Datasets:

Modalities:
Image
Languages:
English
ArXiv:
Libraries:
Datasets
FiftyOne
License:
jamarks commited on
Commit
ff60b43
1 Parent(s): 9887c1b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -105
README.md CHANGED
@@ -13,7 +13,10 @@ tags:
13
  - group
14
  - object-detection
15
  - sports
16
- dataset_summary: '
 
 
 
17
 
18
 
19
 
@@ -21,13 +24,14 @@ dataset_summary: '
21
 
22
 
23
 
24
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1799 samples.
 
25
 
26
 
27
  ## Installation
28
 
29
 
30
- If you haven''t already, install FiftyOne:
31
 
32
 
33
  ```bash
@@ -49,9 +53,9 @@ dataset_summary: '
49
 
50
  # Load the dataset
51
 
52
- # Note: other available arguments include ''max_samples'', etc
53
 
54
- dataset = fouh.load_from_hub("jamarks/SoccerNet-V3")
55
 
56
 
57
  # Launch the App
@@ -59,13 +63,13 @@ dataset_summary: '
59
  session = fo.launch_app(dataset)
60
 
61
  ```
62
-
63
- '
64
  ---
65
 
66
  # Dataset Card for SoccerNet-V3
67
 
68
- <!-- Provide a quick summary of the dataset. -->
 
 
69
 
70
 
71
 
@@ -91,7 +95,7 @@ import fiftyone.utils.huggingface as fouh
91
 
92
  # Load the dataset
93
  # Note: other available arguments include 'max_samples', etc
94
- dataset = fouh.load_from_hub("jamarks/SoccerNet-V3")
95
 
96
  # Launch the App
97
  session = fo.launch_app(dataset)
@@ -105,127 +109,96 @@ session = fo.launch_app(dataset)
105
  <!-- Provide a longer summary of what this dataset is. -->
106
 
107
 
108
-
109
- - **Curated by:** [More Information Needed]
110
- - **Funded by [optional]:** [More Information Needed]
111
- - **Shared by [optional]:** [More Information Needed]
112
  - **Language(s) (NLP):** en
113
  - **License:** mit
114
 
115
- ### Dataset Sources [optional]
116
-
117
  <!-- Provide the basic links for the dataset. -->
118
 
119
- - **Repository:** [More Information Needed]
120
- - **Paper [optional]:** [More Information Needed]
121
- - **Demo [optional]:** [More Information Needed]
122
-
123
- ## Uses
124
-
125
- <!-- Address questions around how the dataset is intended to be used. -->
126
-
127
- ### Direct Use
128
-
129
- <!-- This section describes suitable use cases for the dataset. -->
130
-
131
- [More Information Needed]
132
-
133
- ### Out-of-Scope Use
134
-
135
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
136
 
137
- [More Information Needed]
138
-
139
- ## Dataset Structure
140
-
141
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
142
-
143
- [More Information Needed]
144
 
145
  ## Dataset Creation
146
 
147
- ### Curation Rationale
148
-
149
- <!-- Motivation for the creation of this dataset. -->
150
-
151
- [More Information Needed]
152
-
153
- ### Source Data
154
-
155
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
156
-
157
- #### Data Collection and Processing
158
-
159
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
160
-
161
- [More Information Needed]
162
 
163
- #### Who are the source data producers?
164
 
165
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
 
 
166
 
167
- [More Information Needed]
168
 
169
- ### Annotations [optional]
 
 
170
 
171
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
172
 
173
- #### Annotation process
 
174
 
175
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
176
 
177
- [More Information Needed]
 
 
 
178
 
179
- #### Who are the annotators?
180
 
181
- <!-- This section describes the people or systems who created the annotations. -->
182
-
183
- [More Information Needed]
184
-
185
- #### Personal and Sensitive Information
186
-
187
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
188
-
189
- [More Information Needed]
190
-
191
- ## Bias, Risks, and Limitations
192
-
193
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
194
-
195
- [More Information Needed]
196
-
197
- ### Recommendations
198
-
199
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
200
-
201
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
202
-
203
- ## Citation [optional]
204
 
205
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
206
 
207
  **BibTeX:**
208
 
209
- [More Information Needed]
210
-
211
- **APA:**
212
-
213
- [More Information Needed]
214
-
215
- ## Glossary [optional]
216
-
217
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
218
-
219
- [More Information Needed]
220
-
221
- ## More Information [optional]
222
-
223
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
 
225
- ## Dataset Card Authors [optional]
226
 
227
- [More Information Needed]
228
 
229
- ## Dataset Card Contact
230
 
231
- [More Information Needed]
 
13
  - group
14
  - object-detection
15
  - sports
16
+ - tracking
17
+ - action-spotting
18
+ - game-state-recognition
19
+ dataset_summary: >
20
 
21
 
22
 
 
24
 
25
 
26
 
27
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1799
28
+ samples.
29
 
30
 
31
  ## Installation
32
 
33
 
34
+ If you haven't already, install FiftyOne:
35
 
36
 
37
  ```bash
 
53
 
54
  # Load the dataset
55
 
56
+ # Note: other available arguments include 'max_samples', etc
57
 
58
+ dataset = fouh.load_from_hub("Voxel51/SoccerNet-V3")
59
 
60
 
61
  # Launch the App
 
63
  session = fo.launch_app(dataset)
64
 
65
  ```
 
 
66
  ---
67
 
68
  # Dataset Card for SoccerNet-V3
69
 
70
+ SoccerNet is a large-scale dataset for soccer video understanding. It has evolved over the years to include various tasks such as action spotting,
71
+ camera calibration, player re-identification and tracking. It is composed of 550 complete broadcast soccer games and 12 single camera games
72
+ taken from the major European leagues. SoccerNet is not only dataset, but also yearly challenges where the best teams compete at the international level.
73
 
74
 
75
 
 
95
 
96
  # Load the dataset
97
  # Note: other available arguments include 'max_samples', etc
98
+ dataset = fouh.load_from_hub("Voxel51/SoccerNet-V3")
99
 
100
  # Launch the App
101
  session = fo.launch_app(dataset)
 
109
  <!-- Provide a longer summary of what this dataset is. -->
110
 
111
 
 
 
 
 
112
  - **Language(s) (NLP):** en
113
  - **License:** mit
114
 
115
+ ### Dataset Sources
 
116
  <!-- Provide the basic links for the dataset. -->
117
 
118
+ - **Repository:** https://github.com/SoccerNet
119
+ - **Paper** [SoccerNet 2023 Challenges Results](https://arxiv.org/abs/2309.06006)
120
+ - **Demo:** https://try.fiftyone.ai/datasets/soccernet-v3/samples
121
+ - **Homepage** https://www.soccer-net.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
 
 
 
 
 
 
 
123
 
124
  ## Dataset Creation
125
 
126
+ Dataset Authors:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
+ Copyright (c) 2021 holders:
129
 
130
+ - University of Liège (ULiège), Belgium.
131
+ - King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
132
+ - Marc Van Droogenbroeck (M.VanDroogenbroeck@uliege.be), Professor at the University of Liège (ULiège).
133
 
134
+ Code Contributing Authors:
135
 
136
+ - Anthony Cioppa (anthony.cioppa@uliege.be), University of Liège (ULiège), Montefiore Institute, TELIM.
137
+ - Adrien Deliège (adrien.deliege@uliege.be), University of Liège (ULiège), Montefiore Institute, TELIM.
138
+ - Silvio Giancola (silvio.giancola@kaust.edu.sa), King Abdullah University of Science and Technology (KAUST), Image and Video Understanding Laboratory (IVUL), part of the Visual Computing Center (VCC).
139
 
140
+ Supervision from:
141
 
142
+ - Bernard Ghanem, King Abdullah University of Science and Technology (KAUST).
143
+ - Marc Van Droogenbroeck, University of Liège (ULiège).
144
 
145
+ ### Funding
146
 
147
+ Anthony Cioppa is funded by the FRIA, Belgium.
148
+ This work is supported by the DeepSport and TRAIL projects of the Walloon Region, at the University of Liège (ULiège), Belgium.
149
+ This work was supported by the Service Public de Wallonie (SPW) Recherche under the DeepSport project and Grant No.326 2010235 (ARIAC by https://DigitalWallonia4.ai)
150
+ This work is also supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) (award327 OSR-CRG2017-3405).
151
 
 
152
 
153
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
 
155
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
156
 
157
  **BibTeX:**
158
 
159
+ ```bibtex
160
+
161
+ @inproceedings{Giancola_2018,
162
+ title={SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos},
163
+ url={http://dx.doi.org/10.1109/CVPRW.2018.00223},
164
+ DOI={10.1109/cvprw.2018.00223},
165
+ booktitle={2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
166
+ publisher={IEEE},
167
+ author={Giancola, Silvio and Amine, Mohieddine and Dghaily, Tarek and Ghanem, Bernard},
168
+ year={2018},
169
+ month=jun }
170
+
171
+ @misc{deliège2021soccernetv2,
172
+ title={SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos},
173
+ author={Adrien Deliège and Anthony Cioppa and Silvio Giancola and Meisam J. Seikavandi and Jacob V. Dueholm and Kamal Nasrollahi and Bernard Ghanem and Thomas B. Moeslund and Marc Van Droogenbroeck},
174
+ year={2021},
175
+ eprint={2011.13367},
176
+ archivePrefix={arXiv},
177
+ primaryClass={cs.CV}
178
+ }
179
+
180
+ @misc{cioppa2022soccernettracking,
181
+ title={SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos},
182
+ author={Anthony Cioppa and Silvio Giancola and Adrien Deliege and Le Kang and Xin Zhou and Zhiyu Cheng and Bernard Ghanem and Marc Van Droogenbroeck},
183
+ year={2022},
184
+ eprint={2204.06918},
185
+ archivePrefix={arXiv},
186
+ primaryClass={cs.CV}
187
+ }
188
+
189
+ @article{Cioppa2022,
190
+ title={Scaling up SoccerNet with multi-view spatial localization and re-identification},
191
+ author={Cioppa, Anthony and Deli{\`e}ge, Adrien and Giancola, Silvio and Ghanem, Bernard and Van Droogenbroeck, Marc},
192
+ journal={Scientific Data},
193
+ year={2022},
194
+ volume={9},
195
+ number={1},
196
+ pages={355},
197
+ }
198
+ ```
199
 
 
200
 
 
201
 
202
+ ## Dataset Card Authors
203
 
204
+ [Jacob Marks](https://huggingface.co/jamarks)