|
|
|
"""20ng classification dataset.""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
import sys |
|
csv.field_size_limit(sys.maxsize) |
|
|
|
_DESCRIPTION = """\ |
|
This data collection contains all the data used in our learning question classification experiments(see [1]), which has question class definitions, the training and testing question sets, examples of preprocessing the questions, feature definition scripts and examples of semantically related word features. |
|
This work has been done by Xin Li and Dan Roth and supported by [2]. |
|
""" |
|
|
|
_CITATION = """""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/20ng_not_enough_data/resolve/main/train.csv" |
|
_TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/20ng_not_enough_data/resolve/main/test.csv" |
|
_VALID_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/20ng_not_enough_data/raw/main/validation.csv" |
|
|
|
|
|
CATEGORY_MAPPING = {'comp.sys.mac.hardware': 0, |
|
'comp.graphics': 1, |
|
'sci.space': 2, |
|
'talk.politics.guns': 3, |
|
'sci.med': 4, |
|
'comp.sys.ibm.pc.hardware': 5, |
|
'comp.os.ms-windows.misc': 6, |
|
'rec.motorcycles': 7, |
|
'misc.forsale': 8, |
|
'alt.atheism': 9, |
|
'rec.autos': 10, |
|
'sci.electronics': 11, |
|
'comp.windows.x': 12, |
|
'rec.sport.hockey': 13, |
|
'rec.sport.baseball': 14, |
|
'talk.politics.mideast': 15, |
|
'sci.crypt': 16, |
|
'soc.religion.christian': 17, |
|
'talk.politics.misc': 18, |
|
'talk.religion.misc': 19} |
|
|
|
class NG(datasets.GeneratorBasedBuilder): |
|
"""20ng classification dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=list(CATEGORY_MAPPING.keys())), |
|
"labeled_mask": datasets.Value("string"), |
|
} |
|
), |
|
homepage="", |
|
citation=_CITATION, |
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
valid_path = dl_manager.download_and_extract(_VALID_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter=";", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
_ = next(csv_reader) |
|
for id_, row in enumerate(csv_reader): |
|
text, label, label_mask = row |
|
label = CATEGORY_MAPPING.get(label, label) |
|
yield id_, {"text": text, "label": label, "labeled_mask": label_mask} |