) }
lemma is_lower_set.member_subfamily (h : is_lower_set (𝒜 : set (finset α))) :
is_lower_set (𝒜.member_subfamily a : set (finset α)) :=
begin
rintro s t hts,
simp_rw [mem_coe, mem_member_subfamily],
exact and.imp (h $ insert_subset_insert _ hts) (mt $ @hts _),
end
lemma is_lower_set.member_subfamily_subset_non_member_subfamily
(h : is_lower_set (𝒜 : set (finset α))) :
𝒜.member_subfamily a ⊆ 𝒜.non_member_subfamily a :=
λ s, by { rw [mem_member_subfamily, mem_non_member_subfamily],
exact and.imp_left (h $ subset_insert _ _) }
/-- **Harris-Kleitman inequality**: Any two lower sets of finsets correlate. -/
lemma is_lower_set.le_card_inter_finset'
(h𝒜 : is_lower_set (𝒜 : set (finset α))) (hℬ : is_lower_set (ℬ : set (finset α)))
(h𝒜s : ∀ t ∈ 𝒜, t ⊆ s) (hℬs : ∀ t ∈ ℬ, t ⊆ s) :
𝒜.card * ℬ.card ≤ 2 ^ s.card * (𝒜 ∩ ℬ).card :=
begin
induction s using finset.induction with a s hs ih generalizing 𝒜 ℬ,
{ simp_rw [subset_empty, ←subset_singleton_iff', subset_singleton_iff] at h𝒜s hℬs,
obtain rfl | rfl := h𝒜s,
{ simp only [card_empty, empty_inter, mul_zero, zero_mul] },
obtain rfl | rfl := hℬs,
{ simp only [card_empty, inter_empty, mul_zero, zero_mul] },
{ simp only [card_empty, pow_zero, inter_singleton_of_mem, mem_singleton, card_singleton] } },
rw [card_insert_of_not_mem hs, ←card_member_subfamily_add_card_non_member_subfamily a 𝒜,
←card_member_subfamily_add_card_non_member_subfamily a ℬ, add_mul, mul_add, mul_add,
add_comm (_ * _), add_add_add_comm],
refine (add_le_add_right (mul_add_mul_le_mul_add_mul
(card_le_of_subset h𝒜.member_subfamily_subset_non_member_subfamily) $
card_le_of_subset hℬ.member_subfamily_subset_non_member_subfamily) _).trans _,
rw [←two_mul, pow_succ, mul_assoc],
have h₀ : ∀ 𝒞 : finset (finset α), (∀ t ∈ 𝒞, t ⊆ insert a s) → ∀ t ∈ 𝒞.non_member_subfamily a,
t ⊆ s,
{ rintro 𝒞 h𝒞 t ht,
rw mem_non_member_subfamily at ht,
exact (subset_insert_iff_of_not_mem ht.2).1 (h𝒞 _ ht.1) },
have h₁ : ∀ 𝒞 : finset (finset α), (∀ t ∈ 𝒞, t ⊆ insert a s) → ∀ t ∈ 𝒞.member_subfamily a, t ⊆ s,
{ rintro 𝒞 h𝒞 t ht,
rw mem_member_subfamily at ht,
exact (subset_insert_iff_of_not_mem ht.2).1 ((subset_insert _ _).trans $ h𝒞 _ ht.1) },
refine mul_le_mul_left' _ _,
refine (add_le_add (ih (h𝒜.member_subfamily) (hℬ.member_subfamily) (h₁ _ h𝒜s) $ h₁ _ hℬs) $
ih (h𝒜.non_member_subfamily) (hℬ.non_member_subfamily) (h₀ _ h𝒜s) $ h₀ _ hℬs).trans_eq _,
rw [←mul_add, ←member_subfamily_inter, ←non_member_subfamily_inter,
card_member_subfamily_add_card_non_member_subfamily],
end
variables [fintype α]
/-- **Harris-Kleitman inequality**: Any two lower sets of finsets correlate. -/
lemma is_lower_set.le_card_inter_finset
(h𝒜 : is_lower_set (𝒜 : set (finset α))) (hℬ : is_lower_set (ℬ : set (finset α))) :
𝒜.card * ℬ.card ≤ 2 ^ fintype.card α * (𝒜 ∩ ℬ).card :=
h𝒜.le_card_inter_finset' hℬ (λ _ _, subset_univ _) $ λ _ _, subset_univ _
/-- **Harris-Kleitman inequality**: Upper sets and lower sets of finsets anticorrelate. -/
lemma is_upper_set.card_inter_le_finset
(h𝒜 : is_upper_set (𝒜 : set (finset α))) (hℬ : is_lower_set (ℬ : set (finset α))) :
2 ^ fintype.card α * (𝒜 ∩ ℬ).card ≤ 𝒜.card * ℬ.card :=
begin
rw [←is_lower_set_compl, ←coe_compl] at h𝒜,
have := h𝒜.le_card_inter_finset hℬ,
rwa [card_compl, fintype.card_finset, tsub_mul, tsub_le_iff_tsub_le, ←mul_tsub, ←card_sdiff
(inter_subset_right _ _), sdiff_inter_self_right, sdiff_compl, _root_.inf_comm] at this,
end
/-- **Harris-Kleitman inequality**: Lower sets and upper sets of finsets anticorrelate. -/
lemma is_lower_set.card_inter_le_finset
(h𝒜 : is_lower_set (𝒜 : set (finset α))) (hℬ : is_upper_set (ℬ : set (finset α))) :
2 ^ fintype.card α * (𝒜 ∩ ℬ).card ≤ 𝒜.card * ℬ.card :=
by { rw [inter_comm, mul_comm 𝒜.card], exact hℬ.card_inter_le_finset h𝒜 }
/-- **Harris-Kleitman inequality**: Any two upper sets of finsets correlate. -/
lemma is_upper_set.le_card_inter_finset
(h𝒜 : is_upper_set (𝒜 : set (finset α))) (hℬ : is_upper_set (ℬ : set (finset α))) :
𝒜.card * ℬ.card ≤ 2 ^ fintype.card α * (𝒜 ∩ ℬ).card :=
begin
rw [←is_lower_set_compl, ←coe_compl] at h𝒜,
have := h𝒜.card_inter_le_finset hℬ,
rwa [card_compl, fintype.card_finset, tsub_mul, le_tsub_iff_le_tsub, ←mul_tsub, ←card_sdiff
(inter_subset_right _ _), sdiff_inter_self_right, sdiff_compl, _root_.inf_comm] at this,
{ exact mul_le_mul_left' (card_le_of_subset $ inter_subset_right _ _) _ },
{ rw ←fintype.card_finset,
exact mul_le_mul_right' (card_le_univ _) _ }
end
|
6828fc1742b536f76c3fcfbecb02ea512637c380
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/algebra/invertible.lean
|
9d78a1351b3872d1920db2bf391200a1e40b4475
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 8,810
|
lean
|
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Anne Baanen
A typeclass for the two-sided multiplicative inverse.
-/
import algebra.char_zero
import algebra.char_p
/-!
# Invertible elements
This file defines a typeclass `invertible a` for elements `a` with a
multiplicative inverse.
The intent of the typeclass is to provide a way to write e.g. `⅟2` in a ring
like `ℤ[1/2]` where some inverses exist but there is no general `⁻¹` operator;
or to specify that a field has characteristic `≠ 2`.
It is the `Type`-valued analogue to the `Prop`-valued `is_unit`.
This file also includes some instances of `invertible` for specific numbers in
characteristic zero. Some more cases are given as a `def`, to be included only
when needed. To construct instances for concrete numbers,
`invertible_of_nonzero` is a useful definition.
## Notation
* `⅟a` is `invertible.inv_of a`, the inverse of `a`
## Implementation notes
The `invertible` class lives in `Type`, not `Prop`, to make computation easier.
If multiplication is associative, `invertible` is a subsingleton anyway.
The `simp` normal form tries to normalize `⅟a` to `a ⁻¹`. Otherwise, it pushes
`⅟` inside the expression as much as possible.
## Tags
invertible, inverse element, inv_of, a half, one half, a third, one third, ½, ⅓
-/
universes u
variables {α : Type u}
/-- `invertible a` gives a two-sided multiplicative inverse of `a`. -/
class invertible [has_mul α] [has_one α] (a : α) : Type u :=
(inv_of : α) (inv_of_mul_self : inv_of * a = 1) (mul_inv_of_self : a * inv_of = 1)
-- This notation has the same precedence as `has_inv.inv`.
notation `⅟`:1034 := invertible.inv_of
@[simp]
lemma inv_of_mul_self [has_mul α] [has_one α] (a : α) [invertible a] : ⅟a * a = 1 :=
invertible.inv_of_mul_self
@[simp]
lemma mul_inv_of_self [has_mul α] [has_one α] (a : α) [invertible a] : a * ⅟a = 1 :=
invertible.mul_inv_of_self
@[simp]
lemma mul_inv_of_mul_self_cancel [monoid α] (a b : α) [invertible b] : a * ⅟b * b = a :=
by simp [mul_assoc]
@[simp]
lemma mul_mul_inv_of_self_cancel [monoid α] (a b : α) [invertible b] : a * b * ⅟b = a :=
by simp [mul_assoc]
lemma inv_of_eq_right_inv [monoid α] {a b : α} [invertible a] (hac : a * b = 1) : ⅟a = b :=
left_inv_eq_right_inv (inv_of_mul_self _) hac
lemma invertible_unique {α : Type u} [monoid α] (a b : α) (h : a = b) [invertible a] [invertible b] :
⅟a = ⅟b :=
by { apply inv_of_eq_right_inv, rw [h, mul_inv_of_self], }
instance [monoid α] (a : α) : subsingleton (invertible a) :=
⟨ λ ⟨b, hba, hab⟩ ⟨c, hca, hac⟩, by { congr, exact left_inv_eq_right_inv hba hac } ⟩
/-- An `invertible` element is a unit. -/
def unit_of_invertible [monoid α] (a : α) [invertible a] : units α :=
{ val := a,
inv := ⅟a,
val_inv := by simp,
inv_val := by simp, }
@[simp] lemma unit_of_invertible_val [monoid α] (a : α) [invertible a] :
(unit_of_invertible a : α) = a := rfl
@[simp] lemma unit_of_invertible_inv [monoid α] (a : α) [invertible a] :
(↑(unit_of_invertible a)⁻¹ : α) = ⅟a := rfl
lemma is_unit_of_invertible [monoid α] (a : α) [invertible a] : is_unit a :=
⟨unit_of_invertible a, rfl⟩
/-- Each element of a group is invertible. -/
def invertible_of_group [group α] (a : α) : invertible a :=
⟨a⁻¹, inv_mul_self a, mul_inv_self a⟩
@[simp] lemma inv_of_eq_group_inv [group α] (a : α) [invertible a] : ⅟a = a⁻¹ :=
inv_of_eq_right_inv (mul_inv_self a)
/-- `1` is the inverse of itself -/
def invertible_one [monoid α] : invertible (1 : α) :=
⟨ 1, mul_one _, one_mul _ ⟩
@[simp] lemma inv_of_one [monoid α] [invertible (1 : α)] : ⅟(1 : α) = 1 :=
inv_of_eq_right_inv (mul_one _)
/-- `-⅟a` is the inverse of `-a` -/
def invertible_neg [ring α] (a : α) [invertible a] : invertible (-a) :=
⟨ -⅟a, by simp, by simp ⟩
@[simp] lemma inv_of_neg [ring α] (a : α) [invertible a] [invertible (-a)] : ⅟(-a) = -⅟a :=
inv_of_eq_right_inv (by simp)
/-- `a` is the inverse of `⅟a`. -/
instance invertible_inv_of [has_one α] [has_mul α] {a : α} [invertible a] : invertible (⅟a) :=
⟨ a, mul_inv_of_self a, inv_of_mul_self a ⟩
@[simp] lemma inv_of_inv_of [monoid α] {a : α} [invertible a] [invertible (⅟a)] :
⅟(⅟a) = a :=
inv_of_eq_right_inv (inv_of_mul_self _)
/-- `⅟b * ⅟a` is the inverse of `a * b` -/
def invertible_mul [monoid α] (a b : α) [invertible a] [invertible b] : invertible (a * b) :=
⟨ ⅟b * ⅟a, by simp [←mul_assoc], by simp [←mul_assoc] ⟩
@[simp]
lemma inv_of_mul [monoid α] (a b : α) [invertible a] [invertible b] [invertible (a * b)] :
⅟(a * b) = ⅟b * ⅟a :=
inv_of_eq_right_inv (by simp [←mul_assoc])
lemma commute_inv_of {M : Type*} [has_one M] [has_mul M] (m : M) [invertible m] :
commute m (⅟m) :=
calc m * ⅟m = 1 : mul_inv_of_self m
... = ⅟ m * m : (inv_of_mul_self m).symm
instance invertible_pow {M : Type*} [monoid M] (m : M) [invertible m] (n : ℕ) :
invertible (m ^ n) :=
{ inv_of := ⅟ m ^ n,
inv_of_mul_self := by rw [← (commute_inv_of m).symm.mul_pow, inv_of_mul_self, one_pow],
mul_inv_of_self := by rw [← (commute_inv_of m).mul_pow, mul_inv_of_self, one_pow] }
section group_with_zero
variable [group_with_zero α]
lemma nonzero_of_invertible (a : α) [invertible a] : a ≠ 0 :=
λ ha, zero_ne_one $ calc 0 = ⅟a * a : by simp [ha]
... = 1 : inv_of_mul_self a
/-- `a⁻¹` is an inverse of `a` if `a ≠ 0` -/
def invertible_of_nonzero {a : α} (h : a ≠ 0) : invertible a :=
⟨ a⁻¹, inv_mul_cancel h, mul_inv_cancel h ⟩
@[simp] lemma inv_of_eq_inv (a : α) [invertible a] : ⅟a = a⁻¹ :=
inv_of_eq_right_inv (mul_inv_cancel (nonzero_of_invertible a))
@[simp] lemma inv_mul_cancel_of_invertible (a : α) [invertible a] : a⁻¹ * a = 1 :=
inv_mul_cancel (nonzero_of_invertible a)
@[simp] lemma mul_inv_cancel_of_invertible (a : α) [invertible a] : a * a⁻¹ = 1 :=
mul_inv_cancel (nonzero_of_invertible a)
@[simp] lemma div_mul_cancel_of_invertible (a b : α) [invertible b] : a / b * b = a :=
div_mul_cancel a (nonzero_of_invertible b)
@[simp] lemma mul_div_cancel_of_invertible (a b : α) [invertible b] : a * b / b = a :=
mul_div_cancel a (nonzero_of_invertible b)
@[simp] lemma div_self_of_invertible (a : α) [invertible a] : a / a = 1 :=
div_self (nonzero_of_invertible a)
/-- `b / a` is the inverse of `a / b` -/
def invertible_div (a b : α) [invertible a] [invertible b] : invertible (a / b) :=
⟨b / a, by simp [←mul_div_assoc], by simp [←mul_div_assoc]⟩
@[simp] lemma inv_of_div (a b : α) [invertible a] [invertible b] [invertible (a / b)] :
⅟(a / b) = b / a :=
inv_of_eq_right_inv (by simp [←mul_div_assoc])
/-- `a` is the inverse of `a⁻¹` -/
def invertible_inv {a : α} [invertible a] : invertible (a⁻¹) :=
⟨ a, by simp, by simp ⟩
end group_with_zero
/--
Monoid homs preserve invertibility.
-/
def invertible.map {R : Type*} {S : Type*} [monoid R] [monoid S] (f : R →* S) (r : R) [invertible r] :
invertible (f r) :=
{ inv_of := f (⅟r),
inv_of_mul_self := by rw [← f.map_mul, inv_of_mul_self, f.map_one],
mul_inv_of_self := by rw [← f.map_mul, mul_inv_of_self, f.map_one] }
section ring_char
/-- A natural number `t` is invertible in a field `K` if the charactistic of `K` does not divide `t`. -/
def invertible_of_ring_char_not_dvd {K : Type*} [field K]
{t : ℕ} (not_dvd : ¬(ring_char K ∣ t)) : invertible (t : K) :=
invertible_of_nonzero (λ h, not_dvd ((ring_char.spec K t).mp h))
end ring_char
section char_p
/-- A natural number `t` is invertible in a field `K` of charactistic `p` if `p` does not divide `t`. -/
def invertible_of_char_p_not_dvd {K : Type*} [field K] {p : ℕ} [char_p K p]
{t : ℕ} (not_dvd : ¬(p ∣ t)) : invertible (t : K) :=
invertible_of_nonzero (λ h, not_dvd ((char_p.cast_eq_zero_iff K p t).mp h))
instance invertible_of_pos {K : Type*} [field K] [char_zero K] (n : ℕ) [h : fact (0 < n)] :
invertible (n : K) :=
invertible_of_nonzero $ by simpa [nat.pos_iff_ne_zero] using h
end char_p
section division_ring
variable [division_ring α]
instance invertible_succ [char_zero α] (n : ℕ) : invertible (n.succ : α) :=
invertible_of_nonzero (nat.cast_ne_zero.mpr (nat.succ_ne_zero _))
/-!
A few `invertible n` instances for small numerals `n`. Feel free to add your own
number when you need its inverse.
-/
instance invertible_two [char_zero α] : invertible (2 : α) :=
invertible_of_nonzero (by exact_mod_cast (dec_trivial : 2 ≠ 0))
instance invertible_three [char_zero α] : invertible (3 : α) :=
invertible_of_nonzero (by exact_mod_cast (dec_trivial : 3 ≠ 0))
end division_ring
|
9980aaa1d663bd643d06282774df0efd3b4e7821
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/closure1.lean
|
a2cf62402f84ed5345f490532ac014c88a0a6578
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,645
|
lean
|
import Lean
open Lean
open Lean.Meta
universe u
inductive Vec (α : Type u) : Nat → Type u
| nil : Vec α 0
| cons {n} : α → Vec α n → Vec α (n+1)
set_option trace.Meta.debug true
def printDef (declName : Name) : MetaM Unit := do
let cinfo ← getConstInfo declName;
trace[Meta.debug] cinfo.value!
instance : Coe Name FVarId where
coe n := { name := n }
instance : Coe Name MVarId where
coe n := { name := n }
instance : Coe Name LMVarId where
coe n := { name := n }
def tst1 : MetaM Unit := do
let u := mkLevelParam `u
let v := mkLevelMVar `v
let m1 ← mkFreshExprMVar (mkSort levelOne)
withLocalDeclD `α (mkSort u) $ fun α => do
withLocalDeclD `β (mkSort v) $ fun β => do
let m2 ← mkFreshExprMVar (← mkArrow α m1)
withLocalDeclD `a α $ fun a => do
withLocalDeclD `f (← mkArrow α α) $ fun f => do
withLetDecl `b α (mkApp f a) $ fun b => do
let t := mkApp m2 (mkApp f b)
let e ← mkAuxDefinitionFor `foo1 t
trace[Meta.debug] e
printDef `foo1
#eval tst1
def tst2 : MetaM Unit := do
let u := mkLevelParam `u
withLocalDeclD `α (mkSort (mkLevelSucc u)) $ fun α => do
withLocalDeclD `v1 (mkApp2 (mkConst `Vec [u]) α (mkNatLit 10)) $ fun v1 =>
withLetDecl `n (mkConst `Nat) (mkNatLit 10) $ fun n =>
withLocalDeclD `v2 (mkApp2 (mkConst `Vec [u]) α n) $ fun v2 => do
let m ← mkFreshExprMVar (← mkArrow (mkApp2 (mkConst `Vec [u]) α (mkNatLit 10)) (mkSort levelZero))
withLocalDeclD `p (mkSort levelZero) $ fun p => do
let t ← mkEq v1 v2
let t := mkApp2 (mkConst `And) t (mkApp2 (mkConst `Or) (mkApp m v2) p)
let e ← mkAuxDefinitionFor `foo2 t
trace[Meta.debug] e
printDef `foo2
#eval tst2
|
860bb2c2d911132a421702bc6c7b86485b77d4cc
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/topology/uniform_space/basic.lean
|
22e1275bd01b62eb473348f226dd837210bcac81
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 82,465
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
-/
import order.filter.small_sets
import topology.subset_properties
import topology.nhds_set
/-!
# Uniform spaces
Uniform spaces are a generalization of metric spaces and topological groups. Many concepts directly
generalize to uniform spaces, e.g.
* uniform continuity (in this file)
* completeness (in `cauchy.lean`)
* extension of uniform continuous functions to complete spaces (in `uniform_embedding.lean`)
* totally bounded sets (in `cauchy.lean`)
* totally bounded complete sets are compact (in `cauchy.lean`)
A uniform structure on a type `X` is a filter `𝓤 X` on `X × X` satisfying some conditions
which makes it reasonable to say that `∀ᶠ (p : X × X) in 𝓤 X, ...` means
"for all p.1 and p.2 in X close enough, ...". Elements of this filter are called entourages
of `X`. The two main examples are:
* If `X` is a metric space, `V ∈ 𝓤 X ↔ ∃ ε > 0, { p | dist p.1 p.2 < ε } ⊆ V`
* If `G` is an additive topological group, `V ∈ 𝓤 G ↔ ∃ U ∈ 𝓝 (0 : G), {p | p.2 - p.1 ∈ U} ⊆ V`
Those examples are generalizations in two different directions of the elementary example where
`X = ℝ` and `V ∈ 𝓤 ℝ ↔ ∃ ε > 0, { p | |p.2 - p.1| < ε } ⊆ V` which features both the topological
group structure on `ℝ` and its metric space structure.
Each uniform structure on `X` induces a topology on `X` characterized by
> `nhds_eq_comap_uniformity : ∀ {x : X}, 𝓝 x = comap (prod.mk x) (𝓤 X)`
where `prod.mk x : X → X × X := (λ y, (x, y))` is the partial evaluation of the product
constructor.
The dictionary with metric spaces includes:
* an upper bound for `dist x y` translates into `(x, y) ∈ V` for some `V ∈ 𝓤 X`
* a ball `ball x r` roughly corresponds to `uniform_space.ball x V := {y | (x, y) ∈ V}`
for some `V ∈ 𝓤 X`, but the later is more general (it includes in
particular both open and closed balls for suitable `V`).
In particular we have:
`is_open_iff_ball_subset {s : set X} : is_open s ↔ ∀ x ∈ s, ∃ V ∈ 𝓤 X, ball x V ⊆ s`
The triangle inequality is abstracted to a statement involving the composition of relations in `X`.
First note that the triangle inequality in a metric space is equivalent to
`∀ (x y z : X) (r r' : ℝ), dist x y ≤ r → dist y z ≤ r' → dist x z ≤ r + r'`.
Then, for any `V` and `W` with type `set (X × X)`, the composition `V ○ W : set (X × X)` is
defined as `{ p : X × X | ∃ z, (p.1, z) ∈ V ∧ (z, p.2) ∈ W }`.
In the metric space case, if `V = { p | dist p.1 p.2 ≤ r }` and `W = { p | dist p.1 p.2 ≤ r' }`
then the triangle inequality, as reformulated above, says `V ○ W` is contained in
`{p | dist p.1 p.2 ≤ r + r'}` which is the entourage associated to the radius `r + r'`.
In general we have `mem_ball_comp (h : y ∈ ball x V) (h' : z ∈ ball y W) : z ∈ ball x (V ○ W)`.
Note that this discussion does not depend on any axiom imposed on the uniformity filter,
it is simply captured by the definition of composition.
The uniform space axioms ask the filter `𝓤 X` to satisfy the following:
* every `V ∈ 𝓤 X` contains the diagonal `id_rel = { p | p.1 = p.2 }`. This abstracts the fact
that `dist x x ≤ r` for every non-negative radius `r` in the metric space case and also that
`x - x` belongs to every neighborhood of zero in the topological group case.
* `V ∈ 𝓤 X → prod.swap '' V ∈ 𝓤 X`. This is tightly related the fact that `dist x y = dist y x`
in a metric space, and to continuity of negation in the topological group case.
* `∀ V ∈ 𝓤 X, ∃ W ∈ 𝓤 X, W ○ W ⊆ V`. In the metric space case, it corresponds
to cutting the radius of a ball in half and applying the triangle inequality.
In the topological group case, it comes from continuity of addition at `(0, 0)`.
These three axioms are stated more abstractly in the definition below, in terms of
operations on filters, without directly manipulating entourages.
## Main definitions
* `uniform_space X` is a uniform space structure on a type `X`
* `uniform_continuous f` is a predicate saying a function `f : α → β` between uniform spaces
is uniformly continuous : `∀ r ∈ 𝓤 β, ∀ᶠ (x : α × α) in 𝓤 α, (f x.1, f x.2) ∈ r`
In this file we also define a complete lattice structure on the type `uniform_space X`
of uniform structures on `X`, as well as the pullback (`uniform_space.comap`) of uniform structures
coming from the pullback of filters.
Like distance functions, uniform structures cannot be pushed forward in general.
## Notations
Localized in `uniformity`, we have the notation `𝓤 X` for the uniformity on a uniform space `X`,
and `○` for composition of relations, seen as terms with type `set (X × X)`.
## Implementation notes
There is already a theory of relations in `data/rel.lean` where the main definition is
`def rel (α β : Type*) := α → β → Prop`.
The relations used in the current file involve only one type, but this is not the reason why
we don't reuse `data/rel.lean`. We use `set (α × α)`
instead of `rel α α` because we really need sets to use the filter library, and elements
of filters on `α × α` have type `set (α × α)`.
The structure `uniform_space X` bundles a uniform structure on `X`, a topology on `X` and
an assumption saying those are compatible. This may not seem mathematically reasonable at first,
but is in fact an instance of the forgetful inheritance pattern. See Note [forgetful inheritance]
below.
## References
The formalization uses the books:
* [N. Bourbaki, *General Topology*][bourbaki1966]
* [I. M. James, *Topologies and Uniformities*][james1999]
But it makes a more systematic use of the filter library.
-/
open set filter classical
open_locale classical topological_space filter
set_option eqn_compiler.zeta true
universes u
/-!
### Relations, seen as `set (α × α)`
-/
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {ι : Sort*}
/-- The identity relation, or the graph of the identity function -/
def id_rel {α : Type*} := {p : α × α | p.1 = p.2}
@[simp] theorem mem_id_rel {a b : α} : (a, b) ∈ @id_rel α ↔ a = b := iff.rfl
@[simp] theorem id_rel_subset {s : set (α × α)} : id_rel ⊆ s ↔ ∀ a, (a, a) ∈ s :=
by simp [subset_def]; exact forall_congr (λ a, by simp)
/-- The composition of relations -/
def comp_rel {α : Type u} (r₁ r₂ : set (α×α)) := {p : α × α | ∃z:α, (p.1, z) ∈ r₁ ∧ (z, p.2) ∈ r₂}
localized "infix (name := uniformity.comp_rel) ` ○ `:55 := comp_rel" in uniformity
@[simp] theorem mem_comp_rel {r₁ r₂ : set (α×α)}
{x y : α} : (x, y) ∈ r₁ ○ r₂ ↔ ∃ z, (x, z) ∈ r₁ ∧ (z, y) ∈ r₂ := iff.rfl
@[simp] theorem swap_id_rel : prod.swap '' id_rel = @id_rel α :=
set.ext $ assume ⟨a, b⟩, by simp [image_swap_eq_preimage_swap]; exact eq_comm
theorem monotone_comp_rel [preorder β] {f g : β → set (α×α)}
(hf : monotone f) (hg : monotone g) : monotone (λx, (f x) ○ (g x)) :=
assume a b h p ⟨z, h₁, h₂⟩, ⟨z, hf h h₁, hg h h₂⟩
@[mono]
lemma comp_rel_mono {f g h k: set (α×α)} (h₁ : f ⊆ h) (h₂ : g ⊆ k) : f ○ g ⊆ h ○ k :=
λ ⟨x, y⟩ ⟨z, h, h'⟩, ⟨z, h₁ h, h₂ h'⟩
lemma prod_mk_mem_comp_rel {a b c : α} {s t : set (α×α)} (h₁ : (a, c) ∈ s) (h₂ : (c, b) ∈ t) :
(a, b) ∈ s ○ t :=
⟨c, h₁, h₂⟩
@[simp] lemma id_comp_rel {r : set (α×α)} : id_rel ○ r = r :=
set.ext $ assume ⟨a, b⟩, by simp
lemma comp_rel_assoc {r s t : set (α×α)} :
(r ○ s) ○ t = r ○ (s ○ t) :=
by ext p; cases p; simp only [mem_comp_rel]; tauto
lemma left_subset_comp_rel {s t : set (α × α)} (h : id_rel ⊆ t) : s ⊆ s ○ t :=
λ ⟨x, y⟩ xy_in, ⟨y, xy_in, h $ by exact rfl⟩
lemma right_subset_comp_rel {s t : set (α × α)} (h : id_rel ⊆ s) : t ⊆ s ○ t :=
λ ⟨x, y⟩ xy_in, ⟨x, h $ by exact rfl, xy_in⟩
lemma subset_comp_self {s : set (α × α)} (h : id_rel ⊆ s) : s ⊆ s ○ s :=
left_subset_comp_rel h
lemma subset_iterate_comp_rel {s t : set (α × α)} (h : id_rel ⊆ s) (n : ℕ) :
t ⊆ (((○) s) ^[n] t) :=
begin
induction n with n ihn generalizing t,
exacts [subset.rfl, (right_subset_comp_rel h).trans ihn]
end
/-- The relation is invariant under swapping factors. -/
def symmetric_rel (V : set (α × α)) : Prop := prod.swap ⁻¹' V = V
/-- The maximal symmetric relation contained in a given relation. -/
def symmetrize_rel (V : set (α × α)) : set (α × α) := V ∩ prod.swap ⁻¹' V
lemma symmetric_symmetrize_rel (V : set (α × α)) : symmetric_rel (symmetrize_rel V) :=
by simp [symmetric_rel, symmetrize_rel, preimage_inter, inter_comm, ← preimage_comp]
lemma symmetrize_rel_subset_self (V : set (α × α)) : symmetrize_rel V ⊆ V :=
sep_subset _ _
@[mono]
lemma symmetrize_mono {V W: set (α × α)} (h : V ⊆ W) : symmetrize_rel V ⊆ symmetrize_rel W :=
inter_subset_inter h $ preimage_mono h
lemma symmetric_rel.mk_mem_comm {V : set (α × α)} (hV : symmetric_rel V) {x y : α} :
(x, y) ∈ V ↔ (y, x) ∈ V :=
set.ext_iff.1 hV (y, x)
lemma symmetric_rel.eq {U : set (α × α)} (hU : symmetric_rel U) : prod.swap ⁻¹' U = U := hU
lemma symmetric_rel.inter {U V : set (α × α)} (hU : symmetric_rel U) (hV : symmetric_rel V) :
symmetric_rel (U ∩ V) :=
by rw [symmetric_rel, preimage_inter, hU.eq, hV.eq]
/-- This core description of a uniform space is outside of the type class hierarchy. It is useful
for constructions of uniform spaces, when the topology is derived from the uniform space. -/
structure uniform_space.core (α : Type u) :=
(uniformity : filter (α × α))
(refl : 𝓟 id_rel ≤ uniformity)
(symm : tendsto prod.swap uniformity uniformity)
(comp : uniformity.lift' (λs, s ○ s) ≤ uniformity)
/-- An alternative constructor for `uniform_space.core`. This version unfolds various
`filter`-related definitions. -/
def uniform_space.core.mk' {α : Type u} (U : filter (α × α))
(refl : ∀ (r ∈ U) x, (x, x) ∈ r)
(symm : ∀ r ∈ U, prod.swap ⁻¹' r ∈ U)
(comp : ∀ r ∈ U, ∃ t ∈ U, t ○ t ⊆ r) : uniform_space.core α :=
⟨U, λ r ru, id_rel_subset.2 (refl _ ru), symm,
begin
intros r ru,
rw [mem_lift'_sets],
exact comp _ ru,
apply monotone_comp_rel; exact monotone_id,
end⟩
/-- Defining an `uniform_space.core` from a filter basis satisfying some uniformity-like axioms. -/
def uniform_space.core.mk_of_basis {α : Type u} (B : filter_basis (α × α))
(refl : ∀ (r ∈ B) x, (x, x) ∈ r)
(symm : ∀ r ∈ B, ∃ t ∈ B, t ⊆ prod.swap ⁻¹' r)
(comp : ∀ r ∈ B, ∃ t ∈ B, t ○ t ⊆ r) : uniform_space.core α :=
{ uniformity := B.filter,
refl := B.has_basis.ge_iff.mpr (λ r ru, id_rel_subset.2 $ refl _ ru),
symm := (B.has_basis.tendsto_iff B.has_basis).mpr symm,
comp := (has_basis.le_basis_iff (B.has_basis.lift' (monotone_comp_rel monotone_id monotone_id))
B.has_basis).mpr comp }
/-- A uniform space generates a topological space -/
def uniform_space.core.to_topological_space {α : Type u} (u : uniform_space.core α) :
topological_space α :=
{ is_open := λs, ∀x∈s, { p : α × α | p.1 = x → p.2 ∈ s } ∈ u.uniformity,
is_open_univ := by simp; intro; exact univ_mem,
is_open_inter :=
assume s t hs ht x ⟨xs, xt⟩, by filter_upwards [hs x xs, ht x xt]; simp {contextual := tt},
is_open_sUnion :=
assume s hs x ⟨t, ts, xt⟩, by filter_upwards [hs t ts x xt] with p ph h using ⟨t, ts, ph h⟩ }
lemma uniform_space.core_eq :
∀{u₁ u₂ : uniform_space.core α}, u₁.uniformity = u₂.uniformity → u₁ = u₂
| ⟨u₁, _, _, _⟩ ⟨u₂, _, _, _⟩ h := by { congr, exact h }
-- the topological structure is embedded in the uniform structure
-- to avoid instance diamond issues. See Note [forgetful inheritance].
/-- A uniform space is a generalization of the "uniform" topological aspects of a
metric space. It consists of a filter on `α × α` called the "uniformity", which
satisfies properties analogous to the reflexivity, symmetry, and triangle properties
of a metric.
A metric space has a natural uniformity, and a uniform space has a natural topology.
A topological group also has a natural uniformity, even when it is not metrizable. -/
class uniform_space (α : Type u) extends topological_space α, uniform_space.core α :=
(is_open_uniformity : ∀s, is_open s ↔ (∀x∈s, { p : α × α | p.1 = x → p.2 ∈ s } ∈ uniformity))
/-- Alternative constructor for `uniform_space α` when a topology is already given. -/
@[pattern] def uniform_space.mk' {α} (t : topological_space α)
(c : uniform_space.core α)
(is_open_uniformity : ∀s:set α, t.is_open s ↔
(∀x∈s, { p : α × α | p.1 = x → p.2 ∈ s } ∈ c.uniformity)) :
uniform_space α := ⟨c, is_open_uniformity⟩
/-- Construct a `uniform_space` from a `uniform_space.core`. -/
def uniform_space.of_core {α : Type u} (u : uniform_space.core α) : uniform_space α :=
{ to_core := u,
to_topological_space := u.to_topological_space,
is_open_uniformity := assume a, iff.rfl }
/-- Construct a `uniform_space` from a `u : uniform_space.core` and a `topological_space` structure
that is equal to `u.to_topological_space`. -/
def uniform_space.of_core_eq {α : Type u} (u : uniform_space.core α) (t : topological_space α)
(h : t = u.to_topological_space) : uniform_space α :=
{ to_core := u,
to_topological_space := t,
is_open_uniformity := assume a, h.symm ▸ iff.rfl }
lemma uniform_space.to_core_to_topological_space (u : uniform_space α) :
u.to_core.to_topological_space = u.to_topological_space :=
topological_space_eq $ funext $ assume s,
by rw [uniform_space.core.to_topological_space, uniform_space.is_open_uniformity]
@[ext]
lemma uniform_space_eq : ∀{u₁ u₂ : uniform_space α}, u₁.uniformity = u₂.uniformity → u₁ = u₂
| (uniform_space.mk' t₁ u₁ o₁) (uniform_space.mk' t₂ u₂ o₂) h :=
have u₁ = u₂, from uniform_space.core_eq h,
have t₁ = t₂, from topological_space_eq $ funext $ assume s, by rw [o₁, o₂]; simp [this],
by simp [*]
lemma uniform_space.of_core_eq_to_core
(u : uniform_space α) (t : topological_space α) (h : t = u.to_core.to_topological_space) :
uniform_space.of_core_eq u.to_core t h = u :=
uniform_space_eq rfl
/-- Replace topology in a `uniform_space` instance with a propositionally (but possibly not
definitionally) equal one. -/
@[reducible] def uniform_space.replace_topology {α : Type*} [i : topological_space α]
(u : uniform_space α) (h : i = u.to_topological_space) : uniform_space α :=
uniform_space.of_core_eq u.to_core i $ h.trans u.to_core_to_topological_space.symm
lemma uniform_space.replace_topology_eq {α : Type*} [i : topological_space α] (u : uniform_space α)
(h : i = u.to_topological_space) : u.replace_topology h = u :=
u.of_core_eq_to_core _ _
section uniform_space
variables [uniform_space α]
/-- The uniformity is a filter on α × α (inferred from an ambient uniform space
structure on α). -/
def uniformity (α : Type u) [uniform_space α] : filter (α × α) :=
(@uniform_space.to_core α _).uniformity
localized "notation (name := uniformity) `𝓤` := uniformity" in uniformity
lemma is_open_uniformity {s : set α} :
is_open s ↔ (∀x∈s, { p : α × α | p.1 = x → p.2 ∈ s } ∈ 𝓤 α) :=
uniform_space.is_open_uniformity s
lemma refl_le_uniformity : 𝓟 id_rel ≤ 𝓤 α :=
(@uniform_space.to_core α _).refl
instance uniformity.ne_bot [nonempty α] : ne_bot (𝓤 α) :=
begin
inhabit α,
refine (principal_ne_bot_iff.2 _).mono refl_le_uniformity,
exact ⟨(default, default), rfl⟩
end
lemma refl_mem_uniformity {x : α} {s : set (α × α)} (h : s ∈ 𝓤 α) :
(x, x) ∈ s :=
refl_le_uniformity h rfl
lemma mem_uniformity_of_eq {x y : α} {s : set (α × α)} (h : s ∈ 𝓤 α) (hx : x = y) :
(x, y) ∈ s :=
hx ▸ refl_mem_uniformity h
lemma symm_le_uniformity : map (@prod.swap α α) (𝓤 _) ≤ (𝓤 _) :=
(@uniform_space.to_core α _).symm
lemma comp_le_uniformity : (𝓤 α).lift' (λs:set (α×α), s ○ s) ≤ 𝓤 α :=
(@uniform_space.to_core α _).comp
lemma tendsto_swap_uniformity : tendsto (@prod.swap α α) (𝓤 α) (𝓤 α) :=
symm_le_uniformity
lemma comp_mem_uniformity_sets {s : set (α × α)} (hs : s ∈ 𝓤 α) :
∃ t ∈ 𝓤 α, t ○ t ⊆ s :=
have s ∈ (𝓤 α).lift' (λt:set (α×α), t ○ t),
from comp_le_uniformity hs,
(mem_lift'_sets $ monotone_comp_rel monotone_id monotone_id).mp this
/-- If `s ∈ 𝓤 α`, then for any natural `n`, for a subset `t` of a sufficiently small set in `𝓤 α`,
we have `t ○ t ○ ... ○ t ⊆ s` (`n` compositions). -/
lemma eventually_uniformity_iterate_comp_subset {s : set (α × α)} (hs : s ∈ 𝓤 α) (n : ℕ) :
∀ᶠ t in (𝓤 α).small_sets, ((○) t) ^[n] t ⊆ s :=
begin
suffices : ∀ᶠ t in (𝓤 α).small_sets, t ⊆ s ∧ (((○) t) ^[n] t ⊆ s),
from (eventually_and.1 this).2,
induction n with n ihn generalizing s, { simpa },
rcases comp_mem_uniformity_sets hs with ⟨t, htU, hts⟩,
refine (ihn htU).mono (λ U hU, _),
rw [function.iterate_succ_apply'],
exact ⟨hU.1.trans $ (subset_comp_self $ refl_le_uniformity htU).trans hts,
(comp_rel_mono hU.1 hU.2).trans hts⟩
end
/-- If `s ∈ 𝓤 α`, then for any natural `n`, for a subset `t` of a sufficiently small set in `𝓤 α`,
we have `t ○ t ⊆ s`. -/
lemma eventually_uniformity_comp_subset {s : set (α × α)} (hs : s ∈ 𝓤 α) :
∀ᶠ t in (𝓤 α).small_sets, t ○ t ⊆ s :=
eventually_uniformity_iterate_comp_subset hs 1
/-- Relation `λ f g, tendsto (λ x, (f x, g x)) l (𝓤 α)` is transitive. -/
lemma filter.tendsto.uniformity_trans {l : filter β} {f₁ f₂ f₃ : β → α}
(h₁₂ : tendsto (λ x, (f₁ x, f₂ x)) l (𝓤 α)) (h₂₃ : tendsto (λ x, (f₂ x, f₃ x)) l (𝓤 α)) :
tendsto (λ x, (f₁ x, f₃ x)) l (𝓤 α) :=
begin
refine le_trans (le_lift' $ λ s hs, mem_map.2 _) comp_le_uniformity,
filter_upwards [h₁₂ hs, h₂₃ hs] with x hx₁₂ hx₂₃ using ⟨_, hx₁₂, hx₂₃⟩,
end
/-- Relation `λ f g, tendsto (λ x, (f x, g x)) l (𝓤 α)` is symmetric -/
lemma filter.tendsto.uniformity_symm {l : filter β} {f : β → α × α}
(h : tendsto f l (𝓤 α)) :
tendsto (λ x, ((f x).2, (f x).1)) l (𝓤 α) :=
tendsto_swap_uniformity.comp h
/-- Relation `λ f g, tendsto (λ x, (f x, g x)) l (𝓤 α)` is reflexive. -/
lemma tendsto_diag_uniformity (f : β → α) (l : filter β) :
tendsto (λ x, (f x, f x)) l (𝓤 α) :=
assume s hs, mem_map.2 $ univ_mem' $ λ x, refl_mem_uniformity hs
lemma tendsto_const_uniformity {a : α} {f : filter β} : tendsto (λ _, (a, a)) f (𝓤 α) :=
tendsto_diag_uniformity (λ _, a) f
lemma symm_of_uniformity {s : set (α × α)} (hs : s ∈ 𝓤 α) :
∃ t ∈ 𝓤 α, (∀a b, (a, b) ∈ t → (b, a) ∈ t) ∧ t ⊆ s :=
have preimage prod.swap s ∈ 𝓤 α, from symm_le_uniformity hs,
⟨s ∩ preimage prod.swap s, inter_mem hs this, λ a b ⟨h₁, h₂⟩, ⟨h₂, h₁⟩, inter_subset_left _ _⟩
lemma comp_symm_of_uniformity {s : set (α × α)} (hs : s ∈ 𝓤 α) :
∃ t ∈ 𝓤 α, (∀{a b}, (a, b) ∈ t → (b, a) ∈ t) ∧ t ○ t ⊆ s :=
let ⟨t, ht₁, ht₂⟩ := comp_mem_uniformity_sets hs in
let ⟨t', ht', ht'₁, ht'₂⟩ := symm_of_uniformity ht₁ in
⟨t', ht', ht'₁, subset.trans (monotone_comp_rel monotone_id monotone_id ht'₂) ht₂⟩
lemma uniformity_le_symm : 𝓤 α ≤ (@prod.swap α α) <$> 𝓤 α :=
by rw [map_swap_eq_comap_swap];
from map_le_iff_le_comap.1 tendsto_swap_uniformity
lemma uniformity_eq_symm : 𝓤 α = (@prod.swap α α) <$> 𝓤 α :=
le_antisymm uniformity_le_symm symm_le_uniformity
@[simp] lemma comap_swap_uniformity : comap (@prod.swap α α) (𝓤 α) = 𝓤 α :=
(congr_arg _ uniformity_eq_symm).trans $ comap_map prod.swap_injective
lemma symmetrize_mem_uniformity {V : set (α × α)} (h : V ∈ 𝓤 α) : symmetrize_rel V ∈ 𝓤 α :=
begin
apply (𝓤 α).inter_sets h,
rw [← image_swap_eq_preimage_swap, uniformity_eq_symm],
exact image_mem_map h,
end
/-- Symmetric entourages form a basis of `𝓤 α` -/
lemma uniform_space.has_basis_symmetric :
(𝓤 α).has_basis (λ s : set (α × α), s ∈ 𝓤 α ∧ symmetric_rel s) id :=
has_basis_self.2 $ λ t t_in, ⟨symmetrize_rel t, symmetrize_mem_uniformity t_in,
symmetric_symmetrize_rel t, symmetrize_rel_subset_self t⟩
theorem uniformity_lift_le_swap {g : set (α×α) → filter β} {f : filter β} (hg : monotone g)
(h : (𝓤 α).lift (λs, g (preimage prod.swap s)) ≤ f) : (𝓤 α).lift g ≤ f :=
calc (𝓤 α).lift g ≤ (filter.map (@prod.swap α α) $ 𝓤 α).lift g :
lift_mono uniformity_le_symm le_rfl
... ≤ _ :
by rw [map_lift_eq2 hg, image_swap_eq_preimage_swap]; exact h
lemma uniformity_lift_le_comp {f : set (α×α) → filter β} (h : monotone f) :
(𝓤 α).lift (λs, f (s ○ s)) ≤ (𝓤 α).lift f :=
calc (𝓤 α).lift (λs, f (s ○ s)) =
((𝓤 α).lift' (λs:set (α×α), s ○ s)).lift f :
begin
rw [lift_lift'_assoc],
exact monotone_comp_rel monotone_id monotone_id,
exact h
end
... ≤ (𝓤 α).lift f : lift_mono comp_le_uniformity le_rfl
lemma comp_le_uniformity3 :
(𝓤 α).lift' (λs:set (α×α), s ○ (s ○ s)) ≤ (𝓤 α) :=
calc (𝓤 α).lift' (λd, d ○ (d ○ d)) =
(𝓤 α).lift (λs, (𝓤 α).lift' (λt:set(α×α), s ○ (t ○ t))) :
begin
rw [lift_lift'_same_eq_lift'],
exact (assume x, monotone_comp_rel monotone_const $ monotone_comp_rel monotone_id monotone_id),
exact (assume x, monotone_comp_rel monotone_id monotone_const),
end
... ≤ (𝓤 α).lift (λs, (𝓤 α).lift' (λt:set(α×α), s ○ t)) :
lift_mono' $ assume s hs, @uniformity_lift_le_comp α _ _ (𝓟 ∘ (○) s) $
monotone_principal.comp (monotone_comp_rel monotone_const monotone_id)
... = (𝓤 α).lift' (λs:set(α×α), s ○ s) :
lift_lift'_same_eq_lift'
(assume s, monotone_comp_rel monotone_const monotone_id)
(assume s, monotone_comp_rel monotone_id monotone_const)
... ≤ (𝓤 α) : comp_le_uniformity
/-- See also `comp_open_symm_mem_uniformity_sets`. -/
lemma comp_symm_mem_uniformity_sets {s : set (α × α)} (hs : s ∈ 𝓤 α) :
∃ t ∈ 𝓤 α, symmetric_rel t ∧ t ○ t ⊆ s :=
begin
obtain ⟨w, w_in, w_sub⟩ : ∃ w ∈ 𝓤 α, w ○ w ⊆ s := comp_mem_uniformity_sets hs,
use [symmetrize_rel w, symmetrize_mem_uniformity w_in, symmetric_symmetrize_rel w],
have : symmetrize_rel w ⊆ w := symmetrize_rel_subset_self w,
calc symmetrize_rel w ○ symmetrize_rel w ⊆ w ○ w : by mono
... ⊆ s : w_sub,
end
lemma subset_comp_self_of_mem_uniformity {s : set (α × α)} (h : s ∈ 𝓤 α) : s ⊆ s ○ s :=
subset_comp_self (refl_le_uniformity h)
lemma comp_comp_symm_mem_uniformity_sets {s : set (α × α)} (hs : s ∈ 𝓤 α) :
∃ t ∈ 𝓤 α, symmetric_rel t ∧ t ○ t ○ t ⊆ s :=
begin
rcases comp_symm_mem_uniformity_sets hs with ⟨w, w_in, w_symm, w_sub⟩,
rcases comp_symm_mem_uniformity_sets w_in with ⟨t, t_in, t_symm, t_sub⟩,
use [t, t_in, t_symm],
have : t ⊆ t ○ t := subset_comp_self_of_mem_uniformity t_in,
calc
t ○ t ○ t ⊆ w ○ t : by mono
... ⊆ w ○ (t ○ t) : by mono
... ⊆ w ○ w : by mono
... ⊆ s : w_sub,
end
/-!
### Balls in uniform spaces
-/
/-- The ball around `(x : β)` with respect to `(V : set (β × β))`. Intended to be
used for `V ∈ 𝓤 β`, but this is not needed for the definition. Recovers the
notions of metric space ball when `V = {p | dist p.1 p.2 < r }`. -/
def uniform_space.ball (x : β) (V : set (β × β)) : set β := (prod.mk x) ⁻¹' V
open uniform_space (ball)
lemma uniform_space.mem_ball_self (x : α) {V : set (α × α)} (hV : V ∈ 𝓤 α) :
x ∈ ball x V :=
refl_mem_uniformity hV
/-- The triangle inequality for `uniform_space.ball` -/
lemma mem_ball_comp {V W : set (β × β)} {x y z} (h : y ∈ ball x V) (h' : z ∈ ball y W) :
z ∈ ball x (V ○ W) :=
prod_mk_mem_comp_rel h h'
lemma ball_subset_of_comp_subset {V W : set (β × β)} {x y} (h : x ∈ ball y W) (h' : W ○ W ⊆ V) :
ball x W ⊆ ball y V :=
λ z z_in, h' (mem_ball_comp h z_in)
lemma ball_mono {V W : set (β × β)} (h : V ⊆ W) (x : β) : ball x V ⊆ ball x W :=
preimage_mono h
lemma ball_inter (x : β) (V W : set (β × β)) : ball x (V ∩ W) = ball x V ∩ ball x W :=
preimage_inter
lemma ball_inter_left (x : β) (V W : set (β × β)) : ball x (V ∩ W) ⊆ ball x V :=
ball_mono (inter_subset_left V W) x
lemma ball_inter_right (x : β) (V W : set (β × β)) : ball x (V ∩ W) ⊆ ball x W :=
ball_mono (inter_subset_right V W) x
lemma mem_ball_symmetry {V : set (β × β)} (hV : symmetric_rel V) {x y} :
x ∈ ball y V ↔ y ∈ ball x V :=
show (x, y) ∈ prod.swap ⁻¹' V ↔ (x, y) ∈ V, by { unfold symmetric_rel at hV, rw hV }
lemma ball_eq_of_symmetry {V : set (β × β)} (hV : symmetric_rel V) {x} :
ball x V = {y | (y, x) ∈ V} :=
by { ext y, rw mem_ball_symmetry hV, exact iff.rfl }
lemma mem_comp_of_mem_ball {V W : set (β × β)} {x y z : β} (hV : symmetric_rel V)
(hx : x ∈ ball z V) (hy : y ∈ ball z W) : (x, y) ∈ V ○ W :=
begin
rw mem_ball_symmetry hV at hx,
exact ⟨z, hx, hy⟩
end
lemma uniform_space.is_open_ball (x : α) {V : set (α × α)} (hV : is_open V) :
is_open (ball x V) :=
hV.preimage $ continuous_const.prod_mk continuous_id
lemma mem_comp_comp {V W M : set (β × β)} (hW' : symmetric_rel W) {p : β × β} :
p ∈ V ○ M ○ W ↔ ((ball p.1 V ×ˢ ball p.2 W) ∩ M).nonempty :=
begin
cases p with x y,
split,
{ rintros ⟨z, ⟨w, hpw, hwz⟩, hzy⟩,
exact ⟨(w, z), ⟨hpw, by rwa mem_ball_symmetry hW'⟩, hwz⟩, },
{ rintro ⟨⟨w, z⟩, ⟨w_in, z_in⟩, hwz⟩,
rwa mem_ball_symmetry hW' at z_in,
use [z, w] ; tauto },
end
/-!
### Neighborhoods in uniform spaces
-/
lemma mem_nhds_uniformity_iff_right {x : α} {s : set α} :
s ∈ 𝓝 x ↔ {p : α × α | p.1 = x → p.2 ∈ s} ∈ 𝓤 α :=
begin
refine ⟨_, λ hs, _⟩,
{ simp only [mem_nhds_iff, is_open_uniformity, and_imp, exists_imp_distrib],
intros t ts ht xt,
filter_upwards [ht x xt] using λ y h eq, ts (h eq) },
{ refine mem_nhds_iff.mpr ⟨{x | {p : α × α | p.1 = x → p.2 ∈ s} ∈ 𝓤 α}, _, _, hs⟩,
{ exact λ y hy, refl_mem_uniformity hy rfl },
{ refine is_open_uniformity.mpr (λ y hy, _),
rcases comp_mem_uniformity_sets hy with ⟨t, ht, tr⟩,
filter_upwards [ht], rintro ⟨a, b⟩ hp' rfl,
filter_upwards [ht], rintro ⟨a', b'⟩ hp'' rfl,
exact @tr (a, b') ⟨a', hp', hp''⟩ rfl } }
end
lemma mem_nhds_uniformity_iff_left {x : α} {s : set α} :
s ∈ 𝓝 x ↔ {p : α × α | p.2 = x → p.1 ∈ s} ∈ 𝓤 α :=
by { rw [uniformity_eq_symm, mem_nhds_uniformity_iff_right], refl }
lemma nhds_eq_comap_uniformity_aux {α : Type u} {x : α} {s : set α} {F : filter (α × α)} :
{p : α × α | p.fst = x → p.snd ∈ s} ∈ F ↔ s ∈ comap (prod.mk x) F :=
by rw mem_comap ; from iff.intro
(assume hs, ⟨_, hs, assume x hx, hx rfl⟩)
(assume ⟨t, h, ht⟩, F.sets_of_superset h $
assume ⟨p₁, p₂⟩ hp (h : p₁ = x), ht $ by simp [h.symm, hp])
lemma nhds_eq_comap_uniformity {x : α} : 𝓝 x = (𝓤 α).comap (prod.mk x) :=
by { ext s, rw [mem_nhds_uniformity_iff_right], exact nhds_eq_comap_uniformity_aux }
/-- See also `is_open_iff_open_ball_subset`. -/
lemma is_open_iff_ball_subset {s : set α} : is_open s ↔ ∀ x ∈ s, ∃ V ∈ 𝓤 α, ball x V ⊆ s :=
begin
simp_rw [is_open_iff_mem_nhds, nhds_eq_comap_uniformity],
exact iff.rfl,
end
lemma nhds_basis_uniformity' {p : ι → Prop} {s : ι → set (α × α)} (h : (𝓤 α).has_basis p s)
{x : α} :
(𝓝 x).has_basis p (λ i, ball x (s i)) :=
by { rw [nhds_eq_comap_uniformity], exact h.comap (prod.mk x) }
lemma nhds_basis_uniformity {p : ι → Prop} {s : ι → set (α × α)} (h : (𝓤 α).has_basis p s) {x : α} :
(𝓝 x).has_basis p (λ i, {y | (y, x) ∈ s i}) :=
begin
replace h := h.comap prod.swap,
rw [← map_swap_eq_comap_swap, ← uniformity_eq_symm] at h,
exact nhds_basis_uniformity' h
end
lemma uniform_space.mem_nhds_iff {x : α} {s : set α} : s ∈ 𝓝 x ↔ ∃ V ∈ 𝓤 α, ball x V ⊆ s :=
begin
rw [nhds_eq_comap_uniformity, mem_comap],
exact iff.rfl,
end
lemma uniform_space.ball_mem_nhds (x : α) ⦃V : set (α × α)⦄ (V_in : V ∈ 𝓤 α) : ball x V ∈ 𝓝 x :=
begin
rw uniform_space.mem_nhds_iff,
exact ⟨V, V_in, subset.refl _⟩
end
lemma uniform_space.mem_nhds_iff_symm {x : α} {s : set α} :
s ∈ 𝓝 x ↔ ∃ V ∈ 𝓤 α, symmetric_rel V ∧ ball x V ⊆ s :=
begin
rw uniform_space.mem_nhds_iff,
split,
{ rintros ⟨V, V_in, V_sub⟩,
use [symmetrize_rel V, symmetrize_mem_uniformity V_in, symmetric_symmetrize_rel V],
exact subset.trans (ball_mono (symmetrize_rel_subset_self V) x) V_sub },
{ rintros ⟨V, V_in, V_symm, V_sub⟩,
exact ⟨V, V_in, V_sub⟩ }
end
lemma uniform_space.has_basis_nhds (x : α) :
has_basis (𝓝 x) (λ s : set (α × α), s ∈ 𝓤 α ∧ symmetric_rel s) (λ s, ball x s) :=
⟨λ t, by simp [uniform_space.mem_nhds_iff_symm, and_assoc]⟩
open uniform_space
lemma uniform_space.mem_closure_iff_symm_ball {s : set α} {x} :
x ∈ closure s ↔ ∀ {V}, V ∈ 𝓤 α → symmetric_rel V → (s ∩ ball x V).nonempty :=
by simp [mem_closure_iff_nhds_basis (has_basis_nhds x), set.nonempty]
lemma uniform_space.mem_closure_iff_ball {s : set α} {x} :
x ∈ closure s ↔ ∀ {V}, V ∈ 𝓤 α → (ball x V ∩ s).nonempty :=
by simp [mem_closure_iff_nhds_basis' (nhds_basis_uniformity' (𝓤 α).basis_sets)]
lemma uniform_space.has_basis_nhds_prod (x y : α) :
has_basis (𝓝 (x, y)) (λ s, s ∈ 𝓤 α ∧ symmetric_rel s) $ λ s, ball x s ×ˢ ball y s :=
begin
rw nhds_prod_eq,
apply (has_basis_nhds x).prod_same_index (has_basis_nhds y),
rintro U V ⟨U_in, U_symm⟩ ⟨V_in, V_symm⟩,
exact ⟨U ∩ V, ⟨(𝓤 α).inter_sets U_in V_in, U_symm.inter V_symm⟩,
ball_inter_left x U V, ball_inter_right y U V⟩,
end
lemma nhds_eq_uniformity {x : α} : 𝓝 x = (𝓤 α).lift' (ball x) :=
(nhds_basis_uniformity' (𝓤 α).basis_sets).eq_binfi
lemma nhds_eq_uniformity' {x : α} : 𝓝 x = (𝓤 α).lift' (λ s, {y | (y, x) ∈ s}) :=
(nhds_basis_uniformity (𝓤 α).basis_sets).eq_binfi
lemma mem_nhds_left (x : α) {s : set (α×α)} (h : s ∈ 𝓤 α) :
{y : α | (x, y) ∈ s} ∈ 𝓝 x :=
ball_mem_nhds x h
lemma mem_nhds_right (y : α) {s : set (α×α)} (h : s ∈ 𝓤 α) :
{x : α | (x, y) ∈ s} ∈ 𝓝 y :=
mem_nhds_left _ (symm_le_uniformity h)
lemma is_compact.nhds_set_basis_uniformity {p : ι → Prop} {s : ι → set (α × α)}
(hU : (𝓤 α).has_basis p s) {K : set α} (hK : is_compact K) :
(𝓝ˢ K).has_basis p (λ i, ⋃ x ∈ K, ball x (s i)) :=
begin
refine ⟨λ U, _⟩,
simp only [mem_nhds_set_iff_forall, (nhds_basis_uniformity' hU).mem_iff, Union₂_subset_iff],
refine ⟨λ H, _, λ ⟨i, hpi, hi⟩ x hx, ⟨i, hpi, hi x hx⟩⟩,
replace H : ∀ x ∈ K, ∃ i : {i // p i}, ball x (s i ○ s i) ⊆ U,
{ intros x hx,
rcases H x hx with ⟨i, hpi, hi⟩,
rcases comp_mem_uniformity_sets (hU.mem_of_mem hpi) with ⟨t, ht_mem, ht⟩,
rcases hU.mem_iff.1 ht_mem with ⟨j, hpj, hj⟩,
exact ⟨⟨j, hpj⟩, subset.trans (ball_mono ((comp_rel_mono hj hj).trans ht) _) hi⟩ },
haveI : nonempty {a // p a}, from nonempty_subtype.2 hU.ex_mem,
choose! I hI using H,
rcases hK.elim_nhds_subcover (λ x, ball x $ s (I x))
(λ x hx, ball_mem_nhds _ $ hU.mem_of_mem (I x).2) with ⟨t, htK, ht⟩,
obtain ⟨i, hpi, hi⟩ : ∃ i (hpi : p i), s i ⊆ ⋂ x ∈ t, s (I x),
from hU.mem_iff.1 ((bInter_finset_mem t).2 (λ x hx, hU.mem_of_mem (I x).2)),
rw [subset_Inter₂_iff] at hi,
refine ⟨i, hpi, λ x hx, _⟩,
rcases mem_Union₂.1 (ht hx) with ⟨z, hzt : z ∈ t, hzx : x ∈ ball z (s (I z))⟩,
calc ball x (s i) ⊆ ball z (s (I z) ○ s (I z)) : λ y hy, ⟨x, hzx, hi z hzt hy⟩
... ⊆ U : hI z (htK z hzt),
end
lemma tendsto_right_nhds_uniformity {a : α} : tendsto (λa', (a', a)) (𝓝 a) (𝓤 α) :=
assume s, mem_nhds_right a
lemma tendsto_left_nhds_uniformity {a : α} : tendsto (λa', (a, a')) (𝓝 a) (𝓤 α) :=
assume s, mem_nhds_left a
lemma lift_nhds_left {x : α} {g : set α → filter β} (hg : monotone g) :
(𝓝 x).lift g = (𝓤 α).lift (λs:set (α×α), g {y | (x, y) ∈ s}) :=
eq.trans
begin
rw [nhds_eq_uniformity],
exact (filter.lift_assoc $ monotone_principal.comp $ monotone_preimage.comp monotone_preimage )
end
(congr_arg _ $ funext $ assume s, filter.lift_principal hg)
lemma lift_nhds_right {x : α} {g : set α → filter β} (hg : monotone g) :
(𝓝 x).lift g = (𝓤 α).lift (λs:set (α×α), g {y | (y, x) ∈ s}) :=
calc (𝓝 x).lift g = (𝓤 α).lift (λs:set (α×α), g {y | (x, y) ∈ s}) : lift_nhds_left hg
... = ((@prod.swap α α) <$> (𝓤 α)).lift (λs:set (α×α), g {y | (x, y) ∈ s}) :
by rw [←uniformity_eq_symm]
... = (𝓤 α).lift (λs:set (α×α), g {y | (x, y) ∈ image prod.swap s}) :
map_lift_eq2 $ hg.comp monotone_preimage
... = _ : by simp [image_swap_eq_preimage_swap]
lemma nhds_nhds_eq_uniformity_uniformity_prod {a b : α} :
𝓝 a ×ᶠ 𝓝 b =
(𝓤 α).lift (λs:set (α×α), (𝓤 α).lift' (λt:set (α×α),
{y : α | (y, a) ∈ s} ×ˢ {y : α | (b, y) ∈ t})) :=
begin
rw [nhds_eq_uniformity', nhds_eq_uniformity, prod_lift'_lift'],
{ refl },
{ exact monotone_preimage },
{ exact monotone_preimage },
end
lemma nhds_eq_uniformity_prod {a b : α} :
𝓝 (a, b) =
(𝓤 α).lift' (λs:set (α×α), {y : α | (y, a) ∈ s} ×ˢ {y : α | (b, y) ∈ s}) :=
begin
rw [nhds_prod_eq, nhds_nhds_eq_uniformity_uniformity_prod, lift_lift'_same_eq_lift'],
{ intro s, exact monotone_const.set_prod monotone_preimage },
{ intro t, exact monotone_preimage.set_prod monotone_const }
end
lemma nhdset_of_mem_uniformity {d : set (α×α)} (s : set (α×α)) (hd : d ∈ 𝓤 α) :
∃(t : set (α×α)), is_open t ∧ s ⊆ t ∧ t ⊆ {p | ∃x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d} :=
let cl_d := {p:α×α | ∃x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d} in
have ∀p ∈ s, ∃t ⊆ cl_d, is_open t ∧ p ∈ t, from
assume ⟨x, y⟩ hp, _root_.mem_nhds_iff.mp $
show cl_d ∈ 𝓝 (x, y),
begin
rw [nhds_eq_uniformity_prod, mem_lift'_sets],
exact ⟨d, hd, assume ⟨a, b⟩ ⟨ha, hb⟩, ⟨x, y, ha, hp, hb⟩⟩,
exact monotone_preimage.set_prod monotone_preimage
end,
have ∃t:(Π(p:α×α) (h:p ∈ s), set (α×α)),
∀p, ∀h:p ∈ s, t p h ⊆ cl_d ∧ is_open (t p h) ∧ p ∈ t p h,
by simp [classical.skolem] at this; simp; assumption,
match this with
| ⟨t, ht⟩ :=
⟨(⋃ p:α×α, ⋃ h : p ∈ s, t p h : set (α×α)),
is_open_Union $ assume (p:α×α), is_open_Union $ assume hp, (ht p hp).right.left,
assume ⟨a, b⟩ hp, begin simp; exact ⟨a, b, hp, (ht (a,b) hp).right.right⟩ end,
Union_subset $ assume p, Union_subset $ assume hp, (ht p hp).left⟩
end
/-- Entourages are neighborhoods of the diagonal. -/
lemma nhds_le_uniformity (x : α) : 𝓝 (x, x) ≤ 𝓤 α :=
begin
intros V V_in,
rcases comp_symm_mem_uniformity_sets V_in with ⟨w, w_in, w_symm, w_sub⟩,
have : ball x w ×ˢ ball x w ∈ 𝓝 (x, x),
{ rw nhds_prod_eq,
exact prod_mem_prod (ball_mem_nhds x w_in) (ball_mem_nhds x w_in) },
apply mem_of_superset this,
rintros ⟨u, v⟩ ⟨u_in, v_in⟩,
exact w_sub (mem_comp_of_mem_ball w_symm u_in v_in)
end
/-- Entourages are neighborhoods of the diagonal. -/
lemma supr_nhds_le_uniformity : (⨆ x : α, 𝓝 (x, x)) ≤ 𝓤 α :=
supr_le nhds_le_uniformity
/-- Entourages are neighborhoods of the diagonal. -/
lemma nhds_set_diagonal_le_uniformity : 𝓝ˢ (diagonal α) ≤ 𝓤 α :=
(nhds_set_diagonal α).trans_le supr_nhds_le_uniformity
/-!
### Closure and interior in uniform spaces
-/
lemma closure_eq_uniformity (s : set $ α × α) :
closure s = ⋂ V ∈ {V | V ∈ 𝓤 α ∧ symmetric_rel V}, V ○ s ○ V :=
begin
ext ⟨x, y⟩,
simp only [mem_closure_iff_nhds_basis (uniform_space.has_basis_nhds_prod x y), mem_Inter,
mem_set_of_eq, and_imp, mem_comp_comp, exists_prop, ← mem_inter_eq, inter_comm, set.nonempty]
{ contextual := tt }
end
lemma uniformity_has_basis_closed : has_basis (𝓤 α) (λ V : set (α × α), V ∈ 𝓤 α ∧ is_closed V) id :=
begin
refine filter.has_basis_self.2 (λ t h, _),
rcases comp_comp_symm_mem_uniformity_sets h with ⟨w, w_in, w_symm, r⟩,
refine ⟨closure w, mem_of_superset w_in subset_closure, is_closed_closure, _⟩,
refine subset.trans _ r,
rw closure_eq_uniformity,
apply Inter_subset_of_subset,
apply Inter_subset,
exact ⟨w_in, w_symm⟩
end
lemma uniformity_eq_uniformity_closure : 𝓤 α = (𝓤 α).lift' closure :=
eq.symm $ uniformity_has_basis_closed.lift'_closure_eq_self $ λ _, and.right
lemma filter.has_basis.uniformity_closure {p : ι → Prop} {U : ι → set (α × α)}
(h : (𝓤 α).has_basis p U) : (𝓤 α).has_basis p (λ i, closure (U i)) :=
(@uniformity_eq_uniformity_closure α _).symm ▸ h.lift'_closure
/-- Closed entourages form a basis of the uniformity filter. -/
lemma uniformity_has_basis_closure : has_basis (𝓤 α) (λ V : set (α × α), V ∈ 𝓤 α) closure :=
(𝓤 α).basis_sets.uniformity_closure
lemma closure_eq_inter_uniformity {t : set (α×α)} :
closure t = (⋂ d ∈ 𝓤 α, d ○ (t ○ d)) :=
calc closure t = ⋂ V (hV : V ∈ 𝓤 α ∧ symmetric_rel V), V ○ t ○ V : closure_eq_uniformity t
... = ⋂ V ∈ 𝓤 α, V ○ t ○ V : eq.symm $ uniform_space.has_basis_symmetric.bInter_mem $
λ V₁ V₂ hV, comp_rel_mono (comp_rel_mono hV subset.rfl) hV
... = ⋂ V ∈ 𝓤 α, V ○ (t ○ V) : by simp only [comp_rel_assoc]
lemma uniformity_eq_uniformity_interior : 𝓤 α = (𝓤 α).lift' interior :=
le_antisymm
(le_infi $ assume d, le_infi $ assume hd,
let ⟨s, hs, hs_comp⟩ := (mem_lift'_sets $
monotone_comp_rel monotone_id $ monotone_comp_rel monotone_id monotone_id).mp
(comp_le_uniformity3 hd) in
let ⟨t, ht, hst, ht_comp⟩ := nhdset_of_mem_uniformity s hs in
have s ⊆ interior d, from
calc s ⊆ t : hst
... ⊆ interior d : (subset_interior_iff_subset_of_open ht).mpr $
λ x (hx : x ∈ t), let ⟨x, y, h₁, h₂, h₃⟩ := ht_comp hx in hs_comp ⟨x, h₁, y, h₂, h₃⟩,
have interior d ∈ 𝓤 α, by filter_upwards [hs] using this,
by simp [this])
(assume s hs, ((𝓤 α).lift' interior).sets_of_superset (mem_lift' hs) interior_subset)
lemma interior_mem_uniformity {s : set (α × α)} (hs : s ∈ 𝓤 α) :
interior s ∈ 𝓤 α :=
by rw [uniformity_eq_uniformity_interior]; exact mem_lift' hs
lemma mem_uniformity_is_closed {s : set (α×α)} (h : s ∈ 𝓤 α) :
∃t ∈ 𝓤 α, is_closed t ∧ t ⊆ s :=
let ⟨t, ⟨ht_mem, htc⟩, hts⟩ := uniformity_has_basis_closed.mem_iff.1 h in
⟨t, ht_mem, htc, hts⟩
lemma is_open_iff_open_ball_subset {s : set α} :
is_open s ↔ ∀ x ∈ s, ∃ V ∈ 𝓤 α, is_open V ∧ ball x V ⊆ s :=
begin
rw is_open_iff_ball_subset,
split; intros h x hx,
{ obtain ⟨V, hV, hV'⟩ := h x hx,
exact ⟨interior V, interior_mem_uniformity hV, is_open_interior,
(ball_mono interior_subset x).trans hV'⟩, },
{ obtain ⟨V, hV, -, hV'⟩ := h x hx,
exact ⟨V, hV, hV'⟩, },
end
/-- The uniform neighborhoods of all points of a dense set cover the whole space. -/
lemma dense.bUnion_uniformity_ball {s : set α} {U : set (α × α)} (hs : dense s) (hU : U ∈ 𝓤 α) :
(⋃ x ∈ s, ball x U) = univ :=
begin
refine Union₂_eq_univ_iff.2 (λ y, _),
rcases hs.inter_nhds_nonempty (mem_nhds_right y hU) with ⟨x, hxs, hxy : (x, y) ∈ U⟩,
exact ⟨x, hxs, hxy⟩
end
/-!
### Uniformity bases
-/
/-- Open elements of `𝓤 α` form a basis of `𝓤 α`. -/
lemma uniformity_has_basis_open : has_basis (𝓤 α) (λ V : set (α × α), V ∈ 𝓤 α ∧ is_open V) id :=
has_basis_self.2 $ λ s hs,
⟨interior s, interior_mem_uniformity hs, is_open_interior, interior_subset⟩
lemma filter.has_basis.mem_uniformity_iff {p : β → Prop} {s : β → set (α×α)}
(h : (𝓤 α).has_basis p s) {t : set (α × α)} :
t ∈ 𝓤 α ↔ ∃ i (hi : p i), ∀ a b, (a, b) ∈ s i → (a, b) ∈ t :=
h.mem_iff.trans $ by simp only [prod.forall, subset_def]
/-- Open elements `s : set (α × α)` of `𝓤 α` such that `(x, y) ∈ s ↔ (y, x) ∈ s` form a basis
of `𝓤 α`. -/
lemma uniformity_has_basis_open_symmetric :
has_basis (𝓤 α) (λ V : set (α × α), V ∈ 𝓤 α ∧ is_open V ∧ symmetric_rel V) id :=
begin
simp only [← and_assoc],
refine uniformity_has_basis_open.restrict (λ s hs, ⟨symmetrize_rel s, _⟩),
exact ⟨⟨symmetrize_mem_uniformity hs.1, is_open.inter hs.2 (hs.2.preimage continuous_swap)⟩,
symmetric_symmetrize_rel s, symmetrize_rel_subset_self s⟩
end
lemma comp_open_symm_mem_uniformity_sets {s : set (α × α)} (hs : s ∈ 𝓤 α) :
∃ t ∈ 𝓤 α, is_open t ∧ symmetric_rel t ∧ t ○ t ⊆ s :=
begin
obtain ⟨t, ht₁, ht₂⟩ := comp_mem_uniformity_sets hs,
obtain ⟨u, ⟨hu₁, hu₂, hu₃⟩, hu₄ : u ⊆ t⟩ := uniformity_has_basis_open_symmetric.mem_iff.mp ht₁,
exact ⟨u, hu₁, hu₂, hu₃, (comp_rel_mono hu₄ hu₄).trans ht₂⟩,
end
section
variable (α)
lemma uniform_space.has_seq_basis [is_countably_generated $ 𝓤 α] :
∃ V : ℕ → set (α × α), has_antitone_basis (𝓤 α) V ∧ ∀ n, symmetric_rel (V n) :=
let ⟨U, hsym, hbasis⟩ := uniform_space.has_basis_symmetric.exists_antitone_subbasis
in ⟨U, hbasis, λ n, (hsym n).2⟩
end
lemma filter.has_basis.bInter_bUnion_ball {p : ι → Prop} {U : ι → set (α × α)}
(h : has_basis (𝓤 α) p U) (s : set α) :
(⋂ i (hi : p i), ⋃ x ∈ s, ball x (U i)) = closure s :=
begin
ext x,
simp [mem_closure_iff_nhds_basis (nhds_basis_uniformity h), ball]
end
/-! ### Uniform continuity -/
/-- A function `f : α → β` is *uniformly continuous* if `(f x, f y)` tends to the diagonal
as `(x, y)` tends to the diagonal. In other words, if `x` is sufficiently close to `y`, then
`f x` is close to `f y` no matter where `x` and `y` are located in `α`. -/
def uniform_continuous [uniform_space β] (f : α → β) :=
tendsto (λx:α×α, (f x.1, f x.2)) (𝓤 α) (𝓤 β)
/-- A function `f : α → β` is *uniformly continuous* on `s : set α` if `(f x, f y)` tends to
the diagonal as `(x, y)` tends to the diagonal while remaining in `s ×ˢ s`.
In other words, if `x` is sufficiently close to `y`, then `f x` is close to
`f y` no matter where `x` and `y` are located in `s`.-/
def uniform_continuous_on [uniform_space β] (f : α → β) (s : set α) : Prop :=
tendsto (λ x : α × α, (f x.1, f x.2)) (𝓤 α ⊓ principal (s ×ˢ s)) (𝓤 β)
theorem uniform_continuous_def [uniform_space β] {f : α → β} :
uniform_continuous f ↔ ∀ r ∈ 𝓤 β, { x : α × α | (f x.1, f x.2) ∈ r} ∈ 𝓤 α :=
iff.rfl
theorem uniform_continuous_iff_eventually [uniform_space β] {f : α → β} :
uniform_continuous f ↔ ∀ r ∈ 𝓤 β, ∀ᶠ (x : α × α) in 𝓤 α, (f x.1, f x.2) ∈ r :=
iff.rfl
theorem uniform_continuous_on_univ [uniform_space β] {f : α → β} :
uniform_continuous_on f univ ↔ uniform_continuous f :=
by rw [uniform_continuous_on, uniform_continuous, univ_prod_univ, principal_univ, inf_top_eq]
lemma uniform_continuous_of_const [uniform_space β] {c : α → β} (h : ∀a b, c a = c b) :
uniform_continuous c :=
have (λ (x : α × α), (c (x.fst), c (x.snd))) ⁻¹' id_rel = univ, from
eq_univ_iff_forall.2 $ assume ⟨a, b⟩, h a b,
le_trans (map_le_iff_le_comap.2 $ by simp [comap_principal, this, univ_mem]) refl_le_uniformity
lemma uniform_continuous_id : uniform_continuous (@id α) :=
by simp [uniform_continuous]; exact tendsto_id
lemma uniform_continuous_const [uniform_space β] {b : β} : uniform_continuous (λa:α, b) :=
uniform_continuous_of_const $ λ _ _, rfl
lemma uniform_continuous.comp [uniform_space β] [uniform_space γ] {g : β → γ} {f : α → β}
(hg : uniform_continuous g) (hf : uniform_continuous f) : uniform_continuous (g ∘ f) :=
hg.comp hf
lemma filter.has_basis.uniform_continuous_iff [uniform_space β] {p : γ → Prop} {s : γ → set (α×α)}
(ha : (𝓤 α).has_basis p s) {q : δ → Prop} {t : δ → set (β×β)} (hb : (𝓤 β).has_basis q t)
{f : α → β} :
uniform_continuous f ↔ ∀ i (hi : q i), ∃ j (hj : p j), ∀ x y, (x, y) ∈ s j → (f x, f y) ∈ t i :=
(ha.tendsto_iff hb).trans $ by simp only [prod.forall]
lemma filter.has_basis.uniform_continuous_on_iff [uniform_space β] {p : γ → Prop}
{s : γ → set (α×α)} (ha : (𝓤 α).has_basis p s) {q : δ → Prop} {t : δ → set (β×β)}
(hb : (𝓤 β).has_basis q t) {f : α → β} {S : set α} :
uniform_continuous_on f S ↔
∀ i (hi : q i), ∃ j (hj : p j), ∀ x y ∈ S, (x, y) ∈ s j → (f x, f y) ∈ t i :=
((ha.inf_principal (S ×ˢ S)).tendsto_iff hb).trans $
by simp [prod.forall, set.inter_comm (s _), ball_mem_comm]
end uniform_space
open_locale uniformity
section constructions
instance : partial_order (uniform_space α) :=
{ le := λt s, t.uniformity ≤ s.uniformity,
le_antisymm := assume t s h₁ h₂, uniform_space_eq $ le_antisymm h₁ h₂,
le_refl := assume t, le_rfl,
le_trans := assume a b c h₁ h₂, le_trans h₁ h₂ }
instance : has_Inf (uniform_space α) :=
⟨assume s, uniform_space.of_core
{ uniformity := (⨅u∈s, @uniformity α u),
refl := le_infi $ assume u, le_infi $ assume hu, u.refl,
symm := le_infi $ assume u, le_infi $ assume hu,
le_trans (map_mono $ infi_le_of_le _ $ infi_le _ hu) u.symm,
comp := le_infi $ assume u, le_infi $ assume hu,
le_trans (lift'_mono (infi_le_of_le _ $ infi_le _ hu) $ le_rfl) u.comp }⟩
private lemma Inf_le {tt : set (uniform_space α)} {t : uniform_space α} (h : t ∈ tt) :
Inf tt ≤ t :=
show (⨅u∈tt, @uniformity α u) ≤ t.uniformity,
from infi_le_of_le t $ infi_le _ h
private lemma le_Inf {tt : set (uniform_space α)} {t : uniform_space α} (h : ∀t'∈tt, t ≤ t') :
t ≤ Inf tt :=
show t.uniformity ≤ (⨅u∈tt, @uniformity α u),
from le_infi $ assume t', le_infi $ assume ht', h t' ht'
instance : has_top (uniform_space α) :=
⟨uniform_space.of_core { uniformity := ⊤, refl := le_top, symm := le_top, comp := le_top }⟩
instance : has_bot (uniform_space α) :=
⟨{ to_topological_space := ⊥,
uniformity := 𝓟 id_rel,
refl := le_rfl,
symm := by simp [tendsto]; apply subset.refl,
comp :=
begin
rw [lift'_principal], {simp},
exact monotone_comp_rel monotone_id monotone_id
end,
is_open_uniformity :=
assume s, by simp [is_open_fold, subset_def, id_rel] {contextual := tt } } ⟩
instance : has_inf (uniform_space α) :=
⟨λ u₁ u₂,
@uniform_space.replace_topology _
(u₁.to_topological_space ⊓ u₂.to_topological_space) (uniform_space.of_core
{ uniformity := u₁.uniformity ⊓ u₂.uniformity,
refl := le_inf u₁.refl u₂.refl,
symm := u₁.symm.inf u₂.symm,
comp := (lift'_inf_le _ _ _).trans $ inf_le_inf u₁.comp u₂.comp }) $
eq_of_nhds_eq_nhds $ λ a,
by simpa only [nhds_inf, nhds_eq_comap_uniformity] using comap_inf.symm⟩
instance : complete_lattice (uniform_space α) :=
{ sup := λa b, Inf {x | a ≤ x ∧ b ≤ x},
le_sup_left := λ a b, le_Inf (λ _ ⟨h, _⟩, h),
le_sup_right := λ a b, le_Inf (λ _ ⟨_, h⟩, h),
sup_le := λ a b c h₁ h₂, Inf_le ⟨h₁, h₂⟩,
inf := (⊓),
le_inf := λ a b c h₁ h₂, show a.uniformity ≤ _, from le_inf h₁ h₂,
inf_le_left := λ a b, show _ ≤ a.uniformity, from inf_le_left,
inf_le_right := λ a b, show _ ≤ b.uniformity, from inf_le_right,
top := ⊤,
le_top := λ a, show a.uniformity ≤ ⊤, from le_top,
bot := ⊥,
bot_le := λ u, u.refl,
Sup := λ tt, Inf {t | ∀ t' ∈ tt, t' ≤ t},
le_Sup := λ s u h, le_Inf (λ u' h', h' u h),
Sup_le := λ s u h, Inf_le h,
Inf := Inf,
le_Inf := λ s a hs, le_Inf hs,
Inf_le := λ s a ha, Inf_le ha,
..uniform_space.partial_order }
lemma infi_uniformity {ι : Sort*} {u : ι → uniform_space α} :
(infi u).uniformity = (⨅i, (u i).uniformity) :=
show (⨅a (h : ∃i:ι, u i = a), a.uniformity) = _, from
le_antisymm
(le_infi $ assume i, infi_le_of_le (u i) $ infi_le _ ⟨i, rfl⟩)
(le_infi $ assume a, le_infi $ assume ⟨i, (ha : u i = a)⟩, ha ▸ infi_le _ _)
lemma infi_uniformity' {ι : Sort*} {u : ι → uniform_space α} :
@uniformity α (infi u) = (⨅i, @uniformity α (u i)) :=
infi_uniformity
lemma inf_uniformity {u v : uniform_space α} :
(u ⊓ v).uniformity = u.uniformity ⊓ v.uniformity :=
rfl
lemma inf_uniformity' {u v : uniform_space α} :
@uniformity α (u ⊓ v) = @uniformity α u ⊓ @uniformity α v :=
rfl
instance inhabited_uniform_space : inhabited (uniform_space α) := ⟨⊥⟩
instance inhabited_uniform_space_core : inhabited (uniform_space.core α) :=
⟨@uniform_space.to_core _ default⟩
/-- Given `f : α → β` and a uniformity `u` on `β`, the inverse image of `u` under `f`
is the inverse image in the filter sense of the induced function `α × α → β × β`. -/
def uniform_space.comap (f : α → β) (u : uniform_space β) : uniform_space α :=
{ uniformity := u.uniformity.comap (λp:α×α, (f p.1, f p.2)),
to_topological_space := u.to_topological_space.induced f,
refl := le_trans (by simp; exact assume ⟨a, b⟩ (h : a = b), h ▸ rfl) (comap_mono u.refl),
symm := by simp [tendsto_comap_iff, prod.swap, (∘)];
exact tendsto_swap_uniformity.comp tendsto_comap,
comp := le_trans
begin
rw [comap_lift'_eq, comap_lift'_eq2],
exact (lift'_mono' $ assume s hs ⟨a₁, a₂⟩ ⟨x, h₁, h₂⟩, ⟨f x, h₁, h₂⟩),
exact monotone_comp_rel monotone_id monotone_id
end
(comap_mono u.comp),
is_open_uniformity := λ s, begin
change (@is_open α (u.to_topological_space.induced f) s ↔ _),
simp [is_open_iff_nhds, nhds_induced, mem_nhds_uniformity_iff_right, filter.comap, and_comm],
refine ball_congr (λ x hx, ⟨_, _⟩),
{ rintro ⟨t, hts, ht⟩, refine ⟨_, ht, _⟩,
rintro ⟨x₁, x₂⟩ h rfl, exact hts (h rfl) },
{ rintro ⟨t, ht, hts⟩,
exact ⟨{y | (f x, y) ∈ t}, λ y hy, @hts (x, y) hy rfl,
mem_nhds_uniformity_iff_right.1 $ mem_nhds_left _ ht⟩ }
end }
lemma uniformity_comap [uniform_space α] [uniform_space β] {f : α → β}
(h : ‹uniform_space α› = uniform_space.comap f ‹uniform_space β›) :
𝓤 α = comap (prod.map f f) (𝓤 β) :=
by { rw h, refl }
lemma uniform_space_comap_id {α : Type*} : uniform_space.comap (id : α → α) = id :=
by ext u ; dsimp only [uniform_space.comap, id] ; rw [prod.id_prod, filter.comap_id]
lemma uniform_space.comap_comap {α β γ} [uγ : uniform_space γ] {f : α → β} {g : β → γ} :
uniform_space.comap (g ∘ f) uγ = uniform_space.comap f (uniform_space.comap g uγ) :=
by ext ; dsimp only [uniform_space.comap] ; rw filter.comap_comap
lemma uniform_space.comap_inf {α γ} {u₁ u₂ : uniform_space γ} {f : α → γ} :
(u₁ ⊓ u₂).comap f = u₁.comap f ⊓ u₂.comap f :=
uniform_space_eq comap_inf
lemma uniform_space.comap_infi {ι α γ} {u : ι → uniform_space γ} {f : α → γ} :
(⨅ i, u i).comap f = ⨅ i, (u i).comap f :=
begin
ext : 1,
change (𝓤 _) = (𝓤 _),
simp [uniformity_comap rfl, infi_uniformity']
end
lemma uniform_space.comap_mono {α γ} {f : α → γ} :
monotone (λ u : uniform_space γ, u.comap f) :=
begin
intros u₁ u₂ hu,
change (𝓤 _) ≤ (𝓤 _),
rw uniformity_comap rfl,
exact comap_mono hu
end
lemma uniform_continuous_iff {α β} {uα : uniform_space α} {uβ : uniform_space β} {f : α → β} :
uniform_continuous f ↔ uα ≤ uβ.comap f :=
filter.map_le_iff_le_comap
lemma le_iff_uniform_continuous_id {u v : uniform_space α} :
u ≤ v ↔ @uniform_continuous _ _ u v id :=
by rw [uniform_continuous_iff, uniform_space_comap_id, id]
lemma uniform_continuous_comap {f : α → β} [u : uniform_space β] :
@uniform_continuous α β (uniform_space.comap f u) u f :=
tendsto_comap
theorem to_topological_space_comap {f : α → β} {u : uniform_space β} :
@uniform_space.to_topological_space _ (uniform_space.comap f u) =
topological_space.induced f (@uniform_space.to_topological_space β u) := rfl
lemma uniform_continuous_comap' {f : γ → β} {g : α → γ} [v : uniform_space β] [u : uniform_space α]
(h : uniform_continuous (f ∘ g)) : @uniform_continuous α γ u (uniform_space.comap f v) g :=
tendsto_comap_iff.2 h
lemma to_nhds_mono {u₁ u₂ : uniform_space α} (h : u₁ ≤ u₂) (a : α) :
@nhds _ (@uniform_space.to_topological_space _ u₁) a ≤
@nhds _ (@uniform_space.to_topological_space _ u₂) a :=
by rw [@nhds_eq_uniformity α u₁ a, @nhds_eq_uniformity α u₂ a]; exact (lift'_mono h le_rfl)
lemma to_topological_space_mono {u₁ u₂ : uniform_space α} (h : u₁ ≤ u₂) :
@uniform_space.to_topological_space _ u₁ ≤ @uniform_space.to_topological_space _ u₂ :=
le_of_nhds_le_nhds $ to_nhds_mono h
lemma uniform_continuous.continuous [uniform_space α] [uniform_space β] {f : α → β}
(hf : uniform_continuous f) : continuous f :=
continuous_iff_le_induced.mpr $ to_topological_space_mono $ uniform_continuous_iff.1 hf
lemma to_topological_space_bot : @uniform_space.to_topological_space α ⊥ = ⊥ := rfl
lemma to_topological_space_top : @uniform_space.to_topological_space α ⊤ = ⊤ :=
top_unique $ assume s hs, s.eq_empty_or_nonempty.elim
(assume : s = ∅, this.symm ▸ @is_open_empty _ ⊤)
(assume ⟨x, hx⟩,
have s = univ, from top_unique $ assume y hy, hs x hx (x, y) rfl,
this.symm ▸ @is_open_univ _ ⊤)
lemma to_topological_space_infi {ι : Sort*} {u : ι → uniform_space α} :
(infi u).to_topological_space = ⨅i, (u i).to_topological_space :=
begin
refine (eq_of_nhds_eq_nhds $ assume a, _),
rw [nhds_infi, nhds_eq_uniformity],
change (infi u).uniformity.lift' (preimage $ prod.mk a) = _,
rw [infi_uniformity, lift'_infi_of_map_univ _ preimage_univ],
{ simp only [nhds_eq_uniformity], refl },
{ exact ball_inter _ }
end
lemma to_topological_space_Inf {s : set (uniform_space α)} :
(Inf s).to_topological_space = (⨅i∈s, @uniform_space.to_topological_space α i) :=
begin
rw [Inf_eq_infi],
simp only [← to_topological_space_infi],
end
lemma to_topological_space_inf {u v : uniform_space α} :
(u ⊓ v).to_topological_space = u.to_topological_space ⊓ v.to_topological_space :=
rfl
section uniform_continuous_infi
lemma uniform_continuous_inf_rng {f : α → β} {u₁ : uniform_space α} {u₂ u₃ : uniform_space β}
(h₁ : @@uniform_continuous u₁ u₂ f) (h₂ : @@uniform_continuous u₁ u₃ f) :
@@uniform_continuous u₁ (u₂ ⊓ u₃) f :=
tendsto_inf.mpr ⟨h₁, h₂⟩
lemma uniform_continuous_inf_dom_left {f : α → β} {u₁ u₂ : uniform_space α} {u₃ : uniform_space β}
(hf : @@uniform_continuous u₁ u₃ f) : @@uniform_continuous (u₁ ⊓ u₂) u₃ f :=
tendsto_inf_left hf
lemma uniform_continuous_inf_dom_right {f : α → β} {u₁ u₂ : uniform_space α} {u₃ : uniform_space β}
(hf : @@uniform_continuous u₂ u₃ f) : @@uniform_continuous (u₁ ⊓ u₂) u₃ f :=
tendsto_inf_right hf
lemma uniform_continuous_Inf_dom {f : α → β} {u₁ : set (uniform_space α)} {u₂ : uniform_space β}
{u : uniform_space α} (h₁ : u ∈ u₁) (hf : @@uniform_continuous u u₂ f) :
@@uniform_continuous (Inf u₁) u₂ f :=
begin
rw [uniform_continuous, Inf_eq_infi', infi_uniformity'],
exact tendsto_infi' ⟨u, h₁⟩ hf
end
lemma uniform_continuous_Inf_rng {f : α → β} {u₁ : uniform_space α} {u₂ : set (uniform_space β)}
(h : ∀u∈u₂, @@uniform_continuous u₁ u f) : @@uniform_continuous u₁ (Inf u₂) f :=
begin
rw [uniform_continuous, Inf_eq_infi', infi_uniformity'],
exact tendsto_infi.mpr (λ ⟨u, hu⟩, h u hu)
end
lemma uniform_continuous_infi_dom {f : α → β} {u₁ : ι → uniform_space α} {u₂ : uniform_space β}
{i : ι} (hf : @@uniform_continuous (u₁ i) u₂ f) : @@uniform_continuous (infi u₁) u₂ f :=
begin
rw [uniform_continuous, infi_uniformity'],
exact tendsto_infi' i hf
end
lemma uniform_continuous_infi_rng {f : α → β} {u₁ : uniform_space α} {u₂ : ι → uniform_space β}
(h : ∀i, @@uniform_continuous u₁ (u₂ i) f) : @@uniform_continuous u₁ (infi u₂) f :=
by rwa [uniform_continuous, infi_uniformity', tendsto_infi]
end uniform_continuous_infi
/-- A uniform space with the discrete uniformity has the discrete topology. -/
lemma discrete_topology_of_discrete_uniformity [hα : uniform_space α]
(h : uniformity α = 𝓟 id_rel) :
discrete_topology α :=
⟨(uniform_space_eq h.symm : ⊥ = hα) ▸ rfl⟩
instance : uniform_space empty := ⊥
instance : uniform_space punit := ⊥
instance : uniform_space bool := ⊥
instance : uniform_space ℕ := ⊥
instance : uniform_space ℤ := ⊥
section
variables [uniform_space α]
open additive multiplicative
instance : uniform_space (additive α) := ‹uniform_space α›
instance : uniform_space (multiplicative α) := ‹uniform_space α›
lemma uniform_continuous_of_mul : uniform_continuous (of_mul : α → additive α) :=
uniform_continuous_id
lemma uniform_continuous_to_mul : uniform_continuous (to_mul : additive α → α) :=
uniform_continuous_id
lemma uniform_continuous_of_add : uniform_continuous (of_add : α → multiplicative α) :=
uniform_continuous_id
lemma uniform_continuous_to_add : uniform_continuous (to_add : multiplicative α → α) :=
uniform_continuous_id
lemma uniformity_additive : 𝓤 (additive α) = (𝓤 α).map (prod.map of_mul of_mul) :=
by { convert map_id.symm, exact prod.map_id }
lemma uniformity_multiplicative : 𝓤 (multiplicative α) = (𝓤 α).map (prod.map of_add of_add) :=
by { convert map_id.symm, exact prod.map_id }
end
instance {p : α → Prop} [t : uniform_space α] : uniform_space (subtype p) :=
uniform_space.comap subtype.val t
lemma uniformity_subtype {p : α → Prop} [t : uniform_space α] :
𝓤 (subtype p) = comap (λq:subtype p × subtype p, (q.1.1, q.2.1)) (𝓤 α) :=
rfl
lemma uniform_continuous_subtype_val {p : α → Prop} [uniform_space α] :
uniform_continuous (subtype.val : {a : α // p a} → α) :=
uniform_continuous_comap
lemma uniform_continuous_subtype_coe {p : α → Prop} [uniform_space α] :
uniform_continuous (coe : {a : α // p a} → α) :=
uniform_continuous_subtype_val
lemma uniform_continuous.subtype_mk {p : α → Prop} [uniform_space α] [uniform_space β]
{f : β → α} (hf : uniform_continuous f) (h : ∀x, p (f x)) :
uniform_continuous (λx, ⟨f x, h x⟩ : β → subtype p) :=
uniform_continuous_comap' hf
lemma uniform_continuous_on_iff_restrict [uniform_space α] [uniform_space β] {f : α → β}
{s : set α} :
uniform_continuous_on f s ↔ uniform_continuous (s.restrict f) :=
begin
unfold uniform_continuous_on set.restrict uniform_continuous tendsto,
rw [show (λ x : s × s, (f x.1, f x.2)) = prod.map f f ∘ coe, by ext x; cases x; refl,
uniformity_comap rfl,
show prod.map subtype.val subtype.val = (coe : s × s → α × α), by ext x; cases x; refl],
conv in (map _ (comap _ _)) { rw ← filter.map_map },
rw subtype_coe_map_comap_prod, refl,
end
lemma tendsto_of_uniform_continuous_subtype
[uniform_space α] [uniform_space β] {f : α → β} {s : set α} {a : α}
(hf : uniform_continuous (λx:s, f x.val)) (ha : s ∈ 𝓝 a) :
tendsto f (𝓝 a) (𝓝 (f a)) :=
by rw [(@map_nhds_subtype_coe_eq α _ s a (mem_of_mem_nhds ha) ha).symm]; exact
tendsto_map' (continuous_iff_continuous_at.mp hf.continuous _)
lemma uniform_continuous_on.continuous_on [uniform_space α] [uniform_space β] {f : α → β}
{s : set α} (h : uniform_continuous_on f s) : continuous_on f s :=
begin
rw uniform_continuous_on_iff_restrict at h,
rw continuous_on_iff_continuous_restrict,
exact h.continuous
end
@[to_additive]
instance [uniform_space α] : uniform_space (αᵐᵒᵖ) :=
uniform_space.comap mul_opposite.unop ‹_›
@[to_additive]
lemma uniformity_mul_opposite [uniform_space α] :
𝓤 (αᵐᵒᵖ) = comap (λ q : αᵐᵒᵖ × αᵐᵒᵖ, (q.1.unop, q.2.unop)) (𝓤 α) :=
rfl
@[simp, to_additive] lemma comap_uniformity_mul_opposite [uniform_space α] :
comap (λ p : α × α, (mul_opposite.op p.1, mul_opposite.op p.2)) (𝓤 αᵐᵒᵖ) = 𝓤 α :=
by simpa [uniformity_mul_opposite, comap_comap, (∘)] using comap_id
namespace mul_opposite
@[to_additive]
lemma uniform_continuous_unop [uniform_space α] : uniform_continuous (unop : αᵐᵒᵖ → α) :=
uniform_continuous_comap
@[to_additive]
lemma uniform_continuous_op [uniform_space α] : uniform_continuous (op : α → αᵐᵒᵖ) :=
uniform_continuous_comap' uniform_continuous_id
end mul_opposite
section prod
/- a similar product space is possible on the function space (uniformity of pointwise convergence),
but we want to have the uniformity of uniform convergence on function spaces -/
instance [u₁ : uniform_space α] [u₂ : uniform_space β] : uniform_space (α × β) :=
u₁.comap prod.fst ⊓ u₂.comap prod.snd
-- check the above produces no diamond
example [u₁ : uniform_space α] [u₂ : uniform_space β] :
(prod.topological_space : topological_space (α × β)) = uniform_space.to_topological_space :=
rfl
theorem uniformity_prod [uniform_space α] [uniform_space β] : 𝓤 (α × β) =
(𝓤 α).comap (λp:(α × β) × α × β, (p.1.1, p.2.1)) ⊓
(𝓤 β).comap (λp:(α × β) × α × β, (p.1.2, p.2.2)) :=
rfl
lemma uniformity_prod_eq_comap_prod [uniform_space α] [uniform_space β] :
𝓤 (α × β) = comap (λ p : (α × β) × (α × β), ((p.1.1, p.2.1), (p.1.2, p.2.2))) (𝓤 α ×ᶠ 𝓤 β) :=
by rw [uniformity_prod, filter.prod, comap_inf, comap_comap, comap_comap]
lemma uniformity_prod_eq_prod [uniform_space α] [uniform_space β] :
𝓤 (α × β) = map (λ p : (α × α) × (β × β), ((p.1.1, p.2.1), (p.1.2, p.2.2))) (𝓤 α ×ᶠ 𝓤 β) :=
by rw [map_swap4_eq_comap, uniformity_prod_eq_comap_prod]
lemma mem_uniformity_of_uniform_continuous_invariant [uniform_space α] [uniform_space β]
{s : set (β × β)} {f : α → α → β} (hf : uniform_continuous (λ p : α × α, f p.1 p.2))
(hs : s ∈ 𝓤 β) :
∃ u ∈ 𝓤 α, ∀ a b c, (a, b) ∈ u → (f a c, f b c) ∈ s :=
begin
rw [uniform_continuous, uniformity_prod_eq_prod, tendsto_map'_iff, (∘)] at hf,
rcases mem_prod_iff.1 (mem_map.1 $ hf hs) with ⟨u, hu, v, hv, huvt⟩,
exact ⟨u, hu, λ a b c hab, @huvt ((_, _), (_, _)) ⟨hab, refl_mem_uniformity hv⟩⟩
end
lemma mem_uniform_prod [t₁ : uniform_space α] [t₂ : uniform_space β] {a : set (α × α)}
{b : set (β × β)} (ha : a ∈ 𝓤 α) (hb : b ∈ 𝓤 β) :
{p:(α×β)×(α×β) | (p.1.1, p.2.1) ∈ a ∧ (p.1.2, p.2.2) ∈ b } ∈ (@uniformity (α × β) _) :=
by rw [uniformity_prod]; exact inter_mem_inf (preimage_mem_comap ha) (preimage_mem_comap hb)
lemma tendsto_prod_uniformity_fst [uniform_space α] [uniform_space β] :
tendsto (λp:(α×β)×(α×β), (p.1.1, p.2.1)) (𝓤 (α × β)) (𝓤 α) :=
le_trans (map_mono inf_le_left) map_comap_le
lemma tendsto_prod_uniformity_snd [uniform_space α] [uniform_space β] :
tendsto (λp:(α×β)×(α×β), (p.1.2, p.2.2)) (𝓤 (α × β)) (𝓤 β) :=
le_trans (map_mono inf_le_right) map_comap_le
lemma uniform_continuous_fst [uniform_space α] [uniform_space β] :
uniform_continuous (λp:α×β, p.1) :=
tendsto_prod_uniformity_fst
lemma uniform_continuous_snd [uniform_space α] [uniform_space β] :
uniform_continuous (λp:α×β, p.2) :=
tendsto_prod_uniformity_snd
variables [uniform_space α] [uniform_space β] [uniform_space γ]
lemma uniform_continuous.prod_mk
{f₁ : α → β} {f₂ : α → γ} (h₁ : uniform_continuous f₁) (h₂ : uniform_continuous f₂) :
uniform_continuous (λa, (f₁ a, f₂ a)) :=
by rw [uniform_continuous, uniformity_prod]; exact
tendsto_inf.2 ⟨tendsto_comap_iff.2 h₁, tendsto_comap_iff.2 h₂⟩
lemma uniform_continuous.prod_mk_left {f : α × β → γ} (h : uniform_continuous f) (b) :
uniform_continuous (λ a, f (a,b)) :=
h.comp (uniform_continuous_id.prod_mk uniform_continuous_const)
lemma uniform_continuous.prod_mk_right {f : α × β → γ} (h : uniform_continuous f) (a) :
uniform_continuous (λ b, f (a,b)) :=
h.comp (uniform_continuous_const.prod_mk uniform_continuous_id)
lemma uniform_continuous.prod_map [uniform_space δ] {f : α → γ} {g : β → δ}
(hf : uniform_continuous f) (hg : uniform_continuous g) :
uniform_continuous (prod.map f g) :=
(hf.comp uniform_continuous_fst).prod_mk (hg.comp uniform_continuous_snd)
lemma to_topological_space_prod {α} {β} [u : uniform_space α] [v : uniform_space β] :
@uniform_space.to_topological_space (α × β) prod.uniform_space =
@prod.topological_space α β u.to_topological_space v.to_topological_space := rfl
/-- A version of `uniform_continuous_inf_dom_left` for binary functions -/
lemma uniform_continuous_inf_dom_left₂ {α β γ} {f : α → β → γ}
{ua1 ua2 : uniform_space α} {ub1 ub2 : uniform_space β} {uc1 : uniform_space γ}
(h : by haveI := ua1; haveI := ub1; exact uniform_continuous (λ p : α × β, f p.1 p.2)) :
by haveI := ua1 ⊓ ua2; haveI := ub1 ⊓ ub2; exact uniform_continuous (λ p : α × β, f p.1 p.2) :=
begin
-- proof essentially copied from ``continuous_inf_dom_left₂`
have ha := @uniform_continuous_inf_dom_left _ _ id ua1 ua2 ua1 (@uniform_continuous_id _ (id _)),
have hb := @uniform_continuous_inf_dom_left _ _ id ub1 ub2 ub1 (@uniform_continuous_id _ (id _)),
have h_unif_cont_id := @uniform_continuous.prod_map _ _ _ _ (
ua1 ⊓ ua2) (ub1 ⊓ ub2) ua1 ub1 _ _ ha hb,
exact @uniform_continuous.comp _ _ _ (id _) (id _) _ _ _ h h_unif_cont_id,
end
/-- A version of `uniform_continuous_inf_dom_right` for binary functions -/
lemma uniform_continuous_inf_dom_right₂ {α β γ} {f : α → β → γ}
{ua1 ua2 : uniform_space α} {ub1 ub2 : uniform_space β} {uc1 : uniform_space γ}
(h : by haveI := ua2; haveI := ub2; exact uniform_continuous (λ p : α × β, f p.1 p.2)) :
by haveI := ua1 ⊓ ua2; haveI := ub1 ⊓ ub2; exact uniform_continuous (λ p : α × β, f p.1 p.2) :=
begin
-- proof essentially copied from ``continuous_inf_dom_right₂`
have ha := @uniform_continuous_inf_dom_right _ _ id ua1 ua2 ua2 (@uniform_continuous_id _ (id _)),
have hb := @uniform_continuous_inf_dom_right _ _ id ub1 ub2 ub2 (@uniform_continuous_id _ (id _)),
have h_unif_cont_id := @uniform_continuous.prod_map _ _ _ _
(ua1 ⊓ ua2) (ub1 ⊓ ub2) ua2 ub2 _ _ ha hb,
exact @uniform_continuous.comp _ _ _ (id _) (id _) _ _ _ h h_unif_cont_id,
end
/-- A version of `uniform_continuous_Inf_dom` for binary functions -/
lemma uniform_continuous_Inf_dom₂ {α β γ} {f : α → β → γ}
{uas : set (uniform_space α)} {ubs : set (uniform_space β)}
{ua : uniform_space α} {ub : uniform_space β} {uc : uniform_space γ}
(ha : ua ∈ uas) (hb : ub ∈ ubs)
(hf : uniform_continuous (λ p : α × β, f p.1 p.2)):
by haveI := Inf uas; haveI := Inf ubs;
exact @uniform_continuous _ _ _ uc (λ p : α × β, f p.1 p.2) :=
begin
-- proof essentially copied from ``continuous_Inf_dom`
let t : uniform_space (α × β) := prod.uniform_space,
have ha := uniform_continuous_Inf_dom ha uniform_continuous_id,
have hb := uniform_continuous_Inf_dom hb uniform_continuous_id,
have h_unif_cont_id := @uniform_continuous.prod_map _ _ _ _ (Inf uas) (Inf ubs) ua ub _ _ ha hb,
exact @uniform_continuous.comp _ _ _ (id _) (id _) _ _ _ hf h_unif_cont_id,
end
end prod
section
open uniform_space function
variables {δ' : Type*} [uniform_space α] [uniform_space β] [uniform_space γ] [uniform_space δ]
[uniform_space δ']
local notation f ` ∘₂ ` g := function.bicompr f g
/-- Uniform continuity for functions of two variables. -/
def uniform_continuous₂ (f : α → β → γ) := uniform_continuous (uncurry f)
lemma uniform_continuous₂_def (f : α → β → γ) :
uniform_continuous₂ f ↔ uniform_continuous (uncurry f) := iff.rfl
lemma uniform_continuous₂.uniform_continuous {f : α → β → γ} (h : uniform_continuous₂ f) :
uniform_continuous (uncurry f) := h
lemma uniform_continuous₂_curry (f : α × β → γ) :
uniform_continuous₂ (function.curry f) ↔ uniform_continuous f :=
by rw [uniform_continuous₂, uncurry_curry]
lemma uniform_continuous₂.comp {f : α → β → γ} {g : γ → δ}
(hg : uniform_continuous g) (hf : uniform_continuous₂ f) :
uniform_continuous₂ (g ∘₂ f) :=
hg.comp hf
lemma uniform_continuous₂.bicompl {f : α → β → γ} {ga : δ → α} {gb : δ' → β}
(hf : uniform_continuous₂ f) (hga : uniform_continuous ga) (hgb : uniform_continuous gb) :
uniform_continuous₂ (bicompl f ga gb) :=
hf.uniform_continuous.comp (hga.prod_map hgb)
end
lemma to_topological_space_subtype [u : uniform_space α] {p : α → Prop} :
@uniform_space.to_topological_space (subtype p) subtype.uniform_space =
@subtype.topological_space α p u.to_topological_space := rfl
section sum
variables [uniform_space α] [uniform_space β]
open sum
/-- Uniformity on a disjoint union. Entourages of the diagonal in the union are obtained
by taking independently an entourage of the diagonal in the first part, and an entourage of
the diagonal in the second part. -/
def uniform_space.core.sum : uniform_space.core (α ⊕ β) :=
uniform_space.core.mk'
(map (λ p : α × α, (inl p.1, inl p.2)) (𝓤 α) ⊔ map (λ p : β × β, (inr p.1, inr p.2)) (𝓤 β))
(λ r ⟨H₁, H₂⟩ x, by cases x; [apply refl_mem_uniformity H₁, apply refl_mem_uniformity H₂])
(λ r ⟨H₁, H₂⟩, ⟨symm_le_uniformity H₁, symm_le_uniformity H₂⟩)
(λ r ⟨Hrα, Hrβ⟩, begin
rcases comp_mem_uniformity_sets Hrα with ⟨tα, htα, Htα⟩,
rcases comp_mem_uniformity_sets Hrβ with ⟨tβ, htβ, Htβ⟩,
refine ⟨_,
⟨mem_map_iff_exists_image.2 ⟨tα, htα, subset_union_left _ _⟩,
mem_map_iff_exists_image.2 ⟨tβ, htβ, subset_union_right _ _⟩⟩, _⟩,
rintros ⟨_, _⟩ ⟨z, ⟨⟨a, b⟩, hab, ⟨⟩⟩ | ⟨⟨a, b⟩, hab, ⟨⟩⟩,
⟨⟨_, c⟩, hbc, ⟨⟩⟩ | ⟨⟨_, c⟩, hbc, ⟨⟩⟩⟩,
{ have A : (a, c) ∈ tα ○ tα := ⟨b, hab, hbc⟩,
exact Htα A },
{ have A : (a, c) ∈ tβ ○ tβ := ⟨b, hab, hbc⟩,
exact Htβ A }
end)
/-- The union of an entourage of the diagonal in each set of a disjoint union is again an entourage
of the diagonal. -/
lemma union_mem_uniformity_sum
{a : set (α × α)} (ha : a ∈ 𝓤 α) {b : set (β × β)} (hb : b ∈ 𝓤 β) :
((λ p : (α × α), (inl p.1, inl p.2)) '' a ∪ (λ p : (β × β), (inr p.1, inr p.2)) '' b) ∈
(@uniform_space.core.sum α β _ _).uniformity :=
⟨mem_map_iff_exists_image.2 ⟨_, ha, subset_union_left _ _⟩,
mem_map_iff_exists_image.2 ⟨_, hb, subset_union_right _ _⟩⟩
/- To prove that the topology defined by the uniform structure on the disjoint union coincides with
the disjoint union topology, we need two lemmas saying that open sets can be characterized by
the uniform structure -/
lemma uniformity_sum_of_open_aux {s : set (α ⊕ β)} (hs : is_open s) {x : α ⊕ β} (xs : x ∈ s) :
{ p : ((α ⊕ β) × (α ⊕ β)) | p.1 = x → p.2 ∈ s } ∈ (@uniform_space.core.sum α β _ _).uniformity :=
begin
cases x,
{ refine mem_of_superset
(union_mem_uniformity_sum (mem_nhds_uniformity_iff_right.1 (is_open.mem_nhds hs.1 xs))
univ_mem)
(union_subset _ _);
rintro _ ⟨⟨_, b⟩, h, ⟨⟩⟩ ⟨⟩,
exact h rfl },
{ refine mem_of_superset
(union_mem_uniformity_sum univ_mem (mem_nhds_uniformity_iff_right.1
(is_open.mem_nhds hs.2 xs)))
(union_subset _ _);
rintro _ ⟨⟨a, _⟩, h, ⟨⟩⟩ ⟨⟩,
exact h rfl },
end
lemma open_of_uniformity_sum_aux {s : set (α ⊕ β)}
(hs : ∀x ∈ s, { p : ((α ⊕ β) × (α ⊕ β)) | p.1 = x → p.2 ∈ s } ∈
(@uniform_space.core.sum α β _ _).uniformity) :
is_open s :=
begin
split,
{ refine (@is_open_iff_mem_nhds α _ _).2 (λ a ha, mem_nhds_uniformity_iff_right.2 _),
rcases mem_map_iff_exists_image.1 (hs _ ha).1 with ⟨t, ht, st⟩,
refine mem_of_superset ht _,
rintro p pt rfl, exact st ⟨_, pt, rfl⟩ rfl },
{ refine (@is_open_iff_mem_nhds β _ _).2 (λ b hb, mem_nhds_uniformity_iff_right.2 _),
rcases mem_map_iff_exists_image.1 (hs _ hb).2 with ⟨t, ht, st⟩,
refine mem_of_superset ht _,
rintro p pt rfl, exact st ⟨_, pt, rfl⟩ rfl }
end
/- We can now define the uniform structure on the disjoint union -/
instance sum.uniform_space : uniform_space (α ⊕ β) :=
{ to_core := uniform_space.core.sum,
is_open_uniformity := λ s, ⟨uniformity_sum_of_open_aux, open_of_uniformity_sum_aux⟩ }
lemma sum.uniformity : 𝓤 (α ⊕ β) =
map (λ p : α × α, (inl p.1, inl p.2)) (𝓤 α) ⊔
map (λ p : β × β, (inr p.1, inr p.2)) (𝓤 β) := rfl
end sum
end constructions
-- For a version of the Lebesgue number lemma assuming only a sequentially compact space,
-- see topology/sequences.lean
/-- Let `c : ι → set α` be an open cover of a compact set `s`. Then there exists an entourage
`n` such that for each `x ∈ s` its `n`-neighborhood is contained in some `c i`. -/
lemma lebesgue_number_lemma {α : Type u} [uniform_space α] {s : set α} {ι} {c : ι → set α}
(hs : is_compact s) (hc₁ : ∀ i, is_open (c i)) (hc₂ : s ⊆ ⋃ i, c i) :
∃ n ∈ 𝓤 α, ∀ x ∈ s, ∃ i, {y | (x, y) ∈ n} ⊆ c i :=
begin
let u := λ n, {x | ∃ i (m ∈ 𝓤 α), {y | (x, y) ∈ m ○ n} ⊆ c i},
have hu₁ : ∀ n ∈ 𝓤 α, is_open (u n),
{ refine λ n hn, is_open_uniformity.2 _,
rintro x ⟨i, m, hm, h⟩,
rcases comp_mem_uniformity_sets hm with ⟨m', hm', mm'⟩,
apply (𝓤 α).sets_of_superset hm',
rintros ⟨x, y⟩ hp rfl,
refine ⟨i, m', hm', λ z hz, h (monotone_comp_rel monotone_id monotone_const mm' _)⟩,
dsimp [-mem_comp_rel] at hz ⊢, rw comp_rel_assoc,
exact ⟨y, hp, hz⟩ },
have hu₂ : s ⊆ ⋃ n ∈ 𝓤 α, u n,
{ intros x hx,
rcases mem_Union.1 (hc₂ hx) with ⟨i, h⟩,
rcases comp_mem_uniformity_sets (is_open_uniformity.1 (hc₁ i) x h) with ⟨m', hm', mm'⟩,
exact mem_bUnion hm' ⟨i, _, hm', λ y hy, mm' hy rfl⟩ },
rcases hs.elim_finite_subcover_image hu₁ hu₂ with ⟨b, bu, b_fin, b_cover⟩,
refine ⟨_, (bInter_mem b_fin).2 bu, λ x hx, _⟩,
rcases mem_Union₂.1 (b_cover hx) with ⟨n, bn, i, m, hm, h⟩,
refine ⟨i, λ y hy, h _⟩,
exact prod_mk_mem_comp_rel (refl_mem_uniformity hm) (bInter_subset_of_mem bn hy)
end
/-- Let `c : set (set α)` be an open cover of a compact set `s`. Then there exists an entourage
`n` such that for each `x ∈ s` its `n`-neighborhood is contained in some `t ∈ c`. -/
lemma lebesgue_number_lemma_sUnion {α : Type u} [uniform_space α] {s : set α} {c : set (set α)}
(hs : is_compact s) (hc₁ : ∀ t ∈ c, is_open t) (hc₂ : s ⊆ ⋃₀ c) :
∃ n ∈ 𝓤 α, ∀ x ∈ s, ∃ t ∈ c, ∀ y, (x, y) ∈ n → y ∈ t :=
by rw sUnion_eq_Union at hc₂;
simpa using lebesgue_number_lemma hs (by simpa) hc₂
/-- A useful consequence of the Lebesgue number lemma: given any compact set `K` contained in an
open set `U`, we can find an (open) entourage `V` such that the ball of size `V` about any point of
`K` is contained in `U`. -/
lemma lebesgue_number_of_compact_open [uniform_space α]
{K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) :
∃ V ∈ 𝓤 α, is_open V ∧ ∀ x ∈ K, uniform_space.ball x V ⊆ U :=
begin
let W : K → set (α × α) := λ k, classical.some $ is_open_iff_open_ball_subset.mp hU k.1 $ hKU k.2,
have hW : ∀ k, W k ∈ 𝓤 α ∧ is_open (W k) ∧ uniform_space.ball k.1 (W k) ⊆ U,
{ intros k,
obtain ⟨h₁, h₂, h₃⟩ := classical.some_spec (is_open_iff_open_ball_subset.mp hU k.1 (hKU k.2)),
exact ⟨h₁, h₂, h₃⟩, },
let c : K → set α := λ k, uniform_space.ball k.1 (W k),
have hc₁ : ∀ k, is_open (c k), { exact λ k, uniform_space.is_open_ball k.1 (hW k).2.1, },
have hc₂ : K ⊆ ⋃ i, c i,
{ intros k hk,
simp only [mem_Union, set_coe.exists],
exact ⟨k, hk, uniform_space.mem_ball_self k (hW ⟨k, hk⟩).1⟩, },
have hc₃ : ∀ k, c k ⊆ U, { exact λ k, (hW k).2.2, },
obtain ⟨V, hV, hV'⟩ := lebesgue_number_lemma hK hc₁ hc₂,
refine ⟨interior V, interior_mem_uniformity hV, is_open_interior, _⟩,
intros k hk,
obtain ⟨k', hk'⟩ := hV' k hk,
exact ((ball_mono interior_subset k).trans hk').trans (hc₃ k'),
end
/-!
### Expressing continuity properties in uniform spaces
We reformulate the various continuity properties of functions taking values in a uniform space
in terms of the uniformity in the target. Since the same lemmas (essentially with the same names)
also exist for metric spaces and emetric spaces (reformulating things in terms of the distance or
the edistance in the target), we put them in a namespace `uniform` here.
In the metric and emetric space setting, there are also similar lemmas where one assumes that
both the source and the target are metric spaces, reformulating things in terms of the distance
on both sides. These lemmas are generally written without primes, and the versions where only
the target is a metric space is primed. We follow the same convention here, thus giving lemmas
with primes.
-/
namespace uniform
variables [uniform_space α]
theorem tendsto_nhds_right {f : filter β} {u : β → α} {a : α} :
tendsto u f (𝓝 a) ↔ tendsto (λ x, (a, u x)) f (𝓤 α) :=
⟨λ H, tendsto_left_nhds_uniformity.comp H,
λ H s hs, by simpa [mem_of_mem_nhds hs] using H (mem_nhds_uniformity_iff_right.1 hs)⟩
theorem tendsto_nhds_left {f : filter β} {u : β → α} {a : α} :
tendsto u f (𝓝 a) ↔ tendsto (λ x, (u x, a)) f (𝓤 α) :=
⟨λ H, tendsto_right_nhds_uniformity.comp H,
λ H s hs, by simpa [mem_of_mem_nhds hs] using H (mem_nhds_uniformity_iff_left.1 hs)⟩
theorem continuous_at_iff'_right [topological_space β] {f : β → α} {b : β} :
continuous_at f b ↔ tendsto (λ x, (f b, f x)) (𝓝 b) (𝓤 α) :=
by rw [continuous_at, tendsto_nhds_right]
theorem continuous_at_iff'_left [topological_space β] {f : β → α} {b : β} :
continuous_at f b ↔ tendsto (λ x, (f x, f b)) (𝓝 b) (𝓤 α) :=
by rw [continuous_at, tendsto_nhds_left]
theorem continuous_at_iff_prod [topological_space β] {f : β → α} {b : β} :
continuous_at f b ↔ tendsto (λ x : β × β, (f x.1, f x.2)) (𝓝 (b, b)) (𝓤 α) :=
⟨λ H, le_trans (H.prod_map' H) (nhds_le_uniformity _),
λ H, continuous_at_iff'_left.2 $ H.comp $ tendsto_id.prod_mk_nhds tendsto_const_nhds⟩
theorem continuous_within_at_iff'_right [topological_space β] {f : β → α} {b : β} {s : set β} :
continuous_within_at f s b ↔ tendsto (λ x, (f b, f x)) (𝓝[s] b) (𝓤 α) :=
by rw [continuous_within_at, tendsto_nhds_right]
theorem continuous_within_at_iff'_left [topological_space β] {f : β → α} {b : β} {s : set β} :
continuous_within_at f s b ↔ tendsto (λ x, (f x, f b)) (𝓝[s] b) (𝓤 α) :=
by rw [continuous_within_at, tendsto_nhds_left]
theorem continuous_on_iff'_right [topological_space β] {f : β → α} {s : set β} :
continuous_on f s ↔ ∀ b ∈ s, tendsto (λ x, (f b, f x)) (𝓝[s] b) (𝓤 α) :=
by simp [continuous_on, continuous_within_at_iff'_right]
theorem continuous_on_iff'_left [topological_space β] {f : β → α} {s : set β} :
continuous_on f s ↔ ∀ b ∈ s, tendsto (λ x, (f x, f b)) (𝓝[s] b) (𝓤 α) :=
by simp [continuous_on, continuous_within_at_iff'_left]
theorem continuous_iff'_right [topological_space β] {f : β → α} :
continuous f ↔ ∀ b, tendsto (λ x, (f b, f x)) (𝓝 b) (𝓤 α) :=
continuous_iff_continuous_at.trans $ forall_congr $ λ b, tendsto_nhds_right
theorem continuous_iff'_left [topological_space β] {f : β → α} :
continuous f ↔ ∀ b, tendsto (λ x, (f x, f b)) (𝓝 b) (𝓤 α) :=
continuous_iff_continuous_at.trans $ forall_congr $ λ b, tendsto_nhds_left
end uniform
lemma filter.tendsto.congr_uniformity {α β} [uniform_space β] {f g : α → β} {l : filter α} {b : β}
(hf : tendsto f l (𝓝 b)) (hg : tendsto (λ x, (f x, g x)) l (𝓤 β)) :
tendsto g l (𝓝 b) :=
uniform.tendsto_nhds_right.2 $ (uniform.tendsto_nhds_right.1 hf).uniformity_trans hg
lemma uniform.tendsto_congr {α β} [uniform_space β] {f g : α → β} {l : filter α} {b : β}
(hfg : tendsto (λ x, (f x, g x)) l (𝓤 β)) :
tendsto f l (𝓝 b) ↔ tendsto g l (𝓝 b) :=
⟨λ h, h.congr_uniformity hfg, λ h, h.congr_uniformity hfg.uniformity_symm⟩
|
3f55287f6c054a28531a62450d98cc9563099336
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/algebra/category/Module/subobject.lean
|
5999a7b57538e53d2b2aef9f002161c3ed5c6f4f
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 2,171
|
lean
|
/-
Copyright (c) 2021 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import algebra.category.Module.epi_mono
import category_theory.subobject.well_powered
/-!
# Subobjects in the category of `R`-modules
We construct an explicit order isomorphism between the categorical subobjects of an `R`-module `M`
and its submodules. This immediately implies that the category of `R`-modules is well-powered.
-/
open category_theory
open category_theory.subobject
open_locale Module
universes v u
namespace Module
variables {R : Type u} [ring R] (M : Module.{v} R)
/-- The categorical subobjects of a module `M` are in one-to-one correspondence with its
submodules.-/
noncomputable def subobject_Module : subobject M ≃o submodule R M := order_iso.symm
({ inv_fun := λ S, S.arrow.range,
to_fun := λ N, subobject.mk ↾N.subtype,
right_inv := λ S, eq.symm
begin
fapply eq_mk_of_comm,
{ apply linear_equiv.to_Module_iso'_left,
apply linear_equiv.of_bijective (linear_map.cod_restrict S.arrow.range S.arrow _),
{ simpa only [linear_map.ker_cod_restrict] using ker_eq_bot_of_mono _ },
{ rw [linear_map.range_cod_restrict, submodule.comap_subtype_self] },
{ exact linear_map.mem_range_self _ } },
{ ext, refl }
end,
left_inv := λ N,
begin
convert congr_arg linear_map.range (underlying_iso_arrow ↾N.subtype) using 1,
{ have : (underlying_iso ↾N.subtype).inv = (underlying_iso ↾N.subtype).symm.to_linear_equiv,
{ ext, refl },
rw [this, comp_def, linear_equiv.range_comp] },
{ exact (submodule.range_subtype _).symm }
end,
map_rel_iff' := λ S T,
begin
refine ⟨λ h, _, λ h, mk_le_mk_of_comm ↟(submodule.of_le h) (by { ext, refl })⟩,
convert linear_map.range_comp_le_range (of_mk_le_mk _ _ h) ↾T.subtype,
{ simpa only [←comp_def, of_mk_le_mk_comp] using (submodule.range_subtype _).symm },
{ exact (submodule.range_subtype _).symm }
end })
instance well_powered_Module : well_powered (Module.{v} R) :=
⟨λ M, ⟨⟨_, ⟨(subobject_Module M).to_equiv⟩⟩⟩⟩
end Module
|
009926570216f785c2aee89a25529a29b6f36712
|
3c693e12637d1cf47effc09ab5e21700d1278e73
|
/src/equivalence_relations/structure_examples.lean
|
0cf08d42987a3a451029f12c0ca83aba6d923ecf
|
[] |
no_license
|
ImperialCollegeLondon/Example-Lean-Projects
|
e731664ae046980921a69ccfeb2286674080c5bb
|
87b27ba616eaf03f3642000829a481a1932dd08e
|
refs/heads/master
| 1,685,399,670,721
| 1,623,092,696,000
| 1,623,092,696,000
| 275,571,570
| 19
| 1
| null | 1,593,361,524,000
| 1,593,344,124,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,342
|
lean
|
import tactic
-- what's a structure?
structure group' (G : Type) [has_mul G] [has_one G] [has_inv G] :=
(mul_assoc : ∀ a b c : G, (a * b) * c = a * (b * c))
(one_mul : ∀ a : G, 1 * a = a)
(mul_one : ∀ a : G, a * 1 = a)
(mul_left_inv : ∀ a : G, a⁻¹ * a = 1)
-- easy structure
@[ext] structure silly :=
(sillyint : ℤ)
(sillynat : ℕ)
#print prefix silly
/-
silly.sillyint : silly → ℤ
silly.sillynat : silly → ℕ
silly.mk : ℤ → ℕ → silly
silly.rec -- useful for induction
silly.ext : ∀ (x y : silly), x.sillyint = y.sillyint → x.sillynat = y.sillynat → x = y
silly.ext_iff : ∀ (x y : silly), x = y ↔ x.sillyint = y.sillyint ∧ x.sillynat = y.sillynat
-/
-- #check silly -- silly : Type, i.e. silly is a Type
-- how to make a term of type silly
def x : silly := silly.mk 7 37
def y : silly :=
{ sillyint := 0,
sillynat := 1
}
-- silly is an implementation of ℤ × ℕ
-- ℤ × ℕ is another implentation of this
example : x ≠ y :=
begin
intro h,
rw silly.ext_iff at h,
cases h,
simp [x,y] at *,
linarith [x, y],
end
-- proof that silly is the same as ℤ × ℕ
example : silly ≃ ℤ × ℕ :=
{ to_fun := λ s, ⟨s.sillyint, s.sillynat⟩,
inv_fun := λ x, {sillyint := x.1, sillynat := x.2},
left_inv := λ s, by {ext; refl},
right_inv := λ x, by {ext; refl}
}
|
27123bf50727268b84a44400abb26cbe979d88bb
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/inductiveUnivErrorMsg.lean
|
6eb27f2c3f685959f81f16886f6be8fac96b05be
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 145
|
lean
|
inductive Bar
| foobar : Foo → Bar
| somelist : List Bar → Bar
inductive Bar2
| foobar : (x : Foo) → Bar2
| somelist : List Bar2 → Bar2
|
c829e8017666888c0d8dc893a7a1a6e54bcd366a
|
969dbdfed67fda40a6f5a2b4f8c4a3c7dc01e0fb
|
/src/geometry/manifold/smooth_manifold_with_corners.lean
|
a257ef7545a57d94217dde4b2a5e95c50d8cdc4c
|
[
"Apache-2.0"
] |
permissive
|
SAAluthwela/mathlib
|
62044349d72dd63983a8500214736aa7779634d3
|
83a4b8b990907291421de54a78988c024dc8a552
|
refs/heads/master
| 1,679,433,873,417
| 1,615,998,031,000
| 1,615,998,031,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 38,960
|
lean
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import analysis.calculus.times_cont_diff
import geometry.manifold.charted_space
/-!
# Smooth manifolds (possibly with boundary or corners)
A smooth manifold is a manifold modelled on a normed vector space, or a subset like a
half-space (to get manifolds with boundaries) for which the changes of coordinates are smooth maps.
We define a model with corners as a map `I : H → E` embedding nicely the topological space `H` in
the vector space `E` (or more precisely as a structure containing all the relevant properties).
Given such a model with corners `I` on `(E, H)`, we define the groupoid of local
homeomorphisms of `H` which are smooth when read in `E` (for any regularity `n : with_top ℕ`).
With this groupoid at hand and the general machinery of charted spaces, we thus get the notion
of `C^n` manifold with respect to any model with corners `I` on `(E, H)`. We also introduce a
specific type class for `C^∞` manifolds as these are the most commonly used.
## Main definitions
* `model_with_corners 𝕜 E H` :
a structure containing informations on the way a space `H` embeds in a
model vector space E over the field `𝕜`. This is all that is needed to
define a smooth manifold with model space `H`, and model vector space `E`.
* `model_with_corners_self 𝕜 E` :
trivial model with corners structure on the space `E` embedded in itself by the identity.
* `times_cont_diff_groupoid n I` :
when `I` is a model with corners on `(𝕜, E, H)`, this is the groupoid of local homeos of `H`
which are of class `C^n` over the normed field `𝕜`, when read in `E`.
* `smooth_manifold_with_corners I M` :
a type class saying that the charted space `M`, modelled on the space `H`, has `C^∞` changes of
coordinates with respect to the model with corners `I` on `(𝕜, E, H)`. This type class is just
a shortcut for `has_groupoid M (times_cont_diff_groupoid ∞ I)`.
* `ext_chart_at I x`:
in a smooth manifold with corners with the model `I` on `(E, H)`, the charts take values in `H`,
but often we may want to use their `E`-valued version, obtained by composing the charts with `I`.
Since the target is in general not open, we can not register them as local homeomorphisms, but
we register them as local equivs. `ext_chart_at I x` is the canonical such local equiv around `x`.
As specific examples of models with corners, we define (in the file `real_instances.lean`)
* `model_with_corners_self ℝ (euclidean_space (fin n))` for the model space used to define
`n`-dimensional real manifolds without boundary (with notation `𝓡 n` in the locale `manifold`)
* `model_with_corners ℝ (euclidean_space (fin n)) (euclidean_half_space n)` for the model space
used to define `n`-dimensional real manifolds with boundary (with notation `𝓡∂ n` in the locale
`manifold`)
* `model_with_corners ℝ (euclidean_space (fin n)) (euclidean_quadrant n)` for the model space used
to define `n`-dimensional real manifolds with corners
With these definitions at hand, to invoke an `n`-dimensional real manifold without boundary,
one could use
`variables {n : ℕ} {M : Type*} [topological_space M] [charted_space (euclidean_space (fin n)) M]
[smooth_manifold_with_corners (𝓡 n) M]`.
However, this is not the recommended way: a theorem proved using this assumption would not apply
for instance to the tangent space of such a manifold, which is modelled on
`(euclidean_space (fin n)) × (euclidean_space (fin n))` and not on `euclidean_space (fin (2 * n))`!
In the same way, it would not apply to product manifolds, modelled on
`(euclidean_space (fin n)) × (euclidean_space (fin m))`.
The right invocation does not focus on one specific construction, but on all constructions sharing
the right properties, like
`variables {E : Type*} [normed_group E] [normed_space ℝ E] [finite_dimensional ℝ E]
{I : model_with_corners ℝ E E} [I.boundaryless]
{M : Type*} [topological_space M] [charted_space E M] [smooth_manifold_with_corners I M]`
Here, `I.boundaryless` is a typeclass property ensuring that there is no boundary (this is for
instance the case for `model_with_corners_self`, or products of these). Note that one could consider
as a natural assumption to only use the trivial model with corners `model_with_corners_self ℝ E`,
but again in product manifolds the natural model with corners will not be this one but the product
one (and they are not defeq as `(λp : E × F, (p.1, p.2))` is not defeq to the identity). So, it is
important to use the above incantation to maximize the applicability of theorems.
## Implementation notes
We want to talk about manifolds modelled on a vector space, but also on manifolds with
boundary, modelled on a half space (or even manifolds with corners). For the latter examples,
we still want to define smooth functions, tangent bundles, and so on. As smooth functions are
well defined on vector spaces or subsets of these, one could take for model space a subtype of a
vector space. With the drawback that the whole vector space itself (which is the most basic
example) is not directly a subtype of itself: the inclusion of `univ : set E` in `set E` would
show up in the definition, instead of `id`.
A good abstraction covering both cases it to have a vector
space `E` (with basic example the Euclidean space), a model space `H` (with basic example the upper
half space), and an embedding of `H` into `E` (which can be the identity for `H = E`, or
`subtype.val` for manifolds with corners). We say that the pair `(E, H)` with their embedding is a
model with corners, and we encompass all the relevant properties (in particular the fact that the
image of `H` in `E` should have unique differentials) in the definition of `model_with_corners`.
We concentrate on `C^∞` manifolds: all the definitions work equally well for `C^n` manifolds, but
later on it is a pain to carry all over the smoothness parameter, especially when one wants to deal
with `C^k` functions as there would be additional conditions `k ≤ n` everywhere. Since one deals
almost all the time with `C^∞` (or analytic) manifolds, this seems to be a reasonable choice that
one could revisit later if needed. `C^k` manifolds are still available, but they should be called
using `has_groupoid M (times_cont_diff_groupoid k I)` where `I` is the model with corners.
I have considered using the model with corners `I` as a typeclass argument, possibly `out_param`, to
get lighter notations later on, but it did not turn out right, as on `E × F` there are two natural
model with corners, the trivial (identity) one, and the product one, and they are not defeq and one
needs to indicate to Lean which one we want to use.
This means that when talking on objects on manifolds one will most often need to specify the model
with corners one is using. For instance, the tangent bundle will be `tangent_bundle I M` and the
derivative will be `mfderiv I I' f`, instead of the more natural notations `tangent_bundle 𝕜 M` and
`mfderiv 𝕜 f` (the field has to be explicit anyway, as some manifolds could be considered both as
real and complex manifolds).
-/
noncomputable theory
universes u v w u' v' w'
open set filter
open_locale manifold filter topological_space
localized "notation `∞` := (⊤ : with_top ℕ)" in manifold
section model_with_corners
/-! ### Models with corners. -/
/-- A structure containing informations on the way a space `H` embeds in a
model vector space `E` over the field `𝕜`. This is all what is needed to
define a smooth manifold with model space `H`, and model vector space `E`.
-/
@[nolint has_inhabited_instance]
structure model_with_corners (𝕜 : Type*) [nondiscrete_normed_field 𝕜]
(E : Type*) [normed_group E] [normed_space 𝕜 E] (H : Type*) [topological_space H]
extends local_equiv H E :=
(source_eq : source = univ)
(unique_diff' : unique_diff_on 𝕜 (range to_fun))
(continuous_to_fun : continuous to_fun . tactic.interactive.continuity')
(continuous_inv_fun : continuous inv_fun . tactic.interactive.continuity')
attribute [simp, mfld_simps] model_with_corners.source_eq
/-- A vector space is a model with corners. -/
def model_with_corners_self (𝕜 : Type*) [nondiscrete_normed_field 𝕜]
(E : Type*) [normed_group E] [normed_space 𝕜 E] : model_with_corners 𝕜 E E :=
{ to_fun := id,
inv_fun := id,
source := univ,
target := univ,
source_eq := rfl,
map_source' := λ_ _, mem_univ _,
map_target' := λ_ _, mem_univ _,
left_inv' := λ_ _, rfl,
right_inv' := λ_ _, rfl,
unique_diff' := by { rw range_id, exact unique_diff_on_univ },
continuous_to_fun := continuous_id,
continuous_inv_fun := continuous_id }
localized "notation `𝓘(` 𝕜 `, ` E `)` := model_with_corners_self 𝕜 E" in manifold
localized "notation `𝓘(` 𝕜 `)` := model_with_corners_self 𝕜 𝕜" in manifold
section
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H]
(I : model_with_corners 𝕜 E H)
namespace model_with_corners
instance : has_coe_to_fun (model_with_corners 𝕜 E H) := ⟨_, λ e, e.to_fun⟩
/-- The inverse to a model with corners, only registered as a local equiv. -/
protected def symm : local_equiv E H := I.to_local_equiv.symm
/- Register a few lemmas to make sure that `simp` puts expressions in normal form -/
@[simp, mfld_simps] lemma to_local_equiv_coe : (I.to_local_equiv : H → E) = I :=
rfl
@[simp, mfld_simps] lemma mk_coe (e : local_equiv H E) (a b c d) :
((model_with_corners.mk e a b c d : model_with_corners 𝕜 E H) : H → E) = (e : H → E) := rfl
@[simp, mfld_simps] lemma to_local_equiv_coe_symm : (I.to_local_equiv.symm : E → H) = I.symm := rfl
@[simp, mfld_simps] lemma mk_symm (e : local_equiv H E) (a b c d) :
(model_with_corners.mk e a b c d : model_with_corners 𝕜 E H).symm = e.symm :=
rfl
protected lemma unique_diff : unique_diff_on 𝕜 (range I) := I.unique_diff'
@[continuity] protected lemma continuous : continuous I := I.continuous_to_fun
protected lemma continuous_at {x} : continuous_at I x := I.continuous.continuous_at
protected lemma continuous_within_at {s x} : continuous_within_at I s x :=
I.continuous_at.continuous_within_at
@[continuity] lemma continuous_symm : continuous I.symm := I.continuous_inv_fun
lemma continuous_at_symm {x} : continuous_at I.symm x := I.continuous_symm.continuous_at
lemma continuous_within_at_symm {s x} : continuous_within_at I.symm s x :=
I.continuous_symm.continuous_within_at
@[simp, mfld_simps] lemma target_eq : I.target = range (I : H → E) :=
by { rw [← image_univ, ← I.source_eq], exact (I.to_local_equiv.image_source_eq_target).symm }
@[simp, mfld_simps] protected lemma left_inv (x : H) : I.symm (I x) = x :=
by { refine I.left_inv' _, simp }
protected lemma left_inverse : function.left_inverse I.symm I := I.left_inv
@[simp, mfld_simps] lemma symm_comp_self : I.symm ∘ I = id :=
I.left_inverse.comp_eq_id
protected lemma right_inv_on : right_inv_on I.symm I (range I) :=
I.left_inverse.right_inv_on_range
@[simp, mfld_simps] protected lemma right_inv {x : E} (hx : x ∈ range I) : I (I.symm x) = x :=
I.right_inv_on hx
protected lemma image_eq (s : set H) : I '' s = I.symm ⁻¹' s ∩ range I :=
begin
refine (I.to_local_equiv.image_eq_target_inter_inv_preimage _).trans _,
{ rw I.source_eq, exact subset_univ _ },
{ rw [inter_comm, I.target_eq, I.to_local_equiv_coe_symm] }
end
protected lemma closed_embedding : closed_embedding I :=
I.left_inverse.closed_embedding I.continuous_symm I.continuous
lemma closed_range : is_closed (range I) :=
I.closed_embedding.closed_range
lemma map_nhds_eq (x : H) : map I (𝓝 x) = 𝓝[range I] (I x) :=
I.closed_embedding.to_embedding.map_nhds_eq x
lemma image_mem_nhds_within {x : H} {s : set H} (hs : s ∈ 𝓝 x) :
I '' s ∈ 𝓝[range I] (I x) :=
I.map_nhds_eq x ▸ image_mem_map hs
lemma symm_map_nhds_within_range (x : H) :
map I.symm (𝓝[range I] (I x)) = 𝓝 x :=
by rw [← I.map_nhds_eq, map_map, I.symm_comp_self, map_id]
lemma unique_diff_preimage {s : set H} (hs : is_open s) :
unique_diff_on 𝕜 (I.symm ⁻¹' s ∩ range I) :=
by { rw inter_comm, exact I.unique_diff.inter (hs.preimage I.continuous_inv_fun) }
lemma unique_diff_preimage_source {β : Type*} [topological_space β]
{e : local_homeomorph H β} : unique_diff_on 𝕜 (I.symm ⁻¹' (e.source) ∩ range I) :=
I.unique_diff_preimage e.open_source
lemma unique_diff_at_image {x : H} : unique_diff_within_at 𝕜 (range I) (I x) :=
I.unique_diff _ (mem_range_self _)
protected lemma locally_compact [locally_compact_space E] (I : model_with_corners 𝕜 E H) :
locally_compact_space H :=
begin
have : ∀ (x : H), (𝓝 x).has_basis (λ s, s ∈ 𝓝 (I x) ∧ is_compact s)
(λ s, I.symm '' (s ∩ range ⇑I)),
{ intro x,
rw ← I.symm_map_nhds_within_range,
exact ((compact_basis_nhds (I x)).inf_principal _).map _ },
refine locally_compact_space_of_has_basis this _,
rintro x s ⟨-, hsc⟩,
exact (hsc.inter_right I.closed_range).image I.continuous_symm
end
end model_with_corners
section
variables (𝕜 E)
/-- In the trivial model with corners, the associated local equiv is the identity. -/
@[simp, mfld_simps] lemma model_with_corners_self_local_equiv :
(𝓘(𝕜, E)).to_local_equiv = local_equiv.refl E := rfl
@[simp, mfld_simps] lemma model_with_corners_self_coe :
(𝓘(𝕜, E) : E → E) = id := rfl
@[simp, mfld_simps] lemma model_with_corners_self_coe_symm :
(𝓘(𝕜, E).symm : E → E) = id := rfl
end
end
section model_with_corners_prod
/-- Given two model_with_corners `I` on `(E, H)` and `I'` on `(E', H')`, we define the model with
corners `I.prod I'` on `(E × E', H × H')`. This appears in particular for the manifold structure on
the tangent bundle to a manifold modelled on `(E, H)`: it will be modelled on `(E × E, H × E)`. -/
def model_with_corners.prod
{𝕜 : Type u} [nondiscrete_normed_field 𝕜]
{E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H]
(I : model_with_corners 𝕜 E H)
{E' : Type v'} [normed_group E'] [normed_space 𝕜 E'] {H' : Type w'} [topological_space H']
(I' : model_with_corners 𝕜 E' H') : model_with_corners 𝕜 (E × E') (model_prod H H') :=
{ to_fun := λ p, (I p.1, I' p.2),
inv_fun := λ p, (I.symm p.1, I'.symm p.2),
source := (univ : set (H × H')),
target := set.prod (range I) (range I'),
map_source' := λ ⟨x, x'⟩ _, by simp [-mem_range, mem_range_self],
map_target' := λ ⟨x, x'⟩ _, mem_univ _,
left_inv' := λ ⟨x, x'⟩ _, by simp,
right_inv' := λ ⟨x, x'⟩ ⟨hx, hx'⟩, by simp [hx, hx'],
source_eq := rfl,
unique_diff' := begin
have : range (λ(p : model_prod H H'), (I p.1, I' p.2)) = set.prod (range I) (range I'),
by { dsimp [model_prod], rw ← prod_range_range_eq },
rw this,
exact unique_diff_on.prod I.unique_diff I'.unique_diff,
end,
continuous_to_fun := (continuous.comp I.continuous_to_fun continuous_fst).prod_mk
(continuous.comp I'.continuous_to_fun continuous_snd),
continuous_inv_fun := (continuous.comp I.continuous_inv_fun continuous_fst).prod_mk
(continuous.comp I'.continuous_inv_fun continuous_snd) }
/-- Special case of product model with corners, which is trivial on the second factor. This shows up
as the model to tangent bundles. -/
@[reducible] def model_with_corners.tangent
{𝕜 : Type u} [nondiscrete_normed_field 𝕜]
{E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H]
(I : model_with_corners 𝕜 E H) : model_with_corners 𝕜 (E × E) (model_prod H E) :=
I.prod (𝓘(𝕜, E))
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E] {E' : Type*} [normed_group E'] [normed_space 𝕜 E']
{F : Type*} [normed_group F] [normed_space 𝕜 F] {F' : Type*} [normed_group F'] [normed_space 𝕜 F']
{H : Type*} [topological_space H] {H' : Type*} [topological_space H']
{G : Type*} [topological_space G] {G' : Type*} [topological_space G']
{I : model_with_corners 𝕜 E H} {J : model_with_corners 𝕜 F G}
@[simp, mfld_simps] lemma model_with_corners_prod_to_local_equiv :
(I.prod J).to_local_equiv = (I.to_local_equiv).prod (J.to_local_equiv) :=
begin
ext1 x,
{ refl, },
{ intro x, refl, },
{ simp only [set.univ_prod_univ, model_with_corners.source_eq, local_equiv.prod_source], }
end
@[simp, mfld_simps] lemma model_with_corners_prod_coe
(I : model_with_corners 𝕜 E H) (I' : model_with_corners 𝕜 E' H') :
(I.prod I' : _ × _ → _ × _) = prod.map I I' := rfl
@[simp, mfld_simps] lemma model_with_corners_prod_coe_symm
(I : model_with_corners 𝕜 E H) (I' : model_with_corners 𝕜 E' H') :
((I.prod I').symm : _ × _ → _ × _) = prod.map I.symm I'.symm := rfl
end model_with_corners_prod
section boundaryless
/-- Property ensuring that the model with corners `I` defines manifolds without boundary. -/
class model_with_corners.boundaryless {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H]
(I : model_with_corners 𝕜 E H) : Prop :=
(range_eq_univ : range I = univ)
/-- The trivial model with corners has no boundary -/
instance model_with_corners_self_boundaryless (𝕜 : Type*) [nondiscrete_normed_field 𝕜]
(E : Type*) [normed_group E] [normed_space 𝕜 E] : (model_with_corners_self 𝕜 E).boundaryless :=
⟨by simp⟩
/-- If two model with corners are boundaryless, their product also is -/
instance model_with_corners.range_eq_univ_prod {𝕜 : Type u} [nondiscrete_normed_field 𝕜]
{E : Type v} [normed_group E] [normed_space 𝕜 E] {H : Type w} [topological_space H]
(I : model_with_corners 𝕜 E H) [I.boundaryless]
{E' : Type v'} [normed_group E'] [normed_space 𝕜 E'] {H' : Type w'} [topological_space H']
(I' : model_with_corners 𝕜 E' H') [I'.boundaryless] :
(I.prod I').boundaryless :=
begin
split,
dsimp [model_with_corners.prod, model_prod],
rw [← prod_range_range_eq, model_with_corners.boundaryless.range_eq_univ,
model_with_corners.boundaryless.range_eq_univ, univ_prod_univ]
end
end boundaryless
section times_cont_diff_groupoid
/-! ### Smooth functions on models with corners -/
variables {m n : with_top ℕ} {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{H : Type*} [topological_space H]
(I : model_with_corners 𝕜 E H)
{M : Type*} [topological_space M]
variable (n)
/-- Given a model with corners `(E, H)`, we define the groupoid of `C^n` transformations of `H` as
the maps that are `C^n` when read in `E` through `I`. -/
def times_cont_diff_groupoid : structure_groupoid H :=
pregroupoid.groupoid
{ property := λf s, times_cont_diff_on 𝕜 n (I ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I),
comp := λf g u v hf hg hu hv huv, begin
have : I ∘ (g ∘ f) ∘ I.symm = (I ∘ g ∘ I.symm) ∘ (I ∘ f ∘ I.symm),
by { ext x, simp },
rw this,
apply times_cont_diff_on.comp hg _,
{ rintros x ⟨hx1, hx2⟩,
simp only with mfld_simps at ⊢ hx1,
exact hx1.2 },
{ refine hf.mono _,
rintros x ⟨hx1, hx2⟩,
exact ⟨hx1.1, hx2⟩ }
end,
id_mem := begin
apply times_cont_diff_on.congr (times_cont_diff_id.times_cont_diff_on),
rintros x ⟨hx1, hx2⟩,
rcases mem_range.1 hx2 with ⟨y, hy⟩,
rw ← hy,
simp only with mfld_simps,
end,
locality := λf u hu H, begin
apply times_cont_diff_on_of_locally_times_cont_diff_on,
rintros y ⟨hy1, hy2⟩,
rcases mem_range.1 hy2 with ⟨x, hx⟩,
rw ← hx at ⊢ hy1,
simp only with mfld_simps at ⊢ hy1,
rcases H x hy1 with ⟨v, v_open, xv, hv⟩,
have : ((I.symm ⁻¹' (u ∩ v)) ∩ (range I))
= ((I.symm ⁻¹' u) ∩ (range I) ∩ I.symm ⁻¹' v),
{ rw [preimage_inter, inter_assoc, inter_assoc],
congr' 1,
rw inter_comm },
rw this at hv,
exact ⟨I.symm ⁻¹' v, v_open.preimage I.continuous_symm, by simpa, hv⟩
end,
congr := λf g u hu fg hf, begin
apply hf.congr,
rintros y ⟨hy1, hy2⟩,
rcases mem_range.1 hy2 with ⟨x, hx⟩,
rw ← hx at ⊢ hy1,
simp only with mfld_simps at ⊢ hy1,
rw fg _ hy1
end }
variable {n}
/-- Inclusion of the groupoid of `C^n` local diffeos in the groupoid of `C^m` local diffeos when
`m ≤ n` -/
lemma times_cont_diff_groupoid_le (h : m ≤ n) :
times_cont_diff_groupoid n I ≤ times_cont_diff_groupoid m I :=
begin
rw [times_cont_diff_groupoid, times_cont_diff_groupoid],
apply groupoid_of_pregroupoid_le,
assume f s hfs,
exact times_cont_diff_on.of_le hfs h
end
/-- The groupoid of `0`-times continuously differentiable maps is just the groupoid of all
local homeomorphisms -/
lemma times_cont_diff_groupoid_zero_eq :
times_cont_diff_groupoid 0 I = continuous_groupoid H :=
begin
apply le_antisymm le_top,
assume u hu,
-- we have to check that every local homeomorphism belongs to `times_cont_diff_groupoid 0 I`,
-- by unfolding its definition
change u ∈ times_cont_diff_groupoid 0 I,
rw [times_cont_diff_groupoid, mem_groupoid_of_pregroupoid],
simp only [times_cont_diff_on_zero],
split,
{ apply continuous_on.comp (@continuous.continuous_on _ _ _ _ _ univ I.continuous)
_ (subset_univ _),
apply continuous_on.comp u.continuous_to_fun I.continuous_symm.continuous_on
(inter_subset_left _ _) },
{ apply continuous_on.comp (@continuous.continuous_on _ _ _ _ _ univ I.continuous)
_ (subset_univ _),
apply continuous_on.comp u.continuous_inv_fun I.continuous_inv_fun.continuous_on
(inter_subset_left _ _) },
end
variable (n)
/-- An identity local homeomorphism belongs to the `C^n` groupoid. -/
lemma of_set_mem_times_cont_diff_groupoid {s : set H} (hs : is_open s) :
local_homeomorph.of_set s hs ∈ times_cont_diff_groupoid n I :=
begin
rw [times_cont_diff_groupoid, mem_groupoid_of_pregroupoid],
suffices h : times_cont_diff_on 𝕜 n (I ∘ I.symm) (I.symm ⁻¹' s ∩ range I),
by simp [h],
have : times_cont_diff_on 𝕜 n id (univ : set E) :=
times_cont_diff_id.times_cont_diff_on,
exact this.congr_mono (λ x hx, by simp [hx.2]) (subset_univ _)
end
/-- The composition of a local homeomorphism from `H` to `M` and its inverse belongs to
the `C^n` groupoid. -/
lemma symm_trans_mem_times_cont_diff_groupoid (e : local_homeomorph M H) :
e.symm.trans e ∈ times_cont_diff_groupoid n I :=
begin
have : e.symm.trans e ≈ local_homeomorph.of_set e.target e.open_target :=
local_homeomorph.trans_symm_self _,
exact structure_groupoid.eq_on_source _
(of_set_mem_times_cont_diff_groupoid n I e.open_target) this
end
variables {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {H' : Type*} [topological_space H']
/-- The product of two smooth local homeomorphisms is smooth. -/
lemma times_cont_diff_groupoid_prod
{I : model_with_corners 𝕜 E H} {I' : model_with_corners 𝕜 E' H'}
{e : local_homeomorph H H} {e' : local_homeomorph H' H'}
(he : e ∈ times_cont_diff_groupoid ⊤ I) (he' : e' ∈ times_cont_diff_groupoid ⊤ I') :
e.prod e' ∈ times_cont_diff_groupoid ⊤ (I.prod I') :=
begin
cases he with he he_symm,
cases he' with he' he'_symm,
simp only at he he_symm he' he'_symm,
split;
simp only [local_equiv.prod_source, local_homeomorph.prod_to_local_equiv],
{ have h3 := times_cont_diff_on.prod_map he he',
rw [← I.image_eq, ← I'.image_eq, set.prod_image_image_eq] at h3,
rw ← (I.prod I').image_eq,
exact h3, },
{ have h3 := times_cont_diff_on.prod_map he_symm he'_symm,
rw [← I.image_eq, ← I'.image_eq, set.prod_image_image_eq] at h3,
rw ← (I.prod I').image_eq,
exact h3, }
end
/-- The `C^n` groupoid is closed under restriction. -/
instance : closed_under_restriction (times_cont_diff_groupoid n I) :=
(closed_under_restriction_iff_id_le _).mpr
begin
apply structure_groupoid.le_iff.mpr,
rintros e ⟨s, hs, hes⟩,
apply (times_cont_diff_groupoid n I).eq_on_source' _ _ _ hes,
exact of_set_mem_times_cont_diff_groupoid n I hs,
end
end times_cont_diff_groupoid
end model_with_corners
section smooth_manifold_with_corners
/-! ### Smooth manifolds with corners -/
set_option old_structure_cmd true
/-- Typeclass defining smooth manifolds with corners with respect to a model with corners, over a
field `𝕜` and with infinite smoothness to simplify typeclass search and statements later on. -/
@[ancestor has_groupoid]
class smooth_manifold_with_corners {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H)
(M : Type*) [topological_space M] [charted_space H M] extends
has_groupoid M (times_cont_diff_groupoid ∞ I) : Prop
lemma smooth_manifold_with_corners_of_times_cont_diff_on
{𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H)
(M : Type*) [topological_space M] [charted_space H M]
(h : ∀ (e e' : local_homeomorph M H), e ∈ atlas H M → e' ∈ atlas H M →
times_cont_diff_on 𝕜 ⊤ (I ∘ (e.symm ≫ₕ e') ∘ I.symm)
(I.symm ⁻¹' (e.symm ≫ₕ e').source ∩ range I)) :
smooth_manifold_with_corners I M :=
{ compatible :=
begin
haveI : has_groupoid M (times_cont_diff_groupoid ∞ I) := has_groupoid_of_pregroupoid _ h,
apply structure_groupoid.compatible,
end }
/-- For any model with corners, the model space is a smooth manifold -/
instance model_space_smooth {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E] {H : Type*} [topological_space H]
{I : model_with_corners 𝕜 E H} :
smooth_manifold_with_corners I H := { .. has_groupoid_model_space _ _ }
end smooth_manifold_with_corners
namespace smooth_manifold_with_corners
/- We restate in the namespace `smooth_manifolds_with_corners` some lemmas that hold for general
charted space with a structure groupoid, avoiding the need to specify the groupoid
`times_cont_diff_groupoid ∞ I` explicitly. -/
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H)
(M : Type*) [topological_space M] [charted_space H M]
/-- The maximal atlas of `M` for the smooth manifold with corners structure corresponding to the
model with corners `I`. -/
def maximal_atlas := (times_cont_diff_groupoid ∞ I).maximal_atlas M
variable {M}
lemma mem_maximal_atlas_of_mem_atlas [smooth_manifold_with_corners I M]
{e : local_homeomorph M H} (he : e ∈ atlas H M) : e ∈ maximal_atlas I M :=
structure_groupoid.mem_maximal_atlas_of_mem_atlas _ he
lemma chart_mem_maximal_atlas [smooth_manifold_with_corners I M] (x : M) :
chart_at H x ∈ maximal_atlas I M :=
structure_groupoid.chart_mem_maximal_atlas _ x
variable {I}
lemma compatible_of_mem_maximal_atlas
{e e' : local_homeomorph M H} (he : e ∈ maximal_atlas I M) (he' : e' ∈ maximal_atlas I M) :
e.symm.trans e' ∈ times_cont_diff_groupoid ∞ I :=
structure_groupoid.compatible_of_mem_maximal_atlas he he'
/-- The product of two smooth manifolds with corners is naturally a smooth manifold with corners. -/
instance prod {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{E' : Type*} [normed_group E'] [normed_space 𝕜 E']
{H : Type*} [topological_space H] {I : model_with_corners 𝕜 E H}
{H' : Type*} [topological_space H'] {I' : model_with_corners 𝕜 E' H'}
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M]
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] :
smooth_manifold_with_corners (I.prod I') (M×M') :=
{ compatible :=
begin
rintros f g ⟨f1, hf1, f2, hf2, hf⟩ ⟨g1, hg1, g2, hg2, hg⟩,
rw [hf, hg, local_homeomorph.prod_symm, local_homeomorph.prod_trans],
have h1 := has_groupoid.compatible (times_cont_diff_groupoid ⊤ I) hf1 hg1,
have h2 := has_groupoid.compatible (times_cont_diff_groupoid ⊤ I') hf2 hg2,
exact times_cont_diff_groupoid_prod h1 h2,
end }
end smooth_manifold_with_corners
section extended_charts
open_locale topological_space
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{H : Type*} [topological_space H] (I : model_with_corners 𝕜 E H)
{M : Type*} [topological_space M] [charted_space H M]
(x : M) {s t : set M}
/-!
### Extended charts
In a smooth manifold with corners, the model space is the space `H`. However, we will also
need to use extended charts taking values in the model vector space `E`. These extended charts are
not `local_homeomorph` as the target is not open in `E` in general, but we can still register them
as `local_equiv`.
-/
/-- The preferred extended chart on a manifold with corners around a point `x`, from a neighborhood
of `x` to the model vector space. -/
@[simp, mfld_simps] def ext_chart_at (x : M) : local_equiv M E :=
(chart_at H x).to_local_equiv.trans I.to_local_equiv
lemma ext_chart_at_coe : ⇑(ext_chart_at I x) = I ∘ chart_at H x := rfl
lemma ext_chart_at_coe_symm :
⇑(ext_chart_at I x).symm = (chart_at H x).symm ∘ I.symm := rfl
lemma ext_chart_at_source : (ext_chart_at I x).source = (chart_at H x).source :=
by rw [ext_chart_at, local_equiv.trans_source, I.source_eq, preimage_univ, inter_univ]
lemma ext_chart_at_open_source : is_open (ext_chart_at I x).source :=
by { rw ext_chart_at_source, exact (chart_at H x).open_source }
lemma mem_ext_chart_source : x ∈ (ext_chart_at I x).source :=
by simp only [ext_chart_at_source, mem_chart_source]
lemma ext_chart_at_to_inv :
(ext_chart_at I x).symm ((ext_chart_at I x) x) = x :=
(ext_chart_at I x).left_inv (mem_ext_chart_source I x)
lemma ext_chart_at_source_mem_nhds' {x' : M} (h : x' ∈ (ext_chart_at I x).source) :
(ext_chart_at I x).source ∈ 𝓝 x' :=
mem_nhds_sets (ext_chart_at_open_source I x) h
lemma ext_chart_at_source_mem_nhds : (ext_chart_at I x).source ∈ 𝓝 x :=
ext_chart_at_source_mem_nhds' I x (mem_ext_chart_source I x)
lemma ext_chart_at_source_mem_nhds_within' {x' : M} (h : x' ∈ (ext_chart_at I x).source) :
(ext_chart_at I x).source ∈ 𝓝[s] x' :=
mem_nhds_within_of_mem_nhds (ext_chart_at_source_mem_nhds' I x h)
lemma ext_chart_at_source_mem_nhds_within :
(ext_chart_at I x).source ∈ 𝓝[s] x :=
mem_nhds_within_of_mem_nhds (ext_chart_at_source_mem_nhds I x)
lemma ext_chart_at_continuous_on :
continuous_on (ext_chart_at I x) (ext_chart_at I x).source :=
begin
refine I.continuous.comp_continuous_on _,
rw ext_chart_at_source,
exact (chart_at H x).continuous_on
end
lemma ext_chart_at_continuous_at' {x' : M} (h : x' ∈ (ext_chart_at I x).source) :
continuous_at (ext_chart_at I x) x' :=
(ext_chart_at_continuous_on I x).continuous_at $ ext_chart_at_source_mem_nhds' I x h
lemma ext_chart_at_continuous_at : continuous_at (ext_chart_at I x) x :=
ext_chart_at_continuous_at' _ _ (mem_ext_chart_source I x)
lemma ext_chart_at_continuous_on_symm :
continuous_on (ext_chart_at I x).symm (ext_chart_at I x).target :=
begin
apply continuous_on.comp (chart_at H x).continuous_on_symm I.continuous_symm.continuous_on,
simp [ext_chart_at, local_equiv.trans_target]
end
lemma ext_chart_at_map_nhds' {x y : M} (hy : y ∈ (ext_chart_at I x).source) :
map (ext_chart_at I x) (𝓝 y) = 𝓝[range I] (ext_chart_at I x y) :=
begin
rw [ext_chart_at_coe, (∘), ← I.map_nhds_eq, ← (chart_at H x).map_nhds_eq, map_map],
rwa ext_chart_at_source at hy
end
lemma ext_chart_at_map_nhds :
map (ext_chart_at I x) (𝓝 x) = 𝓝[range I] (ext_chart_at I x x) :=
ext_chart_at_map_nhds' I $ mem_ext_chart_source I x
lemma ext_chart_at_target_mem_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) :
(ext_chart_at I x).target ∈ 𝓝[range I] (ext_chart_at I x y) :=
begin
rw [← local_equiv.image_source_eq_target, ← ext_chart_at_map_nhds' I hy],
exact image_mem_map (ext_chart_at_source_mem_nhds' _ _ hy)
end
lemma ext_chart_at_target_mem_nhds_within :
(ext_chart_at I x).target ∈ 𝓝[range I] (ext_chart_at I x x) :=
ext_chart_at_target_mem_nhds_within' I x (mem_ext_chart_source I x)
lemma ext_chart_at_target_subset_range : (ext_chart_at I x).target ⊆ range I :=
by simp only with mfld_simps
lemma nhds_within_ext_chart_target_eq' {y : M} (hy : y ∈ (ext_chart_at I x).source) :
𝓝[(ext_chart_at I x).target] (ext_chart_at I x y) =
𝓝[range I] (ext_chart_at I x y) :=
(nhds_within_mono _ (ext_chart_at_target_subset_range _ _)).antisymm $
nhds_within_le_of_mem (ext_chart_at_target_mem_nhds_within' _ _ hy)
lemma nhds_within_ext_chart_target_eq :
𝓝[(ext_chart_at I x).target] ((ext_chart_at I x) x) =
𝓝[range I] ((ext_chart_at I x) x) :=
nhds_within_ext_chart_target_eq' I x (mem_ext_chart_source I x)
lemma ext_chart_continuous_at_symm'' {y : E} (h : y ∈ (ext_chart_at I x).target) :
continuous_at (ext_chart_at I x).symm y :=
continuous_at.comp ((chart_at H x).continuous_at_symm h.2) (I.continuous_symm.continuous_at)
lemma ext_chart_continuous_at_symm' {x' : M} (h : x' ∈ (ext_chart_at I x).source) :
continuous_at (ext_chart_at I x).symm (ext_chart_at I x x') :=
ext_chart_continuous_at_symm'' I _ $ (ext_chart_at I x).map_source h
lemma ext_chart_continuous_at_symm :
continuous_at (ext_chart_at I x).symm ((ext_chart_at I x) x) :=
ext_chart_continuous_at_symm' I x (mem_ext_chart_source I x)
lemma ext_chart_continuous_on_symm :
continuous_on (ext_chart_at I x).symm (ext_chart_at I x).target :=
λ y hy, (ext_chart_continuous_at_symm'' _ _ hy).continuous_within_at
lemma ext_chart_at_map_nhds_within_eq_image' {y : M} (hy : y ∈ (ext_chart_at I x).source) :
map (ext_chart_at I x) (𝓝[s] y) =
𝓝[ext_chart_at I x '' ((ext_chart_at I x).source ∩ s)] (ext_chart_at I x y) :=
by set e := ext_chart_at I x;
calc map e (𝓝[s] y) = map e (𝓝[e.source ∩ s] y) :
congr_arg (map e) (nhds_within_inter_of_mem (ext_chart_at_source_mem_nhds_within' I x hy)).symm
... = 𝓝[e '' (e.source ∩ s)] (e y) :
((ext_chart_at I x).left_inv_on.mono $ inter_subset_left _ _).map_nhds_within_eq
((ext_chart_at I x).left_inv hy)
(ext_chart_continuous_at_symm' I x hy).continuous_within_at
(ext_chart_at_continuous_at' I x hy).continuous_within_at
lemma ext_chart_at_map_nhds_within_eq_image :
map (ext_chart_at I x) (𝓝[s] x) =
𝓝[ext_chart_at I x '' ((ext_chart_at I x).source ∩ s)] (ext_chart_at I x x) :=
ext_chart_at_map_nhds_within_eq_image' I x (mem_ext_chart_source I x)
lemma ext_chart_at_map_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) :
map (ext_chart_at I x) (𝓝[s] y) =
𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x y) :=
by rw [ext_chart_at_map_nhds_within_eq_image' I x hy, nhds_within_inter,
← nhds_within_ext_chart_target_eq' _ _ hy, ← nhds_within_inter,
(ext_chart_at I x).image_source_inter_eq', inter_comm]
lemma ext_chart_at_map_nhds_within :
map (ext_chart_at I x) (𝓝[s] x) =
𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x x) :=
ext_chart_at_map_nhds_within' I x (mem_ext_chart_source I x)
lemma ext_chart_at_symm_map_nhds_within' {y : M} (hy : y ∈ (ext_chart_at I x).source) :
map (ext_chart_at I x).symm
(𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x y)) = 𝓝[s] y :=
begin
rw [← ext_chart_at_map_nhds_within' I x hy, map_map, map_congr, map_id],
exact (ext_chart_at I x).left_inv_on.eq_on.eventually_eq_of_mem
(ext_chart_at_source_mem_nhds_within' _ _ hy)
end
lemma ext_chart_at_symm_map_nhds_within_range' {y : M} (hy : y ∈ (ext_chart_at I x).source) :
map (ext_chart_at I x).symm (𝓝[range I] (ext_chart_at I x y)) = 𝓝 y :=
by rw [← nhds_within_univ, ← ext_chart_at_symm_map_nhds_within' I x hy, preimage_univ, univ_inter]
lemma ext_chart_at_symm_map_nhds_within :
map (ext_chart_at I x).symm
(𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] (ext_chart_at I x x)) = 𝓝[s] x :=
ext_chart_at_symm_map_nhds_within' I x (mem_ext_chart_source I x)
lemma ext_chart_at_symm_map_nhds_within_range :
map (ext_chart_at I x).symm (𝓝[range I] (ext_chart_at I x x)) = 𝓝 x :=
ext_chart_at_symm_map_nhds_within_range' I x (mem_ext_chart_source I x)
/-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point
in the source is a neighborhood of the preimage, within a set. -/
lemma ext_chart_preimage_mem_nhds_within' {x' : M} (h : x' ∈ (ext_chart_at I x).source)
(ht : t ∈ 𝓝[s] x') :
(ext_chart_at I x).symm ⁻¹' t ∈
𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] ((ext_chart_at I x) x') :=
by rwa [← ext_chart_at_symm_map_nhds_within' I x h, mem_map] at ht
/-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of the
base point is a neighborhood of the preimage, within a set. -/
lemma ext_chart_preimage_mem_nhds_within (ht : t ∈ 𝓝[s] x) :
(ext_chart_at I x).symm ⁻¹' t ∈
𝓝[(ext_chart_at I x).symm ⁻¹' s ∩ range I] ((ext_chart_at I x) x) :=
ext_chart_preimage_mem_nhds_within' I x (mem_ext_chart_source I x) ht
/-- Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point
is a neighborhood of the preimage. -/
lemma ext_chart_preimage_mem_nhds (ht : t ∈ 𝓝 x) :
(ext_chart_at I x).symm ⁻¹' t ∈ 𝓝 ((ext_chart_at I x) x) :=
begin
apply (ext_chart_continuous_at_symm I x).preimage_mem_nhds,
rwa (ext_chart_at I x).left_inv (mem_ext_chart_source _ _)
end
/-- Technical lemma to rewrite suitably the preimage of an intersection under an extended chart, to
bring it into a convenient form to apply derivative lemmas. -/
lemma ext_chart_preimage_inter_eq :
((ext_chart_at I x).symm ⁻¹' (s ∩ t) ∩ range I)
= ((ext_chart_at I x).symm ⁻¹' s ∩ range I) ∩ ((ext_chart_at I x).symm ⁻¹' t) :=
by mfld_set_tac
end extended_charts
/-- In the case of the manifold structure on a vector space, the extended charts are just the
identity.-/
lemma ext_chart_model_space_eq_id (𝕜 : Type*) [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E] (x : E) :
ext_chart_at (model_with_corners_self 𝕜 E) x = local_equiv.refl E :=
by simp only with mfld_simps
|
f5e438a8fd868162b4bc0aa1e415c0fcee74de20
|
aa5a655c05e5359a70646b7154e7cac59f0b4132
|
/src/Init/Data/Format.lean
|
7f56a4d18a78d8c2d8a70f4a4f858f800793522b
|
[
"Apache-2.0"
] |
permissive
|
lambdaxymox/lean4
|
ae943c960a42247e06eff25c35338268d07454cb
|
278d47c77270664ef29715faab467feac8a0f446
|
refs/heads/master
| 1,677,891,867,340
| 1,612,500,005,000
| 1,612,500,005,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 265
|
lean
|
/-
Copyright (c) 2018 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
prelude
import Init.Data.Format.Basic
import Init.Data.Format.Macro
import Init.Data.Format.Instances
|
aacd75d3564d07511f7f6f1d77c87cd08ae1021a
|
46125763b4dbf50619e8846a1371029346f4c3db
|
/src/analysis/normed_space/bounded_linear_maps.lean
|
314c21737139a0223310ae79a289d659506e9de2
|
[
"Apache-2.0"
] |
permissive
|
thjread/mathlib
|
a9d97612cedc2c3101060737233df15abcdb9eb1
|
7cffe2520a5518bba19227a107078d83fa725ddc
|
refs/heads/master
| 1,615,637,696,376
| 1,583,953,063,000
| 1,583,953,063,000
| 246,680,271
| 0
| 0
|
Apache-2.0
| 1,583,960,875,000
| 1,583,960,875,000
| null |
UTF-8
|
Lean
| false
| false
| 18,759
|
lean
|
/-
Copyright (c) 2018 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Johannes Hölzl
Continuous linear functions -- functions between normed vector spaces which are bounded and linear.
-/
import algebra.field
import analysis.normed_space.operator_norm analysis.normed_space.multilinear
noncomputable theory
open_locale classical filter
open filter (tendsto)
open metric
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E]
variables {F : Type*} [normed_group F] [normed_space 𝕜 F]
variables {G : Type*} [normed_group G] [normed_space 𝕜 G]
set_option class.instance_max_depth 70
/-- A function `f` satisfies `is_bounded_linear_map 𝕜 f` if it is linear and satisfies the
inequality `∥ f x ∥ ≤ M * ∥ x ∥` for some positive constant `M`. -/
structure is_bounded_linear_map (𝕜 : Type*) [normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{F : Type*} [normed_group F] [normed_space 𝕜 F] (f : E → F)
extends is_linear_map 𝕜 f : Prop :=
(bound : ∃ M, 0 < M ∧ ∀ x : E, ∥ f x ∥ ≤ M * ∥ x ∥)
lemma is_linear_map.with_bound
{f : E → F} (hf : is_linear_map 𝕜 f) (M : ℝ) (h : ∀ x : E, ∥ f x ∥ ≤ M * ∥ x ∥) :
is_bounded_linear_map 𝕜 f :=
⟨ hf, classical.by_cases
(assume : M ≤ 0, ⟨1, zero_lt_one, assume x,
le_trans (h x) $ mul_le_mul_of_nonneg_right (le_trans this zero_le_one) (norm_nonneg x)⟩)
(assume : ¬ M ≤ 0, ⟨M, lt_of_not_ge this, h⟩)⟩
/-- A continuous linear map satisfies `is_bounded_linear_map` -/
lemma continuous_linear_map.is_bounded_linear_map (f : E →L[𝕜] F) : is_bounded_linear_map 𝕜 f :=
{ bound := f.bound,
..f.to_linear_map }
namespace is_bounded_linear_map
/-- Construct a linear map from a function `f` satisfying `is_bounded_linear_map 𝕜 f`. -/
def to_linear_map (f : E → F) (h : is_bounded_linear_map 𝕜 f) : E →ₗ[𝕜] F :=
(is_linear_map.mk' _ h.to_is_linear_map)
/-- Construct a continuous linear map from is_bounded_linear_map -/
def to_continuous_linear_map {f : E → F} (hf : is_bounded_linear_map 𝕜 f) : E →L[𝕜] F :=
{ cont := let ⟨C, Cpos, hC⟩ := hf.bound in linear_map.continuous_of_bound _ C hC,
..to_linear_map f hf}
lemma zero : is_bounded_linear_map 𝕜 (λ (x:E), (0:F)) :=
(0 : E →ₗ F).is_linear.with_bound 0 $ by simp [le_refl]
lemma id : is_bounded_linear_map 𝕜 (λ (x:E), x) :=
linear_map.id.is_linear.with_bound 1 $ by simp [le_refl]
lemma fst : is_bounded_linear_map 𝕜 (λ x : E × F, x.1) :=
begin
refine (linear_map.fst 𝕜 E F).is_linear.with_bound 1 (λx, _),
rw one_mul,
exact le_max_left _ _
end
lemma snd : is_bounded_linear_map 𝕜 (λ x : E × F, x.2) :=
begin
refine (linear_map.snd 𝕜 E F).is_linear.with_bound 1 (λx, _),
rw one_mul,
exact le_max_right _ _
end
variables { f g : E → F }
lemma smul (c : 𝕜) (hf : is_bounded_linear_map 𝕜 f) :
is_bounded_linear_map 𝕜 (λ e, c • f e) :=
let ⟨hlf, M, hMp, hM⟩ := hf in
(c • hlf.mk' f).is_linear.with_bound (∥c∥ * M) $ assume x,
calc ∥c • f x∥ = ∥c∥ * ∥f x∥ : norm_smul c (f x)
... ≤ ∥c∥ * (M * ∥x∥) : mul_le_mul_of_nonneg_left (hM _) (norm_nonneg _)
... = (∥c∥ * M) * ∥x∥ : (mul_assoc _ _ _).symm
lemma neg (hf : is_bounded_linear_map 𝕜 f) :
is_bounded_linear_map 𝕜 (λ e, -f e) :=
begin
rw show (λ e, -f e) = (λ e, (-1 : 𝕜) • f e), { funext, simp },
exact smul (-1) hf
end
lemma add (hf : is_bounded_linear_map 𝕜 f) (hg : is_bounded_linear_map 𝕜 g) :
is_bounded_linear_map 𝕜 (λ e, f e + g e) :=
let ⟨hlf, Mf, hMfp, hMf⟩ := hf in
let ⟨hlg, Mg, hMgp, hMg⟩ := hg in
(hlf.mk' _ + hlg.mk' _).is_linear.with_bound (Mf + Mg) $ assume x,
calc ∥f x + g x∥ ≤ Mf * ∥x∥ + Mg * ∥x∥ : norm_add_le_of_le (hMf x) (hMg x)
... ≤ (Mf + Mg) * ∥x∥ : by rw add_mul
lemma sub (hf : is_bounded_linear_map 𝕜 f) (hg : is_bounded_linear_map 𝕜 g) :
is_bounded_linear_map 𝕜 (λ e, f e - g e) := add hf (neg hg)
lemma comp {g : F → G}
(hg : is_bounded_linear_map 𝕜 g) (hf : is_bounded_linear_map 𝕜 f) :
is_bounded_linear_map 𝕜 (g ∘ f) :=
(hg.to_continuous_linear_map.comp hf.to_continuous_linear_map).is_bounded_linear_map
lemma tendsto (x : E) (hf : is_bounded_linear_map 𝕜 f) : f →_{x} (f x) :=
let ⟨hf, M, hMp, hM⟩ := hf in
tendsto_iff_norm_tendsto_zero.2 $
squeeze_zero (assume e, norm_nonneg _)
(assume e,
calc ∥f e - f x∥ = ∥hf.mk' f (e - x)∥ : by rw (hf.mk' _).map_sub e x; refl
... ≤ M * ∥e - x∥ : hM (e - x))
(suffices (λ (e : E), M * ∥e - x∥) →_{x} (M * 0), by simpa,
tendsto_const_nhds.mul (lim_norm _))
lemma continuous (hf : is_bounded_linear_map 𝕜 f) : continuous f :=
continuous_iff_continuous_at.2 $ λ _, hf.tendsto _
lemma lim_zero_bounded_linear_map (hf : is_bounded_linear_map 𝕜 f) :
(f →_{0} 0) :=
(hf.1.mk' _).map_zero ▸ continuous_iff_continuous_at.1 hf.continuous 0
section
open asymptotics filter
theorem is_O_id {f : E → F} (h : is_bounded_linear_map 𝕜 f) (l : filter E) :
is_O f (λ x, x) l :=
let ⟨M, hMp, hM⟩ := h.bound in
⟨M, mem_sets_of_superset univ_mem_sets (λ x _, hM x)⟩
theorem is_O_comp {E : Type*} {g : F → G} (hg : is_bounded_linear_map 𝕜 g)
{f : E → F} (l : filter E) : is_O (λ x', g (f x')) f l :=
(hg.is_O_id ⊤).comp_tendsto lattice.le_top
theorem is_O_sub {f : E → F} (h : is_bounded_linear_map 𝕜 f)
(l : filter E) (x : E) : is_O (λ x', f (x' - x)) (λ x', x' - x) l :=
is_O_comp h l
end
end is_bounded_linear_map
section
set_option class.instance_max_depth 240
variables {ι : Type*} [decidable_eq ι] [fintype ι]
/-- Taking the cartesian product of two continuous linear maps is a bounded linear operation. -/
lemma is_bounded_linear_map_prod_iso :
is_bounded_linear_map 𝕜 (λ(p : (E →L[𝕜] F) × (E →L[𝕜] G)), (p.1.prod p.2 : (E →L[𝕜] (F × G)))) :=
begin
refine is_linear_map.with_bound ⟨λu v, rfl, λc u, rfl⟩ 1 (λp, _),
simp only [norm, one_mul],
refine continuous_linear_map.op_norm_le_bound _ (le_trans (norm_nonneg _) (le_max_left _ _)) (λu, _),
simp only [norm, continuous_linear_map.prod, max_le_iff],
split,
{ calc ∥p.1 u∥ ≤ ∥p.1∥ * ∥u∥ : continuous_linear_map.le_op_norm _ _
... ≤ max (∥p.1∥) (∥p.2∥) * ∥u∥ :
mul_le_mul_of_nonneg_right (le_max_left _ _) (norm_nonneg _) },
{ calc ∥p.2 u∥ ≤ ∥p.2∥ * ∥u∥ : continuous_linear_map.le_op_norm _ _
... ≤ max (∥p.1∥) (∥p.2∥) * ∥u∥ :
mul_le_mul_of_nonneg_right (le_max_right _ _) (norm_nonneg _) }
end
/-- Taking the cartesian product of two continuous multilinear maps is a bounded linear operation. -/
lemma is_bounded_linear_map_prod_multilinear
{E : ι → Type*} [∀i, normed_group (E i)] [∀i, normed_space 𝕜 (E i)] :
is_bounded_linear_map 𝕜
(λ p : (continuous_multilinear_map 𝕜 E F) × (continuous_multilinear_map 𝕜 E G), p.1.prod p.2) :=
{ add := λ p₁ p₂, by { ext1 m, refl },
smul := λ c p, by { ext1 m, refl },
bound := ⟨1, zero_lt_one, λ p, begin
rw one_mul,
apply continuous_multilinear_map.op_norm_le_bound _ (norm_nonneg _) (λ m, _),
rw [continuous_multilinear_map.prod_apply, norm_prod_le_iff],
split,
{ exact le_trans (p.1.le_op_norm m)
(mul_le_mul_of_nonneg_right (norm_fst_le p) (finset.prod_nonneg (λ i hi, norm_nonneg _))) },
{ exact le_trans (p.2.le_op_norm m)
(mul_le_mul_of_nonneg_right (norm_snd_le p) (finset.prod_nonneg (λ i hi, norm_nonneg _))) },
end⟩ }
/-- Given a fixed continuous linear map `g`, associating to a continuous multilinear map `f` the
continuous multilinear map `f (g m₁, ..., g mₙ)` is a bounded linear operation. -/
lemma is_bounded_linear_map_continuous_multilinear_map_comp_linear (g : G →L[𝕜] E) :
is_bounded_linear_map 𝕜 (λ f : continuous_multilinear_map 𝕜 (λ (i : ι), E) F,
f.comp_continuous_linear_map 𝕜 E g) :=
begin
refine is_linear_map.with_bound ⟨λ f₁ f₂, by { ext m, refl }, λ c f, by { ext m, refl }⟩
(∥g∥ ^ (fintype.card ι)) (λ f, _),
apply continuous_multilinear_map.op_norm_le_bound _ _ (λ m, _),
{ apply_rules [mul_nonneg', pow_nonneg, norm_nonneg, norm_nonneg] },
calc ∥f (g ∘ m)∥ ≤
∥f∥ * finset.univ.prod (λ (i : ι), ∥g (m i)∥) : f.le_op_norm _
... ≤ ∥f∥ * finset.univ.prod (λ (i : ι), ∥g∥ * ∥m i∥) : begin
apply mul_le_mul_of_nonneg_left _ (norm_nonneg _),
exact finset.prod_le_prod (λ i hi, norm_nonneg _) (λ i hi, g.le_op_norm _)
end
... = ∥g∥ ^ fintype.card ι * ∥f∥ * finset.univ.prod (λ (i : ι), ∥m i∥) :
by { simp [finset.prod_mul_distrib, finset.card_univ], ring }
end
end
section bilinear_map
variable (𝕜)
/-- A map `f : E × F → G` satisfies `is_bounded_bilinear_map 𝕜 f` if it is bilinear and
continuous. -/
structure is_bounded_bilinear_map (f : E × F → G) : Prop :=
(add_left : ∀(x₁ x₂ : E) (y : F), f (x₁ + x₂, y) = f (x₁, y) + f (x₂, y))
(smul_left : ∀(c : 𝕜) (x : E) (y : F), f (c • x, y) = c • f (x,y))
(add_right : ∀(x : E) (y₁ y₂ : F), f (x, y₁ + y₂) = f (x, y₁) + f (x, y₂))
(smul_right : ∀(c : 𝕜) (x : E) (y : F), f (x, c • y) = c • f (x,y))
(bound : ∃C>0, ∀(x : E) (y : F), ∥f (x, y)∥ ≤ C * ∥x∥ * ∥y∥)
variable {𝕜}
variable {f : E × F → G}
lemma is_bounded_bilinear_map.map_sub_left (h : is_bounded_bilinear_map 𝕜 f) {x y : E} {z : F} :
f (x - y, z) = f (x, z) - f(y, z) :=
calc f (x - y, z) = f (x + (-1 : 𝕜) • y, z) : by simp [sub_eq_add_neg]
... = f (x, z) + (-1 : 𝕜) • f (y, z) : by simp only [h.add_left, h.smul_left]
... = f (x, z) - f (y, z) : by simp [sub_eq_add_neg]
lemma is_bounded_bilinear_map.map_sub_right (h : is_bounded_bilinear_map 𝕜 f) {x : E} {y z : F} :
f (x, y - z) = f (x, y) - f (x, z) :=
calc f (x, y - z) = f (x, y + (-1 : 𝕜) • z) : by simp [sub_eq_add_neg]
... = f (x, y) + (-1 : 𝕜) • f (x, z) : by simp only [h.add_right, h.smul_right]
... = f (x, y) - f (x, z) : by simp [sub_eq_add_neg]
lemma is_bounded_bilinear_map.is_bounded_linear_map_left (h : is_bounded_bilinear_map 𝕜 f) (y : F) :
is_bounded_linear_map 𝕜 (λ x, f (x, y)) :=
{ add := λ x x', h.add_left _ _ _,
smul := λ c x, h.smul_left _ _ _,
bound := begin
rcases h.bound with ⟨C, C_pos, hC⟩,
refine ⟨C * (∥y∥ + 1), mul_pos' C_pos (lt_of_lt_of_le (zero_lt_one) (by simp)), λ x, _⟩,
have : ∥y∥ ≤ ∥y∥ + 1, by simp [zero_le_one],
calc ∥f (x, y)∥ ≤ C * ∥x∥ * ∥y∥ : hC x y
... ≤ C * ∥x∥ * (∥y∥ + 1) :
by apply_rules [norm_nonneg, mul_le_mul_of_nonneg_left, le_of_lt C_pos, mul_nonneg']
... = C * (∥y∥ + 1) * ∥x∥ : by ring
end }
lemma is_bounded_bilinear_map.is_bounded_linear_map_right (h : is_bounded_bilinear_map 𝕜 f) (x : E) :
is_bounded_linear_map 𝕜 (λ y, f (x, y)) :=
{ add := λ y y', h.add_right _ _ _,
smul := λ c y, h.smul_right _ _ _,
bound := begin
rcases h.bound with ⟨C, C_pos, hC⟩,
refine ⟨C * (∥x∥ + 1), mul_pos' C_pos (lt_of_lt_of_le (zero_lt_one) (by simp)), λ y, _⟩,
have : ∥x∥ ≤ ∥x∥ + 1, by simp [zero_le_one],
calc ∥f (x, y)∥ ≤ C * ∥x∥ * ∥y∥ : hC x y
... ≤ C * (∥x∥ + 1) * ∥y∥ :
by apply_rules [mul_le_mul_of_nonneg_right, norm_nonneg, mul_le_mul_of_nonneg_left,
le_of_lt C_pos]
end }
lemma is_bounded_bilinear_map_smul :
is_bounded_bilinear_map 𝕜 (λ (p : 𝕜 × E), p.1 • p.2) :=
{ add_left := add_smul,
smul_left := λc x y, by simp [smul_smul],
add_right := smul_add,
smul_right := λc x y, by simp [smul_smul, mul_comm],
bound := ⟨1, zero_lt_one, λx y, by simp [norm_smul]⟩ }
lemma is_bounded_bilinear_map_mul :
is_bounded_bilinear_map 𝕜 (λ (p : 𝕜 × 𝕜), p.1 * p.2) :=
is_bounded_bilinear_map_smul
lemma is_bounded_bilinear_map_comp :
is_bounded_bilinear_map 𝕜 (λ(p : (E →L[𝕜] F) × (F →L[𝕜] G)), p.2.comp p.1) :=
{ add_left := λx₁ x₂ y, begin
ext z,
change y (x₁ z + x₂ z) = y (x₁ z) + y (x₂ z),
rw y.map_add
end,
smul_left := λc x y, begin
ext z,
change y (c • (x z)) = c • y (x z),
rw continuous_linear_map.map_smul
end,
add_right := λx y₁ y₂, rfl,
smul_right := λc x y, rfl,
bound := ⟨1, zero_lt_one, λx y, calc
∥continuous_linear_map.comp ((x, y).snd) ((x, y).fst)∥
≤ ∥y∥ * ∥x∥ : continuous_linear_map.op_norm_comp_le _ _
... = 1 * ∥x∥ * ∥ y∥ : by ring ⟩ }
lemma continuous_linear_map.is_bounded_linear_map_comp_left (g : continuous_linear_map 𝕜 F G) :
is_bounded_linear_map 𝕜 (λ(f : E →L[𝕜] F), continuous_linear_map.comp g f) :=
is_bounded_bilinear_map_comp.is_bounded_linear_map_left _
lemma continuous_linear_map.is_bounded_linear_map_comp_right (f : continuous_linear_map 𝕜 E F) :
is_bounded_linear_map 𝕜 (λ(g : F →L[𝕜] G), continuous_linear_map.comp g f) :=
is_bounded_bilinear_map_comp.is_bounded_linear_map_right _
lemma is_bounded_bilinear_map_apply :
is_bounded_bilinear_map 𝕜 (λp : (E →L[𝕜] F) × E, p.1 p.2) :=
{ add_left := by simp,
smul_left := by simp,
add_right := by simp,
smul_right := by simp,
bound := ⟨1, zero_lt_one, by simp [continuous_linear_map.le_op_norm]⟩ }
/-- The function `continuous_linear_map.smul_right`, associating to a continuous linear map
`f : E → 𝕜` and a scalar `c : F` the tensor product `f ⊗ c` as a continuous linear map from `E` to
`F`, is a bounded bilinear map. -/
lemma is_bounded_bilinear_map_smul_right :
is_bounded_bilinear_map 𝕜
(λp, (continuous_linear_map.smul_right : (E →L[𝕜] 𝕜) → F → (E →L[𝕜] F)) p.1 p.2) :=
{ add_left := λm₁ m₂ f, by { ext z, simp [add_smul] },
smul_left := λc m f, by { ext z, simp [mul_smul] },
add_right := λm f₁ f₂, by { ext z, simp [smul_add] },
smul_right := λc m f, by { ext z, simp [smul_smul, mul_comm] },
bound := ⟨1, zero_lt_one, λm f, by simp⟩ }
/-- The composition of a continuous linear map with a continuous multilinear map is a bounded
bilinear operation. -/
lemma is_bounded_bilinear_map_comp_multilinear {ι : Type*} {E : ι → Type*}
[decidable_eq ι] [fintype ι] [∀i, normed_group (E i)] [∀i, normed_space 𝕜 (E i)] :
is_bounded_bilinear_map 𝕜 (λ p : (F →L[𝕜] G) × (continuous_multilinear_map 𝕜 E F),
p.1.comp_continuous_multilinear_map p.2) :=
{ add_left := λ g₁ g₂ f, by { ext m, refl },
smul_left := λ c g f, by { ext m, refl },
add_right := λ g f₁ f₂, by { ext m, simp },
smul_right := λ c g f, by { ext m, simp },
bound := ⟨1, zero_lt_one, λ g f, begin
apply continuous_multilinear_map.op_norm_le_bound _ _ (λm, _),
{ apply_rules [mul_nonneg, zero_le_one, norm_nonneg, norm_nonneg] },
calc ∥g (f m)∥ ≤ ∥g∥ * ∥f m∥ : g.le_op_norm _
... ≤ ∥g∥ * (∥f∥ * finset.univ.prod (λ (i : ι), ∥m i∥)) :
mul_le_mul_of_nonneg_left (f.le_op_norm _) (norm_nonneg _)
... = 1 * ∥g∥ * ∥f∥ * finset.univ.prod (λ (i : ι), ∥m i∥) : by ring
end⟩ }
/-- Definition of the derivative of a bilinear map `f`, given at a point `p` by
`q ↦ f(p.1, q.2) + f(q.1, p.2)` as in the standard formula for the derivative of a product.
We define this function here a bounded linear map from `E × F` to `G`. The fact that this
is indeed the derivative of `f` is proved in `is_bounded_bilinear_map.has_fderiv_at` in
`fderiv.lean`-/
def is_bounded_bilinear_map.linear_deriv (h : is_bounded_bilinear_map 𝕜 f) (p : E × F) :
(E × F) →ₗ[𝕜] G :=
{ to_fun := λq, f (p.1, q.2) + f (q.1, p.2),
add := λq₁ q₂, begin
change f (p.1, q₁.2 + q₂.2) + f (q₁.1 + q₂.1, p.2) =
f (p.1, q₁.2) + f (q₁.1, p.2) + (f (p.1, q₂.2) + f (q₂.1, p.2)),
simp [h.add_left, h.add_right], abel
end,
smul := λc q, begin
change f (p.1, c • q.2) + f (c • q.1, p.2) = c • (f (p.1, q.2) + f (q.1, p.2)),
simp [h.smul_left, h.smul_right, smul_add]
end }
/-- The derivative of a bounded bilinear map at a point `p : E × F`, as a continuous linear map
from `E × F` to `G`. -/
def is_bounded_bilinear_map.deriv (h : is_bounded_bilinear_map 𝕜 f) (p : E × F) : (E × F) →L[𝕜] G :=
(h.linear_deriv p).mk_continuous_of_exists_bound $ begin
rcases h.bound with ⟨C, Cpos, hC⟩,
refine ⟨C * ∥p.1∥ + C * ∥p.2∥, λq, _⟩,
calc ∥f (p.1, q.2) + f (q.1, p.2)∥
≤ C * ∥p.1∥ * ∥q.2∥ + C * ∥q.1∥ * ∥p.2∥ : norm_add_le_of_le (hC _ _) (hC _ _)
... ≤ C * ∥p.1∥ * ∥q∥ + C * ∥q∥ * ∥p.2∥ : begin
apply add_le_add,
exact mul_le_mul_of_nonneg_left (le_max_right _ _) (mul_nonneg (le_of_lt Cpos) (norm_nonneg _)),
apply mul_le_mul_of_nonneg_right _ (norm_nonneg _),
exact mul_le_mul_of_nonneg_left (le_max_left _ _) (le_of_lt Cpos),
end
... = (C * ∥p.1∥ + C * ∥p.2∥) * ∥q∥ : by ring
end
@[simp] lemma is_bounded_bilinear_map_deriv_coe (h : is_bounded_bilinear_map 𝕜 f) (p q : E × F) :
h.deriv p q = f (p.1, q.2) + f (q.1, p.2) := rfl
set_option class.instance_max_depth 100
/-- Given a bounded bilinear map `f`, the map associating to a point `p` the derivative of `f` at
`p` is itself a bounded linear map. -/
lemma is_bounded_bilinear_map.is_bounded_linear_map_deriv (h : is_bounded_bilinear_map 𝕜 f) :
is_bounded_linear_map 𝕜 (λp : E × F, h.deriv p) :=
begin
rcases h.bound with ⟨C, Cpos, hC⟩,
refine is_linear_map.with_bound ⟨λp₁ p₂, _, λc p, _⟩ (C + C) (λp, _),
{ ext q,
simp [h.add_left, h.add_right], abel },
{ ext q,
simp [h.smul_left, h.smul_right, smul_add] },
{ refine continuous_linear_map.op_norm_le_bound _
(mul_nonneg (add_nonneg (le_of_lt Cpos) (le_of_lt Cpos)) (norm_nonneg _)) (λq, _),
calc ∥f (p.1, q.2) + f (q.1, p.2)∥
≤ C * ∥p.1∥ * ∥q.2∥ + C * ∥q.1∥ * ∥p.2∥ : norm_add_le_of_le (hC _ _) (hC _ _)
... ≤ C * ∥p∥ * ∥q∥ + C * ∥q∥ * ∥p∥ : by apply_rules [add_le_add, mul_le_mul, norm_nonneg,
le_of_lt Cpos, le_refl, le_max_left, le_max_right, mul_nonneg, norm_nonneg, norm_nonneg,
norm_nonneg]
... = (C + C) * ∥p∥ * ∥q∥ : by ring },
end
end bilinear_map
|
fbc9c498b2f0e7af5e43696c96a66135b177d65e
|
38bf3fd2bb651ab70511408fcf70e2029e2ba310
|
/src/category_theory/concrete_category/bundled.lean
|
6969fa8ee7cddce31fd16413bab26886263b86e3
|
[
"Apache-2.0"
] |
permissive
|
JaredCorduan/mathlib
|
130392594844f15dad65a9308c242551bae6cd2e
|
d5de80376088954d592a59326c14404f538050a1
|
refs/heads/master
| 1,595,862,206,333
| 1,570,816,457,000
| 1,570,816,457,000
| 209,134,499
| 0
| 0
|
Apache-2.0
| 1,568,746,811,000
| 1,568,746,811,000
| null |
UTF-8
|
Lean
| false
| false
| 1,386
|
lean
|
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Johannes Hölzl, Reid Barton, Sean Leather
Bundled types.
-/
/-!
`bundled c` provides a uniform structure for bundling a type equipped with a type class.
We provide `category` instances for these in `unbundled_hom.lean` (for categories with unbundled
homs, e.g. topological spaces) and in `bundled_hom.lean` (for categories with bundled homs, e.g.
monoids).
-/
universes u v
namespace category_theory
variables {c d : Type u → Type v} {α : Type u}
/-- `bundled` is a type bundled with a type class instance for that type. Only
the type class is exposed as a parameter. -/
structure bundled (c : Type u → Type v) : Type (max (u+1) v) :=
(α : Type u)
(str : c α . tactic.apply_instance)
namespace bundled
/-- A generic function for lifting a type equipped with an instance to a bundled object. -/
-- Usually explicit instances will provide their own version of this, e.g. `Mon.of` and `Top.of`.
def of {c : Type u → Type v} (α : Type u) [str : c α] : bundled c := ⟨α, str⟩
instance : has_coe_to_sort (bundled c) :=
{ S := Type u, coe := bundled.α }
/-- Map over the bundled structure -/
def map (f : Π {α}, c α → d α) (b : bundled c) : bundled d :=
⟨b.α, f b.str⟩
end bundled
end category_theory
|
1bbc3a5c2f5eef81610592bb57c437a2adf04344
|
6f1049e897f569e5c47237de40321e62f0181948
|
/src/solutions/04_exists.lean
|
590c63b025961489df15703c7f244edbb77d5487
|
[
"Apache-2.0"
] |
permissive
|
anrddh/tutorials
|
f654a0807b9523608544836d9a81939f8e1dceb8
|
3ba43804e7b632201c494cdaa8da5406f1a255f9
|
refs/heads/master
| 1,655,542,921,827
| 1,588,846,595,000
| 1,588,846,595,000
| 262,330,134
| 0
| 0
| null | 1,588,944,346,000
| 1,588,944,345,000
| null |
UTF-8
|
Lean
| false
| false
| 3,017
|
lean
|
import data.real.basic
import data.int.parity
/-
In this file, we learn how to handle the ∃ quantifier.
In order to prove `∃ x, P x`, we give some x₀ using tactic `use x₀` and
then prove `P x₀`. This x₀ can be an object from the local context
or a more complicated expression.
-/
example : ∃ n : ℕ, 8 = 2*n :=
begin
use 4,
refl, -- this is the tactic analogue of the rfl proof term
end
/-
In order to use `h : ∃ x, P x`, we use the cases tactic to fix
one x₀ that works.
Again h can come straight from the local context or can be a more
complicated expression.
-/
example (n : ℕ) (h : ∃ k : ℕ, n = k + 1) : n > 0 :=
begin
-- Let's fix k₀ such that n = k₀ + 1.
cases h with k₀ hk₀,
-- It now suffices to prove k₀ + 1 > 0.
rw hk₀,
-- and we have a lemma about this
exact nat.succ_pos k₀,
end
/-
The next exercises use divisibility in ℤ (beware the ∣ symbol which is
not ASCII).
By definition, a ∣ b ↔ ∃ k, b = a*k, so you can prove a ∣ b using the
use tactic.
-/
-- Until the end of this file, a, b and c will denote integers, unless
-- explicitly stated otherwise
variables (a b c : ℤ)
-- 0029
example (h₁ : a ∣ b) (h₂ : b ∣ c) : a ∣ c :=
begin
-- sorry
cases h₁ with k hk,
cases h₂ with l hl,
use k*l,
calc c = b*l : hl
... = (a*k)*l : by rw hk
... = a*(k*l) : by ring,
-- sorry
end
/-
A very common pattern is to have an assumption or lemma asserting
h : ∃ x, y = ...
and this is used through the combo:
cases h with x hx,
rw hx at ...
The tactic rcases both allows to do recursive cases, as indicated by its name,
but also simplifies the above combo when the name hx is replaced by the special
name rfl, as in the following example.
It uses the anonymous constructor angle brackets syntax.
-/
example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ b+c :=
begin
rcases h1 with ⟨k, rfl⟩,
rcases h2 with ⟨l, rfl⟩,
use k+l,
ring,
end
/-
You can use the same rfl trick with the `rintros` tactic.
-/
example : a ∣ b → a ∣ c → a ∣ b+c :=
begin
rintros ⟨k, rfl⟩ ⟨l, rfl⟩,
use k+l,
ring,
end
-- 0030
example : 0 ∣ a ↔ a = 0 :=
begin
-- sorry
split,
{ rintro ⟨k, rfl⟩,
ring, },
{ rintro rfl,
use 0,
refl, },
-- sorry
end
/-
We can nom start combining quantifiers, using the definition
surjective (f : X → Y) := ∀ y, ∃ x, f x = y
-/
open function
-- In the remaining of this file, f and g will denote functions from
-- ℝ to ℝ.
variables (f g : ℝ → ℝ)
-- 0031
example (h : surjective (g ∘ f)) : surjective g :=
begin
-- sorry
intro y,
rcases h y with ⟨w, rfl⟩,
use f w,
-- sorry
end
/-
This above exercise can be done in three lines. Try again with the
next exercise in four lines.
-/
-- 0032
example (hf : surjective f) (hg : surjective g) : surjective (g ∘ f) :=
begin
-- sorry
intro z,
rcases hg z with ⟨y, rfl⟩,
rcases hf y with ⟨x, rfl⟩,
use x,
-- sorry
end
|
3db47cb5314e4abd242a0e28fd49b85df53294e0
|
bb31430994044506fa42fd667e2d556327e18dfe
|
/src/order/liminf_limsup.lean
|
8540b8d61e19fae74a113c7d6fec18385988dd3a
|
[
"Apache-2.0"
] |
permissive
|
sgouezel/mathlib
|
0cb4e5335a2ba189fa7af96d83a377f83270e503
|
00638177efd1b2534fc5269363ebf42a7871df9a
|
refs/heads/master
| 1,674,527,483,042
| 1,673,665,568,000
| 1,673,665,568,000
| 119,598,202
| 0
| 0
| null | 1,517,348,647,000
| 1,517,348,646,000
| null |
UTF-8
|
Lean
| false
| false
| 45,239
|
lean
|
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Johannes Hölzl, Rémy Degenne
-/
import order.filter.cofinite
import order.hom.complete_lattice
/-!
# liminfs and limsups of functions and filters
Defines the Liminf/Limsup of a function taking values in a conditionally complete lattice, with
respect to an arbitrary filter.
We define `Limsup f` (`Liminf f`) where `f` is a filter taking values in a conditionally complete
lattice. `Limsup f` is the smallest element `a` such that, eventually, `u ≤ a` (and vice versa for
`Liminf f`). To work with the Limsup along a function `u` use `Limsup (map u f)`.
Usually, one defines the Limsup as `Inf (Sup s)` where the Inf is taken over all sets in the filter.
For instance, in ℕ along a function `u`, this is `Inf_n (Sup_{k ≥ n} u k)` (and the latter quantity
decreases with `n`, so this is in fact a limit.). There is however a difficulty: it is well possible
that `u` is not bounded on the whole space, only eventually (think of `Limsup (λx, 1/x)` on ℝ. Then
there is no guarantee that the quantity above really decreases (the value of the `Sup` beforehand is
not really well defined, as one can not use ∞), so that the Inf could be anything. So one can not
use this `Inf Sup ...` definition in conditionally complete lattices, and one has to use a less
tractable definition.
In conditionally complete lattices, the definition is only useful for filters which are eventually
bounded above (otherwise, the Limsup would morally be +∞, which does not belong to the space) and
which are frequently bounded below (otherwise, the Limsup would morally be -∞, which is not in the
space either). We start with definitions of these concepts for arbitrary filters, before turning to
the definitions of Limsup and Liminf.
In complete lattices, however, it coincides with the `Inf Sup` definition.
-/
open filter set
open_locale filter
variables {α β γ ι : Type*}
namespace filter
section relation
/-- `f.is_bounded (≺)`: the filter `f` is eventually bounded w.r.t. the relation `≺`, i.e.
eventually, it is bounded by some uniform bound.
`r` will be usually instantiated with `≤` or `≥`. -/
def is_bounded (r : α → α → Prop) (f : filter α) := ∃ b, ∀ᶠ x in f, r x b
/-- `f.is_bounded_under (≺) u`: the image of the filter `f` under `u` is eventually bounded w.r.t.
the relation `≺`, i.e. eventually, it is bounded by some uniform bound. -/
def is_bounded_under (r : α → α → Prop) (f : filter β) (u : β → α) := (map u f).is_bounded r
variables {r : α → α → Prop} {f g : filter α}
/-- `f` is eventually bounded if and only if, there exists an admissible set on which it is
bounded. -/
lemma is_bounded_iff : f.is_bounded r ↔ (∃s∈f.sets, ∃b, s ⊆ {x | r x b}) :=
iff.intro
(assume ⟨b, hb⟩, ⟨{a | r a b}, hb, b, subset.refl _⟩)
(assume ⟨s, hs, b, hb⟩, ⟨b, mem_of_superset hs hb⟩)
/-- A bounded function `u` is in particular eventually bounded. -/
lemma is_bounded_under_of {f : filter β} {u : β → α} :
(∃b, ∀x, r (u x) b) → f.is_bounded_under r u
| ⟨b, hb⟩ := ⟨b, show ∀ᶠ x in f, r (u x) b, from eventually_of_forall hb⟩
lemma is_bounded_bot : is_bounded r ⊥ ↔ nonempty α :=
by simp [is_bounded, exists_true_iff_nonempty]
lemma is_bounded_top : is_bounded r ⊤ ↔ (∃t, ∀x, r x t) :=
by simp [is_bounded, eq_univ_iff_forall]
lemma is_bounded_principal (s : set α) : is_bounded r (𝓟 s) ↔ (∃t, ∀x∈s, r x t) :=
by simp [is_bounded, subset_def]
lemma is_bounded_sup [is_trans α r] (hr : ∀b₁ b₂, ∃b, r b₁ b ∧ r b₂ b) :
is_bounded r f → is_bounded r g → is_bounded r (f ⊔ g)
| ⟨b₁, h₁⟩ ⟨b₂, h₂⟩ := let ⟨b, rb₁b, rb₂b⟩ := hr b₁ b₂ in
⟨b, eventually_sup.mpr ⟨h₁.mono (λ x h, trans h rb₁b), h₂.mono (λ x h, trans h rb₂b)⟩⟩
lemma is_bounded.mono (h : f ≤ g) : is_bounded r g → is_bounded r f
| ⟨b, hb⟩ := ⟨b, h hb⟩
lemma is_bounded_under.mono {f g : filter β} {u : β → α} (h : f ≤ g) :
g.is_bounded_under r u → f.is_bounded_under r u :=
λ hg, hg.mono (map_mono h)
lemma is_bounded_under.mono_le [preorder β] {l : filter α} {u v : α → β}
(hu : is_bounded_under (≤) l u) (hv : v ≤ᶠ[l] u) : is_bounded_under (≤) l v :=
hu.imp $ λ b hb, (eventually_map.1 hb).mp $ hv.mono $ λ x, le_trans
lemma is_bounded_under.mono_ge [preorder β] {l : filter α} {u v : α → β}
(hu : is_bounded_under (≥) l u) (hv : u ≤ᶠ[l] v) : is_bounded_under (≥) l v :=
@is_bounded_under.mono_le α βᵒᵈ _ _ _ _ hu hv
lemma is_bounded_under_const [is_refl α r] {l : filter β} {a : α} : is_bounded_under r l (λ _, a) :=
⟨a, eventually_map.2 $ eventually_of_forall $ λ _, refl _⟩
lemma is_bounded.is_bounded_under {q : β → β → Prop} {u : α → β}
(hf : ∀a₀ a₁, r a₀ a₁ → q (u a₀) (u a₁)) : f.is_bounded r → f.is_bounded_under q u
| ⟨b, h⟩ := ⟨u b, show ∀ᶠ x in f, q (u x) (u b), from h.mono (λ x, hf x b)⟩
lemma not_is_bounded_under_of_tendsto_at_top [preorder β] [no_max_order β] {f : α → β}
{l : filter α} [l.ne_bot] (hf : tendsto f l at_top) :
¬ is_bounded_under (≤) l f :=
begin
rintro ⟨b, hb⟩,
rw eventually_map at hb,
obtain ⟨b', h⟩ := exists_gt b,
have hb' := (tendsto_at_top.mp hf) b',
have : {x : α | f x ≤ b} ∩ {x : α | b' ≤ f x} = ∅ :=
eq_empty_of_subset_empty (λ x hx, (not_le_of_lt h) (le_trans hx.2 hx.1)),
exact (nonempty_of_mem (hb.and hb')).ne_empty this
end
lemma not_is_bounded_under_of_tendsto_at_bot [preorder β] [no_min_order β] {f : α → β}
{l : filter α} [l.ne_bot](hf : tendsto f l at_bot) :
¬ is_bounded_under (≥) l f :=
@not_is_bounded_under_of_tendsto_at_top α βᵒᵈ _ _ _ _ _ hf
lemma is_bounded_under.bdd_above_range_of_cofinite [semilattice_sup β] {f : α → β}
(hf : is_bounded_under (≤) cofinite f) : bdd_above (range f) :=
begin
rcases hf with ⟨b, hb⟩,
haveI : nonempty β := ⟨b⟩,
rw [← image_univ, ← union_compl_self {x | f x ≤ b}, image_union, bdd_above_union],
exact ⟨⟨b, ball_image_iff.2 $ λ x, id⟩, (hb.image f).bdd_above⟩
end
lemma is_bounded_under.bdd_below_range_of_cofinite [semilattice_inf β] {f : α → β}
(hf : is_bounded_under (≥) cofinite f) : bdd_below (range f) :=
@is_bounded_under.bdd_above_range_of_cofinite α βᵒᵈ _ _ hf
lemma is_bounded_under.bdd_above_range [semilattice_sup β] {f : ℕ → β}
(hf : is_bounded_under (≤) at_top f) : bdd_above (range f) :=
by { rw ← nat.cofinite_eq_at_top at hf, exact hf.bdd_above_range_of_cofinite }
lemma is_bounded_under.bdd_below_range [semilattice_inf β] {f : ℕ → β}
(hf : is_bounded_under (≥) at_top f) : bdd_below (range f) :=
@is_bounded_under.bdd_above_range βᵒᵈ _ _ hf
/-- `is_cobounded (≺) f` states that the filter `f` does not tend to infinity w.r.t. `≺`. This is
also called frequently bounded. Will be usually instantiated with `≤` or `≥`.
There is a subtlety in this definition: we want `f.is_cobounded` to hold for any `f` in the case of
complete lattices. This will be relevant to deduce theorems on complete lattices from their
versions on conditionally complete lattices with additional assumptions. We have to be careful in
the edge case of the trivial filter containing the empty set: the other natural definition
`¬ ∀ a, ∀ᶠ n in f, a ≤ n`
would not work as well in this case.
-/
def is_cobounded (r : α → α → Prop) (f : filter α) := ∃b, ∀a, (∀ᶠ x in f, r x a) → r b a
/-- `is_cobounded_under (≺) f u` states that the image of the filter `f` under the map `u` does not
tend to infinity w.r.t. `≺`. This is also called frequently bounded. Will be usually instantiated
with `≤` or `≥`. -/
def is_cobounded_under (r : α → α → Prop) (f : filter β) (u : β → α) := (map u f).is_cobounded r
/-- To check that a filter is frequently bounded, it suffices to have a witness
which bounds `f` at some point for every admissible set.
This is only an implication, as the other direction is wrong for the trivial filter.-/
lemma is_cobounded.mk [is_trans α r] (a : α) (h : ∀s∈f, ∃x∈s, r a x) : f.is_cobounded r :=
⟨a, assume y s, let ⟨x, h₁, h₂⟩ := h _ s in trans h₂ h₁⟩
/-- A filter which is eventually bounded is in particular frequently bounded (in the opposite
direction). At least if the filter is not trivial. -/
lemma is_bounded.is_cobounded_flip [is_trans α r] [ne_bot f] :
f.is_bounded r → f.is_cobounded (flip r)
| ⟨a, ha⟩ := ⟨a, assume b hb,
let ⟨x, rxa, rbx⟩ := (ha.and hb).exists in
show r b a, from trans rbx rxa⟩
lemma is_bounded.is_cobounded_ge [preorder α] [ne_bot f] (h : f.is_bounded (≤)) :
f.is_cobounded (≥) :=
h.is_cobounded_flip
lemma is_bounded.is_cobounded_le [preorder α] [ne_bot f] (h : f.is_bounded (≥)) :
f.is_cobounded (≤) :=
h.is_cobounded_flip
lemma is_cobounded_bot : is_cobounded r ⊥ ↔ (∃b, ∀x, r b x) :=
by simp [is_cobounded]
lemma is_cobounded_top : is_cobounded r ⊤ ↔ nonempty α :=
by simp [is_cobounded, eq_univ_iff_forall, exists_true_iff_nonempty] {contextual := tt}
lemma is_cobounded_principal (s : set α) :
(𝓟 s).is_cobounded r ↔ (∃b, ∀a, (∀x∈s, r x a) → r b a) :=
by simp [is_cobounded, subset_def]
lemma is_cobounded.mono (h : f ≤ g) : f.is_cobounded r → g.is_cobounded r
| ⟨b, hb⟩ := ⟨b, assume a ha, hb a (h ha)⟩
end relation
lemma is_cobounded_le_of_bot [preorder α] [order_bot α] {f : filter α} : f.is_cobounded (≤) :=
⟨⊥, assume a h, bot_le⟩
lemma is_cobounded_ge_of_top [preorder α] [order_top α] {f : filter α} : f.is_cobounded (≥) :=
⟨⊤, assume a h, le_top⟩
lemma is_bounded_le_of_top [preorder α] [order_top α] {f : filter α} : f.is_bounded (≤) :=
⟨⊤, eventually_of_forall $ λ _, le_top⟩
lemma is_bounded_ge_of_bot [preorder α] [order_bot α] {f : filter α} : f.is_bounded (≥) :=
⟨⊥, eventually_of_forall $ λ _, bot_le⟩
@[simp] lemma _root_.order_iso.is_bounded_under_le_comp [preorder α] [preorder β] (e : α ≃o β)
{l : filter γ} {u : γ → α} :
is_bounded_under (≤) l (λ x, e (u x)) ↔ is_bounded_under (≤) l u :=
e.surjective.exists.trans $ exists_congr $ λ a, by simp only [eventually_map, e.le_iff_le]
@[simp] lemma _root_.order_iso.is_bounded_under_ge_comp [preorder α] [preorder β] (e : α ≃o β)
{l : filter γ} {u : γ → α} :
is_bounded_under (≥) l (λ x, e (u x)) ↔ is_bounded_under (≥) l u :=
e.dual.is_bounded_under_le_comp
@[simp, to_additive]
lemma is_bounded_under_le_inv [ordered_comm_group α] {l : filter β} {u : β → α} :
is_bounded_under (≤) l (λ x, (u x)⁻¹) ↔ is_bounded_under (≥) l u :=
(order_iso.inv α).is_bounded_under_ge_comp
@[simp, to_additive]
lemma is_bounded_under_ge_inv [ordered_comm_group α] {l : filter β} {u : β → α} :
is_bounded_under (≥) l (λ x, (u x)⁻¹) ↔ is_bounded_under (≤) l u :=
(order_iso.inv α).is_bounded_under_le_comp
lemma is_bounded_under.sup [semilattice_sup α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≤) u → f.is_bounded_under (≤) v → f.is_bounded_under (≤) (λa, u a ⊔ v a)
| ⟨bu, (hu : ∀ᶠ x in f, u x ≤ bu)⟩ ⟨bv, (hv : ∀ᶠ x in f, v x ≤ bv)⟩ :=
⟨bu ⊔ bv, show ∀ᶠ x in f, u x ⊔ v x ≤ bu ⊔ bv,
by filter_upwards [hu, hv] with _ using sup_le_sup⟩
@[simp] lemma is_bounded_under_le_sup [semilattice_sup α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≤) (λ a, u a ⊔ v a) ↔ f.is_bounded_under (≤) u ∧ f.is_bounded_under (≤) v :=
⟨λ h, ⟨h.mono_le $ eventually_of_forall $ λ _, le_sup_left,
h.mono_le $ eventually_of_forall $ λ _, le_sup_right⟩, λ h, h.1.sup h.2⟩
lemma is_bounded_under.inf [semilattice_inf α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≥) u → f.is_bounded_under (≥) v → f.is_bounded_under (≥) (λa, u a ⊓ v a) :=
@is_bounded_under.sup αᵒᵈ β _ _ _ _
@[simp] lemma is_bounded_under_ge_inf [semilattice_inf α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≥) (λ a, u a ⊓ v a) ↔ f.is_bounded_under (≥) u ∧ f.is_bounded_under (≥) v :=
@is_bounded_under_le_sup αᵒᵈ _ _ _ _ _
lemma is_bounded_under_le_abs [linear_ordered_add_comm_group α] {f : filter β} {u : β → α} :
f.is_bounded_under (≤) (λ a, |u a|) ↔ f.is_bounded_under (≤) u ∧ f.is_bounded_under (≥) u :=
is_bounded_under_le_sup.trans $ and_congr iff.rfl is_bounded_under_le_neg
/-- Filters are automatically bounded or cobounded in complete lattices. To use the same statements
in complete and conditionally complete lattices but let automation fill automatically the
boundedness proofs in complete lattices, we use the tactic `is_bounded_default` in the statements,
in the form `(hf : f.is_bounded (≥) . is_bounded_default)`. -/
meta def is_bounded_default : tactic unit :=
tactic.applyc ``is_cobounded_le_of_bot <|>
tactic.applyc ``is_cobounded_ge_of_top <|>
tactic.applyc ``is_bounded_le_of_top <|>
tactic.applyc ``is_bounded_ge_of_bot
section conditionally_complete_lattice
variables [conditionally_complete_lattice α]
/-- The `Limsup` of a filter `f` is the infimum of the `a` such that, eventually for `f`,
holds `x ≤ a`. -/
def Limsup (f : filter α) : α := Inf { a | ∀ᶠ n in f, n ≤ a }
/-- The `Liminf` of a filter `f` is the supremum of the `a` such that, eventually for `f`,
holds `x ≥ a`. -/
def Liminf (f : filter α) : α := Sup { a | ∀ᶠ n in f, a ≤ n }
/-- The `limsup` of a function `u` along a filter `f` is the infimum of the `a` such that,
eventually for `f`, holds `u x ≤ a`. -/
def limsup (u : β → α) (f : filter β) : α := Limsup (map u f)
/-- The `liminf` of a function `u` along a filter `f` is the supremum of the `a` such that,
eventually for `f`, holds `u x ≥ a`. -/
def liminf (u : β → α) (f : filter β) : α := Liminf (map u f)
/-- The `blimsup` of a function `u` along a filter `f`, bounded by a predicate `p`, is the infimum
of the `a` such that, eventually for `f`, `u x ≤ a` whenever `p x` holds. -/
def blimsup (u : β → α) (f : filter β) (p : β → Prop) :=
Inf { a | ∀ᶠ x in f, p x → u x ≤ a }
/-- The `bliminf` of a function `u` along a filter `f`, bounded by a predicate `p`, is the supremum
of the `a` such that, eventually for `f`, `a ≤ u x` whenever `p x` holds. -/
def bliminf (u : β → α) (f : filter β) (p : β → Prop) :=
Sup { a | ∀ᶠ x in f, p x → a ≤ u x }
section
variables {f : filter β} {u : β → α} {p : β → Prop}
theorem limsup_eq : limsup u f = Inf { a | ∀ᶠ n in f, u n ≤ a } := rfl
theorem liminf_eq : liminf u f = Sup { a | ∀ᶠ n in f, a ≤ u n } := rfl
theorem blimsup_eq : blimsup u f p = Inf { a | ∀ᶠ x in f, p x → u x ≤ a } := rfl
theorem bliminf_eq : bliminf u f p = Sup { a | ∀ᶠ x in f, p x → a ≤ u x } := rfl
end
@[simp] lemma blimsup_true (f : filter β) (u : β → α) :
blimsup u f (λ x, true) = limsup u f :=
by simp [blimsup_eq, limsup_eq]
@[simp] lemma bliminf_true (f : filter β) (u : β → α) :
bliminf u f (λ x, true) = liminf u f :=
by simp [bliminf_eq, liminf_eq]
lemma blimsup_eq_limsup_subtype {f : filter β} {u : β → α} {p : β → Prop} :
blimsup u f p = limsup (u ∘ (coe : {x | p x} → β)) (comap coe f) :=
begin
simp only [blimsup_eq, limsup_eq, function.comp_app, eventually_comap, set_coe.forall,
subtype.coe_mk, mem_set_of_eq],
congr,
ext a,
exact eventually_congr (eventually_of_forall
(λ x, ⟨λ hx y hy hxy, hxy.symm ▸ (hx (hxy ▸ hy)), λ hx hx', hx x hx' rfl⟩)),
end
lemma bliminf_eq_liminf_subtype {f : filter β} {u : β → α} {p : β → Prop} :
bliminf u f p = liminf (u ∘ (coe : {x | p x} → β)) (comap coe f) :=
@blimsup_eq_limsup_subtype αᵒᵈ β _ f u p
theorem Limsup_le_of_le {f : filter α} {a}
(hf : f.is_cobounded (≤) . is_bounded_default) (h : ∀ᶠ n in f, n ≤ a) : Limsup f ≤ a :=
cInf_le hf h
theorem le_Liminf_of_le {f : filter α} {a}
(hf : f.is_cobounded (≥) . is_bounded_default) (h : ∀ᶠ n in f, a ≤ n) : a ≤ Liminf f :=
le_cSup hf h
theorem limsup_le_of_le {f : filter β} {u : β → α} {a}
(hf : f.is_cobounded_under (≤) u . is_bounded_default) (h : ∀ᶠ n in f, u n ≤ a) :
limsup u f ≤ a :=
cInf_le hf h
theorem le_liminf_of_le {f : filter β} {u : β → α} {a}
(hf : f.is_cobounded_under (≥) u . is_bounded_default) (h : ∀ᶠ n in f, a ≤ u n) :
a ≤ liminf u f :=
le_cSup hf h
theorem le_Limsup_of_le {f : filter α} {a}
(hf : f.is_bounded (≤) . is_bounded_default) (h : ∀ b, (∀ᶠ n in f, n ≤ b) → a ≤ b) :
a ≤ Limsup f :=
le_cInf hf h
theorem Liminf_le_of_le {f : filter α} {a}
(hf : f.is_bounded (≥) . is_bounded_default) (h : ∀ b, (∀ᶠ n in f, b ≤ n) → b ≤ a) :
Liminf f ≤ a :=
cSup_le hf h
theorem le_limsup_of_le {f : filter β} {u : β → α} {a}
(hf : f.is_bounded_under (≤) u . is_bounded_default) (h : ∀ b, (∀ᶠ n in f, u n ≤ b) → a ≤ b) :
a ≤ limsup u f :=
le_cInf hf h
theorem liminf_le_of_le {f : filter β} {u : β → α} {a}
(hf : f.is_bounded_under (≥) u . is_bounded_default) (h : ∀ b, (∀ᶠ n in f, b ≤ u n) → b ≤ a) :
liminf u f ≤ a :=
cSup_le hf h
theorem Liminf_le_Limsup {f : filter α} [ne_bot f]
(h₁ : f.is_bounded (≤) . is_bounded_default) (h₂ : f.is_bounded (≥) . is_bounded_default) :
Liminf f ≤ Limsup f :=
Liminf_le_of_le h₂ $ assume a₀ ha₀, le_Limsup_of_le h₁ $ assume a₁ ha₁,
show a₀ ≤ a₁, from let ⟨b, hb₀, hb₁⟩ := (ha₀.and ha₁).exists in le_trans hb₀ hb₁
lemma liminf_le_limsup {f : filter β} [ne_bot f] {u : β → α}
(h : f.is_bounded_under (≤) u . is_bounded_default)
(h' : f.is_bounded_under (≥) u . is_bounded_default) :
liminf u f ≤ limsup u f :=
Liminf_le_Limsup h h'
lemma Limsup_le_Limsup {f g : filter α}
(hf : f.is_cobounded (≤) . is_bounded_default) (hg : g.is_bounded (≤) . is_bounded_default)
(h : ∀ a, (∀ᶠ n in g, n ≤ a) → ∀ᶠ n in f, n ≤ a) : Limsup f ≤ Limsup g :=
cInf_le_cInf hf hg h
lemma Liminf_le_Liminf {f g : filter α}
(hf : f.is_bounded (≥) . is_bounded_default) (hg : g.is_cobounded (≥) . is_bounded_default)
(h : ∀ a, (∀ᶠ n in f, a ≤ n) → ∀ᶠ n in g, a ≤ n) : Liminf f ≤ Liminf g :=
cSup_le_cSup hg hf h
lemma limsup_le_limsup {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : u ≤ᶠ[f] v)
(hu : f.is_cobounded_under (≤) u . is_bounded_default)
(hv : f.is_bounded_under (≤) v . is_bounded_default) :
limsup u f ≤ limsup v f :=
Limsup_le_Limsup hu hv $ assume b, h.trans
lemma liminf_le_liminf {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : ∀ᶠ a in f, u a ≤ v a)
(hu : f.is_bounded_under (≥) u . is_bounded_default)
(hv : f.is_cobounded_under (≥) v . is_bounded_default) :
liminf u f ≤ liminf v f :=
@limsup_le_limsup βᵒᵈ α _ _ _ _ h hv hu
lemma Limsup_le_Limsup_of_le {f g : filter α} (h : f ≤ g)
(hf : f.is_cobounded (≤) . is_bounded_default) (hg : g.is_bounded (≤) . is_bounded_default) :
Limsup f ≤ Limsup g :=
Limsup_le_Limsup hf hg (assume a ha, h ha)
lemma Liminf_le_Liminf_of_le {f g : filter α} (h : g ≤ f)
(hf : f.is_bounded (≥) . is_bounded_default) (hg : g.is_cobounded (≥) . is_bounded_default) :
Liminf f ≤ Liminf g :=
Liminf_le_Liminf hf hg (assume a ha, h ha)
lemma limsup_le_limsup_of_le {α β} [conditionally_complete_lattice β] {f g : filter α} (h : f ≤ g)
{u : α → β} (hf : f.is_cobounded_under (≤) u . is_bounded_default)
(hg : g.is_bounded_under (≤) u . is_bounded_default) :
limsup u f ≤ limsup u g :=
Limsup_le_Limsup_of_le (map_mono h) hf hg
lemma liminf_le_liminf_of_le {α β} [conditionally_complete_lattice β] {f g : filter α} (h : g ≤ f)
{u : α → β} (hf : f.is_bounded_under (≥) u . is_bounded_default)
(hg : g.is_cobounded_under (≥) u . is_bounded_default) :
liminf u f ≤ liminf u g :=
Liminf_le_Liminf_of_le (map_mono h) hf hg
theorem Limsup_principal {s : set α} (h : bdd_above s) (hs : s.nonempty) :
Limsup (𝓟 s) = Sup s :=
by simp [Limsup]; exact cInf_upper_bounds_eq_cSup h hs
theorem Liminf_principal {s : set α} (h : bdd_below s) (hs : s.nonempty) :
Liminf (𝓟 s) = Inf s :=
@Limsup_principal αᵒᵈ _ s h hs
lemma limsup_congr {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : ∀ᶠ a in f, u a = v a) : limsup u f = limsup v f :=
begin
rw limsup_eq,
congr' with b,
exact eventually_congr (h.mono $ λ x hx, by simp [hx])
end
lemma blimsup_congr {f : filter β} {u v : β → α} {p : β → Prop} (h : ∀ᶠ a in f, p a → u a = v a) :
blimsup u f p = blimsup v f p :=
begin
rw blimsup_eq,
congr' with b,
refine eventually_congr (h.mono $ λ x hx, ⟨λ h₁ h₂, _, λ h₁ h₂, _⟩),
{ rw ← hx h₂, exact h₁ h₂, },
{ rw hx h₂, exact h₁ h₂, },
end
lemma bliminf_congr {f : filter β} {u v : β → α} {p : β → Prop} (h : ∀ᶠ a in f, p a → u a = v a) :
bliminf u f p = bliminf v f p :=
@blimsup_congr αᵒᵈ _ _ _ _ _ _ h
lemma liminf_congr {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : ∀ᶠ a in f, u a = v a) : liminf u f = liminf v f :=
@limsup_congr βᵒᵈ _ _ _ _ _ h
lemma limsup_const {α : Type*} [conditionally_complete_lattice β] {f : filter α} [ne_bot f]
(b : β) : limsup (λ x, b) f = b :=
by simpa only [limsup_eq, eventually_const] using cInf_Ici
lemma liminf_const {α : Type*} [conditionally_complete_lattice β] {f : filter α} [ne_bot f]
(b : β) : liminf (λ x, b) f = b :=
@limsup_const βᵒᵈ α _ f _ b
end conditionally_complete_lattice
section complete_lattice
variables [complete_lattice α]
@[simp] theorem Limsup_bot : Limsup (⊥ : filter α) = ⊥ :=
bot_unique $ Inf_le $ by simp
@[simp] theorem Liminf_bot : Liminf (⊥ : filter α) = ⊤ :=
top_unique $ le_Sup $ by simp
@[simp] theorem Limsup_top : Limsup (⊤ : filter α) = ⊤ :=
top_unique $ le_Inf $
by simp [eq_univ_iff_forall]; exact assume b hb, (top_unique $ hb _)
@[simp] theorem Liminf_top : Liminf (⊤ : filter α) = ⊥ :=
bot_unique $ Sup_le $
by simp [eq_univ_iff_forall]; exact assume b hb, (bot_unique $ hb _)
@[simp] lemma blimsup_false {f : filter β} {u : β → α} :
blimsup u f (λ x, false) = ⊥ :=
by simp [blimsup_eq]
@[simp] lemma bliminf_false {f : filter β} {u : β → α} :
bliminf u f (λ x, false) = ⊤ :=
by simp [bliminf_eq]
/-- Same as limsup_const applied to `⊥` but without the `ne_bot f` assumption -/
lemma limsup_const_bot {f : filter β} : limsup (λ x : β, (⊥ : α)) f = (⊥ : α) :=
begin
rw [limsup_eq, eq_bot_iff],
exact Inf_le (eventually_of_forall (λ x, le_rfl)),
end
/-- Same as limsup_const applied to `⊤` but without the `ne_bot f` assumption -/
lemma liminf_const_top {f : filter β} : liminf (λ x : β, (⊤ : α)) f = (⊤ : α) :=
@limsup_const_bot αᵒᵈ β _ _
theorem has_basis.Limsup_eq_infi_Sup {ι} {p : ι → Prop} {s} {f : filter α} (h : f.has_basis p s) :
Limsup f = ⨅ i (hi : p i), Sup (s i) :=
le_antisymm
(le_infi₂ $ λ i hi, Inf_le $ h.eventually_iff.2 ⟨i, hi, λ x, le_Sup⟩)
(le_Inf $ assume a ha, let ⟨i, hi, ha⟩ := h.eventually_iff.1 ha in
infi₂_le_of_le _ hi $ Sup_le ha)
theorem has_basis.Liminf_eq_supr_Inf {p : ι → Prop} {s : ι → set α} {f : filter α}
(h : f.has_basis p s) : Liminf f = ⨆ i (hi : p i), Inf (s i) :=
@has_basis.Limsup_eq_infi_Sup αᵒᵈ _ _ _ _ _ h
theorem Limsup_eq_infi_Sup {f : filter α} : Limsup f = ⨅ s ∈ f, Sup s :=
f.basis_sets.Limsup_eq_infi_Sup
theorem Liminf_eq_supr_Inf {f : filter α} : Liminf f = ⨆ s ∈ f, Inf s :=
@Limsup_eq_infi_Sup αᵒᵈ _ _
theorem limsup_le_supr {f : filter β} {u : β → α} : limsup u f ≤ ⨆ n, u n :=
limsup_le_of_le (by is_bounded_default) (eventually_of_forall (le_supr u))
theorem infi_le_liminf {f : filter β} {u : β → α} : (⨅ n, u n) ≤ liminf u f :=
le_liminf_of_le (by is_bounded_default) (eventually_of_forall (infi_le u))
/-- In a complete lattice, the limsup of a function is the infimum over sets `s` in the filter
of the supremum of the function over `s` -/
theorem limsup_eq_infi_supr {f : filter β} {u : β → α} : limsup u f = ⨅ s ∈ f, ⨆ a ∈ s, u a :=
(f.basis_sets.map u).Limsup_eq_infi_Sup.trans $
by simp only [Sup_image, id]
lemma limsup_eq_infi_supr_of_nat {u : ℕ → α} : limsup u at_top = ⨅ n : ℕ, ⨆ i ≥ n, u i :=
(at_top_basis.map u).Limsup_eq_infi_Sup.trans $
by simp only [Sup_image, infi_const]; refl
lemma limsup_eq_infi_supr_of_nat' {u : ℕ → α} : limsup u at_top = ⨅ n : ℕ, ⨆ i : ℕ, u (i + n) :=
by simp only [limsup_eq_infi_supr_of_nat, supr_ge_eq_supr_nat_add]
theorem has_basis.limsup_eq_infi_supr {p : ι → Prop} {s : ι → set β} {f : filter β} {u : β → α}
(h : f.has_basis p s) : limsup u f = ⨅ i (hi : p i), ⨆ a ∈ s i, u a :=
(h.map u).Limsup_eq_infi_Sup.trans $ by simp only [Sup_image, id]
lemma blimsup_congr' {f : filter β} {p q : β → Prop} {u : β → α}
(h : ∀ᶠ x in f, u x ≠ ⊥ → (p x ↔ q x)) :
blimsup u f p = blimsup u f q :=
begin
simp only [blimsup_eq],
congr,
ext a,
refine eventually_congr (h.mono $ λ b hb, _),
cases eq_or_ne (u b) ⊥ with hu hu, { simp [hu], },
rw hb hu,
end
lemma bliminf_congr' {f : filter β} {p q : β → Prop} {u : β → α}
(h : ∀ᶠ x in f, u x ≠ ⊤ → (p x ↔ q x)) :
bliminf u f p = bliminf u f q :=
@blimsup_congr' αᵒᵈ β _ _ _ _ _ h
lemma blimsup_eq_infi_bsupr {f : filter β} {p : β → Prop} {u : β → α} :
blimsup u f p = ⨅ s ∈ f, ⨆ b (hb : p b ∧ b ∈ s), u b :=
begin
refine le_antisymm (Inf_le_Inf _) (infi_le_iff.mpr $ λ a ha, le_Inf_iff.mpr $ λ a' ha', _),
{ rintros - ⟨s, rfl⟩,
simp only [mem_set_of_eq, le_infi_iff],
conv { congr, funext, rw imp.swap, },
refine eventually_imp_distrib_left.mpr (λ h, eventually_iff_exists_mem.2 ⟨s, h, λ x h₁ h₂, _⟩),
exact @le_supr₂ α β (λ b, p b ∧ b ∈ s) _ (λ b hb, u b) x ⟨h₂, h₁⟩, },
{ obtain ⟨s, hs, hs'⟩ := eventually_iff_exists_mem.mp ha',
simp_rw imp.swap at hs',
exact (le_infi_iff.mp (ha s) hs).trans (by simpa only [supr₂_le_iff, and_imp]), },
end
lemma blimsup_eq_infi_bsupr_of_nat {p : ℕ → Prop} {u : ℕ → α} :
blimsup u at_top p = ⨅ i, ⨆ j (hj : p j ∧ i ≤ j), u j :=
by simp only [blimsup_eq_limsup_subtype, mem_preimage, mem_Ici, function.comp_app, cinfi_pos,
supr_subtype, (at_top_basis.comap (coe : {x | p x} → ℕ)).limsup_eq_infi_supr, mem_set_of_eq,
subtype.coe_mk, supr_and]
/-- In a complete lattice, the liminf of a function is the infimum over sets `s` in the filter
of the supremum of the function over `s` -/
theorem liminf_eq_supr_infi {f : filter β} {u : β → α} : liminf u f = ⨆ s ∈ f, ⨅ a ∈ s, u a :=
@limsup_eq_infi_supr αᵒᵈ β _ _ _
lemma liminf_eq_supr_infi_of_nat {u : ℕ → α} : liminf u at_top = ⨆ n : ℕ, ⨅ i ≥ n, u i :=
@limsup_eq_infi_supr_of_nat αᵒᵈ _ u
lemma liminf_eq_supr_infi_of_nat' {u : ℕ → α} : liminf u at_top = ⨆ n : ℕ, ⨅ i : ℕ, u (i + n) :=
@limsup_eq_infi_supr_of_nat' αᵒᵈ _ _
theorem has_basis.liminf_eq_supr_infi {p : ι → Prop} {s : ι → set β} {f : filter β} {u : β → α}
(h : f.has_basis p s) : liminf u f = ⨆ i (hi : p i), ⨅ a ∈ s i, u a :=
@has_basis.limsup_eq_infi_supr αᵒᵈ _ _ _ _ _ _ _ h
lemma bliminf_eq_supr_binfi {f : filter β} {p : β → Prop} {u : β → α} :
bliminf u f p = ⨆ s ∈ f, ⨅ b (hb : p b ∧ b ∈ s), u b :=
@blimsup_eq_infi_bsupr αᵒᵈ β _ f p u
lemma bliminf_eq_supr_binfi_of_nat {p : ℕ → Prop} {u : ℕ → α} :
bliminf u at_top p = ⨆ i, ⨅ j (hj : p j ∧ i ≤ j), u j :=
@blimsup_eq_infi_bsupr_of_nat αᵒᵈ _ p u
lemma limsup_eq_Inf_Sup {ι R : Type*} (F : filter ι) [complete_lattice R] (a : ι → R) :
limsup a F = Inf ((λ I, Sup (a '' I)) '' F.sets) :=
begin
refine le_antisymm _ _,
{ rw limsup_eq,
refine Inf_le_Inf (λ x hx, _),
rcases (mem_image _ F.sets x).mp hx with ⟨I, ⟨I_mem_F, hI⟩⟩,
filter_upwards [I_mem_F] with i hi,
exact hI ▸ le_Sup (mem_image_of_mem _ hi), },
{ refine le_Inf_iff.mpr (λ b hb, Inf_le_of_le (mem_image_of_mem _ $ filter.mem_sets.mpr hb)
$ Sup_le _),
rintros _ ⟨_, h, rfl⟩,
exact h, },
end
lemma liminf_eq_Sup_Inf {ι R : Type*} (F : filter ι) [complete_lattice R] (a : ι → R) :
liminf a F = Sup ((λ I, Inf (a '' I)) '' F.sets) :=
@filter.limsup_eq_Inf_Sup ι (order_dual R) _ _ a
@[simp] lemma liminf_nat_add (f : ℕ → α) (k : ℕ) :
liminf (λ i, f (i + k)) at_top = liminf f at_top :=
by { simp_rw liminf_eq_supr_infi_of_nat, exact supr_infi_ge_nat_add f k }
@[simp] lemma limsup_nat_add (f : ℕ → α) (k : ℕ) :
limsup (λ i, f (i + k)) at_top = limsup f at_top :=
@liminf_nat_add αᵒᵈ _ f k
lemma liminf_le_of_frequently_le' {α β} [complete_lattice β]
{f : filter α} {u : α → β} {x : β} (h : ∃ᶠ a in f, u a ≤ x) :
liminf u f ≤ x :=
begin
rw liminf_eq,
refine Sup_le (λ b hb, _),
have hbx : ∃ᶠ a in f, b ≤ x,
{ revert h,
rw [←not_imp_not, not_frequently, not_frequently],
exact λ h, hb.mp (h.mono (λ a hbx hba hax, hbx (hba.trans hax))), },
exact hbx.exists.some_spec,
end
lemma le_limsup_of_frequently_le' {α β} [complete_lattice β]
{f : filter α} {u : α → β} {x : β} (h : ∃ᶠ a in f, x ≤ u a) :
x ≤ limsup u f :=
@liminf_le_of_frequently_le' _ βᵒᵈ _ _ _ _ h
/-- If `f : α → α` is a morphism of complete lattices, then the limsup of its iterates of any
`a : α` is a fixed point. -/
@[simp] lemma complete_lattice_hom.apply_limsup_iterate (f : complete_lattice_hom α α) (a : α) :
f (limsup (λ n, f^[n] a) at_top) = limsup (λ n, f^[n] a) at_top :=
begin
rw [limsup_eq_infi_supr_of_nat', map_infi],
simp_rw [_root_.map_supr, ← function.comp_apply f, ← function.iterate_succ' f, ← nat.add_succ],
conv_rhs { rw infi_split _ ((<) (0 : ℕ)), },
simp only [not_lt, le_zero_iff, infi_infi_eq_left, add_zero, infi_nat_gt_zero_eq, left_eq_inf],
refine (infi_le (λ i, ⨆ j, (f^[j + (i + 1)]) a) 0).trans _,
simp only [zero_add, function.comp_app, supr_le_iff],
exact λ i, le_supr (λ i, (f^[i] a)) (i + 1),
end
/-- If `f : α → α` is a morphism of complete lattices, then the liminf of its iterates of any
`a : α` is a fixed point. -/
lemma complete_lattice_hom.apply_liminf_iterate (f : complete_lattice_hom α α) (a : α) :
f (liminf (λ n, f^[n] a) at_top) = liminf (λ n, f^[n] a) at_top :=
(complete_lattice_hom.dual f).apply_limsup_iterate _
variables {f g : filter β} {p q : β → Prop} {u v : β → α}
lemma blimsup_mono (h : ∀ x, p x → q x) :
blimsup u f p ≤ blimsup u f q :=
Inf_le_Inf $ λ a ha, ha.mono $ by tauto
lemma bliminf_antitone (h : ∀ x, p x → q x) :
bliminf u f q ≤ bliminf u f p :=
Sup_le_Sup $ λ a ha, ha.mono $ by tauto
lemma mono_blimsup' (h : ∀ᶠ x in f, p x → u x ≤ v x) :
blimsup u f p ≤ blimsup v f p :=
Inf_le_Inf $ λ a ha, (ha.and h).mono $ λ x hx hx', (hx.2 hx').trans (hx.1 hx')
lemma mono_blimsup (h : ∀ x, p x → u x ≤ v x) :
blimsup u f p ≤ blimsup v f p :=
mono_blimsup' $ eventually_of_forall h
lemma mono_bliminf' (h : ∀ᶠ x in f, p x → u x ≤ v x) :
bliminf u f p ≤ bliminf v f p :=
Sup_le_Sup $ λ a ha, (ha.and h).mono $ λ x hx hx', (hx.1 hx').trans (hx.2 hx')
lemma mono_bliminf (h : ∀ x, p x → u x ≤ v x) :
bliminf u f p ≤ bliminf v f p :=
mono_bliminf' $ eventually_of_forall h
lemma bliminf_antitone_filter (h : f ≤ g) :
bliminf u g p ≤ bliminf u f p :=
Sup_le_Sup $ λ a ha, ha.filter_mono h
lemma blimsup_monotone_filter (h : f ≤ g) :
blimsup u f p ≤ blimsup u g p :=
Inf_le_Inf $ λ a ha, ha.filter_mono h
@[simp] lemma blimsup_and_le_inf :
blimsup u f (λ x, p x ∧ q x) ≤ blimsup u f p ⊓ blimsup u f q :=
le_inf (blimsup_mono $ by tauto) (blimsup_mono $ by tauto)
@[simp] lemma bliminf_sup_le_and :
bliminf u f p ⊔ bliminf u f q ≤ bliminf u f (λ x, p x ∧ q x) :=
@blimsup_and_le_inf αᵒᵈ β _ f p q u
/-- See also `filter.blimsup_or_eq_sup`. -/
@[simp] lemma blimsup_sup_le_or :
blimsup u f p ⊔ blimsup u f q ≤ blimsup u f (λ x, p x ∨ q x) :=
sup_le (blimsup_mono $ by tauto) (blimsup_mono $ by tauto)
/-- See also `filter.bliminf_or_eq_inf`. -/
@[simp] lemma bliminf_or_le_inf :
bliminf u f (λ x, p x ∨ q x) ≤ bliminf u f p ⊓ bliminf u f q :=
@blimsup_sup_le_or αᵒᵈ β _ f p q u
lemma order_iso.apply_blimsup [complete_lattice γ] (e : α ≃o γ) :
e (blimsup u f p) = blimsup (e ∘ u) f p :=
begin
simp only [blimsup_eq, map_Inf, function.comp_app],
congr,
ext c,
obtain ⟨a, rfl⟩ := e.surjective c,
simp,
end
lemma order_iso.apply_bliminf [complete_lattice γ] (e : α ≃o γ) :
e (bliminf u f p) = bliminf (e ∘ u) f p :=
@order_iso.apply_blimsup αᵒᵈ β γᵒᵈ _ f p u _ e.dual
lemma Sup_hom.apply_blimsup_le [complete_lattice γ] (g : Sup_hom α γ) :
g (blimsup u f p) ≤ blimsup (g ∘ u) f p :=
begin
simp only [blimsup_eq_infi_bsupr],
refine ((order_hom_class.mono g).map_infi₂_le _).trans _,
simp only [_root_.map_supr],
end
lemma Inf_hom.le_apply_bliminf [complete_lattice γ] (g : Inf_hom α γ) :
bliminf (g ∘ u) f p ≤ g (bliminf u f p) :=
@Sup_hom.apply_blimsup_le αᵒᵈ β γᵒᵈ _ f p u _ g.dual
end complete_lattice
section complete_distrib_lattice
variables [complete_distrib_lattice α] {f : filter β} {p q : β → Prop} {u : β → α}
@[simp] lemma blimsup_or_eq_sup :
blimsup u f (λ x, p x ∨ q x) = blimsup u f p ⊔ blimsup u f q :=
begin
refine le_antisymm _ blimsup_sup_le_or,
simp only [blimsup_eq, Inf_sup_eq, sup_Inf_eq, le_infi₂_iff, mem_set_of_eq],
refine λ a' ha' a ha, Inf_le ((ha.and ha').mono $ λ b h hb, _),
exact or.elim hb (λ hb, le_sup_of_le_left $ h.1 hb) (λ hb, le_sup_of_le_right $ h.2 hb),
end
@[simp] lemma bliminf_or_eq_inf :
bliminf u f (λ x, p x ∨ q x) = bliminf u f p ⊓ bliminf u f q :=
@blimsup_or_eq_sup αᵒᵈ β _ f p q u
lemma sup_limsup [ne_bot f] (a : α) :
a ⊔ limsup u f = limsup (λ x, a ⊔ u x) f :=
begin
simp only [limsup_eq_infi_supr, supr_sup_eq, sup_binfi_eq],
congr, ext s, congr, ext hs, congr,
exact (bsupr_const (nonempty_of_mem hs)).symm,
end
lemma inf_liminf [ne_bot f] (a : α) :
a ⊓ liminf u f = liminf (λ x, a ⊓ u x) f :=
@sup_limsup αᵒᵈ β _ f _ _ _
lemma sup_liminf (a : α) :
a ⊔ liminf u f = liminf (λ x, a ⊔ u x) f :=
begin
simp only [liminf_eq_supr_infi],
rw [sup_comm, bsupr_sup (⟨univ, univ_mem⟩ : ∃ (i : set β), i ∈ f)],
simp_rw [binfi_sup_eq, @sup_comm _ _ a],
end
lemma inf_limsup (a : α) :
a ⊓ limsup u f = limsup (λ x, a ⊓ u x) f :=
@sup_liminf αᵒᵈ β _ f _ _
end complete_distrib_lattice
section complete_boolean_algebra
variables [complete_boolean_algebra α] (f : filter β) (u : β → α)
lemma limsup_compl :
(limsup u f)ᶜ = liminf (compl ∘ u) f :=
by simp only [limsup_eq_infi_supr, liminf_eq_supr_infi, compl_infi, compl_supr]
lemma liminf_compl :
(liminf u f)ᶜ = limsup (compl ∘ u) f :=
by simp only [limsup_eq_infi_supr, liminf_eq_supr_infi, compl_infi, compl_supr]
lemma limsup_sdiff (a : α) :
(limsup u f) \ a = limsup (λ b, (u b) \ a) f :=
begin
simp only [limsup_eq_infi_supr, sdiff_eq],
rw binfi_inf (⟨univ, univ_mem⟩ : ∃ (i : set β), i ∈ f),
simp_rw [inf_comm, inf_bsupr_eq, inf_comm],
end
lemma liminf_sdiff [ne_bot f] (a : α) :
(liminf u f) \ a = liminf (λ b, (u b) \ a) f :=
by simp only [sdiff_eq, @inf_comm _ _ _ aᶜ, inf_liminf]
lemma sdiff_limsup [ne_bot f] (a : α) :
a \ limsup u f = liminf (λ b, a \ u b) f :=
begin
rw ← compl_inj_iff,
simp only [sdiff_eq, liminf_compl, (∘), compl_inf, compl_compl, sup_limsup],
end
lemma sdiff_liminf (a : α) :
a \ liminf u f = limsup (λ b, a \ u b) f :=
begin
rw ← compl_inj_iff,
simp only [sdiff_eq, limsup_compl, (∘), compl_inf, compl_compl, sup_liminf],
end
end complete_boolean_algebra
section set_lattice
variables {p : ι → Prop} {s : ι → set α}
lemma cofinite.blimsup_set_eq :
blimsup s cofinite p = { x | { n | p n ∧ x ∈ s n }.infinite } :=
begin
simp only [blimsup_eq, le_eq_subset, eventually_cofinite, not_forall, Inf_eq_sInter, exists_prop],
ext x,
refine ⟨λ h, _, λ hx t h, _⟩;
contrapose! h,
{ simp only [mem_sInter, mem_set_of_eq, not_forall, exists_prop],
exact ⟨{x}ᶜ, by simpa using h, by simp⟩, },
{ exact hx.mono (λ i hi, ⟨hi.1, λ hit, h (hit hi.2)⟩), },
end
lemma cofinite.bliminf_set_eq :
bliminf s cofinite p = { x | { n | p n ∧ x ∉ s n }.finite } :=
begin
rw ← compl_inj_iff,
simpa only [bliminf_eq_supr_binfi, compl_infi, compl_supr, ← blimsup_eq_infi_bsupr,
cofinite.blimsup_set_eq],
end
/-- In other words, `limsup cofinite s` is the set of elements lying inside the family `s`
infinitely often. -/
lemma cofinite.limsup_set_eq :
limsup s cofinite = { x | { n | x ∈ s n }.infinite } :=
by simp only [← cofinite.blimsup_true s, cofinite.blimsup_set_eq, true_and]
/-- In other words, `liminf cofinite s` is the set of elements lying outside the family `s`
finitely often. -/
lemma cofinite.liminf_set_eq :
liminf s cofinite = { x | { n | x ∉ s n }.finite } :=
by simp only [← cofinite.bliminf_true s, cofinite.bliminf_set_eq, true_and]
lemma exists_forall_mem_of_has_basis_mem_blimsup
{l : filter β} {b : ι → set β} {q : ι → Prop} (hl : l.has_basis q b)
{u : β → set α} {p : β → Prop} {x : α} (hx : x ∈ blimsup u l p) :
∃ f : {i | q i} → β, ∀ i, x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b i :=
begin
rw blimsup_eq_infi_bsupr at hx,
simp only [supr_eq_Union, infi_eq_Inter, mem_Inter, mem_Union, exists_prop] at hx,
choose g hg hg' using hx,
refine ⟨λ (i : {i | q i}), g (b i) (hl.mem_of_mem i.2), λ i, ⟨_, _⟩⟩,
{ exact hg' (b i) (hl.mem_of_mem i.2), },
{ exact hg (b i) (hl.mem_of_mem i.2), },
end
lemma exists_forall_mem_of_has_basis_mem_blimsup'
{l : filter β} {b : ι → set β} (hl : l.has_basis (λ _, true) b)
{u : β → set α} {p : β → Prop} {x : α} (hx : x ∈ blimsup u l p) :
∃ f : ι → β, ∀ i, x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b i :=
begin
obtain ⟨f, hf⟩ := exists_forall_mem_of_has_basis_mem_blimsup hl hx,
exact ⟨λ i, f ⟨i, trivial⟩, λ i, hf ⟨i, trivial⟩⟩,
end
end set_lattice
section conditionally_complete_linear_order
lemma frequently_lt_of_lt_Limsup {f : filter α} [conditionally_complete_linear_order α] {a : α}
(hf : f.is_cobounded (≤) . is_bounded_default) (h : a < Limsup f) : ∃ᶠ n in f, a < n :=
begin
contrapose! h,
simp only [not_frequently, not_lt] at h,
exact Limsup_le_of_le hf h,
end
lemma frequently_lt_of_Liminf_lt {f : filter α} [conditionally_complete_linear_order α] {a : α}
(hf : f.is_cobounded (≥) . is_bounded_default) (h : Liminf f < a) : ∃ᶠ n in f, n < a :=
@frequently_lt_of_lt_Limsup (order_dual α) f _ a hf h
lemma eventually_lt_of_lt_liminf {f : filter α} [conditionally_complete_linear_order β]
{u : α → β} {b : β} (h : b < liminf u f) (hu : f.is_bounded_under (≥) u . is_bounded_default) :
∀ᶠ a in f, b < u a :=
begin
obtain ⟨c, hc, hbc⟩ : ∃ (c : β) (hc : c ∈ {c : β | ∀ᶠ (n : α) in f, c ≤ u n}), b < c :=
exists_lt_of_lt_cSup hu h,
exact hc.mono (λ x hx, lt_of_lt_of_le hbc hx)
end
lemma eventually_lt_of_limsup_lt {f : filter α} [conditionally_complete_linear_order β]
{u : α → β} {b : β} (h : limsup u f < b) (hu : f.is_bounded_under (≤) u . is_bounded_default) :
∀ᶠ a in f, u a < b :=
@eventually_lt_of_lt_liminf _ βᵒᵈ _ _ _ _ h hu
lemma le_limsup_of_frequently_le {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β} (hu_le : ∃ᶠ x in f, b ≤ u x)
(hu : f.is_bounded_under (≤) u . is_bounded_default) :
b ≤ limsup u f :=
begin
revert hu_le,
rw [←not_imp_not, not_frequently],
simp_rw ←lt_iff_not_ge,
exact λ h, eventually_lt_of_limsup_lt h hu,
end
lemma liminf_le_of_frequently_le {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β} (hu_le : ∃ᶠ x in f, u x ≤ b)
(hu : f.is_bounded_under (≥) u . is_bounded_default) :
liminf u f ≤ b :=
@le_limsup_of_frequently_le _ βᵒᵈ _ f u b hu_le hu
lemma frequently_lt_of_lt_limsup {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β}
(hu : f.is_cobounded_under (≤) u . is_bounded_default) (h : b < limsup u f) :
∃ᶠ x in f, b < u x :=
begin
contrapose! h,
apply Limsup_le_of_le hu,
simpa using h,
end
lemma frequently_lt_of_liminf_lt {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β}
(hu : f.is_cobounded_under (≥) u . is_bounded_default) (h : liminf u f < b) :
∃ᶠ x in f, u x < b :=
@frequently_lt_of_lt_limsup _ βᵒᵈ _ f u b hu h
end conditionally_complete_linear_order
end filter
section order
open filter
lemma monotone.is_bounded_under_le_comp [nonempty β] [linear_order β] [preorder γ]
[no_max_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : monotone g)
(hg' : tendsto g at_top at_top) :
is_bounded_under (≤) l (g ∘ f) ↔ is_bounded_under (≤) l f :=
begin
refine ⟨_, λ h, h.is_bounded_under hg⟩,
rintro ⟨c, hc⟩, rw eventually_map at hc,
obtain ⟨b, hb⟩ : ∃ b, ∀ a ≥ b, c < g a := eventually_at_top.1 (hg'.eventually_gt_at_top c),
exact ⟨b, hc.mono $ λ x hx, not_lt.1 (λ h, (hb _ h.le).not_le hx)⟩
end
lemma monotone.is_bounded_under_ge_comp [nonempty β] [linear_order β] [preorder γ]
[no_min_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : monotone g)
(hg' : tendsto g at_bot at_bot) :
is_bounded_under (≥) l (g ∘ f) ↔ is_bounded_under (≥) l f :=
hg.dual.is_bounded_under_le_comp hg'
lemma antitone.is_bounded_under_le_comp [nonempty β] [linear_order β] [preorder γ]
[no_max_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : antitone g)
(hg' : tendsto g at_bot at_top) :
is_bounded_under (≤) l (g ∘ f) ↔ is_bounded_under (≥) l f :=
hg.dual_right.is_bounded_under_ge_comp hg'
lemma antitone.is_bounded_under_ge_comp [nonempty β] [linear_order β] [preorder γ]
[no_min_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : antitone g)
(hg' : tendsto g at_top at_bot) :
is_bounded_under (≥) l (g ∘ f) ↔ is_bounded_under (≤) l f :=
hg.dual_right.is_bounded_under_le_comp hg'
lemma galois_connection.l_limsup_le [conditionally_complete_lattice β]
[conditionally_complete_lattice γ] {f : filter α} {v : α → β}
{l : β → γ} {u : γ → β} (gc : galois_connection l u)
(hlv : f.is_bounded_under (≤) (λ x, l (v x)) . is_bounded_default)
(hv_co : f.is_cobounded_under (≤) v . is_bounded_default) :
l (limsup v f) ≤ limsup (λ x, l (v x)) f :=
begin
refine le_Limsup_of_le hlv (λ c hc, _),
rw filter.eventually_map at hc,
simp_rw (gc _ _) at hc ⊢,
exact Limsup_le_of_le hv_co hc,
end
lemma order_iso.limsup_apply {γ} [conditionally_complete_lattice β]
[conditionally_complete_lattice γ] {f : filter α} {u : α → β} (g : β ≃o γ)
(hu : f.is_bounded_under (≤) u . is_bounded_default)
(hu_co : f.is_cobounded_under (≤) u . is_bounded_default)
(hgu : f.is_bounded_under (≤) (λ x, g (u x)) . is_bounded_default)
(hgu_co : f.is_cobounded_under (≤) (λ x, g (u x)) . is_bounded_default) :
g (limsup u f) = limsup (λ x, g (u x)) f :=
begin
refine le_antisymm (g.to_galois_connection.l_limsup_le hgu hu_co) _,
rw [←(g.symm.symm_apply_apply $ limsup (λ x, g (u x)) f), g.symm_symm],
refine g.monotone _,
have hf : u = λ i, g.symm (g (u i)), from funext (λ i, (g.symm_apply_apply (u i)).symm),
nth_rewrite 0 hf,
refine g.symm.to_galois_connection.l_limsup_le _ hgu_co,
simp_rw g.symm_apply_apply,
exact hu,
end
lemma order_iso.liminf_apply {γ} [conditionally_complete_lattice β]
[conditionally_complete_lattice γ] {f : filter α} {u : α → β} (g : β ≃o γ)
(hu : f.is_bounded_under (≥) u . is_bounded_default)
(hu_co : f.is_cobounded_under (≥) u . is_bounded_default)
(hgu : f.is_bounded_under (≥) (λ x, g (u x)) . is_bounded_default)
(hgu_co : f.is_cobounded_under (≥) (λ x, g (u x)) . is_bounded_default) :
g (liminf u f) = liminf (λ x, g (u x)) f :=
@order_iso.limsup_apply α βᵒᵈ γᵒᵈ _ _ f u g.dual hu hu_co hgu hgu_co
end order
|
3b2e30d622f066ebd136eaf673c6d6cbc9f63b1d
|
0003047346476c031128723dfd16fe273c6bc605
|
/src/ring_theory/algebra.lean
|
232c77ff933885d8d510c76edeeb38bf4bf30261
|
[
"Apache-2.0"
] |
permissive
|
ChandanKSingh/mathlib
|
d2bf4724ccc670bf24915c12c475748281d3fb73
|
d60d1616958787ccb9842dc943534f90ea0bab64
|
refs/heads/master
| 1,588,238,823,679
| 1,552,867,469,000
| 1,552,867,469,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 18,606
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
Algebra over Commutative Ring (under category)
-/
import data.polynomial data.multivariate_polynomial
import linear_algebra.tensor_product
import ring_theory.subring
universes u v w u₁ v₁
open lattice
local infix ` ⊗ `:100 := tensor_product
/-- The category of R-algebras where R is a commutative
ring is the under category R ↓ CRing. In the categorical
setting we have a forgetful functor R-Alg ⥤ R-Mod.
However here it extends module in order to preserve
definitional equality in certain cases. -/
class algebra (R : Type u) (A : Type v) [comm_ring R] [ring A] extends module R A :=
(to_fun : R → A) [hom : is_ring_hom to_fun]
(commutes' : ∀ r x, x * to_fun r = to_fun r * x)
(smul_def' : ∀ r x, r • x = to_fun r * x)
attribute [instance] algebra.hom
def algebra_map {R : Type u} (A : Type v) [comm_ring R] [ring A] [algebra R A] (x : R) : A :=
algebra.to_fun A x
namespace algebra
variables {R : Type u} {S : Type v} {A : Type w}
variables [comm_ring R] [comm_ring S] [ring A] [algebra R A]
/-- The codomain of an algebra. -/
instance : module R A := infer_instance
instance : has_scalar R A := infer_instance
instance {F : Type u} {K : Type v} [discrete_field F] [ring K] [algebra F K] :
vector_space F K :=
@vector_space.mk F _ _ _ algebra.module
include R
instance : is_ring_hom (algebra_map A : R → A) := algebra.hom _ A
variables (A)
@[simp] lemma map_add (r s : R) : algebra_map A (r + s) = algebra_map A r + algebra_map A s :=
is_ring_hom.map_add _
@[simp] lemma map_neg (r : R) : algebra_map A (-r) = -algebra_map A r :=
is_ring_hom.map_neg _
@[simp] lemma map_sub (r s : R) : algebra_map A (r - s) = algebra_map A r - algebra_map A s :=
is_ring_hom.map_sub _
@[simp] lemma map_mul (r s : R) : algebra_map A (r * s) = algebra_map A r * algebra_map A s :=
is_ring_hom.map_mul _
variables (R)
@[simp] lemma map_zero : algebra_map A (0 : R) = 0 :=
is_ring_hom.map_zero _
@[simp] lemma map_one : algebra_map A (1 : R) = 1 :=
is_ring_hom.map_one _
variables {R A}
/-- Creating an algebra from a morphism in CRing. -/
def of_ring_hom (i : R → S) (hom : is_ring_hom i) : algebra R S :=
{ smul := λ c x, i c * x,
smul_zero := λ x, mul_zero (i x),
smul_add := λ r x y, mul_add (i r) x y,
add_smul := λ r s x, show i (r + s) * x = _, by rw [hom.3, add_mul],
mul_smul := λ r s x, show i (r * s) * x = _, by rw [hom.2, mul_assoc],
one_smul := λ x, show i 1 * x = _, by rw [hom.1, one_mul],
zero_smul := λ x, show i 0 * x = _, by rw [@@is_ring_hom.map_zero _ _ i hom, zero_mul],
to_fun := i,
commutes' := λ _ _, mul_comm _ _,
smul_def' := λ c x, rfl }
theorem smul_def (r : R) (x : A) : r • x = algebra_map A r * x :=
algebra.smul_def' r x
theorem commutes (r : R) (x : A) : x * algebra_map A r = algebra_map A r * x :=
algebra.commutes' r x
theorem left_comm (r : R) (x y : A) : x * (algebra_map A r * y) = algebra_map A r * (x * y) :=
by rw [← mul_assoc, commutes, mul_assoc]
@[simp] lemma mul_smul_comm (s : R) (x y : A) :
x * (s • y) = s • (x * y) :=
by rw [smul_def, smul_def, left_comm]
@[simp] lemma smul_mul_assoc (r : R) (x y : A) :
(r • x) * y = r • (x * y) :=
by rw [smul_def, smul_def, mul_assoc]
/-- R[X] is the generator of the category R-Alg. -/
instance polynomial (R : Type u) [comm_ring R] [decidable_eq R] : algebra R (polynomial R) :=
{ to_fun := polynomial.C,
commutes' := λ _ _, mul_comm _ _,
smul_def' := λ c p, (polynomial.C_mul' c p).symm,
.. polynomial.module }
/-- The algebra of multivariate polynomials. -/
instance mv_polynomial (R : Type u) [comm_ring R] [decidable_eq R]
(ι : Type v) [decidable_eq ι] : algebra R (mv_polynomial ι R) :=
{ to_fun := mv_polynomial.C,
commutes' := λ _ _, mul_comm _ _,
smul_def' := λ c p, (mv_polynomial.C_mul' c p).symm,
.. mv_polynomial.module }
/-- Creating an algebra from a subring. This is the dual of ring extension. -/
instance of_subring (S : set R) [is_subring S] : algebra S R :=
of_ring_hom subtype.val ⟨rfl, λ _ _, rfl, λ _ _, rfl⟩
variables (R A)
/-- The multiplication in an algebra is a bilinear map. -/
def lmul : A →ₗ A →ₗ A :=
linear_map.mk₂ R (*)
(λ x y z, add_mul x y z)
(λ c x y, by rw [smul_def, smul_def, mul_assoc _ x y])
(λ x y z, mul_add x y z)
(λ c x y, by rw [smul_def, smul_def, left_comm])
set_option class.instance_max_depth 39
def lmul_left (r : A) : A →ₗ A :=
lmul R A r
def lmul_right (r : A) : A →ₗ A :=
(lmul R A).flip r
variables {R A}
@[simp] lemma lmul_apply (p q : A) : lmul R A p q = p * q := rfl
@[simp] lemma lmul_left_apply (p q : A) : lmul_left R A p q = p * q := rfl
@[simp] lemma lmul_right_apply (p q : A) : lmul_right R A p q = q * p := rfl
end algebra
/-- Defining the homomorphism in the category R-Alg. -/
structure alg_hom {R : Type u} (A : Type v) (B : Type w)
[comm_ring R] [ring A] [ring B] [algebra R A] [algebra R B] :=
(to_fun : A → B) [hom : is_ring_hom to_fun]
(commutes' : ∀ r : R, to_fun (algebra_map A r) = algebra_map B r)
infixr ` →ₐ `:25 := alg_hom
notation A ` →ₐ[`:25 R `] ` B := @alg_hom R A B _ _ _ _ _
namespace alg_hom
variables {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} {D : Type v₁}
variables [comm_ring R] [ring A] [ring B] [ring C] [ring D]
variables [algebra R A] [algebra R B] [algebra R C] [algebra R D]
include R
instance : has_coe_to_fun (A →ₐ[R] B) := ⟨λ _, A → B, to_fun⟩
variables (φ : A →ₐ[R] B)
instance : is_ring_hom ⇑φ := hom φ
@[extensionality]
theorem ext {φ₁ φ₂ : A →ₐ[R] B} (H : ∀ x, φ₁ x = φ₂ x) : φ₁ = φ₂ :=
by cases φ₁; cases φ₂; congr' 1; ext; apply H
theorem commutes (r : R) : φ (algebra_map A r) = algebra_map B r := φ.commutes' r
@[simp] lemma map_add (r s : A) : φ (r + s) = φ r + φ s :=
is_ring_hom.map_add _
@[simp] lemma map_zero : φ 0 = 0 :=
is_ring_hom.map_zero _
@[simp] lemma map_neg (x) : φ (-x) = -φ x :=
is_ring_hom.map_neg _
@[simp] lemma map_sub (x y) : φ (x - y) = φ x - φ y :=
is_ring_hom.map_sub _
@[simp] lemma map_mul (x y) : φ (x * y) = φ x * φ y :=
is_ring_hom.map_mul _
@[simp] lemma map_one : φ 1 = 1 :=
is_ring_hom.map_one _
/-- R-Alg ⥤ R-Mod -/
def to_linear_map : A →ₗ B :=
{ to_fun := φ,
add := φ.map_add,
smul := λ c x, by rw [algebra.smul_def, φ.map_mul, φ.commutes c, algebra.smul_def] }
@[simp] lemma to_linear_map_apply (p : A) : φ.to_linear_map p = φ p := rfl
theorem to_linear_map_inj {φ₁ φ₂ : A →ₐ[R] B} (H : φ₁.to_linear_map = φ₂.to_linear_map) : φ₁ = φ₂ :=
ext $ λ x, show φ₁.to_linear_map x = φ₂.to_linear_map x, by rw H
variables (R A)
protected def id : A →ₐ[R] A :=
{ to_fun := id, commutes' := λ _, rfl }
variables {R A}
@[simp] lemma id_apply (p : A) : alg_hom.id R A p = p := rfl
def comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : A →ₐ C :=
{ to_fun := φ₁ ∘ φ₂,
commutes' := λ r, by rw [function.comp_apply, φ₂.commutes, φ₁.commutes] }
@[simp] lemma comp_apply (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) (p : A) :
φ₁.comp φ₂ p = φ₁ (φ₂ p) := rfl
@[simp] theorem comp_id : φ.comp (alg_hom.id R A) = φ :=
ext $ λ x, rfl
@[simp] theorem id_comp : (alg_hom.id R B).comp φ = φ :=
ext $ λ x, rfl
theorem comp_assoc (φ₁ : C →ₐ[R] D) (φ₂ : B →ₐ[R] C) (φ₃ : A →ₐ[R] B) :
(φ₁.comp φ₂).comp φ₃ = φ₁.comp (φ₂.comp φ₃) :=
ext $ λ x, rfl
end alg_hom
namespace algebra
variables (R : Type u) (S : Type v) (A : Type w)
variables [comm_ring R] [comm_ring S] [ring A] [algebra R S] [algebra S A]
include R S A
def comap : Type w := A
def comap.to_comap : A → comap R S A := id
def comap.of_comap : comap R S A → A := id
omit R S A
instance comap.ring : ring (comap R S A) := _inst_3
instance comap.comm_ring (R : Type u) (S : Type v) (A : Type w)
[comm_ring R] [comm_ring S] [comm_ring A] [algebra R S] [algebra S A] :
comm_ring (comap R S A) := _inst_8
instance comap.module : module S (comap R S A) := _inst_5.to_module
instance comap.has_scalar : has_scalar S (comap R S A) := _inst_5.to_module.to_has_scalar
/-- R ⟶ S induces S-Alg ⥤ R-Alg -/
instance comap.algebra : algebra R (comap R S A) :=
{ smul := λ r x, (algebra_map S r • x : A),
smul_add := λ _ _ _, smul_add _ _ _,
add_smul := λ _ _ _, by simp only [algebra.map_add]; from add_smul _ _ _,
mul_smul := λ _ _ _, by simp only [algebra.map_mul]; from mul_smul _ _ _,
one_smul := λ _, by simp only [algebra.map_one]; from one_smul _ _,
zero_smul := λ _, by simp only [algebra.map_zero]; from zero_smul _ _,
smul_zero := λ _, smul_zero _,
to_fun := (algebra_map A : S → A) ∘ algebra_map S,
hom := by letI : is_ring_hom (algebra_map A) := _inst_5.hom; apply_instance,
commutes' := λ r x, algebra.commutes _ _,
smul_def' := λ _ _, algebra.smul_def _ _ }
def to_comap : S →ₐ[R] comap R S A :=
{ to_fun := (algebra_map A : S → A),
hom := _inst_5.hom,
commutes' := λ r, rfl }
theorem to_comap_apply (x) : to_comap R S A x = (algebra_map A : S → A) x := rfl
end algebra
namespace alg_hom
variables {R : Type u} {S : Type v} {A : Type w} {B : Type u₁}
variables [comm_ring R] [comm_ring S] [ring A] [ring B]
variables [algebra R S] [algebra S A] [algebra S B] (φ : A →ₐ[S] B)
include R
/-- R ⟶ S induces S-Alg ⥤ R-Alg -/
def comap : algebra.comap R S A →ₐ[R] algebra.comap R S B :=
{ to_fun := φ,
hom := alg_hom.is_ring_hom _,
commutes' := λ r, φ.commutes (algebra_map S r) }
end alg_hom
namespace polynomial
variables (R : Type u) (A : Type v)
variables [comm_ring R] [comm_ring A] [algebra R A]
variables [decidable_eq R] (x : A)
/-- A → Hom[R-Alg](R[X],A) -/
def aeval : polynomial R →ₐ[R] A :=
{ to_fun := eval₂ (algebra_map A) x,
hom := ⟨eval₂_one _ x, λ _ _, eval₂_mul _ x, λ _ _, eval₂_add _ x⟩,
commutes' := λ r, eval₂_C _ _ }
theorem aeval_def (p : polynomial R) : aeval R A x p = eval₂ (algebra_map A) x p := rfl
instance aeval.is_ring_hom : is_ring_hom (aeval R A x) :=
alg_hom.hom _
theorem eval_unique (φ : polynomial R →ₐ[R] A) (p) :
φ p = eval₂ (algebra_map A) (φ X) p :=
begin
apply polynomial.induction_on p,
{ intro r, rw eval₂_C, exact φ.commutes r },
{ intros f g ih1 ih2,
rw [is_ring_hom.map_add φ, ih1, ih2, eval₂_add] },
{ intros n r ih,
rw [pow_succ', ← mul_assoc, is_ring_hom.map_mul φ, eval₂_mul (algebra_map A : R → A), eval₂_X, ih] }
end
end polynomial
namespace mv_polynomial
variables (R : Type u) (A : Type v)
variables [comm_ring R] [comm_ring A] [algebra R A]
variables [decidable_eq R] [decidable_eq A] (σ : set A)
/-- (ι → A) → Hom[R-Alg](R[ι],A) -/
def aeval : mv_polynomial σ R →ₐ[R] A :=
{ to_fun := eval₂ (algebra_map A) subtype.val,
hom := ⟨eval₂_one _ _, λ _ _, eval₂_mul _ _, λ _ _, eval₂_add _ _⟩,
commutes' := λ r, eval₂_C _ _ _ }
theorem aeval_def (p : mv_polynomial σ R) : aeval R A σ p = eval₂ (algebra_map A) subtype.val p := rfl
instance aeval.is_ring_hom : is_ring_hom (aeval R A σ) :=
alg_hom.hom _
variables (ι : Type w) [decidable_eq ι]
theorem eval_unique (φ : mv_polynomial ι R →ₐ[R] A) (p) :
φ p = eval₂ (algebra_map A) (φ ∘ X) p :=
begin
apply mv_polynomial.induction_on p,
{ intro r, rw eval₂_C, exact φ.commutes r },
{ intros f g ih1 ih2,
rw [is_ring_hom.map_add φ, ih1, ih2, eval₂_add] },
{ intros p j ih,
rw [is_ring_hom.map_mul φ, eval₂_mul, eval₂_X, ih] }
end
end mv_polynomial
structure subalgebra (R : Type u) (A : Type v)
[comm_ring R] [ring A] [algebra R A] : Type v :=
(carrier : set A) [subring : is_subring carrier]
(range_le : set.range (algebra_map A : R → A) ≤ carrier)
attribute [instance] subalgebra.subring
namespace subalgebra
variables {R : Type u} {A : Type v}
variables [comm_ring R] [ring A] [algebra R A]
include R
instance : has_coe (subalgebra R A) (set A) :=
⟨λ S, S.carrier⟩
instance : has_mem A (subalgebra R A) :=
⟨λ x S, x ∈ S.carrier⟩
variables {A}
theorem mem_coe {x : A} {s : subalgebra R A} : x ∈ (s : set A) ↔ x ∈ s :=
iff.rfl
@[extensionality] theorem ext {S T : subalgebra R A}
(h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=
by cases S; cases T; congr; ext x; exact h x
variables (S : subalgebra R A)
instance : is_subring (S : set A) := S.subring
instance : ring S := @@subtype.ring _ S.is_subring
instance (R : Type u) (A : Type v) [comm_ring R] [comm_ring A]
[algebra R A] (S : subalgebra R A) : comm_ring S := @@subtype.comm_ring _ S.is_subring
instance algebra : algebra R S :=
{ smul := λ (c:R) x, ⟨c • x.1,
by rw algebra.smul_def; exact @@is_submonoid.mul_mem _ S.2.2 (S.3 ⟨c, rfl⟩) x.2⟩,
smul_add := λ c x y, subtype.eq $ by apply _inst_3.1.1.2,
add_smul := λ c x y, subtype.eq $ by apply _inst_3.1.1.3,
mul_smul := λ c x y, subtype.eq $ by apply _inst_3.1.1.4,
one_smul := λ x, subtype.eq $ by apply _inst_3.1.1.5,
zero_smul := λ x, subtype.eq $ by apply _inst_3.1.1.6,
smul_zero := λ x, subtype.eq $ by apply _inst_3.1.1.7,
to_fun := λ r, ⟨algebra_map A r, S.range_le ⟨r, rfl⟩⟩,
hom := ⟨subtype.eq $ algebra.map_one R A, λ x y, subtype.eq $ algebra.map_mul A x y,
λ x y, subtype.eq $ algebra.map_add A x y⟩,
commutes' := λ c x, subtype.eq $ by apply _inst_3.4,
smul_def' := λ c x, subtype.eq $ by apply _inst_3.5 }
instance to_algebra (R : Type u) (A : Type v) [comm_ring R] [comm_ring A]
[algebra R A] (S : subalgebra R A) : algebra S A :=
algebra.of_subring _
def val : S →ₐ[R] A :=
{ to_fun := subtype.val,
hom := ⟨rfl, λ _ _, rfl, λ _ _, rfl⟩,
commutes' := λ r, rfl }
def to_submodule : submodule R A :=
{ carrier := S.carrier,
zero := (0:S).2,
add := λ x y hx hy, (⟨x, hx⟩ + ⟨y, hy⟩ : S).2,
smul := λ c x hx, (algebra.smul_def c x).symm ▸ (⟨algebra_map A c, S.range_le ⟨c, rfl⟩⟩ * ⟨x, hx⟩:S).2 }
instance to_submodule.is_subring : is_subring (S.to_submodule : set A) := S.2
instance : partial_order (subalgebra R A) :=
{ le := λ S T, S.carrier ≤ T.carrier,
le_refl := λ _, le_refl _,
le_trans := λ _ _ _, le_trans,
le_antisymm := λ S T hst hts, ext $ λ x, ⟨@hst x, @hts x⟩ }
def comap {R : Type u} {S : Type v} {A : Type w}
[comm_ring R] [comm_ring S] [ring A] [algebra R S] [algebra S A]
(iSB : subalgebra S A) : subalgebra R (algebra.comap R S A) :=
{ carrier := (iSB : set A),
subring := iSB.is_subring,
range_le := λ a ⟨r, hr⟩, hr ▸ iSB.range_le ⟨_, rfl⟩ }
def under {R : Type u} {A : Type v} [comm_ring R] [comm_ring A]
{i : algebra R A} (S : subalgebra R A)
(T : subalgebra S A) : subalgebra R A :=
{ carrier := T,
range_le := (λ a ⟨r, hr⟩, hr ▸ T.range_le ⟨⟨algebra_map A r, S.range_le ⟨r, rfl⟩⟩, rfl⟩) }
end subalgebra
namespace alg_hom
variables {R : Type u} {A : Type v} {B : Type w}
variables [comm_ring R] [ring A] [ring B] [algebra R A] [algebra R B]
variables (φ : A →ₐ[R] B)
protected def range : subalgebra R B :=
{ carrier := set.range φ,
subring :=
{ one_mem := ⟨1, φ.map_one⟩,
mul_mem := λ y₁ y₂ ⟨x₁, hx₁⟩ ⟨x₂, hx₂⟩, ⟨x₁ * x₂, hx₁ ▸ hx₂ ▸ φ.map_mul x₁ x₂⟩ },
range_le := λ y ⟨r, hr⟩, ⟨algebra_map A r, hr ▸ φ.commutes r⟩ }
end alg_hom
namespace algebra
variables {R : Type u} (A : Type v)
variables [comm_ring R] [ring A] [algebra R A]
include R
variables (R)
instance id : algebra R R :=
algebra.of_ring_hom id $ by apply_instance
def of_id : R →ₐ A :=
{ to_fun := algebra_map A, commutes' := λ _, rfl }
variables {R}
theorem of_id_apply (r) : of_id R A r = algebra_map A r := rfl
variables (R) {A}
def adjoin (s : set A) : subalgebra R A :=
{ carrier := ring.closure (set.range (algebra_map A : R → A) ∪ s),
range_le := le_trans (set.subset_union_left _ _) ring.subset_closure }
variables {R}
protected def gc : galois_connection (adjoin R : set A → subalgebra R A) coe :=
λ s S, ⟨λ H, le_trans (le_trans (set.subset_union_right _ _) ring.subset_closure) H,
λ H, ring.closure_subset $ set.union_subset S.range_le H⟩
protected def gi : galois_insertion (adjoin R : set A → subalgebra R A) coe :=
{ choice := λ s hs, adjoin R s,
gc := algebra.gc,
le_l_u := λ S, (algebra.gc (S : set A) (adjoin R S)).1 $ le_refl _,
choice_eq := λ _ _, rfl }
instance : complete_lattice (subalgebra R A) :=
galois_insertion.lift_complete_lattice algebra.gi
theorem mem_bot {x : A} : x ∈ (⊥ : subalgebra R A) ↔ x ∈ set.range (algebra_map A : R → A) :=
suffices (⊥ : subalgebra R A) = (of_id R A).range, by rw this; refl,
le_antisymm bot_le $ subalgebra.range_le _
theorem mem_top {x : A} : x ∈ (⊤ : subalgebra R A) :=
ring.mem_closure $ or.inr trivial
def to_top : A →ₐ[R] (⊤ : subalgebra R A) :=
{ to_fun := λ x, ⟨x, mem_top⟩,
hom := ⟨rfl, λ _ _, rfl, λ _ _, rfl⟩,
commutes' := λ _, rfl }
end algebra
section int
variables (R : Type*) [comm_ring R]
/-- CRing ⥤ ℤ-Alg -/
def alg_hom_int
{R : Type u} [comm_ring R] [algebra ℤ R]
{S : Type v} [comm_ring S] [algebra ℤ S]
(f : R → S) [is_ring_hom f] : R →ₐ[ℤ] S :=
{ to_fun := f, hom := by apply_instance,
commutes' := λ i, int.induction_on i (by rw [algebra.map_zero, algebra.map_zero, is_ring_hom.map_zero f])
(λ i ih, by rw [algebra.map_add, algebra.map_add, algebra.map_one, algebra.map_one];
rw [is_ring_hom.map_add f, is_ring_hom.map_one f, ih])
(λ i ih, by rw [algebra.map_sub, algebra.map_sub, algebra.map_one, algebra.map_one];
rw [is_ring_hom.map_sub f, is_ring_hom.map_one f, ih]) }
/-- CRing ⥤ ℤ-Alg -/
instance algebra_int : algebra ℤ R :=
algebra.of_ring_hom coe $ by constructor; intros; simp
variables {R}
/-- CRing ⥤ ℤ-Alg -/
def subalgebra_of_subring (S : set R) [is_subring S] : subalgebra ℤ R :=
{ carrier := S, range_le := λ x ⟨i, h⟩, h ▸ int.induction_on i
(by rw algebra.map_zero; exact is_add_submonoid.zero_mem _)
(λ i hi, by rw [algebra.map_add, algebra.map_one]; exact is_add_submonoid.add_mem hi (is_submonoid.one_mem _))
(λ i hi, by rw [algebra.map_sub, algebra.map_one]; exact is_add_subgroup.sub_mem _ _ _ hi (is_submonoid.one_mem _)) }
@[simp] lemma mem_subalgebra_of_subring {x : R} {S : set R} [is_subring S] :
x ∈ subalgebra_of_subring S ↔ x ∈ S :=
iff.rfl
end int
|
85b0ebf6de8419cca5323c4b086ec98eda7a9e47
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/tactic/slim_check.lean
|
103c2cfb005f0fae37993da646f09155bdfc932b
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 7,282
|
lean
|
/-
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Simon Hudon
-/
import testing.slim_check.testable
/-!
## Finding counterexamples automatically using `slim_check`
A proposition can be tested by writing it out as:
```lean
example (xs : list ℕ) (w : ∃ x ∈ xs, x < 3) : ∀ y ∈ xs, y < 5 := by slim_check
-- ===================
-- Found problems!
-- xs := [0, 5]
-- x := 0
-- y := 5
-- -------------------
example (x : ℕ) (h : 2 ∣ x) : x < 100 := by slim_check
-- ===================
-- Found problems!
-- x := 258
-- -------------------
example (α : Type) (xs ys : list α) : xs ++ ys = ys ++ xs := by slim_check
-- ===================
-- Found problems!
-- α := ℤ
-- xs := [-4]
-- ys := [1]
-- -------------------
example : ∀ x ∈ [1,2,3], x < 4 := by slim_check
-- Success
```
In the first example, `slim_check` is called on the following goal:
```lean
xs : list ℕ,
h : ∃ (x : ℕ) (H : x ∈ xs), x < 3
⊢ ∀ (y : ℕ), y ∈ xs → y < 5
```
The local constants are reverted and an instance is found for
`testable (∀ (xs : list ℕ), (∃ x ∈ xs, x < 3) → (∀ y ∈ xs, y < 5))`.
The `testable` instance is supported by instances of `sampleable (list ℕ)`,
`decidable (x < 3)` and `decidable (y < 5)`. `slim_check` builds a
`testable` instance step by step with:
```
- testable (∀ (xs : list ℕ), (∃ x ∈ xs, x < 3) → (∀ y ∈ xs, y < 5))
-: sampleable (list xs)
- testable ((∃ x ∈ xs, x < 3) → (∀ y ∈ xs, y < 5))
- testable (∀ x ∈ xs, x < 3 → (∀ y ∈ xs, y < 5))
- testable (x < 3 → (∀ y ∈ xs, y < 5))
-: decidable (x < 3)
- testable (∀ y ∈ xs, y < 5)
-: decidable (y < 5)
```
`sampleable (list ℕ)` lets us create random data of type `list ℕ` in a way that
helps find small counter-examples. Next, the test of the proposition
hinges on `x < 3` and `y < 5` to both be decidable. The
implication between the two could be tested as a whole but it would be
less informative. Indeed, if we generate lists that only contain numbers
greater than `3`, the implication will always trivially hold but we should
conclude that we haven't found meaningful examples. Instead, when `x < 3`
does not hold, we reject the example (i.e. we do not count it toward
the 100 required positive examples) and we start over. Therefore, when
`slim_check` prints `Success`, it means that a hundred suitable lists
were found and successfully tested.
If no counter-examples are found, `slim_check` behaves like `admit`.
`slim_check` can also be invoked using `#eval`:
```lean
#eval slim_check.testable.check (∀ (α : Type) (xs ys : list α), xs ++ ys = ys ++ xs)
-- ===================
-- Found problems!
-- α := ℤ
-- xs := [-4]
-- ys := [1]
-- -------------------
```
For more information on writing your own `sampleable` and `testable`
instances, see `testing.slim_check.testable`.
-/
namespace tactic.interactive
open tactic slim_check
declare_trace slim_check.instance
declare_trace slim_check.decoration
declare_trace slim_check.discared
open expr
/-- Tree structure representing a `testable` instance. -/
meta inductive instance_tree
| node : name → expr → list instance_tree → instance_tree
/-- Gather information about a `testable` instance. Given
an expression of type `testable ?p`, gather the
name of the `testable` instances that it is built from
and the proposition that they test. -/
meta def summarize_instance : expr → tactic instance_tree
| (lam n bi d b) := do
v ← mk_local' n bi d,
summarize_instance $ b.instantiate_var v
| e@(app f x) := do
`(testable %%p) ← infer_type e,
xs ← e.get_app_args.mmap_filter (try_core ∘ summarize_instance),
pure $ instance_tree.node e.get_app_fn.const_name p xs
| e := do
failed
/-- format a `instance_tree` -/
meta def instance_tree.to_format : instance_tree → tactic format
| (instance_tree.node n p xs) := do
xs ← format.join <$> (xs.mmap $ λ t, flip format.indent 2 <$> instance_tree.to_format t),
ys ← pformat!"testable ({p})",
pformat!"+ {n} :{format.indent ys 2}\n{xs}"
meta instance instance_tree.has_to_tactic_format : has_to_tactic_format instance_tree :=
⟨ instance_tree.to_format ⟩
/--
`slim_check` considers a proof goal and tries to generate examples
that would contradict the statement.
Let's consider the following proof goal.
```lean
xs : list ℕ,
h : ∃ (x : ℕ) (H : x ∈ xs), x < 3
⊢ ∀ (y : ℕ), y ∈ xs → y < 5
```
The local constants will be reverted and an instance will be found for
`testable (∀ (xs : list ℕ), (∃ x ∈ xs, x < 3) → (∀ y ∈ xs, y < 5))`.
The `testable` instance is supported by an instance of `sampleable (list ℕ)`,
`decidable (x < 3)` and `decidable (y < 5)`.
Examples will be created in ascending order of size (more or less)
The first counter-examples found will be printed and will result in an error:
```
===================
Found problems!
xs := [1, 28]
x := 1
y := 28
-------------------
```
If `slim_check` successfully tests 100 examples, it acts like
admit. If it gives up or finds a counter-example, it reports an error.
For more information on writing your own `sampleable` and `testable`
instances, see `testing.slim_check.testable`.
Optional arguments given with `slim_check_cfg`
* num_inst (default 100): number of examples to test properties with
* max_size (default 100): final size argument
* enable_tracing (default ff): enable the printing of discarded samples
Options:
* `set_option trace.slim_check.decoration true`: print the proposition with quantifier annotations
* `set_option trace.slim_check.discarded true`: print the examples discarded because they do not satisfy assumptions
* `set_option trace.slim_check.instance true`: print the instances of `testable` being used to test the proposition
-/
meta def slim_check (cfg : slim_check_cfg := {}) : tactic unit := do
{ tgt ← retrieve $ tactic.revert_all >> target,
let tgt' := tactic.add_decorations tgt,
let cfg := { cfg with enable_tracing := cfg.enable_tracing || is_trace_enabled_for `slim_check.discared },
inst ← mk_app ``testable [tgt'] >>= mk_instance <|>
fail!"Failed to create a `testable` instance for `{tgt}`.
What to do:
1. make sure that the types you are using have `sampleable` instances (you can use `#sample my_type` if you are unsure);
2. make sure that the relations and predicates that your proposition use are decidable;
3. make sure that instances of `testable` exist that, when combined, apply to your decorated proposition:
```
{tgt'}
```
Use `set_option trace.class_instances true` to understand what instances are missing.
Try this:
set_option trace.class_instances true
#check (by apply_instance : testable ({tgt'}))",
e ← mk_mapp ``testable.check [tgt, `(cfg), tgt', inst],
when_tracing `slim_check.decoration trace!"[testable decoration]\n {tgt'}",
when_tracing `slim_check.instance $ do
{ inst ← summarize_instance inst >>= pp,
trace!"\n[testable instance]{format.indent inst 2}" },
code ← eval_expr (io punit) e,
unsafe_run_io code,
admit }
end tactic.interactive
|
458f71a5a79783b9c667eef1f0058837719fd9f2
|
7cef822f3b952965621309e88eadf618da0c8ae9
|
/src/topology/basic.lean
|
70bfe9a95d65c4d017db3a41814a80c4dba6fbe4
|
[
"Apache-2.0"
] |
permissive
|
rmitta/mathlib
|
8d90aee30b4db2b013e01f62c33f297d7e64a43d
|
883d974b608845bad30ae19e27e33c285200bf84
|
refs/heads/master
| 1,585,776,832,544
| 1,576,874,096,000
| 1,576,874,096,000
| 153,663,165
| 0
| 2
|
Apache-2.0
| 1,544,806,490,000
| 1,539,884,365,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 33,416
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Jeremy Avigad
-/
import order.filter
/-!
# Basic theory of topological spaces.
The main definition is the type class `topological space α` which endows a type `α` with a topology.
Then `set α` gets predicates `is_open`, `is_closed` and functions `interior`, `closure` and
`frontier`. Each point `x` of `α` gets a neighborhood filter `𝓝 x`.
This file also defines locally finite families of subsets of `α`.
For topological spaces `α` and `β`, a function `f : α → β` and a point `a : α`,
`continuous_at f a` means `f` is continuous at `a`, and global continuity is
`continuous f`. There is also a version of continuity `pcontinuous` for
partially defined functions.
## Implementation notes
Topology in mathlib heavily uses filters (even more than in Bourbaki). See explanations in
`docs/theories/topology.md`.
## References
* [N. Bourbaki, *General Topology*][bourbaki1966]
* [I. M. James, *Topologies and Uniformities*][james1999]
## Tags
topological space, interior, closure, frontier, neighborhood, continuity, continuous function
-/
open set filter lattice classical
open_locale classical
universes u v w
/-- A topology on `α`. -/
structure topological_space (α : Type u) :=
(is_open : set α → Prop)
(is_open_univ : is_open univ)
(is_open_inter : ∀s t, is_open s → is_open t → is_open (s ∩ t))
(is_open_sUnion : ∀s, (∀t∈s, is_open t) → is_open (⋃₀ s))
attribute [class] topological_space
section topological_space
variables {α : Type u} {β : Type v} {ι : Sort w} {a : α} {s s₁ s₂ : set α} {p p₁ p₂ : α → Prop}
@[ext]
lemma topological_space_eq : ∀ {f g : topological_space α}, f.is_open = g.is_open → f = g
| ⟨a, _, _, _⟩ ⟨b, _, _, _⟩ rfl := rfl
section
variables [t : topological_space α]
include t
/-- `is_open s` means that `s` is open in the ambient topological space on `α` -/
def is_open (s : set α) : Prop := topological_space.is_open t s
@[simp]
lemma is_open_univ : is_open (univ : set α) := topological_space.is_open_univ t
lemma is_open_inter (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∩ s₂) :=
topological_space.is_open_inter t s₁ s₂ h₁ h₂
lemma is_open_sUnion {s : set (set α)} (h : ∀t ∈ s, is_open t) : is_open (⋃₀ s) :=
topological_space.is_open_sUnion t s h
end
lemma is_open_fold {s : set α} {t : topological_space α} : t.is_open s = @is_open α t s :=
rfl
variables [topological_space α]
lemma is_open_Union {f : ι → set α} (h : ∀i, is_open (f i)) : is_open (⋃i, f i) :=
is_open_sUnion $ by rintro _ ⟨i, rfl⟩; exact h i
lemma is_open_bUnion {s : set β} {f : β → set α} (h : ∀i∈s, is_open (f i)) :
is_open (⋃i∈s, f i) :=
is_open_Union $ assume i, is_open_Union $ assume hi, h i hi
lemma is_open_union (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∪ s₂) :=
by rw union_eq_Union; exact is_open_Union (bool.forall_bool.2 ⟨h₂, h₁⟩)
@[simp] lemma is_open_empty : is_open (∅ : set α) :=
by rw ← sUnion_empty; exact is_open_sUnion (assume a, false.elim)
lemma is_open_sInter {s : set (set α)} (hs : finite s) : (∀t ∈ s, is_open t) → is_open (⋂₀ s) :=
finite.induction_on hs (λ _, by rw sInter_empty; exact is_open_univ) $
λ a s has hs ih h, by rw sInter_insert; exact
is_open_inter (h _ $ mem_insert _ _) (ih $ λ t, h t ∘ mem_insert_of_mem _)
lemma is_open_bInter {s : set β} {f : β → set α} (hs : finite s) :
(∀i∈s, is_open (f i)) → is_open (⋂i∈s, f i) :=
finite.induction_on hs
(λ _, by rw bInter_empty; exact is_open_univ)
(λ a s has hs ih h, by rw bInter_insert; exact
is_open_inter (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi))))
lemma is_open_Inter [fintype β] {s : β → set α}
(h : ∀ i, is_open (s i)) : is_open (⋂ i, s i) :=
suffices is_open (⋂ (i : β) (hi : i ∈ @univ β), s i), by simpa,
is_open_bInter finite_univ (λ i _, h i)
lemma is_open_Inter_prop {p : Prop} {s : p → set α}
(h : ∀ h : p, is_open (s h)) : is_open (Inter s) :=
by by_cases p; simp *
lemma is_open_const {p : Prop} : is_open {a : α | p} :=
by_cases
(assume : p, begin simp only [this]; exact is_open_univ end)
(assume : ¬ p, begin simp only [this]; exact is_open_empty end)
lemma is_open_and : is_open {a | p₁ a} → is_open {a | p₂ a} → is_open {a | p₁ a ∧ p₂ a} :=
is_open_inter
/-- A set is closed if its complement is open -/
def is_closed (s : set α) : Prop := is_open (-s)
@[simp] lemma is_closed_empty : is_closed (∅ : set α) :=
by unfold is_closed; rw compl_empty; exact is_open_univ
@[simp] lemma is_closed_univ : is_closed (univ : set α) :=
by unfold is_closed; rw compl_univ; exact is_open_empty
lemma is_closed_union : is_closed s₁ → is_closed s₂ → is_closed (s₁ ∪ s₂) :=
λ h₁ h₂, by unfold is_closed; rw compl_union; exact is_open_inter h₁ h₂
lemma is_closed_sInter {s : set (set α)} : (∀t ∈ s, is_closed t) → is_closed (⋂₀ s) :=
by simp only [is_closed, compl_sInter, sUnion_image]; exact assume h, is_open_Union $ assume t, is_open_Union $ assume ht, h t ht
lemma is_closed_Inter {f : ι → set α} (h : ∀i, is_closed (f i)) : is_closed (⋂i, f i ) :=
is_closed_sInter $ assume t ⟨i, (heq : f i = t)⟩, heq ▸ h i
@[simp] lemma is_open_compl_iff {s : set α} : is_open (-s) ↔ is_closed s := iff.rfl
@[simp] lemma is_closed_compl_iff {s : set α} : is_closed (-s) ↔ is_open s :=
by rw [←is_open_compl_iff, compl_compl]
lemma is_open_diff {s t : set α} (h₁ : is_open s) (h₂ : is_closed t) : is_open (s \ t) :=
is_open_inter h₁ $ is_open_compl_iff.mpr h₂
lemma is_closed_inter (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (s₁ ∩ s₂) :=
by rw [is_closed, compl_inter]; exact is_open_union h₁ h₂
lemma is_closed_bUnion {s : set β} {f : β → set α} (hs : finite s) :
(∀i∈s, is_closed (f i)) → is_closed (⋃i∈s, f i) :=
finite.induction_on hs
(λ _, by rw bUnion_empty; exact is_closed_empty)
(λ a s has hs ih h, by rw bUnion_insert; exact
is_closed_union (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi))))
lemma is_closed_Union [fintype β] {s : β → set α}
(h : ∀ i, is_closed (s i)) : is_closed (Union s) :=
suffices is_closed (⋃ (i : β) (hi : i ∈ @univ β), s i),
by convert this; simp [set.ext_iff],
is_closed_bUnion finite_univ (λ i _, h i)
lemma is_closed_Union_prop {p : Prop} {s : p → set α}
(h : ∀ h : p, is_closed (s h)) : is_closed (Union s) :=
by by_cases p; simp *
lemma is_closed_imp {p q : α → Prop} (hp : is_open {x | p x})
(hq : is_closed {x | q x}) : is_closed {x | p x → q x} :=
have {x | p x → q x} = (- {x | p x}) ∪ {x | q x}, from set.ext $ λ x, imp_iff_not_or,
by rw [this]; exact is_closed_union (is_closed_compl_iff.mpr hp) hq
lemma is_open_neg : is_closed {a | p a} → is_open {a | ¬ p a} :=
is_open_compl_iff.mpr
/-- The interior of a set `s` is the largest open subset of `s`. -/
def interior (s : set α) : set α := ⋃₀ {t | is_open t ∧ t ⊆ s}
lemma mem_interior {s : set α} {x : α} :
x ∈ interior s ↔ ∃ t ⊆ s, is_open t ∧ x ∈ t :=
by simp only [interior, mem_set_of_eq, exists_prop, and_assoc, and.left_comm]
@[simp] lemma is_open_interior {s : set α} : is_open (interior s) :=
is_open_sUnion $ assume t ⟨h₁, h₂⟩, h₁
lemma interior_subset {s : set α} : interior s ⊆ s :=
sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂
lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s :=
subset_sUnion_of_mem ⟨h₂, h₁⟩
lemma interior_eq_of_open {s : set α} (h : is_open s) : interior s = s :=
subset.antisymm interior_subset (interior_maximal (subset.refl s) h)
lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s :=
⟨assume h, h ▸ is_open_interior, interior_eq_of_open⟩
lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s :=
by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and]
lemma subset_interior_iff_subset_of_open {s t : set α} (h₁ : is_open s) :
s ⊆ interior t ↔ s ⊆ t :=
⟨assume h, subset.trans h interior_subset, assume h₂, interior_maximal h₂ h₁⟩
lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t :=
interior_maximal (subset.trans interior_subset h) is_open_interior
@[simp] lemma interior_empty : interior (∅ : set α) = ∅ :=
interior_eq_of_open is_open_empty
@[simp] lemma interior_univ : interior (univ : set α) = univ :=
interior_eq_of_open is_open_univ
@[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s :=
interior_eq_of_open is_open_interior
@[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t :=
subset.antisymm
(subset_inter (interior_mono $ inter_subset_left s t) (interior_mono $ inter_subset_right s t))
(interior_maximal (inter_subset_inter interior_subset interior_subset) $ is_open_inter is_open_interior is_open_interior)
lemma interior_union_is_closed_of_interior_empty {s t : set α} (h₁ : is_closed s) (h₂ : interior t = ∅) :
interior (s ∪ t) = interior s :=
have interior (s ∪ t) ⊆ s, from
assume x ⟨u, ⟨(hu₁ : is_open u), (hu₂ : u ⊆ s ∪ t)⟩, (hx₁ : x ∈ u)⟩,
classical.by_contradiction $ assume hx₂ : x ∉ s,
have u \ s ⊆ t,
from assume x ⟨h₁, h₂⟩, or.resolve_left (hu₂ h₁) h₂,
have u \ s ⊆ interior t,
by rwa subset_interior_iff_subset_of_open (is_open_diff hu₁ h₁),
have u \ s ⊆ ∅,
by rwa h₂ at this,
this ⟨hx₁, hx₂⟩,
subset.antisymm
(interior_maximal this is_open_interior)
(interior_mono $ subset_union_left _ _)
lemma is_open_iff_forall_mem_open : is_open s ↔ ∀ x ∈ s, ∃ t ⊆ s, is_open t ∧ x ∈ t :=
by rw ← subset_interior_iff_open; simp only [subset_def, mem_interior]
/-- The closure of `s` is the smallest closed set containing `s`. -/
def closure (s : set α) : set α := ⋂₀ {t | is_closed t ∧ s ⊆ t}
@[simp] lemma is_closed_closure {s : set α} : is_closed (closure s) :=
is_closed_sInter $ assume t ⟨h₁, h₂⟩, h₁
lemma subset_closure {s : set α} : s ⊆ closure s :=
subset_sInter $ assume t ⟨h₁, h₂⟩, h₂
lemma closure_minimal {s t : set α} (h₁ : s ⊆ t) (h₂ : is_closed t) : closure s ⊆ t :=
sInter_subset_of_mem ⟨h₂, h₁⟩
lemma closure_eq_of_is_closed {s : set α} (h : is_closed s) : closure s = s :=
subset.antisymm (closure_minimal (subset.refl s) h) subset_closure
lemma closure_eq_iff_is_closed {s : set α} : closure s = s ↔ is_closed s :=
⟨assume h, h ▸ is_closed_closure, closure_eq_of_is_closed⟩
lemma closure_subset_iff_subset_of_is_closed {s t : set α} (h₁ : is_closed t) :
closure s ⊆ t ↔ s ⊆ t :=
⟨subset.trans subset_closure, assume h, closure_minimal h h₁⟩
lemma closure_mono {s t : set α} (h : s ⊆ t) : closure s ⊆ closure t :=
closure_minimal (subset.trans h subset_closure) is_closed_closure
lemma is_closed_of_closure_subset {s : set α} (h : closure s ⊆ s) : is_closed s :=
by rw subset.antisymm subset_closure h; exact is_closed_closure
@[simp] lemma closure_empty : closure (∅ : set α) = ∅ :=
closure_eq_of_is_closed is_closed_empty
lemma closure_empty_iff (s : set α) : closure s = ∅ ↔ s = ∅ :=
begin
split; intro h,
{ rw set.eq_empty_iff_forall_not_mem,
intros x H,
simpa only [h] using subset_closure H },
{ exact (eq.symm h) ▸ closure_empty },
end
@[simp] lemma closure_univ : closure (univ : set α) = univ :=
closure_eq_of_is_closed is_closed_univ
@[simp] lemma closure_closure {s : set α} : closure (closure s) = closure s :=
closure_eq_of_is_closed is_closed_closure
@[simp] lemma closure_union {s t : set α} : closure (s ∪ t) = closure s ∪ closure t :=
subset.antisymm
(closure_minimal (union_subset_union subset_closure subset_closure) $ is_closed_union is_closed_closure is_closed_closure)
(union_subset (closure_mono $ subset_union_left _ _) (closure_mono $ subset_union_right _ _))
lemma interior_subset_closure {s : set α} : interior s ⊆ closure s :=
subset.trans interior_subset subset_closure
lemma closure_eq_compl_interior_compl {s : set α} : closure s = - interior (- s) :=
begin
unfold interior closure is_closed,
rw [compl_sUnion, compl_image_set_of],
simp only [compl_subset_compl]
end
@[simp] lemma interior_compl {s : set α} : interior (- s) = - closure s :=
by simp [closure_eq_compl_interior_compl]
@[simp] lemma closure_compl {s : set α} : closure (- s) = - interior s :=
by simp [closure_eq_compl_interior_compl]
theorem mem_closure_iff {s : set α} {a : α} : a ∈ closure s ↔ ∀ o, is_open o → a ∈ o → o ∩ s ≠ ∅ :=
⟨λ h o oo ao os,
have s ⊆ -o, from λ x xs xo, @ne_empty_of_mem α (o∩s) x ⟨xo, xs⟩ os,
closure_minimal this (is_closed_compl_iff.2 oo) h ao,
λ H c ⟨h₁, h₂⟩, classical.by_contradiction $ λ nc,
let ⟨x, hc, hs⟩ := exists_mem_of_ne_empty (H _ h₁ nc) in hc (h₂ hs)⟩
lemma dense_iff_inter_open {s : set α} : closure s = univ ↔ ∀ U, is_open U → U ≠ ∅ → U ∩ s ≠ ∅ :=
begin
split ; intro h,
{ intros U U_op U_ne,
cases exists_mem_of_ne_empty U_ne with x x_in,
exact mem_closure_iff.1 (by simp only [h]) U U_op x_in },
{ apply eq_univ_of_forall, intro x,
rw mem_closure_iff,
intros U U_op x_in,
exact h U U_op (ne_empty_of_mem x_in) },
end
lemma dense_of_subset_dense {s₁ s₂ : set α} (h : s₁ ⊆ s₂) (hd : closure s₁ = univ) :
closure s₂ = univ :=
by { rw [← univ_subset_iff, ← hd], exact closure_mono h }
/-- The frontier of a set is the set of points between the closure and interior. -/
def frontier (s : set α) : set α := closure s \ interior s
lemma frontier_eq_closure_inter_closure {s : set α} :
frontier s = closure s ∩ closure (- s) :=
by rw [closure_compl, frontier, diff_eq]
/-- The complement of a set has the same frontier as the original set. -/
@[simp] lemma frontier_compl (s : set α) : frontier (-s) = frontier s :=
by simp only [frontier_eq_closure_inter_closure, lattice.neg_neg, inter_comm]
/-- The frontier of a set is closed. -/
lemma is_closed_frontier {s : set α} : is_closed (frontier s) :=
by rw frontier_eq_closure_inter_closure; exact is_closed_inter is_closed_closure is_closed_closure
/-- The frontier of a set has no interior point. -/
lemma interior_frontier {s : set α} (h : is_closed s) : interior (frontier s) = ∅ :=
begin
have A : frontier s = s \ interior s, by rw [frontier, closure_eq_of_is_closed h],
have B : interior (frontier s) ⊆ interior s, by rw A; exact interior_mono (diff_subset _ _),
have C : interior (frontier s) ⊆ frontier s := interior_subset,
have : interior (frontier s) ⊆ (interior s) ∩ (s \ interior s) :=
subset_inter B (by simpa [A] using C),
rwa [inter_diff_self, subset_empty_iff] at this,
end
/-- neighbourhood filter -/
def nhds (a : α) : filter α := (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, principal s)
localized "notation `𝓝` := nhds" in topological_space
lemma nhds_def (a : α) : 𝓝 a = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, principal s) := rfl
lemma le_nhds_iff {f a} : f ≤ 𝓝 a ↔ ∀ s : set α, a ∈ s → is_open s → s ∈ f :=
by simp [nhds_def]
lemma nhds_le_of_le {f a} {s : set α} (h : a ∈ s) (o : is_open s) (sf : principal s ≤ f) : 𝓝 a ≤ f :=
by rw nhds_def; exact infi_le_of_le s (infi_le_of_le ⟨h, o⟩ sf)
lemma nhds_sets {a : α} : (𝓝 a).sets = {s | ∃t⊆s, is_open t ∧ a ∈ t} :=
calc (𝓝 a).sets = (⋃s∈{s : set α| a ∈ s ∧ is_open s}, (principal s).sets) : binfi_sets_eq
(assume x ⟨hx₁, hx₂⟩ y ⟨hy₁, hy₂⟩,
⟨x ∩ y, ⟨⟨hx₁, hy₁⟩, is_open_inter hx₂ hy₂⟩,
le_principal_iff.2 (inter_subset_left _ _),
le_principal_iff.2 (inter_subset_right _ _)⟩)
⟨univ, mem_univ _, is_open_univ⟩
... = {s | ∃t⊆s, is_open t ∧ a ∈ t} :
le_antisymm
(supr_le $ assume i, supr_le $ assume ⟨hi₁, hi₂⟩ t ht, ⟨i, ht, hi₂, hi₁⟩)
(assume t ⟨i, hi₁, hi₂, hi₃⟩, mem_Union.2 ⟨i, mem_Union.2 ⟨⟨hi₃, hi₂⟩, hi₁⟩⟩)
lemma map_nhds {a : α} {f : α → β} :
map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, principal (image f s)) :=
calc map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, map f (principal s)) :
map_binfi_eq
(assume x ⟨hx₁, hx₂⟩ y ⟨hy₁, hy₂⟩,
⟨x ∩ y, ⟨⟨hx₁, hy₁⟩, is_open_inter hx₂ hy₂⟩,
le_principal_iff.2 (inter_subset_left _ _),
le_principal_iff.2 (inter_subset_right _ _)⟩)
⟨univ, mem_univ _, is_open_univ⟩
... = _ : by simp only [map_principal]
attribute [irreducible] nhds
lemma mem_nhds_sets_iff {a : α} {s : set α} :
s ∈ 𝓝 a ↔ ∃t⊆s, is_open t ∧ a ∈ t :=
by simp only [nhds_sets, mem_set_of_eq, exists_prop]
lemma mem_of_nhds {a : α} {s : set α} : s ∈ 𝓝 a → a ∈ s :=
λ H, let ⟨t, ht, _, hs⟩ := mem_nhds_sets_iff.1 H in ht hs
lemma mem_nhds_sets {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) :
s ∈ 𝓝 a :=
mem_nhds_sets_iff.2 ⟨s, subset.refl _, hs, ha⟩
theorem all_mem_nhds (x : α) (P : set α → Prop) (hP : ∀ s t, s ⊆ t → P s → P t) :
(∀ s ∈ 𝓝 x, P s) ↔ (∀ s, is_open s → x ∈ s → P s) :=
iff.intro
(λ h s os xs, h s (mem_nhds_sets os xs))
(λ h t,
begin
change t ∈ (𝓝 x).sets → P t,
rw nhds_sets,
rintros ⟨s, hs, opens, xs⟩,
exact hP _ _ hs (h s opens xs),
end)
theorem all_mem_nhds_filter (x : α) (f : set α → set β) (hf : ∀ s t, s ⊆ t → f s ⊆ f t)
(l : filter β) :
(∀ s ∈ 𝓝 x, f s ∈ l) ↔ (∀ s, is_open s → x ∈ s → f s ∈ l) :=
all_mem_nhds _ _ (λ s t ssubt h, mem_sets_of_superset h (hf s t ssubt))
theorem rtendsto_nhds {r : rel β α} {l : filter β} {a : α} :
rtendsto r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.core s ∈ l) :=
all_mem_nhds_filter _ _ (λ s t, id) _
theorem rtendsto'_nhds {r : rel β α} {l : filter β} {a : α} :
rtendsto' r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.preimage s ∈ l) :=
by { rw [rtendsto'_def], apply all_mem_nhds_filter, apply rel.preimage_mono }
theorem ptendsto_nhds {f : β →. α} {l : filter β} {a : α} :
ptendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.core s ∈ l) :=
rtendsto_nhds
theorem ptendsto'_nhds {f : β →. α} {l : filter β} {a : α} :
ptendsto' f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.preimage s ∈ l) :=
rtendsto'_nhds
theorem tendsto_nhds {f : β → α} {l : filter β} {a : α} :
tendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f ⁻¹' s ∈ l) :=
all_mem_nhds_filter _ _ (λ s t h, preimage_mono h) _
lemma tendsto_const_nhds {a : α} {f : filter β} : tendsto (λb:β, a) f (𝓝 a) :=
tendsto_nhds.mpr $ assume s hs ha, univ_mem_sets' $ assume _, ha
lemma pure_le_nhds : pure ≤ (𝓝 : α → filter α) :=
assume a, by rw nhds_def; exact le_infi
(assume s, le_infi $ assume ⟨h₁, _⟩, principal_mono.mpr $
singleton_subset_iff.2 h₁)
lemma tendsto_pure_nhds {α : Type*} [topological_space β] (f : α → β) (a : α) :
tendsto f (pure a) (𝓝 (f a)) :=
begin
rw [tendsto, filter.map_pure],
exact pure_le_nhds (f a)
end
@[simp] lemma nhds_neq_bot {a : α} : 𝓝 a ≠ ⊥ :=
assume : 𝓝 a = ⊥,
have pure a = (⊥ : filter α),
from lattice.bot_unique $ this ▸ pure_le_nhds a,
pure_neq_bot this
lemma interior_eq_nhds {s : set α} : interior s = {a | 𝓝 a ≤ principal s} :=
set.ext $ λ x, by simp only [mem_interior, le_principal_iff, mem_nhds_sets_iff]; refl
lemma mem_interior_iff_mem_nhds {s : set α} {a : α} :
a ∈ interior s ↔ s ∈ 𝓝 a :=
by simp only [interior_eq_nhds, le_principal_iff]; refl
lemma is_open_iff_nhds {s : set α} : is_open s ↔ ∀a∈s, 𝓝 a ≤ principal s :=
calc is_open s ↔ s ⊆ interior s : subset_interior_iff_open.symm
... ↔ (∀a∈s, 𝓝 a ≤ principal s) : by rw [interior_eq_nhds]; refl
lemma is_open_iff_mem_nhds {s : set α} : is_open s ↔ ∀a∈s, s ∈ 𝓝 a :=
is_open_iff_nhds.trans $ forall_congr $ λ _, imp_congr_right $ λ _, le_principal_iff
lemma closure_eq_nhds {s : set α} : closure s = {a | 𝓝 a ⊓ principal s ≠ ⊥} :=
calc closure s = - interior (- s) : closure_eq_compl_interior_compl
... = {a | ¬ 𝓝 a ≤ principal (-s)} : by rw [interior_eq_nhds]; refl
... = {a | 𝓝 a ⊓ principal s ≠ ⊥} : set.ext $ assume a, not_congr
(inf_eq_bot_iff_le_compl
(show principal s ⊔ principal (-s) = ⊤, by simp only [sup_principal, union_compl_self, principal_univ])
(by simp only [inf_principal, inter_compl_self, principal_empty])).symm
theorem mem_closure_iff_nhds {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, t ∩ s ≠ ∅ :=
mem_closure_iff.trans
⟨λ H t ht, subset_ne_empty
(inter_subset_inter_left _ interior_subset)
(H _ is_open_interior (mem_interior_iff_mem_nhds.2 ht)),
λ H o oo ao, H _ (mem_nhds_sets oo ao)⟩
/-- `x` belongs to the closure of `s` if and only if some ultrafilter
supported on `s` converges to `x`. -/
lemma mem_closure_iff_ultrafilter {s : set α} {x : α} :
x ∈ closure s ↔ ∃ (u : ultrafilter α), s ∈ u.val ∧ u.val ≤ 𝓝 x :=
begin
rw closure_eq_nhds, change 𝓝 x ⊓ principal s ≠ ⊥ ↔ _, symmetry,
convert exists_ultrafilter_iff _, ext u,
rw [←le_principal_iff, inf_comm, le_inf_iff]
end
lemma is_closed_iff_nhds {s : set α} : is_closed s ↔ ∀a, 𝓝 a ⊓ principal s ≠ ⊥ → a ∈ s :=
calc is_closed s ↔ closure s = s : by rw [closure_eq_iff_is_closed]
... ↔ closure s ⊆ s : ⟨assume h, by rw h, assume h, subset.antisymm h subset_closure⟩
... ↔ (∀a, 𝓝 a ⊓ principal s ≠ ⊥ → a ∈ s) : by rw [closure_eq_nhds]; refl
lemma closure_inter_open {s t : set α} (h : is_open s) : s ∩ closure t ⊆ closure (s ∩ t) :=
assume a ⟨hs, ht⟩,
have s ∈ 𝓝 a, from mem_nhds_sets h hs,
have 𝓝 a ⊓ principal s = 𝓝 a, from inf_of_le_left $ by rwa le_principal_iff,
have 𝓝 a ⊓ principal (s ∩ t) ≠ ⊥,
from calc 𝓝 a ⊓ principal (s ∩ t) = 𝓝 a ⊓ (principal s ⊓ principal t) : by rw inf_principal
... = 𝓝 a ⊓ principal t : by rw [←inf_assoc, this]
... ≠ ⊥ : by rw [closure_eq_nhds] at ht; assumption,
by rw [closure_eq_nhds]; assumption
lemma closure_diff {s t : set α} : closure s - closure t ⊆ closure (s - t) :=
calc closure s \ closure t = (- closure t) ∩ closure s : by simp only [diff_eq, inter_comm]
... ⊆ closure (- closure t ∩ s) : closure_inter_open $ is_open_compl_iff.mpr $ is_closed_closure
... = closure (s \ closure t) : by simp only [diff_eq, inter_comm]
... ⊆ closure (s \ t) : closure_mono $ diff_subset_diff (subset.refl s) subset_closure
lemma mem_of_closed_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α}
(hb : b ≠ ⊥) (hf : tendsto f b (𝓝 a)) (hs : is_closed s) (h : f ⁻¹' s ∈ b) : a ∈ s :=
have b.map f ≤ 𝓝 a ⊓ principal s,
from le_trans (le_inf (le_refl _) (le_principal_iff.mpr h)) (inf_le_inf hf (le_refl _)),
is_closed_iff_nhds.mp hs a $ neq_bot_of_le_neq_bot (map_ne_bot hb) this
lemma mem_of_closed_of_tendsto' {f : β → α} {x : filter β} {a : α} {s : set α}
(hf : tendsto f x (𝓝 a)) (hs : is_closed s) (h : x ⊓ principal (f ⁻¹' s) ≠ ⊥) : a ∈ s :=
is_closed_iff_nhds.mp hs _ $ neq_bot_of_le_neq_bot (@map_ne_bot _ _ _ f h) $
le_inf (le_trans (map_mono $ inf_le_left) hf) $
le_trans (map_mono $ inf_le_right_of_le $ by simp only [comap_principal, le_principal_iff]; exact subset.refl _) (@map_comap_le _ _ _ f)
lemma mem_closure_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α}
(hb : b ≠ ⊥) (hf : tendsto f b (𝓝 a)) (h : f ⁻¹' s ∈ b) : a ∈ closure s :=
mem_of_closed_of_tendsto hb hf (is_closed_closure) $
filter.mem_sets_of_superset h (preimage_mono subset_closure)
section lim
variables [inhabited α]
/-- If `f` is a filter, then `lim f` is a limit of the filter, if it exists. -/
noncomputable def lim (f : filter α) : α := epsilon $ λa, f ≤ 𝓝 a
lemma lim_spec {f : filter α} (h : ∃a, f ≤ 𝓝 a) : f ≤ 𝓝 (lim f) := epsilon_spec h
end lim
/- locally finite family [General Topology (Bourbaki, 1995)] -/
section locally_finite
/-- A family of sets in `set α` is locally finite if at every point `x:α`,
there is a neighborhood of `x` which meets only finitely many sets in the family -/
def locally_finite (f : β → set α) :=
∀x:α, ∃t ∈ 𝓝 x, finite {i | f i ∩ t ≠ ∅ }
lemma locally_finite_of_finite {f : β → set α} (h : finite (univ : set β)) : locally_finite f :=
assume x, ⟨univ, univ_mem_sets, finite_subset h $ subset_univ _⟩
lemma locally_finite_subset
{f₁ f₂ : β → set α} (hf₂ : locally_finite f₂) (hf : ∀b, f₁ b ⊆ f₂ b) : locally_finite f₁ :=
assume a,
let ⟨t, ht₁, ht₂⟩ := hf₂ a in
⟨t, ht₁, finite_subset ht₂ $ assume i hi,
neq_bot_of_le_neq_bot hi $ inter_subset_inter (hf i) $ subset.refl _⟩
lemma is_closed_Union_of_locally_finite {f : β → set α}
(h₁ : locally_finite f) (h₂ : ∀i, is_closed (f i)) : is_closed (⋃i, f i) :=
is_open_iff_nhds.mpr $ assume a, assume h : a ∉ (⋃i, f i),
have ∀i, a ∈ -f i,
from assume i hi, h $ mem_Union.2 ⟨i, hi⟩,
have ∀i, - f i ∈ (𝓝 a).sets,
by rw [nhds_sets]; exact assume i, ⟨- f i, subset.refl _, h₂ i, this i⟩,
let ⟨t, h_sets, (h_fin : finite {i | f i ∩ t ≠ ∅ })⟩ := h₁ a in
calc 𝓝 a ≤ principal (t ∩ (⋂ i∈{i | f i ∩ t ≠ ∅ }, - f i)) :
begin
rw [le_principal_iff],
apply @filter.inter_mem_sets _ (𝓝 a) _ _ h_sets,
apply @filter.Inter_mem_sets _ (𝓝 a) _ _ _ h_fin,
exact assume i h, this i
end
... ≤ principal (- ⋃i, f i) :
begin
simp only [principal_mono, subset_def, mem_compl_eq, mem_inter_eq,
mem_Inter, mem_set_of_eq, mem_Union, and_imp, not_exists,
not_eq_empty_iff_exists, exists_imp_distrib, (≠)],
exact assume x xt ht i xfi, ht i x xfi xt xfi
end
end locally_finite
end topological_space
section continuous
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]
open_locale topological_space
/-- A function between topological spaces is continuous if the preimage
of every open set is open. -/
def continuous (f : α → β) := ∀s, is_open s → is_open (f ⁻¹' s)
/-- A function between topological spaces is continuous at a point `x₀`
if `f x` tends to `f x₀` when `x` tends to `x₀`. -/
def continuous_at (f : α → β) (x : α) := tendsto f (𝓝 x) (𝓝 (f x))
lemma continuous_at.preimage_mem_nhds {f : α → β} {x : α} {t : set β} (h : continuous_at f x)
(ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝 x :=
h ht
lemma continuous_id : continuous (id : α → α) :=
assume s h, h
lemma continuous.comp {g : β → γ} {f : α → β} (hg : continuous g) (hf : continuous f) :
continuous (g ∘ f) :=
assume s h, hf _ (hg s h)
lemma continuous_at.comp {g : β → γ} {f : α → β} {x : α}
(hg : continuous_at g (f x)) (hf : continuous_at f x) :
continuous_at (g ∘ f) x :=
hg.comp hf
lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) :
tendsto f (𝓝 x) (𝓝 (f x)) | s :=
show s ∈ 𝓝 (f x) → s ∈ map f (𝓝 x),
by simp [nhds_sets]; exact
assume t t_subset t_open fx_in_t,
⟨f ⁻¹' t, preimage_mono t_subset, hf t t_open, fx_in_t⟩
lemma continuous.continuous_at {f : α → β} {x : α} (h : continuous f) :
continuous_at f x :=
h.tendsto x
lemma continuous_iff_continuous_at {f : α → β} : continuous f ↔ ∀ x, continuous_at f x :=
⟨continuous.tendsto,
assume hf : ∀x, tendsto f (𝓝 x) (𝓝 (f x)),
assume s, assume hs : is_open s,
have ∀a, f a ∈ s → s ∈ 𝓝 (f a),
by simp [nhds_sets]; exact assume a ha, ⟨s, subset.refl s, hs, ha⟩,
show is_open (f ⁻¹' s),
by simp [is_open_iff_nhds]; exact assume a ha, hf a (this a ha)⟩
lemma continuous_const {b : β} : continuous (λa:α, b) :=
continuous_iff_continuous_at.mpr $ assume a, tendsto_const_nhds
lemma continuous_iff_is_closed {f : α → β} :
continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) :=
⟨assume hf s hs, hf (-s) hs,
assume hf s, by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩
lemma continuous_at_iff_ultrafilter {f : α → β} (x) : continuous_at f x ↔
∀ g, is_ultrafilter g → g ≤ 𝓝 x → g.map f ≤ 𝓝 (f x) :=
tendsto_iff_ultrafilter f (𝓝 x) (𝓝 (f x))
lemma continuous_iff_ultrafilter {f : α → β} :
continuous f ↔ ∀ x g, is_ultrafilter g → g ≤ 𝓝 x → g.map f ≤ 𝓝 (f x) :=
by simp only [continuous_iff_continuous_at, continuous_at_iff_ultrafilter]
/-- A piecewise defined function `if p then f else g` is continuous, if both `f` and `g`
are continuous, and they coincide on the frontier (boundary) of the set `{a | p a}`. -/
lemma continuous_if {p : α → Prop} {f g : α → β} {h : ∀a, decidable (p a)}
(hp : ∀a∈frontier {a | p a}, f a = g a) (hf : continuous f) (hg : continuous g) :
continuous (λa, @ite (p a) (h a) β (f a) (g a)) :=
continuous_iff_is_closed.mpr $
assume s hs,
have (λa, ite (p a) (f a) (g a)) ⁻¹' s =
(closure {a | p a} ∩ f ⁻¹' s) ∪ (closure {a | ¬ p a} ∩ g ⁻¹' s),
from set.ext $ assume a,
classical.by_cases
(assume : a ∈ frontier {a | p a},
have hac : a ∈ closure {a | p a}, from this.left,
have hai : a ∈ closure {a | ¬ p a},
from have a ∈ - interior {a | p a}, from this.right, by rwa [←closure_compl] at this,
by by_cases p a; simp [h, hp a this, hac, hai, iff_def] {contextual := tt})
(assume hf : a ∈ - frontier {a | p a},
classical.by_cases
(assume : p a,
have hc : a ∈ closure {a | p a}, from subset_closure this,
have hnc : a ∉ closure {a | ¬ p a},
by show a ∉ closure (- {a | p a}); rw [closure_compl]; simpa [frontier, hc] using hf,
by simp [this, hc, hnc])
(assume : ¬ p a,
have hc : a ∈ closure {a | ¬ p a}, from subset_closure this,
have hnc : a ∉ closure {a | p a},
begin
have hc : a ∈ closure (- {a | p a}), from hc,
simp [closure_compl] at hc,
simpa [frontier, hc] using hf
end,
by simp [this, hc, hnc])),
by rw [this]; exact is_closed_union
(is_closed_inter is_closed_closure $ continuous_iff_is_closed.mp hf s hs)
(is_closed_inter is_closed_closure $ continuous_iff_is_closed.mp hg s hs)
/- Continuity and partial functions -/
/-- Continuity of a partial function -/
def pcontinuous (f : α →. β) := ∀ s, is_open s → is_open (f.preimage s)
lemma open_dom_of_pcontinuous {f : α →. β} (h : pcontinuous f) : is_open f.dom :=
by rw [←pfun.preimage_univ]; exact h _ is_open_univ
lemma pcontinuous_iff' {f : α →. β} :
pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), ptendsto' f (𝓝 x) (𝓝 y) :=
begin
split,
{ intros h x y h',
rw [ptendsto'_def],
change ∀ (s : set β), s ∈ (𝓝 y).sets → pfun.preimage f s ∈ (𝓝 x).sets,
rw [nhds_sets, nhds_sets],
rintros s ⟨t, tsubs, opent, yt⟩,
exact ⟨f.preimage t, pfun.preimage_mono _ tsubs, h _ opent, ⟨y, yt, h'⟩⟩
},
intros hf s os,
rw is_open_iff_nhds,
rintros x ⟨y, ys, fxy⟩ t,
rw [mem_principal_sets],
assume h : f.preimage s ⊆ t,
change t ∈ 𝓝 x,
apply mem_sets_of_superset _ h,
have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x,
{ intros s hs,
have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy,
rw ptendsto'_def at this,
exact this s hs },
show f.preimage s ∈ 𝓝 x,
apply h', rw mem_nhds_sets_iff, exact ⟨s, set.subset.refl _, os, ys⟩
end
lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) :
f '' closure s ⊆ closure (f '' s) :=
have ∀ (a : α), 𝓝 a ⊓ principal s ≠ ⊥ → 𝓝 (f a) ⊓ principal (f '' s) ≠ ⊥,
from assume a ha,
have h₁ : ¬ map f (𝓝 a ⊓ principal s) = ⊥,
by rwa[map_eq_bot_iff],
have h₂ : map f (𝓝 a ⊓ principal s) ≤ 𝓝 (f a) ⊓ principal (f '' s),
from le_inf
(le_trans (map_mono inf_le_left) $ by rw [continuous_iff_continuous_at] at h; exact h a)
(le_trans (map_mono inf_le_right) $ by simp; exact subset.refl _),
neq_bot_of_le_neq_bot h₁ h₂,
by simp [image_subset_iff, closure_eq_nhds]; assumption
lemma mem_closure {s : set α} {t : set β} {f : α → β} {a : α}
(hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t :=
subset.trans (image_closure_subset_closure_image hf) (closure_mono $ image_subset_iff.2 ht) $
(mem_image_of_mem f ha)
end continuous
|
3670ee2bcc4d112d59cb7420aa041d2eaa69f9c5
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/stage0/src/Lean/AuxRecursor.lean
|
3381a656c8764d065069d88a4b0e42ba2220cbcf
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,336
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Environment
namespace Lean
def casesOnSuffix := "casesOn"
def recOnSuffix := "recOn"
def brecOnSuffix := "brecOn"
def binductionOnSuffix := "binductionOn"
def belowSuffix := "below"
def mkCasesOnName (indDeclName : Name) : Name := Name.mkStr indDeclName casesOnSuffix
def mkRecOnName (indDeclName : Name) : Name := Name.mkStr indDeclName recOnSuffix
def mkBRecOnName (indDeclName : Name) : Name := Name.mkStr indDeclName brecOnSuffix
def mkBInductionOnName (indDeclName : Name) : Name := Name.mkStr indDeclName binductionOnSuffix
def mkBelowName (indDeclName : Name) : Name := Name.mkStr indDeclName belowSuffix
builtin_initialize auxRecExt : TagDeclarationExtension ← mkTagDeclarationExtension `auxRec
@[export lean_mark_aux_recursor]
def markAuxRecursor (env : Environment) (declName : Name) : Environment :=
auxRecExt.tag env declName
@[export lean_is_aux_recursor]
def isAuxRecursor (env : Environment) (declName : Name) : Bool :=
auxRecExt.isTagged env declName
-- TODO: use `markAuxRecursor` when they are defined
-- An attribute is not a good solution since we don't want users to control what is tagged as an auxiliary recursor.
|| declName == ``Eq.ndrec
|| declName == ``Eq.ndrecOn
def isAuxRecursorWithSuffix (env : Environment) (declName : Name) (suffix : Name) : Bool :=
match declName with
| .str _ s => s == suffix && isAuxRecursor env declName
| _ => false
def isCasesOnRecursor (env : Environment) (declName : Name) : Bool :=
isAuxRecursorWithSuffix env declName casesOnSuffix
def isRecOnRecursor (env : Environment) (declName : Name) : Bool :=
isAuxRecursorWithSuffix env declName recOnSuffix
def isBRecOnRecursor (env : Environment) (declName : Name) : Bool :=
isAuxRecursorWithSuffix env declName brecOnSuffix
builtin_initialize noConfusionExt : TagDeclarationExtension ← mkTagDeclarationExtension `noConf
@[export lean_mark_no_confusion]
def markNoConfusion (env : Environment) (n : Name) : Environment :=
noConfusionExt.tag env n
@[export lean_is_no_confusion]
def isNoConfusion (env : Environment) (n : Name) : Bool :=
noConfusionExt.isTagged env n
end Lean
|
6d78e1b050b865f5df3c78110ca3850bffa97af4
|
947b78d97130d56365ae2ec264df196ce769371a
|
/tests/lean/run/frontend1.lean
|
fb97e67bd723dd2506c111f86a315a78c7380201
|
[
"Apache-2.0"
] |
permissive
|
shyamalschandra/lean4
|
27044812be8698f0c79147615b1d5090b9f4b037
|
6e7a883b21eaf62831e8111b251dc9b18f40e604
|
refs/heads/master
| 1,671,417,126,371
| 1,601,859,995,000
| 1,601,860,020,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,438
|
lean
|
import Lean.Elab
new_frontend
open Lean
open Lean.Elab
def runM (input : String) (failIff : Bool := true) : CoreM Unit := do
let env ← getEnv;
let opts ← getOptions;
let (env, messages) ← liftIO $ process input env opts;
messages.forM $ fun msg => (liftIO msg.toString) >>= IO.println;
when (failIff && messages.hasErrors) $ throwError "errors have been found";
when (!failIff && !messages.hasErrors) $ throwError "there are no errors";
pure ()
def fail (input : String) : CoreM Unit :=
runM input false
def M := IO Unit
def zero := 0
def one := 1
def two := 2
def hello : String := "hello"
def act1 : IO String :=
pure "hello"
#eval runM "#check @HasAdd.add"
#eval runM "#check [zero, one, two]"
#eval runM "#check id $ Nat.succ one"
#eval runM "#check HasAdd.add one two"
#eval runM "#check one + two > one ∧ True"
#eval runM "#check act1 >>= IO.println"
#eval runM "#check one + two == one"
#eval fail "#check one + one + hello == hello ++ one"
#eval runM "#check Nat.add one $ Nat.add one two"
#eval runM
"universe u universe v
export HasToString (toString)
section namespace foo.bla end bla end foo
variable (p q : Prop)
variable (_ b : _)
variable {α : Type}
variable {m : Type → Type}
variable [Monad m]
#check m
#check Type
#check Prop
#check toString zero
#check id Nat.zero (α := Nat)
#check id _ (α := Nat)
#check id Nat.zero
#check id (α := Nat)
#check @id Nat
#check p
#check α
#check Nat.succ
#check Nat.add
#check id
#check forall (α : Type), α → α
#check (α : Type) → α → α
#check {α : Type} → {β : Type} → M → (α → β) → α → β
#check ()
end"
structure S1 :=
(x y : Nat := 0)
structure S2 extends S1 :=
(z : Nat := 0)
def fD {α} [HasToString α] (a b : α) : String :=
toString a ++ toString b
structure S3 :=
(w : Nat := 0)
(f : forall {α : Type} [HasToString α], α → α → String := @fD)
structure S4 extends S2, S3 :=
(s : Nat := 0)
def s4 : S4 := {}
structure S (α : Type) :=
(field1 : S4 := {})
(field2 : S4 × S4 := ({}, {}))
(field3 : α)
(field4 : List α × Nat := ([], 0))
(vec : Array (α × α) := #[])
(map : Std.HashMap String α := {})
inductive D (α : Type)
| mk (a : α) (s : S4) : D α
def s : S Nat := { field3 := 0 }
def d : D Nat := D.mk 10 {}
def i : Nat := 10
def k : String := "hello"
universes u
class Monoid (α : Type u) :=
(one : α)
(mul : α → α → α)
def m : Monoid Nat :=
{ one := 1, mul := Nat.mul }
def f (x y z : Nat) : Nat :=
x + y + z
#eval runM "#check s4.x"
#eval runM "#check s.field1.x"
#eval runM "#check s.field2.fst"
#eval runM "#check s.field2.fst.w"
#eval runM "#check s.1.x"
#eval runM "#check s.2.1.x"
#eval runM "#check d.1"
#eval runM "#check d.2.x"
#eval runM "#check s4.f s4.x"
#eval runM "#check m.mul m.one"
#eval runM "#check s.field4.1.length.succ"
#eval runM "#check s.field4.1.map Nat.succ"
#eval runM "#check s.vec[i].1"
#eval runM "#check \"hello\""
#eval runM "#check 1"
#eval runM "#check Nat.succ 1"
#eval runM "#check fun _ a (x y : Int) => x + y + a"
#eval runM "#check (one)"
#eval runM "#check ()"
#eval runM "#check (one, two, zero)"
#eval runM "#check (one, two, zero)"
#eval runM "#check (1 : Int)"
#eval runM "#check ((1, 2) : Nat × Int)"
#eval runM "#check (· + one)"
#eval runM "#check (· + · : Nat → Nat → Nat)"
#eval runM "#check (f one · zero)"
#eval runM "#check (f · · zero)"
#eval runM "#check fun (_ b : Nat) => b + 1"
def foo {α β} (a : α) (b : β) (a' : α) : α :=
a
def bla {α β} (f : α → β) (a : α) : β :=
f a
-- #check fun x => foo x x.w s4 -- fails in old elaborator
-- #check bla (fun x => x.w) s4 -- fails in the old elaborator
-- #check #[1, 2, 3].foldl (fun r a => r.push a) #[] -- fails in the old elaborator
#eval runM "#check fun x => foo x x.w s4"
#eval runM "#check bla (fun x => x.w) s4"
#eval runM "#check #[1, 2, 3].foldl (fun r a => r.push a) #[]"
#eval runM "#check #[1, 2, 3].foldl (fun r a => (r.push a).push a) #[]"
#eval runM "#check #[1, 2, 3].foldl (fun r a => ((r.push a).push a).push a) #[]"
#eval runM "#check #[].push one $.push two $.push zero $.size.succ"
#eval runM "#check #[1, 2].foldl (fun r a => r.push a $.push a $.push a) #[]"
#eval runM "#check #[1, 2].foldl (init := #[]) $ fun r a => r.push a $.push a"
#eval runM "#check let x := one + zero; x + x"
-- set_option trace.Elab true
#eval runM "#check (fun x => let v := x.w; v + v) s4"
#eval runM "#check fun x => foo x (let v := x.w; v + one) s4"
#eval runM "#check fun x => foo x (let v := x.w; let w := x.x; v + w + one) s4"
#eval fail "#check id.{1,1}"
#eval fail "#check @id.{0} Nat"
#eval runM "#check @id.{1} Nat"
#eval runM "universes u #check id.{u}"
#eval fail "universes u #check id.{v}"
#eval runM "universes u #check Type u"
#eval runM "universes u #check Sort u"
#eval runM "#check Type 1"
#eval runM "#check Type 0"
#eval runM "universes u v #check Sort (max u v)"
#eval runM "universes u v #check Type (max u v)"
#eval runM "#check 'a'"
#eval fail "#check #['a', \"hello\"]"
#eval runM "#check fun (a : Array Nat) => a.size"
#eval runM "#check if 0 = 1 then 'a' else 'b'"
#eval runM "#check fun (i : Nat) (a : Array Nat) => if h : i < a.size then a.get (Fin.mk i h) else i"
#eval runM "#check { x : Nat // x > 0 }"
#eval runM "#check { x // x > 0 }"
#eval runM "#check fun (i : Nat) (a : Array Nat) => if h : i < a.size then a.get ⟨i, h⟩ else i"
#eval runM "#check Prod.fst ⟨1, 2⟩"
#eval runM "#check let x := ⟨1, 2⟩; Prod.fst x"
#eval runM "#check show Nat from 1"
#eval runM "#check show Int from 1"
#eval runM "#check have Nat from one + zero; this + this"
#eval runM "#check have x : Nat from one + zero; x + x"
#eval runM "#check have Nat := one + zero; this + this"
#eval runM "#check have x : Nat := one + zero; x + x"
#eval runM "#check x + y where x := 1; where y := x + x"
#eval runM "#check let z := 2; x + y where x := z + 1; where y := x + x"
#eval runM "variables {α β} axiom x (n : Nat) : α → α #check x 1 0"
#eval runM "#check HasToString.toString 0"
#eval runM "@[instance] axiom newInst : HasToString Nat #check newInst #check HasToString.toString 0"
#eval runM "variables {β σ} universes w1 w2 /-- Testing axiom -/ unsafe axiom Nat.aux (γ : Type w1) (v : Nat) : β → (α : Type _) → v = zero /- Nat.zero -/ → Array α #check @Nat.aux"
#eval runM "def x : Nat := Nat.zero #check x"
#eval runM "def x := Nat.zero #check x"
#eval runM "open Lean.Parser def x := parser! symbol \"foo\" #check x"
#eval runM "open Lean.Parser def x := parser!:50 symbol \"foo\" #check x"
#eval runM "open Lean.Parser def x := tparser! symbol \"foo\" #check x"
#eval runM "def x : Nat := 1 #check x"
def g (x : Nat := zero) (y : Nat := one) (z : Nat := two) : Nat :=
x + y + z
def three := 3
#eval runM "#check g"
#eval runM "#check g (x := three) (z := zero)"
#eval runM "#check g (y := three)"
#eval runM "#check g (z := three)"
#eval runM "#check g three (z := zero)"
#eval runM "open Lean.Parser
@[termParser] def myParser : Lean.Parser.Parser := parser! oldCoe \"hi\"
#check myParser"
#eval runM "#check (fun stx => if True then let e := stx; HasPure.pure e else HasPure.pure stx : Nat → Id Nat)"
#eval runM "constant n : Nat #check n"
#eval fail "#check Nat.succ 'a'"
#eval runM "universes u v #check Type (max u v)"
#eval runM "universes u v #check Type (imax u v)"
#eval fail "namespace Boo def f (x : Nat) := x def s := 'a' #check (fun x => f x) s end Boo"
|
b076183c9b6645d59a86790575920455b38c71da
|
a721fe7446524f18ba361625fc01033d9c8b7a78
|
/src/principia/myint/basic.lean
|
806a35aa5f4e103b5a0f3b41ee846131b14232f3
|
[] |
no_license
|
Sterrs/leaning
|
8fd80d1f0a6117a220bb2e57ece639b9a63deadc
|
3901cc953694b33adda86cb88ca30ba99594db31
|
refs/heads/master
| 1,627,023,822,744
| 1,616,515,221,000
| 1,616,515,221,000
| 245,512,190
| 2
| 0
| null | 1,616,429,050,000
| 1,583,527,118,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,972
|
lean
|
-- vim: ts=2 sw=0 sts=-1 et ai tw=70
import ..logic
import ..mynat.basic
import ..mynat.le
import ..mynat.nat_sub
import .int_pair
import ..myring.integral_domain
namespace hidden
open mynat
def myint := quotient int_pair.int_pair.setoid
namespace myint
instance: decidable_eq myint := quotient.decidable_eq
instance: has_coe mynat myint := ⟨λ n, ⟦⟨n, 0⟩⟧⟩
theorem coe_nat_def (a: mynat): (↑a: myint) = ⟦⟨a, 0⟩⟧ := rfl
instance: has_zero myint := ⟨(0: mynat)⟩
instance: has_one myint := ⟨(1: mynat)⟩
theorem int_zero: (0: myint) = ⟦0⟧ := rfl
theorem int_one: (1: myint) = ⟦1⟧ := rfl
theorem coe_zero : ↑(0 : mynat) = (0 : myint) := rfl
theorem coe_one : ↑(1 : mynat) = (1 : myint) := rfl
def neg: myint → myint :=
quotient.lift (λ n, ⟦-n⟧) int_pair.neg_well_defined
instance: has_neg myint := ⟨neg⟩
instance has_neg2: has_neg (quotient int_pair.int_pair.setoid) := ⟨neg⟩
private theorem neg_eq_cls {x: int_pair.int_pair}:
-⟦x⟧ = ⟦-x⟧ := rfl
def add: myint → myint → myint :=
quotient.lift₂ (λ n m, ⟦n + m⟧) int_pair.add_well_defined
instance: has_add myint := ⟨add⟩
-- so that lean knows what ⟦x⟧ + ⟦y⟧ is
instance has_add2: has_add (quotient int_pair.int_pair.setoid) := ⟨add⟩
-- this theorem is a bit of an antique. Really
-- it and theorems like it can just be replaced
-- with invocations of `change`, but it can be
-- nice (and stabler) sometimes to not have to write
-- out the entire target all the time
private theorem add_eq_cls {x y: int_pair.int_pair}:
⟦x⟧ + ⟦y⟧ = ⟦x + y⟧ := rfl
def sub (n m: myint): myint := n + -m
instance: has_sub myint := ⟨sub⟩
theorem sub_def (n m: myint): n - m = n + -m := rfl
def mul: myint → myint → myint :=
quotient.lift₂ (λ n m, ⟦n * m⟧) int_pair.mul_well_defined
instance: has_mul myint := ⟨mul⟩
instance has_mul2: has_mul (quotient int_pair.int_pair.setoid) := ⟨mul⟩
private theorem mul_eq_cls {x y: int_pair.int_pair}:
⟦x⟧ * ⟦y⟧ = ⟦x * y⟧ := rfl
theorem nat_nat_mul {x y: mynat}:
(↑x: myint) * ↑y = ↑(x * y) :=
begin
apply quotient.sound,
rw int_pair.setoid_equiv,
simp,
end
universe u
-- a decidable relation lifted to a quotient type is decidable
-- This shouldn't be here...
def quotient_decidable_rel
{α : Sort u} {s : setoid α}
(rel: α → α → Prop)
(wd: ∀ n m x y: α, n ≈ x → m ≈ y → (rel n m = rel x y))
[dr : ∀ a b : α, decidable (rel a b)]:
∀ a b: quotient s,
decidable (quotient.lift₂ rel wd a b) :=
λ q₁ q₂ : quotient s,
quotient.rec_on_subsingleton₂ q₁ q₂ dr
variables m n k: myint
variables a b c: mynat
lemma of_nat_zero: ↑(0: mynat) = (0: myint) := rfl
lemma of_nat_one: ↑(1: mynat) = (1: myint) := rfl
theorem zero_nat: (↑(0: mynat): myint) = 0 := rfl
theorem one_nat: (↑(1:mynat):myint) = 1 := rfl
@[simp]
theorem of_nat_cancel: (↑a: myint) = ↑b ↔ a = b :=
begin
repeat {rw coe_nat_def},
split, {
assume hab,
from quotient.exact hab,
}, {
assume hab,
rw hab,
},
end
@[simp]
theorem coe_succ: (↑(succ a): myint) = ↑a + 1 := rfl
@[simp] theorem coe_coe_add: (↑a: myint) + ↑b = ↑(a + b) := rfl
theorem add_one_succ: (↑a: myint) + 1 = ↑(succ a) := rfl
@[simp]
theorem coe_coe_mul : (↑a : myint) * ↑b = ↑(a * b) :=
begin
repeat { rw coe_nat_def, },
rw mul_eq_cls,
apply congr_arg,
rw int_pair.eq_iff_split,
simp, -- awsome :o
end
private lemma neq_iff_not_eq: m ≠ n ↔ ¬(m = n) :=
begin
split; assume hneq heq, all_goals { contradiction },
end
private lemma succ_times_succ_nzero: (succ a) * (succ b) ≠ 0 :=
begin
assume h,
have hsan0 : succ a ≠ 0,
assume h₁,
from mynat.no_confusion h₁,
have hsbn0 : succ b ≠ 0,
assume h₁,
from mynat.no_confusion h₁,
from hsbn0 (mynat.mul_integral hsan0 h),
end
-- hmmmmmm
private lemma mul_integral_biased {m n : myint}:
m ≠ 0 → m * n = 0 → n = 0 :=
begin
cases quotient.exists_rep m with a ha, subst ha,
cases quotient.exists_rep n with b hb, subst hb,
repeat {rw mul_eq_cls <|> rw int_zero},
assume haneq0 hab0,
rw int_pair.sound_exact_iff at hab0,
rw int_pair.setoid_equiv at hab0,
simp at hab0,
repeat {rw int_pair.sound_exact_iff <|> rw int_pair.setoid_equiv},
simp,
cases (le_total_order a.a a.b) with ha ha; cases ha with d hd, {
rw hd at hab0,
simp at hab0,
rw ←mynat.add_assoc at hab0,
rw mynat.add_comm (a.a * b.a) at hab0,
rw mynat.add_assoc at hab0,
have := mynat.add_cancel (mynat.add_cancel hab0),
apply @mynat.mul_cancel d _ _,
assume hd0,
apply haneq0,
apply quotient.sound,
rw int_pair.setoid_equiv,
rw hd,
rw hd0,
simp,
symmetry, assumption,
}, {
rw hd at hab0,
simp at hab0,
conv at hab0 {
to_rhs,
rw mynat.add_comm,
},
rw mynat.add_assoc at hab0,
have hw := mynat.add_cancel hab0,
rw mynat.add_comm at hw,
have := mynat.add_cancel hw,
apply @mynat.mul_cancel d _ _,
assume hd0,
apply haneq0,
apply quotient.sound,
rw int_pair.setoid_equiv,
rw hd,
rw hd0,
simp,
assumption,
},
end
theorem nontrivial: (0: myint) ≠ 1 :=
begin
assume h01,
rw int_zero at h01,
rw int_one at h01,
rw int_pair.sound_exact_iff at h01,
rw int_pair.setoid_equiv at h01,
cases h01,
end
-- theorem mul_nonzero_nonzero : m * n ≠ 0 ↔ m ≠ 0 ∧ n ≠ 0 :=
-- begin
-- split; assume h, {
-- have : 0 = (0 : myint) := rfl,
-- split, all_goals {
-- assume h0,
-- subst h0,
-- },
-- rw zero_mul at h,
-- contradiction,
-- rw mul_zero at h,
-- contradiction,
-- }, {
-- assume hmn0,
-- cases mul_integral hmn0 with hn0 hm0,
-- from h.right hn0,
-- from h.left hm0,
-- },
-- end
instance: myring myint := ⟨
by apply_instance,
λ m n k: myint,
begin
cases quotient.exists_rep m with a ha, subst ha,
cases quotient.exists_rep n with b hb, subst hb,
cases quotient.exists_rep k with c hc, subst hc,
apply congr_arg quotient.mk,
rw int_pair.eq_iff_split,
simp,
split; ac_refl,
end,
λ m: myint,
begin
cases quotient.exists_rep m with a ha, subst ha,
rw int_zero,
apply congr_arg quotient.mk,
rw int_pair.eq_iff_split,
simp,
end,
λ m: myint,
begin
cases quotient.exists_rep m with a ha, subst ha,
rw int_zero,
rw neg_eq_cls,
rw add_eq_cls,
apply quotient.sound,
rw int_pair.setoid_equiv,
simp,
rw mynat.add_comm,
end,
λ m n k: myint,
begin
cases quotient.exists_rep m with a ha, subst ha,
cases quotient.exists_rep n with b hb, subst hb,
cases quotient.exists_rep k with c hc, subst hc,
apply congr_arg quotient.mk,
rw int_pair.eq_iff_split,
simp,
split, { -- ac_refl takes too long without a little kick-start
repeat {rw mynat.add_assoc <|> rw mynat.mul_assoc},
apply congr_arg,
ac_refl,
}, {
repeat {rw mynat.add_assoc <|> rw mynat.mul_assoc},
apply congr_arg,
ac_refl,
},
end,
λ m n: myint,
begin
cases quotient.exists_rep m with a ha, subst ha,
cases quotient.exists_rep n with b hb, subst hb,
apply congr_arg quotient.mk,
rw int_pair.eq_iff_split,
simp,
split; ac_refl,
end,
λ m: myint,
begin
cases quotient.exists_rep m with a ha, subst ha,
rw int_one,
apply congr_arg quotient.mk,
rw int_pair.eq_iff_split,
simp,
end,
λ m n k: myint,
begin
cases quotient.exists_rep m with a ha, subst ha,
cases quotient.exists_rep n with b hb, subst hb,
cases quotient.exists_rep k with c hc, subst hc,
apply congr_arg quotient.mk,
rw int_pair.eq_iff_split,
simp,
split; ac_refl,
end⟩
instance: integral_domain myint := ⟨begin
intros a b ha h,
apply mul_integral_biased ha,
rwa myring.mul_comm,
end⟩
end myint
end hidden
|
f2acab20d2f2fdccf0d2e715fe75953269754ab9
|
94e33a31faa76775069b071adea97e86e218a8ee
|
/src/deprecated/ring.lean
|
7ef81059d04503c655154ffe8f640b8616da6a49
|
[
"Apache-2.0"
] |
permissive
|
urkud/mathlib
|
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
|
6379d39e6b5b279df9715f8011369a301b634e41
|
refs/heads/master
| 1,658,425,342,662
| 1,658,078,703,000
| 1,658,078,703,000
| 186,910,338
| 0
| 0
|
Apache-2.0
| 1,568,512,083,000
| 1,557,958,709,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,991
|
lean
|
/-
Copyright (c) 2020 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import deprecated.group
/-!
# Unbundled semiring and ring homomorphisms (deprecated)
This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.
This file defines predicates for unbundled semiring and ring homomorphisms. Instead of using
this file, please use `ring_hom`, defined in `algebra.hom.ring`, with notation `→+*`, for
morphisms between semirings or rings. For example use `φ : A →+* B` to represent a
ring homomorphism.
## Main Definitions
`is_semiring_hom` (deprecated), `is_ring_hom` (deprecated)
## Tags
is_semiring_hom, is_ring_hom
-/
universes u v w
variable {α : Type u}
/-- Predicate for semiring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/
structure is_semiring_hom {α : Type u} {β : Type v} [semiring α] [semiring β] (f : α → β) : Prop :=
(map_zero [] : f 0 = 0)
(map_one [] : f 1 = 1)
(map_add [] : ∀ {x y}, f (x + y) = f x + f y)
(map_mul [] : ∀ {x y}, f (x * y) = f x * f y)
namespace is_semiring_hom
variables {β : Type v} [semiring α] [semiring β]
variables {f : α → β} (hf : is_semiring_hom f) {x y : α}
/-- The identity map is a semiring homomorphism. -/
lemma id : is_semiring_hom (@id α) := by refine {..}; intros; refl
/-- The composition of two semiring homomorphisms is a semiring homomorphism. -/
lemma comp (hf : is_semiring_hom f) {γ} [semiring γ] {g : β → γ} (hg : is_semiring_hom g) :
is_semiring_hom (g ∘ f) :=
{ map_zero := by simpa [map_zero hf] using map_zero hg,
map_one := by simpa [map_one hf] using map_one hg,
map_add := λ x y, by simp [map_add hf, map_add hg],
map_mul := λ x y, by simp [map_mul hf, map_mul hg] }
/-- A semiring homomorphism is an additive monoid homomorphism. -/
lemma to_is_add_monoid_hom (hf : is_semiring_hom f) : is_add_monoid_hom f :=
{ ..‹is_semiring_hom f› }
/-- A semiring homomorphism is a monoid homomorphism. -/
lemma to_is_monoid_hom (hf : is_semiring_hom f) : is_monoid_hom f :=
{ ..‹is_semiring_hom f› }
end is_semiring_hom
/-- Predicate for ring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/
structure is_ring_hom {α : Type u} {β : Type v} [ring α] [ring β] (f : α → β) : Prop :=
(map_one [] : f 1 = 1)
(map_mul [] : ∀ {x y}, f (x * y) = f x * f y)
(map_add [] : ∀ {x y}, f (x + y) = f x + f y)
namespace is_ring_hom
variables {β : Type v} [ring α] [ring β]
/-- A map of rings that is a semiring homomorphism is also a ring homomorphism. -/
lemma of_semiring {f : α → β} (H : is_semiring_hom f) : is_ring_hom f := {..H}
variables {f : α → β} (hf : is_ring_hom f) {x y : α}
/-- Ring homomorphisms map zero to zero. -/
lemma map_zero (hf : is_ring_hom f) : f 0 = 0 :=
calc f 0 = f (0 + 0) - f 0 : by rw [hf.map_add]; simp
... = 0 : by simp
/-- Ring homomorphisms preserve additive inverses. -/
lemma map_neg (hf : is_ring_hom f) : f (-x) = -f x :=
calc f (-x) = f (-x + x) - f x : by rw [hf.map_add]; simp
... = -f x : by simp [hf.map_zero]
/-- Ring homomorphisms preserve subtraction. -/
lemma map_sub (hf : is_ring_hom f) : f (x - y) = f x - f y :=
by simp [sub_eq_add_neg, hf.map_add, hf.map_neg]
/-- The identity map is a ring homomorphism. -/
lemma id : is_ring_hom (@id α) := by refine {..}; intros; refl
/-- The composition of two ring homomorphisms is a ring homomorphism. -/
-- see Note [no instance on morphisms]
lemma comp (hf : is_ring_hom f) {γ} [ring γ] {g : β → γ} (hg : is_ring_hom g) :
is_ring_hom (g ∘ f) :=
{ map_add := λ x y, by simp [map_add hf]; rw map_add hg; refl,
map_mul := λ x y, by simp [map_mul hf]; rw map_mul hg; refl,
map_one := by simp [map_one hf]; exact map_one hg }
/-- A ring homomorphism is also a semiring homomorphism. -/
lemma to_is_semiring_hom (hf : is_ring_hom f) : is_semiring_hom f :=
{ map_zero := map_zero hf, ..‹is_ring_hom f› }
lemma to_is_add_group_hom (hf : is_ring_hom f) : is_add_group_hom f := { map_add := hf.map_add }
end is_ring_hom
variables {β : Type v} {γ : Type w} [rα : semiring α] [rβ : semiring β]
namespace ring_hom
section
include rα rβ
/-- Interpret `f : α → β` with `is_semiring_hom f` as a ring homomorphism. -/
def of {f : α → β} (hf : is_semiring_hom f) : α →+* β :=
{ to_fun := f,
.. monoid_hom.of hf.to_is_monoid_hom,
.. add_monoid_hom.of hf.to_is_add_monoid_hom }
@[simp] lemma coe_of {f : α → β} (hf : is_semiring_hom f) : ⇑(of hf) = f := rfl
lemma to_is_semiring_hom (f : α →+* β) : is_semiring_hom f :=
{ map_zero := f.map_zero,
map_one := f.map_one,
map_add := f.map_add,
map_mul := f.map_mul }
end
lemma to_is_ring_hom {α γ} [ring α] [ring γ] (g : α →+* γ) : is_ring_hom g :=
is_ring_hom.of_semiring g.to_is_semiring_hom
end ring_hom
|
dc3323dd70b49102b8516f11b4f3eed9f500b1e7
|
0c1546a496eccfb56620165cad015f88d56190c5
|
/library/init/meta/smt/smt_tactic.lean
|
79b84abc1d379addef716c426d360b32d78b22d2
|
[
"Apache-2.0"
] |
permissive
|
Solertis/lean
|
491e0939957486f664498fbfb02546e042699958
|
84188c5aa1673fdf37a082b2de8562dddf53df3f
|
refs/heads/master
| 1,610,174,257,606
| 1,486,263,620,000
| 1,486,263,620,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 14,080
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.meta.simp_tactic
import init.meta.smt.congruence_closure
import init.meta.smt.ematch
universe variables u
run_command mk_simp_attr `pre_smt
run_command mk_hinst_lemma_attr_set `ematch [] [`ematch_lhs]
/--
Configuration for the smt tactic preprocessor. The preprocessor
is applied whenever a new hypothesis is introduced.
- simp_attr: is the attribute name for the simplification lemmas
that are used during the preprocessing step.
- max_steps: it is the maximum number of steps performed by the simplifier.
- zeta: if tt, then zeta reduction (i.e., unfolding let-expressions)
is used during preprocessing.
-/
structure smt_pre_config :=
(simp_attr : name := `pre_smt)
(max_steps : nat := 1000000)
(zeta : bool := ff)
/--
Configuration for the smt_state object.
- em_attr: is the attribute name for the hinst_lemmas
that are used for ematching -/
structure smt_config :=
(cc_cfg : cc_config := {})
(em_cfg : ematch_config := {})
(pre_cfg : smt_pre_config := {})
(em_attr : name := `ematch)
meta def smt_config.set_classical (c : smt_config) (b : bool) : smt_config :=
{c with cc_cfg := { (c^.cc_cfg) with em := b}}
meta constant smt_goal : Type
meta def smt_state :=
list smt_goal
meta constant smt_state.mk : smt_config → tactic smt_state
meta constant smt_state.to_format : smt_state → tactic_state → format
/-- Return tt iff classical excluded middle was enabled at smt_state.mk -/
meta constant smt_state.classical : smt_state → bool
meta def smt_tactic :=
state_t smt_state tactic
meta instance : has_append smt_state :=
list.has_append
meta instance : monad smt_tactic :=
state_t.monad _ _
/- We don't use the default state_t lift operation because only
tactics that do not change hypotheses can be automatically lifted to smt_tactic. -/
meta constant tactic_to_smt_tactic (α : Type) : tactic α → smt_tactic α
meta instance : monad.has_monad_lift tactic smt_tactic :=
⟨tactic_to_smt_tactic⟩
meta instance (α : Type) : has_coe (tactic α) (smt_tactic α) :=
⟨monad.monad_lift⟩
meta def smt_tactic_orelse {α : Type} (t₁ t₂ : smt_tactic α) : smt_tactic α :=
λ ss ts, tactic_result.cases_on (t₁ ss ts)
tactic_result.success
(λ e₁ ref₁ s', tactic_result.cases_on (t₂ ss ts)
tactic_result.success
(tactic_result.exception (α × smt_state)))
meta instance : alternative smt_tactic :=
{failure := λ α, @tactic.failed α,
orelse := @smt_tactic_orelse,
pure := @return _ _,
seq := @fapp _ _,
map := @fmap _ _}
namespace smt_tactic
open tactic (transparency)
meta constant intros : smt_tactic unit
meta constant intron : nat → smt_tactic unit
meta constant intro_lst : list name → smt_tactic unit
/--
Try to close main goal by using equalities implied by the congruence
closure module.
-/
meta constant close : smt_tactic unit
/--
Produce new facts using heuristic lemma instantiation based on E-matching.
This tactic tries to match patterns from lemmas in the main goal with terms
in the main goal. The set of lemmas is populated with theorems
tagged with the attribute specified at smt_config.em_attr, and lemmas
added using tactics such as `smt_tactic.add_lemmas`.
The current set of lemmas can be retrieved using the tactic `smt_tactic.get_lemmas`.
Remark: the given predicate is applied to every new instance. The instance
is only added to the state if the predicate returns tt.
-/
meta constant ematch_core : (expr → bool) → smt_tactic unit
/--
Produce new facts using heuristic lemma instantiation based on E-matching.
This tactic tries to match patterns from the given lemmas with terms in
the main goal.
-/
meta constant ematch_using : hinst_lemmas → smt_tactic unit
meta constant mk_ematch_eqn_lemmas_for_core : transparency → name → smt_tactic hinst_lemmas
meta constant to_cc_state : smt_tactic cc_state
meta constant to_em_state : smt_tactic ematch_state
meta constant get_config : smt_tactic cc_config
/--
Preprocess the given term using the same simplifications rules used when
we introduce a new hypothesis. The result is pair containing the resulting
term and a proof that it is equal to the given one.
-/
meta constant preprocess : expr → smt_tactic (expr × expr)
meta constant get_lemmas : smt_tactic hinst_lemmas
meta constant set_lemmas : hinst_lemmas → smt_tactic unit
meta constant add_lemmas : hinst_lemmas → smt_tactic unit
meta def add_ematch_lemma_core (md : transparency) (as_simp : bool) (e : expr) : smt_tactic unit :=
do h ← hinst_lemma.mk_core md e as_simp,
add_lemmas (mk_hinst_singleton h)
meta def add_ematch_lemma_from_decl_core (md : transparency) (as_simp : bool) (n : name) : smt_tactic unit :=
do h ← hinst_lemma.mk_from_decl_core md n as_simp,
add_lemmas (mk_hinst_singleton h)
meta def add_ematch_eqn_lemmas_for_core (md : transparency) (n : name) : smt_tactic unit :=
do hs ← mk_ematch_eqn_lemmas_for_core md n,
add_lemmas hs
meta def ematch : smt_tactic unit :=
ematch_core (λ _, tt)
meta def failed : smt_tactic unit :=
tactic.failed
meta def fail {α : Type} {β : Type u} [has_to_format β] (msg : β) : tactic α :=
tactic.fail msg
meta def try {α : Type} (t : smt_tactic α) : smt_tactic unit :=
λ ss ts, tactic_result.cases_on (t ss ts)
(λ ⟨a, new_ss⟩, tactic_result.success ((), new_ss))
(λ e ref s', tactic_result.success ((), ss) ts)
/- (repeat_at_most n t): repeat the given tactic at most n times or until t fails -/
meta def repeat_at_most : nat → smt_tactic unit → smt_tactic unit
| 0 t := return ()
| (n+1) t := (do t, repeat_at_most n t) <|> return ()
/-- (repeat_exactly n t) : execute t n times -/
meta def repeat_exactly : nat → smt_tactic unit → smt_tactic unit
| 0 t := return ()
| (n+1) t := do t, repeat_exactly n t
meta def repeat : smt_tactic unit → smt_tactic unit :=
repeat_at_most 100000
meta def eblast : smt_tactic unit :=
repeat (ematch >> try close)
open tactic
protected meta def read : smt_tactic (smt_state × tactic_state) :=
do s₁ ← state_t.read,
s₂ ← tactic.read,
return (s₁, s₂)
private meta def mk_smt_goals_for (cfg : smt_config) : list expr → list smt_goal → list expr
→ tactic (list smt_goal × list expr)
| [] sr tr := return (sr^.reverse, tr^.reverse)
| (tg::tgs) sr tr := do
tactic.set_goals [tg],
[new_sg] ← smt_state.mk cfg | tactic.failed,
[new_tg] ← get_goals | tactic.failed,
mk_smt_goals_for tgs (new_sg::sr) (new_tg::tr)
/--
This lift operation will restart the SMT state.
It is useful for using tactics that change the set of hypotheses.
-/
meta def slift {α : Type} (t : tactic α) : smt_tactic α :=
λ ss, do
_::sgs ← return ss | fail "slift tactic failed, there no smt goals to be solved",
cfg ← return {smt_config .}, -- TODO(Leo): use get_config
tg::tgs ← tactic.get_goals | tactic.failed,
tactic.set_goals [tg], a ← t,
new_tgs ← tactic.get_goals,
(new_sgs, new_tgs) ← mk_smt_goals_for cfg new_tgs [] [],
tactic.set_goals (new_tgs ++ tgs),
return (a, new_sgs ++ sgs)
meta def trace_state : smt_tactic unit :=
do (s₁, s₂) ← smt_tactic.read,
trace (smt_state.to_format s₁ s₂)
meta def trace {α : Type} [has_to_tactic_format α] (a : α) : smt_tactic unit :=
tactic.trace a
meta def classical : smt_tactic bool :=
do s ← state_t.read,
return s^.classical
/- Low level primitives for managing set of goals -/
meta def get_goals : smt_tactic (list smt_goal × list expr) :=
do (g₁, _) ← smt_tactic.read,
g₂ ← tactic.get_goals,
return (g₁, g₂)
meta def set_goals : list smt_goal → list expr → smt_tactic unit :=
λ g₁ g₂ ss, tactic.set_goals g₂ >> return ((), g₁)
private meta def all_goals_core (tac : smt_tactic unit) : list smt_goal → list expr → list smt_goal → list expr → smt_tactic unit
| [] ts acs act := set_goals acs (ts ++ act)
| (s :: ss) [] acs act := fail "ill-formed smt_state"
| (s :: ss) (t :: ts) acs act :=
do set_goals [s] [t],
tac,
(new_ss, new_ts) ← get_goals,
all_goals_core ss ts (acs ++ new_ss) (act ++ new_ts)
/- Apply the given tactic to all goals. -/
meta def all_goals (tac : smt_tactic unit) : smt_tactic unit :=
do (ss, ts) ← get_goals,
all_goals_core tac ss ts [] []
/- LCF-style AND_THEN tactic. It applies tac1, and if succeed applies tac2 to each subgoal produced by tac1 -/
meta def seq (tac1 : smt_tactic unit) (tac2 : smt_tactic unit) : smt_tactic unit :=
do (s::ss, t::ts) ← get_goals | failed,
set_goals [s] [t],
tac1, all_goals tac2,
(new_ss, new_ts) ← get_goals,
set_goals (new_ss ++ ss) (new_ts ++ ts)
meta def solve1 (tac : smt_tactic unit) : smt_tactic unit :=
do (ss, gs) ← get_goals,
match ss, gs with
| [], _ := fail "focus tactic failed, there isn't any goal left to focus"
| _, [] := fail "focus tactic failed, there isn't any smt goal left to focus"
| s::ss, g::gs :=
do set_goals [s] [g],
tac,
(ss', gs') ← get_goals,
match ss', gs' with
| [], [] := set_goals ss gs
| _, _ := fail "focus tactic failed, focused goal has not been solved"
end
end
meta def swap : smt_tactic unit :=
do (ss, ts) ← get_goals,
match ss, ts with
| (s₁ :: s₂ :: ss), (t₁ :: t₂ :: ts) := set_goals (s₂ :: s₁ :: ss) (t₂ :: t₁ :: ts)
| _, _ := failed
end
/-- Add a new goal for t, and the hypothesis (h : t) in the current goal. -/
meta def assert (h : name) (t : expr) : smt_tactic unit :=
tactic.assert_core h t >> swap >> intros >> swap >> try close
/-- Add the hypothesis (h : t) in the current goal if v has type t. -/
meta def assertv (h : name) (t : expr) (v : expr) : smt_tactic unit :=
tactic.assertv_core h t v >> intros >> return ()
/-- Add a new goal for t, and the hypothesis (h : t := ?M) in the current goal. -/
meta def define (h : name) (t : expr) : smt_tactic unit :=
tactic.define_core h t >> swap >> intros >> swap >> try close
/-- Add the hypothesis (h : t := v) in the current goal if v has type t. -/
meta def definev (h : name) (t : expr) (v : expr) : smt_tactic unit :=
tactic.definev_core h t v >> intros >> return ()
/-- Add (h : t := pr) to the current goal -/
meta def pose (h : name) (pr : expr) : smt_tactic unit :=
do t ← tactic.infer_type pr,
definev h t pr
/- Add (h : t) to the current goal, given a proof (pr : t) -/
meta def note (n : name) (pr : expr) : smt_tactic unit :=
do t ← tactic.infer_type pr,
assertv n t pr
meta def destruct (e : expr) : smt_tactic unit :=
smt_tactic.seq (tactic.destruct e) smt_tactic.intros
meta def by_cases (e : expr) : smt_tactic unit :=
do c ← classical,
if c then
destruct (expr.app (expr.const `classical.em []) e)
else do
dec_e ← (mk_app `decidable [e] <|> fail "by_cases smt_tactic failed, type is not a proposition"),
inst ← (mk_instance dec_e <|> fail "by_cases smt_tactic failed, type of given expression is not decidable"),
em ← mk_app `decidable.em [e, inst],
destruct em
meta def by_contradiction : smt_tactic unit :=
do t ← target,
c ← classical,
if t^.is_false then skip
else if c then do
apply (expr.app (expr.const `classical.by_contradiction []) t),
intros
else do
dec_t ← (mk_app `decidable [t] <|> fail "by_contradiction smt_tactic failed, target is not a proposition"),
inst ← (mk_instance dec_t <|> fail "by_contradiction smt_tactic failed, target is not decidable"),
a ← mk_mapp `decidable.by_contradiction [some t, some inst],
apply a,
intros
/- Return a proof for e, if 'e' is a known fact in the main goal. -/
meta def proof_for (e : expr) : smt_tactic expr :=
do cc ← to_cc_state, cc^.proof_for e
/- Return a refutation for e (i.e., a proof for (not e)), if 'e' has been refuted in the main goal. -/
meta def refutation_for (e : expr) : smt_tactic expr :=
do cc ← to_cc_state, cc^.refutation_for e
meta def get_facts : smt_tactic (list expr) :=
do cc ← to_cc_state,
return $ cc^.eqc_of expr.mk_true
meta def get_refuted_facts : smt_tactic (list expr) :=
do cc ← to_cc_state,
return $ cc^.eqc_of expr.mk_false
meta def add_ematch_lemma : expr → smt_tactic unit :=
add_ematch_lemma_core reducible ff
meta def add_ematch_lhs_lemma : expr → smt_tactic unit :=
add_ematch_lemma_core reducible tt
meta def add_ematch_lemma_from_decl : name → smt_tactic unit :=
add_ematch_lemma_from_decl_core reducible ff
meta def add_ematch_lhs_lemma_from_decl : name → smt_tactic unit :=
add_ematch_lemma_from_decl_core reducible ff
meta def add_ematch_eqn_lemmas_for : name → smt_tactic unit :=
add_ematch_eqn_lemmas_for_core reducible
meta def add_lemmas_from_facts_core : list expr → smt_tactic unit
| [] := return ()
| (f::fs) := do
try (is_prop f >> guard (f^.is_pi && bnot (f^.is_arrow)) >> proof_for f >>= add_ematch_lemma_core reducible ff),
add_lemmas_from_facts_core fs
meta def add_lemmas_from_facts : smt_tactic unit :=
get_facts >>= add_lemmas_from_facts_core
meta def induction (e : expr) (rec : name) (ids : list name) : smt_tactic unit :=
slift (tactic.induction e rec ids)
end smt_tactic
open smt_tactic
meta def using_smt_core (cfg : smt_config) (t : smt_tactic unit) : tactic unit :=
do ss ← smt_state.mk cfg,
(t >> repeat close) ss,
return ()
meta def using_smt : smt_tactic unit → tactic unit :=
using_smt_core {}
|
479c3d5458696ace1ea38bf1b7982dda971acd28
|
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
|
/src/field_theory/splitting_field.lean
|
b43291a8b4f437c44b195b989d74a21324e440b0
|
[
"Apache-2.0"
] |
permissive
|
keeferrowan/mathlib
|
f2818da875dbc7780830d09bd4c526b0764a4e50
|
aad2dfc40e8e6a7e258287a7c1580318e865817e
|
refs/heads/master
| 1,661,736,426,952
| 1,590,438,032,000
| 1,590,438,032,000
| 266,892,663
| 0
| 0
|
Apache-2.0
| 1,590,445,835,000
| 1,590,445,835,000
| null |
UTF-8
|
Lean
| false
| false
| 7,590
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
Definition of splitting fields, and definition of homomorphism into any field that splits
-/
import data.polynomial
import ring_theory.principal_ideal_domain
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
namespace polynomial
noncomputable theory
open_locale classical
variables [field α] [field β] [field γ]
open polynomial
section splits
variables (i : α →+* β)
/-- a polynomial `splits` iff it is zero or all of its irreducible factors have `degree` 1 -/
def splits (f : polynomial α) : Prop :=
f = 0 ∨ ∀ {g : polynomial β}, irreducible g → g ∣ f.map i → degree g = 1
@[simp] lemma splits_zero : splits i (0 : polynomial α) := or.inl rfl
@[simp] lemma splits_C (a : α) : splits i (C a) :=
if ha : a = 0 then ha.symm ▸ (@C_0 α _).symm ▸ splits_zero i
else
have hia : i a ≠ 0, from mt ((is_add_group_hom.injective_iff i).1
i.injective _) ha,
or.inr $ λ g hg ⟨p, hp⟩, absurd hg.1 (classical.not_not.2 (is_unit_iff_degree_eq_zero.2 $
by have := congr_arg degree hp;
simp [degree_C hia, @eq_comm (with_bot ℕ) 0,
nat.with_bot.add_eq_zero_iff] at this; clear _fun_match; tautology))
lemma splits_of_degree_eq_one {f : polynomial α} (hf : degree f = 1) : splits i f :=
or.inr $ λ g hg ⟨p, hp⟩,
by have := congr_arg degree hp;
simp [nat.with_bot.add_eq_one_iff, hf, @eq_comm (with_bot ℕ) 1,
mt is_unit_iff_degree_eq_zero.2 hg.1] at this;
clear _fun_match; tauto
lemma splits_of_degree_le_one {f : polynomial α} (hf : degree f ≤ 1) : splits i f :=
begin
cases h : degree f with n,
{ rw [degree_eq_bot.1 h]; exact splits_zero i },
{ cases n with n,
{ rw [eq_C_of_degree_le_zero (trans_rel_right (≤) h (le_refl _))];
exact splits_C _ _ },
{ have hn : n = 0,
{ rw h at hf,
cases n, { refl }, { exact absurd hf dec_trivial } },
exact splits_of_degree_eq_one _ (by rw [h, hn]; refl) } }
end
lemma splits_mul {f g : polynomial α} (hf : splits i f) (hg : splits i g) : splits i (f * g) :=
if h : f * g = 0 then by simp [h]
else or.inr $ λ p hp hpf, ((principal_ideal_domain.irreducible_iff_prime.1 hp).2.2 _ _
(show p ∣ map i f * map i g, by convert hpf; rw polynomial.map_mul)).elim
(hf.resolve_left (λ hf, by simpa [hf] using h) hp)
(hg.resolve_left (λ hg, by simpa [hg] using h) hp)
lemma splits_of_splits_mul {f g : polynomial α} (hfg : f * g ≠ 0) (h : splits i (f * g)) :
splits i f ∧ splits i g :=
⟨or.inr $ λ g hgi hg, or.resolve_left h hfg hgi (by rw map_mul; exact dvd.trans hg (dvd_mul_right _ _)),
or.inr $ λ g hgi hg, or.resolve_left h hfg hgi (by rw map_mul; exact dvd.trans hg (dvd_mul_left _ _))⟩
lemma splits_map_iff (j : β →+* γ) {f : polynomial α} :
splits j (f.map i) ↔ splits (j.comp i) f :=
by simp [splits, polynomial.map_map]
lemma exists_root_of_splits {f : polynomial α} (hs : splits i f) (hf0 : degree f ≠ 0) :
∃ x, eval₂ i x f = 0 :=
if hf0 : f = 0 then ⟨37, by simp [hf0]⟩
else
let ⟨g, hg⟩ := is_noetherian_ring.exists_irreducible_factor
(show ¬ is_unit (f.map i), from mt is_unit_iff_degree_eq_zero.1 (by rwa degree_map))
(by rw [ne.def, map_eq_zero]; exact hf0) in
let ⟨x, hx⟩ := exists_root_of_degree_eq_one (hs.resolve_left hf0 hg.1 hg.2) in
let ⟨i, hi⟩ := hg.2 in
⟨x, by rw [← eval_map, hi, eval_mul, show _ = _, from hx, zero_mul]⟩
lemma exists_multiset_of_splits {f : polynomial α} : splits i f →
∃ (s : multiset β), f.map i = C (i f.leading_coeff) *
(s.map (λ a : β, (X : polynomial β) - C a)).prod :=
suffices splits (ring_hom.id _) (f.map i) → ∃ s : multiset β, f.map i =
(C (f.map i).leading_coeff) * (s.map (λ a : β, (X : polynomial β) - C a)).prod,
by rwa [splits_map_iff, leading_coeff_map i] at this,
is_noetherian_ring.irreducible_induction_on (f.map i)
(λ _, ⟨{37}, by simp [i.map_zero]⟩)
(λ u hu _, ⟨0,
by conv_lhs { rw eq_C_of_degree_eq_zero (is_unit_iff_degree_eq_zero.1 hu) };
simp [leading_coeff, nat_degree_eq_of_degree_eq_some (is_unit_iff_degree_eq_zero.1 hu)]⟩)
(λ f p hf0 hp ih hfs,
have hpf0 : p * f ≠ 0, from mul_ne_zero hp.ne_zero hf0,
let ⟨s, hs⟩ := ih (splits_of_splits_mul _ hpf0 hfs).2 in
⟨-(p * norm_unit p).coeff 0 :: s,
have hp1 : degree p = 1, from hfs.resolve_left hpf0 hp (by simp),
begin
rw [multiset.map_cons, multiset.prod_cons, leading_coeff_mul, C_mul, mul_assoc,
mul_left_comm (C f.leading_coeff), ← hs, ← mul_assoc, domain.mul_left_inj hf0],
conv_lhs {rw eq_X_add_C_of_degree_eq_one hp1},
simp only [mul_add, coe_norm_unit hp.ne_zero, mul_comm p, coeff_neg,
C_neg, sub_eq_add_neg, neg_neg, coeff_C_mul, (mul_assoc _ _ _).symm, C_mul.symm,
mul_inv_cancel (show p.leading_coeff ≠ 0, from mt leading_coeff_eq_zero.1
hp.ne_zero), one_mul],
end⟩)
section UFD
local attribute [instance, priority 10] principal_ideal_domain.to_unique_factorization_domain
local infix ` ~ᵤ ` : 50 := associated
open unique_factorization_domain associates
lemma splits_of_exists_multiset {f : polynomial α} {s : multiset β}
(hs : f.map i = C (i f.leading_coeff) * (s.map (λ a : β, (X : polynomial β) - C a)).prod) :
splits i f :=
if hf0 : f = 0 then or.inl hf0
else
or.inr $ λ p hp hdp,
have ht : multiset.rel associated
(factors (f.map i)) (s.map (λ a : β, (X : polynomial β) - C a)) :=
unique
(λ p hp, irreducible_factors (mt (map_eq_zero i).1 hf0) _ hp)
(λ p, by simp [@eq_comm _ _ p, -sub_eq_add_neg,
irreducible_of_degree_eq_one (degree_X_sub_C _)] {contextual := tt})
(associated.symm $ calc _ ~ᵤ f.map i :
⟨(units.map' C : units β →* units (polynomial β)) (units.mk0 (f.map i).leading_coeff
(mt leading_coeff_eq_zero.1 (mt (map_eq_zero i).1 hf0))),
by conv_rhs {rw [hs, ← leading_coeff_map i, mul_comm]}; refl⟩
... ~ᵤ _ : associated.symm (unique_factorization_domain.factors_prod (by simpa using hf0))),
let ⟨q, hq, hpq⟩ := exists_mem_factors_of_dvd (by simpa) hp hdp in
let ⟨q', hq', hqq'⟩ := multiset.exists_mem_of_rel_of_mem ht hq in
let ⟨a, ha⟩ := multiset.mem_map.1 hq' in
by rw [← degree_X_sub_C a, ha.2];
exact degree_eq_degree_of_associated (hpq.trans hqq')
lemma splits_of_splits_id {f : polynomial α} : splits (ring_hom.id _) f → splits i f :=
unique_factorization_domain.induction_on_prime f (λ _, splits_zero _)
(λ _ hu _, splits_of_degree_le_one _
((is_unit_iff_degree_eq_zero.1 hu).symm ▸ dec_trivial))
(λ a p ha0 hp ih hfi, splits_mul _
(splits_of_degree_eq_one _
((splits_of_splits_mul _ (mul_ne_zero hp.1 ha0) hfi).1.resolve_left
hp.1 (irreducible_of_prime hp) (by rw map_id)))
(ih (splits_of_splits_mul _ (mul_ne_zero hp.1 ha0) hfi).2))
end UFD
lemma splits_iff_exists_multiset {f : polynomial α} : splits i f ↔
∃ (s : multiset β), f.map i = C (i f.leading_coeff) *
(s.map (λ a : β, (X : polynomial β) - C a)).prod :=
⟨exists_multiset_of_splits i, λ ⟨s, hs⟩, splits_of_exists_multiset i hs⟩
lemma splits_comp_of_splits (j : β →+* γ) {f : polynomial α}
(h : splits i f) : splits (j.comp i) f :=
begin
change i with ((ring_hom.id _).comp i) at h,
rw [← splits_map_iff],
rw [← splits_map_iff i] at h,
exact splits_of_splits_id _ h
end
end splits
end polynomial
|
a5b646829a4233f9241cb946fc5ad94542886868
|
7bc35d4fbdda0c01e9b22a949940ee5cbb9800d0
|
/manifold/manifold.lean
|
2ec5167d4093872f61141e20e4c7da7d53bae137
|
[] |
no_license
|
truonghoangle/manifolds
|
e6c2534dd46579f56ba99a48e2eb7ce51640e7c0
|
dcf4815b29ad363ec9712fd00b7756c36cfa7c1c
|
refs/heads/main
| 1,638,501,090,139
| 1,636,918,550,000
| 1,636,918,550,000
| 185,779,631
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,578
|
lean
|
import manifold.differentiable
open topological_space
noncomputable theory
universes u v w
variables {α : Type} {β : Type} {γ : Type w} {n : ℕ}
variable [normed_field α]
variables {E : euclidean α }
variables {F : euclidean α }
structure chart (X : Top) (E : euclidean α ) :=
(iso : X ≃ₜ. E.to_Top)
(h1 : is_open iso.to_fun.dom)
(h2 : is_open iso.inv_fun.dom)
namespace chart
variable {X : Top}
def to_fun (c : chart X E) : X →. E := c.iso.to_fun
def inv_fun (c :chart X E) : E →. X := c.iso.inv_fun
def domain (c : chart X E) : set X := c.to_fun.dom
def codomain (c : chart X E) : set E := c.inv_fun.dom
end chart
def differentiable_compatible_charts {X : Top} (c₁ c₂ : chart X E) : Prop :=
differentiable.is_differentiable_map (c₂.to_fun ∘. c₁.inv_fun) ∧
differentiable.is_differentiable_map (c₁.to_fun ∘. c₂.inv_fun)
def C_compatible_charts {X : Top} (n:ℕ) (c₁ c₂ : chart X E) : Prop :=
differentiable.𝒞_n n (c₂.to_fun ∘. c₁.inv_fun) ∧
differentiable.𝒞_n n (c₁.to_fun ∘. c₂.inv_fun)
def C_infinity_compatible_charts {X : Top} (c₁ c₂ : chart X E) : Prop :=
differentiable.𝒞_infinity (c₂.to_fun ∘. c₁.inv_fun) ∧
differentiable.𝒞_infinity (c₁.to_fun ∘. c₂.inv_fun)
structure manifold (E : euclidean α ) :=
(carrier : Top)
(struct2 : t2_space carrier)
(struct3 : second_countable_topology carrier)
(charts : set (chart carrier E))
(cover : ⋃₀ (chart.domain '' charts) = set.univ)
structure differentiable_manifold (E : euclidean α ) extends manifold (E) :=
(compatible : ∀{{c₁ c₂}}, c₁ ∈ charts → c₂ ∈ charts → differentiable_compatible_charts c₁ c₂)
structure C_infinity_manifold (E : euclidean α ) extends manifold (E) :=
(compatible : ∀{{c₁ c₂}}, c₁ ∈ charts → c₂ ∈ charts → C_infinity_compatible_charts c₁ c₂)
structure C_manifold (n:ℕ) (E : euclidean α ) extends manifold (E) :=
(compatible : ∀{{c₁ c₂}}, c₁ ∈ charts → c₂ ∈ charts → C_compatible_charts n c₁ c₂)
def real_manifold (E : euclidean ℝ ) := differentiable_manifold (E : euclidean ℝ )
def complex_manifold (E : euclidean ℂ ) := differentiable_manifold (E : euclidean ℂ )
namespace differentiable_manifold
def dim (M:differentiable_manifold E) :ℕ := E.dim
def curve (M:differentiable_manifold E):Prop := dim M==1
def surface (M:differentiable_manifold E):Prop := dim M==2
def threefold (M:differentiable_manifold E):Prop := dim M==3
end differentiable_manifold
|
c4897340545798ff402990488dbd1c5486402f68
|
957a80ea22c5abb4f4670b250d55534d9db99108
|
/tests/lean/run/smt_ematch2.lean
|
7549aee7c72e905b8a2ea7f4207d38faf988b8db
|
[
"Apache-2.0"
] |
permissive
|
GaloisInc/lean
|
aa1e64d604051e602fcf4610061314b9a37ab8cd
|
f1ec117a24459b59c6ff9e56a1d09d9e9e60a6c0
|
refs/heads/master
| 1,592,202,909,807
| 1,504,624,387,000
| 1,504,624,387,000
| 75,319,626
| 2
| 1
|
Apache-2.0
| 1,539,290,164,000
| 1,480,616,104,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 2,728
|
lean
|
universe variables u
namespace foo
variables {α : Type u}
open smt_tactic
meta def no_ac : smt_config :=
{ cc_cfg := { ac := ff }}
meta def blast : tactic unit :=
using_smt_with no_ac $ intros >> repeat (ematch >> try close)
section add_comm_monoid
variables [add_comm_monoid α]
attribute [ematch] add_comm add_assoc
theorem add_comm_three (a b c : α) : a + b + c = c + b + a :=
by blast
theorem add.comm4 : ∀ (n m k l : α), n + m + (k + l) = n + k + (m + l) :=
by blast
end add_comm_monoid
section group
variable [group α]
attribute [ematch] mul_assoc mul_left_inv one_mul
theorem inv_mul_cancel_left (a b : α) : a⁻¹ * (a * b) = b :=
by blast
end group
namespace subt
constant subt : nat → nat → Prop
axiom subt_trans {a b c : nat} : subt a b → subt b c → subt a c
attribute [ematch] subt_trans
lemma ex (a b c d : nat) : subt a b → subt b c → subt c d → subt a d :=
by blast
end subt
section ring
variables [ring α] (a b : α)
attribute [ematch] zero_mul
lemma ex2 : a = 0 → a * b = 0 :=
by blast
definition ex1 (a b : int) : a = 0 → a * b = 0 :=
by blast
end ring
namespace cast1
constant C : nat → Type
constant f : ∀ n, C n → C n
axiom fax (n : nat) (a : C (2*n)) : (: f (2*n) a :) = a
attribute [ematch] fax
lemma ex3 (n m : nat) (a : C n) : n = 2*m → f n a = a :=
by blast
end cast1
namespace cast2
constant C : nat → Type
constant f : ∀ n, C n → C n
constant g : ∀ n, C n → C n → C n
axiom gffax (n : nat) (a b : C n) : (: g n (f n a) (f n b) :) = a
attribute [ematch] gffax
lemma ex4 (n m : nat) (a c : C n) (b : C m) : n = m → a == f m b → g n a (f n c) == b :=
by blast
end cast2
namespace cast3
constant C : nat → Type
constant f : ∀ n, C n → C n
constant g : ∀ n, C n → C n → C n
axiom gffax (n : nat) (a b : C n) : (: g n a b :) = a
attribute [ematch] gffax
lemma ex5 (n m : nat) (a c : C n) (b : C m) (e : m = n) : a == b → g n a a == b :=
by blast
end cast3
namespace tuple
constant {α} tuple: Type α → nat → Type α
constant nil {α : Type u} : tuple α 0
constant append {α : Type u} {n m : nat} : tuple α n → tuple α m → tuple α (n + m)
infix ` ++ ` := append
axiom append_assoc {α : Type u} {n₁ n₂ n₃ : nat} (v₁ : tuple α n₁) (v₂ : tuple α n₂) (v₃ : tuple α n₃) :
(v₁ ++ v₂) ++ v₃ == v₁ ++ (v₂ ++ v₃)
attribute [ematch] append_assoc
variables {p m n q : nat}
variables {xs : tuple α m}
variables {ys : tuple α n}
variables {zs : tuple α p}
variables {ws : tuple α q}
lemma ex6 : p = m + n → zs == xs ++ ys → zs ++ ws == xs ++ (ys ++ ws) :=
by blast
def ex : p = n + m → zs == xs ++ ys → zs ++ ws == xs ++ (ys ++ ws) :=
by blast
end tuple
end foo
|
a5f87e7e21da358cf2404cdd1f2cc8efaaeaf8b4
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/analysis/mean_inequalities.lean
|
af5cfd68579f8fc1cefa905eb66775039d16d4a1
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 38,265
|
lean
|
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne
-/
import analysis.convex.specific_functions
import data.real.conjugate_exponents
/-!
# Mean value inequalities
In this file we prove several inequalities for finite sums, including AM-GM inequality,
Young's inequality, Hölder inequality, and Minkowski inequality. Versions for integrals of some of
these inequalities are available in `measure_theory.mean_inequalities`.
## Main theorems
### AM-GM inequality:
The inequality says that the geometric mean of a tuple of non-negative numbers is less than or equal
to their arithmetic mean. We prove the weighted version of this inequality: if $w$ and $z$
are two non-negative vectors and $\sum_{i\in s} w_i=1$, then
$$
\prod_{i\in s} z_i^{w_i} ≤ \sum_{i\in s} w_iz_i.
$$
The classical version is a special case of this inequality for $w_i=\frac{1}{n}$.
We prove a few versions of this inequality. Each of the following lemmas comes in two versions:
a version for real-valued non-negative functions is in the `real` namespace, and a version for
`nnreal`-valued functions is in the `nnreal` namespace.
- `geom_mean_le_arith_mean_weighted` : weighted version for functions on `finset`s;
- `geom_mean_le_arith_mean2_weighted` : weighted version for two numbers;
- `geom_mean_le_arith_mean3_weighted` : weighted version for three numbers;
- `geom_mean_le_arith_mean4_weighted` : weighted version for four numbers.
### Young's inequality
Young's inequality says that for non-negative numbers `a`, `b`, `p`, `q` such that
$\frac{1}{p}+\frac{1}{q}=1$ we have
$$
ab ≤ \frac{a^p}{p} + \frac{b^q}{q}.
$$
This inequality is a special case of the AM-GM inequality. It is then used to prove Hölder's
inequality (see below).
### Hölder's inequality
The inequality says that for two conjugate exponents `p` and `q` (i.e., for two positive numbers
such that $\frac{1}{p}+\frac{1}{q}=1$) and any two non-negative vectors their inner product is
less than or equal to the product of the $L_p$ norm of the first vector and the $L_q$ norm of the
second vector:
$$
\sum_{i\in s} a_ib_i ≤ \sqrt[p]{\sum_{i\in s} a_i^p}\sqrt[q]{\sum_{i\in s} b_i^q}.
$$
We give versions of this result in `ℝ`, `ℝ≥0` and `ℝ≥0∞`.
There are at least two short proofs of this inequality. In our proof we prenormalize both vectors,
then apply Young's inequality to each $a_ib_i$. Another possible proof would be to deduce this
inequality from the generalized mean inequality for well-chosen vectors and weights.
### Minkowski's inequality
The inequality says that for `p ≥ 1` the function
$$
\|a\|_p=\sqrt[p]{\sum_{i\in s} a_i^p}
$$
satisfies the triangle inequality $\|a+b\|_p\le \|a\|_p+\|b\|_p$.
We give versions of this result in `real`, `ℝ≥0` and `ℝ≥0∞`.
We deduce this inequality from Hölder's inequality. Namely, Hölder inequality implies that $\|a\|_p$
is the maximum of the inner product $\sum_{i\in s}a_ib_i$ over `b` such that $\|b\|_q\le 1$. Now
Minkowski's inequality follows from the fact that the maximum value of the sum of two functions is
less than or equal to the sum of the maximum values of the summands.
## TODO
- each inequality `A ≤ B` should come with a theorem `A = B ↔ _`; one of the ways to prove them
is to define `strict_convex_on` functions.
- generalized mean inequality with any `p ≤ q`, including negative numbers;
- prove that the power mean tends to the geometric mean as the exponent tends to zero.
-/
universes u v
open finset
open_locale classical big_operators nnreal ennreal
noncomputable theory
variables {ι : Type u} (s : finset ι)
section geom_mean_le_arith_mean
/-! ### AM-GM inequality -/
namespace real
/-- AM-GM inequality: the **geometric mean is less than or equal to the arithmetic mean**, weighted
version for real-valued nonnegative functions. -/
theorem geom_mean_le_arith_mean_weighted (w z : ι → ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) :
(∏ i in s, (z i) ^ (w i)) ≤ ∑ i in s, w i * z i :=
begin
-- If some number `z i` equals zero and has non-zero weight, then LHS is 0 and RHS is nonnegative.
by_cases A : ∃ i ∈ s, z i = 0 ∧ w i ≠ 0,
{ rcases A with ⟨i, his, hzi, hwi⟩,
rw [prod_eq_zero his],
{ exact sum_nonneg (λ j hj, mul_nonneg (hw j hj) (hz j hj)) },
{ rw hzi, exact zero_rpow hwi } },
-- If all numbers `z i` with non-zero weight are positive, then we apply Jensen's inequality
-- for `exp` and numbers `log (z i)` with weights `w i`.
{ simp only [not_exists, not_and, ne.def, not_not] at A,
have := convex_on_exp.map_sum_le hw hw' (λ i _, set.mem_univ $ log (z i)),
simp only [exp_sum, (∘), smul_eq_mul, mul_comm (w _) (log _)] at this,
convert this using 1; [apply prod_congr rfl, apply sum_congr rfl]; intros i hi,
{ cases eq_or_lt_of_le (hz i hi) with hz hz,
{ simp [A i hi hz.symm] },
{ exact rpow_def_of_pos hz _ } },
{ cases eq_or_lt_of_le (hz i hi) with hz hz,
{ simp [A i hi hz.symm] },
{ rw [exp_log hz] } } }
end
theorem geom_mean_weighted_of_constant (w z : ι → ℝ) (x : ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) (hx : ∀ i ∈ s, w i ≠ 0 → z i = x) :
(∏ i in s, (z i) ^ (w i)) = x :=
calc (∏ i in s, (z i) ^ (w i)) = ∏ i in s, x ^ w i :
begin
refine prod_congr rfl (λ i hi, _),
cases eq_or_ne (w i) 0 with h₀ h₀,
{ rw [h₀, rpow_zero, rpow_zero] },
{ rw hx i hi h₀ }
end
... = x :
begin
rw [← rpow_sum_of_nonneg _ hw, hw', rpow_one],
have : (∑ i in s, w i) ≠ 0,
{ rw hw', exact one_ne_zero },
obtain ⟨i, his, hi⟩ := exists_ne_zero_of_sum_ne_zero this,
rw ← hx i his hi,
exact hz i his
end
theorem arith_mean_weighted_of_constant (w z : ι → ℝ) (x : ℝ)
(hw' : ∑ i in s, w i = 1) (hx : ∀ i ∈ s, w i ≠ 0 → z i = x) :
∑ i in s, w i * z i = x :=
calc ∑ i in s, w i * z i = ∑ i in s, w i * x :
begin
refine sum_congr rfl (λ i hi, _),
cases eq_or_ne (w i) 0 with hwi hwi,
{ rw [hwi, zero_mul, zero_mul] },
{ rw hx i hi hwi },
end
... = x : by rw [←sum_mul, hw', one_mul]
theorem geom_mean_eq_arith_mean_weighted_of_constant (w z : ι → ℝ) (x : ℝ) (hw : ∀ i ∈ s, 0 ≤ w i)
(hw' : ∑ i in s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) (hx : ∀ i ∈ s, w i ≠ 0 → z i = x) :
(∏ i in s, (z i) ^ (w i)) = ∑ i in s, w i * z i :=
by rw [geom_mean_weighted_of_constant, arith_mean_weighted_of_constant]; assumption
end real
namespace nnreal
/-- The geometric mean is less than or equal to the arithmetic mean, weighted version
for `nnreal`-valued functions. -/
theorem geom_mean_le_arith_mean_weighted (w z : ι → ℝ≥0) (hw' : ∑ i in s, w i = 1) :
(∏ i in s, (z i) ^ (w i:ℝ)) ≤ ∑ i in s, w i * z i :=
by exact_mod_cast real.geom_mean_le_arith_mean_weighted _ _ _ (λ i _, (w i).coe_nonneg)
(by assumption_mod_cast) (λ i _, (z i).coe_nonneg)
/-- The geometric mean is less than or equal to the arithmetic mean, weighted version
for two `nnreal` numbers. -/
theorem geom_mean_le_arith_mean2_weighted (w₁ w₂ p₁ p₂ : ℝ≥0) :
w₁ + w₂ = 1 → p₁ ^ (w₁:ℝ) * p₂ ^ (w₂:ℝ) ≤ w₁ * p₁ + w₂ * p₂ :=
by simpa only [fin.prod_univ_succ, fin.sum_univ_succ, finset.prod_empty, finset.sum_empty,
fintype.univ_of_is_empty, fin.cons_succ, fin.cons_zero, add_zero, mul_one]
using geom_mean_le_arith_mean_weighted univ ![w₁, w₂] ![p₁, p₂]
theorem geom_mean_le_arith_mean3_weighted (w₁ w₂ w₃ p₁ p₂ p₃ : ℝ≥0) :
w₁ + w₂ + w₃ = 1 → p₁ ^ (w₁:ℝ) * p₂ ^ (w₂:ℝ) * p₃ ^ (w₃:ℝ) ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ :=
by simpa only [fin.prod_univ_succ, fin.sum_univ_succ, finset.prod_empty, finset.sum_empty,
fintype.univ_of_is_empty, fin.cons_succ, fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc]
using geom_mean_le_arith_mean_weighted univ ![w₁, w₂, w₃] ![p₁, p₂, p₃]
theorem geom_mean_le_arith_mean4_weighted (w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ≥0) :
w₁ + w₂ + w₃ + w₄ = 1 → p₁ ^ (w₁:ℝ) * p₂ ^ (w₂:ℝ) * p₃ ^ (w₃:ℝ)* p₄ ^ (w₄:ℝ) ≤
w₁ * p₁ + w₂ * p₂ + w₃ * p₃ + w₄ * p₄ :=
by simpa only [fin.prod_univ_succ, fin.sum_univ_succ, finset.prod_empty, finset.sum_empty,
fintype.univ_of_is_empty, fin.cons_succ, fin.cons_zero, add_zero, mul_one, ← add_assoc, mul_assoc]
using geom_mean_le_arith_mean_weighted univ ![w₁, w₂, w₃, w₄] ![p₁, p₂, p₃, p₄]
end nnreal
namespace real
theorem geom_mean_le_arith_mean2_weighted {w₁ w₂ p₁ p₂ : ℝ} (hw₁ : 0 ≤ w₁) (hw₂ : 0 ≤ w₂)
(hp₁ : 0 ≤ p₁) (hp₂ : 0 ≤ p₂) (hw : w₁ + w₂ = 1) :
p₁ ^ w₁ * p₂ ^ w₂ ≤ w₁ * p₁ + w₂ * p₂ :=
nnreal.geom_mean_le_arith_mean2_weighted ⟨w₁, hw₁⟩ ⟨w₂, hw₂⟩ ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ $
nnreal.coe_eq.1 $ by assumption
theorem geom_mean_le_arith_mean3_weighted {w₁ w₂ w₃ p₁ p₂ p₃ : ℝ} (hw₁ : 0 ≤ w₁) (hw₂ : 0 ≤ w₂)
(hw₃ : 0 ≤ w₃) (hp₁ : 0 ≤ p₁) (hp₂ : 0 ≤ p₂) (hp₃ : 0 ≤ p₃) (hw : w₁ + w₂ + w₃ = 1) :
p₁ ^ w₁ * p₂ ^ w₂ * p₃ ^ w₃ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ :=
nnreal.geom_mean_le_arith_mean3_weighted
⟨w₁, hw₁⟩ ⟨w₂, hw₂⟩ ⟨w₃, hw₃⟩ ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ ⟨p₃, hp₃⟩ $ nnreal.coe_eq.1 hw
theorem geom_mean_le_arith_mean4_weighted {w₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ} (hw₁ : 0 ≤ w₁)
(hw₂ : 0 ≤ w₂) (hw₃ : 0 ≤ w₃) (hw₄ : 0 ≤ w₄) (hp₁ : 0 ≤ p₁) (hp₂ : 0 ≤ p₂) (hp₃ : 0 ≤ p₃)
(hp₄ : 0 ≤ p₄) (hw : w₁ + w₂ + w₃ + w₄ = 1) :
p₁ ^ w₁ * p₂ ^ w₂ * p₃ ^ w₃ * p₄ ^ w₄ ≤ w₁ * p₁ + w₂ * p₂ + w₃ * p₃ + w₄ * p₄ :=
nnreal.geom_mean_le_arith_mean4_weighted ⟨w₁, hw₁⟩ ⟨w₂, hw₂⟩ ⟨w₃, hw₃⟩ ⟨w₄, hw₄⟩
⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ ⟨p₃, hp₃⟩ ⟨p₄, hp₄⟩ $ nnreal.coe_eq.1 $ by assumption
end real
end geom_mean_le_arith_mean
section young
/-! ### Young's inequality -/
namespace real
/-- Young's inequality, a version for nonnegative real numbers. -/
theorem young_inequality_of_nonneg {a b p q : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b)
(hpq : p.is_conjugate_exponent q) :
a * b ≤ a^p / p + b^q / q :=
by simpa [← rpow_mul, ha, hb, hpq.ne_zero, hpq.symm.ne_zero, div_eq_inv_mul]
using geom_mean_le_arith_mean2_weighted hpq.one_div_nonneg hpq.symm.one_div_nonneg
(rpow_nonneg_of_nonneg ha p) (rpow_nonneg_of_nonneg hb q) hpq.inv_add_inv_conj
/-- Young's inequality, a version for arbitrary real numbers. -/
theorem young_inequality (a b : ℝ) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
a * b ≤ |a|^p / p + |b|^q / q :=
calc a * b ≤ |a * b| : le_abs_self (a * b)
... = |a| * |b| : abs_mul a b
... ≤ |a|^p / p + |b|^q / q :
real.young_inequality_of_nonneg (abs_nonneg a) (abs_nonneg b) hpq
end real
namespace nnreal
/-- Young's inequality, `ℝ≥0` version. We use `{p q : ℝ≥0}` in order to avoid constructing
witnesses of `0 ≤ p` and `0 ≤ q` for the denominators. -/
theorem young_inequality (a b : ℝ≥0) {p q : ℝ≥0} (hp : 1 < p) (hpq : 1 / p + 1 / q = 1) :
a * b ≤ a^(p:ℝ) / p + b^(q:ℝ) / q :=
real.young_inequality_of_nonneg a.coe_nonneg b.coe_nonneg ⟨hp, nnreal.coe_eq.2 hpq⟩
/-- Young's inequality, `ℝ≥0` version with real conjugate exponents. -/
theorem young_inequality_real (a b : ℝ≥0) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
a * b ≤ a ^ p / real.to_nnreal p + b ^ q / real.to_nnreal q :=
begin
nth_rewrite 0 ← real.coe_to_nnreal p hpq.nonneg,
nth_rewrite 0 ← real.coe_to_nnreal q hpq.symm.nonneg,
exact young_inequality a b hpq.one_lt_nnreal hpq.inv_add_inv_conj_nnreal,
end
end nnreal
namespace ennreal
/-- Young's inequality, `ℝ≥0∞` version with real conjugate exponents. -/
theorem young_inequality (a b : ℝ≥0∞) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
a * b ≤ a ^ p / ennreal.of_real p + b ^ q / ennreal.of_real q :=
begin
by_cases h : a = ⊤ ∨ b = ⊤,
{ refine le_trans le_top (le_of_eq _),
repeat { rw div_eq_mul_inv },
cases h; rw h; simp [h, hpq.pos, hpq.symm.pos], },
push_neg at h, -- if a ≠ ⊤ and b ≠ ⊤, use the nnreal version: nnreal.young_inequality_real
rw [←coe_to_nnreal h.left, ←coe_to_nnreal h.right, ←coe_mul,
coe_rpow_of_nonneg _ hpq.nonneg, coe_rpow_of_nonneg _ hpq.symm.nonneg, ennreal.of_real,
ennreal.of_real, ←@coe_div (real.to_nnreal p) _ (by simp [hpq.pos]),
←@coe_div (real.to_nnreal q) _ (by simp [hpq.symm.pos]), ←coe_add, coe_le_coe],
exact nnreal.young_inequality_real a.to_nnreal b.to_nnreal hpq,
end
end ennreal
end young
section holder_minkowski
/-! ### Hölder's and Minkowski's inequalities -/
namespace nnreal
private lemma inner_le_Lp_mul_Lp_of_norm_le_one (f g : ι → ℝ≥0) {p q : ℝ}
(hpq : p.is_conjugate_exponent q) (hf : ∑ i in s, (f i) ^ p ≤ 1) (hg : ∑ i in s, (g i) ^ q ≤ 1) :
∑ i in s, f i * g i ≤ 1 :=
begin
have hp_ne_zero : real.to_nnreal p ≠ 0, from (zero_lt_one.trans hpq.one_lt_nnreal).ne.symm,
have hq_ne_zero : real.to_nnreal q ≠ 0, from (zero_lt_one.trans hpq.symm.one_lt_nnreal).ne.symm,
calc ∑ i in s, f i * g i
≤ ∑ i in s, ((f i) ^ p / real.to_nnreal p + (g i) ^ q / real.to_nnreal q) :
finset.sum_le_sum (λ i his, young_inequality_real (f i) (g i) hpq)
... = (∑ i in s, (f i) ^ p) / real.to_nnreal p + (∑ i in s, (g i) ^ q) / real.to_nnreal q :
by rw [sum_add_distrib, sum_div, sum_div]
... ≤ 1 / real.to_nnreal p + 1 / real.to_nnreal q :
by { refine add_le_add _ _,
{ rwa [div_le_iff hp_ne_zero, div_mul_cancel _ hp_ne_zero], },
{ rwa [div_le_iff hq_ne_zero, div_mul_cancel _ hq_ne_zero], }, }
... = 1 : hpq.inv_add_inv_conj_nnreal,
end
private lemma inner_le_Lp_mul_Lp_of_norm_eq_zero (f g : ι → ℝ≥0) {p q : ℝ}
(hpq : p.is_conjugate_exponent q) (hf : ∑ i in s, (f i) ^ p = 0) :
∑ i in s, f i * g i ≤ (∑ i in s, (f i) ^ p) ^ (1 / p) * (∑ i in s, (g i) ^ q) ^ (1 / q) :=
begin
simp only [hf, hpq.ne_zero, one_div, sum_eq_zero_iff, zero_rpow, zero_mul, inv_eq_zero,
ne.def, not_false_iff, le_zero_iff, mul_eq_zero],
intros i his,
left,
rw sum_eq_zero_iff at hf,
exact (rpow_eq_zero_iff.mp (hf i his)).left,
end
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with `ℝ≥0`-valued functions. -/
theorem inner_le_Lp_mul_Lq (f g : ι → ℝ≥0) {p q : ℝ}
(hpq : p.is_conjugate_exponent q) :
∑ i in s, f i * g i ≤ (∑ i in s, (f i) ^ p) ^ (1 / p) * (∑ i in s, (g i) ^ q) ^ (1 / q) :=
begin
by_cases hF_zero : ∑ i in s, (f i) ^ p = 0,
{ exact inner_le_Lp_mul_Lp_of_norm_eq_zero s f g hpq hF_zero, },
by_cases hG_zero : ∑ i in s, (g i) ^ q = 0,
{ calc ∑ i in s, f i * g i
= ∑ i in s, g i * f i : by { congr' with i, rw mul_comm, }
... ≤ (∑ i in s, (g i) ^ q) ^ (1 / q) * (∑ i in s, (f i) ^ p) ^ (1 / p) :
inner_le_Lp_mul_Lp_of_norm_eq_zero s g f hpq.symm hG_zero
... = (∑ i in s, (f i) ^ p) ^ (1 / p) * (∑ i in s, (g i) ^ q) ^ (1 / q) : mul_comm _ _, },
let f' := λ i, (f i) / (∑ i in s, (f i) ^ p) ^ (1 / p),
let g' := λ i, (g i) / (∑ i in s, (g i) ^ q) ^ (1 / q),
suffices : ∑ i in s, f' i * g' i ≤ 1,
{ simp_rw [f', g', div_mul_div_comm, ← sum_div] at this,
rwa [div_le_iff, one_mul] at this,
refine mul_ne_zero _ _,
{ rw [ne.def, rpow_eq_zero_iff, not_and_distrib], exact or.inl hF_zero, },
{ rw [ne.def, rpow_eq_zero_iff, not_and_distrib], exact or.inl hG_zero, }, },
refine inner_le_Lp_mul_Lp_of_norm_le_one s f' g' hpq (le_of_eq _) (le_of_eq _),
{ simp_rw [f', div_rpow, ← sum_div, ← rpow_mul, one_div, inv_mul_cancel hpq.ne_zero, rpow_one,
div_self hF_zero], },
{ simp_rw [g', div_rpow, ← sum_div, ← rpow_mul, one_div, inv_mul_cancel hpq.symm.ne_zero,
rpow_one, div_self hG_zero], },
end
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. A version for `nnreal`-valued
functions. For an alternative version, convenient if the infinite sums are already expressed as
`p`-th powers, see `inner_le_Lp_mul_Lq_has_sum`. -/
theorem inner_le_Lp_mul_Lq_tsum {f g : ι → ℝ≥0} {p q : ℝ} (hpq : p.is_conjugate_exponent q)
(hf : summable (λ i, (f i) ^ p)) (hg : summable (λ i, (g i) ^ q)) :
summable (λ i, f i * g i) ∧
∑' i, f i * g i ≤ (∑' i, (f i) ^ p) ^ (1 / p) * (∑' i, (g i) ^ q) ^ (1 / q) :=
begin
have H₁ : ∀ s : finset ι, ∑ i in s, f i * g i
≤ (∑' i, (f i) ^ p) ^ (1 / p) * (∑' i, (g i) ^ q) ^ (1 / q),
{ intros s,
refine le_trans (inner_le_Lp_mul_Lq s f g hpq) (mul_le_mul _ _ bot_le bot_le),
{ rw nnreal.rpow_le_rpow_iff (one_div_pos.mpr hpq.pos),
exact sum_le_tsum _ (λ _ _, zero_le _) hf },
{ rw nnreal.rpow_le_rpow_iff (one_div_pos.mpr hpq.symm.pos),
exact sum_le_tsum _ (λ _ _, zero_le _) hg } },
have bdd : bdd_above (set.range (λ s, ∑ i in s, f i * g i)),
{ refine ⟨(∑' i, (f i) ^ p) ^ (1 / p) * (∑' i, (g i) ^ q) ^ (1 / q), _⟩,
rintros a ⟨s, rfl⟩,
exact H₁ s },
have H₂ : summable _ := (has_sum_of_is_lub _ (is_lub_csupr bdd)).summable,
exact ⟨H₂, tsum_le_of_sum_le H₂ H₁⟩,
end
theorem summable_mul_of_Lp_Lq {f g : ι → ℝ≥0} {p q : ℝ} (hpq : p.is_conjugate_exponent q)
(hf : summable (λ i, (f i) ^ p)) (hg : summable (λ i, (g i) ^ q)) :
summable (λ i, f i * g i) :=
(inner_le_Lp_mul_Lq_tsum hpq hf hg).1
theorem inner_le_Lp_mul_Lq_tsum' {f g : ι → ℝ≥0} {p q : ℝ} (hpq : p.is_conjugate_exponent q)
(hf : summable (λ i, (f i) ^ p)) (hg : summable (λ i, (g i) ^ q)) :
∑' i, f i * g i ≤ (∑' i, (f i) ^ p) ^ (1 / p) * (∑' i, (g i) ^ q) ^ (1 / q) :=
(inner_le_Lp_mul_Lq_tsum hpq hf hg).2
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. A version for `nnreal`-valued
functions. For an alternative version, convenient if the infinite sums are not already expressed as
`p`-th powers, see `inner_le_Lp_mul_Lq_tsum`. -/
theorem inner_le_Lp_mul_Lq_has_sum {f g : ι → ℝ≥0} {A B : ℝ≥0} {p q : ℝ}
(hpq : p.is_conjugate_exponent q) (hf : has_sum (λ i, (f i) ^ p) (A ^ p))
(hg : has_sum (λ i, (g i) ^ q) (B ^ q)) :
∃ C, C ≤ A * B ∧ has_sum (λ i, f i * g i) C :=
begin
obtain ⟨H₁, H₂⟩ := inner_le_Lp_mul_Lq_tsum hpq hf.summable hg.summable,
have hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p),
{ rw [hf.tsum_eq, rpow_inv_rpow_self hpq.ne_zero] },
have hB : B = (∑' (i : ι), g i ^ q) ^ (1 / q),
{ rw [hg.tsum_eq, rpow_inv_rpow_self hpq.symm.ne_zero] },
refine ⟨∑' i, f i * g i, _, _⟩,
{ simpa [hA, hB] using H₂ },
{ simpa only [rpow_self_rpow_inv hpq.ne_zero] using H₁.has_sum }
end
/-- For `1 ≤ p`, the `p`-th power of the sum of `f i` is bounded above by a constant times the
sum of the `p`-th powers of `f i`. Version for sums over finite sets, with `ℝ≥0`-valued functions.
-/
theorem rpow_sum_le_const_mul_sum_rpow (f : ι → ℝ≥0) {p : ℝ} (hp : 1 ≤ p) :
(∑ i in s, f i) ^ p ≤ (card s) ^ (p - 1) * ∑ i in s, (f i) ^ p :=
begin
cases eq_or_lt_of_le hp with hp hp,
{ simp [← hp] },
let q : ℝ := p / (p - 1),
have hpq : p.is_conjugate_exponent q,
{ rw real.is_conjugate_exponent_iff hp },
have hp₁ : 1 / p * p = 1 := one_div_mul_cancel hpq.ne_zero,
have hq : 1 / q * p = (p - 1),
{ rw [← hpq.div_conj_eq_sub_one],
ring },
simpa only [nnreal.mul_rpow, ← nnreal.rpow_mul, hp₁, hq, one_mul, one_rpow, rpow_one,
pi.one_apply, sum_const, nat.smul_one_eq_coe]
using nnreal.rpow_le_rpow (inner_le_Lp_mul_Lq s 1 f hpq.symm) hpq.nonneg,
end
/-- The `L_p` seminorm of a vector `f` is the greatest value of the inner product
`∑ i in s, f i * g i` over functions `g` of `L_q` seminorm less than or equal to one. -/
theorem is_greatest_Lp (f : ι → ℝ≥0) {p q : ℝ} (hpq : p.is_conjugate_exponent q) :
is_greatest ((λ g : ι → ℝ≥0, ∑ i in s, f i * g i) ''
{g | ∑ i in s, (g i)^q ≤ 1}) ((∑ i in s, (f i)^p) ^ (1 / p)) :=
begin
split,
{ use λ i, ((f i) ^ p / f i / (∑ i in s, (f i) ^ p) ^ (1 / q)),
by_cases hf : ∑ i in s, (f i)^p = 0,
{ simp [hf, hpq.ne_zero, hpq.symm.ne_zero] },
{ have A : p + q - q ≠ 0, by simp [hpq.ne_zero],
have B : ∀ y : ℝ≥0, y * y^p / y = y^p,
{ refine λ y, mul_div_cancel_left_of_imp (λ h, _),
simpa [h, hpq.ne_zero] },
simp only [set.mem_set_of_eq, div_rpow, ← sum_div, ← rpow_mul,
div_mul_cancel _ hpq.symm.ne_zero, rpow_one, div_le_iff hf, one_mul, hpq.mul_eq_add,
← rpow_sub' _ A, _root_.add_sub_cancel, le_refl, true_and, ← mul_div_assoc, B],
rw [div_eq_iff, ← rpow_add hf, hpq.inv_add_inv_conj, rpow_one],
simpa [hpq.symm.ne_zero] using hf } },
{ rintros _ ⟨g, hg, rfl⟩,
apply le_trans (inner_le_Lp_mul_Lq s f g hpq),
simpa only [mul_one] using mul_le_mul_left'
(nnreal.rpow_le_one hg (le_of_lt hpq.symm.one_div_pos)) _ }
end
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `nnreal`-valued functions. -/
theorem Lp_add_le (f g : ι → ℝ≥0) {p : ℝ} (hp : 1 ≤ p) :
(∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤
(∑ i in s, (f i) ^ p) ^ (1 / p) + (∑ i in s, (g i) ^ p) ^ (1 / p) :=
begin
-- The result is trivial when `p = 1`, so we can assume `1 < p`.
rcases eq_or_lt_of_le hp with rfl|hp, { simp [finset.sum_add_distrib] },
have hpq := real.is_conjugate_exponent_conjugate_exponent hp,
have := is_greatest_Lp s (f + g) hpq,
simp only [pi.add_apply, add_mul, sum_add_distrib] at this,
rcases this.1 with ⟨φ, hφ, H⟩,
rw ← H,
exact add_le_add ((is_greatest_Lp s f hpq).2 ⟨φ, hφ, rfl⟩)
((is_greatest_Lp s g hpq).2 ⟨φ, hφ, rfl⟩)
end
/-- Minkowski inequality: the `L_p` seminorm of the infinite sum of two vectors is less than or
equal to the infinite sum of the `L_p`-seminorms of the summands, if these infinite sums both
exist. A version for `nnreal`-valued functions. For an alternative version, convenient if the
infinite sums are already expressed as `p`-th powers, see `Lp_add_le_has_sum_of_nonneg`. -/
theorem Lp_add_le_tsum {f g : ι → ℝ≥0} {p : ℝ} (hp : 1 ≤ p) (hf : summable (λ i, (f i) ^ p))
(hg : summable (λ i, (g i) ^ p)) :
summable (λ i, (f i + g i) ^ p) ∧
(∑' i, (f i + g i) ^ p) ^ (1 / p) ≤ (∑' i, (f i) ^ p) ^ (1 / p) + (∑' i, (g i) ^ p) ^ (1 / p) :=
begin
have pos : 0 < p := lt_of_lt_of_le zero_lt_one hp,
have H₁ : ∀ s : finset ι, ∑ i in s, (f i + g i) ^ p
≤ ((∑' i, (f i)^p) ^ (1/p) + (∑' i, (g i)^p) ^ (1/p)) ^ p,
{ intros s,
rw ← nnreal.rpow_one_div_le_iff pos,
refine le_trans (Lp_add_le s f g hp) (add_le_add _ _);
rw nnreal.rpow_le_rpow_iff (one_div_pos.mpr pos);
refine sum_le_tsum _ (λ _ _, zero_le _) _,
exacts [hf, hg] },
have bdd : bdd_above (set.range (λ s, ∑ i in s, (f i + g i) ^ p)),
{ refine ⟨((∑' i, (f i)^p) ^ (1/p) + (∑' i, (g i)^p) ^ (1/p)) ^ p, _⟩,
rintros a ⟨s, rfl⟩,
exact H₁ s },
have H₂ : summable _ := (has_sum_of_is_lub _ (is_lub_csupr bdd)).summable,
refine ⟨H₂, _⟩,
rw nnreal.rpow_one_div_le_iff pos,
refine tsum_le_of_sum_le H₂ H₁,
end
theorem summable_Lp_add {f g : ι → ℝ≥0} {p : ℝ} (hp : 1 ≤ p) (hf : summable (λ i, (f i) ^ p))
(hg : summable (λ i, (g i) ^ p)) :
summable (λ i, (f i + g i) ^ p) :=
(Lp_add_le_tsum hp hf hg).1
theorem Lp_add_le_tsum' {f g : ι → ℝ≥0} {p : ℝ} (hp : 1 ≤ p) (hf : summable (λ i, (f i) ^ p))
(hg : summable (λ i, (g i) ^ p)) :
(∑' i, (f i + g i) ^ p) ^ (1 / p) ≤ (∑' i, (f i) ^ p) ^ (1 / p) + (∑' i, (g i) ^ p) ^ (1 / p) :=
(Lp_add_le_tsum hp hf hg).2
/-- Minkowski inequality: the `L_p` seminorm of the infinite sum of two vectors is less than or
equal to the infinite sum of the `L_p`-seminorms of the summands, if these infinite sums both
exist. A version for `nnreal`-valued functions. For an alternative version, convenient if the
infinite sums are not already expressed as `p`-th powers, see `Lp_add_le_tsum_of_nonneg`. -/
theorem Lp_add_le_has_sum {f g : ι → ℝ≥0} {A B : ℝ≥0} {p : ℝ} (hp : 1 ≤ p)
(hf : has_sum (λ i, (f i) ^ p) (A ^ p)) (hg : has_sum (λ i, (g i) ^ p) (B ^ p)) :
∃ C, C ≤ A + B ∧ has_sum (λ i, (f i + g i) ^ p) (C ^ p) :=
begin
have hp' : p ≠ 0 := (lt_of_lt_of_le zero_lt_one hp).ne',
obtain ⟨H₁, H₂⟩ := Lp_add_le_tsum hp hf.summable hg.summable,
have hA : A = (∑' (i : ι), f i ^ p) ^ (1 / p) := by rw [hf.tsum_eq, rpow_inv_rpow_self hp'],
have hB : B = (∑' (i : ι), g i ^ p) ^ (1 / p) := by rw [hg.tsum_eq, rpow_inv_rpow_self hp'],
refine ⟨(∑' i, (f i + g i) ^ p) ^ (1 / p), _, _⟩,
{ simpa [hA, hB] using H₂ },
{ simpa only [rpow_self_rpow_inv hp'] using H₁.has_sum }
end
end nnreal
namespace real
variables (f g : ι → ℝ) {p q : ℝ}
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with real-valued functions. -/
theorem inner_le_Lp_mul_Lq (hpq : is_conjugate_exponent p q) :
∑ i in s, f i * g i ≤ (∑ i in s, |f i| ^ p) ^ (1 / p) * (∑ i in s, |g i| ^ q) ^ (1 / q) :=
begin
have := nnreal.coe_le_coe.2 (nnreal.inner_le_Lp_mul_Lq s (λ i, ⟨_, abs_nonneg (f i)⟩)
(λ i, ⟨_, abs_nonneg (g i)⟩) hpq),
push_cast at this,
refine le_trans (sum_le_sum $ λ i hi, _) this,
simp only [← abs_mul, le_abs_self]
end
/-- For `1 ≤ p`, the `p`-th power of the sum of `f i` is bounded above by a constant times the
sum of the `p`-th powers of `f i`. Version for sums over finite sets, with `ℝ`-valued functions. -/
theorem rpow_sum_le_const_mul_sum_rpow (hp : 1 ≤ p) :
(∑ i in s, |f i|) ^ p ≤ (card s) ^ (p - 1) * ∑ i in s, |f i| ^ p :=
begin
have := nnreal.coe_le_coe.2
(nnreal.rpow_sum_le_const_mul_sum_rpow s (λ i, ⟨_, abs_nonneg (f i)⟩) hp),
push_cast at this,
exact this, -- for some reason `exact_mod_cast` can't replace this argument
end
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `real`-valued functions. -/
theorem Lp_add_le (hp : 1 ≤ p) :
(∑ i in s, |f i + g i| ^ p) ^ (1 / p) ≤
(∑ i in s, |f i| ^ p) ^ (1 / p) + (∑ i in s, |g i| ^ p) ^ (1 / p) :=
begin
have := nnreal.coe_le_coe.2 (nnreal.Lp_add_le s (λ i, ⟨_, abs_nonneg (f i)⟩)
(λ i, ⟨_, abs_nonneg (g i)⟩) hp),
push_cast at this,
refine le_trans (rpow_le_rpow _ (sum_le_sum $ λ i hi, _) _) this;
simp [sum_nonneg, rpow_nonneg_of_nonneg, abs_nonneg, le_trans zero_le_one hp, abs_add,
rpow_le_rpow]
end
variables {f g}
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with real-valued nonnegative functions. -/
theorem inner_le_Lp_mul_Lq_of_nonneg (hpq : is_conjugate_exponent p q)
(hf : ∀ i ∈ s, 0 ≤ f i) (hg : ∀ i ∈ s, 0 ≤ g i) :
∑ i in s, f i * g i ≤ (∑ i in s, (f i)^p) ^ (1 / p) * (∑ i in s, (g i)^q) ^ (1 / q) :=
by convert inner_le_Lp_mul_Lq s f g hpq using 3; apply sum_congr rfl; intros i hi;
simp only [abs_of_nonneg, hf i hi, hg i hi]
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. A version for `ℝ`-valued functions.
For an alternative version, convenient if the infinite sums are already expressed as `p`-th powers,
see `inner_le_Lp_mul_Lq_has_sum_of_nonneg`. -/
theorem inner_le_Lp_mul_Lq_tsum_of_nonneg (hpq : p.is_conjugate_exponent q) (hf : ∀ i, 0 ≤ f i)
(hg : ∀ i, 0 ≤ g i) (hf_sum : summable (λ i, (f i) ^ p)) (hg_sum : summable (λ i, (g i) ^ q)) :
summable (λ i, f i * g i) ∧
∑' i, f i * g i ≤ (∑' i, (f i) ^ p) ^ (1 / p) * (∑' i, (g i) ^ q) ^ (1 / q) :=
begin
lift f to (ι → ℝ≥0) using hf,
lift g to (ι → ℝ≥0) using hg,
norm_cast at *,
exact nnreal.inner_le_Lp_mul_Lq_tsum hpq hf_sum hg_sum,
end
theorem summable_mul_of_Lp_Lq_of_nonneg (hpq : p.is_conjugate_exponent q) (hf : ∀ i, 0 ≤ f i)
(hg : ∀ i, 0 ≤ g i) (hf_sum : summable (λ i, (f i) ^ p)) (hg_sum : summable (λ i, (g i) ^ q)) :
summable (λ i, f i * g i) :=
(inner_le_Lp_mul_Lq_tsum_of_nonneg hpq hf hg hf_sum hg_sum).1
theorem inner_le_Lp_mul_Lq_tsum_of_nonneg' (hpq : p.is_conjugate_exponent q) (hf : ∀ i, 0 ≤ f i)
(hg : ∀ i, 0 ≤ g i) (hf_sum : summable (λ i, (f i) ^ p)) (hg_sum : summable (λ i, (g i) ^ q)) :
∑' i, f i * g i ≤ (∑' i, (f i) ^ p) ^ (1 / p) * (∑' i, (g i) ^ q) ^ (1 / q) :=
(inner_le_Lp_mul_Lq_tsum_of_nonneg hpq hf hg hf_sum hg_sum).2
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. A version for `nnreal`-valued
functions. For an alternative version, convenient if the infinite sums are not already expressed as
`p`-th powers, see `inner_le_Lp_mul_Lq_tsum_of_nonneg`. -/
theorem inner_le_Lp_mul_Lq_has_sum_of_nonneg (hpq : p.is_conjugate_exponent q) {A B : ℝ}
(hA : 0 ≤ A) (hB : 0 ≤ B) (hf : ∀ i, 0 ≤ f i) (hg : ∀ i, 0 ≤ g i)
(hf_sum : has_sum (λ i, (f i) ^ p) (A ^ p)) (hg_sum : has_sum (λ i, (g i) ^ q) (B ^ q)) :
∃ C : ℝ, 0 ≤ C ∧ C ≤ A * B ∧ has_sum (λ i, f i * g i) C :=
begin
lift f to (ι → ℝ≥0) using hf,
lift g to (ι → ℝ≥0) using hg,
lift A to ℝ≥0 using hA,
lift B to ℝ≥0 using hB,
norm_cast at hf_sum hg_sum,
obtain ⟨C, hC, H⟩ := nnreal.inner_le_Lp_mul_Lq_has_sum hpq hf_sum hg_sum,
refine ⟨C, C.prop, hC, _⟩,
norm_cast,
exact H
end
/-- For `1 ≤ p`, the `p`-th power of the sum of `f i` is bounded above by a constant times the
sum of the `p`-th powers of `f i`. Version for sums over finite sets, with nonnegative `ℝ`-valued
functions. -/
theorem rpow_sum_le_const_mul_sum_rpow_of_nonneg (hp : 1 ≤ p) (hf : ∀ i ∈ s, 0 ≤ f i) :
(∑ i in s, f i) ^ p ≤ (card s) ^ (p - 1) * ∑ i in s, f i ^ p :=
by convert rpow_sum_le_const_mul_sum_rpow s f hp using 2; apply sum_congr rfl; intros i hi;
simp only [abs_of_nonneg, hf i hi]
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `ℝ`-valued nonnegative
functions. -/
theorem Lp_add_le_of_nonneg (hp : 1 ≤ p) (hf : ∀ i ∈ s, 0 ≤ f i) (hg : ∀ i ∈ s, 0 ≤ g i) :
(∑ i in s, (f i + g i) ^ p) ^ (1 / p) ≤
(∑ i in s, (f i) ^ p) ^ (1 / p) + (∑ i in s, (g i) ^ p) ^ (1 / p) :=
by convert Lp_add_le s f g hp using 2 ; [skip, congr' 1, congr' 1];
apply sum_congr rfl; intros i hi; simp only [abs_of_nonneg, hf i hi, hg i hi, add_nonneg]
/-- Minkowski inequality: the `L_p` seminorm of the infinite sum of two vectors is less than or
equal to the infinite sum of the `L_p`-seminorms of the summands, if these infinite sums both
exist. A version for `ℝ`-valued functions. For an alternative version, convenient if the infinite
sums are already expressed as `p`-th powers, see `Lp_add_le_has_sum_of_nonneg`. -/
theorem Lp_add_le_tsum_of_nonneg (hp : 1 ≤ p) (hf : ∀ i, 0 ≤ f i) (hg : ∀ i, 0 ≤ g i)
(hf_sum : summable (λ i, (f i) ^ p)) (hg_sum : summable (λ i, (g i) ^ p)) :
summable (λ i, (f i + g i) ^ p) ∧
(∑' i, (f i + g i) ^ p) ^ (1 / p) ≤ (∑' i, (f i) ^ p) ^ (1 / p) + (∑' i, (g i) ^ p) ^ (1 / p) :=
begin
lift f to (ι → ℝ≥0) using hf,
lift g to (ι → ℝ≥0) using hg,
norm_cast at *,
exact nnreal.Lp_add_le_tsum hp hf_sum hg_sum,
end
theorem summable_Lp_add_of_nonneg (hp : 1 ≤ p) (hf : ∀ i, 0 ≤ f i) (hg : ∀ i, 0 ≤ g i)
(hf_sum : summable (λ i, (f i) ^ p)) (hg_sum : summable (λ i, (g i) ^ p)) :
summable (λ i, (f i + g i) ^ p) :=
(Lp_add_le_tsum_of_nonneg hp hf hg hf_sum hg_sum).1
theorem Lp_add_le_tsum_of_nonneg' (hp : 1 ≤ p) (hf : ∀ i, 0 ≤ f i) (hg : ∀ i, 0 ≤ g i)
(hf_sum : summable (λ i, (f i) ^ p)) (hg_sum : summable (λ i, (g i) ^ p)) :
(∑' i, (f i + g i) ^ p) ^ (1 / p) ≤ (∑' i, (f i) ^ p) ^ (1 / p) + (∑' i, (g i) ^ p) ^ (1 / p) :=
(Lp_add_le_tsum_of_nonneg hp hf hg hf_sum hg_sum).2
/-- Minkowski inequality: the `L_p` seminorm of the infinite sum of two vectors is less than or
equal to the infinite sum of the `L_p`-seminorms of the summands, if these infinite sums both
exist. A version for `ℝ`-valued functions. For an alternative version, convenient if the infinite
sums are not already expressed as `p`-th powers, see `Lp_add_le_tsum_of_nonneg`. -/
theorem Lp_add_le_has_sum_of_nonneg (hp : 1 ≤ p) (hf : ∀ i, 0 ≤ f i) (hg : ∀ i, 0 ≤ g i) {A B : ℝ}
(hA : 0 ≤ A) (hB : 0 ≤ B) (hfA : has_sum (λ i, (f i) ^ p) (A ^ p))
(hgB : has_sum (λ i, (g i) ^ p) (B ^ p)) :
∃ C, 0 ≤ C ∧ C ≤ A + B ∧ has_sum (λ i, (f i + g i) ^ p) (C ^ p) :=
begin
lift f to (ι → ℝ≥0) using hf,
lift g to (ι → ℝ≥0) using hg,
lift A to ℝ≥0 using hA,
lift B to ℝ≥0 using hB,
norm_cast at hfA hgB,
obtain ⟨C, hC₁, hC₂⟩ := nnreal.Lp_add_le_has_sum hp hfA hgB,
use C,
norm_cast,
exact ⟨zero_le _, hC₁, hC₂⟩,
end
end real
namespace ennreal
variables (f g : ι → ℝ≥0∞) {p q : ℝ}
/-- Hölder inequality: the scalar product of two functions is bounded by the product of their
`L^p` and `L^q` norms when `p` and `q` are conjugate exponents. Version for sums over finite sets,
with `ℝ≥0∞`-valued functions. -/
theorem inner_le_Lp_mul_Lq (hpq : p.is_conjugate_exponent q) :
(∑ i in s, f i * g i) ≤ (∑ i in s, (f i)^p) ^ (1/p) * (∑ i in s, (g i)^q) ^ (1/q) :=
begin
by_cases H : (∑ i in s, (f i)^p) ^ (1/p) = 0 ∨ (∑ i in s, (g i)^q) ^ (1/q) = 0,
{ replace H : (∀ i ∈ s, f i = 0) ∨ (∀ i ∈ s, g i = 0),
by simpa [ennreal.rpow_eq_zero_iff, hpq.pos, hpq.symm.pos, asymm hpq.pos, asymm hpq.symm.pos,
sum_eq_zero_iff_of_nonneg] using H,
have : ∀ i ∈ s, f i * g i = 0 := λ i hi, by cases H; simp [H i hi],
have : (∑ i in s, f i * g i) = (∑ i in s, 0) := sum_congr rfl this,
simp [this] },
push_neg at H,
by_cases H' : (∑ i in s, (f i)^p) ^ (1/p) = ⊤ ∨ (∑ i in s, (g i)^q) ^ (1/q) = ⊤,
{ cases H'; simp [H', -one_div, H] },
replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ (∀ i ∈ s, g i ≠ ⊤),
by simpa [ennreal.rpow_eq_top_iff, asymm hpq.pos, asymm hpq.symm.pos, hpq.pos, hpq.symm.pos,
ennreal.sum_eq_top_iff, not_or_distrib] using H',
have := ennreal.coe_le_coe.2 (@nnreal.inner_le_Lp_mul_Lq _ s (λ i, ennreal.to_nnreal (f i))
(λ i, ennreal.to_nnreal (g i)) _ _ hpq),
simp [← ennreal.coe_rpow_of_nonneg, le_of_lt (hpq.pos), le_of_lt (hpq.one_div_pos),
le_of_lt (hpq.symm.pos), le_of_lt (hpq.symm.one_div_pos)] at this,
convert this using 1;
[skip, congr' 2];
[skip, skip, simp, skip, simp];
{ apply finset.sum_congr rfl (λ i hi, _), simp [H'.1 i hi, H'.2 i hi, -with_zero.coe_mul,
with_top.coe_mul.symm] },
end
/-- For `1 ≤ p`, the `p`-th power of the sum of `f i` is bounded above by a constant times the
sum of the `p`-th powers of `f i`. Version for sums over finite sets, with `ℝ≥0∞`-valued functions.
-/
theorem rpow_sum_le_const_mul_sum_rpow (hp : 1 ≤ p) :
(∑ i in s, f i) ^ p ≤ (card s) ^ (p - 1) * ∑ i in s, (f i) ^ p :=
begin
cases eq_or_lt_of_le hp with hp hp,
{ simp [← hp] },
let q : ℝ := p / (p - 1),
have hpq : p.is_conjugate_exponent q,
{ rw real.is_conjugate_exponent_iff hp },
have hp₁ : 1 / p * p = 1 := one_div_mul_cancel hpq.ne_zero,
have hq : 1 / q * p = (p - 1),
{ rw [← hpq.div_conj_eq_sub_one],
ring },
simpa only [ennreal.mul_rpow_of_nonneg _ _ hpq.nonneg, ← ennreal.rpow_mul, hp₁, hq, coe_one,
one_mul, one_rpow, rpow_one, pi.one_apply, sum_const, nat.smul_one_eq_coe]
using ennreal.rpow_le_rpow (inner_le_Lp_mul_Lq s 1 f hpq.symm) hpq.nonneg,
end
/-- Minkowski inequality: the `L_p` seminorm of the sum of two vectors is less than or equal
to the sum of the `L_p`-seminorms of the summands. A version for `ℝ≥0∞` valued nonnegative
functions. -/
theorem Lp_add_le (hp : 1 ≤ p) :
(∑ i in s, (f i + g i) ^ p)^(1/p) ≤ (∑ i in s, (f i)^p) ^ (1/p) + (∑ i in s, (g i)^p) ^ (1/p) :=
begin
by_cases H' : (∑ i in s, (f i)^p) ^ (1/p) = ⊤ ∨ (∑ i in s, (g i)^p) ^ (1/p) = ⊤,
{ cases H'; simp [H', -one_div] },
have pos : 0 < p := lt_of_lt_of_le zero_lt_one hp,
replace H' : (∀ i ∈ s, f i ≠ ⊤) ∧ (∀ i ∈ s, g i ≠ ⊤),
by simpa [ennreal.rpow_eq_top_iff, asymm pos, pos, ennreal.sum_eq_top_iff,
not_or_distrib] using H',
have := ennreal.coe_le_coe.2 (@nnreal.Lp_add_le _ s (λ i, ennreal.to_nnreal (f i))
(λ i, ennreal.to_nnreal (g i)) _ hp),
push_cast [← ennreal.coe_rpow_of_nonneg, le_of_lt (pos), le_of_lt (one_div_pos.2 pos)] at this,
convert this using 2;
[skip, congr' 1, congr' 1];
{ apply finset.sum_congr rfl (λ i hi, _), simp [H'.1 i hi, H'.2 i hi] }
end
end ennreal
end holder_minkowski
|
e9c366abca601a7775179a65f331c6ab27f1764c
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/data/set/opposite.lean
|
f2866a025d0995f8655a32538dc593ac551ca88d
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 2,093
|
lean
|
/-
Copyright (c) 2022 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import data.opposite
import data.set.basic
/-!
# The opposite of a set
The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`.
-/
variables {α : Type*}
open opposite
namespace set
/-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/
protected def op (s : set α) : set αᵒᵖ :=
unop ⁻¹' s
/-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/
protected def unop (s : set αᵒᵖ) : set α :=
op ⁻¹' s
@[simp] lemma mem_op {s : set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s :=
iff.rfl
@[simp] lemma op_mem_op {s : set α} {a : α} : op a ∈ s.op ↔ a ∈ s :=
by rw [mem_op, unop_op]
@[simp] lemma mem_unop {s : set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s :=
iff.rfl
@[simp] lemma unop_mem_unop {s : set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s :=
by rw [mem_unop, op_unop]
@[simp] lemma op_unop (s : set α) : s.op.unop = s :=
ext (by simp only [mem_unop, op_mem_op, iff_self, implies_true_iff])
@[simp] lemma unop_op (s : set αᵒᵖ) : s.unop.op = s :=
ext (by simp only [mem_op, unop_mem_unop, iff_self, implies_true_iff])
/-- Taking opposites as an equivalence of powersets. -/
@[simps] def op_equiv : set α ≃ set αᵒᵖ :=
⟨set.op, set.unop, op_unop, unop_op⟩
@[simp] lemma singleton_op (x : α) : ({x} : set α).op = {op x} :=
ext $ λ y, by simpa only [mem_op, mem_singleton_iff] using unop_eq_iff_eq_op
@[simp] lemma singleton_unop (x : αᵒᵖ) : ({x} : set αᵒᵖ).unop = {unop x} :=
ext $ λ y, by simpa only [mem_unop, mem_singleton_iff] using op_eq_iff_eq_unop
@[simp] lemma singleton_op_unop (x : α) : ({op x} : set αᵒᵖ).unop = {x} :=
by simp only [singleton_unop, opposite.unop_op]
@[simp] lemma singleton_unop_op (x : αᵒᵖ) : ({unop x} : set α).op = {x} :=
by simp only [singleton_op, opposite.op_unop]
end set
|
f93098dbe9f61ee8f99288d86cc7845a44da9d84
|
9a0192b31a07f48502dacee8122e0b8beda7b110
|
/lista4.lean
|
24c5cbeb9ab6a67e7c2a96394613caebb4a006cc
|
[] |
no_license
|
ana-/Lean
|
8a5b9f2e13685bd43efd72c6665401c0851157cb
|
4527da83de947fa1df368b2f9bcf322a4d14e121
|
refs/heads/master
| 1,593,588,619,552
| 1,565,196,720,000
| 1,565,196,720,000
| 201,090,102
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 631
|
lean
|
/-
Lista 3 do EAD
Questão 3- Existem duas caixas, A e B. Um aviso na caixa A diz “O aviso na caixa B é falso e o ouro está na caixa B”. Um aviso
na caixa B diz “O aviso na caixa A é verdadeiro e o ouro está na caixa B”. Assumindo que existe ouro em uma das
caixas, qual delas contém o ouro? Justifique sua resposta em termos lógicos.
A : caixa A
B: caixa B
v : O aviso na caixa é verdadeiro
O : ouro na caixa
-/
--resposta
variable U : Type
variable O : U
variable V : U
variables A B : U → Prop
#check ((A V ↔ (¬ B V ∧ B O)) ∧ (B V ↔ (A V ∧ B O )) ∧ (A O ∨ B O)) → A O
|
060dbdf700ff47ae8f9f8700491b37a38d1740bf
|
e00ea76a720126cf9f6d732ad6216b5b824d20a7
|
/src/tactic/abel.lean
|
dbd6a874b02a6bd73deefd97c1e17a9d771658c1
|
[
"Apache-2.0"
] |
permissive
|
vaibhavkarve/mathlib
|
a574aaf68c0a431a47fa82ce0637f0f769826bfe
|
17f8340912468f49bdc30acdb9a9fa02eeb0473a
|
refs/heads/master
| 1,621,263,802,637
| 1,585,399,588,000
| 1,585,399,588,000
| 250,833,447
| 0
| 0
|
Apache-2.0
| 1,585,410,341,000
| 1,585,410,341,000
| null |
UTF-8
|
Lean
| false
| false
| 13,361
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import algebra.group_power tactic.norm_num
/-!
# The `abel` tactic
Evaluate expressions in the language of additive, commutative monoids and groups.
-/
namespace tactic
namespace abel
meta structure cache :=
(α : expr)
(univ : level)
(α0 : expr)
(is_group : bool)
(inst : expr)
meta def mk_cache (e : expr) : tactic cache :=
do α ← infer_type e,
c ← mk_app ``add_comm_monoid [α] >>= mk_instance,
cg ← try_core (mk_app ``add_comm_group [α] >>= mk_instance),
u ← mk_meta_univ,
infer_type α >>= unify (expr.sort (level.succ u)),
u ← get_univ_assignment u,
α0 ← expr.of_nat α 0,
match cg with
| (some cg) := return ⟨α, u, α0, tt, cg⟩
| _ := return ⟨α, u, α0, ff, c⟩
end
meta def cache.app (c : cache) (n : name) (inst : expr) : list expr → expr :=
(@expr.const tt n [c.univ] c.α inst).mk_app
meta def cache.mk_app (c : cache) (n inst : name) (l : list expr) : tactic expr :=
do m ← mk_instance ((expr.const inst [c.univ] : expr) c.α), return $ c.app n m l
meta def add_g : name → name
| (name.mk_string s p) := name.mk_string (s ++ "g") p
| n := n
meta def cache.iapp (c : cache) (n : name) : list expr → expr :=
c.app (if c.is_group then add_g n else n) c.inst
def term {α} [add_comm_monoid α] (n : ℕ) (x a : α) : α := add_monoid.smul n x + a
def termg {α} [add_comm_group α] (n : ℤ) (x a : α) : α := gsmul n x + a
meta def cache.mk_term (c : cache) (n x a : expr) : expr := c.iapp ``term [n, x, a]
meta def cache.int_to_expr (c : cache) (n : ℤ) : tactic expr :=
expr.of_int (if c.is_group then `(ℤ) else `(ℕ)) n
meta inductive normal_expr : Type
| zero (e : expr) : normal_expr
| nterm (e : expr) (n : expr × ℤ) (x : expr) (a : normal_expr) : normal_expr
meta def normal_expr.e : normal_expr → expr
| (normal_expr.zero e) := e
| (normal_expr.nterm e _ _ _) := e
meta instance : has_coe normal_expr expr := ⟨normal_expr.e⟩
meta def normal_expr.term' (c : cache) (n : expr × ℤ) (x : expr) (a : normal_expr) : normal_expr :=
normal_expr.nterm (c.mk_term n.1 x a) n x a
meta def normal_expr.zero' (c : cache) : normal_expr := normal_expr.zero c.α0
meta def normal_expr.to_list : normal_expr → list (ℤ × expr)
| (normal_expr.zero _) := []
| (normal_expr.nterm _ (_, n) x a) := (n, x) :: a.to_list
open normal_expr
meta def normal_expr.to_string (e : normal_expr) : string :=
" + ".intercalate $ (to_list e).map $
λ ⟨n, e⟩, to_string n ++ " • (" ++ to_string e ++ ")"
meta def normal_expr.pp (e : normal_expr) : tactic format :=
do l ← (to_list e).mmap (λ ⟨n, e⟩, do
pe ← pp e, return (to_fmt n ++ " • (" ++ pe ++ ")")),
return $ format.join $ l.intersperse ↑" + "
meta instance : has_to_tactic_format normal_expr := ⟨normal_expr.pp⟩
meta def normal_expr.refl_conv (e : normal_expr) : tactic (normal_expr × expr) :=
do p ← mk_eq_refl e, return (e, p)
theorem const_add_term {α} [add_comm_monoid α] (k n x a a') (h : k + a = a') :
k + @term α _ n x a = term n x a' := by simp [h.symm, term]; ac_refl
theorem const_add_termg {α} [add_comm_group α] (k n x a a') (h : k + a = a') :
k + @termg α _ n x a = termg n x a' := by simp [h.symm, termg]; ac_refl
theorem term_add_const {α} [add_comm_monoid α] (n x a k a') (h : a + k = a') :
@term α _ n x a + k = term n x a' := by simp [h.symm, term]
theorem term_add_constg {α} [add_comm_group α] (n x a k a') (h : a + k = a') :
@termg α _ n x a + k = termg n x a' := by simp [h.symm, termg]
theorem term_add_term {α} [add_comm_monoid α] (n₁ x a₁ n₂ a₂ n' a')
(h₁ : n₁ + n₂ = n') (h₂ : a₁ + a₂ = a') :
@term α _ n₁ x a₁ + @term α _ n₂ x a₂ = term n' x a' :=
by simp [h₁.symm, h₂.symm, term, add_monoid.add_smul]; ac_refl
theorem term_add_termg {α} [add_comm_group α] (n₁ x a₁ n₂ a₂ n' a')
(h₁ : n₁ + n₂ = n') (h₂ : a₁ + a₂ = a') :
@termg α _ n₁ x a₁ + @termg α _ n₂ x a₂ = termg n' x a' :=
by simp [h₁.symm, h₂.symm, termg, add_gsmul]; ac_refl
theorem zero_term {α} [add_comm_monoid α] (x a) : @term α _ 0 x a = a :=
by simp [term]
theorem zero_termg {α} [add_comm_group α] (x a) : @termg α _ 0 x a = a :=
by simp [termg]
meta def eval_add (c : cache) : normal_expr → normal_expr → tactic (normal_expr × expr)
| (zero _) e₂ := do
p ← mk_app ``zero_add [e₂],
return (e₂, p)
| e₁ (zero _) := do
p ← mk_app ``add_zero [e₁],
return (e₁, p)
| he₁@(nterm e₁ n₁ x₁ a₁) he₂@(nterm e₂ n₂ x₂ a₂) :=
if expr.lex_lt x₁ x₂ then do
(a', h) ← eval_add a₁ he₂,
return (term' c n₁ x₁ a', c.iapp ``term_add_const [n₁.1, x₁, a₁, e₂, a', h])
else if x₁ ≠ x₂ then do
(a', h) ← eval_add he₁ a₂,
return (term' c n₂ x₂ a', c.iapp ``const_add_term [e₁, n₂.1, x₂, a₂, a', h])
else do
(n', h₁) ← mk_app ``has_add.add [n₁.1, n₂.1] >>= norm_num,
(a', h₂) ← eval_add a₁ a₂,
let k := n₁.2 + n₂.2,
let p₁ := c.iapp ``term_add_term [n₁.1, x₁, a₁, n₂.1, a₂, n', a', h₁, h₂],
if k = 0 then do
p ← mk_eq_trans p₁ (c.iapp ``zero_term [x₁, a']),
return (a', p)
else return (term' c (n', k) x₁ a', p₁)
theorem term_neg {α} [add_comm_group α] (n x a n' a')
(h₁ : -n = n') (h₂ : -a = a') :
-@termg α _ n x a = termg n' x a' :=
by simp [h₂.symm, h₁.symm, termg]; ac_refl
meta def eval_neg (c : cache) : normal_expr → tactic (normal_expr × expr)
| (zero e) := do
p ← c.mk_app ``neg_zero ``add_group [],
return (zero' c, p)
| (nterm e n x a) := do
(n', h₁) ← mk_app ``has_neg.neg [n.1] >>= norm_num,
(a', h₂) ← eval_neg a,
return (term' c (n', -n.2) x a',
c.app ``term_neg c.inst [n.1, x, a, n', a', h₁, h₂])
def smul {α} [add_comm_monoid α] (n : ℕ) (x : α) : α := add_monoid.smul n x
def smulg {α} [add_comm_group α] (n : ℤ) (x : α) : α := gsmul n x
theorem zero_smul {α} [add_comm_monoid α] (c) : smul c (0 : α) = 0 :=
by simp [smul]
theorem zero_smulg {α} [add_comm_group α] (c) : smulg c (0 : α) = 0 :=
by simp [smulg]
theorem term_smul {α} [add_comm_monoid α] (c n x a n' a')
(h₁ : c * n = n') (h₂ : smul c a = a') :
smul c (@term α _ n x a) = term n' x a' :=
by simp [h₂.symm, h₁.symm, term, smul, add_monoid.smul_add, add_monoid.mul_smul]
theorem term_smulg {α} [add_comm_group α] (c n x a n' a')
(h₁ : c * n = n') (h₂ : smulg c a = a') :
smulg c (@termg α _ n x a) = termg n' x a' :=
by simp [h₂.symm, h₁.symm, termg, smulg, gsmul_add, gsmul_mul]
meta def eval_smul (c : cache) (k : expr × ℤ) :
normal_expr → tactic (normal_expr × expr)
| (zero _) := return (zero' c, c.iapp ``zero_smul [k.1])
| (nterm e n x a) := do
(n', h₁) ← mk_app ``has_mul.mul [k.1, n.1] >>= norm_num,
(a', h₂) ← eval_smul a,
return (term' c (n', k.2 * n.2) x a',
c.iapp ``term_smul [k.1, n.1, x, a, n', a', h₁, h₂])
theorem term_atom {α} [add_comm_monoid α] (x : α) : x = term 1 x 0 :=
by simp [term]
theorem term_atomg {α} [add_comm_group α] (x : α) : x = termg 1 x 0 :=
by simp [termg]
meta def eval_atom (c : cache) (e : expr) : tactic (normal_expr × expr) :=
do n1 ← c.int_to_expr 1,
return (term' c (n1, 1) e (zero' c), c.iapp ``term_atom [e])
lemma unfold_sub {α} [add_group α] (a b c : α)
(h : a + -b = c) : a - b = c := h
theorem unfold_smul {α} [add_comm_monoid α] (n) (x y : α)
(h : smul n x = y) : add_monoid.smul n x = y := h
theorem unfold_smulg {α} [add_comm_group α] (n : ℕ) (x y : α)
(h : smulg (int.of_nat n) x = y) : add_monoid.smul n x = y := h
theorem unfold_gsmul {α} [add_comm_group α] (n : ℤ) (x y : α)
(h : smulg n x = y) : gsmul n x = y := h
lemma subst_into_smul {α} [add_comm_monoid α]
(l r tl tr t) (prl : l = tl) (prr : r = tr)
(prt : @smul α _ tl tr = t) : smul l r = t :=
by simp [prl, prr, prt]
lemma subst_into_smulg {α} [add_comm_group α]
(l r tl tr t) (prl : l = tl) (prr : r = tr)
(prt : @smulg α _ tl tr = t) : smulg l r = t :=
by simp [prl, prr, prt]
meta def eval (c : cache) : expr → tactic (normal_expr × expr)
| `(%%e₁ + %%e₂) := do
(e₁', p₁) ← eval e₁,
(e₂', p₂) ← eval e₂,
(e', p') ← eval_add c e₁' e₂',
p ← c.mk_app ``norm_num.subst_into_sum ``has_add [e₁, e₂, e₁', e₂', e', p₁, p₂, p'],
return (e', p)
| `(%%e₁ - %%e₂) := do
e₂' ← mk_app ``has_neg.neg [e₂],
e ← mk_app ``has_add.add [e₁, e₂'],
(e', p) ← eval e,
p' ← c.mk_app ``unfold_sub ``add_group [e₁, e₂, e', p],
return (e', p')
| `(- %%e) := do
(e₁, p₁) ← eval e,
(e₂, p₂) ← eval_neg c e₁,
p ← c.mk_app ``norm_num.subst_into_neg ``has_neg [e, e₁, e₂, p₁, p₂],
return (e₂, p)
| `(add_monoid.smul %%e₁ %%e₂) := do
n ← if c.is_group then mk_app ``int.of_nat [e₁] else return e₁,
(e', p) ← eval $ c.iapp ``smul [n, e₂],
return (e', c.iapp ``unfold_smul [e₁, e₂, e', p])
| `(gsmul %%e₁ %%e₂) := do
guardb c.is_group,
(e', p) ← eval $ c.iapp ``smul [e₁, e₂],
return (e', c.app ``unfold_gsmul c.inst [e₁, e₂, e', p])
| `(smul %%e₁ %%e₂) := do
guard (¬ c.is_group),
(e₁', p₁) ← norm_num.derive e₁ <|> refl_conv e₁, n ← e₁'.to_nat,
(e₂', p₂) ← eval e₂,
(e', p) ← eval_smul c (e₁', n) e₂',
return (e', c.iapp ``subst_into_smul [e₁, e₂, e₁', e₂', e', p₁, p₂, p])
| `(smulg %%e₁ %%e₂) := do
guardb c.is_group,
(e₁', p₁) ← norm_num.derive e₁ <|> refl_conv e₁, n ← e₁'.to_int,
(e₂', p₂) ← eval e₂,
(e', p) ← eval_smul c (e₁', n) e₂',
return (e', c.iapp ``subst_into_smul [e₁, e₂, e₁', e₂', e', p₁, p₂, p])
| e := eval_atom c e
meta def eval' (c : cache) (e : expr) : tactic (expr × expr) :=
do (e', p) ← eval c e, return (e', p)
@[derive has_reflect]
inductive normalize_mode | raw | term
instance : inhabited normalize_mode := ⟨normalize_mode.term⟩
meta def normalize (mode := normalize_mode.term) (e : expr) : tactic (expr × expr) := do
pow_lemma ← simp_lemmas.mk.add_simp ``pow_one,
let lemmas := match mode with
| normalize_mode.term :=
[``term.equations._eqn_1, ``termg.equations._eqn_1,
``add_zero, ``add_monoid.one_smul, ``one_gsmul]
| _ := []
end,
lemmas ← lemmas.mfoldl simp_lemmas.add_simp simp_lemmas.mk,
(_, e', pr) ← ext_simplify_core () {}
simp_lemmas.mk (λ _, failed) (λ _ _ _ _ e, do
c ← mk_cache e,
(new_e, pr) ← match mode with
| normalize_mode.raw := eval' c
| normalize_mode.term := trans_conv (eval' c) (simplify lemmas [])
end e,
guard (¬ new_e =ₐ e),
return ((), new_e, some pr, ff))
(λ _ _ _ _ _, failed) `eq e,
return (e', pr)
end abel
namespace interactive
open interactive interactive.types lean.parser
open tactic.abel
local postfix `?`:9001 := optional
/-- Tactic for solving equations in the language of
*additive*, commutative monoids and groups.
This version of `abel` fails if the target is not an equality
that is provable by the axioms of commutative monoids/groups. -/
meta def abel1 : tactic unit :=
do `(%%e₁ = %%e₂) ← target,
c ← mk_cache e₁,
(e₁', p₁) ← eval c e₁,
(e₂', p₂) ← eval c e₂,
is_def_eq e₁' e₂',
p ← mk_eq_symm p₂ >>= mk_eq_trans p₁,
tactic.exact p
meta def abel.mode : lean.parser abel.normalize_mode :=
with_desc "(raw|term)?" $
do mode ← ident?, match mode with
| none := return abel.normalize_mode.term
| some `term := return abel.normalize_mode.term
| some `raw := return abel.normalize_mode.raw
| _ := failed
end
/-- Tactic for solving equations in the language of
*additive*, commutative monoids and groups.
Attempts to prove the goal outright if there is no `at`
specifier and the target is an equality, but if this
fails it falls back to rewriting all monoid expressions
into a normal form.
---
Evaluate expressions in the language of *additive*, commutative monoids and groups.
It attempts to prove the goal outright if there is no `at`
specifier and the target is an equality, but if this
fails, it falls back to rewriting all monoid expressions into a normal form.
If there is an `at` specifier, it rewrites the given target into a normal form.
```lean
example {α : Type*} {a b : α} [add_comm_monoid α] : a + (b + a) = a + a + b := by abel
example {α : Type*} {a b : α} [add_comm_group α] : (a + b) - ((b + a) + a) = -a := by abel
example {α : Type*} {a b : α} [add_comm_group α] (hyp : a + a - a = b - b) : a = 0 :=
by { abel at hyp, exact hyp }
```
-/
meta def abel (SOP : parse abel.mode) (loc : parse location) : tactic unit :=
match loc with
| interactive.loc.ns [none] := abel1
| _ := failed
end <|>
do ns ← loc.get_locals,
tt ← tactic.replace_at (normalize SOP) ns loc.include_goal
| fail "abel failed to simplify",
when loc.include_goal $ try tactic.reflexivity
add_tactic_doc
{ name := "abel",
category := doc_category.tactic,
decl_names := [`tactic.interactive.abel],
tags := ["arithmetic", "decision procedure"] }
end interactive
end tactic
|
2ef000b255dfeb9744faf95fc0248ad0edc0bdd7
|
947b78d97130d56365ae2ec264df196ce769371a
|
/src/Lean/Compiler/IR/NormIds.lean
|
13de2760c3e5db6a2fcc44029c56b1cfd40c7371
|
[
"Apache-2.0"
] |
permissive
|
shyamalschandra/lean4
|
27044812be8698f0c79147615b1d5090b9f4b037
|
6e7a883b21eaf62831e8111b251dc9b18f40e604
|
refs/heads/master
| 1,671,417,126,371
| 1,601,859,995,000
| 1,601,860,020,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,366
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Compiler.IR.Basic
namespace Lean
namespace IR
namespace UniqueIds
abbrev M := StateT IndexSet Id
def checkId (id : Index) : M Bool :=
modifyGet $ fun s =>
if s.contains id then (false, s)
else (true, s.insert id)
def checkParams (ps : Array Param) : M Bool :=
ps.allM $ fun p => checkId p.x.idx
partial def checkFnBody : FnBody → M Bool
| FnBody.vdecl x _ _ b => checkId x.idx <&&> checkFnBody b
| FnBody.jdecl j ys _ b => checkId j.idx <&&> checkParams ys <&&> checkFnBody b
| FnBody.case _ _ _ alts => alts.allM $ fun alt => checkFnBody alt.body
| b => if b.isTerminal then pure true else checkFnBody b.body
partial def checkDecl : Decl → M Bool
| Decl.fdecl _ xs _ b => checkParams xs <&&> checkFnBody b
| Decl.extern _ xs _ _ => checkParams xs
end UniqueIds
/- Return true if variable, parameter and join point ids are unique -/
def Decl.uniqueIds (d : Decl) : Bool :=
(UniqueIds.checkDecl d).run' {}
namespace NormalizeIds
abbrev M := ReaderT IndexRenaming Id
def normIndex (x : Index) : M Index :=
fun m => match m.find? x with
| some y => y
| none => x
def normVar (x : VarId) : M VarId :=
VarId.mk <$> normIndex x.idx
def normJP (x : JoinPointId) : M JoinPointId :=
JoinPointId.mk <$> normIndex x.idx
def normArg : Arg → M Arg
| Arg.var x => Arg.var <$> normVar x
| other => pure other
def normArgs (as : Array Arg) : M (Array Arg) :=
fun m => as.map $ fun a => normArg a m
def normExpr : Expr → M Expr
| Expr.ctor c ys, m => Expr.ctor c (normArgs ys m)
| Expr.reset n x, m => Expr.reset n (normVar x m)
| Expr.reuse x c u ys, m => Expr.reuse (normVar x m) c u (normArgs ys m)
| Expr.proj i x, m => Expr.proj i (normVar x m)
| Expr.uproj i x, m => Expr.uproj i (normVar x m)
| Expr.sproj n o x, m => Expr.sproj n o (normVar x m)
| Expr.fap c ys, m => Expr.fap c (normArgs ys m)
| Expr.pap c ys, m => Expr.pap c (normArgs ys m)
| Expr.ap x ys, m => Expr.ap (normVar x m) (normArgs ys m)
| Expr.box t x, m => Expr.box t (normVar x m)
| Expr.unbox x, m => Expr.unbox (normVar x m)
| Expr.isShared x, m => Expr.isShared (normVar x m)
| Expr.isTaggedPtr x, m => Expr.isTaggedPtr (normVar x m)
| e@(Expr.lit v), m => e
abbrev N := ReaderT IndexRenaming (StateM Nat)
@[inline] def withVar {α : Type} (x : VarId) (k : VarId → N α) : N α :=
fun m => do
n ← getModify (fun n => n + 1);
k { idx := n } (m.insert x.idx n)
@[inline] def withJP {α : Type} (x : JoinPointId) (k : JoinPointId → N α) : N α :=
fun m => do
n ← getModify (fun n => n + 1);
k { idx := n } (m.insert x.idx n)
@[inline] def withParams {α : Type} (ps : Array Param) (k : Array Param → N α) : N α :=
fun m => do
m ← ps.foldlM (fun (m : IndexRenaming) p => do n ← getModify (fun n => n + 1); pure $ m.insert p.x.idx n) m;
let ps := ps.map $ fun p => { p with x := normVar p.x m };
k ps m
instance MtoN {α} : HasCoe (M α) (N α) :=
⟨fun x m => pure $ x m⟩
partial def normFnBody : FnBody → N FnBody
| FnBody.vdecl x t v b => do v ← normExpr v; withVar x $ fun x => FnBody.vdecl x t v <$> normFnBody b
| FnBody.jdecl j ys v b => do
(ys, v) ← withParams ys $ fun ys => do { v ← normFnBody v; pure (ys, v) };
withJP j $ fun j => FnBody.jdecl j ys v <$> normFnBody b
| FnBody.set x i y b => do x ← normVar x; y ← normArg y; FnBody.set x i y <$> normFnBody b
| FnBody.uset x i y b => do x ← normVar x; y ← normVar y; FnBody.uset x i y <$> normFnBody b
| FnBody.sset x i o y t b => do x ← normVar x; y ← normVar y; FnBody.sset x i o y t <$> normFnBody b
| FnBody.setTag x i b => do x ← normVar x; FnBody.setTag x i <$> normFnBody b
| FnBody.inc x n c p b => do x ← normVar x; FnBody.inc x n c p <$> normFnBody b
| FnBody.dec x n c p b => do x ← normVar x; FnBody.dec x n c p <$> normFnBody b
| FnBody.del x b => do x ← normVar x; FnBody.del x <$> normFnBody b
| FnBody.mdata d b => FnBody.mdata d <$> normFnBody b
| FnBody.case tid x xType alts => do
x ← normVar x;
alts ← alts.mapM $ fun alt => alt.mmodifyBody normFnBody;
pure $ FnBody.case tid x xType alts
| FnBody.jmp j ys => FnBody.jmp <$> normJP j <*> normArgs ys
| FnBody.ret x => FnBody.ret <$> normArg x
| FnBody.unreachable => pure FnBody.unreachable
def normDecl : Decl → N Decl
| Decl.fdecl f xs t b => withParams xs $ fun xs => Decl.fdecl f xs t <$> normFnBody b
| other => pure other
end NormalizeIds
/- Create a declaration equivalent to `d` s.t. `d.normalizeIds.uniqueIds == true` -/
def Decl.normalizeIds (d : Decl) : Decl :=
(NormalizeIds.normDecl d {}).run' 1
/- Apply a function `f : VarId → VarId` to variable occurrences.
The following functions assume the IR code does not have variable shadowing. -/
namespace MapVars
@[inline] def mapArg (f : VarId → VarId) : Arg → Arg
| Arg.var x => Arg.var (f x)
| a => a
@[specialize] def mapArgs (f : VarId → VarId) (as : Array Arg) : Array Arg :=
as.map (mapArg f)
@[specialize] def mapExpr (f : VarId → VarId) : Expr → Expr
| Expr.ctor c ys => Expr.ctor c (mapArgs f ys)
| Expr.reset n x => Expr.reset n (f x)
| Expr.reuse x c u ys => Expr.reuse (f x) c u (mapArgs f ys)
| Expr.proj i x => Expr.proj i (f x)
| Expr.uproj i x => Expr.uproj i (f x)
| Expr.sproj n o x => Expr.sproj n o (f x)
| Expr.fap c ys => Expr.fap c (mapArgs f ys)
| Expr.pap c ys => Expr.pap c (mapArgs f ys)
| Expr.ap x ys => Expr.ap (f x) (mapArgs f ys)
| Expr.box t x => Expr.box t (f x)
| Expr.unbox x => Expr.unbox (f x)
| Expr.isShared x => Expr.isShared (f x)
| Expr.isTaggedPtr x => Expr.isTaggedPtr (f x)
| e@(Expr.lit v) => e
@[specialize] partial def mapFnBody (f : VarId → VarId) : FnBody → FnBody
| FnBody.vdecl x t v b => FnBody.vdecl x t (mapExpr f v) (mapFnBody b)
| FnBody.jdecl j ys v b => FnBody.jdecl j ys (mapFnBody v) (mapFnBody b)
| FnBody.set x i y b => FnBody.set (f x) i (mapArg f y) (mapFnBody b)
| FnBody.setTag x i b => FnBody.setTag (f x) i (mapFnBody b)
| FnBody.uset x i y b => FnBody.uset (f x) i (f y) (mapFnBody b)
| FnBody.sset x i o y t b => FnBody.sset (f x) i o (f y) t (mapFnBody b)
| FnBody.inc x n c p b => FnBody.inc (f x) n c p (mapFnBody b)
| FnBody.dec x n c p b => FnBody.dec (f x) n c p (mapFnBody b)
| FnBody.del x b => FnBody.del (f x) (mapFnBody b)
| FnBody.mdata d b => FnBody.mdata d (mapFnBody b)
| FnBody.case tid x xType alts => FnBody.case tid (f x) xType (alts.map (fun alt => alt.modifyBody mapFnBody))
| FnBody.jmp j ys => FnBody.jmp j (mapArgs f ys)
| FnBody.ret x => FnBody.ret (mapArg f x)
| FnBody.unreachable => FnBody.unreachable
end MapVars
@[inline] def FnBody.mapVars (f : VarId → VarId) (b : FnBody) : FnBody :=
MapVars.mapFnBody f b
/- Replace `x` with `y` in `b`. This function assumes `b` does not shadow `x` -/
def FnBody.replaceVar (x y : VarId) (b : FnBody) : FnBody :=
b.mapVars $ fun z => if x == z then y else z
end IR
end Lean
|
905acbae90928ea5f8ae04bb0cfc0fdd102885f7
|
690889011852559ee5ac4dfea77092de8c832e7e
|
/src/category_theory/products/associator.lean
|
30fe3623f92d6055eeacf78fb974a9c803f63353
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/mathlib
|
f6df180148f8acc91de9ba5e558976ab40a872c7
|
1fa03c29f9f273203bbffb79d10d31f696b3d317
|
refs/heads/master
| 1,584,785,260,929
| 1,572,195,914,000
| 1,572,195,913,000
| 138,435,193
| 0
| 0
|
Apache-2.0
| 1,529,789,739,000
| 1,529,789,739,000
| null |
UTF-8
|
Lean
| false
| false
| 1,956
|
lean
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Stephen Morgan, Scott Morrison
-/
import category_theory.products.basic
/-#
The associator functor `((C × D) × E) ⥤ (C × (D × E))` and its inverse form an equivalence.
-/
universes v₁ v₂ v₃ u₁ u₂ u₃
open category_theory
namespace category_theory.prod
variables (C : Type u₁) [𝒞 : category.{v₁} C]
(D : Type u₂) [𝒟 : category.{v₂} D]
(E : Type u₃) [ℰ : category.{v₃} E]
include 𝒞 𝒟 ℰ
def associator : ((C × D) × E) ⥤ (C × (D × E)) :=
{ obj := λ X, (X.1.1, (X.1.2, X.2)),
map := λ _ _ f, (f.1.1, (f.1.2, f.2)) }
@[simp] lemma associator_obj (X) :
(associator C D E).obj X = (X.1.1, (X.1.2, X.2)) :=
rfl
@[simp] lemma associator_map {X Y} (f : X ⟶ Y) :
(associator C D E).map f = (f.1.1, (f.1.2, f.2)) :=
rfl
def inverse_associator : (C × (D × E)) ⥤ ((C × D) × E) :=
{ obj := λ X, ((X.1, X.2.1), X.2.2),
map := λ _ _ f, ((f.1, f.2.1), f.2.2) }
@[simp] lemma inverse_associator_obj (X) :
(inverse_associator C D E).obj X = ((X.1, X.2.1), X.2.2) :=
rfl
@[simp] lemma inverse_associator_map {X Y} (f : X ⟶ Y) :
(inverse_associator C D E).map f = ((f.1, f.2.1), f.2.2) :=
rfl
def associativity : (C × D) × E ≌ C × (D × E) :=
equivalence.mk (associator C D E) (inverse_associator C D E)
(nat_iso.of_components (λ X, eq_to_iso (by simp)) (by tidy))
(nat_iso.of_components (λ X, eq_to_iso (by simp)) (by tidy))
instance associator_is_equivalence : is_equivalence (associator C D E) :=
(by apply_instance : is_equivalence (associativity C D E).functor)
instance inverse_associator_is_equivalence : is_equivalence (inverse_associator C D E) :=
(by apply_instance : is_equivalence (associativity C D E).inverse)
-- TODO unitors?
-- TODO pentagon natural transformation? ...satisfying?
end category_theory.prod
|
b985eb1358d5137f0dc1d2fc45fa13cd26671a00
|
1abd1ed12aa68b375cdef28959f39531c6e95b84
|
/src/group_theory/perm/list.lean
|
6afbf9fe5248f8996acd1b489862ee5fc07f186f
|
[
"Apache-2.0"
] |
permissive
|
jumpy4/mathlib
|
d3829e75173012833e9f15ac16e481e17596de0f
|
af36f1a35f279f0e5b3c2a77647c6bf2cfd51a13
|
refs/heads/master
| 1,693,508,842,818
| 1,636,203,271,000
| 1,636,203,271,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 16,389
|
lean
|
/-
Copyright (c) 2021 Yakov Pechersky. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yakov Pechersky
-/
import data.list.rotate
import group_theory.perm.support
/-!
# Permutations from a list
A list `l : list α` can be interpreted as a `equiv.perm α` where each element in the list
is permuted to the next one, defined as `form_perm`. When we have that `nodup l`,
we prove that `equiv.perm.support (form_perm l) = l.to_finset`, and that
`form_perm l` is rotationally invariant, in `form_perm_rotate`.
When there are duplicate elements in `l`, how and in what arrangement with respect to the other
elements they appear in the list determines the formed permutation.
This is because `list.form_perm` is implemented as a product of `equiv.swap`s.
That means that presence of a sublist of two adjacent duplicates like `[..., x, x, ...]`
will produce the same permutation as if the adjacent duplicates were not present.
The `list.form_perm` definition is meant to primarily be used with `nodup l`, so that
the resulting permutation is cyclic (if `l` has at least two elements).
The presence of duplicates in a particular placement can lead `list.form_perm` to produce a
nontrivial permutation that is noncyclic.
-/
namespace list
variables {α β : Type*}
section form_perm
variables [decidable_eq α] (l : list α)
open equiv equiv.perm
/--
A list `l : list α` can be interpreted as a `equiv.perm α` where each element in the list
is permuted to the next one, defined as `form_perm`. When we have that `nodup l`,
we prove that `equiv.perm.support (form_perm l) = l.to_finset`, and that
`form_perm l` is rotationally invariant, in `form_perm_rotate`.
-/
def form_perm : equiv.perm α :=
(zip_with equiv.swap l l.tail).prod
@[simp] lemma form_perm_nil : form_perm ([] : list α) = 1 := rfl
@[simp] lemma form_perm_singleton (x : α) : form_perm [x] = 1 := rfl
@[simp] lemma form_perm_cons_cons (x y : α) (l : list α) :
form_perm (x :: y :: l) = swap x y * form_perm (y :: l) :=
prod_cons
lemma form_perm_pair (x y : α) : form_perm [x, y] = swap x y := rfl
lemma form_perm_apply_of_not_mem (x : α) (l : list α) (h : x ∉ l) :
form_perm l x = x :=
begin
cases l with y l,
{ simp },
induction l with z l IH generalizing x y,
{ simp },
{ specialize IH x z (mt (mem_cons_of_mem y) h),
simp only [not_or_distrib, mem_cons_iff] at h,
simp [IH, swap_apply_of_ne_of_ne, h] }
end
lemma form_perm_apply_mem_of_mem (x : α) (l : list α) (h : x ∈ l) :
form_perm l x ∈ l :=
begin
cases l with y l,
{ simpa },
induction l with z l IH generalizing x y,
{ simpa using h },
{ by_cases hx : x ∈ z :: l,
{ rw [form_perm_cons_cons, mul_apply, swap_apply_def],
split_ifs;
simp [IH _ _ hx] },
{ replace h : x = y := or.resolve_right h hx,
simp [form_perm_apply_of_not_mem _ _ hx, ←h] } }
end
@[simp] lemma form_perm_cons_concat_apply_last (x y : α) (xs : list α) :
form_perm (x :: (xs ++ [y])) y = x :=
begin
induction xs with z xs IH generalizing x y,
{ simp },
{ simp [IH] }
end
@[simp] lemma form_perm_apply_last (x : α) (xs : list α) :
form_perm (x :: xs) ((x :: xs).last (cons_ne_nil x xs)) = x :=
begin
induction xs using list.reverse_rec_on with xs y IH generalizing x;
simp
end
@[simp] lemma form_perm_apply_nth_le_length (x : α) (xs : list α) :
form_perm (x :: xs) ((x :: xs).nth_le xs.length (by simp)) = x :=
by rw [nth_le_cons_length, form_perm_apply_last]
lemma form_perm_apply_head (x y : α) (xs : list α) (h : nodup (x :: y :: xs)) :
form_perm (x :: y :: xs) x = y :=
by simp [form_perm_apply_of_not_mem _ _ (not_mem_of_nodup_cons h)]
lemma form_perm_apply_nth_le_zero (l : list α) (h : nodup l) (hl : 1 < l.length) :
form_perm l (l.nth_le 0 (zero_lt_one.trans hl)) = l.nth_le 1 hl :=
begin
rcases l with (_|⟨x, _|⟨y, tl⟩⟩),
{ simp },
{ simp },
{ simpa using form_perm_apply_head _ _ _ h }
end
lemma form_perm_eq_head_iff_eq_last (x y : α) :
form_perm (y :: l) x = y ↔ x = last (y :: l) (cons_ne_nil _ _) :=
iff.trans (by rw form_perm_apply_last) (form_perm (y :: l)).injective.eq_iff
lemma zip_with_swap_prod_support' (l l' : list α) :
{x | (zip_with swap l l').prod x ≠ x} ≤ l.to_finset ⊔ l'.to_finset :=
begin
simp only [set.sup_eq_union, set.le_eq_subset],
induction l with y l hl generalizing l',
{ simp },
{ cases l' with z l',
{ simp },
{ intro x,
simp only [set.union_subset_iff, mem_cons_iff, zip_with_cons_cons, foldr, prod_cons,
mul_apply],
intro hx,
by_cases h : x ∈ {x | (zip_with swap l l').prod x ≠ x},
{ specialize hl l' h,
refine set.mem_union.elim hl (λ hm, _) (λ hm, _);
{ simp only [finset.coe_insert, set.mem_insert_iff, finset.mem_coe, to_finset_cons,
mem_to_finset] at hm ⊢,
simp [hm] } },
{ simp only [not_not, set.mem_set_of_eq] at h,
simp only [h, set.mem_set_of_eq] at hx,
rw swap_apply_ne_self_iff at hx,
rcases hx with ⟨hyz, rfl|rfl⟩;
simp } } }
end
lemma zip_with_swap_prod_support [fintype α] (l l' : list α) :
(zip_with swap l l').prod.support ≤ l.to_finset ⊔ l'.to_finset :=
begin
intros x hx,
have hx' : x ∈ {x | (zip_with swap l l').prod x ≠ x} := by simpa using hx,
simpa using zip_with_swap_prod_support' _ _ hx'
end
lemma support_form_perm_le' : {x | form_perm l x ≠ x} ≤ l.to_finset :=
begin
refine (zip_with_swap_prod_support' l l.tail).trans _,
simpa [finset.subset_iff] using tail_subset l
end
lemma support_form_perm_le [fintype α] : support (form_perm l) ≤ l.to_finset :=
begin
intros x hx,
have hx' : x ∈ {x | form_perm l x ≠ x} := by simpa using hx,
simpa using support_form_perm_le' _ hx'
end
lemma form_perm_apply_lt (xs : list α) (h : nodup xs) (n : ℕ) (hn : n + 1 < xs.length) :
form_perm xs (xs.nth_le n ((nat.lt_succ_self n).trans hn)) = xs.nth_le (n + 1) hn :=
begin
induction n with n IH generalizing xs,
{ simpa using form_perm_apply_nth_le_zero _ h _ },
{ rcases xs with (_|⟨x, _|⟨y, l⟩⟩),
{ simp },
{ simp },
{ specialize IH (y :: l) (nodup_of_nodup_cons h) _,
{ simpa [nat.succ_lt_succ_iff] using hn },
simp only [swap_apply_eq_iff, coe_mul, form_perm_cons_cons, nth_le],
generalize_proofs at IH,
rw [IH, swap_apply_of_ne_of_ne, nth_le];
{ rintro rfl,
simpa [nth_le_mem _ _ _] using h } } }
end
lemma form_perm_apply_nth_le (xs : list α) (h : nodup xs) (n : ℕ) (hn : n < xs.length) :
form_perm xs (xs.nth_le n hn) = xs.nth_le ((n + 1) % xs.length)
(nat.mod_lt _ (n.zero_le.trans_lt hn)) :=
begin
cases xs with x xs,
{ simp },
{ have : n ≤ xs.length,
{ refine nat.le_of_lt_succ _,
simpa using hn },
rcases this.eq_or_lt with rfl|hn',
{ simp },
{ simp [form_perm_apply_lt, h, nat.mod_eq_of_lt, nat.succ_lt_succ hn'] } }
end
lemma support_form_perm_of_nodup' (l : list α) (h : nodup l) (h' : ∀ (x : α), l ≠ [x]) :
{x | form_perm l x ≠ x} = l.to_finset :=
begin
apply le_antisymm,
{ exact support_form_perm_le' l },
{ intros x hx,
simp only [finset.mem_coe, mem_to_finset] at hx,
obtain ⟨n, hn, rfl⟩ := nth_le_of_mem hx,
rw [set.mem_set_of_eq, form_perm_apply_nth_le _ h],
intro H,
rw nodup_iff_nth_le_inj at h,
specialize h _ _ _ _ H,
cases (nat.succ_le_of_lt hn).eq_or_lt with hn' hn',
{ simp only [←hn', nat.mod_self] at h,
refine not_exists.mpr h' _,
simpa [←h, eq_comm, length_eq_one] using hn' },
{ simpa [nat.mod_eq_of_lt hn'] using h } }
end
lemma support_form_perm_of_nodup [fintype α] (l : list α) (h : nodup l) (h' : ∀ (x : α), l ≠ [x]) :
support (form_perm l) = l.to_finset :=
begin
rw ←finset.coe_inj,
convert support_form_perm_of_nodup' _ h h',
simp [set.ext_iff]
end
lemma form_perm_rotate_one (l : list α) (h : nodup l) :
form_perm (l.rotate 1) = form_perm l :=
begin
have h' : nodup (l.rotate 1),
{ simpa using h },
by_cases hl : ∀ (x : α), l ≠ [x],
{ have hl' : ∀ (x : α), l.rotate 1 ≠ [x],
{ intro,
rw [ne.def, rotate_eq_iff],
simpa using hl _ },
ext x,
by_cases hx : x ∈ l.rotate 1,
{ obtain ⟨k, hk, rfl⟩ := nth_le_of_mem hx,
rw [form_perm_apply_nth_le _ h', nth_le_rotate l, nth_le_rotate l,
form_perm_apply_nth_le _ h],
simp },
{ rw [form_perm_apply_of_not_mem _ _ hx, form_perm_apply_of_not_mem],
simpa using hx } },
{ push_neg at hl,
obtain ⟨x, rfl⟩ := hl,
simp }
end
lemma form_perm_rotate (l : list α) (h : nodup l) (n : ℕ) :
form_perm (l.rotate n) = form_perm l :=
begin
induction n with n hn,
{ simp },
{ rw [nat.succ_eq_add_one, ←rotate_rotate, form_perm_rotate_one, hn],
rwa is_rotated.nodup_iff,
exact is_rotated.forall l n }
end
lemma form_perm_eq_of_is_rotated {l l' : list α} (hd : nodup l) (h : l ~r l') :
form_perm l = form_perm l' :=
begin
obtain ⟨n, rfl⟩ := h,
exact (form_perm_rotate l hd n).symm
end
lemma form_perm_reverse (l : list α) (h : nodup l) :
form_perm l.reverse = (form_perm l)⁻¹ :=
begin
-- Let's show `form_perm l` is an inverse to `form_perm l.reverse`.
rw [eq_comm, inv_eq_iff_mul_eq_one],
ext x,
-- We only have to check for `x ∈ l` that `form_perm l (form_perm l.reverse x)`
rw [mul_apply, one_apply],
by_cases hx : x ∈ l,
swap,
{ rw [form_perm_apply_of_not_mem x l.reverse, form_perm_apply_of_not_mem _ _ hx],
simpa using hx },
{ obtain ⟨k, hk, rfl⟩ := nth_le_of_mem (mem_reverse.mpr hx),
rw [form_perm_apply_nth_le l.reverse (nodup_reverse.mpr h),
nth_le_reverse', form_perm_apply_nth_le _ h, nth_le_reverse'],
{ congr,
rw [length_reverse, ←nat.succ_le_iff, nat.succ_eq_add_one] at hk,
cases hk.eq_or_lt with hk' hk',
{ simp [←hk'] },
{ rw [length_reverse, nat.mod_eq_of_lt hk', tsub_add_eq_add_tsub (nat.le_pred_of_lt hk'),
nat.mod_eq_of_lt],
{ simp },
{ rw tsub_add_cancel_of_le,
refine tsub_lt_self _ (nat.zero_lt_succ _),
all_goals { simpa using (nat.zero_le _).trans_lt hk' } } } },
all_goals { rw [← tsub_add_eq_tsub_tsub, ←length_reverse],
refine tsub_lt_self _ (zero_lt_one.trans_le (le_add_right le_rfl)),
exact k.zero_le.trans_lt hk } },
end
lemma form_perm_pow_apply_nth_le (l : list α) (h : nodup l) (n k : ℕ) (hk : k < l.length) :
(form_perm l ^ n) (l.nth_le k hk) = l.nth_le ((k + n) % l.length)
(nat.mod_lt _ (k.zero_le.trans_lt hk)) :=
begin
induction n with n hn,
{ simp [nat.mod_eq_of_lt hk] },
{ simp [pow_succ, mul_apply, hn, form_perm_apply_nth_le _ h, nat.succ_eq_add_one,
←nat.add_assoc] }
end
lemma form_perm_pow_apply_head (x : α) (l : list α) (h : nodup (x :: l)) (n : ℕ) :
(form_perm (x :: l) ^ n) x =
(x :: l).nth_le (n % (x :: l).length) (nat.mod_lt _ (nat.zero_lt_succ _)) :=
by { convert form_perm_pow_apply_nth_le _ h n 0 _; simp }
lemma form_perm_ext_iff {x y x' y' : α} {l l' : list α}
(hd : nodup (x :: y :: l)) (hd' : nodup (x' :: y' :: l')) :
form_perm (x :: y :: l) = form_perm (x' :: y' :: l') ↔ (x :: y :: l) ~r (x' :: y' :: l') :=
begin
refine ⟨λ h, _, λ hr, form_perm_eq_of_is_rotated hd hr⟩,
rw equiv.perm.ext_iff at h,
have hx : x' ∈ (x :: y :: l),
{ have : x' ∈ {z | form_perm (x :: y :: l) z ≠ z},
{ rw [set.mem_set_of_eq, h x', form_perm_apply_head _ _ _ hd'],
simp only [mem_cons_iff, nodup_cons] at hd',
push_neg at hd',
exact hd'.left.left.symm },
simpa using support_form_perm_le' _ this },
obtain ⟨n, hn, hx'⟩ := nth_le_of_mem hx,
have hl : (x :: y :: l).length = (x' :: y' :: l').length,
{ rw [←erase_dup_eq_self.mpr hd, ←erase_dup_eq_self.mpr hd',
←card_to_finset, ←card_to_finset],
refine congr_arg finset.card _,
rw [←finset.coe_inj, ←support_form_perm_of_nodup' _ hd (by simp),
←support_form_perm_of_nodup' _ hd' (by simp)],
simp only [h] },
use n,
apply list.ext_le,
{ rw [length_rotate, hl] },
{ intros k hk hk',
rw nth_le_rotate,
induction k with k IH,
{ simp_rw [nat.zero_add, nat.mod_eq_of_lt hn],
simpa },
{ have : k.succ = (k + 1) % (x' :: y' :: l').length,
{ rw [←nat.succ_eq_add_one, nat.mod_eq_of_lt hk'] },
simp_rw this,
rw [←form_perm_apply_nth_le _ hd' k (k.lt_succ_self.trans hk'),
←IH (k.lt_succ_self.trans hk), ←h, form_perm_apply_nth_le _ hd],
congr' 1,
have h1 : 1 = 1 % (x' :: y' :: l').length := by simp,
rw [hl, nat.mod_eq_of_lt hk', h1, ←nat.add_mod, nat.succ_add] } }
end
lemma form_perm_apply_mem_eq_self_iff (hl : nodup l) (x : α) (hx : x ∈ l) :
form_perm l x = x ↔ length l ≤ 1 :=
begin
obtain ⟨k, hk, rfl⟩ := nth_le_of_mem hx,
rw [form_perm_apply_nth_le _ hl, hl.nth_le_inj_iff],
cases hn : l.length,
{ exact absurd k.zero_le (hk.trans_le hn.le).not_le },
{ rw hn at hk,
cases (nat.le_of_lt_succ hk).eq_or_lt with hk' hk',
{ simp [←hk', nat.succ_le_succ_iff, eq_comm] },
{ simpa [nat.mod_eq_of_lt (nat.succ_lt_succ hk'), nat.succ_lt_succ_iff]
using k.zero_le.trans_lt hk' } }
end
lemma form_perm_apply_mem_ne_self_iff (hl : nodup l) (x : α) (hx : x ∈ l) :
form_perm l x ≠ x ↔ 2 ≤ l.length :=
begin
rw [ne.def, form_perm_apply_mem_eq_self_iff _ hl x hx, not_le],
exact ⟨nat.succ_le_of_lt, nat.lt_of_succ_le⟩
end
lemma mem_of_form_perm_ne_self (l : list α) (x : α) (h : form_perm l x ≠ x) :
x ∈ l :=
begin
suffices : x ∈ {y | form_perm l y ≠ y},
{ rw ←mem_to_finset,
exact support_form_perm_le' _ this },
simpa using h
end
lemma form_perm_eq_self_of_not_mem (l : list α) (x : α) (h : x ∉ l) :
form_perm l x = x :=
by_contra (λ H, h $ mem_of_form_perm_ne_self _ _ H)
lemma form_perm_eq_one_iff (hl : nodup l) :
form_perm l = 1 ↔ l.length ≤ 1 :=
begin
cases l with hd tl,
{ simp },
{ rw ←form_perm_apply_mem_eq_self_iff _ hl hd (mem_cons_self _ _),
split,
{ simp {contextual := tt} },
{ intro h,
simp only [(hd :: tl).form_perm_apply_mem_eq_self_iff hl hd (mem_cons_self hd tl),
add_le_iff_nonpos_left, length, nonpos_iff_eq_zero, length_eq_zero] at h,
simp [h] } }
end
lemma form_perm_eq_form_perm_iff {l l' : list α} (hl : l.nodup) (hl' : l'.nodup) :
l.form_perm = l'.form_perm ↔ l ~r l' ∨ l.length ≤ 1 ∧ l'.length ≤ 1 :=
begin
rcases l with (_ | ⟨x, _ | ⟨y, l⟩⟩),
{ suffices : l'.length ≤ 1 ↔ l' = nil ∨ l'.length ≤ 1,
{ simpa [eq_comm, form_perm_eq_one_iff, hl, hl', length_eq_zero] },
refine ⟨λ h, or.inr h, _⟩,
rintro (rfl | h),
{ simp },
{ exact h } },
{ suffices : l'.length ≤ 1 ↔ [x] ~r l' ∨ l'.length ≤ 1,
{ simpa [eq_comm, form_perm_eq_one_iff, hl, hl', length_eq_zero, le_rfl] },
refine ⟨λ h, or.inr h, _⟩,
rintro (h | h),
{ simp [←h.perm.length_eq] },
{ exact h } },
{ rcases l' with (_ | ⟨x', _ | ⟨y', l'⟩⟩),
{ simp [form_perm_eq_one_iff, hl, -form_perm_cons_cons] },
{ suffices : ¬ (x :: y :: l) ~r [x'],
{ simp [form_perm_eq_one_iff, hl, -form_perm_cons_cons] },
intro h,
simpa using h.perm.length_eq },
{ simp [-form_perm_cons_cons, form_perm_ext_iff hl hl'] } }
end
lemma form_perm_zpow_apply_mem_imp_mem (l : list α) (x : α) (hx : x ∈ l) (n : ℤ) :
((form_perm l) ^ n) x ∈ l :=
begin
by_cases h : (l.form_perm ^ n) x = x,
{ simpa [h] using hx },
{ have : x ∈ {x | (l.form_perm ^ n) x ≠ x} := h,
rw ←set_support_apply_mem at this,
replace this := set_support_zpow_subset _ _ this,
simpa using support_form_perm_le' _ this }
end
lemma form_perm_pow_length_eq_one_of_nodup (hl : nodup l) :
(form_perm l) ^ (length l) = 1 :=
begin
ext x,
by_cases hx : x ∈ l,
{ obtain ⟨k, hk, rfl⟩ := nth_le_of_mem hx,
simp [form_perm_pow_apply_nth_le _ hl, nat.mod_eq_of_lt hk] },
{ have : x ∉ {x | (l.form_perm ^ l.length) x ≠ x},
{ intros H,
refine hx _,
replace H := set_support_zpow_subset l.form_perm l.length H,
simpa using support_form_perm_le' _ H },
simpa }
end
end form_perm
end list
|
7e6b3a92e24e7400b7ea4d95d8b1919cc85f6955
|
d1a52c3f208fa42c41df8278c3d280f075eb020c
|
/stage0/src/Init/Data/Nat/Basic.lean
|
0be29b289e79147b7d2fae9a41348455f38bebb5
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
cipher1024/lean4
|
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
|
69114d3b50806264ef35b57394391c3e738a9822
|
refs/heads/master
| 1,642,227,983,603
| 1,642,011,696,000
| 1,642,011,696,000
| 228,607,691
| 0
| 0
|
Apache-2.0
| 1,576,584,269,000
| 1,576,584,268,000
| null |
UTF-8
|
Lean
| false
| false
| 14,877
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Leonardo de Moura
-/
prelude
import Init.SimpLemmas
universe u
namespace Nat
@[specialize] def foldAux {α : Type u} (f : Nat → α → α) (s : Nat) : Nat → α → α
| 0, a => a
| succ n, a => foldAux f s n (f (s - (succ n)) a)
@[inline] def fold {α : Type u} (f : Nat → α → α) (n : Nat) (init : α) : α :=
foldAux f n n init
@[inline] def foldRev {α : Type u} (f : Nat → α → α) (n : Nat) (init : α) : α :=
let rec @[specialize] loop
| 0, a => a
| succ n, a => loop n (f n a)
loop n init
@[specialize] def anyAux (f : Nat → Bool) (s : Nat) : Nat → Bool
| 0 => false
| succ n => f (s - (succ n)) || anyAux f s n
/- `any f n = true` iff there is `i in [0, n-1]` s.t. `f i = true` -/
@[inline] def any (f : Nat → Bool) (n : Nat) : Bool :=
anyAux f n n
@[inline] def all (f : Nat → Bool) (n : Nat) : Bool :=
!any (fun i => !f i) n
@[inline] def repeat {α : Type u} (f : α → α) (n : Nat) (a : α) : α :=
let rec @[specialize] loop
| 0, a => a
| succ n, a => loop n (f a)
loop n a
/- Helper "packing" theorems -/
@[simp] theorem zero_eq : Nat.zero = 0 := rfl
@[simp] theorem add_eq : Nat.add x y = x + y := rfl
@[simp] theorem mul_eq : Nat.mul x y = x * y := rfl
@[simp] theorem lt_eq : Nat.lt x y = (x < y) := rfl
@[simp] theorem le_eq : Nat.le x y = (x ≤ y) := rfl
/- Nat.add theorems -/
@[simp] protected theorem zero_add : ∀ (n : Nat), 0 + n = n
| 0 => rfl
| n+1 => congrArg succ (Nat.zero_add n)
theorem succ_add : ∀ (n m : Nat), (succ n) + m = succ (n + m)
| n, 0 => rfl
| n, m+1 => congrArg succ (succ_add n m)
theorem add_succ (n m : Nat) : n + succ m = succ (n + m) :=
rfl
theorem add_one (n : Nat) : n + 1 = succ n :=
rfl
theorem succ_eq_add_one (n : Nat) : succ n = n + 1 :=
rfl
protected theorem add_comm : ∀ (n m : Nat), n + m = m + n
| n, 0 => Eq.symm (Nat.zero_add n)
| n, m+1 => by
have : succ (n + m) = succ (m + n) := by apply congrArg; apply Nat.add_comm
rw [succ_add m n]
apply this
protected theorem add_assoc : ∀ (n m k : Nat), (n + m) + k = n + (m + k)
| n, m, 0 => rfl
| n, m, succ k => congrArg succ (Nat.add_assoc n m k)
protected theorem add_left_comm (n m k : Nat) : n + (m + k) = m + (n + k) := by
rw [← Nat.add_assoc, Nat.add_comm n m, Nat.add_assoc]
protected theorem add_right_comm (n m k : Nat) : (n + m) + k = (n + k) + m := by
rw [Nat.add_assoc, Nat.add_comm m k, ← Nat.add_assoc]
protected theorem add_left_cancel {n m k : Nat} : n + m = n + k → m = k := by
induction n with
| zero => simp; intros; assumption
| succ n ih => simp [succ_add]; intro h; apply ih h
protected theorem add_right_cancel {n m k : Nat} (h : n + m = k + m) : n = k := by
rw [Nat.add_comm n m, Nat.add_comm k m] at h
apply Nat.add_left_cancel h
/- Nat.mul theorems -/
@[simp] protected theorem mul_zero (n : Nat) : n * 0 = 0 :=
rfl
theorem mul_succ (n m : Nat) : n * succ m = n * m + n :=
rfl
@[simp] protected theorem zero_mul : ∀ (n : Nat), 0 * n = 0
| 0 => rfl
| succ n => mul_succ 0 n ▸ (Nat.zero_mul n).symm ▸ rfl
theorem succ_mul (n m : Nat) : (succ n) * m = (n * m) + m := by
induction m with
| zero => rfl
| succ m ih => rw [mul_succ, add_succ, ih, mul_succ, add_succ, Nat.add_right_comm]
protected theorem mul_comm : ∀ (n m : Nat), n * m = m * n
| n, 0 => (Nat.zero_mul n).symm ▸ (Nat.mul_zero n).symm ▸ rfl
| n, succ m => (mul_succ n m).symm ▸ (succ_mul m n).symm ▸ (Nat.mul_comm n m).symm ▸ rfl
@[simp] protected theorem mul_one : ∀ (n : Nat), n * 1 = n :=
Nat.zero_add
@[simp] protected theorem one_mul (n : Nat) : 1 * n = n :=
Nat.mul_comm n 1 ▸ Nat.mul_one n
protected theorem left_distrib (n m k : Nat) : n * (m + k) = n * m + n * k := by
induction n generalizing m k with
| zero => repeat rw [Nat.zero_mul]
| succ n ih => simp [succ_mul, ih]; rw [Nat.add_assoc, Nat.add_assoc (n*m)]; apply congrArg; apply Nat.add_left_comm
protected theorem right_distrib (n m k : Nat) : (n + m) * k = n * k + m * k :=
have h₁ : (n + m) * k = k * (n + m) := Nat.mul_comm ..
have h₂ : k * (n + m) = k * n + k * m := Nat.left_distrib ..
have h₃ : k * n + k * m = n * k + k * m := Nat.mul_comm n k ▸ rfl
have h₄ : n * k + k * m = n * k + m * k := Nat.mul_comm m k ▸ rfl
((h₁.trans h₂).trans h₃).trans h₄
protected theorem mul_add (n m k : Nat) : n * (m + k) = n * m + n * k :=
Nat.left_distrib n m k
protected theorem add_mul (n m k : Nat) : (n + m) * k = n * k + m * k :=
Nat.right_distrib n m k
protected theorem mul_assoc : ∀ (n m k : Nat), (n * m) * k = n * (m * k)
| n, m, 0 => rfl
| n, m, succ k =>
have h₁ : n * m * succ k = n * m * (k + 1) := rfl
have h₂ : n * m * (k + 1) = (n * m * k) + n * m * 1 := Nat.left_distrib ..
have h₃ : (n * m * k) + n * m * 1 = (n * m * k) + n * m := by rw [Nat.mul_one (n*m)]
have h₄ : (n * m * k) + n * m = (n * (m * k)) + n * m := by rw [Nat.mul_assoc n m k]
have h₅ : (n * (m * k)) + n * m = n * (m * k + m) := (Nat.left_distrib n (m*k) m).symm
have h₆ : n * (m * k + m) = n * (m * succ k) := Nat.mul_succ m k ▸ rfl
((((h₁.trans h₂).trans h₃).trans h₄).trans h₅).trans h₆
protected theorem mul_left_comm (n m k : Nat) : n * (m * k) = m * (n * k) := by
rw [← Nat.mul_assoc, Nat.mul_comm n m, Nat.mul_assoc]
/- Inequalities -/
theorem succ_lt_succ {n m : Nat} : n < m → succ n < succ m :=
succ_le_succ
theorem lt_succ_of_le {n m : Nat} : n ≤ m → n < succ m :=
succ_le_succ
@[simp] protected theorem sub_zero (n : Nat) : n - 0 = n :=
rfl
theorem succ_sub_succ_eq_sub (n m : Nat) : succ n - succ m = n - m := by
induction m with
| zero => exact rfl
| succ m ih => apply congrArg pred ih
theorem pred_le : ∀ (n : Nat), pred n ≤ n
| zero => Nat.le.refl
| succ n => le_succ _
theorem pred_lt : ∀ {n : Nat}, n ≠ 0 → pred n < n
| zero, h => absurd rfl h
| succ n, h => lt_succ_of_le (Nat.le_refl _)
theorem sub_le (n m : Nat) : n - m ≤ n := by
induction m with
| zero => exact Nat.le_refl (n - 0)
| succ m ih => apply Nat.le_trans (pred_le (n - m)) ih
theorem sub_lt : ∀ {n m : Nat}, 0 < n → 0 < m → n - m < n
| 0, m, h1, h2 => absurd h1 (Nat.lt_irrefl 0)
| n+1, 0, h1, h2 => absurd h2 (Nat.lt_irrefl 0)
| n+1, m+1, h1, h2 =>
Eq.symm (succ_sub_succ_eq_sub n m) ▸
show n - m < succ n from
lt_succ_of_le (sub_le n m)
theorem sub_succ (n m : Nat) : n - succ m = pred (n - m) :=
rfl
theorem succ_sub_succ (n m : Nat) : succ n - succ m = n - m :=
succ_sub_succ_eq_sub n m
protected theorem sub_self : ∀ (n : Nat), n - n = 0
| 0 => by rw [Nat.sub_zero]
| (succ n) => by rw [succ_sub_succ, Nat.sub_self n]
protected theorem lt_of_lt_of_le {n m k : Nat} : n < m → m ≤ k → n < k :=
Nat.le_trans
protected theorem lt_of_lt_of_eq {n m k : Nat} : n < m → m = k → n < k :=
fun h₁ h₂ => h₂ ▸ h₁
instance : Trans (. < . : Nat → Nat → Prop) (. < . : Nat → Nat → Prop) (. < . : Nat → Nat → Prop) where
trans := Nat.lt_trans
instance : Trans (. ≤ . : Nat → Nat → Prop) (. ≤ . : Nat → Nat → Prop) (. ≤ . : Nat → Nat → Prop) where
trans := Nat.le_trans
instance : Trans (. < . : Nat → Nat → Prop) (. ≤ . : Nat → Nat → Prop) (. < . : Nat → Nat → Prop) where
trans := Nat.lt_of_lt_of_le
instance : Trans (. ≤ . : Nat → Nat → Prop) (. < . : Nat → Nat → Prop) (. < . : Nat → Nat → Prop) where
trans := Nat.lt_of_le_of_lt
protected theorem le_of_eq {n m : Nat} (p : n = m) : n ≤ m :=
p ▸ Nat.le_refl n
theorem le_of_succ_le {n m : Nat} (h : succ n ≤ m) : n ≤ m :=
Nat.le_trans (le_succ n) h
protected theorem le_of_lt {n m : Nat} (h : n < m) : n ≤ m :=
le_of_succ_le h
def lt.step {n m : Nat} : n < m → n < succ m := le_step
theorem eq_zero_or_pos : ∀ (n : Nat), n = 0 ∨ n > 0
| 0 => Or.inl rfl
| n+1 => Or.inr (succ_pos _)
def lt.base (n : Nat) : n < succ n := Nat.le_refl (succ n)
theorem lt_succ_self (n : Nat) : n < succ n := lt.base n
protected theorem le_total (m n : Nat) : m ≤ n ∨ n ≤ m :=
match Nat.lt_or_ge m n with
| Or.inl h => Or.inl (Nat.le_of_lt h)
| Or.inr h => Or.inr h
protected theorem lt_of_le_and_ne {m n : Nat} (h₁ : m ≤ n) (h₂ : m ≠ n) : m < n :=
match Nat.eq_or_lt_of_le h₁ with
| Or.inl h => absurd h h₂
| Or.inr h => h
theorem eq_zero_of_le_zero {n : Nat} (h : n ≤ 0) : n = 0 :=
Nat.le_antisymm h (zero_le _)
theorem lt_of_succ_lt {n m : Nat} : succ n < m → n < m :=
le_of_succ_le
theorem lt_of_succ_lt_succ {n m : Nat} : succ n < succ m → n < m :=
le_of_succ_le_succ
theorem lt_of_succ_le {n m : Nat} (h : succ n ≤ m) : n < m :=
h
theorem succ_le_of_lt {n m : Nat} (h : n < m) : succ n ≤ m :=
h
theorem zero_lt_of_lt : {a b : Nat} → a < b → 0 < b
| 0, _, h => h
| a+1, b, h =>
have : a < b := Nat.lt_trans (Nat.lt_succ_self _) h
zero_lt_of_lt this
theorem lt_or_eq_or_le_succ {m n : Nat} (h : m ≤ succ n) : m ≤ n ∨ m = succ n :=
Decidable.byCases
(fun (h' : m = succ n) => Or.inr h')
(fun (h' : m ≠ succ n) =>
have : m < succ n := Nat.lt_of_le_and_ne h h'
have : succ m ≤ succ n := succ_le_of_lt this
Or.inl (le_of_succ_le_succ this))
theorem le_add_right : ∀ (n k : Nat), n ≤ n + k
| n, 0 => Nat.le_refl n
| n, k+1 => le_succ_of_le (le_add_right n k)
theorem le_add_left (n m : Nat): n ≤ m + n :=
Nat.add_comm n m ▸ le_add_right n m
theorem le.dest : ∀ {n m : Nat}, n ≤ m → Exists (fun k => n + k = m)
| zero, zero, h => ⟨0, rfl⟩
| zero, succ n, h => ⟨succ n, Nat.add_comm 0 (succ n) ▸ rfl⟩
| succ n, zero, h => absurd h (not_succ_le_zero _)
| succ n, succ m, h =>
have : n ≤ m := Nat.le_of_succ_le_succ h
have : Exists (fun k => n + k = m) := dest this
match this with
| ⟨k, h⟩ => ⟨k, show succ n + k = succ m from ((succ_add n k).symm ▸ h ▸ rfl)⟩
theorem le.intro {n m k : Nat} (h : n + k = m) : n ≤ m :=
h ▸ le_add_right n k
protected theorem not_le_of_gt {n m : Nat} (h : n > m) : ¬ n ≤ m := fun h₁ =>
match Nat.lt_or_ge n m with
| Or.inl h₂ => absurd (Nat.lt_trans h h₂) (Nat.lt_irrefl _)
| Or.inr h₂ =>
have Heq : n = m := Nat.le_antisymm h₁ h₂
absurd (@Eq.subst _ _ _ _ Heq h) (Nat.lt_irrefl m)
theorem gt_of_not_le {n m : Nat} (h : ¬ n ≤ m) : n > m :=
match Nat.lt_or_ge m n with
| Or.inl h₁ => h₁
| Or.inr h₁ => absurd h₁ h
protected theorem add_le_add_left {n m : Nat} (h : n ≤ m) (k : Nat) : k + n ≤ k + m :=
match le.dest h with
| ⟨w, hw⟩ =>
have h₁ : k + n + w = k + (n + w) := Nat.add_assoc ..
have h₂ : k + (n + w) = k + m := congrArg _ hw
le.intro <| h₁.trans h₂
protected theorem add_le_add_right {n m : Nat} (h : n ≤ m) (k : Nat) : n + k ≤ m + k := by
rw [Nat.add_comm n k, Nat.add_comm m k]
apply Nat.add_le_add_left
assumption
protected theorem add_lt_add_left {n m : Nat} (h : n < m) (k : Nat) : k + n < k + m :=
lt_of_succ_le (add_succ k n ▸ Nat.add_le_add_left (succ_le_of_lt h) k)
protected theorem add_lt_add_right {n m : Nat} (h : n < m) (k : Nat) : n + k < m + k :=
Nat.add_comm k m ▸ Nat.add_comm k n ▸ Nat.add_lt_add_left h k
protected theorem zero_lt_one : 0 < (1:Nat) :=
zero_lt_succ 0
theorem add_le_add {a b c d : Nat} (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d :=
Nat.le_trans (Nat.add_le_add_right h₁ c) (Nat.add_le_add_left h₂ b)
theorem add_lt_add {a b c d : Nat} (h₁ : a < b) (h₂ : c < d) : a + c < b + d :=
Nat.lt_trans (Nat.add_lt_add_right h₁ c) (Nat.add_lt_add_left h₂ b)
/- Basic theorems for comparing numerals -/
theorem ctor_eq_zero : Nat.zero = 0 :=
rfl
protected theorem one_ne_zero : 1 ≠ (0 : Nat) :=
fun h => Nat.noConfusion h
protected theorem zero_ne_one : 0 ≠ (1 : Nat) :=
fun h => Nat.noConfusion h
theorem succ_ne_zero (n : Nat) : succ n ≠ 0 :=
fun h => Nat.noConfusion h
/- mul + order -/
theorem mul_le_mul_left {n m : Nat} (k : Nat) (h : n ≤ m) : k * n ≤ k * m :=
match le.dest h with
| ⟨l, hl⟩ =>
have : k * n + k * l = k * m := Nat.left_distrib k n l ▸ hl.symm ▸ rfl
le.intro this
theorem mul_le_mul_right {n m : Nat} (k : Nat) (h : n ≤ m) : n * k ≤ m * k :=
Nat.mul_comm k m ▸ Nat.mul_comm k n ▸ mul_le_mul_left k h
protected theorem mul_le_mul {n₁ m₁ n₂ m₂ : Nat} (h₁ : n₁ ≤ n₂) (h₂ : m₁ ≤ m₂) : n₁ * m₁ ≤ n₂ * m₂ :=
Nat.le_trans (mul_le_mul_right _ h₁) (mul_le_mul_left _ h₂)
protected theorem mul_lt_mul_of_pos_left {n m k : Nat} (h : n < m) (hk : k > 0) : k * n < k * m :=
Nat.lt_of_lt_of_le (Nat.add_lt_add_left hk _) (Nat.mul_succ k n ▸ Nat.mul_le_mul_left k (succ_le_of_lt h))
protected theorem mul_lt_mul_of_pos_right {n m k : Nat} (h : n < m) (hk : k > 0) : n * k < m * k :=
Nat.mul_comm k m ▸ Nat.mul_comm k n ▸ Nat.mul_lt_mul_of_pos_left h hk
protected theorem mul_pos {n m : Nat} (ha : n > 0) (hb : m > 0) : n * m > 0 :=
have h : 0 * m < n * m := Nat.mul_lt_mul_of_pos_right ha hb
Nat.zero_mul m ▸ h
/- power -/
theorem pow_succ (n m : Nat) : n^(succ m) = n^m * n :=
rfl
theorem pow_zero (n : Nat) : n^0 = 1 := rfl
theorem pow_le_pow_of_le_left {n m : Nat} (h : n ≤ m) : ∀ (i : Nat), n^i ≤ m^i
| 0 => Nat.le_refl _
| succ i => Nat.mul_le_mul (pow_le_pow_of_le_left h i) h
theorem pow_le_pow_of_le_right {n : Nat} (hx : n > 0) {i : Nat} : ∀ {j}, i ≤ j → n^i ≤ n^j
| 0, h =>
have : i = 0 := eq_zero_of_le_zero h
this.symm ▸ Nat.le_refl _
| succ j, h =>
match lt_or_eq_or_le_succ h with
| Or.inl h => show n^i ≤ n^j * n from
have : n^i * 1 ≤ n^j * n := Nat.mul_le_mul (pow_le_pow_of_le_right hx h) hx
Nat.mul_one (n^i) ▸ this
| Or.inr h =>
h.symm ▸ Nat.le_refl _
theorem pos_pow_of_pos {n : Nat} (m : Nat) (h : 0 < n) : 0 < n^m :=
pow_le_pow_of_le_right h (Nat.zero_le _)
/- min/max -/
protected def min (n m : Nat) : Nat :=
if n ≤ m then n else m
protected def max (n m : Nat) : Nat :=
if n ≤ m then m else n
end Nat
namespace Prod
@[inline] def foldI {α : Type u} (f : Nat → α → α) (i : Nat × Nat) (a : α) : α :=
Nat.foldAux f i.2 (i.2 - i.1) a
@[inline] def anyI (f : Nat → Bool) (i : Nat × Nat) : Bool :=
Nat.anyAux f i.2 (i.2 - i.1)
@[inline] def allI (f : Nat → Bool) (i : Nat × Nat) : Bool :=
Nat.anyAux (fun a => !f a) i.2 (i.2 - i.1)
end Prod
|
3641068540a5006cd818cac183a6d57df664ec1a
|
69d4931b605e11ca61881fc4f66db50a0a875e39
|
/src/topology/compacts.lean
|
9c0a9caa962d42864e219cd95439ffecf771f326
|
[
"Apache-2.0"
] |
permissive
|
abentkamp/mathlib
|
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
|
5360e476391508e092b5a1e5210bd0ed22dc0755
|
refs/heads/master
| 1,682,382,954,948
| 1,622,106,077,000
| 1,622,106,077,000
| 149,285,665
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,467
|
lean
|
/-
Copyright (c) 2020 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import topology.homeomorph
/-!
# Compact sets
## Summary
We define the subtype of compact sets in a topological space.
## Main Definitions
- `closeds α` is the type of closed subsets of a topological space `α`.
- `compacts α` is the type of compact subsets of a topological space `α`.
- `nonempty_compacts α` is the type of non-empty compact subsets.
- `positive_compacts α` is the type of compact subsets with non-empty interior.
-/
open set
variables (α : Type*) {β : Type*} [topological_space α] [topological_space β]
namespace topological_space
/-- The type of closed subsets of a topological space. -/
def closeds := {s : set α // is_closed s}
/-- The type of closed subsets is inhabited, with default element the empty set. -/
instance : inhabited (closeds α) := ⟨⟨∅, is_closed_empty ⟩⟩
/-- The compact sets of a topological space. See also `nonempty_compacts`. -/
def compacts : Type* := { s : set α // is_compact s }
/-- The type of non-empty compact subsets of a topological space. The
non-emptiness will be useful in metric spaces, as we will be able to put
a distance (and not merely an edistance) on this space. -/
def nonempty_compacts := {s : set α // s.nonempty ∧ is_compact s}
/-- In an inhabited space, the type of nonempty compact subsets is also inhabited, with
default element the singleton set containing the default element. -/
instance nonempty_compacts_inhabited [inhabited α] : inhabited (nonempty_compacts α) :=
⟨⟨{default α}, singleton_nonempty (default α), is_compact_singleton ⟩⟩
/-- The compact sets with nonempty interior of a topological space. See also `compacts` and
`nonempty_compacts`. -/
@[nolint has_inhabited_instance]
def positive_compacts: Type* := { s : set α // is_compact s ∧ (interior s).nonempty }
variables {α}
namespace compacts
instance : semilattice_sup_bot (compacts α) :=
subtype.semilattice_sup_bot is_compact_empty (λ K₁ K₂, is_compact.union)
instance [t2_space α]: semilattice_inf_bot (compacts α) :=
subtype.semilattice_inf_bot is_compact_empty (λ K₁ K₂, is_compact.inter)
instance [t2_space α] : lattice (compacts α) :=
subtype.lattice (λ K₁ K₂, is_compact.union) (λ K₁ K₂, is_compact.inter)
@[simp] lemma bot_val : (⊥ : compacts α).1 = ∅ := rfl
@[simp] lemma sup_val {K₁ K₂ : compacts α} : (K₁ ⊔ K₂).1 = K₁.1 ∪ K₂.1 := rfl
@[ext] protected lemma ext {K₁ K₂ : compacts α} (h : K₁.1 = K₂.1) : K₁ = K₂ :=
subtype.eq h
@[simp] lemma finset_sup_val {β} {K : β → compacts α} {s : finset β} :
(s.sup K).1 = s.sup (λ x, (K x).1) :=
finset.sup_coe _ _
instance : inhabited (compacts α) := ⟨⊥⟩
/-- The image of a compact set under a continuous function. -/
protected def map (f : α → β) (hf : continuous f) (K : compacts α) : compacts β :=
⟨f '' K.1, K.2.image hf⟩
@[simp] lemma map_val {f : α → β} (hf : continuous f) (K : compacts α) :
(K.map f hf).1 = f '' K.1 := rfl
/-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
@[simp] protected def equiv (f : α ≃ₜ β) : compacts α ≃ compacts β :=
{ to_fun := compacts.map f f.continuous,
inv_fun := compacts.map _ f.symm.continuous,
left_inv := by { intro K, ext1, simp only [map_val, ← image_comp, f.symm_comp_self, image_id] },
right_inv := by { intro K, ext1,
simp only [map_val, ← image_comp, f.self_comp_symm, image_id] } }
/-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
lemma equiv_to_fun_val (f : α ≃ₜ β) (K : compacts α) :
(compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1
end compacts
section nonempty_compacts
open topological_space set
variable {α}
instance nonempty_compacts.to_compact_space {p : nonempty_compacts α} : compact_space p.val :=
⟨is_compact_iff_is_compact_univ.1 p.property.2⟩
instance nonempty_compacts.to_nonempty {p : nonempty_compacts α} : nonempty p.val :=
p.property.1.to_subtype
/-- Associate to a nonempty compact subset the corresponding closed subset -/
def nonempty_compacts.to_closeds [t2_space α] : nonempty_compacts α → closeds α :=
set.inclusion $ λ s hs, hs.2.is_closed
end nonempty_compacts
end topological_space
|
ea8399b20dfcb1b013641ef0d5c6fb76582c0b3c
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/data/equiv/encodable/basic.lean
|
aca7245fa3b847151438519fa7bda6248fae7293
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 18,130
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
-/
import data.equiv.nat
import order.rel_iso
import order.directed
/-!
# Encodable types
This file defines encodable (constructively countable) types as a typeclass.
This is used to provide explicit encode/decode functions from and to `ℕ`, with the information that
those functions are inverses of each other.
The difference with `denumerable` is that finite types are encodable. For infinite types,
`encodable` and `denumerable` agree.
## Main declarations
* `encodable α`: States that there exists an explicit encoding function `encode : α → ℕ` with a
partial inverse `decode : ℕ → option α`.
* `decode₂`: Version of `decode` that is equal to `none` outside of the range of `encode`. Useful as
we do not require this in the definition of `decode`.
* `ulower α`: Any encodable type has an equivalent type living in the lowest universe, namely a
subtype of `ℕ`. `ulower α` finds it.
## Implementation notes
The point of asking for an explicit partial inverse `decode : ℕ → option α` to `encode : α → ℕ` is
to make the range of `encode` decidable even when the finiteness of `α` is not.
-/
open option list nat function
/-- Constructively countable type. Made from an explicit injection `encode : α → ℕ` and a partial
inverse `decode : ℕ → option α`. Note that finite types *are* countable. See `denumerable` if you
wish to enforce infiniteness. -/
class encodable (α : Type*) :=
(encode : α → ℕ)
(decode [] : ℕ → option α)
(encodek : ∀ a, decode (encode a) = some a)
attribute [simp] encodable.encodek
namespace encodable
variables {α : Type*} {β : Type*}
universe u
theorem encode_injective [encodable α] : function.injective (@encode α _)
| x y e := option.some.inj $ by rw [← encodek, e, encodek]
lemma surjective_decode_iget (α : Type*) [encodable α] [inhabited α] :
surjective (λ n, (encodable.decode α n).iget) :=
λ x, ⟨encodable.encode x, by simp_rw [encodable.encodek]⟩
/-- An encodable type has decidable equality. Not set as an instance because this is usually not the
best way to infer decidability. -/
def decidable_eq_of_encodable (α) [encodable α] : decidable_eq α
| a b := decidable_of_iff _ encode_injective.eq_iff
/-- If `α` is encodable and there is an injection `f : β → α`, then `β` is encodable as well. -/
def of_left_injection [encodable α]
(f : β → α) (finv : α → option β) (linv : ∀ b, finv (f b) = some b) : encodable β :=
⟨λ b, encode (f b),
λ n, (decode α n).bind finv,
λ b, by simp [encodable.encodek, linv]⟩
/-- If `α` is encodable and `f : β → α` is invertible, then `β` is encodable as well. -/
def of_left_inverse [encodable α]
(f : β → α) (finv : α → β) (linv : ∀ b, finv (f b) = b) : encodable β :=
of_left_injection f (some ∘ finv) (λ b, congr_arg some (linv b))
/-- Encodability is preserved by equivalence. -/
def of_equiv (α) [encodable α] (e : β ≃ α) : encodable β :=
of_left_inverse e e.symm e.left_inv
@[simp] theorem encode_of_equiv {α β} [encodable α] (e : β ≃ α) (b : β) :
@encode _ (of_equiv _ e) b = encode (e b) := rfl
@[simp] theorem decode_of_equiv {α β} [encodable α] (e : β ≃ α) (n : ℕ) :
@decode _ (of_equiv _ e) n = (decode α n).map e.symm := rfl
instance nat : encodable ℕ :=
⟨id, some, λ a, rfl⟩
@[simp] theorem encode_nat (n : ℕ) : encode n = n := rfl
@[simp] theorem decode_nat (n : ℕ) : decode ℕ n = some n := rfl
instance empty : encodable empty :=
⟨λ a, a.rec _, λ n, none, λ a, a.rec _⟩
instance unit : encodable punit :=
⟨λ_, zero, λ n, nat.cases_on n (some punit.star) (λ _, none), λ _, by simp⟩
@[simp] theorem encode_star : encode punit.star = 0 := rfl
@[simp] theorem decode_unit_zero : decode punit 0 = some punit.star := rfl
@[simp] theorem decode_unit_succ (n) : decode punit (succ n) = none := rfl
/-- If `α` is encodable, then so is `option α`. -/
instance option {α : Type*} [h : encodable α] : encodable (option α) :=
⟨λ o, option.cases_on o nat.zero (λ a, succ (encode a)),
λ n, nat.cases_on n (some none) (λ m, (decode α m).map some),
λ o, by cases o; dsimp; simp [encodek, nat.succ_ne_zero]⟩
@[simp] theorem encode_none [encodable α] : encode (@none α) = 0 := rfl
@[simp] theorem encode_some [encodable α] (a : α) :
encode (some a) = succ (encode a) := rfl
@[simp] theorem decode_option_zero [encodable α] : decode (option α) 0 = some none := rfl
@[simp] theorem decode_option_succ [encodable α] (n) :
decode (option α) (succ n) = (decode α n).map some := rfl
/-- Failsafe variant of `decode`. `decode₂ α n` returns the preimage of `n` under `encode` if it
exists, and returns `none` if it doesn't. This requirement could be imposed directly on `decode` but
is not to help make the definition easier to use. -/
def decode₂ (α) [encodable α] (n : ℕ) : option α :=
(decode α n).bind (option.guard (λ a, encode a = n))
theorem mem_decode₂' [encodable α] {n : ℕ} {a : α} :
a ∈ decode₂ α n ↔ a ∈ decode α n ∧ encode a = n :=
by simp [decode₂]; exact
⟨λ ⟨_, h₁, rfl, h₂⟩, ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨_, h₁, rfl, h₂⟩⟩
theorem mem_decode₂ [encodable α] {n : ℕ} {a : α} :
a ∈ decode₂ α n ↔ encode a = n :=
mem_decode₂'.trans (and_iff_right_of_imp $ λ e, e ▸ encodek _)
theorem decode₂_ne_none_iff [encodable α] {n : ℕ} :
decode₂ α n ≠ none ↔ n ∈ set.range (encode : α → ℕ) :=
by simp_rw [set.range, set.mem_set_of_eq, ne.def, option.eq_none_iff_forall_not_mem,
encodable.mem_decode₂, not_forall, not_not]
theorem decode₂_is_partial_inv [encodable α] : is_partial_inv encode (decode₂ α) :=
λ a n, mem_decode₂
theorem decode₂_inj [encodable α] {n : ℕ} {a₁ a₂ : α}
(h₁ : a₁ ∈ decode₂ α n) (h₂ : a₂ ∈ decode₂ α n) : a₁ = a₂ :=
encode_injective $ (mem_decode₂.1 h₁).trans (mem_decode₂.1 h₂).symm
theorem encodek₂ [encodable α] (a : α) : decode₂ α (encode a) = some a :=
mem_decode₂.2 rfl
/-- The encoding function has decidable range. -/
def decidable_range_encode (α : Type*) [encodable α] : decidable_pred (∈ set.range (@encode α _)) :=
λ x, decidable_of_iff (option.is_some (decode₂ α x))
⟨λ h, ⟨option.get h, by rw [← decode₂_is_partial_inv (option.get h), option.some_get]⟩,
λ ⟨n, hn⟩, by rw [← hn, encodek₂]; exact rfl⟩
/-- An encodable type is equivalent to the range of its encoding function. -/
def equiv_range_encode (α : Type*) [encodable α] : α ≃ set.range (@encode α _) :=
{ to_fun := λ a : α, ⟨encode a, set.mem_range_self _⟩,
inv_fun := λ n, option.get (show is_some (decode₂ α n.1),
by cases n.2 with x hx; rw [← hx, encodek₂]; exact rfl),
left_inv := λ a, by dsimp;
rw [← option.some_inj, option.some_get, encodek₂],
right_inv := λ ⟨n, x, hx⟩, begin
apply subtype.eq,
dsimp,
conv {to_rhs, rw ← hx},
rw [encode_injective.eq_iff, ← option.some_inj, option.some_get, ← hx, encodek₂],
end }
/-- A type with unique element is encodable. This is not an instance to avoid diamonds. -/
def _root_.unique.encodable [unique α] : encodable α :=
⟨λ _, 0, λ _, some (default α), unique.forall_iff.2 rfl⟩
section sum
variables [encodable α] [encodable β]
/-- Explicit encoding function for the sum of two encodable types. -/
def encode_sum : α ⊕ β → ℕ
| (sum.inl a) := bit0 $ encode a
| (sum.inr b) := bit1 $ encode b
/-- Explicit decoding function for the sum of two encodable types. -/
def decode_sum (n : ℕ) : option (α ⊕ β) :=
match bodd_div2 n with
| (ff, m) := (decode α m).map sum.inl
| (tt, m) := (decode β m).map sum.inr
end
/-- If `α` and `β` are encodable, then so is their sum. -/
instance sum : encodable (α ⊕ β) :=
⟨encode_sum, decode_sum, λ s,
by cases s; simp [encode_sum, decode_sum, encodek]; refl⟩
@[simp] theorem encode_inl (a : α) :
@encode (α ⊕ β) _ (sum.inl a) = bit0 (encode a) := rfl
@[simp] theorem encode_inr (b : β) :
@encode (α ⊕ β) _ (sum.inr b) = bit1 (encode b) := rfl
@[simp] theorem decode_sum_val (n : ℕ) :
decode (α ⊕ β) n = decode_sum n := rfl
end sum
instance bool : encodable bool :=
of_equiv (unit ⊕ unit) equiv.bool_equiv_punit_sum_punit
@[simp] theorem encode_tt : encode tt = 1 := rfl
@[simp] theorem encode_ff : encode ff = 0 := rfl
@[simp] theorem decode_zero : decode bool 0 = some ff := rfl
@[simp] theorem decode_one : decode bool 1 = some tt := rfl
theorem decode_ge_two (n) (h : 2 ≤ n) : decode bool n = none :=
begin
suffices : decode_sum n = none,
{ change (decode_sum n).map _ = none, rw this, refl },
have : 1 ≤ div2 n,
{ rw [div2_val, nat.le_div_iff_mul_le],
exacts [h, dec_trivial] },
cases exists_eq_succ_of_ne_zero (ne_of_gt this) with m e,
simp [decode_sum]; cases bodd n; simp [decode_sum]; rw e; refl
end
noncomputable instance «Prop» : encodable Prop :=
of_equiv bool equiv.Prop_equiv_bool
section sigma
variables {γ : α → Type*} [encodable α] [∀ a, encodable (γ a)]
/-- Explicit encoding function for `sigma γ` -/
def encode_sigma : sigma γ → ℕ
| ⟨a, b⟩ := mkpair (encode a) (encode b)
/-- Explicit decoding function for `sigma γ` -/
def decode_sigma (n : ℕ) : option (sigma γ) :=
let (n₁, n₂) := unpair n in
(decode α n₁).bind $ λ a, (decode (γ a) n₂).map $ sigma.mk a
instance sigma : encodable (sigma γ) :=
⟨encode_sigma, decode_sigma, λ ⟨a, b⟩,
by simp [encode_sigma, decode_sigma, unpair_mkpair, encodek]⟩
@[simp] theorem decode_sigma_val (n : ℕ) : decode (sigma γ) n =
(decode α n.unpair.1).bind (λ a, (decode (γ a) n.unpair.2).map $ sigma.mk a) :=
show decode_sigma._match_1 _ = _, by cases n.unpair; refl
@[simp] theorem encode_sigma_val (a b) : @encode (sigma γ) _ ⟨a, b⟩ =
mkpair (encode a) (encode b) := rfl
end sigma
section prod
variables [encodable α] [encodable β]
/-- If `α` and `β` are encodable, then so is their product. -/
instance prod : encodable (α × β) :=
of_equiv _ (equiv.sigma_equiv_prod α β).symm
@[simp] theorem decode_prod_val (n : ℕ) : decode (α × β) n =
(decode α n.unpair.1).bind (λ a, (decode β n.unpair.2).map $ prod.mk a) :=
show (decode (sigma (λ _, β)) n).map (equiv.sigma_equiv_prod α β) = _,
by simp; cases decode α n.unpair.1; simp;
cases decode β n.unpair.2; refl
@[simp] theorem encode_prod_val (a b) : @encode (α × β) _ (a, b) =
mkpair (encode a) (encode b) := rfl
end prod
section subtype
open subtype decidable
variables {P : α → Prop} [encA : encodable α] [decP : decidable_pred P]
include encA
/-- Explicit encoding function for a decidable subtype of an encodable type -/
def encode_subtype : {a : α // P a} → ℕ
| ⟨v, h⟩ := encode v
include decP
/-- Explicit decoding function for a decidable subtype of an encodable type -/
def decode_subtype (v : ℕ) : option {a : α // P a} :=
(decode α v).bind $ λ a,
if h : P a then some ⟨a, h⟩ else none
/-- A decidable subtype of an encodable type is encodable. -/
instance subtype : encodable {a : α // P a} :=
⟨encode_subtype, decode_subtype,
λ ⟨v, h⟩, by simp [encode_subtype, decode_subtype, encodek, h]⟩
lemma subtype.encode_eq (a : subtype P) : encode a = encode a.val :=
by cases a; refl
end subtype
instance fin (n) : encodable (fin n) :=
of_equiv _ (equiv.fin_equiv_subtype _)
instance int : encodable ℤ :=
of_equiv _ equiv.int_equiv_nat
instance pnat : encodable ℕ+ :=
of_equiv _ equiv.pnat_equiv_nat
/-- The lift of an encodable type is encodable. -/
instance ulift [encodable α] : encodable (ulift α) :=
of_equiv _ equiv.ulift
/-- The lift of an encodable type is encodable. -/
instance plift [encodable α] : encodable (plift α) :=
of_equiv _ equiv.plift
/-- If `β` is encodable and there is an injection `f : α → β`, then `α` is encodable as well. -/
noncomputable def of_inj [encodable β] (f : α → β) (hf : injective f) : encodable α :=
of_left_injection f (partial_inv f) (λ x, (partial_inv_of_injective hf _ _).2 rfl)
end encodable
section ulower
local attribute [instance, priority 100] encodable.decidable_range_encode
/-- `ulower α : Type` is an equivalent type in the lowest universe, given `encodable α`. -/
@[derive decidable_eq, derive encodable]
def ulower (α : Type*) [encodable α] : Type :=
set.range (encodable.encode : α → ℕ)
end ulower
namespace ulower
variables (α : Type*) [encodable α]
/-- The equivalence between the encodable type `α` and `ulower α : Type`. -/
def equiv : α ≃ ulower α :=
encodable.equiv_range_encode α
variables {α}
/-- Lowers an `a : α` into `ulower α`. -/
def down (a : α) : ulower α := equiv α a
instance [inhabited α] : inhabited (ulower α) := ⟨down (default _)⟩
/-- Lifts an `a : ulower α` into `α`. -/
def up (a : ulower α) : α := (equiv α).symm a
@[simp] lemma down_up {a : ulower α} : down a.up = a := equiv.right_inv _ _
@[simp] lemma up_down {a : α} : (down a).up = a := equiv.left_inv _ _
@[simp] lemma up_eq_up {a b : ulower α} : a.up = b.up ↔ a = b :=
equiv.apply_eq_iff_eq _
@[simp] lemma down_eq_down {a b : α} : down a = down b ↔ a = b :=
equiv.apply_eq_iff_eq _
@[ext] protected lemma ext {a b : ulower α} : a.up = b.up → a = b :=
up_eq_up.1
end ulower
/-
Choice function for encodable types and decidable predicates.
We provide the following API
choose {α : Type*} {p : α → Prop} [c : encodable α] [d : decidable_pred p] : (∃ x, p x) → α :=
choose_spec {α : Type*} {p : α → Prop} [c : encodable α] [d : decidable_pred p] (ex : ∃ x, p x) :
p (choose ex) :=
-/
namespace encodable
section find_a
variables {α : Type*} (p : α → Prop) [encodable α] [decidable_pred p]
private def good : option α → Prop
| (some a) := p a
| none := false
private def decidable_good : decidable_pred (good p)
| n := by cases n; unfold good; apply_instance
local attribute [instance] decidable_good
open encodable
variable {p}
/-- Constructive choice function for a decidable subtype of an encodable type. -/
def choose_x (h : ∃ x, p x) : {a : α // p a} :=
have ∃ n, good p (decode α n), from
let ⟨w, pw⟩ := h in ⟨encode w, by simp [good, encodek, pw]⟩,
match _, nat.find_spec this : ∀ o, good p o → {a // p a} with
| some a, h := ⟨a, h⟩
end
/-- Constructive choice function for a decidable predicate over an encodable type. -/
def choose (h : ∃ x, p x) : α := (choose_x h).1
lemma choose_spec (h : ∃ x, p x) : p (choose h) := (choose_x h).2
end find_a
theorem axiom_of_choice {α : Type*} {β : α → Type*} {R : Π x, β x → Prop}
[Π a, encodable (β a)] [∀ x y, decidable (R x y)]
(H : ∀ x, ∃ y, R x y) : ∃ f : Π a, β a, ∀ x, R x (f x) :=
⟨λ x, choose (H x), λ x, choose_spec (H x)⟩
theorem skolem {α : Type*} {β : α → Type*} {P : Π x, β x → Prop}
[c : Π a, encodable (β a)] [d : ∀ x y, decidable (P x y)] :
(∀ x, ∃ y, P x y) ↔ ∃ f : Π a, β a, (∀ x, P x (f x)) :=
⟨axiom_of_choice, λ ⟨f, H⟩ x, ⟨_, H x⟩⟩
/-
There is a total ordering on the elements of an encodable type, induced by the map to ℕ.
-/
/-- The `encode` function, viewed as an embedding. -/
def encode' (α) [encodable α] : α ↪ ℕ :=
⟨encodable.encode, encodable.encode_injective⟩
instance {α} [encodable α] : is_trans _ (encode' α ⁻¹'o (≤)) :=
(rel_embedding.preimage _ _).is_trans
instance {α} [encodable α] : is_antisymm _ (encodable.encode' α ⁻¹'o (≤)) :=
(rel_embedding.preimage _ _).is_antisymm
instance {α} [encodable α] : is_total _ (encodable.encode' α ⁻¹'o (≤)) :=
(rel_embedding.preimage _ _).is_total
end encodable
namespace directed
open encodable
variables {α : Type*} {β : Type*} [encodable α] [inhabited α]
/-- Given a `directed r` function `f : α → β` defined on an encodable inhabited type,
construct a noncomputable sequence such that `r (f (x n)) (f (x (n + 1)))`
and `r (f a) (f (x (encode a + 1))`. -/
protected noncomputable def sequence {r : β → β → Prop} (f : α → β) (hf : directed r f) : ℕ → α
| 0 := default α
| (n + 1) :=
let p := sequence n in
match decode α n with
| none := classical.some (hf p p)
| (some a) := classical.some (hf p a)
end
lemma sequence_mono_nat {r : β → β → Prop} {f : α → β} (hf : directed r f) (n : ℕ) :
r (f (hf.sequence f n)) (f (hf.sequence f (n+1))) :=
begin
dsimp [directed.sequence],
generalize eq : hf.sequence f n = p,
cases h : decode α n with a,
{ exact (classical.some_spec (hf p p)).1 },
{ exact (classical.some_spec (hf p a)).1 }
end
lemma rel_sequence {r : β → β → Prop} {f : α → β} (hf : directed r f) (a : α) :
r (f a) (f (hf.sequence f (encode a + 1))) :=
begin
simp only [directed.sequence, encodek],
exact (classical.some_spec (hf _ a)).2
end
variables [preorder β] {f : α → β} (hf : directed (≤) f)
lemma sequence_mono : monotone (f ∘ (hf.sequence f)) :=
monotone_nat_of_le_succ $ hf.sequence_mono_nat
lemma le_sequence (a : α) : f a ≤ f (hf.sequence f (encode a + 1)) :=
hf.rel_sequence a
end directed
section quotient
open encodable quotient
variables {α : Type*} {s : setoid α} [@decidable_rel α (≈)] [encodable α]
/-- Representative of an equivalence class. This is a computable version of `quot.out` for a setoid
on an encodable type. -/
def quotient.rep (q : quotient s) : α :=
choose (exists_rep q)
theorem quotient.rep_spec (q : quotient s) : ⟦q.rep⟧ = q :=
choose_spec (exists_rep q)
/-- The quotient of an encodable space by a decidable equivalence relation is encodable. -/
def encodable_quotient : encodable (quotient s) :=
⟨λ q, encode q.rep,
λ n, quotient.mk <$> decode α n,
by rintros ⟨l⟩; rw encodek; exact congr_arg some ⟦l⟧.rep_spec⟩
end quotient
|
141802d5cbcab1aa1dc8da0a56e5b05abedc3587
|
5fbbd711f9bfc21ee168f46a4be146603ece8835
|
/lean/natural_number_game/tutorial/4.lean
|
02b53b4a92de38807574e60226e442dc495529a1
|
[
"LicenseRef-scancode-warranty-disclaimer"
] |
no_license
|
goedel-gang/maths
|
22596f71e3fde9c088e59931f128a3b5efb73a2c
|
a20a6f6a8ce800427afd595c598a5ad43da1408d
|
refs/heads/master
| 1,623,055,941,960
| 1,621,599,441,000
| 1,621,599,441,000
| 169,335,840
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 91
|
lean
|
lemma add_succ_zero (a : mynat) : a + succ(0) = succ(a) :=
rwa [add_succ, add_zero],
end
|
4bb2b58fadaccc6e1a44bfb54162fb6ac93a4fcc
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/fp/basic.lean
|
3936873bc42a4b3e8d785333d0ebcaa308ea5ebc
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,487
|
lean
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.semiquot
import data.rat.floor
/-!
# Implementation of floating-point numbers (experimental).
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
-/
def int.shift2 (a b : ℕ) : ℤ → ℕ × ℕ
| (int.of_nat e) := (a.shiftl e, b)
| -[1+ e] := (a, b.shiftl e.succ)
namespace fp
@[derive inhabited]
inductive rmode
| NE -- round to nearest even
class float_cfg :=
(prec emax : ℕ)
(prec_pos : 0 < prec)
(prec_max : prec ≤ emax)
variable [C : float_cfg]
include C
def prec := C.prec
def emax := C.emax
def emin : ℤ := 1 - C.emax
def valid_finite (e : ℤ) (m : ℕ) : Prop :=
emin ≤ e + prec - 1 ∧ e + prec - 1 ≤ emax ∧ e = max (e + m.size - prec) emin
instance dec_valid_finite (e m) : decidable (valid_finite e m) :=
by unfold valid_finite; apply_instance
inductive float
| inf : bool → float
| nan : float
| finite : bool → Π e m, valid_finite e m → float
def float.is_finite : float → bool
| (float.finite s e m f) := tt
| _ := ff
def to_rat : Π (f : float), f.is_finite → ℚ
| (float.finite s e m f) _ :=
let (n, d) := int.shift2 m 1 e,
r := rat.mk_nat n d in
if s then -r else r
theorem float.zero.valid : valid_finite emin 0 :=
⟨begin
rw add_sub_assoc,
apply le_add_of_nonneg_right,
apply sub_nonneg_of_le,
apply int.coe_nat_le_coe_nat_of_le,
exact C.prec_pos
end,
suffices prec ≤ 2 * emax,
begin
rw ← int.coe_nat_le at this,
rw ← sub_nonneg at *,
simp only [emin, emax] at *,
ring_nf,
assumption
end, le_trans C.prec_max (nat.le_mul_of_pos_left dec_trivial),
by rw max_eq_right; simp [sub_eq_add_neg]⟩
def float.zero (s : bool) : float :=
float.finite s emin 0 float.zero.valid
instance : inhabited float := ⟨float.zero tt⟩
protected def float.sign' : float → semiquot bool
| (float.inf s) := pure s
| float.nan := ⊤
| (float.finite s e m f) := pure s
protected def float.sign : float → bool
| (float.inf s) := s
| float.nan := ff
| (float.finite s e m f) := s
protected def float.is_zero : float → bool
| (float.finite s e 0 f) := tt
| _ := ff
protected def float.neg : float → float
| (float.inf s) := float.inf (bnot s)
| float.nan := float.nan
| (float.finite s e m f) := float.finite (bnot s) e m f
def div_nat_lt_two_pow (n d : ℕ) : ℤ → bool
| (int.of_nat e) := n < d.shiftl e
| -[1+ e] := n.shiftl e.succ < d
-- TODO(Mario): Prove these and drop 'meta'
meta def of_pos_rat_dn (n : ℕ+) (d : ℕ+) : float × bool :=
begin
let e₁ : ℤ := n.1.size - d.1.size - prec,
cases h₁ : int.shift2 d.1 n.1 (e₁ + prec) with d₁ n₁,
let e₂ := if n₁ < d₁ then e₁ - 1 else e₁,
let e₃ := max e₂ emin,
cases h₂ : int.shift2 d.1 n.1 (e₃ + prec) with d₂ n₂,
let r := rat.mk_nat n₂ d₂,
let m := r.floor,
refine (float.finite ff e₃ (int.to_nat m) _, r.denom = 1),
{ exact undefined }
end
meta def next_up_pos (e m) (v : valid_finite e m) : float :=
let m' := m.succ in
if ss : m'.size = m.size then
float.finite ff e m' (by unfold valid_finite at *; rw ss; exact v)
else if h : e = emax then
float.inf ff
else
float.finite ff e.succ (nat.div2 m') undefined
meta def next_dn_pos (e m) (v : valid_finite e m) : float :=
match m with
| 0 := next_up_pos _ _ float.zero.valid
| nat.succ m' :=
if ss : m'.size = m.size then
float.finite ff e m' (by unfold valid_finite at *; rw ss; exact v)
else if h : e = emin then
float.finite ff emin m' undefined
else
float.finite ff e.pred (bit1 m') undefined
end
meta def next_up : float → float
| (float.finite ff e m f) := next_up_pos e m f
| (float.finite tt e m f) := float.neg $ next_dn_pos e m f
| f := f
meta def next_dn : float → float
| (float.finite ff e m f) := next_dn_pos e m f
| (float.finite tt e m f) := float.neg $ next_up_pos e m f
| f := f
meta def of_rat_up : ℚ → float
| ⟨0, _, _, _⟩ := float.zero ff
| ⟨nat.succ n, d, h, _⟩ :=
let (f, exact) := of_pos_rat_dn n.succ_pnat ⟨d, h⟩ in
if exact then f else next_up f
| ⟨-[1+n], d, h, _⟩ := float.neg (of_pos_rat_dn n.succ_pnat ⟨d, h⟩).1
meta def of_rat_dn (r : ℚ) : float :=
float.neg $ of_rat_up (-r)
meta def of_rat : rmode → ℚ → float
| rmode.NE r :=
let low := of_rat_dn r, high := of_rat_up r in
if hf : high.is_finite then
if r = to_rat _ hf then high else
if lf : low.is_finite then
if r - to_rat _ lf > to_rat _ hf - r then high else
if r - to_rat _ lf < to_rat _ hf - r then low else
match low, lf with float.finite s e m f, _ :=
if 2 ∣ m then low else high
end
else float.inf tt
else float.inf ff
namespace float
instance : has_neg float := ⟨float.neg⟩
meta def add (mode : rmode) : float → float → float
| nan _ := nan
| _ nan := nan
| (inf tt) (inf ff) := nan
| (inf ff) (inf tt) := nan
| (inf s₁) _ := inf s₁
| _ (inf s₂) := inf s₂
| (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) :=
let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in
of_rat mode (to_rat f₁ rfl + to_rat f₂ rfl)
meta instance : has_add float := ⟨float.add rmode.NE⟩
meta def sub (mode : rmode) (f1 f2 : float) : float :=
add mode f1 (-f2)
meta instance : has_sub float := ⟨float.sub rmode.NE⟩
meta def mul (mode : rmode) : float → float → float
| nan _ := nan
| _ nan := nan
| (inf s₁) f₂ := if f₂.is_zero then nan else inf (bxor s₁ f₂.sign)
| f₁ (inf s₂) := if f₁.is_zero then nan else inf (bxor f₁.sign s₂)
| (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) :=
let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in
of_rat mode (to_rat f₁ rfl * to_rat f₂ rfl)
meta def div (mode : rmode) : float → float → float
| nan _ := nan
| _ nan := nan
| (inf s₁) (inf s₂) := nan
| (inf s₁) f₂ := inf (bxor s₁ f₂.sign)
| f₁ (inf s₂) := zero (bxor f₁.sign s₂)
| (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) :=
let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in
if f₂.is_zero then inf (bxor s₁ s₂) else
of_rat mode (to_rat f₁ rfl / to_rat f₂ rfl)
end float
end fp
|
56a0e278a70acf03e8ec025f0a715f50ed8a98ed
|
5756a081670ba9c1d1d3fca7bd47cb4e31beae66
|
/Mathport/Syntax/Translate/Tactic/Mathlib/Converter.lean
|
23f074a7d94ddd3ca06ed32db15f8da8b0d61fc8
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathport
|
2c9bdc8292168febf59799efdc5451dbf0450d4a
|
13051f68064f7638970d39a8fecaede68ffbf9e1
|
refs/heads/master
| 1,693,841,364,079
| 1,693,813,111,000
| 1,693,813,111,000
| 379,357,010
| 27
| 10
|
Apache-2.0
| 1,691,309,132,000
| 1,624,384,521,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,478
|
lean
|
/-
Copyright (c) 2021 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathport.Syntax.Translate.Tactic.Basic
import Mathport.Syntax.Translate.Tactic.Lean3
open Lean
namespace Mathport.Translate.Tactic
open Mathport.Translate.Parser
-- # tactic.converter
@[tr_tactic old_conv] def trOldConv : TacM Syntax.Tactic := do
warn! "unsupported tactic old_conv" -- unattested
@[tr_tactic find] def trFindTac : TacM Syntax.Tactic := do
warn! "unsupported tactic find" -- unattested
@[tr_tactic conv_lhs] def trConvLHS : TacM Syntax.Tactic := do
`(tactic| conv_lhs
$[at $((← parse (tk "at" *> ident)?).map mkIdent)]?
$[in $(← liftM $ (← parse (tk "in" *> pExpr)?).mapM trExpr):term]?
=> $(← trConvBlock (← itactic)):convSeq)
@[tr_tactic conv_rhs] def trConvRHS : TacM Syntax.Tactic := do
`(tactic| conv_rhs
$[at $((← parse (tk "at" *> ident)?).map mkIdent)]?
$[in $(← liftM $ (← parse (tk "in" *> pExpr)?).mapM trExpr):term]?
=> $(← trConvBlock (← itactic)):convSeq)
@[tr_conv erw] def trERwConv : TacM Syntax.Conv := do
let q ← liftM $ (← parse rwRules).mapM trRwRule
if let some cfg ← expr? then
warn! "warning: unsupported: erw with cfg: {repr cfg}"
`(conv| erw [$q,*])
@[tr_conv apply_congr] def trApplyCongr : TacM Syntax.Conv := do
`(conv| apply_congr $[$(← liftM $ (← parse (pExpr)?).mapM trExpr)]?)
|
d2d3bd46bf85f1ceb8bbbe485e49b6b7af827536
|
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
|
/08_Building_Theories_and_Proofs.org.36.lean
|
08d92a1d77593df4bc81fabd2995b254cd1a35cf
|
[] |
no_license
|
cjmazey/lean-tutorial
|
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
|
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
|
refs/heads/master
| 1,610,286,098,832
| 1,447,124,923,000
| 1,447,124,923,000
| 43,082,433
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 54
|
lean
|
import standard
import data.nat
open nat (hiding add)
|
fac8248bf99943794ae69e5a83a8f154a2ff67c2
|
e0f9ba56b7fedc16ef8697f6caeef5898b435143
|
/src/category_theory/natural_isomorphism.lean
|
ce931c5699a6197542baec4f599b39a76e6676f7
|
[
"Apache-2.0"
] |
permissive
|
anrddh/mathlib
|
6a374da53c7e3a35cb0298b0cd67824efef362b4
|
a4266a01d2dcb10de19369307c986d038c7bb6a6
|
refs/heads/master
| 1,656,710,827,909
| 1,589,560,456,000
| 1,589,560,456,000
| 264,271,800
| 0
| 0
|
Apache-2.0
| 1,589,568,062,000
| 1,589,568,061,000
| null |
UTF-8
|
Lean
| false
| false
| 5,359
|
lean
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Tim Baumann, Stephen Morgan, Scott Morrison, Floris van Doorn
-/
import category_theory.functor_category
import category_theory.isomorphism
open category_theory
universes v₁ v₂ v₃ v₄ u₁ u₂ u₃ u₄ -- declare the `v`'s first; see `category_theory.category` for an explanation
namespace category_theory
open nat_trans
/-- The application of a natural isomorphism to an object. We put this definition in a different namespace, so that we can use α.app -/
@[simp, reducible] def iso.app {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D]
{F G : C ⥤ D} (α : F ≅ G) (X : C) : F.obj X ≅ G.obj X :=
{ hom := α.hom.app X,
inv := α.inv.app X,
hom_inv_id' := begin rw [← comp_app, iso.hom_inv_id], refl end,
inv_hom_id' := begin rw [← comp_app, iso.inv_hom_id], refl end }
namespace nat_iso
open category_theory.category category_theory.functor
variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D]
{E : Type u₃} [category.{v₃} E]
@[simp] lemma trans_app {F G H : C ⥤ D} (α : F ≅ G) (β : G ≅ H) (X : C) :
(α ≪≫ β).app X = α.app X ≪≫ β.app X := rfl
lemma app_hom {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).hom = α.hom.app X := rfl
lemma app_inv {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).inv = α.inv.app X := rfl
@[simp] lemma hom_inv_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.hom.app X ≫ α.inv.app X = 𝟙 (F.obj X) :=
congr_fun (congr_arg app α.hom_inv_id) X
@[simp] lemma inv_hom_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.inv.app X ≫ α.hom.app X = 𝟙 (G.obj X) :=
congr_fun (congr_arg app α.inv_hom_id) X
variables {F G : C ⥤ D}
instance hom_app_is_iso (α : F ≅ G) (X : C) : is_iso (α.hom.app X) :=
{ inv := α.inv.app X,
hom_inv_id' := begin rw [←comp_app, iso.hom_inv_id, ←id_app] end,
inv_hom_id' := begin rw [←comp_app, iso.inv_hom_id, ←id_app] end }
instance inv_app_is_iso (α : F ≅ G) (X : C) : is_iso (α.inv.app X) :=
{ inv := α.hom.app X,
hom_inv_id' := begin rw [←comp_app, iso.inv_hom_id, ←id_app] end,
inv_hom_id' := begin rw [←comp_app, iso.hom_inv_id, ←id_app] end }
lemma hom_app_inv_app_id (α : F ≅ G) (X : C) : α.hom.app X ≫ α.inv.app X = 𝟙 _ :=
hom_inv_id_app _ _
lemma inv_app_hom_app_id (α : F ≅ G) (X : C) : α.inv.app X ≫ α.hom.app X = 𝟙 _ :=
inv_hom_id_app _ _
variables {X Y : C}
lemma naturality_1 (α : F ≅ G) (f : X ⟶ Y) :
(α.inv.app X) ≫ (F.map f) ≫ (α.hom.app Y) = G.map f :=
begin erw [naturality, ←category.assoc, is_iso.hom_inv_id, category.id_comp] end
lemma naturality_2 (α : F ≅ G) (f : X ⟶ Y) :
(α.hom.app X) ≫ (G.map f) ≫ (α.inv.app Y) = F.map f :=
begin erw [naturality, ←category.assoc, is_iso.hom_inv_id, category.id_comp] end
def is_iso_of_is_iso_app (α : F ⟶ G) [∀ X : C, is_iso (α.app X)] : is_iso α :=
{ inv :=
{ app := λ X, inv (α.app X),
naturality' := λ X Y f,
begin
have h := congr_arg (λ f, inv (α.app X) ≫ (f ≫ inv (α.app Y))) (α.naturality f).symm,
simp only [is_iso.inv_hom_id_assoc, is_iso.hom_inv_id, assoc, comp_id, cancel_mono] at h,
exact h
end } }
instance is_iso_of_is_iso_app' (α : F ⟶ G) [H : ∀ X : C, is_iso (nat_trans.app α X)] : is_iso α :=
@nat_iso.is_iso_of_is_iso_app _ _ _ _ _ _ α H
-- TODO can we make this an instance?
def is_iso_app_of_is_iso (α : F ⟶ G) [is_iso α] (X) : is_iso (α.app X) :=
{ inv := (inv α).app X,
hom_inv_id' := congr_fun (congr_arg nat_trans.app (is_iso.hom_inv_id α)) X,
inv_hom_id' := congr_fun (congr_arg nat_trans.app (is_iso.inv_hom_id α)) X }
def of_components (app : ∀ X : C, (F.obj X) ≅ (G.obj X))
(naturality : ∀ {X Y : C} (f : X ⟶ Y), (F.map f) ≫ ((app Y).hom) = ((app X).hom) ≫ (G.map f)) :
F ≅ G :=
as_iso { app := λ X, (app X).hom }
@[simp] lemma of_components.app (app' : ∀ X : C, (F.obj X) ≅ (G.obj X)) (naturality) (X) :
(of_components app' naturality).app X = app' X :=
by tidy
@[simp] lemma of_components.hom_app (app : ∀ X : C, (F.obj X) ≅ (G.obj X)) (naturality) (X) :
(of_components app naturality).hom.app X = (app X).hom := rfl
@[simp] lemma of_components.inv_app (app : ∀ X : C, (F.obj X) ≅ (G.obj X)) (naturality) (X) :
(of_components app naturality).inv.app X = (app X).inv := rfl
def hcomp {F G : C ⥤ D} {H I : D ⥤ E} (α : F ≅ G) (β : H ≅ I) : F ⋙ H ≅ G ⋙ I :=
begin
refine ⟨α.hom ◫ β.hom, α.inv ◫ β.inv, _, _⟩,
{ ext, rw [←nat_trans.exchange], simp, refl },
ext, rw [←nat_trans.exchange], simp, refl
end
-- declare local notation for nat_iso.hcomp
localized "infix ` ■ `:80 := category_theory.nat_iso.hcomp" in category
end nat_iso
namespace functor
variables {C : Type u₁} [category.{v₁} C]
def ulift_down_up : ulift_down.{v₁} C ⋙ ulift_up C ≅ 𝟭 (ulift.{u₂} C) :=
{ hom := { app := λ X, @category_struct.id (ulift.{u₂} C) _ X },
inv := { app := λ X, @category_struct.id (ulift.{u₂} C) _ X } }
def ulift_up_down : ulift_up.{v₁} C ⋙ ulift_down C ≅ 𝟭 C :=
{ hom := { app := λ X, 𝟙 X },
inv := { app := λ X, 𝟙 X } }
end functor
end category_theory
|
b771555d1a027eb60b37334a1dcc3608646c37c0
|
b147e1312077cdcfea8e6756207b3fa538982e12
|
/data/finset.lean
|
6262d43351a2323eb20a1fb534d78e1a9f7b403c
|
[
"Apache-2.0"
] |
permissive
|
SzJS/mathlib
|
07836ee708ca27cd18347e1e11ce7dd5afb3e926
|
23a5591fca0d43ee5d49d89f6f0ee07a24a6ca29
|
refs/heads/master
| 1,584,980,332,064
| 1,532,063,841,000
| 1,532,063,841,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 57,237
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Jeremy Avigad, Minchao Wu, Mario Carneiro
Finite sets.
-/
import logic.embedding order.boolean_algebra algebra.order_functions
data.multiset data.sigma.basic data.set.lattice
open multiset subtype nat lattice
variables {α : Type*} {β : Type*} {γ : Type*}
/-- `finset α` is the type of finite sets of elements of `α`. It is implemented
as a multiset (a list up to permutation) which has no duplicate elements. -/
structure finset (α : Type*) :=
(val : multiset α)
(nodup : nodup val)
namespace finset
theorem eq_of_veq : ∀ {s t : finset α}, s.1 = t.1 → s = t
| ⟨s, _⟩ ⟨t, _⟩ h := by congr; assumption
@[simp] theorem val_inj {s t : finset α} : s.1 = t.1 ↔ s = t :=
⟨eq_of_veq, congr_arg _⟩
@[simp] theorem erase_dup_eq_self [decidable_eq α] (s : finset α) : erase_dup s.1 = s.1 :=
erase_dup_eq_self.2 s.2
end finset
namespace finset
instance has_decidable_eq [decidable_eq α] : decidable_eq (finset α)
| s₁ s₂ := decidable_of_iff _ val_inj
/- membership -/
instance : has_mem α (finset α) := ⟨λ a s, a ∈ s.1⟩
theorem mem_def {a : α} {s : finset α} : a ∈ s ↔ a ∈ s.1 := iff.rfl
@[simp] theorem mem_mk {a : α} {s nd} : a ∈ @finset.mk α s nd ↔ a ∈ s := iff.rfl
instance decidable_mem [h : decidable_eq α] (a : α) (s : finset α) : decidable (a ∈ s) :=
multiset.decidable_mem _ _
/- set coercion -/
/-- Convert a finset to a set in the natural way. -/
def to_set (s : finset α) : set α := {x | x ∈ s}
instance : has_lift (finset α) (set α) := ⟨to_set⟩
@[simp] lemma mem_coe {a : α} {s : finset α} : a ∈ (↑s : set α) ↔ a ∈ s := iff.rfl
/- extensionality -/
theorem ext {s₁ s₂ : finset α} : s₁ = s₂ ↔ ∀ a, a ∈ s₁ ↔ a ∈ s₂ :=
val_inj.symm.trans $ nodup_ext s₁.2 s₂.2
@[extensionality]
theorem ext' {s₁ s₂ : finset α} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
ext.2
@[simp] theorem coe_inj {s₁ s₂ : finset α} : (↑s₁ : set α) = ↑s₂ ↔ s₁ = s₂ :=
(set.ext_iff _ _).trans ext.symm
/- subset -/
instance : has_subset (finset α) := ⟨λ s₁ s₂, ∀ ⦃a⦄, a ∈ s₁ → a ∈ s₂⟩
theorem subset_def {s₁ s₂ : finset α} : s₁ ⊆ s₂ ↔ s₁.1 ⊆ s₂.1 := iff.rfl
@[simp] theorem subset.refl (s : finset α) : s ⊆ s := subset.refl _
theorem subset.trans {s₁ s₂ s₃ : finset α} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ := subset.trans
theorem mem_of_subset {s₁ s₂ : finset α} {a : α} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := mem_of_subset
theorem subset.antisymm {s₁ s₂ : finset α} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ :=
ext.2 $ λ a, ⟨@H₁ a, @H₂ a⟩
theorem subset_iff {s₁ s₂ : finset α} : s₁ ⊆ s₂ ↔ ∀ ⦃x⦄, x ∈ s₁ → x ∈ s₂ := iff.rfl
@[simp] theorem coe_subset {s₁ s₂ : finset α} :
(↑s₁ : set α) ⊆ ↑s₂ ↔ s₁ ⊆ s₂ := iff.rfl
@[simp] theorem val_le_iff {s₁ s₂ : finset α} : s₁.1 ≤ s₂.1 ↔ s₁ ⊆ s₂ := le_iff_subset s₁.2
instance : has_ssubset (finset α) := ⟨λa b, a ⊆ b ∧ ¬ b ⊆ a⟩
instance : partial_order (finset α) :=
{ le := (⊆),
lt := (⊂),
le_refl := subset.refl,
le_trans := @subset.trans _,
le_antisymm := @subset.antisymm _ }
@[simp] theorem le_iff_subset {s₁ s₂ : finset α} : s₁ ≤ s₂ ↔ s₁ ⊆ s₂ := iff.rfl
@[simp] theorem lt_iff_ssubset {s₁ s₂ : finset α} : s₁ < s₂ ↔ s₁ ⊂ s₂ := iff.rfl
@[simp] theorem val_lt_iff {s₁ s₂ : finset α} : s₁.1 < s₂.1 ↔ s₁ ⊂ s₂ :=
and_congr val_le_iff $ not_congr val_le_iff
/- empty -/
protected def empty : finset α := ⟨0, nodup_zero⟩
instance : has_emptyc (finset α) := ⟨finset.empty⟩
instance : inhabited (finset α) := ⟨∅⟩
@[simp] theorem empty_val : (∅ : finset α).1 = 0 := rfl
@[simp] theorem not_mem_empty (a : α) : a ∉ (∅ : finset α) := id
@[simp] theorem ne_empty_of_mem {a : α} {s : finset α} (h : a ∈ s) : s ≠ ∅
| e := not_mem_empty a $ e ▸ h
@[simp] theorem empty_subset (s : finset α) : ∅ ⊆ s := zero_subset _
theorem eq_empty_of_forall_not_mem {s : finset α} (H : ∀x, x ∉ s) : s = ∅ :=
eq_of_veq (eq_zero_of_forall_not_mem H)
@[simp] theorem val_eq_zero {s : finset α} : s.1 = 0 ↔ s = ∅ := @val_inj _ s ∅
theorem subset_empty {s : finset α} : s ⊆ ∅ ↔ s = ∅ := subset_zero.trans val_eq_zero
theorem exists_mem_of_ne_empty {s : finset α} (h : s ≠ ∅) : ∃ a : α, a ∈ s :=
exists_mem_of_ne_zero (mt val_eq_zero.1 h)
@[simp] lemma coe_empty : ↑(∅ : finset α) = (∅ : set α) :=
by simp [set.ext_iff]
/-- `singleton a` is the set `{a}` containing `a` and nothing else. -/
def singleton (a : α) : finset α := ⟨_, nodup_singleton a⟩
local prefix `ι`:90 := singleton
@[simp] theorem singleton_val (a : α) : (ι a).1 = a :: 0 := rfl
@[simp] theorem mem_singleton {a b : α} : b ∈ ι a ↔ b = a :=
by simp [singleton]
theorem not_mem_singleton {a b : α} : a ∉ ι b ↔ a ≠ b := by simp
theorem mem_singleton_self (a : α) : a ∈ ι a := by simp
theorem singleton_inj {a b : α} : ι a = ι b ↔ a = b :=
⟨λ h, mem_singleton.1 (h ▸ mem_singleton_self _), congr_arg _⟩
@[simp] theorem singleton_ne_empty (a : α) : ι a ≠ ∅ := ne_empty_of_mem (mem_singleton_self _)
@[simp] lemma coe_singleton (a : α) : ↑(ι a) = ({a} : set α) :=
by simp [set.ext_iff]
/- insert -/
section decidable_eq
variables [decidable_eq α]
/-- `insert a s` is the set `{a} ∪ s` containing `a` and the elements of `s`. -/
instance : has_insert α (finset α) := ⟨λ a s, ⟨_, nodup_ndinsert a s.2⟩⟩
@[simp] theorem has_insert_eq_insert (a : α) (s : finset α) : has_insert.insert a s = insert a s := rfl
theorem insert_def (a : α) (s : finset α) : insert a s = ⟨_, nodup_ndinsert a s.2⟩ := rfl
@[simp] theorem insert_val (a : α) (s : finset α) : (insert a s).1 = ndinsert a s.1 := rfl
theorem insert_val' (a : α) (s : finset α) : (insert a s).1 = erase_dup (a :: s.1) :=
by simp [erase_dup_cons]
theorem insert_val_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : (insert a s).1 = a :: s.1 :=
by rw [insert_val, ndinsert_of_not_mem h]
@[simp] theorem mem_insert {a b : α} {s : finset α} : a ∈ insert b s ↔ a = b ∨ a ∈ s := mem_ndinsert
theorem mem_insert_self (a : α) (s : finset α) : a ∈ insert a s := by simp
theorem mem_insert_of_mem {a b : α} {s : finset α} (h : a ∈ s) : a ∈ insert b s := by simp *
theorem mem_of_mem_insert_of_ne {a b : α} {s : finset α} (h : b ∈ insert a s) : b ≠ a → b ∈ s :=
(mem_insert.1 h).resolve_left
@[simp] lemma coe_insert (a : α) (s : finset α) : ↑(insert a s) = (insert a ↑s : set α) :=
by simp [set.ext_iff]
@[simp] theorem insert_eq_of_mem {a : α} {s : finset α} (h : a ∈ s) : insert a s = s :=
eq_of_veq $ ndinsert_of_mem h
@[simp] theorem insert.comm (a b : α) (s : finset α) : insert a (insert b s) = insert b (insert a s) :=
ext.2 $ by simp [or.left_comm]
@[simp] theorem insert_idem (a : α) (s : finset α) : insert a (insert a s) = insert a s :=
ext.2 $ by simp
@[simp] theorem insert_ne_empty (a : α) (s : finset α) : insert a s ≠ ∅ :=
ne_empty_of_mem (mem_insert_self a s)
theorem insert_subset {a : α} {s t : finset α} : insert a s ⊆ t ↔ a ∈ t ∧ s ⊆ t :=
by simp [subset_iff, or_imp_distrib, forall_and_distrib]
theorem subset_insert [h : decidable_eq α] (a : α) (s : finset α) : s ⊆ insert a s :=
λ b, mem_insert_of_mem
theorem insert_subset_insert (a : α) {s t : finset α} (h : s ⊆ t) : insert a s ⊆ insert a t :=
insert_subset.2 ⟨mem_insert_self _ _, subset.trans h (subset_insert _ _)⟩
lemma ssubset_iff {s t : finset α} : s ⊂ t ↔ (∃a, a ∉ s ∧ insert a s ⊆ t) :=
iff.intro
(assume ⟨h₁, h₂⟩,
have ∃a, a ∈ t ∧ a ∉ s, by simpa [finset.subset_iff, classical.not_forall] using h₂,
let ⟨a, hat, has⟩ := this in ⟨a, has, insert_subset.mpr ⟨hat, h₁⟩⟩)
(assume ⟨a, hat, has⟩,
let ⟨h₁, h₂⟩ := insert_subset.mp has in
⟨h₂, assume h, hat $ h h₁⟩)
lemma ssubset_insert {s : finset α} {a : α} (h : a ∉ s) : s ⊂ insert a s :=
ssubset_iff.mpr ⟨a, h, subset.refl _⟩
@[recursor 6] protected theorem induction {α : Type*} {p : finset α → Prop} [decidable_eq α]
(h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α}, a ∉ s → p s → p (insert a s)) : ∀ s, p s
| ⟨s, nd⟩ := multiset.induction_on s (λ _, h₁) (λ a s IH nd, begin
cases nodup_cons.1 nd with m nd',
rw [← (eq_of_veq _ : insert a (finset.mk s _) = ⟨a::s, nd⟩)],
{ exact h₂ (by exact m) (IH nd') },
{ rw [insert_val, ndinsert_of_not_mem m] }
end) nd
@[elab_as_eliminator] protected theorem induction_on {α : Type*} {p : finset α → Prop} [decidable_eq α]
(s : finset α) (h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α}, a ∉ s → p s → p (insert a s)) : p s :=
finset.induction h₁ h₂ s
@[simp] theorem singleton_eq_singleton (a : α) : _root_.singleton a = ι a := rfl
@[simp] theorem insert_empty_eq_singleton (a : α) : {a} = ι a := rfl
@[simp] theorem insert_singleton_self_eq (a : α) : ({a, a} : finset α) = ι a :=
by simp [singleton]
/- union -/
/-- `s ∪ t` is the set such that `a ∈ s ∪ t` iff `a ∈ s` or `a ∈ t`. -/
instance : has_union (finset α) := ⟨λ s₁ s₂, ⟨_, nodup_ndunion s₁.1 s₂.2⟩⟩
theorem union_val_nd (s₁ s₂ : finset α) : (s₁ ∪ s₂).1 = ndunion s₁.1 s₂.1 := rfl
@[simp] theorem union_val (s₁ s₂ : finset α) : (s₁ ∪ s₂).1 = s₁.1 ∪ s₂.1 :=
ndunion_eq_union s₁.2
@[simp] theorem mem_union {a : α} {s₁ s₂ : finset α} : a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ ∨ a ∈ s₂ := mem_ndunion
theorem mem_union_left {a : α} {s₁ : finset α} (s₂ : finset α) (h : a ∈ s₁) : a ∈ s₁ ∪ s₂ := by simp *
theorem mem_union_right {a : α} {s₂ : finset α} (s₁ : finset α) (h : a ∈ s₂) : a ∈ s₁ ∪ s₂ := by simp *
theorem not_mem_union {a : α} {s₁ s₂ : finset α} : a ∉ s₁ ∪ s₂ ↔ a ∉ s₁ ∧ a ∉ s₂ :=
by simp [not_or_distrib]
@[simp] lemma coe_union (s₁ s₂ : finset α) : ↑(s₁ ∪ s₂) = (↑s₁ ∪ ↑s₂ : set α) := by simp [set.ext_iff]
theorem union_subset {s₁ s₂ s₃ : finset α} (h₁ : s₁ ⊆ s₃) (h₂ : s₂ ⊆ s₃) : s₁ ∪ s₂ ⊆ s₃ :=
val_le_iff.1 (ndunion_le.2 ⟨h₁, val_le_iff.2 h₂⟩)
theorem subset_union_left {s₁ s₂ : finset α} : s₁ ⊆ s₁ ∪ s₂ := λ x, mem_union_left _
theorem subset_union_right {s₁ s₂ : finset α} : s₂ ⊆ s₁ ∪ s₂ := λ x, mem_union_right _
@[simp] theorem union_comm (s₁ s₂ : finset α) : s₁ ∪ s₂ = s₂ ∪ s₁ := by simp [ext, or_comm]
instance : is_commutative (finset α) (∪) := ⟨union_comm⟩
@[simp] theorem union_assoc (s₁ s₂ s₃ : finset α) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) :=
by simp [ext, or_comm, or.left_comm]
instance : is_associative (finset α) (∪) := ⟨union_assoc⟩
@[simp] theorem union_idempotent (s : finset α) : s ∪ s = s := ext.2 $ by simp
instance : is_idempotent (finset α) (∪) := ⟨union_idempotent⟩
theorem union_left_comm (s₁ s₂ s₃ : finset α) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) :=
ext.2 $ by simp [or_comm, or.left_comm]
theorem union_right_comm (s₁ s₂ s₃ : finset α) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := by simp
@[simp] theorem union_self (s : finset α) : s ∪ s = s := by simp
@[simp] theorem union_empty (s : finset α) : s ∪ ∅ = s := by simp [ext]
@[simp] theorem empty_union (s : finset α) : ∅ ∪ s = s := by simp [ext]
theorem insert_eq (a : α) (s : finset α) : insert a s = {a} ∪ s := by simp [ext, or_comm, or.left_comm]
@[simp] theorem insert_union (a : α) (s t : finset α) : insert a s ∪ t = insert a (s ∪ t) :=
by simp [ext, or_comm, or.left_comm]
@[simp] theorem union_insert (a : α) (s t : finset α) : s ∪ insert a t = insert a (s ∪ t) :=
by simp [ext, or.left_comm]
theorem insert_union_distrib (a : α) (s t : finset α) : insert a (s ∪ t) = insert a s ∪ insert a t :=
by simp [ext]
/- inter -/
/-- `s ∩ t` is the set such that `a ∈ s ∩ t` iff `a ∈ s` and `a ∈ t`. -/
instance : has_inter (finset α) := ⟨λ s₁ s₂, ⟨_, nodup_ndinter s₂.1 s₁.2⟩⟩
theorem inter_val_nd (s₁ s₂ : finset α) : (s₁ ∩ s₂).1 = ndinter s₁.1 s₂.1 := rfl
@[simp] theorem inter_val (s₁ s₂ : finset α) : (s₁ ∩ s₂).1 = s₁.1 ∩ s₂.1 :=
ndinter_eq_inter s₁.2
@[simp] theorem mem_inter {a : α} {s₁ s₂ : finset α} : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ := mem_ndinter
theorem mem_of_mem_inter_left {a : α} {s₁ s₂ : finset α} (h : a ∈ s₁ ∩ s₂) : a ∈ s₁ := (mem_inter.1 h).1
theorem mem_of_mem_inter_right {a : α} {s₁ s₂ : finset α} (h : a ∈ s₁ ∩ s₂) : a ∈ s₂ := (mem_inter.1 h).2
theorem mem_inter_of_mem {a : α} {s₁ s₂ : finset α} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
and_imp.1 mem_inter.2
theorem inter_subset_left {s₁ s₂ : finset α} : s₁ ∩ s₂ ⊆ s₁ := λ a, mem_of_mem_inter_left
theorem inter_subset_right {s₁ s₂ : finset α} : s₁ ∩ s₂ ⊆ s₂ := λ a, mem_of_mem_inter_right
theorem subset_inter {s₁ s₂ s₃ : finset α} : s₁ ⊆ s₂ → s₁ ⊆ s₃ → s₁ ⊆ s₂ ∩ s₃ :=
by simp [subset_iff] {contextual:=tt}; finish
@[simp] lemma coe_inter (s₁ s₂ : finset α) : ↑(s₁ ∩ s₂) = (↑s₁ ∩ ↑s₂ : set α) := by simp [set.ext_iff]
@[simp] theorem inter_comm (s₁ s₂ : finset α) : s₁ ∩ s₂ = s₂ ∩ s₁ := ext.2 $ by simp [and_comm]
@[simp] theorem inter_assoc (s₁ s₂ s₃ : finset α) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) := ext.2 $ by simp [and_comm, and.left_comm]
@[simp] theorem inter_left_comm (s₁ s₂ s₃ : finset α) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := ext.2 $ by simp [and.left_comm]
@[simp] theorem inter_right_comm (s₁ s₂ s₃ : finset α) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := ext.2 $ by simp [and.left_comm]
@[simp] theorem inter_self (s : finset α) : s ∩ s = s := ext.2 $ by simp
@[simp] theorem inter_empty (s : finset α) : s ∩ ∅ = ∅ := ext.2 $ by simp
@[simp] theorem empty_inter (s : finset α) : ∅ ∩ s = ∅ := ext.2 $ by simp
@[simp] theorem insert_inter_of_mem {s₁ s₂ : finset α} {a : α} (h : a ∈ s₂) :
insert a s₁ ∩ s₂ = insert a (s₁ ∩ s₂) :=
ext.2 $ by simp; intro x; constructor; finish
@[simp] theorem inter_insert_of_mem {s₁ s₂ : finset α} {a : α} (h : a ∈ s₁) :
s₁ ∩ insert a s₂ = insert a (s₁ ∩ s₂) :=
by rw [inter_comm, insert_inter_of_mem h, inter_comm]
@[simp] theorem insert_inter_of_not_mem {s₁ s₂ : finset α} {a : α} (h : a ∉ s₂) :
insert a s₁ ∩ s₂ = s₁ ∩ s₂ :=
ext.2 $ assume a', by by_cases h' : a' = a; simp [mem_inter, mem_insert, h, h', and_comm]
@[simp] theorem inter_insert_of_not_mem {s₁ s₂ : finset α} {a : α} (h : a ∉ s₁) :
s₁ ∩ insert a s₂ = s₁ ∩ s₂ :=
by rw [inter_comm, insert_inter_of_not_mem h, inter_comm]
@[simp] theorem singleton_inter_of_mem {a : α} {s : finset α} : a ∈ s → ι a ∩ s = ι a :=
show a ∈ s → insert a ∅ ∩ s = insert a ∅, by simp {contextual := tt}
@[simp] theorem singleton_inter_of_not_mem {a : α} {s : finset α} : a ∉ s → ι a ∩ s = ∅ :=
show a ∉ s → insert a ∅ ∩ s = ∅, by simp {contextual := tt}
@[simp] theorem inter_singleton_of_mem {a : α} {s : finset α} (h : a ∈ s) : s ∩ ι a = ι a :=
by rw [inter_comm, singleton_inter_of_mem h]
@[simp] theorem inter_singleton_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : s ∩ ι a = ∅ :=
by rw [inter_comm, singleton_inter_of_not_mem h]
/- lattice laws -/
instance : lattice (finset α) :=
{ sup := (∪),
sup_le := assume a b c, union_subset,
le_sup_left := assume a b, subset_union_left,
le_sup_right := assume a b, subset_union_right,
inf := (∩),
le_inf := assume a b c, subset_inter,
inf_le_left := assume a b, inter_subset_left,
inf_le_right := assume a b, inter_subset_right,
..finset.partial_order }
@[simp] theorem sup_eq_union (s t : finset α) : s ⊔ t = s ∪ t := rfl
@[simp] theorem inf_eq_inter (s t : finset α) : s ⊓ t = s ∩ t := rfl
instance : semilattice_inf_bot (finset α) :=
{ bot := ∅, bot_le := empty_subset, ..finset.lattice.lattice }
instance : distrib_lattice (finset α) :=
{ le_sup_inf := assume a b c, show (a ∪ b) ∩ (a ∪ c) ⊆ a ∪ b ∩ c,
by simp [subset_iff, and_imp, or_imp_distrib] {contextual:=tt},
..finset.lattice.lattice }
theorem inter_distrib_left (s t u : finset α) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) :=
ext.2 $ by simp [mem_inter, mem_union]; intro; split; finish
theorem inter_distrib_right (s t u : finset α) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) :=
ext.2 $ by simp [mem_inter, mem_union]; intro; split; finish
theorem union_distrib_left (s t u : finset α) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) :=
ext.2 $ by simp [mem_inter, mem_union]; intro; split; finish
theorem union_distrib_right (s t u : finset α) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) :=
ext.2 $ by simp [mem_inter, mem_union]; intro; split; finish
/- erase -/
/-- `erase s a` is the set `s - {a}`, that is, the elements of `s` which are
not equal to `a`. -/
def erase (s : finset α) (a : α) : finset α := ⟨_, nodup_erase_of_nodup a s.2⟩
@[simp] theorem erase_val (s : finset α) (a : α) : (erase s a).1 = s.1.erase a := rfl
@[simp] theorem mem_erase {a b : α} {s : finset α} : a ∈ erase s b ↔ a ≠ b ∧ a ∈ s :=
mem_erase_iff_of_nodup s.2
theorem not_mem_erase (a : α) (s : finset α) : a ∉ erase s a := by simp
@[simp] theorem erase_empty (a : α) : erase ∅ a = ∅ := rfl
theorem ne_of_mem_erase {a b : α} {s : finset α} : b ∈ erase s a → b ≠ a := by simp {contextual:=tt}
theorem mem_of_mem_erase {a b : α} {s : finset α} : b ∈ erase s a → b ∈ s := mem_of_mem_erase
theorem mem_erase_of_ne_of_mem {a b : α} {s : finset α} : a ≠ b → a ∈ s → a ∈ erase s b := by simp {contextual:=tt}
theorem erase_insert {a : α} {s : finset α} (h : a ∉ s) : erase (insert a s) a = s :=
ext.2 $ assume x, by simp; constructor; finish
theorem insert_erase {a : α} {s : finset α} (h : a ∈ s) : insert a (erase s a) = s :=
ext.2 $ assume x, by simp; constructor; finish
theorem erase_subset_erase (a : α) {s t : finset α} (h : s ⊆ t) : erase s a ⊆ erase t a :=
val_le_iff.1 $ erase_le_erase _ $ val_le_iff.2 h
theorem erase_subset (a : α) (s : finset α) : erase s a ⊆ s := erase_subset _ _
@[simp] lemma coe_erase (a : α) (s : finset α) : ↑(erase s a) = (↑s \ {a} : set α) :=
by simp [set.ext_iff, and_comm]
lemma erase_ssubset {a : α} {s : finset α} (h : a ∈ s) : s.erase a ⊂ s :=
calc s.erase a ⊂ insert a (s.erase a) : ssubset_insert $ not_mem_erase _ _
... = _ : insert_erase h
theorem erase_eq_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : erase s a = s :=
eq_of_veq $ erase_of_not_mem h
theorem subset_insert_iff {a : α} {s t : finset α} : s ⊆ insert a t ↔ erase s a ⊆ t :=
by simp [subset_iff, or_iff_not_imp_left]; exact forall_congr (λ x, forall_swap)
theorem erase_insert_subset (a : α) (s : finset α) : erase (insert a s) a ⊆ s :=
subset_insert_iff.1 $ subset.refl _
theorem insert_erase_subset (a : α) (s : finset α) : s ⊆ insert a (erase s a) :=
subset_insert_iff.2 $ subset.refl _
/- sdiff -/
/-- `s \ t` is the set consisting of the elements of `s` that are not in `t`. -/
instance : has_sdiff (finset α) := ⟨λs₁ s₂, ⟨s₁.1 - s₂.1, nodup_of_le (sub_le_self _ _) s₁.2⟩⟩
@[simp] theorem mem_sdiff {a : α} {s₁ s₂ : finset α} :
a ∈ s₁ \ s₂ ↔ a ∈ s₁ ∧ a ∉ s₂ := mem_sub_of_nodup s₁.2
@[simp] theorem sdiff_union_of_subset {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : (s₂ \ s₁) ∪ s₁ = s₂ :=
ext.2 $ λ a, by simpa [or_and_distrib_left, dec_em] using or_iff_right_of_imp (@h a)
@[simp] theorem union_sdiff_of_subset {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁ ∪ (s₂ \ s₁) = s₂ :=
(union_comm _ _).trans (sdiff_union_of_subset h)
@[simp] theorem inter_sdiff_self (s₁ s₂ : finset α) : s₁ ∩ (s₂ \ s₁) = ∅ :=
ext.2 $ by simp {contextual := tt}
@[simp] theorem sdiff_inter_self (s₁ s₂ : finset α) : (s₂ \ s₁) ∩ s₁ = ∅ :=
by simp
theorem sdiff_subset_sdiff {s₁ s₂ t₁ t₂ : finset α} (h₁ : t₁ ⊆ t₂) (h₂ : s₂ ⊆ s₁) : t₁ \ s₁ ⊆ t₂ \ s₂ :=
by simpa [subset_iff] using λ a m₁ m₂, and.intro (h₁ m₁) (mt (@h₂ _) m₂)
@[simp] lemma coe_sdiff (s₁ s₂ : finset α) : ↑(s₁ \ s₂) = (↑s₁ \ ↑s₂ : set α) :=
by simp [set.ext_iff]
end decidable_eq
/- attach -/
/-- `attach s` takes the elements of `s` and forms a new set of elements of the
subtype `{x // x ∈ s}`. -/
def attach (s : finset α) : finset {x // x ∈ s} := ⟨attach s.1, nodup_attach.2 s.2⟩
@[simp] theorem attach_val (s : finset α) : s.attach.1 = s.1.attach := rfl
@[simp] theorem mem_attach (s : finset α) : ∀ x, x ∈ s.attach := mem_attach _
@[simp] theorem attach_empty : attach (∅ : finset α) = ∅ := rfl
section decidable_pi_exists
variables {s : finset α}
instance decidable_dforall_finset {p : Πa∈s, Prop} [hp : ∀a (h : a ∈ s), decidable (p a h)] :
decidable (∀a (h : a ∈ s), p a h) :=
multiset.decidable_dforall_multiset
/-- decidable equality for functions whose domain is bounded by finsets -/
instance decidable_eq_pi_finset {β : α → Type*} [h : ∀a, decidable_eq (β a)] :
decidable_eq (Πa∈s, β a) :=
multiset.decidable_eq_pi_multiset
instance decidable_dexists_finset {p : Πa∈s, Prop} [hp : ∀a (h : a ∈ s), decidable (p a h)] :
decidable (∃a (h : a ∈ s), p a h) :=
multiset.decidable_dexists_multiset
end decidable_pi_exists
/- filter -/
section filter
variables {p q : α → Prop} [decidable_pred p] [decidable_pred q]
/-- `filter p s` is the set of elements of `s` that satisfy `p`. -/
def filter (p : α → Prop) [decidable_pred p] (s : finset α) : finset α :=
⟨_, nodup_filter p s.2⟩
@[simp] theorem filter_val (s : finset α) : (filter p s).1 = s.1.filter p := rfl
@[simp] theorem mem_filter {s : finset α} {a : α} : a ∈ s.filter p ↔ a ∈ s ∧ p a := mem_filter
@[simp] theorem filter_subset (s : finset α) : s.filter p ⊆ s := filter_subset _
theorem filter_filter (s : finset α) :
(s.filter p).filter q = s.filter (λa, p a ∧ q a) :=
ext.2 $ assume a, by simp [and_comm, and.left_comm]
@[simp] theorem filter_false {h} (s : finset α) : @filter α (λa, false) h s = ∅ :=
ext.2 $ assume a, by simp
variable [decidable_eq α]
theorem filter_union (s₁ s₂ : finset α) :
(s₁ ∪ s₂).filter p = s₁.filter p ∪ s₂.filter p :=
ext.2 $ by simp [or_and_distrib_right]
theorem filter_or (s : finset α) : s.filter (λ a, p a ∨ q a) = s.filter p ∪ s.filter q :=
ext.2 $ by simp [and_or_distrib_left]
theorem filter_and (s : finset α) : s.filter (λ a, p a ∧ q a) = s.filter p ∩ s.filter q :=
ext.2 $ by simp [and_comm, and.left_comm]
theorem filter_not (s : finset α) : s.filter (λ a, ¬ p a) = s \ s.filter p :=
ext.2 $ by simpa [and_comm] using λ a, and_congr_right $
λ h : a ∈ s, (imp_iff_right h).symm.trans imp_not_comm
theorem sdiff_eq_filter (s₁ s₂ : finset α) :
s₁ \ s₂ = filter (∉ s₂) s₁ := ext.2 $ by simp
theorem filter_union_filter_neg_eq (s : finset α) : s.filter p ∪ s.filter (λa, ¬ p a) = s :=
by simp [filter_not]
theorem filter_inter_filter_neg_eq (s : finset α) : s.filter p ∩ s.filter (λa, ¬ p a) = ∅ :=
by simp [filter_not]
@[simp] lemma coe_filter (s : finset α) : ↑(s.filter p) = ({x ∈ ↑s | p x} : set α) :=
by simp [set.ext_iff]
end filter
/- range -/
section range
variables {n m l : ℕ}
/-- `range n` is the set of integers less than `n`. -/
def range (n : ℕ) : finset ℕ := ⟨_, nodup_range n⟩
@[simp] theorem range_val (n : ℕ) : (range n).1 = multiset.range n := rfl
@[simp] theorem mem_range : m ∈ range n ↔ m < n := mem_range
@[simp] theorem range_zero : range 0 = ∅ := rfl
@[simp] theorem range_succ : range (succ n) = insert n (range n) := eq_of_veq $ by simp
@[simp] theorem not_mem_range_self : n ∉ range n := not_mem_range_self
@[simp] theorem range_subset {n m} : range n ⊆ range m ↔ n ≤ m := range_subset
theorem exists_nat_subset_range (s : finset ℕ) : ∃n : ℕ, s ⊆ range n :=
finset.induction_on s ⟨0, by simp⟩ $ λ a s ha ⟨n, hn⟩,
⟨max (a + 1) n, insert_subset.2
⟨by simpa using le_max_left (a+1) n, subset.trans hn (by simp [le_max_right])⟩⟩
end range
/- useful rules for calculations with quantifiers -/
theorem exists_mem_empty_iff (p : α → Prop) : (∃ x, x ∈ (∅ : finset α) ∧ p x) ↔ false :=
by simp
theorem exists_mem_insert [d : decidable_eq α]
(a : α) (s : finset α) (p : α → Prop) :
(∃ x, x ∈ insert a s ∧ p x) ↔ p a ∨ (∃ x, x ∈ s ∧ p x) :=
by simp [or_and_distrib_right, exists_or_distrib]
theorem forall_mem_empty_iff (p : α → Prop) : (∀ x, x ∈ (∅ : finset α) → p x) ↔ true :=
by simp
theorem forall_mem_insert [d : decidable_eq α]
(a : α) (s : finset α) (p : α → Prop) :
(∀ x, x ∈ insert a s → p x) ↔ p a ∧ (∀ x, x ∈ s → p x) :=
by simp [or_imp_distrib, forall_and_distrib]
end finset
/- erase_dup on list and multiset -/
namespace multiset
variable [decidable_eq α]
/-- `to_finset s` removes duplicates from the multiset `s` to produce a finset. -/
def to_finset (s : multiset α) : finset α := ⟨_, nodup_erase_dup s⟩
@[simp] theorem to_finset_val (s : multiset α) : s.to_finset.1 = s.erase_dup := rfl
theorem to_finset_eq {s : multiset α} (n : nodup s) : finset.mk s n = s.to_finset :=
finset.val_inj.1 (erase_dup_eq_self.2 n).symm
@[simp] theorem mem_to_finset {a : α} {s : multiset α} : a ∈ s.to_finset ↔ a ∈ s :=
mem_erase_dup
@[simp] lemma to_finset_cons (a : α) (s : multiset α) :
to_finset (a :: s) = insert a (to_finset s) :=
finset.eq_of_veq erase_dup_cons
end multiset
namespace list
variable [decidable_eq α]
/-- `to_finset l` removes duplicates from the list `l` to produce a finset. -/
def to_finset (l : list α) : finset α := multiset.to_finset l
@[simp] theorem to_finset_val (l : list α) : l.to_finset.1 = (l.erase_dup : multiset α) := rfl
theorem to_finset_eq {l : list α} (n : nodup l) : @finset.mk α l n = l.to_finset :=
multiset.to_finset_eq n
@[simp] theorem mem_to_finset {a : α} {l : list α} : a ∈ l.to_finset ↔ a ∈ l :=
mem_erase_dup
@[simp] theorem to_finset_nil : to_finset (@nil α) = ∅ :=
rfl
@[simp] theorem to_finset_cons {a : α} {l : list α} : to_finset (a :: l) = insert a (to_finset l) :=
finset.eq_of_veq $ by by_cases h : a ∈ l; simp [finset.insert_val', multiset.erase_dup_cons, h]
end list
namespace finset
section map
open function
def map (f : α ↪ β) (s : finset α) : finset β :=
⟨s.1.map f, nodup_map f.2 s.2⟩
@[simp] theorem map_val (f : α ↪ β) (s : finset α) : (map f s).1 = s.1.map f := rfl
@[simp] theorem map_empty (f : α ↪ β) (s : finset α) : (∅ : finset α).map f = ∅ := rfl
variables {f : α ↪ β} {s : finset α}
@[simp] theorem mem_map {b : β} : b ∈ s.map f ↔ ∃ a ∈ s, f a = b := by simp [mem_def]
@[simp] theorem mem_map_of_mem (f : α ↪ β) {a} {s : finset α} (h : a ∈ s) : f a ∈ s.map f :=
mem_map.2 ⟨_, h, rfl⟩
theorem map_to_finset [decidable_eq α] [decidable_eq β] {s : multiset α} :
s.to_finset.map f = (s.map f).to_finset := ext.2 $ by simp
theorem map_refl : s.map (embedding.refl _) = s := ext.2 $ by simp [embedding.refl]
theorem map_map {g : β ↪ γ} : (s.map f).map g = s.map (f.trans g) :=
eq_of_veq $ by simp [erase_dup_map_erase_dup_eq]
theorem map_subset_map {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁.map f ⊆ s₂.map f :=
by simp [subset_def, map_subset_map h]
theorem map_filter {p : β → Prop} [decidable_pred p] :
(s.map f).filter p = (s.filter (p ∘ f)).map f :=
ext.2 $ λ b, by simp; rw ← exists_and_distrib_right;
refine exists_congr (λ a, (and_congr_right $ λ e, _).trans and.right_comm);
simp [e.2.symm]
theorem map_union [decidable_eq α] [decidable_eq β]
{f : α ↪ β} (s₁ s₂ : finset α) : (s₁ ∪ s₂).map f = s₁.map f ∪ s₂.map f :=
ext.2 $ by simp [mem_map, or_and_distrib_right, exists_or_distrib]
theorem map_inter [decidable_eq α] [decidable_eq β]
{f : α ↪ β} (s₁ s₂ : finset α) : (s₁ ∩ s₂).map f = s₁.map f ∩ s₂.map f :=
ext.2 $ by simp [mem_map]; exact λ b,
⟨λ ⟨a, ⟨m₁, m₂⟩, e⟩, ⟨⟨a, m₁, e⟩, ⟨a, m₂, e⟩⟩,
λ ⟨⟨a, m₁, e₁⟩, ⟨a', m₂, e₂⟩⟩, ⟨a, ⟨m₁, f.2 (e₂.trans e₁.symm) ▸ m₂⟩, e₁⟩⟩.
@[simp] theorem map_singleton (f : α ↪ β) (a : α) : (singleton a).map f = singleton (f a) :=
ext.2 $ by simp [mem_map, eq_comm]
@[simp] theorem map_insert [decidable_eq α] [decidable_eq β]
(f : α ↪ β) (a : α) (s : finset α) :
(insert a s).map f = insert (f a) (s.map f) :=
by simp [insert_eq, map_union]
@[simp] theorem map_eq_empty : s.map f = ∅ ↔ s = ∅ :=
⟨λ h, eq_empty_of_forall_not_mem $
λ a m, ne_empty_of_mem (mem_map_of_mem _ m) h, λ e, e.symm ▸ rfl⟩
lemma attach_map_val {s : finset α} : s.attach.map (embedding.subtype _) = s :=
eq_of_veq $ by simp [embedding.subtype]; rw attach_val; simp [multiset.attach_map_val]
end map
section image
variables [decidable_eq β]
/-- `image f s` is the forward image of `s` under `f`. -/
def image (f : α → β) (s : finset α) : finset β := (s.1.map f).to_finset
@[simp] theorem image_val (f : α → β) (s : finset α) : (image f s).1 = (s.1.map f).erase_dup := rfl
@[simp] theorem image_empty (f : α → β) : (∅ : finset α).image f = ∅ := rfl
variables {f : α → β} {s : finset α}
@[simp] theorem mem_image {b : β} : b ∈ s.image f ↔ ∃ a ∈ s, f a = b := by simp [mem_def]
@[simp] theorem mem_image_of_mem (f : α → β) {a} {s : finset α} (h : a ∈ s) : f a ∈ s.image f :=
mem_image.2 ⟨_, h, rfl⟩
@[simp] lemma coe_image {f : α → β} : ↑(s.image f) = f '' ↑s := by simp [set.ext_iff]
theorem image_to_finset [decidable_eq α] {s : multiset α} : s.to_finset.image f = (s.map f).to_finset := ext.2 $ by simp
@[simp] theorem image_val_of_inj_on (H : ∀x∈s, ∀y∈s, f x = f y → x = y) : (image f s).1 = s.1.map f :=
multiset.erase_dup_eq_self.2 (nodup_map_on H s.2)
theorem image_id [decidable_eq α] : s.image id = s := ext.2 $ by simp
theorem image_image [decidable_eq γ] {g : β → γ} : (s.image f).image g = s.image (g ∘ f) :=
eq_of_veq $ by simp [erase_dup_map_erase_dup_eq]
theorem image_subset_image {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁.image f ⊆ s₂.image f :=
by simp [subset_def, multiset.map_subset_map h]
theorem image_filter {p : β → Prop} [decidable_pred p] :
(s.image f).filter p = (s.filter (p ∘ f)).image f :=
ext.2 $ λ b, by simp [and_comm]; rw ← exists_and_distrib_left; exact
exists_congr (λ a, and.left_comm.trans $ and_congr_right $ λ e, by simp [e.symm])
theorem image_union [decidable_eq α] {f : α → β} (s₁ s₂ : finset α) : (s₁ ∪ s₂).image f = s₁.image f ∪ s₂.image f :=
ext.2 $ by simp [mem_image, or_and_distrib_right, exists_or_distrib]
theorem image_inter [decidable_eq α] (s₁ s₂ : finset α) (hf : ∀x y, f x = f y → x = y) : (s₁ ∩ s₂).image f = s₁.image f ∩ s₂.image f :=
ext.2 $ by simp [mem_image]; exact λ b,
⟨λ ⟨a, ⟨m₁, m₂⟩, e⟩, ⟨⟨a, m₁, e⟩, ⟨a, m₂, e⟩⟩,
λ ⟨⟨a, m₁, e₁⟩, ⟨a', m₂, e₂⟩⟩, ⟨a, ⟨m₁, hf _ _ (e₂.trans e₁.symm) ▸ m₂⟩, e₁⟩⟩.
@[simp] theorem image_singleton [decidable_eq α] (f : α → β) (a : α) : (singleton a).image f = singleton (f a) :=
ext.2 $ by simp [mem_image, eq_comm]
@[simp] theorem image_insert [decidable_eq α] (f : α → β) (a : α) (s : finset α) :
(insert a s).image f = insert (f a) (s.image f) :=
by simp [insert_eq, image_union]
@[simp] theorem image_eq_empty : s.image f = ∅ ↔ s = ∅ :=
⟨λ h, eq_empty_of_forall_not_mem $
λ a m, ne_empty_of_mem (mem_image_of_mem _ m) h, λ e, e.symm ▸ rfl⟩
lemma attach_image_val [decidable_eq α] {s : finset α} : s.attach.image subtype.val = s :=
eq_of_veq $ by simp [multiset.attach_map_val]
@[simp] lemma attach_insert [decidable_eq α] {a : α} {s : finset α} :
attach (insert a s) = insert (⟨a, mem_insert_self a s⟩ : {x // x ∈ insert a s})
((attach s).image (λx, ⟨x.1, mem_insert_of_mem x.2⟩)) :=
begin
apply eq_of_veq,
dsimp,
rw [attach_ndinsert, multiset.erase_dup_eq_self.2],
{ refl },
apply nodup_map_on,
exact assume ⟨a', _⟩ _ ⟨b', _⟩ _ h, by simp at h; simp [h],
exact multiset.nodup_attach.2 s.2
end
theorem map_eq_image (f : α ↪ β) (s : finset α) : s.map f = s.image f :=
eq_of_veq $ (multiset.erase_dup_eq_self.2 (s.map f).2).symm
end image
/- card -/
section card
/-- `card s` is the cardinality (number of elements) of `s`. -/
def card (s : finset α) : nat := s.1.card
theorem card_def (s : finset α) : s.card = s.1.card := rfl
@[simp] theorem card_empty : card (∅ : finset α) = 0 := rfl
@[simp] theorem card_eq_zero {s : finset α} : card s = 0 ↔ s = ∅ :=
card_eq_zero.trans val_eq_zero
theorem card_pos {s : finset α} : 0 < card s ↔ s ≠ ∅ :=
pos_iff_ne_zero.trans $ not_congr card_eq_zero
@[simp] theorem card_insert_of_not_mem [decidable_eq α] {a : α} {s : finset α} (h : a ∉ s) : card (insert a s) = card s + 1 :=
by simpa [card] using congr_arg multiset.card (ndinsert_of_not_mem h)
theorem card_insert_le [decidable_eq α] (a : α) (s : finset α) : card (insert a s) ≤ card s + 1 :=
by by_cases a ∈ s; simp [h, nat.le_add_right]
@[simp] theorem card_singleton (a : α) : card (singleton a) = 1 := card_singleton _
theorem card_erase_of_mem [decidable_eq α] {a : α} {s : finset α} : a ∈ s → card (erase s a) = pred (card s) := card_erase_of_mem
theorem card_range (n : ℕ) : card (range n) = n := card_range n
theorem card_attach {s : finset α} : card (attach s) = card s := multiset.card_attach
theorem card_image_of_inj_on [decidable_eq β] {f : α → β} {s : finset α}
(H : ∀x∈s, ∀y∈s, f x = f y → x = y) : card (image f s) = card s :=
by simp [card, image_val_of_inj_on H]
theorem card_image_of_injective [decidable_eq β] {f : α → β} (s : finset α)
(H : function.injective f) : card (image f s) = card s :=
card_image_of_inj_on $ λ x _ y _ h, H h
lemma card_eq_of_bijective [decidable_eq α] {s : finset α} {n : ℕ}
(f : ∀i, i < n → α)
(hf : ∀a∈s, ∃i, ∃h:i<n, f i h = a) (hf' : ∀i (h : i < n), f i h ∈ s)
(f_inj : ∀i j (hi : i < n) (hj : j < n), f i hi = f j hj → i = j) :
card s = n :=
have ∀ (a : α), a ∈ s ↔ ∃i (hi : i ∈ range n), f i (mem_range.1 hi) = a,
from assume a, ⟨assume ha, let ⟨i, hi, eq⟩ := hf a ha in ⟨i, mem_range.2 hi, eq⟩,
assume ⟨i, hi, eq⟩, eq ▸ hf' i (mem_range.1 hi)⟩,
have s = ((range n).attach.image $ λi, f i.1 (mem_range.1 i.2)),
by simpa [ext],
calc card s = card ((range n).attach.image $ λi, f i.1 (mem_range.1 i.2)) :
by rw [this]
... = card ((range n).attach) :
card_image_of_injective _ $ assume ⟨i, hi⟩ ⟨j, hj⟩ eq,
subtype.eq $ f_inj i j (mem_range.1 hi) (mem_range.1 hj) eq
... = card (range n) : card_attach
... = n : card_range n
lemma card_eq_succ [decidable_eq α] {s : finset α} {a : α} {n : ℕ} :
s.card = n + 1 ↔ (∃a t, a ∉ t ∧ insert a t = s ∧ card t = n) :=
iff.intro
(assume eq,
have card s > 0, from eq.symm ▸ nat.zero_lt_succ _,
let ⟨a, has⟩ := finset.exists_mem_of_ne_empty $ card_pos.mp this in
⟨a, s.erase a, s.not_mem_erase a, insert_erase has, by simp [eq, card_erase_of_mem has]⟩)
(assume ⟨a, t, hat, s_eq, n_eq⟩, s_eq ▸ n_eq ▸ card_insert_of_not_mem hat)
theorem card_le_of_subset {s t : finset α} : s ⊆ t → card s ≤ card t :=
multiset.card_le_of_le ∘ val_le_iff.mpr
theorem eq_of_subset_of_card_le {s t : finset α} (h : s ⊆ t) (h₂ : card t ≤ card s) : s = t :=
eq_of_veq $ multiset.eq_of_le_of_card_le (val_le_iff.mpr h) h₂
lemma card_lt_card [decidable_eq α] {s t : finset α} (h : s ⊂ t) : s.card < t.card :=
card_lt_of_lt (val_lt_iff.2 h)
lemma card_le_card_of_inj_on [decidable_eq α] [decidable_eq β] {s : finset α} {t : finset β}
(f : α → β) (hf : ∀a∈s, f a ∈ t) (f_inj : ∀a₁∈s, ∀a₂∈s, f a₁ = f a₂ → a₁ = a₂) :
card s ≤ card t :=
calc card s = card (s.image f) : by rw [card_image_of_inj_on f_inj]
... ≤ card t : card_le_of_subset $
assume x hx, match x, finset.mem_image.1 hx with _, ⟨a, ha, rfl⟩ := hf a ha end
lemma card_le_of_inj_on [decidable_eq α] {n} {s : finset α}
(f : ℕ → α) (hf : ∀i<n, f i ∈ s) (f_inj : ∀i j, i<n → j<n → f i = f j → i = j) : n ≤ card s :=
calc n = card (range n) : (card_range n).symm
... ≤ card s : card_le_card_of_inj_on f
(by simp; assumption)
(by simp; exact assume a₁ h₁ a₂ h₂, f_inj a₁ a₂ h₁ h₂)
@[elab_as_eliminator] lemma strong_induction_on {p : finset α → Sort*} :
∀ (s : finset α), (∀s, (∀t ⊂ s, p t) → p s) → p s
| ⟨s, nd⟩ ih := multiset.strong_induction_on s
(λ s IH nd, ih ⟨s, nd⟩ (λ ⟨t, nd'⟩ ss, IH t (val_lt_iff.2 ss) nd')) nd
@[elab_as_eliminator] lemma case_strong_induction_on [decidable_eq α] {p : finset α → Prop}
(s : finset α) (h₀ : p ∅) (h₁ : ∀ a s, a ∉ s → (∀t ⊆ s, p t) → p (insert a s)) : p s :=
finset.strong_induction_on s $ λ s,
finset.induction_on s (λ _, h₀) $ λ a s n _ ih, h₁ a s n $
λ t ss, ih _ (lt_of_le_of_lt ss (ssubset_insert n) : t < _)
end card
section bind
variables [decidable_eq β] {s : finset α} {t : α → finset β}
/-- `bind s t` is the union of `t x` over `x ∈ s` -/
protected def bind (s : finset α) (t : α → finset β) : finset β := (s.1.bind (λ a, (t a).1)).to_finset
@[simp] theorem bind_val (s : finset α) (t : α → finset β) :
(s.bind t).1 = (s.1.bind (λ a, (t a).1)).erase_dup := rfl
@[simp] theorem bind_empty : finset.bind ∅ t = ∅ := rfl
@[simp] theorem mem_bind {b : β} : b ∈ s.bind t ↔ ∃a∈s, b ∈ t a :=
by simp [mem_def]
@[simp] theorem bind_insert [decidable_eq α] {a : α} : (insert a s).bind t = t a ∪ s.bind t :=
ext.2 $ by simp [or_and_distrib_right, exists_or_distrib]
@[simp] lemma singleton_bind [decidable_eq α] {a : α} : (singleton a).bind t = t a :=
show (insert a ∅ : finset α).bind t = t a, by simp
theorem image_bind [decidable_eq γ] {f : α → β} {s : finset α} {t : β → finset γ} :
(s.image f).bind t = s.bind (λa, t (f a)) :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp) (by simp {contextual := tt})
theorem bind_image [decidable_eq γ] {s : finset α} {t : α → finset β} {f : β → γ} :
(s.bind t).image f = s.bind (λa, (t a).image f) :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp) (by simp [image_union] {contextual := tt})
theorem bind_to_finset [decidable_eq α] (s : multiset α) (t : α → multiset β) :
(s.bind t).to_finset = s.to_finset.bind (λa, (t a).to_finset) :=
ext.2 $ by simp
lemma bind_mono {t₁ t₂ : α → finset β} (h : ∀a∈s, t₁ a ⊆ t₂ a) : s.bind t₁ ⊆ s.bind t₂ :=
have ∀b a, a ∈ s → b ∈ t₁ a → (∃ (a : α), a ∈ s ∧ b ∈ t₂ a),
from assume b a ha hb, ⟨a, ha, finset.mem_of_subset (h a ha) hb⟩,
by simpa [finset.subset_iff]
lemma bind_singleton {f : α → β} : s.bind (λa, {f a}) = s.image f :=
finset.ext.mpr $ by simp [eq_comm]
end bind
section prod
variables {s : finset α} {t : finset β}
/-- `product s t` is the set of pairs `(a, b)` such that `a ∈ s` and `b ∈ t`. -/
protected def product (s : finset α) (t : finset β) : finset (α × β) := ⟨_, nodup_product s.2 t.2⟩
@[simp] theorem product_val : (s.product t).1 = s.1.product t.1 := rfl
@[simp] theorem mem_product {p : α × β} : p ∈ s.product t ↔ p.1 ∈ s ∧ p.2 ∈ t := mem_product
theorem product_eq_bind [decidable_eq α] [decidable_eq β] (s : finset α) (t : finset β) :
s.product t = s.bind (λa, t.image $ λb, (a, b)) :=
ext.2 $ by simp [and.left_comm]
@[simp] theorem card_product (s : finset α) (t : finset β) : card (s.product t) = card s * card t :=
multiset.card_product _ _
end prod
section sigma
variables {σ : α → Type*} {s : finset α} {t : Πa, finset (σ a)}
/-- `sigma s t` is the set of dependent pairs `⟨a, b⟩` such that `a ∈ s` and `b ∈ t a`. -/
protected def sigma (s : finset α) (t : Πa, finset (σ a)) : finset (Σa, σ a) :=
⟨_, nodup_sigma s.2 (λ a, (t a).2)⟩
@[simp] theorem mem_sigma {p : sigma σ} : p ∈ s.sigma t ↔ p.1 ∈ s ∧ p.2 ∈ t (p.1) := mem_sigma
theorem sigma_mono {s₁ s₂ : finset α} {t₁ t₂ : Πa, finset (σ a)} :
s₁ ⊆ s₂ → (∀a, t₁ a ⊆ t₂ a) → s₁.sigma t₁ ⊆ s₂.sigma t₂ :=
by simp [subset_iff, mem_sigma] {contextual := tt}
theorem sigma_eq_bind [decidable_eq α] [∀a, decidable_eq (σ a)] (s : finset α) (t : Πa, finset (σ a)) :
s.sigma t = s.bind (λa, (t a).image $ λb, ⟨a, b⟩) :=
ext.2 $ by simp [and.left_comm]
end sigma
section pi
variables {δ : α → Type*} [decidable_eq α]
def pi (s : finset α) (t : Πa, finset (δ a)) : finset (Πa∈s, δ a) :=
⟨s.1.pi (λ a, (t a).1), nodup_pi s.2 (λ a _, (t a).2)⟩
@[simp] lemma pi_val (s : finset α) (t : Πa, finset (δ a)) :
(s.pi t).1 = s.1.pi (λ a, (t a).1) := rfl
@[simp] lemma mem_pi {s : finset α} {t : Πa, finset (δ a)} {f : Πa∈s, δ a} :
f ∈ s.pi t ↔ (∀a (h : a ∈ s), f a h ∈ t a) :=
mem_pi _ _ _
def pi.empty (β : α → Sort*) [decidable_eq α] (a : α) (h : a ∈ (∅ : finset α)) : β a :=
multiset.pi.empty β a h
def pi.cons (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (a' : α) (h : a' ∈ insert a s) : δ a' :=
multiset.pi.cons s.1 a b f _ (multiset.mem_cons.2 $ mem_insert.symm.2 h)
@[simp] lemma pi.cons_same (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (h : a ∈ insert a s) :
pi.cons s a b f a h = b :=
multiset.pi.cons_same _
lemma pi.cons_ne {s : finset α} {a a' : α} {b : δ a} {f : Πa, a ∈ s → δ a} {h : a' ∈ insert a s} (ha : a ≠ a') :
pi.cons s a b f a' h = f a' ((mem_insert.1 h).resolve_left ha.symm) :=
multiset.pi.cons_ne _ _
lemma injective_pi_cons {a : α} {b : δ a} {s : finset α} (hs : a ∉ s) :
function.injective (pi.cons s a b) :=
assume e₁ e₂ eq,
@multiset.injective_pi_cons α _ δ a b s.1 hs _ _ $
funext $ assume e, funext $ assume h,
have pi.cons s a b e₁ e (by simpa using h) = pi.cons s a b e₂ e (by simpa using h),
by rw [eq],
this
@[simp] lemma pi_empty {t : Πa:α, finset (δ a)} :
pi (∅ : finset α) t = singleton (pi.empty δ) := rfl
@[simp] lemma pi_insert [∀a, decidable_eq (δ a)]
{s : finset α} {t : Πa:α, finset (δ a)} {a : α} (ha : a ∉ s) :
pi (insert a s) t = (t a).bind (λb, (pi s t).image (pi.cons s a b)) :=
begin
apply eq_of_veq,
rw ← multiset.erase_dup_eq_self.2 (pi (insert a s) t).2,
refine (λ s' (h : s' = a :: s.1), (_ : erase_dup (multiset.pi s' (λ a, (t a).1)) =
erase_dup ((t a).1.bind $ λ b,
erase_dup $ (multiset.pi s.1 (λ (a : α), (t a).val)).map $
λ f a' h', multiset.pi.cons s.1 a b f a' (h ▸ h')))) _ (insert_val_of_not_mem ha),
subst s', rw pi_cons,
congr, funext b,
rw multiset.erase_dup_eq_self.2,
exact multiset.nodup_map (multiset.injective_pi_cons ha) (pi s t).2,
end
end pi
section powerset
def powerset (s : finset α) : finset (finset α) :=
⟨s.1.powerset.pmap finset.mk
(λ t h, nodup_of_le (mem_powerset.1 h) s.2),
nodup_pmap (λ a ha b hb, congr_arg finset.val)
(nodup_powerset.2 s.2)⟩
@[simp] theorem mem_powerset {s t : finset α} : s ∈ powerset t ↔ s ⊆ t :=
by cases s; simp [powerset]; rw ← val_le_iff
@[simp] theorem empty_mem_powerset (s : finset α) : ∅ ∈ powerset s :=
mem_powerset.2 (empty_subset _)
@[simp] theorem mem_powerset_self (s : finset α) : s ∈ powerset s :=
mem_powerset.2 (subset.refl _)
@[simp] theorem powerset_mono {s t : finset α} : powerset s ⊆ powerset t ↔ s ⊆ t :=
⟨λ h, (mem_powerset.1 $ h $ mem_powerset_self _),
λ st u h, mem_powerset.2 $ subset.trans (mem_powerset.1 h) st⟩
@[simp] theorem card_powerset (s : finset α) :
card (powerset s) = 2 ^ card s :=
(card_pmap _ _ _).trans (card_powerset s.1)
end powerset
section fold
variables (op : β → β → β) [hc : is_commutative β op] [ha : is_associative β op]
local notation a * b := op a b
include hc ha
/-- `fold op b f s` folds the commutative associative operation `op` over the
`f`-image of `s`, i.e. `fold (+) b f {1,2,3} = `f 1 + f 2 + f 3 + b`. -/
def fold (b : β) (f : α → β) (s : finset α) : β := (s.1.map f).fold op b
variables {op} {f : α → β} {b : β} {s : finset α} {a : α}
@[simp] theorem fold_empty : (∅ : finset α).fold op b f = b := rfl
@[simp] theorem fold_insert [decidable_eq α] (h : a ∉ s) : (insert a s).fold op b f = f a * s.fold op b f :=
by simp [fold, ndinsert_of_not_mem h]
@[simp] theorem fold_singleton : (singleton a).fold op b f = f a * b :=
by simp [fold]
@[simp] theorem fold_image [decidable_eq α] [decidable_eq γ] {g : γ → α} {s : finset γ}
(H : ∀ (x ∈ s) (y ∈ s), g x = g y → x = y) : (s.image g).fold op b f = s.fold op b (f ∘ g) :=
by simp [fold, image_val_of_inj_on H, map_map]
@[congr] theorem fold_congr {g : α → β} (H : ∀ x ∈ s, f x = g x) : s.fold op b f = s.fold op b g :=
by rw [fold, fold, map_congr H]
theorem fold_op_distrib {f g : α → β} {b₁ b₂ : β} :
s.fold op (b₁ * b₂) (λx, f x * g x) = s.fold op b₁ f * s.fold op b₂ g :=
by simp [fold, fold_distrib]
theorem fold_hom {op' : γ → γ → γ} [is_commutative γ op'] [is_associative γ op']
{m : β → γ} (hm : ∀x y, m (op x y) = op' (m x) (m y)) :
s.fold op' (m b) (λx, m (f x)) = m (s.fold op b f) :=
by rw [fold, fold, ← fold_hom op hm, multiset.map_map]
theorem fold_union_inter [decidable_eq α] {s₁ s₂ : finset α} {b₁ b₂ : β} :
(s₁ ∪ s₂).fold op b₁ f * (s₁ ∩ s₂).fold op b₂ f = s₁.fold op b₂ f * s₂.fold op b₁ f :=
by unfold fold; rw [← fold_add op, ← map_add, union_val,
inter_val, union_add_inter, map_add, hc.comm, fold_add]
@[simp] theorem fold_insert_idem [decidable_eq α] [hi : is_idempotent β op] :
(insert a s).fold op b f = f a * s.fold op b f :=
by haveI := classical.prop_decidable;
rw [fold, insert_val', ← fold_erase_dup_idem op, erase_dup_map_erase_dup_eq,
fold_erase_dup_idem op]; simp [fold]
end fold
section sup
variables [semilattice_sup_bot α] [decidable_eq α] [decidable_eq β]
/-- Supremum of a finite set: `sup {a, b, c} f = f a ⊔ f b ⊔ f c` -/
def sup (s : finset β) (f : β → α) : α := s.fold (⊔) ⊥ f
variables {s s₁ s₂ : finset β} {f : β → α}
lemma sup_val : s.sup f = (s.1.map f).sup := rfl
@[simp] lemma sup_empty : (∅ : finset β).sup f = ⊥ :=
fold_empty
@[simp] lemma sup_insert {b : β} : (insert b s : finset β).sup f = f b ⊔ s.sup f :=
fold_insert_idem
@[simp] lemma sup_singleton {b : β} : ({b} : finset β).sup f = f b :=
calc _ = f b ⊔ (∅:finset β).sup f : sup_insert
... = f b : by simp
lemma sup_union : (s₁ ∪ s₂).sup f = s₁.sup f ⊔ s₂.sup f :=
finset.induction_on s₁ (by simp) (by simp {contextual := tt}; cc)
lemma sup_mono_fun {g : β → α} : (∀b∈s, f b ≤ g b) → s.sup f ≤ s.sup g :=
finset.induction_on s (by simp) (by simp [-sup_le_iff, sup_le_sup] {contextual := tt})
lemma le_sup {b : β} (hb : b ∈ s) : f b ≤ s.sup f :=
calc f b ≤ f b ⊔ s.sup f : le_sup_left
... = (insert b s).sup f : by simp
... = s.sup f : by simp [hb]
lemma sup_le {a : α} : (∀b ∈ s, f b ≤ a) → s.sup f ≤ a :=
finset.induction_on s (by simp) (by simp {contextual := tt})
lemma sup_mono (h : s₁ ⊆ s₂) : s₁.sup f ≤ s₂.sup f :=
sup_le $ assume b hb, le_sup (h hb)
end sup
section inf
variables [semilattice_inf_top α] [decidable_eq α] [decidable_eq β]
/-- Infimum of a finite set: `inf {a, b, c} f = f a ⊓ f b ⊓ f c` -/
def inf (s : finset β) (f : β → α) : α := s.fold (⊓) ⊤ f
variables {s s₁ s₂ : finset β} {f : β → α}
lemma inf_val : s.inf f = (s.1.map f).inf := rfl
@[simp] lemma inf_empty : (∅ : finset β).inf f = ⊤ :=
fold_empty
@[simp] lemma inf_insert {b : β} : (insert b s : finset β).inf f = f b ⊓ s.inf f :=
fold_insert_idem
@[simp] lemma inf_singleton {b : β} : ({b} : finset β).inf f = f b :=
calc _ = f b ⊓ (∅:finset β).inf f : inf_insert
... = f b : by simp
lemma inf_union : (s₁ ∪ s₂).inf f = s₁.inf f ⊓ s₂.inf f :=
finset.induction_on s₁ (by simp) (by simp {contextual := tt}; cc)
lemma inf_mono_fun {g : β → α} : (∀b∈s, f b ≤ g b) → s.inf f ≤ s.inf g :=
finset.induction_on s (by simp) (by simp [inf_le_inf] {contextual := tt})
lemma inf_le {b : β} (hb : b ∈ s) : s.inf f ≤ f b :=
calc f b ≥ f b ⊓ s.inf f : inf_le_left
... = (insert b s).inf f : by simp
... = s.inf f : by simp [hb]
lemma le_inf {a : α} : (∀b ∈ s, a ≤ f b) → a ≤ s.inf f :=
finset.induction_on s (by simp) (by simp {contextual := tt})
lemma inf_mono (h : s₁ ⊆ s₂) : s₂.inf f ≤ s₁.inf f :=
le_inf $ assume b hb, inf_le (h hb)
end inf
/- max and min of finite sets -/
section max_min
variables [decidable_linear_order α]
protected def max : finset α → option α :=
fold (option.lift_or_get max) none some
theorem max_eq_sup_with_bot (s : finset α) :
s.max = @sup (with_bot α) α _ _ _ s some := rfl
@[simp] theorem max_empty : (∅ : finset α).max = none :=
by simp [finset.max]
@[simp] theorem max_insert {a : α} {s : finset α} :
(insert a s).max = option.lift_or_get max (some a) s.max :=
by simp [finset.max, fold_insert_idem]
@[simp] theorem max_singleton {a : α} : finset.max {a} = some a :=
by simp [finset.max, option.lift_or_get]
theorem max_of_mem {s : finset α} {a : α} (h : a ∈ s) : ∃ b, b ∈ s.max :=
(@le_sup (with_bot α) _ _ _ _ _ _ _ h _ rfl).imp $ λ b, Exists.fst
theorem max_eq_none {s : finset α} : s.max = none ↔ s = ∅ :=
⟨λ h, by_contradiction
(λ hs, let ⟨a, ha⟩ := exists_mem_of_ne_empty hs in
let ⟨b, hb⟩ := max_of_mem ha in
by simpa [h] using hb),
λ h, h.symm ▸ max_empty⟩
theorem mem_of_max {s : finset α} : ∀ {a : α}, a ∈ s.max → a ∈ s :=
finset.induction_on s (by simp) $
λ b s _ (ih : ∀ {a}, a ∈ s.max → a ∈ s) a (h : a ∈ (insert b s).max),
begin
by_cases p : b = a,
{ induction p, exact mem_insert_self b s },
{ cases option.lift_or_get_choice max_choice (some b) s.max with q q; simp [q] at h,
{ exact absurd h p },
{ exact mem_insert_of_mem (ih h) } }
end
theorem le_max_of_mem {s : finset α} {a b : α} (h₁ : a ∈ s) (h₂ : b ∈ s.max) : a ≤ b :=
by rcases @le_sup (with_bot α) _ _ _ _ _ _ _ h₁ _ rfl with ⟨b', hb, ab⟩;
cases h₂.symm.trans hb; assumption
protected def min : finset α → option α :=
fold (option.lift_or_get min) none some
theorem min_eq_inf_with_top (s : finset α) :
s.min = @inf (with_top α) α _ _ _ s some := rfl
@[simp] theorem min_empty : (∅ : finset α).min = none :=
by simp [finset.min]
@[simp] theorem min_insert {a : α} {s : finset α} :
(insert a s).min = option.lift_or_get min (some a) s.min :=
by simp [finset.min, fold_insert_idem]
@[simp] theorem min_singleton {a : α} : finset.min {a} = some a :=
by simp [finset.min, option.lift_or_get]
theorem min_of_mem {s : finset α} {a : α} (h : a ∈ s) : ∃ b, b ∈ s.min :=
(@inf_le (with_top α) _ _ _ _ _ _ _ h _ rfl).imp $ λ b, Exists.fst
theorem min_eq_none {s : finset α} : s.min = none ↔ s = ∅ :=
⟨λ h, by_contradiction
(λ hs, let ⟨a, ha⟩ := exists_mem_of_ne_empty hs in
let ⟨b, hb⟩ := min_of_mem ha in
by simpa [h] using hb),
λ h, h.symm ▸ min_empty⟩
theorem mem_of_min {s : finset α} : ∀ {a : α}, a ∈ s.min → a ∈ s :=
finset.induction_on s (by simp) $
λ b s _ (ih : ∀ {a}, a ∈ s.min → a ∈ s) a (h : a ∈ (insert b s).min),
begin
by_cases p : b = a,
{ induction p, exact mem_insert_self b s },
{ cases option.lift_or_get_choice min_choice (some b) s.min with q q; simp [q] at h,
{ exact absurd h p },
{ exact mem_insert_of_mem (ih h) } }
end
theorem le_min_of_mem {s : finset α} {a b : α} (h₁ : b ∈ s) (h₂ : a ∈ s.min) : a ≤ b :=
by rcases @inf_le (with_top α) _ _ _ _ _ _ _ h₁ _ rfl with ⟨b', hb, ab⟩;
cases h₂.symm.trans hb; assumption
end max_min
section sort
variables (r : α → α → Prop) [decidable_rel r]
[is_trans α r] [is_antisymm α r] [is_total α r]
/-- `sort s` constructs a sorted list from the unordered set `s`.
(Uses merge sort algorithm.) -/
def sort (s : finset α) : list α := sort r s.1
@[simp] theorem sort_sorted (s : finset α) : list.sorted r (sort r s) :=
sort_sorted _ _
@[simp] theorem sort_eq (s : finset α) : ↑(sort r s) = s.1 :=
sort_eq _ _
@[simp] theorem sort_nodup (s : finset α) : (sort r s).nodup :=
(by rw sort_eq; exact s.2 : @multiset.nodup α (sort r s))
@[simp] theorem sort_to_finset [decidable_eq α] (s : finset α) : (sort r s).to_finset = s :=
list.to_finset_eq (sort_nodup r s) ▸ eq_of_veq (sort_eq r s)
end sort
section disjoint
variable [decidable_eq α]
theorem disjoint_left {s t : finset α} : disjoint s t ↔ ∀ {a}, a ∈ s → a ∉ t :=
by simp [_root_.disjoint, subset_iff]; refl
theorem disjoint_val {s t : finset α} : disjoint s t ↔ s.1.disjoint t.1 :=
disjoint_left
theorem disjoint_iff_inter_eq_empty {s t : finset α} : disjoint s t ↔ s ∩ t = ∅ :=
disjoint_iff
theorem disjoint_right {s t : finset α} : disjoint s t ↔ ∀ {a}, a ∈ t → a ∉ s :=
by rw [disjoint.comm, disjoint_left]
theorem disjoint_iff_ne {s t : finset α} : disjoint s t ↔ ∀ a ∈ s, ∀ b ∈ t, a ≠ b :=
by simp [disjoint_left, imp_not_comm]
theorem disjoint_of_subset_left {s t u : finset α} (h : s ⊆ u) (d : disjoint u t) : disjoint s t :=
disjoint_left.2 (λ x m₁, (disjoint_left.1 d) (h m₁))
theorem disjoint_of_subset_right {s t u : finset α} (h : t ⊆ u) (d : disjoint s u) : disjoint s t :=
disjoint_right.2 (λ x m₁, (disjoint_right.1 d) (h m₁))
@[simp] theorem disjoint_empty_left (s : finset α) : disjoint ∅ s := disjoint_bot_left
@[simp] theorem disjoint_empty_right (s : finset α) : disjoint s ∅ := disjoint_bot_right
@[simp] theorem singleton_disjoint {s : finset α} {a : α} : disjoint (singleton a) s ↔ a ∉ s :=
by simp [disjoint_left]; refl
@[simp] theorem disjoint_singleton {s : finset α} {a : α} : disjoint s (singleton a) ↔ a ∉ s :=
by rw disjoint.comm; simp
@[simp] theorem disjoint_insert_left {a : α} {s t : finset α} :
disjoint (insert a s) t ↔ a ∉ t ∧ disjoint s t :=
by simp [disjoint_left, or_imp_distrib, forall_and_distrib]; refl
@[simp] theorem disjoint_insert_right {a : α} {s t : finset α} :
disjoint s (insert a t) ↔ a ∉ s ∧ disjoint s t :=
disjoint.comm.trans $ by rw [disjoint_insert_left, disjoint.comm]
@[simp] theorem disjoint_union_left {s t u : finset α} :
disjoint (s ∪ t) u ↔ disjoint s u ∧ disjoint t u :=
by simp [disjoint_left, or_imp_distrib, forall_and_distrib]
@[simp] theorem disjoint_union_right {s t u : finset α} :
disjoint s (t ∪ u) ↔ disjoint s t ∧ disjoint s u :=
by simp [disjoint_right, or_imp_distrib, forall_and_distrib]
@[simp] theorem card_disjoint_union {s t : finset α} :
disjoint s t → card (s ∪ t) = card s + card t :=
finset.induction_on s (by simp) $ by simp {contextual := tt}
end disjoint
theorem sort_sorted_lt [decidable_linear_order α] (s : finset α) :
list.sorted (<) (sort (≤) s) :=
(sort_sorted _ _).imp₂ (@lt_of_le_of_ne _ _) (sort_nodup _ _)
instance [has_repr α] : has_repr (finset α) := ⟨λ s, repr s.1⟩
end finset
namespace list
variable [decidable_eq α]
theorem to_finset_card_of_nodup {l : list α} : l.nodup → l.to_finset.card = l.length :=
begin
induction l,
case list.nil { simp },
case list.cons : _ _ ih {
intros nd,
simp at nd,
simp [finset.card_insert_of_not_mem ((not_iff_not_of_iff mem_to_finset).mpr nd.1),
ih nd.2]
}
end
end list
|
3dfc56a505363484d77c634d3c50b0f209aee905
|
dc15192b741b5d1c22cea8d65d6eb38bce3d838d
|
/src/circuit.lean
|
39ccf51f5e4b2523bc17929e2b0d84b96dc6e678
|
[] |
no_license
|
VArtem/lean-matroids
|
86910241ac8d1a5ec7b35adb77c1cc9969480fb9
|
a8969b1cb2456820ccbdce65e2e168c48c30d9bf
|
refs/heads/main
| 1,678,556,999,525
| 1,614,537,008,000
| 1,614,537,008,000
| 338,915,729
| 0
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,104
|
lean
|
import data.nat.basic
import data.finset.basic
import tactic
import matroid
import finset
import base_of
variables {α : Type*} [fintype α] [decidable_eq α] {m : matroid α} {A B : finset α}
open finset
namespace matroid
lemma circuit_sdiff : m.circuit A → B ⊆ A → B ≠ ∅ → m.ind (A \ B) :=
begin
rintro ⟨Anind, Aerase⟩ Bsubset Bnonempty,
rw ← nonempty_iff_ne_empty at Bnonempty,
rcases Bnonempty with ⟨x, xB⟩,
have xA := Bsubset xB,
refine m.ind_subset _ (A.erase x) _ (Aerase x xA),
exact sdiff_subset_erase_of_mem xB,
end
lemma circuit_ssubset : m.circuit A → B ⊂ A → m.ind B :=
begin
rintro ⟨Anind, Aerase⟩ Bsubset,
rw ssubset_iff at Bsubset,
rcases Bsubset with ⟨x, xB, x_insert⟩,
rw insert_subset at x_insert,
cases x_insert with xA h_subset,
apply m.ind_subset _ (A.erase x) _ (Aerase x xA),
rw ← erase_eq_of_not_mem xB,
exact erase_subset_erase x h_subset,
end
lemma ind_iff_not_contains_circuit (A) : m.ind A ↔ ∀ C, m.circuit C → ¬ C ⊆ A :=
begin
split, {
intros Aind C Ccirc hCA,
refine dep_superset hCA (Ccirc.1) Aind,
}, {
intros h,
by_contradiction Aind,
suffices subsets_dep : ∀ k ≤ A.card, ∃ B ⊆ A, B.card = k ∧ ¬ m.ind B, {
obtain ⟨B, Bsub, Bcard, Bdep⟩ := subsets_dep 0 (zero_le _),
rw [card_eq_zero] at Bcard,
subst Bcard,
exact Bdep m.ind_empty,
},
intros k k_le_card,
refine nat.decreasing_induction (λ n, _) k_le_card _, {
rintro ⟨B, hBA, Bcard, Bdep⟩,
specialize h B,
rw imp_not_comm at h,
specialize h hBA,
rw circuit at h,
push_neg at h,
obtain ⟨x, xAB, h_dep_erase⟩ := h Bdep,
refine ⟨B.erase x, subset.trans (erase_subset _ _) hBA, _, h_dep_erase⟩,
rw ← card_erase_of_mem' xAB at Bcard,
exact nat.succ_inj'.1 Bcard,
}, {
use [A, subset.refl _, rfl],
}
}
end
lemma dep_iff_contains_circuit (A) : ¬ m.ind A ↔ ∃ C, m.circuit C ∧ C ⊆ A :=
begin
have h := not_congr (ind_iff_not_contains_circuit A),
push_neg at h,
exact h,
end
theorem empty_not_circuit : ¬ m.circuit ∅ := λ ⟨empty_dep, _⟩, empty_dep m.ind_empty
theorem circuit_not_subset {A B} : m.circuit A → m.circuit B → A ⊆ B → A = B :=
begin
rintro Acirc Bcirc h_subset,
cases eq_or_ssubset_of_subset h_subset,
{ exact h, },
{
exfalso,
exact Acirc.1 (circuit_ssubset Bcirc h),
},
end
theorem circuit_common_element {x} (Acirc : m.circuit A) (Bcirc : m.circuit B):
A ≠ B → x ∈ A → x ∈ B → ∃ C, m.circuit C ∧ C ⊆ ((A ∪ B).erase x) :=
begin
intros A_neq_B xA xB,
rw ← dep_iff_contains_circuit,
intro union_ind,
have inter_ind : m.ind (A ∩ B), from by {
rw ind_iff_not_contains_circuit,
intros C Ccirc Csub,
have hAC := circuit_not_subset Ccirc Acirc (subset.trans Csub (inter_subset_left _ _)),
have hBC := circuit_not_subset Ccirc Bcirc (subset.trans Csub (inter_subset_right _ _)),
exact A_neq_B (eq.trans hAC.symm hBC),
},
have tmp : A ∩ B ⊆ A ∪ B := subset.trans (inter_subset_left _ _) (subset_union_left _ _),
obtain ⟨X, hABX, hXbase_of⟩ := ind_subset_base_of tmp (inter_ind),
have tmp2 := ind_card_le_base_of_card (erase_subset _ _) union_ind hXbase_of,
replace tmp2 := nat.add_le_add_right tmp2 1,
rw [card_erase_of_mem' (mem_union_left _ xA)] at tmp2,
have tmp3 := card_le_of_subset hXbase_of.1,
cases eq_or_eq_succ_of_le_and_le_succ tmp3 tmp2, {
replace h := eq_of_subset_of_card_le (hXbase_of.1) (ge_of_eq h),
subst h,
refine (dep_iff_contains_circuit (A ∪ B)).2 _ hXbase_of.2.1,
use [A, Acirc, subset_union_left _ _],
}, {
cases very_important_lemma hABX hXbase_of.1 h.symm, {
refine (dep_iff_contains_circuit X).2 _ hXbase_of.2.1,
use [A, Acirc, h_1],
}, {
refine (dep_iff_contains_circuit X).2 _ hXbase_of.2.1,
use [B, Bcirc, h_1],
}
}
end
lemma circuit_subset_ind_insert {x} (Aind : m.ind A) (hx : x ∉ A) (Bcirc : m.circuit B) :
B ⊆ insert x A → x ∈ B :=
begin
intro Bsub,
by_contradiction,
rw [subset_insert_iff, erase_eq_of_not_mem h] at Bsub,
exact (circuit_dep Bcirc) (ind_subset_def Bsub Aind),
end
theorem base_insert_unique_circuit {x} (Abase : m.base A) (hx : x ∉ A) :
∃! C, C ⊆ (insert x A) ∧ m.circuit C :=
begin
have tmp : ¬ m.ind (insert x A) := Abase.2 x hx,
obtain ⟨C, Ccirc, Csub⟩ := (dep_iff_contains_circuit _).1 tmp,
use [C, Csub, Ccirc],
rintro D ⟨Dsub, Dcirc⟩,
have Cmem := circuit_subset_ind_insert (Abase.1) hx Ccirc Csub,
have Dmem := circuit_subset_ind_insert (Abase.1) hx Dcirc Dsub,
by_contradiction,
rcases circuit_common_element Dcirc Ccirc h Dmem Cmem with ⟨U, Ucirc, Usub⟩,
suffices hUA : U ⊆ A, {
exact (circuit_dep Ucirc) (ind_subset_def hUA Abase.1),
}, {
have tmp : (D ∪ C) ⊆ (insert x A) := union_subset Dsub Csub,
replace tmp := erase_subset_erase x tmp,
rw erase_insert hx at tmp,
exact subset.trans Usub tmp,
}
end
end matroid
|
27fc71b06a2bdcc944698c27bdd04c38fe228604
|
8e6cad62ec62c6c348e5faaa3c3f2079012bdd69
|
/src/topology/algebra/infinite_sum.lean
|
a3bd35220256758c7e68f276b4ba68fd37de38d7
|
[
"Apache-2.0"
] |
permissive
|
benjamindavidson/mathlib
|
8cc81c865aa8e7cf4462245f58d35ae9a56b150d
|
fad44b9f670670d87c8e25ff9cdf63af87ad731e
|
refs/heads/master
| 1,679,545,578,362
| 1,615,343,014,000
| 1,615,343,014,000
| 312,926,983
| 0
| 0
|
Apache-2.0
| 1,615,360,301,000
| 1,605,399,418,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 46,513
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import algebra.big_operators.intervals
import topology.instances.real
import topology.algebra.module
import data.indicator_function
import data.equiv.encodable.lattice
import order.filter.at_top_bot
/-!
# Infinite sum over a topological monoid
This sum is known as unconditionally convergent, as it sums to the same value under all possible
permutations. For Euclidean spaces (finite dimensional Banach spaces) this is equivalent to absolute
convergence.
Note: There are summable sequences which are not unconditionally convergent! The other way holds
generally, see `has_sum.tendsto_sum_nat`.
## References
* Bourbaki: General Topology (1995), Chapter 3 §5 (Infinite sums in commutative groups)
-/
noncomputable theory
open finset filter function classical
open_locale topological_space classical big_operators nnreal
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
section has_sum
variables [add_comm_monoid α] [topological_space α]
/-- Infinite sum on a topological monoid
The `at_top` filter on `finset β` is the limit of all finite sets towards the entire type. So we sum
up bigger and bigger sets. This sum operation is invariant under reordering. In particular,
the function `ℕ → ℝ` sending `n` to `(-1)^n / (n+1)` does not have a
sum for this definition, but a series which is absolutely convergent will have the correct sum.
This is based on Mario Carneiro's
[infinite sum `df-tsms` in Metamath](http://us.metamath.org/mpeuni/df-tsms.html).
For the definition or many statements, `α` does not need to be a topological monoid. We only add
this assumption later, for the lemmas where it is relevant.
-/
def has_sum (f : β → α) (a : α) : Prop := tendsto (λs:finset β, ∑ b in s, f b) at_top (𝓝 a)
/-- `summable f` means that `f` has some (infinite) sum. Use `tsum` to get the value. -/
def summable (f : β → α) : Prop := ∃a, has_sum f a
/-- `∑' i, f i` is the sum of `f` it exists, or 0 otherwise -/
@[irreducible] def tsum {β} (f : β → α) := if h : summable f then classical.some h else 0
-- see Note [operator precedence of big operators]
notation `∑'` binders `, ` r:(scoped:67 f, tsum f) := r
variables {f g : β → α} {a b : α} {s : finset β}
lemma summable.has_sum (ha : summable f) : has_sum f (∑'b, f b) :=
by simp [ha, tsum]; exact some_spec ha
lemma has_sum.summable (h : has_sum f a) : summable f := ⟨a, h⟩
/-- Constant zero function has sum `0` -/
lemma has_sum_zero : has_sum (λb, 0 : β → α) 0 :=
by simp [has_sum, tendsto_const_nhds]
lemma summable_zero : summable (λb, 0 : β → α) := has_sum_zero.summable
lemma tsum_eq_zero_of_not_summable (h : ¬ summable f) : ∑'b, f b = 0 :=
by simp [tsum, h]
lemma has_sum.has_sum_of_sum_eq {g : γ → α}
(h_eq : ∀u:finset γ, ∃v:finset β, ∀v', v ⊆ v' → ∃u', u ⊆ u' ∧ ∑ x in u', g x = ∑ b in v', f b)
(hf : has_sum g a) :
has_sum f a :=
le_trans (map_at_top_finset_sum_le_of_sum_eq h_eq) hf
lemma has_sum_iff_has_sum {g : γ → α}
(h₁ : ∀u:finset γ, ∃v:finset β, ∀v', v ⊆ v' → ∃u', u ⊆ u' ∧ ∑ x in u', g x = ∑ b in v', f b)
(h₂ : ∀v:finset β, ∃u:finset γ, ∀u', u ⊆ u' → ∃v', v ⊆ v' ∧ ∑ b in v', f b = ∑ x in u', g x) :
has_sum f a ↔ has_sum g a :=
⟨has_sum.has_sum_of_sum_eq h₂, has_sum.has_sum_of_sum_eq h₁⟩
lemma function.injective.has_sum_iff {g : γ → β} (hg : injective g)
(hf : ∀ x ∉ set.range g, f x = 0) :
has_sum (f ∘ g) a ↔ has_sum f a :=
by simp only [has_sum, tendsto, hg.map_at_top_finset_sum_eq hf]
lemma function.injective.summable_iff {g : γ → β} (hg : injective g)
(hf : ∀ x ∉ set.range g, f x = 0) :
summable (f ∘ g) ↔ summable f :=
exists_congr $ λ _, hg.has_sum_iff hf
lemma has_sum_subtype_iff_of_support_subset {s : set β} (hf : support f ⊆ s) :
has_sum (f ∘ coe : s → α) a ↔ has_sum f a :=
subtype.coe_injective.has_sum_iff $ by simpa using support_subset_iff'.1 hf
lemma has_sum_subtype_iff_indicator {s : set β} :
has_sum (f ∘ coe : s → α) a ↔ has_sum (s.indicator f) a :=
by rw [← set.indicator_range_comp, subtype.range_coe,
has_sum_subtype_iff_of_support_subset set.support_indicator_subset]
@[simp] lemma has_sum_subtype_support : has_sum (f ∘ coe : support f → α) a ↔ has_sum f a :=
has_sum_subtype_iff_of_support_subset $ set.subset.refl _
lemma has_sum_fintype [fintype β] (f : β → α) : has_sum f (∑ b, f b) :=
order_top.tendsto_at_top_nhds _
protected lemma finset.has_sum (s : finset β) (f : β → α) :
has_sum (f ∘ coe : (↑s : set β) → α) (∑ b in s, f b) :=
by { rw ← sum_attach, exact has_sum_fintype _ }
protected lemma finset.summable (s : finset β) (f : β → α) :
summable (f ∘ coe : (↑s : set β) → α) :=
(s.has_sum f).summable
protected lemma set.finite.summable {s : set β} (hs : s.finite) (f : β → α) :
summable (f ∘ coe : s → α) :=
by convert hs.to_finset.summable f; simp only [hs.coe_to_finset]
/-- If a function `f` vanishes outside of a finite set `s`, then it `has_sum` `∑ b in s, f b`. -/
lemma has_sum_sum_of_ne_finset_zero (hf : ∀b∉s, f b = 0) : has_sum f (∑ b in s, f b) :=
(has_sum_subtype_iff_of_support_subset $ support_subset_iff'.2 hf).1 $ s.has_sum f
lemma summable_of_ne_finset_zero (hf : ∀b∉s, f b = 0) : summable f :=
(has_sum_sum_of_ne_finset_zero hf).summable
lemma has_sum_single {f : β → α} (b : β) (hf : ∀b' ≠ b, f b' = 0) :
has_sum f (f b) :=
suffices has_sum f (∑ b' in {b}, f b'),
by simpa using this,
has_sum_sum_of_ne_finset_zero $ by simpa [hf]
lemma has_sum_ite_eq (b : β) [decidable_pred (= b)] (a : α) :
has_sum (λb', if b' = b then a else 0) a :=
begin
convert has_sum_single b _,
{ exact (if_pos rfl).symm },
assume b' hb',
exact if_neg hb'
end
lemma equiv.has_sum_iff (e : γ ≃ β) :
has_sum (f ∘ e) a ↔ has_sum f a :=
e.injective.has_sum_iff $ by simp
lemma equiv.summable_iff (e : γ ≃ β) :
summable (f ∘ e) ↔ summable f :=
exists_congr $ λ a, e.has_sum_iff
lemma summable.prod_symm {f : β × γ → α} (hf : summable f) : summable (λ p : γ × β, f p.swap) :=
(equiv.prod_comm γ β).summable_iff.2 hf
lemma equiv.has_sum_iff_of_support {g : γ → α} (e : support f ≃ support g)
(he : ∀ x : support f, g (e x) = f x) :
has_sum f a ↔ has_sum g a :=
have (g ∘ coe) ∘ e = f ∘ coe, from funext he,
by rw [← has_sum_subtype_support, ← this, e.has_sum_iff, has_sum_subtype_support]
lemma has_sum_iff_has_sum_of_ne_zero_bij {g : γ → α} (i : support g → β)
(hi : ∀ ⦃x y⦄, i x = i y → (x : γ) = y)
(hf : support f ⊆ set.range i) (hfg : ∀ x, f (i x) = g x) :
has_sum f a ↔ has_sum g a :=
iff.symm $ equiv.has_sum_iff_of_support
(equiv.of_bijective (λ x, ⟨i x, λ hx, x.coe_prop $ hfg x ▸ hx⟩)
⟨λ x y h, subtype.ext $ hi $ subtype.ext_iff.1 h,
λ y, (hf y.coe_prop).imp $ λ x hx, subtype.ext hx⟩)
hfg
lemma equiv.summable_iff_of_support {g : γ → α} (e : support f ≃ support g)
(he : ∀ x : support f, g (e x) = f x) :
summable f ↔ summable g :=
exists_congr $ λ _, e.has_sum_iff_of_support he
protected lemma has_sum.map [add_comm_monoid γ] [topological_space γ] (hf : has_sum f a)
(g : α →+ γ) (hg : continuous g) :
has_sum (g ∘ f) (g a) :=
have g ∘ (λs:finset β, ∑ b in s, f b) = (λs:finset β, ∑ b in s, g (f b)),
from funext $ g.map_sum _,
show tendsto (λs:finset β, ∑ b in s, g (f b)) at_top (𝓝 (g a)),
from this ▸ (hg.tendsto a).comp hf
protected lemma summable.map [add_comm_monoid γ] [topological_space γ] (hf : summable f)
(g : α →+ γ) (hg : continuous g) :
summable (g ∘ f) :=
(hf.has_sum.map g hg).summable
/-- If `f : ℕ → α` has sum `a`, then the partial sums `∑_{i=0}^{n-1} f i` converge to `a`. -/
lemma has_sum.tendsto_sum_nat {f : ℕ → α} (h : has_sum f a) :
tendsto (λn:ℕ, ∑ i in range n, f i) at_top (𝓝 a) :=
h.comp tendsto_finset_range
lemma has_sum.unique {a₁ a₂ : α} [t2_space α] : has_sum f a₁ → has_sum f a₂ → a₁ = a₂ :=
tendsto_nhds_unique
lemma summable.has_sum_iff_tendsto_nat [t2_space α] {f : ℕ → α} {a : α} (hf : summable f) :
has_sum f a ↔ tendsto (λn:ℕ, ∑ i in range n, f i) at_top (𝓝 a) :=
begin
refine ⟨λ h, h.tendsto_sum_nat, λ h, _⟩,
rw tendsto_nhds_unique h hf.has_sum.tendsto_sum_nat,
exact hf.has_sum
end
lemma equiv.summable_iff_of_has_sum_iff {α' : Type*} [add_comm_monoid α']
[topological_space α'] (e : α' ≃ α) {f : β → α} {g : γ → α'}
(he : ∀ {a}, has_sum f (e a) ↔ has_sum g a) :
summable f ↔ summable g :=
⟨λ ⟨a, ha⟩, ⟨e.symm a, he.1 $ by rwa [e.apply_symm_apply]⟩, λ ⟨a, ha⟩, ⟨e a, he.2 ha⟩⟩
variable [has_continuous_add α]
lemma has_sum.add (hf : has_sum f a) (hg : has_sum g b) : has_sum (λb, f b + g b) (a + b) :=
by simp only [has_sum, sum_add_distrib]; exact hf.add hg
lemma summable.add (hf : summable f) (hg : summable g) : summable (λb, f b + g b) :=
(hf.has_sum.add hg.has_sum).summable
lemma has_sum_sum {f : γ → β → α} {a : γ → α} {s : finset γ} :
(∀i∈s, has_sum (f i) (a i)) → has_sum (λb, ∑ i in s, f i b) (∑ i in s, a i) :=
finset.induction_on s (by simp only [has_sum_zero, sum_empty, forall_true_iff])
(by simp only [has_sum.add, sum_insert, mem_insert, forall_eq_or_imp,
forall_2_true_iff, not_false_iff, forall_true_iff] {contextual := tt})
lemma summable_sum {f : γ → β → α} {s : finset γ} (hf : ∀i∈s, summable (f i)) :
summable (λb, ∑ i in s, f i b) :=
(has_sum_sum $ assume i hi, (hf i hi).has_sum).summable
lemma has_sum.add_compl {s : set β} (ha : has_sum (f ∘ coe : s → α) a)
(hb : has_sum (f ∘ coe : sᶜ → α) b) :
has_sum f (a + b) :=
by simpa using (has_sum_subtype_iff_indicator.1 ha).add (has_sum_subtype_iff_indicator.1 hb)
lemma summable.add_compl {s : set β} (hs : summable (f ∘ coe : s → α))
(hsc : summable (f ∘ coe : sᶜ → α)) :
summable f :=
(hs.has_sum.add_compl hsc.has_sum).summable
lemma has_sum.compl_add {s : set β} (ha : has_sum (f ∘ coe : sᶜ → α) a)
(hb : has_sum (f ∘ coe : s → α) b) :
has_sum f (a + b) :=
by simpa using (has_sum_subtype_iff_indicator.1 ha).add (has_sum_subtype_iff_indicator.1 hb)
lemma summable.compl_add {s : set β} (hs : summable (f ∘ coe : sᶜ → α))
(hsc : summable (f ∘ coe : s → α)) :
summable f :=
(hs.has_sum.compl_add hsc.has_sum).summable
lemma has_sum.sigma [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α} {a : α}
(ha : has_sum f a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) : has_sum g a :=
begin
refine (at_top_basis.tendsto_iff (closed_nhds_basis a)).mpr _,
rintros s ⟨hs, hsc⟩,
rcases mem_at_top_sets.mp (ha hs) with ⟨u, hu⟩,
use [u.image sigma.fst, trivial],
intros bs hbs,
simp only [set.mem_preimage, ge_iff_le, finset.le_iff_subset] at hu,
have : tendsto (λ t : finset (Σ b, γ b), ∑ p in t.filter (λ p, p.1 ∈ bs), f p)
at_top (𝓝 $ ∑ b in bs, g b),
{ simp only [← sigma_preimage_mk, sum_sigma],
refine tendsto_finset_sum _ (λ b hb, _),
change tendsto (λ t, (λ t, ∑ s in t, f ⟨b, s⟩) (preimage t (sigma.mk b) _)) at_top (𝓝 (g b)),
exact tendsto.comp (hf b) (tendsto_finset_preimage_at_top_at_top _) },
refine hsc.mem_of_tendsto this (eventually_at_top.2 ⟨u, λ t ht, hu _ (λ x hx, _)⟩),
exact mem_filter.2 ⟨ht hx, hbs $ mem_image_of_mem _ hx⟩
end
/-- If a series `f` on `β × γ` has sum `a` and for each `b` the restriction of `f` to `{b} × γ`
has sum `g b`, then the series `g` has sum `a`. -/
lemma has_sum.prod_fiberwise [regular_space α] {f : β × γ → α} {g : β → α} {a : α}
(ha : has_sum f a) (hf : ∀b, has_sum (λc, f (b, c)) (g b)) :
has_sum g a :=
has_sum.sigma ((equiv.sigma_equiv_prod β γ).has_sum_iff.2 ha) hf
lemma summable.sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
(ha : summable f) (hf : ∀b, summable (λc, f ⟨b, c⟩)) :
summable (λb, ∑'c, f ⟨b, c⟩) :=
(ha.has_sum.sigma (assume b, (hf b).has_sum)).summable
lemma has_sum.sigma_of_has_sum [regular_space α] {γ : β → Type*} {f : (Σ b:β, γ b) → α} {g : β → α}
{a : α} (ha : has_sum g a) (hf : ∀b, has_sum (λc, f ⟨b, c⟩) (g b)) (hf' : summable f) :
has_sum f a :=
by simpa [(hf'.has_sum.sigma hf).unique ha] using hf'.has_sum
end has_sum
section tsum
variables [add_comm_monoid α] [topological_space α] [t2_space α]
variables {f g : β → α} {a a₁ a₂ : α}
lemma has_sum.tsum_eq (ha : has_sum f a) : ∑'b, f b = a :=
(summable.has_sum ⟨a, ha⟩).unique ha
lemma summable.has_sum_iff (h : summable f) : has_sum f a ↔ ∑'b, f b = a :=
iff.intro has_sum.tsum_eq (assume eq, eq ▸ h.has_sum)
@[simp] lemma tsum_zero : ∑'b:β, (0:α) = 0 := has_sum_zero.tsum_eq
lemma tsum_eq_sum {f : β → α} {s : finset β} (hf : ∀b∉s, f b = 0) :
∑' b, f b = ∑ b in s, f b :=
(has_sum_sum_of_ne_finset_zero hf).tsum_eq
lemma tsum_congr {α β : Type*} [add_comm_monoid α] [topological_space α]
{f g : β → α} (hfg : ∀ b, f b = g b) : ∑' b, f b = ∑' b, g b :=
congr_arg tsum (funext hfg)
lemma tsum_fintype [fintype β] (f : β → α) : ∑'b, f b = ∑ b, f b :=
(has_sum_fintype f).tsum_eq
@[simp] lemma finset.tsum_subtype (s : finset β) (f : β → α) :
∑' x : {x // x ∈ s}, f x = ∑ x in s, f x :=
(s.has_sum f).tsum_eq
@[simp] lemma finset.tsum_subtype' (s : finset β) (f : β → α) :
∑' x : (s : set β), f x = ∑ x in s, f x :=
s.tsum_subtype f
lemma tsum_eq_single {f : β → α} (b : β) (hf : ∀b' ≠ b, f b' = 0) :
∑'b, f b = f b :=
(has_sum_single b hf).tsum_eq
@[simp] lemma tsum_ite_eq (b : β) [decidable_pred (= b)] (a : α) :
∑' b', (if b' = b then a else 0) = a :=
(has_sum_ite_eq b a).tsum_eq
lemma tsum_dite_right (P : Prop) [decidable P] (x : β → ¬ P → α) :
∑' (b : β), (if h : P then (0 : α) else x b h) = if h : P then (0 : α) else ∑' (b : β), x b h :=
by by_cases hP : P; simp [hP]
lemma tsum_dite_left (P : Prop) [decidable P] (x : β → P → α) :
∑' (b : β), (if h : P then x b h else 0) = if h : P then (∑' (b : β), x b h) else 0 :=
by by_cases hP : P; simp [hP]
lemma equiv.tsum_eq_tsum_of_has_sum_iff_has_sum {α' : Type*} [add_comm_monoid α']
[topological_space α'] (e : α' ≃ α) (h0 : e 0 = 0) {f : β → α} {g : γ → α'}
(h : ∀ {a}, has_sum f (e a) ↔ has_sum g a) :
∑' b, f b = e (∑' c, g c) :=
by_cases
(assume : summable g, (h.mpr this.has_sum).tsum_eq)
(assume hg : ¬ summable g,
have hf : ¬ summable f, from mt (e.summable_iff_of_has_sum_iff @h).1 hg,
by simp [tsum, hf, hg, h0])
lemma tsum_eq_tsum_of_has_sum_iff_has_sum {f : β → α} {g : γ → α}
(h : ∀{a}, has_sum f a ↔ has_sum g a) :
∑'b, f b = ∑'c, g c :=
(equiv.refl α).tsum_eq_tsum_of_has_sum_iff_has_sum rfl @h
lemma equiv.tsum_eq (j : γ ≃ β) (f : β → α) : ∑'c, f (j c) = ∑'b, f b :=
tsum_eq_tsum_of_has_sum_iff_has_sum $ λ a, j.has_sum_iff
lemma equiv.tsum_eq_tsum_of_support {f : β → α} {g : γ → α} (e : support f ≃ support g)
(he : ∀ x, g (e x) = f x) :
(∑' x, f x) = ∑' y, g y :=
tsum_eq_tsum_of_has_sum_iff_has_sum $ λ _, e.has_sum_iff_of_support he
lemma tsum_eq_tsum_of_ne_zero_bij {g : γ → α} (i : support g → β)
(hi : ∀ ⦃x y⦄, i x = i y → (x : γ) = y)
(hf : support f ⊆ set.range i) (hfg : ∀ x, f (i x) = g x) :
∑' x, f x = ∑' y, g y :=
tsum_eq_tsum_of_has_sum_iff_has_sum $ λ _, has_sum_iff_has_sum_of_ne_zero_bij i hi hf hfg
lemma tsum_subtype (s : set β) (f : β → α) :
∑' x:s, f x = ∑' x, s.indicator f x :=
tsum_eq_tsum_of_has_sum_iff_has_sum $ λ _, has_sum_subtype_iff_indicator
section has_continuous_add
variable [has_continuous_add α]
lemma tsum_add (hf : summable f) (hg : summable g) : ∑'b, (f b + g b) = (∑'b, f b) + (∑'b, g b) :=
(hf.has_sum.add hg.has_sum).tsum_eq
lemma tsum_sum {f : γ → β → α} {s : finset γ} (hf : ∀i∈s, summable (f i)) :
∑'b, ∑ i in s, f i b = ∑ i in s, ∑'b, f i b :=
(has_sum_sum $ assume i hi, (hf i hi).has_sum).tsum_eq
lemma tsum_sigma' [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
(h₁ : ∀b, summable (λc, f ⟨b, c⟩)) (h₂ : summable f) : ∑'p, f p = ∑'b c, f ⟨b, c⟩ :=
(h₂.has_sum.sigma (assume b, (h₁ b).has_sum)).tsum_eq.symm
lemma tsum_prod' [regular_space α] {f : β × γ → α} (h : summable f)
(h₁ : ∀b, summable (λc, f (b, c))) :
∑'p, f p = ∑'b c, f (b, c) :=
(h.has_sum.prod_fiberwise (assume b, (h₁ b).has_sum)).tsum_eq.symm
lemma tsum_comm' [regular_space α] {f : β → γ → α} (h : summable (function.uncurry f))
(h₁ : ∀b, summable (f b)) (h₂ : ∀ c, summable (λ b, f b c)) :
∑' c b, f b c = ∑' b c, f b c :=
begin
erw [← tsum_prod' h h₁, ← tsum_prod' h.prod_symm h₂, ← (equiv.prod_comm β γ).tsum_eq],
refl,
assumption
end
end has_continuous_add
section encodable
open encodable
variable [encodable γ]
/-- You can compute a sum over an encodably type by summing over the natural numbers and
taking a supremum. This is useful for outer measures. -/
theorem tsum_supr_decode2 [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0)
(s : γ → β) : ∑' i : ℕ, m (⨆ b ∈ decode2 γ i, s b) = ∑' b : γ, m (s b) :=
begin
have H : ∀ n, m (⨆ b ∈ decode2 γ n, s b) ≠ 0 → (decode2 γ n).is_some,
{ intros n h,
cases decode2 γ n with b,
{ refine (h $ by simp [m0]).elim },
{ exact rfl } },
symmetry, refine tsum_eq_tsum_of_ne_zero_bij (λ a, option.get (H a.1 a.2)) _ _ _,
{ rintros ⟨m, hm⟩ ⟨n, hn⟩ e,
have := mem_decode2.1 (option.get_mem (H n hn)),
rwa [← e, mem_decode2.1 (option.get_mem (H m hm))] at this },
{ intros b h,
refine ⟨⟨encode b, _⟩, _⟩,
{ simp only [mem_support, encodek2] at h ⊢, convert h, simp [set.ext_iff, encodek2] },
{ exact option.get_of_mem _ (encodek2 _) } },
{ rintros ⟨n, h⟩, dsimp only [subtype.coe_mk],
transitivity, swap,
rw [show decode2 γ n = _, from option.get_mem (H n h)],
congr, simp [ext_iff, -option.some_get] }
end
/-- `tsum_supr_decode2` specialized to the complete lattice of sets. -/
theorem tsum_Union_decode2 (m : set β → α) (m0 : m ∅ = 0)
(s : γ → set β) : ∑' i, m (⋃ b ∈ decode2 γ i, s b) = ∑' b, m (s b) :=
tsum_supr_decode2 m m0 s
/-! Some properties about measure-like functions.
These could also be functions defined on complete sublattices of sets, with the property
that they are countably sub-additive.
`R` will probably be instantiated with `(≤)` in all applications.
-/
/-- If a function is countably sub-additive then it is sub-additive on encodable types -/
theorem rel_supr_tsum [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0)
(R : α → α → Prop) (m_supr : ∀(s : ℕ → β), R (m (⨆ i, s i)) ∑' i, m (s i))
(s : γ → β) : R (m (⨆ b : γ, s b)) ∑' b : γ, m (s b) :=
by { rw [← supr_decode2, ← tsum_supr_decode2 _ m0 s], exact m_supr _ }
/-- If a function is countably sub-additive then it is sub-additive on finite sets -/
theorem rel_supr_sum [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0)
(R : α → α → Prop) (m_supr : ∀(s : ℕ → β), R (m (⨆ i, s i)) (∑' i, m (s i)))
(s : δ → β) (t : finset δ) :
R (m (⨆ d ∈ t, s d)) (∑ d in t, m (s d)) :=
by { cases t.nonempty_encodable, rw [supr_subtype'], convert rel_supr_tsum m m0 R m_supr _,
rw [← finset.tsum_subtype], assumption }
/-- If a function is countably sub-additive then it is binary sub-additive -/
theorem rel_sup_add [complete_lattice β] (m : β → α) (m0 : m ⊥ = 0)
(R : α → α → Prop) (m_supr : ∀(s : ℕ → β), R (m (⨆ i, s i)) (∑' i, m (s i)))
(s₁ s₂ : β) : R (m (s₁ ⊔ s₂)) (m s₁ + m s₂) :=
begin
convert rel_supr_tsum m m0 R m_supr (λ b, cond b s₁ s₂),
{ simp only [supr_bool_eq, cond] },
{ rw [tsum_fintype, fintype.sum_bool, cond, cond] }
end
end encodable
end tsum
section pi
variables {ι : Type*} {π : α → Type*} [∀ x, add_comm_monoid (π x)] [∀ x, topological_space (π x)]
lemma pi.has_sum {f : ι → ∀ x, π x} {g : ∀ x, π x} :
has_sum f g ↔ ∀ x, has_sum (λ i, f i x) (g x) :=
by simp [has_sum, tendsto_pi]
lemma pi.summable {f : ι → ∀ x, π x} : summable f ↔ ∀ x, summable (λ i, f i x) :=
by simp [summable, pi.has_sum, classical.skolem]
lemma tsum_apply [∀ x, t2_space (π x)] {f : ι → ∀ x, π x}{x : α} (hf : summable f) :
(∑' i, f i) x = ∑' i, f i x :=
(pi.has_sum.mp hf.has_sum x).tsum_eq.symm
end pi
section topological_group
variables [add_comm_group α] [topological_space α] [topological_add_group α]
variables {f g : β → α} {a a₁ a₂ : α}
-- `by simpa using` speeds up elaboration. Why?
lemma has_sum.neg (h : has_sum f a) : has_sum (λb, - f b) (- a) :=
by simpa only using h.map (-add_monoid_hom.id α) continuous_neg
lemma summable.neg (hf : summable f) : summable (λb, - f b) :=
hf.has_sum.neg.summable
lemma summable.of_neg (hf : summable (λb, - f b)) : summable f :=
by simpa only [neg_neg] using hf.neg
lemma summable_neg_iff : summable (λ b, - f b) ↔ summable f :=
⟨summable.of_neg, summable.neg⟩
lemma has_sum.sub (hf : has_sum f a₁) (hg : has_sum g a₂) : has_sum (λb, f b - g b) (a₁ - a₂) :=
by { simp [sub_eq_add_neg], exact hf.add hg.neg }
lemma summable.sub (hf : summable f) (hg : summable g) : summable (λb, f b - g b) :=
(hf.has_sum.sub hg.has_sum).summable
lemma has_sum.update (hf : has_sum f a₁) (b : β) [decidable_eq β] (a : α) :
has_sum (update f b a) (a - f b + a₁) :=
begin
convert ((has_sum_ite_eq b _).add hf),
ext b',
by_cases h : b' = b,
{ rw h, simp, },
{ simp [h] },
end
lemma summable.update (hf : summable f) (b : β) [decidable_eq β] (a : α) :
summable (update f b a) :=
(hf.has_sum.update b a).summable
lemma has_sum.has_sum_compl_iff {s : set β} (hf : has_sum (f ∘ coe : s → α) a₁) :
has_sum (f ∘ coe : sᶜ → α) a₂ ↔ has_sum f (a₁ + a₂) :=
begin
refine ⟨λ h, hf.add_compl h, λ h, _⟩,
rw [has_sum_subtype_iff_indicator] at hf ⊢,
rw [set.indicator_compl],
simpa only [add_sub_cancel'] using h.sub hf
end
lemma has_sum.has_sum_iff_compl {s : set β} (hf : has_sum (f ∘ coe : s → α) a₁) :
has_sum f a₂ ↔ has_sum (f ∘ coe : sᶜ → α) (a₂ - a₁) :=
iff.symm $ hf.has_sum_compl_iff.trans $ by rw [add_sub_cancel'_right]
lemma summable.summable_compl_iff {s : set β} (hf : summable (f ∘ coe : s → α)) :
summable (f ∘ coe : sᶜ → α) ↔ summable f :=
⟨λ ⟨a, ha⟩, (hf.has_sum.has_sum_compl_iff.1 ha).summable,
λ ⟨a, ha⟩, (hf.has_sum.has_sum_iff_compl.1 ha).summable⟩
protected lemma finset.has_sum_compl_iff (s : finset β) :
has_sum (λ x : {x // x ∉ s}, f x) a ↔ has_sum f (a + ∑ i in s, f i) :=
(s.has_sum f).has_sum_compl_iff.trans $ by rw [add_comm]
protected lemma finset.has_sum_iff_compl (s : finset β) :
has_sum f a ↔ has_sum (λ x : {x // x ∉ s}, f x) (a - ∑ i in s, f i) :=
(s.has_sum f).has_sum_iff_compl
protected lemma finset.summable_compl_iff (s : finset β) :
summable (λ x : {x // x ∉ s}, f x) ↔ summable f :=
(s.summable f).summable_compl_iff
lemma set.finite.summable_compl_iff {s : set β} (hs : s.finite) :
summable (f ∘ coe : sᶜ → α) ↔ summable f :=
(hs.summable f).summable_compl_iff
section tsum
variables [t2_space α]
lemma tsum_neg (hf : summable f) : ∑'b, - f b = - ∑'b, f b :=
hf.has_sum.neg.tsum_eq
lemma tsum_sub (hf : summable f) (hg : summable g) : ∑'b, (f b - g b) = ∑'b, f b - ∑'b, g b :=
(hf.has_sum.sub hg.has_sum).tsum_eq
lemma tsum_add_tsum_compl {s : set β} (hs : summable (f ∘ coe : s → α))
(hsc : summable (f ∘ coe : sᶜ → α)) :
(∑' x : s, f x) + (∑' x : sᶜ, f x) = ∑' x, f x :=
(hs.has_sum.add_compl hsc.has_sum).tsum_eq.symm
lemma sum_add_tsum_compl {s : finset β} (hf : summable f) :
(∑ x in s, f x) + (∑' x : (↑s : set β)ᶜ, f x) = ∑' x, f x :=
((s.has_sum f).add_compl (s.summable_compl_iff.2 hf).has_sum).tsum_eq.symm
end tsum
/-!
### Sums on subtypes
If `s` is a finset of `α`, we show that the summability of `f` in the whole space and on the subtype
`univ - s` are equivalent, and relate their sums. For a function defined on `ℕ`, we deduce the
formula `(∑ i in range k, f i) + (∑' i, f (i + k)) = (∑' i, f i)`, in `sum_add_tsum_nat_add`.
-/
section subtype
lemma has_sum_nat_add_iff {f : ℕ → α} (k : ℕ) {a : α} :
has_sum (λ n, f (n + k)) a ↔ has_sum f (a + ∑ i in range k, f i) :=
begin
refine iff.trans _ ((range k).has_sum_compl_iff),
rw [← (not_mem_range_equiv k).symm.has_sum_iff],
refl
end
lemma summable_nat_add_iff {f : ℕ → α} (k : ℕ) : summable (λ n, f (n + k)) ↔ summable f :=
iff.symm $ (equiv.add_right (∑ i in range k, f i)).summable_iff_of_has_sum_iff $
λ a, (has_sum_nat_add_iff k).symm
lemma has_sum_nat_add_iff' {f : ℕ → α} (k : ℕ) {a : α} :
has_sum (λ n, f (n + k)) (a - ∑ i in range k, f i) ↔ has_sum f a :=
by simp [has_sum_nat_add_iff]
lemma sum_add_tsum_nat_add [t2_space α] {f : ℕ → α} (k : ℕ) (h : summable f) :
(∑ i in range k, f i) + (∑' i, f (i + k)) = ∑' i, f i :=
by simpa [add_comm] using
((has_sum_nat_add_iff k).1 ((summable_nat_add_iff k).2 h).has_sum).unique h.has_sum
lemma tsum_eq_zero_add [t2_space α] {f : ℕ → α} (hf : summable f) :
∑'b, f b = f 0 + ∑'b, f (b + 1) :=
by simpa only [sum_range_one] using (sum_add_tsum_nat_add 1 hf).symm
/-- For `f : ℕ → α`, then `∑' k, f (k + i)` tends to zero. This does not require a summability
assumption on `f`, as otherwise all sums are zero. -/
lemma tendsto_sum_nat_add [t2_space α] (f : ℕ → α) : tendsto (λ i, ∑' k, f (k + i)) at_top (𝓝 0) :=
begin
by_cases hf : summable f,
{ have h₀ : (λ i, (∑' i, f i) - ∑ j in range i, f j) = λ i, ∑' (k : ℕ), f (k + i),
{ ext1 i,
rw [sub_eq_iff_eq_add, add_comm, sum_add_tsum_nat_add i hf] },
have h₁ : tendsto (λ i : ℕ, ∑' i, f i) at_top (𝓝 (∑' i, f i)) := tendsto_const_nhds,
simpa only [h₀, sub_self] using tendsto.sub h₁ hf.has_sum.tendsto_sum_nat },
{ convert tendsto_const_nhds,
ext1 i,
rw ← summable_nat_add_iff i at hf,
{ exact tsum_eq_zero_of_not_summable hf },
{ apply_instance } }
end
end subtype
end topological_group
section topological_semiring
variables [semiring α] [topological_space α] [topological_semiring α]
variables {f g : β → α} {a a₁ a₂ : α}
lemma has_sum.mul_left (a₂) (h : has_sum f a₁) : has_sum (λb, a₂ * f b) (a₂ * a₁) :=
by simpa only using h.map (add_monoid_hom.mul_left a₂) (continuous_const.mul continuous_id)
lemma has_sum.mul_right (a₂) (hf : has_sum f a₁) : has_sum (λb, f b * a₂) (a₁ * a₂) :=
by simpa only using hf.map (add_monoid_hom.mul_right a₂) (continuous_id.mul continuous_const)
lemma summable.mul_left (a) (hf : summable f) : summable (λb, a * f b) :=
(hf.has_sum.mul_left _).summable
lemma summable.mul_right (a) (hf : summable f) : summable (λb, f b * a) :=
(hf.has_sum.mul_right _).summable
section tsum
variables [t2_space α]
lemma summable.tsum_mul_left (a) (hf : summable f) : ∑'b, a * f b = a * ∑'b, f b :=
(hf.has_sum.mul_left _).tsum_eq
lemma summable.tsum_mul_right (a) (hf : summable f) : (∑'b, f b * a) = (∑'b, f b) * a :=
(hf.has_sum.mul_right _).tsum_eq
end tsum
end topological_semiring
section topological_semimodule
variables {R : Type*}
[semiring R] [topological_space R]
[topological_space α] [add_comm_monoid α]
[semimodule R α] [topological_semimodule R α]
{f : β → α}
lemma has_sum.smul {a : α} {r : R} (hf : has_sum f a) : has_sum (λ z, r • f z) (r • a) :=
hf.map (const_smul_hom α r) (continuous_const.smul continuous_id)
lemma summable.smul {r : R} (hf : summable f) : summable (λ z, r • f z) :=
hf.has_sum.smul.summable
lemma tsum_smul [t2_space α] {r : R} (hf : summable f) : ∑' z, r • f z = r • ∑' z, f z :=
hf.has_sum.smul.tsum_eq
end topological_semimodule
section division_ring
variables [division_ring α] [topological_space α] [topological_semiring α]
{f g : β → α} {a a₁ a₂ : α}
lemma has_sum.div_const (h : has_sum f a) (b : α) : has_sum (λ x, f x / b) (a / b) :=
by simp only [div_eq_mul_inv, h.mul_right b⁻¹]
lemma has_sum_mul_left_iff (h : a₂ ≠ 0) : has_sum f a₁ ↔ has_sum (λb, a₂ * f b) (a₂ * a₁) :=
⟨has_sum.mul_left _, λ H, by simpa only [inv_mul_cancel_left' h] using H.mul_left a₂⁻¹⟩
lemma has_sum_mul_right_iff (h : a₂ ≠ 0) : has_sum f a₁ ↔ has_sum (λb, f b * a₂) (a₁ * a₂) :=
⟨has_sum.mul_right _, λ H, by simpa only [mul_inv_cancel_right' h] using H.mul_right a₂⁻¹⟩
lemma summable_mul_left_iff (h : a ≠ 0) : summable f ↔ summable (λb, a * f b) :=
⟨λ H, H.mul_left _, λ H, by simpa only [inv_mul_cancel_left' h] using H.mul_left a⁻¹⟩
lemma summable_mul_right_iff (h : a ≠ 0) : summable f ↔ summable (λb, f b * a) :=
⟨λ H, H.mul_right _, λ H, by simpa only [mul_inv_cancel_right' h] using H.mul_right a⁻¹⟩
lemma tsum_mul_left [t2_space α] : (∑' x, a * f x) = a * ∑' x, f x :=
if hf : summable f then hf.tsum_mul_left a
else if ha : a = 0 then by simp [ha]
else by rw [tsum_eq_zero_of_not_summable hf,
tsum_eq_zero_of_not_summable (mt (summable_mul_left_iff ha).2 hf), mul_zero]
lemma tsum_mul_right [t2_space α] : (∑' x, f x * a) = (∑' x, f x) * a :=
if hf : summable f then hf.tsum_mul_right a
else if ha : a = 0 then by simp [ha]
else by rw [tsum_eq_zero_of_not_summable hf,
tsum_eq_zero_of_not_summable (mt (summable_mul_right_iff ha).2 hf), zero_mul]
end division_ring
section order_topology
variables [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α]
variables {f g : β → α} {a a₁ a₂ : α}
lemma has_sum_le (h : ∀b, f b ≤ g b) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ :=
le_of_tendsto_of_tendsto' hf hg $ assume s, sum_le_sum $ assume b _, h b
@[mono] lemma has_sum_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f ≤ g) : a₁ ≤ a₂ :=
has_sum_le h hf hg
lemma has_sum_le_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c)
(h : ∀b, f b ≤ g (i b)) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ :=
have has_sum (λc, (partial_inv i c).cases_on' 0 f) a₁,
begin
refine (has_sum_iff_has_sum_of_ne_zero_bij (i ∘ coe) _ _ _).2 hf,
{ exact assume c₁ c₂ eq, hi eq },
{ intros c hc,
rw [mem_support] at hc,
cases eq : partial_inv i c with b; rw eq at hc,
{ contradiction },
{ rw [partial_inv_of_injective hi] at eq,
exact ⟨⟨b, hc⟩, eq⟩ } },
{ assume c, simp [partial_inv_left hi, option.cases_on'] }
end,
begin
refine has_sum_le (assume c, _) this hg,
by_cases c ∈ set.range i,
{ rcases h with ⟨b, rfl⟩,
rw [partial_inv_left hi, option.cases_on'],
exact h _ },
{ have : partial_inv i c = none := dif_neg h,
rw [this, option.cases_on'],
exact hs _ h }
end
lemma tsum_le_tsum_of_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c)
(h : ∀b, f b ≤ g (i b)) (hf : summable f) (hg : summable g) : tsum f ≤ tsum g :=
has_sum_le_inj i hi hs h hf.has_sum hg.has_sum
lemma sum_le_has_sum {f : β → α} (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : has_sum f a) :
∑ b in s, f b ≤ a :=
ge_of_tendsto hf (eventually_at_top.2 ⟨s, λ t hst,
sum_le_sum_of_subset_of_nonneg hst $ λ b hbt hbs, hs b hbs⟩)
lemma le_has_sum (hf : has_sum f a) (b : β) (hb : ∀ b' ≠ b, 0 ≤ f b') : f b ≤ a :=
calc f b = ∑ b in {b}, f b : finset.sum_singleton.symm
... ≤ a : sum_le_has_sum _ (by { convert hb, simp }) hf
lemma sum_le_tsum {f : β → α} (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : summable f) :
∑ b in s, f b ≤ tsum f :=
sum_le_has_sum s hs hf.has_sum
lemma le_tsum (hf : summable f) (b : β) (hb : ∀ b' ≠ b, 0 ≤ f b') : f b ≤ ∑' b, f b :=
le_has_sum (summable.has_sum hf) b hb
lemma tsum_le_tsum (h : ∀b, f b ≤ g b) (hf : summable f) (hg : summable g) : ∑'b, f b ≤ ∑'b, g b :=
has_sum_le h hf.has_sum hg.has_sum
@[mono] lemma tsum_mono (hf : summable f) (hg : summable g) (h : f ≤ g) :
∑' n, f n ≤ ∑' n, g n :=
tsum_le_tsum h hf hg
lemma has_sum.nonneg (h : ∀ b, 0 ≤ g b) (ha : has_sum g a) : 0 ≤ a :=
has_sum_le h has_sum_zero ha
lemma has_sum.nonpos (h : ∀ b, g b ≤ 0) (ha : has_sum g a) : a ≤ 0 :=
has_sum_le h ha has_sum_zero
lemma tsum_nonneg (h : ∀ b, 0 ≤ g b) : 0 ≤ ∑'b, g b :=
begin
by_cases hg : summable g,
{ exact hg.has_sum.nonneg h },
{ simp [tsum_eq_zero_of_not_summable hg] }
end
lemma tsum_nonpos (h : ∀ b, f b ≤ 0) : ∑'b, f b ≤ 0 :=
begin
by_cases hf : summable f,
{ exact hf.has_sum.nonpos h },
{ simp [tsum_eq_zero_of_not_summable hf] }
end
end order_topology
section ordered_topological_group
variables [ordered_add_comm_group α] [topological_space α] [topological_add_group α]
[order_closed_topology α] {f g : β → α} {a₁ a₂ : α}
lemma has_sum_lt {i : β} (h : ∀ (b : β), f b ≤ g b) (hi : f i < g i)
(hf : has_sum f a₁) (hg : has_sum g a₂) :
a₁ < a₂ :=
have update f i 0 ≤ update g i 0 := update_le_update_iff.mpr ⟨rfl.le, λ i _, h i⟩,
have 0 - f i + a₁ ≤ 0 - g i + a₂ := has_sum_le this (hf.update i 0) (hg.update i 0),
by simpa only [zero_sub, add_neg_cancel_left] using add_lt_add_of_lt_of_le hi this
@[mono] lemma has_sum_strict_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f < g) : a₁ < a₂ :=
let ⟨hle, i, hi⟩ := pi.lt_def.mp h in has_sum_lt hle hi hf hg
lemma tsum_lt_tsum {i : β} (h : ∀ (b : β), f b ≤ g b) (hi : f i < g i)
(hf : summable f) (hg : summable g) :
∑' n, f n < ∑' n, g n :=
has_sum_lt h hi hf.has_sum hg.has_sum
@[mono] lemma tsum_strict_mono (hf : summable f) (hg : summable g) (h : f < g) :
∑' n, f n < ∑' n, g n :=
let ⟨hle, i, hi⟩ := pi.lt_def.mp h in tsum_lt_tsum hle hi hf hg
end ordered_topological_group
section canonically_ordered
variables [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α]
variables {f : β → α} {a : α}
lemma le_has_sum' (hf : has_sum f a) (b : β) : f b ≤ a :=
le_has_sum hf b $ λ _ _, zero_le _
lemma le_tsum' (hf : summable f) (b : β) : f b ≤ ∑' b, f b :=
le_tsum hf b $ λ _ _, zero_le _
lemma has_sum_zero_iff : has_sum f 0 ↔ ∀ x, f x = 0 :=
begin
refine ⟨_, λ h, _⟩,
{ contrapose!,
exact λ ⟨x, hx⟩ h, irrefl _ (lt_of_lt_of_le (pos_iff_ne_zero.2 hx) (le_has_sum' h x)) },
{ convert has_sum_zero,
exact funext h }
end
lemma tsum_eq_zero_iff (hf : summable f) : ∑' i, f i = 0 ↔ ∀ x, f x = 0 :=
by rw [←has_sum_zero_iff, hf.has_sum_iff]
lemma tsum_ne_zero_iff (hf : summable f) : ∑' i, f i ≠ 0 ↔ ∃ x, f x ≠ 0 :=
by rw [ne.def, tsum_eq_zero_iff hf, not_forall]
end canonically_ordered
section uniform_group
variables [add_comm_group α] [uniform_space α]
lemma summable_iff_cauchy_seq_finset [complete_space α] {f : β → α} :
summable f ↔ cauchy_seq (λ (s : finset β), ∑ b in s, f b) :=
cauchy_map_iff_exists_tendsto.symm
variables [uniform_add_group α] {f g : β → α} {a a₁ a₂ : α}
lemma cauchy_seq_finset_iff_vanishing :
cauchy_seq (λ (s : finset β), ∑ b in s, f b)
↔ ∀ e ∈ 𝓝 (0:α), (∃s:finset β, ∀t, disjoint t s → ∑ b in t, f b ∈ e) :=
begin
simp only [cauchy_seq, cauchy_map_iff, and_iff_right at_top_ne_bot,
prod_at_top_at_top_eq, uniformity_eq_comap_nhds_zero α, tendsto_comap_iff, (∘)],
rw [tendsto_at_top'],
split,
{ assume h e he,
rcases h e he with ⟨⟨s₁, s₂⟩, h⟩,
use [s₁ ∪ s₂],
assume t ht,
specialize h (s₁ ∪ s₂, (s₁ ∪ s₂) ∪ t) ⟨le_sup_left, le_sup_left_of_le le_sup_right⟩,
simpa only [finset.sum_union ht.symm, add_sub_cancel'] using h },
{ assume h e he,
rcases exists_nhds_half_neg he with ⟨d, hd, hde⟩,
rcases h d hd with ⟨s, h⟩,
use [(s, s)],
rintros ⟨t₁, t₂⟩ ⟨ht₁, ht₂⟩,
have : ∑ b in t₂, f b - ∑ b in t₁, f b = ∑ b in t₂ \ s, f b - ∑ b in t₁ \ s, f b,
{ simp only [(finset.sum_sdiff ht₁).symm, (finset.sum_sdiff ht₂).symm,
add_sub_add_right_eq_sub] },
simp only [this],
exact hde _ (h _ finset.sdiff_disjoint) _ (h _ finset.sdiff_disjoint) }
end
variable [complete_space α]
lemma summable_iff_vanishing :
summable f ↔ ∀ e ∈ 𝓝 (0:α), (∃s:finset β, ∀t, disjoint t s → ∑ b in t, f b ∈ e) :=
by rw [summable_iff_cauchy_seq_finset, cauchy_seq_finset_iff_vanishing]
/- TODO: generalize to monoid with a uniform continuous subtraction operator: `(a + b) - b = a` -/
lemma summable.summable_of_eq_zero_or_self (hf : summable f) (h : ∀b, g b = 0 ∨ g b = f b) :
summable g :=
summable_iff_vanishing.2 $
assume e he,
let ⟨s, hs⟩ := summable_iff_vanishing.1 hf e he in
⟨s, assume t ht,
have eq : ∑ b in t.filter (λb, g b = f b), f b = ∑ b in t, g b :=
calc ∑ b in t.filter (λb, g b = f b), f b = ∑ b in t.filter (λb, g b = f b), g b :
finset.sum_congr rfl (assume b hb, (finset.mem_filter.1 hb).2.symm)
... = ∑ b in t, g b :
begin
refine finset.sum_subset (finset.filter_subset _ _) _,
assume b hbt hb,
simp only [(∉), finset.mem_filter, and_iff_right hbt] at hb,
exact (h b).resolve_right hb
end,
eq ▸ hs _ $ finset.disjoint_of_subset_left (finset.filter_subset _ _) ht⟩
protected lemma summable.indicator (hf : summable f) (s : set β) :
summable (s.indicator f) :=
hf.summable_of_eq_zero_or_self $ set.indicator_eq_zero_or_self _ _
lemma summable.comp_injective {i : γ → β} (hf : summable f) (hi : injective i) :
summable (f ∘ i) :=
begin
simpa only [set.indicator_range_comp]
using (hi.summable_iff _).2 (hf.indicator (set.range i)),
exact λ x hx, set.indicator_of_not_mem hx _
end
lemma summable.subtype (hf : summable f) (s : set β) : summable (f ∘ coe : s → α) :=
hf.comp_injective subtype.coe_injective
lemma summable_subtype_and_compl {s : set β} :
summable (λ x : s, f x) ∧ summable (λ x : sᶜ, f x) ↔ summable f :=
⟨and_imp.2 summable.add_compl, λ h, ⟨h.subtype s, h.subtype sᶜ⟩⟩
lemma summable.sigma_factor {γ : β → Type*} {f : (Σb:β, γ b) → α}
(ha : summable f) (b : β) : summable (λc, f ⟨b, c⟩) :=
ha.comp_injective sigma_mk_injective
lemma summable.sigma [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
(ha : summable f) : summable (λb, ∑'c, f ⟨b, c⟩) :=
ha.sigma' (λ b, ha.sigma_factor b)
lemma summable.prod_factor {f : β × γ → α} (h : summable f) (b : β) :
summable (λ c, f (b, c)) :=
h.comp_injective $ λ c₁ c₂ h, (prod.ext_iff.1 h).2
lemma tsum_sigma [regular_space α] {γ : β → Type*} {f : (Σb:β, γ b) → α}
(ha : summable f) : ∑'p, f p = ∑'b c, f ⟨b, c⟩ :=
tsum_sigma' (λ b, ha.sigma_factor b) ha
lemma tsum_prod [regular_space α] {f : β × γ → α} (h : summable f) :
∑'p, f p = ∑'b c, f ⟨b, c⟩ :=
tsum_prod' h h.prod_factor
lemma tsum_comm [regular_space α] {f : β → γ → α} (h : summable (function.uncurry f)) :
∑' c b, f b c = ∑' b c, f b c :=
tsum_comm' h h.prod_factor h.prod_symm.prod_factor
/-- Let `f : ℕ → ℝ` be a sequence with summable series and let `i ∈ ℕ` be an index.
Lemma `tsum_ite_eq_extract` writes `Σ f n` as the sum of `f i` plus the series of the
remaining terms.
TODO: generalize this to `f : β → α` with appropriate typeclass assumptions
-/
lemma tsum_ite_eq_extract {f : ℕ → ℝ} (hf : summable f) (i : ℕ) :
∑' n, f n = f i + ∑' n, ite (n = i) 0 (f n) :=
begin
refine ((tsum_congr _).trans $ tsum_add (hf.summable_of_eq_zero_or_self _) $
hf.summable_of_eq_zero_or_self _).trans (add_right_cancel_iff.mpr (tsum_ite_eq i (f i)));
exact λ j, by { by_cases ji : j = i; simp [ji] }
end
end uniform_group
section topological_group
variables {G : Type*} [topological_space G] [add_comm_group G] [topological_add_group G]
{f : α → G}
lemma summable.vanishing (hf : summable f) ⦃e : set G⦄ (he : e ∈ 𝓝 (0 : G)) :
∃ s : finset α, ∀ t, disjoint t s → ∑ k in t, f k ∈ e :=
begin
letI : uniform_space G := topological_add_group.to_uniform_space G,
letI : uniform_add_group G := topological_add_group_is_uniform,
rcases hf with ⟨y, hy⟩,
exact cauchy_seq_finset_iff_vanishing.1 hy.cauchy_seq e he
end
/-- Series divergence test: if `f` is a convergent series, then `f x` tends to zero along
`cofinite`. -/
lemma summable.tendsto_cofinite_zero (hf : summable f) : tendsto f cofinite (𝓝 0) :=
begin
intros e he,
rw [filter.mem_map],
rcases hf.vanishing he with ⟨s, hs⟩,
refine s.eventually_cofinite_nmem.mono (λ x hx, _),
by simpa using hs {x} (singleton_disjoint.2 hx)
end
lemma summable.tendsto_at_top_zero {f : ℕ → G} (hf : summable f) : tendsto f at_top (𝓝 0) :=
by { rw ←nat.cofinite_eq_at_top, exact hf.tendsto_cofinite_zero }
end topological_group
lemma summable_abs_iff [linear_ordered_add_comm_group β] [uniform_space β]
[uniform_add_group β] [complete_space β] {f : α → β} :
summable (λ x, abs (f x)) ↔ summable f :=
have h1 : ∀ x : {x | 0 ≤ f x}, abs (f x) = f x := λ x, abs_of_nonneg x.2,
have h2 : ∀ x : {x | 0 ≤ f x}ᶜ, abs (f x) = -f x := λ x, abs_of_neg (not_le.1 x.2),
calc summable (λ x, abs (f x)) ↔
summable (λ x : {x | 0 ≤ f x}, abs (f x)) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, abs (f x)) :
summable_subtype_and_compl.symm
... ↔ summable (λ x : {x | 0 ≤ f x}, f x) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, -f x) :
by simp only [h1, h2]
... ↔ _ : by simp only [summable_neg_iff, summable_subtype_and_compl]
alias summable_abs_iff ↔ summable.of_abs summable.abs
section cauchy_seq
open finset.Ico filter
/-- If the extended distance between consequent points of a sequence is estimated
by a summable series of `nnreal`s, then the original sequence is a Cauchy sequence. -/
lemma cauchy_seq_of_edist_le_of_summable [emetric_space α] {f : ℕ → α} (d : ℕ → ℝ≥0)
(hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f :=
begin
refine emetric.cauchy_seq_iff_nnreal.2 (λ ε εpos, _),
-- Actually we need partial sums of `d` to be a Cauchy sequence
replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) :=
let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq,
-- Now we take the same `N` as in one of the definitions of a Cauchy sequence
refine (metric.cauchy_seq_iff'.1 hd ε (nnreal.coe_pos.2 εpos)).imp (λ N hN n hn, _),
have hsum := hN n hn,
-- We simplify the known inequality
rw [dist_nndist, nnreal.nndist_eq, ← sum_range_add_sum_Ico _ hn, nnreal.add_sub_cancel'] at hsum,
norm_cast at hsum,
replace hsum := lt_of_le_of_lt (le_max_left _ _) hsum,
rw edist_comm,
-- Then use `hf` to simplify the goal to the same form
apply lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn (λ k _ _, hf k)),
assumption_mod_cast
end
/-- If the distance between consequent points of a sequence is estimated by a summable series,
then the original sequence is a Cauchy sequence. -/
lemma cauchy_seq_of_dist_le_of_summable [metric_space α] {f : ℕ → α} (d : ℕ → ℝ)
(hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f :=
begin
refine metric.cauchy_seq_iff'.2 (λε εpos, _),
replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) :=
let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq,
refine (metric.cauchy_seq_iff'.1 hd ε εpos).imp (λ N hN n hn, _),
have hsum := hN n hn,
rw [real.dist_eq, ← sum_Ico_eq_sub _ hn] at hsum,
calc dist (f n) (f N) = dist (f N) (f n) : dist_comm _ _
... ≤ ∑ x in Ico N n, d x : dist_le_Ico_sum_of_dist_le hn (λ k _ _, hf k)
... ≤ abs (∑ x in Ico N n, d x) : le_abs_self _
... < ε : hsum
end
lemma cauchy_seq_of_summable_dist [metric_space α] {f : ℕ → α}
(h : summable (λn, dist (f n) (f n.succ))) : cauchy_seq f :=
cauchy_seq_of_dist_le_of_summable _ (λ _, le_refl _) h
lemma dist_le_tsum_of_dist_le_of_tendsto [metric_space α] {f : ℕ → α} (d : ℕ → ℝ)
(hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a))
(n : ℕ) :
dist (f n) a ≤ ∑' m, d (n + m) :=
begin
refine le_of_tendsto (tendsto_const_nhds.dist ha)
(eventually_at_top.2 ⟨n, λ m hnm, _⟩),
refine le_trans (dist_le_Ico_sum_of_dist_le hnm (λ k _ _, hf k)) _,
rw [sum_Ico_eq_sum_range],
refine sum_le_tsum (range _) (λ _ _, le_trans dist_nonneg (hf _)) _,
exact hd.comp_injective (add_right_injective n)
end
lemma dist_le_tsum_of_dist_le_of_tendsto₀ [metric_space α] {f : ℕ → α} (d : ℕ → ℝ)
(hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) :
dist (f 0) a ≤ tsum d :=
by simpa only [zero_add] using dist_le_tsum_of_dist_le_of_tendsto d hf hd ha 0
lemma dist_le_tsum_dist_of_tendsto [metric_space α] {f : ℕ → α}
(h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) (n) :
dist (f n) a ≤ ∑' m, dist (f (n+m)) (f (n+m).succ) :=
show dist (f n) a ≤ ∑' m, (λx, dist (f x) (f x.succ)) (n + m), from
dist_le_tsum_of_dist_le_of_tendsto (λ n, dist (f n) (f n.succ)) (λ _, le_refl _) h ha n
lemma dist_le_tsum_dist_of_tendsto₀ [metric_space α] {f : ℕ → α}
(h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) :
dist (f 0) a ≤ ∑' n, dist (f n) (f n.succ) :=
by simpa only [zero_add] using dist_le_tsum_dist_of_tendsto h ha 0
end cauchy_seq
|
fe5832fd072cd25e5a8effd48e03e68390f79235
|
54d7e71c3616d331b2ec3845d31deb08f3ff1dea
|
/tests/lean/run/tc_inout1.lean
|
858511ce0d91b40fc888bcac3490553782e34ea1
|
[
"Apache-2.0"
] |
permissive
|
pachugupta/lean
|
6f3305c4292288311cc4ab4550060b17d49ffb1d
|
0d02136a09ac4cf27b5c88361750e38e1f485a1a
|
refs/heads/master
| 1,611,110,653,606
| 1,493,130,117,000
| 1,493,167,649,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,141
|
lean
|
universe variables u v
/-
Type class parameter can be annotated with out_param.
Given (C a_1 ... a_n), we replace a_i with a temporary metavariable ?m_i IF
1- a_i is an out_param and it contains metavariables.
3- a_i depends on a_j for j < i, and a_j was replaced with a temporary metavariable ?m_j.
This case is needed to make sure the new C-application is type correct.
Then, we execute type class resolution as usual.
If it succeeds, and metavariables ?m_i have been assigned, we solve the unification
constraints ?m_i =?= a_i. If we succeed, we return the result. Otherwise, we fail.
We also fail if ?m_i is not assigned.
Remark: we do not cache results when temporary metavariables ?m_i are used.
-/
class is_monoid (α : Type) (op : out_param (α → α → α)) (e : out_param α) :=
(op_assoc : associative op)
(left_neutral : ∀ a : α, op e a = a)
(right_neutral : ∀ a : α, op a e = a)
lemma assoc {α : Type} {op : α → α → α} {e : α} [is_monoid α op e] : ∀ a b c : α, op (op a b) c = op a (op b c) :=
@is_monoid.op_assoc α op e _
instance nat_add_monoid : is_monoid nat nat.add 0 := sorry
instance nat_mul_monoid : is_monoid nat nat.mul 1 := sorry
instance int_mul_monoid : is_monoid int int.mul 1 := sorry
open tactic
run_cmd do
M ← to_expr `(is_monoid nat),
m₁ ← mk_mvar,
m₂ ← mk_mvar,
i ← mk_instance (M m₁ m₂),
/- found nat_mul_monoid -/
trace i,
instantiate_mvars (M m₁ m₂) >>= trace
run_cmd do
M ← to_expr `(is_monoid nat nat.add),
m₁ ← mk_mvar,
i ← mk_instance (M m₁),
/- found nat_add_monoid -/
trace i,
instantiate_mvars (M m₁) >>= trace
section
local infix + := nat.add
example (a b c : nat) : (a + b) + c = a + (b + c) :=
assoc a b c
end
section
class has_mem2 (α : out_param (Type u)) (γ : Type v) :=
(mem : α → γ → Prop)
def mem2 {α : Type u} {γ : Type v} [has_mem2 α γ] : α → γ → Prop :=
has_mem2.mem
local infix ∈ := mem2
instance (α : Type u) : has_mem2 α (list α) :=
⟨list.mem⟩
#check λ a (s : list nat), a ∈ s
set_option pp.notation false
#check ∀ a ∈ [1, 2, 3], a > 0
end
|
0effb21674e934fd37b341ce069b0e29d6de1759
|
df561f413cfe0a88b1056655515399c546ff32a5
|
/4-power-world/l8.lean
|
3e41a378d84d062938bd306d08c56cab71b765c4
|
[] |
no_license
|
nicholaspun/natural-number-game-solutions
|
31d5158415c6f582694680044c5c6469032c2a06
|
1e2aed86d2e76a3f4a275c6d99e795ad30cf6df0
|
refs/heads/main
| 1,675,123,625,012
| 1,607,633,548,000
| 1,607,633,548,000
| 318,933,860
| 3
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 481
|
lean
|
lemma add_squared (a b : mynat) :
(a + b) ^ (2 : mynat) = a ^ (2 : mynat) + b ^ (2 : mynat) + 2 * a * b :=
begin
rw two_eq_succ_one,
rw one_eq_succ_zero,
repeat { rw pow_succ },
repeat { rw pow_zero },
repeat { rw one_mul },
rw mul_add,
repeat { rw add_mul },
rw mul_comm b a,
rw add_assoc,
rw ← add_assoc (a * b) _ _,
rw ← one_mul (a * b),
rw ← add_mul,
rw ← one_eq_succ_zero,
rw ← succ_eq_add_one,
rw add_comm _ (b * b),
rw ← add_assoc,
rw ← mul_assoc,
refl,
end
|
129e110ba9081894d06b46110fff4136f382b5c5
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/bundle.lean
|
b916ce0d124578e28a65effbf07beab8ff0ae9ce
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,515
|
lean
|
/-
Copyright © 2021 Nicolò Cavalleri. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nicolò Cavalleri
-/
import algebra.module.basic
/-!
# Bundle
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
Basic data structure to implement fiber bundles, vector bundles (maybe fibrations?), etc. This file
should contain all possible results that do not involve any topology.
We represent a bundle `E` over a base space `B` as a dependent type `E : B → Type*`.
We define `bundle.total_space F E` to be the type of pairs `⟨b, x⟩`, where `b : B` and `x : E x`.
This type is isomorphic to `Σ x, E x` and uses an extra argument `F` for reasons explained below. In
general, the constructions of fiber bundles we will make will be of this form.
## Main Definitions
* `bundle.total_space` the total space of a bundle.
* `bundle.total_space.proj` the projection from the total space to the base space.
* `bundle.total_space.mk` the constructor for the total space.
## Implementation Notes
- We use a custom structure for the total space of a bundle instead of using a type synonym for the
canonical disjoint union `Σ x, E x` because the total space usually has a different topology and
Lean 4 `simp` fails to apply lemmas about `Σ x, E x` to elements of the total space.
- The definition of `bundle.total_space` has an unused argument `F`. The reason is that in some
constructions (e.g., `bundle.continuous_linear_map.vector_bundle`) we need access to the atlas of
trivializations of original fiber bundles to construct the topology on the total space of the new
fiber bundle.
## References
- https://en.wikipedia.org/wiki/Bundle_(mathematics)
-/
namespace bundle
variables {B F : Type*} (E : B → Type*)
/--
`bundle.total_space E` is the total space of the bundle. It consists of pairs
`(proj : B, snd : E proj)`.
-/
@[ext]
structure total_space (F : Type*) (E : B → Type*) :=
(proj : B)
(snd : E proj)
instance [inhabited B] [inhabited (E default)] :
inhabited (total_space F E) := ⟨⟨default, default⟩⟩
variables {E}
/-- `bundle.total_space.proj` is the canonical projection `bundle.total_space E → B` from the
total space to the base space. -/
add_decl_doc total_space.proj
-- this notation won't be used in the pretty-printer
localized "notation `π` := @bundle.total_space.proj _" in bundle
-- TODO: try `abbrev` in Lean 4
localized "notation `total_space.mk'` F:max := @bundle.total_space.mk _ F _" in bundle
lemma total_space.mk_cast {x x' : B} (h : x = x') (b : E x) :
total_space.mk' F x' (cast (congr_arg E h) b) = total_space.mk x b :=
by { subst h, refl }
instance {x : B} : has_coe_t (E x) (total_space F E) := ⟨total_space.mk x⟩
@[simp] lemma total_space.coe_proj (x : B) (v : E x) : (v : total_space F E).proj = x := rfl
@[simp] lemma total_space.coe_snd {x : B} {y : E x} : (y : total_space F E).snd = y := rfl
lemma total_space.coe_eq_mk {x : B} (v : E x) : (v : total_space F E) = total_space.mk x v := rfl
lemma total_space.eta (z : total_space F E) :
total_space.mk z.proj z.2 = z :=
by cases z; refl
-- notation for the direct sum of two bundles over the same base
notation E₁ ` ×ᵇ `:100 E₂ := λ x, E₁ x × E₂ x
/-- `bundle.trivial B F` is the trivial bundle over `B` of fiber `F`. -/
@[reducible, nolint unused_arguments]
def trivial (B : Type*) (F : Type*) : B → Type* := λ _, F
/-- The trivial bundle, unlike other bundles, has a canonical projection on the fiber. -/
def total_space.trivial_snd (B : Type*) (F : Type*) : total_space F (bundle.trivial B F) → F :=
total_space.snd
/-- A trivial bundle is equivalent to the product `B × F`. -/
@[simps { attrs := [`simp, `mfld_simps] }]
def total_space.to_prod (B F : Type*) : total_space F (λ _ : B, F) ≃ B × F :=
{ to_fun := λ x, (x.1, x.2),
inv_fun := λ x, ⟨x.1, x.2⟩,
left_inv := λ ⟨_, _⟩, rfl,
right_inv := λ ⟨_, _⟩, rfl }
section pullback
variable {B' : Type*}
/-- The pullback of a bundle `E` over a base `B` under a map `f : B' → B`, denoted by `pullback f E`
or `f *ᵖ E`, is the bundle over `B'` whose fiber over `b'` is `E (f b')`. -/
def pullback (f : B' → B) (E : B → Type*) : B' → Type* := λ x, E (f x)
notation f ` *ᵖ ` E:max := pullback f E
instance {f : B' → B} {x : B'} [nonempty (E (f x))] : nonempty (f *ᵖ E x) := ‹nonempty (E (f x))›
/-- Natural embedding of the total space of `f *ᵖ E` into `B' × total_space E`. -/
@[simp] def pullback_total_space_embedding (f : B' → B) :
total_space F (f *ᵖ E) → B' × total_space F E :=
λ z, (z.proj, total_space.mk (f z.proj) z.2)
/-- The base map `f : B' → B` lifts to a canonical map on the total spaces. -/
@[simps { attrs := [`simp, `mfld_simps] }]
def pullback.lift (f : B' → B) : total_space F (f *ᵖ E) → total_space F E :=
λ z, ⟨f z.proj, z.2⟩
@[simp, mfld_simps] lemma pullback.lift_mk (f : B' → B) (x : B') (y : E (f x)) :
pullback.lift f (total_space.mk' F x y) = ⟨f x, y⟩ :=
rfl
end pullback
section fiber_structures
@[simp] lemma coe_snd_map_apply [∀ x, has_add (E x)] (x : B) (v w : E x) :
(↑(v + w) : total_space F E).snd = (v : total_space F E).snd + (w : total_space F E).snd := rfl
@[simp] lemma coe_snd_map_smul {R} [∀ x, has_smul R (E x)] (x : B) (r : R) (v : E x) :
(↑(r • v) : total_space F E).snd = r • (v : total_space F E).snd := rfl
end fiber_structures
end bundle
|
bb4eb30856cf923421cd639952760bc34bde32d1
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/discrTreeSimp.lean
|
1e2c1b377fc2df0d6508e6babe09955f05b05ab9
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 694
|
lean
|
prelude
import Init.Data.List.Basic
@[simp] theorem map_comp_map (f : α → β) (g : β → γ) : List.map g ∘ List.map f = List.map (g ∘ f) :=
sorry
theorem map_map (f : α → β) (g : β → γ) (xs : List α) : (xs.map f |>.map g) = xs.map (g ∘ f) :=
sorry
theorem ex1 (f : Nat → Nat) (xs : List Nat) : (xs.map f |>.map f) = xs.map (f ∘ f) := by
fail_if_success simp
simp [map_map]
done
theorem ex2 (f : Nat → Nat) : List.map f ∘ List.map f ∘ List.map f = List.map (f ∘ f ∘ f) := by
simp
attribute [simp] map_map
theorem ex3 (f : Nat → Nat) (xs : List Nat) : (xs.map f |>.map f |>.map f) = xs.map (fun x => f (f (f x))) := by
simp [Function.comp]
|
679c7bbd26eaa3655f1acbb09d5c5c778f8ecac9
|
4bcaca5dc83d49803f72b7b5920b75b6e7d9de2d
|
/src/Lean/Elab/DeclModifiers.lean
|
3a332d96302a72adeea2f24d903e52bbf8f6ad04
|
[
"Apache-2.0"
] |
permissive
|
subfish-zhou/leanprover-zh_CN.github.io
|
30b9fba9bd790720bd95764e61ae796697d2f603
|
8b2985d4a3d458ceda9361ac454c28168d920d3f
|
refs/heads/master
| 1,689,709,967,820
| 1,632,503,056,000
| 1,632,503,056,000
| 409,962,097
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,011
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Sebastian Ullrich
-/
import Lean.Modifiers
import Lean.DocString
import Lean.Elab.Attributes
import Lean.Elab.Exception
import Lean.Elab.DeclUtil
namespace Lean.Elab
def checkNotAlreadyDeclared {m} [Monad m] [MonadEnv m] [MonadError m] (declName : Name) : m Unit := do
let env ← getEnv
if env.contains declName then
match privateToUserName? declName with
| none => throwError "'{declName}' has already been declared"
| some declName => throwError "private declaration '{declName}' has already been declared"
if env.contains (mkPrivateName env declName) then
throwError "a private declaration '{declName}' has already been declared"
match privateToUserName? declName with
| none => pure ()
| some declName =>
if env.contains declName then
throwError "a non-private declaration '{declName}' has already been declared"
inductive Visibility where
| regular | «protected» | «private»
deriving Inhabited
instance : ToString Visibility := ⟨fun
| Visibility.regular => "regular"
| Visibility.«private» => "private"
| Visibility.«protected» => "protected"⟩
inductive RecKind where
| «partial» | «nonrec» | default
deriving Inhabited
structure Modifiers where
docString? : Option String := none
visibility : Visibility := Visibility.regular
isNoncomputable : Bool := false
recKind : RecKind := RecKind.default
isUnsafe : Bool := false
attrs : Array Attribute := #[]
deriving Inhabited
def Modifiers.isPrivate : Modifiers → Bool
| { visibility := Visibility.private, .. } => true
| _ => false
def Modifiers.isProtected : Modifiers → Bool
| { visibility := Visibility.protected, .. } => true
| _ => false
def Modifiers.isPartial : Modifiers → Bool
| { recKind := RecKind.partial, .. } => true
| _ => false
def Modifiers.isNonrec : Modifiers → Bool
| { recKind := RecKind.nonrec, .. } => true
| _ => false
def Modifiers.addAttribute (modifiers : Modifiers) (attr : Attribute) : Modifiers :=
{ modifiers with attrs := modifiers.attrs.push attr }
instance : ToFormat Modifiers := ⟨fun m =>
let components : List Format :=
(match m.docString? with
| some str => [f!"/--{str}-/"]
| none => [])
++ (match m.visibility with
| Visibility.regular => []
| Visibility.protected => [f!"protected"]
| Visibility.private => [f!"private"])
++ (if m.isNoncomputable then [f!"noncomputable"] else [])
++ (match m.recKind with | RecKind.partial => [f!"partial"] | RecKind.nonrec => [f!"nonrec"] | _ => [])
++ (if m.isUnsafe then [f!"unsafe"] else [])
++ m.attrs.toList.map (fun attr => format attr)
Format.bracket "{" (Format.joinSep components ("," ++ Format.line)) "}"⟩
instance : ToString Modifiers := ⟨toString ∘ format⟩
def expandOptDocComment? [Monad m] [MonadError m] (optDocComment : Syntax) : m (Option String) :=
match optDocComment.getOptional? with
| none => pure none
| some s => match s[1] with
| Syntax.atom _ val => pure (some (val.extract 0 (val.bsize - 2)))
| _ => throwErrorAt s "unexpected doc string{indentD s[1]}"
section Methods
variable [Monad m] [MonadEnv m] [MonadResolveName m] [MonadError m] [MonadMacroAdapter m] [MonadRecDepth m] [MonadTrace m] [MonadOptions m] [AddMessageContext m]
def elabModifiers (stx : Syntax) : m Modifiers := do
let docCommentStx := stx[0]
let attrsStx := stx[1]
let visibilityStx := stx[2]
let noncompStx := stx[3]
let unsafeStx := stx[4]
let recKind :=
if stx[5].isNone then
RecKind.default
else if stx[5][0].getKind == ``Parser.Command.partial then
RecKind.partial
else
RecKind.nonrec
let docString? ← match docCommentStx.getOptional? with
| none => pure none
| some s => match s[1] with
| Syntax.atom _ val => pure (some (val.extract 0 (val.bsize - 2)))
| _ => throwErrorAt s "unexpected doc string{indentD s[1]}"
let visibility ← match visibilityStx.getOptional? with
| none => pure Visibility.regular
| some v =>
let kind := v.getKind
if kind == `Lean.Parser.Command.private then pure Visibility.private
else if kind == `Lean.Parser.Command.protected then pure Visibility.protected
else throwErrorAt v "unexpected visibility modifier"
let attrs ← match attrsStx.getOptional? with
| none => pure #[]
| some attrs => elabDeclAttrs attrs
return {
docString?, visibility, recKind, attrs,
isUnsafe := !unsafeStx.isNone
isNoncomputable := !noncompStx.isNone
}
def applyVisibility (visibility : Visibility) (declName : Name) : m Name := do
match visibility with
| Visibility.private =>
let env ← getEnv
let declName := mkPrivateName env declName
checkNotAlreadyDeclared declName
pure declName
| Visibility.protected =>
checkNotAlreadyDeclared declName
let env ← getEnv
let env := addProtected env declName
setEnv env
pure declName
| _ =>
checkNotAlreadyDeclared declName
pure declName
def checkIfShadowingStructureField (declName : Name) : m Unit := do
match declName with
| Name.str pre .. =>
if isStructure (← getEnv) pre then
let fieldNames := getStructureFieldsFlattened (← getEnv) pre
for fieldName in fieldNames do
if pre ++ fieldName == declName then
throwError "invalid declaration name '{declName}', structure '{pre}' has field '{fieldName}'"
| _ => pure ()
def mkDeclName (currNamespace : Name) (modifiers : Modifiers) (shortName : Name) : m (Name × Name) := do
let name := (extractMacroScopes shortName).name
unless name.isAtomic || isFreshInstanceName name do
throwError "atomic identifier expected '{shortName}'"
let declName := currNamespace ++ shortName
checkIfShadowingStructureField declName
let declName ← applyVisibility modifiers.visibility declName
match modifiers.visibility with
| Visibility.protected =>
match currNamespace with
| Name.str _ s _ => pure (declName, Name.mkSimple s ++ shortName)
| _ => throwError "protected declarations must be in a namespace"
| _ => pure (declName, shortName)
/-
`declId` is of the form
```
leading_parser ident >> optional (".{" >> sepBy1 ident ", " >> "}")
```
but we also accept a single identifier to users to make macro writing more convenient .
-/
def expandDeclIdCore (declId : Syntax) : Name × Syntax :=
if declId.isIdent then
(declId.getId, mkNullNode)
else
let id := declId[0].getId
let optUnivDeclStx := declId[1]
(id, optUnivDeclStx)
structure ExpandDeclIdResult where
shortName : Name
declName : Name
levelNames : List Name
def expandDeclId (currNamespace : Name) (currLevelNames : List Name) (declId : Syntax) (modifiers : Modifiers) : m ExpandDeclIdResult := do
-- ident >> optional (".{" >> sepBy1 ident ", " >> "}")
let (shortName, optUnivDeclStx) := expandDeclIdCore declId
let levelNames ←
if optUnivDeclStx.isNone then
pure currLevelNames
else
let extraLevels := optUnivDeclStx[1].getArgs.getEvenElems
extraLevels.foldlM
(fun levelNames idStx =>
let id := idStx.getId
if levelNames.elem id then
withRef idStx $ throwAlreadyDeclaredUniverseLevel id
else
pure (id :: levelNames))
currLevelNames
let (declName, shortName) ← withRef declId $ mkDeclName currNamespace modifiers shortName
addDocString' declName modifiers.docString?
pure { shortName := shortName, declName := declName, levelNames := levelNames }
end Methods
end Lean.Elab
|
cf8a8537e5e835b27bf01dbf8127d6447d39ba1d
|
abd85493667895c57a7507870867b28124b3998f
|
/src/ring_theory/localization.lean
|
074ccb788473f27101645e10808cc6dbb573ce0a
|
[
"Apache-2.0"
] |
permissive
|
pechersky/mathlib
|
d56eef16bddb0bfc8bc552b05b7270aff5944393
|
f1df14c2214ee114c9738e733efd5de174deb95d
|
refs/heads/master
| 1,666,714,392,571
| 1,591,747,567,000
| 1,591,747,567,000
| 270,557,274
| 0
| 0
|
Apache-2.0
| 1,591,597,975,000
| 1,591,597,974,000
| null |
UTF-8
|
Lean
| false
| false
| 33,931
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Mario Carneiro, Johan Commelin, Amelia Livingston
-/
import data.equiv.ring
import tactic.ring_exp
import ring_theory.ideal_operations
import group_theory.monoid_localization
/-!
# Localizations of commutative rings
We characterize the localization of a commutative ring `R` at a submonoid `M` up to
isomorphism; that is, a commutative ring `S` is the localization of `R` at `M` iff we can find a
ring homomorphism `f : R →+* S` satisfying 3 properties:
1. For all `y ∈ M`, `f y` is a unit;
2. For all `z : S`, there exists `(x, y) : R × M` such that `z * f y = f x`;
3. For all `x, y : R`, `f x = f y` iff there exists `c ∈ M` such that `x * c = y * c`.
Given such a localization map `f : R →+* S`, we can define the surjection
`localization_map.mk'` sending `(x, y) : R × M` to `f x * (f y)⁻¹`, and
`localization_map.lift`, the homomorphism from `S` induced by a homomorphism from `R` which maps
elements of `M` to invertible elements of the codomain. Similarly, given commutative rings
`P, Q`, a submonoid `T` of `P` and a localization map for `T` from `P` to `Q`, then a homomorphism
`g : R →+* P` such that `g(M) ⊆ T` induces a homomorphism of localizations,
`localization_map.map`, from `S` to `Q`.
We show the localization as a quotient type, defined in `group_theory.monoid_localization` as
`submonoid.localization`, is a `comm_ring` and that the natural ring hom
`of : R →+* localization M` is a localization map.
We prove some lemmas about the `R`-algebra structure of `S`.
When `R` is an integral domain, we define `fraction_map R K` as an abbreviation for
`localization (non_zero_divisors R) K`, the natural map to `R`'s field of fractions.
We show that a `comm_ring` `K` which is the localization of an integral domain `R` at `R \ {0}`
is a field. We use this to show the field of fractions as a quotient type, `fraction_ring`, is
a field.
## Implementation notes
In maths it is natural to reason up to isomorphism, but in Lean we cannot naturally `rewrite` one
structure with an isomorphic one; one way around this is to isolate a predicate characterizing
a structure up to isomorphism, and reason about things that satisfy the predicate.
A ring localization map is defined to be a localization map of the underlying `comm_monoid` (a
`submonoid.localization_map`) which is also a ring hom. To prove most lemmas about a
`localization_map` `f` in this file we invoke the corresponding proof for the underlying
`comm_monoid` localization map `f.to_localization_map`, which can be found in
`group_theory.monoid_localization` and the namespace `submonoid.localization_map`.
To apply a localization map `f` as a function, we use `f.to_map`, as coercions don't work well for
this structure.
To reason about the localization as a quotient type, use `mk_eq_of_mk'` and associated lemmas.
These show the quotient map `mk : R → M → localization M` equals the surjection
`localization_map.mk'` induced by the map `of : localization_map M (localization M)`
(where `of` establishes the localization as a quotient type satisfies the characteristic
predicate). The lemma `mk_eq_of_mk'` hence gives you access to the results in the rest of the file,
which are about the `localization_map.mk'` induced by any localization map.
We use a copy of the localization map `f`'s codomain `S` carrying the data of `f` so that the
`R`-algebra instance on `S` can 'know' the map needed to induce the `R`-algebra structure.
The proof that "a `comm_ring` `K` which is the localization of an integral domain `R` at `R \ {0}`
is a field" is a `def` rather than an `instance`, so if you want to reason about a field of
fractions `K`, assume `[field K]` instead of just `[comm_ring K]`.
## Tags
localization, ring localization, commutative ring localization, characteristic predicate,
commutative ring, field of fractions
-/
variables {R : Type*} [comm_ring R] (M : submonoid R) (S : Type*) [comm_ring S]
{P : Type*} [comm_ring P]
open function
set_option old_structure_cmd true
/-- The type of ring homomorphisms satisfying the characteristic predicate: if `f : R →+* S`
satisfies this predicate, then `S` is isomorphic to the localization of `R` at `M`.
We later define an instance coercing a localization map `f` to its codomain `S` so
that the `R`-algebra instance on `S` can 'know' the map needed to induce the `R`-algebra
structure. -/
@[nolint has_inhabited_instance] structure localization_map
extends ring_hom R S, submonoid.localization_map M S
/-- The ring hom underlying a `localization_map`. -/
add_decl_doc localization_map.to_ring_hom
/-- The `comm_monoid` `localization_map` underlying a `comm_ring` `localization_map`.
See `group_theory.monoid_localization` for its definition. -/
add_decl_doc localization_map.to_localization_map
variables {M S}
namespace ring_hom
/-- Makes a localization map from a `comm_ring` hom satisfying the characteristic predicate. -/
def to_localization_map (f : R →+* S) (H1 : ∀ y : M, is_unit (f y))
(H2 : ∀ z, ∃ x : R × M, z * f x.2 = f x.1) (H3 : ∀ x y, f x = f y ↔ ∃ c : M, x * c = y * c) :
localization_map M S :=
{ map_units' := H1,
surj' := H2,
eq_iff_exists' := H3,
.. f }
end ring_hom
/-- Makes a `comm_ring` localization map from an additive `comm_monoid` localization map of
`comm_ring`s. -/
def submonoid.localization_map.to_ring_localization
(f : submonoid.localization_map M S)
(h : ∀ x y, f.to_map (x + y) = f.to_map x + f.to_map y) :
localization_map M S :=
{ ..ring_hom.mk' f.to_monoid_hom h, ..f }
namespace localization_map
variables (f : localization_map M S)
/-- Short for `to_ring_hom`; used for applying a localization map as a function. -/
abbreviation to_map := f.to_ring_hom
lemma map_units (y : M) : is_unit (f.to_map y) := f.6 y
lemma surj (z) : ∃ x : R × M, z * f.to_map x.2 = f.to_map x.1 := f.7 z
lemma eq_iff_exists {x y} : f.to_map x = f.to_map y ↔ ∃ c : M, x * c = y * c := f.8 x y
@[ext] lemma ext {f g : localization_map M S}
(h : ∀ x, f.to_map x = g.to_map x) : f = g :=
begin
cases f, cases g,
simp only [] at *,
exact funext h
end
lemma ext_iff {f g : localization_map M S} : f = g ↔ ∀ x, f.to_map x = g.to_map x :=
⟨λ h x, h ▸ rfl, ext⟩
lemma to_map_injective : injective (@localization_map.to_map _ _ M S _) :=
λ _ _ h, ext $ ring_hom.ext_iff.1 h
/-- Given `a : S`, `S` a localization of `R`, `is_integer a` iff `a` is in the image of
the localization map from `R` to `S`. -/
def is_integer (a : S) : Prop := a ∈ set.range f.to_map
variables {f}
lemma is_integer_add {a b} (ha : f.is_integer a) (hb : f.is_integer b) :
f.is_integer (a + b) :=
begin
rcases ha with ⟨a', ha⟩,
rcases hb with ⟨b', hb⟩,
use a' + b',
rw [f.to_map.map_add, ha, hb]
end
lemma is_integer_mul {a b} (ha : f.is_integer a) (hb : f.is_integer b) :
f.is_integer (a * b) :=
begin
rcases ha with ⟨a', ha⟩,
rcases hb with ⟨b', hb⟩,
use a' * b',
rw [f.to_map.map_mul, ha, hb]
end
lemma is_integer_smul {a : R} {b} (hb : f.is_integer b) :
f.is_integer (f.to_map a * b) :=
begin
rcases hb with ⟨b', hb⟩,
use a * b',
rw [←hb, f.to_map.map_mul]
end
variables (f)
/-- Each element `a : S` has an `M`-multiple which is an integer.
This version multiplies `a` on the right, matching the argument order in `localization_map.surj`.
-/
lemma exists_integer_multiple' (a : S) :
∃ (b : M), is_integer f (a * f.to_map b) :=
let ⟨⟨num, denom⟩, h⟩ := f.surj a in ⟨denom, set.mem_range.mpr ⟨num, h.symm⟩⟩
/-- Each element `a : S` has an `M`-multiple which is an integer.
This version multiplies `a` on the left, matching the argument order in the `has_scalar` instance.
-/
lemma exists_integer_multiple (a : S) :
∃ (b : M), is_integer f (f.to_map b * a) :=
by { simp_rw mul_comm _ a, apply exists_integer_multiple' }
/-- Given `z : S`, `f.to_localization_map.sec z` is defined to be a pair `(x, y) : R × M` such
that `z * f y = f x` (so this lemma is true by definition). -/
lemma sec_spec {f : localization_map M S} (z : S) :
z * f.to_map (f.to_localization_map.sec z).2 = f.to_map (f.to_localization_map.sec z).1 :=
classical.some_spec $ f.surj z
/-- Given `z : S`, `f.to_localization_map.sec z` is defined to be a pair `(x, y) : R × M` such
that `z * f y = f x`, so this lemma is just an application of `S`'s commutativity. -/
lemma sec_spec' {f : localization_map M S} (z : S) :
f.to_map (f.to_localization_map.sec z).1 = f.to_map (f.to_localization_map.sec z).2 * z :=
by rw [mul_comm, sec_spec]
lemma map_right_cancel {x y} {c : M} (h : f.to_map (c * x) = f.to_map (c * y)) :
f.to_map x = f.to_map y :=
f.to_localization_map.map_right_cancel h
lemma map_left_cancel {x y} {c : M} (h : f.to_map (x * c) = f.to_map (y * c)) :
f.to_map x = f.to_map y :=
f.to_localization_map.map_left_cancel h
lemma eq_zero_of_fst_eq_zero {z x} {y : M}
(h : z * f.to_map y = f.to_map x) (hx : x = 0) : z = 0 :=
by rw [hx, f.to_map.map_zero] at h;
exact (is_unit.mul_left_eq_zero_iff_eq_zero (f.map_units y)).1 h
/-- Given a localization map `f : R →+* S`, the surjection sending `(x, y) : R × M` to
`f x * (f y)⁻¹`. -/
noncomputable def mk' (f : localization_map M S) (x : R) (y : M) : S :=
f.to_localization_map.mk' x y
@[simp] lemma mk'_sec (z : S) :
f.mk' (f.to_localization_map.sec z).1 (f.to_localization_map.sec z).2 = z :=
f.to_localization_map.mk'_sec _
lemma mk'_mul (x₁ x₂ : R) (y₁ y₂ : M) :
f.mk' (x₁ * x₂) (y₁ * y₂) = f.mk' x₁ y₁ * f.mk' x₂ y₂ :=
f.to_localization_map.mk'_mul _ _ _ _
lemma mk'_one (x) : f.mk' x (1 : M) = f.to_map x :=
f.to_localization_map.mk'_one _
lemma mk'_spec (x) (y : M) :
f.mk' x y * f.to_map y = f.to_map x :=
f.to_localization_map.mk'_spec _ _
lemma mk'_spec' (x) (y : M) :
f.to_map y * f.mk' x y = f.to_map x :=
f.to_localization_map.mk'_spec' _ _
theorem eq_mk'_iff_mul_eq {x} {y : M} {z} :
z = f.mk' x y ↔ z * f.to_map y = f.to_map x :=
f.to_localization_map.eq_mk'_iff_mul_eq
theorem mk'_eq_iff_eq_mul {x} {y : M} {z} :
f.mk' x y = z ↔ f.to_map x = z * f.to_map y :=
f.to_localization_map.mk'_eq_iff_eq_mul
lemma mk'_eq_iff_eq {x₁ x₂} {y₁ y₂ : M} :
f.mk' x₁ y₁ = f.mk' x₂ y₂ ↔ f.to_map (x₁ * y₂) = f.to_map (x₂ * y₁) :=
f.to_localization_map.mk'_eq_iff_eq
protected lemma eq {a₁ b₁} {a₂ b₂ : M} :
f.mk' a₁ a₂ = f.mk' b₁ b₂ ↔ ∃ c : M, a₁ * b₂ * c = b₁ * a₂ * c :=
f.to_localization_map.eq
lemma eq_iff_eq (g : localization_map M P) {x y} :
f.to_map x = f.to_map y ↔ g.to_map x = g.to_map y :=
f.to_localization_map.eq_iff_eq g.to_localization_map
lemma mk'_eq_iff_mk'_eq (g : localization_map M P) {x₁ x₂}
{y₁ y₂ : M} : f.mk' x₁ y₁ = f.mk' x₂ y₂ ↔ g.mk' x₁ y₁ = g.mk' x₂ y₂ :=
f.to_localization_map.mk'_eq_iff_mk'_eq g.to_localization_map
lemma mk'_eq_of_eq {a₁ b₁ : R} {a₂ b₂ : M} (H : b₁ * a₂ = a₁ * b₂) :
f.mk' a₁ a₂ = f.mk' b₁ b₂ :=
f.to_localization_map.mk'_eq_of_eq H
@[simp] lemma mk'_self {x : R} {hx : x ∈ M} : f.mk' x ⟨x, hx⟩ = 1 :=
f.to_localization_map.mk'_self' _ hx
@[simp] lemma mk'_self' {x : M} : f.mk' x x = 1 :=
f.to_localization_map.mk'_self _
@[simp] lemma mk'_self'' {x : M} : f.mk' x.1 x = 1 :=
f.mk'_self'
lemma mul_mk'_eq_mk'_of_mul (x y : R) (z : M) :
f.to_map x * f.mk' y z = f.mk' (x * y) z :=
f.to_localization_map.mul_mk'_eq_mk'_of_mul _ _ _
lemma mk'_eq_mul_mk'_one (x : R) (y : M) :
f.mk' x y = f.to_map x * f.mk' 1 y :=
(f.to_localization_map.mul_mk'_one_eq_mk' _ _).symm
@[simp] lemma mk'_mul_cancel_left (x : R) (y : M) :
f.mk' (y * x) y = f.to_map x :=
f.to_localization_map.mk'_mul_cancel_left _ _
lemma mk'_mul_cancel_right (x : R) (y : M) :
f.mk' (x * y) y = f.to_map x :=
f.to_localization_map.mk'_mul_cancel_right _ _
lemma is_unit_comp (j : S →+* P) (y : M) :
is_unit (j.comp f.to_map y) :=
f.to_localization_map.is_unit_comp j.to_monoid_hom _
/-- Given a localization map `f : R →+* S` for a submonoid `M ⊆ R` and a map of `comm_ring`s
`g : R →+* P` such that `g(M) ⊆ units P`, `f x = f y → g x = g y` for all `x y : R`. -/
lemma eq_of_eq {g : R →+* P} (hg : ∀ y : M, is_unit (g y)) {x y} (h : f.to_map x = f.to_map y) :
g x = g y :=
@submonoid.localization_map.eq_of_eq _ _ _ _ _ _ _
f.to_localization_map g.to_monoid_hom hg _ _ h
lemma mk'_add (x₁ x₂ : R) (y₁ y₂ : M) :
f.mk' (x₁ * y₂ + x₂ * y₁) (y₁ * y₂) = f.mk' x₁ y₁ + f.mk' x₂ y₂ :=
f.mk'_eq_iff_eq_mul.2 $ eq.symm
begin
rw [mul_comm (_ + _), mul_add, mul_mk'_eq_mk'_of_mul, ←eq_sub_iff_add_eq, mk'_eq_iff_eq_mul,
mul_comm _ (f.to_map _), mul_sub, eq_sub_iff_add_eq, ←eq_sub_iff_add_eq', ←mul_assoc,
←f.to_map.map_mul, mul_mk'_eq_mk'_of_mul, mk'_eq_iff_eq_mul],
simp only [f.to_map.map_add, submonoid.coe_mul, f.to_map.map_mul],
ring_exp,
end
/-- Given a localization map `f : R →+* S` for a submonoid `M ⊆ R` and a map of `comm_ring`s
`g : R →+* P` such that `g y` is invertible for all `y : M`, the homomorphism induced from
`S` to `P` sending `z : S` to `g x * (g y)⁻¹`, where `(x, y) : R × M` are such that
`z = f x * (f y)⁻¹`. -/
noncomputable def lift {g : R →+* P} (hg : ∀ y : M, is_unit (g y)) : S →+* P :=
ring_hom.mk' (@submonoid.localization_map.lift _ _ _ _ _ _ _
f.to_localization_map g.to_monoid_hom hg) $
begin
intros x y,
rw [f.to_localization_map.lift_spec, mul_comm, add_mul, ←sub_eq_iff_eq_add, eq_comm,
f.to_localization_map.lift_spec_mul, mul_comm _ (_ - _), sub_mul, eq_sub_iff_add_eq',
←eq_sub_iff_add_eq, mul_assoc, f.to_localization_map.lift_spec_mul],
show g _ * (g _ * g _) = g _ * (g _ * g _ - g _ * g _),
repeat {rw ←g.map_mul},
rw [←g.map_sub, ←g.map_mul],
apply f.eq_of_eq hg,
erw [f.to_map.map_mul, sec_spec', mul_sub, f.to_map.map_sub],
simp only [f.to_map.map_mul, sec_spec'],
ring_exp,
end
variables {g : R →+* P} (hg : ∀ y : M, is_unit (g y))
/-- Given a localization map `f : R →+* S` for a submonoid `M ⊆ R` and a map of `comm_ring`s
`g : R →* P` such that `g y` is invertible for all `y : M`, the homomorphism induced from
`S` to `P` maps `f x * (f y)⁻¹` to `g x * (g y)⁻¹` for all `x : R, y ∈ M`. -/
lemma lift_mk' (x y) :
f.lift hg (f.mk' x y) = g x * ↑(is_unit.lift_right (g.to_monoid_hom.mrestrict M) hg y)⁻¹ :=
f.to_localization_map.lift_mk' _ _ _
lemma lift_mk'_spec (x v) (y : M) :
f.lift hg (f.mk' x y) = v ↔ g x = g y * v :=
f.to_localization_map.lift_mk'_spec _ _ _ _
@[simp] lemma lift_eq (x : R) :
f.lift hg (f.to_map x) = g x :=
f.to_localization_map.lift_eq _ _
lemma lift_eq_iff {x y : R × M} :
f.lift hg (f.mk' x.1 x.2) = f.lift hg (f.mk' y.1 y.2) ↔ g (x.1 * y.2) = g (y.1 * x.2) :=
f.to_localization_map.lift_eq_iff _
@[simp] lemma lift_comp : (f.lift hg).comp f.to_map = g :=
ring_hom.ext $ monoid_hom.ext_iff.1 $ f.to_localization_map.lift_comp _
@[simp] lemma lift_of_comp (j : S →+* P) :
f.lift (f.is_unit_comp j) = j :=
ring_hom.ext $ monoid_hom.ext_iff.1 $ f.to_localization_map.lift_of_comp j.to_monoid_hom
lemma epic_of_localization_map {j k : S →+* P}
(h : ∀ a, j.comp f.to_map a = k.comp f.to_map a) : j = k :=
ring_hom.ext $ monoid_hom.ext_iff.1 $ @submonoid.localization_map.epic_of_localization_map
_ _ _ _ _ _ _ f.to_localization_map j.to_monoid_hom k.to_monoid_hom h
lemma lift_unique {j : S →+* P}
(hj : ∀ x, j (f.to_map x) = g x) : f.lift hg = j :=
ring_hom.ext $ monoid_hom.ext_iff.1 $ @submonoid.localization_map.lift_unique
_ _ _ _ _ _ _ f.to_localization_map g.to_monoid_hom hg j.to_monoid_hom hj
@[simp] lemma lift_id (x) : f.lift f.map_units x = x :=
f.to_localization_map.lift_id _
/-- Given two localization maps `f : R →+* S, k : R →+* P` for a submonoid `M ⊆ R`,
the hom from `P` to `S` induced by `f` is left inverse to the hom from `S` to `P`
induced by `k`. -/
@[simp] lemma lift_left_inverse {k : localization_map M S} (z : S) :
k.lift f.map_units (f.lift k.map_units z) = z :=
f.to_localization_map.lift_left_inverse _
lemma lift_surjective_iff :
surjective (f.lift hg) ↔ ∀ v : P, ∃ x : R × M, v * g x.2 = g x.1 :=
f.to_localization_map.lift_surjective_iff hg
lemma lift_injective_iff :
injective (f.lift hg) ↔ ∀ x y, f.to_map x = f.to_map y ↔ g x = g y :=
f.to_localization_map.lift_injective_iff hg
variables {T : submonoid P} (hy : ∀ y : M, g y ∈ T) {Q : Type*} [comm_ring Q]
(k : localization_map T Q)
/-- Given a `comm_ring` homomorphism `g : R →+* P` where for submonoids `M ⊆ R, T ⊆ P` we have
`g(M) ⊆ T`, the induced ring homomorphism from the localization of `R` at `M` to the
localization of `P` at `T`: if `f : R →+* S` and `k : P →+* Q` are localization maps for `M`
and `T` respectively, we send `z : S` to `k (g x) * (k (g y))⁻¹`, where `(x, y) : R × M` are
such that `z = f x * (f y)⁻¹`. -/
noncomputable def map : S →+* Q :=
@lift _ _ _ _ _ _ _ f (k.to_map.comp g) $ λ y, k.map_units ⟨g y, hy y⟩
variables {k}
lemma map_eq (x) :
f.map hy k (f.to_map x) = k.to_map (g x) :=
f.lift_eq (λ y, k.map_units ⟨g y, hy y⟩) x
@[simp] lemma map_comp :
(f.map hy k).comp f.to_map = k.to_map.comp g :=
f.lift_comp $ λ y, k.map_units ⟨g y, hy y⟩
lemma map_mk' (x) (y : M) :
f.map hy k (f.mk' x y) = k.mk' (g x) ⟨g y, hy y⟩ :=
@submonoid.localization_map.map_mk' _ _ _ _ _ _ _ f.to_localization_map
g.to_monoid_hom _ hy _ _ k.to_localization_map _ _
@[simp] lemma map_id (z : S) :
f.map (λ y, show ring_hom.id R y ∈ M, from y.2) f z = z :=
f.lift_id _
/-- If `comm_ring` homs `g : R →+* P, l : P →+* A` induce maps of localizations, the composition
of the induced maps equals the map of localizations induced by `l ∘ g`. -/
lemma map_comp_map {A : Type*} [comm_ring A] {U : submonoid A} {W} [comm_ring W]
(j : localization_map U W) {l : P →+* A} (hl : ∀ w : T, l w ∈ U) :
(k.map hl j).comp (f.map hy k) = f.map (λ x, show l.comp g x ∈ U, from hl ⟨g x, hy x⟩) j :=
ring_hom.ext $ monoid_hom.ext_iff.1 $ @submonoid.localization_map.map_comp_map _ _ _ _ _ _ _
f.to_localization_map g.to_monoid_hom _ hy _ _ k.to_localization_map
_ _ _ _ _ j.to_localization_map l.to_monoid_hom hl
/-- If `comm_ring` homs `g : R →+* P, l : P →+* A` induce maps of localizations, the composition
of the induced maps equals the map of localizations induced by `l ∘ g`. -/
lemma map_map {A : Type*} [comm_ring A] {U : submonoid A} {W} [comm_ring W]
(j : localization_map U W) {l : P →+* A} (hl : ∀ w : T, l w ∈ U) (x) :
k.map hl j (f.map hy k x) = f.map (λ x, show l.comp g x ∈ U, from hl ⟨g x, hy x⟩) j x :=
by rw ←f.map_comp_map hy j hl; refl
/-- Given localization maps `f : R →+* S, k : P →+* Q` for submonoids `M, T` respectively, an
isomorphism `j : R ≃+* P` such that `j(M) = T` induces an isomorphism of localizations
`S ≃+* Q`. -/
noncomputable def ring_equiv_of_ring_equiv (k : localization_map T Q) (h : R ≃+* P)
(H : M.map h.to_monoid_hom = T) :
S ≃+* Q :=
(f.to_localization_map.mul_equiv_of_mul_equiv k.to_localization_map H).to_ring_equiv $
(@lift _ _ _ _ _ _ _ f (k.to_map.comp h.to_ring_hom)
(λ y, k.map_units ⟨(h y), H ▸ set.mem_image_of_mem h y.2⟩)).map_add
@[simp] lemma ring_equiv_of_ring_equiv_eq_map_apply {j : R ≃+* P}
(H : M.map j.to_monoid_hom = T) (x) :
f.ring_equiv_of_ring_equiv k j H x =
f.map (λ y : M, show j.to_monoid_hom y ∈ T, from H ▸ set.mem_image_of_mem j y.2) k x := rfl
lemma ring_equiv_of_ring_equiv_eq_map {j : R ≃+* P} (H : M.map j.to_monoid_hom = T) :
(f.ring_equiv_of_ring_equiv k j H).to_monoid_hom =
f.map (λ y : M, show j.to_monoid_hom y ∈ T, from H ▸ set.mem_image_of_mem j y.2) k := rfl
@[simp] lemma ring_equiv_of_ring_equiv_eq {j : R ≃+* P} (H : M.map j.to_monoid_hom = T) (x) :
f.ring_equiv_of_ring_equiv k j H (f.to_map x) = k.to_map (j x) :=
f.to_localization_map.mul_equiv_of_mul_equiv_eq H _
lemma ring_equiv_of_ring_equiv_mk' {j : R ≃+* P} (H : M.map j.to_monoid_hom = T) (x y) :
f.ring_equiv_of_ring_equiv k j H (f.mk' x y) =
k.mk' (j x) ⟨j y, H ▸ set.mem_image_of_mem j y.2⟩ :=
f.to_localization_map.mul_equiv_of_mul_equiv_mk' H _ _
end localization_map
namespace localization
variables {M}
instance : has_add (localization M) :=
⟨λ z w, con.lift_on₂ z w
(λ x y : R × M, mk ((x.2 : R) * y.1 + y.2 * x.1) (x.2 * y.2)) $
λ r1 r2 r3 r4 h1 h2, (con.eq _).2
begin
rw r_eq_r' at h1 h2 ⊢,
cases h1 with t₅ ht₅,
cases h2 with t₆ ht₆,
use t₆ * t₅,
calc ((r1.2 : R) * r2.1 + r2.2 * r1.1) * (r3.2 * r4.2) * (t₆ * t₅) =
(r2.1 * r4.2 * t₆) * (r1.2 * r3.2 * t₅) + (r1.1 * r3.2 * t₅) * (r2.2 * r4.2 * t₆) : by ring
... = (r3.2 * r4.1 + r4.2 * r3.1) * (r1.2 * r2.2) * (t₆ * t₅) : by rw [ht₆, ht₅]; ring
end⟩
instance : has_neg (localization M) :=
⟨λ z, con.lift_on z (λ x : R × M, mk (-x.1) x.2) $
λ r1 r2 h, (con.eq _).2
begin
rw r_eq_r' at h ⊢,
cases h with t ht,
use t,
rw [neg_mul_eq_neg_mul_symm, neg_mul_eq_neg_mul_symm, ht],
ring,
end⟩
instance : has_zero (localization M) :=
⟨mk 0 1⟩
private meta def tac := `[{
intros,
refine quotient.sound' (r_of_eq _),
simp only [prod.snd_mul, prod.fst_mul, submonoid.coe_mul],
ring }]
instance : comm_ring (localization M) :=
{ zero := 0,
one := 1,
add := (+),
mul := (*),
add_assoc := λ m n k, quotient.induction_on₃' m n k (by tac),
zero_add := λ y, quotient.induction_on' y (by tac),
add_zero := λ y, quotient.induction_on' y (by tac),
neg := has_neg.neg,
add_left_neg := λ y, quotient.induction_on' y (by tac),
add_comm := λ y z, quotient.induction_on₂' z y (by tac),
left_distrib := λ m n k, quotient.induction_on₃' m n k (by tac),
right_distrib := λ m n k, quotient.induction_on₃' m n k (by tac),
..localization.comm_monoid M }
variables (M)
/-- Natural hom sending `x : R`, `R` a `comm_ring`, to the equivalence class of
`(x, 1)` in the localization of `R` at a submonoid. -/
def of : localization_map M (localization M) :=
(localization.monoid_of M).to_ring_localization $
λ x y, (con.eq _).2 $ r_of_eq $ by simp [add_comm]
variables {M}
lemma monoid_of_eq_of (x) : (monoid_of M).to_map x = (of M).to_map x := rfl
lemma mk_one_eq_of (x) : mk x 1 = (of M).to_map x := rfl
lemma mk_eq_mk'_apply (x y) : mk x y = (of M).mk' x y :=
mk_eq_monoid_of_mk'_apply _ _
@[simp] lemma mk_eq_mk' : mk = (of M).mk' :=
mk_eq_monoid_of_mk'
variables (f : localization_map M S)
/-- Given a localization map `f : R →+* S` for a submonoid `M`, we get an isomorphism
between the localization of `R` at `M` as a quotient type and `S`. -/
noncomputable def ring_equiv_of_quotient :
localization M ≃+* S :=
(mul_equiv_of_quotient f.to_localization_map).to_ring_equiv $
((of M).lift f.map_units).map_add
variables {f}
@[simp] lemma ring_equiv_of_quotient_apply (x) :
ring_equiv_of_quotient f x = (of M).lift f.map_units x := rfl
@[simp] lemma ring_equiv_of_quotient_mk' (x y) :
ring_equiv_of_quotient f ((of M).mk' x y) = f.mk' x y :=
mul_equiv_of_quotient_mk' _ _
lemma ring_equiv_of_quotient_mk (x y) :
ring_equiv_of_quotient f (mk x y) = f.mk' x y :=
mul_equiv_of_quotient_mk _ _
@[simp] lemma ring_equiv_of_quotient_of (x) :
ring_equiv_of_quotient f ((of M).to_map x) = f.to_map x :=
mul_equiv_of_quotient_monoid_of _
@[simp] lemma ring_equiv_of_quotient_symm_mk' (x y) :
(ring_equiv_of_quotient f).symm (f.mk' x y) = (of M).mk' x y :=
mul_equiv_of_quotient_symm_mk' _ _
lemma ring_equiv_of_quotient_symm_mk (x y) :
(ring_equiv_of_quotient f).symm (f.mk' x y) = mk x y :=
mul_equiv_of_quotient_symm_mk _ _
@[simp] lemma ring_equiv_of_quotient_symm_of (x) :
(ring_equiv_of_quotient f).symm (f.to_map x) = (of M).to_map x :=
mul_equiv_of_quotient_symm_monoid_of _
end localization
variables {M}
namespace localization_map
/-!
### `algebra` section
Defines the `R`-algebra instance on a copy of `S` carrying the data of the localization map
`f` needed to induce the `R`-algebra structure. -/
variables (f : localization_map M S)
/-- We define a copy of the localization map `f`'s codomain `S` carrying the data of `f` so that
the `R`-algebra instance on `S` can 'know' the map needed to induce the `R`-algebra
structure. -/
@[reducible, nolint unused_arguments] def codomain (f : localization_map M S) := S
/-- We use a copy of the localization map `f`'s codomain `S` carrying the data of `f` so that the
`R`-algebra instance on `S` can 'know' the map needed to induce the `R`-algebra structure. -/
instance : algebra R f.codomain := f.to_map.to_algebra
@[simp] lemma of_id (a : R) :
(algebra.of_id R f.codomain) a = f.to_map a :=
rfl
variables (f)
/-- Localization map `f` from `R` to `S` as an `R`-linear map. -/
def lin_coe : R →ₗ[R] f.codomain :=
{ to_fun := f.to_map,
add := f.to_map.map_add,
smul := f.to_map.map_mul }
variables {f}
instance coe_submodules : has_coe (ideal R) (submodule R f.codomain) :=
⟨λ I, submodule.map f.lin_coe I⟩
lemma mem_coe (I : ideal R) {x : S} :
x ∈ (I : submodule R f.codomain) ↔ ∃ y : R, y ∈ I ∧ f.to_map y = x :=
iff.rfl
@[simp] lemma lin_coe_apply {x} : f.lin_coe x = f.to_map x := rfl
end localization_map
variables (R)
/-- The submonoid of non-zero-divisors of a `comm_ring` `R`. -/
def non_zero_divisors : submonoid R :=
{ carrier := {x | ∀ z, z * x = 0 → z = 0},
one_mem' := λ z hz, by rwa mul_one at hz,
mul_mem' := λ x₁ x₂ hx₁ hx₂ z hz,
have z * x₁ * x₂ = 0, by rwa mul_assoc,
hx₁ z $ hx₂ (z * x₁) this }
variables {A : Type*} [integral_domain A]
lemma eq_zero_of_ne_zero_of_mul_eq_zero
{x y : A} (hnx : x ≠ 0) (hxy : y * x = 0) :
y = 0 := or.resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero hxy) hnx
lemma mem_non_zero_divisors_iff_ne_zero {x : A} :
x ∈ non_zero_divisors A ↔ x ≠ 0 :=
⟨λ hm hz, zero_ne_one (hm 1 $ by rw [hz, one_mul]).symm,
λ hnx z, eq_zero_of_ne_zero_of_mul_eq_zero hnx⟩
lemma map_ne_zero_of_mem_non_zero_divisors {B : Type*} [ring B] {g : A →+* B}
(hg : injective g) {x : non_zero_divisors A} : g x ≠ 0 :=
λ h0, mem_non_zero_divisors_iff_ne_zero.1 x.2 $ g.injective_iff.1 hg x h0
lemma map_mem_non_zero_divisors {B : Type*} [integral_domain B] {g : A →+* B}
(hg : injective g) {x : non_zero_divisors A} : g x ∈ non_zero_divisors B :=
λ z hz, eq_zero_of_ne_zero_of_mul_eq_zero
(map_ne_zero_of_mem_non_zero_divisors hg) hz
variables (K : Type*)
/-- Localization map from an integral domain `R` to its field of fractions. -/
@[reducible] def fraction_map [comm_ring K] := localization_map (non_zero_divisors R) K
namespace fraction_map
open localization_map
variables {R K}
lemma to_map_eq_zero_iff [comm_ring K] (φ : fraction_map R K) {x : R} :
x = 0 ↔ φ.to_map x = 0 :=
begin
rw ← φ.to_map.map_zero,
split; intro h,
{ rw h },
{ cases φ.eq_iff_exists.mp h with c hc,
rw zero_mul at hc,
exact c.2 x hc }
end
protected theorem injective [comm_ring K] (φ : fraction_map R K) :
injective φ.to_map :=
φ.to_map.injective_iff.2 (λ _ h, φ.to_map_eq_zero_iff.mpr h)
local attribute [instance] classical.dec_eq
/-- A `comm_ring` `K` which is the localization of an integral domain `R` at `R - {0}` is an
integral domain. -/
def to_integral_domain [comm_ring K] (φ : fraction_map A K) : integral_domain K :=
{ eq_zero_or_eq_zero_of_mul_eq_zero :=
begin
intros z w h,
cases φ.surj z with x hx,
cases φ.surj w with y hy,
have : z * w * φ.to_map y.2 * φ.to_map x.2 = φ.to_map x.1 * φ.to_map y.1, by
rw [mul_assoc z, hy, ←hx]; ac_refl,
erw h at this,
rw [zero_mul, zero_mul, ←φ.to_map.map_mul] at this,
cases eq_zero_or_eq_zero_of_mul_eq_zero (φ.to_map_eq_zero_iff.mpr this.symm) with H H,
{ exact or.inl (φ.eq_zero_of_fst_eq_zero hx H) },
{ exact or.inr (φ.eq_zero_of_fst_eq_zero hy H) },
end,
zero_ne_one := by erw [←φ.to_map.map_zero, ←φ.to_map.map_one];
exact λ h, zero_ne_one (φ.injective h),
..(infer_instance : comm_ring K) }
/-- The inverse of an element in the field of fractions of an integral domain. -/
protected noncomputable def inv [comm_ring K] (φ : fraction_map A K) (z : K) : K :=
if h : z = 0 then 0 else
φ.mk' (φ.to_localization_map.sec z).2 ⟨(φ.to_localization_map.sec z).1,
mem_non_zero_divisors_iff_ne_zero.2 $ λ h0, h $ φ.eq_zero_of_fst_eq_zero (sec_spec z) h0⟩
protected lemma mul_inv_cancel [comm_ring K] (φ : fraction_map A K) (x : K) (hx : x ≠ 0) :
x * φ.inv x = 1 :=
show x * dite _ _ _ = 1, by rw [dif_neg hx,
←is_unit.mul_left_inj (φ.map_units ⟨(φ.to_localization_map.sec x).1,
mem_non_zero_divisors_iff_ne_zero.2 $ λ h0, hx $ φ.eq_zero_of_fst_eq_zero (sec_spec x) h0⟩),
one_mul, mul_assoc, mk'_spec, ←eq_mk'_iff_mul_eq]; exact (φ.mk'_sec x).symm
/-- A `comm_ring` `K` which is the localization of an integral domain `R` at `R - {0}` is a
field. -/
noncomputable def to_field [comm_ring K] (φ : fraction_map A K) : field K :=
{ inv := φ.inv,
mul_inv_cancel := φ.mul_inv_cancel,
inv_zero := dif_pos rfl, ..φ.to_integral_domain }
variables {B : Type*} [integral_domain B] [field K] {L : Type*} [field L]
(f : fraction_map A K) {g : A →+* L}
lemma mk'_eq_div {r s} : f.mk' r s = f.to_map r / f.to_map s :=
f.mk'_eq_iff_eq_mul.2 $ (div_mul_cancel _
(map_ne_zero_of_mem_non_zero_divisors f.injective)).symm
lemma is_unit_map_of_injective (hg : injective g)
(y : non_zero_divisors A) : is_unit (g y) :=
is_unit.mk0 (g y) $ map_ne_zero_of_mem_non_zero_divisors hg
/-- Given an integral domain `A`, a localization map to its fields of fractions
`f : A →+* K`, and an injective ring hom `g : A →+* L` where `L` is a field, we get a
field hom sending `z : K` to `g x * (g y)⁻¹`, where `(x, y) : A × (non_zero_divisors A)` are
such that `z = f x * (f y)⁻¹`. -/
noncomputable def lift (hg : injective g) : K →+* L :=
f.lift $ is_unit_map_of_injective hg
/-- Given an integral domain `A`, a localization map to its fields of fractions
`f : A →+* K`, and an injective ring hom `g : A →+* L` where `L` is a field,
field hom induced from `K` to `L` maps `f x / f y` to `g x / g y` for all
`x : A, y ∈ non_zero_divisors A`. -/
@[simp] lemma lift_mk' (hg : injective g) (x y) :
f.lift hg (f.mk' x y) = g x / g y :=
begin
erw f.lift_mk' (is_unit_map_of_injective hg),
erw submonoid.localization_map.mul_inv_left
(λ y : non_zero_divisors A, show is_unit (g.to_monoid_hom y), from
is_unit_map_of_injective hg y),
exact (mul_div_cancel' _ (map_ne_zero_of_mem_non_zero_divisors hg)).symm,
end
/-- Given integral domains `A, B` and localization maps to their fields of fractions
`f : A →+* K, g : B →+* L` and an injective ring hom `j : A →+* B`, we get a field hom
sending `z : K` to `g (j x) * (g (j y))⁻¹`, where `(x, y) : A × (non_zero_divisors A)` are
such that `z = f x * (f y)⁻¹`. -/
noncomputable def map (g : fraction_map B L) {j : A →+* B} (hj : injective j) :
K →+* L :=
f.map (λ y, mem_non_zero_divisors_iff_ne_zero.2 $
map_ne_zero_of_mem_non_zero_divisors hj) g
/-- Given integral domains `A, B` and localization maps to their fields of fractions
`f : A →+* K, g : B →+* L`, an isomorphism `j : A ≃+* B` induces an isomorphism of
fields of fractions `K ≃+* L`. -/
noncomputable def field_equiv_of_ring_equiv (g : fraction_map B L) (h : A ≃+* B) :
K ≃+* L :=
f.ring_equiv_of_ring_equiv g h
begin
ext b,
show b ∈ h.to_equiv '' _ ↔ _,
erw [h.to_equiv.image_eq_preimage, set.preimage, set.mem_set_of_eq,
mem_non_zero_divisors_iff_ne_zero, mem_non_zero_divisors_iff_ne_zero],
exact h.symm.map_ne_zero_iff
end
/-- The cast from `int` to `rat` as a `fraction_map`. -/
def int.fraction_map : fraction_map ℤ ℚ :=
{ to_fun := coe,
map_units' :=
begin
rintro ⟨x, hx⟩,
rw [submonoid.mem_carrier, mem_non_zero_divisors_iff_ne_zero] at hx,
simpa only [is_unit_iff_ne_zero, int.cast_eq_zero, ne.def, subtype.coe_mk] using hx,
end,
surj' :=
begin
rintro ⟨n, d, hd, h⟩,
refine ⟨⟨n, ⟨d, _⟩⟩, rat.mul_denom_eq_num⟩,
rwa [submonoid.mem_carrier, mem_non_zero_divisors_iff_ne_zero, int.coe_nat_ne_zero_iff_pos]
end,
eq_iff_exists' :=
begin
intros x y,
rw [int.cast_inj],
refine ⟨by { rintro rfl, use 1 }, _⟩,
rintro ⟨⟨c, hc⟩, h⟩,
apply int.eq_of_mul_eq_mul_right _ h,
rwa [submonoid.mem_carrier, mem_non_zero_divisors_iff_ne_zero] at hc,
end,
..int.cast_ring_hom ℚ }
end fraction_map
variables (A)
/-- The fraction field of an integral domain as a quotient type. -/
@[reducible] def fraction_ring := localization (non_zero_divisors A)
/-- Natural hom sending `x : A`, `A` an integral domain, to the equivalence class of
`(x, 1)` in the field of fractions of `A`. -/
def of : fraction_map A (localization (non_zero_divisors A)) :=
localization.of (non_zero_divisors A)
namespace fraction_ring
variables {A}
noncomputable instance : field (fraction_ring A) :=
(of A).to_field
@[simp] lemma mk_eq_div {r s} : (localization.mk r s : fraction_ring A) =
((of A).to_map r / (of A).to_map s : fraction_ring A) :=
by erw [localization.mk_eq_mk', (of A).mk'_eq_div]
/-- Given an integral domain `A` and a localization map to a field of fractions
`f : A →+* K`, we get an isomorphism between the field of fractions of `A` as a quotient
type and `K`. -/
noncomputable def field_equiv_of_quotient {K : Type*} [field K] (f : fraction_map A K) :
fraction_ring A ≃+* K :=
localization.ring_equiv_of_quotient f
end fraction_ring
|
03fef68ff07414000aecc75ee8e963b4e5b1ca86
|
6f4750ff03c8be1d6c0b1b809ff6ac541b9d5a22
|
/WhileSyntax.lean
|
d084844ac0ec59584a229993e06b1284cd9dae1b
|
[] |
no_license
|
benating/Lean_Test
|
1809b5e15df9edcdf4a3388f53d2205f29c89ac2
|
c07099804a86347b4ec836f54530f62e22534bdb
|
refs/heads/master
| 1,628,468,905,337
| 1,510,426,597,000
| 1,510,426,597,000
| 108,762,297
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,033
|
lean
|
namespace whileSyntax
inductive wExpr : Type
| ident : string → wExpr
| num : ℕ → wExpr
| add : wExpr → wExpr → wExpr
| mul : wExpr → wExpr → wExpr
namespace wExpr
infixl `+` := add
infixl `*` := mul
end wExpr
inductive wBool : Type
| true : wBool
| false : wBool
| eq : wBool → wBool → wBool
| lt : wBool → wBool → wBool
| and : wBool → wBool → wBool
| or : wBool → wBool → wBool
| not : wBool → wBool → wBool
namespace wBool
infixl `=` := eq
infixl `<` := lt
precedence `:∧` :1
infixl `:∧` := and
precedence `:∨` :2
infixl `:∨` := or
infixl `¬` := not
end wBool
inductive wComm : Type
| skip : wComm
| assign : string → wExpr → wComm
| seq : wComm → wComm → wComm
| ifThenElse : wBool → wComm → wComm → wComm
| whileDo : wBool → wComm → wComm
namespace wComm
infixl `:=` := assign
infixl `;` := seq
end wComm
def state := string → ℕ
inductive configExpr : Type
| configE : wExpr × state → configExpr
end whileSyntax
|
c1f77eec7369b25888139e8b519bcdfca782c8be
|
82b86ba2ae0d5aed0f01f49c46db5afec0eb2bd7
|
/src/Std/Data/HashMap.lean
|
f2f981a5b7db3f9652bc371c7e365e5d78d66c8f
|
[
"Apache-2.0"
] |
permissive
|
banksonian/lean4
|
3a2e6b0f1eb63aa56ff95b8d07b2f851072d54dc
|
78da6b3aa2840693eea354a41e89fc5b212a5011
|
refs/heads/master
| 1,673,703,624,165
| 1,605,123,551,000
| 1,605,123,551,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,220
|
lean
|
/-
Copyright (c) 2018 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import Std.Data.AssocList
namespace Std
universes u v w
def HashMapBucket (α : Type u) (β : Type v) :=
{ b : Array (AssocList α β) // b.size > 0 }
def HashMapBucket.update {α : Type u} {β : Type v} (data : HashMapBucket α β) (i : USize) (d : AssocList α β) (h : i.toNat < data.val.size) : HashMapBucket α β :=
⟨ data.val.uset i d h,
by rw [Array.szFSetEq]; exact data.property ⟩
structure HashMapImp (α : Type u) (β : Type v) :=
(size : Nat)
(buckets : HashMapBucket α β)
def mkHashMapImp {α : Type u} {β : Type v} (nbuckets := 8) : HashMapImp α β :=
let n := if nbuckets = 0 then 8 else nbuckets;
{ size := 0,
buckets :=
⟨ mkArray n AssocList.nil,
by rw [Array.sizeMkArrayEq]; cases nbuckets; decide!; apply Nat.zeroLtSucc; done ⟩ }
namespace HashMapImp
variables {α : Type u} {β : Type v}
def mkIdx {n : Nat} (h : n > 0) (u : USize) : { u : USize // u.toNat < n } :=
⟨u %ₙ n, USize.modnLt _ h⟩
@[inline] def reinsertAux (hashFn : α → USize) (data : HashMapBucket α β) (a : α) (b : β) : HashMapBucket α β :=
let ⟨i, h⟩ := mkIdx data.property (hashFn a)
data.update i (AssocList.cons a b (data.val.uget i h)) h
@[inline] def foldBucketsM {δ : Type w} {m : Type w → Type w} [Monad m] (data : HashMapBucket α β) (d : δ) (f : δ → α → β → m δ) : m δ :=
data.val.foldlM (init := d) fun d b => b.foldlM f d
@[inline] def foldBuckets {δ : Type w} (data : HashMapBucket α β) (d : δ) (f : δ → α → β → δ) : δ :=
Id.run $ foldBucketsM data d f
@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → β → m δ) (d : δ) (h : HashMapImp α β) : m δ :=
foldBucketsM h.buckets d f
@[inline] def fold {δ : Type w} (f : δ → α → β → δ) (d : δ) (m : HashMapImp α β) : δ :=
foldBuckets m.buckets d f
def findEntry? [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : Option (α × β) :=
match m with
| ⟨_, buckets⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a)
(buckets.val.uget i h).findEntry? a
def find? [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : Option β :=
match m with
| ⟨_, buckets⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a)
(buckets.val.uget i h).find? a
def contains [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : Bool :=
match m with
| ⟨_, buckets⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a)
(buckets.val.uget i h).contains a
-- TODO: remove `partial` by using well-founded recursion
partial def moveEntries [Hashable α] (i : Nat) (source : Array (AssocList α β)) (target : HashMapBucket α β) : HashMapBucket α β :=
if h : i < source.size then
let idx : Fin source.size := ⟨i, h⟩
let es : AssocList α β := source.get idx
-- We remove `es` from `source` to make sure we can reuse its memory cells when performing es.foldl
let source := source.set idx AssocList.nil
let target := es.foldl (reinsertAux hash) target
moveEntries (i+1) source target
else target
def expand [Hashable α] (size : Nat) (buckets : HashMapBucket α β) : HashMapImp α β :=
let nbuckets := buckets.val.size * 2
have nbuckets > 0 from Nat.mulPos buckets.property (decide! : 2 > 0)
let new_buckets : HashMapBucket α β := ⟨mkArray nbuckets AssocList.nil, by rw [Array.sizeMkArrayEq]; assumption⟩
{ size := size,
buckets := moveEntries 0 buckets.val new_buckets }
def insert [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) (b : β) : HashMapImp α β :=
match m with
| ⟨size, buckets⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a)
let bkt := buckets.val.uget i h
if bkt.contains a then
⟨size, buckets.update i (bkt.replace a b) h⟩
else
let size' := size + 1
let buckets' := buckets.update i (AssocList.cons a b bkt) h
if size' ≤ buckets.val.size then
{ size := size', buckets := buckets' }
else
expand size' buckets'
def erase [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : HashMapImp α β :=
match m with
| ⟨ size, buckets ⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a)
let bkt := buckets.val.uget i h
if bkt.contains a then ⟨size - 1, buckets.update i (bkt.erase a) h⟩
else m
inductive WellFormed [BEq α] [Hashable α] : HashMapImp α β → Prop
| mkWff : ∀ n, WellFormed (mkHashMapImp n)
| insertWff : ∀ m a b, WellFormed m → WellFormed (insert m a b)
| eraseWff : ∀ m a, WellFormed m → WellFormed (erase m a)
end HashMapImp
def HashMap (α : Type u) (β : Type v) [BEq α] [Hashable α] :=
{ m : HashMapImp α β // m.WellFormed }
open Std.HashMapImp
def mkHashMap {α : Type u} {β : Type v} [BEq α] [Hashable α] (nbuckets := 8) : HashMap α β :=
⟨ mkHashMapImp nbuckets, WellFormed.mkWff nbuckets ⟩
namespace HashMap
variables {α : Type u} {β : Type v} [BEq α] [Hashable α]
instance : Inhabited (HashMap α β) := ⟨mkHashMap⟩
instance : EmptyCollection (HashMap α β) := ⟨mkHashMap⟩
@[inline] def insert (m : HashMap α β) (a : α) (b : β) : HashMap α β :=
match m with
| ⟨ m, hw ⟩ => ⟨ m.insert a b, WellFormed.insertWff m a b hw ⟩
@[inline] def erase (m : HashMap α β) (a : α) : HashMap α β :=
match m with
| ⟨ m, hw ⟩ => ⟨ m.erase a, WellFormed.eraseWff m a hw ⟩
@[inline] def findEntry? (m : HashMap α β) (a : α) : Option (α × β) :=
match m with
| ⟨ m, _ ⟩ => m.findEntry? a
@[inline] def find? (m : HashMap α β) (a : α) : Option β :=
match m with
| ⟨ m, _ ⟩ => m.find? a
@[inline] def findD (m : HashMap α β) (a : α) (b₀ : β) : β :=
(m.find? a).getD b₀
@[inline] def find! [Inhabited β] (m : HashMap α β) (a : α) : β :=
match m.find? a with
| some b => b
| none => panic! "key is not in the map"
@[inline] def getOp (self : HashMap α β) (idx : α) : Option β :=
self.find? idx
@[inline] def contains (m : HashMap α β) (a : α) : Bool :=
match m with
| ⟨ m, _ ⟩ => m.contains a
@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → β → m δ) (init : δ) (h : HashMap α β) : m δ :=
match h with
| ⟨ h, _ ⟩ => h.foldM f init
@[inline] def fold {δ : Type w} (f : δ → α → β → δ) (init : δ) (m : HashMap α β) : δ :=
match m with
| ⟨ m, _ ⟩ => m.fold f init
@[inline] def size (m : HashMap α β) : Nat :=
match m with
| ⟨ {size := sz, ..}, _ ⟩ => sz
@[inline] def isEmpty (m : HashMap α β) : Bool :=
m.size = 0
@[inline] def empty : HashMap α β :=
mkHashMap
def toList (m : HashMap α β) : List (α × β) :=
m.fold (init := []) fun r k v => (k, v)::r
def toArray (m : HashMap α β) : Array (α × β) :=
m.fold (init := #[]) fun r k v => r.push (k, v)
def numBuckets (m : HashMap α β) : Nat :=
m.val.buckets.val.size
end HashMap
end Std
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.