|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {monitors-replay-attacks-dataset}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of videos of replay attacks played on different models of |
|
computers. The dataset solves tasks in the field of anti-spoofing and it is |
|
useful for buisness and safety systems. |
|
The dataset includes: **replay attacks** - videos of real people played |
|
on a computer and filmed on the phone. |
|
""" |
|
_NAME = 'monitors-replay-attacks-dataset' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "cc-by-nc-nd-4.0" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class MonitorsReplayAttacksDataset(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo(description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'file': datasets.Value('string'), |
|
'phone': datasets.Value('string'), |
|
'computer': datasets.Value('string'), |
|
'gender': datasets.Value('string'), |
|
'age': datasets.Value('int16'), |
|
'country': datasets.Value('string'), |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE) |
|
|
|
def _split_generators(self, dl_manager): |
|
attacks = dl_manager.download(f"{_DATA}attacks.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
attacks = dl_manager.iter_archive(attacks) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"attacks": attacks, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, attacks, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=';') |
|
|
|
for idx, (video_path, video) in enumerate(attacks): |
|
yield idx, { |
|
'file': |
|
video_path, |
|
'phone': |
|
annotations_df.loc[annotations_df['file'].str.lower() == |
|
video_path.lower()]['phone'].values[0], |
|
'computer': |
|
annotations_df.loc[annotations_df['file'].str.lower() == |
|
video_path.lower()] |
|
['computer'].values[0], |
|
'gender': |
|
annotations_df.loc[annotations_df['file'].str.lower() == |
|
video_path.lower()]['gender'].values[0], |
|
'age': |
|
annotations_df.loc[annotations_df['file'].str.lower() == |
|
video_path.lower()]['age'].values[0], |
|
'country': |
|
annotations_df.loc[annotations_df['file'].str.lower() == |
|
video_path.lower()]['country'].values[0] |
|
} |
|
|