WeiChow commited on
Commit
7991684
·
verified ·
1 Parent(s): 961fa4e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -9,4 +9,55 @@ language:
9
  - en
10
  datasets:
11
  format: csv
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - en
10
  datasets:
11
  format: csv
12
+ ---
13
+
14
+
15
+ ---
16
+ license: apache-2.0
17
+ tags:
18
+ - text
19
+ - graph
20
+ task_categories:
21
+ - graph-ml
22
+ language:
23
+ - en
24
+ datasets:
25
+ format: csv
26
+ ---
27
+
28
+ The dataset is dynamic graphs for paper [CrossLink](https://arxiv.org/pdf/2402.02168.pdf). The usage of this dataset can be seen in [Github](https://weichow23.github.io/CrossLink/)
29
+
30
+ ## 🚀 Introduction
31
+
32
+ CrossLink learns the evolution pattern of a specific downstream graph and subsequently makes pattern-specific link predictions.
33
+ It employs a technique called *conditioned link generation*, which integrates both evolution and structure modeling to perform evolution-specific link prediction. This conditioned link generation is carried out by a transformer-decoder architecture, enabling efficient parallel training and inference. CrossLink is trained on extensive dynamic graphs across diverse domains, encompassing 6 million dynamic edges. Extensive experiments on eight untrained graphs demonstrate that CrossLink achieves state-of-the-art performance in cross-domain link prediction. Compared to advanced baselines under the same settings, CrossLink shows an average improvement of **11.40%** in Average Precision across eight graphs. Impressively, it surpasses the fully supervised performance of 8 advanced baselines on 6 untrained graphs.
34
+
35
+ ![Architecture](model.png)
36
+
37
+ ## Format
38
+
39
+ Please keep the dataset in the fellow format:
40
+
41
+ | Unnamed: 0 | u | i | ts | label | idx |
42
+ | ---------- | ------------- | ------------- | ------------------ | ------------ | ---------------------- |
43
+ | `idx-1` | `source node` | `target node` | `interaction time` | `defalut: 0` | `from 1 to the #edges` |
44
+
45
+ You can prepare those data by the code in `preprocess_data` folder
46
+
47
+ You can also use our processed data in [huggingface](https://huggingface.co/datasets/WeiChow/DyGraphs)
48
+
49
+ ## 📚 Citation
50
+
51
+ If you find this work helpful, please consider citing:
52
+
53
+ ```bibtex
54
+ @misc{huang2024graphmodelcrossdomaindynamic,
55
+ title={One Graph Model for Cross-domain Dynamic Link Prediction},
56
+ author={Xuanwen Huang and Wei Chow and Yang Wang and Ziwei Chai and Chunping Wang and Lei Chen and Yang Yang},
57
+ year={2024},
58
+ eprint={2402.02168},
59
+ archivePrefix={arXiv},
60
+ primaryClass={cs.LG},
61
+ url={https://arxiv.org/abs/2402.02168},
62
+ }
63
+ ```