Datasets:

Modalities:
Text
Formats:
text
Size:
< 1K
Libraries:
Datasets
License:
CDCHEALTH / app.py
Beladiaamy's picture
Update app.py
7a4f9c1 verified
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# load the model from disk
loaded_model = pickle.load(open("db_xgb.pkl", 'rb'))
# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
# Create the main function for server
def main_func(Diabetes, HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income):
new_row = pd.DataFrame.from_dict({'Diabetes': Diabetes, 'HighBP': HighBP, 'HighChol': HighChol, 'CholCheck': CholCheck, 'BMI': BMI, 'Smoker': Smoker, 'Stroke': Stroke, 'HeartDiseaseorAttack': HeartDiseaseorAttack, 'PhysActivity':PhysActivity, 'Fruits':Fruits, 'Veggies':Veggies, 'HvyAlcoholConsump': HvyAlcoholConsump, 'AnyHealthcare': AnyHealthcare, 'NoDocbcCost': NoDocbcCost, 'GenHlth': GenHlth, 'MentHlth': MentHlth, 'PhysHlth': PhysHlth, 'DiffWalk': DiffWalk, 'Sex': Sex, 'Age': Age, 'Education': Education, 'Income': Income},
orient = 'index').transpose()
prob = loaded_model.predict_proba(new_row)
shap_values = explainer(new_row)
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
plt.tight_layout()
local_plot = plt.gcf()
plt.close()
return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot
# Create the UI
title = "**Diabetes Predictor & Interpreter** πŸͺ"
description1 = """This app takes info from subjects and predicts their diabetes likelihood. Do not use for medical diagnosis."""
description2 = """
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🀞
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
Diabetes = gr.Slider(label="Diabetes Score", minimum = 0, maximum = 1, value = 1, step = 1)
HighBP = gr.Slider(label="BP Score", minimum = 0, maximum = 1, value = 1, step = 1)
HighChol = gr.Slider(label="Cholesterol Score", minimum = 0, maximum = 1, value = 1, step = 1)
CholCheck = gr.Slider(label="CholCheck Score", minimum = 0, maximum = 1, value = 1, step = 1)
BMI = gr.Number(label="BMI Score", minimum = 0, maximum = 98, value = 1)
Smoker = gr.Slider(label="Smoker Score", minimum = 0, maximum = 1, value = 1, step = 1)
Stroke = gr.Slider(label="Stroke Score", minimum = 0, maximum = 1, value = 1, step = 1)
HeartDiseaseorAttack = gr.Slider(label="HeartDiseaseorAttack Score", minimum = 0, maximum = 1, value = 1, step = 1)
PhysActivity = gr.Slider(label="Physical Activity Score", minimum = 0, maximum = 1, value = 1, step = 1))
Fruits = gr.Slider(label="Fruits Score", minimum = 0, maximum = 1, value = 1, step = 1)
Veggies = gr.Slider(label="Veggies Score", minimum = 0, maximum = 1, value = 1, step = 1)
HvyAlcoholConsump = gr.Slider(label="Alcohol Consumption Score", minimum = 0, maximum = 1, value = 1, step = 1)
AnyHealthcare = gr.Slider(label="AnyHealthcare Score", minimum = 0, maximum = 1, value = 1, step = 1)
NoDocbcCost = gr.Slider(label="NoDocbcCost Score", minimum = 0, maximum = 1, value = 1, step = 1)
GenHlth = gr.Slider(label="GenHlth Score", minimum = 1, maximum = 5, value = 1, step = 1)
PhysHealth = gr.Number(label="PhysHealth Score", minimum = 0, maximum = 30, value=1)
MentHlth = gr.Number(label="MentHlth Score", minimum = 0, maximum = 30, value = 1, step = 1)
DiffWalk = gr.Number(label="DiffWalk Score", minimum = 0, maximum = 1, value = 1, step = 1)
Sex = gr.Slider(label="sex Score", minimum = 0, maximum = 1, value = 1, step = 1)
Age = gr.Number(label="age Score", minimum = 1, maximum = 100, value = 1)
Education = gr.Slider(label="Education Score", minimum = 1, maximum = 6, value = 1, step = 1)
Income = gr.Slider(label="Income Score", minimum = 1, maximum = 8, value = 1, step = 1)
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
local_plot = gr.Plot(label = 'Shap:')
submit_btn.click(
main_func,
[Diabetes, HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income],
[label,local_plot], api_name="Diabetes_Predictor"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([[0,0,1,0,22,0,0,0,1,1,1,0,0,1,3,25,23,1,1,21,5,3], [1,1,1,1,30,1,1,1,0,0,0,1,1,0,2,20,23,0,0,21,3,2]], [Diabetes, HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income], [label,local_plot], main_func, cache_examples=True)
demo.launch()