vkashko commited on
Commit
b18750d
1 Parent(s): 99e068d

feat: add load script

Browse files
Files changed (1) hide show
  1. silicone-masks-biometric-attacks.py +74 -0
silicone-masks-biometric-attacks.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from xml.etree import ElementTree as ET
2
+
3
+ import datasets
4
+
5
+ _CITATION = """\
6
+ @InProceedings{huggingface:dataset,
7
+ title = {silicone-masks-biometric-attacks},
8
+ author = {TrainingDataPro},
9
+ year = {2023}
10
+ }
11
+ """
12
+
13
+ _DESCRIPTION = """\
14
+ The dataset consists of videos of individuals and attacks with printed 2D masks and
15
+ silicone masks . Videos are filmed in different lightning conditions (*in a dark room,
16
+ daylight, light room and nightlight*). Dataset includes videos of people with different
17
+ attributes (*glasses, mask, hat, hood, wigs and mustaches for men*).
18
+ """
19
+
20
+ _NAME = "silicone-masks-biometric-attacks"
21
+
22
+ _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
23
+
24
+ _LICENSE = ""
25
+
26
+ _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
27
+
28
+ _LABELS = ["real", "silicone", "mask"]
29
+
30
+
31
+ class SiliconeMasksBiometricAttacks(datasets.GeneratorBasedBuilder):
32
+ def _info(self):
33
+ return datasets.DatasetInfo(
34
+ description=_DESCRIPTION,
35
+ features=datasets.Features(
36
+ {
37
+ "id": datasets.Value("int32"),
38
+ "name": datasets.Value("string"),
39
+ "video": datasets.Value("string"),
40
+ "label": datasets.ClassLabel(
41
+ num_classes=len(_LABELS),
42
+ names=_LABELS,
43
+ ),
44
+ }
45
+ ),
46
+ supervised_keys=None,
47
+ homepage=_HOMEPAGE,
48
+ citation=_CITATION,
49
+ )
50
+
51
+ def _split_generators(self, dl_manager):
52
+ videos = dl_manager.download(f"{_DATA}videos.tar.gz")
53
+ videos = dl_manager.iter_archive(videos)
54
+ return [
55
+ datasets.SplitGenerator(
56
+ name=datasets.Split.TRAIN,
57
+ gen_kwargs={
58
+ "videos": videos,
59
+ },
60
+ ),
61
+ ]
62
+
63
+ def _generate_examples(self, videos):
64
+ for idx, ((video_path, video)) in enumerate(videos):
65
+ for lbl in _LABELS:
66
+ if lbl in video_path:
67
+ label = lbl
68
+
69
+ yield idx, {
70
+ "id": idx,
71
+ "name": video_path.split("/")[-1],
72
+ "video": video_path,
73
+ "label": label,
74
+ }