|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{xu-etal-2020-matinf, |
|
title = "{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization", |
|
author = "Xu, Canwen and |
|
Pei, Jiaxin and |
|
Wu, Hongtao and |
|
Liu, Yiyu and |
|
Li, Chenliang", |
|
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.acl-main.330", |
|
pages = "3586--3596", |
|
} |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization. |
|
MATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question |
|
descriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, |
|
question answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to |
|
inspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the |
|
merits held by MATINF. |
|
""" |
|
|
|
|
|
class MatinfConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for MATINF.""" |
|
|
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
label_classes=None, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for MATINF. |
|
|
|
Args: |
|
text_features: `dict[string, string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the tsv file |
|
label_column: `string`, name of the column in the tsv file corresponding |
|
to the label |
|
label_classes: `list[string]`, the list of classes if the label is |
|
categorical. If not provided, then the label will be of type |
|
`datasets.Value('float32')`. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MatinfConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
|
|
|
|
class Matinf(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
MatinfConfig( |
|
name="age_classification", |
|
text_features=["question", "description"], |
|
label_column="class", |
|
label_classes=["0-1岁", "1-2岁", "2-3岁"], |
|
), |
|
MatinfConfig( |
|
name="topic_classification", |
|
text_features=["question", "description"], |
|
label_column="class", |
|
label_classes=[ |
|
"产褥期保健", |
|
"儿童过敏", |
|
"动作发育", |
|
"婴幼保健", |
|
"婴幼心理", |
|
"婴幼早教", |
|
"婴幼期喂养", |
|
"婴幼营养", |
|
"孕期保健", |
|
"家庭教育", |
|
"幼儿园", |
|
"未准父母", |
|
"流产和不孕", |
|
"疫苗接种", |
|
"皮肤护理", |
|
"宝宝上火", |
|
"腹泻", |
|
"婴幼常见病", |
|
], |
|
), |
|
MatinfConfig( |
|
name="summarization", |
|
text_features=["description", "question"], |
|
label_column=None, |
|
), |
|
MatinfConfig( |
|
name="qa", |
|
text_features=["question", "answer"], |
|
label_column=None, |
|
), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"To use MATINF you have to download it manually. Please fill this google form (" |
|
"https://forms.gle/nkH4LVE4iNQeDzsc9). You will receive a download link and a password once you " |
|
"complete the form. Please extract all files in one folder and load the dataset with: " |
|
"`datasets.load_dataset('matinf', data_dir='path/to/folder/folder_name')`" |
|
) |
|
|
|
def _info(self): |
|
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features} |
|
if self.config.label_classes: |
|
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) |
|
features["id"] = datasets.Value("int32") |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
homepage="https://github.com/WHUIR/MATINF", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('matinf', data_dir=...)` that includes files unzipped from the MATINF zip. Manual download instructions: {self.manual_download_instructions}" |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "dev.csv")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
label_classes = self.config.label_classes |
|
|
|
with open(filepath, encoding="utf8") as f: |
|
reader = csv.DictReader(f) |
|
|
|
for n, row in enumerate(reader): |
|
example = {feat: row[feat] for feat in self.config.text_features} |
|
example["id"] = row["id"] |
|
|
|
if self.config.label_column: |
|
label = row[self.config.label_column] |
|
if label_classes and label not in label_classes: |
|
continue |
|
example["label"] = label |
|
|
|
|
|
for value in example.values(): |
|
if value is None: |
|
break |
|
else: |
|
yield example["id"], example |
|
|