feat: upload script
Browse files- printed_photos_attacks.py +32 -40
printed_photos_attacks.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import datasets
|
2 |
-
import pandas as pd
|
3 |
|
4 |
_CITATION = """\
|
5 |
@InProceedings{huggingface:dataset,
|
6 |
-
title = {
|
7 |
author = {TrainingDataPro},
|
8 |
year = {2023}
|
9 |
}
|
@@ -14,7 +13,7 @@ The dataset consists of 40,000 videos and selfies with unique people. 15,000
|
|
14 |
attack replays from 4,000 unique devices. 10,000 attacks with A4 printouts and
|
15 |
10,000 attacks with cut-out printouts.
|
16 |
"""
|
17 |
-
_NAME = '
|
18 |
|
19 |
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
20 |
|
@@ -23,53 +22,46 @@ _LICENSE = "cc-by-nc-nd-4.0"
|
|
23 |
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
24 |
|
25 |
|
26 |
-
class
|
27 |
|
28 |
def _info(self):
|
29 |
-
return datasets.DatasetInfo(
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
homepage=_HOMEPAGE,
|
40 |
-
citation=_CITATION,
|
41 |
-
license=_LICENSE)
|
42 |
|
43 |
def _split_generators(self, dl_manager):
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
47 |
return [
|
48 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
49 |
gen_kwargs={
|
50 |
-
|
51 |
-
|
|
|
52 |
}),
|
53 |
]
|
54 |
|
55 |
-
def _generate_examples(self,
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
yield idx, {
|
61 |
-
'
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
'video_file':
|
68 |
-
video_path,
|
69 |
-
'phone_video_playback':
|
70 |
-
annotations_df.loc[annotations_df['link'] == file_name]
|
71 |
-
['phone_video_playback'].values[0],
|
72 |
-
'worker_id':
|
73 |
-
annotations_df.loc[annotations_df['link'] == file_name]
|
74 |
-
['worker_id'].values[0]
|
75 |
}
|
|
|
1 |
import datasets
|
|
|
2 |
|
3 |
_CITATION = """\
|
4 |
@InProceedings{huggingface:dataset,
|
5 |
+
title = {printed_photos_attacks},
|
6 |
author = {TrainingDataPro},
|
7 |
year = {2023}
|
8 |
}
|
|
|
13 |
attack replays from 4,000 unique devices. 10,000 attacks with A4 printouts and
|
14 |
10,000 attacks with cut-out printouts.
|
15 |
"""
|
16 |
+
_NAME = 'printed_photos_attacks'
|
17 |
|
18 |
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
19 |
|
|
|
22 |
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
23 |
|
24 |
|
25 |
+
class PrintedPhotosAttacks(datasets.GeneratorBasedBuilder):
|
26 |
|
27 |
def _info(self):
|
28 |
+
return datasets.DatasetInfo(description=_DESCRIPTION,
|
29 |
+
features=datasets.Features({
|
30 |
+
'attack': datasets.Value('string'),
|
31 |
+
'live_selfie': datasets.Image(),
|
32 |
+
'live_video': datasets.Value('string')
|
33 |
+
}),
|
34 |
+
supervised_keys=None,
|
35 |
+
homepage=_HOMEPAGE,
|
36 |
+
citation=_CITATION,
|
37 |
+
license=_LICENSE)
|
|
|
|
|
|
|
38 |
|
39 |
def _split_generators(self, dl_manager):
|
40 |
+
attacks = dl_manager.download(f"{_DATA}attack.tar.gz")
|
41 |
+
live_selfies = dl_manager.download(f"{_DATA}live_selfie.tar.gz")
|
42 |
+
live_videos = dl_manager.download(f"{_DATA}live_video.tar.gz")
|
43 |
+
attacks = dl_manager.iter_archive(attacks)
|
44 |
+
live_selfies = dl_manager.iter_archive(live_selfies)
|
45 |
+
live_videos = dl_manager.iter_archive(live_videos)
|
46 |
return [
|
47 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
48 |
gen_kwargs={
|
49 |
+
'attacks': attacks,
|
50 |
+
"live_selfies": live_selfies,
|
51 |
+
'live_videos': live_videos
|
52 |
}),
|
53 |
]
|
54 |
|
55 |
+
def _generate_examples(self, attacks, live_selfies, live_videos):
|
56 |
+
for idx, ((attack_path, attack), (live_selfie_path, live_selfie),
|
57 |
+
(live_video_path, live_video)) in enumerate(
|
58 |
+
zip(attacks, live_selfies, live_videos)):
|
59 |
|
60 |
yield idx, {
|
61 |
+
'attack': attack_path,
|
62 |
+
'live_selfie': {
|
63 |
+
'path': live_selfie_path,
|
64 |
+
'bytes': live_selfie
|
65 |
+
},
|
66 |
+
'live_video': live_video_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
}
|