Datasets:

ArXiv:
License:
albertvillanova HF staff commited on
Commit
122aea4
1 Parent(s): 0c554b7

Revert loading script update

Browse files
Files changed (1) hide show
  1. medical_dialog.py +166 -135
medical_dialog.py CHANGED
@@ -46,21 +46,15 @@ _LICENSE = "Unknown"
46
 
47
  # URLS of processed data
48
  _URLS = {
49
- "en": "data/Medical-Dialogue-Dataset-English.zip",
50
- "zh": "data/Medical-Dialogue-Dataset-Chinese.zip",
51
- "processed.en": "data/processed-english.zip",
52
- "processed.zh": "data/processed-chinese.zip",
53
- }
54
- _FILENAMES = {
55
- "processed.en": {
56
- "train": "english-train.json",
57
- "validation": "english-dev.json",
58
- "test": "english-test.json",
59
  },
60
- "processed.zh": {
61
- "train": "train_data.json",
62
- "validation": "validate_data.json",
63
- "test": "test_data.json",
64
  },
65
  }
66
 
@@ -83,6 +77,33 @@ class MedicalDialog(datasets.GeneratorBasedBuilder):
83
  ),
84
  ]
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  def _info(self):
87
  if self.config.name == "zh":
88
  features = datasets.Features(
@@ -137,13 +158,23 @@ class MedicalDialog(datasets.GeneratorBasedBuilder):
137
  """Returns SplitGenerators."""
138
  *processed, lang = self.config.name.split(".")
139
  if processed:
140
- # data_dir = dl_manager.download(_URLS[lang])
141
- data_dir = dl_manager.download_and_extract(_URLS[self.config.name])
142
  splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
143
- return [datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": os.path.join(data_dir, _FILENAMES[self.config.name][split])}) for split in splits]
144
  else:
145
- archive = dl_manager.download(_URLS[self.config.name])
146
- return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": dl_manager.iter_archive(archive)})]
 
 
 
 
 
 
 
 
 
 
 
147
 
148
  def _generate_examples(self, filepaths):
149
  """Yields examples. Iterates over each file and give the creates the corresponding features.
@@ -174,130 +205,130 @@ class MedicalDialog(datasets.GeneratorBasedBuilder):
174
  array = ""
175
  else:
176
  id_ = -1
177
- for filepath, f_in in filepaths:
178
- # with open(filepath, encoding="utf-8") as f_in:
179
- # Parameters to just "sectionize" the raw data
180
- last_part = ""
181
- last_dialog = {}
182
- last_list = []
183
- last_user = ""
184
- check_list = []
185
-
186
- # These flags are present to have a single function address both chinese and english data
187
- # English data is a little hahazard (i.e. the sentences spans multiple different lines),
188
- # Chinese is compact with one line for doctor and patient.
189
- conv_flag = False
190
- des_flag = False
191
-
192
- while True:
193
- line = f_in.readline().decode("utf-8")
194
- if not line:
195
- break
196
-
197
- # Extracting the dialog id
198
- if line[:2] == "id": # Hardcode alert!
199
- # Handling ID references that may come in the description
200
- # These were observed in the Chinese dataset and were not
201
- # followed by numbers
202
- try:
203
- dialogue_id = int(re.findall(r"\d+", line)[0])
204
- except IndexError:
205
- continue
206
-
207
- # Extracting the url
208
- if line[:4] == "http": # Hardcode alert!
209
- dialogue_url = line.rstrip()
210
-
211
- # Extracting the patient info from description.
212
- if line[:11] == "Description": # Hardcode alert!
213
- last_part = "description"
214
- last_dialog = {}
215
- last_list = []
216
- last_user = ""
217
- last_conv = {"speaker": "", "utterance": ""}
218
- while True:
219
- line = f_in.readline().decode("utf-8")
220
- if (not line) or (line in ["\n", "\n\r"]):
221
- break
222
- else:
223
- if data_lang == "zh": # Condition in chinese
224
- if line[:5] == "病情描述:": # Hardcode alert!
225
- last_user = "病人"
226
- sen = f_in.readline().decode("utf-8").rstrip()
227
- des_flag = True
228
 
229
- if data_lang == "en":
230
- last_user = "Patient"
231
- sen = line.rstrip()
232
- des_flag = True
233
-
234
- if des_flag:
235
- if sen == "":
236
- continue
237
- if sen in check_list:
238
- last_conv["speaker"] = ""
239
- last_conv["utterance"] = ""
240
- else:
241
- last_conv["speaker"] = last_user
242
- last_conv["utterance"] = sen
243
- check_list.append(sen)
244
- des_flag = False
245
- break
246
- # Extracting the conversation info from dialogue.
247
- elif line[:8] == "Dialogue": # Hardcode alert!
248
- if last_part == "description" and len(last_conv["utterance"]) > 0:
249
- last_part = "dialogue"
250
- if data_lang == "zh":
251
- last_user = "病人"
252
 
253
- if data_lang == "en":
254
- last_user = "Patient"
 
255
 
 
 
 
 
 
 
 
256
  while True:
257
- line = f_in.readline().decode("utf-8")
258
  if (not line) or (line in ["\n", "\n\r"]):
259
- conv_flag = False
260
- last_user = ""
261
- last_list.append(copy.deepcopy(last_conv))
262
- # To ensure close of conversation, only even number of sentences
263
- # are extracted
264
- last_turn = len(last_list)
265
- if int(last_turn / 2) > 0:
266
- temp = int(last_turn / 2)
267
- id_ += 1
268
- last_dialog["file_name"] = filepath
269
- last_dialog["dialogue_id"] = dialogue_id
270
- last_dialog["dialogue_url"] = dialogue_url
271
- last_dialog["dialogue_turns"] = last_list[: temp * 2]
272
- yield id_, last_dialog
273
  break
 
 
 
 
 
 
274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275
  if data_lang == "zh":
276
- if line[:3] == "病人:" or line[:3] == "医生:": # Hardcode alert!
277
- user = line[:2] # Hardcode alert!
278
- line = f_in.readline().decode("utf-8")
279
- conv_flag = True
280
 
281
- # The elif block is to ensure that multi-line sentences are captured.
282
- # This has been observed only in english.
283
  if data_lang == "en":
284
- if line.strip() == "Patient:" or line.strip() == "Doctor:": # Hardcode alert!
285
- user = line.replace(":", "").rstrip()
286
- line = f_in.readline().decode("utf-8")
287
- conv_flag = True
288
- elif line[:2] != "id": # Hardcode alert!
289
- conv_flag = True
290
-
291
- # Continues till the next ID is parsed
292
- if conv_flag:
293
- sen = line.rstrip()
294
- if sen == "":
295
- continue
296
-
297
- if user == last_user:
298
- last_conv["utterance"] = last_conv["utterance"] + sen
299
- else:
300
- last_user = user
301
  last_list.append(copy.deepcopy(last_conv))
302
- last_conv["utterance"] = sen
303
- last_conv["speaker"] = user
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  # URLS of processed data
48
  _URLS = {
49
+ "en": {
50
+ "train": "https://drive.google.com/uc?export=download&id=1ria4E6IdTIPsikL4Glm3uy1tFKJKw0W8",
51
+ "validation": "https://drive.google.com/uc?export=download&id=1KAZneuwdfEVQQM6euCX4pMDP-9DQpiB5",
52
+ "test": "https://drive.google.com/uc?export=download&id=10izqL71kcgnteYsf87Vh6j_mZ8sZM2Rc",
 
 
 
 
 
 
53
  },
54
+ "zh": {
55
+ "train": "https://drive.google.com/uc?export=download&id=1AaDJoHaiHAwEZwtskRH8oL1UP4FRgmgx",
56
+ "validation": "https://drive.google.com/uc?export=download&id=1TvfZCmQqP1kURIfEinOcj5VOPelTuGwI",
57
+ "test": "https://drive.google.com/uc?export=download&id=1pmmG95Yl6mMXRXDDSRb9-bYTxOE7ank5",
58
  },
59
  }
60
 
 
77
  ),
78
  ]
79
 
80
+ @property
81
+ def manual_download_instructions(self):
82
+ *processed, _ = self.config.name.split(".")
83
+ return (
84
+ None
85
+ if processed
86
+ else """\
87
+ \n For English:\nYou need to go to https://drive.google.com/drive/folders/1g29ssimdZ6JzTST6Y8g6h-ogUNReBtJD?usp=sharing,\
88
+ and manually download the dataset from Google Drive. Once it is completed,
89
+ a file named Medical-Dialogue-Dataset-English-<timestamp-info>.zip will appear in your Downloads folder(
90
+ or whichever folder your browser chooses to save files to). Unzip the folder to obtain
91
+ a folder named "Medical-Dialogue-Dataset-English" several text files.
92
+
93
+ Now, you can specify the path to this folder for the data_dir argument in the
94
+ datasets.load_dataset(...) option.
95
+ The <path/to/folder> can e.g. be "/Downloads/Medical-Dialogue-Dataset-English".
96
+ The data can then be loaded using the below command:\
97
+ `datasets.load_dataset("medical_dialog", name="en", data_dir="/Downloads/Medical-Dialogue-Dataset-English")`.
98
+
99
+ \n For Chinese:\nFollow the above process. Change the 'name' to 'zh'.The download link is https://drive.google.com/drive/folders/1r09_i8nJ9c1nliXVGXwSqRYqklcHd9e2
100
+
101
+ **NOTE**
102
+ - A caution while downloading from drive. It is better to download single files since creating a zip might not include files <500 MB. This has been observed mutiple times.
103
+ - After downloading the files and adding them to the appropriate folder, the path of the folder can be given as input tu the data_dir path.
104
+ """
105
+ )
106
+
107
  def _info(self):
108
  if self.config.name == "zh":
109
  features = datasets.Features(
 
158
  """Returns SplitGenerators."""
159
  *processed, lang = self.config.name.split(".")
160
  if processed:
161
+ data_dir = dl_manager.download(_URLS[lang])
 
162
  splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
163
+ return [datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": data_dir[split]}) for split in splits]
164
  else:
165
+ path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
166
+ if not os.path.exists(path_to_manual_file):
167
+ raise FileNotFoundError(
168
+ f"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('medical_dialog', data_dir=...)`. Manual download instructions: {self.manual_download_instructions})"
169
+ )
170
+
171
+ filepaths = [
172
+ os.path.join(path_to_manual_file, txt_file_name)
173
+ for txt_file_name in sorted(os.listdir(path_to_manual_file))
174
+ if txt_file_name.endswith("txt")
175
+ ]
176
+
177
+ return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})]
178
 
179
  def _generate_examples(self, filepaths):
180
  """Yields examples. Iterates over each file and give the creates the corresponding features.
 
205
  array = ""
206
  else:
207
  id_ = -1
208
+ for filepath in filepaths:
209
+ with open(filepath, encoding="utf-8") as f_in:
210
+ # Parameters to just "sectionize" the raw data
211
+ last_part = ""
212
+ last_dialog = {}
213
+ last_list = []
214
+ last_user = ""
215
+ check_list = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217
+ # These flags are present to have a single function address both chinese and english data
218
+ # English data is a little hahazard (i.e. the sentences spans multiple different lines),
219
+ # Chinese is compact with one line for doctor and patient.
220
+ conv_flag = False
221
+ des_flag = False
222
+
223
+ while True:
224
+ line = f_in.readline()
225
+ if not line:
226
+ break
227
+
228
+ # Extracting the dialog id
229
+ if line[:2] == "id": # Hardcode alert!
230
+ # Handling ID references that may come in the description
231
+ # These were observed in the Chinese dataset and were not
232
+ # followed by numbers
233
+ try:
234
+ dialogue_id = int(re.findall(r"\d+", line)[0])
235
+ except IndexError:
236
+ continue
 
 
 
237
 
238
+ # Extracting the url
239
+ if line[:4] == "http": # Hardcode alert!
240
+ dialogue_url = line.rstrip()
241
 
242
+ # Extracting the patient info from description.
243
+ if line[:11] == "Description": # Hardcode alert!
244
+ last_part = "description"
245
+ last_dialog = {}
246
+ last_list = []
247
+ last_user = ""
248
+ last_conv = {"speaker": "", "utterance": ""}
249
  while True:
250
+ line = f_in.readline()
251
  if (not line) or (line in ["\n", "\n\r"]):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
  break
253
+ else:
254
+ if data_lang == "zh": # Condition in chinese
255
+ if line[:5] == "病情描述:": # Hardcode alert!
256
+ last_user = "病人"
257
+ sen = f_in.readline().rstrip()
258
+ des_flag = True
259
 
260
+ if data_lang == "en":
261
+ last_user = "Patient"
262
+ sen = line.rstrip()
263
+ des_flag = True
264
+
265
+ if des_flag:
266
+ if sen == "":
267
+ continue
268
+ if sen in check_list:
269
+ last_conv["speaker"] = ""
270
+ last_conv["utterance"] = ""
271
+ else:
272
+ last_conv["speaker"] = last_user
273
+ last_conv["utterance"] = sen
274
+ check_list.append(sen)
275
+ des_flag = False
276
+ break
277
+ # Extracting the conversation info from dialogue.
278
+ elif line[:8] == "Dialogue": # Hardcode alert!
279
+ if last_part == "description" and len(last_conv["utterance"]) > 0:
280
+ last_part = "dialogue"
281
  if data_lang == "zh":
282
+ last_user = "病人"
 
 
 
283
 
 
 
284
  if data_lang == "en":
285
+ last_user = "Patient"
286
+
287
+ while True:
288
+ line = f_in.readline()
289
+ if (not line) or (line in ["\n", "\n\r"]):
290
+ conv_flag = False
291
+ last_user = ""
 
 
 
 
 
 
 
 
 
 
292
  last_list.append(copy.deepcopy(last_conv))
293
+ # To ensure close of conversation, only even number of sentences
294
+ # are extracted
295
+ last_turn = len(last_list)
296
+ if int(last_turn / 2) > 0:
297
+ temp = int(last_turn / 2)
298
+ id_ += 1
299
+ last_dialog["file_name"] = filepath
300
+ last_dialog["dialogue_id"] = dialogue_id
301
+ last_dialog["dialogue_url"] = dialogue_url
302
+ last_dialog["dialogue_turns"] = last_list[: temp * 2]
303
+ yield id_, last_dialog
304
+ break
305
+
306
+ if data_lang == "zh":
307
+ if line[:3] == "病人:" or line[:3] == "医生:": # Hardcode alert!
308
+ user = line[:2] # Hardcode alert!
309
+ line = f_in.readline()
310
+ conv_flag = True
311
+
312
+ # The elif block is to ensure that multi-line sentences are captured.
313
+ # This has been observed only in english.
314
+ if data_lang == "en":
315
+ if line.strip() == "Patient:" or line.strip() == "Doctor:": # Hardcode alert!
316
+ user = line.replace(":", "").rstrip()
317
+ line = f_in.readline()
318
+ conv_flag = True
319
+ elif line[:2] != "id": # Hardcode alert!
320
+ conv_flag = True
321
+
322
+ # Continues till the next ID is parsed
323
+ if conv_flag:
324
+ sen = line.rstrip()
325
+ if sen == "":
326
+ continue
327
+
328
+ if user == last_user:
329
+ last_conv["utterance"] = last_conv["utterance"] + sen
330
+ else:
331
+ last_user = user
332
+ last_list.append(copy.deepcopy(last_conv))
333
+ last_conv["utterance"] = sen
334
+ last_conv["speaker"] = user