|  | from xml.etree import ElementTree as ET | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @InProceedings{huggingface:dataset, | 
					
						
						|  | title = {miners-detection}, | 
					
						
						|  | author = {TrainingDataPro}, | 
					
						
						|  | year = {2023} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | The dataset consists of of photos captured within various mines, focusing on **miners** | 
					
						
						|  | engaged in their work. Each photo is annotated with bounding box detection of the | 
					
						
						|  | miners, an attribute highlights whether each miner is sitting or standing in the photo. | 
					
						
						|  |  | 
					
						
						|  | The dataset's diverse applications such as computer vision, safety assessment and others | 
					
						
						|  | make it a valuable resource for *researchers, employers, and policymakers in the mining | 
					
						
						|  | industry*. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _NAME = "miners-detection" | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "" | 
					
						
						|  |  | 
					
						
						|  | _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" | 
					
						
						|  |  | 
					
						
						|  | _LABELS = ["Miner"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MinersDetection(datasets.GeneratorBasedBuilder): | 
					
						
						|  | def _info(self): | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("int32"), | 
					
						
						|  | "name": datasets.Value("string"), | 
					
						
						|  | "image": datasets.Image(), | 
					
						
						|  | "mask": datasets.Image(), | 
					
						
						|  | "width": datasets.Value("uint16"), | 
					
						
						|  | "height": datasets.Value("uint16"), | 
					
						
						|  | "shapes": datasets.Sequence( | 
					
						
						|  | { | 
					
						
						|  | "label": datasets.ClassLabel( | 
					
						
						|  | num_classes=len(_LABELS), | 
					
						
						|  | names=_LABELS, | 
					
						
						|  | ), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "points": datasets.Sequence( | 
					
						
						|  | datasets.Sequence( | 
					
						
						|  | datasets.Value("float"), | 
					
						
						|  | ), | 
					
						
						|  | ), | 
					
						
						|  | "rotation": datasets.Value("float"), | 
					
						
						|  | "occluded": datasets.Value("uint8"), | 
					
						
						|  | "attributes": datasets.Sequence( | 
					
						
						|  | { | 
					
						
						|  | "name": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | images = dl_manager.download(f"{_DATA}images.tar.gz") | 
					
						
						|  | masks = dl_manager.download(f"{_DATA}boxes.tar.gz") | 
					
						
						|  | annotations = dl_manager.download(f"{_DATA}annotations.xml") | 
					
						
						|  | images = dl_manager.iter_archive(images) | 
					
						
						|  | masks = dl_manager.iter_archive(masks) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "images": images, | 
					
						
						|  | "masks": masks, | 
					
						
						|  | "annotations": annotations, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def parse_shape(shape: ET.Element) -> dict: | 
					
						
						|  | label = shape.get("label") | 
					
						
						|  | shape_type = shape.tag | 
					
						
						|  | rotation = shape.get("rotation", 0.0) | 
					
						
						|  | occluded = shape.get("occluded", 0) | 
					
						
						|  |  | 
					
						
						|  | points = None | 
					
						
						|  |  | 
					
						
						|  | if shape_type == "points": | 
					
						
						|  | points = tuple(map(float, shape.get("points").split(","))) | 
					
						
						|  |  | 
					
						
						|  | elif shape_type == "box": | 
					
						
						|  | points = [ | 
					
						
						|  | (float(shape.get("xtl")), float(shape.get("ytl"))), | 
					
						
						|  | (float(shape.get("xbr")), float(shape.get("ybr"))), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | elif shape_type == "polygon": | 
					
						
						|  | points = [ | 
					
						
						|  | tuple(map(float, point.split(","))) | 
					
						
						|  | for point in shape.get("points").split(";") | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | attributes = [] | 
					
						
						|  |  | 
					
						
						|  | for attr in shape: | 
					
						
						|  | attr_name = attr.get("name") | 
					
						
						|  | attr_text = attr.text | 
					
						
						|  | attributes.append({"name": attr_name, "text": attr_text}) | 
					
						
						|  |  | 
					
						
						|  | shape_data = { | 
					
						
						|  | "label": label, | 
					
						
						|  | "type": shape_type, | 
					
						
						|  | "points": points, | 
					
						
						|  | "rotation": rotation, | 
					
						
						|  | "occluded": occluded, | 
					
						
						|  | "attributes": attributes, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return shape_data | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, images, masks, annotations): | 
					
						
						|  | tree = ET.parse(annotations) | 
					
						
						|  | root = tree.getroot() | 
					
						
						|  |  | 
					
						
						|  | for idx, ( | 
					
						
						|  | (image_path, image), | 
					
						
						|  | (mask_path, mask), | 
					
						
						|  | ) in enumerate(zip(images, masks)): | 
					
						
						|  | image_name = image_path.split("/")[-1] | 
					
						
						|  | img = root.find(f"./image[@name='images/{image_name}']") | 
					
						
						|  |  | 
					
						
						|  | image_id = img.get("id") | 
					
						
						|  | name = img.get("name") | 
					
						
						|  | width = img.get("width") | 
					
						
						|  | height = img.get("height") | 
					
						
						|  | shapes = [self.parse_shape(shape) for shape in img] | 
					
						
						|  |  | 
					
						
						|  | yield idx, { | 
					
						
						|  | "id": image_id, | 
					
						
						|  | "name": name, | 
					
						
						|  | "image": {"path": image_path, "bytes": image.read()}, | 
					
						
						|  | "mask": {"path": mask_path, "bytes": mask.read()}, | 
					
						
						|  | "width": width, | 
					
						
						|  | "height": height, | 
					
						
						|  | "shapes": shapes, | 
					
						
						|  | } | 
					
						
						|  |  |