feat: script
Browse files
facial-emotion-recognition-dataset.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import PIL.Image
|
| 8 |
+
import PIL.ImageOps
|
| 9 |
+
|
| 10 |
+
_CITATION = """\
|
| 11 |
+
@InProceedings{huggingface:dataset,
|
| 12 |
+
title = {body-measurements-dataset},
|
| 13 |
+
author = {TrainingDataPro},
|
| 14 |
+
year = {2023}
|
| 15 |
+
}
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
_DESCRIPTION = """\
|
| 19 |
+
The dataset consists of a compilation of people's photos along with their
|
| 20 |
+
corresponding body measurements. It is designed to provide information and
|
| 21 |
+
insights into the physical appearances and body characteristics of individuals.
|
| 22 |
+
The dataset includes a diverse range of subjects representing different age
|
| 23 |
+
groups, genders, and ethnicities.
|
| 24 |
+
|
| 25 |
+
The photos are captured in a standardized manner, depicting individuals in a
|
| 26 |
+
front and side positions.
|
| 27 |
+
The images aim to capture the subjects' physical appearance using appropriate
|
| 28 |
+
lighting and angles that showcase their body proportions accurately.
|
| 29 |
+
|
| 30 |
+
The dataset serves various purposes, including:
|
| 31 |
+
- research projects
|
| 32 |
+
- body measurement analysis
|
| 33 |
+
- fashion or apparel industry applications
|
| 34 |
+
- fitness and wellness studies
|
| 35 |
+
- anthropometric studies for ergonomic design in various fields
|
| 36 |
+
"""
|
| 37 |
+
_NAME = 'body-measurements-dataset'
|
| 38 |
+
|
| 39 |
+
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
| 40 |
+
|
| 41 |
+
_LICENSE = "cc-by-nc-nd-4.0"
|
| 42 |
+
|
| 43 |
+
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class BodyMeasurementsDataset(datasets.GeneratorBasedBuilder):
|
| 47 |
+
|
| 48 |
+
def _info(self):
|
| 49 |
+
return datasets.DatasetInfo(
|
| 50 |
+
description=_DESCRIPTION,
|
| 51 |
+
features=datasets.Features({
|
| 52 |
+
'front_img': datasets.Image(),
|
| 53 |
+
'selfie_img': datasets.Image(),
|
| 54 |
+
'side_img': datasets.Image(),
|
| 55 |
+
"arm_circumference_cm": datasets.Value('string'),
|
| 56 |
+
"arm_length_cm": datasets.Value('string'),
|
| 57 |
+
"back_build_cm": datasets.Value('string'),
|
| 58 |
+
"calf_circumference_cm": datasets.Value('string'),
|
| 59 |
+
"chest_circumference_cm": datasets.Value('string'),
|
| 60 |
+
"crotch_height_cm": datasets.Value('string'),
|
| 61 |
+
"front_build_cm": datasets.Value('string'),
|
| 62 |
+
"hips_circumference_cm": datasets.Value('string'),
|
| 63 |
+
"leg_length_cm": datasets.Value('string'),
|
| 64 |
+
"neck_circumference_cm": datasets.Value('string'),
|
| 65 |
+
"neck_pelvis_length_front_cm": datasets.Value('string'),
|
| 66 |
+
"neck_waist_length_back_cm": datasets.Value('string'),
|
| 67 |
+
"neck_waist_length_front_cm": datasets.Value('string'),
|
| 68 |
+
"pelvis_circumference_cm": datasets.Value('string'),
|
| 69 |
+
"shoulder_length_cm": datasets.Value('string'),
|
| 70 |
+
"shoulder_width_cm": datasets.Value('string'),
|
| 71 |
+
"thigh_circumference_cm": datasets.Value('string'),
|
| 72 |
+
"under_chest_circumference_cm": datasets.Value('string'),
|
| 73 |
+
"upper_arm_length_cm": datasets.Value('string'),
|
| 74 |
+
"waist_circumference_cm": datasets.Value('string'),
|
| 75 |
+
"height": datasets.Value('string'),
|
| 76 |
+
"weight": datasets.Value('string'),
|
| 77 |
+
"age": datasets.Value('string'),
|
| 78 |
+
"gender": datasets.Value('string'),
|
| 79 |
+
"race": datasets.Value('string'),
|
| 80 |
+
"profession": datasets.Value('string'),
|
| 81 |
+
"arm_circumference": datasets.Image(),
|
| 82 |
+
"arm_length": datasets.Image(),
|
| 83 |
+
"back_build": datasets.Image(),
|
| 84 |
+
"calf_circumference": datasets.Image(),
|
| 85 |
+
"chest_circumference": datasets.Image(),
|
| 86 |
+
"crotch_height": datasets.Image(),
|
| 87 |
+
"front_build": datasets.Image(),
|
| 88 |
+
"hips_circumference": datasets.Image(),
|
| 89 |
+
"leg_length": datasets.Image(),
|
| 90 |
+
"neck_circumference": datasets.Image(),
|
| 91 |
+
"neck_pelvis_length_front": datasets.Image(),
|
| 92 |
+
"neck_waist_length_back": datasets.Image(),
|
| 93 |
+
"neck_waist_length_front": datasets.Image(),
|
| 94 |
+
"pelvis_circumference": datasets.Image(),
|
| 95 |
+
"shoulder_length": datasets.Image(),
|
| 96 |
+
"shoulder_width": datasets.Image(),
|
| 97 |
+
"thigh_circumference": datasets.Image(),
|
| 98 |
+
"under_chest_circumference": datasets.Image(),
|
| 99 |
+
"upper_arm_length": datasets.Image(),
|
| 100 |
+
"waist_circumference": datasets.Image()
|
| 101 |
+
}),
|
| 102 |
+
supervised_keys=None,
|
| 103 |
+
homepage=_HOMEPAGE,
|
| 104 |
+
citation=_CITATION,
|
| 105 |
+
license=_LICENSE)
|
| 106 |
+
|
| 107 |
+
def _split_generators(self, dl_manager):
|
| 108 |
+
files = dl_manager.download_and_extract(f"{_DATA}files.zip")
|
| 109 |
+
proofs = dl_manager.download_and_extract(f"{_DATA}proofs.zip")
|
| 110 |
+
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
| 111 |
+
files = dl_manager.iter_files(files)
|
| 112 |
+
proofs = dl_manager.iter_files(proofs)
|
| 113 |
+
return [
|
| 114 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
| 115 |
+
gen_kwargs={
|
| 116 |
+
"files": files,
|
| 117 |
+
'proofs': proofs,
|
| 118 |
+
'annotations': annotations
|
| 119 |
+
}),
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
def _generate_examples(self, files, proofs, annotations):
|
| 123 |
+
files = list(files)
|
| 124 |
+
files = [files[i:i + 4] for i in range(0, len(files), 4)]
|
| 125 |
+
proofs = list(proofs)
|
| 126 |
+
proofs = [proofs[i:i + 20] for i in range(0, len(proofs), 20)]
|
| 127 |
+
|
| 128 |
+
for idx, (files_dir, proofs_dir) in enumerate(zip(files, proofs)):
|
| 129 |
+
data = {}
|
| 130 |
+
for file in files_dir:
|
| 131 |
+
if 'front_img' in file:
|
| 132 |
+
data['front_img'] = file
|
| 133 |
+
elif 'selfie_img' in file:
|
| 134 |
+
data['selfie_img'] = file
|
| 135 |
+
elif 'side_img' in file:
|
| 136 |
+
data['side_img'] = file
|
| 137 |
+
elif 'measurements' in file:
|
| 138 |
+
with open(file) as f:
|
| 139 |
+
data.update(json.load(f))
|
| 140 |
+
|
| 141 |
+
for proof in proofs_dir:
|
| 142 |
+
if "arm_circumference" in proof:
|
| 143 |
+
data['arm_circumference'] = proof
|
| 144 |
+
elif 'upper_arm_length' in proof:
|
| 145 |
+
data['upper_arm_length'] = proof
|
| 146 |
+
elif 'arm_length' in proof:
|
| 147 |
+
data['arm_length'] = proof
|
| 148 |
+
elif 'back_build' in proof:
|
| 149 |
+
data['back_build'] = proof
|
| 150 |
+
elif 'calf_circumference' in proof:
|
| 151 |
+
data['calf_circumference'] = proof
|
| 152 |
+
elif 'under_chest_circumference' in proof:
|
| 153 |
+
data['under_chest_circumference'] = proof
|
| 154 |
+
elif 'chest_circumference' in proof:
|
| 155 |
+
data['chest_circumference'] = proof
|
| 156 |
+
elif 'crotch_height' in proof:
|
| 157 |
+
data['crotch_height'] = proof
|
| 158 |
+
elif 'front_build' in proof:
|
| 159 |
+
data['front_build'] = proof
|
| 160 |
+
elif 'hips_circumference' in proof:
|
| 161 |
+
data['hips_circumference'] = proof
|
| 162 |
+
elif 'leg_length' in proof:
|
| 163 |
+
data['leg_length'] = proof
|
| 164 |
+
elif 'neck_circumference' in proof:
|
| 165 |
+
data['neck_circumference'] = proof
|
| 166 |
+
elif 'neck_pelvis_length_front' in proof:
|
| 167 |
+
data['neck_pelvis_length_front'] = proof
|
| 168 |
+
elif 'neck_waist_length_back' in proof:
|
| 169 |
+
data['neck_waist_length_back'] = proof
|
| 170 |
+
elif 'neck_waist_length_front' in proof:
|
| 171 |
+
data['neck_waist_length_front'] = proof
|
| 172 |
+
elif 'pelvis_circumference' in proof:
|
| 173 |
+
data['pelvis_circumference'] = proof
|
| 174 |
+
elif 'shoulder_length' in proof:
|
| 175 |
+
data['shoulder_length'] = proof
|
| 176 |
+
elif 'shoulder_width' in proof:
|
| 177 |
+
data['shoulder_width'] = proof
|
| 178 |
+
elif 'thigh_circumference' in proof:
|
| 179 |
+
data['thigh_circumference'] = proof
|
| 180 |
+
elif 'waist_circumference' in proof:
|
| 181 |
+
data['waist_circumference'] = proof
|
| 182 |
+
|
| 183 |
+
yield idx, data
|