%% This is a demo code to show how to generate training and testing samples from the HSI %% | |
clc | |
clear | |
close all | |
addpath('include'); | |
%% Step 1: generate the training and testing images from the original HSI | |
load('Houston2018.mat');%% Please down the Chikusei dataset (mat format) from https://www.sal.t.u-tokyo.ac.jp/hyperdata/ | |
%% center crop this image to size 4172 x 1202 | |
img = Houston2018; | |
clear Houston2018; | |
% normalization | |
img = single(img); | |
img = img ./ max(max(max(img))); | |
%% select first column as test images | |
[H, W, C] = size(img); | |
test_img_size = 256; | |
test_pic_num = floor(W / test_img_size); | |
mkdir test_Houston; | |
for i = 1:test_pic_num | |
left = (i - 1) * test_img_size + 1; | |
right = left + test_img_size - 1; | |
test = img(1:test_img_size,left:right,:); | |
save(strcat('./test_Houston/Houston_test_', int2str(i), '.mat'),'test'); | |
end | |
%% the rest bottom for training | |
mkdir ('train_Houston'); | |
img = img((test_img_size+1):end,:,:); | |
save('./train_Houston/Houston_train.mat', 'img'); | |
%% Step 2: generate the testing images used in mains.py | |
generate_test_data; | |
%% Step 3: generate the training samples (patches) cropped from the training images | |
generate_train_data; | |
%% Step 4: Please manually remove 10% of the samples to the folder of evals |