harpreetsahota commited on
Commit
764f26a
1 Parent(s): d339dad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -131
README.md CHANGED
@@ -6,23 +6,24 @@ size_categories:
6
  task_categories:
7
  - image-classification
8
  task_ids: []
9
- pretty_name: 2024.07.05.21.39.46
10
  tags:
11
  - fiftyone
12
  - image
13
  - image-classification
14
- dataset_summary: '
15
 
16
 
17
 
18
 
19
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
 
20
 
21
 
22
  ## Installation
23
 
24
 
25
- If you haven''t already, install FiftyOne:
26
 
27
 
28
  ```bash
@@ -44,9 +45,9 @@ dataset_summary: '
44
 
45
  # Load the dataset
46
 
47
- # Note: other available arguments include ''max_samples'', etc
48
 
49
- dataset = fouh.load_from_hub("harpreetsahota/Food101")
50
 
51
 
52
  # Launch the App
@@ -54,20 +55,17 @@ dataset_summary: '
54
  session = fo.launch_app(dataset)
55
 
56
  ```
57
-
58
- '
59
  ---
60
 
61
- # Dataset Card for 2024.07.05.21.39.46
62
-
63
- <!-- Provide a quick summary of the dataset. -->
64
-
65
-
66
 
 
67
 
68
 
69
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
70
 
 
 
71
  ## Installation
72
 
73
  If you haven't already, install FiftyOne:
@@ -84,7 +82,7 @@ import fiftyone.utils.huggingface as fouh
84
 
85
  # Load the dataset
86
  # Note: other available arguments include 'max_samples', etc
87
- dataset = fouh.load_from_hub("harpreetsahota/Food101")
88
 
89
  # Launch the App
90
  session = fo.launch_app(dataset)
@@ -95,130 +93,35 @@ session = fo.launch_app(dataset)
95
 
96
  ### Dataset Description
97
 
98
- <!-- Provide a longer summary of what this dataset is. -->
99
 
 
100
 
 
 
 
101
 
102
- - **Curated by:** [More Information Needed]
103
- - **Funded by [optional]:** [More Information Needed]
104
- - **Shared by [optional]:** [More Information Needed]
105
  - **Language(s) (NLP):** en
106
- - **License:** [More Information Needed]
107
-
108
- ### Dataset Sources [optional]
109
-
110
- <!-- Provide the basic links for the dataset. -->
111
-
112
- - **Repository:** [More Information Needed]
113
- - **Paper [optional]:** [More Information Needed]
114
- - **Demo [optional]:** [More Information Needed]
115
-
116
- ## Uses
117
-
118
- <!-- Address questions around how the dataset is intended to be used. -->
119
-
120
- ### Direct Use
121
-
122
- <!-- This section describes suitable use cases for the dataset. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Out-of-Scope Use
127
-
128
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
129
-
130
- [More Information Needed]
131
-
132
- ## Dataset Structure
133
-
134
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
135
-
136
- [More Information Needed]
137
-
138
- ## Dataset Creation
139
-
140
- ### Curation Rationale
141
-
142
- <!-- Motivation for the creation of this dataset. -->
143
-
144
- [More Information Needed]
145
-
146
- ### Source Data
147
-
148
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
149
-
150
- #### Data Collection and Processing
151
-
152
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
153
-
154
- [More Information Needed]
155
-
156
- #### Who are the source data producers?
157
 
158
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
159
 
160
- [More Information Needed]
 
 
161
 
162
- ### Annotations [optional]
163
-
164
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
165
-
166
- #### Annotation process
167
-
168
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
169
-
170
- [More Information Needed]
171
-
172
- #### Who are the annotators?
173
-
174
- <!-- This section describes the people or systems who created the annotations. -->
175
-
176
- [More Information Needed]
177
-
178
- #### Personal and Sensitive Information
179
-
180
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
181
-
182
- [More Information Needed]
183
-
184
- ## Bias, Risks, and Limitations
185
-
186
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
187
-
188
- [More Information Needed]
189
-
190
- ### Recommendations
191
-
192
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
193
-
194
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
195
-
196
- ## Citation [optional]
197
-
198
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
199
 
200
  **BibTeX:**
201
 
202
- [More Information Needed]
203
-
204
- **APA:**
205
-
206
- [More Information Needed]
207
-
208
- ## Glossary [optional]
209
-
210
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
211
-
212
- [More Information Needed]
213
-
214
- ## More Information [optional]
215
-
216
- [More Information Needed]
217
-
218
- ## Dataset Card Authors [optional]
219
-
220
- [More Information Needed]
221
-
222
- ## Dataset Card Contact
223
-
224
- [More Information Needed]
 
6
  task_categories:
7
  - image-classification
8
  task_ids: []
9
+ pretty_name: Food101
10
  tags:
11
  - fiftyone
12
  - image
13
  - image-classification
14
+ dataset_summary: >
15
 
16
 
17
 
18
 
19
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000
20
+ samples.
21
 
22
 
23
  ## Installation
24
 
25
 
26
+ If you haven't already, install FiftyOne:
27
 
28
 
29
  ```bash
 
45
 
46
  # Load the dataset
47
 
48
+ # Note: other available arguments include 'max_samples', etc
49
 
50
+ dataset = fouh.load_from_hub("Voxel51/Food101")
51
 
52
 
53
  # Launch the App
 
55
  session = fo.launch_app(dataset)
56
 
57
  ```
 
 
58
  ---
59
 
60
+ # Dataset Card for Food-101
 
 
 
 
61
 
62
+ [!image](food-101.gif)
63
 
64
 
65
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
66
 
67
+ **Note:** This dataset is subset of the full Food101 dataset. The recipe notebook for creating this dataset can be found [here](https://colab.research.google.com/drive/11ZDZxaRTVR3DjANNR4p5CnCYqlTYmpfT)
68
+
69
  ## Installation
70
 
71
  If you haven't already, install FiftyOne:
 
82
 
83
  # Load the dataset
84
  # Note: other available arguments include 'max_samples', etc
85
+ dataset = fouh.load_from_hub("Voxel51/Food101")
86
 
87
  # Launch the App
88
  session = fo.launch_app(dataset)
 
93
 
94
  ### Dataset Description
95
 
96
+ The Food-101 dataset is a large-scale dataset for food recognition, consisting of 101,000 images across 101 different food categories.
97
 
98
+ Here are the key details:
99
 
100
+ - Contains a total of 101,000 images
101
+ - Each food class has 1,000 images, with 750 training images and 250 test images per class
102
+ - All images were rescaled to have a maximum side length of 512 pixels
103
 
104
+ - **Curated by:** Lukas Bossard, Matthieu Guillaumin, Luc Van Gool
105
+ - **Funded by:** Computer Vision Lab, ETH Zurich, Switzerland
106
+ - **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
107
  - **Language(s) (NLP):** en
108
+ - **License:** The dataset images come from Foodspotting and are not owned by the creators of the Food-101 dataset (ETH Zurich). Any use beyond scientific fair use must be negotiated with the respective picture owners according to the Foodspotting terms of use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
+ ### Dataset Sources
111
 
112
+ - **Repository:** https://huggingface.co/datasets/ethz/food101
113
+ - **Website:** https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
114
+ - **Paper:** https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf
115
 
116
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
  **BibTeX:**
119
 
120
+ ```bibtex
121
+ @inproceedings{bossard14,
122
+ title = {Food-101 -- Mining Discriminative Components with Random Forests},
123
+ author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
124
+ booktitle = {European Conference on Computer Vision},
125
+ year = {2014}
126
+ }
127
+ ```