WhiteAiZ's picture
Upload 1420 files
0070fce verified
import contextlib
import ldm_patched.modules.clip_vision
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
import torch
from ldm_patched.ldm.util import instantiate_from_config
from ldm_patched.modules import model_detection, model_management
from ldm_patched.modules.model_base import ModelType, model_sampling
from ldm_patched.modules.sd import CLIP, VAE, load_model_weights
from modules import sd_hijack, shared
from modules.sd_models_config import find_checkpoint_config
from modules.sd_models_types import WebuiSdModel
from modules_forge import forge_clip
from modules_forge.unet_patcher import UnetPatcher
from omegaconf import OmegaConf
class FakeObject:
def __init__(self, *args, **kwargs):
return
def eval(self, *args, **kwargs):
return self
def parameters(self, *args, **kwargs):
return []
class ForgeObjects:
def __init__(self, unet, clip, vae, clipvision):
self.unet = unet
self.clip = clip
self.vae = vae
self.clipvision = clipvision
def shallow_copy(self):
return ForgeObjects(self.unet, self.clip, self.vae, self.clipvision)
@torch.no_grad()
def load_checkpoint_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True) -> ForgeObjects:
clip = None
clipvision = None
vae = None
model = None
model_patcher = None
clip_target = None
parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
class WeightsLoader(torch.nn.Module):
pass
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
model_config.set_manual_cast(manual_cast_dtype)
if model_config is None:
raise RuntimeError("Could not detect model type")
if model_config.clip_vision_prefix is not None:
if output_clipvision:
clipvision = ldm_patched.modules.clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
if output_model:
initial_load_device = model_management.unet_initial_load_device(parameters, unet_dtype)
print("UNet dtype:", unet_dtype)
model = model_config.get_model(sd, "model.diffusion_model.", device=initial_load_device)
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd)
if output_clip:
w = WeightsLoader()
clip_target = model_config.clip_target()
if clip_target is not None:
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
sd = model_config.process_clip_state_dict(sd)
load_model_weights(w, sd)
left_over = sd.keys()
if len(left_over) > 0:
print("left over keys:", left_over)
if output_model:
model_patcher = UnetPatcher(
model,
load_device=load_device,
offload_device=model_management.unet_offload_device(),
current_device=initial_load_device,
)
if initial_load_device != torch.device("cpu"):
print("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
return ForgeObjects(model_patcher, clip, vae, clipvision)
@torch.no_grad()
def load_model_for_a1111(timer, checkpoint_info=None, state_dict=None) -> WebuiSdModel:
ztsnr = False
if state_dict is not None:
ztsnr = state_dict.pop("ztsnr", None) is not None
a1111_config_filename = find_checkpoint_config(state_dict, checkpoint_info)
a1111_config = OmegaConf.load(a1111_config_filename)
timer.record("forge solving config")
for obj in ("unet_config", "network_config", "first_stage_config"):
if hasattr(a1111_config.model.params, obj):
getattr(a1111_config.model.params, obj).target = "modules_forge.forge_loader.FakeObject"
sd_model: WebuiSdModel = instantiate_from_config(a1111_config.model)
del a1111_config
timer.record("forge instantiate config")
forge_objects = load_checkpoint_guess_config(
state_dict,
output_vae=True,
output_clip=True,
output_clipvision=True,
embedding_directory=shared.cmd_opts.embeddings_dir,
output_model=True,
)
sd_model.forge_objects = forge_objects
sd_model.forge_objects_original = forge_objects.shallow_copy()
sd_model.forge_objects_after_applying_lora = forge_objects.shallow_copy()
del state_dict
timer.record("forge load real models")
sd_model.first_stage_model = forge_objects.vae.first_stage_model
sd_model.model.diffusion_model = forge_objects.unet.model.diffusion_model
conditioner = getattr(sd_model, "conditioner", None)
sd_model.is_sdxl = conditioner is not None
if sd_model.is_sdxl:
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
typename = type(embedder).__name__
if typename == "FrozenCLIPEmbedder": # Clip L
embedder.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(model_embeddings.token_embedding, sd_hijack.model_hijack)
conditioner.embedders[i] = forge_clip.CLIP_SD_XL_L(embedder, sd_hijack.model_hijack)
elif typename == "FrozenOpenCLIPEmbedder2": # Clip G
embedder.tokenizer = forge_objects.clip.tokenizer.clip_g.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_g.transformer
embedder.text_projection = forge_objects.clip.cond_stage_model.clip_g.text_projection
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(model_embeddings.token_embedding, sd_hijack.model_hijack, textual_inversion_key="clip_g")
conditioner.embedders[i] = forge_clip.CLIP_SD_XL_G(embedder, sd_hijack.model_hijack)
elif typename == "ConcatTimestepEmbedderND":
embedder.device = model_management.text_encoder_device()
sd_model.cond_stage_model = conditioner
else:
assert type(sd_model.cond_stage_model).__name__ == "FrozenCLIPEmbedder"
sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(model_embeddings.token_embedding, sd_hijack.model_hijack)
sd_model.cond_stage_model = forge_clip.CLIP_SD_15_L(sd_model.cond_stage_model, sd_hijack.model_hijack)
timer.record("forge set components")
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
if getattr(sd_model, "parameterization", None) == "v":
sd_model.forge_objects.unet.model.model_sampling = model_sampling(sd_model.forge_objects.unet.model.model_config, ModelType.V_PREDICTION)
sd_model.alphas_cumprod_original = sd_model.alphas_cumprod
sd_model.ztsnr = ztsnr
sd_model.is_sd2 = False
sd_model.is_sd1 = not sd_model.is_sdxl
sd_model.sd_model_hash = sd_model_hash
sd_model.sd_model_checkpoint = checkpoint_info.filename
sd_model.sd_checkpoint_info = checkpoint_info
apply_alpha_schedule_override(sd_model)
@torch.inference_mode()
def patched_decode_first_stage(x):
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_out(x)
sample = sd_model.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
return sample.to(x)
@torch.inference_mode()
def patched_encode_first_stage(x):
sample = sd_model.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_in(sample)
return sample.to(x)
sd_model.ema_scope = lambda *args, **kwargs: contextlib.nullcontext()
sd_model.get_first_stage_encoding = lambda x: x
sd_model.decode_first_stage = patched_decode_first_stage
sd_model.encode_first_stage = patched_encode_first_stage
sd_model.clip = sd_model.cond_stage_model
sd_model.tiling_enabled = False
timer.record("forge finalize")
sd_model.current_lora_hash = str([])
return sd_model
def rescale_zero_terminal_snr_abar(alphas_cumprod):
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= alphas_bar_sqrt_T
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas_bar[-1] = 4.8973451890853435e-08
return alphas_bar
def apply_alpha_schedule_override(sd_model, p=None):
"""
Applies an override to the alpha schedule of the model according to settings.
- downcasts the alpha schedule to half precision
- rescales the alpha schedule to have zero terminal SNR
"""
if not (hasattr(sd_model, "alphas_cumprod") and hasattr(sd_model, "alphas_cumprod_original")):
return
sd_model.alphas_cumprod = sd_model.alphas_cumprod_original.to(shared.device)
if shared.opts.use_downcasted_alpha_bar:
if p is not None:
p.extra_generation_params["Downcast alphas_cumprod"] = shared.opts.use_downcasted_alpha_bar
sd_model.alphas_cumprod = sd_model.alphas_cumprod.half().to(shared.device)
if getattr(sd_model, "ztsnr", False) or shared.opts.sd_noise_schedule == "Zero Terminal SNR":
if p is not None:
p.extra_generation_params["Noise Schedule"] = "Zero Terminal SNR"
sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(sd_model.alphas_cumprod).to(shared.device)
ForgeSD = ForgeObjects