|
from xml.etree import ElementTree as ET |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {silicone-masks-biometric-attacks}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of videos of individuals and attacks with printed 2D masks and |
|
silicone masks . Videos are filmed in different lightning conditions (*in a dark room, |
|
daylight, light room and nightlight*). Dataset includes videos of people with different |
|
attributes (*glasses, mask, hat, hood, wigs and mustaches for men*). |
|
""" |
|
|
|
_NAME = "silicone-masks-biometric-attacks" |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
_LABELS = ["real", "silicone", "mask"] |
|
|
|
|
|
class SiliconeMasksBiometricAttacks(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"video_name": datasets.Value("string"), |
|
"video_path": datasets.Value("string"), |
|
"label": datasets.ClassLabel( |
|
num_classes=len(_LABELS), |
|
names=_LABELS, |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
videos = dl_manager.download(f"{_DATA}videos.tar.gz") |
|
videos = dl_manager.iter_archive(videos) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"videos": videos, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, videos): |
|
for idx, ((video_path, video)) in enumerate(videos): |
|
for lbl in _LABELS: |
|
if lbl in video_path: |
|
label = lbl |
|
|
|
yield idx, { |
|
"id": idx, |
|
"video_name": video_path.split("/")[-1], |
|
"video_path": video_path, |
|
"label": label, |
|
} |
|
|