Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
kwang2049 commited on
Commit
66b5d3b
1 Parent(s): 4eb3e64
Files changed (3) hide show
  1. .gitignore +1 -0
  2. README.md +87 -1
  3. loading.py +64 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ ./loading.py
README.md CHANGED
@@ -158,5 +158,91 @@ configs:
158
  path: MIRACL/keyphrases/*
159
  ---
160
 
161
- # DAPR
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  path: MIRACL/keyphrases/*
159
  ---
160
 
161
+ # DAPR: Document-Aware Passage Retrieval
162
 
163
+ This datasets repo contains the queries, passages/documents and judgements for the data used in the [DAPR](https://arxiv.org/abs/2305.13915) paper.
164
+
165
+ ## Overview
166
+ For the DAPR benchmark, it contains 5 datasets:
167
+ | Dataset | #Queries (test) | #Documents | #Passages
168
+ | --- | --- | --- | --- |
169
+ | MS MARCO | 2,722 | 1,359,163 | 2,383,023* |
170
+ | Natural Questions | 3,610 | 108,626 | 2,682,017|
171
+ | MIRACL | 799 | 5,758,285 |32,893,221|
172
+ | Genomics | 62 | 162,259 |12,641,127|
173
+ | ConditionalQA | 271 | 652 |69,199|
174
+
175
+ And additionally, NQ-hard, the hard subset of queries from Natural Questions is also included (516 in total). These queries are hard because understanding the document context (e.g. coreference, main topic, multi-hop reasoning, and acronym) is necessary for retrieving the relevant passages.
176
+
177
+ > Notes: for MS MARCO, its documents do not provide the gold paragraph segmentation and we only segment the document by keeping the judged passages (from the MS MARCO Passage Ranking task) standing out while leaving the rest parts surrounding these passages. These passages are marked by `is_candidate==true`.
178
+
179
+ ## Load the dataset
180
+ ### Loading the passages
181
+ One can load the passages like this:
182
+ ```python
183
+ from datasets import load_dataset
184
+
185
+ dataset_name = "ConditionalQA"
186
+ passages = load_dataset("kwang2049/dapr", f"{dataset_name}-corpus", split="test")
187
+ for passage in passages:
188
+ passage["_id"] # passage id
189
+ passage["text"] # passage text
190
+ passage["title"] # doc title
191
+ passage["doc_id"]
192
+ passage["paragraph_no"] # the paragraph number within the document
193
+ passage["total_paragraphs"] # how many paragraphs/passages in total in the document
194
+ passage["is_candidate"] # is this passage a candidate for retrieval
195
+ ```
196
+
197
+ Or strem the dataset without downloading it beforehand:
198
+ ```python
199
+ from datasets import load_dataset
200
+
201
+ dataset_name = "ConditionalQA"
202
+ passages = load_dataset(
203
+ "kwang2049/dapr", f"{dataset_name}-corpus", split="test", streaming=True
204
+ )
205
+ for passage in passages:
206
+ passage["_id"] # passage id
207
+ passage["text"] # passage text
208
+ passage["title"] # doc title
209
+ passage["doc_id"]
210
+ passage["paragraph_no"] # the paragraph number within the document
211
+ passage["total_paragraphs"] # how many paragraphs/passages in total in the document
212
+ passage["is_candidate"] # is this passage a candidate for retrieval
213
+ ```
214
+
215
+ ### Loading the qrels
216
+ The qrels split contains the query relevance annotation, i.e., it contains the relevance score for (query, passage) pairs.
217
+ ```python
218
+ from datasets import load_dataset
219
+
220
+ dataset_name = "ConditionalQA"
221
+ qrels = load_dataset("kwang2049/dapr", f"{dataset_name}-qrels", split="test")
222
+ for qrel in qrels:
223
+ qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
224
+ qrel["corpus_id"] # passage id
225
+ qrel["score"] # gold judgement
226
+
227
+ ```
228
+ We present the NQ-hard dataset in an extended format of the normal qrels with additional columns:
229
+ ```python
230
+ from datasets import load_dataset
231
+
232
+ qrels = load_dataset("kwang2049/dapr", "nq-hard", split="test")
233
+ for qrel in qrels:
234
+ qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
235
+ qrel["corpus_id"] # passage id
236
+ qrel["score"] # gold judgement
237
+
238
+ # Additional columns:
239
+ qrel["query"] # query text
240
+ qrel["text"] # passage text
241
+ qrel["title"] # doc title
242
+ qrel["doc_id"]
243
+ qrel["categories"] # list of categories about this query-passage pair
244
+ qrel["url"] # url to the document in Wikipedia
245
+ ```
246
+
247
+ ## Note
248
+ This dataset was created with `datasets==2.15.0`. Make sure to use this or a newer version of the datasets library.
loading.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+
3
+ dataset_name = "ConditionalQA"
4
+ passages = load_dataset("kwang2049/dapr", f"{dataset_name}-corpus", split="test")
5
+ for passage in passages:
6
+ passage["_id"] # passage id
7
+ passage["text"] # passage text
8
+ passage["title"] # doc title
9
+ passage["doc_id"]
10
+ passage["paragraph_no"] # the paragraph number within the document
11
+ passage["total_paragraphs"] # how many paragraphs/passages in total in the document
12
+ passage["is_candidate"] # is this passage a candidate for retrieval
13
+
14
+
15
+ from datasets import load_dataset
16
+
17
+ dataset_name = "ConditionalQA"
18
+ passages = load_dataset(
19
+ "kwang2049/dapr", f"{dataset_name}-corpus", split="test", streaming=True
20
+ )
21
+ for passage in passages:
22
+ passage["_id"] # passage id
23
+ passage["text"] # passage text
24
+ passage["title"] # doc title
25
+ passage["doc_id"]
26
+ passage["paragraph_no"] # the paragraph number within the document
27
+ passage["total_paragraphs"] # how many paragraphs/passages in total in the document
28
+ passage["is_candidate"] # is this passage a candidate for retrieval
29
+
30
+ from datasets import load_dataset
31
+
32
+ dataset_name = "ConditionalQA"
33
+ docs = load_dataset("kwang2049/dapr", f"{dataset_name}-docs", split="test")
34
+ for doc in docs:
35
+ doc["doc_id"]
36
+ doc["title"] # doc title
37
+ doc["passage_ids"] # list of passage ids in the document
38
+ doc["passages"] # list of passage/paragraph texts in the document
39
+
40
+ from datasets import load_dataset
41
+
42
+ dataset_name = "ConditionalQA"
43
+ qrels = load_dataset("kwang2049/dapr", f"{dataset_name}-qrels", split="test")
44
+ for qrel in qrels:
45
+ qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
46
+ qrel["corpus_id"] # passage id
47
+ qrel["score"] # gold judgement
48
+
49
+
50
+ from datasets import load_dataset
51
+
52
+ qrels = load_dataset("kwang2049/dapr", "nq-hard", split="test")
53
+ for qrel in qrels:
54
+ qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
55
+ qrel["corpus_id"] # passage id
56
+ qrel["score"] # gold judgement
57
+
58
+ # Additional columns:
59
+ qrel["query"] # query text
60
+ qrel["text"] # passage text
61
+ qrel["title"] # doc title
62
+ qrel["doc_id"]
63
+ qrel["categories"] # list of categories about this query-passage pair
64
+ qrel["url"] # url to the document in Wikipedia