refactor: remove useless
Browse files- facial_keypoint_detection.py +0 -94
facial_keypoint_detection.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
import datasets
|
2 |
-
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import PIL.Image
|
5 |
-
import PIL.ImageOps
|
6 |
|
7 |
_CITATION = """\
|
8 |
@InProceedings{huggingface:dataset,
|
@@ -27,66 +24,6 @@ _LICENSE = "cc-by-nc-nd-4.0"
|
|
27 |
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
28 |
|
29 |
|
30 |
-
def exif_transpose(img):
|
31 |
-
if not img:
|
32 |
-
return img
|
33 |
-
|
34 |
-
exif_orientation_tag = 274
|
35 |
-
|
36 |
-
# Check for EXIF data (only present on some files)
|
37 |
-
if hasattr(img, "_getexif") and isinstance(
|
38 |
-
img._getexif(), dict) and exif_orientation_tag in img._getexif():
|
39 |
-
exif_data = img._getexif()
|
40 |
-
orientation = exif_data[exif_orientation_tag]
|
41 |
-
|
42 |
-
# Handle EXIF Orientation
|
43 |
-
if orientation == 1:
|
44 |
-
# Normal image - nothing to do!
|
45 |
-
pass
|
46 |
-
elif orientation == 2:
|
47 |
-
# Mirrored left to right
|
48 |
-
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
49 |
-
elif orientation == 3:
|
50 |
-
# Rotated 180 degrees
|
51 |
-
img = img.rotate(180)
|
52 |
-
elif orientation == 4:
|
53 |
-
# Mirrored top to bottom
|
54 |
-
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
55 |
-
elif orientation == 5:
|
56 |
-
# Mirrored along top-left diagonal
|
57 |
-
img = img.rotate(-90,
|
58 |
-
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
59 |
-
elif orientation == 6:
|
60 |
-
# Rotated 90 degrees
|
61 |
-
img = img.rotate(-90, expand=True)
|
62 |
-
elif orientation == 7:
|
63 |
-
# Mirrored along top-right diagonal
|
64 |
-
img = img.rotate(90,
|
65 |
-
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
66 |
-
elif orientation == 8:
|
67 |
-
# Rotated 270 degrees
|
68 |
-
img = img.rotate(90, expand=True)
|
69 |
-
|
70 |
-
return img
|
71 |
-
|
72 |
-
|
73 |
-
def load_image_file(file, mode='RGB'):
|
74 |
-
# Load the image with PIL
|
75 |
-
img = PIL.Image.open(file)
|
76 |
-
|
77 |
-
if hasattr(PIL.ImageOps, 'exif_transpose'):
|
78 |
-
# Very recent versions of PIL can do exit transpose internally
|
79 |
-
img = PIL.ImageOps.exif_transpose(img)
|
80 |
-
else:
|
81 |
-
# Otherwise, do the exif transpose ourselves
|
82 |
-
img = exif_transpose(img)
|
83 |
-
|
84 |
-
img = img.convert(mode)
|
85 |
-
img.thumbnail((1000, 1000), PIL.Image.Resampling.LANCZOS)
|
86 |
-
|
87 |
-
return img
|
88 |
-
|
89 |
-
|
90 |
class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
|
91 |
|
92 |
def _info(self):
|
@@ -103,13 +40,9 @@ class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
|
|
103 |
license=_LICENSE)
|
104 |
|
105 |
def _split_generators(self, dl_manager):
|
106 |
-
# images = dl_manager.download_and_extract(f"{_DATA}images.zip")
|
107 |
-
# masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")
|
108 |
images = dl_manager.download(f"{_DATA}images.tar.gz")
|
109 |
masks = dl_manager.download(f"{_DATA}masks.tar.gz")
|
110 |
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
111 |
-
# images = dl_manager.iter_files(images)
|
112 |
-
# masks = dl_manager.iter_files(masks)
|
113 |
images = dl_manager.iter_archive(images)
|
114 |
masks = dl_manager.iter_archive(masks)
|
115 |
|
@@ -138,30 +71,3 @@ class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
|
|
138 |
},
|
139 |
'key_points': annotations_df['key_points'].iloc[idx]
|
140 |
}
|
141 |
-
# images_data = pd.DataFrame(
|
142 |
-
# columns=['image_name', 'image_path', 'mask_path'])
|
143 |
-
# for idx, ((image_path, image),
|
144 |
-
# (mask_path, mask)) in enumerate(zip(images, masks)):
|
145 |
-
# images_data.loc[idx] = {
|
146 |
-
# 'image_name': image_path.split('/')[-1],
|
147 |
-
# 'image_path': image_path,
|
148 |
-
# 'mask_path': mask_path
|
149 |
-
# }
|
150 |
-
|
151 |
-
# annotations_df = pd.merge(annotations_df,
|
152 |
-
# images_data,
|
153 |
-
# how='left',
|
154 |
-
# on=['image_name'])
|
155 |
-
|
156 |
-
# annotations_df[['image_path', 'mask_path'
|
157 |
-
# ]] = annotations_df[['image_path',
|
158 |
-
# 'mask_path']].astype('string')
|
159 |
-
|
160 |
-
# for row in annotations_df.sort_values(['image_name'
|
161 |
-
# ]).itertuples(index=False):
|
162 |
-
# yield idx, {
|
163 |
-
# 'image_id': row[0],
|
164 |
-
# 'image': row[3],
|
165 |
-
# 'mask': row[4],
|
166 |
-
# 'key_points': row[2]
|
167 |
-
# }
|
|
|
1 |
import datasets
|
|
|
2 |
import pandas as pd
|
|
|
|
|
3 |
|
4 |
_CITATION = """\
|
5 |
@InProceedings{huggingface:dataset,
|
|
|
24 |
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
|
28 |
|
29 |
def _info(self):
|
|
|
40 |
license=_LICENSE)
|
41 |
|
42 |
def _split_generators(self, dl_manager):
|
|
|
|
|
43 |
images = dl_manager.download(f"{_DATA}images.tar.gz")
|
44 |
masks = dl_manager.download(f"{_DATA}masks.tar.gz")
|
45 |
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
|
|
|
|
46 |
images = dl_manager.iter_archive(images)
|
47 |
masks = dl_manager.iter_archive(masks)
|
48 |
|
|
|
71 |
},
|
72 |
'key_points': annotations_df['key_points'].iloc[idx]
|
73 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|